From e604f4098b48f60966cbde6a875a7147eb065bff Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 1 Dec 2023 02:04:46 -0600 Subject: [PATCH 01/78] Update velocity average function --- floris/simulation/turbine.py | 19 ++++++++++--- tests/turbine_unit_test.py | 52 ++++++++++++++++++------------------ 2 files changed, 41 insertions(+), 30 deletions(-) diff --git a/floris/simulation/turbine.py b/floris/simulation/turbine.py index e0db04f81..19475cead 100644 --- a/floris/simulation/turbine.py +++ b/floris/simulation/turbine.py @@ -417,8 +417,11 @@ def average_velocity( method: str = "cubic-mean", cubature_weights: NDArrayFloat | None = None ) -> NDArrayFloat: - """This property calculates and returns the cube root of the - mean cubed velocity in the turbine's rotor swept area (m/s). + """This property calculates and returns the average of the velocity field + in turbine's rotor swept area. The average is calculated using the + user-specified method. This is a vectorized function, so it can be used + to calculate the average velocity for multiple turbines at once or + a single turbine. **Note:** The velocity is scaled to an effective velocity by the yaw. @@ -428,6 +431,14 @@ def average_velocity( ix_filter (NDArrayFilter | Iterable[int] | None], optional): The boolean array, or integer indices (as an iterable or array) to filter out before calculation. Defaults to None. + method (str, optional): The method to use for averaging. Options are: + - "simple-mean": The simple mean of the velocities + - "cubic-mean": The cubic mean of the velocities + - "simple-cubature": A cubature integration of the velocities + - "cubic-cubature": A cubature integration of the cube of the velocities + Defaults to "cubic-mean". + cubature_weights (NDArrayFloat, optional): The cubature weights to use for the + cubature integration methods. Defaults to None. Returns: NDArrayFloat: The average velocity across the rotor(s). @@ -437,9 +448,9 @@ def average_velocity( # (# wind directions, # wind speeds, # turbines, grid resolution, grid resolution) if ix_filter is not None: - velocities = velocities[:, :, ix_filter] + velocities = velocities[:, ix_filter] - axis = tuple([3 + i for i in range(velocities.ndim - 3)]) + axis = tuple([2 + i for i in range(velocities.ndim - 2)]) if method == "simple-mean": return simple_mean(velocities, axis) diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index 9704483b0..a5dab3c0d 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -133,61 +133,61 @@ def test_rotor_area(): def test_average_velocity(): # TODO: why do we use cube root - mean - cube (like rms) instead of a simple average (np.mean)? - # Dimensions are (n wind directions, n wind speeds, n turbines, grid x, grid y) - velocities = np.ones((1, 1, 1, 5, 5)) + # Dimensions are (n sample, n turbines, grid x, grid y) + velocities = np.ones((1, 1, 5, 5)) assert average_velocity(velocities, method="cubic-mean") == 1 - # Constructs an array of shape 1 x 1 x 2 x 3 x 3 with finrst turbie all 1, second turbine all 2 + # Constructs an array of shape 1 x 2 x 3 x 3 with first turbine all 1, second turbine all 2 velocities = np.stack( ( - np.ones((1, 1, 3, 3)), # The first dimension here is the wind direction and the second - 2 * np.ones((1, 1, 3, 3)), # is the wind speed since we are stacking on axis=2 + np.ones((1, 3, 3)), # The first dimension here is the sample dimension and the second + 2 * np.ones((1, 3, 3)), # is the n turbine since we are stacking on axis=1 ), - axis=2, + axis=1, ) - # Pull out the first wind speed for the test + # Pull out the first sample for the test np.testing.assert_array_equal( - average_velocity(velocities, method="cubic-mean")[0, 0], + average_velocity(velocities, method="cubic-mean")[0], np.array([1, 2]) ) # Test boolean filter ix_filter = [True, False, True, False] - velocities = np.stack( # 4 turbines with 3 x 3 velocity array; shape (1,1,4,3,3) - [i * np.ones((1, 1, 3, 3)) for i in range(1,5)], + velocities = np.stack( # 4 turbines with 3 x 3 velocity array; shape (1,4,3,3) + [i * np.ones((1, 3, 3)) for i in range(1,5)], # ( - # # The first dimension here is the wind direction - # # and second is the wind speed since we are stacking on axis=2 + # # The first dimension here is the sample dimension + # # and second is the turbine dimension since we are stacking on axis=1 # np.ones( - # (1, 1, 3, 3) + # (1, 3, 3) # ), - # 2 * np.ones((1, 1, 3, 3)), - # 3 * np.ones((1, 1, 3, 3)), - # 4 * np.ones((1, 1, 3, 3)), + # 2 * np.ones((1, 3, 3)), + # 3 * np.ones((1, 3, 3)), + # 4 * np.ones((1, 3, 3)), # ), - axis=2, + axis=1, ) avg = average_velocity(velocities, ix_filter, method="cubic-mean") - assert avg.shape == (1, 1, 2) # 1 wind direction, 1 wind speed, 2 turbines filtered + assert avg.shape == (1, 2) # 1 sample, 2 turbines filtered - # Pull out the first wind direction and wind speed for the comparison - assert np.allclose(avg[0, 0], np.array([1.0, 3.0])) + # Pull out the first sample for the comparison + assert np.allclose(avg[0], np.array([1.0, 3.0])) # This fails in GitHub Actions due to a difference in precision: # E assert 3.0000000000000004 == 3.0 # np.testing.assert_array_equal(avg[0], np.array([1.0, 3.0])) # Test integer array filter # np.arange(1, 5).reshape((-1,1,1)) * np.ones((1, 1, 3, 3)) - velocities = np.stack( # 4 turbines with 3 x 3 velocity array; shape (1,1,4,3,3) - [i * np.ones((1, 1, 3, 3)) for i in range(1,5)], - axis=2, + velocities = np.stack( # 4 turbines with 3 x 3 velocity array; shape (1,4,3,3) + [i * np.ones((1, 3, 3)) for i in range(1,5)], + axis=1, ) avg = average_velocity(velocities, INDEX_FILTER, method="cubic-mean") - assert avg.shape == (1, 1, 2) # 1 wind direction, 1 wind speed, 2 turbines filtered + assert avg.shape == (1, 2) # 1 sample, 2 turbines filtered - # Pull out the first wind direction and wind speed for the comparison - assert np.allclose(avg[0, 0], np.array([1.0, 3.0])) + # Pull out the first sample for the comparison + assert np.allclose(avg[0], np.array([1.0, 3.0])) def test_ct(): From caffa0140f323087c7c6ca4fb75bee188245aa01 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Fri, 8 Dec 2023 07:47:11 -0700 Subject: [PATCH 02/78] Support 4 dimensional data arrays in Turbine and Farm classes (#60) * Make changes such that test_ct passes in 4d * Set axial_induction() and test to 4d * fix test_rotor_velocity_yaw_correction to 4d * test_rotor_velocity_tilt_correction to 4d * test_compute_tilt_angles_for_floating_turbines 4d * Add simple cubature test which passes in 5d * Add test of cubit cubuture which passes in 4d * Convert cubature functions to 4d * Change sample to findex, n_findex * add N_FINDEX to conftest * convert farm and unit_tests to 4D * Delete non-input from docstring * Add test for 5d reverse rotation and ruff format * convert utilties and tests to 4d * Reset formatting * rem N_WIND_D/S in favor of N_FINDEX in conftest.py * Clean up some commented code * Clean up commented code * fix turbine_type_map in unit test * fix turbine_type_map size * revert wind speed and direction tests * fix doubled code block * Clean up comments * Clean up typos * A few more typos --------- Co-authored-by: Rafael M Mudafort --- floris/simulation/farm.py | 108 +++++++++--------- floris/simulation/turbine.py | 60 +++++----- floris/utilities.py | 16 ++- tests/conftest.py | 11 +- tests/farm_unit_test.py | 15 ++- tests/turbine_unit_test.py | 213 +++++++++++++++++++++-------------- tests/utilities_unit_test.py | 67 ++++++++--- 7 files changed, 288 insertions(+), 202 deletions(-) diff --git a/floris/simulation/farm.py b/floris/simulation/farm.py index 602285bc0..ac7322689 100644 --- a/floris/simulation/farm.py +++ b/floris/simulation/farm.py @@ -234,13 +234,13 @@ def initialize(self, sorted_indices): # Sort yaw angles from most upstream to most downstream wind turbine self.yaw_angles_sorted = np.take_along_axis( self.yaw_angles, - sorted_indices[:, :, :, 0, 0], - axis=2, + sorted_indices[:, :, 0, 0], + axis=1, ) self.tilt_angles_sorted = np.take_along_axis( self.tilt_angles, - sorted_indices[:, :, :, 0, 0], - axis=2, + sorted_indices[:, :, 0, 0], + axis=1, ) self.state = State.INITIALIZED @@ -311,16 +311,17 @@ def construct_multidim_turbine_power_interps(self): def expand_farm_properties( self, - n_wind_directions: int, - n_wind_speeds: int, + n_findex: int, sorted_coord_indices ): template_shape = np.ones_like(sorted_coord_indices) self.hub_heights_sorted = np.take_along_axis( self.hub_heights * template_shape, sorted_coord_indices, - axis=2 + axis=1 ) + + # TODO: update multidimensional turbine for 4D arrays if 'multi_dimensional_cp_ct' in self.turbine_definitions[0].keys() \ and self.turbine_definitions[0]['multi_dimensional_cp_ct'] is True: wd_dim = np.shape(template_shape)[0] @@ -332,7 +333,7 @@ def expand_farm_properties( np.shape(template_shape) ), sorted_coord_indices, - axis=2 + axis=2 # TODO: This should probably be 1 ) self.turbine_power_interps_sorted = np.take_along_axis( np.reshape( @@ -340,82 +341,81 @@ def expand_farm_properties( np.shape(template_shape) ), sorted_coord_indices, - axis=2 + axis=2 # TODO: This should probably be 1 ) else: self.turbine_fCts_sorted = np.take_along_axis( np.reshape(self.turbine_fCts, np.shape(template_shape)), sorted_coord_indices, - axis=2 + axis=1 ) self.turbine_power_interps_sorted = np.take_along_axis( np.reshape(self.turbine_power_interps, np.shape(template_shape)), sorted_coord_indices, - axis=2 + axis=1 ) self.rotor_diameters_sorted = np.take_along_axis( self.rotor_diameters * template_shape, sorted_coord_indices, - axis=2 + axis=1 ) self.TSRs_sorted = np.take_along_axis( self.TSRs * template_shape, sorted_coord_indices, - axis=2 + axis=1 ) self.ref_density_cp_cts_sorted = np.take_along_axis( self.ref_density_cp_cts * template_shape, sorted_coord_indices, - axis=2 + axis=1 ) self.ref_tilt_cp_cts_sorted = np.take_along_axis( self.ref_tilt_cp_cts * template_shape, sorted_coord_indices, - axis=2 + axis=1 ) self.correct_cp_ct_for_tilt_sorted = np.take_along_axis( self.correct_cp_ct_for_tilt * template_shape, sorted_coord_indices, - axis=2 + axis=1 ) self.pPs_sorted = np.take_along_axis( self.pPs * template_shape, sorted_coord_indices, - axis=2 + axis=1 ) self.pTs_sorted = np.take_along_axis( self.pTs * template_shape, sorted_coord_indices, - axis=2 + axis=1 ) # NOTE: Tilt angles are sorted twice - here and in initialize() self.tilt_angles_sorted = np.take_along_axis( self.tilt_angles * template_shape, sorted_coord_indices, - axis=2 + axis=1 ) self.turbine_type_map_sorted = np.take_along_axis( np.reshape( - [turb["turbine_type"] for turb in self.turbine_definitions] * n_wind_directions, + [turb["turbine_type"] for turb in self.turbine_definitions] * n_findex, np.shape(sorted_coord_indices) ), sorted_coord_indices, - axis=2 + axis=1 ) - def set_yaw_angles(self, n_wind_directions: int, n_wind_speeds: int): - # TODO Is this just for initializing yaw angles to zero? - self.yaw_angles = np.zeros((n_wind_directions, n_wind_speeds, self.n_turbines)) - self.yaw_angles_sorted = np.zeros((n_wind_directions, n_wind_speeds, self.n_turbines)) + def set_yaw_angles(self, n_findex: int): + self.yaw_angles = np.zeros((n_findex, self.n_turbines)) + self.yaw_angles_sorted = np.zeros((n_findex, self.n_turbines)) - def set_tilt_to_ref_tilt(self, n_wind_directions: int, n_wind_speeds: int): + def set_tilt_to_ref_tilt(self, n_findex: int): self.tilt_angles = ( - np.ones((n_wind_directions, n_wind_speeds, self.n_turbines)) + np.ones((n_findex, self.n_turbines)) * self.ref_tilt_cp_cts ) self.tilt_angles_sorted = ( - np.ones((n_wind_directions, n_wind_speeds, self.n_turbines)) + np.ones((n_findex, self.n_turbines)) * self.ref_tilt_cp_cts ) @@ -433,68 +433,68 @@ def finalize(self, unsorted_indices): and self.turbine_definitions[0]['multi_dimensional_cp_ct'] is True: self.turbine_fCts = np.take_along_axis( self.turbine_fCts_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.turbine_power_interps = np.take_along_axis( self.turbine_power_interps_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.yaw_angles = np.take_along_axis( self.yaw_angles_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.tilt_angles = np.take_along_axis( self.tilt_angles_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.hub_heights = np.take_along_axis( self.hub_heights_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.rotor_diameters = np.take_along_axis( self.rotor_diameters_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.TSRs = np.take_along_axis( self.TSRs_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.ref_density_cp_cts = np.take_along_axis( self.ref_density_cp_cts_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.ref_tilt_cp_cts = np.take_along_axis( self.ref_tilt_cp_cts_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.correct_cp_ct_for_tilt = np.take_along_axis( self.correct_cp_ct_for_tilt_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.pPs = np.take_along_axis( self.pPs_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.pTs = np.take_along_axis( self.pTs_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.turbine_type_map = np.take_along_axis( self.turbine_type_map_sorted, - unsorted_indices[:,:,:,0,0], - axis=2 + unsorted_indices[:,:,0,0], + axis=1 ) self.state.USED diff --git a/floris/simulation/turbine.py b/floris/simulation/turbine.py index 19475cead..47f7b0958 100644 --- a/floris/simulation/turbine.py +++ b/floris/simulation/turbine.py @@ -139,7 +139,7 @@ def rotor_effective_velocity( ref_tilt_cp_ct = ref_tilt_cp_ct[:, :, ix_filter] pP = pP[:, :, ix_filter] pT = pT[:, :, ix_filter] - turbine_type_map = turbine_type_map[:, :, ix_filter] + turbine_type_map = turbine_type_map[:, ix_filter] # Compute the rotor effective velocity adjusting for air density # TODO: This correction is currently split across two functions: this one and `power`, where in @@ -210,7 +210,7 @@ def power( # Down-select inputs if ix_filter is given if ix_filter is not None: rotor_effective_velocities = rotor_effective_velocities[:, :, ix_filter] - turbine_type_map = turbine_type_map[:, :, ix_filter] + turbine_type_map = turbine_type_map[:, ix_filter] # Loop over each turbine type given to get power for all turbines p = np.zeros(np.shape(rotor_effective_velocities)) @@ -245,19 +245,19 @@ def Ct( wind speed table using the rotor swept area average velocity. Args: - velocities (NDArrayFloat[wd, ws, turbines, grid1, grid2]): The velocity field at + velocities (NDArrayFloat[findex, turbines, grid1, grid2]): The velocity field at a turbine. - yaw_angle (NDArrayFloat[wd, ws, turbines]): The yaw angle for each turbine. - tilt_angle (NDArrayFloat[wd, ws, turbines]): The tilt angle for each turbine. - ref_tilt_cp_ct (NDArrayFloat[wd, ws, turbines]): The reference tilt angle for each turbine + yaw_angle (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. + tilt_angle (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. + ref_tilt_cp_ct (NDArrayFloat[findex, turbines]): The reference tilt angle for each turbine that the Cp/Ct tables are defined at. fCt (dict): The thrust coefficient interpolation functions for each turbine. Keys are the turbine type string and values are the interpolation functions. tilt_interp (Iterable[tuple]): The tilt interpolation functions for each turbine. - correct_cp_ct_for_tilt (NDArrayBool[wd, ws, turbines]): Boolean for determining if the + correct_cp_ct_for_tilt (NDArrayBool[findex, turbines]): Boolean for determining if the turbines Cp and Ct should be corrected for tilt. - turbine_type_map: (NDArrayObject[wd, ws, turbines]): The Turbine type definition + turbine_type_map: (NDArrayObject[findex, turbines]): The Turbine type definition for each turbine. ix_filter (NDArrayFilter | Iterable[int] | None, optional): The boolean array, or integer indices as an iterable of array to filter out before calculation. @@ -275,12 +275,12 @@ def Ct( # Down-select inputs if ix_filter is given if ix_filter is not None: - velocities = velocities[:, :, ix_filter] - yaw_angle = yaw_angle[:, :, ix_filter] - tilt_angle = tilt_angle[:, :, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, :, ix_filter] - turbine_type_map = turbine_type_map[:, :, ix_filter] - correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, :, ix_filter] + velocities = velocities[:, ix_filter] + yaw_angle = yaw_angle[:, ix_filter] + tilt_angle = tilt_angle[:, ix_filter] + ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] + turbine_type_map = turbine_type_map[:, ix_filter] + correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, ix_filter] average_velocities = average_velocity( velocities, @@ -315,14 +315,14 @@ def Ct( def axial_induction( - velocities: NDArrayFloat, # (wind directions, wind speeds, turbines, grid, grid) - yaw_angle: NDArrayFloat, # (wind directions, wind speeds, turbines) - tilt_angle: NDArrayFloat, # (wind directions, wind speeds, turbines) + velocities: NDArrayFloat, # (findex, turbines, grid, grid) + yaw_angle: NDArrayFloat, # (findex, turbines) + tilt_angle: NDArrayFloat, # (findex, turbines) ref_tilt_cp_ct: NDArrayFloat, fCt: dict, # (turbines) tilt_interp: NDArrayObject, # (turbines) - correct_cp_ct_for_tilt: NDArrayBool, # (wind directions, wind speeds, turbines) - turbine_type_map: NDArrayObject, # (wind directions, 1, turbines) + correct_cp_ct_for_tilt: NDArrayBool, # (findex, turbines) + turbine_type_map: NDArrayObject, # (findex, turbines) ix_filter: NDArrayFilter | Iterable[int] | None = None, average_method: str = "cubic-mean", cubature_weights: NDArrayFloat | None = None @@ -333,17 +333,17 @@ def axial_induction( Args: velocities (NDArrayFloat): The velocity field at each turbine; should be shape: (number of turbines, ngrid, ngrid), or (ngrid, ngrid) for a single turbine. - yaw_angle (NDArrayFloat[wd, ws, turbines]): The yaw angle for each turbine. - tilt_angle (NDArrayFloat[wd, ws, turbines]): The tilt angle for each turbine. - ref_tilt_cp_ct (NDArrayFloat[wd, ws, turbines]): The reference tilt angle for each turbine + yaw_angle (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. + tilt_angle (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. + ref_tilt_cp_ct (NDArrayFloat[findex, turbines]): The reference tilt angle for each turbine that the Cp/Ct tables are defined at. fCt (dict): The thrust coefficient interpolation functions for each turbine. Keys are the turbine type string and values are the interpolation functions. tilt_interp (Iterable[tuple]): The tilt interpolation functions for each turbine. - correct_cp_ct_for_tilt (NDArrayBool[wd, ws, turbines]): Boolean for determining if the + correct_cp_ct_for_tilt (NDArrayBool[findex, turbines]): Boolean for determining if the turbines Cp and Ct should be corrected for tilt. - turbine_type_map: (NDArrayObject[wd, ws, turbines]): The Turbine type definition + turbine_type_map: (NDArrayObject[findex, turbines]): The Turbine type definition for each turbine. ix_filter (NDArrayFilter | Iterable[int] | None, optional): The boolean array, or integer indices (as an array or iterable) to filter out before calculation. @@ -378,9 +378,9 @@ def axial_induction( # Then, process the input arguments as needed for this function if ix_filter is not None: - yaw_angle = yaw_angle[:, :, ix_filter] - tilt_angle = tilt_angle[:, :, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, :, ix_filter] + yaw_angle = yaw_angle[:, ix_filter] + tilt_angle = tilt_angle[:, ix_filter] + ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] return ( 0.5 @@ -403,13 +403,13 @@ def cubic_mean(array, axis=0): def simple_cubature(array, cubature_weights, axis=0): weights = cubature_weights.flatten() weights = weights * len(weights) / np.sum(weights) - product = (array * weights[None, None, None, :, None]) + product = (array * weights[None, None, :, None]) return simple_mean(product, axis) def cubic_cubature(array, cubature_weights, axis=0): weights = cubature_weights.flatten() weights = weights * len(weights) / np.sum(weights) - return np.cbrt(np.mean((array**3.0 * weights[None, None, None, :, None]), axis=axis)) + return np.cbrt(np.mean((array**3.0 * weights[None, None, :, None]), axis=axis)) def average_velocity( velocities: NDArrayFloat, @@ -445,7 +445,7 @@ def average_velocity( """ # The input velocities are expected to be a 5 dimensional array with shape: - # (# wind directions, # wind speeds, # turbines, grid resolution, grid resolution) + # (# findex, # turbines, grid resolution, grid resolution) if ix_filter is not None: velocities = velocities[:, ix_filter] diff --git a/floris/utilities.py b/floris/utilities.py index 5420c70e4..4c498acb7 100644 --- a/floris/utilities.py +++ b/floris/utilities.py @@ -146,7 +146,7 @@ def rotate_coordinates_rel_west( # Calculate the difference in given wind direction from 270 / West wind_deviation_from_west = wind_delta(wind_directions) - wind_deviation_from_west = np.reshape(wind_deviation_from_west, (len(wind_directions), 1, 1)) + wind_deviation_from_west = np.reshape(wind_deviation_from_west, (len(wind_directions), 1)) # Construct the arrays storing the turbine locations x_coordinates, y_coordinates, z_coordinates = coordinates.T @@ -189,8 +189,6 @@ def reverse_rotate_coordinates_rel_west( Args: wind_directions (NDArrayFloat): Series of wind directions to base the rotation. - coordinates (NDArrayFloat): Series of coordinates to rotate with shape (N coordinates, 3) - so that each element of the array coordinates[i] yields a three-component coordinate. grid_x (NDArrayFloat): X-coordinates to be rotated. grid_y (NDArrayFloat): Y-coordinates to be rotated. grid_z (NDArrayFloat): Z-coordinates to be rotated. @@ -208,9 +206,9 @@ def reverse_rotate_coordinates_rel_west( grid_y_reversed = np.zeros_like(grid_x) grid_z_reversed = np.zeros_like(grid_x) for wii, angle_rotation in enumerate(wind_deviation_from_west): - x_rot = grid_x[wii, :, :, :, :] - y_rot = grid_y[wii, :, :, :, :] - z_rot = grid_z[wii, :, :, :, :] + x_rot = grid_x[wii] + y_rot = grid_y[wii] + z_rot = grid_z[wii] # Rotate turbine coordinates about the center x_rot_offset = x_rot - x_center_of_rotation @@ -227,9 +225,9 @@ def reverse_rotate_coordinates_rel_west( ) z = z_rot # Nothing changed in this rotation - grid_x_reversed[wii, :, :, :, :] = x - grid_y_reversed[wii, :, :, :, :] = y - grid_z_reversed[wii, :, :, :, :] = z + grid_x_reversed[wii] = x + grid_y_reversed[wii] = y + grid_z_reversed[wii] = z return grid_x_reversed, grid_y_reversed, grid_z_reversed diff --git a/tests/conftest.py b/tests/conftest.py index 2ae5b8fab..f2b1959db 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -76,14 +76,17 @@ def print_test_values( 285.0, 315.0, ] -N_WIND_DIRECTIONS = len(WIND_DIRECTIONS) WIND_SPEEDS = [ 8.0, 9.0, 10.0, 11.0, ] -N_WIND_SPEEDS = len(WIND_SPEEDS) + +# FINDEX is the length of the number of conditions, so it can be +# len(WIND_DIRECTIONS) or len(WIND_SPEEDS +N_FINDEX = len(WIND_DIRECTIONS) + X_COORDS = [ 0.0, 5 * 126.0, @@ -128,7 +131,7 @@ def turbine_grid_fixture(sample_inputs_fixture) -> TurbineGrid: @pytest.fixture def flow_field_grid_fixture(sample_inputs_fixture) -> FlowFieldGrid: turbine_coordinates = np.array(list(zip(X_COORDS, Y_COORDS, Z_COORDS))) - rotor_diameters = ROTOR_DIAMETER * np.ones( (N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES) ) + rotor_diameters = ROTOR_DIAMETER * np.ones( (N_FINDEX, N_TURBINES) ) return FlowFieldGrid( turbine_coordinates=turbine_coordinates, turbine_diameters=rotor_diameters, @@ -140,7 +143,7 @@ def flow_field_grid_fixture(sample_inputs_fixture) -> FlowFieldGrid: @pytest.fixture def points_grid_fixture(sample_inputs_fixture) -> PointsGrid: turbine_coordinates = np.array(list(zip(X_COORDS, Y_COORDS, Z_COORDS))) - rotor_diameters = ROTOR_DIAMETER * np.ones( (N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES) ) + rotor_diameters = ROTOR_DIAMETER * np.ones( (N_FINDEX, N_TURBINES) ) points_x = [0.0, 10.0] points_y = [0.0, 0.0] points_z = [1.0, 2.0] diff --git a/tests/farm_unit_test.py b/tests/farm_unit_test.py index 64d1d405e..35973cee3 100644 --- a/tests/farm_unit_test.py +++ b/tests/farm_unit_test.py @@ -20,10 +20,9 @@ from floris.simulation import Farm from floris.utilities import load_yaml -from tests.conftest import ( +from tests.conftest import ( # N_WIND_DIRECTIONS,; N_WIND_SPEEDS, + N_FINDEX, N_TURBINES, - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, SampleInputs, ) @@ -49,7 +48,7 @@ def test_farm_init_homogenous_turbines(): # turbine_type=[turbine_data["turbine_type"]] farm.construct_hub_heights() - farm.set_yaw_angles(N_WIND_DIRECTIONS, N_WIND_SPEEDS) + farm.set_yaw_angles(N_FINDEX) # Check initial values np.testing.assert_array_equal(farm.coordinates, coordinates) @@ -61,15 +60,15 @@ def test_asdict(sample_inputs_fixture: SampleInputs): farm = Farm.from_dict(sample_inputs_fixture.farm) farm.construct_hub_heights() farm.construct_turbine_ref_tilt_cp_cts() - farm.set_yaw_angles(N_WIND_DIRECTIONS, N_WIND_SPEEDS) - farm.set_tilt_to_ref_tilt(N_WIND_DIRECTIONS, N_WIND_SPEEDS) + farm.set_yaw_angles(N_FINDEX) + farm.set_tilt_to_ref_tilt(N_FINDEX) dict1 = farm.as_dict() new_farm = farm.from_dict(dict1) new_farm.construct_hub_heights() new_farm.construct_turbine_ref_tilt_cp_cts() - new_farm.set_yaw_angles(N_WIND_DIRECTIONS, N_WIND_SPEEDS) - new_farm.set_tilt_to_ref_tilt(N_WIND_DIRECTIONS, N_WIND_SPEEDS) + new_farm.set_yaw_angles(N_FINDEX) + new_farm.set_tilt_to_ref_tilt(N_FINDEX) dict2 = new_farm.as_dict() assert dict1 == dict2 diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index a5dab3c0d..08f463968 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -29,13 +29,17 @@ _rotor_velocity_tilt_correction, _rotor_velocity_yaw_correction, compute_tilt_angles_for_floating_turbines, + cubic_cubature, PowerThrustTable, + simple_cubature, ) from tests.conftest import SampleInputs, WIND_SPEEDS -# size 3 x 4 x 1 x 1 x 1 -WIND_CONDITION_BROADCAST = np.stack( +# size 12 x 1 x 1 x 1 +# (in previous version stack was used in place of concatenate, +# yielding 3 x 4 x 1 x 1 x 1 ) +WIND_CONDITION_BROADCAST = np.concatenate( ( np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)), # Wind direction 0 np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)), # Wind direction 1 @@ -133,20 +137,20 @@ def test_rotor_area(): def test_average_velocity(): # TODO: why do we use cube root - mean - cube (like rms) instead of a simple average (np.mean)? - # Dimensions are (n sample, n turbines, grid x, grid y) + # Dimensions are (n_findex, n turbines, grid x, grid y) velocities = np.ones((1, 1, 5, 5)) assert average_velocity(velocities, method="cubic-mean") == 1 # Constructs an array of shape 1 x 2 x 3 x 3 with first turbine all 1, second turbine all 2 velocities = np.stack( ( - np.ones((1, 3, 3)), # The first dimension here is the sample dimension and the second + np.ones((1, 3, 3)), # The first dimension here is the findex dimension and the second 2 * np.ones((1, 3, 3)), # is the n turbine since we are stacking on axis=1 ), axis=1, ) - # Pull out the first sample for the test + # Pull out the first findex for the test np.testing.assert_array_equal( average_velocity(velocities, method="cubic-mean")[0], np.array([1, 2]) @@ -157,7 +161,7 @@ def test_average_velocity(): velocities = np.stack( # 4 turbines with 3 x 3 velocity array; shape (1,4,3,3) [i * np.ones((1, 3, 3)) for i in range(1,5)], # ( - # # The first dimension here is the sample dimension + # # The first dimension here is the findex dimension # # and second is the turbine dimension since we are stacking on axis=1 # np.ones( # (1, 3, 3) @@ -169,9 +173,9 @@ def test_average_velocity(): axis=1, ) avg = average_velocity(velocities, ix_filter, method="cubic-mean") - assert avg.shape == (1, 2) # 1 sample, 2 turbines filtered + assert avg.shape == (1, 2) # 1 = n_findex, 2 turbines filtered - # Pull out the first sample for the comparison + # Pull out the first findex for the comparison assert np.allclose(avg[0], np.array([1.0, 3.0])) # This fails in GitHub Actions due to a difference in precision: # E assert 3.0000000000000004 == 3.0 @@ -184,9 +188,9 @@ def test_average_velocity(): axis=1, ) avg = average_velocity(velocities, INDEX_FILTER, method="cubic-mean") - assert avg.shape == (1, 2) # 1 sample, 2 turbines filtered + assert avg.shape == (1, 2) # 1 findex, 2 turbines filtered - # Pull out the first sample for the comparison + # Pull out the first findex for the comparison assert np.allclose(avg[0], np.array([1.0, 3.0])) @@ -198,20 +202,22 @@ def test_ct(): turbine = Turbine.from_dict(turbine_data) turbine_floating = Turbine.from_dict(turbine_floating_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + + # Add the findex (0th) dimension + turbine_type_map = turbine_type_map[None, :] # Single turbine - # yaw angle / fCt are (n wind direction, n wind speed, n turbine) + # yaw angle / fCt are (n_findex, n turbine) wind_speed = 10.0 thrust = Ct( - velocities=wind_speed * np.ones((1, 1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1, 1)), - tilt_angle=np.ones((1, 1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, 1)) * 5.0, + velocities=wind_speed * np.ones((1, 1, 3, 3)), + yaw_angle=np.zeros((1, 1)), + tilt_angle=np.ones((1, 1)) * 5.0, + ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, fCt={turbine.turbine_type: turbine.fCt_interp}, tilt_interp=np.array([(turbine.turbine_type, None)]), - correct_cp_ct_for_tilt=np.array([[[False]]]), - turbine_type_map=turbine_type_map[:,:,0] + correct_cp_ct_for_tilt=np.array([[False]]), + turbine_type_map=turbine_type_map[:,0] ) truth_index = turbine_data["power_thrust_table"]["wind_speed"].index(wind_speed) @@ -220,35 +226,35 @@ def test_ct(): # Multiple turbines with index filter # 4 turbines with 3 x 3 grid arrays thrusts = Ct( - velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 3 x 4 x 4 x 3 x 3 - yaw_angle=np.zeros((1, 1, N_TURBINES)), - tilt_angle=np.ones((1, 1, N_TURBINES)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, N_TURBINES)) * 5.0, + velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 12 x 4 x 3 x 3 + yaw_angle=np.zeros((1, N_TURBINES)), + tilt_angle=np.ones((1, N_TURBINES)) * 5.0, + ref_tilt_cp_ct=np.ones((1, N_TURBINES)) * 5.0, fCt={turbine.turbine_type: turbine.fCt_interp}, tilt_interp=np.array([(turbine.turbine_type, None)]), - correct_cp_ct_for_tilt=np.array([[[False] * N_TURBINES]]), + correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), turbine_type_map=turbine_type_map, ix_filter=INDEX_FILTER, ) - assert len(thrusts[0, 0]) == len(INDEX_FILTER) + assert len(thrusts[0]) == len(INDEX_FILTER) for i in range(len(INDEX_FILTER)): truth_index = turbine_data["power_thrust_table"]["wind_speed"].index(WIND_SPEEDS[0]) np.testing.assert_allclose( - thrusts[0, 0, i], + thrusts[0, i], turbine_data["power_thrust_table"]["thrust"][truth_index] ) # Single floating turbine; note that 'tilt_interp' is not set to None thrust = Ct( - velocities=wind_speed * np.ones((1, 1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1, 1)), - tilt_angle=np.ones((1, 1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, 1)) * 5.0, + velocities=wind_speed * np.ones((1, 1, 3, 3)), # One findex, one turbine + yaw_angle=np.zeros((1, 1)), + tilt_angle=np.ones((1, 1)) * 5.0, + ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, fCt={turbine.turbine_type: turbine_floating.fCt_interp}, tilt_interp=np.array([(turbine_floating.turbine_type, turbine_floating.fTilt_interp)]), - correct_cp_ct_for_tilt=np.array([[[True]]]), - turbine_type_map=turbine_type_map[:,:,0] + correct_cp_ct_for_tilt=np.array([[True]]), + turbine_type_map=turbine_type_map[:,0] ) truth_index = turbine_floating_data["power_thrust_table"]["wind_speed"].index(wind_speed) @@ -267,12 +273,12 @@ def test_power(): turbine_data = SampleInputs().turbine turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(n_turbines * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + turbine_type_map = turbine_type_map[None, :] test_power = power( ref_density_cp_ct=AIR_DENSITY, - rotor_effective_velocities=wind_speed * np.ones((1, 1, 1)), + rotor_effective_velocities=wind_speed * np.ones((1, 1)), # 1 findex, 1 turbine power_interp={turbine.turbine_type: turbine.power_interp}, - turbine_type_map=turbine_type_map[:,:,0] + turbine_type_map=turbine_type_map[:,0] ) # Recompute using the provided Cp table @@ -295,7 +301,7 @@ def test_power(): ref_density_cp_ct=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1, 1)), power_interp={turbine.turbine_type: turbine.power_interp}, - turbine_type_map=turbine_type_map[:,:,0] + turbine_type_map=turbine_type_map[:,0] ) assert np.allclose(rated_power, 5e6) @@ -306,7 +312,7 @@ def test_power(): ref_density_cp_ct=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1, 1)), power_interp={turbine.turbine_type: turbine.power_interp}, - turbine_type_map=turbine_type_map[:,:,0] + turbine_type_map=turbine_type_map[:,0] ) assert np.allclose(zero_power, 0.0) @@ -317,7 +323,7 @@ def test_power(): turbine_data = SampleInputs().turbine turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(n_turbines * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + turbine_type_map = turbine_type_map[None, :] test_4_power = power( ref_density_cp_ct=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1, n_turbines)), @@ -333,12 +339,12 @@ def test_power(): turbine_data = SampleInputs().turbine turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(n_turbines * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + turbine_type_map = turbine_type_map[None, :] test_grid_power = power( ref_density_cp_ct=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1, n_turbines, 3, 3)), power_interp={turbine.turbine_type: turbine.power_interp}, - turbine_type_map=turbine_type_map[:,:,0] + turbine_type_map=turbine_type_map[:,0] ) baseline_grid_power = baseline_power * np.ones((1, 1, n_turbines, 3, 3)) assert np.allclose(baseline_grid_power, test_grid_power) @@ -354,52 +360,52 @@ def test_axial_induction(): turbine = Turbine.from_dict(turbine_data) turbine_floating = Turbine.from_dict(turbine_floating_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + turbine_type_map = turbine_type_map[None, :] baseline_ai = 0.25116283939089806 # Single turbine wind_speed = 10.0 ai = axial_induction( - velocities=wind_speed * np.ones((1, 1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1, 1)), - tilt_angle=np.ones((1, 1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, 1)) * 5.0, + velocities=wind_speed * np.ones((1, 1, 3, 3)), # 1 findex, 1 Turbine + yaw_angle=np.zeros((1, 1)), + tilt_angle=np.ones((1, 1)) * 5.0, + ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, fCt={turbine.turbine_type: turbine.fCt_interp}, tilt_interp=np.array([(turbine.turbine_type, None)]), - correct_cp_ct_for_tilt=np.array([[[False]]]), - turbine_type_map=turbine_type_map[0,0,0], + correct_cp_ct_for_tilt=np.array([[False]]), + turbine_type_map=turbine_type_map[0,0], ) np.testing.assert_allclose(ai, baseline_ai) # Multiple turbines with ix filter ai = axial_induction( - velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 3 x 4 x 4 x 3 x 3 - yaw_angle=np.zeros((1, 1, N_TURBINES)), - tilt_angle=np.ones((1, 1, N_TURBINES)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, N_TURBINES)) * 5.0, + velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 12 x 4 x 3 x 3 + yaw_angle=np.zeros((1, N_TURBINES)), + tilt_angle=np.ones((1, N_TURBINES)) * 5.0, + ref_tilt_cp_ct=np.ones((1, N_TURBINES)) * 5.0, fCt={turbine.turbine_type: turbine.fCt_interp}, tilt_interp=np.array([(turbine.turbine_type, None)] * N_TURBINES), - correct_cp_ct_for_tilt=np.array([[[False] * N_TURBINES]]), + correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), turbine_type_map=turbine_type_map, ix_filter=INDEX_FILTER, ) - assert len(ai[0, 0]) == len(INDEX_FILTER) + assert len(ai[0]) == len(INDEX_FILTER) # Test the 10 m/s wind speed to use the same baseline as above - np.testing.assert_allclose(ai[0,2], baseline_ai) + np.testing.assert_allclose(ai[2], baseline_ai) # Single floating turbine; note that 'tilt_interp' is not set to None ai = axial_induction( - velocities=wind_speed * np.ones((1, 1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1, 1)), - tilt_angle=np.ones((1, 1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, 1)) * 5.0, + velocities=wind_speed * np.ones((1, 1, 3, 3)), + yaw_angle=np.zeros((1, 1)), + tilt_angle=np.ones((1, 1)) * 5.0, + ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, fCt={turbine.turbine_type: turbine_floating.fCt_interp}, tilt_interp=np.array([(turbine_floating.turbine_type, turbine_floating.fTilt_interp)]), - correct_cp_ct_for_tilt=np.array([[[True]]]), - turbine_type_map=turbine_type_map[0,0,0], + correct_cp_ct_for_tilt=np.array([[True]]), + turbine_type_map=turbine_type_map[0,0], ) np.testing.assert_allclose(ai, baseline_ai) @@ -407,8 +413,8 @@ def test_axial_induction(): def test_rotor_velocity_yaw_correction(): N_TURBINES = 4 - wind_speed = average_velocity(10.0 * np.ones((1, 1, 1, 3, 3))) - wind_speed_N_TURBINES = average_velocity(10.0 * np.ones((1, 1, N_TURBINES, 3, 3))) + wind_speed = average_velocity(10.0 * np.ones((1, 1, 3, 3))) + wind_speed_N_TURBINES = average_velocity(10.0 * np.ones((1, N_TURBINES, 3, 3))) # Test a single turbine for zero yaw yaw_corrected_velocities = _rotor_velocity_yaw_correction( @@ -429,7 +435,7 @@ def test_rotor_velocity_yaw_correction(): # Test multiple turbines for zero yaw yaw_corrected_velocities = _rotor_velocity_yaw_correction( pP=3.0, - yaw_angle=np.zeros((1, 1, N_TURBINES)), + yaw_angle=np.zeros((1, N_TURBINES)), rotor_effective_velocities=wind_speed_N_TURBINES, ) np.testing.assert_allclose(yaw_corrected_velocities, wind_speed_N_TURBINES) @@ -437,7 +443,7 @@ def test_rotor_velocity_yaw_correction(): # Test multiple turbines for non-zero yaw yaw_corrected_velocities = _rotor_velocity_yaw_correction( pP=3.0, - yaw_angle=np.ones((1, 1, N_TURBINES)) * 60.0, + yaw_angle=np.ones((1, N_TURBINES)) * 60.0, rotor_effective_velocities=wind_speed_N_TURBINES, ) np.testing.assert_allclose(yaw_corrected_velocities, 0.5 * wind_speed_N_TURBINES) @@ -446,24 +452,24 @@ def test_rotor_velocity_yaw_correction(): def test_rotor_velocity_tilt_correction(): N_TURBINES = 4 - wind_speed = average_velocity(10.0 * np.ones((1, 1, 1, 3, 3))) - wind_speed_N_TURBINES = average_velocity(10.0 * np.ones((1, 1, N_TURBINES, 3, 3))) + wind_speed = average_velocity(10.0 * np.ones((1, 1, 3, 3))) + wind_speed_N_TURBINES = average_velocity(10.0 * np.ones((1, N_TURBINES, 3, 3))) turbine_data = SampleInputs().turbine turbine_floating_data = SampleInputs().turbine_floating turbine = Turbine.from_dict(turbine_data) turbine_floating = Turbine.from_dict(turbine_floating_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + turbine_type_map = turbine_type_map[None, :] # Test single non-floating turbine tilt_corrected_velocities = _rotor_velocity_tilt_correction( - turbine_type_map=np.array([turbine_type_map[:, :, 0]]), - tilt_angle=5.0*np.ones((1, 1, 1)), + turbine_type_map=np.array([turbine_type_map[:, 0]]), + tilt_angle=5.0*np.ones((1, 1)), ref_tilt_cp_ct=np.array([turbine.ref_tilt_cp_ct]), pT=np.array([turbine.pT]), tilt_interp=np.array([(turbine.turbine_type, turbine.fTilt_interp)]), - correct_cp_ct_for_tilt=np.array([[[False]]]), + correct_cp_ct_for_tilt=np.array([[False]]), rotor_effective_velocities=wind_speed, ) @@ -472,11 +478,11 @@ def test_rotor_velocity_tilt_correction(): # Test multiple non-floating turbines tilt_corrected_velocities = _rotor_velocity_tilt_correction( turbine_type_map=turbine_type_map, - tilt_angle=5.0*np.ones((1, 1, N_TURBINES)), + tilt_angle=5.0*np.ones((1, N_TURBINES)), ref_tilt_cp_ct=np.array([turbine.ref_tilt_cp_ct] * N_TURBINES), pT=np.array([turbine.pT] * N_TURBINES), tilt_interp=np.array([(turbine.turbine_type, turbine.fTilt_interp)] * N_TURBINES), - correct_cp_ct_for_tilt=np.array([[[False] * N_TURBINES]]), + correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), rotor_effective_velocities=wind_speed_N_TURBINES, ) @@ -484,12 +490,12 @@ def test_rotor_velocity_tilt_correction(): # Test single floating turbine tilt_corrected_velocities = _rotor_velocity_tilt_correction( - turbine_type_map=np.array([turbine_type_map[:, :, 0]]), - tilt_angle=5.0*np.ones((1, 1, 1)), + turbine_type_map=np.array([turbine_type_map[:, 0]]), + tilt_angle=5.0*np.ones((1, 1)), ref_tilt_cp_ct=np.array([turbine_floating.ref_tilt_cp_ct]), pT=np.array([turbine_floating.pT]), tilt_interp=np.array([(turbine_floating.turbine_type, turbine_floating.fTilt_interp)]), - correct_cp_ct_for_tilt=np.array([[[True]]]), + correct_cp_ct_for_tilt=np.array([[True]]), rotor_effective_velocities=wind_speed, ) @@ -498,13 +504,13 @@ def test_rotor_velocity_tilt_correction(): # Test multiple floating turbines tilt_corrected_velocities = _rotor_velocity_tilt_correction( turbine_type_map, - tilt_angle=5.0*np.ones((1, 1, N_TURBINES)), + tilt_angle=5.0*np.ones((1, N_TURBINES)), ref_tilt_cp_ct=np.array([turbine_floating.ref_tilt_cp_ct] * N_TURBINES), pT=np.array([turbine_floating.pT] * N_TURBINES), tilt_interp=np.array( [(turbine_floating.turbine_type, turbine_floating.fTilt_interp)] * N_TURBINES ), - correct_cp_ct_for_tilt=np.array([[[True] * N_TURBINES]]), + correct_cp_ct_for_tilt=np.array([[True] * N_TURBINES]), rotor_effective_velocities=wind_speed_N_TURBINES, ) @@ -515,20 +521,20 @@ def test_compute_tilt_angles_for_floating_turbines(): N_TURBINES = 4 wind_speed = 25.0 - rotor_effective_velocities = average_velocity(wind_speed * np.ones((1, 1, 1, 3, 3))) + rotor_effective_velocities = average_velocity(wind_speed * np.ones((1, 1, 3, 3))) rotor_effective_velocities_N_TURBINES = average_velocity( - wind_speed * np.ones((1, 1, N_TURBINES, 3, 3)) + wind_speed * np.ones((1, N_TURBINES, 3, 3)) ) turbine_floating_data = SampleInputs().turbine_floating turbine_floating = Turbine.from_dict(turbine_floating_data) turbine_type_map = np.array(N_TURBINES * [turbine_floating.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + turbine_type_map = turbine_type_map[None, :] # Single turbine tilt = compute_tilt_angles_for_floating_turbines( - turbine_type_map=np.array([turbine_type_map[:, :, 0]]), - tilt_angle=5.0*np.ones((1, 1, 1)), + turbine_type_map=np.array([turbine_type_map[:, 0]]), + tilt_angle=5.0*np.ones((1, 1)), tilt_interp=np.array([(turbine_floating.turbine_type, turbine_floating.fTilt_interp)]), rotor_effective_velocities=rotor_effective_velocities, ) @@ -541,7 +547,7 @@ def test_compute_tilt_angles_for_floating_turbines(): # Mulitple turbines tilt_N_turbines = compute_tilt_angles_for_floating_turbines( turbine_type_map=np.array(turbine_type_map), - tilt_angle=5.0*np.ones((1, 1, N_TURBINES)), + tilt_angle=5.0*np.ones((1, N_TURBINES)), tilt_interp=np.array( [(turbine_floating.turbine_type, turbine_floating.fTilt_interp)] * N_TURBINES ), @@ -551,7 +557,7 @@ def test_compute_tilt_angles_for_floating_turbines(): # calculate tilt again truth_index = turbine_floating_data["floating_tilt_table"]["wind_speeds"].index(wind_speed) tilt_truth = turbine_floating_data["floating_tilt_table"]["tilt"][truth_index] - np.testing.assert_allclose(tilt_N_turbines, [[[tilt_truth] * N_TURBINES]]) + np.testing.assert_allclose(tilt_N_turbines, [[tilt_truth] * N_TURBINES]) def test_asdict(sample_inputs_fixture: SampleInputs): @@ -563,3 +569,44 @@ def test_asdict(sample_inputs_fixture: SampleInputs): dict2 = new_turb.as_dict() assert dict1 == dict2 + + +def test_simple_cubature(): + + # Define a velocity array + velocities = np.ones((1, 1, 3, 3)) + + # Define sample cubature weights + cubature_weights = np.array([1., 1., 1.]) + + # Define the axis as last 2 dimensions + axis = (velocities.ndim-2, velocities.ndim-1) + + # Calculate expected output based on the given inputs + expected_output = 1.0 + + # Call the function with the given inputs + result = simple_cubature(velocities, cubature_weights, axis) + + # Check if the result matches the expected output + np.testing.assert_allclose(result, expected_output) + +def test_cubic_cubature(): + + # Define a velocity array + velocities = np.ones((1, 1, 3, 3)) + + # Define sample cubature weights + cubature_weights = np.array([1., 1., 1.]) + + # Define the axis as last 2 dimensions + axis = (velocities.ndim-2, velocities.ndim-1) + + # Calculate expected output based on the given inputs + expected_output = 1.0 + + # Call the function with the given inputs + result = cubic_cubature(velocities, cubature_weights, axis) + + # Check if the result matches the expected output + np.testing.assert_allclose(result, expected_output) diff --git a/tests/utilities_unit_test.py b/tests/utilities_unit_test.py index 4ec7e9d3c..8f24a8aad 100644 --- a/tests/utilities_unit_test.py +++ b/tests/utilities_unit_test.py @@ -13,14 +13,13 @@ # See https://floris.readthedocs.io for documentation - - import attr import numpy as np import pytest from floris.utilities import ( cosd, + reverse_rotate_coordinates_rel_west, rotate_coordinates_rel_west, sind, tand, @@ -86,8 +85,7 @@ def test_wind_delta(): def test_rotate_coordinates_rel_west(): - - coordinates = np.array([ [x,y,z] for x,y,z in zip(X_COORDS, Y_COORDS, Z_COORDS)]) + coordinates = np.array(list(zip(X_COORDS, Y_COORDS, Z_COORDS))) # For 270, the coordinates should not change. wind_directions = np.array([270.0]) @@ -96,9 +94,13 @@ def test_rotate_coordinates_rel_west(): coordinates ) - np.testing.assert_array_equal( X_COORDS, x_rotated[0,0] ) - np.testing.assert_array_equal( Y_COORDS, y_rotated[0,0] ) - np.testing.assert_array_equal( Z_COORDS, z_rotated[0,0] ) + # Test that x_rotated has 2 dimensions + np.testing.assert_equal(np.ndim(x_rotated), 2) + + # Assert the rotating to 270 doesn't change coordinates + np.testing.assert_array_equal(X_COORDS, x_rotated[0]) + np.testing.assert_array_equal(Y_COORDS, y_rotated[0]) + np.testing.assert_array_equal(Z_COORDS, z_rotated[0]) # For 360, the coordinates should be rotated 90 degrees counter clockwise # from looking fown at the wind farm from above. The series of turbines @@ -114,18 +116,55 @@ def test_rotate_coordinates_rel_west(): wind_directions, coordinates ) - np.testing.assert_almost_equal( Y_COORDS, x_rotated[0,0] - np.min(x_rotated[0,0])) - np.testing.assert_almost_equal( X_COORDS, y_rotated[0,0] - np.min(y_rotated[0,0])) + np.testing.assert_almost_equal(Y_COORDS, x_rotated[0] - np.min(x_rotated[0])) + np.testing.assert_almost_equal(X_COORDS, y_rotated[0] - np.min(y_rotated[0])) np.testing.assert_almost_equal( Z_COORDS + np.min(Z_COORDS), - z_rotated[0,0] + np.min(z_rotated[0,0]) + z_rotated[0] + np.min(z_rotated[0]) ) wind_directions = np.array([90.0]) x_rotated, y_rotated, z_rotated, _, _ = rotate_coordinates_rel_west( + wind_directions, coordinates + ) + np.testing.assert_almost_equal(X_COORDS[-1:-4:-1], x_rotated[0]) + np.testing.assert_almost_equal(Y_COORDS, y_rotated[0]) + np.testing.assert_almost_equal(Z_COORDS, z_rotated[0]) + + +def test_reverse_rotate_coordinates_rel_west(): + # Test that appplying the rotation, and then the reverse produces the original coordinates + + # Test the reverse rotation + coordinates = np.array([[x, y, z] for x, y, z in zip(X_COORDS, Y_COORDS, Z_COORDS)]) + + # Rotate to 360 (as in above function) + wind_directions = np.array([360.0]) + + # Get the rotated coordinates + ( + x_rotated, + y_rotated, + z_rotated, + x_center_of_rotation, + y_center_of_rotation, + ) = rotate_coordinates_rel_west(wind_directions, coordinates) + + # Go up to 4 dimensions (reverse function is expecting grid) + grid_x = x_rotated[:, :, None, None] + grid_y = y_rotated[:, :, None, None] + grid_z = z_rotated[:, :, None, None] + + # Perform reverse rotation + grid_x_reversed, grid_y_reversed, grid_z_reversed = reverse_rotate_coordinates_rel_west( wind_directions, - coordinates + grid_x, + grid_y, + grid_z, + x_center_of_rotation, + y_center_of_rotation, ) - np.testing.assert_almost_equal( X_COORDS[-1:-4:-1], x_rotated[0,0] ) - np.testing.assert_almost_equal( Y_COORDS, y_rotated[0,0] ) - np.testing.assert_almost_equal( Z_COORDS, z_rotated[0,0] ) + + np.testing.assert_almost_equal(grid_x_reversed.squeeze(), coordinates[:,0].squeeze()) + np.testing.assert_almost_equal(grid_y_reversed.squeeze(), coordinates[:,1].squeeze()) + np.testing.assert_almost_equal(grid_z_reversed.squeeze(), coordinates[:,2].squeeze()) From c82e5f86cd434975f81f4476a56099d41f220e4f Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 8 Dec 2023 15:00:54 -0600 Subject: [PATCH 03/78] Swap wind direction and speed constants in tests --- profiling/profiling.py | 7 +++---- profiling/quality_metrics.py | 6 ++---- tests/farm_unit_test.py | 2 +- .../reg_tests/cumulative_curl_regression_test.py | 9 ++++----- .../reg_tests/empirical_gauss_regression_test.py | 5 ++--- .../floris_interface_regression_test.py | 3 +-- tests/reg_tests/gauss_regression_test.py | 13 ++++++------- .../reg_tests/jensen_jimenez_regression_test.py | 5 ++--- tests/reg_tests/none_regression_test.py | 5 ++--- tests/reg_tests/turbopark_regression_test.py | 5 ++--- tests/turbine_grid_unit_test.py | 16 ++++++---------- 11 files changed, 31 insertions(+), 45 deletions(-) diff --git a/profiling/profiling.py b/profiling/profiling.py index b0432d991..334866362 100644 --- a/profiling/profiling.py +++ b/profiling/profiling.py @@ -50,15 +50,14 @@ def run_floris(): sample_inputs.floris["wake"]["enable_transverse_velocities"] = True N_TURBINES = 100 - N_WIND_DIRECTIONS = 72 - N_WIND_SPEEDS = 25 + N_FINDEX = 72 * 25 # Size of a characteristic wind rose TURBINE_DIAMETER = sample_inputs.floris["farm"]["turbine_type"][0]["rotor_diameter"] sample_inputs.floris["farm"]["layout_x"] = [5 * TURBINE_DIAMETER * i for i in range(N_TURBINES)] sample_inputs.floris["farm"]["layout_y"] = [0.0 for i in range(N_TURBINES)] - sample_inputs.floris["flow_field"]["wind_directions"] = N_WIND_DIRECTIONS * [270.0] - sample_inputs.floris["flow_field"]["wind_speeds"] = N_WIND_SPEEDS * [8.0] + sample_inputs.floris["flow_field"]["wind_directions"] = N_FINDEX * [270.0] + sample_inputs.floris["flow_field"]["wind_speeds"] = N_FINDEX * [8.0] N = 1 for i in range(N): diff --git a/profiling/quality_metrics.py b/profiling/quality_metrics.py index 66680e798..d0659d6bb 100644 --- a/profiling/quality_metrics.py +++ b/profiling/quality_metrics.py @@ -24,10 +24,8 @@ WIND_DIRECTIONS = np.arange(0, 360.0, 5) -N_WIND_DIRECTIONS = len(WIND_DIRECTIONS) - WIND_SPEEDS = np.arange(8.0, 12.0, 0.2) -N_WIND_SPEEDS = len(WIND_SPEEDS) +N_FINDEX = len(WIND_DIRECTIONS) N_TURBINES = 3 X_COORDS, Y_COORDS = np.meshgrid( @@ -107,7 +105,7 @@ def memory_profile(input_dict): print( "Size of one data array: " - f"{64 * N_WIND_DIRECTIONS * N_WIND_SPEEDS * N_TURBINES * 25 / (1000 * 1000)} MB" + f"{64 * N_FINDEX * N_TURBINES * 25 / (1000 * 1000)} MB" ) diff --git a/tests/farm_unit_test.py b/tests/farm_unit_test.py index 35973cee3..a4c196c82 100644 --- a/tests/farm_unit_test.py +++ b/tests/farm_unit_test.py @@ -20,7 +20,7 @@ from floris.simulation import Farm from floris.utilities import load_yaml -from tests.conftest import ( # N_WIND_DIRECTIONS,; N_WIND_SPEEDS, +from tests.conftest import ( N_FINDEX, N_TURBINES, SampleInputs, diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index d0fea7a01..a8b5fb92f 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -25,8 +25,7 @@ from tests.conftest import ( assert_results_arrays, N_TURBINES, - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, print_test_values, ) @@ -329,7 +328,7 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles @@ -425,7 +424,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles @@ -520,7 +519,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 4dc28ef2e..e134e412b 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -25,8 +25,7 @@ from tests.conftest import ( assert_results_arrays, N_TURBINES, - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, print_test_values, ) @@ -275,7 +274,7 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles diff --git a/tests/reg_tests/floris_interface_regression_test.py b/tests/reg_tests/floris_interface_regression_test.py index 3e8286c3e..0d8758fd0 100644 --- a/tests/reg_tests/floris_interface_regression_test.py +++ b/tests/reg_tests/floris_interface_regression_test.py @@ -25,8 +25,7 @@ from tests.conftest import ( assert_results_arrays, N_TURBINES, - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, print_test_values, ) diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index 20e71dc71..ff0cce770 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -25,8 +25,7 @@ from tests.conftest import ( assert_results_arrays, N_TURBINES, - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, print_test_values, ) @@ -421,7 +420,7 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles @@ -514,7 +513,7 @@ def test_regression_gch(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles @@ -603,7 +602,7 @@ def test_regression_gch(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles @@ -699,7 +698,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles @@ -794,7 +793,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index 3e720edab..51bbfdc81 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -25,8 +25,7 @@ from tests.conftest import ( assert_results_arrays, N_TURBINES, - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, print_test_values, ) @@ -271,7 +270,7 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index 3a1b37d5e..f2d39ed95 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -26,8 +26,7 @@ from tests.conftest import ( assert_results_arrays, N_TURBINES, - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, print_test_values, ) @@ -272,7 +271,7 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index d7726f519..6e34c5096 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -25,8 +25,7 @@ from tests.conftest import ( assert_results_arrays, N_TURBINES, - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, print_test_values, ) @@ -274,7 +273,7 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) - yaw_angles = np.zeros((N_WIND_DIRECTIONS, N_WIND_SPEEDS, N_TURBINES)) + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,:,0] = 5.0 floris.farm.yaw_angles = yaw_angles diff --git a/tests/turbine_grid_unit_test.py b/tests/turbine_grid_unit_test.py index 08c7371bd..344ade838 100644 --- a/tests/turbine_grid_unit_test.py +++ b/tests/turbine_grid_unit_test.py @@ -18,8 +18,7 @@ from floris.simulation import TurbineGrid from tests.conftest import ( N_TURBINES, - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, TURBINE_GRID_RESOLUTION, ) @@ -58,22 +57,19 @@ def test_set_grid(turbine_grid_fixture): def test_dimensions(turbine_grid_fixture): assert np.shape(turbine_grid_fixture.x_sorted) == ( - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, N_TURBINES, TURBINE_GRID_RESOLUTION, TURBINE_GRID_RESOLUTION ) assert np.shape(turbine_grid_fixture.y_sorted) == ( - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, N_TURBINES, TURBINE_GRID_RESOLUTION, TURBINE_GRID_RESOLUTION ) assert np.shape(turbine_grid_fixture.z_sorted) == ( - N_WIND_DIRECTIONS, - N_WIND_SPEEDS, + N_FINDEX, N_TURBINES, TURBINE_GRID_RESOLUTION, TURBINE_GRID_RESOLUTION @@ -82,8 +78,8 @@ def test_dimensions(turbine_grid_fixture): def test_dynamic_properties(turbine_grid_fixture): assert turbine_grid_fixture.n_turbines == N_TURBINES - assert turbine_grid_fixture.n_wind_speeds == N_WIND_SPEEDS - assert turbine_grid_fixture.n_wind_directions == N_WIND_DIRECTIONS + assert turbine_grid_fixture.n_wind_speeds == N_FINDEX + assert turbine_grid_fixture.n_wind_directions == N_FINDEX turbine_grid_fixture.turbine_coordinates = np.append( turbine_grid_fixture.turbine_coordinates, From b766e1500be7ff4befa73f138d0322a8d6690137 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 8 Dec 2023 16:00:59 -0600 Subject: [PATCH 04/78] Swap wind direction and speed in Grids --- floris/simulation/floris.py | 4 --- floris/simulation/grid.py | 59 +++++++++++---------------------- tests/conftest.py | 3 -- tests/turbine_grid_unit_test.py | 23 ++++++++----- 4 files changed, 34 insertions(+), 55 deletions(-) diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index a31ef62df..d5bf93f71 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -109,7 +109,6 @@ def __attrs_post_init__(self) -> None: turbine_coordinates=self.farm.coordinates, turbine_diameters=self.farm.rotor_diameters, wind_directions=self.flow_field.wind_directions, - wind_speeds=self.flow_field.wind_speeds, grid_resolution=self.solver["turbine_grid_points"], time_series=self.flow_field.time_series, ) @@ -118,7 +117,6 @@ def __attrs_post_init__(self) -> None: turbine_coordinates=self.farm.coordinates, turbine_diameters=self.farm.rotor_diameters, wind_directions=self.flow_field.wind_directions, - wind_speeds=self.flow_field.wind_speeds, time_series=self.flow_field.time_series, grid_resolution=self.solver["turbine_grid_points"], ) @@ -127,7 +125,6 @@ def __attrs_post_init__(self) -> None: turbine_coordinates=self.farm.coordinates, turbine_diameters=self.farm.rotor_diameters, wind_directions=self.flow_field.wind_directions, - wind_speeds=self.flow_field.wind_speeds, grid_resolution=self.solver["flow_field_grid_points"], time_series=self.flow_field.time_series, ) @@ -136,7 +133,6 @@ def __attrs_post_init__(self) -> None: turbine_coordinates=self.farm.coordinates, turbine_diameters=self.farm.rotor_diameters, wind_directions=self.flow_field.wind_directions, - wind_speeds=self.flow_field.wind_speeds, normal_vector=self.solver["normal_vector"], planar_coordinate=self.solver["planar_coordinate"], grid_resolution=self.solver["flow_field_grid_points"], diff --git a/floris/simulation/grid.py b/floris/simulation/grid.py index 3786fc873..18c3fc229 100644 --- a/floris/simulation/grid.py +++ b/floris/simulation/grid.py @@ -61,7 +61,6 @@ class Grid(ABC, BaseClass): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - wind_speeds (:py:obj:`NDArrayFloat`): Wind speeds supplied by the user. time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time series. grid_resolution (:py:obj:`int` | :py:obj:`Iterable(int,)`): Grid resolution with values @@ -70,13 +69,11 @@ class Grid(ABC, BaseClass): turbine_coordinates: NDArrayFloat = field(converter=floris_array_converter) turbine_diameters: NDArrayFloat = field(converter=floris_array_converter) wind_directions: NDArrayFloat = field(converter=floris_array_converter) - wind_speeds: NDArrayFloat = field(converter=floris_array_converter) time_series: bool = field() grid_resolution: int | Iterable = field() n_turbines: int = field(init=False) - n_wind_speeds: int = field(init=False) - n_wind_directions: int = field(init=False) + n_findex: int = field(init=False) x_sorted: NDArrayFloat = field(init=False) y_sorted: NDArrayFloat = field(init=False) z_sorted: NDArrayFloat = field(init=False) @@ -100,18 +97,10 @@ def check_coordinates(self, instance: attrs.Attribute, value: np.ndarray) -> Non self.n_turbines = len(value) - @wind_speeds.validator - def wind_speeds_validator(self, instance: attrs.Attribute, value: NDArrayFloat) -> None: - """Using the validator method to keep the `n_wind_speeds` attribute up to date.""" - if self.time_series: - self.n_wind_speeds = 1 - else: - self.n_wind_speeds = value.size - @wind_directions.validator def wind_directions_validator(self, instance: attrs.Attribute, value: NDArrayFloat) -> None: - """Using the validator method to keep the `n_wind_directions` attribute up to date.""" - self.n_wind_directions = value.size + """Using the validator method to keep the `n_findex` attribute up to date.""" + self.n_findex = value.size @grid_resolution.validator def grid_resolution_validator(self, instance: attrs.Attribute, value: int | Iterable) -> None: @@ -143,7 +132,6 @@ class TurbineGrid(Grid): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - wind_speeds (:py:obj:`NDArrayFloat`): Wind speeds supplied by the user. time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time series. grid_resolution (:py:obj:`int`): The number of points in each @@ -230,8 +218,7 @@ def set_grid(self) -> None: disc_area_radius = radius_ratio * self.turbine_diameters / 2 template_grid = np.ones( ( - self.n_wind_directions, - self.n_wind_speeds, + self.n_findex, self.n_turbines, self.grid_resolution, self.grid_resolution, @@ -254,30 +241,30 @@ def set_grid(self) -> None: ) # Construct the turbine grids # Here, they are already rotated to the correct orientation for each wind direction - _x = x[:, :, :, None, None] * template_grid + _x = x[:, :, None, None] * template_grid ones_grid = np.ones( (self.n_turbines, self.grid_resolution, self.grid_resolution), dtype=floris_float_type ) - _y = y[:, :, :, None, None] + template_grid * ( disc_grid[None, None, :, :, None]) - _z = z[:, :, :, None, None] + template_grid * ( disc_grid[:, None, :] * ones_grid ) + _y = y[:, :, None, None] + template_grid * ( disc_grid[None, :, :, None]) + _z = z[:, :, None, None] + template_grid * ( disc_grid[:, None, :] * ones_grid ) # Sort the turbines at each wind direction # Get the sorted indices for the x coordinates. These are the indices # to sort the turbines from upstream to downstream for all wind directions. # Also, store the indices to sort them back for when the calculation finishes. - self.sorted_indices = _x.argsort(axis=2) - self.sorted_coord_indices = x.argsort(axis=2) - self.unsorted_indices = self.sorted_indices.argsort(axis=2) + self.sorted_indices = _x.argsort(axis=1) + self.sorted_coord_indices = x.argsort(axis=1) + self.unsorted_indices = self.sorted_indices.argsort(axis=1) # Put the turbine coordinates into the final arrays in their sorted order # These are the coordinates that should be used within the internal calculations # such as the wake models and the solvers. - self.x_sorted = np.take_along_axis(_x, self.sorted_indices, axis=2) - self.y_sorted = np.take_along_axis(_y, self.sorted_indices, axis=2) - self.z_sorted = np.take_along_axis(_z, self.sorted_indices, axis=2) + self.x_sorted = np.take_along_axis(_x, self.sorted_indices, axis=1) + self.y_sorted = np.take_along_axis(_y, self.sorted_indices, axis=1) + self.z_sorted = np.take_along_axis(_z, self.sorted_indices, axis=1) # Now calculate grid coordinates in original frame (from 270 deg perspective) self.x_sorted_inertial_frame, self.y_sorted_inertial_frame, self.z_sorted_inertial_frame = \ @@ -304,7 +291,6 @@ class TurbineCubatureGrid(Grid): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - wind_speeds (:py:obj:`NDArrayFloat`): Wind speeds supplied by the user. time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time series. grid_resolution (:py:obj:`int`): The number of points to @@ -347,8 +333,7 @@ def set_grid(self) -> None: # wind direction template_grid = np.ones( ( - self.n_wind_directions, - self.n_wind_speeds, + self.n_findex, self.n_turbines, len(yv), # Number of coordinates 1, @@ -374,13 +359,13 @@ def set_grid(self) -> None: # Put the turbine coordinates into the final arrays in their sorted order # These are the coordinates that should be used within the internal calculations # such as the wake models and the solvers. - self.x_sorted = np.take_along_axis(_x, self.sorted_indices, axis=2) - self.y_sorted = np.take_along_axis(_y, self.sorted_indices, axis=2) - self.z_sorted = np.take_along_axis(_z, self.sorted_indices, axis=2) + self.x_sorted = np.take_along_axis(_x, self.sorted_indices, axis=1) + self.y_sorted = np.take_along_axis(_y, self.sorted_indices, axis=1) + self.z_sorted = np.take_along_axis(_z, self.sorted_indices, axis=1) - self.x = np.take_along_axis(self.x_sorted, self.unsorted_indices, axis=2) - self.y = np.take_along_axis(self.y_sorted, self.unsorted_indices, axis=2) - self.z = np.take_along_axis(self.z_sorted, self.unsorted_indices, axis=2) + self.x = np.take_along_axis(self.x_sorted, self.unsorted_indices, axis=1) + self.y = np.take_along_axis(self.y_sorted, self.unsorted_indices, axis=1) + self.z = np.take_along_axis(self.z_sorted, self.unsorted_indices, axis=1) @classmethod def get_cubature_coefficients(cls, N: int): @@ -469,7 +454,6 @@ class FlowFieldGrid(Grid): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - wind_speeds (:py:obj:`NDArrayFloat`): Wind speeds supplied by the user. time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time series. grid_resolution (:py:obj:`Iterable(int,)`): The number of grid points to create in each @@ -541,7 +525,6 @@ class FlowFieldPlanarGrid(Grid): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - wind_speeds (:py:obj:`NDArrayFloat`): Wind speeds supplied by the user. time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time series. grid_resolution (:py:obj:`Iterable(int,)`): The number of grid points to create in each @@ -659,8 +642,6 @@ class PointsGrid(Grid): turbine_diameters (:py:obj:`NDArrayFloat`): Not used for PointsGrid, but required for the `Grid` super-class. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - wind_speeds (:py:obj:`NDArrayFloat`): Not used for PointsGrid, but - required for the `Grid` super-class. time_series (:py:obj:`bool`): Not used for PointsGrid, but required for the `Grid` super-class. grid_resolution (:py:obj:`int` | :py:obj:`Iterable(int,)`): Not used for PointsGrid, but diff --git a/tests/conftest.py b/tests/conftest.py index f2b1959db..d54925c97 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -123,7 +123,6 @@ def turbine_grid_fixture(sample_inputs_fixture) -> TurbineGrid: turbine_coordinates=turbine_coordinates, turbine_diameters=rotor_diameters, wind_directions=np.array(WIND_DIRECTIONS), - wind_speeds=np.array(WIND_SPEEDS), grid_resolution=TURBINE_GRID_RESOLUTION, time_series=TIME_SERIES ) @@ -136,7 +135,6 @@ def flow_field_grid_fixture(sample_inputs_fixture) -> FlowFieldGrid: turbine_coordinates=turbine_coordinates, turbine_diameters=rotor_diameters, wind_directions=np.array(WIND_DIRECTIONS), - wind_speeds=np.array(WIND_SPEEDS), grid_resolution=[3,2,2] ) @@ -151,7 +149,6 @@ def points_grid_fixture(sample_inputs_fixture) -> PointsGrid: turbine_coordinates=turbine_coordinates, turbine_diameters=rotor_diameters, wind_directions=np.array(WIND_DIRECTIONS), - wind_speeds=np.array(WIND_SPEEDS), grid_resolution=None, time_series=False, points_x=points_x, diff --git a/tests/turbine_grid_unit_test.py b/tests/turbine_grid_unit_test.py index 344ade838..fa1081dcf 100644 --- a/tests/turbine_grid_unit_test.py +++ b/tests/turbine_grid_unit_test.py @@ -50,9 +50,18 @@ def test_set_grid(turbine_grid_fixture): # then, search for any elements that are true and negate the results # if an element is zero, the not will return true # if an element is non-zero, the not will return false - np.testing.assert_array_equal(turbine_grid_fixture.x_sorted[0, 0], expected_x_grid) - np.testing.assert_array_equal(turbine_grid_fixture.y_sorted[0, 0], expected_y_grid) - np.testing.assert_array_equal(turbine_grid_fixture.z_sorted[0, 0], expected_z_grid) + np.testing.assert_array_equal(turbine_grid_fixture.x_sorted[0], expected_x_grid) + np.testing.assert_array_equal(turbine_grid_fixture.y_sorted[0], expected_y_grid) + np.testing.assert_array_equal(turbine_grid_fixture.z_sorted[0], expected_z_grid) + + # These should have the following shape: + # (n findex, n turbines, grid resolution, grid resolution) + assert np.shape(turbine_grid_fixture.x_sorted) == (4,3,2,2) + assert np.shape(turbine_grid_fixture.y_sorted) == (4,3,2,2) + assert np.shape(turbine_grid_fixture.z_sorted) == (4,3,2,2) + assert np.shape(turbine_grid_fixture.x_sorted_inertial_frame) == (4,3,2,2) + assert np.shape(turbine_grid_fixture.y_sorted_inertial_frame) == (4,3,2,2) + assert np.shape(turbine_grid_fixture.z_sorted_inertial_frame) == (4,3,2,2) def test_dimensions(turbine_grid_fixture): @@ -78,8 +87,7 @@ def test_dimensions(turbine_grid_fixture): def test_dynamic_properties(turbine_grid_fixture): assert turbine_grid_fixture.n_turbines == N_TURBINES - assert turbine_grid_fixture.n_wind_speeds == N_FINDEX - assert turbine_grid_fixture.n_wind_directions == N_FINDEX + assert turbine_grid_fixture.n_findex == N_FINDEX turbine_grid_fixture.turbine_coordinates = np.append( turbine_grid_fixture.turbine_coordinates, @@ -88,8 +96,5 @@ def test_dynamic_properties(turbine_grid_fixture): ) assert turbine_grid_fixture.n_turbines == N_TURBINES + 1 - turbine_grid_fixture.wind_speeds = [*turbine_grid_fixture.wind_speeds, 0.0] - assert turbine_grid_fixture.n_wind_speeds == N_WIND_SPEEDS + 1 - turbine_grid_fixture.wind_directions = [*turbine_grid_fixture.wind_directions, 0.0] - assert turbine_grid_fixture.n_wind_directions == N_WIND_DIRECTIONS + 1 + assert turbine_grid_fixture.n_findex == N_FINDEX + 1 From cece44a82d3b5d882b74e37b29ed2fb479fcb096 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 8 Dec 2023 15:51:20 -0600 Subject: [PATCH 05/78] Swap FlowField wind speeds and directions --- floris/simulation/farm.py | 6 +--- floris/simulation/floris.py | 10 ++---- floris/simulation/flow_field.py | 58 +++++++++------------------------ tests/flow_field_unit_test.py | 28 ++++++---------- 4 files changed, 30 insertions(+), 72 deletions(-) diff --git a/floris/simulation/farm.py b/floris/simulation/farm.py index ac7322689..4956f329a 100644 --- a/floris/simulation/farm.py +++ b/floris/simulation/farm.py @@ -309,11 +309,7 @@ def construct_turbine_power_interps(self): def construct_multidim_turbine_power_interps(self): self.turbine_power_interps = [turb.power_interp for turb in self.turbine_map] - def expand_farm_properties( - self, - n_findex: int, - sorted_coord_indices - ): + def expand_farm_properties(self, n_findex: int, sorted_coord_indices): template_shape = np.ones_like(sorted_coord_indices) self.hub_heights_sorted = np.take_along_axis( self.hub_heights * template_shape, diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index d5bf93f71..18077e5cd 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -98,11 +98,8 @@ def __attrs_post_init__(self) -> None: self.farm.construct_turbine_ref_tilt_cp_cts() self.farm.construct_turbine_fTilts() self.farm.construct_turbine_correct_cp_ct_for_tilt() - self.farm.set_yaw_angles(self.flow_field.n_wind_directions, self.flow_field.n_wind_speeds) - self.farm.set_tilt_to_ref_tilt( - self.flow_field.n_wind_directions, - self.flow_field.n_wind_speeds, - ) + self.farm.set_yaw_angles(self.flow_field.n_findex) + self.farm.set_tilt_to_ref_tilt(self.flow_field.n_findex) if self.solver["type"] == "turbine_grid": self.grid = TurbineGrid( @@ -149,8 +146,7 @@ def __attrs_post_init__(self) -> None: if isinstance(self.grid, (TurbineGrid, TurbineCubatureGrid)): self.farm.expand_farm_properties( - self.flow_field.n_wind_directions, - self.flow_field.n_wind_speeds, + self.flow_field.n_findex, self.grid.sorted_coord_indices ) diff --git a/floris/simulation/flow_field.py b/floris/simulation/flow_field.py index 93ee5122e..bd6b0dbd7 100644 --- a/floris/simulation/flow_field.py +++ b/floris/simulation/flow_field.py @@ -44,10 +44,8 @@ class FlowField(BaseClass): time_series: bool = field(default=False) heterogenous_inflow_config: dict = field(default=None) multidim_conditions: dict = field(default=None) - - n_wind_speeds: int = field(init=False) - n_wind_directions: int = field(init=False) - + + n_findex: int = field(init=False) u_initial_sorted: NDArrayFloat = field(init=False, default=np.array([])) v_initial_sorted: NDArrayFloat = field(init=False, default=np.array([])) w_initial_sorted: NDArrayFloat = field(init=False, default=np.array([])) @@ -64,18 +62,10 @@ class FlowField(BaseClass): turbulence_intensity_field_sorted: NDArrayFloat = field(init=False, default=np.array([])) turbulence_intensity_field_sorted_avg: NDArrayFloat = field(init=False, default=np.array([])) - @wind_speeds.validator - def wind_speeds_validator(self, instance: attrs.Attribute, value: NDArrayFloat) -> None: - """Using the validator method to keep the `n_wind_speeds` attribute up to date.""" - if self.time_series: - self.n_wind_speeds = 1 - else: - self.n_wind_speeds = value.size - @wind_directions.validator def wind_directions_validator(self, instance: attrs.Attribute, value: NDArrayFloat) -> None: - """Using the validator method to keep the `n_wind_directions` attribute up to date.""" - self.n_wind_directions = value.size + """Using the validator method to keep the `n_findex` attribute up to date.""" + self.n_findex = value.size @heterogenous_inflow_config.validator def heterogenous_config_validator(self, instance: attrs.Attribute, value: dict | None) -> None: @@ -99,14 +89,14 @@ def heterogenous_config_validator(self, instance: attrs.Attribute, value: dict | @het_map.validator def het_map_validator(self, instance: attrs.Attribute, value: list | None) -> None: """Using this validator to make sure that the het_map has an interpolant defined for - each wind direction. + each findex. """ if value is None: return - if self.n_wind_directions!= np.array(value).shape[0]: + if self.n_findex != np.array(value).shape[0]: raise ValueError( - "The het_map's wind direction dimension not equal to number of wind directions." + "The het_map's first dimension not equal to the FLORIS first dimension." ) @@ -184,24 +174,9 @@ def initialize_velocity_field(self, grid: Grid) -> None: # here to do broadcasting from left to right (transposed), and then transpose back. # The result is an array the wind speed and wind direction dimensions on the left side # of the shape and the grid.template array on the right - if self.time_series: - self.u_initial_sorted = ( - (self.wind_speeds[:].T * wind_profile_plane.T).T - * speed_ups - ) - self.dudz_initial_sorted = ( - (self.wind_speeds[:].T * dwind_profile_plane.T).T - * speed_ups - ) - else: - self.u_initial_sorted = ( - (self.wind_speeds[None, :].T * wind_profile_plane.T).T - * speed_ups - ) - self.dudz_initial_sorted = ( - (self.wind_speeds[None, :].T * dwind_profile_plane.T).T - * speed_ups - ) + self.u_initial_sorted = (self.wind_speeds.T * wind_profile_plane.T).T * speed_ups + self.dudz_initial_sorted = (self.wind_speeds.T * dwind_profile_plane.T).T * speed_ups + self.v_initial_sorted = np.zeros( np.shape(self.u_initial_sorted), dtype=self.u_initial_sorted.dtype @@ -217,8 +192,7 @@ def initialize_velocity_field(self, grid: Grid) -> None: self.turbulence_intensity_field = self.turbulence_intensity * np.ones( ( - self.n_wind_directions, - self.n_wind_speeds, + self.n_findex, grid.n_turbines, 1, 1, @@ -227,17 +201,17 @@ def initialize_velocity_field(self, grid: Grid) -> None: self.turbulence_intensity_field_sorted = self.turbulence_intensity_field.copy() def finalize(self, unsorted_indices): - self.u = np.take_along_axis(self.u_sorted, unsorted_indices, axis=2) - self.v = np.take_along_axis(self.v_sorted, unsorted_indices, axis=2) - self.w = np.take_along_axis(self.w_sorted, unsorted_indices, axis=2) + self.u = np.take_along_axis(self.u_sorted, unsorted_indices, axis=1) + self.v = np.take_along_axis(self.v_sorted, unsorted_indices, axis=1) + self.w = np.take_along_axis(self.w_sorted, unsorted_indices, axis=1) self.turbulence_intensity_field = np.mean( np.take_along_axis( self.turbulence_intensity_field_sorted, unsorted_indices, - axis=2 + axis=1 ), - axis=(3,4) + axis=(2,3) ) def calculate_speed_ups(self, het_map, x, y, z=None): diff --git a/tests/flow_field_unit_test.py b/tests/flow_field_unit_test.py index 5b84403c7..874bdbe38 100644 --- a/tests/flow_field_unit_test.py +++ b/tests/flow_field_unit_test.py @@ -16,15 +16,11 @@ import numpy as np from floris.simulation import FlowField, TurbineGrid -from tests.conftest import N_TURBINES +from tests.conftest import N_TURBINES, N_FINDEX -def test_n_wind_speeds(flow_field_fixture): - assert flow_field_fixture.n_wind_speeds > 0 - - -def test_n_wind_directions(flow_field_fixture): - assert flow_field_fixture.n_wind_directions > 0 +def test_n_findex(flow_field_fixture): + assert flow_field_fixture.n_findex == N_FINDEX def test_initialize_velocity_field(flow_field_fixture, turbine_grid_fixture: TurbineGrid): @@ -32,28 +28,24 @@ def test_initialize_velocity_field(flow_field_fixture, turbine_grid_fixture: Tur flow_field_fixture.initialize_velocity_field(turbine_grid_fixture) # Check the shape of the velocity arrays: u_initial, v_initial, w_initial and u, v, w - # Dimensions are (# wind speeds, # turbines, N grid points, M grid points) - assert np.shape(flow_field_fixture.u_sorted)[0] == flow_field_fixture.n_wind_directions - assert np.shape(flow_field_fixture.u_sorted)[1] == flow_field_fixture.n_wind_speeds - assert np.shape(flow_field_fixture.u_sorted)[2] == N_TURBINES + # Dimensions are (# findex, # turbines, N grid points, M grid points) + assert np.shape(flow_field_fixture.u_sorted)[0] == flow_field_fixture.n_findex + assert np.shape(flow_field_fixture.u_sorted)[1] == N_TURBINES + assert np.shape(flow_field_fixture.u_sorted)[2] == turbine_grid_fixture.grid_resolution assert np.shape(flow_field_fixture.u_sorted)[3] == turbine_grid_fixture.grid_resolution - assert np.shape(flow_field_fixture.u_sorted)[4] == turbine_grid_fixture.grid_resolution # Check that the wind speed profile was created correctly. By setting the shear # exponent to 1.0 above, the shear profile is a linear function of height and # the points on the turbine rotor are equally spaced about the rotor. # This means that their average should equal the wind speed at the center # which is the input wind speed. - shape = np.shape(flow_field_fixture.u_sorted[0, 0, 0, :, :]) + shape = np.shape(flow_field_fixture.u_sorted[0, 0, :, :]) n_elements = shape[0] * shape[1] average = ( - np.sum(flow_field_fixture.u_sorted[:, :, 0, :, :], axis=(-2, -1)) + np.sum(flow_field_fixture.u_sorted[:, 0, :, :], axis=(-2, -1)) / np.array([n_elements]) ) - baseline = np.reshape(flow_field_fixture.wind_speeds, (1, -1)) * np.ones( - (flow_field_fixture.n_wind_directions, flow_field_fixture.n_wind_speeds) - ) - assert np.array_equal(average, baseline) + assert np.array_equal(average, flow_field_fixture.wind_speeds) def test_asdict(flow_field_fixture: FlowField, turbine_grid_fixture: TurbineGrid): From a2211c3f622378f2102d546e3c2a20d76f96b71f Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 8 Dec 2023 15:58:43 -0600 Subject: [PATCH 06/78] Support 4D arrays in sequential solver --- floris/simulation/solver.py | 52 ++++++++++++++++++------------------- 1 file changed, 26 insertions(+), 26 deletions(-) diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index f75eda7f2..942f427a1 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -83,7 +83,7 @@ def sequential_solver( turbine_turbulence_intensity = ( flow_field.turbulence_intensity - * np.ones((flow_field.n_wind_directions, flow_field.n_wind_speeds, farm.n_turbines, 1, 1)) + * np.ones((flow_field.n_findex, farm.n_turbines, 1, 1)) ) ambient_turbulence_intensity = flow_field.turbulence_intensity @@ -91,15 +91,15 @@ def sequential_solver( for i in range(grid.n_turbines): # Get the current turbine quantities - x_i = np.mean(grid.x_sorted[:, :, i:i+1], axis=(3, 4)) - x_i = x_i[:, :, :, None, None] - y_i = np.mean(grid.y_sorted[:, :, i:i+1], axis=(3, 4)) - y_i = y_i[:, :, :, None, None] - z_i = np.mean(grid.z_sorted[:, :, i:i+1], axis=(3, 4)) - z_i = z_i[:, :, :, None, None] + x_i = np.mean(grid.x_sorted[:, i:i+1], axis=(2, 3)) + x_i = x_i[:, :, None, None] + y_i = np.mean(grid.y_sorted[:, i:i+1], axis=(2, 3)) + y_i = y_i[:, :, None, None] + z_i = np.mean(grid.z_sorted[:, i:i+1], axis=(2, 3)) + z_i = z_i[:, :, None, None] - u_i = flow_field.u_sorted[:, :, i:i+1] - v_i = flow_field.v_sorted[:, :, i:i+1] + u_i = flow_field.u_sorted[:, i:i+1] + v_i = flow_field.v_sorted[:, i:i+1] ct_i = Ct( velocities=flow_field.u_sorted, @@ -116,7 +116,7 @@ def sequential_solver( ) # Since we are filtering for the i'th turbine in the Ct function, # get the first index here (0:1) - ct_i = ct_i[:, :, 0:1, None, None] + ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, @@ -132,12 +132,12 @@ def sequential_solver( ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) - axial_induction_i = axial_induction_i[:, :, 0:1, None, None] - turbulence_intensity_i = turbine_turbulence_intensity[:, :, i:i+1] - yaw_angle_i = farm.yaw_angles_sorted[:, :, i:i+1, None, None] - hub_height_i = farm.hub_heights_sorted[:, :, i:i+1, None, None] - rotor_diameter_i = farm.rotor_diameters_sorted[:, :, i:i+1, None, None] - TSR_i = farm.TSRs_sorted[:, :, i:i+1, None, None] + axial_induction_i = axial_induction_i[:, 0:1, None, None] + turbulence_intensity_i = turbine_turbulence_intensity[:, i:i+1] + yaw_angle_i = farm.yaw_angles_sorted[:, i:i+1, None, None] + hub_height_i = farm.hub_heights_sorted[:, i:i+1, None, None] + rotor_diameter_i = farm.rotor_diameters_sorted[:, i:i+1, None, None] + TSR_i = farm.TSRs_sorted[:, i:i+1, None, None] effective_yaw_i = np.zeros_like(yaw_angle_i) effective_yaw_i += yaw_angle_i @@ -147,8 +147,8 @@ def sequential_solver( u_i, v_i, flow_field.u_initial_sorted, - grid.y_sorted[:, :, i:i+1] - y_i, - grid.z_sorted[:, :, i:i+1], + grid.y_sorted[:, i:i+1] - y_i, + grid.z_sorted[:, i:i+1], rotor_diameter_i, hub_height_i, ct_i, @@ -192,12 +192,12 @@ def sequential_solver( u_i, turbulence_intensity_i, v_i, - flow_field.w_sorted[:, :, i:i+1], - v_wake[:, :, i:i+1], - w_wake[:, :, i:i+1], + flow_field.w_sorted[:, i:i+1], + v_wake[:, i:i+1], + w_wake[:, i:i+1], ) gch_gain = 2 - turbine_turbulence_intensity[:, :, i:i+1] = turbulence_intensity_i + gch_gain * I_mixing + turbine_turbulence_intensity[:, i:i+1] = turbulence_intensity_i + gch_gain * I_mixing # NOTE: exponential velocity_deficit = model_manager.velocity_model.function( @@ -229,10 +229,10 @@ def sequential_solver( # Calculate wake overlap for wake-added turbulence (WAT) area_overlap = ( - np.sum(velocity_deficit * flow_field.u_initial_sorted > 0.05, axis=(3, 4)) + np.sum(velocity_deficit * flow_field.u_initial_sorted > 0.05, axis=(2, 3)) / (grid.grid_resolution * grid.grid_resolution) ) - area_overlap = area_overlap[:, :, :, None, None] + area_overlap = area_overlap[:, :, None, None] # Modify wake added turbulence by wake area overlap downstream_influence_length = 15 * rotor_diameter_i @@ -257,8 +257,8 @@ def sequential_solver( flow_field.turbulence_intensity_field_sorted = turbine_turbulence_intensity flow_field.turbulence_intensity_field_sorted_avg = np.mean( turbine_turbulence_intensity, - axis=(3,4) - )[:, :, :, None, None] + axis=(2,3) + )[:, :, None, None] def full_flow_sequential_solver( From 2379672a095879587c3427c694f5654c5be96403 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 8 Dec 2023 16:01:27 -0600 Subject: [PATCH 07/78] Update Jensen regression tests for 4D arrays --- .../jensen_jimenez_regression_test.py | 94 +++++++++---------- 1 file changed, 43 insertions(+), 51 deletions(-) diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index 51bbfdc81..b0a1a5b63 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -110,17 +110,12 @@ def test_regression_tandem(sample_inputs_fixture): floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -131,7 +126,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -142,7 +137,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -158,19 +153,18 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -180,7 +174,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], baseline) + assert_results_arrays(test_results[0:4], baseline) def test_regression_rotation(sample_inputs_fixture): @@ -245,15 +239,15 @@ def test_regression_rotation(sample_inputs_fixture): farm_avg_velocities = average_velocity(floris.flow_field.u) - t0_270 = farm_avg_velocities[0, 0, 0] # upstream - t1_270 = farm_avg_velocities[0, 0, 1] # upstream - t2_270 = farm_avg_velocities[0, 0, 2] # waked - t3_270 = farm_avg_velocities[0, 0, 3] # waked + t0_270 = farm_avg_velocities[0, 0] # upstream + t1_270 = farm_avg_velocities[0, 1] # upstream + t2_270 = farm_avg_velocities[0, 2] # waked + t3_270 = farm_avg_velocities[0, 3] # waked - t0_360 = farm_avg_velocities[1, 0, 0] # waked - t1_360 = farm_avg_velocities[1, 0, 1] # upstream - t2_360 = farm_avg_velocities[1, 0, 2] # waked - t3_360 = farm_avg_velocities[1, 0, 3] # upstream + t0_360 = farm_avg_velocities[1, 0] # waked + t1_360 = farm_avg_velocities[1, 1] # upstream + t2_360 = farm_avg_velocities[1, 2] # waked + t3_360 = farm_avg_velocities[1, 3] # upstream assert np.allclose(t0_270, t1_360) assert np.allclose(t1_270, t3_360) @@ -271,24 +265,19 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -299,7 +288,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -310,7 +299,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -326,19 +315,18 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -348,11 +336,16 @@ def test_regression_yaw(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], yawed_baseline) + assert_results_arrays(test_results[0:4], yawed_baseline) def test_regression_small_grid_rotation(sample_inputs_fixture): """ + This utilizes a 5x5 wind farm with the layout in a regular grid oriented along the cardinal + directions. The wind direction in this test is from 285 degrees which is slightly north of + west. The objective of this test is to create a case with a very slight rotation of the wind + farm to target the rotation and masking routines. + Where wake models are masked based on the x-location of a turbine, numerical precision can cause masking to fail unexpectedly. For example, in the configuration here one of the turbines has these delta x values; @@ -387,7 +380,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = np.ones((1, 1, len(X))) * floris.farm.ref_tilt_cp_cts farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, @@ -395,7 +387,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -412,7 +404,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # A "column" is oriented parallel to the wind direction # Columns 1 - 4 should have the same power profile # Column 5 is completely unwaked in this model - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,5:10]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,10:15]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,15:20]) - assert np.allclose(farm_powers[2,0,20], farm_powers[2,0,20:25]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,5:10]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,10:15]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) + assert np.allclose(farm_powers[8,20], farm_powers[8,20:25]) From 7fa0192df7599a16d3b89010fe3394b571c81dd9 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Mon, 11 Dec 2023 13:34:12 -0600 Subject: [PATCH 08/78] Add 4D array inputs to conftest --- tests/conftest.py | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) diff --git a/tests/conftest.py b/tests/conftest.py index d54925c97..6dd3d3cbf 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -72,8 +72,20 @@ def print_test_values( WIND_DIRECTIONS = [ 270.0, + 270.0, + 270.0, + 270.0, + 360.0, + 360.0, + 360.0, 360.0, 285.0, + 285.0, + 285.0, + 285.0, + 315.0, + 315.0, + 315.0, 315.0, ] WIND_SPEEDS = [ @@ -81,6 +93,18 @@ def print_test_values( 9.0, 10.0, 11.0, + 8.0, + 9.0, + 10.0, + 11.0, + 8.0, + 9.0, + 10.0, + 11.0, + 8.0, + 9.0, + 10.0, + 11.0, ] # FINDEX is the length of the number of conditions, so it can be From 0ad51e094533b62f418e8fe748ff6e8ace20e567 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Mon, 11 Dec 2023 14:21:27 -0600 Subject: [PATCH 09/78] Update GCH components and reg tests --- floris/simulation/wake_deflection/gauss.py | 44 ++-- tests/reg_tests/gauss_regression_test.py | 225 +++++++++------------ 2 files changed, 118 insertions(+), 151 deletions(-) diff --git a/floris/simulation/wake_deflection/gauss.py b/floris/simulation/wake_deflection/gauss.py index 8ba77ad7f..2f6216dd6 100644 --- a/floris/simulation/wake_deflection/gauss.py +++ b/floris/simulation/wake_deflection/gauss.py @@ -264,20 +264,20 @@ def wake_added_yaw( # turbine parameters D = rotor_diameter # scalar HH = hub_height # scalar - Ct = ct_i # (wd, ws, 1, 1, 1) for the current turbine + Ct = ct_i # (findex, 1, 1, 1) for the current turbine TSR = tip_speed_ratio # scalar - aI = axial_induction_i # (wd, ws, 1, 1, 1) for the current turbine - avg_v = np.mean(v_i, axis=(3, 4)) # (wd, ws, 1, grid, grid) + aI = axial_induction_i # (findex, 1, 1, 1) for the current turbine + avg_v = np.mean(v_i, axis=(2,3)) # (findex, 1, grid, grid) # flow parameters - Uinf = np.mean(u_initial, axis=(2, 3, 4)) - Uinf = Uinf[:, :, None, None, None] + Uinf = np.mean(u_initial, axis=(1, 2, 3)) + Uinf = Uinf[:, None, None, None] # TODO: Allow user input for eps gain eps_gain = 0.2 eps = eps_gain * D # Use set value - vel_top = ((HH + D / 2) / HH) ** wind_shear * np.ones((1, 1, 1, 1, 1)) + vel_top = ((HH + D / 2) / HH) ** wind_shear * np.ones((1, 1, 1, 1)) Gamma_top = gamma( D, vel_top, @@ -286,7 +286,7 @@ def wake_added_yaw( scale, ) - vel_bottom = ((HH - D / 2) / HH) ** wind_shear * np.ones((1, 1, 1, 1, 1)) + vel_bottom = ((HH - D / 2) / HH) ** wind_shear * np.ones((1, 1, 1, 1)) Gamma_bottom = -1 * gamma( D, vel_bottom, @@ -295,7 +295,7 @@ def wake_added_yaw( scale, ) - turbine_average_velocity = np.cbrt(np.mean(u_i ** 3, axis=(3, 4)))[:, :, :, None, None] + turbine_average_velocity = np.cbrt(np.mean(u_i ** 3, axis=(2, 3)))[:, :, None, None] Gamma_wake_rotation = 0.25 * 2 * pi * D * (aI - aI ** 2) * turbine_average_velocity / TSR ### compute the spanwise and vertical velocities induced by yaw @@ -311,7 +311,7 @@ def wake_added_yaw( # it defines the vortex profile in the spanwise directions core_shape = ne.evaluate("1 - exp(-rT / (eps ** 2))") v_top = ne.evaluate("(Gamma_top * zT) / (2 * pi * rT) * core_shape") - v_top = np.mean( v_top, axis=(3,4) ) + v_top = np.mean( v_top, axis=(2,3) ) # w_top = (-1 * Gamma_top * yLocs) / (2 * pi * rT) * core_shape * decay # bottom vortex @@ -319,7 +319,7 @@ def wake_added_yaw( rB = ne.evaluate("yLocs ** 2 + zB ** 2") core_shape = ne.evaluate("1 - exp(-rB / (eps ** 2))") v_bottom = ne.evaluate("(Gamma_bottom * zB) / (2 * pi * rB) * core_shape") - v_bottom = np.mean( v_bottom, axis=(3,4) ) + v_bottom = np.mean( v_bottom, axis=(2,3) ) # w_bottom = (-1 * Gamma_bottom * yLocs) / (2 * pi * rB) * core_shape * decay # wake rotation vortex @@ -327,7 +327,7 @@ def wake_added_yaw( rC = ne.evaluate("yLocs ** 2 + zC ** 2") core_shape = ne.evaluate("1 - exp(-rC / (eps ** 2))") v_core = ne.evaluate("(Gamma_wake_rotation * zC) / (2 * pi * rC) * core_shape") - v_core = np.mean( v_core, axis=(3,4) ) + v_core = np.mean( v_core, axis=(2,3) ) # w_core = (-1 * Gamma_wake_rotation * yLocs) / (2 * pi * rC) * core_shape * decay # Cap the effective yaw values between -45 and 45 degrees @@ -336,8 +336,7 @@ def wake_added_yaw( val = np.where(val > 1.0, 1.0, val) y = np.degrees(0.5 * np.arcsin(val)) - return y[:, :, :, None, None] - + return y[:, :, None, None] def calculate_transverse_velocity( u_i, @@ -368,12 +367,13 @@ def calculate_transverse_velocity( aI = axial_induction_i # flow parameters - Uinf = np.mean(u_initial, axis=(2, 3, 4))[:, :, None, None, None] + Uinf = np.mean(u_initial, axis=(1, 2, 3)) + Uinf = Uinf[:, None, None, None] eps_gain = 0.2 eps = eps_gain * D # Use set value - vel_top = ((HH + D / 2) / HH) ** wind_shear * np.ones((1, 1, 1, 1, 1)) + vel_top = ((HH + D / 2) / HH) ** wind_shear * np.ones((1, 1, 1, 1)) Gamma_top = sind(yaw) * cosd(yaw) * gamma( D, vel_top, @@ -382,7 +382,7 @@ def calculate_transverse_velocity( scale, ) - vel_bottom = ((HH - D / 2) / HH) ** wind_shear * np.ones((1, 1, 1, 1, 1)) + vel_bottom = ((HH - D / 2) / HH) ** wind_shear * np.ones((1, 1, 1, 1)) Gamma_bottom = -1 * sind(yaw) * cosd(yaw) * gamma( D, vel_bottom, @@ -390,7 +390,7 @@ def calculate_transverse_velocity( Ct, scale, ) - turbine_average_velocity = np.cbrt(np.mean(u_i ** 3, axis=(3, 4)))[:, :, :, None, None] + turbine_average_velocity = np.cbrt(np.mean(u_i ** 3, axis=(2,3)))[:, :, None, None] Gamma_wake_rotation = 0.25 * 2 * pi * D * (aI - aI ** 2) * turbine_average_velocity / TSR ### compute the spanwise and vertical velocities induced by yaw @@ -486,16 +486,16 @@ def yaw_added_turbulence_mixing( # use the left two dimensions only here and expand # before returning. Dimensions are (wd, ws). - I_i = I_i[:, :, 0, 0, 0] + I_i = I_i[:, 0, 0, 0] - average_u_i = np.cbrt(np.mean(u_i ** 3, axis=(2, 3, 4))) + average_u_i = np.cbrt(np.mean(u_i ** 3, axis=(1, 2, 3))) # Convert ambient turbulence intensity to TKE (eq 24) k = (average_u_i * I_i) ** 2 / (2 / 3) u_term = np.sqrt(2 * k) - v_term = np.mean(v_i + turb_v_i, axis=(2, 3, 4)) - w_term = np.mean(w_i + turb_w_i, axis=(2, 3, 4)) + v_term = np.mean(v_i + turb_v_i, axis=(1, 2, 3)) + w_term = np.mean(w_i + turb_w_i, axis=(1, 2, 3)) # Compute the new TKE (eq 23) k_total = 0.5 * (u_term ** 2 + v_term ** 2 + w_term ** 2) @@ -506,4 +506,4 @@ def yaw_added_turbulence_mixing( # Remove ambient from total TI leaving only the TI due to mixing I_mixing = I_total - I_i - return I_mixing[:, :, None, None, None] + return I_mixing[:, None, None, None] diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index ff0cce770..344b00c7c 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -259,18 +259,12 @@ def test_regression_tandem(sample_inputs_fixture): floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -281,7 +275,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -292,7 +286,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -308,19 +302,18 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -330,7 +323,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], baseline) + assert_results_arrays(test_results[0:4], baseline) def test_regression_rotation(sample_inputs_fixture): @@ -395,15 +388,15 @@ def test_regression_rotation(sample_inputs_fixture): farm_avg_velocities = average_velocity(floris.flow_field.u) - t0_270 = farm_avg_velocities[0, 0, 0] # upstream - t1_270 = farm_avg_velocities[0, 0, 1] # upstream - t2_270 = farm_avg_velocities[0, 0, 2] # waked - t3_270 = farm_avg_velocities[0, 0, 3] # waked + t0_270 = farm_avg_velocities[0, 0] # upstream + t1_270 = farm_avg_velocities[0, 1] # upstream + t2_270 = farm_avg_velocities[0, 2] # waked + t3_270 = farm_avg_velocities[0, 3] # waked - t0_360 = farm_avg_velocities[1, 0, 0] # waked - t1_360 = farm_avg_velocities[1, 0, 1] # upstream - t2_360 = farm_avg_velocities[1, 0, 2] # waked - t3_360 = farm_avg_velocities[1, 0, 3] # upstream + t0_360 = farm_avg_velocities[1, 0] # waked + t1_360 = farm_avg_velocities[1, 1] # upstream + t2_360 = farm_avg_velocities[1, 2] # waked + t3_360 = farm_avg_velocities[1, 3] # upstream assert np.allclose(t0_270, t1_360) assert np.allclose(t1_270, t3_360) @@ -421,24 +414,19 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -449,7 +437,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -460,7 +448,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -476,19 +464,18 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -498,7 +485,7 @@ def test_regression_yaw(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], yawed_baseline) + assert_results_arrays(test_results[0:4], yawed_baseline) def test_regression_gch(sample_inputs_fixture): @@ -514,24 +501,19 @@ def test_regression_gch(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -542,7 +524,7 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -553,7 +535,7 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -569,19 +551,18 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] # Don't use the test values here, gch is off! See the docstring. # if DEBUG: @@ -592,7 +573,7 @@ def test_regression_gch(sample_inputs_fixture): # farm_axial_inductions, # ) - assert_results_arrays(test_results[0], yawed_baseline) + assert_results_arrays(test_results[0:4], yawed_baseline) ### With GCH on, the results should change @@ -603,24 +584,19 @@ def test_regression_gch(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -631,7 +607,7 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -642,7 +618,7 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -658,19 +634,18 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -680,7 +655,7 @@ def test_regression_gch(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], gch_baseline) + assert_results_arrays(test_results[0:4], gch_baseline) def test_regression_yaw_added_recovery(sample_inputs_fixture): @@ -699,24 +674,19 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -727,7 +697,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -738,7 +708,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -754,19 +724,18 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -776,7 +745,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], yaw_added_recovery_baseline) + assert_results_arrays(test_results[0:4], yaw_added_recovery_baseline) def test_regression_secondary_steering(sample_inputs_fixture): @@ -794,24 +763,19 @@ def test_regression_secondary_steering(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -822,7 +786,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -833,7 +797,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -849,19 +813,18 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -871,11 +834,16 @@ def test_regression_secondary_steering(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], secondary_steering_baseline) + assert_results_arrays(test_results[0:4], secondary_steering_baseline) def test_regression_small_grid_rotation(sample_inputs_fixture): """ + This utilizes a 5x5 wind farm with the layout in a regular grid oriented along the cardinal + directions. The wind direction in this test is from 285 degrees which is slightly north of + west. The objective of this test is to create a case with a very slight rotation of the wind + farm to target the rotation and masking routines. + Where wake models are masked based on the x-location of a turbine, numerical precision can cause masking to fail unexpectedly. For example, in the configuration here one of the turbines has these delta x values; @@ -910,7 +878,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = np.ones((1, 1, len(X))) * floris.farm.ref_tilt_cp_cts farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, @@ -918,7 +885,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -936,8 +903,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # Columns 1 - 4 should have the same power profile # Column 5 leading turbine is completely unwaked # and the rest of the turbines have a partial wake from their immediate upstream turbine - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,5:10]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,10:15]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,15:20]) - assert np.allclose(farm_powers[2,0,20], farm_powers[2,0,0]) - assert np.allclose(farm_powers[2,0,21], farm_powers[2,0,21:25]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,5:10]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,10:15]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) + assert np.allclose(farm_powers[8,20], farm_powers[8,0]) + assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) \ No newline at end of file From 3a1bf65e796dcfa4046e68a1d0ff3203ad485883 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Mon, 11 Dec 2023 17:21:18 -0500 Subject: [PATCH 10/78] Convert EmG model to 4d structure (#62) * update reg_tandem to mimic Jensen. * Partway through solve; commiting to realign with 4d. * Tandem reg test passing. * Updated reg tests; all pass. * Adding reg test for yaw_added_mixing; final values not yet in. * Removing 5th dim * Update print_test_values for 4d; add optional max findex to print. * yaw_added_recovery test updated to include default 0 gain and nonzero gain. --- floris/simulation/solver.py | 68 ++-- .../wake_deflection/empirical_gauss.py | 4 +- .../wake_turbulence/wake_induced_mixing.py | 2 +- .../wake_velocity/empirical_gauss.py | 4 +- tests/conftest.py | 16 +- .../empirical_gauss_regression_test.py | 292 ++++++++++++++---- 6 files changed, 291 insertions(+), 95 deletions(-) diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index 942f427a1..c47b247d0 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -1188,28 +1188,33 @@ def empirical_gauss_solver( v_wake = np.zeros_like(flow_field.v_initial_sorted) w_wake = np.zeros_like(flow_field.w_initial_sorted) - x_locs = np.mean(grid.x_sorted, axis=(3, 4))[:,:,:,None] - downstream_distance_D = x_locs - np.transpose(x_locs, axes=(0,1,3,2)) + x_locs = np.mean(grid.x_sorted, axis=(2, 3))[:,:,None] + downstream_distance_D = x_locs - np.transpose(x_locs, axes=(0,2,1)) downstream_distance_D = downstream_distance_D / \ - np.repeat(farm.rotor_diameters_sorted[:,:,:,None], grid.n_turbines, axis=-1) + np.repeat(farm.rotor_diameters_sorted[:,:,None], grid.n_turbines, axis=-1) downstream_distance_D = np.maximum(downstream_distance_D, 0.1) # For ease - mixing_factor = np.zeros_like(downstream_distance_D) - mixing_factor[:,:,:,:] = model_manager.turbulence_model.atmospheric_ti_gain*\ - flow_field.turbulence_intensity*np.eye(grid.n_turbines) + # Initialize the mixing factor model using TI if specified + initial_mixing_factor = model_manager.turbulence_model.atmospheric_ti_gain*\ + flow_field.turbulence_intensity*np.eye(grid.n_turbines) + mixing_factor = np.repeat( + initial_mixing_factor[None,:,:], + flow_field.n_findex, + axis=0 + ) # Calculate the velocity deficit sequentially from upstream to downstream turbines for i in range(grid.n_turbines): # Get the current turbine quantities - x_i = np.mean(grid.x_sorted[:, :, i:i+1], axis=(3, 4)) - x_i = x_i[:, :, :, None, None] - y_i = np.mean(grid.y_sorted[:, :, i:i+1], axis=(3, 4)) - y_i = y_i[:, :, :, None, None] - z_i = np.mean(grid.z_sorted[:, :, i:i+1], axis=(3, 4)) - z_i = z_i[:, :, :, None, None] + x_i = np.mean(grid.x_sorted[:, i:i+1], axis=(2, 3)) + x_i = x_i[:, :, None, None] + y_i = np.mean(grid.y_sorted[:, i:i+1], axis=(2, 3)) + y_i = y_i[:, :, None, None] + z_i = np.mean(grid.z_sorted[:, i:i+1], axis=(2, 3)) + z_i = z_i[:, :, None, None] - flow_field.u_sorted[:, :, i:i+1] - flow_field.v_sorted[:, :, i:i+1] + flow_field.u_sorted[:, i:i+1] + flow_field.v_sorted[:, i:i+1] ct_i = Ct( velocities=flow_field.u_sorted, @@ -1226,7 +1231,7 @@ def empirical_gauss_solver( ) # Since we are filtering for the i'th turbine in the Ct function, # get the first index here (0:1) - ct_i = ct_i[:, :, 0:1, None, None] + ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, @@ -1242,13 +1247,14 @@ def empirical_gauss_solver( ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) - axial_induction_i = axial_induction_i[:, :, 0:1, None, None] - yaw_angle_i = farm.yaw_angles_sorted[:, :, i:i+1, None, None] - hub_height_i = farm.hub_heights_sorted[: ,:, i:i+1, None, None] - rotor_diameter_i = farm.rotor_diameters_sorted[: ,:, i:i+1, None, None] + axial_induction_i = axial_induction_i[:, 0:1, None, None] + yaw_angle_i = farm.yaw_angles_sorted[:, i:i+1, None, None] + hub_height_i = farm.hub_heights_sorted[:, i:i+1, None, None] + rotor_diameter_i = farm.rotor_diameters_sorted[:, i:i+1, None, None] - effective_yaw_i = np.zeros_like(yaw_angle_i) - effective_yaw_i += yaw_angle_i + # Secondary steering not currently implemented in EmGauss model + # effective_yaw_i = np.zeros_like(yaw_angle_i) + # effective_yaw_i += yaw_angle_i average_velocities = average_velocity( flow_field.u_sorted, @@ -1256,7 +1262,7 @@ def empirical_gauss_solver( cubature_weights=grid.cubature_weights ) tilt_angle_i = farm.calculate_tilt_for_eff_velocities(average_velocities) - tilt_angle_i = tilt_angle_i[:, :, i:i+1, None, None] + tilt_angle_i = tilt_angle_i[:, i:i+1, None, None] if model_manager.enable_secondary_steering: raise NotImplementedError( @@ -1268,7 +1274,7 @@ def empirical_gauss_solver( if model_manager.enable_yaw_added_recovery: # Influence of yawing on turbine's own wake - mixing_factor[:, :, i:i+1, i] += \ + mixing_factor[:, i:i+1, i] += \ yaw_added_wake_mixing( axial_induction_i, yaw_angle_i, @@ -1278,8 +1284,8 @@ def empirical_gauss_solver( # Extract total wake induced mixing for turbine i mixing_i = np.linalg.norm( - mixing_factor[:, :, i:i+1, :, None], - ord=2, axis=3, keepdims=True + mixing_factor[:, i:i+1, :, None], + ord=2, axis=2, keepdims=True ) # Model calculations @@ -1287,7 +1293,7 @@ def empirical_gauss_solver( deflection_field_y, deflection_field_z = model_manager.deflection_model.function( x_i, y_i, - effective_yaw_i, + yaw_angle_i, tilt_angle_i, mixing_i, ct_i, @@ -1318,20 +1324,20 @@ def empirical_gauss_solver( ) # Calculate wake overlap for wake-added turbulence (WAT) - area_overlap = np.sum(velocity_deficit * flow_field.u_initial_sorted > 0.05, axis=(3, 4))\ + area_overlap = np.sum(velocity_deficit * flow_field.u_initial_sorted > 0.05, axis=(2, 3))\ / (grid.grid_resolution * grid.grid_resolution) # Compute wake induced mixing factor - mixing_factor[:,:,:,i] += \ + mixing_factor[:,:,i] += \ area_overlap * model_manager.turbulence_model.function( - axial_induction_i, downstream_distance_D[:,:,:,i] + axial_induction_i, downstream_distance_D[:,:,i] ) if model_manager.enable_yaw_added_recovery: - mixing_factor[:,:,:,i] += \ + mixing_factor[:,:,i] += \ area_overlap * yaw_added_wake_mixing( axial_induction_i, yaw_angle_i, - downstream_distance_D[:,:,:,i], + downstream_distance_D[:,:,i], model_manager.deflection_model.yaw_added_mixing_gain ) diff --git a/floris/simulation/wake_deflection/empirical_gauss.py b/floris/simulation/wake_deflection/empirical_gauss.py index fc3772f0e..2d1ec14c3 100644 --- a/floris/simulation/wake_deflection/empirical_gauss.py +++ b/floris/simulation/wake_deflection/empirical_gauss.py @@ -145,8 +145,8 @@ def yaw_added_wake_mixing( yaw_added_mixing_gain ): return ( - axial_induction_i[:,:,:,0,0] + axial_induction_i[:,:,0,0] * yaw_added_mixing_gain - * (1 - cosd(yaw_angle_i[:,:,:,0,0])) + * (1 - cosd(yaw_angle_i[:,:,0,0])) / downstream_distance_D_i**2 ) diff --git a/floris/simulation/wake_turbulence/wake_induced_mixing.py b/floris/simulation/wake_turbulence/wake_induced_mixing.py index 9d57ee5aa..96dac7e45 100644 --- a/floris/simulation/wake_turbulence/wake_induced_mixing.py +++ b/floris/simulation/wake_turbulence/wake_induced_mixing.py @@ -82,6 +82,6 @@ def function( the ith turbine. """ - wake_induced_mixing = axial_induction_i[:,:,:,0,0] / downstream_distance_D_i**2 + wake_induced_mixing = axial_induction_i[:,:,0,0] / downstream_distance_D_i**2 return wake_induced_mixing diff --git a/floris/simulation/wake_velocity/empirical_gauss.py b/floris/simulation/wake_velocity/empirical_gauss.py index fe2bed0e0..db2308d22 100644 --- a/floris/simulation/wake_velocity/empirical_gauss.py +++ b/floris/simulation/wake_velocity/empirical_gauss.py @@ -170,7 +170,7 @@ def function( self.mixing_gain_velocity * mixing_i, ) sigma_y[upstream_mask] = \ - np.tile(sigma_y0, np.shape(sigma_y)[2:])[upstream_mask] + np.tile(sigma_y0, np.shape(sigma_y)[1:])[upstream_mask] sigma_z = empirical_gauss_model_wake_width( x - x_i, @@ -181,7 +181,7 @@ def function( self.mixing_gain_velocity * mixing_i, ) sigma_z[upstream_mask] = \ - np.tile(sigma_z0, np.shape(sigma_z)[2:])[upstream_mask] + np.tile(sigma_z0, np.shape(sigma_z)[1:])[upstream_mask] # 'Standard' wake component r, C = rCalt( diff --git a/tests/conftest.py b/tests/conftest.py index 6dd3d3cbf..3c0c0c7a5 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -54,17 +54,19 @@ def print_test_values( average_velocities: list, thrusts: list, powers: list, - axial_inductions: list + axial_inductions: list, + max_findex_print: int | None=None ): - n_wd, n_ws, n_turb = np.shape(average_velocities) - i=0 - for j in range(n_ws): + n_findex, n_turb = np.shape(average_velocities) + if max_findex_print is not None: + n_findex = min(n_findex, max_findex_print) + for i in range(n_findex): print("[") - for k in range(n_turb): + for j in range(n_turb): print( " [{:.7f}, {:.7f}, {:.7f}, {:.7f}],".format( - average_velocities[i,j,k], thrusts[i,j,k], powers[i,j,k], - axial_inductions[i,j,k] + average_velocities[i,j], thrusts[i,j], powers[i,j], + axial_inductions[i,j] ) ) print("],") diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index e134e412b..818ec36e0 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -94,6 +94,35 @@ ] ) +yaw_added_recovery_baseline = np.array( + [ + # 8 m/s + [ + [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], + [5.9343009, 0.8387850, 684615.9328740, 0.2992420], + [5.9680241, 0.8370593, 696314.1525222, 0.2981704], + ], + # 9 m/s + [ + [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], + [6.6795240, 0.8051531, 993555.3595338, 0.2792927], + [6.7704684, 0.8014937, 1035885.1172753, 0.2772298], + ], + # 10 m/s + [ + [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], + [7.4567077, 0.7772686, 1384573.5845651, 0.2640278], + [7.5779862, 0.7738318, 1454233.0717541, 0.2622143], + ], + # 11 m/s + [ + [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], + [8.2914104, 0.7621290, 1905407.7287412, 0.2561399], + [8.3784336, 0.7618919, 1964619.7950752, 0.2560184], + ], + ] +) + # Note: compare the yawed vs non-yawed results. The upstream turbine # power should be lower in the yawed case. The following turbine # powers should higher in the yawed case. @@ -112,17 +141,12 @@ def test_regression_tandem(sample_inputs_fixture): floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -133,7 +157,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -144,7 +168,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -160,19 +184,18 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -180,9 +203,10 @@ def test_regression_tandem(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4 ) - assert_results_arrays(test_results[0], baseline) + assert_results_arrays(test_results[0:4], baseline) def test_regression_rotation(sample_inputs_fixture): @@ -248,15 +272,15 @@ def test_regression_rotation(sample_inputs_fixture): farm_avg_velocities = average_velocity(floris.flow_field.u) - t0_270 = farm_avg_velocities[0, 0, 0] # upstream - t1_270 = farm_avg_velocities[0, 0, 1] # upstream - t2_270 = farm_avg_velocities[0, 0, 2] # waked - t3_270 = farm_avg_velocities[0, 0, 3] # waked + t0_270 = farm_avg_velocities[0, 0] # upstream + t1_270 = farm_avg_velocities[0, 1] # upstream + t2_270 = farm_avg_velocities[0, 2] # waked + t3_270 = farm_avg_velocities[0, 3] # waked - t0_360 = farm_avg_velocities[1, 0, 0] # waked - t1_360 = farm_avg_velocities[1, 0, 1] # upstream - t2_360 = farm_avg_velocities[1, 0, 2] # waked - t3_360 = farm_avg_velocities[1, 0, 3] # upstream + t0_360 = farm_avg_velocities[1, 0] # waked + t1_360 = farm_avg_velocities[1, 1] # upstream + t2_360 = farm_avg_velocities[1, 2] # waked + t3_360 = farm_avg_velocities[1, 3] # upstream assert np.allclose(t0_270, t1_360) assert np.allclose(t1_270, t3_360) @@ -275,24 +299,19 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -303,7 +322,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -314,7 +333,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, @@ -330,19 +349,18 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_fTilts, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -350,13 +368,184 @@ def test_regression_yaw(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4 ) - assert_results_arrays(test_results[0], yawed_baseline) + assert_results_arrays(test_results[0:4], yawed_baseline) + +def test_regression_yaw_added_recovery(sample_inputs_fixture): + """ + Tandem turbines with the upstream turbine yawed and yaw added recovery + correction enabled + """ + + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL + + # Turn on yaw added recovery + sample_inputs_fixture.floris["wake"]["enable_yaw_added_recovery"] = True + # First pass, leave at default value of 0; should then do nothing + + floris = Floris.from_dict(sample_inputs_fixture.floris) + + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) + yaw_angles[:,0] = 5.0 + floris.farm.yaw_angles = yaw_angles + + floris.initialize_domain() + floris.steady_state_atmospheric_condition() + + n_turbines = floris.farm.n_turbines + n_findex = floris.flow_field.n_findex + + velocities = floris.flow_field.u + yaw_angles = floris.farm.yaw_angles + tilt_angles = floris.farm.tilt_angles + test_results = np.zeros((n_findex, n_turbines, 4)) + + farm_avg_velocities = average_velocity( + velocities, + ) + farm_eff_velocities = rotor_effective_velocity( + floris.flow_field.air_density, + floris.farm.ref_density_cp_cts, + velocities, + yaw_angles, + tilt_angles, + floris.farm.ref_tilt_cp_cts, + floris.farm.pPs, + floris.farm.pTs, + floris.farm.turbine_fTilts, + floris.farm.correct_cp_ct_for_tilt, + floris.farm.turbine_type_map, + ) + farm_cts = Ct( + velocities, + yaw_angles, + tilt_angles, + floris.farm.ref_tilt_cp_cts, + floris.farm.turbine_fCts, + floris.farm.turbine_fTilts, + floris.farm.correct_cp_ct_for_tilt, + floris.farm.turbine_type_map, + ) + farm_powers = power( + floris.farm.ref_density_cp_cts, + farm_eff_velocities, + floris.farm.turbine_power_interps, + floris.farm.turbine_type_map, + ) + farm_axial_inductions = axial_induction( + velocities, + yaw_angles, + tilt_angles, + floris.farm.ref_tilt_cp_cts, + floris.farm.turbine_fCts, + floris.farm.turbine_fTilts, + floris.farm.correct_cp_ct_for_tilt, + floris.farm.turbine_type_map, + ) + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] + + # Compare to case where enable_yaw_added_recovery = False, since + # default gains are 0. + assert_results_arrays(test_results[0:4], yawed_baseline) + + # Second pass, use nonzero gain + sample_inputs_fixture.floris["wake"]["wake_deflection_parameters"]\ + ["empirical_gauss"]["yaw_added_mixing_gain"] = 0.1 + + floris = Floris.from_dict(sample_inputs_fixture.floris) + + yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) + yaw_angles[:,0] = 5.0 + floris.farm.yaw_angles = yaw_angles + + floris.initialize_domain() + floris.steady_state_atmospheric_condition() + + n_turbines = floris.farm.n_turbines + n_findex = floris.flow_field.n_findex + + velocities = floris.flow_field.u + yaw_angles = floris.farm.yaw_angles + tilt_angles = floris.farm.tilt_angles + test_results = np.zeros((n_findex, n_turbines, 4)) + + farm_avg_velocities = average_velocity( + velocities, + ) + farm_eff_velocities = rotor_effective_velocity( + floris.flow_field.air_density, + floris.farm.ref_density_cp_cts, + velocities, + yaw_angles, + tilt_angles, + floris.farm.ref_tilt_cp_cts, + floris.farm.pPs, + floris.farm.pTs, + floris.farm.turbine_fTilts, + floris.farm.correct_cp_ct_for_tilt, + floris.farm.turbine_type_map, + ) + farm_cts = Ct( + velocities, + yaw_angles, + tilt_angles, + floris.farm.ref_tilt_cp_cts, + floris.farm.turbine_fCts, + floris.farm.turbine_fTilts, + floris.farm.correct_cp_ct_for_tilt, + floris.farm.turbine_type_map, + ) + farm_powers = power( + floris.farm.ref_density_cp_cts, + farm_eff_velocities, + floris.farm.turbine_power_interps, + floris.farm.turbine_type_map, + ) + farm_axial_inductions = axial_induction( + velocities, + yaw_angles, + tilt_angles, + floris.farm.ref_tilt_cp_cts, + floris.farm.turbine_fCts, + floris.farm.turbine_fTilts, + floris.farm.correct_cp_ct_for_tilt, + floris.farm.turbine_type_map, + ) + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] + + if DEBUG: + print_test_values( + farm_avg_velocities, + farm_cts, + farm_powers, + farm_axial_inductions, + max_findex_print=4 + ) + + assert_results_arrays(test_results[0:4], yaw_added_recovery_baseline) def test_regression_small_grid_rotation(sample_inputs_fixture): """ + This utilizes a 5x5 wind farm with the layout in a regular grid oriented along the cardinal + directions. The wind direction in this test is from 285 degrees which is slightly north of + west. The objective of this test is to create a case with a very slight rotation of the wind + farm to target the rotation and masking routines. + Where wake models are masked based on the x-location of a turbine, numerical precision can cause masking to fail unexpectedly. For example, in the configuration here one of the turbines has these delta x values; @@ -392,7 +581,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = np.ones((1, 1, len(X))) * floris.farm.ref_tilt_cp_cts farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, @@ -400,7 +588,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_fTilts, @@ -417,8 +605,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # A "column" is oriented parallel to the wind direction # Columns 1 - 4 should have the same power profile # Column 5 is completely unwaked in this model - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,5:10]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,10:15]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,15:20]) - assert np.allclose(farm_powers[2,0,20], farm_powers[2,0,0]) - assert np.allclose(farm_powers[2,0,21], farm_powers[2,0,21:25]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,5:10]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,10:15]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) + assert np.allclose(farm_powers[8,20], farm_powers[8,0]) + assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) From 01251ddb5558c9304ff1162f412738bce9814a13 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Wed, 13 Dec 2023 14:40:19 -0600 Subject: [PATCH 11/78] Fix a couple of broken tests --- tests/floris_interface_test.py | 16 ++++------------ tests/turbine_grid_unit_test.py | 13 +++++++------ 2 files changed, 11 insertions(+), 18 deletions(-) diff --git a/tests/floris_interface_test.py b/tests/floris_interface_test.py index 494576983..55578ebde 100644 --- a/tests/floris_interface_test.py +++ b/tests/floris_interface_test.py @@ -25,8 +25,7 @@ def test_calculate_wake(): fi = FlorisInterface(configuration=YAML_INPUT) yaw_angles = 20 * np.ones( ( - fi.floris.flow_field.n_wind_directions, - fi.floris.flow_field.n_wind_speeds, + fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines ) ) @@ -35,8 +34,7 @@ def test_calculate_wake(): yaw_angles = np.zeros( ( - fi.floris.flow_field.n_wind_directions, - fi.floris.flow_field.n_wind_speeds, + fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines ) ) @@ -53,8 +51,7 @@ def test_calculate_no_wake(): fi = FlorisInterface(configuration=YAML_INPUT) yaw_angles = 20 * np.ones( ( - fi.floris.flow_field.n_wind_directions, - fi.floris.flow_field.n_wind_speeds, + fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines ) ) @@ -63,14 +60,9 @@ def test_calculate_no_wake(): yaw_angles = np.zeros( ( - fi.floris.flow_field.n_wind_directions, - fi.floris.flow_field.n_wind_speeds, + fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines ) ) fi.calculate_no_wake(yaw_angles=yaw_angles) assert fi.floris.farm.yaw_angles == yaw_angles - - -def test_reinitialize(): - pass diff --git a/tests/turbine_grid_unit_test.py b/tests/turbine_grid_unit_test.py index fa1081dcf..174bda5f4 100644 --- a/tests/turbine_grid_unit_test.py +++ b/tests/turbine_grid_unit_test.py @@ -56,12 +56,13 @@ def test_set_grid(turbine_grid_fixture): # These should have the following shape: # (n findex, n turbines, grid resolution, grid resolution) - assert np.shape(turbine_grid_fixture.x_sorted) == (4,3,2,2) - assert np.shape(turbine_grid_fixture.y_sorted) == (4,3,2,2) - assert np.shape(turbine_grid_fixture.z_sorted) == (4,3,2,2) - assert np.shape(turbine_grid_fixture.x_sorted_inertial_frame) == (4,3,2,2) - assert np.shape(turbine_grid_fixture.y_sorted_inertial_frame) == (4,3,2,2) - assert np.shape(turbine_grid_fixture.z_sorted_inertial_frame) == (4,3,2,2) + expected_shape = (N_FINDEX,N_TURBINES,TURBINE_GRID_RESOLUTION,TURBINE_GRID_RESOLUTION) + assert np.shape(turbine_grid_fixture.x_sorted) == expected_shape + assert np.shape(turbine_grid_fixture.y_sorted) == expected_shape + assert np.shape(turbine_grid_fixture.z_sorted) == expected_shape + assert np.shape(turbine_grid_fixture.x_sorted_inertial_frame) == expected_shape + assert np.shape(turbine_grid_fixture.y_sorted_inertial_frame) == expected_shape + assert np.shape(turbine_grid_fixture.z_sorted_inertial_frame) == expected_shape def test_dimensions(turbine_grid_fixture): From fe7fa64e0bb05ddc23e007dcf29f53fd70475f81 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Wed, 13 Dec 2023 15:28:03 -0600 Subject: [PATCH 12/78] Fix broken regression tests --- tests/reg_tests/empirical_gauss_regression_test.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 34d6569c3..20a35714a 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -416,7 +416,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, - floris.farm.turbine_fTilts, + floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) @@ -426,7 +426,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): tilt_angles, floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, - floris.farm.turbine_fTilts, + floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) @@ -442,7 +442,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): tilt_angles, floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, - floris.farm.turbine_fTilts, + floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) @@ -490,7 +490,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, - floris.farm.turbine_fTilts, + floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) @@ -500,7 +500,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): tilt_angles, floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, - floris.farm.turbine_fTilts, + floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) @@ -516,7 +516,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): tilt_angles, floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, - floris.farm.turbine_fTilts, + floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) From f35326e5c531175407e9a4f9c0f3ba0ca007b33c Mon Sep 17 00:00:00 2001 From: paulf81 Date: Wed, 13 Dec 2023 15:12:33 -0700 Subject: [PATCH 13/78] Update FlorisInterface and subset of examples (#61) * initial commit * first pass edit of 01 example * ruff formatting * bugfix * bugfix * Convert to 4d * correct docstrings * fix docstring * convert tests to 4d * back to gch * Update conditions to evaluate block to 4d * fix floris_interface test and add power tests * Add shape test * Update example 04 * Convert 05 * Update 06 to 4d * Update 09 to 4D * Update 18 to 4d * Update 21 to 4d * Update 22 to 4d * convert 24 to 4d * remove wind speed from call to PointsGrid * change PointsGrid to 4d * change call to set_tilt to pass n_findex * Update comment * start fixing * Remove todo * Remove todo * Clean up some comments * More comment clean up --------- Co-authored-by: Rafael M Mudafort --- examples/01_opening_floris_computing_power.py | 54 ++--- examples/04_sweep_wind_directions.py | 21 +- examples/05_sweep_wind_speeds.py | 20 +- examples/06_sweep_wind_conditions.py | 68 ++++--- .../09_compare_farm_power_with_neighbor.py | 3 +- examples/18_check_turbine.py | 9 +- examples/21_demo_time_series.py | 22 +-- examples/22_get_wind_speed_at_turbines.py | 10 +- examples/24_floating_turbine_models.py | 7 +- examples/28_extract_wind_speed_at_points.py | 3 +- floris/simulation/floris.py | 1 - floris/simulation/grid.py | 6 +- floris/simulation/solver.py | 2 +- floris/tools/floris_interface.py | 140 +++---------- tests/floris_interface_test.py | 186 +++++++++++++++--- 15 files changed, 300 insertions(+), 252 deletions(-) diff --git a/examples/01_opening_floris_computing_power.py b/examples/01_opening_floris_computing_power.py index b006dfe4d..ee6fd8f15 100644 --- a/examples/01_opening_floris_computing_power.py +++ b/examples/01_opening_floris_computing_power.py @@ -33,46 +33,56 @@ fi = FlorisInterface("inputs/gch.yaml") # Convert to a simple two turbine layout -fi.reinitialize(layout_x=[0, 500.], layout_y=[0., 0.]) +fi.reinitialize(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) # Single wind speed and wind direction -print('\n========================= Single Wind Direction and Wind Speed =========================') +print("\n========================= Single Wind Direction and Wind Speed =========================") -# Get the turbine powers assuming 1 wind speed and 1 wind direction -fi.reinitialize(wind_directions=[270.], wind_speeds=[8.0]) +# Get the turbine powers assuming 1 wind direction and speed +fi.reinitialize(wind_directions=[270.0], wind_speeds=[8.0]) # Set the yaw angles to 0 -yaw_angles = np.zeros([1,1,2]) # 1 wind direction, 1 wind speed, 2 turbines +yaw_angles = np.zeros([1, 2]) # 1 wind direction / speed, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) # Get the turbine powers -turbine_powers = fi.get_turbine_powers()/1000. -print('The turbine power matrix should be of dimensions 1 WD X 1 WS X 2 Turbines') +turbine_powers = fi.get_turbine_powers() / 1000.0 + +# TODO what should we call this user/facing? +print("The turbine power matrix should be of dimensions 1 FINDEX X 2 Turbines") print(turbine_powers) -print("Shape: ",turbine_powers.shape) +print("Shape: ", turbine_powers.shape) # Single wind speed and multiple wind directions -print('\n========================= Single Wind Direction and Multiple Wind Speeds ===============') - +print("\n========================= Single Wind Direction and Multiple Wind Speeds ===============") +# Note in v3 FLORIS wind directions and speeds would be expanded to all combinations +# in v4 the assumption is that each entry wind direction and wind speed corresponds +# to one condtions and wind directions and wind speeds arrays should be the same length wind_speeds = np.array([8.0, 9.0, 10.0]) -fi.reinitialize(wind_speeds=wind_speeds) -yaw_angles = np.zeros([1,3,2]) # 1 wind direction, 3 wind speeds, 2 turbines +wind_directions = np.array([270.0, 270.0, 270.0]) + +fi.reinitialize(wind_speeds=wind_speeds, wind_directions=wind_directions) +yaw_angles = np.zeros([3, 2]) # 9 wind directions/ speeds, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) -turbine_powers = fi.get_turbine_powers()/1000. -print('The turbine power matrix should be of dimensions 1 WD X 3 WS X 2 Turbines') +turbine_powers = fi.get_turbine_powers() / 1000.0 +print("The turbine power matrix should be of dimensions 9 FINDEX X 2 Turbines") print(turbine_powers) -print("Shape: ",turbine_powers.shape) +print("Shape: ", turbine_powers.shape) # Multiple wind speeds and multiple wind directions -print('\n========================= Multiple Wind Directions and Multiple Wind Speeds ============') +print("\n========================= Multiple Wind Directions and Multiple Wind Speeds ============") + +# In the case want to consider each combination this needs to be broadcast out in advance + +wind_speeds = np.tile([8.0, 9.0, 10.0], 3) +wind_directions = np.repeat([260.0, 270.0, 280.0], 3) + -wind_directions = np.array([260., 270., 280.]) -wind_speeds = np.array([8.0, 9.0, 10.0]) fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) -yaw_angles = np.zeros([1,3,2]) # 1 wind direction, 3 wind speeds, 2 turbines +yaw_angles = np.zeros([9, 2]) # 9 wind directions/ speeds, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) -turbine_powers = fi.get_turbine_powers()/1000. -print('The turbine power matrix should be of dimensions 3 WD X 3 WS X 2 Turbines') +turbine_powers = fi.get_turbine_powers() / 1000.0 +print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") print(turbine_powers) -print("Shape: ",turbine_powers.shape) +print("Shape: ", turbine_powers.shape) diff --git a/examples/04_sweep_wind_directions.py b/examples/04_sweep_wind_directions.py index 384adad8c..314050e47 100644 --- a/examples/04_sweep_wind_directions.py +++ b/examples/04_sweep_wind_directions.py @@ -22,10 +22,8 @@ """ 04_sweep_wind_directions -This example demonstrates vectorization of wind direction. -A vector of wind directions is passed to the intialize function -and the powers of the two simulated turbines is computed for all -wind directions in one call +This example sweeps across wind directions while holding wind speed +constant via an array of constant wind speed The power of both turbines for each wind direction is then plotted @@ -33,7 +31,6 @@ # Instantiate FLORIS using either the GCH or CC model fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 -# fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model # Define a two turbine farm D = 126. @@ -43,15 +40,17 @@ # Sweep wind speeds but keep wind direction fixed wd_array = np.arange(250,291,1.) -fi.reinitialize(wind_directions=wd_array) +ws_array = 8.0 * np.ones_like(wd_array) +fi.reinitialize(wind_directions=wd_array, wind_speeds=ws_array) # Define a matrix of yaw angles to be all 0 -# Note that yaw angles is now specified as a matrix whose dimesions are +# Note that yaw angles is now specified as a matrix whose dimensions are # wd/ws/turbine num_wd = len(wd_array) # Number of wind directions -num_ws = 1 # Number of wind speeds +num_ws = len(ws_array) # Number of wind speeds +n_findex = num_wd # Could be either num_wd or num_ws num_turbine = len(layout_x) # Number of turbines -yaw_angles = np.zeros((num_wd, num_ws, num_turbine)) +yaw_angles = np.zeros((n_findex, num_turbine)) # Calculate fi.calculate_wake(yaw_angles=yaw_angles) @@ -60,8 +59,8 @@ turbine_powers = fi.get_turbine_powers() / 1E3 # In kW # Pull out the power values per turbine -pow_t0 = turbine_powers[:,:,0].flatten() -pow_t1 = turbine_powers[:,:,1].flatten() +pow_t0 = turbine_powers[:,0].flatten() +pow_t1 = turbine_powers[:,1].flatten() # Plot fig, ax = plt.subplots() diff --git a/examples/05_sweep_wind_speeds.py b/examples/05_sweep_wind_speeds.py index 0b5f83b32..676d2a63d 100644 --- a/examples/05_sweep_wind_speeds.py +++ b/examples/05_sweep_wind_speeds.py @@ -22,10 +22,7 @@ """ 05_sweep_wind_speeds -This example demonstrates vectorization of wind speed. -A vector of wind speeds is passed to the intialize function -and the powers of the two simulated turbines is computed for all -wind speeds in one call +This example sweeps wind speeds while holding wind direction constant The power of both turbines for each wind speed is then plotted @@ -34,7 +31,6 @@ # Instantiate FLORIS using either the GCH or CC model fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 -# fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model # Define a two turbine farm D = 126. @@ -44,15 +40,17 @@ # Sweep wind speeds but keep wind direction fixed ws_array = np.arange(5,25,0.5) -fi.reinitialize(wind_speeds=ws_array) +wd_array = 270.0 * np.ones_like(ws_array) +fi.reinitialize(wind_directions=wd_array,wind_speeds=ws_array) # Define a matrix of yaw angles to be all 0 -# Note that yaw angles is now specified as a matrix whose dimesions are +# Note that yaw angles is now specified as a matrix whose dimensions are # wd/ws/turbine -num_wd = 1 +num_wd = len(wd_array) num_ws = len(ws_array) +n_findex = num_wd # Could be either num_wd or num_ws num_turbine = len(layout_x) -yaw_angles = np.zeros((num_wd, num_ws, num_turbine)) +yaw_angles = np.zeros((n_findex, num_turbine)) # Calculate fi.calculate_wake(yaw_angles=yaw_angles) @@ -61,8 +59,8 @@ turbine_powers = fi.get_turbine_powers() / 1E3 # In kW # Pull out the power values per turbine -pow_t0 = turbine_powers[:,:,0].flatten() -pow_t1 = turbine_powers[:,:,1].flatten() +pow_t0 = turbine_powers[:,0].flatten() +pow_t1 = turbine_powers[:,1].flatten() # Plot fig, ax = plt.subplots() diff --git a/examples/06_sweep_wind_conditions.py b/examples/06_sweep_wind_conditions.py index a9ab80d5f..b80c88550 100644 --- a/examples/06_sweep_wind_conditions.py +++ b/examples/06_sweep_wind_conditions.py @@ -20,12 +20,11 @@ """ -06_sweep_wind_conditions - -This example demonstrates vectorization of wind speed and wind direction. -When the intialize function is passed an array of wind speeds and an -array of wind directions it automatically expands the vectors to compute -the result of all combinations. +This example demonstrates the vectorized wake calculation for +a set of wind speeds and directions combinations. When given +a list of conditions, FLORIS leverages features of the CPU +to perform chunks of the computations at once rather than +looping over each condition. This calculation is performed for a single-row 5 turbine farm. In addition to plotting the powers of the individual turbines, an energy by turbine @@ -35,52 +34,67 @@ """ # Instantiate FLORIS using either the GCH or CC model -fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 +fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 # fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model # Define a 5 turbine farm -D = 126. -layout_x = np.array([0, D*6, D*12, D*18,D*24]) +D = 126.0 +layout_x = np.array([0, D*6, D*12, D*18, D*24]) layout_y = [0, 0, 0, 0, 0] fi.reinitialize(layout_x=layout_x, layout_y=layout_y) -# Define a ws and wd to sweep -# Note that all combinations will be computed -ws_array = np.arange(6, 9, 1.) -wd_array = np.arange(250,295,1.) +# In this case we want to check a grid of wind speed and direction combinations +wind_speeds_to_expand = np.arange(6, 9, 1.0) +wind_directions_to_expand = np.arange(250, 295, 1.0) +num_unique_ws = len(wind_speeds_to_expand) +num_unique_wd = len(wind_directions_to_expand) + +# Create grids to make combinations of ws/wd +wind_speeds_grid, wind_directions_grid = np.meshgrid( + wind_speeds_to_expand, + wind_directions_to_expand +) + +# Flatten the grids back to 1D arrays +ws_array = wind_speeds_grid.flatten() +wd_array = wind_directions_grid.flatten() + +# Now reinitialize FLORIS fi.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) # Define a matrix of yaw angles to be all 0 -# Note that yaw angles is now specified as a matrix whose dimesions are -# wd/ws/turbine +# Note that yaw angles is now specified as a matrix whose dimensions are +# (findex, turbine) num_wd = len(wd_array) num_ws = len(ws_array) +n_findex = num_wd # Could be either num_wd or num_ws num_turbine = len(layout_x) -yaw_angles = np.zeros((num_wd, num_ws, num_turbine)) +yaw_angles = np.zeros((n_findex, num_turbine)) # Calculate fi.calculate_wake(yaw_angles=yaw_angles) # Collect the turbine powers -turbine_powers = fi.get_turbine_powers() / 1E3 # In kW +turbine_powers = fi.get_turbine_powers() / 1e3 # In kW # Show results by ws and wd -fig, axarr = plt.subplots(num_ws, 1, sharex=True,sharey=True,figsize=(6,10)) -for ws_idx, ws in enumerate(ws_array): +fig, axarr = plt.subplots(num_unique_ws, 1, sharex=True, sharey=True, figsize=(6, 10)) +for ws_idx, ws in enumerate(wind_speeds_to_expand): + indices = ws_array == ws ax = axarr[ws_idx] for t in range(num_turbine): - ax.plot(wd_array, turbine_powers[:,ws_idx,t].flatten(),label='T%d' % t) + ax.plot(wd_array[indices], turbine_powers[indices, t].flatten(), label="T%d" % t) ax.legend() ax.grid(True) - ax.set_title('Wind Speed = %.1f' % ws) - ax.set_ylabel('Power (kW)') -ax.set_xlabel('Wind Direction (deg)') + ax.set_title("Wind Speed = %.1f" % ws) + ax.set_ylabel("Power (kW)") +ax.set_xlabel("Wind Direction (deg)") # Sum across wind speeds and directions to show energy produced by turbine as bar plot -# Sum over wind direction (0-axis) and wind speed (1-axis) -energy_by_turbine = np.sum(turbine_powers, axis=(0,1)) +# Sum over wind directions and speeds +energy_by_turbine = np.sum(turbine_powers, axis=0) fig, ax = plt.subplots() -ax.bar(['T%d' % t for t in range(num_turbine)],energy_by_turbine) -ax.set_title('Energy Produced by Turbine') +ax.bar(["T%d" % t for t in range(num_turbine)], energy_by_turbine) +ax.set_title("Energy Produced by Turbine") plt.show() diff --git a/examples/09_compare_farm_power_with_neighbor.py b/examples/09_compare_farm_power_with_neighbor.py index 714e677a8..d7612a2c3 100644 --- a/examples/09_compare_farm_power_with_neighbor.py +++ b/examples/09_compare_farm_power_with_neighbor.py @@ -42,7 +42,8 @@ # Define a simple wind rose with just 1 wind speed wd_array = np.arange(0,360,4.) -fi.reinitialize(wind_directions=wd_array, wind_speeds=[8.]) +ws_array = 8.0 * np.ones_like(wd_array) +fi.reinitialize(wind_directions=wd_array, wind_speeds=ws_array) # Calculate diff --git a/examples/18_check_turbine.py b/examples/18_check_turbine.py index b03cc6e9e..5c061bf5b 100644 --- a/examples/18_check_turbine.py +++ b/examples/18_check_turbine.py @@ -26,6 +26,7 @@ curve and power loss to yaw are reasonable and reasonably smooth """ ws_array = np.arange(0.1,30,0.2) +wd_array = 270.0 * np.ones_like(ws_array) yaw_angles = np.linspace(-30,30,60) wind_speed_to_test_yaw = 11 @@ -36,7 +37,7 @@ fi.reinitialize(layout_x=[0], layout_y=[0]) # Apply wind speeds -fi.reinitialize(wind_speeds=ws_array) +fi.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) # Get a list of available turbine models provided through FLORIS, and remove # multi-dimensional Cp/Ct turbine definitions as they require different handling @@ -85,7 +86,7 @@ # POWER CURVE ax = axarr[0] - fi.reinitialize(wind_speeds=ws_array) + fi.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) fi.calculate_wake() turbine_powers = fi.get_turbine_powers().flatten() / 1e3 if density == 1.225: @@ -100,10 +101,10 @@ # Power loss to yaw, try a range of yaw angles ax = axarr[1] - fi.reinitialize(wind_speeds=[wind_speed_to_test_yaw]) + fi.reinitialize(wind_speeds=[wind_speed_to_test_yaw], wind_directions=[270.0]) yaw_result = [] for yaw in yaw_angles: - fi.calculate_wake(yaw_angles=np.array([[[yaw]]])) + fi.calculate_wake(yaw_angles=np.array([[yaw]])) turbine_powers = fi.get_turbine_powers().flatten() / 1e3 yaw_result.append(turbine_powers[0]) if density == 1.225: diff --git a/examples/21_demo_time_series.py b/examples/21_demo_time_series.py index 75419c198..1b796bcec 100644 --- a/examples/21_demo_time_series.py +++ b/examples/21_demo_time_series.py @@ -20,22 +20,8 @@ """ -This example demonstrates running FLORIS in time series mode. - -Typically when an array of wind directions and wind speeds are passed in FLORIS, -it is assumed these are defining a grid of wd/ws points to consider, as in a wind rose. -All combinations of wind direction and wind speed are therefore computed, and resulting -matrices, for example of turbine power are returned with martrices whose dimensions are -wind direction, wind speed and turbine number. - -In time series mode, specified by setting the time_series flag of the FLORIS interface to True -each wd/ws pair is assumed to constitute a single point in time and each pair is computed. -Results are returned still as a 3 dimensional matrix, however the index of the (wd/ws) pair -is provided in the first dimension, the second dimension is fixed at 1, and the thrid is -turbine number again for consistency. - -Note by not specifying yaw, the assumption is that all turbines are always pointing into the -current wind direction with no offset. +This example demonstrates running FLORIS given a time series +of wind direction and wind speed combinations. """ # Initialize FLORIS to simple 4 turbine farm @@ -56,7 +42,7 @@ # Now intiialize FLORIS object to this history using time_series flag -fi.reinitialize(wind_directions=wd, wind_speeds=ws, time_series=True) +fi.reinitialize(wind_directions=wd, wind_speeds=ws) # Collect the powers fi.calculate_wake() @@ -84,7 +70,7 @@ ax = axarr[2] for t in range(num_turbines): - ax.plot(time,turbine_powers[:, 0, t], 'o-', label='Turbine %d' % t) + ax.plot(time,turbine_powers[:, t], 'o-', label='Turbine %d' % t) ax.legend() ax.set_ylabel('Turbine Power (kW)') ax.set_xlabel('Time (minutes)') diff --git a/examples/22_get_wind_speed_at_turbines.py b/examples/22_get_wind_speed_at_turbines.py index 7887357e0..2dc757137 100644 --- a/examples/22_get_wind_speed_at_turbines.py +++ b/examples/22_get_wind_speed_at_turbines.py @@ -32,16 +32,16 @@ # Collect the wind speed at all the turbine points u_points = fi.floris.flow_field.u -print('U points is 1 wd x 1 ws x 4 turbines x 3 x 3 points (turbine_grid_points=3)') +print('U points is 1 findex x 4 turbines x 3 x 3 points (turbine_grid_points=3)') print(u_points.shape) -print('turbine_average_velocities is 1 wd x 1 ws x 4 turbines') +print('turbine_average_velocities is 1 findex x 4 turbines') print(fi.turbine_average_velocities) # Show that one is equivalent to the other following averaging print( 'turbine_average_velocities is determined by taking the cube root of mean ' - 'of the cubed value across the points' - f'turbine_average_velocities: {fi.turbine_average_velocities}' - f'Recomputed: {np.cbrt(np.mean(u_points**3, axis=(3,4)))}' + 'of the cubed value across the points ' ) +print(f'turbine_average_velocities: {fi.turbine_average_velocities}') +print(f'Recomputed: {np.cbrt(np.mean(u_points**3, axis=(2,3)))}') diff --git a/examples/24_floating_turbine_models.py b/examples/24_floating_turbine_models.py index 364dca157..18df4a631 100644 --- a/examples/24_floating_turbine_models.py +++ b/examples/24_floating_turbine_models.py @@ -52,9 +52,10 @@ # Calculate across wind speeds ws_array = np.arange(3., 25., 1.) -fi_fixed.reinitialize(wind_speeds=ws_array) -fi_floating.reinitialize(wind_speeds=ws_array) -fi_floating_defined_floating.reinitialize(wind_speeds=ws_array) +wd_array = 270.0 * np.ones_like(ws_array) +fi_fixed.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) +fi_floating.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) +fi_floating_defined_floating.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) fi_fixed.calculate_wake() fi_floating.calculate_wake() diff --git a/examples/28_extract_wind_speed_at_points.py b/examples/28_extract_wind_speed_at_points.py index 9ef59b5b1..781103e9e 100644 --- a/examples/28_extract_wind_speed_at_points.py +++ b/examples/28_extract_wind_speed_at_points.py @@ -52,7 +52,8 @@ # Set the wind direction to run 360 degrees wd_array = np.arange(0, 360, 1) -fi.reinitialize(wind_directions=wd_array) +ws_array = 8.0 * np.ones_like(wd_array) +fi.reinitialize(wind_directions=wd_array, wind_speeds=ws_array) # Simulate a met mast in between the turbines if met_mast_option == 0: diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index 9ef78ef9a..cdd3b8fee 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -293,7 +293,6 @@ def solve_for_points(self, x, y, z): turbine_coordinates=self.farm.coordinates, turbine_diameters=self.farm.rotor_diameters, wind_directions=self.flow_field.wind_directions, - wind_speeds=self.flow_field.wind_speeds, grid_resolution=1, time_series=self.flow_field.time_series, x_center_of_rotation=self.grid.x_center_of_rotation, diff --git a/floris/simulation/grid.py b/floris/simulation/grid.py index afed395d5..9892b8643 100644 --- a/floris/simulation/grid.py +++ b/floris/simulation/grid.py @@ -679,6 +679,6 @@ def set_grid(self) -> None: x_center_of_rotation=self.x_center_of_rotation, y_center_of_rotation=self.y_center_of_rotation ) - self.x_sorted = x[:,:,:,None,None] - self.y_sorted = y[:,:,:,None,None] - self.z_sorted = z[:,:,:,None,None] + self.x_sorted = x[:,:,None,None] + self.y_sorted = y[:,:,None,None] + self.z_sorted = z[:,:,None,None] diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index 10b87a443..911a668ad 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -284,7 +284,7 @@ def full_flow_sequential_solver( turbine_grid_farm.construct_turbine_ref_tilt_cp_cts() turbine_grid_farm.construct_turbine_tilt_interps() turbine_grid_farm.construct_turbine_correct_cp_ct_for_tilt() - turbine_grid_farm.set_tilt_to_ref_tilt(flow_field.n_wind_directions, flow_field.n_wind_speeds) + turbine_grid_farm.set_tilt_to_ref_tilt(flow_field.n_findex) turbine_grid = TurbineGrid( turbine_coordinates=turbine_grid_farm.coordinates, diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index a466ad583..d54b2794a 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -134,8 +134,7 @@ def calculate_wake( if yaw_angles is None: yaw_angles = np.zeros( ( - self.floris.flow_field.n_wind_directions, - self.floris.flow_field.n_wind_speeds, + self.floris.flow_field.n_findex, self.floris.farm.n_turbines ) ) @@ -146,8 +145,7 @@ def calculate_wake( # self.floris.farm.tilt_angles = tilt_angles # else: # self.floris.farm.set_tilt_to_ref_tilt( - # self.floris.flow_field.n_wind_directions, - # self.floris.flow_field.n_wind_speeds + # self.floris.flow_field.n_findex, # ) # Initialize solution space @@ -175,8 +173,7 @@ def calculate_no_wake( if yaw_angles is None: yaw_angles = np.zeros( ( - self.floris.flow_field.n_wind_directions, - self.floris.flow_field.n_wind_speeds, + self.floris.flow_field.n_findex, self.floris.farm.n_turbines ) ) @@ -204,7 +201,6 @@ def reinitialize( turbine_type: list | None = None, turbine_library_path: str | Path | None = None, solver_settings: dict | None = None, - time_series: bool = False, heterogenous_inflow_config=None, ): # Export the floris object recursively as a dictionary @@ -242,8 +238,6 @@ def reinitialize( if turbine_library_path is not None: farm_dict["turbine_library_path"] = turbine_library_path - flow_field_dict["time_series"] = time_series - ## Wake # if wake is not None: # self.floris.wake = wake @@ -733,8 +727,8 @@ def get_farm_power( turbines to 0.0. The array of turbine powers from floris is multiplied with this array in the calculation of the objective function. If None, this is an array with all values - 1.0 and with shape equal to (n_wind_directions, n_wind_speeds, - n_turbines). Defaults to None. + 1.0 and with shape equal to (n_findex, n_turbines). + Defaults to None. use_turbulence_correction: (bool, optional): When *True* uses a turbulence parameter to adjust power output calculations. Defaults to *False*. @@ -760,8 +754,7 @@ def get_farm_power( # Default to equal weighing of all turbines when turbine_weights is None turbine_weights = np.ones( ( - self.floris.flow_field.n_wind_directions, - self.floris.flow_field.n_wind_speeds, + self.floris.flow_field.n_findex, self.floris.farm.n_turbines ) ) @@ -770,8 +763,7 @@ def get_farm_power( turbine_weights = np.tile( turbine_weights, ( - self.floris.flow_field.n_wind_directions, - self.floris.flow_field.n_wind_speeds, + self.floris.flow_field.n_findex, 1 ) ) @@ -780,7 +772,7 @@ def get_farm_power( turbine_powers = self.get_turbine_powers() turbine_powers = np.multiply(turbine_weights, turbine_powers) - return np.sum(turbine_powers, axis=2) + return np.sum(turbine_powers, axis=1) def get_farm_AEP( self, @@ -796,8 +788,8 @@ def get_farm_AEP( direction, frequency of occurrence, and yaw offset. Args: - freq (NDArrayFloat): NumPy array with shape (n_wind_directions, - n_wind_speeds) with the frequencies of each wind direction and + freq (NDArrayFloat): NumPy array with shape (n_findex) + with the frequencies of each wind direction and wind speed combination. These frequencies should typically sum up to 1.0 and are used to weigh the wind farm power for every condition in calculating the wind farm's AEP. @@ -825,7 +817,7 @@ def get_farm_AEP( turbines to 0.0. The array of turbine powers from floris is multiplied with this array in the calculation of the objective function. If None, this is an array with all values - 1.0 and with shape equal to (n_wind_directions, n_wind_speeds, + 1.0 and with shape equal to (n_findex, n_turbines). Defaults to None. no_wake: (bool, optional): When *True* updates the turbine quantities without calculating the wake or adding the wake to @@ -839,14 +831,9 @@ def get_farm_AEP( """ # Verify dimensions of the variable "freq" - if not ( - (np.shape(freq)[0] == self.floris.flow_field.n_wind_directions) - & (np.shape(freq)[1] == self.floris.flow_field.n_wind_speeds) - & (len(np.shape(freq)) == 2) - ): + if not (np.shape(freq)[0] == self.floris.flow_field.n_findex & len(np.shape(freq)) == 1): raise UserWarning( - "'freq' should be a two-dimensional array with dimensions " - " (n_wind_directions, n_wind_speeds)." + "'freq' should be a one-dimensional array with dimensions (n_findex)." ) # Check if frequency vector sums to 1.0. If not, raise a warning @@ -859,7 +846,8 @@ def get_farm_AEP( # Copy the full wind speed array from the floris object and initialize # the the farm_power variable as an empty array. wind_speeds = np.array(self.floris.flow_field.wind_speeds, copy=True) - farm_power = np.zeros((self.floris.flow_field.n_wind_directions, len(wind_speeds))) + wind_directions = np.array(self.floris.flow_field.wind_directions, copy=True) + farm_power = np.zeros(self.floris.flow_field.n_findex) # Determine which wind speeds we must evaluate in floris conditions_to_evaluate = wind_speeds >= cut_in_wind_speed @@ -869,15 +857,17 @@ def get_farm_AEP( # Evaluate the conditions in floris if np.any(conditions_to_evaluate): wind_speeds_subset = wind_speeds[conditions_to_evaluate] + wind_directions_subset = wind_directions[conditions_to_evaluate] yaw_angles_subset = None if yaw_angles is not None: - yaw_angles_subset = yaw_angles[:, conditions_to_evaluate] - self.reinitialize(wind_speeds=wind_speeds_subset) + yaw_angles_subset = yaw_angles[conditions_to_evaluate] + self.reinitialize(wind_speeds=wind_speeds_subset, + wind_directions = wind_directions_subset) if no_wake: self.calculate_no_wake(yaw_angles=yaw_angles_subset) else: self.calculate_wake(yaw_angles=yaw_angles_subset) - farm_power[:, conditions_to_evaluate] = ( + farm_power[conditions_to_evaluate] = ( self.get_farm_power(turbine_weights=turbine_weights) ) @@ -885,93 +875,7 @@ def get_farm_AEP( aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) # Reset the FLORIS object to the full wind speed array - self.reinitialize(wind_speeds=wind_speeds) - - return aep - - def get_farm_AEP_wind_rose_class( - self, - wind_rose, - cut_in_wind_speed=0.001, - cut_out_wind_speed=None, - yaw_angles=None, - turbine_weights=None, - no_wake=False, - ) -> float: - """ - Estimate annual energy production (AEP) for distributions of wind speed, wind - direction, frequency of occurrence, and yaw offset. - - Args: - wind_rose (wind_rose): An object of the wind rose class - cut_in_wind_speed (float, optional): Wind speed in m/s below which - any calculations are ignored and the wind farm is known to - produce 0.0 W of power. Note that to prevent problems with the - wake models at negative / zero wind speeds, this variable must - always have a positive value. Defaults to 0.001 [m/s]. - cut_out_wind_speed (float, optional): Wind speed above which the - wind farm is known to produce 0.0 W of power. If None is - specified, will assume that the wind farm does not cut out - at high wind speeds. Defaults to None. - yaw_angles (NDArrayFloat | list[float] | None, optional): - The relative turbine yaw angles in degrees. If None is - specified, will assume that the turbine yaw angles are all - zero degrees for all conditions. Defaults to None. - turbine_weights (NDArrayFloat | list[float] | None, optional): - weighing terms that allow the user to emphasize power at - particular turbines and/or completely ignore the power - from other turbines. This is useful when, for example, you are - modeling multiple wind farms in a single floris object. If you - only want to calculate the power production for one of those - farms and include the wake effects of the neighboring farms, - you can set the turbine_weights for the neighboring farms' - turbines to 0.0. The array of turbine powers from floris - is multiplied with this array in the calculation of the - objective function. If None, this is an array with all values - 1.0 and with shape equal to (n_wind_directions, n_wind_speeds, - n_turbines). Defaults to None. - no_wake: (bool, optional): When *True* updates the turbine - quantities without calculating the wake or adding the wake to - the flow field. This can be useful when quantifying the loss - in AEP due to wakes. Defaults to *False*. - - Returns: - float: - The Annual Energy Production (AEP) for the wind farm in - watt-hours. - """ - - # Hold the starting values of wind speed and direction - wind_speeds = np.array(self.floris.flow_field.wind_speeds, copy=True) - wind_directions = np.array(self.floris.flow_field.wind_directions, copy=True) - - # Now set FLORIS wind speed and wind direction - # over to those values in the wind rose class - wind_speeds_wind_rose = wind_rose.df.ws.unique() - wind_directions_wind_rose = wind_rose.df.wd.unique() - self.reinitialize( - wind_speeds=wind_speeds_wind_rose, - wind_directions=wind_directions_wind_rose - ) - - # Build the frequency matrix from wind rose - freq = wind_rose.df.set_index(['wd','ws']).unstack().values - - # Now compute aep - aep = self.get_farm_AEP( - freq, - cut_in_wind_speed=cut_in_wind_speed, - cut_out_wind_speed=cut_out_wind_speed, - yaw_angles=yaw_angles, - turbine_weights=turbine_weights, - no_wake=no_wake) - - - # Reset the FLORIS object to the original wind speed and directions - self.reinitialize( - wind_speeds=wind_speeds, - wind_directions=wind_directions - ) + self.reinitialize(wind_speeds=wind_speeds, wind_directions=wind_directions) return aep @@ -986,7 +890,7 @@ def sample_flow_at_points(self, x: NDArrayFloat, y: NDArrayFloat, z: NDArrayFloa Returns: 3DArrayFloat containing wind speed with dimensions - (# of wind directions, # of wind speeds, # of sample points) + (# of findex, # of sample points) """ # Check that x, y, z are all the same length diff --git a/tests/floris_interface_test.py b/tests/floris_interface_test.py index 55578ebde..0196af5fc 100644 --- a/tests/floris_interface_test.py +++ b/tests/floris_interface_test.py @@ -1,4 +1,3 @@ - from pathlib import Path import numpy as np @@ -16,28 +15,17 @@ def test_read_yaml(): def test_calculate_wake(): - """ In FLORIS v3.2, running calculate_wake twice incorrectly set the yaw angles when the first time has non-zero yaw settings but the second run had all-zero yaw settings. The test below asserts that the yaw angles are correctly set in subsequent calls to calculate_wake. """ fi = FlorisInterface(configuration=YAML_INPUT) - yaw_angles = 20 * np.ones( - ( - fi.floris.flow_field.n_findex, - fi.floris.farm.n_turbines - ) - ) + yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) fi.calculate_wake(yaw_angles=yaw_angles) assert fi.floris.farm.yaw_angles == yaw_angles - yaw_angles = np.zeros( - ( - fi.floris.flow_field.n_findex, - fi.floris.farm.n_turbines - ) - ) + yaw_angles = np.zeros((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) fi.calculate_wake(yaw_angles=yaw_angles) assert fi.floris.farm.yaw_angles == yaw_angles @@ -49,20 +37,166 @@ def test_calculate_no_wake(): asserts that the yaw angles are correctly set in subsequent calls to calculate_no_wake. """ fi = FlorisInterface(configuration=YAML_INPUT) - yaw_angles = 20 * np.ones( - ( - fi.floris.flow_field.n_findex, - fi.floris.farm.n_turbines - ) - ) + yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) fi.calculate_no_wake(yaw_angles=yaw_angles) assert fi.floris.farm.yaw_angles == yaw_angles - yaw_angles = np.zeros( - ( - fi.floris.flow_field.n_findex, - fi.floris.farm.n_turbines - ) - ) + yaw_angles = np.zeros((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) fi.calculate_no_wake(yaw_angles=yaw_angles) assert fi.floris.farm.yaw_angles == yaw_angles + + +def test_get_turbine_powers(): + # Get turbine powers should return n_findex x n_turbine powers + # Apply the same wind speed and direction multiple times and confirm all equal + + fi = FlorisInterface(configuration=YAML_INPUT) + + wind_speeds = np.array([8.0, 8.0, 8.0]) + wind_directions = np.array([270.0, 270.0, 270.0]) + n_findex = len(wind_directions) + + layout_x = np.array([0, 0]) + layout_y = np.array([0, 1000]) + n_turbines = len(layout_x) + + fi.reinitialize( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + layout_x=layout_x, + layout_y=layout_y, + ) + + fi.calculate_wake() + + turbine_powers = fi.get_turbine_powers() + + assert turbine_powers.shape[0] == n_findex + assert turbine_powers.shape[1] == n_turbines + assert turbine_powers[0, 0] == turbine_powers[1, 0] + + +def test_get_farm_power(): + fi = FlorisInterface(configuration=YAML_INPUT) + + wind_speeds = np.array([8.0, 8.0, 8.0]) + wind_directions = np.array([270.0, 270.0, 270.0]) + n_findex = len(wind_directions) + + layout_x = np.array([0, 0]) + layout_y = np.array([0, 1000]) + # n_turbines = len(layout_x) + + fi.reinitialize( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + layout_x=layout_x, + layout_y=layout_y, + ) + + fi.calculate_wake() + + turbine_powers = fi.get_turbine_powers() + farm_powers = fi.get_farm_power() + + assert farm_powers.shape[0] == n_findex + + # Assert farm power is the same as summing turbine powers + # over the turbine axis + farm_power_from_turbine = turbine_powers.sum(axis=1) + np.testing.assert_almost_equal(farm_power_from_turbine, farm_powers) + + # Test using weights to disable the second turbine + turbine_weights = np.array([1.0, 0.0]) + farm_powers = fi.get_farm_power(turbine_weights=turbine_weights) + + # Assert farm power is now equal to the 0th turbine since 1st is + # disabled + farm_power_from_turbine = turbine_powers[:, 0] + np.testing.assert_almost_equal(farm_power_from_turbine, farm_powers) + + # Finally, test using weights only disable the 1 turbine on the final + # findex values + turbine_weights = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 0.0]]) + + farm_powers = fi.get_farm_power(turbine_weights=turbine_weights) + turbine_powers[-1, 1] = 0 + farm_power_from_turbine = turbine_powers.sum(axis=1) + np.testing.assert_almost_equal(farm_power_from_turbine, farm_powers) + + +def test_get_farm_aep(): + fi = FlorisInterface(configuration=YAML_INPUT) + + wind_speeds = np.array([8.0, 8.0, 8.0]) + wind_directions = np.array([270.0, 270.0, 270.0]) + n_findex = len(wind_directions) + + layout_x = np.array([0, 0]) + layout_y = np.array([0, 1000]) + # n_turbines = len(layout_x) + + fi.reinitialize( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + layout_x=layout_x, + layout_y=layout_y, + ) + + fi.calculate_wake() + + farm_powers = fi.get_farm_power() + + # Start with uniform frequency + freq = np.ones(n_findex) + freq = freq / np.sum(freq) + + farm_aep = fi.get_farm_AEP(freq=freq) + + aep = np.sum(np.multiply(freq, farm_powers) * 365 * 24) + + # In this case farm_aep should match farm powers + np.testing.assert_allclose(farm_aep, aep) + + +def test_get_farm_aep_with_conditions(): + fi = FlorisInterface(configuration=YAML_INPUT) + + wind_speeds = np.array([5.0, 8.0, 8.0, 8.0, 20.0]) + wind_directions = np.array([270.0, 270.0, 270.0, 270.0, 270.0]) + n_findex = len(wind_directions) + + layout_x = np.array([0, 0]) + layout_y = np.array([0, 1000]) + # n_turbines = len(layout_x) + + fi.reinitialize( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + layout_x=layout_x, + layout_y=layout_y, + ) + + fi.calculate_wake() + + farm_powers = fi.get_farm_power() + + # Start with uniform frequency + freq = np.ones(n_findex) + freq = freq / np.sum(freq) + + # Get farm AEP with conditions on minimun and max wind speed + # which exclude the first and last findex + farm_aep = fi.get_farm_AEP(freq=freq, cut_in_wind_speed=6.0, cut_out_wind_speed=15.0) + + # In this case the aep should be computed assuming 0 power + # for the 0th and last findex + farm_powers[0] = 0 + farm_powers[-1] = 0 + aep = np.sum(np.multiply(freq, farm_powers) * 365 * 24) + + # In this case farm_aep should match farm powers + np.testing.assert_allclose(farm_aep, aep) + + #Confirm n_findex reset after the operation + assert n_findex == fi.floris.flow_field.n_findex From e5705438b31c0f7e5eafdce0d36059341f7e6cc7 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Wed, 13 Dec 2023 19:01:52 -0600 Subject: [PATCH 14/78] Update visualization methods and examples --- examples/02_visualizations.py | 14 +-- examples/03_making_adjustments.py | 19 ++- examples/16b_heterogeneity_multiple_ws_wd.py | 24 ++-- ...rical_gauss_velocity_deficit_parameters.py | 2 +- ...7_empirical_gauss_deflection_parameters.py | 5 +- examples/32_specify_turbine_power_curve.py | 1 - floris/simulation/floris.py | 4 +- floris/simulation/grid.py | 18 +-- floris/simulation/solver.py | 117 ++++++------------ floris/tools/floris_interface.py | 18 +-- floris/tools/visualization.py | 34 +++-- 11 files changed, 96 insertions(+), 160 deletions(-) diff --git a/examples/02_visualizations.py b/examples/02_visualizations.py index 4b65f8e9d..4b9b0398c 100644 --- a/examples/02_visualizations.py +++ b/examples/02_visualizations.py @@ -55,20 +55,20 @@ x_resolution=200, y_resolution=100, height=90.0, - yaw_angles=np.array([[[25.,0.,0.]]]), + yaw_angles=np.array([[25.,0.,0.]]), ) y_plane = fi.calculate_y_plane( x_resolution=200, z_resolution=100, crossstream_dist=0.0, - yaw_angles=np.array([[[25.,0.,0.]]]), + yaw_angles=np.array([[25.,0.,0.]]), ) cross_plane = fi.calculate_cross_plane( y_resolution=100, z_resolution=100, downstream_dist=630.0, - yaw_angles=np.array([[[25.,0.,0.]]]), + yaw_angles=np.array([[25.,0.,0.]]), ) # Create the plots @@ -99,7 +99,7 @@ fi, x_resolution=20, y_resolution=10, - yaw_angles=np.array([[[25.,0.,0.]]]), + yaw_angles=np.array([[25.,0.,0.]]), ) fig, ax = plt.subplots() @@ -120,8 +120,7 @@ # Plot the values at each rotor fig, axes, _ , _ = wakeviz.plot_rotor_values( fi.floris.flow_field.u, - wd_index=0, - ws_index=0, + findex=0, n_rows=1, n_cols=3, return_fig_objects=True @@ -149,8 +148,7 @@ # Plot the values at each rotor fig, axes, _ , _ = wakeviz.plot_rotor_values( fi.floris.flow_field.u, - wd_index=0, - ws_index=0, + findex=0, n_rows=1, n_cols=3, return_fig_objects=True diff --git a/examples/03_making_adjustments.py b/examples/03_making_adjustments.py index 750288d5a..5e0cb4520 100644 --- a/examples/03_making_adjustments.py +++ b/examples/03_making_adjustments.py @@ -69,12 +69,11 @@ max_speed=MAX_WS ) - # # Change the farm layout N = 3 # Number of turbines per row and per column X, Y = np.meshgrid( - 5.0 * fi.floris.farm.rotor_diameters[0][0][0] * np.arange(0, N, 1), - 5.0 * fi.floris.farm.rotor_diameters[0][0][0] * np.arange(0, N, 1), + 5.0 * fi.floris.farm.rotor_diameters[0,0] * np.arange(0, N, 1), + 5.0 * fi.floris.farm.rotor_diameters[0,0] * np.arange(0, N, 1), ) fi.reinitialize(layout_x=X.flatten(), layout_y=Y.flatten(), wind_directions=[270.0]) horizontal_plane = fi.calculate_horizontal_plane(height=90.0) @@ -89,17 +88,17 @@ wakeviz.plot_turbines_with_fi(fi, axarr[3]) # Change the yaw angles and configure the plot differently -yaw_angles = np.zeros((1, 1, N * N)) +yaw_angles = np.zeros((1, N * N)) ## First row -yaw_angles[:,:,0] = 30.0 -yaw_angles[:,:,3] = -30.0 -yaw_angles[:,:,6] = 30.0 +yaw_angles[:,0] = 30.0 +yaw_angles[:,3] = -30.0 +yaw_angles[:,6] = 30.0 ## Second row -yaw_angles[:,:,1] = -30.0 -yaw_angles[:,:,4] = 30.0 -yaw_angles[:,:,7] = -30.0 +yaw_angles[:,1] = -30.0 +yaw_angles[:,4] = 30.0 +yaw_angles[:,7] = -30.0 horizontal_plane = fi.calculate_horizontal_plane(yaw_angles=yaw_angles, height=90.0) wakeviz.visualize_cut_plane( diff --git a/examples/16b_heterogeneity_multiple_ws_wd.py b/examples/16b_heterogeneity_multiple_ws_wd.py index 43ac6f7eb..a5b8abdb0 100644 --- a/examples/16b_heterogeneity_multiple_ws_wd.py +++ b/examples/16b_heterogeneity_multiple_ws_wd.py @@ -58,19 +58,9 @@ print(f'T1: {turbine_powers[1]:.1f} kW') print() -# Since het maps are assigned for each wind direciton, it's allowable to change -# the number of wind speeds -fi.reinitialize(wind_speeds=[4, 8]) -fi.calculate_wake() -turbine_powers = np.round(fi.get_turbine_powers() / 1000.) -print('With wind speeds now set to 4 and 8 m/s') -print(f'T0: {turbine_powers[:, :, 0].flatten()} kW') -print(f'T1: {turbine_powers[:, :, 1].flatten()} kW') -print() - -# To change the number of wind directions however it is necessary to make a matching -# change to the dimensions of the het map -speed_multipliers = [[2.0, 1.0, 2.0, 1.0], [2.0, 1.0, 2.0, 1.0]] # Expand to two wind directions +# If the number of conditions in the calculation changes, a new heterogeneous map +# must be provided. +speed_multipliers = [[2.0, 1.0, 2.0, 1.0], [2.0, 1.0, 2.0, 1.0]] # Expand to two wind conditions heterogenous_inflow_config = { 'speed_multipliers': speed_multipliers, 'x': x_locs, @@ -78,14 +68,14 @@ } fi.reinitialize( wind_directions=[270.0, 275.0], - wind_speeds=[8.0], + wind_speeds=[8.0, 8.0], heterogenous_inflow_config=heterogenous_inflow_config ) fi.calculate_wake() turbine_powers = np.round(fi.get_turbine_powers() / 1000.) print('With wind directions now set to 270 and 275 deg') -print(f'T0: {turbine_powers[:, :, 0].flatten()} kW') -print(f'T1: {turbine_powers[:, :, 1].flatten()} kW') +print(f'T0: {turbine_powers[:, 0].flatten()} kW') +print(f'T1: {turbine_powers[:, 1].flatten()} kW') # # Uncomment if want to see example of error output # # Note if we change wind directions to 3 without a matching change to het map we get an error @@ -93,6 +83,6 @@ # print() # print('~~ Now forcing an error by not matching wd and het_map') -# fi.reinitialize(wind_directions=[270, 275, 280], wind_speeds=[8.]) +# fi.reinitialize(wind_directions=[270, 275, 280], wind_speeds=3*[8.0]) # fi.calculate_wake() # turbine_powers = np.round(fi.get_turbine_powers() / 1000.) diff --git a/examples/26_empirical_gauss_velocity_deficit_parameters.py b/examples/26_empirical_gauss_velocity_deficit_parameters.py index b2787059c..e9b620926 100644 --- a/examples/26_empirical_gauss_velocity_deficit_parameters.py +++ b/examples/26_empirical_gauss_velocity_deficit_parameters.py @@ -35,7 +35,7 @@ show_flow_cuts = True num_in_row = 5 -yaw_angles = np.zeros((1, 1, num_in_row)) +yaw_angles = np.zeros((1, num_in_row)) # Define function for visualizing wakes def generate_wake_visualization(fi: FlorisInterface, title=None): diff --git a/examples/27_empirical_gauss_deflection_parameters.py b/examples/27_empirical_gauss_deflection_parameters.py index 5e453a7ad..7de9d0ea5 100644 --- a/examples/27_empirical_gauss_deflection_parameters.py +++ b/examples/27_empirical_gauss_deflection_parameters.py @@ -36,10 +36,9 @@ num_in_row = 5 # Should be at least 3 first_three_yaw_angles = [20., 20., 10.] -yaw_angles = np.array(first_three_yaw_angles + [0.]*(num_in_row-3))\ - [None, None, :] +yaw_angles = np.array(first_three_yaw_angles + [0.0]*(num_in_row-3))[None, :] -print("Turbine yaw angles (degrees): ", yaw_angles[0,0,:]) +print("Turbine yaw angles (degrees): ", yaw_angles[0]) # Define function for visualizing wakes def generate_wake_visualization(fi, title=None): diff --git a/examples/32_specify_turbine_power_curve.py b/examples/32_specify_turbine_power_curve.py index 03fbf9978..d9f1cde4a 100644 --- a/examples/32_specify_turbine_power_curve.py +++ b/examples/32_specify_turbine_power_curve.py @@ -16,7 +16,6 @@ import matplotlib.pyplot as plt import numpy as np -import floris.tools.visualization as wakeviz from floris.tools import FlorisInterface from floris.turbine_library.turbine_utilities import build_turbine_dict diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index cdd3b8fee..f1fab63ea 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -313,7 +313,7 @@ def solve_for_points(self, x, y, z): else: full_flow_sequential_solver(self.farm, self.flow_field, field_grid, self.wake) - return self.flow_field.u_sorted[:,:,:,0,0] # Remove turbine grid dimensions + return self.flow_field.u_sorted[:,:,0,0] # Remove turbine grid dimensions def solve_for_velocity_deficit_profiles( self, @@ -369,7 +369,7 @@ def solve_for_velocity_deficit_profiles( z = np.squeeze(z, axis=0) + reference_height u = self.solve_for_points(x.flatten(), y.flatten(), z.flatten()) - u = np.reshape(u[0, 0, :], (n_lines, resolution)) + u = np.reshape(u[0, :], (n_lines, resolution)) velocity_deficit = (homogeneous_wind_speed - u) / homogeneous_wind_speed velocity_deficit_profiles = [] diff --git a/floris/simulation/grid.py b/floris/simulation/grid.py index 9892b8643..28f7df9df 100644 --- a/floris/simulation/grid.py +++ b/floris/simulation/grid.py @@ -580,9 +580,9 @@ def set_grid(self) -> None: indexing="ij" ) - self.x_sorted = x_points[None, None, :, :, :] - self.y_sorted = y_points[None, None, :, :, :] - self.z_sorted = z_points[None, None, :, :, :] + self.x_sorted = x_points[None, :, :, :] + self.y_sorted = y_points[None, :, :, :] + self.z_sorted = z_points[None, :, :, :] elif self.normal_vector == "x": # Rules of thumb for cross plane if self.x1_bounds is None: @@ -598,9 +598,9 @@ def set_grid(self) -> None: indexing="ij" ) - self.x_sorted = x_points[None, None, :, :, :] - self.y_sorted = y_points[None, None, :, :, :] - self.z_sorted = z_points[None, None, :, :, :] + self.x_sorted = x_points[None, :, :, :] + self.y_sorted = y_points[None, :, :, :] + self.z_sorted = z_points[None, :, :, :] elif self.normal_vector == "y": # Rules of thumb for y plane if self.x1_bounds is None: @@ -616,9 +616,9 @@ def set_grid(self) -> None: indexing="ij" ) - self.x_sorted = x_points[None, None, :, :, :] - self.y_sorted = y_points[None, None, :, :, :] - self.z_sorted = z_points[None, None, :, :, :] + self.x_sorted = x_points[None, :, :, :] + self.y_sorted = y_points[None, :, :, :] + self.z_sorted = z_points[None, :, :, :] # Now calculate grid coordinates in original frame (from 270 deg perspective) self.x_sorted_inertial_frame, self.y_sorted_inertial_frame, self.z_sorted_inertial_frame = \ diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index 911a668ad..bcce46092 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -290,13 +290,11 @@ def full_flow_sequential_solver( turbine_coordinates=turbine_grid_farm.coordinates, turbine_diameters=turbine_grid_farm.rotor_diameters, wind_directions=turbine_grid_flow_field.wind_directions, - wind_speeds=turbine_grid_flow_field.wind_speeds, grid_resolution=3, time_series=turbine_grid_flow_field.time_series, ) turbine_grid_farm.expand_farm_properties( - turbine_grid_flow_field.n_wind_directions, - turbine_grid_flow_field.n_wind_speeds, + turbine_grid_flow_field.n_findex, turbine_grid.sorted_coord_indices, ) turbine_grid_flow_field.initialize_velocity_field(turbine_grid) @@ -323,15 +321,15 @@ def full_flow_sequential_solver( for i in range(flow_field_grid.n_turbines): # Get the current turbine quantities - x_i = np.mean(turbine_grid.x_sorted[:, :, i:i+1], axis=(3, 4)) - x_i = x_i[:, :, :, None, None] - y_i = np.mean(turbine_grid.y_sorted[:, :, i:i+1], axis=(3, 4)) - y_i = y_i[:, :, :, None, None] - z_i = np.mean(turbine_grid.z_sorted[:, :, i:i+1], axis=(3, 4)) - z_i = z_i[:, :, :, None, None] + x_i = np.mean(turbine_grid.x_sorted[:, i:i+1], axis=(2, 3)) + x_i = x_i[:, :, None, None] + y_i = np.mean(turbine_grid.y_sorted[:, i:i+1], axis=(2, 3)) + y_i = y_i[:, :, None, None] + z_i = np.mean(turbine_grid.z_sorted[:, i:i+1], axis=(2, 3)) + z_i = z_i[:, :, None, None] - u_i = turbine_grid_flow_field.u_sorted[:, :, i:i+1] - v_i = turbine_grid_flow_field.v_sorted[:, :, i:i+1] + u_i = turbine_grid_flow_field.u_sorted[:, i:i+1] + v_i = turbine_grid_flow_field.v_sorted[:, i:i+1] ct_i = Ct( velocities=turbine_grid_flow_field.u_sorted, @@ -346,7 +344,7 @@ def full_flow_sequential_solver( ) # Since we are filtering for the i'th turbine in the Ct function, # get the first index here (0:1) - ct_i = ct_i[:, :, 0:1, None, None] + ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=turbine_grid_flow_field.u_sorted, yaw_angle=turbine_grid_farm.yaw_angles_sorted, @@ -360,13 +358,13 @@ def full_flow_sequential_solver( ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) - axial_induction_i = axial_induction_i[:, :, 0:1, None, None] + axial_induction_i = axial_induction_i[:, 0:1, None, None] turbulence_intensity_i = \ - turbine_grid_flow_field.turbulence_intensity_field_sorted_avg[:, :, i:i+1] - yaw_angle_i = turbine_grid_farm.yaw_angles_sorted[:, :, i:i+1, None, None] - hub_height_i = turbine_grid_farm.hub_heights_sorted[:, :, i:i+1, None, None] - rotor_diameter_i = turbine_grid_farm.rotor_diameters_sorted[:, :, i:i+1, None, None] - TSR_i = turbine_grid_farm.TSRs_sorted[:, :, i:i+1, None, None] + turbine_grid_flow_field.turbulence_intensity_field_sorted_avg[:, i:i+1] + yaw_angle_i = turbine_grid_farm.yaw_angles_sorted[:, i:i+1, None, None] + hub_height_i = turbine_grid_farm.hub_heights_sorted[:, i:i+1, None, None] + rotor_diameter_i = turbine_grid_farm.rotor_diameters_sorted[:, i:i+1, None, None] + TSR_i = turbine_grid_farm.TSRs_sorted[:, i:i+1, None, None] effective_yaw_i = np.zeros_like(yaw_angle_i) effective_yaw_i += yaw_angle_i @@ -376,8 +374,8 @@ def full_flow_sequential_solver( u_i, v_i, turbine_grid_flow_field.u_initial_sorted, - turbine_grid.y_sorted[:, :, i:i+1] - y_i, - turbine_grid.z_sorted[:, :, i:i+1], + turbine_grid.y_sorted[:, i:i+1] - y_i, + turbine_grid.z_sorted[:, i:i+1], rotor_diameter_i, hub_height_i, ct_i, @@ -1108,48 +1106,6 @@ def full_flow_turbopark_solver( ) -> None: raise NotImplementedError("Plotting for the TurbOPark model is not currently implemented.") - # TODO: Below is a first attempt at plotting, and uses just the values on the rotor. - # The current TurbOPark model requires that points to be calculated are only at turbine - # locations. Modification will be required to allow for full flow field calculations. - - # # Get the flow quantities and turbine performance - # turbine_grid_farm = copy.deepcopy(farm) - # turbine_grid_flow_field = copy.deepcopy(flow_field) - - # turbine_grid_farm.construct_turbine_map() - # turbine_grid_farm.construct_turbine_fCts() - # turbine_grid_farm.construct_turbine_power_interps() - # turbine_grid_farm.construct_hub_heights() - # turbine_grid_farm.construct_rotor_diameters() - # turbine_grid_farm.construct_turbine_TSRs() - # turbine_grid_farm.construc_turbine_pPs() - - # turbine_grid = TurbineGrid( - # turbine_coordinates=turbine_grid_farm.coordinates, - # turbine_diameters=turbine_grid_farm.rotor_diameters, - # wind_directions=turbine_grid_flow_field.wind_directions, - # wind_speeds=turbine_grid_flow_field.wind_speeds, - # grid_resolution=11, - # ) - # turbine_grid_farm.expand_farm_properties( - # turbine_grid_flow_field.n_wind_directions, - # turbine_grid_flow_field.n_wind_speeds, - # turbine_grid.sorted_coord_indices - # ) - # turbine_grid_flow_field.initialize_velocity_field(turbine_grid) - # turbine_grid_farm.initialize(turbine_grid.sorted_indices) - # turbopark_solver(turbine_grid_farm, turbine_grid_flow_field, turbine_grid, model_manager) - - - - # flow_field.u = copy.deepcopy(turbine_grid_flow_field.u) - # flow_field.v = copy.deepcopy(turbine_grid_flow_field.v) - # flow_field.w = copy.deepcopy(turbine_grid_flow_field.w) - - # flow_field_grid.x = copy.deepcopy(turbine_grid.x) - # flow_field_grid.y = copy.deepcopy(turbine_grid.y) - # flow_field_grid.z = copy.deepcopy(turbine_grid.z) - def empirical_gauss_solver( farm: Farm, @@ -1371,19 +1327,17 @@ def full_flow_empirical_gauss_solver( turbine_grid_farm.construct_turbine_ref_tilt_cp_cts() turbine_grid_farm.construct_turbine_tilt_interps() turbine_grid_farm.construct_turbine_correct_cp_ct_for_tilt() - turbine_grid_farm.set_tilt_to_ref_tilt(flow_field.n_wind_directions, flow_field.n_wind_speeds) + turbine_grid_farm.set_tilt_to_ref_tilt(flow_field.n_findex) turbine_grid = TurbineGrid( turbine_coordinates=turbine_grid_farm.coordinates, turbine_diameters=turbine_grid_farm.rotor_diameters, wind_directions=turbine_grid_flow_field.wind_directions, - wind_speeds=turbine_grid_flow_field.wind_speeds, grid_resolution=3, time_series=turbine_grid_flow_field.time_series, ) turbine_grid_farm.expand_farm_properties( - turbine_grid_flow_field.n_wind_directions, - turbine_grid_flow_field.n_wind_speeds, + turbine_grid_flow_field.n_findex, turbine_grid.sorted_coord_indices ) turbine_grid_flow_field.initialize_velocity_field(turbine_grid) @@ -1411,15 +1365,15 @@ def full_flow_empirical_gauss_solver( for i in range(flow_field_grid.n_turbines): # Get the current turbine quantities - x_i = np.mean(turbine_grid.x_sorted[:, :, i:i+1], axis=(3, 4)) - x_i = x_i[:, :, :, None, None] - y_i = np.mean(turbine_grid.y_sorted[:, :, i:i+1], axis=(3, 4)) - y_i = y_i[:, :, :, None, None] - z_i = np.mean(turbine_grid.z_sorted[:, :, i:i+1], axis=(3, 4)) - z_i = z_i[:, :, :, None, None] + x_i = np.mean(turbine_grid.x_sorted[:, i:i+1], axis=(2,3)) + x_i = x_i[:, :, None, None] + y_i = np.mean(turbine_grid.y_sorted[:, i:i+1], axis=(2,3)) + y_i = y_i[:, :, None, None] + z_i = np.mean(turbine_grid.z_sorted[:, i:i+1], axis=(2,3)) + z_i = z_i[:, :, None, None] - turbine_grid_flow_field.u_sorted[:, :, i:i+1] - turbine_grid_flow_field.v_sorted[:, :, i:i+1] + turbine_grid_flow_field.u_sorted[:, i:i+1] + turbine_grid_flow_field.v_sorted[:, i:i+1] ct_i = Ct( velocities=turbine_grid_flow_field.u_sorted, @@ -1434,7 +1388,7 @@ def full_flow_empirical_gauss_solver( ) # Since we are filtering for the i'th turbine in the Ct function, # get the first index here (0:1) - ct_i = ct_i[:, :, 0:1, None, None] + ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=turbine_grid_flow_field.u_sorted, yaw_angle=turbine_grid_farm.yaw_angles_sorted, @@ -1448,12 +1402,11 @@ def full_flow_empirical_gauss_solver( ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) - axial_induction_i = axial_induction_i[:, :, 0:1, None, None] - yaw_angle_i = turbine_grid_farm.yaw_angles_sorted[:, :, i:i+1, None, None] - hub_height_i = turbine_grid_farm.hub_heights_sorted[: ,:, i:i+1, None, None] - rotor_diameter_i = turbine_grid_farm.rotor_diameters_sorted[: ,:, i:i+1, None, None] - wake_induced_mixing_i = wim_field[:, :, i:i+1, :, None].sum(axis=3, keepdims=1) - + axial_induction_i = axial_induction_i[:, 0:1, None, None] + yaw_angle_i = turbine_grid_farm.yaw_angles_sorted[:, i:i+1, None, None] + hub_height_i = turbine_grid_farm.hub_heights_sorted[:, i:i+1, None, None] + rotor_diameter_i = turbine_grid_farm.rotor_diameters_sorted[:, i:i+1, None, None] + wake_induced_mixing_i = wim_field[:, i:i+1, :, None].sum(axis=2, keepdims=1) effective_yaw_i = np.zeros_like(yaw_angle_i) effective_yaw_i += yaw_angle_i @@ -1463,7 +1416,7 @@ def full_flow_empirical_gauss_solver( cubature_weights=turbine_grid.cubature_weights ) tilt_angle_i = turbine_grid_farm.calculate_tilt_for_eff_velocities(average_velocities) - tilt_angle_i = tilt_angle_i[:, :, i:i+1, None, None] + tilt_angle_i = tilt_angle_i[:, i:i+1, None, None] if model_manager.enable_secondary_steering: raise NotImplementedError( diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index d54b2794a..b1e2c3ad2 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -274,16 +274,16 @@ def get_plane_of_points( """ # Get results vectors if (normal_vector == "z"): - x_flat = self.floris.grid.x_sorted_inertial_frame[0, 0].flatten() - y_flat = self.floris.grid.y_sorted_inertial_frame[0, 0].flatten() - z_flat = self.floris.grid.z_sorted_inertial_frame[0, 0].flatten() + x_flat = self.floris.grid.x_sorted_inertial_frame[0].flatten() + y_flat = self.floris.grid.y_sorted_inertial_frame[0].flatten() + z_flat = self.floris.grid.z_sorted_inertial_frame[0].flatten() else: - x_flat = self.floris.grid.x_sorted[0, 0].flatten() - y_flat = self.floris.grid.y_sorted[0, 0].flatten() - z_flat = self.floris.grid.z_sorted[0, 0].flatten() - u_flat = self.floris.flow_field.u_sorted[0, 0].flatten() - v_flat = self.floris.flow_field.v_sorted[0, 0].flatten() - w_flat = self.floris.flow_field.w_sorted[0, 0].flatten() + x_flat = self.floris.grid.x_sorted[0].flatten() + y_flat = self.floris.grid.y_sorted[0].flatten() + z_flat = self.floris.grid.z_sorted[0].flatten() + u_flat = self.floris.flow_field.u_sorted[0].flatten() + v_flat = self.floris.flow_field.v_sorted[0].flatten() + w_flat = self.floris.flow_field.w_sorted[0].flatten() # Create a df of these if normal_vector == "z": diff --git a/floris/tools/visualization.py b/floris/tools/visualization.py index 1f6decd0b..c8400e76c 100644 --- a/floris/tools/visualization.py +++ b/floris/tools/visualization.py @@ -114,7 +114,7 @@ def plot_turbines_with_fi( color = "k" rotor_diameters = fi.floris.farm.rotor_diameters.flatten() - for x, y, yaw, d in zip(fi.layout_x, fi.layout_y, yaw_angles[0,0], rotor_diameters): + for x, y, yaw, d in zip(fi.layout_x, fi.layout_y, yaw_angles[0], rotor_diameters): R = d / 2.0 x_0 = x + np.sin(np.deg2rad(yaw)) * R x_1 = x - np.sin(np.deg2rad(yaw)) * R @@ -150,7 +150,7 @@ def add_turbine_id_labels(fi: FlorisInterface, ax: plt.Axes, **kwargs): for i in range(fi.floris.farm.n_turbines): ax.annotate( i, - (layout_x[0,0,i], layout_y[0,0,i]), + (layout_x[0,i], layout_y[0,i]), xytext=(0,10), textcoords="offset points", **kwargs @@ -508,8 +508,7 @@ def reverse_cut_plane_x_axis_in_plot(ax): def plot_rotor_values( values: np.ndarray, - wd_index: int, - ws_index: int, + findex: int, n_rows: int, n_cols: int, t_range: range | None = None, @@ -524,10 +523,9 @@ def plot_rotor_values( used for inspection of what values are differing, and under what conditions. Parameters: - values (np.ndarray): The 5-dimensional array of values to plot. Should be: - N wind directions x N wind speeds x N turbines X N rotor points X N rotor points. - wd_index (int): The index for the wind direction to plot. - ws_index (int): The index of the wind speed to plot. + values (np.ndarray): The 4-dimensional array of values to plot. Should be: + (N findex, N turbines, N rotor points, N rotor points). + findex (int): The index for the sample point to plot. n_rows (int): The number of rows to include for subplots. With ncols, this should generally add up to the number of turbines in the farm. n_cols (int): The number of columns to include for subplots. With ncols, this should @@ -548,9 +546,9 @@ def plot_rotor_values( Example: from floris.tools.visualization import plot_rotor_values - plot_rotor_values(floris.flow_field.u, wd_index=0, ws_index=0, n_rows=1, ncols=4) - plot_rotor_values(floris.flow_field.v, wd_index=0, ws_index=0, n_rows=1, ncols=4) - plot_rotor_values(floris.flow_field.w, wd_index=0, ws_index=0, n_rows=1, ncols=4, show=True) + plot_rotor_values(floris.flow_field.u, findex=0, n_rows=1, ncols=4) + plot_rotor_values(floris.flow_field.v, findex=0, n_rows=1, ncols=4) + plot_rotor_values(floris.flow_field.w, findex=0, n_rows=1, ncols=4, show=True) """ cmap = plt.cm.get_cmap(name=cmap) @@ -570,12 +568,12 @@ def plot_rotor_values( for ax, t, i in zip(axes.flatten(), titles, t_range): - vmin = np.min(values[wd_index, ws_index]) - vmax = np.max(values[wd_index, ws_index]) + vmin = np.min(values[findex]) + vmax = np.max(values[findex]) norm = mplcolors.Normalize(vmin, vmax) - ax.imshow(values[wd_index, ws_index, i].T, cmap=cmap, norm=norm, origin="lower") + ax.imshow(values[findex, i].T, cmap=cmap, norm=norm, origin="lower") ax.invert_xaxis() ax.set_xticks([]) @@ -657,12 +655,12 @@ def calculate_horizontal_plane_with_turbines( # Grab the turbine layout layout_x = copy.deepcopy(fi.layout_x) layout_y = copy.deepcopy(fi.layout_y) - D = fi.floris.farm.rotor_diameters_sorted[0, 0, 0] + D = np.unique(fi.floris.farm.rotor_diameters_sorted)[0] # Declare a new layout array with an extra turbine layout_x_test = np.append(layout_x,[0]) layout_y_test = np.append(layout_y,[0]) - yaw_angles = np.append(yaw_angles, np.zeros([len(wd), len(ws), 1]), axis=2) + yaw_angles = np.append(yaw_angles, [[0.0]], axis=1) # Get a grid of points test test if x_bounds is None: @@ -698,8 +696,8 @@ def calculate_horizontal_plane_with_turbines( fi.calculate_wake(yaw_angles=yaw_angles) # Get the velocity of that test turbines central point - center_point = int(np.floor(fi.floris.flow_field.u[0,0,-1].shape[0] / 2.0)) - u_results[idx] = fi.floris.flow_field.u[0,0,-1,center_point,center_point] + center_point = int(np.floor(fi.floris.flow_field.u[0,-1].shape[0] / 2.0)) + u_results[idx] = fi.floris.flow_field.u[0,-1,center_point,center_point] # Increment index idx = idx + 1 From 9f4f5d1b3cda6981147d645f45a231a2e5313b4f Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Wed, 13 Dec 2023 19:11:30 -0600 Subject: [PATCH 15/78] Fix isort and ruff formatting --- floris/simulation/flow_field.py | 2 +- tests/conftest.py | 3 ++- tests/flow_field_unit_test.py | 2 +- tests/reg_tests/cumulative_curl_regression_test.py | 2 +- tests/reg_tests/empirical_gauss_regression_test.py | 6 +++--- tests/reg_tests/floris_interface_regression_test.py | 2 +- tests/reg_tests/gauss_regression_test.py | 4 ++-- tests/reg_tests/jensen_jimenez_regression_test.py | 2 +- tests/reg_tests/none_regression_test.py | 2 +- tests/reg_tests/turbopark_regression_test.py | 2 +- tests/turbine_grid_unit_test.py | 2 +- 11 files changed, 15 insertions(+), 14 deletions(-) diff --git a/floris/simulation/flow_field.py b/floris/simulation/flow_field.py index eab251e3b..a53db1fa9 100644 --- a/floris/simulation/flow_field.py +++ b/floris/simulation/flow_field.py @@ -44,7 +44,7 @@ class FlowField(BaseClass): time_series: bool = field(default=False) heterogenous_inflow_config: dict = field(default=None) multidim_conditions: dict = field(default=None) - + n_findex: int = field(init=False) u_initial_sorted: NDArrayFloat = field(init=False, factory=lambda: np.array([])) v_initial_sorted: NDArrayFloat = field(init=False, factory=lambda: np.array([])) diff --git a/tests/conftest.py b/tests/conftest.py index 8f4575758..eab7063cd 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -12,6 +12,7 @@ # See https://floris.readthedocs.io for documentation +from __future__ import annotations import copy @@ -55,7 +56,7 @@ def print_test_values( thrusts: list, powers: list, axial_inductions: list, - max_findex_print: int | None=None + max_findex_print: int | None =None ): n_findex, n_turb = np.shape(average_velocities) if max_findex_print is not None: diff --git a/tests/flow_field_unit_test.py b/tests/flow_field_unit_test.py index 874bdbe38..9b0c9a724 100644 --- a/tests/flow_field_unit_test.py +++ b/tests/flow_field_unit_test.py @@ -16,7 +16,7 @@ import numpy as np from floris.simulation import FlowField, TurbineGrid -from tests.conftest import N_TURBINES, N_FINDEX +from tests.conftest import N_FINDEX, N_TURBINES def test_n_findex(flow_field_fixture): diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index 0b19d23ff..1e4913b7a 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -24,8 +24,8 @@ ) from tests.conftest import ( assert_results_arrays, - N_TURBINES, N_FINDEX, + N_TURBINES, print_test_values, ) diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 20a35714a..2eea96166 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -24,8 +24,8 @@ ) from tests.conftest import ( assert_results_arrays, - N_TURBINES, N_FINDEX, + N_TURBINES, print_test_values, ) @@ -453,7 +453,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): test_results[i, j, 2] = farm_powers[i, j] test_results[i, j, 3] = farm_axial_inductions[i, j] - # Compare to case where enable_yaw_added_recovery = False, since + # Compare to case where enable_yaw_added_recovery = False, since # default gains are 0. assert_results_arrays(test_results[0:4], yawed_baseline) @@ -535,7 +535,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): farm_axial_inductions, max_findex_print=4 ) - + assert_results_arrays(test_results[0:4], yaw_added_recovery_baseline) diff --git a/tests/reg_tests/floris_interface_regression_test.py b/tests/reg_tests/floris_interface_regression_test.py index 1ee0c15ce..316050ac1 100644 --- a/tests/reg_tests/floris_interface_regression_test.py +++ b/tests/reg_tests/floris_interface_regression_test.py @@ -24,8 +24,8 @@ from floris.tools import FlorisInterface from tests.conftest import ( assert_results_arrays, - N_TURBINES, N_FINDEX, + N_TURBINES, print_test_values, ) diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index 87e7611c2..adcbf39ab 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -24,8 +24,8 @@ ) from tests.conftest import ( assert_results_arrays, - N_TURBINES, N_FINDEX, + N_TURBINES, print_test_values, ) @@ -907,4 +907,4 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): assert np.allclose(farm_powers[8,0:5], farm_powers[8,10:15]) assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) assert np.allclose(farm_powers[8,20], farm_powers[8,0]) - assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) \ No newline at end of file + assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index 362e49e84..06be35372 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -24,8 +24,8 @@ ) from tests.conftest import ( assert_results_arrays, - N_TURBINES, N_FINDEX, + N_TURBINES, print_test_values, ) diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index b68411d82..813e295d9 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -25,8 +25,8 @@ ) from tests.conftest import ( assert_results_arrays, - N_TURBINES, N_FINDEX, + N_TURBINES, print_test_values, ) diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index 61fe97852..9e4315903 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -24,8 +24,8 @@ ) from tests.conftest import ( assert_results_arrays, - N_TURBINES, N_FINDEX, + N_TURBINES, print_test_values, ) diff --git a/tests/turbine_grid_unit_test.py b/tests/turbine_grid_unit_test.py index 174bda5f4..7496bb21c 100644 --- a/tests/turbine_grid_unit_test.py +++ b/tests/turbine_grid_unit_test.py @@ -17,8 +17,8 @@ from floris.simulation import TurbineGrid from tests.conftest import ( - N_TURBINES, N_FINDEX, + N_TURBINES, TURBINE_GRID_RESOLUTION, ) From 3471efe887081e93bc44d3130fc3cb609eb3c089 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Wed, 13 Dec 2023 19:17:23 -0600 Subject: [PATCH 16/78] Bug fix for error checking wind rose frequency --- floris/tools/floris_interface.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index b1e2c3ad2..b349501b3 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -831,7 +831,7 @@ def get_farm_AEP( """ # Verify dimensions of the variable "freq" - if not (np.shape(freq)[0] == self.floris.flow_field.n_findex & len(np.shape(freq)) == 1): + if np.shape(freq)[0] != self.floris.flow_field.n_findex: raise UserWarning( "'freq' should be a one-dimensional array with dimensions (n_findex)." ) From b04a523d2b2643c86fe07ecf31493b818ccfbfe6 Mon Sep 17 00:00:00 2001 From: Chris Bay <12664940+bayc@users.noreply.github.com> Date: Thu, 14 Dec 2023 10:54:00 -0700 Subject: [PATCH 17/78] Update TurbOPark model (#63) * update turbopark solver for 4D * update turbopark model for 4D * update turbopark regression test for 4D * Update regression test API --------- Co-authored-by: Rafael M Mudafort --- floris/simulation/solver.py | 65 +++++++------- floris/simulation/wake_velocity/turbopark.py | 6 +- tests/reg_tests/turbopark_regression_test.py | 92 +++++++++----------- 3 files changed, 75 insertions(+), 88 deletions(-) diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index bcce46092..df8995408 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -874,19 +874,19 @@ def turbopark_solver( turbine_turbulence_intensity = ( flow_field.turbulence_intensity - * np.ones((flow_field.n_wind_directions, flow_field.n_wind_speeds, farm.n_turbines, 1, 1)) + * np.ones((flow_field.n_findex, farm.n_turbines, 1, 1)) ) ambient_turbulence_intensity = flow_field.turbulence_intensity # Calculate the velocity deficit sequentially from upstream to downstream turbines for i in range(grid.n_turbines): # Get the current turbine quantities - x_i = np.mean(grid.x_sorted[:, :, i:i+1], axis=(3, 4)) - x_i = x_i[:, :, :, None, None] - y_i = np.mean(grid.y_sorted[:, :, i:i+1], axis=(3, 4)) - y_i = y_i[:, :, :, None, None] - z_i = np.mean(grid.z_sorted[:, :, i:i+1], axis=(3, 4)) - z_i = z_i[:, :, :, None, None] + x_i = np.mean(grid.x_sorted[:, i:i+1], axis=(2, 3)) + x_i = x_i[:, :, None, None] + y_i = np.mean(grid.y_sorted[:, i:i+1], axis=(2, 3)) + y_i = y_i[:, :, None, None] + z_i = np.mean(grid.z_sorted[:, i:i+1], axis=(2, 3)) + z_i = z_i[:, :, None, None] u_i = flow_field.u_sorted[:, :, i:i+1] v_i = flow_field.v_sorted[:, :, i:i+1] @@ -919,7 +919,7 @@ def turbopark_solver( ) # Since we are filtering for the i'th turbine in the Ct function, # get the first index here (0:1) - ct_i = ct_i[:, :, 0:1, None, None] + ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, @@ -935,23 +935,24 @@ def turbopark_solver( ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) - axial_induction_i = axial_induction_i[:, :, 0:1, None, None] - turbulence_intensity_i = turbine_turbulence_intensity[:, :, i:i+1] - yaw_angle_i = farm.yaw_angles_sorted[:, :, i:i+1, None, None] - hub_height_i = farm.hub_heights_sorted[:, :, i:i+1, None, None] - rotor_diameter_i = farm.rotor_diameters_sorted[:, :, i:i+1, None, None] - TSR_i = farm.TSRs_sorted[:, :, i:i+1, None, None] + axial_induction_i = axial_induction_i[:, 0:1, None, None] + turbulence_intensity_i = turbine_turbulence_intensity[:, i:i+1] + yaw_angle_i = farm.yaw_angles_sorted[:, i:i+1, None, None] + hub_height_i = farm.hub_heights_sorted[:, i:i+1, None, None] + rotor_diameter_i = farm.rotor_diameters_sorted[:, i:i+1, None, None] + TSR_i = farm.TSRs_sorted[:, i:i+1, None, None] effective_yaw_i = np.zeros_like(yaw_angle_i) effective_yaw_i += yaw_angle_i + if model_manager.enable_secondary_steering: added_yaw = wake_added_yaw( u_i, v_i, flow_field.u_initial_sorted, - grid.y_sorted[:, :, i:i+1] - y_i, - grid.z_sorted[:, :, i:i+1], + grid.y_sorted[:, i:i+1] - y_i, + grid.z_sorted[:, i:i+1], rotor_diameter_i, hub_height_i, ct_i, @@ -965,18 +966,18 @@ def turbopark_solver( # NOTE: exponential if not np.all(farm.yaw_angles_sorted): model_manager.deflection_model.logger.warning( - "WARNING: Deflection with the TurbOPark model has not been fully validated." - "This is an initial implementation, and we advise you use at your own risk" + "WARNING: Deflection with the TurbOPark model has not been fully validated. " + "This is an initial implementation, and we advise you use at your own risk " "and perform a thorough examination of the results." ) for ii in range(i): - x_ii = np.mean(grid.x_sorted[:, :, ii:ii+1], axis=(3, 4)) - x_ii = x_ii[:, :, :, None, None] - y_ii = np.mean(grid.y_sorted[:, :, ii:ii+1], axis=(3, 4)) - y_ii = y_ii[:, :, :, None, None] + x_ii = np.mean(grid.x_sorted[:, ii:ii+1], axis=(2, 3)) + x_ii = x_ii[:, :, None, None] + y_ii = np.mean(grid.y_sorted[:, ii:ii+1], axis=(2, 3)) + y_ii = y_ii[:, :, None, None] - yaw_ii = farm.yaw_angles_sorted[:, :, ii:ii+1, None, None] - turbulence_intensity_ii = turbine_turbulence_intensity[:, :, ii:ii+1] + yaw_ii = farm.yaw_angles_sorted[:, ii:ii+1, None, None] + turbulence_intensity_ii = turbine_turbulence_intensity[:, ii:ii+1] ct_ii = Ct( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, @@ -990,8 +991,8 @@ def turbopark_solver( average_method=grid.average_method, cubature_weights=grid.cubature_weights ) - ct_ii = ct_ii[:, :, 0:1, None, None] - rotor_diameter_ii = farm.rotor_diameters_sorted[:, :, ii:ii+1, None, None] + ct_ii = ct_ii[:, 0:1, None, None] + rotor_diameter_ii = farm.rotor_diameters_sorted[:, ii:ii+1, None, None] deflection_field_ii = model_manager.deflection_model.function( x_ii, @@ -1003,7 +1004,7 @@ def turbopark_solver( **deflection_model_args, ) - deflection_field[:, :, ii:ii+1, :, :] = deflection_field_ii[:, :, i:i+1, :, :] + deflection_field[:, ii:ii+1, :, :] = deflection_field_ii[:, i:i+1, :, :] if model_manager.enable_transverse_velocities: v_wake, w_wake = calculate_transverse_velocity( @@ -1040,9 +1041,9 @@ def turbopark_solver( y_i, z_i, turbine_turbulence_intensity, - Cts[:, :, :, None, None], + Cts[:, :, None, None], rotor_diameter_i, - farm.rotor_diameters_sorted[:, :, :, None, None], + farm.rotor_diameters_sorted[:, :, None, None], i, deflection_field, **deficit_model_args, @@ -1066,10 +1067,10 @@ def turbopark_solver( # turbines; could use WAT_upstream # Calculate wake overlap for wake-added turbulence (WAT) area_overlap = ( - np.sum(velocity_deficit * flow_field.u_initial_sorted > 0.05, axis=(3, 4)) + np.sum(velocity_deficit * flow_field.u_initial_sorted > 0.05, axis=(2, 3)) / (grid.grid_resolution * grid.grid_resolution) ) - area_overlap = area_overlap[:, :, :, None, None] + area_overlap = area_overlap[:, :, None, None] # Modify wake added turbulence by wake area overlap downstream_influence_length = 15 * rotor_diameter_i @@ -1094,7 +1095,7 @@ def turbopark_solver( flow_field.turbulence_intensity_field_sorted = turbine_turbulence_intensity flow_field.turbulence_intensity_field_sorted_avg = np.mean( turbine_turbulence_intensity, - axis=(3,4) + axis=(2, 3) ) diff --git a/floris/simulation/wake_velocity/turbopark.py b/floris/simulation/wake_velocity/turbopark.py index cf0443347..0b52c0476 100644 --- a/floris/simulation/wake_velocity/turbopark.py +++ b/floris/simulation/wake_velocity/turbopark.py @@ -109,7 +109,7 @@ def function( r_dist = np.sqrt((y_i - (y + deflection_field)) ** 2 + (z_i - z) ** 2) r_dist_image = np.sqrt((y_i - (y + deflection_field)) ** 2 + (z_i - (-z)) ** 2) - Cts[:, :, i:, :, :] = 0.00001 + Cts[:, i:, :, :] = 0.00001 # Characteristic wake widths from all turbines relative to turbine i dw = characteristic_wake_width(x_dist, ambient_turbulence_intensity, Cts, self.A) @@ -137,9 +137,9 @@ def function( delta_image = C * wtg_overlapping * self.overlap_gauss_interp( (r_dist_image / sigma, rotor_diameter_i / 2 / sigma) ) - delta = np.concatenate((delta_real, delta_image), axis=2) + delta = np.concatenate((delta_real, delta_image), axis=1) - delta_total[:, :, i, :, :] = np.sqrt(np.sum(np.nan_to_num(delta) ** 2, axis=2)) + delta_total[:, i, :, :] = np.sqrt(np.sum(np.nan_to_num(delta) ** 2, axis=1)) return delta_total diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index 9e4315903..5d138cdc3 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -112,17 +112,12 @@ def test_regression_tandem(sample_inputs_fixture): floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -133,7 +128,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -144,7 +139,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -160,19 +155,18 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -182,7 +176,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], baseline) + assert_results_arrays(test_results[0:4], baseline) def test_regression_rotation(sample_inputs_fixture): @@ -248,15 +242,15 @@ def test_regression_rotation(sample_inputs_fixture): farm_avg_velocities = average_velocity(floris.flow_field.u) - t0_270 = farm_avg_velocities[0, 0, 0] # upstream - t1_270 = farm_avg_velocities[0, 0, 1] # upstream - t2_270 = farm_avg_velocities[0, 0, 2] # waked - t3_270 = farm_avg_velocities[0, 0, 3] # waked + t0_270 = farm_avg_velocities[0, 0] # upstream + t1_270 = farm_avg_velocities[0, 1] # upstream + t2_270 = farm_avg_velocities[0, 2] # waked + t3_270 = farm_avg_velocities[0, 3] # waked - t0_360 = farm_avg_velocities[1, 0, 0] # waked - t1_360 = farm_avg_velocities[1, 0, 1] # upstream - t2_360 = farm_avg_velocities[1, 0, 2] # waked - t3_360 = farm_avg_velocities[1, 0, 3] # upstream + t0_360 = farm_avg_velocities[1, 0] # waked + t1_360 = farm_avg_velocities[1, 1] # upstream + t2_360 = farm_avg_velocities[1, 2] # waked + t3_360 = farm_avg_velocities[1, 3] # upstream assert np.allclose(t0_270, t1_360) assert np.allclose(t1_270, t3_360) @@ -274,24 +268,19 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -302,7 +291,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -313,7 +302,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -329,19 +318,18 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -351,8 +339,7 @@ def test_regression_yaw(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], yawed_baseline) - + assert_results_arrays(test_results[0:4], yawed_baseline) def test_regression_small_grid_rotation(sample_inputs_fixture): """ @@ -391,7 +378,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = np.ones((1, 1, len(X))) * floris.farm.ref_tilt_cp_cts farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, @@ -399,7 +385,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -417,8 +403,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # Columns 1 - 4 should have the same power profile # Column 5 leading turbine is completely unwaked # and the rest of the turbines have a partial wake from their immediate upstream turbine - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,5:10]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,10:15]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,15:20]) - assert np.allclose(farm_powers[2,0,20], farm_powers[2,0,0]) - assert np.allclose(farm_powers[2,0,21], farm_powers[2,0,21:25]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,5:10]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,10:15]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) + assert np.allclose(farm_powers[8,20], farm_powers[8,0]) + assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) From f74b5d3f5445a44d376d8de4cf974c36743623ed Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Thu, 14 Dec 2023 11:52:29 -0600 Subject: [PATCH 18/78] Update None-model and FlorisInterface reg tests --- .../floris_interface_regression_test.py | 30 ++++---- tests/reg_tests/none_regression_test.py | 68 +++++++++---------- 2 files changed, 46 insertions(+), 52 deletions(-) diff --git a/tests/reg_tests/floris_interface_regression_test.py b/tests/reg_tests/floris_interface_regression_test.py index 316050ac1..65f122b6d 100644 --- a/tests/reg_tests/floris_interface_regression_test.py +++ b/tests/reg_tests/floris_interface_regression_test.py @@ -81,17 +81,12 @@ def test_calculate_no_wake(sample_inputs_fixture): fi.calculate_no_wake() n_turbines = fi.floris.farm.n_turbines - n_wind_speeds = fi.floris.flow_field.n_wind_speeds - n_wind_directions = fi.floris.flow_field.n_wind_directions + n_findex = fi.floris.flow_field.n_findex velocities = fi.floris.flow_field.u yaw_angles = fi.floris.farm.yaw_angles tilt_angles = fi.floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * fi.floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -102,7 +97,7 @@ def test_calculate_no_wake(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + fi.floris.farm.ref_tilt_cp_cts, fi.floris.farm.pPs, fi.floris.farm.pTs, fi.floris.farm.turbine_tilt_interps, @@ -113,7 +108,7 @@ def test_calculate_no_wake(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + fi.floris.farm.ref_tilt_cp_cts, fi.floris.farm.turbine_fCts, fi.floris.farm.turbine_tilt_interps, fi.floris.farm.correct_cp_ct_for_tilt, @@ -129,19 +124,18 @@ def test_calculate_no_wake(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + fi.floris.farm.ref_tilt_cp_cts, fi.floris.farm.turbine_fCts, fi.floris.farm.turbine_tilt_interps, fi.floris.farm.correct_cp_ct_for_tilt, fi.floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -151,4 +145,4 @@ def test_calculate_no_wake(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], baseline) + assert_results_arrays(test_results[0:4], baseline) diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index 813e295d9..5a8ecd007 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -111,17 +111,12 @@ def test_regression_tandem(sample_inputs_fixture): floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -132,7 +127,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -143,7 +138,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -159,19 +154,18 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -181,7 +175,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], baseline) + assert_results_arrays(test_results[0:4], baseline) def test_regression_rotation(sample_inputs_fixture): @@ -246,15 +240,15 @@ def test_regression_rotation(sample_inputs_fixture): farm_avg_velocities = average_velocity(floris.flow_field.u) - t0_270 = farm_avg_velocities[0, 0, 0] # upstream - t1_270 = farm_avg_velocities[0, 0, 1] # upstream - t2_270 = farm_avg_velocities[0, 0, 2] # waked - t3_270 = farm_avg_velocities[0, 0, 3] # waked + t0_270 = farm_avg_velocities[0, 0] # upstream + t1_270 = farm_avg_velocities[0, 1] # upstream + t2_270 = farm_avg_velocities[0, 2] # waked + t3_270 = farm_avg_velocities[0, 3] # waked - t0_360 = farm_avg_velocities[1, 0, 0] # waked - t1_360 = farm_avg_velocities[1, 0, 1] # upstream - t2_360 = farm_avg_velocities[1, 0, 2] # waked - t3_360 = farm_avg_velocities[1, 0, 3] # upstream + t0_360 = farm_avg_velocities[1, 0] # waked + t1_360 = farm_avg_velocities[1, 1] # upstream + t2_360 = farm_avg_velocities[1, 2] # waked + t3_360 = farm_avg_velocities[1, 3] # upstream assert np.allclose(t0_270, t1_360) assert np.allclose(t1_270, t3_360) @@ -272,7 +266,7 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() @@ -282,6 +276,11 @@ def test_regression_yaw(sample_inputs_fixture): def test_regression_small_grid_rotation(sample_inputs_fixture): """ + This utilizes a 5x5 wind farm with the layout in a regular grid oriented along the cardinal + directions. The wind direction in this test is from 285 degrees which is slightly north of + west. The objective of this test is to create a case with a very slight rotation of the wind + farm to target the rotation and masking routines. + Where wake models are masked based on the x-location of a turbine, numerical precision can cause masking to fail unexpectedly. For example, in the configuration here one of the turbines has these delta x values; @@ -316,7 +315,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = np.ones((1, 1, len(X))) * floris.farm.ref_tilt_cp_cts farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, @@ -324,7 +322,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -340,8 +338,10 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # A "column" is oriented parallel to the wind direction # Columns 1 - 4 should have the same power profile - # Column 5 is completely unwaked in this model - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,5:10]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,10:15]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,15:20]) - assert np.allclose(farm_powers[2,0,20], farm_powers[2,0,20:25]) + # Column 5 leading turbine is completely unwaked + # and the rest of the turbines have a partial wake from their immediate upstream turbine + assert np.allclose(farm_powers[8,0:5], farm_powers[8,5:10]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,10:15]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) + assert np.allclose(farm_powers[8,20], farm_powers[8,0]) + assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) From c9346a8e487315b58b6859a64eac6fc06eb910a3 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Thu, 14 Dec 2023 12:14:20 -0600 Subject: [PATCH 19/78] Update Cumulative-Curl model, solver, and tests --- docs/wake_models.ipynb | 40 ++--- floris/simulation/solver.py | 109 ++++++------ .../wake_velocity/cumulative_gauss_curl.py | 48 +++--- .../cumulative_curl_regression_test.py | 160 ++++++++---------- 4 files changed, 167 insertions(+), 190 deletions(-) diff --git a/docs/wake_models.ipynb b/docs/wake_models.ipynb index c3ad37473..5252f3f55 100644 --- a/docs/wake_models.ipynb +++ b/docs/wake_models.ipynb @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 1, "metadata": { "tags": [] }, @@ -67,8 +67,8 @@ " fig, axes = plt.subplots(1, 1, figsize=(10, 10))\n", " fi = FlorisInterface(inputfile)\n", " fi.reinitialize(layout_x=np.array([0.0, 2*NREL5MW_D]), layout_y=np.array([0.0, 2*NREL5MW_D]))\n", - " yaw_angles = np.zeros((1, 1, 2))\n", - " yaw_angles[:,:,0] = 20.0\n", + " yaw_angles = np.zeros((1, 2))\n", + " yaw_angles[:,0] = 20.0\n", " horizontal_plane = fi.calculate_horizontal_plane(\n", " height=90.0,\n", " yaw_angles=yaw_angles\n", @@ -94,12 +94,12 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAEQCAYAAABhm3oHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABFMElEQVR4nO3dd5hk2V3m+e/v3nDpXaWrzPJVXaa71VatltSApAY5GFqDERoYIYRm+2FAC4zYATHszu4OwzwIdvAaQCsxKzFiJGGEekADyCJA6lb7Vld3ua6qLm+yTHoTEfe3f8TNzBuZkZlVnSbSvJ/nycob55o4NyMj461zzj3X3B0RERERWX5BtSsgIiIislEoeImIiIisEAUvERERkRWi4CUiIiKyQhS8RERERFaIgpeIiIjIClmS4GVmJ83sW2b2jJk9EZe1mtkXzOxo/L0lLjcz+x0zO2Zmz5nZ3UtRBxEREZHVbilbvN7o7ne6+73x4w8CX3L3PcCX4scAbwP2xF8PA7+/hHUQERERWbVSy3jsh4A3xMsfB74K/EJc/gkvzdz6qJk1m1m3u5+f60BNFnoH6WWsqoiIiMjSOMZ4n7u3V1q3VMHLgb8zMwf+0N0/AnQmwtQFoDNe7gFOJ/Y9E5fNGbw6SPNbqW1LVFURERGR5fM9hSMvz7VuqYLXA+5+1sw6gC+Y2aHkSnf3OJTdMDN7mFJXJO3L2jAnIiIisjKWZIyXu5+Nv18CPgvcB1w0s26A+PulePOzwJbE7r1x2cxjfsTd73X3e5sIl6KaIiIiIlW16OBlZnVm1jC5DLwZeB54BHhPvNl7gM/Fy48APxpf3Xg/0D/f+C4RERGR9WIp+vA6gc+a2eTx/sTd/8bMHgc+Y2bvA14G3hlv/3ng7cAxYAR47xLUQURERGTVW3TwcvfjwB0Vyq8AD1Yod+CnFvu8IiIiImuNZq4XERERWSEKXiIiIiIrRMFLREREZIUoeImIiIisEAUvERERkRWi4CUiIiKyQhS8RERERFaIgpeIiIjIClHwEhEREVkhCl4iIiIiK0TBS0RERGSFKHiJiIiIrBAFLxEREZEVouAlIiIiskIUvERERERWiIKXiIiIyApR8BIRERFZIQpeIiIiIitEwUtERERkhSh4iYiIiKwQBS8RERGRFaLgJSIiIrJCFLxEREREVsiSBS8zC83saTP7q/jxDjN7zMyOmdmnzSwTl2fjx8fi9duXqg4iIiIiq9lStnj9DPBi4vGHgN90993ANeB9cfn7gGtx+W/G24mIiIise0sSvMysF/hu4KPxYwPeBPxZvMnHgXfEyw/Fj4nXPxhvLyIiIrKuLVWL128BPw9E8eM24Lq7F+LHZ4CeeLkHOA0Qr++Pty9jZg+b2RNm9kQ/xSWqpoiIiEj1LDp4mdn3AJfc/cklqM8Ud/+Iu9/r7vc2ES7loUVERESqIrUEx3g98L1m9nYgBzQCvw00m1kqbtXqBc7G258FtgBnzCwFNAFXlqAeIiIiIqvaolu83P0X3b3X3bcD7wK+7O4/AnwF+IF4s/cAn4uXH4kfE6//srv7YushIiIistot5zxevwB8wMyOURrD9bG4/GNAW1z+AeCDy1gHERERkVVjKboap7j7V4GvxsvHgfsqbDMG/OBSPq+IiIjIWrCkwUtERERkrch7mit0Et1EB6Ax/+ioTs7Mu17BS0RERFa1gqcYpgFn9rSfCwWhSiIC+ryL9p94FzkgsAii0nFmzSzqgFV+DgPco7Kyb7v9CPzkL8/53ApeIiIi8oq5Q57Mgtu9koCUJ8N57+Uc27Gp2DX3cSo9h2Ozyh0jRZ43bbnI1k3XyaQiiEoBaublfjNy1YzjgEflG4TB/Oep4CUiIiI3reApLnk3J7mFAplEuJm7dejmOE5Aijw//GsH6GoeJjDHowrH9wj32c/gUTS7NnGyashNYHZ1dj1nHMYWCFJ+k4FSwUtERGQdK3qpW+1lbpmnZermwoPh5EljwPd96B66WkYwL1YMP/gc0STRtDS1mAhVjpEKIjY1jGB2bXq/OYJXxaeIKpRXeQYrBS8REZEq6vcWTvtOJshNlZV3jVUKCjfeqtRPK7f+m7fzlp7rtDSMVwwu7pQHkni5bMt4v8lwlUkX2dw6RCroi9fP0Sc3V9CpFJYqhap5DrEWKXiJiIjcgEFvos87WbjTbK6UMLPcOMc2On7yR6gLIrY2jbOja7B8j6neu+mQUjHfJAtntDC1NoyzZdNx0qlongMwI3jdeCh6BUO3NjQFLxERWfMmPMMALUtwpNkpouBpTrCP5vf/KwwnFXrF7jOLR/sYzGiiiSDRBWfmUxfJbcsU2bflKnu39PP88Rbu3D17zFGpWnEQmqvppyx4rb7uNZmm4CUiIssqcmOM2mU5dp4ML/se0h/4BSbyVhoYHYeMIBmNklMCeGIAdSKkTJaZe2K9E7nRnctzYMdVdvcOEQZeNoXAZNebJccsRcn1M66o8+ltm+ryZMLCKzt5WZMUvEREZFmMe5YzvoMjfjuj1CU66BZufQkob7UptSTN3q9IihR5vmf7MLdsHyIIKLVGOVgyHCUOZySmDZgcy1TWQFXe5RYYdLSOkQ7nb1WyubrqFtp2nukKZP1R8BIR2eDynuaMb+eI3874HC1TlQd7xxNOzrHtBFmKhDz4W9/N3h2jmE2HIS+WD+SezCFG6fJ/98RxPSKKZjyLl75SqYgtXWPUZK+UHQ/Kg1cyWdlNhaLktrM2FblpCl4iIqtY5Eafd3LEX8UYNVPlC01GWWn9XGVXaafzZ3+Uu3aO09FemNEKFM3MWXFrUpHERtN8uiutpqbI7u1jNNROTwUwGXrmah1KhqKp+s4xVUD5MSpuIrLqKHiJiCwBd7jqmzjDTpwwuWbWtjc2g3epc+1UtJPiv/pZsrki9XXTx3MvDdKeFFBqNarJRfRsLsTPE023JHliOd7f48O1txa4de8V6uqiWfUrC0JlrUbF2evn2E+hSGSagpeIbAgjUS2X6eaVTwUwbWZwypPhxeguht77b0mlIAyd0OLuM5s+ZjDn8acHc08d20qbNtRF3HPPMPv358nlfGrsU6krLhHC4qDz9NM5XnPfaOn5JlulmC8gVeiWE5Flo+AlIqvKhGeW9Aq4cc9yMLqHl9/9IYpFCEJKtx2BsrAzdTGcQTCZzWbeOgSHKG5pSuzrbrS0Rrzx1RPcsrdIGHjpprsAPn2fuPJw42XHnXwUJFqpcKiri6bnX2IyvM2u3hz38BWRVUbBS0RuWORGVNaNtniToWTAm3g+ejUvcDfjZIHykFFSGlFt8Vc4dTmYz9l9VySkjkFe/bqIPQecIJy+qm2qVYpSCJtcngxN7tN1cJ8uT4amwCLMoLklnt8pFk6PDJ+qW3J6g2Q3YbLuAZXLRWR9UPASkQWNRVkO+x086d+24ABvqxgcysssUTq5zQj1OND90z9I77ZENxrTYSQ5lnp40Lj1zmjqQEEcZALzqQvRQnNSaejsdtKZZFiaXJ+od3K8VNnYKWaVz7WtiMhCFLxE1riiB5yKdvKkfzvDNMwIPpPia++ZDjRl3VQL3OKkjy76vv2H6OiFTZ0QmE23FAXT0x6l4pQSxS1FThxyJg9vPrU82c3nUSm8NLTA/jthU3upPEhUMEykn8n9nn/K6d02e5uy/RSKRGSVUfASWSGRG2eibbzg91borpsORjPZHN1ok/niOPt48bZ/QToDmVriCSTj1iSzqe2CcHrHdBrqGiAIbDoIJRJLENh0mDJoaoXX3wst7aXgkwxCQWI5nZpdntx2rv3C2X2KIiLrkoKXyDwiN05Fu7jGpnm2mjswTRr3Gp7kAZ7Y9v2EaS+1yiSCThgvWzKYhIlQlFgxFZC8FIKytc6ddxXZstvJ5CCVDqbHKiWeI5WaHjF+9jhs2wupRP4L51ie3CZc2qFdIiIbkoKXSAWRG89H9/DLdTUUJlJk6/4Tgdn0lWw22ZFW3lI0GZCSgScIjSCEmvoJ9u0doK0nTxA6qdT02y+VLqWaMJGEUvGyA6nUdPAKU+FUIAtCI5WBbKY8FU1drVephWmh2RRERGTZKHiJVDBGLUe4g2LhL7DQ2X37SwTpELw0timdSTGZYCwRlsIwVbqNSTpNRKnFqpDP0NY1TrYmIpUISGHi3Te5nEpPl5UtpyqXB2qFEhFZUxYdvMwsB3wNyMbH+zN3/z/NbAfwKaANeBJ4t7tPmFkW+ARwD3AF+CF3P7nYeogstZDC1JxONfWjpLPTb5d0NjO9XSbZclWasHLyCroogsGrKXK1mpxSREQqTZNz88aBN7n7HcCdwFvN7H7gQ8Bvuvtu4Brwvnj79wHX4vLfjLcTERERWfcWHby8ZCh+mI6/HHgT8Gdx+ceBd8TLD8WPidc/aGYadSIisgRSaWd8fIKBwUEGh4YoFArVrpKIJCzJGC8zCyl1J+4GPgy8BFx398l3/BmgJ17uAU4DuHvBzPopdUf2zTjmw8DDAO0aiiYisqDBwSHwJ3niyXHGx8dprK8ln8/T3NTEvj27yi7oEJHqWJJ3obsXgTvNrBn4LLBvCY75EeAjAHssp1kQRUQW8OKhQ9x+635qa2sZGBzk7KmXufXAfs6dP88Lhw7zqtturXYVRTa8JZ220N2vA18BXgs0m9lksOsFzsbLZ4EtAPH6JkqD7EVEZBHcndra0g3GGxsaGBoeBmBzdzfDwyPVrJqIxBYdvMysPW7pwsxqgO8CXqQUwH4g3uw9wOfi5Ufix8Trv+zuatESEVmkmpocx0+c4Pr16xw5epTGhgagFMhEZHVYihavbuArZvYc8DjwBXf/K+AXgA+Y2TFKY7g+Fm//MaAtLv8A8MElqIOIyIZ3YP9+omLEyZdPEYYht+zZDUCxWOTA/r1Vrp2IwBKM8XL354C7KpQfB+6rUD4G/OBin1dkJY0OvYzTSibbUu2qiMzpwsWL7N69a+px4KV55VKpFE2NjdWqltygbKbI+ESesXwew6jNZUjpXl3rji5xEVlAEBbJj18iTBvjIxepa9wBZBbcT2SlaWaetWtgeJRC8Rt8/eAEYxN5GutqyBeKtDTUcev2HlKBXtv1QsFL5EaYUde4k0J+mKH+o0RRBzX1vdWulUiZns2bmeum7bK6PXf8NHft3kZdLkP/8AgnL/Rxx66tnL50leeOn+bu3VurXUVZIgpeIvNwz+NeBHfy4/0A1NRtoZC/yrVLT9HScXeVayhSru/KFS5f7mN8fJzAi2SzWdrbN9Heqm7yVc2duposuNNUV8vgyCgAWzpaOXH+UpUrJ0tJwUtkHu7jRFER9yKjw2enunJS6RRhmK1y7UTKHT5yhLHRUbq7OsnlcpgXGRsb58yZs1zp62PfLXuqXUWZQ00uw9EzF2hrqOPC1X6a6krTguiK1PVHwUtkHkFQTxgWSGdbaWw9MFWevEm2yGpx5coVXv/a+6ceB16EJujq7ODrX/9GFWsmC7lj11aOnb3IS+cu0VRXw94t3QAUo4hX7VI343qi4CUyD49GgTT1TWopkNUvCEKeeHKUe++pKSvvHxggTOnquNXsbN819m3dDDNauFJhSHN9LXhUpZrJUlPwEpmP6S0ia8eBA/v5y798iYn8ELlsjoCI8fFxwjDk1v2LvpObLCNdkbpx6FNFZB5maaCw4HZriRn07ILLZw/R0NRGfVNHtaskS6SxoYF9e1/NnXf0Mz4xPbg+m8lgajFZ1bZ2tFW7CrJCFLxE5hFFg7jPHs+VH79OIT+0JqeUMINUCgaunsUo0n/lNB29txLW1Cy8s6wJ2WyGbDYzNYGqrA1Do2NcvHJ9agLVuposPZtaNInqOrOkN8kWWXd8gqg4RH7iellxKtPI2PDF6tRpqZjRtfU22rr2cP7kM1y5eLzaNRLZsI6fu8TBk2eJ3OkfHsVxxifyfP35o1wZGKp29WQJKXiJzGuCIKxjZOAEo8PnuHbpidLXxScYuHao2pV7RUYGrzAyeAX3iJHBK0TFPJu69zA23M/xF75W7eqJbEhnLl/lvn072dPbxf37dzE4MsYtW7q5b/8uXnz5bLWrJ0tIXY0iC0pT33wboyPHGB+9TGvXa8HGGRk8Ve2KvSLXLpVatqJigSsXX8IoDeoNQiOdUXejSDWYwfMnGrl9xwCFYkShWBqTl8ukiSLN5bWeKHiJLCCKwIIM9c37GB+5yOjQaTK5ujU5vgugZ9erATh/8mm27JqeeT8MdVWVSLVsaW/jrx99CY9GuTY4zK6eTgAm8gUyaX1Uryd6NUXmEYRNeDTE6NBpIu+nse12crVdpLMZrl16utrVe0X6zh1m0+a9dG+/q9pVEZHY9u52bultpL35ZXb1dFKXK90ZI5NOcf+B3ZrHax1R8BKZRxDkcA+xIKSubifpTOPUupaOtRlccnXN1a6CiFRQk62hu6252tWQZabgJTIPj8axIEuudjPpzPp4u9Q3dVa7CiIiG9b6+CQRkRs2PjbE5TMvkJ8Ypa1jK42tPfSdP0JgsKl7D+msBtiLiCwXTSchMg8LstWuwpK78PKzNLRspnf3awA4dfRR0placnVNnDv5THUrJyKyzil4idyA/r4nGbx2iKg4Xu2qLFqxGFEs9JLO5Gjt3ElUyNPWtYuW9m0Ui/lqV09EZF1T8BK5QTV1PQxdP8ro8LlqV2XRrl4qzYQ9OnSNKCoyOnSN8VHNji0istw0xktkPg7x/KKkMg00tt3G2MgF+vueo7ZxB+lMQ1Wr90q09+znW19/jCAISIUBW2+5n4unnicqjtO17fZqV09EZF1T8BKZR6E4SmBOFOUZun6kVGhGEIb09z3Lps0PVLeCr0BdwyZ6dj5Iz64JctnSGLZt+16vCVRFRFaAgpfIPMzSmDlmIelc69TtdVKZNLnatT0tQyqVqXYVREQ2nEWP8TKzLWb2FTN7wcwOmtnPxOWtZvYFMzsaf2+Jy83MfsfMjpnZc2Z29/zPIFI9ZhnMMtQ27iKb20Qm10Ym10a2ZhPZmk3Vrp6IiKwxSzG4vgD8nLsfAO4HfsrMDgAfBL7k7nuAL8WPAd4G7Im/HgZ+fwnqILKsMtnWaldBRETWgUUHL3c/7+5PxcuDwItAD/AQ8PF4s48D74iXHwI+4SWPAs1m1r3YeoiIiIisdks6nYSZbQfuAh4DOt39fLzqAjA5IKYHOJ3Y7UxcNvNYD5vZE2b2RD/FpaymiIiISFUsWfAys3rgz4GfdfeB5Dp3d0oX5t8wd/+Iu9/r7vc2ES5VNUVERESqZkmCl5mlKYWuT7r7X8TFFye7EOPvl+Lys8CWxO69cZnIqpFmgixjRIWA/ESKl1/cylB/Dr+p/z5sHNf6znL+1IsMXLvExPhotasjIrJqLXo6CTMz4GPAi+7+G4lVjwDvAX41/v65RPn7zexTwGuA/kSXpMiqkLY8bws+zZH8MGfZTu7ESY5cv5Nc7RiZXIEgCPB4agmbmv/KCIMAHCwMwOOpJ9LQd740dUMQTP9fx2x6OQgDGluL9O4pshbvUZ3N1TE2MsDAtYu8fORJ6ps20bvzVrK52mpXTURkVVmKebxeD7wb+JaZPROX/TtKgeszZvY+4GXgnfG6zwNvB44BI8B7l6AOIkvODH42VQdcZij6OZ689gBPXHsDE0zOfzXd/GU4QYXedCOqUDbJscQ+AzTzD/teS8fWPI2tEUFYCmbuTE9uGkEQhlPPXvp/DwRWCnxOadvJljkzI1MD2/Y6TS2v7OdwI2rrm6mtbyadgrHRQRpbOstCVxRFXDr3EsP9lwjDFO3dO2hua1++ComIrFKLDl7u/o8kP0vKPVhhewd+arHPK7KS6oMhviP4G77d/4boBnro7eaGNALQF3XyjUMPcvDQPYzM8dYsvdGSxy6FN8PjFjgv29aACdJcJE/ND72Fnl1OEMDoEPRfhTCY3iUMSiHP4+XJZ5pcDhLv8sBIhDtIp6GlA65dPgsYzZs2l9X78vkT5MfH6Nl+gPzEGJfOHae2voFMNnfTPycRkbVMM9eL3AQzCCu0Yi2FjvACD/FJ3hz9OXmy08+5QIizBe70cz1q5nF/A4c/7RwmjeGEFDlPgcnUVX4Ij/+Nu1Lj8zUgyyhBhaAXkaKWPnL/66vZd+d2xkdT5MdLRwsMJsbSjI4Y7s2k0nDp/BO0dweMj01vM/nUQRwALT63hkYINcm+iKwTCl4iq0xNMEYNY0t2vPpwgF4+wUDUyBU6b6o1bmama+EyKSsk1peONeY1fC3ay1PP3MO5k91g8b5WCk+FfCuD109ifJkgrCWd2ceRb2VmPY87FAvT+wI0NsNdr4E9ByCdCGC60EFE1iIFL5ENojEYoJGBhTd8BQoMcnt4jvv+6RtADx6nosBgzAtcY5wsAfWkucQojaRpstmtepEbZ9k+VV4kxRG/na/0/SRf/4qRyThm4BGEaThxOO589ekuUTPDo8njTkdHS3SPBnEzoZnjDj29cMe9BVp0g4Jldeb8RUZGRmhurKextpbaGnU1y8aj4CUii3aGCRoJ6bCI0M6UrTvrE2zC2UyG0IzQJ5jA6UwEr6QuzpU9vsf/kXN/89e86HeRJzMV0ma2xs3ucS0usL7UjRoR8JRv4+l/+R62bHMamxx8+sKGyRF9TvnFElPhzpxocrwb06PsgnjbUrep07054lWvmqCxceM21TXU1TI6OsKV6/0898IR2ltb2LdrOzXZNFC6CIOoSBhq7kZZvxS8RGTR2kjRQoowbkm65gWKOG2kqCXgGgUiIASGiWi8iUmRQ4vYYifZwsllqTvAuGc5/skv8oLfQx/puLQ84JUCX/mVrDNNhUIrL3OMZ72Nbz78Q+zaXaC9feY4QZ86tBHhHh/JPVE2GQTjMXjxOLja2oh9+yZobV6esYdLqamxgeaGOgAGBoboam+jJpedSrH9g0OcOHWG0fFxarJZbtneS2N9XTWrLLLkFLxEZNE6LF32uIGQPI6Z0UKKq17gMKOEbqQwWlbZ3SiyNs7+8Dn289yyPUd/1Mzh//ebHPRbKUz96Z0Od7Nb5EpBr9KFD5MMZ5wcARGv+fV/zq4deYaHjcHBUjtd2RQnUfl+U1eluuNumCeeKTGAztxIpZyG+qUJdu7OuUuXCYOAjrbyOU4ymTR37NtT2uZyH2cuXGLvjq2EQaX2SpG1ScFLRJZcykoBa9Iuy1FwZ4yILAHphS7FXIeaguvcx9e4y79BgfTCO9ygEa/liL+KJ/9tnkfJEFLgqzY+7z6W+He6bGYLnpcttXOOd/7Ne9ncWcDMIYqP4pVfS/Pp+eQmD+UO42N5Tpy+zLbuzeQLacJwOtDV1dRgcetXT0c7X3v8Kfbv2s7MwCmylil4iciKSJlRv8pauqohbXnS5JfseDU2wmv5Mnf5NxiiYcHtX0nkHfE6Dvur+Oxft5HLFglD8Cgqdal6efdqS2Oe1pZCojzRjWpw6fIA1wcamBjfyeHjRk1NkW3dI2zuGGdyaFcURZy/fIXG+rrSJMG6hFXWEQUvEZF1IGej5Fie+2S2GfT6Cfp/72v00Z1YMzsQFSlyLTHlSNKQT3CdMRrIcNlyFN24Rgcjv/WzHD5eRyp0oijPpb5zDI7k2dp1J199rHZW8Lo6kGZoJMSS5e4V8lkEbnRtGufOW67T2Ta+4Lx3IstNwUtERBZkBs12jWauveJjvMAoWwnpIl26EMNgm7/EtX9zjD66yHvEBQYIMNqo56xV/oga85ob7q514EXfzOGfehftLWPU5IrlgW1q8JuV7zS1Oko8Lg969bUFbt91nc7WMYKFb2ghAih4iYjICmknRfOMq18LOO12mZxf5Chj3GppumyBUHWTrVZ5T3PhvzzBcfbgN3DLrxs17PX8NTW87pfeQEfLeFnLnM9ojSvPbFa23oul5aIbVwcyZZdUZNNF6msqtyDK2qTgJSIiK6J9RqBqjK9+BRigQGhwmTzXvUAaYzvZqZC2GGnLs8WOs4Xjiz5W0oRnOO9bOfgrV3mG9Iy7pU5erVp5fJpVuPVYQMQ3rHz7IiHNXOHdf/ydbGoam/s6g8jwyQsdkiFvaqH8CldPXBQRBk46tfqnI1kvFLxERKQqQjPCuHWnyzJ0kcHdGSViFF+S0LWcMjbBNjvGFn+J4jJ9nI5Twynfye+9+6mpSXlnqhTufGrdXJJXrQZ0coYf+cR30VI//xWxsngKXiIismqYGbWE1Fa7IjchMCdYwitVk9LkOWDPsNtfYJTlmUx2giynfDd/88Q2sukigTlUCnnRAleXRlFZw5pj9LYNsqf7qgJdgoKXiIjIKpexCTJMLNvx2+0CQ7/7LIM0V1w/V5fpfIqEfNm3c+L930t9boJsqjRWbWoMmyduwTXVTTrjeabmgPPEfuV3kOhpHWRH+1Vqs2tjLJyCl4iIiFBvg9QzuKTH7LGX6f/wc5z1TqIFLmyYK9wFNnfoK3rAN+lh/0+8ka6WIeqy5eHUK00z4jNH4sWi+P6qcVltZoKtbf3UZpY28Cp4iYiIyLJpsms02SufhmReBjv9EFf+8Hke821zTjMy371VK3NGqcMJePPP30Zbw0iptMKdGtyjsvLdHVfmrbKCl4iIiKxZoUV0cJ4OO7+kxy14ij66+NqvjZAnc8P73cvfz7tewUtERERkhpQV6OIMXXbm5neeZ3YOzbUrIiIiskIUvERERERWiIKXiIiIyApZkuBlZn9kZpfM7PlEWauZfcHMjsbfW+JyM7PfMbNjZvacmd29FHUQERERWe2WqsXr/wPeOqPsg8CX3H0P8KX4McDbgD3x18PA7y9RHURERERWtSUJXu7+NeDqjOKHgI/Hyx8H3pEo/4SXPAo0m1n3UtRDREREZDVbzjFene4+OanGBaAzXu4BTie2OxOXlTGzh83sCTN7op/iMlZTREREZGWsyOB6d3e4uRs9uftH3P1ed7+3iXCZaiYiIiKycpYzeF2c7EKMv1+Ky88CWxLb9cZlIiIiIuvacgavR4D3xMvvAT6XKP/R+OrG+4H+RJekiIiIyLq1JLcMMrP/DrwB2GRmZ4D/E/hV4DNm9j7gZeCd8eafB94OHANGgPcuRR1EREREVrslCV7u/i/mWPVghW0d+KmleF4RERGRtUQz14uIiIisEAUvERERkRWi4CUiIiKyQhS8RERERFbIkgyuFxERkfVtzCOOMTb1eNydHsvQZempsqI7LzHOBBGRw2ZLsymxXhS8Ngx3uOxdjFF70/sGRHRwlkyQX4aaiYjIWpCzgNsSnyFP+zAtM+4sc5E8NRi3WC15nG/5CK2kCMxWurqrloLXOnHSx/lSNMCPBZsIE7/gkRvHogP8o7+Vl9mNld25yZnvrVDa1nEC6hngruifuCv4OlkbX5ZzyDFCYDd1ZykREamCfi+StYCszR6xNHl3ZccJMYWuGRS81okzPsFn/Rr3eC13Wt1U+SDNPMf9HHngXeRqnc6tecJU6Y3iDmEqnLqLZhgERJPLocXfAwoFOHko5B++0MA3ojeTYjwObDODW2nnIA5syZBns27VOXOd00Ifr7a/Z0/wAmlT65qIyGp1hQJtFSJEJ2mOMMbT0TBFYLdlF/1c/d7CBXoZ8Xqg0udJubnWG44Rsdw5cD9Pz7tewWuduM/qqCPgSz7AnUwHL8fIMEGuFuoaItq6C6TS003DqUTXeyrlifIw/l4q27q3wNB3PMDZo6UgZoFNZafASlErCMAjKOSN3t1TFSCw6bdBGBjupdAXBKX1YQiFArx8GP7Hn26lvjhALUMVz3My8E1/Jcvj+kyVV3rzlQc+A0IK7LNn2WvPUhOMVnxeEZHVquApLtNNn3fiC14zV/k/xMnlXRykJhhjLu7OdS+wxWYPXRmgSC0B+4MaxjzisI/RQFjWEzPpRb+LiGDeIJX3NHkyHPiRO2iqHZ217eR//92jGZWc3SwwOpGitXaY27rOVH6yKKpcXoFH84W/18IvvzjnWgWvdSJjAa+3er7mg4x5RK5C8+9imEFLO7S0l34xU6np408GtslWspOHnN23Tf/Sh4khAKnEb1wYlJfd/hq4+uZ/xuFnYWIsDnLx7/bU6fh0yEq+j5NvxiBwiEr7Jn8Mk9vM3G9sFL56FR575I/pjU6QmtHaNvONbnMEvplsVjica7+5g2KlP0g2xzqjyBY7Tq+dJGWFeWomsraMe5aL3jM1RnX+Fo8Z74t53qQLtZzcjKU8VsmNHa/oKa7Qwf4fv59X1YySCYtT6xyrGCYcm/rb6u5Ty1PsdfOGkGsjA9QNXCXTuX3GgSMuX3yZzU2bsFwdNUD2wknGWzqpy9bEm0w/2d6K/zeeXbi5qZ/ehsNkUsUKO0zutnBo6h/Jcep624LbLTcFr3XkTUEjf1cc4Bs+xButsdrVuWlBAJ29pS+oHNImt5tZllxOhbO3BYhz4axjFfJw4ii8sOvdjEcwEUy3miX/BJQFJ5teaUSJ8rmD0qxjMP23bXJsmyfWh4lHZtP1CfBExabDZKEAjw8GPPZfP8It9i1qbGRWXWbWYb6ymzFf0/7CKtWn8h/RhXoIXsl5zLfPXPUomf+1nu95Zv0uLamVGye51GGjUmtGv7fS8ZM/THMY0VhbaoXxqdaMGdvP/D+MR4ltk9tFMx7PXEiYt2Vj5nErhJg5jjtnUFgwP0SU/aY5vKa5n60tx2isqTD+doFWHK9Y4fn3e+bMJe7oydHb/NKMg0U01/SRS/Wxq72ZiUKRfPEcr9sxQSb+wzx/SxH4XM97E6/DaqfgtY4coIZOUnzZB3gjay94VUsqDXsOQCpwerZBTS2EQRxoZrakxcJEwAosmlVuC6yfdex4m6mA5RDGf4Hdy49nyT/YPlnPCI/g1KmQx7f9OKfOhwQGlI1ncGxWNIgSJfEYPYOW5kKiZW1ydfIP4nTTo7njbpiV1y1IfoL4ZMAov7iDxAeezfosTQTasvGEPn08nz7GZEiaCqtlj2b80U7uH29skSd3TPRmJ1+zyddkOvBa8oOrbDl5rJkfGj5j1VxjIitcAONOTbZIc91E+XlV/FxKro/mDxhznccch0u+PlObl3043vwH+tR+iV07snn2bz5LT+vQ1Pty+nkX+JCeY/2cH+4Vg9eNb3szoWHBus9lznNamWBSjCKuDI9ya+d0y9Hpa4MAbGmuY3d7C8+dvcz5l84CsKe9ZSp0SYmC1zoSmPEGa+RP/SpXvUCr6eVdq8zKu1STrSLJTuTJ4iBe2L2nyO7dw/T3B0TFUviZDiJRHOKmPzOCxIexxcsnTma49+4R0unJbYpT66ef1xP7eeJ4ia6A+EMouX46uFjZB5d5sp7xUnH2sUrbEh+D8g+hyedLthv6dJBNBqSpD8g4NCbrltgt3jZZT596Xk+UTW1bLA8vye6cWaJkfWYEpLLnS0ROL7Vsnr9Sy2v2X55Z0dnPkVyfDAU3s+1c21Q6RrTA+rmOfTPHlaoKg4AH924r+53d0tJQWvCIbCrk1du6qlS7tUGfzOvMm4JGPl28yld9gO+z1mpXR6rADJqbSx9eQVmrUXmrGpSC19T6ePncuRv7kJsMg5ZYTjZITK1Plk0t+YzgNbu1x8I51s/xIT1Zf2Ou9RXKZ4S/iiptM9dxy8LN/GFirvOY89ixifFS8BKRtUm3DFpneizDLeT4SjRY7aqIiIjIDApe69AbgwZOMM4Jnx5omUo5UXGcibEBJsYGiYq66k1ERGSlqatxHfp2a+SjXOYr0QDfF3Qz4WNExa/Tf2WcdG6IXF0TUTFPtqaZ9p7bCEL9GoiIiKwEtXitQ00Wcq/V8VUfIHLnCheob7mVlo7voGPLfaQzdWze+W1ka1u5cuH5aldXRERkw1DwWqfeaI1cpchB+gFIpUuz2WdyjeTHS7PC1zf1TC2LiIjI8lPwWqcmbyH0T95HijTDA8fIT1zj+qXDZHKlOb7mnDhPREREloWC1zqVsYAHrIHH/SqNtOIeMTp0HAtCmjv2AeBRkbbu26tcUxERkY1DwWsde2PQwDgRh3mK+qZbaGy9h6ZNuwmC0izCQZgiW9NU5VqKiIhsHApe69gBamgnywleqHZV1oT8xAjF4tw3YRUREVmsqs0jYGZvBX4bCIGPuvuvVqsu61VgxuttE5/z04yNnMfoqXaVVrVC4Ulqal8HwMTEOAef/qeyWdDvee0bq1U1ERFZJ6rS4mVmIfBh4G3AAeBfmNmBatRlvXvANuE4Z458nKH+g/SdfZrLZ57i6oWDjA5drnb1Vp0wLHXDZjJZUukMt939ALff/W2EmutMRESWQLW6Gu8Djrn7cXefAD4FPFSluqxrXVZDK52cP/nnpDOtNLTuoLFtJ7naNoaun+bqhRerXcVVxKe6GvP5CQDS6QypdLr8LtUiIiKvULWCVw9wOvH4TFw2xcweNrMnzOyJfjTuZjG62cHo4AksuMzY8GWiYp7axi7ae+9mdFitXpPa2jdz6FuPceblIxx67jE6u7dOrTMFLxERWQKrdnC9u3/E3e9193ubCKtdnTWth51Air5zn2Z44Dxjw330nXuWkcGLBIG60CZt3rqb3m17CMMU23bfSkcieN1+9wNVrJmIiKwX1frUPQtsSTzujctkGWxmB/XNr+bkC5+iadNmcrUNjI1co+/sM3TvuK/a1Vs1Lp57mc7N22hqaScMNLmsiIgsvWq1eD0O7DGzHWaWAd4FPFKluqx7Gcuxqedfkh+7xsToVXJ17bR13872W/8Z7hHnT3y92lVcFdSdKCIiy60qLV7uXjCz9wN/S2k6iT9y94PVqMtGka3dTZiu49Lpb7Jt/1umBouHYUCYylW5dqtDsmtRRERkOVRtgI+7fx74fLWef6NpaLmfrXu/j1OHPkNz+y2ks/UApNIaPzfTM499mcamJrbtOkA2m612dUREZB1ZtYPrZWmNDR9l6/53UiyM8/KLyrsL6e7dybFDz3D+7IlqV0VERNYRBa8NIkw10db9aupbtnHsmc9UuzqrXn1jMwfuuJ/AAl549lGGBq5Xu0oiIrIOKHhtEOlsB2bGztu+n3Mn/oHhgfPVrtKq8/g/Psuhbz1DvjDBS4ee5aVDzzI02E8QhBx85hvVrp6IiKwDmsRpgygWhrh64TkaWneAO8ee+TRb9r6ZMAxo2rSTVLqm2lWsujDspLEZRoYu09xWCqqT92rs6N4y/84iIiI3QMFrgxgZfJ6u7V1s3rmPFx/7Qw4/+d/YcdtDpDNZrpx7ns5tr652FauusbmLljaoqTXa2jsAym6SDZrbS0REFkddjRuFF8nVbiZM5dh7779k6Nop8hPDNLRsIYry1a7dqtLS1lntKoiIyDql4LWBXD49DkDP7jdiQciRJ/4b+fGhKtdKRERk41BX4waRq9/HwJUnOH+iSCqdomf3G3npW3/B9lvfxqbNt1e7eiIiIhuCgtcGkc60Udf2Bjq2DpLN1TA+eo0zR74IQE19e5VrJyIisjGoq3GDCcMMAFtu+S4yNc0cffrTVa6RiIjIxqHgtUGFqSw7bv1eTh78vMZ5iYiIrBAFrw1s953vpJAf4cTBv6p2VURERDYEBa8NrGPLq2ls3cHRp3ULIZG1Igyc3vZhxify9A+PMDA8SqFYrHa1ROQGaXD9OpdhnAIhVy6E9J0PuHIuhYWGBdC9I88D7/hdmjb1VLuaInKDhsdGOHXxCEdO5xkbn6CxroZ8oUhLfQ23bu8hFYbVrqKIzEPBa52rtWG+N/hv7H/uKR7lQUaox4Axslz6Wjv9tz9I57YCYQostKnJ2QMzWjqdLXsgnanqKYhIwnPHT3PX7m3U1WTpHxrm5IU+7ti1ldOX+nju+Gnu3rO92lUUkXkoeG0AKSuwP/Uc+3luqqzoAaeiXfzTt97CmW/toJS4pm+JE2Gcop5D97yerfsj6psjAjPCNHRtcVKNK38eIgK4U1eTBaCprpbBkVEAtrS3cuLcpWrWTERugILXBhVaxI7wKDs4ypjnAJu1zeloB9948kVOPbmLgbisSMhZRsm96y1s3+cEKZjs2QjiQxTys48lIkujJpfh6JkLtDXWc+HKdZrqagFw171ERdYCBS8hZ2MVy/eEL7DbX+CatzFODQCjXssT/u08euRtvHwIzJjKbIEBDnVNTiZt9O6BTHb6eO6lL1MuE3nF7ti1lWNnL/LSuUs01ebYu6UbgGIU8apdW6tcOxFZiIKXzMsMWu1KWdlOjvBdz3yW076LKNFSFuBEGC/6XXxz7Kd56h8gk4uD1uTYsbAUxvbdBTv2lQczEVnY2b5r7Nu6ufQg0cqVCkOa62urVCsRuVEKXvKKtARXaOFKxXV38hhvfuzP+VZ0L6PUAWD4VES7TCcHP7uTp7/ze2jrLrWUTX58BAZBADv2w+4DCmYiM5majEXWNAUvWRZtwWXeEPzPiuvcoc+7ePKL3+AyPUzGLosH+E+Q42k6efLtD7F9L6Sz0+PHJrsq2zphj4KZbEBbO9qqXQURWQQFL1lxZtBuF3hr8OcV17vDRd/Mk59/kpc/f8uMtREAR2jkm9/7DvbeAa3tECaCWRBANgdbd0GuZhlPRKRKhkbHuHi1n7GJCQyjriZLT1uT5vASWQMWFbzM7AeB/wvYD9zn7k8k1v0i8D6gCPy0u/9tXP5W4LeBEPiou//qYuog648ZdNk5vjv4NHlPJzopp12Kunj6kWc59sh+PL4BgyWmwyiQoo4Bdv/yu9m5t3TMgFIwC+P7NWzqhBoNiZE15vi5S1zuH6S1oY7+4VGa6moYn8jz9eePcuuOXtoa66tdRRGZx2JbvJ4Hvg/4w2ShmR0A3gXcCmwGvmhmk00XHwa+CzgDPG5mj7j7C4ush6xTactXLO8NT9HLnzAU1U9dcZk06I0846/n2Ufh2W+ABdPdlZNytXDgTrjtrlKXZWkaDF2SL6vb6UtXee2t+8ikYVd3O988dJz7D+xma0crTxw+wQO3z2wlFpHVZFHBy91fhIqDPR8CPuXu48AJMzsG3BevO+bux+P9PhVvq+Alr0h9MEQ9Q7PK27jMdl7i2v/8ay6zmZmBqughL/jdPDP2v/H0Y5BJl2bFaGyxUuuYGY3Nzt33OT3bpucqE6m2YhTwxJFWXnfrVQrFiEKx1P2ey6SJoqjKtRORhSzXGK8e4NHE4zNxGcDpGeWvqXQAM3sYeBigXUPR5BWa7+rLff4sV/7HX3PUb6XAzPsiORd9C3/5Ax+guc3Z1OmYW8X2sACjrgFuvzuiu8s1T5ksq972Nr7yzAvU5ya4NjDErp5OACbyBTLpdJVrJyILWTDRmNkXga4Kq37J3T+39FUqcfePAB8B2GM59f/IkjODTXaJTVS+zYo7XPqLz/N89GoGaC7tQ1S2/2TGOufNPEUj2//tO9m+qzTebGqKDDeCEHbujujqVjCTxdne1c4tW2ppbz7Drs0d1OVKl/Zm0inuP7CryrUTkYUsGLzc/TtfwXHPAlsSj3vjMuYpF1lVzKDTztMZPLLgtgVPcTrawbO/fprHaZm1PiLky2TZ9cF3csfdRdJpyia/NCanyiiVdW12NrUu1ZnIelObraG7rbnsd0hE1obl6sN7BPgTM/sNSoPr9wDfpPT5ssfMdlAKXO8CfniZ6iCyYlJWYEd4lO1+lGKFt1WRkNPRDp771Qt8jo74Cszy8TiTDWEer73zV97JXffmqaubDmRRVLo6s6bWaWzUh66IyFqz2Okk/jnwu0A78Ndm9oy7v8XdD5rZZygNmi8AP+XuxXif9wN/S2k6iT9y94OLOgORVcQMUhRmlacosDs8xE4/zDCNRPEUGJW4wwm/hXMX38Vn/iRHmDLMfKpxIwxK0WznzgL33DdBW5sTJKfcSOSxACOVhpx660VEVoXFXtX4WeCzc6z7FeBXKpR/Hvj8Yp5XZK0KzGmgf/6NDO7iMW7/8P1c9M3kEwP/S2PMjD7v4qC/iiPv/XFqasvHnpGY+SywUmvZ3r157rprjI6O0nZTPVQ+vWzxcqSMJiKybHS5oMgqlbICPXaq4rptvMSr/Juc/vhX6Cc5GGx2aur3Vv7Bd/Hc//LDtLbGAS3uurSycWZOKuVs25onmLtBTkREFkHBS2SNSluenXbohrYd8TqOfPRRLtEbt4bNDGilx+PkOE4Lff/xhziwb5wg5QQelQb+e1TejRk4W7fkaaovLsXpiIhsCApeIhtArQ1zZ/hNSte4zM0drno7L/7vx/hLespuw2QzLgYokqJAhtf9xvdx522jpDNO4NNNZeYR9XVFGusUzEREJil4icgUM2izyzzAF4h8/gnHIkIueC8vfuAi36CdIA5mXrZNwHf854e4544RGuqL5XfdLBtfZmSzEdmMBpiJyPqm4CUiFQU2fwgKKNBrJ+nxk4xSV+FKTeOKt9M/+P386SOtpEIHfGrof3KSWcNJhxH7do9y563DNDcW8EQD22RVSl2e8U3PNQ5NRNYgBS8RWRQzqGW44rp6G8D/w1u55m3kyc65P8AV7+CLfoBnf/o91NcWSSav8i5PJx06t+4dZv/OodK2IiILyKUm2Nx4reK64Yk8damVuSmvgpeILCszaLXK98tM6rBz7PHnufC7X2cwvkXTXK55I59iBzt+5gfo3DQRh7dSUCvrzow8Mbm7k8tEvGrvAFu7RnTjc5ENJgzytM7xH7Vnz/Xxuq2dK1IPBS8RWTVSVuq+vBGv8sc59TtPcoLuCmudSrc0H/JGvkQLd3/wbfR0jpa2nBxnltg+ioxsusj+nUN0to7p/poi68DXjp+jtTZHd2Mt7XU1WJXe2ApeIrIm5WyUW+x5buH5G94ncuOKd3DsV09yrEKr2mT4MpwJsvwlOV7379/Mnm3DBMZU96cn75EYOWEQsa17lJb68cWckogso2/bsZlLQyOcvj7EwQtXaa+voauhlk11NStaDwUvEdkwAnPa7SLtXFxw27ynueBbePE/XOEJGuNQlpjyP8EJKBLypl9+I7ftGihdSBCHM3emlxP7mDuBOZ2tY2TT5VN1iMjSS4UBm5vq2dxUz0ShyIXBEY5fGeD5C1coruAtOxS8REQqSFueLXacXj/OGLWJGzFNm2whK5LirG/l6sBb+fw/dREGwFTrWXkL2WTvhjkUI6jNFdi3rZ9dPYOlKzV9+rZOyTsLeDy9R6GgKTdEFiuTCtna0sDWlgZG8wUuDY2s2HMreImIzMMMalj4j/Jee57Cf/4x+mmtMLqssoKnOclext//Xp452kJg5WPTguTVnOb0dgzT2zbM1o6hmz0NkQ3v9PVBtjQ3zCqvSafY1tII0cq0PCt4iYgskZQVaOPSje9g0MVZhj78BH3egRNQ6X6bUJqw9lF2sOfnvo8d3YNcvJYrm4Q2Of3GVOtc3J3Zs2mETQ0jukhANjSr0GpdDQpeIiJVVm8D1NvAgtvt8MNc/Y0necy3UyA9VT7zdk4lpURWIMMgzbzm330n+7dcI5OOwJPTbExuXipobRyjMaeLBGT96W2ur3YVAAUvEZE1IzBnE5fYZDfRqgaMeQ3n/tNhnmZb2Vi1mVNuOAF50rzx3z/A/q3XyaULiXVGMq15VN4N2lw3TmqBux2IVNPBC1fY2dZETbo8+lwfHWc0X6C7fmWublTwEhFZ53I2yk47zE4OL7jtgDdz8D+c4+/pJiA52eTMUGVTwW0yzH3/r93Ljq4BsqliqRt0RteOOxAlgp9BNq07D8jKuDg0wpWRMe7a3E5DLjNVXp9Jc/DiVQUvERFZeY12ndvsSQqeqnD/zcoiAq54B5/7+Tx5MhjRPKNpEq1mGLUM88O/+2p6Wgd1/01ZVpkwze62dp4+d4Hbutporc0BpWkmVpKCl4iIzJKywsIbJfTYKTb7KQZoueHA5gRc8B6+fmgz6dBJhRFUGq8WlY9Jc4wtbQPs6rpKU63Go8mNGctn6BvZxr29zlNnL9HTVE9vUz39Y+OkgpUbeK/gJSIiS8IMmqh8E+K5tNplxv/Li1yl4yZa2EIO+nZ2/+u30FQ7TiY1IyQmrvScnP8MSmPktrX309N8nXRKk9ZuOPGvQm0mxWu2dnHk8jW+fvI82VTIrV2tK1YNBS8REamqrI3Tzemb2qeX41z/g+c44V1xYJs9sH9mG0aeDH/PJm77iW9j26b4Cs+Ye/nFA9MrIgJzupsHaasfvak6yupy35YeTl0vLafDgFu72so30DxeIiIilZlBC320WN9N7TfhGS78wVG+RA+zo1l58JpcWyBNgTSv/Zl72NF+nSDwiiHNo/IWtjCI6GoaJBveXLetrG8KXiIismFkbIKtdpytHL/hfdzhOm28+Nt9PErrHBcPTAYxS5QYjvG2X9hPT0s/gSVvAeUV58r1qBTYWus04e16peAlIiIyj1Lr2hVa7ApFD5jdUgaVUlSBNJfZzBc+lCcimDVv2lycgDQTvOP/2Et388BUYCvdcL3CHQoozauWbITLpIqkQ41jW40WFbzM7NeBfwZMAC8B73X36/G6XwTeBxSBn3b3v43L3wr8NhACH3X3X11MHURERFZKaDceZkLG6eUEmznJMI03vF+BNOd9CwfPdXHoQkdZSxke4VToJI03mbpxe2T0tvSzvbWPppqxG35uWX6LbfH6AvCL7l4wsw8Bvwj8gpkdAN4F3ApsBr5oZrfE+3wY+C7gDPC4mT3i7i8ssh4iIiKrUmBOA/03tU+L9TH2R4fim67PbmFbqPVslDpe8M3s/7HXkEnNPUmtzxirlkkV2NZ6ld6mq2oxWyaLCl7u/neJh48CPxAvPwR8yt3HgRNmdgy4L153zN2PA5jZp+JtFbxEREQScjZKjrOveP9ejtP38WP0UXfD+wx7I49Tz+0/dhf12bnnSKt0AehkN2hTzRjbWq/QmFNLWyVLOcbrx4FPx8s9lILYpDNxGVB2zfAZ4DWVDmZmDwMPA7RrKJqIiMhNSVmBLs7c3E4GQ97IhY9fYJTaV/CsxojXceBH76axZoTadL5sXfIen1A+Tq21dpjNDVfiiXTXrwUTjZl9EeiqsOqX3P1z8Ta/BBSATy5Vxdz9I8BHAPZYTndeFRERWQH1NkA9A694/wkyXPzj0xydmmOtZO7u0dKotYiAA+++k+7GfrKJwFa6x2f51rOOEM+31tnQT8M8LXWrwYLBy92/c771ZvZjwPcAD/p0Z/FZYEtis964jHnKRUREZI3L2ARbOM4Wu/kpO079cT8v0ETIQnOfVZhHjYAI4zU/vpfNTddK860lDI5mibz6c3Qs9qrGtwI/D3yHu48kVj0C/ImZ/QalwfV7gG9SuhBjj5ntoBS43gX88GLqICIiImtbcsqOCc9QIF15u3kuKigScpnNDE7cwbErHQSAJedOi6AhO8KJq+1l+wUW0VnfTy6cWJJzWchiB0/9HpAFvmClmd4edfefcPeDZvYZSoPmC8BPuXsRwMzeD/wtpekk/sjdDy6yDiIiIrJOZGyCDK8sBNVzmMInX4qvBp2tH2aNeiuSpo8u7n3fProbrhPcwJQhM8eqZVMFGrI3djGBzbyUdDXaYzn/rdS2aldDRERE1qkhb+Qam17RvmPUkifDW9+/mc6Gfjr/48eedPd7K22rywVFRERkw1v0RQWe4eu/d41uXp53OwUvERERkUXK2AS9nFhwu2DBLURERERkSSh4iYiIiKwQBS8RERGRFaLgJSIiIrJCFLxEREREVoiCl4iIiMgKUfASERERWSEKXiIiIiIrRMFLREREZIWsiXs1mtllWGAO/huzCehbguOsRTr3jUnnvjHp3Dcmnfvqsc3d2yutWBPBa6mY2RNz3bRyvdO569w3Gp27zn2j0bmvjXNXV6OIiIjIClHwEhEREVkhGy14faTaFaginfvGpHPfmHTuG5POfQ3YUGO8RERERKppo7V4iYiIiFTNug1eZvbrZnbIzJ4zs8+aWXNi3S+a2TEzO2xmb0mUvzUuO2ZmH6xKxZfBej0vADPbYmZfMbMXzOygmf1MXN5qZl8ws6Px95a43Mzsd+KfxXNmdnd1z2DxzCw0s6fN7K/ixzvM7LH4HD9tZpm4PBs/Phav317Vii+SmTWb2Z/F7/MXzey1G+V1N7N/E/++P29m/93Mcuv1dTezPzKzS2b2fKLspl9nM3tPvP1RM3tPNc7lZs1x7hvis63SuSfW/ZyZuZltih+vrdfd3dflF/BmIBUvfwj4ULx8AHgWyAI7gJeAMP56CdgJZOJtDlT7PJbg57Auzytxft3A3fFyA3Akfo1/DfhgXP7BxOv/duB/AgbcDzxW7XNYgp/BB4A/Af4qfvwZ4F3x8h8A/zpe/kngD+LldwGfrnbdF3neHwf+VbycAZo3wusO9AAngJrE6/1j6/V1B74duBt4PlF2U68z0Aocj7+3xMst1T63V3juG+KzrdK5x+VbgL+lNLfnprX4uq/bFi93/zt3L8QPHwV64+WHgE+5+7i7nwCOAffFX8fc/bi7TwCfirdd69breQHg7ufd/al4eRB4kdIH00OUPpiJv78jXn4I+ISXPAo0m1n3ytZ66ZhZL/DdwEfjxwa8CfizeJOZ5z75M/kz4MF4+zXHzJoo/WH+GIC7T7j7dTbI6w6kgBozSwG1wHnW6evu7l8Drs4ovtnX+S3AF9z9qrtfA74AvHXZK79Ilc59o3y2zfG6A/wm8PNAcoD6mnrd123wmuHHKaVhKH0on06sOxOXzVW+1q3X85ol7kK5C3gM6HT38/GqC0BnvLzefh6/RemPUBQ/bgOuJ/4wJ89v6tzj9f3x9mvRDuAy8F/jbtaPmlkdG+B1d/ezwP8DnKIUuPqBJ9kYr/ukm32d183rP8OG+mwzs4eAs+7+7IxVa+rc13TwMrMvxmMcZn49lNjml4AC8Mnq1VSWm5nVA38O/Ky7DyTXeanNed1dvmtm3wNccvcnq12XKkhR6ob4fXe/Cxim1OU0ZR2/7i2U/oe/A9gM1LEK/hdfLev1dV7IRvtsM7Na4N8B/77adVmsVLUrsBju/p3zrTezHwO+B3gwfnMCnKXURzypNy5jnvK1bL7zXRfMLE0pdH3S3f8iLr5oZt3ufj5ucr4Ul6+nn8frge81s7cDOaAR+G1KzeypuHUjeX6T534m7qJqAq6sfLWXxBngjLs/Fj/+M0rBayO87t8JnHD3ywBm9heUfhc2wus+6WZf57PAG2aUf3UF6rksNuhn2y5K/9l4Nu4p7wWeMrP7WGOv+5pu8ZqPmb2VUhfM97r7SGLVI8C74it9dgB7gG8CjwN74iuDMpQGoT6y0vVeBuv1vICpMU0fA150999IrHoEmLyC5T3A5xLlPxpfBXM/0J/oslhT3P0X3b3X3bdTel2/7O4/AnwF+IF4s5nnPvkz+YF4+zXZUuDuF4DTZrY3LnoQeIEN8LpT6mK838xq49//yXNf9697ws2+zn8LvNnMWuIWwzfHZWvORv1sc/dvuXuHu2+P/+adoXRh1QXW2utejRH9K/FFaWDhaeCZ+OsPEut+idJVHoeBtyXK307pqriXgF+q9jks4c9iXZ5XfG4PUOpmeC7xWr+d0hiWLwFHgS8CrfH2Bnw4/ll8C7i32uewRD+HNzB9VeNOSn9wjwF/CmTj8lz8+Fi8fme1673Ic74TeCJ+7f+S0lVLG+J1B/5v4BDwPPDHlK5kW5evO/DfKY1ly1P6sH3fK3mdKY2HOhZ/vbfa57WIc98Qn22Vzn3G+pNMX9W4pl53zVwvIiIiskLWbVejiIiIyGqj4CUiIiKyQhS8RERERFaIgpeIiIjIClHwEhEREVkhCl4iIiIiK0TBS0RERGSFKHiJiIiIrJD/H+uEAHx4LZenAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAERCAYAAACqx6miAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzDklEQVR4nO3deXRc533m+e+vFuwrN3ABxRUUTWolKWq1YovaLZt24kWxO1HcmqOZbmc6Pelz0nJ8ZnrmnEl33D0nTjzxJNGx0i2n7ciKbLdoW7YsyZIlS6EkitRCihtEiiYp7gsIEsRW9Zs/6gKoKtzCQhSqgKrncw6Ee9/73lvvRYmoB+9933vN3RERERGRyRcpdgNEREREyoWCl4iIiEiBKHiJiIiIFIiCl4iIiEiBKHiJiIiIFIiCl4iIiEiB5CV4mdkHZvaumb1lZluCshlm9qyZ7Q2+NwflZmbfNLN2M3vHzNbkow0iIiIiU10+e7w+7u7XuPu6YP1h4Hl3bwOeD9YB7gHagq+HgL/JYxtEREREpqzJvNS4EXgsWH4M+HRa+Xc8ZTPQZGbzJrEdIiIiIlNCLE/HceAXZubA37n7I0CLux8Jth8FWoLlBcDBtH0PBWVHyKHRoj6HeJ6aKiIiIjJ52uk56e6zw7blK3jd4u6HzWwO8KyZ7Urf6O4ehLIxM7OHSF2KZDYx/jK2KE9NFREREZk89/XvOZBrW14uNbr74eD7ceBHwHrg2MAlxOD78aD6YWBh2u6tQVn2MR9x93Xuvq6RaD6aKSIiIlJUEw5eZlZrZvUDy8CdwHZgE/BAUO0B4KlgeRPw+8HsxhuAjrRLkiIiIiIlKx+XGluAH5nZwPG+5+4/N7M3gCfM7EHgAPD5oP7TwL1AO9AFfDkPbRARERGZ8iYcvNx9H3B1SPkpYENIuQNfmejrioiIiEw3unO9iIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIHkLXiZWdTMtpnZT4L1JWb2mpm1m9n3zawiKK8M1tuD7Yvz1QYRERGRqSyfPV5/BOxMW/868A13Xw6cAR4Myh8EzgTl3wjqiYiIiJS8vAQvM2sFPgF8O1g34DbgyaDKY8Cng+WNwTrB9g1BfREREZGSlq8er78E/gRIBuszgbPu3h+sHwIWBMsLgIMAwfaOoL6IiIhISZtw8DKz+4Dj7v5mHtqTftyHzGyLmW3pIJHPQ4uIiIgURSwPx7gZ+JSZ3QtUAQ3AXwFNZhYLerVagcNB/cPAQuCQmcWARuBU9kHd/RHgEYA2q/I8tFNERESkqCbc4+XuX3X3VndfDNwP/NLdvwS8AHw2qPYA8FSwvClYJ9j+S3dXsBIREZGSN5n38fr3wB+bWTupMVyPBuWPAjOD8j8GHp7ENoiIiIhMGfm41DjI3V8EXgyW9wHrQ+p0A5/L5+uKiIiITAe6c72IiIhIgeS1x0tERERkutjtV9LjVfRQFbp9rDcZNbKHqu/JWVfBS0RERKa0pBtnmM1pn00i5GLdaAHJ8OHhyIyzPosr76oj6VHq4l3D9ss188/d0uqEvPpPcrdFwUtEREQm5Jw30UnjpBw74VE+ZDE9VPKR2xqIRfrDK3ru+JXM2jZwL4Ul1ee47p7ZNNX2ALV5ajEKXiIiIgLnvZ4+KkatN/zSWbhuajju8znNbJbcOpPI4ANswoX2Do3aFlhfd4zrPjGXhupe8htdZgE9eTze6BS8REREpoA+j19SMBmLs8zkgC/nPE1EGN5jlDtoDbQn50U3Vm+o46qqTj7+O2N5ysyl3rZzNtB7iftOLQpeIiIiReKeCkUf+ApOewtGP5aVvcba+5SrrmPE6WXZx2dyz2/XUFvZN3KbhrUxPAym3/q8IhY+OF2GU/ASEREZhTt0MIP9vnLCY5nSw1GCGFV0sfhjc5i37BoWzOjgqsuODb0u4WOTcrYzR4+ZO0TMaartvvSGS14oeImIyLSVdGMvV3DeG7NCx6U/iS4sunRRi2MsuHkuratXEI8OXVYLfaURBnqn1z+7vR2AxqsWURG7QH11bzDQW0qVgpeIiEyKHq/kqLfSS+WwbSMNwh7PpTXHOOVzmHXLIrr6q4gRNs4oRy9Qeo2giruF3HbAqQKikSSXXTePqz85m+bGHDPrxm3m4NL5rigHntudp+PKVKXgJSJS5s57A905biAZZqzDv895E0d9AbU3fIQL/VVESGJ4Ws9U5pHMMgNPql5mWdhr10Z7uW5DNUvvWEFN9ciz6sJkX74Lu5yXXhaN5it0STlS8BIRmQYSHg3tORrJWHuO9vnlnPQWTtMSsnXYUOuMVxi+NFTHgWXra7nljioW37GCyopkRoAJG7Q9UggKOxt3o7oyQTQKjHIrg1yGDWafnImFIoCCl4jIlHbRa3g/uZJdfk1o8MoOV4YTsWTG+vAAlrmeIMaVN8IXP1HNzJuvyKw5pt6g9Lt4Z2qq7ycWcwi9BHjp47BEpisFLxGRCTrmC3jPr+Wsz8TTHmeSCjwjh4vhwSmz16bTm+ilgpu/1MqC6xYMlg+EHWcoDLnD+Qsxrru6g3jMB8uG9sncd0BFRZK5s3qJRICQezyJSP4oeIlISftNcin7/HL6QnuLxi47EA0EKgMuUkvDtQtZvGwRddU9VMZS4SWZHP5MuXTJsBZ4xjdm1l7kmvvmc3HpqjFdAjuzeR8LWnqorFBvkshUpOAlIlNGn8c5kFxGJ02hl9ByD7TOKk8LKEd9IfVrF1PZejnVFb0Z25IeuvvwPirPHAyevb3B4SMLTtL8hXXMmJX/wNPN+EKiiExdCl4iMiYJj3DC5+V8ztvwHqHcskNVkggnmc/25FpOMYfm5fXD67phNjQjLh7ppzbWPXSkwRlxmY84iZiz/nqY/aVrmDFzsnuB1MskIiNT8BKZxnq9YoQglJ8QkCDGgeRS3vCPcZK5WHCBLLy3KXPGW2b/0ECPVXjfTZR+1m1s4dZr59K5fBWxkN9OAz1UnoT63nOsuW5oPFKu2W8Rg1g8u1REpDgUvESmsd1+FduSN3GSufRSAcF9j1LBaHgP1EAYiwyOLhoeRnKVr//UTG68ex3dVfUZ5QOvsrLlLMm0l/RgOeNInhbDkmnRzYe+qmucigqCgd65JY4MBCoRkelDwUukABIeZW/iI7zCXZxjxmC5ZfUWZY9jyu4bSg9TBvRRwbLVSS7/+FWcrpxPc7OnjpAcOsxAT9BAb1FvrzF7TpIZM5KZrx68dCKZdUemIBDF47CsrZ9DOR711knTiD+DseoERslcIiLTloKXSIidyWt4J3kd/8zTAFzD5yErFAFEc45rGprxBqlQcoE6Ftx0GXPXr8ys6ZBMQFPv0aE9BsJS2uGTua6UOVRV9jF3dS2HT54d9dzO9xktsxuJzxu16jC5QpeIiIyNgpdIiNPMoeHK+Zw91E0yCd1rPj2sjmO4D82gG3y4SfrlNIfmhj6ao87iugSLrp/Jvot9w44VAc6lPbNtvLoAxhC6RESkuCYcvMysCngJqAyO96S7/wczWwI8TuoJoG8Cv+fuvWZWCXwHWAucAr7g7h9MtB0i+VYR6aWiJkqfwanqPZkbc/Q+efrFQYf5bddQMTNJVY2TAPZdDLt7t4iIlIt8DKXoAW5z96uBa4C7zewG4OvAN9x9OXAGeDCo/yBwJij/RlBPZEqLRDzzKxr+FY0mh75iSWJxzaQTEZEhEw5ennI+WI0HXw7cBjwZlD8GfDpY3hisE2zfYKZHkoqIiEjpy8vkITOLmtlbwHHgWeB94Ky7D9xk5xAw8JCxBcBBgGB7B0xgcIuIiIjINJGX4OXuCXe/BmgF1gMrR95jdGb2kJltMbMtHaFPtRcRERGZXvJ6uxx3Pwu8ANwINJnZwOD9VuBwsHwYWAgQbG8kNcg++1iPuPs6d1/XSDSfzRQREREpigkHLzObbWZNwXI1cAewk1QA+2xQ7QHgqWB5U7BOsP2X7q4RyCIiIlLy8nEfr3nAY2YWJRXknnD3n5jZe8DjZvZ/A9uAR4P6jwL/YGbtwGng/jy0QURERGTKm3Dwcvd3gGtDyveRGu+VXd4NfG6irysiIiIy3eiRaCIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFMuHgZWYLzewFM3vPzHaY2R8F5TPM7Fkz2xt8bw7Kzcy+aWbtZvaOma2ZaBtEREREpoN89Hj1A//O3VcBNwBfMbNVwMPA8+7eBjwfrAPcA7QFXw8Bf5OHNoiIiIhMeRMOXu5+xN23BsudwE5gAbAReCyo9hjw6WB5I/AdT9kMNJnZvIm2Q0RERGSqy+sYLzNbDFwLvAa0uPuRYNNRoCVYXgAcTNvtUFAmIiIiUtLyFrzMrA74AfBv3f1c+jZ3d8DHebyHzGyLmW3pIJGvZoqIiIgUTV6Cl5nFSYWu77r7D4PiYwOXEIPvx4Pyw8DCtN1bg7IM7v6Iu69z93WNRPPRTJExS2K4R3DAHRKJCIlEBB/Xnw8iIiKZ8jGr0YBHgZ3u/hdpmzYBDwTLDwBPpZX/fjC78QagI+2SpMiUMJ8D7H4nyrnD50mc6aH1dCNXLV9LX2+82E0TEZFpLJaHY9wM/B7wrpm9FZT9KfDnwBNm9iBwAPh8sO1p4F6gHegCvpyHNojk1bLILv5n+490JPo51tXK0dcOcPLgBVquv5ZI2p8rDtT2nB7sCRvWI7bzPPWze4hFhzYkk5n7A8SjEFm9lDPdZ4kp24mIlKwJBy93/zVgOTZvCKnvwFcm+roiky1m/fxpDNwPcTT5DV7+8G4O/+hQ8D/7QGRyunGM9H8ESdKHNHaQ+Q/ESKYtp1yklobF+5h/UxsNy2cSTb+67qmjJdLDXdqoSXcbvCQK4MHhk8H6ZYsT7DiepKL6En4IIiKSV/no8RIpaWYwL3qYz/PopL3GW8kb2PbBjez8oJN+4hCEuZShEGcZc1Q8KMsMfZZWnsR4jWpWf2wmMzesooM6agxOHIG+3sw2DAS3FbPPDiuDoSDnWMZUGU9CXUOSkzRn9AaKiMhwCl4iU8AVtoWV0bdHqTX+kf3naOafk7dz+MVF7H7xBEkMw4mSyApxAz1xxi+HvU52veHtSGLcsrGZ5V9aw2kaB3cb7IULO5ugZy6jzlBHIk4q9DbPhph+U4lIidCvM5EpIGb9xOjP+3Hjfpwb7VmSNnDtcvTwFhasRuJEeNtv5PT7V/CThzfjbpgNfzXDB4/tWaMTbHDVs74brStquOkT9RyZfy3R4DeWO0Tz/+MSEZl0Cl4iJSxqCebY0Ul/ne7kW3TtaGdxdqDK7i3LNRo0w9A+p7wFb7yal3/8Ebp7NxONOE4q2MUjSY79+ELWbsNfIOPirNuwCRAOLJrVwQ2faaFn2UfG2EYRkUuj4CUiE7Y40j4pxz3pLezZliDOLrInexrOhVEui6bXzbWeJMLzvpRN3+5k9ZqdLLhqTugxUmPbLLtw8FuufkL31Ji4mXVdrPnUPLqXrlK4EyljCl4iMmXNsmPMih6b9Nfp9xi/SS5l57a1nNx2nJECXHpoG2t+cqDL69jx+jkW3DeDWU2pmQ3JZNoUisHDpnrl0nvmBmatRj7Yk3lch4pYkpV3tNK/YmXmbFgRmZIUvESk7MWsn6XRPSxlz+iVL0HCI7zmt3FyWwsfbv05ybR7V+fqjbOQfrTUXpkzW/uo5PVfd7P8mlMsvnk+Z85V0Do3RmVFMJ4u+9Kqh82Xza6Te31GYz+xmB7hIHKpFLxERCZZ1JJcx6/wCV5jDJv4cIAVHHp3MVvenssrj30AwHPWPcpxRj5mmCj93P6Hy1h9dyuzZ/RlbMvoncvqqQuTHv4q4kkq4gpyUj4UvERECiBufaNXugSt/j4z7SgjPdJ2vDNVs/UT47jP58W/7uPnf32A1rVNocf3kFcyG1aSsRazBDfeVs3Ke5bQWJ8YV7tyBb7sMjN0jzmZMhS8RESmsSrrpoqRe7jyYZYdp813cMwXkNg69sFko4W+gyxjV2Urr79wnqilglf27UYypB1ueAfi0G1ISAt8EZx1H2+g7a5l4w53Ivmm4CUiImMStz5a7YO8HtM9wrlXzmDEBx+mNdYeurBaYft2Uc0Tmxfi/+kIV9wSY+aVS4cd4+z29Jm5IbclCetRw7j8phZW3LWUGU26sZyMjYKXiIgUzSJrH/v00Ano8lp+48s48soCPnzlSEhAG//NhZ0Iu37dxZwXLjKn6jQLr7sMgKRnXtfMHPdmw7YNbE94hIbqSk6cq8moU1PZR23l5FyqlsJT8BIRkZJXYxdYae+wknfyetwur+XgliW0+zL2vrwdCO91y5xLOvyWJEP7OL/MCqJJolyzIc7lzQdYcedHUrWy7ylHeK9c6oi5k232PpXxBNGIJjtMJgUvERGRS1RjF7jcttPmO0imzXCY6ISGdOdp4DfPL+Mt5hN58vQIxx8p8I1u9W11tNSe4qOfmXdpDZUxUfASERGZoIg5kUl43ipAI2e40rbQ45X0UD2ufccaAC9Sw+FfLuQd5rD3TDxkNmqacWRKx5hdfYYb75vNrPqLY9+xhCl4iYiITAOV1kMlPZNy7Ho6mGNHuOB1dL7SlLfj9lHBPp/J6Z5GqmL9GbceCZPrculoopakItrPjZ+YxZyGrkttbkEoeImIiAgAtXaeWs7n7Xh9HqfPKuh76XV608JWrp64sd1jePi+Z30WcXro6Y8zs7ojqDXC2LawspBxc7FIgqvuvCyvvXUKXiIiIjIp4tbHUnZN+sxVZzcdzODwCwkOUDdYnjPg5X6uQsZaH5V09p6kPxljft2J0MQ24n3nQih4iYiIyLRmBk2cpslO5/W4x30++569jF6q2EU8L5MmFLxEREREQsyxD5ljH45/x2TuTXp6lYiIiEiBKHiJiIiIFIiCl4iIiEiB5CV4mdnfm9lxM9ueVjbDzJ41s73B9+ag3Mzsm2bWbmbvmNmafLRBREREZKrLV4/XfwPuzip7GHje3duA54N1gHuAtuDrIeBv8tQGERERkSktL8HL3V8CsudwbgQeC5YfAz6dVv4dT9kMNJmZHgwlIiIiJW8yx3i1uPuRYPko0BIsLwAOptU7FJRlMLOHzGyLmW3pIDGJzRQREREpjIIMrnd3Z1yP1QR3f8Td17n7usa0J76LiIiITFeTGbyODVxCDL4fD8oPAwvT6rUGZSIiIiIlbTKD1ybggWD5AeCptPLfD2Y33gB0pF2SFBERESlZeXlkkJn9I/AxYJaZHQL+A/DnwBNm9iBwAPh8UP1p4F6gHegCvpyPNoiIiIhMdXkJXu7+uzk2bQip68BX8vG6IiIiItOJ7lwvIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiB5mdUoU1PCI3R4M8lR7vxvozxUoMlOEzU9tklERGSiFLxKwDHv4zU/zyetCTMbLO+kiV/6pznoS+mkAcdIbc0MWkPdnpnlhpPEaOQ01/MCV0S2UGk9k3IOUfpJa7qIiEhJUvAqAVv9Ao8kT7AqWs1yqjK2VdDDHb9bx5aGO7lsKbinvgAIlgdWk8mh8gHNsU46X9rGaz/fwK+Td6cCUkgPWXpZdrjLrO9Y2vLA9gbOsM5eZllkJ3HrG9f5i4hIaev1Co6zgLPMLHZTxmhPzi0KXiXgo1bP33GCXybPsTxaNWx7NOLMaoEuOwvj7FVqWtxEMrmGtlVGMrjaOJjb0h593tx7FIC+fmPV8vNDB3BwT71oMi2CuQPJoNxh7+bT/OpnDWxObKCa1P7ZTTWSZMsdAj0kAIZJEsGpsF4W2V5WRbaF1hIRmaq6vJZDLM3rMUcbglKoYwAkiHDBG5jHAWZ+rI26+MUJHa/fo9w07528tC2Xhx/LvU3BqwTUWZT1VstL3smDPptoHq/Z7f3gLFQAc4dvS3+Vgb9CGuJNcFV4vZFGmq2rf5sZdfO50BMHhsLaAA8pS5dMRrLqDq8zEMXSfzyehJ5ElMqTu9m9rYpz3jRCKyGSM/yldSNmbAurG/ILyS79l5ThGftW0cUi20uVdV/S8USmoi6v5RQtxW7GoHyFinwc7yK1uDstt7fRnagkbv0TaouP9y/0sGPk98dDSzRBxOZQGz/D7Z+dWK/Xpn+8kKdWXRoFrxJxmzXwqp9nq1/gOqsrdnPGrfvqq5l/df6PO/CPf9gvgWA96TDHzrD3uWY6e97lTGRJsHnoF09Gjh04kGUcZvg+oY3J3iObpVcMf/2sA2ZeuI3QED/PqW27MJwaPz9sj8yQmKsVubaHl4c1L/sYI32o5OfvhDz/lh9Fvj90C/Mahf0ZDZjo29tHBWeYzWmfReut84jlcaJPPsPBeMJK+P/zw/8YC9035H2sdmNW9Rmuu3cmM+suMvKfudNP5vtUU6xm5I2CV4lYa7U0EOEF7+Q6pl/wmiwDv+ByfbhHgNM0U3F9M3d+bC5LlmX2aKX/gw/tRQsLdp6jTo7jZqznKh9pOfg+5+R7vPPjQ/y67xp2JdcP722z8EZa1kLc+qmK9WbsH/b5lHm8YUcL1obquA9/H8J+poP7hLxnx7eeyNmiXL2LuT4Qs8cejiRzDOPwn91YPr9Hez3Lsexp/x0QJUGNDQ/Wly5XaLj0sD10BAvZluu4w8sdo5ZOPrKhkd/+YmIKT8IZe4rL+e9/2BFz/KSzM5pBNNIMTOwS3FQ1dd/zS6PgVSLiZnzU6nnWz9HlCWqstP7iKZb0f/BT/R9/V90qlv+vq5j3ZTh9KnXpdWHXzsHtnpYp08Og+9Av8qTDidMVXH/1uRE/HHL2iaVdDh7Lh8vwMhul7orw9oRcmh7ra4ddwh7W9hGPM/ZzHqhbseuNrJ9nVvuHvX7maxw42cRtq/cPb0yeje09S9sWEhRGrB/2sw+t10LEHLPhl/qno+zfJSP1akvpUfAqIR+PNPDTRAe/9vPcaY3Fbo4USW0d1NYNfEBdPlieq0clXTIJFa/up6qyND7gpqz5V05o9yP/9Js8NWRkYYFg5D9AxhsUFCyk/OjO9SXkcqqYT5wX/FyxmyIiIiIhFLxKiJnx8UgD7/pFjrvuhSUiIjLVKHiVmI9bPQAvemeRWyIiIiLZFLxKzFyrYBXVvJA8h+f7RioiIiIyIQpeJei2SD0H6eUDinuTOBEREcmk4FWCbrF6Yhgv+8liN0VERETSKHiVoIFHCG32kyQ9f3d5FhERkYlR8CpRt1kD5+jnEO3FboqIiIgEiha8zOxuM9ttZu1m9nCx2lGq1lotdcTYw9vFboqIiIgEihK8zCwKfAu4B1gF/K6ZrSpGW0pV3IwbbSYH2MXFXg2yFxERmQqK1eO1Hmh3933u3gs8DmwsUltK1s02iwT9vHvwlWI3RURERChe8FoAHExbPxSUSR4to45GZvLmvueL3RQRERFhCg+uN7OHzGyLmW3pQDPzLoWZ0cbV7Dv+Lp1nDxS7OSIiImWvWMHrMLAwbb01KBvk7o+4+zp3X9dItKCNKyXLuRqAve9+t8gtERERkWIFrzeANjNbYmYVwP3ApiK1paQ1WDNLZq9mz7v/oEcIiYiIFFlRgpe79wN/CDwD7ASecPcdxWhLOVi7dANnT+7ixKG3it0UERGRsla0MV7u/rS7r3D3Ze7+Z8VqRzm46rJbiEYr2bP18WI3RUREpKxN2cH1kj/VFXUsWvFJ2t/6IYlEX7GbIyIiUrYUvMrEiqt+j+4LJzm0W7eWEBERKRYFrzKxcPndVNXOZM/WJ4rdFBERkbKl4FUmotEKll/923zw3tP0XOwodnNERETKkoJXGWlb8wUS/T3se1d37hARESkGBa8yMmfhGhpnLWfPm5rdKCIiUgwKXmXEzFix9gsc2f8q507/ptjNERERKTsKXmWm7drPA7B3mwbZi4iIFJqCV5lpmHEZ85bcxN6tT+gRQiIiIgWm4FWGVqz5AmdP7OXEoW3FboqIiEhZUfAqQ0uv2kg0Vsmerd8vdlNERETKioJXGaqsbmTRqntof+sHeoSQiIhIASl4lakVaz5P94VTHNz9XLGbIiIiUjYUvMrUwstv1yOERERECixW7AbI5DGci9SyY+tFWurauVi5nIGJjLEkXH/b/87c1priNlJERKSMKHiVsAbOcCs/5tWdd/CrnTUk2Q84YCxcmuTG2++je+EyPjya+exGd6ipg+p63W5CREQknxS8SpgZzIt+yO/wGBeST9JLJQB7uJpTtbfyzjOVdPcdB4NUIEv1koFxNpJk/SfnULFmBfsOdgwer7LaMSvO+YiIiEx3Cl5lojZygVouAHB58i1ObD/GUqKhdQ2n3Vfx0v+3noscZMGaliCcweIra6lZs4QTnWeJRAbiGoMLrlGDIiIiOSl4laGmyBmaODNincvZzseTP2GnX8v5bY0AnPQWOrvaOHUqjgOR6EDsslQwczhxei8zjjaw8Ka59DQ2Tup5iIiITDcKXpJTTaSLtbwyuH4guYy3d/XSvfMgjpFk4NJkSoI4CaLEFl7G3hcjzJ9zCABPDh2zsiLBqcVX0Ty7UGchIiIydSh4yZgtirzPIt7Puf2C1/FS8h5e/W6Mbs6QdiFyUB9VzF3xAWs/t5yala1EIml1PLVHMgmRCCxYmORof3P+T0RERKRIFLwkb2rtPHdGfsDggLAMqYD1pn+UvXtW8/Sf9dDHboxkVm3DSHDjZ5o5dev1MDP7CKkFd4jGYMYciIYPVRMREZlyFLwkr6KWHHH7lbzB5ZG3B9ezZ0gmiHIwuYQ3f3QrJ390nhlLaoOKQ5c1I+bMqupg9Wev4ExkFTW1w19n4H5l8QqoqLzk0xEREcmrCQUvM/sc8H8CHwHWu/uWtG1fBR4EEsC/cfdngvK7gb8CosC33f3PJ9IGmV6qrYtq6xqxTnP0FKt9G0d8Ib0HhqemPVxFw7WX8cb3d9OT+IBIetgLAldlpJdlV9XRsvEGki0NGduc1KVM3RZDREQKbaI9XtuB3wb+Lr3QzFYB9wOrgfnAc2a2Itj8LeAO4BDwhpltcvf3JtgOKTFRS9BqH4RuSySjnNp6kgU5boeRJMqHLOaN3U3MP7ODqnhiMGQN9IQ11XSz5P7r6K5vJBafhBMQEREJMaHg5e47AWx418FG4HF37wH2m1k7sD7Y1u7u+4L9Hg/qKnjJmLVF3qNtlP9l+jzO/mQbu547SGfa/+aGkyTCYZo4e7GS6oXzqalJkExCvLkP9vemKnpqpFpTQx8N1y0novuTiYhIHkzWGK8FwOa09UNBGcDBrPLrJ6kNUsbi1seK6HusCAlovV7Bq34Hx56+SBeZA8QGxpElibJyrbPo2hZWxqAiPnQ5c6DXzB3cjUjE6V++InSsmYiISLpRg5eZPQfMDdn0NXd/Kv9NGnzdh4CHAGZrDoDkUYX1citP49Hcg7x2+1Xs3no1u96M8NNvnwnuWhbOiTB71WFu+aizduNcjjWvztyeFtTicWho1DMwRUTK1aiJxt1vv4TjHgYWpq23BmWMUJ79uo8AjwC0WZU+qSSvIuaE3WdswFJ2sdD2j+lYCY/QvnMVP3tvLT/8u/PMXnkss4JBNJJgds1Zrvji9VRuWJix2dObkdWkyipNAhARKSWT1ZW0Cfiemf0FqcH1bcDrpIbNtJnZElKB637gi5PUBpFLVmXdVNE9tsoG63iFq/11jvl8Ensy/1kliPEBl1OzfiEvP/oev350x9COIeHPzKmLX2TV9Y0s/PLt6iETESkhE72dxGeA/xeYDfzUzN5y97vcfYeZPUFq0Hw/8BV3TwT7/CHwDKnbSfy9u+/IcXiRaSVufbTagWHlSTcSHqPz9ZPMy8pQZsND1QXqOeYL6Oqr5uCpN4hFh+oM9I4tbzlF4xfuYcZMhTIRkelkorMafwT8KMe2PwP+LKT8aeDpibyuyHQSMafNxvf3xYVkLXu3r+bY9suGbeuhglPXXEbzkTdoqummMt4HpAb6e9rTM4fGlhnxWIJZa5Yw/7cWa4amiEgRadS6yBRUG7nANbxO6gp9phM+lx1vr2XfW0fo89jgI5fSH1ieutM/QRAzll9fRTIZwZOpWZjpA/4hdcHT3WioS9DTq2cwiYhMFgUvkWlmth3lVp4OfyRmiDM+k52vXcuLm5MkOYTheLBzRlgjSR+VXH1DH9f09VJ13brMgf9kTgSIxZyKuC51ioiMh4KXyDQUCRkblstMO8ktPEu3v0w/FSPW3e7rwFfxrf86k+h/ez+kRtqEAHPaGg9y65/ezuwZfWNvvIhIGVPwEikTVdYNo8zUXM52et9oZw6W1RuWHfScLhrY6lfywgtvsPy6qswHpHvqMueCuuMKZiIiaRS8RGTQLDs+5kuYAEt9Jyd8Hse3zB+2rZsadno9vuwk0UiSqorE4DYPMpr70IvNaTzPiruX0lifyD6UiEjJUPASkUsWMafFPqSFD4dtO+/17OYq9nz7V4NjytJ7zizte5IIXdSx9OVTLL1uHvXVqWdmZk8CYPAoqUkCM+susvTulfk9KRGRSaTgJSKTos46WWuvjKluv8fY5jdx8JVe2l85n7HNQm4y6xiX3dDM4rVzqXh2e6osuLw5WMcz6w/0rhlOLOYs2LBaTwUQkYJT8BKRootZP+t4acyXObup4cBrbby8eRXPp00YCAtp6Qxn+Y01LL++hejJisGb02aENB/eiBmNfcQ1g1NE8kDBS0SmhPH0PlXTxUp7m+W+g26qx7xfF3V8sHkFP//nC7z58oWsW2sE7QjCm+HUxi+y+uZZLPjoclpm9WQca9h0gyCwVcaTCmkikpOCl4hMWzHrp47OMdevo5M5doTzXk/XtvoR6/ZQxYd+GU9vbqHlpU6ikf7Bbe6WFRSNimgvMyvPsfLWBaz+1LJxnomIlAsFLxEpO3XWOabA1so+zjCL41vmMfw66FCvVj8VdNLIEa/n2MUuXn9uS1o9GzY5YGhvY9XNs2m7aymzmnXLDZFyoOAlIpKDGcywk8zg5Kh1Ex7lOPM4+FoHXQx/7FLYldReKjjx6m/Y+eoJZl25mIpY+K00PG0hFk1SW6kHbopMVwpeIiJ5ELUE8+wQ8zg05n06vJl2VvPhq0f48NUjo78G/Sz7rRms/0wtXT1Dv749x6yEgZ62moo+PRxdZIpQ8BIRKZJGO8Na+/WY63d4Mwd+1cY3fzWXCImMuBV2040UI04vGz7Vy42fbp1Yg0VkwhS8RESmiUY7w1X2Or1eQT/xMe2TIMZeX83zm2r5xaZTaVvCe8ni9LBhYy9rPrGEeCwZWkdELp2Cl4jINFNhvVTQO+b6l9FOMnTc2fB+sk5v5GdPLeNnT53i8o81hh4vbLJAxJyaeDc33TeLWfUXx9w2kXKj4CUiUuJm2fEx151tR1nk7ZxkLhdfrMldMavDrJMm+ryCjt465taeDJ0DGnZz2ppYD2vuvYyayv5h20RKkYKXiIhkiFqCFg6P64HpAF3UcvhXZ3mH8J6y8H3qOXGxk7qKLhorhh4XlR3SwiYQOMaMyg4uv3v1+BoqUkQKXiIikhc1doE22zGuffb6Fex/rp4u6mEcTyHoJ84sjrDkzoXMODfUMxf2zIBhIc6hrqqXuirdO00KT8FLRESKps22j7tnDaDHKznqrWz9RQ/bfvHBiHUzZ38aa++qwDFu+0zzYFku2Q9bj0cTVGjSgUyAgpeIiEw7ldbDInufVt9PL1Vj3u8itex/Zj4nmcfWZz4EwnNf2MSDa++qJonxiS80XGqzRRS8RERk+opakmq6xly/mi5m2Am6vJ0uase834e+mNnV3bx7ajn//bHxXaKsi18kFkly3/1149pPSpOCl4iIlJ0au0ANF8ZcP0qCHU81EeEo4Q92CnfKW7j2cz1sPb6S//G98ICYfalz4PJmLJIkHu3nns+PfbKCTH0TCl5m9l+ATwK9wPvAl939bLDtq8CDQAL4N+7+TFB+N/BXQBT4trv/+UTaICIiMtma7RTNnBq9YpYquvjVky24v8e5EeqlLm0OXd7sppZ666DptlW88IMTGXXHMoEgVS9VVhXt4ZbPzB9322VyTLTH61ngq+7eb2ZfB74K/HszWwXcD6wG5gPPmdmKYJ9vAXcAh4A3zGyTu783wXaIiIhMOXPsCHM4Mu4JBO7QwQw+fL6C/dSTHrfGeqheKvmdz5/krRMreX3TgVFv0ZG9HrUE6z+1aHwNl1FNKHi5+y/SVjcDnw2WNwKPu3sPsN/M2oH1wbZ2d98HYGaPB3UVvERERAJm0MRpmuz0JR9jr1/Bi/8U4bwf5EDIkwsgO8Q5hpMkykc/5fzm/DwWp9+qI6xXLaz7DWio7tFNcXPI5xivfwl8P1heQCqIDTgUlAEczCq/PuxgZvYQ8BDAbA1FExERGZel7KSf2CXcCLeOt3/cSqcn2f/80YxtYbM9w8r6iXH1XXWsvWc+tZWZj7cKvRlu1iEi5iUb3EZNNGb2HDA3ZNPX3P2poM7XgH7gu/lqmLs/AjwC0GZVOTK1iIiIhIlagui4pgKkVNJDM6e4SA3djPDYqBF00My7z8zlnWc6WXxby7DtlpW9jFT4iliSxsoLnO5u5LNfjBGJXNLLT2mjBi93v32k7Wb2B8B9wAb3wcx6GFiYVq01KGOEchEREZkiqq1rXLfqSNfMSRayj1O00PPCwdF3CJxlJifoYd6Gan7wvWRob9pIHKM2fpGF9ce44p4VwwLeVDDRWY13A38C/Ja7p787m4DvmdlfkBpc3wa8TirUtpnZElKB637gixNpg4iIiEw9UUswhw/HtU8r++nyWo4930svFYPlY81PjvGhV1F3XwM//F4P8cjwy5V9yeIOX5roq/81UAk8a6lYudnd/xd332FmT5AaNN8PfMXdEwBm9ofAM6RuJ/H37j6+B3uJiIhIyaqxCyxh9yXvv5NrefunHUBHzjr/lPUgd8eo5Ryf+BeT/zgo81xTEqaQNqvyv4xpSquIiIhMjneS66mwnkve33Bmc4Sb/0UTyx776Zvuvi6snqYLioiISNlbbW+SZPyj+QfGoSWIssPXceG/HxmxvoKXiIiIlL1LnQU6IEY/bWwfNbwpeImIiIjkQb3lHlc2oATvkCEiIiIyNSl4iYiIiBSIgpeIiIhIgSh4iYiIiBSIgpeIiIhIgSh4iYiIiBSIgpeIiIhIgSh4iYiIiBTItHhWo5mdAA5M8DCzgJN5aM50pHMvX+V8/jr38lTO5w7lff5T6dwXufvssA3TInjlg5ltyfXAylKncy/Pc4fyPn+du869HJXz+U+Xc9elRhEREZECUfASERERKZByCl6PFLsBRaRzL1/lfP469/JUzucO5X3+0+Lcy2aMl4iIiEixlVOPl4iIiEhRlVzwMrP/Yma7zOwdM/uRmTWlbfuqmbWb2W4zuyut/O6grN3MHi5KwydJKZ8bgJktNLMXzOw9M9thZn8UlM8ws2fNbG/wvTkoNzP7ZvDzeMfM1hT3DCbOzKJmts3MfhKsLzGz14Jz/L6ZVQTllcF6e7B9cVEbPkFm1mRmTwb/3nea2Y3l8r6b2f8W/P++3cz+0cyqSvl9N7O/N7PjZrY9rWzc77WZPRDU32tmDxTjXMYrx7mXzedc2Pmnbft3ZuZmNitYnx7vvbuX1BdwJxALlr8OfD1YXgW8DVQCS4D3gWjw9T6wFKgI6qwq9nnk6WdRsueWdo7zgDXBcj2wJ3iv/zPwcFD+cNr/B/cCPwMMuAF4rdjnkIefwR8D3wN+Eqw/AdwfLP8t8K+C5X8N/G2wfD/w/WK3fYLn/RjwPwXLFUBTObzvwAJgP1Cd9n7/QSm/78CtwBpge1rZuN5rYAawL/jeHCw3F/vcLvHcy+ZzLuz8g/KFwDOk7vE5azq99yXX4+Xuv3D3/mB1M9AaLG8EHnf3HnffD7QD64Ovdnff5+69wONB3VJQyucGgLsfcfetwXInsJPUB9NGUh/MBN8/HSxvBL7jKZuBJjObV9hW54+ZtQKfAL4drBtwG/BkUCX73Ad+Jk8CG4L6046ZNZL6hfwogLv3uvtZyuR9B2JAtZnFgBrgCCX8vrv7S8DprOLxvtd3Ac+6+2l3PwM8C9w96Y2foLBzL6fPuRzvPcA3gD8B0geqT4v3vuSCV5Z/SSr9QurD+GDatkNBWa7yUlDK5zZMcAnlWuA1oMXdjwSbjgItwXKp/Uz+ktQvn2SwPhM4m/ZLOf38Bs892N4R1J+OlgAngP8aXGb9tpnVUgbvu7sfBv4f4DekAlcH8Cbl8b6nG+97XTL/D2Qpu885M9sIHHb3t7M2TYvzn5bBy8yeC8Y2ZH9tTKvzNaAf+G7xWiqFYmZ1wA+Af+vu59K3eaqvueSm75rZfcBxd3+z2G0pghipyw9/4+7XAhdIXW4aVMLvezOpv+yXAPOBWqZBz81kKtX3ejTl+DlnZjXAnwL/R7HbcqlixW7ApXD320fabmZ/ANwHbAj+QQIcJnVNeEBrUMYI5dPdSOdcMswsTip0fdfdfxgUHzOzee5+JOhqPh6Ul9LP5GbgU2Z2L1AFNAB/Rap7PRb0bqSf38C5HwouUTUCpwrf7Lw4BBxy99eC9SdJBa9yeN9vB/a7+wkAM/shqf8XyuF9Tzfe9/ow8LGs8hcL0M5JUcafc8tI/dHxdnDFvBXYambrmSbv/bTs8RqJmd1N6tLLp9y9K23TJuD+YIbPEqANeB14A2gLZgRVkBp8uqnQ7Z4kpXxuwOCYpkeBne7+F2mbNgEDM1ceAJ5KK//9YPbLDUBH2uWKacXdv+rure6+mNR7+0t3/xLwAvDZoFr2uQ/8TD4b1J+WvQTufhQ4aGaXB0UbgPcog/ed1CXGG8ysJvj/f+DcS/59zzLe9/oZ4E4zaw56De8Myqadcv6cc/d33X2Ouy8OfvcdIjXB6ijT5b0vxoj+yfwiNZjwIPBW8PW3adu+Rmpmx27gnrTye0nNhnsf+FqxzyHPP4+SPbfg/G4hdYnhnbT3/F5SY1ieB/YCzwEzgvoGfCv4ebwLrCv2OeTp5/AxhmY1LiX1y7Yd+CegMiivCtbbg+1Li93uCZ7zNcCW4L3/H6RmK5XF+w78X8AuYDvwD6RmsZXs+w78I6nxbH2kPmgfvJT3mtR4qPbg68vFPq8JnHvZfM6FnX/W9g8YmtU4Ld573bleREREpEBK7lKjiIiIyFSl4CUiIiJSIApeIiIiIgWi4CUiIiJSIApeIiIiIgWi4CUiIiJSIApeIiIiIgWi4CUiIiJSIP8/vmE9otLIWh4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -134,12 +134,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAEQCAYAAABhm3oHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACjhUlEQVR4nOz9ebAsS37fh30ya+vus9317e/NvJl5g5UESIAAKUIUAIoSSTEImaYoSDIFUgiN7SBDdsi2CJp/SBFWSFDIIRG2GDTHBMOgRGpIyYIxlmhxAQhxBYQdJAYD4M369vXee5buriUz/UdmVWd1V53q7tPn3HPvzW/EvV0nKysrq7q66lO/3y9/KYwxBAUFBQUFBQUFXb7kw+5AUFBQUFBQUNCTogBeQUFBQUFBQUFXpABeQUFBQUFBQUFXpABeQUFBQUFBQUFXpABeQUFBQUFBQUFXpABeQUFBQUFBQUFXpJ2AlxDiy0KIfyKE+EUhxM+6sltCiL8thPgN93nTlQshxP9NCPGqEOKXhRC/dRd9CAoKCgoKCgq67tqlxeu7jDHfbIz5Vvf3DwA/box5Bfhx9zfA7wNecf8+Bfz5HfYhKCgoKCgoKOjaKr7Etr8H+E63/CPATwJ/ypX/ZWMzt/6UEOKGEOJZY8xbfQ0dicg8RXKJXQ0KCgoKCgoK2o1eJX/fGHO3a92uwMsAf0sIYYC/YIz5NPC0B1NvA0+75eeB17xtX3dlveD1FAl/Nv7IjroaFBQUFBQUFHR5+gPVr3+lb92uwOs7jDFvCCGeAv62EOLz/kpjjHFQtraEEJ/CuiK5e6mGuaCgoKCgoKCgq9FOYryMMW+4z3eBHwW+DXhHCPEsgPt811V/A3jR2/wFV7bc5qeNMd9qjPnWI6JddDMoKCgoKCgo6KHqwuAlhNgTQhzUy8C/APxT4LPA97lq3wf8mFv+LPBvutGNvx14cF58V1BQUFBQUFDQ46Jd+PCeBn5UCFG391eNMf+jEOJngL8uhPh+4CvAH3H1/wbw+4FXgSnwx3fQh6CgoKCgoKCga68Lg5cx5ovAN3WUfwD87o5yA/yJi+43KCgoKCgoKOhRU8hcHxQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RQrgFRQUFBQUFBR0RYofdgeCgoKCgoKCgh4liUScX6HqXxXAKygoKCgoKOix0SAUPWQF8AoKCgoKCgq6cl13QLoshRivoKCgoKCgoKAr0s7ASwgRCSF+QQjx37u/XxZC/LQQ4lUhxF8TQqSuPHN/v+rWf3RXfQgKCgoKCgranUQiLu3fk6pdWrz+d8Cven//J8B/boz5BHAP+H5X/v3APVf+n7t6QUFBQUFBQVsqwNHVSsbi3H/nbruLDgghXgD+JeAvur8F8N3Af+uq/AjwL7vl73F/49b/blc/KCgoKCjosVYApMvXEBTt4t9FtKvg+j8L/HvAgfv7NnDfGFMPqHwdeN4tPw+8BmCMqYQQD1z99/0GhRCfAj4FcDeMAQgKCgoKuiIFkNmtLgoqj5suTDRCiD8AvGuM+TkhxHdeuEdOxphPA58GeEWMzK7aDQoKCgp6PBQAaTsFEOqWSK5mvOEuTEm/E/iDQojfD4yAQ+CHgBtCiNhZvV4A3nD13wBeBF4XQsTAEfDBDvoRFBQUFBQUFHStdWHwMsb8aeBPAziL1//RGPNvCCH+G+APA58Bvg/4MbfJZ93f/9it/wljTLBoBQUFBT2mCpap9fWkW6Ouyur0MHWZwVN/CviMEOI/BH4B+GFX/sPAfymEeBX4EPjeS+xDUFBQ0GOrADSXrycVhJ4EAIKH8/3uFLyMMT8J/KRb/iLwbR115sC/ssv9BgUFra/wsA56XPS4Q9HjCD+P/3c2fHxhuGBQ0DkKkBIUtL4ex4fq4wI/j9N386jflwN4BQUFPRF6nB48T5oedfh5FK+9Rx1ual3Hc/9oX81BQUFBQUFBQY+QgsUrKOgcXce3paCgh6VHxfL0qP1uH0Xr0qN2jn097PMdwCso6Bw9Kg+aoKDroOv8MH7YD9t1dZ3Poa9H5XwO6ZEf1RgU9LjpUbkJBgVdN123B/N1+y1ft/PTp+t23i4iEV2PYwngFRR0jh6Vm2NQ0MPSdXkwX7ff6nU5L0O6LjCyjeQj2vcAXkFB5ygaX9zVaMowMUPQxXTdoOIydd2A5TqDyaMKHrWEfLT7v60CeAUFnaMo2wF4xQG8gh5fXRcwuW4Q8ihChYie7JjWq7qGnuyzHBQUFBQUFBR0hQoWr6CgcxSPFj8Ro/R2jSQ76sw5MjpY1YIevq6bledRseBcN2vdLnTdroXrpABeQUHnKBlF3l+LZa0uH3QCTF1fXcX3f9113WDhUX7QX7dz+ajouri5N1UAr6Cgc5RMFuYq/2EbdVXu0VUDlNFbWuYeE5krgKLoCqyYT5Ie1QfoeRLy0bC2BV29AngFBZ2jdC9tlvsAahPrx2VBWBu2NsHCXffjybMEBevXw1OwFAU9igrgFRR0jpJJ1iyvY0kaAo9twWSXQPMwLWLXGcy2BahtMLfSml89PmWuFJEQFFrz9Cjjo3sThNgdTFzn871rPcquxsdFT9L1dhEF8AoKGtBJMeF+cUBkSiKpiYVCCkUkNFJopDBEQiOERmhbtsNnZ9BjqFhKvvHoAA1EQvBT79/jMEl2Cl1BQUHXUwG8goLO0ehozD9565M8fXAPozOUiSi0pFICZSRaS7Rxy0aiNWgjMf6LX+9LoEEKg6g/hQHtAE4YBFiIc5+Aq2vBTmDA2PXC1RMYt61xdRZ1mzJpEK49tPbqmmZ7Wm212wUW+/CXxdVb0x7WG/Yu93tWVUzGCTcPRiTR9m7iYG14NPSkx2DuQo/6tR7AKyjoHJXZTcYHCZ949rT1Y++7eXbdEPrqamXQxuJL/WmM+4dAa5qyej0swK6pD2glMfhlAmNAI7Fd8upqmmUjZVO3Rinj7RevTa2N3cbri/H7veG5Pe/m2YCgB362vA1+9sjwoNVt3wGQi2WvPfd3ffTL+7YnXLdA01Zqg6e/n4XNynCQTsmi8tzz8NX7OU8dTpjsZcgli5c2glLHrn9L+1rZ97m76dWjEKP2eMGKhetHHR4exf5flz4H8AoKOkcP4md54dmK9MYBRqmmvPcH7B4Qfet7gc0M3BBa263Rj859b1J3/Qfd9nFrfefCffpA2EBgGxxtoViBx7qdFSj06nbV8YGSZjlqte/3TSMw2rT654PpfiZI0tm55+H9Dx/wTXdvMsoSd14W5/M4n/DFB8+1YLrZPwLMcp/7Zcxm8OJbM6EbMIUwGL1k+fRglqZ8dTsf1RdW01XQbs54vWz0KiRjoAXry31iActL1t1mf2J1Gwv06qGFDjxMUHhYQP4kxKAG8AoKOkfH8mm+7tl3SNJD8B5cpvLgpwuavJtH74/ZrFGnWd9zM+qysA08YNe6uewQvDa9kQ5CaI/euH/Cm8dnFErz0o19XjjcG4yZuprBDuOeNjT3Zjn7eyOODidEHekHbu9pbt96fUf96GujH4AXVlbfwtmGS61NJ/yaJSg0sKgHFho7wLcNvR0W2Rp4PdA0COr3ImO8/nX0Z3VftMDWtzZj2vU2VQOYRq/CpRdmgAeEsgWwHSBptNfOor06LMFuswg9qMMYpINL6W0rxdJ+nHVXCoO8JDoYvh9sl4bjMqFp1xAawCso6Bz90E/+DxxOcr7vO/8tsigniTRJpIllRRJpIqmRoiQSpgm8j6QmEu6fNEjZ46IcgqY1gG1RdL4Frk+9kDO03To3uQsC4CbA9tq9E2ZRzNd/5DmkEAgBcZIge0a6bWL92eiGviGwvnc64/k7Nxkd7G2w3cUtAhvB7cYQXv9bp+667W53zLu2xm66vwXstaFPGxcaYCxkaA/8tB4IKzASGzpgobTetjILQFRq4TzXRoILOzBmsW/d7Fs2YQn1epwld0g+GPrxqlJoMNZSKNFNmWjVMUh004ZkUaeuL5egsB7MJNznYpvtvp911QWhF/kdBvAKCupRZWK++M6XMcB/9n3voCpNUUVUSlIpqFREXsZUlaRSEqUlStkbp2qC7wXKfzP3fvjCuBGR0t1opEGgHMwZpNFI6d2k6mW/TnPjW/zd3LRc3aYetCDwcdLbJ2e8fPOQG+NsuPI1kTGGt0+mfMdHn33YXQm6JDXxhJ7r1Ur1bMHC134B7QTO14CUxkJoRAsmtYsJbcqNaKyUFhRtnbpcG4kyi3bqusYNXDIItKpjVtttrgxm6lAkHcTZLZbuk97I9NY6tVIvamBQI021sm5dALwweAkhRsDfAzLX3n9rjPn3hRAvA58BbgM/B/xRY0whhMiAvwx8C/AB8K8aY7580X4EBe1acyaIeIYAJs8cQeUFSa9YrpT9V9+sWpYrb9m7Qxit3Q1KoCrcDUWgtCvT0i4bd9MxAqPt+rK+SWmDruu4T6VwwfDCjbJ0NzvjXEa9N9RFsPoCBC0MLiCPhevCrZfolfXWfaJaMCgEzdus8OBQLNWpYTGqoXLpZrb8QKiUJtvf451K89qHJ2RS8LXP3CaNh0cIrmX52YX1b1G59ee/8E2v9FrlNm17o4ftJu1eget6F9bPy7XiXUbd623F29515/azJUDu+rzUVjzdwJ8/En3xt8a9ODfrYpQRFO4F2t9OGYlxn7XFUenIgqc2fMvTnz+3r7uweOXAdxtjToUQCfAPhBD/P+DfBf5zY8xnhBD/D+D7gT/vPu8ZYz4hhPhe4D8B/tUd9CMoaKfKGaFlSRQZXsufI5UlWaJJY00iK6LIgYr23l7dQ0oov8ysrAcQxhBhxzgl9c2m7yHnt6E1jTun6+Y25K7sg0JvV1rXLg88sDOrZUZilFyBOwt9BoWg1N66GiCNQBsPCt3bsTGLt2J/fwA392Z8wwvvrXRWV4oHBj5+9yYv3DriN956jzeKipePDlbipj73xl20EQ0stkDS/7t2k7i32MayaPQKYIrIA0sHjU17nGNl1GY4+eouoKfZ35Zu54E21olhXKt+s75ju7WsLw8fENt1d3C+fe20b5cDiLuAwnUmNu/ajzjnx9SsMvVL8mbaHAbPP4YLg5exV8+p+zNx/wzw3cC/7sp/BPgPsOD1PW4Z4L8F/gshhDDbRtQGBV2SSlKUSKgUfCiehlJRTCVFKShz3QQcozVRZIgjQyIr4sgQRza+K/LKImmIpWrqRkJ5dZyZusc6tgxsK+V9633pjjfRjoeVACLjQUHXTWctQOyI9enrW1d7nTfxo1bd9x6c8rk33uFLD6Zk+/skB5qXXnqBX3vzXfRkn2TJ6vXii7qBQu1Bng+MBjC1yxjRgk2ljQu+XpQ1rha9GOHYwKNre+jt37h8bI0VcQkK63xssmUxXAJA55ru3N7F09j13bCJaVsoa9d23/XUgM4uwGuT0b4bpHLZuj+t9esPbGltd01AcCNw2mh09dB+N4nzW8M6fWlWyuF2u2DwIsH8O4nxEkJEWHfiJ4A/B3wBuG+MqVyV14Hn3fLzwGsAxphKCPEA6458f6nNTwGfArgbQtGCHoJKUipihIRnvn6fSC9cjZGummVpFFpDVQlUGdv4rlJTVdbVVymYV9ZFqAqNVoJKCbQyNhGrsq5EY0CYxduYwDgww2bKjwyRhFhY0LMPRgd4Ujd1I6GQ0m0rNFLSAF5d1qgP2Dphaw0QbNU/34q3ESB2tQucnuRMbt7kk9mY5+/e4ujGASeznPjgkOjoBst+yqP91TYW7S7vz4Hj0Lno6VtLQ5ZHakvjEtApswKF2gVOL+q6YGkdt6yHGKga+HPXWLUI5K7d0DUkKgeNTZkGpeXS925hLI40UmpiqZFCEbvrL5b1siaKNJGrG2HL40g3LxztU7HBoJOh89pxbm3RwPXW2t/6dc9te5v+tOo8uta/nbiHW22cb0XaDPR8dUPfZVr6dkI0xhgFfLMQ4gbwo8DX7qDNTwOfBnhFjII1LOjKVZFQ6og4gl/+0h32RiVZBmlmGGcViU27hGTxA42oEECCwa1GejDlLwvv5ihrF6UXiC+NQikcmEVo5eK/lLYQ5+BNaUGpDEqDVu6Bqmmt19o+sJVaGq3k3fgEDugE9oHqRmTGDtqkN0ozqgcFyPoTB4KKSGLrY6EvdtC4Enjq77sThIbhbhYdc3Rnwiu3jvjcF7/K22/dJ5KSr/3Yx5H7E/RQG72WuwFY7LspbwJkS3UF7hEwdMM/19pYt1n3s8etMvTA63NXG90AWVVBpUQzsKTSEqUilLZluXLrc4mqBJWWzcAUrdsXg8C+EESRbuAtjrQHa1XzgmEtyA70Ek0SKaSk31rcdH0Y3mpgET3re89RU3R5cDe4j0fForfJ8fXM5NDV5z5Xo2nd4zbpzwL0du3G3akpyRhzXwjxd4HfAdwQQsTO6vUC8Iar9gbwIvC6ECIGjrBB9kFB10qViTEaKqzhpCgEp6eCohBUhaSq7M9YooliSBJDFkuSxJDEhiQxxLEhjSB2ZWkEcQwdKZs6FUUWYoT3UBWsPmB8cGklpjQDdZeC/ZVysVeVB2wN0Dm409Z6UimBriwAGuNGcipjt9eigUajbVurBiXXH0GTemMBc9bKF8eGr/3oSe/50cbwlbff497JKbeODnju9i2iSDLO0rXOb9DmspCtSeT6VtEuuGltpowDOOFGDMsFqGlJVYpmRHENdkpLSmXrLA8aiYQDt0i14C2WdToY5dZrEq88TJUZdBXaxajGu0DpoGsM/B5swPzfBf4wdmTj9wE/5jb5rPv7H7v1PxHiu4Kuo3JGKCORBvafmZDIhfXAX5ZCU5VQVaC1XValIa+gmgp0pSlL+0DRpXUvGk0zX6IQ2LiwGJJYEccWtpJYN8tp7OLIYuxDpF52Dz+55KJsljuATPRYmpa3i5vlfuAbaoNmAEBHMKzbzhjQlX1uKiXRDgCNtuepGh22t/PaevHjn+DZjyqMMfzGV15nZCKev3l7ET5rNL/y6gH3j7tvdbKx8llrSu2WlcI0VrpYqsaqt7D4KUTtwnVtRNIg609hXb7nWfna5buzzA26cFfaGNhfnwu6cSX3re9xTTd129dKg8qtNtxo4b6+9QBdDWdVKSycNRa6hEpLpkpQFhbkysrWLZVs7VoISCJFLBRxpGwOP5e/L4lsSpck0vY3KypXZgb71rS/peWqbY0bjo0TA3W79rFJf/rb2q0lrZWKp8s9uO3xeVa1vj7X1rR1UEWs0Y9dWLyeBX7ExXlJ4K8bY/57IcTngM8IIf5D4BeAH3b1fxj4L4UQrwIfAt+7gz4EBe1cOSMqLREa/tFPZxzsa0YjSEcwGRuyDOIEksj90ATEiUZLRbovmgdJJBY/VunFV9XlxoBRmqoCpQ2qstaiqjLMFagSqAyVAlVZy1NZ1u5D24asoUpCElsLXBRBHGviCGTkHiIRxLEL7o+xFoHYugmTxDSWuBacubb73KRDoOdrCPoEEDvoq+vm9EOfzA6b83ww1dwrS+5kB03GemE0n/xGANXtflK+la+djqMuV876pzSUymBqN6+mZRW0bmCX3sPVrxNaNsftjrlxzTbWvcVgDBuXZ1qwV+dtiyKaoPcoMsRCLeq42D7fmroRhPXU7Rq16y/3xgb2Wb+63LVDoLeGJc0HkvoaWuxD0xrRNhAzZozGGCy0lYJSRZQOzqoqJVeSshSUc2nXldaVqjwXaiQ0aaSIYwttaaRIYkUqKuJYkcqK1K2Lo0V/eh/+Xt/O6/vyudjEJdoFDX2w0VnX70PfhO8D/fGhqj3asaOtHrdk3zmqz0vv8ftAt8kIXr/OGmbTXYxq/GXgt3SUfxH4to7yOfCvXHS/QUGXrYqEqrJvvuObEiLJ8RyKBxZ4ytym9ooj+7CLExiP4fTkdR588Cp7+/s888JHufv0LZIEC0MehPlvx1IYkBBFGpHYH6afhsDfzgca2VjNbJnWgDIW3JS1JCkFqoK5NqgCzNzYgQDKxX1VWEhQprnXNLAl3fFFFjAboEss0LXhzpA4oKutdFK2oUn4x9EBd7a8wzrQsV5rTeTlwLpXSbLsgHnqg9f67UZG29QeK307H1IW7RowGiEE7394jyiKuHFo+9LUMYvvqQE7JdBqkaNtYf2zf1caijpWr6rhjkWc3xL89T0cmoEW9SCLxnqnFzF8bgBHJK2bPIk1o9imUYljs+S6dtfemqlTVsrXGdhRQ986ADkId8Pw1hyT+5cBWQveFFCuttHRVqUMRRVRVpKylBRKUlUxM5VRzCPKCuc+tcu1YqktkMWKNKrIYuUATZEllQW2yEJ233kZDMrfYLBCZ/wl3RDSZ+1pw9sq3PhQ1QtvG8SU9cHbol3vj778Xx359fySfni9AvAKCnpcZcHLWhmmhWI0kpBBmkGaLOolsXVRVCWoSpOYp7g1usPJ/Xv80i98hdtP7yPFBK0tQAlpgSXLjLWYpfZfnMAotWVxAn6YUh+E1fDWgjFpqBOEydQgsTAhO+q2gK7DMqc1mBrenDVOaxsDlitQhcDMrNWoqkCVFe+9+ybZ+AZZeuhyZrX7VsetLaxu9iEfRRDFDt58uHMWujimScIKUKqSX/nFX0IbTSQj4jjhqec+zjwedR5TF+itFRvnaXg7w+npGZ977T2qquLbvuW3kCRJU395H5LVsVqd0Nd6cAmv7pCFcbFeK+NgbgF1RovFoI2qhjkotaAqBMWZpJhr8sJac+qRtmlqLJClmlFaMUo1WaoYJyVJXFv3es5nB7CZIWDr2H75XHVC1iYuU7/OpsDWsT7WmrieSKFxmZaddf22ysqQlzGFiigqSVlF5FXKyUySn0QUpS2r09lEUjtIK8liRRZXZIm/7Fyguue8tbo/AGw9x9rU6QGlXmCp6/dYtoaArSXR3U9xToLilf746gKoFhT2tDewPwjgFRTUK5vJ2FoXfvEfFRzdjshGhv0bMNlbPC6TZLGcJoJ4nBLHgsnNMafTVzm8O2PvwE6UHEkbZF6VIBCUJeQlzM8cuDnXYlW172tJ7IAshiSznxbODEkKqQM3m3rCB6hFGzV4LYNQZ91lIHPWuvpBInoscFVRUZhT5vN3mSvNSy+/wq1bt5v1xhjPwuasbUpglKZUMC/cSMz6PNRWOVXPP9e+iQvzz2BMAZSMJylffmNEHFsLZJI4uHODG2rAi2Prbj3vOHrLO6xffl1dVfzKV17l5nMf4cGD++jxkXWVdoBXq40BAOzfbgNLYWzXR0Dc8eDtdudq165zkbqRtnkhKeaCvEgo8pTjU0leSPK5oXSDTmKpGWXuX1y6ZcU4rchSjYi9vuluN3YzytDvbwvYdmBV69xuA0hbrnNeu7B4eLfKFstJDMkIei1sS6CgtB14MC8E8zKmrGJO84wPphF5GVFUsRvcYkgiba1mUckoqRglFVlSMU7s3zLqOCYfMFovBR1WpVbful1/ndamTYGty53XOx3a7oCtNzu+D45r5CQL4BUU1CNlInufEfDMRzVpKsln/SP0wYJF7eY6O/mQJB0Tx+0RdkI4C1cMtW2mzs/nx+e0cvZpKEsLKrV1rSqhmNtPoxy4aWtBsZNEOyBzkJY6YEtrK5sr26WybMQrX/ebAXjnza9w74N3W+AlJcjUWeCaUuOBnmlAZgiEbFC+QKkMVY3Q2lBV2gbkVzavWpFDVQ9scOeoaqXUsJ9RZOE2ikwTtxc5QEsiQ5yYps54bOFtWXme85Uvf5nbt28zHo85OT6+4Nm8nooimIw1e5n9IbTgz8tvpyqYF5I8t0B2Nov44H7CbC4oCju/XhIbRplikhaMHZjtZSXjTK098vdJVyQN47RilGhsRCS91riykuRVxCyXFFXMvIy5Px0xL+yyUgIpDaO4IosLxknFOLVQNk5LRnEZRn7uQAG8goJ6ZIjQyiAMnJ1M0XsJCJhOodKLn06a2jccYwxpZstPPvgi05MPmBzcZl5OmJf2jSiOveBb78FSl/svfv4cfk0sk4Q4hWhk40/qcv9mGLmcl1Vp39BqSDvLoTq1Iy6rCqqi/QKYJqYBMt/9mWWmKav7d57V7MG99xnvHfDevRlSppyVSQOjsgVT3rF6gw7qQ13LAiUNSBDJYtqMLpfpant1mT1XStXwKp11zaYLqRTkhaCcLqyRzz6vuHHUtqQYY3jznfdI9m5x9/kXeOP114jGR+QOrX2YrBybJL7FR3S8ifvbXTAebrm8Vb/TDeqdw97ccw68fGvVYmwiIlaMRvblohnhimrqC2NH+85yST6XTOcJJ6eSr74nmecRWkOaKCYjxV5WsDdWjEcWzOrrsMs6Bp4b00+XMmQd85avfMCAr4H4s77Re73H5GWHT2NIgf29CpsohxVI0xryKmaWS2ZFwrzIuHeyZ5fLGGMEWVwxTgsmaWn/JTmTtCRJ+o65h9Y6rE3GdNf1f9d0ufPWyRsWLe7VTbuyp27Loud+hz3GrCF35rICeAUF9UgRoZWNwzn+8JSqWsQOpfkiyCtJFz8jU33Ah+/+Omk24sbdl4nHR5ycLOI6tJK8/RVhA/En1m2YjmCyL2xQuvcDbkFa1A1sDQjJvvUC6eLS6nIhVusaY28uZWmBTFWQTxfuzzpFhtbw0sfh8MZiH8suyjfefIcP3/8F7tx9jude+iSzcnGu2jFleMtmpU7f+iF48/szBG9NmQAZuwEQPXUX9SW5bpfN5zNee+s9jNE8OCs5PTnmYH+fQqcY440WxfDGWxHvviMXsxUIlz4kqXO/QZJa2E0TbaE31k2ZPyijr5+L9bq7bg/ILdavAtbqsjvfsgfM/HIfzrw5TmUMe2PYN5rbDZgVTd2yMExnEbNZxINZypv3ImYziVKCLNPsj0r29yr2JxUHo6KBWSPjlf70glBrcEAHFMnuNjrhzHd3DYLXGpDiQ0FX3FpvwHyHe63llhadVdHWsjtJDONRCZSdQFNUkrN5zDRPmBYj3jvdZ5onlCoijjR7WcF+ltvPUcEkzrstZV3uQf/4W/Fg3qF2wJnocRkOQloHmNl99MBZ13YdkHaeAngFBfVIEaGNwVTwlV8VHN4u2TsqiVPDqFxAWJLGGGO4/96vUeYfcOOpT3Jw+0WUhulZSZwsbuxxLLn1nLNGVRHTU8H9D6xbTFeQZpJ0DNnYMNkTZCP7o4+TDusXCyBrjZAcgDR/+5alLBIQQTyGzE9JIFa3m+Xedi0QEDz9kW/m9nNfz1df/Xkqk2JK6dWFfO6sZ63tVttrQVUPbLXacE+pTYCtD1z6Bh2sABv22RglCZ/42m9hOj3h5Pg+Z7OKSp3x/r0zDo9utHI23XnO/vP3Z9OHCMpSUpXGJgwt7XkuncWyqqAsF25SIazVLE0NaQppqkmbmD/T/DsvRcjycud5k6uwZZdV63Nl2YMtKXw4q/s/DGyxVByO4OiGhTKbFsTWneeS6RmcnKW8/v6Y01NJpQTjTHO0V3J0UHK0l5OlemUf7Yfq4qFZA6LZxMplD3Zlfa/VrL5mtw789y/w7piq1nY1NbSAbdgC1cBZB9BkEaRpyc06/qw1mlNwlqeczmIezPd44/5Nprnt2/6o4Gg852CcczTOSSL3XbeC632zv2ex7Iqj6gWzPgh1154P07IbmobypZkeX3jnKOglBfAKCuqRJrI/RGGYHLyPkHt88GaKMYKjOwWjPXvTUCNr1dA6QeuED976IrOTDzi48RJJtk+VLH7Ysb+carIUsgMLZFaSYgazqeD0gaSYAwZGE8FozzDes9axWjV4LbZfGgHpQVjjrfTuQ11gZstX4cxf34Yf0TzIastbPquQySHHJzMm+wet/X35CzCfAQiEsNa48dge22gM4z3hBgl4+/OhyOtz1bI8ueNbC9LOt6qpnja64s+a85odcpAdMN6/y4PjGR/75NeRjcYUuh/YmnalIU6tG7nLSrcoW8TAWXeyoSgEZQFlETMtQJ3ZWRaKwkJb/byuZ1NIMxhlmiwzjEaG0UiTpu34wpYF0rMuGC+ZaZ2vyOCvXyxr74LpAjLptduaQcEsOiKcb8ffvj6gdAKjkeLWbec2cw/b2Vxyciy4d5rx5bcm5IVkPFLcPiy4faPgYE+15kTFPz4HKaLPytU7ErNOX+JFLrbgp+NYffjx2/IvOK+9Ra6Xnu1a2V/9H2sNev6F7LXbm1qiA7xMB/x4dYzRxBKOkoKjSQ6ctbp3mqccn6W8d3LAF969S1EK9rKCm3szbu7NOJrk7ReBPiCrj7t1GF5d3Q1FpvleV2HM7sOv7IF6xzyRvakz1ghODOAVFNQjg725ykhj9BwpI/aO5qhKcPbggAcfxBzcyBHSvvWlo6fZO3wBVc0p8w84O3nA2GQkrYeK/wa3+qYVRYsHcOxGSxoDupTMzgTvvm6DxdORYbxvuPmUREqb06qWD1utF213P2gNXPLuxa3kj74FTXat97YToJXmnTd+nTiWHN16lgcfvkVVlCBHVKrdn+c/Vrdr0AoLCHPBdAoffgD5zN7zspFxIAZHNwSpMzKqVqiHD5ZmpawFU/48mB3g5R+zHgAvH+700vpcGcaHtzAipXIPgCZuzfjb9bj+fDgzq2X+c0nGhlEMo8kypK2CnqoMZeGgbC6ZzgX3HkA+FxS5hWchHQSPNJM9w527mtR3eQsfsuzF5Q+f96HJh6UWnLn6fXWX5yuFJabwR5HilbvtRhN7DE89XSL0DICzmeTe/YQvvHHA6TRmf1Rw92bBM3dy4mgV6nxIac0p32KN1R9SF4zZuh1A1gVjXlut/vj1u2Bsqb1uIPPfsvDq9rj26up9QNdh8WsBz5IFSko4jEsOx4VXDtM84d5pxlc/vMXxGxlZVHJrf8pTh2cceHWHRpEKD3hMj9WpC8hM19RXAF5d0VGnC8bsPoLFKyhoa9U/rGWjfBQbxvs5VSl48P6YZKRJRx74xCOy8Ud21g8hbBxYOjIc3QYZafI5TI8Fr/26YO/IcOdpG5/0sCSjiIMbTzE9eY83v/IrjMYHPP38K8TJ+XMmyshauSYTOLply+rnhyqtZWx6Cl/9AhQ5TA5sfNnRLTpHFl4HZdmIF176eG8w+8OSTaMB44lpgWMtIWwM33xu4ff0VPILP5dw+5bixZcqsh2PgL1K7Y01++M5Lz47B+DkGN79MOOnf/kGe+OSF56ec+dmMdBK0K4lBOyNSvaynBdu21HA07nkw9Mxv/7WHWZlzFOHZzx385j97PH5fq7prSso6JrIgK5O0ZVCV4s3Y60UVfkArd7m9N5v48ZdO0JIu6k/tPTrLt6MtPdWqvw33sZqoDvK2uUgSRI4um249RTcfx/ee0tw9/mhB/3qW7lvHWuZUnwLhTl/fd3Nyf5t9g/bqSPU0stf++W624LWWJViweTAwtZTz7u341M4OzZ8/pfg+Y/Ajdtee+58tuOzVvvp96N19J7hQ/RYzerT5U8L0nI7tgwUvnWotkYtJOluo+Vp6RrV2HJXrrbRF7/lL7csRf4+BGRjazG6ccvw/IuKD9+HX/zFjI9/ouLunY5rrPuyaGkpM8q56qrre2/867fl1WldXO7LlN4jzkt1cXBoODjM+fhHcx6cSL765oQvvrnP17/8gP2JalszWvvodtE1e9bt32lT1f9dd1hKWutlj0VrYYLyivy6fosddXotMf6x+nFgcmV1S11967Ee+ZamloWptrB5rs/JSDMZnfHCnTPK0vDe8R6fe/0pkljziac/sFawrmNq3U97XI31eWmFKPS4h/0bRoelrMsKZvcRXI1BQReWNhWqmqGqiPopU5UKYwSn9044ur2a2Kvvh79rlaVhPhXEiWnclf7zp2Wdd8u+u6hPPYnSvfXdMSldI+S7vBdLmy1ttxpbUq+f7MPegWC0B1/4PHzTbzONpa/xxNDdcPsxUdfxXX++i6vb1di03XOCWgPSuuq0wPN8kG11r4ePdcst2UWTHX2nx3Xp983r1p2nNIdHFb/8iwkH+3qR+63Znf899cR7eS4q2az3tmtBYUfd1vfhB8n3xC01x9cRZA4taDo60Pymrznj/knML37+Br/1Gx4wyRaQ5j9I20lmvcV6iqpBaFo8/LsAzF/f314Pxg5BWG/fPIkOCNPd5629Xf09DNdtgY5cBSG/D0miee72lOduT/ngOOWfvv40L92+z/O3TtzuNnO71uez5YrcBMJ6+jk0ndGyAngFBfVIoBurxfTsC1TaPnEMYO6NyacJo4OM/Vua+oYjo/bnyrIXBB9F/rJYKWvHHy3Ky1IwOxXMTkErwa2njXPTiVZbdt++VUmstNta7hntuBgB6JedX9eX7FnfV941LFwImE+ti+js2DCfwtd/k80ztq5kxz7WGTl5FdowDdDaMn1WtQ2VZtZFOZsJ0qzdTju43ntw9cSwbaOWhXHbpgYelDcOKl5+acaX35zw9S8fr9EnH8jqwnOyK18n9QHLJt/TOiDX1O2JI1t3PXD7sODb99/kp3/jBY4mc/ZHZbvCJv3ZcN+baJ2cXgG8goJ6JLAPYIPkqRd/O8loj9lpQj6NObgp2Tss7eTR2eJnlGSWBOJ48dYe9Y1qTFYhrD060Y5WK+YwKyPyGZQ5ZBPBZN9w+BKMxwIQ7TxfPngt5fRaXr+ceLVru3qkYnv6oe7ltsvw/H20E50uylVlY7uK3H7Op1DlhmwMB0fw/Et1MHn3yMd+uFsFqz7Y6uvb0GjIofa6RkMulw/n5vL3d/4++rY7f+Rk+zhUZfjqVyKkNNy4oVfa6JtSqW86o755MM9bf1FwAwatEkUpeP2tEa985Ozceos+9aR9CLo0RdKQJhWqZ9Tio6IAXkFBPZIohBQIMWF2dgutR+wfVdx5TpGOJDZ3PGQjL0GoA6s+wPLBKnFwZucidJB1JuwceHNr5bIJVg37h4LbT0M26garvgSqXTm9uqAKhsGqC6qWlztjtZZeAMuinlDcUOYWsIrc5vcy2iaVzTI7mvHmDRg9Z2OOuva3rRWrq29dme39un57fevXAauh7brAqi855BBArbO/vkD72Qzefzfi3bcjnn1O8fLLVXuGgXr+Ri/FxDpJWuvl9kjGnr7VWe59oGtlyj8f7nrhz9uuLA1vvpvx2ltjXnnpjFtH7aShoiuXVp/WyP91aRN/b6J18pRt0sZg3aHzNnwcRQG/+uZdRnHB4ThfrbBJfzbc964VwCsoqEf2wSKQMuPwds7+je38QcZYK46dU9ECVlUIjJIYDSKyAc1JasHq6I4hG9ns5bX8FDbXTfWUO6q0922bU8oeb1mCKtyk38ZCnM3MDqORTZuxf2gtWGlm1zfWqCt29z0pqqp6rk+X6yu36STyXJAXUBYCMGSZ4dZtzW/91vJaX3/bqCwFH9xPePO9EfM5PH2n4Ld/032SKFiurpvO8oSvvHfE+8djPnr3Hi/eHnYDX3cF8AoK6lGEQkYCISSHtyZM9r1s9b57MY1s5vEC0LEFj2lEWdhs9DKyqR7i1CYH3T904DEWjTWpzkzflZXeli/6JTuSovbN8dhlxTrPNVhDolGLB7RStkxVdp5BVU/WXQ8cq48vthnT4wRGKSQHdpLuet7HZdeg7HPnbWG58tvY1nLla8iKtYlr0K/T5RpcZ7uu/Sm1yGZfedntVVlnuxdUlaEshZsVx3beTpSu7WTgiWE8MhwdGrLRIgt++7tZtXLZZbVa5merN92WqSbjfY/lql1e54fqsXL55WbVKlaXVZXg/nHMhw9SPryfAJrbN0o+8eIJRxMvTUGd2bzHqtS1D7udXqnba8VqpiXawMrV2q6nrq/BeSTXsHLVlqBWxvu+/XXV7b6mzUAdozUPphnvPNjnvQdj0ljxwq0HfO2z7y5+r13H1NWfjrbX7puvnknHu/cxbEEL4BUU1KOIEikFQgj2DveZ7CeUcyhyQTWPKXNruZKxsLFeqZ1/cX8fRhPrJrS5k4Zhqq7TnsLHW/ZhasANiFk8lE1VQ5O9R1UVoB1AVbWbk2bfAgtRaWaIIxu8nqYQj9xn4ixWiVlMVNxyNT68OKquukOuv03gx+77/H0M98O4Sbjd96IEVQVaGbtcuu+kchDl1islFt+TaymK6uvLTROUaJuna6yJD+r5Hk2Tv2swdqwn9YTvSmxBVj1JdgdULS93TbrdBVjQDVl9wNNyJbp0EfNccnomOT5NOD6VnE0j4shw86Dg1tGcTzx/Qiwrb7tVIOmL39rEDdgCs6G4tcuaiNvX4CTa3f3cCNi8ttaCGKOplOD+dMT9sxEfno2Z5xEH45ynj0752J33iP2Mz/XiwPGZPiDrAr0tYasXsEIC1aCg7SWFJnIxWScf7KNzaeOt9mHvQJJm1oqVZYsneg1QXVC1XN4GK/sphH0oazclXQ1NpTbNw7qGJa0WD2l/bHscLyxQSeJAKrZTxtTldZ0sXU3HAN1wMwRKy210ZXnfJDaqz6rkq6tOn1Wpa7u+PhhjwUdr0NqgtHDwarPtG+87qJSw34N234kDXKNtnVbmDQQyMiQOmKJIE0UWZKWEUWJIxhZq48QQR8bVWySMHZxnsQ8E+7J5d+QK89U/SXYHePVZvFpWo7Y1arlul4Vp2bKlNUznEdOp5GwWcTaLmE7HlJVglGkOxzkHe3OeeaFkb6zsS0UPbHRBllDd/dm5Fauj3cF5G9eyeHX0bQiw+vq5Bph0wkvH/uZFxPF8xMks43iWcTqLkcJwYzLj5mTGc8/dZ5xWXhu6O/Gb69smgLVWP1uVV+teBLZ8BfAKCuqRRBNFdt7A3/bPxqTpghrSxIetxTbNYEb30LWTYZvGglF4MGU8y5M/AjCStWVpAUpJDFFmYSlJ/HL7UG5DXPeDuROgNoCiTUfhdYGQr01G2dWqQUh7kKNrwNEGrUS7zHgga2gBklLCgZTo6APIqAYe42LTDJE01rUqLTzZ70ETSetyTSKNjCCOXL2otiR2AdL5IATdMNQLVl1WlS3r9gWid4FVF1Sd18ayG9Avq8uNgbyQzOaCeR4xmyfM5pLZPKLIrSt0MlbsjSomo5zbdyv2RyVJXMOCZ7mqd7Ot5arXAtVRZ9eWK18D7sxBgNgE0nraG3ITYjRKC6Z5wuksYlqknM5TzvKUSklGScXBaM7hOOfOHZuNXsqlvqnu4+iErG1dhpu6Cbsmyb7ASNsAXkFBPYpQxBEICUf7kiw1Nhi5ADPXTQC5US6mplqATBwbksS56hJDFsP+xFkx4rrcPrgj96CG9kO3nYF9O+vQJhahoTbaSTeNgx0Wn1qAswhpY8u0dkCkLegsg5Cq4alpw93jVu5pru/SQk8UWTCSwp4/KQ2RAyUpIIkMo8TOfSmlIZI465KFqHqb2pq0rD7rT5frq2v9ctd3CUVD/dyobz3btUcZXtwN2HrQKUVeSOY5FIVkXkiKPGGWS+bziKqy22WZZpwqRpliPy24c0szGSlGSdXZrjAG6lXbxFx5yxu7AbvWD4HVDkCoN/5qyKq2ZfwVDornZcx0HjEvE6Z5wrSwn2UliaRmnJbsjwr2spJbt8/Yi3OSuOs7AdT1t1x1QlZf3RDjFRS0vRKKJufiFz5nUxykmY3l2pvYEYj7h3Z0XpLah3nUEXPlz8rTis/awai92rpjPAuQMXW5aOCnsfhoQIsGjmrrkdECrYwt89qxs8i4G8lSrJNsrD8WTiO5sAhJYee0tKBk69butNpiFHnbS/9vB0e+htxrfeV9OaaasjBycicyBspKUMwjylKQF9KOlCwkRSmZz6Eo7ZcaCUWWaLK0YpRqskxz87Dk2UwxyjRJx6TV7XipqzyyJ0taQ17FzMuYPJfMi5hZmTArYvIyRin7ApYlFaO4YJxW7GUFdw/PmKRl+7tbbjioUQCvoKAepcyty0jCd/yuqjXUPPbceZE/6suVR27CYVXhAkhr96IX0O5bgrRBaTDKxhNZUDJNXdMCiIUijHOJLaAmlqYBIemsQ4m00CcTQyQWwBNFBtFYhGx936ok+tyLa8QRdWag78nX1K6jVx6uu3CZDbXXa+UaSvi5Sd96LWkDD6Yr6NsC2gVKG7QWlKXLL1cKykra1BOloCwlRWHj2+p9pIkhiSuyRJOmFeO45GhfkyaaLFGkiW7HWnWNFjRAuZ0L79JGDi6fpI59b2XFWsdCswMrltaaUknyPCKvIvIyoqhi8jJiXsYUpaSorNlXCpugNIsVWVwwTkpuj6eMj0rGadUKY+g81nXchBcNcLcNdhTt2E3Ytd0G/TlPAbyCgnqUMSeSxsZd5XOkUPZhUwpUqamqesSZjeFS2oIQ2Adp7dKKItPE/CSxDabO6jLnDosizx1WA1TkteFNyLpJDFBfnM1a6w0tN9km7q7lts/rQ2/dTSFl4Ga6SX9a0rqx/mlttzDaLP429lRpLaCuZ4S3nbCuVwNo54Y1omnTX7bt6c622+3W20jbvvb7YJp99qrjXElpJ/+R0iCFcQ9hQxpXxLEhSzUHI0VyoJ37vLIxVT3pFnbqBrzOAAWbuQGH2mr1c1GnhhOlBUUV2X9FTFFJyiqiUNGivJRUSjbbpZEiiRVZYl21WTRnb6zIDitGiX2pFILzQc+AKYf7udzfdepeWczVDmGqb7tet6mnC4OXEOJF4C8DT2N/+582xvyQEOIW8NeAjwJfBv6IMeaesJO8/RDw+4Ep8MeMMT9/0X4EBe1asSiJpSKKYPb+lElWMU4NyQjSg8rGcMWGNNZNrFDXSK++0VvtOudAkQKheh5uHdsPgcmmMUB1sHMbDszS347TlGngwyAa96YxrnVtWqDQLNcTfC8DjgMTtG4BSLt94Q7NtODHIDBae21ZSOk7b30SIkII44LkndXG+yfrdcIgvfU1yNTrhARptK0n6/o0y802XrtgVvch7XclJW5/NtataUOYVv8W3//6b+VrwU2loRqOl+pte9tAdF+7SKfga5vcVX3tnROfpLSgLASVlpQqoqxiSmUBqqyEXVZRU6a0bEAmEguQSut/UcFhXJKO6r9Vd0xV013/vAEVze+zq7+detIB6gIZ73dh8aqA/4Mx5ueFEAfAzwkh/jbwx4AfN8b8oBDiB4AfAP4U8PuAV9y/bwf+vPsMCrpWSihJhEJg+B1f83Z7KH0riFhBCZTd1qEaXOpYK1WDiNYoZUFhEYNlmvis2jJSg4nRvmVkYVlZbFdbRRbb4YEP9TrdZwjoC3iKEBZj3IPfftbWkeYhj03Bsfh7ARjU69EteKhHcdbLNdw08CDdtmIJNqANKnjgggc7Rq/0s1ebjFLa0LWw9VyD6+zH1P+2i6MZ7Nuug8sH6w5Zj9Z4wO7AwrTYbFFXV4ZKW2tS86mkDSVwsFRpQaUkRSlQDqwq5Y0fNjaeMYkUkdQkkSaRFUmkSKKK/UQRZ5o0Vq5cE3thDmsFohsw5Wr/zzvOvvOybQqFXoDaBJralbbabluA6gXODfbdpwuDlzHmLeAtt3wihPhV4Hnge4DvdNV+BPhJLHh9D/CXjf1WfkoIcUMI8axrJyjo2iimJKIEBR+++gCJpqwEVSVQpaFSwuZ3alITCFRtmWq5XxZQIIWFCilxn25knnTlngWjhoVYLFw/NYzU6yTKa5sV60ck2uDhW0NsP9d5sA/EEW0CFdsG2Z63D+N9Lje/JYxsBGF92kVA8bb972xry2O6aijq2m7Dh6NRBm0sACltLUtKWTedLUvQrryqaCBKaQtL9rdt//Yl0cTSglAkF8uxUMRRRRbljGNDkiliUS3WS93Ef25sVapAV37l4WuiEwo2GbG3znZD4LFlP9dx1Q1Zm3YCTUNg+ZAtXo2EEB8Ffgvw08DTHky9jXVFgoWy17zNXndlLfASQnwK+BTA3RCKFvQQlJC7dAWG2TwijQ1popmMDImsmtitSOgmx1MTaL9G3IuvTveLr6EHU4+2trQEBe1YtVtYN4Aj0MYBjsItL4DH1C81WtjM/bq93m5nnNVXrOzMjpzV7p8hllVTFrvPJFZksSJ29WpIiqVqRt62tMHvcy2ACHoitTOiEULsA/9v4H9vjDkWnk3fGGNEXwrpHhljPg18GuAVMQpPj6ArV0aONBUo+IY7X+2eAkQ5uHFm/cEkh742yA0z+Pa4ZVzEhdrr3G7zh029q9YpM6J5qzUslXdsa+uJlbJWPdc3g2iXn9f+Ovuu2zXntNvhxl053t79Lm2nu+t1tdV1fnrbddsZtxPjgEbrCG0cJFU0y7oBodo1vijv3AFupC3KpQ+xVt5IGqRQblkTSUUkrIUoFRoptRt8YgEqQi2W5cItPXTNrp0ryoCpbN1zr+YNYpzaVTb43fvbbXK/GNpfu8JW2+8iBmrIMrVOPxb7u/i52ASWH3oCVSFEgoWuv2KM+e9c8Tu1C1EI8Szwrit/A3jR2/wFVxYUdK00YgrujZp7HyBQizfvCpSW7kHj0kJoaYO53cPHIBaB6M3fNEHhRru2WcRqGR21AseboHTcsrfObmcWD1rTho8GaFplYjdutB1a0trJWlfL7P60V9/bdo3M+367nftsrVw9rnX2t1jv9XPtfa4ObDjvWJbbPu9YV9b1HIu/TggbDGhj6gyxcLF9wiBTl45EWrd44yJ3ACWMWrjU+rSJq61vG01DRXWI27YxQFvHKm3SxiW55drrN3jp2QEUbeRq27HbbuhYN4KiTWDrAu5FX7sY1SiAHwZ+1Rjzn3mrPgt8H/CD7vPHvPI/KYT4DDao/kGI7wq6jkpEycu3PsJeVvD3f3ofweItO3Jv7TYuq47VUotYLNQitopFfFbiRrU108i4+uDir7z5+IRQLRAR9afw6yweoHVAuV3n6mrTbE/T1iWfuGXtMk4p6MrV+bCpixQrD66hb3vbmKLOtnYANBu116q7u1FvO7X8rPTjctq+NOvQJYLQtuC00bFeUeb63wn8UeCfCCF+0ZX9n7HA9deFEN8PfAX4I27d38CmkngVm07ij++gD0FBl6I/+R3/Er/5+TcZJb/cvnlsEnA66CZc+jyvrQ3UWAKCgi5BW8cwXfS63hLkt/49XYFFZNtzubW7a9v9bX18V3xervn+djGq8R/QPw79d3fUN8CfuOh+g4KuQgf6Pd552/Ds4UnrZnWR5Hnn6SJxA0+ixJWb7x6+xPJ8Sg9ZVxFEvvPfxSX1eReuqF25sxbtXfCetJNjuvj53sl5ueB1tKtrPQwXDAo6R4flm3z5vWe4pU5a5bs2PT+OEruYjPIKdd2Axtejdi4vU9fx93SVIxiv7Pgv6SXwss7VZQBrPWJWI9zyYqCJQaDrmSPccl3/7uT+uW0H8AoKOkeH2YxpmfHhbB9YjNyqh7/XEVbG/RDr4HeasqVRaP6IM28/XaPetlH/HIpLf68EbK8XhN0VCO/X8dfLFiy013cFgHcFrjftenFsK/1aanO5veV99bUl3Gzmwivr6rPf/ko/Ax8FPQFaDPJZ3P8AdFMmmsE+TR3qUbIaY+xLjl66bxp3j8Vto41czFCBdCwoGsCp6xvs/LZ1HUN7vQUku94mkh5+yTJ18mVR51Z0I2ip8ypqBDaFkKgHoGDLhxTAKyjoHBUnUz6Svsrr7960Q9zrH5nRSBf8Xmd0r/GpfrjXGdRhFSDcHy2tNW/gOeqFt87Y6OX0BcOpEFojLFdaXNRpJFfLmrb89ps0BnKl/lA/2tu32zZGIKTwtuvu6+KY/HPQHk26vH65fLmtZQlxedY0Hybpud5a0xx1QPJKO6yCpt9e3WZX+crfnaM/O66ggdGb62rd39EmLzsrrykr6T860oV05J1tXWMdvznT9TvqKO+6Nv02mrZNf5uLfW9ngZKtlxj/ZcQbMOTfG92118wy4ZJFC2hOVnN/dW1ZiLFtRN59VQoNcrEsAJnUM1osAZM3iKmGJrS+3Jckdf7qAF5BQecoP5mzz5z95N3eOkabZfPVtdSF3VXrbN5Vp2e7h+k+e1huRRnt/phbD9xlAJRtmPVtd30P7dbnyrV8Pjgsly/Wr263/P2fB0J90LBSb0NUG4K03vSTogs2l7aLuvfT1NvI0tvevsva24Kfpf771lm4WtfoZWi9KYboeelsf+5CWm3WWgCvoKBzVJwVneXXJc7kusX+XAZYrKurPBdXDW67OjbRs3xZ+ztXnlXgul3Hjbb9mZs1rpGutnd0W9kWLh51ILss7fp+H8ArKOgclbOyWb4usNWl6/LgCuB1Wfu72vN6md/jVRzL9RgoMeBv6tF1+S0/jrou9/AAXkFB56iclsOVHhPt4mG73aOGJrD9qrX9A/rReKhu+52uc3SXdSy7gabVI7huQPMwX1KCHq6uw2tBUFBQUFBQUNAToWDxCgo6R9W8ethduFSJaPHupR6ice9hvf0LebUxLVd9nL7d57Ksirt26+3yO7nq872JVU1f8a3lerhfgyCAV1DQuarm2zrPLq4rcb+VF3/I7eLhpncAfQ/LleTD65B2DbcbnftLO8ebXUO7hKGh38gu4OYqgOVqrt0t00YEl+jOFcArKOgcqdnVWkRE4t3kqusRCDokE1+vG/OVx4utAa+X9fDaBFgvLSZrA/CEYfjcJUzu5pi7v98rt6Y9JADy4fVJtZrt+rcTwCso6Bzpq4afhwhbckuAUuXV9rkFp126hudQbZjn5zJ0aQ9uDzx3ASNGXQ9AHJIPkFcBYeKSzsuQ/GMz6uF5ADbRrq/1LXPM9iqAV1DQOdqFxWtboLlq7QKgBqFoF7oksNrF93QVELr1Od7xees6X9sCZutBuQNI7QIhoy8ODX2Wj13ySC8gXgG8d5039RBTMGxtaboGLzrn6cm0GwYFBQUFBQUFPQQFi1dQ0DkyWwafi2TxTnPl7sqHqYFjvc7Wv02sVVdi2evTDq6nq7DubXSONjimdfq+E8tbZ8OXY43ztQvLnK9NrEZXYrnbRA/JynfZCuAVFHQJ2hbYHnX5wNmlxwZCveO4zjDZp51CU58uCcLXAeSrcMdu3f8NYGInsUpbwstFgeQyXbu71C5gc1PIDOAVFHSOHhtQ4GoA4XEEzicGJj1dRQyKD1A7tyB2fCe7vv67APAqjsPXZf6mrxwQOzuxAQg/xLQXm0JmAK+goCdEjwsgXLWF6XGBySGA9HUV14r/PZorGJRwJd9iz3m7rGu2z/p35a7wKwDdIa0Dig8rJceyAng9Idr0h3gVN8JHQQ/zPDzUOKJrrEcZIB+mW/JhAmQX9D2OcOfL//1e9TV7HUbNXapFc1u57+Fhhwdch+8nKCgoKCgoKOiJULB4BXXqom8owWJ2cT0u5/DavO1eAz2K1rpdWAcuy9p2XeLvus7Rk2Rh69LDtDYO6WEHDwTwekK0zs1zlz/WbR+21+0HGnRxPSrfaQDEbu36Ib5LN8/DArplXbXbtEvXLSziOsAfXA8oXtZOwEsI8ZeAPwC8a4z5Rld2C/hrwEeBLwN/xBhzTwghgB8Cfj8wBf6YMebnd9GPoH75N5K+m9VFb4i7+KHt4uH3sH9UQY+mrvN18zhB4S4fyJcVq3OZ8XCbQl2t6wB3fXqY1r0hXRcA9LUri9f/C/gvgL/slf0A8OPGmB8UQvyA+/tPAb8PeMX9+3bgz7vPoEuU/4PSW4b2Dd2Mtv3R7vqHEeAt6HHTdbkerxsAXmdrXJ+ui5WuS9cZ7nxdZ9BbRzsBL2PM3xNCfHSp+HuA73TLPwL8JBa8vgf4y8YYA/yUEOKGEOJZY8xbu+hLULf8CydKtvO9bwtsvrpuOtcF2HyFGLegoFVtcl1fN0hbR4+CNa5Puwa6XYBclx4VuPO16/v5ZY5qfNqDqbeBp93y88BrXr3XXVlLQohPCSF+Vgjxsw94NGZEDwoKCgoKCgo6T1cSXG+MMUKIjZDRGPNp4NMAr4hRMB9cUNHYj/HyTmfPm0HXW8m2lrJWuzt0c+7ireay3r7C4IKgJ12Pu3VsSNveWx52jqlau7SgXZb1rE/X3ap2meD1Tu1CFEI8C7zryt8AXvTqveDKgi5RUeaBV9x9UfoXa9RxIxwCtnUu9m1/fo97XFqtEJ8WFPRka5N7y3WBtCHtAuKuGt6GdJFnwGWC12eB7wN+0H3+mFf+J4UQn8EG1T8I8V2Xr8i/aJPFotEebKWLct0x/cIQsHXBGuwG2B5WXNpljQCFAG9BT44eR4vWddBaL7uPCJwNaVt4u27ABrtLJ/FfYwPp7wghXgf+fSxw/XUhxPcDXwH+iKv+N7CpJF7FppP447voQ9D5ikfdX7UPXj5sSQdnRnkX+wCwdcEa7AjYfLkbyaUCm2t72x/tOjeJAG9Bl6EAOUGPC2ztQkP34ocBZrsa1fiv9az63R11DfAndrHfoPWVTBbU5EOT0d0XpXEQpZXnotQ9AOXqSh/MHhNgu+pYNl+XBW9XldcmAEBQ0O4UYOrx0fWzwQUFBQUFBQUFPaYKUwY9Icr2FwFcvoWpz/pVl69Vt8NitQtLmYm6t7tSS5mfeHaToNe1a7bl7+Oy3JzX2cUZFHSdFaxOj54e2xivoOuvZLIAr1ZcV+XD1pbg1VE38vZ9WcAmZI+bdIfANjTSE4aBra+9zj5eMCYNdnOjCfAWtK4CjARdVNcRji5TAbyeEGUHIz7/4Ud4kO+RMieNKrKoJBVz0qh0yzmpLBECVGmT1rah6XwI6wvU3wTYZA9sdQGbD2ntursDtqGRntBvYWu264G3QbDawNq2kxxrV2Bt8xUe2EFBl6MnDWQeNQXwelI0OWD24Ba/85VfZ54LcpWQVwl5OWauDjlWCfM8IlcJIDBKkUYlqcxJZUUWFaRRYcuiksTMkaINTl1QBbuxqvk2tM22W2gbYPP3samFrdmuZ/22wNZq4zFxj26iy5zAOOh6KQBE0HXQrl8SA3g9IXoQPcfzzxSMbuyRVfUUTAqtiqaOqRZTM1WlJq9i8jImVwmlGjHL93igEvIyIS8l2kgEEIvSgpnMyaQDM2mtZ2lUklAt9uHBzTZWNb98E6uar02AzXeHXhtg8y1vA3nRBhPh+toS2HZtbRtSeBgHBV2OghX6ahTA6zHRl03Oj+tj/pi8QyRWfzzvnx3wsVvvdmzZLSkM46RkFC3ATHtgZpSDJgNFZS1lcwdp02rEvNijUAmFSqiU7Y+UmkwUDsgKEjMnlSWJc3EmsiIoKCgoKOhxVgCvx0Svm4IfNff4FjPhm8Xeyvo8ucmtp+4hRIIuPQuU8mDKAytdg1VH2XJ5qg37gK4KwIJaOybLLldakpcW0nKVMM/3OFUJeRlTVAmFijFKIwQOyAoXf1YslmVBInKkMFdiKdt2wEDkjdRcx1LWFT92aZayNQL/N7KU+XqIVrOgoKCgR0EBvB4TfZvYYw/Jj5tjvpk2eCkTMToc87njV3gwHRFTMUpKRmlFyoxxWpHFJeMsJ4srhFiA1SaQhgcgXdaxFBhVGlCAaoClVVcbtBEUKiYvJLlKKFTKvJxwolKKMmFWRBgDGIhltQppUUHmlmNTrfRpF5Dma5cDBnztGtjqRLZ9x7ELYPO1C3gb2seTogCjj55CAuGgPgXwekyUCsnvFPv8PXPC3GhGYvHQnjHhqdsjTqZH/HO//Q2qecW8jJkXMfPZPvMi5l4ZMzsV5KW9JKQpyeKKUZQzSipGSUUaz+xyXCE9oKkhrAVm3nIXhPnbda0fUQNCCZQrcFZvV6qIQsUUKmZepRRqn+MioigT8llC6eBFCtPAWSpKUunATOYNsKFXBwFcplVtaMDAZQFb3+jMXQNbZx93kGZjSI8jpIThBEFB10sXiYcL4PUY6bvlIX9LHfOPzSnfJQ6b8pwxZXbEjUONObxJPKnYB/YBqtLVqrxlULliXkbM55J5OWFexDyYwWwWk5cRqtJIYciSikwWFsiinMxBWsaMOLKPi6jHUtbEiW0AaeADhCIF9gBTVfYYaANC3Z42gnkpKVRCXkQUKmGuJtb1WVjXp3axaLGsSLBAltQDB6KSJMrdSM/KBrfV+1CrYHW5btBVsNoE2LpgzbaxY2Crt+8Bs5YbN9oArHr60egxzDH2pINnUNDjpABej5G+njFPE/MT5pjvYgFeBRnT9Bb7N3PeJ2Mvm5Ol9mEpPNgSamHFilTJHrDnrbdg5v5WCq0hLyPmM8GsGJPPRnxYxsxPIua5pFISgbU01UA2inLSpGKcVIyynDRW0AKs0lvugTDV4TJcIxYta8BjEYvWleqiVBHzMqZQCbNcUKg9TlRCUcXkRUKhY0ylEcKQyMqO5owK0qgidVa1BPsZS92CJlWu7s8/lk0gzdd1Brbe/fXN7TmgoRi3ddQHkbU2AcE+DQLiZekxBM+goMdJAbweI0kh+E5xyH9jPuRDU3FL2K+3JKUoBa+9PWI2j8inGXlpH5YjWTDKFJNMMU5y+5kpxpFNpHru/iSubsVN8pbFzIepfK6YlzGzImE+FxxPR7xbxuS5JK8ijLLWs1FSMZIzsri0rk2RM4ptPNpVJhBIIkUsKmCOThbH0bJyVQpjcPnQIvIqodAJZ+WIe/MDm4pDpWgjMVojpbaxaGaRZiMV82Y5pmzyogUFBQUFPb4K4PWY6bvlIX9NfchPmmP+kLgFQEXCqbjBeKx55ZtPiLzcXeVMMs8TZnPJ2WyPD2YRs/uSYqYxBmJKxplmPKqYRBbSxpliL5sTOctDYzXTHqR4EJZNKjLgCByQuX/VwnqmtGBexMxmMC/HzMuYB3NBfhYzL+PGQpFGyro044pM1vFnJVnqrGec46LsGKlpjO6s2wTim26rWm3NyZq61oq2sA61LVtK24ECdV60XI2ZVvvcUylFEZMXESAwWpNEywMGSmJZLFyelCv92NadudZITWcp67MSyd4YNlfm76812tNrryM3V19Mma8hy1WfhtyjQ1qnb+zAalZr2+PcVruw+Pl6aNa/oKAdaleW4ABej5meFymfZMTf1Sf8IbkAr2Ozz+EtxVkWE3mB8XFakGJHHN7WCyCrH6Y6F8zylHk+opgq3ptHzE4l+cygFAgBo7hknCkmSc44U4xSxSSdkyY2NYTwgEy0rGJV8xmBc23WfTNuvatflU3OsPkcOzhgnnBcJLw7t2VFZTEiMsrCWB1/FldkDs5GSdU6/j5Iw3SMuByIOYO+EZ6ahHrAQB2LNuscMGC0odRusEAuyVVKofY4Lo8oqoQ8TygrCylCsHBtCgdmsiSJ7ajOVJYI4+/jcuLPfG3iEl1n8EDn+h6Q69pHrxzorQVQHdo1CA25WiO5YxDa8ri31iMMoUG71aMM4btKMBvA6zHUd8kD/oJ+jy+ZnJdFRmkSTtUer74Fbx0b9scV44lhPDbsj0vGY7ucJQsoirRdjpOSeN8G4tdlAFK7QHYD5TRiNk8oZgn35xGzY0kxN+SFxBhII2c1yxSTOG+sZpNkThTRspQJ5cWcVV5CVa0QWAtTVpWe9czFnfkDA0ptR2yWEfP5iLyMOSljpmd21GZVGYQwZLEik/PFqE2RN6M2E1EgBEQ9FrHBEZxdMLbcRmt04iJurR4woL2Yui4o0kaQF3bAwLyMXMLaCccuL1peJdTP81gqEjeaM2Yxw0DaDBgoB8GrD9J87SK1Rm2HG5pzs099++jfX8f6oRiwDuCD7aHA7NjCVKt3QETUWXxhbRKrt60eeQh9jLXO9S8u6Vp/lBTA6zHU7xKH/EXe4+/qY16O7pIzQqgRkTF8yz+rQUXMpoL5HE7vK+ZvC+YzgdCKKIbRyHCwVzEea/bGFeORIc2s27GWbzWK0pIRsK9XwQ1A5ZJ5HjObS/LpiHvziPxYkk81Sgsio8hSxWSkGddWs0wxTkuy1FnNugYB6EUffEiLtLLWM3BApoFiEXe2bD0rEublmNP5Ie/PbWB9ntubgzBuUEBakYmCcVqSxopROieLFXGkW+AVdbkzeyCta3DAkOvT1llsl1YK0BhduzvbUFFvZ5PXxuQqtoME1ISpirlXRuRlSqFitHtoJtJaCmsgq12e1pJWkEjVm0tsl8Dmax33aFdbTZkxvDadUxjNQRwziSSTKEJ6gYyth8bAnbHvOGQPkA2BXqvuBS0CrXN11ZASXQ7RXaaVa5cQehXgeZ3lX28BaPsVwOsx1JGI+Faxx0+aY77P3EGRkM9jxnuCk8KQRBoxgfEEDqPFAz0WEVUF+RxUnvDhmeCdDxTzuaAo4LUv/Sw3bh7ywkvPc/MwYjw2jMaGvXGFlBDHPnh5IJRURI3VzAek2o0I8zxhnkuKacq9XDJ/IMmn1mpGbTUbKWs5S3L7GVtIiyIQPRAmuqxpqsN6Bg7kKiBvIE3llbWclTHzeUZeWIvS/FTY2DNt47LSWDnXprWaZVHRsqTVz3cfvOiwhPXGlKkBS1mP67OumwJjVSeutQMH7CG3tzMGm7y2tPnRbFzaPverxJUlVDrGaGc1jNyUT1HZjOpMZNW4Py2k9UyePgBsvvqBrauN1fxoALclPChK5sbw6yenPDXK+JrD/Qa+hoBuuZ9Dardx/ojSljruyps8xFqjRTfo7zq6LDfR4CjTR8XKtQPwfFxcqX1A+6TDKQTwemz1XeKQnzZn/LKZoogoCsH+IZw8gMMDiHvezOMY4n1IDg1giOXiwfy1X/Mir7/2Nm+9+bMI9TFms6eYzwVlLtFaMM6khbGR5mBknAtTD96LpITJWDMZa6JDz53ppbdQecUsl8zziPlU8MH9hPksYTaPUBqkUYwybUdoRgur2SQxZC7WbBtFkWEvqtgbVTDpgSalKCrJvIyZzgRFFXE8y3j3eI+8tLFaxoCUxuU8s/FnY5mTJaXLe5Y3ec8epoSALK5IpTd5uqpjw9pwZGcYsG7OXCWUOuasHFG45byKHaQ5S1pUEVM2lrQYZ1GLKmJyElmReNfbrnWUJhyl9sJ/f5bz/GTUsngFBQUFXYUCeD2mqqcQ+glzzG8XEQ9OI+YViBGgDaqCJIWDg4jxBA6O4GB/8WCNpX3rSjyLWLL/LB/5umeJ97+EqWY883Lm6rp4rxJmM8FsJnh/qpm9L5jOBEZZ+BqNDAeTkvFIM57YWLMsMy23ZMuFqdvuzOzAWqluunJrzapHVirmuWSep+SzmON5xLunkvnUuBGDEIvKxZYVC3dmXDBOFXFs2vFleuGWbORbq1qWNGWtZ8BRVdo+ebnC6u20htncWsrmZcp8nnJaxsznNrVGpaQb1ajsqE1v1oAsKhknJWmkEB2DA7oGBkDbokUTc+WX9Uzz1GF567IuZdQDIlaT19bpN4y2I2RLHTdWM7ucMdN7HOuEoqqtabL+SpGULk9aRSxKB2Y2gW0sFYksiSgbWOt0MS5ZNrQxvHk2Y3+Scftwcm7d5WO1Oj/+rLWvDsuFv51c4+67vYWt2Utn3a1j0eTurDH+sV35KMod72+XVqptrXuPjGuv4038cbHyrasAXo+pUiH5DnHA/2SO+WYqZoVAxHD3JchcFuwihyoXHJ9BoYF4cZNOXKqI2P1IlFK88cV/yq07z/DWW/e4+9TTnJQ1eFkrQiIVcg/29iAW3k1VKpSC+czGe51MBe8eC4qZIc8FkVSMRobRyLA/qZjULsxRiXRdagNZ6T4XZTJRyDFMgP0Vd6ZzG8418yIin2VM5xEnuWR+H5vstRIINFlq3ZmTOqeZg7Qs1d1gxtJIzbq8A9IksLevFjNpVnXfFq5NlKJ01rPZXJKXY2ZlzAdzQX4Sk5f1ROJucIDLeWZdnIvlxFnPZAdkbRJzBou4s8GRnN4+/Do10CXAWBuWU28st1cDW1lBqWIKbePSShVT6j1OKklZxZTa/qv0Aoa+8c4XmUQzr902uJyWFfeM5mN3DkmypPeGPzS1U7vucJqN4X30tXd+BruhB1Zv3zrdmdtZXLcfGbqDJLV901hdMPHfpudiG3Dcudt2S5i8DtDTB5uPDExuqABej7G+Sx7wN9UDfp0vMZrbAPnpDIpycZGnY8He2C6fzhblSVyDl/3bGAnpLX7jN77A3Wc/yt6t5znLnSVJ1q6kxQMqlj54ueUMsrEmuwE3WMCZFIJ8DvOZYJ4n3PtAWBfmXKM1pCnsTSrrunSWsvHYkKY91jEP0qSXTiFKKpvWQS/iuuzoTNc/VVvNEvKp5Hge8d6xBbN5IRGqIo4No0wzTmwKjXGmmlgzazWrRzX2jNTssZrhbZdgIeWgtp5RtkFOueStZcRsJsirmNlsj3u19ayQlMql1qD0Zg0oVkZv+nNuMjCCswVmAzFnfv3ekZyeVa0L2KJKMbIH7OLSOtroADZrh+uuey8vGI1T7h61J5Kv179+cpezckwsKjt1VGNds5/WJaoQpvvBvB7I1WXDdDAEersAqEV7F7eObRSL5vX9qqGvT/WxCnnxWK2hvl0UDu0+Lh6esNPpunatgb5dB2jcRgG8HmPZKYQS/qn5PL+p0GSVBa80Xfzi/YwNsZejJHVWMYlCRja558HtT/DgOCcvE+ZVUnuXKGaC2RQO9iWjiY3Zir1pXWLPPZF4cUw1nEmhIYbkAMZHuoGiGszKAopcMpvB+w8Eb75jmM9s7FHsRmHu71tL2Xhi2BtVJC6GTeKBl3ObttJi+GCmK2RmrWYHtTuzWa+JtKKqYJZH5DPJbCat1exDwzyXKC0QRjNKtbWUjRyYOUjLUt0Cnc5BAP4ggXMgTWDzgo1ayWuXrGdAVejFhOjzjHk54V4hmZ1Z916dEDD15twcp+Vi/s2kIqlHS/qw0Zcio2twwIDrc7nt81yb/j6U1p0B8X3bvX86o4gkL925QTxKV+piDE/HM+aVoqyEs6iNmaqIqooodExZRVQ6wo8PjqVa/KNsg5qLW4tkRSIqIsrFi0hH35c1bNHaHdD1re9ziV7cDepr0eet3aBbQljL5blLN98VWKA2AcRdQOomsLjrgR1d6oPG654r7KGBlxDi9wI/hLXj/0VjzA8+rL48rpJC8F3igL9mXuNjD97g4MZzlGX7Iac82PIfJvVvZnr8Pkk6Yrx3RBxDpWNmuWJeeNspwekZfPi+YTa1Adr7+4bxHuwdwMHhwq1fevP61eDlQ5r/UIrqKXQkJHuaZA8OgUgot72gqrDJU2cRH54K5u8L8pmmqgSRNOxNVJOnrFnOPNjCs455UFhbzdqQpiGFZAKjI89qZupYM4NQlU18OkuYzTOOc8l7D7Buw0IitCKJNaNMM0nLBs5GDs78rPSiyyK2XF4D4lLOs+Ycj7wJ0ZUCKrd+1rRbW8/mc2ED5Ys9HhQHvHNmc6EVeT3qr1pMgu6sZ/Zvl5hWmm7rl/8Q73NLdlnKzrGqHc8LvvzgjLO85CBL+PjtI0bRalJUf7svvvshzx7u8dSNfaTpgjTDAXBA2WtV63qYWEiLqHRMpSSlsu7PUqdMHawVlaTSMaWSaA+MpNAW0FwM2wLUlP0UZQvoYqFaA0UG85HtEOhW2zv/KbwJ3PnarRVvWJfp8jx/m+5jurQYrw1B8KLWpHWg8LJciX2AeBUwuI4eCngJISLgzwG/B3gd+BkhxGeNMZ97GP15nPVd8pDPqA95/Yv/Nc989N+lqgx9N0zf82OM/ZHOZnNe//KvkqRj0ixDq4qnX3yefDHojSiCo7sQux+21qAKwdkpvPUmfOULNk3BaAIHBxbGJvuQJvaHKb0feBwt+hZ5cxf6rsvYBX5JZ0mTI9gfa/Zvue1cE0oJyrl1W57OBB/c08xmgqoyRNIwGsN+7cJ0YJam9b5dXJYPY/S4MH3XZqwQGeztV00sl2wGASiEUZSlYJ7HFDPBfC55MJXMp9alqV1y1/HIxpmNMm3hLCmZjBRpYtrxZW5Z9EzX1FV3Of6ssZ41o0g1qBLImzoAqtDMy4hZETOfp+TlhAfzmHlh59xUSmK0Io21BTKZkyXKZtRPlAO1ohm92Uqt0eXG7HF93jud8urxlI89c5tURrx3OkVnKXFmzZx9VrWPP3uHu3tjkkgubvhrAFaXS9SvG2njuUS98+ZpYY1r3/jtyNCYspJteNMZcy0pVIxqwC1qUnk0+3aAFsuq09oWi4pY2LJIqoWVeSfxZ6ta52G9HSzKgfWbtLXU8pYuz1bbG0DNRd2Zu4hrW+c4NwHArQHqil2JXef8YcSRPSyL17cBrxpjvggghPgM8D1AAK8d63mR8gzP8taX/wrw7268/c27L3Hz7ksc33sbowsObz5DnKTnbiMlpHsw3gOetiCkNcynUMzgg3fhtS9CEi8sYnsHkI22O8Y+RRGk+7C3b61RDUwJ7YL9BWVumE0Fx8eS+VRSFgIZOSCbGPbGislEMx6b3mzlmypJDEmiiCargCS0sucqt/NlznLJ2TTm/WnMLI8oSwHakNaDANKi5c4cperSJhRvpdbY6x5FWafWyMuY+dzOFDAtEj48G9vErbmgclZPSWVHbyYVmbQuzlFSMors5Ohd931jDO8enzFJY+7sT6yVapSitf2Oz9Nzh6txXQ9bUhhGcUkmW289K/U6E9MaUMZZ0nTUgrdSx0yrrHGNliZ2LlJ3dRj738K65mBNOIsbZSvGrbbEiYFzHBQUNKyHBV7PA695f78OfLtfQQjxKeBTAHdDKNqF9PV8HT9x/ye4994vAb+59Qbfl8tu4c6wC5PDZxpLkvVq+fE5C0vXomyxrNwTNB5BNhEc3F5Ump7AySm8/ZYdZbl/KGxqiyOYjBeNVN5TuLZ4RdJf71mm9OKtRgrfUha1yqIxZBPN/s12XaWgnNvs/ifzmHc/tCkyVGmIE2sdO9jzpl2aqGb0pRR1HNka1jHPGlXXqT+TMWSHFQduvWhiuOx2eSFcTrOMWR5x/8QwfU+SFxFaaeLI2DxmqTcIICmYjCpi2hYvWvtYXaZjwABejrVlN2idWuOwnhBdu5kDltpQFcyLmLyKmM1j8nLEe0XM9Fjy/K0HPHNw3NStrWBFpbinIUtSfvade4yjiK999rYd2OEAUA7FnEFTt9eN2Bd/tkNLma+h6Zradb1rGsgwQLWo2wFuy9vV1UptrW3WmhY1o0RLNWamI6qydptaoPONlFKYgbg2VyYUsSg8N+n6E6JvFti/ndu1re3m8Nyk/rYTtDf72IHLcNexYUPWtm1dfENWt51Yq3rO52UG7l9bojHGfBr4NMArYhResy6gr+Fr+Lvy7/Plz/1Vvu2f/yaEFyTiJ5DsyiXZShsg/LiuVq26haak9J7LftoW/5kQScH4APaO4Pazdl0+tUle33vberuObsGN23BwKJr+qXrUmwdekdc3P2ZMencE5X780ttOeWDWgrSx4WAMR0tpMcpSMJ9J8qnkwweC2duCfG4nDM8y2N9TTCaG/b2KvYkmzdrt1mAG3XDmQ5r0HvjtQQAlMrXu2r2b/nYa0IjWIICE2XzEuzNJfs9a0lSpkcKQZZq9tLDxZqMazBRJbDrBqyu2DJYGAbRgo3ZtdkNaZMxiaid/3s1mSqiFhaoGr2qec2bgt3z8RfaylF/44us8MPDUZNxKl1FWkjjSTSyX34b9oyNFxsAoS3+7tQYJdD0UtgQ2X0NTMA2Bm18nAkbuujHaix9YA960Ec7SFrXArdQJcz22LtMyQWnZxLj5rUYsIC32Ro9GtEeSJsJ+1vGf/Q/x9d2R28a49dffBBC3c+FtCzcXdhmuAXpD53MI9LYFqMuM5brM6Y8eFni9Abzo/f2CKwu6BE3kmLvP/z6+8vnPEMc/SOTFUfmw5Y8Qqa852VEGNBaeddSOHVssN9eydyMa7RlGe3D3ORBG8OAevPU6fHlmOLoJT78AaSpW2/U6p/GBzANHV8d/GPswKeVqfFkLmoyE2o26b7hRl7s6eQ7zqbWUPXgnZjYVFIUglsq6LfcM+/uKvT1rKYvEwncpm9Qa64HXcp0WsGkFCYzGMD5Si346OGu7MxOm84h7ueTNB4Z5HlFWdnRmlrbjy+rPLNXD1jG/fBNIgwV4VavbzXLFzZs32D86whjDnbu3eX8655nJXrNvoxRfeP0OH56O0compB2llR1p6kZtjqOccVoi0+6cZnTAll00q8cxAGl++UZWtaW2u9b3AttQ3zra2zSuS2pNDIyaqbaWNzz/YVVWNG7SlrWtGnHmrG2FG6hQKYEy/u9Tt6xrNsZtAWxJ5Cxtzhq3PJJ0OK5rs5iyy7LMiY2g6eIxWZcFd7sI/N/FaM9dAt5F4O5hgdfPAK8IIV7GAtf3Av/6Q+rLYy+J5iOv/K/4mZ/4LF/9/E/wtb/1X2zW+eDl/3bqch+wRGv9KpCJHjDbdlYWIa2168Ztu78P3oHP/zI887zhztPtDvuZDlrhMl4/6ueA33fttdEGsto6tlgf+dYzD+5qaBIx7B8Z9o/awIYRTKeS2Rl8+CDm9bes61KiGY0Mk4nhwAHZ/r7ntkSv7ANAevM9dYJX33KdyLV2Z2aQHSjPnampH6CicWdKZmeZnQngxIJZXkgkNtDfd2eOXMzZKHMTmzdxa8Pg1TenZiO3fkzE/jSnSDJKpThRMD44sJRZ708pvuGVM+AMlKJSglkRM51J5kXGvWKfN3LJvIhRFTYZbVKDWemBWUUaq1Y/jWdVW/TtfNiydVa3G4I0X9u6QdttXA6w9fVzyNqWRpB2WdtalbvbUFo6a5towVuhM87UhDKPFkCnYrSRzbmKhLZg5qxpzbIboFCDXA1vbUjrgdB49fj7NARI20LcEKRtCnRdx7ot0OzCMtUFdxuDVD0AbAduRP9cbNqPhwJexphKCPEngb+JtXb/JWPMrzyMvjwJEhhefOUP8kv/8Aa/9A/+Cr/1n/m93fU6fot90NQFVl3gdl57ncDW04YQcOcZSEfw4Ttw5+mle7I/xN6PL/NvcnKlKvjPM78NUQeAezDmw5bv5vRa1Ka2lLWBbTSxozpvNwBlEBjmc5hNJSdnknc+EORn1nGbZRbCJhPD/r5hf88HMi+GjQ5LmQdpotXnLnfmKpjV5VFiZyE4uFkDlG5OmDSKorSjMmfThFme8cEDST7DzU1pLX2jTNug+UzbOLO07HRntpfd4I2O0Zn72ZjsZMpPf/FNpJS8cPsGz9w8gjTpdW3GwMEeHBz57szaGmeT9NqZAiygneVj3ptKZkVCWUkwhjRWTLKSUTRn7Kxnk7QkSxR9aTFEByCJDSDNbnd+TNm2VjVfQ3Fr7bqXD2zr1I0jiFGMM+icrmrRyZWi2vXZwJqyc4oWesSZ3qeqbNxbXV5LCk0kLJglbuBBY12ry0ThltXKfs87Jl9DMWDt0ZTDsVqLUZR97XXvb5cg129hu9goQ/+YLgpxm+673aD3DFgD6h5ajJcx5m8Af+Nh7f9JkkATRxkf/Zo/wi/9o/+K+ezPMxrvP+xunStVWU9TPofpKczO7HI2gmdfeNi9242EgPEYxmPD7Tsubg07r+F8bqdYmp4KXvuqZD61N6jxxHCwX7G3b12X9awDD0NpYkgTxdFeN0DpSts4s7lhlkccn8a8O4+ZzSOqSoDRpIlmklmo2R9X7E8q9rP+hxbAJ154hk+88AzzomC0xoNnSFLCJKuYJN1uR6OMnSWgTJjOLJx9cDJiVtgktGjT5Dcbx3MmbnTmJC4smAVdK0VSM4orzhtE3fUA1kZQVMLlabNTWZU6Jlcpp4W1uhVVPY2V5xaV2gO1OmebnXN0AW327zBn+5OhaxtcH7Q7STSTEXzdN/+b/Povf5qf+Ts/ym/75/6oXSk8C9A5Fish7L/lF8jmb2NdNsZQj1RfvPwa+2JuXFnzqa3hwWhrrGgF3kaQpoZ0BJM9uPsUZONFP2DJOuZt3WdB61L7eDzXpVtsjdT0G/bf7FtuV+dS8uf388xqwrQtYcvbaVcWj+BwrDmsc5NhLTOzqeDsLObD+4LX3hDkM3ueDg8V+/ua/QM7yrLuUsvi5aXTaMp8i5dnNWttVwf+d4zCXF72T6hMlI0z016cmTc6E6PJC8FsHjGfZdyfTfjKGzHzqSGJNTf2cg73Kg73S/bT+eKYHBSl6Rjd4aIUyrut9cSfNZaicyY+b5a1ZjyCMYZbugLKlbxjeRkxLRJmuWRW7PPhmY2dK9zUTSNZWGtfWn+WjOO8yWnWZR1rlV+Sdcwuu/I+C9UO4s/a7W1uKWuX+S6ezSxltUR0fgyX6JgMXALWy2+vYaNnK3W62rJuURuvZkeRCgqdcKZGzZyjtXXNuDakMCSRnSA+jUrPulaSuMnjk6jqtawNZePfxGrWZ8HZJO6pzyLWfe63s0btIq5rWwuar3UGMwTwegIk0ezvKV586dv5h3/rY/zCP/wRftfv+TcACzut+2B9n6/v4WZRBg5N6tGFVcm7b/0a+4d3Obr5dL0zCztiAUlC2AtaCvsbF+5TRtbaIKNFua++nEFdb4VtF2U3hC3OR/d6f7shaQ/SWiPnXIO6dVK9wQytY/JGiLk6UUeaDnBAJmxg/2hfYzNyWHdlUVjL2OlJwjvvC+ZnICPD0aHh6EhxeKTJssUIT9ERnwYLVySA8AGqBi/RDVut9jrgzH+IiSVgixPrBjw0Gty8lFJVFKXg9Fjw4HTMW28eMD0VJLHh6KDkxmTG0UHFZKSWRlra2LeWu69nYvPmQd8HZhsAm9CaUQYjDGg7Abhtw7n+DMwKyTRPmM0iToqMd84SprlNlhpJO8XUXlaylxWM44K9zFrLurL/twIafXdPR4oM0eMaFAPQNAhpvjYZ1QndqTWibpiq+9wOD/D7cD5A7RrYWuq4uYjWHFam6WGCYuKm9FonuL6JYdMxhUrsZxlxUmaUOmkgrvJS5yRu9oMa1NKobIObKJoEuuskW21Gvm4CQj0Qd1nwtl6qi+1GJ14khmtIAbyeAEUobhwoJqnh933P9/Jfffo/5sbel7nz9PO9A48Mqxe5f+2pquK9d15jdv8Nbh5pPvLynbX6MjDQaS1tYo7vgqm+F5I+q1lXW33wtola59g157+/Sm99L4RiiBM4umU4umUbitCUJRwfC45PYl5/U1DkgvFIc/OW5tZN5ZLKLixs4EZtduyvBjbpPVW6LGIAosOa1gdmvcAmSmQMN7KKG3cdjGmbyuPBSczJ8R6vf9W6LLO45OZhya2jkqNJThwbpFzAVuuBPjTi0rceDI24jP0fQweYeeUCmCSayZ5yYFa3a9tQWnA2jzjLE2bFmPune0w/SCmqCGPs1FKT1MLYXlawl+QLF2ZH4P+g9Wypn81IzTUgrTuOag1I64CsPkgT/gycG0CaDz1DwNYX4N4NXttZYDYBttZAE1nDmsZCfHF+e27zoooa61mhEgodc6ZGfFjEK6AmgCQqSaOKVBSksrSg5sNaZF2fm4yAXGfU4/AIx8UXOZymYnjf7fpivT7saLs+BfB6AhRTkKQFsoI/+C//If7Lv/Af8Q//1l/hj37/v0PfpVpbW3w48C0w791/GzP/kI9+5DkEgoOsaL+Ud4Dbchvd69c7JmhbndaR7IGXLg3BVMuq1tFunxt0F2qdw3rR5wAhkYkdDXrz9sJkOZ8a7t+TfPHLkumZYDIx3L6tuPuUnWzc/858S1hd3hpc4CGi9kZadFnKutydtq4/anNxs61zspnWG2eFjOHmGG7dUXzEPYyKqeLeccxb9/f5ta8cYoCjSc6to5LbNwqyxMuV5gNZE4jv7SPyIaUnXUbdp9Yw2h5Lme/6aECvNUTOHi9wmCgOD9xDtjUTgGGaJ5xOJdM85e2Tfc7mNumsFMZZygr2RwV7ac7+qGgmg4f299ELQvX+OqxndvWQBS3qXj8Een0WqAtC2sq+6zI/Z2EHpNn2utraFrw2gbthC5zosiZ5gDmKDCM3eMTos3P7phQNjBUqcf9GnJYHi7+rxe86dZCWydJOARaVpNICWxYtJn5fx0r0KALbrhXA6wlQSs44mpEkUDx4gVde+RY++9/813znd/yvERLieOHykxLi2CCk4NZtTZysgtd7776Dmj3gYy89xf17HxLFCXvJrAUEfcDWBWQtl1rPMXQBWx/cDW23aw25KPtdpt1xJOu2u478czSawDMTw3PP23anZ4IPPoj4+Z9PGI8Nzz5TceeuizXzrV+ivrmbznZbsOUBWZ1bzV+vvSeebynT/oPVPSD9BLPGOzPSm0g83RM8vQdPP1sitEIpOH1g+OB+xld/fZ+qNNxwFrG7RzOSuLbu1G7QbsAy3mTuPgDW9Vsw1rqLew/HliUs6ijribPxLXNSs5cY9vbqXFmzZr3WcJZHnM5TzuZj3r93wNk8RWnIYsXeqGAvmbM/LjgY5aR+oL9vKWomDB8As6XyLtdmO8Cy280nOqxYg3E9uhuaWm5Or43mfaQFjRuAUO9xLDTkru2DkPpyaaeCWD8+qQ0K3WByHqQBxBLipG1RW23bSitD4QAtVymFipmpCQ/KI3KVkKvExuoiSGRFFpUWyGILaVlUkoq8BWjL2hTYhmDpugNbAK8nQKkoENLw7HOaT35NyR/+3j/Ef/x/+TPkxS/x8U98I6qy7g6lBErZyaVVKVr321plWXJy/ICnnn6Wg4ND3n/vHQ6ObnTu9603JCcnAildTJcEGQmiyDSQZ2O7BFFs7JREkZ3bsV4fdHma7Bn29jUvfURxdir46pclDx5IPvbxR3d0VRTBzaOKm0cuxYBS3D9O+OB+wldeu4GUhts3Cp6+OeNwryPp5yMkKWF/VLI/KoGzBYQYTV5aIDudxbx9f59X57cpSkkaKw7GOQfpnP1RzsHIpj8ICuqTEJBFFVlUccDqgAJYQEipIwdoSQNqx/ke88oBmhvtmUZVA2VZVDCKi+Yz7krG+5gpgNcToJiSo+SU6oHhiCn/2r/0u/i//mDM//Q//hW+4wf+VFPPeDjfuJe810sjBQ9OH3B276ucffga2WjEdHpGxpRnbyTIOG1t/+LTUNwUVJVEuZGLVeUAr7SwVypBpQRa2XkjlRJobQFQd7yhCrBwFtnkpjIyLbCLIgNCtOBNOpgTEqLYIIVfZsGwDzTWsaptqyEXZJ/Fq2u7der2uVqNgaIAhOCrX4l48SOK1J8QvN5sjVOhfctG4wbx3uy9frZcm3Q8/P23y17XtT8ydJXUhZDcuAU3bpW88vKcvBC8fy/l1TeOmM4inro549m7czcS1LfydVv0GkuYvy/fItZrCdP9ZfZAzt+ux6rk982vO4phNK64faMAprbcTWB+Mss4nia8/mDC6TsZVSXYHxUcZDMOxzmH45xR7Ltlfdd2hxVrwCJmq3T0v8ci1gqer62t6wR4d90v/OutL7iza2SdHraYmM6RO5tYx4aPqcvCMmRJW22v3vfwMYmO+d3Wyf9V9ynVhjQu2KcnIS6glaZwaTjyKmGuMh6UB8xnKblKmzi0RFZkMmcUF4yiglGcu88CGW8Sc7W+ZWqTd329Ue22Ang9AYopOdTH6FPBe6/OiZOE3/Vt/ww/+v/57/k//fF/myyLiGPTwAss3Cu+i0fLiL0x3PnGTzAvCh4cn/DG7B6HYs64uE8ssqauEZK9BEjaD80WyLlfdMst6d3M2i5KV9fQgFqlpQM0qJREa7uslEBpW+fVX/s8qjKk6R5xMubw8C6GyAKeqi19q+es7pOUpgEzIRzINf9MM1pTOrCrR3UKuai/2Na0Rno2wFeXYR8UdRksnlF98bjCmOaZbbTFrCZVh5eyQylQlaRSNi9pVUFRCKrStnN4ZHjhhYpv+IZydUcd2gxIe2DDa8IHtsVq76Yqu8t9z0Wz6DXlwxRakozg2Wc1zz09RSl474OYz3/1iLKUfPTZU565k7vz73fOHxDgDqNnffsAPECqL7JWf7pdf619N9v558Lftx/cV63UFa14QEkWQzaqgczGARllOMsTjqcJ96YHfOX+HeZ5xCQtOZrMORrPuDGZk8R6Kb/KqhvQ37f/+xUd/fevoEF3ZV+2d/9Yh0a99bTRgrP6+mzF5/XB1CrItI/JO1f+gIAuoOnJQN/lutwMtoa363eZnQ83osMlsU67kYwYYxiTY/QcOOmsV6iYWRkzr1LyKuXD/AazKiNXKcpIIqEZyTnjOCeLCsZxzji2oCbF6nk771gWuhxIW1YArydACQUTfZ+7NwpGc0U1jfi93/ad/Pg//Hv8fz/7j/iWr/92KiUoq2jxQHUAECWaODbEkSaOS+LIkMQGmUTEVUZ5r+SFF28Sn02JirldJ7utZ9COl6lhSrfKfAjz2mhN8xOBPKeuV/7Wl7/Eiy+/hFL3OJu9xTd8/aj1VtcXA9b0zYgG7uyyaOUi09pa6LRZAI/WAo0FO1O5ciwY2fruOFw7xix4xCAWZW7ZrViVsP81QEcb+GoLoHRxfGmmiGJIEmP/Tg2JZ9naOlZtg8EDZg0Ia1Ka+N9vD7yLVpZ+96BoPfC7oR4hkTE8+1TJs0+VzOaSr7yR8errB7zykTOeudXtUvEaPq/rttzIlfKWharVHz/2qyv6uAcgur6zlgWqu65YgqKDWLM/mfFc7UrShmkec+9sxPtnB3zhvbsoLTkYzbi9P+XW/oxx4vKm9cVDDQFZKybJ638XWLZeyHrAowuEfAjvi/vpaqOnb63s/11w1hO31R4QUJedD2a2Db9vtcVrnfil9aFoGEzOB7O+7bqsZ+u3DZlUpFHFEfPO9UpLZmXMrMqYVRn3iyPemtpljSAWinGSM4nnTOI54yRnJOfnziqwqc1rWwXwegKUkDMu7qMfKD760XsgI/7t736e/+j/ucf//HP/Hf/b33MXAOP/UGSMMVBqSVlJC2Y6oawEqpSUeUSRa25GN3n7SwXaRBQ6pqqkvQeJ+q3WECWCJNYksSGK7XQxUWSIE+HKBHFsAS9xZUK0gcy/8dYPXh+2Wjdm9+MpipJ9qfi652+5cgHqDKO7ga4L5AzC/hbPgUlfQ1a8Vt3OAQPDP/xNrE3buko3galBl2nPDao1MnTLPCOt76SZjNN3Z/qg4+3PLdcP0tHI8LUfn1GUcz736j7vvJ/ymz95YofTi9WHtD8VZ597yfiWMjeZXyu9Q99B+ZawyN2ihyxisHh4L1m5vA55+/D3Xg8Y8AcUaCZjxWR8xvO3TpsuPJimfHg65p++ccQ8jzgcz7l7cMbdgzNrEfM0CGRdliYArx8N9PRZ+XrgZWEp892dHe3aFd4fsvVhV/vfWY8lrDa9ruMGHHIZtrq2enxDYGbLh+Cs7z6z+ltdz2J0PoT0zFa1gLMtwCyWhn1ZsJ8VdFnNKi2ZliNmZcJZOeKD+RGzKqPUMZHQdpaJOGcvmTFJ5uwl842ma+qy+K2rAF5PgEbMSef3uXcvhZsfgozIgP/lb/9N/NW///OcvvM2++Os/YYi7QyEmZRkXhl1GJeUcADcAaQbuuy/tdUpAQxUxs55V1ZyAXKFpJpHzJSk0DFKSTfhbWQtbwaMrPNH2YzRSaytxS1RFtxSC2nP3s1bP4IazGYnp5QP3uNLv/KLHOzt8fTd28Rx3La69Vnm6vIOoPOPr6+NPmtdn5Vu3fXLdbap26c+QNxWQzDVt74GuVZeNX/Zh5cWyGz+BuqfN2HsxN/f/HUnfP43xrz+zogXn5m3QcesbudTWOtm7MeGub6J1jU0vF3z4PHX+4fpA0QDYX78WTfQdD53e12UtjyK4OahzZv2cY4xyvBgmvHegzE/++XbSGm4s3/CczdPGKfVUp9Xj7U1o0PLP9wBZD40+cfUBy/1yEk/1UkPpHQCWReMLamz/10wtrJdhzWq99rt2Hdf6okeENjsdzEEExv0c43tTIdF09cw3PQfWyINR/GMw2wKPGitU1oyrTKm5YizYsR7sxvMqhHKSLKoYC+es5fO2E9m7CUzovrlZMvJxZcVwOsJ0Igp0zxmnFb84197jjSFJNL8zq/7bv7i3/kpfvhv/wZ/+Hd+O0lqLVNprJzladNMWasSApLIkMRumo3WW7B7g/OBzwcWt15r6++37lBBpSIqJSh0zLzo/2GORxnf9LWfpFKKD+7dxwAvPPv0Sr17D2KUsu64ODb2XxJGVT7JOtwvmc7C7fE8CQE39nJuTGa88uyH5GXEO/fH/PJXn0FgeP7mA565cUrUYxEMCnpYiqTmIJ1xkM4w4za8zauEaTXirBjz5ukdzsoxpZKM45z9xMLYfjplEs/7eHFQ4c7yBCgWFfmDGd/6iS+jjKQipVSSp1/e56Xbt/nsP/77/P6v/c2UJJRKUqnETQQrMcJOYiOFIUkhjTVJpEhiSGNFHGmSVDlYs0CXxgqZeDDlgVXL/VC7UTpgzC4vyCepyyV2OCJevNi03UYNcgmwtx8BEVkR8c47b/LSYYqMW4FNlPdGnJ7FlCay1rhK2GB9s7AYCdEGsygWJIlxrlJbnsSmqRN5LtNeK1aHNW3IkrasxrXZ587coXWsb7tdqG25sg/q1nyQPRnv26P6zGpbPct9ZVrDl94Y8847Cd/yDQ9W6m+kDktZe71v5fJHQ/rfQ11nDatF/XvpmVJn0Pq1xnbL7ki/rSw1vHT3lJfunjLNY17/YJ9/9Bsf4SN37vPCzfuLn3PjalvDkqTr33pP3z35lrD699S6on0rl28J6zi3G7klB/q+og5LWF+IQbe1qqfdDSxh21iHz9135zlcxy23nYtyMeKy5xrqcbuu07dxqhinZ9yenHn1NfMq5aQYc1pOeO/4FmfViERWHCRTDpJTDmoYC3M1BtUaV/d48H7OwSgnEZIEmAB/4V/7bp6/ecBHxl9pD6GP3d3GPRy0FiiR2GkplJ30tZzZSYDPTEJZRZQmpqws1GkRNze9JIU4snCWNsCmSLPCglqiPWDzLkk/IaJcBbnWiLUlq5kxxh6PK5ezE8Zqhji9R5yOmqpGCD5ycGzdph3tNXMvapwbVDprW4JyFrgity7TEwdsZSUplUQpueIyjRyg2Rg3B2su3i12ZbFfFtejHNd3bfa9hnXBXWv9AOitA167cFfWkNXnXuydlLvOlN+aJqc7i7twyVkFBq3h/Xsp734Qc+9BwnNP5/yOb/rAgoJp76OrP73axfxYXepzO5rzgoYvUa34K9u3yUjzyefu8/JTx3zpvRv81Bde4ls/9gZprLsB0XQ/CBsXbRfwLavDHdkOovfW90BYs947se0Rlz0uz8VOVvq+0nYXkK3jlhwIrm+dNx88On6Tm7gl+xLdDoPVgHuxZ7shaLJ1ugqHQc90nMO+vvkSUjJOK8bpCU+5eDKjNaWOOCkmHOd7vHd8i2k1IosKftOdL3S2UyuA1xOiA/U2b74V8dGbJ0gPUn7b7UMAyvvHrRtTU8e7QGUcMQJGQDOhmFxAWhe42Riv2AFbREVCOY8plWRqYkoVUeqESlmgU16sR5IIZ11TpKkFNgtqFUmkSLOFBU5GbUua0Zpf/PIbaGB/lPFgOuP5u7dJ51MoFqNkRI+FbZFryK6PgERKxthjNnGPe3RpO79d6zKNnMtUNvBWKUFZREyVsOeoEs7yaK1vxiz2IeXCwhZHprG0RZG2AxQ8YLMDFizQRZEXd9dndRuwhPWC1wDo9akP0hqwMt3g1RvvVQNbV24rV1cpOJ1GnJ3FnJzFHJ/EVJXg9o2C5+9M+caPlfZw7LDSVrut/bXa7Qn27qpjutcPao19XJpaOcs6rFHn9CGJNZ989kNujEf83Jee53e88prXVncMWCew+i9hPoT1Rm07i5fsAag+CKv33WMR64Ow+ntoP9C7Qag5Fh9ARPcxtUDngrFhfTDmB+t3fSf9sLW+JWlbC9TQhNm9aUhaje8C9DpevqQklYbb8Rm3Rovg/nmVNJOR9ymA1xOiG/otfundT/BcNG1dXP6FKD2YqOu06vouw1bQqqvrb++/GcY2mD+r61rv36I9vy1vH8pYi1pRRZSkdiRlFTHVFuQqkVBWFuL8KW6SFJJIUekXUXrOcTXjxt4YOTvgg7cLssQ0ECdaAOW7PF17PfFnrYEIrTngOtynNTQBcb1dvAQetctQdu8Pz/JWahvvVilBoWxOstIklHPJTIkG2EolKd16pdv7stCmbXqJxn2qGwtcFNHUqQEvisXiq+oZPOCra4BCn9pB7jXc9AXUnw9WeSGYF5K8iJjNJfN5xHQekc/trAl7Y8XBXsHdozmfeHZOmtRQZJqXdNEDSM2++0BhqJ9rAVt3ew9NPQlSN9Hdwymff/MuSos6UmD3FsG+kY9O66RhqIHE9PStt43FPEA923XARE9/hyCsDyCHRjWuYxHrhLANwGRTa9x5/V3err2/DSxXLZd/N0Cdt4++/fT1c5wqhgYbBPB6UjQ9Ic4f8A9+42Wb2kFWxFKRpYpUViSysi4/WZJFFWmsiKRuX5TeBdwNaT7E+W/J3kO1q40OiAMLNy4Hq21b2D9q6OmCQmOgwrOwmZhS2b/vvVtay5pOG5dp47YEl/JCWWuag7c0XUBabXWLI430z4v/o5Srx9QLb614tw73aWsfzmUKxI1VDTvpGkvwIxc/6064QzTgVpnYDVhwFrbcls/cYAalBGXjYpWL54NrK44MUW19i2yMW+SWpYO2SFpwk9IQRbUFziClBaHl+6LRptl33U9V0SyXhQXLopQUJZSlbAb0RdKQpppRaq/tSVpx86Zib6QYpT2WqyZH6Rog1JQNg+C2wNZp3epb70uvAmsvNLXKO7ZbQ4sRh+dvZwy8+vYtDsdzG2h/WS7Yy1KfZW5A6+XbejjaCMJ2fPzbQli7juzd/tw2+jJRn7OPi/SzTwG8niB9w+0vYgwoYYPnSx2jZNosT+cphXbrTIw2EUiBwJBIByRulvo0Me5vC2lpVJIl+qHP8ScEJNLGjEHZflPpgJva4qW1A4zGwubi1qqYs3m6VCabG5QQ9kFfx6jVI0aT1DRlSSYcsF2Pm68Q1sqVxAakNxF1B6TZ8lXLlRE2fk0pQaXlApC0dZUqLSi1ZF5IdLPOjkitZxWotERp0brvCQGRsMAmI2zi3sgm8I3c5zhTpPuaJDHuWtT2qx2Kxboep/+JUaUEb9074Mvv3+Du/gm/6cV3HnaXgoKuhQJ4PSEqzhZzZwlZEmO//AZMBIjIs1hFC1ejTaQaU5FSqISqjCjLhKlKqHRKYRK73qRNUtA4oZmpPomVtag5SEuiilRWpElBLHWn9WxlucPN2Vrf4+ZcjlFzG3ZuFwtBDC6OS7asa8tt1eVaWzdfM+hAxZR5xNlZXRY712BEpWTz9hhH1q1nBxxokkS7WDa1ALbEWtikbPeZDjen6LCOrZQ38w91t9UHXo2lrGN9DGRCNPF+/tux6dqfp94BAZsEsxtt3YPar9tjuWpt1xFz1drfsBVrcH9DLsN14ra63saH9tH39t1l5fLb6DvHXntmwO14Oot4/2SPdx/sUZSCp45O+faPfZUkquP21jiOgT5sW2drq9MGVp51NGSt2VoDbsfLtLptu4+tLVfXTJv2M4DXEyIfvHz5F4wfoL7qPsyJ5bS5YIRcPGy7XI1GRNZ6pmMqlVGWMVMdc2wScjWh0jGlSVBGIoRECGPhLPasarEmjUoLcKmFtyRS3eC1gZvTB73z3JzL7faBYCxl+7ykLMWOrcaGVUpSGmtdK1REVSaU84gHJnFWt4xK2/XaiAYmk0iRZJC6QQdZbKyLNFELiHNWNyHax9f0oy8+rcet3AQq97hMO2Pj6AGvXgg731S6Vmb7oXioIWjytYGrsV0+AH1DLsW+9taAogV4rdG3rvb6AKujjjEwzSMeTDOOzxKOZyPmZcwkLbl7eMY3vvBWM6VQb596zn3rIdzxEBuCP9dId/l5/aE/tmtQHfvrnVx718BV67La9XXN3K6bBOL37nvgpc/fz66+uwBeT4iKs7xZ7oOJLvDyNbTdMghFzImWyyPRZNv2ga22qpWkbmqimPk85UTHlDqjNNbapkwEkbTuz0hbQIsqsrgiiSobo5ZoG7cWOVAT7f21LWw9YFX3bWBAAfRY27osbXbDZjGVopkIQCSRDWbr2QeRzeZfaUmpkgWwFTHzacSJcS5jl9ajqOqTbGcwTGNl87BF2rlGHbglvptUL9yhXaM9eyyJfRY00QVefcPYL8tHPWhJWeNGOmStWqe9IXjbBCB2AGmdYLXUB61hViRM84h5EXOWJ0zzmGmeYIC9rORgZBOofuTOPUaJavfN30XH8Q8B1lr97DnWzgfsJrDVV3dg3xvB1hVZcLr6tDVAbLnddbZWPQwF8HpCVM39eeO6fzwt8IouBl7bbCfIyeSsmaKosarRDUUVCYVyVrUipdQxZzqhNCNKHVtQY5EsNY60s6pVjVUtS7V1h8qKLLFWNT9v1iYjQFvLXak5ls9R18jQAdCTwCiyaT2IXBvpErgsjRLV2o5wLFz6jkolFEXETEUcG3sOKzVyswPUbkVpz1ek3KADTeYNLkhTTVrnZktYZCfvArKevvWCXNf6y9KmowaHHiBbWlp6QW4NQFo0sV7dSgmKUlBUEXkVU5QReRXZkaBlzLyM0domTR6nFaOkZJKV3Jyc8sJRzjipkH42+rrvS2nEeh/u21ixNgEs6DzPvdasrrobWtI2gpuh4+/RRjC5Jehsa/F7WGB1adbDS9aFwEsI8a8A/wHwdcC3GWN+1lv3p4Hvx/4c/x1jzN905b8X+CHsY+MvGmN+8CJ9CFpP1XwRRN0LSNHqg65tBTsf2LpgzW53WcBWkmKnj2xGPUY9IAQobM6wkoyyiimKhONZQqEnFj6wAwvqfUfCZeSPShuT1rhBSzIvVi1KumKuuoFt0D3aMwK01UbXiNKBuLYYiGuXYSwWv/yeVB5CugB5FVGoxOUfi12y2MjOv6kym4dNJahmbj9B5AY3xG4ARhK7z8gGxCeRjWeLI+sSjSPdunbEEHCtkRn6SrXBQ2edB+x54GGMdVMrLdzgBDva1CbsxSXvjZpUIlVlAavycl/F0sUQxoosVmRRySQquHlQkSWVBSvR90DXYGjnat0EBAeOb7X4gpardbbbAehtY9HqOz+bwOTWfWv1Y4fnbYP1ts52x7SJBttYAzZ3DXgXtXj9U+APAX/BLxRCfD3wvcA3AM8Bf0cI8Um3+s8Bvwd4HfgZIcRnjTGfu2A/goIGFUtNLHMmchF70udeFVLa0XrOqla4wQN22ogJhcksrOmoca/FQjUjPbOkcjFpFVlsXaJJVDFKqoc+8nNdRdIQyYpR6m46a+R0QyyArdRxM8tB5UBgPosXUKAjO+hAy1am/IWL0lpdpLApKaS0y0LSLEth01G0PxflAgMChLB7EE15va9FOguxNOxx+XtqhUjVSWUNoA0GOwjFGNEku68HmmgtMAi0Fmhj0Aa37P65ZaWl/buiWbe8cyGMHZAi3UhPqYkd6EaiIo40e27QShrXcZHWYtmrzvir/upBQUEX04XAyxjzq9AZn/E9wGeMMTnwJSHEq8C3uXWvGmO+6Lb7jKsbwOuSpYqewEPfSlUu6tRAor342KuwlLWT2fnu0d27Ns+rWy9Hcs4YO9JRSNn8YrqAzYKajUUrVUJZJJzpmPsmpdB71pXnj/x0+dSyqHQZ+K27M43qvGp22cLG+X3eJNHt0ICC3u16RoN2uTkTbAwbAptrrLGw9Vi2Oo7PGBowUUQOYEBpuVgnFuXaCHtu9WLZQpDN721wUzh5kAQLxjCmfT0tvwi3xhsIB0LN37oBvdanMMTC2L/lAgqbf7L9dyQN0qgGNAc18LbeWKjKcyptaZnZ1u26iRVr0YfNrEDDVo5trTi7cx9eO8vWBfY9tH7Xlq0Lt7fjXHLXJY/X88BPeX+/7soAXlsq//auBoQQnwI+BXA3hKJdWGrWA15JN7zUyCPjPthaBTYfRjYBttZ0PwOw5dfYBbD1ZS1uYqrOsYh1lUcyZwxMauiIllyKreOImhi1UmcUZczJPKFULkbNWIAzWEiJpFoMJJAuTs0NJEjd4IJUVq19dA0k6HPFbp3odgCgWvsQ3W107rue45J2HmhRn9t686hZwYo2cEsOujivQvXPVFl33lquyZU2NnyobAsIzf7WiE+64CCHtR5sGwS7t+tsF/h+1WC1WH/553u9fuygnxdsY2NX5DovKus2dQE36CDRCCH+DvBMx6o/Y4z5sa33PCBjzKeBTwO8IkbB8H1B+eDVgq2q+9TWwKXKnuG1HcBmeiCttd0AsLXqtqwx51vVdgNsq/teB7y23U5IQcycmAWoNVMqLdWVkY3pKXVi84bphLJMOJ6llHpMVZfpuDHNREJbC5osncuzdncu8qp1jfrs6if0DygYiksbGlBgtzs/0L4PdJcqdRT11O35/hb92bE/eGB/vbqk4OGt0ybs8kG4bUB5a/0G5+cyYarZxxXAxhVYrtaps0so2gWktSvv8LrZcN/rtD0IXsaYf37tPS70BvCi9/cLroxzyoMuUdoHLG+5z6LVBVxDwLYWeG0AbFfhBh0CNj+GuA/YuvZ9WcAWMSeWwiZ5FYs+ddVVWlKJ2vUZU1YpxzrhQxefZiFucQuop5KqR3imblBBltTJb6uVUZ/nHV9XfrdNrW3ntbu8Xed6v3xLi1jfd9Zdd8fAdg20mwDn3QJS0+4GFsG1jmOHFo+dAJSvS3ID9te/OrDateVqk31v2w+/XWNgWo04K8ecFmM+evTWudtelg/vs8BfFUL8Z9jg+leA/xnrHHhFCPEyFri+F/jXL6kPQZ5M2X3x6YHJPH0N1fRhrc+F2QV9m1jVYDs3KFxt3JrecIRn9z4uDnq163Ncl5876jOm1NZyVqmUsow5Vgml2bNlxqbssBvippFysxHIssmdVie9taNAq6WpKrsTr3Yd6ybA2ndeNskbts4+OrUGmO0SyC7LJbqVW3Ob/WwDcleUP2qjh/Qm4HRpD/+HZ1W6NLfcJUHVpv3oartQMbMqY1ZlnJUjpuWYaWUTIE3inL1kxn58Nrifi6aT+F8A/3fgLvA/CCF+0RjzLxpjfkUI8dexQfMV8CeMsQOQhRB/EvibWIfKXzLG/MpF+hAUFLQb1aM+x+QDsxjYMju3ZexGflpoa0Z96sSlnIgxoiYv0wwiqGchiF3cWm1tq2csiKVid6gSFBQUNKxSRcyVHb0+KxILWSojr1I0glSWjOOcSZJzkE55Zu9DJvG8nfx+DbgTW/v6r1CviJH5s/FHHnY3HmlF44u/JYtkuzb6LFPd+xiuO9ReXxuD23VYqdaJP2u30TVgYHi7i+ZC69vHLi1sfdalvsEDy3WNgYrUDSaIqYgpXUqOylnb7ATtCZWOF/sVmkQqYlmRSOXAzC7HkWo+Y1kRC5s6YRG3dr4Va1sr17axY602towj28T1eZ2169xIO3mWXYFlbevkplfgMttE18GKtW4ftBHklbXmz6uUvIzIVcpcJeQqtWmBgFgqsqhgFBeM47z5l4l84zRAL//wZ3/OGPOtXevCcMEnRLoniH5IPqz0uSsH971DdyYsXJObuDP97XxtG7fWB0jS3Qg2dWcqV78f2FZdprDdCM+u7Zf72Rlcv84giAFgg5IEm26iGZ3YM/Kz3k4ba12ramDTKVUVMXfwVumMqlmOmpsoWLdcXFvXImtJS2Rlk7zKijgyztJnoS2SFuSiqMf9PRD4P1R3ne22aWtTPSqxaJeVEX3X7W4DL1cdO7f1/rbOZn95QKeNcFb2uBkZXpSSwv9b2bmAweb3S6OSLCrJooJUFNxIH9i/44JEqoE9rt+3dRTAK+hcbQJsfRalTYBtE0i7rEECfnubxp8NDTC4DvFn6wwYGAK2TXOodffz/BiulmVPCm+WArGaY8JrowWIQlAZC22VlvZTRSiVkOuYMy2pjH3j1dikr8pINFGrbSkMkbBZ+CNh4UwKC3I10EVSEzl4i4Vyy7YsHrrTDk0SvklajB1bxB4VSPN1FVPY7NJit5P+7sDid9Fj2uQ4lJaUOkKZiLIS7qUqaj795fqzlhTGhiuI0oUt2BjTg2ROli3+jnruhct93ia88SLnKoDXEyLTAxB9Wsflt6xNrWpdsPQkWtWgG9j6rGoXBbYWmLS228WAgdU2trWw9bUxBH1d6yMgXnaV9oBb1761EVQ6QmHBTBn7YFAqQqmYmYmodII20pYbm5Ffm8iB3GrbUQSRWACbFJpYKGQNcEK7OnadrWeBz4KgJopMA3hSrP/72wmcPSpTMOxSVxCac1nzD14E7owBZSRlJdBG2t+AjtxvwS5XJnLX//Lf7rdi2tdcJDQSa4GuLdGxCykYy5LYpb9pyoVaueSGR3KucWw7ON/XJYFq0COuTUBtG0iD3bg/az3KVrW12ujRJsB2FW7Q1v42ALZduETrWkMxcH6ddRLvNu5cIJHCm3bdFq5j/evqTw1z9YNMG2kfVrgyLVGVpHCgp01ipxUSMdq46YW8bXX9YOvoTg1qNnN+DXoGITSRBFmvwzRg59e1mfjrDPsa6f4WwiClsOW47P1Cu/y2Bn8Kp6DNVc/AYGdwMPZvvDKknaHBCHcduOmpmmvC1cUuKyNd3Wjp+rHLlZKdbCkEjTW3eSloXhpU83KQypJxooiFdjMwWGCqLcIXkVF6ZzNZ7doiqlUAr6CgoKBrLxt3Uq2UXzQ2rGt77T+Yjf8Qlhgh0c3D2n7ah7V7MOvFQ1q7h77/MEfYh7wPBPbhbz8xLKBwCwk35ZL9wwJd/ffyPJvLUzn5Zc3fazy+zRK9rkwn5ZW35u1029bHXZ+TbSWFBgESDUY34CuwgCvduamhehmea0tpIqp2masfNcsOxs2qVWlbXYW791FVAK+gC+sqrGO+Lhp3tol1zB/JudF+16gzmPdsA2vbtu5MX7uOP7sKS9nFXZvdVq6+9obqDlnQ+vrTp4tCWGv6KDquSz8crs+1PaDLjimr59e0y27+zaW/F5Vdeb1+qe1NIGgV2OpPr1wsEG0BfYsJ2Zu/d+iVvRSgMTQn6zxv6mW5Qdv7uDxg29Qyta42PS8BvIKuVI8zpLX2u4k7ExpYWsedOQRpvq46/kx23DR3AWzt7bpHeDZrN3BtruOW1BuNZDz/etk4Pcmgdev8/XX1vb+tzX5vi75t9hvpOwdr75dOb2q7Tu+0Uhfa9apMz/JS8VXbfq6btemygKdP1x0QA3gFXVttOiCg1qMWcwYLy9pafVjDElbrWlvVPHUBm1HrQxp4D/Re0NsFsNVl51vrVus7K96qZ7F3H+ftZ2h/y/s9v862aS02sBx72/Wdg+H9Xb4elxxpu9BVwMu2elhgGdJJBAX16FGzqsH1cH8+ylY1WFjWtnaDbglsfj83Aat1IGbIzdm1v3XgYROA2sRCddVpL3YPZuefi0cxtcZ11nWzzPm6zL4F8Ap6ovW4Q1pr3zsezVnrSoDN02BS2x63xrZWNV+bAZsvvbpda389bs6qbncTmNrMGre6fXcf1u3H+m1v18/t97dbBevYo6uHbc0LV05QUFBQUFBQ0BUpWLyCgtbUo2gd83Ud3Jm+to0/692uo5+t7TosYZu6M2ttailrttM939Og1ex8d2e7Dxe3XA1Z7nxtaqEaskZt6z7dZl8XkeyZVuq66VF2j15nV+RFFMArKOgSdBUzBfja5cAAuBpIa/VjYH1vbwZcolvDXY+7cht3pq8+YGvvY0t4q7dfYx+bQMNQmgmjN4OibUBgF5CzawDZ9Lgvqq37f8UjCoOGFcArKOga6KpHcNZ6mDFnmwDbZU7ztLz9si5qVYM1gM2DG6NXJ+xtZdLvmc+3AbY1HrSD8OY/5Afa2xSKtskXti3kbHIc62joe9pW60DVNvMJ7lohrm03CuAVFPQI6yrdn7uYi9PXZU3ztBNI83VRq5rXRm/KjksCtlZba8DbYr/DZ7GZdH1Dd9A6FrnlfZihDi/vo95uS1jpA4xNj3XR3sAx79gqtYsBCl3aJWw+yQrgFRT0hOg6x6j52jYv2ka50Op9rd8t2/ZQhV1Y1Tra2wTYei1Ka8Bbrb4H7E7gbdCC5u1jA9DZ1rrVefwbgl7Th55zvwtr1SbWpm0BsXu/j26M2HVVAK+goKAVXTWk+Rp0O+4wLm1jK94GdTd51l44x5qvNdJ3tNq+ILz1WVc2scC1+9NRdw0L3CZA19psW7jbog/r9KdPm8DgttM/de73iqHxSVA4G0FBQUFBQUFBV6Rg8QoKCrqQrpsLcxepNfzA/0323erH2jU3nO1wg+S2vra1mg0m0B2KT+vd8OKuz9b+BqxRg4MS1tGWVrXOptawtF3FSMbLigfztWvX7aOuAF5BQUFXpquAtIc5hdPW/Vi75tI+ttxup/nW+rQtIHrQsNGDdwM3qK9tXaKdXdgF3LUa3B3o9e5il67WXeuaAeSuFMArKCjoWmodSLuKkZq7HJ25E0jz+rNtGpKrADZfF4W3TcCttd9tIa7ViAeQW7YxlCJkW+0c9AZ3uL6V8qrVB5DXcXBAAK+goKBHVkPgcd1mENg051kXqO1itOiVA9sF972TFFZbWuB87QTkmsYuDnR9uizQ69PWAyKuQpd4nrdVAK+goKDHVlcBZr52EX/maxfWtFq7ccFeLbDV2vUj/LqAXK2dAl2Prh6DrkHG1yXVgPiwofBCexdC/KdCiM8LIX5ZCPGjQogb3ro/LYR4VQjxa0KIf9Er/72u7FUhxA9cZP9BQUFBQUFBQY+SLmrx+tvAnzbGVEKI/wT408CfEkJ8PfC9wDcAzwF/RwjxSbfNnwN+D/A68DNCiM8aYz53wX4EBQUFbazrPqfmJpaUXUzdVGv3c39ebEqsbfvjaxeuVl/+tbCL/tW6LFvMVVjV2ju8fi6+2t1q1MO1xl0IvIwxf8v786eAP+yWvwf4jDEmB74khHgV+Da37lVjzBcBhBCfcXUDeAUFBV17XTfXpa9t3V0Py53pa9fAVmvXcLRreKt1WRDnq9X3K5g424c7/RAn6m5Pq3U9JgzfZYzXvwX8Nbf8PBbEar3uygBeWyr/9q7GhBCfAj4FcDeEogUFBT0Cumow83XdIM3XVQNbrV1PPr9Ty9YlQdyydmk1HNJVw12frgv09WmQaIQQfwd4pmPVnzHG/Jir82eACvgru+qYMebTwKcBXhGj63fmgoKCgjbUVbs2+3QVkOZrl1Y1X7u2YtXaNQh1fY+7BqHLshr26SqOqU+DwH1NoK9Pg+BljPnnz92JEH8M+APA7zbG1Ef7BvCiV+0FV8Y55UFBQUFBnh6mBa3WZVmj+nRZVrU+XcXx7TqmrEtXBXK1rhLolnVVgLestWbFWAP6Ljqq8fcC/x7wB40xU2/VZ4HvFUJkQoiXgVeA/xn4GeAVIcTLQogUG4D/2Yv0ISgoKCgoKCjoUdFFg6f+CyAD/rYQAuCnjDH/G2PMrwgh/jo2aL4C/oQxRgEIIf4k8DeBCPhLxphfuWAfgoKCgp5IXfU8mZvoOrszfV21pazW5jndLieYv09XEeTfpcuMd+vSJr+LXZ0TsfAOXl+9Ikbmz8YfedjdCAoKCnoidNWQtq12AWy70LbwdlFdn+N/+P24Luei1u/+yj/5OWPMt3atC8MFg4KCgoJa+v+3d3chdtxlHMe/PxqTNFWbjdES3WI2pQi9skFKRJFiShpj6XrRi4Bg6suN3vgGkhoQvKyKbyAGaRWV2lZj1VCQmmrFq0b7YtLYtGbTqNmQmGhtFAVr4fFinpMOx93Es+fsvP4+MOzM/z8s88yze+Y5/5n/OU0eSSurelRtMUsZbZtEsbZckwtGVfVo3EKqnrU5DhdeZma2ZE2ZqXkpVU8SuJSl3hota0rxNtC0Im5Y1R+AvBgXXmZmVpm2jKYNNK1gK2tK8TZQ9czKUdU5E7OsIV8fbmZmZtZ9HvEyM7NGatvoWFmTR8rKmjZqVtb0EbSBUUfSXHiZmVnrtblIK2tLwVY2bvFW1azQuj4iY5gLLzMz65WuFGllTZnhuBRNHnX7f4x67l14mZmZLWLSX7TdZG0cbRuYRPFWtpyFnAsvMzOzCeviqNpiqv4U/ypMupAr86xGMzMzs4p4xMvMzKxGfbqduZA2P5+2FK34rkZJ54A/TuBXrQf+MoHf00aOvZ8cez859n5y7M3xxoh47UIdrSi8JkXSY4t9aWXXOXbH3jeO3bH3jWNvR+x+xsvMzMysIi68zMzMzCrSt8LrG3UfQI0cez859n5y7P3k2FugV894mZmZmdWpbyNeZmZmZrXpbOEl6fOSnpF0WNKPJK0t9d0haU7Ss5JuLrVvz7Y5SbtrOfBl0NW4ACRdLekRSU9L+p2kj2b7OkkHJB3Ln1PZLklfzXNxWNLmeiMYn6TLJD0p6cHcnpF0MGO8X9LKbF+V23PZv7HWAx+TpLWS9uX/+VFJb+1L3iV9PP/ej0i6V9LqruZd0jclnZV0pNQ2cp4l7cr9j0naVUcso1ok9l5c2xaKvdT3SUkhaX1utyvvEdHJBdgGrMj1O4E7c/064BCwCpgBjgOX5XIc2ASszH2uqzuOCZyHTsZVim8DsDnXXwX8PnP8OWB3tu8u5X8H8FNAwBbgYN0xTOAcfAL4HvBgbn8f2Jnre4EP5/pHgL25vhO4v+5jHzPubwMfyvWVwNo+5B14A3ACuLyU79u7mnfgHcBm4EipbaQ8A+uA5/LnVK5P1R3bEmPvxbVtodiz/WrgIYrP9lzfxrx3dsQrIn4WES/l5qPAdK7PAvdFxL8j4gQwB9yQy1xEPBcRLwL35b5t19W4AIiI0xHxRK7/AzhKcWGapbgwkz/fk+uzwHei8CiwVtKGao96ciRNA+8G7sptAe8E9uUuw7EPzsk+YGvu3zqSrqR4Yb4bICJejIgX6EneKb515HJJK4A1wGk6mveI+BXw/FDzqHm+GTgQEc9HxN+AA8D2ZT/4MS0Ue1+ubYvkHeBLwKeA8gPqrcp7ZwuvIR+gqIahuCifLPXNZ9ti7W3X1bj+R95CuR44CFwVEaez6wxwVa537Xx8meJFaPCNrq8BXii9MJfjuxB79p/P/dtoBjgHfCtvs94l6Qp6kPeIOAV8AfgTRcF1HnicfuR9YNQ8dyb/Q3p1bZM0C5yKiENDXa2KvdWFl6SH8xmH4WW2tM8e4CXgnvqO1JabpFcCPwQ+FhF/L/dFMebcuem7km4BzkbE43UfSw1WUNyG+HpEXA/8k+KW0wUdzvsUxTv8GeD1wBU04F18Xbqa50vp27VN0hrg08Bn6j6WcbX6S7Ij4qaL9Uu6HbgF2Jr/nACnKO4RD0xnGxdpb7OLxdsJkl5BUXTdExEPZPOfJW2IiNM55Hw227t0Pt4G3CppB7AaeDXwFYph9hU5ulGObxD7fN6iuhL4a/WHPRHzwHxEHMztfRSFVx/yfhNwIiLOAUh6gOJvoQ95Hxg1z6eAG4faf1nBcS6Lnl7brqF4s3Eo75RPA09IuoGW5b3VI14XI2k7xS2YWyPiX6Wu/cDOnOkzA1wL/Br4DXBtzgxaSfEQ6v6qj3sZdDUu4MIzTXcDRyPii6Wu/cBgBssu4Cel9vflLJgtwPnSLYtWiYg7ImI6IjZS5PUXEfFe4BHgttxtOPbBObkt92/lSEFEnAFOSnpTNm0FnqYHeae4xbhF0pr8+x/E3vm8l4ya54eAbZKmcsRwW7a1Tl+vbRHxVES8LiI25mvePMXEqjO0Le91PNFfxULxYOFJ4Le57C317aGY5fEs8K5S+w6KWXHHgT11xzDBc9HJuDK2t1PcZjhcyvUOimdYfg4cAx4G1uX+Ar6W5+Ip4C11xzCh83AjL89q3ETxgjsH/ABYle2rc3su+zfVfdxjxvxm4LHM/Y8pZi31Iu/AZ4FngCPAdylmsnUy78C9FM+y/YfiYvvBpeSZ4nmouVzeX3dcY8Tei2vbQrEP9f+Bl2c1tirv/uR6MzMzs4p09lajmZmZWdO48DIzMzOriAsvMzMzs4q48DIzMzOriAsvMzMzs4q48DIzMzOriAsvMzMzs4q48DIzMzOryH8BVqkR+oMvlQoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAERCAYAAACqx6miAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABc6ElEQVR4nO29eZAk2V3n+fn5FUdmVmVdXdVdVX2ou9RS60ASrZY0wAASOulBDEiMYHaQQLs9OwPGAsIYAXPJdseWQxcsDEwbYlaMAUKjgZGMY4UACSFafVTfp9TV6q4+1GcdWZWZEeHHe/vHe+7hERmZdUVGXr+PmZu7P3/u8TwiMvybv+uJtRZFURRFURRl9QnWegCKoiiKoihbBRVeiqIoiqIoE0KFl6IoiqIoyoRQ4aUoiqIoijIhVHgpiqIoiqJMCBVeiqIoiqIoE2IswktEHhORe0XkLhE57Nt2isgXRORhv97h20VEfkNEjojIPSLymnGMQVEURVEUZb0zTovXd1trX2WtvdbvfxD4G2vtIeBv/D7A24FDfrkB+O0xjkFRFEVRFGXdspquxncCn/TbnwS+v9b++9ZxMzArIhev4jgURVEURVHWBdGYrmOBvxIRC/wXa+2NwF5r7dP++DPAXr+9H3iidu6Tvu1plmG7hPYi4jENVVEURVEUZfU4Qu8Fa+2eUcfGJby+3Vr7lIhcBHxBRB6qH7TWWi/KzhoRuQHnimQPER+PLhvTUBVFURRFUVaP6/OvH13u2Fhcjdbap/z6OeBPgeuAZ0sXol8/57s/BRysnX7Atw1f80Zr7bXW2mu3E45jmIqiKIqiKGvKBQsvEZkSkZlyG3gLcB/wOeC9vtt7gc/67c8BP+qzG18PzNVckoqiKIqiKJuWcbga9wJ/KiLl9f7QWvv/ichtwKdF5P3AUeCHfP+/AN4BHAEWgR8bwxgURVEURVHWPRcsvKy13wC+ZUT7MeBNI9ot8BMX+rqKoiiKoigbDa1cryiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTYmzCS0RCEblTRP7M718hIreIyBER+WMRSXx7w+8f8ccvH9cYFEVRFEVR1jPjtHj9H8CDtf1fAT5mrb0KOAG837e/Hzjh2z/m+ymKoiiKomx6xiK8ROQA8L3A7/p9Ad4IfMZ3+STw/X77nX4ff/xNvr+iKIqiKMqmZlwWr48DPw8Yv78LOGmtzf3+k8B+v70feALAH5/z/RVFURRFUTY1Fyy8ROR64Dlr7e1jGE/9ujeIyGEROTxHMc5LK4qiKIqirAnRGK7xbcD3icg7gCawDfh1YFZEIm/VOgA85fs/BRwEnhSRCNgOHBu+qLX2RuBGgEPStGMYp6IoiqIoyppywRYva+0vWGsPWGsvB94D/K219p8DXwTe5bu9F/is3/6c38cf/1trrQorRVEURVE2PatZx+vfAD8rIkdwMVyf8O2fAHb59p8FPriKY1AURVEURVk3jMPVWGGt/RLwJb/9DeC6EX26wLvH+bqKoiiKoigbAa1cryiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhIjWegCKsp7p2QZHeDkhOSEFITkBploLhsAvUu3bql2wfhncB7vkuGAJxK71LSuKoiiriAovRVmBZzjIXp7gbf/uW8hMSGECt9hyLRgTcPhjX6UgqiSWrcmvcs3QupRfTno5GYaV8xhl/ypUQq7chgAzsr3e3/VhqE/9nNHH6tdaeowznMuKx5aey+C4zuetUhRFWWNUeCnKCpxmO+/+95cThQUJxbL9DnzoJRMc1SDGOAVirJcv1ksTW7aJb3PHqPUx1vUb7rNkXTvv8Me/6kQig/KMgW2WbLNEVvWP1/eXSrL+uf3rcp4i9UzURemgOC23XTsj2obPGTwfhkXk6GucbR9Y+u4t7bN0e3g8o8d+duJZxa+inDsqvBRlGTIbE2KIQrPWQ1mRIHAPxqD2sF5NDn7o6om8zlpg7VLhCX2hWvVhULACA8K2fo71FznTOcuJ3fJahz/+1ZrUGha9sFTMnkn8jjpntJ1z6fmrIX5HC8kzCc1R1tdRFlsYZf0dvqOzt+aWoQLuGmbJ9erhBIOvY1S0bnFUeCnKMpxgN39pvsrDf7adX77+29Z6OMoEEAGp4uzWV7zdZha80Be9MEKEriBgR1lyR4njUdZcAGP6OWa3fezmc7Lm1p38oyy0wws16XW+YQWDVxn1KqXYs7WAhr4ALMVnsOT8Mk516fX7fUfEpY5oU1G5Miq8FGUZFtjGqf3wlUc73PToVVW7CERhQRQUhGKIAkMQuHUohjAwBGIJAkMottoPxfWrtsUF04eB0R8qZcszKHphLYTvgXUubktxOhxWUA8ZMDVrqbHBkpCD8tyyX7nc9vGb3Tm1uNO+nCpjU4V+jGrAoOQLqnPP5qOTgavXRdxgktKg+DMDInDpecv36/ct1vz39oKFl4g0gS8DDX+9z1hr/4OIXAF8CtgF3A78C2ttKiIN4PeBbwWOAf/MWvvYhY5DUcZNTkxmQqaSHm9692zVbgzkRUBeCHkRUJj+ulwW77qPrAhrQfgB1rpjxvqgfOvOsf7HcTlKsSZCTbD1hZv4ddkeBv6HqjwW1PrCknMHz++f68Tj+rL6KMpWphSnqxFWcPBDLx77NVfCmL4ANDbw675wrIvGUcdv+9jN5ISVCKwnMtmhbSfFwmp7JWvjsHgbFIODbSFFTdwV/tWKAff2KMZh8eoBb7TWzotIDHxFRP4S+FngY9baT4nI7wDvB37br09Ya68SkfcAvwL8szGMQ1HGSpcWhREau9oD7UEASWBIYmC5gPu3XDG2cRiDF2juR6cwgjGCsbV2L/jKH6qyvXP3vWRFWP141X/obO2HrP9j535GCuN+nMxZukMCsTAk4IZFoXNBLH9slBA8U59+W19QCqhgVJR1Tvk3GrpfpXM+f7Wsk+631f/W1gSf+8c5GGgvTFCJwIzIS7LQWwiX54KFl7XWAvN+N/aLBd4I/Ihv/yTwH3HC651+G+AzwG+KiPjrKMq6oBQnAAudiPse3UEjLkgiQxQZksgQl0voAvCDVSpHHATlj9R5/ImMUQCuhDGl62Lwh2twn0okmrrLpCYgO3ffW4m/UYLQWhn4L7juMin7n4tghEHRuETASd/aKEPWwJVEYV8YUlki3bXddvm6y12jfE1FUSZLENQtistnstcZJQJ/4t8u338sMV4iEuLciVcBvwU8Apy01ua+y5PAfr+9H3gCwFqbi8gczh35wjjGoijjwBmMnaUoCCytb72aNA3oZML0o/dwejEmywOyIiDLA/IiGMhCA+ciDANLFFqi0BCFLp7LrS1h6I5XS2iIAktYHvfnr5agGydBUM+qvID/oSYkFEtczEwpAkv3h2CMj5cZEImjhWPZ11qccDThsuKwLiJHCcsqVucM7uc6ThT2hd0ocTjaWsgSQVgW8O3HIvrvoY9dDAPjYxvVDa0o58tYhJe1tgBeJSKzwJ8CF1zUSERuAG4A2KM5AMqESWmQkWCtINNtZrcbKnP4JS89q2sUBeSFYPw6z91DOs2FwsC2x+6hl/Zjw4bjxIoiqCxBS5C+YAvK7XB4vxRu/bagLvT8OVWQvz9/K1lanGgBsIS49QXx5hdd8JjOFWtr8TKmbhGUJcdM3WJY61uuu97iWLqnqxjFWtHg3AQY73KpI4JPMnHCLAqKSqyVSSjuH49iIBEl9Ikprr+KOWXzM1ZFY609KSJfBN4AzIpI5K1eB4CnfLengIPAkyISAdtxQfbD17oRuBHgkDT1r1GZKBmJ89M32ywuBtx9b4tGw9BoWBqJJUkMSWKJY0sSW8Jw6TXCEMJwBSvQvmvOe3zWOmFXGCfsXIwXFIUTd8YImW/f9tjdZDaga/rxYXWBV98vXXWjkCHxVhdrw8IuGBJ8o84bPmcrCb5xIlL7noVrJxytdf9gOKEmS5JP8kJYuOt+enlEbsIBIVcXdHVEIAyKSpiV4i0MDLEXdnUhV26XffU7paxHxpHVuAfIvOhqAW/GBcx/EXgXLrPxvcBn/Smf8/tf9cf/VuO7lPVGQUhmY4wVWrEluHQ/8z043oMD+VEWFyPSTEhTIcuc6CkJA4gqQWaJI0sUW+IIosi7HmO/9m3n6k4UwZ17Nu69i89f4NUxpi/2bCny7KDYyw0UBqwRth29m8w/hI0ViqIv7s5F8JXxVyMF3JDYW87C1z+HmtVv47hyNwIiEEeWeKW4mLdcfk7XLBNLnHDrZxLnhZCbgIU77+sLOS/echOSmRBjBt21pYiLh8RZ5NvCwBCHRV/QBQVJWKhLVRk747B4XQx80sd5BcCnrbV/JiIPAJ8Skf8LuBP4hO//CeC/icgR4DjwnjGMQVHGjGCIsBbSoEmzBc2WO9LjMqCfSTJMUUCRQ5ZBJ3fbRe4EW7cbkOVOhOQ5bjt3AqZ6ZfHiLbJEkRNvUeSsGlF9uzwWQhj1j63Wf/kuyB/is43lumQ8gq+07pVWPesfxsaA8eLPWVpqgq9wFj5jBsWeE4ulYAx8XNfyysvFOnHBVr7B7f411SKzMmViSRwVjAx0PoeYwNIiV8ZkZjUhN3/nffTShNyEfgnIipDcu1yr8Yhz4ceVgCsqsRaFg9tJmKvVTRnJOLIa7wFePaL9G8B1I9q7wLsv9HUVZTXJiOnQdgHTC3DXbQFRDM2mJUmg0YIksSQNSBoQ1xSYczG69jqlYAv8EgOtEa9tLZjCx4jlkOZezBXOunQwf4xuL6jEW+Hjx4pCyAuWBGWXwiwMBgVcGEEUWgIv3lybJQwmI+TOltK6Nyj0Vt/CB6XgOzcrX2qCvuCrrHql5e/sBd8S4VaL5auLOxmK2xslEtW6V7PIjRJxZ+liNQYn3IxLqikTbObvuI9OlnCq64RbWoSVcKu/finISuHmlpxkYFsF22ZHo9YVZSTC5de/FHP7n9NoQnhRQp7D8RSyU3Blo8fpOSFNIe1BlrlfySCAOLHEMcQJfm1r25xRzIhAGLllWLyBrQQcuD/gCFe9eBR1EVcU0Cv6FrmigEs5SpYJ3Y5UCQClwFtOyA0LM/dw77e5dV/UxRFe3LlYuI308C9F9CStfC4gvi/yTDFo4SsMZIXQs25/29G7yfNgRMxeUNV6O5PYk6GEjHJJIuPKqMQFjaSgEbv96EJjyTYoQQCNxNAYrjt1FsLNWkgzJ9TSvC/cTt/5AAtpg6yIRgq2MDQkXpwlYU4jyohLARcWNCIn1lSobRxUeCnKCAwBWRFRRE3y1D2swghaEbTa8HzegBBnsmpRlcszBhYyyDPIO07gXHlRj9OnIEt9e96fdy4IneUsivpCLYoHhVsUn79YqYu4UXRqIk5Y3n1ap6iJt563COWZtw4VwkH72AULudIiF0eDFrko9qLAW+tGJTVsdFywfD0xA1YUfGMQe/X4vVLoFQVkWYA8cjcL3Zjjp5v0soBuGlYCLggMzaSgGRc0EyfOmuUSF0P3sLURWUa0nSHuLcuFNA9JMyfYTt1+P4tpwsmiTVaEpEVEVkTV31VUE2ONyAm1ah3mJNHZ1aZSVg8VXooygsL2a3N1O/Dwvc5S1Ww7N2O5Hn7wBwGV+7HkuG0MKBrxC7iH3XzmXIp1obYw78RMlkGeOWsHlG43SxTXLGgxxLEdEGqr6SIsrUAko45aUi/mzlfIDVjkrIuLK3In2kq3al70rT91AqGyuMWx7cfFxV681eLm4mhQ8G1llo/fM7D7ZUwtc16eQ5oKvV7AYirYI/cyN5/QzcIBgRZHToy1koJmI6eVFLT8WsXZyjj3aM5U0+3v/Z4rV+yf5ULPv/+9LOTUHQ9wutckzSO6eVxZ00SgEWU0o8yt43I7pxWnWtpjFdniPzeKMhpL4KeFgKQJC9kLFB3IXhAOHdrFieeg13XiIIpcn6QJDb/EjbOzUlXxYLW247bR9yH6ILDyUtZCL4fFHPIe5PNw1d4enUXh1MlSqC21qsVxX6xFMSSlUBuDVe1CWUnI1S1yoV9G6j1PabnJM0iNEwZlcsNBc5SFxX5snBNwQp4tFXClFS6OnFUtHspQLUVcP2N1c1rfzkSZldtueyvK3tE17tJU6KVCtxtgH76HY6caLPam6KYhRREggaUZF7QbOa2GE2VTzZx2I1dhdo6UQm265eqX71/GomYMlUDrpBFztzuB1s0SunlUieZGnNHy4qyVpLTjjFac0ojykddVzowKL0UZQUrDPRAA8Q/U0FtInvjm4CQLRQfy4+4BftWVOzl5DLIuGOuETdLoi7FGy+2frzVKxFu04n5c1/OZ30qoVEndqmYKWMi9O7AHReasaouLzv2Zps6qVgq1MPIWtGXi1JLGUkvfeqGy3Iwws3VHxMYtR93q1svd++eSHYQD5iiLPiM1z8Wth8RbaZmMI+9GXlJaxFnektjVglsPSQyrSZJYksQyM21g9zVMDx03Bno9J8yih+/h1ELC08faLPYijBGiyFRCrN3MmWpmTDdVlF0IQYAXuQU7SLlkhECz1omzTs+JsxOHH+TE4jSLWUKWux+BRpzRjlPaceqFmVu0DMfyqPBSlGUwfhKchdMZpnCWo1GUgqzRsjz9/KAoyxedqHnxi3fRmYeTL7hgfOgLsqTVt5QtF4t1IQQhJENZlsfMYIxaXajlBXQzJ9DyRSfSSotamjrrhfEGDheb5rM7k8HtJFmd+5kElRVuCZaMS10fv4xKbKhb3krhludwaeBcpwu5kGa+pEgWkNWMB4F4oRtZL4D720nshdsKhXs3IkEArZal1SrgupfRxs0jV5Jl0OkGLC4GyJF7ef5kk/lOjDFCs5Ez3cyZbmfMtNyigmw8iFDF7O0g5ZK3XjZw3FropiGLvYjjtz7AyU6bb87toJMlWOtE2XTSYyrpMd3oMZV0icNznxB7s7FBfxYVZXUxhOTW1YzK04BnH49pThlmZguilXxdQ0Q+WP7xJwcFmbXOTZinwqEX7+LE8951mTvB0mz3l6Q5WWvIsOgYZVErvZJZDosp5AuQnYQr9/SYP11a0oTCC4pG09JoeHdsw227khwTuqkJs5zlbbFmdSvj34ZLipTJClkGXW+pPChH6XQDTp12Vrbhwr2lWGskTpAliXH7sa2sTXG8ceuGxTHEsWHbjIG9L2W2dqzTFRYXA/KH7uPx56Y5vRhjrTDdytg+lbJ9usf2toqx1UCkbzXbNRR7Voqy+U7MC7c+xFNzO5hPG+RFSCtO2dbsMNPosr25SDPeWm5LFV6KMgJDANbNcRdGlrnn7mb7NS/n+LPuT2b77oJG6/x/yEW8Gy+xPDnkupxbhOxZ4cordzF3AtKue4hPzUB7G0xNL299mzTDGZMDiQRTTqBZCwspnOy5UhxX7O4xdwJ6PchS5+JsNC2tNrSnvOWj7UTrVmRUgsbiGRIWSrHWS2E+deVNLuke5fRpqeKrypIn4Fx/zYal2TRu3TA0m25KrI1mRWs1La1mAf/opWzzbdbC/EJAcP+9fPOFKR5cSLDAzukeu7Z32bWtt2VLYkyKuijbU3NjWgudXsjcQsJzt36dJ07upJfHNOOUna0FdrYX2NbsbNh/Es4GFV6Ksgy2rHnkJ1J+4sH7AMizEJGXIQI79+VjF0Glleybz/YFmSngmeeFKy7fxXNPgASwbSfs2LN+461KRGpCYgZO0IAm0OxbzhZ7cGIBLk96PDcndDpCnjlLR3vasn3Wsm371hVjZ2KpWLPkXIrgXKF1d6i1ziLZ7cKpFC7Oj3J6PqLXc9mJeSGEgaXVMuzalbPvonxD1V4D952bmTbwOpeReTHO9XtyLuTEvQ9w5KntiFj27uhwya5FWg0tsTApRKDdLGg3O1z89oNV+2I35KmvfJ3HT+7iVLdFEuVcNHWKvTNzm84ipsJLUZbBWshshAzV3YniguPfvIeDL3k5zz8VcdGBHFnlB1MQQnvG8uwxJ8ZMAdt27uYbD8DMLOw9sLGDs0vRcMz0RVkIpJmzAAZBj6eeELAws92y92JnFVPOnQEhDKRcRkAV7gc4C1q3A4vHn+CWww327c24/NJ0Q3/HwhB27SzgO69mD84Vnt15H3c/sgsRy6UXzXPxrs5aD3PL0m4WHKq5Kzu9kMe/PMc9Tx/EWOHimTkOzB7fFGUuVHgpyjKYMtx8mYfNEw/dx+y+V2Ltsl1WjSCEJ7/5gnPTdXfTWYD2cKrYJiCKYWY7nKIBO53V4qlTMHciZe/Fln37N/6P8HokCJzb104dZMclYJ95nDvubvGKa7okyeZ4z5PEkrzuZRwCOh3h+Zse5vHnpnn5FSeYam4uC8tGpNUouPrNL+JqoJcGPPLFU9x89Cou2XaCy3Yc29BZkxvMgKwokyMoi0iO+Pu2FvZe8QoXRL1Grj5jYP++3fS669/dOC7CELbtgIv2WZ57RpZUwVfGTxhCsf9S9u7JeeLJzenrbbUs+990Fbu/7UrufHh3VbBYWR80EsM1b72c7/6BWYwV7njqMozZuOZXFV6Ksgyl+3Bg4hYL+69+ObN7vwUR2L1/cv8ZWwtpV9i/bzfb27uZaewmCOHKl7kMwc1M2oN9jS6tTo/iuZSFBXjZq3Qi4UkSBK522WZmdruhmeTMLWzSdNsNThhaXv62y9jW7PDNU7NrPZzzRl2NirIcYoglJzcBRRFwyVUvozMfUGSGPQeyVa1RZQqX8Xfo0C56HeguujpQzVnnftt/xagJtDc21kLWc9mOV+zs0e1ApwNpT2g1LGlT2HeJZWpm45ZF2IgUBTSee5wnn495zasW13o4q4a1sHjr/aT5FDtm0rUejrICWRERNLprPYzzRoWXoowgJCcS94AvcmH3gZcTNwzbd2VjC6S3fkqbPHUFVtOeq+WVpRA2obHb9ZmZhT2XbOyMPmvLe3X3d9XeHmmP6p7TVBCBqaZlty+XsXOPpdWCpKH+xEmTpi64fsf847zwfMwlF1uufc3ihstuPBuKAvI77+OxZ6bZMR1z3UueX+shKcuw2A2556++SRxYLp6ZW+vhnDcqvBRlJBa88EqahosOnp9Lschd5foiEw5dvZO02y+UGgjETWg0fHmIHa7AaLxBvBzG+PvLXZX7IveCyk9DlKX9Ol0AzbKq/TYnKKemLbM7ykKqKq5WmyL3c3nm/QKt+zlKmgZ0u66URJYLIq7YartlaM0aXvuahU03iXiWwcm5iN5dD3FqIeGiHTHfcuVxDapfh1gLx083ePhLj9PJYq7YOcfemVNrPawLYpP9OSnKeIi8xQsL7anlTU2mcBaxLIUXX72LtOvcZVnmrzPFwGTUUzOrNzXQ+WJteR/lfIRgvIgqJ90eOfl24CbkTRII264KvQQwPePakoarR7YZrSRrRX0qonI+yTyHAxwly12R1FGV7QEiP9l3I7ZMl1MRxTA9ldNILI2GGTnH5WaglwqnToXY+x7g+OkGIpZd23ocvKjDjumNXSZjM5JmAU995SGeO72N070Ws61FLp09wY725nB1r6Off0VZPwiWICiQoDaFS0+46qpdfatV4VyCsa+JFEawfVcpOCZbV6t8IJu8NsFzDof29ZyFI+9bOorczRFYJ46gFVvCCKKGE4kSOKtUGDlRFcVu4md9SJ079Um3q7XfPhg40WQKIfcTcVfLUF3PcvLtKIRGOfF2bCGGVtOwbWZwbsfNZqk6E9a60hCnTodEX7ufuYWEXhqSxAXbp1J2be9x6MCcVq1fR1gL852YZ256iJOdNqe6LcLQsKPV4rIdx9je2ny11bbYn6WinB0RGXFgECxpD3bP7qbVdparqW3OPTbOEg6mGP1wfvGQcCoFVd3yBH3rUxR5gdSC0IunVtu1h5Gb1DqKnJhSAdXH2pp4Lfpu1KrNgDHCQXmMwghF7qxJRSFeRLl9UwxamUrCwE09FYWWRuSys6LQVhbBdsu4zyX0wsr3jfRzGkkvdfMzNr5+D4vdiPlOTKfnHmftZsa2dsbMdMple+dpJlqVfr2Q5cKpxYQXbnmQ070Wp3sNChMylfSYbYUcnD3OTKO7oWt0nQ0qvBRlBIFY4shZvJpNuPzqM59TBpCbIZF01d6ed9PVBZQM1AoKQkj8gzduQDjlRFIpnMLQCar+evO78EoxZIyLCasEUNEXRJWb1AiXho9hjFT77vjZCSNw4igInTUpDC1x4EVqYAlCCAMnhJLAuM8htAShrURV6Ptv9s9lEqSp0O0JnU5A68i9dHohi72IbhZijZDEBVPNnLAZsGOmx4E9C7QbuYrUdYAxsNCNWehGHL/tQRazBgtpQlZERGHBTKPLTAL7t59gOukShVuvaJoKL0UZgWAJsERZl3A6ptdxAeN5Ci/a4zLyssxNRlx4t50INCNLFA+Kpzj2kz5HdfG0cR7QpQCyZqngMbYvhKo+Vrg0cJYha5wIMt46ZK236Pm2lYQQ9MVQGEAQWOLQrYOgdiy0hLHbDsSJ1DCwSCmEpH+NUrDqA3ptMMZZq9LUBfO3j9xDNwvpZSGdXkiaOTNyHBnazZxWkhM1DHunUlpJTjMpNszfzWbFGOikEZ1eyInbHqCbx3SzmIWsQV6EhGJoJSntOKWd5OxoLzKVdIm3oMBaDhVeijICwfDYn99PsN+SZTBT9GhO44PGLdtm3Xbs46ImxfIWn2Fh5MSPsU7wmEL8dt8KZEzfCmSME1HL4YRPKW76FqG+CHJCpxQ2YQhxYPpix4ufsm8QUl1HhdDGxhhIMxfMn6ZCmglTj9xLLwvoZSHdNCTLvV9eLI24oBEbmnEBCcxO92gmBa2kIIn14byWZLnQ80K4m4bM3f4AnTyhm8X08hhrnTegEWe04pRmFDLT6HLR9Clacari6ixR4aUoIwgpSEgJBFotuPplZxdzUA+aLkVQf9uJobwYdIcZvy6ME0hFsbwIqgugMHBWnLgueEoBVBNEzUZd8DiLUCBONJV9wxC1JGwBjKlZMK1gfRu2bHcC3VkvhbxwgmrqG/eQ5gFpHpJmAWkeYIz7wohYkrggiQxJZGjHBXFcMN3KvMhygkrF9dqQF0LqRXAvCzl9x31085g0j+gVEb08qj7LMDQ0o4wkzGlGGY04Y7a1SCPKaEb5po+9mhQXLLxE5CDw+8Be3OwqN1prf11EdgJ/DFwOPAb8kLX2hIgI8OvAO4BF4H3W2jsudByKMk5iUposYizEeY/nn4FLeLxK0y/T9oezzupB1EnkxE0UlrFDTgA1Y+PiiGpCqB5HpCJosljbX+qCxFpnRXTHnJu0FCpVm6Hqa4z0r1Wd79q2P373wDWsFdef2nk4y6NFquubobW1zpVbrrHnqGbEuWNFWH4duD6BuO/sdGRIkoKZthNSsRdYoWYGTpyiELIiqMRvmjshlRYRWRGSFpHbzvuZP0FgaEQ5SViQhDmNSJhpdGlM5SRhRiPKCVVQTZRxWLxy4APW2jtEZAa4XUS+ALwP+Btr7S+LyAeBDwL/Bng7cMgvrwN+268VZd0QUBBJQRi6h9F+OUqSWGamLUniss7KLMLNQF18VCKkFAo1oWEGRIpUlpKzER+zj9/dFx0jhERfmIxuN0PCZVicWDh3IQKuUC7OclMXICLORSrV8aV93Npth3grYq1/IBYEJLAEYvw1Bs9b6fWCwPrSJi7usN/m+6tA31BY6yzbWR6Q5QF5bXv+zvvJTEhWuCU3IZkJKYr+hxwEhjgsSMKCOCzFlGWm0SX2bY0wJw4LtTCuYy74sWGtfRp42m+fFpEHgf3AO4Hv8t0+CXwJJ7zeCfy+tdYCN4vIrIhc7K+jKOuCiJyAArqLJDsbXHYwO6fzyyDyMo7Kmr4bpyjEB6H7Nr9tjbD96N0DFo26VWRJe7ldCpC6BQXOWYTICDEQiPtPuP+w74uBYdGwnPgojznxQV+AMEJw1IRH/TWrY0MiZOm553TLinJWlIIpLwLyYul64a77yIqQwgbkhRNMuQnIh4QTOHdeFBTEQUEcFkReTEWBoRlnftsdi4NiS2b9bXbG+v+6iFwOvBq4BdhbE1PP4FyR4ETZE7XTnvRtKryUdUNCl5AMAbJTHeb+4UHS8r/Uwv2nmhcBhRnt7nHWCJ9lF5TbTkyEXriEoSWS2jGxSODbyiXoC4tSiNSvVRciTvDUxdDE3zZFWVNKgeTKhwiFccKoqP29FkZYuOt+t229ODKB6+uXMuapxP3D4QRTFBiiwBDWtqPA0k7SSkCFXli5bY1vUwYZm/ASkWngfwA/ba09JbVvmrXWisg5OZFF5AbgBoA9mgOgTBjBEmIIxLgA4aRgup0Rh4Y4MkShJQzcWn9UFWU09YD9wgQuycQEfl8ovBgy1gmizl33UtigEkWFCVwWrt8urPjrBC7GbYhSIIXiBE8oThgFpVjy7XFoaMaGUCxRULi+Q33071pZLcaiaEQkxomuP7DW/olvfrZ0IYrIxcBzvv0p4GDt9AO+bQBr7Y3AjQCHpKmRf8pEEYEA9+ObRIb9uzfHHGEXSlktv1413/oHoGX5YwPnMvhEG77mcseXu179tYf7rNRvyfjt6Pblzl1uXKNfd/S4z9R3pXH17rlnybgG3p8VXvNsjlVZj1YqoeMWt134tTHByHsqCQJTWXBDvx2KcdZfMVW724Y4zCtRFIhxFuOakHJrqxl2yoZlHFmNAnwCeNBa+9Haoc8B7wV+2a8/W2v/SRH5FC6ofk7ju5T1SIsFQjF0TnbI8jKeo/wPHYoi6MdplQ8lI3TuvtdlqNkyLqv/AHPbsiSQvGqDoXVfFFT/4Q+1T5oy1srt2IH2atsfH9Xm2mvbA9e2y7aNvs7StuHXXXJ8mTGNfq2zOzZ8fPi6w2M6p/Ey+n0p2wfahsdYnjfC4bDcvUmtTXAxeaU4AirxVAkoFUGKck6Mw+L1bcC/AO4Vkbt82y/iBNenReT9wFHgh/yxv8CVkjiCKyfxY2MYg6KMnQZdXrZvN6d7LW763AtVvMbwf+uB9B9EZUyX1Pb7geZ+vwpM7wfN9vv1g8j76/5Dt34t0DguRVGUjcY4shq/wtJ/xEreNKK/BX7iQl9XUVabFgt8592zvOtDVwGPrvVwFEVRlE2AVoFRlGWY5hSn2LHWw1AURVE2EZouqCjL0JQOWFhMY9rJudXxUhRFUTYmVU3EWjJJGaNbXw8fL4/d9rGbV7y+Ci9FWYHtHOd//qcOb/y5a2oZXMJtH3d/WIbAB7pLtV+nCoIfWg9754cz2c6XUUHdw/l4IwO/WTkwfPjYYJ/R547uO3js2p9+g9sfFfw9IjBcho8N7ZdtowLdhwPxl+4vH9De317+WsPXWWmsGpunbBTKGSKgNmsE1BKFlk8SAjA2OGMiUZV45M+57WM3D/xmut9V/3oDS+DX1LaDJX3c7zQsHxU1SP9s47Lb/VXw61HH6vvCykVvxa5FWtQ5ckia9uPRZWs9DGULUtiQZzgIWELcxIxL/wDLP31gyb5jWIScjUA6d0aUNDiLtjOJvqWicfC17Ijt0VJr1Dmjzl1+zCuNxQ69xpnPHW5f6XqjrzEo7850/fo5a6G8akJyiUBe7vu5TDblimJ+hSzUc/jeL/cOrfSPwThY6e/hbEY6+nu+tO+o7+uo7+DgtdbiO2UHvjPl96X/O9c/vvwxU50feFEy3H+w3dT6+uzaanu4/+DvsAwIJSpRVCYsTYrr86/fbq29dtQxtXgpygqEUrCfx9Z6GIpywZTWhmq/JhBHCdqzEbHl+aP6LHeN5a453CbYZc6fxNPzXK2+K/cdvb/8P2MrnbeSUFZL6sZAhZeiKMoWYKD+GnDhFlZFUc4HzWpUFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZEGMRXiLyeyLynIjcV2vbKSJfEJGH/XqHbxcR+Q0ROSIi94jIa8YxBkVRFEVRlPXOuCxe/y/wtqG2DwJ/Y609BPyN3wd4O3DILzcAvz2mMSiKoiiKoqxrxiK8rLVfBo4PNb8T+KTf/iTw/bX237eOm4FZEbl4HONQFEVRFEVZz6xmjNdea+3TfvsZYK/f3g88Uev3pG8bQERuEJHDInJ4jmIVh6koiqIoijIZJhJcb621gD3Hc2601l5rrb12O+EqjUxRFEVRFGVyrKbwerZ0Ifr1c779KeBgrd8B36YoiqIoirKpWU3h9TngvX77vcBna+0/6rMbXw/M1VySiqIoiqIom5ZoHBcRkT8CvgvYLSJPAv8B+GXg0yLyfuAo8EO++18A7wCOAIvAj41jDIqiKIqiKOudsQgva+0PL3PoTSP6WuAnxvG6iqIoiqIoGwmtXK8oiqIoijIhVHgpiqIoiqJMCBVeiqIoiqIoE2IsMV7K+ucpezmn2U5Cl5iMmJSEHgk9YnrEpARyTqXWFEVRFEU5R1R4bQEyG3OC3fzov91JWkR085ibfu1WOrSZYycZCSkJ1gYIlpjUi7HMC7O0WhK6KtAURVEU5TxR4bUFOMEedvEszXgbzThnG12+/0MvHdnXWujl0RKBdopZMhqkNLBWAAgpiL3VrC7QEnpEZESST/I2FUVRFGXdo8JrE/CszbjFzvNPZBYRWXL8JLv4wV88APTOeC0RaMb5GQUaQFYE9PKYbh7TyyNu+ujtnGY7OQkZCYV1Uz0FmJoVLR1yc6ZEZIwYtqIoiqJsOlR4bQLusAvcaJ7nmrDFVTSXHE9pMBWnY3/dODTEYY/phhN07/7QlSP7FUbo5RG9PKZXRNz04cOcZpaUBhkJObGfydNW8WfDAi3y+6GYsd+HoiiKokwKFV6bgO+QGf4Lz/O35hRXhYPCK7MxguXIsYs4vjhFM8ppxinNKKcRZbTijGaU0ojyVbM6hYGlnWS0kwyAH/jQi0f2sxbSIqpcnV/51du8m3NHJdIG3ZzOihYNxaKVrk61oimKoijrDRVem4BpCblOpviyPc377R7CmuLo0aRl53nu9Da++wdn6WUhnV5INw05efuDHF+cpptH9LIYixAGRSXKmlFGI85oRZnfzwmC1QusF4FGlNOIXGzYSm7OvAjoFd6Klkd89SO30aXtEwUalRWtTBaISElqlrT6EkqxavekKIqiKHVUeG0S3ijbuMnOc4dd4LUyXbXnPjdxptklCi1RmDPVdMLmwNsuW3KdohC6NXE2d8eDnOxM0c1i0jzCWPECyQuzKKMZl9s5zSgjClffHRiFhihMmUqcC3U5K5oxQlqEfTdnLVkg9yLN2ACLEJEviUUrLWgai6YoiqKMAxVem4RvlSm2EfBFe5rX0hdeC8zw0h9/HTtaJ0izi0nilUVRGFqm6uLsrUvFmTE4y1ka0k0j5m5/gNO9ZhVoXxSuLm8cFZU4a3nrWSnQknD1XJt1gsDSDFyyAJzZitbNY5/RGXHzEitaBN7VOcq9qVY0RVEU5Uyo8NokxCJ8h8zwBXuKRVvQltAfEbIi5Imd38GJh3NyL4qSuKCV5LQaBa1GTquR024UNOLijIIoCPDnFUDKJW+5fGS/NAvopk6gzR1+gJOdduUaTPPIX8sMuDb71rPVd20OE4WG6bBHmf157rFog1Y0cBmdUa1gbWlNq1vRtC6aoijK1kGF1ybiu4Nt/Hkxx1fsPG+R7QB0adHNYraFhkPfeznghUMmdDpCtxsQHLmXE6cbdNKQXhZijRBFhlbSF2XVdlIQhmcnFJLYkMSGbVMZe9/8opF9StdmN+3HnZ0Ycm0CJN6N2YhyWnHqY8GcSEuiyVqXziUWrczoTAtfcuPDt7HANk74khsZSWVFCytX51ILWkxKLNlE7k9RFEVZPVR4bSKupsklxHzRnuItOOGVE9EzEdun+g9tEWgklkZiYbuBvS/1vftkGXR7Ad1ugH34Ho6darDYm6LTizBGkMA6MeatZs3SepbkNJKzj/Eadm3uH+HadEIxqATaycMPcKLTpps512ZehGueGLAcVUYn7v3/px+6etm+ZV20Xh7RK5yrc5HpytVZ2PLP1dYEWTZCqPW07IaiKMo6RYXXJkJE+O5gG39gjvGczbhIYnIbU5iA5+eaPHdHm6mpgnbb0G5ZWk1Dq2UIw6XXimOIY8PMtIHd19SixhzGQK/nLGbzPaE4ch/Pz7Xo9EKy3F0wjopKjDUbBc24oN3MaSU5wTlMz+6EoqGRGLavYD3LC6myNnuZs56d7Ew5IZPFI61nzVrsWTPKiMMzu1pXi+G6aGdKGFhudoGMZEnCQDRsPauV3VBXp6IoyuRQ4bXJ+G6Z4Q84xpfsaX5IdpLjLFQL3YidV13CYg+250c5dSrgmWcjOp2AwghRaGm3jRNjbUO7ZWg1LUky+qEcBNBqWVqtgh0A+17i1jXSVOh6cVYcuYcXFpt0ng/HbjUrGc7aXM561qu5Nuduv7+KPevmMVm+vPWsvh+ugfWspJ4wcKbZBcqyG6m3on3VuzrTEa7OqFa8tl+0tt+mWZ2KoigXjgqvTcY+SbiGFl80p3i37CCjgYjQveQqGk1oNGEBJ0iafgEocuh24XQH9nYf58QJJ8rSTNyDvlETZi0nzJpNu+KDOEmccNs2Y2DPNcwMHS+tZp1OwHwvID9y74DVzFqfBFCJsYJW4qxmzfjsY83qiEAzKWgmLi5s3xliz8qyGqfueIC5TruaHsmYlTM3kzBf1aK0Z8tw2Y3lXJ3WQlaEA7XRbv7obXSYXmaGgb6rs+7mLMWbztOpKIoyGhVem5A3BjP8pnmOR+iRkdDJI/ZMF+QZRPHoc8IIpqbdknMpMVB2NQZ6XTjZhWZ+lGPHI55YDOj2BGuFJPEWspb1ayfQojN8u+pWMyjg4pcs6VO3msVH7uGFuaVWs2Zc0G6Mx2pWvR9DsWe89fIlfYZjz8rMzTR3LsAqc1Ns5d5sxtlABmcjzCdS9+xMiEASFSRRwYx3df7ghw6N7Ft3dfbymH8Yqo1WztNpEQQ7YEkrxVk0ZEnTmDRFUbYKYu36j+84JE378Wip20gZzbwt+F+Kb/B22c4r5EfY+32vw7zhu2DPXsBZolpTTmS125ZW2wmv8yVNoduBXgf2FY+z2AnodALywrkwKwuZd1+228YF9o+BeqxZpye0jtzHYi8asJrFkakyMpvnmaF5oWPspqEXaK7uWSeLvXuzbz2LwmJE7Fm+6lM6rSZ1S1paSxpwbs6Y3FvSDMGAUIvIBwRauV1fVKwpirJeuT7/+u3W2mtHHVOL1yakPoXQ1UBuQpIQit0JQQDdFE4uwuWNHs88LXQWhSKHRtMyNQWtKUt7ClptzioIPkncwnYouJQG0PDHShfm813Ymz7O3Jyw2AlI0wCRvguztJSdjQuzztnGmvVS59K0pdXMx3gVRbCi1SyJzQULniCAdrOg3Ty7umfdLGTu8P3M95ocW3DiLM1jrGXJrAGNKB+wosXrwHpWp25J4wxJA9AXapkJyXyttKwIufljt7HADDlRX6zZvlgL/ZGQjLgUZn7ehv52SkiuyQSKoqwpKrw2KeUUQo/yJAcOXs5zZi97vIiKE7ccM40q0CsEFntw4jRcFvU4cQy6HcFaaLass45NuXWjudIrD1J3YWZcSgRs88esdS7MuQ60i74Ls5cKxvRdmC62rO/GHJWFuRJlrNnMtIs1O5sMTSfOItLMvVgYurpm7Ua+alazqu4ZGRd9z5Uj+9RnDej5umfHFhp0a7MGWKRmPcuWFKhthGtTWuNsqIQaTqSWvOtDVy17jrWQm8AJtiIiMyFpEXLLR2715Thicr8URNVE62C9ZS33wi2r1sNtMRkBa5fxqijK5mHNXI0i8jbg13HP/N+11v7ycn3V1XjuZNby3uIRLuEqbvhXv8epq65l59XJOV/HWki70F2ES2d7LCxArytEsbM0Tc3A9LRzXZ6rIDrjPWTudbsd2Jv3XZgDWZitvjhrt84cV3ZBY+m5128fuce5M9OlsWalpazVGE+s2XmPNxe6adS3oN3+QJW5WZ9zMxkSZmtZmHbS1K1ruV+Xgi0noqhkWUJBRIH7glukmpGgtLRFNcvaUiGX6xRSirLFWMnVuCbCS0RC4OvAm4EngduAH7bWPjCqvwqv8+O3i2f5vJ3nP/zYX8CrvpPtV5678FqOIneC6PIdPebnobMgGOOsYu1pmJqyTM8sH8w/jtfvdJzFbG/+OJ1OwMLCYFxZvTRGu7V8aYxxYAz0UqHbOftYs3ZNnJ1LXbNxUZbWKOuezd1+v8/ajOlkrjAtuGmdWrHL1GzV3JprWZh2rSkTDHIT1lyjIbd89NZKsBW+iloZw9ZnOUvb6H11jyrKxmM9Cq83AP/RWvtWv/8LANba/3tUfxVe58fXbIcPFE/w7u/8RV79Q/+e6cvGJ7xGUWY/9hbh4GyP06dc7Fh7ylnGpvw6XiUxVlIUbhyVpWwxqEpjhEE/2L/VHn+w/0rUrWatI/fQqVnNrBUX8+brmrWbudv2Qu1Mk5uvJnkhVd2zbhoyd8eDVVmNXhZT2ADBDpTWcBaznGaUk4RbV6CN4kyWNuMj1UwlzyKg7+MMfI++UDuDeFNrm6JMnPUYXL8feKK2/yTwujUay6blxTSZZQe3f/0vuTb4d6v+ekHgAvJbbThNA3ZCYF0M1464y4njwpOPOzE2NWOZ2QYz21xW5ThjZ8IQ2lNuyUaUxuh24IXO0mD/MKgF+leWMjM2oTgwG8Aydc26XRdrdroXkB25l+dOtljsRitObt7ydclWK/4oCi3TrZzpliutcWCFaZ162WBywPGFaMC96a5X0IhykrCfvdnwdc9acbqmxWknwWAcW5+VppOqkxcBuQlIi6iyuOUm4JaP3kpKc8DaVhBR2MEYgJDirCxt5b5mjyrKeFm3wfUicgNwA8Ce9TvMdY2IcA0v5aanb+LEsaO0Di6fTbZ6Y4BmG57pNZ362QEYOLYI7bzHk0eFxQUhSSzbd8D2WWcVWy0REQSDoqwe7F9ayp7vwEW+iOziYkCWO/fl1JSLKZtq9+PKxukiDAJX3qPdHl3XrJzcvNt1GZrBkXs5Od9wRV795OZhaGh7UdZMykzN1S+dUZ/WaaXkAOjHn/W8UJu73RWnLctrFCYkEEszTmlGGa04oxWntcnRt3ZxVlcU19CMB9+HlbJFS8pEhL5g867SIuTWj91ChykKwpq71GWP1q7ghVlRZZCGtf1RLlR1kyrKIGulaJ4CDtb2D/i2CmvtjcCN4FyNkxva5uIaXspN3MSdt/4xl7xq9a1eZ0MQQHvaZ1VOQTjlSlzsSbo8/ZSwMC8kDcuuPbBzt11112RJ3VJWFpEtJw8vY8pOLsK++cd59rn+dEtJ4sRYubSnDM3G+L+y9cnNt28bPbl5nuNqmnUDqE1uPqp0RunOLMVZHE3mzyyOLHGUVRa//SOK05a1zxZ7ESdue4DTvSbPz8/QyZNqWqckymlFKU0/W0ArdtutKFO35jKIlHOCuri9OgfOQrgZIy6DtOYmzYqQWz5yMylNOpWlLaysbv0s0uXdpAFFlTnar9WmblJlc7JWMV4RLrj+TTjBdRvwI9ba+0f11xiv8+eL5nr+5KK/Yd52+be/+wCyQfLh0y7sa/U4fsxl3+3eY7noYrsmQehnIsugswh706MsLAYsdgK63YAgsJW7sj1lmJ5ywmwt76E+TVPzyD10uv04s9Kd2Uhq5TJ88H+7sTbZmSvRSwM6qUtgOHn7g3Qyl7XZzRKMFUIxTpTFKS1fSqMVp7TjdF3MFrAVKYwsiW/LipBbP3qLT0QYcpNSd5OeffmPcn+D/Nwpm5B1F1wPICLvAD6OKyfxe9ba/7RcXxVe58+Xzdt59Dsa/Pe/+1V+7mO3cumhkd+DdU2WwUVxjxeeEy4+YNl78cawZpTJBp1F2JO6IP+FxcDVRvOFY6fazmU5M12sWimMc8Fan53ZFTrdgNaRe1nsRiz2IrLcPQTjyJXNaDdymj4RYLXjzM6Hcr7NxW7EycP308kSOllMJ08oypi5KKftLWXNOKUdZxt6poDNzHBxXbcdrFj+oyyw2xdtfZFWFtSti7ZyUfeocqGsS+F1LqjwOn++bN7O7I+9jX/3ye/n297+v/Guf/kbaz2k86bIIX065bpv39jWCmsh7XkrWXaU+YWwKoXRbNZclm3D9FQxMVfr2VIKs243oPnwvXTSiEVfkmJUnFmrkfsaZ5NzZ54NZTmNxZ6z+DmrWULXZ2tahNiX0Gj5eLN2ktKMUs3S3GDUXaSlaEtr5T8yb2ErhZutZZH2kxHSKqZteForTURQhlHhtYX5e/NWdr/jdfzh43/Iw0dv4//85JOEq1Vca8wY4wqoXrajx+I8zJ8WpmcsL3rx+v/Oni9pDxYXnCBbWAxYWAjJcqHV9K7K6YKZqfEH9o+TMs6s2xOaD99L17syOz7ODJZmZ7YbOdOtbF0JM3CJAK4eW8SJw86d2ckSenmMsW6GgHaVBJDWlkwtZpuEvAgql2jqRdvN3spWukSdcBus1zZcXLdvYetPa1UKNv2ubD7WYzkJZUIEGMLQcu23/lPuvOcvuOfmz3PNt14P0q8MZPHbvkGEetkg14GlbUs0e63NWLDGL9ZdotwvCnjxxb2qT567pcghz4Q8749j17Q7efdey2Uvshc0mfdGIGm4pcdlRLjg/nJqpWMLEHQe54UXIhY77gd+ZtpZxWZm1o+7MopgetowPQ3sWjpFU+nOLGPN5Mi9HD/VYL4bk+cBrUbO7HTKTDtldipd09iyOLJsjzK2T2XsGzHHZpYLnZ5zxZ48/ADPzW8bEGZx6FyZrTillbhYs3aSbvnMzI1EmUVaT0Y4U+mPMnvUCbVBC1uX9pBgi6rf2HJGhNK6Vk4Q35931FvdNOlgQ7MOfqaV1STAkAQ51776O/ijz+zmnr/7JK9/9ZuXiKb6frldrsv/xqo+FiRYWvJBasItCCCIXb+qTdzcjWEIQQiRuGD5KHLtUQRR5MSV/gfYRwSaLbcUXFpOr0lRQGcBtqdHeebZiCOPNMgLod0yzM7m7JgtmJ5af5YxERfj1mz0szNna8cXF4VTp0Pyh+7nsWdmSLOQRlKwY7rH9mknxtayoGydMkNz21TGvrdcseR4aTFb7DqL2cnFKRayBmkeIVgacUbbB/y3k5R20tOszE1AP3s0pT7n6JlKfhRGKqta6ieJv+Wjt9JhqpoFISceqM1Wd3fGQ4KtXEeiQn89ocJrkyMYGnHGzEzMm69/F3/2P/4rlxw8yfTMcCECZaMRhjC9DRa5jGg3zOLEcbcD0eJRnngy4fR8QCDOArVjhxNjq1HqYpy4WmY57L2aPb6t0xVOnQo5/uD9fOOb28jygKlWxuxUyuxMj9mpdN0JTBi0mF08VDbD2n7JjOO3PsCJTpsn53ZUWZmltaydpEwlPdpJj6k4VVG2iQkDSyvIBqxrK4m1MuEgLSK/hNz84XJy+MTbyWIK23/U9wVaOrBdb9PkgtVFY7w2OXeaN7D/3f+I/NvfSr7rKP/6R76Tn/vQf+Z7f+B9az00ZUIUBSzOw+zC45w4GZJlwvZtBbOzBRftzsc+ufkksBYWFwPk/ns5eTphbqFBEBhmp1J2zPTYta23bqxi50uWCwvdmIVuxPHDD7GQNuikCYUNiMOcqbogS3q041QtxcqKWEsl0NI8oldE3PyR28hIfORZQkZCGVdSZn/Wl4TegEjT79xoNLh+C3O3eR0HfugNtK6+it3XXcp7/+Xb2LVzNx/88N8TBNa5/YK++6/cLvf1j2rzYQycPgU7Fx7n2edjZqYL9u3N2DFbbEgRVpJlcOp0iNx/Py+calIYYcd0ys6Z7qYQYnXSLGChG/HCLQ+ymCWVKANoeUE23egy7QWZ1i1TzoesCOjlMWkR0c3rIi0hpUFeTcZmvSgbFGYxvWp/qz1LNLh+C5PQBYQDexZozRq+963fx+984jdInv8HLrroAEXXxRUUhUu5LgroFYIphMKMCKCnjNWyhAGEYSneLFEIQWgJQ8sT5vIBYReUYk6F3ZoTBLB9ForZS9m9H07NwfETT/DIow2+5RWdde+KXI44hl07C/iOl7ATZ+mbmws5fd8DPPbsDNbCnu1d9sx22T61sR8ESWxI4pQdQ1MzWQuLvYj5TsSxWx/i+MI082mDwoQ045TppMdMs8N00mM66anbUlkRF6fWA3rA8m5Pa6GXR37ar5ibPnwbC8yQsqtvRbOuplrfatajQbfaT+htmaQBtXhtco7Ya7joh9/Enm+5jJd+3+U88eRTvOFNb+fnf/on+al/dcN5XbMoXHHKSqyZ/n7hBVuRixN0ORgrA+e49uWFXRh4ARdQE29uHQbWibjA8vgK4k7E7wcq8M6GXhfSR59iYSHgO/7RwloPZ1XIMijuuo8X5prMzSfs3Nbjkt0L7Jje2CLsbOn0Qk53Yl645SFO95ospE2shalGj5lGl23NDtsaHZJoazz8lMljjLg6eV6gffUjt9GjSUaDlAYF4YA4S+jSoFttJ/Q2TPyZuhq3MI/bK9n3L95CdNVLuPodB4liy4/82Pt44dgxvvSXn12XUwjVBZw1TqjluVTbdetcYQRT9NuLQjCmf35puRuFSF/kBeKsd6VoK7cDsYi37AUCj5vLEen3CwKXuRmIX/v2KrOzzP6U2vYEKQpfpiMHU7h1lsFBOeomq+4GLlZK4OJ9GRftydZFSYrVxlo4fiKkc8fXOLWQcNGODpfvPb3upkVabayF+U7Mczc/wKlui1PdFlkR0YgyZluLbG922N5cVDGmTIzSetbNXTHjmz58mB5NUpqkNKrZCBp0adAhoUeDTrW/XoSZCq8tzDP2APve93Z2vOoqwBUD/Ow/fIGP/vff5Dd/6qNcfdCZjkM/cW4UWqLQEEfG16+xnL7ilcSRsyzFkSWMbLW/DnXbWWOMWwrjxJopBGMZ2vZCz4Kttvv9rb9OUUh1TWv7lkBrxNUxsywrAFeTMIAotkTeJRzHltjvx7Gl0TC0Wm7i7a2KMdA7fB+PPTvDTCvj6oNzNJOtLTQ6vZCT8wnP3vIwJ7tt8iJkutFltrnIjvYCM43uhv7bVzY2xgid3BUz/sqvOmHmlhaGgABTibEmi9U6kfTMFx8TKry2MM/YA8zZHfzjn7qGl7/NvYcn5xe5/Id/lh9/+z/mo//6R7woEFehOXdT12RFMLCfD+1nRVBVIS8JAi/YAkscrSzeorgv3hRlvWDuvIeHHp/l8otPc3DP5nS5ng+lZezpf/gaxztTzPeatOKUne0Fdrbn2dbsrvUQFaWiMMJiljhh9mu306VFj5bP2ISEHk0WadLx6/GLMhVeW5h5O8M37WW85P2v57t/cGfV/s//0+/w5Xse4ht/8GHiMfmWSoGW5QHZCLFWHcsDciNkeYAxNfEmlijoW9xKC1wcGU5f/kqiyFZL7AutxpFdl/WblI1LnsNjf/UoV15yit3be2s9nHXLQjfim1/5GscWp5nvNZltLbJn+hS72vOEGrSvrFOshU4Ws5g1+PtfdaKsS5uUBgGmEmJtFry17Pzcl5rVuIVp0KUQl/J7/+ePMvPqa4hDw/Vv+A7+5O8P82dffZDr3/DKscyR59yUxXm7aawdFG+lOMuLgO1H7ybz7d3CW938MWtrPg+xLhMn8qKtJuJOXfFK4siPM/YiLrREWilfqRFFsP26Qzx994MqvFZgqplz6Huu5BDOXXti/iIe/8ojPPz8PrY3F9m//QQ72otrPUxFGUAE2klGO8mWTP1UGGEh3ctC2uArH7mTY+ylSwuspUmHNvPVciEWMhVem5xYMgob8oqLn2Su26Jz972cKkKuTGfY3mzzO3/0t+x4fv+A29BNd5ETh4VbgoIkzJl+9cuII0MS9cVMHI1vShqRcgqWglbj/MSbMX5SWy/O0iysXKPT37iXLA9IC2GhsswFFEagJt5WcpnOX/HKmtWNgXg3ZXNwej7g2Fcf4aWXqavxbAkC2LWtx653HHCJC6cv4pG/Ex589hKu2PU8+2bm9J8bZd0TBpZtzS7bml3e/aEXVe3GCPPpXubTBn//kbt5lgOktkFExhSnq6UpnbN6HRVeW4AAQyiGS7bNDbT/mze+ilYc8bpLvzHQboyQmZCs8ItxVY5P3/kAaRGS+zZ3PBooCRHVxFoc9gVbEhmSuCAOLUlUjFWwDdxrAElgasUysxX7j2LA6uZFW2ldax65l7wI6OQBp/K+wBtwmdKfWLfuMo1CMyDcnMVtMPhdWRuKAo6fiOjd9RCLvYhXXHGCbVPn/t1R/OT223rs+if76KUB931hkaPHd/OKS55gKplccLOijIugJsj+2Ycur9rTPGSuexlf+rW7OMZeerZJTMo0p4CvL3s9jfHaAjxjDyDYJWbVcWMt5CaoBFlmQtIiJMujASGXFhF5EWJqVqZhwRaHBTOvvqayrvXXxbqP6VrJZZrXxFrZNlK8DcW7lW7TUryFPisxDPuWt1K8qWXhzGQZzC+EhA/cx7FTDTq9iN3bu+zdubhl6npNklMLMbf+xQu8av9RFV/KpqaXR5zstHnpr/yqxnhtZaY4zbPsX/XXcS5KZ+E5F0vTcoKtc/e9zBXRGQVbUoq2MCcOiola2EYxDpfpSuItPHp3tZ8WzvI2MlkB5zati7YyWSEKDaeveCVRrURIFG6uhAVjoNt1tcqSr9/LQidivhvTS0PC0LCtnbFtyvDSy04y1czXeribmm1TGS/5rot59o6TvGjX82s9HEVZNRpRzt6ZUyv2UeG1BZiROR63V/Hp//AoERmv/8BriQNDEubEYU4SFms6l9uFCrZSkKVFRGYCFu+6jznj94ulLlGRUrDlSy1ssRtHuY4jsybWj3GIN3D1xYYtbKNi3nLT7+Pqmg0qr7AUbt4KVwq4MLCVBS6KnAUuCvtTSkVjFHHGuImjixx6aUCWucK67W/cQy8NSfOQbhqS+3hFEUurkdNKCpImXLSjw4tap7d8ja61wFo4+g9H2a/JCoqiwmurcIh7WWAbORFf/chhcuKBpaAfYBSREZFVs89H5Lz+A9fRiPLKqpSExZrP89YXbOfmurCWyoK2XAxb6i1veRFWgi0Q2xdsYT2G7eU1C5sTbVG4Plz4bi7NCxMa9Tpvw/FvuQmYeezu6lgvDyhMv19hZDDr1BMETrSFgSUILAJYyhkIAl+8dlCxifRdr4lfWnFBnBhmp1OSyNCIi001GfZGx1p47Etf57Fje9i3beGMlgBF2Qqo8NoiJJKS8MIZ+1kLOTEZSU2YRXzlI3csEWvucQmCJapmo3eC7XU/ex1JJVJyGlG+bmr7iEASFec8DYox4mLWjLOglSLt5O0PDrhDMxMOZIkGganei9I1Wgm2moVtvcavOQuhE53josw+LYxgrKvu76ZwsoSBqaZwUjYexsDx0w2e+IdHOLYww872FN+y/3FasSYrKAqo8FKGEMGLp7P/kTRWBsRaRsItH73Vz0ofk/t2Q19VhL5nXbC9/ueuoxHmJFHuBdv6slwEgaUZ5DTJgbN3mRRGKuta3f35wm1fG8gczfLIiRA/F1lUWdX68Wszr3lZFbOW1JIONloweJl9qmx8umnI3ELMszc/zFy3RS+P2dFeYM/UAi/e/eyaW8YVZb2hwku5YAKxJKQknJ3Lz1ooiCqRVgq2v//wnX7bCbai9vUMKSoXaOkGff0HXkvDu/0aXqytRwESBpZWkJ3Tf/yj4tfSImThzvs4UXeR+uMj49dqNdhmXvOymlgrfH0yfSAqZ4cxTmAtdGOO3/YA82mT070meRGSRDnbm4tsa3Y4MHtcLVuKcgZUeCkTRwQiciJympxdwbncRpWLM/Prmz5y+5B4i3COT/HXXyrUSjdf4pMK1ut/4+cbvzZcg620sM3d/sCAizQtoiXu0NK6FgVF9f5Mv+blSyxs6gLcXBjj6hH1soBuGnLy8AN0/QTE3TwmL0ICsTTjlFacMhXDvpk5Du1+Zt1ZpRVlI3BBwktE3g38R+ClwHXW2sO1Y78AvB8ogJ+y1n7et78N+HUgBH7XWvvLFzIGZWsQiRNqnKVQK2xYCbSMhKKWVJBVbtGkilMLMAMJBfU4tUaUVYH06yVObTmCwNIIXEzduVAYWZJwkBchJw4/OJBwkBbhQNB7GJrKqhbV6rCVCQdRmWwQjHeWA2Up9SSINAuqwr9pHjB/5/3LCu9ALHGUV27+VgQ7WotcvO0krShb04xnRdmMXKjF6z7gB4D/Um8UkWuA9wAvAy4B/lpEXuwP/xbwZuBJ4DYR+Zy19oELHIeiDBBKQUgBdM+qf2GDM8apZTWhtlxCQaOKTytohPm6tagN44Lac5rxuQm2vAiWzHJQTzjITVi5TF224uDUTFG1FD6o3lbrQCyhGFqvekW1XwbgB4FFxBIIVbvLjvTbvq3sI34fVrfArLVUbt8yacBal0BgDFgEY8RnbZbtg/uFERbvus9t24DcuPpshfUZo37bmIDh+telEI5qZVLioKAR50wHvXVTQkZRtjIXJLystQ8CyNJfsncCn7LW9oBHReQIcJ0/dsRa+w1/3qd8XxVeypoSiiGkR+Msg+aNlQGRlhMvK9RcsLzxIm20UFvvrs/lKKdGOp+4ntLKVtiA3K+d8HBrJ0oCFu68r79vA192InDvrRc39WOl0HHHqcSetUuFymrgBJ9LeOgLQYOAF5CmJiRttV1vDwNDHBhCvx2KcevadhRsvKQKRVFWL8ZrP3Bzbf9J3wbwxFD761ZpDIqyagRiaZyjUFvJojbs+gRbCbRy2QxCrU5pZVMURdlKnFF4ichfA/tGHPola+1nxz+k6nVvAG4A2KM5AMoG51wzP0uhVk8e6Au1vlVtqeuzH6f2+p997aYSaoqiKJuBMyoaa+33nMd1nwIO1vYP+DZWaB9+3RuBG8FNkn0eY1CUDcugUFs4Y/+lQi0eaVEra6n1y3MsLXrbiDIVaoqiKOdJVqycRbRapqTPAX8oIh/FBdcfAm4FBDgkIlfgBNd7gB9ZpTEoypbhXIVamUywXIzaqKzP/hRSG688h6IoyrjJioD5XpO/+5Xb6TBFhykyEp/YtTwXWk7inwL/D7AH+HMRucta+1Zr7f0i8mlc0HwO/IS1tvDn/CTweVw5id+z1t5/IWNQFOXcOddkgsIGS5IJ+uU5+q5PQ4C4EHc/M0G9llrG6z7wuirrs1yv9xIdiqJsTayFThbTzRO+/CuH6dHySxNDQERGkw4tQmY5xiUcJZYzJxqJnUSazwVySJr249Flaz0MRVHOkrrrs75kA/sRxZKppJwLNPRCLSTn9T/z2oEaYWWJBC2HoCjK+WIt9PKIbp7QzSNu+vBhMhJ6NEm9sALnSWjQoUGXBh2adGjQIZCVtdP1+ddvt9ZeO+qYRq0rijJ2zjWZoKQsfNufUirmto/d7Oc56LcXRBSEtTMtETkhBSGZ33Znve4D1xH7WmGlgIsCo8JNUTYZxkhVILgs+HzzR26rJSW5xWGJ/W9UQpeEnBYLxKQ06BLKyu7CC0GFl6Io64Z+4dtzw1oGBFlfpPVnLCj33SsMWtrAxbGFXrCF/irl+rqfeV1VO8u5R4t+4VexGtumKGOknKu2LMKcFhG5Cbj5w7cu+cdsuTI8/ZlIcposepHVIyJb8/p3KrwURdnwiFBNBnW+FDbwwq0UZxHGS69bP3YLBaHf7x8v2/o//H48WEJyAgyB711fB5hKzJVFUaPAEFQFUm1VKHWtHxKKcra4aav6syu4bTd7RW4Cbv3ILf6fn8G/s3zEP0KlxbpuwY6BJp2B6d0isjO6/dYbKrwURVEoEw5SOEf36CiMlUq0lWsn5IIBMVffN4TVfr89AJYqL8FWAq4Ud1I7y9Xt72+/9mde70Xd0ir5QW2KpqWV9S/4rVDWAdX0VH4aqvrMEPUZIwrfVn43be1fB+NntC2q7+jSfzgA/63N/Rl59e13FmScG2/AquwF1iq69tYbKrwURVHGTCCWgHJi9/FTCjtTSa+wklpL29yDtH68bC8frP11vV0YJfqGkWpiLPeqYP2VXFuZ5eondPKi0QycO9xeHrv2p9+A1KwZ4qdZkvp+bZvaiGXICuJep7YvLDuF1Khj5RRV/X2/LqekGtouj1VtVjj88a9WYsXW3rnyHRvdXn9HA/+ODu6f6XPq9+x/OwIvypcKeNcWkfpvS8Gw5bbc32iWpvWCCi9FUZQNRins1gNuXsxgQDAYb6kr3UeWpX3KpexXiZWaCLn94zfV+lG7Vl+kOGRJv2GGj9VnfXDzqdol/epibYlwW3LMVttS2x4cXf9doLr7YZE6SswysD/4DhoVQBsMFV6KoijKeeMe+lvHTaQoF8rKde0VRVEURVGUsaHCS1EURVEUZUKo8FIURVEURZkQKrwURVEURVEmhAovRVEURVGUCaHCS1EURVEUZUKo8FIURVEURZkQKrwURVEURVEmhAovRVEURVGUCaHCS1EURVEUZUKo8FIURVEURZkQKrwURVEURVEmhAovRVEURVGUCaHCS1EURVEUZUKo8FIURVEURZkQKrwURVEURVEmxAUJLxH5NRF5SETuEZE/FZHZ2rFfEJEjIvI1EXlrrf1tvu2IiHzwQl5fURRFURRlI3GhFq8vAC+31r4S+DrwCwAicg3wHuBlwNuA/ywioYiEwG8BbweuAX7Y91UURVEURdn0XJDwstb+lbU297s3Awf89juBT1lre9baR4EjwHV+OWKt/Ya1NgU+5fsqiqIoiqJsesYZ4/XjwF/67f3AE7VjT/q25dqXICI3iMhhETk8RzHGYSqKoiiKoqwN0Zk6iMhfA/tGHPola+1nfZ9fAnLgD8Y1MGvtjcCNAIekacd1XUVRFEVRlLXijMLLWvs9Kx0XkfcB1wNvstaWAukp4GCt2wHfxgrtiqIoiqIom5oLzWp8G/DzwPdZaxdrhz4HvEdEGiJyBXAIuBW4DTgkIleISIILwP/chYxBURRFURRlo3BGi9cZ+E2gAXxBRAButtb+79ba+0Xk08ADOBfkT1hrCwAR+Ung80AI/J619v4LHIOiKIqiKMqGQPrewfXLIWnaj0eXrfUwFEVRFEVRzsj1+ddvt9ZeO+qYVq5XFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmxIeZqFJHngaMXeJndwAtjGM5GRO9967KV71/vfWuyle8dtvb9r6d7v8xau2fUgQ0hvMaBiBxebsLKzY7e+9a8d9ja96/3rve+FdnK979R7l1djYqiKIqiKBNChZeiKIqiKMqE2ErC68a1HsAaove+ddnK96/3vjXZyvcOW/v+N8S9b5kYL0VRFEVRlLVmK1m8FEVRFEVR1pRNJ7xE5NdE5CERuUdE/lREZmvHfkFEjojI10TkrbX2t/m2IyLywTUZ+Cqxme8NQEQOisgXReQBEblfRP4P375TRL4gIg/79Q7fLiLyG/79uEdEXrO2d3DhiEgoIneKyJ/5/StE5BZ/j38sIolvb/j9I/745Ws68AtERGZF5DP+7/1BEXnDVvncReRn/Pf9PhH5IxFpbubPXUR+T0SeE5H7am3n/FmLyHt9/4dF5L1rcS/nyjL3vmWec6Puv3bsAyJiRWS3398Yn721dlMtwFuAyG//CvArfvsa4G6gAVwBPAKEfnkEeBGQ+D7XrPV9jOm92LT3VrvHi4HX+O0Z4Ov+s/5V4IO+/YO178E7gL8EBHg9cMta38MY3oOfBf4Q+DO//2ngPX77d4B/5bf/NfA7fvs9wB+v9dgv8L4/CfyvfjsBZrfC5w7sBx4FWrXP+32b+XMH/jHwGuC+Wts5fdbATuAbfr3Db+9Y63s7z3vfMs+5Uffv2w8Cn8fV+Ny9kT77TWfxstb+lbU297s3Awf89juBT1lre9baR4EjwHV+OWKt/Ya1NgU+5ftuBjbzvQFgrX3aWnuH3z4NPIh7ML0T92DGr7/fb78T+H3ruBmYFZGLJzvq8SEiB4DvBX7X7wvwRuAzvsvwvZfvyWeAN/n+Gw4R2Y77Qf4EgLU2tdaeZIt87kAEtEQkAtrA02ziz91a+2Xg+FDzuX7WbwW+YK09bq09AXwBeNuqD/4CGXXvW+k5t8xnD/Ax4OeBeqD6hvjsN53wGuLHceoX3MP4idqxJ33bcu2bgc18b0vwLpRXA7cAe621T/tDzwB7/fZme08+jvvxMX5/F3Cy9qNcv7/q3v3xOd9/I3IF8DzwX72b9XdFZIot8Llba58CPgw8jhNcc8DtbI3Pvc65ftab5jswxJZ7zonIO4GnrLV3Dx3aEPe/IYWXiPy1j20YXt5Z6/NLQA78wdqNVJkUIjIN/A/gp621p+rHrLM1b7r0XRG5HnjOWnv7Wo9lDYhw7offtta+GljAuZsqNvHnvgP3n/0VwCXAFBvAcrOabNbP+kxsxeeciLSBXwT+/VqP5XyJ1noA54O19ntWOi4i7wOuB97k/yABnsL5hEsO+DZWaN/orHTPmwYRiXGi6w+stX/im58VkYuttU97U/Nzvn0zvSffBnyfiLwDaALbgF/Hmdcjb92o31957096F9V24Njkhz0WngSetNbe4vc/gxNeW+Fz/x7gUWvt8wAi8ie478JW+NzrnOtn/RTwXUPtX5rAOFeFLfycuxL3T8fd3mN+ALhDRK5jg3z2G9LitRIi8jac6+X7rLWLtUOfA97jM3yuAA4BtwK3AYd8RlCCCz793KTHvUps5nsDqpimTwAPWms/Wjv0OaDMXHkv8Nla+4/67JfXA3M1d8WGwlr7C9baA9bay3Gf7d9aa/858EXgXb7b8L2X78m7fP8NaSWw1j4DPCEiV/umNwEPsAU+d5yL8fUi0vbf//LeN/3nPsS5ftafB94iIju81fAtvm3DsZWfc9bae621F1lrL/e/fU/iEqyeYaN89msR0b+aCy6Y8AngLr/8Tu3YL+EyO74GvL3W/g5cNtwjwC+t9T2M+f3YtPfm7+/bcS6Ge2qf+TtwMSx/AzwM/DWw0/cX4Lf8+3EvcO1a38OY3ofvop/V+CLcj+0R4L8DDd/e9PtH/PEXrfW4L/CeXwUc9p/9/8RlK22Jzx34EPAQcB/w33BZbJv2cwf+CBfPluEetO8/n88aFw91xC8/ttb3dQH3vmWec6Puf+j4Y/SzGjfEZ6+V6xVFURRFUSbEpnM1KoqiKIqirFdUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhPj/AczBAH+Ks/2TAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -170,12 +170,12 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAEQCAYAAABhm3oHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACHAUlEQVR4nO39ebQt2V3fCX5/e0fEOXd4Y+Z7L0cpU8qUhJBBgCwxeNEMxgiZhdxegFWmXcJFt7q6YLXdrl5GmF5d1WvVAF29bKg2jZ0NdAkaSDA2JTWFG4tB0IUtIQmQhAakp5RS+XJQDu/lG+6958Swf/3H3hGx45yIExHnxjn33Ht/n7XuunF27CnG/Y3fbw/EzBAEQRAEQRBWjzrqCgiCIAiCIJwWRHgJgiAIgiCsCRFegiAIgiAIa0KElyAIgiAIwpoQ4SUIgiAIgrAmRHgJgiAIgiCsiUGEFxF9kYg+QUR/TkQfcWEXiej9RPQ59/+CCyci+u+J6CoRfZyIvnaIOgiCIAiCIGw6Q1q8vpWZ38jMb3K/3w3g95j5UQC/534DwHcBeNT9vQvAzw5YB0EQBEEQhI0lWGHebwfwLW77PQA+AOBHXfgvsp259YNEdJ6I7mXmZ5syOkeaLyNcYVUFQRAEQRCG4SqmLzLzpbp9QwkvBvDviIgB/EtmfgzAFU9MPQfgitu+H8BTXtprLqxReF1GiJ8KXjlQVQVBEARBEFbHd6effbJp31DC668x89NEdBnA+4noM/5OZmYnyjpDRO+CdUXi0koNc4IgCIIgCOthkD5ezPy0+/88gN8E8GYAXyaiewHA/X/eRX8awINe8gdc2GyejzHzm5j5Teegh6imIAiCIAjCkXJo4UVEO0R0Jt8G8DcA/AWA9wF4p4v2TgDvddvvA/Afu9GNXw/g5qL+XYIgCIIgCCeFIXx4VwD8JhHl+f0KM/9/iejDAH6diH4IwJMAvt/F/20AbwNwFcA+gL8/QB0EQRAEQRA2nkMLL2Z+AsBX14S/BODba8IZwA8ftlxBEARBEITjhsxcLwiCIAiCsCZEeAmCIAiCIKwJEV6CIAiCIAhrQoSXIAiCIAjCmhDhJQiCIAiCsCZEeAmCIAiCIKwJEV6CIAiCIAhrQoSXIAiCIAjCmhDhJQiCIAiCsCZEeAmCIAiCIKwJEV6CIAiCIAhrQoSXIAiCIAjCmhDhJQiCIAiCsCZEeAmCIAiCIKwJEV6CIAiCIAhrQoSXIAiCIAjCmhDhJQiCIAiCsCZEeAmCIAiCIKwJEV6CIAiCIAhrQoSXIAiCIAjCmhDhJQiCIAiCsCZEeAmCIAiCIKwJEV6CIAiCIAhrYjDhRUSaiP6MiH7L/X6YiD5ERFeJ6NeIKHLhI/f7qtv/0FB1EARBEARB2GSGtHj9AwCf9n7/JIB/xsyPALgB4Idc+A8BuOHC/5mLJwiCIAiCcOIZRHgR0QMA/iaAn3O/CcC3AfgNF+U9AP6W2367+w23/9tdfEEQBEEQhBNNMFA+PwXgHwM4437fBeBlZk7d72sA7nfb9wN4CgCYOSWimy7+i36GRPQuAO8CgEuDVVMQBEEQBGEeCge0AaXNuw6taIjouwE8z8wfJaJvOWx+Ocz8GIDHAOBRGvNQ+QqCIAiCcDgGFSmnjCFMSd8E4HuI6G0AxgDOAvhpAOeJKHBWrwcAPO3iPw3gQQDXiCgAcA7ASwPUQxAEQRAEYaM5tPBi5h8D8GMA4Cxe/0dm/gEi+lcAvhfA4wDeCeC9Lsn73O//4Pb/PjOLRUsQBEE48YilSFhl56kfBfA4Ef1XAP4MwM+78J8H8EtEdBXAdQDvWGEdBEEQhGOKiBRhFajgaO+rQYUXM38AwAfc9hMA3lwTZwLg+4YsVxAEQbCIWBH6cNQi5DQiwwUFQRAggkUoETFyPKDweC6+I8JLEIRDIYLl9CCCZLM4rsLjuDH0fS9XTRAEQRAEYU2IxUsQjgixFJ08xCK0XsTic3jknj08fd/lIrwEYQEijg6PvNhXhwiP7sh92I687+oZ+t4R4SUIR4Q0BIdHhMc8cl+ViJCQ+2ET7wERXoKwgE1/aZ124bHp12cVbGJDsipOy/WVa3q6EOElCAvYRGFz0l9cJ7EROonX7KRcp5N4bXxIn9zjU8f02ER4CcIChn4pH+fG6rg3UHLuj47j3Pgf18Z9FlIn4ziaIL15H8lNHJ+aCoIgCIIgHHPE4iUIC9Bbm/FtclysNZtsmTmOVpfjYG057paU42QpmeU43B99Oe73UxdEeAnCAtYlvDZZFGzay32TX8yb3Ihv2nXswiZf6zqO4zluY5PfTUNAav3PrAgvQViAjsqHclMagU1o3DelgdmUa1LHppyjOo5LY3oUjeJQbPK9OQSbfH+vg8NcXxFegrCAcDtcWd6b8OLalAZ4ExrYTW4oN+Fe6cImn8M+bML9uEpOynUagqN4tkR4CcIChhZeR9mAbsLLdtMatE04J104LsLL57ic22XZtHt5Ezjp13wo5M4RBEEQBEFYE2LxEoQFjHajQfM7yi/CTftCPy5fx8elnm2clOPow6bd8yed42iZPQpEeAnCAqLd8aD5bfKL6Tg2zKelYT2O1+Y4I+dbWCUivARhAeNzWzhIItyc7oJn9jHKlzPz/Iva32/jAOS8+3X76piP171BmE3bXE9HVpNHQ3lM3fJeVBebpjEJ0JBmUX7d8m3Po8t57lBEz/y6XdtZUdDlWA9T3ly6HvegcDwhWu6moh5PRc0r5FD5smGXb33cPndtXR5d6pAf02svfmlhPBFegrCA0bkdfPzaI7hr+zaUMuUOUlAzD+fsg+0/vHUP7eyLpz5O3QugPU5dvJJu5TTl0Ry3/RhXn65fg9Hn+KocXQOzTL5DlFcte0m1V1uHY4ox7XHWwHBXwuW3pLBeXsh3jGe4wwfX4e+mxR+Q3RhFi7uoiPAShAX8kz/8C9zY/wJ+4QfeeNRV2SCaXkzDNKH5l+tp5jNfvo6X9ibIjMFrr1zA5Z2to67Sajkh15x5M8TYEBzr5/BQoniI4x4t3CvCSxAW8OfXroPoOoA3HnVVhFPCXz5/HaFWeNMrroAwvEVDEISj5dDCi4jGAP4IVuIFAH6Dmf8LInoYwOMA7gLwUQB/j5ljIhoB+EUAXwfgJQB/h5m/eNh6CMIqSGmEnVGM8OKFtZTHG+K+qLABX75HaklY8/Fff/Y6/uor7sE4DIAjOu4jtXYc4TPAy3aYOywb8twf2XU/wuf7KI55CIvXFMC3MfMdIgoB/M9E9G8B/CMA/4yZHyeifwHghwD8rPt/g5kfIaJ3APhJAH9ngHoIwuCwChAz4Y+f+aql+8PM5Fhsfe6ZJ3Bnso9QB8g4xWvvezW2x+Uoyry8vC9Ptc9Y/t9U4s7G951/zeFcLW82PE8HrvQr8vMp8zBFHpX6klfHmnrMlwWQexnX1bssz9tXU8/qsZql0s3GAQDi6rlYiprG5iBOsHV2F5+/c4A7BzF2tyK8/v7LCLTukN2KGq+hxciQ9VyRUBr8XK6ocV/pB8mqBMmK6rwWATXQfXFo4cX2E+GO+xm6PwbwbQD+rgt/D4D/ElZ4vd1tA8BvAPjnRER8ZJ8aglBPzBEoVIhNgG/8pgSVmQuWfXl46egTe3j4vsu4+9wZxEmGcUQgisvOne6R8J+MfF8elu/irBrXxqNqHK52HGUX6OdZKQsz4cyVvOrrQ+W29yKshHNZL1OTTyXdTL7z5bIXVl9W7fG7Y2Gm9nSZf9yEzm+qhnhaG3zD656r3UfTGC/zc3jovnvxVefP4NNPPYcv7iV45L7zIE/pffbp87i5Z/uR5MKQuBzV5QtfK3pnf/ti0lTSzArROWGai1I2lTRl/FLcVvPL68aVuLMCtzZPZDXxqvVrZcmGeRBxM4QoOGQ9BhGTQzTTm1KPPKsjsDYO0seLiDSsO/ERAD8D4PMAXmbm1EW5BuB+t30/gKcAgJlTIroJ6458cSbPdwF4FwBckq5owhEwwTZYpyANJBeuFBaYRbRaxbw8kp3nEV6+H9jdQQTAoGw8m9KVlq7Z/R2GOrfVvyWPLsdfzW9x/MZjzenyQmw7bK6ZI2PZ+gD9Gr8FcRnnasuLtgxGZ8/j7vvvB2mN+14Z4XPXnoPZOgPtLY7+8KsYmYltXlwVlbkY9QWuFYxUEallHOXizAjgXOx6o8nyOHl8FHm7+JmpxjV+fD9vl6+X13x9vbQGjXVceA/0uF5WzJk5oaqoFHhVwdgkPGfjzYhKNlWB6rbzUdJK5WlKwVlXhqrUb2Y/m/rwNpG69NwkS4qXdYvhmvJ6Ga4HstYNomiYOQPwRiI6D+A3AbxugDwfA/AYADxKY7GGCWsnxggpCEox/viJV0ApzL30yH8pk23CfHfVqx6KoVD/sMbbz+DDT74EpW7g/nvvwYP33zcnbvb2FKYJlS9iAjTZFzeYQYrwwksv4NnnnsGrHnoFLpw7i3yaJ/sCn3/hLisgG9M1vKzbymkTmc3p6vf3Eb2tdehRn2WPvyldeO4i7gTb2N3ewksvHyA6ewF89gIy7yIq93docQu0C9y2PIo68Mz/IkK3eszlt+R+dDzuHGMqQtQXeGX4jBitxPVEYiF61Xw+M0LWzyMzVJ9/ZubLAWCMvRdMbdnVYzDecRQyo+f1aBKR1XcMu/ffzH4vnaIyvcrFK1XT5CK0FKQuDXMhJtVMfZSfJ83k0fD+bboXlqKnYB3UlMTMLxPRHwD4BgDniShwVq8HADztoj0N4EEA14goAHAOtpO9IGwUMUZgjpGmhFc8mCAKufxgKl5y7gs8f7H5Lz92gqfhmfwrr38dAq1hmPHnn/gktra2cOnCuUqcW3c0bt7S7qvf5cm2HsyEvf09PPf8AW7eZBwcBDh/fhvM9sVs68HArHusk/Cy2BdnLioNfKFZfJmDnSjNX342gzy+Ut4LNRev4Iolobqdzby4vbyVFRx2n/9iBrRX1+PM61/9Snz8c1+AMYxxqPGGR14JOu4HteGU903lQXH/BhSNffPrIwR6WWO718GKvxqhCfeecWLRvnO42G9yK6srrvjtCUxjyvdl+c6i4v1m/PgZF3kYrz6VOsyW7ZtmO57D4v2k5oVdo+grXOL2/6P3Xl9YzBCjGi8BSJzo2gLwHbAd5v8AwPfCjmx8J4D3uiTvc7//g9v/+9K/S9hEUoRITACtGXTxAhJvX6Uzu/e/7BBv/9+cybNilQntyBQA2LonxjMHQHTlUiX+9oPA9mw6j6uffQqPPHAe0+kId9+9jbvuqs73VPfl35SXb6Eh+MLSvbuMKV5sYNsmFNt+XJPHMTMiEMjAxf48PQPgLHdLeS/2jD23FMo08Mrw6pSX1eVF61+nXND5L9tC8CkrIBWVYcVXt4IX326r3FXl4iuqvrgVsc1zJp32ROp4fA5fd/EKmO1Xvta6cu8NbhE8rNWspyW0zHfgdF3qVOTRckyd3NxLnpeudeiQxyqsf3Pp4bnjDi1Cufp/SBE6gPD0P6YrIs650Iv3Geatib4Vk7YWz7s3hMXrXgDvcf28FIBfZ+bfIqJPAXiciP4rAH8G4Odd/J8H8EtEdBXAdQDvGKAOgjA4KQIkmXUU/sG/v1BabJRn1VGllYcUI3CDz7TiIp7Sfhzb2GYmQ6AAHSgoBXz2iwkuXb4HwY1zlbhaAWFUCjmgbECf/MJVhNFl7Jy/iOe+9AWMzAXo9PzMCMfFwks1iTDi4o1bjnZsiAsuXs59ltqoitfF6ZrcBbXl8eJ8bRybn/EEHdh+Ufui0go5Azb+F32+n5wgNEgNlWmYbNeylIuXtDEuTS4uc/GZl224dDdVDrX5vOQWvtzyp4mrVkAFaGX7+hQisRCE5T2p3L2qkbl4KNKQyvPlSrhSDQJoDW7npftaNgnSQwooG6fuPlyVi7qf2Kot5YQIy0Fc6TP55SKzdhxxJ3HHABav8TvEqMaPA/iamvAnALy5JnwC4PsOW64grJqEIySZQmaAC68IEQSl9QUoG2wFZ/Ex1rVnjF32MG9kKfWsO67hjqcTfPFzHylM7Ts7F6G2X4Ubn9cwWfnVFUaMhx+tCgxFwORgHy/e0XjwoUcwUSFuTZ/FBXUJNybjalwwrn7GvkqKBrMQhCgaVNtIl9tB3hgrL06exolJrUu3YU617HmallFqE2xtyy/lx9qU11x++XZeST1fHmH+5dtFhC6qpy8gG+vZYqUkLl0/haBjAhuuij8D557JhZ8NS+3nOrLMCb2UnbC06XKB6IvPPA/OPEHq1Weuvvn95As4d/9p50rWOhdzTiB6wk4X958p7stS/Jm5+7KxHh2suxWWEVBoEACNQq97PdvyW1rcdLEKL5HOT9MYc9njqBFQlVQDCL1BRHgHZLigIDQQY4wsA4wCXt6nSj8bf51imt0mwJ92SeWdRr24IXbx+ru/2VpZTIZAayitZ/KyL4GX7syXd+PFfTz99HVce/bDIKWQxge4dXAVr3j1X0EQhpW447udAMwbT8PIDJAwANeYWquLZ/0Bw2RuEBADWeal56r1ZlYU5uSNZy7gSNnzUlhV8oZXAwFxIQTzODoorStasSf6UEztUTkvNcKrseHNR4TVhHVJ1yYaZ+PUWRYbRWib9S+3RgIVZUhg1//t8KKwsZ61onC+/5nJRZ9xfXIyLoQdG223XRg7YZdkuThkmMQKwMyJRTZsn8X8/suc6OSyvZ29DLmLVysuRF4u+OyHhRWDuviIYAS50NPlh0jgRKHW1pJY5FV3vnpYsVYpCpcVEGsRhWserNKaRwexeFh37SwivAShgRgjpKlt5D74gRRh5FmOtOc61KUlKdBUCIwsm2Cy9wK2d89ha/dcmc79D0MCKYJSqujY2yTofCFHREB0H668+jJgUuzfeRkvffkJ0PgB3NyPKun8uceIAChAu6dezZTRLCa5Zb+fh43r9/3KXXfWnYfSomcYqQGMm3TGTGbdcexZdGw6XyDOQk68Bd45Lq0l9rhzK0ku7oKwFH+ha1B1YPfn57xOIKl5rVHZ35SuSaT1EYDLWg1Vj7iVcrkhzqI8nJWrLLs8xnarYZ1V0LewdRCWzipYijUFk1krnynuJUJmrMUvdRbBg4xhYnLp7P9S9NnfuUt4tv52xDEXIk27jwutuCLetPvACLVx9xkjUJkVgUEuFHN3bneBvFLRt0wZG+g+LkJX2r+wXaSJ8BKEBlIE7gULPPgoY7xV7XzJuUhA6ZpRKD94ppMD3Ln5Al5+8SmwIZy//HqMxueLuGCXjkvxkjfohZuvEAjlthUQgNIBAh0gnmxjsg+E0RXEE7dfV0XXuik7pi8QdzPxZ+M0irtK4++XyhVxV1j3MvsbALIURcObJMDkwFlWstLyZ+NQkaZi0XONYqBLIZeLNP9PaSAIrPDTIRC68CCcrbOwKojsNbCwa7gXW41qhW7HwQr5gJAss4LOuP9ZZjtn23Ar3tKUEE91GS8NkGal4EtTm3ulv6IbuRto4wQcl/eYduEKCALbJy8IbJ/TwIUF7sNCOHpEeAlCAxkCpKmB0sDNl/dxZ698aynf7ai9bacatFIY7WzhnjNvACng+pevYho/gXOX31DE1V46culy0WGMtWyZYrQfITUApwAnzoKUWTdPmo6R4ivxxOcyJxbclzoDXhHQIVkrUFCKuiAohUIYue3AWY3cX17PLhYv/5haBdSAFjY/vNjvjpFC65EjcPHCmxW6frlzZXgNbG5Fqbi+MhuWZUCaMbK4bHRNZoVcZpzrNq1+EBPZ6xEEXFwLnW8HQBjYRjUMrGjTARD4/et69I1rsqq1pevjdvVpsrC1D6SYt7Z1qk8vi57xd8yl62JVq4TnExxr2zdwtmFdbHWq/idv0l+auffSNL+nrIhLU/vhkKbWnTvNCHsTa5XLUrJiLrX3ZpJS6ZZ1A2KC4v6yQi3Uxoo199uGZeVvJ/aKCnU4zi7nrcKKrGqt5aK5nmXVlnTtziDCSxAaYFj3BJjx/NP70AHZfkkaCIKyGfNnFC8ElAtjY6ADjVsv7wMAXr5xUPQV8xt95fJrE3R5eVoDOrRWpRDArh4DsD67ikhx6ZgBBSrcfLlwm6YEM80tcFRYior/aZmX0uSEgRVsQWBFWhhRIeJycaCdeLN19+pTaeS8Y1Lz4U3pVEMedWJK+e6umrhtIq6pbCpGAtr94cx+m24+v1lrHbOzsBkuG9XMNrBJAuxPnLvMNZ55I5rl1jjYegQBEIWMIARC96cDRhTZsPza5I1mxQVJ82Gb1k9ONTXGh+knV5cft7lBG8oozuEwgyeayiZt7zldE7dqSC2te02iLxdyqRNoaUrIEo00A5KEcBAT0n1CljKShJBlhDQt7z3AfihEISMKrDiLQkYYGoQhIwqM+22FXf48H7ZvXF7/rnHXMWCib94ivAShAQMFYwyMAZ774hRBqIqRYaQUdMi4cHkK7XXAyoWO1srOw0QEk03x4jNP4sKV1+POzYMibp1g88OUv62oPjxv0IN+1jgb4ERSXX1qxJtyFrjMWeGyFEhSIE7Kr2r2vrBzAk0IItvohyMnAEKUoiAsy7D1m69DH/FWTTcvtuyxdMvLhteIlBoRZ/f7jftiUVhpbHM3JYBRnQWm0dXqLB4JkGWMNLHiLU2AyQFw85ZtRNMEyFIuBZtzw0UREI0ZYQSMI4No5MJGi/u4+TQeU4++aEv3cePF+Tb2cWsRVoNY1VqsZs3CdLF4q+TbdO553qJXey41EEUG0Vwei4VbHjfL7POfuL80JiSJxsEBIY29fSkVmkUpxihijEam+D+OMoxHBqPIwBsbtOAcrn5gQyVGkXf9YvXVdO0L2ovwEoQGGNZ8T8QIghuIxr7VyT5cB7dmRI8LV04pHNx5Dgd7T2P33CuRpSNM7kyKuORad+sycqIo0F5e7cIrF0s0YxEryvDFhBNhjXHVfFw/j1nXqI7c13eNyxSoipQ0sWLApISDfbvNxoWn9kWYu0GjMTAaA+MtwmirdI3WleE3THmcLiKtXFap3O9vpxUx1WYpqy+jrm7dXK3zZdOM2JrNgwJYy8K4WaT5rTSRtaglcfl3Z08jvkHut3WNgqwLOoqArW3G9g5ja9ten8BZE02l7vNuwtn611nYTNvISV/8cn14XXn+ftM0YKBu8ESLtW62nstY2JotdN4z2VpGgyhS9XnUl01z+ytxyPuwnOkPRwEwCoDR1vz+pvKMAaZTwjQmxBPCNNa4czPEdEqYTBWyxFrjdACMRxm2twx2tvO/DEEAEM/XudFNWNOpsmnO9sZz0WC9LDOsT9eECC9BaCAfWQfFSOMD+C/EqkDytl04Z1NM9r6MLJtg5/zDUPoM4sm0EjdLQ9y+HoHZWYQig9Eow2jbTWTZ6M6ct4r5+9MGYZW5bV/EZXq+QQSArMaCljW4Pk3m163MoxCFbvqDIAJoTBjl+32RpuwLOY1tZ+R4AuzfAeKJtazpwDb2oy3g3EVrObN5l+XlAqDOelbUwysPAMg3DDRavMpt1UNA+cdX9K2pWM/qrWZ1FrRmC5uXrnZ/vRAkWDfxKAC2tpvrkI8mjSfAwT7h1i3C888RJhMAhjEaA9u7wJmzjHMX7Ai9ouwGsciFxcfDa7hqpwjx+zqhehx1KNQI1h7uQ+7gJuw1SrRN/PSZe66yn2r3V41iZq4MrqRryKOou2fN8UVYjYWtaX9F/iuD8RYw3mLgXH59yz4N+blKUyCOCXv7Gnv7Aa4/A+zta2SptZbv7hicPZPi8t2JnWPRv28aLFDFdajcY/XH55/EunPh03TcTYjwEoQGDJTXmnVPxybDzZc+DZNOsHvhUYTRmdp40cjgrnutBYyhkSaEdBrizrMhgsBg5zxjvJPVpj2JKGWtXUoDO2erDXDe+E/2gWe+aMPOXgTO32XjC6uBqOwztlPcxq5hYcZ04lyaNwhf+gJw9hxw+R7G7tmjqrFwUgjcoJPt7RSXUBU905hwZ0/h1k2ND//ZDra3De6/J8Hdd6XNGW4QIrwEYRHuq8ekGTL/y8h4X76B51Jy4Vu7r0AS38b+7Wexd/ML2D7zILZ2720sxg7/BqJRhu2zQDxRuPHlbVx+MJmzlJNZ/EWlWsze3LCfKwV5X3a59atRA3ruB57Po2JJ8vZWs/PT5VaHMkRrwngHGO8AFy4zkhh48i+B8Xbp5siHcCrv/GQz7rVZqsPrvXSm3gJTl87/BvazyyrWtDwvz/JTsY7VX1Pj6t/k+qqU7Zupaus2f44BwOSDGSpWGc8q2uCWU2RdweMtxvmL1j305WeAL31B4Su+iisuyNq8G25Tw9UyZqpbd6vM55F3/K+YQfxN3zpUE6fhmH1LUeXc1tWj4fgKq5ofoUN5s+mb9s/HcXel7yb0y6D6epSRfbelb0mi2jhlhPppOrgmv2peNXUA4D9do8hgFGW460KGhx+K8dINjU99egvf/I23G8uw4c4SyjXnBzOu28p5yd9J9fNxNJ6XBkR4CUIrzhzu9y2quMnmw0fbFzHavmj3k4IxbV9ihDRRSPcDxBONNFE4ezFuEAuLH2yqS9RhP7Xk2wVVk3dTfduKm33HJTGwfxs42AMme9bitbXTvc59Dq/Jfbgs9Z35210Sm0DTygQEO2/anTvArRuEWzete+jVr+1/XJ1mR+9Rz6NiE+owFMtck04TjPbKr7kOd/YUrt8IcONljf19hdc9etAYdxUc5lhFeAlCAwS2LSUBOgihQ7/P1Xy/Lj98vsN96GZz13YOnlSB2boXs1SBoBFEBuNdxs5ZgyDKnECy+bV1uq/rcA+gtiN9XYf7prh+eF2H+y7h1T5X1X5ds+myDHZkVGz7e8VTIJnaBj0IrAvy4mXCeBtuKSEvD5d3tZ9VuV3X6b5pGaimTvf183/Vb9fFqetwP5+O58Kb+3XNx+07N1n9cVT7USUxMJkA0wPGdEKYHADx1M4Xd+Ys49x5gyv3AeNRfXmtIw4bj2m+j1e1zn6fq+7lDTH7f109+vQpW75fV5cyeoyMbMp7idGAfWfEr58WogxLEuBgonBwoHCwD+wf2O0kIezsZLh4PsOjD0+ws2NsGTXFr2r2/7bjWIQIL0FoQBGDlF2jMdrZQeTGXLPJAJXCZDGIAoTjnWL9OEJglyVJtF1PLiOwsWIr72AeBIwgYkQju2SNDhk6sA+2FWlObLUIKBt/vsN83XQTAPrNFeaPilLz5dZNN2HTzQsrpamcET4tRzKaFMV2GtvO9VoBoy1CNAbGW7bPUDQGwpFfhld2jVjqNkVENc1cXi3Cqm26iaZ0feYKA/xGuqluNcKrRow11TNz84XFMZDG1oWbTz8xndhwRfZeHY2BrS3GubMGV67Y65OvcThb31n6rKl52Okm/Dh9O7AvtdB60/6WPHrPFVaE9ZwrrOhPvlhUNZbXMrN/U37Nca1behoTkikjjpUd4RiT2wYmE4UsI4QhY3vLYGtssD1Ocfd5g+2trJhyojjOmeL7CKtB5gprKWMWEV6C0ACBvXUUz9sFeTPCzZc+gzTeA1MAgsLO2XMYbZ2HChhBQFZQRXayVR0wopGdYJSoi1WpYR6vGgFlw3OLV4Prs84C1cXiVSOg8nR2GSVv7i5PSBk3+WeWlgsZK3sy7eSeEZWTfG6XE3uOx2Un+TYB1WaZ6iOg2mbPt+eiLt3qBRTQzzJVzq3GxTXI/1sxxcXUEXm2OrAjxOzcXYxRBOzu2Hm9ohEwGrVbpvoIIXtM82GVuC0WryNZlLytnktYppZflNzb37Agcx/RsLyVqwxPUzszfpYw4oTsQKHUCqkkoUJYJSmBXC+oKDQYjRhRZDAKM+yOGNEZO7fX1tg0L0QOuEVg+x9fW9xl12qUmesFYSAIxoolYoSRgdYENTK498wjCEZ2Mezb169CqWs4e9cWiKiY6qHq+hugk9CA5GtFGmPnui9mqWcUy9qA3YzpmZ34MMvKBp/gZqjPlx/ytqMI2HYzpEdjtwRRxTrmbTcIqNNKYRU05Qz1ZkZApYW4tbOI++2AzlcP8GapD91s9uMtRjSyAisIyzm4AO+6nqD+SUI/jLHCySRuFnv3P0nsfZYmhMTNcp+kdn/13nMz1GuDMLCz10chY3s7QxTaCVMjNzlqr6V/TigivAShAQUDpRVIMe55aKs6Ig0p0mQfaRxgvH0Bu+d3ATRNaNqhHxXNh+XlsbER8jmVgHJpHyayawXGuYCyL8R8m1Au2l2618gtsu0W33bb45Cgx3Z+p8AttG3XC8y3661OTQKq6H/WpT9UjSBr7gPVlB93L69mRvi+/ahm123MF+MuZvfPygW684W4831Zhhn3iF1SJV9IO19s267ZyNjZYrsMUwhE3lqOgfcGr7MONQ0oWNaqVOfy620dWnKNx9q82qxKfdd4bLFcVcO796PqZYHy0y2wQNm1Qa3lOc0IJmGkRVh1ncYsI2SJQppvZ1QpgxTceo3KLbgNhIFd+mc7ZIRbdq3GSGcIZpYAmq1z3fkpMNjsNR4r+dWl67BkkMzjJQjLo5FCa4IOCOcv7lSEx8Gt5/DSjc9ie2sL5y+dwe45OwulP8t7MrX9ZBhWHFkBRIXFKUVufSI3Wavdn+NbmPIFq5UCgtAKpyBvpBWKBbCVWwaoiBvY/0T+EjDwymgXU6UoROe4fpy2fkZNeRzWnccMwLPumYyLdSgTFwYvLI+XLzCeW5/y62WzL8sgys8xl9Y/xaVgCgE95kIgabf4sM63Gyav7SMgmjqX90m3rGCp6w+1tLhZdhHtxjg1jWaH/lBLu+jqXH7sXL7GLbVlyLng2YofYy3KaSHYbViWUrGdptrdlzRXD6WBUBu7qLq27wO7bRAog3HACEbswhiBKhe69p/lpfpDMSrzwRzWndfbhTfkItjLrtvYMw8fEV6C0ECAFEFgZ5W/dHmras25/DBe+cjD2L9zAzdffBJnz9yDMBqXS9Fowv5tYA+lu80XT4VActYmXQgl8lw/ZXlt1qEuQqhctsZv8LuIm8NbhwAnYpgLIZNb8IwBYLgQObklCeCKIDKmXOS7cJdmXCz6XQrVsr5aWzHkn2O7bRsrrQEVuXOvjd2nSqGkdCmmcrfz7HH6DD3Krm1/n75MjWUP2KG8Od1iIdRllF0Zd7nO3mBngczvJeNEUWpsf0R3P2bGLmeVZfn+8p60IooKsZ6LJ+b8anvXRuX3FUMrY/+c6NGaERBDa8ZIM/QIUMr+DrUptgMXVykM2zHcn0RvSEtRo4BagxBasuP7EB3m+04tIcJLEBoIMbXWJQCX79a1YiPZ3YFKFM7vxtje3a6uyXch3+5j5TEL98/l0aHTdiFogIroYWPdYbnYKQQNW/dZLmiQ78u8tFwKIjAX21wzyao/glBrBuXCU7ETQmytdroM16NSOBHZL/lcQCll4ytPVCm1vMWnbX9d49DmDpvLr20k28AWnzKs5wi4uvIGGgFXWBNNeb9kTgCxKe+9zIkgNmTdtS5OLpg44zKeqQqp/I9q7gYFdh9AXNx7VgyZ8r5zIkeTQeTuTRWV+wKyoii/lxXZ/00T4C48h10FT2b/lhUbfTrMt1uSlku37DQNy6db8jh8GgYulGV0yKMBEV6C0ECECQLFIALu2s0QhvZBS+IpsiwBANzafwm7oynuuWsLSqcg16gQlW4qZgZyqwzKcDC7BsYTPvlvoLDuGGNfFL7osY0UFRakOkuT/5uobCiUa1yIPPGT/xFAyk5xUVjmXLgOuHCvaW1sXgogF4dyYTVjearWZfWWmz55bIwLy9u9/CgzUxHEhm1HtNydbbgUKSjEj+s7yKUIN0xOHJVp2FjXFwxbK08umNgJIRcXvqu85jxZ66+7D1V5HwbKrU9KpbhW/j0bmKpYL/LKKvGWsg4dxorDgLfMYKf+PfV9h4YVNNW8u4u+1nSVPJawiAHDCJrDCqtOVq7uViwZ1SgIAxFRAjhx8ZmPoRiRt7+3h+ef+RS0DhCEES5eehWe+EtthQdRIXLs9BG2k3nupsqtOlb0wOZPzu3oRFEubor0nkAqrEBFI+XCe3SoHmL4f0MRc6LvOFOxDDrBCy4tKzbMiV/POmhcnMJ96gRQIXRQWhuNZz3kXLwwF8IGbMoBE+70N55itqNwlbvXcqFCMyJHKYam/Lcnpsk4QeOEN5lCWCsXP1BZIc5zoa5dvNmRqUPMpVTmtaTlQxA2EBFegtCARopQ287Q3/LN+97Lfwyiryni2fZmr5K2r7jp08/msNahId1dhWjIhUnGVlgwFeFwlhhmAoMraXKhAjMTDipcUlyIES9NIWDYiZ/yQ5rzfl+FqPEHL8ywwDWm8g70VIqXQtggFxtlmN2uWnOCXATl8QOUcfJ8iYu8bJmlO4uQh/OcsAH6W8QW0tOtQ86Sa82zeR4Du76Kug1rrVq6z84QfX0Oa61pshgNYOXpZbk5pLuvU3lt1rFKeYe3lLXlV3om3Psnf7+495d9JAjbo8VLxInwEoQGAiQIdQYwcJZeRqC9h4tLEQCUjX/+rLIxlec2b/yLPld52rn8uPJgl/2rbGamrvzigS87qrMXZi0uKF4OZRmeKAEWNLx1YfYFllvliOykiIpKywpygVHMh2ZFBMgKCj0raOAse7mlBWUaUgAFeTllGaXQARSywoJYWHmIPeFUWuSGdL+sbORVvns22qaIkJb0h+2HY/M4ZMO8DrdVhzwGLa+PGAEGEWRteRXvm+LDK+8KQd52+V4r3jvOuluXhplgWJciJ0OZFlS+v5DH9cpy9Sjfb9RYThfvsH+ucitx8c5T7N5VXGx/1UMvLszm0MKLiB4E8IsArsAewmPM/NNEdBHArwF4CMAXAXw/M98gO379pwG8DcA+gB9k5j89bD0EYWgiTBEiASng8x/eh0L5wIHKRjx37dht9h5Mu59QhhXL6DgrCFAKAuU9zL6lpcgvD1dZkX/+wPvChtj1s8rjuDw1mUrc4qWRp126w233ztdd8j10/4xChTZHWWe/l2r6Dm/5ITv1rmOofE9339qtHEXcLtao9vzqREZpASk/wHJxYMNMRYTk+eTbvoBgw15a/yMsFxGqFB+ZmS8bztqMqtjJXebGi1dnvSmc2X2uK7n3HHwx4r1b8vciPPc2MfJJqsv9DKVM+XHlvXOVJ3rscm5cdM2YLTPPT9F8WF396i/0IdzYiw1eg1i8UgD/OTP/KRGdAfBRIno/gB8E8HvM/BNE9G4A7wbwowC+C8Cj7u8tAH7W/ReEjSLCFBoJFAPf9rrPD9Qwd28olnZbeC8Sqllao5E1WA98BnVrrLLsNQuhpfP2rKyVBrvutyktqwDmBIRNU1pDS+sA1zT0s/GpYqWtWF39vODFNX4ddJlmpl7zIqcUNH54kc6vl+uD15/5ROXHUNX6UflIQlZ8LM3v9wSFcy8X+1EVBYT8Q4+hMCMadPmhlpdXFRU8V4e5/cYTKYuEyOxZWVaY9HknNRbe9zlC5TJyYuqCe+a5/HEcWngx87MAnnXbt4no0wDuB/B2AN/ior0HwAdghdfbAfwiMzOADxLReSK61+UjCBvDGPtQbsRWcP3L/TqOL/tS6vswt4gCvyEuwgxXGks/7mx4mZ5sozuXLzWnycNcHfNGuUv62XrPioSyTjNlueMrw5rKoYb6ODGQlfkCukakUCV+sV1zbuficM2N1Nd9VEdesNe4A9VG1/72LahcdIL3BUERr4jPlX6IfoMOM2/NmC07T6e8cv0ygRkXDqGmvvVip4jDdYJjNk3bOTzcdeBBruMAwsTHmKq6qJnypSgaNUJk4PoMco5yhhBxHkuLyZ4M2seLiB4C8DUAPgTgiiemnoN1RQJWlD3lJbvmwirCi4jeBeBdAHBJuqIJR0CEKYwZIdAGf/wXV2z/JMyImLpGdDZSH/qm6/iiaOrIT3X7Zxo9P52fpohbN8Gq39AZU3G7zqXzyiobfQBeQ+ofR/GTAHLXRMFaDWxwVUjUleeLizLMOw4zIy4WxK2UkZfdIGDKuqDKUTbYh21sBmj8BmnwBm6EBWFVDKZoiGgXwL8G8A+Z+Za/FAkzM/VcgZWZHwPwGAA8SmN5ooS1QwSQSbAVxfiG+z5ZhqMqUuq2G1lR47DSL7VVNWgrqnOvL2pu2K77DQzy9V9rVRjSClApbHWvzkEtFz7H8RnJWYf4W+Fx8Drqv6r7xoNXcN/fnsT42LXn7TqtAPbjBK+75y48eOFs72MaRHgRUQgrun6Zmf+NC/5y7kIkonsBPO/CnwbwoJf8ARcmCBtHwDGSKYNvvFSEHauvgGM4z9FaXv7LsoZGY1lW0dgcig07Vxt3X23Is7lp52Vlgv4wGMY2gG+49y770zD+8IlruFspZHsHvbMbYlQjAfh5AJ9m5n/q7XofgHcC+An3/71e+I8Q0eOwnepvSv8uYVP5qitncfNgG8mNm0ddFaEj6+qncdrZtAb7SNlEsbACTuI1X0boPX/nACNmqCRBmiS90w9h8fomAH8PwCeI6M9d2D+BFVy/TkQ/BOBJAN/v9v027FQSV2Gnk/j7A9RBEFbCf/3XvgIfuvZaPPHkCwiDvI+P3+9phhmP+uyUCrP9oOqY9crPltG2vzleQ3m1gU1xa0Z4KWp0s3Y9xoV16ZBuUVk2XUu+HeyYJ2lWfmH1nESRctzpahSefdZnxdkzL93E5XGE9GBaW0bbu2KIUY3/M5rfl99eE58B/PBhyxWEdRDf3serxp/FSy+fAzDbJajmtmfl7a/ZPdMZfzaPud8zmczuJzcxWFu8pvIXMV+X5rRdjnVR3fwXVWPdW2RZp9kuWvNolLHtmR81TWtFCYJQ0PaR9cCZF3H/meYJUDPDeP7mHTyyexnZdN7aNUlDhGrB0FHIzPWCsJDJzQOMcID7aPFMxAVLtn20AY0m1a1Js4EoffTnamg24fpvIsflnhSOniGfoXTSvO+F/Qm2QaAkRVrjZQwQt9rP5a4WBEEQBEHowHP7E9y7Mz5UHmLxEoQFTG/P+/C7cJQWjE2xCG2aFec4Wk827Rwuy0k5jiGQc7FZ9HkvZIbx4q19PLq1jeSgf6f6HBFegrCAeK9eeK27ERchV7JpDddxEXSbdt76sGn34NAc52uzStbzbC3ujzXL1184D47TtuUYFyLCSxAWkE6aHsp+D+sybIrYWv2R1kMb2NjWNwRHdYaqHLfGu4+Y2owzXOW4ne++bMYHxWZc+aGvtQgvQVhAvFeakzflq3sTXvikN+GlXGU916d7Q7AJ16kLR3Vf92lSN1GE92EzRExfFl+h43J/D8lQz4oIL0FYQDYt528Z4ttLBZv1slq6QUtWP2Fk35ecWb7LRW+OS6PTRSBnazxvTbRe6w2o4yLa74fjMcHqpnxcDsmQot0cxr/ocRxluCAIgiAIwrFELF6CsIDs4PBfqr6VK0s2dzZrCjfra7eLhXHTLIhNHJmrbEnL5LotH0NbK4+LRbKOo3Tjr8r6eaSWtA20lorwEoQF8ABCad1ia2kBlW6GKOwjpo6NkN2Qc9sVPiaCto1j2TesQSwfZzdgk7A+zgL5MIjwEoQFmGPWYAJYupHfFOvROsTUWqx7a753hrx+myZoj/vHRB19r1eWbe6x1NFJ9B6zYxoKEV6CsABeQyfyTcF3M1B4wrt/9miQN0WQtjGkWNo0t/O6BNQ6r/VRituT+OHRhU15lkV4CcICjovFa+gXymkSnDlNYvO43AOD0nDMm9JwrYplxdDGCdU2Br6nj8t9sSmW3BP+WSsIgiAIgrA5iMVLEE4Ap8kqs6qv69No5fPp4l4+TfdZH067BaOPJenYWQdXgAgvQVjAEKMah+a0v7hOeuN/VG6b0y48geX7Np70e3IZmu7jTXynrhsRXoJwzDiJL67TLiZ9Tksjvon9gk67+BxyUM1puY+XQYSXIAhHzkkRkyIgu3OaGuZNFJl1nHbh6bPKkd0ivARBEAZCBKRQx2kRmcdFYHZhlSL0tPcJFARBEARBWBti8RIEQRAqiOVOWIbTYtlbRBernwgvQRAE4URyUgQkICLyuNBFfA4ivIjoFwB8N4DnmfkNLuwigF8D8BCALwL4fma+QUQE4KcBvA3APoAfZOY/HaIegiAIgnASOSkiUgTkcBav/wHAPwfwi17YuwH8HjP/BBG92/3+UQDfBeBR9/cWAD/r/gsrZIib/aQ8+IIgCMLRcBLbkb7t6yDCi5n/iIgemgl+O4BvcdvvAfABWOH1dgC/yMwM4INEdJ6I7mXmZ4eoi7A6hv5SOYkPoCAIgnC66NuWrXJU4xVPTD0H4Irbvh/AU168ay6sAhG9i4g+QkQfuYlshdUUBEEQBEFYD2vpXM/MTES9JCEzPwbgMQB4lMZiGjkkQ8yvMvSIlVX5+sWSJgiCIGwqqxReX85diER0L4DnXfjTAB704j3gwoQVsuwsvP4kckNPjreqocfr7rwpQk8QBEHoyiqF1/sAvBPAT7j/7/XCf4SIHoftVH9T+netHr1VCq8+QsEM4I1umgF4VbMcr3sumU0epSOiUBAEYbMYajqJX4XtSH83EV0D8F/ACq5fJ6IfAvAkgO930X8bdiqJq7DTSfz9IeogLKYivIL2xjgXL7pBVPRq0AM9l+9haFvKYR3LVhyXiQI3WRQOgQhLQRCOG0ONavyPGnZ9e01cBvDDQ5QrdEeP+gkvqhEWlUauRtx0ESO+kFu60XRCbpXiZxPEXReOiwBcFSddWArCpiIfPcsjazUKgiAIgiCsCVky6JQQjMtLzVm9NYdN+QWjI/vfZN5XzciLm81/7dRZyebKaLGa+bRZcwZxgzaVfUTfJG2Wtlk2xfLWldNuoROEk4JYm1tIm3eJ8DolRDu+8CobP1MjoIBShDXurxFvvnDz6SPefNqEXKPAOqSgA5pFXWvZh+SoBN8i+orBRRw3obhKRIQKwulEhNcpIdopFQ8b423Xi7A8vBK3IpS8DvMZV9LMsqx4y61ujXn0EHFA+4CB2jquUNzVsUorXh/8+i87FcmmMaSAHAIRocJpRD44RHidGqKdUsX44qZNhA0R16dqbZtv0PuIt4pwC2uTNQq5RflW0ncYiFDJbwlxB3QQVj0a6SFebEdl8RuCpuM/KQLyKNk08SocP+SDQ4TXqWF8bqvYroimtFyOyRcheXhVTC0WYXUWs6a4Pk3pfOotb/NWt/l0i8tTTYItF3UdBJ1Pbd+4DvQVeDl1IqOv6Cvq0GuKkPUKwT5sitVwExh+tQkRr8Jmcpw+CkR4nRC+yFP8nrmFH1R3Q1N9w/PlvYu4k2whpAQjHSPSCQIzsf/V8blpBUEQBOG4IsLrhHCNY/wm38DX8TbeSDtz+4Mzu/jSzVfjtXdfwyQOMc22cTsNERuNOAmRGg0YA4Ax0gkCTBHpBJGKEanUijO2Ii1UWYOrsd6y1WY1a+tnNpt33f4+Fq/mfms+une+Pl0sXm2u0rYygOUtbGUduo8y7cKQFjifQaxVSx7fce6TItY/YVmO231/nKyxIrxOCG+mHexA4ff4Ft6IeeH1cvgAXnFfjAcuMTiNAcQAqq5GzjIYJsRZgMlUIU5DTNIR4nQXN7MAk1gjTgIkJijES6gyBGTFmeYpIp0iUgkCnSBSKUKdIEKC3AhXJ86yJJsLm932qe3430OENfY/q8lDN+yvpltsLWwSd3V93Jrq00RezyaXabUeNfXs6Uptg/RwL+uhRaFPn0ZlCOGYszGCZ0UiW9g8lr3npC/W6hDhdUKISOGbaBd/xLcxYYMxVRv1l9X9ePgVLyHaugBOkiKcs2xuewvAmbyPV5YAsPHZ7w/mtpNMYxoDcRZiGivE2RaS7Az2E4XYBIgnIeKEwCAwA5oyBCpFpFIEiBHpFIFKEKjMWtUQI9QpQpWBuMmC1mYpW2x569SPrG06jR4irNeAgYHFXbW8wwu9Mq/6uG0CsGkOuVq8vJYVgk0MKRCbqL0mJ2g5qyEFaRMbI1SPM6fQ0rvpiPA6QXybOot/l93Cf+A7+FY6W9l3MLqEc/dOwXwGAcdFOKeeCKsTZJ4wM0nqpbPhEYBtF8eGWWua8dLBEw1JbBBnAZIswDQhpJnGNI2QZAH2jUacaCRpgDgLYFIDBkGRQUDWxRnqFAGsUAsQW8GmUuggF28piBdb0PpYyrq4T6vxu1vVfNqm5GgVXh3Ena7Z30XQDCH6yvp0dwcsK7a6uF0HFYhNrFA41lFYafVmWCr63BeNbIDV5bQKkBNp6d0QRHidIF6PLVxBgN/nW/hWlMIr4RA753fx0edfC8OELDZgBoLAYKxijKMU4zDDSE0wCjOMwxQjmiDQXLGIKU+YocZSxr4wq9kPAEGaoRhfybZPmUmnAKbz6XKrkyHEMZBkARKjESeE1ESYJiNMM407RiNJNZLE7vc1n2Ir2AKVIaQYgc4QIEWgUgTKIAhShCp1Qq4cZNAm0pbtf9YmyNoE3Xz4Oixs85KtjxvUp4vrtr0+LXF7CcGGuD36iwwhqpbto+dTJyYHEZA9qJyLDRGAOcue400Rsn0YRPQOyZoF9KaLZRFeJwhFhG+hs/hXfB3XOcVFspf3ADu4J0qxPw3wjV/5POCsXEmqMDlgTGKNSRzgYBLg5b2x/T2xgoczA60MRlGGCBMryoIMIz21/4MUIWVoGEg5zHEpLsoCAB45cVQj0ma345iRGI00CxCnConRSFKFaRZhL9FIM4XEBEiNRpISDOsiDyKGgi/McsFmRZpWBqFKC3GnVYZgxefiKLmdpLh6Zw9jrREA2NIaF6MQW7rOliYIgiDUIcLrhPFt6ix+LbuOD/At/G26CACYYoyD8d04fylBev4yKLPCSwHYSeKiK34eDhhQ6qxXaYI0I0wTjelBiEk8xjQJcGPCmE40polGHANgAFmGMDCIggyRijEKnTDzRFpECZRy1p3cUuabqHwxldZbzYp0vtjy43p9w8J0VpylVSsWN+RhGMxAkpITZspa1YxGmo0Qp1uIjcZt1kgzQpIGyIxCahQYBBR1YwRkxZqmXLBlFaEWqAwaKTSZYr8m4yyC8/Rxjzalqwtrs9yczwJ8xVaIjBnXpzG+tHeAu85uIQzqXyOtk9O2lNdmdeuSR1t9miTjqqxxlXS+G7jD4Ig6Wq04S470WqVrdAjr3jL4FsF1WwKHoNc12WAr3Tqu/6ZbKUV4nTDupwivwRh/YG7jbysrvGKMcVPfhdhkuP7kJWxHMbZGBqORwU4wxSgyGEUGmktXokptPzDKEhCAMYCttHQlliItA6V55/vUWpMSjekksqIsVdg7gBVpqUY8BZjtQ6GRYBRmiCi2wixMEVCCUZBZ8TaeINTGWpDqXJe+aGhwbXJNX7NmS5mZSxf5LztjABgAyYz4qSkjd5MyIUkJqdHIjEackhNoAZI0QmwCHLBCajTSzFrdMtZIja6UQTDQZK2P2rlENVnBlm8HKrP72Yq3QGVQ7P5TdzfpbJzyOLlYpYkPJphohbvO7y4t9LqEL1NPn7Y+bn3yaq7H4UWhT5+GaVnXbR3LCshKHh3qvqzIzBmk4V6zK3lIjkq49qVJ3Gq12aIoZ5XXXYTXCeRb1Rn8S/MCvsBTPEwjJIhwA+dxMwbe+MYpsoMMk5jw8oSQ3skwmRLimKBMBq2B0chgO4gxigy2wxhPPXsVZ3YCvO7BiwgC+8JSphRplFlBprIEGsA2gB2v0z5MLkwyT7AB2TRDnChMpwHidIRpojCZMm4mGtN9jXjKSFLXtGQZtObCmhYFxv4PrUgLdWL3BRkCru9rViu8KvtrhFyNGANmHsqa0Ze+9Ww0t98JuJr+Y43WuMxY8cYKqRNyqVFIM4XUhEjTEInROGBthV2mkSUKSaaQGQ3DVOTHhqHICTlyYs1tnx3t497d64192wDg1jTBrQnjvrt2K0tRzcZtm0OtKV1Op7nQevRxa4sztJVr2bnelh0EUV+HPmKqLHlT+q3V1aPL1Cnt+a6579uAYmll1tGhaRC3myZkffxzRCvsQSHC6wTyzXQWP4cX8AfmFh7Wl5AixI3JLi5eZKTjMcKtFAGAHQABlSIloBRZBkynhHQywt5ehs8++SReeCFEmmq8MHm40CZbQYrRiK1IC2NEIWM7jDEaGYwihvaEmfLEljJVq1kEYJT5Ii4XLOwEnYtvUqQZIU4U4kmIJFWIpyNME43bqUY8YcSpQpxqOxqSCUSMUKWFIAvJbocqcWLNIBrZ7dmBBKhzgzaIsIpgy0VWk0hrE3ILptAoJE6lPHuOGsuom4aD2Q6yMApZBmeBsy7TQDHC0Rg+5dQaGYgIN6Yxwp0xHrzrHAKlKmVkGePPnnvEWeas+1TlljrKnMAzpfBz4cqLGxSu1uUsc8tarpYdMDCECOsn+g7voj1sHYD2hnwIN259+iFE07AiM6fxnAzY0i5b39MuWLvQJmqHEq8ivE4g50jjTbSDD/AtvJPvRsIBbu2NQWPgU1cZuzsZxlvA1jYQ6bLxD5XbjoBpehM34hewdbfG617xSiRxjEcfsQ0yM2DiDNOYMJ0S9qYZrk8JyS2D6ZSQJAQyKYiAKGJsBYkVaRFbS9qIEUUGW1EMpapirCLSvGkhcktZBGDkLGg0J9hyS1JW1DOdZlaQJSGSaYg4VZjGjNupQjzRSGJGnGhkhgrBohTbiWCDrBBuoRNuoc4QBQZhlCDUVrBVxFKtG7Q8Pl9MVMWZqUnnibsGQQZPTM2GzcXl+fnPKi9Sw7AN0m6ln1wR3xgkmcHk1h6unNvF1pn5iXrZGHzdznPO6qaQcS7uCJnRyDhEZhQMKxykhIwVjFFIMycEncUuY4U665lWVdGmOCv6xClnubNhZTxFuYUvmxN9/tQj1eM4/CjStjirtJrV57XclCRDxB/WYtcuJg8rppYeATlgHZpYl/ipr/+ws8O3nueBFcphr8kQ4hUQ4XVi+VY6iw/xHj7O+1AYgQBcfwm4+zJw+xbhxeeBVz3Kte+wJI7xzNNP4a67L+HMziU89aUnce7c+WI/ERCNgGjEOHOGETirlPZcfNokYAamMSE9MIidSLu9p/HCdYU4JsSTEZitwApDxig0GAcxRiFjNMqwFaSIXP+z0RLPOxEQhQZRaIAtz5pm5i1bfniW2ekr4lS7aSwUklRhbxoiTsdIUoUkBuLUiobbB7dxc/8Wzmxt4+w4wO5Yu1n7jRVnFFvhpu0oyDz8+CxwUfLs7T2MA40LW6PGOJHOAJ2VC393sFa1CZN8f2asWMsFW5IRjBNqGStnxbOrLxgvzLCC8dPm4Q1tGKFqnStEHNKKoNNuot+5ePl+t01s8zupI14FQeiOCK8TSr6E0O/zLfwvaITb0wBBAIwuAKFmnAFwKwYOvAYv0rYV+tITT2L/1hTbd51HMgFeuqPx0p3buHGHceXeBxFGERRnSBJgNAICZzULyJuvSzsRFgB6O8MYtoO+Jl+cub5hJkWSAHGskE1HmEwVXo4JL+5nmL5MSBKFNLb1JGKMdIrRyGCsrYszCg3GvkjTadHAVaxiuaXME15UI8IIwNjYOqPiGp23qgHAJ64+hd07+9gZbeHFm3u4dP4eXD53EXFqXaJpwthPNZJEIUnICrdMV/qBKTIIA4OQEifMDAKdOquaC3fiTSNFkA864Hlx0+oGbemfNpefV8YXn30Jf+W+u3F2Z7s1j9ov87r6LCi7W772mnDNuWjKY1EYAKQplwKtsMaVgi3NAMPWgmeYMHVCMHMCr0jn0hi229zwwZ0Ls9w6lws4YmvJU+CiLx55wo8orU2X/ybO3Hbzl/6yAxu6pp9lSCvdYeqxKF3f7j3LlL285WrYwRxNrKpPmF9PtSIFsg6r4GHOtwivE0pECn+NzuAP+Rb+Khg3bymcvQDcuA1Enrk08J7h0Fko1M4rYSaEP/vYp8DZBEppXLn/Ybxw6za+cO1juP+Vr8HZM5fxpSesZUiBoQNge8tYl+IY2N7K+4AB46h8CLTyxJkTalplwAjACAjPZsWE3xqeSIONawyQTa3FLJ2OEMcKd2JCtmcwvWHdnKmbJZkARDrFKDKIIsY4TKw1LUitJSyyE8gqZ3qquDbNvHWsKtjKut2mZ/HVb3wUu9tjwGRgZih/Kohi23h92Kp5Z6mzrE2Ns7AFSOIQaaYwSa3FLZkqtw/I8hng3QtGU1a4PkOVFFY1G24QFELOuHnJjD3uOjepl6/dUXb8f/PrX41zWyP47bgvoOpEXZuosnnUuE+7CEQ/jxp3bbWMljy8ugW1eTDY67tY5tvh+FpEX97nzjAhzQB2Qi0zCgaemGMNk9lBFokTdMaJuzQt0/kWPSv4mk1tCs5tCwMidtulkCNkhfCzc9uZIg7l1j1UxV+5XRWATQzttlx6io9DTk/SrYy8bv3k3eH7xvVLP8Qo4K4MLZTYrN6fcBhhKsLrBPOt6gx+J7uJz+CLiG4ZQANfuArsniGMtoAwAvwpmMJiduHzOHvlPM5eAZ578hNI0xgxn8PF+x9Bqp/Es8/fxujs/bjyahs7UIwsBbKUEU+BW1Pgxu3A9veaomiMwsiJs7F1VW6PM4xGwPZ2VoifgBaLNBCgxgY0BsbkrFIohRkAKCr7eGUTK9KSBEinjJsxITswiG+RdYNOGez6cYc6QxQxopAxDhKEoRVrUcg4dyYt+8ABUJ5ouskBnryT4FK0g/O7u1BKwTQKtvp+W5RliABEftxKg54CyIq4ZR42TpoYa13LFJJEI0lDO6IxBfZSJ9gmbPenhDRzjXFeBwJCSmzn+sDOL1YINpW5/ynCMwZTbez8Y9pAK24UXkXftiZh0mD+qe3v1iLu7OZiMdUmkPoIvcaGoqnOi+rYUJ+yHNM8uKDJhNaa77zoyzK40a+565YKax277TSzkwwbVki5tOwZpsKVy56FzwpDgjGA4QWNITuRhtySxxWXLXnCzlr9eC4+cVpY96xINMXvXFSWQtC0CMF+QuDo+rutrrycYUanttV99f32hs7rMINHRHidYOwSQiE+zp/DVx4YpAbYucDY2yNMJ3YC+0ATRmPg8gPA1lb5VRwEhHi6jxs3D3Dpvkdx7dqXcDAlvPDsc9g9ezdu7ZUv0dxqFmiGGgPjMRBof7+2Hd0TIEusONu7Dbx43SCeErKUYTLbJ2s8NohGcFYzg9HYWs22RqYQZ7kg096LU1ONSAOgRgY0sp3yt1y4gifu4E894fqexYQ0HmEaEw7iDNPbCq88H2N75A0CMLkFzuDB174Bk+kUn/7ybdyTBXjgvnsqAqvWkjazXcTxxVijYGMvPJ/KI8uNhjP783TG5Z1V83IvRGOANCUkmW1cUyfe7DZhmtn5yJKJQmrIxk2deDO+WE6deCvFWaCci1QbN5lsLu5yS5ypXL9cvHQTWzVCrkHc9XF9NlnNDmvFq2a1uIymOF1EX1mH7ha4ah3Z/Zl+Aw3ahOBcOS4o48J6l1XEXi7uSsudqVj6AisUQZU47Cx9vnDMDJVCsMEK6Ne/FH2+9c4JN2In3nLByFWhR6UFUXnpiRiknDAEV0Uj/PybT9+6hFsxoGWJNIdhkPnkNtztemTCi4jeCuCnYa/rzzHzTxxVXU4qigjfSmfwa3wND954Cmcv3o/RdoZwpHDGxdGKEE+BOAbY6+5tZ/4d49ylr0TKEVIzxuf/8hO4cPkhjM48gNt75Y0YOEtZ4M0WHHprc/nuTBUwggAIdkpxFui8oQU4VZhOgHgKXL/NiF+wdctiu18pYGtsEI5K12Y0Ara2GVFkxZtvNVPedr4Oox/mN/haGWAMBGMggsG2tz/DCHueYFPeaNCLD58DANy6dQtXP/sZ7N6/g5E3GkBxhs98doRbt7SdMNZZ1UZBijB02zpFFDFGQVJYIRsFW4048+M2ibdchDTlFZisfCFURjtmXlzTWAaztXpay5sVZ2kWFAIuyRQOUrtUVTpVhZUuM6oy3gFsoBTbtTSVFWahzopt7Qm2gFIEmsttNWPJaLLG1QmSZcWdT5PQaxNFfYRepc65cGZcfeEGkizDVhjggQtnEGrdy/WJPiIN7UK2ErfF+tfYuBv7sWCZX7GiiSFEYSnSPLGXofrbE3G+u5hn0zmLILOCgYvrXMqMatw8bNGx5tY7XxQSMhBQCEPfImgFXikkc4sfkSnS+PEIsH0Lc2sheKbMLgJxvRa6VQq2ocXnkQgvItIAfgbAdwC4BuDDRPQ+Zv7UUdTnJPOt6iwez67jmS88jp0L/xCpycCx98LTBCggToDMVMWUMRnCMEKWALsXXoV4Gtu+RqlG5t3kuchSFeFV1kEpX4TNx6nuZ9DIdtr3jGaFODMG4NSKxSTRuHMzF2aMxIkzHVgrWeTEWRg5C9rYbmvtHWeDSMutab67s7LfdeYmoiJ8n1NEZ+/BrXSMnagc9adg8IqvcP3TEmVHTMaELGHcSQjxPiGNje2fFnMx0JLYIAzYjvgMjBVpkcEoyJxgc8szhVxxg1aEFeatX3XCbS7cF32F2Fgs/vLwCNbCSHUixeQDFGZcqTN94rKMkKWwE8RmhCTRSDMr4LKEcWCsu9SKu3wbSDOq6gdmK+I892ig2bpPlbEz/BcizvZdChQjCEzhSvUtpMWxNNV9CHHn00HoxWmGzz9/HRiPsBtoxGkGMxpDj8L2+szWqbZu3d2jjeJmSYtfa9xKnMMJwdnyFje2XB0d7aVro3WwQgeByIwZIUiFm5iBiuDLMk8Iwok/tqN+Gai4lO27Z0YIgipishCKGQqBuAgCA1wVfqXI44qo8/eTWzYttxgSOVFZIwLz/8jD2VT2EXFhffTTzgnHLuK87dp0EIBHZfF6M4CrzPwEABDR4wDeDkCE18DcTxHuxRU89+Sv4jVf+w97pd2//SJGW9sYb50FACgd1N5Uz3wRtnP9LjDeBkZbA1S8AaWsRWo0nhFmym9grAibTmzXqMkB4fZNIJlYNyIR2xn6x4ztMVnX5si6SKMREEVAh/cJAOBzn/00wBkuXrwLL77wPMajCKNR/VQLSgGBG3Bg7Yue6ON5yxWZDGkKJ8js/zhx03LcUUiSEEnMSBIqJhq0k8Z6wiy04i0K3dxkoUEU2Gk2Nnlta60ZgWKM8nNUY4EDUN9/rCLiGFlG1j2alELOF2vTOMCesS7V1ChkuajLbP8loFqGrgg3tgunay6XbnKCTbtBDNbd6uKuYBH163sHuDOJ8aaH7vWqOaxrRNgsiOzHoUZ7I7+q/mddLUzMcH385gWgFZDzAq8Qd4ZrBSW7POCLTnj/nSj04xbloSy3pra1x5DbIAsBCGP7G3sWQwKc2zjDoxeuLTwnRyW87gfwlPf7GoC3+BGI6F0A3gUAl6Qr2qF4A70O77/5h7j10sfB/JWVL6qs8tHmP0gK08kELzzzGYTRDoJwDDYx7rrnNYhjU1mE9NwlYLIP3LnNePHL1k24s0vYOVuKsRzf7Zi4LlP+2l2B56L0hdWsVWx2fyUPDUAD4Q6giLFVxHGuTTcYII6BNGZMp8Dtm0D6QojpBEgSO1IzCIHxlsEo73M2sn3OogiI3EjNM3c/jP3bN3DtuZvY2b2ES/ffjwkHUN46ZVVLmheO+Th+XKUMEADkXJ8R7GoDiwQbs+uflVBhQUsSwn5CMBODOLECI07s120++tLOo5YhqIg0RhgaO2FsWHWDdrKaYd61OSuKFuZRscC1d9Av8pixnim4iXdrRZrtx7SobtUJaY0nzKgQZ2nmlnBKgGlm+xOlSSng0tTOQZam5L3b7YZyfX4CVbpMtdvWlPeNy3DP+TtFP8eybozp7QloPMYXbk+QZBkevHAOOzNLOc0eX22j2WF0Zp1FoM2lapN1t0b1snj1GXSw7IS1PV2w5f6W8g5hjWtlwGk4ek3p0ddiZLzuC215DzhdSLd03vPCaLT8YSbcGCAcLdYsG6tomPkxAI8BwKM0ls+3Q/A6vAa/q/49nnniV6H1fw3yPrlVw+e3MYwzFx7EubtegdsvPwOTJThz4R4E4RiZ4coDpjVhvANsn3X9EhhIJsDeLeD683YZmbuuAGcuAJkvrJx40561ypvaqiK2KtatgObCfOGlvPx0JY+8ocszsoIj3LGCpir02A4GiBWmU2B/Cty+bUVaPLXnhwBEoyvYGl/GaAswAeOlmwbRGNgalWZs8voc1bkz/fBZd2ZdOt99WCvYtIEe234J5OfhtitWNZC9XgnBJNYFmqR2cMHNhJDsleItTRhZSi6dddmFIdt1M51Is25QZ2XL3aCjsi9Is2tz3gXX2G+t0UW5uA9bbR5NoywXlKcBaDbFguFdRGGRX03DZN2qbIWc8URaFiJNAWNs3zgeA9Az6ZlxPXsJPBrj/N0X8dyNW3h2kuBV585Ba1U5jmeu72B/GlprnOsPZy12pZXOt+IVr4YWgUA9BJQNbj4XtrwWUViX11weLX3qWuL2FlvLuA8HFoKt6Sr7O4idPtavIcRiUe5worE5Xb/+YIsFJWPeUtY8wTRwdMLraQAPer8fcGHCCtimMS7d91Y884VfRxD8N9ANPqY6DUaKcO6u+wEA/qLyVBPZf/bG26WlK0uBF54BvnwNeNXr7ZxfM6UUW/5z5Asy9qqcmRrh5e2virD5cF8I1Qkzm86VMWJsjYAtzAszZiCJ7TQV0ylw8zbw4ktWmCVxaZUbbzPGY2C8xdh222HkOvPnZVPpKizKaBFpQCnCmqxqFZGWC6/Z/QRgZEeA5hPd1gm2Sl5OrCWJQppPDJsQ7sQGyZ6ztqVw+8vzFqis7LcW5tum7MMWMqIwRRhUXbGVvmqN1jYXpyKa6vPI4zSJuMZRpH2scT61dXPXDtbyWEyvNxfHuHy35+oDACYc4Z7LZ3H35YvYOncen33qWbzMhLu2dyr12T2vQRO7PFaWjXCQW+Zi52JN7XQjuUWvrHu5URFplPeDsyJc533mnHjT5A2IyC14iqvnq+aY+4imiuirtZT517+SYW1+hxZ9S1qx+lj/qrsHFIJ982gTPR0EYue85uIveT7b8l1hnX2OSnh9GMCjRPQwrOB6B4C/e0R1OfEoGDz4mv8Vnv/9/w+e/NQf4tGv/g6QskKLCPPuiw6QL0LIWk1M5nz5GRAbK7jSBEhj64q8/AAQRnWCjf3MynAvOKtYwvId9XFNgyDLn1XfkuY/v1lFpNn/KdULs0KwaSDcZoTb1XR5HbMUSCaMyQTYOwBevoli1Gbuzhy5UZnjbcb2FmNry/aZ8y13vmioE2EVMUn16WqtYzX7m9JVxA8xEAEqAsYwxXxqbYLNpECauglwY4UkJhwkhDtTILljXaBpzEhSKhpVpaxVrXCDhsa6QENGFGYYhVz0aSOaHRjQIt7qRBWaBVnttB8tFrjZvFv397TM0WiMaPcMeLRtZ88Px1Dbu+DxTiWvM2NTjGaurFHZJjZcHsbY59AXZ9almq+1SUgy4CBTyNLSHZvPEZZmdiLY2QZZKXYjVXOXa1ZY3wLtRrhSVog3u9/1mwvYxak/jlqRN3OOl7WOVYXcIUVfD9duUxnV/FrS9bH+VQts2b2Mq3FBfn1cl6u0lA0syI5EeDFzSkQ/AuB3YD0iv8DMnzyKupwGFAxe9brvwSf+/Xl87P/3K7jngbeCjX3GOGt41moCF916hFwsWLGjA/sXhcDODnDvg4DS1oI2l9YLqlrVvHBVH15Hk2Arhin5bVglr3kh5wsaf94frwtXxRKWT/eivf3BFmF3C9hFVbwR2Yld44m1mt25A7z4IjA5sIItChijLdu/zFrLgK0dIAq8FzrZg6qIqcr5nBceFWHWYknz4/iuz0q6JssU8fz+gEGBO6aKuPPFEmB7VNj9xgBpTIhjN3IxZsQxYT8Xa3G5YgEz3GgmIIxKN2gQcDkaNOJiialQey5h1Iub2n5rHQRWnSBrs8A1pVsk4l716CP43JNP49nbEyRphkuXLmHn/AUYrRvzbe3jVZOOAARs5hsNNsjdLTZuzcLjdcLRlZHllreiz1wu7jSyVCE1CtN8n7Ok5qIvF4B2MuBq/e0AB/bcqN7AB8qgPUtc3r9Ow1no3BQldlmuJpHSIqbnztFs+p7WsZr4tYIe7de38RXaw+JXV15zvsu5LYfIb1DRNNAM+0fWx4uZfxvAbx9V+acJgkE0GuGRN3wfrn7il3Hlgf8HRlu7AJqfqT59YXNqNJXQQhjaP33W/vYFDTJrKcstZF9+lnCwB4AVRmPG1jawvQNsbTF2dqurEJwklIJbfsoJuUoftXlBQmAYA2c9c6NBY9vZfW+fcONlhTTRVsj5blBt5gcURN6UHSFjHGVLWYhXydmdbTzyivuwv38AZuC+u8/XdgXYVLRmaM1uKbNsxnxdJwTarUOcmYowywc2lNY6wBjCJNYzo1irFj24j4Acu6RSLtKyihs1UOVgiKrgK0e75mHC6eaEvqoFH40U584RXv8178SnPvL/xOc/9j/iG7/j7wGoiqnqSjRlR/k6avt8DjAHSlODUSfqqIN1rA8Vj2dNvk2Hl/c5A1BO3un3M/Pi+h4e31KWG9NoxrU52gZG21VBRiDEU8LBPjA9YLz8ssK+W0lg9wxw9qzB7hlga7vqVs1FStZoESsrVOe6zGqsWX6+s/mp3FLSxTrmvYoKq1KTG7Sy7QsvL50GVAiMtspO8KVgy2cfMhWLQZZaS1qcKKSxRpwQ7iSE9IARuz5scWxHLRFsA5zPsRZFVrCNo6wQbKGztilVFYVlfXtYzVr6rZ25MMaZCzbMrNsN6ifrMFihtW7VDBvLAtA8whW2cQu8QRB2f/6Xk7WLOy9fY+AWSc/nmXMDIjKFzATIMrvm6qRwwZZCL982+fsif+EQKtOQ5HPNaWWci9UPdxMIK1/cub5z/vtwCAtbSzq0WKY6dWCvua69rHEtefWtU6XsAQcXzCLC6xQQIcbuKMPOq9+Cy/e+Cn/yu+/Bd/2tHwBR9d6q9Hcy88Kr0o/Vc7sV3VBqwmYZQJvV0uUDP4/TZJmrCjmei9vHiFA5b164P4rUeJFU8ciXYZn3GvA/komAIALORMDZC2W+WQrcuQ3s31F44XnC5AC46xLjyv12Coy8P5epHJMn9GpEjI0/L4Sa+pT5c+Pkcfy8KukaRVhNeU2ij+fjVMSdL9JUMJeukq+yE+yGs+Feg+27GrPMWtWS2A4iiOMAd2Ig3qfC2hYn+YSudsWGcWSn6RhFXKxiMIoYIxduFy6vt+LVUSfeuvRVq2uYe7k+fRpF2uI6c4uIA1C8lBo/6tryaBCN1fq0Wdj859T+hXP5zbuEm/ttVcOZ5/vO5X3j0kQhNQEyQ5jmfed8y50TgcaouXxV7mqdEXW521WpUsDVWfHqBF0fF8lKRcySfdGKt2xfl2FLw1U91va8RXidAkJMsTOKcf4i8OZv+jv4n/71T+CT/+GLOHf+fhi2DbkO7MzzWluXFWkgCAFShCBw/bZ0uU2Kigcy7+/kz2JcFWn122XcdsFWR5e4fcRSXdymhXSbrG1lOm9/Q6M5NDoAzl0Azl8A4NxtL70AfOJPFR54BePKfa5ulRPn9VurDS1FYZMQ4gZhlYvFJqFkvBEadZYw1UNs+dt+vvMCqhpeFXSLLWmVdGwAZd3E0fas8KjJmw3SFIin1mo2jRUmcYBbdxTiJF+2y84FRGw7jY8ixnhk7F+UYRQZjEYGW1G5bmldv7Smfj9t1rbGdC3irXIv+Amb+pf1EW9d98/kWyvCmtbwrKlzp075fdItEHSFda6SF6N0u870meso6IqJg9Oqy9VuB8gyhamxK0GU+7wBEQZuAmGaKyMXdXpOuJWiTSnrQvbjKHL967wwG7csgpa0lC06F7P0FYW9LFqb2rleWC8RJRht7ePuHeA//d9+N37rN/5b3Hj2Pfiev/kjbp0xO/pwmmj7NZUC08RaUOJEIZva0Upxoqx5PQWS1B8ZaAUb5Z3qtXVxKW37b+SCTtmJpYo4RC6dsu5BItjZiB1VwTavbrp8RB3Wwta3q0y9S7RdvBXpK0KgqU6euCk6htswZmA6tf3CJgfA3h3CeAxcuLtb/evIz3Nlzrd67VYJzy1liqk9LubFEjeIH9Vk/amzsLVYzar7vTo05uEaWFUfFw2Cm9gAEax1C8CZPMw1qrNxkwSI3Rxy06nGrWmA6S3CdKqQxLZBJAKiIHP93wy2xxnGY8b2KMXW2DgXZ8O5ahFsy1rYqnGXs7bVNXKtws2rT2OdOoi3RfOtAWgdfdg47UWbNa4hvFVA1tQhR4d2PNGoyC+33ALgtD6PVnee3Z8PiCj/csubNzDCEBJDmGQK2ZSdmLOu1tm0TaeCiAuRp8gTamTmhJ/yxRxMMTFxKfDyPEyl60IXWsVgz4ZGhNcpQCPF+egOcIfxV77qPL7mjW/Ev33v4/gH/5sfQJZPqhUCxpssK3NDAH3Xkd84pl5cw3mnVNfvISW7EHKKopNzlhFMbPelxoq3LFNIM/sQ1y6BB4JSVrApJ86UtmKDlLW6qVy4USngchGnFGCXdbD7QFTsozwPlNuM/kKrC10GHTC7YzdsR5saIDX2v13+opyuI8usUE4Scv2S7HxibGz9R25ZovEWcOmSwbkL5TEDC4RgpU/V4v1Nfbz6UFnnrU7INYi7pldgzSwjiwqfq0PTMVW3nfWvg6CZ7ZfXlNdcHsRQI2A8ArZ2javlvHBhtvfANLbLSE0OArzwssL0YIzJ1D5zWjmL2YgxHhtsjQ12dwy2t8qli6jGWkNNZ7lFvHTpw1a3v83C1MWK57fexa3QIP6qVq75Ojft9xdwbOr7Vu5vsKr1GFFaeQTyOP40jB3EW119Kvj1qZvisSadDu0kwl4kr7Yt4rWp7LrdmXGLjxOyTMEwCgGXGbs0UGrsNCXGBNaCl1pxl9YJvRRulvn68uxi4SgEm/JEm1YGKrfoaVMMtNA11r+dcVJfgEOE1ykgRGw7/wYGH/yTbXzNG78Xv/A//J/w3vd9Ho9+xRvcyDqGDpSdGyliqMi6UTo1YkBp0YoAgCv9l+wUC/kX4bw7sslFmS/aygz3MFnRkWVWhGRst9nks38DiQHYUCFeMidemN0Dl2+bUuywccLGHN5CVken0Z65QCRPPHpCMrcMamdF1IGdYiKMbP+tMCoHFTRZhISTBREQRfZ5PbNbipBKg58ZTCYKB1PCZKJw647Gs18OcXBgb8qtLYPdrRQ72wY74wxndrONXsNTOF0o5eY71AyELYK1Cy1CLxdmvkXOGPKsdeyFKyTprAXPxvuqh15cWI4Ir1NAhAnOm+u4uJ3i1a88wNe+8o34pf93gE999Jfwtq//R27ElsLkIMTUjeSaZKGdG8lZvIgAFWpEkZ0TKYgUAjcDuY6U/a8VwsBOCuoP2fMtZb4FrRhbVrGq0cK4QCne6sJsHqgNz+PXuS1n8yvrUBu1Nd3Q9LEqtQm9RjdSB0tYXdymQaR1+TVZzeriNO33WVZkco0Fqi1uN/yhqt6dSPN5UWW7weLh5mlrspTV9a+qWMcCwngXGO/CTZpa9hdiBg4OCPt7hP2DADeeD3Hr8xpaA+fPpbhwPsP5sylCb1K6SnlF3bz6cn09a12wlWfTo2KByp917YU1WJJq3JlcV+5M3AqtHfT9sv06zefXNCCA8hUr+rglgfa516qRu8dVTeeipZ9Um+jp0lerbWqNtr5VAwsvre2SYMUqEoUlr6/oO6ZrNQrDMcIEu9MXcfuaxuj8S7g3CPCd3/i1eO/v/Fv85H/2/QjGGhgDrMvbzbgRYJz/Z2DKYSHSpmmAJCUkE0KcBZikhKkTa0lKMN5LSQW2w34YMnRoO+gHAUOHCkHICEKC1owwtA1FEMCNuCzzqFjFXOPWJLwq4TXbVZHWELdG3Pn0EW9d0q2TLoKmEr9FnCwr2NritvXl6lReg8uwLq9GQdp2/ANbGNkfHFDXoFO9uCv7xi0Wf/7vrR1ge9vAn1ojjgkv39R48aUQn706xoP3T/Hg/YnL20te9IdSlTzLbd+VXCcQG4RnpR/g/PNSEXeV4/NMdTz/OVCdmLOpA2Wd8GpwCVf6ndXEaRRFeVy/vvVisnJ8ysXv4qL1885HhjbWza+HqQ+vKa9J9M7Vt2l/A9RUN58+oxL9/FRNfi3H3JhXEzKqUQCALewhefkWTKbw2U+kGG9leNsb34Lf+qM/wfvf/8f4rrd8pTXlej6GXISxt7BilO9XAI8DL24u0rz07iXIDKQcWpGWEmJjBVuaEuKp3Z6YwK3tR0gyjdRNNJWPTtMaUAEhDAAdWDdbEDBUYK1u+Uz5gXbbobIzTweoTOpVCC/VJNhq4raIuNk86vYfJnxRGZtCHyHXRaQsK3TaLGy98moJb+oD1SgKa+craoq7uJN7Y8fwQ5ILtnAEXL6U4u67Urz4UoBPfGoLW9uMuy5ktfVhT2BVG2Z/apF5q1GjQPSheQFVsbA12lvr+p95z3dD2WXfML+vXn0ZjHnR1zTQos6KiYa4VBfXj9/lvPnhuqZuTZjFArLxNdTyfqIaIdxEpxGEPTrjth93zbpyTXQ5h3XibgYRXqeAiGJMru/hza++hpsHIyS3R3jzvY/g7NY2fu69f4y71VcjMwr56tWjMEU0skusjLYyRKFxo6fscjVRkEGH3s0VOJHmCy9vO/LDw7Cw4+Zx/Lj+SyUPzzI4waaQZdbClhkgSTXSiV1qZMKBm9+mFG9ZRnNiSStrVbNrvNlnJNB2/iQdku0cGeQjMdlNp+FGxATKdaxEZekj/yVeCLaasFn8BqtevNVbElpF2gCuzyHyOKwlqG/6dpHV4jrpICBbBVRDFq3zZq0lboMLKzOYuD5g01jh4ICwt6dwZ0/j4vkUX/fVezh/zs4qV1tel5GTq6LJquaev6qIqReIdUKmiyisE2TcJMhrBWJ93CYxWXc+m+PW5dt+Paht9ukmYVInJv2yG0TowrywQDTVieGmaUZqT0ZDHRo6OHYSrTli8RJyxvFL2H/xDi6OXwJpjXt2gO/92kfx+Ic/gq/4e3+K3XEECgMYQ4gzjYQjTFONeG+MSRLgVqowNZFzMUaA0mAmKGUQRXZYezRmREGGMMgQRWTFWpghGlG57plnQSu+DHS9YMu3AwCjPJwARKoxLjDz0pyJY4ydWToXaakb9pxlhMRomISQ7tvtiQFMMa8NkJlc0FXnHsvdE0Qop9BQ5P77YeVcaURO3Ck3s7l2Iy617R6nXHix35s3zYdrX/5NQm/xS7WP2GrL6yhYxhLURTQtW0arEOwyUq82XfP+NLUz8JvMzZZeTLhJdsoYt+bldGoneQUATQajUTln2O4W48pdGc7seqMd864ulXou19n5sMKybWLW5nK794fqfW1WZIVspUV4At6xND2zXcRpTpMwy8VGkyWqSei20EUsFtk2Wj8PT/G673KdO4xOEeF1Sri0ewfP3z6DM+NpEfYf/dXX4xf++GN438c+i7/7ljcAsA3+WKXY0k5MhN6wWO+GIredGUJsIsSpQowx4tQuk3Frz4WlGrEJ7bpnAKA0lLIjLKMICLVBNALCwC6xEkRk9xXbw/afUQqIFCMKc3eH97KqE2+02LLlh+fLieQizbjRlinbkS8ms9NwZG6duCStDpE2hmBAxX7DgHFTbWRNQ6D9SUgLkWY72OfTaeSzT5OmcioOckLQjaQkxYW4s2FcnY7D/S6mpXBx6/4Abtx3jJYQ7EwxOpbL9scwFWKlHEHrrqkbecvGXltTjMLNR/GytdYauI8CmzbLp14pphWZP5la27UBrQveWnV1wAgDRhQa7OwYjKLEjoYM3XU6KtEgCKcUEV6nhAvpNXz42qtxD+4gcouXvfH8Dh6+eBa/8sd/ju97zYOgYF5YqdBbZsXb74uwSGtEeRqCM1H5eXl5aDexXqoQc4Q41UiSEMmBwkGqkHBowzKFxOiKYCOysyNHI0KoDcLQjrgKAoMwtFa1MOBCvAXaQHmjKwth5X9x+da2ynT0NVY1P11NXD8+E9muA3o2nd/PpF7U1ZXR5ro0UGUjjrJBt2LA/s+MgmFyDb/NJxd0JgNMSsX0GgYKqSFvmg0qpt3I8yrmHkMpOJjJEx95fZUnTlapvNY3D0K1DxCAQljaq1OK1KoIzecGUsQglYtfLkRzqNjOVRcytAK0yux/zXZ+Ief21nre+NDmDpmzUM1asZa0VlXLWM4a1bokS88RgGW+TemWO46lR/otefzLnrf2dGsW210Wva1N16E/W767zVrXlG8lkzY36JLpZhDhdUrIbr2MS/gSPvSXl2EoBIMQqBQ//Ka34/4zW/jsF8cYjwxGQYKRjjEe2S9n5YuxGmEGoIhDNRYxG0HNhQcAQq2xk+cbwv415aFzN6FG6vp7JRwhmSqkewp7CG1YZtc2SzIbx3c1krIWtjCCE2mm+K81u3B2Ys5uBxEV1a8TZrPbpbjz4qp6sVUVYYstbE1Cb2G+yok0PRu3vu6N+dWl82kxY3VxSy7bp2wTXZ6LGMy6xACydrfkIPVYUhQ1x19OLPUpr/W8HHaqhA55LH3ehjjfQxxfzrIjCPswwHPR65gGLrsvIrxOCdObe7iMPVze/mIhlBKj8cjWCNMMiPdS3LwzQpyFmGbbSDBCyhqkFBQZRDq168UFCUY6xTgyiILEhoepdWfViDFgRrD5fQ/qBFslLs2FBwACrTHO8yIAYbM1zhcFhqzLM2FddMBP0whpTEgyhX0TuAVqS2tbirB8Ll2Heq0NAtcpP9AGgbO2BdpAa7vIbCHcvG3bcd+7KGpenHYSd3VCp0mkNYm+2nwb8qjbX8mjaWh+i0BsYtP6om2auFtRQzGEKOwlBJeeYmDYvPuIhcNa7jrlUclvAAF1DITT0qKpiSGekRUKMhFep4Tp7Umx7Y9cCYJ9BIC1PKnSPZaPWiRFMEyIsxAJjxFPQkyzEHdojDjbRpyFiDkEswKcSAt1inGQIdKJ3Y4MoiDFSCcYjwxClbl+RbYBrQgvNS/MAEBVLGg2nS/uUCPogHnxFgAISGHLz8sdc209ZkScdbMRMg6QmlykhUgTQjZRyBBiP1PIoIr9qRNxmaHKpLC5KNLK2MXJtZ18tlhw1gk3pezUGGW4v+1GYmqeyzev89w5ahBmPrUCsId1rLE8n5YRVK35NqbrIJR6dDZbmVVtUzq8rWK5hgUcWuAtWd+ly12VQOwjiIB+x73ksR5aAK3SerSyD46B738Z1SjkxHtxse1PhVAROl64DlVlP2GCkbpTLPCrAuXMT2UcHdo+RIkJEPMIcRoinoa4tR9a4ZZtIaExUmNHREIRNGV2mSKdItKJHRWpUkQ6xSgyNkynCAKaq2eTwKoIsprjaxR6/nkp5izz9rsyCEAY6HJ2Y1J2wnKFQhRWhprX5evyzoVcajQyVsg4KBedTTWyqUJmFPZZu3gKhjXSTCMzATIo1zHfF4jl/1yk5f2CZtcU00G+mCzPxPXWKQuoXKssPyxf0DYJE9UivPpY0LoIxNZ8lxR6S+TVnG5gsdU2/H+T6Ss8lmEDLSlrd4ltmjWqjXXcFz7rPj6I8BIGRhFby5YqlybxBU3FBamskEgxsvN0ZQESDpGYAPvJGMl0hCQLEGdBZSb8UZghUJkdmaVTBCrDKLBhoc4wGtnwUGUDzEa1WoicpSuwy7mQd97QJN7qwmvchMx2sfNiUVm2ljfD5P4DGZeDHSaJLtcbY1VMs2GonHKj6BxfsYg5F2xlUVkD5abIKIQclfttZ3JyHc1RiDpFecfxPD68vHhjjESCIAjLIsLrlDC9XVq8lPYtMPXWr9Li1W4dy/NbJLDqt3NL2QG2AGzlYc56VJeOGcjUCKmxc40lcYDUaNwxVrAl2QhGRYgzG54LEiK2U1SorLCqhTpDGAGhyhDqFJHOEDjBllvY/Dr41oU616d/TJV0VH/e6gYdNKVrE17U4F5USkHBX3vM7S8GeDZ0tG8qr2Y/yI2oZIIpLHAoBF8u3OyUGhpZYrcTY93YZToqFqg1RsHASwf7f46K4EQh1krh5v6T7VKnijhuZKH3m7SXfnbfTN7570oc2GdhoThcVjkOYNnqZdE7pazFujOkRWeV9T0O04wcgbVqCER4nRLSSVpsk65/ifuCLM37UXUQaVQXt4dg6ybS/O0YCsCWpqKvFimygi2olqcCu22YkCJEagKkHCJOA6Sxxv6+DUvMCCkHtlO9KS1sRARFjECldqJYlSLQVrwFylnZAttvTasMYcgIVQbV4fhr3aBN4qcpD6oRejXuUT+8EtenTXg1pMvrZj2tVL5UlCrdnrkrluqPqbYeTeUt6Gtm8jnTckHH2s6dxbZ/XRHu4nAuGJnA0Ejy6TZgBSB76ZhVkReTl4ebn4tdPuW6My1iiTAzBYX/34k6F0aaQHBzqaEq/IopK2AFIMjO1waXb7kfbj42zouf21fmp2r32XT+FBllGXCXd+53k947zm5SYP0usTqOgzjqyzEVU30Q4XVKSCee60/XP6x1wqmLSKsVXi0irS2vRenqLGyNfbVmtjWAQCmM/bzyzvUNlivDhCQLkCJwU1loZNMI+0Zb9x2HSM0YiQlgYMWbv5SH1gztBh2EmhHqFJrMjHjLJ750FjeVVc5Lk5iqtbA1nYsWy1UvcVfJY7HQ82m06NXUqbnvWLMAJACaqH5GL18I5hEaVEGrKGyih1gs5jaDtfjZOdJyMTezTXaCXYabd825fI2ba43Z7rNzsVEx3xqznb2LuZqOSZXbuWD068Revq6O9r/yFptHZR9QpoOXtnGgY9P9NDT+LTdTmdougouWjsqfhab9bDqN66xdImwmYWX07snXIieKr3/dswv3i/A6JWQHDRMJhuXD7fUugspdbT1EWiVfT7C1xd0UwVapv5qPGypCCM8lSrDurTrBWpnGwU5PkRntrG5OsCUhpkYjZSvoUqOQwbpIUzM7QyYhyK1q2lrgAmXsvGMqRRCw22/sb2WgyQo6nVs4ao6pUTRVzsVicVd33mx+3Sxlc3mXgYv3N9Sj6TiaBGldedV0Nfd3T1FYFlFTX1ix2JIQrSuitOTRug7fbHldGUBANZ7PZfG6JuTUGVIal9fqKHR8AdV1sfjay0SqVRSKp/gYkS3efSjhRUTfB+C/BPAVAN7MzB/x9v0YgB9yVfjfM/PvuPC3Avhp2G/On2PmnzhMHYRu+MLLF1tI618WHNQ0Nq0izUuTlOVVLDd+fktY1Rr3Nwi2uvLa8vXzqBNufdPl29baVtfgA+T61DWWQQopaxijkHBgRz1mGlkaImWF2FnaMhMhox2732hk0DBctf+QQiHMtLKCTZGbSJaMHfVIuTXOirtAZXYZGjLOGtdBeNUd67JCrymPQ4qitnulZkf3uEuKwsPWp5pve2vdS/T0EFl9hN4g/c+WcF02ldp4ndYIY+YD7uiqMiybNi/eEXBYi9dfAPjbAP6lH0hErwfwDgBfCeA+AL9LRK9xu38GwHcAuAbgw0T0Pmb+1CHrIQgnGiIgpAxQGUYo18+ss2J1sSSV01dou36k0TCkrdXNaCQmwCQdOStcWEx1kbKCMWpubitFdiRjoHPx5uYZU6YQdprYLnlDebhbHcHFydMJgiCcZA4lvJj500Dt18HbATzOzFMAXyCiqwDe7PZdZeYnXLrHXVwRXivG+JatBiuX8qxcWZIvkr0a61glbgd3ZiX+iixl1TIWW11aXa1t4qchjy4WmDarUmVwQc3xFZY/AFopRHMRZi2I7XWzoxEVMgphjLICjRWyVCHlAIYVpqzcPGQKGYfIEMDkU1fAxslM3YADtjP/k4Ei46x1TrDl4S5Mk6mIuzyNdmsg2t9cGfxQd97qzleFnpayVqtSB3dsWxlehMX7u+TRwXrUyyrUwxrVWrdq5O5xfQbuXza4q9RReeOuq09cR3q5rgcvfLPORV9W1cfrfgAf9H5fc2EA8NRM+FvqMiCidwF4FwBckq5oh4aT9tEvpq4TiSe26kQTMKxIq+Trba9bsOWldxJNteKmvWFeJIq65lFbnx5u0Oayux+TX7Z2Axj86SuK/nBovtaLyitEnRNzdnoKa7EzaVCEJ064GWgr7IwCoxR7BtqJvnp3p1ZOpJFdNUAr2+U9D1dOABZCzoubW/w0ZSBywk/neTasKuAf65L9s5YVUG3pOgmJAd2O6xBbvcrwGUBgDOq6XLPgaTpvg9qm1+1+PGIR26poiOh3AdxTs+vHmfm9w1fJwsyPAXgMAB6lsfgfDonpYOVqE2dZ6eEq+iRV6GFJ86G0/SE4KsHWKFJaxVv9BLKt5bVY4JryaxObffJqrNuSneS7CL2m/Pz6uMGn9XlQ/TXpU7ZBKeIMU7kN55Y1Cia11rypc7ka1jBk07FLkxm3DV1MY1FXLiGfY8w4QceFwMutdTQj+CpxyE4sq73fVMThYimqrsdfYQCL16Biq6fY6JP30taqJRvvIS1FS4vJ5gyHza/IdkVCZ90idCAB3Sq8mPmvL5Hv0wAe9H4/4MKwIFw4ApoEWR19RFqljLbhWD2saoAnuJYVeksLNi+s4fgPK96aBdTi892YbklrXFvefURTm5VvUX6L8m1K10dsVfO1kwwTgFBTddLZznnUU9/XjgoLnC/2mLT77Ym4xFr0DNv+dZnRdlJZLy2TLuMXotEvt0aw+0ItF3fIJ5c1pWs2/+2Eni/wbHxjLX2FOzePYyplELhxYMbCc7Vs3L6CbcmGdRkxNYgYGcIaN6AoWtXo1KE5UjcpVudqfB+AXyGifwrbuf5RAH8C++Q/SkQPwwqudwD4uyuqg+DBNQJkliZBkrMRIg0oBFcXkebTJth86ixstXn1Tdci3pYWJp3cp3le7dfDT5cL0i7WuC6WvkV1a0q3rKttiDLa0x1eTCr3F6CmzoSKZhpKpOZzcGVOuIFyC52dV8yuHuDEXT6ZbOYGWOQTx6KclJadG7icvFYVc4Tl8ZhVa2OaCzlFDMonla2IN7ePGFqhEIWFsPOEop9Wa5oLy9OQZ0kkWAHZb+nO9QmvjRFsA1h/Ntr65zOwUDvsdBL/SwD/dwCXAPxPRPTnzPydzPxJIvp12E7zKYAfZubMpfkRAL8D6zX4BWb+5KGOQBAEQehNMds95f0ZWyYfwjDuw7Y8SiFHMOSvGkBuRQFVTBibTwRrOJ+A1q1FahQMBzBwE8o6i2Bd3DzffNudlcY5vuaOx19mKrcWAqUY9K19ZGeUrS5NlYfDWQrh5cNFHCoshmTj5fFdWcVqBqiWmYcLmwPxMZie/1Ea808Frzzqapx62ixiy9JkuepDbZ+zAcrre8xtebfl16VuTZanIo+W/Z0axx5u0La8O6VrrfPqLV6bWF5b+vZ8Dy+EBrmfBhzV2M8VucK+YUqVKw8UFkBP6METdVD14V4Yz4hAdmtKMc+sauDt55lyy3SqEJF5Gb3OAzFIUb0AhC8EnfCEvy8XozQvAvO8/bizecMTkgq16fM6+kKzyHuB2BzUKtZyb135b97zUWZ+U90+GS4odKaLuzKnj2Dp48L0Wdad2TpIwKdDP7Jq3i19ylqOtc1VOZdfXR287VYh2NSo1kyAa5L6qMu6QX3aG/d+7tEc/1z0E3fLuUybbEarEl5N9VhFHbrlMWD/rI51yuki8PuUvUwddNd86TCuxtWP6iyXgvJEHgCQrgrFXPwBxSCS8v/8PmvF9K2OuZVRFXHnBSmAGbEJNSNi8yWvaurTel5mXKbV9Uergq5YH9UTe5gRfkoBr7lrcdd1EV7CSliVSPPpK9jqREgfwVYpu0tftJwOgwdyWvunzeRXR9vggsZ8m+pUk29jfnWNX4eBCHWirq9lLmsQhnXl1ea1dnHXlIsf/3Cir5+46eJqPJy1tU9eNs5q5v9aVdxqutWIxmoZq6/bTBfD9rJp5n/XdEswRB+xpr6PlfVK4a9dmv+m+bgggAnZwWRhmSK8hCOnj0gD1ifUgGaxsRbB5jO0eKvJt4m8vDYR11hGA12se0W+HSxzOU2N2HERd33yM72ETnfRt6yFbVmLXzVuveXxsPmuyiJWTbdc3dslb326PgwheIYQOsuKzGo91ifemoRnc37U6B3IEeElHDv6CrWcZQTbEG5Qn2UFm89hxVvfPnV9puRYmTWux3UYRND5dFh3NGdZd2y1TsMJvWodut97XfJtG+3aXI+2+7e7m9enrc7Di8LupSwrFDbPEnZ4IbwOkTl0HmVew4xuPNrJLARBEARBEE4RYvESTg3LWMrW6dacZVVWs6UtZj49XJ8+q3KDdimjtrye16mPNa1SXh/LxZIWtqWtHDWDH5osbbX1abHKAbN1W24y4Db6uF19+lkxlrPG+fQ5vkr/wbV0xl/O7dzGEO5Fn6OzYvWx1zUjwksQFrBOt+YsqxJvQ7g7fTZNyHU69z1com3lNbGsq7Tijs2W+Fjo28i5+6FL47hsP7k6mka7Lu1ebUnXXM/VCMFK2f5AkrRHukE6jx/ueR/i+IcQkHUM4/o7vJjuiwgvQVgBRynYfFZpecsZQsj503ocus5LijifXpa5DvWoY3Bx17HcpnosI/KAJYReTg/Lns8QVj6ftulO2oQg0KH+SwvW1YtCn7pr2UcoVvIaeLb3+vN1+HfP0OewCyK8BGGDWFaw+WyaeOsifoa2wuUMYo3zWXKAQh1HKe661KOOIYVepQ7rFn0eyhz+mcvF4DqEoM8gotBnaathHctNzzI0bffIUQhLEV6CcMLYFGtbzhBWN58+omdoQZdb5oY+pgoDWOxyBhF3Ppsg9HrUx6fRwrik6PMpGvcB8hpCCPpwtprnuo9AbGLIUbuNDComfZZ/t8ioRkEQBEEQhDUhFi9BEAAM4+b0OQ4WtL4WpVW5RJuWrlqVZW1VX9ybaGHLGdTSNssAlrecwd2uA1jhcnwLFJthRvjNUplYdjVFNJc9gBWvCyK8BEFYCYcVcqsSbj6rdBkepUu0jkEHMPTk2Ai9nCWnMunCygTgwJM91zGEW9anViwOXEYdTS7MVYnJWUR4CYKwkRwXC1wTK7NWLdngr1vc+ZwUoeez9FQmfRjQ4tdEHyHoM8ixrmHgTh1rEZALEOElCMKpYEght24R57Npgs7nKMWdz9qFnjt3Q38stOGLprXfk2sQhW0cqWj06Xm/ifASBEHoyXG3xtWxLrFy2AZ5HeLOZxOFXo5/Ltct+to4UlHYxgpdyV0Q4SUIgnDErKrR3LgGD+sVKcfFitdEm+g7KsHXRPMyZ5tVzy6sUjjKdBKCIAiCIAhrQixegiAIJ5RVWho20Zo2y3FxnzZxlNa2nC6u1pxNs8D1ZV0WOxFegiAIQm/W4T46DuIOOH7u0z5sgvhroo8o7MK6rqMIL0EQBGEjOU1937qyKValdQvAOjZZFC5ChJcgCIJwqlh3Z+/jLPSa2BQB2MYmCMRZRHgJgiAIwgoRt+zRsYkC8VAOUiL674joM0T0cSL6TSI67+37MSK6SkR/SUTf6YW/1YVdJaJ3H6Z8QRAEQRCE48RhLV7vB/BjzJwS0U8C+DEAP0pErwfwDgBfCeA+AL9LRK9xaX4GwHcAuAbgw0T0Pmb+1CHrIQiCIAinlk2YK0usbt04lPBi5n/n/fwggO91228H8DgzTwF8gYiuAniz23eVmZ8AACJ63MUV4SUIgiAIx5hNEH+L2BRhOGQfr/8EwK+57fthhVjONRcGAE/NhL+lLjMieheAdwHAJemKJgiCIAjCIdgUYdiqaIjodwHcU7Prx5n5vS7OjwNIAfzyUBVj5scAPAYAj9J4M86WIAiCIAjCIWgVXsz81xftJ6IfBPDdAL6dmXOB9DSAB71oD7gwLAgXBEEQBEE40Rx2VONbAfxjAN/DzPvervcBeAcRjYjoYQCPAvgTAB8G8CgRPUxEEWwH/Pcdpg6CIAiCIAjHhcN2nvrnAEYA3k9EAPBBZv5PmfmTRPTrsJ3mUwA/zMwZABDRjwD4HQAawC8w8ycPWQdBEARBEIRjAZXewc3lURrzTwWvPOpqCIIgCIIgtPLd6Wc/ysxvqts37AqTgiAIgiAIQiMivARBEARBENaECC9BEARBEIQ1IcJLEARBEARhTYjwEgRBEARBWBMivARBEARBENaECC9BEARBEIQ1IcJLEARBEARhTYjwEgRBEARBWBMivARBEARBENaECC9BEARBEIQ1cSzWaiSiFwA8OUBWdwN4cYB8jiNy7KcTOfbTiRz76USOfXN4JTNfqttxLITXUBDRR5oWrTzpyLHLsZ825Njl2E8bcuzH49jF1SgIgiAIgrAmRHgJgiAIgiCsidMmvB476gocIXLspxM59tOJHPvpRI79GHCq+ngJgiAIgiAcJafN4iUIgiAIgnBknFjhRUT/HRF9hog+TkS/SUTnvX0/RkRXiegvieg7vfC3urCrRPTuI6n4CjipxwUARPQgEf0BEX2KiD5JRP/AhV8kovcT0efc/wsunIjov3fn4uNE9LVHewSHh4g0Ef0ZEf2W+/0wEX3IHeOvEVHkwkfu91W3/6EjrfghIaLzRPQb7jn/NBF9w2m57kT0f3D3+18Q0a8S0fikXnci+gUiep6I/sIL632dieidLv7niOidR3EsfWk49lPRttUdu7fvPyciJqK73e/jdd2Z+UT+AfgbAAK3/ZMAftJtvx7AxwCMADwM4PMAtPv7PIBXAYhcnNcf9XEMcB5O5HF5x3cvgK9122cAfNZd4/8rgHe78Hd71/9tAP4tAALw9QA+dNTHMMA5+EcAfgXAb7nfvw7gHW77XwD437nt/wzAv3Db7wDwa0dd90Me93sA/K/ddgTg/Gm47gDuB/AFAFve9f7Bk3rdAXwzgK8F8BdeWK/rDOAigCfc/wtu+8JRH9uSx34q2ra6Y3fhDwL4Hdi5Pe8+jtf9xFq8mPnfMXPqfn4QwANu++0AHmfmKTN/AcBVAG92f1eZ+QlmjgE87uIed07qcQEAmPlZZv5Tt30bwKdhG6a3wzbMcP//ltt+O4BfZMsHAZwnonvXW+vhIKIHAPxNAD/nfhOAbwPwGy7K7LHn5+Q3AHy7i3/sIKJzsC/mnwcAZo6Z+WWckusOIACwRUQBgG0Az+KEXndm/iMA12eC+17n7wTwfma+zsw3ALwfwFtXXvlDUnfsp6Vta7juAPDPAPxjAH4H9WN13U+s8JrhP4FVw4BtlJ/y9l1zYU3hx52TelxzOBfK1wD4EIArzPys2/UcgCtu+6Sdj5+CfQkZ9/suAC97L2b/+Ipjd/tvuvjHkYcBvADg/+XcrD9HRDs4BdedmZ8G8H8D8CVYwXUTwEdxOq57Tt/rfGKu/wynqm0jorcDeJqZPzaz61gd+7EWXkT0u66Pw+zf2704Pw4gBfDLR1dTYdUQ0S6Afw3gHzLzLX8fW5vziRu+S0TfDeB5Zv7oUdflCAhg3RA/y8xfA2AP1uVUcIKv+wXYL/yHAdwHYAcb8BV/VJzU69zGaWvbiGgbwD8B8H8+6rocluCoK3AYmPmvL9pPRD8I4LsBfLt7OAHgaVgfcc4DLgwLwo8zi473REBEIazo+mVm/jcu+MtEdC8zP+tMzs+78JN0Pr4JwPcQ0dsAjAGcBfDTsGb2wFk3/OPLj/2ac1GdA/DS+qs9CNcAXGPmD7nfvwErvE7Ddf/rAL7AzC8AABH9G9h74TRc95y+1/lpAN8yE/6BNdRzJZzStu3VsB8bH3Oe8gcA/CkRvRnH7Lofa4vXIojorbAumO9h5n1v1/sAvMON9HkYwKMA/gTAhwE86kYGRbCdUN+37nqvgJN6XACKPk0/D+DTzPxPvV3vA5CPYHkngPd64f+xGwXz9QBuei6LYwUz/xgzP8DMD8Fe199n5h8A8AcAvtdFmz32/Jx8r4t/LC0FzPwcgKeI6LUu6NsBfAqn4LrDuhi/noi23f2fH/uJv+4efa/z7wD4G0R0wVkM/4YLO3ac1raNmT/BzJeZ+SH3zrsGO7DqORy3634UPfrX8QfbsfApAH/u/v6Ft+/HYUd5/CWA7/LC3wY7Ku7zAH78qI9hwHNxIo/LHdtfg3UzfNy71m+D7cPyewA+B+B3AVx08QnAz7hz8QkAbzrqYxjoPHwLylGNr4J94V4F8K8AjFz42P2+6va/6qjrfchjfiOAj7hr/z/Cjlo6FdcdwP8FwGcA/AWAX4IdyXYirzuAX4Xty5bANrY/tMx1hu0PddX9/f2jPq5DHPupaNvqjn1m/xdRjmo8VtddZq4XBEEQBEFYEyfW1SgIgiAIgrBpiPASBEEQBEFYEyK8BEEQBEEQ1oQIL0EQBEEQhDUhwksQBEEQBGFNiPASBEEQBEFYEyK8BEEQBEEQ1oQIL0EQBEEQhDXx/wcztENZyQkO5QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAERCAYAAACqx6miAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABIx0lEQVR4nO3debxkZ33f+c/vLFV119671VrQ2gJJCAQIzBI7ZjF7LI/HEDmZBBxmeE3GfmWx5+WAHTsOSl6xxzPBOHGw9QLPQEIMhJigOLYxSCKODQKpWyuLoZEQaiGpW1Kr+65VZ3nmj+c5Vafq1u3t3q67fd+vV/U553lOnTp1q+49336e55xjzjlERERE5PyL1noHRERERLYKBS8RERGREVHwEhERERkRBS8RERGREVHwEhERERkRBS8RERGREVmV4GVm3zOzB83sPjO7J5TtNLMvmNl3wnRHKDcz+20zO2xmD5jZS1djH0RERETWu9Vs8Xqtc+4G59yNYfl9wO3OuQPA7WEZ4C3AgfB4L/DhVdwHERERkXXrfHY13gR8LMx/DPiJWvnHnXcXsN3M9p/H/RARERFZF5JV2o4D/szMHPB7zrlbgX3OuSdC/ZPAvjB/EfBY7blHQtkTLGObxW4v6SrtqoiIiMj5c5j20865PcPqVit4/TXn3ONmthf4gpl9q17pnHMhlJ0xM3svviuSPST8VnLpKu2qiIiIyPnz9vzbjy5Xtypdjc65x8P0KPBZ4BXAU1UXYpgeDas/DlxSe/rFoWxwm7c65250zt24jXg1dlNERERkTa04eJnZhJlNVfPAG4GHgNuAd4XV3gV8LszfBvzdcHbjK4ETtS5JERERkU1rNboa9wGfNbNqe//ROfenZnY38Gkzew/wKPDOsP4fA28FDgPzwM+swj6IiIiIrHsrDl7OuYeBFw8pfwZ4/ZByB/zsSl9XREREZKPRletFRERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERmTVgpeZxWZ2r5n9UVi+3My+amaHzexTZtYI5c2wfDjUX7Za+yAiIiKynq1mi9c/BL5ZW/4N4IPOuauA48B7Qvl7gOOh/INhPREREZFNb1WCl5ldDLwN+EhYNuB1wGfCKh8DfiLM3xSWCfWvD+uLiIiIbGqr1eL1W8AvAmVY3gU855zLw/IR4KIwfxHwGECoPxHWFxEREdnUVhy8zOztwFHn3MFV2J/6dt9rZveY2T0nKFZz0yIiIiJrIlmFbbwG+HEzeyvQAqaBDwHbzSwJrVoXA4+H9R8HLgGOmFkCbAOeGdyoc+5W4FaAA9Zyq7CfIiIiImtqxS1ezrn3O+cuds5dBtwM3OGc+9vAncBPhdXeBXwuzN8Wlgn1dzjnFKxERERk0zuf1/H6J8DPm9lh/Biuj4byjwK7QvnPA+87j/sgIiIism6sRldjl3PuS8CXwvzDwCuGrLMIvGM1X1dERERkI9CV60VERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZESStd4BETk/nAtTrG/KwHKvfPj6fmrL1g8+t7/81M8bto1TrzP8NU+1PTf0FeqGv/+zcS7P6b366fdw+fWWf+6wPapvY+n2htcNe92qbPn13LLrVcuD6w+uO2zbvbIh65/7RyAyUgpeIqeQuZTvcxUlMcDA4aIXMuqhZmlw8eWj1//Kpzp4DZaf7nn9y9V8fXlwm8OfN3w7Sy13AK9vd7ltnG6bq2HYthzWLT/T+ZU4fQAdLDt14D7Vawx/rWHfe5apW/73pffc5f8D4PqeF9ZdvY9zQPXK1e+LG5ivv5Ph9fXyiHLJ+gARZd/3vKrz6/fvg9XW7d/eYLkbsl2/HNl5+4HJaSh4iZzCvylniDjIf/jNv7Pkf9aG681b71AxbL7+PBHZGJwD5/wvbul6Qc8583X0T3299dWXrlbnQl01P/D8et1Xb/kijoicuBblfPwqwyiherkj6sYrX9+LWSxZz7rv60wNhr5qy4MBr6qrAuGp66u9KYfW9/a4WFq3gf+eKniJnMIjbpELr2wy3sjWeldEZMTMev95qmLNqFzywRtH+nqnU5Y+FJYhPFaBsgwBsiytN+8M110/6q5XPfeuW27vBsqSqC9+VVNqdVV47Fs+bXBcGup6Aa5eVs3Xw15/vQ3M10Pl0NB4mtbEFQcvM2sBfw40w/Y+45z7Z2Z2OfBJYBdwEPg7zrmOmTWBjwMvA54B/qZz7nsr3Q+R1dZ2zdCqpSZ5Ednaosj/HYxXIYBe8sGXrXgbp9MLglCUUTf4VeX1AFm6qK+uCoa9oBcNhEQoiXuthwMB0rcmfnvZfVuNFq828Drn3KyZpcBfmNmfAD8PfNA590kz+13gPcCHw/S4c+4qM7sZ+A3gb67CfoisqmfYR8r3KcoxZhabtS5E38XY19VYlQ10M3anG7hZXERko4miXudrGpdn9dzVCIbv+wfL1604eDnnHDAbFtPwcMDrgL8Vyj8G/Bo+eN0U5gE+A/xbM7OwHZF1Y55Jpi7dycxiwsPHdvUG8y43tsP1BvyyzDorVQ98hoPucn8YjMz1hcFeEKzVh3Jq9VV51Peceh3dgblm/a9b1UdW9u1DFC3dhojIVrUqY7zMLMZ3J14F/A7wXeA551weVjkCXBTmLwIeA3DO5WZ2At8d+fRq7IvIaslJycuIiV0tbvjJK9d6d4BqsC99A3HLsh7+woDeciAgVus7us9hoL4aw1HNl/ff3R0MXA4OCh4c3zEw7qM+qLg3oLh/oPHp9AfIKsDVA54LDz+mYjDgRVFZW6f/YdFgWW3dyBHXQqWIyGpaleDlnCuAG8xsO/BZ4AUr3aaZvRd4L8AenQMgayCjQV5ETMTrpzHWt2BVS25gusr2v/D8bPcM+QBIbxBvabX5XsDsli8p89P8/rspwxiP3pgOGzrmoyijvoHCp9INceaIQ8iLQ6CrlqNueS/YxZEjtsF6v05sZTf4VWNqRGRzWdVE45x7zszuBF4FbDezJLR6XQw8HlZ7HLgEOGJmCbANP8h+cFu3ArcCHLCW/gLJSBUuonAxZnBiNuUv7t3ZVx9F4cAb4Q+2VQtKbdkM4nhpeWSOOCYcsENZVW+OOK7Kt/YlKPzPrz6Y9xz/DJynAFmWUJQhpIWAWJS94FfVFYUPgcV9d5MVMe3cKMvI1zujcJFfz4Wy2kDgYfz3pApoZV9oi+OSOAQ9/3C1cr+cREXvOQp3IiO3Gmc17gGyELrGgB/DD5i/E/gp/JmN7wI+F55yW1j+Sqi/Q+O7ZL3JaFCQUDoYbxZc/GNX9dX7gyu4EopwoK3ms7LWUlNCUfjlC5+5nzyLegdnZ5RFOPgWdFtfitrBernfjCqoVcEtjnyY6y7H/SGuqu+tWy93JLG61c5WFFVnep3hn683Xb8qr1uWkBe170r4vnSnYT6/727aeURR1h9GHubLEPQGVcEujkqSqCSJe6EuCWW9uqK7nIZ6tdSJnNpqtHjtBz4WxnlFwKedc39kZt8APmlm/wK4F/hoWP+jwL83s8PAs8DNq7APIquuIKYsI/LWxJI6f9D18ykw/ODbX+YuvB5jdX7pylqgK0soC6MoIS98K0w98O1/+gHaHV9fFFG3paY6UOfhQD0s5MUR3ZCWxGU33MVxSRxBkpQkcX+YSxIf5JLY10W6I+yqiiJonEnge/O5tfQV4TuUFxFFAXkRdYNeXhjZoXvoZClFGfm6MiYP89Vp+3U+4BfdEJdGRTfEpXERAlvhvy+RX07jQv8RkE1rNc5qfAB4yZDyh4FXDClfBN6x0tcVOZ/ajFGQUrYmmJ2NuOdraV99FIVusNiRJBAnvfkowoePUBYnkCT4gJL4561UPfh5S2/N03XhC4mBc3nZooCy8C15RW7kBWThwFzkPthdcOyBcKC2sI51D9z+gN2/zXpgS7phrbecxI40KYnDNIl7YU4H4/Ov+l430iKUFP0rnGWgq4e3LK8CnZ/P7r2HhSylKCKyMiYr4m6Yq/9HoGpdq0KZny9ohGkSyqtlfU9kPdOodZEhHEYRBnK3Wo7ool199WUJeRlCSR4CSqcXVF6w+xiLi3SDSJ77+aLw61TMfGhLYt8VmKS90JamvfBWL0+S0Y398gfhYa16tfkLX0jCmf8xKcLPLC/8z6OTw3zhg9z+Y/ez0I6ZmU/Iq59dEYUDdv+bTpNeMEsTH96qskZSkiSORlqShnIdjNeG/w6VNIdVnmGIKwroZBFZ9V3IIzpZxOKhg8y2m2SFD22dPO4LbZE50qQXyNK4oJnkNJKCNM5r82d3nSeRlVDwEhmiIGGRcQAW8hTn+sNOt8UpgWFHlGPs8U1MjaV19YYq56BTwGItwBVtP1+FtzyPyDPIQ1jJa3cvMvNBLG040rQX1tLU+UejV5ask9/2Ksw1hgS58oLru61zQw/U1drO/zyKAvLMaOcwm/mAu+/oA8yG4NbJI7LcH6yrg7GZD22NtKSZlqSpD2qNMN9Mw7zC2roRxzAWl4wxEJDeeu0pn1eWPrB1QlDLMqN98CAnF1p0QlDrFAl50futrMJZK81pJD6cNVM/bSU5iUKarNA6+VMssr6UROSkOGcszMG3H+wNdI+iqmXKT9OGfyQppKmfxmf4m1UFp2EB7ih7fHAbCG/14FaWsJjDXB6C2WIIbbuOMTdrZJmRZZBl1tfSlqY+rDUa0Gg4Gg0f0pq1+fUcOszCe0iB7knPYXrhC2nif5xLR+eF0JZBp2O0Mx/Y9j11P7MLCdnJiHYW0e74sFapglqr4UNZq1mE5YJW04c0WX+iCFrNklazFpZO0crmnA9q1Xegk0Us3HOIEwtjtPOEdpaQl/43MI4czSSjlea00oyxNOtOG4m6O2V5Cl4iQzgsDK6HxjicyE5068oSyrnQQpUb118zzeI8ZBnkHT8tS8CFbsRaOEsb0Gj6x2qEmyiCKGy37hh7/G/3WG3d6r05QgsRFBl05nxQm5+HTjui3fZhDXoBp9l0pA1Hq+VoNKHVdDRbvpVtozGrPoteYCv3Xt/tLh0b8pwsg6xjtDtwsm3sfeoBZuYSFjsxi20/fglnxLGj1SxoNXw4G2sWjLX8tJEqnK13ZtBslDQbZS+1L9OqludGO4tYaPvvwMw993JsdpLFLKGTJzhnpEnBeKNDK80YTzPGmx0mGh0aSTF0m7I1KHiJDFESc/lP3kB2zx20F/r/SFbdjEkK4PjukRNDtwF+3FeeQ5n7brDrrp5mbgY6bcg6gIMo7oWxZgvSMG00z0+rk1losauFpqPsgRb+QX9Im+/AyQyyeXh+6ygnTxjHFnsBzQyaTWi2HGMtH8haY47xcbduujdXqurGHZ8AcHDBC+s/rq48h07bWGzDibax64kHOXa8yfxiTJZFYI6xZsl4ywey8VbBxFjOeEstJBuNH3NZMDEW/j687Zol63QyC8EsZvar93J8fpy5ToMsj4mjkvFGh4mmf0w220w22/oebAGb5M+iyPlRXSV9YdZIm64vrJyJKIZGDDR9a8ejTy0NaWUG+Uk/Vum6508z8xw8vejDGYRQMwatsd70TLsyV8qsFwoBnmRvX0CL8T+juQ4cb0PnOBzYfozjz0bMz/uwmaYwPuGD2Ph4ycSko3mqAVwbmB9LVwto+68jBaZCvXPQbsPigjH1g/s5fjLl8aMt5hb8OacTYwWT4zlT4zmT4zkTYwpkG1kjdTTSnG2TOfsGWs6KAuYWE+YXYma+eh9PnZxirt3ADKZai0y3Fpke81Nd6HZzUfASGSJ3ve6CIvfB68QzEUXuW4qaY677iFZ4eYgogkYLGi3HIz/oD2bOQT7nu7muOTDN7ElYXPBhcGwcxidhYgpa44OXlxidwXD2DHv8aZDTPph1cjg5Dwfiozz7bMyRx4x2G1otmJoumZ4umZremN2WZ8vMv+9Wy5HveFF3LNoOwni9BeO5OYMjD/LE0y3m5hPStGTHdIcd0xnbpzKNJ9sk4himJ3KmJ3IuqLWWFQXMzCec+PK9PH58O99cbBGZY9fEHDsn59gxtqCL1G5wCl4iQ1T36wNHnBjf/+ahbl1RRDz/5S9mfsY4ftSnnfEpx8S2cslYq5Uy812PadPx6JO9UOZKODYDL5jcxrEnYGHet7bs2A3bdq2fMxjB78vkNDzh9sI4MO4D2Vwbjp6Ey/JjPPo9f2HXXbtL9u4rGR/fegeWKAotgxMO9l7HDnwg67Th5MmI8nsPcfj7kzhg/+5FLtyz6MciyaYSx7B9Kmd77U4HWW4881yDJ//yIb71xD7GGx2et/M4uybn13BP5Vytoz/PIuuJUbLM1dzjksOH7u0ul6Vx4KU38MwTMa6E7XtKxibPb3CwyHc71lvIsnmY2raNh7/huyIvusy3hK1XVSvZCfbAOJQ5tBpH+e53ErIMnndZwe7dChaNJuzeU8Kea9mPHxsY/dWDHPrmdpKk5NorZnrjjGRTShPHBbvbXHDTAQCem0n4/u3f4ltP7uP5+46ye2pujfdQzoaCl8gQJdXAGjvtGJsocnz3Ph/EiiLC7CVk7ZLpXaNttUkbvTFk7ZOQZdvYfwls23maJ64TcQI/KPfCbn+5hycef4bZGeOyyxUq6tIGuOuvZz9w8qRx712Hue6qk+yYzk77XNkctk/lbP+Jq2h3Ig591lG4iH3TM2u9W3KGdBc1kVUUxyWPf+deFubW9lerOQZPPHOS2ZNruhvnLElhYdsunj6mP1GnMj3tuPiCBU7MboEBcrJEs1FyxRuu4vjcsIugyHqlFi+RIYzqJsQOOLPTypyDK294CTPHI6Z3rl0XWVnApRds40QCO/eu2W6cM+fgovgojz0Vc6lau5aV51Dc9w2efq7Fy655bq13R9bA41+4n4eP7eb6izfo/7C2KAUvkWVY+GfYOK9KWRpX33gDCzNGp20UuWP/ZcWKz3Q8W1kHrr5sGzMn/GDstAFXX792ZzqerTyHy8eO8szTETMzxtxO44aXZKt+ssJGl2Uw8Z0HeOrZJnPzCZfsL3j1i5/VJSe2kLmFmB/c8RBHZ6aYak3wQ1d8T/ea3GAUvESGiCiJzIevKng5B0Ue8/yXv4jOotFe8OO/8o5jeldJozWa2+wUBXQW/OUl5mdhcR7S7b7uokt9N+N6VpbQXoArp44yMxMxO2MkDmZ3GvsvKnj+tO6RCP77trBgbP/e/ZyYTXluJvXtrztjrrxkjumJfK13UUZgsR3x3EzKs19+kOPz46Rxzv5tGa+47FHdN3KDUvASGSK2gigqwPx1vPZe+jJw/rIOrnRMbHPs2Fuet5YtH/Ig7/iLqrYX/SUjsjbETRjb4wej77vIn7m4HoNKWUB70T+u2naM+Tljbs7Awc4JR5YZe/YUXH7F5rnC/bnqtGF+3th55AHmFhJOziVkWcT4WM7CZMyenW2uet6sruG1yS22I2bmE05+5T5mFpvMLLZoJDk7JubZM7nAgb3HFLY2gS3+505kebFBZI60aVxwWbHq3XZF4e+VWF2xvtP2IaW6Yn067m8dVJYwuQ12X9C7SOl6UJbhZtNt/ziw/RiLC8bCgr+VUBzDzjHH2JSj2XTs2FkyMeE2TPfnaqquWN9e9D+fXU88yNxCwvxiTFkYjUbJ5FiOG4c9O9tcecms7u24STkH84sx84sxc189xGzbB6y8iGimGVPNNlOtnN27Z5lq6RZCm5GCl8gQESVpXJAUbaamJ84qLLgyhKrch6oXvmCarEP3kWeAQdLq3TjbDKa2w+7zeI/Gs5Hn/obfeQadDly94xjttvkWrLa/vpkZTDYdzRY0d/gbaO/cVdLaoDfPPlfO+c+10zEW28aeJ+7v3p9vYTGmKMP9LFN/j8apZsHERMEFuxaZGFv9QC9rr7pH48JizOzX7mWh02C+k9LJE6LI0UozJhodxhuO/dtOcPW+oxqntYUoeIkMYfhxRpE5isK37hS57z4rct/9eN0Lpn04yX1AycOQm8ggTsONlRt+gPvElA9UaYOzvt/janAu7GPmB2jnGTx/5zGyzN+OKMt8cCjD3/5GAhMNf0/F5oSj0XRs21bSaPqyrRAWsgyyzMg6PmzufeoB2p2IThbR7kS0s6g7/q/ZKGmmJVONEmvCrukOrWbBWLMkUffgpuEctDsRi52Ididm/u6DtLOUxSxhMUvJS/+LkcYFY42MsTRjvJGxc2KeiUaHRqKzdEXBS2SoiIJHPnMQu8TR6cDO1jaS1IemtJo2IJkON0ZujOY2PdXYryIPlxMI0xfsOkaeh6AQui/znG6QMoOxFBoNR9pwNCYhTf3NnBuNkjR1NBqbN1BlIRj7n4+RZ7Dv6AN0MiPLIjq5D1RZ3mtqTGLXDVQTjZI4deyYzmg2CpppSbNRrnnLpKycc/gwHQJ1lkUsHjxIJ09o5wntPCYrkm7IbiQ5rTSnlWa0EsfOibnuslqt5EwoeIkMEVHSZNEHlnF/aYbV0NdyFrojizBfhaeisG4LWp5btyUNQpdVAknqu/OSMUeaQBw7Wi1I09KXJ44k3TxBqmqxy8LPo6j9bPYdfYAsj/xyYWR5RJZHFLVjYBI7GmlJmjgm05I0KYkTx7bJgjQpaYQglcQ6o3Kjy3L/HaiH6vbBg+RFTKeIaecJWRGTFxHOGVHkSKKCZpLTTHIaSUEzKZhqtml0l3N9L2TVKHiJDGE4EjIMaMUZWceHpTKM36qCU1nAC3Yf643pKizM+2k+cMZ/FPluvDhxJDEkDR+Q4tiHpbFxSOLSt6KlLpSv/Zivc1X/uZTh55EXvqt2/7H7yQsLP7OoO5/lfr6sBSczf7+6JPbhaSzxXXhpUpI0HJPjRajz9WlSEo/4WmqyOpzz35E8N7IiCmHbTzuHfIDKioisiMnKmCyPKV29pdKPz2zEBY0kJ40L0rhgotEhTQoasQ9Tap2StaLgJTJETE5sORb5lpaxE88QJ4448pdxiBu9UBTHjrExP41ifAtU4uvjeP2HJudqYbKEsjCK0DJXlNYNmfuffsC3xhVGWYbAVFq3pSkvlr7ROPI/lyowNWPHWOSDETG0Gj5AxbFvbUriEKbirXn240ZXliE0hSCd5SFU50Z2793kRUxeRuQhOPn5uDs2qpJEJUnsw1EaF7XlgvFGRhrn3bpGXBBFGkcnG4eCl8gQCRkxBdHiLM2dTV50w2hvQFwPQ6XzYagsq2DkA1F19qRzvVBUlFA68y1upfn5EJCq+mGqgBRHPiTFMaSRD0T18NRMfTiKQkjy64d5ddNtKP775INzUYYQHVofiwIfnu7zYakoo25gKpyfli6iKPs/8MgccVR2W52SqCSJylBGGAdVEEclaVySRD5c6dpUspWsOHiZ2SXAx4F9+Bvb3eqc+5CZ7QQ+BVwGfA94p3PuuJkZ8CHgrcA88G7n3KGV7ofIamqySEKOATY3z+yMUTp/qYgyhJuq69E5P73wmQe6dUVhITz58FMvr5aL0pa9HZEZxJFv9YkjH2oicyRRL+BUQSkKZc3QNWnWC0Jx5J/XW3f9t8BJ6KItfctiFYqqAF2W1q3P772HoowonFGWPggVLvJlpVGUwwMS+JAURSEoVeEoTKv5NCppJbkvj/vXS6JSLU0i52A1Wrxy4Becc4fMbAo4aGZfAN4N3O6c+3Uzex/wPuCfAG8BDoTHDwEfDlORdSO2gsR1MHO+xenBb2IGSQg6ZoSDluuFpNgRha7HyBwW0Q1G/iBXX0YtROtYFYzLshaaq/nQkujq6zgo7rs7BB0fgrrPCcGndD4UlbWy5fjA7INNbKUP31HZnY+qgGSONM18vZWhvLduEvt1FJBE1o8VBy/n3BPAE2F+xsy+CVwE3AT8aFjtY8CX8MHrJuDjzjkH3GVm281sf9iOyLph5luPJsYKXnT1ybXenQ3Nuapl0HD05ktn3RZDRy/YOMK0Vu8DjVHe/7W+cOO3Z93tlS6EH1fbfih3tbJTiawKy2VvvmohsrI7X18vNrrjjap1rDYfR9W0N6/gLbL1rOoYLzO7DHgJ8FVgXy1MPYnvigQfyh6rPe1IKFPwknVljHmSyNF5bvasn1sFDf/wR1dHb7mq8+X94aP/+WFdfBCpNlSdxVVfr6ytX95/dzeQdMMGQC2o+O1WQaQWYGp1VWjx9dZ97arubFQhBfNnjUaR89NQXgXd2MruxWstPOrhx7c8lkRx0V2OQrghPC8OrUX17deDkgKPiKyVVQteZjYJ/GfgHznnTlrtL5tzzpnZWf2ZNrP3Au8F2KNzAGQNROTEUcFCJ+Uv/uDIWT3XrHf1+xB5uoHDrL98cN0qgBjV1PUFkbApqK0ThfKoG1T6t1EPG5GVvW33Pa8/EFWvWd+u1ecVXkREztqqJBozS/Gh6xPOuT8MxU9VXYhmth84GsofBy6pPf3iUNbHOXcrcCvAAWtpgIKM3CQznHz0OfZeNclrrnpkrXdHRETWsd6whlP/r3Q1zmo04KPAN51z/7pWdRvwLuDXw/RztfKfM7NP4gfVn9D4LlmPdnCMjMZa74aIiAS9sZz94ziLMuoOnRgc71nV33XL7X4dIhxRmPaW++sslPXWO71qK6duK1qNFq/XAH8HeNDM7gtlv4QPXJ82s/cAjwLvDHV/jL+UxGH85SR+ZhX2QWTVpZZxkW3nuv1Ta70rIiIr1h03ytLxnL0TUaLe2M5QzsBYz/6TVoy7brkDoBtQevGjHmrqsaQebHrLnEG46a1ddrduYWvWF6XqZWX3eXFt3gbml3tOd/urNLxiNc5q/AuW/2m9fsj6DvjZlb6uyCj8THQRM1/ezmOv3w70xk1V835K3y9lNY7Lz9fW7avvzde3Uc33XmugbLnn1oZQ1l9zcF/r2xLZiLonpbheu8KSeTdwokrtZJBeuQ2t6z534MSY0kVLtlcPMUC3RaW7r+EQHn5ze6/dt1zNA0PWr8p7y1Ff+dmyvlcvw5bqW/Vho1dWDn2OX4due9Byz+kLLn3rlX3bjNg6N53XqHWRU9jDDzBK7rrldqD3R7uar/8xhf4/rHWDf3Sh/geY7vMH16Vvfvn1h223f9r/nPVr+J4ONt0Pb8p3p6lfvpxl1197Z7Nnw7pDlu8iGf5drZcN/tTXh17kqMeSqq6/bPA3ydWeP7hcf05/7Blcf/n6knqUWrpeL7D01w1ffzD0LClbLx+JnBUFL5FTiMyxV1c6GYn65SmGBdee04cLh2G4U4SO5Z+72uufq9ONEzld/anWW1o2GGCWrquDvMjqUPASkXWhfmBfLhiIiGx00elXEREREZHVoOAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiKrErzM7PfN7KiZPVQr22lmXzCz74TpjlBuZvbbZnbYzB4ws5euxj6IiIiIrHer1eL1/wFvHih7H3C7c+4AcHtYBngLcCA83gt8eJX2QURERGRdW5Xg5Zz7c+DZgeKbgI+F+Y8BP1Er/7jz7gK2m9n+1dgPERERkfXsfI7x2ueceyLMPwnsC/MXAY/V1jsSyvqY2XvN7B4zu+cExXncTREREZHRGMngeuecA9xZPudW59yNzrkbtxGfpz0TERERGZ3zGbyeqroQw/RoKH8cuKS23sWhTERERGRTO5/B6zbgXWH+XcDnauV/N5zd+ErgRK1LUkRERGTTSlZjI2b2B8CPArvN7Ajwz4BfBz5tZu8BHgXeGVb/Y+CtwGFgHviZ1dgHERERkfVuVYKXc+6nl6l6/ZB1HfCzq/G6IiIiIhuJrlwvIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjsiqXk5C19ZTL+Kqb5W/Ydsxs6DrPuL3MMk1ESUxORElEQUxBRBHKq/mqvMQoieys7vYkIiIiy1Dw2gQOuTluLY9xbTzGVbSW1JfOOOKu4G/9i8sonZGXMUVpfOUDd9AmpSQOMSyhDBGsrEUx3LAw57rPik459UHPcH2BbjDgRRQskxlFREQ2DQWvTeCHbYrf4xh3lCe5Kl4avJ5lLzvtKLsm9/aVv+ODLzvn13QOijKiKI3CRX3zZWkUZUTp/PQrt9xRC3JxX7A7k4AXhdA2GOiiWqtcfAYBsK9MrXgiIrIGFLw2gUmLeYVN8Oduhve4PcQDTUfPsZt3/KtrgfaqvaYZJHFJEgMUp1z3kg++9Jxfxzm6Aa4v2NUCng9+xl0fuJ2cdEm4c33RzNe5oSGPXutbrR3QBoJfHMqsu9wfAvu7cdVdKyIiPQpem8TrbJovu1kOuTlebpN9dYuM0YxzytKIoo0VAMwgNkccnTrcAfzUB29c0WvVQ56f9oJd6WxoS15BQrsbvfzUDbTmlUSnDHrDAlw98MVLwt/y6ynoiYisbwpem8TLbIJpIu50M7ycXvBadGM0aHP/4xeSFzFlLQCYQRIVpHFBEpekUZjGoSwqScK0WieJyk07FutsQh6srCUPekGvr0WvCnplvdyHva/ccgdZrRXvXIPembToDYa6od21tbLN+p0QEVltCl6bRGrGD9sUX3AnmXcF4xYDUBJhzpEVCa+5+eK+5zgHWW5kedSdFoWfLh46SFFGZEVEVsTkZUQepnVx5PrCWToQ1HyYq5eXG67V7XzpBj0caVyedv2VBj2AsjTyWote6aLeclFrzat127paxOqFu17oW358HqcMa0unPkrakHX6Wv3UmiciG5iC1yby2mia/1ac4C/cLG+0bQDMsJ2CmD2Ts0vWN4NG6mikQ1p43nrtGb1mnht54R9ZHpGHANc5dA/znZS8aJEVMVkRdcPbYKtbXAttaVQQh5a1RhXe4nzLtLqdb1HkaIyg2xaWjs+r5vPSt8jVW/e+/IE7yEhoD2m9O9vWvLMJeac6Kze204dhEZGzpeC1iTyfFheScqc7yRvxwatDk2t/7kfpvOAavn4Y0rSkkTqaaUGaOhppSSMpaaQl0TlcTjdJHElStUDUDuhvfuEZPd85yAujk/lWt7yoWt2MzqGDzHca5GXUC2+naHVLQ7dpGpf9Ya4b2HxdGqtrbBTOput2JWfYVrpdtbWTL/IyoqydgFE6fxmVbMjYvHpLXklM6Yb/QvS6X+vXwRt25m3/JVPq18zTGbYiW5eC1yZiZrw2muYT5TMcdRl7LfWDv7OEY8822fnqK1nIjCyDvU89SGcmopMZnTyik0W48Pc/jvCBLDyajRDOGmE5LUmTcwtqS/cZ0sSRJkMOzm+57oy24VvZaq1uhW956xy6h9l2s9tVmhWxryvj7nsFloxlS+PB5aVj3xTc1p84Gk3IG2y9qwJevRWvuk5ep3advMHLp5zqDNv+cFcShYseD142pX4x5OXK1XInsr4oeG0yr7UpPsEzfMnN8E7bSUlEJ4/ZlpZs2+6AkDguvI4xYGzINooCOh3IMmOmYxzPYM+TD3JyLqHdiXpBrfQHjDh2NBuFD2QhqHXnw3KanL//1a+01a3qLu2ErtK8iEKL2z0stpvdVrasiMnypS1u9VA2eIJCFdoace4DXaQxbhtdHJ3ZuLyVBDx/yZT+ky4GW+/yMuKuW+5YcvmUJdfKG9py57otcMPuXtF/F4vBu1z05hXqRM6egtcmc4E1uJYx7ixP8g7bQU7KYp6wM3E8fSyi1XI0W440XX4bcQxjYzA2Vgtq+68jhiHXxYc8hyyDTsdY6Bj7nrqf2YWE7GREO4tod3yQqVRdnc1GrUWtFtga6WhblKrg1moOHETOILhVXaXVCQqdzHeVdg7ew0KWMttu0smT2kkKw1vbGkl/C1saF2GMW5hP1NK2lUSRv3Dw6cLd887xhIt6sMvLqP+s2vCoxt0t1u5oUQ91BcnQUGe4botbfToY6oaHvMI/R92vsokpeG1Cr4um+LflUb5Lmzk3yW5zPPV0i4nnIvIMFttG1gndfCndMNZs+kerBc2WI47P7PWSxD+qoFbsuZ4E/+UabFFzDvJuSIMTHWPvUw8wM5/Q6fSCWqURxqG1GkWY9lrVWo2CNHFrGkaW7Sp90/Vn9Pw89y1t1Vmled4LbTOLvRMTOkVCXvR+LtWlQBrJkJAW5huJn9eYNhl0JsHuXFvsqq5X3yoX11rs/PyX/7k/Y7bN2JIg110eEuh8QMu7Xa/xQHgbHu7ybp1+B2S9UPDahP6aTfG7HOP28iQvtwhzxtPbrqQY39ldp8pU7Qxm2tCZgauTYzx33FhYNNqLRllCFPkQ1mo6WmPQGqvmzzyY1ZlB2oC04ZgAwMEFL6TF0ta0ekibb8OJzNjz5APdLs92FtPJ/F/TKKLbrVl1e7aavflmY322FvnWtrMPbWVJXytb1T3aPniQhU6DThGTFTGdvL+VzQzS0O3ZTHIf0GqBLU0KGnFOIymI1SUq56D/zNl8Sf1PffDlZ73N6hZl9UCXlxFF0Wux+8otd3TDXD3EVbFs8JIn/S1xeW3NpWVJ9wp6uVrkZMUUvDah+i2EricmK2PGxof/oUhS/xifhKPsoT7wK8If4E+24Vgbrh4/yonnjKcWI9qLRp77bsnWmGMsPFotx9i4o9FgxUGnL6RNwqlCWln6cWmdjnGibex98n6em0lod5ohpPkxaRY5WqG1rNkM07Dcap7fsWirKYoIIRP6xrWd5oSEKrBVJ1XkYbze4qGDzCy26ISwlhUJRdn7AKtxat1WtCSnGUJaWmtd0/g1OR96tyirWuiyJeuc7XXuitLCyTbRkiD35X9+BxlNFkOA84+0G8MGT4ioh7J4oKXtlPMaI7clKXhtUtUthA7zAy7JY9IEFuahNXZ2gSiKoDnmH0+yl3rqiYGygONteGoOrkqOMTMTsbhgtMNtIZtNGB8vGZ9wjI/7cNZorva79fvZavluU3CUe66nATSAqdp6VUBrt435tm9Bmz2RsNiOWWz7IAL+shtVGBtrFow1C1rNgrFmWRvIv/EsG9hOcd22+iU/2h3futbuRMwfOsiJvEU7T8hKf+JBUUaYOSLz3a/NJKcRFzSSvG9eQU3WWnUWbJOCwSB3ttexq4e4rIjDxad9mPvyB+6kQzNEs7TWIrd0jJwPcFlYI+8GtIScKEz9vG+FiymI7czutCHrx5oFLzN7M/Ah/PH7I865X1+rfdmMqlsIPei+zQ8XMSeORszPQtaGKIbxCZjc5h/JCr4FUQxj4/5xjD0wAUz41jLnYK4DzyzAVa1jHD0aMT9ndDrVAH7H+IRjYtIxOVnSGjZyf5UNBjT2Dm9ByzJoLxozbaP1xP08e7LBYjtifjGhKAzM0WyUjDVLWs2C8WbBWKtgvOVb0DaT+ji2ibEzC2tliQ9qmW9R62QRi/ccYmbRBzXfspZ0u0CTqOwFtRDSmklRm8/V9Snr1qlC3DvPoiWuHt6yIuqOjfvLX7uDDi0WQmDLuy1x6ZLwVu8mrYc339LWH+p0QsPaMOdG/8M2sxj4NvBjwBHgbuCnnXPfGLb+AWu530ouHeEebg4fLp7i826WW37io8R//cd5JIuI4nC5iAXjwGXTzJ4EHIxPwfR2H8RW4/pcp1MW0F6ExQW4fPIYc7MRi4s+BI5POCZDGJuadiPZn7PlXK/lbHHB2PWDB1lox8wvxnQ6EZjv0hxv+Zay8VbB+FjBRCs/p7Fxm111kkG7U4W0e3xAy5PutCgN5yx0bYYWtKSglWbdcNZKfZnIVlUPb/5uIaErtYj48i13dlvdytpYuIIER39XyLCTGYadoTp4Bmv9WnLrcVztqLw9//ZB59zQptO1Cl6vAn7NOfemsPx+AOfcvxq2voLXufkrt8AvFI9x841/nxf/9L/kCMMTTFnA4rxx1aXTzJ7w4WvXXhibGPEOA0Xuw9iVU0eZmYmYnTHMYHLKMT1dMj3tW8nWuyqYLS4YCwvGriceZH4hZm4xoSyMNC2ZGCsYb+VMjBVMjOWMt4p1GTLXmzy37tmv7U7E4sGDtLOUxcyHtKzwFyVN4pJmkoUwljNWBbTUz6sFTWS4U53MUDgf5r5Su4Zc7+4PSYhdfgpLk9fZ3tpr+F0h1v/dH04VvNaqq/Ei4LHa8hHgh9ZoXzatq2mxg+3c/eh/5yVG95Jcg6IYxqccP3j2BK6EC6a38fj3/ID7Cy4ZTQtYJU5gYiqMJ5sCm/LB8MlZGOsc45GHI+bnjeltjl27SrZtL095TbK1YubHtzWbzl+4dv91bINwIyfIOjC/YBydN3b+4EF+cKzF/KJvCpsYK5gcz5kaz5kc94FsK//PcVB1Jmi323OZ660VBSx2YhY7Ee12zMI9hzixMBYCWkpe+PFoVRBrpVl32kpzWkmuMWiyJZ2Pkxkq1Z0f8iLqu7XXsDs/5N1QN3C/1lq72nJ3f4BhIe90t/cqsSHBLqbo3U1iFULeuh1cb2bvBd4LsGf97ua6ZmZcZy/gL47dxfHjj8H207caWgTf/t4JnIM43sbRx334WktR7FvhjrEHdkK0A546CenJY3z/0ZRm03Hx8wq2bds4B8m0Adsazu/z/utoADvwY6MW5o1n54zyyIM8ftQHsjiCbZMZ26cytk1lCmNnII4JrYlh3M2QMWnOwWI7YqEd+xMG7r6X5+bHWMhS2nlKWfqWs7G0w3gjY6zRYayRMZ52aKVbuytF5FyM4s4P4H+3S9d//9ZqviwjX1cLef7+rdGSkDd4q6/By5KEV+teja4Ka3401XDqatzk/mvxSn7PfZw3veWfctUb/s8zeo5zsDhnXLBjmudduTZdjmdjbgZ25k+TdYwXvihb0ckC61Wew8xJY/rRhzgxmzC/kNBolOza1mHPzjbTE0uvlySrI8+N+XbMwmLM3NcOsdBJmc8atDN/WYFGkjPZbDPe7DDZ6DDRbCuUiWwhVddsPeBd9Iv/ct11Nd4NHDCzy4HHgZuBv7VG+7KpbbdtXLHrGg4d/BRXvPYXiOKlR4Oy8F1f1129jdmTPshceMnajfM6WxNT0GY3++0o3/1OwvOv2XwhJElgx04HO69jJ7ATaLehefgBHj4ywexcwuREzkV7Fti9o6OD/ipKEsd0kvtwO+Q6ae1OxOxCzNxdh3h6doJHn93BYub7v8caGZPNNlOtNlOtRSYa+mxENpte1yz0XaZnGWsSvJxzuZn9HPB5/OUkft859/W12JfNLqLk5Zf/MJ+6+1Ye+8597L7wpVz3/Gnai9Be8FeGjxrQ2ulbVXbuhUuuXPnFT0dtYQ6eOBlz0cVb54y2ZhPy617EdmCbg9lZ46mvf5O/enSSi/ctcun++Q33OW5E/rpoJbsG7jjgHMwvxswtJJz4yn08eWKK+U7DnyzS9EFsemyR7WMLGugvsoWsWaeMc+6PgT9eq9ffKgzHjc97Bf/53o/x9Hf/kB/+kR8lTmDnHmi2/FXrN6JOG+Zn4aLG05w8YWwfd1x8VeEHsm9BZjA15eCVL6CZwcK93+Rbj0xxzRUza71rW5ZZb4zZ3rdd0y0vCphdSDj55UM8dWKKbz+5F4BtYwtsH19gx/g8Y43N12orIt4mHA0jdTE528dbvPglb+Lrhz7J//ZL/w/JBkhbzvnuz/YCXL3jKIuL1r00Q1HAWAP2bSvZubPkwNXr81pfayVNgRuu4bEvPsLzL5vRz2adiWPYNpmz7Y0v6pYVBRyfaXD8L+/n8ee2kRUJuydn2Ts1w7axRbVcimwiCl6bXIK/TctLXvZODt59Gw997fPc8Oq3j3QfytKPIyty351ZTa/ZfYw8hyzzV7PPOkYWzlr23TGO3WNQFMbUlGPPnpKx8XO7OfdWMT9vpN96iCefbnH9VQpdG0Ucw+7tHXaHlrE8N45+6T4efWYnM4stLtl5nEt2PKfLW4hsAgpem1xCBzPH81/wBiand/M//vTfc81L3o5zdG/XUs07B64Mp+GWtWXgur1HKQrzZ28UvrwozQeqKlgVRln6+roogjQO119KIR1zpAlEkWN83N8XMU2h0fD1+t/9mclzmJszdj72ACdnE47PpLQaJfv3FLzqRc9u6HtKbnVJ4rjwDS/mQnwIe+TzJ/nydy/nxZc8zlSrvda7JyIroOC1ycWUmDmuSw7z6tfcxJ1f/A8kzzzMxOQ0hg85Zv76XRZBlDg/DY9uvUGaum55FPmWJ4sgjiCKHXHkL4CqFqnVUXW3LraNTtvY/cQDLLYjZuf9Tb3j2DE5nlNMGPv3LPKCy2f0s9+EksRx4G3XsG8u4Rv/reCHLn90rXdJRFZAwWuTG7M5YnO0WgXvfs//zJ/9yUd57Pv/hZ98h67eMWrOha7WAvLMd6tmmbHv6P3h9jf+Ip6dPKIMN+JupI6xZsG2ZkHccOza3uHS/fOMtTbXjbjl1MoSHr/960y31BwsstEpeG1yhr8lyvxCzAt/5AYuu/xKbvvsf1LwOo2qy9R3qYIrjaL049O6XawF7H/6forCyAujLI0sD/c2y6v53jb9tV4cSexIk5JW4phKS6IUtk/lNNI2zdRfmkBjswTgxGzCkdu/wbNzE+zbVnLVnqfXepdEZIUUvDa5hIw0LkjikiNfeJgfeeFr+fh//Qj3fup/sH/PBbWuREcUplUZQDSwbAwsV/etsr5JdzvD1MuH3TihXla/B5cL/1Rl3XFpWHe+HKgrw33BeuPYjNINf926KPLvPYrCLS5iRxw5GtV8WI5iSBtlt8xfRM91H3G8/M9BpK6TGSdmUo5/5X6emx+jnaVMttpctH2Wa/Y/pe+RyCah4LXJNWjzrQ9/iTf90+Nc8ZbreN7+V/Dx//oRvv39z/E3/vrfxNELKIMhZulyLdTQv9xVDdgPzxumKj+TYGa4vhvc1wOf1cqiKATCWjA0q8JTVRcCZqQB/LI2stxYCLcfmv3qvcx3Gsx1GmR5TJoUbB9bYHqswyU7nqOV6lpeIpuRgtcmN84sM0xzbGaSK4BL9+/jNTdcx6f+9Ev84rvfgXUTiM6AEzlXZelvHdTOIrIsYuHug7TzpPtYzPwNt9O4YCzcbHs8zdkxMc9ks33aGwaLyOah4LXJjTFHbg2yIub7T4yRJiVv+5E38Eu//SH++z3f46XXHvBdaaELLTJdJ0u2LucgL/z4PD818jwiy43OoYNkRUwnT+gUMVkekxVxt1u9keQ0w6ORGJPNNjsn5milOa0k1zW4RARQ8Nr0IgoKEq678Ameu/85OmXEq9MdNOKEj3/sM+x4/U/23VHdOaMoh/fDdbvurCSOSh/SIlcrC/OhLjJH8pIbiUJXYHUZiqr7rxo/VY2limrz6gqU0/HXlPNj9orCf2+L0nrzYZoduoe89N/vvIjIy5g8zJcuWvJ9T+KSJCpI4zKMjyxI44JGXIbWqYJGUtAIYydFRM6GgtcmF1tJw7WJzHHZruPd8rddfwV3fOsgv/u/vJz0DJu4qsHrRekPVtV86fx8GeYLF3UHtWf33tMt9+uEqetto/eIwuD35ceHVaoQ6Md0uV5o65b1QmJ33epBdTKB606jF7+id2IBtTFj1htnVp2E0Lv+We9WRYNjy+pl1NbvH79W1Q2UD4TOlYTQ+kVyh5dbt5O5r2xgjF9VXz95oTcu0M9TW99fgNeHorI0yvvvDp+r9U37HrXvQ/WfgGp5GDP//TZzxFEZWm5LYqvNRyVJ5BhvZCRRQRQ50qgI5SVJXOoG1SIyUgpeW8B2nuFPf+krvPODL+2W3fzy6/jsfd/mi9/4Hm+5/soz2o4/0DniqDj9yudZFQKGHcSr4NC/7AOGD3f0yglh8r67a6EiPA8gTF0tAPjnR7XAMnBiQj2s9AUXw9XPFAjrVtvsFdfO5FxhJlhyosIyZVi9vneiQrV+FM5eNVy3y8ygG2yrcus+34UAW7V+QhKVvaBbBd+BwLy0JdWpi05ENhUFry1gB8f4Dtf3lb3h2svYNTHGJ+/++hkHr/WkGwJ1UoCIiGwgCl5bQGoZLTfPv/vHPwAgpiAi50fKK2ndb3ziHz9EQsarf+W1JHHpu2Ji3xWTxgVJ6LLRuCsREZGVUfDaIq6wbwGhm4yYgphLopSChJwTFMTcdcvtFMQUJKE8oSCmDNM6wxGThy3lROGZUXjmq3/1deFioj64JVGhMTUiIrLlKXhtMWaEsFTQoHPO2ymdhYAWhyCXUBKRk1IQ85cfuLM7Xw9v1Xr9XHefqjAX1ZZf+SuvC61ujqQaGB1a5KpB0mqNExGRjUDBS85JZI6IjJRsxdsqnXVb4Xwwi2uBLuZrt3yxL7TlfeskFET0Xd4eiCj7WuEiytAy15u+6ldf1w1vUeS689VZcUkoFxERWS0KXrLmfIjLSciB9qpsc7BFrhfUom7Zlz9wZ60+6lu3DJ2mjqVNaVU3axXuegGv7Jt/1a++vntJgyhyxFadsVe/9IHO2hMR2UoUvGRTWs0WuUFVqCtD+1kV0urLZehurQe7/ql1Q96wcAe+1c5qkbBqubOwlSrkGY5X/errupdhiK3EwtRflqHsuzyDTpQQEVk7Cl4iZ6kKdedb4aJuMKuHtmJJWcSXP3AnJREuLNeDnguRzdXmB7tm+95fLdxZ9xlL56sOYsPxyl95fe+OBNYLf1HfdbvKvmtzda/fpRAoIluIgpfIOhWbj06jVF0Athf4loa5/nK/7l233I7DQiiMlqzjatsZrDtVCKxY7dV86PPL1F7Buq/kf2aD69cDotVCX2RhL6L+ux70LgrbX9a9a4HVLxh7Pj8V2YrKsnfx5uruEGW4CHN1EefeRaLDxZrL4ReKri4IfdctdwB0fwfp++3oPXrl9K3TP09ffaU3bwPL/fO9suVs3l8qBS8R6epehZ58rXelq3tQCcEN6AuE9eXqoFAdVHw53boqIA6u09tGFRKp1fW20zvw9F5rua7iM3x3A4c5NzBP36tC/+Gwd+gbXB5cj7752o2iTlPfb3DdV/zKG7qvvxyzMx/D6Ja5PVS3vjb/tVu+eAYH9XpIqNcPL6+XLQ0gcLoQUn0v6ts/0/9cDHu39W90fzSq/2eDof/p6P9PSe9bW9XZwHr9727wu9j/HexfPt13jL7nDLNs+SbNXisKXmb2DuDXgGuAVzjn7qnVvR94D1AA/8A59/lQ/mbgQ0AMfMQ59+sr2QcR2dx6ty/yY9o2k16oHHYgHwwHS4Ne//Lw5/ae39vOsOcvPfQt15LRq//aLV88Rb0vqw6qZxpQhx2Ehx+Y+yNRPRrX1/Fl/dsZFjyHxate+XIhhL66Yc+L0JhK6bfSFq+HgJ8Efq9eaGbXAjcD1wEXAl80s6tD9e8APwYcAe42s9ucc99Y4X6IiGw4vVCpM1tFtooVBS/n3DcBbGmcvwn4pHOuDTxiZoeBV4S6w865h8PzPhnWVfASERGRTW/wEuKr5SLgsdrykVC2XLmIiIjIpnfaFi8z+yJwwZCqX3bOfW71d6n7uu8F3guwR+cAiIiIyCZw2kTjnHvDOWz3ceCS2vLFoYxTlA++7q3ArQAHrKUBECIiIrLhna+uxtuAm82saWaXAweArwF3AwfM7HIza+AH4N92nvZBREREZF1Z6eUk/ifg3wB7gP9mZvc5597knPu6mX0aP2g+B37WOVeE5/wc8Hn85SR+3zn39RW9AxEREZENwpxb/714B6zlfiu5dK13Q0REROS03p5/+6Bz7sZhdeerq1FEREREBih4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiKwoeJnZb5rZt8zsATP7rJltr9W938wOm9lfmdmbauVvDmWHzex9K3l9ERERkY1kpS1eXwBe6Jx7EfBt4P0AZnYtcDNwHfBm4N+ZWWxmMfA7wFuAa4GfDuuKiIiIbHorCl7OuT9zzuVh8S7g4jB/E/BJ51zbOfcIcBh4RXgcds497JzrAJ8M64qIiIhseqs5xuvvAX8S5i8CHqvVHQlly5UvYWbvNbN7zOyeExSruJsiIiIiayM53Qpm9kXggiFVv+yc+1xY55eBHPjEau2Yc+5W4FaAA9Zyq7VdERERkbVy2uDlnHvDqerN7N3A24HXO+eqgPQ4cElttYtDGacoFxEREdnUVnpW45uBXwR+3Dk3X6u6DbjZzJpmdjlwAPgacDdwwMwuN7MGfgD+bSvZBxEREZGN4rQtXqfxb4Em8AUzA7jLOfe/O+e+bmafBr6B74L8WedcAWBmPwd8HoiB33fOfX2F+yAiIiKyIVivd3D9OmAt91vJpWu9GyIiIiKn9fb82wedczcOq9OV60VERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGZEPcq9HMjgGPrnAzu4GnV2F3NiK9961rK79/vfetaSu/d9ja7389vfdLnXN7hlVsiOC1GszsnuVuWLnZ6b1vzfcOW/v9673rvW9FW/n9b5T3rq5GERERkRFR8BIREREZka0UvG5d6x1YQ3rvW9dWfv9671vTVn7vsLXf/4Z471tmjJeIiIjIWttKLV4iIiIia2rTBS8z+00z+5aZPWBmnzWz7bW695vZYTP7KzN7U638zaHssJm9b012/DzZzO8NwMwuMbM7zewbZvZ1M/uHoXynmX3BzL4TpjtCuZnZb4efxwNm9tK1fQcrZ2axmd1rZn8Uli83s6+G9/gpM2uE8mZYPhzqL1vTHV8hM9tuZp8Jv+/fNLNXbZXP3cz+cfi+P2Rmf2Bmrc38uZvZ75vZUTN7qFZ21p+1mb0rrP8dM3vXWryXs7XMe98yx7lh779W9wtm5sxsd1jeGJ+9c25TPYA3AkmY/w3gN8L8tcD9QBO4HPguEIfHd4ErgEZY59q1fh+r9LPYtO+t9h73Ay8N81PAt8Nn/X8B7wvl76t9D94K/AlgwCuBr671e1iFn8HPA/8R+KOw/Gng5jD/u8DfD/P/B/C7Yf5m4FNrve8rfN8fA/7XMN8Atm+Fzx24CHgEGKt93u/ezJ878CPAS4GHamVn9VkDO4GHw3RHmN+x1u/tHN/7ljnODXv/ofwS4PP4a3zu3kif/aZr8XLO/ZlzLg+LdwEXh/mbgE8659rOuUeAw8ArwuOwc+5h51wH+GRYdzPYzO8NAOfcE865Q2F+Bvgm/sB0E/7ATJj+RJi/Cfi48+4CtpvZ/tHu9eoxs4uBtwEfCcsGvA74TFhl8L1XP5PPAK8P6284ZrYN/wf5owDOuY5z7jm2yOcOJMCYmSXAOPAEm/hzd879OfDsQPHZftZvAr7gnHvWOXcc+ALw5vO+8ys07L1vpePcMp89wAeBXwTqA9U3xGe/6YLXgL+HT7/gD8aP1eqOhLLlyjeDzfzelghdKC8Bvgrsc849EaqeBPaF+c32M/kt/B+fMizvAp6r/VGuv7/uew/1J8L6G9HlwDHg/w3drB8xswm2wOfunHsc+L+B7+MD1wngIFvjc687289603wHBmy545yZ3QQ87py7f6BqQ7z/DRm8zOyLYWzD4OOm2jq/DOTAJ9ZuT2VUzGwS+M/AP3LOnazXOd/WvOlO3zWztwNHnXMH13pf1kCC7374sHPuJcAcvrupaxN/7jvw/7O/HLgQmGADtNycT5v1sz6drXicM7Nx4JeAX13rfTlXyVrvwLlwzr3hVPVm9m7g7cDrwy8kwOP4PuHKxaGMU5RvdKd6z5uGmaX40PUJ59wfhuKnzGy/c+6J0NR8NJRvpp/Ja4AfN7O3Ai1gGvgQvnk9Ca0b9fdXvfcjoYtqG/DM6Hd7VRwBjjjnvhqWP4MPXlvhc38D8Ihz7hiAmf0h/ruwFT73urP9rB8HfnSg/Esj2M/zYgsf567E/6fj/tBjfjFwyMxewQb57Ddki9epmNmb8V0vP+6cm69V3QbcHM7wuRw4AHwNuBs4EM4IauAHn9426v0+TzbzewO6Y5o+CnzTOfeva1W3AdWZK+8CPlcr/7vh7JdXAidq3RUbinPu/c65i51zl+E/2zucc38buBP4qbDa4HuvfiY/FdbfkK0EzrkngcfM7Pmh6PXAN9gCnzu+i/GVZjYevv/Ve9/0n/uAs/2sPw+80cx2hFbDN4ayDWcrH+eccw865/Y65y4Lf/uO4E+wepKN8tmvxYj+8/nADyZ8DLgvPH63VvfL+DM7/gp4S638rfiz4b4L/PJav4dV/nls2vcW3t9fw3cxPFD7zN+KH8NyO/Ad4IvAzrC+Ab8Tfh4PAjeu9XtYpZ/Dj9I7q/EK/B/bw8B/ApqhvBWWD4f6K9Z6v1f4nm8A7gmf/X/Bn620JT534J8D3wIeAv49/iy2Tfu5A3+AH8+W4Q+07zmXzxo/HupwePzMWr+vFbz3LXOcG/b+B+q/R++sxg3x2evK9SIiIiIjsum6GkVERETWKwUvERERkRFR8BIREREZEQUvERERkRFR8BIREREZEQUvERERkRFR8BIREREZEQUvERERkRH5/wEUNExYrTAjRgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -202,14 +202,14 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 5, "metadata": { "tags": [] }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAEQCAYAAABhm3oHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACyJUlEQVR4nOz9ebAkSX7fB37cPY7MfGfdZ18z3YMZYAD0kMMBBHApACQlESI5AE2EINIkkAbjmGxJrWTUmkCuzETZLs2WWrMlCQo0LsdIGQHuage8cJCGXZAEgaURAkAcBDDADGbQ6Omjurqruq53ZmZEuPv+4RGRHpkRLzNf5Xv1qtq/ZlUZz8PDw/OK+OT393N3Ya0lKCgoKCgoKCjo5CWfdAeCgoKCgoKCgj4oCuAVFBQUFBQUFHRKCuAVFBQUFBQUFHRKCuAVFBQUFBQUFHRKCuAVFBQUFBQUFHRKCuAVFBQUFBQUFHRKWgl4CSHeEEJ8Xgjxq0KIXyrLzgsh/oUQ4rfLx3NluRBC/A0hxGtCiF8XQvyuVfQhKCgoKCgoKOisa5WO17daa1+11n6y/PsvAD9lrX0F+Knyb4A/BLxS/vsM8LdW2IegoKCgoKCgoDOr6ATb/jTwLeX2DwI/A3xfWf5D1s3c+vNCiG0hxDVr7btdDW0JZS8Tn2BXg4KCgoKCgoJWo9cY37PWXmrbtyrwssA/F0JY4G9baz8LXPFg6j3gSrl9A3jbO/ZWWdYJXpeJ+evRCyvqalBQUFBQUFDQyekPF19+s2vfqsDr91pr3xFCXAb+hRDit/yd1lpbQtnCEkJ8BheK5NKJGnNBQUFBQUFBQaejleR4WWvfKR/vAj8CfAq4I4S4BlA+3i2rvwM85x1+syybbvOz1tpPWms/uYVaRTeDgoKCgoKCgp6oHhu8hBBrQoiNahv4D4DfAH4c+J6y2vcAP1Zu/zjwX5SjG78R2DkqvysoKCgoKCgo6FnRKmJ4V4AfEUJU7f2v1tr/rxDiF4F/IIT4XuBN4LvK+j8BfDvwGnAI/OkV9CEoKCgoKCgo6MzrscHLWvs68PUt5feB399SboE/+7jnDQoKCgoKCgp62hRmrg8KCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiUF8AoKCgoKCgoKOiWtDLyEEEoI8e+EEP+s/PslIcQvCCFeE0L8sBAiKcvT8u/Xyv0vrqoPQUFBQUFBQUFnWat0vP5r4Ive3/8T8NestS8DD4HvLcu/F3hYlv+1sl5QUFBQUFBQ0IlJxOLU/h2llYCXEOIm8B8Df6f8WwDfBvyjssoPAt9Rbn+6/Jty/+8v6wcFBQUFBQV9QHSaIDQPhk5T0Yra+evAfwdslH9fAB5Za4vy71vAjXL7BvA2gLW2EELslPXv+Q0KIT4DfAbg0sq6GRQUFBQUFNSmswQnT5NktNzr9thEI4T4w8Bda+0vCyG+5XHbq2St/SzwWYBXRM+uqt2goKCgoKCnQQGEjtaywHNWtAor6ZuBPyqE+HagB2wC3w9sCyGi0vW6CbxT1n8HeA64JYSIgC3g/gr6ERQUFBQUFBR0pvXY4GWt/YvAXwQoHa//o7X2Twoh/iHwnwCfA74H+LHykB8v//65cv+/stYGRysoKCgo6EwrOFDtelqdp0Ul4tXOvHWSyVPfB3xOCPGXgX8H/N2y/O8Cf18I8RrwAPjuE+xDUFBQUNAzqg86CD2LwLNqyDltLfKerBS8rLU/A/xMuf068KmWOiPgj6/yvEFBQUFBT14fVBB6mgHoaQSds/x6L/IdCMMFg4KCgp5RfZBA6CzfjNt01oHnLL+eZ+1zfeqjGoOCgoKCFtNZu2GsQmf5Bu3rLIPOWXkNz8Ln84PwWpzdT2JQUFBQUFBQ0DOm4HgFBQV9YHUWfuGvSmfFKWjTWXCbzsrr86Q+c0/y+T/J79lZed99BfAKCgp64nqaAeisXdjPAuTA6b8uH5Sb+2k9zyf1uRbqdM8rT/l8EMArKOgDo6cZbnydBdAJcHNyOo3n9Kw8D1+nASynASlCnvbrdvrf5QBeQUFH6FmBlS6dBYiZ1pOCmgAxx9OJJiGfRv9PCCZOClJOC0xOA0hO2206bajrUgCvoKAjpPrqSXfhzCsAy/F0Us/jJPv+tEDKSd1gTwpGThJATgM2Th2gTh3Ynp6Z64OCnnol59u/IjZ//FWuTHG2Vsp6FpNvn2bHBFZ7Q3taYORpeM5wgo7WiTllJ+9gnbaj9CTysyo9znM9G4kKQUFBQUFBQUEfAAXHKyjoCPXPp/W20e0OldXmyDasWdzZ6jrH06JnJWcjhJQmWnkYcKWO1sm8T0+lU3baSemn4KA1z/fk87NW9d4F8AoKOkKDC4N62xrjbU8AqQ2WumDLb6N1/5Lg9bSB2hMNDTzleSGTdp/unJ1V9j+8xovrWQezRXQW4A0CeAUFHan1y+v1dhdstQGZX3cZCOuquwxgLeOwBc3XWbhYh5v04+vQaL7wcK/+e6Q1L22scXOtX5fdGY54c/8QgEhIvmprnbV48dvkk/ysnIXPqa+zCF6Pq+B4BQWdgtaunOP23jneP9hCCk0kDFIaZFQQCYOSBnSOFBYlDdJqpDAooZFYpDQIW6CEQQkD9mgI64a0x4e3Np2GYzbP5Qt6Om9ST9K9bNM88EiBb96aONj/5vb73LiwTqImI5c3I8E3nl8nkpL7ozG/s3PAJ7fPH7M/T997etbg7VlVAK+goCOkLlzm3f0XefWjb6M1aKPQJkKbiEIrjBXkuUUbSWYFWguMkRQGjBVoI9FGuG0rp5ww70TWIIRF4h6VMAhrkMIghXX7qm1rEFiksMjI7RPl8QKLsLrcZlImQGBBAMZM9mPrbbz6VefcMd5+rFdvcky1zxp3rmbdFbwRHcC6SgVAfHY0D3ruD8dsbgzY2FpvlF9an7hfF/sprw3HJF5ZkKeVfLE/mArgFRR0hG7vbHFz+yHradZ0kjxqMoWelFehRtueD0ZnnpjBItAlsBkr0YXFWokFjJVluYM7a0VdbqEuM1ZijKtbIlRZV4AFi8CUxptl0o61TbQyxtZlFWJVx9CoP2nHlduakfzyx9fxwKuGv+pvYWf3iQoaTf13c//suX3YnLR39Dmmy6a3mXqpGvWm+tD2qoqp16i13y3HHVV/3uu+invvdL8fV1fXHpDKoyH6zsGQK2tHA9U7+4dc7Ked+9/dP0+mT+cWehqMs8z74H6QdXeq/bPU1s4yx7e3Od3G7Hel47iO7+R0GzPtN76z7fW20oPWc1YK4BUUdIQexs/zdc/fIU4uN2Cr4Y5oD7ysnd3vu1y2vbxquxPSbHv55HCLuzBZmlbadJ3psgVcnjmhS9txvkX70H3e5RyoznBsAwQn2zCVq8c0UFbHtwBo/X6IqTrT524eO92fWsaB97t7+7y3t09uNNc3Nrm+sY4QolkXeP/gkEhItnpp636soO221vXqTwOyNXa2zSO0CnRaFaSna31ipTv3W2t5aAwfu7xNrNonSH4wHHO3KPjUzcvEHSNc+0RE5nQnWF7dD5mpdpd4rxvHzXnjW9utf5y2n7O6ki3SXlsbrcg2/flu+T521W/u7z6/X+3c5jstvZgogFdQ0BHKBhd526xx+9aASPrOlkFKi5QWhXZhP+lChFKAFBoly3Agpt4vKI8TFqnK4wRIUYYPq30ChNeuMNXxFiE64K1SFyDWhR2XtS7Qaal/XGBbCNLmwdkSYNlsd86I0kXCmfPaWAYsG89D8tbDXfqq4Juev4AqQ2VriULKiZsohOD+3pAHBw843+9x9WpK1Jprdcz37Dg65cEc8z9D3S4VwN39Q86d22Rte6N1/+4o40vvP+RTrzzPIOm+RV7fKICi2benZWDLGQ6rn8XXcPnvztFoFcArKKhDuY0ZbK/xbrbBN//e+yjPVrbWXbuMFei8DAMaV6aNwBhRP1pjMGWelzHU+V9G28ZxxoDVom7Xasqwn8CaSd2On3TtT8KWOVyCSR6YoMwbA4GX71WXVeWTMFzjeL9uXe6XlXWU8dqs2rB1zppfLtH1sdLvbwmjwvrg6YUJ2m7Cnc7X4nW74W4JkG2cZ/5x9x8e8OLNi1zaXOs8X1ZoHg5zzl8+z8WNNaKt9U7Xxp1iiRvGsje8ZdpuHPaYN9bHhIb3Hx3w3LWLROtrM/uGWcHn373PJ15+ns1B79T61KUTg5Bjvnfzmz05aDqVHMxTgr4AXkFBHcpIYW0Dcolet3QFLyTeEhBzLmiiY39rHkJX3VZvvAsUyhwvC9Yqd5YSBCd5XmX4rAwv1X+Xx2FdffDyvKo2yv5U7QHo6nzGNtsq+2NMeV5jJrlqdX+ACjyNwdgyN63Mb5v084jXonHxrAYm0HAba/j0XEZhTQl3TNXTDiR9ACyPbx5nJ2XVOau/S9czidvdykJr4u0D3tOSt+7uksYRH7t5haSayqC86bz25m0uX7tKfDhESEl0bhs1DV7HdBVP0o1sr7pA3WUGVSzQnjaGhwa+/voVojKE+Nb9RwgEz13Y4o2372CSlC/tHMDOAQLBN718c/E+NPpzvJv4UrC8gvM1T/50wfRCLvUJnbvRjyWffwCvoKAOFcT89f/n3yCOLa9+w3+DFe25HsfNj1iF5iXEdoHeZH81uvGocxzt1iwDk426c9poQJW336/bOEc1ErNR5AYJOEiUNeAZY2sn0f09cRVruCuh1VR1LM6FtMJtV4/aTv7WTLaNI0lTlgN86qvvtz4nk2c84D0+fPUKNy+f57dvvcebGXzo/DmUkmAM7z3YoX/xElduXOXw3bsopYguzE51MB7DG3c2JmBZAaScOI3S6obzOR0Gr8GyAZtTMFk6nQ0tciOsR8x6Oi7QzbtpTvVHAv/BN77aKHtxfTKy8es/ts7Xz5xj8ZvqmYTXuvKSkHJCbS/V59OA1+NC42O4hgG8goI6VBDzO2/8Fkk8+WJqDVkuKAr3Txs3ytA9uht4HTq0onR4Jm6OaThQk3PVCdeNsvlANzsaZ6rC1M2xHrFX0on0Rv3V9cSkbnWTrc5Vh/msF2rECzUCUjZDhlLgpqQQlPlu0/stUogaAGT5qMo+VGXHUdVHKetU+fKhfE6LgGAD+toctvY25h7nKY4iYqW4fG6LOIq4eekCX3r7Nrk+h1IJAK/deo9BL+X123e5+8i5YufW+mwMmqPzlLKc2xiXn7uJG+mgshwVW30u61GuPmCKGirrz7CdtFF/nlvzC9ufnxBTzmP1d+Uwlp+L2jn0nEeBcx2lsM51hKZLKWyLU1nlV9pGmw2388n9Xgr6gOuxwUsI0QP+NS6jMQL+kbX2LwkhXgI+B1wAfhn4z621mRAiBX4I+N3AfeA/tda+8bj9CApatTQKgyI3lp/5lUsgBEpZ4tgSxQIV4RLoI+EeFYikAg9BLK134y8hQIrJL30xAQOL8KBosv846hqR0wl6fnlZJqjChP5IPlfBlgUVTNoq9wzAmkaY0p3Huv2mCn1S56qZOsxZgQBYXYY2PWjwfyU3XpbKPRGghEUq6x7L11xJjZQO/iJZ1NtKGqSEqNpf3pSVsmVd5wgpZYnKQRRSOkCYfjFFF2C1uHRtDl2l6Pw9xhsXSAd9Ho3uITYvIi9cIxfutXj+o5L94YjDomCUaEYCduM1+pvnGu0Ia7hwbvYcnfBXvbaN3R6ozgt5d/3y9x29Cu4sZSi5+tyI2kn0oa4KR9f7G26kIPddx/LHTgWINSSaSR5lAxqpRrO2fMGmXyPf+cPlIlZ/V6DoO4uTwTGTkLSbl097PzLKetZM2mk5VpZz9x0lsYpw7TznZgFHaK7D5LUx97K2gJM0zzVrXiPm9P8kXcMOrcLxGgPfZq3dF0LEwL8RQvx/gD8P/DVr7eeEEP8P4HuBv1U+PrTWviyE+G7gfwL+0xX0IyhopXK/lwW5Fnzka2Bto84swkyyujBWeseIxuP0fuMPY67m2cIDnMYw52bd1j62uGLzLiPHHZI+mbuKxiNAlWXUFoxtm9dqkTpdx0lvu6pjSzvR3YBtfTPGWrRxN2tj3HZhJuFBo8t/eXXcZKCDKWHAFpO6tVPWmIvLQVwFaUI6IK/gTklLJA1K4Ua9SjsBOg/0Lr004Odffw3JA6JI8LFXPs5bwyFguXzhAudevMg5HFgdfOk1Ll44x/bF84yrftgloNBXHaI9OoQ7rVbw6jhH1bYs60x/TrocxplzQcuNssUubmlr3vNvK6sBrvoxUX22PGh0gFeBpZjsL8PObvJk0Ea69rTfBpPHmbKpefDaXhd/lLQHgkqaGuKU9EBOTkZMKzm7v/p81uXCouIJRHZ+Fh43fLrEiGr3vBdsF1YzHc4Kw8OwAvCyLrttv/wzLv9Z4NuAP1GW/yDwP+LA69PlNsA/An5ACCHsSrLkgoJWp3IMnXOAEkXuAZS2k4Rm3QJhDRjzLp7atgNZBVbatoNXV3nbnFDGuw8V+dSoSUMJIhPnyRr3ha0u+tPOWP33vG9oI0TphTGr8KQAJamdvmpycSlBKluXKdkMMUoFfv648lyAZhjVg6JyxIM/ElUIOwFE4YHA1PH+/rq9meP8F8PWoIY1bvUCXeaR6ermbMlLcNMFmFyU+90oWGssRl8lHzyPzguMhX/7+oAiO8AYQ/+2W+rGWndDfPRI8tZen3OPNmvoU9KgJETKzJS5bUsU2RIKy39q8no2YLIDWBr5fi3h2q42VpHP13aOuWC1BBR21RHW1J+bpQa8zISgp4bnLNNWR32jzSwEWoEpaECgrty/GgoFReka6mwSVtZaeBM128nobCvAivbXsJwyp/pMTaBNNz5rsn50YWWl3DJqkzpluSjqskY4+LjO3Rxo6syDXTJ/cBmtJMdLCKFw4cSXgb8J/A7wyFpbTXJyC7hRbt8A3gaw1hZCiB1cOPLeVJufAT4DcCmkogU9ARnkZDSejDrByweowsyCV+E7XsaHKR/YSvAys7BlLYxHgiyDfAyjEeQ5FDllrpn7u44YldcDUSZuObBxZdWjqEKfQrhtHFfVeVseRFWXn6NyYmyTQxqhzBlws5O+ViFHywQGwdbb9aPXvt8P9yueyb8S0qrtSNkSQiCKqLdV5KCj3h9BHNsJDE6doz63LTBaEyext99427iralTNzebcQIElZhYE6+36xek1oU+48ygPeKy1aP3ixJXTDqbRztFzkFcCd27Lm657rXVRgrduQt90f1Q1L50qnTzlQumRMO61kxBFJdRJXb+Wft1Y6RqYm0C2OLDVdVuA76g22vYv5QQuMpijpf5C0NQBd0ftb9SZAoVqVPXioWTr/7EcALbUtZYmpFWPuppap1o2DbR2K3JkRpTAV+bIarzl1cp6ph30quXTfKiLlFsftwl6xn0mhXb7G3XLv9UR8LTM1DGn7XgBWGs18KoQYhv4EeCjK2jzs8BnAV4RveCGBZ26JkvuAFI2XS5vxuqiBby08SHN3y9m6sIkKX93V3CwD+MhHB460EK4BYmTFOIEZARRDP01B04qAuTEQdLeNaBlUv3Gft9obqsLNEYJtu1v07w0tSpxvk3Sg766zLOmmi6XrF07gZc7Vjp7Btyv/8yVa+25fXpS5kYd2nr0oX++KHIQJ6Vl9+HbPLj7ZZ7/0Ndx/tJ1BxglxEkFSewgTqopkCtvdJMk/2kI816bFkdvBu7AfS5iAzHlyFQXwuuCuy4Xr6ozC3elU1rCWg15GnINmbHobAJ0PtjpQtSO3/T5VOnIxZEpXbjSpSvhzd0kHRzHyjgolhoVVfvng9c8uPP11IHesuHTFYNe27lV+S/uGmhSPw89P5Tsq83lMw70tBGYaoCT/09LigKMFgy1oCghThtvQJQRFOUya9PPfwJshkiV2xWwoVFlWeQ/ysn2vLw8WPGoRmvtIyHETwP/HrAthIhK1+smUM2h/w7wHHBLCBEBW7gk+6CgM6byplE5QCeA/4f78OghPLrvblrpANY24dxFuJRAUk7C7S8H6YNTdZ3T87/rz6xkFVYsIacBMV6IUraAXFsZTNqqXDet4fabv83GVo6UW2xup8QJFIUly9x79+j+HR7eewcV9dk+9yIq6tXXdIkAAXHkwFlVkKYgihx8qLI8Taj/juNmv05L0gN5kbY5cxOQ61p7smvbaOMAWFt3gzQCXTjHpCgc6I1zQXEoMFpSFAJTRBTaObyNe3E5arcCsihyLkZSPsbK1C5cHBn3WpeOZxzZJ/LaBj2e3AAZS4xFxB0X5WVyxqbgTmsHZVpTQ1v9WLj9w7GiKKGu0JLCVNvu8/mNH3vvyOewilGNl4C8hK4+8AdxCfM/DfwnuJGN3wP8WHnIj5d//1y5/1+F/K6gsyprAUG5SLXvYrXnalVOl+9mNbddztij+/DO24Iohu3zcPNl4W7k2nPEtGCUVdt45ZPtyqUqvDUHdReklXWajph3nL+mpBcKzMYuL0kXtnY8KjfE1rljok4cnhkBCe3QKkq0rUZ7Vk5XGQZV5bQUonT86hywyNVx4URRjxiNE9EINQIobzmdJpC5P1SHk9bIKZOCe+++zniUcf7SDQ7GY9T6OqQSZS2REuw8eI9c3OH6K1c42HtANLjLtZsf8tqo5gtzrlFRuF/5ReHcIzui/JU+ARJdTBy6yilzTlEJa7EDMxU5UEuS0j2KbF0eezcmPy/Nd94qKFrEKfM5pQavrkEQjeO8OtKCBBHb2ilJOo6bLHLeBXSidEDcZy/PKXPsLIUWZIV7XfVYoA+sC81rgc4sRTn9i7+QeRxp9/oqQxRb4siFTKO4gjf3L4otiTKTUGrLqNW5eXIL5Jy1trfIcR05c/POMdeN6hzBOuswtu3vqmMXcfHa1qhdoG/LTDiNNcgYkpk2Wup3unsw20JTq3C8rgE/WOZ5SeAfWGv/mRDiC8DnhBB/Gfh3wN8t6/9d4O8LIV4DHgDfvYI+BAWtXP7Uoi7JvgO2/PKWJHl/ezgUvP4l6PXhuZcFabkqSV4I8mIavCZ9yQt/e/IlL4rq0QcovP1+XbfDh62isORjyMYwOoQ8c/+KEviEBFGOzhPVKDxZviIl/FgsokyOj5KJQ+jWFqQhf+4nIb1FqytQ8/7WiBroRO7NqI/7VTnJ/6omKK3cEFlfV32Yi2NRu02yzF2KE+H+jmBtQ0ycMA/Yhnv32Xu0y9Xnv5aHuw/Y2cnZHqUcjNxJlII3X3+Dc5deQPWvsp5c540v/zzR4Dpx7CzLar3FJugJFyaMIVJuVNJ0nWq7AqU69KcnYb2sAD0Gu1cm7lf7CpfvVSmJJy5anDg4i2JIYgdxSTIBtscOg9INYXVoswPY2kCuE+KEdV/RCERkiVP3OlbTfnRBof+xrLZdqLR02LQgy0TpfliGuUCPhcur9HIrq9A0tnTYIjfdTBxbkki77QiS2IFcUpYr1R4addtHg9e8wQ7TmgeFc49bCG5mz7EQCLWOKD0a0vw63fvnPL9FHDGvjaq00Xd/wYgnMKrx14FPtJS/DnyqpXwE/PHHPW9Q0GmpSq7u+mo1gKxeWme2LM/gi58XPPch2Nx2kFVBUpVUvwxsAWS5LcuaMDXZNo1ya2DvkeFwTzA6FOSFJk4gTl2YJu5Z+pvgL8RdgZrRfpnbtjiYsmW/fbAy5UVqFeu3Ce+OLoVAlFaJX15tK49cREkHxpTuiK5CW4JxBhzKMndJcP6arR2MCpSM0dy79SV0nlGYr1Dkh+hCsbOTUy1abfWYnUcHbF7cYme3wBjNwwe7XBpGMHQvjKr7NumvD1iyo7zqj/KfZ7WpQCWT639VpytkirUU+cRJG2VQjJxTVOSlE1cO0qjOEUeQpCWkJdBLrfu8xC4MHsUQ+XlrLU6a69Os89bmusH0wIYWaJgaBNDWRj1BcNfo1Lb2ypy5KHZ10+n90+eY2q5gOM8kWS7QhSLPBcMx5AeQVxMvZ7YxNUkcW9LEOFhLLGmsyzK3xFTlZNbnmpPX1lVnmZGqvpYdtdp63DFHrXZN9VC1Z5cAyEYd1bHfV0v/G2c40vE6WmG4YFDQETJGk/YKDvYPSAabdXlzvi1myv2yijt+50tw8yXY2KIOO1WaANikrC2kCO2Q5ZdluQdb5fboEO6/Z8lGgrhnGWwYLl6wGK/hqq4uoPBObmqnbBa8oAlk/sSGldvihwO6IKyt3IeqrnLh2TEVLAmPPKRHMdKHN+WGckop6pGeh/uTuj68pesfYnhwn7u33yYfP0IIiVTbrG1dLY+7xzhT7B8Y1ChjePCAvEjY28m9882CVxT55xOt220h0waYtADbdJh05vkrB1FRv1lnOuxqbemaaeeKFgXsHkDxyP2IqICtfj4xDhYSiFPo99xjmjqHrXqrKlhqOGlzgG1emNRv17U9G6KcP6K0I3zqfX5bgY3SYZMgE0uauNnE289hJyCECz8XFaxlgjwXZLll/xCyR4I8gyxzPxhE6TInkSFJDGlq6aXuMU0tvUSTxJPF5yf9PxpuzgKwdS47toJpRubldXVlOok5dYT0z3HKjldQ0LOkL9ohL9MjFoKHdsRotEecRHzxN3+Ni1ef5/rNFxdqx0yB2cG+C3dV0AXN6WXqssb1YlJBt0Ca23Z1/PCh8baHh4Z7tyUC2DivSQeQj51lpvMpRyzXrdsVZGnPgmuAV+ED2eQ42wJexpiZ/cuq4X7JWXerzQUDkN5am7KEHh/cVDQhFh/YlIqI4iusb1/h0d0vMNi4jBXb7O+OADjc26MoEvZ2DonjmJ17dymKhIP98aS98ny79xSHew72ktS5KyqGtIQU5yb54FhBUTuYzYO0JoTRWl4BWedAAyWIBu5m0QyDVg6brSGtyAVFBlkGw0cuhJ1nLj+wajfpObesl1rSngOzwcCFOKHd0VoG0mC+qzYPwpaBNL9OY79tb6MOg1ZgE0EaW9K16hwTTaZYdtvGQJFbskwyHguyMRzsCcb3BOOxc9WsdS5kUoJZP9H0eoZ+39DvGZJkClw6wsPtIconD2mdx60C0ny1tef/iPRss0VCt74CeAUFeSqwxOVV/h5D+v1N+gPBq7/7G/nlX/q3C4PXtHYewPmLK+zoAhoP4b03JBdvGPprzRBl0PIq8kPAkvS2Ody7g5CK/tpF4nSD0eGDut7o8AFrm1db2zh/1XL+qruBWi3LnCHBeCjY34EiEwghkKJ0i/oQle5R0n8yIxwXkRBlvlgClADRFvI02kFZnoHO3Kjeh/dcTqEuXO5dr+9ANO3B2gB6g7LdIKR0oJqmlo0N2wAaH+5MYRmPBeOxIB9ZDoeSBw8Uo5HLXZPCkCaWft/S7xl6fcOgb1kb6DP7GXuWFMArKMiTADJrSIREecn1Sqmmc7OkWXN4AOcvde9vJJlz9LZpGX3oj0jU2i2dc/sNyaWbBXFajUScTa73nasux6sKRzb3F95+z/HyQpRV/oXviBn7+I6XrzZHq8vxEp7jVblbjVClF/prc8dAMth8hWxsMKaHLTQjkaGiPvm44J3Xfg4VJSS9TUS0zWjohxpdG0o1w4tCOsCSkaRfl7u8szxzE0mOdmD3viQbucEDSd+5RmnPMtiUxOWAhtY8shZHbLZO+bjgCM/p9rry1mYGElTlsUXFIDcEG1VbVR6lhjwTjEYwHMHurmV06H40RJGbu2593dIfuO049s7nfZ4qV8xfysZ3v3QjZDhpo3KxdEsZTOeRee9li+PVGa5sWf1gkWk42qfv8Bxf32FSlnTgpqcR9UADz5UxDsyGQ8FoGLFzIHj3fcnw0Lnu/b5hfc39WxsUrA3cCM7mc2pzvI7eP1Ne5U4Jzz1aZg61xrJqnubModbIDRMdzpU/gWHLMmv+c112GbYAXkFBnp4n5bfsiPNEpCgXakwjPv+rv8jlqzfmN9ChPHNhpKJj6Z9l1ASy8kIyBWM77ws2tixR4oUxSwBqAKQHRY1cLG+7Ai4/jNgFW37OWFXfFLPhR3eOZj6YW/POzXRtq3XqbPOCWi06LIRFlDOrS+m2J7PtezcjHxS8UKLOZyFNeoThhx1FPgtnSrns/myUIZVksPky+XgPa8f01q6ic8HYTMBLtYCXD3qqaMlLExCngjidHOem7BBkY8H+Huw+gHwsUJFlsCnor1kG3ujMTghrwNLRif/+agp+mK8eAao7wKsjzKnnhDajFNZTYKs5N1uRu1zF8VCw+x4OEgpLbwDrm7C1LegPXFu6/PzKjtBf58oE5YdItZRBd7jSLJFTVo2I7gS6jkEAVf5oJ6R1DgIoP+tToc+4B3EPts4Z3LfMIIQLG49GgsN9ODxQ3H8QcXDoZqTfWNdsbmq2tgwbg2Iy11t1Pj9sucQggOb+9tfbJ+T6+tQBTaIDmqrjRNe1t7HUm9//lvod5+icDsNTAK+gIE+bQvE19LlPgUAgpfO9PvzKx4j7W63HmLYvpSeLG70oFXDMcN+y7tDBnuDKc6Z1JKZpGXk4Xa5bYKnhXPlJ9C2w5errmf3+OYocxocJeRZhtAt/CFWu5SYtlmJ2dnvrgNUtWCyxqHIB7CpnyxIlhijSqLggTidAJr1+VJDlJ+KLBliqmboAqly9wH8t6nwxOSBSGxRZUR7nrUxQgpz2HS/t7e8AsqrcRraxv3IzqiVPihyykeTRfXj/lkJIWNuybJ53U0VAN4SZcrsJWN62b5S0jMT0Ycxb3KHxw8J3kNocNtmy/qjrk1dXQm8d1jYbKM7wEA524fYt5yzHEWxfgHMXoN/3YLMDaHzok+WHxXZAkw9TtgUm5u336/gDdNocsel+VMuKdSb4d4FOmxs3NRfadD/SHvR6hvMXbe2UGQOH+4KdnYg3b0kO9tyccefPay5eKNhYN3X+muu772K153vVeZm2oz8Nh20WyPy2/KXXm5+QlvYai4/7tdudsBrIGrlcHXXblvqYUgCvoKApKSG4TEzGOmkqXEhnbZ28jWI6tIopgeet0dp5nLUUuUVGFp0tHh5dBu6aDtvR283QqMFowf7OGkZDbzBmfWuEEO2u2DIS0oXiikKhi4hsP+bgkbvExWlBby1DRdVNpLxRelDVNYqyzaXzYey05XFOo2/9NUt/DaQyFDkc7AjeeV0hBGxdNGye8+Fm8USeRpjbd7Sqe5hqhybrLe0jO17but2Gi+udoz6uPawjpcuDS/sTAMzGsPtQ8PqXnSO2fQEuX3fzuE3a9U/unbuq4odJ/Y9jAxa9OvUvBA/IvRu+D1NVpN9/RWTHj7dWWPLnNPPfG9/pbYG+roEB3WrChhCwvmlZ39TcQCOsW7XhwQPFG2/12N+XbG3m3LhesLVluhPYvX5OJtxrOe9Rx5WvcyPBvQPubFt7flv+uecAmR/atW3PY3q7QwG8goIW1Hu33+bq9eeedDdaNQ16Ry9ovRzYVHlZq1hgwhSWnQcbrG0cEiXZpE9TcHY8uQthFBVEUUHao56kNRsl7D0cIKVlsHFIlJTPyQcCjyoa85F5w8aFmXVENN5cH6csPxfNVHlN1q3fuXnBcu6yJs/g0V3J7j3JpRuGpDcJjUFzqpJWNX7Mz0JW47XyP3iNdpsexMwpGk6Z10T90vuxQZ82/FZKBy6Gi1ctF6+6sOz9u/CFX4Ptc5Ybz7vRkw03zu9H2c+m++edzj9fA8LKHxl0EJ1XXkNPA5raHZ+2l82fvLkLwuaY8I025kNYFwi5/MQr1wxXr2qshZ1HgrdupQxfEzx/I+Pq1dLi74IU0eIkLQ1h9bPy6vqjnVsgrMMdtA14bYO3jlGU3nGLXCXD+IWgoAUVVrZ6fGXjmCTNiNPTG2IpBKT9jK0Le/TWRuw9Wq8Xb/4gKE7g0k3DxeuGO29JsvH8Y54Vqci5XV/9CegP4Eufh/HoSffq2ZQQcO6c4eMfH/N1Xzvi4SPJr/16SpbNP/aDpuB4BQUdIa1zxuOChw/uce3G80+6O2dGXTNKz6ujC0UUn4xDVDllFoOU7Ze2OCnoDcaMhwn99XEjDNpwXTxrQ0jllZf5Ob4LxvHCjg1nTx3vN7AfoqtG8DXygjy+jHuW89c09+8Irr84G7prtuVt+waMbxCWBzSSzztcF9NozzbOO7t/sq1ql8fb73fCz6lqCVdOBlzAxauCtA9vvAYf/Vo/38vrR5UP2DGCWYpZx88/Tvnuid9uWw5TI8TVutlaR4iOc3hV29wv0eHF2Hn2WEPd7pffxySFj36s4M4dxRd+q8+rXzf06s4J/S3hfnU9p05VOXwdz2Nee7Yl3AmLJdT7Co5XUJCn37CH9fYDOyQbH2Kt5a03XuPWm7/zBHsWdJSKfJ/9R19i5/6vsvfwNxgd3sGYdldNSoM1szcba039bxWyxs7+s5N/nXW9Oqb85+9/HPXWIB+dnNvn99NY6n9LtWFn/3Vp3jmm29jYKqesyOe3fRwt0ud5Mt6/1nO4OeyXBKbmccdtY1lduaIREnb3Thc1rBCTf8j637FVLUC7UF3ZEQqdKIBXUFCH7jOi198A2+fjX/97eP/uu0+6S2dGQsj637w6vqQy6GL5y461miLbY3Rwm9HhuzVU1dNpWE2cnmfz/NexvvVVFNkjstG9Rh23DeNRQpTMum6LPKdlJKSo/x1XUgi3NuUK2gI3+lGe4LiAVfXzJPWkMwZWCTz1CN9jTk1zGur3DHl2dvvXJStk/W/VCqHGoCBPFijsZCC4EJKiKEe/LfqL5wloma6JJZ9HlcBtFhoJdbSSXs7u/Q3iNK9HGM70rxzf74fiRofvko8fEMUbGFNgTEZ/7SaiHMYdxeuINHKLVluFigbYch4t//lmowSlDEnP7esabSc6pu+ugGJZOJsc54Xl/KksOtafXKWMhvffkWxfMszNvl6Buubpmif/6c97Kebx3fTxOw/dDPv+xKur1CJv3bxw1jKfLLHA1AXH6cOqZAw8fKh48fmnL7Gwc/HsFSiAV1CQJ23hN3D5CJotrDEIJRvzUy2iVdw7j7t0hxTCzUEmms7D3JvUMV2KBjT4c+1UE2V6ZSqCjfOHHOysE0U5SX+MikxzwdlJj+ut/vpzDDZcjl2RH3C4+zqICbwI5KQfpkDrQwYbLzSmfRBS0t/QgEbKaub6DvhprI04O+VE1/6u2e/r12LOAt9d/WgAm2h/T6tJVhuToyqJtXC4Czv3FNuXDBvbojmRa8t6kP5nrzHyvgFTYqYPXdDU3BYzZc25tGaPa5bZmf1HbYMDgPffszy8Bx/+aHd71RxZzdnsvbodwCJbypvTN8we0zX56bw6i0BT22Sqq4attpn5/XMUmeELX0y5fjUjTfy6i+dUHbtvS6wTuZCWOS5MJxEUtJxelYN6+5a9wD+TB/XfH/uaTxy7XcHx5+U6juLUMh6COIPf8CjWbF7YY3wYM9zvo7VCiIIo1qQliE3LOVma8fB98vFD4nQbKdtti2z8ECEkUbx20k/lTCsbw3BPcLAj6K9brr5oiD9gax5mY7h/Bx7cg4uX4CMfbw6iCFq98hxu3454713Fiy/kkyklgmqdwctyUNDZk1KKXr/9ruX/2m3zxQSWOAadMxmmtaSabtT8X1/r25ad+4LtK7P7ZMMFa++PX8e0uDxdLpf058JqWS9PeVccuaFLBwp0binyCBmpyUi0mRukwpghcbJOURxgzKgBV0IKjB6Tje+weeFrkVJNOUyzDpQf7uuaTLVtKaGuNR4b7pc/S315XKOsY7vZnmw5TrQeZ7RgeCAYDyXZUBAnsHnecuGqRUpaXS5oXzLId7kas9i3LCsku9Zq9Of/ErN1upYUanOb/HUWuxw2Jd1yN4f7LqS4+xDiyHLuInzNq26tx8lxR7tmncvvNEZcmpnyhnvW4ZTVzlXDaevqW4tz1dG3eWs/Lra80JzjOlL+tYZ79xR37ijGY8HVKwWf+j3DhV37ZZYXavStZR3Gxzvf0b+OO8+3ZFgygFdQ0DHkX1QXCUKmfRgNob/RfhFfJuemNWwjmzfNjXOw/8jNXr6+bRt1mnlG7TdxazyAqGZ5N7PTKizUXx/ivKWIGkuxKLfwM6gjE4W3L30UgOH+bbR+SNpfR6qJ87W3/zprmzdQkSQfPyBON4niwUw/qjCgDzlti2i78lnImgdY08epqA2gfBDqAjIx008p3Fxc2Ui4NSFHAl1Akgj663DxiltIW4j2tqa320KNzUWyjwYvH6CaUO+X++01j585XwP6ZkN//hJF+RgO9t2/0YEbPDBYh3PnLTeeg8QzRRvw1lgyaBaWRNf+jvKqfnMNyKOX8FGdcHd0uWosubMEQC1Q11/yZ7K49iwI5Tns7koePZQ82lFYbblwvuCVl4asr3tQZGfP4at9rcb5Ycn6uK6Qoq+5a0POD0W2na8LthbJDQvgFRR0CtrYcr/A+xvt+/35hqbLpreb+UCzF/zqZnv9Q/DWbyuK3HLukq3X9fOhqbF2YGNpHH/76NhMA6y8O6wpF/nz12q0aj68mTkXLikkuuhRZAVxmmCtRqqUotjDmB3yfIQxu0iVEifniNN0pp9SzoLQvLwuV14d57tgPry1g+wE2Lpgayovy7ibW5FL8gxMISkyUY5KFCSpJenDxqYg6bmE8QqgZAc0tblcfp3G2omqHaDaIKsToDocLX/h60lZh6tUulhF7n64jIaQlY9FDmnPsrYO587BxguTpPkKiuYBFrRD1jzAmm6jgqwugPKNn7rukuCl2s7RtT0nx6t7exbqshHs7Uv29wQH+5LDQ4FUsL1RsH2u4MXnxyTx0bA1z9FaxIFqc7S68rfm5ZF1wdZcB62x//i5agG8goIWVHPF+4461S/fxkVQcO4CvPs2XLxOvWhxaxJxV4jHu/ibljrGX/S4rCoV3PywYfe+4N03JP11F4KMOkZ0FV2hxLJzXc6Ov6C2mazxMlmr0c6WzWzPCRNYa9HFkCLbIy/GGLvHxvmbRGnM6OAh6eAaKeforf17xOn6pM9iFn4az6kjpNjlBFbbzVDk0W6Vf24p3HqSWoMxAl0IigyscaNni0wAAikhii1pT9LvW9K+IE7dZyfy222BpXmhQb+u61NV19sv249rA6tlnCu/TuMzrWE8djlZOnOzyztXz40w7vWg13ezz5/bcmtSRtGUa9QCcsuECWECRfPChH5dmIBVZxhQzAJNZ5hwjjPV6aTNDRl2OGXWojUcHjr39PBQcDiUDA8gzwW91LCxblhf11w9XzAYGKScOoc5ekLT44YM57lYS4cM247ruva0QFYnYC0Z8gzgFRS0gISwDdjquqC3lUnhIOj5l+D1L8HLX+1uWrLFBfChqgFYjbXsZiGr+Zvav+goLl6H81fg0fuSh3cEeWZZ27SkA4uKRd229JLafZiIYldBe1Blism2X+4DlC6OXuNx2TUZh/t75ONH9AZbbF74CGn/HEJINs6dByYw1XS22gFJttX193eC1exxSkmMATe1mAv7aS0wuXTbhQMtnQukKuctlxlSZfQGfdY2FGkqHFTFNBLgl4Ep0eJALRMGbNTtCBM2y+1sHzrcqiKDvPynM0ueQZa5UKEFktiSpJD23L+NDffY77n8tK7cKdmRD1WBzDJulV9nnls1XWeZ/KtWd2wJ8FrGrQIHAkUBoxGMx4LRWDIewmgoGZZh6iiCXs+w1tf0+4YLm4a1gSaOO+Bm6it9XOeqFayWCDUudNwqnKu2UGNHe4uMgAzgFRR0Sto+D8MxfPnz8PzLLu/rtCQVbF5wCyePx4bDPcHhruBwX2K0W+xWxW40ZFwO/ZZnbOqy/voV+utXOufYelxZ666fpjTwjBHltsBogdYgSrCy1r1ulhKKhBs4EMcCFVmK/BFKada3LjqgSkBFFikM773579A6AyMQ4gIb514hjp6eS7HRUBTutSrycib4rASs8l+eT+Amit0SMnEJlb0+bG47sIoT9xmbl1wf1C6tIcsEWSbIM8FoJBiPBVnmICvPBRKLiiz91JCmll7PsrlhuHK5oN+3RKoLdIJOSk/Ptz0o6JTlfv1MfmU2PKWuX9pViMPOlgFcvgIb6/D2V9ycYVeuw8Y2VJG7rsTyZrn/i2o2r8dPEpfeRbVyTaJYsrbuyorcYK27cY4OBPlYkB1ANrbochS4sda5IcKgIgdkWINUFqnc31JaNxLOukd387QIQWM9xOMuNC7KEJ0tn361LIvAzdrtzDNR/vAUWDsBJ2Moj3X7jXHznBkjmjd55UJ8UpWOpCphoYQpqSCKBDJyiewVmDZGA5YNvvXlL2NNzoUr30wUJXWd++/9NucvXeTitVdQSvDbv/4vSdVzrK1vTdpoCfM1Rwji7Z8NO7Y5qbPHuddFFy7kWxSQjxw0aV3+K0qwKtz+qm0hSphKnFOSpJb1gYOoNHGPUdz83LeFBFWHG9UWEmzmO3a0O2fOK9XxnZ13XON8cxLbHzfnSusJuOaZIMssee7AqijKx2wyNY1SliRx/9JYk6aWjW1LLzGkqSFJ2sNkDceosTRi0ymbrntW8q9az9vhYjX7ZGfqLtLeov2ZrtOlAF5BQUepTnq3zTCDPymov2httQBwY5VaLxSnJBub8NVfD7s7cOc23H4DkgFsbrm19HqD6pwdo8z07I3ZN0yiYrLfiwJSxNXF3QsHpl4y/LZX7tUpclveEBS6qNa6c2BmjJsmoyjhRuup9ers8WHLlxDOVRLChcyEsDUEIKiBSUQOhIR0YagoLrcVqMgDK1kBY3sIr2s6hRoaOpLPpRLcv/MVLl+7QjHeZ61X0Bv0EcIihCDbV+TZiDQ6ROcjrly7yvZ2j17fD3P6554tk8KDJmsxJSTpumwCTkbbhkNV3bCldO2oCKLIOoBKII0g6kGcuLIohjS2qMg99zYA6sqzagv9uXPPgkdnsntLInrn1Atzjlsmp+pxwoDWlgMjivJfLshzS1GISVkhKDJBXoAuRH2ciiBWhiQxJDGkiWEQW7YHliTWJLElTUz9eZgLGGY5gGq0UU+KugQIndJowdaQ4DJ5W3P601WnG7ZOOcdLCPEc8EPAFdwP0s9aa79fCHEe+GHgReAN4LustQ+Fu5t8P/DtwCHwp6y1v/K4/QgKWr0mK6opDNa7q0T+ncL/LrZGwdrzr85tC85tu+/33p5k9xG8fxvGQ3cBTnqWXt+FZGQsSFNX3oCpqEyuN+2w5U+4r01V17bu9wcZGg+8qnL/etJ0sWjdnhy/HHi1zS22yDIyFUR1haraEsq7RuF1zQ4/z1Wy1rD//j6Xrl7mYLdgrTdmc3Ozbu/c5svc+spv8v5bP48UlnMXb7C94UbnTdpz28MDuPUVB7r+SyhxrmIUlQnmqgpzWpLYzV1VlUVxWacErDqfqwWWOp2kTrhpK2t3hNpg6axMoVBtW+s+91pDUVi0FuS5g9WizNvTBeSFcNsVTGmBrb5H1r2ecWSJY0MUlduRJoksaz1IIkMUW5JIE5fQu0xSurC2nsNmHjS55zcLG3OBza+zAKQsk0fVer5TdqCagLXAuSt15aUuOafXKhyvAvhvrbW/IoTYAH5ZCPEvgD8F/JS19q8IIf4C8BeA7wP+EPBK+e8bgL9VPgYFnSmJErwsLhE8aoUq6ikdYPJlbYym87Yj746tPdcsPmc5f24CR0UOB4eiHkJ/8Ehwb+Ruwtq6EFgUg4wEUVQ5Ou4mK6SoQ2Uqpl4UuWrbD1vqjh94xqtTlZujfwweWb6M5g5WmJMP1DkNx1S5MRPHqHbnKlfIWJcwX9Xxc780XHtuMnWBf7O6c/t1rl3Z4NLVS9x6/S6b/YLtNY0QBiEEo4NdttcMH/nw76E/WOMrX/51Du//Ftc+8jWTvpXtbaZwccuBVRQd7R75xy0yIq8tBLfs9AaPOzrvcRLKKxiqwqTGCIwp3T0tMCU4ubCpezTeti4cNLn2qj446I2UdS5g+Rgrg1K2dANduYosSeRC75GyRHWKwfxE7RmXp5hylXzNmYOqrd3p49r2LzOSr9GGf+4lQn/Nc8wDoQWeX8s5Op9TGywtkiTfOPfRYLlQuafHBi9r7bvAu+X2nhDii8AN4NPAt5TVfhD4GRx4fRr4IeviDz8vhNgWQlwr2wkKOjMS2Ho0o9AFUWNUnDfCz3qj3srf9n5Z3AFbfp1qu96fwMZAtB9nRJkDQpn74UaIFTnokQttVDecLJ9cd+prhy3DbxKQk1GXUIbfBJP9AMLVt7ibVBXemw09Tc7R5UodBWwV/Bg7ORd1ua2T321Vx3te1kyOpQSl6XNNc7Obzd3Wz7UaaapUeQOWDmwc2FqUdOVSwtb6xCGroEFrzZ7cJU16qOwdYvuA8cNHxJuGzc0tAO4+ukOPXa6eV0hxyPhSyoP777OdDr3XcQnnpqV8GfhZ5By+joIiB6emBFYHQi7s6UDI2gkA1eHQKg+vdJqMdsdpLcqRonbyWfAkZenqCQdFkXLz1CnpBjFE0pBKtzyVSt37HEXN/VEVPj1mrlItA0KfHhQt4lbNhaKWdhfpW/O4U3aSGuXHfH7H6RusBN58rTTHSwjxIvAJ4BeAKx5MvYcLRYKDsre9w26VZQ3wEkJ8BvgMwKWQihb0BDS5Ibn5bKIzss6dEC4fJ0mgX7lR/jW33rYNYKvKXeL5JIRSJZ9rM7kpVuBSbWOd09Zwhuxsu5TQ1Nl3b6MBbmICdaLKP/Lyt0S1X06Ok9LbJ8u8rSrXy9tfqQkk1aPn1nTlGTVmLm8e78tay3g05NGD94miGGMKlIqIvfkh+v0B9+6+y8MH91hb63N4sM+gGulwTFXvJdV7YsAa4eDU+rl3onb0rLVYI8pyWwNtnaPn5etVEORCcbOvUf0oIZLGvRfKTuBIWqSwJdhaVFkex5ZeOUAjEroG4UjZybY05Xs/H2jmJYY3jnuM1zvo2ZK17geA1u5HgDai/FuijQsl68LWf7sy6ULSXp1Cy7rBb/zqO0eec2VEI4RYB/4x8N9Ya3f9HAlrrRVdy693yFr7WeCzAK+I3lLHBgWtQpIyRAT85q9LBmuQJJY4dvkbcWyJYotUkigubzJliE9IWd+crXeZb7hcXnlVx3Y4Yn4bjTotZb7ajrMdt52uVYC66rfWbenHkl/91pBZ2/6utjsnvGzp01HuUQ2d2AlolpCCcYDpoNQ5bJGFV57/SA03d+/cZnf3IXoPvvzFL7C5eYF+f52+uMLnf+7zCAS9wQY3bnyEW18eTYDXeOBbPjbBo/mcq4EGqgQWKRzoyNKxq8qUMCXkOBgS0rpQdDkiVQnjgLd0j+o2hKmdvnpAg/fadbkEyyRzt+Ykla+ze8pHH7/IOVaRq9R53Jxk7+Zxc+ouFWpbpu7pujzHdaAqEDJGYM0EeIwFraV7NCUEFe5Hhr9flz8oKkgyFUgZ0fESuM99pKrPeemgSve3krb8YZCTKIuKrasrdH1MVb/+oTfnkrcS8BJCxDjo+n9Za/9JWXynCiEKIa4Bd8vyd4DnvMNvlmVBQWdKEo20liQxfMvvuc+oiNx8Obkgy5V7HEFeyDr5tqi/+GbiBDXsEffNdy6KqMN6CDfirnJ+/BF7orSCXOiz3BbN/VU4xneR3ONUwvmM0zObkD79dxtAHqXpZHv/plS/JvV/DtYq0GmMiMTWR1ojJseWIayqDWtFCSm2Ps4YUYcpjZnUrdy76uRt69D5z1t4ICOEg5AKZCaumreNca6OsGyrgsF6zCYPSM4L+v0hSZJzbU3ytS+8ghIOfqR8iMJOAdBk1ObMLOHLjELremMaxy0QJvMhaKq9RRK8m8e13aQXCJ8dcXzn+ZYc8n+qcLNseO045+iqX5bVrrZ1gGJsGSa2bsCA/7ebnsU269THKFenOsaWDpIt/2nryiqgmv6B5vddWPcDQBokExhS9b/yOyZ1/X1LpUVFBhmXdcQEmmTjuPIci0zevNTnCTfgQdP9C9bTKkY1CuDvAl+01v5Vb9ePA98D/JXy8ce88j8nhPgcLql+J+R3BZ1FRRS88sIrxLGlrw/oSwE93D9PtmUoo22LRQG2TLSvQzfGXaQmIb1JiMiViyaQuBPOlJfFrlxMjpseNNQAH5oOVSNkON3vJT3nNnCbnmqgCv0JrAeEk3Di9PIt9T5ryuk9/LCjRVhXhlcmSxfHn35CiMkTWuqG79df5GZ8qdp4D7FtgYNm5elE5uriPa8fy9545xz3uHk9ix139I1uKddlkf4c93xzjrfGTECl/B4a7/s4cUJF/X2tQKOuZ0zjb/fDoPrxMJmDzlKFeMu6xk6uFXbSpqtbpgkwAShm4Kb9OUlpyx97tgYZB/628aNDSVN+n6p97nsVV/WURarJ8Wq6nfIYVYaVl33tG5oHNw0HkQkU1ccvcI5Ge8f8bnVoFY7XNwP/OfB5IcSvlmX/Jxxw/QMhxPcCbwLfVe77CdxUEq/hppP40yvoQ1DQyhWR81//Z/97jBWko0c0JneapyW/iDMqAeKktcicMyemZV6jeaBTh6SWPG7Jvi3lXMzrxwLPf977Uy27NIFmUQL45O9qv61djgraq9Bz6Uxa26zv1W20Ve0vpxyZqVf9Xd4cG31q6Z/ri52c16tjrZz64eH3Z7qumNTRZgIzU3VmX8RlvgMWUbmTtTttazdaiAnEuB8IlTvqHUf5Q0BMjpPC/fhQVd3qODU5XlL+4PCgR3p1/W1hzdFw03hKcz6Hy0BKJwgz86NioXM3+rH4+2RPqN3Hvq6XWsWoxn9D9y3i97fUt8CffdzzBgWdtBLGyMM9skyh9h42HZslbf3JzaP5C7m6SWG8mx7Nm0QzjOa7VmKmrLG/Udb8ih51fTxKXblkrW1XN3rmn7tud8qRq/dZ23jefjszr4fxAGOqz7VrWO2v4KDRnv8+zJ57FlrUbHvL8uyx+XcSJvQHDFRh50quTE5y2/y6dYiSctoLvL8n9f3BJtU56jZEdRMwHoRU7VQhclv/npgcM6k7yRlzgCFks67f1uQ5trdT17G2tc5SWsXNdpmbu3/qo85tOfJzU+865rmP87yXXX+1vZFj9ve45z7m+R7nuYbhgkFBHUpERvZgnwvrY37h52MEVYhANC94jQtbhyNS/RLFtt40XIJn8yZX3TT8smq7erTWzNx0ffn3mEYC8xEJ7103pq7w27zj2o7tmuHcT0WrywVgTeNG77cx+7rY2brV9jQQRF698kLadqOfPs9Mu1V5o0736zGjJ+k8nraOc8Oa8xVbppmlD3+C781KQGaejgtmc7SU67SIVtnPFffNLtm3AF5BQUcoigyvXH9YJjjr2s5v5sv71lLLF3qhmUfbjpv/ZT4xS/2sadUX8dZTnMJNLigo6AOvAF5BQUfognmHO28W3Dy/W0OTi2Z5N+nG8jlmpqwhf9h0W52Om//c9Q4DNDybWjhR52xLLB3fC1pEq1gH9dR1Bq5VyzpUq1YAr6CgI3Qxf51fe+N5Lr7wPhiLNrIcFm3RVpZDpaeHTcvJiETK2bqr/WaSMGzK/S586Y6zUCYgC6y2ZWhENPKVmjlK5fZ03lNj/q7jP/+ZaSY6QoZt82HVh0paQ3+z9efv83dOz7gu/MWslznfEc9h+u/GCMtGfb//Le1O9cMPh07+Lt1UKb02imY4sz7ANsOa2NbwZ7WgeNWPthDqUjoFEBRdE7idosQyA2mCnjqtPAy6pAJ4BQUdIXv/PdZH8NO/chmsqSeiFHhDq20xGXlU7UO7UUzCgtVlOeVjOdzaGrfgsT/CCSY3VVuVeXlh/k1cgIjaoWU212t5+mqbt6uRqN5SV0jRSDx3G2Kmng+P2PK4NnicSag/ok8eFLRNFusPRmhts7rhtzzHKsNMe+3Wbckqub67r36Z/05VcI5o9tm1JZgG6Ol2qtfbf+0qUO8+NyDkQgMlprUIFDWmB/E+u9XfUonm53UBiPTrC8Vs/QUglOm2Gjl55fdLipk+Mwdcp8/XVjbpgwflJWDP5hC2QXoT5pv1eSIKLubxFcArKOgI7b/3iMs84rJqlttqQUHbblsvki+0jN2t9clY41I9/sXzuA6Fc3a8v6ceV3OOxY879jns4u7IcV/v5Z7Hcm7Nql/bdkCUNSBWzm3ZSrP+1N8IWbu+FRBPpoiYgs02cBeTL661ogbotmM6gdX9PGo8n2rb73P9fI6AZVffbU//2Oj6cdF1vL/vKD0pQGobNAPMzMrT5kq7v9td59Y2jxos1OHSt2ux6+y81Ti++uJbR+4P4BUUdIQO7k0mvewCpWWSsu0JAdQqJI4NBccLyyxzw18GWM4KpJyFPp8KeC55XBdwt2mloLroSTmdz/STaG/S7smGUq2d9H12OplZR7nVyWa2XlsbTU2fq6OaVB075rU/Va+rPMuOPC6AV1BQUFBQUNDKND2PW3Pnk//xedLgOU8BvIKCjtDwwbDeXiY0aJ6gs7WK8KGvYzsh6myF4JZyoJZyq07GgYKnzzU7qf42jzt5N2oVTtNq2nh8QFjl9eA0Bj48SSg6rYEdAbyCgo7Q+GFeb5viyf9S65KMTu6CIeLjtX3cPh035HkqN/0TgsmnDSBd/TP8Pp0gDFd6XKA5bfBcxblPq72Tbrd5jtMHvQBeQUFHKHuQz690TIl4dV/4tmXQFtFCcDScX6WSD2kn2qc55z65c7lndRpw6Gspt2YJOAS/T8u9Y8eFxWXOcnxwXPwspw1ejwsTZwW8nhYnbf7rddwrlX+O5fofwCso6AidqMtVPP4Xfp7mgYVeMVeK4vFvCtWrsjQUtQDiPBhb5B1YhZtY9WPZd/w45xbqeHMUnTZIrN49nH11TxKq5r2XJzdYZf6n6DTAau7zX7mrdtxry9E9fRLzxgXwCgo6QjY/u+HFLvmwcerh0RaYPC64LAuFrQ7iMZ+/32e9gs+AKI75GrT059h9OCaEruTcbTfxfD4gVjd/c8wfCKcBhV06Psg+/uSeq3CjzEodrVW4+5NP6EnB0qrzYzvPcypnCQoKCgoKCgoKCo5XUNCzpifp0rW5KqfmupVu2yocmnlu29L5eUu8Bm39P67r1ng/jvk++E7YaThvXedeaR/mORtLuHFdmufSrWTUY4czd9wUgsZzOkYb3c/pdMPfXZr3vpvimO0u6egF8AoKClqZTgr6lrlZnwboyWPeSBZR203z2AMxFngtlgGZZQCw8z07xvuz8tDvMUfq+lolkB43H6wLEI8LLG2wuPJcrSXCuPMAcunnuQRMLve8l7seBPAKCgo68zoNF++swR1Mbuh2AQfmuFop6Pma8xqdFPDBAu/lYzqQ0zoODK7CjfTVgNMVziN4bCjskFxiPsR58kHxREdGriDnz1cAr6CgoCBOFu6O67CcinvXAhYnCXqVzEmmGLe8bscf5LECl69NS76380coryAc3aanBQpXPGm176ZZs9oR6AG8goKCgk5Yq4S6VYTJfD3LcOfrREGvkvdarnpS43lgdezPxYrdvzadFXittJCLeYKrj4RRjUFBQUFBQUFBp6TgeAUFBQU9RToLAxiW1Um5ass4MKfhsPm5cac9h95puCi+c3Vin5eO122VDuIiDtxJfh8CeAUFBQUFrRzoTvLGVeksAJ2v04Y7X88i6Pk6FejztcI8wWmtBLyEEP8L8IeBu9baj5dl54EfBl4E3gC+y1r7UAghgO8Hvh04BP6UtfZXVtGPoKCgoKCzoVWA3KncYFt0khDzuDfv08qNmzey9UnlBsLpz1VYfQ5X9ZxX5Xj9PeAHgB/yyv4C8FPW2r8ihPgL5d/fB/wh4JXy3zcAf6t8DAoKCgoKqvW4N9gnBW5HaZXAsuoEfl+rBLzjTk/yJOHO16pBbyXgZa3910KIF6eKPw18S7n9g8DP4MDr08APWWst8PNCiG0hxDVr7bur6EvQanScC9bTuK5hUFDQs6tlr0lnEdSO0irA5CThrdKqXbqVzDNXatVwt8jreZJh2iseTL0HXCm3bwBve/VulWUNCSE+I4T4JSHEL+0ssBp7UFBQUFBQUNBZ16kk11trrRBiKay01n4W+CzAK6IXrJRTluqrmbJ5v1pW8ZsmuGZBQUFPSvOuP0+bI7aIlnF8TsMdW0SP66Ct0jGb1iKv50mC150qhCiEuAbcLcvfAZ7z6t0sy4LOkJLz7qPhX4hMMfmwtl2gRMcHbpkvyUmmjQaoCwoKCjq+5kHFWQGzeVoW3FYNaicJXj8OfA/wV8rHH/PK/5wQ4nO4pPqdkN919pSsl+DlratlvJl8rfaBzG03Ic37gvaPBja/rorb+3PcXzh+26f5azVAXlDQ06Fn0cUKWq3a7j+PA2Ormk7i/41LpL8ohLgF/CUccP0DIcT3Am8C31VW/wncVBKv4aaT+NOr6EPQ4+vm779Sb+vyg2aKSX6dD1va+yBWQGZyPVM2fVzbL6ZOYPPrzPkl1XVcG8itItFz3i+/s3IxDwAY9LTprHx3go7W0+JurVKrcr5WNarxP+vY9ftb6lrgz67ivEGr1frljXq7GBcAmMLMlLnyCWQdB9JcHVe+iKvmq81hUy37p1XXj2bz17rO0SUf6E5qXp1VjLb5IN3EngbI/CC9H0FnSx9EUFpWJ5n75Sus1RjU0FjH2LN//woKCgoKCnoqFZYMCqp1J/oId8fbAOS5IZKGhCH9aEwvyoiTQ3pRRk+NIc/q4yqnS2cTR6zhcrW4YzBxujpDlJ1O2NFOma9lwpy+ugYKtB43x0E7rnN1Gq5al057+ZFVKLhJQWdJwWE6eZ2WQ7VqBfAKAsBYwYPoRX7fq68hpUWPMwotOTwUDIuYUbHB4XCLR3nCKE/IMhBYEpWTiJEDM3VIqjIHZ/oQJR0sdEFYFcbsArNG3QZAufIGVB0T2BqvwZwwZ3PAQGsTS432XPR4oBPuVglIPtw9izeNpxEmz5qexc9F0OJ6WkHnrCmAVxAAe2zzyk1F7/I5AEyekwKDceVsWUw+Bsb1fmsh0xGHB5ZhnnA42uYgT7hfxAwLSWEUAktkR/RUThplpNGYVGWkUU6kD0lUsVAemV/HmqOBrgu8lgG21v161q07qv7kuKNz1RrygG6RnKWVQF2lU4C742oVjl+AhqBVKkDI2dLT9P0O4BUEwC7nuHQjRZ67AIAscgBs+Qhgc287c0CWAut5mYifZcAIGNV1rYXhIYyLmFGRMhyljIqYh3nMYSEpMoXJNZE0pFFOLA5Jo5xE5aRiTKrctjSTc1chzaZT1gFexSyctcHYzHFlHb+sAj5YDbz5mndco65XXqHSInBko8UBqjnFx+IXtBNLcD/DUBgU9KT0NMHGs6BVpTME8AqisBE7dpuH8jJfeH1ApAwRBf1Ek8ox/aQgTTT9eEQvLuglGqkLr4ESsrJJ3pcPbPEMsLl/pgQ2m+fkWjLKY4ZDxbhIGRcxuyMYFTHjUUyeG6wVxKpwQBblRNGoBrPYjkhUQaw0VvtO2bzQZperZmeP7wCsBpBVxy1StwXeFguDzsLbQg5cOru/y41bZJRo3UYj3+14F6bj58Ed73xPwwjIoKDTUMiNPH0F8HpG9IYd81Nmlz8lL6LEYl+kQ7vGW/bD3OZFpNUYK/imj98lTQx6rBllitGhYZRHHI4iHgzXGGYR41xBoUFAL9H0pAOylCFprB2cyYJILX5zi5UhVmPWpBdq9IBNl5CWa8VoJBnpmMOhYFgk7IzXGI0lYx1TGAXGIIQhVTkxLrTp4GxcQ1osC+Ryq1gFBQUFBQU9tgJ4PSO6ZTN+xD7kd9sBr4q1hY55i5f56A/8ef7D60OeuzpEoYFNNCD6mj4wMN4C5UUOaEAjdI4xMM4Vo4OYUd5jfLjGfq4YDRWjIRRaIoQlIqcXa3pJQU+OSePCgVp/SBoVCNMRzsw9CCvdtB6wXoUM85xp98zVzdFGMNYxo7Ek0xGjos9wKHmkY0a5JNcRFoE1hlhqB2SigrSCyI4akCZE01Wa55S1uWDuuNlcNb/OvLDlzHF69rhm3aNHfi4S+lTJ7P55Tprft0W0TK7aPC3kZp1CiCaEQYOeNoXQ5ekogNczok+JNdaQ/JTd5VUWA6+CCLXe4+LNAh1HGDu5CYtyMi9hCq9sAhuiBLIYSM4VbE7XLQocpEEx1gzHinGeMD7scZAr7mcOzka5ghK20ljTkxm9pCids9JJizUxIyojrwppdkFaVb4GHpBprHY5aL6TZgtNrhVjHTEcwlinjIt1DjPJw8KBW27c18RoQywLF9JkTKIKUpUTJWMSOQl5CtGdO9aVi9YW2uwcndkSulyk7vQxcETi/xJ5a13qgrq2dtvgbtnz1fJAcBn4W0aLQNVxw6BPSiH8erYVQoLPjgJ4PSNKhOSbxTr/2u4xsoaeWGTEjWBse8h+QdFZw7t5ejOryhYIk8Yvm7QoBwUDYADg1ZHaOWii0FgL40wyHqWMsgHjTPHwQDMaKUa7inxcgqCw9NSYXqJJxYg00aWbdkgv1sSR6RwQQFEm5U8BW4KDtElumMbmI1fXn5ushLRMR4zHgkwnjIsBwzHsFBHjPGaUKax10BFJ7dwzxiSycFNv9HKXp1ZCWiSbeWfNgQFHT6fh15+Xc+a3sUxdX13HNeo0jlOdbR3VdlsfZMcans1zt/RpznFdruI8dYHiUoC4Yj02ZAa3IyjoVBTA6xnSt8lN/rne5efsPt8qNhc6JlcJWdRb+lyCyUW+dsc8x8wHszZIA5AlnFXAJoE1k9d+ndATQBIlFBkD2TBilCWMD1LGmWQ/V4yHltGupCgkaI2Upsw/G5PGmjTRpNHIhTsZEUdlXwvPKWsBtoaTpjW9qf1QNMKcFbyZcsCAgzTJuIjIdcpoLNnTMVkeMc4l2pSAbDSpKlCMSVVBrAoi5QYMJKogFjmJcnlpTfCqwK09hNkW2mxz2ma3jzdgwNfcEZ5zoGcxuPO1OOgt2odpzWt7EUCszz3HEVxaJwSZHyQ9SXB+liVVgHpfAbyeIX01fa4Q8a/sLt/KYuClRcxBnrK/L9k/VIzHgqIQZLlEa9BGYA0zywgJAUKCFBYpQUpQ0qKURSmIlCZSEMWWWBmiyG2nqiCOLVEEsnTTlO+OdQCb9OqoNQdnGx6Y+fuFNmgNoywhO1TOScsUO0PDaF+Rjwy5dsCjrBul2Ys1PTkkicvteFyGOMeTJ110hDa9cjzwqp20uq4tw52zodIiM4xrJy0i033G4wEHOuKhjlzIUyuMlVijXV5aVBDbjCRy+WlxCWyJyIhlNcJzdjqNTpdr7tQa7cfNg7eFRmrOCYk2y4++OS6S79a+f3EQOq671OjbMeeBOm2AehZhpAt6lQyAEHTyCuD1DEkKwbeITf6hfcADW3BedL+91oKxkqKAX/ylPpcvF6ytw9qaJk4giqghSkqYHihprXOfJv8E1li0Fg7YCosuBIWG4UhS5IIsF+hcURQO7igdsghNHFni2JJGBUnstntxQRRZ0sTQiwRxZGf60SWlYK2v2YgnU1xU4OQ7aXqs3QCBTDE6cNt7hwmjYZ9RrtCZwVr3WlSjN3uxdrP1lyM4E7HcCM42SWnpy5ye9OCnMRWGvwB5FfJUjMaKTMeMxoK9rE+uI8aFItcRuYlqmEhkgbKZC3GKcemk5cTkxConkQUCbyBFUFBQUNCJKIDXM6Zvk5v8sH7Az9hd/pg4P7M/tzHv2uf4on2VPc6x9jDmk58ccfWqxiABRzamCtt4WV4Wj3oELrKj3B/Vb3dV724HkUaIsjrKCPIc8lyg84Q8F4wKwd7YkB8KskxQZIY8d+cX1pCU7lmaWJLE0I9yksSSJpZeNCaJSyfOd9NK4PInY5VFRorLx972Q5tF4Z59WVZowfhAMsr6jHPFeLjBbhYxOlCMR5aidNAicjc4QIzdwIBEkybV/GcFSnsg6M03VrlitlHmOWy6CV5V/rjLQdMYralWFbBToUhrITeKLKtGekZkRZ9DHTHOJNnYQVqhRf0exWTOQZMFiXQOWlQCWqJylB0TCT0z2nN+iHK+i9WWt9asu4JJaJdw2OYdt8j5Kvnzo63CuVrGpetsY16flwifLqIz4aA9JW5j0LOpAF7PmG6IhI/Q46fNHn9MzoLX63yU+K/9AC8W8A2fGnHpyhApwSBr2AJKCHOu2HQZNCHM2grWlrPppQ9nscuPiYSpocKHNCn8EZeGPIcii8kyQZ4LdnJDNhJku4Ji5PYbI1Bo4tiSJJZB7OCsH2WkqSFNLP1eRlR+C5QPZOUEsVJPQo3pZlH3TTYgLYcST4tR4cDssMcoU4xzxc7IMjpQjB5G9YLgUWQcnCXONUvFyG0LB2lSTsFW1woCVR1/0thGGNSVp15dV1bN4j/rsFkLo6wKeUbkuSLTKaNMsacVWRaRFcrNmYYb7SmFG/EZiaIe+RmJKlctd6FPWRCJvB5QMC902bXf1zyo6wqDzmu3WWfxCWu7+tbe7vHO3dTsjP7HhYNVA1FXP5bJg1vufKe7kPwqdVKjb4NOTo/zfQng9QzqW+UGf9u8z1fsmJdEc5Ilg2L7vMu5unrdoG1UO1o+WFXApb0Lu7bt4FXVrQBser9f3nZp7PrtKbwJThtOmbCgQA4MyQASQHktNyFNkeeQjQU6T8kyweFYkz0SjDNBkVl04WAjlgW9ngtt9pOCNDUMopxeaklTQyImwOM7V/4s/nLNrXHZ0zlbVVlR1dUlpEFeCMbDiFGWMs4lh4eWh7liNLSMMoUxAmEK4kjXgwR61SCBZDLNRgWLPqTJfDbnDDpctY7tpJguz5qhT68uxqCNIDcuRzDXLtSZ6R65jhjmwv2dK/JCUVQDCqxFCFsDWyRd7pokJ5YaVYGb1MTl/kjqxrQmy+SUzRsQsNT6m0vmn83PL3v8/LNlgKvtObUvynT8c3S3sTpAavbndNdOXCmonuCdOLh0R+u4n0f1GAMGAng9g/p9YpO/w/v8tNnlJXVpZr+1wk15YEUTkHyYYhamGu5Xy7buAK9m3dn+2gWcsrbQpZ8H24Atr64S1l2P+xAPDDGgvDwqH9isVmRjwXgMRW7YHwnu7ltGYxfurCAmiiz9pIS01DCIc3o9Q5paBipDiCn3zB8YUEyArbeV16Mkq5Cm0C7ECSCyjCyXjPOI8VAxzhS7mWI8coMExrnC5hohLalw85/1Eu0WIa8GCcgxSeRCgvXggC4nbV6Ys8Udq/bHlJPb1m/wZCBBc96wJjSZEtjyzJLriMJIslxR2IS8kIyMIjeKIneDCwqj8K+TErfOZyQ1qgQ2V6brMre/QKFRUhMJjRJt4DXfYVsG7rranlfX1zLQt0y7y9yMl6u7yE3saMRbBSicVDjT75s8hbvnWXbxnh2gawf2kwyJB/B6BrUlFJ8Ua/yM3eV77OJLCLU5VqYLzDyYqoCrreyo8up8/ojJRSCsTU1HbFLu32Crch/SlOeqSWEgcXM0pdIwAJSYgEJUzo2WZ5BnMeNMMBzD3qFh/FAwHos6GT+OdB3OHCRFDWZryZheaks484CsBLWGk9YrEDigGXggNxkcYBDazYGWDwWjrMcok4wPLQ8yyfjQTbORFdINEKhGcMpyHrR6uSftRnBKzynzXbNyuo/m1BrezG/zHDTfaWrZnwI04KwAiu7cMa8NXUBWApnWbkmpvJBokzgHrhAcGOWgTQtXz0i0rj577hxKGJTwgE1MgE5SlGUGWQNdgRSmLq8n9/VvRtNDgem+ka4C2B7XNVtN+HSJkaHHvHEvctw89+6sOXfNdk/XxTsLOXdnEeLmgfXjvP8BvJ5RfavY5BfsAb9uD/nEgksIBS2mOIE0tayXsBcJD6CqkYG6YDx2MJYPLYdDycNHgnzoyqwVxMIBWS+xDBJJLzWsxZpeCWyLSgjopYZeWl4IttogDWxWuNGbZThznCn2ytGboyxCl7OxK2XoibFz0GLnoPWSgsS6MiXPzkVSSktPOlCjxY1qAJsPQlN1tRHkhaQwqvwn0bbcLgTDPKWwCq0FhZE1xBkr61w3vz0l3ULzqnLjhEZJMwVsDtoiaRDWAZ0UxkGgNGEt0SesO8MRb+0P6SmJEIJBpLjST1krk0KtteTGYrFEUi78AzcoKIDXM6pqCaF/ZXf5xIJLCLVpkVytqs4iLpcxYqbcL/MdNq1hdAjjMYyHbuRjkbs5T7UGW05l4d9PhfD+STcNhJQgVTVFBsRROddYObdYFIGKoJdYVPmNkCVcVIng0HTHGk6YV6dy02JRQA/iHvS2NRstx6FVDWfZSLM7luj9guHIhTal1SgJvZ5hkORk2SOkGPHC1W36PTflRuWUNfLMWt0xF8ZMcPlntYocsEBe180LwfiQMv9MMRxaHo4V4wxGWeTeL2McoMWaVI5Jo3IEp8xII+egJcKFXZsuV7tT5r+JdZJ/Y39HIv5Urtn0fv84f0qOyoWz5f4YSP3jTAlz0+3VzXYDnbUuH7IoSoethDNdA1uCMZKxFmgr0Vq6x1yijXPmtJVNB9paBBYpLKp02ZQwyBLulDAl0BkUbgLhqIS9GuZK6Kvqtrp0LTrufGqrD1Eu3+5x3RxrDFfjAVuDFCUEb+wf8jDLeT5dQykH2oWG2/tDHowzrIXzvYQPrQ+QKwSwVTpBnYMdVkgBTzI0evqu2fHdyABez6gSIfm9YoP/n91laA39egkhgSgvDBbZmeM1CQO27/dV12UWqqAdtoA6ydrfn+Xw8B48egCjoaC/BmkPogTSNViLHUQpBYjZOcasBay7rxrt+mZ0CWplWW5gOAZz4P7WRQlzhUu0B9d+FEOSWOIE4hh6qbfdd8AmhHM3KlVw1gS2dkhTQkMKUQq9LQdnDfdMaIoCRiPBe+884tbdB9x/sMO90WWU2qYoXPgwSSyDJKeXGvp9w1qcOScttSjrtVeGMWVj4tkmmOFeVgYbuVviCeoBAS7kqMu6uZtiI1OMRzGjrEeWS/ZHlPlnkryMmh4c7rLei1jvyzr/LIlLSIs1aaSJRT55H/Uc8GqBrUa5D2becWoqv2zm+BZHrFHX60dnon7HuW312i00nUZLeNHacu49NweethJjJIV1qx840JNoG6NNSmEFI1M5dKoEPOq6fn5nY81MH9TKbYkHemW5Es6l86FPVdA3x7V73JDnSYYzp+tXQ5P6umDQT1hf7zsIFgKTF7yURnxUKYy1fOnhHnd1wXMbg9mGH6NPlVYZElw1IE2e02pDo6cNU6d1vgBez7C+VW7wk3qHn7P7/Puc4137HG/ZlyhuK1566fEmy2wDMr+sUZd2CKvuc9Vn/c47cPc9wflLcONFiL0BmbrlOFsCVgVaM30rrwFSLTZycvqXauWuFRnkBYz2LUXucrxM4crAzdifJJCkDsiSBAZ9B2lJ6hy2Sj6k+RAWlU6Zn/gfCYPWmkf797l3cJ/nPnqT9fs9vvrrLk76jCDL4O67O4zkBqOiz90DzWgsGY8FonArBbj8sox+v3zsWXo9Q0y7UzZv/rMK0lKgZ/RkBKeuptYwNUD91M//JodEjIqU1PZ57sJzjHXM7gg3aCBXNaQBxDIjiQypyl3uWTQZMJBEhlRkKDULTnUump51tly557bZluNbXDdX3AJWHQ7cPJDrcuPm5nh1AJ1zKx3UtcFks635cKdN6cIZiamgTlODntsXo61w4F2WGeMcu0ILjJUYO2mnbLxxLiFsDXNKGoRtQp0UTeir9kkMsqzj4G/ytxR2FvRa8uyOUtvrcu9whI4k19f7qGRyyxwkk5BjJATR4QirJFEv6WxrsT6097ktb+2s5Ko9bj9OMs/sdHLxllMAr2dYbgmhmH9uhrz4N36FO3ciPnRB8+rvHnPt2snOUt4cDTkpNy2umrGC17/kHKaPfJ1zsaAJW/53pyr3r6m6/f7ZUPv3ZHKOttVCRARx5EJRwgMz5ZGcwJKNy6T7HA524f6DSZkQ7ixJihsJ2XPba2tuW0UTCIu8/ClJwbvvvAHWcu3FV9l59AATbbGXD+pf3ZiMd95+g+H+Q7LsHaSUfM3XfDW9nqNWJYRzzYaCIovZHwoe7BpGd12IUxiDkK5fDsxMCWc5/b5xS0GVENY1UrMxp1ljLc6cvYNDku3zfNMnPs7O/gEPHzzkxo1+WddN/gq6XovTWijGhnEuycaScR6T5YqdsWVcOmlZLmuAF1aTxMZBWQls1WMaa5KkIIkMStn6HAC1tWk7QKgD3mrHq8N1a8BbixPWCnHT524BOdv5oW45zh4PvDC2Xu5x0s/mY+vN5higZ6wo3bfy0YgS9Eo3r4K3ooQ8KxmXMFjkzbrWVkDY7uIBNdzVoFeC2/WNB2z3Dtr7XH7H7u7sszbocXFro/Mmfv9whI0UFzYGqDTufq0aL9DjQ2F33eOHWI933OOBkzxRgDx7k+U+MfASQvxHwPfjQP7vWGv/ypPqy7MqKQTfKjb4YfsAKW7zsY9d5dWvH5P0F5mx5+RVfa4f3ndw8vyHXN6E72hN1/XLdQPGZvdD+z1xmetdV7pGY+SkEiBB9SDuQx+QsglpxjgI07klG8HeQ7hzB7JxCZxfU64d6f1if3D3Fvfv3ueFl78WHa1z5/7bXLryHPtZWt8UDnZ2eP/hkJc/8gnSXp+33/ht3njnITdfcJPnVk6a6ENvTdM7Nz1SU6M1jEeCfBxxOBI8eCTIR4bRyK3TGUlN2jOsJQW9vqHXs6wnLpwZRSD9cN4UnL1zdx8z2CLrb9Pvb7N2/jJVjQrSrLXsPHzAO3fvcWF7k8vbG/SjiIEHca6uc3eEmdhjJtfllBuKPEvIckk27rNfSMb7inxsyQqF0aI8HpJYk8iihrU4Mq5M6dpVi70522iBJdHmnk3VbYW3BmAt/qFdJJzZPlfLks5c2/6uG1BL2LW5u+NG2JYzZw20LFl1XNDz+1CFaHUFc2YCdr0IlEo6zzEqNIUUXNpeJ+rFU2278+2NM948HPH8uQ0ue2FGvz9vPLrMftZzOXpVjl3t5lkv985OQrzClnmeJShGpj6+7bq0ilGr7QeeTK5e87hVgOKTA6xl23gi4CWEUMDfBP4gcAv4RSHEj1trv/Ak+vMs61vlJp/TD/jf/rcf5dv/4//ySXenVXdvw3Mfnr0eN+5nLQ5aF2x15GyjWy/4k+151wzZ8b320rJqV6zhiPmQ1hP0ew7O/DqHI1GeY9IhkVxAyx0+/2u/QlRO1nfu6gb748nXVg2uknOXd957xMUrG9x7NGbQ77Fdwpm/hmTtqvnTaVShzRR6fV3PK+bDmbQwGkXko4jRWLCzK3h7ZBmNBFoLPvXJg/q1Ud7NU5kcs3aObHfIT//al7l+9SovXr9Sv0bVIuhvvHWLnYf7XLhwlbcePOL+eJePvvyhbifNm0BVpG4OsRjqUOOkrildtWqONO0AuJCMM0GWR+RZRJZLdnJJNnJTb+S5S4yvnwdlTlps3BqXsctJS2JDErnFyitXzf/wiTYg8/d3gVcLTC3mlJnZthZx41raXeR8k6L5X6Ku/LnWNpo7jqy7PNzVFcpHySSTa7Yf793f4dzmGlsbgzqp3q+7P875rUf7fPjKBS6v96f2T85348IeuR56Tp9zbZ3jpzA2prCVk+ecQGOly0FtAcZJDu6Us1cBmzRISoijmvLETuBOTEK0Va6e9PYp6RaLU14Yd3p5sHk6DYfuJF3D9uNX44I9KcfrU8Br1trXAYQQnwM+DQTwWrFuiIQX2eLf/Ow/PrPglWXQ68+v90HTYH2Llz7yCYwx3H7j8xzsPeLBvdsMnv8QAFprHr5/i6LIuXfnHd56/Yu8+PLHuXjpMlBB4ONfKKSEwcCi1rzRm/5KAUcce/3aNW5evUyW5fz6b/wmV85tMRhM3ux379xlnGW88uEXWR8MeP7Gdaw3yeyqJSWkiSGNS+fK+K7UhKB9aMrHhqxQzk3LISsU47FbTD0rJFkunKtmRA1/cWRIlC7BzJBEuSsTZTg00iTSdMJ80NnQGw92+d3XL5KU0LUzGmMtbPdT9sYZv3jrLh+7dI5La70j2+lFBb2oaJR1ho99Leli+WCnjRtEUY2SNR7YVdtjE6N1XIOgKcO2xoM9fzDG9PlEmVfnO3a1W0fRADzf7avrV/usG4krvdy/Z3l2jicFXjeAt72/bwHf4FcQQnwG+AzApZCK9lj6BnGdH37ri7z55hd49es//KS705AxTSfJdCXot4Qap9tp268bv+KPrtsaqfHLvHt010WhSu71DJPG8/PdMeWFI2vHyFuGwv3KFORZzv5BzuWbX8f65nkOxu4c9+7c4nD3Ac+//LtIk4i7t7/Czn7OxoUe43KJyai01XYfufyx/gD6PQ+avLHkbcn+rp+6s8yV+ysBeM5U2Z5Ck0c5Yu089wuFiN3kGtJq7g7fw8geX3znPv3eAc8/d5Nef0AOSOO7Zz4UdbhfZX3ZCFG2Hydm3LEpCPPDp4mmj3Mpa1fNQpWfNg1s1jpXLRtbB2tFRJZHDAvJTibJDqUDubH1nFxLrByQpVFBrMqQZ1TCmypKiNPNNU51Cyx2uFW+49P4+D5mGNTXQiHRlv2L5KW19WGR3Lcj2+o4d1X3mz/yPGuJF2LUBm0MMk14sD9kY33AreGYtw9GGGv5xheuomS16scxQ3+PETJUOPfXvQ/debyrgj4/jOs7ctN/F7rcNjFZlZOnRZ2fV2gaxxojW0fRC9wyY/VI26lRuKJ0+dQU2FXb0hbN8K7shry211kstK7W/Nf2zBKNtfazwGcBXhG9k8ty+wDok+Ia/0i+xs/+7D/m03/0v3vS3WnImu4Q3txjO2Bs3vWsMym/5cDjOst+or7w/vC/4P4IrCqK0QZm1qZsnH8JEW/z9ptfIe312L5wjf39EVKtk+sEm8H+QU5RZAwzWeeAVa/t3iEc7llGQzCFRCnoD2Bjs4SxNTePWaUGhElV9qd9RKa/EoAPZ++98zpCCK5fu8a99x8xLGIKuc7QujyYPDtkZywQIuJDL32Yd2/f5it39njxhZvlazK5cfz6r8YIgUv+L5drclNnuIXPYQJhDfA6LqT5KyE0XLEKvEzr/mo7AqI1U0/J4Y4zjf40bvja5arlWpKNYZzH5FpymEl2Rm7kauW6+Z9TF+bUtYsWRy5/rS6LC2LlnDUxL3zo3Whbw6RTx9Vg4ZWJToBqAbauG/txQ6JtdZYBupY+bfbSBqRcTCf5YK9cT3ilcegR627MC9E2yhcPnzaOewKgN6ljoB5h29a3JS6kR/SnnlJFT0Kvug7POmCrwc/GFEYy0qIxKneS7yc9R887QanpkbdHTrMyBXjb6UH7Eyj1pMDrHeA57++bZVnQinVo1xjyPB/76Lfxsz/7o1j737LYcrinIwt0X61W0H7bD+ZFfuxV1+3Gj/3FLx7+5Ud25Hv5cFaN1Gzkg3n5XsngAoWGjfMvYHTGOIPB1k3efePXsLzB5rkLvPfuLZ778KuMMkH1olbn7m3A+nbVbjnS8RCyseXRu5RA5kZYDtZgY0MyWHdwlkSmbMsHs3ZI8yGMeJv3777Lm2//Cv3BGtdvvAxpn6F2OTVZoSHe4tyFi0SDc/S3DLdvv83V510o0s8z+6qvd8n+o1FENox5MBSMHgqyoSHPBUJAGml6fcNar3DTZfQNg7SoVwHwBwEcB9JcHTNTJjtgqtVN8y/sU05Z3HduxaDhGuX1/ulzGANFZstwpyLLFFkRc5BLHh5KLwwqwQp3bmHLqTpcrloSGeJq2xtcEIli8lnsgDDRBjcdjlgn9NVV2/e3gZztAsS2G3YHxLU6fh39EQs6ZZLl4GYZt46utufAVtdxC+U6zc2TW+xcs+0+XhsKiBqg1zIoYwWg1wzbujBsA/iqfSXgjauyXHJ+4+h0iScFXr8IvCKEeAkHXN8N/Ikn1JdnUplN+C37KqP//v9OUcC3Hfwof+Nv/CS//Ms/yzf97771SXfviajtu+h/ydtGTnbB1jLfa+3NUeODVRuc+fuND2l1CFIgRUqeW6QacO7Ky+zcf4dHD+5w8drHSAcXGXvf+cj7hldTMFTnivvQWxOsny/rKktRwPAADg/h3j0HZEIo0j5srFvWNmCw7iaTrc/hkaUPi/3tGzy3fQMlLEWeE8Ux799/l/H4PleuPUccb7E31GzJNUY65cHOmHTtEntDQZwkM4uZyxQGKaxvt+eX6UwwHEWMhxGPRoLRjmA8suS5e94OzCz9nmWtl9PrW9bSnKQ0MXyAkl3J/OUbvwyk+eWNspZ2gdpV8+t3hUHjnpsCYg3KxH0L1huUMAVNxuCALBMlmEUU44i9XDI+qGBtanCBrNwzQyLzctsNKkhLYEsi7T5XiwwYqJ9nF5i1tDEvTMoRAwJaztEJHtX7e0w3rgvS2oBlUaCbFM/JsWicz3tt59Vdsh9HHXdcoGu0cUyYbJ5jib6rdiNCGFNaFFVby4Rujw7jPBHwstYWQog/B/wkDmD/F2vtbz6JvjyrOigXqfnIRzJeeL7gwsXfy9/7e5v86I/+6AcWvB5XXbC1DIRNL29UqYKzxiz8niVmvAN9p6y3done2qW6LM9t4zri58ypOo/M2+9dHyrXLRlAf12wfbk6n2U8hGwE9+/B22+A1oIkdRC2sWFZ33BrWPqjKKu166S0IBRFAWvnbrAG5BZMYVjbusYXfvMLrK+vkY1HvPChr8KoNcYapLcGYmO5Jg/IGguex4ZeDIPN9kEARSYYjiTjkeDRMGb0ULhFxEvHbNDT9HpuHrNBWtDvGwYD28hhq52yFvcMmjf3NiDrCmF2hi4r8OqCtLbjOpwmYTQCN4YvrW9Mtqxvmm15bRRFlasmyceCcR4zLlJ2D92gggribOmqCWHdKFAvBFqFRN1KBW5b+rMzzJ0DZk6YlGkga8krWAbeFoGROQ6br84RrHWz88OLEwNy8bpl4y3n66i7hDPXCact55jacazjGo5lGystAFPVa9cVZGm+Li1trGgy1ieW42Wt/QngJ57U+T8Yskjh1itM05Rv//Zv58d+7Mf4SwcHrK2djYWzBQu55UFPUEJAbwDrG3D+kiuTEsYjODyAw303JUiRuzDl+iasrcPmBvXal126fPUm2+cucrj/gP5gjcHaBqxgJGabkhSS1MKWrYFMMpm4NR9bhkPBcCjY3ZPcuRsxHAqstkSRZVCGMXt9w3qvYNA3xPFRZ3w2FClLpDQDNGLQMnFsq6umyik7lHPRxpKDYcQ4V4wzOQE1HJinNZi5FQviGtLcY6zCRSLo2dGZTa4PWr2+8zu/k8997nP8i3/+k3zHd/6xJ90dwC3n8wTXVT225rlcpqOCvyzR3Da8X1/+hKyNl6t0ymzbtPtTbVhVnddbO7MxEax3nO+EyWqFAa+udIvrrm/B1jm4XD6fbCw43HeTw775OxYEbG1bNrZgY4t6GofGc4rWWD/n0tDHxfwFyqW3AHvD8SrrNMua4cr6uAq8qp/OAlTPsN6D9XNNZ0piyHMYjSSjw4S9oeDejmU4dCG7WGkGfcNg4MBsMDAOyryloqrQZcMF8+dsm+ea2dm2XLnvUh3DHfPaboTiOtyvtvUzp89Ru2p2kofTmotVlmktGGcwLiFtnMUc5j0eHbhlr8a58kKf1sFZ7Lln1bYqyiWmzHynzFfjdWmByc66i+eqtbXRmXM2J/erq+5SSfkLuGZ135YdoFAdt8icbvV557hZXedbMizZ5mLNddJg8rrMcdIWVQCvD4gElk/+rk/w/HPP8aM/+o/5zu/8jrL8yU4kJMqcX2u7p2h4ltQMGc4+4e5r7tEQ5i+5ob1Lc+swadve1jzl/iS2DTCbbEcJbJ53/yLl1roc7QsePYRbbwLWsnnOwdrmlq3zzUwDrNy2v66nn9ivRDt4VaDmv67Gq6u9utVxyr+R+n3wIU0oiHFhzA3j7beAxWjDcCg4PIzZOUx475HgcCgxuXELmA8MG4OCtYFhbU3X+XFdOWUN6KtDlJP+mI667Xlk/n4vmd8LCbcCVEcYFO+4qrwL0jqnfZg6n8RNcVLP7mYLKNcQrdsr2zKGcqUCWbpnEcM84dGeW05qlCm0diM/pTT0YgdjvViTxjlpbOglBb0S0IRo9rMV2Hx1TYExB4ra2hNtIc5Fz1cXLQFvXYMSOtpr7UOz8tF1fUjpCvPWu4+GTWhC0eTz1EFKXce1ThHR3s82dfXTB7pF8twCeD3jqsDGbQs+/elP8wN/82/y3nvvcfXq1WZd/yJe3oT8shOKALG2Afu7zhHxp1gwnZF4p2VBbTJKa8kOnjG1QZj/VfchTHjzgrWN4vdhw18bs03dr7e/wzbLBaxtWda2yr1GsPsI7r4Hb74Gad+FLy9cnEx9Uc1TZf28Lq/dRrmfE1f2wwczI/wLvjcIoGyjDcamt9ucsgYcKUVvHXrrPpBpJJosg8NDyeFhwrsPBaNbMB4LpIKNQcHGumF9XbM+KFqT/EU5z1oDzPz1PBvls25NM/9scrlv5pHNwoaQ/k263UGrYaFr9GJneYur1OKkNepMjEk3AS5wVF4axpROmmCUqRLSUh4MFeNdxWgsyQuFtSCFC3H2k4Jeokswy912rBvTqMybx2wph20RaDrm/Gfzl49qP64VyJaou+xUGHXOleqoOwfeOoGtYd/PQlj3qMf24yYNzL95iAV+zAbwegZlrODAbjCmj5SGu3cUg4Flc9PwHd/xaf7nH/gB/uk//XH+zJ/5zFLttoEZTL6AjTLfPfDu2P7kj1X51evw9ldgc2vqfGL+dluZ/7nvmI91clxjTofFiayRBH+GQa5xLyofVWff/ZuqF44s74mNa6B/z2xcn9ogrOnAbZxz/5R0OWIP3ofbb7lE/cvXYWOjPNpz0vzz+dNzWN/9Ks9n/M+Yv2am95m0dY7XRMrrp7Ht8FY7ZV6ZX7fplElkAusJbG47IKu+Q1rD8BD29xXv3o85eEOQ54IksWyuFWxsGDY3NWuDysXrCEV6d6yq3Icta739Xt+EmHXNuhP8vdtEW2jTh+2OMKhtgbBGmexwHebNetwBekiDjKCfGPoY3Bxq7V9UUxhGmWKUKYZjxTjrsbPbZ5hFjDKF0e5zm8SaXpTTTx2c9ZOCQepgrQb1edNb+HWWDIPW7fnT03S9Fq0g0/Eazzu3WsDNqe4BHcDT6E9jxKWabbcLwnxXaR6w+WoBocZVquu4lhtNu+s2pTk/YCGA1zOnW+YFdv6vf5+dR5Kv+qoxL39oiNaS27cifmsv5uNf8wKvfuIT/NiP/gif+cyfaYYi2mCqA7akf32p3DH/l7Z3nGm04d+EXfnauoOuN38bbn5Y1J/3JmzNAlsDsDpu0v75qnBVG4xMt1eH8PywXsss+NP9rMrbwohnRYuAYuNHZ/lUmk7ZZNuHF/84UcKbv3qAmnqf+gO48QLIl2BvB955EzCCa8/D1rbXcOMkXhteR1SLU9bodGOFhGpRcs8RbMkXg4mT5m/7Zf53pNGeH5otT17foBWsbRjWNuAKtoaibAwHB7C3G/Hu6ymjQ4hjy9Z6weamZnvb0Et9oJkFMuPdoLpCmMK7g7TlkbXun67TFqJsAUG33dLGHDDzy30Hrsvlap2ktQvM/DYSRT+BPpZzNpt9TuVC2+PcOWXDsWKUJdzd7XE4jhjlCqxASuea9RNNPy3oRTlrvZxBWjTnt2vrT6eT1gJLy464rD73LcAze9zsuRuh5OaQ6fY2qqKua2DLBUh01ZUdz7UNbjrcKDvn17focrFagK1zNGizwSPPBwG8nillNuEuN7lxQXP1qibPFdpILl3SXLqk2duTfOGLPf7IH/kO/i//57/EF7/4RT7y0a990t0G4PrzzvX40q/Di6+4UXRBHyxVCfjjQ3j7ddh9ADdePP7KBk+jkhR6PcOFCwYoENYyHsPBHuzuSm7fjsky2NgwbG9rLmy5KS+CTlZCUIYeC7bXy8Ip2NBaMBxLhuOIYaZ4tJ/wzr01hpnCGlDKTeg7+ZexlhYk8fycoKBnSwG8niEJLIqCfs9wcCD52q8dcfniJKF2c0PzoZfG7Oz9MaLoL/OjP/IjfN9f/Hjj+Ontbudq1h1rOEYdoUF/gs36R2l54HMvuqTst1+HOIaL1yzrm1Xd2Vyl5W/ILUle/px4fgxOV2Gribrcr2XU5ZQto2US4p+kJrmFs2XQnGPMdxjSAXz4a+DuLXjrd+CFl6dCn945/NyvyVvivz6+zeWF6MriZnS53VZrvtqzH7pGqM2T74pNQlHe/kYI3nd5/HJNnMK5nuXcJQsUoA37+5JHjxS/9TsDhkPJuXOaSxcKzp3TjXnH/NGubUn7rh/uOXXNQaY9O7nhYs0JUfo2tG1po5k/erQzNc8Rg3ZXbK4jNnVuYVvWWewIg067YkrCemRZX8uBySS21XF5IRiOIw5GiuEo4cH9PgejiLxQKGVYSwvW+zlrvTFracFaL2/kvNYXVf8j2HgeXUOUW9w/X42LdYsb1eUYNeq2uGOi4wL9mO6Ya7ul/jLuWMPS90/n9202cb/THev6vHQogNczJoFlfVDwDZ8co9TkAlrdBC5fMHzTN6R84hPfxj/5Jz/On/uvvo+NjepL44ddZkMqsiXkAhBV368GpbT3r/CGw00nUwNsbcLWqy7Z/p23Bbe+4kbAbWy7WdO7cr2KpdYdmg13QjO/twoVdq3l2GWNt+em+sct0U1PXbBVtbfY2pCP14eT1DSQCgHXnhd86fMwHNJwdXw+9gdg1G+lHyZs3LdmY8mNfDGvP115W944xMlWR74XfnipKm/c4/wn7W+23fx8wBCsbcLapuW55zXGwMOHkvfvJ3z5dyQbawXXrzkI80PejXZb8oSE//32c+d8mGqEUmePE6oD0lqArLlod8fNv7wmNZP6O0i+UV72w78h+q+FbQEavM/AHDCb7n/VdlceGUYQJxAnhs11DWSNdrUW7I8i9ocxe8M+7z6KORhFYCz9tGBzkLPRH7HRd6HL1uWcunKLqtezE6D8L0FbMv8C4FXDtGrf76kt9LcIpDXzwOos+fbjGgn1LSC0DKSBN52E17UuSFvgR3kAr2dIokre1YZYarBT+RmlNgbwvf/Ft/Nf/lc/yT/84V/gU5/697l8qeD8pWKyxEx9E2s/lw9LRfWh68jD6YKwCl58aKgAansbNrYEuoDdR3DvruDW77icoP6GGwmZ9L2RcB2j8/wfwdU9wYcp7U1k1XRmXHv+qHu/bmeaRf3j0s9rmn/cPHWZXG0jaLoGGtSQ1rF2ZCMfru0H5RMI+a1vuiT0wRKh57b8NJi64As7U+Y7um2jJWECL40fKU1qai039e72N9J0zE1W54Z1fKFM+ee5C3DhgnNZdncEt28nfOk1yY1rGTduFEjZvBYYPxerGqnpv/8eKBnp5221gFwDaH1I8z4wjdy+yilrT9JsBbIWGHPFc4Cs4xxzgayR0OgndXf1o8Upsy2g0DiHl58oLFvrmq315vXaGsPBKGLvMGb3cMCt+zHDkXPItgYZW+sZ22tj1npFYwRz+y/Ajv2NxHf/vaxgYw6Y+W13tuu/py2QsgDQiDmA2Apm032qz9v+PETXcTXHz3kezS53KoDXM6R61FJeEOkySbQtDCLhD37LN7O1tckXf/OH+ZN//JO8/37Er72VEseWC+c1G9uajQ3TnOSxMdWDnClv/Cr3Pn2qMXfV5LjK/WpMjulPBWAFRDC4ChcvCax1N+HdXcHuPdjbdYn4/TVIBoJe34GZP0ln4cFSBWQ+jEXel6QNyPzvXtTxPbONi3+53/8V3fXjasUQVqkBXi2wtAhszRtF2lW36zzHVTaGze3Hb2dZdSXP1zf3juT71rpuR2fZQsd1OroesJR92tyybG7lFAXcuhXxb38p4cMv51w+3xHaE7PukA9bsgumquuNPRqw3NNohk/dc+oK7XrPqaW//g3YdhxXteefwx/VaRvD01pu6J3uWDsA129ZC4xN97/ucxuMTZ1DSMn6wLA+GHONcd1WoQU7Bwk7ezFfemeNw1FEEhVsr425sDni/MZ48t2vzt31y6njOdWX8EWcnbamO+B1evTptIRp76eVLf1oTJ0zHxBrcJoHZtAKZ6LjNbR0AGmHAng9Q5IYBAabFUTafUnrodtToYNYwqf/wz/AP/ynP8H/7X94wEeeH/Dyi0OGQ8HDRxF3b8X8zr7CSsHmpmFzwzDYcLNzKwVaRI3zAigvEKO9D7afI6K84e1R+WXU3sUqkv5x3i/C8gPfS2Br05UXRqK1m5Jgf18w2oeduzAeCRDQ60OcWtIepD1QibP7ffnumA9eFTiZjmtuE7zETJ3GD+NGXhNHqnt+maPVOSrI07xQYxewtYYzO7abdeyRx/kuZVsbj+5b8jFsbLb39yzK/yx05oO0HdcBb4vub5y7fFAxvPRizo3rOb/xGz3Gh5abN8uczxb3oOsTZLuchrq8JaQKiEaodba9BgjNgbDGM14Kwrpgy4fC2X74r0WjXf+L0eqaLAKFs1r2HFEEF7ZyLmyOgX0Axpnk4X7Knd0NfuvWBaLIcHFzxOWtAzYH+dST8nOS5gFZx/7G/GYtdbqechuQzYExaAcy21G3tT9M/W6o2uiaIqPtdelyypYMBwTweobkbl6L2wzf9Ue/nR/6B/+En/gXP8Uf/44/AkC/b+n3c65edx+wsY7Y3ZXs7Snuvx1xeOhgJ04lg4FlsGZIB5LBwBDFq3E5lpFS7sY82JiUGeP+jUduaP54CAf7MBpBnrlcLindCDIVQZyW2zFEsUvsXyplLGhlstZNK/HuWxBF8KGvOv3P1LOmJIFXXx3xK7+ccOGCpt8/ptUadKaVJoar54dcPT8Eaxllivu7Ka+9s8XhOOLS1pBrFw4dhAU9UQXwegZkrOAhl/gd+zEOWWc7PSTOh25nbZ17IbzSVfrGj7/Ci8/d4J/82D/lT/zhP4D13KYqByQSirVNuLYJWk4+LodZxOGB5HAo2H0/5c5QMMzcjTOOLUlq6PUtvdSS9ARpz9Lr2eY5yl8JheeC+bku2njul2ebaDvrlPmhvSqEuZZO3DG/jrYCrR2EDYeCbOxCWocHgjxziz3nRRk+FQ7GoghkJOptFblyFYGMqHPj2pyyLvfLV9uIvFVPzDovZNhVd5lQo+/yVM7/US5XFT4+3HPANTyE9XXLzZfcotzzzufnGrY5bM3n1JK0voQrtYhW3d7jqnLKhITr1wvefz/i+efbb7zdzpa3ecyn19q2VzbP/WoNP071s839ajhNXeGnln40Q5Re3XnOVOPLsmL3a/pcU+eYzlvrpYYbl4bcuHiI1oK7DxO+fGubvJC8dHWXK+eGZXc7RnvW63l1hdH8EHNbUn6XU9byXDpet+Zxxw1LHt2n7rz+ljYWCtfOVwCvZ0Bv82Gu/9X/gU9Kyyc//oiN/rtU6QCV/IuL8uDnb/2lP8+NK5dIsv1Gwm0FSD4oaRnX24lUbG8AGxOQq8Asz+EwixkOBaORZH8/4t5IMB5LihKWksQSp24tuyjVpKklTS1RIkgS9/nWsgPIyi+mD2aN/XYW0vzyGtL6oDencsqqumWdXAsHYpl7XkXuHsdjwXh/8nc1ItJYl3cmpYMypdzoYqXc30K65WJU5OpU+6Jyu8tpmzcJ4DKQtoiD1AYQy+Z1SWGxFnThXr8so4bcbOQesS4vb2PTcuM5N3v9BNg6QpGNmen9/MCyLvOPmwuTHeG8VnhbYA2qReqctPzlw46rBqS0DNw5MxJViPLoHDBXaZkvTwdMzYOUNijsOm/XOdrqdwHLFISpCK5dHHPt4piDUcRXbq/x+nubfN1L91nvF14bLa9LV+iz7dyNEGZLoj7QNeii9Ry247g6b639HA0Ib+tTV39sO/TaNkDsWk4jrNX4wZDE8OLmHcaFYpDtYguLFLYelg80v8we0Py+j77gNoa7jfI28PLzr2wD0tzHyCj32AfWY7ewMJuz8GYtZLlgmEWMx5JRrhjvCB6NBYd5Qpa5RHorLHFsiWOIUgdrSWJRsXLAlgji2IGLD1h+4r+fX1bBWRuM+fubdQXV6r2+q+ZPY9BIpMf1PcsEReEGeeW5WyzaGMgL57bpkXsNtHbQVu3XLfcyKUtgk+X3W7i305WX1xLhHsVUmZj6hwCs/7mYnKdxHa0Ghdly05bbdhLKNbq8xpR/6/I5FIV7HhVsJAnESTU5KGyuu/y7JJ2csw2yukDJnwuuDbKai1135ZGZ8tF7/l2rNPhLBrXs99XVxty6c8DsuOBWHWcMvPtuzEdeyY7VTt3enEWEn6QWyYM7VrsN2Fzi+S+zrti8KR2gnuJnfg7Y0e2t9Qo+/qEddg5ifvUrl/jI9Ydc3h7NHlcPnlgCMLrOOw/Cul7Xrtew7bhlIGwRKGyBMNsFnl2vUYcCeD0DShkSDx9xeJjyq78aYazEWNH8rlcfKOFymGJlSGJNnFhiZYgiQxzlRMqQxIY4EcSRQcWy/nz5AOVPEmdVBWmRV+ZttwDbANiKIogmwAbNYe5GKPJcOEgrErJckI0ko72Iw9wtfptlAmPBiMjlbSWVa+agTcbOQYtji4wUcWxR8SxgQRPYavBqKZveboM3m4jW/bYD2CqQm54odgI6ogaeogQea9zoS2sd6BgDlPXrY62YlHvwVI+2P+J+4IN7DXm40Z1iyrFrOHulo6daQ3v+dvvJ5zlX88CqAXGNtUGZKe+q2zyH3zez8HGNc1cTEjcW7V6ujfbj/FBb+Zym3tTDQ8GXvpRw5UrOxkY3OLRNjtrW3gdCx12MdQnnw580dCWv8bw+T+3fWsv51Fe9zy984RKbg7v0kg4Hc5HXor5JzIeYuVrEYatnZ14O9CoIa3XBpuq2DkBpc8G6+naEAng9A1pjj527Q1594SuuwP9CVx+U+gMHBTF5ocgKSW4i8lxSaMmBicm1JC8UuY3JdURhfNiSxJEhVsYBW2RIIkOUFK48FnVZnAqichKsNicNcElSR+y3KnZmkwCbKkhdeQVnRsWN44xxI3tGeUSWC4pCMDqMyXYEh7lkXCiyXJB7z0lEiiS2RJElSqRz2BIHZw7WRO26+UOQ2yBtb2+X0eGI/mDA2tpWPdLQhzfb4bBVQNaAtA5gaytv5JR11W25HvjOna95oc1l1AlYneG8o9vogqm2/fMAyYeqZWBqHmB1HrcAbElmAWgebMHk5i2wGAM7O5Lb70SMx4KXXhxz4Xz7QttnIQy6Cq30eXxAYDOJDTcv7nP3UY/nLx+czkm7QOdZUVir8YOhAfvsDlOsnf+eCwGJcnC0BiC90IMPRZUL5X1JrFDkhXRwZmMHboWisDEHw5hsvwI3SW6jyVxYQiGlda5aArGyzlVLJUlsULEgjlxZlLjt44xkkxL6PUPa9yd/nHyxa2DznudYR7WrNi4iilyQ5zAcS+ew5ZI8d2FDP6esArIoAqkEe7vvcXBwH21z8uyAazef5+ZzN0ligXgCoz2DPlhygxQEjx4p7t+XDA8Fm1uGmzcytrfPbngw6MkrTTSHo4ACp6nwaj8DEgK2ive49ZWCq5u7zdnMS8erMc+TZ5f6M/U2Zu0t22iUKUWE+9AMJuv9OCconj6+CXHGQK4VmY3JC0lWKPI8IteSA5u6vwtBbpwbV7ctKB22MgSqDHFPlY+iDJlOHDYhmk4YjVGU7uPuh0T71f4YTDobHp0OfVbKjAuD5oUgKyJ+7rVf45WXv5Yo2aTIBYdjy903MnQBmVb1D+gsy3n99V/hytUbXLv+fDlK0iJVOWKySraPLSqSRMq6aToaozpnnbJl3LHmbO201vXVPXnn0ce1aZlRf8skuMPx8q8Wyclqc7Q63bE5jtZCdVvcLf982chycCDLf4KDA4kuYNDXbG8ZXnlpzNpaFXY0db5eM3zYMkKsI7zYHYKcTRIXHUnr89Z47Kx7XOeppW9Lhbs8LZXXtcTotrMSwr2/2+Py9vBJd+MDpQBez4iu2y/zS19+mS/KFCEEUlikNChlUcIQVY9Su+kQqu1Eu0fp8rwi6crj2I3OE12Q5k3jXkGdX0YL0EVAPAVySBBejlcD3qIJsOU2cQ6bVmR7MYWWHJrSddOSzKYUNbAJhLAu5JlYkli7kGiqXEg0cRZ7HFk3f1c1CfJU6NK1NQtuAP1qW8HD4SHPbexwo/cmGsH5K1tESW/SVjVRrNb86he/zMaHcq5c7nHp0oC8cCHRzEiKXJCNFKNCoAtBphVFLlxOlw9bUqJU6bZJB2xSOWiLYotSAhVZ9/JGwoGcsqjIJeg3wKxruwFns2DVBWOrDFF2aRFAalNXGLDt+E7omwNe89rrChlWyjJv1OxYkI0V45FgPHIDNgDnVq8b1tY0N69q1tYMUeSBEHYCWx3Q0AZZ8wDLr9vof9dCxvPaWwa2Gvs7wqTLAFvHueeGGI95jrlaAO5Wer5Sb95Z53AcceXcEeC1akB8RsKLnfleCyiA11Osj/3JV+ptff8un+jdBdwHwliBthJrFdpItInQRqGtxMiY3CiGVmFRFEZRWIW2CYVx9Y2MsVbUTovA5TkpqYmlJo5KcFOaJIZIFiSJ2xcpTRxZIqnd1ApdwFaWt5X52wqIlKoGFyLiaOK01XWb8GYMZIUiI3VgNlZkw4SRluzamCxXJbAlkyR3KVHKuWpJ5bCVrlocGy6fL2qz0M9FG77/ALvzPsU9yYP9IYdpykdffmnyRklFXhS8+dY73BwM2LM5V6I9Lsi7kABJ+yjStuk9ADSKonDLIWU6oigEhZHkhcBowThz+0daUGhZjqQU5Nq9Lo2FzyOBkracj0yUgFZOh6FAKYtUDvSEFA7kJQjltqt69euyBKR1aR68HXeurHmJ6sct9wFqMqpToLV1j4Ub8VkUopx6RJTha1nOGSfqm1EcW9LEkCaWXs+w2Tek25ZeqkmTcqRyG8SYjr4t4Vx1HreAizW33XnHdS5K7cFkm7pAqA1kloCt5v4FYKttyYpF+jmn7pHnWrYN77w7BzGvvbOFkpZPvvL+4udeRmd4BOwqtCxs+Qrg9RRr/+5+vd22WDK4/CNwCzWruq7nYkn/Jiwd5ahJnep4a8EoB2ZFodBFXAPbvijLiSlMCW/E5CYq25BlH0rnSWpiWZAmllgVJIkhVgWx1GWZc+B8IGuDt04HzgO2QTzlpilmwqf1/jh2MFM4hy3XkuwgIS8ke4XiityfDA71QKi49z7nbMbLA0neX+M337jN/a9orp7fAmBsLO8/eESa5bxwfsBvvvuAXl+S+MsXqVnwWng7aYZP/Rw2P7msArkGxBnpwE0LcqsoCoE2oi4zmXB5e1qgrSu31kGfNgKj3YS1FSz5t5RqEkpZgpmb38zBmhQ4Z7KaFgO3rzHthRAIJmWNaTGaT60+Y1PNCv5Iznpkp7VY627r1rp7hRtJ6sqMAbTF2Grk6GR0aQXsjXUIpYNV5zI6pzmKJv96iSUqB3NUgzriuD2hvvFMqnk97HwXq3N/F0xNv0BHtTHHuWqeb3EompvsvwxgeX3qDBN2QtgcKOy62dYfrvmvfTsULQF3bec94txVnSyX3HnU5/a9AUoYPnRth/Mb4/JD333c3D501W0cNx9Ij3WOzkW7289nTwMGT3pUoxDijwP/I/Ax4FPW2l/y9v1F4HsBDfwfrLU/WZb/R8D34+6Lf8da+1cepw8fZB3eP6y354GXv3J9J3g16szOGSOkO58AEiWouEFWIDSZB8BBnHc+a11ukhWJCx3mMXocMzIRB8JBWm5StEjIdISxExtFSUMSOViLZUGSQKIK0kQTK02qcpLUEs9x2KpymbSHNqvtBEir40pYQwEP48ntyjsuf3Cfc0mMfXAPayE62CGXBoSbIfzde49479Een/jQTfZu3yId7rIxTpGPvIENZXv7eZ/dw8S5bil1DluU+JMOtkzVoTrArG3+tjaIE7jh7UlV7p2jJJzOdv0QpT8EW5RTXRjpgMW6UZvGiHqaDFtOd2FwLq2b9kI0psMAD5YMIOTMdBhtlzrh9X0a1oQAKtAr/5bYBvxNg6JU1bZtuHyL5AAdGQY1i8HSpK3Fb0yLjF5sPfciELZESLBxHI8LKfP7Nh+85px7kZv/Es7dvHMvBXdz2qrqai3YOUx48Cjm7o6LF1zZHvLxF+6zlpbXnukmjwtbrQB1QrC17PnmaYl+Po7L5etxHa/fAP4Y8Lf9QiHEVwPfDXwNcB34l0KIj5S7/ybwB4FbwC8KIX7cWvuFx+xH0BmXEBAJg4oyXPbTcOKqeZAmW5wrbQQ51fQWEVok5CbiIOsx1rEDOZGS6woAlYM1VbhJV1VBJDW90k3r9SGJCrffM4eOq5sXtvjK3Ye8+f5DRuUX89x6v97fTxOEgF/87TcZaYPWhiRSfOj6FeTUZHvGCIZjxW4Rk+lq5Kik8L6qSkni2JT5auUUHql7jJQbaOAGIlj8cQZPQkJMQpYAjqNmL3TWCx/OTebvWuOjte4Sif9nJNk5KGhZFVqwP4zZOUjYOUjYPYgQwNZaxvbaiE++8j5J7Dt7T6yrQTwmeFlrvwg0R8w5fRr4nLV2DHxFCPEa8Kly32vW2tfL4z5X1g3gdQyNd+fPQu07XZXanC1XV87U6XTEWhy0ee4ZNMGqqtOArenQp3eOakRlNQGqjFxyPnKq3cjlqWUmIi8i8iwi0xEHIiU3Ck3KWPfJTYTGWwYpMSRSE6uCXurALe0ZUlU4Zy09JFbOVfOdsn6kuGAKHtx5HyslH7lyngfvvMvdQnPj3AYX04SLF93Cg1+++xCtBNtFhn30AFM5MmWO2qbaYbPKy+8IiWqiyUADm7pRolnMMPem+sglWSExdvIVlxHlvGulgxhZN71HZFzoK8GVRW6qD+/FB7odLz/m15inrV62pcsR81yzFkDqOkdnnbb9S+aXnbSWnWtqrps2Lz+pUb74L/tFQo1HHb/s+ea6WAuEM+c6Sb5WETJsHGeaj4sct6TLY7ThcBxxMIw4HEXsj2IORm4eRqUs6+mYzUHOc+d32Houmwxer/s2/xxzw5mN8sd0uU7wfHNDikv2c67TteSPtpPK8boB/Lz3962yDODtqfJvaGtACPEZ4DMAl0IqWquyB8X8SqVE3BGKjMSRdRr71dFg1QZu/v6Z8hru2kOf/gzzfp2qvAvo/PI4UsS4mfInx8l67oEK7qwFLVNyE5EVEXmRMtIR+yIl0xG5SShwYVD3PCRRGeZME0OiEhK1TppaHr5bhkPR6Ec7GKWw1iKE4PD+Q7b7KRu9CP1gAs6tAw2i2NtuOoEpbj5ZoVQV+63DhF3TemhKB424nL5Dkucxo2pkqK7K48ayStXEuVXoM44MUVwQKzdqNk6kc9oi6/4uH2uw8sOgjSnoffCahaxOqOpoo/UcjeOeLkjztRSwrWSE3PFyeRbJqZpfd4UANafdzraPG6Jcpm9eW4UWjHPFKFOMxpJRFrnt8p+1AqxhkBas9XIGvYKb54espVnTyfLPMV28inBeo71lcq5OLm9r0tQSxy3wHWmFrUUAaxVrNQoh/iVwtWXXf2+t/bH5vTierLWfBT4L8IroBWO0RXq4xCK1HaOFRdx+M/KBa1L3aHjz97cdD+3wNs91m66jEg+g2vZ3AFtVx9/fBLYhAgc0/bJcxbMDDqp+ury0iCJPGY9ihjpil5RMxxSiR6YV2qj6OSWqIInPk6mMg/umBLaCNMpJU0uidLPvqunitZW3AVvbVB7VdgqkVVk1lUcrsPnTSah6Sg+XaC/Js5iikIyMZE+7EaIuQd9N9WGMnwUvkdKWzpook87L6UtKeIsiN+VFpIxbbkhOyhoQRze8Tcq8/R3rprXC2QIhzGXCnJ19elytICS61NxUc+ouFKI9rmNw3HPPSWBfqI1KS0KDtZRzFcr60U3E7OYvrP7OclEP0FDSksaaXqLpxTm9eMy57YJerOklRfNjPH3e6s9TgJsTc64W6MMqXayFcrVW+bmY0lzwstb+gbmtzOod4Dnv75tlGUeUBy0pU3h5MfmcX6Id0ETRDm+2DZw8ePOBrWqhE7aeILA1QWbWYWtC2mz4tGt/BUIS6EWSnn+cnIU7ayEzkQOyIibPIvb2nYOW6QG5TclMhJAKiyCSmjS2JFFOogp3QY5yYlWQJhlpVBBJMxnY0JhXzevzMabvmNkuXcO4sVJ1OeiASZjUPVn/PakqOCgrtHTLVWm3RJU2ijyXaC05tNKNsNSCwkT1tCaFKW9OU46YlBYljZuzTJp6GgwlXeK7ezQoZcpkeK9cGqQoRx+Wx0zz2VKu2ULAdnbdtHl63ElMj71/2T48Jty5dVClG9Vb/pBwI3xVuS3r8kKXU4GUK3Vo03x/48j9qHJLqOnysWCjp0mUJoncCO8q9/HI52FxF9njupSnAVOP2Yel3KpFzteockLOVUcbi0DdScXwfhz4X4UQfxWXXP8K8G9xQZFXhBAv4YDru4E/cUJ9eOY1D7aOWxdAl/WXAbZWWIOVANs8B+6kQqKNtlry06bLqza69kfRfv2lq8+nQMWqUVebMiSoY7IsJh+l7OuYTKfkwrlq2kqElAjcr+VYlu5ZYt1IT5XTTzOSKCeWegKLvjsm/ddiifnW/PVAu9y2Ckikm3AhBpJG3pr04G02N6wBcT7cSDcSsjASbaP6pqituwFq45Z+MlaQGUVRjqrUVPsV2ro5zdwcd8KFcvyPmA+vwpagV45qlBYp3STFqhwFqaRxoyDLulK4z47btq4NYd30GaKaOqOsJ2xjOg1X34UXhZRuf9m9evtp47ipG+RkSo/JVB5uCg9Rj2a1FoymnNZDlAu+i6m/q7oCU1g3xUlZT5f/jC23q8+JEe2hT1E6rtISSVMDfeXQKqnpq/9/e+cfK81V1vHPM7N737dFpK1UBErgrXk1qf8IIRWjMYQirZVQTfijiYkgGiJC4q8EW5uY+J8Vo/iDSAhg1CAFC0iDMaVVjH+1QJGWtlB7oWrfpgUUoaTQvnd3Hv84Z2bP7J3ZmTN7dvfu7vNJbu7sOWfOjzn73vm+z/OccwpGBz5NJoxyZezzj81JH5HSFS2SUjTV7uvxPhhgYeq1XcOqxFS9Iy1tL/dcelnKeqyuXHY7iZ8H/hy4FPhHEfm8ql6tqg+IyIdxQfMT4K2qOvX3vA24Hfcn9/2q+sAyfTCMXSTPCkbZeS4YuTiw+cUDJZK7bRicG9AtIjgSt9rzyWcuYPKdU+48yumoEpynDpSD/IhTowkHY7/6M59wwanyekrOySbL4CArQII3V/nmC81Xc4KtMX3+/rk6SoFWqDtBoFCh0Nxtj1Fk1cv/mCggZzoVJlqKO7dtRigyyg1tyy02yvudGBHUl6/tNbaG0wGSM/9C82KzFJKV2AxFKJBJg6D1Irbc2qMUseNxwWlvzSyFcmXdLE/x8EI4kwTCJNHWAsb+IboFS6jPyml95+jFm+6G0UGrdayFNkvXrL5h8WddFrQ+1rEqvxZb1rL6smPBQJc7MyzTZ8FAmF5bMFDlt8WwuZf4RLwlbTrmyMeknS/cAoLz0xHPTMdVfaN8yulxUVvpOc6nzsKWT/1+aoFmaepnm+uz6/zQBRavcExBoWN1hWJKmgRZjzZqVDvotuS3xJQ1Cr22Nrruq+UnEGFtfV4VqxIsq3KJhsTsFZViB/pafUtainr0fXAcVd8+0NNqNOtQR3+Wj9VKYcVqem7Pfssf3KOqL28qb8sFjWTEujM7v+6BOzMUS9Oj40VlctyFOX9f6fKMWeFZb7e5xzHuzKaYM3ffceHVtUggLNMmvOplZxvdjnGuv2zkV0Xm8+LVlT2a5k6cFSOOvnvAM9MR3y5GTPCrPacjjjTYkmOsHIz8RrelYBv7EwryKePxkd9XrWh1c1YHtLedE9pwCDwEQq7lWTVZv3oJupAOcVcr2lRHH3FXa26AYItdALB1fssEpDA4DN0FPUK8Re20nlIU1oomCEQPSSi8Urn+Zs0tL177YMLL2BgxQm1VIq3Wnw6RFhOLJnl/kebKZwvz84PFIqwr5iws03fftJJR/hQj5kRaJpRboIX1TdSt9DxfjDg6f4pJMeJJ9ScTTE9x5K+nRVaNeVSeTJC7PdROjdzv8Uiro6QODo44yKc+TqpFeEWIqdkpCy0irUnQzaU33tchrBqF1IJ+Vv9C+oijRqHXX1S1is32G+LK7wMJjqQZvDv6UDGZ0gLVdltMG6sSppF1d82lLiHCTHgZW0HMqs1wtWcjPURa5eYM6uqypIX9iF0w0CTUQjE1efq4SAvLtLk+s/HiwP+uzW1r97UItnn3aQacBp5VWuPKIPpx832TImMqzqo2mY44mhzw3cJZ1s4Xp/2ZoE7QFZpVQijPCnfeYTatVpCNMrdibJS7A9sPxtPqFIM8NFI1WBhbLWUB0uSi7HFfKVJa89uEXkN+vdqGsj3EXWNdfYRUH/do1Y2EwmxbrHJrDt1JcoRNAivO4DMQV2Slq9+2ekEaG7JlwsvYCWKsZ71EmhdnbQKqUaRBJdTaVnjKJBB6QXrcqs3ZH4SuuDTJp8fKxoi0tvv6nPd57AzPhddPV5vCVpa5lpi68npa+O0p/PYTkyN3cPtTOjv7s9ya4qjIUQmEZYYXaW612jibuhVqmRdteeHF28QdZJ1NGfmzQKsKyv60xJE1iqIYcQfNVrMuEdZDQHX1rd6fDtETKbBaxefim+LvMdpJfFj0MtafYwwUk0ni1Ye2HTl+E16GYWwlbuXnEadxKrjpYPd6cP3sWsVtMzFlzKRwm+EWjFxM2zTn6ak7XmoyzZkw21esWlFYbSdRMM6cSBtlU3c+ZlYwytwO/+7auVEzcbv7j7KCLDv5i5oMw1gNJryMvaOPday0NnW6LaHRddkUWwY948uqst3Wse5jno5bx9o2nuXp49axsHzXWZ3zdXfGlLXFuzW4ARe5NheOr6Vv4vcWK8//PF2WDWPYGuoohZxkbsuISZFRMHYirciZTnImmnFU5DyNTysOKoE39SKumNsSIs8gz6aMMnduZi7+OtcqPRdvnRtBLgWZF3W5OHdrk/Wzj4VtNrQ4F2WXK7HTshVhxRpkJZtn3as394k1bK2R1KqWJBbPYrwMIylDTwLoEmpZyzKBUqg1uS1hPhZtlh6Ks5JWN2dj/NlMbMVsPBvSvQntJMjvdlE2Wa7aXrwx9zVdNwm3Re3Ni0IBRpkEm+L6+vL5+xZb46aFMNGcohRnmrlrdYLt6SL3G8SOKciYqLPAFaU1TrMqvGjWt9K6VjCSqRdxzgpXCTcpyEdK7ve2KvPchqEFuZR7Yenx/nc8qxpLirRe8We19pYTaknj03q1tx0xbEnFTwKSxLj1IfG4TXgZxgCSx5R5uoSZq69ZnFV964gv62M9ayoTu1KzSos8PH12X1xMWWPbHfe1WrZqdTQJtm4rUGzf/JGgjMMyIpCBjPr0rV6mUGGqeSDi3DFN02lGITnTo4zzpYDTjEIOqhMACs0qy1xBTqHNKyZLoZaLOiGXOwGXSWmhc6KtTHefi8pNm/vrLNcqLfMbpNab6hYmMWJpsNBZkSDbFuG1jZw0sQgmvAxj5azDtRnSJdJirGfQ4gbtEGkQCKej5sUAreKlYWuNmmWuY/PaWl09BFtTfpcIi7GOtZVps8Y11dHoRuzR53LPtnqivy+bLxuxctJlUKgXdKW4YybcCs2YHrnf56W00GUUxciLwlm5gtx/FtT/bmu7FG5OyAlZNhN64fFMubjd6sPP2VyZqi5cWp5rJfxmZZuHX+/UcoKsj7BclnVb8baRdVnQTHgZxglgna7NGOsZdMefdZbtIdJq5b1lrZfYaHB/xgq2WV3DhFdr3zrccinqaErvIwRDukRoVx1ZJvMazpXN5ZjLtU9/Fll/VEFl5C1xQlFa63DnMCpSicGiyNCpj8XzaaWoU/HWvEDoFf7eQgUl93VJryOastwLQkJRp8BMxAkz0Yi4uL7qDE/q5d0xSUV1rFKGwlzZ6nilslxOlV/mSWA9zKTrYMg4zEo3HBNehmEYxlYgAllWzPRcm7DrsCB1xpRFWIdUgSyrhFzh4+2UrBJulchD/LmbTvxpkF4eDD4tcndmp47977I+f68XieX5nWU+krnzPINy5aHjZf3L4kSd+51lUB4sH4o9oCb8ynx88fk0JMiXWTmCutrSavVwfNrDvMbxyOL8LtGt1PPLOMvLL/nqwvtMeBnGFrDuYP9aHU32jB6B/1XfIqxjMBtLjHUsZB2WsrBvTS5Od99iV2Offvatq62+GMtVlyUttp9D+9ZVX7/70gmrvv0UqOL0jheAQJX0bntof7rrGOZ2nAnAmcADgkPdZ58JPiNBXnBP/bNUwiUUNNV18KdlVtdc/2h+Nk0CSufqbGPR0z4m3LyInJ5fbF004WUYO0BMHFlIn5iyLnHW6rosiRBp0CzUukRarT/B9foFW3jf4jbixFuzEOzqR7vbsru+RfW23RfjPhwqoPqIhrY+9207Vph01zdMLA0VSKsWZ6GO7EX4T/24WWrn0JbthEpMeBnGnrAqq1lIl0hrtJ7N07EIIKRJpPW6r2GsreIufIk3HJQeJUx6bMlRr6N/e0XH4oKhYqsmEDuF0GoEXXt7zfdNO/Lb604nyLrEX0y7Q/swtI1V1lGvbzMB/5uOTzPhZRgGMFyYhaRwbVZ1RYg0CDev7SG2Yrbh6Bh32321OjpWeBah1bDr5R8h3pqEW5/7mkScq6+p7WHWuC5Bt0x7i9o93kaM2GqSdM119BnfkP7Uyw4TLjGisL3tzbk849o4eSY1E16GYfRiqDszJKX17FjdXUKtxeVZUttao0OkRVvVIoRerY6mF2SHeOtl2QnEW+kqrr2M205eiLDAhbQJuVm9bVasxd+BrraLgXFkMX2I6Y+rL6Ww6i9Cm+9axg2awn2abvuGFGKyi1QizoSXYRjJGLqxbBO94s8C8aINbsDWuhOKtJAUgq21vga6xFtb7FjWsKlkjNXN1e2eYdvxWF1Crt5G9+a8TQwVdPUyy4k7V4crU/TYsSEusD+t6JvVu8mYs+XFVlP/+zz7vnWtGttRzTAMwzAMY02YxcswjI2wjpiykJVZx0JSWMoa6mtbndm4fUeH1Q2GW8pqHC3e6DZF3FqjG7TWh642hlnSwvG3WVKGb0mxvIWtqd4ui8+6rVVDXX8nOYDfXI2GYew0MW5LSBxfNlCk1drblGBrGWeMm7OP6K0WM0x7uEw7XsJNrs+QoW7QNkL3aKNA6NXesHi3qt42wZpc6FU1N5ZdlUBKMY6hbc/1ZGFu6tiwPn0z4WUYxk6QwoJWMlSk1fvTX7CF+5/FtN0l2EJaFw8MrDdKvHXFu3WIt5pI6SH0uoRciE5jxNKSgi4kUkyWAmKwUFqh0Jvd038cIZtcZblKgdiGCS/DMPaClIH/IVFCKSCFVW3dgq3e9nLiLWpxQeRCi9RCrmpjQ4IuJErchW1E9MexGqHX2FJi8ZPGJdi8ejgFJrwMwzDmWJVIC1m3VS1ksGAL+xRRNsraFtIR49bWRmdbXfvNtVn5Egq68GWuRfP+YI1thBvF9r8tStyFaDFQeEULveNk+bDvZq0fCUSTFmmtX0vVJiLvEJEvich9IvIxEbkoyLtRRA5F5CERuTpIv8anHYrIDcu0bxiGYRiGsU0sa/G6A7hRVScicjNwI/A7InIFcD3wI8ALgDtF5If8Pe8Cfho4B3xGRG5T1QeX7IdhGMZGOGnWsZCTaCmLsWKVLGsxm2cd7tWu9gYvSohwjcLMshZjVYOZZW2wVS2ynyW146oiXLu1fmTDXMltpLC8hSwlvFT1k8HHu4DX++vrgFtU9RngERE5BK70eYeq+hUAEbnFlzXhZRjGzpN6pWYXJ0WwhZTibR0uzjZOgpDr1e5Al2it7Rj3aO3G/q7SkqHirtZsCvdpAtFXq26gAGwjZYzXm4AP+esX4oRYyTmfBvDoXPqPNVUmIm8G3gxwqYWiGYaxh8QKNVherEF6wRYyRLwlsbS1kELIDZKjA0VcyGDLXIJ+DBZ0tUoi4hxXJPRq3VlDzBz0EF4icifwAw1ZN6nqx32Zm4AJ8IHBPZlDVd8DvAfgrJxO+y/NMAxjR1m3VS1kVYItpaVtnhRCLmXodZLTCyNWrbYx2ErX0Ic2okRmg0iLDpxfUuiFxIq+kE7hpaqvXpQvIm8EXgtcparlqB4DXhQUu8ynsSDdMAzDWDNDrGqwHYIt5CSLt/rWImntDOmOoSaJoAspxd3g71JicReSROi1sOyqxmuAtwOvU9XvBFm3AdeLyCkROQOcBT4NfAY4KyJnROQAF4B/2zJ9MAzDMAzD2BaWDZ76C+AUcIeIANylqr+qqg+IyIdxQfMT4K2qOgUQkbcBtwM58H5VfWDJPhiGYRhrZh2rObtI4iY8AVaz5HFrK7SglZxkS1rI4IUUTSSIywOQmXfw5HJWTus7Ry/edDcMwzCMNbIqwZaa1GKhL22uz5SsY2zrmud1juVVh/fdo6ovbypjywUNwzCME8lJiD/rQ8oYrxhWGbdWktoaF1KOe1VWOah/F1Y5lpI+UtiEl2EYhrFTLPsi3zbhBpsVbyWxFriUQqh977nVi61YcWfCyzAMwzACtsXSFrJJ8VaSUsRBnJBbh2Wujdjvy+odxIZhGIZhGAZgFi/DMAzDSEIKt9a2W81KUgSyp7aglWzSJQomvAzDMAzjxLCNbs4mToLrs41NukTBhJdhGIZhbD3bbm1rYpX7m6UkVsiZ8DIMwzAMY+tWg8ZyUlypJrwMwzAMw1iaXbS6tbGMiLNVjYZhGIZhGGvCLF6GYRiGYZwIUm94ehItaFtxVqOIfB34rwRVPRf4nwT1bCM29v3Exr6f2Nj3Exv7yeHFqnppU8ZWCK9UiMhn2w6t3HVs7Db2fcPGbmPfN2zs2zF2i/EyDMMwDMNYEya8DMMwDMMw1sS+Ca/3bLoDG8TGvp/Y2PcTG/t+YmPfAvYqxsswDMMwDGOT7JvFyzAMwzAMY2PsrPASkXeIyJdE5D4R+ZiIXBTk3SgihyLykIhcHaRf49MOReSGjXR8BezquABE5EUi8ikReVBEHhCRX/fpl4jIHSLysP99sU8XEfkz/yzuE5GXbXYEyyMiuYj8u4h8wn8+IyJ3+zF+SEQOfPop//nQ579kox1fEhG5SERu9f/OvygiP74v8y4iv+m/7/eLyAdF5PSuzruIvF9EviYi9wdp0fMsIm/w5R8WkTdsYiyxtIx9L95tTWMP8n5bRFREnus/b9e8q+pO/gCvAUb++mbgZn99BXAvcAo4A3wZyP3Pl4HLgQNf5opNjyPBc9jJcQXjez7wMn/9bOA//Bz/IXCDT78hmP9rgX8CBHgFcPemx5DgGfwW8HfAJ/znDwPX++t3A2/x178GvNtfXw98aNN9X3Lcfw38ir8+AC7ah3kHXgg8AlwQzPcbd3XegZ8CXgbcH6RFzTNwCfAV//tif33xpsc2cOx78W5rGrtPfxFwO25vz+du47zvrMVLVT+pqhP/8S7gMn99HXCLqj6jqo8Ah8CV/udQVb+iqueBW3zZbWdXxwWAqj6uqp/z198Gvoh7MV2HezHjf/+cv74O+Bt13AVcJCLPX2+v0yEilwE/C7zXfxbgVcCtvsj82MtncitwlS+/dYjIc3B/mN8HoKrnVfWb7Mm8404duUBERsCFwOPs6Lyr6r8B35hLjp3nq4E7VPUbqvp/wB3ANSvv/JI0jX1f3m0t8w7wJ8DbgTBAfavmfWeF1xxvwqlhcC/lR4O8cz6tLX3b2dVxHcO7UF4K3A08T1Uf91lPAM/z17v2PN6J+yNU+M/fB3wz+MMcjq8au8//li+/jZwBvg78lXezvldEnsUezLuqPgb8EfDfOMH1LeAe9mPeS2LneWfmf469ereJyHXAY6p671zWVo19q4WXiNzpYxzmf64LytwETIAPbK6nxqoRke8BPgL8hqo+Geapsznv3PJdEXkt8DVVvWfTfdkAI5wb4i9V9aXAUziXU8UOz/vFuP/hnwFeADyLE/C/+E2xq/Pcxb6920TkQuB3gd/bdF+WZasPyVbVVy/KF5E3Aq8FrvL/OAEew/mISy7zaSxI32YWjXcnEJExTnR9QFU/6pO/KiLPV9XHvcn5az59l57HTwCvE5FrgdPA9wJ/ijOzj7x1IxxfOfZz3kX1HOB/19/tJJwDzqnq3f7zrTjhtQ/z/mrgEVX9OoCIfBT3XdiHeS+JnefHgFfOpf/rGvq5Evb03faDuP9s3Os95ZcBnxORK9myed9qi9ciROQanAvmdar6nSDrNuB6v9LnDHAW+DTwGeCsXxl0gAtCvW3d/V4BuzouoIppeh/wRVX94yDrNqBcwfIG4ONB+i/6VTCvAL4VuCy2ClW9UVUvU9WX4Ob1X1T1F4BPAa/3xebHXj6T1/vyW2kpUNUngEdF5Id90lXAg+zBvONcjK8QkQv9978c+87Pe0DsPN8OvEZELvYWw9f4tK1jX99tqvoFVf1+VX2J/5t3Drew6gm2bd43EdG/jh9cYOGjwOf9z7uDvJtwqzweAn4mSL8Wtyruy8BNmx5Dwmexk+PyY/tJnJvhvmCur8XFsPwz8DBwJ3CJLy/Au/yz+ALw8k2PIdFzeCWzVY2X4/7gHgJ/D5zy6af950Off/mm+73kmH8U+Kyf+3/ArVrai3kHfh/4EnA/8Le4lWw7Oe/AB3GxbEe4l+0vD5lnXDzUof/5pU2Pa4mx78W7rWnsc/n/yWxV41bNu+1cbxiGYRiGsSZ21tVoGIZhGIZx0jDhZRiGYRiGsSZMeBmGYRiGYawJE16GYRiGYRhrwoSXYRiGYRjGmjDhZRiGYRiGsSZMeBmGYRiGYawJE16GYRiGYRhr4v8B/nKOv+bk/0EAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAERCAYAAACqx6miAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABh7UlEQVR4nO29ebwk2VXf+T2x5Pbeq7Wrl1p6k0ot9aqWhBYQMkiy1BIaiTEgZPszCEbzkbHx2B7jsQWSmBnADB77w2KjAdrAjOTBCIwNkjFIai0gBOqlWuquai3dXb0v1V171VtyiYh75497Y8l8+bZ6+fJt5/v5xIuIe29E3ojMl/HLc849V6y1KIqiKIqiKGtPsN4dUBRFURRF2S6o8FIURVEURRkTKrwURVEURVHGhAovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkTIxFeIvKkiBwTkQdE5Igv2yMid4nIo36925eLiPxbETkuIkdF5FWj6IOiKIqiKMpGZ5QWr++11r7SWvsav/8h4AvW2sPAF/w+wDuAw375IPDrI+yDoiiKoijKhmUtXY3vAT7utz8OfH+l/BPWcTewS0SuWsN+KIqiKIqibAiiEZ3HAp8TEQv8prX2TuAKa+0JX/8CcIXfPgA8Uzn2WV92ggXYKaG9nHhEXVUURVEURVk7jtM9ba3dN6xuVMLrjdba50TkcuAuEfl2tdJaa70oWzYi8kGcK5J9RPxKdM2IuqooiqIoirJ2vCt95KmF6kbiarTWPufXJ4E/Al4LvJi7EP36pG/+HHCocvhBXzZ4zjutta+x1r5mJ+EouqkoiqIoirKurFp4iciEiEzl28DbgIeATwPv983eD3zKb38a+BE/uvH1wIWKS1JRFEVRFGXLMgpX4xXAH4lIfr7/aK39jIjcB/yBiHwAeAp4r2//p8A7gePAHPBjI+iDoiiKoijKhmfVwsta+zhw25DyM8BbhpRb4CdW+7qKoiiKoiibDc1cryiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjYmTCS0RCEfm6iPyJ379ORO4RkeMi8vsiUvPldb9/3NdfO6o+KIqiKIqibGRGafH6x8C3Kvv/Cvhla+1LgXPAB3z5B4BzvvyXfTtFURRFUZQtz0iEl4gcBL4P+C2/L8CbgT/0TT4OfL/ffo/fx9e/xbdXFEVRFEXZ0ozK4vUrwD8HjN/fC5y31qZ+/1nggN8+ADwD4Osv+PaKoiiKoihbmlULLxF5F3DSWnv/CPpTPe8HReSIiBy5QDbKUyuKoiiKoqwL0QjO8V3Au0XknUAD2AH8KrBLRCJv1ToIPOfbPwccAp4VkQjYCZwZPKm19k7gToDD0rAj6KeiKIqiKMq6smqLl7X2p6y1B6211wLvA75orf27wJeAH/TN3g98ym9/2u/j679orVVhpSiKoijKlmct83j9C+CfishxXAzXb/vy3wb2+vJ/CnxoDfugKIqiKIqyYRiFq7HAWvvnwJ/77ceB1w5p0wF+aJSvqyiKoiiKshnQzPWKoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiyBtevdA0VRFGWrEK13BxRlI3PR7uK4vYka3YEaS4AlICPA+LXbDsmQeXVmoMwgfl3dFmy5LetyyYqiKMoaosJLURbhWa7n7/3y1UzUk75yayEzAcYKmREyE5BZvzaCMUFR/9cf/TNSYi+nQixCRuilm2AIMcW2k3OGAJZhaXNCrRRrYBGobLslLy+3q3X0bTOkbvD18nbV+vnlLFFv+849/DWWd9xCrzHYfqHjyu3h1wyoEFYUZSSo8FKUBZi2O6nTnie6wD2Eo9As6zzv/dh3jrprgBN/1grGOmlgjJcYFlfmy/vWlqJNsfb1WKcsquVuP3896dv+6s/8GQCGfkVikaFrFiyff1x/Xf9+VdYNP5cM6UNZt5Lj+l5vy7qch1/YYjpzmGBeDaM+31pT/XzkfR/8PFdZ7PoGj1vofGtzjy7tnCvty/D2K//cLXS++edf6NzDf4ANO2awH/3HLP5Dzq0fGdoHUOGlKAtykV3ssGc5O9sEIAwMoViCwBKK8Wu3vx6IgIizm7kOjvf1r/7YG8b7gsrIWSh+MRfdyzrHil9TELF9+5sRETuv79XrGqR63QttV9tWz1d9nWFll4KlFBer+QZbqh/DPmOLidTFjht27HI/w/Ok2SL18+pstd3wur4faxb4Xz8zvGOo8FKUBcmIuO1nvp9vPDfFnok5jA363IvGuxbNEl88uUgLpFxEnJATcfadwAu4wTZu3V8m4mxMQVAeW21brRNxv77cPkW9+GOU7c1Cn4HFBMTqWZ51YnOwkr7Pt5gsfI7l3KPNfN+2Nyq8FGUBOrToJBHXv/0Grrisd0nncC47yDLBWOcOLNbGuworZc5NWG6nVggf+CqpDQr34aBr0VjnBjM2KFyIxpbuQjPE1biUWFyKqqjLLW/DhF1eX4pCC0PLmScaS6Hpy8UWdQyK04q4HC5W+/cVRVHWCxVeirIAPWr8m8/8MXsf/Qv+9b/4+5d0DvfQp+KOvIRfqVfdfkmvvZbkgrKIEbN4cVfZL8pykenN8ZXjzMA5THXbuPbhA1/14lG82KzEsPXFs1WEqS+vxroZI8V5lsMwa+JwsTe/blj7QUG4kHgMKkK0sIAOiEoVj4qyeVHhpSgLIjz64nO8yJn17siGIxeUjjV2Ha2T8CzEn51vkewTk4VQrFgih1gugwfu7hOKZlAQ9onL+QLSGHfDVyIeh1kDqxbFqnCcJzBhSFuGHNcvLgdd3vPKVDwq25xVCy8RaQBfBur+fH9orf3fROQ64JPAXuB+4H+w1vZEpA58Ang1cAb4YWvtk6vth6KMmjxo0hjh3IWIXhKQpEKaunVmhDQT50Y0uTvRb5ut/1TpdzWWwf7ugeva5Ja+3OpXPtwpH+RBbt0BCSxBkD/cy3L3APfHVOqLdaU+GFFaaBEIQ6iM61zdCa965eqOvwRycVgVhc6SWN0WrOm3QObu71xgGgs8cHchCActj/2u7X6Xd2lpLF3fK3F1Dwq6YVZEGdJmMWtj1eK4VLtBwakoq2UUFq8u8GZr7YyIxMBXROTPgH8K/LK19pMi8hvAB4Bf9+tz1tqXisj7gH8F/PAI+qEoI8NYl18LYHom5PmTdWqxJY4NT+24hTCEKIIgtAQhhAHEIV485GJinS9ijel3N1K6EPM6Q8WVWC7G5DFpQ9oZJxZe0j5KmvbHwxk7sDbSJxJy4bvYTAO5UAuDimALyrKwsi0D+0WbcOCY0Im+MNx4VpxchIbhCMTjOlgeq5+ZhURhIfgWabNQrGR1sQMislqeVeMpl2ChwTKlwDOluBtoEwbzhZ9U2oWBmXfOfqviGN4UZdWsWnhZay0w43djv1jgzcDf8eUfB/53nPB6j98G+EPg10RE/HkUZUPgHSxYC3FsCW67kRRIgct1NBEw6G5cCUvfvzluGf6auKwZl5o5wxgwWe4GhCyD1Lq1NUJmnPjL19fNHiVLhE7Fopll+CS5bsm8CMzMwqJvUKAFA6IuDC1h4IT8oAAs2vs2Zdkl3oRNxPwYSbhk8Tgm4Zi7qPsG0tj5FsZh9ZmB4IG7Sf0I6tyqmI+ethULYt+yjPjFQcFWiLjAEki5vVDKHPFt3OfT9InF6r6Kv6UZSYyXiIQ4d+JLgY8BjwHnrbWpb/IscMBvHwCeAbDWpiJyAeeOPD2KvijKaChT4230LxJrIUshTb2QSP0v9gzSzAuN/Iveiw6K+KVybU0ZDF/kplnEUGLtwL3x21JZ565Higeo36a0CjrXoSvPLUl527wuCPN1bqlydWG+Dpf3PuXHLnAn55UME4ABK5/kNssqgi+D1Iu+wpqXlULw+tljdCpirir0sqwsG2Z9yV1mYWiJ/L0KK2KuKvCi0D0ooygXevn29hJ3oyZ3UV+ylXGNBOKgGMx/MBTl/vOWW5WzDKiIwKxP9AWuvV8XM3jYhT8woRj3OfOiz33mTLlfKS/qC/HXX17NqbgZGYnwstZmwCtFZBfwR8DLV3tOEfkg8EGAfToGQBkzucUL1jqn0cKkCXS70J4Tej3o9YReF3pdIakk0y++6COIotL1GYROZESR5ejTU30u0MJaVRVEOBGTn3PY/lIUbkdK9yOVMmMG2lVcjeVoR7jtmmmSBIxPw5G7IMsHRSkkc+vUMGtTfm+CkEJIuIdiXm7L+sDdwyCwhJGrj8LyPq6G/PWG3LF5JW1u7ttfidDLhXQu9BID3czdx6wQ4M6S1+0GGEsRp5jlwm4Jcdcn4IJS5EWhLw9LkRflVrrQ+PtZttvoP2i2Grlr3bHM77QRicDic1mxErvYWClS7eSfO75+N7007JuGzVn1gnnTsw398UFphYsKoZb1CTdX7uqDvnZuOwrNmlrvRqporLXnReRLwBuAXSISeavXQeA53+w54BDwrIhEwE6YP2zMWnsncCfAYWlsTlmrbFpKk73QCSbX/PU6bbh4Qbh4UZidEbIUohgaDUujAbW65fiZSeIaRDUIW0uIIYvziwL0YPe+Nb+EkfL03NTwihWam4ypijYwSVnm3Itw69XT9LpSiJXMi5Qsc+9Dls0XdYWAi7xFqRC+fj9yoi0Xw2VM4OpF3GKU1pbBmv4LmB2w5AnuYbCcB4IxzsKaGWdR7VWEXebrrps9Si8JSAcGoWSZ3x7ilnWWOrylzlnfoj5RZ/rKCsEXldY9ZWPSbwVc4nF+x+rEXv6jzH3OGPgx4cXd1+6mm0bMeSGXmgDj1+7zGgy13uWWtyjMxVpGFDrrWxQa4jBz5UtMJzeKUY37gMSLribwN3EB818CfhA3svH9wKf8IZ/2+1/19V/U+C5lo9EXK7FGv3rOnxNOvShMXxTqDdix0/L0zCSNlvuSSoA2kAeXTe1am35sZQIv1BaLCZsn8nJxFy98TNU9aHpURBvcesgJuXbmrJaF4Ejmi7iqgKsKtDCyRF7IRbGvy/fX2QEQBBDUBm9P/1d4e0DYLUfU5fc09Us39VYRf1+vnTlKu+PEXJqVYi7NxA/E6P9HdQ9I7z4NLXFVyEWGyJeFkSWOTFGvAm5zk1v2omgRWXGJ4i53++efweLz5z+Dva/fw5yJSbPFP0Sj+Be+Cvi4j/MKgD+w1v6JiHwT+KSI/DzwdeC3ffvfBv6DiBwHzgLvG0EfFGVNsIxed50+KTz7dEBrwvJse5LWLkgEZnowsYChZ5wY4wRD0vPCIaWw/Ji0tB7lFiO7vLnCL43cLRqU8VlF/FdYlgUV12q+HUa5i9GtR+k2WCxWrE/IVU1J9fltc7GRZWA65XaWwi2Hpul0nGBLU/fFntdV+xHloi0uhVkUWeJ8v1Zub2RRkd/TqE/RlQ/ParydUI7kWojM38s0cVa52UyKOMhrpo/S7QUkaVA8NJN0voDLY+DiKF+bYjsKLbXY9JXHkbpQtzK51a4WLyDqqiljfnbh84xiVONRYJ58tNY+Drx2SHkH+KHVvq6irDWF1WtEX6RZBse/HSABzLYm6EbrK7R6XejOQbcDvY5bZ5kTKHHNLVHsRMtDDz7vc2y5PFrFSDNZ24f5vFQVPn9UnneqyD9l4JWv3k+aVIRhWhE1GX1GGQko4rgKgVa4CiHIt/2yVg/T4WLD8WzHfzgWURmFcEsh65UC+ZaD08zOOKGRJEKauLhAY8r4vjiGKHaibN52rdzerEIid7nWanlJ+QFoX1mKuHyU7BBdXHyO0hTm0lwAw7XTR+l0A6ZnQyfeUnGu1ax0oQZSCrZa7IVZbKjFpWCrRW5/UeuMsuXQqHVFWQBb/BnBuSx8+xshey8zPDU7tS7/eFkG0+dh5ryLKYtr0GjBN44+TxQbotgF5g+jufZhbkOZn7Ji4bQCjz76zLLPW8Z+CSYrh/ff+qr9dL3lKU0h8+7B/KXEi6Qo9kItzl2B/eXjYiHh9ky7ouiHiDZjYDZ3hbbdtd5ycJr2nHAxcWIt6TmRkQuJKIJazRaiPN8u15tXpC1E4VYdEG+zly8t3Ixx9zVN4GLiLJdJAtdOH2N6Nixi4HLBBl4QezFWrxnqsaFWM9Rit9RrTrRtZMulsjQqvBRlMUb0IDn1otBsWp6aHb+Jq9uBU89Dtw2TO+Hxx58lrpcukdYGcG+OmzL2qz/Y9/gS4s1ZmHzcUSq88jUH6HVgLsG7BJ07FkqRllsO47qzIMV1b0lcx4fnMMHW5yIdItbaXkQkF9365gPTtNtOoOUjbXORVqu5ASH1ul/7ASL12nDr3lYkCPx9qEH1M9bxo1ZzD3Sjcoy1TpwlPZjtuXt6zYVjzM6FdJOAXi+gmwTFfY4jJ9Aa9cyta4ZG3S31mtlyQniroMJLURZglN9ZJ54PmK5PVH45rz3GwIvPQnsGLj8ADx19hlNnodZY+lhlOMWQ/BjA8vC3FxZqLr+aFMutt++nPVPGzuVuv8KCVPdLw4mzjWbVyN2u9abbL1yhIdAq21kLswkkbUgvOoF24ZzQ7QjdnhQxanEMdT9qt960NBqWZpOx/o9sNERKsTbhxVr7in6hVrnVLuVMD2a7LtXMoQvHOH2+RrdbCjQRaNQMzUZGs+7XjYxWw6iLc51Q4aUoa0zqc26N84FiLTz7GDQn4OSZZzip83yPHREXNxX5QNzjx+eLtKo4u/X2A8zNwvkzLv7OWid0ckHWaEK95bY3MlUxCRVLWs0vnrkEkg70zsMrrprh4nmh03Y564IA6g2XTqXZsjRbMDFht421bLnk7u2JCfcZ6111c6GDc4FmjPs8XegIJ7uw/+xDvHC67kaIZkIQQKsQYxmTLbfECwWQK6tGhZeirDHtNrRals4YX/PMi84y8dhjy497UsZPVZwNs56ZDNJESJOAm27dz7nT7iEaBKUQa7ScwN5oFrKlyEVDcwKe7026MfETbjEGphMnym5sTnPqpPDUbECaOGtQa8LSmrBMTFomJjfftY+T/LPSaDohlV55U58GNsaFI5zpCPUzR3n+ZJ3ZdkQvEeLIMtlKmWhlTLUydkymKshGgAovRVljkp64X//Z+F7z/Gln6doMDyRjIPMj71zeJukftejbCfgRldanl7B+uiBL4HM1jTptxHoThFALLbVGxhNPlMLMGEh7ws23HeTCaXjhaXfdrSmYmHTrcQb5j5ogKC19T89NuTffD/BoJ/DiRXhFc5oXng+YmRaCEKamLFM7LTt2utgyZXkEATRb0GxZ2ntuIQDyaL80gelZYceZBzl5tsajT7VIM2FqImPnVMKuqZQdk+mm+J7ZSGzif01F2RxkxmcSH5Pw6rbdA2sjfxkaA3PTIZ2ZEGOFODaEsRNPp556EgnyOR5tMWWTtQJWyvkkjXDl9VfTS4JCsGWpeCuSIa4bag3TN5BgqxAEUGtYHnm4IsYy6D0d8PKbDnDqhGuzYw/s2L21AtqjGCZjP3IzBHa5lA+nL8DhaIYXnw9IEti9x7LnMsPUjq0lxsdJFMPOXZaZXbcCbpoZa2FuFsIXj/LMCw0uzkTUY8Nle3rs29NjormWif22Biq8FGWNmTeZ9BrT65YB0BuR9kzI9LmI5mTG7LlHCEJLt1K/kuD/cyeOzytzcVMhl19zHbMXI5JeQBBYJnakNCa27kivIITGhOHJJ50YSxPh5TsP8vSjLt7q8oMubmorEkZuxO6JdNK5KjN49Axcm8xw/GFh7z7LVQdMJaeXcqmIOKvqzOStRMAeXHqa4PljPPz4JO1uwP59XQ5c2Vk40eg2R4WXooyBcU60nWULTci8/nTbAbMXQjoXv013hgXzhq0GZ/HKOPt8KcqyNCCuvZTpczE79ybUW1v/V3kU2yKgv9sOSHoHaE3BlYfWuWNjIAidpe8sk5id0GhM840HQ3bttlxzvebBGjWNJsy+5BaaL4E4heDJYxx5aCc7JlNuuHZW48IG0I+fomw11mKeoxHRmQ25eOpxZMzfPGFkuHjqEdoXHubCmZikt0Fv0BpRbxpOnnkGa12Kke1EEMCTM1N0d7p0Lt88GrqkuMqaEEUw99Jb2P1dh9m7q8c9R3dy/qLaeKqo8FIUZWxkqRBE6/fUC0LLxVOP05ndoCbBNebJJ59h+ryLsdtuiMBz3Ul27ra88Pz2Et7rxflrbmPiOw7z0KOTpKne8xwVXoqijBE7smmYLplt/P0v4gZe5LnltiNPzUxy/qw++sZFowGX7+lx+twWGuGxSvTTpyhbDWH9xc0CRLHl8muvX7fXN0bYue866s3t6Wuy1g2+iLax5ydN0IztYyaKLMZu4188A6jwUpQxYMf4pRMEG9eVNLEzZfpcRNob75PfZMLuq15Kc8cNTO5KqTW234PXGDh04BC79q7NoIbNQJbBXjvLlfu33/u/XqQpnDhVZ8/ObWxmHWAb/+5RlPEgUk4ePA6i2M0HuBEJI9h7ZY8weglhaDn7/BNEtdTNfzgirAWTBWRpxL5rriHpBF6IZuy9qrupE4teCtbCK246xJkTMLEDdu9b7x6tD4f3TPP0EwFXXm3YuVuF1zhoz0Hy4CNcd7BDo75Bfw2uA9vsK0hRxk8YMNZRVI0WtGfH93orJapZLtvfo9sOCKNr6XUCjBGi2BDFljC2nHjsaZehvpKGo+pBzROognDFdVeTJX4y6sxZFqPYEtUMcc3QmsqK+RK3C9ZCrxPwshsOMDvtkuoeOrzx53kcNWkCL9nlMtyfNcINN2Y0W0sfp6yO2VloHP8WvdmQG66bZffOdL27tKFQ4aUoa0xcsy59wZjcO0EArUl4xVWH+NY3N+5cjfWmoe6zXFvrEn5miZCmwhXXXlNOG1TRTC75qfVTB7lpg4LQUm9mhNHWmzJouRgDSTfgxpsPMHvRZXJvTsLkDrjy6u1zT4yBzhy8ZNcM584KEkCaCjfemmny1DVmdhZ2P/MQL56p06gZ9l3R4+bDG9T0vs6o8FKUNabZhLk5KSdAGwOXH4AnH4ZeV6jVN761R8QJ1Li28fu63qSJkPaEm249QGcOeh03h2Wj6TLUH7jerbc61jpL3iuumGb6ojAzLRgDl01ZmhOW/QfNlpoqaSNhLczOwL4TD3H2QsxcJ2CyldHYY/iOmy9owtQlUOGlKGtM/uWf9Mb3QIxiuPowCAfZuRceffSZbWP12OxYW04afsvtB+h1IfGLxX2GGi3nNtyx202xtJXfW5O5kZjdNtxwxQztOei0nSV0V8vS6wmX7XMZ6bfzaM21IunB7Kxw1aljXJwNmZmLsBamJlLCHYYbrp/R+RlXiH5MFWUM7D9ouHB+hjNMju01a3W47kY48wLs23OIHbvhkW8/S6RWpXXDGDA+Fi1LhVtv30+SQNpzDzhjylxbsZ/ofGqX369tTYFlMnftSQ9u2j9Ntyt02tDtCmnipr/a27I0d0JrwrLvckujubEngd9spAl0Ok7QHjh3jNl2yFw7JEmFWmzZNZEStgzX7O8x2co27JRkmwUVXooyBvZdbjl9MuDQrmmeaY/P5xgEsG8/7L0CLp6DgwcPkqUwMQXf+sbzxHWz7QLPR4kbQenyg5lMMBnc9uoDpImLs0pTJ6pM5qxVQeAEVFRzubSiGBoTriyOt1aaBzdZuXuoJz23vmn/DL2eE1W9rhOaYQj1hqW+y+1PTlou22ep11FX4QiwFno9bzXsCIcuHKXTDel0A9qdgMwIcWRpNjL2NDOazYw9uxImGpm6DNcIFV6KshQj+u552SsyHn80YFc2w2mZHOtDJQhh12VuyTKYm4abb9tPe9Z9IbuHH9SacOzrzxFGdtsEqxuDC+Q34rfd2hjhtlfvJ0udgMgyyBI/QjX/TIhLkRFFEMZlYtJGqyyPYrZECotcZKb5/Ujc9s0HZ0h67uGe9ISkkq6pVnOxe7UpqNUstRrs2AX1uqFWV6vVajAGEi9qez0h6cHVF4/R6QZ0ewGdrhNVQQD12NCqG/bWMzeqeHePRt3QamT6HqwDW+DrQFHWBhlx+vcwhMMvN5w+KbSfnmVi0vJse5LmxHjFTRg699XUrrIsS6HbcXE0N916oLBQpAmFyAhygRG67TB0gu7B+593qR/8SEMJrFsDCC4lhFRm6lnqWvNZhfzrWit9ZdZWyir71sBtr9mPNd6lZ3JrlBNWWeb2B99WCdx1hJETAmF1O4J6vXLtftnMYjS/L1nm3nfj17ccmiZNnHBKEjcaMPX1OVHkhFTU8pa7yBLXYHLKC6zYCc3NfH/Wiyxz9z1LIUmEXg+uuXiUJAnoJgFJInR7AWkm7v9LnKBq1Aw7Y0MtttTqht07Euo1Q71m1CW4QVm18BKRQ8AngCtwX2l3Wmt/VUT2AL8PXAs8CbzXWntORAT4VeCdwBzwo9bar622H4oySgSL9Qph1Mb2yy63XHZ5xvlzgjkxw+x5YWLCsmOX5ZHTU9Sb439whZFLQdFaIARt0NqRP6yNgVtftb8QOCbzQshURZHfL062cEJZcam5KqKtXKr7QSHy/HZQlgU1t52Xh2H/ejP/ws/vc1a5//l7cevV02ReLGX+vUoTcYKzEvssklviLGHTuThzMdlsWXbEPg9aXAptZXkYk993J57y9+Gai0dJ04AkFZJUSNOAXiJkpvxHDwNLHFlqsWEydusotrQaKbXYEMeGemx1uqMtwCgsXinwk9bar4nIFHC/iNwF/CjwBWvtL4rIh4APAf8CeAdw2C+vA37drxVlQyFeejWymTU5/67dll27LdbC3CxcvCBcGTkhFgTuIVhvQKNh+eaJKeJ1DLAWKa09ytJY229pq65zsXTr1dMuyD7rt0BlRgrX5qBADUKIQggjZ3UKw9xCZwlD585zLk7rxFVUWu+UhckFUvk+eNGUwXUzR731z4umLCDLhNQv1fcoECeeosjSiAxx5PdjS7OeEoWWOK6Uq4jalqz6a9RaewI44benReRbwAHgPcD3+GYfB/4cJ7zeA3zCWmuBu0Vkl4hc5c+jKBsC52Z0X4prPd2PCExMwsSk5aoD7sWMgXYbum2h04Frd8zQbgvJRVcXBN7tE1vv8nEP32PPTDmB5N1luYUnCEuL0HaliOXKRZEthVDVPZmX33r1tA+aL61MhYUpL7ella+KiHdf5m7Mmi1Ek3NhWj960RJ6l2YYujZhIa629/s1iLWD70EulNx7kXoBe93sUS9onUUpzbcr+4PvVxhYotAJoTj0234hgmYjK8si27et75GyUkb6+1VErgVuB+4BrqiIqRdwrkhwoqyaTvtZX6bCS9kwCLlvpnQ5jpMggIkJmJgoJsnpq3eZ3qGX+ISaPtD51qtdnE7qR9QZ43+994YLhPy1gj6Xne1351WXvIyKKPBrKdYLK9XqZOG21LZO7FTK7EKLAeOz2ReiiXJ7qXsqAQSFKLJI5EWp9K/D0N2DKLaFeHLxX7ZPyOYxYdv14VvE0dlSDDnrnlRGfJbC9frZY04wGSeCssy9n1kmvoxCIA0i4ixKUWgJQ0vs348otIVwCnxdo2YIQy9qQ+PFrG+nYklZZ0YmvERkEvjPwD+x1l4UqX7BWiuLfRsPP98HgQ8C7NMxAMo6EOQWrw2YG9Bles8Tsg7+a63MRFe4wCruMVMVNpXgdmPoE0bVV+sTdcO6IGVF9cGXi7jBOK48zisXgoMCMPAiCilF0Hagz1pXfc+KRfpcndX38rrZo27Upi3Fj/FiNj/WVMpyYbQQgTghGgZO8ESCFzxleRDk4tXNw1n3+/kxIk4MBZVjNa5MGQemIvQL0Z/vZ+WPA3ngHuditkJmgsoipCYgzYIV/UAfiaIRkRgnun7XWvtffPGLuQtRRK4CTvry54BDlcMP+rI+rLV3AncCHJaGOsKVsRLgFIYIJKlw9iuP+rgMQxRZ6n4U0ZNTtxRuvTB08TWlRaW0jGxkwpAl5pHc+v9+VfcjthQ0VMpzYZLXV8VP1YV5/VwpbqwdEDY2F0Xlelj9YuSWHyc8/TqwhF6k5qKnWhf40aZB4MRP33GB9ZbAfrGUC6GN/vlVtgb5/1duETXWu5Gtz5FnS5FkDMjX73Y/DkwpiNxxThAVdUbI7PAPcSCWMDCE+TqwBIEhFOOtqOV2PUp9G+PLfb0/PgiW/z05ilGNAvw28C1r7S9Vqj4NvB/4Rb/+VKX8H4rIJ3FB9Rc0vkvZaIhAiBtHv3NHynfefr4Irk1SoZcE9JKAa2eOloG2PvDWGBcD1DNLWwyqrxdIadmpbgPFP7X49AzVOmFgP29TOXf/uvyCKCxLA30pd1YouoZca1VI2MH93G1oq/XS716kFCO5WMm3+9pSChprl3ffi8us3PMgcPfOuVpLQdMneCptcpFCXhdaAi9uiom883MEDC0Pqq+hQkdZQ6o/IvIfB5np/5Fgc8spFbext4CGD95NZtzQI2OEzHorqRV3Dhs4sWSdSLJ+bawsahUKxBZLGBi/tgRi/P/IQHlgicQQBmnRJhdJ1Xa5oNpIjMLi9V3A/wAcE5EHfNlP4wTXH4jIB4CngPf6uj/FpZI4jksn8WMj6IOijBzBcv2+Q1z1sh3OtRfbSibnbNFjV0qfRQWKL8RccJhBkeEFiTu4IlzyNswvq75WsU1/3BV9x13SlcyLn+lzK3ohVxWFuVAs9plf5lJMVGPPbJ+LshCjqIBRVk/1/ywXIEsJfYt4y6cMrS+tna5t+MBXnXixUqkv98s6Kc5prPS3y1/Dt10OQm7xdP9DYWDKHxXihI5I+cMhDEzxfxWIRQI3AKE4hxc7VeGU11XFUn4+ZTSjGr/CwikR3zKkvQV+YrWvqyhrjUX4J2/7AV7+7hugCLZfG0Ty1ABLBUop24E+K6AtxXG/ZXD+YIX8ge/2+y2FRRtknlgv6/pfs/+4BV7PtwkfvHu+hRIpz1XtV6V/Rb68at+QBeur5xt2rr4fJZdIYUXOxb7Yitgvy6BaZys/AEphUz2uEDNewOQiKK+j0qaso69NMPAagdhCGCmbA41aV5QFiEiYqPWY/vJ9NN/26mUd0/cr2Q6xVFE+vIog6SEPwqUegjD8QThs3de/ygMpfOCrC1/HAg+u5VrBBo8fPG6elW1IuR3SvvpAn7c/r06Gtp937BBRsJzj15K8F/kDttjucyH3b+dt8uMHjy2PsXmjol31mL7zDXmd+a/hX6dw09r5x1f6QkWIVK+xbz3kOqvnGWwLFAKk2kdF2Yio8FKUBdjBeeIo5eEX9vH4f3xiWcdUHwrVX7zBwEMD+n8pM/CQHHwI9j2oKMvz9vlrF/2oPhArZX19XeQX8mLTJS01QHmhZ97gccP67QqGX+fgMf0jIxcWDYPnWvC4gQf54PGD91tRFOVSUOGlKAsQkvK1n/1v/PDH3rDeXVEURVG2CBp+qigLsJcXOcVVlxhkriiKoijzUYuXoixALAlNO8up6Ql2T7RdnpjK0Ol8iHQ50igo6owV/vpnPgOAIcASYPzvHLfvHIGmcAjmS0AZhVOWU6zpq9+YzO9d9Yr629h5begrW/ocS9cNP//gaw9zry7V78WOEyyv/9l3Lun6dOv5MVDD6gfds4vFQw2ed1i8WLVfC7ljFUUZLSq8FGURDvAk//mn6gAEZF4WGQKMl0lZsd1fXsqtfJ9iTVE+WJbLquoDvf/hXqnfoA/HwYD0/m1ZpG7h4/rbXMo5Fj5mWLD8/DqZVz5MHpZC2ZXf/TN/OvR1+s8z/zUW6+d8Ib7QsdK3P7zdQte1Vh+uitgrXm3wcz7/Coa1qZ4nP/fg/8389fz/qcH1G372HcuK86sK5cXqlxLLLPIag8cNO09xjsq5hp57g35fbEdUeCnKIjSkzSt4YL27sakYHjSv/lplYFTpPAE5TAT2i8OlReh80brwOXL6BepiYnmYIB98zaXaDnvtwXbD78f8uuo9GF4+zP68WVi454NW5vlW5+HfN4sOGlr0O2r531/LudMqvBRFUZSx0GcpUjGuLEB/kueFLdIly2lzaalgLuWYpVDhpSiKoijKhmEw5ct8Nrdo11GNiqIoiqIoY0KFl6IoiqIoyphQ4aUoiqIoijImVHgpiqIoiqKMCRVeiqIoiqIoY0KFl6IoiqIoyphQ4aUoiqIoijImVHgpiqIoiqKMCRVeiqIoiqIoY0KFl6IoiqIoyphQ4aUoiqIoijImVHgpiqIoiqKMCRVeiqIoiqIoY0KFl6IoiqIoypgYifASkd8RkZMi8lClbI+I3CUij/r1bl8uIvJvReS4iBwVkVeNog+KoiiKoigbnVFZvP5f4I6Bsg8BX7DWHga+4PcB3gEc9ssHgV8fUR8URVEURVE2NCMRXtbaLwNnB4rfA3zcb38c+P5K+Ses425gl4hcNYp+KIqiKIqibGTWMsbrCmvtCb/9AnCF3z4APFNp96wv60NEPigiR0TkyAWyNeymoiiKoijKeBhLcL211gJ2hcfcaa19jbX2NTsJ16hniqIoiqIo42MthdeLuQvRr0/68ueAQ5V2B32ZoiiKoijKlmYthdengff77fcDn6qU/4gf3fh64ELFJakoiqIoirJliUZxEhH5PeB7gMtE5FngfwN+EfgDEfkA8BTwXt/8T4F3AseBOeDHRtEHRVEURVGUjc5IhJe19m8vUPWWIW0t8BOjeF1FURRFUZTNhGauVwqMlfXugqIoiqJsaUZi8VI2Py/Yg7xgDxKRApYaPWp0qNOhRtevO8T0ENVniqIoinJJqPBSADhp9/OPfu0QQWCxFjpJRDuJ6fRivvSRL3CR3fSok1DDWiEipeZFWUyvEGY1usSSrPflKIqiKMqGRIWXwoydoilzBIFLtSYCzVpKs5bCRJu/+7HvmHdMkgV0kohOEvGlD93FHJOcYy89GqQ2xiJEJNToFuKs3Hb7gawotZuiKIqibHpUeCmcYx/v/oXXADPLPiYODXHYY6rR470f+66hbarirJvE/MVHP88F9pB4RyZWqLo1+8VZzy1qPVMURVG2ECq8tjnGCjPsYK4X8+WHryMOMxpxSj1OacQpjSilHic04pRmnBZWseVQFWfAUMuZMUInzcVZxF98+C4u0vLirF5YzwKMF2WlQCvEGT0iEo09UxRFUTY8Kry2AC/ahHvsDP+d7EKWqT4SG/O8vZonuYGMiLOzLW77geupx5ZuInS7IZ1eQOfIvZxvN+gkMZ0kIjNCIJZ6lNGIk0Kg1SMv1OKUWrT8uTWDwNKqJbRqzrL1vo+9fmi7zEi/9ewjzr2ZUCOhRkrsJ6WyhRirFevSvakuTkVRFGU9UeG1BfianeVOc4obwyYvpbGsYx7n5cwxyXs/cjXXvPNWarEFDABRZJloum3eedu8Y42BXhLQ6QZ0ewHJffdydrZFN4nopBFJ5ubWjALjRVlSiLKqJW0l1rMwsEzUEybqCdDmb3/sdUPbWQvdqgXtpz/HHJP02EuPGqkfHAAQYLwY67ee5WItIlGRpiiKoowUFV5bgO+WKX6TU3zRXOSl4fKElyHiO//Z6zjwthuoxWZFrxcE0KgbGnV/3DteObRdmgptL8463YDZI/dxxgu0bhoVecNya1mx9q7NepRRj9IVuRBFKEQewHs/9p0Ltk2zgG4a0k1LN+csO+h5K1pSxKFBSFq4NGOSeYItIiGUld1HRVEUZfuhwmsLMCkhr5UJvmyn+YDdR7gMpZIRkGRhKZ7WgCiyTEUZUxPe9fiuW+e1sRa6vYBuT+h0Q7Ij93BhrsnJ3GqVuo+oc296i5lfX6p7s+hfaIhC461oC7s5wQ0U6CYRvSwkSUP+/KdLkZZ6kWYLkZZVRFpv6HYk6Yr7qyiKomx+VHhtEd4sO/hrO8PX7CzfIZPLOEIAIVjnuQtEcusZ7JzK4I7bh7YzJhdoznqWHrmXc3NNOr2YbuoEkbXOJZm7N10cWmlBa8QpcXhpQjMfKJDzwx97w4Jtkyyg5y1pSRryFz/9OdpMcJHdpMQk1Mhs6Ftbb0HrFpa0iB4xSSHW1OWpKIqydVDhtUV4tUywg4Av2Wm+g+UIL4cxMNcJmZ1zwfRJEtBLBGtdQLsxzopjLVgrfXFZQWARgSi0hIElDP0SWKLIEkf52hD7/UsdeRgE0GwYmo3F3ZtZVhFoPv5spjsxL/4sFEM9zvriz2oVC9qlCjTIRVppSVvM3ZnHpHXTkG7i+vflj9xFuxg4EBdxaRYprGmDS+SFWr7oCE9FUZSNiQqvLUIswnfLFHfZi8zZjJaESx5jjfCXR3azcyplopnRqGe8cNnNRDGIWMKQwiIm4hbj9Yi1kFq3bzIhM2AyJ3yumz1KuxNwMRWSNCBNhcRvW1ueLwqdKIsiSz324iw21GJLLTbEsaEeO/G2XMIQWk1Dqxgc8Mqh7bIMOr2Abjekmwi9++7lYrtON43ppmGfQBsUZVV352oEWn4fipi0ZhdgwYEDUI7u7KUhvbQcPOAEWrngb1kem9bv7uy3rIWycjetoiiKcmmo8NpCfG+wg/+WXeArdoa3yc559dbCWbuPJ3kZ0+wis0KrmVF/9ctJcelT93IpLq3+Y+a4pdgO/VIf0pcshTSFdgIXEyFN4ZoLx5hrO6HWSwJ6SUCa+VGIYqnXLFFkqNecKKvVDLXYLfWaE23LsfaEIUw0TWX05iuHtssFWs9b0KoCrZNEpMaJyTg0ZQyaF2Y1v27EKdEqBVrR777RnUtb05Is9G5PJ9S+/OHPMctUkYIjJe5ze0akfS7OeDA2TePTFEVRVoVYu/FjRw5Lw/5KdM16d2PDY63l72VPslci/s/w0Lz64/ZGnrHXc+h9b2Sy0aVVS3nJW6/H3HTTOvR25RgDvR6kCSSJkPTg6gvH6KUuML+XOLEGzpJUjw21minWjZobiZmLtHBpo+CySVPpy3+WHrnXW6aieQKtz4IWpTRqSTFQIFxBio1RYy3OkubFWi7UqiItoUZGeeMCjBdk3npGSkTq16WAC0l11KeiKNuGd6WP3G+tfc2wOrV4bSFEhO8NdvC75gwnbcLlEvfVp8R8zz+6keCmQ+x542Egz9y1OQgCaDTApSpzAqVz5c0A1PySY60TaZ0eXOwJ11x4kNl2yJnzMb3ExYBlPn4tCi11L8oaNUO9nrm1L1vOAITIx7Mtlv8MnGDsJgHdrrOgtY/cy7m5Rp9AE4FamBUWtHrk5s2sRSnN2A0aWEkOtOXixGpGPS5dj4sNIgDn+qyKtTQL+csPf5YOTVJ2kHn5lRFjbHkjQ7JCnFXF2qBwK/bVHaooyhZBhdcW43tlit/lDH9up3mv7Fnv7qwbIlCvuwUs03tdKosAp9uq2c7SxIm0s11nRTt04RjnLsTFCMo831huKXPiLLegZd6KtjwXZxxb4jhjsuWFxPcNF2i9ROh0gyJR7cyR++ikZQ60zIi7xhHmQLsUwsC6CdUp3Y+LuT9z0iwgyVxKkyQLSDMXV/eVj36WLk0yQjKiwtJWFW1gvXDLiOgVLcNiyYZvq8VNUZQNgAqvLcaVUuNGmnzJXOSHZPeypxDazkSxW1oTzorUvfJmhH6BZm0p0Ka7wtXnH+TiTMTJszW63YBu4lyJUWhp1EuB1mhkhYuzUTfLFkJugEEGLJ4DLRdo3V5Iel9/DrReGmIRhHKKp3KAwOpTbKyGPIdaVbDB4rnUcqyF1DjRlmYBvSwkywJSE/CXH/kcPepkRH4Ji+1+8ebcpLk4C/w6F3CBP7Iq3vKygExFnKIol4wKry3Im4Mpfs2c5DG6y55CSFkcEYhrbpmYtMx4C1rklwnfLsug14ULXeFk11nPzp6P6fZc7Je1bpBALsRWI85EoF6z1GteoC2SAy23nOU50GZm+lNsWFuZ4mnIBOn1KBvZAIHVIlKm7BhkOcItJzNC6gVbagK3nYWkJuArH/ksXeJCvJlCwLntQRFXtcIFuTgbEG99wq1YpwQYFXOKso1Q4bUFeaNM8Ruc4gsrmEJoI2ItdLvQaQtJ4kZBJomQJk7gWJ/OAguIiwGTwKWGzVNhiLiyMLSEEUShq4tiv++XURGG0GxBs1VazwKg6RfwyWA7C4szY0rLmVsymvm6Yfy8mstnJVM85QME2l0Xf3a+3XACLYnIvNjIBVotci7OepT1CbQ4zDZFHrEwsIRBRp358WNLxbYNklvh0iwg80IuM+LWWchXPvIZUuLCjWoqzlLjbW/zxRwItk+claLNLFKezSsL2BzviaJsB1R4bUEGpxCKKt+4cknpIsZHew7OnA44f1bo9aDRhEbDEtdcAPu3TkwSxhVR5ReX4LWSZ8y47bz81kPT9LpCOysFXJa5FBZZxdsVRhDHENcscQy1mqVWc67IWs1Sq7Pq0ZBBsLQ4yzInzs52hUPnnFvzxTM1ur2gGLlZi52YatYNzUYpzpY7IGCQeQMEFog/qwq0biJ9SWrzWQTAfdZqfvaAWpT6AQMZtbgUbJcy1dNGZDErHCwv7m0YJhdvRshMQGalEHf58lcf/QwJEV0v5kxl7SRXhEGKeUerlMKtFHCleBusMwP1Q+p0hgVFWRIVXluUfAqhr/sphC6YXZy0V7J3epJ9G/C7cXYGnjgeIgJ79xnOx5PEE5AA0wA9t+zce2nnf3puqr8g9ssAWeZiudIZJ8huPjDN7IzQSyDpBfS6pbgLI+fqq9Wh3rDU61CrW+oNJ95WY2EIQ2hNuLizmT23Du1y0oN2B853hEPnj3FxJqLd6Xdpumz/Toy1KuvViMf5IzhfObRddR7OPCdbbkXrpVExGhJKkeYsZin1OHNCzY/irEVufy1Gc25kgsBSCxYXpyu1zlUpBF1F2OX7Jhd3Vvirj36WnhdzFilEnanY2QxhMV9pP5YAO0TgDZZV195K51241Xrxx6lrVtmsrFseLxG5A/hVXH7N37LW/uJCbTWP18pJrOX92WPcJDt5q/wQz9truPG9N3L7912F3PxyGs2lzzEuzp4Wnn4y4EI8QaO13r1ZPlkGac8JoJsPTNPtOCtd7hq11gmoWh3qdUujaWk0vEhrjNbFuVD/uh3odoWD547S6QTMdUIX55W5eTobtdJa1mxkNBsZrYZZ0WwBoyAfKJBb9HpJQHbkHmdB8yKt6wcLgJtRoOZHbtYqwqwWp0Uqjlqk7rWNgLVg7HCBZ6yQZUFR/1cf/QwW6bPYVcVeLtfyugVesbD1BRhkwFInQwVf3q605vW38/Vq0VOWyWJ5vNZFeIlICDwC/E3gWeA+4G9ba785rL0Kr0vj17MX+Zyd5hM//is0b/1OJr/jpUwsfxrHsZD04NgDIZ2pCcItaH81GSSJF2f7p+l0hE4bOh3BZM4qVqs7d2q94YRZo2lpNFfv0lyyb8YNBOh2hIPnHqTdCQthlqTzhZmLMbu0OLNRk8/JmYu0XiJk999LLw1Jsshn6p8v1NzixFmxnYu2KFvXBLbKaDBGvJATMhtgjMyz5C0k9PqteaXAyyUYDFfygyLNCTezpNirWvWkUtZXrz8eNiUbMYHqa4Hj1trHAUTkk8B7gKHCS7k03uynELrn8SO85fY3XFLcz1rzwomA/QcNT82ud0/WhiCEegj1Bjw5492dFZ+hMTCdQHIRktPwiitnOH1K6HSELHXuzEbd0mhBs+ksZY2m9fnJVtm3wMfQNS3Tu507s5qINhdmFzpuEMCBcw9x6lyNdsfNEpDPDtBolG7Mpo8xW8nozEth3pycsGBMGlSEWhqQ+BkOuvffy3SnXkyr1EvDYgCBYIlDM0SoOVdoVazpg3FjEQTOtRmFUKRjWYDVuGmrzBN3VYveELGXVuLwSrGXr/stfMNi8yAXe4tb9sqz9Ltpg3kiTy1742S9hNcB4JnK/rPAwjMDK5fEy2hwOS2+8M27ecsP/M/r3Z2hTF8UzsgktREIic1IEDiLV379J9LJPmHWzeB8F3qn4Marppm+KHTaAb2es5Y1m5ZmCxotS6NhabXcQIBR9S0XZgDJlTcRAXm0XD47wGwxCOAY5y5EdLplnFkc2QGLmY85G/GUTUtRCLXqXA0LzC4ApeuzlwQk3qJm7r+H6U6NXtokySJvXQuGWtWiIOtzgcYVt2gUrK0oVcZPLvaWkxNvLcSesTJU/OWC76/8qNqMsJBr/Va9fmvf8Fi9+Za9QbFXddkuJfCqgnG7xettWOeOiHwQ+CDAvo3bzQ2NiPA62c9/ffYRTp45wXUcXu8uzaPXhXjHevdi4xKE0Gi55dnOlPN0tNxiDFzsQveUs5RdPC+051x8WRhBq+VEWWvC0mo5a9koH/iDswN0LnejM333ADdQoduFi23h4PmjnD5Xo9MNaHfcAyHPadZslGkzcqEWr6M7c16ONFgwT1pOllG4PZPUx6ndfw8XejFJFtDzOdN6Pm+aSL9Yi8OqUOu3sqlYUwZZidi71FG1gwyKvap1rzogw1gpRttWXbaDrluTC8EhqVRgvlVvKQEXeDviwu1923X+X1ovRfMcUJ3F+aAvK7DW3gncCS7Ga3xd21q8VvbzX+1x/vyez3Dd29+03t2ZR/4AUlZOEEC96ZbnupNuPiQfw9fJ4FwHbtw1zcXzwgvPB3Q7rq7RhIkJy8SkpTXh4snW6j3IZwWYmLS0990CQN0vUOY0O9vpT5uRT3o+zJ2Zr+u19f8CrRKG0AwNzQYUYm2BnGk5uQs0SUuxlhy5h9le002n5Ed+JllpHhyMV4tDM1SsrceMBMrWZtyWvTxeL60IvUGLXnXkbUo8IPJK921V+A3LqlRa85Yj3hZvEw7MyDHvtdYpuD7CBde/BSe47gP+jrX2G8Paa3D9pWGs8CQv4zev/DYXsoSP/8nXaU1soCcV8PX7Qnq7JpZuqIwEa52VsTMHL798htlZF+yfuy1bE04kTUyNJo5sJP3tOXHW8Wkz5johnU45TVMttjTqbjRmdYTmWseZrRfDxJq5/x66qRNquVWtKtaiwIu1MCX2VrV65MWaDi5QlHmu2mJt+615f/XRz/SJuKxP1JW58/5F9nsba1QjgIi8E/gVXDqJ37HW/suF2qrwWhmZDXnGXs/D9lbmmKL7+if5/756J7/+H77EK1+zuLtk3Kjw2hgYA70OdNvwsstnmJ0Wul1vrfLWMbew4QZpJD2KNB4Hzx1jrhP05TOrCrOqQNuqwmwYaSouZq0yuCC7/97CBbrY4IJ8MEG9MrigXnGPbpd7qCgrYfLHf2HDjWrEWvunwJ+u1+tvZS6ym1Ncxd/4By+j9cqbiKOz/MGR/5cv/NnvbTjhpWwMgqCMJXsxmywCtTopnJ6Gl7emeeH5gNkZ5/5rTVgmp0oL2VrnJFuM6hya7X03V8PggIE4s3PHePFMxFy7FGb1mosxazXKdBmtRrbuKTNGSZ70dqWDCxIv1Lo9Z1Wb6dToZc15CXCh36qWuzvrUdXCprnVFAU2cHC9sjrqtJmoJ/QO38DuKyzf9eZ38IXP/Bf+8Yf+JVE8omFvypYnjGBiBzzTnnK26Z0uN9nZNrx8appTJ4UnHw+wBiannBib2uEE2UZ5wPbHmd0M9AuzXg9m23Cm44TZmfM12p2Abi9w0zvVM1rNjJZPLttqbn1rWf/gAs8SgwsKq1olt9rc/ffSm/MzFWT9udUKoVad89MLtVykaZyashVR4bVNeMe7f5gvffZT3P2VL/DG771jvbtTkM+zuJUfYluNIITWpJ+GSYAp56o8Ows3tKZ59umAuVkhimDnLsvOXZbJHXas6SNWQq3mlh07Lb0rbibEjVGYpAz+P9122f9PnnV5zNpd55Jr1JwQm2hlTDSybSHKFqKwqi0zt1o+52evV85UcLFT925PN+9nakrXZ3Xez3ohzvJJ2lMVacqmQYXXFqbqKHn9G9/Krt17+cynf39DCa+4BtM9tm0er61CEMDElE95EQO7YC6BKyemOXVKeOKxABHYuduye49lx067KcRJdULzub1uVGY+mXke+H9+TmidcaIsd2ECNOuGyVbK5ETGRDNlsrW6OTK3GvPm/FzEomaMS9WRz/vZ7QXMHrmPc3PNYnL2qkirRxmNOKEep4VYa8SlYNsMnz1l66LCa4siA+Nl41qNt77zb/Hp//QJZqYvMDm1c5161s+OHZZ9jWmemJ5aurGyqYhiePyCt4rtdKPxDkxOc/IF4bFHAloTToTtvcyOLOnrOCnzmFnmdjtRlrswrYVOG07NCfGZY5w+12R2LiQzQr1mmGxlTLZSpiYzplqpCrIlCAL8jAhQpOp4161D2xrjJ2dPArrdgPS+e7gw1+RkGnmR5tydVStaPRdmcUKzEGuLZ71XlEtFhdcWJB/O2ktCrjj5EGbfTQQB3PHu9/GHv/vv+eJnP8W7f/BH1rubAOy70vDwN0LslLobtzphCI9d8LFiu+HFOZjoznDsgYBGE/Zdbti7b3NYwpZCpLSUdS67OTcCAs5KdmFWaJ4+yjMnGszOhaSZ0GoYpiZSJidSdk6m/S47ZdkEAX6GBOOmWXjHcEuatV6g9YRuLyS97x7OzzV5MYnpJFGR6DYOjRdnCc2aE2WNOKEZJ9RjFWfKylHhtUVIbMwx+1rO2b1cZDcBGVdc8Rp29eaY+atHmWxlHL75VVx97Uv5s099csMIr0YDdu+xTCYznGaDzeCtrCmNFjyfTMIuuDgHjYszPP1kwFUHDJdfuXFjwlaLiymztHffQgTspLSQvTgrBGeOceJkg7lOQL1m2DmZssMvKsZGh8iAFW0BV2eaCu2uc292ugEzR+7j1PQE7V5ciLN6lNGsJV6QpTRrPSfSopRAc6MpA6jw2iJkhIQkvP7Hb0FecTP7didMNGd42XVzADx/ss4LRx/h7e/+Yf79v/2XnHjuKa46sDFyo119neHxRwOmOrOcCyc2pdtJWR2NFpy0k2RTkCYzHP1awEtelrFjY3jE15yqhay37+YijqzbhVPTQnDqIZ57sUG7GzDZyti9M2H3joSpCU3PsNZEkWUqypiaWNjF2UuEts8fl9x3LxcvTtFJYtq9CGOFWpTRqiW0aj23rru1DgjYnqjw2iLkMV1TzS4XsoBabDh87VxRv//yLrNzIW+5/tX8e+Cz//U/8aM//s/Wqbfzuf6w4expofP4LHv3WZ5tT6oA24aEkbOC9ZrwxPFZrr7OsHvP9rUY5DFkyWU30QKaFuZmgReO8fgzLWbmQiaaGfv29Ni3p0e9tn3v1XpSiy21OGPnVAbvfOW8+l4izHVC5tohs/fex+mZCeZ6Mb00JAwsE7UeE/Vymaz31FK2hVHhtUUQnx1nopbwitvOs3vn/LmiDl87R7NxGTe/7HY+958/wY988CcJgo3zc3nPZZZdezJOvShMnJml2bTs3Wd55OzUlnU7KcOp1WEmmOCJ47PsfE224bLlrxciMDEJcy+9pZjzcnYWes8+xIPf3kGWwRWX9ThwRUdF2AbCCbOUXVPpPItZlsFsO3TLPUc4eXGS2V7NDcSIMqYaHaYaPaaaHaZUkG0JVHhtEZzFywUmDxNdOQev7PJjf+t7+clf/CXu/d1P8eY3vITzV99CrTa+vi5GEMAVV1muuCpj+iKcOR3QmpklimD3XsMjp6dotDbetDXK6MmnK2q3YUJnlVqQiQno3nAzU7gs/dHTx/j6N3cQhZZrDrTZtydZ7y4qixCGsGMyY8dkNk+UdXvC9GxE+6v38dTpPUx3aliEiVqPqUaXna02u1oddVluMlR4bSEEizFLW7B+4I7v5qd/6d/x0KN/zPe+7p/RPvIIHYHL9/Q4c/BmWq2NMcJwagdM7TBwPXQ6cP6scLDp5hEUociS/s0Xpqg3XGJPZWthgQ1klN3wRDHMvuQWdr4E2nNw4uFv8fgzLW64bpZdOxb+QaZsTNzsAUmf+9JaZyGbng05/ddf47GTl5FkAVONHjubbXZPtNnZ7GyI73BlOCq8tgjO1WiLJIKLsWtqkne86Q388V1f4hd/8u9x7cGITjfg1NmY6Nvf5uxcSC227JpKOHXFzUzusOtuEWs04Mr9liv3OzN7msLstDA9Leyvz9CeFbLMjRhrTViaLcs3T0xRa7gkrfoltPloz0I9FRrN9e7J5qTZAm5/BcksfPvBRzhwRYdDV3XXu1vKKhHB54HL4D1uCixrYXo2ZPav7uPpM7u50K7TqiXsmZhj7+QcO5r6vm8kVHhtEQIyEJYlvAB++Pveyh9//st8/qv38Y43vYFG3XDoqm7xxdztCecvxvDiQ1x4LGK6FxCFlolWxlQr47m9t9BqWeqN9RE1UeSyoO/c3R/v0OtBe1aYm4Prd80wNyf0Lri6MPK/IBtQb1i+8dwUcb2cy0/ZGGQZHGrOcOqccMPNOmpvtbQmIHvdy3jhyMO0Goa9u9X1uNUQ8e7Kt7+Kq3zZbDvgwl/cz2Mn9zLTrXHZ5CxX7ZpmV6uzrn1VVHhtembsFHM+/1XHTmCXGXf51jd8B3t37eT3/9vneceb3jCvvl6zXHFZjysu6xVlSSLMdkJm50Iue+EhZucizvk56+qxodnIaDYMz+6+hXrdCZzamK1NeY6knbuBgez9aeqG53c7Qq8Lh/fN0O1Arysks65NEDgLWRzbYv3Qc1NEkRNuYeREmsaYjZZuBw7vmebCeWFuVggnLbe92uigihERhiA338BT33xYhdc2YaJpmLjjdvbjsvmfOlvjqb84yrFOnYO7L3BozwUijQ1bF1R4bXJOcA1t2+SUvYqGtEmzkDQVomhxBRbHEf/sA3+HVqOx7NeKY8uufGROhTwDdLsT0O6GHDx3jLlOSKcTMJsEWOtG9dRrhkY9o14zPLPzVuKaGyof1xjLAzaK3DIxkd+b+ffIGGc1SxPo9YQ0gZv2z5AmkORls2B8Sh8Rd844tk6U5eIsshx9xo3GDELmrbejFccYf1+7cNNV03Tawtyc0GnDVNPVH7rWaCD9GlGvw0xvG37wFDdo6bIeV/zAy0lT4cTnvs5XH7ua/bsucv2+s9vy+2g9EbtcE8k6clga9leijZHsc6PxmH0Fb/zI3yAKDdd8323r3Z0FSRKX/bmXuOzPeRbofN9Y958fR06g1WuGRs3w1M5biGNnxXIWqI0lWqx1gixLnUUtTYU0dftJ4uLOstS5z9JUiu3Bf7swgjCAMHIZ24PAibQwBAkgDC0PPjWFBK5OxJWLzN+vLgzuXyLG+D5btzbGiU9r3dpkkBm49dA0WSZ9QjXpufZB4NJENBqWRtO6hKFNqzFcY+LsaWH389/gxpfOrndXlA2AMfDUnx7l9PQEt1/zPI1YB1+Mkskf/4X7rbWvGVanwmuT84I9SGpDDvzP76MRJwSBy+cViEXEEgaWMDCEgSEOM2phhrz69dRiQxRaosgSR4Y4shvCfdZLxM+f5paen+y2lwi9XkAvDQrREoVOpMWRoV6z1GqGp6ZuLV2FPnZrIwm1YVjrxJgxpUjLMin2TS5uDBgjbjsvs2BNKYysdcfZfJ+yfjUEgRd2fjsI3Wcst+KFUS4UneUvjqvuWnXNrjcXL0By9FFedeNFnXZI6eP8l+7h0Rcu43XXP6M5wkbIYsJLXY2bnIgeRhp8z8sfw1jBWHEP33wxQmaFNAtIs5BeFpIcuZd2FpCkIUnmltSUVieAUAxx6MRaHGVuHRqCV7+uEGpx7NfR6CY2zjNAF9NzLEKaCt1ckCVOoO0/e8wJtiSgmwozFaEWBrbot3sdw1NTtxQCLcrFWjReoZC7KwEoRo8u9AWoX4zK8pmZhujhbxNmwi03zqjoUuax63tfx85PfYPTMy0u36HW0HGgwmuTs5NzPMKtiEAolnBED+bMCEkW0ktDEi/akiwkOXIP7Xy7EG6BS2ZhnYjIRVocZkRBRi1y+/Lq11GLLFHkhE8c2SVj0RYj8sdPLPNhkmXQSwKSVIr19XNHSfx2txfQS4XZilgD5/6sxYYostS86Hxy6hYf2+UEWx7fFel/lLKOGAMXLwi7n/sGp8/FTDQzrj3QXjSpsqJMvuFVzBy5l8tR4TUO9DGxyYklIbAZ7V5Esza6L1fnokxX7Pe31qW0yAVZVaB17znCTBaQmlzQhX3pL3IrWy3KiLxbNA4zgte8zlvWjBdBlybYwhCaocGFFC1tUcuvJ0nFLwFJ4tbXzx0lrQi4NA2YTYSsksA2kNyV2+/SjSLLk1O3Eoa5ePQWtzFb2pTNTZrA7Kyw/8xRZmZDLs5EZEbYvSNh754eh6+Z1VGhyrLo3XvfSJ8fyuKo8NoCXM7z/D//S8AU5wnICMkIMHzXz99BGFgCMUShIfKxXlHg9sM18Oc7i5e5pCksBq1sSRaRZAG9e+9jJg0XFWy5VS0OU2qRs7LJq17vRVrpWlypsBHJ3Z8WWNk1GQNpVoq2tCLgDp471refpEI76xduIhBHZSxeFLoljixPTN5SjqL0cVVOyPmA/A0e16YsTZZB0oNuV+h24dB5N1q43XHxj3FkmWql2Am48rIeL7t2blUWZGV7MtsOOHFhiu986VPr3ZVtgwbXbxFm7BQZEYaQjBBDiPEyrFrm2gTFuh/rW2aEpMXatU757p9/O2HFjZiv10LArYTMSCHIet7CNrifb1fj2OKKVS2O/MCDV72uEGlrEcO2EqylEGdp5qxquZBLMyHLt714yzLfLuvvrAiFaAtDW4i50C9PTt5aCZC35QhLX6ZWuNWTD6DIMmepShM3+jVJ4NrpY/RSodMN3SCSxN3wQCyNuh/hW/d58vxaJ8BWVou1cOqu+3ns1B5uO3RCs9uPGB3VqCwLY6UQaRmRX8K+dUpc2Y7IiAcEnCUqRFvit93+m37+bYSF2MmtVOuTmTx3ifYqIi23tvUGYth6WVjErwViS8Hm+18dKbpad+haMCjgqgItTYUsC8i8dS5N3UCMLBMyg1/Pf4NEnDs6CCxhAEGx7dNhiBN1gYAElicmbi1SXgRSjpIMfMqLILB9KTCCgXQYUM7Z2Pd5WSJNRt/Xmy3LbKXe2soo0Eq6DGul3DblCNLrZo9iKvfH2PJeGlPe28Gv1lz8Rj5mMI76rbG12Ams9RL6yvYgSYRTX/gaT5/dxZ6JOV56+Rlq0fJCL5Tls2bCS0R+CPjfgVcAr7XWHqnU/RTwAVwwzT+y1n7Wl98B/CoQAr9lrf3FpV5HhdfmwVoqoiwXam7fEJJQK/ZTYlIiXJICyEVbROIXt/3dP/82b2HLKi7F9RFsxogXZk60FSNFs4qVbRF3aC0qBxwMc4fG0ebI1u4sOIKxpTgzuRAxZbnx6S0yI1hfbowXNH3bUhE9UryGrZSXYqmsr66HIUIhmqUQbu6APDUGUAyjl4oIDMSlWCnWgROSQZinaXHlYWAJvSvYCU+3rZZCZaMw2w44+6WvcXJ6kswEXLFjmkN7LqjgWkPWMp3EQ8DfAn6zWigiNwLvA24C9gOfF5GX+eqPAX8TeBa4T0Q+ba395ir7oWwQRChk1UqxFi/GqkvEX37kcxXBFheiLcfZ35Jiienx3T//NqIwox5lhWXtUuLOBgkCSyNIaaxwbsc0C5xY88IszQXaPUe4mFX2s4DMlk/svN+1MCXyVkK5/bWFlSQP3r+U+LXV4FJgeMUTbwzLnqIozqJ1YSZi5q/u50K7wVwvplVLuHyH4bZDJzRR6gZgVcLLWvstAJlvengP8ElrbRd4QkSOA6/1dcettY/74z7p26rwUlwwOQkxK5tLLrMhyYBgy8VatSwjxHrrWi7QIv96MT3e9Atvpxal1MJs5G7QKHQDGporEKTVEaLFgIM0ovfAPcxlAee9gKvGrw2m9KiFqXeJmg0h2BRFGQ2dbsBcO6R7zz1Md+rMdmt0kog4NOxodtjVTNi/+yKtms7NudFYq1GNB4C7K/vP+jKAZwbKX7dGfVC2CaG4qDPoLPuY1EZ9wiyhxhd++otFWW5hywkwFaHWI6bH3/iFtxVCrR6nRIEZqfuzOkJ0JV+elyLYcqJ8hgPvEs1j8eTVr+tLi5GPrlTRpiijxxiKadU6vYD0vntpJzGdJGau58zt9SilVesxWRcu3zHDZL2n1qxNwpLCS0Q+D1w5pOrD1tpPjb5Lxet+EPggwD7NeqGMmEhW5g4trWo1EmokxBWh5varQi0knWdRy4VaPXYB+dEIXJ/DuFTBBs4lOhjDlmQhvXvvYzYLvct0+GwHgdhCuLl0JXkSXYO86nV9aTHyOKi8TIPJla2OMS6Bcy8RksQlazZH7qGbRm5JIrqp+yEUiKURpzTixK8zdjQ7NGspzTjR/5dNzpKKxlr71ks473PAocr+QV/GIuWDr3sncCe44PpL6IOijIyVWNXyAQZV61lCjbt++i/6yvLRoIIl8la0uBKjVotS6lFGPXK5ycbxZZu7RC8FY8TNcmCCwuKW+f3k6/fQqdSlWUhmxG8HhQs4J5Qy15zLP5cV845GgcHe/vq+YPZiHbpRlvm+WuSUUZGPDs6MVEYAu9HCfO3uclBN5cdJUvlsB2IrYQx5vkHLzlabepTRiFPqUaqiahuwVqakTwP/UUR+CRdcfxi4FzeQ6LCIXIcTXO8D/s4a9UFR1oWVDjAwVua5Pb/8kbv6RFtCDJX4tKrL800/9zeJvUireaG2HrnVgsBSDzLqy5wVYDHcw82JtMzka8Hk2w9+ldQEdI0U9ca3yUxQzE86KOjACd3ATyDv1qZINBxUyvI25pWvL0Y25ik0gnz0Y1CmzigmEK/Uq/AbD8UE8gOjbY0VzMDo2ywDeeCe8rNihMwG5WfLf/aqg1xyokoC6ijIisTUtUhoxik7mp15eQ5VSCmDrEp4ich/D/w7YB/w30TkAWvt26213xCRP8AFzafAT1hrM3/MPwQ+i0sn8TvW2m+s6goUZZMTiKVOlzpLJzCsjvzMRdlXPvrZvv3U51azCCFZIdCqsWmxF2j1aO1cnqvBWbdGI+IGydNXZN5VWn0Al5PLB0W9efCrLleXFXp+0nljqhPSB32T0hvbvyyXQCxCmcqiKBOf44yBtW9PpQzcNlC0cWW+TkpBXi2zlX7m+9W25b3zqTyGlNtKfX6fc+Gbb1t/z6CSQgQpU4cU5Su7f4HYYslFc7HtxXTkt0MvsGuhJfQJoEMxfRbVtZrZQ1FAE6gqypbGxabV+kTZ4H6GSxwm2Hki7U3/snR5rmfC261OLjzACw8oxEcuFKFf4BTrIQKnes6+b/iqMBpiDcyPy/OfVenLiTYovcSdrU/YyYAIxFkL81fNRWW53d+mKjoVZbOxlnm8FEXZwLjYtDYN2ku2zV2e1eWLH/5iIdZyS1tx7kr+tKpQy6dfqvl1oJaDJalap4J59iRFUbYSKrwURQFW5vKE4SM9v/jhLxaJbnOxVto4LDEJYTE7gVu/6effRuwHEOTTSW1E96eiKMooUOGlKMolsdL8acZKMdqzFGcxf/GRu7xIi0gHYtQES+AnmypFm5v/M5+dwCWKLWcnUAuboigbGRVeiqKMhUAswSXNTBBU5vyMvXiLB6aSKuuqsUtusva0sLLl7tE3/tzbfeqMrMg15nKQqXBTFGVtUeGlKMqGJhRDSBeW6QKtktmwmLC9FG4hX/noZ8m8DHMTuJcTu1eFm2ALK1tQWNucmHvjz72dOMwIfUqBMs2AukoVRVkYFV6KomxZSnfoykUblO7RrCLM3JKLt6gQcJmXZJl3lfZj+0RbULR2ZW/8+be7RLGhKZLHFmkNxKoVTlG2ECq8FEVRFuBS3aODlAIuxPQJNbf+y498bl6Z8dLMVCZ3L7GEGAIv3HIh5+LhUgIMb/y5t/vksKZIEhv5bRV0irJ+qPBSFEVZY0Yl4HLyaakMQd86F2qGgK989LMD9XndYoLO59IqxJzx2/PX3/VzbycskpSWmf5zkZcnKlWBpyj9qPBSFEXZZOTTUjl6Iz23sVKIt+o6Gyj7649+pm+/Wm+9RMvrFkrWWoo811oKYefKB+u/8+fuKISciOmb+mkwa72KPmWjosJLURRFKXDWueXNM7pacpFnkT4rXFWwuW23/uuPfqZoW4o7J9OGH7ew6MvJU5ZIIfysXxs3FVNlO8BA0d7ynT97RyH0pLLOt/OM/INtikz9A/vK9kCFl6IoirIuVEXeqNywK6GYK7IQcDIg5IK+urLcbd/9M3/adxwV6WYrko5F6vPzsYRAHOi5m1bJC0HpO4ufw7MiFPPy6tXm9J8jP7ase8PPvQN876QyNVTf1FELlFfnDy22pZTCg9sU2/3TUg3OQ9pXNmRO0WF3crntFmMh22nfHKXLOI8KL0VRFGVbUj7g89Gvm4OqYOyXTFKRWUuXzS+nbx+Er370zyr7DD02L6/Wl2XV8pz5xy1WPji1e3/doHyaL6eWsnrmbfIeLrS9EPPrF2+vwktRFEVRNhFVwahsPgaTzSiKoiiKoihrhAovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkTKrwURVEURVHGhAovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkTKrwURVEURVHGhAovRVEURVGUMbEq4SUi/1pEvi0iR0Xkj0RkV6Xup0TkuIg8LCJvr5Tf4cuOi8iHVvP6iqIoiqIom4nVWrzuAm621t4KPAL8FICI3Ai8D7gJuAP4v0UkFJEQ+BjwDuBG4G/7toqiKIqiKFueVQkva+3nrLWp370bOOi33wN80lrbtdY+ARwHXuuX49bax621PeCTvq2iKIqiKMqWZ5QxXv8j8Gd++wDwTKXuWV+2UPk8ROSDInJERI5c0BnYFUVRFEXZAkRLNRCRzwNXDqn6sLX2U77Nh4EU+N1RdcxaeydwJ8BhadhRnVdRFEVRFGW9WFJ4WWvfuli9iPwo8C7gLdbaXCA9BxyqNDvoy1ikXFEURVEUZUuz2lGNdwD/HHi3tXauUvVp4H0iUheR64DDwL3AfcBhEblORGq4APxPr6YPiqIoiqIom4UlLV5L8GtAHbhLRADuttb+uLX2GyLyB8A3cS7In7DWZgAi8g+BzwIh8DvW2m+ssg+KoiiKoiibAim9gxuXw9KwvxJds97dUBRFURRFWZJ3pY/cb619zbA6zVyvKIqiKIoyJlR4KYqiKIqijAkVXoqiKIqiKGNChZeiKIqiKMqYUOGlKIqiKIoyJlR4KYqiKIqijAkVXoqiKIqiKGNChZeiKIqiKMqYUOGlKIqiKIoyJlR4KYqiKIqijAkVXoqiKIqiKGNiU8zVKCKngKdWeZrLgNMj6M5mRK99+7Kdr1+vfXuyna8dtvf1b6Rrv8Zau29YxaYQXqNARI4sNGHlVkevfXteO2zv69dr12vfjmzn698s166uRkVRFEVRlDGhwktRFEVRFGVMbCfhded6d2Ad0Wvfvmzn69dr355s52uH7X39m+Lat02Ml6IoiqIoynqznSxeiqIoiqIo68qWE14i8q9F5NsiclRE/khEdlXqfkpEjovIwyLy9kr5Hb7suIh8aF06vkZs5WsDEJFDIvIlEfmmiHxDRP6xL98jIneJyKN+vduXi4j8W38/jorIq9b3ClaPiIQi8nUR+RO/f52I3OOv8fdFpObL637/uK+/dl07vkpEZJeI/KH/f/+WiLxhu7zvIvK/+M/7QyLyeyLS2Mrvu4j8joicFJGHKmUrfq9F5P2+/aMi8v71uJaVssC1b5vn3LDrr9T9pIhYEbnM72+O995au6UW4G1A5Lf/FfCv/PaNwINAHbgOeAwI/fIYcD1Q821uXO/rGNG92LLXVrnGq4BX+e0p4BH/Xv9fwId8+Ycqn4N3An8GCPB64J71voYR3IN/CvxH4E/8/h8A7/PbvwH8fb/9D4Df8NvvA35/vfu+yuv+OPA/+e0asGs7vO/AAeAJoFl5v390K7/vwJuAVwEPVcpW9F4De4DH/Xq339693td2ide+bZ5zw67flx8CPovL8XnZZnrvt5zFy1r7OWtt6nfvBg767fcAn7TWdq21TwDHgdf65bi19nFrbQ/4pG+7FdjK1waAtfaEtfZrfnsa+BbuwfQe3IMZv/5+v/0e4BPWcTewS0SuGm+vR4eIHAS+D/gtvy/Am4E/9E0Grz2/J38IvMW333SIyE7cF/JvA1hre9ba82yT9x2IgKaIREALOMEWft+ttV8Gzg4Ur/S9fjtwl7X2rLX2HHAXcMead36VDLv27fScW+C9B/hl4J8D1UD1TfHebznhNcD/iFO/4B7Gz1TqnvVlC5VvBbbytc3Du1BuB+4BrrDWnvBVLwBX+O2tdk9+BfflY/z+XuB85Uu5en3Ftfv6C779ZuQ64BTw/3g362+JyATb4H231j4H/BvgaZzgugDcz/Z436us9L3eMp+BAbbdc05E3gM8Z619cKBqU1z/phReIvJ5H9swuLyn0ubDQAr87vr1VBkXIjIJ/Gfgn1hrL1brrLM1b7nhuyLyLuCktfb+9e7LOhDh3A+/bq29HZjFuZsKtvD7vhv3y/46YD8wwSaw3KwlW/W9Xort+JwTkRbw08DPrHdfLpVovTtwKVhr37pYvYj8KPAu4C3+HxLgOZxPOOegL2OR8s3OYte8ZRCRGCe6ftda+1988YsicpW19oQ3NZ/05VvpnnwX8G4ReSfQAHYAv4ozr0feulG9vvzan/Uuqp3AmfF3eyQ8Czxrrb3H7/8hTnhth/f9rcAT1tpTACLyX3Cfhe3wvldZ6Xv9HPA9A+V/PoZ+rgnb+Dn3EtyPjge9x/wg8DUReS2b5L3flBavxRCRO3Cul3dba+cqVZ8G3udH+FwHHAbuBe4DDvsRQTVc8Omnx93vNWIrXxtQxDT9NvAta+0vVao+DeQjV94PfKpS/iN+9MvrgQsVd8Wmwlr7U9bag9baa3Hv7RettX8X+BLwg77Z4LXn9+QHfftNaSWw1r4APCMiN/iitwDfZBu87zgX4+tFpOU///m1b/n3fYCVvtefBd4mIru91fBtvmzTsZ2fc9baY9bay6211/rvvmdxA6xeYLO89+sR0b+WCy6Y8BngAb/8RqXuw7iRHQ8D76iUvxM3Gu4x4MPrfQ0jvh9b9tr89b0R52I4WnnP34mLYfkC8CjweWCPby/Ax/z9OAa8Zr2vYUT34XsoRzVej/uyPQ78J6Duyxt+/7ivv369+73Ka34lcMS/93+MG620Ld534P8Avg08BPwH3Ci2Lfu+A7+Hi2dLcA/aD1zKe42Lhzrulx9b7+taxbVvm+fcsOsfqH+SclTjpnjvNXO9oiiKoijKmNhyrkZFURRFUZSNigovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkTKrwURVEURVHGhAovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkT/z+sTKmBqqXwsgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -297,7 +297,7 @@ " horizontal_plane = fi.calculate_horizontal_plane(\n", " height=90.0,\n", " x_bounds=(X0_BOUND, X1_BOUND),\n", - " yaw_angles=np.array([[[20.0]]])\n", + " yaw_angles=np.array([[20.0]])\n", " )\n", " wakeviz.visualize_cut_plane(horizontal_plane, ax=axes[0])\n", " wakeviz.plot_turbines_with_fi(fi, ax=axes[0])\n", @@ -307,7 +307,7 @@ " horizontal_plane = fi.calculate_horizontal_plane(\n", " height=90.0,\n", " x_bounds=(X0_BOUND, X1_BOUND),\n", - " yaw_angles=np.array([[[0.0]]])\n", + " yaw_angles=np.array([[0.0]])\n", " )\n", " wakeviz.visualize_cut_plane(horizontal_plane, ax=axes[1])\n", " wakeviz.plot_turbines_with_fi(fi, ax=axes[0])\n", @@ -319,7 +319,7 @@ " horizontal_plane = fi.calculate_horizontal_plane(\n", " height=90.0,\n", " x_bounds=(X0_BOUND, X1_BOUND),\n", - " yaw_angles=np.array([[[20.0, 0.0]]])\n", + " yaw_angles=np.array([[20.0, 0.0]])\n", " )\n", " wakeviz.visualize_cut_plane(horizontal_plane, ax=axes)\n", " wakeviz.plot_turbines_with_fi(fi, ax=axes)" @@ -345,7 +345,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAABqCAYAAAAMTX1WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl5UlEQVR4nO3deXAc2X3Y8e+vu+eewX0SBECC5GJJLveguIesw7LllVaHvXLsctZxRbJsZysVyUc5PrRRVS6nEjmOHduRY9dGkkuKZcuOZUerslLS6rAue6W9d3nswfsmABIg7jm6f/mjewYDEAQvcGZA/D5VU5h53T39Qw/m4dev33stqooxxhhjjGk8Tr0DMMYYY4wxy7NEzRhjjDGmQVmiZowxxhjToCxRM8YYY4xpUJaoGWOMMcY0KEvUjDHGGGMalFfvAK5Gs7jaRazeYRhjaugg+TFV7ax3HKvB6jBj1pfVrL/WRKLWRYzf9wbrHYYxpobeW3rtWL1jWC1Whxmzvqxm/WWXPo0xxhhjGpQlasYYY4wxDeqGEzUR6ReRb4jIfhHZJyK/HJW3iciTIvJ69LM1KhcR+UMROSgiL4nI7huNwRhjrpfVYcaYRrYaLWol4F+r6g7gAeBDIrID+AjwNVXdBnwteg3wLmBb9HgU+ONViMEYY66X1WHGmIZ1w4maqp5R1eei51PAAaAPeBj4dLTap4H3Rc8fBj6joaeAFhHpvdE4jDHmelgdZoxpZKvaR01ENgH3AN8DulX1TLToLNAdPe8DTlRtdjIqM8aYurI6zBjTaFYtURORLPB54FdUdbJ6maoqoNf4fo+KyDMi8sxF/NUK0xhjlmV1mDGmEa1KoiYiMcIK7rOq+jdR8bny5YDo50hUfgror9p8Y1S2iKo+rqp7VHVPM+5qhGmMMcuyOswY06hWY9SnAJ8EDqjq71UtegL4QPT8A8AXqsrfH42cegC4WHV5wRhjasrqMGNMI1uNOxO8CfjnwMsi8kJU9m+AjwF/JSI/DxwDfipa9iXg3cBBYBb44CrEYIwx18vqMGNMw7rhRE1VvwPIZRa/fZn1FfjQje7XGGNWg9VhxphGZncmMMYYY4xpUJaoGWOMMcY0KEvUjDHGGGMalCVqxhhjjFl3ptRnXEv1DuOKVmPUpzHGGGPMmpDXgIPkAWhfA2lQ40dojDHGGLNKxvFpx6VH4vUO5arYpU9jjDHG3JIKGlxSNk+AF83Ic0FLzC2zTiOxFjVjjDHG3DJ8Vc5QZEyLdEmMbo3hilSWxRDyKK/oHB5CAaVLPdrwcORyUyqutD+HIgutcw6rm/hZomaMMcaYW8Y0PvMEbJcUCXEI56gOuSK4KoxToh2PLokxGgQc0TbGaCMhHkK4fqCCj8s4XZxkMwFOZVmZ4tL0U+8FLc+arbQ3zcMn3rBqv48lasYYY4xZEwpBjHHtQJElSZPiS4xz9HNUZ2kiy4gkKQUlHBympYNC1OpV0DwXGSNJmpy0Iihtv7CBvm3bSCZSgKIKs3PCyXMpejNFHtxykbhXQqqSPoIAFPq79tKU9QHC5Rrwbz+xer+zJWrGGGOMWVVzQZIAF6CSUAlKgMvhYJgRNlyyDGCaZo6xjRQzOFJOihaSoyJxtn7oIZxymSooxDyfbZvneaB3ns0jLxOPJXAcGB8/TzadYctAlq2bWiuJ1LmRUU6PjLFpQzcXp6eYnJxm55YJ4rGZ8D0BKfddUw2fa7BMoha+381kiZoxxhizSuY1IIZU+kQ1MtXLLxv1uzjB1mWXFUjwOruYJVv9bgiKANM04b77PbjOwg7Ky0Bpbwvo3VACNApCK4lab1LZ0Vri/j0zZDPlBEkhCNdJpwNi7iiiQfieUZLkqF9JqEa7m3ntyFEGe7sZeGAHp8+e5ezIWaZnE+RSKQB6OttxXYfTo2NoEHDbpn7isdj1HsqbyhK1q1DUgEL0R5bAWRNfQGOMMbV3kHm2EyYDRQ3Yp/OLlt/tpFdtX8XA41QwQFD5V77QAhXg8hL3c4HuRduUE6IZmhhhA4pDdYuVImSYIs48XR98D66ACIiUW77AdZW7dvp0dQVRWYBApZWruS1gYGAa11FcCSr7FRRHgkWtaILi4C+8vyr798XIZpRsVhHVSkJWudS5QoIJ0JTLUCqWcN1wYouutjYmLk4xPTNHUPLJ5+fpbmuhs62VrraWhZayBh39aYnaCmbV5xgF8qoUCUiLS0mVHA6DJCxhM8DC5Ika1R55VTZIjN6qOXpm1Od1zeNFfzIteGxcI3P4GGOuTfl/Q0wcPKDfb6NEjNeZ5qI2LVp3n97DIXYA5c7oC/KkOcx2CiQqZeVWqQSzlEhQ2H0fjiuV0YpSTqwQOvugsxc8L9xOJEymFOjJwo/vUTJZcKMkyXXg+GGlf0BpagXHUVxRRKgkXI4TJk5hebidI2G655STMlGcOv57TCYSbB7YyNnR8/R1dzEzN0e+UKS9pZnJySlymUz9grsOlqit4N/5PqPsppdfo5v9dPNNNtDBcaZ4mjl66aSTk9zm7F/UxGuu3+P+CACPul11juTqJcRhZ3QGDfC8ztC85KulQFKELSRt8kJTE2vxu3Qr+DNfGWEHHTyGkmeCQ0xkH0EcJSh9Fy/xJjyPMHNyHOJxn+aOAHEEEcGJUjHxIBYTNu0IaOuScFSh4+C5wshph213CIkUpLPgumEyBmGy5brhTyeqbMqvF5VVvXZloSyZAvcWyAwGN26gUMjz7Mv7KeTz9Pd2E4t5dEQtaI3aeracW+DjuHmOIeS9UXLbuzk7cRvT4/2km34AcaBU/A6J1FsozLu0nj0CweJOjw5KNyfJcQEIv5MeBTxKlbOmJHPczXdoidap5sjCNXuPIm3OGOuhAe+w5q95m0a6ND2lPnFxSF1ybgwuQqwOsalCiWvve1E9oirAYZIWSlx/K+A8aabJcWm7waUnOT2cBF677n2Z6/sumRt3gjhT7kHcwRfRIE+u43a23/YKiaTH+dOjpJvO0trt48U8vFj4L9iLuXieixtzK5frvJiDF3NxXcGLmuLLCVkhD83tdfsV14zbNg8yNzdPOtGYfc+uliVqKxAUZJqegUP4fRPMTXm09x0nlYWLo+fp3hSesaJZHM/D88IRLp7nUix6nHh1C6N5J+wvGTg4HjS3UWmiHp0Vnjv5YXw/OoMCRCQ8s4r+d4kDgS8kn/82Ccp9HcKFKaYrE+st10rjUmATr9PEhap/uotH2KyUNpT7DwgBMSkuWjfFFEPyCjG53hvartwC6evy7U7VyUP50nSBMFHL4FBEyal7xUvTS+fCWYhKGNd2LtK+aD2PEi1y/orvcUJnSZJmRuKLfsVpLXGOGSZUiePQTzi/T/V7zWqGA+zGj0ZKXU28ZUlmaZbxZeb4Ee74tXeTjYUnCBpULY96EuvSM8vKQKeFclFlc2aWVKy4eNtgSVwaoLpw3CvzFwUBqViR1vQsjqOV7SqdmZfEoEEbPPbtFX9nYxpRjBiuGyfXfJxUro9Y4hQiOUQ82nr2MD9b7wjXl1QysaZaz5ZjidoKBB9BmZs+STyZppA/z/i5p5i5GAB+ZT0vDl4sfEB4xpPKKXe+uYgXC/8Zl4ous5MOvYOLz45cVyuvHWfhjMld0mQ9PvYWCvPluODCCHT2KC2t4Qhh19GoCXshAZufVQ68oIxGFYNT1dpXzroUcFECwj4FqkR9DbTyT3ZyCm6/vRR1Ag1dmBT2nXbRQKsSuGjfVZ1CF4YylzuUVq1bTkbLo3eA81/5JwB86R2fX/zl0vB9ww6f4YanR75Pe8sd3LYJtDjJ2YmT9HXdzujkaY7MnGdjz85o26DyHuW4qve/sI5CAM2ZPJvaooOt4XHwXKWrdT7cNggqb6YqUTN6+Hp0/wvcNXQ7yfLooai85PsM+z4OwsWZKY6PnmF46PZF68ScEm9MFog7VcmvKkF5H2VBeTLGsCxf9Dg1luO+racXradB+DzhHavatvqY6qL1lr6/LrPPxcdrmURtyXtVJ2rLuWwuvQ5aj82tyaeISIx4qpPm9jtB5pm68Cp+tpNkZvlRlMasxBK1FSg+jpumqW0HXtxjanw/zR13km4SJs/vrWks7V1h0gZh4paIQ64F2toXypb2NXAc2HJb2PkTWNQptFxW3Sm03BG03Cm0nHA9/4zDnnuLuEtG65RH70glAQzC0T9ViZqj/qIh1NWjd8pJnGgQrqfK3lfCyzW/9ZvHF4/yiearkap5bL77zEkS8U3cNXyRZDzgu88d4U33ZBBVvv3MEd6yO1t5f2Dx3DgrzIezqHxJX4ZKonbJOsrIxCS7hkrcOzxTlRwusw/gGy+Oc/vGs8Rj3kISVN5mmWRquURNK4may9jFNImYv2yidqURUsaY1RPgo1oEDSjmL+LFPdK5AYr5UWannibd9MZ6h2jWGEvUrqDcIhD44SUfx43hOILYKX9NlVtehIXGlkw6geceYHomw5ET52nOhYlZ9e1Caun02AS97S3LLiuWfGLRMKiZ+Tx+EBDzLr3EaYxZ+5Q8qj5zM6fwCh5uPIbrubhe4sobG7OEJWorcEihOs2Fs08hjk8idefCwvXQs7/B7bptK4eOn+ToqdM0Z9PctqkfAN8P2HXbUE1jCYKA0YuT7Ny0oVJ2fOQCqgGDXe2cPj/B8XNjlX6Idw1tROxvyJhbjkcKx8mSnz1HPNlKpmULiXQOL+YR+Anro2auWd0SNRF5CPgDwAU+oaofq1csl+OSRESYmniFZLqDYv5pnNgWXG8D7b176h3eund6ZIzhocElEyEGeJ5LSy678rTbq8xxHB58wx3hi+iS40BXW+Xy40BXG31tTZWYPNdd8x1c17O1UH+Z+vApACBODDeWYXr8NXy/h6a2wTpHZtaqukzpJCIu8EfAu4AdwE+LyI56xLKSIlNAQCrTT9fAD5Nr30Nhfozxc88zecGmDqg3EZiZcy7XT70hSGUSSsFz3crDrF1rpf4y9SE4qEKxMIEGRcTxCIIi4+deoJifrHd4Zg2q19yb9wEHVfWwqhaAzwEP1ymWy/LJA3FiiRyo4rppmtvvJpXtY/TEP9Q7vHWvv7ebAwezFEt2CdHU1Jqov0x9BJQI/DlUfTQoEfh5Jsf2kp8bY3zk2XqHZ9agel367ANOVL0+CdxfvYKIPAo8CtBZpzADigTBLBr4zEwe4fzZo8QmBNfNU5gfq0tMZsHx02cpFJMA+L7PxamZhakyNKC9OVfnCOtvJl8gE1/bkz02oCvWX9AYdZipPUUJglnmZ05TmL9AKtuF62WYmzpLPNlb7/DMGtSwd7NR1cdVdY+q7mleZgLQWvDIIqJcvLCX2anj5GfPILikmzbSufEH6hKTWXD89FnisYWZ8p8/8BpHTp7h6KkzPHdg/Vya9le49vv80dM1jMRUa4Q6zNSWr4pPHnFcmjp24ft5Ji/sBZSSP4fvz9Q7RLMG1es07xTQX/V6Y1TWUErMARl6Bt+D40Gx0EJbz05cb4LZqaP1Dm/dk6qZ/V3XJZmI84Y7hhFVvvvsS3WMrLa+uf8g5yfnGews0JVL2WjSm29N1F+m9l7UcEin62TINm0l1zrM5IXn6Bp8M5NjLxAE138LNrN+1atF7Wlgm4hsFpE48AjwRJ1iuSzBRQQ0KFGYO0+uZRep7EZaOndRzE/VO7x1z3UdpmfCz2H0wjjJ+PqsBN+6fQstmSaOjY7ztb2HeOn4GUYn7cz9JloT9ZepvbskjRIQBLMUCxNMjIUDCIr5SUq+3XvVXJ+6tKipaklEPgx8mXB4+6dUdV89YllJjAR5Yojjks0OUZjvBqCYn6SlwwZ51dv2LZv4y787QKk0QzIOu3cOV5Z1d7TWMbLaSsXhB7cH5FL9FIoFzoxPcejceV48ml/xsqi5Pmul/jK154qQIEk+uh1fYW6URLqNU4e+CBTp2/JILWcNWvPy+QKF/ByOQDoRX7eThNeth6uqfgn4Ur32fzUCfIKgQH72LKXSONPjB/AmCiQzHi3tt9U7vHWvOZdl98772D50nlw6ahyO5ibbOtBX03nU6slxIJcK526Kex6Dna0MdrYyO5/n3MXpOkd3a1oL9ZepjyQOU9JKS8duXC+GF/cQ91780gSJVLtNeHsVZmeneP6Fl3GcefLz8zTlMpQKBVpbmhjetpXYOpviqGEHEzQCRXHdZpradpFt2gIakMr1k20aZG7mTL3DM5GYt75H1B0fHV+2PBWPsalz/bQsGlNvI1qkQB7VEo6zMNra9ZJ4sSyzU8frGN3aceTIAYaHb+dNP/BG7t2zm0w6zZveeD+tLS3sf2X9DBQrs0RtBW7U4Oi44VxqXryZptYd5Nq24bp2zzbTGFSF2fz6TlaNaRRKgOoMxfzEovJYoom5aTvBvxqKkk6lAWjK5ZieCfvcbujtqTxfTyxRW4GPjx91AJ2bPoUGJYr5CQrzExQLNpjANIae1nb2nuiqdxjGrHtdEsMnjkiWmanD5OdGK8tEnEUj1c3lbeyLcfrMYSYmJnjt9ddpyoVzYuo66c6ylJ2Gr8BDmSsFPPO1U8SSCYQEuGdI5yDwLVEzjWN8ZpKXj59lvhD2VUvGPLqa0nQ1ZescmTHrR1EDlDn8Up5Xn3s7qscROUEq104skUX9TpKZFpLpAHFcxBFaOwtsGArwPAFPcN1weh0vBvE4tHTU+Zeqg/vvv53jRw5z9NhxmrIZtg5tBsKJzXduH77C1qvL9332HTxKLpVgsKcDz6l9sm2J2gru5CIpDdg4eYjxyQ4OcoHSyI8wicvpplaOv9JLLOHT3lsknoQNQyXaemyU3Y24Y3hbvUNYc/afPMvZiSy7BtKkYuGZ51yhyPGxCUYnZ9jZZ61t69GQWPeMWjtMnm3M0aIn+eG5n2GWEqfIsnduOyUcetlDnCM4gAABwik2s592IGwtqp4F0cdlanAnsXi0TCTcTuHpr0IyA/1bIJaAcv96EXAFXA82DUNnT3TDFid8OE40zsoDt0FnNDp37hxbt24BQDRACO8243kezU1NNR0o5rouA71dnDo7wlMvv0pLNs22/g0kanjHF0vUVvCw28oAcbLyp0xoiXMUGZZPAvCtySTdk0McZxv7j76BAgkOfWOA13DIDw/jxYWegRJNHUpLR7Auz4qux3967FfDJ+u0ift6jE1Os73vTja0nq6Mem3NpOhtzvL3+w+HNzwy686jriXotVZA+Q/exujVDM8HM/ykk+cn+Q57dZY75FvX9H6qcPJYP1O0VMqcKKFThJNs5tDX76CAE5UsCHB4iX5KXD6hyL3jAZLJKDlUEAfy80J3r9I3CMM7wI0akJzozR0HYh70D4QtfjeDqqAaJp2NoCWXpTWb5sSZc7x69CQdLU30tNduoJYlaisYIM5BzYOGnfm2SbKybIs7SZ/sZ5j9PMgXgOhL5W/k1VfvZpYm9r28hzHSHKGFCxt2EUtAPAGZZqW1U0mkYdsuaGqFdBMk7ATYXAfXcZiau7SD7cTMHJ5rfWKMqaWiBsTEYV4DfGBeA9ywTeiaiUC/d4LFt5ZdsJ2XeXCFuZZVw4RtObNBhle+chfzpKu3QFAcAk6zmS9e5iyvRIzSO99HLMoBwxYvKs2ByZQytLVILBa+F9EiVfAcZdu2Ipu3FCsJooNTScpirs/ExGbamufIZhvnhH1sYpLTYxfYOdS/KEkrlkpMTs/QlEndtBkILFFbQVZc7pY0JVW8Jal9n1x6KhF+qU7Sz0kAfow/B8I/zpkzYV8hH5cDeg8n2cQ0LTz3V7dRwqNInOLu+4jFoX8r5JqhcwNs3g5xL0zwjFnOHQO9PPH0Kb65f4RULLz+MV8s4QrcOdBT5+iMWT96ibFP50jgkFdlqyR4Tecpogws8z/jZhMBl+W74+TcKe7lO9f93vknf4sCyWWXjQVdvM4uCktSDEEJcPhrtjBN05JloRIeufe8jb7eSfKFEfxiHkFxnTjZTBebBlrYunkekfCSqERXESQI8Fxl26ZZchk/LFPClkINWwKv1/jkNMdOn6OzpZkNne2Lls3M5Tl3YYK9h4/Tmssy3N9DMra6qZUlaldhaZJ2rUQg6y5MPPoAf3/JOnN+krPP9TNFEy889UbmyfIcvXyTZkDw3vQAmWyY9CUy0NMLg9sgmYR05obCM2tcczrFnQOD3DWYXDSYIF5uTbPLyMbURIfEaMEjT0BSHFwRWsRDVW+5e/AmnAIJCssuyzmTbObgdb1voMLzf5djFodWEsRwAaVIwDjzHKaPg3IXURtd1ZaKT4wxepdtRYwxz/2PvR0XRQNFogRWAc/xuWf7RXrb58PqUhVFEA2Yz+d5/fgZhjZkGNrYc0l9mkun2LG5H98POHDsJGMXp9i4ynfGsUStQaTceTbzOgB38mylXBVK6vHqd++o9FOYoINXuYtxSnz9bT+N64HnQd8gZKKkLdcKu+4JE7mW1hs7mzBrQyLmkfAWPmi120cZU3OeCB6LZ86/1ZK0m8kRxXPO8hYnvezyF4Mz3OXsv+z2l7vcOx60ce6/fHPZ9sU54nyRNlQWPjdBKWiBCS5SJMn9v/6v+M7zwaJ+gAQBqtCSnaezpcDYhMvYxDn2DLdd5W97dSxRa3AiEJMSdzgvLCp/F38NQPDt/8i8ppkJMuzlXuZJIShjdPBnDBLgETz4HtIZyGSVLcNKKiU4Ap09yrbbw0ursdoNYDHGGGMuyxGYVp+sLE54p9XHvULOe7nLvR3uGB2MXVMcB3UeB2Gjxgl+9+klwzVCinBBOzimaUaYJEuS5+XJa9rPlViitsY5oqRlhrQzww/xd8uuM/XV32KSVi5oJ69yFz4eoHyfbi7SjiK0/8TbaWkN/7hjcWXnHUVa28LXI+fsbNAYY0xtDJHgKAX8QIlHrZEFVVwRhqhdh+2tkiRQxXEEmGNeAxLIohbSWQ1wZRxPStxNjC6JWj1W8YKGJWrrQM6dIscUfRxnV9Vl1bJAhaOf38JFwk6SMzTxFDvJk0CAAkn2v/Qwnqt0d/t09/gIiucFDN9eoq017LiZ8CCVquVvZowx5laTEZedpCgSUIj6ocVFiNXhzg5OdVJGwCRKFzHyGnCKIgFKCochkqRvUnyWqBkcUYa8g1DV+fPNLG66LXzmP1MkzjHdyhidABSJ849sroz8KRKj99H3kUoFdHT6bB4s4BDgOsrQpjxtrT5CONWJzRphjDFmJTFxVpgFrvbaooEhvipHyXNRfbZIkna5uamUJWrmqsSdInGK7ODFy66jCuOPP06BJKfYzD/SC4CPx9d/4RcpFCRaT2lvLdKcDVAgnSixc3iGbKqEENDcFNDVXlymN4AxxhhTPyKCCwyTYpwSo5Q4FRTolzitNylhs0TNrBoRaHMvANDD6cUL//Rzlae+OpwKBpkjHKI6QxN/zVb86Nxpmibaf+ZhHCe8yN+cKzG4YQ4RxUHZOjDDxt4CaMDMrDXNGWOMqb1W8WjFYwYf5yY2LViiZmrOlYAB98iist38w6LXxb/4eGWEzbmgj7P0A+Gw639giBly0ZoORx57K9lUCYBEwmdT7yypeAlUyWZKbGifs+lJjDHG3BSZJaNTV5slaqYhxaRYed7vHqGfhcTu/iUTBs987PFKP7k50nyDgWhkK0zTTPcvvz+8PYkqiXhAb9scoDgS0NcxR2d7HoIATwLam+avOPzbGGOMqRVL1Myal3FmyBDe67KV82xYel+8/7FwL7zpIMcYHdErh71sqNzKpITHxg/9U2KuX1lfUHraZmnJ5QGIuz5DPZNkEmEiGfMCYjf3ZMoYY8w6ZomaWVeyzhRZpiqvBzi0aLn/P79IUDWruK8O59jIccJ7tRaI83/po0R4374iMe76pbfhOQu3FUl6RTb3TBD3AlClOVOgr2MGJ7rvHIT9+azhzhhjzJXcUKImIr8D/ChQAA4BH1TViWjZY8DPAz7wS6r65aj8IeAPABf4hKp+7EZiMGY1uRIsmtU6JjC4JJmDpyvPVGHmD7+w6JYlc2T5Fv2U8BCUKVro/Rc/Hq5czucUulqmcV2FANqycwx0TOI4AeqHKzWlC7Rm5m/Wr2qwOswY0/hutEXtSeAxVS2JyG8DjwG/KSI7gEeAncAG4Ksiclu0zR8BDwIngadF5AlVvfyNu4xpYCKQlelFZU1M0r101Osnv7ToZVFjnNdONErwTtDJ1+letM4sOYY+8DYcUVSVXCpPT+tMJdlTDejIzdHVPE0QWPvcdbI6zBjT0G4oUVPVr1S9fAr4yej5w8DnVDUPHBGRg8B90bKDqnoYQEQ+F61rlZxZV2JSpEcWkrleTi67nv+Zv6mMfp3QNl6P7h5R9n26GKeDNIf4nlzg3o88SDpRAML56gCak3PkUmEfO4KwLJsskPSKrHdWhxljGt1q9lH7OeAvo+d9hJVe2cmoDFjU0/skcP8qxmDMLcWVhYENHTJCByNL1jiw6NX0x57nwpJ74b1KE/OkF5XNkGPXr74TESXwlWyyQDoeJnhUErxZssnFCV4qVsKp6o93i7E6zBjTcK6YqInIV4GeZRZ9VFW/EK3zUaAEfHa1AhORR4FHATptzIMxV8WTEh6lRWXpaETsUqX//kLl+RnNUKhK8BRhmmbypColIAz/4jtxJKBy/TVQMokCzalwQuJyQpeOF2hJzVG5M3EgOKJIHa7QWh1mjFnLrlh7qOqPrLRcRH4WeC/wdi1fa4FTEM1QGtoYlbFC+dL9Pg48DrBNkrfsKbwxjSAtM5ckdK2cv2Q9/+P7KOribGucHK+RZWGkhDBLhtnKpMTRtrjc/+F7wj53Uf6WiJVoS8/gsNByGHdLNCVmb/h3KrM6zBizlt3oqM+HgN8AflBVq2vWJ4A/F5HfI+yIuw34PuGMBNtEZDNh5fYI8M9uJAZjTG05sjjnyDJJlskrbqcKFz7+MmE1EL5HnhQv01zphwdQIMEP/fqu1Qz5sqwOM8Y0uhttj/84kACelPCaxlOq+i9VdZ+I/BVhB9sS8CFV9QFE5MPAlwmHtn9KVffdYAzGmDVABJIsnm4kyTzNjF+y7rH/9kqtwrI6zBjT0GShpb9xbZOk/r43WO8wjDE19N7Sa8+q6p56x7EarA4zZn1ZzfrLblVtjDHGGNOgLFEzxhhjjGlQlqgZY4wxxjSoNdFHTURGgWN12n0HMFanfV+OxXR1LKar06gxZVS1s96BrIY61mGN+tlaTFfWiDFBY8bViDENq2ruyqtd2ZqYhbGelbWIPNNoHZotpqtjMV2dBo5pU73jWC31qsMa+LO1mK6gEWOCxoyrUWNarfeyS5/GGGOMMQ3KEjVjjDHGmAZlidqVPV7vAJZhMV0di+nqWEy3rkY8jhbT1WnEmKAx47qlY1oTgwmMMcYYY9Yja1EzxhhjjGlQlqhdhog8JCKvishBEflIDffbLyLfEJH9IrJPRH45Kv/3InJKRF6IHu+u2uaxKM5XReSdNymuoyLycrTvZ6KyNhF5UkRej362RuUiIn8YxfSSiOy+CfEMVx2LF0RkUkR+pR7HSUQ+JSIjIrK3quyaj42IfCBa/3UR+cBNiOl3ROSVaL9/KyItUfkmEZmrOmZ/UrXNG6LP/WAUtyyzuxuJ6Zo/r3p9N9caq8MuicvqsOXjsPrr+mOqTf2lqvZY8iC82fIhYAiIAy8CO2q0715gd/Q8B7wG7AD+PfBry6y/I4ovAWyO4nZvQlxHgY4lZf8V+Ej0/CPAb0fP3w38P0CAB4Dv1eDzOgsM1uM4AW8FdgN7r/fYAG3A4ehna/S8dZVjegfgRc9/uyqmTdXrLXmf70dxShT3u1Y5pmv6vOr53VxLD6vDlo3L6rDl92311/XHVJP6y1rUlncfcFBVD6tqAfgc8HAtdqyqZ1T1uej5FHAA6Fthk4eBz6lqXlWPAAcJ46+Fh4FPR88/DbyvqvwzGnoKaBGR3psYx9uBQ6q60oSiN+04qeq3gAvL7O9ajs07gSdV9YKqjgNPAg+tZkyq+hVVLUUvnwI2rvQeUVxNqvqUhrXPZ6p+j1WJaQWX+7zq9t1cY6wOuzrrvg6z+uv6Y1rBqtZflqgtrw84UfX6JCtXNDeFiGwC7gG+FxV9OGr2/VS5KZraxarAV0TkWRF5NCrrVtUz0fOzQHeNYyp7BPiLqtf1PE5l13psah3fzxGeYZZtFpHnReSbIvKWqlhP1iCma/m8GuK7uQY0xHGyOuyqNVodZvXX1bvp9Zclag1KRLLA54FfUdVJ4I+BLcDdwBngd2sc0ptVdTfwLuBDIvLW6oXRGUvNhxCLSBz4MeD/REX1Pk6XqNexuRwR+ShQAj4bFZ0BBlT1HuBXgT8XkaYahdNwn5dZHVaHXZ1Gr8Os/lpRTT4rS9SWdwror3q9MSqrCRGJEVZwn1XVvwFQ1XOq6qtqAPwvFpq8axKrqp6Kfo4Afxvt/1z5ckD0c6SWMUXeBTynquei+Op6nKpc67GpSXwi8rPAe4GfiSpgoub589HzZwn7UNwW7b/68sKqx3Qdn1ddv5triNVhS1gddk2s/roKtaq/LFFb3tPANhHZHJ3tPAI8UYsdR6NSPgkcUNXfqyqv7h/x40B55MkTwCMikhCRzcA2wg6UqxlTRkRy5eeEnTr3Rvsuj+75APCFqpjeH40QegC4WNWMvtp+mqpLBvU8Tktc67H5MvAOEWmNms/fEZWtGhF5CPgN4MdUdbaqvFNE3Oj5EOGxORzFNSkiD0R/l++v+j1WK6Zr/bzq9t1cY6wOWxyT1WHXxuqvq4upNvWX3sSRLGv5QTi65TXC7PyjNdzvmwmbmV8CXoge7wb+N/ByVP4E0Fu1zUejOF/lBka1rBDTEOHolBeBfeXjAbQDXwNeB74KtEXlAvxRFNPLwJ6bdKwywHmguaqs5seJsJI9AxQJ+xz8/PUcG8J+FwejxwdvQkwHCftHlP+u/iRa9yeiz/UF4DngR6veZw9h5XMI+DjRJNmrGNM1f171+m6utYfVYYtisjrs8jFY/XX9MdWk/rI7ExhjjDHGNCi79GmMMcYY06AsUTPGGGOMaVCWqBljjDHGNChL1IwxxhhjGpQlasYYY4wxDcoSNWOMMcaYBmWJmjHGGGNMg7JEzRhjjDGmQf1/ZfoFWLu2cG0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAABqCAYAAADjjxZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZlklEQVR4nO3dfZAc9X3n8fe352EftM/SSki7ktATSAs2SBYg2+DEBvMU29iOkyNnztihCqfKrrPr7HN4qLtLVSpx7ORctsuuOOTgDp/JcT6THFQFHw8+ykdSQYB5FiCxEggk9ICeV1pp56G/98f07vZoZ1e72tmZXunzqtrant+ve/o7PTvf/U53/7rN3RERERGRZArqHYCIiIiIjE/FmoiIiEiCqVgTERERSTAVayIiIiIJpmJNREREJMFUrImIiIgkWLreAUxGu6V8Ppl6hyEiNdTP0D537653HNWgHCZydql2/poVxdp8Mnw/vbTeYYhIDX2isGV7vWOoFuUwkbNLtfOXDoOKiIiIJJiKNREREZEEm3axZmaLzewJM3vVzDaZ2dei9i4ze8zM3oh+d0btZmY/NLN+M3vJzNZNNwYRkdOlHCYiSVeNPWsF4Bvu3gdsAL5iZn3AbcCv3H0V8KvoMcB1wKro51bgr6sQg4jI6VIOE5FEm3ax5u673P25aHoAeA3oAW4A7o1muxf4dDR9A/BTL3kK6DCzhdONQ0TkdCiHiUjSVfWcNTM7F1gLbAQWuPuuqGs3sCCa7gHeiS22I2o7+bluNbNnzezZwxSrGaaISEXKYSKSRFUr1sysBXgA+Lq7H4n3ubsDPpXnc/e73H29u69vJ1WtMEVEKlIOE5GkqkqxZmYZSknuPnf/+6h5z/Chgej33qh9J7A4tnhv1CYiUhfKYSKSZNUYDWrA3cBr7v69WNdDwM3R9M3Ag7H2L0QjqjYAh2OHGkREako5TESSrhp3MPgw8G+Al83shajtDuAvgJ+b2S3AduD3o76HgeuBfmAQ+FIVYhAROV3KYSKSaNMu1tz9nwAbp/vKCvM78JXprldEpBqUw0Qk6XQHAxEREZEEU7EmIiIikmAq1kREREQSTMWaiIiISIKpWBMRERFJMBVrIiIiIgmmYk1EREQkwapxUVwRERGRs9IJb2LIG2Z0HSrWRERE5IxW9ICQVOU+UuwMz2WA9or9IQE7WDHSX34FbWeAdlJeJGu5WPvTVYl7mIo1ERERmRWKHrAn7GGIxjF9BTL0c2FZn+EA7GcBQ95I2vJjlnOMgme46AODtDccw728HEvj/P7HOljw4dUVY8pkQrq78gSxE8t+vvZ0Xt34VKyJiIhI1RwPmzhBU8U+A/aEi+jnAoqkMBxjtKg6ShvbWUUzR2mwEyct6+RooMGP02n7Rto9tq+rnf18+t4bSKfDsqKrKessX3KcbNan8cqGprHs9KhYExEROctUOiw4XDABHCp2spn3Vzx0eIxWtnBR2fxxA7RjONlxiptGjnHVF7rIpovEn8IdzOAzl/TS2VGkb+Wxsr5h6ZSTSq2a4NUdnaBvdlKxJiIiMgsNFTNs89XkyZQVToYTErCFi3iXJSPtQbwYYx6HmEeGXGxZxwlo4ihNDLKI7fSsbR1ZJvTScb4s8OWPhoQfv44ggDAcjcmBTAYW9XjZYcGpOHTQaNi5hWxmOnvBziwq1kRERGaIOxwsdpGjYaQoGj4458Am1rGVC2Ito/I0sp3zyJMd09fIICEpWjlMmtHzsDw2Z1/fcS7/0nUEdvLSJfMXOIWuNiwYXfjAe3Bhz2F6esMKS4x5dZOYR6pBxdo4flQ4xKuso5k/JcsJLuA52nmPgOLIBy5NkQt4lnNS745ZPjD9EZ+Ou4p7Abg1Nb/OkYjMbvos1ce3CvN4l6V08+8ByNFIngwBIY6RZYhMVFw50MpBNty0glTgY0qfMDSuWHiCF30+QapU+LnD3NZOlqyCOa2QneYVIzInPU6rKkgkvS3j2Azszx6E5W0sv2Qd+za2sD3XwPyWAQDcjT2b9vGPfJ5isXRMP/5tKU2RRbw58o3HcBo4gREy/G1kEdtZwwukKFQ49u8ElL7ZtHCEuen9M/uCE2Kb1+8EzjNZzrOE0TWwxzvPpJL4vEM0cYSOKa03vrwT8J4vrDgaq7ItU1qXlNNnqT52sx/awFaVPm8tDUdp6xgkCCCfS7NkzYV0nVOMLbGUAlAY5/nepJW2kz6z7a3VKdRk9lCxNoGUhXR2H+bwwSfhPGhu66N5SdtI//JPLmKZQxh97oY/TmHBsMI5HD38PhZ15cGNQwdhYa+TiT5cxbzx3J89yot8iPJdyVb2XE7AYebSXDhatqvbcOYwQKXd0MPPUCDNMjbTxXtly8V/jyrf5W2x+VMURv7BBrHlV9krtNiRitvudA2P6il4df40p1KYDNvrizhKa7T86axz7OGDieIY7svRyA6W4diY6/hUVn6OygJ2VtyjWyBNhhwpimWjpqaqSIprvrGSdFA89cwwZl2G09k8SEN6vH9L5W67Y8ohitSdUToBft45h7DT/7iJlFGxNk1mkDp5K6Yd2EVnCxyPmnqXLKRrPjQ2j87W84vrT/n87nDkABQKlJ2MkBkscPGlXjZCZnj+4Z+DB+DEk93kC6mRvtzb2+PRR+1jM4r7aCkwMNTEqgU7R5ZxjL0DrTzwy8tOecrCVIuD3XwXgP8afmNS8xc9xSLbTsomKiCmFsOQN3HVTa00ZXIV+0/e5mV9Fdc1vJ1HW1796fNj5nGMq25ZwPuu7iWVCqNlbNz3J+6Zh3dz2ZJ8aXTVSQJzgqBah+UPVul5RERkslSsJZwZtM8d2546DO2dEy87txs4f91JrRdNOYZDm3Zx2SXLxrTf9P0pP9Up/aubSnsuf/izD05q/nce28aapWmaGye3tycpfuemj07QO/XDVy0NQ6RTIenUZE4KFhGR2UQ3chcRERFJMBVrIiIiIglWt2LNzK41s81m1m9mt9UrDhGRqVL+EpFaqkuxZmYp4MfAdUAf8Adm1lePWEREpkL5S0RqrV571i4F+t19m7vngPuBG+oUi4jIVCh/iUhN1atY6wHeiT3eEbWNMLNbzexZM3v2MLNrpJ+InNFOmb9AOUxEqiexAwzc/S53X+/u69tJ1TscEZEpUQ4TkWqpV7G2E1gce9wbtYmIJJ3yl4jUVL2KtWeAVWa2zMyywI3AQ3WKRURkKpS/RKSm6nIHA3cvmNlXgUeAFHCPu2+qRywiIlOh/CUitVa32025+8PAw/Vav4jI6VL+EpFaSuwAAxERERFRsSYiIiKSaCrWRERERBKsbuesJV2aArkhZ8+T85j30S4yHU00G5wY3Ec646Qz9Y5QRESSJkWBgwdDdvzjgpHHaz61guZmZygP4S4o5kr/et2hudVZcEELW/oPgI8+TxhNpwJoaAazWr8SSRIVa+NYYyHn+Zus5ds888Rvc4ImtnIuIWlyZOlgHykKLFzdyt7epTS3hSxcllMRN019a1bXOwSRM8Jya6h3CGelDbaf4z7IZ/kaDmzkY+x4aAVDgBGSJ88gIQY4AbtZzACdGOGY5wpJUSSgk/1l/QWydLKHNg6x4a9+l3ePtQKl4s9jBV/DHFi5BjLZyrEGOrY2a6hYG8etqfnR1K/ZwK/L+rYWVnGAeeRpZNPr62l8fRcDtPE281ixssi8lgGWrWniaV9EOut0dhdq/wJmqf905+31DkHkjDCaw6SWRrf7WwAs4Z7Tfq5iaLwZnscBugEIYgWbY7zEB3nim4+MtAwznJCAfSzkcVIEFW53ZsBc9nLu6rD0rG44xlAxy/bGI7z/sma6P/dbZGM1f7wY7O72sj6ZWSrWTsOK9Bus4A0APsQTI+07Ckt4vv+D5Gnk/75wKYMcJ08jm2kiwz5aOQQErLoow3nXLaWpp4tCa4YgDQ2N9XktIiKSTKnAWRlsBjZX7L+Ef55weXcY8soVVd6zvOzrOfJ6Z3wJADLk2fjKfHbcPYSPObXdydPAEE20cJiyY7cjc6RY1ldk/Y19o6/lnS1Rp5FJF1n98V5OLDmvLFZ3He4dj4q1KupNv00vbwPwWe4FYCjMcijswjECnEGbw7MvXsHrL3bSz4XRbu4UDRyPijnjI3dcwrYTC2jrgCXnQRDdVlB/xCIiMllm0GhDFfsaGSrb2TAVec9wMOyitH8urlS4DdHEq6+u5Zn/2H9SnwPGIeZxz08aMPaMee4iacBZyNt02b4x/SHGNV9bQe/lK8b0uUNXR575c/Nn3P9LFWszrCHIsSDYXdZ2LlvLHh8ptrHdV1Ikwy56eebPB8mT4UUWYxTJk2VVH/S0HwRg+cWt7Jq/jp7FTle3ijgREamdjOWZnxpbaMUtjg4DT9XxsIl3fUlUtJXYSKEHx2nhsR+E5H7wTmypUl+RNPtYSNaHMIsf+i39k1x76XFaM8dLS3j5P850KscV13XSvP79Zef9jfY7XR2Fup3np2ItAdpSR3gfzwFwMRuBBwAI3Sh4mv5wDe+8ugInICTFL//lA5zgCf6FAiEpWhigiaNc/mdX0dDgONDUAF0XzqelBQ16EBGRWaEpOM6KcQ77Dns/z4zbl/PKoyn2+CL2Pt3DkbLDuqWqrECGtziff3rSCXgRYsUhQI4Ghmim2QdIWfwc9FLBlybHZVecoHf90gnjng4VawkWmJO1PH3BS/Tx0kj79fwcgFyY4bB34gS87Jfx2p3De/CM3SzmCB2A0cIRmjhKB/tY8zdfJxV9oehZCvMW1PQliYiIzJis5Sq2L7a3Jtzbt2GCQ8J5z3DU2/BxjmId9zlse3INbz25fyqhTomKtVksG+TpZi8AV/JgxXlCN7YXl3OMNnaxhKe/fC8O0SHXxWTIEeCsvSJNZ9MxoPR94sIPtTO47nIAbFDju0VE5OyUsTydNlEhtp+e6Hz1Yd+r8kUgVKyd4QJzlqVL58hdyPNlfXkvHR/dGy5k25OrOR7tHh6gg7sfXYPzv3GMIhketncBmOMD/N531wLQkC2w6LdX0NBQ2l0cBDp/TkREpNpUrJ3FMpYHoCf19phvBXGhG4fCLnJkectW83/++BAAB5jPfg6RobTbOe9Zum0XDZzgozd10fV71xAEjju0tDg9iwoq5kRERKZIxZqcUmBOV6q0C/gcdo0734FwLvu9mxxNPP6zi/Gf/QKAIineY1E0QiekSIpGH+Rjn2saef7VV5xD66WjQ7HnzHEaGyoMyRERETnLqFiTqukK9tNFqai74KRDrqHbyFDsImm2hqvZ/UALAHvo5ZFfFElFJ38epwVzp8mOAuAe8Dt39NHZkiMwp+PSZcyfX8QM8kXtqhMRkTObijWpicCcgNJh1wx5Lkg9P+68oRtHvIPS1XWMvZzDC9/eBkCeBt7mXQJCDKdAhvm8S6+9CZSGUH/2v32SOY2lszsNp7M1TzYz9r57IiIis4GKNUmcwJwOOzjyuJP9nM+mivPmPMteX0gYDY7I0cjPvvgEBUrX2jlKGwVPjwznLniaq7/YTlO69PjcK5azaN4gULpIYmBOQ1aFnYiIJIeKNZnVspaj17aXta3ktbLHBU/j0cULj9HKW/cuxjFCAh6++wghRkBISIpj3sJc20v8goid7OPan3wGw0mlnMXdx2hpHntjZBERkZmgYk3OeOnYFac77AAdHBh5fEF054hhQ2GW48wZeVwkzdus5OE/eggoXcl6N4tJR4d0Q1IEXqQ7urTJsEZOcON91wOl+9W1NRdob8lX94WJiMhZQcWaSExDkKOB8itgz+W9cecP3djPfHI0jrQVyLCHXv728/8MwCAtHPYuWu3w6HIEpLzANbd0AuAY81sGWHnlypF50qmQRh2SFRE5602rWDOzvwQ+CeSArcCX3P1Q1Hc7cAtQBP6tuz8StV8L/ABIAf/F3f9iOjGI1FNgTreNvaHxUvpHpkM3ilb+UQsJ2EMv/feULl+So4HHWQ4/HD03b4hGAg/JWunGw40McvWXF5FJjR6CdTfamwYJvaOaL+usoRwmIrPBdPesPQbc7u4FM/sOcDvwx2bWB9wIXAAsAh43s/OiZX4MfBzYATxjZg+5+6vTjEMkseIjYeOW2Nayxxfym7LHRU9xnKaRxwO0s/FvDo5cAgVKlznZQw9pBnmeQ2QsTwuHCSgyfJNhgI/fcSEN6fL7nzSm87pIsXKYiMwC0yrW3P3R2MOngM9F0zcA97v7EPCmmfUDl0Z9/e6+DcDM7o/mVaITOUnKirRE15oDaOEoC9k54TJ5z3CUNuKF2hCNPPjnb40MsgDIkaXgGRrsBAAZcrRxiEu++cGReTJBke6WgTO6oFMOE5HZoJrnrP0h8D+j6R5KiW/YjqgN4J2T2i+r9GRmditwK0C3Tq0TmZSM5elk7A2Hz2HHmLYiAR5d8mSIRo7Szsa/2jjSP0gLA95BKjZAI+9ZMpajmdEiMiCklUN8+PYNQGlARWBOe+NxgmBW3YVCOUxEEumUGcTMHgfOqdB1p7s/GM1zJ1AA7qtWYO5+F3AXwCprnFUZX2Q2SFkIlAYwpDnKnFgBNuLkvWoGJ7xp5Lp2UBoxe4ROHvn26M6lkBTHaB3zdAVPMy92jp9jBBS5/j/0lc3XlK7eyFnlMBGZ7U5ZrLn7VRP1m9kXgU8AV7r7cELaCSyOzdYbtTFBu4jMAo3RgIe4Vg5XmHOsQeYwFBs5C3CETn7xp6WdVYbjDN/BojqUw0RktpvuaNBrgW8Bv+Xug7Guh4C/M7PvUTo5dxXwNKXv6avMbBmlBHcj8K+nE4OIzB7NdoxmjpW1VTpsW6vdUMphIjIbTPdEih8BDcBjVjoL+Sl3/yN332RmP6d00m0B+Iq7FwHM7KvAI5SGvd/j7pXvIyQiZ60aDmpQDhORxLPRvf7Jtcoa/fvppfUOQ0Rq6BOFLb9x9/X1jqMalMNEzi7Vzl/BqWcRERERkXpRsSYiIiKSYLPiMKiZvQdsr8Oq5wH76rDeU0liXIppcpIYEyQzrvPdfez1P2Yh5bAyimnykhiXYpqcquavWXGlRnfvrsd6zezZJJ4zk8S4FNPkJDEmSGZcZvZsvWOoFuWwUYpp8pIYl2KanGrnLx0GFREREUkwFWsiIiIiCaZibWJ31TuAcSQxLsU0OUmMCZIZVxJjmm2SuA0V0+QlMS7FNDlVjWlWDDAQEREROVtpz5qIiIhIgqlYG4eZXWtmm82s38xuq+F6F5vZE2b2qpltMrOvRe1/YmY7zeyF6Of62DK3R3FuNrNrZiiut8zs5Wjdz0ZtXWb2mJm9Ef3ujNrNzH4YxfSSma2boZjOj22PF8zsiJl9vdbbyszuMbO9ZvZKrG3K28bMbo7mf8PMbp6BmP7SzF6P1vsPZtYRtZ9rZsdj2+snsWU+EL3v/VHc07oR1DhxTfn9qtfnc7ZQ/qoYW6JymPLXacVV1xxW1/zl7vo56YfSPf+2AsuBLPAi0FejdS8E1kXTrcAWoA/4E+CbFebvi+JrAJZFcadmIK63gHkntX0XuC2avg34TjR9PfBLSje93gBsrNF7thtYWuttBXwEWAe8crrbBugCtkW/O6PpzirHdDWQjqa/E4vp3Ph8Jz3P01GcFsV93Qxsqym9X/X8fM6GH+WvcWNLbA5T/pp0XHXNYfXMX9qzVtmlQL+7b3P3HHA/cEMtVuzuu9z9uWh6AHgN6JlgkRuA+919yN3fBPopxV8LNwD3RtP3Ap+Otf/US54COsxs4QzHciWw1d0nuvDojGwrd/9/wIEK65rKtrkGeMzdD7j7QeAx4NpqxuTuj7p7IXr4FNA70XNEcbW5+1Neyj4/jb2OqsU1gfHer7p9PmcJ5a/JS0oOU/6aRFz1zmH1zF8q1irrAd6JPd7BxAlnRpjZucBaYGPU9NVo9+89w7ulqV2sDjxqZr8xs1ujtgXuviua3g0sqHFMcTcC/yP2uJ7bCqa+bWq9zf6Q0rfMYcvM7Hkz+7WZXRGLdUeNYprK+5WIz2eCJWL7JCx/QbJzmPLX1CUph814/lKxllBm1gI8AHzd3Y8Afw2sAC4GdgH/ucYhXe7u64DrgK+Y2UfindG3lroMLTazLPAp4H9FTfXeVmXquW0qMbM7gQJwX9S0C1ji7muBfwf8nZm11TCkRL1fMn0JzF+Q0Bym/DV1CcthNXm/VKxVthNYHHvcG7XVhJllKCW6+9z97wHcfY+7F909BP6W0d3fNYnV3XdGv/cC/xCtf8/woYHo995axhRzHfCcu++JYqzrtopMddvUJDYz+yLwCeDzURIm2k2/P5r+DaXzKc6L1h8/zDBTf1tTfb/q+vmcBZS/KkhwDlP+moKk5bBa5S8Va5U9A6wys2XRt54bgYdqseJopMrdwGvu/r1Ye/x8ic8Aw6NRHgJuNLMGM1sGrKJ0QmU1Y5pjZq3D05RO8nwlWvfwqJ+bgQdjMX0hGjm0ATgc26U+E/6A2CGEem6rmKlum0eAq82sM9qNfnXUVjVmdi3wLeBT7j4Ya+82s1Q0vZzSdtkWxXXEzDZEf5dfiL2OasY11ferbp/PWUL5a2xcSc5hyl+TlMQcVrP85TM4wmU2/1Aa9bKFUoV+Zw3XezmlXc4vAS9EP9cD/x14OWp/CFgYW+bOKM7NTHO03jgxLac0YuVFYNPw9gDmAr8C3gAeB7qidgN+HMX0MrB+BrfXHGA/0B5rq+m2opRodwF5Sucf3HI624bSORj90c+XZiCmfkrnSgz/Xf0kmvd3o/f1BeA54JOx51lPKflsBX5EdCHtKsc15ferXp/P2fKj/DUmrkTmMOWvKcdV1xxWz/ylOxiIiIiIJJgOg4qIiIgkmIo1ERERkQRTsSYiIiKSYCrWRERERBJMxZqIiIhIgqlYExEREUkwFWsiIiIiCaZiTURERCTB/j/wFnAyLO058wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -357,7 +357,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADECAYAAABOQy+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2iUlEQVR4nO3deZQcaX3m++8vcq1NtUslqUr7Qqv3lWaxwca0gcG0PcfGGHsMNhjPNXifa4M5dzz33Ou5eDwHr1x7uMCM7cM6xkDbZtwGDAYMNN3QtLql3tTq1q7WVqq9covf/SMiMyOrsrS0SpVVqudzjlRRb7yR+WZULk++8cYb5u6IiIiIyNUXtLoBIiIiIquFgpeIiIjIElHwEhEREVkiCl4iIiIiS0TBS0RERGSJpFvdgEvRbSlfS6bVzRARERG5qAMUzrj7YLN1KyJ4rSXDH6U3t7oZIiIiIhf1+vJThxZap0ONIiIiIktEwUtERERkiSh4iYiIiCwRBS8RERGRJaLgJSIiIrJEFLxEREREloiCl4iIiMgSUfASERERWSIKXiIiIiJLRMFLREREZIkoeImIiIgsEQUvERERkSWi4CUiIiKyRK44eJnZiJl92cz2m9k+M/vVuLzPzL5gZk/HP3vjcjOzPzGzA2a218xuu9I2iIiIiKwEi9HjVQZ+0933AHcD7zSzPcC7gS+5+07gS/HvAK8Fdsb/3gH8+SK0QURERGTZu+Lg5e4n3P278fIE8DiwEbgX+Mu42l8CPxov3wv8lUe+BfSY2forbYeIiIjIcreoY7zMbAtwK/AAsM7dT8SrTgLr4uWNwJHEZkfjsrm39Q4ze8jMHhqjspjNFBEREWmJRQteZtYJfBr4NXcfT65zdwf8cm7P3T/o7ne4+x3dpBarmSIiIiItsyjBy8wyRKHro+7+t3Hx89VDiPHPU3H5MWAksflwXCYiIiJyTVuMsxoN+DDwuLu/P7HqPuAt8fJbgM8lyn82PrvxbmAscUhSRERE5JqVXoTbeBnw74BHzex7cdnvAO8DPmVmbwMOAW+M130eeB1wAJgGfm4R2iAiIiKy7F1x8HL3rwO2wOpXNanvwDuv9H5FREREVhrNXC8iIiKyRBS8RERERJaIgpeIiIjIElHwEhEREVkiCl4iIiIiS0TBS0RERGSJKHiJiIiILBEFLxEREZElouAlIiIiskQUvERERESWiIKXiIiIyBJR8BIRERFZIgpeIiIiIktEwUtERERkiSh4iYiIiCwRBS8RERGRJaLgJSIiIrJEFLxEREREloiCl4iIiMgSUfASERERWSIKXiIiIiJLRMFLREREZIkoeImIiIgskUUJXmb2ETM7ZWaPJcr6zOwLZvZ0/LM3Ljcz+xMzO2Bme83stsVog4iIiMjVVPGAsqcv+O9iLl7j0vwP4M+Av0qUvRv4kru/z8zeHf/+28BrgZ3xvxcDfx7/FBEREbkqZr2NAvmL1jN8Xtm499D/y2/lzEQ7ZoDPrwNR+U/evRd+8T8tePuLErzc/atmtmVO8b3AK+PlvwS+QhS87gX+yt0d+JaZ9ZjZenc/sRhtERERkWtH6MYEPYx5b9P1yaDULDRN0cVxNrP953+QTCpsXDknQPkC5V25EiP9Z3jJriPk0uUFcxdhOP8+5lisHq9m1iXC1ElgXby8ETiSqHc0LmsIXmb2DuAdAINXtZkiIiJyNZQ8w1lfy/NsJCQ1Z22UXmxOaTI8lchylkFu+MVXMNA5Q2COV7doSD8h7gY+59ZCZ6StyOvXjbKu5zGy6XDe+qZ8fnjyMFG2UPIKLxy64OoGrxp3dzNbKB8utM0HgQ8C7LT8ZW0rIiIijdyph5Y5mvUU1bbDGPceTrKJkwzjDcPDL7RdQIE8L/71l/HydeNkEz1BHjfInXnhJ9nrlElXGO6fpLd9X3SIb+4Dqi0vEHgSt+0L1VliVzN4PV89hGhm64FTcfkxYCRRbzguExERkSZKnrmk8UlJ1TA14d0M/N/v4djpDkK3Wq9MNFYpGZ3icmjIUw5kUyHXrx3nR9aPk8uE4OGCh+UAvOKYQU9HgXzmQPMGVoPQpfQ6LY/MtCiuZvC6D3gL8L745+cS5e8ys08QDaof0/guERG5Vk2FHYwy0LS3KbhIopimk+NsZuOv/gy5bKUhEDX0UjU77AaYO+35Mut6x7l7zxny2QqEYfPDdYmg43PCUD5bwZJByC9y2K3hsNwFH+KqsyjBy8w+TjSQfsDMjgK/SxS4PmVmbwMOAW+Mq38eeB1wAJgGfm4x2iAiIrKYKh5w3gc46lsoJz4uGwdzw9xkUV1fsRRnGGLX//6TDPQWMAOrBa3EbXgiu4RhQ45Zl61wz8gEGwafIxv3NNW3W+BQ20J1qhYaq3SxMKUAtSgW66zGn1pg1aua1HXgnYtxvyIiIs0UPMfJcJhn2MM0HUAUki40limqE4UPJ2CUAYbf9jqG+ovkc5WovLp5Q16ZX1goGDtGprj1ujF6uw7XxifVeo0WCkeXMoBbVjSdLigiIovOHQq0NT28drHwM+t5Dvv2ODStWWCbC92GUyLHjne+lhu3zzDYW6Y6SMgdLNGrZHgi38ShJ8pYDK+fZXjdc2QzcYWL9TYlyg4eztOer9DXXVJPkTRQ8BIRkQZlT3POBymTSZTOTw/NAlTJMzzHLmbf9bsUCwY299Bc2CSK1eNZ1ONkrB0s8YbrptiwvhRNIRDfRFAJG7arL0Z13KNepc6OCn09x+f3NAEWVurLTQJUQ12lJllkCl4iIteQ6bCdw76dKboTpY3BpxnDcQIO+U7Gf/JXqIRGKvB4ABJYAOvWVWpBJkj0IFUFOBhs3lzkxusn2LChAnhDuDGv1O6vXla/rcBD0iknk6mXJ+sGydBE88Ny9e1Elh8FLxGRZSB0Y9QHeDK8iZMMAxfqbfE5F9qN6o0yyMyPvpV8HjrXhI3hJtFrFM0iYPVtvX5fG9ZXeO1t02zeWiGddgKLQsyje7PcemuBVDwHZlCbeqAefpJn6DUGq0Rwcr+k9SLXKgUvEZFYxVOEcyLNpQjdOOZb2Ot3cIRdhBgBTppS1Au0IKcamkrkKJJj3dt+hOFN0RxIBPG2iY6d5JikwMIoNzkEBjv7netvKtA/4AQBtdBUq5u4japUXL5QaAqqh+rUfSSyKBS8VqCZsH6hz4AKnTZBcHkXBhBZdUphmvP0zyt3jMPhNvbyEo6z+QIzey8831LU/2T0vfEH2bUbMjmYHIPdN1TXR6/PlCUDjTcM8M7mYWQztLfVD6UFwfzeocbbCOeVX+ZFQkRkiSl4rSB/WJ7h9O1vYHjk/VGBOYSQy8PQJ3+PnfYYaYq1N+naYNUmnyMBFQY5Tj4oLE3jRVrkA5VRjvsWgu97gMIM8WDveHLJAHDI5mHLTnjlzdDWCSmrDxlKp6gN2k5Vg5DVR02ZO+kUDKyHrs566Hnie7BjT7QcxJ1oqcRrMZXoWAvUmySyaih4rSDPUMRH9/LGn6lw9/dVCCykXIFDB41Ht7ybfz0c4GE9aDnJb8qNE/6FIVQq0P7pD7OV/aSt3PRMo6h+/Vt1hhLD9iy9dka9bLIiPOMlJjjNS3bD9S+G7t5EEIrHK2WykEmcwJcMRenU/PIgaF5XRFaGMIzHOYb1z0lbosPqCl4rjAHpjJNvq39Lvv4m56abS7U6zcZ1JA8/BB5SqcDJEwGPvuRnOHgwRRhGY1Jq3+Krh0ZSzsjmcrQdTmHW+OaJNOf+4qMMcHLOuJD5h2LmfyY1hrUezrDNnlCQk6vMCVKQzUa9W9XglAxVIrL43GFsMsvoZJ7QrTHkeBj9DH3eIfL6+rh+tS6JoETi8Lp7w23Xbi9MDh4ImZjJcqL3dmaLKdKpsNa1XeuicHC3+gkfF7mwdi5b4c49o40P+CIUvFYhM0inYXgkZNOmcq08GaKqge2hb2e5865Cw/pKBU6/+fUcOZImDKNDLdGkhMleteT4lQqhW/xkTs6lE3LiZJZ/+N2/wzykjelEK5vNGZRcbvZiqB9izVBiC08wYgfpsrHLmotHg4hFZDGMT2VIp6NAUA0CtbNBq1NeWPQeahafUNFwAesoNCRDiWENU3qEoXFuPMep0SxTM+n4ffJilwxKljXOhUYt6MztBfKGgFR9D66102gMVfH1IGcKaYLdu+gbKpNK1XOJe3Qb7tFx/focttWpRaz2OdJQl8SVAsJ6aKp+DlW3rd5Hw8W8Q6e9rcKe3kna2+ZfQSCpafBqsi//9eG+pttfiIKXXLZUCjZsqMRz9NSfoIEn59dJ9rAlJytMhDsPgSl+8sdeysnnM0xNxwNu4luwsJIIb4nrl1XfmHzOm4db/EJzxicD9j3103z2D/6JlIckQ9l89TPLqjUag1p9OU2ZDpto+jirMpQY4jDDHCRvs03v8YVPyngZAfIK66aokLJKk9pyrQnDai/BhesdPZImCKIP2cCs9hOql+Ox2u1EYaMaLJJhgXi7+muytt4gcKv1WETlXq9rkAprbwpxKInrxm1M3l9QK/PEMticxztbCDh9LsOZc2lmZgMC6r0ryftOho1kr0t9ub7d9LRx5nyudi1H93pIifd67eVscXCJqno89YfNe126G2YV1vUWSKUcD6PteruKtN99PWs75w8PsTlBChZ+rzZPvM9WF2pBqPELdaL59fdkGiexBWjLOwEzNFNrZ5M52Jq1LbEj5tddqKepoc78eeFaQcFLWi6dhuGN0aHSS5kosTrr9MVelC+/c4LZH72BsYn4eJJXv101vrCrXcv1S4pYfWZr99ql08ydZ4918LJbz8azZNu8+/YwZHwqzYFD9/DsiU7GykHjtdcavl0mi73x55wKjbNr+/wvXgu+6dTe2etfgj2sJ1BvbM/c7v7ezgKjf/Cn9Ni55rd/GS7lze6FviFeaLsKZ3ECikU4fRxmpiBIRR+CmTRYUO8FrkqnqH2wp9P1D+jqockgFe9Ci8qqy5nEdjPT8PgjcViIy9NBdJizWlb98E/FKSEIIB1YdCjUouEEFv+s/s3ScYJIhh+zxPizuG5Ulgg8lgxFUCwa584a/7J3AAsaB/gHDQP/oxWz01Cpd5A3Hw+T+A5jAbWwETSciQluifvz+tmbtfv26rKDQ1d3NDavfifxfXjiKR7XrU6tMS8oxNu5R4Gstp056TT09DkDu0K62ml4jVlDwkgMx0i8ZOtHC+rbtbszMmeuNIi+cHr8WkuGnDkv8fn3Hdc5fjxF184SnV3e8LzPLVKYmPt3Tf59G446NISleghttl6T/zdS8FqByqUCkxPTpAInl28nndafcSHtbeG8LuUFLwfS7JIic76JHT3VFl23zeufMI2hLySfK7Kut8DLbonDykIXvW32bW3Obc1bv9DtLTQOIfmGXv3mulB7wnpXPsBsKcWxMx088Vu/xMRM7sJd7s3eWBP30zwXJu97fgVPfmgu9MaduGFvtg8c/O/+I5lKwDe/8CUefTBLrq2XIIheM0E8ut7dasvJchwsnaqHCYvKU9XtgFQqIJOr0NFdIVWrGx1ar1Si/ZkKUtGHbZxowjDarvo0ssSnmwVBlEyoh5dUqt6GoHpGpYNV00tiOUhZrW4qMIa2JHp3aoHGSKWgYw1su74xuEWPr7680IkE1TrJsuSHdCpIhhvmtT/Z+RPE6516IKsGpJkZGD8H23bPb09yjrSG8DantypqQ305tWD5/MeRDKQN5cyvMz+k+Pz7aFLWeEml5OOY/141ek5nc6x0+sReQUJCirPjPHfwG2RzM3R1dVEqFVnT3cvOXdcpgElTtQ+D6odD8n17XqCpF3SkyuwaHmPXxvPxqkSwaRKU5teZfxhh4bpNgtdl3l9DoKzfCB/6ygyjk3lKqaO0d6ZJp5+gq28nQSpHOlt/zaQSpzWmM8nyxHKcNpLrsRTnT2fpGSyRziQ+YNP1HZ1Ox5OUNpTV000qMc9EOpMMgFF58u6CRN1kQKoup9P19UcPwOCGKKwECwSrqzmmsdbb1iS8zQ1pzZarPVfjV6+JIktO0XkFKVGivaOdHbt/gJtuewlt7R3ccfcr6O7p4+knH2t180SWrSBwLID2zu3kO4aZHHuamaljrW6WiKxCCl4ripPNRl9VO7u6mZqKBnmvWz/M9NTEhTYUWbXKlQpQxIIK5eIY7mXaOkaolKYYPfVwq5snIquMjk2tIAFGsTDD9NQ5Dh44QVdXNwCui8qKLKhQKlEqO3iZ2ZljVMIyqfiwfCqda3HrRGS1UfBaQbKkcZyzpw/yous7Gdm2A4BKpcKuF93Y4taJLE8d+TyQoZIeoLN7A9l8sTaeKznGS0RkKehdZwUpE9KRa2dkyx1s2hrWznhJp9Pk1vS0tnEiy9RssQhkyLfvAc63uDUistppjNcKchVPPhK5ZqUCvc2JyPKhd6QVJI0uLCdyuTLpNJWwgofFpuubzv8lInKV6FDjCnTgyS8zsHYN23fuJpfLt7o5IsuauzM1O0Uw8yjjo+NksiXS2Xay+X7aU+sYP7ePnsFbWt1MEVkl1OO1gjjG7GxIGIZsHNnKU4/v5fjR51rdLJFlbbpYoBQ6a/qG6Vyzh66e6ygVx6iUppgae0ZnBYvIklKP1wriGLPTkwB0relh956b+cr9n+Nfv/yPrN84THt7J3e+5BUtbqXI8lIJQ9JBDqyTIFXCrIJhtK/ZwsToXizQIXwRWTot6/Eys9eY2ZNmdsDM3t2qdqwkRUpUwhnSqTJPP76X5555kmKpyO49t2DUL2ciInXV6yBOTzzK7PQRJsaeJNe+nrPHv8b0xCFybQMtbqGIrCYt6fGy6EqzHwBeDRwFHjSz+9x9fyvas1IEBKQzKVIZo3dgLWG5QNeaHjZu2krKtnD4uQOtbqLIstORzTE1Y5SLp5gcmybfnse9QDq7hp6hW8greInIEmrVoca7gAPufhDAzD4B3AsoeF1AmhTpfCeVcpnpqQlGz55k956b6R9cR8qcw4eeaXUTRZadIAgwM7oH7iHXNkk2XySTawM0gaqILL1WHWrcCBxJ/H40Lqsxs3eY2UNm9tAYlSVt3HKWzbaxdcedpFJptu+4jqENI7V1t97x0ha2TGT5CoIU5dIYQZAmCBrDVlgpUqkUWtQyEVltlu1Zje7+QXe/w93v6Nb8VTWl4ixdawbZOLKVNT19rW6OyIqQDtJMTz7C1PiT885iDMMik6NPtahlIrLatCp4HQNGEr8Px2VyMZq+XuSyzZamCVKQzgZMnn8c96gXvVQYo1QYI1xgclURkcXWquD1ILDTzLaaWRZ4E3Bfi9qyomQymjBV5HKFHjI1dox8ezeZXC/jZx+lUimQznYxM3kcfaMRkaXSkpGl7l42s3cB9wMp4CPuvq8VbVmJCrOTHD10glJpBsNoa+9gaGg96bQGCos0YxjZ/Hamx58l3zFMW+cI42cfJde2hqmxAwxs1Px3IrI0WjbGy90/7+673H27u/9eq9qx0kxPzfDsgf3RN/iJcRynWCzwyHe/ydjouVY3T2TZyrdfR1ffDRRmTlIqjtHZswuCFB09O2nr3NDq5onICjM9O0slvPyT/9RFssKUigU2brqTTVscNm9l396HuPGWu9i4cZj9e7/DrXe+rNVNFFl2zAwPZwmCHF29N1AqnmJ64hDZXBvd/Te0unkisgI9/PgBYB0AhWKJbz6yHy7hEmQKXiuMAe4hYFTKZSrlMgC5XJ7Qw5a2TWS5ymfa8XgGezOjrXOYts5hzeMlIlfkhh3TAOSyGTKZNHfu2Vm7WsZC9K6zwqTSeZ575hus37iGyfGzjGzeDkCpWCSbybW4dSLLVya7Hjjb6maIyDXC3enunAWMYqkEQDaTueh2Cl4rTCaTZ+OmW5mafJj1GzezdiiadzaTzXLjrXe1uHUiy9/5M98hm++hY81W9BYoIi/U+sF+HnzsSQZ6unj+7Cib16+7pO2W7QSqsrB16zoolYrMzEzxxL6HKRRmW90kkWWvXMhQKkZBq61jI5Pnn46nkhARuXzbRzawY9NG0qkUe7ZtZmRo8JK2U/BagYa3OGbG9p17GNm8naefeJRjR55rdbNElrXQAzyM3vLS2S7W9N8AZoydeZRScaLFrRORlebwiVMM9HazdeMQfd1dl7ydgtcKU6mUGB87i4chY+fPUS6XGdm8ncmJMR5+8F9b3TyRZasw+zjTE0/hYZnJ808xef4pysUJzALGzjzS6uaJXLLnnj3A2bNnWt2MVe8iY+gXpAEOK0y5NMvJ489RqZQ5dvjZ2oTbKYNcvq21jRNZxlKpATLZgGLxNJl8H4aRykRvgbn2oRa3TuTSBAEcP3WCbL7MyRPH2blzJ7mcrmjSCiNDa1/QdgpeK0wu38Wu627n1MlHeNGeG2vlKbv43CEiq1k6M0gmZ2Ty28nlB6IyTSchK8zuF5U4dw527drN1MQ4j+/fT3//AJs2jVx8Y1l0k9MznDpzlkKxhJnRkc+xYbD/gtvoUOMKUypGc4bsuu7mFrdEZGXK5vpa3QSRF2R0dJTR0VHCMGR0dJRSuczmLVuZmBjnwW8/0OrmrToHj57gvi+fIXRnbHIKd2e2WOSbe/dfcDt93VthgkB/MhGR1ejokUMYUKlUOHL4UMMYo1xehxuX2rHnT7Np/SvYueks24fX8+C+p3jxDbvZdJFDkPoUX2FS6WyrmyAiIi1w4023YDj79z3GnutvwKgPMUkuy9Iws9oVY8qVCuVKdN3GfO7Cn9MKXitMGFb4xle/w9D6adZv2MDgug0cee4ARsjI5u3kNcBeROSa9OzBZ9i2bRt7rtf1RZeD4aFB/tfX9tLXVWZ0fILtIxsAarPYL0RjvFaYYnESr2zg+pvvBGDfIw+Sy7fR2bmGpx9/tMWtExGRq6VrzZpWN0EStmwYYuem3Qz2dnP7nl1sXBudtHOxywapx2sFSVOmWIC9D2/m9KmQm27dwcT4c7zo+m2kzDl86Eirmyiy7KSCkEoYMH52DefPrMHMgQDHCILou2eurUjf+il6186QSoe4B3h85CYVBlSP4qTi+uVyvcyCgFDXp5clMDAwCDqkuKy05dsZGri8E3YUvFaQPVbhzNmD3PO3P8yz3MGXfuI3OXY0xVe+ME0qyDB2Pst3vpXlxltKbN0WYgaBGV3d0NPrL3iyN5GV7Patg+Dwm6/7a5451YtjPPzsEL0dM5g7oRt7jwzxiX03cPRJwMCC6MVi8X/Vl47FwQuzRPAygpSzprfI0JYKfeujwwypdLyVG+l42VJWD3Sp+gsyFRipNLR36UNVFjY1NcX+x56iUplheHgDQ+vW8exzz+LubN2yhbwG2K8ICl4ryDtSaxnzCs/60wxygLWf/gRD3s8hCpRw1tLL6a/dwje5mX+itzbYskyG9W99LbuvL9PTE5IiJJWGrTsqrFsbTcgncq36gze/Nl6aYqh3KloM4eW7D1FLQTzC/1X8Is+c6mO2mMbDqNxszuzUYbV+NIiWeP68QjnDgwdHePjQBiaezmHmlOOaBhSaNSy+7+rNhxhr8rMcHb6B/vVhfP/R2lRQb4RZfRh1KoiW3aNJlNu6YMMmyLVf8u6RFeTJJ/ZTKGxmz541TE+f5Hvfe5ihofWk0ike37+PW2+7vdVNlEug4LXCdFuKW6yDkjsZM2CG+omr59jBP/MS/pmK19PUpHfzzP+4jye4mQLR4PsKGcbpYeDNr2F4U4V0yjGc7p6QG28qs2lTyEUOU4tcU/LZCtcPnwbAFzp2GAcv9/nrX7ztCGEZxmZyhD6ne9lDgnlFjb1bk4Us3z08zDcOTHPmcCfVLjUzx70e0KIyovVxucULo8UMD+RuoqcfOnuhXIKp8ThABvWcmQrqGTKVAg+pta9/HQxtAk2GvvxUKhUGBjaQy5XpH9jM0SOH2bR5MwAnjh1tcevkUil4rVCZixw3TFn9g6HbRrkt+Ba38a2GOlNhB4c//ikO+U5mMAznMIP8MxvoedNrGR4p86LdJcJQvWIilyIInN6O2fkrmgS1ucGrt2OGkb4x7r3pUcLQ4rFocV2ffwjSDOYOLpuYzfH48S/zzWe3cf75dsycYDQKZY1vGdF2jS/rKOA9P9HN19a8nO4+yObi7TwKbQ3hMd44iNfXilMwvA227YKefhoTo9c6CRvvOWhcNosCocw3MzMF5BgbO0+lUmFsbIx0Wh/lK4n+WqtYRzDFdTzCdTReIHg2zHHsk3/NAW7gO//+3Xz3OzlyOccICQLYvKXMzTfOsnZdOfom7ZBOM+8bvYi8MEHwwsZ6deUL3LnlMHduOXzhihcIgqVKwJHRL/LYiY0Ui+laXTNvfI2bR5mqGiDjdYVSmv33b+Qz33gN6RRYKl5X7Z2L61lAPbAlwlsqiNZt3AK7boDOrihfxlMkRb12cd3q5u6NXw4Dg1SaxtB3DdixYxf/9I/fYey8095h3HLrrTz11JMUCwV2797d6ubJJVLwknnyQYHtPMV2nqLywc9y3vspEU0IV/Acz/EiDrzr/6BYtDh4OUEKtm4qcOONs/R0hw2T+QVEb6Z9fRVS19gboci1JpMK2TZwlm0DZ4ELHHatCueHRPeHODd1P8fHewkT3VlBoifew/kn/BhgXmF0pp2HH97Cl575CSplyLfBN79crwPVAFe/gSCwhp63bBZGtobsvM7p6KwHvup4uGonoiWWg3i9Eb23dXU7bcvokGtvXx833/L9DA1N09uXwXBuvz2aWkgTqK4cCl5yQSkL6bfTDWWbOYj/v5+nQBvxd14mfQ3P+HV8lJ0Uyc27nZAURshd//kN7NxWIAgg8JDungojQwWNJxO5hphBX8c0fR3TC9aZe6i1Jg56L91ygLeVv8JUIdfQm7XgdtX7xglD5+x0J3v/dRP7/m6IcphK9K4lZ3uPb7O2Kmw42cHdsB+4hx27Q3L5xnDTkBm9ehZs8vAwBClnw8aQvn5f1OEamUwWFLRWLAUveUHMIM9M7fc2m2aQk9zNl5vWr3jAOV/Lwd/Zy98zDIATMEUXA7/wRtYPFeldU4lKU86OrUW2j0zTltebi8hqlU+XyafLDWUXC15RnZDetil29D+PO4RuC4+TS0r07rnD2elOnjq4jycf3Ei5kmqon+yxm3sz0QkRTjlM872ZdkovvYe1QyFBClLx+Dr3xEm18YkSteV4vRl0tIfs3FVm48Yymi3i2qDgJUsiZSGDdpJBTjaUu8P5D32cw76TY3QAUCLD19lM79vezJquEqlU9E2yrS3kxuum2L1lmo72Sm28iAb+i8hCzCAVB6GLV07UMVjbOcHazid5+ZYn51W9WACsrp8uZTl87gEOPTsY9YzF95HsXau3tTZqLVoOnfOFTr76sbVM3vFa2tpC3GHr1hTZbHQmuid626pTizT0zBmsWVNhy6Yi/f2h3i+XgSsKXmb2E8B/Aq4D7nL3hxLr3gO8jWjCm19x9/vj8tcAfwykgA+5+/uupA2ysplBr52jlwfmrZv8yMc4w3rC+PSpMe/h07yIzrf9LEFQfdOBnu4yN+2aZPf2abJZwJ1UyunqqCzxoxERadSeKfKiwWO8aPBYQ/lFx85RD2+V0Dg19S+cP9cZ9bKdaKwXvRfGJ0HAvFNHz0x18y93/xLlEmSyjlVPrvDGU1KNRJtqxSE49PZW2Lm1wNC6EkFqTkatTp/SpExHLea70h6vx4B/C/y3ZKGZ7QHeBFwPbAC+aGa74tUfAF4NHAUeNLP73H3/FbZDrkGdwSSdPN1QdisPMPvfP8WsR33ujnHCR3j6Pf+Zrz/UHY3JwAkdOtpC9mwfZ+twNH1lWKm+2UTfJocGivR1lzSjv4gsa6nAWd91nvVd5xesc6Egt6vvOC899stMFvOUKvEEwc3m9UiwRA+hY5yc7OPx4q/wjW9HRyaCZGDzqLet4b00DneZtLN5Q4HNIwUy6bn3WT091esnO3hj+AtSTl93mew1dHzuih6Kuz8O9dmVE+4FPuHuBeBZMzsA3BWvO+DuB+PtPhHXVfCSS5a3GfJWH1/Wyzn4L/+G3Z6q9Y6VyXAiHOYBrud++hNd79HPkBSztHHdO1/N9k1T5LLRgIv2tjI7N88w1DutLnkRuaZ0ZqM55i5lnBxzDs325ie57qn/EI+XS15JwRcMfe7GudlOnntwPV+fGIwOhYbV7ebXn39mplMK05Qqadb/2A+wfqgQzysXHWI1DxvnFGly/7jT0V5m47oCPZ3L46KqVytDboSG2TqPxmUAR+aUv7jZDZjZO4B3AAxqKJpcgpRVSMWXcslQYlvqKbbx1IL1Z72N4x/4Rx5lB+X4OTZLB+cYYPvbX01fd7H25tDdWWKwdzYKaCIiq1Rg83vLfKHeM3MG28cZbB/nzvXROLlLCn1zTJXyHP/GPp6f7q/fdMPZqY2X36pd8iueD+9QoZ2vzfbQ/eofoLM9Oomr3nifl9m84SFGYa2/p8S2jZOs7S826bm7PBdNNGb2RWCoyar3uvvnrujeL8DdPwh8EGCn6SCxLL68zTQNZ0XPcurD9zFG/YrzT7OWid98O50dZT775aE5YxlC8rkKO0emGF47RS67PL5ViYhcCzoys+zoPc6O3uOXVL9ZuCuHAecef4ipcjRMZaaUY9/ZbWRTZSyeDDi5Xa33LU5zBwtrePC2V5LPVchk6vU68yW+HfQ09NXdft3oBdt30eDl7j90sTpNHANGEr8Px2VcoFxkWchakWE7xDCHGsrL7/8S572fWeqTjlVfnOfo5CE2s+43fp5sOjrj0h16OkvsHBln89AUmbTjYTTw/0q/MYmIyKVLByFrO87Xfh8vdGABXNdXf5+/UG9cJQw4d+6bHJ1cS6nSGJ1OPVC9ukP8+8ATF27LZbb9Ut0HfMzM3k80uH4n8G2i7LjTzLYSBa43AW++Sm0QWVRpKzNgzy+4fhtPUv7Df26YQHbU+/k7tjPKQDz+zIGAdiZ5wwfuYXjddG32f6A2AGJNR4l8Rj1nIiLLQSoIGWw7z2Db+XnrLuUM1aQrnU7ix4A/BQaBfzCz77n7D7v7PjP7FNGg+TLwTnevxNu8C7ifaDqJj7j7vitpg8hykrYyaeoTPrbbFBtpvG5e2dOc80G+8s5RztM/9yZwjAJ57nr3D7Fl/SS5TIi5k8tWGF47TWeueNUfh4iIXB1XelbjZ4DPLLDu94Dfa1L+eeDzV3K/IitZ2sqstROsnTsZT0LZ05x731f5OpsISQFQoI3z9HPzb9zD2p7ZuGaip8xgY/8Um9dN0dVeusqPQkREXgidLiiyDC0UzioeMPb+L3GkYYqMSEiK7zDEunf9OzLpCumU1067BsBD2nIVdm44x5Z1k7TnyrXclkppzJmIyFJQ8BJZQVIW0mdn6eNs0/XbeILKB77KFGtqFzBPmvQ1HHrvr/HgU+tqc9wAdLSV2LFulM3rJkgF88+tbsuWadPZmiIiV0zBS+Qak7KQNZxvuq7bRuH/+XVG3KjEL/+QgDHv4yts5Sxrm2zllMly+6+8nO3rx+jpnIXQGyZRTKdChnqnac9q/JmIrGzTpTLtmasXjxS8RFahwJyA+jiwi405K3mG0T/5Gv/CVgq0zV9Plim6uP2XX8r63qmo0EN6O2bZPDhGd7sCmYgsH6GXyQblpuseOzvGXUPzT3xaLApeInJRGSux1k6ylpML1il5hnN/+nX2x2dqOsZ5+hl6+4+RSTn5zNw3uZB0KmTbuvNs7h+ju72g62aKyJLYe+YIffnnOT2TZyCfa3bpw6tGwUtEFkXGSqyzE6ybe0LAh7/KOL21Q5tJ497G59nC0NvunT8iLR5/1tVeYMe6swz3NRt/FpJLl8lnK4v4SETkWvfSDQOcnilwdGKGx8+OM9CWY21bjv587uIbXyEFLxG5qlIW0rvAyQAYDPMclY98tekhTMc47/0c+/Wf53vPDjWMK4uEgNGZL7B97Rn6Omfn3IATmNPXOUNbtvlhBRFZfdJBwPqONtZ3tFGshJyanuW5sSn2nx0nbHLB7UW976t66yIilyBlIe1MNV3XYZPwx7/L8ALbznqec76W+9nCDB3z1ocEFMhz5y/eysbeMcxgdDrHxEyW6nwa7dnS/N40EVkVsqmA4a52Nna0MVuucHqmcFXvT8FLRFa0vM2ywQ6zYc4VApJmPc+5//Yg347P2gwI+aTN1NbP0MFLfvv7GeiaIpuuzLsESDoV0t85TQqFM5FrwdGJaYa72ueV59MpRpqULyYFLxG55l1KODv9+4/xDH1U4isFQP0i6AXyTNDD3f/h5XTmC7hHhzhr9czpbZ+hv31SPWciK0ArT+RR8BIRIQpneY5fsM6Z/7qPY+TnlYcETNDD1l++l3SqQmDzJ6HtyBYZ7Jqkv3NK4UykxTZ2Xt1erQtR8BIRuUR5myHPTNN1vZyl8mfvp+DpplcNeJ4Ogne/kadPDUTrw8bw5W70dkyztmOcNW0zc9ZFdXNpnb0pshgeOzPBho5e+toaT7oZKxSZKVcY6ph/ss9iUfASEVlEaWt+9mSG85z6/Q8uuF3oxkF6+C79zDL/27hjlMjyit+4mYHOSVJBCHPGouXSZTqzs/O2FZFGRyacR8+GvH5ria5splbekUnzxOi4gpeIyLUuMKebUboZXbBO6Maz7z/AXnqa9qoVaGPHL7yS3vZp2jKleeuDIKS/fYquXPNeO5HVIp9Ksb17kEfPPMZ1fd305rNANM3E1abgJSKyQlxSOPv/9nOIbkpk562rkGKcPna8/RV05gqQPEtzztxFBvS0TzHQPt40xImsdF3ZPFvW9PLI6fPRnF7tecaLJVJ2dcOXgpeIyDUkMF/wIukAazlB+KH9nG4yYS3Uz+QMCXiaXkZ+4YcpljPY3BMGgFy6xNr2cQY6J8ilGg+xuhtmrstAybJUfV62pdPcvq6PA+cneODkWXKpgOv6uq/qfSt4iYisMoE5bUxftF47U5Q+9OEmBzUjY97GwK++nn0nN1KupBrWOSGVMCCfKbG2c5w1cw5veugNh0tTFtKZm13wvkQW021r13IsnrM5E0Rhy3uW5mxjBS8REXlB8jbDsT/5nwuuD4iux3mY/qZXFYB6D1uFFFPexYvfvpPetqnalBzJI6CduQLd2Un1osmKpuAlIiJXTd5mGOLopVU2OPPh/RxiTdPVk3Sx6adfRme2QCaYf/ZotQfNw5C2TJHBjnG6cjrLU5YXBS8REVk2OmySDiabrlsL8LEnOecdhKSa1olOGDBmaWPiLT/IVDFPEITzTh4ILKS/fZLBjjGFM1lSCl4iIrKitFvzC6ondTJO4a8+TsppOvVGiTRP0sfEz/4AU8V8dPJA2HyMjxOdSDDYPk5f2yRmId44hRr5dFFXJJBLouAlIiLXLLP6OLKkgBIDPE/xrz9Bpsl2c017nkcYYHKBw6CztHPTT+2kv32cXKpUu9pAlXs9/OXTRbqzExqrtkopeImIiFxE3mYvOlZt+uOPcZI+ygt8tFYD4CztbPi3d9CRLdCWLsyvZ05f2wQ9CmfXpCsKXmb2B8CPAEXgGeDn3P18vO49wNuACvAr7n5/XP4a4I+BFPAhd3/flbRBRERkObiUC63XfOZJxr2Ds00nuk3zCH2s/7E7yKZKtcDW7JCp4fTkp+jPj86bskOWpyvt8foC8B53L5vZ7wPvAX7bzPYAbwKuBzYAXzSzXfE2HwBeDRwFHjSz+9x9/xW2Q0REZEWJxqo1H6/Wx2n47JOU/MIHQh3jGXqY/ImXMVnMX7CHzB2yqTIDbaP058ej633OkQnKGqt2lV1R8HL3f0r8+i3gx+Ple4FPuHsBeNbMDgB3xesOuPtBADP7RFxXwUtERGSOjF38ck0DnKLyN59Z4FoEjQqew376+zgwupGwSQ9asZIhE1QYaDtPe7rxbM+5PW7poEJ3bkqT3l6mxRzj9fPAJ+PljURBrOpoXAZwZE75i5vdmJm9A3gHwKCGoomIiFyxnBU497EvAtEEt3PlicLZk/RTID9vffJEhRJZJlnDDT+6gTXZ+VdCSPabBRbSm5+gKz216setXTTRmNkXgaEmq97r7p+L67wXKAMfXayGufsHgQ8C7LS8+j1FRESWQM4KrL3UsWrA9Gc7GKW99nuzs0grpBijj3Wvu5H2dGHetT+TZ32aOT25yajXLTP/5IOV7qLBy91/6ELrzeytwOuBV3n9/NljwEii2nBcxgXKRUREZIVptynaFxirljTA8/jnH79oT5oT8DQ9jL7hLmbKWQzwuROn1eoabekCA23n43FrFXyB+dgA0lZpeY/blZ7V+Brgt4BXuHuyn/E+4GNm9n6iwfU7gW8DBuw0s61EgetNwJuvpA0iIiKyMphBnotfKSDPDPzd5xa4wmejGW+n8uN38fi5zYQeNJ0I18xxN4phmq7MNNlUuaGXbSld6eCpPwNywBcsipDfcvd/7+77zOxTRIPmy8A73b0CYGbvAu4nmk7iI+6+7wrbICIiIqtUm00z/umvXNJEuFmHkZ+6nTOz3fTmx69625qxubPrLkc7Le9/lN7c6maIiIiILOi6n94JwPa//IfvuPsdzerodEERERGRRfD4R5++aJ1mZ5OKiIiIyFWg4CUiIiKyRBS8RERERJaIgpeIiIjIElHwEhEREVkiCl4iIiIiS0TBS0RERGSJKHiJiIiILBEFLxEREZElouAlIiIiskQUvERERESWyIq4SLaZnQYOAQPAmRY3p9W0D7QPqrQftA9A+6BK+0H7AJbPPtjs7oPNVqyI4FVlZg8tdLXv1UL7QPugSvtB+wC0D6q0H7QPYGXsAx1qFBEREVkiCl4iIiIiS2SlBa8PtroBy4D2gfZBlfaD9gFoH1RpP2gfwArYBytqjJeIiIjISrbSerxEREREViwFLxEREZElsiyDl5n9gZk9YWZ7zewzZtaTWPceMztgZk+a2Q8nyl8Tlx0ws3e3pOFX2Wp4jABmNmJmXzaz/Wa2z8x+NS7vM7MvmNnT8c/euNzM7E/i/bLXzG5r7SNYPGaWMrOHzezv49+3mtkD8WP9pJll4/Jc/PuBeP2WljZ8kZhZj5n9Tfx+8LiZvWSVPg9+PX4tPGZmHzez/LX+XDCzj5jZKTN7LFF22X97M3tLXP9pM3tLKx7LlVhgP6yqz8hm+yCx7jfNzM1sIP59+T8X3H3Z/QPuAdLx8u8Dvx8v7wEeAXLAVuAZIBX/ewbYBmTjOnta/TgWeZ9c848x8VjXA7fFy13AU/Hf/r8A747L3514XrwO+F+AAXcDD7T6MSzivvgN4GPA38e/fwp4U7z8F8D/Fi//EvAX8fKbgE+2uu2L9Pj/Enh7vJwFelbb8wDYCDwLtCWeA2+91p8LwPcDtwGPJcou628P9AEH45+98XJvqx/bIuyHVfUZ2WwfxOUjwP3EE6yvlOfCsuzxcvd/cvdy/Ou3gOF4+V7gE+5ecPdngQPAXfG/A+5+0N2LwCfiuteS1fAYAXD3E+7+3Xh5Anic6MPnXqIPYuKfPxov3wv8lUe+BfSY2fqlbfXiM7Nh4N8AH4p/N+AHgb+Jq8zdB9V98zfAq+L6K5aZdRO94X4YwN2L7n6eVfY8iKWBNjNLA+3ACa7x54K7fxU4N6f4cv/2Pwx8wd3Pufso8AXgNVe98Yuo2X5YbZ+RCzwXAP4Q+C0geZbgsn8uLMvgNcfPE6VXiD58jyTWHY3LFiq/lqyGxzhPfJjkVuABYJ27n4hXnQTWxcvX6r75I6I3lTD+vR84n3jDTT7O2j6I14/F9VeyrcBp4L/Hh1s/ZGYdrLLngbsfA/4rcJgocI0B32F1PReqLvdvf00+J+ZYlZ+RZnYvcMzdH5mzatnvg5YFLzP7YjxeYe6/exN13guUgY+2qp3SOmbWCXwa+DV3H0+u86jv+JqdC8XMXg+ccvfvtLotLZQmOrzw5+5+KzBFdHip5lp/HgDE45juJQqiG4AOVlivzdWwGv72F7NaPyPNrB34HeA/trotL0S6VXfs7j90ofVm9lbg9cCr4hcYwDGiY7pVw3EZFyi/VlzosV9zzCxDFLo+6u5/Gxc/b2br3f1E3HV8Ki6/FvfNy4A3mNnrgDywBvhjom7zdNyTkXyc1X1wND4c1Q2cXfpmL6qjwFF3fyD+/W+Igtdqeh4A/BDwrLufBjCzvyV6fqym50LV5f7tjwGvnFP+lSVo51W3yj8jtxN9EXkkPoo+DHzXzO5iBTwXluWhRjN7DdEhlje4+3Ri1X3Am+KzdrYCO4FvAw8CO+OzfLJEA0rvW+p2X2Wr4TECtbFMHwYed/f3J1bdB1TPRHkL8LlE+c/GZ7PcDYwlDkesSO7+HncfdvctRH/rf3b3nwa+DPx4XG3uPqjumx+P66/o3gB3PwkcMbPdcdGrgP2soudB7DBwt5m1x6+N6n5YNc+FhMv9298P3GNmvXHP4T1x2Yq22j8j3f1Rd1/r7lvi98ijRCdknWQlPBdaMaL/Yv+IBgQeAb4X//uLxLr3Ep2d8STw2kT564jOfnsGeG+rH8NV2i/X/GOMH+fLiQ4h7E08B15HNE7lS8DTwBeBvri+AR+I98ujwB2tfgyLvD9eSf2sxm1Eb6QHgP8J5OLyfPz7gXj9tla3e5Ee+y3AQ/Fz4bNEZyOtuucB8H8CTwCPAX9NdNbaNf1cAD5ONKatRPTB+rYX8rcnGgN1IP73c61+XIu0H1bVZ2SzfTBn/XPUz2pc9s8FXTJIREREZIksy0ONIiIiItciBS8RERGRJaLgJSIiIrJEFLxEREREloiCl4iIiMgSUfASERERWSIKXiIiIiJL5P8HS3PIUlXQuR0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADECAYAAABOQy+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAApiUlEQVR4nO3deZgc9X3n8fe3j5menvvQMZJGF4wEAgPikLEhNgYCAmOTZB0bexMbxxt2s/hJnM1ubMyuN+sn3thJHsd2TJwQ21mcmGCvj4BjAgZsr2/MIRshQCCBAN3XaCTN3V3f/aOqZ7p7ukcjzah7js/reaTu/tWvqn9VXdP17d9V5u6IiIiIyOkXq3YBREREROYLBV4iIiIiFaLAS0RERKRCFHiJiIiIVIgCLxEREZEKSVS7AJPRbHFfSLLaxRARERE5oW0MHXT3BaWWzYrAayFJPpVYUe1iiIiIiJzQDZnnXy63TE2NIiIiIhWiwEtERESkQhR4iYiIiFSIAi8RERGRClHgJSIiIlIhCrxEREREKkSBl4iIiEiFKPASERERqRAFXiIiIiIVosBLREREpEIUeImIiIhUiAIvERERkQqZcuBlZl1m9j0ze8bMtpjZH0TpbWb2kJm9ED22RulmZp8xs21m9pSZXTjVMoiIiIjMBtNR45UB/sjd1wGXArea2TrgQ8Aj7t4NPBK9BrgO6I7+3QJ8bhrKICIiIjLjTTnwcvc97v5k9PwY8CywFLgRuCvKdhfwa9HzG4EveehnQIuZdU61HCIiIiIz3bT28TKzlcB64FFgkbvviRbtBRZFz5cCr+attjNKK97WLWb2uJk93kt2OospIiIiUhXTFniZWQPwdeAD7n40f5m7O+Ansz13v9PdL3b3i5uJT1cxRURERKpmWgIvM0sSBl1fdvdvRMn7ck2I0eP+KH0X0JW3+rIoTURERGROm45RjQZ8AXjW3T+Zt+g+4D3R8/cA9+alvzsa3Xgp0JvXJCkiIiIyZyWmYRuXAb8NbDazX0RpHwY+DnzVzN4HvAy8PVp2P3A9sA3oB947DWUQERERmfGmHHi5+48AK7P4qhL5Hbh1qu8rIiIiMtto5noRERGRClHgJSIiIlIhCrxEREREKkSBl4iIiEiFKPASERERqRAFXiIiIiIVosBLREREpEIUeImIiIhUiAIvERERkQpR4CUiIiJSIQq8RERERCpEgZeIiIhIhSjwEhEREakQBV4iIiIiFaLAS0RERKRCFHiJiIiIVIgCLxEREZEKUeAlIiIiUiEKvEREREQqRIGXiIiISIUo8BIRERGpEAVeIiIiIhWiwEtERESkQhR4iYiIiFRIYjo2YmZfBG4A9rv7uVFaG/AVYCWwA3i7u/eYmQGfBq4H+oGb3f3J6SiHiIiIyOky4GlGqClIM/yktjEtgRfwf4DPAl/KS/sQ8Ii7f9zMPhS9/iBwHdAd/Xst8LnoUUREROS0cIfjNHPMm3Mp5XICYEWp/dSznXOpYZARryFmQZm1DXisbDmmJfBy9x+Y2cqi5BuBK6LndwHfJwy8bgS+5O4O/MzMWsys0933TEdZREREZG7p8Q4O+GIGSANjtUzFwVG52qdhajjMQgJirP/NrnHr5XMvvZWFyREubd/HGW88l/pUZsLyfurN5ZdNV41XKYvygqm9wKLo+VLg1bx8O6O0gsDLzG4BbgFYcFqLKSIiIqeDO+ylix2+luGiJrp8J2qu66eBN7yrnUwQp73+eNn3ci8dUiViAWvf1EV74yCxU+7dHgdWABMHXSdSkYjG3d3MTqoR1N3vBO4E6LbUyTWgioiIyDhDXkv2FC/9O3wNu1hJhiSxgkDpxJfoa29uZHHjUVouXFc2j0f1UF60udxrM2hvHCSdSp1s0SODp7je9Dqdgde+XBOimXUC+6P0XUBXXr5lUZqIiIgUyXiCI7ST8fKX7Bil+huNRTADpNnLcg6zkDjZoqUnEgZE9RzjnbcmWPkrq0nEx9YuDpTG0qP1UiNRLVMb4Zi6+e10Bl73Ae8BPh493puX/n4zu4ewU32v+neJiMhcNew17PMlHKV1wnzl+isdoZ0jtFPrg9RYqVqbsTV9gt5LG35rBWcv2sWqK9ZOtuhljExx/fltuqaT+GfCjvQdZrYT+J+EAddXzex9wMvA26Ps9xNOJbGNMPR973SUQUREZDplPcZWP5+Dvni0f9Jkpg7I5YkREFiMAepp4RCX39xVdp3irea/bqod5Owrl9OYno6AZ6pBl0zVdI1qfGeZRVeVyOvArdPxviIiMrdlPEFQNNf3ZIKfgBibfQOv+upx8y6F2yje3vhtjpDEibHhLc10rV9IPFaYJ4ha94o7dOdyHemr5bJz9rGso49EfOkJyzwx1TLNFRouKCIi02rA0/R7Gp/g5igT9UlyYuz1Lrazjh46GJtXyRnfIFeaAykG2PjOJGsvW8zgirPD9LzYKT9gati9BYpGxcVjAU2XrCFdd2rju55/4BUWtw4U9IcSUeAlIiIFMp5gb7CUY7RMonYpPygKH/exjAMs4Zg3E7dSQ+9LB0+jo9qAZnp4+8dfw5LLVlBb62U7cEOpUXCGmdNQH+RNHTA88W6ceWa5rU+8nshJUuAlIjKHHAsaeSlYy97RweOlu1sbQclJKHvoYDcrcIxVr20bDWoyHmdxYy+NtYNlt5rL2wScUX+MN7y5gZZLp9qnKDvF9UVmFgVeIiLTaKKaGZuglcwd9nsnzwQX8jLdFIZDhRuNlaiFMZwB6uijmTqOcfn71oA5Hox/08BzWx2/bHX9EL99VQesXEFt7Vj63t1Gl7/E8qUnqDkSkQkp8BIRifQHaTJlvhZL90kKZYnzSnAmT7GBnZwx2hOploESUwSMKZyC0gDj7NenufrfraGlKazpCYre1r0wYPJgLD2dDkiduZSWtomDPBGpHgVes8RnM72MUMM7YmPV9jEytNsBkqbRLiLlfC57mH5P82t2QdGSXNhjvOhreJaLo47cpfIU5g//99GmuoAYSYZ54zsXcNGb1pFKwYG9xtnnBsTzvmW9ROxW8A4OiSQsWOgk9O0sMifpT3uWeJYYA9RAcMvorMMBMQxjMS9zJs8QzwvASjdFBHnLszTaUZbZS8RO7m5OIrPKC56hhxqG/D+SJZH3d2AQ1U2tXp/i+t/s4tiS1dSlo+bC4g7b+c89r0nRwWLQ2EJBsLQk2cfiJU6y/O3pRGQeUuA1i7QuiHHzRy9g5a8sBiDIQmLnDrY83M5TPz+H3PXES4xDym+ayHqMoZEEPU+8TBfbSDIU/Xofyz26lhE1gIRpCUZot32ssc0K2GTWaGhLcsPvnUPiNStoyp88PDqFY/HwMV3xkolItQyNxMhkY2ODTKKL4Nhj4eCT0de55XlpJ3PjbQVes4zZ2AcciwGrVnLO767knN+d/DbcofcIHHt2CS/9tJugqPNtNprHZmg4zvozDo1OLRhkY7y06RCPPdDD034Jsajmrfxw88IQcGygeChNH932NEtth5pLpSLy/35EpHIO9tZy6GiKbBAbDVagMHgZF/iMC4iKA6GxNMquU3iNMguvbft76+gbSNLSMASEV6bcHG652uxx/SlH08e26A69fbW88bzd1KdKTZ0yngKvecgMWlqh5fVL6Hr9krL59j++m9ddHC9Iu+K3Ojj6JzF6H99GNjv+hMwJimdy9sK87vDLH/Xwk3/pJONJEuRO2FJBXPE8QUX7U7SO4SxhB932NK12cNzWJjPr9anI326MrGoERea5TDbG7kNpapPRj1QrHTyEj8W1KV42ECneVjaIcehoigO9KbLZwsCm0szGyg3hfmYDY2gkzoo3LKMm4QUBTPgYZc4LeGC0EadkQJR7LN5W46ubw3WDsXUKuwkYyUSWFW9aTl1qeo7Tjod3jKvAmIgCLzlpTY0BTW9aPeXtLHnDKi57f6zgj6pk2JUXtAUlMhSP+urdtIPNP17Mg/efjXlhrZuP9uspeIdx27S8//PzNHGERMGEkMXrhttv5QBn+ybiVn4k3Pj3nMyXwOS/KE4mwCyXN0ZAygYmvR2ZXYIARqLK5tFuBaMRQe7iHr50h117ahgasoL0UrUPZmMLctsNnxcGE4XPSwQkJZp+CrdXuL6VeE+K1x0XzIy9908fayRZM7m/m3I1NfnPM/0J9h5uLxxhatG3UDTJq3tuHcPwsNehEaU7eHi880sVjzldC46PbdKgrXGQNdecSTI5qeJPu4J+j4wPkmIxiMUmVyM0JUsnO29c9YJTBV5SNQ31AQ31kw9MJmtkyRJWX9nFjf8jfF3qy6BYccfpgmVR4Hfw0ZdY3dnMgubBCbf10vef5+ufHOQJ3jD2C+6Etzk58a+lk/2aOPF7TlyOwGPELOAs30Tajp8gd7mtlS/11GseJ14/t/0MPWQD41hfjP4XoecAYBCPURBcWCz6x9jrmI3lIT8wyQ86bPwFFwM/Ck8+GiMWj7YVy2vqjLYVi+W9D9H7W/jaonwxg1h0j8BYvEQZ8vdhbOdLlqk4aNm31zh+1EjX+9gR9dxFNO8HkUM2A/39XWw9Ov4iG+azvPN9bDv5n9Yi3x12QCgaLFrQ9GS5oCQKPnACjDWrB4jH87Y/+h4lmofyfsS527ggIL+GJb88LS0Z6teVv5F14f6WrnnJr7Xxs5fSWCq9oCkrf18m2B5j+3r82d0s3XBsRo18zT/fZGIz6GMTmR7JJDQnp3+265F04cSR5b5kVr9pDf/tTdP+9hXXPxhn63d3cP/nVjLkqXHLTy2wm9jktzlxvvzr+gB7SSRT7B5YwL7n+qhJBaNBwuhFN3exzpsTqzhwWL68vuiCPfY8HodlZ+StB2S9nmwGfHhsmx6MXWxHnwfFAU9hWq5GNwjy3neCCzZAV9sADgwPwRndWeobi/JFeevqYCCVhrrCo1rq6CaB8WfByTpj3LZHg4yobAGFr90hcbQPXx6QnEGjH6oTaIQHJaib/h+sUjkKvESkpHQqy/rru1h//eRqAGaqH/xhHYcGkwwlUhza/RNqak9tIMczPeWXLVx+EcmeUwj2DYifMBfABLebHm9f9Li4s5mDWchM8B615RdVxGQCmESVms9ETgeN7xERERGpEAVeIiIiIhWiwEtERESkQhR4iYiIiFSIAi8RERGRClHgJSIiIlIhCrxEREREKkSBl4iIiEiFKPASERERqRAFXiIiIiIVUrXAy8w2mtlWM9tmZh+qVjlEREREKqUqgZeZxYE7gOuAdcA7zWxdNcoiIiIiUinVqvHaAGxz9xfdfRi4B7ixSmURERERqYhqBV5LgVfzXu+M0kaZ2S1m9riZPd5LtqKFExERETkdZmznene/090vdveLm4lXuzgiIiIiU1atwGsX0JX3elmUJiIiIjJnVSvwegzoNrNVZlYD3ATcV6WyiIiIiFREohpv6u4ZM3s/8CAQB77o7luqURYRERGRSqlK4AXg7vcD91fr/UVEREQqbcZ2rhcRERGZaxR4iYiIiFSIAi8RERGRClHgJSIiIlIhCrxEREREKkSBl4iIiEiFKPASERERqRAFXiIiIiIVosBLREREpEIUeImIiIhUiAIvERERkQpR4CUiIiJSIQq8RERERCpEgZeIiIhIhSSqXQCZvMFMku9+4VUu3rKLdVd34CtWEI+PLXcPHxP6VEVGxWJOdnCEwU3bWLWgm3jCCQIIHPDw76ZleSOHyLD7hV8Qi3vpDZVIdgyItiUiMgm6RM8S3cTo78my4vF/4uePreVf/noVWZ4lTnY0T9clCznvkgQd111IS6vjDvWNUFNTxYKLVNkla5cQBMb7Nj7Bc6+2AvDET4ZIJ4cA6BtOceD4mfQdqaPBlxOPOe5hQGUTbNc9zODA0IEDHN/WT905Z3A8PUy6IYzECuIxL7F+7nmQt8CgphZicURkDlLgNUt8IFFP+M39Yy7ix2Q8wWFfQDb6CEeoYefjq/jeYxdy/G/2R2sFGM4VGwPOesd6GhvDIM0d3I1k0ulcNEJPyxlV2SeRSvjLW94RPevlnJW9ADTt6+X1K18AoKc/zZa9z3J8US34WKhlFhRsx/KisHjRsqzHePHQIn7x3aMcG0wRszJVYJb/NMqTF8A1LmwgddYKGlan2Lvv6Nj2x35fsXZN01jQFhXDPVy/phb2Hu4lqR9bIjOWAq9ZKmEZFtqegrTlbOdSf4Qh6kbTngnW89QDF/HjBx4bTXNiBMRYe1kTK85tovmsMFBraMzQsGYJLe2FFxmRuaw13c/lq1+Yhi1tYSQbZ3dvC1kf6z5bHMAVy/2pDWcTPLt/KT/d1M32HzSPC9Jyf5Obv1O8vkfvA0EAC1bWEzvrDBYsDDj0wgBLuwJy1W35ARxEyXnxX048Dm0d0GMNJ9xrETk5CrzmmJg5dfSPvr4oHtaQFesJ2tn2k3Vs+vHZBNEYi36aOE4TaY5x8bvXkUg4lySfJ3H+uRUrv8hsloxnWdF26JTXX7NgH29d9yQDIydXZWVRDdtPdnTz1O7l7P3RPl7OxsCcY7EsMcvlA0rUxhljAdxQNkHMnJYVrXRd0IJZYcAWFMWRudo3z6stXLRwhD2ta2hph5iGcIkUUOA1T7XGDnEJP+QSfjia5g5HvZkdvpY9X3qRAyzig1/Mcs51zwMQtyznXdbEiiuW09Za/NNZRKaDGaRrhk9p3au6n+Gq7mem9P4j2Tgv97TxxM5VHPh+U1gmvKAGLmY+1lQasZiPZnmst5Wewb2kE8O0rmopaMLFw0EJPvYyfMzv8+bQvradRee1c7y2gfSpHQ6RGUmBl4wyg2br5Xx+zvn8nGGvYU/QxcAD9QAMU8tX/u08jrOHuI+M9mNxYN01C9lwRR1rrlk2ur38X8A56bpAzZgiM1gynuXMjgOc2XHglLfhDj0Dabbu7+T4UGq0ls1K9XGjsLnUCEeJPv/kEn760EIyQYy4Bexo6iVmHuYsrrQr8V3jGGdd0kD3lYsYWLASs8LgLlfOCV/nPU+n1QVDpocCLymrxoZZEd9ekLY82MYINWBjX5YH6eSlh9by+e8sxT68uyC/EX5RBsS4eGMjF/3OBbQ0ZwBIpQI62rJqihCZY8ygLd3P61ZuP3HmMq7sfo7hTJzdR1sYCcaGeFrxY8mm04DeoTSbnlnFL386SOCvYLGgYD0Ig7Pi7eULgEQsy9Krz6P1nIWk68feKzcStVyNXcFzDwc+LFjoJJIT77fMfQq85KS0xHrGpbX5AVbx3LhvrvxftD3ewdYHzuOuB/aNzn00Qi1xMrzh1+tYc2nH6JeVOdTWBnQt6CN14brTti8iMrPVJLKsPMU+c0FwmDPaJlFrV24EKpANwsESmx47zDMPtxU2t1LU2a1oOxb9ywRxkvEsC9a2M3DuEurqCrtpBNmxjRbXuAVRTV5TYwZb3kVTi2rd5gIFXjJlMXNqGZowzyLbzSIKa8MynuCgL2T7N9fx1Dc7wm3hDFDPMDWsvWYJ7V/fBBjukIwHLGg4ymtuvZLGholHionI/BaLOY2pwSlvp6Wun3WLd584YxnZwNjd28qW/UvZe/8rQOFvVMOx2PigLbcMYOtgPYklvaRqstQmA44PJmjasxfLtRYU1LCNj8wCDMNpTI/Q/rozSdVqxt9qmlLgZWa/CfwJcDawwd0fz1t2G/A+IAv8vrs/GKVvBD4NxIHPu/vHp1IGmb0SlmGx7WZxUUAWuNHjHez8zir2kwrTMA6xmGO08M27vseqq5eHmR0aagdZ97oWzn9rZ5iU98WTSLiaMkWkauIxp6v1MF2th095Gwf7Gnilp52+oVpyv3EPb45q1Ypr7Eq0PBhwbChFz0AD9vAm6pNhQOrjGljHXpe6G8PqDZ0seN1K2jW4akqmWuP1NPAbwN/lJ5rZOuAm4BxgCfCwma2JFt8B/CqwE3jMzO5z96kNw5E5JWZOux2gncJmAnc45k0ctoXw3TBtiDp2sYpN/9bFP37k5TAfECfLa9/SzLmXt9B52Yq8bYRfLHW1AfX1qjUTkZmvo/44HfXHp7ydkWyc/ccbGcoUXvpLNV/mTzEC4Y/fpx41nvphDyNBnESs9PdncY2bA02pAS6+soW69WvHbnM3wUCG4ibX/LT6dFBwq7zZaEqBl7s/C2DjP7UbgXvcfQh4ycy2ARuiZdvc/cVovXuivAq85ITMoMmO0sTRgvS1bGbQ68JO/5Gtfh5bvrWSn3zrGMar47YVEOOSNzdxweVNNNeHPyENqF/fTVtrVv0oRGTOScazLG0+csrrdzYeYTg78eiA4mlGHOO5/Z388IEaBr+9mRhlbsU1ro9c4etMkGDd65uxM85k0YKRcNs+9q+UIBh7p8adm8HDeeVqLziLulT1mltPVx+vpcDP8l7vjNKAgqvgTuC1pTZgZrcAtwAsUFc0OYGUDZBiYPT1en7MBfbTsvkP+GK2fvs8vvLtBQS5Gx0TZ4B9XHBtGyvXt1OTCEdk1teO0Pn65WQDRWMiMn+lkhlSycxJr7dh+YtsWP7ilN77hYOLeGnLAo4/uWc0iMifhqSUWN5dIww4OphmzaVtDNy7j+b6wsnhRicCLkizgmXp2gytG86grSUzpS4sJ4xozOxhYHGJRbe7+72n/tYTc/c7gTsBuq2KoanMSuG99Mo3JXbaTjrZOS59h69h73eW8uSD6dH+D/000Mt2uq9exrpFh6ivGR43jVDMnLa6fs7fuEy1ZSIi06y7Yx/dHfumtI2dR9o4uKOBzEgNAxZ+w3/rHwZyt0sdFYVbeSnh8ww1DLONddctZel5CxncHgaTx4drySx7iXRyZFLlOGHg5e5XT2pLhXYBXXmvl0VpTJAuUnUr7XlW2vMFaRlPsNNX0vdIIzuitOL+D0dppZc2vv43z5Eg/OOrYZjrb13A2itXkapRZ1QRkWpa1nKYZS2Fgxw2x/o41x4vs0ahEU/S4+3sfmAlmx9oIT84+9ZJlON0teHdB9xtZp8k7FzfDfyc8HrVbWarCAOum4B3naYyiEyLhGVYadtOmC/3R+nRvS8HqOfeO5L03vEyCcaq5+voY+Mtbay7ajm1yTAgy++QGo8FJBOq5BURmUmSNsJC28tC9p4w7ycmGLs11ekkfh34a2AB8G0z+4W7X+vuW8zsq4Sd5jPAre6ejdZ5P/Ag4XQSX3T3LVMpg8hMkfujzLeSF8h6nKFoWgyAXm/j+3eu4ut3jow2Z+aHWYbRwkHecmsbnZeuGU1vSI2QTqnmTERkNpvqqMZvAt8ss+xjwMdKpN8P3D+V9xWZTeKWJU3f6Ou09dEZdQ/NH42T6xs24kl+6Zfy1TuG4I7No8uHSHHR25awrPkwtYnCvgSO4W4kYlkaaoc46+rVp2+HRETklGm4oEgVleqIn7QRLrYfjks/5s28+rXVvEL92Pr528LpIbwDwKUH+jHG30u4s/EIZ125gsb05DqBiojI9FLgJTJLNFov62zThHmyHuOIt7Pv7vZx8+AEGJvp5Kt/lyXBMHHGmi1jZLn8PUu58tebiZW4d51m/xcRmR4KvETmkLgFJWf9zzmD58h6jOM0EzAWTR2kkx/dBQ/ddaTkerUM8NZbmlj5K6uoSQTjJiysSQbUp05+fh8RkflGgZfIPBO3gGZ6CtJaOcSZPM0QqZIzT+/2Fdx3Zzcjdz477ga+AFni1HGcjb/bzqIN3WPbrR+ipWFYc5uJiEQUeIkIEPY3SzFYctlq28pqtpZdN+MJtvhFPPL3IwR/H9a2OcZxmqjzfi5991JS8UyUXigWC6hPDrN+4xJNoyEic54CLxGZsoRlON8eHZfe7/XsZRnb/nFPUU3a2PODLMZwntvfSTJeOF1GbrqN1ro+ljUf5jXXrkBEZDZT4CUip03a+lht5WvKAAI3jtFC/ze3EBTVhxlOH43sZAHf88XEP7u9xBaMGga46F2ref31LQV3CcifmBagNpmlJjnBzIYiIqeZAi8RqaqYOc300Gw9ZfME/jz91jB6VwAY62PmGM/4hfzy7uf58d3NWIl7dAbE+ZV3LSCVHGHdFZ30j5RuUhUROd0UeInIjBczp4FjZZdfzP+jcFazfE4fTbx6dxd76eKHd+0mRsAOG5vUNusJ4jbCO/64g+RoX7Sx7SViwbhmUBGRU6HAS0RmvbhN3HzYxBGa7Ahr2Vw6g8FBX8i9fz5AQHzc4gxJssS54QOdxGPl36uhZoh0zfBJlV1E5hcFXiIiQIftp4P9ZZf3eAc/+tQhgHFTbkB4U/Q+b2SB7S65fg1DXPPhc6hNaL4zkflMgZeIyCS02kFaOVh2edZj9Fo7jpUMzAap4+7/fRjHqCmYtmOsSTNLjIXs4bqPnDOdRReRGUSBl4jINIhbQFuZOwbkLOEVMp4gQ7Lk8iFS7GIVf//R/pLBG0DGk9z84XTZmjNNVisysynwEhGpoIRlSFA6aEoxMO6uAsUOsoh7/mwxmbyv71ysFRCjhkGu/cNVpJPj+5rlbvWUjGfVF02kShR4iYjMIh22jw72lV3e4+088leZktNqQBikHfRFdNmLXPIHF49bnj/3WbpmiNa6PtWiiUwjBV4iInNIqx2ilUMT5unkZY7SymOffrzkcsNxjAHqOewLabP9xAin08ifZiNOlqv+61m0pPqJxXS7J5HJUOAlIjLPpGyQFHsmlbeTlxkucfN0CKfZ+PZfvsJRbyFtx6PU8dVjATHe+98bFZyJoMBLREQmEAZp5Wf6b+VgQX8zGD/dxj6W8sU/nVx75aCn+Y0PtNKWPj6a5kXBnCa0ldlMgZeIiExJwiaem2wJr7CEVya1rQHSfP/Ty8uO/HSg3xt52x+1jb4umS/qqxaPBXTUHy+TS6TyFHiJiMiMUWf9rOa5ssvdYbet5Puf3AuUnsw2x3AO+uKCPmqlcrVwkKs+ctFUii0yaQq8RERk1jCDpeyYdP6F7OI4zQXNlfnB2hAptvs57Plo6clxc+slGKGZw1xz+7kk4hPfokpkIgq8RERkzkrayIR3HADoYG/Zps2QM0ItR2jnc3+apc76S+Qw6jk2Gpzl7h96ouEEMXNN1zHPKPASEZF5baJJbXNSDNJIL132Ysnl7tBHE0do558+1jNuQEApGU+QtuPc8N9WjC9TLEtD7dDkdkBmFQVeIiIiU2QGDRylgaOTXmeQFLtZwQN/sX3csgxJBkjTwFEu//11Bcs2febRsoHd9bev1YjPGW5KgZeZ/QXwFmAY2A68192PRMtuA94HZIHfd/cHo/SNwKeBOPB5d//4VMogIiIyG6VskNVsLbs8cOM4zWz6zLGiJV5yUMEROvinjx2mjv7RXMXy12pnP9d+5LxTKbpMwVRrvB4CbnP3jJl9ArgN+KCZrQNuAs4BlgAPm9maaJ07gF8FdgKPmdl97v7MFMshIiIyp8TMaeIITRyZVP4O30s/DYST2E482nOQNNv8HHZ+dPxUG0mGaeEQ19x2NqnkxE2wcvKmFHi5+3fyXv4MeFv0/EbgHncfAl4ys23AhmjZNnd/EcDM7onyKvASERGZgpg5DRTXjpVWz3Ha2F+yVmyYFEdo554/O3iCQQdhrVodfbRwiCs+eD5mXnC/z8K8Y1KJzLxtEp3OPl6/A3wler6UMBDL2RmlAbxalP7aUhszs1uAWwAWqCuaiIjItDIrPQ9aigEWs5PF7JzUdvq9nkMs4huf2DPBfGnRe+KMUINjbPzA8oIlxRprB+bkAIMTRjRm9jCwuMSi29393ijP7UAG+PJ0Fczd7wTuBOi2lG7wJSIiMgOlrY80pUd7lpL1GPtZyk8/dbggPT8IdML+bUOkaKSX+AlGndYyyK/eto665MjJFb4KThh4ufvVEy03s5uBG4Cr3D131HYBXXnZlkVpTJAuIiIic1zcAjoLGr/KC9zoo4mA2IT5BqjnK392gAwJkoTB12Sm9OjztlKVbafVVEc1bgT+GHiju+fPKHcfcLeZfZKwc3038HPC3es2s1WEAddNwLumUgYRERGZm2LmNNJ7wnzN9LCYnWQ9RkD8hPkNp5c2+micjmKelKl2nvosUAs8ZOHUuz9z9//k7lvM7KuEneYzwK3ungUws/cDDxJOJ/FFd98yxTKIiIiIELeAOJO7pVM7+2m3/ae5ROPZWOvgzNVtKf9UYvzMviIiIiIzzQ2Z559w94tLLZu40VREREREpo0CLxEREZEKUeAlIiIiUiEKvEREREQqRIGXiIiISIUo8BIRERGpEAVeIiIiIhWiwEtERESkQhR4iYiIiFSIAi8RERGRClHgJSIiIlIhs+JejWZ2DNha7XLMAB3AwWoXYgbQcdAxyNFxCOk46Bjk6DiEqn0cVrj7glILEpUuySnaWu5mk/OJmT2u46DjADoGOToOIR0HHYMcHYfQTD4OamoUERERqRAFXiIiIiIVMlsCrzurXYAZQschpOOgY5Cj4xDScdAxyNFxCM3Y4zArOteLiIiIzAWzpcZLREREZNZT4CUiIiJSITMu8DKzvzCz58zsKTP7ppm15C27zcy2mdlWM7s2L31jlLbNzD5UlYKfZvNhHwHMrMvMvmdmz5jZFjP7gyi9zcweMrMXosfWKN3M7DPRcXnKzC6s7h5MHzOLm9kmM/vX6PUqM3s02tevmFlNlF4bvd4WLV9Z1YJPIzNrMbOvRd8Jz5rZ6+bpufCH0d/D02b2z2aWmg/ng5l90cz2m9nTeWkn/fmb2Xui/C+Y2XuqsS+nqswxmHfXyVLHIW/ZH5mZm1lH9HpmnwvuPqP+AdcAiej5J4BPRM/XAb8EaoFVwHYgHv3bDqwGaqI866q9H9N8TOb8PubtaydwYfS8EXg++uz/HPhQlP6hvPPieuDfAAMuBR6t9j5M47H4L8DdwL9Gr78K3BQ9/1vg96Ln/xn42+j5TcBXql32aTwGdwH/IXpeA7TMt3MBWAq8BNTlnQc3z4fzAXgDcCHwdF7aSX3+QBvwYvTYGj1vrfa+TfEYzLvrZKnjEKV3AQ8CLwMds+FcmHE1Xu7+HXfPRC9/BiyLnt8I3OPuQ+7+ErAN2BD92+buL7r7MHBPlHcumQ/7CIC773H3J6Pnx4BnCS88NxJehIkefy16fiPwJQ/9DGgxs87Klnr6mdky4M3A56PXBlwJfC3KUnwMcsfma8BVUf5ZzcyaCb9svwDg7sPufoR5di5EEkCdmSWANLCHeXA+uPsPgMNFySf7+V8LPOTuh929B3gI2HjaCz9NSh2D+XidLHMuAPwV8MdA/kjBGX0uzLjAq8jvEEatEF58X81btjNKK5c+l8yHfRwnaiJZDzwKLHL3PdGivcCi6PlcPTafIvwyCaLX7cCRvC/b/P0cPQbR8t4o/2y3CjgA/EPU5Pp5M6tnnp0L7r4L+EvgFcKAqxd4gvl3PuSc7Oc/J8+LPPP2OmlmNwK73P2XRYtm9HGoSuBlZg9HfRWK/92Yl+d2IAN8uRpllOoyswbg68AH3P1o/jIP64zn7DwoZnYDsN/dn6h2WaosQdi08Dl3Xw/0ETYtjZrr5wJA1IfpRsJAdAlQzyyqsTmd5sPnP5H5fJ00szTwYeAj1S7LyarKvRrd/eqJlpvZzcANwFXRHxbALsK23JxlURoTpM8VE+37nGNmScKg68vu/o0oeZ+Zdbr7nqjKeH+UPhePzWXAW83seiAFNAGfJqwuT0S1GPn7mTsGO6OmqGbgUOWLPe12Ajvd/dHo9dcIA6/5dC4AXA285O4HAMzsG4TnyHw7H3JO9vPfBVxRlP79CpTztNJ1kjMIf4z8MmpJXwY8aWYbmOHnwoxrajSzjYRNLG919/68RfcBN0UjdlYB3cDPgceA7miETw1hZ9L7Kl3u02w+7CMw2pfpC8Cz7v7JvEX3AbkRKO8B7s1Lf3c0iuVSoDevGWJWcvfb3H2Zu68k/Ky/6+7/Hvge8LYoW/ExyB2bt0X5Z30tgLvvBV41s7VR0lXAM8yjcyHyCnCpmaWjv4/ccZhX50Oek/38HwSuMbPWqPbwmiht1tJ1Etx9s7svdPeV0XflTsKBWXuZ6edCpXvzn+gfYWfAV4FfRP/+Nm/Z7YQjM7YC1+WlX084+m07cHu19+E0HZc5v4/Rfl5O2HTwVN45cD1hH5VHgBeAh4G2KL8Bd0THZTNwcbX3YZqPxxWMjWpcTfglug34v0BtlJ6KXm+Llq+udrmncf8vAB6Pzod/IRyJNO/OBeB/Ac8BTwP/SDhqbc6fD8A/E/ZrGyG8sL7vVD5/wn5Q26J/7632fk3DMZh318lSx6Fo+Q7GRjXO6HNBtwwSERERqZAZ19QoIiIiMlcp8BIRERGpEAVeIiIiIhWiwEtERESkQhR4iYiIiFSIAi8RERGRClHgJSIiIlIh/x+uO2sus9hkzQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -390,7 +390,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAABqCAYAAAAMTX1WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl5UlEQVR4nO3deXAc2X3Y8e+vu+eewX0SBECC5GJJLveguIesw7LllVaHvXLsctZxRbJsZysVyUc5PrRRVS6nEjmOHduRY9dGkkuKZcuOZUerslLS6rAue6W9d3nswfsmABIg7jm6f/mjewYDEAQvcGZA/D5VU5h53T39Qw/m4dev33stqooxxhhjjGk8Tr0DMMYYY4wxy7NEzRhjjDGmQVmiZowxxhjToCxRM8YYY4xpUJaoGWOMMcY0KEvUjDHGGGMalFfvAK5Gs7jaRazeYRhjaugg+TFV7ax3HKvB6jBj1pfVrL/WRKLWRYzf9wbrHYYxpobeW3rtWL1jWC1Whxmzvqxm/WWXPo0xxhhjGpQlasYYY4wxDeqGEzUR6ReRb4jIfhHZJyK/HJW3iciTIvJ69LM1KhcR+UMROSgiL4nI7huNwRhjrpfVYcaYRrYaLWol4F+r6g7gAeBDIrID+AjwNVXdBnwteg3wLmBb9HgU+ONViMEYY66X1WHGmIZ1w4maqp5R1eei51PAAaAPeBj4dLTap4H3Rc8fBj6joaeAFhHpvdE4jDHmelgdZoxpZKvaR01ENgH3AN8DulX1TLToLNAdPe8DTlRtdjIqM8aYurI6zBjTaFYtURORLPB54FdUdbJ6maoqoNf4fo+KyDMi8sxF/NUK0xhjlmV1mDGmEa1KoiYiMcIK7rOq+jdR8bny5YDo50hUfgror9p8Y1S2iKo+rqp7VHVPM+5qhGmMMcuyOswY06hWY9SnAJ8EDqjq71UtegL4QPT8A8AXqsrfH42cegC4WHV5wRhjasrqMGNMI1uNOxO8CfjnwMsi8kJU9m+AjwF/JSI/DxwDfipa9iXg3cBBYBb44CrEYIwx18vqMGNMw7rhRE1VvwPIZRa/fZn1FfjQje7XGGNWg9VhxphGZncmMMYYY4xpUJaoGWOMMcY0KEvUjDHGGGMalCVqxhhjjFl3ptRnXEv1DuOKVmPUpzHGGGPMmpDXgIPkAWhfA2lQ40dojDHGGLNKxvFpx6VH4vUO5arYpU9jjDHG3JIKGlxSNk+AF83Ic0FLzC2zTiOxFjVjjDHG3DJ8Vc5QZEyLdEmMbo3hilSWxRDyKK/oHB5CAaVLPdrwcORyUyqutD+HIgutcw6rm/hZomaMMcaYW8Y0PvMEbJcUCXEI56gOuSK4KoxToh2PLokxGgQc0TbGaCMhHkK4fqCCj8s4XZxkMwFOZVmZ4tL0U+8FLc+arbQ3zcMn3rBqv48lasYYY4xZEwpBjHHtQJElSZPiS4xz9HNUZ2kiy4gkKQUlHBympYNC1OpV0DwXGSNJmpy0Iihtv7CBvm3bSCZSgKIKs3PCyXMpejNFHtxykbhXQqqSPoIAFPq79tKU9QHC5Rrwbz+xer+zJWrGGGOMWVVzQZIAF6CSUAlKgMvhYJgRNlyyDGCaZo6xjRQzOFJOihaSoyJxtn7oIZxymSooxDyfbZvneaB3ns0jLxOPJXAcGB8/TzadYctAlq2bWiuJ1LmRUU6PjLFpQzcXp6eYnJxm55YJ4rGZ8D0BKfddUw2fa7BMoha+381kiZoxxhizSuY1IIZU+kQ1MtXLLxv1uzjB1mWXFUjwOruYJVv9bgiKANM04b77PbjOwg7Ky0Bpbwvo3VACNApCK4lab1LZ0Vri/j0zZDPlBEkhCNdJpwNi7iiiQfieUZLkqF9JqEa7m3ntyFEGe7sZeGAHp8+e5ezIWaZnE+RSKQB6OttxXYfTo2NoEHDbpn7isdj1HsqbyhK1q1DUgEL0R5bAWRNfQGOMMbV3kHm2EyYDRQ3Yp/OLlt/tpFdtX8XA41QwQFD5V77QAhXg8hL3c4HuRduUE6IZmhhhA4pDdYuVImSYIs48XR98D66ACIiUW77AdZW7dvp0dQVRWYBApZWruS1gYGAa11FcCSr7FRRHgkWtaILi4C+8vyr798XIZpRsVhHVSkJWudS5QoIJ0JTLUCqWcN1wYouutjYmLk4xPTNHUPLJ5+fpbmuhs62VrraWhZayBh39aYnaCmbV5xgF8qoUCUiLS0mVHA6DJCxhM8DC5Ika1R55VTZIjN6qOXpm1Od1zeNFfzIteGxcI3P4GGOuTfl/Q0wcPKDfb6NEjNeZ5qI2LVp3n97DIXYA5c7oC/KkOcx2CiQqZeVWqQSzlEhQ2H0fjiuV0YpSTqwQOvugsxc8L9xOJEymFOjJwo/vUTJZcKMkyXXg+GGlf0BpagXHUVxRRKgkXI4TJk5hebidI2G655STMlGcOv57TCYSbB7YyNnR8/R1dzEzN0e+UKS9pZnJySlymUz9grsOlqit4N/5PqPsppdfo5v9dPNNNtDBcaZ4mjl66aSTk9zm7F/UxGuu3+P+CACPul11juTqJcRhZ3QGDfC8ztC85KulQFKELSRt8kJTE2vxu3Qr+DNfGWEHHTyGkmeCQ0xkH0EcJSh9Fy/xJjyPMHNyHOJxn+aOAHEEEcGJUjHxIBYTNu0IaOuScFSh4+C5wshph213CIkUpLPgumEyBmGy5brhTyeqbMqvF5VVvXZloSyZAvcWyAwGN26gUMjz7Mv7KeTz9Pd2E4t5dEQtaI3aeracW+DjuHmOIeS9UXLbuzk7cRvT4/2km34AcaBU/A6J1FsozLu0nj0CweJOjw5KNyfJcQEIv5MeBTxKlbOmJHPczXdoidap5sjCNXuPIm3OGOuhAe+w5q95m0a6ND2lPnFxSF1ybgwuQqwOsalCiWvve1E9oirAYZIWSlx/K+A8aabJcWm7waUnOT2cBF677n2Z6/sumRt3gjhT7kHcwRfRIE+u43a23/YKiaTH+dOjpJvO0trt48U8vFj4L9iLuXieixtzK5frvJiDF3NxXcGLmuLLCVkhD83tdfsV14zbNg8yNzdPOtGYfc+uliVqKxAUZJqegUP4fRPMTXm09x0nlYWLo+fp3hSesaJZHM/D88IRLp7nUix6nHh1C6N5J+wvGTg4HjS3UWmiHp0Vnjv5YXw/OoMCRCQ8s4r+d4kDgS8kn/82Ccp9HcKFKaYrE+st10rjUmATr9PEhap/uotH2KyUNpT7DwgBMSkuWjfFFEPyCjG53hvartwC6evy7U7VyUP50nSBMFHL4FBEyal7xUvTS+fCWYhKGNd2LtK+aD2PEi1y/orvcUJnSZJmRuKLfsVpLXGOGSZUiePQTzi/T/V7zWqGA+zGj0ZKXU28ZUlmaZbxZeb4Ee74tXeTjYUnCBpULY96EuvSM8vKQKeFclFlc2aWVKy4eNtgSVwaoLpw3CvzFwUBqViR1vQsjqOV7SqdmZfEoEEbPPbtFX9nYxpRjBiuGyfXfJxUro9Y4hQiOUQ82nr2MD9b7wjXl1QysaZaz5ZjidoKBB9BmZs+STyZppA/z/i5p5i5GAB+ZT0vDl4sfEB4xpPKKXe+uYgXC/8Zl4ous5MOvYOLz45cVyuvHWfhjMld0mQ9PvYWCvPluODCCHT2KC2t4Qhh19GoCXshAZufVQ68oIxGFYNT1dpXzroUcFECwj4FqkR9DbTyT3ZyCm6/vRR1Ag1dmBT2nXbRQKsSuGjfVZ1CF4YylzuUVq1bTkbLo3eA81/5JwB86R2fX/zl0vB9ww6f4YanR75Pe8sd3LYJtDjJ2YmT9HXdzujkaY7MnGdjz85o26DyHuW4qve/sI5CAM2ZPJvaooOt4XHwXKWrdT7cNggqb6YqUTN6+Hp0/wvcNXQ7yfLooai85PsM+z4OwsWZKY6PnmF46PZF68ScEm9MFog7VcmvKkF5H2VBeTLGsCxf9Dg1luO+racXradB+DzhHavatvqY6qL1lr6/LrPPxcdrmURtyXtVJ2rLuWwuvQ5aj82tyaeISIx4qpPm9jtB5pm68Cp+tpNkZvlRlMasxBK1FSg+jpumqW0HXtxjanw/zR13km4SJs/vrWks7V1h0gZh4paIQ64F2toXypb2NXAc2HJb2PkTWNQptFxW3Sm03BG03Cm0nHA9/4zDnnuLuEtG65RH70glAQzC0T9ViZqj/qIh1NWjd8pJnGgQrqfK3lfCyzW/9ZvHF4/yiearkap5bL77zEkS8U3cNXyRZDzgu88d4U33ZBBVvv3MEd6yO1t5f2Dx3DgrzIezqHxJX4ZKonbJOsrIxCS7hkrcOzxTlRwusw/gGy+Oc/vGs8Rj3kISVN5mmWRquURNK4may9jFNImYv2yidqURUsaY1RPgo1oEDSjmL+LFPdK5AYr5UWannibd9MZ6h2jWGEvUrqDcIhD44SUfx43hOILYKX9NlVtehIXGlkw6geceYHomw5ET52nOhYlZ9e1Caun02AS97S3LLiuWfGLRMKiZ+Tx+EBDzLr3EaYxZ+5Q8qj5zM6fwCh5uPIbrubhe4sobG7OEJWorcEihOs2Fs08hjk8idefCwvXQs7/B7bptK4eOn+ToqdM0Z9PctqkfAN8P2HXbUE1jCYKA0YuT7Ny0oVJ2fOQCqgGDXe2cPj/B8XNjlX6Idw1tROxvyJhbjkcKx8mSnz1HPNlKpmULiXQOL+YR+Anro2auWd0SNRF5CPgDwAU+oaofq1csl+OSRESYmniFZLqDYv5pnNgWXG8D7b176h3eund6ZIzhocElEyEGeJ5LSy678rTbq8xxHB58wx3hi+iS40BXW+Xy40BXG31tTZWYPNdd8x1c17O1UH+Z+vApACBODDeWYXr8NXy/h6a2wTpHZtaqukzpJCIu8EfAu4AdwE+LyI56xLKSIlNAQCrTT9fAD5Nr30Nhfozxc88zecGmDqg3EZiZcy7XT70hSGUSSsFz3crDrF1rpf4y9SE4qEKxMIEGRcTxCIIi4+deoJifrHd4Zg2q19yb9wEHVfWwqhaAzwEP1ymWy/LJA3FiiRyo4rppmtvvJpXtY/TEP9Q7vHWvv7ebAwezFEt2CdHU1Jqov0x9BJQI/DlUfTQoEfh5Jsf2kp8bY3zk2XqHZ9agel367ANOVL0+CdxfvYKIPAo8CtBZpzADigTBLBr4zEwe4fzZo8QmBNfNU5gfq0tMZsHx02cpFJMA+L7PxamZhakyNKC9OVfnCOtvJl8gE1/bkz02oCvWX9AYdZipPUUJglnmZ05TmL9AKtuF62WYmzpLPNlb7/DMGtSwd7NR1cdVdY+q7mleZgLQWvDIIqJcvLCX2anj5GfPILikmzbSufEH6hKTWXD89FnisYWZ8p8/8BpHTp7h6KkzPHdg/Vya9le49vv80dM1jMRUa4Q6zNSWr4pPHnFcmjp24ft5Ji/sBZSSP4fvz9Q7RLMG1es07xTQX/V6Y1TWUErMARl6Bt+D40Gx0EJbz05cb4LZqaP1Dm/dk6qZ/V3XJZmI84Y7hhFVvvvsS3WMrLa+uf8g5yfnGews0JVL2WjSm29N1F+m9l7UcEin62TINm0l1zrM5IXn6Bp8M5NjLxAE138LNrN+1atF7Wlgm4hsFpE48AjwRJ1iuSzBRQQ0KFGYO0+uZRep7EZaOndRzE/VO7x1z3UdpmfCz2H0wjjJ+PqsBN+6fQstmSaOjY7ztb2HeOn4GUYn7cz9JloT9ZepvbskjRIQBLMUCxNMjIUDCIr5SUq+3XvVXJ+6tKipaklEPgx8mXB4+6dUdV89YllJjAR5Yojjks0OUZjvBqCYn6SlwwZ51dv2LZv4y787QKk0QzIOu3cOV5Z1d7TWMbLaSsXhB7cH5FL9FIoFzoxPcejceV48ml/xsqi5Pmul/jK154qQIEk+uh1fYW6URLqNU4e+CBTp2/JILWcNWvPy+QKF/ByOQDoRX7eThNeth6uqfgn4Ur32fzUCfIKgQH72LKXSONPjB/AmCiQzHi3tt9U7vHWvOZdl98772D50nlw6ahyO5ibbOtBX03nU6slxIJcK526Kex6Dna0MdrYyO5/n3MXpOkd3a1oL9ZepjyQOU9JKS8duXC+GF/cQ91780gSJVLtNeHsVZmeneP6Fl3GcefLz8zTlMpQKBVpbmhjetpXYOpviqGEHEzQCRXHdZpradpFt2gIakMr1k20aZG7mTL3DM5GYt75H1B0fHV+2PBWPsalz/bQsGlNvI1qkQB7VEo6zMNra9ZJ4sSyzU8frGN3aceTIAYaHb+dNP/BG7t2zm0w6zZveeD+tLS3sf2X9DBQrs0RtBW7U4Oi44VxqXryZptYd5Nq24bp2zzbTGFSF2fz6TlaNaRRKgOoMxfzEovJYoom5aTvBvxqKkk6lAWjK5ZieCfvcbujtqTxfTyxRW4GPjx91AJ2bPoUGJYr5CQrzExQLNpjANIae1nb2nuiqdxjGrHtdEsMnjkiWmanD5OdGK8tEnEUj1c3lbeyLcfrMYSYmJnjt9ddpyoVzYuo66c6ylJ2Gr8BDmSsFPPO1U8SSCYQEuGdI5yDwLVEzjWN8ZpKXj59lvhD2VUvGPLqa0nQ1ZescmTHrR1EDlDn8Up5Xn3s7qscROUEq104skUX9TpKZFpLpAHFcxBFaOwtsGArwPAFPcN1weh0vBvE4tHTU+Zeqg/vvv53jRw5z9NhxmrIZtg5tBsKJzXduH77C1qvL9332HTxKLpVgsKcDz6l9sm2J2gru5CIpDdg4eYjxyQ4OcoHSyI8wicvpplaOv9JLLOHT3lsknoQNQyXaemyU3Y24Y3hbvUNYc/afPMvZiSy7BtKkYuGZ51yhyPGxCUYnZ9jZZ61t69GQWPeMWjtMnm3M0aIn+eG5n2GWEqfIsnduOyUcetlDnCM4gAABwik2s592IGwtqp4F0cdlanAnsXi0TCTcTuHpr0IyA/1bIJaAcv96EXAFXA82DUNnT3TDFid8OE40zsoDt0FnNDp37hxbt24BQDRACO8243kezU1NNR0o5rouA71dnDo7wlMvv0pLNs22/g0kanjHF0vUVvCw28oAcbLyp0xoiXMUGZZPAvCtySTdk0McZxv7j76BAgkOfWOA13DIDw/jxYWegRJNHUpLR7Auz4qux3967FfDJ+u0ift6jE1Os73vTja0nq6Mem3NpOhtzvL3+w+HNzwy686jriXotVZA+Q/exujVDM8HM/ykk+cn+Q57dZY75FvX9H6qcPJYP1O0VMqcKKFThJNs5tDX76CAE5UsCHB4iX5KXD6hyL3jAZLJKDlUEAfy80J3r9I3CMM7wI0akJzozR0HYh70D4QtfjeDqqAaJp2NoCWXpTWb5sSZc7x69CQdLU30tNduoJYlaisYIM5BzYOGnfm2SbKybIs7SZ/sZ5j9PMgXgOhL5W/k1VfvZpYm9r28hzHSHKGFCxt2EUtAPAGZZqW1U0mkYdsuaGqFdBMk7ATYXAfXcZiau7SD7cTMHJ5rfWKMqaWiBsTEYV4DfGBeA9ywTeiaiUC/d4LFt5ZdsJ2XeXCFuZZVw4RtObNBhle+chfzpKu3QFAcAk6zmS9e5iyvRIzSO99HLMoBwxYvKs2ByZQytLVILBa+F9EiVfAcZdu2Ipu3FCsJooNTScpirs/ExGbamufIZhvnhH1sYpLTYxfYOdS/KEkrlkpMTs/QlEndtBkILFFbQVZc7pY0JVW8Jal9n1x6KhF+qU7Sz0kAfow/B8I/zpkzYV8hH5cDeg8n2cQ0LTz3V7dRwqNInOLu+4jFoX8r5JqhcwNs3g5xL0zwjFnOHQO9PPH0Kb65f4RULLz+MV8s4QrcOdBT5+iMWT96ibFP50jgkFdlqyR4Tecpogws8z/jZhMBl+W74+TcKe7lO9f93vknf4sCyWWXjQVdvM4uCktSDEEJcPhrtjBN05JloRIeufe8jb7eSfKFEfxiHkFxnTjZTBebBlrYunkekfCSqERXESQI8Fxl26ZZchk/LFPClkINWwKv1/jkNMdOn6OzpZkNne2Lls3M5Tl3YYK9h4/Tmssy3N9DMra6qZUlaldhaZJ2rUQg6y5MPPoAf3/JOnN+krPP9TNFEy889UbmyfIcvXyTZkDw3vQAmWyY9CUy0NMLg9sgmYR05obCM2tcczrFnQOD3DWYXDSYIF5uTbPLyMbURIfEaMEjT0BSHFwRWsRDVW+5e/AmnAIJCssuyzmTbObgdb1voMLzf5djFodWEsRwAaVIwDjzHKaPg3IXURtd1ZaKT4wxepdtRYwxz/2PvR0XRQNFogRWAc/xuWf7RXrb58PqUhVFEA2Yz+d5/fgZhjZkGNrYc0l9mkun2LG5H98POHDsJGMXp9i4ynfGsUStQaTceTbzOgB38mylXBVK6vHqd++o9FOYoINXuYtxSnz9bT+N64HnQd8gZKKkLdcKu+4JE7mW1hs7mzBrQyLmkfAWPmi120cZU3OeCB6LZ86/1ZK0m8kRxXPO8hYnvezyF4Mz3OXsv+z2l7vcOx60ce6/fHPZ9sU54nyRNlQWPjdBKWiBCS5SJMn9v/6v+M7zwaJ+gAQBqtCSnaezpcDYhMvYxDn2DLdd5W97dSxRa3AiEJMSdzgvLCp/F38NQPDt/8i8ppkJMuzlXuZJIShjdPBnDBLgETz4HtIZyGSVLcNKKiU4Ap09yrbbw0ursdoNYDHGGGMuyxGYVp+sLE54p9XHvULOe7nLvR3uGB2MXVMcB3UeB2Gjxgl+9+klwzVCinBBOzimaUaYJEuS5+XJa9rPlViitsY5oqRlhrQzww/xd8uuM/XV32KSVi5oJ69yFz4eoHyfbi7SjiK0/8TbaWkN/7hjcWXnHUVa28LXI+fsbNAYY0xtDJHgKAX8QIlHrZEFVVwRhqhdh+2tkiRQxXEEmGNeAxLIohbSWQ1wZRxPStxNjC6JWj1W8YKGJWrrQM6dIscUfRxnV9Vl1bJAhaOf38JFwk6SMzTxFDvJk0CAAkn2v/Qwnqt0d/t09/gIiucFDN9eoq017LiZ8CCVquVvZowx5laTEZedpCgSUIj6ocVFiNXhzg5OdVJGwCRKFzHyGnCKIgFKCochkqRvUnyWqBkcUYa8g1DV+fPNLG66LXzmP1MkzjHdyhidABSJ849sroz8KRKj99H3kUoFdHT6bB4s4BDgOsrQpjxtrT5CONWJzRphjDFmJTFxVpgFrvbaooEhvipHyXNRfbZIkna5uamUJWrmqsSdInGK7ODFy66jCuOPP06BJKfYzD/SC4CPx9d/4RcpFCRaT2lvLdKcDVAgnSixc3iGbKqEENDcFNDVXlymN4AxxhhTPyKCCwyTYpwSo5Q4FRTolzitNylhs0TNrBoRaHMvANDD6cUL//Rzlae+OpwKBpkjHKI6QxN/zVb86Nxpmibaf+ZhHCe8yN+cKzG4YQ4RxUHZOjDDxt4CaMDMrDXNGWOMqb1W8WjFYwYf5yY2LViiZmrOlYAB98iist38w6LXxb/4eGWEzbmgj7P0A+Gw639giBly0ZoORx57K9lUCYBEwmdT7yypeAlUyWZKbGifs+lJjDHG3BSZJaNTV5slaqYhxaRYed7vHqGfhcTu/iUTBs987PFKP7k50nyDgWhkK0zTTPcvvz+8PYkqiXhAb9scoDgS0NcxR2d7HoIATwLam+avOPzbGGOMqRVL1Myal3FmyBDe67KV82xYel+8/7FwL7zpIMcYHdErh71sqNzKpITHxg/9U2KuX1lfUHraZmnJ5QGIuz5DPZNkEmEiGfMCYjf3ZMoYY8w6ZomaWVeyzhRZpiqvBzi0aLn/P79IUDWruK8O59jIccJ7tRaI83/po0R4374iMe76pbfhOQu3FUl6RTb3TBD3AlClOVOgr2MGJ7rvHIT9+azhzhhjzJXcUKImIr8D/ChQAA4BH1TViWjZY8DPAz7wS6r65aj8IeAPABf4hKp+7EZiMGY1uRIsmtU6JjC4JJmDpyvPVGHmD7+w6JYlc2T5Fv2U8BCUKVro/Rc/Hq5czucUulqmcV2FANqycwx0TOI4AeqHKzWlC7Rm5m/Wr2qwOswY0/hutEXtSeAxVS2JyG8DjwG/KSI7gEeAncAG4Ksiclu0zR8BDwIngadF5AlVvfyNu4xpYCKQlelFZU1M0r101Osnv7ToZVFjnNdONErwTtDJ1+letM4sOYY+8DYcUVSVXCpPT+tMJdlTDejIzdHVPE0QWPvcdbI6zBjT0G4oUVPVr1S9fAr4yej5w8DnVDUPHBGRg8B90bKDqnoYQEQ+F61rlZxZV2JSpEcWkrleTi67nv+Zv6mMfp3QNl6P7h5R9n26GKeDNIf4nlzg3o88SDpRAML56gCak3PkUmEfO4KwLJsskPSKrHdWhxljGt1q9lH7OeAvo+d9hJVe2cmoDFjU0/skcP8qxmDMLcWVhYENHTJCByNL1jiw6NX0x57nwpJ74b1KE/OkF5XNkGPXr74TESXwlWyyQDoeJnhUErxZssnFCV4qVsKp6o93i7E6zBjTcK6YqInIV4GeZRZ9VFW/EK3zUaAEfHa1AhORR4FHATptzIMxV8WTEh6lRWXpaETsUqX//kLl+RnNUKhK8BRhmmbypColIAz/4jtxJKBy/TVQMokCzalwQuJyQpeOF2hJzVG5M3EgOKJIHa7QWh1mjFnLrlh7qOqPrLRcRH4WeC/wdi1fa4FTEM1QGtoYlbFC+dL9Pg48DrBNkrfsKbwxjSAtM5ckdK2cv2Q9/+P7KOribGucHK+RZWGkhDBLhtnKpMTRtrjc/+F7wj53Uf6WiJVoS8/gsNByGHdLNCVmb/h3KrM6zBizlt3oqM+HgN8AflBVq2vWJ4A/F5HfI+yIuw34PuGMBNtEZDNh5fYI8M9uJAZjTG05sjjnyDJJlskrbqcKFz7+MmE1EL5HnhQv01zphwdQIMEP/fqu1Qz5sqwOM8Y0uhttj/84kACelPCaxlOq+i9VdZ+I/BVhB9sS8CFV9QFE5MPAlwmHtn9KVffdYAzGmDVABJIsnm4kyTzNjF+y7rH/9kqtwrI6zBjT0GShpb9xbZOk/r43WO8wjDE19N7Sa8+q6p56x7EarA4zZn1ZzfrLblVtjDHGGNOgLFEzxhhjjGlQlqgZY4wxxjSoNdFHTURGgWN12n0HMFanfV+OxXR1LKar06gxZVS1s96BrIY61mGN+tlaTFfWiDFBY8bViDENq2ruyqtd2ZqYhbGelbWIPNNoHZotpqtjMV2dBo5pU73jWC31qsMa+LO1mK6gEWOCxoyrUWNarfeyS5/GGGOMMQ3KEjVjjDHGmAZlidqVPV7vAJZhMV0di+nqWEy3rkY8jhbT1WnEmKAx47qlY1oTgwmMMcYYY9Yja1EzxhhjjGlQlqhdhog8JCKvishBEflIDffbLyLfEJH9IrJPRH45Kv/3InJKRF6IHu+u2uaxKM5XReSdNymuoyLycrTvZ6KyNhF5UkRej362RuUiIn8YxfSSiOy+CfEMVx2LF0RkUkR+pR7HSUQ+JSIjIrK3quyaj42IfCBa/3UR+cBNiOl3ROSVaL9/KyItUfkmEZmrOmZ/UrXNG6LP/WAUtyyzuxuJ6Zo/r3p9N9caq8MuicvqsOXjsPrr+mOqTf2lqvZY8iC82fIhYAiIAy8CO2q0715gd/Q8B7wG7AD+PfBry6y/I4ovAWyO4nZvQlxHgY4lZf8V+Ej0/CPAb0fP3w38P0CAB4Dv1eDzOgsM1uM4AW8FdgN7r/fYAG3A4ehna/S8dZVjegfgRc9/uyqmTdXrLXmf70dxShT3u1Y5pmv6vOr53VxLD6vDlo3L6rDl92311/XHVJP6y1rUlncfcFBVD6tqAfgc8HAtdqyqZ1T1uej5FHAA6Fthk4eBz6lqXlWPAAcJ46+Fh4FPR88/DbyvqvwzGnoKaBGR3psYx9uBQ6q60oSiN+04qeq3gAvL7O9ajs07gSdV9YKqjgNPAg+tZkyq+hVVLUUvnwI2rvQeUVxNqvqUhrXPZ6p+j1WJaQWX+7zq9t1cY6wOuzrrvg6z+uv6Y1rBqtZflqgtrw84UfX6JCtXNDeFiGwC7gG+FxV9OGr2/VS5KZraxarAV0TkWRF5NCrrVtUz0fOzQHeNYyp7BPiLqtf1PE5l13psah3fzxGeYZZtFpHnReSbIvKWqlhP1iCma/m8GuK7uQY0xHGyOuyqNVodZvXX1bvp9Zclag1KRLLA54FfUdVJ4I+BLcDdwBngd2sc0ptVdTfwLuBDIvLW6oXRGUvNhxCLSBz4MeD/REX1Pk6XqNexuRwR+ShQAj4bFZ0BBlT1HuBXgT8XkaYahdNwn5dZHVaHXZ1Gr8Os/lpRTT4rS9SWdwror3q9MSqrCRGJEVZwn1XVvwFQ1XOq6qtqAPwvFpq8axKrqp6Kfo4Afxvt/1z5ckD0c6SWMUXeBTynquei+Op6nKpc67GpSXwi8rPAe4GfiSpgoub589HzZwn7UNwW7b/68sKqx3Qdn1ddv5triNVhS1gddk2s/roKtaq/LFFb3tPANhHZHJ3tPAI8UYsdR6NSPgkcUNXfqyqv7h/x40B55MkTwCMikhCRzcA2wg6UqxlTRkRy5eeEnTr3Rvsuj+75APCFqpjeH40QegC4WNWMvtp+mqpLBvU8Tktc67H5MvAOEWmNms/fEZWtGhF5CPgN4MdUdbaqvFNE3Oj5EOGxORzFNSkiD0R/l++v+j1WK6Zr/bzq9t1cY6wOWxyT1WHXxuqvq4upNvWX3sSRLGv5QTi65TXC7PyjNdzvmwmbmV8CXoge7wb+N/ByVP4E0Fu1zUejOF/lBka1rBDTEOHolBeBfeXjAbQDXwNeB74KtEXlAvxRFNPLwJ6bdKwywHmguaqs5seJsJI9AxQJ+xz8/PUcG8J+FwejxwdvQkwHCftHlP+u/iRa9yeiz/UF4DngR6veZw9h5XMI+DjRJNmrGNM1f171+m6utYfVYYtisjrs8jFY/XX9MdWk/rI7ExhjjDHGNCi79GmMMcYY06AsUTPGGGOMaVCWqBljjDHGNChL1IwxxhhjGpQlasYYY4wxDcoSNWOMMcaYBmWJmjHGGGNMg7JEzRhjjDGmQf1/ZfoFWLu2cG0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAABqCAYAAADjjxZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZlklEQVR4nO3dfZAc9X3n8fe352EftM/SSki7ktATSAs2SBYg2+DEBvMU29iOkyNnztihCqfKrrPr7HN4qLtLVSpx7ORctsuuOOTgDp/JcT6THFQFHw8+ykdSQYB5FiCxEggk9ICeV1pp56G/98f07vZoZ1e72tmZXunzqtrant+ve/o7PTvf/U53/7rN3RERERGRZArqHYCIiIiIjE/FmoiIiEiCqVgTERERSTAVayIiIiIJpmJNREREJMFUrImIiIgkWLreAUxGu6V8Ppl6hyEiNdTP0D537653HNWgHCZydql2/poVxdp8Mnw/vbTeYYhIDX2isGV7vWOoFuUwkbNLtfOXDoOKiIiIJJiKNREREZEEm3axZmaLzewJM3vVzDaZ2dei9i4ze8zM3oh+d0btZmY/NLN+M3vJzNZNNwYRkdOlHCYiSVeNPWsF4Bvu3gdsAL5iZn3AbcCv3H0V8KvoMcB1wKro51bgr6sQg4jI6VIOE5FEm3ax5u673P25aHoAeA3oAW4A7o1muxf4dDR9A/BTL3kK6DCzhdONQ0TkdCiHiUjSVfWcNTM7F1gLbAQWuPuuqGs3sCCa7gHeiS22I2o7+bluNbNnzezZwxSrGaaISEXKYSKSRFUr1sysBXgA+Lq7H4n3ubsDPpXnc/e73H29u69vJ1WtMEVEKlIOE5GkqkqxZmYZSknuPnf/+6h5z/Chgej33qh9J7A4tnhv1CYiUhfKYSKSZNUYDWrA3cBr7v69WNdDwM3R9M3Ag7H2L0QjqjYAh2OHGkREako5TESSrhp3MPgw8G+Al83shajtDuAvgJ+b2S3AduD3o76HgeuBfmAQ+FIVYhAROV3KYSKSaNMu1tz9nwAbp/vKCvM78JXprldEpBqUw0Qk6XQHAxEREZEEU7EmIiIikmAq1kREREQSTMWaiIiISIKpWBMRERFJMBVrIiIiIgmmYk1EREQkwapxUVwRERGRs9IJb2LIG2Z0HSrWRERE5IxW9ICQVOU+UuwMz2WA9or9IQE7WDHSX34FbWeAdlJeJGu5WPvTVYl7mIo1ERERmRWKHrAn7GGIxjF9BTL0c2FZn+EA7GcBQ95I2vJjlnOMgme46AODtDccw728HEvj/P7HOljw4dUVY8pkQrq78gSxE8t+vvZ0Xt34VKyJiIhI1RwPmzhBU8U+A/aEi+jnAoqkMBxjtKg6ShvbWUUzR2mwEyct6+RooMGP02n7Rto9tq+rnf18+t4bSKfDsqKrKessX3KcbNan8cqGprHs9KhYExEROctUOiw4XDABHCp2spn3Vzx0eIxWtnBR2fxxA7RjONlxiptGjnHVF7rIpovEn8IdzOAzl/TS2VGkb+Wxsr5h6ZSTSq2a4NUdnaBvdlKxJiIiMgsNFTNs89XkyZQVToYTErCFi3iXJSPtQbwYYx6HmEeGXGxZxwlo4ihNDLKI7fSsbR1ZJvTScb4s8OWPhoQfv44ggDAcjcmBTAYW9XjZYcGpOHTQaNi5hWxmOnvBziwq1kRERGaIOxwsdpGjYaQoGj4458Am1rGVC2Ito/I0sp3zyJMd09fIICEpWjlMmtHzsDw2Z1/fcS7/0nUEdvLSJfMXOIWuNiwYXfjAe3Bhz2F6esMKS4x5dZOYR6pBxdo4flQ4xKuso5k/JcsJLuA52nmPgOLIBy5NkQt4lnNS745ZPjD9EZ+Ou4p7Abg1Nb/OkYjMbvos1ce3CvN4l6V08+8ByNFIngwBIY6RZYhMVFw50MpBNty0glTgY0qfMDSuWHiCF30+QapU+LnD3NZOlqyCOa2QneYVIzInPU6rKkgkvS3j2Azszx6E5W0sv2Qd+za2sD3XwPyWAQDcjT2b9vGPfJ5isXRMP/5tKU2RRbw58o3HcBo4gREy/G1kEdtZwwukKFQ49u8ElL7ZtHCEuen9M/uCE2Kb1+8EzjNZzrOE0TWwxzvPpJL4vEM0cYSOKa03vrwT8J4vrDgaq7ItU1qXlNNnqT52sx/awFaVPm8tDUdp6xgkCCCfS7NkzYV0nVOMLbGUAlAY5/nepJW2kz6z7a3VKdRk9lCxNoGUhXR2H+bwwSfhPGhu66N5SdtI//JPLmKZQxh97oY/TmHBsMI5HD38PhZ15cGNQwdhYa+TiT5cxbzx3J89yot8iPJdyVb2XE7AYebSXDhatqvbcOYwQKXd0MPPUCDNMjbTxXtly8V/jyrf5W2x+VMURv7BBrHlV9krtNiRitvudA2P6il4df40p1KYDNvrizhKa7T86axz7OGDieIY7svRyA6W4diY6/hUVn6OygJ2VtyjWyBNhhwpimWjpqaqSIprvrGSdFA89cwwZl2G09k8SEN6vH9L5W67Y8ohitSdUToBft45h7DT/7iJlFGxNk1mkDp5K6Yd2EVnCxyPmnqXLKRrPjQ2j87W84vrT/n87nDkABQKlJ2MkBkscPGlXjZCZnj+4Z+DB+DEk93kC6mRvtzb2+PRR+1jM4r7aCkwMNTEqgU7R5ZxjL0DrTzwy8tOecrCVIuD3XwXgP8afmNS8xc9xSLbTsomKiCmFsOQN3HVTa00ZXIV+0/e5mV9Fdc1vJ1HW1796fNj5nGMq25ZwPuu7iWVCqNlbNz3J+6Zh3dz2ZJ8aXTVSQJzgqBah+UPVul5RERkslSsJZwZtM8d2546DO2dEy87txs4f91JrRdNOYZDm3Zx2SXLxrTf9P0pP9Up/aubSnsuf/izD05q/nce28aapWmaGye3tycpfuemj07QO/XDVy0NQ6RTIenUZE4KFhGR2UQ3chcRERFJMBVrIiIiIglWt2LNzK41s81m1m9mt9UrDhGRqVL+EpFaqkuxZmYp4MfAdUAf8Adm1lePWEREpkL5S0RqrV571i4F+t19m7vngPuBG+oUi4jIVCh/iUhN1atY6wHeiT3eEbWNMLNbzexZM3v2MLNrpJ+InNFOmb9AOUxEqiexAwzc/S53X+/u69tJ1TscEZEpUQ4TkWqpV7G2E1gce9wbtYmIJJ3yl4jUVL2KtWeAVWa2zMyywI3AQ3WKRURkKpS/RKSm6nIHA3cvmNlXgUeAFHCPu2+qRywiIlOh/CUitVa32025+8PAw/Vav4jI6VL+EpFaSuwAAxERERFRsSYiIiKSaCrWRERERBKsbuesJV2aArkhZ8+T85j30S4yHU00G5wY3Ec646Qz9Y5QRESSJkWBgwdDdvzjgpHHaz61guZmZygP4S4o5kr/et2hudVZcEELW/oPgI8+TxhNpwJoaAazWr8SSRIVa+NYYyHn+Zus5ds888Rvc4ImtnIuIWlyZOlgHykKLFzdyt7epTS3hSxcllMRN019a1bXOwSRM8Jya6h3CGelDbaf4z7IZ/kaDmzkY+x4aAVDgBGSJ88gIQY4AbtZzACdGOGY5wpJUSSgk/1l/QWydLKHNg6x4a9+l3ePtQKl4s9jBV/DHFi5BjLZyrEGOrY2a6hYG8etqfnR1K/ZwK/L+rYWVnGAeeRpZNPr62l8fRcDtPE281ixssi8lgGWrWniaV9EOut0dhdq/wJmqf905+31DkHkjDCaw6SWRrf7WwAs4Z7Tfq5iaLwZnscBugEIYgWbY7zEB3nim4+MtAwznJCAfSzkcVIEFW53ZsBc9nLu6rD0rG44xlAxy/bGI7z/sma6P/dbZGM1f7wY7O72sj6ZWSrWTsOK9Bus4A0APsQTI+07Ckt4vv+D5Gnk/75wKYMcJ08jm2kiwz5aOQQErLoow3nXLaWpp4tCa4YgDQ2N9XktIiKSTKnAWRlsBjZX7L+Ef55weXcY8soVVd6zvOzrOfJ6Z3wJADLk2fjKfHbcPYSPObXdydPAEE20cJiyY7cjc6RY1ldk/Y19o6/lnS1Rp5FJF1n98V5OLDmvLFZ3He4dj4q1KupNv00vbwPwWe4FYCjMcijswjECnEGbw7MvXsHrL3bSz4XRbu4UDRyPijnjI3dcwrYTC2jrgCXnQRDdVlB/xCIiMllm0GhDFfsaGSrb2TAVec9wMOyitH8urlS4DdHEq6+u5Zn/2H9SnwPGIeZxz08aMPaMee4iacBZyNt02b4x/SHGNV9bQe/lK8b0uUNXR575c/Nn3P9LFWszrCHIsSDYXdZ2LlvLHh8ptrHdV1Ikwy56eebPB8mT4UUWYxTJk2VVH/S0HwRg+cWt7Jq/jp7FTle3ijgREamdjOWZnxpbaMUtjg4DT9XxsIl3fUlUtJXYSKEHx2nhsR+E5H7wTmypUl+RNPtYSNaHMIsf+i39k1x76XFaM8dLS3j5P850KscV13XSvP79Zef9jfY7XR2Fup3np2ItAdpSR3gfzwFwMRuBBwAI3Sh4mv5wDe+8ugInICTFL//lA5zgCf6FAiEpWhigiaNc/mdX0dDgONDUAF0XzqelBQ16EBGRWaEpOM6KcQ77Dns/z4zbl/PKoyn2+CL2Pt3DkbLDuqWqrECGtziff3rSCXgRYsUhQI4Ghmim2QdIWfwc9FLBlybHZVecoHf90gnjng4VawkWmJO1PH3BS/Tx0kj79fwcgFyY4bB34gS87Jfx2p3De/CM3SzmCB2A0cIRmjhKB/tY8zdfJxV9oehZCvMW1PQliYiIzJis5Sq2L7a3Jtzbt2GCQ8J5z3DU2/BxjmId9zlse3INbz25fyqhTomKtVksG+TpZi8AV/JgxXlCN7YXl3OMNnaxhKe/fC8O0SHXxWTIEeCsvSJNZ9MxoPR94sIPtTO47nIAbFDju0VE5OyUsTydNlEhtp+e6Hz1Yd+r8kUgVKyd4QJzlqVL58hdyPNlfXkvHR/dGy5k25OrOR7tHh6gg7sfXYPzv3GMIhketncBmOMD/N531wLQkC2w6LdX0NBQ2l0cBDp/TkREpNpUrJ3FMpYHoCf19phvBXGhG4fCLnJkectW83/++BAAB5jPfg6RobTbOe9Zum0XDZzgozd10fV71xAEjju0tDg9iwoq5kRERKZIxZqcUmBOV6q0C/gcdo0734FwLvu9mxxNPP6zi/Gf/QKAIineY1E0QiekSIpGH+Rjn2saef7VV5xD66WjQ7HnzHEaGyoMyRERETnLqFiTqukK9tNFqai74KRDrqHbyFDsImm2hqvZ/UALAHvo5ZFfFElFJ38epwVzp8mOAuAe8Dt39NHZkiMwp+PSZcyfX8QM8kXtqhMRkTObijWpicCcgNJh1wx5Lkg9P+68oRtHvIPS1XWMvZzDC9/eBkCeBt7mXQJCDKdAhvm8S6+9CZSGUH/2v32SOY2lszsNp7M1TzYz9r57IiIis4GKNUmcwJwOOzjyuJP9nM+mivPmPMteX0gYDY7I0cjPvvgEBUrX2jlKGwVPjwznLniaq7/YTlO69PjcK5azaN4gULpIYmBOQ1aFnYiIJIeKNZnVspaj17aXta3ktbLHBU/j0cULj9HKW/cuxjFCAh6++wghRkBISIpj3sJc20v8goid7OPan3wGw0mlnMXdx2hpHntjZBERkZmgYk3OeOnYFac77AAdHBh5fEF054hhQ2GW48wZeVwkzdus5OE/eggoXcl6N4tJR4d0Q1IEXqQ7urTJsEZOcON91wOl+9W1NRdob8lX94WJiMhZQcWaSExDkKOB8itgz+W9cecP3djPfHI0jrQVyLCHXv728/8MwCAtHPYuWu3w6HIEpLzANbd0AuAY81sGWHnlypF50qmQRh2SFRE5602rWDOzvwQ+CeSArcCX3P1Q1Hc7cAtQBP6tuz8StV8L/ABIAf/F3f9iOjGI1FNgTreNvaHxUvpHpkM3ilb+UQsJ2EMv/feULl+So4HHWQ4/HD03b4hGAg/JWunGw40McvWXF5FJjR6CdTfamwYJvaOaL+usoRwmIrPBdPesPQbc7u4FM/sOcDvwx2bWB9wIXAAsAh43s/OiZX4MfBzYATxjZg+5+6vTjEMkseIjYeOW2Nayxxfym7LHRU9xnKaRxwO0s/FvDo5cAgVKlznZQw9pBnmeQ2QsTwuHCSgyfJNhgI/fcSEN6fL7nzSm87pIsXKYiMwC0yrW3P3R2MOngM9F0zcA97v7EPCmmfUDl0Z9/e6+DcDM7o/mVaITOUnKirRE15oDaOEoC9k54TJ5z3CUNuKF2hCNPPjnb40MsgDIkaXgGRrsBAAZcrRxiEu++cGReTJBke6WgTO6oFMOE5HZoJrnrP0h8D+j6R5KiW/YjqgN4J2T2i+r9GRmditwK0C3Tq0TmZSM5elk7A2Hz2HHmLYiAR5d8mSIRo7Szsa/2jjSP0gLA95BKjZAI+9ZMpajmdEiMiCklUN8+PYNQGlARWBOe+NxgmBW3YVCOUxEEumUGcTMHgfOqdB1p7s/GM1zJ1AA7qtWYO5+F3AXwCprnFUZX2Q2SFkIlAYwpDnKnFgBNuLkvWoGJ7xp5Lp2UBoxe4ROHvn26M6lkBTHaB3zdAVPMy92jp9jBBS5/j/0lc3XlK7eyFnlMBGZ7U5ZrLn7VRP1m9kXgU8AV7r7cELaCSyOzdYbtTFBu4jMAo3RgIe4Vg5XmHOsQeYwFBs5C3CETn7xp6WdVYbjDN/BojqUw0RktpvuaNBrgW8Bv+Xug7Guh4C/M7PvUTo5dxXwNKXv6avMbBmlBHcj8K+nE4OIzB7NdoxmjpW1VTpsW6vdUMphIjIbTPdEih8BDcBjVjoL+Sl3/yN332RmP6d00m0B+Iq7FwHM7KvAI5SGvd/j7pXvIyQiZ60aDmpQDhORxLPRvf7Jtcoa/fvppfUOQ0Rq6BOFLb9x9/X1jqMalMNEzi7Vzl/BqWcRERERkXpRsSYiIiKSYLPiMKiZvQdsr8Oq5wH76rDeU0liXIppcpIYEyQzrvPdfez1P2Yh5bAyimnykhiXYpqcquavWXGlRnfvrsd6zezZJJ4zk8S4FNPkJDEmSGZcZvZsvWOoFuWwUYpp8pIYl2KanGrnLx0GFREREUkwFWsiIiIiCaZibWJ31TuAcSQxLsU0OUmMCZIZVxJjmm2SuA0V0+QlMS7FNDlVjWlWDDAQEREROVtpz5qIiIhIgqlYG4eZXWtmm82s38xuq+F6F5vZE2b2qpltMrOvRe1/YmY7zeyF6Of62DK3R3FuNrNrZiiut8zs5Wjdz0ZtXWb2mJm9Ef3ujNrNzH4YxfSSma2boZjOj22PF8zsiJl9vdbbyszuMbO9ZvZKrG3K28bMbo7mf8PMbp6BmP7SzF6P1vsPZtYRtZ9rZsdj2+snsWU+EL3v/VHc07oR1DhxTfn9qtfnc7ZQ/qoYW6JymPLXacVV1xxW1/zl7vo56YfSPf+2AsuBLPAi0FejdS8E1kXTrcAWoA/4E+CbFebvi+JrAJZFcadmIK63gHkntX0XuC2avg34TjR9PfBLSje93gBsrNF7thtYWuttBXwEWAe8crrbBugCtkW/O6PpzirHdDWQjqa/E4vp3Ph8Jz3P01GcFsV93Qxsqym9X/X8fM6GH+WvcWNLbA5T/pp0XHXNYfXMX9qzVtmlQL+7b3P3HHA/cEMtVuzuu9z9uWh6AHgN6JlgkRuA+919yN3fBPopxV8LNwD3RtP3Ap+Otf/US54COsxs4QzHciWw1d0nuvDojGwrd/9/wIEK65rKtrkGeMzdD7j7QeAx4NpqxuTuj7p7IXr4FNA70XNEcbW5+1Neyj4/jb2OqsU1gfHer7p9PmcJ5a/JS0oOU/6aRFz1zmH1zF8q1irrAd6JPd7BxAlnRpjZucBaYGPU9NVo9+89w7ulqV2sDjxqZr8xs1ujtgXuviua3g0sqHFMcTcC/yP2uJ7bCqa+bWq9zf6Q0rfMYcvM7Hkz+7WZXRGLdUeNYprK+5WIz2eCJWL7JCx/QbJzmPLX1CUph814/lKxllBm1gI8AHzd3Y8Afw2sAC4GdgH/ucYhXe7u64DrgK+Y2UfindG3lroMLTazLPAp4H9FTfXeVmXquW0qMbM7gQJwX9S0C1ji7muBfwf8nZm11TCkRL1fMn0JzF+Q0Bym/DV1CcthNXm/VKxVthNYHHvcG7XVhJllKCW6+9z97wHcfY+7F909BP6W0d3fNYnV3XdGv/cC/xCtf8/woYHo995axhRzHfCcu++JYqzrtopMddvUJDYz+yLwCeDzURIm2k2/P5r+DaXzKc6L1h8/zDBTf1tTfb/q+vmcBZS/KkhwDlP+moKk5bBa5S8Va5U9A6wys2XRt54bgYdqseJopMrdwGvu/r1Ye/x8ic8Aw6NRHgJuNLMGM1sGrKJ0QmU1Y5pjZq3D05RO8nwlWvfwqJ+bgQdjMX0hGjm0ATgc26U+E/6A2CGEem6rmKlum0eAq82sM9qNfnXUVjVmdi3wLeBT7j4Ya+82s1Q0vZzSdtkWxXXEzDZEf5dfiL2OasY11ferbp/PWUL5a2xcSc5hyl+TlMQcVrP85TM4wmU2/1Aa9bKFUoV+Zw3XezmlXc4vAS9EP9cD/x14OWp/CFgYW+bOKM7NTHO03jgxLac0YuVFYNPw9gDmAr8C3gAeB7qidgN+HMX0MrB+BrfXHGA/0B5rq+m2opRodwF5Sucf3HI624bSORj90c+XZiCmfkrnSgz/Xf0kmvd3o/f1BeA54JOx51lPKflsBX5EdCHtKsc15ferXp/P2fKj/DUmrkTmMOWvKcdV1xxWz/ylOxiIiIiIJJgOg4qIiIgkmIo1ERERkQRTsSYiIiKSYCrWRERERBJMxZqIiIhIgqlYExEREUkwFWsiIiIiCaZiTURERCTB/j/wFnAyLO058wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -402,7 +402,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADECAYAAABOQy+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAA26UlEQVR4nO3deXQc53nn++9T1Rv2lQBBgLsgUjS1y7IceYvkLYozcjK2rxOfeInn6CTjnJnMzT0z9vjM3FluznEmyyS58Y2vjuPEuZPY8djJWEm8xErsOFEiWbIWUiK1kKK47yR2oNHd9dw/qhroBhqkKIJoLL/POSSq37eq+q1Co/vpdzV3R0RERESuvaDeBRARERFZKxR4iYiIiCwRBV4iIiIiS0SBl4iIiMgSUeAlIiIiskRS9S7Aq9FmofeQrncxRERERC7rAPlz7r6uVt6KCLx6SPNbqc31LoaIiIjIZb2n+OLhhfLU1CgiIiKyRBR4iYiIiCwRBV4iIiIiS0SBl4iIiMgSUeAlIiIiskQUeImIiIgsEQVeIiIiIktEgZeIiIjIElHgJSIiIrJEFHiJiIiILBEFXiIiIiJLRIGXiIiIyBJR4CUiIiKyRK468DKzjWb2XTPbZ2bPmdm/TtI7zew7ZvZS8rMjSTcz+x0zO2Bme8zstqstg4iIiMhKsBg1XkXgl919F3AX8Akz2wV8Evgbdx8E/iZ5DPBjwGDy7wHg9xahDCIiIiLL3lUHXu5+0t2fTLZHgf1AP3A/8MVkty8C70227wf+yGOPAu1m1ne15RARERFZ7ha1j5eZbQFuBR4Det39ZJJ1CuhNtvuBoxWHHUvS5p7rATN7wsyeGKa0mMUUERERqYtFC7zMrBn4GvBL7j5SmefuDviVnM/dH3T3O9z9jjbCxSqmiIiISN0sSuBlZmnioOuP3f3PkuTT5SbE5OeZJP04sLHi8IEkTURERGRVW4xRjQb8PrDf3X+zIush4CPJ9keAr1ekfzgZ3XgXMFzRJCkiIiKyaqUW4Rx3Az8L7DWzp5O0fw98BviKmX0cOAx8IMn7BnAfcACYAD62CGUQERERWfauOvBy938AbIHse2vs78AnrvZ5RURERFYazVwvIiIiskQUeImIiIgsEQVeIiIiIktEgZeIiIjIElHgJSIiIrJEFHiJiIiILBEFXiIiIiJLRIGXiIiIyBJR4CUiIiKyRBR4iYiIiCwRBV4iIiIiS0SBl4iIiMgSUeAlIiIiskQUeImIiIgsEQVeIiIiIktEgZeIiIjIElHgJSIiIrJEFHiJiIiILBEFXiIiIiJLRIGXiIiIyBJR4CUiIiKyRBR4iYiIiCwRBV4iIiIiSyS1GCcxsy8A7wHOuPvuJK0T+FNgC/AK8AF3v2hmBvw2cB8wAXzU3Z9cjHKIiIiIXAtFTzHknRRJX3K/HjtxyfxFCbyAPwR+F/ijirRPAn/j7p8xs08mj/8d8GPAYPLvDcDvJT9FREREFt2UN3Da+xmj5bL7Wo20095P08c+TCkyUmEEgHvSaOgeH2eAR/zU+5+H+35mwfMvSuDl7t83sy1zku8H3pZsfxH4HnHgdT/wR+7uwKNm1m5mfe5+cjHKIiIiIquDO4x4O0d9K6fZWHMfwy/5eIxWhunk+gd+lLamIlTmV+86K4qqHt7aOcnurUcZ6J0kk6rOsyTwcgCPSIULnTS2WDVetfRWBFOngN5kux84WrHfsSStKvAysweABwDWXdNiioiIyKtR8pDoVXYPd4yL3s3LvoMTbMGrjpsfnNSqaSqQYZoMt/+bH+UN/RMEBpDUOFXHPzhxoFYOhMqpbU1FBjeP0dN+gCCoPrB63wrlwKsyf+4T1jrHQuersCQRjbu7mV2+NNXHPAg8CDBouSs6VkRERKqNR00UyFzxcY5x0jfxot/IGfoJKZKx6VdxpBFQ5M3/5e28/boJsukIoyI28Sjedgcvh12VH/cR6VTEwPo8zbkjFQWqERRVPmtlgFSxz5VFIdfOtQy8TpebEM2sDziTpB+HqvrCgSRNRERE5ih5wAXvYYT2mvlzm9Yq0x3jrPcx+vP/ibPnU8T1SkmfpAXOY4BRDl4cdyOTjti2aYofHxynVAq4ZddYxXER7jYnyImPb20uEoZnK9Ln1yBVBkpV11IVQNW8xBXpWgZeDwEfAT6T/Px6RfovmtmXiTvVD6t/l4iIrEbTnuFEtIkTbCGqCHVs5uelI4ph7+AI19Hw/veSyVY31s0EJlYZTkFANBMDGdDYGHHjdZO87yeHaG2OMI+IZvKT/klu1QFQVEqewjGDjvYS2VSJqbyx78Um2ttKs/vWqIGyBZrlZPGmk/gScUf6bjM7BvyfxAHXV8zs48Bh4APJ7t8gnkriAPF0Eh9bjDKIiIgsppGolUPRDg6wu6qJ7nLBUlmBNBfopf2D99HVHRFWdLo2vKIWpyLdvKp2p6Ux4qdvzLNzxwVaWiICrw54fF4ANb8GKZWCgNpBkS2QPvM8VTVUr+qy5TIWa1TjTy+QdW+NfR34xGI8r4iIrF4lDyiQfU3HDkXtvOi3sJ9bmKRxJr06aIprkEIKzG1+cwLy5Oj58H1sv75IU5OXMwAIzStiknJedQCVSjnXX19k46ZhMpnq568sR0Cp6riZbZ8TqAFBRfEr+yxVNhvWTFfQtGxouKCIiCy6fJThAj14jbFql6sxGvM29vrtvMwupsglx8w9x8IMp0hI5/1v4/pdEd3riKMRjwerBVaehwlGhgNuvKUYHzcnkFrfF9HVPRHPzzSn3KHNrzWqCqaq8kVmKfASEZEqI1EbL0fXM032kkFSrbxpcuznNo6+5eNEJeLh+zb/mKAqGqms2QHM6Olz3nR7xMAWCBYYjhbgM6P+g6C6dqi11eldX4ifn+qapMqg6JnHYecur0qvqnVS1CSLTIGXiMgqEblxKurnGb+TUTpn0mdHqM1nFftEhBxmkBM3/SQWQBhWBB4GLa0Vx82kz/ZJMouP2bAF3nu7M7AFLGAm+IHZBYLDoMa5iIOpMHSyudnjQqu9b1gZTAU1muUUNMkypMBLRGQRuVOzee1ypj3DwegGnuRNnGIAuFTzmlf9LAcaw3RybsdbyTVBYwtYRZ1UEBjl/txBxRnKJ7Ukountg/tvh/6tkErHgRTAoefh+t0QJI/LgVNlUBUusF21j106/9VNzSmycinwEhFJjEfNFC6zAG4tRQ/Z57fyQ97GSTbV2MOZ27u5Vs8ncEpvuJWePo+nCEiqbCywJKBLAqjklEFQXqYELAzY0g737IK27jivHDQBpCre7asCpHB+WlAjfzU2uU1NThBFjZffUWQRKfBaYUoecDrawATNQDxfS58doSGYqnPJRJa3kVIrR31r1bIl8QSTAS9yI0/zRi6yruKIywVKs2kRRkiB0u5BejZOE6adMAhnlzBJopfqJrPZckQe0NzmbLkhItdYnElPpeJ9woqoqCqAqjhhOT1QldGrtv/Zp4C7AZiezrPnyX8EZvt43fnGt9araLKKKfBaIQqe5v8qpTi0/i00tfwmFsTfQCOP+zHseP6r7ORJsuSrZh+eL84LKbLN9tMTnFqw46rIavBrxQKH2MG5lj+lFJX/LpJqnHIforBE5/px1m8ZIZUpkUrPVhWFYfw26W6E5UAolZqJy4J0SGDQ3F4i1zg6c1wqVXGO5HxVAVR6dntyLEUUQfq1zZwgV+GG3fHPTCZLOp1h9023EwTwzFM/qG/BZNVS4LVCTNHICc4SlZ7hlrc6N9zhpFJGVIQTr8DLz72fbx17PxAHZOXpX4KkfaCyr0cYQLEEhWlY99xfs5mXSDM9r/9IrRFLKabZwTNsD16gIZi8Zte7lkx5xAFmayzz7vRbhvU22+RVcucgeaaJZ5zeYGm67cqbxNaigxSY4iDt3Rdp7RqmpWOUMJUGhzATvwUWplNkGlI0tsTrz6XSs2+NqYrbXA6gKtNS+jWsWO5ONlcCQgrT8e8+nclg5jN93kQWmwKvFSiVir8Zp1NAFra9Dq6/eTa/sqmh/PkRVPb1COO5bM6dgJf2voujB94V9xGpeJ/xin07uuNtC2A6D88ch9TfP0xbdKF64r9LjJyCuFm08hkMaOcCN/IoW4MXydniBXKGr5iavJwF7K6Y4PEpH6eDsGqf0xRowLjeGing7PEJukjpw+FVKr8eUpkimWyRMB3ft1QyqaW7obfDtWdd7waefeZxOjq6OX/uNP0Ds8sI629LrhW906xApVKeqYlJSumAdKZxpink1SoP+e7dCH2bZ9MrWkZmOtQe2As7bq7OLxbh9LF7Of5yHMCVu6qYz87kXDU83Crm2qkKhpxTx4y/+MIgpShFmurV7i3ZpzptbjBVux9OigJbeYEb7EnW27HLBoVV57jK99ssU6St8JqOHfYSWQvI2vyOOuUQN8JJYfpgELlKGzdvo7WllYnxMbYN7qKjo20m79Y73ljHkslqpsBrBYmIKBaGOX/yEXJNkzQ1t1MqTtPQ3MGGLTddcQD2WqVSsGlb/A8q5tpZaCi51U6P+wU7hQfewfHDMD4az+FT7pAcBLNNpqEl6RWzTleHHZ7UWsQ1b0MXYd+e9/D1//FtUj7bWfnVrrG2sPnHzz1nQEQfR9hpz9BmF2bSs0zSYiOXLMdJn6SZZqYq1oUDaPMcB5jgMS9QwtlOK1Ne+/c94U1M0nSFExrML0+WPO12rmqGbpHV5OTxI/T3b6KjM6nWv4IvaCKvlQKvFaTINLnGZnoG7mHj4BBjF1+hb/PdDJ8/yqnDz9C/7fZ6F/E1yWZh2/XxduWor8oJEasmSrT5kyNWzkRd3n7HfSWevvft7LoxrisqN3VWz0o9u7BsWPGma8k6bJXNox5Vz3ztnoxYq7gW84izZwOeeSrFcy9lKRRsZnHadMZpbJg/yWP5OMc5dux79G+4mzDMzEad5kxMnGFq6gJdnTspFcb4y9NP0d/3RoIgmFczmJ8ypvJB1XUmFwBAZ3uB7Mxf/pwPmorpoaYLRhBA4cHPsp6jFfeG12TuGnmX3+e1nrtakR/iGK4KQplDtcZSDwq8VhAHwqQNMNfYxvkT8Qiqtq6NDJ8/VMeSLU9hGDePNjXFj8uBWlAj8AIImZ8eUDtQqjpH1WK3EV1dETfsnCaKJigW5/Rtq1z0tmq7xLlz5zhxIuLmG0eSfZPjHPbsfZbNmzbR1nqWIIp4cs8kg1tfobUlnlZkpi03OW/5zOUmVnewKOLYyQyd7QXWrysk+y5UtohCwTh+KsOzgx/m1LlyIDg7gULV9fv8c8ymLVCLUGNfr0qvvKYFQrXIK9LLJ6m+x9mv/QJZB8sUSKVKc88ga9j6DRsvv5PIIlPgtYIYRrEwwfTUBc4eP0muMe6P4F7zI0nqLAggk6meibu6dqwiYHPn4tBpNm3sIZfzefltbRkmJy/Qt76V4lSeKBqnoyNDNpPU4nlU87yVfdssKpHJvPrXSjrtbNmYZ+tAMuKy6jnmLxA8fx+flzY3uLtk+gLXVCWqcY45x33p4WlGx1NMlQ5QLASQLLosUvb4P/0dza1tXDd4PdmsXh9ybWmqvRUknfT7GRs+SBCE9Ay8DoAoKtG3+ZY6lkyuVqlU4uLFi6zr7p5JO3b8BMdPnARg29YtDI2M8E8/eIIfPv0Mg9u3kcloHoMrUSycoli4yNjQC0SlfL2LI8vEnqfiVoSBjVt4Yd8ejh87XOcSyWqnGq8VpESJVLqRzt7X09XnM0uHhGGKbLa9voWTqxKGIW95091VtUcD/RtmtrOZDLfdfBMAQaTmsiuVCp0wjGho2k4md5ax4ZdIZztoyWy+/MGyqpWSsTctre3cdOudnDx+lD1PPc7W7dfT0tp26YNFXgPVeK0g6gYqcuWKpSIlL2BWolgYwr1IQ9NGSoVxLp55qt7Fkzp66fm9HD28h0Jhmhf37+GF/XsZHR0mCAOeefKxehdPVinVeK0gISlU1yFyZfLT0xSKAZ4tkZ88jgX5eMkfIExpjZ61rLOrh9a2kCA8TWdXz8xIajNnfd9AnUsnq5UCrxWmVJhk6OzTHH95mlRopNJZmtvW0961vt5FE1mWmhoaCacDPN1NU+sWGlsmCNNx/7hURm+Ba1nXul7a2kM2bd1NV3fP7ByBK2TVC1mZ9K6zghSYZmLsIplcF529TZhPc/j5v+fIC4+Qyebo6NnC9t331ruYIsvK1HQeaCDXeAOg9UVlvq7unnoXQdYQBV4rSESJVKaRrr6NNDQ56ZTR0tHHzjvu5+gLf08Q6NcpMlcYBJQ0IbmILBPqXL+iGERFLIh7ehWL8dqGhfwEqUz26hcZFFmF0ilNuyEiy4eqSFaQNBmmiXjhyc8xMbqO/ORFGpo6AKN/6y2cOvJMvYsosuyUohKT+SmKI48TBB3kGpuYmjiC47R0bCFMacJMEVk6CrxWkICAbEMPm66/n46eczS3ttPS3kcqnSWVCtiy8831LqLIsjM5NQXeQDpzG3CI0aF9NDT3YUGKsaGXaOu+sd5FFJE1pG5NjWb2bjN7wcwOmNkn61WOlaZUnKKpdYD1m2+mY90WUmkNhxe5FAdSYQb3IulsDx4VaWgeINe4niiKZ8/0hdaTFBFZZHUJvMwsBD4L/BiwC/hpM9tVj7KsOAalYp6piWGmJkcoladdFpEFRVGJ/OR+SsVR3CMK0yOUihMAeFRi9IKa6UVkadSrqfFO4IC7vwxgZl8G7gf21ak8K0JERFTKc+bYIxSLkzQ1t1MqTtPQ3MGGLTcRhmo5FpmrIZPl/PA407YX9z5aOnYxMfoKIxf20b/9PiwIcVTjJSJLo15Njf3A0YrHx5K0GWb2gJk9YWZPDGu+dgCK5Emnm+nbcg9RVGL4/FE2Dr6RxuYuTh3WN3aRWlKpFI25VrINg7R13UQq3Uxrxy6aWjaTzrTh7qD5MkVkiSzbKhJ3fxB4EGDQcnpbBAIiPAgZH4FcUxOk05w6/DTNbb3kp0brXTyRZS2d2cDoxf2kM+1E0Ti5pg0Mn98DGJmcJtAUkaVRrxqv48DGiscDSZpcgmEUCxPkJy4wdO4wrZ39bBy8C8w4c3Qfk+ND9S6iyLKVyW0m19SPWUBT2zYaWzbT1HYdTW3baWjeXO/iicgaUa/A63Fg0My2mlkG+CDwUJ3KsmKkSVMsjHPqyDfxqESpVODk4aeZHD3Pug07OPLCI/UuosiyNT11iEy2g1zTBsJUIwDpTAvpTEudSyYia0ldmhrdvWhmvwh8GwiBL7j7c/Uoy0pSokQ600bPwL20d++htWMDEM9Wn0ptvPTBImtcECrAEpH6q1sfL3f/BvCNej3/ShWEGXKN6+nZCC3t62fSUymt/iRyKal0N3Cu3sUQkTVu2Xaul/lSpCgk281tvXUti8iK4zB87lmcIulsE2ZGpqGZXON6QOs5isjSUDXJCuNRibHhA5w59hxnjj3H0LnDmkRV5FWYHH+FofPHwItMjh3GCAlTjYxefJ7pqbP1Lp6IrBEKvFaQAiWKhXHcI/KTw7g7xcIUR158hInR8/Uunsiylk4fJ9cwQPu6O+jqewsjQ/vwqEhr141Mjh2ud/FEZI1Q4LWCFIiwoIWW9uvJNbYzfO4o3X07GNj+Bk4f09gEkYWUSkWiaJQoKlCYHqZYHCfb0EOxMMbwub2UB6mIiFxr6uO1osQfDg0tzvD5I0yNneXEoSdZ179Li/yKXEKhlCcVpJgce4ELp07glGhoHsCjEmYhYbqp3kUUkTVCgdcKEhIyXRimVNzDuRP7uelHPkC2oZXjh55gSk2NIgvKZZpo7LybdKaNjp51ZHItWJAilYnfAqcm1LleRJaGmhpXkBRpLMwRBCk6ewdJpxuIigV6NtxAZ+82Du3/fr2LKLIsTRemAGhqfR2pdDMW6DuniNSH3n1WGI8KFAoThGGKC2dexixufgxDI51pqHPpRJanIAjrXQQREUCB14qTSrfQu/EOpsafZmD7rbPpmkBVZEGpUE2JIrI86NN6hSkVJwBYv/mW+hZEZAWZzI9TKo7NSy/kh5kcO16HEonIWqXAa4VR3xSRKxd5iQunX6FYGKpKT2VamJo4VZ9Ciaxg+elpRkbHGB0bp1jUJN5XQp/iK0wQZOpdBJEVJ7CAdOMtTI4/Srahm8b0BgDMAvT9U+TVGx0b57kXX2J8/CJT09O0NjdRmJ6mo62VG7ZvIZVSWHE5ukMrjHuJl/c+TlffBJ09m2jt6Of8qRcJA6Orb1Ad7EUWEAQNNLXeRH7ySZwpsg29FAoTBKpFFnnVDhx6kfvfuYO2lu2MjI5x+PgJbrr1Ro6fOs2zLx7kll076l3EZU9f9VaYUnEMjzbQv/0NABw78BjpTCPZxjZOvvJ0fQsnskyVR/8GQZrm9t2YZRgffpnC1DBNbYPgmrle5NVwnNaW+At+a0szo2Nxv+P+9b2MjU/Us2grhr7qrRAZpjAiCnln/w83cuaEc91N24iKh9iwdTupVMD5k1pvTmSuVBgRhi0Mn2/l4pk2zBxsFwBBEH/3zOQK9G4aI5MrEIROFDETjJWCiqAsCeDMDHwmEXBSGjgpa0BjQ46Drxyhq6ON02fP0dbSDIC7X+ZIKVPgtUJkLc8dNsLpyRHu2f8xnt1/D4+e+AkmRyMe+9YQFmSYzsP6R+C6G2HDlvi4VAjNbdDaOfOZIbKmvP6GjbjDL33gHzl0soUogsDiJbaCwIkiY9+hDn79W9s4+UonFjiGzSzfWDkHWPlvyMLZxoLAAtwgmyuxbqBEZ08RC51Uso8DYRjgQBAmAZtDmLKZ2K00bWSb9MEly9/uHYO8fOQYh44co6W5icGtmwEolUrcuOO6OpduZVDgtYI8EPYw7CUO+Xe5i+9x5wv/mSbfzmHyFCjRTh8HD+/lwPd38zyzfb0cI7z7DWy7AVraIQzjf/3boHs9BGpwllXs137xw/GGTzHQM5VsV69t+uabz/LAT7zA2eEsxWJAXOUVK4dHld9bjNJsgjvFYsBzh9t5bF8Pp15pjLPiijDKkVZgDh7/Pc4EdTPniMhlSnQcnuKpllto646fMxWWm0hnnopyzOfE2+VwLQwg1wgd6yDUO7tcIyfPnOX6bVuY/doAeEQqlaKttaV+BVtB9Oe5wrRZyC3WRMGddGDAMa6fyb3Aj/AcJQ+Y8NlFf09H/TzzyF288MjNHCMLQETIP9FAcOcb6N0M6TB+c29qgx03Qf9W0OAUWUuCAHo78vGDisCLWk0oPj9/oGeCd91+jGLJqg4xq9jf5wdxAOYlposhB0600HdgjNOHG2f2OXWhkUIxSM7lM5GWAW6zD0oOQ8WQfwxfR3df/CXL5reSglenB0klXDmtqwc2bI5rylVLLnOZXhRXTR+tK1T6Ei/+0CJabHTmcUvwPNfxPDD7GRIRcjIaYM8P7uTlH9yAE1DCOUYH+2nH73gjfVth8AYoleIaMhG5vFRYK1Dz6p9zRZDLlNi9ZYjdmy9WZf3Dcxu4a0fFJK/R/HMY4B4xNpnm+aN7eeLgeoaPZwnM5wRPTlBu66QysHIMx904/WwTDwV30tgKmTRYEBfbHYbOz56pXFFePocnAV0YxoHbho2Q0yDrVWegb329i7DiKfBaY8pvkiElBsLDDFDdIT9y42zUy/4nbuXZJ17PI3d9iMe+C+lM/M04CGFgO9x0G/RujGsJgiCuHQs1xZjINVEVzNkCwZs77c3T3LXjFHftqDEprFc3Dc2TBHTTxYCj555k//Fu8oVwtpbOHBtmZhv3pFau+lzFKOTlZ9v5X4330NCYNJNWdGcox3qVPRyqauYwwhQMbHG2DUJLW9IkW+Oya53DPX6ObA4asvOPkavjDqfPXeDChfPkp6cByGVS9HR1sa6zvb6FWyEUeEmVwJze8BS9fJO38U3Gf/AbHIoGydMIwBSN7OM2vnb3z8XNE8T/pVKwcRvsvh061yX9UCreKFMp6OpVcCay3GVSEdvXD7N9fRxlea0gDWZr3mrku8O54Sc5MdRalW5JZmVNGzNps82wo5MZnn2il2899+MYxLV0NnuS2c3ZiC2oCu7i/Xt6IrZfH9HcGserXnFceXt83Mjn4zKXA7xy+bI5mNcuvMY9s+9l9r1o3HN3Gw3ZOLKdmpriyImTnDt/gRsGt9W5hMufAi+5pKZgnN3B01Vpd/Mw+X/6LS7QQ/k779loPXu/9wa+84XriKhsl/TkfyOkyMC/eCeDN8RvkgZ0dsPm7WqSEFlNzKC7dYru1qn5mbWaW6P5wdsbrjvOh6afYWwqMxOUAXiy77zeFlE5cHMcY2gix74T6zjwdDfHSmGSV+5rN3t8YM7T358qt9dWnTK0CHvHO9m4OSKT8epAr8Y1xc215fPG73Nt7RG5VVTzdv7iRXZe91b6ema7s1hrM3093Xz/0Se4oY5lWykUeMlrkg2m6ePYzOMNwVFu5nGKnqLI/AmNpj3NoWgHez9/kEcYSL5vGlM0wD1vZ32/09kVvxkGBtt3wuANTmvbEl6UiCwruXSRXLp6HUCvEaQB8/q+dTZNsrX7PO5xF4oyq7HvbF5p9nncuDDRwKHnTnP4+x2UogCvOK6qedTnj4J1IIoCJgppSnffS29ficBmA0PDZ+LNgNJMwFbZqmru5HJOf3+RjvbSshiBHgQBo2MjzK0KHB4ZJZVSZ+BXQ4GXLKqUFUkxf8HUnE1yc/A4N/N4VfpUlOWV7w6yz29nhHYACqTZxwaie95Ja3vcv8UMGhtg920Ru26CltY4QDODjJovRWQBZhDO6xe3UD+5yuOc7uYJupsneP2Wo3H2AgFbrRq78oSiU4UUJ08f4PiLc75FJsFaYNXBnEdxs2s5rBmfzvKD4TbGbr2Xxkavato1vPalzNmnqSli2+Y8fT2FuObOqQr04vIa5rNNsIEno3OThFw23njdjuv51t8e4O9/MDLT1JjP50mFIbt3DNa+P1LlqgIvM3s/8J+AG4A73f2JirxPAR8HSsC/cvdvJ+nvBn4bCIHPu/tnrqYMsrLlgjw7eZadPFuVXvA0x7/7WQ75TkpJ0+UQXTz8xZ1860fvI52dfcNoa3Nuuq3Ezt1xlb6ZzXT4Ly3w5VhEZCnk0kW2rjvP1nXnqzMWqLmrFdxFkXFx8jnGRzNVtWtlZr5gbRzA+UNN7Jv4aR7/YVMS1FXsW2M77osXJe+xcfNpOu1s3jBF77osu3f2snvHefL52c712Uxm4VG7UuVqa7yeBX4K+H8rE81sF/BB4HXABuBhMytPN/VZ4B3AMeBxM3vI3fddZTlklUlbgS3hQbZwsCq95CGnv/e7DNMJxH3HXvYdPDH9ab73nRRGMuLKjJ6eiF03lTh1Iu6Na0lzQ2CGBdDZ5WRXUd8LEVmdgsDpahqnq2m89ohULlEbB/S3DXHj5H9jqphiuhR/7NucWsC5TbBV/ercuHixkQNdH+Kxp1pobCiRz3fP7jtTporjPQ7YmhpLrOuapqu9QBhUD3KYWSM1qogUK9dNdQhDJ51aXQHdVQVe7r4fak6odj/wZXfPA4fM7ABwZ5J3wN1fTo77crKvAi95VUIrsSE8ygaOzqTt4mmih77CiHdQTF7Sk97Ii34jP2Q3j9DIzLxFM/0v4mGX1/3SfezaXaKhwQkIyOWcLdtKNDcv9ZWJiFxbtfrMVblE8NaczTNw8nfiB6PJvzlqBX+jUznOjrewd7KZyK12jR2VQZ5X9R4rRgElD9jwnrtpbymUn6j2vMbl5tPKfHcymYiOlgLhMhmheq36ePUDj1Y8PpakARWfmHH6G2qdwMweAB4AWKeuaHIZgTntdqEqbSOvcI//Rc3O/hEB56Jenv+tJ/gu1xMlgVieBgpk2PLz72ZgY2nmW19/f4kdOwt0dMydkFJERBbSkpuiJTcFnI0TFhockagVvBWjgHOPnOFsPhfv49VfpMtm53Krzp8sZnhqsomue95IU0OxekHvqDLoqyxI/CAqxT9bGov0dEzSkC1xtS4b0ZjZw0CtqWo/7e5fv+oSLMDdHwQeBBi03OqqZ5QlYwZpCjXz+sMj9HOkKq3kAee9h5c+9z2O0g84TsAP6SX85x+gpcVpaJidc6g8WWNDU8SNN05zw85p2tqimW9sWnZJROTqpIKI9S3D0JLMLXe54G2BvmZj+w4zVYy/iI9PZ3n65Fay4XR1ADfni7VFEQ5MFHJkbrqNpsYiuXQcfM02mVYcEDn33F5jAuPK67lkbnwBb7/cPjUcBzZWPB5I0rhEukjdhRbRY6foCar/cNzh4p9/niN+HXlyM+nlv9Fh7+Dr7OAb738fmTSU/xLb2krcekuenTvzNDTEQ4lSKWhtjeb+fYuIyDXUnJ2iORvPLZcOS1zXfZLXdR+55DHlGrhSZFwY2s+5E60USrPzesxtAfEIRs5e+pzX6vv4Q8CfmNlvEneuHwR+QPw5NWhmW4kDrg8CP3ONyiCyaMyg087TyfkF94ncGPra7zNGPGzcMY5GW/k2N/JV2qmcTLaJEd76Gz/OddsLBIFjUXXn1N51Rbo7o2Uxb4+IyFoXBs66phHWNY1ccr9LDXIou9rpJH4S+L+BdcBfmdnT7v4ud3/OzL5C3Gm+CHzC3UvJMb8IfJt4OokvuPtzV1MGkeUiMKfTztHJuZm0zcEB7vbvMEnTzIz+U57jFR/ksV+e5OFk7rLKqu6IgAJptn78HnZcl6epKcJwcllnx2CeDetKasIUEVmhrnZU458Df75A3q8Av1Ij/RvAN67meUVWEjNoZHzmcbON0M0Z7uARSl5reaWAYe/g0Be+w9O+a2YesykaGaOFTT97D+u6C/G6cjMBW9zpf9vmPDftnGR9T4FUarYfGoBFgHpLiojUlb43i9RRaLVGyER02Vm6OMsd/MNMqjuMeDuH/8dfcob+eSN6Sh7yTTbz3ff/FNmMJ4FX1aQ5NDcWeeebh+hoK5LNKAoTEVlqCrxEVggzaLMhbuIJ4Ima+7jD8Ne+yEnfOGex8tgFevjb8Jf55vc6yaSjmeCtrzfPzTeMsbk/Txh4xTIi8YSHuUyElmETEbl6CrxEVhEzaLeLtHNxwX2iz/01I97OFI3xY0KO+Rb+gOuZpImgqiZtdvvu//Cj3LRznPa2QtUEhQakUxHrOgqk9Y4iIivc+HSBpsz8+R8Xi94mRdaYeLLZi1ARnG3gCK/375OnIZlMttqot3L4vz7DFxikwNx1lpyIFOC8+T+8jes2jWMWLxnS3lZg8/oJclktmikiy4d7kUxQezLUPacu8MZNvdfsuRV4iQgQ15blmKyZ12jj9HKSO/l+zfyipzjvPbzyX59lD33lMzJGK/0few+9XVO0Ns9OZBtPPOs0ZEvs3DrGpt4JGnIKzkRkaTx98hCdjSc5M55jXWOu1tKH14wCLxG5aikr0msn6OVEVXrkxsU//CrHfBsXaZp33CRNfIsB+j/6Y7Q0FsGc2bV5IzDo757ipuuGGOidJBVWj9Qkips5Q/U/E5Er8KYtfZwZm+To8Bj7zlxkXWOO3pZGuhtzlz/4KinwEpFrJjCny87RVTG32VwlDxj64tcYpmteXoTxrG/l5Y9/nEIxmFmqCZIZoz0ilXK2bRjnxu0X6WgtxFNHz56AMIzoaC4QajJaEUmkgoANrU1saG5gulTi1Ogkhy6M8NzpC5QWWHJo0Z77mp5dROQyQpudPqOW69hP6Q++xRhtNfufjXg7e30HDzNAqeItbWZkJhBS4O2fvpPrBsYIzOeshgvd7ZOs75iaqVETkbUjE4Zsam9mU3szk4UiZ8Zrd7lYLAq8RGTZCy2ibYGRmh12ns0cpOQBReaPRCqR4qyv59lfOc736K2a/8xwIgLyNLDjY29ic98YzbnCTGDmyVRoTbkCgwOjrO+cVHAmsgocHR5jY1vzvPSGdIrN7S3X9LkVeInIqhBaREi+Rk6ezXaQzRxc8NhJb+T0H/41+30702Rm0uNaM2ecVkZpZ+dHf4T25jzzZtywiK3rR9m58SI9bVNVTaLxPgGpUAujiywX9fxbVOAlImteg02wxQ6whQML7jPpjZz+4ncYTdbXrFT0kG+whcc/9B6CICIwqoMvdxqzBXYMDDE4MExTtpAkJ2//HpEKItqaphWciSyBgRq1XUtFgZeIyKsQB2cvLZh/K48y8aW/YMg78Rp90S74Og488ACPv9jDvJHrHuFRQGtjnh0DFxjoml3bcyIfki/Ewzaz6drzDonIldlzaoj+lk66GqqnsRmayjNZKNHX0njNnluBl4jIImm0cRptvGZeP4fh959gwpuqBgGU5T3Lcd/MX7KdPLNv+gElHk7OmWKa9/yX17O1d3h+XzOPyGWKtGRrNbeKSKUjQ0WeOTXNe3cUacnOdi9ozqTZd2ZIgZeIyGqxUGDWYtDNGW7mcYo+/63ZMUa8ncf+40n+amaS2mpF0tz8L9/Elp5hOpqm5p0hFUasbx+nJafgTNa2XCrFYFcvT5/cw+t6O+lsiFfkSAXXft4ZBV4iIstMyoo10y817QbEKwgM/T9/z2NsZqrGhLUF0ozTyi2/8CP0tI1VN3nOmWIjDJyBzhH6OkZpyNQuj8hK1pJtYGvPOp46cY7+1ib6W5sYzk+TCq5tT0sFXiIiq0TKinTbGbo5s+A+RU9x8ff+gZforplfnm6jSIq/pZ/NH3sHDdki4byRmk5LQ54dfedY3z5GNlUdnHkUT3K7hCuxiFyxxnSKOwd6ePH8MP949DS5MOR1PR3X9DkVeImIrCEpK7LOTrOO05fddyd7yP/h3zJKG15jvOUR72Ls53+WsXyagOrAzJMjetvGGFx/no6myZmcmX3KozqjiDBwWnJ5BWqyJF4/sIFjI/F2OgyuebBVSYGXiIgsKGt5sgvUoHXbaXjwUzR5tuaAgQIZXvEN/BObyNMAzJ181mZq2Bwwj3jn/7GTzV3DhEG8wkDlEc3ZadobxhWcyYqmwEtERK5K1vJQc/LacdrsIoM8N7cL2YxyEFXykBHrYO9vHOHv6K257xQ5dn/kDvo7RmjITFdnulfFda0NU6xvG6G1QQMJZHlR4CUiItfc5WqpQivRwTk6bOEF1YueYuSPHuFZ76dUY3momOMEjNLGpg+9hWyqRC5TqN4lctKpiC3d59nQNqrgTJaUAi8REVkRUlakk7N02sIjOytN/8nfcdG7GCE7P48sT7KJTT/zFsLAkybP2tVyBnS1jLG96yxdzRMEFk+6OdPvLYpoSBfi5lGRy1DgJSIiq1LGpum1kwvmb+MF8l/6PhNcevmYiJCD3ss/spEiaYzybOeV1XjGmx+4jm3d58mli/icttWZgQRALl2gIzemvmprlAIvERFZs+LBA5dvauyyM+xkL3mfX3vmGJM0c/DBV3iUfko1loyC2ak6SqTY9dO3sqFtiM6miepzRU5gzrrmMToaJxScrUJXFXiZ2a8BPwFMAweBj7n7UJL3KeDjQAn4V+7+7ST93cBvAyHweXf/zNWUQUREZKnEAwnmyzFFh51jJ3sue46Cpxn68g94xgeYrDHRbZE0UzRyw/92G11NY5QnU3dn3kS3ZhH9bUOsax6hLTd3tQJZjq62xus7wKfcvWhmvwp8Cvh3ZrYL+CDwOmAD8LCZXZ8c81ngHcAx4HEze8jd911lOURERFaEtBVYxynW2akF95n2DENfeZzD3nnJc0UEPEofW953O+kwwiyqvaM77kZHwxhbu87T1TRGKpiz6HrkpMOS+qpdY1cVeLn7X1c8fBR4X7J9P/Bld88Dh8zsAHBnknfA3V8GMLMvJ/sq8BIREUlkbJoeTtJziT5qZTvYy8TXHmFsgYluyxzjoHdz4QPvoBQFBDVWI3A3uptH2dpxjsY5U3ZEXh3UpYMSbblJAgVqV2Qx+3j9HPCnyXY/cSBWdixJAzg6J/0NtU5mZg8ADwCsU1c0ERGRBTXaOI3UXoC90no7hv/PpxmnBa/RFy1PjoPex2P0EdUI4ipTIoyALG/9uX7WNY/i0dwBBbPbYeB0NozRmtEEuJeNaMzsYWB9jaxPu/vXk30+DRSBP16sgrn7g8CDAIOWUzgtIiKyCMygmdGaeS0M022ncX+65moElYqkGaKLp74wVDUy1GpMy1EipESKG/75bfQ0DWPlWrLyj/KoT3fMnJ7mEdY1jdA0d6LcVeCygZe7v/1S+Wb2UeA9wL0+O372OLCxYreBJI1LpIuIiMgyYAYpipfcJ0WR9RxjvR277PncYZwWLn5tP3vpqmoSNbwqWIsIGaaT7e+9mXRYJJzbb62iydPd6Gwco7/1Al2No6SCaN5UHlVlDkp1r3G72lGN7wb+LfBWd68cE/sQ8Cdm9pvEnesHgR8Q11IOmtlW4oDrg8DPXE0ZREREZHkr17I12ygbOXTZ/SM3Rr/+GCNcfvHqo97Lqftfj7sRmOM1atyMuHIttIj+1vM0pAvg9YnArrbz1O8CWeA7FoeQj7r7z7v7c2b2FeJO80XgE+5eAjCzXwS+TTydxBfc/bmrLIOIiIisIoE5bVykjYuX3XejvUzxoccZpX3BOdTKJryZc+97O+PTOToaxth7avOC+2ZTBbobhmjPLW6/NLtUldxyMWg5/63UwjdHRERE5NWa9gzFBdf7jOVpYIguxmit2W+tUkiRNi7wo5/YTHNmir5f/+MfuvsdtfbVcEERERFZUzI2TYZLd9xvZJwOFl60vVLB44EGf/XZC2zl+Uvuq8BLRERE5CrMTIrLwpPill26MVREREREFo0CLxEREZElosBLREREZIko8BIRERFZIgq8RERERJaIAi8RERGRJaLAS0RERGSJKPASERERWSIKvERERESWiAIvERERkSWyIhbJNrOzwGGgG17lwkmrl+6B7kGZ7oPuAegelOk+6B7A8rkHm919Xa2MFRF4lZnZEwut9r1W6B7oHpTpPugegO5Bme6D7gGsjHugpkYRERGRJaLAS0RERGSJrLTA68F6F2AZ0D3QPSjTfdA9AN2DMt0H3QNYAfdgRfXxEhEREVnJVlqNl4iIiMiKpcBLREREZIksy8DLzH7NzJ43sz1m9udm1l6R9ykzO2BmL5jZuyrS352kHTCzT9al4NfYWrhGADPbaGbfNbN9Zvacmf3rJL3TzL5jZi8lPzuSdDOz30nuyx4zu62+V7B4zCw0s6fM7C+Tx1vN7LHkWv/UzDJJejZ5fCDJ31LXgi8SM2s3s68m7wf7zeyNa/R18G+Sv4VnzexLZpZb7a8FM/uCmZ0xs2cr0q74d29mH0n2f8nMPlKPa7kaC9yHNfUZWeseVOT9spm5mXUnj5f/a8Hdl90/4J1AKtn+VeBXk+1dwDNAFtgKHATC5N9BYBuQSfbZVe/rWOR7suqvseJa+4Dbku0W4MXkd//fgE8m6Z+seF3cB3wTMOAu4LF6X8Mi3ov/HfgT4C+Tx18BPphsfw74hWT7XwKfS7Y/CPxpvcu+SNf/ReBfJNsZoH2tvQ6AfuAQ0FDxGvjoan8tAG8BbgOerUi7ot890Am8nPzsSLY76n1ti3Af1tRnZK17kKRvBL5NMsH6SnktLMsaL3f/a3cvJg8fBQaS7fuBL7t73t0PAQeAO5N/B9z9ZXefBr6c7LuarIVrBMDdT7r7k8n2KLCf+MPnfuIPYpKf70227wf+yGOPAu1m1re0pV58ZjYA/Djw+eSxAfcAX012mXsPyvfmq8C9yf4rlpm1Eb/h/j6Au0+7+xBr7HWQSAENZpYCGoGTrPLXgrt/H7gwJ/lKf/fvAr7j7hfc/SLwHeDd17zwi6jWfVhrn5ELvBYA/jvwb4HKUYLL/rWwLAOvOX6OOHqF+MP3aEXesSRtofTVZC1c4zxJM8mtwGNAr7ufTLJOAb3J9mq9N79F/KYSJY+7gKGKN9zK65y5B0n+cLL/SrYVOAv8QdLc+nkza2KNvQ7c/Tjw68AR4oBrGPgha+u1UHalv/tV+ZqYY01+RprZ/cBxd39mTtayvwd1C7zM7OGkv8Lcf/dX7PNpoAj8cb3KKfVjZs3A14BfcveRyjyP645X7VwoZvYe4Iy7/7DeZamjFHHzwu+5+63AOHHz0ozV/joASPox3U8ciG4AmlhhtTbXwlr43V/OWv2MNLNG4N8D/7HeZXktUvV6Ynd/+6XyzeyjwHuAe5M/MIDjxG26ZQNJGpdIXy0ude2rjpmliYOuP3b3P0uST5tZn7ufTKqOzyTpq/He3A38MzO7D8gBrcBvE1ebp5KajMrrLN+DY0lzVBtwfumLvaiOAcfc/bHk8VeJA6+19DoAeDtwyN3PApjZnxG/PtbSa6HsSn/3x4G3zUn/3hKU85pb45+R24m/iDyTtKIPAE+a2Z2sgNfCsmxqNLN3Ezex/DN3n6jIegj4YDJqZyswCPwAeBwYTEb5ZIg7lD601OW+xtbCNQIzfZl+H9jv7r9ZkfUQUB6J8hHg6xXpH05Gs9wFDFc0R6xI7v4pdx9w9y3Ev+u/dfcPAd8F3pfsNvcelO/N+5L9V3RtgLufAo6a2Y4k6V5gH2vodZA4AtxlZo3J30b5PqyZ10KFK/3dfxt4p5l1JDWH70zSVrS1/hnp7nvdvcfdtyTvkceIB2SdYiW8FurRo/9y/4g7BB4Fnk7+fa4i79PEozNeAH6sIv0+4tFvB4FP1/sartF9WfXXmFznm4ibEPZUvAbuI+6n8jfAS8DDQGeyvwGfTe7LXuCOel/DIt+PtzE7qnEb8RvpAeB/AtkkPZc8PpDkb6t3uRfp2m8BnkheC/+LeDTSmnsdAP8ZeB54Fvj/iEetrerXAvAl4j5tBeIP1o+/lt89cR+oA8m/j9X7uhbpPqypz8ha92BO/ivMjmpc9q8FLRkkIiIiskSWZVOjiIiIyGqkwEtERERkiSjwEhEREVkiCrxERERElogCLxEREZElosBLREREZIko8BIRERFZIv8/P2+6LOi94QgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADECAYAAABOQy+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAApXUlEQVR4nO3deXAc533m8e+v58DgPgiQBMGbBMXLkkhRp6VIlmRLVhTLSeVwTtvxliobu5LsJpvYcVV2U7XZctZbTpzE5azKR+zYjux1fMi2YtmSfMiWREnWQZ2USPG2eIMAiXumf/vH9AAzmBkAJMDB9XyqQPa8/XajpzGYedDv0ebuiIiIiMjFF8z0AYiIiIgsFApeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIfGZPoDJaLSYLyYx04chIiIiMqE9DJ5097ZS6+ZE8FpMgr+Pr5rpwxARERGZ0J3pVw+UW6emRhEREZEKUfASERERqRAFLxEREZEKUfASERERqRAFLxEREZEKUfASERERqRAFLxEREZEKUfASERERqRAFLxEREZEKUfASERERqRAFLxEREZEKUfASERERqZApBy8zW2FmPzCzl8zsRTP746i8xcy+b2avRf83R+VmZv9gZnvMbJeZbZ/qMYiIiIjMBdNxxSsN/Km7bwauAd5vZpuBDwIPuXsn8FD0GODtQGf0dTfwyWk4BhEREZFZb8rBy93fcPeno+WzwMtAB3AX8Lmo2ueAd0bLdwGf96zHgSYza5/qcYiIiIjMdtPax8vMVgPbgJ3AEnd/I1p1FFgSLXcAh/I2OxyVjd3X3Wb2lJk91U1mOg9TREREZEZMW/Ayszrg34E/cfee/HXu7oCfz/7c/R533+HuOxqJTddhioiIiMyYaQleZpYgG7q+6O5fi4qP5ZoQo/+PR+VHgBV5my+PykRERETmtekY1WjAp4GX3f1jeavuA94dLb8b+GZe+e9FoxuvAbrzmiRFRERE5q34NOzjzcDvAs+b2bNR2V8CHwG+YmbvAw4Avx6tux+4A9gD9AHvnYZjEBEREZn1phy83P0ngJVZfUuJ+g68f6rfV0RERGSu0cz1IiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIfHp2ImZfQa4Ezju7lujshbgy8BqYD/w6+7eZWYGfBy4A+gD3uPuT0/HcYiIiIhcDMd9GWe8hTSJgnLDS9R+tex+piV4Af8C/BPw+byyDwIPuftHzOyD0eO/AN4OdEZfVwOfjP4XERERmXbucNYbOexrOM6ySW1jeEGoOkMrjZcuJWZpEpYp/70weOYrZddPS/By9x+b2eoxxXcBN0XLnwN+SDZ43QV83t0deNzMmsys3d3fmI5jERERkdkj7VOLGsdZxn6/hJO+mOExV5uCklebig2TZIgUqy+Ls+3KaszGVPDih05hpbrkEJcsPU77DRtJxMf/vv/z+vLrpuuKVylL8sLUUWBJtNwBHMqrdzgqKwheZnY3cDdA20U9TBERERlPxmP0UXfe23X5Il7zrRxlBRkCxuadnOLy0WATEmPtZQHXbmtgZUsXqcRwVKNwK/ei/DQiGQtZdeMKGmrT5/0cRtUCzZT/LpNTkUTj7m5m53Wk7n4PcA9Ap6Wm9ixFREQWuGFPcMKXMkTVpLfJRZsemtgfdnKM5QySIsEQ1dZfULf0B7XRzAnu/rOAVTesJhYU1/KxV5uKrj5ljyIwp7Wpqvhq1aRNJXRNn4sZvI7lmhDNrB04HpUfAVbk1VselYmIiEged9jnl9DlrWQKPrInfz3CMXpo4Tgd9HgjTZ310ZqJE4zh0ZWkgJaqM/zWDRnW39DG0VMprrv0VNljzpdM5Bq8Bid9zPPZxQxe9wHvBj4S/f/NvPIPmNm9ZDvVd6t/l4iIzEcZj3HSF/NquJUTUafu0bjjBctjGSFOQDeLqN3QRmAhVbGh8SOXW9GeAeKW4dJNjWy6rpn1t68oteWEV55SKccMhoeh+kf7J+znJKVN13QS/0a2I32rmR0G/jvZwPUVM3sfcAD49aj6/WSnkthDdjqJ907HMYiIiOSEbkXD/s/X676Rl30bp30xYZlpLwunEigOIoOkGKaKzk2DbN9eRYCPhqIxfZIKlqMHYWi01vfR8TtXsXRphvj0DImbjp3IBZquUY2/WWbVLSXqOvD+6fi+IiIyf4VudHsL6TEfVaXnTSr0Bit5MbyCN1jBIKmy2xsQJ02c4eLvT0DnpkHu+o31dCzuH9kuF5zyrwi5W8k8U51KU3/leurqphp2yk9fIHOLhguKiMi0SXucw76Gc17HeH2IjLDsOifgdd/IHrZyjgaCMXVL79XJTz5OwIo1w/zS1YO0veMK4lGzWBgWbjIwaAwPGxs3DhXtMRaDRYtCYrGyhzpJusIkoxS8RERkhDt0h8284pfRRVupGgWPxl59GqKK0ywhsXYZJwebiJeZaNJLbJu/15bUGd7zu+0MbttBqnoSI98KcxcWQGMTxCb4lIv1QfLUMdrbywdBkemk4CUiMk9kPMbhcBXP+rUcYU3emmwiKWxiKx16umnhDG0EDLP68oaRZrUwNBbV9lFTFc2hVGbOJAMWB86S+nNsefc6kquWFKwfG5iKyqLliQKTyFyll7aIyDQaDJPlO2KPM3o/7XH2hJt5khuj0JRfebyrTKPLw1QxTJKOjgHedNMSzCD04l0UtLaNudDT0jRM7bWbOYuRzJvu6cxJuGSVs2Ryd1sp68LnYBKZHxS8RETIduQ+Fi4r6oidM96tSTIe40W28wxv5lR0k47coP5RRvEgf8jFoABIMMjmKxP88i+v5Gx8UfaqUi4Y+dheTLnjHl2uTkG62qhvnlrAGQSSF765iIxDwWsOGPIkf5cZYIgkt3PNSHmMYdbYazQFp/VXpEgZH0v3c5Ymbhq5dWyOj0ShV7mM3VzKIDVkg1C5ObhH/y3cE7QsCrnm5irOrOqkKpW3h/wmuRLdiMIMDEXzSrYth3gCMm1QP+UO3SIyGyl4zQG9NPAqfaSr4jzQ8IfEguy799ljg6Q9QVPmFOt5nmTRcOjCv4+NXBOFExBSbz1stqdpC45V6qmIVNxuYKAKBmr+gP50FVg4phHPaGqOseOOFZzJnCBZFeatK6hYsn9STlWNczoAeIP+4pkJyjMYxli2bClLS89rKSLziILXHBEQ0lif4cY/u4y6FVEjRghNcefcIy/wzM7F9GN5sxYXyo9gYTpgMJ1gsKuLp39+Pamwj+zHT/YDJ/9DaWwH3ARDLLIT7LAfsSw4hMhcUFNjvPk3lvJaT5q+rlcK1jlGeijOmUyK+mbNlSQiF5eC1xxjBkGu324AZzG44U1cfsPk9+EO57qhI32CA4+3kAkLm05yjweHAjat7RnZJswEHDxWw75HD/AvB7YTDzMl59OxEk01YwOc4VTRz2aeZkvwMxrszOSfwAQMp8p0TzApFgROECv+s2R23DpXRBYCBa8FyAzqm6CHNprvLDVPT1Zw1lm3vbCs06Hr3esJThwnk9dfJdcE4x7N4BwJw1zZmJ07HHriJC8+1Mqj+99G6U7H+crPsWPkN6NmLeYIW+wplts+4mM+VouH0U/P5Ib5+w3IUG89JOx82pxERGS+U/CS82IGLW1A2+Ip7yu1uo322zdlr6blj9wqNc9P3vLq2qMFAa/wth2wf1+cn3+3mqd2d/LTQ6eIFdxqIxfv8me4Hm927bGPJw5pRoZWjrLGdtPMybLbFQ+ImMy+Jx8Sp6NuQEit9dBqxye9LxERKU/BS2ZMS2v26/wtHXftysXQuvVGru45RkdHmubmcEyYK3PDkcnMjD3Bdum0MfDsHu7/xzPsO3cH+/Lu7ZYfbtxtvLupjB6p5afKcrXKrMhLdrnvbThLa06O9x1HlgbDBIE7/S8eZAmHx6ldPuCNd1uYkmF0kmUw5tyMs/8Mj07mVIuIVISCl8w71TXZr5g7iQQkiyYkupj3TXMab1zLe29cW1g6iRB3IXUmX5aNHocfPsAN24rrlzKcNg796DV+3ARnhzaUqJGLXaVjTbnIld8UXbSuzFQNY39koZeeoLSU+CtPYkCyygn6dc88EZlZCl4iFTC2WbHy8675eX/fRNxZe8t61t5ykQ6pQr7xvhRnhuo41N9EPHFipg9HRBa4yf/ZKCIiIiJTouAlIiIiUiEKXiIiIiIVouAlIiIiUiEKXiIiIiIVouAlIiIiUiEKXiIiIiIVouAlIiIiUiEKXiIiIiIVouAlIiIiUiEzFrzM7HYz221me8zsgzN1HCIiIiKVMiPBy8xiwCeAtwObgd80s80zcSwiIiIilTJTV7yuAva4++vuPgTcC9w1Q8ciIiIiUhEzFbw6gEN5jw9HZSPM7G4ze8rMnuomU9GDExEREbkYZm3nene/x913uPuORmIzfTgiIiIiUzZTwesIsCLv8fKoTERERGTemqng9STQaWZrzCwJvAu4b4aORURERKQi4jPxTd09bWYfAB4AYsBn3P3FmTgWERERkUqZkeAF4O73A/fP1PcXERERqbRZ27leREREZL5R8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpkPhMH4BMjmP0DSV58QsvcsU10HDDFnrciOX9BN2z/8diM3OMIrNRLHDC/iFSBw7hNS20V28Dot+X6Hcm3VhLT89J6poymE1uv7nft7FlZkx6HyKy8Ch4zQEp+lhJLX09SVp2/QcP7drC6XsGCBimYUkVAO5OS3sVa29cDsubqGmItq2BRHIGD15khl21dSWZDLz3l15l98F6YPRSvwXOcDpg16uNHO+uIvmyE4tlE5V7YXoKfWya8oLFeCykb+laatrh1Kmj0T7yq1l2MXqcH9yGBwKGhyE9nA1tMb0zi8xb+vWeA6qtj7+KAwwBnwWgJ2zk9fAS0seyP8IBatlzfAuPPLeZIarIfUQk6efW29J0/tpWTgdtAHiYXReLQ/tyOHBSf57L/PXRP35vtHSWN3WeLVofhrBjcxe9fYVvh0EQQt6vRmxMx4z8q1qhG4ePVfPEi0Mc3FlDrTse1R8JeRREtdErY7nC7r30vBwysKqT2g4Iog3dC7cjCnPOaHjL/Z9IQG3j6LYiMvsoeM1RDUE3lwdPFJRdz/fpD1N0eSsAvTTwhL+FHz9wCd99YC+wF8g2W8YI2bCjmiXXrmXp0jQAjY0hB4M2GprVVCILRxDA2o6+Ke9n0+qz3HrVcXr7YyNXx8b+HhnF7ZO5OqEbB49Ws/OFcxzeWUPuAlv3/lP0DydGMmDZfZoTGFRtrKd/7SYaW7J1c39ouRdeZcstjqzPjJZbDOoboMeNZNV5nQYRmYCC1zxTHQxQzWEg+ya7gteL6oTEOBiu5Zmn3szPnjqOE2A4A9QwxD46lg9wyfXtxGNO7fpaehuWVfppiMxJZlBXk7ng7besPcuWtYVX5XZ+4yirFnVRnRwq/33JBrcf7l7H6ycXMbTvJEfD0cteI2HNsnErKAiA2eVYkF3KhAGBhfjqNoZal0JVFM76jb4wTXdPOLLZyBW33J6iVS2LQvobl1Jdc96nQGTeU/Cax8wgxUDJdRtjz7OR5wvKhsIEh8I1PHf4Wl66dx0D1LHnkQTtaw4AEDNnxw1JuHYHrYtH38zz/4rWlTKR6RULQupSg9Qkhyes+47LX5ry9xscjnHwdBPPHVrGqT17R8qbLSRzEE6MqR8EXnQlb9+5WnqHdtPSuYiGmuwV9dz7RJTNslcFCzYrfPPoWNxP69Ur6EotIx4vHsww8rhEnzmP9hZPTOIJi1SYgpeMSAbDrAteZR2vErpxKmzj5YOX0xt1SO6ile/s30T3Zx4jZiFB9BYaM2f52gTbr09Rf2veiLHIyLJBTY3eDEVms6pEhs4lp+hccuqC9+EOp87VsPf4Inr7kxheEKsCyz62oHTTaxjCvl2LeOZHvWAvE7PCevld48w8u/e8q2+5vnPtWxex9OplnK1eUnIEOMDQICy64Gcqcv4UvKSkwJy22HHa+N5I2Vlv5PCBVaQpHCa5m0s5dKid5360hPBvHi6xN6NxeZKNG0K2/MZGBuqznfyra2Bxu0Zwicw3ZtBa30dr/YX3nbthw34Gh2Mc66lnOBMU93GzwittBcEucLr7U7z8xhKe/+wJhjIxzHKjVQvrmsHx5DCHUsVNuZnQSCXSrLl6MW1vXl32WMeOgB076AGgqsqpri4xB4ksOPrIk0mrt242xXYVla8I9zJkxT1wc2+KGeIcPrKG5w5fw1MPD4w0A2SIkWCQt9wZp+227JWy3GitVMpZtSrNcGv7xXtCIjKrVSUyrFx05oK27Qh7WNlSeluzElfaStTLuHG8p44XnhnitUdPFg+OyNsov5tFfr10GKM+NUB15xo2renByF6hGw1nVtyMmvs/WqhNZchs3kRSUwPNCwpeMmVNQdeEdZZyhB38hGFPjDQ69Hkde8JNvPDtK3n829kOxY6RJkGcIdbe0M7SjWfwMFs/kQhZ1jbAJbct5Uy1OvyLSHlB4DRUD055P43Vg1Nqdg1D48TZWl47dpZde2sKA9rIshddhQOiJlqne6Ca2Hceo7pzNfU16ZFkFuZtQ95Vt7EjWMNoua46Q3PDEE3XdV7w85Gpm1LwMrNfA/4HsAm4yt2fylv3IeB9QAb4I3d/ICq/Hfg4EAM+5e4fmcoxyNySsNEOwkk7zY7gp+zgpwV1esNa9oUbeOWRy3ntkWoA0sQ5RyNDVNHwr13ULzsCZF9ETXV9bL2mnqpf2E5VanQ/VWn19BeRmRUEzpLGcyxpPHfB+zg7kOTQ6WYGzpyCM4WXx/LnbMtdaQuK+sQ5vUNJevpTvH62nvhDj5f8PgXxr0SraNPmFXSuPMvg+k0X9kQEmPoVrxeAXwH+b36hmW0G3gVsAZYBD5rZhmj1J4C3AoeBJ83sPnef+lAcmTdqg162Bs+wlWcKygfDJId9DYf3r4X92TeJczSyh1U89b1Walf8BMMJ3aiO97N1S8At/20T1dXFASyRcOK63isic0B9aojNy45NeT+Z0DjdW0MmLJxhd7z55XLcYe/RLp7e3cjwdx+nrmqQJ/b2jKmTd9Utr7yxeoBVN66jJnXhU63MJ1P66HH3lwGseA6Bu4B73X0Q2Gdme4CronV73P31aLt7o7oKXjKhqmCIdexmHbsLytMe51i4jN7D2dGXp1jKYVbz9P5lPPadnjFzFmXfZBIMcOfvVHPF25roXRH99WZOW1tIVZU6wIrI/BMLnLb63gvevq2+l8F09mbA5aYOKhjwYNnA9kZ3A4987TTVk5gSpZyhdIzWul423LqqoLzkCPrcY6xoXSqZIZmY2ff4i/U3fweQfy3zcFQGcGhM+dWldmBmdwN3A7SpK5qMI25pOmIHRx4P+Wts9GdwK33flGGSPOfX8L0vrOHrXwgxfgo4ITHaO2NceaWzcsdiEvFsD4raVEjdjrU0NCiQicjCFQROdTJ93tutbu1idevEfYHHMzAc5/nD7bz0vUMF5eUGNZRa3zeUYDgTY8NNHWVHoo5dhtEAl4iHtDYNkohP7bNgwkRjZg8CS0us+rC7f3NK330c7n4PcA9Ap6X0iSeTlrQhknZ63Dpv8W8VlR1nGc/vuYofv7aM9JfOjJQPUkX7xhOsuqSOlrq+kdm5c5zsX5KLG3rZfnsb4ZYt0/AsREQkJ5VIc+WaQxNXHEc6E3Coq4m+586MBLKHvpsu1Z2tcJRr1GcuE8YwC1l3RRtL6s+NGRLByK3CJjJh8HL3Wye1p0JHgBV5j5dHZYxTLlIx+Z38czo4QEfsQFH5q+FWDuxez6FXajlILCqN7lRM9hZMvTTQRx33P9RPKpYdLJAMhrj5ppDW334rzc2jaS0e1wz/IiKVFo+FrGkt/KO8rTrNlYtfmNT2Q5k4XYONvPFKG7uGsl1b8q+yBYTlNi08jkke7/m6D/iSmX2MbOf6TuAJsiGy08zWkA1c7wJ+6yIdg8i02BC8wAbG/8XMeMBpX8zB19aRiX6tznoDn31xI72feJzW9amRv41qY33ceP0w225r4+yqzSP7yF3eTiad+npXOBMRmUWSsTRLak6xpObCpxeBqU8n8cvAPwJtwHfM7Fl3v83dXzSzr5DtNJ8G3u/umWibDwAPkJ0J4DPu/uKUnoHILBCzkDY7ShtHC8rdv8UZb6Hn9ZaRsiPhSr61eyuf/3QSeKygvgFGyOZL+7n+emPxFSsJogAWXtJJa2tILIaIiMxRUx3V+HXg62XW/Q3wNyXK7wfun8r3FZkrzKDZTtPM6OXtVcEeruNh+ryWtMcL6gLs9kvZu2sjn9vVQoafk7vlr3GYS3+xndXbmqmtzjaV5vdNcIeYGY31w2xZ28PQxq0X/wmKiMh50XBBkRlSY70l71OynZ9weazwStgA1TzvV3H0/uXs+07tSKfOgluTECckxtLNNTy6ZjGpRLZ5NL9ubWqYKzcHVCUn1xdBRESml4KXyCwTmBNQOGS7jrNcaw+Nu13oRrc3s//lTk68vIz8qQ0NCD3gOB089mVjw2VOIpa9ambm1MX7uP6Wara8fVXJfYuIyPRQ8BKZJwLzqFlzZ9k6uXD2xnMrGSZ7x91hkrzKcnbubCLxvw4UzYXjGG+6apib3xpn1Y3rCAIvmgMnEQ+nPLeNiMhCoOAlsoCMhrPCIdXu0Ot1nGFRUfDqoZlDT6zjY0+0k/mbn2OERS2kcYa58tpzXHdzDY3bLxkpb25I6zYhIiJ5FLxEBDOos3PUUXwj33Y/xAp7fdztX/Zt7HpsNY8/lgCydZ2AKvq59Oo0l17XSCJWGMBy8S4eC2mt62PlTRsQEZnvFLxEZFyBOXWcHbfOFTzCdvtJQdk5GrMjNHcu4eWdYcnbeWQHBMTpuLyJzft7i2aCdodELGRRXS9vuq2Dhtrzv12JiMhsouAlIlMW2OhM/jmNdHGV/Wjc7XJ9zg49u5Zdz7YWhbMMMc7RwAA1LHn4KHErDl6JIE1j8hzbbmhk2x3LRspL9ThTPzQRmWkKXiIyY8r1OcuXC2cndi0jZPTG5xbd2PwkSzjpDTz1eA320bG3fHIcY/llNWzdUctlt7bSVF94u6j8G+KmkhnqatQnTUQuHgUvEZnVJgpnp72NNDFKTooGDJPg+K4OfvzcOv7j0ycpvhYWECPD+isCNmxvZv3ikwAFzZ6pxDAd128gVaX5z0RkahS8RGROa7ET5TLXiA4Ocpk/zgA1Resco5cG9j+9nu//bC3fJc7YcJYhwZptR7hkeyP1qYGR2zgxpmZNcpj2xh5W39x54U9IROY1BS8RWRACc2roLbmulnMstp9zFT8uaHrM2cdGjj3bwZPPNJAhXtQXbYgq6jhDxzWL+MFAE7Xf2le0j/qqXq57Sy0rb1xfcoqN/O+rG6SLzF8KXiIieUqFnrW8wlp7pew2fV7LQV9Lz85uEhhDecHMyF4V2+uLeOKndfA/99J+Wd3oxj5aryo2RFt1F5uuaWXL2zoAGM7orugi84mCl4jIFNVYLxvt+QnrDXmSU76E/l3FTZ7DJOmilZd8CTsf7Sf42Gsj61rpJ7CQGBk6r6/jrl8xquKlp9bQ1TKR2U3BS0SkQpI2RLsdGrfOkCfppaF4TjOMXurZ+5O1/PVPGrGCEZ6jta67uY8rbl5MdXKoaN+5Wz0l4xlqksNF60Xk4lPwEhGZRZI2RJKTJdct4jgrbS/DniBNYqQ81+fsIOvZ9fASfvpwb8kJa0MCqhjEHW57+ylWXld8t4D8vmY1yWFaavt0FU1kGil4iYjMMQkbJkHxFasNPM+GCZo8z3kDx1jGD767kvC7x8rWc4wMcdZcW0drdRcxy06lkR/MkrFhtt3cTnNNP0GgyWlFJkPBS0RkAamzHuqsh3WUHyyQs88vof+xavaRpNS9AM7Qys97Q/rTjdQk+qFErWQwTE18kDvfmVQ4E0HBS0REylhju8edI+2sN3L2sUYCH/0oMUabPkOMLhrZzTKe/EF2cACUvp0TQEDImuvqueX2KhbV9Y2Uj53iIx4LScQ0ma3MTQpeIiJyQeqtm3q6J5zA9hJ/jnM0Ft3yaaxeGjjxaDuffHRp2T5qO24cJu0Jbrq9FhgdMDBWLqwFgdNWX3r+NpGZoOAlIiIXVcxCGumasF4Tp+mw/WQ8RrrEx9NxOjj4o8V00coLP85Op1EqoEH2Busp+nGHN982SCIoM/0G0Jrq4pJbigcaiFwMCl4iIjKrxCwz0iyZbwWvs8Jen/R+znkDJ1jKk99bRkjVSHkurA1QQy09tFyzjZe+2l1yHx41nlbHB2ivOcnWW1YTVzOnTIGCl4iIzEu5gQRreLXkevds8+bJx9/geIn7eObVpIs2zv7CSn76hWaq4wMl6hhLqk+yrO44W29ZTcw82nJ8gbmm61hgFLxERGRBMoM6suFsIue8gXOPNNBaZn3oxl46eJJlfONbw2WbQHMSDLH5xhR1iT52vLWteH2QoS5VPAmuzH0KXiIiIhOosx7qGCegGSzjEKEbvTQUDCQo5VW/lMM/Os1JlvLogz1FdyoAiDPMlbeGbLq+o6D82JMvlR1UsO1tHRrxOctNKXiZ2UeBXwKGgL3Ae939TLTuQ8D7gAzwR+7+QFR+O/BxIAZ8yt0/MpVjEBERmS0C8+xIzwls5yfjhrNhknT5Il54cBVPPvjGmLVNBY8yxKligARD/LxviNp4diqOUmEOzx5jYM7i6tNsfeuaCY9VptdUr3h9H/iQu6fN7G+BDwF/YWabgXcBW4BlwINmlhsy8gngrcBh4Ekzu8/dX5ricYiIiMwZ5QYQ5CQYpsZ66eDgpPZ3zhs47a3s/2EaJ6Bc7zLHGKCGOrqpvvoydn25r6hOTXyAjtrjvOmWlaQSpUeDyoWbUvBy9+/lPXwc+NVo+S7gXncfBPaZ2R7gqmjdHnd/HcDM7o3qKniJiIhcoNxAgpVMPOozdOMsTXTvPMkwsaL1R2hkF4u5/zt9BOOEQ4AA54pbnMXVXWy4cS1mXn5utbzlVCK9YJtEp7OP1+8DX46WO8gGsZzDURnAoTHlV5famZndDdwN0KauaCIiItMiMKeRLhqt/NxquXA2SGrcffXQzO6HGniOer717XPjBjUnIEU/m26qIQic7W9pzVtXHNYaUgPzcoDBhInGzB4ElpZY9WF3/2ZU58NAGvjidB2Yu98D3APQaSnd4EtERKRCcuFsIov8OP1WO6l9hgR008KBH7bQRRtPP3yiYP3YkaAhAauva6Sj9hjJMhPg5qTig2y9eSXVydnfNDph8HL3W8dbb2bvAe4EbnEfuaPWEWBFXrXlURnjlIuIiMgcErPM+KM9x2jgDCvsdTI+/qhPMM7RwOlH23iaZYQlmkTzDdPMd79zlvVvrh+9YXuZJk+ARJDGDM4ON0762KfLVEc13g78OXCju+f30LsP+JKZfYxs5/pO4Amyd2foNLM1ZAPXu4DfmsoxiIiIyNwSs4n7d+WaQ8tNgJsv4zG6aeH0T1vpKtM8mothg6QwnCQDxK9ezOmB0fBVqnmtNt5PKj59TZ5T7Tz1T0AV8H3LTr37uLv/gbu/aGZfIdtpPg28390zAGb2AeABstNJfMbdX5ziMYiIiMgCFrMMLZygxU5MXBkY8iRnWMTgE4/w7Dj1MsTp9haqrZc6usedGNdwtr2zgbroilvZeqOtg7NXp6X87+OrZvowREREZAEa8GrOUT9uHSfgkK+jyU7xR5n7fubuO0rV03BBERERkXGkrJ8U41/JAqine8K7Fih4iYiIiEyDlE0cziYaViAiIiIi00TBS0RERKRCFLxEREREKkTBS0RERKRCFLxEREREKkTBS0RERKRCFLxEREREKkTBS0RERKRCFLxEREREKmRO3KvRzM4Cu2f6OGaBVuDkTB/ELKDzoHOQo/OQpfOgc5Cj85A10+dhlbu3lVoxV24ZtLvczSYXEjN7SudB5wF0DnJ0HrJ0HnQOcnQesmbzeVBTo4iIiEiFKHiJiIiIVMhcCV73zPQBzBI6D1k6DzoHOToPWToPOgc5Og9Zs/Y8zInO9SIiIiLzwVy54iUiIiIy5yl4iYiIiFTIrAteZvZRM3vFzHaZ2dfNrClv3YfMbI+Z7Taz2/LKb4/K9pjZB2fkwC+yhfAcAcxshZn9wMxeMrMXzeyPo/IWM/u+mb0W/d8clZuZ/UN0XnaZ2faZfQbTx8xiZvaMmX07erzGzHZGz/XLZpaMyquix3ui9atn9MCnkZk1mdlXo/eEl83s2gX6Wvgv0e/DC2b2b2aWWgivBzP7jJkdN7MX8srO++dvZu+O6r9mZu+eiedyocqcgwX3OVnqPOSt+1MzczNrjR7P7teCu8+qL+BtQDxa/lvgb6PlzcBzQBWwBtgLxKKvvcBaIBnV2TzTz2Oaz8m8f455z7Ud2B4t1wOvRj/7/w18MCr/YN7r4g7gPwADrgF2zvRzmMZz8V+BLwHfjh5/BXhXtPzPwH+Olv8Q+Odo+V3Al2f62KfxHHwO+E/RchJoWmivBaAD2AdU570O3rMQXg/ALwDbgRfyys7r5w+0AK9H/zdHy80z/dymeA4W3OdkqfMQla8AHgAOAK1z4bUw6654ufv33D0dPXwcWB4t3wXc6+6D7r4P2ANcFX3tcffX3X0IuDeqO58shOcIgLu/4e5PR8tngZfJfvDcRfZDmOj/d0bLdwGf96zHgSYza6/sUU8/M1sO/CLwqeixATcDX42qjD0HuXPzVeCWqP6cZmaNZN9sPw3g7kPufoYF9lqIxIFqM4sDNcAbLIDXg7v/GDg9pvh8f/63Ad9399Pu3gV8H7j9oh/8NCl1Dhbi52SZ1wLA3wF/DuSPFJzVr4VZF7zG+H2yqRWyH76H8tYdjsrKlc8nC+E5FomaSLYBO4El7v5GtOoosCRanq/n5u/JvpmE0eNFwJm8N9v85zlyDqL13VH9uW4NcAL4bNTk+ikzq2WBvRbc/Qjwf4CDZANXN/AzFt7rIed8f/7z8nWRZ8F+TprZXcARd39uzKpZfR5mJHiZ2YNRX4WxX3fl1fkwkAa+OBPHKDPLzOqAfwf+xN178td59prxvJ0HxczuBI67+89m+lhmWJxs08In3X0b0Eu2aWnEfH8tAER9mO4iG0SXAbXMoSs2F9NC+PmPZyF/TppZDfCXwF/N9LGcrxm5V6O73zreejN7D3AncEv0iwVwhGxbbs7yqIxxyueL8Z77vGNmCbKh64vu/rWo+JiZtbv7G9El4+NR+Xw8N28G3mFmdwApoAH4ONnL5fHoKkb+88ydg8NRU1QjcKryhz3tDgOH3X1n9PirZIPXQnotANwK7HP3EwBm9jWyr5GF9nrIOd+f/xHgpjHlP6zAcV5U+pxkHdk/Rp6LWtKXA0+b2VXM8tfCrGtqNLPbyTaxvMPd+/JW3Qe8KxqxswboBJ4AngQ6oxE+SbKdSe+r9HFfZAvhOQIjfZk+Dbzs7h/LW3UfkBuB8m7gm3nlvxeNYrkG6M5rhpiT3P1D7r7c3VeT/Vk/7O6/DfwA+NWo2thzkDs3vxrVn/NXAdz9KHDIzC6Jim4BXmIBvRYiB4FrzKwm+v3InYcF9XrIc74//weAt5lZc3T18G1R2Zylz0lw9+fdfbG7r47eKw+THZh1lNn+Wqh0b/6Jvsh2BjwEPBt9/XPeug+THZmxG3h7XvkdZEe/7QU+PNPP4SKdl3n/HKPneT3ZpoNdea+BO8j2UXkIeA14EGiJ6hvwiei8PA/smOnnMM3n4yZGRzWuJfsmugf4f0BVVJ6KHu+J1q+d6eOexud/OfBU9Hr4BtmRSAvutQD8NfAK8ALwr2RHrc371wPwb2T7tQ2T/WB934X8/Mn2g9oTfb13pp/XNJyDBfc5Weo8jFm/n9FRjbP6taBbBomIiIhUyKxrahQRERGZrxS8RERERCpEwUtERESkQhS8RERERCpEwUtERESkQhS8RERERCpEwUtERESkQv4/md4tCFgV+akAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -435,7 +435,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAABqCAYAAAAMTX1WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl5UlEQVR4nO3deXAc2X3Y8e+vu+eewX0SBECC5GJJLveguIesw7LllVaHvXLsctZxRbJsZysVyUc5PrRRVS6nEjmOHduRY9dGkkuKZcuOZUerslLS6rAue6W9d3nswfsmABIg7jm6f/mjewYDEAQvcGZA/D5VU5h53T39Qw/m4dev33stqooxxhhjjGk8Tr0DMMYYY4wxy7NEzRhjjDGmQVmiZowxxhjToCxRM8YYY4xpUJaoGWOMMcY0KEvUjDHGGGMalFfvAK5Gs7jaRazeYRhjaugg+TFV7ax3HKvB6jBj1pfVrL/WRKLWRYzf9wbrHYYxpobeW3rtWL1jWC1Whxmzvqxm/WWXPo0xxhhjGpQlasYYY4wxDeqGEzUR6ReRb4jIfhHZJyK/HJW3iciTIvJ69LM1KhcR+UMROSgiL4nI7huNwRhjrpfVYcaYRrYaLWol4F+r6g7gAeBDIrID+AjwNVXdBnwteg3wLmBb9HgU+ONViMEYY66X1WHGmIZ1w4maqp5R1eei51PAAaAPeBj4dLTap4H3Rc8fBj6joaeAFhHpvdE4jDHmelgdZoxpZKvaR01ENgH3AN8DulX1TLToLNAdPe8DTlRtdjIqM8aYurI6zBjTaFYtURORLPB54FdUdbJ6maoqoNf4fo+KyDMi8sxF/NUK0xhjlmV1mDGmEa1KoiYiMcIK7rOq+jdR8bny5YDo50hUfgror9p8Y1S2iKo+rqp7VHVPM+5qhGmMMcuyOswY06hWY9SnAJ8EDqjq71UtegL4QPT8A8AXqsrfH42cegC4WHV5wRhjasrqMGNMI1uNOxO8CfjnwMsi8kJU9m+AjwF/JSI/DxwDfipa9iXg3cBBYBb44CrEYIwx18vqMGNMw7rhRE1VvwPIZRa/fZn1FfjQje7XGGNWg9VhxphGZncmMMYYY4xpUJaoGWOMMcY0KEvUjDHGGGMalCVqxhhjjFl3ptRnXEv1DuOKVmPUpzHGGGPMmpDXgIPkAWhfA2lQ40dojDHGGLNKxvFpx6VH4vUO5arYpU9jjDHG3JIKGlxSNk+AF83Ic0FLzC2zTiOxFjVjjDHG3DJ8Vc5QZEyLdEmMbo3hilSWxRDyKK/oHB5CAaVLPdrwcORyUyqutD+HIgutcw6rm/hZomaMMcaYW8Y0PvMEbJcUCXEI56gOuSK4KoxToh2PLokxGgQc0TbGaCMhHkK4fqCCj8s4XZxkMwFOZVmZ4tL0U+8FLc+arbQ3zcMn3rBqv48lasYYY4xZEwpBjHHtQJElSZPiS4xz9HNUZ2kiy4gkKQUlHBympYNC1OpV0DwXGSNJmpy0Iihtv7CBvm3bSCZSgKIKs3PCyXMpejNFHtxykbhXQqqSPoIAFPq79tKU9QHC5Rrwbz+xer+zJWrGGGOMWVVzQZIAF6CSUAlKgMvhYJgRNlyyDGCaZo6xjRQzOFJOihaSoyJxtn7oIZxymSooxDyfbZvneaB3ns0jLxOPJXAcGB8/TzadYctAlq2bWiuJ1LmRUU6PjLFpQzcXp6eYnJxm55YJ4rGZ8D0BKfddUw2fa7BMoha+381kiZoxxhizSuY1IIZU+kQ1MtXLLxv1uzjB1mWXFUjwOruYJVv9bgiKANM04b77PbjOwg7Ky0Bpbwvo3VACNApCK4lab1LZ0Vri/j0zZDPlBEkhCNdJpwNi7iiiQfieUZLkqF9JqEa7m3ntyFEGe7sZeGAHp8+e5ezIWaZnE+RSKQB6OttxXYfTo2NoEHDbpn7isdj1HsqbyhK1q1DUgEL0R5bAWRNfQGOMMbV3kHm2EyYDRQ3Yp/OLlt/tpFdtX8XA41QwQFD5V77QAhXg8hL3c4HuRduUE6IZmhhhA4pDdYuVImSYIs48XR98D66ACIiUW77AdZW7dvp0dQVRWYBApZWruS1gYGAa11FcCSr7FRRHgkWtaILi4C+8vyr798XIZpRsVhHVSkJWudS5QoIJ0JTLUCqWcN1wYouutjYmLk4xPTNHUPLJ5+fpbmuhs62VrraWhZayBh39aYnaCmbV5xgF8qoUCUiLS0mVHA6DJCxhM8DC5Ika1R55VTZIjN6qOXpm1Od1zeNFfzIteGxcI3P4GGOuTfl/Q0wcPKDfb6NEjNeZ5qI2LVp3n97DIXYA5c7oC/KkOcx2CiQqZeVWqQSzlEhQ2H0fjiuV0YpSTqwQOvugsxc8L9xOJEymFOjJwo/vUTJZcKMkyXXg+GGlf0BpagXHUVxRRKgkXI4TJk5hebidI2G655STMlGcOv57TCYSbB7YyNnR8/R1dzEzN0e+UKS9pZnJySlymUz9grsOlqit4N/5PqPsppdfo5v9dPNNNtDBcaZ4mjl66aSTk9zm7F/UxGuu3+P+CACPul11juTqJcRhZ3QGDfC8ztC85KulQFKELSRt8kJTE2vxu3Qr+DNfGWEHHTyGkmeCQ0xkH0EcJSh9Fy/xJjyPMHNyHOJxn+aOAHEEEcGJUjHxIBYTNu0IaOuScFSh4+C5wshph213CIkUpLPgumEyBmGy5brhTyeqbMqvF5VVvXZloSyZAvcWyAwGN26gUMjz7Mv7KeTz9Pd2E4t5dEQtaI3aeracW+DjuHmOIeS9UXLbuzk7cRvT4/2km34AcaBU/A6J1FsozLu0nj0CweJOjw5KNyfJcQEIv5MeBTxKlbOmJHPczXdoidap5sjCNXuPIm3OGOuhAe+w5q95m0a6ND2lPnFxSF1ybgwuQqwOsalCiWvve1E9oirAYZIWSlx/K+A8aabJcWm7waUnOT2cBF677n2Z6/sumRt3gjhT7kHcwRfRIE+u43a23/YKiaTH+dOjpJvO0trt48U8vFj4L9iLuXieixtzK5frvJiDF3NxXcGLmuLLCVkhD83tdfsV14zbNg8yNzdPOtGYfc+uliVqKxAUZJqegUP4fRPMTXm09x0nlYWLo+fp3hSesaJZHM/D88IRLp7nUix6nHh1C6N5J+wvGTg4HjS3UWmiHp0Vnjv5YXw/OoMCRCQ8s4r+d4kDgS8kn/82Ccp9HcKFKaYrE+st10rjUmATr9PEhap/uotH2KyUNpT7DwgBMSkuWjfFFEPyCjG53hvartwC6evy7U7VyUP50nSBMFHL4FBEyal7xUvTS+fCWYhKGNd2LtK+aD2PEi1y/orvcUJnSZJmRuKLfsVpLXGOGSZUiePQTzi/T/V7zWqGA+zGj0ZKXU28ZUlmaZbxZeb4Ee74tXeTjYUnCBpULY96EuvSM8vKQKeFclFlc2aWVKy4eNtgSVwaoLpw3CvzFwUBqViR1vQsjqOV7SqdmZfEoEEbPPbtFX9nYxpRjBiuGyfXfJxUro9Y4hQiOUQ82nr2MD9b7wjXl1QysaZaz5ZjidoKBB9BmZs+STyZppA/z/i5p5i5GAB+ZT0vDl4sfEB4xpPKKXe+uYgXC/8Zl4ous5MOvYOLz45cVyuvHWfhjMld0mQ9PvYWCvPluODCCHT2KC2t4Qhh19GoCXshAZufVQ68oIxGFYNT1dpXzroUcFECwj4FqkR9DbTyT3ZyCm6/vRR1Ag1dmBT2nXbRQKsSuGjfVZ1CF4YylzuUVq1bTkbLo3eA81/5JwB86R2fX/zl0vB9ww6f4YanR75Pe8sd3LYJtDjJ2YmT9HXdzujkaY7MnGdjz85o26DyHuW4qve/sI5CAM2ZPJvaooOt4XHwXKWrdT7cNggqb6YqUTN6+Hp0/wvcNXQ7yfLooai85PsM+z4OwsWZKY6PnmF46PZF68ScEm9MFog7VcmvKkF5H2VBeTLGsCxf9Dg1luO+racXradB+DzhHavatvqY6qL1lr6/LrPPxcdrmURtyXtVJ2rLuWwuvQ5aj82tyaeISIx4qpPm9jtB5pm68Cp+tpNkZvlRlMasxBK1FSg+jpumqW0HXtxjanw/zR13km4SJs/vrWks7V1h0gZh4paIQ64F2toXypb2NXAc2HJb2PkTWNQptFxW3Sm03BG03Cm0nHA9/4zDnnuLuEtG65RH70glAQzC0T9ViZqj/qIh1NWjd8pJnGgQrqfK3lfCyzW/9ZvHF4/yiearkap5bL77zEkS8U3cNXyRZDzgu88d4U33ZBBVvv3MEd6yO1t5f2Dx3DgrzIezqHxJX4ZKonbJOsrIxCS7hkrcOzxTlRwusw/gGy+Oc/vGs8Rj3kISVN5mmWRquURNK4may9jFNImYv2yidqURUsaY1RPgo1oEDSjmL+LFPdK5AYr5UWannibd9MZ6h2jWGEvUrqDcIhD44SUfx43hOILYKX9NlVtehIXGlkw6geceYHomw5ET52nOhYlZ9e1Caun02AS97S3LLiuWfGLRMKiZ+Tx+EBDzLr3EaYxZ+5Q8qj5zM6fwCh5uPIbrubhe4sobG7OEJWorcEihOs2Fs08hjk8idefCwvXQs7/B7bptK4eOn+ToqdM0Z9PctqkfAN8P2HXbUE1jCYKA0YuT7Ny0oVJ2fOQCqgGDXe2cPj/B8XNjlX6Idw1tROxvyJhbjkcKx8mSnz1HPNlKpmULiXQOL+YR+Anro2auWd0SNRF5CPgDwAU+oaofq1csl+OSRESYmniFZLqDYv5pnNgWXG8D7b176h3eund6ZIzhocElEyEGeJ5LSy678rTbq8xxHB58wx3hi+iS40BXW+Xy40BXG31tTZWYPNdd8x1c17O1UH+Z+vApACBODDeWYXr8NXy/h6a2wTpHZtaqukzpJCIu8EfAu4AdwE+LyI56xLKSIlNAQCrTT9fAD5Nr30Nhfozxc88zecGmDqg3EZiZcy7XT70hSGUSSsFz3crDrF1rpf4y9SE4qEKxMIEGRcTxCIIi4+deoJifrHd4Zg2q19yb9wEHVfWwqhaAzwEP1ymWy/LJA3FiiRyo4rppmtvvJpXtY/TEP9Q7vHWvv7ebAwezFEt2CdHU1Jqov0x9BJQI/DlUfTQoEfh5Jsf2kp8bY3zk2XqHZ9agel367ANOVL0+CdxfvYKIPAo8CtBZpzADigTBLBr4zEwe4fzZo8QmBNfNU5gfq0tMZsHx02cpFJMA+L7PxamZhakyNKC9OVfnCOtvJl8gE1/bkz02oCvWX9AYdZipPUUJglnmZ05TmL9AKtuF62WYmzpLPNlb7/DMGtSwd7NR1cdVdY+q7mleZgLQWvDIIqJcvLCX2anj5GfPILikmzbSufEH6hKTWXD89FnisYWZ8p8/8BpHTp7h6KkzPHdg/Vya9le49vv80dM1jMRUa4Q6zNSWr4pPHnFcmjp24ft5Ji/sBZSSP4fvz9Q7RLMG1es07xTQX/V6Y1TWUErMARl6Bt+D40Gx0EJbz05cb4LZqaP1Dm/dk6qZ/V3XJZmI84Y7hhFVvvvsS3WMrLa+uf8g5yfnGews0JVL2WjSm29N1F+m9l7UcEin62TINm0l1zrM5IXn6Bp8M5NjLxAE138LNrN+1atF7Wlgm4hsFpE48AjwRJ1iuSzBRQQ0KFGYO0+uZRep7EZaOndRzE/VO7x1z3UdpmfCz2H0wjjJ+PqsBN+6fQstmSaOjY7ztb2HeOn4GUYn7cz9JloT9ZepvbskjRIQBLMUCxNMjIUDCIr5SUq+3XvVXJ+6tKipaklEPgx8mXB4+6dUdV89YllJjAR5Yojjks0OUZjvBqCYn6SlwwZ51dv2LZv4y787QKk0QzIOu3cOV5Z1d7TWMbLaSsXhB7cH5FL9FIoFzoxPcejceV48ml/xsqi5Pmul/jK154qQIEk+uh1fYW6URLqNU4e+CBTp2/JILWcNWvPy+QKF/ByOQDoRX7eThNeth6uqfgn4Ur32fzUCfIKgQH72LKXSONPjB/AmCiQzHi3tt9U7vHWvOZdl98772D50nlw6ahyO5ibbOtBX03nU6slxIJcK526Kex6Dna0MdrYyO5/n3MXpOkd3a1oL9ZepjyQOU9JKS8duXC+GF/cQ91780gSJVLtNeHsVZmeneP6Fl3GcefLz8zTlMpQKBVpbmhjetpXYOpviqGEHEzQCRXHdZpradpFt2gIakMr1k20aZG7mTL3DM5GYt75H1B0fHV+2PBWPsalz/bQsGlNvI1qkQB7VEo6zMNra9ZJ4sSyzU8frGN3aceTIAYaHb+dNP/BG7t2zm0w6zZveeD+tLS3sf2X9DBQrs0RtBW7U4Oi44VxqXryZptYd5Nq24bp2zzbTGFSF2fz6TlaNaRRKgOoMxfzEovJYoom5aTvBvxqKkk6lAWjK5ZieCfvcbujtqTxfTyxRW4GPjx91AJ2bPoUGJYr5CQrzExQLNpjANIae1nb2nuiqdxjGrHtdEsMnjkiWmanD5OdGK8tEnEUj1c3lbeyLcfrMYSYmJnjt9ddpyoVzYuo66c6ylJ2Gr8BDmSsFPPO1U8SSCYQEuGdI5yDwLVEzjWN8ZpKXj59lvhD2VUvGPLqa0nQ1ZescmTHrR1EDlDn8Up5Xn3s7qscROUEq104skUX9TpKZFpLpAHFcxBFaOwtsGArwPAFPcN1weh0vBvE4tHTU+Zeqg/vvv53jRw5z9NhxmrIZtg5tBsKJzXduH77C1qvL9332HTxKLpVgsKcDz6l9sm2J2gru5CIpDdg4eYjxyQ4OcoHSyI8wicvpplaOv9JLLOHT3lsknoQNQyXaemyU3Y24Y3hbvUNYc/afPMvZiSy7BtKkYuGZ51yhyPGxCUYnZ9jZZ61t69GQWPeMWjtMnm3M0aIn+eG5n2GWEqfIsnduOyUcetlDnCM4gAABwik2s592IGwtqp4F0cdlanAnsXi0TCTcTuHpr0IyA/1bIJaAcv96EXAFXA82DUNnT3TDFid8OE40zsoDt0FnNDp37hxbt24BQDRACO8243kezU1NNR0o5rouA71dnDo7wlMvv0pLNs22/g0kanjHF0vUVvCw28oAcbLyp0xoiXMUGZZPAvCtySTdk0McZxv7j76BAgkOfWOA13DIDw/jxYWegRJNHUpLR7Auz4qux3967FfDJ+u0ift6jE1Os73vTja0nq6Mem3NpOhtzvL3+w+HNzwy686jriXotVZA+Q/exujVDM8HM/ykk+cn+Q57dZY75FvX9H6qcPJYP1O0VMqcKKFThJNs5tDX76CAE5UsCHB4iX5KXD6hyL3jAZLJKDlUEAfy80J3r9I3CMM7wI0akJzozR0HYh70D4QtfjeDqqAaJp2NoCWXpTWb5sSZc7x69CQdLU30tNduoJYlaisYIM5BzYOGnfm2SbKybIs7SZ/sZ5j9PMgXgOhL5W/k1VfvZpYm9r28hzHSHKGFCxt2EUtAPAGZZqW1U0mkYdsuaGqFdBMk7ATYXAfXcZiau7SD7cTMHJ5rfWKMqaWiBsTEYV4DfGBeA9ywTeiaiUC/d4LFt5ZdsJ2XeXCFuZZVw4RtObNBhle+chfzpKu3QFAcAk6zmS9e5iyvRIzSO99HLMoBwxYvKs2ByZQytLVILBa+F9EiVfAcZdu2Ipu3FCsJooNTScpirs/ExGbamufIZhvnhH1sYpLTYxfYOdS/KEkrlkpMTs/QlEndtBkILFFbQVZc7pY0JVW8Jal9n1x6KhF+qU7Sz0kAfow/B8I/zpkzYV8hH5cDeg8n2cQ0LTz3V7dRwqNInOLu+4jFoX8r5JqhcwNs3g5xL0zwjFnOHQO9PPH0Kb65f4RULLz+MV8s4QrcOdBT5+iMWT96ibFP50jgkFdlqyR4Tecpogws8z/jZhMBl+W74+TcKe7lO9f93vknf4sCyWWXjQVdvM4uCktSDEEJcPhrtjBN05JloRIeufe8jb7eSfKFEfxiHkFxnTjZTBebBlrYunkekfCSqERXESQI8Fxl26ZZchk/LFPClkINWwKv1/jkNMdOn6OzpZkNne2Lls3M5Tl3YYK9h4/Tmssy3N9DMra6qZUlaldhaZJ2rUQg6y5MPPoAf3/JOnN+krPP9TNFEy889UbmyfIcvXyTZkDw3vQAmWyY9CUy0NMLg9sgmYR05obCM2tcczrFnQOD3DWYXDSYIF5uTbPLyMbURIfEaMEjT0BSHFwRWsRDVW+5e/AmnAIJCssuyzmTbObgdb1voMLzf5djFodWEsRwAaVIwDjzHKaPg3IXURtd1ZaKT4wxepdtRYwxz/2PvR0XRQNFogRWAc/xuWf7RXrb58PqUhVFEA2Yz+d5/fgZhjZkGNrYc0l9mkun2LG5H98POHDsJGMXp9i4ynfGsUStQaTceTbzOgB38mylXBVK6vHqd++o9FOYoINXuYtxSnz9bT+N64HnQd8gZKKkLdcKu+4JE7mW1hs7mzBrQyLmkfAWPmi120cZU3OeCB6LZ86/1ZK0m8kRxXPO8hYnvezyF4Mz3OXsv+z2l7vcOx60ce6/fHPZ9sU54nyRNlQWPjdBKWiBCS5SJMn9v/6v+M7zwaJ+gAQBqtCSnaezpcDYhMvYxDn2DLdd5W97dSxRa3AiEJMSdzgvLCp/F38NQPDt/8i8ppkJMuzlXuZJIShjdPBnDBLgETz4HtIZyGSVLcNKKiU4Ap09yrbbw0ursdoNYDHGGGMuyxGYVp+sLE54p9XHvULOe7nLvR3uGB2MXVMcB3UeB2Gjxgl+9+klwzVCinBBOzimaUaYJEuS5+XJa9rPlViitsY5oqRlhrQzww/xd8uuM/XV32KSVi5oJ69yFz4eoHyfbi7SjiK0/8TbaWkN/7hjcWXnHUVa28LXI+fsbNAYY0xtDJHgKAX8QIlHrZEFVVwRhqhdh+2tkiRQxXEEmGNeAxLIohbSWQ1wZRxPStxNjC6JWj1W8YKGJWrrQM6dIscUfRxnV9Vl1bJAhaOf38JFwk6SMzTxFDvJk0CAAkn2v/Qwnqt0d/t09/gIiucFDN9eoq017LiZ8CCVquVvZowx5laTEZedpCgSUIj6ocVFiNXhzg5OdVJGwCRKFzHyGnCKIgFKCochkqRvUnyWqBkcUYa8g1DV+fPNLG66LXzmP1MkzjHdyhidABSJ849sroz8KRKj99H3kUoFdHT6bB4s4BDgOsrQpjxtrT5CONWJzRphjDFmJTFxVpgFrvbaooEhvipHyXNRfbZIkna5uamUJWrmqsSdInGK7ODFy66jCuOPP06BJKfYzD/SC4CPx9d/4RcpFCRaT2lvLdKcDVAgnSixc3iGbKqEENDcFNDVXlymN4AxxhhTPyKCCwyTYpwSo5Q4FRTolzitNylhs0TNrBoRaHMvANDD6cUL//Rzlae+OpwKBpkjHKI6QxN/zVb86Nxpmibaf+ZhHCe8yN+cKzG4YQ4RxUHZOjDDxt4CaMDMrDXNGWOMqb1W8WjFYwYf5yY2LViiZmrOlYAB98iist38w6LXxb/4eGWEzbmgj7P0A+Gw639giBly0ZoORx57K9lUCYBEwmdT7yypeAlUyWZKbGifs+lJjDHG3BSZJaNTV5slaqYhxaRYed7vHqGfhcTu/iUTBs987PFKP7k50nyDgWhkK0zTTPcvvz+8PYkqiXhAb9scoDgS0NcxR2d7HoIATwLam+avOPzbGGOMqRVL1Myal3FmyBDe67KV82xYel+8/7FwL7zpIMcYHdErh71sqNzKpITHxg/9U2KuX1lfUHraZmnJ5QGIuz5DPZNkEmEiGfMCYjf3ZMoYY8w6ZomaWVeyzhRZpiqvBzi0aLn/P79IUDWruK8O59jIccJ7tRaI83/po0R4374iMe76pbfhOQu3FUl6RTb3TBD3AlClOVOgr2MGJ7rvHIT9+azhzhhjzJXcUKImIr8D/ChQAA4BH1TViWjZY8DPAz7wS6r65aj8IeAPABf4hKp+7EZiMGY1uRIsmtU6JjC4JJmDpyvPVGHmD7+w6JYlc2T5Fv2U8BCUKVro/Rc/Hq5czucUulqmcV2FANqycwx0TOI4AeqHKzWlC7Rm5m/Wr2qwOswY0/hutEXtSeAxVS2JyG8DjwG/KSI7gEeAncAG4Ksiclu0zR8BDwIngadF5AlVvfyNu4xpYCKQlelFZU1M0r101Osnv7ToZVFjnNdONErwTtDJ1+letM4sOYY+8DYcUVSVXCpPT+tMJdlTDejIzdHVPE0QWPvcdbI6zBjT0G4oUVPVr1S9fAr4yej5w8DnVDUPHBGRg8B90bKDqnoYQEQ+F61rlZxZV2JSpEcWkrleTi67nv+Zv6mMfp3QNl6P7h5R9n26GKeDNIf4nlzg3o88SDpRAML56gCak3PkUmEfO4KwLJsskPSKrHdWhxljGt1q9lH7OeAvo+d9hJVe2cmoDFjU0/skcP8qxmDMLcWVhYENHTJCByNL1jiw6NX0x57nwpJ74b1KE/OkF5XNkGPXr74TESXwlWyyQDoeJnhUErxZssnFCV4qVsKp6o93i7E6zBjTcK6YqInIV4GeZRZ9VFW/EK3zUaAEfHa1AhORR4FHATptzIMxV8WTEh6lRWXpaETsUqX//kLl+RnNUKhK8BRhmmbypColIAz/4jtxJKBy/TVQMokCzalwQuJyQpeOF2hJzVG5M3EgOKJIHa7QWh1mjFnLrlh7qOqPrLRcRH4WeC/wdi1fa4FTEM1QGtoYlbFC+dL9Pg48DrBNkrfsKbwxjSAtM5ckdK2cv2Q9/+P7KOribGucHK+RZWGkhDBLhtnKpMTRtrjc/+F7wj53Uf6WiJVoS8/gsNByGHdLNCVmb/h3KrM6zBizlt3oqM+HgN8AflBVq2vWJ4A/F5HfI+yIuw34PuGMBNtEZDNh5fYI8M9uJAZjTG05sjjnyDJJlskrbqcKFz7+MmE1EL5HnhQv01zphwdQIMEP/fqu1Qz5sqwOM8Y0uhttj/84kACelPCaxlOq+i9VdZ+I/BVhB9sS8CFV9QFE5MPAlwmHtn9KVffdYAzGmDVABJIsnm4kyTzNjF+y7rH/9kqtwrI6zBjT0GShpb9xbZOk/r43WO8wjDE19N7Sa8+q6p56x7EarA4zZn1ZzfrLblVtjDHGGNOgLFEzxhhjjGlQlqgZY4wxxjSoNdFHTURGgWN12n0HMFanfV+OxXR1LKar06gxZVS1s96BrIY61mGN+tlaTFfWiDFBY8bViDENq2ruyqtd2ZqYhbGelbWIPNNoHZotpqtjMV2dBo5pU73jWC31qsMa+LO1mK6gEWOCxoyrUWNarfeyS5/GGGOMMQ3KEjVjjDHGmAZlidqVPV7vAJZhMV0di+nqWEy3rkY8jhbT1WnEmKAx47qlY1oTgwmMMcYYY9Yja1EzxhhjjGlQlqhdhog8JCKvishBEflIDffbLyLfEJH9IrJPRH45Kv/3InJKRF6IHu+u2uaxKM5XReSdNymuoyLycrTvZ6KyNhF5UkRej362RuUiIn8YxfSSiOy+CfEMVx2LF0RkUkR+pR7HSUQ+JSIjIrK3quyaj42IfCBa/3UR+cBNiOl3ROSVaL9/KyItUfkmEZmrOmZ/UrXNG6LP/WAUtyyzuxuJ6Zo/r3p9N9caq8MuicvqsOXjsPrr+mOqTf2lqvZY8iC82fIhYAiIAy8CO2q0715gd/Q8B7wG7AD+PfBry6y/I4ovAWyO4nZvQlxHgY4lZf8V+Ej0/CPAb0fP3w38P0CAB4Dv1eDzOgsM1uM4AW8FdgN7r/fYAG3A4ehna/S8dZVjegfgRc9/uyqmTdXrLXmf70dxShT3u1Y5pmv6vOr53VxLD6vDlo3L6rDl92311/XHVJP6y1rUlncfcFBVD6tqAfgc8HAtdqyqZ1T1uej5FHAA6Fthk4eBz6lqXlWPAAcJ46+Fh4FPR88/DbyvqvwzGnoKaBGR3psYx9uBQ6q60oSiN+04qeq3gAvL7O9ajs07gSdV9YKqjgNPAg+tZkyq+hVVLUUvnwI2rvQeUVxNqvqUhrXPZ6p+j1WJaQWX+7zq9t1cY6wOuzrrvg6z+uv6Y1rBqtZflqgtrw84UfX6JCtXNDeFiGwC7gG+FxV9OGr2/VS5KZraxarAV0TkWRF5NCrrVtUz0fOzQHeNYyp7BPiLqtf1PE5l13psah3fzxGeYZZtFpHnReSbIvKWqlhP1iCma/m8GuK7uQY0xHGyOuyqNVodZvXX1bvp9Zclag1KRLLA54FfUdVJ4I+BLcDdwBngd2sc0ptVdTfwLuBDIvLW6oXRGUvNhxCLSBz4MeD/REX1Pk6XqNexuRwR+ShQAj4bFZ0BBlT1HuBXgT8XkaYahdNwn5dZHVaHXZ1Gr8Os/lpRTT4rS9SWdwror3q9MSqrCRGJEVZwn1XVvwFQ1XOq6qtqAPwvFpq8axKrqp6Kfo4Afxvt/1z5ckD0c6SWMUXeBTynquei+Op6nKpc67GpSXwi8rPAe4GfiSpgoub589HzZwn7UNwW7b/68sKqx3Qdn1ddv5triNVhS1gddk2s/roKtaq/LFFb3tPANhHZHJ3tPAI8UYsdR6NSPgkcUNXfqyqv7h/x40B55MkTwCMikhCRzcA2wg6UqxlTRkRy5eeEnTr3Rvsuj+75APCFqpjeH40QegC4WNWMvtp+mqpLBvU8Tktc67H5MvAOEWmNms/fEZWtGhF5CPgN4MdUdbaqvFNE3Oj5EOGxORzFNSkiD0R/l++v+j1WK6Zr/bzq9t1cY6wOWxyT1WHXxuqvq4upNvWX3sSRLGv5QTi65TXC7PyjNdzvmwmbmV8CXoge7wb+N/ByVP4E0Fu1zUejOF/lBka1rBDTEOHolBeBfeXjAbQDXwNeB74KtEXlAvxRFNPLwJ6bdKwywHmguaqs5seJsJI9AxQJ+xz8/PUcG8J+FwejxwdvQkwHCftHlP+u/iRa9yeiz/UF4DngR6veZw9h5XMI+DjRJNmrGNM1f171+m6utYfVYYtisjrs8jFY/XX9MdWk/rI7ExhjjDHGNCi79GmMMcYY06AsUTPGGGOMaVCWqBljjDHGNChL1IwxxhhjGpQlasYYY4wxDcoSNWOMMcaYBmWJmjHGGGNMg7JEzRhjjDGmQf1/ZfoFWLu2cG0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAABqCAYAAADjjxZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZlklEQVR4nO3dfZAc9X3n8fe352EftM/SSki7ktATSAs2SBYg2+DEBvMU29iOkyNnztihCqfKrrPr7HN4qLtLVSpx7ORctsuuOOTgDp/JcT6THFQFHw8+ykdSQYB5FiCxEggk9ICeV1pp56G/98f07vZoZ1e72tmZXunzqtrant+ve/o7PTvf/U53/7rN3RERERGRZArqHYCIiIiIjE/FmoiIiEiCqVgTERERSTAVayIiIiIJpmJNREREJMFUrImIiIgkWLreAUxGu6V8Ppl6hyEiNdTP0D537653HNWgHCZydql2/poVxdp8Mnw/vbTeYYhIDX2isGV7vWOoFuUwkbNLtfOXDoOKiIiIJJiKNREREZEEm3axZmaLzewJM3vVzDaZ2dei9i4ze8zM3oh+d0btZmY/NLN+M3vJzNZNNwYRkdOlHCYiSVeNPWsF4Bvu3gdsAL5iZn3AbcCv3H0V8KvoMcB1wKro51bgr6sQg4jI6VIOE5FEm3ax5u673P25aHoAeA3oAW4A7o1muxf4dDR9A/BTL3kK6DCzhdONQ0TkdCiHiUjSVfWcNTM7F1gLbAQWuPuuqGs3sCCa7gHeiS22I2o7+bluNbNnzezZwxSrGaaISEXKYSKSRFUr1sysBXgA+Lq7H4n3ubsDPpXnc/e73H29u69vJ1WtMEVEKlIOE5GkqkqxZmYZSknuPnf/+6h5z/Chgej33qh9J7A4tnhv1CYiUhfKYSKSZNUYDWrA3cBr7v69WNdDwM3R9M3Ag7H2L0QjqjYAh2OHGkREako5TESSrhp3MPgw8G+Al83shajtDuAvgJ+b2S3AduD3o76HgeuBfmAQ+FIVYhAROV3KYSKSaNMu1tz9nwAbp/vKCvM78JXprldEpBqUw0Qk6XQHAxEREZEEU7EmIiIikmAq1kREREQSTMWaiIiISIKpWBMRERFJMBVrIiIiIgmmYk1EREQkwapxUVwRERGRs9IJb2LIG2Z0HSrWRERE5IxW9ICQVOU+UuwMz2WA9or9IQE7WDHSX34FbWeAdlJeJGu5WPvTVYl7mIo1ERERmRWKHrAn7GGIxjF9BTL0c2FZn+EA7GcBQ95I2vJjlnOMgme46AODtDccw728HEvj/P7HOljw4dUVY8pkQrq78gSxE8t+vvZ0Xt34VKyJiIhI1RwPmzhBU8U+A/aEi+jnAoqkMBxjtKg6ShvbWUUzR2mwEyct6+RooMGP02n7Rto9tq+rnf18+t4bSKfDsqKrKessX3KcbNan8cqGprHs9KhYExEROctUOiw4XDABHCp2spn3Vzx0eIxWtnBR2fxxA7RjONlxiptGjnHVF7rIpovEn8IdzOAzl/TS2VGkb+Wxsr5h6ZSTSq2a4NUdnaBvdlKxJiIiMgsNFTNs89XkyZQVToYTErCFi3iXJSPtQbwYYx6HmEeGXGxZxwlo4ihNDLKI7fSsbR1ZJvTScb4s8OWPhoQfv44ggDAcjcmBTAYW9XjZYcGpOHTQaNi5hWxmOnvBziwq1kRERGaIOxwsdpGjYaQoGj4458Am1rGVC2Ito/I0sp3zyJMd09fIICEpWjlMmtHzsDw2Z1/fcS7/0nUEdvLSJfMXOIWuNiwYXfjAe3Bhz2F6esMKS4x5dZOYR6pBxdo4flQ4xKuso5k/JcsJLuA52nmPgOLIBy5NkQt4lnNS745ZPjD9EZ+Ou4p7Abg1Nb/OkYjMbvos1ce3CvN4l6V08+8ByNFIngwBIY6RZYhMVFw50MpBNty0glTgY0qfMDSuWHiCF30+QapU+LnD3NZOlqyCOa2QneYVIzInPU6rKkgkvS3j2Azszx6E5W0sv2Qd+za2sD3XwPyWAQDcjT2b9vGPfJ5isXRMP/5tKU2RRbw58o3HcBo4gREy/G1kEdtZwwukKFQ49u8ElL7ZtHCEuen9M/uCE2Kb1+8EzjNZzrOE0TWwxzvPpJL4vEM0cYSOKa03vrwT8J4vrDgaq7ItU1qXlNNnqT52sx/awFaVPm8tDUdp6xgkCCCfS7NkzYV0nVOMLbGUAlAY5/nepJW2kz6z7a3VKdRk9lCxNoGUhXR2H+bwwSfhPGhu66N5SdtI//JPLmKZQxh97oY/TmHBsMI5HD38PhZ15cGNQwdhYa+TiT5cxbzx3J89yot8iPJdyVb2XE7AYebSXDhatqvbcOYwQKXd0MPPUCDNMjbTxXtly8V/jyrf5W2x+VMURv7BBrHlV9krtNiRitvudA2P6il4df40p1KYDNvrizhKa7T86axz7OGDieIY7svRyA6W4diY6/hUVn6OygJ2VtyjWyBNhhwpimWjpqaqSIprvrGSdFA89cwwZl2G09k8SEN6vH9L5W67Y8ohitSdUToBft45h7DT/7iJlFGxNk1mkDp5K6Yd2EVnCxyPmnqXLKRrPjQ2j87W84vrT/n87nDkABQKlJ2MkBkscPGlXjZCZnj+4Z+DB+DEk93kC6mRvtzb2+PRR+1jM4r7aCkwMNTEqgU7R5ZxjL0DrTzwy8tOecrCVIuD3XwXgP8afmNS8xc9xSLbTsomKiCmFsOQN3HVTa00ZXIV+0/e5mV9Fdc1vJ1HW1796fNj5nGMq25ZwPuu7iWVCqNlbNz3J+6Zh3dz2ZJ8aXTVSQJzgqBah+UPVul5RERkslSsJZwZtM8d2546DO2dEy87txs4f91JrRdNOYZDm3Zx2SXLxrTf9P0pP9Up/aubSnsuf/izD05q/nce28aapWmaGye3tycpfuemj07QO/XDVy0NQ6RTIenUZE4KFhGR2UQ3chcRERFJMBVrIiIiIglWt2LNzK41s81m1m9mt9UrDhGRqVL+EpFaqkuxZmYp4MfAdUAf8Adm1lePWEREpkL5S0RqrV571i4F+t19m7vngPuBG+oUi4jIVCh/iUhN1atY6wHeiT3eEbWNMLNbzexZM3v2MLNrpJ+InNFOmb9AOUxEqiexAwzc/S53X+/u69tJ1TscEZEpUQ4TkWqpV7G2E1gce9wbtYmIJJ3yl4jUVL2KtWeAVWa2zMyywI3AQ3WKRURkKpS/RKSm6nIHA3cvmNlXgUeAFHCPu2+qRywiIlOh/CUitVa32025+8PAw/Vav4jI6VL+EpFaSuwAAxERERFRsSYiIiKSaCrWRERERBKsbuesJV2aArkhZ8+T85j30S4yHU00G5wY3Ec646Qz9Y5QRESSJkWBgwdDdvzjgpHHaz61guZmZygP4S4o5kr/et2hudVZcEELW/oPgI8+TxhNpwJoaAazWr8SSRIVa+NYYyHn+Zus5ds888Rvc4ImtnIuIWlyZOlgHykKLFzdyt7epTS3hSxcllMRN019a1bXOwSRM8Jya6h3CGelDbaf4z7IZ/kaDmzkY+x4aAVDgBGSJ88gIQY4AbtZzACdGOGY5wpJUSSgk/1l/QWydLKHNg6x4a9+l3ePtQKl4s9jBV/DHFi5BjLZyrEGOrY2a6hYG8etqfnR1K/ZwK/L+rYWVnGAeeRpZNPr62l8fRcDtPE281ixssi8lgGWrWniaV9EOut0dhdq/wJmqf905+31DkHkjDCaw6SWRrf7WwAs4Z7Tfq5iaLwZnscBugEIYgWbY7zEB3nim4+MtAwznJCAfSzkcVIEFW53ZsBc9nLu6rD0rG44xlAxy/bGI7z/sma6P/dbZGM1f7wY7O72sj6ZWSrWTsOK9Bus4A0APsQTI+07Ckt4vv+D5Gnk/75wKYMcJ08jm2kiwz5aOQQErLoow3nXLaWpp4tCa4YgDQ2N9XktIiKSTKnAWRlsBjZX7L+Ef55weXcY8soVVd6zvOzrOfJ6Z3wJADLk2fjKfHbcPYSPObXdydPAEE20cJiyY7cjc6RY1ldk/Y19o6/lnS1Rp5FJF1n98V5OLDmvLFZ3He4dj4q1KupNv00vbwPwWe4FYCjMcijswjECnEGbw7MvXsHrL3bSz4XRbu4UDRyPijnjI3dcwrYTC2jrgCXnQRDdVlB/xCIiMllm0GhDFfsaGSrb2TAVec9wMOyitH8urlS4DdHEq6+u5Zn/2H9SnwPGIeZxz08aMPaMee4iacBZyNt02b4x/SHGNV9bQe/lK8b0uUNXR575c/Nn3P9LFWszrCHIsSDYXdZ2LlvLHh8ptrHdV1Ikwy56eebPB8mT4UUWYxTJk2VVH/S0HwRg+cWt7Jq/jp7FTle3ijgREamdjOWZnxpbaMUtjg4DT9XxsIl3fUlUtJXYSKEHx2nhsR+E5H7wTmypUl+RNPtYSNaHMIsf+i39k1x76XFaM8dLS3j5P850KscV13XSvP79Zef9jfY7XR2Fup3np2ItAdpSR3gfzwFwMRuBBwAI3Sh4mv5wDe+8ugInICTFL//lA5zgCf6FAiEpWhigiaNc/mdX0dDgONDUAF0XzqelBQ16EBGRWaEpOM6KcQ77Dns/z4zbl/PKoyn2+CL2Pt3DkbLDuqWqrECGtziff3rSCXgRYsUhQI4Ghmim2QdIWfwc9FLBlybHZVecoHf90gnjng4VawkWmJO1PH3BS/Tx0kj79fwcgFyY4bB34gS87Jfx2p3De/CM3SzmCB2A0cIRmjhKB/tY8zdfJxV9oehZCvMW1PQliYiIzJis5Sq2L7a3Jtzbt2GCQ8J5z3DU2/BxjmId9zlse3INbz25fyqhTomKtVksG+TpZi8AV/JgxXlCN7YXl3OMNnaxhKe/fC8O0SHXxWTIEeCsvSJNZ9MxoPR94sIPtTO47nIAbFDju0VE5OyUsTydNlEhtp+e6Hz1Yd+r8kUgVKyd4QJzlqVL58hdyPNlfXkvHR/dGy5k25OrOR7tHh6gg7sfXYPzv3GMIhketncBmOMD/N531wLQkC2w6LdX0NBQ2l0cBDp/TkREpNpUrJ3FMpYHoCf19phvBXGhG4fCLnJkectW83/++BAAB5jPfg6RobTbOe9Zum0XDZzgozd10fV71xAEjju0tDg9iwoq5kRERKZIxZqcUmBOV6q0C/gcdo0734FwLvu9mxxNPP6zi/Gf/QKAIineY1E0QiekSIpGH+Rjn2saef7VV5xD66WjQ7HnzHEaGyoMyRERETnLqFiTqukK9tNFqai74KRDrqHbyFDsImm2hqvZ/UALAHvo5ZFfFElFJ38epwVzp8mOAuAe8Dt39NHZkiMwp+PSZcyfX8QM8kXtqhMRkTObijWpicCcgNJh1wx5Lkg9P+68oRtHvIPS1XWMvZzDC9/eBkCeBt7mXQJCDKdAhvm8S6+9CZSGUH/2v32SOY2lszsNp7M1TzYz9r57IiIis4GKNUmcwJwOOzjyuJP9nM+mivPmPMteX0gYDY7I0cjPvvgEBUrX2jlKGwVPjwznLniaq7/YTlO69PjcK5azaN4gULpIYmBOQ1aFnYiIJIeKNZnVspaj17aXta3ktbLHBU/j0cULj9HKW/cuxjFCAh6++wghRkBISIpj3sJc20v8goid7OPan3wGw0mlnMXdx2hpHntjZBERkZmgYk3OeOnYFac77AAdHBh5fEF054hhQ2GW48wZeVwkzdus5OE/eggoXcl6N4tJR4d0Q1IEXqQ7urTJsEZOcON91wOl+9W1NRdob8lX94WJiMhZQcWaSExDkKOB8itgz+W9cecP3djPfHI0jrQVyLCHXv728/8MwCAtHPYuWu3w6HIEpLzANbd0AuAY81sGWHnlypF50qmQRh2SFRE5602rWDOzvwQ+CeSArcCX3P1Q1Hc7cAtQBP6tuz8StV8L/ABIAf/F3f9iOjGI1FNgTreNvaHxUvpHpkM3ilb+UQsJ2EMv/feULl+So4HHWQ4/HD03b4hGAg/JWunGw40McvWXF5FJjR6CdTfamwYJvaOaL+usoRwmIrPBdPesPQbc7u4FM/sOcDvwx2bWB9wIXAAsAh43s/OiZX4MfBzYATxjZg+5+6vTjEMkseIjYeOW2Nayxxfym7LHRU9xnKaRxwO0s/FvDo5cAgVKlznZQw9pBnmeQ2QsTwuHCSgyfJNhgI/fcSEN6fL7nzSm87pIsXKYiMwC0yrW3P3R2MOngM9F0zcA97v7EPCmmfUDl0Z9/e6+DcDM7o/mVaITOUnKirRE15oDaOEoC9k54TJ5z3CUNuKF2hCNPPjnb40MsgDIkaXgGRrsBAAZcrRxiEu++cGReTJBke6WgTO6oFMOE5HZoJrnrP0h8D+j6R5KiW/YjqgN4J2T2i+r9GRmditwK0C3Tq0TmZSM5elk7A2Hz2HHmLYiAR5d8mSIRo7Szsa/2jjSP0gLA95BKjZAI+9ZMpajmdEiMiCklUN8+PYNQGlARWBOe+NxgmBW3YVCOUxEEumUGcTMHgfOqdB1p7s/GM1zJ1AA7qtWYO5+F3AXwCprnFUZX2Q2SFkIlAYwpDnKnFgBNuLkvWoGJ7xp5Lp2UBoxe4ROHvn26M6lkBTHaB3zdAVPMy92jp9jBBS5/j/0lc3XlK7eyFnlMBGZ7U5ZrLn7VRP1m9kXgU8AV7r7cELaCSyOzdYbtTFBu4jMAo3RgIe4Vg5XmHOsQeYwFBs5C3CETn7xp6WdVYbjDN/BojqUw0RktpvuaNBrgW8Bv+Xug7Guh4C/M7PvUTo5dxXwNKXv6avMbBmlBHcj8K+nE4OIzB7NdoxmjpW1VTpsW6vdUMphIjIbTPdEih8BDcBjVjoL+Sl3/yN332RmP6d00m0B+Iq7FwHM7KvAI5SGvd/j7pXvIyQiZ60aDmpQDhORxLPRvf7Jtcoa/fvppfUOQ0Rq6BOFLb9x9/X1jqMalMNEzi7Vzl/BqWcRERERkXpRsSYiIiKSYLPiMKiZvQdsr8Oq5wH76rDeU0liXIppcpIYEyQzrvPdfez1P2Yh5bAyimnykhiXYpqcquavWXGlRnfvrsd6zezZJJ4zk8S4FNPkJDEmSGZcZvZsvWOoFuWwUYpp8pIYl2KanGrnLx0GFREREUkwFWsiIiIiCaZibWJ31TuAcSQxLsU0OUmMCZIZVxJjmm2SuA0V0+QlMS7FNDlVjWlWDDAQEREROVtpz5qIiIhIgqlYG4eZXWtmm82s38xuq+F6F5vZE2b2qpltMrOvRe1/YmY7zeyF6Of62DK3R3FuNrNrZiiut8zs5Wjdz0ZtXWb2mJm9Ef3ujNrNzH4YxfSSma2boZjOj22PF8zsiJl9vdbbyszuMbO9ZvZKrG3K28bMbo7mf8PMbp6BmP7SzF6P1vsPZtYRtZ9rZsdj2+snsWU+EL3v/VHc07oR1DhxTfn9qtfnc7ZQ/qoYW6JymPLXacVV1xxW1/zl7vo56YfSPf+2AsuBLPAi0FejdS8E1kXTrcAWoA/4E+CbFebvi+JrAJZFcadmIK63gHkntX0XuC2avg34TjR9PfBLSje93gBsrNF7thtYWuttBXwEWAe8crrbBugCtkW/O6PpzirHdDWQjqa/E4vp3Ph8Jz3P01GcFsV93Qxsqym9X/X8fM6GH+WvcWNLbA5T/pp0XHXNYfXMX9qzVtmlQL+7b3P3HHA/cEMtVuzuu9z9uWh6AHgN6JlgkRuA+919yN3fBPopxV8LNwD3RtP3Ap+Otf/US54COsxs4QzHciWw1d0nuvDojGwrd/9/wIEK65rKtrkGeMzdD7j7QeAx4NpqxuTuj7p7IXr4FNA70XNEcbW5+1Neyj4/jb2OqsU1gfHer7p9PmcJ5a/JS0oOU/6aRFz1zmH1zF8q1irrAd6JPd7BxAlnRpjZucBaYGPU9NVo9+89w7ulqV2sDjxqZr8xs1ujtgXuviua3g0sqHFMcTcC/yP2uJ7bCqa+bWq9zf6Q0rfMYcvM7Hkz+7WZXRGLdUeNYprK+5WIz2eCJWL7JCx/QbJzmPLX1CUph814/lKxllBm1gI8AHzd3Y8Afw2sAC4GdgH/ucYhXe7u64DrgK+Y2UfindG3lroMLTazLPAp4H9FTfXeVmXquW0qMbM7gQJwX9S0C1ji7muBfwf8nZm11TCkRL1fMn0JzF+Q0Bym/DV1CcthNXm/VKxVthNYHHvcG7XVhJllKCW6+9z97wHcfY+7F909BP6W0d3fNYnV3XdGv/cC/xCtf8/woYHo995axhRzHfCcu++JYqzrtopMddvUJDYz+yLwCeDzURIm2k2/P5r+DaXzKc6L1h8/zDBTf1tTfb/q+vmcBZS/KkhwDlP+moKk5bBa5S8Va5U9A6wys2XRt54bgYdqseJopMrdwGvu/r1Ye/x8ic8Aw6NRHgJuNLMGM1sGrKJ0QmU1Y5pjZq3D05RO8nwlWvfwqJ+bgQdjMX0hGjm0ATgc26U+E/6A2CGEem6rmKlum0eAq82sM9qNfnXUVjVmdi3wLeBT7j4Ya+82s1Q0vZzSdtkWxXXEzDZEf5dfiL2OasY11ferbp/PWUL5a2xcSc5hyl+TlMQcVrP85TM4wmU2/1Aa9bKFUoV+Zw3XezmlXc4vAS9EP9cD/x14OWp/CFgYW+bOKM7NTHO03jgxLac0YuVFYNPw9gDmAr8C3gAeB7qidgN+HMX0MrB+BrfXHGA/0B5rq+m2opRodwF5Sucf3HI624bSORj90c+XZiCmfkrnSgz/Xf0kmvd3o/f1BeA54JOx51lPKflsBX5EdCHtKsc15ferXp/P2fKj/DUmrkTmMOWvKcdV1xxWz/ylOxiIiIiIJJgOg4qIiIgkmIo1ERERkQRTsSYiIiKSYCrWRERERBJMxZqIiIhIgqlYExEREUkwFWsiIiIiCaZiTURERCTB/j/wFnAyLO058wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -447,7 +447,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADECAYAAABOQy+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzYUlEQVR4nO3deZgk113m++8vIvesfevu6uru6pa6pZZlLAlZls1mkMcYYyxjPIwwMzZgX13AvjDABSw8GMzAxcbgMYsvjC/2sIxBeFj1DMYeL4CBQbIta1dr6U2971vtlZnxu39EZFVmVVYv6urMyqr383Q9lXkiMvJkdGbUmyfOOWHujoiIiIhce0GrKyAiIiKyVih4iYiIiDSJgpeIiIhIkyh4iYiIiDSJgpeIiIhIk6RaXYHL0W2hD5FudTVERERELmk3M6fcfbDRsrYIXkOk+UhqS6urISIiInJJbyg/98JSy3SqUURERKRJFLxEREREmkTBS0RERKRJFLxEREREmkTBS0RERKRJFLxEREREmkTBS0RERKRJFLxEREREmkTBS0RERKRJFLxEREREmkTBS0RERKRJFLxEREREmkTBS0RERKRJrjp4mdkmM/t7M3vazJ4ysx9PyvvM7HNm9nzyuzcpNzP7LTPbbWaPm9ltV1sHERERkXawHC1eZeCn3P0m4E7gXWZ2E/Ae4Avuvh34QnIf4DuA7cnPvcDvLkMdRERERFa8qw5e7n7U3b+W3B4DdgEbgbuBP0xW+0PgTcntu4E/8tiDQI+ZbbjaeoiIiIisdMvax8vMRoFbgYeAde5+NFl0DFiX3N4IHKx52KGkbOG27jWzr5rZV89TWc5qioiIiLTEsgUvM+sA/gL4j+5+oXaZuzvgV7I9d/+Yu9/u7rd3Ey5XNUVERERaZlmCl5mliUPXJ939L5Pi49VTiMnvE0n5YWBTzcNHkjIRERGRVW05RjUa8HFgl7t/uGbRA8Dbk9tvB/6mpvxtyejGO4HzNackRURERFat1DJs4xuA/wA8YWaPJmU/B3wA+JSZvQN4AfjeZNmngdcDu4FJ4AeXoQ4iIiIiK95VBy93/2fAllh8V4P1HXjX1T6viIiISLvRzPUiIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTaLgJSIiItIkCl4iIiIiTbIswcvMPmFmJ8zsyZqyPjP7nJk9n/zuTcrNzH7LzHab2eNmdtty1EFERETkWqp4QNlTF/25lEuvcXn+APgd4I9qyt4DfMHdP2Bm70nu/yzwHcD25OcVwO8mv0VERESuiWnPM0PukusZvqjsgvcw8Is/zalzWTDA41+LRdzz6r3wxh9acvvLErzc/UtmNrqg+G7g1cntPwT+gTh43Q38kbs78KCZ9ZjZBnc/uhx1ERERkdUjcmOMHs57b8PltUGpUWiaoJMjbOG6n/xe0qmofqHXrh/N3V0YqjpzZTYPneNVLzlBNl2pf1jd9iLS6WiJhbHlavFqZF1NmDoGrEtubwQO1qx3KCmrC15mdi9wL8DgNa2miIiIXAslT3PahzjORiLCBUvj9LIw5NSGpxIZTjPIzp/9Hvq7ZzFzaJhrPP7nc5tNRGzMl/nOjWOs79tPZmEo8qjhbWuUrKLadZdIXn7x0AXXNnjNcXc3s6Xy4VKP+RjwMYDtlruix4qIiEg9d/AlTpA1aimaexzGBe/hGJs5xghe1z38Yo8LmCHH7b/03bxyeKqutamaW+KgVLMN97ktmkekUxEj66bp7TiAWbX8CkLRpcJUC1zL4HW8egrRzDYAJ5Lyw8CmmvVGkjIRERFpoOTpy+qfVKsapsa8m47f+ShHTqSJIpsrj3OMz+eU5IbZ4pCSDiO2D0/x2pFJshnH3GtOy1VTVG34icu7O8vkMsdqyheHH/PGockWbG+1uJbB6wHg7cAHkt9/U1P+bjO7n7hT/Xn17xIRkdVqIipyloGGrU1B4/Nmcybp4Ahb6PtPP0U2E0Fdf6Z5tUHJmG81wp18PmJwYJKX3zJGNhvFy6uhaYnQQ+R1281lI4za1qOa2w2CV11wW0WhaTksS/Aysz8l7kg/YGaHgF8gDlyfMrN3AC8A35us/mng9cBuYBL4weWog4iIyHKqeMA5H+CQj1Ku+XNpi8JPfbKoLq9YyCnWs+H9P05/f4XA5qPXwg7h8zll/nbgEUNZ586t02wYPEMm4/WPWyLo1AakuVasRkGJhQFp8bYVoJbfco1q/L4lFt3VYF0H3rUczysiItLIjGc5Fo2wh5uYpAjEIelifZnideLA4QScZYCeH307A0MVspn4sdX4EiTbifsoRXPbr5qdha1bS7zh5ll6uy7M90/iUkFovjxYgf2T5OppuKCIiCw7d5gh3/D02qXCz7TnOODXJaGpa4nHXGwbToksAz/2NrZeX6a3z+eDEnFommtVsgZTCCQFw8Nl1m8YI5NZXO/aU4TVsFY7huyFfSH5vNPTE3FlQ8tktVPwEhGROmVPccYHKZOuKW3QKbpBWcnT7GcHh+79MLMzEBhzrT3Vx5gtmEKg7hRc/Ez9AxG33Ryxbj2EQbSoAzhAaDV9lWx+OgGziGIH9PRMzz13YDUtSbUByha3PNWXiSwvBS8RkVVkMipwwK9jgu6a0iX6/9SIO2QHvODb2X/3fVQqEITzHbUDYGD9/PrV8LIoQAWwYQRevdMZWh+HriDwxY+z+gAFcWgKLCIMIZWOQxtAYLX1X/y4hdurrq/QJCuRgpeIyAoQuXHWB3g2+jqOMQJc7JScL7jQbrzeWQY5+JofJpOFfBGCmpXMqDm9xnwWC+Lb1eAyuA7uelkcnlIpCJNt7H4abvw6CMOabdT8hvrnC2vKw5ry6vq1rWC16wZKS7LKKXiJiCQqHhItiDSXI3LjsI/yuN/OQXYQYQQ4KUp1p7UWm59mu0SWWbKU734T/euBmlN0VpNSQmuQTDwOPb19cNsO6OqN76dqjvB14SdYXH6p5SKyPBS82tBUNH+hz4AKHTZW1xQvIouVohTn6F9U7hgHom08zis5wpaLzOy99HxLcfuTMfWN38zQlgphCDNTAf2jSafrJMmENU07QVAfplIZ6N8AhSI16yTLa660slSYqq6joCSysil4tZH/Up5i787vZmDDR+I+F8mpg1QGbvnML7DdniTF7IJZieub9KsCKgxyhFww07T6i7TCRytnOeKjnNj6Wcql6nmy+FcYxPfDdIX+DWWGNs2QzkaEqdRcO1UqFc5d/y1Mx+vHmSn+YAWhYQZdvU6hc3bueY/tN9aPevI88e9Uev7DWBegFl7CTkRWLQWvNrKHWSbHHuOb3gA3fj2kQqiU4cRh2Dfyfp44Wu2cmhzcnbn0VRu+AuJJib0CI5/5bbbyNCkrN/ieXw1w89/005QYsX302im1sklb2OMlxjhJz9A06zaPkyuWCZPUk87Go/bClJPOzKefsDYg1Qzsq94Ow6RjFJBKqYlJRC6fglcbClKQycbBiyxs2QHbds4vT9V8e250+iEMIKrAqeOw7+Xv5qn9cRAL5v+WzHW0TYWwLrmyZoAzOwNfOwbhH/0eAxxrOJdNXV0XldSHtR5Osc2eUZCTa8yxwAlT8U8qXW2B0ntOZK0pF7rmbi95yaSGyy9jQtto6S4JVQpea5AZhClYtxE21FyufGE4A3j2cXjJrfHtapeUSgXOveX/5Nhh4k69yWSE9cPDa0ZQBR63sHn9sHDMOXks4G9/8eOYR+SZrKllozmDam83enPPn2JNU2KUZ9hke+m085ecsLHueTSqSkSWwcREwPnzTmhOGDhBEB9bg8BJBfWDGFaz2XzP3O0rCTr1lytafJ3IuuO6LzFNSqNttPgqAApecsXCEIY2xD8wPxS8fih5zZw6gTcsj4NaBX/T2zl13Jiamp8NOu7DNj9pYk1j3Py1x6ifELE6PiwAxsfguWdSPPz//HdCn7+wbONMNT+yrLpGfVCbv52iTNHG5l9Dg0CXpsR6DjDCXnI23fAZryQILq7r5bmisNlg3ZAKoVUuexuy+p06HreCB2HcRy0IIJ2K71dHUYYpfXkB6O+POHYs5NixFF4xosiIovhsQxSBV7x6Her641ISDsIAQosIAo/DmkWE4XyACwInZRHptLNp4ywT2Z65TTS6HFHglYsuj8sbXKvxSq4N2eDxC7chCl6yAqRSsH5jdcboxZMgwoLA1mB26UazUr/8FWVm/t2buXAhmH+cA9QfEObDXRL63GqeozLXcmzuHDiQ5uUvnybwCu4NQppHjI8F7NuX4sDBNKWS1R+4al94o4OUL7HugueYv4iuL1ped8HduVPH1FxPbqnniObXT270dpW58HPvpcfOcLUu5+D7Yg/QF3tchdPzIxWbGAgcOHXE4kCSjn9nsvMhpfZ2ELQurJw5nwwAqO2iUDPisjr6stgPFybngwMe/zaPW8GjCDxyPEpatxfMIRYE8XOkUk6YgtHra+cEq/3cU/PcSd2WmCh1qS941WNAbdnlTbwaJY/nossXbq+6Tlj7ZbDDGb5+8bpBg8sLNbpgtjt4JYrDWmR4FN/2ZH97EuJ27c7Qt3VK4aaNKHjJqpbPQz5fHziWOngGNPiWaLXfEp2jR9NkMhAfz33RNsydXLbCUP8sr7h98XM0+kYJ899GG36LhCW/Sc59i13qm6bXhrCkPFrim2hNoDN3pmdDDh/P8uwHfonxiQWHigWnC+baC+uO/dFc2VzxUv0fGp5ymN9u/fIF+9MbrVOznft/jA6H2clzHNldJl+YpqO3DEAqM/+6wvR8L/pUurY8tag8VVcWNlw3UwiZLRlRxTAL8AiCIEyCixFYQCWKB7lg87N9hWEc0oa3RUkn/voO/LVTUtTerq5TP2UFS6xbs43LPN1V7FoYzhY//mLzf1UDmwH7n4vvazRnY2bzYTXm86PVrf79v3+/Ale7UfASWeUWtqRYbUtE7YL67ncU8xV2jE6yY8t4srxxuFu6vBq8ajYcNX5co/4ZS/XvWLKDa6NQ584n/m6GCxNpykFEKlWhXA6B8uJ1l1kqXe2873MBo346iZrQX3M7lQo4tHt1df6p9isNSfo4KXDJGra6Pt0iIhcxPbmP8uzVnzYVEXmxFLxEZM0oz56gXDrD2NlniCqaPFhEmk/BS0TWhGJXfMo0V7yefMcmxs8/z9T44RbXSkTWGgUvEVn1ypUyUXQOxymXzuFRmXxxE+XSOGdPPNLq6onIGqLO9SKy6pXKswRTh8ErzE4fYnoy7lwfpkLCMNvi2onIWqLgJSKrXj5bIN91E+XZ/RQ6d9DZG/fvqp1OQkSkGXSqUURWvZlSfAWBfMeNLa6JiKx1Cl4isuqFmjhKVqGpqSmiSJf1ajdqZ28zHlWSD5r+kIhcrlSYvvRKIm3miSeeoKv7lQDMzMzw1YcfBuYnFv6GV72yZXWTpSl4tZlSaf4CzeXSDHuf/mdg/tISN9xyVyuqJbKiuTvTk0eZnhjHmQYrEQQZ8p1D5ArrMFPjv7Snm3bGLV7ZbJZ0Os0tL3sZAc7DX9No3ZWqZUcbM3udmT1rZrvN7D2tqke7CULI5uLWrlQ6S5jKsO2mb+L6m7+ZIFSOFmlkenaKC6enSGc3Uui8ma7emyh0bKZSmmD87HN4g0sWiax07k6lEgev2dlZADKZDOl0GmvVVdflkloSvMwsBD4KfAdwE/B9ZnZTK+rSbgKDIIw/aOVS/EFLpTOEKX3QRJYSRRFOiVS6iyDIEoRZUplOOnqupzR7nvOnHm91FUWu2Lp163jk0UfZt28fjz76KBs3bpxbpr8HK1ermkjuAHa7+14AM7sfuBt4ukX1aRthKsvxgw/S0zfI5IVj9K0brVmqD5pII2ZGVDlDsWuKqYkiAGdPPkJX3yhBmMVrL7Yt0iZGR0fp7OxkYmKCHTt20NPTM7fsjpff3rqKyUW1KnhtBA7W3D8EvKJ2BTO7F7gXYFBd0eak0nl6BnYQhGOs33Izxc6+uWXX3/xNLayZyMqVy+SZrlzg3OmHKE134tE0F84+TTZXpKPnBsbO7mp1FUWu2OHDh9m4cSP9/f0Y+vLQLlZsj1J3/5i73+7ut3drBN+ccmmafHGQ/vXb6kKXiCwtCAIKnbeTShVJZfoJgiyDG7+VKJph/NyzZPMDra6iyBXT6cT21KqmpMPAppr7I0mZXIo+ZyIvSia3hVwholx2Onq3E6YKOFMApDOdLa6dyJUbHh5udRXkRWhV8PoKsN3MthIHrnuAt7aoLm0llcq1ugoibWlmeh89g71kcwXCVHzJIAUuaXcHDkwTRceYnZ3BMIrFAuuHBkml1EVnpWrJqUZ3LwPvBj4L7AI+5e5PtaIu7ag0M86po7s5+sKTHD3wFGdOvEClUm51tURWtErpHKWZs62uhsiyeeGFF/inf9qDuzM2NobjcxOpnj2r9/pK1bI+Xu7+aXff4e7XufuvtKoe7WZmaopjB5/Eo4ipifPgTml2mr1P/TMTF063unoiK5b7DKXZs0yO7yKqzLS6OiJX7ejRo1x//W1s3bqV2269lYnxCbZt28att9zCc8/vbnX1ZAkrtnO9NFYuzdC//hUMbtzB6I2vZHpqjHUjNzB6450cPaBGQ5FGUmHE7PQe0pl1ZHObGD//PFMTcbfS0sx5psbVxVTaj5nNTf5bLpcpJ2c+stmsJgVewRS82o0x94GKKmWi5IOWzuTwSB80kYVK5TJmJaJoipOHn6I0e5p8cROV0gRnTzxCKtPJ9OSxVldT5IoNDw/zzLNfZteuXTz88NfYNDICxLPYZzKZFtdOlqLed20mDLOcOPTPHNnXw8zkGQaHtwPxLPapdLbFtRNZeWZKJcqVACMgTHUzfu4rpLP9ZLK9hKlscp1GfQeV9rNp0ya2bR2mv/80o1s2UygUgPiyQbfdemuLaydLUfBqM2EqT//6r2d68hH6143SMxB/w0mlM2zdqSvRiyzUkc9TKgecn+2io/vrKXbfTJh6lCDMUugaZmriKEGgQ6G0p1yuyNBQqAlU24i+5rWh3oEOyuUZZqcnOLj7YUqz062uksiKNTUTd6TPFXYAEARpuvpeShBkmDi/l/LMeTp6treyiiKyhuhrXhsaHIYj+40NW25mevICh/c+SnffEAMbtrW6aiIrThjGV77Id9wMxP0gzYx8xwipjA6BItJcavFqM1GlxOT4aTyKmLhwmkq5xODwdqYmz7P7yS+1unoiK05GE0mKyAqiI1KbqVSmOHtiL5VKmVPH9sxdqysIIJ3Jt7h2IitPJYqYmJpmKvgKucI60rkBJs7vwXE6e0cJdTUIEWkiBa82k850sXHbyzl36hG2bJ8ftRLqOuIiDU1OTwN5MvlbgKNMjj1BvtiDBSnGzz1P98BLW1xDEVlLdKqxzZRLkwBs3KahwiKXwx2CIIORI5Mbwb1MvmOEXGE9UaRLbYlIc6nFq81o2LvIlYuiCgCV8gXwiNLsBX2WRKQldORpM0Go2YhFrkQ+m+HkuUmisYdIZyMKnS9lcmwXUWWW7oEdra6eiKwxCl5tJooqPP3wl+kdnGRg3WZ6+jdy4vBzBIEzOLydTFYd7EVqpVOpeBLV4m3kimBBRHf/1wFoOgkRaTr18Woz5dI4UWWYLTvuBGD/sw+SyRbIF7s5vPfR1lZOZAWzII27tboaIrLG6eteG0lRplxy9j8zwoUzcN1LtjE5vpdN119HGMKJwy+0uooiK04YOJEbExc6OHcyTZiucPaU424EQTK5amGGnnXTFLtmscCpvd68xd3DcAwL4uBWncYlWQMzJ9TRVEQugw4VbeQmqzB0bg//7gvfxj5u58HX3seZYxUe/99nCYI0E2Pw3ONw/U5YtxkMCAModEJXD5i+7MsadMv18fVMf/7ff4njZ/NEbnz56QH6u2bAHNx49nA3/+8/XpeMgHQsCJIr3zlBMH9iIL6gNgSp+bIg+WDlChUGRip0D5QJAghTAZ5cPi9MtpdKxeu6Qxgmt4EgNMIQij2O5nsVWd30EW8j94ZDnPcK+/x5BtnNGz9/P+u9nxeYoYQzRC8nH76FZ3gZe+idu2hqmTTB93wPW3ZAsRNSYTzh6vAo9A3Gt0VWq1//kbfGN7xEd0cJgFPncnzjS4/NrfOdHORd3/UkB08UmS2HQMTc9xSfv/iwWXzbIp+/785MOeDp/f08um+A8b1ZcDBqms3weHtW3U5cNrddjyhHIWG6xGPFm0lloLvPsBBwi1vTPP6pnbPPgrnNE4aQzUNnjz7TIiuZgleb6baQW6xIyZ20GTDF0NzSM1zPF3klX6Ti80fece9mz188wLO8jHPEne8rpPkaPfDd38PghjiMmUFHN1y3EzaMoG/esqrNzJaYLpUwjEIuQzZtXL9xLF7oNaGpJnjNiRYvf+noWf7tN+9mfDrpS1a7jcgXtzjXLY+Ymg159lAfw3vHOTOeI/tExFxgqw1pc799UflMOcU/pu9kYAMUu5OAl6yyMKRVH14try7uHoChYchqQn+Ra0J/WttU+hLnDUObP6h321luCx7kNh6sW2ciKnLgrz/FC76dCMNwzjLIZxmmcvdbGNoA190Q/43RN2hZLS5MTHHo5GOUymeYLpXoKuQplcv0Fgu8ZHSY1FVcBiIIoKsQt6otDF6LLAheXQVY13OYb775cM06vnjdWgu2OzWbYt/xp3jiwBDnD2Wx2tBYc8gIqdSVV0NcFBknHy/yuexdFDohnaZuCFZgdQ+rC27VMjNYPwIjo9Ddl2y/JgBGtvTLEVkLFLzWsGIwwU4eYyeP1ZVPR1kOP/DH7OZmdr3tV9j1GGSy8UE1CGDDZthxE/QPAhYfSMNQ4Uzaw+P7DvJdr9pMMbeO8xOT7D92ipddt52Dx0/x+N5D3LZ9S6ur+KLlM2V2jpxm58jpuKBR4IOGyceTVrxKZJy88Ch7T/QyWw7nuiyYObbgcYGxqEWwVAl47muD/MNTbyAIwML5kBZvKH7c6RP1QY75xWSysGETrBuGfOHyXnttNSLX8UhWLgUvWSQXzHAdz3Edz1H573/NOe+nRDxx64xn2c+NfPEdH2K2FH+TDcziPmObYftOp6sHwpoDamDxwbenV9eUlBXAoZjLAtBdLDA2OQ3ApsE+9h092cqarQhh4KzvmWB9z0RcUJdoGjRVNTgV++qd+/m+yUc4NVYg8upI0KRlzb2m/xwE5viCQDd+PsOe5wf4x4G3EgQQzMW/+kFCVtOMF1j9add0GtZvrDAy6mSz9eEvqD0Fa3NVmXueamYrFp1MdvFLFrkaCl5yUaFF9Fv9H6Mt7MX/26eZIT/XA2Xcu9jjO/lXtjPL4iNVRIgRMfpL72TzVo8DmEFnF2wcdlLpZrwakXgm++cPHaO/u5NjZ87R3RE3qXijvlzyonXkZunIzS5e0KAVbmHwAtg5fJLXld7H5Gx8cKgObFgY9MwabC9yxqez7HmknwNf6KMcBUngW/jY+f/32mVmEEVGJQqY/KY3MLIpIpOdb6GLIhZsK74dYHPZ1CweodrXF9Hd3aCPn6xZCl7yophBjqm5+3mbZJBj3MnfN1y/4gFnfIi973ucx4iH9zsBE3QSvvOHGVwX0dUdf4MNUrBlNGLzKOTUwVeW2cuu28TuQ8fZc+QE3cU8N4zEw1MqUcTXbdvU4tpJrVQY0ZWfqS+8jA5iHjkd2VnWd4/xDeyPCxu11nHxwD02neXwgb3sf3SAUrTg3GVSj2qgMnzBSFaYqoQcnCpw/uXfSW+fEwY+FxzNfL4LX11XvLivHUBARC7vbN5cZnDAyWb15WA1UPCSpggtYtCOMcixunJ3OPfxP+WAb2eKIgAl0nyeLdg7f5RiZ9J/DCdXcG7YGbH1ujKFAnjSaVd9OeRKHD51jhs3b1hUngpDejous0ORrAmduRluXD/FjetPLFrmlxowkShXAk5d2MWJwx1EBFhNADSrmaKkOnNc5HF/uuT+2Eye3ef6eOjWN5JOezz3XPXxDhjs25euT2/VeiRFhULEQG9ETsFtRbiq4GVm/xb4RWAncIe7f7Vm2X3AO4AK8GPu/tmk/HXAbwIh8Pvu/oGrqYO0NzPotTP08tCiZeMf/xNOsYEo6XFx3nv439zIP/0fP0EQxgcmd+judm7YWWLb9gqZdNw/I0zF/TNQ874soFM+0kypMGJ91wXWd10AlghsNbxBy9wdW/ZxYfxJJktxX9tFb+Hj8enahaddq+uNz2Z56s53UqlAJp3MIzK3ahL46jPd/EAKj0+TdnZWGOqbpae7os/QVbraFq8ngTcD/7W20MxuAu4BXgIMA583sx3J4o8C/wY4BHzFzB5w96evsh6yCnUE43TwfF3ZrTzE9Mc/xbTH5yAd46hvYv/7fp+vfjkTzzxujkeQLzo37CixcVM8dL56HAkswgwGBiv09qjvxVqzeai/8dxcIitYV26artz0kssb9ZOrGmSM0Wd+lXIliPu7JRYe+8wr9fer2wbOThU58g3v5JndYbJu7WCGBudMPcLdyGYiBvtm6e8rxQOt6rrGOYs+iVFNpSInDJ1ifnXNP3JVwcvdd8HC65YBcDdwv7vPAPvMbDdwR7Jst7vvTR53f7KugpdctpxNkbP5/mW9nIFfeTkVD+dax8qkORqN8Dwv4Sv013SEjX9HhEyTZ/invp+to6W44ywR+TyMbi0xNFjRKcxV7PCpAs8dfJjujgI3bRkml9HoDln9UmFEKrxIiFmiHxzAuo4LDD3yGxfdfqPWuulyipMT3eyZ7Ihni6u7EsTibdQNcvCIUhQyVcowePdr6Okqz5W716/bqK9e3IrnZNMR/T0lUitkVP216uO1Eepm6zyUlAEcXFD+ikYbMLN7gXsBBtUVTS5DaJW5iSHTlNgWPsc2nlty/WnPc+Q3PsNBrqecvMemKfK3DLDux76fnp4KQRB/mLu6Kgz0Vchkrv3rkGtv39EuALZtGOTRPQdY39vF6FB/i2slsvrkUmU2dZ9mU3c8t9wVjR5Oglzkxtl/OczYbH5ukeGLutSZNWiFA86WMzw12UnHa+6imK/Un+71+tuLqpesWyyUGeqdoqtYvvz6L+GSicbMPg+sb7Dove7+N1ddgyW4+8eAjwFst5zOC8iyy9lUw3A26xlO/PYDnKdvruw4Q4z/4n+io+h85jOFRRNJ5nIRW0dLbNwwSzajt2u76OkocOfO63jh+Gke3LWHGzdtUAd7kRUmMKe/ME5/Ybyu/FL95Wpt7z/K1BN7mSnHrdvjs1kePXYd2bA0F9i8do65RDXATZSy5O54FelURCZTocEsJrEo4ttuXzwYo9Ylg5e7v+ZS6zRwGKgdlz2SlHGRcpEVIWOzjNgLjPBCXXn5/V9IJpOdPy1V/VCO08Fn2ULH+34u6bwagUN3V4Xrtk6zaWOZVNohiieoTOvMVss8vvcgu49MsKGvzGN7DgBxd4kwCPjXp/fwHXe8tMU1FJFrIZcqkUuV5u5v7T3OTYPzJ+EanSqtqkTG2SPPcnqyk1KUmgt9jeaRu3D44KKyWtfqHN4DwJ+Y2YeJO9dvB75M3Fdvu5ltJQ5c9wBvvUZ1EFlWKSszYMeXXL6NZyn/5y/WTSB71vv5R67jLANJ/7N4XuwC43zr/fcysqEUDymvzu6dtHN3dlTIa8bsa2Kop4u+zl7CIGCot2t+9vMoYtNg38UfLCJrUhg4A4ULDBQub3TqxVztdBLfDfw2MAj8rZk96u7f7u5PmdmniDvNl4F3ucfDJczs3cBniaeT+IS7P3U1dRBZSVJWJsV8H4CCTbCRA3XrlD3FGR/k4Xs+yBdY3K/IMWbI8dJffRtbNs2QzUTgTibjbNwwS+cqG+HTbOv7uunr7GX7yCbW9XbNL7jIt10RkeVytaMa/wr4qyWW/QrwKw3KPw18+mqeV6SdpazMkB1liKNLrlP2FGfu+xJfYzMR8VCcGfKco58b3v92hvqrl2KZnyjRcIbXzbJ5wxSdxUrjDcucutAlItIkGi4osgItFc4qHnD+F77AybopMmIRIU+ynr6f+0nS6Xj+G7x2okTI58ps3zzB5uFpCrnKXEdSXbxcRKQ5FLxE2khoEX12mj5ON1y+jWeo/OqXmKCLxeNz4ouZH/j1D/LVJ7vn58Fxo1gss21kgi3DUwRB/eSIeEQ+WyGfVSuaiMjVUvASWWVCi+jiXMNl3XYWfuYeim5Uko9/RMB57+Nf2MoDDDV4lFMmwy2/8D1sG5mgu6sUT6dRMydtKuWs65+hmFU/KRFpb5OlMoX0tYtHCl4ia1BgTsD8sOpL9TkreZqz7/8n/oWtzJBfvJwME3Ry68/fzYaBmbjQI3q6ZhldP0F3x9VPOigislzcK6SDxselx4+f4c6RRl9Cl4eCl4hcUtpKDNkxhji25DolT3PmP/8zzyQjNR3jHP2s+7/vJRVG5LLRgpGDTjoVsXV4gi3rxunuKOm6mSLSFI8e309f/ignJ/IMFHKNLn14zSh4iciySFuJdXaUdQsHBPzGl7hA79ypzVpjnuczjLLup35o8YzR1TnNiiWu33iekaEpwsCpvU6IuZPNVMhldIpTRC7fN25ex4mJaQ5emOCpk+cYLORYV8jSX8hd8+dW8BKRayq0iN4lBgNgMMJ+Kh/+UsNTmI5xzvs5/Mvv4dHn++NuZbUX2XXHgY5Cme0bztHbNbtgAx5fbqRrhrzCmYgkUkHAcGeB4c4Cs5UKx8en2HtujCdPniW6islRL+u5r+nWRUQuQ2gRBSYaLivaOLzvRxhZ4rHTnuOMD/F3jDJFcdHyiIAZctzxnrvY2D9BEMDZ8Qxjk/PXbSpky4Q6zSmyJmXCkE3dHYx0FpgqlTk5OX1Nn0/BS0TaWs6mGbYDDC+4QkCtac9x5gNf4aFk1GZAxFGbmls+RZFXfegtDHZPk05V6lrVwEmHEf2d0/HcaCLS9g6eH2dTd8ei8nw6xeYG5ctJwUtEVr3LCWcnfvpJdtNHhfnZZKuT1M6QY4weXvVrb6YzPwuR12Sz+HRmT8cMAwpnIm2hmZ3pF1LwEhEhDmc5jlx0nRM/8xQHWdz5NiJgjB62/9I7CcOIwLy+1cydYrbEYPcUA51TCmciLTbStbhbQrMoeImIXKacTZFjquGyXk4z8wv3UfZUw6sGHKFI8Ovv5vkjPcnkszXhK4pwjN6OaYa6J+guJIMEquHN4+1l07p6gMhyeOL4eTZ29tFXqP9MnZueZapUZkNn4Zo9t4KXiMgySlnjSRnTnOPoT//yko+L3HiOHr5MP9MsPug7RokMr/nVb2Oga4owiGDB6KtcukJH7tp2DBZZDV44V+bx47O88YaIzuz8QJuOTIpdJ88peImIrHaBOd2cpZuzS64TufHcfbt5mJ6GrWoz5Nl535vpLU6Tz5QXDBKIR4/2d07RqXAma1wulWKwuJ7Hjj/BTYO99OWzQDzNxLWm4CUi0iYuJ5zN/OrT7KabEplFyyqEXKCPnT/7JorZ2borBXhUP8+ZGfQVpxjsHI9DnMgq05nNMdozwKNHTzPcVWC4mOfCzCxhcG073it4iYisIoH5khdJBxjiKDMffJoLDSashfmRnBEBu+jluvu+j5lSCjNvcGqzzFDXGIOdE2RT9X1lPDLMXJeBkhWp+r4spFO8fOMgz585z78eOkE2FfKSwZ5r+twKXiIia0xgTp7JS65XYIKJD3xoyeVjnmfgl9/Gk4fWU6rUn6LxyKlERj5TYqhrgq58cnqzJrzNjR3wiDBwOnMzCmrSFLcPb+DwWHw7HQbcNNiL93c35bkVvERE5EXJ2RT7fv6/XnSdU55nN/0NryoA8y1sFUImvJNv+tk76C1OxlNyRI77fBLryM3Qm59QOJO2puAlIiLXTM6mWM+hy1vZ4MivPc3zdDVcPE4n29/9eorZGTLh4qk1qm1pHkE+M8tgxzhd+ZkXWXORa0PBS0REVoyijVNkvOGyIaDy0Wc55kWimisM1HPAmCbP1p94MxMz2XjqjQUjPAOL6O+YYLDjAl05hTNpHgUvERFpKwVrfEH1Wh1cYOwjv4s7lBtMvVEhxWH6GP3xNzExk40HDzSSTG6bS5UZ7ByjrzBBYI6712W5fLqkC63LZVHwEhGRVctsvh9ZrYASAxxn/LfiPmqXuojTWc+xjwHGlzgNOk2B23/kVgY6xsmGpUXLq/OueeTk0yV68pPqq7ZGKXiJiIhcQs6mL9lX7dzvPskB+igv8ae1GgCnKbD1Hd9GMTNDPjNbt45HHp8GLU5oIMEqdVXBy8w+BHwXMAvsAX7Q3c8ly+4D3gFUgB9z988m5a8DfhMIgd939w9cTR1ERERWgsu50PqcTzzLSS8uMdFtivP0MfqD30omVYrDV+QNr1ZgOL35CQaK5+nSFQnawtW2eH0OuM/dy2b2QeA+4GfN7CbgHuAlwDDweTPbkTzmo8C/AQ4BXzGzB9z96aush4iISFuJ+6o17q/Wx0n4g2eZ9HTD5VWOcYQeNt/77YzP5JZsIfMkuGXDEoMdF+gvjJMKKgtXIh1UCINLnXiVq3FVwcvd/1fN3QeBtyS37wbud/cZYJ+Z7QbuSJbtdve9AGZ2f7KugpeIiMgCaVvcX2yhAU4w+f/9MRe7ymA1j014lqH/6zt5/tT6ujnSAHBnppwiHVYYLF6gkKkf7RktyGnpsEJ3LplzTS7bcvbx+iHgz5LbG4mDWNWhpAzg4ILyVzTamJndC9wLMKiuaCIiIlctazMc+Z2/XHK5EYezI/QzQ67B8vmQVSLDOF3c/gM76MxOLZqyo/ZuEET05cfpzGhQwSUTjZl9HljfYNF73f1vknXeC5SBTy5Xxdz9Y8DHALZbTnFaRESkCbI2w9Dl9lUDzv7B0xylMHe/0SjSCiHn6WPTPXdSSM8smr6jtvXNzOnJTTCYP0txweCD1eCSwcvdX3Ox5Wb2A8AbgLvc5/LtYWBTzWojSRkXKRcREZE2U7AJCkv0Vas1wHH8/l2MX6IlzQk4TA/D//5bmCplGgwpSNbz+JJS+fQMg8UL9OcvkAqiJZ/fIycVVFre4na1oxpfB/wM8C3uXnvF1QeAPzGzDxN3rt8OfJm4FXO7mW0lDlz3AG+9mjqIiIhIezCDHJcefZljivIn7+fiQwti416g7x3fyq6Tm4kW9lube14nimC2kqIzM0UmLC3u49YkV9t56neALPA5iyPkg+7+w+7+lJl9irjTfBl4l7tXAMzs3cBniaeT+IS7P3WVdRAREZE1Km+TnPzE3150nfhCUpBx2Pwj38KpyS768+eaUb1FzH3ld5/abjn/SGpLq6shIiIisqRb330bABs/cv/D7n57o3U0XFBERERkGTzyO1+75DoXm/ZDRERERJaRgpeIiIhIkyh4iYiIiDSJgpeIiIhIkyh4iYiIiDSJgpeIiIhIkyh4iYiIiDSJgpeIiIhIkyh4iYiIiDSJgpeIiIhIkyh4iYiIiDRJW1wk28xOAi8AA8CpFlen1bQPtA+qtB+0D0D7oEr7QfsAVs4+2OLug40WtEXwqjKzry51te+1QvtA+6BK+0H7ALQPqrQftA+gPfaBTjWKiIiINImCl4iIiEiTtFvw+lirK7ACaB9oH1RpP2gfgPZBlfaD9gG0wT5oqz5eIiIiIu2s3Vq8RERERNqWgpeIiIhIk6zI4GVmHzKzZ8zscTP7KzPrqVl2n5ntNrNnzezba8pfl5TtNrP3tKTi19haeI0AZrbJzP7ezJ42s6fM7MeT8j4z+5yZPZ/87k3Kzcx+K9kvj5vZba19BcvHzEIze8TM/mdyf6uZPZS81j8zs0xSnk3u706Wj7a04svEzHrM7M+T48EuM3vlGn0f/ETyWXjSzP7UzHKr/b1gZp8wsxNm9mRN2RX/35vZ25P1nzezt7fitVyNJfbDmvob2Wgf1Cz7KTNzMxtI7q/894K7r7gf4LVAKrn9QeCDye2bgMeALLAV2AOEyc8eYBuQSda5qdWvY5n3yap/jTWvdQNwW3K7E3gu+b//NeA9Sfl7at4Xrwf+DjDgTuChVr+GZdwXPwn8CfA/k/ufAu5Jbv8e8CPJ7R8Ffi+5fQ/wZ62u+zK9/j8E3pnczgA9a+19AGwE9gH5mvfAD6z29wLwzcBtwJM1ZVf0fw/0AXuT373J7d5Wv7Zl2A9r6m9ko32QlG8CPksywXq7vBdWZIuXu/8vdy8ndx8ERpLbdwP3u/uMu+8DdgN3JD+73X2vu88C9yfrriZr4TUC4O5H3f1rye0xYBfxH5+7if8Qk/x+U3L7buCPPPYg0GNmG5pb6+VnZiPAdwK/n9w34NuAP09WWbgPqvvmz4G7kvXblpl1Ex9wPw7g7rPufo419j5IpIC8maWAAnCUVf5ecPcvAWcWFF/p//23A59z9zPufhb4HPC6a175ZdRoP6y1v5FLvBcA/gvwM0DtKMEV/15YkcFrgR8iTq8Q//E9WLPsUFK2VPlqshZe4yLJaZJbgYeAde5+NFl0DFiX3F6t++YjxAeVKLnfD5yrOeDWvs65fZAsP5+s3862AieB/5acbv19Myuyxt4H7n4Y+HXgAHHgOg88zNp6L1Rd6f/9qnxPLLAm/0aa2d3AYXd/bMGiFb8PWha8zOzzSX+FhT9316zzXqAMfLJV9ZTWMbMO4C+A/+juF2qXedx2vGrnQjGzNwAn3P3hVtelhVLEpxd+191vBSaITy/NWe3vA4CkH9PdxEF0GCjSZq0218Ja+L+/lLX6N9LMCsDPAe9rdV1ejFSrntjdX3Ox5Wb2A8AbgLuSDxjAYeJzulUjSRkXKV8tLvbaVx0zSxOHrk+6+18mxcfNbIO7H02ajk8k5atx33wD8EYzez2QA7qA3yRuNk8lLRm1r7O6Dw4lp6O6gdPNr/ayOgQccveHkvt/Thy81tL7AOA1wD53PwlgZn9J/P5YS++Fqiv9vz8MvHpB+T80oZ7X3Br/G3kd8ReRx5Kz6CPA18zsDtrgvbAiTzWa2euIT7G80d0naxY9ANyTjNrZCmwHvgx8BdiejPLJEHcofaDZ9b7G1sJrBOb6Mn0c2OXuH65Z9ABQHYnyduBvasrfloxmuRM4X3M6oi25+33uPuLuo8T/11909+8H/h54S7Lawn1Q3TdvSdZv69YAdz8GHDSzG5Kiu4CnWUPvg8QB4E4zKySfjep+WDPvhRpX+n//WeC1ZtabtBy+Nilra2v9b6S7P+HuQ+4+mhwjDxEPyDpGO7wXWtGj/1I/xB0CDwKPJj+/V7PsvcSjM54FvqOm/PXEo9/2AO9t9Wu4Rvtl1b/G5HV+I/EphMdr3gOvJ+6n8gXgeeDzQF+yvgEfTfbLE8DtrX4Ny7w/Xs38qMZtxAfS3cD/ALJJeS65vztZvq3V9V6m134L8NXkvfDXxKOR1tz7AHg/8AzwJPDHxKPWVvV7AfhT4j5tJeI/rO94Mf/3xH2gdic/P9jq17VM+2FN/Y1stA8WLN/P/KjGFf9e0CWDRERERJpkRZ5qFBEREVmNFLxEREREmkTBS0RERKRJFLxEREREmkTBS0RERKRJFLxEREREmkTBS0RERKRJ/n+bDelivFH3nAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADECAYAAABOQy+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnYklEQVR4nO3deZRc5X3m8e+vtt671d3aWlJrQ0JILGIRi4NjY8BmiW1hD/aQ+EzAcQ6TBMch8UwCIUMS5zjGWWzsmDjDwR7bObYxOPbASchgIE68zLCaVQgJCUmotbeWVqsXdVfd3/xxb3dXVVf1om5V9fJ8zml11Xvfe+ut26Wqp9773veauyMiIiIip1+s3A0QERERmS0UvERERERKRMFLREREpEQUvERERERKRMFLREREpEQS5W7AWDRY3OeTLHczREREREa1jZPt7j6v0LJpEbzmk+TexLJyN0NERERkVO9Pb91VbJkONYqIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIlMOHiZWauZ/djMXjezTWb2e1F5k5k9YWZvRr8bo3Izsy+b2TYze8XMLpxoG0RERESmg8no8UoDn3b3dcBlwG1mtg64A3jK3VcDT0X3Aa4DVkc/twJfnYQ2iIiIiEx5Ew5e7r7P3X8R3e4ENgOLgY3AN6Nq3wRuiG5vBL7loaeBOWbWMtF2iIiIiEx1kzrGy8yWAxcAzwAL3H1ftGg/sCC6vRjYnbVaW1SWv61bzex5M3u+g8xkNlNERESkLCYteJlZLfBPwO3ufjx7mbs74OPZnrvf7+4b3H1DA/HJaqaIiIhI2UxK8DKzJGHo+ra7/yAqPjBwCDH6fTAq3wO0Zq2+JCoTERERmdEm46xGA74GbHb3L2QtehS4Obp9M/BIVvmvR2c3XgZ0ZB2SFBEREZmxEpOwjcuB/wK8amYvRWV/DNwDPGRmnwB2AR+Nlj0GXA9sA7qBj09CG0RERESmvAkHL3f/GWBFFl9VoL4Dt030cUVERESmG81cLyIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJZKYjI2Y2deB9wMH3f2cqKwJ+B6wHNgJfNTdj5qZAV8Crge6gVvc/ReT0Q4RERGR06XHq+knlVNm+Li2MSnBC/gG8BXgW1lldwBPufs9ZnZHdP+PgOuA1dHPpcBXo98iIiIip4U7nKCBTm8YKClWEwDLK+2mhu2cQ4pe+j1FzIIiaxvwXNF2TErwcvefmNnyvOKNwBXR7W8C/04YvDYC33J3B542szlm1uLu+yajLSIiIjKzHPW5HPKF9FANDPUy5YejYr1PfaQ4wnwCYlz6m+dQPHQNBKfhmpL9vHv+YeZefRE1VYVD14B7L/yrossmq8erkAVZYWo/sCC6vRjYnVWvLSrLCV5mditwK8C809pMEREROR3cYT+t7PQ19OUdoss22uG6bmq5+rYzSGdiNNV1F3mw8PEKScQDFr33PJoa+olNaHT7UmDk0DWakiQad3czG9dBUHe/H7gfYLVVju8AqoiIiAxz0ivInOJH/04/kz0sJ02SWE5QGv0j+gN/sJSWhk5iF19WtI67Rb/zy8PfZtDU0E/1KL1NxfWf4nqT63QGrwMDhxDNrAU4GJXvAVqz6i2JykRERCRP2hMco5m0F//IjhXshRlKMD1Us5+lHGE+cTJ5S0cTBqIaOrnl7nk0vmcDicTQ2gOBadijR1VqqjJZvUx9Y37Umep0Bq9HgZuBe6Lfj2SVf9LMHiQcVN+h8V0iIjJT9XmKA76I4zSOWK/YeKVjNHOMZiq8l5T1jrhmsfFJAJd/8jzOXnKApquL9zqNTWaC689ukzWdxHcJB9LPNbM24E8JA9dDZvYJYBfw0aj6Y4RTSWwjnE7i45PRBhERkcmU8RhbfD3tvnBwfNJYpg4YqBMjILAYPdQwh8Nc+QfnFF0nPzBl9yI1VPWy6Jr11NVMRuBZMQnbkImYrLMaf7XIoqsK1HXgtsl4XBERmdnSniDIm+t7LOEnIMarfgm7feWweZfCbeRvb/g2+0nixLj8Y0tovnjlsEHZwUA4KjIm6djxJO84/yiLF/bnHJo7Neplmil0uqCIiEyqHq+m26vxES6OMtKYJCfGfm9lO+s4ylyG5lVyhh+QK8yBSnr44O/MY9G71/B29bqwPCv/ZN9e2bcpuwlhG2NO1/Kzqawa00MOM+/5LSyYl56E0CUziYKXiIjkSHuC/cFiOpkzht6l7FAU/j7AEg6xiE5vIG7pAusUGYwdlTvQwFFuuP86bO1qkhWMOBK80FlwZlBdw2Av1bJRnoezblhZBqgccS2R8VPwEhGZQTqDOnYEa9g/ePJ44eHWRlBwEsqjzGUvy3CMM65cMhh4MkGMhQ2d1Ff2Ftxq4EMRrdngrLoTXPihZXStLD6uSWQ2UvASEZlExSZwhLAXZqT1DnoLrwcXsovV5Mah3I3GCvTeGE4PVXTRQBWdXHr7OzCDoEB7Bg/yOZA3FUBrfZr3XNTK3v5akllDo44egvXLT9CyeOyHzbrGXFNk9lDwEhGJdAfVpIu8LRYekxTKEOftYBWvcAltnDE4EqmCngJTBAzJnYLSAOOc983jvGs2UFcflgf5D5uXewaWu0NlNRyJVVNbP3LIG0kAHIKc0CUik0fBa5r4SrqDflL859iawbIYaZrtEEmbGrPxikxFX80codurucHOz1sykGCMt/xMNrMhGshdqE5u/fBfHzxUFxAjSR+X/+YaahetJJmCjsPQugpiWe+yBXvD8h4inoDKZgjiY3t+2cPX+4G6sa0mImWi4DVNbCZGDykIbh2cdTgghmEsZBereJ14VgArfCgiyFqeoc6Os8R2EBvf1ZxEppU3Pc1RUpz0/0qGRNb/A4Oob+rMd8zh4g+cwwtvHiGZiv4/5A/Yzi/yrN8xqKwK2BkHTuwCoGXhMhrnQyJ5ep6XiExPCl7TSFNLiuvuvh5fEF6d3QNorTrBkWffZuv/3QBZZwTlj9vwwX/CSQF7+5K0/2wzrWwjycno23tObcAxIzoAEpYl6KfZDnCmvarAJtNG3bwKLrv1CrYeOkxl9iSU0Uu4JwZb2w9RN/LE4iIiE6bgNd3Y0OnRxGBvfy1csI6lF4x9E+7Q3Qnn3nIOXa+1kc4LaUH0udTXF+e8tSfw6IrvAcbBZ3bw3MNtvOYXE4t63oqfbu45y7JiIQDVdLHaXmOx7dThUikJs7yxT6c4DkpE5FQpeM1CZlBTDwHVVF1xZtF6lce7Wb4hd7bkVdct59xPQ83OzTmDfvPHrgRBLO9+bl0H3npqJ//xjy2kPUmCgbl+ig+CKXTqe3Z59v1F7GS1vUajtQ/b2lhmvT4V2duNkVGPoMgsl8kYB9pTVFWGF4mOx5xYLJyYNRZz4oNlYfmpnhAh04uCl4xbXR1w7toR5qQem5Xr1rDgZhs63d2LxK4iM00PyD/rq/LtN9n+47d5/HtrMc/tdfPBcT05jzBsm5b1b3adeo6RyJkQMn/dcPuNHGKtv0jcip8JN/wxxxLUxh7mxhMwi9WNEVBpPWPejsxsB/fHyKQD4omw5z0Wh/jgTxgeBu7H4gy7xM5ss3JpDx2dCTo6kwQBZAIjCCAIbPB2JmMEHt52L5y8BoJazKL9HP02c+JxqK7MsGxxoYtny1Sk4CVlU1MDNTWT3yuUXrSKs9ev4uzbw/s5Ya3Iw+WMcCty3bXkti2saO1hbmN/wXoDjj75DN++s5cXeNfg4xWewjLb6F91x7unRn/MkdsReIyYBZzlL1JtJ0apXWxrxVs98Z7Hkdcf2H6GI4CV/LBi4LBnRzgtQywvjMQTUVksPOsxHh8KMlNVfSMcOFHNvr3hl53zl52g76SRCcLhCZnMQJCIbmcKzyEWj8JYy+KAeQtmdq/woZb10DJ034B49DOecy7CsBb+ePQ7PVhm7H9pm4LXNKLgJTNOIgl14z6TbPQPgFht7qVPih0WaHrvpfzuey8dbwOmnO6eGPt/9CI//IvlnPThF045tWA3srFvc+R62X/NXvZSQdgbc2hPivqmNA1zT/+Ywn37dxGkjSCw6MPScIf1Fy0h3R8GlCDNYFgJMkO9t+k+WHVuGNCmingC6uYM3d/VXZtbIRb9jNLmIAMnjkNNR9eMD16TJTw8WWypk0lqP04nU+i/tYhMJdVVASs3rufTG9eXuykT8rNbnqKzK86B7iqqajoIMqXp+orFIJYaNgkFb27dNeq6ixYuIwjCnpGZJhaHRAKd2CCz1iw/Ai8iIiJSOgpeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIgpeIiIiIiVStuBlZtea2RYz22Zmd5SrHSIiIiKlUpbgZWZx4D7gOmAd8Ktmtq4cbREREREplXL1eF0CbHP3t9y9D3gQ2FimtoiIiIiURLmC12Jgd9b9tqhskJndambPm9nzHWRK2jgRERGR02HKDq539/vdfYO7b2ggXu7miIiIiExYuYLXHqA16/6SqExERERkxipX8HoOWG1mK8wsBdwEPFqmtoiIiIiURKIcD+ruaTP7JPA4EAe+7u6bytEWERERkVIpS/ACcPfHgMfK9fgiIiIipTZlB9eLiIiIzDQKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlkih3A2TsevsTbPnuy5z9zjnMvaSVPX21xLKis0e/4/GyNE9kSorFnEzGmHNgF5200FATMCflBIEN1lncGvDTlw9TVRdgNsLGCnAfXjbebYjI7KHgNU2sJkZ3ex9LfvIAL/3HGvayggxGnMxgnWXvWsqaX2rkwOKzqKkPyyqrIZEsU6NFpoDz156BA7/1sTZ27WnHDF751/3UVJwkZs7xnkqOHF3L4q4E1mXE848DOLgbBfLVYAV3SKWcimUL6K+rZOfO3YWqFboZBre8ZSd7x/88RWR6UPCaJm5P1BC+Jf+ci/g5aU9wxOeRif6E/aRo++kKfvaTCznBpmitAMO5+iPV1Fx/JTV1ARC+0btDMgnzFsDrB2vL8pxESuFz//226FYfi+b3AWCb9vHO1TsBONJVxY72XfTUJ3E3zHIjlgGxKBkNLrOwfEAmiLH7SAObn53H8e4a5pKVpgYqOuC5Kzpg+GBRsnURFcvnc+go9HRBum+oXs5K2Xd9qDgeD79sqcdNZOpS8JqmEpZmvu3LKVvKdi7zpzhJ1WDZ68EF/OLhi+h8+AeDZU6MgBhnv28h89a3kFnUCkBNHXQkqqlt0Bu3zB5NNT001fRMyrb6MzHaO2tIB2G3WX4/WcyG95vFYmFZXzrOjkNNvPjGIvqP1dHzRh+DHV85/x8L9b0ZBjhG7YUtJFa3Ut/geJC1VvbtvPQ3sMUgqmMGdfXO7l59KROZbApeM0zMnCq6B+9fFA97yPIdDZrZ9sQ6Nv1oLUF0jkU39Zygnmo6Of+T7+RE3FiwZB8HFp5fquaLTGvJeEDLnM5TXn9pcwfvPmsHvf2JnLFjo30RGgh4L+9exNa3D3Nk81scDWLDgl5Ob17U+WY5ywP6MnE8MCrOXEF6cfiljIDBQ64Ai/q3D/acQxTcsm53L1jJspUBbx6t1ZhTkTwKXrNUY+wwF/NTLuang2XucNwb2Olr2PeVtzjEAu7+UobzP3oMCL+Zr7qileS5q5jTWKaGi8wClcn0Ka13ycrdXLKywPiycUhnYhw8XsMb+/Zy5JXqwfKBnrmBkGdkBcIo0MXMceDEq9t57kQNyUSG1BkrwzoDwcwhkzFOzO3jwN6TOSc5ZNdbMK+PnhVrqVGnm8wwCl4yyAwarIP1PMt6nqXPU+wLWul5uAaAk1Tww++dxwmeI+79g9+mHTjvwys5+30t1G1YNbi9Qmd7VVbpMKbIVJaIByxq7GRR46n33AGc6E2x+0gD3X3bB8uy/+9bj8Pb4e3snjkzCAJj76Z6Djy6h2Q8IBHPOk5K4YOthQoX/tIZrFzaw+GW88IqPrxqofep7JAIYDGoqCj0oCLjp+AlRaWsj2Xx7TllS4Nt9JOKDlOE70rttLDjhwf5xQ8WYzybU98IvwEHxHjHRxbS/JGrqGsI16uohMYmz5kSQ0RmhtrKPtYuOnTK65+/bB+ZwDjSVUUQFHiTKHASRLbAYzz7Qj8//XkF6czB3C98nru+MXQYNftwrLuRSmSoPm8NtResKDh9T1iPggvyDxc3z9P7nSh4yTjNiR0dVtbkh1jBG8Pe+bIHFh/1uWx5+DxefPitwYG9/VQQJ81Vtyxg8TtX5rxJVaacJS29HF68/rQ8DxGZ+uIxZ15d9+gVi7j23C0EXriLPf/Eh2I98fs76ti+6zj7X30jZ53csXG5Y+eybwZBuFbFOWupbDpJKpkV7LCc970g+wSIrPK6mgzHW9dRW6cjBjOBgpdMWMycCk6OWGeB7WUBe3PK0p6g3eez/RvreOEb4RQYMZweaugjxTkfPpPm2v/DwFtkMp5mfn0XFb/2UY37EJFRpRKZ0SuNYmnzMZY2H5vQNo50VdF25ACHdtXSS27os6gHbGjsXO5hVzPYfqKanr63SaxdSywWBj3PCpR9/Sn2HkwNe9zsOu5QV5OmoW7i+0QmZkLBy8w+AvwZsBa4xN2fz1p2J/AJIAN8yt0fj8qvBb4ExIEH3P2eibRBpq+EpVloe1mYF8gCN476XNp+sII9VIZlGIdZSCdz4N4HWP2htUDYq19X2cfyX25l7uXh+LLsb4rxBOraF5GyGpqy5MAprR8Exo72RoLeNiArpGX1fmWeG7pdaLrfdBDjpfZG5tV1kUqEJ2/4sAO0hce8DdRrqOql6aqLc3rtZPwm2uP1GvBh4H9mF5rZOuAm4GxgEfCkmZ0ZLb4PeC/QBjxnZo+6++sTbIfMIDFzmu0QzeSOD3GHTq/niM2HR54C4CRVtLGC5x5sJeD/hfWAOBku/9hiVr5nOZx1Zs42ACoqnOqaUjwbEZGJicWcM+YfmfB2Vs0/zPHeCvoz4RwfhQLaSIcyDx6vZdO3dtNQlTvvXX6Ayw9vDVW9zL/qfBobxne2rueNlxvoAZzuJhS83H0zgA3fExuBB939JLDDzLYBl0TLtrn7W9F6D0Z1FbxkVGZQb8ep53hO+RpepderwkH/kS1+Hi9/+zg/+fY+LApk2QJi/NJNLay+cin1tZlo+07nkrU0NM6M/9wiItnMoKFq5GEhI2mq6WH1gvbh2y34WNFZ724c66nkpR9uI5Uc32HO/GDYdbKCCz+yvOCj54e9gj13DsmkU1dT3sOtp2uM12Lg6az7bVEZwO688ksLbcDMbgVuBZinoWgyikrroZKhb2EX8HPOt+GBa8AhX8iWB8/jtQfnEUT/cQPi9PAcG25cxoJLlpGMB7hDTXUGW3Mmc/PnGxIRmWXisfEdZjRzmmp6uHLd9tErj+K1PQvY98QrudvPvzRXoWUMfZl++3Aja1sO5PTSFZxShKGevIHlqUSGhisuoaoyKLzCGI2aaMzsSWBhgUV3ufsjE3r0Ebj7/cD9AKutUgeUZVziFhBOt11Yi7XRQtuw8p1+Jvv/aTEHv189+J+um1o6aOSsG9Zw7uL91FT0DetaN3Oaa7tZ8YH16i0TETkNzll8amPksjVW90SX9Arfxb/5J7uja6bmGx47HMNp49LfuWDY2bZDc8SN/gEwavBy96tH3cpwe4DWrPtLojJGKBcpu+W2leW2Nacs7QnafDldjzzNwJLwUitD/zGP00gHTaQ+888k6AcgRR8funsNC6+5kMqKiX1DEhGRicu/pFeDHeEce75I7Vz9nqSDJnb8/V5epSHrMyA/pI3cV3S6juE9CnzHzL5AOLh+NfAs4efVajNbQRi4bgJ+7TS1QWRSJCzNcts2ar1+T3LUm/Ho2pc91PDQZ5J0fOYYCYYGlVbRxcY7z2DxNeupSIWBLPu073jMSeqsIRGRKSVp/czlAHNtDD1vI3zXnuh0Eh8C/g6YB/yLmb3k7te4+yYze4hw0HwauM3dM9E6nwQeJ5xO4uvuvmkibRCZKpLWz3zbn1O2nDfJeJyT0bQYAB3exOOf6+bw5w4OjSHIWscw5tDOjX+6iprLLx4sr6nKUF2lnjMRkelsomc1/hD4YZFlnwU+W6D8MeCxiTyuyHQStwzVdA3er7YuWqJzTPIvKQJhz9nLfhn/+Of7CDuPQyep5LJPrKW16SgV+RdRdsPdSMQDaiv7aLnuotP1dEREZAJ0uqBIGRUaiJ+0fjbYT4eVd3oDu7/2JtsZmoAs57IlOEeZC8C79u/CbPjZOi0Nx1l0zfllP51aRGS2UvASmSbqrIN19uKIdTIe45g3s/u+LcPmwAkwXqCFY3/ZToI+4gyFrxgZrrx9HRtuWkWswOnimv1fRGRyKHiJzCBxCwrO+j/gDN4g4zFO0EDAUJpqp4V/uxf+5d5dBderoIcb71xG83suIJX0YT1pyWRAjcafiYiMSsFLZJaJW0ADR3PKGjnMKl7jJJXDesocY68v4/ufg/7P7Rs8vJldL0OcKk6w8Y5VVF06NL6ssSFNQ11ac5uJiEQUvEQECMebVdJbcNlK28JKthRdN+0JNvlFPHbPZoJotjPHOEE9Vd7Nu3/v7MEL8+ZPcROPOzWpPlZ+4FxNoyEiM56Cl4hMWMLSrLdnhpV3ew37WcKmL+/L60kbut3OQgxnzd75pBK5g/6DaH6zxupuljZ3sPT9F5yW9ouIlIqCl4icNtXWxUor3lMGYbjqZA7d39hEb153mOF0UccO5vEjX0j8zx4vsAUjRQ/vuO0Czr3hDCqyrhKQPxatIhWQUq+aiJSRgpeIlFXMnAaO0mBHi9YJfCvdVjt4VQAYGmPmGK/7hTx333P8+L6tWIEpowPiXHXbKipTaVrfu5buk6nJfyIiImOg4CUiU17MnFo6iy7fwH9Q6DK3IaeLerbft4X9tMIXXydGwFZrH6yR8QRx6+fX/+aswcOd2b1liXhAMq6zNkVk4hS8RGTai9vIoaieY9TbMdbwauEKBu0+n4f+Ww8B8WGL0yTJEOfGz55DLFb8seoq+6hO9Y+r7SIyuyh4iYgAc+0gczlYdPlRn8uTdx0GGDblBoQXRe/yOubZ3oLrpzjJB+99NxVJXTVAZDZT8BIRGYNGa6eR9qLLMx6jw5pxrGAw66WKr9++FcdI5UzbMXSINEOM+ezjQ/ddMYktF5GpRMFLRGQSxC2gqcgVAwYs4m3SniBNsuDyk1SyhxX83W27CoY3gLQn+a0vLaMikS64XJPVikxtCl4iIiWUsDQJCoemSnqGXVUgXzsL+Mbt3aSz3r4HslZAjBS9bPzLDVSl+oat69G8aKlERmPRRMpEwUtEZBqZaweYy4Giy496M//yx08XnFYDwpDW7gtotbd4519cM2x5dj9bdaqPppoe9aKJTCIFLxGRGaTRDtPI4RHrtLCL4zTys/9RaELa8OQBx+ihhiM+nyY7SIxomo2sMWlxMlz/+ctprO4lFtPEtCJjoeAlIjLLVFovlewbU90WdtFX4OLpEE6z8YM/epHjPodqOxGVDu8eC4jx23+3UuFMBAUvEREZQRjSCl88HaCR9pzxZjB8uo0DLObvf3dsxyt7vZpf/ewqmmu7B8vyL/2kCW1lOlPwEhGRCUlY4ZMFBizibRbx9pi21UM1j//JwaJnfjrQ7XV87J7Vg/cLVwyDXiwWMK+uu1gtkZJT8BIRkSmjyrpZyRtFl7vDXlvO43fuBwpPZjvAcNp9Yc4YtUK15tDOr9x37USaLTJmCl4iIjJtmMFido65/nz2cIKGnJMCssPaSSrZ7mfzwG2bC64/sF6Cfho4wge//B4SOswpE6DgJSIiM1bS+ke84gDAXPYXPbQZcvqp4BjNfPF391Nlww9dOkYNnVE4u4K4eVQ+spi5puuYZRS8RERkVhtpUtsBlfRSRwet9lbB5e7QRT3HaOaBT72Z08NWTNoTVNsJ/tNfXThsWTIeUFs5fBJcmf4UvERERCbIDGo5Ti3Hx7xOL5XsZRmP/OGzw5alSdJDNbUc56rP/HLOsqfvfqxosPvwly/XGZ9T3ISCl5n9NfABoA/YDnzc3Y9Fy+4EPgFkgE+5++NR+bXAl4A48IC73zORNoiIiExHldbLSrYUXR64cYIGnr77sbwlXvCkgmPM5YFPbaWK7sFa+bLXauYgG++76lSaLhMw0R6vJ4A73T1tZp8H7gT+yMzWATcBZwOLgCfN7MxonfuA9wJtwHNm9qi7vz7BdoiIiMwoMXPqOUY9x8ZUf67vp5tawklsRz7bs5dqtvnZ3HfbjmHLk/Qxh8N88N53UZkc+RCsjN+Egpe7/yjr7tPAjdHtjcCD7n4S2GFm24BLomXb3P0tADN7MKqr4CUiIjIBMXNq6RxT3RpO0MTBgr1ifVRyjGa+cfvmUU46CHvVquhiDoe59m+vwswHL8Y+vO6QymR61h4SncwxXr8BfC+6vZgwiA1oi8oAdueVX1poY2Z2K3ArwDwNRRMREZlUZoXnQaukh4W0sZC2MW2n22s4zAK+8+lXR5gvLXpMnH5SOMYNn71gsLxQWKuv6p2RJxiMmmjM7ElgYYFFd7n7I1Gdu4A08O3Japi73w/cD7DaKnWBLxERkSmo2rqopvDZnoVkPMZBFvPju57KKc8OgU44vu0kldTRQXyUs04r6OUDX3wXVampf2h01ODl7lePtNzMbgHeD1zlPnhFrT1Aa1a1JVEZI5SLiIjIDBe3gJacg1/FBW50UU9AbMR6PdTwzd/fTJoESfqBwicX5OvypkLXdT+tJnpW47XAHwLvdvfsGeUeBb5jZl8gHFy/GniW8OmtNrMVhIHrJuDXJtIGERERmZli5tTRMWq9Bo6ykDYyHiMgPmp9w+mgiS7qJqOZ4zLRwVNfASqAJyycevdpd/8td99kZg8RDppPA7e5ewbAzD4JPE44ncTX3X3TBNsgIiIiQtwC4oxt0H4zB2m2g6e5RcPZ0NHBqWu1Vfq9iWXlboaIiIjIqN6f3vqCu28otGzkg6YiIiIiMmkUvERERERKRMFLREREpEQUvERERERKRMFLREREpEQUvERERERKRMFLREREpEQUvERERERKRMFLREREpEQUvERERERKRMFLREREpESmxbUazawT2FLudkwBc4H2cjdiCtB+0D4YoP0Q0n7QPhig/RAq935Y5u7zCi1IlLolp2hLsYtNziZm9rz2g/YDaB8M0H4IaT9oHwzQfghN5f2gQ40iIiIiJaLgJSIiIlIi0yV43V/uBkwR2g8h7QftgwHaDyHtB+2DAdoPoSm7H6bF4HoRERGRmWC69HiJiIiITHsKXiIiIiIlMuWCl5n9tZm9YWavmNkPzWxO1rI7zWybmW0xs2uyyq+NyraZ2R1lafhpNhueI4CZtZrZj83sdTPbZGa/F5U3mdkTZvZm9LsxKjcz+3K0X14xswvL+wwmj5nFzexFM/vn6P4KM3smeq7fM7NUVF4R3d8WLV9e1oZPIjObY2bfj94TNpvZO2bpa+H3o/8Pr5nZd82scja8Hszs62Z20Mxeyyob99/fzG6O6r9pZjeX47mcqiL7YNZ9ThbaD1nLPm1mbmZzo/tT+7Xg7lPqB3gfkIhufx74fHR7HfAyUAGsALYD8ehnO7ASSEV11pX7eUzyPpnxzzHrubYAF0a364Ct0d/+r4A7ovI7sl4X1wP/ChhwGfBMuZ/DJO6LPwC+A/xzdP8h4Kbo9j8Avx3d/h3gH6LbNwHfK3fbJ3EffBP4zeh2Cpgz214LwGJgB1CV9Tq4ZTa8HoB3ARcCr2WVjevvDzQBb0W/G6PbjeV+bhPcB7Puc7LQfojKW4HHgV3A3OnwWphyPV7u/iN3T0d3nwaWRLc3Ag+6+0l33wFsAy6Jfra5+1vu3gc8GNWdSWbDcwTA3fe5+y+i253AZsIPno2EH8JEv2+Ibm8EvuWhp4E5ZtZS2lZPPjNbAvwK8EB034Arge9HVfL3wcC++T5wVVR/WjOzBsI3268BuHufux9jlr0WIgmgyswSQDWwj1nwenD3nwBH8orH+/e/BnjC3Y+4+1HgCeDa0974SVJoH8zGz8kirwWALwJ/CGSfKTilXwtTLnjl+Q3C1Arhh+/urGVtUVmx8plkNjzHYaJDJBcAzwAL3H1ftGg/sCC6PVP3zb2EbyZBdL8ZOJb1Zpv9PAf3QbS8I6o/3a0ADgH/Kzrk+oCZ1TDLXgvuvgf4G+BtwsDVAbzA7Hs9DBjv339Gvi6yzNrPSTPbCOxx95fzFk3p/VCW4GVmT0ZjFfJ/NmbVuQtIA98uRxulvMysFvgn4HZ3P569zMM+4xk7D4qZvR846O4vlLstZZYgPLTwVXe/AOgiPLQ0aKa/FgCiMUwbCYPoIqCGadRjczrNhr//SGbz56SZVQN/DNxd7raMV1mu1ejuV4+03MxuAd4PXBX9xwLYQ3gsd8CSqIwRymeKkZ77jGNmScLQ9W13/0FUfMDMWtx9X9RlfDAqn4n75nLgg2Z2PVAJ1ANfIuwuT0S9GNnPc2AftEWHohqAw6Vv9qRrA9rc/Zno/vcJg9dsei0AXA3scPdDAGb2A8LXyGx7PQwY799/D3BFXvm/l6Cdp5U+JzmD8MvIy9GR9CXAL8zsEqb4a2HKHWo0s2sJD7F80N27sxY9CtwUnbGzAlgNPAs8B6yOzvBJEQ4mfbTU7T7NZsNzBAbHMn0N2OzuX8ha9CgwcAbKzcAjWeW/Hp3FchnQkXUYYlpy9zvdfYm7Lyf8W/+bu38M+DFwY1Qtfx8M7Jsbo/rTvhfA3fcDu81sTVR0FfA6s+i1EHkbuMzMqqP/HwP7YVa9HrKM9+//OPA+M2uMeg/fF5VNW/qcBHd/1d3nu/vy6L2yjfDErP1M9ddCqUfzj/ZDOBhwN/BS9PMPWcvuIjwzYwtwXVb59YRnv20H7ir3czhN+2XGP8foeb6T8NDBK1mvgesJx6g8BbwJPAk0RfUNuC/aL68CG8r9HCZ5f1zB0FmNKwnfRLcBDwMVUXlldH9btHxluds9ic//fOD56PXwvwnPRJp1rwXgz4E3gNeAfyQ8a23Gvx6A7xKOa+sn/GD9xKn8/QnHQW2Lfj5e7uc1Cftg1n1OFtoPect3MnRW45R+LeiSQSIiIiIlMuUONYqIiIjMVApeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIv8f6N5UC05h4/gAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index df8995408..64b168233 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -456,8 +456,7 @@ def cc_solver( turb_inflow_field = copy.deepcopy(flow_field.u_initial_sorted) turbine_turbulence_intensity = ( - flow_field.turbulence_intensity - * np.ones((flow_field.n_wind_directions, flow_field.n_wind_speeds, farm.n_turbines, 1, 1)) + flow_field.turbulence_intensity * np.ones((flow_field.n_findex, farm.n_turbines, 1, 1)) ) ambient_turbulence_intensity = flow_field.turbulence_intensity @@ -472,14 +471,14 @@ def cc_solver( for i in range(grid.n_turbines): # Get the current turbine quantities - x_i = np.mean(grid.x_sorted[:, :, i:i+1], axis=(3, 4)) - x_i = x_i[:, :, :, None, None] - y_i = np.mean(grid.y_sorted[:, :, i:i+1], axis=(3, 4)) - y_i = y_i[:, :, :, None, None] - z_i = np.mean(grid.z_sorted[:, :, i:i+1], axis=(3, 4)) - z_i = z_i[:, :, :, None, None] + x_i = np.mean(grid.x_sorted[:, i:i+1], axis=(2, 3)) + x_i = x_i[:, :, None, None] + y_i = np.mean(grid.y_sorted[:, i:i+1], axis=(2, 3)) + y_i = y_i[:, :, None, None] + z_i = np.mean(grid.z_sorted[:, i:i+1], axis=(2, 3)) + z_i = z_i[:, :, None, None] - rotor_diameter_i = farm.rotor_diameters_sorted[: ,:, i:i+1, None, None] + rotor_diameter_i = farm.rotor_diameters_sorted[:, i:i+1, None, None] mask2 = ( (grid.x_sorted < x_i + 0.01) @@ -505,7 +504,7 @@ def cc_solver( average_method=grid.average_method, cubature_weights=grid.cubature_weights ) - turb_Cts = turb_Cts[:, :, :, None, None] + turb_Cts = turb_Cts[:, :, None, None] turb_aIs = axial_induction( turb_avg_vels, farm.yaw_angles_sorted, @@ -519,10 +518,10 @@ def cc_solver( average_method=grid.average_method, cubature_weights=grid.cubature_weights ) - turb_aIs = turb_aIs[:, :, :, None, None] + turb_aIs = turb_aIs[:, :, None, None] - u_i = turb_inflow_field[:, :, i:i+1] - v_i = flow_field.v_sorted[:, :, i:i+1] + u_i = turb_inflow_field[:, i:i+1] + v_i = flow_field.v_sorted[:, i:i+1] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, @@ -538,12 +537,12 @@ def cc_solver( cubature_weights=grid.cubature_weights ) - axial_induction_i = axial_induction_i[:, :, :, None, None] + axial_induction_i = axial_induction_i[:, :, None, None] - turbulence_intensity_i = turbine_turbulence_intensity[:, :, i:i+1] - yaw_angle_i = farm.yaw_angles_sorted[:, :, i:i+1, None, None] - hub_height_i = farm.hub_heights_sorted[:, :, i:i+1, None, None] - TSR_i = farm.TSRs_sorted[:, :, i:i+1, None, None] + turbulence_intensity_i = turbine_turbulence_intensity[:, i:i+1] + yaw_angle_i = farm.yaw_angles_sorted[:, i:i+1, None, None] + hub_height_i = farm.hub_heights_sorted[:, i:i+1, None, None] + TSR_i = farm.TSRs_sorted[:, i:i+1, None, None] effective_yaw_i = np.zeros_like(yaw_angle_i) effective_yaw_i += yaw_angle_i @@ -553,11 +552,11 @@ def cc_solver( u_i, v_i, flow_field.u_initial_sorted, - grid.y_sorted[:, :, i:i+1] - y_i, - grid.z_sorted[:, :, i:i+1], + grid.y_sorted[:, i:i+1] - y_i, + grid.z_sorted[:, i:i+1], rotor_diameter_i, hub_height_i, - turb_Cts[:, :, i:i+1], + turb_Cts[:, i:i+1], TSR_i, axial_induction_i, flow_field.wind_shear, @@ -572,7 +571,7 @@ def cc_solver( y_i, effective_yaw_i, turbulence_intensity_i, - turb_Cts[:, :, i:i+1], + turb_Cts[:, i:i+1], rotor_diameter_i, **deflection_model_args, ) @@ -588,7 +587,7 @@ def cc_solver( rotor_diameter_i, hub_height_i, yaw_angle_i, - turb_Cts[:, :, i:i+1], + turb_Cts[:, i:i+1], TSR_i, axial_induction_i, flow_field.wind_shear, @@ -600,12 +599,12 @@ def cc_solver( u_i, turbulence_intensity_i, v_i, - flow_field.w_sorted[:, :, i:i+1], - v_wake[:, :, i:i+1], - w_wake[:, :, i:i+1], + flow_field.w_sorted[:, i:i+1], + v_wake[:, i:i+1], + w_wake[:, i:i+1], ) gch_gain = 1.0 - turbine_turbulence_intensity[:, :, i:i+1] = turbulence_intensity_i + gch_gain * I_mixing + turbine_turbulence_intensity[:, i:i+1] = turbulence_intensity_i + gch_gain * I_mixing turb_u_wake, Ctmp = model_manager.velocity_model.function( i, @@ -617,7 +616,7 @@ def cc_solver( yaw_angle_i, turbine_turbulence_intensity, turb_Cts, - farm.rotor_diameters_sorted[:, :, :, None, None], + farm.rotor_diameters_sorted[:, :, None, None], turb_u_wake, Ctmp, **deficit_model_args, @@ -633,10 +632,10 @@ def cc_solver( # Calculate wake overlap for wake-added turbulence (WAT) area_overlap = 1 - ( - np.sum(turb_u_wake <= 0.05, axis=(3, 4)) + np.sum(turb_u_wake <= 0.05, axis=(2, 3)) / (grid.grid_resolution * grid.grid_resolution) ) - area_overlap = area_overlap[:, :, :, None, None] + area_overlap = area_overlap[:, :, None, None] # Modify wake added turbulence by wake area overlap downstream_influence_length = 15 * rotor_diameter_i @@ -661,7 +660,7 @@ def cc_solver( flow_field.turbulence_intensity_field_sorted = turbine_turbulence_intensity flow_field.turbulence_intensity_field_sorted_avg = np.mean( turbine_turbulence_intensity, - axis=(3,4) + axis=(2,3) ) @@ -687,19 +686,17 @@ def full_flow_cc_solver( turbine_grid_farm.construct_turbine_ref_tilt_cp_cts() turbine_grid_farm.construct_turbine_tilt_interps() turbine_grid_farm.construct_turbine_correct_cp_ct_for_tilt() - turbine_grid_farm.set_tilt_to_ref_tilt(flow_field.n_wind_directions, flow_field.n_wind_speeds) + turbine_grid_farm.set_tilt_to_ref_tilt(flow_field.n_findex) turbine_grid = TurbineGrid( turbine_coordinates=turbine_grid_farm.coordinates, turbine_diameters=turbine_grid_farm.rotor_diameters, wind_directions=turbine_grid_flow_field.wind_directions, - wind_speeds=turbine_grid_flow_field.wind_speeds, grid_resolution=3, time_series=turbine_grid_flow_field.time_series, ) turbine_grid_farm.expand_farm_properties( - turbine_grid_flow_field.n_wind_directions, - turbine_grid_flow_field.n_wind_speeds, + turbine_grid_flow_field.n_findex, turbine_grid.sorted_coord_indices, ) turbine_grid_flow_field.initialize_velocity_field(turbine_grid) @@ -729,15 +726,15 @@ def full_flow_cc_solver( for i in range(flow_field_grid.n_turbines): # Get the current turbine quantities - x_i = np.mean(turbine_grid.x_sorted[:, :, i:i+1], axis=(3, 4)) - x_i = x_i[:, :, :, None, None] - y_i = np.mean(turbine_grid.y_sorted[:, :, i:i+1], axis=(3, 4)) - y_i = y_i[:, :, :, None, None] - z_i = np.mean(turbine_grid.z_sorted[:, :, i:i+1], axis=(3, 4)) - z_i = z_i[:, :, :, None, None] + x_i = np.mean(turbine_grid.x_sorted[:, i:i+1], axis=(2, 3)) + x_i = x_i[:, :, None, None] + y_i = np.mean(turbine_grid.y_sorted[:, i:i+1], axis=(2, 3)) + y_i = y_i[:, :, None, None] + z_i = np.mean(turbine_grid.z_sorted[:, i:i+1], axis=(2, 3)) + z_i = z_i[:, :, None, None] - u_i = turbine_grid_flow_field.u_sorted[:, :, i:i+1] - v_i = turbine_grid_flow_field.v_sorted[:, :, i:i+1] + u_i = turbine_grid_flow_field.u_sorted[:, i:i+1] + v_i = turbine_grid_flow_field.v_sorted[:, i:i+1] turb_avg_vels = average_velocity(turbine_grid_flow_field.u_sorted) turb_Cts = Ct( @@ -752,7 +749,7 @@ def full_flow_cc_solver( average_method=turbine_grid.average_method, cubature_weights=turbine_grid.cubature_weights ) - turb_Cts = turb_Cts[:, :, :, None, None] + turb_Cts = turb_Cts[:, :, None, None] axial_induction_i = axial_induction( velocities=turbine_grid_flow_field.u_sorted, @@ -767,14 +764,14 @@ def full_flow_cc_solver( average_method=turbine_grid.average_method, cubature_weights=turbine_grid.cubature_weights ) - axial_induction_i = axial_induction_i[:, :, :, None, None] + axial_induction_i = axial_induction_i[:, :, None, None] turbulence_intensity_i = \ - turbine_grid_flow_field.turbulence_intensity_field_sorted_avg[:, :, i:i+1] - yaw_angle_i = turbine_grid_farm.yaw_angles_sorted[:, :, i:i+1, None, None] - hub_height_i = turbine_grid_farm.hub_heights_sorted[:, :, i:i+1, None, None] - rotor_diameter_i = turbine_grid_farm.rotor_diameters_sorted[:, :, i:i+1, None, None] - TSR_i = turbine_grid_farm.TSRs_sorted[:, :, i:i+1, None, None] + turbine_grid_flow_field.turbulence_intensity_field_sorted_avg[:, i:i+1] + yaw_angle_i = turbine_grid_farm.yaw_angles_sorted[:, i:i+1, None, None] + hub_height_i = turbine_grid_farm.hub_heights_sorted[:, i:i+1, None, None] + rotor_diameter_i = turbine_grid_farm.rotor_diameters_sorted[:, i:i+1, None, None] + TSR_i = turbine_grid_farm.TSRs_sorted[:, i:i+1, None, None] effective_yaw_i = np.zeros_like(yaw_angle_i) effective_yaw_i += yaw_angle_i @@ -784,11 +781,11 @@ def full_flow_cc_solver( u_i, v_i, turbine_grid_flow_field.u_initial_sorted, - turbine_grid.y_sorted[:, :, i:i+1] - y_i, - turbine_grid.z_sorted[:, :, i:i+1], + turbine_grid.y_sorted[:, i:i+1] - y_i, + turbine_grid.z_sorted[:, i:i+1], rotor_diameter_i, hub_height_i, - turb_Cts[:, :, i:i+1], + turb_Cts[:, i:i+1], TSR_i, axial_induction_i, flow_field.wind_shear, @@ -803,7 +800,7 @@ def full_flow_cc_solver( y_i, effective_yaw_i, turbulence_intensity_i, - turb_Cts[:, :, i:i+1], + turb_Cts[:, i:i+1], rotor_diameter_i, **deflection_model_args, ) @@ -819,7 +816,7 @@ def full_flow_cc_solver( rotor_diameter_i, hub_height_i, yaw_angle_i, - turb_Cts[:, :, i:i+1], + turb_Cts[:, i:i+1], TSR_i, axial_induction_i, flow_field.wind_shear, @@ -837,7 +834,7 @@ def full_flow_cc_solver( yaw_angle_i, turbine_grid_flow_field.turbulence_intensity_field_sorted_avg, turb_Cts, - turbine_grid_farm.rotor_diameters_sorted[:, :, :, None, None], + turbine_grid_farm.rotor_diameters_sorted[:, :, None, None], turb_u_wake, Ctmp, **deficit_model_args, diff --git a/floris/simulation/wake_velocity/cumulative_gauss_curl.py b/floris/simulation/wake_velocity/cumulative_gauss_curl.py index ba337ab3e..5c201462c 100644 --- a/floris/simulation/wake_velocity/cumulative_gauss_curl.py +++ b/floris/simulation/wake_velocity/cumulative_gauss_curl.py @@ -95,58 +95,58 @@ def function( turbine_yaw = yaw_i # TODO Should this be cbrt? This is done to match v2 - turb_avg_vels = np.cbrt(np.mean(u_i ** 3, axis=(3, 4))) - turb_avg_vels = turb_avg_vels[:, :, :, None, None] + turb_avg_vels = np.cbrt(np.mean(u_i ** 3, axis=(2, 3))) + turb_avg_vels = turb_avg_vels[:, :, None, None] delta_x = x - x_i sigma_n = wake_expansion( delta_x, - turbine_Ct[:, :, ii:ii+1], - turbine_ti[:, :, ii:ii+1], - turbine_diameter[:, :, ii:ii+1], + turbine_Ct[:, ii:ii+1], + turbine_ti[:, ii:ii+1], + turbine_diameter[:, ii:ii+1], self.a_s, self.b_s, self.c_s1, self.c_s2, ) - x_i_loc = np.mean(x_i, axis=(3, 4)) - x_i_loc = x_i_loc[:, :, :, None, None] + x_i_loc = np.mean(x_i, axis=(2, 3)) + x_i_loc = x_i_loc[:, :, None, None] - y_i_loc = np.mean(y_i, axis=(3, 4)) - y_i_loc = y_i_loc[:, :, :, None, None] + y_i_loc = np.mean(y_i, axis=(2, 3)) + y_i_loc = y_i_loc[:, :, None, None] - z_i_loc = np.mean(z_i, axis=(3, 4)) - z_i_loc = z_i_loc[:, :, :, None, None] + z_i_loc = np.mean(z_i, axis=(2, 3)) + z_i_loc = z_i_loc[:, :, None, None] - x_coord = np.mean(x, axis=(3, 4))[:, :, :, None, None] + x_coord = np.mean(x, axis=(2, 3))[:, :, None, None] y_loc = y - y_coord = np.mean(y, axis=(3, 4))[:, :, :, None, None] + y_coord = np.mean(y, axis=(2, 3))[:, :, None, None] z_loc = z # np.mean(z, axis=(3,4)) - z_coord = np.mean(z, axis=(3, 4))[:, :, :, None, None] + z_coord = np.mean(z, axis=(2, 3))[:, :, None, None] sum_lbda = np.zeros_like(u_initial) for m in range(0, ii - 1): - x_coord_m = x_coord[:, :, m:m+1] - y_coord_m = y_coord[:, :, m:m+1] - z_coord_m = z_coord[:, :, m:m+1] + x_coord_m = x_coord[:, m:m+1] + y_coord_m = y_coord[:, m:m+1] + z_coord_m = z_coord[:, m:m+1] # For computing cross planes, we don't need to compute downstream # turbines from out cross plane position. - if x_coord[:, :, m:m+1].size == 0: + if x_coord[:, m:m+1].size == 0: break delta_x_m = x - x_coord_m sigma_i = wake_expansion( delta_x_m, - turbine_Ct[:, :, m:m+1], - turbine_ti[:, :, m:m+1], - turbine_diameter[:, :, m:m+1], + turbine_Ct[:, m:m+1], + turbine_ti[:, m:m+1], + turbine_diameter[:, m:m+1], self.a_s, self.b_s, self.c_s1, @@ -181,9 +181,9 @@ def function( # blondel # super gaussian # b_f = self.b_f1 * np.exp(self.b_f2 * TI) + self.b_f3 - x_tilde = np.abs(delta_x) / turbine_diameter[:,:,ii:ii+1] + x_tilde = np.abs(delta_x) / turbine_diameter[:,ii:ii+1] r_tilde = np.sqrt( (y_loc - y_i_loc - deflection_field) ** 2 + (z_loc - z_i_loc) ** 2 ) - r_tilde /= turbine_diameter[:,:,ii:ii+1] + r_tilde /= turbine_diameter[:,ii:ii+1] n = self.a_f * np.exp(self.b_f * x_tilde) + self.c_f a1 = 2 ** (2 / n - 1) @@ -191,7 +191,7 @@ def function( # based on Blondel model, modified to include cumulative effects tmp = a2 - ( - (n * turbine_Ct[:, :, ii:ii+1]) + (n * turbine_Ct[:, ii:ii+1]) * cosd(turbine_yaw) / ( 16.0 diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index 1e4913b7a..6e8eebf13 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -168,17 +168,12 @@ def test_regression_tandem(sample_inputs_fixture): floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -189,7 +184,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -200,7 +195,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -216,19 +211,18 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -238,7 +232,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], baseline) + assert_results_arrays(test_results[0:4], baseline) def test_regression_rotation(sample_inputs_fixture): @@ -303,15 +297,15 @@ def test_regression_rotation(sample_inputs_fixture): farm_avg_velocities = average_velocity(floris.flow_field.u) - t0_270 = farm_avg_velocities[0, 0, 0] # upstream - t1_270 = farm_avg_velocities[0, 0, 1] # upstream - t2_270 = farm_avg_velocities[0, 0, 2] # waked - t3_270 = farm_avg_velocities[0, 0, 3] # waked + t0_270 = farm_avg_velocities[0, 0] # upstream + t1_270 = farm_avg_velocities[0, 1] # upstream + t2_270 = farm_avg_velocities[0, 2] # waked + t3_270 = farm_avg_velocities[0, 3] # waked - t0_360 = farm_avg_velocities[1, 0, 0] # waked - t1_360 = farm_avg_velocities[1, 0, 1] # upstream - t2_360 = farm_avg_velocities[1, 0, 2] # waked - t3_360 = farm_avg_velocities[1, 0, 3] # upstream + t0_360 = farm_avg_velocities[1, 0] # waked + t1_360 = farm_avg_velocities[1, 1] # upstream + t2_360 = farm_avg_velocities[1, 2] # waked + t3_360 = farm_avg_velocities[1, 3] # upstream assert np.allclose(t0_270, t1_360) assert np.allclose(t1_270, t3_360) @@ -329,24 +323,19 @@ def test_regression_yaw(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -357,7 +346,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -368,7 +357,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -384,19 +373,18 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -406,7 +394,7 @@ def test_regression_yaw(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], yawed_baseline) + assert_results_arrays(test_results[0:4], yawed_baseline) def test_regression_yaw_added_recovery(sample_inputs_fixture): @@ -425,24 +413,19 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -453,7 +436,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -464,7 +447,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -480,19 +463,18 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -502,7 +484,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], yaw_added_recovery_baseline) + assert_results_arrays(test_results[0:4], yaw_added_recovery_baseline) def test_regression_secondary_steering(sample_inputs_fixture): @@ -520,24 +502,19 @@ def test_regression_secondary_steering(sample_inputs_fixture): floris = Floris.from_dict(sample_inputs_fixture.floris) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) - yaw_angles[:,:,0] = 5.0 + yaw_angles[:,0] = 5.0 floris.farm.yaw_angles = yaw_angles floris.initialize_domain() floris.steady_state_atmospheric_condition() n_turbines = floris.farm.n_turbines - n_wind_speeds = floris.flow_field.n_wind_speeds - n_wind_directions = floris.flow_field.n_wind_directions + n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = ( - np.ones((n_wind_directions, n_wind_speeds, n_turbines)) - * floris.farm.ref_tilt_cp_cts - ) - test_results = np.zeros((n_wind_directions, n_wind_speeds, n_turbines, 4)) + test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( velocities, @@ -548,7 +525,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -559,7 +536,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -575,19 +552,18 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) - for i in range(n_wind_directions): - for j in range(n_wind_speeds): - for k in range(n_turbines): - test_results[i, j, k, 0] = farm_avg_velocities[i, j, k] - test_results[i, j, k, 1] = farm_cts[i, j, k] - test_results[i, j, k, 2] = farm_powers[i, j, k] - test_results[i, j, k, 3] = farm_axial_inductions[i, j, k] + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] if DEBUG: print_test_values( @@ -597,11 +573,16 @@ def test_regression_secondary_steering(sample_inputs_fixture): farm_axial_inductions, ) - assert_results_arrays(test_results[0], secondary_steering_baseline) + assert_results_arrays(test_results[0:4], secondary_steering_baseline) def test_regression_small_grid_rotation(sample_inputs_fixture): """ + This utilizes a 5x5 wind farm with the layout in a regular grid oriented along the cardinal + directions. The wind direction in this test is from 285 degrees which is slightly north of + west. The objective of this test is to create a case with a very slight rotation of the wind + farm to target the rotation and masking routines. + Where wake models are masked based on the x-location of a turbine, numerical precision can cause masking to fail unexpectedly. For example, in the configuration here one of the turbines has these delta x values; @@ -636,7 +617,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - ref_tilt_cp_cts = np.ones((1, 1, len(X))) * floris.farm.ref_tilt_cp_cts farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, @@ -644,7 +624,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - ref_tilt_cp_cts, + floris.farm.ref_tilt_cp_cts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -662,8 +642,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # Columns 1 - 4 should have the same power profile # Column 5 leading turbine is completely unwaked # and the rest of the turbines have a partial wake from their immediate upstream turbine - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,5:10]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,10:15]) - assert np.allclose(farm_powers[2,0,0:5], farm_powers[2,0,15:20]) - assert np.allclose(farm_powers[2,0,20], farm_powers[2,0,0]) - assert np.allclose(farm_powers[2,0,21], farm_powers[2,0,21:25]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,5:10]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,10:15]) + assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) + assert np.allclose(farm_powers[8,20], farm_powers[8,0]) + assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) From e8632bbfb6b734d01aaa076769b3870721a5766a Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Thu, 14 Dec 2023 15:01:58 -0600 Subject: [PATCH 20/78] Fix AEP example inputs --- examples/07_calc_aep_from_rose.py | 16 ++++++++++------ floris/tools/floris_interface.py | 11 +++++++---- 2 files changed, 17 insertions(+), 10 deletions(-) diff --git a/examples/07_calc_aep_from_rose.py b/examples/07_calc_aep_from_rose.py index be0f6fcbe..754003e37 100644 --- a/examples/07_calc_aep_from_rose.py +++ b/examples/07_calc_aep_from_rose.py @@ -35,17 +35,21 @@ print("The wind rose dataframe looks as follows: \n\n {} \n".format(df_wr)) # Derive the wind directions and speeds we need to evaluate in FLORIS -wd_array = np.array(df_wr["wd"].unique(), dtype=float) -ws_array = np.array(df_wr["ws"].unique(), dtype=float) +wd_grid, ws_grid = np.meshgrid( + np.array(df_wr["wd"].unique(), dtype=float), # wind directions + np.array(df_wr["ws"].unique(), dtype=float), # wind speeds + indexing="ij" +) +wind_directions = wd_grid.flatten() +wind_speeds = ws_grid.flatten() # Format the frequency array into the conventional FLORIS v3 format, which is # an np.array with shape (n_wind_directions, n_wind_speeds). To avoid having # to manually derive how the variables are sorted and how to reshape the # one-dimensional frequency array, we use a nearest neighbor interpolant. This # ensures the frequency values are mapped appropriately to the new 2D array. -wd_grid, ws_grid = np.meshgrid(wd_array, ws_array, indexing="ij") freq_interp = NearestNDInterpolator(df_wr[["wd", "ws"]], df_wr["freq_val"]) -freq = freq_interp(wd_grid, ws_grid) +freq = freq_interp(wd_grid, ws_grid).flatten() # Normalize the frequency array to sum to exactly 1.0 freq = freq / np.sum(freq) @@ -60,8 +64,8 @@ fi.reinitialize( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], - wind_directions=wd_array, - wind_speeds=ws_array, + wind_directions=wind_directions, + wind_speeds=wind_speeds, ) # Compute the AEP using the default settings diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index b349501b3..1b4951506 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -833,7 +833,8 @@ def get_farm_AEP( # Verify dimensions of the variable "freq" if np.shape(freq)[0] != self.floris.flow_field.n_findex: raise UserWarning( - "'freq' should be a one-dimensional array with dimensions (n_findex)." + "'freq' should be a one-dimensional array with dimensions (n_findex). " + f"Given shape is {np.shape(freq)}" ) # Check if frequency vector sums to 1.0. If not, raise a warning @@ -849,7 +850,7 @@ def get_farm_AEP( wind_directions = np.array(self.floris.flow_field.wind_directions, copy=True) farm_power = np.zeros(self.floris.flow_field.n_findex) - # Determine which wind speeds we must evaluate in floris + # Determine which wind speeds we must evaluate conditions_to_evaluate = wind_speeds >= cut_in_wind_speed if cut_out_wind_speed is not None: conditions_to_evaluate = conditions_to_evaluate & (wind_speeds < cut_out_wind_speed) @@ -861,8 +862,10 @@ def get_farm_AEP( yaw_angles_subset = None if yaw_angles is not None: yaw_angles_subset = yaw_angles[conditions_to_evaluate] - self.reinitialize(wind_speeds=wind_speeds_subset, - wind_directions = wind_directions_subset) + self.reinitialize( + wind_speeds=wind_speeds_subset, + wind_directions=wind_directions_subset + ) if no_wake: self.calculate_no_wake(yaw_angles=yaw_angles_subset) else: From 12830f947d2bad6212dd459aa8dbba44ed51f235 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 15 Dec 2023 14:54:58 -0600 Subject: [PATCH 21/78] Describe 4D arrays in Background and Concepts docs (#64) * Fix API in an example * Fix index in rotor visualization method * Fix inconsistent wind condition arrays * Describe 4D arrays in Getting Started docs * Clarify description of setting atmospheric conditions --- docs/floris_101.ipynb | 302 ++++++++++---------- examples/28_extract_wind_speed_at_points.py | 2 +- floris/tools/visualization.py | 2 +- profiling/quality_metrics.py | 9 +- 4 files changed, 160 insertions(+), 155 deletions(-) diff --git a/docs/floris_101.ipynb b/docs/floris_101.ipynb index 5bf94a4a5..5b73de57f 100644 --- a/docs/floris_101.ipynb +++ b/docs/floris_101.ipynb @@ -8,7 +8,9 @@ "(background_concepts)=\n", "# Background and Concepts\n", "\n", - "FLORIS is a command-line program written in Python. There are two primary packages that make up the software:\n", + "FLORIS is a Python-based software library for calculating wind farm performance considering\n", + "the effect of turbine-turbine interactions through their wakes.\n", + "There are two primary packages that make up the software:\n", "- `floris.simulation`: simulation framework including wake model definitions\n", "- `floris.tools`: utilities for pre and post processing as well as driving the simulation\n", "\n", @@ -17,15 +19,13 @@ "Users of FLORIS will develop a Python script with the following sequence of steps:\n", "\n", "1. Load inputs and preprocess data\n", - "2. Run the wind farm wake simulation\n", + "2. Run the wind farm wake calculation\n", "3. Extract data and postprocess results\n", "\n", "Generally, users will only interact with `floris.tools` and most often through\n", "the `FlorisInterface` class. Additionally, `floris.tools` contains functionality\n", "for comparing results, creating visualizations, and developing optimization cases. \n", "\n", - "**NOTE `floris.tools` is under active design and development. The API's will change and additional functionality from FLORIS v2 will be included in upcoming releases.**\n", - "\n", "This notebook steps through the basic ideas and operations of FLORIS while showing\n", "realistic uses and expected behavior." ] @@ -82,7 +82,7 @@ "## Build the model\n", "\n", "At this point, FLORIS has been initialized with the data defined in the input file.\n", - "However, it is often simpler to define a basic configuration in the input file as\n", + "However, it is often simplest to define a basic configuration in the input file as\n", "a starting point and then make modifications in the Python script. This allows for\n", "generating data algorithmically or loading data from a data file. Modifications to\n", "the wind farm representation are handled through the `FlorisInterface.reinitialize()`\n", @@ -129,11 +129,13 @@ "metadata": {}, "source": [ "Additionally, we can change the wind speeds and wind directions.\n", - "These are lists of wind speeds and wind directions that will be\n", - "combined so that a wake calculation will happen for every wind\n", - "direction with each speed.\n", + "The set of wind conditions is given as arrays of wind speeds and\n", + "wind directions that combined describe the atmospheric conditions\n", + "to compute. This requires that the wind speed and wind direction\n", + "arrays be the same length.\n", "\n", - "Notice that we can give `FlorisInterface.reinitialize()` multiple keyword arguments at once." + "Notice that we can give `FlorisInterface.reinitialize()` multiple keyword arguments at once.\n", + "Note that there is no expected output from the `FlorisInterface.reinitialize()` function." ] }, { @@ -143,14 +145,17 @@ "metadata": {}, "outputs": [], "source": [ - "# One wind direction and one speed -> one atmospheric condition\n", + "# One wind direction and one speed\n", + "# -> one atmospheric condition (270 degrees at 8 m/s)\n", "fi.reinitialize(wind_directions=[270.0], wind_speeds=[8.0])\n", "\n", - "# Two wind directions and one speed -> two atmospheric conditions\n", - "fi.reinitialize(wind_directions=[270.0, 280.0], wind_speeds=[8.0])\n", + "# Two wind directions and one speed (repeated)\n", + "# -> two atmospheric conditions (270 degrees at 8 m/s and 280 degrees at 8 m/s)\n", + "fi.reinitialize(wind_directions=[270.0, 280.0], wind_speeds=[8.0, 8.0])\n", "\n", - "# Two wind directions and two speeds -> four atmospheric conditions\n", - "fi.reinitialize(wind_directions=[270.0, 280.0], wind_speeds=[8.0, 9.0])" + "# Two wind directions and two speeds combined\n", + "# -> four atmospheric conditions (270 degrees at 8 m/s and 9 m/s, 280 degrees at 8 m/s and 9 m/s)\n", + "fi.reinitialize(wind_directions=[270.0, 280.0, 270.0, 280.0], wind_speeds=[8.0, 8.0, 9.0, 9.0])" ] }, { @@ -161,13 +166,12 @@ "`FlorisInterface.reinitialize()` creates all of the basic data structures required\n", "for the simulation but it does not do any aerodynamic calculations. The low level\n", "data structures have a complex shape that enables faster computations. Specifically,\n", - "most data is structured as a many-dimensional Numpy array with the following dimensions:\n", + "most data is structured as a 4-dimensional Numpy array with the following dimensions:\n", "\n", "```python\n", "np.array(\n", " (\n", - " wind directions,\n", - " wind speeds,\n", + " findex,\n", " turbines,\n", " grid-1,\n", " grid-2\n", @@ -175,9 +179,13 @@ ")\n", "```\n", "\n", + "The `findex` dimension contains the index to a particular calculation in the overall data\n", + "domain. This typically represents a unique combination of wind direction and wind speed\n", + "making up a wind condition, but it can also be used to represent any other varying quantity.\n", + "\n", "For example, we can see the shape of the data structure for the grid point x-coordinates\n", "for the all turbines and get the x-coordinates of grid points for the third turbine in\n", - "the first wind direction and first wind speed. We can also plot all the grid points in\n", + "the first wind condition. We can also plot all the grid points in\n", "space to get an idea of the overall form of our grid." ] }, @@ -192,9 +200,9 @@ "output_type": "stream", "text": [ "Dimensions of grid x-components\n", - "(2, 2, 4, 3, 3)\n", + "(4, 4, 3, 3)\n", "\n", - "Turbine 3 grid x-components for first wind direction and first wind speed\n", + "3rd turbine x-components for first wind condition (at findex=0)\n", "[[800. 800. 800.]\n", " [800. 800. 800.]\n", " [800. 800. 800.]]\n" @@ -218,12 +226,12 @@ "print(np.shape(fi.floris.grid.x_sorted))\n", "\n", "print()\n", - "print(\"Turbine 3 grid x-components for first wind direction and first wind speed\")\n", - "print(fi.floris.grid.x_sorted[0, 0, 2, :, :])\n", + "print(\"3rd turbine x-components for first wind condition (at findex=0)\")\n", + "print(fi.floris.grid.x_sorted[0, 2, :, :])\n", "\n", - "x = fi.floris.grid.x_sorted[0, 0, :, :, :]\n", - "y = fi.floris.grid.y_sorted[0, 0, :, :, :]\n", - "z = fi.floris.grid.z_sorted[0, 0, :, :, :]\n", + "x = fi.floris.grid.x_sorted[0, :, :, :]\n", + "y = fi.floris.grid.y_sorted[0, :, :, :]\n", + "z = fi.floris.grid.z_sorted[0, :, :, :]\n", "\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111, projection=\"3d\")\n", @@ -279,27 +287,26 @@ "output_type": "stream", "text": [ "Dimensions of `powers`\n", - "(2, 2, 4)\n", + "(4, 4)\n", "\n", "Turbine powers for 8 m/s\n", - "Wind direction 0\n", + "Wind condition 0\n", " Turbine 0 - 1,691.33 kW\n", " Turbine 1 - 1,691.33 kW\n", " Turbine 2 - 592.65 kW\n", " Turbine 3 - 592.98 kW\n", "\n", - "Wind direction 1\n", + "Wind condition 1\n", " Turbine 0 - 1,691.33 kW\n", " Turbine 1 - 1,691.33 kW\n", " Turbine 2 - 1,631.07 kW\n", " Turbine 3 - 1,629.76 kW\n", "\n", "Turbine powers for all turbines at all wind conditions\n", - "[[[1691.32664838 1691.32664838 592.6531181 592.97842923]\n", - " [2407.84167188 2407.84167188 861.30649817 861.73255027]]\n", - "\n", - " [[1691.32664838 1691.32664838 1631.06554071 1629.75543674]\n", - " [2407.84167188 2407.84167188 2321.40975418 2319.53218301]]]\n" + "[[1691.32664838 1691.32664838 592.6531181 592.97842923]\n", + " [1691.32664838 1691.32664838 1631.06554071 1629.75543674]\n", + " [2407.84167188 2407.84167188 861.30649817 861.73255027]\n", + " [2407.84167188 2407.84167188 2321.40975418 2319.53218301]]\n" ] } ], @@ -314,9 +321,9 @@ "print()\n", "print(\"Turbine powers for 8 m/s\")\n", "for i in range(2):\n", - " print(f\"Wind direction {i}\")\n", + " print(f\"Wind condition {i}\")\n", " for j in range(N_TURBINES):\n", - " print(f\" Turbine {j} - {powers[i, 0, j]:7,.2f} kW\")\n", + " print(f\" Turbine {j} - {powers[i, j]:7,.2f} kW\")\n", " print()\n", "\n", "print(\"Turbine powers for all turbines at all wind conditions\")\n", @@ -333,9 +340,8 @@ "Yaw angles are applied to turbines through the `FlorisInterface.calculate_wake` function.\n", "In order to fit into the vectorized framework, the yaw settings must be represented as\n", "a `Numpy.array` with dimensions equal to:\n", - "- 0: number of wind directions\n", - "- 1: number of wind speeds\n", - "- 2: number of turbines\n", + "- 0: findex\n", + "- 1: number of turbines\n", "\n", "**Unlike the data configured in `FlorisInterface.reinitialize()`, yaw angles are not retained**\n", "**in memory and must be provided each time `FlorisInterface.calculate_wake` is used.**\n", @@ -356,27 +362,27 @@ "output_type": "stream", "text": [ "Yaw angle array initialized with 0's\n", - "[[[0. 0. 0. 0.]\n", - " [0. 0. 0. 0.]]\n", - "\n", - " [[0. 0. 0. 0.]\n", - " [0. 0. 0. 0.]]]\n", + "[[0. 0. 0. 0.]\n", + " [0. 0. 0. 0.]\n", + " [0. 0. 0. 0.]\n", + " [0. 0. 0. 0.]]\n", "First turbine yawed 25 degrees for every atmospheric condition\n", - "[[[25. 0. 0. 0.]\n", - " [25. 0. 0. 0.]]\n", - "\n", - " [[25. 0. 0. 0.]\n", - " [25. 0. 0. 0.]]]\n" + "[[25. 0. 0. 0.]\n", + " [25. 0. 0. 0.]\n", + " [25. 0. 0. 0.]\n", + " [25. 0. 0. 0.]]\n" ] } ], "source": [ - "yaw_angles = np.zeros((2, 2, 4))\n", + "# Recall that the previous `fi.reinitialize()` command set up four atmospheric conditions\n", + "# and there are 4 turbines in the farm. So, the yaw angles array must be 4x4.\n", + "yaw_angles = np.zeros((4, 4))\n", "print(\"Yaw angle array initialized with 0's\")\n", "print(yaw_angles)\n", "\n", "print(\"First turbine yawed 25 degrees for every atmospheric condition\")\n", - "yaw_angles[:, :, 0] = 25\n", + "yaw_angles[:, 0] = 25\n", "print(yaw_angles)\n", "\n", "fi.calculate_wake(yaw_angles=yaw_angles)" @@ -411,8 +417,8 @@ "output_type": "stream", "text": [ "Power % difference with yaw\n", - " 270 degrees: 7.39%\n", - " 280 degrees: 0.13%\n" + " 270 degrees: 6.43%\n", + " 280 degrees: 0.05%\n" ] } ], @@ -427,7 +433,7 @@ "x = [0, 0, 6 * D, 6 * D]\n", "y = [0, 3 * D, 0, 3 * D]\n", "wind_directions = [270.0, 280.0]\n", - "wind_speeds = [8.0]\n", + "wind_speeds = [8.0, 8.0]\n", "\n", "# Pass the new data to FlorisInterface\n", "fi.reinitialize(\n", @@ -443,27 +449,27 @@ "\n", "# 4. Get the total farm power\n", "turbine_powers = fi.get_turbine_powers() / 1000.0 # Given in W, so convert to kW\n", - "farm_power_baseline = np.sum(turbine_powers, 2) # Sum over the third dimension\n", + "farm_power_baseline = np.sum(turbine_powers, 1) # Sum over the second dimension\n", "\n", "# 5. Develop the yaw control settings\n", - "yaw_angles = np.zeros( (2, 1, 4) ) # Construct the yaw array with dimensions for two wind directions, one wind speed, and four turbines\n", - "yaw_angles[0, :, 0] = 25 # At 270 degrees, yaw the first turbine 25 degrees\n", - "yaw_angles[0, :, 1] = 25 # At 270 degrees, yaw the second turbine 25 degrees\n", - "yaw_angles[1, :, 0] = 10 # At 265 degrees, yaw the first turbine -25 degrees\n", - "yaw_angles[1, :, 1] = 10 # At 265 degrees, yaw the second turbine -25 degrees\n", + "yaw_angles = np.zeros( (2, 4) ) # Construct the yaw array with dimensions for two wind directions, one wind speed, and four turbines\n", + "yaw_angles[0, 0] = 25 # At 270 degrees, yaw the first turbine 25 degrees\n", + "yaw_angles[0, 1] = 15 # At 270 degrees, yaw the second turbine 15 degrees\n", + "yaw_angles[1, 0] = 10 # At 280 degrees, yaw the first turbine 10 degrees\n", + "yaw_angles[1, 1] = 0 # At 280 degrees, yaw the second turbine 0 degrees\n", "\n", "# 6. Calculate the velocities at each turbine for all atmospheric conditions with the new yaw settings\n", "fi.calculate_wake(yaw_angles=yaw_angles)\n", "\n", "# 7. Get the total farm power\n", "turbine_powers = fi.get_turbine_powers() / 1000.0\n", - "farm_power_yaw = np.sum(turbine_powers, 2)\n", + "farm_power_yaw = np.sum(turbine_powers, 1)\n", "\n", "# 8. Compare farm power with and without wake steering\n", "difference = 100 * (farm_power_yaw - farm_power_baseline) / farm_power_baseline\n", "print(\"Power % difference with yaw\")\n", - "print(f\" 270 degrees: {difference[0, 0]:4.2f}%\")\n", - "print(f\" 280 degrees: {difference[1, 0]:4.2f}%\")" + "print(f\" 270 degrees: {difference[0]:4.2f}%\")\n", + "print(f\" 280 degrees: {difference[1]:4.2f}%\")" ] }, { @@ -476,8 +482,6 @@ "While comparing turbine and farm powers is meaningful, a picture is worth at least\n", "1000 Watts, and the `FlorisInterface` provides powerful routines for visualization.\n", "\n", - "**NOTE `floris.tools` is under active design and development. The API's will change and additional functionality from FLORIS v2 will be included in upcoming releases.**\n", - "\n", "The visualization functions require that the user select a single atmospheric condition\n", "to plot. The internal data structures still have the same shape but the wind speed and\n", "wind direction dimensions have a size of 1. This means that the yaw angle array used\n", @@ -498,7 +502,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAAHJCAYAAAA1u4DOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZRlSX7XCX7M7vo237cI99hzz6xcqrJ2qiRUQhswKkCApGqpoFEXfRA0TEOznZnpbqrpRlIVCKa7BQJNI+noDKgRPUggtJWkqsyq3LOqMjNyiczI2BeP8N3fdjez+cPufYv78wiPCI8Ijwj7nHPP3ezeZ8/f9Wv2td9iQmuNxWKxWCwWi8VisVjubuTtroDFYrFYLBaLxWKxWG4+VvxZLBaLxWKxWCwWyz2AFX8Wi8VisVgsFovFcg9gxZ/FYrFYLBaLxWKx3ANY8WexWCwWi8VisVgs9wBW/FksFovFYrFYLBbLPYAVfxbLHYQQ4g+FED+Rb39OCPE7t6EOB4UQWgjh3urPtlgsFotlNyGE+E4hxNnbXQ+LZbtY8We5pxFCBEKIXxBCnBJCrAshviWE+P6e858TQtR7lmYufD6UnxdCiJ8SQizmy08JIcQN1kkIId4XQrx5pXJa61/RWn/PjXyWxWKxWCzbYbe0l/l9viaE+O83HP9xIcRxIUT5xr+txXL3YsWf5V7HBc4A3wEMA/8P4FeFEAehI7CqxQL8FeB94NX8+i8AnwWeAB4H/iTwl2+wTp8GpoDDQogP3+C9LBaLxWLZCXZFe6m11sBPAP93IcSjAEKISeDLwE9orZvX+wUtlnsBK/4s9zRa64bW+n/QWp/UWiut9X8ETgAf2uKSzwO/lDc+xf6XtdZntdbnMI3PX7jBan0e+A/Ab+bbAxFC/AUhxLM9+98jhHhHCLEqhPjfhRBf7XER/QtCiGeFEF8SQiwLIU5sGLEdzkd0Lwghzgkh/ichhJOfc/LrFoQQ7wN//Aa/n8VisVjuMHZTe6m1Pgb8Q+AXhBAS+GfArwHfEkL8RyHE5byt+49CiDkAIcQfFUK8XtxDCPG7QoiXevafEUJ8Nt/eK4T4tfw+J4QQ/01PuZIQ4l/n938TsIO0ljsKK/4slh6EENPAA8DRAecOYKxyv9Rz+FHg2z37386PXe/nl4EfAn4lX35YCOFv47oJ4N8Bfw8YB94BPrGh2Efz4xPAT2MazcLl5l8DKXAf8BTwPZiRVYD/CvgT+fGn8/pZLBaL5R7mdreXwD8GBKbt+yTw32H6tf8HcADYD7SA/zUv/zxwvxBiQgjhYayPe4UQNSFECdO+PZOLyd/I6zcLfAb4G0KI783v898DR/Lle7nCIK3Fshux4s9iyckbg18BflFr/faAIj8OPKO1PtFzrAqs9uyvAtUbiPv700AE/A7wnwCP7VnafgA4qrX+91rrFDMKenFDmVNa63+ptc6AXwT2ANN5A/4DwN/IR3YvAf8E+OH8uj8H/KzW+ozWegn4X67zu1ksFovlLmA3tJd5W/ZfAn8K+Gta63Wt9aLW+te01k2t9TrGOvgdefkW8BJGlH4II+6+jhGOHwPe1VovYix5k1rrf6C1jrXW7wP/kv428R9qrZe01mcw7a3Fcsdgs/VZLEA+0vfLQAz81S2K/TjwP284VgeGevaHgHqPm0vvZ/xn4FP57l/WWv/KgM/4PPCruYBLhRC/lh/7v67yFfZiYjEAExMhNmcfu9hzvpm3t1VgDCMyL/S0wbLnfn33Bk5dpS4Wi8ViuUvZRe0lWuujebt1NL+ujBm8/D5gNC9WE0I4uVj8KvCdwNl8exkjDqN8H4zVcK8QYqXnoxzgmXzbtomWOxor/iz3PPmo4y8A08APaK2TAWU+iXnh/7sNp45igtdfzPefYIALDIDW+vsHHe/5jDngu4CPCCH+TH64DIRCiAmt9cIVLr8AzG34TnNbF+/jDKbhm8hF56B77+vZ37/N+1osFovlLmK3tJdX4G8CDwIf1VpfFEI8CXwT4x4KRuB9GTgN/COM+PuXmDbwf8vLnAFOaK3v3+IzijaxqLttEy13FNbt02KBnwMeBv5k7hYyiM8Dv5a7kfTyS8B/K4SYFULsxTQ8//o66/FjwDFMw/VkvjyAGaH8katc+5+ADwghPivM/Hs/Ccxs50O11hcwbqZfFkIMCSGkEOKIEOI78iK/Cvw3Qog5IcQo8Hev7WtZLBaL5S5ht7SXW1HDxPmtCCHGMPF5vXwD08Z+BHhRa30UY+n7KPC1vMyLwLoQ4u/kyV0cIcRjPdm3fxX4e0KI0XzQ9q/t8HewWG4qVvxZ7mnyoPS/jBFaF0V3fqLP9ZQJMT7+vzjgFv8CExj+OvAGRoT9i+uszueB/11rfbF3Af45Vwkoz62CfxaTyGUReAR4GTOauR1+HPCBNzEjof8OExMIZlT0tzHxEa8C//5avpTFYrFY7nx2WXu5FT8LlIAFTIKX3+o9qbVuYNqxo1rrOD/8HCYm/lJeJsMkOXsSk810AfhXmOktAP5HjKvnCczA6S/v8HewWG4qYoCrtcViucPJYzLOAp/TWv/B7a6PxWKxWCwWi+X2Yy1/FstdghDie4UQI0KIAPj7mBiH529ztSwWi8VisVgsuwQr/iyWu4ePA8cxLip/EvjsFWIyLBaLxWKxWCz3GNbt02KxWCwWi8VisVjuAazlz2KxWCwWi8VisVjuAaz4s1gsFovFYrFYLJZ7gDtikvdh4egpvNtdDYvFYrHcAt4jWtBaT97uetwp2DbSYrFY7g12on3cEfEnhBjBzIHyGKCB/xJ4B/i3wEHgJPDntNbLQggB/FPgB4Am8Be01q9e6f5TePyse2AnqmqxWCyWXc6fSI+dut112ElsG2mxWCyWnWAn2sedcvv8p8Bvaa0fAp4A3gL+LvAVrfX9wFfyfYDvB+7Ply8AP7dDdbBYLBaLZTdi20iLxWKx7ApuWPwJIYaBTwO/AKC1jrXWK8APAr+YF/tF4LP59g8Cv6QNzwMjQog9N1oPi8VisVh2G7aNtFgsFstuYicsf4eAy8D/IYT4phDiXwkhKsC01vpCXuYiMJ1vzwJneq4/mx+zWCwWi+Vuw7aRFovFYtk17IT4c4EPAj+ntX4KaNB1XwFAm8kEr2lCQSHEF4QQLwshXl4l24FqWiwWi8Vyy7FtpMVisVh2DTsh/s4CZ7XWL+T7/w7T0M0Xrir5+lJ+/hywr+f6ufxYH1rrn9daP621fnoYZweqabFYLBbLLce2kRaLxWLZNdyw+NNaXwTOCCEezA99BngT+HXg8/mxzwP/Id/+deDHheFjwGqP64vFYrFYLHcNto20WCwWy25ip+b5+2vArwghfOB94C9ihOWvCiH+EnAK+HN52d/EpLB+D5PG+i/uUB0sFovFYtmN2DbSYrFYLLuCHRF/WutvAU8POPWZAWU18JM78bkWi8Visex2bBtpsVgslt3CTs3zZ7FYLBaLxWKxWCyWXYwVfxaLxWKxWCwWi8VyD2DFn8VisVgsFovFYrHcA1jxZ7FYLBaLxWKxWCz3AFb8WSwWi8VisVgsFss9gBV/FovFYrFYLBaLxXIPYMWfxWKxWCwWi8VisdwDWPFnsVgsFovFYrFYLPcAVvxZLBaLxWKxWCwWyz2AFX8Wi8VisVgsFovFcg9gxZ/FYrFYLBaLxWKx3ANY8WexWCwWi8VisVgs9wDu7a6AxWKx3OtoDRqRL2ZMTiM6a4WEnn29aVtsOr6xLJuuo3N8UNnNx3rqO+Bz+hEDy2/5/XvOO6TAsSuWt1gsFovFcn1Y8WexWO4YtKYjhBSyTzAV2+Z4/363PD3nBpcBNhwTPeeK8v2Cq3sv2Ch8tvnN+u7YKwX7z6n8Ezafo68GG+Vdt3zvfm8ZOveBR3/sYYTYKA/pXj/gXP+x/vua84O/+cayUmj4l4PLWiwWi8ViuTGs+LNYdoimrpDiAYM7v8Xxrawguq+LvbWAGFxu8zG9qcveLTfYYnNla86VrT39lifVJ7AKwSU7wmmQANse/ZKtK71Ufk71nZO5WDLH+8s/9uMPmX2hkSK/p8jLChDCSDzZuxZ0rumui3Pde+wMgusTkjvBwm36XIvFYrFYLDcTK/4slh3gjD5MnSHK1IGtxJugV4b1nxlgKeHKlpSty2w+tnE96PwjP/bItqw9fZJPbLAwbSGeZJ/AygWY0B3RJMXg73dlesWRcx3XL17HNRaLxWKxWCx3Llb87TBKCy6wH43cZH3YyqXLnKNTpndt2HxsKzGw1fmrlb/Wcv1czzXXwo1ZPwbFP/XGSvXub3SK22jR6i9rzjep4pLwIz8JUL2hut5erLXHYrFYLBaL5W7Gir8dZpFpWlT4jr84idICrQVK90TlaMHRX34rjxkyDErUcDUXvF62cs+7WrnNXL/I0ogrujReL9cnRjcyOM6pP+ZJb3n+sR9/KN/Py+WufoUFyxGKsdL6DtTTYrFYLBaLxWK5eVjxt8PMM8ef/681nrO6ZZm5n5y8hTWy3DjWPdBisVgsluuloauc5TAeMQ4pLikOKZKsZ1v1HZNk1xkSYLFYroQVfztIpk3ckedkt7kmdz7HFldZasekSvHA2BBTlVLf+Yv1FufrTbSGB8eHqPrebapplyh1UVp2YtwcqWzDZbFYLJZ7nrMc4k/+nUP4bkqqHJLMIVWSF7/0PC3KKBwyXLK+tQN6ozeRxkEhSTtrmV/dFY/KCMee/Y3HrbC03MtY8beDNKhRYR0oXbWsZWveXVrDdSRPTY8hhEnv30srSTlfb7JvqEKqFO+vrPPw+AieI29PhYFGHPCt+fuo+i0yLdFakGmJ0levU382yW5ilN41Vzi+8djgTJS9bq8KIeHs2jrLrQb3j41QC7zOPSKVcrnRItMpnpDUAslo6ONKsYOZLC0Wy73Iqh5lkWkC2gS08IgJaOPTtp3xu5RMO8SEVIM2vpMhZfd3/lNffOia7qWUINOCTEkyLc26WLQkVZKXvvQcKR4Zbi7zjExUuB1JqHDQm4QlFBmlC7EoOsKyKxq7+1mexzrbLCzzT7Qi07IbseJvB2lS5YP/xX6+cXayk8nQESq3AJnt3syHnc4+uj8j4obsiL3HturoF9u9KevvVC4323xwZpzAHZzB8UKjxUjoM1kOATixUifKstsq/t5e3M8f/fxhauX0mq7TOp+7TguzVqKzbeJF6caOqnz+OUUnlrTv2ny9/JWvdq4xcaayE2+qtJF/q1Gb+UZGI3YJ3AkqXolMA0jW4zanVpfwHQ9PunjSZ7RUwxHutmM6XZl1n3+hcGS26X+hd9vt2zbXujLDkbbRtFjuJk5zHz/0d/eQZA7f+JmXaFAjJiQmQGsTO+4T4dPO1xEBLXwiPOI7um27V1llDKUFL50+jOdknfbJkQrPSfGcDFdmeE6Wb6u+Y921QkrTZ/IcteXnzX7x4euuq9b0CMt8ELdnP1UOmZK89OXnSHPrpOqIy41ruYX1EroWzCsLR9ERl+aTROdc/zVFckFJZv9HLFfFir8dJMNltV1hprLMh3/sSZTCvCwy89JQSph13pE36+6x5d/7Q1IlUdo1eUJ7EsYopEkc09kXfZ15na+VFtuyNvWyUUhCv7WoL0V/j7jc6lwxyrUxtX+vJaritan40aa6tNKUwJEcX16jkaRUPJcHx4dxZfc7NeKUmWoJrTVCCALHIcm2bghuNs0kMPVqeyzXAzxH4ToKz9W4jsKR3bXc8NOYKRHIZ8ODIjnN0lqdN0+ew/dcyqHPwZlJqtVw02cnaYrrOIiet/2BH336qnX+9vHTPFo7zPJ6g4MzEwxXyp2/59JanQdXJnlo/97r+nuYxlOQZebZV5rO/0CxpJlk8Xe/SqLdzuhtqp1uI6slmXLIBjzLxSCKK7NcICpckeFI0zlwRJafU7gy7VvbEViL5fbR1iV8IsYrDQD+9Bcf3FRGKUEr9YhSj1bi8Y0vvcwao8QEJPhoLXBJ8Yhyi2FXHPpEuOLaBuAsN5+IkIau8cgf3cNoLSb0MhxHoxTEqUOcSNJMkGSSJJXUv/UG7dQjzWTHRTRRDlkm+wYgBRrHMYOHnuy2Aa6zeb/TVsgrDywKgSnPlfsUc9dosdyI1uT9vcEiM1Oy05978cvPk+ES9YhKhZP78fQfU4gtxCb0Cs6uqFQdC+dg8ak2idTi2sLVVmDb1jsNK/52kJiA1ajCQz/4QVYbKb6r8FxFKdheDOD+H/3wTa7hYAZZn4ygLLbpsUSJTeX7jkOflWr59/6QTMmOQC1eTK5UVNgs/gBWooQPDFV4pBxybGmN06sNDo1UOwJHaY2Ezr4jBWqjb2jO+8t7uNQc6YjSjgVKKGRHNHQtUYWVyhUZUvZbpdz82o2jahcbowz5Dd47V2PfZJNG4pKk0jRcmegTPlptfikLWdRN4zg6b5SG8NxRHAnnFxa5sBjxwNwEQublpGZ5fZkTFy6QZgl7x0d4+MBeHMfcy3XUJqFZ8Napc4zVKoxUyyysrCPyxrT377uwWueNE2cYrVWZHh3CdbY/j55pPDWuowmu0IDu/9zVReogjKjs/l2L7TQXlQu/+zVaaZCP0DqkWpJk7iY3XIHOR5RTXJnhy7Sz78kUr/eck9rGzWK5QZaZINY+zxx/AEcqQi+h5MWUvbizXfJiKr5ZAP7sF+/bdJ8kk7RTjyjxePanXmKdEWICYsJO7L1Lgk+bYIMV0aeNI27fYOG9yJoeYfZPf4Qzl6pcWsloxw5ZZsIIpNT4riLwMnxX4XsZ1Scfw/cUnqM66zOXLtJO2lRLIRPDNSph0Blg72tvlVk3vvU6UerRUEZApnmMYeEaqlR/A9npH0h9ReHoCIXrbBCSQve5sm4HIcitl1d/FucGDJJcD4VnkWkL8+1cZG5cF6JT5Y6t/e6zTudY4RR7LdbN3vjLXpfajfGZfXGatv3dUaz420EyHBpJwLGzw4zUYpJUEKcOKuv/pxDSdIwdqfK17rMOGRGgOkJg05JfO8iSdD1sZX3aCa5V0GaZYvK1t7n/8QdxHQe33uTdsxcZvf8gTu7WOXH8NLWRIUZHh5BSErx+jJnD+xiqbI61HM/XG61RvVaoXuvswu9+jXbmoXosUWkRV6CdjpDtpRGHHPmeR9g7Uqfx1B/B9yEQEGzzOysFWVasBVpBpsDLTJ3j+QtcungRf/ZxDpx9jjSVLNebnL3cZGLoCLXyEMfOnmZxLWVsaAKlBXOTDWYnmps+q95qkynF3vFRlFZoNOXQ7ytT8n3mJkZJVcal5VWSJGXf1Hjn799LO3ZQCqQ0DZnj3PwXtOOY/4GthOX+z31oW/dRik6nIU7NiHOSSS7/zteox2US5ZBkrlkrtyMcBRrPSQmcBE+m+E6K7yQETtLZ9p3Uut5YLBtoUebg5z7Jd/9QCSHM+6MZuSy9dJS1dsil9SGaiU+aOUhhxGHoJX3isOzFeI7CcyJqQcRnt3Dxi1OHdurRjH2+8TMvsUqFmJCIEKXNPLw+ce5O2rUiFkLRdjZ3jiZVdOKxPPMQoyOKcqgIQ0UQaDxXobUgTgRJIqgnguqJ12m0PPNezq2Bi6sB6606URyRZBH3z01RK7l4biESM1zH3C/wFNWPPWzOuaafdTWUom/AtldIppmk8e3XaSceJ5dWCZwSQ6WaEZVKbrJIAmZwWaqOF4rTEY6brZCFu2vgpNcsIq+FwmX2albNghsVnb0utGkhKpXZzpTsWD5f/PLzxD3us4Urbe96o7jsFY9FhliTKijJBWWa72/OKmvb5h0Uf0IIB3gZOKe1/hNCiEPAv8H0v18BfkxrHQshAuCXgA9hcuj/ea31yZ2qx+0k1S6tNGT/dB39iU9sWU4pSFPT0VcZpBnEmSBTkKWmwz938hniRGwQKZIs6z82yJIEIHPh2G9RUkhBV1xKM1rVu964yA3bN/ufxnEkoe/RjhOqJYeV9Qah7/UJj4mRGhcWV9gzPkKWKdI03SRgNrJ9a9T2hENBYQX96rd93qp+gupbmiQRnSQ1QoLn6XwB19W4rlmXK5qhISPguyK+++I/d/YMZ86colwq89jj+5iYEGT7Po4QgrVTJygf2c/UocM4jkP1nRqO6zF+xIySR8D7A+p78cJ5Tq4c57XLAiEEcRhyIZrkgQcfxnX7XwcSKCcJJ37jf2NqdIiys1nOXlgssbQeGFGtZGegQzqakp9SCjJKfkYYpJSDlHKQ3RKBuB2khMBXBCgqPcdnr+I22+uqFKeSKHG4+FvP0khKxJlLlHkkmduZ+zJwE3wnIXRjQicmdPNtN7YdzHsI20ZCQw9Rin3+4Jt7KYXmnZBlK4w+8gj7qlAOUgLfvJ+Vglbs0oocll/uisNG4pPl4jDw0o61sFRYDt0Iz9X4bobvZgyF7YHupVpDO/VoJx7t1OO5n3mROkN5/KEPPfGHhTjsFYg2/nD7rOthdBKw6M+RhZp9nGJlxaEdSaJIkKSFF49pL1dGnyQINL6vCX1NzdPsDRSeZ9rP5198hZH9kwzXxklSSFNBPRXUTrxOu+l1BvKSfFAv29BPKkSh53TXbt8xTeArqk7a8aLR332I+eU1Lp9qUi25fPihPVf8zh0PFbVBUOYDzY1vv04r8TuurXHmEqduPi+0sUR6TkrgmphI30nx3ZQgX5uBxuymisUbpdeF9kqD4dcjMov4y0JIZkr2ZZBNCGjjkuLmNkRvYAZZY2FMOsLRXJF0piPpbie4JHdNm72Tlr+/DrwFDOX7PwX8E631vxFC/HPgLwE/l6+Xtdb3CSF+OC/353ewHreNBB8ndfit1e9i7AWFdMD3tRnd8jS+b/YLIeD5mjAkb0D6Hyi19xMIzA90rT+Scdc01iStuyIzUaBykalyS9PsqWdIUtmJPewVmoVLhfnHEpssmAVigGWyIzo3CM2upVP1uTn2Wj8fPTjHt4+fRiuN77k8fmQ/Zy8vobRm/9Q4M6PDzC+t8tzRd9HAkdnpa3JL3EmEgCgxQmBqWnHBmeo7rzLzO6QJZHEu7lP44N554hiuZGWdnJyiUqlw/vw5pOi3urVbLcrlCk7+vZVSm8TbIGb27GVyaposy1hfX+PM6ZPsnZ3b8lrP8zg7+RQzhz9KEGyOOeQQjA64Lk0hagvWI0H5vWdYWQ84v1CmFbtkmUBK3RGDlVJCJUyplhI8d/e/WKWE0M8I/a479+x/8cGBZZUyz0c7NsuF33qWerNEO/Nppz6ZkrhSEbqm01r2Ikpem7IbEbg2duku455vIxtUGckkD/6JOTxX02xJXnvjPd5785vEqcf40By18jRCQClIqYQp5TBl9OlHmQ3MYFIhuJQylsNW3LUcvjUvefPiOjO1GfYMjQwWh7nlUAjyYwmwdfxhO3WJUo9m4vONL73MKmPE+CR5ghqJ6mQr9XORWIhFl8QKRExITGvsMIsLgvoanBMHCUoQhBCOaLMugedDEkMjgZUY9nGKel0SxYJmM+Xk6VNI6VOv14jiUYaGAnxPd/pVHPwAntcVjIG/2TvKDL4L0hSSVJCmglYiqJ18jVbbZS2Tm8QjQKPV4OzlNYZrDzG/3MRzx/oEZGF17BOVriLwt3iP/7HDV/ybFYOMUSLzgUaHtW++QT0KiVOXODOeKUXyHDcXiIHbLxJDN+ns72aheK2YPmM6UFRu5Q0wiEyJTkxpmnXjS1/40gtElEhxc5uhS5rHHHfqQIqXi8LuEuOR4BHjEe/ad8COiD8hxBzwx4F/CPy3wgQPfRfwo3mRXwT+B0zD9oP5NsC/A/5XIYTQeougrTuIFJ9GGnJkb8pqbcpY9RJI2pCumw5/sylIEkkcC5LYvIT6rERuLg59uiIxtxy5rhGMnscV3T2FAMcxi6H3T9v/Z872fNJcw/UJTdjstqgySJURm0Y0mvOzJ58linsSgGSbBWeaGWumUvvRWtNS8PLbDplKcRzF/JKD6yiybAho4UmI4hInL2ACv52uiCy2Az/bltvH9bLW8EiV5A9emaJSBT80jZofmG0/gFKl/5qT6TSsYZarsLhW483FiImZSRzXzGc4nr2O63V/rTRN8baY6/D94y7NpsB1C+ujg+dBux2zuiKQcoz3j5+lUi0xNTXGxYvnaDaauJ5Lu9ViemYGz7uyZXUjrgtuVVOpatLxT+IBw/kC5nlotwSrbYF/7FnOXq7QaJtYScfRVMOEoXJCrZIwVI7vCFE4CCkx1s887nfPAMtylgmakXF/O/ebX2e1PkYzCYkzF0ea5EhVv0XVa1ELmvh2HtE7DttGGmIdstSq8vyLFcJQUQoV05MPUfnjDxDHiywunuWBD8wihEO7LWi1JfrYG1xaLtGMXNqxg9YQ+JkRhrkgnPn4QyytXcJpNxlpTLFvaoS942O0Ikk78Vh66SjrkbEctlKPJHURQhu3Ujem7BuLfNnvikMwbnJlP6HsJ4zSHBh/mClBO/VoxT7P/tSLNKkSMU5MSIrXSVCzMe6w2PZEcqt/hltOiwoydji/6jExA0EJWgriFbhvOmZ1GZYX4dD9GqdkhCBAgwOA8UIJk4ShUkx9bZkDjz3K5MwB0gSiBOqx6WvNJadoNHKxFAvi2GTM1tq8i33fCEIzGK86wrFcVjhPPkolGPwvtrK6ysX5iE+MPUmrlbC63mJk/325eIQoFdRObt/q6Dpdgei7isDPKOeDHYXle+Ag4xUEY5oJosQhinOh+OobrLVDFtIa0QaroutkhG5CkIvDwDXu1cX+bhQrN4tCRIb0i/RBg0G9FAl74swlyRyi1CPJHJ7/8os0qZHg59LQ61gaHbJcFEZ5THLUyWJ8q4XiTln+fhb420At3x8HVrTWxV/zLDCbb88CZwC01qkQYjUvv9B7QyHEF4AvAEzeIaGJCR46NS/7VgPCct75zw0mx9vTZsPBTAW4IURN5W6faQJZ3VhPPtQjGJMYksS4SOjcc1GIXBz6XWui53UtjMZ14spi8UbZym1x4362x7jCSuDapES/wExTgVQgcxfZhdS8+OZOPkOUCLIN/vpR4nSsTYWFqVhXSzfu/92KXOJE4NXg5JnTpIkgTSQf+vAsayuQRKbuYEY2/QC8AGMJzp+PXsNllqVI2c3gGbUbSCE7wg/g9fk5/NUK4809CCE4dvxd9maHea81zkayDFIHsgSyltn/0N55hKwxNf0EF8471NcnWFxwOHvaZ319hEYDtFb4Xo09swd4/7jsiMdiIML38xFXn2v+GzoOVHJxqCc+QQU6rpdpCo2GQL79LBcXSxw7M0SaSaqlhNFqzEgtZrhy97hcOY6mVk6plVOmN4jDLBPU2y6nf/3rLLSGObk6Q5y5lL2I4aDBcFhnOGjeNa4odzE/i20jaVNicv8+Rh6bISxBuwXnV9vsjy5xcT7gnWPQaAZUyh7lsqJSVogHHmOoopjq6Zi3I0GrJfHefY21hse33mtweSVguDLDamOJTI3RjsOO9fDApx/A9/rd/bXuxhy2IoflV99ioVHrxBwCBK6xDG5MTNNrlXek7iSo+ewXHxn4vYsENe3E4+s/9RINhljGNwJRe2iKDKamY1i4mvp5p9AjvqOzmEY6xI0lOoH6Klw+b7xighIcbfmEZdNfWhsQq/DEYZMYzvU89h96kNWVRS5fPMvkzD78QOLnph+tYTU6gB+AIzZ3sZQyfatWDGu5WNyXnKLecEgS05g88lB70+dnWcby8goT42NMjI9z/P0TjI+WqVZVJ0M2ADNXtzZpbfpwvVbHZiKQ77/OhUaZessjTiRCQDlMqYYJlVLeVwnTK4ZMmLCWlEre35z57iNblk1SQStyiRJJO3ZZ/eZRlprVPImSiW83CZliAjfdlJDpStNs3CsUCXs8J86PtAD4oS/ev+U1SSaJUs+Eh6Quz/3Mi6xR7mQyLgaLHLKed0B3KeZF3QluuMUQQvwJ4JLW+hUhxHfecI1ytNY/D/w8wP0ivCN6NhpjvfqdFyfZexDaTWMBKVWhUoPKUH8nfyNSgvSNQCg4Hm1fMKZt03H+4J551tcEcdwd/SrEoud1O+xhqAlLmjAw6214Dd42egVmEAy2ZKq9n0BixOUgG1iWQaspWGwJ9Dvf4MJimWbbRTqaoXLMSDVmYjjqG2nbDlEiOVl7imoN5GXwHY0fZrz19um+clpDlgqyVJAmgqc/YsRh1DYNoXSMxVA4KUsXX8IPFEHJRQjJngOPUF9dwPUCwnKN4bE9LMyfYGh0mjhq4vklgrAysH6Oa5ZeOs9V4cnZoxmd8QmG6D5bF1NIG1131VZbkMSCJCFfG+u1dKBaVUxNZ4yMXP+/rOvC8LAm/egnO4+81tBsCOTRZzk1X2Wt4VEJU6ZGW8yMtW6qZfd24jia4UrCB37kI33H6y2XE/+/b3BhfYK3F8qUvJiJ0irTlWU8axncVdg2skuKC1qY95yAUhkWL53hq6feZXh0gvs+9TQT07MkCaw1oJqe4vKiS/OM5PHHWp32Mww0YZDBhx+lvbpKeRK+/6GPsra+zrF3JZOHHiFKAsS7b7C4GtCMjFdB0akuB8adtLAejtUi5r73QF9dtTYu2822cS1dfuVNFhtVWomJ6QXwnJSyl1Dy4z4LYuD2DypuJ0FNmgvEOHNpJy7PfcmIxCR3MS2ymAp0RxD2WgzcHlczh92TnVhpQURIqAXnzy0ympj3k9awUhccuW+S+hosXDBtjBcYIViqQLkK33zPQwjREVnrKw711TKrQuJ6Rvk9cTgiS+HEe4IkAqVNOxKEEAQQlDRhCcIQqrVu3dq5ZbHolr0zIAF5s7HOu+cusc97nwsX56k3GoyNjvYLv5w33w67VsU8XtEMkio8zzzzZh/6BsqnH6YGTBd/MwWtlqTRlLSPvcHCaki95aKUIPAzhsoJ1VLSWV/r4L7najy3sDhH7Pveg5vKZJmgnTidmNuNlvMiIVORnbfsR1T8iNC7cwcpbjbFe4A80/1W1sXCmyBKPdqJyze+9DLrjBARkBAAx264LjvR3f8k8H8TQvwApis5BPxTYEQI4eYjm3PAubz8OWAfcFYI4WI8wRZ3oB63HYUkVi5DI/D+SdPxzzJI2pLHn5zj0jlAwMi4WdzBXnrXxCDBeCLJXyE+fSY2Iz6MT326Dk9WjEi83JK02pIsNfcrlxXVmqZWM+vdLAqvBceBak1TrWmY+hgjwAhGMNfrguiNb/Dt42PEiWRypM3cZINq6eovsjSTaGUarSshBAgZobIVVNbi+a+/TVieJCiNALnYyq2GH3jiQzTXY9ZWYjw/YPlSBS0aVIcSQqAyNMbayjwn3n4BKSVzh5/A8wfE5N0AAwcjeq3XDl3xiHnW5xuQnrvMiffh/vtT87feAYQwlsL0o5+khjGfNOqC1jef47mjUwxXYh7Yt3bNwv1OpVpK+wRho+Xy9q+9yKsX76fkRRweuUDV3zyKbbkt2DYyJyYg8DJePxl0LDpzB+9nevYAx9/+NsNjkwB4HgyPdN3+ysB7KfR6Zj0YvIdSitNnztJqt7m8sECr1SYMXcZHHVN46qGOqznkcYJtQbMlUe++wfxSiUbbJUpyS5+XdeIMC3E4Uo0ZkzGzAzrIUSxpRi7NyGXl1TdZaVVoJj5x6qK1wM8thxvjDjeKQzCJMao9HcM/88UHBv4NlRIdN7526vHcTz9v5tHbwtVMoDtxSEXyiv7t+KYms1B5Ko21cIbleZekLRmZSvFDjRdoTp+51Fc+bUJyUXLg4AQLFyGJMhqrb1CqwujUMFFrkcrQBI7bbZi+/X7e+JbzBYhS4w4aN+DIdMzCvBloTXLDiR+YwYewrM26RC7K+ilXajz8gQ/Tbj/KwtoKl1fOsdio0V6dJSyV+8q2J2E9Np8x2z7N2pogiswAfFokQxMQBCbTaRBoSqGiWlFUKt1ppKSESn6Myf5nuB0J6nVJ/M5Rjp83zy9gBrBrMSOVmFr5xt0HHUdTccz/wMRnNrs7FwmZmm2HpZff5FJ9iEYcECWemcs5iKgGRhDWghYl795yJ70Rer0JYLM18e/+/Rv/jBvu1mut/x7w9wDyUc2/pbX+nBDi/wR+CJPN7PPAf8gv+fV8/7n8/O/fDbEMBjOPndMj6hwHnIri2LtdMTgyvp/jR2H//ZtjwTaSZSnORrPN9dZOGMFZiM5OR77HoqgULLbgMXeeS5ccjh+X+L7m4KGU2g515HcbrouxVP2RjzOJ+RtUXn2GoydHKfkpjx1avuLIWqbM7x63QCmNSo353/X7GwatNc21c6wvn6Q2ehDPr+J6XVOulCADjRdkvHf8Yue4yuqcOr3MBx6f4/xJmJmD4XHYs/9h9uzffmDzzcZxoDoEi0zS1pC9tcD9DyYMD9+c56ZS1fCpjzELlF95hpfenuCRgyuMDw2eP/JuplJK+VCedGZpzeelf+sxXlrl0Mj8ba6ZxbaRXTSyk3Tim+95yPzFmmUO85eHmDvQ7Isv1nprl/J3ItMhzfbuobF4ia+fWKS+nrA/WObS5QWmJic6ZZWCS5ddqhVFuawolzMYf5hqb900RLGg1ZTId19neS3g7OUKzbaL1uB7qhOXVVgPK2HKaC1mtBYz+z0HN9UxTmTXrfQVIw5biRnR11rguSklNyHMhWGYx16FboK7hWudlJqSNKJymNaWrqbd7y6IM6cTmxRnLi/8zPO0KJPi9S2DklnIfF1kPOzd3o5oLBLy+xKGJzMun3oLzSMMjWWElYwkrpO010AIwsoErufjeopLC5c6v0tbjTAc+px7fw0v2ENtZO6K3xm6Hi9hGS7Hvunt5j+41kYYLq7B4cAIw3YLksQMPJQrUK5qqjUjEP0gxA9CwlKFlaXLHLrvUVxv8+h9peeBitkPmCmfeseFlYI4MiJxMYK9rdNcXnCpNyTDQ4qpyYTxsWzL575j9f7EQ53MUUrB2rpEvXWU4+eHqLdcAj9jvBYxPhzdlDAJKaGSD5BMbnAxVQrqLY/1lsfCS29zbnWUVuzjOhnDYZOhsMVIqUnZv/vjXXcrN9Om83eAfyOE+J+AbwK/kB//BeCXhRDvAUvAD9/EOuw6pISXXzjFvtkJVhYihPAIy7VN5ebPHmNl8TxozZ4Dj1AbmdrkYnCz6leqGGGoHGi5MNFe4Pw5hwcfujfM+VJC6+lPMQms/PYrXF4NmR7d2oqitfG3X19WLF38Fkm0iudXmZjtnzJACIHrlakMzVIbPbT9+jhQqireefc0jz26n0vnjfjbzYRluBRPMHTxEsPDN/+5aX7oU4w/Cu/83rf4xKOXrn7BXczYUMz3/MQRfudfHWeqvELFv/fE8B3CPdtGKqVYmj+BlA4jE/uor14iSxOOnikTlrqufJcuwOV5wex+zegW77xypUa5UmN2/xHeP/Y61B5koTLLctSNscgyKOWd7EYzd/8sGYtLrZZRraq8U513rD/yCGX6vOGJY0GzJWi0JNl7R7mYWw2VEsZKUriRhkln2/cUvhczUoU937P5nV/EXrVih5VXjrLYrNJOPFqp15mE3O9NyuGmfck5tjOfqJSaUKZ97nhXy4bYm8yiyIAYZw7Pf+lFmgR55kMvz4TodeZABZM63+2xLBZztQmRWyHdjMUz7+D5D6DUOerLp/ACo5qi5jJjM4/21UUIqAxXqEfg1sZJEhNSc/Y47NtskNoWQhhPHS+AS4UwzLthrQSW1+FQGHP2lAk3KJU1o+Oa4VHB5PQs4gaSKEhprIxFUpuY/fjAqIb1NVhYPMO7xwNmplP2z8VXDBXqvefIsIKPdQc0Wm2BeP0NTl6sst70GK7EzE42b8ngqJQwVEkYqiTMfv/+zvE4kaw2POZfeIeL6yO0Yp9K0Ga83GCiut7JvGu5+eyo+NNa/yHwh/n2+8BHBpRpA392Jz9392Am0Ew2eJ6lseCDT++juQ7NBqwufQuVnabd8rl4RjK59z4qtW7C/FZjlajd4NBDHwXg3InXcL2AcnVkx2qaxBHScXAclyQ2I1FRW3N/9T0WF+q0WqC1ZO+eYWYOhExO3VsBvo2GwHnxBdqJz1jtyi9LIUyM2ugBydn5wwjpsnzp6MCy0vGJWkvUV06jdUZ5aBbH2Tr9zeOP76fdhFbDRAgIAYd3j7FvS6I2TKsFJidvzXOTppA++xITQ/eG2+fVaMdmhN+V9u+xm7jX20iBYr3pQSIJSlVWl86zfPkUflhhZGI/Yak7EFq48q1rWH894bEPKmpDW90Z2q0maZowPDLRmQKnwHEg3rO/EwmhVJ5spgFTK2c4c1bSjgSuA0NDGbWqolrNqFZUx+ujSHA1Mqxg5sG+KW7SFJotSbMp4b2jLKyE1NteX6KxSo8raSVM8rgrE3s1VEmYHpCgQ2vTYTaxVy6rr77BSqtMXDcun4V7qetklL04jz1MqPjRlu6l2/qdNiWzMFwtAyIYT5jCylgsy98c5X0JSSQYm32MNBEMjSfACGFlHMfxydKIpYtvkMQNPH+wS1SWwqFDU6wuwoAx8x3B9aA6nFsLQxAhrLag3Ip542TIo0/MbUuQXStCwNAwMLyP4TmQi6d48ZUyjzzUZnjo2tvRUqjhw48yRx5fueJw9tVjvHVqhAPTdeYmG7fcDdP3FJMjEZM9LtTrTZdzXz/G0YuzxKnLVG2NPUMrHZdHy83hLonm2h1INJ5MWa3DQw/sp9kwiVj8wIw8jk3D3jJI+WTnmnMn32Bt+SLl6kjHsre2comgVMV1faTjIISk1VjdtvjTOs8YmpkMj2kKT82YeeXiWLCwsMTJt7/F5MRB9uy9j5qrKJXBrcZcnj9Dli1x4OAEYegyOVWhXL77hV8UwdqapPr68yyvBwR+xr6piIcPrFz1BelI3Umo44fDZFkMWqFUipQbJk53fFyvQpa2EUKyMn+U4cmH+e7vHxzfsTgPQ6MwPbc5actuQ2XQasJB/xKNpuS++2+ey2dBoy7wXnmeyyshB2Zi9k81burn7XaiWPLtf/sqlxojPDxx2s4VaNlVOGSsNzwmGjEjlVGmZ0dBQ5omCOmh67HJ6twzZjFVhqmDui9RxyDCUpkHHhk83+ZGpMxd+yqg2NcJFUsTWK1DEJ/mzFmfekMiMImsatWMWi1jqKY2hQG4LgzVFEM1BdMPMtJzLsu6wlDmCWgabY+0M99pRiVMKOXrcpgReMbtTwgIfEXgK4YryZYZHJNU5O6lLsuvHOXC2jCtxO+4l/pu0klMU2QtLXkxvrvzg0NOj1tqQeinhIEiaXsMTSSUKkW7YMxfWmuk45MmLWRP3MzjT3Xnzb18HhprRgDOHOhazm42aWJi+LIAyKeNuNk4DrSnDlCuwZtvXeCjH27cUMZ2IWB0NGP0M0dIElj++ru89M4EH7p/8YoZRG8FtXLKQ3/sMA9hksyc+OoCb17ciyM1903MMxTa2PWbwS7vTt5ZCBSuzPjkw5eZdyYZn+lPltFLEkfE7QZZmlAeGUUI0ckepbMMhEDmw0tBqUoStTrXfurw+c725UuS8+ec/vkCBSYtvw9e2Uz5ICR58o0maXqBj35sjDCMOHJf3PncJMnw3JBS6QiTU9PcjUSRyfg5cexZGi2XtaZPnEgCL2O0GjM2FvHQ/tVreiF6riJrg8gFoJQuQjikSRM/GOI7v7vr9qCUQsqu6e7E2y8wPLZ1opbx2/AzFFk+i3WW0umQPbVnnjTNM33mKavTPE22dGC6rJiaUoyN3xzR0W7D2qqketSI9HKYMj4e88Dc6k2dzmQ3U2+5vPvvn+dycwSNYE815qOzb++abH8WS4FHymgtYv8R3UmuYQbXXKQ07ZTjQJa2eefoKwRhCdf1aDVrjIwdvOn1cz0YHoWI/biYhGBZZjwvhuJTnL/g8/YxiSONhXB0JGN0JGVA+FcHx4FaVVGrqk0JaLLMZHVstiTpe69zYalMo+0S9ySgKfWIQzOvYbpp3lPP1Qy7iRGIA+aC601Ms/zKmyw1qjQSv2++Q5O10VgMy35MyU12bFJwR5gEJ6PDaY/wMxQCb2n+JJOjR5jZv6fT9+llcq9Zdore9i1NzPq+PTFJZPoJURu0gpIH4zUYHtXsP7x50vibSZFsT6mdm67L82DqO+/H+doxzi2Wd9WAqeNo7vuu+7kPWKn7fPN3HGaHVtg3unS7q3bXYcXfDuIRo52UUlkzfJVELo+OvMGJE8eZmQyZnYXJqa74O+Mu02w2ePCwGeo8467QaNR56PBmn5eRUcXwsMK9ysTvBQsLa0iRMDE1xeLC5b5zQgjSNOXC+XNkWUYQhIyOjW37++80Wnfn99O6O4F8psxLuXcCeaXNPH/9k8abqTfiRBLFpjHxPEU1TFChYGK4zeE9651JVa8X31XMLnyTM3u+uyP0Th1bYGhslNGJ2b6U0HLDj+R6AXG7mX/fzamjt0vxt+r8PbL+7Q/NzpNm+VQTWe4mmZq/X5p1pwIBEDKfM8gDx9O4pe7cfq5r5ubrnfPvSh2f60VraLUEjbpg9O1vsNb0aEUugZcxXosZG4945MDKPSf40kyw2vA5+evPsRaXacQhZS9irASPTJ6k5NqYCcvupcQ6mZK0mwLX1SYhmms6ub3/y416kyxNmd57gHazfkMxVjdKkciqwQGcCRilayF01k5z6nQZrWFiPGVyMjUi71ruXVVUqwomH6bXuNlJQNOS1NuC9L2jzC+XaLZd0kyYqTKClKFywlDFZHncqi0z1sM8Mc2GrKVaQysy8x0uv2zmezu3aiatV1riu0knlX85F4ZlL74mYaiB8fGEvY/PDhwQT+I2a8sXmNz7wEDht5FO26Y2t3UPzhrrcZblwi7tbmc9Y5KuNMLO9cArmYF6z9WUy/kUEeHNnR/5SmQp1JZPcfa8x31Hoh3PuB7HgqX1gAdGdq9VbaQa8x2fHef3f81hZmjFzi24w1jxt4M4ZIR+mzOnXWbnLvP4E1fqiO1hemYPKyvLXLxwnnK5QqVqQnXDUon6+jpxHOP7Po7jkKbmrbVRIFxLx7vVanF5fp77HniQpcWFTUJDSkm5XCaK2qytrZKlS6RZyuTk1MD7FWmMVWbm1dFKMHfKCDClBUoJlM5FWi7GtBad8+Y4nZTUg5COxpEaKczacTRusS01jqOQwriaSMfMrVOck0LjOhrfUx03mptBtZzguRkP1uY5lRlTXRBWSRMTK9j7d86ylHZjjVarQWt9jThS1IbnaKyZrGxFI/ah2flcpIl8YnsjfrO0K3o34uSdKdcFxy+2zVpIKHk6L6NxO50uc/52NHJKQRQJ2i3B5LvP0Gy7NNourTx1dSlMGSsn1CoJc5MNyuG9E7+WpIJG2+PMbzxDIylRj0PaqY8rFbWgyZCfcGTkPGUvsumzLXcMrkgpLRxjJhsjW8g9BzJBKzFtRcHi0kX0eoQ31CZ0HNP5PX0Gz9VIxwxOncoOdDI6ytxiWCzS2TpL6I58j9xCmI3uZ2jOdNZL6yc5/n6A1vDow218/8asZkL0ZHaETXGGxQDZet1h5e03OXGhRppJhspG5E2OtLc19Y2Z+zCjHGYDU/rHiaTeMlbDxZff5vzaSEcYhrkYrAVtKn5ENWhv6qRnSlD2YtpS0G6a36bX2qYyKCfH2D8xzthQjSyNO94mhWjbiOdAmLdhjt/z23sgpCbw6AwsdNrEfP9mPBevPv8HOK6LwIjyD3zoj1zzPVpNmGydYmHRodmSlGcETz/V3NHB1UZD0nrlbS6vhDywb23XZ8aOEgcN1ovlJmDF3w4S0MIRGZ+p/QHO4x/f1jVhGKKVJopigtB0iD2vRpIuc/LEJaamZ5m/2CIIJlhYMPPJqdzqte/UMyhNR1gVgmt6rDXwn/rMpUWOtCPuD89yen4Rb22d/e4p3J6RtvugM+3DfGOVd77++xx+4qGBdT97uUwrcpFCI2W+OMYSVIgvWQg3J98XdLdzkXand16HKzGeo7lwweHIvnlarYw4mWfp4iJxaxnXLdNstAiCMtXqGPVLJ9Bxk4lqleHJUYYqTRy32SfWHFcTBLn4zcVa0ekpGrTdThwbcRdFgun3nqGdZ7VrRQ5pJo27kZ9RDjJ0KBgfarNvMqMcXl+SgjuJNBO087/Fhf/8DK0koJUGtFKfTEl8J6XkRZRdj9FwnbmhS9aqZ7njKVPHdxN8T3PgSLTloNOZs+sce+88SkWUy0NMTe4F7ZKkgkwZD4a9+jRZy7SFWZYLSSWI8gGyjbFZIh8kNINd+XvWMW58jjRrIxpNO3UiOYCQIDCDZ8U9ivsWbfFB9xSZEqwnDmkKq2sOUSxuWPxdDSGgXNaUyylMPcA43ZT/ydE3+fbxMZJUMlaLmBlrMlq7vnT/vqcY82LGiJnrydwIxmJYb7ksvvQWF9ZGWI9C0szBdxOqQUQtaBO4CSU/oVxSJFGCL/KQlNCI6Mb6POcvnWNiag8rS68jpebA4QcIS4H5bXZQsBkPIjqxexrzOxaeM0UZrfPj9GzrDYvKB701hKvzPP6Bp3Ec35Q9f9pYJbUZvNX5trFWik49igFyrU2ClnQUjhyKjSV4B2i1BaurDuKtt1heDwj9jL0Tuz9MIool7/7B+1xcG+GxPWdxdsj92NLFir8dxBUpJS/m/EKF2WefJ0klaSZIM7MuXBHjJCVNTUdutbFGo92gNN3kXHOFWqXCUDlkPGpy4sJJzmURY7Ua9x04iFw60xFMUpgRLq8jsMCRqjP3yiBWG00ur6wzv7RKphSZUpy4cJn752YGli8HPmm29cjh3GTzxv9odwGuo/F9xd69KUppzpz+Jo6TcOhwheHRiJmZEQK/hB/4mFmK9224w87FxxUNk8o7Jt190W3k8vO6p+EpOjJmvzuwoLXoDDD0bist8nv1WnjNc66UQGBcbEM/Y8RPwYfRWsQePxsYs3K3kGaCKHaIEkmUOFz8rWeIM48482jna63BlYrQjfNFMhw2mHGXKLmRbegsdy01Vii5KaPnXmdCrW3ZAa3GCQfGEjQXOXXyDcLlIUof+d6+MllmLH7bFQZFCIHSXQ8K4yooegZRzXtRazjsnzLvScw5IE+5bDal1B2roy8VQzXNgf2K4CaLvivRSfmfzwGXZbC84nD2W+9w9OQoUyNtDszUt2UR3A6lwMQkTm6IM4xiyXrL4/KLb3F5ZYyJyjpD0Tvw4CRhqeuKqTJo1tu4ns9eZx7XDSmHQ5Tql8hW8/COXEAVYkp32rZu+7VdhDCTrAuhOwl1OgI/P1Y8UyIv17dPz740z4AQsCTyfkCg8vvT6ZcV5aQ0n20GyckHxXfG6yaOBY2mJDz2OvXeXAa+yWUwOhrx8P7dHSbRjh1Of+0Yl+o1ksxldjjjYwffs+3hTcKKvx1Eoqj6bQ7uWSf0Fa6j8FyFW7grOgpHapbW67x16jye6zA15nJozyTDlRUW1+pUw4TAN3b+P/KB3rn9Vm+4fo8d6oqOhdV1Ts8vcv/cDI1WhO85eK7L/PIqaaZIs4zVepPDewa7fN6paN1vKc16RPnG/UwJFn/va2RaopQk03LTdqYcUiV59LNVWsefR37iI4yNf7ATm6gykSeZKQSZcY1VecOVZbIjsrrW215RJXoave31ckTH6moamGIku2OFFeDlDZ2xvJoBBEFvg6Vx6d6juNY0nkUD2LXmFoMSrrM5E96dSpIKklSSZJIklcSp5NJvP0OiHJLMJclcoswjVQ467xE6QuE7Zk4u30kIHMWw1yBwYgIn2da8XBbL3UogIipBhOdmrDZ8Ai8j8NSmBFuh7xHm7WC92Wa92WL2/Rf6YqbfOzfExaUiW6R5B/muwvcUnpOv3Yz6ocfNlAq+SX7muZrAB6Pkrp0Tp06TpimlMGR6ahLvZgQ97xCOAxPjGXzmPmYUxK8c5eV3Jtg73uTw3vWb9rkmxjBiIheFl1cCjp9vsXz+PPiKkkfeJ9JMT4I7s6/HIquRMjVtzwbRJHq3xbWJ/5vJqTMpFy+9CsDc3r3M7t2zY/fOssKDRtKOBZXjb+QeNC7tIpeBq6iEKV7J5DI4tGfnBP7NIM0E602P+effZrVdYr1dwncTJquCh6Yv2GkebgFW/O0gLglDfpOlr3yND37uQ5vOF1aY4UqNjz78oLGmYDr3jZYg8EaIU4iSrmWlGNUq9ottcz/RdV3oHCvcGcz+8u/9IZrutWZbsNxusdBqkL24zLn1FWpeiVoQcqG+Rj2OkUISuh4zlWHOc7FzbecziuHP4nM731F0y/Uc23h9b136/kYbjukB198IgkKwKKRQOFLhCIUQGkeYbZkfc4TCk4qwZ78o58oMma9Pr02x9vu/j/7I9xF/5VXjmuloPKm68Yc9a+lovB5R5WwQa3KL/WL00bI1WpNb2aVxBVNdy3uaSRZ+56ukyjGLdkgzs86U7BNxAK7McGWGL1NcmeI6Gb7UVLw2fpDiOSme3N5EyxaLxVj+zvzSH7J/9ANcTj3izCHK3M6E5gKN68SErsbPJzFfnBnFkbDW8AgD8N0MKeG+2TXum13r3FspiFOHODEDNcWATfDuUeJE0spM8q8kk11LHuA6PYLRVfhexvrBx/E8heuC72lcT+PIlJOnTpEphe95rNfrjAwP72rx14uUEH74UR5QcPJ3TjBSjRgbujWd7LFazJuxy4c/tD1voW6it9wqW7hIZj2eLFqA7rpeat3tEwHdGNKiv6H7XYG1htGz397Uh+mlt/z4UMRQZbDr/fePm+k44iTlxVe+glyYZWyo2lemHTtcWBw8P0XhNWOeXeM5UvR7pNQm66ufUfYygiBjuBpT8lNKwc3LZXCjaG2+c6NtEgnVo4BGHNBOfBwno+ZHDIWag2ML1IL2rv0edytW/O0gDinDYYNTq9Nc+BcnB5YxokMjMBYXszbHBfQcB3LLCsXxvOzGMoKiDJ17QuGmYO6NoCPJhNDsqTrsqQ4hRJsHxkIECiGaDAcOUOq5x1rn8xHdz6Hns3r/Zzd+fufavK591+d12XjP3mt677FbXw4zlWVeu3SY7zu8dNdYvXaSIkZ1Y2xqr6UzU7JjbV36va+SKYkqLK1abLa+aiPWNiLQPcI8F+25iDOiHQI3piKVEXRC4Tr5Wu7ehtRiuRuosE4sQu6fvDTwvFKCZix45ewicSrRwqd94Rx7hqY4diIhzhwzsTlFx1gROCmBm3bE4tBTjxF4GbVyQuBlV3QxLwaLCtGY5AKxdvI1klQSpQ71XEQurtY5feksjx16hAjwXZ/Fkxeo++SWxq5o9DxtRKNrMiLvlvdKOxJEL79FFJdvaQItx9GM1GLO/O77SKmNR0Vq3vmD2OitUnikGA+VrudJ4a1i+jn9A6Sd/pLY2JcoPiQ/Lnv6TxvqsPE7bEXhreV7LtOjw6w2mpvEnxQaz+2P5dNamNh3mXUGIXzXLLd7/r0robVJBNROHNqxw+orR2mnLu3Ep526xKmHEJrATSj7MRVfMFGpc2BssW/+R8vtw4q/HaRMndd+5Tg/+JPzt7squ4oozXj98jJJppBC0Eoz9g9XODRc7bi11uOE1y4t4wiTLWu8FHBopIbcLa3mFSh5MZOVFZ775Td44Ac/1Oey2WuJXfq9r/ZZTY2VNN8vtgdYSbuW1H4L7natrr3y/GpW1+KajffoPX+tyB6rqcwtp3KAtVWiTdyqULhuarK1iixv/LvW136L7XVVyWKx3AY8kVDW6/zi/7NNSBOPmI/9rY8QuEbAhW5CNVR89ECNOMtoJRklTzAUrjIo9CFTgih1iTOXKPVIMofFl98iSgu3bJc0M4NEAo3nZgSOsdoHbkrtyccI/Kwzn96wG285gHdqfoGxoRVmxt6gHadMjUzge6WOaExSIxrjxKGdSdZygZOkG6b3ycNBvHztuwrXVawdNO6pReIv40Fitq9lUFEpiBNBuy1ot43lc73l0Wi5+J5iZkzx8Ucv4d5icfHYwWWW6z6+m39/V90VCd+yzAg6x5FkmeLy6jr3z26eoNf31K7Mk6AUfeENxXr9m28QZybEIc4cotQj67HQe25G6JoQh9CFobDNdG2N0E3w3d3rcmoxWPG3g1RY5zwHATsfSS+B6/D0nonONBXPnJ5nvBT0TYGgtCZwJA+ND+NIaUb57qBW4dDwRU6tTnP811/qCBvZY92Vouu6Sceqqbew1m7eNzu6z0Laa/Etjpl9zXasrr112Hh98dmD9i0Wi+V6Ocgx2pRJ8Enwee5LLxET5PsBGT1ijRiPGJ8Ij4hP/O2PEnomdtZ3MhypKfsJZRKgdcXP1ZpcJLrEqenQ1r/9Oksd8egyXVtjbmR54PUXz19GHb6fUuCz3myzsLrAfbPTVEvbV2a9lsbCza/obJffe4M0k8RK0My6lrE02zxQB12rWBEvXiCEiX0M/XyC+FLCnvEmlducRdlxNBPDu3tqgeshShJeffckYH7fveMjTI5snpP5etmYA6CYIitTsuNV0+s50/z262RakmZFXgKZhzUYb5lCwBWYKbEyPJnhOcZLxnMyPEcx7MV4Ttaxqtu59u4erPjbQVwSMhyiVBK4O5fB8W5BCMFqFBO4kqq3+dFzpaTi3xnxExsRAg6OWIuvxWKxXAkpNGUaQOOK5ZQWHUGY4BMT8Ac//RoJXkc4FsNZLkkuEI1Y/Ph/V1gTEwInxXWMl0BhYbweMqUZOXeKofYKbpzw7uUVzp+oMl7pxnE1Yp+zK2MEbsLQU4/huyahTe9cs56r8Xagf5DlWUp7k3Ddq2SZEclpEevdSdzWL4q6IQR5yIEWqDy0QOf7mt5s1tIMfXbyK2ylnruJ8U4CJxk8gHA9dJO2qXy+43wtNEIUeQUKrxiz7csUNzCDIyYMQucx7MZrxg7kWqz420GEgCl9nt/6FyW+6ycmuy59wMYkJgOv33S/fktMb5mtrDSdY9do6blVsXUX6i0my+Emq57SsNyOeeHcZULX4YHxIUqufTwtFovlXkQKTUBEwJWtRVpDmgvCmICYgGd/5hUSfNL8mHEqF7ikuUA0QvFjf/MjxnXNMyLxSu5qQgjK+eCkzpeN7ZjvpIyX60SZy+qrR4kzY2WMMpck7ckKLFWeEbhrVak99Vgn3svEfmVXFHSOo7kDpnvdFlkmcgtoN8NynBjLbKockswk50ry7U3WK2livE1st8aRWZ8ocvLka14ulgoh1fXI6SaCK8R0kZNA9nroWNFkuUuwvesdZpLznOIBfudfrSBy98+NAsywUQIOjr/aXHJDTFjP3Qcd11ue69/WAyXmtaB5TLxy1VKvqgaPiBKrov/lnWpNiEYCl8l4g5RHCPtcQ8E09Md5JK9lUevegO1Ccve6RRb7yrhg5r/LYz/2UJ9bZt92vkb073eDyFUnmY4ZVbPuEBaLxXKrEQK83B5Yvoo1MdVux2qY4PPil5/vuJzGBGR5l2iQy+kTf+MJ3r18mfOrMVrHjJYDambOiA6eo5io1q9a5ySTHWEYZy5J5rD08lud7SSPtVI9g8aDXPNcqag88QEcR/XN9VskRem0a6JrISz+ZlvRG6femSd2k9thd6qiRo+bYeFaWNQ/UxKRu6Z6boonM1Mm68+sLKUa4HZovl/JSzZ8Z3PcCrE7g0wplNZ5VlaN7zhIaX+87ZIpQTv1iFOXdurx3M+8uCP3teJvh5FCc4h3bnc1diWrOqUkJMEAcekKgZsfn0ByViWkQuNtKCsEzOqTwCChKzv7vXlIu/uyRwZK3vzlN1H5NapzTvZd392nZ7u/TILPMKt8/389gufYQGeLxWLZjbgixSWlxJUTb/S6nBbWxBd/9hirGupIUlyG8RFivWNJ9HOh+PG//dHcqpcSuilywCTVnqPwnHjb85lpDamSxgLWEVdmuxBfRpjJnkRjsuPaCPlk9Vp27te5N6J/6HdDRnGxwUJmEnR1k3f1uhkWboUmPizrm6A7yUz93dxKN+jvYrm7uLDW4N3LywSuS5SmpErz4f3TmwZN7iUyJTqDPEXs8fNfejH3VPA666JvKlF93go+OxNSZsWf5ZaxSMo47iZrHkCmNU5+PNYKhcbZwgJZErsrY5bWcIlZ/u0/h2v/l+qXl6Jvm9xKufl4YcUcZOGkI1FV5/ijP/ZwT2Ou+hLNbLRoQo/bC/S4vuhO0plBnYPdPB2HxWKxbJetXE73bXi/aU3HimgsiAFf++lv9uz7nUHIQXGJJjNi2olL3AohCsGogDszVX63/pZ7hT1DFfYMVQBYaUW8Pb90xwu/jQMxHbdkJXnhSy+Q4ZLi5muvT8iB6dO5JLjEHTd0l5SAVufd4JLgiJv7v2LFn+WWoLRmWWfsE0Hn2CVtGrEp4bFIyiWdIPKG8qAI7phsn0LANOeY5tw1X6s6UzFstlaaF8bWVkyg81LpkWodB9fea9/85Tc3WDT7LZsb790rKbuf0X+8v7zsczHemuIuCtnjhivJOjV3eraLMh/48Qc7QrU3XkMU23SPi41lrCi1WCw3ASHILX4xFbZ29+yNSyyE4dd/5mVigr64xLx03glMOp3Bj/6tj3YynHr5+kpi0WLZTWRKsdRsUw1uXUK/wl05U92sp8V+2smA6vDSl58jw8l7Hk7ftsLtZB/uuTNOLu0ckp5tswS0cUiNgMN4Gjhi93mEWfFnuSVIIfgg5T6r3yRux9lkHJfRnn8yT9wbqctMDMa94/5SiN1+Ceh0tgsp2N02Zd/4pbc3lend7z/XFaSqR9xeCdG5sljo2y8+oVt7Y5GVPcce+/GH+iyrHTHaY1UtjnfWA45bS6rFcnfRG5e4nSynhcWgEIsvfOmFfNsjxSfb0Ck1HdCks3jEfORvfqwndi6Po5NWNFpuPUmmWGlFHBitDTy/HgWst0OTXVULXvrHz23RH5Ab+gzOFdv4YmC5uzbyrtgvtv1cxJklzT8hzc9nd2U7bMWf5Zax0d1TCNH5l3WE2NLN03L30BW7u6sDYkRpv6ikR/b1C8ze/e52IVA3Xg/0NFBdq2z/Z2yMKd2uJXUQG9M4bXYbZpvn6RwflBZK95Vj0303Jrmir0yxfuTH8gROeTIKeZPdXSyW3YwUumNNvJpQLEh14WLWXb/45ef7XNASPLINLmiFFaMQj7Jn2yHjI3/rYyZGz1F9UwY4edze3dgpvhMwMZ2CrGeqimLRvVNYKNGJBy2mrnjpy8/1tVMb27b+dkn2tXHF/sZ26X5eJxBbZ+VtasUx3aYtywPPr+th1hnukXYKN18XrWxHiPV4CBUDtEUiI8v2seLPYrHc85jGw3R87nQ6mfo2uP7CxmRI/cf6tweV7/mMAeX6171slaHY8OYvv9l3XN4Fv4HFcispEtlcK1rTEYjG1uH1uL65PPellzpWxn53OCe3PG5Wf0YiFFaWwnOi1wLTe0zx9N/8xJZTLxRr6MlcSvfYxuQ05lj/9qb69VS5SHyzcSourfvfY8Yi1ZMBla7IMue7YqtIrDNIcG1twRrsAXMler1Vev+u/TKu8EzZGE6xcd2bQ6D/uoHnrkH0a62pkzF0BW+umlilxur2b2q5Yaz4s1gslruIokN0L7kTWyyWa0cIcum3MxkEIRdCuTted93d7nflE7z45ec3WaH696HXU6LXT6F/cKt/EMusN33jATXeYk7kLbwieve77v/d/UFhAcW33xjj3r+dbRZdd4FlVQHLpMxw6+L9LFfHij+LxWKxWCwWyw1jEnDtnJi03NkooK01w9LKjd2E/TUsFovFYrFYLBbLjuIJwRNicKyf5fZxb6RUtFgsFovFYrFYLJZ7nBsWf0KIfUKIPxBCvCmEOCqE+Ov58TEhxO8KId7N16P5cSGE+GdCiPeEEK8JIT54o3WwWCwWi2U3YttIi8VisewmdsLylwJ/U2v9CPAx4CeFEI8Afxf4itb6fuAr+T7A9wP358sXgJ/bgTpYLBaLxbIbsW2kxWKxWHYNNyz+tNYXtNav5tvrwFvALPCDwC/mxX4R+Gy+/YPAL2nD88CIEGLPjdbDYrFYLJbdhm0jLRaLxbKb2NGYPyHEQeAp4AVgWmt9IT91EZjOt2eBMz2Xnc2PWSwWi8Vy12LbSIvFYrHcbnZM/AkhqsCvAX9Da73We05rfc2TTgkhviCEeFkI8fKqnfTXYrFYLHcwto20WCwWy25gR8SfEMLDNGq/orX+9/nh+cJVJV9fyo+fA/b1XD6XH+tDa/3zWuuntdZPD+PsRDUtFovFYrnl2DbSYrFYLLuFncj2KYBfAN7SWv/jnlO/Dnw+3/488B96jv94ntHsY8Bqj+uLxWKxWCx3DbaNtFgsFstuYicmef8k8GPA60KIb+XH/j7wj4BfFUL8JeAU8Ofyc78J/ADwHtAE/uIO1MFisVgslt2IbSMtFovFsmu4YfGntX4WEFuc/syA8hr4yRv9XIvFYrFYdju2jbRYLBbLbmJHs31aLBaLxWKxWCwWi2V3YsWfxWKxWCwWi8VisdwDWPFnsVgsFovFYrFYLPcAVvxZLBaLxWKxWCwWyz2AFX8Wi8VisVgsFovFcg9gxZ/FYrFYLBaLxWKx3ANY8WexWCwWi8VisVgs9wBW/FksFovFYrFYLBbLPcANT/JusVgslrsTrXu283nKdWe+8o37DNzfdM+rnLdYLBaLxXLzsOLPsqtpacVx2p39SGtmhc+M8DrH1nTGu7pNIEynchSXWeHf8rpa7jyUFmgEGpmvt7u/1TEBCFTuVDGo/MbjprxZ9x7rlmHgOaBz3c2lqAGd2rBhmy2O95fZfM9BuKTAG9dRT4vFYrFYLFfDij/LrqYkJI9R7ux/UzcYw9lUriYcHhDhrazaXUth7em10Gy09vQe21huowjqFT6b93tF1OAyxTEGlFd9n1Mc76/nVb5tX00KGSZR+TnV+YbdT1f5J+iBxx79sYeRQpvrRH6tyGucr4XIhVHPeVnUXHTLdc4PuJcZ6+jd3i2ILba3i8Nf/2c7VReLxWKxWCy9WPFnuWNY1SmhkPhic6iqvoIl4VZQ10Oc4QjZAGF6Z9Ivoa5k8em1TRXr7qJ67Foql2u9kq67/9iPP9QRObJYUEYoiVyUCdURRlLoflElNFKoGxBDAjq/3438jgs3cK3FYrFYLBbLzcOKv5tAoo1LYn8HeLeNzt95LJIxvsUj29CKN2jiIdhPQGmAQLwRtN5o6er+uk2qnOEwf/oLLmUv2tHPvTPYbBW8PhZvtCIWi8VisVgslitgxd8O09QVjunHKYnGZlc0bdXfVhzkGFWxtuV5rTUrOmWfKG86V0HyhCjjCMGqTnlXt3l8QDmAk/oB6gxdZy37ZR894v7PfMGhdE8KP4vFYrFYLBbLnYIVfzvMGQ7zp/4rwXBQWJ7Uba3PncPhK5693Gyj1xp8cGb8qnd69sw8j+6dxHM2W/+eBCC9rhoOpnAVjHfwnhaLxWKx3D1k2mGNURxSXBIcUhwyHFLrFWWx3GKs+NtBMu0Q6RLDQfN2V+Wu42K9xUylNPBclGYEronRWo2MCBsk/CwWi8Visdx6znOABB+HlBSPDDdfnL7kvwLdEYaS7KpricIh7VtLMisodxlndcySTvGFQAFVJLP4OPaHui1Y8beD1BliSKwAg10OLddHphRLrYiHJ4Y7x86uNRACZmsVLjXbnFlrIIXAEYIPTI3ehjoKji4cJMlcHKmQQuEI1Ule4uSJSExiEtVNaNJJUNJNctJbrkhy0lmL3syP/UlPhCDPMmmxWCy7k1S7RIT4RHgiud3VsdwCMi1ZYZyf+B+HceSV2yilBKmS+eKgtCDNHDItyZTgxS89T4JPhJPLPLdvrXJ74qAccIUw7K4LEam22M4GXKOswLwO9uIxKVw8BO/SJkVjh+hvH1b87SAJHh4R59b3obTEERmONCKg6Oib7e5+79q+SAbjSMl3HJjpOzY3VOls7xuqsK9n/3ZwanWGqt/iyR/+IGkmUUqQKYHS+VqB1t19rc0cc0u/91VUflwj0Fp0ymnytTaTAKjedZ6ARvdcV1xzLfQKz062zo0itG+aAcXG6QqkMFMSSPJnvEf8Ovm+s/G4VFaoWiz3ICd5gAwHjSTNk6M5pAS0CWjjERHQxifCp40jbOjEnU5ECaEVr5w9SMlN8JyUwE3xnKyzuDLDd1JcqfDdDJ8M2Dw48NkvPnxddSja3EzJXEjKnu3u8Ze+9BwpHhFhR0gWolL1bYuBeRzM1D+FsBwkHDeKT9XJfL2VyLwb2kopBAECrTUSwQguwnZ6bxtW/O0gEWXu/+FHuVgv89APPsHC736NdiZR+UvFdPIlSnf3defY9jru/VagDWnui076gDnFiuvoKdffse928AsLUyfNfj7fWKd8T5nCOnUvW6HizGG+McIPfOEgUmo8N9v2tft/9OmbWLOro3W3UTTborOtVJ7WZsPx3vLFM1xsKwWLv/c1ksxFaTN6m/U885mS+XFn4PNeDI64MjPbUuGKDLcQjlLhCNNRcKXCkRluzyCLK+1orMWyW0m0R5sSX/jiSP/xTNJKfFqJz9d/+iXWGCUiJKKE0hKBwifuCEKfNkFnO7L/87ucFcZpUeah75yj5GdEiSROHda/+Qbt1CPJnO6iHJTq2oQEGsdReL3vfKk6olEKlYtH0z4UQtKVqu+5EAIcoXFkBmzdRs9ep7gsUEqQbRCZHdHZc+ylLz9HgttjwXQ6SQJVRxIWVszBD3hXaBbTJhXCUW8SlL2iVObbxsU2GyA+b55l8zIpLoKytfvdVqz420FSXJZaVT7yww8zOdJg/+c+tK3r2nHCN989SeB5hL7HvqkxauXN8W1Fx9t0xIvOea9VaUPnfVNnvVum9/zS7321az3KR7M2Wpg64rTXSsXOWqGATSIU2CRUZU8Z0esK2SdA++eG67U6uRssUL0W2ut52S22hpgsr/C1b8/gOv2CVzoaVypcR+M4GqfYlt1FSpWf27zIDdvbqd9qo8nr75/Fdx3Koc/BmUmqpXBTOaUUUspc6Bf1vnHBvu86BW0hONNM5COxgjSTfetMCTOokgbGLUg7ZMrJRaZDpmTfcyfQeUegu3gyw8nXrkzzdYbrpJ0OhsVi2XlWGcXXMW/Pz1D2Y8peTMmPCd2EobDNUNjmT3/xwU3XKSVopy5R6tFKPJ770kvUGSEiICFAa4FE5RZDIwh7t10SKxBvIzEBe/7MJzh6YpRSkBH6GYGXETzyBBVPEfgZvptb/DzV145qDWkmSFJJmkmznZntxrdep5351KOum2hatAeZ3NQHcaTqCMOOkHRUz2Di4G1XKuRV3FULpDR9FM+5cjsy98WHrv0PuYFCaKrceqk6RgbRJzoLw0MhOLvWy0Jsij7LZiETry46+62bc7yPKwYn1NNaI4RggZQpXMIdno7Lcm1Y8beDZDg04hJHT4zieQrPUXhuvjga11E4UuO6+Trfl8Jh3+Q+hEhZbdY5eXGBDxze13fvdpxw9ORZ2nHC1MgQ98/NsBMddYADn7u91qdermZx6hOw5GULgaq6x/vEcI81quPuobsWqI5lSm1uLHpddbeyNJ1dn2Tvd32QqWod/YlP9H2XLCsWQdSOefu9d3Gkz8TUHIFfJlOCuZPPECWi4yracUHJzHcwI4YClW3de5FOHlsoNZoUGCVJFacuLnNqPuaBuanOeSE168113j9/hjRLmBkb4aH9ezsCtCgnO6LzpvzUmxACUwfnys/1dgdVwPwGptNgBGSSyc7+5d/5Gu20TJJ3GBLldp6RAkcoPCfFk/nipPj54smUwDEuTFYwWixXp0WVvT/2Rxl/epL2a6+x2KzSWvVoJz6ZkjhORslNKHkx5VwUhl6xn1D2E0aBP/PFBzbdO1OCdurRin2e/akXaVJlmXESAhJ80OCQDRSHPtGWnVbLjbOqx6hlLkMfPMTYWIoQgiQRNBOBfP91mmtBxxoYpyZsosCRGi8XhmatcPP16NOP4Pf0tVxn6wFSrekMJBbtQe+68e3XiWLzHKbKyde590oee9iLzK2IfUKyIxo3iEfHuG5ej5i8EoXQ3G5W+Z0QnLC1dXMo2N/3vb7x//pKZ1sIQUubelZxBt73op5jAdO37dpDsx6h2V33ZovtHrcZZLeLFX87SKJ91tMSHxhr4X36oyQJpIkgTqGVCbLUjGDNnnyGds9LyHT0R0gzQb3V5p0z73N5eRTf8wGI04QLixdwnTnGh4Z45dg8p+cdJkaGjQjZaC3a0Inf2KkvLFAy72zvJsSmOu1M/a7XGqUUHTG2scHIlGDhd77K3uoC602X0zMfg9cEvq/xPPA8bRYfXFejdMbEeJVz50/iyIDpGSPw1d5PIAEJqDim7PvXVEcjmLtLlglKCjIFzUuXOH/uLCP3PY4jPTIFI2//NmcvLTM1OstQeZjj58/x2vE2Y0Pj3TjFTHRGELcUncIIQ/PcmYbXc8wobjG6W/JTQj+7ZQJyUxUF+J7C92Cjq8/cNgY9skwQp0YwxqkkShwu/fbXWEvLxJlLnHnEmdcRjFKoXBwmhE6C7yQEbkLoxARujO9s3yXYYrnbWNfD1FJBO3IoP/EBJoKUSpgS+KZTmGWCZuTQil2WXz5qxGGyWRyGXkLZiwnciLKfUvZiHKmp+DEVP+azX3xk4OcX7qXtxOMbP/0i64wQExATkGrPeAqQ5KIwzt1LbfzhjVKnhm6HLC67rKy5RLEZtJUCgupTBIEm8DW+r6kGiiAwbafvaZSCJBEkqRGMrURQO/kajbZnjqVmUC9OHDLV31Z1B9+7a7fvmKYUJOb4dx25pnZKKTYLyZ5+QuPbrxOl7gYh6eQC1NnsoeJknThIvycmMnCTvE0xVsrdwHatm5/4B5/p23/n0jIHpODQ2BDOFf7Yuhj0LkJH8iXtEeYvfvl5YoLcNdbNJWF33d911LgdYZjkJdJcLKa4fdOPmH1H3N1ttRV/O0iGS5pJXi9/isnTGUGg8X3wfU2lovBMbDs67+z7+QKwsHCZUyfexw/KPPqRTzO3b3/nvpcvX2Lkcsihw/cjZYA6dZKV9QaT9z9GnGm0kmQKVGY6/HMnnyUuXOd63OVM4pENiUi26NiLLVwPO0vHaskV3RYLoXkrLUg7iZTmRedtESMw+6MfJssEf/AtB60El4NJ0hjSJqQxfHDvPM2mIE0hSapkaY3z51ZJkzEunDe/vpDguRpNxMkTb5AkLSrVEuNjY+zZO0upHOC6Gs8Fx9W4Lrg9/7lGMJvFoDl//hxnTp+kFJZ48KG9TE07FKODZ9MHkXP7GTt0BNd1Cd49RgxU73+g45qxHQrRmWX5OhVEKaxHgqn3vs5q3acZObRjB60FrqMoBRnlIKUUpJTDzHT8vN0bp+c4mpJjxGzB7BVEo1IQJeY7R4nDxd96htV2hUvZCO3UJ1EuWoPvpIRuTMmN83VEyYsIHOueZrl7aVGhEYfUDz6Gd/Y1ztcrNNoucWLcz0M/oxImlMOUsacfoRKmlILu+yHLBK3YoRm5vPOHz/PmxWWma3sYDueMOJSK0Isp5eKw2C7l4tBzFJ5j3EsHJQ7RGuLMJUpdzq9m/P7/+wU8KgimQFTItINA4xENEIdGIN4rse7XQqwD/MnDvLM6x9gElMYgLGm8wHgWriewGMG+7BQrKw5xIokiQZwYkQimjTQDq5rW9JNGHPqakqcZ8VU+2Nr9TK2NaExTSFJBmnaFY6vtspZ7gRTeIEna30GRxfOyQUC6jt50rBymm0I++GNXnru4F60hTswAY5w6RIlk7dWjtBKPOK0RZw5x5hrvJC1MnKObETgpvpt7o7hpZz/Ij+22tuT08hofO7jnisIPTJ/GdRQuimCLMnMD3MO3osggm+TCMclyb5/M4cUvP09EibQz9YhLiofS/XGnLknPUojFBI8Ej7hz7k75/7fibwdJ8FFJQKsleO3yNE9Oz9NoCOIIqjXNvv1bjyTUajX2HzjI5cuXCEITn1XEZDWbDTzPIwzNv4HnKcplQbVWPGT9oy/ZHuN6WFiTPK6dvk59Joyw1JBk5KKxOC+YPfUMcSL6RGbhtth7TKsBbyLRLxTdHrFYLK5j4uKKWDnX6YpNtyeO7na96NaaHkkqkXkdytXuuZPptJkH3jNLEkeshyFTcwdpueaXMcIJmvU6l/QeJuYepJHB/tpJksQhWZVkGaSJsRynqXk5PvnU1mnSJ8YnCIOQixfP4+RKsRB27XYLz/Nw8+NKZfi5tfFasm8NEp2d9fTHCYHeSMM0hXZLsNwWeO8+y8VFP+/4mRuUwpRqmFIpJdTKCdUw3XWW6ashJZSCrlic2cLinKSCZuTSilzO/+dnWW+O0EwCosz8DqEbU3bbVP02Za9N1W9Z11LLHU+LMvU4pF6XMPc41YpipKIIA43W0G4Lmi0J777OwmrI6Uvmf0RrY8Ev55bCpfUL+A/M8OiRKkf2TrBnfAQw79JW7NJsOyy//CZLzSrtxKOVemSZgxSq40ZaiMLCiug6JuY7yDvPJ5cu89RfmqEa+Ky0Io5MeOwdrqI1RD3xh9/4mZdoUCMmNJaIvgQ1XathQJSLxuiO6SDuFC0qOJHL/mk4t+ZzpBKxuixotSCJQGkzoLkSHiQIwA814QgEAQShea+mCSQJtBNYimGfPkW9LoliYxGMYxMvXuDnnje+byyIhXBMHnoM39OUN4jFjRSiMUtFLh4hSgXVE6/Tjr1NwnGj1dF1NlgdXT3A8qgIvAzP1QS+yi3gxv147xXEo1IYF9lEdtxl1775BvUoJE5doswlSbvWxSK7qlmSvu3QTa46/cZO8ekjc505mW8lUmp8WWSQ7Wc7IlIpQZwnI0oylyRzeO6nnycmpEmNNJeAKX7+/69zwRh3xKERiBv3b99grxV/O0iCT5x6PDKbgsw7/hIowUIKJ9+/8vWfOnyeNEtZX1tjZGQUL38zxVGEH3THP+I4Jgw3J/AAI8icHfjfMhavYm/ji6F/X89+AoF5mK71gdoYF6cySBREmSDLRVGmjKtslBhLZpEQpJsMxOxvCk4WRhwGXkY5yHJxkfS5Ge0E9ZZLkkmeOTrFwx+8ctk4aiKExHG7rY6UIH1wnDaeFzExY9TjEo91Lxzwx33mKs8TwJHRNutrqwwNDXeepyROKFe6CjVNU6rV2sDr223TIfNc48bqely3Bdd1zSBItabRk5+gBBRpjbSGVkuw2hR473ydkxdD6i0XrQTlMGWkGjNcjRmuxJtHWO9APFcz7CYMVxJmNsQwag2tyKHRdjnzn77B+fUJGklIqiQlL2YoaDDsNxgKmnjWjdRyBxHrgGzmMPPefoadk1xedGmekbQjgZRQLimqFYV88ANMjvQ/21EsaLUEx09eJD51inI4y+lLK9RbezlxsUQ5SM0SmvWBT9+/6T3fKw5XXjnKSqtMe92jmfgdcRh4KSUv5v3FJk/NjjNa1jzkxR0XNyEg9FJCL2W41NoyQU2UuUZ4dhLUDOcC0UdriUSZuQ57rIa9GU3vJoEYUUK2Hb76dZ/qMCxdCihVIKxAWAXXgyiFegxxA+6bjllehCiCODK/mxTgBRCG4IdwJjhAUAU/AN+HoKf51zoXbzG0EiMc96lTrK8b99CrisWOYDQWxTBQeFXjdcPM1bOBdj4/MZ+RJoIoFTRSQe3k69SbHnGewCZKzBog8Iw3TCUfBK2WTNjERqQ0VvLec7NbiMUi7t14o0jascvat46y3DShC+18YEQIjeeklDwTqlDykr6Y250QiLdD+O0EUmpCmRKSAhHAlq7lBYVgjDO3I8if/9KLNKmR4JPgk+Ll3WmNR9z5/+++E25ePPJtE39CiO8D/ingAP9Ka/2PbldddooMhzRzeeuoz2VpLEDlKlRq4G0RxqWyDCElQgieeX8vl841SZMyp9UsjmN+nvNnl/HDCieTGaSUvP/uaUYn93Fa7eVTh8/33e/4ey5rq+ZFIoTpsPs97qe+b/bDUBME3Ha3ACHocWPcOtZP98TFbdeSWbyA40iw2hYEx57lwmKZetsjTiSuoxgqJ9QqCSOVmFr5+kZh4sThRO0pqh4884entyz3nd+9n6i1jh+U8vr1u1gqrYijJu+98SyVoXH27L/2lNO9zxPAs8eqQJUZtb9z7Pz8MsFaldGmeZ7efe84M/sOcTya7LvXpw6fp90WXL5kGksz8tpNvuPkgrB4rsKSplbVPRbp7SMElMuaclnDxMepATXM5zQbAu/oM1xcLPHOmWG0hrFaxMRwm/Gh6I50J74SQkA5zCiHGZMbhGGj5bLS8Dn9n57nxOoeUuUwEtYZC9cYL63dshFcy83lbmwfIRcBQjM1o6l7B2AcyphFKWi34EIThtSJTdcGvqbZXCEMlnnqR76X1bU10pOnePzR+wGHZkvSakmS917vuJMWrnwdd9IgoxwmlMOMie+6b9P7Xilo526lr/2fb/LuQkTojOA4MyjlIYQm9BJjmc8T0hRrv2eKHyk1JWk60FslqFFK0Eo94tQ1FsQvvUydYZI8BlHng5kOad4xzDuCu8h6sB20hrYu4StBPV6AWJHWBYeHJ6mvwOXzoFIj7EplCMpwru6bPlPPCGGqcqtfHZIlODIVs7JkxGESmx6D5xlLYWE9DAIIS+APQ1McAEwfIsiX3jr2isUkNi6oa2sOcWzcT+PYhNeAEaJdkag620XcohGNpn3cNHi+d3DSFa3NAEezYSzfl5ZLvH/BJYodpNSUg8x4xOSeMeVge26d3bj3YiAkgu85OPDz40TSThxakcvqq2+weAXLedmPu2s32ZEENncTHcHodYXboPcAdAeLCo+Cr//0S33xyJk2WqCIR4ZjN1w/ofWt/8GEEA6m9n8MOAu8BPyI1vrNQeXvF6H+WffALazh9fG8+i7ij/wRmn/8c1xaPk0cSZ760ByNNTPyFJahNgxDY13rXBJHnH3/W2itcb2ALI2ZnnsQKR0c18fzA9aW51ldusC+I0+SpQkn3n6BucNPEJYHW2sKCnfCwl0ijeHJPfPEkaDdFsRRHnTtkItBTbmiqFQ0lYreEQvibiZJoFEXjL31dZbrPvWWh+8pJoba7BlvUg63Z1V5+/Qwv7n0HSSjY7x9bGvxB7C2dBwpPaoj+zed+87vNseSOGL+7DuUqyOMTW0ud8XvFLc5c/xbaKVwXA+tNXsOPEKWxDieT1iqUl9bZGn+FHsPPkYSt7hw+i3mDj/REaXbRRWuqPkz9vjkPOvrklZTMDuXMj1zfVNnXI00hdVVSfnbz7O0HjBUSTg4s85wZWs32LuVLBMs132O/4cXWWgNU3IjZmsLTJTXbnfVboi5f/arr2itd08a4lvItbaPcOe0kb+R/SgP/5U/xmN/ud9FQinzDvG3CvDBhEHE7/0G7ajNoQMHaLVb1OsNHn34yhkMe91Jw3dfp9l2aUYuUeLwiUcvbflZZy4v0Y4SVptNZsZG2D81bu4VO7QiIxBXXn0zn5/QI8lMB8130zzesHAvjXNryvWN3ieZpJ2LxHZqrIiF5SDBN8ktcgqh2I1BSjuxSLcrLinTkv9v9ldw//yPcDp1mdyXUBna3DYkMSSR5PCRCVp18zx4AZQqZgA9rFzd6yTNhVsSw5HpmLhtvFfidr84DEtQKmvCktm/1r6OUt3PSfL+1RynjVDMlyQ1X1AK8Aph6JlkNmZRnUQ3V2snlYJmU1JvSPxjR1lveTTbLlJqaiXjQTJcjRkqxzd1MLR3cGT55aM04oBWYjLsKi0JvISyF1EN8sVv9w2KWG6MOHVopx4H/8E/ueH28XaJv48D/4PW+nvz/b8HoLX+XwaVv1MatufUZ2h/+FNkf+pHuLjYLwK0hiQWPPHEPtaWzQjX3oNGeCVx2yxRCz8sU6oMs3z5LI7rURuZQgjBmePfot1cAwQTew4zMr73muKzroTKII7NCNrjEyZOsdGQqAyqNcXUtGJ0VN11FpZBRBFUvvV1LiyWUQoe3LfK2FB8xWveODHCby9/GjU5xptvDxZ/rfo8jdUzxNE6pcoUw5MPIYTc8jdcXTiG1pqRyQf5js/su6bfOk1i0iQiTSJcPyQsVVlduojjelSHxgE4f/Io6yuXQAjmDj1OZWhs2/e/+ufDPnmJel3w6GPJFeMqbhStYXVFoF54GSHg8cNLeO69OwK51vD49q9+m3oS8vD4aWpB63ZX6bq4x8XfNbWPsHvbyExr1sjQwDAOv5b9eQ59/jH0pz9JbXQPMm9UHp6NeO9tQZJApQojY5qh4c1isNlYZ2V5gbXlBdbXVpBScuj+R/n4bL2v3IV5l6Ull0pFUSlnVCuKMLx6J3vi5Eubji2vN3j79AU+/NAh3KuoBK1Nwqdm22QsXXn1TVqx37HwgYm/KntJnozGCMMwd7G7kSZda0iVJEq93NXM4fmfeb7jXmYWYzugk2lS4+VZDvvFYtwnHF3S63Y9S7THr2R/Ff/P/RArQwLP18QtyfjeBGeD75nWiiRaJ2qtIB0fL5jk/vv30liHVsN4CA2NQW3EuIpeK2liYgzjCA5PxrSaRhwqZYRhuQKliqZcgXKZTfW7HjYKxTl9yiSziQXt2CS2kQJGRzMmxlNGhrefAC1Nod6QeG8dZbXhsdb0EUIzUo0ZrUWM16IdDXG5Gu3YhCssvvgm61FAIw6IUw/PTakFbYbCFrWgTS1o72pr9W5n7O//3A23j7fL7XMWONOzfxb4aG8BIcQXgC8ATN5BoYlaSwbNXSkE+IHmrVwcHJjbz9JlmJgBzw/x/BCqI53yo5NzfdfPHnqcNG6TZQmlyvCO1lk6ZiQsLOVxirlPhNawuA7N9xdYG884dPjuH8EJAkg/+kkmgWZT8NZXvsnD+1euKABVHm944h3zNxv0UgvKE0jHzxu2JZrr55HSRamUytAsSVxHK4UfDiGEJGqvUB02U0F89Svdf5VPfno/S5dgem7zZxS4no/r+RjHScPw2Exfmb0HHwUe7SQV2klcDy4wxZHpeU6fcjly382bP0sIGBnV8H0fInz5Gb59fIynH1y8aZ+32xmqJHzqLz7CetPlq78keWrmPUL33rOI3uFctX2EO6ONPEdMC4UCVslYZoFDaFYWztBqrjI1+xBSSt46F0DNvD8XGhA2Yy5dMPujEzA5rfPOeY1ypcbeuUMcf+c1hobHGB6d5J2o//2W1aDtwHIDZlZPc+68T6stcCRUq4pyWVGtZFSrJtlMwcLBD29yx19ZXUWFc8TJxU3i7/X3R/FdRamI0wrTnlismNkB7nVRLE3cYeSw8sqbrLQqtBKPKDVqRkpFye2Ju8qFYZGoY6tOsxDk2UwjriUuKVEOceaQ5vFJSebwwpdfoEW1RzR6ZLr73Yvsh71p8otl47EMF41ASDPl0cLpo8w++Agrl13G9/S3DfWVMzTXL+KHQ6j2GnF7lVOnu8922oDK0BSnjsHIOIzPGCutyhLSNEYg8MPKloOlrmeWUhUWlU9vVrJWAst1OBzGXL4IzYYZGK/UoDqkGR27smV6K6TMXVHzz2nQdT8tXJ6zDBaWIb5wlrePBUyOp8zNJX3P5sDv48LIsIKPPUwF2IsRhGtrDo033+T0fJU0k0wMt5kaaV11IPtGKZ798e8+0nc8TiRrTY9LL7zNifokjTjAkYrRUoORUpOxcmPXTGNxr7A7WwxAa/3zwM+DGdW8zdXZNkIo1IBnWGtIIsGTT+1jdcmMKI1Obi63FVJK/LC8cxXdgjSBqAWPT83TbAhWE4nnacYn7r1/zGsyigs48ii88cbg01I6BKVRgtJon8tnlsUIIdEqo758kiyLQQhKlUnCypQZzU0ET394H401OPE2TM3e2Pfqr9fNM+cmya2dR/LSA58mufjqLfu83UytnFLzWzST0Iq/u5Q7oY1c0RmPS9NuvaTqjLOHyZE5hh78GMff+Cp67wOYbrBBiJ6Oec1YS8ZFzCvPSR54RDE2Ycq1W01UllEbHsMZYI1zHKjWzJKxvxM6lmXQasJSA6ZXznDmrEk247maSllRqymq1ZRz599BCs3I6AgLC4uUwpD6kU/Q3PC+HJqUtNoC9e4bXFwq0WibGK1i2opyYBJ39ApDk9UxZqQKe7/n0Ka6p5nouJauvHKU9Sjkcr3Wcf0EM8F40CMIjYupiUUM3XTb8VdSagKZbnJJndsiNqmgN/thr2h88cvP06KSp8s3afMjHeKQIkVunUwc1pcdKkObB5PDygSV4TmkdIijddYW3iNNWrieCUlwPTh/8RJxW5BEk4zPwNL8+6wsGE8p6biMTR2kNjK9re/fi+tB1YNLsW96xsPGanepCaUs5t23zPM5d9BYpXcSx8E82xNzjCiorJ3ktddLDA9n3Hc4uia3VNeFsbEM/siDjGLE4NKyy5nX3uHoSY+ZsRYHpus9MYA3H99TTAxHTPQ873EiWa7PcuH5d3l/cQohNBOVdWaGVqn4N1ekWm6f+DsH7OvZn8uP3dEINK5QRImJtYvbkic/OEerYURVuWISvxx66PpcFq6XJI4Q0gHtdnzi40jzwNB7rCzXabc1aeZQKY8xWg0plzVZCmNjioOH0r455e52mk1B9Vtf59JKiNKCB/etXXW0rJgLMb6OPrbjmExAXjDK0PgYaSJ44slJVBYYd5QMgpJ5fkYnYfbw7U/SczVaDdjLZRpS8uBDN194tNsgnn+BxnrAk0eWb/rn7XbiRPLir7xGpj1Gw/XbXR3LtXPXtI9CGNdPRwiGhIOH7qbEFwKRu8m0W+Ydp5XpcD+wJzbJuiSsrphsjmFPSHJYKnP/I09dc316RaFiX8fykiZQb0I1PsX5CwGXLh9hbX0VpVaYmhxnanKaOBGbLDGViqJSAcYfpmeGHxMbGAlaTZO84/JKyMm2l895WiSgMYKwSEBT8lOkBNfRVEsp1VLK5GfuG/g9itirduzQThxWXz3KWrtEK/GJEhelJa6TUfZiSj2JaUpefMPupbAx+2GXrdLm/8vnxnnb1axc9hjf9zDD4yn+gPEKz690th03IIkbOK4xmT3+1FTnXLvZvWZ85ggTe8zfaenSKVYWzlIZmtzWwGaWpQgEcgt1JfPEfZdjH12D6SDmzW9LPvbpmyecpIS1kYMMDUNl8RTfeq3EB59sXfdv5rowNZnCZ44wk0H0ypu88NYk+6caHJipX/0GNwnfU0yPtpn+fvOqixPJ6WeWeHt+D0nmMjeyxN6hFZtI5iZxu7r1LwH3CyEOYRq1HwZ+9DbVZccQZDgiY2+wTPnAfio1M4ppXDt37nOKOfayNF/y7af2zOcpjE1WxiQRrK4scuL4N5maOsj+A0fwPIVfE8jhiPmLZ2i1l5iZmaRcdpieqVAu3+VZXnKKqQWaTcHoW99gpe7Tjh1KQUptGB47tLzthC+uY5LjxO2tP0tlZhL0LBU8/dE5k6GsyFKWJ93x8zmN/Dwg3b+OQPQbIU1ihJSdLLMFUbtB1DJuqZkS+MEwjlPqPHcf3DtPEhvh3GxIhn3N3IGUkZGb89IuMoBWX/s6F5dMj/DATMxD+1d3vTC+WWSZYGEt4K3/61s0kpCDw3VmqlYI36HcNe1jqceq96AocVykxInk0bkmcjnhsSMxQgjmz5s5QEU+xZCQJhnH0IiJxQpLN3ceV9eDoWFocgBnEvYegj3aiNLp+CRr6w7nzps55SplRa2qGB7KGB7OBr6jhYBSqCmFGXz0ESpAr6NPIQzFu6+zuDZ4PsNykFIKU8qByVTaG8ssZTcjMAyeEy5JBa3IJLdZfuUoF9eGjDhMPbQW+LlbaZGUppKLw5uRoEOgqVQUU2MJ1ZGthVOvwLt87hh7ph9iem5qkxtnrxOUEIIsS0mTiCRqEpSq2xJ+UavOybe/QW10hr0HHwfyqafSbuKYI1MmLrDVNBa01hA89ZFbYzETAhoTB5CL52g0JNXqjX+u40D5I4/woIKzX3kfx1HMTTavfuEtwPcU933X/dyHcY1+5/fXef7UER6ePs9oeXfU8W7itog/rXUqhPirwG9jUln/f7TWR29HXXYSlwzHzXjk0YSLV/nLFpk4iyVNjUB4as88aWo6c0meWj9Nzfx3BdIxgsPzNG7Z+NG7edr9csUc9zzQusX5c+eZmRnDDyKO3Jd04hmSROG6IaXSESanrt1FYjfSOzG9UiKfI9D8DafffZZWHozcapsfpxSmDIcp1UrC3GSjMzH3teK5irCkOb0Ijz++n7jdTaCj8/e165kBAC8wI3GlihF7nn9rLHlad5+5YvBAZd3tB4aOcfSNVxgbn2Nm74PmGUwFUZSxeO5dVlbmGRqawPVcxmb2MjRUxQvNs6cVlEqasXFFuZzuuGCNI1ivS0bf+jordZ9W5FIJU+Sw5oP3L97SgPbdQpoJVuo+J37jeZZbNRLlMhausX94meHANpR3MndT+3if6J+PNqCNVoJWM+O+h5/sdOqn98Lm+WRvL0KYxGxr5YMwAhWgnAvC8+sQLZzh3fcDBDA8nDE5njIykm0rMVoYaMIgg488QhmY6DkXx4JmS9BsS/R7R1lYCWlGZtqKwp20VIjDIOvMbbhx/lPP1XhuwlAlYWaAOIwTSTMysYfLr7zFUrNKK/GIU69vvsOKH3UsiDeS0j/wNbN7Jyjl8/qNTW1dNmrVqa8vMLPv0W0lO2s1Vjj3/jfxvJCx6c2utAD1NZPx/IG9MXGUcv7yCSbKI6hmglyOTbw+4OdttT8C0tFMzkCpdGu9tcC0y6VLp2koh0plZ9s4KWF6tMVa4xZ/qW0S+IrHv+8ArcjhG78Bj+89QzWIbne17ipum0Of1vo3gd+8XZ9/M5BkeG7E5cuSI4fmiSPzIjdWOBO7VSQEEdKINc/VeBUTG+W64HpmxNNzlRF0vjl+PR3qhYV1kjhhYmqKxYXLfeeEEKRpyoXz58iyjCAIGR278YyPSnUXIziMcFW5+FCZ6Nk2E7jvO/UMSpvtNNUoLdDaIVMCpYURckqQZIo4NWLDcwaYUoXGkfnimLUrNRUvA18zPtRm32RGOdze/DjbJQxSDpx7hfmx70EpKNdgJDBC73qFUGEt7AjaHqGmFDw9WwwSmIGCNDV/6+KYysSmmEXHNRZK1wUnyJ83V6NUzKX5i+zdO0EQKvbOZjiOzrN0puzZ6+J5B5nZs7fnbjubxEVrk2m12ZBMHnuWesvtzMfoe4rhSkypnLFnbJVK6eYlkNmNtGOH9abL6f/4HPW4RCMJEUIzFDQZDiL2Ti7auL67jLuxfQTwRIK48D7R8Wm0r8mcVRzHtIWOo3EdbZJyOJpT2QEc18THOw6dd5d0rp7y/2ZRCMJSGWAfI5gBteVVUJfPcOx4QBho9s3FjI9d32BiMWfcyLCC6QcZ6TlXuJO2WxL33ddZa3hcXCrRjFyyTFAppYzVIka2kfbfzP1WxB4e7DunNZ3pLJZfPspis0pzxaedeH0p/St+Lg79iJI32J1UKYHnZAzVMlY9Y7UblL6gd1DywqlTBOEBkniYqAUP7YuY3nOlv1oNnvw0jfoa506/x4G9VYJeP2HgwlmBxgg6xBp+sM6BI/tZWT7Lwx+4uZbl7aI11NehtnKG1WWH0jQ8+fj1u3wOIkmg/sI7XFqp8vQDCzt345tAKciYqq2x2i5Z8bfD3EPRXDefgDa+F3Nk+QWS/U9TqWhGRhW+bxo3191ZK08x2fagF3yr1eLy/Dz3PfAgS4sLm0bP7jv1e5QXV1hcq+MsCdJMUR4bYWZscCTzmUtlzlyummQ2+gpfIhdgUpqgdCk1Mj/m5cJMChMz4OTnhKNRScS7Z0/SjiM8V/L44f0MVUo4UplAcVLePHmaSDXxXckjB2cZrVW2rsctZLic4P3/2XvvMDnS+77z81bqHCZjkLFYLHaBzYlLmhIpUjJFShYlWZbos0+U7DNPz1k+684KlGSfZVGBQXK4x+cg27Itn2xZzn7skyyRXC6XS3JJbsJigQUW2EUOA8xM56783h9V3dM9AXGAGWB+n+fpp7urqqurq2bq937fXzI1j225xOXsRN+T63YWDNoTWy4SBsNiLQx73slhzy4kfyemlZxHywLT0ekAaKH/Yiaj+17gBWG38Jlr/Vubn6vT7XaZ2jTNzIULlMsLqjGKFHEccenSPJZtY9s2lUr1us9RT9x5nsJzFRNvvZB6YhOBp4CME1HMBaicZtNYl2K2sSG8eoPl4Tuexbk//CqdIEs3dIhig4wVULS7FJ2AHZUGBce9rX26BGG1yNKlmHV58vEOGUcTRcl9MIySCJcoSsIVo1CxhVOE3cTLnUTCKLw4Wb94YstQyb2vN4nau08mIfmak/EODCMRkD3xOPjoLVfq+m20acHIGOjRbRQCqM/By69e5L3vbpHLre7/6VA46dP7yAG9KVutod02MA4d5OTFIo22TcaJGCt5jFfd6+qDqtRCWOn4MnmHnm8kJf2/eYjZTpFTtTHcIPEi9byFxYxLMePhmCHFjEvX0dwz5WM7aduD7kJkDIBtQtaEVuMcZucUlVyArp3Ftg2icC9w9dyZTCaHZdm4bmeJ+JvemlyLIPB55613eOjx/bSaNezmytdca83LLz6LbSXfrQzFQ4//iSseQy/KRsfJpDd6cDJ8YXkvvzUMYHN8inrTxHUV5VLM6ETInt3eqk1yuJ6CAwe5MJfH9U22TUa8e9/Mum7fpTW89YXjXGqO8NT2d9b6cO46RPytIjY+jooo5QOsySg1aEnYWqdj9Af6W088T5R6s6J4wbPV83RFUerx0oo4urIlmhzpcu+2pQ2dT8/Mstv12JM9w6mLs9iNJtutkwulqg2DrROjbJ1ITMfF+TpHTp1fUfxtGe+weayLYaz+DFkcx7x2/BSP3ltleizpYRBFMaa5UGjlzKU5bCvmOx67n1qrw8G3T/Peh5dPLr/dFHJJyI3nQb59ORH6NliZBW+ujhOxZlpgmXF/BtuydH9Wey3wPJfz589y75691Obn+u2feuHBhmGQyWSBBpcuXkSjicKI0bGxZfd3acZg4q0Xkmp1vokXmP2/4UwarlRyIrKZiJGSRyEb3tUCryfsXN/ECwwu/MHzuKGDF9m4oYMfWUkbGDMgZ3nkLJ+S4zJVmCdveyLyhLuKPE0cK+T4H57GMmMMQ2ObceKFsiJsS5OzIlq7HqaQj7HsJI3BsfUVB6pxTF889oTkwjLFjvBkYmP9hcm2xNam7Q7SSbn4Jv/dMo6mamu23JP0FbydKJW0seiFkm4Buq5CvX6Qt8+VaXUtKgWfzeMdxsreTdnxXsXS0UXCUGvoeBbNjs3stw5zuV2i3s1TzrrEIxHFcU0hTXkwl4lo0hrOn/GxM1lGRjOYVoVCcQTbcWg2FsRTb+I7jiHwPMIoAq0Y8w6iL55nJJ+jajaYGF/qfT1fu4hdbHJfqcSF7gw58xJ77MKSPEHPV7z2epbOO7M88MAzmEZysPMHzl3x3ChFf4LbMABFOgEOdjop3sttNZTGdjTZnGZ6U7AqkwW+r2i1DOwjB6m1MrS6VlJts2xy//YaxXUeOdN2Ld557hgXGlXGiw5P73gbU4q+rDoi/lYRU4UUMl1qLRv7C69gmzGWGeP0QhDNGMtMPF2OE/U9X4Nhikbfc5Y838hMJEC93eFSrcnFuTpRHBPFMe+cv8SerZuW3T6fcZIb6Aok98Vb8w/ohxH1VofH9uwkjmOUUpjmwo04jmNmGy22jCdCtZTLotEEYYh9i0uRxjGpMDeIIjUk2sPI6FeuGyu77I6exXv6vVfdp9YL4ZtaJzfrnlGLeoYtXgiP7c0QxnohRFbr3vqF0NiF5en+Bra5b1uDanFp1dIzl+bY3elyX/YsZy7PY83X2eGcGTr/92iNKiW/88JcnaPPP8uTj9y/7G9zLuVRDlSKPlk76flzO9s93Gq0TgaXfmDih0byCAwu/tFXCCILP7LxIpsgXvi7dMyArBmQsXwyJlSybbKmT9bysc27v3emIPQoqgZ5K+C9D13AMnXi0YuS/6He/1MQmGTeegM/MGj3loUGeiDixLZiHCtOnyMcO6a56yEcW2NZmmwm7kfbrBbvnDxFGIZkMxk2TU1i2+szX2qQXFbDU/vZRnLvqtVNzr98hMMnq2ydaLN9sr2q92el6Fcx3TQQSnrmUp6jpw/jzUbYrZggVHSW8eAqBUVlUynuQIVgRDFmOJsUAVK676lV6HQZNN0aJ04exbJMLlkWO7Zto1i0sFdoZdBoNLl0+TKXL88SxRFRFPPW8bfZu2dYyDq25vFHO7iex9OPt9bN9dY6Eaauq+i6Btm33qDjWbTdJPTXtmLK+YBcXrN7c4NS/uaru95KXN9krulw/uvHqHXzZKyAqVLIu3Ycl95/txARf6uIRUjJ7jJ26L/wwI+8Z02P5cFdC5XCL9ebnLw4y+7Nm2h2PGzTwrIsZubrBGFMEMXUmm22TmzC9ZPZrd5NeeFZ9aWfTkUGMLBMDaxLl7GwzLbiFcNOXD/AsixeO36KZrtLpZhn344tQwLED0IyTvLnOvvf/4DuxXnOHTtK0Rm+ITe9HJe75f53k4ohjSLSRiqMDGISQRfr5BHp5aeVDRVjqjh5NgZeD7y/2B7hsT+9j6NnKhTnXuqLwhW9tqkR64l9o/8MluqJ/oXw2N42ClCmxmI4rFbB0D4MtfTztrX8TbTe6jBTa6STBJpYxxw7e5G92xcSLAZDhsv5LH6w8szheqkcdiXCKBHuYaQIQqP/PogMLv3R84Rx2r8qttJnk3jg78M2QmwzxDIiMmaAbYRkrZBKpoNjBjhmgG1E69rgCsJakKfFid/9Kl9wnsI2ImwrwjHD5GFFlB7dTzYTUrFjMnZExl5aQEVrCAYmXvzQJAgNCscP4ocG7cBgPl3WbytBcr8dFIuOFdPa9RCWteBdtNLnwf/dKIp458RJojjGcRxa7Ta+H6wbMXCtKAUj1Qg+cC8TIbRffJOvH57g6fsvDVUSvRUUcyGVok91j4s9UKBude6ReR5+8NFFy1a2UXv33NsXevPzNU6dObtE+EFyvixLYRjw8msHANi6eTNbNl8x+fCG0HqhQrufPhfePoDfjxpJIkd646yMHZHLRBQyIblcyORIl8IyRX/WE1GkaLsWLdfi0jeO0PSyuIGDYwWM5DtsKrfZO3levHy3CRF/q4iDx7n/9DL6B56k+7svJWIjTgUHyWsNqeBIBInW9AeWyftEZOl0/WrQ8DrU3AYXK5qL7VmKTo6Sk2OmM083cDGVQcay2VSscIpZYMHb2JN8Si0czXLLSMPTFHrpZ9HkbY+t5eWTi+ddj3PnZ3lmywRbHZsjs3VeekGxe6ScnBetqV+cY3akRJhxMJSCFc6OZUTkLH/g+JLjMYgxjDgRSOg0l3BBzCWC6YZOL5VMm6P/1eWZP7+fKFZJ0QIzXtfx9D3279rK/vT1bKPFiQuX2Lt9OhHkpoFlmlyuN4ljTRTHzDVa7Jwev+I+b5ZeoaDlQqPDKPXCpu9n//g5Im0QxebQc5gK+zA2l/ylWEbSksUyYkwjwjai/nPGCikYcSLwjETg2WYk4ZeCsApUmWVWbeLbdx9Noh4iCy9MGoR7oUXntdeZDy2CyMKLLPzQIk4HvIbS2GbSkNxJn8uP78exYgrZgIydeAJXuo8nHntjwNNoYpw8kLyODFqpNz8Ih2/cXX+ec5fO8OT99+FYXWwrplYu4noqEY7WQoXtOwXLgtK77+fSH56g1bUZKd3aptqVgk/Xs5jKJJObQaBwPYMoVIRpqG4cKconDySTsmnEzZI0mLg3Zhp+1leqQ3AFGu0GtdYFxksrT1p+eCwm48T4Qcg3XvoCxuUtjJaLQ9u8emyUVvfm/gAGvdkZOwIbSvmA8YqbToTE6zqKppfi0PWSlI/aS4fo+Bk6aQVZ04jJOx4Fx6OS89g2MkfOlkJla4WIv1XEwiejFDsqF4m1Itv3FGmUWhAehorTcM448dqkz4NiZVBErR5X6/t16Srrbw1ZyyRrmRRSL95kPsvJRnvJNp0gpJJx0IAbRmSspYlyvZ5Ft5ORXItj81s49V++zJ4/c+Wwz55ndEHk95anRgw17D29Bo/rEi/tgMd1cD+LPzd0TMBcI2C+WeDs5Twnzl+gXChQLeY5NdOk1upgGgZZp8TOTdO8+q+/vOQ7F35TMrnR87Tq1LO68L63bnl1rEi9mIu8rYs9rr31jgpTQZcIfEtF/W3MVPALgrD2OMpHa8WlVpGC45GxQjLZa8tBimOFFy0IRS+0mX/pMF6YiEQ/MgmihSGNZUZkzBDHSoXio/tx0kF0IRsyavtXHUxrDcfOzmGqNkFwglpLM1Yep/TOob6XMRGT5pCXUSk9EJaaPNtWEpraF4vp82oXgrsSvq9oNA30wcNcrmfZPOYumw6w2igFuzc3OP5HJ7HM9HykaTCWGZPppb2YmowT9Kt2GypJielFtSiGo1uUoj9xe+PncPk6Bz0y6bjEsS2mRirU250l4u/Re+du9MvXPUGo8EMTz08mTJqvvN7//+s9R7GR/s2H5G2fTNpDciTfJmcHZKz1nWe4ERHxt4rkaXOWSWmufJ1kTZNMKu6ylsls16Ps2Gitk9LMSvUF4VguQ831ydkW1jpyrT08eZyXL+zh6D8+cdVtF4v9HoPiH3oTAMMeV9X3sPYWXtnjmuyXJd/T38eAMFJoqsCFw2fIAoHSXALyaAoD+64fOrogqFTvWBaOrTfhYao4DT+N+8JMpetFlAnCxmQ7b/HHn2kR4OCT6U9WmYTY+P3HM3/tabJWQMYOyFoBthmTM4Jr9hYEkYEX2n3vYvu115kb9CpGJnGc2JBytsuD02eHPp974qmk0bbbJJsJmR5XzMw3MZTLzk1TV2wkHsek4aiqH5baC00NQoPOQC5jGA3vp1cEpyeMbCt5bRoxzZ0PJ/UATI1lJm0LEjGUVJDsVU8NAkXxnddxfRPXT/LBFtIvfEbLHvdtbdxWT9L0WJfpse5t+77VIIpiNBrLNAmjiEv1JvetUDdhPdKrUzCY6hDGyXP71dcJIpMgMpNlsYkfWUnUTLzwN2mZvdDsCMcKcUxFwfEYzbfJWAFZK7zh3o/C2iHibxXJ0aar88Dt9Tzd6Sil2Dta4fWZeTRQsC32jVc42+ygFGwpFRjLZ5lzfb51fhbbMHhworrWhz1Exgp599bDa30YgiAI65qialKkuWR5qC0CnP7jG7/59b5A9MkQ9Ycrui8QHXwcPN79s+8iawWJl88M+wLKNj3g6v3B4nip26j70jcB6JyZoZrLUHZrWH7AW5dqnHunyFhhoZVA7omnuFzPpCF7SV5h1onIOnC9PVF7RXCCcGDAHiUisXzyQNIqKDIIBsLitVb9InG2GVO0I2wrppQPyDpJI/h1NFe6LllcJC3WirYb8sqxE/32DNNjY1jmGPNNlo3UgYVlg1wtLHVxKGv3wIE01DWNookHombihciaJDTWSMJhl0mEMfoRMLqf3mAZSSFCy1BkrICC42GbEZaZpD7YZiR5dxsAEX+riFKQoUvNLVPNtq/+AaFPKWPzri0TQ8u2lof7+O0ZLbNntHw7D0sQBEG4DVgqxCIkx5WLRsVapT7CTCoUM3z5s68MvHf6A+FETnp9sfjun3m6nzOYtYJ+NcEreS6UUuTT0L+0bVuad75A96VvcnZmKvU0mvih1Q+Ft8yIjBX0PScZM6T8+IM4VpS0TLCjoUIdSY/CnnAUlmNQIAdhEnobRgbtV19PvViJJyvJD0/eR9ogiowVaykYSifF2AYeCk1JFfsROP6My7HDJ9Iol8VROguvYSHCJnl95d/Tr03QSw9SvboE4UAKhF5mve5H2oj3TbgeRPytMlt5h//8Tx/CUclNZjCo7vpZ/tPDe9VD26qhbx0OERwOBxzex+Cy4e31ks8u9/2Lt10ceth7vf9/fmBR6OJwKOPivMf+/nrvl9l22fcD2ysW8sjUwE1dqjEKgiDcWRhKpx6/K0fYaA0hdl8Q+mR44XPfGvAuZohI8sZNolQgektCTrdXRzg5P8dsu4sXRlRzGUqZpcrsvsmLyx5HGBn94jV++nzpm2/ih0k4qh9ZRANhdnYaYmebIbYZ4ZgRpcceHM4fNK9c3Ga90At/1Zqhyq1xTL/CchISu1BxufXqwTQUMQlJDGKTMDL7hX8g8Wj1vFTWgDfLNki8WX3v1nD+tykiSRAAEX+rTkG1eIgXgaXi5XpZHEqw9LW6wrqBwh9Dz8PrF8+CLSxb+tmVtx0+lqXycGG7Q//q0JJ96UXbLP7M4u9akHMrf8/g+95ViDH6z4sy566BpFhPT+Qme04L9hDx4b9UouBcPbxIEARBuPUoBTYBNgFw5UicSJt9gdgLOe2FmwY4NLXCxwM0E2gyqtEXin/i5xJvYs+juNjWJ/19fQrO1dNBtIYgSnKvBp/rL7+R5mdZBLGRiKNouJJxUgxlwSM06CUyBjxVw0Xlrjw2WShONliQbKD65qIwxMFcMVio0KoUeIHVP97Ec9UTb3G/qrJtRmSsiGLGTQVdEoromJGINmHDEMcqiSCILNzA5quffbE/YeWTWZXvEPF3CzDV6jSmHLwpD8qcW9VsXVgZremLR73o4ZPlP/+Te9N/SxcYlKbJtTKI+8t77/f/6AND3s9lK772Xi+uCAsLVWP7nx/ej3g4BUEQro6pIky6ZFmhIEl6D421GhqE+WT44mdeH/Am2unGy+clZqyk8mEvL3HJ1yiSPoRWdN2/IY4V0UCeWO+hl3mGNIT1Ki2llrUpi557YYeWEYtAE4RFxLEi6Hmx04cfWbz4my+mkQk2IQ4hduqYUCjigeJXAQ4GOTqUqWFfQw7ztSDiTxCuAaXAZHlRn8FjPy/R0iVCerkhg97JYQ9lIiLh4O+8ucSzuvhzvXXDwnNwP8OezIX9GOkjWX5jLOft7L0eFriJuO0tjzGI06OIh94/9KP3L7Q9UXrZ/otKxWlLlIXZaxGwgiCsNYbSZPDIXGUApjUDnsTEe/jcZ19NlyVCsXdf7g3yLIIkL/Gnn1rID1zBm7jssRm9O/7qTD4LwkZHa/r5o2EvfzQNRY5igxd/80UiLEIsoqHHYBsyjU2ASZhuGfT/1/O0+lWOLYJVcxxdCyL+BGGVKKqlFezuVPohPiuI0Z7AHH6/sDzuy8aF1zEGB37nSP91b93g62SduWSbqwnYQaGphr4x7oforiRIH/zR+1EDYlOpxDO70EtqaX9Og4WZb/GwCoIwiFIM5CWubBcW5yUGOHztN7459D7Eonf/M4jTwaOf+gx83vXT70pCI61ejmCIZaz/fEBBWA16Hu+oV9QnNvq9hJNquIl4++Zvfi21+iYR5rLPvYn5BXS6NsIkHHgO0zzhgCwdrP6yROCZ6vo997cbEX+CICxhoeDOnRHGE+ulQlMver2SIO15YIfFJgPvF/yZC77QxUIXrt3DunBkS4OIF5b1tmPgm5JvGfa4DuYW9woqXXM4McsXUVqxgBL0iyj1j2VR78mF9wufZWD7xcsEYaNyPXmJ0MtNtAkHHi/+xoupSLSJUp9CNDC0U2gs/P4Ated9ePqvPdMvmDL8LMJRuDq9dhj93E9tLMoHNZZsE6fbfPNvf60/0Ts8VduzsQZR3/6afRu8HKq/dZRu2dtT1H8209eJB25wWTT0+nZ63tYaEX+CINzxJAUNkpv4eifWC8JxsfQbDAteKcd0cLvF4b6LCyrpgf2t7MFd8O4my5duy5LPJct67wefGdjn8Hr666+ExbU18RaEjUaSmxhBmlt+LUTaSEPT7KEQtW/85tcH3id+jLAfsjb4P7rg/TAGvCDJsDzxgDz10+/GGqyq2WtDMLBMwvdvjF7vv3iZfM44NpaIq17vv2GRlVwtoP96eMJzMFVk0GaszMrRNhG9QngrRd70RJrZ//xwRI7R349e2I/87awqIv4EQRBuI73Ke5KbIwjCrcZUMeY1tMZYCa3p5zFFWOmw3ErD5ZKh/Iu/8eLAOrMvMOKh1ysLimsJ218cb7FcwsGT/+d7kv31og8GohBWLqC36PcOCN9exXWNGmrUrrXiW3/7q8tOsg1O6i3k5S+Iq8XRKVfyavVYnKowfK6WT2kYFFmLz+fC53tHFA2c22jJ+RLuPkT8CYIgCIIgCEtQitQ/GMIqVRpczLWE7S8Otx8sQdaLhHjpb78ALG1NtTji4Yq/dyhGYfl+xYuPYrgIWjywfli8LhZx/dcitITbjIg/QRAEQRAEYU24k8L2BeFu4OqBvYIgCIIgCIIgCMIdj4g/QRAEQRAEQRCEDYCIP0EQBEEQBEEQhA2AiD9BEARBEARBEIQNgIg/QRAEQRAEQRCEDcBNiT+l1OeUUm8qpQ4opf6TUqo6sO7nlVLHlFJHlFIfGlj+3emyY0qpT97M9wuCIAjCekVspCAIgrDeuFnP3x8DD2qtHwaOAj8PoJTaB3wM2A98N/APlFKmUsoE/h/gw8A+4M+m2wqCIAjC3YbYSEEQBGFdcVPiT2v9R1rrMH37dWBr+vqjwO9prT2t9TvAMeDp9HFMa/221toHfi/dVhAEQRDuKsRGCoIgCOuN1cz5+wvAH6SvtwCnB9adSZettFwQBEEQ7mbERgqCIAhrjnW1DZRSnwc2LbPqF7XW/yXd5heBEPjd1TowpdQngE8ATFz9MAVBEAThtiM2UhAEQbiTuKrF0Fp/55XWK6V+DPhe4INaa50uPgtsG9hsa7qMKyxf/L2/BfwWwB6V1cttIwiCIAhridhIQRAE4U7iZqt9fjfws8D3aa07A6v+K/AxpVRGKbUL2AN8A/gmsEcptUsp5ZAkvP/XmzkGQRAEQViPiI0UBEEQ1hs3Gyvy94EM8MdKKYCva61/Qmv9hlLq94FDJKEuf1lrHQEopX4S+B+ACfy21vqNmzwGQRAEQViPiI0UBEEQ1hVqIQpl/bJHZfXftXas9WEIgiAIt4HvDY++pLV+cq2P405BbKQgCMLGYDXs42pW+xQEQRAEQRAEQRDWKSL+BEEQBEEQBEEQNgAi/gRBEARBEARBEDYAIv4EQRAEQRAEQRA2AHdEwRel1CXg5FofxzUyDlxe64O4i5DzuXrIuVxd5HyuLoPnc4fWemItD+ZO4g6ykfI/s7rI+Vxd5HyuLnI+V5fe+bxp+3hHiL87CaXUt6RK3eoh53P1kHO5usj5XF3kfN79yDVeXeR8ri5yPlcXOZ+ry2qeTwn7FARBEARBEARB2ACI+BMEQRAEQRAEQdgAiPhbfX5rrQ/gLkPO5+oh53J1kfO5usj5vPuRa7y6yPlcXeR8ri5yPleXVTufkvMnCIIgCIIgCIKwARDPnyAIgiAIgiAIwgZAxN8qoZT6bqXUEaXUMaXUJ9f6eO4UlFInlFKvK6VeVUp9K102qpT6Y6XUW+nzSLpcKaX+7/QcH1BKPb62R7/2KKV+Wyk1o5Q6OLDsus+fUurj6fZvKaU+vha/ZT2wwvn8JaXU2fRv9FWl1EcG1v18ej6PKKU+NLB8w98PlFLblFLPKqUOKaXeUEr91XS5/H1uQOR/4sYQG3lziI1cPcQ+ri5raiO11vK4yQdgAseBewAHeA3Yt9bHdSc8gBPA+KJlnwU+mb7+JPCZ9PVHgD8AFPAM8OJaH/9aP4BvBx4HDt7o+QNGgbfT55H09cha/7Z1dD5/CfjpZbbdl/6vZ4Bd6T3AlPtB//xMA4+nr0vA0fScyd/nBnvI/8RNnTuxkTd3/sRG3tpzKfbxxs/nmtlI8fytDk8Dx7TWb2utfeD3gI+u8THdyXwU+Jfp638JfP/A8t/RCV8Hqkqp6TU4vnWD1vrLwNyixdd7/j4E/LHWek5rPQ/8MfDdt/zg1yErnM+V+Cjwe1prT2v9DnCM5F4g9wNAa31ea/1y+roJHAa2IH+fGxH5n1hdxEZeI2IjVw+xj6vLWtpIEX+rwxbg9MD7M+ky4epo4I+UUi8ppT6RLpvSWp9PX18AptLXcp6vjes9f3Jer85PpmEWv90LwUDO5zWjlNoJPAa8iPx9bkTkGt44YiNXH7kHrS5iH2+S220jRfwJa817tdaPAx8G/rJS6tsHV+rEpy0laW8QOX+rwj8EdgOPAueB31zTo7nDUEoVgf8A/JTWujG4Tv4+BeGqiI28hcj5u2nEPt4ka2EjRfytDmeBbQPvt6bLhKugtT6bPs8A/4kkJOBiL1QlfZ5JN5fzfG1c7/mT83oFtNYXtdaR1joG/gnJ3yjI+bwqSimbxKj9rtb6P6aL5e9z4yHX8AYRG3lLkHvQKiH28eZYKxsp4m91+CawRym1SynlAB8D/usaH9O6RylVUEqVeq+BPwkcJDl3vWpFHwf+S/r6vwI/mlY8egaoD7jGhQWu9/z9D+BPKqVG0pCNP5kuE+jffHv8AMnfKCTn82NKqYxSahewB/gGcj8AkspkwD8DDmut//bAKvn73HjI/8QNIDbyliH3oFVC7OONs6Y28mYq1chjqGrPR0gq9RwHfnGtj+dOeJBUe3otfbzRO2/AGPAF4C3g88BoulwB/096jl8Hnlzr37DWD+DfkIRaBCRx3n/xRs4f8BdIErKPAT++1r9rnZ3Pf5WerwPpzXd6YPtfTM/nEeDDA8s3/P0AeC9JuMoB4NX08RH5+9yYD/mfuKFzJjby5s+h2Mhbey7FPt74+VwzG6nSDwmCIAiCIAiCIAh3MRL2KQiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwiCIAiCIAiCsAEQ8ScIgiAIgiAIgrABEPEnCIIgCIIgCIKwARDxJwh3EEqpf6GU+pX09bcppY6s0XFopdS9a/HdgiAIgrBeUErtTG2itdbHIgjXgog/YUOjlMoopf6ZUuqkUqqplHpVKfXhRdv8sFLqcLr+kFLq+xet/z+UUheUUg2l1G8rpTKrcFxfUkrNX2lfWuvntdZ7b/a7BEEQBOFqrCd7qZT6f5VS/3zRsvcppWaVUtM3sk9B2CiI+BM2OhZwGngfUAH+OvD7SqmdAEqpLcD/C/yfQBn4GeBfK6Um0/UfAj4JfBDYAdwD/K2bOaD0u78N0MD33cy+BEEQBGGVWE/28q8CH1ZKfVe67yzwT4C/prU+f4P7FIQNgYg/YUOjtW5rrX9Ja31Cax1rrf8b8A7wRLrJVqCmtf4DnfDfgTawO13/ceCfaa3f0FrPA58CfuwmD+tHga8D/yLd/7Iopd6vlDoz8P5xpdQr6Yzrv1NK/duBENH3K6XOKKX+mlJqRil1Xin14wOfzSilfkMpdUopdVEp9Y+UUrmB9T+TfuacUuov3OTvEwRBEO4w1pO91FrPAn8F+C2lVAH4m8BxrfW/SO3fBaVUXSn1ZaXUfgCl1C6lVE0pZaTv/4lSaqa3T6XUv1JK/VT6upJ6Oc8rpc4qpX5FKWWm68zUXl5WSr0NfM+N/AZBWCtE/AnCAEqpKeA+4I100beAw0qp70tv+N8PeMCBdP1+4LWBXbwGTCmlxm7iMH4U+N308aH0mK523A7wn0gE4yjwb4AfWLTZJpLZ2i3AXwT+H6XUSLru0yS/+1Hg3nSb/yvd93cDPw18F7AH+M4b/mWCIAjCXcFa20ut9b8DXiaxd59IHwB/QGKrJtP1v5tu/w7QAB5Lt/t2oKWUeiB9/z7gufT1vwBCEnv4GPAngf8lXfeXgO9Nlz8J/NCNHL8grBUi/gQhRSllkxiJf6m1fhNAax0BvwP8axIj9q+B/1Vr3U4/VgTqA7vpvS7d4DG8lyQc5ve11i8Bx4H/6Ro++gxJSM7/rbUOtNb/EfjGom0C4JfT9f8f0AL2KqUUidH8P7TWc1rrJvBrwMfSz/0w8M+11gfT3/1LN/LbBEEQhLuD9WAvU/434AMktu10ehy/rbVuaq09Env1iFKqkm7/HPA+pdSm9P2/T9/vIglVfS0VtR8Bfir1ds4Af4dhm/h3tdantdZzwK/fxPELwm1HxJ8gAGkYyL8CfOAnB5Z/J/BZ4P2AQzIz+E+VUo+mm7RIDEaP3uvmMt/xj5RSrfTxCyscyseBP9JaX07f/2uuEPo5wGbgrNZaDyw7vWibWa11OPC+Q2KMJ4A88FIaElMD/jBd3tv34L5OXsPxCIIgCHch68heorW+CFwm9T6mHsdPK6WOK6UawIl00/H0+bn0+L4d+DLwpfQ43wc8r7WOSSZgbeD8gE38xySeRBCbKNzhSFlaYcOTer7+GTAFfERrHQysfhT4stb6W+n7byqlXiQJfXyVxOA8Avx+uv4R4GKajzCE1vongJ+4wnHkSGYUTaXUhXRxBqgqpR7RWr+20meB88AWpZQaEIDbSDyHV+My0AX2a63PrrDvbQPvt1/DPgVBEIS7jPViL6/A/wR8NP3OEySpDvOAStc/B3wOOJO+/grwjwCXhZDP0ySey/FFE6Y9xCYKdzTi+RME+IfAA8Cf0lp3F637JvBtvZlLpdRjJJU4ezkMvwP8RaXUPqVUlaT62b+4weP4fiAC9pEY0UfT43qeJA/wSnwt/exPKqUspdRHgaev5UvTmc5/AvydgapsW9LKbJAY6h9Lf2OeJLFeEARB2HisF3u5EiUS4TZLEtHya4MrtdZvkUx2/nngOa11A7gI/GlS8ZdWC/0j4DeVUmWllKGU2q2Uel+6m98H/nel1NY0b/6Tq/wbBOGWIuJP2NAopXYA/yuJ0LowEGby5wC01s+R5Az8e6VUE/gPwK9prf8oXf+HJGEuzwKnSMI/blQcfZwkt+6U1vpC7wH8feDPqSs0kNVa+8APkhRyqZEYtv9GYgSvhZ8DjgFfT0NlPg/sTff9B8DfBb6YbvPF6/9pgiAIwp3MOrOXK/E76X7PAodIKmcv5jmSNIjTA+8VSXGYHj9KErp6iMRz+O+BXv/AfwL8D5KCNS8D/3F1f4Ig3FrUcIqQIAh3C2m4zT/SWv/zq24sCIIgCIIg3PWI508Q7hKUUu9TSm1Kwz4/DjxMUrhFEARBEARBEKTgiyDcRewlyUUoAG8DP5TmLgiCIAiCIAiChH0KgiAIgiAIgiBsBCTsUxAEQRAEQRAEYQOwIcI+x8fH9c6dO2/Z/usvHVx2eeWJB2/ZdwqCIKxXXnrppcta64m1Pg7h2hAbKQiCcPtYaxu5IcTfzp07+da3vnX1DW+Q/27vXX7Fa81lF39PcOSWHYsgCMJao5Q6udbHIFw7YiMFQRBuH2ttIzeE+FtvrGQIxeAJgiAIG53lbKTYR0EQhNVBxN86QgyeIAiCcDexotdvlfYjNlIQBOH6EPG3zhGDJwiCIAjLIzZSEATh+hDxd4ciBk8QBEEQlkciaQRBEJZHxN9NslohLauFGDxBEARBWIpMmgqCIIj42xCIwRMEQRCE5REbKQjCRkLE3wZGDJ4gCIIgLI9E0giCcDci4k9Yghg8QRAE4WZZb2kRq4FMmgqCcKcj4k+4JsTgCYIgCMLyiI0UBOFOQcSfcFOIwRMEQRCE5ZFIGkEQ1hsi/m6CuzGkZbUQgycIgiAIS5FJU0EQ1hIRf8JtQwyeIAiCICyP2EhBEG4HIv6ENUcMniAIgiAsj0TSCIKwmoj4E9YtYvAEQRDuTCQt4tYik6aCINwoIv6EOwoxeIIgCIKwPGIjBUG4GiL+bhCZ1VxfiMETBEEQhOWRSBpBEHqI+BPuasTgCYIgCMJSZNJUEDYmIv6EDYcYPEEQBEFYHrGRgnB3I+JPEFLE4AmCINw8khZxdyKRNIJwdyDiTxCughg8QRAEQViKTJoKwp2HiD9BuAHE4AmCIAjC8oiNFIT1i4i/G0BCWoSVEIMnCIIgCMsjkTSCsPaI+BOE24AYPEEQBEFYikyaCsLtZV2IP6VUFfinwIOABv4CcAT4t8BO4ATww1rreaWUAv4e8BGgA/yY1vrl23/UgnBziMETBOFaEBspbETERgrCrWFdiD8SQ/WHWusfUko5QB74BeALWutPK6U+CXwS+Dngw8Ce9PEu4B+mz4JwVyAGTxCERdwxNlLSIoRbjUTSCMLNsebiTylVAb4d+DEArbUP+EqpjwLvTzf7l8CXSAzbR4Hf0Vpr4OtKqapSalprff42H7og3FbE4AnCxkNspCBcHZk0FYRrZ83FH7ALuAT8c6XUI8BLwF8FpgaM1QVgKn29BTg98Pkz6bIhw6aU+gTwCYDt27ffsoMXhLVEDJ4g3PWIjRSEG0RspCAsZT2IPwt4HPgrWusXlVJ/jyR8pY/WWiul9PXsVGv9W8BvATz55JPX9dkrISEtwp2AGDxBuGu4o2ykINwJSCSNsJFZD+LvDHBGa/1i+v7fkxi2i71QFaXUNDCTrj8LbBv4/NZ0mSAIV0EMniDccYiNFITbgEyaChuFNRd/WusLSqnTSqm9WusjwAeBQ+nj48Cn0+f/kn7kvwI/qZT6PZIk9rrkMgjCjSMGTxDWL2IjBWFtERsp3G2sufhL+SvA76ZVzN4GfhwwgN9XSv1F4CTww+m2/x9JCetjJGWsf/z2H64g3P2IwROEdcMdYSMlLULYSEgkjXCnsi7En9b6VeDJZVZ9cJltNfCXb/UxCYKwPCIKBeH2IjZSEO4MxD4KdwLrQvzdKcispiCsjMyCCoIgCMJSRBQK6wkRf4Ig3DLE4AmCIAjC8sikqbAWiPgTBOG2I6JQEARBEJYi9lG41Yj4EwRh3SCzoIIgCIKwFBGFwmoh4k8QhHWNGDxBWP9ITrwgrA0yaSpcLyL+BEG4IxFRKAiCIAhLEfsoXAkRf9eIzGoKwp2BzIIKgiAIwlJEFAog4k8QhA2AGDxBEARBWB6ZNN1YiPgTBGHDIqJQEARBEJYi9vHuRcSfIAjCImQWVBCuHUmLEISNg4jCOx8Rf4IgCNeAGDxBEARBWB6ZNL1zEPEnCIJwE4goFARBEISliH1cn4j4uwYkpEUQhOtFZkEFQRAEYSkiCtcWEX+CIAi3CTF4giAIgrA8Mml6exDxdweiNdQYJ0OXHG2UWusjEq5EV+eJMMnTwlB6rQ9HWIeIKBSE1UOnt1mxjesfraFJlRxtbBWs9eEI6xCxj6uPiL87kItspcEIBjFd8lg6oECTPE2KNMnQFaO3Tgi1xVH9MCVVo0MRQ8fpdWpQoEmWjlwrYUVkFlRY76y3tAit4QiP4OssOdqUqFFmXiZK1ykX2co8E4Am1DY52hRo9h+mitb6EIV1iojCG0fE3x1GqC0u6K382V8Yp5pLRJ4fmjTcHTz7mVeZZxKXHJYOyac3zzwtsnTE67QGnGUno1zkz/yt3RiGJogMGu5WvvTpVzjLrlS8h+RoUaRBnpYMUoQrIgZPEFbmMpvI0eYv/Mo4LW+MP/6Vec6xgy4FMtqlRI0SdfI0xSauMYG2uaC38PG/MUIhE6A1tPwJvvgrLzPHJKfZjdZqSBDmaYkgFK6ITJpeHRF/V2G9zWpeZhNtyhyfncIPLSwzoprtUMl1+b6/eT8ZKwRIRcY2vvTpVzjHDlzyKK3J0aJAiwJNcrTlJnoLibXigt7KYx/fx9dPRphGTDXXoZrr8L1/c99Vr1U+vU6JIGxhqniNf5GwnhFRKAhwTu9gz//8NC+faTOWb/Gdf/0RShkPgLY/zuc/dYkZpmmzF1v7lKhTokaRuojB28wsU3Qp8vqFbUSRSTHjMpJv8x2/+ARFx8MwNHGsaPlTfPFXX2aWKU5xL1orsnT6E6Z5WlgqXOufI6xjxD4OI+LvDuOc3s72H3yc4v4xxisuxVyAHxpc+PpRTs2P4oc2ecejkutSyXb4vl+6H9tMREMUK1reNM/+2stcYpouBWJtkKWbisJEaDjKX+NfeXcwxwQ1PUr1od1sHu9Qzi+9VoWMSyXbpZLr8v1/ay+mkQw+oljR9KZ59tdeYYZpuhT7Bq93nfK0JEdCuCoyCypsFLo6z7weZ6LYYO8HdnLp64c4fnmStpelkHEZy7f5zr/xGAUnsXFuYPHHv3yeOSY5xb2YOqLYF4MNERS3mNP6Hnb9mceYfmqc0ZKLZWouv3iIE3PjtLwsphFTSSe3P/R/PULOTuyd1tD0pnj2V19innHOcA+RNsnS7Uc8FWiKfRSuykYVhetG/CmlTOBbwFmt9fcqpXYBvweMAS8B/7PW2ldKZYDfAZ4AZoEf0VqfWKPDvq1E2uS83saWXfcQ7d2Ee+ogF+dzdD2T3D2Ps7XkUS162FbMzNcPMdMq89blqf6MWiXXoZx1+d5f2o+VCkKtoe1P0nCzPP8br3KRrfg6g42fCowmedoSingDXNabmPjux/Hv2Usw+xrHz5Xpeib53Y+xreRRLfqYRszMi4e50ChzdGYTsVaU0mtVyXb56N96ACMVhHGsaAeTPPsrL1FjjHPsINQ2Di75NCwmT0tyPoWrslEN3p2M2MirM6fHqTMCex7h8CmFnn4P42WP+6oupoq58LU3OTIzTdd3KGZcxgotPvg3HifvJCLBD03muzv50mdf4xw7ibWiSJMiNcrUZGJ0FQm1xWW9ie077qO1c5r47UPMtxyYfg8jRZ/tJY9iLsD1TS58/Qjn6lXcwCFr+/3J7Q//zYdxrCR6KRnLTPTHMhfYRqAdHLz+ZGlBaiII18jdPmm6bsQf8FeBw0A5ff8Z4O9orX9PKfWPgL8I/MP0eV5rfa9S6mPpdj+yFgd8u2noCnN6kkhDt2NwIfMYdkEzUo2wMzHW6QOcvVyg3nZQk++lWvTZU/CpFn20hgtfezMRGd4UcWxQcDzK2S7lbJeJYpMf+dQuALTWdAOTjr+TL33mFWqM45KHNBQxT1tCLa6BU3o3Rd9BKTiSfRy72LtWEcbJ1zk1U6TZsTGn/gQjJY8tRZ9y3scPTWa+fpjTtVGabhaAUjbxEJazXb73bz3UF4QA3WCMhpvjy599hVmmcMlh6qh/jfL9EF8JGxWujIjCdY3YyKtwTu9k7Dse5nTxQcbHI6qVEFdpzr35JrWWQ2bbu9hcdRkru4Di7AtvcvjiZtzAoZTtMppvM5pv9W1hFCvq7ha+8Ouv8TbTBNohT6ufN5hTnbX9wXcwdT3CZT2FbcXU6hbn849SmowolSICE5rHD3JqpogfGBR3P87Wok+15GObEY2Ow8UXj/DO3ARBaPWjncqZ4bEMJN7dhpvjuc++wlxaEyGxj82+IMzRlpBf4arcTfZRab32f/BKqa3AvwR+Ffg/gT8FXAI2aa1DpdS7gV/SWn9IKfU/0tdfU0pZwAVgQl/hhzz55JP6W9/61g0d23rK+Xsjeow3n/oJtv6Z91Ad0+TyUChqdmdP0ukYNJomhoJqNaKQjzBNyL51kFrboeNaOHbMSNGjUvSp5H2CyODi1w9T7+ZoeDmiyKSQcen4F7nYPMujWwrsGsv3vz+KFW0/wxd/9WU6FOlSJMQigzsgNMTzBOBrh9+LfoL7f/RdlN/3MIWCplDS7M6cpNU2qTcMMk4iBgv5CA3YRw4x38rgBwaFXMhIMfEOFrMBbc/m4tcP03BzywrCUsYdEoRhZND0snzp11+mnV4rjZIQX2HVuJLBU0q9pLV+8jYezl3NerWR68k+ag3/MfpxNv+5P8mOH3yQfF6z1TjN7JyJUjA2GpHPR5TfOcDlepa2a1HMBYxVPMbLLkFkcO6FN5ltF3GDBc/gSL7dDxNNwg2zfP5XX6NJFZccGaSIzI1wKH6MI099gk0/+F7GJqFUgUxGs8M+Ra1u4XmKYjGmWglxbE3xnQPUWhmabRvD1H37OFLyiSLFha++Qd3N03BzhOlYppdSUcp0++kvkOTZN70cX/r1ZCzToQAsFJaRyW1hNVjPNnK9eP7+LvCzQCl9PwbUtNa9/7wzwJb09RbgNEBq9Orp9pdv29GuERf0Nrq+xYlLNpvzkNGwu+jz8vmdhEFy8yyUNDMKpjqnqNVNQudxymMxlXJELhsTRora4UOcuFBKRMa2Z6jmfXYUfSoFnyOnZ2l8o0UYV3nr8mbO1avkHD/xEGYSofH9n9o3dFwdf4ymt9TzlBvwEG60Cl0NXaXOCJ2RLfieTcuAnXmfb57dCUClCnFBM22fYHbeSoR7/jGqmyPGyiG2rbGOHuTMpdSTqzSV3U8yXfR4oOiTtSOaXZuZF5d6CHve3HK2yw986v7+Ma0U4msRDBWXkcqwwrVwN82C3gH8XcRGXhGXPPOMsW37NKWyZn5W8a32dipVKFU0Weckly7bvKOeorg1ZmwkxMnEREcOcvCdEbzApHrvk9xTcRkreXiBydkX3uTVs6OEUZ6RvM9ovs1Ivs0Pfmrhb3+wiEyH+4byBkvUN5Tdux7OxDvoBhkuNGwYgflZ2FoN+GZjB9kslEc0kQOl6BTnZy266ilykzHVSkSxGKG1onX4DU7PFPACk/y291At+OwoJRE0XmBy4auHlkQ79dJfypnu0HXsFZbp5RGeZRehTia3FwRhk4zy1vCsCXcS6zl0dM3Fn1Lqe4EZrfVLSqn3r+J+PwF8AmD79u03tI/1NKsJSduA3OQYrr5EJjtBfRa+ccGhVIVCBZot2Gb5NGpwXu+gXIVSWdOyoOCf5Mw5m65r8PS33ceYSsRAp2NgHnqdi/M5vnzApd3Nsf3+9zHePccju8eZHjNwfZN622HmG0c4VRvDC2wydtAXg+Vsl6lSgz/zqd39Yw0jg5a/mS/92stcZhNdCkTa7HsJk1CLFhncu9JLeEFvJffQbiq7R/FsmL0Ily86VEagUIbpokdtTvF8cxeZLFRHE+E+GwCN09RqJrHxJOXNEdWRiFIxIvAN/MNvcOR0pe/Jrd73ONtLHtWCj23FNDoOM18/zJkBQVjMJOG9lVyHUsalmPGGwmJ6rUKe+8zLnGc7XfKgIZcWl+mJeEmeF66F9XbfvNNZzzZyPTGvx2hRobR7jLMtGzIQ23CmAZvjgOcbOykUoDql6ThQ8E5z9rxNbD/B6H0RkyOJjm4fOsTJC0WiWDF63xPkWsfx/Es0dQbvZJuZVpIzWMi4fTH40U/t7x9HL2/w2c8eGMgbbPSrikq0RTL2OMsuRqdHmO/MMOZN0qxBs25THgUXqCif2RnFWXcHxRJUpjR+Bqz4JBcu2DRbJk7xMSqbIyaqEbYVkznyOhdmc7x5qoLWUN75LiZKPvcVPQrZkLZrceGrh5cVhJU0gmbwWmoNnWCcppvluc+9xik9zpzWlDAYwaOi2jJhKlwX68U+rrn4A/4E8H1KqY8AWZJ8hr8HVJVSVjqzuRU4m25/FtgGnElDWiokSe1DaK1/C/gtSEJabvmvuMW4Oss8Y+jCBPWLBkfVJTI5TRzB2KZJZi+A70G76VAZBTsDp2uwNfZp1uGMuZNSBSpbNYe7sC9/DKWgUIjhqf1052tMbIp5731Pc/Z8k8Zzp7lUG+GdC1mU0pTzASNPPMCugk8pH3B6poVmisar73CuMULXd7CtcEAQJiEX3/+pB/q/YfBG+uXPvcolpvHILspPa90VLSjO6R2EkckffqHLjn11bEcThVCuTnL2Hbh4JkNlLPHW1ryYvN/i/Js+YWAxN76dyoSmVIWWC9nuKS5ctHFdRaH8KNVtEVuqEbataTZNaocP8c75EkGYhItW9z3KPakn11C6LwjP1kZpetl+UZnyQMjoeLHFn/7Uff3jT2ZBN/Hsry4uLuMNXStpUi8ItxyxkdfAjN7C+KNbaCibEy9d4JEnNmEYEHgxZ7VFsaq43AWnHVA7Deed7YyOa4oVmGlDMHOGesMkV36UsV1JvqDnG4wd1Mw2HqDRrtMYP8Mz+zYxWY3p+ibnXnizX00073h9MThZbPCxT+0EBvMGD3BpKG+wTpH6hiym5pKnzihOYYpuM+bs+QsYBszVFbYzxaWzMFtwKI9AvgIzHch0Ai6eg5PxTkplqGzWGDm42IZw9gz1uoHmaapbIiqViHI5wvcV0aGDHDtbptW1scyYkfueZHPBZ3/JJ2NHNDs2F792iPONKke8LHFsUEztY08QFsoNfuRTu3jz4hwzrQ55O8P5Roazv9cgr3YsqYkg/QiF9c66yPnrkc5q/nRayezfAf9hIJn9gNb6Hyil/jLwkNb6J9Jk9h/UWv/wlfZ7N+QzzMSb+Gfxz7LjL30Xb595keqm/ZRHI3LFhTj2OIZduyaZn/E5d+JVbKdDoQJTW7ZTGbuHTgu2ln1aDTBMKFeS0IpCMebYmy+zSR9n5/btdDoduq7Lvvv3onXSZ6fRNLEOH0xi7jsGJy6+g6kaFHIBD+8eY9emIkFoUG/bzHzjCA03S8fPYBgx5QGh0evdM8hgflqSS1ggole2uScIW2SVe7tP+w3zr8KfJHjvRzhuzLFp124mtgWY5sL6wFds3TJBqwbd9lEM4zy5ooVh2ORLu7h/W4X6fHJNy1WojmiKZfBcmOiepFY3abaSvMFqJTV2pQjfNzDeOEi97VBv22itKOeTRPlqKty1JgkZTXMIG26OWKslITGWubRAjBtYybX6zKt0KeKSQ5H0j5RCQEKP7w2PSs7fLUBs5Mr8+/C7sb7nR+k+vBlj4F7baXUoZrrk8g9QGTMYmQTLTu6lW0s+tTnF5m2a6miyfbcDo51TzM2ZuJ5BId9lasrAsTt89cXXeZAMXa+MZcWMV1xG08rNHc/i3FfeZK5ToOVlyTk+o/kWo/k2pcxChMtg3mCLCl3yOHj9MNECjbvei3Qh3sLvxH+Vp375wxy/OM/M6SMUypcBTb68iWJ1B4FnsX37FO0G5ApQHYd8CeKIdCwT0KyDMpI0ivJIUgeh04IJ/zTzNRPfVxQKSahotRrh2DHNlol56A1qLQcvMMllQkaKPqZZZ2pEk7FNWt1EEDbcHI0BQXhy/hgPT+fZUgHLjIljjWEkFzZppZXl2V97iQ4lOhQHxjELxWXE8yvA2tvI9Sz+7iEpYz0KvAL8ea21p5TKAv8KeAyYAz6mtX77Svu9Gwzbm9HDfH7vL1D8jkc5e/J5pnbtIwoVo5uWDrKjyCfwXPbuvYfaLJx668vc8+BjTG2pYNnJNmEAnSZsScVgGDYxjMvE+jJRWMMwDb5zX57JifH+fusNg07XoFqOsKzU6/TiVzl+rsmW8T04tqZa9CkXEqGRz0aEkaLRtrn44ps03RwtLwMs5Kb1PFDmIkGYeAmdvpewQzHxErL+vYSBtvnH0c9T/IHv5mTrCKOb72d0U4iTXfq/prWmVe+ybes2SlWTKDyG77aZ3vkwSimiKL1OpcSDaztQGYHqqCZfSLy9zQaMdU9TrycjnnI5GjB2mkbTwDr8BvPNDG3XwjQ0lYJPNQ0XzWcj4pjE4H39MA03O1QAKPHidihnh5PmewwbvSIdSkSYUghoA7PWhu1uZT3ZyPVkHwE+F36AHR96Enf/M2TyiZLrjW9mTr3IyKZH2HPfLuZmIJuHsU2QyS58/pF7lg7K4xiOHX6b2tGvoIxxqpVR9t2/mfHxCMfRmAcPcLmWpd52yNgR4xWPsYpLOR/QcS3OvXCYuU6BppsjYwf9aqLlRQW6uoHNH//yy7So0qKEge43ni9Rv+sm0w5Gj/ONh36Kse9/mte+9hzZynamdxrYGZtLZ16iNLKTXHECSMYCXlexdcsUbgfKI/QFPCRjmR0jPvV5RasJmQxURjSVERIx2IZJ/xTzNZN228AZmDCtpN5B69DrvPrWRU7OtDGVxZ96j8Xm8Wr/eHv28T//m/9O0ZnAtsbJWXmKGf+KE6a9cUzDzfXHMT7SSktYexu5rsTfreJuEH/PRx/i9fs/zuw9uxmdjMkUYkojEYZx9c/OnHmNPfc/TOhPUSglRs92hrcJfNhR9WjUFUffOMA9e8e5b98m1MAdqduBSv0UtYZJrdZhpJrH80/juhd499MPABaNpoF5+BC1loPrm2SciEo+oFL0GSl6ZJyYOKYfithwc/1QxMHWEysJjWv1Eq5lLmEtHuG345+h/Gf/FH6+RXEkJFe48v+Z1hqlFDu2B7Qbl/vibzGBB9uqHvV5RbcDxRKMjGkqVTAtiCJoNWDCTYyd5ytKxXTmsxJRKMSEITSaZv86dT2TrBNRLfpUiolwd+w4KRDjWlz82qGhKmr5oevkkrGWH5h0fLtfCKhNaQXx3pIWFHcha23YhOvjThd/gbb5zeiHePInP8CRdotMboTiyHaUSgzkzOlvUp24DydbAeCe3Zu4fB4KJRjfzLJ2dFAM+p7LO28dZMuOB9kcX2R2zqLVMigUYsbHQkZGItDAgdeZbWRpdmxymZDxciIGS/mQrmdy9iuHme8UaLg5bDNMxWCbSrY7JAaDyGC+U+DZzx6gSZUYgwLNfvP5rOre0vN5q3ku+ginH/3TnL1nH6VqRLEakcklv3/+4iGcbJlCZeuSz8Ux7Ny5ibkZyBdhfHrpWMb3YEfVp5bayEIhmSytjIJtJ+sbdRj3k1BRgEo5ppJOmLZbc5w5d5b355tYA+E6WmtOXZyl43k0Oi7To1WqxU2phzCZMF3cQmulcYwXWjTdLF/6zCt0KOKS70fQFFYokufpGJeYDAZZdQ0DP2Hd8j3BEan2KVwbdT3CyOYS+ft8CuVrF+xR5BP5DeZqPoY5w/j0JN0W2KPD29kOnOtk8OMOcdmkztQS8ZHLg5/fTn4aLh0/zDeOv8buUkyxuJtXDpRQkMym7dnPdDUim9G4nqLRMKkfPsTJi0nPnlwmERojT+5jV9HHtjRaQ6trcfHrh5lplTl2eYowMpdUGs3aISP5zpIqluspl7DGOBrY+6DmvHdtRVJ65/rVbx3DMCw271peudoZuNDNQBaa7iXeeOUQmyqKwCsyOb2Lqc0FRsY0/sh2CtOQ18nMZ9w5ydsnHNodg2w2aTFRffABtpdiDAO6bnKdZg8f4vjZMmGkKOZCqkWP0aceZGc+wDST69TxLOptm+Nffo2Xz3qM5sbZNVbu91nqXae8E5B3giWFgJreFr706y9ziWk6FNFaWlAIgnDjuOSJ0WzdPMame9/F+ZMHMMwZTrwdEIUucewQBg6GCUrBW0cvEEeKwJ/CySYhhYt55ZiFkarCh3bG2E4Grbs0KjuwK1DVSYih1z3FG4eyhKFiZPRxxu+NmK5GuK6C1w/y1plKv63E6IOPsa/sUciFuL7J2ecPca4+wuGLmzGNuB8mWs11mCwt9KuLY0XdneaLv/4qp7gXT2fJ0u17B/O07qhQ0Vk9yfTuMtZeb8kkrdetkS9vXvZzhgGnTl1Aa5iY3sQ7h+Ce/QteQAAnA+e7DmRBZ+ByB7JuwMU3YPdeTTYH45MAW6lsTSZM6w2gfpxz53O0WmOcPXeK4lPvYmrcolCI+8e4Q30DgHq7wxsnzjI9VmHPd+7pf3d/HPO1Q1xslnnr8hRRZPZzCHuPjBWSKbb4oU8tfDaKFU1vekmRvBwdIj1HwDzQIsJlHItpbAxxFwo3iHj+VmA9zWoC/NvwExQ++iH04/sxByT7rvsZym9YzDuHX2BkYgfV8aWzaNfLI/cMlziOwpCjh17mvn2PY1oWUQitJox3T1FvmLieopCP+yEWpWIiNDqdJIfQfPMQtVaGMFJJoZJC4nmqFHysAaHR6OURejm8wMaxgiTMIr2R5m1/WS/fSl7CwdLNt8JLeCB+ijef+EtMffTddAyb3r/YyDiMTq38ubmZk7RqF9m6+wkM8woXNSWOInyvjVIGtcunCUPFE/t2MX9ZEfhJBdHRCU2hOPw5twuT7gnma4mn1jJ1P0y0WomwrLQtRNvAOHSQestZaDdRCKgUfIJoho47T6PTZXq0wtTINLWWzaVvHu1fp15F2EouuU45e3khnLSgyND0EvHepkSAI6ExdyjrYVZTuD7udBt5Pt7K78Qf4F1/688z+eB2IGbu4jsEfjcNn58GRokj0HFyzzHMJOyzMj4c/gkQxzHzMycwTIuRie206peoXT7N2KZ7eOahhd63YZDknJlmIiIaNRjpnKFWN3EczdhoyNhoSD6vabUN1OsHmW1k6HoW5ULAWNllvOKRdSL8wGCumeHsV49S7+ZRhmYk12E032Ik11kSUtjyMnz+V16hRYU2JSyCfkXRIo11lw7RQ2v4N9H/xtRf+RhbPjA5tO7U0W+QK44wtml3X3hDIrLnLibnWsfJeY/CJNpl6+5h8XctLBfie+70cU69fYTyyDjZ7AT7RgwaTSsNFY0ZqSZjmXI5ot1pcv7CRbZt2cyOmYP9fbS7FjO1LJWCT6WwMGHaE4Rn6/Dy6VkmChPsnihcNaWiZxufO36Zc//6LKYaJ8BBaZcyLfKqTUEKr91xrAcbKeJvBdaTYQu0zb+L/hLT//uPcO97RrDsJHzBdjRHz2f67017OHyldyMdn7532RDC60Vrjda6f1N+YGuDsyePMTG1hWK5usz2SajopLtQoKQnNCppGKJtD7ecSAqVOMSxopgLklDEQlq5Mv1tSesJm0vfeJO6m6frO1hmNJRDOJhgv/iYri2X8MbDEZ+LPoL33g+x6c9+gPFJjWUnxunYeQfTov/etOgfY6c1z6VzR9m842HsTO66v3Nu5iTtxiW23PM4hmEQRbC97DE3m4S+jE3A5LTGcZZ+NgigWV/IG4w1TIyF3LNr2EBGURIuOvvC85y+5GKZVVy/yc6pPLs256gWfbLOwoDD9U1qLYeZb7xJw83hBs6QcK9kO+SdlT2jw6ExpaHiMiuFxghrz3owbML1cafbyGPxPo4883Gmf/iDFCsZ4jiJZslmNdmc5p3LGTJZsByueZDcmL9AY+4sbreJ4+SpjG2hPLp5yJbuqPqcfFtRKML4ZJJn1lvtdmGse4rZWZOua1ApR4yNhYyORJgmNJoG6vU3uNzI4gcG1aLPWNpjMOPEBKFirpnh3FePUusWAKjm2ozkE0G4WCx4ocV8J8+zn3udFkl4a2EdtphwdY5/H/0vbP8/fohdz4xiO2DbmudffINM1mFy+16yWWtokjuKIPQT+60MsCz6XtybZSi81/d45+jr7NrzIM7AjIDb1bSOfIFG08AwxqnXZxgZMXj4wZ2Mjmhsu/d5iF59I50wTRZWCgHVoocXzOD6tXTCtMpEdZrzL7xB00tSKjaV6uwYXVKUl5YX8Pq5S+wer2KZBuWMQ6QdGm6W5xbZxp5N7LXSkpSK9cl6sJEi/lZgPRm2rs7z36OP8dRPvYf8B54CEpGnFMSRwveTm07gQazBUHDx/AGyOYud9+7j+EUHy0kEouXANTiVliWOY2YvHEcpg+r4VhrzF+g0Z5ncej9PPZDsNIrg8gyMTzB08+7RExrj7mnqdYMwUpRLSRP6kWoyQ5p8F7TaRlJhtOnQ6CSqpVJYyEsr5YP+zT8IVdKL8MVEaLT9DIbSQy0Nihl3SWGZHoNewjZFXArEGP1wxH7Rkmto8PrH0Q+w+RPfz8h3PUYmpzFUeq1iRRAkOQeBn8xeaiAKXc6ffZmR0XEmN21G6w5nm5Nkc04iEu2lOSm9HMHZC28ze/EdMrkiY1P3UKxMLL1uEWwuely6oLAd2L4rqYq2ElEIrguPjx1bsq7VanPy9Gnuv28P3a7LoSPvML1pL4W332a+lcEPDPLZxItbLS14cXt4vkG943DxxSPUu4kgzDseI2mo0+JCCEuOLVbJdfq1l2lT6ntzc3T6YaMFmtKTcA1ZD4ZNuD7udBv5Zvwwcx/4c+z92GNMjocUijFn4u2pjYRuJ5kE87zkXpzNJWkM71yycbKJ5+9KETRh4GHZmRXXd5owlQtoNpLKk1Obh++xcZxExYy0TzM7Z2FZiVdwdDSJiNEaGg0DDh5itpFEw4yWfEbLHmNlF9vShJFivulw7qtHme8WiGNFJddJxWB7Se51GBnU3Rxf/PQBmlQIcMjR7ovBtYqkaOgqfxD9ME/+xo9QuncCZcC504eI45jpLQ8l4xkPwvTn2DY4Dsl1ymjeuuAkgtFZfoxxvcRx3J/QfnBHl5PHDzGxaSul8sjQds3GPK3GPM1GjUymTL64g6nwArW6mVyLcsTOHT7ZgcJuUQTNpsHsC89zaqaLY43S8ersnC5wz/TSCVOA7re+MfT+XL3FkZl5to2UqHU98rbFvk1jS35HzzY++2uvpIXXimgUWTp9QSj9etcH68FGivhbgfVk2Gp6lC/HH+YHP/0kuUd3E0UGrqvwPEUQqsSYZTS5XEwuG/Nmq8xbh75GrlBKBIcPE5N7yeQm8b3EGELifXIySXUsJ6N560LqRXSGvVKDtOqXaMyfx23XcbIFRid3ki8tJBBGEUw6PrOXkmIkm7YsDTscJI6TkI5x9yS1mkmna5DPxf0QxF6oaG/fzVZSubLWcmh1bQxDD4WLFrJh/7ijSNHo2My8mBSWaaWFZRbi711KmeXDLWBpOGKHAj5ZLMJ+6eZeLmEv38LVOb6p38fen/4B7v3gZvwguU6eZxClX5PNaLLZmFwu5qzaQad1kRPHXyNfHCHwY5TKMjp2L4ZZJPBheltS0GU5fN/jpTcjZi+8zcjE9mXF3yCdFjAX8ODjMaXyFTddwn3OW7xx+E3anQ733rML3/e5PDvHQ/v3DZ2zblf1203UWs5Qu4mRokcxFw79bbVdi3MvvEmtm8yAmkbMSK7dF4QrXZ/B72z7GRpulud/YyFsdLAnYYGmVBu9TawHwyZcH9drI9eTfQQ4ED9N4fu/i/d9pEh3z4PoGLpdg1bbxPMUlqUpFWOKxYhzxg4MIxEY3U4iDN1uYl9sOxGF2Zzm7UsOTjaxh9d634jjxBt48ZxCA5NTmrHJpZ/3fRjvnuTybFI4plyKGBuLGBsNse3kWGp1E3XwELPNDFrDWCoER0s+pqmJIsV8y+H8144w1ykQRiaVbJeRNG8waw+LwV6LiS/86qs0qdClgINHkTplaretxcSsnuSF+Lv4oc89ifPQfczNt3jl1W9hGAVM08K0NLt37mR6epRzbEtCOlUS7ul74HkK300nvFMdY1nJWCYZzywIxF6UzUrXb3F4b7M2Q332DGObdvPMQ9cegRNF0G7Co+PH+17AHs1Wi1OnTnP/3vvSCdO32bzpAfLHj1NrO/0J05GiT7Xo9cNFe7xzfoZTX/s6T2/fRBTHHLowx0Qxx6Zy4arHpTW0/EwS6fQbr9GhKLZxHbAebKSIvxVYT8ZtXo/xavwM3/ObH0CjiOPkvzSfDclnkkdtx8MYJLM/rqvodA1c1yAINaahKRQgn4s5Z2wnk0tmPmHBC+W5qj/j5nuJVwqSm2Zvls12khm4o+cdTBOUEWE7Jqa5dAZO6+RmaLcC7rkvThOsr41eqOh8zaTRNJIWEmlOWqWc5KT1CENoNEzMw29Qazt0XAvbivvhotWiTy6zMLO2UkuDYsalmutQzXUoXcX75IcmTS/Lc59+OZ1hS27COToEOHR0gUd++WPksxFKabJOlF6niO6eB1FKo1B4vqLbNXA9g04nEfKGAdlMTC6nyWVjzho7yObSmekrFPi6cPYkYeCzZcdwiO/RQwq3M7xtrgA7di8fAno12q0G87MzNGqXGfGOYBiKB/bex8T4MhUTUuI4CXFKeitlaHWTazRe8ZiodikPeHAB/MBgvuVw7mtvUXPz6FhRzrqM5FuM5Dsr5g4uxg0sGm6O5z67EBpjEQ55CLN07qhCCXcC68GwCdfHnS7+DsePsu3Pv5dHPjhNo2PT7NroWFHIBVQKAZ17H0QpcF2DVsug1TbQWpHLxZSKMRetbRSKSUhhtwNuJ5nEclNvISS2L7kXa47PONiZdKJ0BY+h78GkE1Cvabbvgky2DWhy+eHZUK0XvIJz88nOxseSENFSMSk2EoYwXzPh4GHmmg6moZO2EmWXajFJiYhjqLUczn01EYN+aFPOdhlJ20ssF2LfazHRZIQ2JQzifnuJIvVb4iW6oLdyOH6ED//md6LjRCRbZkg+65N1fBrb9mPZFoZh4ac2stM1CIJkojuXi8nnksnTcyqxj4bB0PjF9xSet+BB7A1zLRucdILbyWjeOu/QaV2g3TiL7zfJ5gqMjG+hMj6NYSjiCPZv9znyhmLvg9dvM+/LHksmTNsd9uy+B9dzmZ2bXzJh2ukk7SZqaX691km4aKXoc7n2DsVczH3bNhFGEcfOXiRr2+ycnuh7CQ9dmCbWRn8MU8xcOUJpOduYpL40B8JG22IbbwHfExwBWHMbKeJvGdabYZvXY7ylH+S9/+u9VHMdRp94gKwdYpoaPzTpuBYd16LlWni+mdwgMyHFbEg+G9LZ/RAYmihMbqLdbnJD9fwFr2E+n9xQB8WGUsmNKeiFlabPYaAIg+SmGoZJmGC4jI3QJDOpgw10bwTfH85Jg6Sq6Eg1CRVdPNPm+YpGI2050Xbw/OVbGfSPU0OzkwjC+U6BppfFMGKq2U7/Zrp4FnUxcaxo+RnafobLrSI73nsPUyMucQxd36LjmnQ8i65n0XaTZ60h40QUsiGFbIi750GymcTT6brptXKT6+W6iefQtjS5nMZxfC5au8jmFZksnD35BpZls3XnnlXJ77wW3j56kGy+wPjkZhwnw95MEib69jsOUawYHQkZqS7fjsTzFRw4yKVaUha9XAiYrHaZrLpDs56QeHDrbZvzXz/KXKeAF9gUMy6j+cQ7eDVDN0gQGYnR+/RC2OhgHqHkStw8Iv7uPO50G3lUP8TuH/8T2EbcD/WffPcDoKHZtWm0HRodmzBaCEv3738Q04zx3CQfvecltG1NsRhTLkWcN3eQyye20PeSPD7PBddNvE+um3h9DCMNT0wFoW1rjp5LBvE7xwJOvRMwtfkAjdosDzz8LgrFlcMuggDGOye5PGfRbCZewfHxiNGRcCi3TL3+OrP1LPWWg23HjJddxioelYLft931tsO5F5LG827gUMy4jBVajOTbFJylOYBBZFDr5nn2M0moaIhNgSZFGhSpr0qo6Cm9m6kf/RCTxRaVXIfRpx/EMiKi2KDjWbS7Nm3XouOZaK3I2BHFXEghF9C592FMQxPFik4nsY+djoHvJweVzcTk8jH5nOac2k42l1yT/lgmSMYxgT/wOlBEYXId3a6HYSQ5o1on19WyoFiGrTtubKw8OGE6GhxBGQb337eHyYmVo3R64aLW4YOcmYk4fv4yY+UiWbuNabXYv6PE1OiCZzKOk2t94WvJGKbjZ8jaPiP5ZPxSyXZWTHnpEUQGTS/XL5DXm9TO0x4KG5Uc+5tDxN9t5E43bC1d5oLewvf/9XvoBg4d36HjZ2j5GcLIxDQjio5HwfEYe+oB8pkkrC65kVq03eRm6gcGhqGTG2k2xNuzn3wuxjB06n1auJm6nkLrgXDSXMx589q8ULeaKEwbm3dOUaubRGm8/ejI8mIQklYG9XpSYbTedghCY6GVQdlb4n0KQkWt5XDhxaPUunm8wKYw4B28Um7ahUaZk/PjjBeaZKyQ8uMPknUick40JDohKYrSdhNB2HEtWl0b108EbtaJKGQDCrkQ776HyOdjDKXpuga1WsCBN97E7WqCwCKKLbZs2c1IJd8P/z13C6+X2+1w8u3DbN91P7n8cPhJGCTXp9o6Ta1uksloxkdDxsdCcrnlGt1DvWEQvfYml+pZMnbE1GiXTSPdJeert32zY/dnuDt+hrzj9cXgSsV+VmIwV6Kd5kqAIke77yEUo3dtrBfDJlwfd7qNPKH38Cd/bh8j+TZNL0s9DSFvelkMpft535ve8wCQ9JlttO2+LchnQyoFn/CBB8lmIlwvFYStpDE4QLEQUSzGzNjbyReGK0zGaQVKz1sQF1GUiA7ThLOnX2ViskCzMc+9DzyKvbg53Qr0vILVVuIVNE0YGw0ZH0uOpYfrKdSB17lcH+4xOF51KebC/r6aHbsvBtt+ZngSzVnadqEXKvr5X32NFhW65NNQ0UQM3khV0Qt6K5E2ef8nH6XjZ2j7Dm0/gx/amEZMzvYTkfrUPkr5AEPpIVHY6lp4gYlhaArZkGIuwN3zEIV8lHh307FMp2vgdhWul1y/bCYmm9MU8jFn2T40yX27ePvo6+TyRcantmDbDntzx4HE/p067TA6EjI2Gg3lDQJcuHCRCzM1mk24p+PhBqV0DBMwXnGZqHpLcgc7rsn5Fw5R6xaod3MoQydhwWnRoJX68w7Sm9T+4q++TIcSHYpDOfZFGpJHeJ2sFxsp4m8Z1pth0xpe0+9mUp3lvT/zBIWMR8H2++IjjIykgqWXpe0l3qdukBiXfCoKx5+6n2I2JOeEdP3ES9ju2rS6Nh0vSVjOOBHFbDLD5t/3EPlCnOZwGUnoRUelnqjEC+XYiRcql4aTZnOQzV5/2WWAk8cPE0UhuXyJbC5HZWRiqNTzlYii1DPYOcV8zSLWUL2CZ7B3TnutDOYaGZodm3w2TG6kFZd8Nlq6vWtx/qsLuWkreQe1JhGMoYUfWbiBjRfauKFFECUxq1k7oNAX7Pso5sIl3kjXN2kNiPdW1+4L+EI2JGO7tHbswXY8qmWLQiGH6yZe3Z7HcPB6WSZJrmE2CSs9a+wgk731BrDbgdHWSWbnLDxfMVKNmN4UUC4t713rdBThq4e5MJ/DUJrp0S6bRjtknJW9ca2uxbkXEjHY8rLkHJ+xfOuGxCAsb/SSAkCdviAs0BRBuIj1YtiE6+NOt5ENXeWE3ktZzVOkzgf++hMUUjHTK+ZV6+apuznaXhbbCqlku2x6Zi+Vgk8cK2rtRBDWWg5hZFAYEISFQoTnGzSbiSBstgzCUJHLxhSLMXPZaQyzRTZXwBowOFprTr1zBMMwqI5OcO7UcfY+eOP/Fr4PY52TXLps0e0ajFQjxseXRlh0OgoOvMHlRoZO2mNwrOIxUXGH0iCaHWtBDKb3zV6vwXLWXfYYuoFNrZvnS587QIsKGijS7IvBqzWgn9WTtCjzZz+1Y8m6wQiatp+h5WXo+g4a1ReF408/QCkXkLWjRWOZZBIVrchmwnSSO8Dd+zD5XEycegs7XYNOV9HtGH1hmHFicnmdpMao7WSySYjvatrFK02Y6rQf71j3FHPzFp6nqFYiRkeTa7vSGKbZSirGztSyhJFKUylcRktLhXyvYND5rx1hvlsgCK1+WPC1hIoOfm8vx344j9AlTzsVhM1rKo63EVkvNlLE3zKsN8MGSSGRFiU88nTJ45JDY5DBJUebb/vpRylmPIqO1xeFvbYGLS9LKxWFHT9DrFVffBQzLhPv2kcxGxJERnID7dq0lhEbxVyIf99+CvnEExhFpDdSA7e7EFIahArToO+B6gmNwRCMxbz0tS8wuWkbsY7ptpvce/+jQ0b0elgsBrUmmVEbS3IGV9KU7bZBfOANLtezuL7JSMlnotplvOwtCUWEBe/g+a8n3kE/THrbBaGJMjRj+RZjhTbVbGfIS6h1YkA7A0au7TvJzKcZUbB9ChmPsScfoJgLyGfCoWOOItX3FrbdBaMXxwrHjinmAorZEPe+BykUYrIZ3T8viTBMBOL5izXqdQ9UjkK+SsYx+rmG54ztONlEzNvO8p7DE8cOEccRuXyJTDZLdXTyqoI9jqE+D/bFsxSLMXt2e1f0SrqeInj5EOfn8piGZvNYh+mxzlAF0WWvZVpEZrZdpOVlyTseY4VkUHM9YaKD9JLnv/grSchoh1JfEPZmQDe6IFwvhk24Pu4GGxlpkzYl2pRoUcElh41PkQbf8XMPDxWP8kKLejdH3c1Rd5PIjpzjU811mHrmfioFHy9IWtU02g61tkMcLeQQhg88SKkUEQSK8xc7NBozhOEc3a7L5MQ49+6+B8Mw+OrJHG63w9ade5i9dJ7a3CV27314VX5vHCd9BavtM8zXTHK5mInxJMJiMDdNa/o9Bi/VsniB2W8rMV72hiYd212Lcy8c5nK7SNvL9sNExwqtFXOto1hRd/N88ddfpUUFjywZ3L4YLNAYCqN3dZZD+gnKah4bnwwu3/ZziVjP2cGy44PFY5mWl6UzIApLWZfxpx6glE/spReYNDsLk6atrkUYGdjWgn309iYT3BlH43m9MNIFgei6RpKakdHpOCbuh5JmsjdeNf1aiGNoNWCkczrJ9YS+0K+U42XPURjC3LxJ/Pqb1FoOhWzI5EiSSrFSBE0j9QT3QkV74n/kGmofLKYb2Gke4au0KabF8YI0cqZJUQrLAOvHRor4W4b1aNiWQ2vwyNKlgEueLoU0TlstiMKfeYxixh3yFGoNbmj3b6LJDFuWKDbI2AFFx6WY8RJRmAtQJIPpZtfuhya23cSDlcTjL4QmFvIxjqOTXLfuws20m+awecuEk57WWzh+5Ks8+e5vvyGv4dUIA6jXYKR1mlrDJJfVaejM8mGIkCbP10yi1w8z28ji2BGTVZfJaneJV3DoegQmlpnMMp75ypvMtYvU3Ry2GTJWaDOWb1HOrnwDjGLVn/HsCcOOn5QYHxTs40/vp5gLloggzzdopZ7Cdje5Vl6QGI+FEJn91BtnCPw6pgmdTpft27YyUh3vewpdLy1G4ya5oXEMppF4DrNZTTYT8wcvH2Pzth0YVkgUtrn3/kcxr9Eiag3m2dNYpmbXzmvrP9XtKryX3+TCXI5SPmD7ZIuR0rV9ttW1OPOVo8x2inR9h3K2y2ihxXihdU3hL1f6HVcShD3Dt1FyCNeLYROuj+uxkXeKfQTwtUObMk0qtKgQY5CnRZE6H/zrjw2FOrZ9h3o3l0R2eDni2KCUhvpvek8iLFpdqy8I651EEJ6aOcSOqTyT3/4dlIoxQeDiOA5RFPHa6weJooipqUmazRaO48DWD/Vb9awmnTaMtE9x6bKFYcDEeMjkRLgkhDCOF9pKXK5nkvzsUtpjsOz1bUovTPTMV45wuV0kiCyquU46iba0z+DQsfg2n//Uy2kD+iS/sUCDIg1A4+sMWbpYKsQj2x+/+GQAnbZYavPtP/s4xYxL3vavKgqbqTDs2csFW7mPUi4gnw0JwmSCu+XatDr2UAhpMRdSzAa49z1IsZBMWiuV5Kd306innjDsdpPCe6aZRD8lHsNtfY/hjRRTuxJhkFREv3zZpNkyKZciNk2FjIxEK44lmi2D+LU3mKklETRTI12mRlYev8CC+J/vFGi4ORwr6LcSWTyJfS30evU++5lXh4qu5QfSKdaq5cha0LOPsPY2UsTfMtxJxm05ElGY64vBnjgEyNIhR5v3/exjlLLuktk8N7CS2bVUELb8DFFkLisKTUMPhSb2ZtiC0MA0NcVsQDEX4vW9hXqhAW5fXChmZzt84+WXGKlsw3ZKjI5MkM+ZQ7lrTibxQq1GX59eGOLlWQul4J5dHpXylQfnXVcRv3qIi7UsfmAyUXGZGu1SLV6b+HB9sy8GG25uKLzmWsISe97CnlBvpzmfUWTiWIkoLGU8xp7eRzEbLAmRjGP6nsJ6S/HCwbfYs+1h0EnlzVzGo1KI8e57kHw+8RYuPqYoSspsd12DViviWy+/wgP3vzspfhAkG5sGOE4yAZBxNI6jOc2OtAhCkjyvjKRwQmbmDLlsvKSZ/LUwP2/S+tZbdDyTXdNNpkevfUaxVwjhzAuJGIwig5F8m/HUM3i9Bm65/Te9LF/81ZdpU077LZEOOpsUaNy1ldRE/N2Z3K3ibzGxVnQo0krFYJf8it7BOM0Frqd9Yx+YOt/fT+7JpwHouAFfPXiGkfJWgrBEGJUARTmfeAjru+5Bx3Xq9RqXZ+ewLJP79tzL2OhCBbQTJ20sCy5Y28nnV8fG+R5UW4kQDALF5ETI1GTQ76M7SK+thH79EHPNDKaRCIVNo90llbLnWxnOfOUoc2nT+ZWiW5Z8R6yodfM89+mXiTAxiWhSxSVHBpcySbhugSYa1ReDvYdHFtBprlmb9/3cYxQz3oreyDhWtAc8hU0vhxvYGEoPicJyISDrRESR6kc7tTpJ5FM3neDOp5OmXhpJU8gvtJ8KQxZSLHrpMWllUlgIJ81m0nDSTOI1vJlJbq2TnPpi7QzNlsGD+9xlr+sgrqeIXz3IxbkcfmiwabTL9GiXQu7KE5+ub3LuK4eY7xSodfOYRtz3DI7k21ctIrMcvaJrX/r0K7Qp4ZLHIE5bTyTFhe7WKtwi/m4zG8WwXY1YJzfVRBAW+zdVk4gcbXK0ef/PP07RcXGs4dmh6xGFlpk0pO2JwV4Y6a5NTUbLCwP9yzuThvW+HzA3P08URczNz1OtjDA+trmfu+a6C7lrc7U5gsClVMwwMV4inzc4q7b3+xWuFKK4Eu0WhO+cY/c9HmOj1xauF0UkN9L5HM2OzWjZY9Nod9k4+xW/113ItWi6ObK23w9LvN4cNS+0+t7CnsfQD5OKmI9sOQ1A7omn+ttfqjU4euYCu6YnCKOYSr5CFOcTj2F3oeiMUrBvxzyjZb9/rXo0Wy2+8a2X2bplM6VikcmJcSzLIorA95Mke99X+L4iSHsd+oEiDBVRpPohSlOT4U3N+rmeovG1o8w1M+zdVmOiev0hnVGkmG1mOPPVY8x3CjhWyGSxwXihuWx59BuhN5D84q+9knoIiyh0fza813biTp8BFfF3Z7KRbaSvnVQMlmlTJsJMJ2oafPCvP7psIZQel1tdDpy/zJZKEXfnbgrZDPt3bqPRcai3knDRZsciiiMuzh1l/65xck++a0hA1OoGzabZb0ERRYpsJsklvGhuI1+k387gRohCGGmf5OJFCz9QTIxHTE4EFArLj/1cTxG/8gYX5nNEsWLTSJJzvdhjFISKy/Us5772FvOdAhk7YLzQZKzQonQdofVt3+GPP/Vq6iUsYeNTZp4yNfI0+yJg8fil13c3aVHQWhi/ZNwVvZK9nMLES5h4C70gSbcoOR6lbJfxd+2nlAtw7DjpQ+wthI72op7iWJF1kqinYi7JKyzk46HcPK3TydI0AsodGMv02lY4ThJSmslozrEtbWR/7eOYdhP8E+d55unO1TdOCQKIXjnI+dk8QWQwPdpl83hnScGY5fADg7lmhnNfO0qtk0cZmtFcu1806EbEICzk5T77668MVeFeCBm9OwShiL/bzEY2bNdCpM2+l7BDkS5FQixs/H4j0Pf/4pND+YQ9rlcUXo3zszXOz9XY8oEfXBJCeO78BWr1OlGkqdW7TI5vp1yeSm6qaSN1z0/CSpWCjKPJZBIv1hm1HctKZtzstPGrYSThFM7F05gm7Nl9/cIhjpP+S94rR6i3HcYrLlvGO5QL1ycaBnPUml42KdJTaDFaaC1bkvvajk0tOxt77HKNc/UWu0YrtHfsJpexuX/75mV/GyxvhPwgZLbRIoxijhW2MToywpbN0zd0nKuB6ykuPnecjB3z4K75m9pXxzU59fxbXG4X8UKb0XyLqVKDam51xVkYGTS8HM/++iv9HCWLIK2k17hlfbZuFevJsAnXh9jIBYa9g2W6FLDxKVHnA598mEq2i5WKizO1Jqfnm7x712a01hw8P8tkKc9UKYm06XkIW52AN07MM1LcRscv0OrYGKamkvcpF3zCfQ9TKCzkcrmuotkyaLcNmi2TTie5CedyMcVCzAVzG/nC9VdyDgMY7SRCMAgVm6cDJieWL4oGSYGZ6NU3OD+bJ4oV06Mdpse6ywqFjmty9itvcqlVouNnKGe7jBWajBXa1xVan/QefIUGVToDvQd790RHDdvDSJvpuKXQfw6x+gVIvu2nH6WUda8o4sPI6I9hGm6Wlp8lCC0cK6CY8Shl3EQU5hfGMV3P7AvClfIK3b0PDeXdD6J1ElLq9oShp/BSgdgrRAOJQHTsJJrGcTRn4u2YVjIJPe6fodEweOqJKxfZWQnfh/CVNzh7uYBjRWybbDNZvfbJ5yBUzDayfTFoGJrRa/QGX40oVjTc3BJBmOTWN+5IQbiebKSIv0Xc7Ybtegi0nfZ7KQ7lEybx+C2+/Wcfp5TpLpukfc2iMOsPNW0/NzvPfLPNfVs3YQ+sOPhOkVePHWLfh3+AasWikI+BaMUcszju3ViTPMOeB8oPkueeB8qyNSPViG1b/JtO4I7jxCN49nKermexfarFlrHOssVirkazY3H2hYUctVK2y2i+zXihedWeg1fj0IVZtIb902N4YcSRmTmmSoX+gAXAfPhd+GFS8e5qhuDc7DwX5xo8fM82THPBaF2cz9LY9Sj5fJJUfzs48/njbBpNQpZWgyhSXG5kOPXC29S6eSrZLlOlOmOF1g3Pcl6JXiGKZz97gDYlAhyydPuDn/WcP7ieDJtwfYiNvDK+dmhSpUV5qMJlS1/g6Z/Yy6Nby0RxzNuzdUzD4J6xSv+zM80SJ+bHqWaTYjIjRY+MExNGino78RDW24mAsMy439w7eOAh8vmF8PteM/BWO2k/0e4YfVGYzSbhiIXCQuPzwdDCRm2Wem2WYqlKvlAik83he1Cqn+LijE0+H3PPTm9FbyAk9jR6+Q3OzeZQCjaPd5ge7WBbK7TvaTuc+cqRJaH11+shCiKDejfPFz9zgBZlAhxyaVXJMvMr5ox5OjMkCpPUlyR0NE+L9/3c45Sy7hWFqRda/doIzYFxTNb2E0GYVh4t5gIMI6nuevT0LHPNGMuqYJCEAvuh1S+cV8oleYWFfDx0fZdDa/AD1Y+i8X2F5yvCQGFZmkIhZmx05SJ210OrZdD91pvMNjJsn2yzbbJ13fv1A4PZRoazXz3Wr3UwnhYMupGq24tZSRAW0nSKXnP69RpBs55spIi/RWxEw3Y9aE0aerEgCgdDR/O0rhh6sVgUNlyHty5dwDZ9xgsKqPH4dz3CtsnhrvCnZrq8emyGycoWGh2FY49hGhkcO+4XMrlSvtrtxvcVnW++yfnZHFMjXXZvbt6QCISFqlxnXzg6kHi/kKNmXSHxfjneOD9LOeuwbaSEH0YcvTTPWCHHdHmh/HTDzfL27EQ/eT7veBQzHuNP3k8x51PILhics5fnqbc67Nk6NSTYT88UaHTsoaqx+UxEPhPi2BGtXQ9h2xrL0tgWWLbGNPTQZMC1EARJ1Vl18BBnL+d5ZPfcdXterwWtYb7pcPIrx5ltlyhmXDaV60wUmjedJ3il72z7Gb7wK73iCUUUpI2Xr620+u1iPRk24fq4Vhsp9jEh0gYdSszoAqexcChj0EExz0d/6gl2jDIkcHqTOr12E3640Dd26pkHqBZ9DGOhgnSvwmjHTXKyKwWf8P79VMrRkiJlSTsm1ReD7XaSdxaGSUGSfC7m9JmDnPGKlMpFgqDGzt17mNi0pb+PRg2MC+colyL23Hv1SBPXVfgvHeL8XI5cJmLLeIepkSsUMosUs40MZ76ahIgOioKVWkqsxEJO9Ss0qdChiEVAiTolalfsPdgLHe0Jh16bgmuJchqkG9g0Uw9h012oPJp3PLSeh3unydo+5+fOs3m8yiO7t6O12S+c1+4mz728wlw2TCqQ3refQiEmn4uv2w6uFkEAnW8c5vxsnnu3NJgeu3H74vomp7+8kN7Sqx67GpPYPQZDRnueepMoFYONdVVldD3ZSBF/ixDjdmMshI4W+zH5SeiFR55WP/RisOpoj5YXMNvWzLQUWSvDQ5uXiplzm7ZzamaWe6YnmW22yDk2D+zYgucbSTnngXy1XnXLfDap3tUrOLMWN9Q4hu43DnNqpsC+nTXGyjff+yaOYW4gR00pzVihxUShecVKoj0ars+JuToFx8YLIwyl2DFaJmcvf3J6AqTlZWj5WRquzcHzs2itGclDrJvsfc9j7NlappANV5wt7BWd6foWnm8SRgo/MPFDgzAyCCJFGBnE8fXdpS0zJp8JGSn5TK3QGP5WUG/bvP3c28y2S1RyHbZU5hnJX3vuxY2yXGl1B3cgXPT6Gy+vBuvJsAnXh4i/G+eSDqgT4eoMFcYJ1ThtihhpTu93/MxDS5pq96oE17v5tCF9FqWgnPaN3fSe/f1iHH5gJIKwk/Qg7HoWjj0sCBdX9OzRK0jytRdfYce2/UAhqZrsJzdppZLCXMoAnd42H3n4+sRYs2Xgph6jyarL1on2VQuJdD2TM8+/2W8pUc52GS82Gcu3ltQbuBa80GK+k+fZz71+Q70HB6OckkntNGz3OryEcaz6/ZZ73sIXT55m19gUm8tWkk/49D5K+XAobFZrkirqA/0KW65NFKWtm9LCeW7ae3m5ENJbge/DhS8dp1rw2b2luSr7bLST6rGX2qW+N3ii2GQkd3MhoovpFZV59tOv0qY8lFLR8xLe7j6Eg/YR1t5GivhbhBi31cXXztBN1SUHLNxUv/3nHqeUca86C3T44hxhFPPQ5nH8MOLNNFRx5/vft+z2g4na7bQPXu+GaluJtzCfCenc+yAZW/fj6W371ngNPV/x1v93mj/x4IVlw2RuBj8wOP38m1xul/qza+PFJhOF5oqG9FKrQ63roTXsGitjX2fMa8sLaHkBl9sKpYpkrdF+FVJgoSHvU/dTygVXFIV3OlonYvzYcydoeVmmyzW2VOZvaBBzoyR5Mgul1ZPBT2Ng8HN9A7obQcTfnYuIv9Un0iYtyv1w0QCHPK0kd/AXH1sSBtfLAa5189S6ebq+Q9b2qeSSZvTVot+3HZ5vpE3pHWotB9c3GS157N9V49LOp5ccy3PPf4UtmzczNjpKpVLu92PtFejqDQMHK3JfL3EM0Suvc3qmiKE0u6abjFeuPsDWGmqtpPry5XYRgPHUO1S5hsnM5eiFB37h119bMkHWKyRztfD5hQIzC+OXnpdwCycoqTrv+eUPrnAuNGfrLS62Ojy2ZVPaFD3Xn0D1AhvLjChl3DSfcB+lfLBkbNBr3dQvnJe2plBKk3UiMnZMxk6em/c8jGNrHCdOahtY+qZsrtZJu6tzX3qH9z924cZ3tAK9lIozL7zFfKdI3vGYKDaZLDZuie3sed+/9NnXaFPCJ5P+TTT7OYSWWh1v5HKI+FsDxLCtL5ZW7Srik8EiJJeGXnzHLzxBMeP2Q2cOXZilmLHZPlLGDyPeulRjJJ9hc6XY3+/FZplz9eoS0aGU5u1zM3hBSKWYJ+vkQBdxAwfXM/GC5OGHBkG4cLe0zBjHjrHNGMeKsa0Y04xp7nwYy9KYJpimxlBgGMnsKSQzqHGsiGLwPIP88deZbWTwA5Nn9s3c8vCDRtvm1Ffe4lK7BMBEoclEsXnd4TU3ytUa8uYdn4LjMfLkfvKZkFxm5V5FdxpBqHj7S8c4Uxulmmuza+zyiuXIbyU972Ay+CnjkyVHJxWDSUn11Tzn682wCdeH2Mhbj9b0C8k0qfQLyRRp8IGfe5jKQJuJHt3A7ovBujvce3DqPQ9Qzi/k24eRWraoWhzHHMhup9t1abZaTE6Ms2Xz0gJfq0mzZdB68QjNrs29WxpMjVy77QlCxekvv8nlVolGOpk5UWwwUWxesbfg1VjoPVilRQkF/cmxErUlhWRWPD5to9ArCoX3/PIHafsBb1yY5Z7RCuPF3PL7iYzURib5hE0vSzhQF6GUdZl4Zj/FbLgkZSSO6Y9bvMBIxi+BgZ++90OTIFSgF27yphljmUlqhWGkzyoR+1qDJhm3+GGyvzhWlPIB90w3b0kaxWKaHYtTz7/FTCsZt0ymQrB4HZVjr5eOb1N38zz3uddoUybE6ueT9nLsV6ugzHqzkWsu/pRS24DfAaZI/v5+S2v995RSo8C/BXYCJ4Af1lrPq6Qz6t8DPgJ0gB/TWr98pe8Qw3ZnEGh7Seho0jC7i9I1tn18O5MljaKLUoodIyXyzkJW+5VERxjVCfU85X07mJk/y67pMo/eu60/A7rs8YQKP0xuqkGUCMMwNAjT8MQwTorGxDp9pOGKRnpTNdLZuWwmolrwb8sNdDF+YHDq+SNcapVoe1lG0sqVo/nbnxTduz5d30ma1wcO3cDBCyxibWBbIXnbJ2f7jDyxj5wTks9GZOw7TxxqDSefO8I7sxOM5NvcO37xlhSIuZ7jafsZPv8rr/RLql9rnsy1sN4M292E2Mi7l8E2E70m9AWalKjxwb/x+JJKz71WBT1B2PKymEZMJdth0zN7GSn5VyzZP99s8+apczx1/z3M7373rf55uK5i/oWjdDyLR3bPDfUNvBZ6+e696suwepOZYWRQd3N88dMHaFLpF5IppRNkeVo3bHfOaZ8mEXtVIvxW8hAuR68uQq8dRdvPEGu1EE2TFpm53mia3rglGbNAFBvEMWgUikQEGobGNmOyzuoUkblR/MDg5HNHmGmV8QKLiVKTTaX6LRWCMNyjt5X26B3Msb+ZlkzrzUauB/E3DUxrrV9WSpWAl4DvB34MmNNaf1op9UlgRGv9c0qpjwB/hcSwvQv4e1rrd13pO8Sw3bn0GtZ3KHJB28xh45FhghxFlaRuv//nk6qjK80KLhaFX3n7HNPl7RQzBTJW0PdEjT65j0L27vJEDRLHMJtWrpzrFJLcklJ9VRqbrwZBZNDxM3QDm24qDDuBgx9aaK1wrICcHZC1A0Yef4BcJiLnhGtuqK6E1nD0C8c5Wxvhsa0nVy3JfTVYnCcDUKLWH/xcT5uJ9WbY7ibERm4cYq1oU6aZNqH3yJKlS4kaH/iFRyln3CX36iAyUs9gIgi9wCbveGkxmb1Uiwueo/lmm/OzNXZuGiefzfT3cWEuR73lkM8GdPc8Qi6X9J5bLTtoHniVN06M8Pie2avmA14JPzA49eU3ByYz20wWG6tiw1YqJNPzDF5rWGBdR8wSMoLJiFqaR39cP9Bvav4dv/AYRce7atG25Sa2u4FDFBs4VkDeDihkXEaf2t9PaVmvNvF6CSPFyS+9yflGFT+02FSus7lSu672ITdDL4S4l2Pvkut77Hue42v5u1hvNnLNxd9ilFL/Bfj76eP9WuvzqfH7ktZ6r1LqH6ev/026/ZHedivtUwzb3cfS3oQF9vJa30W/3ExbHGtO15pcbnd5YttUIizTBumd1BPV9jN9T1TGDsjbPvkBYXi33FR7eWonnj/OXKfIaL7Nlso8ldz6qBy5HH5opqLQxg1tOr6DF9q4gU2sDQwVk7FDspZP1g6pPLaPXCZKcyOia+ozeas49dxhztVHeGTL6TU7hqsRpoPIL3wmEYMRZn/gU2b+imJwvRm2u5m1spFiH9cGV+dopqGivb53JWq8/2cfoZrrLDsIbvtO4h3s5Dhwro7Wmq1VEzecZfu79vLwPeNDbXk836DedpKCXF6SI+/5JpoktaE3yZZ1Ilq7HiaTSXLLbFtj21xVJLqe4tJzxxiruOyYaq/KeekVPjv5/DHmO0UKGZfJVQgPHcQPTea7BZ797IG+ZzZPM42YqC9bSOag7jCGxRQ2xjInpjd2aVPq5xL2IpzyNHnfzz5GOdu95olCPzT7Y5e2l+lPnEZxEk1TSMcwI0+mwjAbrqktvBmCUPHOs29xtlHFMSO2VuaYKK5uCsO14AYWtW6eL33uAG3KRJjkafUF4XLtJtabjVxX4k8ptRP4MvAgcEprXU2XK2Bea11VSv034NNa66+k674A/JzWekXLJeJPAOjomPJfeoh7x6uM5rNX3d4NLLrpTbXjO0M3VcuM+sKwF6JYyIZknPXZg+1KaA2X6lne/vIJ2n6GzZV5tlTmV82A3i7iWOGGFl5o0w1s/Ci5fl66LIySRHnDiMmYIRkrxE6fS489iGMluZ29PM8bbc0xSBglpdvffPY01VyH3eOXVuGX3h4W8gYP0KBKhJWGpM1TWSQG15thu1tZSxsp9nF9EGqrHybapEKIfcVCMg3XY7btc66uiHWFnD2NF+ZwrCCJ/njmfqpFf8UqyWGk6Ka58a5v4vkLuWZ+aBIEV58Nte2YiYrLrulbN1BvtG1OPv8Wl1slLDNiU6m+6sVD4lgloaIDXqCeZ7aXIzaHTxUL6zp+aC/CaUEQFvDJYhH0W1B8xy8+cdUWFIvpRdO0fYdOkElSLgKHKDIxjZhcmmaRd3xGnnrwjsrBb3Ysjn7xBLVunu0js2wu19YsgqnnNf7Cr77aDxfteY2rzPKx8BtLPrPWNnLdiD+lVBF4DvhVrfV/VErVeoYtXT+vtR65VsOmlPoE8AmA7du3P3Hy5Mkrfr8Ytrufs9qnQ8weNSz8Im3w8C98ZKjAzNUIIiMJS0xFYeI5tPFDOymfbQX9m2r18f3kU6/half6XG2CUHHs2eOcrY0yWmixa/TSugpVXA2iWOGFFn6UiEI/tPAjkyAy8SOLIDIJYpM4Hh7UmEaMacQYSmOqOE2WT66n1ipJmNeKIDIJI5NYG5hmRDnTZbpcvy1tIG4lvYHP53/99b4YLNJgB0f53lDE361GbKSwHMsVknHwKFLnA59MvIPL2TU3sPqhonU3RxBa5ByfUqbLxNNJMZl8NrwhIaD11b2Bt5KOa3Liube42CpjKM3mco2pUv2WTGi2fYfPf+qVvmfWJOoX1ipRv6kKkktbUBToNaov0OR9n0yqpd+IwI3S1hRdfyHFYrkc/KwdJBPc6zTNwg8M3vz821xulbh/6vy6sbM9r/G3Pvs8fz58Ycn6tbaR60L8KaVs4L8B/0Nr/bfTZf1QFQlpEW6Wug6ZJWIUk+qiOHxfO5xhFy4FIkwyuElvwp9JZlELjnddhqwXTjp4Q3UDm07gEITWgDhM8teqjyeew1wmCU9cDzdWreHEl47w9uwkmyvz7BiZvSNmA28VOk2Qj7RBrFWSLK+HT4hKi/zYRoRt3hmzpzdDHCsaXpZdv/ybS9attWG72xAbKVwPns70xWCbMkBazr7Od/1fj69Ygbjj2zS9HA03S9PL0fUdTDOi5HhJn7p37aec99f9JOYgXc/k7S8dY6ZZxjZDpss1pkqNW1aAyw9Nat18P1Q0CQlsUk69g1frOXg1BhvV90RhiD3UU7mcvf5xy2IGJ7h7aRZumIhDjUoK2tk+WSsdxzzxIFknIpeJcKzbP47puCYv/rcZ7h2/yHixdXu//CqM/Pw/WLJsrW3kmou/NFzlX5Ikrv/UwPLPAbMDyeyjWuufVUp9D/CTLCSz/99a66WNbQYQwyYc1B3GsZhcIQ6/RxJ+kU1bUCQVR5PehPq6exNe8TtCCze0+8Kwl8vmh8msm2nEZNKbatYKqDy+v59zcTvz1+IYXvmDs9hmyJ6JmdvyncKdxXo0bHcTYiOFmyXSxlBVUZ9Mv/XLSoVkeoSRQcvP0HRzNL0MTS9HGJk4VkAp41LMeEw8s59SLliVUPlbSatrpUKwwshtynMfDBVtUsUbaLtTZn7Z/LAboddTuU2pP25R6LR9VlIYr+jcmJdwOaJY4aY59730CjdwcEMrKdKWVhG1rYisFeCkKRblJx4kY8c4VoRt6VUTinEMB//HCaLY4P6p1e9LeDOsRxu5HsTfe4HngdeBnk/+F4AXgd8HtgMnScpYz6WG8O8D301SxvrHr5TLAGLYBLisg+uOwx9kpd6EJhF5WuRo876ff+KKVUevh96NNSlokoQnJu8T0RjHBlorTDMaF0S3nwAAd15JREFUyl9zzIjy4/uT3oT2Qn/CGxGLWiezpse+9DYtL8tjW///9v48upLzzM8Eny/2uPvFkvvOnZkkRTIpahclVclylV1lV9lVZXvG5bU8Z+yecXeVRC3lskosiiJV7rbnnJ4+4/HUtD3Tbbtnuse12CpJpEjtlMSdyUxmMrnkvmG7a+zxzR8RNwAkgMxEbsAFvuccHAAXF7iBCCDe7/e97/t7j1/z76VYe6zGwLaWUDFScb2REnxKuatobV654qWMZOYyGEnQDe3ifTJnTl3FDhh7eC8Vd+Hw8pVGSpho2Rz97nv4kcX25iSbq62b0jMmJXRDm2f+4JXCVdQkLJyWy7QvO4D+SkmkNi9L6FFekCWs2MGyewmvlMFGd9ZikbdZ5B8P2iziRCdJtaKFQtdSDC3ByNssBq0W2TiK2WNMUo04zdo1gtgklYLRcpc9o+dXnV/BaoyRKy7+bgYqsCluFLE08CgXzqMeFWIMTMJCFD7yxf3L6idcDgOROLgBzutbyz8Ok4X9awKJGAx5JTsuIQazfwSSTCQ7ZsRoqcu2xtSKzqlTrF5WY2BTLI/LxUgVH9c+kTTpUaVDgx7VYu5dhfZls4NzmSsKe/n7ONEL58nBSIJK7jy50uXxfqhz+Ol3uNCtsb05ybb69E03DvEjg29/5eVCjGvI3ETm2vsGF2OQJRy8ZdVN4NLPNrIfvf+aqpuuFikhzkXdoLUiSbXi40E2EQYiMcXQs8zial2fLBYfYeVjpBJ/OSq4Ka4ng0btuaIwRcPGx6V3w3fcLsegh02SmZVANuxVF9lO20oHZMXwoMTf8KPEn+JipASPcl4qWivGTJTygdef+mcPLhhCfymiRKOXZwn7Yeai7UUWwPx5uw/tpWQnuDd5rFKcCA5+610udGvs3XRqRcceRYnGdD8bMdGhQYqgQpsaM1SZWdYM1itltrppsG7JqpsMYlx6lOjy8S88SMX2V11mbTWjxN8KogKbYjUw209YLm6u2Y6bwMHDoc/HPpuJwpIZrorB6wrF5VDib/hRMVJxJSRSp0uNHtViCL1FQJkOn3j0XuqOt+yeMikpDEUG83b7oVXMbx24TrpmSOPBvTfcdbLv6zz/p+e5e9PpVTP3NklFNoP1a6/ToU6CUZjIVJnBFsENe+1BddNcx9EEHSsvKHXp8ciX9q/YRvZqZ7WKP+PyT1EoFNcDIcDBx8GnyWTx+GDGj0eZ73/9ZTxK+JQAcPCyTOFn76diB9fs4KVQXE+WCmwKhWLtoYuEej7nc0AoLXrU+M6Tr9OlRoxZGJp84gvZwPJLleQJAa6ZuV+PlhcOgB/MqvMik87Lr3PuItdJgcQ2YxwjwjYiag/swzaTOaYi6bJ6DqUUuFZIy3dXjfjTNcloucevPbYHGDgtb+Lpr77Ge9xBKO181uMMNWau2VF0LoaIi6H2cxmUjnqU+ZPH38ajjETMVjd99n4qtk9ZbWSvSpT4UyhWmEwUejh4NJkoHk+luEgUlova/LmisGwH6garUCgUipuOJUIsJorYNSgX7VHlG08cpkcViaBElzIdPvnFrJ/sSuOVqafUXW9JIZamgiA3EfEjk/4rrzEdG0R5v3uYGCSL9bwLQGTd7YM+94HwGy/32NaYupbTckPRNEnD9fhrj90GDIaMb+Dpx1/lOLcSSAeXHjWmr7sYHJBd9ykazJ6nuRvZP/j6i/maRW1kr0aU+FMoVimakHkDdh+4UDy+UBSWivLRubtuZWvlegoVCsXaQJV8KpaDEFCiR4ke42SW+6kU+RiCGn/61bfoU0FALgjbfPJLD1x1rNI0iatlmUOuMFMnZZbhG/S8D3ufuxBQc3x+5bHsf3VWDLZvmhgcHMdiG9kDd1m1kb16UOJPoRgylhKFF++6ZTfbEhKtqM936PPIF/dTtgIM1bStUCgUihuMJiQVOlToFI8lUsOjQpcaf/z4O3iUEcjrIggvhxDMGRuw9oTGlYjBMh1qTN/wnsHB8Sy1ZpkvCudvZDv0C3O8shWsWkfPpVjNbRFK/CkUa4RL7bqF2EUJxp9+9S38vGnbJMTJb8of+/yDlK3gpts7KxQKhWJ9oYuUCm0qtIvHEqnRp0qPKn/y+Nv0KQODDGGXT+Qlo8MmAlaaxcRg29/It7/6Gu9yJ5G0cjfRaWpM3xA30aWO69Ib2SV+9IcvFAIxRcMiyNcsPT7+hWwj+3oNrl9PrHvxp0paFGsdIcAmwCYA5vcxRNIsROG3vnYQnxIhNhopDv3MgfRzD1C2lAOpYj6reVdToVAMH7pIF5iLZBnCMn2q/NlX38KjgkTg0qNMh49//gFqjqfGDywDIaA+p2cwTQUtfxPffuIA59lKIjVqzFBnigqt6zZ0fjnHN7uRPTnva6G0ijXLN544jEeJGBOdBIdetpH96AOUrJCSGQ51Oe+NZN2LP4ViPWOKCDN3CJtLIrWihPR7T82WYwxKSN1cGKqdN4VCoVDcKLIMYVYyuiF/bDCTrkeVb37tEB4VYgxs/EwQfu59VB0/6wNUXBZNkzRL/cJNNE40pvrbeeapA5zgFgwZUWeKOlOUxEJH1ptJZjQTznOchWwMycAp/TtPvo5PiQAHoCghdejz8bztZb1vFijxp1AoFqCLtGjan8ughHRQhvGNJ97Ep0SENS9b+JHPZiWkw1inr1AoFIrViybkAlOZQalgnwrPPvUafcqEOBhElOhSossnvvSgMkG7Agw9ZUO1w994bCcAfmTwza+c4zQ76acVyqJTiMGbVSJ6OXSRLOgrhfklpAEu//mrb+FTIsbIs4Wza5aSFa6bNYsSfwqF4oqZW0K6cOdNW2A441MiRcMgKrKFH300u8m6RqSCsEKxilFtEYphYW6p4Mic/rFImsU8usxYJhs94NKnRJePP/oAFdtXve6XwDFjfvmxvcDAPGacbz7e5yj7SKVGnSkaTFKmverKLOf+XVxMInX8XBgODGcC3GLNkn1fn498bj8la205kSrxp1AorgtLZQshC8CD3bfZkgwbEJi5HY2Dx8cefRBX1eorFAqF4jpgimjBYPpB2WifCk8/eYA+FSKseVnCR764n4oyl1nAwDzmrz92KwBRovHnXz7BebbQ4w5KskudSRpMYYjVLah1kVDOzYQuZrBm8XH57lOv4OMuKQxdc2HGcLX3xK9r8TfMu5pTcpwZRgq3LJeeWiyvUhKpc5LdOHiUaVOiiybWV0DJegujec5uA0Jp5VlCl2cuIQyz3bdQGc8oFIrL0pLNrNfnBs00U1w/puUYbRr5eqZ1w0cPzC0bhXPF43OzhH+am8ukaMUsuo999n1qQPlFmHrKX37sHmB2pMQ3H/c4zHY0mdBkggYTOMJf4SNdHpdas8wKQ4fvPfVyIQwTdHQSxjnN3/nCChz0MljX4m9YiaTJSbmHv/6FjXz3ay9xhh14lNFkmu9adSjTwaW37kTGauQEe9BJEEjOs4U+FZCZfXWFDuVcvK/XazVo4L7YdAayv/WBMHz2qdcIcObsvsXY9LHx+fDvPEjZCnHNUJnP3ARW+66mYn0zJcc5ww5MQgLpUKJbzDQbtkXoWieUFifkHv7qo1v53lMvM8FGQulgEVDO1zJl2lgivOHHsliWcO783O9//SU8KvksOjkrCj/3AFXbwzWjdS0KZ7OCtwBZr+Cff+U8x7idSJrUmWaUcytuGnOtXEoYJlInRVuBo1oeSvwNIWfYgU5EL7T5uS/dR9X2ESJzaOoEW3n2iZc5x7ZsRk4uMkq5LXKJLrpQi+ObRV+WmZLj/KX/ehsj5V5xrZJU0Ak28+xXL75WvXymkbpWMLjJzrf+HhBLgwAHv5gFlO2+xZgIUqx8hqFFkJVm5FlDVcajUKxdEqlxUu7m176wgZGyV2Qjvv34axzjNsJcDFaZoUoLV/RX+pDXNce5lTJtYCu/9M/vwDayUkEvMmn7Ls899Srn2UIobSyCfNO0TYnOFWUIQ5niIXEQ2GL5i/Kl5ucOSkc9ynz3qVfoUyHEBmQ+uy4ThWU7WLdtDI4Z81ceuwvI1qff+PIJTrMLT5ZoMEmTC1RE5zI/ZbjQRYLO6l+3CSnX/kJo//798oUXXljw+DCWfaZS8Lz8FB/7B7vYXG8x7ZXo+C6GnlB3+jTcPnXXKyyO01TQCRye/eqL9KnSp0KCnt+cZkXGzdhVW4+ckrtwfv1X2Lv5NL3AphM46FpaXKuG2y8azRe7VoOSk0E2t0R31bhrrWay3dosSzj3fYhDgo5Gio2PhZ9lDj/3EG5uQmOscwvoAXGi0Q1tvvvVFwixibCIMWkywd+Ov3/J7xVCvCil3H+TDlVxjaylGDkhN/KW3MuH/v6tpFKj5niMljuMlHo4ZpyLQYenH3+VDg18XGz8IjNYorsuF+orgZTwvPwUH/mHe2i6PWb8ElFsUHW8bC3jeFRtvyjz9yODll/iu0+9Qo8KIQ4mYbFhWqaDjVdcv45MmCamT4ovJaPCYAsm+g28wLP9hOU8SzgYOTDIFPb56Gfvp2yvLQOR5ZCkgj//568wyQY8yjSYZIyza2oj5hejw5f8+krHSCX+hoyOrPOD9NN89Hc/wWg9oF4OGakFlO2IMNE595PDtDwXP7KwzYi606fm+NSdWZEhJfQji7bv8r2vz+5YDW6iJTqU6Kk+wuvAj9NPsfVXHuK2D2wsrlXVDfEjg7PPH6bllwgiE9cKqTtZsKu7/WIGjZTQC22+8wcvFIIwwsLKpxwNBOHcgKe4PKkUhDi5MMzEYYhNiEOMgUBi5q6mJgEf/p0HccwYxwhxjHjNBmwvMvmzr7zJDKNAVjXg0sMiwCTEIMIk5JfjNy75c1Y6sCmWx2IxchjjI8Dh9B7cX/lFPvSZBmP17L54+keHmeqXiRKDhttnpNRlpNQrSsR7ocW3H3uFDg36VLAIisxgmfa6Lcm/0UzLUZ5PP8mnvvIII7WA0ZpPs5IZZ5x//hAzXolO4KBpaRYbnWxzu2zNblYHsUHHd3j2yVfoU8XHRSehRIfT8iS7SNgkIjQhiWSKgUCsQLAciMIsW1jKB5Wr2blJKvjP//w1JtlIjMUo5xjj7Ko3i7kUlxN+sPIxUpV9Dhnn5WZacpR45x6s7RGRkeIdO8DpiRJ+qOPuepAt1YB6JcQxEzqeybmfHOb49AhhbOKYIXXXo2Z7jJR6/Ppju4ufPbiJPvfky8wwhk8JpCzKRgcuWBf/U/oyxSfFQcO5irKKtUokTSblRnZsvxXrno3EZkr/3Tc4NVEiCHXKtzzA9mpAoxJiaAltz+LcT47w9uQG4kSnYvvU3Uy8/8KX75uXkfKiUTq+w3efeoUJNhHgoMskF+5d1fN5GTQhl7R/hkx0R1iFKPzxH/6syBxGWKRoCFJMsn5FCx+TkA8/+n5sI8Y2Yiw9HgpBLiVM9ir82ZPvkKAzjscdvDrUwVexPpESjstb2B3rdHbvI3zrIDNdC3f3fnbWA0aqPkGsc/pHhzk2PUaaCupun9Fyj1/88r5i082PDL71lbNcYBPHuA1dxlRpUWWGCu11X45/vZiWYzR/7kHSPbdgbIoxTr7C6ckyrZ6JtuVDNCsBO6ohFSffMP3xm5ztNPBCC8uIiuqZ8Uq3cJ+EzIHyXGcD/+8/PMM5NnFSVnCkQUX0KdOlJLs3va1ivsnMLAtn5x7Go0SMOW8O3Uc/9+CaGzcAoGuSX8oNY8JY589+/xxvch+O9NjAaWpiZmUPcI2ybsXfsO5qHpe3svHjt9OpbAaO0W4bnDIfwNkiadQTLDvBPPYaZyZLtHomUgrqd9zH7kpII99Ra/Uszv/0MMemRwtBWHO8IkP41x67rXi9JBV0g808+9UXmWKcU+wmlkZ+q+qSyCkCWkgR4EvJGAabMdGGYdV7g5mWo1yQGwm37UQIj5kZg5PW/ZS3pdm1siTi3dc4dq5Cp2+ia5Lmvn1sroQ0ygFRovHat37GVK9OmG4kTbVMEDpeXsrULRqrIQt4nWAbzz3x0pw+QoE7R7irstErQwhyUbd0OXQqBREWEXaeNbT5zpOvE2ERYhNj5s+UmHnGbPD28O88jKXHWHqCZcSYWnJTy02D2GDGK/HMUwfo0KDCSbZxcugb8RXrmz4VJuVG9t26kwsXDGT9XkZ3J1ilhPaB53n2lfMYWo1bd9zJbRs1RioBvcDg1A+P8O7UGDIVNEp9Rktd/uKX7yvEYPb/spvvPPU6J9kDEsq0qdKixrS6p14l78g70SOT8/oWmsEJDtn7SQxBY3tCuRITCWgdOch7ZytEsUb11gfZVg1oVkJMI6XVs5h54QBcZNVv6imG1uH9v7mF7Y0KLT/E0WF78zae/epLTLAJjzKpXPm2ikvPzp2dQ/e9pxbOoRtkC9eKE7ZlJPzKY9nafMbbzJ9+VXJC3sJGTjDK+aHYTB0W1m3Z5zCKv1QK/pfkH7Hxr3+Cu/7mXfS7EEdQa4DjSm6x36PdMWh3NAw9E4OVSoKug/PWAaa7Nj3PwDRSGpWweJMSWj2Lcz85TDtwCSIT24yo2R5112Ok1MXQElIp0bUss9cPTTqBy7958lkabMAQdXQSLNmmSpeyyMpGdbF++6cOJA9w+KHf4rbf/BCVGiQJNJpgu5Kd2jFabZ1uT8N1JM1mTLmUkKYC/dAhZnoWni85O/02ptGhbIfcs3uUanmMc88fopWXw6RSULV9anm5aPWiuURpKuiGNs8+/iJ9KvSpEGOqstGbyCCLOOiZm/s+wiTOP5/rECaQ6MQYROgkaCRopOjEaKS8/7c/gBASgUQTct61S6VASkilxk//xfMkGPlPygRqgo5JSJlO0ee0nAzxMJS0KJbHWomRp9Kd/Gn6N/jw73+a+h3j1BqSW91jTE7pTE9HGEYPXZ+k253k9igmiEZIUsFoLWC0lrVRtHoWp398hGmvBDLPDJa6NEu9QgzGiUbLd/nO116jTYMEgxIdasxQoaUcRa+AVAr+ffJ/ZNff+gg7f3kf3Q44DtQbEk2HzfIE0zM6aSpo1BNqtQTDkJSPvs5016LTN+etZZqVANtK8V74KQDHptqc7fR5eOcmkjTl4Nkpxisum2rl4hgubqvoUV00Pq7GcSFznbAHfYUXz6Gz8fjIZx8shOEw9bNLKYmSlG6g8cdPHKVDk92cYFSbWulDuyzDECOHVvwJIT4D/CtAB/6NlPJrSz13rQS2vizz/0z+G3b9w0/DjnFKFag0sq9tr4d0WqDpUG+AW5HIFDaEJ5iZ0UlSqFWzjFPJTYhigX7oIDM9iyDUce2ERiWkXs7KEJNUY6Zrcf6nb7Kp1qLlTXD4/DR3bBhhW6MCQCcIOXB6glvGGmhCULIcgrjMs0+8TJ8yk9KiS0CTlAY+deFRprNuzGW+Gf8qF+7/Sxif+iCbtkO1DndsC2hNiyzQubBpi8SyYdw7xkxLp93RsK1MuNdrCYYpsd48wNFTPY6d63Lbtj3UyxGNSnadXCum65uc+/GbtH13gSAcvF3scOlFZlE22s+tq7M+iUGGsLPuxftKkkqRizaTBJ0UvXif5jJQIkjRkAgyuSgQZNdLIAuxaBCjE+d9e8E1X9NhCGzrneXER1g7MfKF5CO8t/9v88g/+wAn2hZbKhEzU2Db0BjN7rUboxP85GcHqVab3Hn7Zur1GCkFHDjEVMdC1yRj9az/rOJGmRj80RGmvHKRGRwp9RgpdQsxmKaCduDw9Fdfo0OdEAeXPpW8VFSZyCykk9b4d+k/Zec//DT6rjFqI2CXYM9YyMyUIIqgWoNqTaLrsCE+wUxLJwwF1UpCo5FQLidEkYZ+8CDTXYso1qi4EY1KyETrPapuxJ07N9P5yfO8PdnCNnR2jdSKY4gTDSHkJeNjjyoBDgbxvLYKh/6qbavI5tA5uQP2rDCMMQqzMxsvc8J+dD+uGeGuMifsoxMznGn1cC2DlhdgaDbv/o8RmjDYw8FVe+5hOGLkUIo/IYQOHAF+HjgJ/Az4G1LKg4s9f60EthPpbv7n9B+z/59/mkk5Q+gLtm0dp98BtwzVJtgu7B4NaM8Ium0wzCwzWK1n2YFx/zitlkbf03CcTGQ0agmmmdLt6WiHDtHqWcSJoOLGNCoBM92TGHqfrtfnlq0bqL6d/WGfanU5cn6aHc0qM16AaxrcvWm0ON43zkwy7QUYWpkz7ZSz/8sZHDFOiI1BNK8Uca31p0kJ/2Py3zDyix+ld+8ocSTYunmcwM+uR20EJHDProBSef73hgG0WzDqneD02T4lp0zfew9Nm+GhB+4gDA30Q28w3bXo+waWmdKsZH2ezUq2u9fxTM5flCGsDDKEuYPaxbuA2agQh+eeeIkeFTwqSERRFjO4VutFvCsWZxgC23pmufERFsbIYYyPAP8p/tuUfuUvs+U37sEwZx8PPNhaDZmeFEBCa/oldt66g70Nj6kpnXZHp1RKGRuNqVQT3MOvMTHj0OpZ2GbCeMNntBbg2jEz3VkxOMgMXiwGpYRuaPPMH7xcmMiYhPNMZNb7xtp76a38x/Qf8dEnP8N7M5Ps2rWJdp7UqY1ApQ5RAFtrEZ0ZQEC9ma1lNA02hMeZmdHxfA3XzTa26/UETYD55uucPB/z1qlJGpU6jtlD19vctaPO1nEbAO+FnzLZK/PWhU2XraCBQVuFm8fHKh4lYHY801KeCKuN+WZn7jzTs0Evu01QOGF/6LMP4ZgRjhFhGyvTx35sqk0nCNm3eYxv/rMXqIqFo59WE8MQI4dV/H0Q+LKU8i/kn38BQEr5xGLPXyvi78Xkw/z4jn+C/aH7SYwpRjZl/4hSQugLtm8bp9fOBGB9FMo1SGLYXvM4f7bDhXPTlEoWW3dtpDmio+uwMXyPmRmdbVsjqpXZYCQl9Hoap7/7Hc5NJdjmOOemJ7hrxzibx3QalZDz0yeZ7nZ5/5230P3ZTxaUVfz0+Fm2NzazsQKaJpFSFi5bYazTCRy++7WX8nLEMiBw6BelFsPcn+bJEv+35AuM/OonCTZCYzxrLI/jhJJ+hqlzbZIUNu/Yxq47b8Ews/Ny3575c4veO3qQ0yeOYTsb2TtqE8cNwkgUWdxGPUE3JO22jnYoMzfIdj8z4V4vh9TLEUJIup7JuecP0fZd2r5LKgVlKyhMZWq2t0AQDhYxHd/h+3+Y7YJGWMoZdh0zDIFtPbPc+AhrQ/ylUvBHyW+z7/N/iWO5m8F9D26aF3e6rQtMnjvFuONRbz5IkggaIzAyKkHAiHecqSmDKBI0mzFjIwm2naK9cYDJlk3XMyk7MaN1n7FagG0lTHfmZwYHBjJNtzfPsTEzkXmZLg26VNGQuRjMTGRWu2i43jyfPMJLd/4W5ocfwKyexy1nsSeJYefOTbSnQdOytUy1CUjYXg+YmYJ+T8O2od6U1JtZ39x4cIyZGZ1uT8cwJPVaQhSdxvMv4PUFt/geQVTDCwxsM6FZDYsKGl2TmTnejwbx0QGg6szfML24n27QVvGdx7N1zLS0mSGmTsoIAXXRw6U7VGXAc8VhWPSzO4R5f7tEoBVmZ1k1iUnIhz73cGZ0lpudXa8sYhgnHJ2YwTUNdo/WAfjR7z1zXX72jeBK4iOsfIwcVsOXrcCJOZ+fBB6e+wQhxG8BvwWwY8eOm3dkN5DTcgdms0GkTWFbkpkLOs0NSdYw7ErOT54HYLojMMxxzp/MMoJnj50mis7glhu0uz3MMy38/t30e3DM2U29AV4gKRnZTfQO+yhCQBRNkdyymY/+4h3MtFoY7wpGd90Dbx7ivbNVDrzbwDJGeP+d4Dywn+rJs2i2jbtpDIDuW/8bL50wMbVRyrZD3Q3nlSOOlntFcy8MbqQbee7xF2gxwhl2EMm5QiN7ux7lFlJKzhIRIqmg46LhXkcL6Bk5gk8Jc6xGx+8S+imWI9FESjeoUtqwiTTR6cwc5sgrI1SbI4xsgFffsYufcd+egF233s32Xbdz5OBLmLfch6PrpClZv6d/jKPvWPS9rG+wsWsfY/WYaiXF8zT0gwc4NVHm4DELgHo5pHHPfWyqBFTcbN7VQBCebdc4EmSmMmUrmFcyWrUDqnZwWWdYISXuZZxhFQrFDeey8RHWXoz0KNOjRqOecKynA/Dqi2cBiCOPjePTJHFIY2w7dn0DkWGSJOCWQk6fFPR7UKvvZGSDpFKFqRbIiZPMtHRs+0FG7kzYMRqTpgL5+gEOHa/jBQa1csToQ3dxRz3A1FOmuxanfniE96Zm3USzzGCvcDWELJM03d/Bs0+9xml2kUqNMp1cDK79vsGzcjvGSJMgmaB33sDeEaLpoBtw8tTgukGpsom3Xu0yM/kKB6sxpYpGc8NOKuWdjOghJ48JvD6cLO+i3pQ0tgACLrRhJBUkyXYMU9Aay1opNjYTkDDT0pl48w2OnqqRJBqVUkTznvdxayWkVsqqW9p9i/M/PsiJmRE6cwThYCRTxQqoOT5/5bG7AThyfpoz7QjbqHCuU+G9/+hTFrcRyKxsdO5s5dVa7XQ5J2wYCESbODc3C7F59qnXih72CCtvRwCQRde5ToJBhEY2CP39v/0BmqXevNEdF/Pc7z/DaSK2Y3FGuclfN4ZV/F0WKeW/Bv41ZLuac782jLuaAFNswDJSOpEgiQTVkcVtii0nE4JSwlRbsHPnJrZu2oWm63i9FqdPH0E2UswRh7YPTS3g9HFBvw+lEpxr3kq1lnLivZcJ/Toj5y/Q7/dxHItmA+TDd1IWglp3I+8dO8Vrdp3SOy8QJymNalYKkaYp+z7xMfwgotXvs7HhUq/s4vzzhzjdanL4/OYi8zRXaNQcn196bN+832cgNL775EucZic+LsjZcouBm+VysoRCCKpSp0VCj4S3pc+IMNgj7eviVDopN9C8azMzfZNUB8PM/gQ13cTSs90rTYPJiQhXnqQfJwgxzrmTMLZZUm3MCsEoSJmYbLK936VSraNpUK7CmWgntT0wYoDXB8s/xukzFu2OhmlI6qPvo3FLwq31bIOg3dGJDx3grVP1+cY/99/D9kqIYyW5IDQ49/whznVqvDWxkSTRKdt+4QZbc7xsnEGluyxn2MGbMpcZXq50V1Ox+rlUjBxGWrJJgM3ZaAMwWTzennybfucsfm8HlcYudt6xibMnDpImMZZdJgo34LhVUhNOdwAi3nsbyhWQY9uob4EoBNE/zltHbTxfo968n9FbY7Y0EvqeRvD6G7z69ghRpNGoBmx4+E7urvtoAqa7VjFaIkm1XDh0ODnzLhuq0/zaV3YhhCBNBS1/M8888SrHuJ1Q2rj0i+zgWqqukDJbz6T1JpGXYtiSxdb1hgmnz54liX1SczOjm26hOxNy4ugPuXv/Rs54DjggbZjyoBSGHD0sMiO8OojmNmqbs5/V7oDln+D0IZMwFJTLKY1b9rGpkVAqpfT6Grzxeua+3TPRdEmjHFK//162VQJKTkKSCNp9k/PPH+TY1BjdwEYIqOZjmc52Zti3aZzRSha7070NNC27aFnZ6Haee+IlzrI9KxuV4ObVTm5uMDMMG6aZQPSBy29QzO9fN3LZl8nBn/6L56kxfUmX6QhJSIqrhN91ZVjF3ylg+5zPt+WPrVkiadKnwoZdNcRIgltO0fRLf88gI3j2fI+z53vce/8GTMsh8DoYZnZzsh0469vgAA5M9aGchBx7W6fdugPBBN98dQKJxLRcWtUKI2ObuMM+SrVSoVod4Wcv9iiX72Tfvu0EYzYT+f/oTu1nAMx0+xw8dootY3Vu/7nZ0QRzhcb5bo2jExuJE53SHEFYtX0cMxMav/rY7cX3ZlnCTTz7+IvMMMppdhJLE4sgF4Tdy5YjVoROhewktkjYcB1HVFxgM7Vyn63vh7MXokWPIU0TQm+G2ugeTEsy1T5PEoNxYYwTR4+ycZtGfWQr7ekzJHHIm6dqmFYeVBLyXU/QdWiMAKM7cUegCUQRXGhBOn2Cd9+zSSXUqgmNPfewoZHg2JIwFLTaGu1DBzl2rkIYabh2QrMS0HhwH7sqIYYumWx3+cnBFuHpFkG8pbhOA0FYs7NrZRkJddcrdkEH9MNROoHL9556+aKZhHN7PrvrvgdGobhOrLv4CNCSI2y4dxOTnonUyFsiJEIzEULD655HSsnLP42IArj1jhqh32Pi9BE277wX3TCp1KGNiWzChR6Y7YiTx7I42R3fQXM3WBp022C2T/DeMQtNg9Gt9zF2b0y5lNJu63QOvMG7Z6tICSPVgE0fuJO9tQAhJGcmJS9962ecmBnhrQsuXjhKMx863yzNjlrKSu7HefoPZjjNTjzKWNLP5w0O9/D5AIc+JXZuiZiup9jupX8P3XAoV+HC5FniOKFRLxNHPqaVZeOEAKcEE7EFlSw+nuqAENn107SsX1Af3U55I5Qk9HtAcJx3j1n0ehq2LWlsvJ/G7Qkba9lGaLut4x06wJnJBl5g4FgJ9982SfPnZ2cKDgThuR8f4uiEw5nWGGOVKhsr0ChlsbFiZVnhkdJi1U5z1zG7iKWBhZ/NI1wDG6aakGhEmCy/hSeVEo+UKpdZ7CqWzbCKv58BtwkhdpMFtd8A/ubKHtKNxc+HfkblJrffaSCAw4cmEFrWTyfyYGfacsmbxGsvn6c1cZTb79y8ZHmjU4KT7YhTx19G123SxGXvnjt59+i7lMrjdNqbMEx4s3ZrFlw33MqOD8EG/xiTkzrvHdPQtZRGQ3K+9kEa9QTPbyHtrZzdupXt5w4Ur9X1DM5Nl6g9cA87yiGWmSIl9AODVs/k/E+z0pkwnh09MRCFJSui5vj88mN755+nyMh6CfNyxBSd23l9yfOaSskEMRaCmrh+N5iWbDK2s87YZti4fUPx+Gsvny8+njj1EtWRnZhW1iN57/3Z86YvQK/bJArPceLtF7GdCqObbikCHWSurjNY0IAghFEj4Ng7gtDPglxjVNIcBSm2U9uejZnodMDxjnPwjEkQCqqVlGYjYetH72Ak/7n9vkA/eIBz0y5HTta5MDNNkkqEKLPj/o3s3dUgs6oR9HyDcz8+yIVetRhMP1e413NBWLIiSlY0byZhZi6zleeeeInzbM7MZaTIlwTdFZu5pFCsAdZdfASYYhzHzMrHqu6mwW2Kemkz+k6Iwml67eM4DlQ33o3fzwSW7z1H4HcpVZrFzxICShWYwYQmzPTB7UWcPpE5h46MS4Lx7dS3QBiC4x3j2HGLbldjbDTmto/eSROI47y88PVDHDlZo+93SNNzbHrwVu6sRGhC0Kxu4/SPDvP6mSZhbFJ3+zTzMtGqHfBXH7uzOC4vGuXbXznPRD58XpNpUSZapTUUWSMAX7pIdDyrya23Gxx6/QJCk5iWxHIuLQTTuMfRN0/Q9Xdw34OLP0fTM8OYGUxoQBhBNZ3ku996jSS2qTdL3HLHDpwtO7BGwQICH9zgGOfOGxw5aqNpuSHeHfvYUk8wTfB9wbSzh/H3flq8lq7LrH/w5/fg3lunHwRMd3wcd5zk7YD3psboBg6akPOqnCpWgKbJRdcxi22YGjLON7W7RaZwWMX/lZIgaZGwHWulD2XNMZSGLwBCiF8A/iWZlfUfSSkfX+q5a6GZ/XS6nf+U/ib3PfFraCMWQoM0zXa40iQLYmkKm3Zku1yLEXhdTh97jc079uGUaos/CUiTBN9rg5R02xfw+2003WBs052EgcvWakinnY0qaIxImiNgzbaqEYaSQ68dpOGdRmhjXJiYoFE32Xf3TkaaknI5zXsKYXLKQH/zIDNdmzgRlN04K7WohNTLWeYJwA/1YvREJ3DxQgvTiOcIQp+yFVxyd2yxJmFfprxLwBZM6uL67IUkUuf/k/wDdv7vPk7tlx+Y5zo34MTRF7CcCuNbbke76IKl6fxrONew4HKkCfQ6sKWSXaNqDcY2Sqo15p0bKaHXhc3RMbZsXlxgnTl3jqmpGWx7jPYLP8OyNmLoo1lQLIc08mG7rp0UP3Mg3M/95AjtwCWKDVwrzK5RPjfSNhZfoAzMZZ7NZy71qRTmMlmw61LOez6HdRd02BmWZvb1znLiI8yPkcMYHwG+mfwq+q/8Brf/9Ts52zMpVbOywTSFJMo2wJI4u88kscfkucNYjgXSY9OOfUU1zOUIPNhSiZiezOLe6Hi20abr+UzPEO5pvL3g+/wg4MiR9yhXdmIceYsD71xg89gIt26xGa1n5lyDmbunf3SYqX6ZIDKpOl7hJlqy5t+ro0RjxivxnSdfp0udBL3oG6wygy2CBcexGjie7uHP0r/JA1//dWTdREqQKZg21JpLf18cBRw78hM2bd9LuTa69BMXIU0SAr9DmkomTp9jvBRQrd6NpkNzVDIylmV4Z18LOm0Y9bMRE2kqqNcyk7VGI8GZI1LnikGAds/j9XdP8P4792Aa2boiTgTt3qzp2mKCsGr7S8a2uW6jsyZ5Wdno3CqatbRhGsqUI/jsE6WVPpQrZlhi5NCKv+WwFsTfW+le3vnQP2LjbzyS9SLkFXKangUgywLTgrfPWRgmGBaYJvNKQ88efwO33KA+uvWKX7ffnebciYPsuP1hdH2+OPI92F4LmZnKAuvIWBYIHRe67Rk67Rm6nRncUpVqbSebolPFYHPHloVbZa2WFIGz39fQD75Oq2fR6lmkqSjm9mTOlWEhjMJIyzOEh2n7Dr3AQdeTXBD683bXluKdyRbf+5c/4HbhLPhaIrOTp4vFeyuXoiPr/FnyG+z78q/j7h4jzb9diKyZ/cK5AximYM9te3nrrIVpgm4uvF7XipTQa8NGN6TXheYobN4mMRcRowPusI8C0O50OHHyFHfdcTu9fp+j77zL3XfegW1ZRFHWP6gdzNxF/TlzIgfuaQPRDtD3dVo9i3M/PULbdwhjsxCEDadPw+1fcvjsIJv73JOv0KdazCR0iyG8aibhzWJYAptieawF8fdnyd9g5z/4Bbb91fuII0FzTFKuLHzeq+9YxFHI9IVj9LtT1Ee20BjbvvCJV4Dfh83lTAiWyrBhk6TWmL/RdoebCcHDR95iptXmrjtvJ01Tjh0/wR2334N47XUmWg6dvolrx4zVAkbrPtVSZsrV7puc+kEmBv3IKsTgYkYZWd+gyzNPvEqHBiE2Lr28VHT19A0eSu/n+Id/kw2/9ql5o45MM1/P2GDbkiNnLEw7e1yIhBNHf0Z9dOtVX68B3dYFJs4cZfttD5EmBtuqIVOTgjSZFYLuRXojSbIN07FcDAaBoFIZuG5HVOb8rbU7HYIXn2bnxjHKbrapMFivNCohppHFx7mCsOWV6IU2mpbOW8NcShAO3Eafe/wFelTpUyXm4j77zpo3D1otLKcnfqVj5LoTf8Ma2A6m76P9qd/g9l+7n3otwbYljp1impJ3450IAQKIY0EYZKUoYZDdsATQ751m4sIhxjds5p2zKbars/P2uzDMxdPpranTTJw5imk6VJubaI5f2g0ujmBbLWDqgiCOMyG4cbNcNOsFWYnFuP8erZZOq60jgHp9dlfNtrK/yzSFbi9zrmx1Ldr9WefKeiWkUQ6plmZ76uJE0OpZnP/J7O6aQBaWzYObqa5JJnseZ9o9NlRKbKjOv9P/6PeeoSPrnOAWEnRs/DkuXZe2bj4vt/Cj5JN86HMfY+yhbThWim1LToodeN4MRw78CMetABpRJBjbcDtuaQNhQCEUDTMT85advT96xkI3s8cNIxORywniaQpbKwFnTwoao7Bj99L/91JKjh56Bd/r8Yk7LXw/YHpmhn1337Xk93ieQHsju0YzuWivlrJh9M3K/GsEs4LwzE/eouWVkBLqrkfDzcqdHPPS5UtLzyRcG6NCVitK/K1Nhj1GplLwzfSvs//RT9K4fxdRJLCsrMqkWkk4q+/ELS+sipmePM/05Dl23bqX199buAG4HPod2OBEdDvZRtumLXJeRUyv02Li/Gnq3uv4voeuG+y9606azcbsz+gLeP0AEy2HnmdSLYWM1X3G6gGunRRi8PQP32SqX8ELLSq2X4jBij0/0ycldAKHZx5/hQ71rG+QoCgTXal5g6+kHyD6uV/i1t/YT6OeZdEcO+W9cAeaBkLLsrRBkK1nAl9y7J1XME2HbbvuwjQTbEfDccg2UK1sw1u/zObpzMRJJs4exbRcGqPbFmyExxFsr4dMnhekabaGGRlfvJpK5n2DY/5xpqY13jr6NradsGNbgyg5R62icdute4rKHt8XdJ4/nMXHRFAtLx4fizXM8wcXCMK6O1syeqn43w9NOoHLd596hT6VYkj9wG10tQ+pH1aU+FtlDHtgA3gtfYjKL3+aD3y6RnDrXeha1tIgU/ADDd8X+IFGmoJpSFxXUnJTTms7sByYOH+MyXOnKFc3I4RLpVZn+y53ydcLA5+fHPBoT52mPrqVamPjFR9rHMG2asDZ04JGE7btlOiXqahM4qzEYsw7Tqutz+tJa9QTyuXZAJUkWebJOHSAma5NzzfQNTkrCCshZSee83xRDD1v+24x9PydyTfZOWJy10aXhrNw6PkAKaEfWXR8h+99feHNdO6gel2kvJXejfMrv8Tej4zhPngbAomUgiAUBIFGvw9BoBEnKbomKZWg5EKpJDmp7cRxsmATRZmAj0KIIjHn4+wcw2w2cSAKZ8Wh5PApuwgQg/e3bAg58Z7gngfSBTubc+l120xPnqc9M0mv20bTNHbftpcPbu0WzzlzzsD3NZqNmHotnReM0hQ6XQ394BvMdC26nomuySIzOFINsK2511Qw07M48+NshzuMzWJR0yj1LhvsstcU9CKLZ//gxXwXtEKMOU+4l+is2lKo1c4wBTbF8hj2GBlKix+lP8/9X/xL7Nrco1YO6e25ByEgDAXdrka3p5OmKeWypFZNOWfswPNO4/en2b7rdow5JRFvvCLQtCz747iSt89nGSjLvvymW5pkFTFnTwkcFzZvX5iBfPetNwDJ+MZtPLhx1pl0YlKnUklxbJmVwfc0eO0NJlo2QaRTL4eMNXxG8/vnwDRtkBnshzZl26fp9hkpdxe9b3qRybe/8tKCeYMV2lRo3ZQNs5+mj7DpVz7Ahz5Tp7t7H4JM8AX5WqbvaSSJQNOytUwcT3H07Rfpl29F1yQSwYZNd2A744ThQCBm1+f2uxeuaV99J9s0jkIfv9+mNXmS+ug2qo0NC547IAxgoxMxPQE7b5GZqdol6LSnuXB2CnPyMHFSo1LeQbWiU28kNBsJtepsjBzER+ONA8z0LLp9E13P3bcrIc1q5r494GJB2M2rnOqOR8Pt03Qvv2G6VobUr2aGKUYq8TckvJE+wJ7//QfZ/5kNeIGOFxj0fIMgyra6bDOh7MSUnZjO7n1oWrYY9nwN38veB2EW0Bw7pVTKxOEpbSeOu3RQO3fmOKHvs3XnrcUO1tQEnD8jiuyUrmflikdOWcWuHcCtG0NOHRfsvi1ldHx5v++gJ23Mywa39j2NkpuLwUZCtTJfbAxKEfV80LkX6FhmWvSmNcrhPLGRpvDWyQ7Jm6fxojJtP8s+1ZzMsrnh9hfsol7M4jX4glBa7PvN+7jz41vpBwZeYOCHOlKCZab5dYrwbr0Hy0rRBAShwPM0PF/LrMOD7JezTInrpLglyRl9B7YDjkMhpqXMfvckzswF4uLjLAOLzJ4zwLIl5SpUqld+Ld458jpuqcrYxi2YczLFYQBj/feYmjZod7JZgyPNmNGR+WK9eH4oaHc0tIMHme7aRLHGSDVgvOExWgsu6nOETt/kzI/fZLpfphs4OGZIs5QFurrjXbKcdy790KTtu3z366/Sp0yIU/QRzp0duRrKoVYzwxTYFMtj2GOkLx1ekh/mL/1Xm9j98Vvo+SadvkmrZxFGGo6VUC+H9PbcxnvH3iIMJZIqFy70qJQ3sGXLFqqVhPPGdsrVrJ89CrPWBq+fZW18LxMYUmZxz3XBdiSvv9Mj9C9QG2lSqlSx5jSO9TtQTSIao9kmKIDv9Xnv6Bvs2HMnpfL8G3Fp8jjnLxjEsWB0JGZsNKZez2JdmkK7rcGBg0y0bJJUMFINGa37jNaCotS+6xmc/sGbTPbL9AKHkhUUmcHFSggv1TdYoY0jlp73drW8kH6U/X/vTm5/ZEexlukHBmkqMI0sRlbciO6ee9C03JjH1/C8LD6GoUAIcN0U10kplVJOD9YyV+ANcv7McYLAZ+uO2XVNrwvTkwJdnx9X+j3B+TOChz+WLumnsBS+lw2fn57W6XR1bFvSbMQ0m/PFIGRxvNXWMQ69wXTHIoh0Sk5MM2+nqJejeccWxYKZrsXZ5w8z45UIomzDtJEbBl2qXHTAxUPq+1RJ0HHwKOXxsUwHSyw9h08xyzDFSCX+hoSjci93/oMPEiUGmkhxrZCSGTK6/07KToxppPihnt1EfYOeb+KHmTB07ZiKE1NyYvzb9qFpkjjR6PezG+lcsWEYMZUylEuSU9pOJi+8ha7H7LzljuImmaaZyAjD7H0cD8xnRGFCA2TOXXbmPrncm+ZieH0Y944xPaPT6eZ9g42EZiOmVl14Y/YDQbudC8J8EVByZg1lLu5NS1Pm3Uz7oY1lRDRLfRpOn7rbx7xEb1r2MwSpFLxwYjcP/+I4JWd+v2AQavTy6+MFOj3fpOcbC4RhcPs+yqUUoWULD8/X8PLr5XkacQK6lgW/kpviupI32iU04VGuuNQaI+iXq4G5Anyvz7F3DrFj9524c5szFsHrw2jvGJNTBp4vqFVTRkZiRpsJlrXwPpOmMD2jE7/2JlNtm7Ibs6HhsbHpFT0Rc+n7Oqd/9CYz/TIt38XQE5p5mWjD7aNfoRiEbHZk25/fR2gQU8pLYgaZXCUIZxmmwKZYHsMeIxOpcUA+xMf/yW20A5c01ajY2TDujR+8C8tI6HgWra7FmamYVjckSXtsbOo0P/gRLEsSRYJOJ4stnqchhKRaSalUUs6ZOyiVZ8sKw1wYhj68degArelpNL1Gtz3N6IZbaI7OtkkkcTaKZ/dtcxbuUYhhmEsaeSUxtGag3j1Ju6NTKqVsGIsZHY2Lnu0kyZxEOXCQyXZW5TFaDRhr+DQrs5tpPc/g9A8PMdmrFJtoI6Ueo+XuogJh0Df4nSdeoUODAAcbvxCD12PExAG5n3v//vtIpY5jRpTMgIodMPr+vdhmQhhna5meZ9L1DTw/2+107JiKm2+e3n4vuiYJo2wt43kavf58YVhyM2F4PN1Gqaxh29kve/zdw0gp2bH7juIahEFWfZTMCdlCZNe83rx8SemAc6ePYTslGiMLd7zDAMb8Y0xNZWLQsVOazYSRkYRKeb4YlDJrp9DfeJ2ZrsVM10KIrOWlUQlpVkLKbjzv+V3P4MwP32TGK9H2XSwjyjODl++tn/tz+pFF23eLSqcQWxmvXQHDFCOV+BsSjslb+dTn9rGh2iFNBf3Ioh9a9EKbXmjTDW2SRMfQE6p25nw5+tBdVNyYVIr8RmrQ9Uy6nkmcZDtcFSei4sYEt++l5KaEUcBrrx/B8yFJbPpeysjIHkpuHdtaJAvlXvlN8XoT+DDuvcf0TJZ5skxJs5EwMhIv2FUbMBhlMNOdNZSplbJSmrFagGXOvzn6oc5Ux+LsT96i5WeLilpeanGp7OCpVoMTMyMkiY4mUmwzpmQGlKyQkf13U3ZiXDuZd4xzhWHPz67VYgI+uCMThppGsRP67rEzTEx2CAKNdqfPxvEdbNo4juNkwnCxrOFiHHv7EEkS45aqOK5LvTm+wI30SpASuh0Y6R5najpzShsbjRkby67NYnS6Gsmrhzg37WDokk1Nj00j/XkZ27kEocZUx+b081nfoNAkI7kYbJZ6yxKDkO2At32X5772Mj2q+JTQSIty0Qrtdd0nMUyBTbE8BjFyWOMjwGvpw/yD369h6GnR69b2XVpeibbvzBvGvelDd6FrklbPot2zis1B146plyPiu/ZSLiUEoUa3q9PpaHS6GlIKXDelWkk5Z2ynXIG3Dv2Y3bftK7J4c92ZB8ura10k97rQ7J1gYlJHCLJ76WhCpTJ7b4wimJo24I2DzHRsTDNlrOYz1vCpzekp6/s6p37wJlP9Mh3fLcTgSKlHzVl8nlwvtHjmsZfo0KBHBQ1Z9A1eTanoa+nD/MOvVNGExI9NeoE9by0Txca8tczYw3dTcSJSKeh6WXzs9E26vkmSZNnCihtRdWP82+/BcVNkSra53ddotSIOvnmYIEgxTRPLSrjt1l10qnfjuNk65lJGaFfKzNQF3n3rALbjcvd9H7js871+lhmcmjbo9TRcN2WkmTA6ElMqLYwz2cimrJ1iqmPhBQbVUsR4w2dDY+GmaRBqTHdtTv/4yJze+n5RQXO5UtF5PyvfMP3uky/Tz8tGB/FRGa8tLz7CysdIJf6GhL4sc1TuxRAxDj1c+nzs0Qeo2AGOMXtjjxKNbuBkN9H8hupHFrqWUrYCynbA2EN3UnFjLCOh55t0vTk7bIFBGEdowsMy+jSrAvN9D1MupUgp6HuLZ6EMHUqlrATjjL6juKEuZfhyI1isDLHZjBlpZmWii5GmWakFBw5yoeUgJYzVslLERiVckE1M08yK++zzWTliP7RxzDAvtehTd7IMVJKKQnykqcCPDfqhjRdZ9EKLfmTjR9nJmbvzOfLQXipONE/wDEYoLCXgXcvnzeOvs/cXf4VGTcd1JWmaEMUGnpf3UPSzktK5WcOBMHSdrPzXduDAy8+wact2Upni9bvcduf70I1rH4ERRzDSe4+JCYNuT2PDWMzOHSFL/WjPF8QvH+TsVNaXsGW0z+bR/gJxPpcwmhWDM/1MDI4Ohie7/SsuE5133LmxzLNPvJz3SZQRyDzgtdfNvCVQ4m8tsxbE33m5mfNsAaBMlwotPvW7DxQjgJJUZGIwF4TdwMHQExpun40P30Gjko1amBkIwq5FFGfVIvfumWLm1odyR+rZDGGnq/OzF7/P5k1b2LKlwZaNFc5Zu3FL1y74liIMYbR/jIlJg35fo9lIGB/LSgnnvqYfCHj1dSbbmZNoycmcRMfq/ryMkRfonPrBIab7ZVpeCduMGC11GS13qTmLG5vNLxWtEWNSoluIwctVTbwr7+DD//V9bK1PL1lNM3ct0wkcuoFNGJuFKKzYPmMP76XqZsKz6xl0PJOeZ9LxTMJIm7fB3dl9O6bhIwlAOiCqWavFIqWkg4zhKZH14M817lkKr9/l2NuHqDdH6fe63HLHvZf/pgU/A0a940xN6Xi+RqOebWaPNJNFY6WU0O5oyNey9YtAsqHhM97wqZUXCvKit/5HbzLtzY4Sabp9GvlcyeVwsfFanwog5jhxr58+QiX+ViFrIbANiKWBj4tPCY8yHmUCHDRSXHq49ApR6Jqz//xJKgpBOLihepGVLWStMLuRPnQX1VKEa8X4oU7XNxeIDUOXVNyIijtbmug4kiQh61ebIwo9TxBGeeP8IkLDdq5POehSDMpEJ6d0ej2dcjlhbDRhdDQu3EQvZrB7mh54k5muRcmJ8101f14D9rzXCXRO//AQM16Ztu+SSoEg+/mNUr+Y0bRYkJMya8Dvh4OdzyybG8YmupZSsoJs5/Ohuxir+/PKVCFrBD92zue1t88yXt9Oqw+ONYJt2rh2XPSBDrKFg93NNCXvMZztNez1El5+9SXuuvMDRUmp42TX7KTIr5l96czhlZAkUJ85xsnTJvfd4+HYl74H+YEgeukgpydLWEbK1vEem5reZf92wkhjsj2bGdT1tFjU1JfY4b6i488XkUsJwrWaIVTib+2ylmJkIjX6VOlSo0sdHzd3uGzziUfvm1e+H8Z6Jgb9UtE35VrZZt6mD95JvRQWvVeL9sTv2M/pM2dptQMuXOjhuhsplbbT72c3p2oly86dFlsRokOlWp5nLHOtpCm0Z7Ly0JmWTrmcMj46vzx0QK8nEK+/wYWWjRcY1MpR5iRa8+dtNg4yg4My0arjMVruMlrqLpkpGmRan378VbrU8ChjEhYmMhXa8wRAX5Y5yzYCSsQY6CTFpvZHP/cgFdvHNaNFz/lAFHYDh05g0w0dotjANGIqlk/NyUVhKVv/DLKEmSg08AMDhKTsxFRLEf5t91ApJ7hudr/2PFFkDP05PfhCZBum9+z10TQ47N0ye267bc6fOUGtMUKaJnTbLXbftnfhwS+DNIVuG5r9E0xN62gajI4kjI3FS25mhyHIVw9wftql5xs0qwEbGj5jdX9Jx9J23+TMD99k2ivRCxxcKyzaKZbKBF/6uLM+wmcffzGPjxVijKKPcOA2utacuJX4W4WspcC2FInUCHDpU8GjXBhbDOahufT4+OcfoGr7WMasiBk4JHbznbVeaNMP7XmicHR/JgrLTkyciEIMDkoTvSArRSk5MRUnIrx9L+Vytnum69lNbODgNRAanjfrTmqZshCGp7Ud2G4mDK+kcXs59LrQ7B5nclJHyqyhfsN4PK905mK6XQ35+hucm3ZJUsF43WfjiDevjGYp4kQw3bE4/eO3mPLKyFTQKPUZLXVplnqX7R8cCPbB27b61ILg6z74EEdPnePkhSl2bx5nqt3DsQzu3LEVL1hcwG8d67NnSweAiV0Pzflde/zkhRfZvm0rJbdMtbKBKDazRns/d5T1s8yhpoFtSWw7c6Y7KXZgWbMzJ68k4+ueP0YcC/bsvvJm8l5Pw3/xTc7POIw3fHZs6C7oq1yKINQ4+YPMIr3llXCtkLFyh9Fyd8G8rOWymCDMSmI6eZ9MZ6h7JIYtsCmWx1qPkaG06FIvBGGKVvxv/tzv3j+vfL8XWsx4JVqeu8AIbNOHslaKxf6PZ7p9Dh47xa5P/xqmaZIkmVvnufN9TpyY4szZGfqez8bxUe68YzeTzm5K5axC5nrdF3odaPROcGHCwLZSNmzITGMujqWDjBGvv8FEyyGONUbyrOBcoTAQByd/cITJXpk40WmU+oyVOzQv00MWxAYzXolnn3ptzjnvYuNDvllWpYUhYhKp4+PiUcLL1zAh2Tpk7qZ21faXFKBhrNMNHTp+LgzzVhjbjIpM4YYP7KXizhGFg0xh36Qf6CAFrpO1WIS376Vcmb+OCQJRiMQBSZJw4uRJSqUSG8bHefe9YxyP97Bp6655JcDXShhmm9nnJ7KM7/hYzI7t4ZLlqmkKrZZO/OohJts2FTdi44jHxoa/wNRmLoMe0el+uegbHJQFL8dobS4X9xH2qBJhYeFTnlM2OsxO3MMWI5X4W+MkUi/EYPY+s783CYub6ie+mO20ze2RmisKe6FNx3eWzBSW7LgoTex6mdjo5OIwTQW2lVBxYspuRHj7PZTK6bzMWxTNZg0vdicVgmKmoePITBzmGSjTuvqgOShDPHPGpFxOuf3Wy48SiCKQr2W7ap1+Nqx100ifsfrlvxeykoupjsWpHx9l2iuBFDRLPUZL3Stuxl6MQ+emSNKUfZvHCOOEN89PsbFaZtcjH1/0+VIuft7CKGay3SVKEiZbXbS9H2brls1L/gw/EARBNr7Cz98HgSAMBVGcvYCugWVlGUfTlBiGRIgsiE5NGezb6y25i3kp0hTilw9w7GwV20q4fVuLiru80pKuZ3Dqh4eZ6FXxQouG22es0mG01L3qazGXONFoBwNBWMOjhEFEuRCE7aEJdsMW2BTLY73FyFQK+lRyQVjHo4SFT4U2n/rCfUX5PswvF53JsyOWEVGz+2z+0J00KyGWmTLT7XN6Yppdm8YoOVmdYBQLvvXCGWoPPMQdt21GCJie9glCl37fLMxlNE1SKWfmMmf1HZQq196D5vWh0T3OhQkDTYMN4zEbN0SLbqoOzGPS1zKhUHZiNo/22XCRUBjEsJM/fIvpfhlNk8UG2uWqKdJU0Akc/NhESvju118t3EVLdKgt4i6aSG1eldPAfGR2zFKPR774ABUrWPKe7UdGXjbq0AkceoGNROCaIVUnW8fUShGlfDxU3zfo+gbdvKew62XrGMdK8k3wCP+Oe6mUUwwDer0eBw4eQkpJtVKh2+vRaDS447Zb5x+HLzhx0sR1JSfljsJl/Wo8E9IUaq1jnDhpce8+b9H+wItpdzTilw9xYcbBsWO2ji28vouev1Dn1PcPMt2vFEZrI/m65WrF4AAvypy4n3tqoRP3QBAOy4D6YYuRSvytUyJpzssSDoZk2/jZLttn30fV8SmZ4UXz2+ZnCrvBQlE4/v6sp7BkZzukAxfS7GaaCcQwygOem2ULByWkrpsusPwfjEHwgyzz5HsCP8yEhpTZXMPBkFjHkZwUO4vh6KZ5BQLx+AlcJ2XH9isvQ5ASZmZ0glcOM9W2aVQCNo9euRCELDM42bY59eOjtLwSCJnNZyp1L7urOpc3zkxScyy2N6uEccJbF2YYKTtsrs26c758csesaH9/1idxqZv+6clpzk61uG/PDnR99oJMdyzObn4gv1by8tnPOJ9RGAniWBBFWUHswJznepT9Ts/oTPzwHaqliLt2zFw2mC1GmsJ01+bED48y1Stj6AnjlQ7jlc41ZwXnMigze+7JV+lSJcTJF52domR0NfZHDFtgUyyP/fv3y99/tbPSh7GiBNKmk4vBLjUE5P+TLX7+9x6Y10YRxAbTfZeXTnbpBDZ7NwWk8jy2YXDvZ36+MMnqejHf/OlZauVtIGuUXJtmJaJWDonvvodSKbuHDrKEg3mE3a5WDKqvVDInyNPaznmOo8shDKDWPs658waWKdmwIWZ8bGFp6IBOVyN6KRMKpSWEIOTVFN8/xGSvStt3KVkBY+Uuo+UOJevK4mmaCtqBwzNffbVwF81qmFrUmF60fzCWRiEGB+uYBL2Y6frRz96/6PplwNzZvQNh6EUWmpCUrYCq4zH2/ruplWb7771ApzuniqbjZWYzlpli6j00rcvEhm202qep10vcumc35fJsDI7jzF9g0BLjB9n7NM3mGdp2to6x7ZRT6Y5iDXMpgTh5ISv53Xv38jYRu12N8KVDnJ9xqJUjto71GK1d2dolCDVO/eAQU71MDJp6fM2Zwbn4kZGNZnoqyxBmM5UjKrSL1orVKAiHLUYq8acokBIC3OKm6lHGxy1KL0p0+fjns35C25i/QB2IwkHJRTd08CMTTUhKVmZmMvbQndRKEa6dlekliSjEYM8z6Pom/XzsgWsnVNxo0X61i4kiiuyTn5cnBrk4DKPsbiZEJjgsa/CWcizZyeYkc1C77ZaAsdErKx9c7LwNhOB0x2Ks7rN9Q2/ZmagoFplhyY9nd1VHSl1Gyz0aztKGJW0/5L2pFhXbwo9iNCHYOVLDNWeb87zILMp6s+uTlcQ4ZpgZAVmzJTGGLjk9Oc10p8ft2zZhzuk0n2zbTMw4hTkQgGNd+bW6kfR+cpBTE2U+cNf5axaVfqhz/HtHuNCr4kcmzVKPTdUWDff6l256kUnLc3nu66/Ro0aMgUuv6Jcp0V3x/sFhC2yK5aHE30ISqc0pFa0R4uDgUWWGT37xfdRsn07gM+MFtPyAqm2xvVHFmLNZNtH1OFwZZet4k1bPwzYdtm+4hVY3cxjt+wamkQ33ju/cS62azCsrDAYD6rsavV42yiBJBLYtKZczUXhG24lbuvJebK8P9c4Jzl8wqFYStmyJaNSX3mgcCMHzMw7VUsSW0f6SPWRdz+Dk9w9zoVclyO+bg37BK93MlBK6oc0zf/AKbRrz+gerzFCms+gG2WD9MhCEgyzhwA+hTOeyWcJBq0Xbd+kGmdHMrMmMR9UOGP/A3VRLUdF/H4RaliHsm0y1JS8fPcGuTbfi2nq2ue1GBHfcU/gjLMagNWZQPeMH2RrG97NKmjQdjOKSWQWNLgnCzKTmjtt8Go2rr1SZmdHwXjxMu2exdbzHtvHeoqOWlmKQGRy0U9hmxFi5k/cMXh+RNjua6dVCEM7NEK50Fc1y4yOsfIxU4k9xWQalF3N32SIsTMJiHtonvvQgFStYIFAGzb+DLGE3dPDCWffRLBN1F1V3VhRKyZL9aoYuKTsR1VKWLRzMuLvcglxKCKPsRjp4i2OB46TUa+mic+iuhjSF9JUDnDhfJk40dm/usLF5deYiA8OSUz9+m5bvYhlxYVhy8XymC90+M16AlLB7tIZ5hdvDfmTQDRzagcXLJ6fpRQa2ViJMO+xs2OwZcxh/+O5CFF7MYteq5xtE8azTWtmJi2tVKi1/UO6VIiUc+9a77NncZqR2/bJ1aQoTbYfjP3iHGa9E3e2zsdpitNS75l3OxRiYJ3zn8ZfoUqNPZV4WokLnhgxevhRK/K1tlPi7MjxZokuNDnX6VNFJqNDiE5+7d9E+7pMzXY5Pt/nQ7i1IKTlwZpIN1RK7PvFI8Zww0orRQzNdCz/Usc2ERiUkunMvtVq6wBTLDwS93kJRaFkyj4lZ+aiT988vFX/aM+BMnaLf165IRMy0NMKX3mSqYzNSDdi2oUd9EVdJmK2mOPmDI0z1KwiRlYiOlbvLNhLxo6x/8LmvvzavZ7Oaj5u41P0wkfo8QdifU+VUosPHP5dlCedmdi8mSjQ6QS4IfbfoJ3TMkGq+hqmVQgzN40K7zdbRJqnU87XL7BrGD3U0TRZD7AcVT4MM8OWIoqySJs6v9eXM0pZDFEH4wkFOXCgz3vDZs7lzSXftpRgYBk30KvQCJ/ONKHcZK3eWNVricgSxQcvLMoSDKpqBIBy0Vdys4fRK/K1SVGC7McwvHa3QpwwIHDxcupe8qQ522AYlF90gH0mhJ1QGovChu6iW4nkum1E8azjTzxu2L56FF95+N6VSSrmULjlK4Gbg+YLWj99ipmtx+/YWGxrXtgvmBTonf3C4cGEr235eYtO9ZOC6UrpBRC/M3gzhULJGc+E+mym0zYiK5VOxg0uKQsjKWgemQP3B+yCb+ScEmEaKaaQYWpqXzqQYRkp7173oGui6RBOg6XJBKXCaZpnjMBJU3nmddt+i3TMZqQXcvXPmhhmrSJmVvr77/XeY7leou3221Gdoujd2IHycaNng5a+9So9aMXh5UCpaoXXD5isNY2BTLA8VI6+OSJqFiczc/rVqPmbifPc8QZxw18YRkjTl3ak2mhDsGa0XP+Pw+U2UrYAtH76rGMHgh3omCLvzZxA2KiHxXfuoVpJFe/fCkMJxu9vLRjL5gYaUFMLQcVNOycygS9dB07OFf+/IWT72kd4Vbc5JCZNTOt6LR+j7BlvG+mwb7112FM+J782WiA7i19WIgkGp6He+mg2izxxd/Tw72KJM+5L3w0GWsEe1WLuEOBjElPIRBUttaM/Fi8ys2ik3mumHFhJRbGyPP3zXvGonyOLWrNnMbHwE5pnNlMrZGuZmz1GWEoKfHeC9s1Vu3dpm8+jVbzRKCZ2+yckfHGaiVyFKDJqlHuPlzlXN4r0cfmTQ8ktFyWiIPa+t4ka5jA5jjFTiT3FdkZJ5WcK5rqODmS8f/8KDVG1/0dKLONEKUdjJzWaCyETXE6oXZQoXm4VXzCzMy0iTRcZTXGm28HrhB4Kzz71D1Y24Y0fruv3cds/k1I8Oc6FbLW6qY+XODctIwWym8FpEIWTXK4o1okTL3sei+DhJNJJUkKRZuUuSClIpCqMagZwVj3omHGvlkKob3dDRIYv9DlMdm3e+9y4tr8RYpcO2xtR17RG8FP3Q5OnHXqJLnR41JFChk2cHW9etL2IYA5tieagYeX3IjGSqeXawwYw06DLFJiIe/sd3EKczbG+UGC27xfdM97MxEzNeiX5oY5tRNmriA9nswUEJXt/XmenlgrBrEScaZSemXs4FYTW5ZLl9EAq8vsidmzXCSJDE2SadTKFWS9m9a/n3riiC6KU3OHG+TNmJ2bEx6x+7HO3erCiIE52Rco/xSueSLQ6XYvZ+2KBLFQ1JOReDFVpXlAWKpVG4Nc/d0C7aXh59gJrjzXNMv5jFWmC80CrWMFXHY+zhvdRK4bzySikpNrQHbTADsxnbTKi4uWneHffguBLburFrmCiC499+l9u2ta/oel4JA8OgEz88ynS/jGXEjJc7jF3n3vq5DNoqMoOhbCalg1eIwQptdHF1LT8DhjFGKvGnuClcqkG7MJix/WIg74LvT7RCcCw58PX9d1N1owW7jxdnC+f2q+maxLYSHDPBNhO6u+/J3SkllpnX1xvXbsUdhII3/vgUP7//1A25YRc31R+9XdxUN1TajC2j8f5auF6icFhJUzj23cOcmBkBYEdzig2V9k0d7ZCkgpZf4jtPvEKXOkHeo1TJS6NKdK6qd3AYA5tieagYeeM4kWqcxaZPlTIbKQmTMm0+8dl7aJb6C/rnByWOM16JGb9EmmpUbT8ThB/KHLaFyMRCzzeKDGGrb5EkgoobFRnCSuXmVr/MtDR6PztCPzDYtanD5pErK+8cmJ+d+MHbzORjeMbLHcYr7asuFYwSjZZX4tknX6VDnQjrqnqpUymKDe1BpjDGxCKgRPeya5fZ33F2DdP2HTqBS5zoWEY2iqLq+Ix/YC8VJ+TE+Qn6QUizWqZactC1Ej3fLDa2e75BGGsgBQiZmd5ZCZaRYBkpnd33YBiZz4FhZl/X9StbyyRJ5sZtHHydd09XuWPHDOONG9NP1/d1Tnw/28AOYpPRcpcNlfYN6a0fICX0Qpvv/MGLeVtFtRhDUs43T116y4qVwxgjlfhTrCi+zJanA8fRWYOZzMZ5sdmEc7ncwNeqHWSZwlK0aBNzFAvCWMcPdYJII4x0glAnSjSCKMtExclsOkmIrNla1ySGnqLlny/W6xglGmGkEUQ6uibZvbnDppGb06vV93WOf/8tLvSqhLHBaLnLxmrrmoabXw1LiUJdT3CNiJIV4JoRIw/tpezE2GYytLPwBvR8gzefeY8Zr8yukQtsrrVW7HfqhRZPP/bygh6lgSC8EmfRYQxsiuVxm3DkvzR2rvRhrAsSqReZwQ51YswiA/Gp330flYtExGBEwkAQdgMH04hpOH02fuBOmpWgqIIZlNm1eiatnkW7b5EmgkopolEOie7aR7V640sJfV/QeT5zwr4a8dD1jEIUxInOaLmbZQWvQRTMGsm8TJc6fSpXdT8cEEqrEINz1y4DEXE5c5kBgxg5twWmE3j48TSO6dPbWGHnxgoP37UVw1hY2pL5GWTrjDDO3sexRpQIwvyxOBHESfYeeekTqOkS20yol0M2NHxqS/R0Xm+SRHCh5XDih5n7+Y3urZ/LwJviO4+/XPTZa6R5drCdjyBZupJmGGOkEn+KVUcitXmOoxfvtLl0eeRLD12yHn8w8HVgNNMJnGKXrWIHVG2f0YfuzgSHdeW9UmmaZVgGN9JUZh+nF/0ITaMoSbSM6zPS4GoZ3FSP//Ad2r57U2+qSx5TKuhHFv3QxotM+qGFF1kEsYmUAtuMCnHYfPBuXDuhZMdX1YC+UgShxhtPH6ftu+zbfPKmlYNeiijRmO6Xefap1+jQIEWjTIcq01RpLeqYNoyBTbE8lPhbOaSEPhU6NObMHAyo0OKTn7+PuuMtEBBhrM/LDkaxQSXPDm784F3Uy2ERc9IUup5ZlIy2+yYyFVTLmSAM79pHtXJjBKHvCy587yiGnrJv9/RVxcE4EUzkomDGK1FzPMYrHcbKnQUGO8sljHWmvTLPPfXqgp7NyxnJLMZgrvKsKMwqnFz6hQ9CzfEum82cO4rie2+fY7yyFdsYKUZRlO0gX79khmorub64EQx669/7/ttM9SrUHI/NtRlGy92btpEaJRrti/rsB/2DFVqF6+zVxEdY+Ri5LsSfCmxrg1Ba8xy7fLK+CZd+UY9fsf1L3liD2CgEYS+06IVZ+agmUhwzomRlow8Gmai5ZjNrgeKm+oN3mOplhiWbqq2belO9HFJm18mPZ0Vh9mYSJVkNk6nHuGaEY0Y07r8b145x7QTXWn2BcKZr8cI3znPf1uNU7NU11D1NBS3f5eknMhe9EJsSXarMUGMGR3hK/K0DVIxcXQTSpkudTt7PC8yWirq9BTFukNVq5YKw7btoWkrd8dj0gdtpVsJ5piNpCh3PZKZr0e5lgjBNs5l1rhVTcmK8W+7BcVJsO5tBdy331anvHUbXU27dem2b8FJCq2dx/PtHmOhWMfSEjdU2G66hPHQuc2cOdqnj42LjzyudX66x1kIfhGwExS0cpCR6AHzoK59a5Pskp1pdznb67N++EZg1yhuMbco2Ty2SVMMyIspWSGnO+qVkr754uFwKk7Xvvc10v8JIucu2xhTVFYilXmQWrrM9atSZ4rfib17Vz1rpGKnEn2Koma3Hz8pGe1SJsDCICoOZT3zpQcpWcElnqTQVeLnY6Ic2vTmZKADHjHDzmXgj+++m5KxOobEcBoYl733/Hab6ZUZX8Ka6XILYwI9MvMjEj838Whn4kUWal7VYRoxjRNhGhGPE1B7Yh2MlRW/Ezbx2x86VmXnpELdvOHfzXvQqGIyZePrxV+lT5r+K/+Sqfs5KBzbF8lAxcnUzKBUdCMIIK9+kafHJL92/YPQPZD1mM16Jlu8y45XwIwvXCrPewQ/eSaMcLhjaHkYa/cCgH+h4voEf6nhh1hYx6C+zjBTbSov+MkOXtHfdi6ZLjDnZwySFOBZYR97gwoxzzc6Ri+EFOse+e4Rz3RppqjFeabOx2r6um2yZkczLdGjQozLPSKbKzA1xjwS473c/xhtnJ9kzUmes4l72+WGs04+yDe1eYNOPLLzQIpUaphFTNjNh2NyfC0MnHrr+eynh2HNvcnKmSZTq7GhMrmhbBUDzC//Xq/q+lY6RKyr+hBBfB/4yEAJvA39XSjmTf+0LwN8HEuD/JKX8Zv74Z4B/BejAv5FSfu1yr6MC2/rj4jEUHmXknDEUH/vcA1Rt74rMUKRkXhYq23Gz8COzuLGWzBDXDGk+eHex4zZMJYppCse/d5iTM03iVGf7KripXguD7GEQZ+IwjA38/PMgNghjA0n2y2laiq3HWHqCoSdYekzlffsw9XR2HEXe56lrKbq29C54mmaLrijR6Ps6Uy8cZCLvu7x3y/GbYr5zPRnWwLZWUDFSsRhSkvsVNulSKwahV2nxyc/fu2ipKGQ9wDNeiVaeHZQS6q5HzfHY+MHMkOtSm2JSQhAN+uOz+1ycaMR5X1mSzgYMTYBlJoUj6XLaK66GKBYc++5hznXqBJHBeLXDxmrrum9mDkT1d5587aKezSw76Ir+dXmd0zKkQ8IdYlb4LZYhvBIGwrAfWvQjO39vZf33Woqbr19KVkjzoX2U8kqa1Rz//VDnzaffZaJbZUdzkm2NqRU53mGNkSst/j4NfEdKGQshngSQUj4qhLgb+PfA+4EtwNPA7fm3HQF+HjgJ/Az4G1LKg5d6HRXYFLCw/MKjTJCPoSisnL/wIFXbW1YvQZRo9MN8py3fbevPKVG0jSi/uUZD0b/mBTpvPvMek70qO0cm2NaYXulDuqHEiUaY6ESJkb/XidPs/eDjJNWIU4041ZFSFNnFixFIDD3B1BNcM6JkhjRLvVVX7nmlDGtgWyuoGKm4UkJp5X2DWYYwG/2SZah+/vfuX7QsMkkFbd+l5bu0fZdeYANQtgNqjsfY+++mVopuuHC73sSJ4Nhzb3K20yCIDDbW2myuzVyXebgXMzDkeWbOzMG5paJl2st2WW7JhElimug0xXy7VinhDfbn47OufCbhUiSpwMuFoRdZxTomiLIN0rni0DUjmg/tw7US3FVSUhrFgje+dYxpr8Q9K9BbP6wxctWUfQoh/irw16SUfyvf0URK+UT+tW8CX86f+mUp5V/IH5/3vKVQgU1xKQZN2oO5Ph4VYgysfAxsiS6PfGn/Vd1cBxmoQc/axf1rUgosIyr61xwjovHgXlw7K09cybKMMNJ4/VvH6Uc2924+ccnZRoq1ybAGtrWIipGK5ZBIrRg+P3fUQZUWn/rS+xYtFYVZ58O27+bOkw5hbM4zS9vwwbupOPGCstHVSBQL3nvuCKfbDaQUbK1Ps6nauqwL57Uwv1S0ikZKlRmqzFChfVlX0TekRxOdTZhoS6SzFp9JmHkglOlc1in9SokSDS+y8jYLq2i1GLRYCCS2OdtiUX9gL46V4NrZ+KzFXNZvBDNdi5e+cYYP7n77prweXH18hJWPkTdxAsxl+XvAf8w/3go8P+drJ/PHAE5c9PjDl/vB9Qf38YsvvMB/Nu+4HsepWGPoIsln/7TnPR5Kq7ix/vHj7+BRgqJ0tMfHPnc/FdunZIZLlhsIAY4Z45gxzSVeP4z1om/Nj0xO/ugoQWzixSZpmm2tGflohEEfW/2Bvdhmgm2l2OaNEYmWmfLgL27jzW+/w9uTG7hr45nr/hoKheKKuaExEuWIvabQRUqdaepklRuDUtEODf7T4+8WpaIV2nzy0Xupu31MPUXTJDXHp+bMt7YPYiMbXB7aHH7mGL3QJkk1XCukYvnZSCU3umzp6M3GNCS3/dxt3EZWKnj0Ox1+cuwWGm6f7c3JBb/n9aBkRfzSY/uKzzOX5R08+9RrnGYXqRS5a2RmrHXxAPqNGDQwlhR+AIaI511fmPVA6FHlW187eNUzCedi6immvvDvoXjNVBAkWQ++H5t0X3mdicgsWi6SfA2jaSmWnmDrMaYeYxsx1QfuKVzRB20Whp4u6+8nSQRd3+DkDw4jqV/5N65zbrj4E0I8DWxa5EtfklL+cf6cLwEx8D9dx9f9LeC3AHbs2AEsbVmuRKFiMSwRYhHOu7kOSkc9ynz3qVfoUyHAQSMtsoQfe/RBqo6/YHjvkq9jZAYklwpCA4E46GObfOFQ1ruWZJ8PbrACiWlkfWumnmBoWQli5b57ihuroUs0kQ191YREiOz70rycMU2zvg4/1Lnws8NM9Ea4bXx1G5UoFMPKaomRvxgdW/R5Kj6uDYSAEj1K9NjIKSDb4OxS5+knD9Clng+7HswcvH/ezEHbiLErXcboFj9TyswBsRs4zLz4BieDzIEylQI7zxSWrYCxh/dScReftXszcayEfZ/ZzV4JE61NHHnOIE419oxcYKzSvfwPuEpMPWVDtcOvP7YbyEotW/5WnnniVd5hM5G0CpflKi3GrrJvUBOyuMZzCaRNnwo/+PqLi85TfuQLD1Cxri5LqGkSV4suW1KbpIIgNogSo1i7tF48QJTohImRt1hoxIle9ONf6e9ctgKapZiHd968rN+ws+Jln0KIvwP8I+BTUsp+/th1LWnZv3+/fOGFF5Z1XCrgKZZDIrUF/YSZ62g8r5+wYvvXPJvoUkgJYdG7ZszpW8v61eJEI0l1UilIpCCVGlKCRKAJiSaywfVZz1pIyQwZLXcv6ZSqWJsMc0nLWkLFSMXNIpWCPtWib9CjVBjJfOLR+4rs4OUYmKT1AptuaNMLsoxhnOgYepLNqitGEqzsrLqeZ3Dw6WN0Q5u7N56+IZnAyzHXZXnQN+jgFaWiJa7/KKa585QHg+oH7S4lunz0d95HxQ6uupfwRiElq8aIZphj5EobvnwG+G+Bj0spL8x5fC/wPzPbzP4McBsgyJrZPwWcImtm/5tSyjcu9TpXE9iWQgU8xXKIpYFHeZ7raIyBSTjbT/jF/VRsXwksxapimAPbWmHYYqSKj2uPQXawS40etXxoeS8rF/1iNmZiOeIgTrRsVl3umj13Vt3AObtkhTT3303pJpqjdfoGL37jLJuqLXaOTN7w17sc3cDm6T/I+gb7VLDwqeWZwRKdZZvIXCmLz1MWOPk85Y997gGqjn9DzHOGjWGOkSst/o4CNjD4T3teSvl/yL/2JbIehxj4p1LKb+SP/wLwL8lsrP9ISvn45V7neoq/pVBBT7Ec5o+iKONTJkHHyiv2XXo88qX9l51PqFDcKIY5sK0V1kqMVPFx7ZBKgUeZHjW61OhTQSPNy0VbfOqfPXjVjosD5+zBnN2B+2QUGwghsYwY14hwrXDWWCSf3Xo9zGfSFJ77Xye5b+vqG8vTD02+/dgrdKjTo5ZnZLOewatxFF0OF89T7lMmXMQp/WpLR4eVYY6RK172eTO4GeJvMVTAUyyXQNpFpnDwlqJh4+PS4yO/c3/RsK1EoeJGMsyBTbE8VIxUXAuDIfQ9qvSo4eNiElKmwyOfu4+601901MRyGDhnD8zRBi7ag8fSi4xFLD0uet8r99+Tz2nNZrVq2myfe5IK4kRj+oU3aPklklRw/9bjN9QN9HrgRwbf+srLdGjSo4pOkovBaSq0bqgYHLDQKb1MjFlUNrn0eOSL2RiK1X4+l8u1xEdY+RipxN8KoAKeYjlICQFOYTQzVxTOzRR+/IsPqfJRxXVDib/1w2qKkSo+rg1CaRXZwR5VIixsfMq0+cSj77vi/sHlkqQi63uP589tTVKNRGokqUYqBVJmZiG6lmLks+yqjn/T58RdL4LYYKpf5tmvH6BLDZ2EGtP5eImbIwYHzK1sGrxllU3BHFGYVTYNqyhU4m8IWE2B7VKooKdYLhdnCn1K826yDn0e+eKDlK3ghhrNKNYeSvytH4YhRqr4OPz40qWbZwf7VIkx8rl0bR75/P3UHO+6xikpJcenO/SjmKZrU7EtypaBWC2OITeQIDb41u9nPYOZGIypMX1TykSXYjA+a2G7y/CJQiX+hoBhCGxLoQKe4mqYe5MdiMIYA4MIl342p/DzmSi81nIcxdpj2AObYnmoGKlYCQajk7Jy0eo8QViiwyOP3n/NGcIZL2Ci5xEnKcem22yqltm3eRR9NQ0jvAkEscE3f/9l2jTpUcMioMY0daZw6a2og+bF65VBpnC2fLTPx7+QrVdWS0/hsMfI1TTkXbEIajah4mpYbEYhZOUYWfloiW997WAxkmIwp9Chz0c/9+Blh9crFArFamCxGKni43AgBPlmZJ8xslmys4KwwreffKMQhA5eLgjfR20Zc3Qbrk3DtQGY7PlsrVfWnfCDbE7jLz12T/G5F5l88ysXOM1OPMq4sk+NKWpM44ibO+7iUuuVgRj8xhNvFj2FBjHOYBP70Qcp24FyH10mSvwNKUoUKq4GU0SYtKjSmvf4YE6hR4nvPvUKPqXc4hls/OJG+/EvPjQUJRkKhWL9ouLj8DJfEJ4HBn3vLj2qfOfJ14sewsFMus988W7qrrfkz5RScqrVxTZ1xiruzfpVVjWuGfFXHru7+Lztb+Dpx1sc4zZC6VChTYNJqsxgiJWpDsrWK5mj6VxiaRTrlaefPIBHiRAHjRQbD5ceH/3sA5SscNXNKVwtqLLPdYAKeIqrZRB0PUrFzXZQpz939+0jn9tP2Q5UtnCNMOwlLYrloWKkipHDSGYqU8UkoiLaC77+oa98CoBeGPHG2Un2jNSV+LsC0lQw45f49hMHaNNEIKkzRZ0pyrRXbYwfjKSYNccrEeDm5ngBDn0cvGtuebnW+AgrHyNV5m8doHZBFVeLEODg4eAxO2osY7D75uPy7FOv4VMiwAGYc6Pt8/Ev7KdkhVdcpqNQKBQ3E1U6Opxk5YJLD2T/0e89A8BpGdIhIRYuY7kgVCyNpklGSj1+/bHdAISxzjd//yTn2UKPO3BlnzqTNJjEFKun3FITkhI9SvSAC/O+NugrDHD51tcO4lMixEaQ4uTVTR/+nQcoW8G6MMhTmT/FAlTQU1wLg9EUWcawjI+LT4kIK7/RZmLyw7/zABUroLQObrTDxFrY1VQsDxUjrxwVH4eLlkyYJKaJTlMszHdMyA2A4JEv7VclgldI23f41uOv02KEFJ06UzSYoExn1WYFlyKVgiBfo/hz3seYaKRFtjAThiEV22fsS//9Nb/uSsdIJf4UV4QKeIrrwaAsI7vZunlZRuZEevGNtmSF62IHbrWhxN/6Q8XIa0fFyNXJG9Kjic4mTLRFlElX1uhQz+fSlQAx2+P+ufsz8zNr9WS3VhtRovHnX36VFiP0qFKmQ5MJakyhi+GO3YnUCHDntL64bOA0vx5f+71ypWOkKvtUXBGqdFRxPZhfljGfuTfaH/3hC4VAHOzA2XiF+czHvvAQrhmqMRUKhWJVoEpHVycbMWhgLCr8ACqiTYXZfsHBBqVHmWefei0vFXTQSXDy2PXxzz9AxQ5UKwNg6il/OXcRlRJa/ka++dWQU+zClAFNJmgysarKQ68UXaTFeqW50gdznVGZP8UNQQU9xfVktjTDnfc+wgLAJMDJxeFHPrcf1wopmSG6KuFZNirzt/5QMfLmouLj8JFIHY9SniEsF2OSDOJiQPnHv/AgFctfNbPoVppeaPHnjx1gmnEEKSNcYITzQykEByyVCFkuKx0jVeZPcUNQu6CK64kmZGH/fTFSQohdiMJnn3qt6DlM0eZlDW08PvLo+3GtENeIVH+HQqG46ahKmuFDFwkVOlTozHs8lkYhBv/8iUPzZtENROHHPv/guswUlq2QX33sdgD8yOC/fGWCo+wDKdeEEBxmlPhT3DRUwFPcCIQAmwCbYME8IJhbTuoQ4vD0kwfyz20kGjoJFn4uDn0+/OhDOGaEa0RqnqFCobhpqE3T4cMQMdVFZufOisIS3/rawSJTmJWPZj2FH/3cg+tmRJJjxvzKY9nf8kAIHuFeDBkyxjmaXEATajP2ZqHKPhWrFhX0FDeDgTgMsQlx8qxhJhRTNABMQiwCLHw++NtZv6FtxDhrSCBKCSNfvPaST1j5khbF8lAxcvhQ8XE4SaSem52Vczfs2RFJg552hz4f/+L+dWF41g1s/vMfvMkMo1SZYQOnKYmFngCrhbVS9qnEn2KoUAFPcbOREiKsQhxm77O3CJsEHYnAIJojEgM++Nn3Yxsxlh5jG9GqDOJpKpjsl/nGk0fRifkn8Z9cl5+70oFNsTxUjFw7qBg5nGQjktxiMPlAGMYYhdmMg8dHPvtg4YS9lnrapYT/8nuvcJ4tpBhs4gQNJlZdRnStiD9V9qkYKlTpqOJmIwRYhFiEcFG/x1xiaeSCMBOKP/z6C0RYxVtS3G4lBjEmIQZR/hbzgc8+jKklWEaMoSWYeoKhpdct+CWpwIsseqHN9556iS41QhyqHGMTZ6mIpX83hUIxHKjS0eFECIoZuBczmy0s8f2vv1SMS0rQMYix8xFJA2FYMsOhq0gRAn7xsfcB0A9N/tNjPU6xk83yBKPi/Moe3BpEZf4UaxoV9BSrDSkhxiTCIsbM3zI5mOT5wyR/LEEHLlZ/Eg2JRoIgXfBVgBSNFL0oWwXQSLHwcfBw6VGhhS2Ced+3VnY1FctDxcj1iYqPw08sjQUu2D4lEvQFZmcf/XzWsuCa0arLqC1GEBv8f3//PXxcdnMYRywUxjeT6xUfYeVjpMr8KdY0ahdUsdoQAkwiTK7O5SyVAolGioZEFG+C2Y287KsJGtcvc6hQKNYWqpJm+DFEvKgLKWT97CFOIQq/9bWDeX+7hUTDIC7Mzix8Pvr5zOzMMaJVUVJqGzF/67FttDyX//BVk1vkwVXdDzhMKPGnWHeogKcYZjJHtAQdNUtKoVBcf1SMXBvoIl1yRBLMtioM3LC//bU3CtMziQBk3see9bKbBHzk0fdj5WZnpp7clM3Fuuvxq49u4RtPdrmFQzf+BdcBq0L8CSF+G/hDYFxKOSGEEMC/An4B6AN/R0r5Uv7c3wR+N//WP5BS/tuVOGbF2kMFPMV65nqWtCiuLypGKlYDqpJmbWGIrOGgxOLZtFmzs1mjs2eefL3obY8xB8+c18duEvKB334/hpb1rVtGjK6lmPnnVzJfN040gsSgH1o8++RrTDPGDs5ex99+fbPi4k8IsR34NHB8zsN/Ebgtf3sY+B+Ah4UQI8A/B/YDEnhRCPEnUsrpm3vUivWECngKhWKlUDFSsZpRm6Zrl/lmZ0szt499IAp/9i9+nPetG/l7M69XMfKs4qXR8w54hz5lumzmOLpQ1S7XixUXf8B/B3wO+OM5j/0y8O9k5kbzvBCiIYTYDDwCfFtKOQUghPg28Bng39/cQ1asd1TAUygUNwkVIxVDh4qR64f5feyqJ28YWFHxJ4T4ZeCUlPJVMb9weCtwYs7nJ/PHlnpcoVgVqICnUCiuFypGKtYaqpJGMYystbaIGy7+hBBPA5sW+dKXgC+SlbPciNf9LeC3AHbs2HEjXkKhuGJUwFMoFIuhYqRivaM2TRWKm8sNF39Syp9b7HEhxD3AbmCwo7kNeEkI8X7gFLB9ztO35Y+dIitrmfv4c0u87r8G/jVkM4yu5XdQKG4EKuApVgtrbVdzmFAxUqFYHBUjFYobw4qVfUopXwc2DD4XQrwH7M+dzP4E+CdCiP9A1szeklKeEUJ8E/iqEKKZf9ungS/c5ENXKG4oKuApFAoVIxWKxVGVNArFtbEaDF8W47+QWVgfJbOx/rsAUsopIcRjwM/y531l0NiuUKx1VMBTKBQ5KkYqFHNQm6YKxZWzasSflHLXnI8l8I+XeN4fAX90kw5LoVjVqICnUKwPVIxUKJaPipGKa2UttkWsGvGnUCiuHyrgKRQKhUKxOKqSRrGeUeJPoVhHqICnUCgUCsVC1KapYr2gxJ9Csc5RAW99sxZLWhQKheJ6oWKkYq2hxJ9CoVgUFfAUCoVCoVgcVUmjGFaU+FMoFMtCBTyFQqFQKBaiNk0Vw4ASfwqF4ppRAU+hUCgUisVRMXI4WattEUr8KRSKG4YKeAqFQqFQLI6qpFGsBEr8KRSKm44KeAqFQqFQLERtmipuNEr8KRSKVYEKeDeftVrSolAoFGsNFSMV1wsl/hQKxapGBTyFQqFQKBZHVdIolosSfwqFYihRAU+hUCgUioWoTVPFpVDiT6FQrBlUwFMoFAqFYnFUjLxy1nJbhBJ/CoVizaMCnkKhUCgUi6MqadYXSvwpFIp1y3oOeGt5V1OhUCgU14baNF27KPGnUCgUc1ABT6FQKBSKxVExcvhR4k+hUCiuABXwFAqFQqFYnPVcSTNsKPGnUCgU14AKeAqFQqFQLGRYN03XeluEEn8KhUJxnRnWgKdQKBQKxY1GxciVRYk/hUKhuEmogKdQKBQKxeKoSpqbgxJ/CoVCscLc7IC31ktaFAqFQrE2UJum1x8l/hQKhWIVogKeQqFQKBSLo2Lk1aPEn0KhUAwRKuApFAqFQrE4qnT08ijxp1AoFGsAFfAUCoVCoVjIcjZN10NbhJBSrvQx3HCEEBeAYyt9HNeJMWBipQ9ilaLOzeKo87I06twszbWcm51SyvHreTCKG8caipHq/3lp1LlZGnVulkadm6UZ2hi5LsTfWkII8YKUcv9KH8dqRJ2bxVHnZWnUuVkadW4Uw4b6m10adW6WRp2bpVHnZmmG+dxoK30ACoVCoVAoFAqFQqG48Sjxp1AoFAqFQqFQKBTrACX+ho9/vdIHsIpR52Zx1HlZGnVulkadG8Wwof5ml0adm6VR52Zp1LlZmqE9N6rnT6FQKBQKhUKhUCjWASrzp1AoFAqFQqFQKBTrACX+hgQhxGeEEIeFEEeFEJ9f6eNZCYQQ7wkhXhdCvCKEeCF/bEQI8W0hxFv5+2b+uBBC/F/y8/WaEOKBlT3664sQ4o+EEOeFEAfmPLbscyGE+M38+W8JIX5zJX6X680S5+bLQohT+d/OK0KIX5jztS/k5+awEOIvzHl8Tf3PCSG2CyGeFUIcFEK8IYT4P+ePq78bxdCz1v5frwYVI2dRMXJxVHxcmnUVI6WU6m2VvwE68DawB7CAV4G7V/q4VuA8vAeMXfTYU8Dn848/DzyZf/wLwDcAAXwA+MlKH/91PhcfAx4ADlztuQBGgHfy98384+ZK/2436Nx8GfidRZ57d/7/ZAO78/8zfS3+zwGbgQfyj6vAkfz3V3836m2o39bi/+tVngcVI2d/bxUjr/y8rPv4mP++6yZGqszfcPB+4KiU8h0pZQj8B+CXV/iYVgu/DPzb/ON/C/yVOY//O5nxPNAQQmxegeO7IUgpvwdMXfTwcs/FXwC+LaWcklJOA98GPnPDD/4Gs8S5WYpfBv6DlDKQUr4LHCX7f1tz/3NSyjNSypfyjzvAIWAr6u9GMfysuf/X64iKkbOs+3udio9Ls55ipBJ/w8FW4MScz0/mj603JPAtIcSLQojfyh/bKKU8k398FtiYf7wez9lyz8V6O0f/JC/N+KNB2Qbr9NwIIXYB9wM/Qf3dKIYf9TeZoWLkpVH3uqVR8XEOaz1GKvGnGCY+IqV8APiLwD8WQnxs7hdllm9X9rWoc7EI/wNwC/A+4AzwL1b0aFYQIUQF+F+BfyqlbM/9mvq7USiGGhUjrxB1Luah4uMc1kOMVOJvODgFbJ/z+bb8sXWFlPJU/v488P8jKz04NyhVyd+fz5++Hs/Zcs/FujlHUspzUspESpkC/3eyvx1YZ+dGCGGSBbX/SUr5v+UPq78bxbCj/iZRMfIKUPe6RVDxcZb1EiOV+BsOfgbcJoTYLYSwgN8A/mSFj+mmIoQoCyGqg4+BTwMHyM7DwEnpN4E/zj/+E+Bv525MHwBac9L2a5XlnotvAp8WQjTzMo9P54+tOS7qZfmrZH87kJ2b3xBC2EKI3cBtwE9Zg/9zQggB/D+AQ1LK/3bOl9TfjWLYWXP/r8tFxcgrQt3rFkHFx4x1FSNvlrOMeru2NzJXoSNkDktfWunjWYHffw+Zo9SrwBuDcwCMAs8AbwFPAyP54wL47/Pz9Tqwf6V/h+t8Pv49WXlGRFZP/vev5lwAf4+sifso8HdX+ve6gefm/5X/7q+R3bA3z3n+l/Jzcxj4i3MeX1P/c8BHyMpVXgNeyd9+Qf3dqLe18LbW/l+v4vdXMXL++VAx8srPy7qPj/nvtG5ipMgPUqFQKBQKhUKhUCgUaxhV9qlQKBQKhUKhUCgU6wAl/hQKhUKhUCgUCoViHaDEn0KhUCgUCoVCoVCsA5T4UygUCoVCoVAoFIp1gBJ/CoVCoVAoFAqFQrEOUOJPoVAoFAqFQqFQKNYBSvwpFAqFQqFQKBQKxTpAiT+FQqFQKBQKhUKhWAf8/wHEW8ddysX/DQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAAHJCAYAAAA1u4DOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebgc13nfiX/e2nq5K3aAAAhwkygukriIlCUvimxLsqxE8kziKHIs2XFGmWfsTOzYmZ+dzPxizS8zEyeWKfuxJ4ltKZYceRzFisdKbNlaYkukJJLgIpEAwZ0AQZAACGK7S3fXdn5/nFPV1X37Anfpi3sv7vt5nnqq6tTS1dXV9Z7ved/zHjHGoCiKoiiKoiiKolzZeKt9AYqiKIqiKIqiKMrKo+JPURRFURRFURRlA6DiT1EURVEURVEUZQOg4k9RFEVRFEVRFGUDoOJPURRFURRFURRlA6DiT1EURVEURVEUZQOg4k9R1hEi8lci8vfd8o+JyJdW4Rr2i4gRkeByf7aiKIqirCVE5B0i8tJqX4eiLBQVf8qGRkRqIvJJETkqIlMi8m0R+aHK9h8TkenKNOuEzx1uu4jIr4jIa276FRGRZV6TiMjzIvLExfYzxnzWGPOu5XyWoiiKoiyEtWIv3Xm+LiL/vK/8wyLynIg0l/9tFeXKRcWfstEJgGPA9wETwP8KfE5E9kMpsEaLCfifgOeBR9zxHwU+ALwJeCPw14F/sMxr+l5gO3CtiLxlmedSFEVRlGGwJuylMcYAfx/4ORG5GUBEtgEfB/6+MWZ2qV9QUTYCKv6UDY0xZsYY88vGmCPGmNwY81+BF4A75jnkI8BnnPEp1j9ujHnJGHMca3x+YpmX9RHgT4A/c8sDEZGfEJH7KuvvEpGnROS8iPzfIvK1SojoT4jIfSLyqyJyVkRe6GuxnXAtuq+IyHER+Rci4rttvjvutIg8D/zwMr+foiiKss5YS/bSGPM08H8AnxQRD/gN4PPAt0Xkv4rIq87W/VcR2QMgIn9NRB4vziEiXxaRA5X1e0XkA275KhH5vDvPCyLyP1f2a4jI77nzPwFoI62yrlDxpygVRGQH8Drg0IBt+7Beuc9Uim8GvlNZ/44rW+rnN4G/CXzWTR8UkWgBx20F/gj4JWAL8BTwtr7d7nblW4F/hTWaRcjN7wEpcD1wG/AubMsqwP8AvM+V3+muT1EURdnArLa9BH4NEKztezvwT7D12n8P7AOuBlrAb7r97wduEJGtIhJivY9XiciYiDSw9u1eJyb/i7u+3cD3Az8rIu925/nnwHVuejcXaaRVlLWIij9FcThj8Fng08aYJwfs8mHgXmPMC5WyUeB8Zf08MLqMfn//HdABvgT8KRCyME/be4FDxpj/bIxJsa2gJ/r2OWqM+R1jTAZ8GtgF7HAG/L3Az7qW3VPAPcAH3XE/CnzCGHPMGHMG+L+W+N0URVGUK4C1YC+dLft7wI8A/9AYM2WMec0Y83ljzKwxZgrrHfw+t38LOIAVpXdgxd03sMLxrcAzxpjXsJ68bcaY/90YExtjngd+h16b+H8YY84YY45h7a2irBs0W5+iAK6l7/eBGPiZeXb7MPB/9pVNA+OV9XFguhLmUv2MLwLf41b/gTHmswM+4yPA55yAS0Xk867sjy/xFa7C9sUAbJ8ImZt97ERl+6yzt6PAZqzIfKVig73K+XrODRy9xLUoiqIoVyhryF5ijDnk7NYhd1wT23j5HmCT221MRHwnFr8GvAN4yS2fxYrDjlsH6zW8SkTOVT7KB+51y2oTlXWNij9lw+NaHT8J7ADea4xJBuzzduwL/4/6Nh3Cdl5/0K2/iQEhMADGmB8aVF75jD3AO4G7ROS/d8VNoC4iW40xpy9y+CvAnr7vtGf+3Xs4hjV8W53oHHTuvZX1qxd4XkVRFOUKYq3Yy4vw88DrgbuNMSdE5M3Ao9jwULAC7+PAi8C/xIq/38HawN9y+xwDXjDG3DDPZxQ2sbh2tYnKukLDPhUF/g3wBuCvu7CQQXwE+LwLI6nyGeAfi8huEbkKa3h+b4nX8ePA01jD9WY3vQ7bQvl3LnHsnwK3isgHxI6/99PAzoV8qDHmFWyY6cdFZFxEPBG5TkS+z+3yOeB/FpE9IrIJ+MXFfS1FURTlCmGt2Mv5GMP28zsnIpux/fOqfBNrY+8CHjTGHMJ6+u4Gvu72eRCYEpH/j0vu4ovILZXs258DfklENrlG23845O+gKCuKij9lQ+M6pf8DrNA6Id3xiX6ssk8dG+P/6QGn+HfYjuGPAwexIuzfLfFyPgL838aYE9UJ+LdcokO58wr+LWwil9eAm4CHsK2ZC+HDQAQ8gW0J/SNsn0CwraJ/ge0f8QjwnxfzpRRFUZT1zxqzl/PxCaABnMYmePnz6kZjzAzWjh0yxsSu+FvYPvGn3D4ZNsnZm7HZTE8Dv4sd3gLgY9hQzxewDae/P+TvoCgrigwItVYUZZ3j+mS8BPyYMeYvV/t6FEVRFEVRlNVHPX+KcoUgIu8WkUkRqQH/FNvH4f5VvixFURRFURRljaDiT1GuHL4LeA4bovLXgQ9cpE+GoiiKoiiKssHQsE9FURRFURRFUZQNgHr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYA62KQ9wnxzXbC1b4MRVEU5TLwLJ3Txphtq30d6wW1kYqiKBuDYdjHoYg/EZnEjoFyC2CAvwc8BfxHYD9wBPhRY8xZERHg14H3ArPATxhjHrnY+bcT8olg3zAuVVEURVnjvC99+uhqX8MwURupKIqiDINh2MdhhX3+OvDnxpgbgTcBh4FfBL5qjLkB+KpbB/gh4AY3fRT4N0O6BkVRFEVZi6iNVBRFUdYEyxZ/IjIBfC/wSQBjTGyMOQe8H/i02+3TwAfc8vuBzxjL/cCkiOxa7nUoiqIoylpDbaSiKIqylhiG5+8a4FXg34vIoyLyuyIyAuwwxrzi9jkB7HDLu4FjleNfcmWKoiiKcqWhNlJRFEVZMwxD/AXA7cC/McbcBszQDV8BwNjBBBc1oKCIfFREHhKRh86TDeEyFUVRFOWyozZSURRFWTMMQ/y9BLxkjHnArf8R1tCdLEJV3PyU234c2Fs5fo8r68EY89vGmDuNMXdO4A/hMhVFURTlsqM2UlEURVkzLFv8GWNOAMdE5PWu6PuBJ4AvAB9xZR8B/sQtfwH4sFjeCpyvhL4oiqIoyhWD2khFURRlLTGscf7+IfBZEYmA54GfxArLz4nITwFHgR91+/4ZNoX1s9g01j85pGtQFEVRlLWI2khFURRlTTAU8WeM+TZw54BN3z9gXwP89DA+V1EURVHWOmojFUVRlLXCsMb5UxRFURRFURRFUdYwKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAwWpfwHrn76bPcY5s0cdN4vMfgutW4IqUy4X+9oqiKPOz1Hck6HtyvaP2UVHWLur5WyZLNWxLPU5ZO+hvryiKMj/Ledfpe3J9o/ZRUdYu6vlTFEVZZYwBg7jJtskZpJzneFBZN3OWZU55/77MOY6yfNC+c8sq1zvgc3qRgfvP+/0r231S4OmL7q8oiqIoytJQ8acoyrrBGEohlOP1CKZi2Zb3rnf3p7Jt8D5AX5lUthX79wqu7rmgX/gs8Jv1nLEqBXu35e4T5m6j5wr65V13/+p6dR/K88DNP/4GRPrlId3jB2zrLes9r90++Jv37+uJgd8ZvK+iKIqiKMtDxd8K8MlPfpL3ve99nDp1iltvvXW1L0e5TNRqNb7+9a9Tq9UIgoA/+qM/4pd/+ZcH7jtlJuaUmZ4q9vwCYvB+c8vMnCp7d7/BHpuLe3Mu7u3p9TzlPQKrEFxeKZwGCbCF0SvZutIrd9vynm2eE0u2vHf/Wz58o10XgyfunOL2FRCxEs+rzoXymO682NY9x3AQliYkh8HpVfpc5UpH7ePGZTE2UlGUlUPF3wrwe7/3e/zmb/4mn/nMZ1b7UpTLSKfT4Z3vfCczMzMEQcB9993HF7/4RR544IE5+77G9p71gZ4SLu5JmX+fuWX980Hbb/rxmxbk7emRfNLnYZpHPHk9AssJMDGlaPJk8Pe7OFVx5C/h+NeWcIyiKMtB7ePGZTE2UlGUlUPF3wpw7733sm/fvkvud9rsoBuGhZsPqqTPLZtPDMy3/VL7L3a/XpZyzGJYnvdjUP+nal+p6np/UFy/R6v32Ln9kmZmZgAIw5AwDDFm8L35wE+PLOs7rQzq7VEUZWVZqH1UrkwWaiMVRVk5VPytIikhMFeUWC6VUKHLfOF5l9pvLksXWQZBMIsI31sYSxOj/Qzu59Tb58nMu/2WD9/o1t1+LtSPT31lzid5nsfDDz/M9ddfz2/91m/x4IMPDuH6FUVRFGX9ozZSUVYfFX+ryHt+eutqX4KyIBYeHpjnObfddhsTExP88R//MTfffDOHDh1awWtTFEVRlPXBQmzkCbMHjwyPDJ/cLQ+a2+Xh9bNWlI2Bij9FWQHOnz/PX/7lX/Ke97xHxZ+iKIqiVLiYjbzr5+7mwD33kxDQKeWf7+Se76ZiWcAMVn82uVdWJgIbtFwkA+sRky4pWHd57r5l+ZL6qyvK6qLiT1GGxNatW0mShPPnz1Ov1/nBH/xBfuVXfmXgvvcff0O53JtNspsYpTrnIuX9ZYMzUXbDWLvHdT+7+rn923qzXK78fVQURQF4yryRgISQmJC4XA5I3HKCLzoo+HphoTZyz+RZ9nzs9cv+vDwXMiPkxiM3QpbbebFeLctyj4fu+RYpYSksTSn1/HIIoUIiltmrjXfRaxgoGC8hQKVc714BgE/Wl8naVI5x+6oYVRaAir8V4A/+4A94xzvewdatWzl27Bj//J//cz71qU/N2e+5s7tspRvTmxGxLztitWy+in6xXE1Zr1xedu3axac//Wl838fzPD73uc/xp3/6pwP3/eF/sB9wg3sbyI3YeS7lsjFCXm4T8tyNP5cX26T3WDc/+9WvlccYwBg33EJxTGEmjG0xLbdRHCPl8QB55fiF9ukMvAxPcvxi8jI3z7vlleWgZ9keG3gZvqeGTFGuJBZqHwE+9L/tpJMGJJlPJwu4/+MHaNMkJSynzBSZfg2hE4c+aUU0Jr2iUdLL92WVHhZqI799/Gr3/re2oVgu1ot5YSeKsn574XnFYEP5gq5vz8duHMbXLCnscj5AgBojZH1lWe5hjHDgE/eXsq93cCO/MlRSIUILCWjFamG3L3JVPaKy6uXsF5PziVK/MnRSIUi9clvFW6pCdM2i4m8F+NCHPrSg/fa97622ZcpV+M9+5a9Ic4/cBN2KePHiwCsr63mlol5W5iuV9ku1RPXTLySh19vTk6K/Ii7n21b84ftT+w/yRFW9TeX+LGRMtbXniXr88ce5/fbbF3WMHRIB9wqHYWRO3fehO5d9juVgDGS5kGVCmnnkBtLMs2VuSjOP1778NRITkBmPLPdIjU+ee3bdeGS5TzbgWfalavRdBUEy/KISIFlZIQi8tGeuxkhRVpeF2keAyE+pBV2x9t997HXz7msMxFlQisUk9/nWrx5gllESQlIiEqKKWMSJxLTHmxg4wVh4G31SfW8MiYXayDe++ypSZz+KeZYLM98+RCvxbD3J2Yo090hznyxzdaQ+PCcKiwbHsqHR6zY8+l5u9xNTNjpWGyCLYxdb3xABXwz+IgQowN6LPOfLpSpI+z2hZX2zKlZd+YFfu5+MAIOUobhdb2ghCQtvqfOUXjQc92J9OTP8cjnt6ffpk/bMtc/n0lDxt4rs2NTuWb/6Q29ZlesY5H2ygrJYpuKJkjn795RDj5fq7Ff+yrZmFWKVrrcpN547ptcT1fVOMUfgwtI8UYXQLD1QYl/2VjR0PVGFlyqQzBmD3hZGXxZvAAZx32M7utfmFddm8H03r0xeZVl6tuV4Hs5QdY8vlj1vdcSxCAS+IfANtYsYvKt/bGki1YrKboWgrCQ4UXn6y1+nldZshSD3SY1HkgWulbUrJgVr6EM/JfAyIi8t10MvJaxu87UCqCiXm28duR6D4IkhdEKwFiTU/JQosOtWICaEfu62d8Xij1widDDJPOIsIKmIxvvvOcAM46VnMSEs+5QJphSHg0JQSwGp3sVl8fSxCcIgt5OfEwQ5gW/YeteNBL4ttzbGzi9GlvU2OvY3Qma5MPvtx0mS0NoMI+S5FZVFw2RmrNgcNCpFv7gs5+WyKesbvhOYvvNmhr61LZczwqUqSEN/4YJ09xC9otVw3CyX8v5277cVpgd+7X4SapV+n8HAeX+beSEO/TJpkBWKAYkrs9t8MgISd6YUn3TDCEkVf6vIQ09tIahU9gM/71bs/XygEOgKhNxV8Jd/HSvhfSpYLUHbT783qmoAqkbg9Je/TjsL7cvfeaLS8oXkl0J2uVz1/jeVy3kOWVbMBZNDlkOS2WvOc8jd8p4j95Km3evPK9+h6kUujpu3I3whLKUrOPsFpFcRn8V+nlA+e71CE0L3zK40vm8/ez5hefWP3bGg8+Q5JKlHmnnEqUeSeiSZx6tf+jrTcZMk90mywM7zoBSOgquI+gmhZyufkZ9Q85NyOfI3jhFRlJXi+//WJOC8eolHJ/FpJz6dxOfCI09wrtUsvX1pZj16npg5wjAK0q5g9FMCV+kN/ZzQj4G4/My/+bHr572ePBfizCfOAjf53P/xA3Ro9IjFzHSrVr4rDXqmuKcsJNbGpQpb33Y9SSqkKbRSYfSFx5lNfNJMynd2mtvlPO+tBHmeE4euTlUVir5vbCSIb4VPs5babe+8zjauLuGdnedzI1vKOoUTnrPfPkiSBbQT6Ua65D5J5hNnfs93CPyMyInCYjn0U0I/o+anhH5K5GflM7weWWg47lIFZ5YLae5bAe/udeoE/YMff4CEGm0CUgIXqGqXM/yeOlNXRKalOLQC0v6nPbKyAcgnxZf185sMTfyJiA88BBw3xrxPRK4B/hDYAjwM/LgxJhaRGvAZ4A5sDv2/bYw5MqzrWE80vu9O8gzSDOJMyHLI0m4lP06k74Xi9bRiZblg8sFvK29Ahd72saIrLr3eCv4goen1La/XCu3CvVELEw4AfH7p13PiFQ8/gDAwBAEEocH3IYr673FvhSC/6m0A+G5aKoXgtEJTyDPIDXQyyDPX19AJ0t1H77UCKamIy6xXaGaZ2FCczF685xsaUUqjltGIMuq1lGYtpVnLLotAXAieB7Uop0bOSKV89yXCZvMc4tQnTqxo7CQ+J/78PmaShq2IZiFJFpRjX9aChMhPqAcxdT+mHrjlQCt8Gwm1kYvnvsd3ArZC34gy6m6qRRm73nYD9dCuVxtB8xw6TiB2Eo8LDx9iplPjTDZKJ7WiLcvsAVWhGPop9YsIRXsdhrqXUg8XFooKXe9inNqGpDgNeOCeB2n1haPmxiviXeaIxbDPy1hM69UeX4rHn2ggYm1jLcq5sOXNhKEhDAxhaKiHdh6GhsjZzoIsgyQVslTs3K23MmHs6GN04nCOiLRCra8lXcxAARn4Vlj6fq/3sZjXo2yuN/IHr13Q9zYG0kx67EuSekw9+gQzcY3ENThUn2EA389tQ0chEoPEzVPXUGnLr9TnpR9bZ02pDdj2gUUIyiwXksx34tF34eQe93/8ALPUnGC0/9CMsCeyqPAqVht4BkUNrFYdYJiev38EHAbG3fqvAPcYY/5QRP4t8FPAv3Hzs8aY60Xkg26/vz3E61g3+L6hXsf9IedW8gX7Ay32R7Lhmq5yb6w3Kc8gyW3FPst7K/a29Wyu0MydMMhyzwmEi3uRqp7JUnT2Cc2upzOviNJe7+cwvJlrnSQRWi3IMo8kgdS1cmZp7z32A2vYwsDgBxAEtiwM7PMThBA4AVns4y9AFXoelfvc//LpXc92vR2gfB4XQppCpy1MdYTms/dybqrGy6ebtOKALBM8z5RicKSRMFJPGW0khMHaF0OeR1kJLdj9dwf3Yykqou3YTq/8+X1MzzZoZxHtNCLLPQIvpx7ENIIOzbBDI2zTDDo94WvKFYHayEVy7buuphYZsgw6HY92R5iJPfLnH+fMhZr9XyU+JhdEIHJisB5agViPUrZ/143Uw4wonBuyP69QTEfpZHOFYugEYRF+WhWKkZ8ODKMrvIsjUde7uOdjN8z7nYu+i3Hml5X9+3/1wUrfxWIKBoSj2spl4aEovBXdJDjpusiOOnbzLnzf1mHSBNqJne81R2m1PS5MCXEipKmQJLbxscD3rSgMAisMq/PkdbcQhoZGUOwz/zUUdag0E2efrZDspMJsJowefZxWxwrHxHn55vNGItbTWBWJtTCjUTaKptQi+3yGgX3ORuqV49+1/6L3K0l7BeOFhw8xG0elZzzOApK0WzEIg8xGqgQp9SAlChI7dw0g69mrOEwKEQm9tvhSDT7QG1IeZ3MbfRIiUqKy+5LvvIi9U4eQmMjNhynehyL+RGQP8MPA/wH8YxER4J1A0bP708AvYw3b+90ywB8BvykiYsygaOorm8OHQtJUyjhy8ShbtsII17JF2cIVBBBGtuxiAknECoCuCKje2otX7JfyQPSHLeYZpLkVm4VXKctg95H76MSVBCDZXMGZZvN4M6UrHIvw2P71oiWuKCuWa4Na4laZI6nr83cJF16WuZDPFLK2Xc9SuHP3SdodIZ22BilNhTSxhiqv2HYRKxaDwIrEMOydF17H6vZhvGCCAIJRw8ioId3ydkJgwk3F92q3hPNtIXr6Pl56dYSZdkCSevi+YbSeMN5MGBtJGG/G60IUDsLzsN7Pmv1Rdg3wLGeZMNvxme0EHP+zb3B+ejOzSZ04C/C9nJGwzWjUYjRsMVabJfLXfuVN6UVt5NI4/FSdTsf2tQpDQ72e06jnmGtupVHP2VTPqdVs2Lkx0ImFOBbabQ+ef5xz01YgdhKfOLEvWhFb8a6XnsSUWpjTrGVsfsf1875rLuZRjNOAzjxCsceT2NdHcRAiVPoudoBLeyuyXFxF0y+F4wMff5CWy4yaubQ2GUFPwptCNPqVPk9lCFvFc1Fdvxzeo2cOe6SJu0YPohCimqFV208YQTRmiGoQRtDss1m2EdXOW4ld3pN3RWPiBGO/aPS8rlDsEY9hVzzWom5dTK5auAcpzynFYyEm41jwnj3ImQs1ZjtdcVaLUkZqKSP1lGY9ZaSe0Khd3GvXLxh3/MB18+5rjO3uUDRKdhKPC488wXknFNtpWD7HgZ/ZSJUwoREk1MKEepDQCONF9RfciAwKKb9Yo0+WC+00JHbRCd/8Vdv3OHaRAQmRa+wxwNPLvr5hef4+AfwvwJhb3wKcM8YUcvklYLdb3g0cAzDGpCJy3u1/unpCEfko8FGAbWu4a+IkPudYfGVsfNMOLkxs6ynLXdhnmkA2bV9ed1x1ktlZIUk8kth6jJLU9gsD+9KzYtEJRTeP3EuqVjNE0cXF4nJZqBcp22VDFj0gWuRnVAVmmtr+bG0XIpul9oW658i9dBIhKzKEOTHZSfzS21R4mIr5aGPpfbN2bBrn5NkLiz5uZHwHr74CUQRR3U7zeesKER/23bDnOk48em4Kgcbc441xwjGDLIGsZZfvuOokrbaQJtbjWIrHamOEe7YC9zwV4rAwflFk7HMWLV4w+j6MOHFotr6NEShDL9MUZmYE78n7OPFag6ePjZNmHqONhE2jMZNjMRMjw20FW0183zDWTBlrpuzoE4dZJky3A178wjc43ZrgyPmdxFlAM+wwUZthoj7NRG1Ww0fXPp9gA9rIpdpHgMnN26m/bjej7qulCXQ68GobdiUv8urpgHbbegPzXAgCQ73WFYje9bfQqBk2N/Ke92ueQ6cjtDsenY7gP3+Qqdmo9CIWFV/fz8uw0nqUETlPTS3MGWskF61gF0KxCAu/WB9FEcpkNkV206ia1GYBIXu+Z2h4CY0wKcsulezGXqftw5i45FhFWNsDH3+QNhG581JkhC5tRtfbaJCeJBqFcCySZ4zzAhdILnEFcxmd3EE2USt71uc5TCeQxpBMw/Xb21w4L8QxxB3pikRxNrXWFYZRZKg34EJtn23YxNY9BtU/8hwSJxbbibVDaSLs6Rxletp5Gl39K017RWPRQF803pcex6g3PDWK7J0r2X4jk5VrMAbaHaHV8uDpg5w+X+foyVHasf0T1KOUsWbCSN3WXcYayaK7UVgPeU4U5ow13c179/6B+yap0OoEtBOfcwfs89tJQ1qJ7dogGCsMw5hmGNOI7LwZxng6TNOi8D3DSNSNEJjv/2sM/OL/tvzPk+U2JorI+4D3GmP+JxF5B/ALwE8A9xtjrnf77AW+aIy5RUQOAu8xxrzktj0H3G2MOT3o/AA3SN18Iti3rOu8HDyQv4Ps7u/m5e/+ca7aD+1Z6wFpjMLIGIyMLywkbzFUBWPqXli37zpJkkDsWkHjuCsWw7BbYa/XDfWGM5iNi4dAXAlkGbRmhVZL2PzUN5maDZltB3i+YbwZMzkas3Wi0xPOtxCePjbOn772DmbHNvPs8y/Ou58VYrYvQpoId961m7gDnbb17nk+1JwYrDeg0bTLq0XxbBWtqFkKt19ln60klsrcCkbPh9HRnO07MiYnh/viNwZmZ4SJQ/dxdqrGhZmQkXrK9k0tdm5urTnP7koz3Qp44f/9Jufao5zvNGmEMVsb59kxcpbwCvAM7vmNzz1sjFndMUuGhNpIizHwR9lPseODP8DYe29jfFNvo1GeQxJDpwXXbm0zO2Pf11kGYQiNpq3IN0cMjRGo9XXosaGh9vir0qO0Ox6tlhWHaWob/0px2Mip1wyNhhWKg2xfmtpQ005shWLj+cdpx0HpLSlC+8Kg4kUsw01d38Tw0v2sjKH0JlaFYtE/sRqydzGhWPTxupzJpqqJNVInIpPMJkZ74J4HS4/jg9n3UPvJj/ByUGPzzoyo1n1f55m1I9dft9naw1mIY9cnu2GnetPawyCc/1ryvFsPSmIrEuPYnituW3sFtk5WCMQoglrDUKtZ2xte5PwX+9yk+NyKp7EIS42Trqcxd1FNIoZG3TA5mbJ5MmN09NJeNGOg1RJmZn3Cpw8y3Q6Zmg3Jc6FRS5kYiRkfiZkYSRZdh1kqxkA7tlErZx58gtkkopVEtOKIzHhEQcpI1GE0ajNas/MoWP/2abXZ/L/+22Xbx2FU998O/A0ReS9Qx/Zn+HVgUkQC17K5Bzju9j8O7AVeEpEAGwn22hCuY9XJ8YjzgPFJeP6IFQFZBknb441v3sOp44DA5BY7XexFtlA8D7yo1zP0QuK8Qn1NXIUXKIkhnYI3j5xk6oLwasuj1fbIUnu+ZjNndMwwNmbnV4oo9H0YHTOMjhnY/lYmgUmskZ+eFjoHv8l3nttMnHhsm2yzZ9sMo41L97tKMw+TQziod3EFERdiGRpqDTj8ZK9QzHPIEiFNPG67YzdnX4W440TVGIxOQnN0Zb24VQY9W8+1+8JVK+I0y+DkDKTHX+WF5+GGG1J7r4eAiPUUpne/nTGs+2RmWmg9+i2+dWg7EyMxr9t74bIZvdVmtJFy69+5q1yfaQU8+fkHeeTEDTTCDtdOvsJo1L7IGZTLiNpIrH1MiHgt2s30ETh13L5bJjbbd1sY2gp4rQ6ns7q9U3Ub2NBJ4EIbrh1rc/aM8PJLUr4bm03DyCg0RgyNJmzaAi2sEHansJ+f24a2Cx0YTY9yYcrn1KsBrbZHmto+g4XXsCoOx0YzNm/KYOfcMD+bhbQbairPP8aFmYhT52xIXZz4GGP7xVe9iDUnFBu1tBJ+mkHhKXv3YCFfzXpahp8+8gQX2g0Xehr29O0qwvZqQdoN3wvjUjguVyReLLFGNcTtwjf280zikRk4/6pPnsHY5ozGqLGNng3DsZd7H/E8gXRKuP76zUyfh9MvW1sdhLYxvTFq7WHRoO55WEHnLubV1D08lecIbBbtVsWLODstnDltBWLqzH0QFo3j2Abyhn0uB9WFPM82RFQbI4rnT4Cam3q+Ww7tFnjTR3n+SI2ZWY+x0YxtW1O2bE4Hfo6IfdabzRS2dj2GhSicmvY599QTHDkxRpz4NGopW8Y7bBrrrFikjEi3W8OWAZ7wTuwx0wk4ff+TnJiaYLqznSQLiIKUsVqLiXqL8Xqrpz+scnlYdrXeGPNLwC8BFK2axpgfE5H/BPxNbDazjwB/4g75glv/ltv+366cvgx2HDu/Iup8H/yRnKef6YrByS1X89whuPoGaIzMc6qVuDqxL7VCdJYV+QZlyGCew2stuCU4yalTPs895xFFhv3XpIwNqSK/1ggCrKfqu7+Lbdh7MPLIvRw6solGlHLLNWcvKriy3P7uccu+iJf6kvU88GqGsJbx5FNdYZhn0Gl53PrGPRx/AXbugYktS/uMlcT3YXQcXmMbbQPZ4dPc8PqEiYmVeW5GRg18z1vZDTQfvpcDT27lpv3n2DLeWZHPW8uMNFLucElnzlyIOPAfQ7Y0znPN5MlVvjJFbWSXHA9BODd7hsaoITkPI2NbePFpW2nfdpX18vRT2K2TnbqttYzbynyewekWjPltzp0RXj5mRWEYweio9RCOjllR6HnWe9RowqyrnFcr5sbYxrapNowmveIwy6T01hTewno9p9nIqddtX7Cx0Ry23sTooO89INT09GxYhpqmqecyUudlP8TCc1iPbOW68CLWopxalNMVivvnvd9x4pWfcf6hQ1xoN3h1eqzsWwQ2k2opDp1AtILRJgEZRvheJ/URckYmck489zh5JoT1W5k6K2y9KsWfR1RFdcOLL/WKwrQNJ14V9l+9mVMv2f3GN8HkVgaepx/fB995FE90XNOAE4iF6e4kMNWBzpT1Qp85bfuoZ5nrZzhiaI64hoexxTfIeh40R6A1so/GDqgbmJ6CqXPHeOFojWYj56pdMVu3XLoxs0cUbn8dRWei2VkhP3iIoydHuTAT0XSRMjsmW0Th5emvZ5/VmM192U47scf52YhT9z/FKxcmaSUR9TBmU2OWTY0ZJhuzV0y3jrXKSvp0/j/AH4rIvwAeBT7pyj8J/L6IPAucAT64gtew5vA8ePjAS1yzbw9x+/KKv4XgefaanmvvIPehFcDW9mlePu7z+hs3RvZBz4PWnd/DNuDcXzzMq+fr7Ng0vxelEHznz6zQ9fjQGM156pkXueXmqzn18toUf1XqTTgVb2X8xCkmJlb+uZm943vYcjM89ZVv87abT634561lNo/HvOvvX8eXfvc5tjfPMRJtPDG8TtiANlJATFnLDiN4+ZSt3M+eEabOb+amRYy24/nW+3OyU7eRCE4UthM4NwX7wzYvHRVmZ4QwtEJwfNIwPjm3C4ZI1/M4SBwWnsNzbWgkRzl7LuDlVzxabRvOF4ZdYdhs5DSbdh4Ezq42DI2Gq8zvuLFMflUlSaDd8VwykMeZboWcPl+3YxvGgQ2v94pMkV2RWA07rfYBK/p2jZOwfZ4+ilkmtBOfVsd6K88/cpizsyO005BOGpb2rVYRhvUwph6kbsiaiwvEIjTU94QXHnuGxogdCujUC4+xff8baU17jE4uXIzYhgDDqbP2uUkTGNu0pWxQH9R4sFiKxobmKJylXjaQF8/W+Rm4pt7m5CvCzDOC78PYhGH7TtvQsFhEYGwczPhetlxtheCpUy/x/JEaN1zXYdPk4iNamk0Dd3UbI6anPZLHnuDAU9uohRn7d06xdWJ1bEMtytketdn+nq6He7bt88o3n+T4+U08cXI3zajD9tEL7Bi9oNlHV4Chij9jzF8Bf+WWnwfuGrBPG/hbw/zctYMduDLp+5+msXD7nXuZnYLZGSuuNm+zfQDXAklsWzzjDrxpu00w02p55BnsHM/ZtCtn2/aN9eebmRH8Bx+gnURsHrv4C1IEPGPYsQdOLz7/y0CMsf0g7nzLXtqz0Jqx3cRF4No3DOczVpJOG3bkp9m27fI8N2kK6X0H2Dq+McI+L0U7tln/Ak/vx1pio9tIISfPhLhl1d/rbthMpw1xC0YC2LJjOJ8ThhBOwmt5HZrgNa0359wUXGXaHDtiK+zbdhq2bDMLHh6n8BwWYX2VoBk7JEHbeg63t17k9JmAVsuGlPq+6RGEVWE457oLr8xdl/YitjuCPHeQ89MRrTjo6YsY+HmZGGS0kTDWHNwXzPcNI77NLgmwZ0DIaZHAphX7tDoB5x+22SHbaUgnCcmNC5sN4x4PYjO04XwGYcqf4Jo33cCJZx8niQN2XX8TaSJMbB3eO0ouQ5eIMIRwwoWV1kHqECcwOtbiuac8Nm0x7L56ed7S0TFgbA+NFjz7zMtcvSdmx/blNaKOjubwNhsuOjXtcexbz/Lcy+O86boza6K7RLOecd07b6BoopiaDTny9TYPvngto7U2+zefZryuXRmGxRXSm2tt4GEIvZTz03Dj665mdsYahKhmwz0374CrmivfZ8sYlzHUZXhMU7ht50nX+XluEpjx0CV+mTQ0G4bNW3IajcFx51cqnQ5cuOAx+vj9nJ2qUYsy9m7v8IZ95y4ZfuB7tt9CexGJzYwphnCwCWDueMueUoCniWtpbdjfcHwT7NizsJCW1STPoDUL+6NTzMx6XH/DyoV8FsxMC+HD9/PquTr7dsZcvX1mRT9vrdOJPb7zHx/h1Mwkb9j6oo4VqKwZ7LACKRPtVxjf9Uaa42ByGJ2A2o5uX62VIghhbBKmqMMWaMfQmm3z6IMet9+9/PFlgxBGQ1txz7i6x2toh7aBk7PCjtbRHmEYRYaRZsZI04rCkRHb33A+BnkRBxHHwmzLI3j6cU6fr/PCiTE6sU8Q5HYYnabNmjzWSC753XuGrBmL2T0g1DTPbaNTKw5odXzOPXyYM7OjTHVq1IKYIITTr/pM7HgTYc0wNplTay7cPuSZzb6ZxMJ112yi3bL2MmzY67v2puHkUVgsSWKT1Ez7UvZJHBb1Bsjrr+LFp15etvirMjaaM/aD12Iee4yHnt7K228+uebCLMeaCbe+52oAXrtQ49BXQxpBzI3bX1FP4BBY49XJ9YWQE3gZb3/Dq5z0t7Fl59wU/YuhGB+vFHKVjItFev4kEZvApS9FfxC4sQKbNs2weDbkpVbLXYr+y5c4ZC3R6dgMclufvo+ZVsCF2Yg48aiFGZtGYzZv7nDj1ecXlT45DHLCyNCu6I4ieUuWCm956x6Sjs06lnTsb2nH37PZxsK6TRYzMu46la+CAatSZPmsZvssxhu8bddJ99zZYUeKdNhgQ7B2NHO2b8/ZvGVlREe7DRfOe4wesiK9WU/ZsiXmdXvOb8jnGWzmz2f+8/28OjuJQdg1GnP37id1+AdlTSEYfEntu/YalhQet1CKxrXcgCnsaGrLrt/RJk2glcKZc8LkppX/n9ihbWw/5X5hGMcwPQtj8VFeOxNw9JhHp+MRhoaRpk04MzFhxeFi3nHWzmfwlpsYAQqnahwL0zMe2ZOHOHJijKmWNTjjzYSJkZhNox3Gmosfz8/zrPemWbeidE8lpO+1r22hE79Gq1lnYnM+0ENnbY0duuF1N2y29jKGpG1/R7/WTehSb8KmbSubDbscJqlIkpfYZyeJrR3qtO2QU/UINjUNo+PW4zfMRvM0AV58ia1bVkjs3PpGOHqMNJM1PZbulvEO3/sjW3jmK8/x2Ct7uX3P0dW+pHWPir8hEhJj/JRG0zBR6ctXpMpPk+6wDDZlfu8Ya9Xx+8BWpoPAjh0T1LqDcoehzT4Vhjlh0B2L7Uqr/BrTHd/PmO4A8lluW4yrA8jnxo7z1ztovB04Pk48OrGN6wnDnNF6Ql4Xtk60uXbXlOs8v3SiIGf/+Ud5Nv8B9uy8mjx3Y/O5VNIAzTGYiKzhWgkPXnGvyvuR9S7fsfskaeFpdBWhNLX3L816nzvxIPDtM+WHhqDRHdsvCOzYfNUx/5aSHnsh36fVEmamhU1PfpMLsyGtTkAtzNgyFrN5S4eb9p274p75S5FmwvmZiCNf+BYX4iYzcZ1m2GFzA27adoRGsPhxtRTlciACDWbxPIN3tgP9EVwD6p7LSXMT+taGep6znS5bo+dBc9SwZZsdPmK1PR5RZKdZ9iFQZjNOEpidhZHWUY6+GDE94yNimBi32UcnJjJq0eJvUBQZNkcZfFe332GWwdS0jzl8kOdeHme6FRKFGVvGO2webzM5Ei/7XVuv57zh6k08+9xZrr9uU9kgWkS6+HXXGFqzNmh0gnK8vqV+djfCxtYb8mLM2wxu2NGu2EKXadttL6gVNm7EXkcQ2mQv2+tQq5sVsz+zM9A8fYxzrwVcvTdj967hv9dnZ4UT9z7PtslkTQu/Kjf8wHUc+dz5ZSXWUywq/oaIT0Y9anPsxYDt20+XhitwFeSwbspKdBgaGk1XiQ7cEADB8McBXAqlkHAiK3fCq1i25VIuly2subDnqBVgubGd4HPjRJoTY8ZIud2WUw4aOwjPNzasUuzc9w1BsewZfD/HkyL00no1i22eGALfEIX5gsZbWiqjzYQwyPjhO07yYr5jQQahvG9VsVYRb3fsPukMk7iB7e1vkKVd0duPH9i+K0EAflQs27l40AiN28cQ+FaEFttXQ0SVfVdawrZn7mW2HTDTDmi17WupUU/Z3EwYG0nYs22mbFHeCCSpMNMOOfZf7mUmaTAd12mnEYGXM1abZTxKuG7yZZphR42gsm6o0WbTaIcbb80ZqXRom+8Z3sjPdtG3rDOxj9pO6ynMc7hwHoKpYxw9FuF5sGtnwq4di/fUVfF9mJzI4K1voEhF0ImF/LGDHH91hEMvbKZZT9mxaXZJ46oGQc5oI+f4NFx/3SZqDRuCWwiqfkqvW+bGwa1En9ywq112aSmEXNGoWTQUF4hA5LsMn6EhaFLayCCwQ0wUy0FgnE1c8m1cMp0OTF+AiQsvcf6CT72eM74j47prOkO1zXEspN85yPHTIxgjXHfVNNsm10c/ujyHx//iGJONYEO/F4aFir8hUqOFLxnfP/aX+Hd+16IeUOvZsi1hVnhJKaqsMBAnsJw3LBf2Hr3XCTCZI7jyisAyBrLcs+c1gskvcWFiW7Q8sQLKK8SUB74YQlfmCW7u1j2D51uh61fLxQoOez66y+686/2PPDESE/qGV0753LDX9q0sQiPT1LUmpr1fsvCu+YEbKymiR6z5gR141vO7Ys3zK8esgUaCSxHHVtx1OsKOZ++l3QlcwgCfNPMQMdSjjGYtw9SFLeNt9m7LaNYv3yDFq0Waie0f0/F55Yv30kpqtNIarTQiyz0iP6URdmgGIZvqU+wZP6VePWXdU5dZePkI7Wd2EF+yn5m1DZ5X2Axnb3xnmzw3PI5nyvmLZn95TFnu2+SinmsE8z1A7FzcOdbL+8bzYHITmE17Gd0FZ04LB584wcRYxsjIcEMDa5GBO29mN7Abmy2y/Z3DfOvQDiZGbaj9QhOF1MOMsdGcN+5rc/RsnWu3tstB0dP2XI+bCNRcA6Uf9Io2z7PC2B9xDeaBfT58t//l/C2LRnJMNyKpWk8zptKI7up1Jod93hHaHY+paY922w6ntXU8Y/P2lNff0B6a4Gu1hPMXfDh8mLPTNTzPsG0i4NZrzqybxtQ48Xj+L5/jpfOb2TWec8PO45c+SLkkKv6GSCApjTDm5dMj7L7vfpLUI82ENLPzIhRxoKdLKgLLy0tD53uGyDM9Ist3wku8XiHme3lXtHldsdV/rMj6MXbrgcA3RFHOVVelgDAyYghDm8ktCLveuMtxz43p89yW69boGDPXe2sqxsqudxsWjOk2JlSXcyPuXFUPr33O81wQbIhtPcqYjFKIYNNYh12RHdh4vYSZLJY0EzqxHXy5k/ic+PN7ibOQOAtpu7kxEHi5S5MeUw88Juoz7AzO0Ag6+EMYV0tR1iIjTDEStdmzOy77sNnGLSvqbDSHreDnlYbObgVabPieKyvnBvJM2JcfsY2ecfHO6nYLKN55abUiXrwLLxJ9Al0hKlIRpVIIRzt0RVEm0t23eOdX3/3i+uIO+szCa1V+N/e97H1w0R+ZPc73DZtHcq65KaPRWPkEGKOjObz99WwykH77cQ48uY2brznD5rFLD9BdCzNGRzM6wHXb24SR7f8YuLDKxXjcyggZNzfGJV3pdLcVNi/PYZ+4ZyIr7KFd7m1Qr0QyLfG58H27bBsVKg3oAxopAMbHMnZfFdOoL+99n+fQbtvkPuHTh5huBUy1QrLMo1FLmRyNmZiMed3e84v22K4GxthMn8e/8QyvzoyR5cLOMeGuq58j1EQvQ0PF3xDxyBmN2uzfNUU9ygn8nDDICYpwRT+/Ijxd65nCKJShpxVR3r+e5cJrX/k6mbHpszPjzVnOcp8097j5A6O0nrsf7213WQHkjFMy65VGqjAse47eaysjBrLMK0VW13tbFVXd9Ut6bB1Sin1rfKSvEcAXCKUwVG67Z2zreKVhIcDMaUywFRxTVnqqDQy+Z5/xK6UfXpIKSeqRZB5J6hGnHqf+4l6S3CfJApIsoJOFpLmPcQOX+ZIT+XaA5MhPqPk5E+EMNT+m5idE/pXv1VSU+RhhipEwZuTIQbJciHPPvmszIc2FLPPK7gE9SPf9YueGwMvxfUPkyqb2vZEoMgRBXvbz8z0nLPyFDecwiGqDWtHgVTSYlQ1rVJZNV8RVQxAL4VFNzNbzFcX0iMVCKPjuXVtEiax2Fm4RCG+7lU27Qo4/0VmQ+At8w9hoTjhmG0TTxEaEbGsfJXUhm3FmE6SlmevfP4/4KkRU4Q32fUPgUTaeV4WWX5nXItMnwrr2zvNM6QWuCrbVfldbYSt0Ynu/as8epB37LmokIEk9xDM0oozRRkJQz9mzbYaxZrIuhB5Aq+NzYTbk5P3PcL7doJOGjNbabGlm3LLzJRqhRrysBCr+hkhAwng0y5mvfp3bf2zuSLWFUcjKliXB0H3JGboGojQwRUtgxWjk7oVYGBJD9yVZHFNURs9+5a8wdI+1y1L2rS/2o1pmpCyvnmtQWeHFHHhspaz/+Oq19NyjvjIz4PjlIBSCJceTHN/L8SW3xlXssufKfMkJvZx6Zb3YL/AyPDd/8cJ2Lvy3/4a56z3EX33EVTQMoZd3+x9W5p5vCCuiyu8Ta9486+qxvTTG4LzsXlmhLDzvaeZx+ktfI819OxmfNLPzLPd6RBxA4GUEXkbkpQReSuBnRJ5hJGwT1VJCPyX0UhV0irJARmSKRhTTevwQW97y+p4G0sDPragb0IBU2M3UicPi/5xV/t9jRx8ry+JsbtRNMf5dSUVQlg20XvcafM8wtf+N5fvcL8Purfj0yyRr66OSPQySBM6cDWh/52lasc+brpta0HH1Wsq2XTGnTh8jCk03kV1kGGk6ARd0PcCFWF/L79WyrtUzdetxQJlIrSr8i6elzNaeCs0XHidOfDqJT+waGou6VRhk1CM7EcLkaIfGOougyTJhtmP79J85cJiZuMZ0XCPLfRphzGitzUS9xd7J16iHOjzR5UDF3xDxSZmoz3D0/A5e+XdHBu5jRYdBsB4XO7flApVybN87FyJiJZUTAH37FLJNoDwnuLAT95m4ZarH0g1BqZ67WC/OUa5L93OKY6VPkvV/fvVcc45319J/zvk+f60agp0jZ3ns1LW859ozV4zXa5h0Q7d6+6ZWPZ1Z4QHIhTNf+Zrto1p4Wo3M9b4aK9b6EUxFmDvR7kScFe1QC2JGvNwKOskJfDf3Vi4pkKIoNtvnK//hK7z+527l3MOHSV2ji218ccuZVzZwFvh+Tuj+x1asZW49Z/T2W6hHGaETj2GQl0LyYlQFZa+Y7C6PvPB4ud7uE5zzeSiDHg+lvY6q13KgoCyWg5XLILlQjLHJXtptj1ZbCJ5+gumWzbbseTlbxzvs39li0wI8fgWbRmPyJw9zy/e8bsHHlInOiqzezkOcV8J2ixDg8Rcfm5PvoD9yZr7uClaULeHF7+pRZZhvdbmnjtVd73p2XTK6IKMe5ISRHXuxFmbUwowozNeNLcpziFO/7MN+/uEnaKUh7SSinYRkxsP3MhphQjOMGaklbG7OMBJ1dLy+VUTF3xBpMs1jn32O9//0ydW+FOUy0ghjto2c41u/f5DXvf+OOYam8JSe+crXej2pRSshUnpeB3lJq57Xqtd0oV7Xqjy/lNe1OKb/HNXti8WreE095zn1BnhbPYzr75oTBKnN1iqZ8352va+9HtslXZKiKKvABGc4LvvZPXG27Pt0KYyhFIZJZoVi4sLt08zn7EOHy+XUbUsyv8fTZ0PcrVgM/Qzfs2Iy9DNG3nxzj3DsCsnFh7AXDV1WUHbFZFUwVgVlJ+/1TqaZN0+oY1dE+n3issiCPbXvjeVyEbZY3L+86C+Yw+gLj5PmLqTdhbXHiU3CZW+WoRZmNKKMZi1lZNRlW64tPcLhuqsu8I2DO8m//jR5Lu736n73OV5ZCoGUl9Ex/Vm/fenmQ0Csh2xu9IwL6xzYdcGUfTRXW3CvJQoxZ58NIU58ph45SCcNiLPulKS28VUEoiChHqTUgoR6kLN1ZJpGGFMPEu3DvkZR8TdERpjiZfYD2pqx0bhm4gRHz+/guS8cKIWNV/HuFplTrfEsvJqVlsMeb+3cdbvS67GtenyLMrtuWIjXtXoN/ccXnz1oXVEUZSn4krHZvMrvfMyOi+uT4ZMQkOKTEpJw98/fTeg7z56bh74VZEvt/3MxAdn6zuNcyHy7ntmQ8GSAB9IOHdQVkGVYuJ8xctsthEHeIyKbtRR/SP2usqwrIrO811NZTCMvPF4ux5mU126FrxWJNd8gvqERWk9T4OdEob3uMFi5xjQRuPsNJzkzVSvDaoNKmO2w7tNGZr6Gh0Jgz3z7oOvyYBtKiue/v6GkeM5DN0V+SuQLI7UOm/xZQj+l5qeEvkbKrGdU/A2RgIQMn07qUQs0bnkjIQL7J9XjqyiKcjF2yxGuMkdICcnwyQhICd16wDc+/jAZAQkhGSEpARk+VCIPCqHokxK4+Vt/7i19YrEQkFbUhH6+LAGZ59LjcUwqQvL8w0+U4nG+SnXhfSyuy3ciMvSceHQCrPA62vBVU2aS7Aqk9ZGiv58wMOzYtD7GlLsUZTbRSo6GPMflcOiGlhZ9/Ips2f15HYqQ1NlvH3RJ4KTs6pDn3S4PWe71lJsBWrmIkAk8Gxlj57axwk6GRhhXvN/d0GkNv9x4qPgbIiKw3bzMn/+7Bu/8+9u6IX30Zq2ar42rvxGl3xNT3Wc+L01ZtkhPz3roW6coiqKsf0QgJCFk8ULMGCqCsTs/cM/95XpVUOZUvBrkBCSlYAyc1/Hun7+LyHk5Cm9ef4XY8ww1L6W2xO9ceB+TwrtYmU8/eqjcluUecRaQ5jabdLWi71UEY7XvY+hnjNx2qxWNfm/SmiLR2JVg16uiqzp2cZ73Zu2u9imf/fbjtv94LuSFgDK9y1leLR8chlrF9uPLK2GkRS4Hl79BusnlqOZ0qET7FNFAtl+6TRBXLbMhrpXuEV4x1+4OyvJR8TdktvEyR3kdX/rdc4gL/+wXYJZ+CTi4/9XcPfv6hFXOPqjczLutd9kMlJgrRSVBTU+CGTNnfb79iuXB+5meb1QmyyG3L2T3u9zy4zf2hGX2LJcv7t71MjGOe5kXL/3A05YzRVGUlUYEAifzFktmfOdJDEiInEgM+GbF25i6cutttHjkZXhqUJm/9efvKkPjqqJsvusuvI8sQfQCNoSvCFktQ1Q9sgF9H9Pcd14jwZjB3qLLhUEI/Iyan1pPmJHS+2WwwxgZ7HpvPamXqugqxFFVLMmAMiuAU+ph97hiu/Sdx6ucWwWWciWj4m/IeGK4hqdW+zLWNHOHj5hPuFYSnSxoP69n//7jXS88JwM9nvj9J8pW4bzc5vUc312nsty7T0LEBOf5of9xktBfnyE5iqIoVzq+2EBT6AAzCz4uM16PN7HwNn7j4w9XPJCDRWPhaSy8jUW/xkIwzudpHETgQkLrSxC+q02SWY9mt7G16xErG19VcCnKvBgDcTYc2abiT7ns9CQxuUgr33rBGDjFbv7jv4XF/6V65aX0LOO8lHPLCy/mIA8npUTNy/Kbf/wNlZCTagjKXI8m0C2jG6JShBOXvmKZu12Nt6IoVxq+5PjERCx8eAOworEIQ+16GkPu+/gjpdcxJZoTnmoT4aQExD3JcN76C3eVYZ42EUe24Kypq431ei7u/inKlUiR8bbaTzjOfB74+IOVUPZuo1I3ws8sKVR+ECr+FGWZiMAOjrOD44s+tgh7qQanAqV3clB5Ie2AssJQ9Y4WAa7VY5/4/Sf6PJq9ns3+c1clZfczest79/cqwbcXozhLjlcJw/XIyiv3K8vFPrd++PWlUO0NzXHLdMulfx8VpYqirAJWNHZYvKfR76sEWgF5768+epGKYVU0Fn0arXC8+x/fNSfRTOCSfei7UVEujXH9TDPjuf64nhuf1C/XH7zngbJRJ8MnL5eDnv8pmLLpp/f/mtNgtidaICApx/seJir+FGUVsX/q9dFyOwzKPh49EtAvlwsp2F22+x78zJNz9qmu927rCtK8Im4vhpRHFhM968UndK/eemS9StktH76xx7PaTQIwt59oT2KAvnL1pCrKxqYIT63RWdRx1T6NXY9jyAO/9mApGLOeyTYwFggGn7QUkZ7Lx1qU3fWP7+5mkizGW3XLRZZJfWcpl4tiPOX+TKmmksSnKLMJgjwOfOJ+MvxKXcMv55kL1O7/XxTYvVK3Zzbn/xGQUqPt1tPKtnRFBNxyUPGnKMployt211aCHCtKe0UlFdnXKzCr693lQqD2Hw9URGjXK9v7Gf19ShfqSR1Ery95UNgwC9zen4SpNy3U3CRM/fvNl7yhuv2mH7/JLjvj6MnaejYUZb3Q26dx8eRGKsLQdxViv1x/4Nce7CnPy+VLV5o9t5dXVpxNGfFRbBMMd/3c3b3ZML1uI5rvdbsl9EaAFA1mrJsw2MtNMcSEHW6iOpcyGVDZOFvZDvQm53E5GwqRZarb3f4H7rl/ji2sRhzlFRvX21Dbv76wSCL7HNmnsdtg252k7ykNiSvPY+4aOvqe0TUm1oaNij9FUTY89kVfVJzWN4Vxni+cuLqtWta7PGj/ymcM2K93XmW+DMWWJ37/iZ5y7wr4DRRlPWJD6Jc2BMfFyEyvhyUvq+xF1IdfNqQVwuFikSDd+Iu568vPVt59cxb0NmLNFQXV7XMFi8zZdrH35MrR+70KGdZd7u3ssZA8A9WcBF7PuarRMt39in26ETPVDOzVXzTvfp56klcEFX+KoihXEN2ESld2y6WiKOsD2/dx7Xv0Cw/Y3IaqwQ1XC6UrDgeN3Tx3rGZFWWlU/CmKoiiKoigbmkKA9Ys1RbnS8C69i6IoiqIoiqIoirLeUfGnKIqiKIqiKIqyAVi2+BORvSLylyLyhIgcEpF/5Mo3i8iXReQZN9/kykVEfkNEnhWRx0Tk9uVeg6IoiqKsRdRGKoqiKGuJYXj+UuDnjTE3AW8FflpEbgJ+EfiqMeYG4KtuHeCHgBvc9FHg3wzhGhRFURRlLaI2UlEURVkzLFv8GWNeMcY84pangMPAbuD9wKfdbp8GPuCW3w98xljuByZFZNdyr0NRFEVR1hpqIxVFUZS1xFD7/InIfuA24AFghzHmFbfpBLDDLe8GjlUOe8mVKYqiKMoVi9pIRVEUZbUZmvgTkVHg88DPGmMuVLcZYxY96JSIfFREHhKRh87roL+KoijKOkZtpKIoirIWGIr4E5EQa9Q+a4z5z674ZBGq4uanXPlxYG/l8D2urAdjzG8bY+40xtw5gT+My1QURVGUy47aSEVRFGWtMIxsnwJ8EjhsjPm1yqYvAB9xyx8B/qRS/mGX0eytwPlK6IuiKIqiXDGojVQURVHWEsEQzvF24MeBx0Xk267snwL/EviciPwUcBT4Ubftz4D3As8Cs8BPDuEaFEVRFGUtojZSURRFWTMsW/wZY+4DZJ7N3z9gfwP89HI/V1EURVHWOmojFUVRlLXEULN9KoqiKIqiKIqiKGsTFX+KoiiKoiiKoigbABV/iqIoiqIoiqIoGwAVf4qiKIqiKIqiKBsAFX+KoiiKoiiKoigbABV/iqIoiqIoiqIoG4BhjPO3ofm76XOcI1v0cZP4/IfguhW4IuVyob+9oijK/Cz1HQn6nlzvqH1UlLWLev6WyVIN21KPU9YO+tsriqLMz3LedfqeXN+ofVSUtYt6/hRFUZSBGFNZduOUm3K88v51Bq7POecltiuKoiiKsnKo+FMUZcOSG8EgGDw3X+j6fGUCCLkLqhi0f3+53d/Oq2XdfRi4DSiPW1mKK6C8GvqWmae8d5+55xxEQAocXMJ1KoqiKIpyKVT8KYrSQ+HtqXpo+r091bL+/fpFUFX4zF2viqjB+xRlDNg/7/mcorz3Oi/xbXuupJBhHrnblpffsPvpufsEM7Ds5h9/A54Ye5y4Y8VdsZuLOGFU2e4VVy7d/crtA84lUrnja8qZJvMsLxSff/Qbw7oWRVEURVGqqPhbAd797nfz67/+6/i+z+/+7u/yK7/yK6t9ScplYM+ePXzmM59hx44dGGP47d/+bX7jNwbXYg+aOy/z1S2WXgl1MY9P1TdVzLtTXvFr5U6uVSVdd/2WD99YihyvmMitUBInyiQvhZEnpldUicGTfBliSADfLfsX2/ESnF7GsYpy5aM2cmOyGBupKMrKoeJvyHiex2/91m/xgz/4g7z00kscOHCAL3zhCxw+fHi1L01ZBsb0e7rmqos0Tfn5n/95Hn30UUZHR3n44Yf58pe/PPC3/7s/na70JV9G5noFl8Zry70QRVHWOGojNy6LsZGKoqwcKv6GzF133cWzzz7LCy+8AMAf/uEf8v73v3/gy23te3+UXnp7Y0Hvb3rixAlOnDgBwPT0NIcPH2b37t1q2BRFURyLsZHKlYXaSEVZG6j4GzK7d+/m2LFj5fpLL73E3XffPXDfK8v7s/H4JxeJVtm3bx+33XYbDzzwwOW7IEVRlDXOYmykcuWiNlJRVg8Vf4oyZEZGRvj85z/Pz/7szzI1NbXal6MoiqIoa4ZL2cgnzZvwyPFJe+YeGT5Zz/p8+9mkW4qiDELF35A5fvw4e/fuLdf37NnD8ePHV/GKlMtJEAR8/vOf57Of/Sx//Md/PO9+R89vd0lN8jlJTroJTLpJTsq5VDM/9iY9EUENnqIoaxq1kRubhdjIv/u/bSfNPTLjkeU+WS6kuU9mhDz3ePCeB8jwyZ0UtKnDglIKZvhg5vZBt5mZMyciu+Jx8Ly7j+/WPZfArBSikq/07VKUFUHF35A5cOAAN9xwA/v37+f48eN88IMf5EMf+tDAfTtpUAoAW4m/zBerDJ1PfvKTHD58mHvuueei+21/1/eQG+HMV75GbqQ73pyxU7GeG8EYOwhAXp27BDSmclxxzGKoCs8yW2e/CO0ZZiCfM1yBJ3ZIAg/7LPtebufF5HXnnlSXVagqykZjMTYyMz6+ZJf5CpWVZCE2MvQzomD+333Px163pM/OcyEzQlYKS4/ceGS5lOuZE5cpIXkpLLvzzA0rlOOTG2/g53RF4sJEpleK0uq2vv3UXipDRMXfkMmyjJ/5mZ/hL/7iL/B9n0996lM88cQTA/c9dHq/q7R7C66493qB+tLcF5X0AWOKFcdR2a+3Yt+t4BcepjLNvhtvrNy/sk/hnVIvFLz97W/nwx/+MI899hiPPvooAP/0n/5TvvjFL87Zd8+2WQCu/tDqJv0xxk5WZNIVkcYaSlPuI5V9uvvnphCsdjnP4bWvfJ0kC8iNV7be5qbX2Ka5P/B598UKxMCzraqelxNIRlAIRy/Hl4zAs2W+lxFIVgrMwMu0EUVR1jCLsZFP8aaygh3SISImok1Ehxrtcnmj2Zr1ykJt5LeOXN+z7vs5oefe+35evv8Dz777Ay8n9LPedS/D83qfC8+z9Z/Qv7jHbqnisuBiIjPNfXK37cA995MQzBGYeY8ctB5OM8CTaTF94rHXO1kMpzR4u92nf3vVy6nezSsTMWbtvzRvkLr5RLBvtS9jIO9Ln17ysa0v/ftF7V9UvG1FvKic2wp3UdZTeZ9TWe/uU91+5itf63qPEDAyx8NUitOql4rheqGAOSIUmCNUvco+Ug2F7BGgvWPDVb1OQZ8Hyq+Ih8UIhz2/8blFf7+Cxz71eXzP4HsGz8vxfVOuVyevb/lKFjaF4EwzsS2xuZBmXs88y4XTX/46We6T5h6p8cvlzPhkudfz3AnGVRS6U+hl+G4eeGmlUlEsq7Fbbfb8xuceNkbTIS+UtWojl2MfAc78i/8RsO+GThrQTiPaacA3f/UhOtSJqdOhhsFDyEtxWKNNSIe6m4fEKhAvM8uqG/3575bLxkCaWRuQZh5JZXnm0cdJMp+0sAG5R5Lb9SyzjepVPC/H90zFDuSlWLQ2IMMXU2lczHuW16L9NQYnLsU1tFphafrWiwijPPc48In7S6HZHXF3rug0TgrO88mlV7MaTtv1jw72dFZDaOeE1K7B+7sWeV/69LLto3r+VpFXz9Xsi8hV/AO/KwIG/Qmspw3sn87Oh8G+H1s7daxLeZx6BCxu30Kg5t3yHjFc8UaVoR2m64EqPVN9wgEoRaLnRGPV07Qcztz4NvIMslzYc+ReOonY1sJy8sgy+x1sKIqQZ/O/GT3fCt+qYCzWi2eqWJc+QTnffuV55nv3DxkR7DX4F3+ur/6xOxZ8TmMgSb2y8pBkXrn+6pe+TjttlpWFJA/KZ6TAl5zQTwk9N/kpkZtCL6XmJ4R+qoJRUVaAV6fHaIQxjTCmHqbUQ5sh+78b4JnJc6GTBbSTkFYa8s2PP8wUm0icJMQIgunxGNrJLofEWvlcI9z3+M5y2fNyoiAnDLrz0M8Jw5zJO2+260VZcHEBkbmGxSTzKoKy27g48+1DpLlHkvll5IqdfPLcNnRX8f1ug3LV61gIRm/AeljZbxjPmwgEpSdzYSHSe5fp2YSu6MwqYbOmz9tZ7aOZ4JEN8HIWfTdzvDlVWsHMSebjk1aS/nQTABUisme7NvjMi4q/VeS1C3Xn5bAV/arHY2BnZa8rEr2iouxasnq8Rf7FK//FccU51hIy55qGc317lxhemeeUYqzfWPD7v77k69m2rSsW8qvehgd4LO0PaQVzd8oyweSQ5ZDmkGdCllOW7Tl6L0nq0c67grMqPHMjTni6aT7RKVYY2ucuJ/BtOE0tymjUMupRRiNKqUfZZROQcy5RIApzohD6DeOeBTR6ZJkQp1YwxqlHJ/E59Rdf50LaJM4C4iwkzsJSMHqSO3GYUPcTIj+hFiTU/ZhaEBP52n9JURbK2VaTly9M0kpCstzHl5x6mFAPYxpBQiOywrARJAR+TsNLaIQJm4C/+bHr55wvy4V2GtJKItpJyLfueZjzbCYmIqGGMUJA6kJMO2V4aVjMJbn8N2EDsucd+4giQxQajIE4EdJUSBI7RUceo9XxuZCGJGm3US/JvJ66U+DnBH5OFHbFYVFWiMZmLScMEkI/x3/X/gVfoxU/1eiU3vrBzKMHSbKAVuK6P1S8k8V6VUx6Xk7kZ9Z+BCk1PyUM0m6Zb5f7Q1lXi0J0Bly64XM5fTSLriOD7uGDv/YAHcJSVGYEbvLJCPpCZY0ThRlBKUVTJxZTwrIswSctt12pDUIq/laR6PvuJlrE/nkOaepeOpmQZ5Dk0HGVe+tJgj1H7iMuhGQlXK5aybehAPNX7Pu9Q3NCEv3cCUouGrZYFairJQCWg+fZfgLhAlvUFspDD3Z/efEgDAxBCEFg8H0IQkMYOIEf2PIwAD8wBAEElX+uFcx2svQbh971bNfb7Xdj6YITuqIzy9w8FTopTHWE7c9+g/PTEbMdn3Zs+ysEfk6jltGspTRqKc16xkg9pRau3X56vm9o+FbMFuy+iGjMc+gk9jt3Ep8Tf34v59sjnMomaacRSR5gDER+Sj2IaQSxm3dohB1qfrJm74WiXG6u/2vX0IjS0nbkObTigFbH5+yBJzjXanLiwgSzSUSW+3hiqAWJ8xYmpdewEca2cu8ZRqKYkSgG4G997No5n5lmHu00pJ2G3PevDjDLKB22EFMnNSGGrkCslR7EItQ0VoE4BI4dj4hjIY6lrMD7vqEWGcLQML3tzUShIYoMjdAw6crDsBs1ZYytL6WpkKRd8djKhNEjjzPTDm00SGpDSZPUI88rlRQxpWAMK2Ix8E1ZVojIKMhpRHlvHecH5z5bFyPLhE5iBWwnsfZj6pFDXGg3SLKAOPOJ07AUjJ6XUytEohOItTAh8jNqQWKjUy7Rt3Gt43mGyMuYz6P5Ix97/YLPZQylFzfJ/DJEOMl8Hvi1B5mlRuqEY0pUysRu9ckQlsIwISjnMSGJW7bTeugnqeJvFTn4eOheWK5yH9nloiwMbUW/eJl5HkSlZpjfO5btepvd303hEq6tp1LvhGZmIHGhinlWbBd2H72XOJEekVl4M6tlJh8Uy9orFIMB3szAt/3iBoXHFvsH/vrqD9faurVctsLJ3s+sTXlv79h9kk5HSGeELIM0cX0fUiu0qpSi0Lci0vftMxWETlgGVlAGTkhWn6ulMr/oNLDju6gD9cr+aQrtlnC2LYTP3MeJ1yJm2gFxYk/QqKeM1lNGGgljzYTRerrmPNOXwvOgUeuKxZ3zeJyTVJjtBLQ6AS9/8T6mZieZTWp0MvsHrwcxzaDNaNSmGbYZjVoaWqpsOJ46NsFsJ8DkYr009ZSRekKjlrH9u26kWUsJg+47Is+hHfu04oAzDz7BhXaDU9PjtJKQJAts2GdovYONIKYeJjRDO68FNqQ08HNG/Q6jtQ4f+NgbBl5X4gRixwnEGcY5yzZiaj0CsT+8VAXiwjg7spfaZkOjDlHN2pg0hSSG2QTOJ7A3P8rMrEccC0ni0YmtwDPGeaUC6zkMQ0MU5eVyo57j33oTE1GvWOwnz+17OkspxWMnEYIjj/d4HdPMRoWkmdfjafI8JxY90xOaGvSJySjIqYUZvm9o+oXQcc/Hu/fPe4/STIgTKxTj1OPCw4eY6dQ4k4UkmU87Dckyq0ZFoBbYZ7wWJNScUKz5aVm+nupPS0EEe9/9nEbY+/8bFEbeT54LSe4TZz5p5hNngRWO9zxIi1ESQlIimyW27DpiBWNITODmtg9ysWzLV+Peq/hbJpP4nFuCV2hscgcn/W2kMaSzkCVw266TtGZt5d6GN0CaVJJXeJStW1HklgcIxnApaq8P6/Eq1i7uSTK734ZgH6bFPlDWi1lMc72ZWWrF5m7XLy5zYRX94RYDQ2XFisNamNGsZU5cJNbbFC2/Ir1j0zgnz15Y9HFjkzvIM/CcaPI88KK5Iv259g67cImbW3rgUiccZ7v39I6rTjI7a1s8i+fKCsnee1UIw/7GiLLMzYOQJXtwgwBGxwyjYwaz7W00gEblO7RawvlZIXzqGxw5UWe6ZSt9zXrK5GjMxGjMxEhMsM4E4SDCwDARJEyMJOzs68NoDLQ6PjPtgGN/+k1entrKTFInzT0aYcx4bYaJaIbx2iyhhpEqa5il2keArZu3sPed15aNS0kCsy2P2ZaHefYQp8/XmWkHpKmH5xkatZSRelrO93zP66hHvVEFxljP/GzHp9UJOPvQYc7MjjKbRCSp/aAoSGmEifXIRy68NIx7Ksi2Etlh7BICsZVEtNOQb/7rA0wzMUAgJhVx2HF9D61HcbUqhcNiqb/96MQO8hzOnRU6beh0bDcGEQgjqNUNtRq8WN9PbcwQ1aBWg3rfvUoT98xUxOJsy+P8BSGOPWIXQlqIxapnsRCLkVuvRVY0hqFBdgz+vfvJMicaEykbbVupMPrC48wk3XDVjhNwJheCIGfENXDYuV0eZHMD3xD4Gc26vcc7fuC6ea+liEgpolIuPHyI862mS6IUuuzcUnrO665xpBYmNNx6PVjfz+Ny8TxDzUvLRqKCPR+7Yd5j8lysxzYLiLOAThpw/68dYJYxEiISJxZtldoQErseyr19kSM6BJLO+zlLYdWyfYrIe4BfB3zgd40x/3K+fddqJrN+HsjfQXr325n87/86r3qbaI5CcxRGxuxLa7nkuX2hZanzAqVw+66TJAllLHwcd71CIrbCHtWsWIwi+zKLaoa6e4FeyX/mIuwj7gittrD96fuYaQdMt0PixCPwc8abCWMjCZMjMWPNpb3cnjs+xn8989c4F27myLEX515DImSp8Ja795B0IO5AHFMKwKhmp5pr5aw3wb+MzTLG2GuxHsXuvHi2inCZ1D1nRfId3wnC4rmqNwxjo1bcDfPaZmeEyUP3cmEm4vxshDGweazD1ok2W8Y76zKceKnMtALOzUS8+Kf3cyEeIc19JuvTbK5fYEvjAv4a6Q+yXDZ6ts/F2EdYPzbyi9mPsven3svrf/xNTGzqbUjKc2i3oTUD2zsvWqE3ayNIarWckWZOs5EzMmKnWtTr8Wu1PFptIXrmILPtgNlOQDu2L9IotCHmRch5sdwfWWD7l3nWKx8HnHvoCVpJRCsN6SRWsIV+WoaU1oOEZmRDt+tBuuj+WHHqlx7Eb/zrA8TUyv6HSdkpxJRegqicd5zXwIacreWxEI2B/5j9A8b++g/w2uv3MDqRk8TC9ddtpj0D7VlrcwrbV29CY8Su958nid3UgWu3t4mdOExi+wwEgRWHUQ3qDajVDLW6ta2XshOFZzFxonFvfpROXNSrumKxwIrCvMcG1qK8W88KF9/VJUmg1faYmfUIn36CmXbAjPN812s2Mma0mTDWsNOwI2MKz3k7sY0j5x4+XCZQKp7/wM9oVsKpm2FMM4rniCJlcRQJq+I0sAmrfvUhl6yqZkPOsZELAQm/kP2nZdvHVRF/IuIDTwM/CLwEHAD+jjFm4GA/68Ww3Z+/k/iu72b2h3+MU2dfJO543HbHHmYuWLFWb8LYBIxvrobKrRyFN6hoAUtjePOuk8Qdod0W4o6tyHs+TgwamiM5IyOGkRFzWa5xNUkSmJkWNh/+BmenI6ZbIVGYs3W8za4ts2WL2qV48sUJ/uzM95Fs2syTT7946QMqFH3l0li48+49xG1rDLMMgtAasMYojI4PpwFhmORZtxEiTeCN204yNeXRmhV270nZsXNlUjenKZw/79H8zv2cmaoxPpKwf+cUEyMbL5Qqy4Sz0xHP/cmDnG5N0Ag67B47zdbm4j3Sa4mNLP4Wax9h/djI/5J9iM1/531s/4Gby+iSkVFj7eKkbZAcRKcDrVnYFdtQv+kZnzgWgsDQaOSMjuSMjmSMNHPq9bmhfO2O0Gp5RM88TqsdMOPEYZ4Lvp+XYrDp5iP1lCgcHB1SDdk++9BhWolNINNJQ3Ij+F5WisMipLTuvIdLaZypeg+sF/HBUhwWUzcdvyn7HxUhZXY5KRNZXO5Qs8x4/D/ZTxP+7R/lmKmz4+qUkYm5tiGNbUPttddspjVjhVgUWfs3MmbnlxJTWWobVpMOXOfEYaslxJ2KOGwY6nVnW5uGeqO3D/1CKBqWk9h9XizsMUeIYxt+2t9fMQis9zCKcitIa7bxohYZ6vV8QXWtdkeYmfEInjrEVCtkajbEGKFZTxhvJoyPxEyOxPM+t8OieP5n28XzHzGT1IjTAE8MzajDiJtGa21GwnjNJKlZ7xgDcRaw65d/c90O9XAX8Kwx5nkAEflD4P3AvMZtPWCw6W6D0AmqZs7hw1YM2FYr4U1v2svzT0CjCVft74b+rQRlOGHUDa97Mdthf/VRN2Er8a/FEF+AN0Ynefm4x8yMR57B6FjO9h05mzblV5yHJQxhcpMhf9vbmAAmsJWM8Nvf4PEXNpPn8Pq959k8Hl/0PKnLrrmU+2N/IxtieehQr3DMUkhjjzffsYdjz1mBNb4Jtu60wnC18XyIfMr26SPpDmhAGsDE9ClOfNvn5luSoYQhVwkC2LIlh3fexVUGzp8TnnngIUTgjdee6ekDdKXj+4atEx22fvhNAFyYCfnO577D8+d28YYtLzJWa63yFSpL4Iq0jwAZAZ5Au15jZBzSDE7OQFRr8+yTHklsxeDk5l4xWHOhfS324QHj7ny2HzEcnxF2nH+Rl172aLc9RAzNhmHECcLRkZyJ8QzvLTcxAmytXFOaWm/L7KxH+9mDnLlQY7Zj+yKLZ2hEGSP1pBSGzVrKeNOFbA/IDplmQqsTMNvxOffQE5yeGaXtsotmxiszlnaHsEh6Mpb243mGumeHuRinPW+YKXQrh53U9keKs4D7P/4gs2WfpGIKym4ShTehO6VOKCZ9iSzSJXkYc5ciI8iFsc0ZaSycPBqwdXfaY8eCCILIcOL0a2XZhQvQOemx/+pNnHgRxIeJzdYODmoM9QNoBLZ+9WpSt35zV9fxgCSFmRjiM3DN1jbnzwqtWdsVwvehOWJojkBz1NBoVnMs9GKjquzUHAEwdLCNLxHMSeSXJFYoXnBC8arOUS5cEDodj3bHJuIbG8vYvjVl86Z0oBis1wz1WgbfdSMTrqzoLnFhyue1Jw/z/MvjJKnHaCNh81iHzeMdxprDbRStdlnY1dcnMc9hthMw3Qo5/eCTnJoeZzauYQyM1DqM1dqM11uM11pEwdr1Vq9VbN/N4XhYV0v87QaOVdZfAu6u7iAiHwU+CrBtHXVNNMZDBogAEYhqhsNP2gr+vj1Xc+ZVW5FfbTzftoLVG64CXwNq9sXy2hTMPn+aC1syrrn2yv+z1mqQ3v12tgGzs8Lhrz7KG64+d1EBmLv+hi88Rdl/YBj4AfhBbwPCxJarOfI0XH/zcD5jJQhCeIXtXLfjJC8eDbju+pULBxGxAp733EH9oXv5znObufP1r136wCuU8ZGE7/nJm5iaDfjaZzxu2/ks9WDjeUTXOZe0j7A+baRBMJjSRvo+jIzDGVOHCRADr81Ao23FoMlh0xbD9l2D+7LbfsS2L7FhLyPACC58rQUnZ4TtM0c5eSpktjVXFI6NZjQahrHRnLHRHLbfyKbK+W0oqth+hs8c5NTZxrzhpE3XT6tZSxlr2qRVOwZkfMwyoZ34zLYDzj10qMxY2kqjMkFHFKTUK32tyvk8ArGgqBxWK4iXyohYeBZt5sOgTGhx/z0HehJZZARkpqtK7JhrSZk6v5r9MKikys8IMAjislifeP5x9t1yC+de9dl61cXrFEEIQZjz6jn7Tk9bMLFpCy8+DWObYNtVi7O3VXF4Jq9TZCXzsA0Rr7bgGr/NmdPC7LTNu9AcMYyNw8RmQ7O58M+q0i8UE67Gg7LfuzEwdQHOnj3Gs8/XmJjI2Ls7ts/kRRCBZtPQbKaw4wZ2uHNNz3hw8BDPHB9nphUyPhKzfbLF9sn2iiZR8zwYbaSMNlJ2vqcbiWAMTLdCTt1vG0Oef20bSRYwVmuxqTHLpuYMo7XOil2XMpc1azGMMb8N/DbYkJZVvpwFI5KTD/i/GgNJR3jzbXs5f8a+hDZtu/zXdynSBDoteOP2k8zOCOcTjzA0bNm68TINLioiWuC6m+HgweFfQ5oId75lLzMX4PxrsH33cD9jpUiSyzuO5KnXfS/JiUcu2+etZcaaKWNRi9mkruLvCmW92kiY/90qYvvJF2IwicEP2jz0TY/X3ZyzZevg4/rxPFvRbo4Ycq4uK9n9ovDEyZBW2yaMaTZzJwIzxkYzQpfcylauM9jyBsb6PqfdEWZnPYJnH+fcdI3jp0cGZictQkmb9ZTAN4z4dn3bgCQdRVKaduzT6vicf9hWmDtu+Ik0swIs9K1ArFWEYnVYi4VSehZJgW4FfNA4iVXsYOlWNFazHz54zwO0GHWjqAXE1AmIbWSMgTTxuXDGZ2R88XWKIISXTrxGZ1ZotzazddcQG1t9++yd7NRtzXjSNkacbcGE3+bocx5JAruvXvhzuFBEYHwCmNjLln1w/iw889xxfA9ufH27p3/rQs41NprDW+3zagycv+Bz4bHDPHt8gonRmGt3XWC0cfn66IlgG0Te2U2OYgxcmN3KK994mqdf3UkriZioz7Jj7AJbmtMaKrrCrJb4Ow7srazvcWXrGsEQSE7HJWWJ2x5vvn0PrRkrqpojNlThmhsvf9ieMZX+f67T9Jt32qEEOh0bn55nEEaGZtOQpbB5c87+a9JFx8OvZ2ZnhdFvf4NT5+rkRnj93guXDPssxkKMl1HHznPIEpsZ7I63uL5/btiHWsP+bpu2we5r136SntYMXMWrzHger79x5YVHuw1y/wPMTNV483VnV/zz1jpx4vHgZx8jMyGb6lOrfTnK4rki7SOAT4YgtGbse6wUgQZyAya30/U72mQZxMC514RaHRqNi515YfSLwibQxPaxbs1C0D7KqVcDnnuhRpraRDPjY11B2Gj09icsQ/FcOGm1Pbc/O+nJs01mOz5Z5pX9DAtBaMVhQhjY89ejjHqUMTkKu951zcDvkqRCOw5oxz7nHrLjwb06PcZsEpFmfpnev3/Mw2YYX9R7uFDsUEyFaOwyaEDv/JvbeMbLOftqje37b2Fia0atsbDKfZ7ZvoDXXWv7ArZnYfN22LJz6ZmnF4qI9RKe7NQxo3BVs81TB33e+r3Zin22CExuBjbvZvOFF3jk203ecvvMkuthIjA5kcH3vI6tBs6c9Tl4//OMNhJu2nd21brziMDESMKEe76NgbPT23jh60d4+tWdbB2ZYt+m09RDTSSzEqxWtf4AcIOIXIM1ah8EPrRK1zI0hAxfMq6qnaW57+qyk/LWncNN1lGMA5ellfHhUjtURJHxs8j+mVeiKoqsVOGYy4JVM0xM5q4/xfochH2pFLHys7PCpsPf5Nx0RDv2adRSxibglmvOLjjhS+Db5Dhxe/7PyjOb2CVLXWKXju2UnsSUSXeKjJ9hDcYmIapfnsRAi2HQc3f7VSft+EuzwuyMx0Rk2LMvZXJyZVruigygo499gxNnbI1w386YG68+v+aF8UqRZcLpCzUO//G3mUnq7J+YZueoCuF1yhVpHwECYqIw46rxNp5PGf4p0p38oHgfGiYmbYNkrb6yjV6+b8NHZ8f24W+DSVfeacPpaZCZFzlx0oaOFoJwfCxj02Q6b5/mMISJMGdiPIcdr2dzZVuaUmYzxQ1bMdsOSFIP8UzZt7BRy0phWI96BUcYGMLAhpcO8iAWmRtnOwFnD9gxD09OjTObRGS5jyeGepGtMXTDWri+h8P2uohnaI4adowmjPbZhW5iOuF1N2y22bA7kLRtg0BQg/pW+xtt3bWwzJ1LpRwY3iXIu3Zrm9kZa2/yDM6PwW13rZzw6+fM+DVsmjzG2XMB27YuXwSJwJbNGVveu4+z33ySwy9u4ub9a8NOiMDmsZjNP3wVxsDzf3mKR4/vZ+fYOa7Zcnq1L++KY1XEnzEmFZGfAf4C2yX3U8aYQ6txLcMkIMMPMm66OeHEJe5sObB3Jb1+nlkBl6a2MlcM4ZCmvSLO863gCEND0OwO2h2GhuaIKcdqi6IrP2NnlerA9HkuboxAew93PHMfrdiOndZq2x+nUU+ZqKeMjiTs2TZTDsy9WMIgp94wvPgavPGNVxO3bQawuGNbscF6esPICrsg6KayDqPL48mbMxZgZufF8u1XnbTj/6VSPn+pG+ahGqLl+W68v8AQ1u2zZ3JoNAybt+Q0m4M7qy+HuANT0x6bDn+Dc9MRrU7ASD3FmzDcfsNrQxmzcb2RZsK56YgX/sv9nG2NkeQBm+sXuHriLBO12dW+PGUZXKn2EaBGm0aYs3ufcf2f1jbFMAFVL2GnY/vCM3WMo8cisswm69i2xSbrWIiHJghwAnKuMKwOW8EzBzl9vs6Lp0Zpxd2x4BqRFYWNSnbSetRrvzwPmnU7DtzWecRhK3ZZGw/Y0NJWEtFOInLTTenfDDs0o5iRqLPokNICwVALc3bv3ExzzHYtSWJre7wQQpfN2hib2XPTVmsrlyqy8rzXvpUN5hnc4LzKhciLY2vrChqRbXCIxq29277T0Giayx6tlefQOHWUE1Mh1187/P5w3i03Mfut54Z+3mEgAte98wauyeGhP23z0rlN7JlcGyL1SmHVAvqMMX8G/Nlqff5K4JERBh1efdXjumtOuvHcpGfA9iIhSDlge2AIR2zfqCCwHaLrDSsogoByoO31IuKs8LKTFRxWuOameCFLZdn2G9h79F5yY5fzXMiNkLmB23Njy4pluw9zB3QHEONCUQy+b+eBZxgJM4gMW8bb7N2W0aynQxVc9VrKvuMPc3Lzu8hzaI7BZM0ar6X+boW3sBS0VUOWw527i0YCJ9RSe6+LsjyTOf1q/MA2BgQB+DX3vJVlLuW1b/CD7rYgWPnQmuL7djowO+Ox7en7mG51x2OMwpyJkZhGM2PX5vOMXMa+CmuBduwzNRvw4n/9FtNxg5mkjohhvDbLRK3DVdte0359VxhXon0ECCVBXnme84e2047y8t0TBMYOWh04W+gbXmS/fT85++f79CyvFkXmUcNeJq+27+OZKbhw/hhHXozwPLh6T8y2rUuzM56HG8uQgf0MkwTaHY9WyyN99iAnZprMtAM6sU8UZmwe6zA5GrNprENwkT7XnkcZerptQGKaIqX/TDvkzIHDvDYzykxSI818fMlpRl1ROBJ15g0nzXIh9DPGJzKmIzvk1fgm2/hZzXZu6wOQOxuWTHXt3+t2tctIk7Lh3Nm+oqz/u4XuOQkCg1+jtH3FcA+2wbxbx1oLUSPGwPQFGD17jDNnArZvE25/0+xQu96kKUw/+CTHT49w2w3nhnfiFcDz4Nrv3ccLXz+i4m/IbKDeXCtPjTZRGHPd2QdIrr6TkRHD5KacKCq8JcN9wRTenNz1k8id2CqWswxM3hVbphBmpiu48h5RJT1lc9bNRYRXgRNgngee2L5wnisLnTDzxHYy99028Q2hGOpe7/6eB76X44mtEHTL547jtJpMNBNC33Db7lc5Xd9WenLbs13Bdsfuk6RJr1hL08I72evZhSL8yd6DIADfeXF9v+vNrdVM6QX2KyKuOGYt3aNC3HU6QqctbHvmG84TawWeALUoY7SRIA3Dzi0tRusXNoRXr0jwMNu2IVov//k3mU3qNvtf7lELEkbDFqNRwr6JC4xEbTzRzvDK+qNOi9Fai7fcPkMtMt1og8xGuBTrWSbsTo+SujT8aWb7Q7czcYKg9+Um0n0/Bj54TkCW4tI3HDX7rR3xrOjwPCsIROy679lG2cUKS8+z4/emo3tpbIOpC8K3Hz/B2++eYWRk+O8vmznSZSfd1k37DzYBzblzPq8ePszTL00gYtg81mHrRJvNY51FNeRVU/pfVcncCPb+z7jxEs889CSnZ8aYiW04aeinjNY6jEZtRmsdux516ARw7bYOYWRIYiE53yvafA+iokEyBL/RFfqeh0vA098YYHp+x9WmaPQu6mA9yz2N4t3yvflRWm2PC1MenY7H2FjGpm0Z11+7uN/rYrQ7Qv7YQU6cadKOA3ZvhbfdfPKyJmRbLMbA0b96mmdP7+BNV2nY57BR8TdEQmIiyRhrJgTbM2fQbNja7KxXVvT3HLmXzHmzCtGVVb1bWUVsZRd/o0lFRHkVYeWJoebNLSvWxbOCq1j3PTvoqiemFFqDjltrwmstMNKwGdw6HWjOnLZCP4Sg1vXmmtyKNT+AwLdeXc/vet7Wome36sHtGjPpa2zAJmvIhcy1yO58/hs2U13s00n88hmuRZntUxll1GsZm8Y6jNTTK1rgVTP3dRKPE1+8l3Ya0clC2mlEnAV2GBg/oRF0aAQxY1GbHSNnaYYdFXnKFUWTKaIg45k/P0bgG0QMUZgR+oYoyIjCnJEgZ2b/rTQaeRliHoUX78JQ9NXKctuvOi28QpldzjNhT36UrOPeVVm30S3PhSSHtouW6BeWC8Xz7KDdk5Fh3xuyFRF+l6JeM+zcYdP+78R6Cc+dDzjx+JMcPrqJZj3lqi0z7NjUWpaw8H3D+EjC+EjCrnf3CsM48Zhqhbz2wGFOTE1wvtVkstGCzRljm3NGxmyXlCCca/eqDdpFdFC/WDI5xCkYXOO2s1H7vSO9NsrZpep5TbG9FGbiyuz57D5SitJifaEU9aOy/6pvEKx4lZ5GcVcmhiyE8bGM3VfFNIaQtLcTC9PTHv6Thzg/EzHdConCjC3jATdefe6yZvlcCrNtn6Nff45XLkwyXh/jzr0vDG1sO6WLir8h4kvKSK3FuemQ8KuPEvo5gZ8TFSGIfm4Nnm+IoqwUbdUwxap3y6+8SJTVIc9dhSL3ylDUYkozj8wZly3jba7L/pLOXd99yXMa0w3fNMaGBhfGLcu7RuliHtvCgPV7aU3FQztnHyPluReCuOfPNgR0Pa6F8fLFNiBIxZMb+DlRlDMxGlMPbca6tdy6uFiMsV6IOPGJU89OicfJL93nxsgK6WQhSd59tUZ+Qt1PqAUxNR8m6jPU/Zh6EBP6V/7YmYpSMCoXaIYJ333rCQLfkOcQpz5xYv9LSeoRpz7Rs4dIUo+ZtFue51214vs5UZCXgjH0c2auuZXIicValNOo2/7vG9l+hiE2Uchfu56rgOlpj/OPPMmzxyfYuXmW/TunCIPhvp+jMGdL2GFLJZT02KsjPPvSE8SvpQRThk4qzKRzhZVUhFHZMO0bAo9uY7RXiKvKvq6RzC9ElnTrTv2CrKeMynJx3sp12H2HenuWTZ7bCJpW26P27OPMtgNaHeuFzXMhCjPGmwmNZsb1uy/YaJo1/B9oxz5npmq88q1nOd9uEvgZu8Yy7tjzgg4Ev4Ko+BsiASljYYstT/wJb/jbb1vty+mhaN2yy4LpKe+2jtl2quq+lziG7vY5n8OAsspx1WMWc66zX/1a33FSHtfNHO7edoXoQciM54SRR44VdLmxU2YGv+E9yfElt3OvslxZPzmzidv++5t4+qUJRs88XIrCeb22hXjq8aq6cE0pRP9cz6sA4hsCesNqCwNWtihK7/HS59nd6A0KaWaFe5oJSeqV60nm8eqX7iXN3dhVeeDmPnnl+Qi9lNBPCbyMmp8Qein1IGWiNkvkJ0R+QuhlG/oeK8ogmkxz5A++yVfDtxD6GYHv/kN+RuTbwcnH77iZ8WZOLcyohfmcxqOyASb1nVi04tA7+hhx4tNKPc67siTzym4KIoYw6IrGYnnmmltdkjRT9sO/Uoc3Gh3NGf3e17E1h5kHD/PA4R3cdeMponBlvZRjjYTxkZhN13WIwrzsU77WhNVqUHglk1TKLO1xLDRfeJxO4peRI3HqYXKxHuYwo1HL8Gsek6Mddm2eZaSerumG1tSFCk+3Ql598GmmOnU6aUgtSJhszLJzfIbXb38FX8f3uyxcoa+41SGiw8t//AjmR+6k9dmHrdjIneDALhtwgsMKEmMoK5Z2XUphVAqYIVDIIpHuWe1y949WXS8qrgOPG1CGa3kTzNxjK+esHmu39R5blEl/WeWcRStft3I94JyV7yMCHjmel1uBhHF9CbtirhBFS2GiNsPTX2jz1r97M1kuNnGBn6thWyJFuM6g0Og0c15Yt/7al79GZjyy3O+Zp07Yp7k/538UeHZIlsDL8b2M0MvKeS1IGfFyK/A8K/BCP9PwS0UZApO8xmuyk++97ikb9ZAFxJlPnAblIOEn73+GJPPpZAGdNCg9fiJ2YPNakJZCcey2m6iFOWONhCi0om6+927hZawKxjj1qD130IrGzHrxk8wjy7on8TwnGJ2HMQqtcJzZ/8Y5onEthu8PwvOgcecb8L90lNlOQBRefCzb5TIxEtPqhOyq5/ieIUmEdscr+3cWobmjRx93+Qq8viRv3SgWG54plfBNV0tYRHjmmsJF1hSNEaGfU4sy/NAwWetQj2wjyMWe7bVAdWiRduxz7uHDtJKomyTIyxhxCYI2N9s6ht8qo+JviATE1ETYN3GS3Aj10lNkEOkKD09y533JrdfGzatipSqilLXNpsY0z57dzYt/8nVu+FsXD/ss+xeUIr8ol9LzuiAvLb3HwWAv6SCPa3W93K+v/GLnhMHe1+53so0bhafVOM9qd73YNtiSFQK/39va73EttkeSOkFnBX4gWbmP7wS/oiirTyQxxgivTo/RjDrUg8T256ldOpV9nosVipkVip004MIjT5TrVkSG5TvJ83JqQUrNT4mcYBy//WZqUUYtzBhvxgsKeSwiBGyIt0+SeSSJR/jMIeLEYyYbHJpaiMayUu8q9tMuPLXrZbw82SaLsW3liYOcuVDj7FSNfTtnmRxdWeEHLnX/Ved57ksvEvjuXgQ5gWe7wjR8Kwq9oMjYnfR0f6lGwXQjWFz+Ao1mWTGqYdkd19Vh6pFDdLKAOA1opyFxGmAQfMmphQn1IKERJozUYraNTi15eBBlZVHxN0SazHCc7Tq48gbkjduf45ETN/D0vztyyX37xX5BVfxD0QDQ63Ht924u1uNafE55joowqnpee/ebe+5SUEmxf/faigYPX3JnoPNSmInbrqJMUTYmV/MMX/7X0yREJERk+AgGn4yQmICY0E1v/yd3UQtshTL0M+phumBvQZp5dLKAxAnFJPN57cCTPeIxzayrToQyBNUKxYzx229yoadZ6V30RhY+pEohGquexiTzqD93kCT1aDkvZJJ6pLn0eK48J4qKvAGBywkQBjmeZ5jefyu+R5m9VKSbJCVJhZEXHidOfNqJT6vjEyc+IlCPUjaN+ezeNsMt15y9rIJp15YWu7a0Lt8HbnDynLILStHNoZznHtOPHiLNPZLMJ8s9ktwnyfzyPwHWzgcuJLv4X0R+zqZollqQlB54Fd7rDxV/Q6TBDC3TBFa+JU1ZW9SClO/ac3i1L0NRFGVNMypTjDI1pzw1QSkIU0Jiavy3f/04CRExNVK6o2zbPTulSHzbL9xZevjqQVJJsBazEHtchKAWIrGTBUw/eogzLiS1kwUkaUDuBJrn5UR+VglBTRi//WaiMC8FYxjYinOjtvikFVkmJP0VdjfPMo/GcwfL0Pc49zCmm6m74ed4gWFitMOOKKMeZld0RuVhUI5JPCBBWhFq2o3OqSwPiOChsg6V/AMDPrO6bLDhra3vPN7N9l7kKagsZ3lvZE3ufv9+7PPQjYAJvJzAy9xk1xthXHZt6M5zFXMbABV/Q0QEarQ41x5nsj6z2pejKIqiKOuCQFICUhrMXnQ/YyAlLEVhTI17f/VRJxxrJETkeBiEgJSwIhLf+nNvoR5aj0XhTSxCBmtBuuCU8lkudFKX3fcSXkWAMBjsVYyCvJxXk3XY8Vw10+EgjKH0ohYJu6z31GPm0YOkue3rneVed9m4PoT5PF0NXDecMrN1GVZqym4IZQSN9EblVCNp+nMVFOe+GNWuPt0xkXuvpRpJU0TNlBE2KtaUJaDib8js4QX+39+9lUis8akG1S2ewUf3ntX07Cs9n9oXxtcTDth7jmpZ7/79yVj6v9Xcc1b36d/35h9/Q1/oopnz8qy+DMvzlS/eufsOXK/sL3RfrNUXur4wFUVR1hciEJIQktDk4o2smfGJnSBMiHjwngfK5V5vorHj9FZCTt/2C29xfRITIj/Dq2Qh9D1DM0pocukwUGMovYmFF3Hm0YOccetFf8X+xDaRnxL6WZkJdfS2W7p9B13/wTBYuxV/G4Jqh+4wBhq1lDAwZThiWno3uyGxM48e7IYfunmS+z0JeIoQ3cAl6Qr8ricr8Gy/s2LZk7z0dPlerpkkFcWh4m/IjMg0t/IAMFe8LJb5QgeqvcDm31ZJ0tEz793eH5LQLZt77Pz79l7LXHnY3e+J339izrlM3z79x/R/VlfOzf851fXiV8jxynlfz7kFYOjK+eLMLmEPGT/0P4wxEl06aYGiKIpyefAlo8HsJb2JuZEy1LTwIH7tV7/jRKIVi4W98EmJ6JRhp9/181YkRi65TNCX3EIEOx5hkC04sU2S+8SZT+IyoCaZzZ5YFUVxX/+sAk9MOdadV/Fm9WfKrnqx5sMgUE1EhlTCEG0oYpbbpF79oYdFf7HQzxAMrTQiyzw8J8KCMtNyXoYbBl5OPUx6whCtwNOwVWXjkGQenTQsowi+9fEDPY1Ww0DF3wrgy3BeVFXB2PuC1tary40xlOLR9E0xdf7f37neBSC1gao0dQlSyMvyYv3mD7+hx/s5MONrsdyfERa6WWPL43vPox5ORVGUS+OJcTLv4v0DqyGnRUXsvo8/4vopdhPYdENOY0InFN/6j99S9hG0YnFwWKfnGWpeEYK6+AbFap+1su8aUmZaLvqlFf0XLzakVG/28W6yr6qoLMIQ1c4oSi/GQJp7xJkNA4+zgCT3uP/jB0gJ3RS490ZXjvnlu6OYUhrMlOvDQMWfoiwAEfAZLOprdLiZh5k2Y2UYUa93stdDaUUkHPzMk3M8q/3HFdt6hWf1PL2ezO55PDfZ8qUxyNtZLPcKXCtui/Icj9xdRd6zfuuHb+ztWzFg/EWR3A2J0q1kaMVCUZTVphpyygJCTm1amjoJIQ/82oM9/RSLyp64kNPq9F2/8BZqLuyzFiSLSpXved03v6IoS6MQbmnuk+Z2DOFqdtQH7nmQjIAMn8w19RTrlbO4LMYJvpN5dkqp0S7XQ2J8Lm/WVBV/ijIkRmVuBrv1Sjnm4DxitBCYvevd8ryUjd3lHI/HPvNUuVxsqy7bbf6cfS4lYKtCU3o+MS9DdOcTpLd8+MYyJKrwpnrkZR9RGTA+p0e3/6h6WBVF6ceXDJ8WdS4+vEFmvB5vYkJUJrCx3sSwzyuQlRXGovL41p9/C5ELkbT9BTVUUrmyKTzcZTKfSjZUW+aRuWyoD97zADkeGYGz/D4Zfs98rgfcuK0ZPmk590qpl1Bntvw/VvdZD3UBFX+Kosyhm3BnfbQg29CmXqFp+pbnE6SFB7ZXbFJZ7/ozu77QfqELC/ewdq9sbhBxt6zYj8on2U/p9bhW+xYXCZUWHE7M4CRK8yZQgjKJUnktfWNP9me8GxS+vh6Mo6JcDnzJ8elQW2CIZ2qCMmTMCsSAb338IbcekroQsqoHwlZ3rcfBVlRthfWun7u7p3+d7+W2j52X9yS4URRw3V8GDkNhw4n7y8op9zhwz/0D7XG1Abi/QTi7SMNv1/pmbjlzk5V0xbZiPSR34s2W+27/Yr7Rxh1W8acoyrrHvrjti3ytU/TBmSskuyIT5u9jWt2vP9y3P6GSqZxvfg9u17try+fuy5zjbFmxXp1TOWfvdsrtFyNYQAZFRdmoFENicAmPYpXMdP0V1fC0B+95oFxOCcgIy+X+/2lvZTntqWD7ZNz1c3e7jJrF2HI2WqK7nuOLUVG5QOYTWlnuOaHVN/5fOeafcOAT9w8UWXMbRLtdRIr9LnFVc6JqFhNx47vuIX55TL+A60bllMsbTJRdLlT8KYqiXEasMTMwTx9SRVGUYWK9i5dOaDMfNuFZb6hcEUJXzIvQOlvF74bWFT6ZfN7wup5PGigu6Jn3R0hQbqtGQfT2tDfc+bPfZZcXKCaMER76xLfcVc2fndxURFO1f35XWAm9oqsreS5xBQPvRSGUesuzOSIrcPOqyLpkVwgVWhsGFX+KoiiKoijKQGzCs5WPrCiyag8K2YfutmIZ6BFXcyVfV6Q9/IlvlvtfjP4z2Png8ZD7w/WBHnHVv70q1rSfuLKaqPhTFEVRFEVRVpVuVm2NilCUleRSfmdFURRFURRFURTlCkDFn6IoiqIoiqIoygZAxZ+iKIqiKIqiKMoGQMWfoiiKoiiKoijKBkDFn6IoiqIoiqIoygZgWeJPRP61iDwpIo+JyB+LyGRl2y+JyLMi8pSIvLtS/h5X9qyI/OJyPl9RFEVR1ipqIxVFUZS1xnI9f18GbjHGvBF4GvglABG5CfggcDPwHuD/FhFfRHzgt4AfAm4C/o7bV1EURVGuNNRGKoqiKGuKZYk/Y8yXjDGpW70f2OOW3w/8oTGmY4x5AXgWuMtNzxpjnjfGxMAfun0VRVEU5YpCbaSiKIqy1hhmn7+/B3zRLe8GjlW2veTK5itXFEVRlCsZtZGKoijKqhNcagcR+Qqwc8Cmf2aM+RO3zz8DUuCzw7owEfko8FGAbZe+TEVRFEW57KiNVBRFUdYTl7QYxpgfuNh2EfkJ4H3A9xtjjCs+Duyt7LbHlXGR8v7P/W3gtwFukLoZtI+iKIqirCZqIxVFUZT1xHKzfb4H+F+Av2GMma1s+gLwQRGpicg1wA3Ag8AB4AYRuUZEImyH9y8s5xoURVEUZS2iNlJRFEVZayw3VuQ3gRrwZREBuN8Y8z8aYw6JyOeAJ7ChLj9tjMkARORngL8AfOBTxphDy7wGRVEURVmLqI1UFEVR1hTSjUJZu9wgdfOJYN9qX4aiKIpyGXhf+vTDxpg7V/s61gtqIxVFUTYGw7CPw8z2qSiKoiiKoiiKoqxRVPwpiqIoiqIoiqJsAFT8KYqiKIqiKIqibABU/CmKoiiKoiiKomwA1kXCFxF5FTi62texQLYCp1f7Iq4g9H4OD72Xw0Xv53Cp3s99xphtq3kx64l1ZCP1PzNc9H4OF72fw0Xv53Ap7uey7eO6EH/rCRF5SLPUDQ+9n8ND7+Vw0fs5XPR+Xvnobzxc9H4OF72fw0Xv53AZ5v3UsE9FURRFURRFUZQNgIo/RVEURVEURVGUDYCKv+Hz26t9AVcYej+Hh97L4aL3c7jo/bzy0d94uOj9HC56P4eL3s/hMrT7qX3+FEVRFEVRFEVRNgDq+VMURVEURVEURdkAqPgbEiLyHhF5SkSeFZFfXO3rWS+IyBEReVxEvi0iD7myzSLyZRF5xs03uXIRkd9w9/gxEbl9da9+9RGRT4nIKRE5WClb9P0TkY+4/Z8RkY+sxndZC8xzP39ZRI67Z/TbIvLeyrZfcvfzKRF5d6V8w78PRGSviPyliDwhIodE5B+5cn0+NyD6n1gaaiOXh9rI4aH2cbisqo00xui0zAnwgeeAa4EI+A5w02pf13qYgCPA1r6yfwX8olv+ReBX3PJ7gS8CArwVeGC1r3+1J+B7gduBg0u9f8Bm4Hk33+SWN632d1tD9/OXgV8YsO9N7r9eA65x7wBf3wfl/dkF3O6Wx4Cn3T3T53ODTfqfWNa9Uxu5vPunNnJl76Xax6Xfz1Wzker5Gw53Ac8aY543xsTAHwLvX+VrWs+8H/i0W/408IFK+WeM5X5gUkR2rcL1rRmMMV8HzvQVL/b+vRv4sjHmjDHmLPBl4D0rfvFrkHnu53y8H/hDY0zHGPMC8Cz2XaDvA8AY84ox5hG3PAUcBnajz+dGRP8Tw0Vt5AJRGzk81D4Ol9W0kSr+hsNu4Fhl/SVXplwaA3xJRB4WkY+6sh3GmFfc8glgh1vW+7wwFnv/9L5emp9xYRafKkIw0Pu5YERkP3Ab8AD6fG5E9DdcOmojh4++g4aL2sdlcrltpIo/ZbX5bmPM7cAPAT8tIt9b3WisT1tT0i4RvX9D4d8A1wFvBl4BPr6qV7POEJFR4PPAzxpjLlS36fOpKJdEbeQKovdv2ah9XCarYSNV/A2H48DeyvoeV6ZcAmPMcTc/BfwxNiTgZBGq4uan3O56nxfGYu+f3teLYIw5aYzJjDE58DvYZxT0fl4SEQmxRu2zxpj/7Ir1+dx46G+4RNRGrgj6DhoSah+Xx2rZSBV/w+EAcIOIXCMiEfBB4AurfE1rHhEZEZGxYhl4F3AQe++KbEUfAf7ELX8B+LDLePRW4HzFNa50Wez9+wvgXSKyyYVsvMuVKZQv34IfwT6jYO/nB0WkJiLXADcAD6LvA8BmJgM+CRw2xvxaZZM+nxsP/U8sAbWRK4a+g4aE2sels6o2cjmZanTqydrzXmymnueAf7ba17MeJmy2p++46VBx34AtwFeBZ4CvAJtduQC/5e7x48Cdq/0dVnsC/h9sqEWCjfP+qaXcP+DvYTtkPwv85Gp/rzV2P3/f3a/H3Mt3V2X/f+bu51PAD1XKN/z7APhubLjKY8C33fRefT435qT/iSXdM7WRy7+HaiNX9l6qfVz6/Vw1GynuIEVRFEVRFEVRFOUKRsM+FUVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FGUdISK/JyL/wi1/j4g8tUrXYUTk+tX4bEVRFEVZK4jIfmcTg9W+FkVZCCr+lA2NiNRE5JMiclREpkTk2yLyQ337/KiIHHbbnxCRD/Rt/zkROSEiF0TkUyJSG8J1/ZWInL3YuYwx9xpjXr/cz1IURVGUS7GW7KWI/AcR+fd9Zd8nIq+JyK6lnFNRNgoq/pSNTgAcA74PmAD+V+BzIrIfQER2A/8B+MfAOPBPgD8Qke1u+7uBXwS+H9gHXAt8bDkX5D77ewAD/I3lnEtRFEVRhsRaspf/CPghEflBd+468DvAzxtjXlniORVlQ6DiT9nQGGNmjDG/bIw5YozJjTH/FXgBuMPtsgc4Z4z5orH8KTADXOe2fwT4pDHmkDHmLPD/A35imZf1YeB+4Pfc+QciIu8QkZcq67eLyKOuxfU/ich/rISIvkNEXhKRnxeRUyLyioj8ZOXYmoj8qoi8KCInReTfikijsv2fuGNeFpG/t8zvpyiKoqwz1pK9NMa8BvxD4LdFZAT458Bzxpjfc/bvhIicF5Gvi8jNACJyjYicExHPrf+OiJwqzikivy8iP+uWJ5yX8xUROS4i/0JEfLfNd/bytIg8D/zwUr6DoqwWKv4UpYKI7ABeBxxyRQ8Bh0Xkb7gX/geADvCY234z8J3KKb4D7BCRLcu4jA8Dn3XTu901Xeq6I+CPsYJxM/D/AD/St9tObGvtbuCngN8SkU1u27/Efu83A9e7ff6/7tzvAX4B+EHgBuAHlvzNFEVRlCuC1baXxpj/BDyCtXcfdRPAF7G2arvb/lm3/wvABeA2t9/3AtMi8ga3/n3A19zy7wEp1h7eBrwL+Ptu2/8AvM+V3wn8zaVcv6KsFir+FMUhIiHWSHzaGPMkgDEmAz4D/AHWiP0B8A+MMTPusFHgfOU0xfLYEq/hu7HhMJ8zxjwMPAd8aAGHvhUbkvMbxpjEGPOfgQf79kmA/91t/zNgGni9iAjWaP6cMeaMMWYK+D+BD7rjfhT498aYg+57//JSvpuiKIpyZbAW7KXjfwLeibVtx9x1fMoYM2WM6WDt1ZtEZMLt/zXg+0Rkp1v/I7d+DTZU9TtO1L4X+Fnn7TwF3EOvTfyEMeaYMeYM8H8t4/oV5bKj4k9RABcG8vtADPxMpfwHgH8FvAOIsC2Dvysib3a7TGMNRkGxPDXgM/6tiEy76Z/OcykfAf7/7P13mCXnfZ4J35WrTj4dJmAGM8gZJAEMmJMoU5QlehUsUVxZsmRblu21bMsWs/f7LDGBIOVPli97bXktWaKTrJVWa68sKpAEwASARCLCDLIwmDyYmT65cr3fH2/VCd2ne7ondZj3vq6+err79OnTXcD71POLfyaEOJV//F9YofRzjCuAI0IIMfa5Q4sec1oIkYx9PECK8TxQAh7NS2JawJ/kny+ee/y5Dq7i9SgUCoViC7KB9BIhxAngFHn2Mc84fk7TtJc0TesAr+QPncvfP5C/vncCXwPuz1/nu4CvCyEyZADWAo6NaeJvIDOJoDRRsclRY2kVlz155us3ge3ADwgh4rEvvwH4mhDikfzj72ia9jCy9PEJpOC8Hvi9/OuvB07k/QgTCCH+LvB3V3gdHjKiaGiadjz/tAM0NE17vRDiu8t9L3AM2KVpmjZmAK9EZg7PxinAB24VQhxZ5rmvHPt4zyqeU6FQKBRbjI2ilyvwk8AP5T/zFWSrwwKg5V9/APgCcDj/9zeAfwsEjEo+DyEzl3OLAqYFShMVmxqV+VMo4N8ANwN/RQjhL/rad4B3FJFLTdPuQE7iLHoYvgj8LU3TbtE0rYGcfvbb5/g6fhhIgVuQIvqG/HV9HdkHuBIP5t/7C5qmmZqm/RDwxtX80DzS+X8CvzY2lW1XPpkNpFD/bP47lpCN9QqFQqG4/NgoerkcVaRxO42saPns+BeFEC8gg50/BTwghOgAJ4C/Sm7+8mmhfwb8c03Tapqm6ZqmXatp2rvyp/k94B9qmrY775v/2AX+HRSKi4oyf4rLGk3T9gJ/B2m0jo+Vmfw1ACHEA8iegd/XNK0L/AHwWSHEn+Vf/xNkmct9wKvI8o9zNUc/g+yte1UIcbx4A/4V8Ne0FRbICiEi4EeRg1xaSGH7I6QIroaPAi8CD+WlMl8Gbsyf+0vAvwC+mj/mq2v/1RQKhUKxmdlgerkcX8yf9wiwHzk5ezEPINsgDo19rCGHwxT8dWTp6n5k5vD3gWJ/4P8J/ClyYM1jwP99YX8FheLiok22CCkUiq1CXm7zb4UQ/+GsD1YoFAqFQqFQbHlU5k+h2CJomvYuTdN25GWfPwO8Djm4RaFQKBQKhUKhUANfFIotxI3IXoQy8DLwY3nvgkKhUCgUCoVCoco+FQqFQqFQKBQKheJyQJV9KhQKhUKhUCgUCsVlwGVR9jk3Nyeuuuqqi/b87Uefnvr5+l23XbSfqVAoFBuVRx999JQQYn69X4didSiNVCgUikvHemvkZWH+rrrqKh555JGzP/Ac+Z/WjdO/8N3u1E//YPzcRXstCoVCsd5omnZwvV+DYvUojVQoFIpLx3pr5GVh/jYaywmhEjyFQqFQXO5M00iljwqFQnFhUOZvA6EET6FQKBRbiWWzfhfoeZRGKhQKxdpQ5m+DowRPoVAoFIrpKI1UKBSKtaHM3yZFCZ5CoVAoFNNRlTQKhUIxHWX+zpMLVdJyoVCCp1AoFArFUlTQVKFQKJT5uyxQgqdQKBQKxXSURioUissJZf4uY5TgKRQKhUIxHVVJo1AotiLK/CmWoARPoVAoFOfLRmuLuBCooKlCodjsKPOnWBVK8BQKhUKhmI7SSIVCsVlQ5k9xXijBUygUCoViOqqSRqFQbDSU+TsPtmJJy4VCCZ5CoVAoFEtRQVOFQrGeKPOnuGQowVMoFAqFYjpKIxUKxaVAmT/FuqMET6FQKBSK6ahKGoVCcSFR5k+xYVGCp1AoFJsT1RZxcVFBU4VCca4o86fYVCjBUygUCoViOkojFQrF2VDm7xxRUc2NhRI8hUKhUCimoyppFApFgTJ/ii2NEjyFQqFQKJaigqYKxeWJMn+Kyw4leAqFQqFQTEdppEKxtVHmT6HIUYKnUCgU549qi9iaqEoahWJroMyfQnEWlOApFAqFQrEUFTRVKDYfyvwpFOeAEjyFQqFQKKajNFKh2Lgo83cOqJIWxXIowVMoFAqFYjqqkkahWH+U+VMoLgFK8BQKhUKhWIoKmioUl5YNYf40TWsA/x64DRDA3wSeA/4bcBXwCvABIcSCpmka8OvADwAD4GeFEI9d+letUJwfSvAUCsVqUBqpuBxRGqlQXBw2hPlDCtWfCCF+TNM0GygBnwC+IoT4nKZpHwM+BnwU+MvA9fnbm4B/k79XKLYESvAUCsUiNo1GqrYIxcVGVdIoFOfHups/TdPqwDuBnwUQQkRApGnaDwHvzh/2O8D9SGH7IeCLQggBPKRpWkPTtJ1CiGOX+KUrFJcUJXgKxeWH0kiF4uyooKlCsXrW3fwBVwOvAf9B07TXA48C/wjYPiZWx4Ht+b93AYfGvv9w/rkJYdM07eeBnwfYs2fPRXvxCsV6ogRPodjyKI1UKM4RpZEKxVI2gvkzgTuBfyCEeFjTtF9Hlq8MEUIITdPEWp5UCPHvgH8HsG/fvjV970qokhbFZkAJnkKxZdhUGqlQbAZUJY3icmYjmL/DwGEhxMP5x7+PFLYTRamKpmk7gZP5148AV459/+78cwqF4iwowVMoNh1KIxWKS4AKmiouF9bd/AkhjmuadkjTtBuFEM8B3wvsz99+Bvhc/v6/59/yP4Bf0DTtd5FN7G3Vy6BQnDtK8BSKjYvSSIVifVEaqdhqrLv5y/kHwH/Op5i9DPwNQAd+T9O0vwUcBD6QP/aPkSOsX0SOsf4bl/7lKhRbHyV4CsWGYVNopGqLUFxOqEoaxWZlQ5g/IcQTwL4pX/reKY8VwN+/2K9JoVBMR5lCheLSojRSodgcKH1UbAY2hPnbLKiopkKxPCoKqlAoFArFUpQpVGwklPlTKBQXDSV4CoVCoVBMRwVNFeuBMn8KheKSo0yhQqFQKBRLUfqouNgo86dQKDYMKgqqUCgUCsVSlClUXCiU+dvg/FTyEi3SNX9fA4P/ZF57EV6RYjnUtbo4KMFTKDY+69ETf65nLqhz91KjrtXFQwVNFWtFmb8Nzrkeluf6fYpzR12rS4syhQrF5c35nJ3q3L20qGt1aVH6qFgJZf5WiZr0qVBsDlQUVKFQKBSKpShTqABl/hQKxWWAEjyFQqFQKKajgqaXF8r8bUJ+8zd/k/e///2cPHmS22+/fb1fjmIFHMfha1/7Go7jYJomv//7v88v//Ivr/fLUuQoU6hQbC2UPm4elD5ubJQ+bl2U+duE/PZv/zb/6l/9K774xS+u90tRnIUwDHnPe95Dv9/HNE2+8Y1v8KUvfYmHH354vV+aYgVUFFShWD0bqS1C6ePmQenj5kSZws2PMn+bkK9//evs3bt3vV+GYpX0+30ALMvCsiyEEOv8ihTnghI8hWLjo/Rxc6H0ceuggqabB2X+FIqLjK7rPProo1x33XX863/9r/n2t7+93i9JcQFRplChUCjODaWPWxuljxsTZf5WwUYqaVFsPrIs44477qBer/OHf/iH3HrrrTzzzDPr/bIUFxkVBVUoFIqVUfp4eaJM4fqizJ9CcYlot9vcd999fP/3f78St8sUJXgKhUKxFKWPClBB00uFMn8KxUVkbm6OOI5pt9u4rst73/te7r333vV+WYoNhjKFCoXickPpo2I1KH288Cjztwn5L//lv/Dud7+bubk5Dh06xD/7Z/+M3/qt31rvl6WYws6dO/md3/kdDMNA13V+7/d+j//5P//ner8sxSZBRUEVG52N1hah9HHzoPRRcT4oU3juKPO3CfnJn/zJVT3uoLiOMl1K9HAZoGtqital5qmnnuLOO+886+NeEddToUOJHh59NO0SvDjFpkQJnkKxPKvVR4AjYi9lupTpYmnxRXxVimmsVh8Bjoo9w/sZda0UK6GCpmdHmb+zsNGimmvh+z52C/d/7nGOspeAEpoQePQo06NMF48+hpau98tUAO/72M1LrlUpv07SEPYwtGy9X6ZiA6NMoUKxNt72obv42q9+l+NcSSxsbMKJc9fBV4G4DcJbP7SPr/3qdznKXhJhYRMM72VKdHG0cL1fomIDo/RxEmX+tjj/yy/fhGVI05BmGr1wJ/d99jFeYyc+ZTKh4+LnplAKnq1F6/yqLz80DX74V27E0GV2Ns00uuFO7vvs45xkJz4VhNBwGQyvk4qAKlaDioIqFNOpugE/8cmrhgYviE06gccDn3+CU+wgxMUQKaWxM7dET1XRrAN1z+eDn7pq+PEgmqUbymt1kp1EwsUkntBHVUWjOBuXqyncMOZP0zQDeAQ4IoR4v6ZpVwO/C8wCjwI/LYSINE1zgC8CdwGngZ8QQryyTi97Q3OyV+OFU9tJU4OKE1D3BtTcgPf/8q2YuSEUAvrRNjqBy9d/9QlOsJtIOFhE+QHapURfHaIXmeOdGs+f3EEmNKr5taq7Pj/0Kzej54YwyzT68Tbu+/SjtJidiICW6KtotWLVXK6Ct5lRGnnhefnUNnqhi2Gk1F2fuis18sc+ee3wDI1TnW64m/vveYyT7GJAGVQg7pLz3Mmd+JGNbcbyWnnyen3gU9cMHxMlBp1gL/ff+zgtZieqaMbfVMWT4mxs9aDphjF/wD8CDgC1/ON7gV8TQvyupmn/FvhbwL/J3y8IIa7TNO2D+eN+Yj1e8EbHueU2ri9HNCoRQsDxB5+VJiPcTpbplO2QmutTc33mK11+4lNXD783TEy6gZsfonMElGB4iPaHh6ipJev4G24dyrffyq5KRK0UESUGJx86wKHWDN3ABWSEup5fq/f/yu1DQwjgx7N0Ao+vff5xTrOdAC+PVveGBl6W+KqyUcXKKFO4oVEaeYGZu+sGrquElJyYQWhx4uHnOHmqRj90MY10qI811+dHPnnj0BBmmUYv2s79n3mENjNjgbhwWKZfznvtVSDuwrDrTdfQqETYZkrXl9fqUGuGMLZwrYia6w818sc+df3w+4oqmvs/+xin2IFPmVQYuPgTGV1VNqo4G1tJHzUh1r98QdO03cDvAJ8B/gnwV4DXgB1CiETTtLcAvyyEeJ+maX+a//tBTdNM4DgwL1b4Rfbt2yceeeSRc3pt693z9/7k+XP+3ke+fgD3hadp9W0GgYltZTQrIfVKRL0UEac6Jx46QNv36IQeaWpQdgJqbkDNkYeobY4iZGmm0Y8cvvqZxxhQwadCgolDMBFVu1wzT+d3rfZjPbefhZ5DFOuUvYRmJaRRiai4Mf3Q4sRDB+gE3lRDWHWCCUOYpDrd0OX+ex6jn18rgaZKfBUXjJUET9O0R4UQ+y7hy9nSbFSN3Mz6CPDCf/pdOn2bVt8myzSqpZhGOaJRDXGthK5vc/LhZ+kE3jBDKLUxoOb6VOxw4twNYlOeu/c+gU+FAA8N2WtfVGd49C/LoOn5Xqvn/uN/o9W16QxsdF0Mr1OzIjWs3bc58fBzdEJvqiF0rdHfXAgYxLYMmn7hCQaUiZBlo8V9TJmuGpSnOC82skZulMzfvwA+AlTzj2eBlhCi+L/1MLAr//cu4BBALnrt/PGnLtmrvYQ0MGix9hKFZmOOQ4ctEvtOarMZ9VqK52YkqUbrwH5eOV6VJuPKN9MoReytRNTLEWFscOLB/ZzqV3j5zDxxYuLZ8hAtDOEPf+qWiZ9V1N4vzjx5YxnCy6HU4nyu1SuvOuilO2hckTJbS7Asgfn80xx+rUy7b6Npgvq1+9hZCbm5EuFaMvp58uGlGcKJaPWnbhr+nOVKfAvBU5NhFWthK0VBNwH/AqWRSzjXMxfkufu4uBu7LqhfmdKopRiGgOef4ZXjVboDC10X1G+4g915BY1jpXQGNicfPsArZ+bohS66Jqg6o3N3ttTnxz913fDnjHrtH+U02xlQIRUGDgHeZVSufz7XqlGf47vso7Ijo1FPKZdT2QZxYD+HXysTRgaek9J8naygaVQi4kQfGsKDC7NEycgQ1tyAujtgZ609UfEUJQbdcA8PfO4xjrEHnxII8PIS3+KeRpX4KlbDRi4dXffMn6Zp7wd+QAjxv2ma9m7gQ8DPAg8JIa7LH3Ml8CUhxG2apj0NfL8Q4nD+tZeANwkhTi163p8Hfh5gz549dx08eHDNr229o5qL+WLyD/G+7z0Er5/lxpvmaZ+GJIZqA8p1yFK4shHRackb/VoDqjWBYcL26CDttkF/oOO6gkYtpVZNMU2B8/xTtPs27UXRz3pehhhEBu2+zclvj6JqjhUPzWDN9SnZk4dhkur0Iof7P/sYfaqy1AJjmCWUB2kPh2BLCt7T6Z08dNsvctfffgOhZ9M+DQKoN6Fcg2u3hbTOaPS64LjQaEK5KkhimPUP0WoZZAJqlZRGM6VaSYkjHePAMyz0RpncIvrZKEdYZiZvTB46QHssQ1hxZHlv3RtQdYLhUJkC2Sfh8cC9RUa3BCjBU5w770+eV5m/C4TSyNVxKLua/5r9Pe76Z9/PiajNlbvn6bbAdqDWlOfsVXMhnZbGoA+uB/UGlMqCJJHnbrttkGZQq+YmoyRNhnHgGVp9m75vYpkZjTxYKssQMzoDGYgrKjMEsne7mmeeqk4w7LMvGETWMGg6yLOEOtll0Z8mBPx2+o+Z+cF30r5pnr175+i1oVSF+gzoBlxZj2gvQJpAtQ61hsC0YEd0kFbboNfXcR1Bo57SaKRYZob17NO0e6NMbq0k72OalYhqKR7ey4xnCIt7mbon72U8a1LnZImvw32feZQBFQZUSBiV+BZvqsRXsRbWWyM3gvm7B/hpIAFcZD/DHwLv4zIvaRknEC6/kX6cxo/8JdpVnZkdCY4nyFK4+uptdBYgCqFSl4en5cCgC7trEd22PEyrdag3BJYNO+JXaLcNOh0DAdSqKY26NBmZ0DD2y0O0M5BZp1oppl6JaJTlIRrGBu2+JQ1h4OFHNpaZjBnCgLIdThyGRalFN3DzUouKnKZGOnGIboUVFH+W/Agv3/JjLFx/HXtvibBsQZrAniu30T4DpgX1WXlN4hj21CNaCxAGUKnK61RtyI/n/FdptQ2CQKNcykZiZwm6XQPjwH4WejZxIstFC+NeL0fomhgawk7g0Q3d4VCZ2ljJ6OIbEyV4ivNhvYVtK6E0cnV8O30n37nx72G/7Q6EdYbGtgRNgyjU2HPlPL0WmLY0gtWGDJzuaUS0WxD4UCpJg1GpQZbBfHCQVstg4I8CpvVaiutmDHwd48B+Wj2bIDJw7ZRGJaJWjoaBuK5vDc/dTugO++yry7RVwGTQtDh3x4OmW6W1whclfiP9OHM//h78eajPyb9D6GvsvmIevw+VhtRI24Z+V5rBTgsMUwa2602BZcG28BVaLYNO10DXoF6X9zK1akoYaRj7n6HVs+n51kS5aKMcUXJTgsig1bM5+e1naQelVRlCGJ8M+/hEie/lYN4V5896a+S6m79xiqhmPsns/wL+YKyZ/UkhxP+hadrfB24XQvzdvJn9R4UQH1jpebeCsJ3MdvCb2UfY+7ffy8uHH6ax41ZqMyleZXTTnmW5ETwDUZAbwTkZ4UxiGPSkGex1pBms1aHWFJTK4A+kyWi3DfxAw3OFPERrssSiPzAwDzxNq+fQD8zhIVrPSyxKTpKXWRSG0GUQOeh6Rm3MaCzukYDJ/jSZeZJZQtmQXRjCHq4WXOo/+znzH5NfIH77D/CSfoYdV1/L/JUxhjH6ehxp7N4lb0i8MjTnwatIg+z3R1HPLJNC12jKm5IwgHlfRj67PR3HlpHPei52UaSjP/N0nsm1EEJGPxvVkXEXgskbk8AjExplOxxOhK05/hJDCGfvaVGDgBSw/sK2VVEauTz/I/kpjr75pxCvq+F6GYOOwdzuGF0fPSaONPbkGUHDkoHSahN0HUJ/VDkTBrkZbArqDbmKp9uR2cFhwLQig3D1WoqmQ6djYDwrDWGc6JTcyUCcaQh6vjnq3Q7dqW0V471pkGtCvDRLaLB5WyuOZlfyO9k/5pq/9146WgdNGxlAkL/z1VfJQGkcyvuYxqw0fkkMexshrQWNfk/e3zSagnoTTFNepyJgmqTaMIvbqMt2ik4eMG31bPzQwLFTmpWIRt5jb5kizxDKoTKdwCOI5ZTRolx0WrUTFMNl3CXmfTPfyyguDuutkRvZ/F2DHGM9AzwO/JQQItQ0zQX+I3AHcAb4oBDi5ZWedysI27Pp6/jyjZ+g8j1v4MjBr7P96ltIE42ZHdNvsrMMrrl6G628NLQ+K4XOtOTXk1hmBnflZtC0ZElirSGoVKX4bQteodWWETUNqNXSoSE0zSLr9MxwoExRDlNEP0tuSpJqdPoWJx5+lm7g0QsdYNSbVmSgFpcibuYsYSwsfiP9OJUf+X4O9p5j5oqbmNmRYLvT/18LBhpX7JgnCqC5DRpzDKO6aZpfp6rM4Fq2vE6NGWnao3B0U9JuS3dZq6XD7KBtCTpdHfPAMyx0pXE3dCFLlsain1kGPb8YKuMuGQBUCJ41xRDKnhaX+z5bZAmrWzJarVg96y1sW5WNpJEbSR8Bfiv5J0R/+cc5kRyQvXrbb2FuV4xlT398HMGe3bJqxilJc1GuybNXiJEZbJ+BKBpVZNQa0oT0e8sHTKvVlCgaVdAUZYhlN6FRCamXI+rlGMMQDIKlbRXFOoOa61N1A8r20sFcmzlL+GR6N9+46Z9Qec8dZPYpei2D7XumtxWkqbxOrdPS6M1dIUt4CwI/D5bm16lak/pYb4Cmj65TqzW6To2GNIO1akYYaXQ6BvqB/bR6DkmqUfGSoRmslyMZHIh0WsV1mlLtVPd8Sla05G+93L2MSZIHTdX+yMuR9dbIDWX+LhZbwfx9PX0fT930M5y+5lpmtmU45YxqM52Iai5Hmspyw9YpKFdhdgdLBDGOZDSt08770PI+iUaeGUwT6HVhPniVVkeWIBaHaD3vH0xTjU53shzGsVPqeclosxLi2BlZxtRSxPHVE8sZjdVmCdezl7CVNfmt7MPU/te/QlTqUWkmeOWz/3+WpnDF9m30OrBzj+x/WEwcwpWNkPaChj+QNyTNWSl0himfo9eR12mhZRBGGtVKEflMKZczkoQl0c+ibKko7bWtTA6ICUxOPLifdlCiE3gkqUFp4joFOOb0AMR4T0uf6jLmvadWUGxB1lvYFGtjs5u/SNj8RvoJaj/8fSyUddxSRrme4q7i3AVZbrjrinmCPszulNo3rh9ZBsFgVHqYxFCpydLDekMGTwN/VILY7Y61UzSkIXRdQb+vS0M4VpmxuMde1xlmnsaNxuLVE5VFbRWwebKEX0n/Cgff+vc41pxl/sqE+myKbpz9+4KBxvzMPI4HO/ey5PfPMvB7sDuvnDEMaMyMgqUgq5y2BQfzwLaOaQiajVEW1zCgl1+nYrqopgnq5Zh6OaJZDSm7eUlxrE9kCAeRs6rrBMX+SC+/lymPTeQeTEwcVb32W48fjJ9b92mfyvytwEYStz9KPkj3e/8a4esalGvnds2EgKuu2saJQ3D1TbIvcDmiEPaMmYxSGZozglpT1uCDPES3h5PZwXpdHqCNRorrCIJQRtWMA/tp9W2iWMdzcqNRHpVZCMFESUxhNM5WElP8XhspS/hKdj1/kP0N3viZ93MsbAFLRWo5shT8vk6jPMfNZzkWhJBCt6smo56GKYWuOSvwSqPHDPowN5BiVwz8aY5FPnUd/GDl6GetJKPUQsAgNPMbk+dpBx5xYuJakeyPWOE6wVLzPlArKLYkyvxtLja7+WtnDX47+yWu+sc/TFRbOOfnSRPYMb+NNIXd1y7/uMJkXFmXPYMgh8fUZ2TljK7ngbg8YLokO5iX6WvayGis1GOvaRAnmswQ5qsn+pGzZNLo4pU/BRstS/h7yc+hv+/9DG6bxS2LVf9MIaRGVpxtzO2U7RIrEUdwZV0OVwt8mRVszsoS0SJwHsfQbcPMYLJ6ptmQlU6uI0hTGTA1DzzNQs8ZDv5pVkatL64t7y2mXic9m1gRUnWmB6eFgF7k0M0ncvepEmNjEQ2H5Kn9kZsfZf4uEZtd2AD+W/LzlH/ofYg7b8WYsqBDAzQDDF1+oOvScGj5AZdlIDJIEkgi2H2N7DFbDUJA0JfRtE5LCmStIaNp1froEC2yg3P+q7Q7BkE4GlBSr6dUK9JoDAaazDw9OzIaiweVmGNGo1NEQMdKYmpjKw2mlVrA8llCh2BoMi5GlvDJ7G6evetvs/2H3sJAt1jL/2K6Ic31zLbVX5+CQugWTmnEkTSCM/OC8qLnCXxZ0rvQMoeRz6JMtFFPMc18LURfR89vSobrJqZEP4GppUuraZqHYgWFQzeU5n1c8Iol9SX6ePSV4G0CNoKwKdbGZtfII9ke/iD7m1z/sb+KqFpTH6NpMhOkFdo4ppNCSI3MMlldYTmw5/qpTzOVNIG9zaUTnBszAtcbPW4YMG0ZdHpyQElRpj/NaIz32MtSUWk0irM3TbWpk0YrQ0MYUHWmV9HA9ImjFztLmAqD/5r+PWp/8wMYV29D1+Uk7NWgIXs1SxWY2c5EH/3ZKAz7rqocruaVYGZO0Jxh4p6qqJ4p+gbDaLxvUFbPAHm5qJ4PXJP7eYs+z0Z1dB8DkKSFITxA2y9NGHfZZz99HkJB0Wv/wL2PM6C6ZLhMYQxVFc3mYCNopDJ/y7CRhC0WFv9X+rfZ+Q9/guve2sS0wLLAsgXPH3MwLdnorBmAkEImstF7kF/TdXlYTjOPa6HoQ7uiEtHtyMb45qygMdZTCHlmaqzEotsbGY0i+mlZeXZqoGPsn1w5UfHiYc19UXcPo5KY1/LpXOMlMUUUdKXI2uqyhOd+kD6Q/gDh29/Hjv/1Pcxtk+OpTQtePGZjmAw/NszVZwTXSprCnlrImdMyczs7D9t2imHWdpwi8ln0DWYCGvU0zw6m2LYYPmena8jpaWNjz6dFP4GJKWqLm+bl8t3B1Kb5gjAx6QYu9y8SvCL6uRHKlxRL2QjCplgbm10jn8tu57k3/j22/9g72L1XDDXyhWO2PG/t3PiNGb1xnSyMoK5Lc7GadoqVCAM5wXmh6LmfgZlZQbk6eeaniezZng9GRqNSngyYapoM2soKmqU99oU+llx5Di7Xv73acv2zZQnPd01TV9T57+lPc82Hfow9b5zBzDXRsgXPH3Xkx7a8p1lNKei5EgzgirK8Ro4H23fKjOC0UlrZN3iQhQUTf2zqdrOZUilnoyDoQBsbuDZ93UTx2GIewsmHn6UdePRDB02DihOM+j2XyeTC5HCZPlVVRbOJ2AgaqczfMmwkYfNFif+ZfpC7f/GtlN5zNzCKWGapRhTJRuc4hEyArsmePtuRby+dsDFtKYaFCF5IggHsqkQsnJHPPbtNMDc/3WQWRmMuOES7rQ+ncdVrKc1GQqkk/3vMMlkOYx4Y1d0DUugWlcPA6kpiKlN23BWMZwn7VAgok6EPD9JhWYwWnvXv8efpj3DFz/8wzffegeMJ9DzKnGUacSxLauNI3hQI8uvlyIyfbY9MvVWYxPO8GclSuKIS8tpxDcuGPVePykKnUdyQzA5GE9PqeRlMs5ni2KO/4Vqin/LxOu2B3LPU9qUhLNkhzVKfhjegtoLYwVLBK7K5HoOh4Kk+ifVlIwibYm1sdo18OtvHqXd+kLf/3Vs44+2SWT4dhKaRFPo4duaaZn7euvL9iyfsoT6a1oUNyqWp7Kc/c0ruF6zWYNsOOb15MUWZfhEw7fV1LFPI87cpWyrMXFejaHqPfWNMIx07Gz5vPzBp921e+46cxr146XnVmT7Bsvj+opfwgc9PC5p2x1orVg6anhRX8ED6l3njr/0Eleu3jyqUhEaa5Ncq18kieF2YeduRWvliYerHAqnnQzCAeVsGs+d3wM5dK5eiDvpy6vZCS14jzxU0mwnNxsiwg7yP6fZ0jP2TA9eKdopGJcJzRsHL8Uxu2y/RDV0MPaPhDWh6UiMXrwcZp6ii6SxTNlqY9404BOhyYiNopDJ/y7CRhK0lZvha9pf50c/tw3vDtaSpThBohKFGnGhoGriOwPMyPDfjsLZXmkNdil0UacQhhKE8ULP87DDzw9RxwHYELxx38gjcuWel4gh2eBGnX5PDSHbsWlp2OE6WyRUUc2M7lUpeNixBLEpFQYpotycnVy7e21OUi46XIi4uienlg2VWWxKzuBxxQJkon9JViF0heMWUrkB4fEe8ixs/9CNc971XEMXyOoWhTpr/GNcRuG6G52Uc0fZi2zLCmWXy7xdHcjdVccMSRwxLR4vrUxjD8WipYUnzrRvLm8VBDzgTc9udGdUpNx/TKHpX5gZyiEycaNSrcvn8zCIzKAT4/ij62erZE+smmpWQipdM/LfVD0yOfvNZWr4cKmPoGU2vPzSEy12fxddpseCN7yRUgnfp2AjCplgba9XIjaSPAI9k76DyV76HfX/3bjRNBqXCUCeMNLIMLFPgugLPzThq7MEykTWEFIHTPIgajs5bTc8DqLYs43zx+CiLaFrnFkQVAvod2OZEBD7MbpcZp5WeK4pkGeLMQK6ZyASyr74+6q0vWK7HvlkJhxppmaPH+2FRrj+qzjjbvt5x4lSXk57veXw4tCRDnwjGLc4+vSxuJHv/j/P6dzfhxhuIYl1qZKQhBJgGw3sZ1xUc0fcOy3ULPYxjbXitokgGLAXymhT6WGjkC8dsjLw6yjBHGjmNNIWGkCbw9ftWf2/sD0ZmsNsb9dXPNJMJMwjS2Ha6Bvp+uZ83jIyJa9SoTAZM40TjTNfh+EPPs+CXSTOdmutLQ1jqT50Eu5jxFU1FFc24cZfZ3L6aNnqJ2AgaqczfMmwkcVsQszyRvZkf/OfvQaCRZfIkKbkJJUe+tfa+Dh2ZGQkCjYGvEwQ6STo6TEtexlF9D47HsA+hOEDDYCR+UShNI0gDaNmjN9uG54/Zw/LR4jBdHHkTQi5mtXox19yQMbdt9b9vUSq60JLTuGxr1JM2HvmEs5fDLI6sLVcSU3ECGt6AhjdYsdQCIEoMWX//uaIsRo4R8xgQYzMQZV7/yQ9SclM0TeDaaX6dUvzrb0PTBBpS7HxfJwh1BgNp5HUdXCfD8+SNyhF9L64nbz40TQpHEsv3MpKt5QY/7+eMpYCJFfySV4a9104vAV0NWTYyg2cWpBls1KURbDYSLGvp4ztdPV+269DLy0Xn6iHzDZ/aWAYX5AS1hZ7N0QdfoBWUEJlGzQ1olno0S4NlewcXM76EtxC8Yrx2kSF0GSjBu8BsBGFTrI3Nbv6eyN7CVX/tjVy570qi2EAIsMyMkpNQdhP619w2PGOiWJ67fiBNB4Bj58FTL+OYsRfHlXpXnK0yeJobjngyiKobeUYqD8y9eDwv7zdBH9PHxQG5JIZtdsTxoxp3vjlbtZmc1pNWrWRyQEktpVKZPPwHg8mVE+nYMK/xlRMFxQTLYl9vP3QxjZS6Oxhq5HIDvWBpMG5AhQgHk5gSPc6Iea75a3czc9u1GHqGbWV4dkLJTfGvuxXHyiDvZyyuk++PjLxtiaE+HtX3SH305N8/TfP7l2R07QqNLDQzTUfXbhqaBtuuEGzfubrrMY3Al2bwzII0g54rmJ1JmGmOeganXaNWbxQwbVQi5uoBc/VgwgxmGbT7NscefI4Fv4wfjapnZkr9ZVteFlNUO0njPrqPKfb1FsZdtVVcWH4wfg5g3TVSmb8pbDRhWxCzvCBu4+1/5zoa3oCZu27GtRIMQxAlBoPAZBCY9AKTMDLQNPCchIqbUHITBtfeDrogTXQGvo7va8PDtMgalkrSHC42G0KMomvF++IwTRL5liYjsziOQB7IV1wp+wHPlSia7EkDOVW02ZhuNsZLEVt9GVmbtspg+DoFdAfSEC4MynRDF13PaKxS7ECWdPYih37kcKpXYe/br2F7M5BN5pHJIDAYhCZ+aNIP5HshwLFTyq68QQmuvw3XkZnOIMivVSCvVxDIzKFlSuEbN/KOyzkbuQtBcTMy03+VhZb8vZpNGfVsNqavIwkjDZ58mtdaLt2BRa0cs63hs60RTNyIyOfXaPctjj30PGcGZcLYouIEzJRkdrDinL0UtyBOdWkIPzcqGx3vI1SN8+ePMn+bj82ukU9nd3LVT72NK5sLlKyI5r5bsE25rsaP5Hnb800GoUmaapiGoOzGVDx57hqmAAFhHogrDMeSM9fYg+vK4GnR316UKo4qNcb0MQ/GxfH0gJymyWDc1deJcy5dLHrS5v3RROflyhCLx09OGLUmqjMWt1SAzD61ejbHH36ell8ijK2h4ai7PnXXXzFgCjJo2glk3/YzJ3bxvg/U5edjHT8ypC4GUh/7gUWSaui6oOSkVLyY4PpbKXkZlpkRJ/rQGAa+vF5hJIOnji3vZxYHT8+3j/N88Acw25dmcODrVCsZM82UmZlkInNbkGXI/vunDvBa28UyM7Y1fLY3/WFv5zg93+TYt57lzKBMN/CwzZiZ3Ayu5tqMfq68j/nqZx5jkPcRFu0vRYawRE+1VZwHyvxdQja7sPVEjeNiFz/8v1+DH9sMIptB5NCLHJLUwDBSKnZI2Q6ZvftmSo4sqxuEJn1fHqT9wCSKdXRdUPGk2Qjzw1TXRZ59kofpYKAThLIEY1hOmkdEN8JBurgnLc1kT9pymSeQqwzabTlhtN23iRN9GP2cqYVLsk/TxK48lh1cqTfteKfGwYU55spdHDOhdudtuHaKZ6cTphPkUJR+LniDwKTnWwSRNLiunVJ2Y8peQnjD7ZRKGbomhjcmfqDjD0bCt7j89+g6Xa8klten0TtEq23gOIK5mYS52QTPW/o3EwLaHZ30u8/yWtvFsVK2z/jsaPpL/l7F47sDi6Pfeo4zgzKDyKFkh0MzuNrIZ0HRR3jfZx+nnw84AA2P/jBDqCKgq2OjCJtibWx2jXxB3Mb7P3aN1L0o18jYxo9sBBqOGVO2QypOyOzdt+DaCVGSG40xjSwCchU3oezFhNffjm1nZEIb6qPvjyo1DH1UVeN5giP5mbuewTgYVc8UmaeVyhBhVJ0xraWiWQ2ZqYbD/kEY9RAe+9aztP0SncBF06CWB0zPVqHx0MFraHoDHDOmdofUR6mRyYRWpakmtTEs9HFkDA1DUBkz8OVShutmRJGWB7lHwVM/0Iflv6XSKGtYVEFNu2e4WBRmfXbwKmfOyMqZmWbK3ExCvT49WBqEGukTz3BiwSOKDebrATtmB9TL0//GQWRw5BsHaPllWn4JQ8+YKfVo5qWiy80+WO719iKH+z79CAOq9KmSYA2nppfpqD77NbBRNFKZvylsNGETAr4r3sI27Qhv//BdlJ2QshUNzUeS6nKCZejSD2X2yY+l+pRyUzh3901U3ATPTvAjmSXs+xY932IQGmSZNiF60Q23UyrnkVN/JHjjEdFh+YU3Kr9w3cmJn5eCNM0zgwOZeRqfVrmcGRxfZXCm49AdWJTchLl6wHw9WBJdGxe7ojdtueygEEjDmJhEqUkQW4SJRZCYxKkM77qWvBmRhv0WKl6yJBsZRMZQ7Pq5MSwMfNlNpOhddyvlcpabeAgCbYnoFdfLNJC9hm5+o6LL8qYiy3ux8Acw0zvI6TMmYaTRbKTs3BFTqy4zfnygkTxxgOMLHrom2Dnjs2NmMHHzsZieb3L0m9IM9kIXz46YLfXOyQzCShHQwdAQlukqQ7iIjSJsirWx2TXypLiCM8wzw2u842P7KNvhxHkcJNZQG4s+7iQ1MPPAacUJmL37Zqol+T3y3M01Mq+oKbJQ1VI8PHc9N5PZQl8ajsFAtlsE4fJVNbZz6YOni8sQz2YGYbI37XTHIUl1ZqqyVH+mGi2p0EjSPGD6kCxHHM8OLg6YFj1oUWoSJhZhMtLJNNOHAe2SHTG772YqXkzJmTSGSarR862hge8FFoMpBj664Xa8UobrCOKYYYC70MYg0JYET113VP7ruBd+SN44aQLtFjS6h2h1DEpextys1Mhp/50kCYjvPs3xMyV6vslsLeSKuQGNyvK9f1Gsc7rjcPShF+gEJdAEM15/GDBdixks6Ec2ncCbWM9kEwwraMp01KTRKWwUjVTmbwobTdhADhLpUSWkhE+JAA+BjkOAR593fOgNVJxwYldMsdagF7r0cuEbRA6Z0Ibmo+IEzL/pFipuIpu3/ZHgTTMb0Q23Ui7JTGCaIgXP1wn8UUnpeER03GgUwnexh24sNoNCwEwzYXZW9kQsJ7z9vk725DOcarsEkUGzGjHf8JmrhUuEDkbZwWMPyexglMjddnFioOmC2VKP2XKfhjuYyBIWk9MG0ehmpB/ZRImFYaSUrYiyEy4rekU0tCiPKW5UskzDtjIqXkzFTQhuuI1yORuWlaRpbuSD6b0URXlTERW1XWnmLfvC3axkGbQXwDpxhEol4/prwxWfOwg14sf2c+xMCUMXXDE7YOfsYKIHYhrFEJnT/Qq90KVkh8yWe8yssUx0nCIC+tVPF6O1q0NDWKEz7JO4nA3hRhE2xdrY7BqZCY0uDYJcGwNKRDjoZHj08Bjwzo/eSdUJJkr441SnHzlDjexFLmFsYejZUB/n3ngzFTfGsVIGoZkbjslzd1rg1LbEsP/ez/VxMBidt44tz1qvJGQWygXPO//JlathsRkslzJmZ2QZoucus1oghYWWQfbUs5zpOsNSxLl6MDTNiynKEccDpqaeEcQWVSfIz+TekimjRUC7N2bY/cgmEzquFQ2zuHNvvIWKF08MsYGxwGluDscNfHEvE15/69CYG0YeJAg1ginB0ySV02Pd/H7GdSbN/IU0h/4Aaq1Xee20yc03BssGSUHq6ekzBsHjL9DzTbY1Aq6Y6y97PQriRON0x+XoQy/QGpTQdcFsucdsqbemMtElrz226AQe93/+uxOGsEKXEl0qdC77DOFG0Uhl/qaw0YRtOYSAEBefMgElfMp50642MoUfvoOKE0xkCotIaC+UoleIX5rpOFZMxQ6oOKE0hV6MhryZ7vrWsDSxH0iFcixZj1+UJpZLGbYtZK9bbjSG5aS+bLBfXE56tMhAORcna5jEMrLW7MnIWtF8vVwZIshDtdUySJ86wOmOi22lbGsEbGtMr7kfXo/YwDQyskzj8Dee5Uy/QjvwsIyE2XKf2VKPmrv81Mk00/LrMRK9QeQATBj2uTfeSsWLl5igMNLpBWPRUN8ijKUySdGTvROV8kj0CoqoqBxCkw+jCUY3K4X4ue5I/MbHpa8FIcA4cgjTEFx91eqig76vET72LMfPeFRLMXu29WhWV/e9Pd/k8Dee5/Sggh/Z1FyfmXKPuXJv2X1Xq/09VjKE5Vz0Lpcewo0ibIq1sRaN3Cz6CJAKfZE+yuEjxSJzjz7v+tidVJxw4hwozuGimqYXufiRjaFnlArjcfdNVL0Yz0kJY2PZwGnRZjEeONV18oFfucEYa7kojMbi4OnFrNIY9KHZk2WIUSyrM2ZnZM/gcsYmCDWy7z7Day2XQWDSrEZsa/rMVqcHS0Fm65JUx7FSugOLI996jtP9CkFsU/cGzOQB0+XO5PEsbi/Xxl7kECfmMItbdgLm7r6ZipdMDHuDlQOny2ULC7Isr6wZyxj6wWiwXtFv6DhSI49qMoDqOOcWQPUH4D9/jH139ldVlpqmkD7xNEdeKxOnOrvn+1yxikApyMzg+P2KbSZ58Lp3TpUzE79HbNH2PR74wsgQXq4lo4U+wvprpDJ/U9hM4jYNaQq9oRksxA/AZSAF7yN3UHWDJXX5QWzKKGgRDY0c0tSYagoNXUyUJvZ8eZjGiT5Rjx8ORW+0O2dkLibLFIuJl8Ppa3nvmu3ILNSFiIoWZYinTptoGlxzdUi9tvLNuR9oZE/s50TLHdbcb5/xVyy1GCeIjOHh2gk8PDtiptRb9XSuIltYGPV+LnppamDn/SxVJ2T2jbfIKPWiEsksYyh4RYlMP5DDDywzo+JJYxjecBulXPQWv6Y0lRPvCsELQ40glNcwiuWDDR1sWwYAHFtg24JD7B2tpzDlyO7AB+fkYTw345qr114asrBg0HvkBQahwdU7u+ycWf0aByHktLTD35RmME11mqU+c3lm8FyjnuPP3w1dvvqZx+hTy5fvQokelVzwtupYbWX+Nidb1fwtRyoMfEoMqODnGhljYxLj5dMO3/2Ju6jYIebYqpmiHLwInPYilyC20BCUnZEprHhyCneWacPA6XhvIUz2dEc3yp614ia/CJ4O/LVVaVyIypqicqbZP8TpMwbb5xP27olWzG4tDpY6VsqOGTmgZFrf9rTvb/dtjnxLnslJasjhdvmE59UE6BZncfuRQxCPDLtsf7mZaikezkUYZ3Qvs3y57+Js4TjDzGFe9hsExUqu0XUr7m2kPmZL9LFYT5Em0GlDevAYb9y3OvM38buEGsEjz3LstMdcPeDqnT1ce/UVKX5ocPgb0ph3Q5eqEzBX6Z53sLRgEFm0g9LQECZYuPhUaG/plgpl/i4xl5uwLUcmNAJKw308PuXhotYiCvruj99JxQ6WLBJdiyk0DTGsxx+PhvqhFL1iEml0wy2UShnlUjaxviHLcpNRTPMKJssvxs2h4wiOaHuG+wrXGmHr9yD5i6Nce03I7MzqDps0heyJpzmx4NEdWMzUQnbM+MxUl9+HtOTn5mWJxXQu14qGZYlrjbSFiTnMFhaiV5SQVs8SCQUZ9esVhtAfDZ3RNLlOpOLGhDfI4UCLr9W0v00USVMYRZrcMZnvOoxijSTRSFMNz8uYn0vYvm2pCK+FINToPPg8Z7oON17ZYr6x9pLONNU43XU4/K0XWRiUsc2EbZUOc+XuskuP10qWD5X56mcfzzOEFXnDSGeYIXQZbPo9hMr8bU6URkpiYQ0zhIUpTDGwCSjl7RVVd7KSBpaawqLvftwUzu4bGQ+QN9hFL3fxloxNIq2WZDBODjKZDMbFMQShPqyuCcYqNuSaCzEsT3QcwWFt71Aj11Jdk2VQPnWQEyct7rpjsGptHQw04scPcKI16tvePuOv2oCkqUarb3P0QTnhedwMzpT6Ky46X/o7jK7N4mqaxTMRKt7SPrsicCorn5bJFrqJDJyWs6nTO8efK8x1MQx1ua8w0oafiyJNDrPRoVpN2bM7olQ693t0ISB69Bn+4liVmWrIDVe2V5UJXPwcnYHF4W++wKl+hSzTmSn1mK90aXgXRrOK9SBf/fSj9KgNK2hKY/2DJXqbPmCqzN8lRgnbysgoqMwSStGrkGBiEQ2XZL/7n+6b6CcsWKspFIK8b6IYOCNNx1oyUIU5nIiwhaMImxAy+jkswXAEh7U9mGa+GD2Prum6LAm1TxzCMOD6a9duHLJM9kGEjz9Hu28zVw/YNTegtswUruUY71Hrhq4UpHKPmXJvVUtcp5Gk+ui6LIqElu2Q8qIo9bS/8yAci4SOXSvTELLc152e2b3UBKHGiQdewrEybrt64byeaxAYvPp1KXRhYjFT6rG92rlgQleQpDqd0OO+ex6nRz3fQxhTyQ1hhfamKofZSMKmWBtKI1cmFE6+C60yVkkj8hH4Pd710TuW9BPC6jOFRfmopsl+rNEgE4vu2AToswVOCwpzGOTGsKjSCENZXQNgGgLHEbiuzEIdEnvlEvsxjURAvw/RS8e4687BisZmOYJQI3l8P8dOy96ynbODVZcjjv6OsNBzOPKt5zkzqJBlGo3SgLlyl6Y3mMjOrpbCcPTHrs8gnw7r5vcvs/tuolqSPfTTSlmLad3jQe5i3dZ4m0U5v1YXc3DMSggB/nf2c/B4hTuuP03FO/fsXZJqvNZyOfzgS7T9EhUnYFtVBkutc7gOyzEauvY4vWHAFMp0qdCmQgdX8y/Yz7sUbCSNVOZvEZejsC1HLKwJwSv6CV18PHq88yN3UnV8PCteWkKxSlNY9UYLZqdloIp+tfEM1GoO0iLCVghfkYGKYvm+yECZlpx6duWulctaVkOWyYzgkVMl/NBkz/Yeu2YHy/Y/rER3YHLkm6MetarrM1PqM1funnXn4NkY7ytcHKUu2XLYzFwuemV3emZu8Q3KeGZ32ooKx74058zhL7/EjhmfHTMXRhTSVONUx+HVb75Myy9Rd322V9vMlnvnNCHtbISJSdv3uO/zTw77I4pyGDlUZuP2D24kYVOsDaWRa2dxJc1omXkyLB1918fvouoES8zJcqZQ18TUnsJi5+75Bk7HiWOGAdPifaGNhV5qmlyNsHN7TLN5/mV4fqARPir7titezNU7u8uuK1iJolrjyLdeoOWXh9MrZ8tyncH5lO4XLRbj8xD6kUOaTQ6bGQ9qL+ZsbRaFMVwus3ux6PV0Dt/3Cm+//cQFe8523+Lg11/kdL+Koadsr3bYVumc933KNKYFTC2iYbB0o/cPbiSNVOZvEUrYVkYIcsEbmcLx0tESPVk66gRTo0BLTGE+aMa1IjmtdGz6aGGaigxUz196kNrW5EG6GtG7FESRxuA7suZ+e9Pn2iu652QCYVR2ceSbz3OqXyFOTRreqEftXKKe08gyjX5sDwcc9MLJ8pjKmClcPIF0/LWutKKi5KSUnATbSuldfTuWJTBNgWWCaQkMXaxYVjqNOJZTZ7Wn93PkVInXX3tmzZnX1SAELHRtDn7jJU73q1ScgB21NvPl7nn3Ca70M/uRw1c+/Rg96vQ3cPRzIwmbYm2sViOVPp6dRJjD0tFCI1OM4RC2d374DVSdgLK9tE1gmiksBs2MTx8tTGFBETgdP3OLbOHiwGnJW7l0/1KxsGDQ/vaLxInO9bvbzNXPbQozjKZXHnlQmkHLSJgry4ElNTe4YK/Zj0fDZsaD2rYZU3FC2Rv3xluolqabQlj5WhWBU9eW+miaAssS2JbAMGW29lyC1FGk0enqRE88R5rp3HH96fP5MyyLHxoc/NoLnOjVEEJje7XNjmr7ohjBgiA2aQcl7v/8d+lRJ8HM++ulIdxI/fUbSSOV+VuEErdzY1Q6WhlGQhNMbEJK9JbtlSiQkbaRISwibZ4dTZRfVBfV5IeRno9yPnu2cD1EL8vA//YBXj1Z5parWszWzl3gxp/zzFiPmqbJMc3z5e6Kk0TPlcKA9M5iCosy0OX6QopoqB/J0pgk1YhigyjRSVKdOJ8El2Vr+wVMI6PkJDSr0aoHDFwI2n2Llx94mdP9KnVvwK76As3S4KL/3DTTaAclvnrPE/SoE+Lm47Q7w7f1aJbfSMKmWBvK/F18AuGO9RNWCPAAQamYOvrRO6m6wdSBGuPTR4sy/vES/uVM4XjgtFiSvjhbWHYvfQZqnMFA4+TXX8bQBa+75sw5B0nHGR9Y0gtd+fe5gANLFjMe1O6HLt1zMIVCjPpAw9ggTvShPsapTpzopJm2rD4u7kEdxzIzql7MXCNgW+PCmeGVCCOdV772Asc6DTRNcEWtxc5a66JUzIwzGrj2OF3q+JQxSIfB0vVqpxjXR1h/jVTmbxFK3C4skbCHEdDBUPDAY0CJ3tTdS+NMM4XFnsKKHQxLYxY3ai/OFhYGcbzsouQkDK67DceS07dsW0bZLob4hZHGC398iLfddnzJTqLzJYp1Dn39WU71q3QDbyh08+Xumhrj18q0nol+bgo9K5KvI78+K5nCzY4Q0oy/+MAr9EKXnbUWu+oLF/Vvvxg/tvjzTxbZwRoChkIns4MXX/CV+du8KPO3PoxKR0caWUwdLfrtv+ef3kXZDqfeNC9rCseW18/ly+sXD1tZKQPlOXKIiWen9K+9HduWg2Ns69wyT6uh/c1nCWODW65qXdDnLSpnDn3jBU71qwihXfCBJcsRJibdYFQ+ei6mcDUIIQ2fADSkEVzv6qdx/NDgpftf4ninQcMbcGXz9AXNyJ6NKDFoBx5fvfcpetRIsCjRo0p7mB282H8vZf7WASVsG4uVeyVywfvEXVScYKrgjdfkF5mofugg0FZlOop+tUFoEoQGYSzfokRG1wpMI8O2MiwjwzYzLDPDMDK6V70O05QiaBgCXcsP2/xbRSYP4jSTPRWll57idMchig3efMvJi37IdPoWr37jBV7rVwGYL3eZr3Qv2WErBPmCXndJI71nRbKv0A5p7ruVkpMMe1q2AnGi8fL9L3K4NUPD63P17Kkl61QuBUV28Cv3fJceNSJcPAa5GZS9ERfyb77RhE2xNpRGbiyKfvvxyaMZOl6+qumdH7lj2X57kL1RI1M4trw+nwA9XF7vLTWFRW9hPzDxQ4MwmtTI8aySbaXY5kgfLTOjs1fqo2kI9LxMUddA03KNzI1KJiCJNYJQw3nhGU4seFy9s8vu+YtbPZGkGqfaLoe+NRpYMl/pMF+5sANLViJMzImg9rgpLNshZTti5u5bKDnJsi0WmxEh4FTb4YUHXiXODK6eeY35Sm9dXkc3dPnyZ6Q++pSxiIZm8GJUz2w0jVx386dp2pXAF4HtgAD+nRDi1zVNmwH+G3AV8ArwASHEgqZpGvDrwA8AA+BnhRCPrfQzlLBtDsbHbBfGUC7MlhPV3vkRubC+ZEVTBe9spqPiBMzfffbyxOHrSTSixCCKR2UXSaIPF9UmmRwak4n8LRdFXRfomnxz7RTXSWmUo4vSh3Y2oljn1a8/x2u9Kv3QpZlPrpwpXfxI12KK6+NHthy3Hdv4sU0Ym2RCxzITSlaEZ0U077oFz04ouSmOtfnMoRBw8IHn+IvT8zRLfa6bO3HRy13O9nr6kcOXP/14nh2sYhJTpU2V1nmL3UYTtq2E0kgFTPbbFzq5ln57mJwAXRjD8bVA4+Wji3fFLibLWKKP8bg+phppNipVFEjTp2mjgKllZLh2iuckzDeC88p+nSvtvsWr33iRU70qup6xrdJhe7WzLkG7MDEZFPoY2QximyC2STMdw0hH+njnLZTcBM/evMHTfmCy/8uv0o8cbt5+9JJmAqcRxCYLfpn7v/AkPeoAVGgPNfJ8S0U3mkZuBPO3E9gphHhM07Qq8Cjww8DPAmeEEJ/TNO1jQFMI8VFN034A+AdIYXsT8OtCiDet9DOUsG1eioX1k2O2PQxSXPqU8t2EVcdfVvBWMoWOGQ8zUTP7bpGlLpv0MD0bWQan88mVZwZlGt6AHdX2BVlsfiGIU51B5ODHFn5uDAexTZSYCKFhmzGeFeNaMc07b8ZzUjxbRq43amRUCHj+Ky9xpNXkjt0HL2rj+1oJE5OFQYn7vvDUUOyqtIbRz7WI3UYTtq2E0kjFSkz228u3absJK1MGzBTEqT4s258whfmC9JIdMXPXzZRd2SN4oVsXNgpBZPDq157neLdGKnS2Vzpsr7Yv2L7X8yFJ9WHAdFwjx4OnnhnjWhGeFdPcdyuek+Ja6QXpo7xYdPoWj/7pcXbVWlzZPLPeL2dIkuq0A4+vfO4putRJMSnRpUaLCu01t1JsNI1cd/O3GE3T/jvwr/K3dwshjuXid78Q4kZN034j//d/zR//XPG45Z5TCdvWY7ndhGdbxjuOEKMF6YM8E9WPnOFh6lgxJSuiNGYMt0oJRtGn9srXX+LMoMJMqc+u+gJ1b2NMjpxGlBhD4QsSi0FkEyYWQWyRCR1dy3CsBNeMcK2E+h23SPGzZfZwPaLKBa8+cICj7Sav33Vo3V7D2UhSnZZf4iv3SjOYYlChQ5UWNRZWNIMbTdi2MuulkUofNxeTuwknB8zIfvu7lh0wU1D0FMoslCOrNmKbODEx9Awvz0SV7IjZu2+h5KarXuS+0YlinYNfe55jnTqp0IcDSy5VaehaiVN9aAiD2MqzhhZhYpFm4/ooA6j1O26RlUn523rqY5bBA394htuvOHTOe40vNlmm0QldvvzZJ+lSz1sp+tRoUaWFp61crrzRNHJDmT9N064CvgbcBrwqhGjkn9eABSFEQ9O0PwI+J4T4Rv61rwAfFUIsq1zK/F0+LB0wI5fxFgNm3vVRWRazmgxMEJv48agEozhY00zHzEswSnY4LFEsu8lZS2U2IkLAa22Xl7/2Cv3I4Yr6ArvqCxtW5JYjyzSCxCRMLPzYIkrl9QvzzyWpIUuO9AzHSHDMBCt/X73jtmHvStHneSGipUmq0erZPHvfIRregGvnXrsAv+mlYdQ3+CQdGqSYlOlSZYH6IjO40YRtq7KeGqn0cfOTCQ2f8kSmMMbGIhqWjn7PP72Lih2etRokzTRZnZGXJxYB1CjJ971asTSGVkRzX9G/trGzUMsRRno+sKSOZ0fsaZ5hptRf75e1JrJMI0xNgjx4GiYjfQwSiyyTUW1dz3DNGNtIsc0Ex0io3XkblpnhWCmWIXs7L1QQvDDZr5yZY9+Vf7GhqmNWYrxvsEuDAA+PATUWlpjBxfoI66+RG8b8aZpWAR4APiOE+L81TWsVwpZ/fUEI0VytsGma9vPAzwPs2bPnroMHD67485WwbV1Wmqg2FLwVBsxMo4iyFaZQCp9FlFhomsAx42FEtHHnrZTyrOFGL5eJE40X73uJI60ZZso9rp55bdMcxqslzTTCxCRKpSmMEpMoNYhTgyg1iVODODOGYlhg6BmGnqFrAkOT77V8f5AQeU+L0IhTgyQ1yITs06g5Pjtr7UuyBuJikmUa7cDjy/c8NTSDFTrs5Xnenyjzd7FRGqm4WCweMDOgDGi4+KsaMLMYIRhWZ4zrpD/Wv+aNaWRRoujZG7+ypt23eParrzKIHPY0T7Gz1t5SbSJJqhOmZq6L8n2Y62KhlUlqIBj90romMPQUs9BHfaSPGgKBhhAghE4mtFxvTdJMlqvOlnrsqi9s6nsNIaAXOfz5p5+kQ5MwzwzOc4yfTB5a8vj11sgNYf40TbOAPwL+VAjx/8s/NyxVUSUtiovB4gEzwdgy3hI93vHhO5ZdxrsSRTlp0bM2XoYRJ+aYOZTlF407bxk2bjvWxuhfEwJeuf85Xj69jSvqC+xtnt5SArdWhEAOL8jFK83k+3G0fMiPpadYxtbsGx2nKIO5+pP/fMnX1lvYthpKIxWXmmLAzHiWMMRFJ8uncvd518fkqqa1rrVJM204/KvQySAelfAX5rDIHjbuuhUvHwyzUQKoQWTwzJ8fpBt63LLjCFXn/Hf4blbSTGpikmukKIbgCR0hQNNAQwwNoW0k2Ea6IWYNXCyKzKCmCfb88q8t+fp6a+QlXnm9lLxc5TeBA4Wo5fwP4GeAz+Xv//vY539B07TfRTazt1cSNYViOSwtxqJFjdbwc3LAjItPhW984dGJXonV7ibUNHCtBNdKaLI021OYwyCRTdvtx57heN7LFiWy39DQM5xc/Fwzpn7nrcPa/EvRv6ZpcPX33MjeDB7/0oAXT23j+vmTF/VnbmQ0Ta7+MNlcpbAXE10XNDZwj+hWQWmkYj3QNPLVEgNmGJWrp0IfGsI/+9x+BlRIsCZKR9/9iX0rVtIYuqDqhMsapqKktChRPP7Q80O9LMr3LSPBNZNhILV2520TGnmxg2+unXLXD+6m07f49h8b3HnlK+syIXQjYOgy82ezNfo9LwSaxrpPMF2JdTd/wNuAnwae0jTtifxzn0AK2u9pmva3gIPAB/Kv/TFyitmLyDHWf+OSvlrFlkbTwCXAJaDJqeHnx3cTfvXep4a7CQ1SSvTw6POuj9+14tTRiZ+Rm8Plbp7TTMvr8i2C2KT92DOcyOv0i/p8ITQMI53oX7ONlNqdt8rdhNZo/9K5mEUhZHTTMhJ6obvm71coFBcEpZGKDYOhZVToUqE78fnx0tH/97Mv4FNBoGETrrmSxtAFFSekskI2LUoMgnzgV5hYnPz2s1IvE4s4kWX3hUl0zERmm8yU6htuzfu702F/97n2sCWpRpzq+esxL1vzp9h8bIiyz4uNKmlRXCwSYY410JeHU0ctoqEpPFsU9HwoTGKcGoT5+2HfWv7vKF3av6Yh0PJ9hLJbTZrSNNPznUxSnV0rZrbUY3fjzLruqVNsXJof/z+WfG69S1oUa+NsGqn0UXEujFfSFPpYVNKM9vfKIWwXY52CEOS93WaukSZxOurxLv6dZsaSMv6iRFHXJoO5qdAngq8VO2R344yqglBMZZo+wvpr5EbI/CkUmxZTS/IloO2Jz0+LgmboOAR4+SqKihOuaqraShi6GBuNvHrxKXrYBHJYCYBAw9DkUJOt3q+mUCgUiovLaipp7vv8k/iUl/QTvvOjd616MvdKP98xkxXXWSxHlsm+tUIjBRoaQg41UYFQxSZHmT82dlTzp5KXaJ1DHXUDg/9kXnsRXpFiOdZ0re79k+E/K7h82vjLuAx454elKSytsJ/wQlD0sCkUCsVm5Vz1EZRGXmrWfK0++9XhPyu43GO8V1bSfPxOynZ4ToZuLei6QEeZPMXWRJm/Dc65Ctu5fp/i3DnXv3mPgN28jE+Zr3/hcXxK+X5ChqO23/HhO6g44ZonjyoUF5PlSloUikvB+eic0shLy/n8vXsEzHEcnxJ/es9+fMr5uqYEj/6w575ir33yqEJxOaLMn0KxAXA1Hxd/SWlMiDdmCst5v8SkKSw7IeWLnClUKBQKhWK9qGpL2yvGe+7/5J4D+JRJsCZM4Ts/dhcV5+JnChWKzYQyfwrFBkXXxHDUNmOjtpeawlJuCrVRT+GH76Bsn39PoUKhuLzZyG0Risub5Xrux03hn31ulCk0SEem8AL0FCoUmxVl/hSKTcZyplBOVpOm8BtfeDRf0FtCoGMTUKKPy4B3f2IfZTtUPX8KhUKh2HKsZAqLQTNfvvdpfMpEOPmgGWkK3/GRuyjnffeqxUJxPmzktghl/jYh73vf+/j1X/91DMPg3//7f8+999673i9JsQy7d+/mi1/8Itu3b0cIwb/7d/+Of/kv/+VF+VlystrS8lEhIMLJy0ZL/L+ffYGAMikGFhFubiTf+bG7KNuhioQqFIpNjdLIzcGl1EeQprBChwqdic+nQh8GS+/7/JMElAiRu22lpg54+4dGffdq7ZFis3PZm7/NVtKi6zr/+l//a9773vdy+PBhvvOd7/A//sf/4MCBA+v90hRTSJKEX/qlX+Lxxx+nUqnw6KOP8ud//ueX9HppGjiEOITAmYmvxcIamsI/+9x+AkrDSKjLQE4g/YicrnaxJ5AqNhcbOaqpuHxRGrl52Aj6CHJxfZkeZXrAyeHnixaLgBLf+tVHhlqZoWMTjgKnH993SSaQKhQXisve/G023vjGN/Liiy/yF3/xFwD87u/+Lj/0Qz+khG2Dcvz4cY4fPw5Ar9fjwIED7Nq1a8NcL0uLsWhRozXx+VTowxLSr31+1FdYlJB6uTF8Vy56asKaQqHYCCiN3DxsdH0cb7FoLvpaJOyhGfyTew4QUCLGngicvuPDd6qBbIoNiTJ/m4xdu3Zx6NCh4ceHDx/mTW960zq+IsVq2bt3L3fccQcPP/zwer+Us2JoGSX6lOhPfL4oIZUlMmW+dM+zU0Xv7R+WJaSqREahUFxKlEZuTjaTPgLYWoRNRJ2Fic+PB07HB7KJsWyhi887P3YXJTvCNWPVW6i45Cjzp1BcAsrlMn/wB3/AL/7iL9Ltdtf75Zwz4yWkK4leMXCmKJExiYfZwnd8VIqeZ8YqGqpQbGA2W1uEYnOyVfQRlg+cgswWFroo2yw8YhxA4BLg5P2F7/rEPkpWpCpqFBcNZf42GUeOHOHKK68cfrx7926OHDmyjq9IcTZM0+QP/uAP+M//+T/zh3/4h+v9ci4aK4leLKzcGJb46r1P5Q31DqBh5eNoXHze+dG78OxITVpTKBTnhNLIzcXloo8wyhYubrPIhEaEi0+JEI8//uzz+JRIsNDJhvr49g/dQcmOKNshlprWvaHZ6D3xl7X524xRze985ztcf/31XHXVVRw5coQPfvCD/ORP/uR6vyzFCvzmb/4mBw4c4Nd+7dfW+6WsG7K3MF4yZQ3Go6EeX1nBGL79I/so5cZQZQwVCsU0lEZuLpQ+yt7CYlL3YjKh5Zro8eCvfmeolYuNoYPPOz9+N54VqYndirNyWZu/zUiapvzCL/wCf/qnf4phGPzWb/0W+/fvn/rYTGjomrpJXk/e9ra38df/+l/nySef5PHHHwfgE5/4BF/60pcmHnc5X6vloqEgM4aF2N33+ScJcQnx8lLSBIcBDgFv+9BdlO0IT5XKXBI2elRTcfmyFo1UrC+r1cfLGV0Ty1bUjKaReoR4fOmeZwnxiLEBsAlHwdOP7sOzYhU8VQDK/G1KvvSlL63qcNzPnSCgRI8Sfcp0KdHD0NTN8aXim9/8Jtoq6hdH16pPiZ66VjkyY7h0WS/Ihb0h7nAMdyGACRYaGXa+w9Am5O0f2TcsJ1UDaBSKrc1qNXIgynj0VYn5OrFafQR4StyNQ5BrY5cyXWwtusivcGMzPo10MUIwDJaGuHz13qdyo+gihsFTH4eAt37oLkqWDJ46ZqL+f7gMUOZvC/Pzn2qQZRrdcCf3ffZRTrOdQ1xLKoz8wBiZjMv9EF1vlrtWmdDzToDu8FpZWrzeL3dDYGoJ5nA30ySLha/IGka4pBh5uUyATSAzhx+5Gy8fQmOqXgoAklSnFzk88NlHiHCIsUmwaHKKv/7x9X51CsX5c5Sr8Clhi4AaLaq0KdG9bKswNjJ/51M1BtEs7aDE177wBCfYTSxsbEJK9KjQoUQXRwvX+6VuCDQNXAJcgqlfL4KnIR4P/eq3c610iHEQectFoY9v/ZAcQONasZpOuogoMehHDmFi8uAXvk2CxY9/6tr1fllnRZm/Lcwjh66i7g6ouQHf//993bAOXAgYxHN0Am94iEbCwSLKs4RdSvRVRPQS8tjhvdTdAXXX5wd/+bZhM7cQ0I+28dVPP0KbGY6xJxe8YCKb6+CrazXG2YSvaLAP87f7Pv8kEQ4RLgkmGgIrn2pqEfK2D92FayW4ZoRrJlu2bMaPLf7ok8/SYhaQVQMeJh4DarQwibFQgaLLgc3YE79W/vqndgAwiGb58qdOcpKd9LkRU8TUaFGhTYU2hqYCQuvN/uNXUPekRn7gk1cP9S6ITdpBiQc+/wQn2UkkXEzisQxhD5eB0sdFrBQ8hWJImwyYSnMo/x1hI9AxSIfm0CbkrR95o+w3NOMt3XoRJQZ//CtP02aGAG84ydwixCKjRI/GxzZ+W4Qyf1uYO9+3k65vceLh53h1YYYosXCtiLrnU3N8Zkp9fuJTVw8fHyYm3cDl/nsfp8UcASUQYlg2Kt/3MDXVTHyhef17d9LxbU48/Dwvnd5GkhpUnIC6J837D/zy6ycyUn48SzdweeDzT3CKHYS4GCLNjbvM6Hr0VQR7GVZqsAdpumNsQjwiHB781e8MxS/GJkNHI8ujozJCahHxto++EcdMcMwE29gc5TNCwOl+hT+692VSDObxuZHvqv/PFVueb/3FdTS8ATOlHt//z14/vGkNE5Mzg2u47wtPcYhr0IWgOjSDHVV9sQ5c9Y5rOPHQs7zw2nYGkYNlJtRdXwZNPZ8PfOqa4WOjxKAT7M3vZebxKeX62BtW0Sh9XJliSBtMX72RCoMw18MQeS8iA6gOCRYCDZMEixA7f3vLhwt9lBnEzdKCIQS81qvyx59/iRibGQx28zKetrTcFtgUun/Zmr/LIar5xEszCKFRv/H1XF2JaFTkwu123+bkt5/j4MLs0BDWXJ+aG1B3B/zYp64fPkeaafTyUsQzzHOEq0mEma/5LkxGD1ebnmFRrI4nXprD0AXN225jZyWiUQ6JU53jDz7L8U6N58PtZJkuDaHrU3N9Zsu9ifKCONXphru5/57HOMFuBpRBaHhjxl2Vja4OTSM3dctnuTKhEWMT54IX4fDVe58ixh4KoERg5Rmz4u1NH3oTtpFgGym2mWDp6SUtNw0Tk5Zf4iuff5ouDSocZjeHKWlLhwooFFuVt75/lkG0gyPfep6DC3OkmU7D6zNT6jNb6vGTn9oDyLO15V/JV+99iuPsIRUGZbpDQ6j07+Kz/5UGlav3cUU1pFGRvWkdX97LHGk3CWIbx4qHFTR1z5+4l0lSnW64i/vueXxMH8FjMKygUcHt1WNoaT6EZnnNSIUx1MYYm29+4ZFcH0dBVACdDJtwWFliEvOWD78R20yxCp28hMFUIWQVzJc/9RgdmvSpUeVVdnN0y2ikJsTmcN7nw759+8Qjjzwy8bnNYv5+KnmJFmtPoTfqc/zhf/0mlUqKYYD7wtMs9Bz6vollZjQq0fBNCGj3bU48/Byd0COMLRwrpubIA7Tm+njWpGEYRBbd0OOBzz/BgIrMPJGOlY328OhfVuUy53Ot/ugPvkG5lJJlGsaBA7T6NlGsU/YSmhUpdlUvYhBanHjoAG2/RDd0yYRG1QmouT51b0DVCSaiaVmm0Ysc7vvMowyoMKBCgqXKRi8hRRax6Jkbfx9jkeQfF0IIoCEwSDCJMUjRSdHJMEjQyXjjL70ZTRNoCHRNTFy7TGgIAZnQ+fY/f4gUM38mKcIpBhYRZbrUWKBKa00R8B+MnzvrYzRNe1QIsW9NfyjFurFZNfJcz1yA2Vqd3/+V/0SS6sxUQ2ZqIc1KQNe3Ofrg85wZVMgyjbrn0yxJQ+iY0hhkmUY78PjKPd+lS50IF48+VdpUaamWiSmcz7VqNub4k//+dSxLUH7pKRa6Dt2Bha4LGuWIRjWkWZGBulbP5sS3n6cTuESJhWdHefuLT931J0oSx/WxT5UBVVKMYZ99EeBWMxEuLqkwlmik1MaRXiaYwOh/KoN0qJE6aa6TI43c90tvRdcyNE1W+mhIjRMU+qhNaGQRtC3KWm0CqrSp0aJMZ03/P28Gjdy05k/TtO8Hfh0wgH8vhPjcco/drMK2mIEo8x/Sf8JVf/v7YM88pQpUGvJrV9Yjum3QDag3wKsIRAbbokO0WgZpBrVqRqOeUvJS4kTDOLCfVt8mjAw8J6VRiaiXpdFIM51Wz+bkt5+lE3gEsY1txtTc3Gi4A0r2pCGMU51e6HLfPY8zoIxPBYGGi4+XR9Uup4P0T5O/ymt3vB/ze9/CjiuhWocbd4e0FzR6XXA9aDQFjgu7xUFabYNOV8exBY16Sr2WYloC+9mnafVs2n0bTRPUyzGN3BB6dkIvsDjxoLxOiw1h8ba4vMKPrWHZ6IAKAd6YeZcG/nIz7xuJTGi5abNIMchyqcswyHKJE2hk6Ag0pF3U0JDXS0MMhdAkwSDBzvsXz/eabgZhu9xZiz7C1tHIR9K389KdP8u+X7ybNg67axHtM2DZ0JiVZ+326FVOnzbIMo2ZZkKjkSIEaPsPcLrjoGkwWw2ZrQc0yiHtgZObwTJJatDwBkvMoBDQixy+/Onv0qUhh8gQUKFDlTZlOuosXUQ3q/HF7BfZ+3PvxbhmnvoMuCW4ei6idQbiCCo1qDUEhg7b41dptQ2CUKNSzmg2UsqllDTL72V6NkF+L9OshNTz4HYYG7T7Ficefp5O6BEnJiU7HJrB2iJDKGci2MOZCAMqRDjDgJmX98mpPsL1QwiG6pbmb4UujutkoZGFPpL/i1wfC400SPOMY4RNeN7lwJtBIzel+dM0zQCeB94LHAa+A/yvQoipy3y2irAdyq7mv2R/n33/7Ps4LVpEgcbuXfMMuuCVodoEx4OrZ0M6LY1eB0wLag2o1mV2YD54lXZbZ+DruK40GY1aimVl9PoG+oEDtPs2SapR8RIalZB6OaJejklSjfYgzxAGHn5kYxrphMmo2OHEgSgHljh0Q3fiIDWJJ0oRt1r9vRDw2+k/YeYH30H/dbMkscaunfOEgbwetRkQSNPePgNRBNUaNGYEngf9Psz6h2h3DDSgXk9pNlKqlZQg0DEOPMNCz2YQmNhWNhS7ZiXCNDK6vsXJRRnCSpEhdH2qTrCkzFCWxbjcf89j9KlMmPfSWFnM5WLeFdPZDMJ2ObNWfYSlGrkZ9RHg/0l+mvC9P07p7TdgGFCpQ2Nefm13NWLhtPx3cxZqdUEUQaN7iFbHwHMFc7MJtWpCEBqIZw6w0HUwjYy5eshsLaBWimj1HY49+BynBxWS1KDu+jRLPWZK/Ynl2n5s8eeffIweDXpU0RFU8sxglfZlX174SnYd/y37O7zj8+/j1U6LvXu20T4jv1ZvQrkOSQS76xGdltTUelNeN8OE7aEMmPb6Oq6T38s0ZPm8/dwoYJplGrVSRKMa0ShHVLwYPzLz4PZztIMSSWpMGMK6NxgOXSsIYlPq471P4OcBU50Mb6yCxqOnTL5iU2jkZjV/bwF+WQjxvvzjjwMIIe6Z9vitYv4eTd/Ggzf+As5b7yA1zzCzQ9ZACwFRoHHl7nn6HWkA67NQrkGawN5GSKcts02OA7XiADVge/QKrZZBt2sAUKul1Osp9aosQdT3P027Z9MZWAghD9Eiolb1YpJUp923OPnt5+gELv3QxTBSamOZp4odLpmOGCUG3dDlgc89lpcjlgENd1H9/WbtT/NFid9IP87MX30P4XZozMvIYpbB1Vdto30a0hTqM/JaaTr4PSl07QXZc1ZvQL0wgz2Y82XkM4q1YRa3UU8xTEGnY6Dn0c840ZcYd00T9HxZMtoJPDqBRyY0ynY4HCpTc/wlhrCIaHcDl6//6hP0qRJjq8mwlzGbQdguZ9aqj7A1zF8mNH4r/SWaP/3DxHsydAOuumobrdfkOdaclwHSLIXdtZCF0xpRAI1ZaM5KPZztH+T0GZMw0mjUU2ZnEkqlDHP/05xuO7T7Nq6dMlcPmK2FlN2Ydt8eZgajxKI+lhkcb5eQfYMlvnrvU3RpkKHnfYMLVGlfdisKHkrfzWM3/Tz22+7Erp/Cq0jtSRPYs2cbnQVZ5FeflfcsAP0u7KpGw8B2vQn1psA0YVso72U6XQNdkwHTRj2lWk2JIg1j/zMsdB36gYmhi2H1TKMS4dop/cCU7S/ffp5O4A0NYTEgb5ohXD5gOpjY17tZ72MUa2c1+gjrr5GbdeDLLuDQ2MeHgTeNP0DTtJ8Hfh5gz549l+6VXUSOij1YzQaxfgbHFrReM2huS9E0cDzBydMnAVjoapjWPCcPy4xg6DuUa6DNQDeEphFy7LDGoA8H3aupN6B2tcBxoNMHx3+V4ycsgkDDc++isSNlWy2lUk4Z+Drsf4ZXjlfpDqxhGWL9DbeypxJS8RLSTKPTtzj58LMcPDNHL3QAqLrBRDnibLnPj35qdJMh6++3c/9nJtcajIyGfHMZbPgsYUvMEFDCmqvRDXpEQYbtCnQdDr4qr1OaQK25jYPPgeXAzDZYEDY05NdKlZBTJzS6HWnag5m91K8SNFwY9CAJDvLiyzYDX8dzBY2rbmOunlCtZPi+jrH/aY6cKrP/oA1AvRzRuP317MivkxAMDeH4UJlyHgEt3qpOSNUJzzoZVhMiL+9Vk2EVinXkrPoIW08jZRdzjetnEk6asn/24EF51iYxeOVtnDomDSA4mCXIHKhUQ04c1ej34Fj1KmbmBdU6dLqgtw7x8isGprGPmetSds8mmIZAPPUMLx2t0fNNyl7C7Btu5ep6iGcntPvbOPrg8zxzfBdhbFFzi57BHvOV3vAclX2DO/nyPU9ymh1EwsGjT4UONRa2fEDtuLgSs9kk4gyD1wwcTxp2w4QjR0fXrVKXGmna0JiDjmGjzcAggnl7dC/zins1jSbUrxVYFix0wei+yqHDFnGiUa3fQWNPypX1FNvOaHcMegf2c+i18kTry563XUujEmHogn5gcuLB/bzWrw6ncBeGsOgjbJYG/Minbhr+XjJguo37lqxnCoe6WKar+uwV68pmzfz9GPD9Qoifyz/+aeBNQohfmPb4rRDVBPid5B+RveP76F4zgwZUZ1LKteVLDIqM4K4r5vF7MoLWmJMRs4IwyDODLY3BAEolqDUF9YbsSfMHsL2IqPVkRK1Wk/1ossRC0O0amM8+Tavn0PNNTENG1eoVmXUquwlZBp2Bzck881SUIi42GosjazAyGg/c+xh9qgR4AEOTUUyz3EjRtafTO/nmTR8i23cnibHAtt0xurH846NAY8e2eaIQ5q+AamPy62EAe+qyFyIMRyWi9YYUS38A24JR36BliuE1atRlgKDTNTAPLD/4x7XT3BCa+VAZj07okaYGZScYToNd7jrJybAu931WDpfxqZAwmgxbvCnR27xslqjm5cxa9RG2hkYeza7kP2W/wJs++Zc5mbamPibLYO+ebZw5KfvJZneM9FAIWX2xsxzRbkktbM4JmjOySkNmBWWZYbWSMTubMNuUWSWefoZTbRc/NKiVY2aqIXP1ANdOZWbwW89xZlAmiG0qTsBMqU+z1KfijLJ9RZXFVz79BF3qDKhgEQ2HyGylvkEh4D+kv0T0Az9G0NSwHMH87pWXh8ehvJfpd2QmsLlt0b2Mn7dRLIw0sp7fy+iGDJjOBQdptYxhwLTIDtZrKUGgYeSVTq28XLRaiocDZaqefH2FIWwHpWGGcDX6GMQmncDjgc8/ziC/j1F99luPzaKRmzXzdwS4cuzj3fnntiyxsBhQYdtVNbSZFK+crWgmgGFG8NTCSbIMmrqMoDXmYGZ7/nUXjgcOuIALZwZQTiP+4oVRH1q/cRX13dCwZEaq3QVr8CrHjlsEoUa5lNHY/Trq9ZRdlYw0lUZjcGA/R0+V8UMD28polCPqd97GnilG42Svxountk/U3tfy3jTXSnAqPf7qp24Y/m4yS7iD+z7zKC1mOcpeEmENo2tFBmq9oqevsRPbitl1O7R6K4sagO0KznROkiZgndpGrw07946+7rhwIrShDJkHx3tgmBFHXgXDgMYMMLsXbwaaQBzDa23IFg7xF684ZAJq1ZTGNbezrZHiOoIo0mh3dDoH9nPwRIUo1ofN8o27buOqSiSj3GIkeOPXqRC8mjNqmq97Pj/8qVsmfrdBNEs39Pja5x9ftJNwvOdT9UooFBeIy04fAdpihm2v28HpwEaY03dt6TocOnwSIWDWk3q4+1rZKqFpUKpCGxtm4HQf3H7EsUPSZLS27WVmLzRNWYYf9F7lySOWHBwz/3pmb0y5spbS6+tET+3nyZdniGKdRiVi9q5buK4WYpkZ3YHF0W89N9xXVx4zg1Un5Ic/dfPw9QaxyZ9/8hhnmOdVrkUTDHsGK7Q3VMBzLYR5YeRVOxNas/I+5WxYjqxuyjKYseW1a26TFTMgr+HJaKSRJ/pgWRHHDo/6BbOZvVSvB1eDwAc3eIVjxy2ee8HB0KHRvJPGVQlX1TJMU9Dr6/DMqNKpmC5af90b2FkJKbnpWfWxMISuleBaXX78U9cNf6di/cT99zzGSa6QZaNi67S/KDYumzXzZyIb2r8XKWrfAX5SCPHMtMdvhahmV9T57fQfM/93f4w9d5howHMHTqHpoOsCTZfipWmg6WL473GEgDjSqDrzXHm9bIZfiSyDoJ9H01qyV6I+IzNO1RrDfsPxrFO3p2Magno9k5mneoptC4JQo9vVMQ7sZ6HnDI1GoxJRK8tGbNvK5KSt0Mz7CEfjmovVE4UpXDxptKBoyn7g3sfzKZYlNMSSXXcXuxzx/0l+ivj7fpz6X7qRclV+TtPzawbDicXFNRIZ3HjzHGkqo88C2HvDlCeeQhzBlfVRD0u9KSfb1eqj509T6HVh3n+VhZZBGGlUK3JiWrORUCrJc2AwkNHP8Wb5aklOF21WIqqleHjdp0VAx4374rHa46heic3JZolqXs6sVR9ha2jkN9O/xKE7fwL7fe/ALY8+r2lgmrJCQjfkOSwyeYZ1F2DHHlkVsxJhALsqEWdOyWDbzBzMzAtsOw+ItiYHx8zOJMzNJjiOoN0x4On9nGq7pJk2XCsxWwuwTEF3YA4zg/3QpWSHw57BqhNM6Hic6rT9El+59yl61EkxKNHNS0VbuJp/Uf62F5pW1uQ/Zv+I7f/bj7H79Saalmujtvz9DBog5HWTVU06NW+Om+/irIHwNJH9gldUInpd8EryPqYxA7bsiiCJodsZ9dYnqeytbzYSGvUUzxPEMXS7o/56PzRw7JRmJcoHroVY5ihgevzBUY/94oDptB5CkIHtfmxz36dlBU2far6eSZWNbgY2i0ZuSvMHoGnaDwD/AjnK+reEEJ9Z7rFbQdiOZlfy/2Q/w+vv+QD6jI2mS3OWpfJNiPzj/HMig0yMb0WRomfb4JRG0bK1kKbQ78iG624nX1UwI8tibGf0uDiGXn6ItjtyQEm1MhpQUi7L3Su+r9HuGBjP7qfVc0hSjbKXyMhaJaJelpkngCAyhqsnuqGcNGqZyZghDCgvmjQ6fN2ZRj9y+OpnHpsoRyx23Y33El6IwzQVBv9X+nNc8cHvwXrPGzBMIL8+IpPGblzEpMDJqLRuyHHXjntuPztLRyLX7cjM7dz2kVkvEKIYInOQhQUTP9AoebkZbKZU8muUZUhDv19OF+35S3creU46fM7CuI+P1fbsSF6jfG9kMR59MUXZ032ffoQBVQZUhsNl1IjtjcFmEbbLnbXoI0xq5GbUR4A/Tf8qxo/+BDf++E0cH9jYbq5LGqSx1K80keevnpsJy5ZvayEOpQaefk2e2bPbBLNj7RT+QJaInjpjEgQazUbK3GxCsyHPyVbbQDx9gDNdKZozVWkEZ6oRhiHo+SbHvvUsZwZluoGHa0XM5Gaw5k7e8GeZRid0+epnn6BLgwAPh2CYHSzR3ZD98a9m1/BH2U9y1xc+gGjYUgvH7l8KrczE6P6GXCvJTaHtQrl69iD2NIIBcg3IgvzvotGU17E0FjTIMhkwLcxgEORVTvVJjfQDbWzgmjOclN6sFgPXInT97AHT5aaMFqy8nqmba+TWmpq+GdksGrlpzd9a2Arm74XsVl5+699h+wffTbkiD0aQZsF2pKmzbHjphI1pyeZoyzp7ROx8CHy4sib70NJURkNn5wWuN/m4wmjM+wdlk/X4aOZ6Sq0mF9ELAYOBjrH/Kdr9Ueap4sX5DsLRQQoQxctNGvWH+winTRotGB2mjw9HN2uIiQxhiR6GtrbFtF1R54/SD3LbL/8E3tVzZPm3a5qMPtuOvFa2DS8ct7EsMKwLf72EkGZ9uxfR78nx5jt3y2b4afgDeY0WWjKD6zqCRp4ZrFWz4d89jmVZr75/creS7B2UE9QK0w4wCIyxKWqjxbs116fhDmh4gyVTRscZH7E93isxGrGteiUuFZtF2BRrYyuYvz9KP8jen/tBrvzR15EkGv5AalSWybPVK8m3l16zcdy1m75pRCFcUZYZQdOEbTsFzVmGZ2WWQacFzf4hFloGpiGYnZVTRKuVjDguzOCznOk6GLrIJ4kGNCpS6waBwZFvPsfCoEwn8HCsmKYnzWDd9ZfoWz+y+fKnHs/7BqsYJMO+wQqdNevZxeBAdgevvu1n2P4T76FUGn3etPL7GQccR/DCcQfLlp83l9Gt8yVNYU895PRrGqEvq5tm5wSV2uTjiiqnQiNXuo/p9eXAtVbXpjOQ+3mLe5hmNaLsjvZDDkKT499a3hAu3kM4zuRu5WJqOhNBbTV47dKxWn2E9dfIy878bVZh25+9gc73fpAbPnAH9VqK4whcJ8OyBH+R7JXZIyBJNKJQ9utFoTzYNKTQOa40HC+esIcRT9OWZSznSxLL8dlnXtNIEmkEt+8Uyx7YYQDzwSu028bELrtiV49jy/8us2x0kMqVE6PJlfWKLBctShEBuYuwb3PyYVlu0QtdNARVN5joI1y89LwgzTRpND5brKCokGLgEEzs8nG1YNm/xUlxBd9K38NbP/JO5u7ejWtnOI7gsLYH3cijzshrE4UacSQNVRQyNIqmlRvE3Ci+eMzGyAWwKGFaS/Yry2BXJeT4YY3GLOy5+uz/34cBzPuvsNAyaXfk8vlmU5rBei2b+Pm+r6E/M6VZflG5aEFhCI89/AJtvyR7MjyfRn5TM74vaxorlY2qXomLhzJ/W5PNrpGZ0PjT7MfZ95H30LxjD1GsYVuCSiWjWsl4lb2y7SEEfyCNYRRJk+Z60hS+nJtC2zm3IFzoy0Bb64ysuNixazKTBPKMn+0f5NRpg/5Ap17LmJ1JmJ1JME3k8JinnuJ026XVs7GtjLlawGxdZpE0TVbBHPnGAc4MKnQCD9NIh5nBujtYom1hYsoVE5+XpaICqNDJdw6uz4qJJ7I3E/+l/4Xrf+JOGvUU1xU4TsbBdG9e+im1MAw1wkC2NiSxzNqaeQDVcScNomVLXTwfshT2NqUR9PswvwPmt5/9PqZYMWHoYpgZrNdSzPz1JEleLrr/GRZ6zrBcVFbQjNpeYNIQdgJv1XsIh79DpskKms88Sp8qA6qL7mFkllDt673wKPO3wdjswgbwZHY3lR/6Pt78fTXC627G0OVBKDIIQp0g0AhCXUY5TYHnCUpexlF9D7YrDZ7I5BSsKMwNYm4S0/w+28yzT3YeFX3puI1pjwzHagUxiWF3NeT4UY1GE3bvFWc9lNNkVG/f7kz2pBWlosPHpqPJla3eaG/P0BBWRpE1+XhtuPR8fNJoZbh2YvqOuwIhYBDbdIPRovoQF5MkHywzWlRvaBkvZLfg/uj/wq1vn8O763o0BEJohJFGGOr4vnyfZmAa4HkZrpNRKgkO63txXSl+hSGU5lAb+7f8G8Mom1hco5E5FDx3xBkaruL9tdsiDr2icfudGV5p6q+7LFEIc4ORGRzPDC42g0W5qLH/GVp5uej4bqWZaohjj19TjVbf5tiDzw33ZRVT8RqlPpVlSnrHGe+V6OdlownWhHEv0b3s9mldKDaTsCnWxmbXyEjYfCt7L3d8/P3s3dmjXo4ZXHMrugZhrNHryUyNEFDypCE8Ye/BK0k9CfyRKRzPFrqeLMN/+aQtA3HOKKu3HEXFxYwhb6537pa9ZdMe1+1As/sqZxZMdF0wO5MyNyezgiBLCnnyGU53HLoDC89Jh5nBaklqXBjpnO46HHvoRVp+CUPPhpnBZqm/xAymmUY7KPGVe75LjzoRcsVEkR28FEPSvp29mx0/+mbe+r4a/atvG/bBx7GGH0iNjBMNQwfXzSh5GZ4nOGLsxTJlOWicB7ijUMvva0YG0RiriLIdePH4qCLKtFYX8E4T2FGKeO047LhCsP2Ks39PEkOnDTODQ7TbhtzXW0+HfYPjVTdBqNFuy7aXhe7y5aKwvCEsOwENT1bP1Jxg2Sqn8XuYB77wXQZUiHAm9vWqlorzZzNppDJ/m4Rnsju55qffwr7v34YfGvihST8wCWN5ijlWStlNKLsJ3atvk5GzTB6kgS/fh5EmI5250Sh5GUf0vbiePCDTZJQxlO9HWcQkHmWlNF0KY5GdMgxpDJ8/YqPr8usA122POPKqxtXXZ8zOr+33He9JK0YzFz1pjUZKtTJpNopSRGOsEbuYMNqohjTK0YTZyDLGlp67dAKZfaq5AfX8MB0fwz2NONXphh733zO5qD4SNrf9zOu56V27GIQmfmgSRAZCgG1l+XWK8a+7HdvO5A1KpOH7On6gM/B1wlD+crYl8NwMryQ4ZuzBccF1RxFOIeTvniYyupgM/y0zsEVvYYHtCNknUV3b9ZhGkRk8s2DS6crR2TPNhNmZSbNeEEUana6Ovl8O/YkTnZlqyHzDZ7YWTtxUCQHdgcWxB59lYVCmF7q4VkSzNKDpTS93Wo5BZMkR21/4LgPKRLjDPsIL3e+5ldlMwqZYG5tdIwPh8ph4G+//Bzu45l3X0A9MOnnrQBTrOHZKvRST3HQLpiGIktwQ9nSCUGYJq9WMaiXlmHXV0BQWZjDwNQJfZvcyIQNsriezTy+fHFXSGNakOQx9qCNv4q+7Sax4xkQRzPVf4dRpk15fZgXnZhNmmskwgzQYaIin5FqJvm9RLcXM1gPmagElVwp0FOuc6TocfegFWoMSmi5oegNmSj2aU0rshYBu6PKVz8gVEz5lbMJhZvBirJh4JHsH+/7mTdzwrj34oUE/sBiEBlmmYRqCshtT8RIG1942POeDXBv9YKSPriPwPGkOjxp7h9ckS0f3MnEktWe8Iiobq6I0rcngqa4zETQNAzh+ROOut2bD4TCrJU2kGZz1D9FqGWQC6rWUmbyCdTd4GQAAPa1JREFUZtwMrlQu2siHyRTXuHh8P5D9oS1flozqekbDHdAsyXuY5frrC8LEpBPIlgqfCj6liT7CQh9VH+Hq2EwaqczfJuFFcSs3/dxbiFMTXcvw7IiSFTG77ybKboJlZgSRQT8wGQQm/cAiiKQx9JyEiptQchOC6+VhmqQ6g4E8TMfNhuNIUzhuDB13UtCyTJqMwhQmSdGorQ0btgEsW2A7cvrk2aKlq2G1PWkFQSgbsY0D+2nlNwEldzRQZnFvWpZBq2dz/KHnaPklBpGDbcbyIHUHK5ZajJ5DIxMajxy6mjf94PzEYQ0yStvPr08hev3AXGIMwxtuo1zK0HQIgjwaml8v39dJUjB0hsLneTJr6HnyJmQ9jEwx6OD0GTlAplbNmJmRu7Bse+k5k2Ww0DJInnyWMx2HspewreGzveljmUsfPwgMjn7rWVqDMu283KmIcDe8peVOKzEuekUfoUkyLIkpMrnKEI7YTMKmWBubXSNTofO0uJt3/cL1dEKPLNMp2yF1b8D2N92EbWb0AotO36Ldl33KhSFMb74F18mIE41ubgh7fR1Ng0o5o1JJOWHvpVwe9Z0lcW4KAxkkDXyph3E06scvEEj9u+X1YtUtFouzgkbeKzg/mwwDa4VZ4KlneK3tEkYG9XLEbD1krhYMg51xokkz+OALtHxZh1r3BnmpaG+qpvmxxZ9/8jF6NOhRRQPKdIYrJs63euJpsY/X/9zrSTMTx4wp2yEVJ2T27ltwrJQ4lfcyfd+kF1gMco107ZSKF1P2EsLrb0c3BWmsDe9jBgNp5mHyXmbcGC4efFYETYv3WTYaMEM+KbZavzDtMWkqh+HNDuR1FQIajZSZpswMmosqpJKE/B5mVC7q2inNakS9HNKsTt7DxInGQs/h+EPPseCXiROTquvLkmBvsKoKmqKlQvYRlhlQAcBb1FKh+giXspk0Upm/TcJBcR3f+5Hb2FbtkmUag9hmENn0I4d+5NCLHNLUwDRSqo6cfDl7981UvIRMaKOD1Lfo+RZJqmEYgkoeYQtvuJWSJ81GGIxMoZ9nDbMMHHtKFsq7MIfiuTDek9bp6tiWoNlImZmRZnDaITdtlUGtFDHXCJirhcO6+4IgMjjTtTn+8Au0A3lTUXP9YanFctnBI+0Gh1ozpKmBrmU4VkLJCinZETP7bqHsJnhOOvEax41hP5DXapqBD2+UxlDXwS+uUzDKHA6NvC1wXWkMp2UNLyZCyElpM71XObMgI7pzswlzc/LaTKPb00m/e4ATCy6mIdjR9NkxM5jI2I4TRqMId9uXEe6ZFcqdzkac6nQCj/s/9zh9qgSU0MmGUdAKHVwGl20UdDMJm2JtFBq5WfUR4MnsTfzcr9QwjWyYzeoEHm2/RDd0EQKqriyT2/7mm7HMjHbfXmIIG+WI5KZbqVRSkkSj25XBxl5PJ040PFdQraScdPZQKi81FOMUE53PN/gZRTDTPchrp0yCcHKC6MRwma4OTx/gVNshSXWa1ZDZmlw4X5iEJNVY6NocffAFzvhlRKaNmcH+1OEiSarTDjy++rnxUtEBldwMrjU79N3szfydT1bQNEGQWPRDJ7+XselFLnFiYhgpFTuk4gTM3X0z1VIyzHYV9zE93yRO9OG9TLUkA6clLwMNAl8/Z2N4KSgygzMDmRnUNGg2EppN2e4y7d7KD2S5qH7gAAs9G12DuXrAfCMY9oUWCAGdgcWxbz3Hgl+if44VNMv1Ebr4w4Bpme5l3WO/Fn2E9ddIZf42CQNR5kVxK6aW4NLHY8A7P3onFSfENUfDNIrpT/3IoZcfqEFsY+gZZTuk7ITM3X0TFS/BNlP6gTxA+75FL5AliiAjbFUvpuzFBDfcTrmUIYTGwJ+ehTINKJUyPDfjmLFH9kp4F29C1zSKnrTxMsRmM2GmmQ57KBaTZQz3ML3WljcIczVZilhMW1vy+L7N8YdkOeIgcnCtiIYnSy2Khvs004bmI8s0gsRkEDn4sU0/shnEDkEs/ziuFVOyZORz5u5bqbjxhOEp6v1XY+DLJWn2NE1mPn1f9oMOBnreSzHKGhbG0HNlltdxl2Z5LxRJDDP9Vzh1SpY0bZtL2LsnWhLpLPADjeTx/Rw/IxsTr5gdsHN2sMScjzOt3Gm21JNm0Busukx04nWPRUH7VPEpDyfClulcVuO1lfnbumwF8/ea2MEJdgFQpkeFNt/7v985XAFUrEVo+yXa+TAwXc+ouz7b33gDzYosPW/1bNo9m/bAIoxkpqVRiUhuuoVaLSNLodsz6HZ1uj0DP9CwzNFwmePWXkqVi3OOwmiCaL0rJ4h6rmD7tpjZmckKizQdrZU43ZH937PVkNl6wEx1VGafphoLPZujDz7PmUGFNNNpeH1my31mS72pvfDFWp6vfPpxetQZUMEgzc1g56wL6F8WN/GeD93Czlp7WcMVp3p+H+PSCx16kUsYW1NNoWlkQzPY9y26Y4HTsptQ8WLC62+lUs7wvIwo1kb3MIFOvy+NoRDLl5JerOs5TtEz2OwfotU2cGzBzEzC3DKtFCBLWsWTT/Nay6U7sKiVY7Y1fOYbwURWsMAPDY5+8wAtv0zb94ZlwU1PBk3PVt1UUPQRdgKPr33hCfpUibGH+wiL4TIrDcfbSijztwHZCsJWkAiTAI+AEj5lfMqEuOhkePTx6A9NoWeNDt9i110vdIbm0I9teSNrR2MHaYxnJwSRQS+wlpgN0xBUvFgepnlpousK2R8RjEpJ/TxrGMWyz9C7hEajoCgTPX3GoN83KJdT5mZTZmeT4TTRxcQxnFkwyZ5+llbPpuQmzDcCtjUCXHv6uOXxw7QTeGRCQ5Pb/GiUVi6vEUKW2AyiUeSzHzlEiYWhZ5TskLIdMnf3zVS8mJKTTPzNklSbEL1xA+85ybAPtMgWFj0GWUaeKRxlDINAIwjkIJqipNR15TU7rOXXzDn/zGGaQr11kMNHLV5/u4/rrHwGBaFG/Nh+jp4uYZsZu+b77Gj6Z/1vJ4p1TndGmUHDyJgt9Zgt96i7574gN800OoG3rCHcqhlCZf62LltJI1OhM6BKnyo96viUsIio0OF7Pvo66mOj84ul6e18iIYf2ThWTMMbsONNN0jTl+q0ejadvj1sHyhW26Q335L3nwt6PZkh7PYM+n2dTEC5lFEpy+Ey5crkPtwLxaAPjc6rnDptommCubnJ8tCCOIaFlol45gALXQfTyJiry6zgeMaoMIOHv/UiC4MyaIK5co/ZUm/FTFGUGLT8Evd9/kl61Egxh4NkKrQnyui7os4x9hDhINCwCXEZyKD2x/dRtsNl+9WS3BR2p5jCamEK33gzVS/GMjMGoUl3YNEPrPz9KMBd8WLKbkJ0k9RH08yDpnmwdDDQhgYxy2QPfsmT1U9H9TzIfRGracJgNB124C+dDrsYIaDd0Um/+yynOnJ1yPambKVY3IJSUJSKHn3wBRb8ElmmU3d9mnng9GyTtxcTxKbssf+8NIRyOF48NIOVLbqgXpm/DchWErblSIVOmBdi+JSHgy2KfWgefd71sTupOsFEWUcxIbGIrvUjh0HkTJjC2X3SFJbdZMxsjEoT/VCWK5TchIobE91wK+WyjJwZhjQaQaCNTGE+zauYTmpbYmgMj+p7cLzRWooLSb8Hzd6rnD5tIITG7EzCtvmEyjJZQYBeT0c89QwnFjzSTGO+HrB9xqe2aHXBNKaV1zRKA2ZLvVVF2ArDPnwLHQaRLVcaWDEVO2Du7ptkhtZNMMaifEJIU7oaA1/0DI7/PmkqG+z93BCOm8MklabdseV4bjdfY1FMVrPt1WV8vZMHSRKNa65e/cjpfl8nePRZTrZc5hsBe7b1lhW1xYSRzuFvPMuZQYW2X8KzI+bKXWbLPcr2+Y29nmYIZcmoLBct093UQ2U2m7Ap1sZW18hI2PSp0aNGjzoJJiV6VGnznn96B1UnGP6/6ccWLb9EKzeFWaZTyacq7niLPG/9yKTdt+Rqm3yxd9mT/eTpzbdSrcqSvX5fp9vXlwyXKbKEx6y9lMoXLgi6uDx0fjZh27ZkauVLEGrw5NOc7rh0+nKS6Hw9YL4xaRSiWJ6bp/vy3HStSJrBcm/FoWjTBsmYxDj4CHRcBtRoUaZDgpUHsmVnWUCJGHvJ/UvFWdkU9vJMYWEMo8TCMhMqdkDVCaUpLMWYhiCIDLq+1MfuwKIXWKSphm1lQ32MbridUjkbBoujaPnqpyJgWgS6x4PcF+LcL5bON7uvcnrBxHUyrrsmWjYjCPIap0/I+5coNtiet1IUk2KX+zmtYSZYTt6uuT7NvJ3iXLQySgzZUnHv4/SpDXf1FtUzW6HHfrNppDJ/W5xUGEMz6OfNuwkWFtHwUP2eT9xFZdHuu3FT2I8cuoG7bKaw5CTD0sRecZjm5jDLNBw7peImlKccpiAjkkXWcPF0Uk1juNPQdWW0rchAnc9gk6IM8dgxi3I544brzt4IHccgnnyakwse3YFFoxKxY2bAXP3s3wsyonqma3PkwRdZ8EsgNJolWVpztkXn4xTZwl7o0ovcYb9Emul4dpQ3zwfMv+kWKotMIchIX2Hep2ULi2sV3ng7JS+buhReCCksYSjXVgT5+zDUiCI5phukINq2fA7LEpimNJlhqHHmjMltt/rLluSuRJZB8vjTHDxexbFTbtjdpuKtLULZ802OfPM5TvWr+JFNwxswV+kuW+q0VpJUpxMWhrCGT2kYAZWGsLNp1k5sNmFTrI3LTSOFgAEVetSHxqTIDr7no6+bGO5V9Du1/NKwf7CYqrj9TTfQrES4dko/MIe95EU/ecWLqZcjkptvo5YbwijS6PXGTOGiFRTHLbmCwvXOzzSkCcz0XuHkayb9gc5MM2XH9ph6bfrZNhhoZE/u52TLJYoNdsz47JwdTKxNAtlzd+Qbz3GqX2EQOdRcn9lyl9lyf1XTJcPERAiNBz77bbo06VNFJxtOFx0vGZWVTqXh/YtPmRgbkxgvX2T+7k/cteLu3igx6EXusOqpG7okqYGTB1Cr7qRWhpFOL2+HKYKmUby0r7BcloHPUcZ0aTWN74/KSceD3Ec0GeR23XO/j+m0Qbx6lL17IrZvO7v2JQmkTzzD8TMefmgyXw+4Yq6/ohGEPJvYtzn6LTlExo9smRQo987ZDMJKPfajHsLNZAg3m0Yq83eZEgtrIktYLMl2CGTp6IffQNUNKFmTDcSLM4W9cKkpnH+j7CksOclwKW0/MOkNpNEoDlNdF1Q8mS0sSkg9b3JqpxCjNQhBKDNPga8RRNJoCCH3GrruyCAe1vYOl6Nb1ioO1lcP4bkZe65cfbOyENBqGYRPPMeZjkOjErJzdvVGEGRm8HTH4ciDL9L2S6CtPJJ7Na8pSKzhdSmMe5rpuFZExSlKYm6l6sVLTOHIwMuJsYuzheVc+ILrb5voLVzxd0zyHYWxRpJoxLEsiC2G81yIiPdCy+DUN1+mWoq5eU9rye+1GrIMFnoOh775Imf6ZUwjZb7SZb7SPe+s4DhRYtAOPO6/97v0qBLhYhNQoTssGd2IU9Q2m7Ap1sa+ffvEr3y3u94vY12JhE2P+jA7mKENs4N/6f9zx8Q5UJSLtoISbd8jiG08O6LuDtjx5htpVCIMXdAdWLT6soewM7AQQg4Yq5djkltupVqReicEDAY63Z7sPyt6CQ0dKpWMcjnluCmzhOdSOppl0F6A8sJh+gOd+dmE7duWr3qJY2kUjp0uEeZGcMfMYEmArTAGh7/5PKcHFdJUp1nqM5cbg9UO3YpTXS6iv1cuok8xKNHNdw+2cTV/8vFT7l8ydBwCSvSWvX8ZJ4jNPIDq0A08+pFDJjQ8qwhu30Qtr3jStFGLRVE62lvUV1gtTfYVLta2Isg93mYxPqCt6MO380Fth9k7satwmlYGPvQOHONtb+mv6u9ckKaQPvE0R0+VCWOdK2YHXDG7/HC1cYo1TEe+9RxnBhX8yB5OFJ0p9SjZ5z70pQiY3n/PY/SoTQxdG++x34iGcLNppDJ/iiFCQIg3zBD6lAnw0BDDKNtypReFKewG7jAjFcQWuiYo5WOci8PUc2RJSZpqQzO4eKSz54zq8Rf3qy0mjhlmn4L8UA1zcxjF8pTQNGk4bLt4yziY7mVneohTpw2uvzZkbnZ15YPT/m6FEVzo2szVA67c1l9zJmp8JPfCoIyuC2ZKPWbLfRruuQ0sKZCZQmfUQJ9Ph3WtaDhme/5Nt1Dx4qlN4kW2sOfLa7R4ONBqr9XFpP/wfo6cKvPmm0+et6kMIoNXv/Y8r/WrBLFFs9RnR7VNw7vwpZt+bNH2Pe7/wpP0qZHkvTLF4ISNsGdpswmbYm0o87eUTGgMqNKjRpcGAV4eqOnwno+9nrrrTwTo+pFN2/fkzrVwcjL0jrfIgKicvmgPS0aLXW61Uky9EpHechuVcjaRTer1dfp9mSHs9WRFjGlAuXxupjBNoNl7hRMnLKJIY9cVMTu2x8tO7U4SSB6XRjBKdHbmGcFCxyeeO9U43XWG/YKmkTJX7jFX7k6U1p71b58P5/nKZ79LlwYhLi4+VVrLnomL718GVAhx8/uXHiX6vPvjd1J1/GVbLoohJkVwuxu6wzaYsjP9PqbYGdwLRsNmBsFkJU10wy2UStmwr3C5v3NRPRNGsi0mCGRFTRRpZPmva+hgmoIkkZ+7em/EtvlzDxhGkeypP3yqRMlJuWpHl2Z19QHPYqLo0W89x+l+hf9/e3ceHOd9Hnb8+3uvvXGJh6iDluTIsqjLIqkjiazDTmzHbuokk+mk7UycY8btTNI2M7FOpoljWlZkJ2mSaZuZpPVM0knt/uF2pDRRbF2WLDtKTcvUZeogaZmURIkngMVe7/XrH++BBbALYIEF9no+MzsAF8cuXgLvs8/vfZ7nV/eceHrs3KquBq+keejawoSwf64QdhofofcxUpI/saJAG3HpRTFNCj0cbNy0VvuOfXsoOo0lCUpSMpNejXKz1Nz56aPNzdnJyXSlfrXCopHOq7kCpTW4XlSSmNx8X5HNhoyPhS33oVuLMITw4EscP1nADwwu3VFm++TampuTgSVv/eMRZuo5HMtPB5Z0EkiX07z62ZwUJiUxKyWFrf6vKvWF47cLWT/9v8rnl66IdovW8KNv/JDLdswyNda9q3VhCKdnsxx75ijTtXy0d1hphvPylXUl5O0kvTJP3B+tflYppvtsRdP0yktWwjeaJH/DTZK/1WnoDGXGmWOcCmNA9Hd5x53XMJlbOBwjSWCSctG5Rhbb8pnIVjn/5qhc1LFDgkBFyWAl6h+s1C0MQzNecOOS0WsoFBZuXeT7UVJYrUZJYaUaJQpJ31khH3LCistHlxlI4rpQPHOMd05abN/qr9h/7XngPvcDTpzJo7Xiwq0VdkxVW+7LCtEi2pvPvMLpuRJzjWxaLrilUO54kMhcI8Njn/9+fE5sXyq6WKCNBQlhjSI+Fg518nGV01i2tuxVwsWvY8qNbDRFvWnIzNabotcxyUTq5kqaSjyUrbmvMJmm3qoVZjlBEC3G2tbq941crXPTJnPffZ2aa3LFxTOcN9Z5W4LWUc/gW99Z39Xg5SxsqZgvGU2uDm52j70kf31KAtvGWFh6UaRKAVBkqZFjjtvuup5Str5g6mgiGWZSjssT5xqZ9GS6eIxz85TNxVegmkc6d7LKthlqdcXMP77O9JzD+y6eYdvE+kYe1xombz4Tra7NNbIUMvW08b7VMV6P9SaFEJXJJOUxSRlptRHt+acU2FaIbYVYRohjh9hmiGWFzF5yLaYBpqkxFBimXlIKHIbRKrPrKYpHX2S2Gu3XNTXWYNd7pjfspK81nCs7/PBbRzlXLTKeq3LB+DSTuY1deWzeZ6vCGA2yZKinpaJFZjDV+vsUWxnEwCY6IzFybQJtLCgVjfa/i67a/9S+65Ys0jV8a8EwGc+30mEy229+P+OFaHshP1BR7+BcNGG0UrOwzCghDK68kvFS0HLRM+k7q9ai8tFkf7tkO6ZkIEk2qzmm34NpRa0RhgH1w2+zfZvPJTtXt3BWbygaBw5x4myeQtbnoq1zy7Y9JOWCx7/9Oqcr80nB1mJ5TVvxJKWiTz4YTRf1cBZMF80zt+w5uaEzaUJYjadSJlOb88zFVwnry7ZfLB4yU25EexQ6lkcx06AU994vbrNI+woXtcIst3XTZqpWFaeeOYKh4Lr3nlnXgm3z1eDpajR1O7kaPJbt3jYQSQ/hk39wkCqlBT32hbitYqO2nRjEGCnJn+gqrVlwlbB56mhyUr3t3j1tT6rNY5zLcc9auzHOrfbCa7XKtprplhup3lC8882jlHIeV+yc6dr3na1Edfen5kp4gRWvrpU37IoUdCcphOj/y/MNvMCI3voqfT8IDIJQEYSKMHmro/5OpUCh55NHM0ocxwoupZy3KXsxNf8MZ8sZjj79Q2ZqebYUy1w0cbarPYLLqbo2j+1/Lr0KoYEi5XTj5W4FukEMbKIzEiO7Q2uoUUiTweb97+6461omctUF07abN6OfruWZrefSvQfHs1V2/MSV6eRNz1fxQJkMM5VoQc22wmg7iit2MT4WJYTtBAHpdMrmwVx+fLNtzXsva6y49U4rM7MG1QOvMVNxuOC8KhdtrSy7J2v0fBSnZ+OkoFbAsXy2FspsWWOf9XzFxPcpx8c+GeITlYvOYqrlWzuiq4TFptcvRQLMtJfwtrs+QClTW7GvreFbadloc5zMOS5Fp87WG69Ip3Qv3rqpUo+3plg0jC2Zpt5431XkcyGZjCbjbOzrmPI/HqJSt7n60nNd+5511+T4t6KBQZVGlvFclS2FMlsK3Rm01qx1j30jTQaLzHZlY/pBjJGS/IlN4WtrUelFIT2ppgNmMvV0Q94lX99mjLNlBpQy9Tgp3LWg7CKxXL+aaWgyTkDWDsjYAXOXXhNPp9Q4to4nVK5/VHPDVbz80Fv89N63NuRknUwSPf6dI5yrRoF0W3GWLYXyuhqwV6tbSeGgCkP40VOvcnx6CoCdk2fZVpzd1BXbIFTM1PM88cBB5hhP+2SS0qg85TX1Dg5iYBOdkRi5cTxtL7g62DzMZPEgGZi/yp9cIWw1TCY5h7qekQ6Umak41Bomjh0yUUg2pQ/IZTfvfOv70DhwiOOnCowXXN57weyqt+Kp1k2OP/Map+ZK1D2HyfwcW4tlptZRKtjwLc5V8zz5pWiQjAYKzKXnxNWWz9d1dCatUEp7CecXtMstJ6Yv1jylO0kKK27UqJlO6L4x2kpk8TFLFrejpNCi2rCouSauN1/3aZkhGTvEsQOcuKqmfOk1OLbGNDWWCaal06qaViWjSUmp6yqsQy9x4kyeqVKDyy+aXdVx6lRSSXP824c5UylimQHbimW2lWa7Xs2UqHvR1fenvvQ8c4zhY8cbjMymSWGnVTSDGCMl+RM9lZxUk4ld8wNmogbtVnsTNvMCI51sWY43fPV8q+XePq36Ejxf4fomddek4Rm4nknDNfECg4YXXYnyg/mlOaU0lqkxDY1lhhjxv1v1OnqBgesZNDwT09BcuqPM+VOb06tVrZsc+9brnKqUcH2L8wpzbC/NrGtz87VolxSaZkDO8sg7DXK2x9QNV1HI+mTsoC8neXWiUrd45fE3mK4VuGTqFDvGZnr2M1Vch8f2JyvhpfQqRPLiZzWTRQcxsInOXK6y+k+s9/T6aYyEVoNkMtQpMsOH772u5UbqVXd+78HZeh6toZStLxgmk5xjGu7ChLDuzieEwZW7KJU2PiHUGsKDL3Lk7TGKWY/375xZ8UpgszCMqiqOf/swZ6vF9Krg1uLsuhYzw1BF5fMPHEwHySRDfErMdPTCP1nQjhLC+YnpSdvL7XdHC9or9Ta2GpZXc+dbYEpxtdNYfunCdkLr6KphwzNxPQPXN3F9A983oreBgR8o/Liqxg8UWi8NSoah56tp8i5TYw3GCxu/eJyouyY/evo13i2PEYQmW4pltpdmKC2zn+R6aQ0VN8MTn/9eXEVTQgN55uKWitkVB8oMYoyU5E/0neYG7ea9CR0a8YCZOW7fd0PLATOJdnv7NNfin3fDrijhWMV440QYEp88o5NpqKP3w0XfwjBIT6KO1Z0tDdYqCBSnZrIc+/ZRZuu5DR9YsqrnFCqqnkPVzVDzbKquQ81zaPjROPSM7aXJ4eSeXeQyAfmM39ELiF5ruAYvP3aM2XqOq3e8uWnloMvxAoNz1QJPfvEFykwQYlCgTIlzlJhpue/gIAY20RlJ/nqrrrPxnoMTVChioNNBMhO56pIEonmYzHQtT6WRxbE8xrO1BcNk0u/vmumE0SQhzDgB43lvwxNC73svcfitMd6/c5qtE2t7EZ9cFTw5N4bnm0wVKmwrznZl+vJ8+fwEc5RQsGCQjKM6m3wZjZEppuWjLhksvHi7gjK379u77GuXRLt+wmhhu0HBaTB1wy6K2WhY3qAvmi7m+YpjT7/Ku+Vxap7DttIsO8amNyWOJn9fT3zhYDphNNmUPumxT34v1hIfofcxciSSPwlsw8HVzoJa/Do5AHJUo3r8u3dTXGGlLanFj0ouHCpuVD5qqJCs7ZGPN0lPrkQ1D5sZBkmZxRvPHOVsJRpYcn5phvMKyzfHbyato/+nuj+fFEY3Gy+IynVt0ydne2Rtj4nrd5HL+OQyATnH72mi3cr0nMOBR05y3YXHKG7gCuZaJCvhjz3wQjqwItrbbJoxpsmqmiR/I0BiZH8JtJmWiZYZXzDM5MP7PtBy2nMyTGamlmO6nm87TCZRd02m56JBWUlCqFQ0OK2Q9ck5AdUfuzrdQ3c92/e4ruLwI8e4edfJdS/g+YHi9EyW4985wkwtTylbY3spanHo1iTJaJDM8+mxT64ClZhe07YCyXC8+baXPEBcblhescKpmeubVNxMektipNaKrO3Ov4bZGy1uD0Ni6AeKN556jROzE/ihwQVj01wwNt31HsHlJP2DzQOGtvE2v+Y/sabv1+sYKcmfGGihVvGAmUJak+/hpCtteea4Y98eCk5j2cAQhopanGxU3QyVpitRAFnbI2fPn1Tz2f5MNDqRDCx541tHOVstcF5hjosmzm5oiUW3NHyLumdT82zqvh3/X1nUPYcwLmdxLJ+s5ZGxPLKWz9juq8k6AVkn2PSrsT96t8D0c4d437Z3N+9B1yAZmvDY/c9TpcC/8x9e0/fpdWATnZEY2d+SQTJlJigzTo0CNi4lZvjQPdcu2XMw+Zp2w2TOv+lyJgrukt6yMISaa1Gtm9Rci1rdou6Z1BomfmCgddQvlon7ytLeskuuwbKi3rLmRCMIFLnD0TTmctXm5l0nu9rznWwrcOyZw5yulMjaHtuKs2wrzq4qkVrtY5QbWR6//2B67C28eAP61Q2SaSV57ZL0ES6ucFppDkKr59nwLapehkojeg1T9TLUveg1jGP55G03rqa5ikLWI58JFkwhHQQN1+DIN4/w9swk47kqOyfPdHVqaCf8wGDr7/znNX1tr2NkT5M/pdSXgJ8FXOAI8Kta6+n4Y/cCvw4EwL/XWn89vv9jwJ8CJvDftNZ/sNLjSGAbPYu3oahRWFCPf+tdu1c1tQviUo6mq1DJalvdswm1gR2fVHO2y+SeaLVt0EoUwxCOPf0qb05P4ocmF0+c6Wmv2nolgbDhR8mh61vU4383fAvXt9BEP5xhhGRMH8cMsMwAx/QpfuBqbDOc344i7vM0jRDT0G0TxzCMAoIXGFTrJmcP/IDTcd/ltRcc25ThO900ee9/XdPX9TqwDQuJkaIdVzuUmUivEM5P+53mp/7j7pbnmuWGyWy/6QrG8t6KbRB+oNJe9rSfLJ7cHAQKDelkZtPQZJ2AYs5joth+H71uqdQt3nj6MCfnSpgqZMfYTFcTwUSrQTLJsW9XPr9arnbShHDxHITCKregaKXuWdQ8J263cNL3g8DENEJy8WuYvOMyufcq8pmo8qlfF7i1htMzGQ49+SaWEfJjW9/tycL1oMbIXid/HwGe0Fr7SqkHAbTWdyuldgFfAW4ELgAeA94Xf9lrwE8DbwLfBf6l1voHyz2OBDYBS7ehqFFIp3blqDRtQ1HD7uDE6gUGVTdDNSlPdB2qTSWKGcuLT6zeQPSv1Romrzz+BmcqJd4zdZqLJro35rkf+YGBG5h4gRW/NfHD6G3yfhAa+KGBH5pordKri4spNJYZYJsBOdsjb7tM5it9V+65WoMa2IaFxEixWoE2qDAWb0I/hhtP+y0xzYfvi64iteozq7o2M/WoXLTcyOL6No7lMZaNpmhvi6c092sS0E61bvLG04d5d24sTQTPL81sSKlgMmn58QeeX7DfY3J1cC2logu+/zJbUBQoc+td1696Mbvd86/Gr13qvk3FzUTVNJ5FqI10QFvyOmZi71XknKiktB+md5+ddXj+0Xc4f2yaS6bObOpjD2qM7JuyT6XUzwO/qLX+1/GKJlrrB+KPfR34bPypn9VafzS+f8HntSOBTSwn0OaCjeprFPGxcGikSeFqm7QXS65AJT1ri/vXtFY4lpf2r2Utj4k9V5HLROWJvTyxup7Bi984RtXLcO2O411fPRX9b1AD2zCSGCk6VdP5OBlM9hz0KTLLh+6OBsm0W+Rs+Bbl+vygkUojg0ZRcBqUsnW23NB6S4J+Va2bHH3qCO+Wxyk4DS4YP8eWDexzb1UqGpXpTqcDQzrdTqDVYzTILUgIG4v2VL79vugq4Xp7If3AoObbcatF9Bqm7tnUfJsgMFFKp334SZvF+J6ryDoBGTvclCneYQjPPHSK9245xVS+srEPFltrfITex0irVw/cwq8B/yt+/0Lg2aaPvRnfB3B80f03rfSNx/dczScOHODv7Cu68TzFkDFVkI70beZqJ00KH7r/aNyknZSOVrj1ruspZurk7fblLEpB1vbJ2j6TbR7f9c20b63u2bz5ncM0/OjEGobRcqsVr7wlfWzju68iYwdknOjEuhFJomOH7PnERbzy6FGOnNnGldtPdP0xhBCrtqExEpmIPXRyqkqOKtuIzt3JnoNPPPhiOu032XPww7+zO+0vy1g+meIcW4pz6fcKQxVPn8zwzrOvcTjZksAIKSZ77d5wJaV8/w1Ky2cDrv7oJVxN1CN45Cmf107uYPvYDBeNn11xO4ZOKQVj2To/v//96X11z+LRz53gHFs4zmUYWi+YKtrpZuNKQZYaWWpMcSq9P9Bmmgz+3Rdep0qREIMstaiXcA1XCS0zpGQ22pZVag1uYKW9+A3f5p1nX8MNosFtnm+mbRaWGZAxfWzTJ2P52GZA6fqkzSLaQss241aLFV7XaA0Nz6RaNznx7GvUvUlss7v/l8Nqw5M/pdRjwPktPrRPa/1Q/Dn7AB/4my4+7qeBTwPs3LkTaD+SVZJC0YqjXBxcxpkve0xKR2sUeOqLB9PVNoMwvUp46917KGXrZKzVnYQcKxpAslzTcpIgJn1sZw4cinrXgujfQZwkKjS2FfWt2WaAZUQliMXrrol716KTqqGiE6uhogZ9hSaMyxnDMDqh1l2TU999ldOVKS7f2t+DSoQYVP0SIz/h/ajl50l8HB628pjkNJOcBhbuOfi1zx+jTg6HBkVmuePu6xhvujpoGJqxbD2OUzPp9wxClW5H8OZ3DlNxM9S9KCnMOw2KmQbn7b2SYs4jn+n9kLSJosueT1xEECiOfvM0B9/eSc7yuGzLyQ3tGcvaPj+7/5r0315gMF27mCcefJF3uJhAmytuu7MapgrictP5/6Pmq4Tf/OLzC1pemq8SFp3Gmspi0wUDy1/2dYzW4IcGDd/GC0wavoUfmpw9cAg/NPEDEy9ur/BDI138Xk7SVjOW9bn5ksMdteyMsp6XfSqlfgX4N8CHtdbV+L6ulrTs3btXHzhwoKPnJQFPdCLQxpJ+wmjqqL+gn7CYqW/oySlZgUt62Ob71uITamAQhCahVgRaEepogptGYSiNoaKN66OeNZe87XJeYa4rI7TFYBnkkpZhIjFSbCZXO8zFfYNzjKdXB4vM8qF9u1tuM9FKECoq8ZXCZFuCmuugUWQsj0KcGPbDtkpnZjO8/Pib2GbA+7ed6PqVwNVote1OjgpjcTKYU9WuP2ayUX3z65aklzBHpeOJo6NmkGNkrwe+fAz4Y+A2rfWppvuvAv4n883sjwOXA4qomf3DwFtEzez/Smv98nKPs5bA1o4EPNGJ5OTaPHXUx8LGne8nvG8vxS7U5QvRTYMc2IbFoMVIiY/DJ7o6WEwTwmSrgyKz3H7XdYxnl25Cv5xkenalEQ1JSxJD148K0bK2R95uLJg6uVlXDI8/dYhXT+7gfdtOsLWp5LUXmrfdKTNBnVw6wGeMc+seIrPc4zbIxgNmCunEUdAd7ak8CgY5RvY6+TsMZIBkPM+zWut/G39sH1GPgw/8ltb6kfj+jwN/QjTG+sta6/tXepxuJn/tSNATnVi4FUWBerzi5sQ7/+SocPu+vSvuTyjERhnkwDYshiVGSnwcLp62qVBKE0IPhwx1isxwxz0fYCzb2cTshNZQ82yqbqZp6qRN3XMIQgPTCMnaLtl4SNpEPFQkGizSnaEinq94/Gsz3PreV/vuatdcI8Njnz/ILBPUKOBQZ4xpSkyTZw5Dbdxrhfk9lee30HLJpNVNOSprmpY+yAY5Rva87HMzbEby14oEPNGphs6kVwqTW4iRlmHc8pnr0zIMSQrFRhrkwCY6IzFSrFdd55iLE8IqJUIMclQoUOZD8VYT641ZYaio+Xa6JUE9nkC5eKiIHe/b6lh+2v9euO4aTCMaKGIYYCidtjyEYdRXf/Z7hzhXzWObAR+48PgKz6b3qq7No/ujiaIVxtKJomNMU2B2Q5PBxMLqpvlp6Ul1U44Kt9+3Z839hP1qPfEReh8jJfnrAQl4ohNJGUYyaKY5KWy+UnjbfTdI+ajoGkn+Rkc/xUiJj8MhuVIU9Q6OUaUIQJ45ipT50L7r17R90kq0Bi8w4953C9c30wEiQdz7Hg02M1BKo5RO+9zzdrSVRcFxu/qcNkvds/jG575PmUkqlLDwNj0ZTDRXNyW3qLqp0ZQURtVNg5gUSvI3APopsC1Hgp7o1OIrhXXyC06wWarcft8eCk5jZEoxRHdI8jc6BiFGSnwcfMlm5XOMUaFEjQIKTYEyecp8aN/uDUkIR1WSDM4ymV4ZHOMcY5yjQLknZa3JFlpLW14Wvmbp9yuFkvwNgEEIbO1IwBNr0XyCTZJCHwsLjxzVaJLXPVFSOOpN22KpQQ9sojMSI0WvJPvSVShJQrjBomTwYJwMlnCoMx4ng3m1ORujt7P4NUtypXC+fLTKbfdGr1kcq/f7SA56jOynTd5FC7I3oViLVnsUQlSKEZWP5vnGH/wg3ZIi2acwS5UP3rVnxc3rhRCiH7SKkRIfB0erfemaE8KH7z8Sl4xq8sxRYI477ru+Kz2EoyZr+/zz/Ven/664W3h0/2ne5hJqOp9uLTHO2TXvM7hWy71mqVKkTp5HHnglnphuYxKQpUKeCh+8O0oKc7Ynr1lWSa78DRkJemItkn0Ka+Spx1cKo/HOkKFONr5aeNt9Nwxsjb5YvUFf1RSdGZUYKfFxcEUlo4V4U/oSNYpoFFmqFChz+z1RQtgPV4UGUfPWEjNM4ZKhxAzjnKXENJbqrwqhQJvx65X5WQguGQCy1MhS5ZbPXE8x0yBvu11/zTLoMVKSvxEgAU+sVTRsJtd0ks2nNfoWfpoU3nLXXgrxSVZW3gbfoAc20RmJkRIjB1Hz9gMVSlQp4mPjUKfAHLfeGW07IVeEOheGiul6nkcfeIlZJlFoxjnLOGcpMNu3xzPUiga5dAG7eRaChUeW2rpfs6w3PkLvY6QkfyNMAp5YD19bS06wDbIAODTIUiVLldvu3UvecclY/bVyKNqT5G+0SIxcSuLj4GroDNU4GaxQokEWk4A8c+SZ4/b7dkvZaIdc3+Trv3+QGaaoUCJHlXHOMM5ZHDUY01E9bS9YzE5es2gUDnVyVMlS44P3RFNIM5bfMjGU5G9ASGDrjAQ9sR7J1hSNNCmMVuE8HBRhXJJR4yc/EzXy52USaV8ZhsAmOiMxcvUkPg6mpI8wSgiL1CgSYpClRp45br3rekoZuUq4WrP1LI/e/wLTnEeIyRjnmOR0X18VbEdrcMmkCWH0miWHSxaFTltfMtT42O9ey47f/bN1P2avY6Qkf2JVJOCJbkjKdBrxybVGnkY8idQgjK8WRolh3nFli4oekORv9EiMXD+JkYMnaWtIksIqRRpk4wFoc+SpcPu9uyk60ku4HD8w+IfPHmSa86hQIs8cE5xhgjOYarCPW6gVLtl0EXucs/yi//11f99ex0iZ9ilWRaaOim4wlCYfT+haLNAGDXI0yPGdPzyQJog+NgYhGWrpCtyt995AznZlmwohRF+QqaODRynSSpQpTqX3R8NEon3o/uGBQ+mEyWTbgah0dHA3KO82ywz5Z/uvBaKEera+na9/oc4JLsbSPpOcZpJTA1Me2sxQOv0dgbO9fjpdI8mfWBdJCkW3mCpME8PJRR+bb+KOksNHHniFBjk8HABsGmTj5PCWu/aSc1zytis9HUKInpH4OJhMFVBkliKzC+5Pth2oUeBvv/B60wbldfJUyFHh9n1RUjiqsUcpGM/V+Bf7LwOg6tr8w/4zHGEXWhtMcJopTpJV9R4/07Vp9zc9aCT5ExtCVkFFNxlKx5vTV5d8LKnXT5LDJ7/4QtpzGGIsuGqYocYtd99IznHJWZ5sHCyE2HSSFA4mW3mMc27JXnQNnUm3G3j4/iPUKBBipENEclRG9kph3vH4hf3R77Xrm/z975/gDa4g0BZTnGSKk5u+p6CQ5E9sIgl4YiMoBRkaZGgwxvSSj8+Xk2ZxyfLYgy/F/86gMTAJcKjHyWGdn7z7BrK2R87yRi5QCyF6RxZNB1NGRfFnYlFZYENn0n3omq8UWnjkqJCjyq33RBuUj0ILg2MF/Nz+XUCSCL7ND3k/WhucxztMcarv9hMcVjLwRfQtCXpiMyTJoUsGl2x81TBKFEMMAGxcHBo41Pnx3476DTOWT3aIEkStYeq+9Q97gd43s4vOSIwcPBIfB5en7XR7pGTbAZdM09CzKh+8czeFTIOC7Q59hUrds/i/nzvEWbaRpcpWTjCuzq38hT3QrbLPXsdISf7EQJGAJzab1uDhpMlh9Da6eWQIMNEoLLymJLHBj995IxnLxzF9MpbXl1NLw1BxplrgkQcPY+Lzm/7DXfm+vQ5sojMSI4eHxMjBlSxENieGSfuCjZtOw/7g3XvIx33tg7atwkpmajn+9guHqVJkC++wlbcxVf/ETkn+BogEtuEnAU/0mq+tOCF00rfNtyCtstdY+Ni4WHjxzefmO2/CNgIcy8cyAmwzwDLCrgX3IFTUPIeKm+HpLz7HHGO4ZCkxzRbeoajKQxPYRGckRg43iY+Dz9P2goQw2jIpA6gFA8+SxHDQe9q9wODhz77Cac5nipOcz5t9sW3EsMRISf7EUJOgJ/qN1uBj4+HgY8e3KB0M4uuHQXxfgAkszv40BhqDAEW45KMAIQYhZlq2CmAQ4lAnS40cFYrMLGm0H5bAJjojMXI0SXwcDq520s3Jk+2S6mTRGFh46cCzn/zMHgqOS852B2bfwiBUPPR7r3CKHVzIG0ypUyt/0Qbp5qTPXsdIGfgihpo00It+oxTYeNh4a/r6UCs0BiEGGpXeFPMLedFHAwy6d+VQCDFcZAjbcHCUi4PbcuCZr600KUz2z22QxccGom2SooFpNX7iznj/XMsjY/l9ETtMQ/ML+6/A9U2+8vs1qrrIReqHvX5aA0+SPzFyJOCJQWYoDQSYDMbKrRBisEiMHB6W8ilSpkh5yceSfvZk+vUzX/pe2tfu4aBR6TTspJf9J+6MpmFnLJ+M6W9aaaljBfzy57bzl787zVb9tmwPsU59kfwppX4b+ENgq9b6tFJKAX8KfByoAr+itX4u/txPAb8Tf+nntdZ/1YvnLIaPBDwxyoZl89phJDFS9AOppBkuSoFDdNWw1OZzAm0uGHL2rS89h0s27WXXceOB2dTHbuNi40V97GYwfzMCzDX0sTd8i3I9y6MPvoxiHGuNVTNiXs+TP6XUxcBHgGNNd/8McHl8uwn4c+AmpdQU8HvAXkAD31NKPay17s+ZsGIoSMATQvSKxEjRz2TRdLiZKog3qq8u+3m+ttI+9uTtt770HEHcz570tEd97K0kVxCXZoYWHnnmGGOanRzui3LUQdfz5A/4T8BdwENN930S+GsdTaN5Vik1oZTaAdwOPKq1PguglHoU+Bjwlc19ymLUScATQmwSiZFi4EiMHC2WisaWrcXiuZOS3G28niZ/SqlPAm9prZ9XC/+3LwSON/37zfi+dvcL0Rck4AkhukVipBg2UkkjFhuEZG/Y2iI2PPlTSj0GnN/iQ/uA+4jKWTbicT8NfBpg586dG/EQQqyaBDwhRCsSI8Wok0VTITbXhid/WuufanW/Uuoa4FIgWdG8CHhOKXUj8BZwcdOnXxTf9xZRWUvz/d9s87h/AfwFRHsYrednEGIjSMAT/WLYVjUHicRIIVqTGCnExuhZ2afW+kVgW/JvpdQbwN54ktnDwG8qpb5K1Mw+o7U+oZT6OvAFpdRk/GUfAe7d5KcuxIaSgCeEkBgpRGtSSSPE+vTDwJdW/p5ohPVhojHWvwqgtT6rlNoPfDf+vM8lje1CDDsJeEKImMRIIZrIoqkQq9c3yZ/W+pKm9zXwG20+78vAlzfpaQnR1yTgCTEaJEYK0TmJkWK9hrEtom+SPyFE90jAE0IIIVqTShoxyiT5E2KESMATQgghlpJFUzEqJPkTYsRJwBttw1jSIoQQ3SIxUgwbSf6EEC1JwBNCCCFak0oaMagk+RNCdEQCnhBCCLGULJqKQSDJnxBi3STgCSGEEK1JjBxMw9oWIcmfEGLDSMATQgghWpNKGtELkvwJITadBDwhhBBiKVk0FRtNkj8hRF+QgLf5hrWkRQghho3ESNEtkvwJIfqaBDwhhBCiNamkEZ2S5E8IMZAk4AkhhBBLyaKpWI4kf0KIoSEBTwghhGhNYuTqDXNbhCR/QoihJwFPCCGEaE0qaUaLJH9CiJE1ygFvmFc1hRBCrI8smg4vSf6EEKKJBDwhhBCiNYmRg0+SPyGEWAUJeEIIIURro1xJM2gk+RNCiHWQgCeEEEIsNaiLpsPeFiHJnxBCdNmgBjwhhBBio0mM7C1J/oQQYpNIwBNCCCFak0qazSHJnxBC9NhmB7xhL2kRQggxHGTRtPsk+RNCiD4kAU8IIYRoTWLk2knyJ4QQA0QCnhBCCNGalI6uTJI/IYQYAhLwhBBCiKU6WTQdhbYIpbXu9XPYcEqpU8CPev08umQLcLrXT6JPybFpTY5Le3Js2lvPsXmP1nprN5+M2DhDFCPl77k9OTbtybFpT45NewMbI0ci+RsmSqkDWuu9vX4e/UiOTWtyXNqTY9OeHBsxaOR3tj05Nu3JsWlPjk17g3xsjF4/ASGEEEIIIYQQG0+SPyGEEEIIIYQYAZL8DZ6/6PUT6GNybFqT49KeHJv25NiIQSO/s+3JsWlPjk17cmzaG9hjIz1/QgghhBBCCDEC5MqfEEIIIYQQQowASf4GhFLqY0qpV5VSh5VS9/T6+fSCUuoNpdSLSqmDSqkD8X1TSqlHlVKvx28n4/uVUurP4uP1glJqd2+ffXcppb6slDqplHqp6b6Oj4VS6lPx57+ulPpUL36WbmtzbD6rlHor/t05qJT6eNPH7o2PzatKqY823T9Uf3NKqYuVUk8qpX6glHpZKfUf4vvl90YMvGH7e10LiZHzJEa2JvGxvZGKkVprufX5DTCBI8BlgAM8D+zq9fPqwXF4A9iy6L4vAvfE798DPBi//3HgEUABNwP/1Ovn3+VjcSuwG3hprccCmAKOxm8n4/cne/2zbdCx+SzwmRafuyv+e8oAl8Z/Z+Yw/s0BO4Dd8fsl4LX455ffG7kN9G0Y/17XeBwkRs7/3BIjV39cRj4+xj/vyMRIufI3GG4EDmutj2qtXeCrwCd7/Jz6xSeBv4rf/yvg55ru/2sdeRaYUErt6MHz2xBa66eBs4vu7vRYfBR4VGt9Vmt9DngU+NiGP/kN1ubYtPNJ4Kta64bW+ofAYaK/t6H7m9Nan9BaPxe/XwYOARcivzdi8A3d32sXSYycN/LnOomP7Y1SjJTkbzBcCBxv+veb8X2jRgPfUEp9Tyn16fi+7VrrE/H77wDb4/dH8Zh1eixG7Rj9Zlya8eWkbIMRPTZKqUuA64F/Qn5vxOCT38mIxMjlybmuPYmPTYY9RkryJwbJLVrr3cDPAL+hlLq1+YM6ut4u42uRY9HCnwPvBT4AnAD+qKfPpoeUUkXga8Bvaa1nmz8mvzdCDDSJkaskx2IBiY9NRiFGSvI3GN4CLm7690XxfSNFa/1W/PYk8H+ISg/eTUpV4rcn408fxWPW6bEYmWOktX5Xax1orUPgL4l+d2DEjo1SyiYKan+jtf7f8d3yeyMGnfxOIjFyFeRc14LEx3mjEiMl+RsM3wUuV0pdqpRygF8CHu7xc9pUSqmCUqqUvA98BHiJ6Dgkk5Q+BTwUv/8w8MvxNKabgZmmy/bDqtNj8XXgI0qpybjM4yPxfUNnUS/LzxP97kB0bH5JKZVRSl0KXA78P4bwb04ppYD/DhzSWv9x04fk90YMuqH7e+2UxMhVkXNdCxIfIyMVIzdrsozc1ncjmir0GtGEpX29fj49+PkvI5oo9TzwcnIMgPOAx4HXgceAqfh+BfyX+Hi9COzt9c/Q5ePxFaLyDI+onvzX13IsgF8jauI+DPxqr3+uDTw2/yP+2V8gOmHvaPr8ffGxeRX4mab7h+pvDriFqFzlBeBgfPu4/N7IbRhuw/b3uoafX2LkwuMhMXL1x2Xk42P8M41MjFTxkxRCCCGEEEIIMcSk7FMIIYQQQgghRoAkf0IIIYQQQggxAiT5E0IIIYQQQogRIMmfEEIIIYQQQowASf6EEEIIIYQQYgRI8ieEEEIIIYQQI0CSPyGEEEIIIYQYAZL8CSGEEEIIIcQI+P9h9DIejkweQgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -510,21 +514,33 @@ } ], "source": [ - "from floris.tools.visualization import visualize_cut_plane\n", + "from floris.tools.visualization import visualize_cut_plane, add_turbine_id_labels\n", "\n", "fig, axarr = plt.subplots(2, 2, figsize=(15,8))\n", "\n", - "horizontal_plane = fi.calculate_horizontal_plane(wd=[wind_directions[0]], height=90.0)\n", + "# Plot the first wind condition\n", + "wd = wind_directions[0]\n", + "ws = wind_speeds[0]\n", + "\n", + "horizontal_plane = fi.calculate_horizontal_plane(wd=[wd], ws=[ws], height=90.0)\n", "visualize_cut_plane(horizontal_plane, ax=axarr[0,0], title=\"270 - Aligned\")\n", + "add_turbine_id_labels(fi, axarr[0,0], color=\"w\", backgroundcolor=\"k\")\n", "\n", - "horizontal_plane = fi.calculate_horizontal_plane(wd=[wind_directions[0]], yaw_angles=yaw_angles[0:1,0:1] , height=90.0)\n", + "horizontal_plane = fi.calculate_horizontal_plane(wd=[wd], ws=[ws], yaw_angles=yaw_angles[0:1] , height=90.0)\n", "visualize_cut_plane(horizontal_plane, ax=axarr[0,1], title=\"270 - Yawed\")\n", + "add_turbine_id_labels(fi, axarr[0,1], color=\"w\", backgroundcolor=\"k\")\n", + "\n", + "# Plot the second wind condition\n", + "wd = wind_directions[1]\n", + "ws = wind_speeds[1]\n", "\n", - "horizontal_plane = fi.calculate_horizontal_plane(wd=[wind_directions[1]], height=90.0)\n", + "horizontal_plane = fi.calculate_horizontal_plane(wd=[wd], ws=[ws], height=90.0)\n", "visualize_cut_plane(horizontal_plane, ax=axarr[1,0], title=\"280 - Aligned\")\n", + "add_turbine_id_labels(fi, axarr[1,0], color=\"w\", backgroundcolor=\"k\")\n", "\n", - "horizontal_plane = fi.calculate_horizontal_plane(wd=[wind_directions[1]], yaw_angles=yaw_angles[1:2,0:1] , height=90.0)\n", + "horizontal_plane = fi.calculate_horizontal_plane(wd=[wd], ws=[ws], yaw_angles=yaw_angles[1:2] , height=90.0)\n", "visualize_cut_plane(horizontal_plane, ax=axarr[1,1], title=\"280 - Yawed\")\n", + "add_turbine_id_labels(fi, axarr[1,1], color=\"w\", backgroundcolor=\"k\")\n", "\n", "plt.show()" ] @@ -548,7 +564,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAADgCAYAAAA5U2wdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAATSUlEQVR4nO3de5RdZX3G8e8zM7lHEslAQSQDCKYFl2KMchFYVtAGBNEl0njj5g0Wi3opttBW0FJWi8tqpVmSlaogilSJl6IQxFaEgEoJEMQogYDEXIAmIAkhkZg5v/6x95Tdw5xzZk/OyXtm5/mstVfO3vs973lnMzznzW9foojAzMzS6Uk9ADOzXZ2D2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxDvgiQdLWnFDrw/JB04wrafkvT1/PVMSZsl9Y72s0dK0nsk3dzpzzFrBwdxBUi6UNLium0PNdg2LyKWRMSsnTtKiIjfRsTUiBhsZ7+S9su/HPoKn3VNRLy5nZ+Tf9bhkn4k6SlJ6yVdJ2nvwv7F+ZfN0LJN0v11Y71F0hZJD0g6rt1jtLHHQVwNtwFHDs0082AYB7y6btuBeduuo8xY+H18MbAQ2A8YAJ4BrhzaGRHH5182UyNiKvBT4LrC+68F7gVmAH8LLJK0x04au3WpsfCLb63dRRa8h+brRwO3ACvqtj0cEeskvUHSmqE3S3pU0vmSfiFpo6RvSppY2P8JSY9JWifprGYDkbS/pFslPSPpR0B/Yd//m7lK+omkSyXdAWwBDpD0x4UZ5wpJpxbeP0nSP0talY/zdkmTeP7L5el8FnqEpDMk3V5475GS7srfd5ekIwv7fiLpEkl35OO+WdL/jbsoIhZHxHURsSkitgDzgdc3OBb75cf96nz95cBs4OKI2BoR3wbuB97R7Jha9TmIKyAitgF3Asfkm44BlgC3121rNhs+FZgL7A+8EjgDQNJc4HzgTcBBQKu/Sn8DuJssgC8BTm/R/n3Ah4AXAeuBH+V97AnMA74o6eC87WeB1wBHArsDfwXUCj/j9Hwm+rPiB0jaHbgBuJxsJvo54AZJMwrN3g2cmX/u+PxnHoljgOUN9p0GLImIR/P1Q4BHIuKZQpv78u22C3MQV8etPB9IR5MF8ZK6bbc2ef/lEbEuIp4Cvs/zM+lTgSsj4pcR8SzwqUYdSJoJvBb4ZEQ8FxG35X01c1VELI+I7WRfBI9GxJURsT0i7gW+DbwzL1ucBXwkItZGxGBE/DQinmvRP8BbgIci4mt5v9cCDwAnFdpcGREPRsRW4FuFn78hSa8ELgI+0aDJacBVhfWpwMa6NhvJvoRsF+Ygro7bgKPy2d8eEfEQWX3yyHzbK2g+I3688HoLWWgAvARYXdi3qkkfLwF+lwf2SNpT1/cAcJikp4cW4D3AXmQz7InAwy36azSu+nGsAvYprDf6+YeVXzWymOyLYckw+48iG/eiwubNwG51TXcjqzPbLsxBXB0/A6YBHwTuAIiITcC6fNu6iPjNKPp9DNi3sD6zRdsXS5oywvYAxcf/rQZujYjphWVqRJwDbAB+D7ysRR/DWUcW8kUzgbUt3jcsSQPAfwKXRMTXGjQ7HfhORGwubFtOVgcvzoBfRePShu0iHMQVkf+VeinwcbKSxJDb822jvVriW8AZkg6WNBm4uMkYVuVj+LSk8fms8KRG7YfxA+Dlkt4naVy+vFbSn0REDfgK8DlJL5HUm5+Um0BWW64BBzTo98a833dL6pP058DB+eeVImkf4MfA/IhY0KDNJLKSzlXF7RHxILAMuFjSRElvJ6vHf7vsOKxaHMTVcivZyabbC9uW5NtGFcQRsRj4F7LwWZn/2cy7gcOAp8hC++oSn/UM8Gayk3TryMoFlwET8ibnk11lcFfe/2VAT371wqXAHXlJ4/C6fp8ETgT+EniS7CTfiRGxYaRjK/gAWeB/qni9cF2btwFPk125Um8eMAf4HfBPwCkRsX4U47AKkR8Mb2aWlmfEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYn2pB2Bm1imv6Z0Sm2Kw1HtWxnM/jIi5HRrSsBzEZlZZz6jG/OkvK/WeuU/9qr9Dw2nIQWxm1SXo6VPqUbTkIDazylKP6J3U/afCHMRmVl09OIjNzFKSoHe8g9jMLCGhHteIzcySyWbEvamH0ZKD2MyqS6J3nEsTZmbJSNAzzjNiM7N0PCM2M0tLwifrzMySEvT0dX9povvn7GZmo6S8NFFmGUGfH5O0XNIvJV0raWLd/gmSvilppaQ7Je3Xqk8HsZlVVz4jLrM07U7aB/gLYE5EvALoBebVNXs/8LuIOBD4PHBZq2E6iM2swrIbOsosI9AHTJLUB0wG1tXtPxn4av56EXCspKYdu0ZsZpWl0dWI+yUtLawvjIiFABGxVtJngd8CW4GbI+LmuvfvA6zO22+XtBGYAWxo9IEOYjOrrtFdvrYhIuYM351eTDbj3R94GrhO0nsj4us7MkyXJsysstTmGjFwHPCbiFgfEX8AvgMcWddmLbBv9vnqA6YBTzbr1DNiM6swtfvytd8Ch0uaTFaaOBZYWtfmeuB04GfAKcCPIyKadeogNrPqavMNHRFxp6RFwD3AduBeYKGkvweWRsT1wJeBr0laCTzFC6+qeAEHsZlVmFBve2/oiIiLgYvrNl9U2P974J1l+nQQm1lljfKqiZ3OQWxm1aW214g7wkFsZpU2Fh76k/TyNUmbC0tN0tbC+nvyNh+T9LikTZK+ImlCyjGn1Op4SXqFpB9K2iCp6VnaXcUIjtnpku7Of7/WSPpMfsnRLmkEx2uepBWSNkr6H0lflbRb6nE3Ign19ZZaUkgaxBExdWghuyzkpMK2ayT9GXAB2SUiA8ABwKcTDjmpVscL+APwLbJ73Y0RHbPJwEeBfuAwst+185MNOLERHK87gNdHxDSy/x/7gH9IOOTmBD29vaWWFLr9m/904MsRsRxA0iXANWThbHUiYgWwQtKBqccyVkTEFYXVtZKuAf401Xi6XUSsrts0CHTv71s+I+523R7EhwD/UVi/D/gjSTMioumdKmajdAywPPUgupmko4AbgN2ALcDb046oMaFks9wyuj2IpwIbC+tDr19Ei1sGzcqSdBYwB/hA6rF0s4i4HZiWPxLyg8CjaUfUhIAxcLKu24N4M9m37pCh188kGItVmKS3Af8IHBcRDZ+SZc/Ln0R2E/DvwOzU42lkLFy+1u0P/VkOvKqw/irgCZclrJ0kzQX+jezE1P2pxzPG9AEvSz2IhpTdWVdmSaHbg/hq4P2SDpY0Hfg74KqkI+piykwExufrE3fly/1GQtIbyU4AvyMi/jv1eLpdfgnbzPz1AHAp8F9pR9WYHMQ7LiJuAj4D3EJ2Kc0qXniPtz1vgOyJUEMnm7YCK9INZ0z4JNljCm8sXC+7OPWgutjBwE8lPUt2KdsKsjpx9+rpKbckoBZPZzMzG7NmD+wdt/316aXe86JzL7u70YPhO6XbT9aZme2QVOWGMhzEZlZdvqHDzCwxAZ4Rm5mlpOyhxF2uaRBPU2/sybidNZaus5LnNkTEHiNt7+NV7nj1T50cM2dMa+sYntttz7b2N2Tjlvb/d137yN2ljteMqZNiYPf2Hq9t0zp0vLaOb3ufax4ud7yALId7u3++2XSEezKOz/cO7KyxdJ2TBh9cVaa9j1e54zVzxjRu+5sz2zqGR974kbb2N+TGZf1t7/PCU/tKHa+B3adx6/nvbesYHnvLeW3tb8gNy/dte58fP7m31PGC7FkTY+FkXVdfR2xmtkOkrEZcZmnZpWZJWlZYNkn6aF2bN+TPbB5qc1GD7gDXiM2s6tpcI84fN3to1rV6gbXAd4dpuiQiThxJnw5iM6suCTpbIz4WeDgiSpdNilyaMLNqa3Npos484NoG+46QdJ+kxZIOadaJZ8RmVl1DNeJy+iUtLawvjIiFL+xa44G3AhcO08c9wEBEbJZ0AvA94KBGH+ggNrNq6ykdxBtG+KyJ44F7IuKJ+h0Rsanw+kZJX5TU3+hZ1w5iM6suqZNPVHsXDcoSkvYie3Z6SHodWRm44XPUHcRmVm3lZ8QtSZoCvAn4cGHb2QARsQA4BThH0nayx9HOiyaPunQQm1l1ja5G3FJEPAvMqNu2oPB6PjB/pP05iM2ssgIRHZgRt5uD2MyqTd1/la6D2MyqS54Rm5mlNwYe+uMgNrPq8ozYzCw1B7GZWXLhk3VmZglJHbmho90cxGZWWQEuTZiZpSVqGuNBPHH3Ccyae8DOGkv3+caDpZr7eJU7XjF5KrXZR7d1CLc80Jl/DPP7V9/WkX5LmTIVvba9x2vJozPb2t+QH1y7tHWjncU1YjOzdEKi5tKEmVlarhGbmSVVgRqxmdmYJhEOYjOzdIKsTtztHMRmVmkuTZiZJeWrJszMkgr5ZJ2ZWXJB99eIu/+WEzOzHVBTb6mlFUmzJC0rLJskfbSujSRdLmmlpF9Imt2sT8+IzayyogPXEUfECuBQAEm9wFrgu3XNjgcOypfDgCvyP4flIDazSqt19i/+xwIPR8Squu0nA1dHRAA/lzRd0t4R8dhwnTiIzayyAlGj9Iy4X1LxqUULI2Jhg7bzgGuH2b4PsLqwvibf5iA2s13PKE7WbYiIOa0aSRoPvBW4cDTjKnIQm1mFqZOlieOBeyLiiWH2rQX2Lay/NN82LF81YWaVFUAtekotJbyL4csSANcDp+VXTxwObGxUHwbPiM2s4joxI5Y0BXgT8OHCtrMBImIBcCNwArAS2AKc2aw/B7GZVZiIaP8NHRHxLDCjbtuCwusAzh1pfw5iM6usAAbHQAXWQWxm1RWUrfsm4SA2s8oKNPaDeNy0qbz0+KN21li6zzduKtXcx6vc8dreN5H1u89q6xC2/KbW1v6GTJg8qSP9lrG9byJP9rf3eG36dbS1vyHjJozvSL+jMdiBGnG7eUZsZpXWiZN17eYgNrPKqkRpwsxsTAuXJszMkhq6s67bOYjNrNKiM+cj28pBbGaVFYhBz4jNzNKquUZsZpZOBAzWHMRmZkn5qgkzs8R8ss7MLKEIuTRhZpaaT9aZmSUUwGBnngPVVg5iM6s014jNzBIaK5evdf8tJ2ZmO2CwVm5pRdJ0SYskPSDp15KOqNv/BkkbJS3Ll4ta9ekZsZlVVgTU2j8j/gJwU0ScImk8MHmYNksi4sSRduggNrPKavfJOknTgGOAMwAiYhuwbUf7dWnCzCototwC9EtaWlg+VOhuf2A9cKWkeyV9SdKUYT72CEn3SVos6ZBWY/SM2MyqK0Y1I94QEXMa7OsDZgPnRcSdkr4AXAB8stDmHmAgIjZLOgH4HnBQsw9UNLm2Q9J6YNXIx185AxGxx0gb+3j5eJXk41VOqeMFMPDyOXHhvy4t9SHnzNXdjYJY0l7AzyNiv3z9aOCCiHhLo/4kPQrMiYgNjdo0nRGX/aF3dT5e5fh4lePjVV6MbkbcpL94XNJqSbMiYgVwLPCrYps8rJ+IiJD0OrIS8JPN+nVpwswqrdnf+kfpPOCa/IqJR4AzJZ2df9YC4BTgHEnbga3AvGgxCAexmVXa4GB7+4uIZUB96WJBYf98YH6ZPh3EZlZZ7S5NdIqD2MwqrTbY/Q+bcBCbWWV5Rmxm1gVqNc+IzcySyZ41kXoUrTmIzazCgkHXiM3M0onAQWxmlloHbuhoOwexmVWWZ8RmZl3AQWxmllBE+IYOM7PUBsfA9WsOYjOrrOw6Ys+IzcyScmnCzCyhiGBwDDxswkFsZtXly9fMzNIKIFwjNjNLyKUJM7O0AqiNgSDuST0AM7OOyWfEZZZWJE2XtEjSA5J+LemIuv2SdLmklZJ+IWl2qz49IzazyurQjPgLwE0RcUr+LzlPrtt/PHBQvhwGXJH/2ZCD2Myqq803dEiaBhwDnAEQEduAbXXNTgaujuyxbz/PZ9B7R8Rjjfp1acLMKiyoDdZKLS3sD6wHrpR0r6QvSZpS12YfYHVhfU2+rSEHsZlVVgQMbh8stQD9kpYWlg8VuuwDZgNXRMSrgWeBC3Z0nC5NmFl1RYymRrwhIuY02LcGWBMRd+bri3hhEK8F9i2svzTf1pBnxGZWWUM3dJRZmvYX8TiwWtKsfNOxwK/qml0PnJZfPXE4sLFZfRg8IzazKgsYHBxsd6/nAdfkV0w8Apwp6WyAiFgA3AicAKwEtgBnturQQWxmlRWMqjTRvM+IZUB96WJBYX8A55bp00FsZtWVn6zrdg5iM6us7J9KchCbmSXlp6+ZmSWUPRjeM2Izs3QCaq4Rm5mlE3hGbGaWVkDUuv95xA5iM6swXzVhZpZURIyJGrGym0DMzKpH0k1Af8m3bYiIuZ0YTyMOYjOzxPz0NTOzxBzEZmaJOYjNzBJzEJuZJeYgNjNL7H8B1zfueWAD8swAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAADgCAYAAAA5U2wdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUMElEQVR4nO3dfZRdVX3G8e8zk4S8kmAG5EUyICAtUMEYXkWKojZQEF1GjVp5UxGWtdUWW1lWQairxWW1YhZkpSoURapEEFoTBBVJQEwJAcQowfAS8wKaAcm7QGZ+/eOckdPL3HvnTO5lz5w8n7XOyj3n7LvPnrMmz92zzz7nKiIwM7N0OlI3wMxsZ+cgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMQ7IUmvl7RiB94fkg4cZNmLJX0zfz1N0mZJnUM99mBJep+kW9t9HLNWcBBXgKQLJS2s2fbrOttmR8TiiDj4pW0lRMRvImJiRPS2sl5J++UfDqMKx7o2It7SyuPkxzpG0m2Snpa0XtL1kvYq7F+Yf9j0L89JerCmrbdL2irpIUlvanUbbeRxEFfDIuC4/p5mHgyjgdfUbDswLzvsKDMSfh93A+YB+wHdwCbgqv6dEXFy/mEzMSImAj8Fri+8/zrgPmAq8ClgvqTdX6K22zA1En7xrbl7yIL3iHz99cDtwIqabY9ExDpJJ0pa0/9mSY9LukDSzyVtkPRtSWML+z8h6QlJ6ySd06ghkvaXdIekTZJuA7oK+/5fz1XSTyR9TtJdwFbglZL+pNDjXCHpXYX3j5P0b5JW5e28U9I4XvhweSbvhR4r6SxJdxbee5yke/L33SPpuMK+n0i6VNJdebtvlfTHdhdFxMKIuD4iNkbEVmAO8Lo652K//Lxfk6+/CpgOXBQR2yLiu8CDwDsanVOrPgdxBUTEc8AS4IR80wnAYuDOmm2NesPvAmYC+wOvBs4CkDQTuAB4M3AQ0OxP6W8B95IF8KXAmU3Kvx84F5gErAduy+vYA5gNXCHpkLzsF4DXAscBLwP+Aegr/IxT8p7o3cUDSHoZ8H3gcrKe6BeB70uaWij2XuDs/Lhj8p95ME4AltfZdwawOCIez9cPBR6NiE2FMg/k220n5iCujjt4IZBeTxbEi2u23dHg/ZdHxLqIeBr4b17oSb8LuCoifhERW4CL61UgaRpwJPDpiHg2IhbldTVydUQsj4jtZB8Ej0fEVRGxPSLuA74LvDMftjgH+NuIWBsRvRHx04h4tkn9AH8J/DoivpHXex3wEHBaocxVEfFwRGwDvlP4+euS9GrgM8An6hQ5A7i6sD4R2FBTZgPZh5DtxBzE1bEIOD7v/e0eEb8mG588Lt92GI17xE8WXm8lCw2AvYHVhX2rGtSxN/D7PLAHU56auruBoyU9078A7wP2JOthjwUeaVJfvXbVtmMVsE9hvd7PP6B81shCsg+GxQPsP56s3fMLmzcDu9YU3ZVsnNl2Yg7i6rgbmAx8CLgLICI2Auvybesi4rEh1PsEsG9hfVqTsrtJmjDI8gDFx/+tBu6IiCmFZWJEnA/0AH8ADmhSx0DWkYV80TRgbZP3DUhSN/BD4NKI+EadYmcCN0TE5sK25WTj4MUe8OHUH9qwnYSDuCLyP6mXAn9HNiTR785821BnS3wHOEvSIZLGAxc1aMOqvA2flTQm7xWeVq/8AP4HeJWk90sanS9HSvrTiOgDvg58UdLekjrzi3K7kI0t9wGvrFPvgrze90oaJendwCH58UqRtA/wY2BORMytU2Yc2ZDO1cXtEfEwcD9wkaSxkt5ONh7/3bLtsGpxEFfLHWQXm+4sbFucbxtSEEfEQuDfycJnZf5vI+8FjgaeJgvta0ocaxPwFrKLdOvIhgsuA3bJi1xANsvgnrz+y4COfPbC54C78iGNY2rqfQo4Ffh74Cmyi3ynRkTPYNtW8EGywL+4OF+4pszbgGfIZq7Umg3MAH4P/CswKyLWD6EdViHyg+HNzNJyj9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0tsVOoGmJm1y2s7J8TG6C31npXx7A8iYmabmjQgB7GZVdYm9TFnygGl3jPz6V92tak5dTmIzay6BB2jlLoVTTmIzayy1CE6xw3/S2EOYjOrrg4cxGZmKUnQOcZBbGaWkFCHx4jNzJLJesSdqZvRlIPYzKpLonO0hybMzJKRoGO0e8RmZumMkB7x8G+hmdkQSdlc4jJL8zr1cUnLJf1C0nWSxtbs30XStyWtlLRE0n7N6nQQm1l1CTpGdZZaGlYn7QP8DTAjIg4DOoHZNcU+APw+Ig4EvgRc1qyZHpows8pSe4YmRgHjJD0PjAfW1ew/Hbg4fz0fmCNJERGNKjQzq6a8R1xSl6SlhfV5ETEPICLWSvoC8BtgG3BrRNxa8/59gNV5+e2SNgBTgZ56B3QQm1mFDemGjp6ImDFgbdJuZD3e/YFngOsl/VVEfHNHWukxYjOrLLV4jBh4E/BYRKyPiOeBG4DjasqsBfbNjq9RwGTgqUaVukdsZtXV+jHi3wDHSBpPNjRxErC0pszNwJnA3cAs4MeNxofBQWxmFaahjRHXFRFLJM0HlgHbgfuAeZIuAZZGxM3A14BvSFoJPM2LZ1W8iIPYzCpMLQ1igIi4CLioZvNnCvv/ALyzTJ0OYjOrrvyGjuHOQWxmFSbU6WdNmJkl0+ox4nZxEJtZdan1Y8Tt4CA2s0obCWPESW/okLS5sPRJ2lZYf19e5uOSnpS0UdLXJe2Sss0pNTtfkg6T9ANJPZIazlvcWQzinJ0p6d7892uNpM/nk/B3SoM4X7MlrZC0QdLvJP2npF1Tt7seSWhUZ6klhaRBHBET+xeyidKnFbZdK+kvgE+STZruBl4JfDZhk5Nqdr6A54HvkD39yRjUORsPfAzoAo4m+127IFmDExvE+boLeF1ETCb7/zgK+OeETW5M0NHZWWpJYbh/8p8JfC0ilgNIuhS4liycrUZErABWSDowdVtGioi4srC6VtK1wBtStWe4i4jVNZt6geH7+5b3iIe74R7EhwI3FdYfAF4uaWpENLx322yITgCWp27EcCbpeOD7wK7AVuDtaVtUn1CyXm4Zwz2IJwIbCuv9ryfR5CEaZmVJOgeYAXwwdVuGs4i4E5icPyT9Q8DjaVvUgIARcLFuuAfxZrJP3X79rzclaItVmKS3Af8CvCki6j431l6QP5v3FuC/gOmp21PPSJi+Ntwfg7kcOLywfjjwWw9LWCtJmgn8B9mFqQdTt2eEGQUckLoRdSm7s67MksJwD+JrgA9IOkTSFOCfgKuTtmgYU2YsMCZfH7szT/cbDElvJLsA/I6I+N/U7Rnu8ils0/LX3cDngB+lbVV9chDvuIi4Bfg8cDvZVJpVvPipR/aCbrJnpPZfbNoGrEjXnBHh02QP7l5QmC+7MHWjhrFDgJ9K2kI2lW0F2Tjx8NXRUW5JQE2eV2xmNmJN794rFv3jmaXeM+kjl91b76uS2mVY94jNzHZUq4cmJB0s6f7CslHSx2rKnJjffdhf5jN1qgOG/6wJM7Oha8MNHfmNU0dk1auT7Dvqbhyg6OKIOHUwdTqIzay6BLT3AtxJwCMRsWpHKvHQhJlVmLKHEpdZoEvS0sJyboMDzAauq7PvWEkPSFoo6dBGrWzYI56sztiD0Q1/zCpbybM9EbH7YMv7fJU7X1MnjItpu01qaRv6pnS1tL5+W/rGtbzOR361rNT56po8KabtOejig7Kpc7eW1tdv67Otr3Pdo+XOF5DlcGfpP/x7BnOxTtIY4K3AhQPsXgZ0R8RmSacA3wMOqldXwxbuwWi+1NndrD2VdVrvw6X+3PD5Kne+pu02iR//danvWGzq2dPPaWl9/ZZsObx5oZLeduTocudrz92568pLW9qGH+767pbW1+/BR1pf56dmlztfkD1roo1zg08GlkXEb2t3RMTGwusFkq6Q1FXvrk2PEZtZdUntHCN+D3WGJSTtSXYXcEg6imwYuO4dwQ5iM6s2tf6hP5ImAG8GPlzYdh5ARMwFZgHnS9pOdmPV7Ghw04aD2MyqS4LyY8RNRcQWYGrNtrmF13OAOYOtz0FsZtXm5xGbmSXU3jHilnEQm1m1dTiIzczSkZI9Ua0MB7GZVZt7xGZmCXmM2MwsrUCEe8RmZonJY8RmZunIPWIzs/Q8RmxmlpB7xGZmqTmIzcySC1+sMzNLSBoRN3QM/48KM7MhCiA6OkstzUg6WNL9hWWjpI/VlJGkyyWtlPRzSdMb1ekesZlVmOhTa3vEEbECOAJAUiewFrixptjJZN9RdxBwNHBl/u+AGgbxLlPGcMAb9x16i0e6Gx4uVdznq9z50vgJjH3tkS1twpJn/6yl9fW7bdGWttRbxvNjJrKm+3UtrfMHN7Xn57rv9vvbUu+QtHeM+CTgkYio/T6904Fr8m/l+JmkKZL2iognBqrEPWIzq6yQ6GvvGPFsBv7eun2A1YX1Nfk2B7GZ7XyGMH2tS9LSwvq8iJhXW0jSGOCtwIU70DzAQWxmlTakMeKeiJgxiHInA8si4rcD7FsLFMcpX5FvG5BnTZhZdUmEOkstJbyHgYclAG4GzshnTxwDbKg3PgzuEZtZhQXZOHGrSZoAvBn4cGHbefDHb3NeAJwCrAS2Amc3qs9BbGaV1urpawARsQWYWrNtbuF1AB8ZbH0OYjOrsLbPmmgJB7GZVVao9Td0tIOD2MwqLWj9GHGrOYjNrNLcIzYzSyja8KyJdnAQm1ml9Y2A2yUcxGZWWYHowz1iM7OkfLHOzCwpeWjCzCylAPrCQWxmlpR7xGZmSYkIjxGbmSUTQK97xGZmCYXHiM3Mkgo08oN4zKTxvOLPj3iJmjIM3fCjUsV9vsqdr75RY9i2+/4tbcIfnm/Pf7oxu6Tvs/RGB5t6J7W0znHjR7e0vn4v23uPttQ7FL0tHiOWNAX4KnAY2ejHORFxd2H/icBNwGP5phsi4pJGdab/7TIza6M2XKz7MnBLRMzKv0B0/ABlFkfEqYOt0EFsZpXV6qEJSZOBE4CzACLiOeC5Ha13+A+emJkNVWRDE2WWJvYH1gNXSbpP0lfz76+rdaykByQtlHRos0odxGZWWf131pVZgC5JSwvLuYUqRwHTgSsj4jXAFuCTNYddBnRHxOHAV4DvNWunhybMrNIiSr+lJyJm1Nm3BlgTEUvy9fnUBHFEbCy8XiDpCkldEdFT74DuEZtZZQWiNzpKLQ3ri3gSWC3p4HzTScAvi2Uk7SlJ+eujyHL2qUb1ukdsZpXW1/pZEx8Frs1nTDwKnC3pPICImAvMAs6XtB3YBsyOaNwvdxCbWWVFQG9fa4M4Iu4Haocu5hb2zwHmlKnTQWxmldbqGzrawUFsZpU2hIt1LzkHsZlVVoRaPjTRDg5iM6u0NlysazkHsZlVVgC9falb0ZyD2MwqzWPEZmYJtWP6Wjs4iM2s0jw0YWaWUAT0uUdsZpaOL9aZmQ0DvlhnZpZSjIwesRo9FEjSemDVS9ecYac7InYfbGGfL5+vkny+yil1vgC6XzUjLvzK0lIHOX+m7m3wPOK2aNgjLvtD7+x8vsrx+SrH56u8GCE9Yg9NmFmlNXkU8LDgb+gws0rr7S23NCNpiqT5kh6S9CtJx9bsl6TLJa2U9HNJ05vV6R6xmVVWm4YmvgzcEhGz8m/pGF+z/2TgoHw5Grgy/7cuB7GZVVpfb+uGJiRNBk4AzgKIiOeA52qKnQ5ck3890s/yHvReEfFEvXo9NGFmldXfIy6zNLE/sB64StJ9kr4qaUJNmX2A1YX1Nfm2uhzEZlZpfX1RagG6JC0tLOcWqhsFTAeujIjXAFuAT+5oGz00YWaVlT1rovTbehrMI14DrImIJfn6fF4cxGuBfQvrr8i31eUesZlVWNDbW25pWFvEk8BqSQfnm04CfllT7GbgjHz2xDHAhkbjw+AesZlVWARNw3UIPgpcm8+YeBQ4W9J52fFiLrAAOAVYCWwFzm5WoYPYzCqt1Td0RMT9QO3QxdzC/gA+UqZOB7GZVVabesQt5yA2s0pzEJuZJRQRLb2ho10cxGZWab1DmL/2UnMQm1llZfOI3SM2M0vKQxNmZglFBL0j4MnwDmIzqy5PXzMzSyuA8BixmVlCHpowM0srgD4HsZlZQu4Rm5ml5R6xmVlqvqHDzCy1cI/YzCylCOjd3tvyeiU9DmwCeoHttV+tJOlE4CbgsXzTDRFxSb36HMRmVl3R1h7xGyKip8H+xRFx6mAqchCbWWWNlBs6/OWhZlZdAb29vaWWwdfMrZLulXRunTLHSnpA0kJJhzaqzD1iM6usGNrFui5JSwvr8yJiXk2Z4yNiraQ9gNskPRQRiwr7lwHdEbFZ0inA94CD6h3QQWxm1TW0i3U9tRffXlRtxNr8399JuhE4ClhU2L+x8HqBpCskddUbU/bQhJlVVvZVSb2llmYkTZA0qf818BbgFzVl9pSk/PVRZFn7VL063SM2s0prw8W6lwM35jk7CvhWRNwi6TyAiJgLzALOl7Qd2AbMjoi6DXEQm1llZQ+Gb+084oh4FDh8gO1zC6/nAHMGW6eD2MyqK6CvDTd0tJqD2MwqK2h9j7gdHMRmVl0B0ednTZiZJRSDmgmRmoPYzCorIkbEGLEazKgwMxvRJN0CdJV8W09EzGxHe+pxEJuZJeY768zMEnMQm5kl5iA2M0vMQWxmlpiD2Mwssf8D6oqQL2nKV70AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -560,7 +576,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAADgCAYAAAA5U2wdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAASaUlEQVR4nO3de7RtZX3e8e+z9+HA4eIBQa1QOd4Cig41EYvBS6ygnrRB60hjELXecjMZI1FjmjraiEIdHUab2EgSelqjUSlFKY5gDYpNlJuGineP9nCpcjsGOKJcFcPev/4x5y7L7b6tzd68a8/z/YwxB3vN+a53vXuOw7Pe/ZvvmitVhSSpnanWA5CkvZ1BLEmNGcSS1JhBLEmNGcSS1JhBLEmNGcR7mSTPSrLrfjy/kjx2hW3fmuRD/c9HJrkzyfRqX3ulkrwsyYXr/TrSWjGIN7gkb05ywbx9Vy2y7+SquqSqjn5gRwlVdV1VHVhVM2vZb5JH9m8Om0Ze66yqev5avk7/Wk9P8qkktya5JclHkjx85Pi+Sc5MclPf5mNJjhg5/uAkH01yV5Jrk5yy1mPUxmQQb3wXA8fPzTT7YNgH+Ol5+x7bt5046WyEf4uHADuARwLbgDuA940c/x3gZ4EnAYcD3wPeM3L8T4EfAQ8DXgb8eZInrPuoNfE2wj9+Le3zdMH7lP7xs4BPA7vm7bumqnYneU6SG+aenOTbSd6U5KtJbktyTpL9Ro7/XpLvJNmd5DVLDSTJo5JclOSOJJ8CDhs59mMz1ySfSfL2JJcBdwOPTvK4kRnnriQvGXn+liT/sZ9J3pbk0iRbuO/N5ft96eNnk7wqyaUjzz0+yef7530+yfEjxz6T5PQkl/XjvjDJ/x/3qKq6oKo+UlW3V9XdwBnAM0aaPAr4ZFXdVFU/BM4BntC/zgHALwJ/UFV3VtWlwPnAK5Y6p9o7GMQbXFX9CLgceHa/69nAJcCl8/YtNRt+CbCdLkieBLwKIMl24E3A84CfAk5cZjj/DfgCXQCfDrxymfavAH4NOAi4BfhU38dDgZOBP0tyTN/2XcBTgeOBBwP/Gpgd+R0P7ksfnxt9gSQPBj4O/AlwKPBHwMeTHDrS7BTg1f3rbu5/55V4NrBz5PF7gWckOTzJ/nSz3rkS0VHAvVV15Uj7r9AHtfZuBvEwXMR9gfQsuiC+ZN6+i5Z4/p9U1e6quhX4GPfNpF8CvK+qvl5VdwFvXayDJEcCT6Ob8d1TVRf3fS3l/VW1s6rupXsj+HZVva+q7q2qLwH/A/ilvmzxGuB3qurGqpqpqs9W1T3L9A/wz4GrquqDfb9nA/8HOGmkzfuq6sqq+gHw4ZHff1FJngS8Bfi9kd1XAdcDNwK3A48HTuuPHdjvG3Ub3ZuQ9nIG8TBcDDyzn/09pKquAj5LVzt+MPBElp4R//3Iz3fThQZ0dc7rR45du0QfhwPf6wN7Je2Z1/c24Lgk35/b6GaU/4huhr0fcM0y/S02rvnjuBY4YuTxYr//gvpVIxfQvTFcMnLoT4F96WbeBwDncd+M+E7gQfO6ehBdnVl7OYN4GD4HbAV+FbgMoKpuB3b3+3ZX1bdW0e93gEeMPD5ymbaH9LXQlbQHGL313/XARVV18Mh2YFW9DtgD/BB4zDJ9LGQ3XciPOpJu1jq2JNuA/wWcXlUfnHf4KXSz/Fv72fp7gH/S15yvBDYl+amR9k/mx0sb2ksZxAPQ/0l9BfBGupLEnEv7fatdLfFh4FVJjulrnqcuMYZr+zG8LcnmJM/kx//8X87/BI5K8ook+/Tb05I8vqpmgb8A/qivv073F+X2pastzwKPXqTfv+77PSXJpiS/DBzTv95Y+qVofwucUVVnLtDk88C/SrI1yT7Ab9K9Ce7p/1I4DzgtyQFJngG8CJgf5toLGcTDcRHdxaZLR/Zd0u9bVRBX1QXAu+nC5+r+v0s5BTgOuJUutD8wxmvdATyf7iLdbrpywTvo/tSH7gLa1+jC7tb+2FS/euHtwGV9SePp8/r9LvALwO8C36W7yPcLVbVnpWMb8St0gf/WfoXGnUnuHDn+JrqZ+1V0bxD/DHjxyPHfBLYANwNnA6+rKmfEIt4YXpLackYsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY0ZxJLUmEEsSY1taj0ASVovT50+oG6vmbGec3Xd88mq2r5OQ1qQQSxpsO7ILGcc/JixnrP91m8ctk7DWZRBLGm4AlOb0noUyzKIJQ1WpsL0lsm/FGYQSxquKQxiSWopgenNBrEkNRQyZY1YkprpZsTTrYexLINY0nAlTO9jaUKSmklgah9nxJLUjjNiSWorwYt1ktRUYGrT5JcmJn/OLkmrlL40Mc62gj7fkGRnkq8nOTvJfvOOvzHJN5J8NcnfJNm2XJ8GsaTh6mfE42xLdpccAfw2cGxVPRGYBk6e1+xL/fEnAecCf7jcMA1iSQPWfaBjnG0FNgFbkmwC9gd2jx6sqk9X1d39w78D/vFKOpSkQcrqasSHJbli5PGOqtoBUFU3JnkXcB3wA+DCqrpwib5eC1yw3AsaxJKGa3XL1/ZU1bELd5dDgBcBjwK+D3wkycur6kMLtH05cCzwc8u9oEEsabBWOSNeyonAt6rqlq7/nAccD/xYECc5Efi3wM9V1T3LdWoQSxqwrHUQXwc8Pcn+dKWJE4DRMgZJfhr4z8D2qrp5JZ0axJKGa40/0FFVlyc5F/gicC/dCokdSU4Drqiq84F3AgfSlS0ArquqFy7Vr0EsacBCptf2Ax1VdSpw6rzdbxk5fuK4fRrEkgZrHWrE68IgljRcWfMa8bowiCUN2ka46U/TT9YluXNkm03yg5HHL+vbvCHJ3ye5PclfJNm35ZhbWu58JXlikk8m2ZOkWo93EqzgnL0yyRf6f183JPnD/hNTe6UVnK+Tk+xKcluSm5P8ZZIHtR73YpKQTdNjbS00DeKqOnBuo1sWctLIvrOSvAD4N3RLRLYBjwbe1nDITS13voB/AD5M92kesaJztj/weuAw4Di6f2tvajbgxlZwvi4DnlFVW+n+f9wE/PuGQ15aYGp6eqythUl/538l8N6q2gmQ5HTgLLpw1jxVtQvYleSxrceyUVTVn488vDHJWcA/bTWeSVdV18/bNQNM7r+3fkY86SY9iJ8A/NXI468AD0tyaFV9t9GYNGzPBna2HsQkS/JM4OPAg4C7gRe3HdHiQprNcscx6UF8IHDbyOO5nw8CDGKtqSSvobs3wK+0Hsskq6pLga39LSF/Ffh22xEtIcAGuFg36UF8J9277py5n+9oMBYNWJJ/AfwH4MSq2tN4OBtCfyeyTwD/HfiZ1uNZzEZYvjbp9yPeCTx55PGTgZssS2gtJdkO/Be6C1Nfaz2eDWYT8JjWg1hUuk/WjbO1MOlB/AHgtUmOSXIw8O+A9zcd0QRLZz9gc/94v715ud9KJHku3QXgX6yq/916PJOuX8J2ZP/zNuDtwN+0HdXiYhDff1X1CbqvGfk03VKaa/nJz3jrPtvo7gg1d7HpB8CudsPZEP4A2Ar89ch62WVv5L0XOwb4bJK76Jay7aKrE0+uqanxtgZS5bp/ScP0M9seXhf//ivHes5Bv/WOLyx2Y/j1MukX6yTpfmlVbhiHQSxpuPxAhyQ1FsAZsSS1lO6mxBNuySDemul6KPs8UGOZOFdzz56qeshK23u+2p+vqc3r8z/dvlu3rHmfX7vle4M9X/sdvPbn66s3j3e+gC6Hpyd/vrnkCB/KPvzx9LYHaiwT56SZK68dp73nq/352vLwzWva35yjT3rcmvf5iDPOHez5evyLn7DmfR7x7nPGOl/Q3WvCi3WS1FJijViSmtvoNWJJ2tAS2Og1Ykna8CxNSFJD1oglaQJMGcSS1E7S7I5q45j8EUrS/TE1Pd62jCRvSLIzydeTnN3fA3z0+L5JzklydZLLkzxy2SGu/reTpAk3VyMeZ1uyuxwB/DZwbFU9EZgGTp7X7LXA96rqscAfA+9YbpgGsaTBKkJNTY+1rcAmYEuSTcD+wO55x18E/GX/87nACcnSi5kNYknDlqnxtiVU1Y3Au+i+Meg7wG1VdeG8ZkcA1/ft76X79vlDl+rXIJY0XFnVjPiwJFeMbL92X3c5hG7G+yjgcOCAJC+/v8N01YSkYRt/HfGeJb4q6UTgW1V1C0CS84DjgQ+NtLkReARwQ1++2Aos+c3zzoglDdfqZsRLuQ54epL9+7rvCcA357U5H5j7orx/CfxtLfPloM6IJQ1YVnoBbkWq6vIk5wJfBO4FvgTsSHIacEVVnQ+8F/hgkquBW/nJVRU/wSCWNGi1zAW4sfurOhU4dd7ut4wc/yHwS+P0aRBLGq7EjzhLUksFa1qaWC8GsaQBC7PZ4EF80FGH89wdb3ugxjJ5nvPSsZp7vsY8X0cfwXN3nLamQ5jZvP+a9jfn24c+be07PePcsZqvy/na94A17W/ONYcct/advvuc1T1vjWvE68EZsaTBqoRZSxOS1JY1YklqagA1Ykna0BLKIJakdoquTjzpDGJJg2ZpQpKactWEJDVV8WKdJDVXWCOWpKacEUtSQ+U6Yklqb3YDfBGRQSxpsIowizNiSWrKi3WS1FQsTUhSSwXMlkEsSU05I5akpkKVNWJJaqaAGWfEktRQWSOWpKaKbPwgvuGurfzu5S94oMay4Xm+xnP9nQfxxs89b037vOeH/7Cm/c25+ktXrUu/49hI5+vKK76xLv2uxow1YklqayNcrJv8ObskrdJcaWKcbTlJjk7y5ZHt9iSvn9dma5KPJflKkp1JXr1Un86IJQ1XrX1poqp2AU8BSDIN3Ah8dF6z3wK+UVUnJXkIsCvJWVX1o4X6NIglDdYD8Mm6E4BrquraBV76oCQBDgRuBe5drBODWNKgVY39lMOSXDHyeEdV7Vik7cnA2QvsPwM4H9gNHAT8clXNLvaCBrGkwSrCzPgz4j1VdexyjZJsBl4IvHmBwy8Avgw8F3gM8Kkkl1TV7Qv15cU6SYM2WxlrG8PPA1+sqpsWOPZq4LzqXA18C3jcYh05I5Y0WFUwM7tuy9deysJlCYDr6OrHlyR5GHA08H8X68ggljRo6/GBjiQHAM8Dfn1k328AVNWZwOnA+5N8DQjw+1W1Z7H+DGJJg7aKi3Ur6LPuAg6dt+/MkZ93A89faX8GsaTBqsp6libWjEEsadDGvADXhEEsabAKmFl09e7kMIglDdp61IjXmkEsabDWefnamjGIJQ2apQlJaqgKZp0RS1I7XqyTpAngxTpJaqk2xow4tcTbRZJbgPk3PN6bbKuqh6y0sefL8zUmz9d4xjpfANuOOrbe/J4rlm844nXb84WV3AZzLS05Ix73l97beb7G4/kaj+drfLVBZsSWJiQN2lJ/9U8Kg1jSoM3MtB7B8gxiSYNlaUKSJsDsjKUJSWrGGbEkTYDZWWfEktRMd6+J1qNYnkEsacCKGWvEktROFQaxJLXmBzokqSFnxJI0AQxiSWqoqvxAhyS1NrMB1q9NtR6AJK2Xbh1xjbUtJ8nRSb48st2e5PULtHtOf3xnkouW6tMZsaRBW+vSRFXtAp4CkGQauBH46GibJAcDfwZsr6rrkjx0qT4NYkmDVVXMrO/NJk4Arqmq+d+ccgpwXlVd14/j5qU6MYglDdfqlq8dlmT0+5V2VNWORdqeDJy9wP6jgH2SfAY4CPhPVfWBxV7QIJY0WAXU+Df92bOS76xLshl4IfDmBQ5vAp5KN2PeAnwuyd9V1ZUL9WUQSxqu9S1N/Dzwxaq6aYFjNwDfraq7gLuSXAw8GVgwiF01IWmwCpidmR1rG8NLWbgsAfBXwDOTbEqyP3Ac8M3FOnJGLGm41mlGnOQA4HnAr4/s+43uJevMqvpmkk8AXwVmgf9aVV9frD+DWNJgzc2I17zfruRw6Lx9Z857/E7gnSvpzyCWNFzlN3RIUmO1LjPitWYQSxqsKpi5d6b1MJZlEEsarnJGLElNrfIDHQ84g1jScBXMzFiakKRmyot1ktSYF+skqa3uq5IMYklqyot1ktRQd2N4Z8SS1E7BrDViSWqncEYsSW0V1KzL1ySpIVdNSFJTVbUhasSpmvylHZK0Gv23ZBw25tP2VNX29RjPYgxiSWrMLw+VpMYMYklqzCCWpMYMYklqzCCWpMb+H1Qpcwt2eQywAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAADgCAYAAAA5U2wdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAATXUlEQVR4nO3de5RdZX3G8e8zMwm5EiAXVCohgCDgAoRQEZSq4RJUsCwVImIBb4AuFSxqWa2iUFeLUGsVNU2rIIJRQGi5yK1eIMEbAVGINlwKCSYKDJGEhItk5tc/9h7ZHM9l9uQc3jN7ns9ae2XO3u959zt7TZ7zzm9fRhGBmZml05N6AGZmY52D2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCPMZJeK2nFZrw/JO08zLaflnRx/vX2kjZI6h3pvodL0jsl3djp/Zi1i4N4lJN0hqTratbd22DdgohYEhG7vrCjhIhYFRFTImKgnf1K2iH/cOgr7OuSiDi0nfvJ97W/pJskrZX0qKTLJL24sH0LSQslPZy3uVrSdoXt20i6UtJGSSslHdvuMdro5CAe/W4BDhiaaebBMA54Zc26nfO2XUeZ0fCzuDWwCNgBmA08AVxQ2P4R4NXAnsBLgD8AXyps/zLwR2Bb4J3AVyXt0fFRW9cbDT/81txtZMG7d/76tcAPgRU16+6PiDWSXifpt0NvlvSgpNMl/UrSOknfkTShsP1jkn4naY2kdzcbiKQ5km6W9ISkm4AZhW3Pm7lK+pGkz0q6FXgS2FHSywszzhWSji68f6Kkf8lnkuskLZU0kec+XB7PSx+vlnSCpKWF9x4g6bb8fbdJOqCw7UeSzpZ0az7uGyX9adxFEXFdRFwWEesj4kngfODAQpM5wA0R8XBEPA18B9gj389k4K3AJyNiQ0QsBa4C3tXsmNrY4CAe5SLij8DPgIPyVQcBS4ClNeuazYaPBuaTBcmewAkAkuYDpwOHAC8DDm4xnG8Bt5MF8NnA8S3avwt4PzAVeBS4Ke9jFrAA+Iqk3fO25wH7AgcA2wAfBwYL3+NWeenjJ8UdSNoGuBb4IjAd+DxwraTphWbHAifm+x2ff8/DcRCwvPD6a8CBkl4iaRLZrHeoRLQLsCki7im0/yV5UNvY5iCuhpt5LpBeSxbES2rW3dzk/V+MiDURsRa4mudm0kcDF0TE3RGxEfh0ow4kbQ/sRzbjeyYibsn7aubCiFgeEZvIPggejIgLImJTRPwC+C7w9rxs8W7gIxGxOiIGIuLHEfFMi/4B3gTcGxHfzPtdDPwvcEShzQURcU9EPAVcWvj+G5K0J/Ap4GOF1fcCDwGrgfXAbsBZ+bYp+bqidWQfQjbGOYir4RbgNfnsb2ZE3Av8mKx2vA3wCprPiH9f+PpJstCArM75UGHbyiZ9vAT4Qx7Yw2lPTd+zgVdJenxoIZtRvohshj0BuL9Ff43GVTuOlcB2hdeNvv+68qtGriP7YFhS2PRlYAuymfdk4AqemxFvALas6WpLsjqzjXEO4mr4CTANeB9wK0BErAfW5OvWRMQDI+j3d8BLC6+3b9F267wWOpz2AMVH/z0E3BwRWxWWKRFxCtAPPA3s1KKPetaQhXzR9mSz1tIkzQb+Bzg7Ir5Zs3lvsln+2ny2/iXgL/Oa8z1An6SXFdrvxfNLGzZGOYgrIP+VehnwUbKSxJCl+bqRXi1xKXCCpN3zmueZTcawMh/DZySNl/Qanv/rfyvXALtIepekcfmyn6TdImIQ+Drw+bz+2puflNuCrLY8COzYoN/v5f0eK6lP0jHA7vn+SskvRfsBcH5ELKzT5DbgbyRNkzQO+ADZh2B//pvCFcBZkiZLOhB4C1Ab5jYGOYir42ayk01LC+uW5OtGFMQRcR3wBbLwuS//t5ljgVcBa8lC+6IS+3oCOJTsJN0asnLBOWS/6kN2Au0usrBbm2/rya9e+Cxwa17S2L+m38eANwN/CzxGdpLvzRHRP9yxFbyXLPA/nV+hsUHShsL208lm7veSfUC8ETiqsP0DwETgEWAxcEpEeEZsyA+GNzNLyzNiM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2Mwssb7UAzAz65R9eyfH+hgo9Z774pkbImJ+h4ZUl4PYzCrrCQ1y/lY7lXrP/LW/ntGh4TTkIDaz6hL09Cn1KFpyEJtZZalH9E7s/lNhDmIzq64eHMRmZilJ0DveQWxmlpBQj2vEZmbJZDPi3tTDaMlBbGbVJdE7zqUJM7NkJOgZ1/0z4u7/qDAzG6l8Rlxmad2lTpO0XNLdkhZLmlCz/aOSfi3pV5K+L2l2qz4dxGZWWVJ2LXGZpXl/2g74MDA3Il4B9AILapr9It++J3A58LlW43RpwsyqS9DT1/bSRB8wUdKzwCRgTXFjRPyw8PKnwHHD6dDMrJI0spN1MyQtK7xeFBGLACJitaTzgFXAU8CNEXFjk77eA1zXaocOYjOrrpHNiPsjYm7d7qStgbcAc4DHgcskHRcRF9dpexwwF/irVjt0jdjMKqxcfXgYN38cDDwQEY9GxLPAFcABf7ZX6WDg74EjI+KZVp16RmxmlaX214hXAftLmkRWmpgHFMsYSHol8O/A/Ih4ZDidOojNrLrafENHRPxM0uXAHcAmsiskFkk6C1gWEVcB5wJTyMoWAKsi4shm/TqIzayyOjAjJiLOBM6sWf2pwvaDy/bpIDazClMnLl9rOwexmVVXfkNHt3MQm1mFCfV6RmxmlkwnasSd4CA2s+qSa8RmZsmNhhpx0jvrJG0oLIOSniq8fmfe5jRJv5e0XtLXJW2RcswptTpekl4h6QZJ/ZIi9Xi7wTCO2fGSbs9/vn4r6XOSxuwEZRjHa4GkFZLWSXpE0jckbZl63I1IQn29pZYUkgZxREwZWsjuWDmisO4SSYcBf0d298psYEfgMwmHnFSr4wU8C1xK9qARY1jHbBJwKjADeBXZz9rpyQac2DCO163AgRExjez/Yx/wjwmH3Jygp7e31JJCt3/yHw98LSKWA0g6G7iELJytRkSsAFZI2jn1WEaLiPhq4eVqSZcAr081nm4XEQ/VrBoAuvfnLZ8Rd7tuD+I9gP8uvP4lsK2k6RHxWKIxWbUdBCxPPYhuJuk1wLXAlsCTwFFpR9SYULJZbhndHsRTgHWF10NfTwUcxNZWkt5N9tjC96YeSzeLiKXAtPyvVbwPeDDtiJoQMApO1nV7EG8g+9QdMvT1EwnGYhUm6a+BfwIOjoj+xMMZFfKHpF8PfBvYJ/V4GhkNl691+/OIlwN7FV7vBTzssoS1k6T5wH+QnZi6K/V4Rpk+YKfUg2hI2Z11ZZYUuj2ILwLeI2l3SVsB/wBcmHREXUyZCcD4/PWEsXy533BIegPZCeC3RsTPU4+n2+WXsG2ffz0b+Czw/bSjakwO4s0XEdeT/QXUH5JdSrOSP3/8nD1nNtnDqodONj0FrEg3nFHhk8A04HuF62Vb/o2xMWx34MeSNpJdyraCrE7cvXp6yi0JKMLX/ZtZNe0z+8VxyyeOL/WeqR885/ZGf7OuU7r9ZJ2Z2Wbx09fMzFLyDR1mZokJ8IzYzCwlZQ8l7nJNg3iaemMW416osXSd+3imPyJmDre9j1f646VxnflPt8WW7b8K8O7H1pU8Xn0xq6e9x2vcpM7MFie+aHrb+7zjvlWljheQ5XBve+ebkk4ju/sygLuAEyPi6cL2Lcguvd2X7A7gYyLiwWZ9Nh3hLMbxr72zN3PYo9cRA/esLNPexyv98ZowszMfhDseOqftfe504TXljlfPOL44eYe2jmHWPlu3tb8he3y83JUKwzHxTSeXOl6QPWuinSfr8tu6PwzsHhFPSboUWMDz7294D/CHiNhZ0gLgHOCYZv129XXEZmabRcpqxGWW1vqAiflzqycBa2q2vwX4Rv715cA8qXl9xEFsZtUmlVtghqRlheX9Q11FxGrgPLIbzH4HrIuIG2v2uB3wUN5+E9nDyprWanyyzsyqS4LyNeL+Rjd0SNqabMY7B3gcuEzScRFx8eYM0zNiM6u29pYmDgYeiIhHI+JZ4ArggJo2q4GXAuTli2m0eGyvg9jMqqv9NeJVwP6SJuV133nAb2raXEX214UA3gb8IFo8S8KlCTOrtp72XTURET+TdDlwB7AJ+AWwSNJZwLKIuAr4GvBNSfcBa8muqmjKQWxm1SW1/YlqEXEmf/4UyE8Vtj8NvL1Mnw5iM6u2Ns6IO8VBbGbVNVQj7nIOYjOrrECEZ8RmZomp+y8OcxCbWXXJM2Izs/RcIzYzS8gzYjOz1BzEZmbJhU/WmZklJPmGDjOzlAJcmjAzS0sMapQH8dQdZzLvn9/frEm1HX16qeY+XiM4Xuec1NYhaMKktvY3ZP2cfdrf6YXXlGq+5ZyZvP7cU9o6hIFZf9HW/oZcPnBUB3o9eWRvc43YzCydkBh0acLMLC3XiM3MkqpAjdjMbFSTCAexmVk6QVYn7nYOYjOrNJcmzMySGh1XTXT/BXZmZiMUyk7WlVlakbSrpDsLy3pJp9a0mSbpakm/lLRc0onN+vSM2MwqLWhvjTgiVgB7A0jqBVYDV9Y0+yDw64g4QtJMYIWkSyLij/X6dBCbWaV1uEY8D7g/IlbWrA9gqiQBU4C1wKZGnTiIzayyYmTXEc+QtKzwelFELGrQdgGwuM7684GrgDXAVOCYiBhstEMHsZlV2mD5U2H9ETG3VSNJ44EjgTPqbD4MuBN4A7ATcJOkJRGxvl5fPllnZpUViEF6Sy0lHA7cEREP19l2InBFZO4DHgBe3qgjB7GZVVqgUksJ76B+WQJgFVn9GEnbArsC/9eoI5cmzKzCNJLSROtepcnAIcBJhXUnA0TEQuBs4EJJdwECPhER/Y36cxCbWWUFMBjtD+KI2AhMr1m3sPD1GuDQ4fbnIDazSuvEjLjdHMRmVmEiwg/9MTNLJoABz4jNzBKKztSI281BbGaVFWj0B/Havm1ZPP2jL9RYulC5v0rs41X+eH1r69PaOoJnG97Nv3nuX/JUZzou4bGeWVw89UNt7bN/TcO7bjfL1Rfd0pF+R2LANWIzs7R8ss7MLKFKlCbMzEa1cGnCzCypTt1Z124OYjOrtIjUI2jNQWxmlRWIAc+IzczSGnSN2MwsnQgYGHQQm5kl5asmzMwS88k6M7OEIuTShJlZaj5ZZ2aWUAADnXmuUVs5iM2s0kZDjbj7r3Q2MxuhocvXyiytSNpV0p2FZb2kU+u0e12+fbmkm5v16RmxmVVau0sTEbEC2BtAUi+wGriy2EbSVsBXgPkRsUrSrGZ9OojNrLIiYLCzV03MA+6PiJU1648FroiIVdk44pFmnTiIzayyRniyboakZYXXiyJiUYO2C4DFddbvAoyT9CNgKvBvEXFRox06iM2s0kZwsq4/Iua2aiRpPHAkcEadzX3AvmQz5onATyT9NCLuqdeXg9jMqis6evna4cAdEfFwnW2/BR6LiI3ARkm3AHsBdYNY0eTjQtKjQG3tYyyZHREzh9vYx8vHqyQfr3JKHS+A2bvMjTO+tKx1w4JT5uv2Yc6Ivw3cEBEX1Nm2G3A+cBgwHvg5sCAi7q7XV9MZcdlveqzz8SrHx6scH6/yokMzYkmTgUOAkwrrTs72GQsj4jeSrgd+BQwC/9kohMGlCTOruGa/9W9GnxuB6TXrFta8Phc4dzj9OYjNrNIGBlKPoDUHsZlVVqdKE+3mIDazShsc6P6HTTiIzayyPCM2M+sCg4OeEZuZJZM9ayL1KFpzEJtZhQUDrhGbmaUTgYPYzCy1TtzQ0W4OYjOrLM+Izcy6gIPYzCyhiPANHWZmqQ2MguvXHMRmVlnZdcSeEZuZJeXShJlZQhHBwCh42ISD2Myqy5evmZmlFUC4RmxmlpBLE2ZmaQUwOAqCuCf1AMzMOiafEZdZWpG0q6Q7C8t6Sac2aLufpE2S3tasT8+IzayyOjEjjogVwN4AknqB1cCVte3ybecAN7bq00FsZtXV+Rs65gH3R8TKOts+BHwX2K9VJw5iM6uwGMmMeIakZYXXiyJiUYO2C4DFtSslbQccBbweB7GZjWURMLBpoOzb+iNibqtGksYDRwJn1Nn8BeATETEoqeUOHcRmVl0xohnxcB0O3BERD9fZNhf4dh7CM4A3StoUEf9VryMHsZlVVodv6HgHdcoSABExZ+hrSRcC1zQKYXAQm1mVBQwMlC5NtCRpMnAIcFJh3ckAEbGwbH8OYjOrrBjZybrW/UZsBKbXrKsbwBFxQqv+HMRmVl0jO1n3gnMQm1llZX8qyUFsZpaUn75mZpZQ9mB4z4jNzNIJGHSN2MwsncAzYjOztAJisPufR+wgNrMK81UTZmZJRcSoqBErovsv7TAzGwlJ15M9dKeM/oiY34nxNOIgNjNLzH+zzswsMQexmVliDmIzs8QcxGZmiTmIzcwS+3+vaJYDteIEIAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -574,10 +590,10 @@ "source": [ "from floris.tools.visualization import plot_rotor_values\n", "\n", - "fig, _, _ , _ = plot_rotor_values(fi.floris.flow_field.u, wd_index=0, ws_index=0, n_rows=1, n_cols=4, return_fig_objects=True)\n", + "fig, _, _ , _ = plot_rotor_values(fi.floris.flow_field.u, findex=0, n_rows=1, n_cols=4, return_fig_objects=True)\n", "fig.suptitle(\"Wind direction 270\")\n", "\n", - "fig, _, _ , _ = plot_rotor_values(fi.floris.flow_field.u, wd_index=1, ws_index=0, n_rows=1, n_cols=4, return_fig_objects=True)\n", + "fig, _, _ , _ = plot_rotor_values(fi.floris.flow_field.u, findex=1, n_rows=1, n_cols=4, return_fig_objects=True)\n", "fig.suptitle(\"Wind direction 280\")\n", "\n", "plt.show()" @@ -618,7 +634,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "shape of xs: (2, 1, 4, 3, 3)\n", + "shape of xs: (2, 4, 3, 3)\n", " 2 wd x 2 ws x 4 turbines x 3 x 3 grid points\n" ] }, @@ -646,9 +662,9 @@ "print(\" 2 wd x 2 ws x 4 turbines x 3 x 3 grid points\")\n", "\n", "# Lets plot just one wd/ws conditions\n", - "xs = xs[1, 0, :, :, :]\n", - "ys = ys[1, 0, :, :, :]\n", - "zs = zs[1, 0, :, :, :]\n", + "xs = xs[1, :, :, :]\n", + "ys = ys[1, :, :, :]\n", + "zs = zs[1, :, :, :]\n", "\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111, projection=\"3d\")\n", @@ -671,8 +687,9 @@ "id": "34bc7865", "metadata": {}, "source": [ - "Calculating AEP in FLORIS v3 leverages the vectorized framework to\n", - "substantially reduce the computation time with respect to v2.4.\n", + "FLORIS leverages vectorized operations on the CPU to reduce the computation\n", + "time for bulk calculations, and this is especially meaningful for calculating\n", + "annual energy production (AEP) on a wind rose.\n", "Here, we demonstrate a simple AEP calculation for a 25-turbine farm\n", "using several different modeling options. We make the assumption\n", "that every wind speed and direction is equally likely. We also\n", @@ -693,9 +710,9 @@ "Calculating AEP for 1440 wind direction and speed combinations...\n", "Number of turbines = 25\n", "Model AEP (GWh) Compute Time (s)\n", - "Jensen 843.620 1.230 \n", - "GCH 843.905 5.812 \n", - "CC 839.263 8.941 \n" + "Jensen 643.122 1.179 \n", + "GCH 646.972 3.742 \n", + "CC 633.776 6.833 \n" ] } ], @@ -703,23 +720,33 @@ "import time\n", "from typing import Tuple\n", "\n", - "wind_directions = np.arange(0.0, 360.0, 5.0)\n", - "wind_speeds = np.arange(5.0, 25.0, 1.0)\n", + "# Using Numpy.meshgrid, we can combine 1D arrays of wind speeds and wind directions to produce\n", + "# combinations of both. Though the input arrays are not the same size, the resulting arrays\n", + "# will be the same size.\n", + "wind_directions, wind_speeds = np.meshgrid(\n", + " np.arange(0.0, 360.0, 5), # wind directions 0 to 360 degrees (exclusive) in 5 degree increments\n", + " np.arange(8.0, 12.0, 0.2), # wind speeds from 8 to 12 m/s in 0.2 m/s increments\n", + " indexing=\"ij\"\n", + ")\n", + "# meshgrid returns arrays with shape (len(wind_speeds), len(wind_directions)), so we \"flatten\" them\n", + "wind_directions = wind_directions.flatten()\n", + "wind_speeds = wind_speeds.flatten()\n", "\n", - "num_bins = len(wind_directions) * len(wind_speeds)\n", - "print(f\"Calculating AEP for {num_bins} wind direction and speed combinations...\")\n", + "n_findex = len(wind_directions)\n", + "print(f\"Calculating AEP for {n_findex} wind direction and speed combinations...\")\n", "\n", "# Set up a square 25 turbine layout\n", "N = 5 # Number of turbines per row and per column\n", "D = 126.0\n", "\n", - "X, Y = np.meshgrid(\n", + "# Create the turbine locations using the same method as above\n", + "x, y = np.meshgrid(\n", " 7.0 * D * np.arange(0, N, 1),\n", " 7.0 * D * np.arange(0, N, 1),\n", ")\n", - "X = X.flatten()\n", - "Y = Y.flatten()\n", - "print(f\"Number of turbines = {len(X)}\")\n", + "x = x.flatten()\n", + "y = y.flatten()\n", + "print(f\"Number of turbines = {len(x)}\")\n", "\n", "# Define several models\n", "fi_jensen = FlorisInterface(\"jensen.yaml\")\n", @@ -727,9 +754,9 @@ "fi_cc = FlorisInterface(\"cc.yaml\")\n", "\n", "# Assign the layouts, wind speeds and directions\n", - "fi_jensen.reinitialize(layout_x=X, layout_y=Y, wind_directions=wind_directions, wind_speeds=wind_speeds)\n", - "fi_gch.reinitialize(layout_x=X, layout_y=Y, wind_directions=wind_directions, wind_speeds=wind_speeds)\n", - "fi_cc.reinitialize(layout_x=X, layout_y=Y, wind_directions=wind_directions, wind_speeds=wind_speeds)\n", + "fi_jensen.reinitialize(layout_x=x, layout_y=y, wind_directions=wind_directions, wind_speeds=wind_speeds)\n", + "fi_gch.reinitialize(layout_x=x, layout_y=y, wind_directions=wind_directions, wind_speeds=wind_speeds)\n", + "fi_cc.reinitialize(layout_x=x, layout_y=y, wind_directions=wind_directions, wind_speeds=wind_speeds)\n", "\n", "def time_model_calculation(model_fi: FlorisInterface) -> Tuple[float, float]:\n", " \"\"\"\n", @@ -748,7 +775,7 @@ " \"\"\"\n", " start = time.perf_counter()\n", " model_fi.calculate_wake()\n", - " aep = model_fi.get_farm_power().sum() / num_bins / 1E9 * 365 * 24\n", + " aep = model_fi.get_farm_power().sum() / n_findex / 1E9 * 365 * 24\n", " end = time.perf_counter()\n", " return aep, end - start\n", "\n", @@ -775,7 +802,8 @@ "id": "f5777dae", "metadata": {}, "source": [ - "FLORIS V3 further includes new optimization routines for the design of wake steering controllers. The SerialRefine is a new method for quickly identifying optimum yaw angles." + "FLORIS includes a set of optimization routines for the design of wake steering controllers.\n", + "`SerialRefine` is a new method for quickly identifying optimum yaw angles." ] }, { @@ -786,11 +814,11 @@ "outputs": [], "source": [ "# Demonstrate on 7-turbine single row farm\n", - "X = np.linspace(0, 6*7*D, 7)\n", - "Y = np.zeros_like(X)\n", - "wind_speeds = [8.]\n", - "wind_directions = np.arange(0., 360., 2.)\n", - "fi_gch.reinitialize(layout_x=X, layout_y=Y, wind_directions=wind_directions, wind_speeds=wind_speeds)" + "x = np.linspace(0, 6*7*D, 7)\n", + "y = np.zeros_like(x)\n", + "wind_directions = np.arange(0.0, 360.0, 2.0)\n", + "wind_speeds = 8.0 * np.ones_like(wind_directions)\n", + "fi_gch.reinitialize(layout_x=x, layout_y=y, wind_directions=wind_directions, wind_speeds=wind_speeds)" ] }, { @@ -798,7 +826,22 @@ "execution_count": 14, "id": "7d773cdc", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "UserWarning", + "evalue": "Variable input must have shape (n_wind_directions, n_wind_speeds, nturbs)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mUserWarning\u001b[0m Traceback (most recent call last)", + "Input \u001b[0;32mIn [14]\u001b[0m, in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfloris\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01moptimization\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01myaw_optimization\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01myaw_optimizer_sr\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m YawOptimizationSR\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Define the SerialRefine optimization\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m yaw_opt \u001b[38;5;241m=\u001b[39m \u001b[43mYawOptimizationSR\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mfi\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfi_gch\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[43m \u001b[49m\u001b[43mminimum_yaw_angle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Allowable yaw angles lower bound\u001b[39;49;00m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximum_yaw_angle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m25.0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Allowable yaw angles upper bound\u001b[39;49;00m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mNy_passes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m4\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mexclude_downstream_turbines\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mexploit_layout_symmetry\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/Development/floris/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py:49\u001b[0m, in \u001b[0;36mYawOptimizationSR.__init__\u001b[0;34m(self, fi, minimum_yaw_angle, maximum_yaw_angle, yaw_angles_baseline, x0, Ny_passes, turbine_weights, exclude_downstream_turbines, exploit_layout_symmetry, verify_convergence)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 44\u001b[0m \u001b[38;5;124;03mInstantiate YawOptimizationSR object with a FlorisInterface object\u001b[39;00m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;124;03mand assign parameter values.\u001b[39;00m\n\u001b[1;32m 46\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 48\u001b[0m \u001b[38;5;66;03m# Initialize base class\u001b[39;00m\n\u001b[0;32m---> 49\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 50\u001b[0m \u001b[43m \u001b[49m\u001b[43mfi\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfi\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 51\u001b[0m \u001b[43m \u001b[49m\u001b[43mminimum_yaw_angle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mminimum_yaw_angle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 52\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximum_yaw_angle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaximum_yaw_angle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 53\u001b[0m \u001b[43m \u001b[49m\u001b[43myaw_angles_baseline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43myaw_angles_baseline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 54\u001b[0m \u001b[43m \u001b[49m\u001b[43mx0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mx0\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43mturbine_weights\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mturbine_weights\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 56\u001b[0m \u001b[43m \u001b[49m\u001b[43mcalc_baseline_power\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 57\u001b[0m \u001b[43m \u001b[49m\u001b[43mexclude_downstream_turbines\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexclude_downstream_turbines\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mexploit_layout_symmetry\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexploit_layout_symmetry\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 59\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_convergence\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_convergence\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 60\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 62\u001b[0m \u001b[38;5;66;03m# Start a timer for FLORIS computations\u001b[39;00m\n\u001b[1;32m 63\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtime_spent_in_floris \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n", + "File \u001b[0;32m~/Development/floris/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py:135\u001b[0m, in \u001b[0;36mYawOptimization.__init__\u001b[0;34m(self, fi, minimum_yaw_angle, maximum_yaw_angle, yaw_angles_baseline, x0, turbine_weights, normalize_control_variables, calc_baseline_power, exclude_downstream_turbines, exploit_layout_symmetry, verify_convergence)\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 134\u001b[0m b \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfi\u001b[38;5;241m.\u001b[39mfloris\u001b[38;5;241m.\u001b[39mfarm\u001b[38;5;241m.\u001b[39myaw_angles\n\u001b[0;32m--> 135\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39myaw_angles_baseline \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_unpack_variable\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m np\u001b[38;5;241m.\u001b[39many(np\u001b[38;5;241m.\u001b[39mabs(b) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0.0\u001b[39m):\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 138\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mINFO: Baseline yaw angles were not specified and \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 139\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mwere derived from the floris object.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 140\u001b[0m )\n", + "File \u001b[0;32m~/Development/floris/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py:245\u001b[0m, in \u001b[0;36mYawOptimization._unpack_variable\u001b[0;34m(self, variable, subset)\u001b[0m\n\u001b[1;32m 235\u001b[0m variable \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mtile(\n\u001b[1;32m 236\u001b[0m variable,\n\u001b[1;32m 237\u001b[0m (\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 241\u001b[0m )\n\u001b[1;32m 242\u001b[0m )\n\u001b[1;32m 244\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(np\u001b[38;5;241m.\u001b[39mshape(variable)) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m:\n\u001b[0;32m--> 245\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mUserWarning\u001b[39;00m(\n\u001b[1;32m 246\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mVariable input must have shape (n_wind_directions, n_wind_speeds, nturbs)\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 247\u001b[0m )\n\u001b[1;32m 249\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m variable\n", + "\u001b[0;31mUserWarning\u001b[0m: Variable input must have shape (n_wind_directions, n_wind_speeds, nturbs)" + ] + } + ], "source": [ "from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR\n", "\n", @@ -815,32 +858,10 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "1ccb9ab7", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Serial Refine] Processing pass=0, turbine_depth=0 (0.0%)\n", - "[Serial Refine] Processing pass=0, turbine_depth=1 (7.1%)\n", - "[Serial Refine] Processing pass=0, turbine_depth=2 (14.3%)\n", - "[Serial Refine] Processing pass=0, turbine_depth=3 (21.4%)\n", - "[Serial Refine] Processing pass=0, turbine_depth=4 (28.6%)\n", - "[Serial Refine] Processing pass=0, turbine_depth=5 (35.7%)\n", - "[Serial Refine] Processing pass=0, turbine_depth=6 (42.9%)\n", - "[Serial Refine] Processing pass=1, turbine_depth=0 (50.0%)\n", - "[Serial Refine] Processing pass=1, turbine_depth=1 (57.1%)\n", - "[Serial Refine] Processing pass=1, turbine_depth=2 (64.3%)\n", - "[Serial Refine] Processing pass=1, turbine_depth=3 (71.4%)\n", - "[Serial Refine] Processing pass=1, turbine_depth=4 (78.6%)\n", - "[Serial Refine] Processing pass=1, turbine_depth=5 (85.7%)\n", - "[Serial Refine] Processing pass=1, turbine_depth=6 (92.9%)\n", - "Optimization wall time: 2.085 s\n" - ] - } - ], + "outputs": [], "source": [ "start = time.perf_counter()\n", "\n", @@ -863,28 +884,15 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "686548be", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAJNCAYAAADgY3uzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACEcElEQVR4nOzdfXxU9Zn//9dFCAmSgBgwciMGlVu1DTeKN6hBpaJr621VtEisK92ubWW/tVu6dlva/nbr7rZd123tt+5WgjfVVmurX1vbWiXeVEWDUOVGhaJouFEMAkkgEML1+2MmGOmcycxkzkxm5v18PObBzDlzzrnm4kxy5fP5nM8xd0dEREREwtcn2wGIiIiIFAoVXiIiIiIZosJLREREJENUeImIiIhkiAovERERkQxR4SUiIiKSIX2zHUAihgwZ4lVVVaEeo7W1lQEDBoR6jFyl3ARTboIpN8GUm9iUl2DKTbDemJtly5a97+5DY63LicKrqqqKhoaGUI9RX19PTU1NqMfIVcpNMOUmmHITTLmJTXkJptwE6425MbMNQevU1SgiIgXpoYceCv2PepGDqfASEZGCs3//fi6//HKmTZvGP/7jP9LW1pbtkKRAqPASEZGCs3v3bjo6Ohg9ejT/8R//QXV1NRs3bsx2WFIAcmKMl4iISDq1tLQA8OUvf5mjjz6aWbNm8bOf/YyvfOUrWY6s8LS3t9PY2Jhyq+OgQYNYs2ZNmqNKTGlpKSNHjqS4uDjhbVR4iYhIweksvMrKyjj33HMZPXo0S5cuzXJUhamxsZHy8nKqqqows6S3b25upry8PITI4nN3mpqaaGxsZPTo0Qlvp65GEREpOM3NzUCk8AKYNm2aCq8saWtro6KiIqWiK5vMjIqKiqRb6lR4iYhIwena4gWRwquxsZFNmzZlM6yClWtFV6dU4k6o8DKzwWZ2nJkdbWYq1kREJKfFKrwAtXoVmKamJqqrq6muruaII45gxIgRB14/8sgjjBs3jmOPPZZbbrklbccMHONlZoOAG4DZQD9gK1AKVJrZC8Dt7r4kbZGIiIhkyMGF16RJkyguLmbp0qVcfPHF2QxNMqiiooIVK1YAsHDhQsrKyrjpppvo6Ohg7NixPP7444wcOZITTzyRT33qU0ycOLHHx4zXevUg8A5wuruPc/fp7j7V3Y8EbgEuNLPrgjY2syPNbImZrTazVWZ2Y3T5YWb2uJmtjf47uMefQkREJAkHF16lpaVUV1erxUsAePHFFzn22GM5+uij6devH1deeSUPP/xwWvYdWHi5+0x3v9vdt8dYt8zd57v7T+Psex/wZXefCJwM3GBmE4EFwBPuPgZ4IvpaREQkYw4uvCDS3djQ0EBHR0e2wpJeYuPGjRx55JEHXo8cOTJt87x1O52EmU2OsXgHsMHd9wVt5+6bgc3R581mtgYYAVwI1ETfthioB76aVNQiIiI9EFR4/fCHP2T16tWccMIJ2QqtoM2fP/9A11+iOjo6KCoqClxfXV3Nrbfe2rPA0iiRgfK3Ay8AdwD/AzwPPAC8bmafSOQgZlYFTAKWApXRogxgC1CZZMwiIiI90tLSQp8+fSgtLT2wTAPspdOIESN45513DrxubGxkxIgRadl3IhOobgKuc/dVANHuwm8D/wg8BPwh3sZmVgb8Epjv7ju7Xnrp7m5mHrDdPGAeQGVlJfX19QmEmrqWlpbQj5GrlJtgyk0w5SaYchNbJvPy2muv0b9/f5566qkDy9ydgQMH8utf/5pjjz02I3EkKp/PmUGDBh2YV+073/lO0tt31+IFH87bFs+ePXsoLi6mubmZ8ePH88Ybb/Dqq68yfPhwfvazn/HTn/405n7a2tqS+r9JpPAa21l0Abj7ajMb7+7ru5u/wsyKiRRd97r7Q9HF75rZMHffbGbDgPdibevudxBpZWPq1KleU1OTQKipq6+vJ+xj5CrlJphyE0y5CabcxJbJvNxzzz0MGjTor4536qmn8vbbb/e6/598PmfWrFnTo5nn0zVzfUlJCSUlJQf29aMf/YhLL72Ujo4OPvvZz3LSSSfF3K60tJRJkyYlfJxECq9VZvZj4P7o6yuA1WZWArQHbWSRquynwBp3/0GXVY8Ac4lcGTkXSM9lAiIiIglqaWn5yPiuTtOmTeM73/lO4HrJXwsXLvzI6/PPP5/zzz8/7cdJZIxXLbAOmB99rI8uawdmxNnuNGAOcJaZrYg+zidScM00s7XAOdHXIiIiGRNUWJ1yyins37+fF154IQtRSSHotsXL3Xeb2e3Ao+7++kGrW+Js9ywQ1Bd5duIhioiIpFdQ4XXqqadSVFREfX0955xzThYik3zXbYuXmX0KWAH8Lvq62sweCTkuERGR0AQVXuXl5UydOjVvB7JL9iXS1fhN4CRgO4C7rwBGhxeSiIhIuOKN4aqpqeHFF1+ktbU1w1EVLveYExz0eqnEnUjh1e7uOw4+VtJHEhER6SW6K7za29t5/vnnMxxVYSotLaWpqSnnii93p6mp6SNzwSUi0asarwKKzGwM8CXguRRiFBER6RXiFV7Tp0+nqKiIJUuWaJxXBowcOZLGxka2bt2a0vZtbW1JFz/pUlpaysiRI5PaJpHC64vAzcAe4D7g90DyM5yJiIj0Au5OS0tL4NxPZWVlnHjiiRrnlSHFxcWMHp36CKb6+vqk5tHKtm67Gt19l7vf7O4nuvvU6PO2TAQnIiKSbnv27KGjoyPuPF0a5yVhiVt4mdlcM3vZzFqjjwYzuyZTwYmIiKRbrBtkH6ympoZ9+/bx3HMaWSPpFVh4mdlcIhOmfhkYDowgcn/GG81sTkaiExERSbNECq/TTjvtwHxeIukUr8Xr88DF7r7E3Xe4+3Z3fxK4FLghM+GJiIikVyKFV+c4ryVLlmQqLCkQ8Qqvge7+1sELo8sGhhWQiIhImBIpvABmzJjBSy+9RFNTUybCkgIRr/DaneI6ERGRXivRwuuKK65g37593H///ZkISwpEvMJrgpm9EuPxKjA+UwGKiIikU3NzM9B94fXxj3+c6upq6urqMhCVFIp483hNyFgUIiIiGZJoixdAbW0t8+fPZ+XKlRx//PFhhyYFIF6L19vuviHoAWBmlqE4RURE0iKZwuuqq66ib9++LF68OOywpEDEK7yWmNkXzWxU14Vm1s/MzjKzxcDccMMTERFJr2QKr6FDh3LBBRdw9913097eHnZoUgDiFV6zgA7gPjPbZGarzWw9sBaYDdzq7nVBG5vZnWb2npmt7LLsMDN73MzWRv8dnKbPISIikpDOwuuQQw5J6P3XXnst7777Lr///e/DDEsKRGDh5e5t7n67u58GHAWcDUx296Pc/Xp3X97NvuuIFG9dLQCecPcxwBPR1yIiIhnT0tLCgAED6NOn27vmAXDeeecxdOhQFi1aFHJkUggSOuvcvd3dN7v79kR37O5PA9sOWnwh0NlRvhi4KNH9iYiIpENLS0tC3YydiouL+dSnPsVTTz0VYlRSKBIr99On0t03R59vASozfHwRESlwyRZeABMmTKCpqUmTqUqPxZtOIlTu7mbmQevNbB4wD6CysjL0+2W1tLTonlwBlJtgyk0w5SaYchNbpvLy1ltvASR1rL179wJw//33c9xxx4UQVXw6Z4LlWm66LbzM7DrgaXdfm4bjvWtmw9x9s5kNA94LeqO73wHcATB16lSvqalJw+GD1dfXE/YxcpVyE0y5CabcBFNuYstUXkpLSzniiCOSOtbw4cP5p3/6J8rKyrLyf6dzJliu5SaRrsZRwE/MbL2ZPRCdYqI6xeM9wodTUMwFHk5xPyIiIilJpatx9OjR9O3bl9dffz2kqKRQdFt4ufs33f0s4DjgGeArwLLutjOz+4DngXFm1hhtObsFmGlma4Fzoq9FREQyJpXCq7i4mKOPPpo33ngjpKikUCTS1fh14DSgDFgO3ESkAIvL3WcHrDo7mQBFRETSKZXCC2DcuHFq8ZIeS6Sr8RKgAvgj8BDwcJcrE0VERHJKqoXX2LFjWbt2Lfv37w8hKikUiXQ1TibSLfgiMBN41cyeDTswERGRMPSkxWvPnj28/fbbIUQlhSKRrsbjgdOBM4GpwDsk0NUoIiLS2+zdu5e9e/dSXl6e9LZjx44F4I033qCqqirNkUmhSKSr8RZgIHAbMMHdZ7j7N8INS0REJP1aW1uBxG6QfbBx48YBaJyX9Ei3LV7ufkEmAhEREQlb5w2yUym8KisrKS8v15WN0iOJdDWOAb4LTARKO5e7+9EhxiUiIpJ2PSm8zExXNkqPJdLVuAj4MbAPmAHcBdwTZlAiIiJh6EnhBZFxXmrxkp5IpPDq7+5PAObuG9x9IfA34YYlIiKSfj0tvMaNG8fbb7/N7t270xmWFJDAwsvMfmtmo4E9ZtYHWGtmXzCzi4lMpioiIpJT0tHi5e6sW7cunWFJAYnX4rUI+D3wGDAA+BIwBfgMcE34oYmIiKRXOlq8QFc2SuoCCy93fwCYTKR161ngSmAl8ByRWwiJiIjklJ4WXmPGjAHQOC9JWXdXNe4FWoESoBzQfRJERCRn9bTwKisrY8SIEaxZsyadYUkBCSy8zGwW8APgEWCyu+/KWFQiIiIhaG5uBmDAgAEp72P69On89re/Zc+ePZSUlKQrNCkQ8cZ43Qx82t0XqOgSEZF80NLSQmlpKX37djuNZaDa2lq2bdvGo48+msbIpFDEG+N1uruvymQwIiIiYUr1BtldzZw5k+HDh1NXV5eeoKSgJDKPV9qZ2Swze93M1pnZgmzEICIihScdhVdRURFz5szhscceY8uWLWmKTApFxgsvMysCfgScR+Q2RLPNbGKm4xARkcKTjsILIt2NHR0d3HOPbuQiyclGi9dJwDp3X+/ue4H7gQuzEIeIiBSYdBVe48eP5+STT6aurg53T0NkUihSH12YuhHAO11eNwLTshDHAa+//joNDQ20t7dnM4xe689//rNyE0C5CabcBFNuYstEXjZu3Mjw4cPTsq9rr72Wz33ucyxatIgjjzwyLfsMonMmWLK5Oemkkxg0aFCIEcWXjcIrIWY2D5gHUFlZSX19fWjH+uEPf8gvf/nL0PYvIiK9x4gRI9LyO2X48OGUlpZy3XXX9TwoyZjbb7+dCRMmZO342Si8NgJd/zQYGV32Ee5+B3AHwNSpU72mpia0gEaNGsWZZ57J5MmTQztGLnv55ZeVmwDKTTDlJphyE1um8nLCCScwcODAtOxr9erVbNq0KS37ikfnTLBkc/Oxj32M8vLyECOKLxuF10vAmOgNuDcSuRXRVVmI44Cjjz6aE044gdNO052QYmlvb1duAig3wZSbYMpNbLmYl9GjRzN69OjQj5OLucmUXMuNZWNQoJmdD9wKFAF3uvu/dPP+rcCGkMMaArwf8jFylXITTLkJptwEU25iU16CKTfBemNujnL3obFWZKXw6o3MrMHdp2Y7jt5IuQmm3ARTboIpN7EpL8GUm2C5lpusTKAqIiIiUohUeImIiIhkiAqvD92R7QB6MeUmmHITTLkJptzEprwEU26C5VRuNMZLREREJEPU4iUiIiKSISq8RERERDJEhZeIiIhIhqjwEhEREckQFV4iIiIiGaLCS0RERCRDVHiJiIiIZIgKLxEREZEM6ZvtABIxZMgQr6qqCvUYra2tDBgwINRj5CrlJphyE0y5CabcxKa8BFNugvXG3Cxbtux9dx8aa11OFF5VVVU0NDSEeoz6+npqampCPUauUm6CKTfBlJtgyk1syksw5SZYb8yNmW0IWqeuRhERKUjTpk3jxz/+cbbDkAKjwktERArO3r17efHFF/n6179Oc3NztsORAqLCS0RECk5raysA27Zt47//+7+zHI0UkpwY4yUiIpJOLS0tAJSUlPD973+fL3zhCwwcODDLURWe9vZ2GhsbaWtrS3kfgwYNYs2aNWmMKnGlpaWMHDmS4uLihLdR4SUiIgWns/D64he/yPe+9z3++7//m5tvvjnLURWexsZGysvLqaqqwsxS2kdzczPl5eVpjqx77k5TUxONjY2MHj064e3U1SgiIgWns/Cqqanhggsu4Pvf/z47d+7MclSFp62tjYqKipSLrmwyMyoqKpJurVPhJSIiBaez8CorK+Of//mf+eCDD3jwwQezHFVhysWiq1MqsSfU1Whmg4HhwG7gLXffn/SRREREeomuhdfkyZMZPHgwL7zwAp/97GezHJlkUlNTE2effTYAW7ZsoaioiKFDI/OeTp48mUcffZTDDz+clStXpu2YgYWXmQ0CbgBmA/2ArUApUGlmLwC3u/uStEUiIiKSIV0LLzPjpJNOYunSpVmOSjKtoqKCFStWALBw4ULKysq46aabAHj66af5whe+wDXXXJPWY8branwQeAc43d3Huft0d5/q7kcCtwAXmtl1QRub2ZFmtsTMVpvZKjO7Mbr8MDN73MzWRv8dnNZPJCIi0o2uhRdEJlNduXLlgeUiZ5xxBocddlja9xvY4uXuM+OsWwYs62bf+4Avu/vLZlYOLDOzx4Fa4Al3v8XMFgALgK8mHbmIiEiKYhVe+/fvp6GhodfdfqZQzJ8//0DrUzI6OjooKiqKua66uppbb721Z4GlWbeD681scozHMWYWd3yYu29295ejz5uBNcAI4EJgcfRti4GLevQJREREktRZeHXeXPmkk04CUHejhC6RwfW3A5OBVwADjgdWAYPM7PPu/ofudmBmVcAkYClQ6e6bo6u2AJUpxC0iIpKylpYWSktL6ds38mtwyJAhHHPMMSq8sijVlqlszeOVqkQKr03Ade6+CsDMJgLfBv4ReAiIW3iZWRnwS2C+u+/seumlu7uZecB284B5AJWVldTX1ycQaupaWlpCP0auUm6CKTfBlJtgyk1smczL66+/TklJyUeOV1VVxTPPPNMr/2/y9ZwZNGhQj++V2dHRkZb7be7Zs4fi4uKP7KulpYX9+/fH3X9bW1tS/zeJFF5jO4suAHdfbWbj3X19d/NXmFkxkaLrXnd/KLr4XTMb5u6bzWwY8F6sbd39DuAOgKlTp3rYfe719fXq1w+g3ARTboIpN8GUm9gymZdFixYxePDgjxzvlVde4YknnuDYY49l5MiRGYkjUfl6zqxZs6bHrVXpavEqKSmhpKTkwL5mz55NfX0977//PhMmTOBb3/oW113319cUlpaWMmnSpISPk0jhtcrMfgzcH319BbDazEqA9qCNLFKV/RRY4+4/6LLqEWAukSsj5wIPJxytiIhIGrS0tBwYWN9p2rRpQGScV28rvCR8Cxcu/Mjr++67L5TjJDJzfS2wDpgffayPLmsHZsTZ7jRgDnCWma2IPs4nUnDNNLO1wDnR1yIiIhkTq/Cqrq6mX79+Gucloeq2xcvdd5vZ7cCj7v76QasDJzxx92eJDMaP5ezEQxQREUmvWIVXSUkJ1dXVKrwkVIlMJ/EpYAXwu+jrajN7JOS4REREQhOr8IJId2NDQwP79u3LQlRSCBLpavwmcBKwHcDdVwCjwwtJREQkXM3NzTELr1NOOYVdu3bx61//OvNBFSj3mJMb5IRUYk+k8Gp39x0HHyvpI4mIiPQSQS1el1xyCZMnT+b666/nrbfeynxgBaa0tJSmpqacLL7cnaamJkpLS5PaLtGrGq8CisxsDPAl4LkUYhQREekVggqvkpISfvGLXzB58mSuuOIKnnnmGfr165eFCAvDyJEjaWxsZOvWrSnvo62tLeniJ11KS0uTvgI2kcLri8DNwB7gPuD3wHeSjk5ERKQX6OjoYPfu3TELL4BjjjmGO++8k8suu4yvfvWr/Od//meGIywcxcXFjB7ds9FL9fX1Sc2jlW3ddjW6+y53v9ndT3T3qdHnbZkITkREJN1aW1sBAgsvgEsvvZTPfe5z/Nd//VePWmNEDha38DKzuWb2spm1Rh8NZnZNpoITERFJt84bZMcrvADmzp2Lu/P0009nIiwpEIGFl5nNJTJh6peB4cAIIvdnvNHM5mQkOhERkTRLtPCaOnUqAwYMyMt7JEr2xBvj9XngYnd/q8uyJ83sUiK3D7o7zMBEMm3Xrl187WtfO3Az1IqKCv71X/+V4uLiLEcmIumUaOFVXFzM9OnTWbJkSSbCkgIRr/AaeFDRBYC7v2VmA8MLSSQ77r33Xm677TZGjBjB/v372bx5MyeffDKXXnpptkMTkTRKtPACqKmp4Wtf+xrvvfcehx9+eNihSQGIN8Zrd4rrRHJSXV0dEyZM4J133uGdd95h+PDh1NXVZTssEUmzZAsvQOO8JG3iFV4TzOyVGI9XgfGZClAkE9544w2ee+45amtrMTOKioqYM2cOjz32GFu2bMl2eCKSRskUXlOmTGHAgAHqbpS0iVt4AZ+M8bgAmBh+aCKZU1dXR58+fZgz58PrRmpra+no6ODee+/NYmQikm6dhVd5eXm37+0c56UB9pIu8Qqvt919Q9ADwMwsQ3GKhKajo4O77rqLWbNmMWzYsAPLx48fz8knn8yiRYty8nYWIhJbMi1eADNmzGD16tW89957YYYlBSJe4bXEzL5oZqO6LjSzfmZ2lpktBuaGG55I+P74xz+yceNGrr322r9aV1tby6pVq1i2bFkWIhORMCRbeHWO83rqqafCCkkKSLzCaxbQAdxnZpvMbLWZrQfWArOBW929LmhjM7vTzN4zs5Vdlh1mZo+b2drov4PT9DlEUlZXV8fgwYP55Cc/+VfrrrjiCkpLSzXIXiSPtLS0UFxcnPA9GCdPnkxZWZnGeUlaBBZe7t7m7re7+2nAUcDZwGR3P8rdr3f35d3su45I8dbVAuAJdx8DPBF9LZI1e/bs4Ve/+hWzZ8+mpKTkr9YfeuihXHzxxdx33310dHRkIUIRSbegG2QH6RznpSsbJR26vVcjgLu3u/tmd9+e6I7d/Wlg20GLLwQWR58vBi5KdH8iYdi4cSN79uxh6tSpge/55Cc/ybZt21ixYkXmAhOR0CRbeAF8/OMf54033mDfvn0hRSWFIqHCK40q3X1z9PkWoDLDxxf5iI0bNwIwcuTIwPeceeaZALqqSSRPpFJ4jR07lvb2dt56661wgpKCEW/m+lC5u5tZ4KViZjYPmAdQWVkZ+i+9lpYW/WINkM+5eeKJJ4BIARbvMx555JH88pe/ZMqUKR9Zns+56SnlJphyE1um8vL222/j7kkdq7W1FYAHH3yQk08+OaTIgumcCZZzuXH3uA/gOmBMd+8L2LYKWNnl9evAsOjzYcDriexnypQpHrYlS5aEfoxclc+5+Y//+A8HfMeOHXHfN2/ePB84cKC3t7d/ZHk+56anlJtgyk1smcrL6aef7jNmzEhqm/fee88B/8EPfhBSVPHpnAnWG3MDNHhATZNIV+Mo4Cdmtt7MHohOMVGdYp33CB9OQTEXeDjF/YikRWNjI2VlZQwcGP/2ozU1NezcuVPjvETyQCpdjUOGDGHw4MG88cYbIUUlhaLbwsvdv+nuZwHHAc8AXwG6ndTIzO4DngfGmVmjmV0H3ALMNLO1wDnR1yJZs3Hjxrjjuzp1zuOTU83ZIhJTKoWXmTF27Fhef/31kKKSQtFt4WVmXzezx4A/AMcCNwHd/qZy99nuPszdi919pLv/1N2b3P1sdx/j7ue4+8FXPYpkVGNjIyNGjOj2fcOGDWPcuHEqvETyQCqFF8C4cePU4iU9lkhX4yVABfBH4CHgYf/wykSRnJZoixdEWr2eeeYZXU4ukuNSLbzGjh3Lxo0bD8x8L5KKRLoaJxPpFnwRmAm8ambPhh2YSNg6OjrYtGlTQi1e8OE4r+XLu5s7WER6K3fvUYsXwNq1a9MdlhSQRLoajweuJjIY/gpgI/BkyHGJhO7dd9+lo6Mj4RYvzeclkvt27dqFu6fc4gVonJf0SCJdjbcAA4HbgAnuPsPdvxFuWCLh65w8NdEWL43zEsl9yd4gu6sxY8YAaJyX9Ei3E6i6+wWZCEQk0xobG4H4s9Yf7NRTT+XRRx/F3TGzsEITkZD0pPDq378/o0aNUouX9EgiXY1jzOxBM1sdnctrvZmtz0RwImFKtsULYNKkSWzdupXNm3V9iUgu6knhBbqyUXouka7GRcCPgX3ADOAu4J4wgxLJhMbGRoqLixk6dGjC21RXVwNoIlWRHNXTwqtzLq/I5OQiyUuk8Orv7k8A5u4b3H0h8DfhhiUSvo0bNzJ8+HD69En8XvEf+9jHABVeIrkqHS1ezc3NvPvuu+kMSwpI4G8cM/utmY0G9phZH2CtmX3BzC4GUjtjRXqRxsbGpMZ3AQwaNIijjz5aU0qI5Kh0tHiBrmyU1MX7U38R8HvgMWAA8CVgCvAZ4JrwQxMJ18aNG5Ma39WpurpaLV4iOSodLV6gKxsldYGFl7s/AEwm0rr1LHAlsBJ4DjgtI9GJhMTdU2rxgsgA+3Xr1tHc3BxCZCISpp4WXqNGjaKkpEQtXpKy7qaT2Au0AiVAObA/9IhEMmD79u3s3r075RYvgFdeeSXNUYlI2HpaePXp04fx48fT0NCQzrCkgMQb4zULWAEcAkx292+6+7c6H5kKUCQMqczh1UlXNorkrpaWFsyM/v37p7yPSy65hKeeeoq33norfYFJwYg3xutm4NPuvsDdd2UqIJFMSGUOr04jRoygoqJChZdIDuq8T2NPJkCeO3cuAHfddVe6wpICEm+M1+nuviqTwYhkSk9avMyM6upqXdkokoNaWlooLy/v0T6OOuoozjrrLOrq6ti/XyNwJDmJT2CURmY2y8xeN7N1ZrYgGzFIYets8Ro2bFhK20+aNImVK1eyb9++dIYlIiHrbPHqqWuvvZY333yTZ555Jg1RSSHJeOFlZkXAj4DzgInAbDObmOk4pLA1NjZSWVlJv379Utq+urqaPXv28M4776Q5MhEJU7oKr4svvpjy8nLq6up6HpQUlGy0eJ0ErHP39e6+F7gfuDALcUgBS3UOr06dA+zXrVuXpohEJBPSVXgNGDCAyy+/nAceeODAlZIiiehuOokwjAC6NhM0AtOyEMcB//f//l/uvPNODjvssGyG0Wtt27Yt73Lz/PPPc+aZZ6a8/bhx4ygpKWHx4sUsW7YsjZHlj3w8b9JFuYktE3lZvnw5p52Wnqkor732Wn76059y1llnhR63zplgyebmv/7rvw5MhJsN2Si8EmJm84B5AJWVldTX14d2rFdffZWdO3fqr5YA+/fvz7vcjBgxgurq6h6dV5deeinLli3j7bffTl9geSQfz5t0UW5iy0Rehg8fzgknnJCW3ynuzic+8Qneeeed0OPWORMs2dw899xzbN68OcSI4rNM32HdzE4BFrr7udHXXwNw9+8GbTN16lQPe7K6+vp6ampqQj1GrlJugik3wZSbYMpNbMpLMOUmWG/MjZktc/epsdZlY4zXS8AYMxttZv2I3IrokSzEISIiIpJRGW/xAjCz84FbgSLgTnf/l27evxXYEHJYQ4D3Qz5GrlJugik3wZSbYMpNbMpLMOUmWG/MzVHuPjTWiqwUXr2RmTUENQsWOuUmmHITTLkJptzEprwEU26C5VpusjKBqoiIiEghUuElIiIikiEqvD50R7YD6MWUm2DKTTDlJphyE5vyEky5CZZTudEYLxEREZEMUYuXiIiISIao8BIRERHJEBVeIiIiIhmiwktEREQkQ1R4iYiIiGSICi8RERGRDFHhJSIiIpIhfbMdQCKGDBniVVVVoR6jtbWVAQMGhHqMXKXcBFNugik3wZSb2JSXYMpNsN6Ym2XLlr0fdJPsnCi8qqqqaGhoCPUY9fX11NTUhHqMXKXcBFNugik3wZSb2JSXYMpNsN6YGzPbELROXY0iIiIiGaLCS0RERCRDVHiJiIiIZEhOjPESERGR/NPe3k5jYyNtbW0p72PQoEGsWbMmjVElrrS0lJEjR1JcXJzwNiq8REREJCsaGxspLy+nqqoKM0tpH83NzZSXl6c5su65O01NTTQ2NjJ69OiEt1NXo4iIiGRFW1sbFRUVKRdd2WRmVFRUJN1ap8JLREREsiYXi65OqcSeUFejmQ0GhgO7gbfcfX/SRxIRERHpRZqamjj77LMB2LJlC0VFRQwdOpTm5mZGjRrFu+++i5kxb948brzxxrQcM7DwMrNBwA3AbKAfsBUoBSrN7AXgdndfkpYoREREMuz888/noosuYt68edkORbKkoqKCFStWALBw4ULKysq46aab2Lx5M5s3b2by5Mk0NzczZcoUZs6cycSJE3t8zHhdjQ8C7wCnu/s4d5/u7lPd/UjgFuBCM7suaGMzO9LMlpjZajNbZWY3RpcfZmaPm9na6L+De/wpREREkrB3714ee+wxbrjhBl544YVshyO9zLBhw5g8eTIA5eXlTJgwgY0bN6Zl34GFl7vPdPe73X17jHXL3H2+u/80zr73AV9294nAycANZjYRWAA84e5jgCeir0VERDKmubkZgH379nHFFVewbdu2LEckvdVbb73F8uXLmTZtWlr21+0YLzObHGPxDmCDu+8L2s7dNwObo8+bzWwNMAK4EKiJvm0xUA98NamoRUREemDnzp0A/P3f/z3/8z//w9y5c3n44Yfp00fXnGXL/PnzD3T7JaOjo4OioqKY66qrq7n11ltTjqmlpYVLL72UW2+9lYEDB6a8n64SOcNuB14A7gD+B3geeAB43cw+kchBzKwKmAQsBSqjRRnAFqAyyZhFRER6pLPF6+yzz+b73/8+jz76KD//+c+zHJX0Ju3t7Vx66aVcffXVXHLJJWnbbyJXNW4CrnP3VQDR7sJvA/8IPAT8Id7GZlYG/BKY7+47u1566e5uZh6w3TxgHkBlZSX19fUJhJq6lpaW0I+Rq5SbYMpNMOUmmHITWybz8uqrrwLw5ptvMmnSJIYNG8b3vvc9hg0blpHjJytfz5lBgwYdKIK/853vpLSPeC1e8GGR3Z09e/ZQXFxMc3Mz7s7nPvc5jjnmGK6//vq4+2hra0vq/yaRwmtsZ9EF4O6rzWy8u6/vbv4KMysmUnTd6+4PRRe/a2bD3H2zmQ0D3ou1rbvfQaSVjalTp3pNTU0Coaauvr6esI+Rq5SbYMpNMOUmmHITWybzsmvXLgCmT5/OtGnT+Lu/+zsWLlzI6NGjOeqoozISQzLy9ZxZs2ZNj2edT9fM9SUlJZSUlFBeXs6zzz7L/fffzwknnMDpp58OwL/+679y/vnn/9V2paWlTJo0KeHjJFJ4rTKzHwP3R19fAaw2sxKgPWgji1RlPwXWuPsPuqx6BJhL5MrIucDDCUcrIiKSBp1jvDrH7VxzzTV885vf5K677uKf//mfsxmaZMnChQsPPJ8+fTruMTvkeiyRMV61wDpgfvSxPrqsHZgRZ7vTgDnAWWa2Ivo4n0jBNdPM1gLnRF+LiIhkTGfXUWfhVVVVxYwZM6irqwvtF64IJNDi5e67zex24FF3f/2g1S1xtnsWCOqLPDvxEEVERNLr4BYvgGuvvZZrrrmGZ5999kD3kki6ddviZWafAlYAv4u+rjazR0KOS0REJDSdhdeAAQMOLLvkkksoKyujrq4uS1FJIUhkjNc3gZOIzLeFu68ws9FhBiWSSbfccgvr168HoKysjAULFnD44YdnOSoRCdPOnTspLy//yLxdAwYM4PLLL+cXv/gFt91220eKMgmPu+fsjbJT6ZZOpPBqd/cdByVFHeCSF3bs2MHXvvY1Bg4cyIABA9i6dSsrVqzg8ccfj3t5sojktp07d8acEPOqq67izjvvZMmSJVxwwQVZiKywlJaW0tTUREVFRc4VX+5OU1MTpaWlSW2X6FWNVwFFZjYG+BLwXAoxivQ6nbcJue2225g7dy51dXVce+21fPvb3+Zb3/pWlqMTkbA0NzfHLLxOO+00SkpKqK+vV+GVASNHjqSxsZGtW7emvI+2traki590KS0tZeTIkUltk0jh9UXgZmAPcB/weyC1Wc5EepnOwmvw4Mi92mtra6mvr+c73/kO06dPZ+bMmdkMT0RC0tnVeLDS0lJOPvnkvJystDcqLi5m9OiejV6qr69Pah6tbOt2cL2773L3m939RHefGn3elongRML2wQcfAHDYYYcdWPajH/2ICRMmcPXVV7N9+/YsRSYiYQrqagSoqalh+fLl+v5LKOIWXmY218xeNrPW6KPBzK7JVHAiYTu4xQsiA2zvvPNOtm7dqnu3ieSp7gqv/fv388wzz2Q4KikEgYWXmc0lMmHql4HhwAgi92e80czmZCQ6kZDFavECOOmkkzj++ON1WblIngoa4wVw8sknHxjnJZJu8Vq8Pg9c7O5L3H2Hu2939yeBS4EbMhOeSLhitXgBmBm1tbW88MILrFmzJhuhiUiIgsZ4QWSc1ymnnKLCS0IRr/Aa6O5vHbwwuiz2nwkiOeaDDz6gf//+Ma+IufrqqykqKmLx4sVZiExEwuLucbsaQeO8JDzxCq/dKa4TyRnbtm37q9auTkcccQTnn38+d999Nx0dHRmOTETCsmvXLvbv399t4eXuPP300xmMTApBvMJrgpm9EuPxKjA+UwGKhGnbtm1/Nb6rq9raWjZt2sQf/vCHDEYlImE6+AbZsUybNk3jvCQU8ebxmpCxKESy5IMPPghs8QK44IILqKiooK6ujvPOOy+DkYlIWDrv0xg0xgsi47xOPfVUFV6SdvFavN529w1BDwDLtfn9RQ7SXYtXv379mD17Ng8//DC7d6uHXSQfdBZe8Vq8AM466yxWrFjBxo0bMxGWFIh4hdcSM/uimY3qutDM+pnZWWa2GJgbbngi4equxQtg1qxZ7NmzhxdeeCFDUYlImBItvK688krcnXvuuScTYUmBiFd4zQI6gPvMbJOZrTaz9cBaYDZwq7vXBW1sZnea2XtmtrLLssPM7HEzWxv9N/5vPJGQddfiBTB9+nT69OmjLgeRPJHIGC+AY489ltNPP526ujrcPROhSQEILLzcvc3db3f304CjgLOBye5+lLtf7+7Lu9l3HZHirasFwBPuPgZ4IvpaJCv27t1La2trty1egwYNYvLkySq8RPJEImO8OtXW1vLaa6+xdOnSsMOSAtHtvRoB3L3d3Te7+/ZEd+zuTwPbDlp8IdA5KdJi4KJE9yeSbkGz1sdSU1PDCy+8oHFeInkg0a5GgE9/+tMccsghuouFpE1ChVcaVbr75ujzLUBlho8vckBn4dVdixdECq+9e/fy/PPPhx2WiIQsmcKrvLycSy+9lPvvv19/eElaxJtOIlTu7mYW2GluZvOAeQCVlZWhd/O0tLSoKylAvuZm5crI8MN33nknoc/Xp08f6urq6NPnw79X8jU36aDcBFNuYstUXlauXEnfvn15/vnnSeTi/Orqau6++26++93vctZZZ4UeXyw6Z4LlXG7cPe4DuA4Y0937AratAlZ2ef06MCz6fBjweiL7mTJliodtyZIloR8jV+Vrbh599FEHfOnSpQm9/8QTT/TTTz/9I8vyNTfpoNwEU25iy1RebrjhBj/ssMMSfn9HR4cfddRRfu6554YYVXw6Z4L1xtwADR5Q0yTS1TgK+ImZrTezB6JTTFSnWOc9wodTUMwFHk5xPyI91nmD7ETGeEGku3Hp0qXs2rUrzLBEJGTd3afxYH369OHCCy/k2Wef1e3DpMe6Lbzc/ZvufhZwHPAM8BVgWXfbmdl9wPPAODNrNLPrgFuAmWa2Fjgn+lokK5IZ4wUfjvPSfF4iuS3Zwgtg0qRJtLa28pe//CWkqKRQdDvGy8y+DpwGlAHLgZuIFGBxufvsgFVnJxOgSFg6W7wOPfTQhN7fOZ/XkiVLsjbOQ0R6LpXCq7q6GoDly5czduzYEKKSQpFIV+MlQAXwR+Ah4GH/8MpEkZz1wQcfMGjQIIqKihJ6/8CBA5kyZUpuDeIUkb/S3Nyc0BxeXU2cOJHi4mJWrFgRTlBSMBLpapxMpFvwRWAm8KqZPRt2YCJhS2TW+oPNmDFD47xEclwqLV79+vVj4sSJKrykx7otvMzseOBqIoPhrwA2Ak+GHJdI6BK5T+PBampqaG9v13xeIjkslcILIuO8VHhJTyXS1XgLMBC4DZjg7jPc/RvhhiUSvlRavE477TSKiorU3SiSw1ItvKqrq9myZQtbtmwJISopFIl0NV7g7v/m7s+5e3smghLJhG3btiXd4qVxXiK5raOjg127diU9xgs+HGCvVi/piUS6GseY2YNmtjo6l9d6M1ufieBEwvTBBx8k3eIFms9LJJc1NzcDid0u6GAf//jHARVe0jOJdDUuAn4M7ANmAHcB94QZlEjY3D2lFi+IDLBvb2/nueeeCyEyEQlTMvdpPNihhx5KVVWVCi/pkUQKr/7u/gRg7r7B3RcCfxNuWCLham1tZd++fSm1eGmcl0ju6knhBRpgLz0XWHiZ2W/NbDSwx8z6AGvN7AtmdjGRyVRFclbn5KmptHiVl5czdepUFV4iOaizqzGVMV4QGef1xhtv0Nrams6wpIDEa/FaBPweeAwYAHwJmAJ8Brgm/NBEwtN5u6BUWrwgMs7rxRdfZPfu3ekMS0RC1tMWr+rqatydV155JZ1hSQEJLLzc/QFgMpHWrWeBK4GVwHNEbiEkkrN60uIFH87ntWrVqnSGJSIhS0fhBRpgL6nr7l6Ne4FWoAQoB/aHHpFIBvS0xWv69OkUFRWxfPnydIYlIiHraeF15JFHMnjwYH33JWWBhZeZzQJ+ADwCTHZ3XTsveaOnLV5lZWWcccYZPPXUU7g7ZpbO8EQkJD0d42VmnH766Tz66KPs27ePvn27a78Q+ah4Y7xuBj7t7gtUdEm+6WmLF8DcuXPZuHGjppUQySGdLV6pFl4Q+e5v3ryZxx9/PF1hSQGJN8brdHfXABbJS9u2baNv374MGDAg5X1ceumllJaWUldXl77ARCRUO3fu5JBDDulRS9UFF1xARUWFvvuSkkTm8RLJO52z1veki7CsrIyamhp+/vOf69JykRyR6n0au+rXrx9XXXUVv/71rw8MWxBJVFYKLzObZWavm9k6M1uQjRiksKU6a/3Bzj33XJqbm/nVr36VhqhEJGw7d+7sUTdjp2uvvZa9e/dy//33pyEqKSQZL7zMrAj4EXAeMBGYbWYTMx2HFLZU79N4sI997GMcffTR6nIQyRHNzc09bvGCyLQSH/vYx/Tdl6Rl43KMk4B17r4ewMzuBy4EVmchFgA2b97Mm2++ydChQ7MVQq+Wj7nZvHkzRx11VI/306dPH+bOncvChQt56qmnGDJkSBqiyw/5eN6ki3ITWyby8u6776al8DIzamtr+T//5//w2GOPMWrUqDREF0znTLBkczN69GgOOeSQECPqhrtn9AFcBvxvl9dzgB/G22bKlCkephtvvNEBPQrs8dnPfrbH586SJUv8zTffdDPL+ufRQw89EntcfvnlafjN4f7uu+96cXFx1j+PHsk9li5dmpb//3iABg+oaSyyPnPM7DJglrv/bfT1HGCau3/hoPfNA+YBVFZWTgmzH33dunWsW7eO0tLS0I6Ry9ra2vIyNx//+Md7PM6rpaWFsrIyVq1axdatW9MUWX7I1/MmHZSb2DKVl+OPPz5trdOvvfYaW7ZsScu+4tE5EyzZ3EyePDktrZ7xzJgxY5m7T421LhuF1ynAQnc/N/r6awDu/t2gbaZOneoNDQ2hxlVfX09NTU2ox8hVyk0w5SaYchNMuYlNeQmm3ATrjbkxs8DCKxtXNb4EjDGz0WbWj8g9IB/JQhwiIiIiGZXxFi8AMzsfuBUoAu5093/p5v1bgQ0hhzUEeD/kY+Qq5SaYchNMuQmm3MSmvARTboL1xtwc5e4xR/xnpfDqjcysIahZsNApN8GUm2DKTTDlJjblJZhyEyzXcqOZ60VEREQyRIWXiIiISIao8PrQHdkOoBdTboIpN8GUm2DKTWzKSzDlJlhO5UZjvEREREQyRC1eIiIiIhmiwktEREQkQ1R4iYiIiGSICi8RERGRDFHhJSIiIpIhKrxEREREMkSFl4iIiEiG9M12AIkYMmSIV1VVhXqM1tZWBgwYEOoxcpVyE0y5CabcBFNuYlNegik3wXpjbpYtW/Z+0E2yc6LwqqqqoqGhIdRj1NfXU1NTE+oxcpVyE0y5CabcBFNuYlNegik3wXpjbsxsQ9A6dTWKiIiIZIgKLxEREZEMUeElIiIikiE5McZLRERE8lN7ezuNjY20tbWltP2gQYNYs2ZNmqNKTGlpKSNHjqS4uDjhbVR4iYiISNY0NjZSXl5OVVUVZpb09s3NzZSXl4cQWXzuTlNTE42NjYwePTrh7dTVKCIiIlnT1tZGRUVFSkVXNpkZFRUVSbfUqfASERGRrMq1oqtTKnEn1NVoZoOB4cBu4C1335/0kUR6qZdeeonjjz+e/v37ZzsUEcmg5cuXc+yxx2alm0p6h6amJs4++2wAtmzZQlFREUOHDqWtrY1DDjmEjo4O9u3bx2WXXca3vvWttBwzsPAys0HADcBsoB+wFSgFKs3sBeB2d1+SlihEsmT37t2cdtppfPGLX+T73/9+tsMRkQxxd6ZPn87VV1/NHXfcke1wJEsqKipYsWIFAAsXLqSsrIybbroJd6e1tZWysjLa29uZPn065513HieffHKPjxmvq/FB4B3gdHcf5+7T3X2qux8J3AJcaGbXBW1sZkea2RIzW21mq8zsxujyw8zscTNbG/13cI8/hUiKtm/fTnt7O3fffTft7e3ZDkdEMmTXrl3s2rWL+++/n127dmU7HOllzIyysjIgctVle3t72rpDA1u83H1mnHXLgGXd7Hsf8GV3f9nMyoFlZvY4UAs84e63mNkCYAHw1aQjF0mDnTt3ArB161Yee+wxPvWpT2U5IhHJhM7vfnNzM7/61a+4+uqrsxyRAMyfP/9AC1SiOjo6KCoqClxfXV3NrbfemnQsHR0dTJkyhXXr1nHDDTcwbdq0pPcRS7eD681scozHMWYWd3yYu29295ejz5uBNcAI4EJgcfRti4GLevQJRHqg84cvwKJFi7IYiYhkkr770p2ioiJWrFhBY2MjL774IitXrkzLfhMZXH87MBl4BTDgeGAVMMjMPu/uf+huB2ZWBUwClgKV7r45umoLUJlC3CJp0fnDd+rUqTz66KNs3bqVoUNj3lBeRPJI1+/+k08+yYYNGzjqqKOyHJWk0jIV9jxehx56KDNmzOB3v/sdxx9/fI/3l0jhtQm4zt1XAZjZRODbwD8CDwFxCy8zKwN+Ccx3951d+0jd3c3MA7abB8wDqKyspL6+PoFQU9fS0hL6MXJVPufm+eefB2DmzJk0NDTwrW99i8suuyzh7fM5Nz2l3ARTbmLLZF5efvllAM455xwaGhr49re/zZw5czJy7FTk8zkzaNAgmpubU96+o6OjR9t32rNnD8XFxTQ3N/P+++/Tt29fDj30UHbv3s3vfvc75s+fH/M4bW1tSf3fJFJ4je0sugDcfbWZjXf39d0NNDOzYiJF173u/lB08btmNszdN5vZMOC9WNu6+x3AHQBTp071mpqaBEJNXX19PWEfI1flc27efvttAK677joef/xx/vSnP/HDH/4w4e3zOTc9pdwEU25iy2Retm/fDsAVV1zB0qVLeeqpp/jf//3fXjufVD6fM2vWrOlRi1W6WrxKSkooKSmhvLycN998k7lz59LR0cH+/fu5/PLLufzyy2NuV1payqRJkxI+TiKF1yoz+zFwf/T1FcBqMysBAi8Ds8jZ+1Ngjbv/oMuqR4C5RK6MnAs8nHC0ImnW2d1QXl5ObW0tX/jCF1ixYgXV1dXZDUxEQnXwd3/u3Lk8++yznH766VmOTLJl4cKFB55/7GMfY/ny5aEcJ5GZ62uBdcD86GN9dFk7MCPOdqcBc4CzzGxF9HE+kYJrppmtBc6JvhbJis4fvgMHDmT27Nn069ePurq67AYlIqHr+t2/9NJLKSsr03dfMqLbwsvddxMZYL/A3S929++5+y533+/uLXG2e9bdzd0/5u7V0cdv3b3J3c929zHufo67b0vnBxJJRnNzM8XFxZSUlHDYYYdx4YUXcu+997J3795shyYiIeocqzNw4EAGDBjA5Zdfzi9+8QtaW1uzHJnku0Smk/gUsAL4XfR1tZk9EnJcIhmxc+dOBg4ceGBcR21tLe+//z6/+c1vshyZiIRp586d9OvXj5KSEiDy3W9paeGXv/xlliOTfJdIV+M3gZOA7QDuvgIYHV5IIpnTWXh1+sQnPsGwYcPU5SCS53bu3PmRAdnTp0/nmGOO0Xc/S9xjTnDQ66USdyKFV7u77zj4WEkfSaQXOvhqmL59+zJnzhx+85vf8O6772YxMhEJ08F/dJkZtbW1LFmyhDfffDOLkRWe0tJSmpqacq74cneampooLS1NartEr2q8CigyszHAl4DnUohRpNc5+IcvwNy5c/n3f/93fvazn/EP//APWYpMRMLU3Nz8V9/9a665hm984xvcddddfPOb38xSZIVn5MiRNDY2snXr1pS2b2trS7r4SZfS0lJGjhyZ1DaJFF5fBG4G9gD3Ab8HvpN0dCK90M6dO6ms/OjNEyZOnMhJJ53EokWLmD9/fq+d10dEUhfrj65Ro0Zx9tlns3jxYv75n/+ZPn0S6RSSniouLmb06NRHMNXX1yc1j1a2JXJV4y53v9ndT3T3qdHnbZkITiRssX74Alx77bW8+uqroc3jIiLZdfAYr061tbW8+eabPP3001mISgpB3MLLzOaa2ctm1hp9NJjZNZkKTiRsQTMeX3HFFZSUlGigrUieCvqj6+KLL2bgwIH67ktoAgsvM5tLZMLULwPDgRFE7s94o5n13htaiSQh6Ifv4MGDueiii7j33nvZs2dPFiITkTAFffcPOeQQrrjiCh588EFaWgKnqhRJWbwWr88DF7v7Enff4e7b3f1J4FLghsyEJxKeffv2sWvXrpg/fCHS3bht2zYeffTRDEcmImGLNbi+U21tLa2trTzwwAMZjkoKQbzCa6C7v3Xwwuiy2GerSA7pOnN1LOeccw7Dhw9Xl4NInun8oyvoxsqnnHIKY8eO1XdfQhGv8Nqd4jqRnNBZeAX98C0qKuKaa67hscceY8uWLZkMTURC1N0fXZ1zej399NP85S9/yWRoUgDiFV4TzOyVGI9XgfGZClAkLF1vkhuktraWjo4O7rnnnkyFJSIhS+S7P2fOHPr06cPixYszFZYUiLiFF/DJGI8LgInhhyYSrkR++I4bN45TTjlFXQ4ieaS7Fi+ITOo5c+ZMFi9enHMzqkvvFq/wetvdNwQ9AEwzS0oOS6TwArj88stZtWoVb7/9dibCEpGQdX73g4YZdLr88st5++23Wb16dSbCkgIRr/BaYmZfNLNRXReaWT8zO8vMFgNzww1PJDyJ/NULMGPGDCAyO7KI5L5E/+jSd1/CEK/wmgV0APeZ2SYzW21m64G1wGzgVnevC9rYzO40s/fMbGWXZYeZ2eNmtjb67+A0fQ6RpCX6V+8JJ5zAYYcdph++Inki0cJr9OjRHHXUUfruS1oFFl7u3ubut7v7acBRwNnAZHc/yt2vd/fu7qVSR6R462oB8IS7jwGeiL4WyYpEf/j26dOHM888Uz98RfJEoq3dADU1NdTX12ucl6RNQncAdfd2d9/s7tsT3bG7Pw1sO2jxhUDnJSKLgYsS3Z9IuiXa4gWRH75vvvkmGzZsCDssEQlZst/9999/X+O8JG0yfev1SnffHH2+BajM8PFFDmhubmbAgAEUFRV1+96amhoAnnrqqZCjEpGwJVt4ASxZsiTMkKSA9M3Wgd3dzSyw7dbM5gHzACorK0Pv5mlpaVFXUoB8zc1rr71GSUlJQp9t//79DBw4kPvuu49Roz683iRfc5MOyk0w5Sa2TOVl1apVlJaW8swzzyT0/srKSh544AGOP/74kCMLpnMmWM7lxt3jPoDrgDHdvS9g2ypgZZfXrwPDos+HAa8nsp8pU6Z42JYsWRL6MXJVvubmiiuu8LFjxyb8/ksuucSrqqo+sixfc5MOyk0w5Sa2TOXl+uuv92HDhiX8/traWh8yZIh3dHSEGFV8OmeC9cbcAA0eUNMk0tU4CviJma03sweiU0xUp1jnPcKHU1DMBR5OcT8iPbZz586EBtd2qqmp4a233uKtt94KLygRCd3OnTsT6mbspHFekk7dFl7u/k13Pws4DngG+AqwrLvtzOw+4HlgnJk1mtl1wC3ATDNbC5wTfS2SFc3NzUkXXqBxXiK5Ltk/us4880xA47wkPbotvMzs62b2GPAH4FjgJmBkd9u5+2x3H+buxe4+0t1/6u5N7n62u49x93Pc/eCrHkUyJtm/eo877jgqKipyayyBiPyVZAuvqqoqqqqq9N2XtEikq/ESoAL4I/AQ8LB/eGWiSM5K9odv53xe+qtXJLcl29oNkRbvp556iv3794cUlRSKRLoaJxPpFnwRmAm8ambPhh2YSNiSLbwg8sN3w4YNGuclksOSbe2GyHe/qamJVatWhRSVFIpEuhqPB64mMhj+CmAj8GTIcYmEyt1T+qtX924TyX2p/tEFGuclPZdIV+MtwEDgNmCCu89w92+EG5ZIuPbs2UN7e3vSP3wnTpzIkCFDVHiJ5Ch3T6nwOuqooxg9erS++9Jj3U6g6u4XZCIQkUxKZubqrnTfRpHc1tbWxr59+5IuvCDS6vXwww+zf/9++vTJ9I1fJF8k0tU4xsweNLPV0bm81pvZ+kwEJxKWRG+QHYvGeYnkrs4bZCf7RxdEvvvbtm1j5cqV6Q5LCkgiJfsi4MfAPmAGcBdwT5hBiYSt84dvqoUXaKyHSC7q6R9doDGe0jOJFF793f0JwNx9g7svBP4m3LBEwtWTH77HHXecxnmJ5KiefPdHjRrF0UcfrT+6pEcCCy8z+62ZjQb2mFkfYK2ZfcHMLgbKMhahSAhSHeMFYGbU1NRQX1/feQ9SEckRPSm8QPN5Sc/Fa/FaBPweeAwYAHwJmAJ8Brgm/NBEwpOOH75vv/02W7ZsSWdYIhKynozxgsh3/4MPPuDVV19NZ1hSQAILL3d/AJhMpHXrWeBKYCXwHHBaRqITCUlPxnjBh2M9VqxYkaaIRCQTevpHV+d9GzXUQFLV3RivvUArUAKUEynCyqLPRXJWT3/4Tpw4kcMPP5wXX3wxnWGJSMh6+t0fNWoUxxxzDL/73e/SGZYUkHhjvGYBK4BDgMnu/k13/1bnI1MBioRh586dFBUV0b9//5S2NzM+/elP89xzz7F9+/b0Bicioelp4QXw6U9/mscff5zNm3XbYklevBavm4FPu/sCd9+VqYBEMqHzXm1mlvI+amtr2bt3L7/4xS/SGJmIhKm5uZk+ffqk/EcXwNy5c+no6ODee+9NY2RSKOKN8Trd3XU3UMlLqdyn8WBTpkyhqqqKRYsWpSkqEQlb5+2CevJH1/jx4zn55JNZtGiRrmyWpGXlngdmNsvMXjezdWa2IBsxSGFL5V5tBzMzZs2axQsvvMBrr72WpshEJEzp+O4DXHvttaxevZqGhoY0RCWFJOOFl5kVAT8CzgMmArPNbGKm45DClq4fvjNnzqSoqIjFixenISoRCVu6vvuXX345paWl1NXV9TwoKSjZaPE6CVjn7uvdfS9wP3BhFuKQAtbc3JzyPD5dHXbYYZx33nncdddddHR0pCEyEQlTur77hx56KBdffDE/+9nPaGtrS0NkUigs0/3TZnYZMMvd/zb6eg4wzd2/ELTN1KlTPczm3Pvuu4+77rqLYcOGhXaMXLZ58+a8y82vfvUrZs6c2eOB8fX19TQ1NXHZZZdx0UUXMXjw4DRFmPvy8bxJF+Umtkzk5dFHH2Xy5MlpmQ7i8ccf5xOf+AR/8zd/w+GHH56G6ILpnAmWbG6+/vWvc/TRR4cYEZjZMnefGmtd31CP3ANmNg+YB1BZWRnqZHW///3vaWhooE+frAx56/X279+fd7np168fI0eO7PF51dLSQnl5OSeccALPPfdceoLLE/l43qSLchNbJvJiZhx99NFp+Z3Sp08fpkyZwksvvdTzwLqhcyZYsrk59dRTefvtt0OMKL5stHidAix093Ojr78G4O7fDdom7BYviLRcdM5GLh+l3ARTboIpN8GUm9iUl2DKTbDemJt4LV7ZKJ9fAsaY2Wgz60fkVkSPZCEOERERkYzKeIsXgJmdD9wKFAF3uvu/dPP+rcCGkMMaArwf8jFylXITTLkJptwEU25iU16CKTfBemNujnL3obFWZKXw6o3MrCGoWbDQKTfBlJtgyk0w5SY25SWYchMs13KjkXoiIiIiGaLCS0RERCRDVHh96I5sB9CLKTfBlJtgyk0w5SY25SWYchMsp3KjMV4iIiIiGaIWLxEREZEMUeElIiIikiEqvEREREQyRIWXiIiISIao8BIRERHJEBVeIiIiIhmiwktEREQkQ/pmO4BEDBkyxKuqqkI9RmtrKwMGDAj1GLlKuQmm3ARTboIpN7EpL8GUm2C9MTfLli17P+gm2TlReFVVVdHQ0BDqMerr66mpqQn1GLlKuQmm3ARTboIpN7EpL8GUm2C9MTdmtiFonboaRURERDJEhZeIiIhIhqjwEhEREcmQnBjjJSIiIvmpvb2dxsZG2traUtp+0KBBrFmzJs1RJaa0tJSRI0dSXFyc8DYqvERERCRrGhsbKS8vp6qqCjNLevvm5mbKy8tDiCw+d6epqYnGxkZGjx6d8HbqahQREZGsaWtro6KiIqWiK5vMjIqKiqRb6lR4iYiISFblWtHVKZW41dUoIiIiBampqYmzzz4bgC1btlBUVMTQoZF5T1988UWKioqYOnUqI0aM4NFHH03LMRMqvMxsMDAc2A285e7703J0kSzbv38/11xzDZ/5zGeYNWtWtsMREZEMqqioYMWKFQAsXLiQsrIybrrppgPrf/CDHzBhwgR27tyZtmMGdjWa2SAz+yczexV4AfgJ8Atgg5k9YGYz4u3YzI40syVmttrMVpnZjdHlh5nZ42a2Nvrv4LR9GpEkbd++nXvvvZcrr7yS9evXZzscERHpJRobG/nNb37D3/7t36Z1v/HGeD0IvAOc7u7j3H26u0919yOBW4ALzey6ONvvA77s7hOBk4EbzGwisAB4wt3HAE9EX4tkRXNzMwA7duzg8ssvZ8+ePVmOSEREeoP58+fz7//+7/Tpk97h8IFdje4+M866ZcCyeDt2983A5ujzZjNbA4wALgRqom9bDNQDX00maJF06Ww+/sxnPsM999zDV77yFW677bYsRyUiUpjmz59/oOsvUR0dHRQVFQWur66u5tZbb01qn48++iiHH344U6ZMob6+Pqltu9PtGC8zmxxj8Q5gg7vvS+QgZlYFTAKWApXRogxgC1CZWKgi6de18Bo6dCj/+Z//yaWXXsqZZ56Z5chERCRb/vSnP/HII4/w29/+lra2Nnbu3HngD/SeMneP/wazF4DJwCuAAccDq4BBwOfd/Q/dbF8GPAX8i7s/ZGbb3f3QLus/cPe/GudlZvOAeQCVlZVT7r///mQ+V9JaWlooKysL9Ri5Kp9zs3TpUhYsWMAPf/hDxowZw2WXXcZJJ53E17/+9YS2z+fc9JRyE0y5iU15CZbPuRk0aBDHHntsytt31+KVqH/913+lrKyML33pSx9Z/swzz3DbbbfxwAMPxNxu3bp17Nix4yPLZsyYsczdp8Z6fyJXNW4CrnP3VQDRcVrfBv4ReAgILLzMrBj4JXCvuz8UXfyumQ1z981mNgx4L9a27n4HcAfA1KlTvaamJoFQU1dfX0/Yx8hV+Zyb996LnH41NTUcd9xxzJkzhzvvvJNJkyYxaNCgbrfP59z0lHITTLmJTXkJls+5WbNmTY9mnk/XzPUlJSWUlJT81b4OOeQQ+vbtG3iM0tJSJk2alPBxEhkxNraz6AJw99XAeHePewmYRWYV+ymwxt1/0GXVI8Dc6PO5wMMJRyuSZp1djQMHDgSgtraWtrY2fvGLX2QzLBERybCFCxd+ZCqJTjU1NWmbwwsSK7xWmdmPzezM6ON2YLWZlQDtcbY7DZgDnGVmK6KP84lcETnTzNYC50Rfi2RFZ+HV+ZfM1KlTmThxIosWLcpmWCIikqcS6WqsBf4emB99/SfgJiJFV+BcXu7+LJExYbGcnXCEIiE6uPAyM6699lq+8pWv8PrrrzNu3LhshiciInmm2xYvd98N3A4scPeL3f177r7L3fe7e0v4IYqEp7m5mQEDBnxkYObVV19NUVERixcvzmJkIiKSjxKZTuJTwH8A/YDRZlYNfNvdPxVybCKh27lz54HxXZ2GDRvGrFmzuOuuu/jOd76TlqtlRKT3uf/++3nttdeAyADq66+/nsGDdTOVbHD3nLxRdnczQ8SSSFfjN4GTiEx0iruvMLPRSR9JpBeKVXhBZF6v3/zmN7z00kucfPLJWYhMRMLU0dHBZz7zGTo6Og4se+KJJ3jsscfSPlO5xFdaWkpTUxMVFRU5VXy5O01NTZSWlia1XSKFV7u77zgoGcmXeCK90M6dO2NeInzWWWcB8NRTT6nwEslD27dvp6Ojg1tvvZUbb7yRO+64g8997nN897vf5eabb852eAVl5MiRNDY2snXr1pS2b2trS7r4SZfS0lJGjhyZ1DaJFF6rzOwqoMjMxgBfAp5LIT6RXqe5uTlmi9fhhx/Occcdx5IlS/jqV3VHK5F888EHHwBw2GGHAXD99ddTX1/PN77xDaZPn667V2RQcXExo0en3pFWX1+f1Dxa2ZZIe+oXgeOAPcB9wE4+vMJRJKcFdTVCZO6WZ599lvb2eLOmiEgu2rZtG8CBMV1mxk9+8hOOPfZYZs+ezfbt27MYneSzRK5q3OXuN7v7ie4+Nfq8LRPBiYStu8KrtbWVZcvi3g9eRHLQwS1eEJlW5u6772bz5s3ce++92QpN8lzcwsvM5prZy2bWGn00mNk1mQpOJGxBY7yAA10N6b4zvYhk38EtXp1OOukkqqurqaury0JUUggCCy8zm0ukS/HLwHBgBJH7M95oZnMyEp1IiNw9cIwXwNChQzn++ONZsmRJhiMTkbDFavHqVFtbS0NDAytXrsx0WFIA4rV4fR642N2XuPsOd9/u7k8ClwI3ZCY8kfC0tbWxb9++wMILNM5LJF8FtXhBZBLl4uJitXpJKOIVXgPd/a2DF0aXBf+mEskRB98gO5aamhp27dpFQ0NDpsISkQz44IMPGDBgAP369furdUOGDOGCCy7gnnvu0R9dknbxCq/dKa4TyQmJFF5nnHEGoHFeIvlm27ZtcWepr62t5d133+X3v/99BqOSQhCv8JpgZq/EeLwKjM9UgCJhaW5uBggcXA8fjvNS4SWSXz744IOY47s6nXfeeRx++OEsWrQog1FJIYg3geqEjEUhkgWJtHgBzJgxg//93/+lpaWFsrKyTIQmIiHrrsWruLiYq6++mh/+8Ic0NzfH/QNNJBnxWrzedvcNQQ8Ay6WbKokcJNHC64orrmD37t08+OCDmQhLRDKguxYvgPPPP5/29naee043a5H0iVd4LTGzL5rZqK4LzayfmZ1lZouBueGGJxKeRAuvU089lTFjxugKJ5E80l2LF8App5xCcXGxppSRtIpXeM0COoD7zGyTma02s/XAWmA2cKu71wVtbGZ3mtl7Zrayy7LDzOxxM1sb/Tf+WS8SokTGeEHkViK1tbU89dRTrF+/PhOhiUjIEmnxGjBgACeddJLGeEpaBRZe7t7m7re7+2nAUcDZwGR3P8rdr3f35d3su45I8dbVAuAJdx8DPBF9LZIVibZ4AcyZMwczY/HixWGHJSIha2trY/fu3d22eEFkjGdDQ8OBP9REeiqRm2Tj7u3uvtndtye6Y3d/Gth20OILgc7fXIuBixLdn0i67dy5k6KiIvr379/te4888kjOOeccFi9ezP79+zMQnYiEJd6s9Qerqamho6ODP/3pT2GHJQUiocIrjSrdfXP0+RagMsPHFzmg8wbZiV4jUltby4YNG3jqqadCjkxEwhRv1vqDaZyXpFu86SRC5e5uZh603szmAfMAKisrQ+9jb2lpUT9+gHzNzdq1a+nXr1/Cn+2www5jwIABfPe73z1QrOVrbtJBuQmm3MSWqby8+uqrALzzzjsJHW/8+PE88sgjnHfeeSFHFkznTLCcy427x30A1wFjuntfwLZVwMour18HhkWfDwNeT2Q/U6ZM8bAtWbIk9GPkqnzNzcUXX+zHH398UttcddVVPmLEiAOv8zU36aDcBFNuYstUXh5++GEH/KWXXkro/V//+te9qKjId+zYEXJkwXTOBOuNuQEaPKCmSaSrcRTwEzNbb2YPRKeYqE6xznuED6egmAs8nOJ+RHqss6sxGZMnT2bjxo1s3bo1pKhEJGzJjPGCyAB7jfOSdOm28HL3b7r7WcBxwDPAV4Bl3W1nZvcBzwPjzKzRzK4DbgFmmtla4Jzoa5GsSKXwqq6uBuDPf/5zCBGJSCYkM8YL4OSTT05qWIJIPN2O8TKzrwOnAWXAcuAmIgVYXO4+O2DV2ckEKBKW5uZmRo8endQ2H//4xwFYvnw555xzThhhiUjIPvjgA8yMQYMGJfT+Qw45hGnTpmmAvaRFIl2NlwAVwB+Bh4CH/cMrE0Vy1s6dO5O+/9qQIUMYOXIkK1asCCcoEQndtm3bOPTQQ+nTJ/EL+2tqali2bNmB+f9EUpVIV+NkIt2CLwIzgVfN7NmwAxMJWypdjQCTJk1S4SWSwxKZtf5gNTU17N+/n2ef1a8/6ZluCy8zOx64mshg+CuAjcCTIcclEqr9+/fT0tKSUuFVXV3Na6+9xu7du0OITETClsh9Gg92yimnaJyXpEUi83jdQmRM123AS+7eHm5IIuFraWkBErtd0MGqq6vZv38/K1eu7P7NItLrpNLi1b9/f04++WSN85IeS6Sr8QJ3/zd3f05Fl+SLznEayY7xgg+vbFR3o0huSqXFCyLdjS+//DI7duwIISopFIl0NY4xswfNbHV0Lq/1ZrY+E8GJhCWZG2QfrKqqioEDB6rwEslRqbR4gcZ5SXokcknHIuDHwD5gBnAXcE+YQYmErbm5GUit8OrTpw/V1dUqvERykLvzwQcfpNTipfm8JB0SKbz6u/sTgLn7BndfCPxNuGGJhKsnLV4Q6W7885//TEdHRzrDEpGQNTc309HRkVKLl8Z5SToEFl5m9lszGw3sMbM+wFoz+4KZXUxkMlWRnJWOwqu1tZVNmzalMywRCVmys9YfbMaMGSxfvpzt27enMSopJPFavBYBvwceAwYAXwKmAJ8Brgk/NJHw9GRwPXw4wH7dunXpCklEMiDZ+zQeTOO8pKcCCy93fwCYTKR161ngSmAl8ByRWwiJ5KyejPECmDhxIn379lXhJZJjetridfLJJ1NSUqLuRklZd2O89gKtQAlQTqQIK4s+F8lZPW3xKikp4cQTT+SFF17A3dMZmoiEqKctXqWlpZxxxhn86le/Yv/+/ekMTQpEvDFes4AVwCHAZHf/prt/q/ORqQBFwrBz50769+9PcXFxyvuYM2cO69ev19WNIjmkpy1eANdccw1vvvkmzzzzTLrCkgISr8XrZuDT7r7A3XdlKiCRTEjlBtkHu/LKKykuLqauri49QYlI6Hra4gVwySWXUF5ezqJFi9IVlhSQeGO8Tnf3VZkMRiRTmpubUx7f1Wnw4MGcdtpp3HvvvezduzdNkYlImLZt20a/fv3o379/yvs45JBDuOKKK3jwwQcP3H5MJFGJzOOVdmY2y8xeN7N1ZrYgGzFIYdu5c2ePCy+A8847j6amJh599NE0RCUiYeuctd7MerSf2tpaWltbefDBB9MUmRSKjBdeZlYE/Ag4D5gIzDaziZmOQwpbugqvKVOmMHz4cHU5iOSIVO/TeLBTTz2VMWPG6LsvSeubhWOeBKxz9/UAZnY/cCGwOguxALBr1y6am5sP9P3LR+Vjbj744ANGjx7d4/0UFRUxZ84cvve977F27VqGDBmShujyQz6eN+mi3MSWibxs3bq1R+O7OpkZtbW13Hzzzfz5z39m1KhRaYgumM6ZYMnmpry8nL59s1H+RLl7Rh/AZcD/dnk9B/hhvG2mTJniYbrxxhsd0KPAHnPnzu3xubNkyRJfs2ZN1j+LHnrokfjjwgsv7PF339397bffdjPL+ufRI7nH0qVL0/L/Hw/Q4AE1TRZLvvjMbB4wD6CysjLUm5JWVVVx/fXX069fv9COkcv27t2bl7k55ZRTenxetbS0sGXLFr797W/z7rvvpiewPJGv5006KDexZSovJ510Utp+p/zLv/wLGzduTMu+4tE5EyzZ3DQ2NrJrV/YmazDP8OSPZnYKsNDdz42+/hqAu383aJupU6d6Q0NDqHHV19dTU1MT6jFylXITTLkJptwEU25iU16CKTfBemNuzGyZu0+NtS4bVzW+BIwxs9Fm1o/IrYgeyUIcIiIiIhmV8RYvADM7H7gVKALudPd/6eb9W4ENIYc1BHg/5GPkKuUmmHITTLkJptzEprwEU26C9cbcHOXuQ2OtyErh1RuZWUNQs2ChU26CKTfBlJtgyk1syksw5SZYruUmKxOoioiIiBQiFV4iIiIiGaLC60N3ZDuAXky5CabcBFNugik3sSkvwZSbYDmVG43xEhEREckQtXiJiIiIZIgKLxEREZEMUeElIiIikiEqvEREREQyRIWXiIiISIao8BIRERHJEBVeIiIiIhnSN9sBJGLIkCFeVVUV6jFaW1sZMGBAqMfIVcpNMOUmmHITTLmJTXkJptwE6425WbZs2ftBN8nOicKrqqqKhoaGUI9RX19PTU1NqMfIVcpNMOUmmHITTLmJTXkJptwE6425MbMNQevU1SgFzd357Gc/yzPPPJPtUEREpADkRIuXSFh27NjBokWLWLZsGcuXL6dPH/0tIiIi4dFvGSloLS0tALzyyiv8+te/zm4wIiKS99TiJQWts/ACWLhwIRdddJFavUREMqS9vZ3Gxkba2tpS3segQYNYs2ZNGqNKXGlpKSNHjqS4uDjhbVR4SUHrLLyuvPJK7r//fn71q19x6aWXZjkqEZHC0NjYSHl5OVVVVZhZSvtobm6mvLw8zZF1z91pamqisbGR0aNHJ7yd/rSXgtbc3AzA3/7t3zJu3Di+9a1vsX///ixHJSJSGNra2qioqEi56MomM6OioiLp1joVXlLQOlu8Bg0axD//8z/z6quv8sQTT2Q5KhGRwpGLRVenVGJPqKvRzAYDw4HdwFvuriYByQudhVdZWRkXXnghffr04dlnn2XmzJlZjkxERMLW1NTE2WefDcCWLVsoKipi6NDIvKfvvfceFRUVFBUV0bdv37TNJxpYeJnZIOAGYDbQD9gKlAKVZvYCcLu7L0lLFCJZ0rXwKisr4/jjj2fp0qVZjkpERDKhoqKCFStWAJELrMrKyrjpppuAyOTtS5YsYciQIWk9ZryuxgeBd4DT3X2cu09396nufiRwC3ChmV0XtLGZHWlmS8xstZmtMrMbo8sPM7PHzWxt9N/Baf1EIknoWngBTJs2jRdffBF3z2ZYIiKSpwJbvNw9sK/F3ZcBy7rZ9z7gy+7+spmVA8vM7HGgFnjC3W8xswXAAuCrSUcukgadhVfnfb6mTZvG//zP/7B27VrGjh2bzdBERArK/PnzD7Q+JaOjo4OioqKY66qrq7n11ltTisfM+MQnPoGZ8bnPfY558+altJ+DdTvGy8wmx1i8A9jg7vuCtnP3zcDm6PNmM1sDjAAuBGqib1sM1KPCS7KkpaWFkpKSA3OwTJs2DYClS5eq8BIRKWDPPvssI0aM4L333mPmzJmMHz+eM844o8f7TWRw/e3AZOAVwIDjgVXAIDP7vLv/obsdmFkVMAlYClRGizKALUBlCnGLpEVLS8uBbkaACRMmUFZWxtKlS5kzZ04WIxMRKSyptkyFNY/XiBEjADj88MO5+OKLefHFFzNWeG0CrnP3VQBmNhH4NvCPwENA3MLLzMqAXwLz3X1n10sv3d3NLOZgGjObB8wDqKyspL6+PoFQU9fS0hL6MXJVPudm3bp19O3b9yOfb8yYMTz++OMJfeZ8zk1PKTfBlJvYlJdg+ZqbQYMGHZhPMVUdHR093gfAnj17KC4uprm5mdbWVvbv3095eTmtra089thjfPWrX415nLa2tqT+bxIpvMZ2Fl0A7r7azMa7+/ru5q8ws2IiRde97v5QdPG7ZjbM3Teb2TDgvVjbuvsdwB0AU6dO9ZqamgRCTV19fT1hHyNX5XNu/vu//5shQ4Z85POde+65fO9732PatGn0798/7vb5nJueUm6CKTexKS/B8jU3a9as6XFrVbpavEpKSigpKaG8vJytW7dy8cUXA7Bv3z6uuuoqLrnkkpjblZaWMmnSpISPk0jhtcrMfgzcH319BbDazEqA9qCNLFKV/RRY4+4/6LLqEWAukSsj5wIPJxytSJq1tLT81Rd22rRp7Nu3j+XLl3PqqadmKTIREcmkhQsXHnh+9NFH8+c//zmU4yQyc30tsA6YH32sjy5rB2bE2e40YA5wlpmtiD7OJ1JwzTSztcA50dciWXHwGC/46AB7ERGRdOq2xcvdd5vZ7cCj7v76Qatb4mz3LJHB+LGcnXiIIuFpaWnh8MMP/8iyYcOGceSRR6rwEhGRtOu2xcvMPgWsAH4XfV1tZo+EHJdIRsRq8YJIq5cKLxERSbdEuhq/CZwEbAdw9xXA6PBCEsmceIXXW2+9xZo1a7IQlYhI4cjlO4WkEnsihVe7u+84+FhJH0mkFwoqvK666ioqKiq48sor2b17dxYiExHJf6WlpTQ1NeVk8eXuNDU1UVpamtR2iV7VeBVQZGZjgC8Bz6UQo0iv0tHRwa5du2IWXsOHD+fuu+/m/PPPZ/78+fzkJz/JQoQiIvlt5MiRNDY2snXr1pT30dbWlnTxky6lpaWMHDkyqW0SKby+CNwM7AHuA34PfCfp6ER6mV27dgHELLwAzjvvPBYsWMAtt9zCmWeeyVVXXZXJ8ERE8l5xcTGjR/ds9FJ9fX1S82hlW7ddje6+y91vdvcT3X1q9HlbJoITCVPnDbKDCi+A73znO0yfPp2///u/p709cNo6ERGRhMQtvMxsrpm9bGat0UeDmV2TqeBEwpRI4dW3b1/mz5/Pjh07aGhoyFRoIiKSpwILLzObS2TC1C8Dw4ERRO7PeKOZ6e7BkvMSKbyAAzdFzcf7pImISGbFG+P1eeBid3+ry7InzexSIrcPujvMwETClmjhNXToUI4//njq6+v52te+lonQRCSD3J2f//znbNu2DYCBAwdy1VVX0adPIhf+iyQnXuE18KCiCwB3f8vMBoYXkkhmJFp4AcyYMYOf/vSntLe3U1xcHHZoIpJBTz75JLNnz/7IskMPPZQLLrggSxFJPotXzsebvEgTG0nOS6bwqqmpYdeuXbz00kthhyUiGVZXV8ehhx5KY2MjmzZt4vDDD6euri7bYUmeild4TTCzV2I8XgXGZypAkbAkU3hpnJdIftqxYwe//OUvmT17NiNGjGDYsGF85jOf4ZFHHuH999/PdniSh+IWXsAnYzwuACaGH5pIuJqbm4HECq8hQ4ZwwgknqPASyTMPPPAAu3fvpra29sCyuXPn0t7ezn333Ze9wCRvxSu83nb3DUEPADOzDMUpknbJtHhBZJzXn/70J/bu3RtmWCKSQXV1dUyYMIETTzzxwLKPfexjTJ48Wd2NEop4hdcSM/uimY3qutDM+pnZWWa2GJgbbngi4WlpaaFv377069cvofd3jvPSfF4i+eGNN97gT3/6E7W1tRzcjnDttdfy8ssv88orr2QpOslX8QqvWUAHcJ+ZbTKz1Wa2HlgLzAZudfe6oI3N7E4ze8/MVnZZdpiZPW5ma6P/Dk7T5xBJWucNshNtuNU4L5H8snjxYvr06cOcOX89NeXs2bMpLi5Wq5ekXWDh5e5t7n67u58GHAWcDUx296Pc/Xp3X97NvuuIFG9dLQCecPcxwBPR1yJZ0Vl4JaqiooKPfexjKrxE8sTdd9/NrFmzGDZs2F+tq6io4FOf+hT33HMPHR0dWYhO8lVCs8O5e7u7b3b37Ynu2N2fBrYdtPhCYHH0+WLgokT3J5JuyRZeAFOnTuXVV18NKSIRyZSdO3fyzjvvUFNTE/ieSy+9lK1bt7JixYqMxSX5L9PT8la6++bo8y1AZYaPL3JAKoXX2LFj2bJlCzt37gwpKhHJhMbGRgBGjhwZ+J7Ookyt3JJO8WauD5W7u5l50HozmwfMA6isrAz9xG9padGXK0C+5mbjxo306dMnqc/W3t4OwH333ce4cePyNjfpoNwEU25iy2ReOi+S2bp1a9xjHnnkkfzyl79kypQpGYkriM6ZYDmXG3eP+wCuA8Z0976AbauAlV1evw4Miz4fBryeyH6mTJniYVuyZEnox8hV+ZqbSZMm+QUXXJDUNqtWrXLA77nnHnfP39ykg3ITTLmJLZN5ufPOOx3wv/zlL3Hf97nPfc4HDhzo+/bty1BksemcCdYbcwM0eEBNk0hX4yjgJ2a23sweiE4xUZ1infcIH05BMRd4OMX9iPRYKl2NxxxzDH369OGNN94IKSoRyYSNGzcCMHz48Ljvq6mpYefOnSxf3t31ZCKJ6bbwcvdvuvtZwHHAM8BXgGXdbWdm9wHPA+PMrNHMrgNuAWaa2VrgnOhrkaxIpfAqKSmhqqqK119/PaSoRCQTGhsbGTJkCKWlpXHfd+aZZwIa5yXp0+0YLzP7OnAaUAYsB24iUoDF5e6zA1adnUyAImFJpfACGDdunFq8RHLcxo0b4w6s7zRs2DDGjx9PfX09N910UwYik3yXSFfjJUAF8EfgIeBh//DKRJGc5O60tLRQXl6e9LadhVekG19EclFjYyMjRoxI6L01NTU888wz7Nu3L+SopBAk0tU4mUi34IvATOBVM3s27MBEwrR7927cPaUWr7Fjx9La2sqmTZtCiExEMiHRFi/QOC9Jr24LLzM7HriayGD4K4CNwJMhxyUSqmRvkN3VuHHjADTOSyRH7dmzh61btyZceGmcl6RTIl2NtwADgduACe4+w92/EW5YIuHqSeE1duxYAI3zEslRna3ViXY1HnHEEQfGeYn0VCJdjRe4+7+5+3Pu3p6JoETC1pPCa8SIERxyyCFq8RLJUYnMWn+w008/neeff15jO6XHEulqHGNmD5rZ6uhcXuvNbH0mghMJS08KLzNj7NixavESyVGdc3gl2uIFMGnSJD744IMDRZtIqhLpalwE/BjYB8wA7gLuCTMokbD1pPCCyDgvtXiJ5KZUWryqq6sBNMBeeiyRwqu/uz8BmLtvcPeFwN+EG5ZIuHpaeI0dO5Y333zzwL0bRSR3NDY2UlZWxsCBAxPe5oQTTsDMWLFiRXiBSUEILLzM7LdmNhrYY2Z9gLVm9gUzu5jIZKoiOSsdLV779+/XlBIiOSiZqSQ6lZWVMWbMGBVe0mPxWrwWAb8HHgMGAF8CpgCfAa4JPzSR8KSjxQvgnXfeSVtMIpIZyUye2tWkSZNUeEmPBRZe7v4AMJlI69azwJXASuA5IrcQEslZKrxEClcqLV4QGef15ptvsn379vQHJQWjuzFee4FWoAQoJ1KElUWfi+SslpYWzIz+/funtP2gQYM44ogjWL9eF/iK5JKOjg42bdqUUotX5wD7V155Jc1RSSEJvEm2mc0CfgA8Akx2910Zi0okZJ03yDazlPdx3nnn8fOf/5zW1lYGDBiQxuhEJCzvvfceHR0dKbd4AaxYsYIzzjgjzZFJoYjX4nUz8Gl3X6CiS/JNc3Nzyt2MnWpra9m1axe/+tWv0hSViIStcyqJVFq8jjjiCCorKzWlhPRIvDFep7v7qkwGI5IpnS1ePXH66aczfPhwFi1alKaoRCRsnZOnptLiBRpgLz2XyDxeaWdms8zsdTNbZ2YLshGDFLZ0FF5mxrnnnsuTTz7Jhg0b0hSZiISpJy1eEOluXLVqFXv37k1nWFJAMl54mVkR8CPgPGAiMNvMJmY6Dils6Si8AD7xiU8AcNddd/V4XyISvo0bN1JcXMzQoUNT2r66upr29nbWrFmT5sikUGSjxeskYJ27r3f3vcD9wIVZiEMKWLoKryOOOIKzzjqLuro69u/fn4bIRCRMjY2NDB8+nD59Uvv113WAvUgqAq9qDNEIoOvkR43AtCzEccBvfvMb7r//fv74xz9mM4xea8OGDXmXm7feeovRo0enZV+1tbVcc8013HDDDVRUVKRln/kgH8+bdFFuYstEXp577rmUx3cBHHvssRxyyCH8z//8D2vXrk1jZPHpnAmWbG7+7u/+rkfnQE9lo/BKiJnNA+YBVFZWUl9fH9qx6urqeOihh0Lbv/ROgwcP7vF51dLSwpAhQxg+fDh33HFHegITkVCdfPLJPfrun3TSSTz99NM8//zz6QtKMmbEiBFMmDAha8c3d8/sAc1OARa6+7nR118DcPfvBm0zdepUb2hoCDWu+vp6ampqQj1GrlJugik3wZSbYMpNbMpLMOUmWG/MjZktc/epsdZlY4zXS8AYMxttZv2I3IrokSzEISIiIpJRGW/xAjCz84FbgSLgTnf/l27evxUI+3r9IcD7IR8jVyk3wZSbYMpNMOUmNuUlmHITrDfm5ih3j3npbFYKr97IzBqCmgULnXITTLkJptwEU25iU16CKTfBci03WZlAVURERKQQqfASERERyRAVXh/SXADBlJtgyk0w5SaYchOb8hJMuQmWU7nRGC8RERGRDFGLl4iIiEiGqPASERERyRAVXiIiIiIZosJLREREJENUeImIiIhkiAovERERkQxR4SUiIiKSISq8RERERDKkb7YDSMSQIUO8qqoq1GO0trYyYMCAUI+Rq5SbYMpNMOUmmHITm/ISTLkJ1htzs2zZsvfdfWisdTlReFVVVdHQ0BDqMerr66mpqQn1GLkq33Pz7rvvMnjwYPr165f0tvmem55QboIpN7EpL8GUm2C9MTdmtiFonboapaDt2bOHsWPHMmnSJF588cVshyMiInlOhZcUtB07drBz507WrFnDKaecwoIFC+jo6Mh2WCIikqdUeElBa2lpAeDWW29l7ty5/Nu//Ru//vWvsxuUiIjkrZwY4yUSls7Ca8SIEfzd3/0dP/vZz3juuee49NJLsxyZiEj+a29vp7Gxkba2tpT3MWjQINasWZPGqBJXWlrKyJEjKS4uTngbFV5S0DoLr7KyMvr168fkyZNZunRplqMSESkMjY2NlJeXU1VVhZmltI/m5mbKy8vTHFn33J2mpiYaGxsZPXp0wtupq1EKWtfCC2DatGksW7aM9vb2bIYlIlIQ2traqKioSLnoyiYzo6KiIunWOhVeUtBiFV5tbW28+uqr2QxLRKRg5GLR1SmV2BMqvMxssJkdZ2ZHm5mKNckbsQovQN2NIiIFoKmpierqaqqrqzniiCMYMWLEgdfvvfcel112GePHj2fChAk8//zzaTlm4BgvMxsE3ADMBvoBW4FSoNLMXgBud/claYlCJEsOLryqqqo4/PDDWbp0KZ///OezGZqIiISsoqKCFStWALBw4ULKysq46aabAJg7dy6zZs3iwQcfZO/evezatSstx4w3uP5B4C7gdHff3nWFmU0B5pjZ0e7+01gbm9mR0e0rAQfucPf/MrPDgJ8DVcBbwOXu/kEPP4dISg4uvMyMadOmqcVLRKSA7dixg6effpq6ujoA+vXrl9LdTWIJLLzcfWacdcuAZd3sex/wZXd/2czKgWVm9jhQCzzh7reY2QJgAfDVpCMXSYOWlhbMjP79+x9YNm3aNP7f//t/bN++nUMPPTR7wYmIFJD58+cfaH1KRkdHB0VFRTHXVVdXc+uttya9zzfffJOhQ4dy7bXX8uc//5kpU6bwX//1X2m5J2S347XMbHKMxzFmFncqCnff7O4vR583A2uAEcCFwOLo2xYDF/XoE4j0QEtLCwMGDKBPnw+/Cp3jvF566aVshSUiIlm0b98+Xn75ZT7/+c+zfPlyBgwYwC233JKWfScyj9ftwGTgFcCA44FVwCAz+7y7/6G7HZhZFTAJWApUuvvm6KotRLoiRbKipaXlQDdjpxNPPBEzY+nSpcycGdjwKyIiaZRKyxSEM4/XyJEjGTly5IE/xC+77LKMFl6bgOvcfRWAmU0Evg38I/AQELfwMrMy4JfAfHff2fXSS3d3M/OA7eYB8wAqKyupr69PINTUtbS0hH6MXJXPufnLX/5CUVHRX32+UaNG8dvf/pbp06fH3T6fc9NTyk0w5SY25SVYvuZm0KBBNDc392gfHR0dPd4HwJ49eyguLqa5uZkBAwYwfPhwXn75ZcaMGcNvf/tbjj322JjHaWtrS+r/JpHCa2xn0QXg7qvNbLy7r+9u/gozKyZSdN3r7g9FF79rZsPcfbOZDQPei7Wtu98B3AEwdepUr6mpSSDU1NXX1xP2MXJVPufmBz/4AYcffvhffb4ZM2bwm9/8hjPPPDPuPC35nJueUm6CKTexKS/B8jU3a9as6XFrVbpavEpKSigpKTmwr9tvv52//du/Ze/evRx99NEsWrQo5nFKS0uZNGlSwsdJpPBaZWY/Bu6Pvr4CWG1mJUDg9N4W+W31U2CNu/+gy6pHgLnALdF/H044WpE0i9XVCJFxXnV1daxfv55jjjkmC5GJiEgmLVy48COvq6uraWhoSPtxEpkMtRZYB8yPPtZHl7UDM+JsdxowBzjLzFZEH+cTKbhmmtla4Jzoa5GsCCq8zjjjDACeeuqpTIckIiJ5rNsWL3ffbWa3A4+6++sHrW6Js92zRAbjx3J24iGKhKelpYWqqqq/Wj5hwgSGDh1KfX09n/3sZzMfmIiI5KVEppP4FLAC+F30dbWZPRJyXCIZEdTiZWbU1NRQX1+Pe8zrP0RERJKWSFfjN4GTgO0A7r4CGB1eSCKZE1R4QWSA/TvvvMP69eszHJWISOHI5T9uU4k9kcKr3d13HHyspI8k0su4O83NzYGFV+cVRPl4CbeISG9QWlpKU1NTThZf7k5TUxOlpaVJbZfoVY1XAUVmNgb4EvBcCjGK9Cp79+5l3759gYXX+PHjOfzww6mvr+e6667LcHQiIvlv5MiRNDY2snXr1pT30dbWlnTxky6lpaWMHDkyqW0SKby+CNwM7AHuA34PfCfp6ER6mYNvkH2wg8d5dTdvnYiIJKe4uJjRo3s2eqm+vj6pebSyrduuRnff5e43u/uJ7j41+rwtE8GJhKm7wgsi3Y2NjY0a5yUiImkRt/Ays7lm9rKZtUYfDWZ2TaaCEwlTooUXwJIlSzIRkoiI5LnAwsvM5hKZMPXLwHBgBJH7M95oZnMyEp1IiBIpvMaPH5+Re4WKiEhhiNfi9XngYndf4u473H27uz8JXArckJnwRMKTSOHVOc5ryZIl7N+/P1OhiYhInopXeA1097cOXhhdNjCsgEQyJZHCC+CTn/wkmzZt4plnnslEWCIiksfiFV67U1wnkhMSLbwuvvhiysvLWbRoUSbCEhGRPBav8JpgZq/EeLwKjM9UgCJhSbTwOuSQQ7jiiit48MEHD2wjIiKSiriFF/DJGI8LgInhhyYSrkQLL4Brr72W1tZWHnzwwbDDEhGRPBav8Hrb3TcEPQBMM0pKDussvAYMGNDte0855RTGjBmj7kYREemReIXXEjP7opmN6rrQzPqZ2VlmthiYG254IuFpaWmhf//+FBUVdfteM6O2tpann36av/zlLxmITkRE8lG8wmsW0AHcZ2abzGy1ma0H1gKzgVvdvS5oYzO708zeM7OVXZYdZmaPm9na6L+D0/Q5RJLW0tKSUDdjp2uuuQYz46677goxKhERyWeBhZe7t7n77e5+GnAUcDYw2d2Pcvfr3X15N/uuI1K8dbUAeMLdxwBPRF+LZEWyhdfIkSOpqanh17/+dXhBiYhIXuv2Xo0A7t7u7pvdfXuiO3b3p4FtBy2+EFgcfb4YuCjR/YmkW7KFF8DkyZN54403NJmqiIikJKHCK40q3X1z9PkWoDLDxxc5oKWlhfLy8qS2GTt2LG1tbbzzzjshRSUiIvmsb7YO7O5uZh603szmAfOAjNwrr6WlRffjC5Cvudm0aROHHHJIUp9t165dAPziF7/gxBNPzNvcpINyE0y5iU15CabcBMu13HRbeJnZdcDT7r42Dcd718yGuftmMxsGvBf0Rne/A7gDYOrUqV5TU5OGwwerr68n7GPkqnzNTZ8+fRg1alRSn23cuHH8wz/8A/3796empiZvc5MOyk0w5SY25SWYchMs13KTSFfjKOAnZrbezB6ITjFRneLxHuHDKSjmAg+nuB+RHktljNcRRxxBeXk5r7/+ekhRiYhIPuu28HL3b7r7WcBxwDPAV4Bl3W1nZvcBzwPjzKwx2nJ2CzDTzNYC50Rfi2RFKoWXmTF27FjeeOONkKISEZF8lkhX49eB04AyYDlwE5ECLC53nx2w6uxkAhQJSyqFF0S6G//0pz+FEJGIiOS7RLoaLwEqgD8CDwEPd7kyUSQn7du3j7a2tpQKr7Fjx/L222+ze/fuECITEZF8lkhX42Qi3YIvAjOBV83s2bADEwlTa2srkNgNsg82btw43J1169alOywREclziXQ1Hg+cDpwJTAXeIYGuRpHerPMG2akWXgBvvPEGFRUVaY1LRETyWyJdjbcAA4HbgAnuPsPdvxFuWCLham5uBlIrvMaMGQOgKxtFRCRp3bZ4ufsFmQhEJJN60uJVVlbGiBEjeOONNzj11FPTHZqIiOSxRLoaxwDfBSYCpZ3L3f3oEOMSCVVPCi+IDLBXi5eIiCQrka7GRcCPgX3ADOAu4J4wgxIJW08Lr3HjxmkuLxERSVoihVd/d38CMHff4O4Lgb8JNyyRcKWjxWvbtm3s2LEjnWGJiEieCyy8zOy3ZjYa2GNmfYC1ZvYFM7uYyGSqIjkrHS1eAO+8807aYhIRkfwXr8VrEfB74DFgAPAlYArwGeCa8EMTCU86WrxAhZeIiCQnsPBy9weAyURat54FrgRWAs8RuYWQSM7qLLwGDBiQ0vZVVVUUFxfT2NiYzrBERCTPdXdV416gFSgByoH9oUckkgEtLS3069ePfv36pbR93759OeGEE1i+fHmaIxMRkXwWWHiZ2SzgB8AjwGR335WxqERCluoNsru66qqruOmmm3jttdcYP358miITEZF8Fm+M183Ap919gYouyTfpKLyuvvpq+vTpQ11dXXqCEhGRvBdvjNfp7r4qk8GIZEo6Cq8jjjiCk08+mbvvvpuOjo40RSYiIvkskXm80s7MZpnZ62a2zswWZCMGKWzpKLwAzj33XDZt2sTjjz+ehqhERCTfZbzwMrMi4EfAeURuQzTbzCZmOg4pbC0tLZSXl/d4P6eccgoVFRUsWrQoDVGJiEi+y0aL10nAOndf7+57gfuBC7MQhxSwdLV4FRcXc9VVV/HrX/+aDz74IA2RiYhIPuv2JtkhGAF0nXWyEZiWhTgO+MpXvsJtt91Gnz5Z6Xnt9fbv3593uWlra+OEE05Iy75qa2v57//+byorKykqKkrLPvNBPp436aLcxKa8BFNugiWbm6effpoTTzwxxIjiy0bhlRAzmwfMA6isrKS+vj60Yx166KF88pOfpLi4OLRj5LL29va8zM2ZZ57Z4/OqpaUFd+fGG2/k3XffTU9geSJfz5t0UG5iU16CKTfBks3Nm2++SWtra4gRxWfuntkDmp0CLHT3c6Ovvwbg7t8N2mbq1Kne0NAQalz19fXU1NSEeoxcpdwEU26CKTfBlJvYlJdgyk2w3pgbM1vm7lNjrctGu+VLwBgzG21m/YjciuiRLMQhIiIiklEZb/ECMLPzgVuBIuBOd/+Xbt6/FdgQclhDgPdDPkauUm6CKTfBlJtgyk1syksw5SZYb8zNUe4+NNaKrBRevZGZNQQ1CxY65SaYchNMuQmm3MSmvARTboLlWm50iYSIiIhIhqjwEhEREckQFV4fuiPbAfRiyk0w5SaYchNMuYlNeQmm3ATLqdxojJeIiIhIhqjFS0RERCRDVHgBZjbLzF43s3VmtiDb8WSbmb1lZq+a2Qoza4guO8zMHjeztdF/B2c7zkwwszvN7D0zW9llWcxcWMRt0fPoFTObnL3IwxWQl4VmtjF63qyIThvTue5r0by8bmbnZifqzDCzI81siZmtNrNVZnZjdLnOm+DcFPy5Y2alZvaimf05mptvRZePNrOl0Rz8PDr/JWZWEn29Lrq+KqsfICRx8lJnZm92OWeqo8t7//fJ3Qv6QWQusb8ARwP9gD8DE7MdV5Zz8hYw5KBl/w4siD5fAPxbtuPMUC7OACYDK7vLBXA+8BhgwMnA0mzHn+G8LARuivHeidHvVQkwOvp9K8r2ZwgxN8OAydHn5cAb0RzovAnOTcGfO9H//7Lo82JgafR8+AVwZXT5/wU+H33+98D/jT6/Evh5tj9DhvNSB1wW4/29/vukFi84CVjn7uvdfS9wP3BhlmPqjS4EFkefLwYuyl4omePuTwPbDloclIsLgbs84gXgUDMblpFAMywgL0EuBO539z3u/iawjsj3Li+5+2Z3fzn6vBlYA4xA50283AQpmHMn+v/fEn1ZHH04cBbwYHT5wedN5/n0IHC2mVlmos2cOHkJ0uu/Tyq8Il/6d7q8biT+D4JC4MAfzGyZRW5WDlDp7pujz7cAldkJrVcIyoXOJfhCtHn/zi7d0QWbl2j3zyQif6XrvOnioNyAzh3MrMjMVgDvAY8TaeHb7u77om/p+vkP5Ca6fgdQkdGAM+TgvLh75znzL9Fz5j/NrCS6rNefMyq8JJbp7j4ZOA+4wczO6LrSI+25uhwW5eIgPwaOAaqBzcD3sxpNlplZGfBLYL677+y6rtDPmxi50bkDuHuHu1cDI4m07I3PbkS9w8F5MbPjga8Ryc+JwGHAV7MXYXJUeMFG4Mgur0dGlxUsd98Y/fc94FdEfgC829lcG/33vexFmHVBuSjoc8nd343+gNwP/A8fdgkVXF7MrJhIYXGvuz8UXazzhti50bnzUe6+HVgCnEKkq6xvdFXXz38gN9H1g4CmzEaaWV3yMivabe3uvgdYRA6dMyq84CVgTPTKkX5EBik+kuWYssbMBphZeedz4BPASiI5mRt921zg4exE2CsE5eIR4JroVTUnAzu6dC3lvYPGUVxM5LyBSF6ujF6FNRoYA7yY6fgyJTrO5qfAGnf/QZdVBX/eBOVG5w6Y2VAzOzT6vD8wk8gYuCXAZdG3HXzedJ5PlwFPRltS80pAXl7r8keMERn31vWc6dXfp77dvyW/ufs+M/sC8HsiVzje6e6rshxWNlUCv4qO0ewL/Mzdf2dmLwG/MLPrgA3A5VmMMWPM7D6gBhhiZo3AN4FbiJ2L3xK5omYdsAu4NuMBZ0hAXmqil3Q7kStjPwfg7qvM7BfAamAfcIO7d2Qh7Ew5DZgDvBodlwLwT+i8geDczNa5wzBgsZkVEWkU+YW7P2pmq4H7zez/A5YTKVyJ/nu3ma0jcqHLldkIOgOC8vKkmQ0lcvXiCuDvou/v9d8nzVwvIiIikiHqahQRERHJEBVeIiIiIhmiwktEREQkQ1R4iYiIiGSICi8RERGRDFHhJSIJid6WY36X1783s//t8vr7ZvZ/zOxTZrYgyX3XmdllAcvfNLM/m9kbZnaXmY3ssv63nXP89ISZXWRmE7u8/raZndPT/Ub3NcnMfhp9XmtmW81suZmtjebw1B7se6iZ/S4dcYpIZqjwEpFE/Qk4FcDM+gBDgOO6rD8VeM7dH3H3W9J43K+4+8eBcUTmMXoyOtkx7n5+dDbrA6ITJyb7s+0i4EDh5e7fcPc/9ijqD/0TcFuX1z9390nuPobI3F4PmdmEVHbs7luBzWZ2WhriFJEMUOElIol6jsgtTCBScK0Ems1scPQGtROAl6OtOj+EAy1Wt5nZc2a2vrNVK1oc/dDMXjezPwKHd3fw6O1B/pPIDabPi+7nLTMbYmZV0X3dFY3rSDP7ipm9ZJGb6H6rcz9mdk102Z/N7O5oi9OngP8wsxVmdkzXFjgzOzvaQvWqRW7gXNLl2N8ys5ej6/7qvnoWuQvEx9z9zwGfaQlwBzAv+v5jzOx3FrlB/TOd+4wufyF6nP/PzFq67ObXwNXd5U9EegcVXiKSEHffBOwzs1FEWreeB5YSKcamAq+6+94Ymw4DpgMXEGnhgchtYcYRaWW6Jrq/RL1M7JsHjwFud/fjovseQ+T+bdXAFDM7w8yOA74OnBVtRbvR3Z8jcpuRr7h7tbv/pXOHZlYK1AFXuPsJRO7m8Pkux3w/ekP5HwM3xYhpKh/eyiSRz3MH8EV3nxLd3+3R5f8F/Fc0hsaDtm8ATu/mGCLSS6jwEpFkPEekSOosvJ7v8vpPAdv82t33u/tqIrekAjgDuC96Y+RNwJNJxGAByze4+wvR55+IPpbzYWEzBjgLeMDd3wdw923dHGsc8Ka7vxF9vTgae6fOG2AvA6pibD8M2NrNMQzAzMqI5PGB6O10fhLdHiLF7QPR5z87aPv3gOHdHENEeomCv1ejiCSlc5zXCURact4BvgzsBBYFbPP/t3f/rFEEYRzHvz/TBCEoCoLYCIa0GsRa7hVcEY4oYmGsIyr4EsRCSCWoaGVlIVhZKFgkRZJWjxiNhe8g5g8SLfSxmDlZjlv2FpONkd+n2puZfXa2OR5mnt39UTguS5rqmATeDmj/1nedexHxuDhA0uwuXL+od28/Gfx/ugOMVsSYJH0M+RCwERHnas5hNF/HzA4Ar3iZWR2LpC3D9bxatQ4cJa3ILNaIswBMSxqRdBJoVZ2Q68JukFaBqp7kew3M5FUkJJ2SdIK0staRdDy3H8vjt4GxAXE+AacljeffV4H5qrkWrALjZZ2SLpLqu55ExBbwRVIn90nS2Tx0GZjKx/0fQ56gejvTzP4RTrzMrI4u6WnG5b62zd723ZBeAp+BD8Az0pZlmfuS3gFrwAWgVVJL9kdEvCFtyS1J6gIvgLGIWAHuAvM55lw+5TlwJxfRnynE+Q5cI23/dYFfwKNhbzIiPgJHcpF9z3Qu4l8jPfE4FRGrue8KcD3PbQVo5/abwG1J70mJ3GYhXgt4NeyczGx/KSL2ew5mZv8tSbeA7Yh4Wjm4PMZhYCciQtIl4HJEtHPfAtCOiK+7M2Mz20uu8TIz21sPgc5fxjgPPJAkYAOYgfQCVWDOSZfZweEVLzMzM7OGuMbLzMzMrCFOvMzMzMwa4sTLzMzMrCFOvMzMzMwa4sTLzMzMrCFOvMzMzMwa8htbVB8qmk2kSQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Show the results\n", "yaw_angles_opt = np.vstack(df_opt[\"yaw_angles_opt\"])\n", - "fig, axarr = plt.subplots(len(X), 1, sharex=True, sharey=True, figsize=(10, 10))\n", - "for i in range(len(X)):\n", + "fig, axarr = plt.subplots(len(x), 1, sharex=True, sharey=True, figsize=(10, 10))\n", + "for i in range(len(x)):\n", " axarr[i].plot(wind_directions, yaw_angles_opt[:, i], 'k-', label='T%d' % i)\n", " axarr[i].set_ylabel('Yaw (Deg)')\n", " axarr[i].legend()\n", @@ -893,14 +901,6 @@ "\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c8732cd8", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/examples/28_extract_wind_speed_at_points.py b/examples/28_extract_wind_speed_at_points.py index 781103e9e..fc9ef9d47 100644 --- a/examples/28_extract_wind_speed_at_points.py +++ b/examples/28_extract_wind_speed_at_points.py @@ -82,7 +82,7 @@ # Plot the velocities for z_idx, z in enumerate(points_z): - ax[1].plot(wd_array, u_at_points[:, :, z_idx].flatten(), label=f'Speed at z={z} m') + ax[1].plot(wd_array, u_at_points[:, z_idx].flatten(), label=f'Speed at z={z} m') ax[1].grid() ax[1].legend() ax[1].set_xlabel('Wind Direction (deg)') diff --git a/floris/tools/visualization.py b/floris/tools/visualization.py index c8400e76c..d8689384c 100644 --- a/floris/tools/visualization.py +++ b/floris/tools/visualization.py @@ -554,7 +554,7 @@ def plot_rotor_values( cmap = plt.cm.get_cmap(name=cmap) if t_range is None: - t_range = range(values.shape[2]) + t_range = range(values.shape[1]) fig = plt.figure() axes = fig.subplots(n_rows, n_cols) diff --git a/profiling/quality_metrics.py b/profiling/quality_metrics.py index d0659d6bb..9a8a52097 100644 --- a/profiling/quality_metrics.py +++ b/profiling/quality_metrics.py @@ -23,8 +23,13 @@ from floris.simulation import Floris -WIND_DIRECTIONS = np.arange(0, 360.0, 5) -WIND_SPEEDS = np.arange(8.0, 12.0, 0.2) +wd_grid, ws_grid = np.meshgrid( + np.arange(0, 360.0, 5), # wind directions + np.arange(8.0, 12.0, 0.2), # wind speeds + indexing="ij" +) +WIND_DIRECTIONS = wd_grid.flatten() +WIND_SPEEDS = ws_grid.flatten() N_FINDEX = len(WIND_DIRECTIONS) N_TURBINES = 3 From 8074b3fc9f4b00be8cc311646aa689e83d514e6c Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 15 Dec 2023 15:15:40 -0600 Subject: [PATCH 22/78] Fix example API's --- examples/29_floating_vs_fixedbottom_farm.py | 36 +++++++++++---------- examples/32_specify_turbine_power_curve.py | 4 ++- 2 files changed, 22 insertions(+), 18 deletions(-) diff --git a/examples/29_floating_vs_fixedbottom_farm.py b/examples/29_floating_vs_fixedbottom_farm.py index e3c908c1e..3e6716df1 100644 --- a/examples/29_floating_vs_fixedbottom_farm.py +++ b/examples/29_floating_vs_fixedbottom_farm.py @@ -48,14 +48,16 @@ fi_fixed = FlorisInterface("inputs_floating/emgauss_fixed.yaml") fi_floating = FlorisInterface("inputs_floating/emgauss_floating.yaml") x, y = np.meshgrid(np.linspace(0, 4*630., 5), np.linspace(0, 3*630., 4)) +x = x.flatten() +y = y.flatten() for fi in [fi_fixed, fi_floating]: - fi.reinitialize(layout_x=x.flatten(), layout_y=y.flatten()) + fi.reinitialize(layout_x=x, layout_y=y) # Compute a single wind speed and direction, power and wakes for fi in [fi_fixed, fi_floating]: fi.reinitialize( - layout_x=x.flatten(), - layout_y=y.flatten(), + layout_x=x, + layout_y=y, wind_speeds=[10], wind_directions=[270] ) @@ -69,8 +71,8 @@ fig, ax = plt.subplots() ax.set_aspect('equal', adjustable='box') sc = ax.scatter( - x.flatten(), - y.flatten(), + x, + y, c=power_difference.flatten()/1000, cmap="PuOr", vmin=-30, @@ -83,7 +85,7 @@ plt.colorbar(sc, label="Increase (kW)") print("Power increase from floating over farm (10m/s, 270deg winds): {0:.2f} kW".\ - format(power_difference.sum()/1000)) + format(power_difference.sum()/1000)) # Visualize flows (see also 02_visualizations.py) horizontal_planes = [] @@ -119,18 +121,19 @@ # Compute AEP (see 07_calc_aep_from_rose.py for details) df_wr = pd.read_csv("inputs/wind_rose.csv") -wd_array = np.array(df_wr["wd"].unique(), dtype=float) -ws_array = np.array(df_wr["ws"].unique(), dtype=float) - -wd_grid, ws_grid = np.meshgrid(wd_array, ws_array, indexing="ij") +wd_grid, ws_grid = np.meshgrid( + np.array(df_wr["wd"].unique(), dtype=float), + np.array(df_wr["ws"].unique(), dtype=float), + indexing="ij" +) freq_interp = NearestNDInterpolator(df_wr[["wd", "ws"]], df_wr["freq_val"]) -freq = freq_interp(wd_grid, ws_grid) +freq = freq_interp(wd_grid, ws_grid).flatten() freq = freq / np.sum(freq) for fi in [fi_fixed, fi_floating]: fi.reinitialize( - wind_directions=wd_array, - wind_speeds=ws_array, + wind_directions=wd_grid.flatten(), + wind_speeds= ws_grid.flatten(), ) # Compute the AEP @@ -138,10 +141,9 @@ aep_floating = fi_floating.get_farm_AEP(freq=freq) print("Farm AEP (fixed bottom): {:.3f} GWh".format(aep_fixed / 1.0e9)) print("Farm AEP (floating): {:.3f} GWh".format(aep_floating / 1.0e9)) -print("Floating AEP increase: {0:.3f} GWh ({1:.2f}%)".\ - format((aep_floating - aep_fixed) / 1.0e9, - (aep_floating - aep_fixed)/aep_fixed*100 - ) +print( + "Floating AEP increase: {0:.3f} GWh ({1:.2f}%)".\ + format((aep_floating - aep_fixed) / 1.0e9, (aep_floating - aep_fixed)/aep_fixed*100) ) plt.show() diff --git a/examples/32_specify_turbine_power_curve.py b/examples/32_specify_turbine_power_curve.py index d9f1cde4a..9eb1e3e13 100644 --- a/examples/32_specify_turbine_power_curve.py +++ b/examples/32_specify_turbine_power_curve.py @@ -52,11 +52,13 @@ fi = FlorisInterface("inputs/gch.yaml") wind_speeds = np.linspace(1, 15, 100) +wind_directions = 270 * np.ones_like(wind_speeds) # Replace the turbine(s) in the FLORIS model with the created one fi.reinitialize( layout_x=[0], layout_y=[0], wind_speeds=wind_speeds, + wind_directions=wind_directions, turbine_type=[turbine_dict] ) fi.calculate_wake() @@ -65,7 +67,7 @@ fig, ax = plt.subplots(1,1) -ax.scatter(wind_speeds, powers[0,:]/1000, color="C0", s=5, label="Test points") +ax.scatter(wind_speeds, powers/1000, color="C0", s=5, label="Test points") ax.scatter(turbine_data_dict["wind_speed"], turbine_data_dict["power_absolute"], color="red", s=20, label="Specified points") From 4d6a2c2b6022e24f0e3fedafcea0467fed5e1ed6 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 15 Dec 2023 15:24:37 -0600 Subject: [PATCH 23/78] Disable CI for examples with tools dependency --- .github/workflows/check-working-examples.yaml | 30 +++++++++++++++++++ 1 file changed, 30 insertions(+) diff --git a/.github/workflows/check-working-examples.yaml b/.github/workflows/check-working-examples.yaml index 55ae812fb..fb96e747b 100644 --- a/.github/workflows/check-working-examples.yaml +++ b/.github/workflows/check-working-examples.yaml @@ -47,6 +47,36 @@ jobs: continue fi + # Skip these examples until the wind rose, optimization package, and + # uncertainty interface are update to v4 + if [[ $i == *08* ]]; then + continue + fi + if [[ $i == *10* ]]; then + continue + fi + if [[ $i == *11* ]]; then + continue + fi + if [[ $i == *12* ]]; then + continue + fi + if [[ $i == *13* ]]; then + continue + fi + if [[ $i == *14* ]]; then + continue + fi + if [[ $i == *15* ]]; then + continue + fi + if [[ $i == *16* ]]; then + continue + fi + if [[ $i == *20* ]]; then + continue + fi + if ! python $i; then error_results="${error_results}"$'\n'" - ${i}" error_found=1 From 728498e8a504e17937f88004ad201fa28a110db1 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Mon, 18 Dec 2023 09:36:18 -0600 Subject: [PATCH 24/78] Update multidimensional turbine model (#65) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Update wind condition broadcast for turbine tests The inputs changed in conftest but this wasn’t updated * Update multidimensional turbine module for 4D arrays * Update multidimensional example API’s * Unit test bug fix * Remove a few missed extra dimensions --- examples/01_opening_floris_computing_power.py | 15 +- examples/30_multi_dimensional_cp_ct.py | 28 +-- examples/31_multi_dimensional_cp_ct_2Hs.py | 11 +- floris/simulation/farm.py | 50 ++---- floris/simulation/solver.py | 53 +++--- floris/simulation/turbine.py | 14 +- floris/simulation/turbine_multi_dim.py | 92 +++++----- tests/turbine_multi_dim_unit_test.py | 159 ++++++++---------- tests/turbine_unit_test.py | 15 +- 9 files changed, 192 insertions(+), 245 deletions(-) diff --git a/examples/01_opening_floris_computing_power.py b/examples/01_opening_floris_computing_power.py index ee6fd8f15..8d3808e51 100644 --- a/examples/01_opening_floris_computing_power.py +++ b/examples/01_opening_floris_computing_power.py @@ -42,43 +42,38 @@ fi.reinitialize(wind_directions=[270.0], wind_speeds=[8.0]) # Set the yaw angles to 0 -yaw_angles = np.zeros([1, 2]) # 1 wind direction / speed, 2 turbines +yaw_angles = np.zeros([1, 2]) # 1 wind direction and speed, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) # Get the turbine powers turbine_powers = fi.get_turbine_powers() / 1000.0 -# TODO what should we call this user/facing? -print("The turbine power matrix should be of dimensions 1 FINDEX X 2 Turbines") +print("The turbine power matrix should be of dimensions 1 findex X 2 Turbines") print(turbine_powers) print("Shape: ", turbine_powers.shape) # Single wind speed and multiple wind directions print("\n========================= Single Wind Direction and Multiple Wind Speeds ===============") -# Note in v3 FLORIS wind directions and speeds would be expanded to all combinations -# in v4 the assumption is that each entry wind direction and wind speed corresponds -# to one condtions and wind directions and wind speeds arrays should be the same length wind_speeds = np.array([8.0, 9.0, 10.0]) wind_directions = np.array([270.0, 270.0, 270.0]) fi.reinitialize(wind_speeds=wind_speeds, wind_directions=wind_directions) -yaw_angles = np.zeros([3, 2]) # 9 wind directions/ speeds, 2 turbines +yaw_angles = np.zeros([3, 2]) # 3 wind directions/ speeds, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) turbine_powers = fi.get_turbine_powers() / 1000.0 -print("The turbine power matrix should be of dimensions 9 FINDEX X 2 Turbines") +print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") print(turbine_powers) print("Shape: ", turbine_powers.shape) # Multiple wind speeds and multiple wind directions print("\n========================= Multiple Wind Directions and Multiple Wind Speeds ============") -# In the case want to consider each combination this needs to be broadcast out in advance +# To consider each combination, this needs to be broadcast out in advance wind_speeds = np.tile([8.0, 9.0, 10.0], 3) wind_directions = np.repeat([260.0, 270.0, 280.0], 3) - fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) yaw_angles = np.zeros([9, 2]) # 9 wind directions/ speeds, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) diff --git a/examples/30_multi_dimensional_cp_ct.py b/examples/30_multi_dimensional_cp_ct.py index 2d2303018..5de69d014 100644 --- a/examples/30_multi_dimensional_cp_ct.py +++ b/examples/30_multi_dimensional_cp_ct.py @@ -65,40 +65,42 @@ print('\n========================= Single Wind Direction and Wind Speed =========================') # Get the turbine powers assuming 1 wind speed and 1 wind direction -fi.reinitialize(wind_directions=[270.], wind_speeds=[8.0]) +fi.reinitialize(wind_directions=[270.0], wind_speeds=[8.0]) # Set the yaw angles to 0 -yaw_angles = np.zeros([1,1,2]) # 1 wind direction, 1 wind speed, 2 turbines +yaw_angles = np.zeros([1, 2]) # 1 wind direction and wind speed, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) # Get the turbine powers -turbine_powers = fi.get_turbine_powers_multidim()/1000. -print('The turbine power matrix should be of dimensions 1 WD X 1 WS X 2 Turbines') +turbine_powers = fi.get_turbine_powers_multidim() / 1000.0 +print("The turbine power matrix should be of dimensions 1 findex X 2 Turbines") print(turbine_powers) print("Shape: ",turbine_powers.shape) # Single wind speed and multiple wind directions print('\n========================= Single Wind Direction and Multiple Wind Speeds ===============') - wind_speeds = np.array([8.0, 9.0, 10.0]) -fi.reinitialize(wind_speeds=wind_speeds) -yaw_angles = np.zeros([1,3,2]) # 1 wind direction, 3 wind speeds, 2 turbines +wind_directions = np.array([270.0, 270.0, 270.0]) + +fi.reinitialize(wind_speeds=wind_speeds, wind_directions=wind_directions) +yaw_angles = np.zeros([3, 2]) # 3 wind directions/ speeds, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) -turbine_powers = fi.get_turbine_powers_multidim()/1000. -print('The turbine power matrix should be of dimensions 1 WD X 3 WS X 2 Turbines') +turbine_powers = fi.get_turbine_powers_multidim() / 1000.0 +print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") print(turbine_powers) print("Shape: ",turbine_powers.shape) # Multiple wind speeds and multiple wind directions print('\n========================= Multiple Wind Directions and Multiple Wind Speeds ============') -wind_directions = np.array([260., 270., 280.]) -wind_speeds = np.array([8.0, 9.0, 10.0]) +wind_speeds = np.tile([8.0, 9.0, 10.0], 3) +wind_directions = np.repeat([260.0, 270.0, 280.0], 3) + fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) -yaw_angles = np.zeros([1,3,2]) # 1 wind direction, 3 wind speeds, 2 turbines +yaw_angles = np.zeros([9, 2]) # 9 wind directions/ speeds, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) turbine_powers = fi.get_turbine_powers_multidim()/1000. -print('The turbine power matrix should be of dimensions 3 WD X 3 WS X 2 Turbines') +print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") print(turbine_powers) print("Shape: ",turbine_powers.shape) diff --git a/examples/31_multi_dimensional_cp_ct_2Hs.py b/examples/31_multi_dimensional_cp_ct_2Hs.py index 6bbc31d6d..9726fda61 100644 --- a/examples/31_multi_dimensional_cp_ct_2Hs.py +++ b/examples/31_multi_dimensional_cp_ct_2Hs.py @@ -46,9 +46,10 @@ fi_hs_1.reinitialize(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) # Use a sweep of wind speeds -wind_speeds = np.arange(5,20,1.) -fi.reinitialize(wind_directions=[270.], wind_speeds=wind_speeds) -fi_hs_1.reinitialize(wind_directions=[270.], wind_speeds=wind_speeds) +wind_speeds = np.arange(5, 20, 1.0) +wind_directions = 270.0 * np.ones_like(wind_speeds) +fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) +fi_hs_1.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) # Calculate wakes with baseline yaw fi.calculate_wake() @@ -63,8 +64,8 @@ for t_idx in range(3): ax = axarr[t_idx] - ax.plot(wind_speeds, turbine_powers[0,:,t_idx], color='k', label='Hs=3.1 (5)') - ax.plot(wind_speeds, turbine_powers_hs_1[0,:,t_idx], color='r', label='Hs=1.0') + ax.plot(wind_speeds, turbine_powers[:,t_idx], color='k', label='Hs=3.1 (5)') + ax.plot(wind_speeds, turbine_powers_hs_1[:,t_idx], color='r', label='Hs=1.0') ax.grid(True) ax.set_xlabel('Wind Speed (m/s)') ax.set_title(f'Turbine {t_idx}') diff --git a/floris/simulation/farm.py b/floris/simulation/farm.py index 6f334bab4..12b2b478e 100644 --- a/floris/simulation/farm.py +++ b/floris/simulation/farm.py @@ -318,40 +318,26 @@ def expand_farm_properties(self, n_findex: int, sorted_coord_indices): sorted_coord_indices, axis=1 ) - - # TODO: update multidimensional turbine for 4D arrays if 'multi_dimensional_cp_ct' in self.turbine_definitions[0].keys() \ and self.turbine_definitions[0]['multi_dimensional_cp_ct'] is True: - wd_dim = np.shape(template_shape)[0] - ws_dim = np.shape(template_shape)[1] - if wd_dim != 1 | ws_dim != 0: - self.turbine_fCts_sorted = np.take_along_axis( - np.reshape( - np.repeat(self.turbine_fCts, wd_dim * ws_dim), - np.shape(template_shape) - ), - sorted_coord_indices, - axis=2 # TODO: This should probably be 1 - ) - self.turbine_power_interps_sorted = np.take_along_axis( - np.reshape( - np.repeat(self.turbine_power_interps, wd_dim * ws_dim), - np.shape(template_shape) - ), - sorted_coord_indices, - axis=2 # TODO: This should probably be 1 - ) - else: - self.turbine_fCts_sorted = np.take_along_axis( - np.reshape(self.turbine_fCts, np.shape(template_shape)), - sorted_coord_indices, - axis=1 - ) - self.turbine_power_interps_sorted = np.take_along_axis( - np.reshape(self.turbine_power_interps, np.shape(template_shape)), - sorted_coord_indices, - axis=1 - ) + findex_dim = np.shape(template_shape)[0] + + self.turbine_fCts_sorted = np.take_along_axis( + np.reshape( + np.repeat(self.turbine_fCts, findex_dim), + np.shape(template_shape) + ), + sorted_coord_indices, + axis=1 + ) + self.turbine_power_interps_sorted = np.take_along_axis( + np.reshape( + np.repeat(self.turbine_power_interps, findex_dim), + np.shape(template_shape) + ), + sorted_coord_indices, + axis=1 + ) self.rotor_diameters_sorted = np.take_along_axis( self.rotor_diameters * template_shape, sorted_coord_indices, diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index 64b168233..35c48384d 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -1490,8 +1490,7 @@ def sequential_multidim_solver( w_wake = np.zeros_like(flow_field.w_initial_sorted) turbine_turbulence_intensity = ( - flow_field.turbulence_intensity - * np.ones((flow_field.n_wind_directions, flow_field.n_wind_speeds, farm.n_turbines, 1, 1)) + flow_field.turbulence_intensity * np.ones((flow_field.n_findex, farm.n_turbines, 1, 1)) ) ambient_turbulence_intensity = flow_field.turbulence_intensity @@ -1499,15 +1498,15 @@ def sequential_multidim_solver( for i in range(grid.n_turbines): # Get the current turbine quantities - x_i = np.mean(grid.x_sorted[:, :, i:i+1], axis=(3, 4)) - x_i = x_i[:, :, :, None, None] - y_i = np.mean(grid.y_sorted[:, :, i:i+1], axis=(3, 4)) - y_i = y_i[:, :, :, None, None] - z_i = np.mean(grid.z_sorted[:, :, i:i+1], axis=(3, 4)) - z_i = z_i[:, :, :, None, None] + x_i = np.mean(grid.x_sorted[:, i:i+1], axis=(2, 3)) + x_i = x_i[:, :, None, None] + y_i = np.mean(grid.y_sorted[:, i:i+1], axis=(2, 3)) + y_i = y_i[:, :, None, None] + z_i = np.mean(grid.z_sorted[:, i:i+1], axis=(2, 3)) + z_i = z_i[:, :, None, None] - u_i = flow_field.u_sorted[:, :, i:i+1] - v_i = flow_field.v_sorted[:, :, i:i+1] + u_i = flow_field.u_sorted[:, i:i+1] + v_i = flow_field.v_sorted[:, i:i+1] ct_i = Ct_multidim( velocities=flow_field.u_sorted, @@ -1524,7 +1523,7 @@ def sequential_multidim_solver( ) # Since we are filtering for the i'th turbine in the Ct function, # get the first index here (0:1) - ct_i = ct_i[:, :, 0:1, None, None] + ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction_multidim( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, @@ -1540,12 +1539,12 @@ def sequential_multidim_solver( ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) - axial_induction_i = axial_induction_i[:, :, 0:1, None, None] - turbulence_intensity_i = turbine_turbulence_intensity[:, :, i:i+1] - yaw_angle_i = farm.yaw_angles_sorted[:, :, i:i+1, None, None] - hub_height_i = farm.hub_heights_sorted[:, :, i:i+1, None, None] - rotor_diameter_i = farm.rotor_diameters_sorted[:, :, i:i+1, None, None] - TSR_i = farm.TSRs_sorted[:, :, i:i+1, None, None] + axial_induction_i = axial_induction_i[:, 0:1, None, None] + turbulence_intensity_i = turbine_turbulence_intensity[:, i:i+1] + yaw_angle_i = farm.yaw_angles_sorted[:, i:i+1, None, None] + hub_height_i = farm.hub_heights_sorted[:, i:i+1, None, None] + rotor_diameter_i = farm.rotor_diameters_sorted[:, i:i+1, None, None] + TSR_i = farm.TSRs_sorted[:, i:i+1, None, None] effective_yaw_i = np.zeros_like(yaw_angle_i) effective_yaw_i += yaw_angle_i @@ -1555,8 +1554,8 @@ def sequential_multidim_solver( u_i, v_i, flow_field.u_initial_sorted, - grid.y_sorted[:, :, i:i+1] - y_i, - grid.z_sorted[:, :, i:i+1], + grid.y_sorted[:, i:i+1] - y_i, + grid.z_sorted[:, i:i+1], rotor_diameter_i, hub_height_i, ct_i, @@ -1600,12 +1599,12 @@ def sequential_multidim_solver( u_i, turbulence_intensity_i, v_i, - flow_field.w_sorted[:, :, i:i+1], - v_wake[:, :, i:i+1], - w_wake[:, :, i:i+1], + flow_field.w_sorted[:, i:i+1], + v_wake[:, i:i+1], + w_wake[:, i:i+1], ) gch_gain = 2 - turbine_turbulence_intensity[:, :, i:i+1] = turbulence_intensity_i + gch_gain * I_mixing + turbine_turbulence_intensity[:, i:i+1] = turbulence_intensity_i + gch_gain * I_mixing # NOTE: exponential velocity_deficit = model_manager.velocity_model.function( @@ -1637,10 +1636,10 @@ def sequential_multidim_solver( # Calculate wake overlap for wake-added turbulence (WAT) area_overlap = ( - np.sum(velocity_deficit * flow_field.u_initial_sorted > 0.05, axis=(3, 4)) + np.sum(velocity_deficit * flow_field.u_initial_sorted > 0.05, axis=(2, 3)) / (grid.grid_resolution * grid.grid_resolution) ) - area_overlap = area_overlap[:, :, :, None, None] + area_overlap = area_overlap[:, :, None, None] # Modify wake added turbulence by wake area overlap downstream_influence_length = 15 * rotor_diameter_i @@ -1665,5 +1664,5 @@ def sequential_multidim_solver( flow_field.turbulence_intensity_field_sorted = turbine_turbulence_intensity flow_field.turbulence_intensity_field_sorted_avg = np.mean( turbine_turbulence_intensity, - axis=(3,4) - )[:, :, :, None, None] + axis=(2,3) + )[:, :, None, None] diff --git a/floris/simulation/turbine.py b/floris/simulation/turbine.py index 4ff4fc753..1f39bad65 100644 --- a/floris/simulation/turbine.py +++ b/floris/simulation/turbine.py @@ -128,12 +128,12 @@ def rotor_effective_velocity( # Down-select inputs if ix_filter is given if ix_filter is not None: - velocities = velocities[:, :, ix_filter] - yaw_angle = yaw_angle[:, :, ix_filter] - tilt_angle = tilt_angle[:, :, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, :, ix_filter] - pP = pP[:, :, ix_filter] - pT = pT[:, :, ix_filter] + velocities = velocities[:, ix_filter] + yaw_angle = yaw_angle[:, ix_filter] + tilt_angle = tilt_angle[:, ix_filter] + ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] + pP = pP[:, ix_filter] + pT = pT[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] # Compute the rotor effective velocity adjusting for air density @@ -204,7 +204,7 @@ def power( # Down-select inputs if ix_filter is given if ix_filter is not None: - rotor_effective_velocities = rotor_effective_velocities[:, :, ix_filter] + rotor_effective_velocities = rotor_effective_velocities[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] # Loop over each turbine type given to get power for all turbines diff --git a/floris/simulation/turbine_multi_dim.py b/floris/simulation/turbine_multi_dim.py index d101462a8..ff993f0d0 100644 --- a/floris/simulation/turbine_multi_dim.py +++ b/floris/simulation/turbine_multi_dim.py @@ -77,14 +77,13 @@ def power_multidim( # Down-select inputs if ix_filter is given if ix_filter is not None: - power_interp = power_interp[:, :, ix_filter] - rotor_effective_velocities = rotor_effective_velocities[:, :, ix_filter] + power_interp = power_interp[:, ix_filter] + rotor_effective_velocities = rotor_effective_velocities[:, ix_filter] # Loop over each turbine to get power for all turbines p = np.zeros(np.shape(rotor_effective_velocities)) - for i, wd in enumerate(power_interp): - for j, ws in enumerate(wd): - for k, turb in enumerate(ws): - p[i, j, k] = power_interp[i, j, k](rotor_effective_velocities[i, j, k]) + for i, findex in enumerate(power_interp): + for j, turb in enumerate(findex): + p[i, j] = power_interp[i, j](rotor_effective_velocities[i, j]) return p * ref_density_cp_ct @@ -138,13 +137,13 @@ def Ct_multidim( # Down-select inputs if ix_filter is given if ix_filter is not None: - velocities = velocities[:, :, ix_filter] - yaw_angle = yaw_angle[:, :, ix_filter] - tilt_angle = tilt_angle[:, :, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, :, ix_filter] - fCt = fCt[:, :, ix_filter] - turbine_type_map = turbine_type_map[:, :, ix_filter] - correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, :, ix_filter] + velocities = velocities[:, ix_filter] + yaw_angle = yaw_angle[:, ix_filter] + tilt_angle = tilt_angle[:, ix_filter] + ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] + fCt = fCt[:, ix_filter] + turbine_type_map = turbine_type_map[:, ix_filter] + correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, ix_filter] average_velocities = average_velocity( velocities, @@ -165,10 +164,9 @@ def Ct_multidim( # Loop over each turbine to get thrust coefficient for all turbines thrust_coefficient = np.zeros(np.shape(average_velocities)) - for i, wd in enumerate(fCt): - for j, ws in enumerate(wd): - for k, turb in enumerate(ws): - thrust_coefficient[i, j, k] = fCt[i, j, k](average_velocities[i, j, k]) + for i, findex in enumerate(fCt): + for j, turb in enumerate(findex): + thrust_coefficient[i, j] = fCt[i, j](average_velocities[i, j]) thrust_coefficient = np.clip(thrust_coefficient, 0.0001, 0.9999) effective_thrust = thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt_cp_ct) return effective_thrust @@ -237,9 +235,9 @@ def axial_induction_multidim( # Then, process the input arguments as needed for this function if ix_filter is not None: - yaw_angle = yaw_angle[:, :, ix_filter] - tilt_angle = tilt_angle[:, :, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, :, ix_filter] + yaw_angle = yaw_angle[:, ix_filter] + tilt_angle = tilt_angle[:, ix_filter] + ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] return ( 0.5 @@ -272,20 +270,19 @@ def multidim_Ct_down_select( downselect_turbine_fCts = np.empty_like(turbine_fCts) # Loop over the wind directions, wind speeds, and turbines, finding the Ct interpolant # that is closest to the specified multi-dimensional condition. - for i, wd in enumerate(turbine_fCts): - for j, ws in enumerate(wd): - for k, turb in enumerate(ws): - # Get the interpolant keys in float type for comparison - keys_float = np.array([[float(v) for v in val] for val in turb.keys()]) - - # Find the nearest key to the specified conditions. - key_vals = [] - for ii, cond in enumerate(conditions.values()): - key_vals.append( - keys_float[:, ii][np.absolute(keys_float[:, ii] - cond).argmin()] - ) + for i, findex in enumerate(turbine_fCts): + for j, turb in enumerate(findex): + # Get the interpolant keys in float type for comparison + keys_float = np.array([[float(v) for v in val] for val in turb.keys()]) + + # Find the nearest key to the specified conditions. + key_vals = [] + for ii, cond in enumerate(conditions.values()): + key_vals.append( + keys_float[:, ii][np.absolute(keys_float[:, ii] - cond).argmin()] + ) - downselect_turbine_fCts[i, j, k] = turb[tuple(key_vals)] + downselect_turbine_fCts[i, j] = turb[tuple(key_vals)] return downselect_turbine_fCts @@ -309,21 +306,20 @@ def multidim_power_down_select( downselect_power_interps = np.empty_like(power_interps) # Loop over the wind directions, wind speeds, and turbines, finding the power interpolant # that is closest to the specified multi-dimensional condition. - for i, wd in enumerate(power_interps): - for j, ws in enumerate(wd): - for k, turb in enumerate(ws): - # Get the interpolant keys in float type for comparison - keys_float = np.array([[float(v) for v in val] for val in turb.keys()]) - - # Find the nearest key to the specified conditions. - key_vals = [] - for ii, cond in enumerate(conditions.values()): - key_vals.append( - keys_float[:, ii][np.absolute(keys_float[:, ii] - cond).argmin()] - ) - - # Use the constructed key to choose the correct interpolant - downselect_power_interps[i, j, k] = turb[tuple(key_vals)] + for i, findex in enumerate(power_interps): + for j, turb in enumerate(findex): + # Get the interpolant keys in float type for comparison + keys_float = np.array([[float(v) for v in val] for val in turb.keys()]) + + # Find the nearest key to the specified conditions. + key_vals = [] + for ii, cond in enumerate(conditions.values()): + key_vals.append( + keys_float[:, ii][np.absolute(keys_float[:, ii] - cond).argmin()] + ) + + # Use the constructed key to choose the correct interpolant + downselect_power_interps[i, j] = turb[tuple(key_vals)] return downselect_power_interps diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index 05c91ebc3..068c183df 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -38,15 +38,10 @@ CSV_INPUT = TEST_DATA / "iea_15MW_multi_dim_Tp_Hs.csv" -# size 3 x 4 x 1 x 1 x 1 -WIND_CONDITION_BROADCAST = np.stack( - ( - np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)), # Wind direction 0 - np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)), # Wind direction 1 - np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)), # Wind direction 2 - ), - axis=0, -) +# size 16 x 1 x 1 x 1 +# 16 wind speed and wind direction combinations from conftest +WIND_CONDITION_BROADCAST = np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)) + INDEX_FILTER = [0, 2] @@ -56,10 +51,8 @@ def test_multidim_Ct_down_select(): turbine_data = SampleInputs().turbine_multi_dim turbine_data["power_thrust_data_file"] = CSV_INPUT turbine = TurbineMultiDimensional.from_dict(turbine_data) - turbine_type_map = np.array([turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] - downselect_turbine_fCts = multidim_Ct_down_select([[[turbine.fCt_interp]]], CONDITIONS) + downselect_turbine_fCts = multidim_Ct_down_select([[turbine.fCt_interp]], CONDITIONS) assert downselect_turbine_fCts == turbine.fCt_interp[(2, 1)] @@ -70,10 +63,8 @@ def test_multidim_power_down_select(): turbine_data = SampleInputs().turbine_multi_dim turbine_data["power_thrust_data_file"] = CSV_INPUT turbine = TurbineMultiDimensional.from_dict(turbine_data) - turbine_type_map = np.array([turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] - downselect_power_interps = multidim_power_down_select([[[turbine.power_interp]]], CONDITIONS) + downselect_power_interps = multidim_power_down_select([[turbine.power_interp]], CONDITIONS) assert downselect_power_interps == turbine.power_interp[(2, 1)] @@ -122,67 +113,66 @@ def test_ct(): turbine_data["power_thrust_data_file"] = CSV_INPUT turbine = TurbineMultiDimensional.from_dict(turbine_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + turbine_type_map = turbine_type_map[None, :] # Single turbine # yaw angle / fCt are (n wind direction, n wind speed, n turbine) wind_speed = 10.0 thrust = Ct_multidim( - velocities=wind_speed * np.ones((1, 1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1, 1)), - tilt_angle=np.ones((1, 1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, 1)) * 5.0, - fCt=np.array([[[turbine.fCt_interp[(2, 1)]]]]), + velocities=wind_speed * np.ones((1, 1, 3, 3)), + yaw_angle=np.zeros((1, 1)), + tilt_angle=np.ones((1, 1)) * 5.0, + ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, + fCt=np.array([[turbine.fCt_interp[(2, 1)]]]), tilt_interp={turbine.turbine_type: None}, - correct_cp_ct_for_tilt=np.array([[[False]]]), - turbine_type_map=turbine_type_map[:,:,0] + correct_cp_ct_for_tilt=np.array([[False]]), + turbine_type_map=turbine_type_map[:,0] ) - np.testing.assert_allclose(thrust, np.array([[[0.77853469]]])) + np.testing.assert_allclose(thrust, np.array([[0.77853469]])) # Multiple turbines with index filter # 4 turbines with 3 x 3 grid arrays thrusts = Ct_multidim( - velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 3 x 4 x 4 x 3 x 3 - yaw_angle=np.zeros((1, 1, N_TURBINES)), - tilt_angle=np.ones((1, 1, N_TURBINES)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, N_TURBINES)) * 5.0, + velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 16 x 4 x 3 x 3 + yaw_angle=np.zeros((1, N_TURBINES)), + tilt_angle=np.ones((1, N_TURBINES)) * 5.0, + ref_tilt_cp_ct=np.ones((1, N_TURBINES)) * 5.0, fCt=np.tile( [turbine.fCt_interp[(2, 1)]], ( np.shape(WIND_CONDITION_BROADCAST)[0], - np.shape(WIND_CONDITION_BROADCAST)[1], N_TURBINES, ) ), tilt_interp={turbine.turbine_type: None}, - correct_cp_ct_for_tilt=np.array([[[False] * N_TURBINES]]), + correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), turbine_type_map=turbine_type_map, ix_filter=INDEX_FILTER, ) - assert len(thrusts[0, 0]) == len(INDEX_FILTER) - - thrusts_truth = [ - [ - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.6957943, 0.6957943 ], - ], - [ - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.6957943, 0.6957943 ], - ], - [ - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.6957943, 0.6957943 ], - ], - ] - + assert len(thrusts[0]) == len(INDEX_FILTER) + + thrusts_truth = np.array([ + [0.77853469, 0.77853469], + [0.77853469, 0.77853469], + [0.77853469, 0.77853469], + [0.6957943, 0.6957943 ], + + [0.77853469, 0.77853469], + [0.77853469, 0.77853469], + [0.77853469, 0.77853469], + [0.6957943, 0.6957943 ], + + [0.77853469, 0.77853469], + [0.77853469, 0.77853469], + [0.77853469, 0.77853469], + [0.6957943, 0.6957943 ], + + [0.77853469, 0.77853469], + [0.77853469, 0.77853469], + [0.77853469, 0.77853469], + [0.6957943, 0.6957943 ], + ]) np.testing.assert_allclose(thrusts, thrusts_truth) @@ -194,24 +184,22 @@ def test_power(): turbine_data["power_thrust_data_file"] = CSV_INPUT turbine = TurbineMultiDimensional.from_dict(turbine_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + turbine_type_map = turbine_type_map[None, :] # Single turbine wind_speed = 10.0 p = power_multidim( ref_density_cp_ct=AIR_DENSITY, - rotor_effective_velocities=wind_speed * np.ones((1, 1, 1, 3, 3)), - power_interp=np.array([[[turbine.power_interp[(2, 1)]]]]), + rotor_effective_velocities=wind_speed * np.ones((1, 1, 3, 3)), + power_interp=np.array([[turbine.power_interp[(2, 1)]]]), ) power_truth = [ [ [ - [ - [3215682.686486, 3215682.686486, 3215682.686486], - [3215682.686486, 3215682.686486, 3215682.686486], - [3215682.686486, 3215682.686486, 3215682.686486], - ] + [3215682.686486, 3215682.686486, 3215682.686486], + [3215682.686486, 3215682.686486, 3215682.686486], + [3215682.686486, 3215682.686486, 3215682.686486], ] ] ] @@ -227,27 +215,15 @@ def test_power(): [turbine.power_interp[(2, 1)]], ( np.shape(WIND_CONDITION_BROADCAST)[0], - np.shape(WIND_CONDITION_BROADCAST)[1], N_TURBINES, ) ), ix_filter=INDEX_FILTER, ) - assert len(p[0, 0]) == len(INDEX_FILTER) - - unique_power = turbine.power_interp[(2, 1)]( - np.unique(rotor_effective_velocities) - ) * AIR_DENSITY - - power_truth = np.zeros_like(rotor_effective_velocities) - for i in range(3): - for j in range(4): - for k in range(4): - for m in range(3): - for n in range(3): - power_truth[i, j, k, m, n] = unique_power[j] + assert len(p[0]) == len(INDEX_FILTER) - np.testing.assert_allclose(p, power_truth[:, :, INDEX_FILTER[0]:INDEX_FILTER[1], :, :]) + power_truth = turbine.power_interp[(2, 1)](rotor_effective_velocities) * AIR_DENSITY + np.testing.assert_allclose(p, power_truth[:, INDEX_FILTER[0]:INDEX_FILTER[1]]) def test_axial_induction(): @@ -258,48 +234,47 @@ def test_axial_induction(): turbine_data["power_thrust_data_file"] = CSV_INPUT turbine = TurbineMultiDimensional.from_dict(turbine_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, None, :] + turbine_type_map = turbine_type_map[None, :] baseline_ai = 0.2646995 # Single turbine wind_speed = 10.0 ai = axial_induction_multidim( - velocities=wind_speed * np.ones((1, 1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1, 1)), - tilt_angle=np.ones((1, 1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, 1)) * 5.0, - fCt=np.array([[[turbine.fCt_interp[(2, 1)]]]]), + velocities=wind_speed * np.ones((1, 1, 3, 3)), + yaw_angle=np.zeros((1, 1)), + tilt_angle=np.ones((1, 1)) * 5.0, + ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, + fCt=np.array([[turbine.fCt_interp[(2, 1)]]]), tilt_interp={turbine.turbine_type: None}, - correct_cp_ct_for_tilt=np.array([[[False]]]), - turbine_type_map=turbine_type_map[0,0,0], + correct_cp_ct_for_tilt=np.array([[False]]), + turbine_type_map=turbine_type_map[0,0], ) np.testing.assert_allclose(ai, baseline_ai) # Multiple turbines with ix filter ai = axial_induction_multidim( - velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 3 x 4 x 4 x 3 x 3 - yaw_angle=np.zeros((1, 1, N_TURBINES)), - tilt_angle=np.ones((1, 1, N_TURBINES)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1, N_TURBINES)) * 5.0, + velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 16 x 4 x 3 x 3 + yaw_angle=np.zeros((1, N_TURBINES)), + tilt_angle=np.ones((1, N_TURBINES)) * 5.0, + ref_tilt_cp_ct=np.ones((1, N_TURBINES)) * 5.0, fCt=np.tile( [turbine.fCt_interp[(2, 1)]], ( np.shape(WIND_CONDITION_BROADCAST)[0], - np.shape(WIND_CONDITION_BROADCAST)[1], N_TURBINES, ) ), tilt_interp={turbine.turbine_type: None}, - correct_cp_ct_for_tilt=np.array([[[False] * N_TURBINES]]), + correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), turbine_type_map=turbine_type_map, ix_filter=INDEX_FILTER, ) - assert len(ai[0, 0]) == len(INDEX_FILTER) + assert len(ai[0]) == len(INDEX_FILTER) # Test the 10 m/s wind speed to use the same baseline as above - np.testing.assert_allclose(ai[0,2], baseline_ai) + np.testing.assert_allclose(ai[2], baseline_ai) def test_asdict(sample_inputs_fixture: SampleInputs): diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index db9288323..e7fcbf989 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -40,17 +40,10 @@ from tests.conftest import SampleInputs, WIND_SPEEDS -# size 12 x 1 x 1 x 1 -# (in previous version stack was used in place of concatenate, -# yielding 3 x 4 x 1 x 1 x 1 ) -WIND_CONDITION_BROADCAST = np.concatenate( - ( - np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)), # Wind direction 0 - np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)), # Wind direction 1 - np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)), # Wind direction 2 - ), - axis=0, -) +# size 16 x 1 x 1 x 1 +# 16 wind speed and wind direction combinations from conftest +WIND_CONDITION_BROADCAST = np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)) + INDEX_FILTER = [0, 2] From 98e2faeb840c8e38d8ba342c9c80d913df1ca6e4 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Fri, 29 Dec 2023 13:30:32 -0500 Subject: [PATCH 25/78] Replace Cp with power in turbine definition and throughout FLORIS (#765) * add power to 5MW model, matches https://github.com/NREL/floris/blob/main/floris/turbine_library/nrel_5MW.yaml with extension for before cut in and after cut out. Rename thrust field. * Removing Cp interp and replacing with direct power interp; updating thrust_coefficient key name. * Convert to W for power_interp; remove ref air density from power calc (tests need updating yet). * Minor updates for plot axes---contains temporary limitation to NREL 5MW turbine only, will remove prior to merge into v4 branch. * Updating 15mw based on https://github.com/IEAWindTask37/IEA-15-240-RWT/blob/master/Documentation/IEA-15-240-RWT_tabular.xlsx * 10mw updated. * Updating turbine curve conversion utility and example. * Utility for converting from v3 turbine models to v4. * Ruff and isort. * Changing names to check out v3 versions. * Renaming again... * Converting old models over. * So that tests run, using v4 5MW. * Updates to test_build_turbine_dict. * Updating conftest, test_power() to reflect absolute power in turbine yaml. * air density removed from power() calls in reg tests. * Reinstating accidentally overwritten file. * Convert from `ref_density_cp_ct` to `ref_air_density`. * `ref_tilt` replaces `ref_tilt_cp_ct` * Ruff, isort; remove AIR_DENSITY from turbine_unit_test.test_power(). * Clearing empty lines. * Check for smoothness; not yet passing `smooth enough` test. * Tests passing for smoothness. * Converter prints warning if nonsmooth; added handling for no R4. * Update build_turbine_dict test for clarity and simplicity. Ruff, isort. * Bugfixes in example after semantic changes to build_turbine_dict. * clean up example, remove deprecated inputs check in favor of generic key errors. --- examples/18_check_turbine.py | 29 ++- examples/24_floating_turbine_models.py | 2 +- examples/29_floating_vs_fixedbottom_farm.py | 2 +- ...e.py => 33_specify_turbine_power_curve.py} | 30 ++- floris/simulation/farm.py | 40 ++-- floris/simulation/floris.py | 43 +--- floris/simulation/solver.py | 50 ++-- floris/simulation/turbine.py | 83 +++---- floris/simulation/turbine_multi_dim.py | 28 +-- floris/tools/__init__.py | 1 + floris/tools/convert_turbine_v3_to_v4.py | 85 +++++++ floris/tools/floris_interface.py | 11 +- .../tools/floris_interface_legacy_reader.py | 2 +- .../turbine_utilities.py | 110 ++++++--- floris/turbine_library/__init__.py | 1 - .../turbine_library/iea_10MW_v4converted.yaml | 178 ++++++++++++++ .../turbine_library/iea_10MW_v4updated.yaml | 87 +++++++ .../turbine_library/iea_15MW_v4converted.yaml | 172 +++++++++++++ .../turbine_library/iea_15MW_v4updated.yaml | 178 ++++++++++++++ floris/turbine_library/nrel_5MW.yaml | 226 ++++++++---------- floris/turbine_library/nrel_5MW_v3legacy.yaml | 212 ++++++++++++++++ .../turbine_library/nrel_5MW_v4converted.yaml | 166 +++++++++++++ .../turbine_library/nrel_5MW_v4updated.yaml | 197 +++++++++++++++ floris/turbine_library/turbine_previewer.py | 11 +- tests/conftest.py | 102 ++++---- tests/data/nrel_5MW_v3legacy.yaml | 166 +++++++++++++ tests/farm_unit_test.py | 4 +- .../cumulative_curl_regression_test.py | 41 ++-- .../empirical_gauss_regression_test.py | 41 ++-- .../floris_interface_regression_test.py | 9 +- tests/reg_tests/gauss_regression_test.py | 59 ++--- .../jensen_jimenez_regression_test.py | 23 +- tests/reg_tests/none_regression_test.py | 14 +- tests/reg_tests/turbopark_regression_test.py | 23 +- tests/turbine_multi_dim_unit_test.py | 12 +- tests/turbine_unit_test.py | 143 ++--------- tests/turbine_utilities_unit_test.py | 115 +++++++++ 37 files changed, 2058 insertions(+), 638 deletions(-) rename examples/{32_specify_turbine_power_curve.py => 33_specify_turbine_power_curve.py} (71%) create mode 100644 floris/tools/convert_turbine_v3_to_v4.py rename floris/{turbine_library => tools}/turbine_utilities.py (57%) create mode 100644 floris/turbine_library/iea_10MW_v4converted.yaml create mode 100644 floris/turbine_library/iea_10MW_v4updated.yaml create mode 100644 floris/turbine_library/iea_15MW_v4converted.yaml create mode 100644 floris/turbine_library/iea_15MW_v4updated.yaml create mode 100644 floris/turbine_library/nrel_5MW_v3legacy.yaml create mode 100644 floris/turbine_library/nrel_5MW_v4converted.yaml create mode 100644 floris/turbine_library/nrel_5MW_v4updated.yaml create mode 100644 tests/data/nrel_5MW_v3legacy.yaml create mode 100644 tests/turbine_utilities_unit_test.py diff --git a/examples/18_check_turbine.py b/examples/18_check_turbine.py index 5c061bf5b..cb7a951d1 100644 --- a/examples/18_check_turbine.py +++ b/examples/18_check_turbine.py @@ -47,8 +47,13 @@ if t.suffix == ".yaml" and ("multi_dim" not in t.stem) ] +# TEMPORARY +print(turbines) +turbines = turbines[1:] +# END TEMPORARY + # Declare a set of figures for comparing cp and ct across models -fig_cp_ct, axarr_cp_ct = plt.subplots(2,1,sharex=True,figsize=(10,10)) +fig_pow_ct, axarr_pow_ct = plt.subplots(2,1,sharex=True,figsize=(10,10)) # For each turbine model available plot the basic info for t in turbines: @@ -59,22 +64,22 @@ # Since we are changing the turbine type, make a matching change to the reference wind height fi.assign_hub_height_to_ref_height() - # Plot cp and ct onto the fig_cp_ct plot - axarr_cp_ct[0].plot( + # Plot power and ct onto the fig_pow_ct plot + axarr_pow_ct[0].plot( fi.floris.farm.turbine_map[0].power_thrust_table["wind_speed"], fi.floris.farm.turbine_map[0].power_thrust_table["power"],label=t ) - axarr_cp_ct[0].grid(True) - axarr_cp_ct[0].legend() - axarr_cp_ct[0].set_ylabel('Cp') - axarr_cp_ct[1].plot( + axarr_pow_ct[0].grid(True) + axarr_pow_ct[0].legend() + axarr_pow_ct[0].set_ylabel('Power (kW)') + axarr_pow_ct[1].plot( fi.floris.farm.turbine_map[0].power_thrust_table["wind_speed"], - fi.floris.farm.turbine_map[0].power_thrust_table["thrust"],label=t + fi.floris.farm.turbine_map[0].power_thrust_table["thrust_coefficient"],label=t ) - axarr_cp_ct[1].grid(True) - axarr_cp_ct[1].legend() - axarr_cp_ct[1].set_ylabel('Ct') - axarr_cp_ct[1].set_xlabel('Wind Speed (m/s)') + axarr_pow_ct[1].grid(True) + axarr_pow_ct[1].legend() + axarr_pow_ct[1].set_ylabel('Ct (-)') + axarr_pow_ct[1].set_xlabel('Wind Speed (m/s)') # Create a figure fig, axarr = plt.subplots(1,2,figsize=(10,5)) diff --git a/examples/24_floating_turbine_models.py b/examples/24_floating_turbine_models.py index 18df4a631..863b896a4 100644 --- a/examples/24_floating_turbine_models.py +++ b/examples/24_floating_turbine_models.py @@ -26,7 +26,7 @@ is computed for each turbine based on effective velocity. This tilt angle is then passed on to the respective wake model. -The value of the parameter ref_tilt_cp_ct is the value of tilt at which the ct/cp curves +The value of the parameter ref_tilt is the value of tilt at which the ct/cp curves have been defined. If `correct_cp_ct_for_tilt` is True, then the difference between the current tilt as diff --git a/examples/29_floating_vs_fixedbottom_farm.py b/examples/29_floating_vs_fixedbottom_farm.py index 3e6716df1..e525f8c96 100644 --- a/examples/29_floating_vs_fixedbottom_farm.py +++ b/examples/29_floating_vs_fixedbottom_farm.py @@ -29,7 +29,7 @@ turbine based on effective velocity. This tilt angle is then passed on to the respective wake model. -The value of the parameter ref_tilt_cp_ct is the value of tilt at which the +The value of the parameter ref_tilt is the value of tilt at which the ct/cp curves have been defined. With `correct_cp_ct_for_tilt` True, the difference between the current diff --git a/examples/32_specify_turbine_power_curve.py b/examples/33_specify_turbine_power_curve.py similarity index 71% rename from examples/32_specify_turbine_power_curve.py rename to examples/33_specify_turbine_power_curve.py index 9eb1e3e13..8d80db8a6 100644 --- a/examples/32_specify_turbine_power_curve.py +++ b/examples/33_specify_turbine_power_curve.py @@ -16,8 +16,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface -from floris.turbine_library.turbine_utilities import build_turbine_dict +from floris.simulation import turbine +from floris.tools import build_turbine_dict, FlorisInterface """ @@ -30,24 +30,27 @@ """ # Generate an example turbine power and thrust curve for use in the FLORIS model +powers_orig = np.array([0, 30, 200, 500, 1000, 2000, 4000, 4000, 4000, 4000, 4000]) +wind_speeds = np.array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) +power_coeffs = powers_orig[1:]/(0.5*126.**2*np.pi/4*1.225*wind_speeds[1:]**3) turbine_data_dict = { - "wind_speed":[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20], - "power_absolute":[0, 30, 200, 500, 1000, 2000, 4000, 4000, 4000, 4000, 4000], + "wind_speed":list(wind_speeds), + "power_coefficient":[0]+list(power_coeffs), "thrust_coefficient":[0, 0.9, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2] } turbine_dict = build_turbine_dict( turbine_data_dict, "example_turbine", - file_path=None, + file_name=None, generator_efficiency=1, hub_height=90, pP=1.88, pT=1.88, rotor_diameter=126, TSR=8, - air_density=1.225, - ref_tilt_cp_ct=5 + ref_air_density=1.225, + ref_tilt=5 ) fi = FlorisInterface("inputs/gch.yaml") @@ -57,18 +60,25 @@ fi.reinitialize( layout_x=[0], layout_y=[0], - wind_speeds=wind_speeds, wind_directions=wind_directions, + wind_speeds=wind_speeds, turbine_type=[turbine_dict] ) fi.calculate_wake() powers = fi.get_farm_power() -fig, ax = plt.subplots(1,1) +specified_powers = ( + np.array(turbine_data_dict["power_coefficient"]) + *0.5*turbine_dict["ref_air_density"] + *turbine_dict["rotor_diameter"]**2*np.pi/4 + *np.array(turbine_data_dict["wind_speed"])**3 +)/1000 + +fig, ax = plt.subplots(1,1,sharex=True) ax.scatter(wind_speeds, powers/1000, color="C0", s=5, label="Test points") -ax.scatter(turbine_data_dict["wind_speed"], turbine_data_dict["power_absolute"], +ax.scatter(turbine_data_dict["wind_speed"], specified_powers, color="red", s=20, label="Specified points") ax.grid() diff --git a/floris/simulation/farm.py b/floris/simulation/farm.py index 12b2b478e..0b58cc936 100644 --- a/floris/simulation/farm.py +++ b/floris/simulation/farm.py @@ -115,11 +115,11 @@ class Farm(BaseClass): pTs: NDArrayFloat = field(init=False, factory=list) pTs_sorted: NDArrayFloat = field(init=False, factory=list) - ref_density_cp_cts: NDArrayFloat = field(init=False, factory=list) - ref_density_cp_cts_sorted: NDArrayFloat = field(init=False, factory=list) + ref_air_densities: NDArrayFloat = field(init=False, factory=list) + ref_air_densities_sorted: NDArrayFloat = field(init=False, factory=list) - ref_tilt_cp_cts: NDArrayFloat = field(init=False, factory=list) - ref_tilt_cp_cts_sorted: NDArrayFloat = field(init=False, factory=list) + ref_tilts: NDArrayFloat = field(init=False, factory=list) + ref_tilts_sorted: NDArrayFloat = field(init=False, factory=list) correct_cp_ct_for_tilt: NDArrayFloat = field(init=False, factory=list) correct_cp_ct_for_tilt_sorted: NDArrayFloat = field(init=False, factory=list) @@ -261,14 +261,14 @@ def construct_turbine_pPs(self): def construct_turbine_pTs(self): self.pTs = np.array([turb['pT'] for turb in self.turbine_definitions]) - def construct_turbine_ref_density_cp_cts(self): - self.ref_density_cp_cts = np.array([ - turb['ref_density_cp_ct'] for turb in self.turbine_definitions + def construct_turbine_ref_air_densities(self): + self.ref_air_densities = np.array([ + turb['ref_air_density'] for turb in self.turbine_definitions ]) - def construct_turbine_ref_tilt_cp_cts(self): - self.ref_tilt_cp_cts = np.array( - [turb['ref_tilt_cp_ct'] for turb in self.turbine_definitions] + def construct_turbine_ref_tilts(self): + self.ref_tilts = np.array( + [turb['ref_tilt'] for turb in self.turbine_definitions] ) def construct_turbine_correct_cp_ct_for_tilt(self): @@ -348,13 +348,13 @@ def expand_farm_properties(self, n_findex: int, sorted_coord_indices): sorted_coord_indices, axis=1 ) - self.ref_density_cp_cts_sorted = np.take_along_axis( - self.ref_density_cp_cts * template_shape, + self.ref_air_densities_sorted = np.take_along_axis( + self.ref_air_densities * template_shape, sorted_coord_indices, axis=1 ) - self.ref_tilt_cp_cts_sorted = np.take_along_axis( - self.ref_tilt_cp_cts * template_shape, + self.ref_tilts_sorted = np.take_along_axis( + self.ref_tilts * template_shape, sorted_coord_indices, axis=1 ) @@ -396,11 +396,11 @@ def set_yaw_angles(self, n_findex: int): def set_tilt_to_ref_tilt(self, n_findex: int): self.tilt_angles = ( np.ones((n_findex, self.n_turbines)) - * self.ref_tilt_cp_cts + * self.ref_tilts ) self.tilt_angles_sorted = ( np.ones((n_findex, self.n_turbines)) - * self.ref_tilt_cp_cts + * self.ref_tilts ) def calculate_tilt_for_eff_velocities(self, rotor_effective_velocities): @@ -450,13 +450,13 @@ def finalize(self, unsorted_indices): unsorted_indices[:,:,0,0], axis=1 ) - self.ref_density_cp_cts = np.take_along_axis( - self.ref_density_cp_cts_sorted, + self.ref_air_densities = np.take_along_axis( + self.ref_air_densities_sorted, unsorted_indices[:,:,0,0], axis=1 ) - self.ref_tilt_cp_cts = np.take_along_axis( - self.ref_tilt_cp_cts_sorted, + self.ref_tilts = np.take_along_axis( + self.ref_tilts_sorted, unsorted_indices[:,:,0,0], axis=1 ) diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index f1fab63ea..b7eaf7b86 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -85,8 +85,6 @@ def __attrs_post_init__(self) -> None: self.logging["file"]["level"], ) - self.check_deprecated_inputs() - # Initialize farm quantities that depend on other objects self.farm.construct_turbine_map() if self.wake.model_strings['velocity_model'] == 'multidim_cp_ct': @@ -100,8 +98,8 @@ def __attrs_post_init__(self) -> None: self.farm.construct_turbine_TSRs() self.farm.construct_turbine_pPs() self.farm.construct_turbine_pTs() - self.farm.construct_turbine_ref_density_cp_cts() - self.farm.construct_turbine_ref_tilt_cp_cts() + self.farm.construct_turbine_ref_air_densities() + self.farm.construct_turbine_ref_tilts() self.farm.construct_turbine_tilt_interps() self.farm.construct_turbine_correct_cp_ct_for_tilt() self.farm.set_yaw_angles(self.flow_field.n_findex) @@ -156,43 +154,6 @@ def __attrs_post_init__(self) -> None: self.grid.sorted_coord_indices ) - def check_deprecated_inputs(self): - """ - This function should used when the FLORIS input file changes in order to provide - an informative error and suggest a fix. - """ - - error_messages = [] - # Check for missing values add in version 3.2 and 3.4 - for turbine in self.farm.turbine_definitions: - - if "ref_density_cp_ct" not in turbine.keys(): - error_messages.append( - "From FLORIS v3.2, the turbine definition must include 'ref_density_cp_ct'. " - "This value represents the air density at which the provided Cp and Ct " - "curves are defined. Previously, this was assumed to be 1.225 kg/m^3, " - "and other air density values applied were assumed to be a deviation " - "from the defined level. FLORIS now requires the user to explicitly " - "define the reference density. Add 'ref_density_cp_ct' to your " - "turbine definition and try again. For a description of the turbine inputs, " - "see https://nrel.github.io/floris/input_reference_turbine.html." - ) - - if "ref_tilt_cp_ct" not in turbine.keys(): - error_messages.append( - "From FLORIS v3.4, the turbine definition must include 'ref_tilt_cp_ct'. " - "This value represents the tilt angle at which the provided Cp and Ct " - "curves are defined. Add 'ref_tilt_cp_ct' to your turbine definition and " - "try again. For a description of the turbine inputs, " - "see https://nrel.github.io/floris/input_reference_turbine.html." - ) - - if len(error_messages) > 0: - raise ValueError( - f"{turbine['turbine_type']} turbine model\n" + - "\n\n".join(error_messages) - ) - def initialize_domain(self): """Initialize solution space prior to wake calculations""" diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index 35c48384d..54872d88a 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -105,7 +105,7 @@ def sequential_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -121,7 +121,7 @@ def sequential_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -280,8 +280,8 @@ def full_flow_sequential_solver( turbine_grid_farm.construct_turbine_TSRs() turbine_grid_farm.construct_turbine_pPs() turbine_grid_farm.construct_turbine_pTs() - turbine_grid_farm.construct_turbine_ref_density_cp_cts() - turbine_grid_farm.construct_turbine_ref_tilt_cp_cts() + turbine_grid_farm.construct_turbine_ref_air_densities() + turbine_grid_farm.construct_turbine_ref_tilts() turbine_grid_farm.construct_turbine_tilt_interps() turbine_grid_farm.construct_turbine_correct_cp_ct_for_tilt() turbine_grid_farm.set_tilt_to_ref_tilt(flow_field.n_findex) @@ -335,7 +335,7 @@ def full_flow_sequential_solver( velocities=turbine_grid_flow_field.u_sorted, yaw_angle=turbine_grid_farm.yaw_angles_sorted, tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt_cp_ct=turbine_grid_farm.ref_tilt_cp_cts_sorted, + ref_tilt=turbine_grid_farm.ref_tilts_sorted, fCt=turbine_grid_farm.turbine_fCts, tilt_interp=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -349,7 +349,7 @@ def full_flow_sequential_solver( velocities=turbine_grid_flow_field.u_sorted, yaw_angle=turbine_grid_farm.yaw_angles_sorted, tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt_cp_ct=turbine_grid_farm.ref_tilt_cp_cts_sorted, + ref_tilt=turbine_grid_farm.ref_tilts_sorted, fCt=turbine_grid_farm.turbine_fCts, tilt_interp=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -496,7 +496,7 @@ def cc_solver( turb_avg_vels, farm.yaw_angles_sorted, farm.tilt_angles_sorted, - farm.ref_tilt_cp_cts_sorted, + farm.ref_tilts_sorted, farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -509,7 +509,7 @@ def cc_solver( turb_avg_vels, farm.yaw_angles_sorted, farm.tilt_angles_sorted, - farm.ref_tilt_cp_cts_sorted, + farm.ref_tilts_sorted, farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -527,7 +527,7 @@ def cc_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -682,8 +682,8 @@ def full_flow_cc_solver( turbine_grid_farm.construct_turbine_TSRs() turbine_grid_farm.construct_turbine_pPs() turbine_grid_farm.construct_turbine_pTs() - turbine_grid_farm.construct_turbine_ref_density_cp_cts() - turbine_grid_farm.construct_turbine_ref_tilt_cp_cts() + turbine_grid_farm.construct_turbine_ref_air_densities() + turbine_grid_farm.construct_turbine_ref_tilts() turbine_grid_farm.construct_turbine_tilt_interps() turbine_grid_farm.construct_turbine_correct_cp_ct_for_tilt() turbine_grid_farm.set_tilt_to_ref_tilt(flow_field.n_findex) @@ -741,7 +741,7 @@ def full_flow_cc_solver( velocities=turb_avg_vels, yaw_angle=turbine_grid_farm.yaw_angles_sorted, tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt_cp_ct=turbine_grid_farm.ref_tilt_cp_cts_sorted, + ref_tilt=turbine_grid_farm.ref_tilts_sorted, fCt=turbine_grid_farm.turbine_fCts, tilt_interp=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -755,7 +755,7 @@ def full_flow_cc_solver( velocities=turbine_grid_flow_field.u_sorted, yaw_angle=turbine_grid_farm.yaw_angles_sorted, tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt_cp_ct=turbine_grid_farm.ref_tilt_cp_cts_sorted, + ref_tilt=turbine_grid_farm.ref_tilts_sorted, fCt=turbine_grid_farm.turbine_fCts, tilt_interp=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -892,7 +892,7 @@ def turbopark_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -905,7 +905,7 @@ def turbopark_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -921,7 +921,7 @@ def turbopark_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -979,7 +979,7 @@ def turbopark_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1174,7 +1174,7 @@ def empirical_gauss_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1190,7 +1190,7 @@ def empirical_gauss_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=farm.turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1321,8 +1321,8 @@ def full_flow_empirical_gauss_solver( turbine_grid_farm.construct_turbine_TSRs() turbine_grid_farm.construct_turbine_pPs() turbine_grid_farm.construct_turbine_pTs() - turbine_grid_farm.construct_turbine_ref_density_cp_cts() - turbine_grid_farm.construct_turbine_ref_tilt_cp_cts() + turbine_grid_farm.construct_turbine_ref_air_densities() + turbine_grid_farm.construct_turbine_ref_tilts() turbine_grid_farm.construct_turbine_tilt_interps() turbine_grid_farm.construct_turbine_correct_cp_ct_for_tilt() turbine_grid_farm.set_tilt_to_ref_tilt(flow_field.n_findex) @@ -1377,7 +1377,7 @@ def full_flow_empirical_gauss_solver( velocities=turbine_grid_flow_field.u_sorted, yaw_angle=turbine_grid_farm.yaw_angles_sorted, tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt_cp_ct=turbine_grid_farm.ref_tilt_cp_cts_sorted, + ref_tilt=turbine_grid_farm.ref_tilts_sorted, fCt=turbine_grid_farm.turbine_fCts, tilt_interp=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -1391,7 +1391,7 @@ def full_flow_empirical_gauss_solver( velocities=turbine_grid_flow_field.u_sorted, yaw_angle=turbine_grid_farm.yaw_angles_sorted, tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt_cp_ct=turbine_grid_farm.ref_tilt_cp_cts_sorted, + ref_tilt=turbine_grid_farm.ref_tilts_sorted, fCt=turbine_grid_farm.turbine_fCts, tilt_interp=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -1512,7 +1512,7 @@ def sequential_multidim_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=downselect_turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1528,7 +1528,7 @@ def sequential_multidim_solver( velocities=flow_field.u_sorted, yaw_angle=farm.yaw_angles_sorted, tilt_angle=farm.tilt_angles_sorted, - ref_tilt_cp_ct=farm.ref_tilt_cp_cts_sorted, + ref_tilt=farm.ref_tilts_sorted, fCt=downselect_turbine_fCts, tilt_interp=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, diff --git a/floris/simulation/turbine.py b/floris/simulation/turbine.py index 1f39bad65..d7306ada5 100644 --- a/floris/simulation/turbine.py +++ b/floris/simulation/turbine.py @@ -49,7 +49,7 @@ def _rotor_velocity_yaw_correction( def _rotor_velocity_tilt_correction( turbine_type_map: NDArrayObject, tilt_angle: NDArrayFloat, - ref_tilt_cp_ct: NDArrayFloat, + ref_tilt: NDArrayFloat, pT: float, tilt_interp: NDArrayObject, correct_cp_ct_for_tilt: NDArrayBool, @@ -67,7 +67,7 @@ def _rotor_velocity_tilt_correction( tilt_angle = np.where(correct_cp_ct_for_tilt, tilt_angle, old_tilt_angle) # Compute the rotor effective velocity adjusting for tilt - relative_tilt = tilt_angle - ref_tilt_cp_ct + relative_tilt = tilt_angle - ref_tilt rotor_effective_velocities = rotor_effective_velocities * cosd(relative_tilt) ** (pT / 3.0) return rotor_effective_velocities @@ -106,11 +106,11 @@ def compute_tilt_angles_for_floating_turbines( def rotor_effective_velocity( air_density: float, - ref_density_cp_ct: float, + ref_air_density: float, velocities: NDArrayFloat, yaw_angle: NDArrayFloat, tilt_angle: NDArrayFloat, - ref_tilt_cp_ct: NDArrayFloat, + ref_tilt: NDArrayFloat, pP: float, pT: float, tilt_interp: NDArrayObject, @@ -131,7 +131,7 @@ def rotor_effective_velocity( velocities = velocities[:, ix_filter] yaw_angle = yaw_angle[:, ix_filter] tilt_angle = tilt_angle[:, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] + ref_tilt = ref_tilt[:, ix_filter] pP = pP[:, ix_filter] pT = pT[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] @@ -144,7 +144,7 @@ def rotor_effective_velocity( method=average_method, cubature_weights=cubature_weights ) - rotor_effective_velocities = (air_density/ref_density_cp_ct)**(1/3) * average_velocities + rotor_effective_velocities = (air_density/ref_air_density)**(1/3) * average_velocities # Compute the rotor effective velocity adjusting for yaw settings rotor_effective_velocities = _rotor_velocity_yaw_correction( @@ -155,7 +155,7 @@ def rotor_effective_velocity( rotor_effective_velocities = _rotor_velocity_tilt_correction( turbine_type_map, tilt_angle, - ref_tilt_cp_ct, + ref_tilt, pT, tilt_interp, correct_cp_ct_for_tilt, @@ -166,7 +166,6 @@ def rotor_effective_velocity( def power( - ref_density_cp_ct: float, rotor_effective_velocities: NDArrayFloat, power_interp: dict[str, interp1d], turbine_type_map: NDArrayObject, @@ -176,9 +175,8 @@ def power( given in Watts. Args: - ref_density_cp_cts (NDArrayFloat[wd, ws, turbines]): The reference density for each turbine rotor_effective_velocities (NDArrayFloat[wd, ws, turbines]): The rotor - effective velocities at a turbine. + effective velocities at a turbine. Includes the air density correction. power_interp (dict[str, interp1d]): A dictionary of power interpolation functions for each turbine type. turbine_type_map: (NDArrayObject[wd, ws, turbines]): The Turbine type definition for @@ -215,14 +213,14 @@ def power( # type to the main thrust coefficient array p += power_interp[turb_type](rotor_effective_velocities) * (turbine_type_map == turb_type) - return p * ref_density_cp_ct + return p def Ct( velocities: NDArrayFloat, yaw_angle: NDArrayFloat, tilt_angle: NDArrayFloat, - ref_tilt_cp_ct: NDArrayFloat, + ref_tilt: NDArrayFloat, fCt: dict, tilt_interp: NDArrayObject, correct_cp_ct_for_tilt: NDArrayBool, @@ -241,7 +239,7 @@ def Ct( a turbine. yaw_angle (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. tilt_angle (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. - ref_tilt_cp_ct (NDArrayFloat[findex, turbines]): The reference tilt angle for each turbine + ref_tilt (NDArrayFloat[findex, turbines]): The reference tilt angle for each turbine that the Cp/Ct tables are defined at. fCt (dict): The thrust coefficient interpolation functions for each turbine. Keys are the turbine type string and values are the interpolation functions. @@ -270,7 +268,7 @@ def Ct( velocities = velocities[:, ix_filter] yaw_angle = yaw_angle[:, ix_filter] tilt_angle = tilt_angle[:, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] + ref_tilt = ref_tilt[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, ix_filter] @@ -302,7 +300,7 @@ def Ct( * (turbine_type_map == turb_type) ) thrust_coefficient = np.clip(thrust_coefficient, 0.0001, 0.9999) - effective_thrust = thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt_cp_ct) + effective_thrust = thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt) return effective_thrust @@ -310,7 +308,7 @@ def axial_induction( velocities: NDArrayFloat, # (findex, turbines, grid, grid) yaw_angle: NDArrayFloat, # (findex, turbines) tilt_angle: NDArrayFloat, # (findex, turbines) - ref_tilt_cp_ct: NDArrayFloat, + ref_tilt: NDArrayFloat, fCt: dict, # (turbines) tilt_interp: NDArrayObject, # (turbines) correct_cp_ct_for_tilt: NDArrayBool, # (findex, turbines) @@ -327,7 +325,7 @@ def axial_induction( (number of turbines, ngrid, ngrid), or (ngrid, ngrid) for a single turbine. yaw_angle (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. tilt_angle (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. - ref_tilt_cp_ct (NDArrayFloat[findex, turbines]): The reference tilt angle for each turbine + ref_tilt (NDArrayFloat[findex, turbines]): The reference tilt angle for each turbine that the Cp/Ct tables are defined at. fCt (dict): The thrust coefficient interpolation functions for each turbine. Keys are the turbine type string and values are the interpolation functions. @@ -358,7 +356,7 @@ def axial_induction( velocities, yaw_angle, tilt_angle, - ref_tilt_cp_ct, + ref_tilt, fCt, tilt_interp, correct_cp_ct_for_tilt, @@ -372,15 +370,15 @@ def axial_induction( if ix_filter is not None: yaw_angle = yaw_angle[:, ix_filter] tilt_angle = tilt_angle[:, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] + ref_tilt = ref_tilt[:, ix_filter] return ( 0.5 / (cosd(yaw_angle) - * cosd(tilt_angle - ref_tilt_cp_ct)) + * cosd(tilt_angle - ref_tilt)) * ( 1 - np.sqrt( - 1 - thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt_cp_ct) + 1 - thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt) ) ) ) @@ -477,8 +475,8 @@ class Turbine(BaseClass): TSR (float): The Tip Speed Ratio of the turbine. generator_efficiency (float): The efficiency of the generator used to scale power production. - ref_density_cp_ct (float): The density at which the provided Cp and Ct curves are defined. - ref_tilt_cp_ct (float): The implicit tilt of the turbine for which the Cp and Ct + ref_air_density (float): The density at which the provided Cp and Ct curves are defined. + ref_tilt (float): The implicit tilt of the turbine for which the Cp and Ct curves are defined. This is typically the nacelle tilt. power_thrust_table (dict[str, float]): Contains power coefficient and thrust coefficient values at a series of wind speeds to define the turbine performance. @@ -506,8 +504,8 @@ class Turbine(BaseClass): pT: float = field() TSR: float = field() generator_efficiency: float = field() - ref_density_cp_ct: float = field() - ref_tilt_cp_ct: float = field() + ref_air_density: float = field() + ref_tilt: float = field() power_thrust_table: dict[str, NDArrayFloat] = field(converter=floris_numeric_dict_converter) correct_cp_ct_for_tilt: bool = field(default=False) @@ -544,22 +542,11 @@ def _initialize_power_thrust_interpolation(self) -> None: # self.wind_speed = self.wind_speed[duplicate_filter] wind_speeds = self.power_thrust_table["wind_speed"] - cp_interp = interp1d( - wind_speeds, - self.power_thrust_table["power"], - fill_value=(0.0, 1.0), - bounds_error=False, - ) self.power_interp = interp1d( wind_speeds, - ( - 0.5 * self.rotor_area - * cp_interp(wind_speeds) - * self.generator_efficiency - * wind_speeds ** 3 - ), + self.power_thrust_table["power"] * 1e3, # Convert to W + fill_value=0.0, bounds_error=False, - fill_value=0 ) """ @@ -574,7 +561,7 @@ def _initialize_power_thrust_interpolation(self) -> None: """ self.fCt_interp = interp1d( wind_speeds, - self.power_thrust_table["thrust"], + self.power_thrust_table["thrust_coefficient"], fill_value=(0.0001, 0.9999), bounds_error=False, ) @@ -606,23 +593,29 @@ def check_power_thrust_table(self, instance: attrs.Attribute, value: dict) -> No Verify that the power and thrust tables are given with arrays of equal length to the wind speed array. """ - if len(value.keys()) != 3 or set(value.keys()) != {"wind_speed", "power", "thrust"}: + if (len(value.keys()) != 3 or + set(value.keys()) != {"wind_speed", "power", "thrust_coefficient"}): raise ValueError( """ power_thrust_table dictionary must have the form: { "wind_speed": List[float], "power": List[float], - "thrust": List[float], + "thrust_coefficient": List[float], } """ ) - if any(e.ndim > 1 for e in (value["power"], value["thrust"], value["wind_speed"])): - raise ValueError("power, thrust, and wind_speed inputs must be 1-D.") + if any(e.ndim > 1 for e in + (value["power"], value["thrust_coefficient"], value["wind_speed"]) + ): + raise ValueError("power, thrust_coefficient, and wind_speed inputs must be 1-D.") - if len( {value["power"].size, value["thrust"].size, value["wind_speed"].size} ) > 1: - raise ValueError("power, thrust, and wind_speed tables must be the same size.") + if (len( {value["power"].size, value["thrust_coefficient"].size, value["wind_speed"].size} ) + > 1): + raise ValueError( + "power, thrust_coefficient, and wind_speed tables must be the same size." + ) @rotor_diameter.validator def reset_rotor_diameter_dependencies(self, instance: attrs.Attribute, value: float) -> None: diff --git a/floris/simulation/turbine_multi_dim.py b/floris/simulation/turbine_multi_dim.py index ff993f0d0..3248ff4e4 100644 --- a/floris/simulation/turbine_multi_dim.py +++ b/floris/simulation/turbine_multi_dim.py @@ -42,7 +42,7 @@ def power_multidim( - ref_density_cp_ct: float, + ref_air_density: float, rotor_effective_velocities: NDArrayFloat, power_interp: NDArrayObject, ix_filter: NDArrayInt | Iterable[int] | None = None, @@ -51,7 +51,7 @@ def power_multidim( Cp/Ct values, adjusted for yaw and tilt. Value given in Watts. Args: - ref_density_cp_cts (NDArrayFloat[wd, ws, turbines]): The reference density for each turbine + ref_air_densities (NDArrayFloat[wd, ws, turbines]): The reference density for each turbine rotor_effective_velocities (NDArrayFloat[wd, ws, turbines, grid1, grid2]): The rotor effective velocities at a turbine. power_interp (NDArrayObject[wd, ws, turbines]): The power interpolation function @@ -85,14 +85,14 @@ def power_multidim( for j, turb in enumerate(findex): p[i, j] = power_interp[i, j](rotor_effective_velocities[i, j]) - return p * ref_density_cp_ct + return p * ref_air_density def Ct_multidim( velocities: NDArrayFloat, yaw_angle: NDArrayFloat, tilt_angle: NDArrayFloat, - ref_tilt_cp_ct: NDArrayFloat, + ref_tilt: NDArrayFloat, fCt: list, tilt_interp: NDArrayObject, correct_cp_ct_for_tilt: NDArrayBool, @@ -112,7 +112,7 @@ def Ct_multidim( a turbine. yaw_angle (NDArrayFloat[wd, ws, turbines]): The yaw angle for each turbine. tilt_angle (NDArrayFloat[wd, ws, turbines]): The tilt angle for each turbine. - ref_tilt_cp_ct (NDArrayFloat[wd, ws, turbines]): The reference tilt angle for each turbine + ref_tilt (NDArrayFloat[wd, ws, turbines]): The reference tilt angle for each turbine that the Cp/Ct tables are defined at. fCt (list): The thrust coefficient interpolation functions for each turbine. tilt_interp (Iterable[tuple]): The tilt interpolation functions for each @@ -140,7 +140,7 @@ def Ct_multidim( velocities = velocities[:, ix_filter] yaw_angle = yaw_angle[:, ix_filter] tilt_angle = tilt_angle[:, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] + ref_tilt = ref_tilt[:, ix_filter] fCt = fCt[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, ix_filter] @@ -168,7 +168,7 @@ def Ct_multidim( for j, turb in enumerate(findex): thrust_coefficient[i, j] = fCt[i, j](average_velocities[i, j]) thrust_coefficient = np.clip(thrust_coefficient, 0.0001, 0.9999) - effective_thrust = thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt_cp_ct) + effective_thrust = thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt) return effective_thrust @@ -176,7 +176,7 @@ def axial_induction_multidim( velocities: NDArrayFloat, # (wind directions, wind speeds, turbines, grid, grid) yaw_angle: NDArrayFloat, # (wind directions, wind speeds, turbines) tilt_angle: NDArrayFloat, # (wind directions, wind speeds, turbines) - ref_tilt_cp_ct: NDArrayFloat, + ref_tilt: NDArrayFloat, fCt: list, # (turbines) tilt_interp: NDArrayObject, # (turbines) correct_cp_ct_for_tilt: NDArrayBool, # (wind directions, wind speeds, turbines) @@ -193,7 +193,7 @@ def axial_induction_multidim( (number of turbines, ngrid, ngrid), or (ngrid, ngrid) for a single turbine. yaw_angle (NDArrayFloat[wd, ws, turbines]): The yaw angle for each turbine. tilt_angle (NDArrayFloat[wd, ws, turbines]): The tilt angle for each turbine. - ref_tilt_cp_ct (NDArrayFloat[wd, ws, turbines]): The reference tilt angle for each turbine + ref_tilt (NDArrayFloat[wd, ws, turbines]): The reference tilt angle for each turbine that the Cp/Ct tables are defined at. fCt (list): The thrust coefficient interpolation functions for each turbine. tilt_interp (Iterable[tuple]): The tilt interpolation functions for each @@ -223,7 +223,7 @@ def axial_induction_multidim( velocities, yaw_angle, tilt_angle, - ref_tilt_cp_ct, + ref_tilt, fCt, tilt_interp, correct_cp_ct_for_tilt, @@ -237,15 +237,15 @@ def axial_induction_multidim( if ix_filter is not None: yaw_angle = yaw_angle[:, ix_filter] tilt_angle = tilt_angle[:, ix_filter] - ref_tilt_cp_ct = ref_tilt_cp_ct[:, ix_filter] + ref_tilt = ref_tilt[:, ix_filter] return ( 0.5 / (cosd(yaw_angle) - * cosd(tilt_angle - ref_tilt_cp_ct)) + * cosd(tilt_angle - ref_tilt)) * ( 1 - np.sqrt( - 1 - thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt_cp_ct) + 1 - thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt) ) ) ) @@ -396,7 +396,7 @@ class TurbineMultiDimensional(Turbine): tilt angle to power. generator_efficiency (:py:obj: float): The generator efficiency factor used to scale the power production. - ref_density_cp_ct (:py:obj: float): The density at which the provided + ref_air_density (:py:obj: float): The density at which the provided cp and ct is defined power_thrust_table (PowerThrustTable): A dictionary containing the following key-value pairs: diff --git a/floris/tools/__init__.py b/floris/tools/__init__.py index 6a2cca91b..4242e7be1 100644 --- a/floris/tools/__init__.py +++ b/floris/tools/__init__.py @@ -39,6 +39,7 @@ from .floris_interface import FlorisInterface from .floris_interface_legacy_reader import FlorisInterfaceLegacyV2 from .parallel_computing_interface import ParallelComputingInterface +from .turbine_utilities import build_turbine_dict, check_smooth_power_curve from .uncertainty_interface import UncertaintyInterface from .visualization import ( plot_rotor_values, diff --git a/floris/tools/convert_turbine_v3_to_v4.py b/floris/tools/convert_turbine_v3_to_v4.py new file mode 100644 index 000000000..21067ac93 --- /dev/null +++ b/floris/tools/convert_turbine_v3_to_v4.py @@ -0,0 +1,85 @@ +# Copyright 2021 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +""" +This script is intended to be called with an argument and converts a turbine +yaml file specified for FLORIS v3 to one specified for FLORIS v4. + +Usage: +python convert_turbine_yaml_v3_to_v4.py .yaml + +The resulting turbine is placed in the same directory as the original yaml, +and is appended _v4. +""" + +import sys +from ipaddress import v4_int_to_packed +from pathlib import Path + +from floris.tools import build_turbine_dict, check_smooth_power_curve +from floris.utilities import load_yaml + + +if len(sys.argv) != 2: + raise Exception("Usage: python convert_turbine_yaml_v3_to_v4.py .yaml") + +input_yaml = sys.argv[1] + +# Handling the path and new filename +input_path = Path(input_yaml) +split_input = input_path.parts +[filename_v3, extension] = split_input[-1].split(".") +filename_v4 = filename_v3 + "_v4" +split_output = list(split_input[:-1]) + [filename_v4+"."+extension] +output_path = Path(*split_output) + +# Load existing v3 model +v3_turbine_dict = load_yaml(input_yaml) + +# Split into components expected by build_turbine_dict +power_thrust_table = v3_turbine_dict["power_thrust_table"] +power_thrust_table["power_coefficient"] = power_thrust_table["power"] +power_thrust_table["thrust_coefficient"] = power_thrust_table["thrust"] +power_thrust_table.pop("power") +power_thrust_table.pop("thrust") + +valid_properties = [ + "generator_efficiency", + "hub_height", + "pP", + "pT", + "rotor_diameter", + "TSR", + "ref_air_density", + "ref_tilt" +] + +turbine_properties = {k:v for k,v in v3_turbine_dict.items() if k in valid_properties} +turbine_properties["ref_air_density"] = v3_turbine_dict["ref_density_cp_ct"] +if "ref_tilt_cp_ct" in v3_turbine_dict: + turbine_properties["ref_tilt"] = v3_turbine_dict["ref_tilt_cp_ct"] + +# Convert to v4 and print new yaml +v4_turbine_dict = build_turbine_dict( + power_thrust_table, + v3_turbine_dict["turbine_type"], + output_path, + **turbine_properties +) + +if not check_smooth_power_curve(v4_turbine_dict["power_thrust_table"]["power"], tolerance=0.001): + print( + "Non-smoothness detected in output power curve. ", + "Check above-rated power in generated v4 yaml file." + ) diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index 1b4951506..07e2eeb71 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -605,7 +605,6 @@ def get_turbine_powers(self) -> NDArrayFloat: self.logger.warning("Some rotor effective velocities are negative.") turbine_powers = power( - ref_density_cp_ct=self.floris.farm.ref_density_cp_cts, rotor_effective_velocities=self.turbine_effective_velocities, power_interp=self.floris.farm.turbine_power_interps, turbine_type_map=self.floris.farm.turbine_type_map, @@ -637,7 +636,7 @@ def get_turbine_powers_multidim(self) -> NDArrayFloat: ) turbine_powers = power_multidim( - ref_density_cp_ct=self.floris.farm.ref_density_cp_cts, + ref_air_density=self.floris.farm.ref_air_densities, rotor_effective_velocities=self.turbine_effective_velocities, power_interp=turbine_power_interps, ) @@ -648,7 +647,7 @@ def get_turbine_Cts(self) -> NDArrayFloat: velocities=self.floris.flow_field.u, yaw_angle=self.floris.farm.yaw_angles, tilt_angle=self.floris.farm.tilt_angles, - ref_tilt_cp_ct=self.floris.farm.ref_tilt_cp_cts, + ref_tilt=self.floris.farm.ref_tilts, fCt=self.floris.farm.turbine_fCts, tilt_interp=self.floris.farm.turbine_tilt_interps, correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, @@ -663,7 +662,7 @@ def get_turbine_ais(self) -> NDArrayFloat: velocities=self.floris.flow_field.u, yaw_angle=self.floris.farm.yaw_angles, tilt_angle=self.floris.farm.tilt_angles, - ref_tilt_cp_ct=self.floris.farm.ref_tilt_cp_cts, + ref_tilt=self.floris.farm.ref_tilts, fCt=self.floris.farm.turbine_fCts, tilt_interp=self.floris.farm.turbine_tilt_interps, correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, @@ -685,11 +684,11 @@ def turbine_average_velocities(self) -> NDArrayFloat: def turbine_effective_velocities(self) -> NDArrayFloat: rotor_effective_velocities = rotor_effective_velocity( air_density=self.floris.flow_field.air_density, - ref_density_cp_ct=self.floris.farm.ref_density_cp_cts, + ref_air_density=self.floris.farm.ref_air_densities, velocities=self.floris.flow_field.u, yaw_angle=self.floris.farm.yaw_angles, tilt_angle=self.floris.farm.tilt_angles, - ref_tilt_cp_ct=self.floris.farm.ref_tilt_cp_cts, + ref_tilt=self.floris.farm.ref_tilts, pP=self.floris.farm.pPs, pT=self.floris.farm.pTs, tilt_interp=self.floris.farm.turbine_tilt_interps, diff --git a/floris/tools/floris_interface_legacy_reader.py b/floris/tools/floris_interface_legacy_reader.py index 83f0ef7e7..300b3566c 100644 --- a/floris/tools/floris_interface_legacy_reader.py +++ b/floris/tools/floris_interface_legacy_reader.py @@ -188,7 +188,7 @@ def _convert_v24_dictionary_to_v3(dict_legacy): "rotor_diameter": tp["rotor_diameter"], "TSR": tp["TSR"], "power_thrust_table": tp["power_thrust_table"], - "ref_density_cp_ct": 1.225 # This was implicit in the former input file + "ref_air_density": 1.225 # This was implicit in the former input file } return dict_floris, dict_turbine diff --git a/floris/turbine_library/turbine_utilities.py b/floris/tools/turbine_utilities.py similarity index 57% rename from floris/turbine_library/turbine_utilities.py rename to floris/tools/turbine_utilities.py index c862c21bd..65664b163 100644 --- a/floris/turbine_library/turbine_utilities.py +++ b/floris/tools/turbine_utilities.py @@ -1,3 +1,17 @@ +# Copyright 2021 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + import os.path import numpy as np @@ -7,15 +21,15 @@ def build_turbine_dict( turbine_data_dict, turbine_name, - file_path=None, + file_name=None, generator_efficiency=1.0, hub_height=90.0, pP=1.88, pT=1.88, rotor_diameter=126.0, TSR=8.0, - air_density=1.225, - ref_tilt_cp_ct=5.0 + ref_air_density=1.225, + ref_tilt=5.0 ): """ Tool for formatting a full turbine dict from data formatted as a @@ -45,17 +59,17 @@ def build_turbine_dict( turbine as a function of wind speed. Described in more detail above. turbine_name (string): Name of the turbine, which will be used for the turbine_type field as well as the filename. - file_path (): Path for placement of the produced yaml. Defaults to None, - in which case no yaml is written. + file_name (): Name for the produced yaml, including possibly path. + Defaults to None, in which case no yaml is written. generator_efficiency (float): Generator efficiency [-]. Defaults to 1.0. hub_height (float): Hub height [m]. Defaults to 90.0. pP (float): Cosine exponent for power loss to yaw [-]. Defaults to 1.88. pT (float): Cosine exponent for thrust loss to yaw [-]. Defaults to 1.88. rotor_diameter (float). Rotor diameter [m]. Defaults to 126.0. TSR (float). Turbine optimal tip-speed ratio [-]. Defaults to 8.0. - air_density (float). Air density used to specify power and thrust + ref_air_density (float). Air density used to specify power and thrust curves [kg/m^3]. Defaults to 1.225. - ref_tilt_cp_ct (float). Rotor tilt (due to shaft tilt and/or platform + ref_tilt (float). Rotor tilt (due to shaft tilt and/or platform tilt) used when defining the power and thrust curves [deg]. Defaults to 5.0. @@ -70,49 +84,48 @@ def build_turbine_dict( A = np.pi * rotor_diameter**2/4 # Construct the Cp curve - if "power_coefficient" in turbine_data_dict: - if "power_absolute" in turbine_data_dict: + if "power" in turbine_data_dict: + if "power_coefficient" in turbine_data_dict: print( - "Found both power_absolute and power_coefficient." - "Ignoring power_absolute." + "Found both power and power_coefficient. " + "Ignoring power_coefficient." ) - Cp = np.array(turbine_data_dict["power_coefficient"]) + p = np.array(turbine_data_dict["power"]) - elif "power_absolute" in turbine_data_dict: - P = np.array(turbine_data_dict["power_absolute"]) - if _find_nearest_value_for_wind_speed(P, u, 10) > 20000 or \ - _find_nearest_value_for_wind_speed(P, u, 10) < 1000: + elif "power_coefficient" in turbine_data_dict: + Cp = np.array(turbine_data_dict["power_coefficient"]) + if _find_nearest_value_for_wind_speed(Cp, u, 10) > 16.0/27.0 or \ + _find_nearest_value_for_wind_speed(Cp, u, 10) < 0.0: print( - "Unusual power value detected. Please check that power_absolute", - "is specified in kW." + "Unusual power coefficient detected. Check that power coefficients" + "are physical." ) - validity_mask = (P != 0) | (u != 0) - Cp = np.zeros_like(P, dtype=float) + validity_mask = (Cp != 0) | (u != 0) + p = np.zeros_like(Cp, dtype=float) - Cp[validity_mask] = (P[validity_mask]*1000) / \ - (0.5*air_density*A*u[validity_mask]**3) + p[validity_mask] = Cp[validity_mask]*0.5*ref_air_density*A*u[validity_mask]**3 / 1000 else: raise KeyError( - "Either power_absolute or power_coefficient must be specified." + "Either power or power_coefficient must be specified." ) # Construct Ct curve if "thrust_coefficient" in turbine_data_dict: - if "thrust_absolute" in turbine_data_dict: + if "thrust" in turbine_data_dict: print( - "Found both thrust_absolute and thrust_coefficient." - "Ignoring thrust_absolute." + "Found both thrust and thrust_coefficient. " + "Ignoring thrust." ) Ct = np.array(turbine_data_dict["thrust_coefficient"]) - elif "thrust_absolute" in turbine_data_dict: - T = np.array(turbine_data_dict["thrust_absolute"]) + elif "thrust" in turbine_data_dict: + T = np.array(turbine_data_dict["thrust"]) if _find_nearest_value_for_wind_speed(T, u, 10) > 3000 or \ _find_nearest_value_for_wind_speed(T, u, 10) < 100: print( - "Unusual thrust value detected. Please check that thrust_absolute", + "Unusual thrust value detected. Please check that thrust", "is specified in kN." ) @@ -120,18 +133,18 @@ def build_turbine_dict( Ct = np.zeros_like(T) Ct[validity_mask] = (T[validity_mask]*1000)/\ - (0.5*air_density*A*u[validity_mask]**2) + (0.5*ref_air_density*A*u[validity_mask]**2) else: raise KeyError( - "Either thrust_absolute or thrust_coefficient must be specified." + "Either thrust or thrust_coefficient must be specified." ) # Build the turbine dict power_thrust_dict = { "wind_speed": u.tolist(), - "power": Cp.tolist(), - "thrust": Ct.tolist() + "power": p.tolist(), + "thrust_coefficient": Ct.tolist() } turbine_dict = { @@ -142,21 +155,20 @@ def build_turbine_dict( "pT": pT, "rotor_diameter": rotor_diameter, "TSR": TSR, - "ref_density_cp_ct": air_density, - "ref_tilt_cp_ct": ref_tilt_cp_ct, + "ref_air_density": ref_air_density, + "ref_tilt": ref_tilt, "power_thrust_table": power_thrust_dict } # Create yaml file - if file_path is not None: - full_name = os.path.join(file_path, turbine_name+".yaml") + if file_name is not None: yaml.dump( turbine_dict, - open(full_name, "w"), + open(file_name, "w"), sort_keys=False ) - print(full_name, "created.") + print(file_name, "created.") return turbine_dict @@ -164,3 +176,23 @@ def _find_nearest_value_for_wind_speed(test_vals, ws_vals, ws): errs = np.absolute(ws_vals-ws) idx = errs.argmin() return test_vals[idx] + +def check_smooth_power_curve(power, tolerance=0.001): + """ + Check whether there are "wiggles" in the power signal. + """ + + if power[-1] < 0.95*max(power): # Cut-out or shutdown included + expected_changes = 2 + else: # Shutdown appears not to be included + expected_changes = 1 + + dirs = np.where( + np.abs(np.diff(power)) > tolerance, + np.sign(np.diff(power)), + np.zeros(len(power)-1) + ) + dir_changes = np.sum(np.abs(np.diff(dirs))) + is_smooth = dir_changes <= expected_changes + + return is_smooth diff --git a/floris/turbine_library/__init__.py b/floris/turbine_library/__init__.py index 933615b0c..828c50eb2 100644 --- a/floris/turbine_library/__init__.py +++ b/floris/turbine_library/__init__.py @@ -1,2 +1 @@ from floris.turbine_library.turbine_previewer import TurbineInterface, TurbineLibrary -from floris.turbine_library.turbine_utilities import build_turbine_dict diff --git a/floris/turbine_library/iea_10MW_v4converted.yaml b/floris/turbine_library/iea_10MW_v4converted.yaml new file mode 100644 index 000000000..7258b388b --- /dev/null +++ b/floris/turbine_library/iea_10MW_v4converted.yaml @@ -0,0 +1,178 @@ +turbine_type: iea_10MW +generator_efficiency: 1.0 +hub_height: 119.0 +pP: 1.88 +pT: 1.88 +rotor_diameter: 198.0 +TSR: 8.0 +ref_air_density: 1.225 +ref_tilt: 6.0 +power_thrust_table: + wind_speed: + - 0.0 + - 2.9 + - 3.0 + - 4.0 + - 4.5147 + - 5.0008 + - 5.4574 + - 5.8833 + - 6.2777 + - 6.6397 + - 6.9684 + - 7.2632 + - 7.5234 + - 7.7484 + - 7.9377 + - 8.0909 + - 8.2077 + - 8.2877 + - 8.3308 + - 8.337 + - 8.3678 + - 8.4356 + - 8.5401 + - 8.6812 + - 8.8585 + - 9.0717 + - 9.3202 + - 9.6035 + - 9.921 + - 10.272 + - 10.6557 + - 10.7577 + - 11.5177 + - 11.9941 + - 12.4994 + - 13.0324 + - 13.592 + - 14.1769 + - 14.7859 + - 15.4175 + - 16.0704 + - 16.7432 + - 17.4342 + - 18.1421 + - 18.8652 + - 19.6019 + - 20.3506 + - 21.1096 + - 21.8773 + - 22.6519 + - 23.4317 + - 24.215 + - 25.01 + - 25.02 + - 50.0 + power: + - 0.0 + - 0.0 + - 37.68094958908877 + - 392.3948496148231 + - 652.8777029978363 + - 949.7874838458624 + - 1273.9701534366477 + - 1624.53736790407 + - 1994.1716868646631 + - 2369.9141552410333 + - 2742.7863681556505 + - 3105.823526184341 + - 3451.7173408365657 + - 3770.7597566998656 + - 4053.935262364495 + - 4293.221213633668 + - 4481.848670501228 + - 4614.183183672742 + - 4686.546075837561 + - 4697.017416780224 + - 4749.267597733971 + - 4865.648149450861 + - 5048.724054152798 + - 5303.127287084259 + - 5634.732904516438 + - 6051.44102592321 + - 6562.487084906048 + - 7179.28820897481 + - 7915.149369234113 + - 8799.632659018345 + - 10000.004148840422 + - 10000.010118342427 + - 9999.986697903953 + - 10000.00900096281 + - 10000.010994188466 + - 9999.985254153351 + - 10000.01026748458 + - 10000.005066662203 + - 10000.02018584477 + - 10000.017032649757 + - 10000.030351494535 + - 10000.023814906699 + - 10000.036965698706 + - 10000.045823704839 + - 10000.005313131529 + - 9999.992881648563 + - 9999.96325689038 + - 9999.976811614484 + - 10000.028061758208 + - 9999.89737385537 + - 10000.082694480527 + - 10000.014032855759 + - 10011.87188590296 + - 0.0 + - 0.0 + thrust_coefficient: + - 0.0 + - 0.0 + - 0.7701 + - 0.7701 + - 0.7763 + - 0.7824 + - 0.782 + - 0.7802 + - 0.7772 + - 0.7719 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7675 + - 0.7651 + - 0.7587 + - 0.5056 + - 0.431 + - 0.3708 + - 0.3209 + - 0.2788 + - 0.2432 + - 0.2128 + - 0.1868 + - 0.1645 + - 0.1454 + - 0.1289 + - 0.1147 + - 0.1024 + - 0.0918 + - 0.0825 + - 0.0745 + - 0.0675 + - 0.0613 + - 0.0559 + - 0.0512 + - 0.047 + - 0.0 + - 0.0 diff --git a/floris/turbine_library/iea_10MW_v4updated.yaml b/floris/turbine_library/iea_10MW_v4updated.yaml new file mode 100644 index 000000000..9328982ba --- /dev/null +++ b/floris/turbine_library/iea_10MW_v4updated.yaml @@ -0,0 +1,87 @@ +# Data based on: +# https://github.com/NREL/turbine-models/blob/master/Offshore/IEA_10MW_198_RWT.csv +turbine_type: 'iea_10MW' +generator_efficiency: 1.0 +hub_height: 119.0 +pP: 1.88 +pT: 1.88 +rotor_diameter: 198.0 +TSR: 8.0 +ref_air_density: 1.225 +ref_tilt: 6.0 +power_thrust_table: + power: + - 0.000000 + - 0.000000 + - 37.874 + - 440.49 + - 1074.369 + - 1973.429 + - 3152.143 + - 4723.686 + - 6734.924 + - 7863.971 + - 9057.796 + - 10309.687 + - 10638.3 + - 10638.3 + - 10638.3 + - 10638.3 + - 10638.3 + - 10638.3 + - 10638.3 + - 10638.3 + - 10638.3 + - 10638.301 + - 0.0 + - 0.0 + thrust_coefficient: + - 0.0 + - 0.0 + - 0.915 + - 0.926 + - 0.921 + - 0.895 + - 0.885 + - 0.873 + - 0.827 + - 0.789 + - 0.754 + - 0.721 + - 0.591 + - 0.49 + - 0.418 + - 0.318 + - 0.251 + - 0.203 + - 0.167 + - 0.119 + - 0.088 + - 0.049 + - 0.0 + - 0.0 + wind_speed: + - 0.0000 + - 2.9 + - 3.0 + - 4.0 + - 5.0 + - 6.0 + - 7.0 + - 8.0 + - 9.0 + - 9.5 + - 10.0 + - 10.5 + - 11.0 + - 11.5 + - 12.0 + - 13.0 + - 14.0 + - 15.0 + - 16.0 + - 18.0 + - 20.0 + - 25.0 + - 25.01 + - 50.0 diff --git a/floris/turbine_library/iea_15MW_v4converted.yaml b/floris/turbine_library/iea_15MW_v4converted.yaml new file mode 100644 index 000000000..66a7161cc --- /dev/null +++ b/floris/turbine_library/iea_15MW_v4converted.yaml @@ -0,0 +1,172 @@ +turbine_type: iea_15MW +generator_efficiency: 1.0 +hub_height: 150.0 +pP: 1.88 +pT: 1.88 +rotor_diameter: 242.24 +TSR: 8.0 +ref_air_density: 1.225 +ref_tilt: 6.0 +power_thrust_table: + wind_speed: + - 0.0 + - 3.0 + - 3.54953237 + - 4.067900771 + - 4.553906848 + - 5.006427063 + - 5.424415288 + - 5.806905228 + - 6.153012649 + - 6.461937428 + - 6.732965398 + - 6.965470002 + - 7.158913742 + - 7.312849418 + - 7.426921164 + - 7.500865272 + - 7.534510799 + - 7.541241633 + - 7.58833327 + - 7.675676842 + - 7.803070431 + - 7.970219531 + - 8.176737731 + - 8.422147605 + - 8.70588182 + - 9.027284445 + - 9.385612468 + - 9.780037514 + - 10.20964776 + - 10.67345004 + - 10.86770694 + - 11.17037214 + - 11.6992653 + - 12.25890683 + - 12.84800295 + - 13.46519181 + - 14.10904661 + - 14.77807889 + - 15.470742 + - 16.18543466 + - 16.92050464 + - 17.67425264 + - 18.44493615 + - 19.23077353 + - 20.02994808 + - 20.8406123 + - 21.66089211 + - 22.4888912 + - 23.32269542 + - 24.1603772 + - 25.0 + - 25.02 + - 50.0 + power: + - 0.0 + - 37.62161892251866 + - 283.1896270728138 + - 593.2728560522313 + - 959.9819840653767 + - 1372.9939673445779 + - 1820.2824213031413 + - 2288.234638675552 + - 2762.402356940621 + - 3227.9317849259483 + - 3670.23524006855 + - 4075.3355492549404 + - 4424.289670276729 + - 4712.31145096999 + - 4933.478791318434 + - 5080.411002639729 + - 5148.20416793432 + - 5161.8373266616445 + - 5257.877358155053 + - 5439.0905873988 + - 5710.644642926693 + - 6080.1808123220335 + - 6557.896472825747 + - 7156.656114121487 + - 7892.096068144686 + - 8782.7485712001 + - 9850.132658272489 + - 11118.833728910668 + - 12616.55466282621 + - 14395.650060011094 + - 15180.873696159935 + - 15180.878025972781 + - 15180.846427684693 + - 15180.874525641515 + - 15180.873081482694 + - 15180.868180147516 + - 15180.964634095619 + - 15180.928211309449 + - 15180.909227363609 + - 15180.898248776428 + - 15180.890850809097 + - 15180.885382324133 + - 15180.881159484874 + - 15180.877937975014 + - 15180.875500759283 + - 15180.873891022644 + - 15180.894816053498 + - 15180.873173416821 + - 15180.873965755092 + - 15180.875620174738 + - 15180.87762584068 + - 0.0 + - 0.0 + thrust_coefficient: + - 0.0 + - 0.817533319 + - 0.792115292 + - 0.786401899 + - 0.788898744 + - 0.790774576 + - 0.79208669 + - 0.79185809 + - 0.7903853 + - 0.788253035 + - 0.785845184 + - 0.783367164 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.781531069 + - 0.758935311 + - 0.614478855 + - 0.498687801 + - 0.416354609 + - 0.351944846 + - 0.299832337 + - 0.256956606 + - 0.221322169 + - 0.19150758 + - 0.166435523 + - 0.145263684 + - 0.127319849 + - 0.11206048 + - 0.099042189 + - 0.087901155 + - 0.078337446 + - 0.07010295 + - 0.062991402 + - 0.056831647 + - 0.05148062 + - 0.046818787 + - 0.0 + - 0.0 diff --git a/floris/turbine_library/iea_15MW_v4updated.yaml b/floris/turbine_library/iea_15MW_v4updated.yaml new file mode 100644 index 000000000..45d48b525 --- /dev/null +++ b/floris/turbine_library/iea_15MW_v4updated.yaml @@ -0,0 +1,178 @@ +# Data based on: +# https://github.com/IEAWindTask37/IEA-15-240-RWT/blob/master/Documentation/ +# IEA-15-240-RWT_tabular.xlsx +turbine_type: 'iea_15MW' +generator_efficiency: 1.0 +hub_height: 150.0 +pP: 1.88 +pT: 1.88 +rotor_diameter: 242.24 +TSR: 8.0 +ref_air_density: 1.225 +ref_tilt: 6.0 +power_thrust_table: + power: + - 0.000000 + - 0.000000 + - 42.733312 + - 292.585981 + - 607.966543 + - 981.097693 + - 1401.98084 + - 1858.67086 + - 2337.575997 + - 2824.097302 + - 3303.06456 + - 3759.432328 + - 4178.637714 + - 4547.19121 + - 4855.342682 + - 5091.537139 + - 5248.453137 + - 5320.793207 + - 5335.345498 + - 5437.90563 + - 5631.253025 + - 5920.980626 + - 6315.115602 + - 6824.470067 + - 7462.846389 + - 8238.359448 + - 9167.96703 + - 10285.211 + - 11617.23699 + - 13194.41511 + - 15000.0 + - 15000.00129 + - 14999.97096 + - 15000.00934 + - 15000.00063 + - 15000.00011 + - 14999.94712 + - 15000.08082 + - 15000.05209 + - 15000.03592 + - 15000.02562 + - 15000.01835 + - 15000.01281 + - 15000.00835 + - 15000.00488 + - 15000.00233 + - 15000.00066 + - 14999.87148 + - 15000.00047 + - 15000.00194 + - 15000.00417 + - 15000.00688 + - 0.0 + - 0.0 + thrust_coefficient: + - 0.000000 + - 0.000000 + - 0.80742173 + - 0.784655297 + - 0.781771245 + - 0.785377072 + - 0.788045584 + - 0.789922119 + - 0.790464625 + - 0.789868339 + - 0.788727582 + - 0.787359348 + - 0.785895402 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.77176172 + - 0.747149663 + - 0.562338457 + - 0.463477777 + - 0.389083718 + - 0.329822385 + - 0.281465071 + - 0.241494345 + - 0.208180574 + - 0.180257568 + - 0.156747535 + - 0.136877529 + - 0.120026379 + - 0.105689427 + - 0.093453742 + - 0.082979637 + - 0.073986457 + - 0.066241166 + - 0.059552107 + - 0.053756866 + - 0.048721662 + - 0.044334197 + - 0.0 + - 0.0 + wind_speed: + - 0.000 + - 2.9 + - 3.0 + - 3.54953237 + - 4.067900771 + - 4.553906848 + - 5.006427063 + - 5.424415288 + - 5.806905228 + - 6.153012649 + - 6.461937428 + - 6.732965398 + - 6.965470002 + - 7.158913742 + - 7.312849418 + - 7.426921164 + - 7.500865272 + - 7.534510799 + - 7.541241633 + - 7.58833327 + - 7.675676842 + - 7.803070431 + - 7.970219531 + - 8.176737731 + - 8.422147605 + - 8.70588182 + - 9.027284445 + - 9.385612468 + - 9.780037514 + - 10.20964776 + - 10.67345004 + - 10.86770694 + - 11.17037214 + - 11.6992653 + - 12.25890683 + - 12.84800295 + - 13.46519181 + - 14.10904661 + - 14.77807889 + - 15.470742 + - 16.18543466 + - 16.92050464 + - 17.67425264 + - 18.44493615 + - 19.23077353 + - 20.02994808 + - 20.8406123 + - 21.66089211 + - 22.4888912 + - 23.32269542 + - 24.1603772 + - 25 + - 25.020 + - 50.0 diff --git a/floris/turbine_library/nrel_5MW.yaml b/floris/turbine_library/nrel_5MW.yaml index 653ef14c7..4a202645c 100644 --- a/floris/turbine_library/nrel_5MW.yaml +++ b/floris/turbine_library/nrel_5MW.yaml @@ -1,8 +1,12 @@ + ### # An ID for this type of turbine definition. # This is not currently used, but it will be enabled in the future. This should typically # match the root name of the file. + +# Data based on: +# https://github.com/NREL/turbine-models/blob/master/Offshore/NREL_5MW_126_RWT.csv turbine_type: 'nrel_5MW' ### @@ -31,171 +35,153 @@ TSR: 8.0 ### # The air density at which the Cp and Ct curves are defined. -ref_density_cp_ct: 1.225 +ref_air_density: 1.225 ### # The tilt angle at which the Cp and Ct curves are defined. This is used to capture # the effects of a floating platform on a turbine's power and wake. -ref_tilt_cp_ct: 5.0 +ref_tilt: 5.0 ### # Cp and Ct as a function of wind speed for the turbine's full range of operating conditions. power_thrust_table: power: - 0.0 - - 0.000000 - - 0.000000 - - 0.178085 - - 0.289075 - - 0.349022 - - 0.384728 - - 0.406059 - - 0.420228 - - 0.428823 - - 0.433873 - - 0.436223 - - 0.436845 - - 0.436575 - - 0.436511 - - 0.436561 - - 0.436517 - - 0.435903 - - 0.434673 - - 0.433230 - - 0.430466 - - 0.378869 - - 0.335199 - - 0.297991 - - 0.266092 - - 0.238588 - - 0.214748 - - 0.193981 - - 0.175808 - - 0.159835 - - 0.145741 - - 0.133256 - - 0.122157 - - 0.112257 - - 0.103399 - - 0.095449 - - 0.088294 - - 0.081836 - - 0.075993 - - 0.070692 - - 0.065875 - - 0.061484 - - 0.057476 - - 0.053809 - - 0.050447 - - 0.047358 - - 0.044518 - - 0.041900 - - 0.039483 - 0.0 + - 40.5 + - 177.7 + - 403.9 + - 737.6 + - 1187.2 + - 1771.1 + - 2518.6 + - 3448.41 + - 3552.15 + - 3657.95 + - 3765.16 + - 3873.95 + - 3984.49 + - 4096.56 + - 4210.69 + - 4326.15 + - 4443.41 + - 4562.51 + - 4683.43 + - 4806.18 + - 4929.92 + - 5000.37 + - 5000.02 + - 5000.0 + - 4999.99 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 - 0.0 - thrust: - 0.0 + thrust_coefficient: - 0.0 - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 + - 2.497990147 + - 1.766833378 + - 1.408360153 + - 1.201348494 + - 1.065133759 + - 0.977936955 + - 0.936281559 + - 0.905425262 + - 0.902755344 + - 0.90016155 + - 0.895745235 + - 0.889630636 + - 0.883651878 + - 0.877788261 + - 0.872068513 + - 0.866439424 + - 0.860930874 + - 0.855544522 + - 0.850276473 + - 0.845148048 + - 0.840105118 + - 0.811165614 + - 0.764009698 + - 0.728584172 + - 0.698944675 + - 0.672754103 + - 0.649082557 + - 0.627368152 + - 0.471373796 + - 0.372703289 + - 0.30290131 + - 0.251235686 + - 0.211900735 + - 0.181210571 + - 0.156798163 + - 0.137091212 + - 0.120753164 + - 0.106941036 + - 0.095319286 + - 0.085631997 + - 0.077368152 - 0.0 - 0.0 wind_speed: - 0.0 - - 2.0 - - 2.5 + - 2.9 - 3.0 - - 3.5 - 4.0 - - 4.5 - 5.0 - - 5.5 - 6.0 - - 6.5 - 7.0 - - 7.5 - 8.0 - - 8.5 - 9.0 - - 9.5 - 10.0 + - 10.1 + - 10.2 + - 10.3 + - 10.4 - 10.5 + - 10.6 + - 10.7 + - 10.8 + - 10.9 - 11.0 + - 11.1 + - 11.2 + - 11.3 + - 11.4 - 11.5 + - 11.6 + - 11.7 + - 11.8 + - 11.9 - 12.0 - - 12.5 - 13.0 - - 13.5 - 14.0 - - 14.5 - 15.0 - - 15.5 - 16.0 - - 16.5 - 17.0 - - 17.5 - 18.0 - - 18.5 - 19.0 - - 19.5 - 20.0 - - 20.5 - 21.0 - - 21.5 - 22.0 - - 22.5 - 23.0 - - 23.5 - 24.0 - - 24.5 - 25.0 - 25.01 - - 25.02 - 50.0 ### diff --git a/floris/turbine_library/nrel_5MW_v3legacy.yaml b/floris/turbine_library/nrel_5MW_v3legacy.yaml new file mode 100644 index 000000000..653ef14c7 --- /dev/null +++ b/floris/turbine_library/nrel_5MW_v3legacy.yaml @@ -0,0 +1,212 @@ + +### +# An ID for this type of turbine definition. +# This is not currently used, but it will be enabled in the future. This should typically +# match the root name of the file. +turbine_type: 'nrel_5MW' + +### +# Setting for generator losses to power. +generator_efficiency: 1.0 + +### +# Hub height. +hub_height: 90.0 + +### +# Cosine exponent for power loss due to yaw misalignment. +pP: 1.88 + +### +# Cosine exponent for power loss due to tilt. +pT: 1.88 + +### +# Rotor diameter. +rotor_diameter: 126.0 + +### +# Tip speed ratio defined as linear blade tip speed normalized by the incoming wind speed. +TSR: 8.0 + +### +# The air density at which the Cp and Ct curves are defined. +ref_density_cp_ct: 1.225 + +### +# The tilt angle at which the Cp and Ct curves are defined. This is used to capture +# the effects of a floating platform on a turbine's power and wake. +ref_tilt_cp_ct: 5.0 + +### +# Cp and Ct as a function of wind speed for the turbine's full range of operating conditions. +power_thrust_table: + power: + - 0.0 + - 0.000000 + - 0.000000 + - 0.178085 + - 0.289075 + - 0.349022 + - 0.384728 + - 0.406059 + - 0.420228 + - 0.428823 + - 0.433873 + - 0.436223 + - 0.436845 + - 0.436575 + - 0.436511 + - 0.436561 + - 0.436517 + - 0.435903 + - 0.434673 + - 0.433230 + - 0.430466 + - 0.378869 + - 0.335199 + - 0.297991 + - 0.266092 + - 0.238588 + - 0.214748 + - 0.193981 + - 0.175808 + - 0.159835 + - 0.145741 + - 0.133256 + - 0.122157 + - 0.112257 + - 0.103399 + - 0.095449 + - 0.088294 + - 0.081836 + - 0.075993 + - 0.070692 + - 0.065875 + - 0.061484 + - 0.057476 + - 0.053809 + - 0.050447 + - 0.047358 + - 0.044518 + - 0.041900 + - 0.039483 + - 0.0 + - 0.0 + thrust: + - 0.0 + - 0.0 + - 0.0 + - 0.99 + - 0.99 + - 0.97373036 + - 0.92826162 + - 0.89210543 + - 0.86100905 + - 0.835423 + - 0.81237673 + - 0.79225789 + - 0.77584769 + - 0.7629228 + - 0.76156073 + - 0.76261984 + - 0.76169723 + - 0.75232027 + - 0.74026851 + - 0.72987175 + - 0.70701647 + - 0.54054532 + - 0.45509459 + - 0.39343381 + - 0.34250785 + - 0.30487242 + - 0.27164979 + - 0.24361964 + - 0.21973831 + - 0.19918151 + - 0.18131868 + - 0.16537679 + - 0.15103727 + - 0.13998636 + - 0.1289037 + - 0.11970413 + - 0.11087113 + - 0.10339901 + - 0.09617888 + - 0.09009926 + - 0.08395078 + - 0.0791188 + - 0.07448356 + - 0.07050731 + - 0.06684119 + - 0.06345518 + - 0.06032267 + - 0.05741999 + - 0.05472609 + - 0.0 + - 0.0 + wind_speed: + - 0.0 + - 2.0 + - 2.5 + - 3.0 + - 3.5 + - 4.0 + - 4.5 + - 5.0 + - 5.5 + - 6.0 + - 6.5 + - 7.0 + - 7.5 + - 8.0 + - 8.5 + - 9.0 + - 9.5 + - 10.0 + - 10.5 + - 11.0 + - 11.5 + - 12.0 + - 12.5 + - 13.0 + - 13.5 + - 14.0 + - 14.5 + - 15.0 + - 15.5 + - 16.0 + - 16.5 + - 17.0 + - 17.5 + - 18.0 + - 18.5 + - 19.0 + - 19.5 + - 20.0 + - 20.5 + - 21.0 + - 21.5 + - 22.0 + - 22.5 + - 23.0 + - 23.5 + - 24.0 + - 24.5 + - 25.0 + - 25.01 + - 25.02 + - 50.0 + +### +# A boolean flag used when the user wants FLORIS to use the user-supplied multi-dimensional +# Cp/Ct information. +multi_dimensional_cp_ct: False + +### +# The path to the .csv file that contains the multi-dimensional Cp/Ct data. The format of this +# file is such that any external conditions, such as wave height or wave period, that the +# Cp/Ct data is dependent on come first, in column format. The last three columns of the .csv +# file must be ``ws``, ``Cp``, and ``Ct``, in that order. An example of fictional data is given +# in ``floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv``. +power_thrust_data_file: '../floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv' diff --git a/floris/turbine_library/nrel_5MW_v4converted.yaml b/floris/turbine_library/nrel_5MW_v4converted.yaml new file mode 100644 index 000000000..0dba7d187 --- /dev/null +++ b/floris/turbine_library/nrel_5MW_v4converted.yaml @@ -0,0 +1,166 @@ +turbine_type: nrel_5MW +generator_efficiency: 1.0 +hub_height: 90.0 +pP: 1.88 +pT: 1.88 +rotor_diameter: 126.0 +TSR: 8.0 +ref_air_density: 1.225 +ref_tilt: 5.0 +power_thrust_table: + wind_speed: + - 0.0 + - 2.0 + - 2.5 + - 3.0 + - 3.5 + - 4.0 + - 4.5 + - 5.0 + - 5.5 + - 6.0 + - 6.5 + - 7.0 + - 7.5 + - 8.0 + - 8.5 + - 9.0 + - 9.5 + - 10.0 + - 10.5 + - 11.0 + - 11.5 + - 12.0 + - 12.5 + - 13.0 + - 13.5 + - 14.0 + - 14.5 + - 15.0 + - 15.5 + - 16.0 + - 16.5 + - 17.0 + - 17.5 + - 18.0 + - 18.5 + - 19.0 + - 19.5 + - 20.0 + - 20.5 + - 21.0 + - 21.5 + - 22.0 + - 22.5 + - 23.0 + - 23.5 + - 24.0 + - 24.5 + - 25.0 + - 25.01 + - 25.02 + - 50.0 + power: + - 0.0 + - 0.0 + - 0.0 + - 36.722155848902254 + - 94.65678115354163 + - 170.596391826316 + - 267.74933496419163 + - 387.64681352354114 + - 533.9617151673435 + - 707.4062402827329 + - 909.9965782677073 + - 1142.7197798534328 + - 1407.4994184495558 + - 1707.1272243371227 + - 2047.3355806543098 + - 2430.5778091805637 + - 2858.3081150622215 + - 3329.100627354195 + - 3842.9755943182267 + - 4403.86140594055 + - 4999.993508066915 + - 4999.99850473839 + - 4999.997854617397 + - 5000.00304890274 + - 5000.002113339491 + - 4999.997282778227 + - 5000.002243172759 + - 5000.000360590384 + - 5000.009074693787 + - 4999.987262704901 + - 5000.007345811091 + - 5000.006875165497 + - 4999.994990648268 + - 4999.97705933755 + - 4999.983698972648 + - 4999.991318085188 + - 5000.024022703328 + - 5000.016589748782 + - 5000.025709581146 + - 4999.944891236294 + - 5000.035324880168 + - 4999.967955734346 + - 5000.013248451465 + - 5000.063199891701 + - 5000.068982245371 + - 4999.9325188896555 + - 5000.011035557985 + - 5000.012771123277 + - 4717.243379938609 + - 0.0 + - 0.0 + thrust_coefficient: + - 0.0 + - 0.0 + - 0.0 + - 0.99 + - 0.99 + - 0.97373036 + - 0.92826162 + - 0.89210543 + - 0.86100905 + - 0.835423 + - 0.81237673 + - 0.79225789 + - 0.77584769 + - 0.7629228 + - 0.76156073 + - 0.76261984 + - 0.76169723 + - 0.75232027 + - 0.74026851 + - 0.72987175 + - 0.70701647 + - 0.54054532 + - 0.45509459 + - 0.39343381 + - 0.34250785 + - 0.30487242 + - 0.27164979 + - 0.24361964 + - 0.21973831 + - 0.19918151 + - 0.18131868 + - 0.16537679 + - 0.15103727 + - 0.13998636 + - 0.1289037 + - 0.11970413 + - 0.11087113 + - 0.10339901 + - 0.09617888 + - 0.09009926 + - 0.08395078 + - 0.0791188 + - 0.07448356 + - 0.07050731 + - 0.06684119 + - 0.06345518 + - 0.06032267 + - 0.05741999 + - 0.05472609 + - 0.0 + - 0.0 diff --git a/floris/turbine_library/nrel_5MW_v4updated.yaml b/floris/turbine_library/nrel_5MW_v4updated.yaml new file mode 100644 index 000000000..a2946c690 --- /dev/null +++ b/floris/turbine_library/nrel_5MW_v4updated.yaml @@ -0,0 +1,197 @@ + +### +# An ID for this type of turbine definition. +# This is not currently used, but it will be enabled in the future. This should typically +# match the root name of the file. + +# Data based on: +# https://github.com/NREL/turbine-models/blob/master/Offshore/NREL_5MW_126_RWT.csv +turbine_type: 'nrel_5MW' + +### +# Setting for generator losses to power. +generator_efficiency: 1.0 + +### +# Hub height. +hub_height: 90.0 + +### +# Cosine exponent for power loss due to yaw misalignment. +pP: 1.88 + +### +# Cosine exponent for power loss due to tilt. +pT: 1.88 + +### +# Rotor diameter. +rotor_diameter: 126.0 + +### +# Tip speed ratio defined as linear blade tip speed normalized by the incoming wind speed. +TSR: 8.0 + +### +# The air density at which the Cp and Ct curves are defined. +ref_air_density: 1.225 + +### +# The tilt angle at which the Cp and Ct curves are defined. This is used to capture +# the effects of a floating platform on a turbine's power and wake. +ref_tilt: 5.0 + +### +# Cp and Ct as a function of wind speed for the turbine's full range of operating conditions. +power_thrust_table: + power: + - 0.0 + - 0.0 + - 40.5 + - 177.7 + - 403.9 + - 737.6 + - 1187.2 + - 1771.1 + - 2518.6 + - 3448.41 + - 3552.15 + - 3657.95 + - 3765.16 + - 3873.95 + - 3984.49 + - 4096.56 + - 4210.69 + - 4326.15 + - 4443.41 + - 4562.51 + - 4683.43 + - 4806.18 + - 4929.92 + - 5000.37 + - 5000.02 + - 5000.0 + - 4999.99 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 5000.0 + - 0.0 + - 0.0 + thrust_coefficient: + - 0.0 + - 0.0 + - 2.497990147 + - 1.766833378 + - 1.408360153 + - 1.201348494 + - 1.065133759 + - 0.977936955 + - 0.936281559 + - 0.905425262 + - 0.902755344 + - 0.90016155 + - 0.895745235 + - 0.889630636 + - 0.883651878 + - 0.877788261 + - 0.872068513 + - 0.866439424 + - 0.860930874 + - 0.855544522 + - 0.850276473 + - 0.845148048 + - 0.840105118 + - 0.811165614 + - 0.764009698 + - 0.728584172 + - 0.698944675 + - 0.672754103 + - 0.649082557 + - 0.627368152 + - 0.471373796 + - 0.372703289 + - 0.30290131 + - 0.251235686 + - 0.211900735 + - 0.181210571 + - 0.156798163 + - 0.137091212 + - 0.120753164 + - 0.106941036 + - 0.095319286 + - 0.085631997 + - 0.077368152 + - 0.0 + - 0.0 + wind_speed: + - 0.0 + - 2.9 + - 3.0 + - 4.0 + - 5.0 + - 6.0 + - 7.0 + - 8.0 + - 9.0 + - 10.0 + - 10.1 + - 10.2 + - 10.3 + - 10.4 + - 10.5 + - 10.6 + - 10.7 + - 10.8 + - 10.9 + - 11.0 + - 11.1 + - 11.2 + - 11.3 + - 11.4 + - 11.5 + - 11.6 + - 11.7 + - 11.8 + - 11.9 + - 12.0 + - 13.0 + - 14.0 + - 15.0 + - 16.0 + - 17.0 + - 18.0 + - 19.0 + - 20.0 + - 21.0 + - 22.0 + - 23.0 + - 24.0 + - 25.0 + - 25.01 + - 50.0 + +### +# A boolean flag used when the user wants FLORIS to use the user-supplied multi-dimensional +# Cp/Ct information. +multi_dimensional_cp_ct: False + +### +# The path to the .csv file that contains the multi-dimensional Cp/Ct data. The format of this +# file is such that any external conditions, such as wave height or wave period, that the +# Cp/Ct data is dependent on come first, in column format. The last three columns of the .csv +# file must be ``ws``, ``Cp``, and ``Ct``, in that order. An example of fictional data is given +# in ``floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv``. +power_thrust_data_file: '../floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv' diff --git a/floris/turbine_library/turbine_previewer.py b/floris/turbine_library/turbine_previewer.py index 207a3ba22..447954726 100644 --- a/floris/turbine_library/turbine_previewer.py +++ b/floris/turbine_library/turbine_previewer.py @@ -139,7 +139,7 @@ def power_curve( } power_mw = { k: power_multidim( - ref_density_cp_ct=np.full(shape, self.turbine.ref_density_cp_ct), + ref_air_density=np.full(shape, self.turbine.ref_air_density), rotor_effective_velocities=wind_speeds.reshape(shape), power_interp=power_interps[k], ).flatten() / 1e6 @@ -147,7 +147,6 @@ def power_curve( } else: power_mw = power( - ref_density_cp_ct=np.full(shape, self.turbine.ref_density_cp_ct), rotor_effective_velocities=wind_speeds.reshape(shape), power_interp={self.turbine.turbine_type: self.turbine.power_interp}, turbine_type_map=np.full(shape, self.turbine.turbine_type) @@ -183,8 +182,8 @@ def Ct_curve( k: Ct_multidim( velocities=wind_speeds.reshape(shape), yaw_angle=np.zeros(shape), - tilt_angle=np.full(shape, self.turbine.ref_tilt_cp_ct), - ref_tilt_cp_ct=np.full(shape_single, self.turbine.ref_tilt_cp_ct), + tilt_angle=np.full(shape, self.turbine.ref_tilt), + ref_tilt=np.full(shape_single, self.turbine.ref_tilt), fCt=fCt_interps[k], tilt_interp=[(self.turbine.turbine_type, self.turbine.tilt_interp)], correct_cp_ct_for_tilt=np.zeros(shape_single, dtype=bool), @@ -196,8 +195,8 @@ def Ct_curve( ct_curve = Ct( velocities=wind_speeds.reshape(shape), yaw_angle=np.zeros(shape), - tilt_angle=np.full(shape, self.turbine.ref_tilt_cp_ct), - ref_tilt_cp_ct=np.full(shape, self.turbine.ref_tilt_cp_ct), + tilt_angle=np.full(shape, self.turbine.ref_tilt), + ref_tilt=np.full(shape, self.turbine.ref_tilt), fCt={self.turbine.turbine_type: self.turbine.fCt_interp}, tilt_interp=[(self.turbine.turbine_type, self.turbine.tilt_interp)], correct_cp_ct_for_tilt=np.zeros(shape, dtype=bool), diff --git a/tests/conftest.py b/tests/conftest.py index eab7063cd..5feafbee0 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -206,60 +206,60 @@ def __init__(self): "pP": 1.88, "pT": 1.88, "generator_efficiency": 1.0, - "ref_density_cp_ct": 1.225, - "ref_tilt_cp_ct": 5.0, + "ref_air_density": 1.225, + "ref_tilt": 5.0, "power_thrust_table": { "power": [ - 0.000000, - 0.000000, - 0.178085, - 0.289075, - 0.349022, - 0.384728, - 0.406059, - 0.420228, - 0.428823, - 0.433873, - 0.436223, - 0.436845, - 0.436575, - 0.436511, - 0.436561, - 0.436517, - 0.435903, - 0.434673, - 0.433230, - 0.430466, - 0.378869, - 0.335199, - 0.297991, - 0.266092, - 0.238588, - 0.214748, - 0.193981, - 0.175808, - 0.159835, - 0.145741, - 0.133256, - 0.122157, - 0.112257, - 0.103399, - 0.095449, - 0.088294, - 0.081836, - 0.075993, - 0.070692, - 0.065875, - 0.061484, - 0.057476, - 0.053809, - 0.050447, - 0.047358, - 0.044518, - 0.041900, - 0.039483, + 0.0, + 0.0, + 36.722155848902254, + 94.65678115354163, + 170.596391826316, + 267.74933496419163, + 387.64681352354114, + 533.9617151673435, + 707.4062402827329, + 909.9965782677073, + 1142.7197798534328, + 1407.4994184495558, + 1707.1272243371227, + 2047.3355806543098, + 2430.5778091805637, + 2858.3081150622215, + 3329.100627354195, + 3842.9755943182267, + 4403.86140594055, + 4999.993508066915, + 4999.99850473839, + 4999.997854617397, + 5000.00304890274, + 5000.002113339491, + 4999.997282778227, + 5000.002243172759, + 5000.000360590384, + 5000.009074693787, + 4999.987262704901, + 5000.007345811091, + 5000.006875165497, + 4999.994990648268, + 4999.97705933755, + 4999.983698972648, + 4999.991318085188, + 5000.024022703328, + 5000.016589748782, + 5000.025709581146, + 4999.944891236294, + 5000.035324880168, + 4999.967955734346, + 5000.013248451465, + 5000.063199891701, + 5000.068982245371, + 4999.9325188896555, + 5000.011035557985, + 5000.012771123277, + 5000.0 ], - "thrust": [ + "thrust_coefficient": [ 0.0, 0.0, 0.99, diff --git a/tests/data/nrel_5MW_v3legacy.yaml b/tests/data/nrel_5MW_v3legacy.yaml new file mode 100644 index 000000000..5fdef28ad --- /dev/null +++ b/tests/data/nrel_5MW_v3legacy.yaml @@ -0,0 +1,166 @@ +turbine_type: 'nrel_5MW_FLORISv3' +generator_efficiency: 1.0 +hub_height: 90.0 +pP: 1.88 +pT: 1.88 +rotor_diameter: 126.0 +TSR: 8.0 +ref_density_cp_ct: 1.225 +ref_tilt_cp_ct: 5.0 +power_thrust_table: + power: + - 0.0 + - 0.000000 + - 0.000000 + - 0.178085 + - 0.289075 + - 0.349022 + - 0.384728 + - 0.406059 + - 0.420228 + - 0.428823 + - 0.433873 + - 0.436223 + - 0.436845 + - 0.436575 + - 0.436511 + - 0.436561 + - 0.436517 + - 0.435903 + - 0.434673 + - 0.433230 + - 0.430466 + - 0.378869 + - 0.335199 + - 0.297991 + - 0.266092 + - 0.238588 + - 0.214748 + - 0.193981 + - 0.175808 + - 0.159835 + - 0.145741 + - 0.133256 + - 0.122157 + - 0.112257 + - 0.103399 + - 0.095449 + - 0.088294 + - 0.081836 + - 0.075993 + - 0.070692 + - 0.065875 + - 0.061484 + - 0.057476 + - 0.053809 + - 0.050447 + - 0.047358 + - 0.044518 + - 0.041900 + - 0.039483 + - 0.0 + - 0.0 + thrust: + - 0.0 + - 0.0 + - 0.0 + - 0.99 + - 0.99 + - 0.97373036 + - 0.92826162 + - 0.89210543 + - 0.86100905 + - 0.835423 + - 0.81237673 + - 0.79225789 + - 0.77584769 + - 0.7629228 + - 0.76156073 + - 0.76261984 + - 0.76169723 + - 0.75232027 + - 0.74026851 + - 0.72987175 + - 0.70701647 + - 0.54054532 + - 0.45509459 + - 0.39343381 + - 0.34250785 + - 0.30487242 + - 0.27164979 + - 0.24361964 + - 0.21973831 + - 0.19918151 + - 0.18131868 + - 0.16537679 + - 0.15103727 + - 0.13998636 + - 0.1289037 + - 0.11970413 + - 0.11087113 + - 0.10339901 + - 0.09617888 + - 0.09009926 + - 0.08395078 + - 0.0791188 + - 0.07448356 + - 0.07050731 + - 0.06684119 + - 0.06345518 + - 0.06032267 + - 0.05741999 + - 0.05472609 + - 0.0 + - 0.0 + wind_speed: + - 0.0 + - 2.0 + - 2.5 + - 3.0 + - 3.5 + - 4.0 + - 4.5 + - 5.0 + - 5.5 + - 6.0 + - 6.5 + - 7.0 + - 7.5 + - 8.0 + - 8.5 + - 9.0 + - 9.5 + - 10.0 + - 10.5 + - 11.0 + - 11.5 + - 12.0 + - 12.5 + - 13.0 + - 13.5 + - 14.0 + - 14.5 + - 15.0 + - 15.5 + - 16.0 + - 16.5 + - 17.0 + - 17.5 + - 18.0 + - 18.5 + - 19.0 + - 19.5 + - 20.0 + - 20.5 + - 21.0 + - 21.5 + - 22.0 + - 22.5 + - 23.0 + - 23.5 + - 24.0 + - 24.5 + - 25.0 + - 25.01 + - 25.02 + - 50.0 diff --git a/tests/farm_unit_test.py b/tests/farm_unit_test.py index a4c196c82..b38d91191 100644 --- a/tests/farm_unit_test.py +++ b/tests/farm_unit_test.py @@ -59,14 +59,14 @@ def test_farm_init_homogenous_turbines(): def test_asdict(sample_inputs_fixture: SampleInputs): farm = Farm.from_dict(sample_inputs_fixture.farm) farm.construct_hub_heights() - farm.construct_turbine_ref_tilt_cp_cts() + farm.construct_turbine_ref_tilts() farm.set_yaw_angles(N_FINDEX) farm.set_tilt_to_ref_tilt(N_FINDEX) dict1 = farm.as_dict() new_farm = farm.from_dict(dict1) new_farm.construct_hub_heights() - new_farm.construct_turbine_ref_tilt_cp_cts() + new_farm.construct_turbine_ref_tilts() new_farm.set_yaw_angles(N_FINDEX) new_farm.set_tilt_to_ref_tilt(N_FINDEX) dict2 = new_farm.as_dict() diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index 6e8eebf13..ffdc8bdd9 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -180,11 +180,11 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -195,14 +195,13 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -211,7 +210,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -342,11 +341,11 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -357,14 +356,13 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -373,7 +371,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -432,11 +430,11 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -447,14 +445,13 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -463,7 +460,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -521,11 +518,11 @@ def test_regression_secondary_steering(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -536,14 +533,13 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -552,7 +548,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -620,11 +616,11 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -632,7 +628,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 2eea96166..36bf4b248 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -153,11 +153,11 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -168,14 +168,13 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -184,7 +183,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -318,11 +317,11 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -333,14 +332,13 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -349,7 +347,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -409,11 +407,11 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -424,14 +422,13 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -440,7 +437,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -483,11 +480,11 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -498,14 +495,13 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -514,7 +510,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -584,11 +580,11 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -596,7 +592,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, diff --git a/tests/reg_tests/floris_interface_regression_test.py b/tests/reg_tests/floris_interface_regression_test.py index 65f122b6d..e9164f3a5 100644 --- a/tests/reg_tests/floris_interface_regression_test.py +++ b/tests/reg_tests/floris_interface_regression_test.py @@ -93,11 +93,11 @@ def test_calculate_no_wake(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( fi.floris.flow_field.air_density, - fi.floris.farm.ref_density_cp_cts, + fi.floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - fi.floris.farm.ref_tilt_cp_cts, + fi.floris.farm.ref_tilts, fi.floris.farm.pPs, fi.floris.farm.pTs, fi.floris.farm.turbine_tilt_interps, @@ -108,14 +108,13 @@ def test_calculate_no_wake(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - fi.floris.farm.ref_tilt_cp_cts, + fi.floris.farm.ref_tilts, fi.floris.farm.turbine_fCts, fi.floris.farm.turbine_tilt_interps, fi.floris.farm.correct_cp_ct_for_tilt, fi.floris.farm.turbine_type_map, ) farm_powers = power( - fi.floris.farm.ref_density_cp_cts, farm_eff_velocities, fi.floris.farm.turbine_power_interps, fi.floris.farm.turbine_type_map, @@ -124,7 +123,7 @@ def test_calculate_no_wake(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - fi.floris.farm.ref_tilt_cp_cts, + fi.floris.farm.ref_tilts, fi.floris.farm.turbine_fCts, fi.floris.farm.turbine_tilt_interps, fi.floris.farm.correct_cp_ct_for_tilt, diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index adcbf39ab..084684c33 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -271,11 +271,11 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -286,14 +286,13 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -302,7 +301,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -433,11 +432,11 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -448,14 +447,13 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -464,7 +462,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -520,11 +518,11 @@ def test_regression_gch(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -535,14 +533,13 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -551,7 +548,7 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -603,11 +600,11 @@ def test_regression_gch(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -618,14 +615,13 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -634,7 +630,7 @@ def test_regression_gch(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -693,11 +689,11 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -708,14 +704,13 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -724,7 +719,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -782,11 +777,11 @@ def test_regression_secondary_steering(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -797,14 +792,13 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -813,7 +807,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -881,11 +875,11 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -893,7 +887,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index 06be35372..8c97185c6 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -122,11 +122,11 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -137,14 +137,13 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -153,7 +152,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -284,11 +283,11 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -299,14 +298,13 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -315,7 +313,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -383,11 +381,11 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -395,7 +393,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index 5a8ecd007..c7281c082 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -123,11 +123,11 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -138,14 +138,13 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -154,7 +153,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -318,11 +317,11 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -330,7 +329,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index 5d138cdc3..fd64c4c1b 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -124,11 +124,11 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -139,14 +139,13 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -155,7 +154,7 @@ def test_regression_tandem(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -287,11 +286,11 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -302,14 +301,13 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, @@ -318,7 +316,7 @@ def test_regression_yaw(sample_inputs_fixture): velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -381,11 +379,11 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): farm_eff_velocities = rotor_effective_velocity( floris.flow_field.air_density, - floris.farm.ref_density_cp_cts, + floris.farm.ref_air_densities, velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilt_cp_cts, + floris.farm.ref_tilts, floris.farm.pPs, floris.farm.pTs, floris.farm.turbine_tilt_interps, @@ -393,7 +391,6 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.turbine_type_map, ) farm_powers = power( - floris.farm.ref_density_cp_cts, farm_eff_velocities, floris.farm.turbine_power_interps, floris.farm.turbine_type_map, diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index 068c183df..a4af63040 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -122,7 +122,7 @@ def test_ct(): velocities=wind_speed * np.ones((1, 1, 3, 3)), yaw_angle=np.zeros((1, 1)), tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, + ref_tilt=np.ones((1, 1)) * 5.0, fCt=np.array([[turbine.fCt_interp[(2, 1)]]]), tilt_interp={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -137,7 +137,7 @@ def test_ct(): velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 16 x 4 x 3 x 3 yaw_angle=np.zeros((1, N_TURBINES)), tilt_angle=np.ones((1, N_TURBINES)) * 5.0, - ref_tilt_cp_ct=np.ones((1, N_TURBINES)) * 5.0, + ref_tilt=np.ones((1, N_TURBINES)) * 5.0, fCt=np.tile( [turbine.fCt_interp[(2, 1)]], ( @@ -189,7 +189,7 @@ def test_power(): # Single turbine wind_speed = 10.0 p = power_multidim( - ref_density_cp_ct=AIR_DENSITY, + ref_air_density=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1, 3, 3)), power_interp=np.array([[turbine.power_interp[(2, 1)]]]), ) @@ -209,7 +209,7 @@ def test_power(): # Multiple turbines with ix filter rotor_effective_velocities = np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST p = power_multidim( - ref_density_cp_ct=AIR_DENSITY, + ref_air_density=AIR_DENSITY, rotor_effective_velocities=rotor_effective_velocities, power_interp=np.tile( [turbine.power_interp[(2, 1)]], @@ -244,7 +244,7 @@ def test_axial_induction(): velocities=wind_speed * np.ones((1, 1, 3, 3)), yaw_angle=np.zeros((1, 1)), tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, + ref_tilt=np.ones((1, 1)) * 5.0, fCt=np.array([[turbine.fCt_interp[(2, 1)]]]), tilt_interp={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -257,7 +257,7 @@ def test_axial_induction(): velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 16 x 4 x 3 x 3 yaw_angle=np.zeros((1, N_TURBINES)), tilt_angle=np.ones((1, N_TURBINES)) * 5.0, - ref_tilt_cp_ct=np.ones((1, N_TURBINES)) * 5.0, + ref_tilt=np.ones((1, N_TURBINES)) * 5.0, fCt=np.tile( [turbine.fCt_interp[(2, 1)]], ( diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index e7fcbf989..67d92c90a 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -36,7 +36,7 @@ cubic_cubature, simple_cubature, ) -from floris.turbine_library import build_turbine_dict +from floris.tools import build_turbine_dict from tests.conftest import SampleInputs, WIND_SPEEDS @@ -57,8 +57,8 @@ def test_turbine_init(): assert turbine.pT == turbine_data["pT"] assert turbine.TSR == turbine_data["TSR"] assert turbine.generator_efficiency == turbine_data["generator_efficiency"] - assert turbine.ref_density_cp_ct == turbine_data["ref_density_cp_ct"] - assert turbine.ref_tilt_cp_ct == turbine_data["ref_tilt_cp_ct"] + assert turbine.ref_air_density == turbine_data["ref_air_density"] + assert turbine.ref_tilt == turbine_data["ref_tilt"] assert np.array_equal( turbine.power_thrust_table["wind_speed"], turbine_data["power_thrust_table"]["wind_speed"] @@ -68,8 +68,8 @@ def test_turbine_init(): turbine_data["power_thrust_table"]["power"] ) assert np.array_equal( - turbine.power_thrust_table["thrust"], - turbine_data["power_thrust_table"]["thrust"] + turbine.power_thrust_table["thrust_coefficient"], + turbine_data["power_thrust_table"]["thrust_coefficient"] ) assert turbine.rotor_radius == turbine.rotor_diameter / 2.0 assert turbine.rotor_area == np.pi * turbine.rotor_radius ** 2.0 @@ -195,7 +195,7 @@ def test_ct(): velocities=wind_speed * np.ones((1, 1, 3, 3)), yaw_angle=np.zeros((1, 1)), tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, + ref_tilt=np.ones((1, 1)) * 5.0, fCt={turbine.turbine_type: turbine.fCt_interp}, tilt_interp={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -203,7 +203,10 @@ def test_ct(): ) truth_index = turbine_data["power_thrust_table"]["wind_speed"].index(wind_speed) - np.testing.assert_allclose(thrust, turbine_data["power_thrust_table"]["thrust"][truth_index]) + np.testing.assert_allclose( + thrust, + turbine_data["power_thrust_table"]["thrust_coefficient"][truth_index] + ) # Multiple turbines with index filter # 4 turbines with 3 x 3 grid arrays @@ -211,7 +214,7 @@ def test_ct(): velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 12 x 4 x 3 x 3 yaw_angle=np.zeros((1, N_TURBINES)), tilt_angle=np.ones((1, N_TURBINES)) * 5.0, - ref_tilt_cp_ct=np.ones((1, N_TURBINES)) * 5.0, + ref_tilt=np.ones((1, N_TURBINES)) * 5.0, fCt={turbine.turbine_type: turbine.fCt_interp}, tilt_interp={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), @@ -224,7 +227,7 @@ def test_ct(): truth_index = turbine_data["power_thrust_table"]["wind_speed"].index(WIND_SPEEDS[0]) np.testing.assert_allclose( thrusts[0, i], - turbine_data["power_thrust_table"]["thrust"][truth_index] + turbine_data["power_thrust_table"]["thrust_coefficient"][truth_index] ) # Single floating turbine; note that 'tilt_interp' is not set to None @@ -232,7 +235,7 @@ def test_ct(): velocities=wind_speed * np.ones((1, 1, 3, 3)), # One findex, one turbine yaw_angle=np.zeros((1, 1)), tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, + ref_tilt=np.ones((1, 1)) * 5.0, fCt={turbine.turbine_type: turbine_floating.fCt_interp}, tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, correct_cp_ct_for_tilt=np.array([[True]]), @@ -242,12 +245,12 @@ def test_ct(): truth_index = turbine_floating_data["power_thrust_table"]["wind_speed"].index(wind_speed) np.testing.assert_allclose( thrust, - turbine_floating_data["power_thrust_table"]["thrust"][truth_index] + turbine_floating_data["power_thrust_table"]["thrust_coefficient"][truth_index] ) def test_power(): - AIR_DENSITY = 1.225 + # AIR_DENSITY = 1.225 # Test that power is computed as expected for a single turbine n_turbines = 1 @@ -257,30 +260,20 @@ def test_power(): turbine_type_map = np.array(n_turbines * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] test_power = power( - ref_density_cp_ct=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1)), # 1 findex, 1 turbine power_interp={turbine.turbine_type: turbine.power_interp}, turbine_type_map=turbine_type_map[:,0] ) - # Recompute using the provided Cp table + # Recompute using the provided power truth_index = turbine_data["power_thrust_table"]["wind_speed"].index(wind_speed) - cp_truth = turbine_data["power_thrust_table"]["power"][truth_index] - baseline_power = ( - 0.5 - * cp_truth - * AIR_DENSITY - * turbine.rotor_area - * wind_speed ** 3 - * turbine.generator_efficiency - ) + baseline_power = turbine_data["power_thrust_table"]["power"][truth_index] * 1000 assert np.allclose(baseline_power, test_power) # At rated, the power calculated should be 5MW since the test data is the NREL 5MW turbine wind_speed = 18.0 rated_power = power( - ref_density_cp_ct=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1, 1)), power_interp={turbine.turbine_type: turbine.power_interp}, turbine_type_map=turbine_type_map[:,0] @@ -291,7 +284,6 @@ def test_power(): # At wind speed = 0.0, the power should be 0 based on the provided Cp curve wind_speed = 0.0 zero_power = power( - ref_density_cp_ct=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1, 1)), power_interp={turbine.turbine_type: turbine.power_interp}, turbine_type_map=turbine_type_map[:,0] @@ -307,7 +299,6 @@ def test_power(): turbine_type_map = np.array(n_turbines * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] test_4_power = power( - ref_density_cp_ct=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1, n_turbines)), power_interp={turbine.turbine_type: turbine.power_interp}, turbine_type_map=turbine_type_map @@ -323,7 +314,6 @@ def test_power(): turbine_type_map = np.array(n_turbines * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] test_grid_power = power( - ref_density_cp_ct=AIR_DENSITY, rotor_effective_velocities=wind_speed * np.ones((1, 1, n_turbines, 3, 3)), power_interp={turbine.turbine_type: turbine.power_interp}, turbine_type_map=turbine_type_map[:,0] @@ -352,7 +342,7 @@ def test_axial_induction(): velocities=wind_speed * np.ones((1, 1, 3, 3)), # 1 findex, 1 Turbine yaw_angle=np.zeros((1, 1)), tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, + ref_tilt=np.ones((1, 1)) * 5.0, fCt={turbine.turbine_type: turbine.fCt_interp}, tilt_interp={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -365,7 +355,7 @@ def test_axial_induction(): velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 12 x 4 x 3 x 3 yaw_angle=np.zeros((1, N_TURBINES)), tilt_angle=np.ones((1, N_TURBINES)) * 5.0, - ref_tilt_cp_ct=np.ones((1, N_TURBINES)) * 5.0, + ref_tilt=np.ones((1, N_TURBINES)) * 5.0, fCt={turbine.turbine_type: turbine.fCt_interp}, tilt_interp={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), @@ -383,7 +373,7 @@ def test_axial_induction(): velocities=wind_speed * np.ones((1, 1, 3, 3)), yaw_angle=np.zeros((1, 1)), tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt_cp_ct=np.ones((1, 1)) * 5.0, + ref_tilt=np.ones((1, 1)) * 5.0, fCt={turbine.turbine_type: turbine_floating.fCt_interp}, tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, correct_cp_ct_for_tilt=np.array([[True]]), @@ -448,7 +438,7 @@ def test_rotor_velocity_tilt_correction(): tilt_corrected_velocities = _rotor_velocity_tilt_correction( turbine_type_map=np.array([turbine_type_map[:, 0]]), tilt_angle=5.0*np.ones((1, 1)), - ref_tilt_cp_ct=np.array([turbine.ref_tilt_cp_ct]), + ref_tilt=np.array([turbine.ref_tilt]), pT=np.array([turbine.pT]), tilt_interp={turbine.turbine_type: turbine.tilt_interp}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -461,7 +451,7 @@ def test_rotor_velocity_tilt_correction(): tilt_corrected_velocities = _rotor_velocity_tilt_correction( turbine_type_map=turbine_type_map, tilt_angle=5.0*np.ones((1, N_TURBINES)), - ref_tilt_cp_ct=np.array([turbine.ref_tilt_cp_ct] * N_TURBINES), + ref_tilt=np.array([turbine.ref_tilt] * N_TURBINES), pT=np.array([turbine.pT] * N_TURBINES), tilt_interp={turbine.turbine_type: turbine.tilt_interp}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), @@ -474,7 +464,7 @@ def test_rotor_velocity_tilt_correction(): tilt_corrected_velocities = _rotor_velocity_tilt_correction( turbine_type_map=np.array([turbine_type_map[:, 0]]), tilt_angle=5.0*np.ones((1, 1)), - ref_tilt_cp_ct=np.array([turbine_floating.ref_tilt_cp_ct]), + ref_tilt=np.array([turbine_floating.ref_tilt]), pT=np.array([turbine_floating.pT]), tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, correct_cp_ct_for_tilt=np.array([[True]]), @@ -487,7 +477,7 @@ def test_rotor_velocity_tilt_correction(): tilt_corrected_velocities = _rotor_velocity_tilt_correction( turbine_type_map, tilt_angle=5.0*np.ones((1, N_TURBINES)), - ref_tilt_cp_ct=np.array([turbine_floating.ref_tilt_cp_ct] * N_TURBINES), + ref_tilt=np.array([turbine_floating.ref_tilt] * N_TURBINES), pT=np.array([turbine_floating.pT] * N_TURBINES), tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, correct_cp_ct_for_tilt=np.array([[True] * N_TURBINES]), @@ -588,88 +578,3 @@ def test_cubic_cubature(): # Check if the result matches the expected output np.testing.assert_allclose(result, expected_output) - -def test_build_turbine_dict(): - - orig_file_path = Path(__file__).resolve().parent / "data" / "nrel_5MW_custom.yaml" - test_turb_name = "test_turbine_export" - test_file_path = "." - - in_dict = yaml.safe_load( open(orig_file_path, "r") ) - - # Mocked up turbine data - turbine_data_dict = { - "wind_speed":in_dict["power_thrust_table"]["wind_speed"], - "power_coefficient":in_dict["power_thrust_table"]["power"], - "thrust_coefficient":in_dict["power_thrust_table"]["thrust"] - } - - build_turbine_dict( - turbine_data_dict, - test_turb_name, - file_path=test_file_path, - generator_efficiency=in_dict["generator_efficiency"], - hub_height=in_dict["hub_height"], - pP=in_dict["pP"], - pT=in_dict["pT"], - rotor_diameter=in_dict["rotor_diameter"], - TSR=in_dict["TSR"], - air_density=in_dict["ref_density_cp_ct"], - ref_tilt_cp_ct=in_dict["ref_tilt_cp_ct"] - ) - - test_dict = yaml.safe_load( - open(os.path.join(test_file_path, test_turb_name+".yaml"), "r") - ) - - # Correct intended difference for test; assert equal - test_dict["turbine_type"] = in_dict["turbine_type"] - assert list(in_dict.keys()) == list(test_dict.keys()) - assert in_dict == test_dict - - # Now, in absolute values - Cp = np.array(in_dict["power_thrust_table"]["power"]) - Ct = np.array(in_dict["power_thrust_table"]["thrust"]) - ws = np.array(in_dict["power_thrust_table"]["wind_speed"]) - - P = 0.5 * in_dict["ref_density_cp_ct"] * (np.pi * in_dict["rotor_diameter"]**2/4) \ - * Cp * ws**3 - T = 0.5 * in_dict["ref_density_cp_ct"] * (np.pi * in_dict["rotor_diameter"]**2/4) \ - * Ct * ws**2 - - turbine_data_dict = { - "wind_speed":in_dict["power_thrust_table"]["wind_speed"], - "power_absolute": P/1000, - "thrust_absolute": T/1000 - } - - build_turbine_dict( - turbine_data_dict, - test_turb_name, - file_path=test_file_path, - generator_efficiency=in_dict["generator_efficiency"], - hub_height=in_dict["hub_height"], - pP=in_dict["pP"], - pT=in_dict["pT"], - rotor_diameter=in_dict["rotor_diameter"], - TSR=in_dict["TSR"], - air_density=in_dict["ref_density_cp_ct"], - ref_tilt_cp_ct=in_dict["ref_tilt_cp_ct"] - ) - - test_dict = yaml.safe_load( - open(os.path.join(test_file_path, test_turb_name+".yaml"), "r") - ) - - test_dict["turbine_type"] = in_dict["turbine_type"] - assert list(in_dict.keys()) == list(test_dict.keys()) - for k in in_dict.keys(): - if type(in_dict[k]) is dict: - for k2 in in_dict[k].keys(): - assert np.allclose(in_dict[k][k2], test_dict[k][k2]) - elif type(in_dict[k]) is str: - assert in_dict[k] == test_dict[k] - else: - assert np.allclose(in_dict[k], test_dict[k]) - - os.remove( os.path.join(test_file_path, test_turb_name+".yaml") ) diff --git a/tests/turbine_utilities_unit_test.py b/tests/turbine_utilities_unit_test.py new file mode 100644 index 000000000..fb0220b1e --- /dev/null +++ b/tests/turbine_utilities_unit_test.py @@ -0,0 +1,115 @@ +# Copyright 2021 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +import os +from pathlib import Path + +import numpy as np +import yaml + +from floris.tools import build_turbine_dict, check_smooth_power_curve + + +def test_build_turbine_dict(): + + v3_file_path = Path(__file__).resolve().parent / "data" / "nrel_5MW_v3legacy.yaml" + v4_file_path = Path(__file__).resolve().parent / "data" / "nrel_5MW.yaml" + test_turb_name = "test_turbine_export" + test_file_path = "." + + in_dict_v3 = yaml.safe_load( open(v3_file_path, "r") ) + + # Mocked up turbine data + turbine_data_dict = { + "wind_speed":in_dict_v3["power_thrust_table"]["wind_speed"], + "power_coefficient":in_dict_v3["power_thrust_table"]["power"], + "thrust_coefficient":in_dict_v3["power_thrust_table"]["thrust"] + } + + test_dict = build_turbine_dict( + turbine_data_dict, + test_turb_name, + file_name=os.path.join(test_file_path, test_turb_name+".yaml"), + generator_efficiency=in_dict_v3["generator_efficiency"], + hub_height=in_dict_v3["hub_height"], + pP=in_dict_v3["pP"], + pT=in_dict_v3["pT"], + rotor_diameter=in_dict_v3["rotor_diameter"], + TSR=in_dict_v3["TSR"], + ref_air_density=in_dict_v3["ref_density_cp_ct"], + ref_tilt=in_dict_v3["ref_tilt_cp_ct"] + ) + + # Directly compute power, thrust values + Cp = np.array(in_dict_v3["power_thrust_table"]["power"]) + Ct = np.array(in_dict_v3["power_thrust_table"]["thrust"]) + ws = np.array(in_dict_v3["power_thrust_table"]["wind_speed"]) + + P = 0.5 * in_dict_v3["ref_density_cp_ct"] * (np.pi * in_dict_v3["rotor_diameter"]**2/4) \ + * Cp * ws**3 + T = 0.5 * in_dict_v3["ref_density_cp_ct"] * (np.pi * in_dict_v3["rotor_diameter"]**2/4) \ + * Ct * ws**2 + + # Compare direct computation to those generated by build_turbine_dict + assert np.allclose(Ct, test_dict["power_thrust_table"]["thrust_coefficient"]) + assert np.allclose(P/1000, test_dict["power_thrust_table"]["power"]) + + # Check that dict keys match the v4 structure + in_dict_v4 = yaml.safe_load( open(v4_file_path, "r") ) + assert set(in_dict_v4.keys()) >= set(test_dict.keys()) + + # Check thrust conversion from absolute value + turbine_data_dict = { + "wind_speed":in_dict_v3["power_thrust_table"]["wind_speed"], + "power": P/1000, + "thrust": T/1000 + } + + test_dict_2 = build_turbine_dict( + turbine_data_dict, + test_turb_name, + file_name=os.path.join(test_file_path, test_turb_name+".yaml"), + generator_efficiency=in_dict_v4["generator_efficiency"], + hub_height=in_dict_v4["hub_height"], + pP=in_dict_v4["pP"], + pT=in_dict_v4["pT"], + rotor_diameter=in_dict_v4["rotor_diameter"], + TSR=in_dict_v4["TSR"], + ref_air_density=in_dict_v4["ref_air_density"], + ref_tilt=in_dict_v4["ref_tilt"] + ) + assert np.allclose(Ct, test_dict_2["power_thrust_table"]["thrust_coefficient"]) + + +def test_check_smooth_power_curve(): + + p1 = np.array([0, 1, 2, 3, 3, 3, 3, 2, 1], dtype=float)*1000 # smooth + p2 = np.array([0, 1, 2, 3, 2.99, 3.01, 3, 2, 1], dtype=float)*1000 # non-smooth + + p3 = p1.copy() + p3[5] = p3[5] + 9e-4 # just smooth enough + + p4 = p1.copy() + p4[5] = p4[5] + 1.1e-3 # just not smooth enough + + # Without a shutdown region + p5 = p1[:-3] # smooth + p6 = p2[:-3] # non-smooth + + assert check_smooth_power_curve(p1) + assert not check_smooth_power_curve(p2) + assert check_smooth_power_curve(p3) + assert not check_smooth_power_curve(p4) + assert check_smooth_power_curve(p5) + assert not check_smooth_power_curve(p6) From e877d70a6a1e17014d6676e2f6e82c4693ab5aa9 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 5 Jan 2024 16:14:58 -0600 Subject: [PATCH 26/78] Update API in turbine previewer and docs notebook --- docs/turbine_interaction.ipynb | 32 +++--- floris/tools/convert_turbine_v3_to_v4.py | 104 +++++++++--------- .../iea_15MW_floating_multi_dim_cp_ct.yaml | 4 +- .../iea_15MW_multi_dim_cp_ct.yaml | 4 +- floris/turbine_library/turbine_previewer.py | 8 +- floris/turbine_library/x_20MW.yaml | 6 +- 6 files changed, 82 insertions(+), 76 deletions(-) diff --git a/docs/turbine_interaction.ipynb b/docs/turbine_interaction.ipynb index 6df40578e..13c5e9d97 100644 --- a/docs/turbine_interaction.ipynb +++ b/docs/turbine_interaction.ipynb @@ -65,7 +65,7 @@ }, "outputs": [], "source": [ - "ti = TurbineInterface.from_library(\"internal\", \"iea_15MW.yaml\")" + "ti = TurbineInterface.from_library(\"internal\", \"iea_15MW_v4updated.yaml\")" ] }, { @@ -89,7 +89,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyYAAAI5CAYAAABUwC7IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAB/L0lEQVR4nO3deZxcVZn/8e/Te/aQjZAEyMIaiIAsYQ0giiIg6AjuEARxG0Yd11FH0RmdUX+u6Lhr2ERRRJBFo7IEwh5kTUIgJIQEsu/pvfv5/XFvd1fdrq696lZ1f96vV73qLqfuOd25qa6nznnOMXcXAAAAAMSpJu4GAAAAAACBCQAAAIDYEZgAAAAAiB2BCQAAAIDYEZgAAAAAiB2BCQAAAIDYEZgAAAAAiB2BCQAAAIDYEZgAAAAAiB2BCQAAAIDYEZgAAAAAiB2BCQAAAIDYEZgAAAAAiB2BCQAAAIDYEZgAAAAAiB2BCQAAAIDYEZgAAAAAiF1d3A1A9TCzRklzwt1NkrpibA4AAAByVytpYrj9tLu3xdmYRAQmyMUcSY/G3QgAAAAUxbGSHou7ET0YygUAAAAgdvSYIBebejYWLVqkGTNmxNkWDAEtLS1atGiRJGnevHkaNmxYzC3CYMc9h3LjnkO5rVq1SvPmzevZ3ZSubLkRmCAXvTklkydP1rRp0+JsC4aAlpYWTZgwQZI0bdo0/mCj5LjnUG7ccyi3lpaWxN2KyhdmKBcAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2A3ZwMTMJpnZOWb2VTO708w2m5mHjwVZXmN+wmsyPeYXqd0TwjY/ZWY7w8dT4bHxxagDAAAAKLe6uBsQow1xNyBXZjZX0p8kTY6cmhM+LjOz8939kXK3DQAAACjEUA5MEq2RtFzSmQVc442SXklzfm0B15aZ7Svpz5ImSuqU9B1Jt4Wnz5H075L2kfRnMzva3QuqDxgMnn1lhx5bvU1d3R53U1AlOjo6tPxVkyStf+hl1dfXx9yi6jJ6WL1OP3iixo9sjLspAKrQUA5MvirpUUmPuvsGM5suaVUB11vh7quL0bABfE1BUCJJ73b33yecu8/Mlkj6naRJkv5b0vwStgWoeH9bukEfvPYxEZMgd7XB0+rn421GlZq21zDdfsUpGjOcoA5AboZsjom7f9ndb3P3ih/SZWaTJb0n3P1rJCiRJLn7jZL+Gu6+L3wNMGRd8+BqghIgBmu3tWjxys1xNwNAFRqygUmVeYv6/q1+nabcgvC5JnwNMCS5u55auyPuZgBD1o6WjribAKAKDeWhXNXk5ITte9OUSzx3kqSflaY5QGVbu62l3wejuTPGqa7WYmrRwEz5t8lFl1CxdXV1a+vWLZKkcePGq7aW7++y8fTaHdrZ2tm739nVHWNrAFQrApPi+bWZHSxpgqSdkl6Q9HdJP3b3dQVee3b4vMPd1w9UyN1fNbOdkkZLOrTAOoGq9cy65N6SvYbX67eXHy+zygtMUFlaWlq0cOFCSdKZZx6lYcOGxdyi6vDunz+kB1Zu6d3v6CJoBpA7ApPiOS1he3z4mCvpk2b2cXf/aQHXnhY+ZzPT1suSDpO0b66VmNm0DEV681ba2trU0tKSaxVATlpbW1NuZ/LES1uS9g+dPDKn12PoyveeG+pqIr13LW3t/I3IEvccyq2trS3uJgyIwKRwL0r6o6QHFQQFkjRT0r9IerukJkk/MTN393yHVo0Kn3dnUXZP+Dwyj3pezlwk8PDDD2vlypV5VAHkZ9GiRdmXXVajxBS6Ya1ber8FB7KVyz031G3dkvx/btlzz2nh7uXxNahKcc+hHDZvrtzJKQhMCnOzpKvdPdpn/aik35nZOQqClnpJ3zWzW9MNxUqjKXxuz6JsTxjM+AMMSe7Sy7uTh2ztO4JhJUApRdO3mBEPQD4ITArg7mmn/XH328zsq5L+S9JwSZcqWI8kV63h6xuyKNuzqlU+feiZhn9NVhB0ae7cuZo1a1YeVQDZa21t7f0Gcd68eWpqasrwCmnDzjbtfmhx0rF3vukk7T9ueEnaiMEln3sO0p07ntHT2zb27u8/Y5bOPH1mjC2qHtxzKLdKHvFCYFJ6P1OwmKNJOlX5BSa7FAQm2QzPGhE+ZzPsK0mm1eITE4cbGxtJCkVZNTU1ZXXPvbBqZ9L+qMY6HbTPONXUkPiO3GR7z0FqbIh8nKip5XeXB+45lENjY2PmQjFhHsQSc/eNknoycafmeZmegCFTcrrU1+uRdb4IMJg880pyR+ZhU0cTlAAlVleT/HGii7FcAPJAYFIehb5DLw2fx6Rb0d3M9lEwVbAkLSuwTqAqPbMuucfk8CljYmoJMHTURYL/DtYxAZAHApMSM7OJCtY2kaRX8rzM/Qnbp6Ypl3hu8YClgEEsuobJ4VMJTIBSiy5e2sk6JgDyQGBSepdLvUs7p1u1PZ1bJfV8/XRJmnLzw+fu8DXAkLJpV5vW70xeB+DwqaMHKA2gWOprkz9OdHbTYwIgdwQmeTKz6WZ2VIYy50j6UrjbIunXA5S7x8w8fEyPng+nGL4+3H2jmb09xTUukPTGcPfaPKclBqras5H8kmH1tZoxIZ8lfQDkov9QLnpMAORuyM7KZWYnSzog4dCEhO0DzGx+Ynl3XxC5xHRJd5vZg5L+LOlJST1zJc5UsLji29XXW/Ipd19XQJO/IOlNkiZKusHMjpF0W3juHEmfDLc3SfpiAfUAVevZV5LzS2ZPGa1aEt+BkquNDOUi+R1APoZsYCLpMkkXD3DupPCRaMEAZU8IHwNplvSJAlZ9lyS5+8tmdq6kPylYT+Sz4SPReknnZ5r2Fxis+uWXTGEYF1AO9ZFZuUh+B5CPoRyYFGqJpPcqCEqOkbSPgl6XOknbJD0r6R+SfhFOGVwwd3/YzOZI+pik8xX02kjSKkm3SPqeu29J/Wpg8Os/VTCJ70A5kPwOoBiGbGDi7vPVlyyez+t3Kcj7uD5T2SyudVoOZTdL+s/wASC0o7lDL29tSTo2h8AEKAuS3wEUA8nvAAaFaG9JQ12NDphE4jtQDiS/AygGAhMAg0I0v+TQyaP6fYsLoDSik0yQ/A4gH/zVBjAoPBOZkYv8EqB8ol8CkPwOIB8EJgAGhWf7zchFYAKUS7/kd3pMAOSBwARA1dvV2qEXN+9JOsaK70D5RKcL7qTHBEAeCEwAVL1lr+5K2q+rMR2096iYWgMMPdEeE5LfAeSDwARA1Ysmvh+49yg11dfG1Bpg6CH5HUAxEJgAqHrRqYJZ8R0or37J76xjAiAPBCYAql60x2TONBLfgXKKrmPCyu8A8kFgAqCqtbR36YWNu5OOHcaMXEBZ9Vv5neR3AHkgMAFQ1Zat36nE4ew1Jh26D4nvQDkxXTCAYiAwAVDVouuXzJo4UsMb6mJqDTA0RZPfCUwA5IPABEBVe2Zd8orvh7PiO1B2rPwOoBgITABUteiMXIcxIxdQdiS/AygGAhMAVauts0srNiQvrkiPCVB+/ZLfmS4YQB4ITABUrRXrd/dbYXo2PSZA2ZFjAqAYCEwAVK3oMK4ZE0ZodFN9TK0Bhq76yKxc7qz+DiB3BCYAqlZ0YUXyS4B41NX0/zhBAjyAXBGYAKhaz7zCjFxAJYiuYyIxnAtA7ghMAFSljq5uLXs1Epiw4jsQi2jyu8Tq7wByR2ACoCqt3LRb7Z3JH3wYygXEI5r8LtFjAiB3BCYAqlJ0YcWpY4dprxENMbUGGNrqU+SYsJYJgFwRmACoSs9GZuQ6fCq9JUBcUuWYkPwOIFcEJgCq0spNe5L2D5lMYALEheR3AMVAYAKgKr24aXfS/qxJI2NqCYDUQ7noMQGQGwITAFWntaNL67a3JB2bOWFETK0BUFNjskinCT0mAHJFYAKg6qzavEce+cwzcyKBCRCnaK8Jye8AckVgAqDqrIwM45oypknDG+piag0AqX+eSUc3Q7kA5IbABEDVeTGS+D5zIvklQNzqImuZ0GMCIFcEJgCqTrTHZBbDuIDYRVd/76THBECOCEwAVB16TIDKE139nR4TALkiMAFQVdy9/1TBBCZA7OgxAVAoAhMAVWXDzjbtae9KOsaMXED8+iW/02MCIEcEJgCqSrS3ZFh9rSaPboqpNQB6kPwOoFAEJgCqSjTxfebEEaqJfCACUH4M5QJQKAITAFVlJYnvQEUi+R1AoQhMAFQVpgoGKlMdPSYACkRgAqCqMFUwUJnqa0h+B1AYAhMAVaOlvUuv7GhJOkaPCVAZorNydXbRYwIgNwQmAKrGqs175JEvYWdMIDABKkFdTXQoFz0mAHJDYAKgary4OTm/ZMqYJg1vqIupNQAS9esxITABkCMCEwBVY+XG5PySWZPILwEqRb8eE4ZyAcgRgQmAqhHtMZnJMC6gYtSz8juAAhGYAKga/aYKpscEqBhMFwygUAQmAKqCu2tVdKrgCQQmQKWoiy6wSI4JgBwRmACoCht3tWtPe1fSsZlMFQxUjH6BCUO5AOSIwARAVXhxc3JvyfCGWk0e3RRTawBE9RvKRfI7gBwN2cDEzCaZ2Tlm9lUzu9PMNpuZh48FWV5juJm9zcx+bGaPmtk2M+swsy1m9qCZXWlmk4vU3tUJ7Uv3WF2M+oBKs2pLc9L+jAkjVBP5hhZAfPolvzOUC0COhvICABsKebGZvUbSYkmpBrmPk3R8+PiEmV3u7r8rpD5gqFu1OTkwmTWR/BKgkkSnC+5iKBeAHA3lwCTRGknLJZ2Zw2tGqy8oWSzpNkmPSdoiaaKkt0n6QFjuejPb6e53FqGtt0j6Yprz7UWoA6g40R4T8kuAyhJdYLGDWbkA5GgoByZflfSopEfdfYOZTZe0KofXd0u6UdJX3H1pivMLzexOSTdLqpV0lZkd6O6FfoW03d2fKfAaQNWJ5pjQYwJUFpLfARRqyAYm7v7lAl//gKQHMpS5xcz+KOlfJM2SdJSkxwupFxiK2rukV3e0JR2jxwSoLKxjAqBQQzb5vYzuTtieFVsrgCq2qbX/sRms+g5UlPoaVn4HUBgCk9JrTNjuGrAUgAFtaEn+wDN17DANbxiyHb5ARYr2mHQxKxeAHBGYlN6pCdvLinC9eWb2hJntMrNmM1tlZr8zs/PNjLlTMShtbEneZxgXUHmiOSYdrGMCIEd85VhCZnaEpLPD3afdvRiByYzI/vTwcaGkxWb2Dndfl8+FzWxahiK9a7K0tbWppaUlXVmgYK2twRiuaI/J/ns1cf+hJHruueg2MvPuzqT99o5O/p9mgXsO5dbW1pa5UEwITErEzBol/ULBjFyS9IUCL9ku6VZJCyU9I2mHpLGSTpD0YUn7SjpJ0t/M7AR335FHHS9nW/Dhhx/WypUr86gCyN3G1uTApHXTS1q4cHU8jcGQsWjRoribUFWeX2/q+5MnbdqyTQsXLoyvQVWIew7lsHnz5ribMCACk9L5oaRjwu2r3f3PBV7vOHffnuL4PWb2Q0l/ULAOy6GSvizp3wusD6gI7v2Hck0aFk9bAAwssoyJyH0HkCsCkxIws/+QdFm4+6ikjxZ6zQGCkp5zu8zsQkkvKlh1/nIz+5y757rY4r4Zzk9W8PNo7ty5mjWLScZQWq2trbr1b4vU3p38ieeCN56iyaObYmoVBrPW1tbeb63nzZunpibus2zteeJV/fbFvhHLI0eN1plnHhtji6oD9xzKrZJHvBCYFJmZfVDS18Pd5ZLe7O570rykKNx9h5n9VtJHJI1Q0FuTdp2VFNdYm+58Ym59Y2Ojhg3ja2uU3obIMK7hDbWaPmmsmOsBpdbU1MT7XA6GNzUm7Xe5+P3liHsO5dDY2Ji5UEyYlauIzOxdkv4v3H1J0hvcvZwD+RJXoJ9axnqBkkk1IxdBCVB56iJjuTqZLhhAjghMisTM3iLpGgW/01clnZGpB6IE+CuAQWdjZEaumRNGxtQSAOnU1URWfme6YAA5IjApAjM7Q9KNCobGbVHQUxLHAL7ZCduvxFA/UHQbIj0msyYSmACVqL6Wld8BFIbApEBmdqKkWxSs8L5D0hvd/dkY2jFG0jvD3WZJj5W7DUAp9OsxYXFFoCLVRhZYZOV3ALkiMCmAmR0p6XYFyeZ7JJ3t7kvyuM49ZubhY3qK828yswGz4cxspIIem/HhoV+6e+WungNkqaWjS9vakz/s0GMCVKb62shQrm6GcgHIzZCdlcvMTpZ0QMKhCQnbB5jZ/MTy7r4g8vpZkv6qYJFDSfqipB1mdniaaje6+8Y8mvs5Sdeb2R8l3S9ppaTdksZIOlHShyTtF5Z9TtKVedQBVJzVW5r7HZsxgR4ToBLV1TCUC0BhhmxgomCdkYsHOHdS+Ei0ILJ/iqRJCfvfzaLOryj/oGGcgjZflqbMvZLe4+5b86wDqCirNicHJlPHDtOwhtoBSgOIU120x4TkdwA5GsqBSTX5lKQzJJ0g6WAFvTtjFeSSvCLpYUk3SFro7nxFhUEjGpiQXwJUrn7J7+SYAMjRkA1M3H2+pPkFvH6B+vei5Hut0zKcf0wks2MIWhUZykV+CVC5SH4HUCiS3wFUrBc370nan0WPCVCxosnvXd0uOvEB5ILABEBFcne9tCV5EZOZ9JgAFSua/C6RAA8gNwQmACrS+p2tau7oSjpGjglQuaI9JhJTBgPIDYEJgIq0cmPyMK7h9bWaPLopptYAyKSutn+PSSd5JgByQGACoCKt3LQ7aX/6hOEy6//BB0BliCa/S1InQ7kA5IDABEBFWrFhV9L+rAnDY2oJgGzU16QYysVaJgByQGACoCJFA5MDJ5FfAlSyVEO5WMsEQC4ITABUHHfXig3JQ7kOmMSMXEAlS5n8To8JgBwQmACoOBt3tWlHS0fSsQOZkQuoaKmmCyb5HUAuCEwAVJzoMK6GGteUsczIBVQykt8BFIrABEDFeW59cmAyeZhUw4xcQEUzs369Jh0M5QKQAwITABUn2mOyz3C+dQWqQTQBnqFcAHJBYAKg4kQT3wlMgOoQnTKY5HcAuSAwAVBR3F3PR3pMJrOECVAVaukxAVAAAhMAFWXd9hbtae9KOrbPMD7cANWgrl+PCf93AWSPwARARYnmlwyrdY1piKkxAHJSH+kx6ehmKBeA7BGYAKgoz61Pzi+ZPFxiQi6gOvRLfqfHBEAOCEwAVJRofgmJ70D1IPkdQCEITABUlOeigQn5JUDViC6ySPI7gFwQmACoGF3drhc2RqcKjqkxAHJWVxvpMSHHBEAOCEwAVIw1W5vV1pn8QWYyQ7mAqtEv+Z0cEwA5IDABUDGeW588jGvc8HqNqo+pMQByVhcdykVgAiAHBCYAKkY08f3ASSNiagmAfESHcnUxlAtADghMAFSMaOL7ARNHxtQSAPmI9pgwlAtALghMAFSM5zckJ77TYwJUF5LfARSCwARARWjv7NbKTcmByQEEJkBVqafHBEABCEwAVITVW/b0W/PggIkEJkA1YeV3AIUgMAFQEVZE8ksmj27SmGFMyQVUE5LfARSCwARARVgRmSr4wL1JfAeqTb/kd1Z+B5ADAhMAFWFFJPH94L1HxdQSAPmqq4kkv3fRYwIgewQmACpCdCjXQQQmQNVh5XcAhSAwARC71o4urd6yJ+nYQZMJTIBq0y/5nRwTADmoK3eFZjZR0kxJkyWNkNQhabukNZJecPeucrcJQLxWbtqt6FD0AyeNlLo74mkQgLxEh3J1kWMCIAclD0zMbISk8ySdJelUSVPTFG8zs39KWijpZnd/qtTtAxC/6DCuaXsN04jGOrW0EJgA1YSV3wEUomSBiZkdJekKSRdIGt5zOMPLmiSdIOl4SV8ys2cl/UjSte7eXKq2AogXie/A4NBv5XeS3wHkoOiBSRiQ/JeCHhKpLxhZL+kRSUskbZS0VdI2ScMkjZO0l6SDJB0r6TWS6iUdLun/JP2XmX1T0lXu3lbsNgOIV/+pgglMgGrUL/mdoVwAclDUwMTMfi3pfepLqn9c0vWSbnL3NTlcp0HSPEnvkfRWSRMkfUPSR8zsIne/v5jtBhCv5yJDuQ6ezBomQDViumAAhSj2rFwXS+qU9HNJh7j7Me7+3VyCEkly93Z3/7u7XyJpb0kXSXpO0nRJrytymwHEaE9bp9Zua0k6xlTBQHWKzspF8juAXBR7KNf/SfqGu79crAuGQ7euM7PrFeSr1Bbr2gDi9/zG5PySGpNmTaTHBKhGJL8DKERRAxN3/9diXi9ybZd0Y6muDyAe0Rm5po8foaZ6vn8AqlG/5HfWMQGQAxZYBBCr/onv9JYA1YqV3wEUgsAEQKxWbGSqYGCwYIFFAIUoxXTBr0haJOk+SYvc/eli1wFg8Ij2mBw0mcAEqFbRHBNm5QKQi1IssDhZQZL6BZJkZtsl3a8gWFkkaYm7804FQDtaOrR+Z2vSMWbkAqpXdFYuhnIByEUpApOXJO2fsL+XpHPChyTtMbMH1der8pC7t5egHQAq3PORxPf6WtP08SNiag2AQpH8DqAQRQ9M3H2GmU2VdErC4zD1rQA/UtLrw4cktZvZo+rrUVns7nuK3S4AlSe6sOKMCSPUUEfqG1Ct6vsN5aLHBED2StFjIndfJ+m34UNmtpekk9QXqBwtqT4s3hieO0nSf0jqMrMn1Beo3Ofu20rRTgDxen5DcuI7w7iA6ta/x4TABED2yvLVpLtvc/fb3P2z7n6ipDEKVnD/sqS/S2pW0KNiCoKlYyR9QtLNkjaWok1mNsnMzjGzr5rZnWa22cw8fCzI43pnmdnNZrbWzNrC55vN7Kwit3u4mX3GzB41s61mtsfMlpvZt81s/8xXACrHc5HEd2bkAqobye8AClGSHpNM3L1V0j3hQ2ZWK+m16utROVnS+LB4qYKnDcW4iJnVSPqZpEsjp6aGj/PN7BeSPlho0r+ZHSDpDkkHRk4dHD4uM7P3uPtthdQDlEt0ccUDCUyAqtYv+Z0eEwA5qJTB3DUKhnbVS2pQEDCV891sjaSFeb72a+oLSv4p6V2Sjguf/xkev0zSfxfSQDMbJel29QUlP5d0hqQTJX1B0m5JoyX9zsyOLKQuoBw2727Tlj3J814czFTBQFWLrmNCjwmAXMTSY2JmIxR8oO7pITlOUlPP6YSiyxXM3FUKX5X0qKRH3X2DmU2XtCqXC5jZQZI+Fe4+Jmmeu7eE+4+a2a2S7lUwNO3TZvYrd38hz/Z+WtJB4fZn3P1bCeceNLN7wrqGS/qepNPyrAcoi+j6JY11Ndpv3PCYWgOgGKIrv5P8DiAXZQlMzGy8kmfpOlJSbc/p8Lld0uMK1jy5X8HsXFtK1SZ3/3IRLvNx9f0Or0gISnrqaDazKyQ9GJb7hKSP5lqJmdVL+rdwd5mkb0fLuPsDZvZLSR+UdKqZHevuj+ZaF1AuS1/dmbR/4N4jVRsZnw6gupD8DqAQJQlMzGxfBQHIvPD5kMTT4fNOSQ+oLxB5JMw9qQpmZpLOC3eXu/tDqcq5+0Nm9pyCHJDzzOxf3T3Xd+rTFUwYIElXp8lVWaAgMJGktyroEQIqUjQwmb3P6JhaAqBY+iW/s44JgBwUPTAxs9WS9u3ZTTi1Tn1ByP2SnsrjA3olmSFpSrh9b4ay9yoITKZKmq4ch4wpmAwg8VoDeUzBDGfDFUy/DFSspa8kByaHTRkzQEkA1SLVyu/uruC7PABIrxQ9JvuFz52S/iDpNgXDsl4qQV1xmp2wvTxD2cTzhyr3wCSruty908xekPSasB6gIrV1dumFjclrmMyeQo8JUO2iye+S1NXt/QIWAEilVDkmriCH5EIFq77fZ2b3KQhQ1paoznKblrCd6Wd6OWF73wFLZa5rj7tvz6Ku10iaaGaN7t6WbSVmNi1Dkck9G21tbWppaUlXFhjQ0ld39Rt7Pn1sfb97qrW1NeU2UCrcc4Xp6uj/J2fXnmY11demKA2Jew7l19aW9UfDsitFYPIJBUOPTpa0t6Q5kg6X9GFJMrM16hvOdZ+7Ly1BG8ohcV7T3QOWCuxJ2B5ZQF2Z6klVVy5338uZiwQefvhhrVy5ModLA30e2mjqm/9CmtDoeuDeu9K+ZtGiRSVuFZCMey53W9uk6EeLhX//h5qIS7LCPYdy2Lx5c9xNGFDRAxN3/76k70u90+n2zMQ1T0F+xf7h491hmW0KkuDvUxCsPObuHcVuVwk0JWy3D1gqkBgcDCugrkz1FKMuoOTW7Uke1jF1RDWnmwHokWrEVle3Er+HAIABlXS6YHdfIWmFpF9KkplNVXKgMlvSOEnnSDo7fFmbmT2ivl6VB9x9pypPYn9rQ4ayjQnb+Yx/6qkrUz2F1pVpmNlkhTN9zZ07V7Nmzcrx8kDgml8vkbSjd//UI2bpzHkz+pVrbW3t/QZx3rx5ampq6lcGKCbuucJs3dOuLy25P+nYKaeepgkjs/nzNTRxz6HcKnnES1kXWHT3dZJ+Gz5kZnspGPI1L3wcpaB3oGeaYUnqUnYfyMstcXW4TMOzRiRsZzMca6C6shkGlnddmfJ/EmdVaWxs1LBhdMggd93druc27Ek6dsR+4zPeT01NTdxzKCvuudyNTPGxoq6hgd9jlrjnUA6NjY2ZC8Wk//QZZeTu29z9z+7+aXefK2mspA9JelHBVMPJA9ErS+KH+ExJ44k9EVnncaSoa4SZjc2yrk25JL4D5bJ2W4t2t3UmHWNGLmBwiK78LrH6O4DslbXHJBUzO0x9PSSnqG9tEFfyOiiVJjFp/5ABS/U/vyzPuv4l4VopF3M0szpJPeOr8qkHKLmlr+5I2h83okGTRzN0ARgMamtSBCas/g4gS2UNTMysVtLR6ssxOUnSXolFIi9ZI6lSp6hYJekVBYHUqRnKzguf10lanUddiQN2T9UAgYmkY9Q3lGtxHvUAJRddWHH2PqNZfA0YJOpTrGPS2cXq7wCyU9LAxMyaJJ2gvkBkroJVyXuLRF7ynIJAZJGCqYTXlLJ9hXB3N7NbFEyDfIiZHe/u/QIGMztefT0mt+S52v09CjKFx0i62My+OcB15ids35xHPUDJLX01EpgwjAsYNGpqTDUmJXaSdDCUC0CWih6YmNk56huW9VpJ9YmnE7a7JT2p5EBkU7HbU2Lfk3S5gjyYq8xsnrv3zoRlZsMkXRXudobl+zGzBZIuDndPd/d7Es+7e7uZ/UDSfypY0f1Tkr4VucYJki4Nd+9190fz/aGAUkrVYwJg8KirrVF7Z18vSWc3PSYAslOKHpNbFeSHSMmBSLukxxSsV7JIwSrwsU0DbGYnSzog4dCEhO0DzGx+Ynl3XxC9hruvMLNvSfqcgmFUi83sG5JWKsj1+KyCmcYk6Vvu/nwBTf6WpHdIOkjSN83sAAWzm7VIOl3S5xX8e7ZI+ngB9QAls21Pu17ZkbyyMT0mwOBSX2NJi26RYwIgW6UaymWSmiU9qL5A5CF3b037qvK6TH29FFEnhY9ECwYo+wVJkyS9X0EQ8tsUZX4p6Yu5N7GPu+8ys7Ml3SHpQAU9NZdHiu2U9B53f6KQuoBSiQ7jaqir0cwJIwYoDaAaRRPgmZULQLZKEZh8RkEwssTdOzMVrnbu3i3pUjO7SUGgcKyC3pfNChYj/Km731mkul4ws6MkfVTSBQp6fBoUTEF8h6Tvu/tLxagLKIXoMK5DJo9SXW2ss5YDKLL6yP9pkt8BZKvogYm7/79iX7MU3H2+kpPFC73eHQqCg5K2xd33SPpm+ACqSrTH5DCGcQGDTl1kLZMOhnIByBJfVQIoGxLfgcGvroYeEwD5ITABUBatHV16YdPupGMkvgODT3T1d5LfAWSrFNMF31XkS7q7n1HkawIos+c37FZXwgcUM+ngyQQmwGBD8juAfJUi+f00JU8XXMg7UqGvB1Ahlr66I2l/+vgRGtlY0jVeAcSgX/I765gAyFIpPxW0StpYwusDqCLPkl8CDAn9kt/pMQGQpVIGJk2SXpV0jaTfufu2EtYFoML1S3wnvwQYlEh+B5CvUiS//6ekFQqGYR0v6UeSXjWzm8zsfDOrL0GdACpYd7dr2asEJsBQUBfNMSH5HUCWih6YuPvX3P1QScdJ+qGChQYbJL1V0k0KgpQfmdkJxa4bQGVas7VZe9q7ko4dxlAuYFCKDuWixwRAtko2XbC7P+bu/yZpiqS3SPqDpDZJ4yR9SNL9ZrbCzP7TzGaUqh0A4hddWHHCyAZNHNUYU2sAlFL/5Hd6TABkp+TrmLh7l7vf5u4XSpos6QOS7gtPHyDpSkkvmNl9ZvYBMxtb6jYBKK9ofsmh+4yWmQ1QGkA1iw7lIvkdQLbKusCiu+9091+6+2mSZkj6kqQXFOSjnCjpJ5JWlbNNAEov2mNCfgkweNVFeky6mC4YQJZiW/nd3de4+3+7+8GSrlAwzMskMb4DGGT6zchFfgkwaNFjAiBfsa1uZmb7SnqvpPdJOjjhVHs8LQJQClt2t2n9ztakY4fRYwIMWtEeExZYBJCtsgYmZjZa0gUKApJTFPSQ9Hy18qCkayX9rpxtAlBa0WFcTfU1mjFhZEytAVBq9dHpgukxAZClkgcmZlYr6SwFPSPnKhiq1fOu9aKk6yRd6+4rS90WAOUXHcZ1yOTRqq0h8R0YrFj5HUC+ShaYmNmxCoKRd0ia0HNY0nZJNyoIRhaXqn4AlYHEd2BoIfkdQL6KHpiY2RclvUfSQT2HJHVIulPBUK0/uzt5JMAQQeI7MLT0S35nHRMAWSpFj8lXJbmCgORhSddI+p27by1BXQAqWGtHl1Zu2p10jB4TYHCrq4kkv7PyO4AslTLHpEXS3pI+LenTBSym5u4+q2itAlA2z63fpcQvS82kQyaPiq9BAEquvpbkdwD5KWVgMkzS9CJch3c0oEo9GxnGNWPCCA1viG2WcgBl0C/5naFcALJUik8Ii0QwAUDS0ld3JO2TXwIMftGhXCS/A8hW0QMTdz+t2NcEUJ2iie+HTRkTU0sAlAsrvwPIV03mIgCQu65u1/L1u5KOkfgODH79Vn4n+R1AlghMAJTEqs171NzelXSMoVzA4Ncv+Z0cEwBZIjABUBJPrd2etL/36EZNHNUYT2MAlE3/oVz0mADITlEDEzPbp5jXG6COyaWuA0Dhnnx5e9L+EdPGxtIOAOXVf+V3ekwAZKfYPSYrzewHZja1yNeVmV1oZk9JurzY1wZQfE+sTZ6R64h9x8bTEABlRfI7gHwVOzCpk/RRSS+Y2dVmdqaZ5V2Hme1rZp8xs2WSbpB0uKT2IrUVQIm0dXZpWWRGriMJTIAhoV/yO9MFA8hSsacLPlzSdyWdJem94WOjmd0i6SFJj0pa6u4pvz4xswmSjpV0nKQzJJ0oycLHOklflrSgyG0GUGTLX92l9si48jnTmCoYGApY+R1AvooamLj7Cklnm9mJkr4o6Y2S9pb0gfAhSe1mtkXStvAxTNI4SXtJSvzk0vPOtlbSVZKucvfWYrYXQGk8GUl8nzVxhEY31cfTGABlFV1gkeR3ANkqxcrvcvcHJL3ZzA6S9H5JF0iaEZ5ulDQlfLj6ApBEbZL+Kunnku50d97VgCryRDTxnWFcwJBRG8kxIfkdQLZKEpj0CHtQPifpc2a2n6RTFAzPmiZpooKeklZJm8LH05Luk/SIu5NLAlSp6Ixc5JcAQ0d0KBfJ7wCyVdLAJJG7r5F0ffgAMEjtbO3Qyk17ko4xVTAwdJD8DiBfLLAIoKieiUwT3FBbo0P2GRVTawCUW30Nye8A8kNgAqConogkvh86ZbQa62rjaQyAsuvfY0JgAiA7BCYAiqr/iu9MEwwMJdHk905m5QKQJQITAEX15MuRFd/JLwGGlH7J7/SYAMgSgQmAolm/o1XrdyYvN8RUwcDQEl3HhB4TANkiMAFQNNGFFUc11mnmhBHxNAZALKI9Jt0uddNrAiALBCYAiiaaX/KafceopibVGqoABqto8rtEAjyA7BCYACiaaI8J+SXA0FOX4ssI1jIBkA0CEwBF0d3teiqa+E5+CTDk1NX2D0xY/R1ANghMABTFi5v3aFdbZ9KxIwlMgCEnmvwukQAPIDtlCUzM7K7wcUk56gNQftH8ksmjm7T36KZ4GgMgNtHkd4kcEwDZKVePySmSTpW0ukz1ASizp6L5JfuysCIwFJH8DiBf5QpMNobP28tUH4Aye2It+SUABkh+ZygXgCyUKzB5Mnw+qEz1ASijts4uLXtlZ9IxZuQChqZUgQnJ7wCyUa7A5BeSTNKHylRfWZjZPWbmOT5Oy6OeK0t5faBQy1/dpfbIN6JzpjGUCxiKapkuGECeyhKYuPsfJV0n6VQz+5WZDdWloLslPR93I4Bii65fMmviCI1uqo+nMQBiZWb9EuA76TEBkIW6clRiZhdJ+oek10i6WNJ5ZvZnSU9J2iapK93r3f2akjcyP5dIyhRkzZb0u3D7H+6+rsA652Q4v6rA6wM5eyIyIxf5JcDQVltjScO3SH4HkI2yBCaSFkhKfFfaS9L7snytS6rIwMTdMwYBZpb4cxb8c7j7M4VeAyi26FTBrF8CDG31NTVqVd/wLZLfAWSjXIGJFOSYpNsfdMysRtJ7wt3dkv4YY3OAktjZ2qGVm/YkHSPxHRjaoqu/k/wOIBvlCkxmlKmeSnOGpKnh9h/cvTnOxgCl8HRkmuCG2hodss+omFoDoBJE1zIh+R1ANsoSmLj7S+WopwJdlLBdkcPRgEJF80sOnTJajXW18TQGQEWoj8zMRY4JgGyUa7rgIcfMRkp6a7j7kqR7inTdhWa20czaw+d7zOxzZrZXMa4P5Cq64vuRTBMMDHm1zMoFIA/lzDEZav5FfTN2XefuxXpXfkPC9kRJp4aPz5rZfHe/Jd8Lm9m0DEUm92y0tbWppaUl36owiDyxZnvS/qF7Dy/avdHa2ppyGygV7rniqLXkwKS5pZW/GQPgnkO5tbW1xd2EAZU9MDGzAxUMcTpBwQfdYZLe6O4vJJQ5XNJ+kva4+73lbmORFHsY19OS/iTpEUmvSKqXdLCC5PozJY2VdJOZnevud+ZZx8vZFnz44Ye1cuXKPKvBYLG9TdqwK/ltZOfqp7Vww9NFr2vRokVFvyaQDvdc/lqba5U4x83jTzwpraXXJBPuOZTD5s2b427CgMoWmIQzVH1T0scUDCHrecdySQ2R4vtJuk1Sp5nNKMLaH2UV9jycFu4+5O4rCrzk99z9yhTHH5Z0jZl9UNJPJNVK+oWZzXJ3vnZBya3Zk/ytaFOta2JTTI0BUDEiI7nESC4A2Shnj8lPJb1fQUCyTtKDkt6eqqC732FmqyRND8t8v0xtLJb3qi9/5+pCL+bu2zOc/6mZHSvpUklTFAwjuz6PqvbNcH6ypEclae7cuZo1a1YeVWAwefYfK6Xn+ua2OHK/cXrTG48q2vVbW1t7v0GcN2+empqIelBa3HPF8YuXHtW65l29+4fOPkxnHjUlxhZVLu45lFslj3gp18rvZyj40OySvi7py+7eZWbp5g/8vaTPSHqdqi8w6VlUsU19q76X2k8V/I6lIOck58DE3demO28JY4YbGxs1bNiwXKvAIPPs+t1J+6/df1zJ7oumpibuOZQV91z+6iMz81ltPb/LLHDPoRwaGxvjbsKAytVjcnn4fIe7fzHL1zwSPh9WgvaUjJkdI2l2uHubu28rU9VLE7anDlgKKJKubtdTLyevYXIEK74DEOuYAMhPuaYLPkFBb8kvc3hNz7f3k9OWqjyJSe8FD+PKASN4UVYrNuzSrrbOpGNHEpgAkFTPyu8A8lCuwGRS+Lw6h9d0hM9VM6WxmdVLeme4u0lSvrNj5WN2wvYrZawXQ9Rjq7cm7e83brj2Hs3YaABSXU2kx6SLHhMAmZUrMNkTPk/M4TU9a2psTVuqspylvp/xN+7ema5wkX0wYbtap1hGFXl0dfIoxWOms8YngEC0x4SV3wFko1yByYvh8+y0pZKdFT4/W+S2lFLOa5eY2Xwz8/BxZYrzc8zsgAzXuFzSZeHuekk3Z9leIG/RHpNjp4+LqSUAKk1tDSu/A8hduYZJLZR0tKSPmtlV7p62T9fMZkuaryBv4o7SN69wZraXpHPC3Wfc/fEiXfpoBWuT3K1gaNjTkrYo+Lc7RH0LLEpSl6TL3X1PqgsBxbJ2W7Ne2ZG8VM6x9JgACJH8DiAf5QpMfiDp3yTNkvQTM/vIQMOczOwNkn4tqUnBB/Cfl6mNhXqHpJ7514qx0nuiWkmvDx8D2SLpUnf/c5HrBvp5LDKMa6/h9Zo1cWRMrQFQaeprSH4HkLuyBCbuvsHMPqTgA/ulkt5oZrcnFPmYBYtknKSgF8AkdUua7+67+12wMvWsXdKl/BY3HMgdCn5nJ0g6StLeksYr+B1tlfSkpL9IWuDuO4tYLzCgRyPDuI7ef1zSOjcAhrZ+PSYkvwPIQtlmvHL3682sQ8FCgPsqSNbu+QqlJz+i55PNbkkXu/vtqhLuflKer1sgaUGa8xsl/Sp8ABUh2mPCMC4AiUh+B5CPciW/S5Lc/UZJB0j6sqQlCnoXLOHxrKT/kXSAu5PADVSgHc0dem7DrqRjx84g8R1An37J7+SYAMhC2dcIcfctkv5L0n+ZWY2kcQpyKLa6e0faFwOI3ZI1ycO4GutqdPiUMTG1BkAl6r+OCT0mADKLdfHCcHauzXG2AUBuouuXHLnvWDXUlbXzFUCFY+V3APkoy6cJMxtejnoAlN6jq1i/BEB60eT3LoZyAchCuXpMtpnZY5IWSbpH0v2stQFUn9aOLj21dkfSMVZ8BxBVF50umOR3AFkoV2BSL+n48PEZSV1m9rike9UXqOwa+OUAKsHT63aoPWHaTzPptfsTmABI1j/HhB4TAJmVKzD5vKR5CtYpGRXWe5ykYyV9SkGg8oT6ApX7WJMDqDzR9UsOmTxao5vqY2oNgEpVF50umBwTAFko1wKL/yvpf82sVtJrJZ0m6VRJJ0saHbbjGElHS/p3Sd1m9qTCQIXVzIHKEF2/5DiGcQFIoV/yO0O5AGShrLNyuXuXpEfDx7fC6YKPUhCknKYgUBmrYPrgo8LHx8rdTgD9dXe7Hov0mBxD4juAFKJDuUh+B5CNWOf4dPdud1/i7t9x97dIOlDBGic92bU9Cy8CiNnzG3drZ2tn0jES3wGkEh3KxXTBALIRa0+EmY1VkHtyWvh4jfoHIy+Vu10A+nsk0lsyba9h2mfMsJhaA6CSkfwOIB9lDUzSBCJKeF6tviT4e9ydwASoANFhXKxfAmAg/ZLfyTEBkIWyBCZm9h0N3COySsmByJpytAlAbqKJ7wzjAjAQVn4HkI9y9Zh8XJIrCEhWKQxCFAQiL5epDQDytG57i9Ztb0k6Ro8JgIGQ/A4gH+VOfndJexIezWWuH0AeosO4xgyr1wETR8bUGgCVLrryO+uYAMhGuXpMrlGQWzJd0uGSDpP0UUluZkvV14Nyr7tvKVObAGQpOozr2Ol7qaaGCfMApFZXm/y9Zwc9JgCyUK4FFudLkpntp741S06VNFMEKkDFi674zvolANJh5XcA+Sj3AotrJF0bPmRm0xQEKKdKOl3SLPUPVJ519yPK2U4AfXa0dOi5DbuSjh1L4juANOojOSYkvwPIRtwLLK519+vd/XJ3P1DSNAULLO5UkChfoyBQARCTx1/aJk/4TNFQV6PDp46Jr0EAKl60x4TkdwDZiHWBRUkys4PUt67JqZImh6d6ZvECEKPoMK4jp41VY11tTK0BUA1IfgeQj7IHJmkCESk5EHlBYZ5JmZoGIAXWLwGQK5LfAeSjXAssXq7MgcgK9QUi97j7q+VoG4CBtXV26Ym125OOsX4JgEzoMQGQj3L1mPxE/YdmLVdyILKhTG0BkKVn1u1Qe2ffN51m0mv3p8cEQHr1kR6Tzm6Xu8uMEdoABlbOoVzL1BeI3OvuG8tYN4A8PBoZxnXw3qM0Zlh9TK0BUC1qU6xz1NXt/ZLiASBRuQKTSe6+uUx1ASiSR1clJ74zjAtANupTBCCd3S7mzQCQTlmmCyYoAapPZ1e3Hum3sCLDuABkFk1+l6SOLhLgAaQX63TBZlYnqeeTzjZ374yzPQD6PL1uh3a1Jv+XPGHm+JhaA6Ca1KcYykUCPIBMyr7AopkdamZXmdkySa2S1oePVjNbZmY/MLPZ5W4XgGSLX0ju6Dxw0khNGt0UU2sAVJNUPSad3QQmANIra2BiZv8j6SlJH5F0cFi/qW+V94MlfVTSk2b29XK2DUCy+yOByUkHTIipJQCqTark907WMgGQQdmGcpnZVQoCkp53q2WSHlbQWyIF65scJ2m2pFpJnzWzEe7+sXK1EUCgub1Tj7+0PenYyQQmALKUMvmdoVwAMijXAosnKegJcUlLJV3u7g8MUPYEBeuezJH0r2b2u4HKAiiNR1dvU3tComptjWnuTGbkApCduhqS3wHkrlxDuT4YPq+SdFK6QMPdH5Q0T9KL4aEPlbhtACKi+SVH7jtWo5pYvwRAdgaaLhgA0ilXYHKKgt6S/3X3HZkKh2W+oWDY1yklbhuAiPufJ78EQP7MrF+eCUO5AGRSrsBkcvj8zxxe83j4vHeR2wIgjS2727T01Z1Jx8gvAZCrfoEJye8AMihXYNIaPo/I4TU9ZduK3BYAaTywckvS/vCGWh2579h4GgOgakXXMumgxwRABuUKTFaFz+fm8Jqesi+mLQWgqKL5JXNnjFNDXdmXPAJQ5aJrmXSS/A4gg3J92rhDQb7IFWZ2RqbCZna6pCsU5KXcUeK2AQi5u+4jvwRAEUQT4El+B5BJuQKT70naKale0p1m9kMze62Z9dZvZjXhsR9K+oukhvA13ytTG4Ehb83WZq3b3pJ07OQDCUwA5C46ZTCBCYBMyrKOibtvNrMLJd2qIOD4cPhoN7OtCnpGxofnpKB3pV3SBe6+JcUlAZRAdLX3CSMbdPDeo2JqDYBq1n9WLoZyAUivbAPH3X2hpOMlPaYg8DBJjZL2kTQl3O45/pikue7+93K1D0D//JKTDpggs/7rEQBAJtGhXCS/A8ikLD0mPdz9CUnHmdmxkl4v6XBJPctJb5X0jKS/u/uj5WwXAKmr2/vNyEV+CYB89Ut+Z7pgABmUNTDpEQYeBB9ABVn6yk5tb+5IOkZgAiBfdZGhXF3kmADIoKSBiZmdLelNkvaXVCvpFUn3SLrR3TvSvBRAmS1emTyMa8aEEZo6dlhMrQFQ7eojPSYM5QKQSUkCEzPbW9KfJB2X4vT7JX3VzM5396dLUT+A3PXPLxkfU0sADAYkvwPIVdGT382sVsHsW3PVl8wefcyQ9FczY5wIUAFaO7r0yKqtScdOZhgXgAL0S35nKBeADEoxK9eFko5VMAXwC5IulTRH0iGSLpD0UFhub0mfLEH9AHL0+Evb1NbZ922mmXTCTAITAPnrt44JPSYAMijFUK4Lw+fVko5z9+0J51aY2Z8k/V3SqQoClf8oQRsA5CC6fslrpo7RmOH1MbUGwGBQV0vyO4DclKLH5CgFvSXfjgQlkiR375L05XB3hplV9eptZuZZPu4pUn3vMrOFZrbezFrN7CUzu87MTijG9TE0pVq/BAAKEZ2Vi+R3AJmUIjCZGD4/lqZM4jk+AWXBzIaZ2e2SfiPpDQqGwjVK2k/SeyTdb2ZfTnMJIKUdzR16at2OpGPklwAoVL91TBjKBSCDUgzlGqagx2T3QAXcvTlhNemmErQhDj+W9H9pzu8p8Pq/kvTmcPtuSd9XMP3yHEmflzRL0pVm9qq7/6zAujCEPPjiZnnCF5mNdTV67f57xdcgAIMCye8AchXLAosRlrlIVdjo7s+U4sJm9jpJ7wx3/yzpreGQOEl61MxulbREQe/JN8zs9+6+rRRtweATzS85bsY4NdXXxtQaAIMFye8AclWKoVwovk+Fz52SPpIQlEiS3H2zpM+Gu2MlXVa+pqHaLX5hS9I++SUAioHkdwC5KmWPyUfMbGMxyrn7V4vUpqoTTg5wRrj7d3dfO0DRP0raKWm0pLdK+lYZmocqt3Zbs1ZtTh5lSH4JgGIg+R1ArkoZmHw4w/med6hM5SRpyAYmCtaEaQi37x2okLu3m9lDks6UdKyZ1bt7RzkaiOr1QKS3ZOzwes3eZ3RMrQEwmPRLfu9mKBeA9Eo1lGugFd/zeVSLC8xsqZk1m9kuM3vezK42s9MLvO7shO3lGcr2nK+TdGCB9WIIWPT8pqT9E2eNV01NNf23A1Cp6ukxAZCjUvSYFPpBvFrNjuwfED4uCheVnO/uO/q9KrNpCdsDDePq8XLC9r6SluZSkZlNy1Bkcs9GW1ubWlpacrk8KkxHV7fufS45MDluvzEV9e/a2tqachsoFe65IvLkHpK29o6Ken+pFNxzKLe2tra4mzCgogcm7j7gcKNBqlnSrZL+oaDHYreCtVxOlfQhSeMlnS/pFjN7Qx7DqxIXoBxwCuZQYrLAyBzrkZIDm7QefvhhrVy5Mo8qUCme32Ha1ZY8+5a9+qwWLnw2phalt2jRoribgCGGe64wa9fUKHFgxstr12nhwqz/zAxJ3HMoh82bN2cuFJNKmC642k1NtcK9pL+Z2VWS7pR0lIJA5cOSfpDj9RPXeWnPUDYxBB6WYz0YYp7eljzMYtoI19jGmBoDYNCJjgplJBeATAhMCjRAUNJzboOZvV1BT0q9pCuUe2CS2K/bMGCpQOLHynz6y/fNcH6ypEclae7cuZo1a1YeVaASuLu+fdVDSrxNzjtmhs48bWZ8jUqhtbW19xvEefPmqalpsKzHikrFPVc8K+55UX9bt7p3f8KkvXXmmXPia1CF4p5DuVXyiBcCkxJz9xfN7G8KVm0/wMymuPsrOVxiV8J2puFZIxK2Mw376ifNVMSSJLO+r78aGxs1bBidMtXqhY27tGZbcux61mumVfS/aVNTU0W3D4MP91xhhjUmf5fWrRp+nxlwz6EcGhsrd3gECyyWR2IS+tQcX5sYLGRKTk/s8WAgLwb092XJSwdNHt2kw6YwTTCA4olOF9zFdMEAMiAwKY9CRtYmBjWHZCjbc75T0vMF1IlB7u9LNyTtv+7QSUk9YgBQqOgCi52s/A4gAwKT8kicSjiXYVxSkNPRk/R+6kCFzKxB0vE9r2FxRQxk6552Pb5mW9Kx1x86KabWABis+q/8To8JgPQITErMzGZIekO4u9Ld1+XyenffpWAqYkl6fZq1Rt4mqWcszs05NxRDxt3LNyrxi8th9bU6cdaE+BoEYFDqt/I703IByIDApABmdq6ZDTiBgJntLekm9c2m9X8pysw3Mw8fVw5wqf8XPtdJ+pGZJS0+YWYTJH0j3N0u6RdZ/xAYcv6+LHkY18kHTlBTfe0ApQEgP/W1kR4ThnIByIBZuQpzlaR6M7tJ0oOSViuYf3WCpNMkfTDclqT7Jf0on0rc/S4z+62kd0p6i4I1Ur6nYFjYHElfkLRfWPyz7r4t5YUw5LV1dmnRiuTV3hnGBaAU6mpIfgeQGwKTwk1RsD7JFWnK3CTpMndvS1Mmk/crGKr1Zkmnh49E3ZL+y91/VkAdGOQefnGr9rR39e6bSa87ZO8YWwRgsKqL9JgwlAtAJgQmhblYQUL6CZJmKugdGa1gDZGXJT0g6Wp3f7DQity9RdLZZvZuSfMlHSFprKQNku6T9MNi1IPB7R+RYVxHTBuriaMqdz5zANUr2mNC8juATAhMCuDu90q6t8BrLJC0IIfyv5H0m0LqxNDk7v3WL2EYF4BS6ddjQo4JgAxIfgeGiOXrd2nd9uTV3s84lGFcAEojmvzOUC4AmRCYAENEdBjX1LHDdMjkUTG1BsBgFx3K1UnyO4AMCEyAISLVMC5WewdQKv1WfqfHBEAGBCbAELBxV6ueeHl70jGGcQEopegCiyS/A8iEwAQYAu5entxbMqKhVnNnjoupNQCGApLfAeSKwAQYAqLDuE49eKIa61jtHUDp1EdzTBjKBSADAhNgkGvt6NJ9zyev9n4GiyoCKLH+PSYM5QKQHoEJMMg9sHKzWjv6PhDUmHT6IaxfAqC0osnv3S51M5wLQBoEJsAgFx3GdfT+e2nciIaYWgNgqIgmv0tSB70mANIgMAEGMXfvt34Js3EBKIdoj4lEngmA9AhMgEHsmXU7tWFnW9Kx1x/KMC4ApVefoseEwARAOgQmwCD2t0hvyf7jh2vWxJExtQbAUBJNfpdIgAeQHoEJMEi5u+54+tWkY68/dG9WewdQFimHcpH8DiANAhNgkFqxYbde2Lg76dib50yOqTUAhpqUye+s/g4gDQITYJC6/alXkvb3GdOko/bdK6bWABhqSH4HkCsCE2AQcnfdFhnG9eY5+6gmxQcFACiFlMnvDOUCkAaBCTAILV+/Sy9u2pN07OzX7BNTawAMRbU1pmhKG8nvANIhMAEGoWjS+9Sxw3TUvmPjaQyAISs6nIuhXADSITABBhl31+1PJQcmZx0+mdm4AJRdXU3yxwyS3wGkQ2ACDDLLXt2lFzczjAtA/KJrmZBjAiAdAhNgkLn96eTZuKaOHaYjGcYFIAbRBHiGcgFIh8AEGESCRRXXJx07+zX7MIwLQCxqozkmJL8DSIPABBhElr66U6uiw7jmMIwLQDzqSX4HkAMCE2AQiSa9T9trmF4zbUxMrQEw1EVXfyf5HUA6BCbAIOHuuj0yTfDZcxjGBSA+JL8DyAWBCTBIPPvKTr20pTnpGLNxAYhTfWS6YAITAOkQmACDRLS3ZN9xwzRnKsO4AMSnX/I7Q7kApEFgAgwCqRZVfDPDuADErD46lIvkdwBpEJgAg8Az63ZqzdbkYVznzJkSU2sAINAv+Z3pggGkQWACDAK3RRZV3G/ccB0+dXRMrQGAQB3TBQPIAYEJUOWCRRUjs3GxqCKACtBv5XeS3wGkQWACVLmn1+3Qy1tbko6xqCKASkDyO4BcEJgAVS6a9L7/+OE6bArDuADEr1/yOz0mANIgMAGqmLvrtqdYVBFAZaqrYeV3ANkjMAGq2JNrd2jd9sgwLhZVBFAhoiu/d9FjAiANAhOgit20ZG3S/owJIzR7H4ZxAagM0eT3DmblApAGgQlQpVo7uvSnJ9YlHTv3iCkM4wJQMUh+B5ALAhOgSv312fXa1drZu28mXXD0tBhbBADJSH4HkAsCE6BK/e7Rl5P2T5o1QfuOGx5TawCgP5LfAeSCwASoQmu2NOuBlVuSjl1wDL0lACoLye8AckFgAlShPyxJ7i0ZM6xebzxsckytAYDU6iI5JiS/A0iHwASoMl3drt9HZuM6/8gpaqqvjalFAJBaXWRWrs5uhnIBGBiBCVBl7n9hs17d0Zp07IJj9o2pNQAwsPp+s3LRYwJgYAQmQJW5MZL0ftiU0Tp86piYWgMAA4v2mJD8DiAdAhOgimzd066FS9cnHXvHsfSWAKhMJL8DyAWBCVBF/vTPdUnJow11NTrviKkxtggABtYv+Z3ABEAaBCZAlXB33fhY8jCuNx02WWOG18fUIgBIL7qOCSu/A0iHwKRAZnaMmX3JzBaa2VozazOz3Wa2wsx+bWYnF6meK83Ms3ycVow6UVmeWrtDy9fvSjp2IUnvACpYv5XfSX4HkEZd3A2oZma2SNIpKU41SDowfMw3s2skfcDd28vZPgwu0d6SaXsN04mzxsfUGgDIrF/yO9MFA0iDwKQwU8LnVyT9XtJ9ktZIqpV0gqRPSpoq6SJJ9ZLeXaR652Q4v6pI9aBCtLR36dYnXkk6dsHR+6omMn4bACpJNMeE5HcA6RCYFGa5pM9LusnduyLnHjKzayUtlnSQpHeZ2U/cfVGhlbr7M4VeA9Xlzmde1a62zt59M+ntx0yLsUUAkFl0Vi5WfgeQDjkmBXD3c9z9xhRBSc/5zQp6TXq8vTwtw2ATHcZ18gETNHXssJhaAwDZIfkdQC4ITErv7oTtWbG1AlXrpS179NCLW5OOsXYJgGrQL/mdoVwA0iAwKb3GhO2UPStAOr9/bG3S/tjh9XrD7L1jag0AZK9fjwnJ7wDSIDApvVMTtpcV44Lh1MQbzaw9fL7HzD5nZnsV4/qoHF3drj8sSQ5Mzj9yqhrramNqEQBkL5pjwnTBANIh+b2EzKxG0ucSDt1YpEu/IWF7ooLg51RJnzWz+e5+Sz4XNbNM2dSTezba2trU0tKSTzXIwd+Xb9L6na1Jx86bM3HI/O5bW1tTbgOlwj1XXF2dHUn7HZ3dQ+b9K1vccyi3tra2uJswIAKT0vqEpOPC7T+6+5ICr/e0pD9JekTBFMX1kg6W9B5JZ0oaK+kmMzvX3e/M4/ovZy4SePjhh7Vy5co8qkAufvBMraS+bxz3HeFa89SDWvNUfG2Ky6JFBU9oB+SEe65wL+yQEj9qNLe1aeHChbG1p9Jxz6EcNm/eHHcTBkRgUiJmdqqk/w13N0r6cIGX/J67X5ni+MOSrjGzD0r6iYI1VH5hZrPcna9eqtia3dLKXcnDIE7dh/HZAKpHZH1FMZILQDoEJiVgZodJulnB77dV0gXuvrGQa7r79gznf2pmx0q6VMHCj/8i6focq8k01dNkSY9K0ty5czVrFpOMldKn//ispA29+xNHNujT7zxRDdG/9INYa2tr7zeI8+bNU1NTU8wtwmDHPVdcT6/bqe8981jvvlmtzjzzjBhbVHm451BulTzihcCkyMxshqSFkvZSMAvXO4uxqGKWfqogMJGCnJOcAhN3X5vuvFnft/eNjY0aNox1NErl1R0t+suzybHs/JNmaMzIETG1KH5NTU3ccygr7rnCjRjenrTf2e38TtPgnkM5NDY2Zi4UEwKTIjKzKZL+rqDHwiW9P99E9DwtTdieWsZ6UWRXP/BS0nz/TfU1es/c/WJsEYDBrLW1Vdu3b1dzc7O6uoo3s31HW6e+cHLyhJHPP/980a4/GHR3d2v8+PGSpDVr1qimZuj0iiN3tbW1amho0OjRozVy5MhBd78QmBSJmU2Q9DdJM8NDV7j7NWVuBqN3B4E9bZ36zcMvJR17+9HTNHZ4Q0wtAjBYubteffVV7dixoyTXr1G3po9LHprU0dGR1AM/1Ln39SJ1dXWpm7VekEZnZ6fa2tq0a9cumZmmTp2qUaNGxd2soiEwKQIzGyPpr5Jmh4c+5+4/iqEpsxO2X4mhfhTBTY+v1c7WzqRj7z9pRkytATCYbdmypV9QUldXvI8GNbWu8aOSv9Gtr+ejR1RPoFbM3z0Gp66uLrkH30O7u9atWzeoghP+BxTIzIZLul3Sa8NDX3P3b8TUnA8mbN8bUxtQgO5u16/uX5V07IxDJmnmxJExtQjAYNXe3q5Nmzb17k+aNEljx45VbW3xFnBt7+zW8vU7k47NnDJatYNs+Ekhuru7tXNn8DsaPXr0oBuag+JydzU3N2vr1q3avXt3b3By0EEHDYp7p/p/ghiZWYOC2bdOCg99392/mMd15puZh48rU5yfY2YHZLjG5ZIuC3fXh+1ClfnH8o1avaU56dilp9BbAqD4du/e3bs9fvx4jR8/vqhBiSSlGrHlDDoG8mZmGjFihKZNm6aRI4MvLd096f9zNaPHpDA3KFjYUJLukvRLMzs8Tfl2d1+RRz1HK1ib5G5JdypYaHGLgn+/Q9S3wKIUzAR2ubvvyaMexOwX972YtD97n9E6Yeb4mFoDYDDbs6fvz8To0aNLUkeqTBLiEqBwZqZx48b1BiQ7d+4s2f/jciIwKczbErZfJynTetwvSZqeZ121kl4fPgayRdKl7v7nPOtAjJ5Zt0MPr9qadOzSk2eQJAqgJNrbg6l8zaxk04fSYwKUzvDhw2Vmcvfe/8/VjsCkOtyhYH2SEyQdJWlvSeMVfBm1VdKTkv4iaYG77xzoIqhsv4zklkwa1ahzj5gSU2sADHY9sz/V1taW7AsQS9Fn4vSZAEVhZqqtrVVnZ2dRp/mOE4FJAdy9KO/k7r5A0oI05zdK+lX4wCC0fker/vxk8kRqF52wvxrqSAMDUMUYywUgB3zqASrANQ+u7reg4rvn7h9jiwCgcMQlAHJBYALErLm9U9c/vCbp2L+8dprGjWBBRQDVzcz6DedykkwADIDABIjZTY+v046WjqRj7z+ZKYIBDA7R9BXCEgADITABYtSVYkHF1x0ySbNYUBHAIBEdzjVUO0wWLFgQ9CCZafXq1XE3B6hIBCZAjG55Yp1WbU5ecuYyeksADCb0mAx63d3dWrp0qRYsWKCPfOQjOvbYY9XY2NgbiN1zzz1ZXee0007rfU2mx0ASA0Az06xZs7Kq++WXX+6doS5VALlx48be429729sGvpCk7du3J13rrrvuSlv+K1/5Sm/ZO++8M6v2DlbMygXEpL2zW9/9e/J6m4dNGa0TZrGgIoDBI8gxSQhHhmqXySB27bXXav78+XE3I6UXX3xRDzzwgE488cS05a6//vreKbRTmTRpkg4++GA999xzuv/++9Ne6/7770+61n333afXve51A5a/7777JAVTd5900klprz3YEZgAMbnxsZf18taWpGOfPPMgFlQEMKiQYxKYP39+xX54L1TihAb19fWaM2eOOjo69PTTT+d1vWOOOUa//vWvC25XU1OTWltbde2112YMTK699tqk16Qyb948Pffcc9q0aZOWL1+uQw45JGW5xECjq6urdz+Vzs5OPfTQQ5KkI444YlCs3l4IhnIBMWjt6NJVdz2fdOy1+43V6QdPiqlFAFAa5JgMfrNnz9YPfvADPfjgg9q5c6eWLFmScbhTOiNGjNDhhx+e9pGNt7zlLZKkG2+8Me3K6I8//riWLl0qSTrvvPMGLDdv3rze7UWLFg1YrufcBRdcIEl66KGH1NHRkbLs448/rj179vS7/lBFYALE4NoHX9KGnW1Jxz79xkPoLQEw6ETf14hLBp/jjjtOV1xxhY4//ng1NTXF3Zxe73jHO9TQ0KCtW7fq9ttvH7BcT2/JscceO2AviCSdcsopvdsD9YK0tLRoyZIlkqSPfexjGjZsmPbs2aPHH388ZfnE6xCYEJgAZbe7rVM/vndl0rGTD5hAbgmAQal/j8nQDE2ymZWrq6tLV199tc455xxNmTJFjY2NGj9+vE4++WR95zvfUUtLS8rXSUEC+l133aVPfepTOumkkzRhwgTV19dr7NixOvLII/WpT31Ka9asGfD1g9G4ceN09tlnS+oLPqI6Ozt1ww03SJLe9773pb3e/vvvr/3220/SwIFJT+/IqFGjdOyxx+q4445LW77nuJklBT5DFYEJUGa/un+Vtu5J7lL+1BsPjqk1AFBi5Jhk5eWXX9axxx6r+fPn6/bbb9err76q9vZ2bd26VYsXL9YnP/lJveY1r9GKFStSvv6rX/2qzjjjDH3729/WAw88oC1btqizs1M7duzQk08+qW9/+9s69NBDdfPNN5f5J4tXT7Bx++23a+vWrf3OL1y4UBs2bFBdXZ3e+c53ZrxeT6/GSy+9pJdffrnf+Z5hXMcff7xqa2t18sknJx1P5O69ifSHHnqoJkyYkOVPNXgRmABltL25XT9f9GLSsTfM3ltH7js2ngYBQImRY5LZ1q1bddZZZ+nJJ59UY2Oj/vVf/1W///3v9eijj+ruu+/Wf/zHf2j48OF64YUXdNZZZ2nHjh39rtHZ2al99tlHH/nIR3Tttddq8eLFWrJkif70pz/pM5/5jEaOHKnm5ma9+93v1rJly2L4KbO3fPlyzZ07V2PHjlVTU5OmTZum8847T9dcc82AuRoDOfvsszVu3Di1t7frxhtv7He+pyflTW96kyZOnJjxepnyTHp6QHoCkp7nxYsX9+stXLZsmbZs2dLvukMZgQlQRj+590Xtauvs3TcLZuICgMGqf44JkUnUZz/7Wa1bt07777+/li1bpquuukpvf/vbdcwxx+i0007T17/+dd1///0aMWKEXnzxRX3zm9/sd43LLrtML730kn70ox/pve99r0488US99rWv1XnnnadvfOMbWrZsmaZOnarW1lZ9/etfj+GnzN6GDRv0yCOPaMeOHWpra9O6det066236uKLL9aRRx6ZU2DV0NCgd7zjHZL6D+fatWuXbrnlFknSRRddlNX10uWZJM6w1VPuxBNPVE1NjbZu3apnn302qTz5Jf0xXTBQJht3tWrBA8mrvJ/7mik6ZPLQnhoQQOXq7nZtax54NqNs7GhuV3NHV+/+8Praih3PtdfwBtXUlHcSktWrV/cOr/rBD36gGTNSL7J71FFH6aMf/ai++c1vasGCBfra176WdH769Olp65k2bZo+/elP6+Mf/7huvfVWuXvFTbhSU1OjM844Q29+85t1xBFHaPz48dq1a5cef/xx/fSnP9WyZcu0dOlSnX766XrkkUd68z0yed/73qcf//jHeuCBB/Tiiy9q5syZkqQ//OEPamlp0ZgxY3Tuuedmda1DDjlEkyZN0saNG/sFJj0zbNXX12vu3LmSpNGjR2vOnDl68skndd999yXNKEZg0h+BCVAmP7rrBbV29C24VFtj+sQb6C0BULm2Nbfr6P/+e9zNKJslX3y9xo9sLGudd9xxh7q6ujR8+HCdddZZacvOmzdP3/zmN/XKK69ozZo1aT+Y79y5U1u2bFFzc3PvEKLhw4f3nlu1alXvB/RK8cc//lFjx47td/yUU07RRz7yEX3gAx/Q1VdfrQ0bNujjH/+4/vjHP2Z13RNOOEEHHHCAXnjhBV133XX60pe+JKmvB+WCCy7IaTaxU045RTfddJOWLVumzZs39+aG9AztOuqoo3p/11IwnOvJJ5/UokWL9OEPf7j3eE9gMnPmTE2dOjXr+gczhnIBZbB2W7N+80jybCgXHD1NMyaMiKlFAIBK8Nhjj0mSmpub1dDQ0DtzV6rHOeec0/u69evX97vWSy+9pCuuuELTp0/XmDFjNHPmTB1++OGaM2eO5syZo8svv7y37ObNm0v/w+UoVVDSo76+Xr/4xS908MHBZDE333yz1q1bl/W1e5Lgr7vuOknBZAP33HOPpOyHcfXoGaaVmLwu9QUa0dm1evYTe0jWrFnTO0sas3H1ITAByuAH/3heHV19Yxcaamt0xRkHxtgiAEAl2LhxY16va25uTtq/8847NXv2bP3whz/USy+9lPH16aYerlR1dXW69NJLe/fvvfferF/73ve+V5L0/PPP66GHHtJ1110nd9f06dN7E9SzlTjsqifYSAxSotfr2V+3bp1WrVqV9Lro9YY6hnIBJbZy0279YcnapGPvnrufpo4dFlOLAACVoqsryL8ZP3687rrrLtXUZPedcWIuyubNm/Xud79bzc3NGjlypD71qU/pjW98o2bNmqUxY8aooaFBknTXXXfpjDPOkFS968nMnj27dzuXHpOZM2fqpJNO0uLFi3Xttdfq7rvvlhQELLnm2hxxxBEaM2aMduzY0Tt869lnn+2djjgamEydOlXTp0/X6tWrtWjRIs2YMYPAZAAEJkCJfWfhCnUnvP8Pq6/VR08/IL4GAUCW9hreoCVffH1B11i7rVk7W/tmI5wwslGTRpU3jyNbew1vKHud48cHi+vu3r1bhx56qOrr63O+xh/+8Adt375dUjDE6fWvT/1vlmodj2pTSML+RRddpMWLF+tXv/qVWltbJWVeVDGVmpoanXTSSbrjjjv0z3/+U7t37+4NNA455JCU65GcfPLJWr16te677z5dfPHFvQHNlClTdMABfCboQWAClNA9z23U7U+/mnTskpOma2KF/lEGgEQ1NVZwMvietq6kD5N7Da8ve4J5JTvqqKN0ww03qK2tTY899phOOOGEnK/RMw3tuHHjBgxKpL58lmq2dOnS3u0pU6bk9NoLL7xQ//Zv/9YblMydO1cHHZTfJDSnnHJK78QFDz74YL/1S6JOPvlkXXfddbrvvvu0efNmLV++vPc66EOOCVAize2d+uKfnkk6NrqpTh+cNyumFgFA+UW/4K7OAUSlc8455/QGbt///vfzukZnZ9Aj1draqu7u7pRlmpub+63jUW06Ozv1q1/9qnc/1yFQY8eO1fnnn6/GxkY1Njbq4osvzrst0YUWswlMJGnFihW66aabeofSMYwrGYEJUCLf/dsKrd2WnFz4hbMP1ZjhuXfTA0C1YuX39A4++GCdf/75kqTf/e53+s53vpO2/KpVq3TDDTckHTvwwGAylebm5pSrm3d1demyyy7TK6+8UpxGl8Ddd9/dOxwtlY6ODl122WW9iyuee+652nfffXOu57e//a1aW1vV2tqaNHVvro455hgNGxbkiv7mN7/R2rVBLulAPSCzZ8/WuHHjJClpgUwCk2QM5QJK4Jl1O/TL+5MXU5w7Y5wuPCb3N1EAqGb0mGT27W9/W//85z+1evVqffKTn9Qtt9yiiy66SIcddpgaGxu1ZcsWPfnkk/rLX/6iu+66S29961v1rne9q/f1F154oT7/+c+rra1Nl1xyiZ544gm94Q1v0JgxY/Tss8/qqquu0pIlS3qTv0thwYIFSftPPPFE7/Zf/vIXrV69unf/gAMO6NezcPXVV+stb3mL3vKWt+i0007TwQcfrNGjR2v37t1asmSJfvazn/UO45o0aVLevUvF0tDQoLlz5+qee+7Riy++KCkYWjbQ2jBmphNPPFG33XZbb/nx48frsMMOK1ubqwGBCVBknV3d+uxNTyUlvDfU1ejrb5tTcavsAkCpRd/3qnU2qFLaa6+99Je//EUf+MAHdN9992nRokW9ydGpjB49Oml/2rRp+vGPf6zLLrtMra2t+sY3vqFvfOMbSWXe8Y536AMf+EDaHJRCXHLJJQOei7bl4osvTjnkaffu3frNb36j3/zmNwNea86cOfrtb3+bNCtZXObNm9e7FooknXTSSWnLn3zyybrtttuS9vlckIzABCiyXy9erWdf2Zl07IrTD9CsiSNjahEAVA7iktT23ntv3XPPPbrzzjt1ww036MEHH9T69evV0dGhsWPH6sADD9QJJ5ygt7zlLSmH/1xyySU6+OCD9a1vfUuLFy/W9u3bNWHCBB1xxBG65JJLdOGFFyZ9iK40n/3sZ3XkkUfqwQcf1NKlS7Vp0yZt3bpVjY2N2nvvvXXMMcfo7W9/u9761reqtrY27uZK6j8MK9N6KNFhXgzj6s/45gLZMrNpkl6WguStnjGt6PPy1mad+d1Fauno6j124KSRuv3fTlFDHSlduWppadHChQslSWeeeWbveF6gVIbSPff888+rs7NTdXV1JX0/f3VHizbtauvd32t4g/YdN7xk9VWb7u5u7dwZfJk1evTorNcxAaT8/h8///zzibOR7evua9OVLyfufqBI3F1f+NMzSUGJmfS//zKHoATAkGViKBeA7PBpCSiSW598RYtWbEo69t65++vo/cfF1CIAiB/J7wCyRWACFMG2Pe366p+XJh3be3SjPv2mg2NqEQBUBqYLBpAtkt+BIvjaHcu0ZU970rGvvOVwjW5izRIAQxw9JhVt48aN2rhxY86va2hoyHvVdGAgBCZAgRa/sFl/WJKcN/bGw/bWmw6fHFOLAKBykGNS2f7v//5PX/nKV3J+3f7775+0NglQDAzlAgqwaVeb/v3GJ5KOjWys01fecng8DQKACkOOCYBsEZgAeers6tYVNzyuDTvbko5/9k0Ha/KYpphaBQCVpd/ycUQmFeXKK6+Uu+f8oLcEpUBgAuTp/y1coYde3Jp07OQDJug9c/ePqUUAUHn6rfweUzsAVD4CEyAPf312vX5y78qkY1PGNOn77zxSNTX9vh8EgCGr/6xchCYAUiMwAXK0avMeferGJ5OO1deafvSe12r8yMaYWgUAlYkcEwDZIjABctDS3qUPX7dEu9o6k45/6ZzZOmq/vWJqFQBULtYxAZAtAhMgS+6uL9z8tJav35V0/Pwjp+i9x5NXAgAp9csxITIBkBqBCZCl6x9eoz/+c13SsYP3HqWvv21Ov+ROAECAWbkAZIvABMjCEy9v11f/vDTp2KjGOv34va/V8AbWKQVQfWpqgo8AXV1dJU1IJ8cEKA13V1dXlySptrY25tYUB4EJkMGW3W366PWPq72rO+n4ty44QjMnjoypVQBQmIaGBknBh5u2trYMpfNHjglQGs3Nzb1fKvT8f652BCZAGtub2/W+Xz6iddtbko5/cN5MvenwyTG1CgAKN2LEiN7tnTt3lqye/uuYEJkAhXJ3bd3at5ba6NGjY2xN8RCYAAPY2dqhi371iJa+mvwHe+6Mcfr0Gw+OqVUAUBwjR/b1+G7ZskVbtmzpHRZSTPSYAMXj7tqzZ4/Wrl2r3bt3SwqC/8T/z9WMwfFACrvbOjX/V4/oqbU7ko5PHTtMV737KNXVEtMDqG4NDQ2aOHGiNm3aJEnauHGjNm7cqNra2qJO6NHV7epsTw54nm/eWLTrDwadncEU9D3/FsBAojlhZqapU6f25oxVOwITIKK5vVPvX/CoHl+zPen45NFN+s0H5mrSqKZ4GgYARTZ+/Hi1t7drx46+L2GK3WvS0dWtLbv6clhM0rC6YUWto5q5u1paguHCw4YNY5ZHZK0nKBk1alTcTSkaAhMgQWtHly67+jE9smpr0vGJoxp1/Qfmav/xIwZ4JQBUHzPTlClTNG7cOG3fvl3Nzc1FD0zauzu1emtr0rH9Jo7qP43wENXd3d0bmIwcOXLQfPON0qitrVVDQ4NGjx49KO8XAhMg1NrRpcuvXaIHVm5JOj5+RIN+c9lczWIGLgCDVFNTkyZPLs2EHqs379HXrn0x6dhFb5qrxrrBMb1poVpaWrR8+XJJ0tFHH61hw+hNwtA1uMKsmJnZ/mb2bTNbbmZ7zGyrmT1qZp82s+FFrOcsM7vZzNaaWVv4fLOZnVWsOoaa9s5uffT6x7VoRfL43rHD63XdZXN14N6Dp5sUAMqprrZ/30hnFxnwAPqjx6RIzOxcSddJSpyvbbikY8LHZWZ2tru/UEAdNZJ+JunSyKmp4eN8M/uFpA+6e3f09UittaNLH//tE/rH8uRkzNFNdbru0rk6dJ/BMQUfAMShLsVQEwITAKnQY1IEZnaUpN8pCEp2S/qCpBMlnSHp52GxgyTdbmaFfPX+NfUFJf+U9C5Jx4XP/wyPXybpvwuoY0hZu61ZF/70Qf3l2fVJx0c21umaS+fq8KljYmoZAAwOqXpMOrr57gxAf/SYFMf3JQ2T1CnpTHd/MOHcXWb2vKRvKghOPinpylwrMLODJH0q3H1M0jx371n171Ezu1XSvQp6Zz5tZr8qpHdmKLj/+c264obHta25I+n48IZaXf3+Y3XkvmPjaRgADCL19JgAyBI9JgUys+MknRLu/jISlPT4tqRl4fbHzKw+j6o+rr5A8oqEoESS5O7Nkq4Id+skfSKPOoYEd9f/3fOCLvrVwymDkl/NP1ZH7z8uptYBwOCSMseEHhMAKRCYFO78hO1fpyoQ5ntcE+6OlXR6LhVYMKn5eeHucnd/aIB6HpL0XLh7njEZej+7Wjv0oeuW6Jt/eU7dkS/sZkwYoT999CQdP3N8PI0DgEGI5HcA2SIwKdzJ4fMeSUvSlLs3YfukHOuYIWlKiuukq2eqpOk51jOovbBxl8770WL99dkN/c69YfbeuuVfT9JBzL4FAEWVMvmdHhMAKZBjUrhDw+cX3L0zTbnlKV6TrdkDXCebelblWFdJubu6ul0dXa6O7m51dHYH213d4SN5u7OrW+2R7c405Tu6utXZ7Wrv7O493tnlau/q1t3LN2pPe/LCYWbSp848WB8+dZZqauhgAoBiq60xmUme0EnSQY8JgBQITApgZk2SJoS7a9OVdfdtZrZH0ghJ++ZY1bSE7bT1SHo5YTunesxsWoYiU3s2PrFgkRrHLlNnd/DBv7OrWx3dfUFH3/EgAOns9t79SvlzNKqpVv951sE6dppr5UrmCahEbW1t2rx5syRp5cqVamxsjLlFGOy450pk95ak4VtfuPYejWligUVJ6uru1qbNWyVJN636u2oH2UreqDw7tyYtj1BR/xEJTAqTOO5ndxblewKTXJcQz6WePQnbudbzcuYigdu/flmOl65M7/lu3C0AgKHn5rgbAKDHREkvxd2IHoTlhWlK2G7Ponxb+DyshPW0JWznWg8AAACGjklxNyARPSaFaU3YbsiifM+YgJa0pQqrJ3HcQa71ZBr6tZ+kxeH28ZLW5Xh9IFeTJT0abh8raX2askAxcM+h3LjnUG5TJfXM8Jopd7msCEwKsythO5thUyPC52yGfeVbz4iE7Zzqcfe0+SuR2YfXZSoPFCpyz63nnkOpcc+h3LjnUG6Rey6bET9lw1CuArh7q6Qt4W7axHEz20t9QUPWuRyhxDepTAnqib0eudYDAAAAxILApHBLw+cDzCxdD9QhCdvLBiyVvo7odYpdDwAAABALApPC3R8+j5B0dJpypyZsLx6wVGqrJL2S4jqpzAuf10lanWM9AAAAQCwITAr3p4TtS1IVMLMaSReFu9sl3Z1LBe7ukm4Jdw8xs+MHqOd49fWY3BK+DgAAAKh4BCYFcvdHJN0X7l5qZiekKPZJ9a32/n1370g8aWanmZmHjwUDVPU9ST3Lll9lZklTAYf7V4W7nWF5AAAAoCoQmBTHxxRMzVsnaaGZ/YeZHW9mp5vZTyV9Myy3QtK386nA3VdI+la4e4ykxWb2DjM7xszeoWB42DHh+W+5+/P5/jAAAABAuTFdcBG4+z/D4OA6SaMlfT1FsRWSznb3XSnOZesLChbCeb+koyT9NkWZX0r6YgF1AAAAAGVnpCEUj5ntr6D35GwF0/q2S3pB0u8l/dDdmwd43Wnqyzu52t3nZ6jnzZIuV7AQ0wRJmxUszvRTd7+z0J8DAAAAKDcCEwAAAACxI8cEAAAAQOwITAAAAADEjsAEAAAAQOwITAAAAADEjsAEAAAAQOwITAAAAADEjsAEAAAAQOwITAAAAADEjsAEAAAAQOwITJAVM9vfzL5tZsvNbI+ZbTWzR83s02Y2PO72ofKZ2SQzO8fMvmpmd5rZZjPz8LEgj+udZWY3m9laM2sLn282s7NK0HxUITM7xsy+ZGYLE+6T3Wa2wsx+bWYn53g97jkMyMxGm9k7w7+V95rZC2a2w8zazWyjmd1jZp8xs/FZXu9EM7vOzF4ys1YzW29mfzWzd5X6Z8HgYGbfSPg762Z2WhavifV9zty9HPWgipnZuZKukzR6gCIrJJ3t7i+Ur1WoNmaW7s3manefn+V1aiT9TNKlaYr9QtIH3b07+xZiMDGzRZJOyaLoNZI+4O7taa7FPYeMzOz1kv6WRdHNkt7r7n9Nc60rJf2nBv4C+XZJb3f31lzbiaHBzI6U9KikuoTDp7v7PQOUr4j3OXpMkJaZHSXpdwqCkt2SviDpRElnSPp5WOwgSbeb2ahYGolqtEbSwjxf+zX1vXH+U9K7JB0XPv8zPH6ZpP8upIGoelPC51ckfV/S2xXcJydI+ndJ68LzF0lakOFa3HPI1ssKgt2PSXqbgvvtJEnvkPR7SV2SJki61cyOSHUBM/ugpC8r+Iy2UsG9d5yk8yXdHRY7W9KvSvVDoLolBBl1kjZm+bKKeJ+jxwRpJXzr2Clpnrs/GDn/aUnfDHe/4u5XlreFqBZm9hUF39486u4bzGy6pFXh6ax6TMzsIEnPKnizfUzBPdmScH64pHslHaPgnj2UnryhycxuU/AB8SZ370pxfoKkxQq+WJGkU919UYpy3HPIipnVprrXImXOl3RzuHuzu78tcn6cpBcljVHwBc7R7r45sY7w9eeGhwb8BhxDl5l9XNJ3JS1XcL/8R3gq5f1SSe9z9JhgQGZ2nPqGQvwyGpSEvi1pWbj9MTOrL0vjUHXc/cvufpu7byjgMh9XX7f0FYlvnGEdzZKuCHfrJH2igLpQxdz9HHe/caAPiuGHvU8mHHr7AJf6uLjnkIVMQUlY5k+Sngt3Uw01vExBUCJJn00MShLq+IiCnhdJ+nRejcWgZWb7SfqvcPdDkgYcpprg46qQ9zkCE6RzfsL2r1MVCMcZXhPujpV0emmbhKHKzEzSeeHucnd/KFW58HjPH/7zwtcBqdydsD0repJ7DiWyK3xuSnHu/PB5p6Q/pnqxu6+V9Pdw9wyGUSPiR5JGKhiJcG+mwpX2PkdggnR6ZqzZI2lJmnKJN/5JpWsOhrgZ6ssbyPRm23N+qqTppWoQql5jwnaqb7u551BUZnawpCPD3eWRcw0KxvRL0oPpJmRQ3/3WqGB4DSAzu1DSOZK2SvpUli+rqPc5AhOkc2j4/IK7d6Ypl/jmeuiApYDCzE7YXj5gqf7nuScxkFMTtpelOM89h4KZ2XAzO9DM/l3BB7ueITPfixQ9SFJtuM39hpyY2VgFE31IKYYBplFR73N1mYtgKDKzJgUzh0jS2nRl3X2bme2RNELSvqVuG4asaQnbae9JBTPj9OCeRD/hrDWfSzh0Y4pi3HPIi5nN1wBDoEP/K+k3kWPcbyjENyVNVjCpxy9zeF1F3XcEJhhI4pjV3VmU7wlMRpamOUBO9+SehG3uSaTyCfUNm/mju6carso9h2J7QtLl7v5oinPcb8iLmZ2iYOKETkkf8tym3K2o+46hXBhIYlJeNjM6tIXPw0rQFkDK7Z5sS9jmnkQSMztVwTfWUjDH/4cHKMo9h3z9SdKc8NGzFsTNCvJLbjCzc1K8hvsNOQtzk34mySR9192fyfESFXXf0WOCgSSuJtuQRfmeJNKWtKWA/OVyTyYmNXNPopeZHabgA2KdgnvqAncfaAEy7jnkxd23S9qecOhRSb81s/dJulrSLWZ2qbsvSCjD/YZ8fF7SIQrWvflKHq+vqPuOHhMMZFfCdjbddSPC52yGfQH5yOWeHJGwzT0JSZKZzZC0UNJeCmbhemeqRRUTcM+hqNz9WgUrwNdI+mG4oGIP7jfkxMwOUd/iiVe4+5505QdQUfcdPSZIyd1bzWyLpPFKTozqx8z2Ut/N+nK6skABEpPy0t6TSk7K456EzGyKgrUfpkhySe9391syvIx7DqVwi6QLFfzdfJP6kuC535CrTyjo5XhR0nAze2eKMocnbL/OzCaH238OA5mKuu8ITJDOUgUr0x5gZnVppgw+JGE71ZSbQDEsTdg+ZMBS/c9zTw5xZjZB0t8kzQwPXeHu16R5SQ/uOZTCpoTt/RO2VyjoyasV9xuy0zO0aqakG7Io/58J2zMUJLNX1PscQ7mQzv3h8whJR6cpl7gWwOLSNQdD3CpJr4Tbp6YrKGle+LxO0upSNQiVz8zGSPqr+ubq/5y7/yjLl3PPoRSmJmz3DocJF1R8JNw9IUxqHkjP/dgm6bHiNg9DTEW9zxGYIJ0/JWxfkqpAuBbAReHudkl3l7ZJGKrC6Q97ht4cYmbHpyoXHu/5VueWHKdNxCBiZsMl3S7pteGhr7n7N7J9PfccSuSChO2nI+f+FD6PlvS2VC82s2mSXh/u/sPdd6Uqh8HP3ee7u6V7KDkh/vSEc6vDa1TU+xyBCQbk7o9Iui/cvdTMTkhR7JPqW/3z++7eUZbGYaj6noKhDpJ0lZklTVcY7l8V7naq/8rKGCLCb5tvlnRSeOj77v7FPC71PXHPIQtmNj9cnDhdmU9IenO4u0p9f2N7/ELSjnD7f81sfOT1tZL+T30rxH+roEYDge+pQt7nyDFBJh9TMDxrmKSFZvZ1Bb0iwyS9U9LlYbkVkr4dSwtRFczsZEkHJByakLB9QLhScq/INJo9x1aY2bcUrNh9jKTFZvYNSSslzZL0WUlHhcW/5e7PF+0HQLW5QdKZ4fZdkn5pZoenKd/u7iuiB7nnkIMrJX3bzG5SMBR6pYKhWqMUrGfyHvUFyu0KFlrsSryAu281s89K+omC/JOHzexrCnpWpkj6uKTTw+I3uPs9Jfx5MERU0vuc0eOMTMzsXEnXKehaTmWFpLPd/YXytQrVxswWSLo42/JhF3Sq69RI+rmk96d5+S8V/NHvzqWNGDzMLNc/bi+5+/QBrsU9h4zMbLWSk9kHslbBrHB/S3OtryhIVE75PijpDkn/4u6tA5wHJElmdqWkL4e7pw8UzFbK+xxDuZCRu/9Z0mskfVdBENKsIJ/kMYVRNEEJysXdu939UklnKxgX+4qCbx9fCfff7O6X8QERxcI9hyy9UcHw5j9KekrSBgXDXnYp+Ob5JgX5mgenC0okyd2/LOlkBVMJv6zgftuoYHa5d7v72QQlKKZKeZ+jxwQAAABA7OgxAQAAABA7AhMAAAAAsSMwAQAAABA7AhMAAAAAsSMwAQAAABA7AhMAAAAAsSMwAQAAABA7AhMAAAAAsSMwAQAAABA7AhMAAAAAsSMwAQAAABA7AhMAAAAAsSMwAQAAABA7AhMAAAAAsSMwAQAAABA7AhMAAAAAsSMwAYAKZWZXmpmbmVdAW6b3tMXM5sfdnqHGzOYn/P6nF+F67w+v9bSZWRGaWJHM7ILw51xhZvVxtwdAegQmAJAFM6s1s53hh5zHM5Q1M9uS8EHy/RnKX5xQ9sPFbXnlMbNpYdB1n5ltMrMOM2sxs7VmtsjMvm9mbzezMXG3dTAys5GSvh7uftXdYw98E5nZwvD/wveLcLmbJC2VdKCkK4pwPQAlRGACAFlw9y5JD4S7R5jZ6DTFD5M0LmH/lAyXTzy/KI/mVQ0z+4Ck5yR9WdLJkiZIqpPUJGmqgt/Fv0n6vaSfxtTMwe7fJO2t4AP7H2JuSxIzGyXp1HD3z4Vez927JX0t3P2cmY0o9JoASofABACy1xM01Eg6MU25nkCjK7KfqfxmBR8WJUnufqW7m7sPiqE2ZvYuST+TNFxSq6QfSzpf0jGSjpV0nqT/kvTPmJo46JnZMEn/Hu5+t9J6SyS9UVKDpJ2S7i3SNX8naZ2kiZI+WKRrAigBAhMAyF5ib8a8NOV6zv0+fJ5lZlNSFTSzSZIOCnfvr8APikVhZrWSvhPu7pI0190/4u63uPsSd3/M3W919y+5+2slzZb0x9gaPHi9V9J4SW2qsN6S0Lnh81/dvaMYFwx7O38X7v6rmfHZB6hQ/OcEgOw9quCbfil9L0jPuT9IWpmh/FAZxjVX0uRw+6fu/lS6wu6+zN1vLH2zhpxLw+fb3X17nA2JCgOGN4e7txX58teHzzMknV7kawMoEgITAMiSu7dJeiTcPdbMGqNlzGyGglwJSbo/fEh5BCaZZuUys9Xh+QXh/sFm9vPweJuZbTCzm83s+Ew/W5jc/xEzezhM8t9hZo+b2adS/Zx52C9h+4V8L5JqdrBw5qW/m9nGMIl+uZn9j5mNzfKap5vZ1Wb2opk1hz//02b2rYF6uop9DTPby8z+N2x7S/iz/N3MLsim/izbuL+CAFEKksIHKndawu/4tHAyh0vN7P5wUoedZvaImb0v8roGM/uQmT1kZlvNbJeZLTazC7Ns4vEKco66Jd2Rol1Hm9kvLZhha4+ZtZrZy2a2xMx+ZGZvMUs9w5i7Py5pVbj7rizbA6Dc3J0HDx48eGT5UJAD4eFjXorzF4fnVoT7l4X7Tw1wvSXh+R2SaiPnruypa4DXrg7PL5D0Vkl7EtqW+OiU9I40P9NIBUFRqtd62MajEvbn5/F7e1vC679XwO9/emI7JP0yTbvXSTokzbWaJN2Q5vUuabekc0t8jUPDtg70+l+FP2vP/vQ8f3cXJ1xjZppypyWUe4OkW9O07fvha/ZSkBMyULnPZ9G+/wnL3p/i3CcU5Gyl+z27pJFprt/z77S2FO8NPHjwKPxBjwkA5CaxVyNVL0jPsfsjz4eb2V6JBcMZiI4Idx/wYCx8PuZI+o2kDZL+VcE3zycoCGxaJdVK+pmZTRzg9dcltPsRBd8oHyPpbAV5Mq9V4TNkJSa0f9DMXlfg9STpI5Ler+Q2v1lSzxCwKZL+Gv6ek4TfrP9B0jvDQ3+W9D5JJyn43X1M0hpJIyT9wcyOKdE1Rkv6a9hWKciFeHP4s7xb0mOSLgl/1kL1/BtvcfcXs3zNfynI+7hewf1wtILf9XPh+X8zs9crCI5PVDChwZlhuUslvRKW+6qZHZahrp78kqTZuMzsNZL+n4JRHqskfVLSGQqC5XmSPqDg/t+T4fo9vZ1TzeyADGUBxCHuyIgHDx48qumhoHehQ8E3r39Jcf658NwlCcc2hcfOiZR9o/q+6f2PFNe6suf8AG1ZnfD6xySNTlHmPQllPpHi/NkJ52+XVJeizJeU/K30/Dx/d3+OXOcRSV+RdJakCVleY3rkGgO1+T8TynwzxfkPhOfaJb1pgLr2kvSMBv4WvxjX+FaGe6BeQeCS+DNPz/P3vzR8/d8zlDstUt/HUpSZrGDmLJe0UcHwq/NTlHuN+no6vp+mzhkJ9R0WOfdV9fU87Z3mGmMk1aQ5Py+hjgF7EHnw4BHfgx4TAMiBu+9W37f/J4azTUnqP8NWwssWh8/RHpZiJr6/3913pjj+G/V9a52qh6fnm/g2SR9w984UZf5bwYfrQl2iYAKBHscqCHrukLTJzJ4zs6vM7LVZXi9dm7+mvjZfamYNPSfCno7Phrs/cPe/pLq4u2+T9Olw9yQzO7DI12hQXzL6U5L+N8XrO8IyxZihalr4vDGH1zzs7v0WOnT39ZJuDncnSrrR3f+UotxTypxnJUnnhM+r3P3ZyLmeSRNWuPuGgS7g7js8WLdkIIk/98w05QDEhMAEAHLXE0SMknRkwvGeaYI3uPvzCcfvj5zv0fNBrVXJH9hz9bQPMMuVu7v6AqmkD2NhUHVauLvQ3V9RCuGHvasLaF/PdTYrGOZ0uaTHUxQ5SMFQtCVmdq1lXgwv2zaPUzAcrcdsSbPC7UxT5iYGjCcU+RpHK+hRkaSrw3+rftx9raSFGepIK5zAoGdI27YcXvrbNOeezLFcumAg5TCu0Kvh82wzOy7NNTLZmrA9ecBSAGJDYAIAubsvYfuUFNuJvSWJ5Y+2YIG7nm/Lez5kPezu7QW0Z3mG8z0fyKK5FrMULHYoZQ6MHslwPivu3uHuP3f3oxXMXvZOBfkD9ym5V+C9km5N7JFKIZc2z0nYTsz1eDBhBqp+DwXDh3pMLvI1EttU6t//uITtXAKTFWnObc+xXL9cHymr1d5vUHBvNEpabGZ/Dmf/OnygWbgGkPhzswI8UIEITAAgd/cpGKcuZReYPC6pWUG+QM/UvccqmNFJKnwYV3OG8z3DW6If8hM/rGYa3jPgEJp8ufsr7v47d/+0u89T8KH9f9TX3tcp/dSuubQ58WedlHNjA8MTtotxjXL+/lsTtofl8Lp091bisKlsyg30maNntfddSrHau7svV3AfbJNUp2DY148lPS1pY9i7lm6YWI/En7soizcCKK66uBsAANXG3bea2bOSDlcYjISzK/XMsHV/pHyHmT2iYNjUPEl3q/IWVkw5jKisDXDfKunz4bfgnwsPX6Bg1rCUL8mzqsQA7VwFkwhkIzF4KMY1EpX6979dwbTRdUoOiCpBT37JgKu9u/tNZvZ3Se9QEMicoiC3ZYKC3rX3mtnVCnKtBsozSfy5txej4QCKi8AEAPKzSEFgMtHMDlEwq1CNgmE7/0xR/n4FgUlPQNKTb9Ih6cGStnRgiUNb9s5QNtP5Yvq5+gKTdNO65tLmxPyCLQnb2909n8T+Ylwj+vtPNxyqoN+/u7uZbVbQK7VXpvLlYsmrvacaxtXL3XdI+ln4kJkdKuk8SVcomG75YgX/9/ol64cSf+41+bcaQKkwlAsA8hPNM+kJOB7y1OuR9PSiHB8mIp8Y7j/u7pnWXyiVlZJawu1jM5TNdL6YEhPa0/Uk5NLmxMAhMXA8KdtGRRTjGk8nbJfj999T30FpS5XX8Qp6PlKu9p6Ouy9z9/8Nr9HzfyjdKvOJP3d05i8AFYDABADykzj8ap76ekCi+SU9HlSwnsMIBat4j0lxnbIKp9m9J9w908z2SVUu/Fb74kLqyjFJOTGxPN1CgNm2eZuSZwF7XNLacPtyM2tS7opxjSXq6zV530C/IzObqmDRwkL1BNMHp1p0MiY9s3E9GM7aljN3f1l9vU0T0hTtCe46lHpWOAAxIzABgDyE09SuDHdPV9+H6fsGKL9Tfd9YfybhVNz5JT8Onxsl/XSAWbD+Q8kzSOXjLDO70cyOSlfIzMZJ+kHCoVvSFE/X5s+pr82/cve2nhNhDsLXw92Zkq4Je7EGatNoM/vXxGNFukabpF+Hu0eqb72TxNfVKRja1hA9l4eee7NGycFfnHoCk9sGKmBm55vZ2DTn95V0SLi7Kk1dPbPgPRiuRwSgwpBjAgD5u0/BlLtTw/1OSQ+lKX+/gg+gPes5dGvgHpaycPc/m9mfFXxAPFfBdKzflfS8gpmn5itIOH5MhX2YrVGQyH6BmT2pYMX2RxWsUdEe1nWygjVOema8WqL066c8NkCbL1YwDbEU9Gr8V4rX/kTSGyS9NWzXa83spwqm5d0habSCD7unSXqLglmtfliCa3xVwfCjaZK+YWZHSrpGQZL8QZL+XcE3/YX+/iXpAUmbFAydOkPBJAyxMbPpkg4Ld9Pll3xc0vVmdrukuyQtU/D73UvB7+QK9c249ZMB6hqlvh6Tm1OVARA/AhMAyN8iBR/ce/zT3dNNm3q/ggUEezzt7ttL0K5cvUfSnQpyJeaq/2J5/5T0QQWBQr62KcgDGKFg9rIj0hfX3yS9a4BV3Xv8SMH6F/OVeoG/VyW9MUyaThImg79DQaL0hxQEmN9MU1e/2bSKdI0dZvYmSX9XkJj+LvWfInmBgml0f60CuHu7mV0j6ZNhHV8s5HpF0NNbkmq196jhCgPbAc53S/pyqtXnQ29TMD13p9IvBgkgRgzlAoD8RYdhZer9iA7zinsYlyTJ3Xcp+Fb/CgW9GLsVrCnxhIJhXCcqeVarfOpYrOCb+rdI+o6CD9qvSGpT8GFxq4Jx/z+VdLq7n+nuWwa4XOJ1L5H0bgW5MlvC661QECAc5u5L07y2w90/oiBIukrBULsdCnKBdij4+X8p6e2SDi3hNZ5V0HPwTQW9Pm2SNivo0Xh3+DMWy8/D55lmdnzakqWXbrX3RO9S0JP2GwW/z/UK7pndCpLYfyzpKHf/7zTXeHf4fLO7r8+3wQBKy9xjn7oeAICshMN/evIILnH3BfG1pjqZ2R2SzpL0C3f/QExtGKUg+GqQdKa7/62Ede2vIB+sVtIJ7p5uuCWAGNFjAgDA0PIfCoY+XRQmjsfhTKVZ7b3IPq8gKPkLQQlQ2QhMAAAYQtz9SQXDohoUBClx2CXpK5KucPf2UlUSBl7zFQyt+0z60gDiRvI7AABDz+cVDG9qNTPzMo/rdveFkhaWoap9Jf2PpBfd/elMhQHEixwTAEDVIMcEAAYvhnIBAAAAiB09JgAAAABiR48JAAAAgNgRmAAAAACIHYEJAAAAgNgRmAAAAACIHYEJAAAAgNgRmAAAAACIHYEJAAAAgNgRmAAAAACIHYEJAAAAgNgRmAAAAACIHYEJAAAAgNgRmAAAAACIHYEJAAAAgNgRmAAAAACIHYEJAAAAgNgRmAAAAACIHYEJAAAAgNgRmAAAAACIHYEJAAAAgNj9fxoXWomhi3p4AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyYAAAI5CAYAAABUwC7IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAB+GklEQVR4nO3dd5xcdb3/8fdnewpJSCMkARJCh1CkhBpAEEWqXhE7QRCVK1e99nKvqFfvVX9W9No1dFERUQGNXkpCD0VESCCVhACppG7f/fz+OGd3Z85Ob2dm9/V8POYxc875zjnfXQ6b+cz3+/l8zd0FAAAAAHGqi7sDAAAAAEBgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYtcQdwdQO8ysWdLscHOjpJ4YuwMAAID81UuaFL5+2t074uxMIgIT5GO2pMVxdwIAAAAlcaykx+LuRB+mcgEAAACIHSMmyMfGvhcLFy7UzJkz4+wLhoG2tjYtXLhQkjR37lyNGDEi5h5hqOOeQ6Vxz6HSVq1apblz5/ZtbszUttIITJCP/pySKVOmaPr06XH2BcNAW1ubJk6cKEmaPn06/2Cj7LjnUGncc6i0tra2xM2qyhdmKhcAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2A3bwMTMJpvZuWb2JTO7y8w2mZmHj/k5nmNewnuyPeaVqN8Twz7/w8y2h49/hPsmlOIaAAAAQKU1xN2BGK2PuwP5MrM5kn4vaUrk0OzwcbmZXejuj1a6bwAAAEAxhnNgkmiNpKWSziriHK+X9FKG4y8WcW6Z2V6S/ihpkqRuSd+S9Kfw8LmS/l3SnpL+aGZHu3tR1wMAAAAqaTgHJl+StFjSYndfb2YzJK0q4nzPu/vqUnQsja8oCEok6R3u/puEY4vM7HFJt0iaLOm/JM0rY18AAACAkhq2OSbu/gV3/5O7V/2ULjObIumd4eZfIkGJJMndfy3pL+Hmu8P3AAAAADVh2AYmNeZ8Dfy3+mWGdvPD57rwPQAAAEBNIDCpDScnvL4vQ7vEYyeVqS8AAABAyQ3nHJNS+6WZHShpoqTtkpZL+pukH7r7uiLPfUj4vM3dX0nXyN1fNrPtksZIOrjIawI1b9n6HXp45WZ193rcXUnJq6BbZnH3oLp0dXVp6cvBL2X9I2vV2NgYc49qy5iWRp1+0GSNH9UUd1cA1CACk9I5LeH1hPAxR9LHzOwj7v7jIs49PXzOpdLWWkmHStor34uY2fQsTfrzVjo6OtTW1pbvJYC8tLe3p3ydi4XLNusDNz2lKvjsj5pTHzytXhZvN2rUtHEtuvWKYzV2BEFdLor5OwcUoqOjI+4upEVgUryVkn4n6SEFQYEk7SvpXyS9RVKLpB+Zmbv7Twq8xm7h884c2u4Kn0cXcJ212ZsEHnnkEa1YsaKASwCFWbhwYc5t3aX/fqpeLoYDgEpbt7VdP/79vTpyAl8L5Cufv3NAoTZt2hR3F9IiMCnObZKudR80IWOxpFvM7FwFQUujpG+b2R8yTcXKoCV87syhbV8YPKKA6wBDwrLtpvVtBCVAXFq74+4BgFpEYFIEd9+W5fifzOxLkr4saaSkyxSsR5Kv9vD9uUzabQ6fC5lnlW361xQFQZfmzJmjWbNmFXAJIHft7e393yDOnTtXLS0tWd4R+OMtT0va2L89bkSjDppSyCAihpve3l5t3fqqJGncuN1VV0eNmFw8+/IObW8fiEYOOOhgnXVsttnBkAr/OwcUqppnvBCYlN9PFCzmaJJOVWGByQ4FgUkun6xGhc+5TPtKkm21eEvIkm1ubtaIEQzKoHJaWlpyuufWbW3T3c9tTNr3kTP317yTZparaxhC2tratGDBAknSWWcdzd+5HL3jpw/rwRWb+7etroHfXQFy/TsHFKO5uTl7o5jwVVCZufsGSX1/racVeJq+gCGXr5/6Rj1yzhcBhpKbHnlBiUW4RjXV61+O5ptboJwa6pM/TnT39sbUEwC1jMCkMorNAHw2fB6baUV3M9tTQalgSVpS5DWBmtPe1aObH02Oyd/8munarYXqQEA5NdQl53R19ZD4DiB/BCZlZmaTFKxtIkkvFXia+xNen5qhXeKxBwq8FlCz7nz6ZW3ZlVwj4j0n7BNTb4DhIxqY9FTp2kEAqhuBSfldIfXXLM20ansmf5DUNy5+aYZ288Ln3vA9wLBy3UMvJG2fsO8E7b/HbmlaAyiVxuhUrh6mcgHIH4FJgcxshpkdlaXNuZL+M9xsk/TLNO3uNTMPHzOix8MSwzeGm683s7ekOMdFkl4fbl5fYFlioGY9tXar/r52a9K+S05ktASohIb6yFQuRkwAFGDYVuUys5Ml7Zewa2LC6/3MbF5ie3efHznFDEn3mNlDkv4o6SlJG8Jj+ypYXPEtGhgt+bi7ryuiy5+T9AZJkyTdbGbHSPpTeOxcSR8LX2+U9PkirgPUpOhoyZ5jW3TmwXvE1BtgeGmoY8QEQPGGbWAi6XJJl6Q5dlL4SDQ/TdsTwkc6rZI+WsSq75Ikd19rZudJ+r2C9UQ+FT4SvSLpwmxlf4GhZsuuTv3xH8kpXO86fp9BlYIAlEdjdMSE5HcABRjOgUmxHpf0LgVByTGS9lQw6tIg6VVJz0j6P0k/C0sGF83dHzGz2ZI+LOlCBaM2krRK0u2SvuPum1O/Gxi6blm8Vp3dA9/QNtXX6eJjs60XCqBUolO5KBcMoBDDNjBx93kaSBYv5P07FOR93JitbQ7nOi2Ptpsk/Uf4AIa9nl7XDQ8nT+M65/A9NXF09S4gBQw1g6dyMWICIH/McwBQ0+5eukHrtrYl7aNEMFBZ0XLB3SS/AygAgQmAmnbdQ6uTtg+fPlZH7jUulr4Aw9Wgld9JfgdQAAITADVr+YadWrRsU9K+dx+/j8wszTsAlMOg5HdGTAAUgMAEQM2K5pbsPrJR5x0xNabeAMMX5YIBlAKBCYCatLOjW7c+nlwZ++Jj91ZLY31MPQKGr0FVuUh+B1AAAhMANemPT72kHR3d/dt1Jr1zzt4x9ggYvpjKBaAUCEwA1KTFq7ckbb/2oMnaa/zImHoDDG/1kalcPaxjAqAABCYAatKqTbuStk+cNTGmngBg5XcApUBgAqDmuLtWbkwOTGZOGhVTbwCQ/A6gFAhMANScV1u7tK2tK2nfvhMJTIC4DEp+J8cEQAEITADUnFWbdiZtN9abpo0bEVNvADCVC0ApEJgAqDnRaVz7TBg1aOVpAJXDVC4ApcC/5ABqzspI4vtMpnEBsWqoYyoXgOIRmACoOasiIybklwDxio5YdlMuGEABCEwA1JxoqeB9qcgFxIqV3wGUAoEJgJrS0+tatTk6lWt0TL0BIEmNkRwTkt8BFILABEBNeWlrmzq7k6eJkGMCxGtwuWCmcgHIH4EJgJoSnca1W3ODJo5uiqk3AKTB5YKZygWgEAQmAGpKqvwSM0vTGkAlRMsFd1EuGEABCEwA1JSVG5MXV2QaFxC/+ki54B7KBQMoAIEJgJoyeA0TEt+BuDUOKhfscic4AZAfAhMANSU6lWsmpYKB2EWT3yUWWQSQPwITADWjvatH67a2Je1jcUUgftFywRIJ8ADyR2ACoGa8sLlV0dkh5JgA8Us1YtJFyWAAeSIwAVAzVm1KTnzfY0yzRjU3xNQbAH1STuVixARAnghMANSMwYnvjJYA1SBaLliSuikZDCBPBCYAasaqjdE1TKjIBVQDkt8BlAKBCYCaER0xIfEdqA4kvwMoBQITADVjUKlgAhOgKpD8DqAUCEwA1IStbV3asqszaR+BCVAdGupIfgdQPAITADVh9ebWpO2GOtNe40fG1BsAicxsUHDSRfI7gDwRmACoCdHAZO/xI9VYz58woFpEp3OR/A4gX/yrDqAmRAMTpnEB1SVaMriHHBMAeSIwAVATXtjclrS97yQCE6CaREdMusgxAZAnAhMANWHVoBET1jABqkl0xITkdwD5IjABUPV6XXqBqVxAVWuMjpgwlQtAnghMAFS9bZ1Se3fyhxymcgHVZVDyOyMmAPJEYAKg6m1oT/7AM6qpXpN3a46pNwBSia7+3k25YAB5IjABUPU2JOe9a+akUTIbvKAbgPhQLhhAsQhMAFS9jW3JH3hIfAeqT310xIQcEwB5IjABUPU2tCdvk/gOVJ9Bye/kmADIE4EJgKoXHTGZReI7UHUa6kh+B1AcAhMAVa27V9rckbyPEROg+jTUM5ULQHEITABUtU3tkiv5m9gZBCZA1WEqF4BiEZgAqGobI6WCJ45u1piWxph6AyCdwSu/M2ICID8EJgCqWrRUMAsrAtVpUI4J5YIB5InABEBViy6uuC/TuICqxMrvAIo1bAMTM5tsZuea2ZfM7C4z22RmHj7m53iOkWb2ZjP7oZktNrNXzazLzDab2UNmdrWZTSlRf1cn9C/TY3UprgdUi8FrmBCYANWI5HcAxWqIuwMxWl/Mm83scEkPSEq10tt4SceHj4+a2RXufksx1wOGK9YwAWpDYx3J7wCKM5wDk0RrJC2VdFYe7xmjgaDkAUl/kvSYpM2SJkl6s6T3he1uNLPt7n5XCfp6u6TPZzjeWYJrAFVhR3u3dnRFpnJNYtV3oBoNGjEh+R1AnoZzYPIlSYslLXb39WY2Q9KqPN7fK+nXkr7o7s+mOL7AzO6SdJukeknXmNn+7l7sV0hb3f2fRZ4DqAmrN7cmbdeZtPf4kTH1BkAm0XLBJL8DyNewDUzc/QtFvv9BSQ9maXO7mf1O0r9ImiXpKElPFHNdYDiJBiZ7jR+ppoZhmxoHVLVB5YLJMQGQJ/6FL797El7Piq0XQA2KBibklwDVqz5aLpgcEwB5IjApv+aE1z2x9QKoQasigcm+E8kvAaoVK78DKBaBSfmdmvB6SQnON9fM/m5mO8ys1cxWmdktZnahmVn2twO1Y9CICYsrAlWLcsEAijVsc0wqwcyOkHROuPm0u5ciMJkZ2Z4RPt4q6QEzu9jd1xVyYjObnqVJ/5osHR0damtry9QWKIq7DwpMpu3WwH2Hsmpvb0/5GjnoTZ4U0NHZzf+vOeCeQ6V1dHTE3YW0CEzKxMyaJf1MQUUuSfpckafslPQHSQsk/VPSNknjJJ0g6YOS9pJ0kqS/mtkJ7r6tgGuszbXhI488ohUrVhRwCSA32zqltq7kP1Frn3lMO5bH1CEMOwsXLoy7CzXlhRdNA//kSetefkULFrwUX4dqEPccKmHTpk1xdyEtApPy+b6kY8LX17r7H4s833HuvjXF/nvN7PuSfqtgHZaDJX1B0r8XeT0gVhsiK7431bnGNMXUGQBZRXLfRYoJgHwRmJSBmX1G0uXh5mJJ/1rsOdMEJX3HdpjZWyWtVLDq/BVm9ml3z3exxb2yHJ+i4OfRnDlzNGsWRcZQPq8+tk569rn+7RkTR+kNrz8+xh5hOGhvb+//1nru3LlqaWmJuUe1Y92Da/SnNQNDmuMnTNRZZx0ZX4dqBPccKq2aZ7wQmJSYmb1f0lfDzaWS3ujuu8p9XXffZma/knSlpFEKRmsyrrOS4hwvZjqemFvf3NysESNGFNBTIDcvbE2eA7vvpNHcc6iolpYW7rk8tDQnD2n2yvj95Yl7DpXQ3NycvVFMqMpVQmb2dkn/G26+IOl17l7JiXyJK9BPq+B1gZJbvmFn0vZ+rGECVLVBK78zlwtAnghMSsTMzpd0nYLf6cuSzsg2AlEG/CuAISMamOw7aWRMPQGQi2i54C7KBQPIE4FJCZjZGZJ+rWBq3GYFIyVxTOA7JOE1pVBQs3a0d+nlbcllM2exhglQ1RpY+R1AkQhMimRmJ0q6XcEK79skvd7dn4mhH2MlvS3cbJX0WKX7AJTKio3JaVkm14zxjJgA1awxOmLSw4gJgPwQmBTBzI6UdIeCZPNdks5x98cLOM+9ZubhY0aK428ws7TZcGY2WsGIzYRw18/dvXpXzwGyWLZ+R9L2pBapqYE/V0A1a4jkmPT0MmICID/DtiqXmZ0sab+EXRMTXu9nZvMS27v7/Mj7Z0n6i4JFDiXp85K2mdlhGS67wd03FNDdT0u60cx+J+l+SSsk7ZQ0VtKJkj4gae+w7XOSri7gGkDVWL4xOb9kjxF8wAGq3aCpXAQmAPI0bAMTBeuMXJLm2EnhI9H8yPYpkiYnbH87h2t+UYUHDeMV9PnyDG3uk/ROd99S4DWAqrB8fSQwYRYXUPUa6pjKBaA4wzkwqSUfl3SGpBMkHahgdGecglySlyQ9IulmSQvcna+oUPOiIyZTGDEBql50KhfJ7wDyNWwDE3efJ2leEe+fr8GjKIWe67Qsxx8TyewYJtq7erRmS2vSPqZyAdUvmvzeTblgAHkimxRAVVm5cZei4357sBAyUPWiOSZdjJgAyBOBCYCqsmxDckWu3ZtczfUxdQZAzqILLHaTYwIgTwQmAKrKisiK71NG8q0rUAsaozkmVOUCkCcCEwBVZdmGaKngmDoCIC/1lAsGUCQCEwBVZXl0xITEd6AmRJPfe3pdFIoEkA8CEwBVo6unV6s27UraR0UuoDZEk98lEuAB5IfABEDVeGFz66DpH0zlAmpDdMREomQwgPwQmACoGssjFbkmjmrSqMaYOgMgL9EFFiVGTADkh8AEQNWI5pfMmjQypp4AyFdD3eCPFD0kwAPIA4EJgKoRrci178RRMfUEQL5S5ZiwlgmAfBCYAKgag0dMCEyAWpFyKhcjJgDyQGACoCr09rpWbGQqF1CrUia/M2ICIA8EJgCqwrqtbWrvSv4Qw4gJUDsoFwygWAQmAKrCskhFrjEtDZo4qimm3gDIV3Tld4lywQDyQ2ACoCpE80v232M3mQ3+oAOgOpmZGiN5Jt2MmADIA4EJgKqwbH1yYLLfpNEx9QRAoaIlg6MLpgJAJgQmAKrC8o3RERMCE6DWRPNMSH4HkA8CEwCxc3ctj4yYzJpMYALUmmjJYJLfAeSDwARA7Dbs6NCOju6kfUzlAmpPQ310KhcjJgByR2ACIHbRxPcRjfWaNm5ETL0BUKjGQVO5GDEBkDsCEwCxW7Y+uVTwrMmjVJei9CiA6hYdMekixwRAHghMAMRuUOL75N1i6gmAYkRzTHqoygUgDwQmAGI3qFQwie9ATWqMlAvuIjABkAcCEwCxW7GRwAQYCqKrv1MuGEA+CEwAxOrVXZ3atLMzaR+BCVCbWPkdQDEITADEKppf0lhv2mf8yJh6A6AYg5LfKRcMIA8EJgBiFc0vmTlx1KAPNwBqw+CV3xkxAZA7/vUHEKvoGiZU5AJqVyPlggEUgcAEQKyWbYiuYUJ+CVCrKBcMoBgEJgBitWLQiAmBCVCrBk3lIjABkAcCEwCx2dnRrZe2tSftoyIXULsaouuYMJULQB4ITADEJjpaUmdB8juA2hSdykXyO4B8NFT6gmY2SdK+kqZIGiWpS9JWSWskLXf3nkr3CUA8lkUCk73Hj1RLY31MvQFQrEHJ75QLBpCHsgcmZjZK0gWSzpZ0qqRpGZp3mNmTkhZIus3d/1Hu/gGIT7Qi135U5AJqGuWCARSjbIGJmR0l6SpJF0nqWy3N0r9DktQi6QRJx0v6TzN7RtIPJF3v7q3l6iuAeCyPVOQivwSobdE1iKjKBSAfJQ9MwoDkywpGSKSBYOQVSY9KelzSBklbJL0qaYSk8ZJ2l3SApGMlHS6pUdJhkv5X0pfN7OuSrnH3jlL3GUA8Bq9hQmAC1LLGSI4Jye8A8lHSwMTMfinp3RpIqn9C0o2SbnX3NXmcp0nSXEnvlPQmSRMlfU3SlWb2Hne/v5T9BlB57V09WrMleSCUEROgttUzlQtAEUpdlesSSd2SfirpIHc/xt2/nU9QIknu3unuf3P3SyXtIek9kp6TNEPSa0vcZwAxWLVpl6KzPFhcEahtJL8DKEapp3L9r6SvufvaUp0wnLp1g5ndqCBfhZI9wBDw/Prk/JKpY1s0urnihQIBlBDJ7wCKUdJPAe7+oVKeL3Jul/Trcp0fQGUteTk5MDlwChW5gFoXTX7vZsQEQB5YYBFALJa+sj1p+6A9x8TUEwCl0lgXTX5nxARA7ghMAMRiaWTE5CBGTICaR7lgAMUoR7nglyQtlLRI0kJ3f7rU1wBQ27a2duqV7e1J+w5mxASoedEcE8oFA8hHOTJNpyhIUr9Iksxsq6T7FQQrCyU97u78pQKGsaWvJI+WNNXXaebEUTH1BkCpNNST/A6gcOUITF6QtE/C9u6Szg0fkrTLzB7SwKjKw+7eWYZ+AKhSS19Ozi/Zb/LoQWVGAdQekt8BFKPkgYm7zzSzaZJOSXgcqoEV4EdLOjN8SFKnmS3WwIjKA+6+q9T9AlA9oiMmB+1JfgkwFJD8DqAYZVk0wN3XSfpV+JCZ7S7pJA0EKkdLagybN4fHTpL0GUk9ZvZ3DQQqi9z91XL0E0A8lkQCk4OnkF8CDAWMmAAoRkXmTrj7q+7+J3f/lLufKGmsghXcvyDpb5JaFYyomIJg6RhJH5V0m6QN5eiTmU02s3PN7EtmdpeZbTIzDx/zCzjf2WZ2m5m9aGYd4fNtZnZ2ifs90sw+aWaLzWyLme0ys6Vm9k0z2yf7GYB49fS6nmfEBBiSGskxAVCEWJZZdvd2SfeGD5lZvaTXaGBE5WRJE8Lm5Qqe1pfiJGZWJ+knki6LHJoWPi40s59Jen+xSf9mtp+kOyXtHzl0YPi43Mze6e5/KuY6QDmt2dKqtq6epH0HMWICDAkNddEREwITALmrlmzTOgVTuxolNSkImCr512yNpAUFvvcrGghKnpT0dknHhc9Phvsvl/RfxXTQzHaTdIcGgpKfSjpD0omSPidpp6Qxkm4xsyOLuRZQTtHE94mjmzRpt+aYegOglOrroiMmTOUCkLtYRkzMbJSCD9R9IyTHSWrpO5zQdKmCyl3l8CVJiyUtdvf1ZjZD0qp8TmBmB0j6eLj5mKS57t4Wbi82sz9Iuk/B1LRPmNkv3H15gf39hKQDwtefdPdvJBx7yMzuDa81UtJ3JJ1W4HWAsormlzBaAgwd0alcJL8DyEdFAhMzm6DkKl1HSqrvOxw+d0p6QsGaJ/crqM61uVx9cvcvlOA0H9HA7/CqhKCk7xqtZnaVpIfCdh+V9K/5XsTMGiX9W7i5RNI3o23c/UEz+7mk90s61cyOdffF+V4LKLfoiAkrvgNDB8nvAIpRlsDEzPZSEIDMDZ8PSjwcPm+X9KAGApFHw9yTmmBmJumCcHOpuz+cqp27P2xmzynIAbnAzD7k7vl+hXS6goIBknRthlyV+QoCE0l6k4IRIaCqDC4VzIgJMFREywWT/A4gHyUPTMxstaS9+jYTDq3TQBByv6R/FPABvZrMlDQ1fH1flrb3KQhMpkmaoTynjCkoBpB4rnQeU1DhbKSC8stAVdnZ0a01W1qT9jFiAgwd0RGTLnJMAOShHCMme4fP3ZJ+K+lPCqZlvVCGa8XpkITXS7O0TTx+sPIPTHK6lrt3m9lySYeH1wGqynOR0ZL6OtN+k0fH1BsApdYQyTHpoSoXgDyUK8fEFeSQvFXBqu+LzGyRggDlxTJds9KmJ7zO9jOtTXi9V9pW2a+1y9235nCtwyVNMrNmd+/I9SJmNj1Lkyl9Lzo6OtTW1papLTDI02uS08ZmTBgp7+5UW3fq9u3t7SlfA+XCPVec3q7OpO2uHuffiiy451BpHR05fzSsuHIEJh9VMPXoZEl7SJot6TBJH5QkM1ujgelci9z92TL0oRIS55/szNJ2V8LrQr4e7rtWtuukulY+d9/a7E0CjzzyiFasWJHHqQHpbyvrlFilfGzvDi1YkFul7oULF5apV0Bq3HP5W7dLSvxo0dXTk/P/4+CeQ2Vs2rQp7i6kVfLAxN2/K+m7Un853b5KXHMV5FfsEz7eEbZ5VUES/CIFwcpj7t5V6n6VQUvC6860rQKJwcGIIq6V7TqluBZQNi+1Jk/zmDqKaR7AUBKZySWXqdelSE48AKRU1nLB7v68pOcl/VySzGyakgOVQySNl3SupHPCt3WY2aMaGFV50N23q/okjrc2ZWmbuHpcIWPafdfKdp1ir5VtmtkUhZW+5syZo1mzZuV5egxn7q7PPbFQ0sCq7+ecdJROO2Bi2ve0t7f3f4M4d+5ctbS0pG0LlAL3XHFWb27Vfz+VXKTytWecqaaGalnPufpwz6HSqnnGS0UXWHT3dZJ+FT5kZrsrmPI1N3wcpWB0oK/MsBR8isnlA3mlJWbxZpueNSrhdS7TsdJdK5dpYAVfK1v+T1AhOdDc3KwRIxiQQe5efLVVOzt6kvYdsc/EnO+jlpYW7jlUFPdc/kaPHDwK2tDUrBHNsaznXHO451AJzc3N2RvFJNavMNz9VXf/o7t/wt3nSBon6QOSViooNWwaWIix2iR+iM+WNJ44EpFzHkeKa40ys3E5XmtjPonvQLktfTm5ItduLQ3acyzfDAJDSWP94I8V3VTmApCj2L/CMLNDNTBCcooG1gZxJa+DUm0Sk/YPSttq8PElBV7rXxLOlXIxRzNrkNQ3v6qQ6wBl89z65MDk4CljkkbhANS+aLlgSepmLRMAOapoYGJm9ZKO1kCOyUmSdk9sEnnLGknVWqJilaSXFARSp2ZpOzd8XidpdQHXuj/h9alKE5hIOkYDU7keKOA6QNkseTk5VeygPVlYERhqGlJkuTNiAiBXZQ1MzKxF0gkaCETmKFiVvL9J5C3PKQhEFiooJbymnP0rhru7md2uoAzyQWZ2vLsPChjM7HgNjJjcXuBq9/dK2iZprKRLzOzrac4zL+H1bQVcByibpZHFFQ+aMiamngAol+jK7xKrvwPIXckDEzM7VwPTsl4jqTHxcMLrXklPKTkQ2Vjq/pTZdyRdoSAP5hozm+vu/ZWwzGyEpGvCze6w/SBmNl/SJeHm6e5+b+Jxd+80s+9J+g8FK7p/XNI3Iuc4QdJl4eZ97r640B8KKLX2rh6t3Jhci4ERE2DoSTli0sOICYDclGPE5A8K8kOk5ECkU9JjCtYrWahgFfjYygCb2cmS9kvYlVizdD8zm5fY3t3nR8/h7s+b2TckfVrBNKoHzOxrklYoyPX4lIJKY5L0DXdfVkSXvyHpYkkHSPq6me2noLpZm6TTJX1WwX/PNkkfKeI6QMkt37BT0dkcB+5BYAIMNamT3xkxAZCbck3lMkmtkh7SQCDysLu3Z3xXZV2ugVGKqJPCR6L5adp+TtJkSe9VEIT8KkWbn0v6fP5dHODuO8zsHEl3StpfwUjNFZFm2yW9093/Xsy1gFKL5pfsM2GkRlE+FBhy6utMZlLiZOMuRkwA5Kgcnww+qSAYedzdu8tw/qri7r2SLjOzWxUECscqGH3ZpGAxwh+7+10lutZyMztK0r9KukjBiE+TghLEd0r6rru/UIprAaU0OL+E0RJgqGqsq1NnQl5JD8nvAHJU8sDE3f9fqc9ZDu4+T8nJ4sWe704FwUFZ++LuuyR9PXwANWHpK5GKXCS+A0NWQ72pM2EtVZLfAeQq1gUWAQx97q4lkcUVDybxHRiy6iMJ8JQLBpArAhMAZbVxZ4e27OpM2seICTB0RRPgGTEBkKtylAu+u8SndHc/o8TnBFAhSyOjJSMa67X3+JFpWgOoddGSwZQLBpCrciS/n6bkcsHF/EUq9v0AYhbNLzlwym6qS7HWAYChITpiQrlgALkqZ73Odkkbynh+ADUgOmJCfgkwtDXUM2ICoDDlDExaJL0s6TpJt7j7q2W8FoAqtWRQqWDyS4ChbNBULpLfAeSoHMnv/yHpeQXTsI6X9ANJL5vZrWZ2oZk1luGaAKpQV0+vlm9gDRNgOCH5HUChSh6YuPtX3P1gScdJ+r6ChQabJL1J0q0KgpQfmNkJpb42gOqycuOuQas+M2ICDG2DygUzlQtAjspWLtjdH3P3f5M0VdL5kn4rqUPSeEkfkHS/mT1vZv9hZjPL1Q8A8Ykmvk8d26KxIxk0BYayBpLfARSo7OuYuHuPu//J3d8qaYqk90laFB7eT9LVkpab2SIze5+ZjSt3nwBURnRhxYP2ZLQEGOoaIyMm0VFTAEinogssuvt2d/+5u58maaak/5S0XEE+yomSfiRpVSX7BKB8oiMm5JcAQ9/gqlyMmADITWwrv7v7Gnf/L3c/UNJVCqZ5maTmuPoEoLSipYIZMQGGvsHrmDBiAiA35SwXnJGZ7SXpXZLeLenAhEOd8fQIQCltbe3UK9vbk/YdzIgJMORRLhhAoSoamJjZGEkXKQhITlEwQtL3F+whSddLuqWSfQJQHv9clzyNq6mhTjMmjoqpNwAqpb4uMmLCVC4AOSp7YGJm9ZLOVjAycp6CqVp9wchKSTdIut7dV5S7LwAq5+l125K2D95zzKApHgCGnsZ6kt8BFKZsgYmZHasgGLlY0sS+3ZK2Svq1gmDkgXJdH0C8nl63NWl79jTyS4DhgHLBAApV8sDEzD4v6Z2SDujbJalL0l0Kpmr90d3JIwGGuOiIyeHTxsXTEQAVFS0XzAKLAHJVjhGTL0lyBQHJI5Kuk3SLu28pw7UAVKFXd3Vq7Za2pH2HTRsbU28AVNKgcsEkvwPIUTlzTNok7SHpE5I+YWZZmqfl7j6rZL0CUHb/fCl5tKS5oU777zE6pt4AqKRBU7lIfgeQo3IGJiMkzSjBefiqBagx/3iRxHdguBq08jsjJgByVI7AZKEIJoBh7Z/R/JLpTOMChgvKBQMoVMkDE3c/rdTnBFBboiMm5JcAw0e0XDDJ7wByxdwKACW1ZVen1m1NTnyfTWACDBvR5HemcgHIFYEJgJKKlglubqjT/pNJfAeGiwamcgEoEIEJgJKK5pccMnXMoCo9AIauQVO5GDEBkKOSflowsz1Leb4015hS7msAKNzTL0YXVmQaFzCcUC4YQKFK/TXmCjP7nplNK/F5ZWZvNbN/SLqi1OcGUDrRqVwkvgPDS0N05XdGTADkqNSBSYOkf5W03MyuNbOzzKzga5jZXmb2STNbIulmSYdJ6ixRXwGU2OadHYMS3w+fPi6ezgCIRTQw6WLEBECOSl0u+DBJ35Z0tqR3hY8NZna7pIclLZb0rLun/PrEzCZKOlbScZLOkHSiJAsf6yR9QdL8EvcZQIlER0taGus0a9KomHoDIA6Dp3IxYgIgNyUNTNz9eUnnmNmJkj4v6fWS9pD0vvAhSZ1mtlnSq+FjhKTxknaXlDjno+8rlxclXSPpGndvL2V/AZRWNPH90KljSXwHhplo8jvlggHkqhwrv8vdH5T0RjM7QNJ7JV0kaWZ4uFnS1PDhGghAEnVI+oukn0q6y90ZBwZqQHRhRdYvAYafaLngnl7+CQeQm7IEJn3CEZRPS/q0me0t6RQF07OmS5qkYKSkXdLG8PG0pEWSHnV3ckmAGhMdMSEwAYaf6AKLTOUCkKuyBiaJ3H2NpBvDB4AhZtPODr20LXm25ezpBCbAcNMYmb5J8juAXDH5G0BJRBPfRzTWa9YkVnwHhpt6ygUDKBCBCYCSiC6seOjUMYM+oAAY+gat/M5ULgA5IjABUBIsrAhAGpz8zlQuALkiMAFQEtHE98PJLwGGpWjyew9TuQDkiMAEQNE27ujQy9HEd0ZMgGGJ5HcAhSIwAVC06GjJyKZ67UviOzAsNZD8DqBABCYAihZdWJHEd2D4io6YkPwOIFcEJgCKFk18nz1tXDwdARC76JcSXaz8DiBHBCYAivb0uq1J27Onj4mnIwBiFy0X7E4CPIDcEJgAKMqG7e1av70jaR+J78DwFS0XLJEADyA3FQlMzOzu8HFpJa4HoHKi07hGNdVr5kQS34HhKlouWGLEBEBuKjVicoqkUyWtrtD1AFRINDA5dOpYEt+BYSya/C6RAA8gN5UKTDaEz1srdD0AFfJ0pCLXbBZWBIa1aLlgiQR4ALmpVGDyVPh8QIWuB6BCBlfkIjABhrNUOSaMmADIRaUCk59JMkkfqND1KsLM7jUzz/NxWgHXubqc5wcKtX57uzbsiCS+M2ICDGupckxIfgeQi4oEJu7+O0k3SDrVzH5hZqMqcd0q1CtpWdydAEolOo1rdHODZk4Yrv97A5BSByas/g4gFw2VuIiZvUfS/0k6XNIlki4wsz9K+oekVyX1ZHq/u19X9k4W5lJJ2T6FHSLplvD1/7n7uiKvOTvL8VVFnh/I2eDE9zGqI/EdGNYaU0zl6iHHBEAOKhKYSJovKfHrkt0lvTvH97qkqgxM3D1rEGBmiT9n0T+Hu/+z2HMApUJ+CYCoujpTnUmJgyRd5JgAyEElF1i0hEd0O9ujJplZnaR3hps7Jf0uxu4AJeXugwMT8ksASGqIlAwm+R1ALio1YjKzQtepNmdImha+/q27t8bZGaCUXtrWro3RxHdGTABIaqwzdSZsUy4YQC4qEpi4+wuVuE4Vek/C66qcjgYU6okXXk3aHjuiUTMnkvgOQIMWWWXEBEAuKjmVa1gxs9GS3hRuviDp3hKdd4GZbTCzzvD5XjP7tJntXorzA7l6cs3WpO2j9h4ns5qdeQmghKKrv3dTLhhADio1lWs4+hcNVOy6wd1L9XXR6xJeT5J0avj4lJnNc/fbCz2xmU3P0mRK34uOjg61tbUVeikMAY+t3py0PXvP0SW/J9rb21O+BsqFe640InGJdrW1829GGtxzqLSOjo7sjWJS8cDEzPZXMMXpBAUfdEdIer27L09oc5ikvSXtcvf7Kt3HEin1NK6nJf1e0qOSXpLUKOlABcn1Z0kaJ+lWMzvP3e8q8Bprc234yCOPaMWKFQVeBrWuu1d65qV6Jdam6F6/XAsWlG+ZnoULF5bt3EAq3HOF6+5M/vuw+PEn1LqS6VzZcM+hEjZt2hR3F9KqWGASVqj6uqQPK5hC1vcXyyU1RZrvLelPkrrNbGYJ1v6oqHDk4bRw82F3f77IU37H3a9Osf8RSdeZ2fsl/UhSvaSfmdksd+drF5TN2l1Sjw986DC59hnNhw4AgehyRqSYAMhFJUdMfizpvQoCknWSHpL0llQN3f1OM1slaUbY5rsV6mOpvEsD+TvXFnsyd9+a5fiPzexYSZdJmqpgGtmNBVxqryzHp0haLElz5szRrFmzCrgEhoL5D62R/tk/yKlZk0brgjfOKfl12tvb+79BnDt3rlpaWkp+DSAR91xpfG/Zw9rUPlCI8rDZR+isQyfH2KPqxT2HSqvmGS+VWvn9DAUfml3SVyV9wd17zCxTNtxvJH1S0mtVe4FJ36KKHRpY9b3cfqzgdywFOSd5Bybu/mKm44mJzc3NzRoxYkS+l8AQ8c+XdyVtHzNjfNnvh5aWFu45VBT3XOEaG+qTtusaGvhd5oB7DpXQ3NwcdxfSqtSIyRXh853u/vkc3/No+HxoGfpTNmZ2jKRDws0/ufurmdqX0LMJr6elbQWUwJNrkm/ro/YeF09HAFSlhvrkuVys/A4gF5UqF3yCgtGSn+fxnr5v76dkbFV9EpPei57GlQf+6qMiXtnWrpe2JacwvWZvqlUDGNBQR7lgAPmrVGDSN7F0dR7v6Qqfa6aksZk1SnpbuLlRUqHVsQpxSMLrlyp4XQwz0dGS3VoaNGvS6Jh6A6AaNUZGTLp7+e4MQHaVCkz6JqRPyuM9fWtqbClxX8rpbA38jDe5e3cFr/3+hNe1WmIZNeCJSGBy5F7jVBctwQNgWGPEBEAhKhWYrAyfD8nYKtnZ4fMzJe5LOeW9domZzTMzDx9Xpzg+28z2y3KOKyRdHm6+Ium2HPsL5G3wiu9M4wKQLJpjwogJgFxUaprUAklHS/pXM7vG3TN+dWJmh0iapyBv4s7yd694Zra7pHPDzX+6+xMlOvXRCtYmuUfB1LCnJW1W8N/uIA0ssChJPZKucPddqU4EFKuzu1f/WLctad9rSHwHENEYWfqd5HcAuahUYPI9Sf8maZakH5nZlemmOZnZ6yT9UlKLgg/gP61QH4t1saS++mulWOk9Ub2kM8NHOpslXebufyzxtYF+S17ers7u5O8VjtqLERMAyeoj0zuZygUgFxUJTNx9vZl9QMEH9sskvd7M7kho8mELFsk4ScEogEnqlTTP3XdWoo8l0Ld2SY8KW9wwnTsV/M5OkHSUpD0kTVDwO9oi6SlJf5Y03923l/C6wCDR/JJZk0Zp7MjGmHoDoFpFk9+7mMoFIAcVq3jl7jeaWZeChQD3UpCs3feXqi8/ou8v2U5Jl7j7HaoR7n5Sge+bL2l+huMbJP0ifACxIr8EQC5IfgdQiEolv0uS3P3XkvaT9AVJjysYXbCExzOS/lvSfu5OAjdQZaIjJqxfAiCVaPJ7DyMmAHJQ8TVC3H2zpC9L+rKZ1UkaryCHYou7d2V8M4DYbNjRrhdfbUvax4rvAFJprCP5HUD+Yl28MKzOtSnOPgDITXQa16imeh2wx27xdAZAVRtcLpipXACyq8hULjMbWYnrACifaGByxF7jBlXeAQCJcsEAClOpEZNXzewxSQsl3SvpftbaAGoL+SUAckW5YACFqFRg0ijp+PDxSUk9ZvaEpPs0EKjsqFBfAOSpu6dX/3hxa9I+8ksApMPK7wAKUanA5LOS5ipYp2S38LrHSTpW0scVBCp/10Cgsog1OYDqsfSVHWrviiysyIgJgDSiye8EJgByUakFFv9H0v+YWb2k10g6TdKpkk6WNCbsxzGSjpb075J6zewphYEKq5kD8XoyMo1rxoSRGj+qKabeAKh2g0ZMmMoFIAcVrcrl7j2SFoePb4Tlgo9SEKScpiBQGaegfPBR4ePDle4ngGRPRBLfyS8BkAnJ7wAKUdEFFqPcvdfdH3f3b7n7+ZL2V7DGybawSd/CiwBiFB0xIb8EQCYN0eR3ygUDyEGsIxFmNk5B7slp4eNwDQ5GXqh0vwAM2LyzQ6s3tybtI78EQCaDq3IxYgIgu4oGJhkCESU8r9ZAEvy97k5gAsTo72u3Jm2PaKzXQVNYWBFAeoOncjFiAiC7igQmZvYtpR8RWaXkQGRNJfoEIDfR9UsOnz5WDfWxzgIFUOUoFwygEJUaMfmIJFcQkKxSGIQoCETWVqgPAAoQXfGdaVwAsqFcMIBCVPprT5e0K+HRmrk5gDj19Lqeikzleg2J7wCyoFwwgEJUasTkOgW5JTMkHSbpUEn/KsnN7FkNjKDc5+6bK9QnAFk8v36HdnX2JO07ksAEQBbR6Z4kvwPIRaUWWJwnSWa2twbWLDlV0r4iUAGqVjS/ZPruIzR5t5aYegOgVjRGqnJ1US4YQA4qvcDiGknXhw+Z2XQFAcqpkk6XNEuDA5Vn3P2ISvYTQCCaX8LCigByQblgAIWIe4HFF939Rne/wt33lzRdwQKL2xUkytcpCFQAxOCJF1hYEUD+ouWCyTEBkItYF1iUJDM7QAPrmpwqaUp4qK+KF4AYbNjerpWbdiXtO2af8TH1BkAtoVwwgEJUPDDJEIhIyYHIcoV5JhXqGoAED6/akrS9W3ODDpk6JqbeAKglDZQLBlCASi2weIWyByLPayAQudfdX65E3wCk9vDK5LoTx84cP2jeOACk0hgZMWHldwC5qNSIyY80eGrWUiUHIusr1BcAOYgGJsfvyzQuALmhXDCAQlRyKtcSDQQi97n7hgpeG0AeNuxo18qNyfklx+87IabeAKg1DdGqXJQLBpCDSgUmk919U4WuBaBIj6xMzi8Z3dygQ/YkvwRAbqLJ7109LneXGdNBAaRXkXLBBCVAbRmUXzJj90FTMwAgnWjyuyT1kAAPIItYywWbWYOkvhXbXnX37jj7AyDwSKQiF9O4AOQjmvwuBZW5Gupj6AyAmlHxr0DN7GAzu8bMlkhql/RK+Gg3syVm9j0zO6TS/QIQ2LijQ8s37EzaN4fABEAeUo2wUjIYQDYVDUzM7L8l/UPSlZIODK9vGljl/UBJ/yrpKTP7aiX7BiDwyKrkaVyjmup1GOuXAMhDY4rS4qz+DiCbik3lMrNrFAQkfX+tlkh6RMFoiRSsb3KcpEMk1Uv6lJmNcvcPV6qPAAYnvh87czz5JQDykupvRhclgwFkUakFFk9SMBLikp6VdIW7P5im7QkK1j2ZLelDZnZLurYASi+a+D5nJtO4AOQn1WKslAwGkE2lvgZ9f/i8StJJmQINd39I0lxJK8NdHyhz3wCENu3s0LJIfgkLKwLIV8rkd0ZMAGRRqcDkFAWjJf/j7tuyNQ7bfE3BtK9Tytw3AKFHI9W4RjXV67BpY2PqDYBalapcMMnvALKpVGAyJXx+Mo/3PBE+71HivgBIIzqN6+gZ49VIfgmAPKUeMWEqF4DMKvWJoz18HpXHe/radpS4LwDSiAYmTOMCUAgzG5RnQvI7gGwqFZisCp/Py+M9fW1XZmwFoCQ27+zQ8+uj+SUkvgMoTEMkMCH5HUA2lQpM7lSQL3KVmZ2RrbGZnS7pKgV5KXeWuW8ANDi/ZGRTvWaTXwKgQNFpoIyYAMimUoHJdyRtl9Qo6S4z+76ZvcbM+q9vZnXhvu9L+rOkpvA936lQH4FhbVB+yT67k18CoGDRqVzkmADIpiLrmLj7JjN7q6Q/KAg4Phg+Os1si4KRkQnhMSkYXemUdJG7b05xSgAl9nBkYUWmcQEoRjQBnqpcALKp2Neh7r5A0vGSHlMQeJikZkl7Spoavu7b/5ikOe7+t0r1DxjOtuzq1HPrdyTtI/EdQDGiJYMJTABkU5ERkz7u/ndJx5nZsZLOlHSYpL5PP1sk/VPS39x9cSX7BQx3j65KHpgc0Viv2dPGxdMZAENCQ3TEhKlcALKoaGDSJww8CD6AKhGdxnXMjN3V1EB+CYDCkfwOIF9lDUzM7BxJb5C0j6R6SS9JulfSr929q5zXBpC7aOL7nJlM4wJQHMoFA8hXWQITM9tD0u8lHZfi8HslfcnMLnT3p8txfQC5e3VXp5a+Es0vIfEdQHEGV+VixARAZiWfq2Fm9Qqqb83RQDJ79DFT0l/MbGKprw8gP49E1i9paazT4dPHxdMZAEPG4KlcjJgAyKwck8jfKulYBSWAl0u6TNJsSQdJukjSw2G7PSR9rAzXB5CHRyKJ78fsM578EgBFiya/91CVC0AW5ZjK9dbwebWk49x9a8Kx583s95L+JulUBYHKZ8rQBwA5iia+k18CoBQaI+WCuwhMAGRRjq9Fj1IwWvLNSFAiSXL3HklfCDdnmtluZehDxZiZ5/i4t0TXe7uZLTCzV8ys3cxeMLMbzOyEUpwfw8vW1k4tfWV70r7jZ5FfAqB4lAsGkK9yBCaTwufHMrRJPEaeSQ7MbISZ3SHpJkmvUzAVrlnS3pLeKel+M/tChlMAgzy6aos84UvMIL9kbHwdAjBkNERyTEh+B5BNOaZyjVAwYrIzXQN3bzXr/yalpQx9iMMPJf1vhuO7ijz/LyS9MXx9j6TvKii/PFvSZyXNknS1mb3s7j8p8loYJqLTuF6z9+5qbqiPqTcAhpLGSFWuLsoFA8gilgUWIyx7k5qwwd3/WY4Tm9lrJb0t3PyjpDeFU+IkabGZ/UHS4wpGT75mZr9x91fL0RcMLYuWbUzanjOTaVwASoNywQDyRemd2vDx8Llb0pUJQYkkyd03SfpUuDlO0uWV6xpq1bqtbVq2IXlg85QDmFkJoDSi5YLJMQGQTTlHTK40sw2laOfuXypRn2pOWBzgjHDzb+7+Ypqmv5O0XdIYSW+S9I0KdA817L7nkkdLxo1s1BGsXwKgRAYlv1OVC0AW5QxMPpjleN9fqGztJGnYBiYK1oRpCl/fl66Ru3ea2cOSzpJ0rJk1untXJTqI2nTvc8nfB5yy/6RBUy8AoFANkXLBBCYAsinXVK50K74X8qgVF5nZs2bWamY7zGyZmV1rZqcXed5DEl4vzdK273iDpP2LvC6GsM7uXj24InlhxdMOmJSmNQDkrzEyYsLK7wCyKceISbEfxGvVIZHt/cLHe8JFJee5+7YCzjs94XW6aVx91ia83kvSs/lcyMymZ2kype9FR0eH2tra8jk9qsijq1/Vzo7upH3H7b1b1f03bW9vT/kaKBfuuRLy5ECkvaOr6v7GVAPuOVRaR0dH3F1Iq+SBibunnW40RLVK+oOk/1MwYrFTwVoup0r6gKQJki6UdLuZva6A6VWJC1CmLcEcSixJPDrP60jJgU1GjzzyiFasWFHAJVAN/vBCnRIHTKePcj3x4L2x9ScXCxcujLsLGGa454rz0ovJf2dWr1mrBQteiK9DNYB7DpWwadOmuLuQVjWUC65101KtcC/pr2Z2jaS7JB2lIFD5oKTv5Xn+xHVeOrO0TQyBR+R5HQwjS7YmT7E4eBxzvwGUVjRljWrBALIhMClSmqCk79h6M3uLgpGURklXKf/AJHFctyltq0BzwutCxsv3ynJ8iqTFkjRnzhzNmjWrgEsgbht2dOilhx5I2nfJWcfo6L3HxdOhDNrb2/u/QZw7d65aWobKeqyoVtxzpfP035br3pfX9G/vseeeOuusQ2PsUXXinkOlVfOMFwKTMnP3lWb2VwWrtu9nZlPd/aU8TrEj4XW26VmjEl5nm/Y1SIZSxJIks4Gvv5qbmzViBIMyteiRfyYP4e7W0qDj99tDDfXVvaxRS0sL9xwqinuuOCOak79Lc9Xx+8yCew6V0NzcnL1RTKr7k8jQkZiEPi3P9yYGC9mS0xNHPHLOF8Hwct/zyeuXnLL/xKoPSgDUnkHlgpnLBSALPo1URjF/jRODmoOytO073i1pWRHXxBDV3dOrRcuSA5PTDpgcU28ADGWDF1ikXDCAzAhMKiOxlHA+07ikIKejL+n91HSNzKxJ0vF972FxRaTy5Nqt2t6eXCZ4LuuXACiDweuYMGICIDMCkzIzs5mSXhdurnD3dfm83913KChFLElnZlhr5M2SxoSvb8u7oxgW7nsuebTkoCm7acpYEi0BlF79oJXfGTEBkBmBSRHM7DwzS1tAwMz2kHSrBqpp/W+KNvPMzMPH1WlO9f/C5wZJPzCz+sg5Jkr6Wri5VdLPcv4hMKzc+/yGpO1TD2S0BEB5MGICIF9U5SrONZIazexWSQ9JWq2gTO9ESadJen/4WpLul/SDQi7i7neb2a8kvU3S+QrWSPmOgmlhsyV9TtLeYfNPufurhVwHQ9vGHR3657rtSfvILwFQLtHk955eAhMAmRGYFG+qgvVJrsrQ5lZJl7t7R4Y22bxXwVStN0o6PXwk6pX0ZXf/SRHXwBC2MFKNa1RTvY7eZ/eYegNgqBuU/N7DVC4AmRGYFOcSBQnpJ0jaV8HoyBgFa4islfSgpGvd/aFiL+TubZLOMbN3SJon6QhJ4yStl7RI0vdLcR0MXdEywSftN1FNDczmBFAeTOUCkC8CkyK4+32S7ivyHPMlzc+j/U2Sbirmmhh+enpdC6Nlgg9kGheA8hm0jgnJ7wCy4OtSYBh46sWt2tqaXEGaxHcA5RQdMWGBRQDZEJgAw0C0TPD+k0dr2rgRMfUGwHAQLRfcxYgJgCwITIBh4N5IfsmpLKoIoMyiye89jJgAyILABBjituzq1D9e3Jq0j/wSAOXWOGjEhMAEQGYEJsAQt2jZRnnC54ERjfU6diZlggGUF+WCAeSLwAQY4qL5JSfOmqDmhvqYegNguCD5HUC+CEyAIay31wetX0I1LgCVEC0XTPI7gGwITIAh7JmXtmvzrs6kfacdQH4JgPKrr2PEBEB+CEyAIeye5zYkbe87cZT2njAypt4AGE4a66MLLLrcCU4ApEdgAgxhf/7nK0nbcykTDKBCosnvktRDZS4AGRCYAEPUms2tevbl7Un7Xn/olJh6A2C4iZYLloJREwBIh8AEGKLu+ufLSdsTRjXpuJnjY+oNgOEm1YhJFyWDAWRAYAIMUXdFpnGddegeg5JRAaBcUgUmJMADyITABBiCXt7Wpr+v3Zq07w2H7RlPZwAMS6mmclEyGEAmBCbAEBRNeh/T0qAT9p0QU28ADEf1jJgAyBOBCTAERadxnXnwHmpq4H93AJWTasSEqlwAMuGTCjDEbNzRocWrtyTte8NhVOMCUFkkvwPIF4EJMMT89dn1SlzDbGRTPeuXAKi4hhTFNigXDCATAhNgiImWCT79oMlqaayPqTcAhiszGxScMGICIBMCE2AI2dbapYdWbE7adzbTuADEJDqdi+R3AJkQmABDyF+XrE+aKtHcUKfTD5wcY48ADGfRBPhuygUDyIDABBhC/hyZxjX3gEka1dwQU28ADHfRksFdjJgAyIDABBgidnZ0a+GyTUn73nAo07gAxKchMmJCuWAAmRCYAEPE3Us3qLN7YJpEQ53pzIP3iLFHAIa7xkEjJkzlApAegQkwRESncZ2430SNHdkYU28AgOR3APkhMAGGgPauHt2zdGPSPqpxAYgbye8A8kFgAgwB9z2/UW1dPf3bdSaddQjTuADEKzpiQvI7gEwITIAh4M//fCVp+7iZ4zVhdHNMvQGAQD0jJgDyQGAC1LjO7l79bcn6pH1nH7ZnTL0BgAHR5HdyTABkQmAC1LgHVmzSjvbupH2vp0wwgCrQUBcJTCgXDCADAhOgxv356eRpXEftPU5TxrbE1BsAGNBQH5nKRblgABkQmAA1rLunVwueTQ5MqMYFoFoMXseEERMA6RGYADXs0VVb9GprV9I+8ksAVIvoyu8kvwPIhMAEqGG/e3Jd0vahU8dor/EjY+oNACRjxARAPghMgBq1q6Nbdz6dvNr7+UdMjak3ADBYfTT5ncAEQAYEJkCNuuufr6i1M3lRxTcdNS3GHgFAsmjyew9TuQBkQGAC1KjfPr42afvUAyZp8hiqcQGoHo2REZMuygUDyIDABKhBa7e06uGVW5L2veXovWLqDQCkRrlgAPkgMAFq0K1PvJi0PXZEo844eHJMvQGA1Eh+B5APAhOgxvT2+qDA5PwjpqqlsT6mHgFAapQLBpAPAhOgxjy6eovWbmlL2veWo6fH1BsASK+hnqpcAHJHYALUmN8+njxasv/k0Tp8+tiYegMA6TVEywWT/A4gAwIToIakWrvkLUdPl5mleQcAxIfkdwD5IDABasifWbsEQA2hXDCAfBCYADUkOo2LtUsAVDNGTADkg8AEqBFrt7TqoZWbk/axdgmAakbyO4B8EJgANeJ3T6xL2mbtEgDVrjFSLpipXAAyITApkpkdY2b/aWYLzOxFM+sws51m9ryZ/dLMTi7Rda42M8/xcVopronq0dvr+u0Ta5P2sXYJgGpXH8kx6WEdEwAZNMTdgVpmZgslnZLiUJOk/cPHPDO7TtL73L2zkv3D0LE4xdol/8LaJQCqHCu/A8gHgUlxpobPL0n6jaRFktZIqpd0gqSPSZom6T2SGiW9o0TXnZ3l+KoSXQdVIpr0vt/k0TqCtUsAVDmS3wHkg8CkOEslfVbSre7eEzn2sJldL+kBSQdIeruZ/cjdFxZ7UXf/Z7HnQO3Y1dGtO1i7BEANYoFFAPkgx6QI7n6uu/86RVDSd3yTglGTPm+pTM8wlLB2CYBa1RgZMWEqF4BMCEzK756E17Ni6wVqVnQa19wDJmkP1i4BUAMGlwtmKheA9AhMyq854XXKkRUgnTWbU61dQtI7gNrQECkXzFQuAJkQmJTfqQmvl5TihGFp4g1m1hk+32tmnzaz3UtxflSP6x5anbQ9pqVBZx68RzydAYA8Dc4xYcQEQHokv5eRmdVJ+nTCrl+X6NSvS3g9SUHwc6qkT5nZPHe/vZCTmlm2r+Kn9L3o6OhQW1tbprYo0q7Obt2yOHntkguOmCLv7lRbd0ydqrD29vaUr4Fy4Z4rrd6erqTtru5e/u2I4J5DpXV0dMTdhbQITMrro5KOC1//zt0fL/J8T0v6vaRHFZQobpR0oKR3SjpL0jhJt5rZee5+VwHnX5u9SeCRRx7RihUrCrgEcrXoFdOOjoEFFE2uGZ2rtWDB6vg6FaOFC4suaAfkhXuueM9tMwUV9AO72tq1YMGC+DpU5bjnUAmbNm2KuwtpEZiUiZmdKul/ws0Nkj5Y5Cm/4+5Xp9j/iKTrzOz9kn6k4F+An5nZLHfnq5ca1evSwpeTZ1oeurtrIjnvAGpIvSXnlFCUC0AmBCZlYGaHSrpNwe+3XdJF7r6hmHO6+9Ysx39sZsdKukzBwo//IunGPC+zV5bjUyQtlqQ5c+Zo1iyKjJXLouWbteHhp5L2/fu5r9EJ+46PqUfxaG9v7/8Gce7cuWppITJDeXHPldaktdt0zTMDkwWsrkFnnXVGjD2qPtxzqLRqnvFCYFJiZjZT0gJJuyuowvW2UiyqmKMfKwhMpCDnJK/AxN1fzHQ8cUG/5uZmjRgxIt/+IUc3Ln4pafuAPUbr9EOmDutFFVtaWrjnUFHcc8UbPTJ5Lnt3r/M7zYB7DpXQ3NycvVFMCExKyMymSvqbghELl/TeQhPRC/RswmtW4KtRyzfs1H3Pb0zaN+/EmcM6KAFQXu3t7dq6dataW1vV01O6yvY9Hd363MkDBSPNpGXLlpXs/ENBb2+vJkyYIElas2aN6uoomIr06uvr1dTUpDFjxmj06NFD7n4hMCkRM5so6a+S9g13XeXu11W4G8zeHQKufXB10va4kY2s9A6gLNxdL7/8srZt21aW89erVzPGJ09N6u4eJmUFc+Q+MIrU09OjXkoqI4Pu7m51dHRox44dMjNNmzZNu+22W9zdKhkCkxIws7GS/iLpkHDXp939BzF05ZCE1y+lbYWqta2tS7c+kTyj7m3H7q0RTfVp3gEAhdu8efOgoKShoXQfDerqXRN2S/5Gt5TnHyr6RsT53SCbnp4euQffQ7u71q1bN6SCE/4PKJKZjZR0h6TXhLu+4u5fi6k77094fV9MfUARfvPYWrV2DkyjqK8zveeEfWLsEYChqrOzUxs3DkwbnTx5ssaNG6f6+tJ9EdLZ3aOlr+xI2jdr6ljV1TE1tU9vb6+2b98uSRozZsyQm5qD0nJ3tba2asuWLdq5c2d/cHLAAQcMiXun9n+CGJlZk4LqWyeFu77r7p8v4DzzzMzDx9Upjs82s/2ynOMKSZeHm6+E/UIN6el1zY9M43rDoVM0dRyJkABKb+fOnf2vJ0yYoAkTJpQ0KAkMDkCcWcdAwcxMo0aN0vTp0zV69GhJQbCS+P9zLWPEpDg3K1jYUJLulvRzMzssQ/tOd3++gOscrWBtknsk3aVgocXNCv77HaSBBRaloBLYFe6+q4DrIEZ/W7JeL76avCLypSfNiKczAIa8XbsG/pkYM2ZMWa6RqmaHE5cARTMzjR8/vj8g2b59e9n+P64kApPivDnh9Wsl/SNL+xckzSjwWvWSzgwf6WyWdJm7/7HAayBGv3xgVdL27GljdfQ+u6dpDQDF6ezslBR8wClX+dBUE7aIS4DSGDlypMxM7t7//3OtIzCpDXcqWJ/kBElHSdpD0gQFf/O3SHpK0p8lzXf37XF1EoVb8vJ2PbxyS9K+S0+aQYlgAGXTV/2pvr6+bH9rGDEBysfMVF9fr+7u7pKW+Y4TgUkR3L0kf8ndfb6k+RmOb5D0i/CBISg6WjJxdLPOOXzPmHoDAKVh5JgAyAPJ70DMtuzq1O//nlzd+V3H763mBkoEA6htjJgAyAeBCRCzmx9do87ugQW1murr9M45lAgGAADDC4EJEKOO7h5d99DqpH3nHrGnJu1WnkRUAKgkMxuUv+IMmQBIg8AEiNEti9dq/faOpH2Xnjgzpt4AQOlFZ3MN17Bk/vz5/YHa6tWr4+4OUJUITICYtHf16Af3LE/ad/y+4zV7+tiYegQApRfNM2HAZOjp7e3Vs88+q/nz5+vKK6/Uscceq+bm5v5A7N57783pPKeddlr/e7I90kkMAM1Ms2bNyunaa9eu7a9QlyqA3LBhQ//+N7/5zelPJGnr1q1J57r77rsztv/iF7/Y3/auu+7Kqb9DFVW5gJjc+MiaQaMlHz3zgJh6AwDlwYjJ0Hf99ddr3rx5cXcjpZUrV+rBBx/UiSeemLHdjTfe2F9CO5XJkyfrwAMP1HPPPaf7778/47nuv//+pHMtWrRIr33ta9O2X7RokaSgdPdJJ52U8dxDHYEJEIPWzm798N7k0ZKT95uoOftOiKlHAFAmZkoMR4Zrjsm8efOq9sN7sRL/mzY2Nmr27Nnq6urS008/XdD5jjnmGP3yl78sul8tLS1qb2/X9ddfnzUwuf7665Pek8rcuXP13HPPaePGjVq6dKkOOuiglO0SA42enp7+7VS6u7v18MMPS5KOOOKIIbF6ezGYygXE4PqHXtCmncmrtH70dYyWABh6GDEZ+g455BB973vf00MPPaTt27fr8ccfzzrdKZNRo0bpsMMOy/jIxfnnny9J+vWvf51xZfQnnnhCzz77rCTpggsuSNtu7ty5/a8XLlyYtl3fsYsuukiS9PDDD6urqyvttXft2jXo/MMVgQlQYTs7uvWj+1Yk7TvtwEk6ep/dY+oRAJTPoHQAIpMh57jjjtNVV12l448/Xi0tLXF3p9/FF1+spqYmbdmyRXfccUfadn2jJccee2zaURBJOuWUU/pfpxsFaWtr0+OPPy5J+vCHP6wRI0Zo165deuKJJ1K2TzwPgQmBCVBx1z64Wq+2Jn9z8u+MlgAYoqKrvw/XqVy5VOXq6enRtddeq3PPPVdTp05Vc3OzJkyYoJNPPlnf+ta31NbWlvb8vb29uvvuu/Xxj39cJ510kiZOnKjGxkaNGzdORx55pD7+8Y9rzZo1ZfrpqtP48eN1zjnnSBoIPqK6u7t18803S5Le/e53ZzzfPvvso7333ltS+sCkb3Rkt91207HHHqvjjjsuY/u+/WaWFPgMVwQmQAVtb+/STxauTNp35sF76PDp4+LpEACU2aCqXPF0o+qtXbtWxx57rObNm6c77rhDL7/8sjo7O7VlyxY98MAD+tjHPqbDDz9czz//fMr3f+lLX9IZZ5yhb37zm3rwwQe1efNmdXd3a9u2bXrqqaf0zW9+UwcffLBuu+22Cv9k8eoLNu644w5t2bJl0PEFCxZo/fr1amho0Nve9ras5+sb1XjhhRe0du3aQcf7pnEdf/zxqq+v18knn5y0P5G79yfSH3zwwZo4cWKOP9XQRWACVNAv7l+lbW3JoyUffd3+MfUGAMqPmVzZbdmyRWeffbaeeuopNTc360Mf+pB+85vfaPHixbrnnnv0mc98RiNHjtTy5ct19tlna9u2bYPO0d3drT333FNXXnmlrr/+ej3wwAN6/PHH9fvf/16f/OQnNXr0aLW2tuod73iHlixZEsNPmbulS5dqzpw5GjdunFpaWjR9+nRdcMEFuu6669LmaqRzzjnnaPz48ers7NSvf/3rQcf7RlLe8IY3aNKkSVnPly3PpG8EpC8g6Xt+4IEHBo0WLlmyRJs3bx503uGMwASokG2tXfr5olVJ+84+bIoOncq6JQCGLtYxye5Tn/qU1q1bp3322UdLlizRNddco7e85S065phjdNppp+mrX/2q7r//fo0aNUorV67U17/+9UHnuPzyy/XCCy/oBz/4gd71rnfpxBNP1Gte8xpdcMEF+trXvqYlS5Zo2rRpam9v11e/+tUYfsrcrV+/Xo8++qi2bdumjo4OrVu3Tn/4wx90ySWX6Mgjj8wrsGpqatLFF18safB0rh07duj222+XJL3nPe/J6XyZ8kwSK2z1tTvxxBNVV1enLVu26JlnnklqT37JYJQLBirkp4tWakdHd/+2mfQR1i0BUMV6e12vtqavZpSLra1dauvq6d8e2dhRtXkmu49sUl1d+sX7ymH16tX906u+973vaebMmSnbHXXUUfrXf/1Xff3rX9f8+fP1la98Jen4jBkzMl5n+vTp+sQnPqGPfOQj+sMf/iB3z7hQYRzq6up0xhln6I1vfKOOOOIITZgwQTt27NATTzyhH//4x1qyZImeffZZnX766Xr00Uf78z2yefe7360f/vCHevDBB7Vy5Urtu+++kqTf/va3amtr09ixY3XeeefldK6DDjpIkydP1oYNGwYFJn0VthobGzVnzhxJ0pgxYzR79mw99dRTWrRoUVJFMQKTwQhMgArYsqtTv3wgebTk3MOn6sApu8XUIwDI7tXWTh39X3+LuxsV8/jnz9SE0c0Vveadd96pnp4ejRw5UmeffXbGtnPnztXXv/51vfTSS1qzZk3GD+bbt2/X5s2b1dra2h8Ijhw5sv/YqlWr+j+gV4vf/e53Gjdu3KD9p5xyiq688kq9733v07XXXqv169frIx/5iH73u9/ldN4TTjhB++23n5YvX64bbrhB//mf/ylpYATloosuyqua2CmnnKJbb71VS5Ys0aZNm/pzQ/qmdh111FH9v2spmM711FNPaeHChfrgBz/Yv78vMNl33301bdq0nK8/lDGVC6iAnyxcqV2dA98Y1pn04TPILQGA4e6xxx6TJLW2tqqpqam/cleqx7nnntv/vldeeWXQuV544QVdddVVmjFjhsaOHat9991Xhx12mGbPnq3Zs2friiuu6G+7adOm8v9weUoVlPRpbGzUz372Mx144IGSpNtuu03r1q3L+dx9SfA33HCDpKDYwL333isp92lcffqmaSUmr0sDgUa0ulbfduIIyZo1a/qrpFGNawCBCVBmG3d06NoHVyftu/DIadpv8uh4OgQAqBobNmwo6H2tra1J23fddZcOOeQQff/739cLL7yQ9f2ZSg9Xq4aGBl122WX92/fdd1/O733Xu94lSVq2bJkefvhh3XDDDXJ3zZgxoz9BPVeJ0676go3EICV6vr7tdevWadWqVUnvi55vuGMqF1BmP7pvRdL86vo6078xWgIAULB2iSRNmDBBd999t+rqcvvOODEXZdOmTXrHO96h1tZWjR49Wh//+Mf1+te/XrNmzdLYsWPV1NQkSbr77rt1xhlnSKrd9WQOOeSQ/tf5jJjsu+++Oumkk/TAAw/o+uuv1z333CMpCFjyzbU54ogjNHbsWG3btq1/+tYzzzzTX444GphMmzZNM2bM0OrVq7Vw4ULNnDmTwCQNAhOgjJat36HrHlqdtO9fXjNNMyaOiqdDAJCH3Uc26fHPn1nUOV58tVXb2wcKf0wa3axJu1U2jyNXu49sqvg1J0yYIEnauXOnDj74YDU2NuZ9jt/+9rfaunWrpGCK05lnpv5vlmodj1pTTML+e97zHj3wwAP6xS9+ofb2dknZF1VMpa6uTieddJLuvPNOPfnkk9q5c2d/oHHQQQelXI/k5JNP1urVq7Vo0SJdcskl/QHN1KlTtd9++xX8Mw01BCZAmfT2uj5729Pq6hn4VqqhznTVaxktAVAb6uqs6GTwXR3dSR8mx41sqniCeTU76qijdPPNN6ujo0OPPfaYTjjhhLzP0VeGdvz48WmDEmkgn6WWPfvss/2vp06dmtd73/rWt+rf/u3f+oOSOXPm6IADCquOecopp/QXLnjooYcGrV8SdfLJJ+uGG27QokWLtGnTJi1durT/PBhAjglQJr95fK0Wr341ad8Vc/fVXuNHpnkHAAw90W+4nSUWk5x77rn9v6Pvfve7BZ2juzsYkWpvb1dvb2/KNq2trYPW8ag13d3d+sUvftG/ne8UqHHjxunCCy9Uc3OzmpubdckllxTcl+hCi7kEJpL0/PPP69Zbb+2fSsc0rmQEJkAZbN7Zof++a2nSvr3Gj2C0BMCwV6OpDWVz4IEH6sILL5Qk3XLLLfrWt76Vsf2qVat08803J+3bf//g35bW1taUq5v39PTo8ssv10svvVSaTpfBPffc0z8dLZWuri5dfvnl/Ysrnnfeedprr73yvs6vfvUrtbe3q729Pal0b76OOeYYjRgxQpJ000036cUXX5SUfgTkkEMO0fjx4yUpaYFMApNkTOUCyuArdy7R1taupH1fvuAwjWiqj6lHABCPKlvDryp985vf1JNPPqnVq1frYx/7mG6//Xa95z3v0aGHHqrm5mZt3rxZTz31lP785z/r7rvv1pve9Ca9/e1v73//W9/6Vn32s59VR0eHLr30Uv3973/X6173Oo0dO1bPPPOMrrnmGj3++OP9yd/lMH/+/KTtv//97/2v//znP2v16tX92/vtt9+gkYVrr71W559/vs4//3yddtppOvDAAzVmzBjt3LlTjz/+uH7yk5/0T+OaPHlywaNLpdLU1KQ5c+bo3nvv1cqVKyUFU8vSrQ1jZjrxxBP1pz/9qb/9hAkTdOihh1asz7WAwAQosQeXb9LvnkiuFHLu4XvqtAMnx9QjAIjPoKlcDJkMsvvuu+vPf/6z3ve+92nRokVauHBhf3J0KmPGjEnanj59un74wx/q8ssvV3t7u772ta/pa1/7WlKbiy++WO973/sy5qAU49JLL017LNqXSy65JOWUp507d+qmm27STTfdlPZcs2fP1q9+9aukqmRxmTt3bv9aKJJ00kknZWx/8skn609/+lPSdjHJ/EMRgQlQQu1dPfr87/+ZtG+3lgb957mHpHkHAAxt0Y9dhCWp7bHHHrr33nt111136eabb9ZDDz2kV155RV1dXRo3bpz2339/nXDCCTr//PNTTv+59NJLdeCBB+ob3/iGHnjgAW3dulUTJ07UEUccoUsvvVRvfetbkz5EV5tPfepTOvLII/XQQw/p2Wef1caNG7VlyxY1Nzdrjz320DHHHKO3vOUtetOb3qT6+uqYfRD975BtPZToNC+mcQ1mfHOBXJnZdElrpSB5q29OKwZ8+6/P67v/tyxp35cvPEzvPn6fmHpU29ra2rRgwQJJ0llnndU/nxcol+F0zy1btkzd3d1qaGgo69/zl7e1aeOOjv7t3Uc2UQQkQW9vr7Zv3y4pGAnJdR0TQCrs/+Nly5YlViPby91fLFsH88TdD5TIio079cN7VyTtO3KvcXrncXvH1CMAiB8jJgByRWAClIC763O3Pa3OnoEyjfV1pq++abbq6pg/CmAYI8cEQI4ITIAS+N0T6/TwyuQVdS87eaYOmTomzTsAYHgYNGJCXAIgDZLfgSK9uqtTX7lzSdK+aeNG6CNnkoMDABQdqm4bNmzQhg0b8n5fU1NTwaumA+kQmABFcHd94Q/PaMuuzqT9X7rgUI1s4n8vADBFV35HNfnf//1fffGLX8z7ffvss0/S2iRAKTCVCyjCjY+s0R+eSl5J9w2HTtEZB+8RU48AoLpER0zIMQGQDoEJUKCnX9ymL/3x2aR9uzU36Avns2YJAPQhx6S6XX311XL3vB+MlqAcCEyAAmxr7dKVNz2eVIVLkr5x0RHac+zQXfcAAPI1aMQknm4AqAEEJkCe3F0f/+1TWrulLWn/5SfP1BsOmxJTrwCgWlEuGEBuCEyAPP100Ur99dn1SfuO3md3fersg2LqEQBUr+hSToQlANIhMAHy8NjqLfran59L2jd+VJO+/46j1FjP/04AkA0DJgDS4ZMUkKPNOzv0oZueVE/vwL+qZtJ3Lj6SvBIASMNYyARAjghMgBz09Lo+csvf9cr29qT9V712f809YFJMvQKA6je4KhdDJgBSIzABcnDN3cu0aNmmpH0n7zdRHz6D1d0B1Ka6uuAjQE9PT1mDBapyAeXh7urp6ZEk1dfXx9yb0iAwAbL427Pr9d3/W5a0b48xzfrO245UfTSrEwBqRFNTk6Tgw01HR0fZrsM6JkB5tLa29n+p0Pf/c60jMAEyuH/ZJl150xNJ/5DW15m+/47XaOLo5vg6BgBFGjVqVP/r7du3l+060RwTZ8wEKJq7a8uWLf3bY8aMibE3pUNgAqSxePUWve+6x9TZnbyI4idff6COnTE+pl4BQGmMHj26//XmzZu1efPm/mkh5cSICVA4d9euXbv04osvaufOnZKC4D/x/+da1hB3B4Bq9NTarbr0l4vV1pX8j/Rbjp6uK+buG1OvAKB0mpqaNGnSJG3cuFGStGHDBm3YsEH19fUlraTV0+vq7hz4W2qSlrVuKNn5h4Lu7m5J6v9vAaQTzQkzM02bNq0/Z6zWEZgAEUte3q73/OJR7ezoTtp/7uF76mv/cjilLwEMGRMmTFBnZ6e2bdvWv6/UoyZdPb3avGMgh8UktTRQYr2Pu6utrU2SNGLECP6NQc76gpLddtst7q6UDIEJkGD5hp16988f0ba2rqT9Zx68h759McnuAIYWM9PUqVM1fvx4bd26Va2trSUPTDp7u7V6S3Kp9X0mDZ0PUsXq7e3tD0xGjx49ZL75RnnU19erqalJY8aMGZL3C4EJEFq7pVXv+tkj2rSzM2n/KftPZGV3AENaS0uLpkyZUpZzr9q0S1+5fmXSvkvecLyaGvibKkltbW1aunSpJOnoo4/WiBGMJmH44q9CCZnZPmb2TTNbama7zGyLmS02s0+Y2cgSXudsM7vNzF40s47w+TYzO7tU1xhuXt7Wprf/9OFBCygeN3O8fvLuY9TSODTqgwNApTWkGGnu7u1N0RLAcMeISYmY2XmSbpCUWK9tpKRjwsflZnaOuy8v4hp1kn4i6bLIoWnh40Iz+5mk97s7f/VztGZzq+b98lG9+Gpb0v4j9hqnX8w7ViOaCEoAoFCpRpu7eijNBWAwRkxKwMyOknSLgqBkp6TPSTpR0hmSfho2O0DSHWZWzMTar2ggKHlS0tslHRc+Pxnuv1zSfxVxjWFl4fMbdd7379fKTbuS9h+85xhdd+lxGt1M7A4AxWioTzFi0sN3ZwAG41NXaXxX0ghJ3ZLOcveHEo7dbWbLJH1dQXDyMUlX53sBMztA0sfDzcckzXX3vq/4F5vZHyTdp2B05hNm9otiRmeGOnfXjxeu1Nf/vFS9kS/uZk0apesvO05jRzbG0zkAGEIaUyTn9kT/8AKAGDEpmpkdJ+mUcPPnkaCkzzclLQlff9jMCvnE+xENBJJXJQQlkiR3b5V0VbjZIOmjBVxjWGjt7NaHbn5S/3PX4KDkgD1G68bLj2dVdwAokfoUIyZdBCYAUiAwKd6FCa9/mapBmO9xXbg5TtLp+VzAgqLmF4SbS9394TTXeVjSc+HmBUYx9EHWbG7Vm//3Qd3xj5cHHXvj7Cm67cqTNGVsSww9A4ChKWXyO1O5AKRAYFK8k8PnXZIez9DuvoTXJ+V5jZmSpqY4T6brTJM0I8/rDGl9+SRLX9mRtN9M+sTrD9QP3vEajSKnBABKiuR3ALniU1jxDg6fl7t7d4Z2S1O8J1eHpDlPLtdZlee1hoStrZ1auWmXVm3cpZWbdmr5hp3667PrB03dGtPSoO++/SidfuDkeDoKAENcfZ3JTPKEv7+UCwaQCoFJEcysRdLEcPPFTG3d/VUz2yVplKS98rzU9ITXGa8jaW3C67yuY2bTszSZ1vfi0zferzHjn8/n9GXXI9eG7Z1a+2qbtrVlihEDMyaM1H+dc5Cm1W3TsmXbKtBD5Kujo0ObNm2SJK1YsULNzeT+oLy458pk52Z1J4ySfPa6ezW2hVLsktTT26uNm7ZIkm5d9TfVD7GVvFF9tm/ZkLhZVf8jEpgUJ7H0784c2vcFJqPLeJ3Eurf5Xmdt9iaB333xvXmeuvqsk3Q6hZUBoOJui7sDAPpMkvRC3J3oQ1henMQs6c4c2neEzyPKeJ2OhNf5XgcAAADDR1XNZWfEpDjtCa+bcmjfNyegLWOr4q6TOO8g3+tkm/q1t6QHwtfHKxh0AMppiqTF4etjJb0SY18wPHDPodK451Bp0yT1VXjNlrtcUQQmxUks75TLtKlR4XMu074Kvc6ohNd5XcfdM+avRKoPr8vWHihW5J57hXsO5cY9h0rjnkOlRe65XGb8VAxTuYrg7u2SNoebGRPHzWx3DQQNOedyhBL/SGVLUE8c9cj3OgAAAEAsCEyK92z4vJ+ZZRqBOijh9ZK0rTJfI3qeUl8HAAAAiAWBSfHuD59HSTo6Q7tTE14/kLZVaqskvZTiPKnMDZ/XSVqd53UAAACAWBCYFO/3Ca8vTdXAzOokvSfc3Crpnnwu4O4u6fZw8yAzOz7NdY7XwIjJ7eH7AAAAgKpHYFIkd39U0qJw8zIzOyFFs49pYLX377p7V+JBMzvNzDx8zE9zqe9I6glfX2NmSaWAw+1rws3usD0AAABQEwhMSuPDCkrzNkhaYGafMbPjzex0M/uxpK+H7Z6X9M1CLuDuz0v6Rrh5jKQHzOxiMzvGzC5WMD3smPD4N9x9WaE/DAAAAFBplAsuAXd/MgwObpA0RtJXUzR7XtI57r4jxbFcfU7BQjjvlXSUpF+laPNzSZ8v4hoAAABAxRlpCKVjZvsoGD05R0FZ305JyyX9RtL33b01zftO00DeybXuPi/Ldd4o6QoFCzFNlLRJweJMP3b3u4r9OQAAAIBKIzABAAAAEDtyTAAAAADEjsAEAAAAQOwITAAAAADEjsAEAAAAQOwITAAAAADEjsAEAAAAQOwITAAAAADEjsAEAAAAQOwITAAAAADEjsAEOTGzfczsm2a21Mx2mdkWM1tsZp8ws5Fx9w/Vz8wmm9m5ZvYlM7vLzDaZmYeP+QWc72wzu83MXjSzjvD5NjM7uwzdRw0ys2PM7D/NbEHCfbLTzJ43s1+a2cl5no97DmmZ2Rgze1v4b+V9ZrbczLaZWaeZbTCze83sk2Y2IcfznWhmN5jZC2bWbmavmNlfzOzt5f5ZMDSY2dcS/p11Mzsth/fE+nfO3L0S10ENM7PzJN0gaUyaJs9LOsfdl1euV6g1Zpbpj8217j4vx/PUSfqJpMsyNPuZpPe7e2/uPcRQYmYLJZ2SQ9PrJL3P3TsznIt7DlmZ2ZmS/ppD002S3uXuf8lwrqsl/YfSf4F8h6S3uHt7vv3E8GBmR0paLKkhYffp7n5vmvZV8XeOERNkZGZHSbpFQVCyU9LnJJ0o6QxJPw2bHSDpDjPbLZZOohatkbSgwPd+RQN/OJ+U9HZJx4XPT4b7L5f0X8V0EDVvavj8kqTvSnqLgvvkBEn/LmldePw9kuZnORf3HHK1VkGw+2FJb1Zwv50k6WJJv5HUI2mipD+Y2RGpTmBm75f0BQWf0VYouPeOk3ShpHvCZudI+kW5fgjUtoQgo0HShhzfVhV/5xgxQUYJ3zp2S5rr7g9Fjn9C0tfDzS+6+9WV7SFqhZl9UcG3N4vdfb2ZzZC0Kjyc04iJmR0g6RkFf2wfU3BPtiUcHynpPknHKLhnD2Ykb3gysz8p+IB4q7v3pDg+UdIDCr5YkaRT3X1hinbcc8iJmdWnutcibS6UdFu4eZu7vzlyfLyklZLGKvgC52h335R4jfD954W70n4DjuHLzD4i6duSliq4Xz4THkp5v1TT3zlGTJCWmR2ngakQP48GJaFvSloSvv6wmTVWpHOoOe7+BXf/k7uvL+I0H9HAsPRViX84w2u0Sroq3GyQ9NEiroUa5u7nuvuv031QDD/sfSxh11vSnOoj4p5DDrIFJWGb30t6LtxMNdXwcgVBiSR9KjEoSbjGlQpGXiTpEwV1FkOWme0t6cvh5gckpZ2mmuAjqpK/cwQmyOTChNe/TNUgnGd4Xbg5TtLp5e0ShiszM0kXhJtL3f3hVO3C/X3/8F8Qvg9I5Z6E17OiB7nnUCY7wueWFMcuDJ+3S/pdqje7+4uS/hZunsE0akT8QNJoBTMR7svWuNr+zhGYIJO+ijW7JD2eoV3ijX9S+bqDYW6mBvIGsv2x7Ts+TdKMcnUINa854XWqb7u551BSZnagpCPDzaWRY00K5vRL0kOZCjJo4H5rVjC9BpCZvVXSuZK2SPp4jm+rqr9zBCbI5ODwebm7d2dol/jH9eC0rYDiHJLwemnaVoOPc08inVMTXi9JcZx7DkUzs5Fmtr+Z/buCD3Z9U2a+E2l6gKT68DX3G/JiZuMUFPqQUkwDzKCq/s41ZG+C4cjMWhRUDpGkFzO1dfdXzWyXpFGS9ip33zBsTU94nfGeVFAZpw/3JAYJq9Z8OmHXr1M0455DQcxsntJMgQ79j6SbIvu431CMr0uaoqCox8/zeF9V3XcEJkgncc7qzhza9wUmo8vTHSCve3JXwmvuSaTyUQ1Mm/mdu6earso9h1L7u6Qr3H1ximPcbyiImZ2ioHBCt6QPeH4ld6vqvmMqF9JJTMrLpaJDR/g8ogx9AaT87smOhNfck0hiZqcq+MZaCmr8fzBNU+45FOr3kmaHj761IG5TkF9ys5mdm+I93G/IW5ib9BNJJunb7v7PPE9RVfcdIyZIJ3E12aYc2vclkbZlbAUULp97MjGpmXsS/czsUAUfEBsU3FMXuXu6Bci451AQd98qaWvCrsWSfmVm75Z0raTbzewyd5+f0Ib7DYX4rKSDFKx788UC3l9V9x0jJkhnR8LrXIbrRoXPuUz7AgqRzz05KuE19yQkSWY2U9ICSbsrqML1tlSLKibgnkNJufv1ClaAr5P0/XBBxT7cb8iLmR2kgcUTr3L3XZnap1FV9x0jJkjJ3dvNbLOkCUpOjBrEzHbXwM26NlNboAiJSXkZ70klJ+VxT0JmNlXB2g9TJbmk97r77Vnexj2Hcrhd0lsV/Lv5Bg0kwXO/IV8fVTDKsVLSSDN7W4o2hyW8fq2ZTQlf/zEMZKrqviMwQSbPKliZdj8za8hQMvighNepSm4CpfBswuuD0rYafJx7cpgzs4mS/ipp33DXVe5+XYa39OGeQzlsTHi9T8Lr5xWM5NWL+w256Ztata+km3No/x8Jr2cqSGavqr9zTOVCJveHz6MkHZ2hXeJaAA+UrzsY5lZJeil8fWqmhpLmhs/rJK0uV4dQ/cxsrKS/aKBW/6fd/Qc5vp17DuUwLeF1/3SYcEHFR8PNE8Kk5nT67scOSY+VtnsYZqrq7xyBCTL5fcLrS1M1CNcCeE+4uVXSPeXtEoarsPxh39Sbg8zs+FTtwv193+rcnmfZRAwhZjZS0h2SXhPu+oq7fy3X93PPoUwuSnj9dOTY78PnMZLenOrNZjZd0pnh5v+5+45U7TD0ufs8d7dMDyUnxJ+ecGx1eI6q+jtHYIK03P1RSYvCzcvM7IQUzT6mgdU/v+vuXRXpHIar7yiY6iBJ15hZUrnCcPuacLNbg1dWxjARftt8m6STwl3fdffPF3Cq74h7Djkws3nh4sSZ2nxU0hvDzVUa+De2z88kbQtf/4+ZTYi8v17S/2pghfhvFNVpIPAdVcnfOXJMkM2HFUzPGiFpgZl9VcGoyAhJb5N0RdjueUnfjKWHqAlmdrKk/RJ2TUx4vV+4UnK/SBnNvn3Pm9k3FKzYfYykB8zsa5JWSJol6VOSjgqbf8Pdl5XsB0CtuVnSWeHruyX93MwOy9C+092fj+7knkMerpb0TTO7VcFU6BUKpmrtpmA9k3dqIFDuVLDQYk/iCdx9i5l9StKPFOSfPGJmX1EwsjJV0kcknR42v9nd7y3jz4Nhopr+zhkjzsjGzM6TdIOCoeVUnpd0jrsvr1yvUGvMbL6kS3JtHw5BpzpPnaSfSnpvhrf/XME/+r359BFDh5nl+4/bC+4+I825uOeQlZmtVnIyezovKqgK99cM5/qigkTllH8HJd0p6V/cvT3NcUCSZGZXS/pCuHl6umC2Wv7OMZULWbn7HyUdLunbCoKQVgX5JI8pjKIJSlAp7t7r7pdJOkfBvNiXFHz7+FK4/UZ3v5wPiCgV7jnk6PUKpjf/TtI/JK1XMO1lh4Jvnm9VkK95YKagRJLc/QuSTlZQSnitgvttg4Lqcu9w93MISlBK1fJ3jhETAAAAALFjxAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAqpSZXW1mbmZeBX2Z0dcXM5sXd3+GGzObl/D7n1GC8703PNfTZmYl6GJVMrOLwp/zeTNrjLs/ADIjMAGAHJhZvZltDz/kPJGlrZnZ5oQPku/N0v6ShLYfLG3Pq4+ZTQ+DrkVmttHMusyszcxeNLOFZvZdM3uLmY2Nu69DkZmNlvTVcPNL7h574JvIzBaE/y98twSnu1XSs5L2l3RVCc4HoIwITAAgB+7eI+nBcPMIMxuTofmhksYnbJ+S5fSJxxcW0L2aYWbvk/ScpC9IOlnSREkNklokTVPwu/g3Sb+R9OOYujnU/ZukPRR8YP9tzH1JYma7STo13Pxjsedz915JXwk3P21mo4o9J4DyITABgNz1BQ11kk7M0K4v0OiJbGdrv0nBh0VJkrtf7e7m7kNiqo2ZvV3STySNlNQu6YeSLpR0jKRjJV0g6cuSnoypi0OemY2Q9O/h5rerbbRE0uslNUnaLum+Ep3zFknrJE2S9P4SnRNAGRCYAEDuEkcz5mZo13fsN+HzLDObmqqhmU2WdEC4eX8VflAsCTOrl/StcHOHpDnufqW73+7uj7v7Y+7+B3f/T3d/jaRDJP0utg4PXe+SNEFSh6pstCR0Xvj8F3fvKsUJw9HOW8LND5kZn32AKsX/nACQu8UKvumXMo+C9B37raQVWdoPl2lccyRNCV//2N3/kamxuy9x91+Xv1vDzmXh8x3uvjXOjkSFAcMbw80/lfj0N4bPMyWdXuJzAygRAhMAyJG7d0h6NNw81syao23MbKaCXAlJuj98SAUEJtmqcpnZ6vD4/HD7QDP7abi/w8zWm9ltZnZ8tp8tTO6/0sweCZP8t5nZE2b28VQ/ZwH2Tni9vNCTpKoOFlZe+puZbQiT6Jea2X+b2bgcz3m6mV1rZivNrDX8+Z82s2+kG+kq9TnMbHcz+5+w723hz/I3M7sol+vn2Md9FASIUpAUnq7daQm/49PCYg6Xmdn9YVGH7Wb2qJm9O/K+JjP7gJk9bGZbzGyHmT1gZm/NsYvHK8g56pV0Z4p+HW1mP7egwtYuM2s3s7Vm9riZ/cDMzjdLXWHM3Z+QtCrcfHuO/QFQae7OgwcPHjxyfCjIgfDwMTfF8UvCY8+H25eH2/9Ic77Hw+PbJNVHjl3dd600710dHp8v6U2SdiX0LfHRLeniDD/TaAVBUar3etjHoxK25xXwe3tzwvu/U8Tvf0ZiPyT9PEO/10k6KMO5WiTdnOH9LmmnpPPKfI6Dw76me/8vwp+1b3tGgb+7SxLOsW+GdqcltHudpD9k6Nt3w/fsriAnJF27z+bQv/8O296f4thHFeRsZfo9u6TRGc7f99/pxXL8beDBg0fxD0ZMACA/iaMaqUZB+vbdH3k+zMx2T2wYViA6Itx80IO58IWYLekmSeslfUjBN88nKAhs2iXVS/qJmU1K8/4bEvr9qIJvlI+RdI6CPJnXqPgKWYkJ7e83s9cWeT5JulLSe5Xc5zdK6psCNlXSX8Lfc5Lwm/XfSnpbuOuPkt4t6SQFv7sPS1ojaZSk35rZMWU6xxhJfwn7KgW5EG8Mf5Z3SHpM0qXhz1qsvv/Gm919ZY7v+bKCvI8bFdwPRyv4XT8XHv83MztTQXB8ooKCBmeF7S6T9FLY7ktmdmiWa/XllyRV4zKzwyX9PwWzPFZJ+pikMxQEy3MlvU/B/b8ry/n7Rjunmdl+WdoCiEPckREPHjx41NJDwehCl4JvXv+c4vhz4bFLE/ZtDPedG2n7eg180/uZFOe6uu94mr6sTnj/Y5LGpGjzzoQ2H01x/JyE43dIakjR5j+V/K30vAJ/d3+MnOdRSV+UdLakiTmeY0bkHOn6/B8Jbb6e4vj7wmOdkt6Q5lq7S/qn0n+LX4pzfCPLPdCoIHBJ/JlnFPj7fzZ8/9+ytDstcr0Pp2gzRUHlLJe0QcH0qwtTtDtcAyMd381wzZkJ1zs0cuxLGhh52iPDOcZKqstwfG7CNdKOIPLgwSO+ByMmAJAHd9+pgW//TwyrTUkaXGEr4W0PhM/REZZSJr6/1923p9h/kwa+tU41wtP3TXyHpPe5e3eKNv+l4MN1sS5VUECgz7EKgp47JW00s+fM7Boze02O58vU569ooM+XmVlT34FwpONT4eb33P3PqU7u7q9K+kS4eZKZ7V/iczRpIBn9H5L+J8X7u8I2pahQNT183pDHex5x90ELHbr7K5JuCzcnSfq1u/8+Rbt/KHuelSSdGz6vcvdnIsf6iiY87+7r053A3bd5sG5JOok/974Z2gGICYEJAOSvL4jYTdKRCfv7ygSvd/dlCfvvjxzv0/dBrV3JH9jz9bSnqXLl7q6BQCrpw1gYVJ0Wbi5w95eUQvhh79oi+td3nk0KpjldIemJFE0OUDAV7XEzu96yL4aXa5/HK5iO1ucQSbPC19lK5iYGjCeU+BxHKxhRkaRrw/9Wg7j7i5IWZLlGRmEBg74pba/m8dZfZTj2VJ7tMgUDKadxhV4Onw8xs+MynCObLQmvp6RtBSA2BCYAkL9FCa9PSfE6cbQksf3RFixw1/dted+HrEfcvbOI/izNcrzvA1k012KWgsUOpeyB0aNZjufE3bvc/afufrSC6mVvU5A/sEjJowLvkvSHxBGpFPLp8+yE14m5Hg8lVKAa9FAwfajPlBKfI7FP5f79j094nU9g8nyGY1vzbDco10fKabX3mxXcG82SHjCzP4bVvw5LV4UrjcSfmxXggSpEYAIA+VukYJ66lFtg8oSkVgX5An2le49VUNFJKn4aV2uW433TW6If8hM/rGab3pN2Ck2h3P0ld7/F3T/h7nMVfGj/bw3097XKXNo1nz4n/qyT8+5sYGTC61Kco5K///aE1yPyeF+meytx2lQu7dJ95uhb7X2HUqz27u5LFdwHr0pqUDDt64eSnpa0IRxdyzRNrE/iz12SxRsBlFZD3B0AgFrj7lvM7BlJhykMRsLqSn0Vtu6PtO8ys0cVTJuaK+keVd/CiimnEVW0A+5bJH02/Bb80+HuixRUDUv5lgIvlRignaegiEAuEoOHUpwjUbl//1sVlI1uUHJAVA368kvSrvbu7rea2d8kXawgkDlFQW7LRAWja+8ys2sV5FqlyzNJ/Lm3lqLjAEqLwAQACrNQQWAyycwOUlBVqE7BtJ0nU7S/X0Fg0heQ9OWbdEl6qKw9TS9xasseWdpmO15KP9VAYJKprGs+fU7ML9ic8HqruxeS2F+Kc0R//5mmQxX1+3d3N7NNCkalds/WvlIsebX3VNO4+rn7Nkk/CR8ys4MlXSDpKgXlli9R8P/eoGT9UOLPvabwXgMoF6ZyAUBhonkmfQHHw556PZK+UZTjw0TkE8PtJ9w92/oL5bJCUlv4+tgsbbMdL6XEhPZMIwn59DkxcEgMHE/KtVMRpTjH0wmvK/H777veARlbVdbxCkY+Uq72nom7L3H3/wnP0ff/UKZV5hN/7mjlLwBVgMAEAAqTOP1qrgZGQKL5JX0eUrCewygFq3iPTXGeigrL7N4bbp5lZnumahd+q31JMdfKM0k5MbE800KAufb5VSVXAXtC0ovh6yvMrEX5K8U5HtfAqMm70/2OzGyagkULi9UXTB+YatHJmPRV43oorNqWN3dfq4HRpokZmvYFd11KXRUOQMwITACgAGGZ2hXh5uka+DC9KE377Rr4xvqTCYfizi/5YfjcLOnHaapgfUbJFaQKcbaZ/drMjsrUyMzGS/pewq7bMzTP1OdPa6DPv3D3jr4DYQ7CV8PNfSVdF45ipevTGDP7UOK+Ep2jQ9Ivw80jNbDeSeL7GhRMbWuKHitA371Zp+TgL059gcmf0jUwswvNbFyG43tJOijcXJXhWn1V8B4K1yMCUGXIMQGAwi1SUHJ3WrjdLenhDO3vV/ABtG89h16lH2GpCHf/o5n9UcEHxPMUlGP9tqRlCipPzVOQcPyYivswW6cgkf0iM3tKwYrtixWsUdEZXutkBWuc9FW8elyZ1095LE2fL1FQhlgKRjW+nOK9P5L0OklvCvv1GjP7sYKyvNskjVHwYfc0SecrqGr1/TKc40sKph9Nl/Q1MztS0nUKkuQPkPTvCr7pL/b3L0kPStqoYOrUGQqKMMTGzGZIOjTczJRf8hFJN5rZHZLulrREwe93dwW/k6s0UHHrR2mutZsGRkxuS9UGQPwITACgcAsVfHDv86S7Zyqber+CBQT7PO3uW8vQr3y9U9JdCnIl5mjwYnlPSnq/gkChUK8qyAMYpaB62RGZm+uvkt6eZlX3Pj9QsP7FPKVe4O9lSa8Pk6aThMngFytIlP6AggDz6xmuNaiaVonOsc3M3iDpbwoS09+uwSWS5ysoo/tLFcHdO83sOkkfC6/x+WLOVwJ9oyWpVnuPGqkwsE1zvFfSF1KtPh96s4Ly3N3KvBgkgBgxlQsAChedhpVt9CM6zSvuaVySJHffoeBb/asUjGLsVLCmxN8VTOM6UclVrQq5xgMKvqk/X9K3FHzQfklSh4IPi1sUzPv/saTT3f0sd9+c5nSJ571U0jsU5MpsDs/3vIIA4VB3fzbDe7vc/UoFQdI1CqbabVOQC7RNwc//c0lvkXRwGc/xjIKRg68rGPXpkLRJwYjGO8KfsVR+Gj7va2bHZ2xZfplWe0/0dgUjaTcp+H2+ouCe2akgif2Hko5y9//KcI53hM+3ufsrhXYYQHmZe+yl6wEAyEk4/acvj+BSd58fX29qk5ndKelsST9z9/fF1IfdFARfTZLOcve/lvFa+yjIB6uXdIK7Z5puCSBGjJgAADC8fEbB1Kf3hInjcThLGVZ7L7HPKghK/kxQAlQ3AhMAAIYRd39KwbSoJgVBShx2SPqipKvcvbNcFwkDr3kKptZ9MnNrAHEj+R0AgOHnswqmN7WbmXmF53W7+wJJCypwqb0k/bekle7+dLbGAOJFjgkAoGaQYwIAQxdTuQAAAADEjhETAAAAALFjxAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7P4/L5mDbNViQ5IAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -114,7 +114,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AACKI0lEQVR4nO3dd3gc5bn38e+t3iy5F7nb4Aam92JMICR0UoBUSiA9HBIgySHJOSGNnJCXJIQkhDRqOoQWCAFCMcU003EDXLAtyV2yJKtY0vP+MbPS7mh31bZp9/e5rr2mPTPzSIzF3PuU25xziIiIiIiIRJOX7gqIiIiIiEjmUsAgIiIiIiIxKWAQEREREZGYFDCIiIiIiEhMChhERERERCQmBQwiIiIiIhKTAgYREREREYlJAYOIiIiIiMSkgEFERERERGJSwCAiIiIiIjEpYBARERERkZgUMIiIiIiISEwKGEREREREJCYFDCIiIiIiEpMCBhERERERiUkBg4iIiIiIxKSAQUREREREYipIdwUk+cysGFjob24FOtNYHRERERGJlA+M89dfd861pbMyQQoYcsNC4IV0V0JERERE+nQo8GK6KxFOXZJERERERCQmtTDkhq2hlSVLljBz5sx01kWyWEtLC0uWLAFg0aJFlJaWprlGkq30rEkq6DmTVFm7di2LFi0KbW6NVzYdFDDkhu4xCxMnTmTKlCnprItksZaWFsaOHQvAlClT9D9XSRo9a5IKes4kVVpaWsI3M26sqbokiYiIiIhITAoYREREREQkJgUMIiIiIiISkwIGERERERGJSQGDiIiIiIjEpIBBRERERERiUsAgIiIiIiIxKWAQEREREZGYFDCIiIiIiEhMChhERERERCSmgnRXQERERHprb2+nqamJ5uZm2tvb6erqSneVck5XVxdjxowB4N133yUvT9+zSnT5+fmUlJRQWVlJeXk5ZpbuKiWUAgYREZEM4pxj27ZtbNu2Ld1VyXnOOUpLSwHo7OxU0CYxdXR00NbWRkNDA6WlpUybNi2rAkwFDCIiIhmktraWhoaGiH1mRn5+fppqlNtC3xQXFOiVSWLr7OzEOQdAS0sL7777LtOnT8+algY9/SIiIhmitbU1IlgYM2YMlZWVFBcXZ82Lx3DS1dXFrl27AKisrMyqb4wlsbq6umhqaqKuro7Ozk5aWlpobm6moqIi3VVLCD35IiIiGaK+vr57ffz48YwfP56SkhIFCyIZLi8vj8rKSiZOnNi9r7GxMY01SiwFDCIiIhli9+7d3esjR45MX0VEZFAqKiq6A/yWlpY01yZxFDCIiIhkiM7OTsDrL68xCyLDT15eXve/3dC/52yggEFERERERGJSwCAiIiIiIjEpYBARERERkZgUMIiIiIiISEwKGEREREREJCYFDCIiIpKzbr75ZswMM2PdunXpro5IRlLAICIiIpKFurq6WL58OTfffDNf+MIXOPTQQ7uzhpsZjz/+eL+us3jx4u5z+vrEEh6YmRmzZ8/u1703bNhAfn5+xLnhgd2WLVu693/wgx+Me636+vqIaz366KNxy3/nO9/pLvuvf/2rX/XNVgXproCIiIiIJN5tt93GBRdckO5qRLVmzRqeeeYZjjrqqLjl/vjHP9LV1RXz+Pjx45k7dy6rVq3iqaeeinutp556KuJaTz75JO95z3tiln/yyScByM/P5+ijj4577WyngEFERERy1gUXXJCxL9VD5ZzrXi8sLGThwoXs2bOH119/fVDXO+SQQ7jpppuGXK+SkhJaW1u57bbb+gwYbrvttohzolm0aBGrVq1i69atrFy5knnz5kUtFx4AdHZ2dm9H09HRwbPPPgvA/vvvT2VlZZ8/VzZTlyQRERGRLLRgwQJ+/vOfs3TpUnbt2sWyZcv67LYTT3l5Ofvuu2/cT3+cccYZAPztb3+jvb09ZrmXXnqJ5cuXA3DmmWfGLLdo0aLu9SVLlsQsFzp29tlnA/Dss8+yZ8+emPdubm7udf1cpYBBREREJAsddthhXHLJJRxxxBGUlJSkuzrdzj33XIqKitixYwf3339/zHKh1oVDDz00ZqsBwLHHHtu9HqvVoKWlhWXLlgFw6aWXUlpaSnNzMy+99FLU8uHXUcCggEFERERyWH9mSers7OSWW27htNNOo7q6muLiYsaMGcMxxxzDT37yE1paWmJev6uri0cffZQrrriCo48+mrFjx1JYWMjIkSM54IADuOKKK3j33XeT9NNlptGjR3PqqacCPUFBUEdHB3/+858B+OQnPxn3etOnT2fatGlA7IAh1JowYsQIDj30UA477LC45UP7zSwiIMlVChhEREREYtiwYQOLFy/mU5/6FPfffz+1tbW0t7ezY8cOnn76aS6//HL2228/Vq9eHfX87373u5xwwglce+21PPPMM2zfvp2Ojg4aGhp49dVXufbaa5k/fz533XVXin+y9AoFAffffz87duzodfyhhx5i8+bNFBQU8JGPfKTP64VaAdavX8+GDRt6HQ91RzriiCPIz8/nmGOOidgfzjnXPYB6/vz5jB07tp8/VfZSwCAiIiISxfbt2zn55JN54403KC4u5ktf+hJ///vfeeGFF3jssce48sorKSsr4+233+bkk0+moaGh1zU6OjqYNGkSX/jCF7jtttt4+umnWbZsGXfffTdf+9rXqKioYPfu3XzsYx9jxYoVafgp+2/lypUcfvjhjBw5kpKSEqZMmcKZZ57JrbfeGnMsQCynnnoqo0ePpr29nb/97W+9jodaHt7//vczbty4Pq/X1ziGUItBKFAILZ9++umIweEAK1asYPv27b2um8s0S5KIiMgw0tXl2Lk79kDRbDSqrIi8vNhz/CfLpZdeyqZNm5g6dSqPPfZYr9wBixcv5uyzz+bYY49lzZo1XHPNNfzgBz+IKHPxxRfz7W9/m8LCwoj9Bx10EGeeeWb3GINNmzZx9dVXx+yikwk2b97M5s2bu7c3bdrEpk2buPfee/nRj37EHXfcwfz58/t1raKiIs4991xuuOEGbrvtNj73uc91H2tsbOSee+4B4LzzzuvX9YLjGD7+8Y93b4fPeBQqd9RRR5GXl8eOHTt48803IwZsa/xCbwoYREREhpGdu9s5+PuPpLsaKbXsWycypqI4pfdct25d9zff11xzDTNnzoxa7sADD+SLX/wi11xzDTfffHOvgGHGjBlx7zNlyhS++tWv8uUvf5l7770X51zcBGjpkJeXxwknnMApp5zC/vvvz5gxY2hsbOSll17ixhtvZMWKFSxfvpzjjz+e559/vns8QV8++clPcsMNN/DMM8+wZs0aZs2aBcAdd9xBS0sLVVVVnH766f261rx58xg/fjxbtmzpNS4hNONRYWEhhx9+OACVlZUsXLiQV199lSeffFIBQx/UJUlEREQk4P7776ezs5OysjLe+973xi0beqmsqanpcwDzrl27WLt2LW+++SZvvPEGb7zxBmVlZRHHMs0//vEPHnnkES677DJOOOEEDjjgAI499lguvfRSXn31Vc4//3zAa4H48pe/3O/rHnnkkey1114A3H777d37Q60sZ5999oBmdwq1HqxYsYJt27Z17w91UTrwwAO7f9dAzHEMoYBh1qxZTJ48ud/3z2YKGEREREQCXnzxRQB2797N2LFjyc/P755NKfg57bTTus+rq6vrda3169dzySWXMGPGDKqqqpg1axb77rsvCxcuZOHChXzmM5/pLhv+opspRo4cGfNYYWEhv/vd75g7dy4Ad911F5s2ber3tUODn0MBw4YNG3j88ceB/ndHCgkFDOGDlqEnAAjOdhTaDm9RePfdd7uDPs2O1EMBg4iIiEjAli1bBnXe7t27I7b/9a9/sWDBAn7xi1+wfv36Ps+PN0VrpiooKOCiiy7q3n7iiSf6fe4nPvEJAN566y2effZZbr/9dpxzzJgxo7sFoL/Cuw+FgoDw4CF4vdD2pk2bult21B0pOo1hkIz23JrtvFGzi8VzxzF7XEW6qyMiknajyopY9q0T012NlBpVVpTye3Z2dgIwZswY7r33XioqKsjL6/t71vCxDtu2beNjH/sYu3fvpqKigiuuuIL3ve99zJ49m6qqKoqKvJ/r0Ucf5YQTTgDoNWPPcLFgwYLu9YG0MMyaNYujjz6ap59+mttuu43HHnsM8AKJgY7l2H///amqqqKhoaG7m9Gbb77ZPW1rMGCYPHkyM2bMYN26dSxZsoSZM2cqYIhBAQNgZtOB/wJOBaYCbcA7wN+AXzrndsc5vb/3mAF8HjgRmA2UA43ASuBB4NfOucF9nZGlHnyjjs/d7mVl/OnDBfzp04ez35SR6a2UiEia5eVZygcA56IxY8YA0NTUxNy5cxk1alS/AoZwd9xxB/X19YDXVefEE6MHetHyEAw3Qxmofd555/H000/zhz/8gdbWVqDvZG3R5OXlcfTRR/PAAw/w8ssv09TU1B0AzJs3L2o+hWOOOYZ169bx5JNPcv7553cHGtXV1d3jK0RdkjCz04HXgMuAuUAZMAo4BLgGeNnMhvTEmNkngeXA14CDgCq8YG0UcCTwHWCFmcUfVZVj7ljWk3ilqa2DK/7+Km0dnWmskYiI5IoDDzwQgLa2Nl5++eVBXePNN98EvMzGsYIF6BkvMZwtX768e726unpA555zzjkUFxd3BwuHH344c+bMGVQ9QuMOOjs7Wbp0aa/8C0Gh/U8++STbtm1j5cqVEdcRT04HDGZ2IPBXoBJoAr4JHAWcAPzWLzYHuN/MRgzyHkcDNwOlQBdwE3AWcBjwYeA+v+ho4B4zmzWY+2SjDTsi+3Gu3tzE9f95O021ERGRXHL66ad3f2t+ww03DOoaHR0dALS2ttLV1RW1zO7duzM690J/dHR08Ic//KF7e6BdeUaOHMlZZ51FcXExxcXF3bMuDUYwgVt/A4bVq1dz5513dncJU3ekSDkdMADX4b3IdwAnOeeuds4tdc496pz7DF6LAHhBw+WDvMeV9PyeL3HOfco5d49z7gXn3J3OuTOAn/jHS/FaOgSoaeg98OuGJ97h9Y29M2mKiIgk0ty5c/nwhz8MeNOK/vSnP41bfu3atfz5z3+O2Lf33nsDXlAQLZtxZ2cnF198MTU1NQmqdeI99thj3d2qotmzZw8XX3xxd5bq008/nalTpw74Pn/5y19obW2ltbWVz3/+84OtLocccgilpaUA/OlPf2Ljxo1A7BaDBQsWMHr0aMDLtxGigCFSzo5hMLPDgNDT83vn3NIoxa4FLgTmA5ea2Q+ccwPLfe61WABsd879KkaZ79ITKBw5wOtnpaa2DhpbO3rt7+xyXPH3V7nvkmMoKsj1eFdERJLpV7/6FS+88ALr1q3jiiuu4N577+W8885jn332obi4mO3bt/Pqq6/y4IMP8uijj/KBD3yAj370o93nn3POOXzjG9+gra2NCy+8kFdeeYX3vve9VFVV8eabb3L99dezbNmy7kG/yXDzzTdHbL/yyivd6w8++CDr1q3r3t5rr716fRN/yy23cMYZZ3DGGWewePFi5s6dS2VlJU1NTSxbtozf/OY33d2Rxo8fz3XXXZeUn6O/ioqKOPzww3n88cdZs2YN4HWRCiWFCzIzjjrqKP75z392lx8zZgz77LNPyuo8HORswIDXLSjkpmgFnHNdZnYr8ENgJHA88NAA7xOa2iFmJhbnXIOZbQPGhpXPabX1saeVW7W5kV88+haXnTQ3hTUSEZFcM3r0aB588EEuvPBCli5dypIlS3ol+QpXWVkZsT1lyhRuuOEGLr74YlpbW/nRj37Ej370o4gy5557Lp/+9KfjjnEYigsvvDDmsWBdzj///Khdd5qamvjTn/7En/70p5jXWrhwIX/5y19iZsROpUWLFnXncgA4+uij45Y/5phj+Oc//xmxnWnZttMtlwOG0L+IZmBZnHLhkwkfzcADhlV4A51j/gsys0q8YCFUPufVNLTGPf7Lx9/hpH0msu/kqhTVSEREctGECRN44IEHePLJJ/nrX//K0qVLqaurY8+ePYwcOZK9996bI488kjPOOCNqN5YLL7yQuXPn8uMf/5inn36a+vp6xo4dy/7778+FF17IOeecE/Fym2m+/vWvc8ABB7B06VKWL1/O1q1b2bFjB8XFxUyYMIFDDjmED3/4w3zgAx8gPz8/3dUFencn6iufQ7C7kroj9WbDdb7foTKzrXgv6a865w6IU24UEJrv7O/OuXMGeJ9PA7/xNz/vnPt1lDI/Bq7wN9/rnHtkIPfoRx2mABvAG9QT6lOZyf76wrt8/c7Xu7fHVhRRv3sPHV09z+u8iSO490vqmpRJWlpaeOghL6Y+6aSTuvuRiiRatj5rb731Fh0dHRQUFAyLv9XZrquri127dgFe68FAp1WV3DSYf8dvvfVW+MxQU51zG5NWwUHIyRYGMyuh5xv9uP9BnHM7zawZL2/CwEfxwB/wWjPOA35pZgcD9wK1wDTgk/R0j/rBYIIFPyCIZ2Jopa2tbVhkkXx3W2PE9sLqShZMquCXT6zr3reyrpHrHl7BlxZrYqlMEZoSL7gukmjZ+qx1dXV1z9ISa1YdSZ3w/wb67yED4Zyjq6ur3+9cbW1tSa7R0ORkwACET5Ha1I/yoYBhwKmGnXOdwPlmdh/wDeBi/xPuMeDqIbQsbOi7iOe5557jnXfeGeRtUufFt/MIn8RrT8MWZo2qo7osn5rdPf0Kb1iylrKdbzOlPA2VlLji9fMVSaRsetbGjBlDaWkpZtb9zbZkhqam/rwuiHjTzLa0tNDS0tKd16Ev27ZtS3KthiZX29ZKwtbb+1E+FPYNqs3bzObjtTAsjFHkSOAiM5s8mOtno/rAf5WRxY6CPPj4Xp3k0dMtqcsZf3o7n0598SMiIiKSFLnawhDeft2fWYmK/eWA+/KY2bF4ydmqgPXAt4CH8cZFTADOAL4HfARYZGYnOefeHOBt+uoqNRF4AbzsibNnzx7g5VPvureeBXZ3by86eCEn7ef1rGoauYYblqzrPrZpt/F853SuOH425cW5+khnhtbW1u5vexctWkRJSUkfZ4gMTrY+a++++y6dnZ0UFBT0mnFHUq+rq6u7ZaGioiKlYxi2bNnCli1bBnxeUVHRoLMkS2Js3bqV0tJSKioqOPjgg/t1Tqb3/sjVt6vwDvL96WYU6vAyoPZIMysG/owXLNQBRzjn6sKKbAR+ZWZPAC8C1cAtwCEDuU9fA2PCpwYrLi7O+MGBzjnqdkX25Zs2rrK73l85aT6Prd7Oyrqe/4x/eXETD7yxmfOPmsEFR81gTEUxQ+WcY1drBzua29ne1Ma2pvbu9e3N7Wxvbqejs4vKkkKqygqpKi2kstRflhRQVVrI5FGljB+RHS8yA1VSUpLxz5pkh2x61vLy8rr7ymuAbWbJy8tL6X+TX//613znO98Z8HnTp0+PyK0g6WFm5OXl9ftvU3Hx0N9bkiknAwbnXKuZbQfGAHEHDPuzJIUChn6PFfC9Hwh1M7o+ECyE1+dNM7sdb2zDwWa2v3Pu1QHeK2vsaulgd3tnxL7qqp5/cEUFefz4w/tz1q+epjNs1qRdrR1c/+jb/PbJNXzk0Gl8etEsJo+M/w+1q8tRt6uV9dt3s357M+t3+Mvtu1m/fTdNbb2Txw3UxMoSFk6pYr/JVSycUsXCyVUJCWhEREREUiEnAwbfcrxMz3uZWYFzLtab4byw9RUDvMf8sPWX+ii7jJ7B0POAnA0Yahp69/yaUBX5gr1wShX/e9oCrrrvTYIzA7fu6eLmZ9Zx+7PrOfOAybx3wQR27m5ny642tja1+ss2b9nYRnuSB0DU7WqlbnkrDy/f3L1v8shS9ptSxVGzx3DKwkkKIEREJMJVV13FVVddle5qiAC5HTA8hRcwlAMHA8/FKHdc2PpA87aHByF9/a4LY5yXc+oCSdvGVhRTXNA7Gcz5R83ggKkj+eVjb/NQ2Mt4SEeX486XNnLnSxk1lTEAm+pb2FTfwr/eqOOq+5Zz7N5jOfOAat67YCIVGochIiIiGSSX30zuBq701y8kSsBgZnl4sxsB1ONNfzoQa8PWjwX+GasgkYHJ2pilckCwhaF6ZOwxAPtPHclvzjuEtzY3csMT73DvKzURyd0SpawonzEVRYwuL2ZseRGjy4sYU1FMUb6xq7WDhpY93Z9d/rJ+955+tV50djkeX7WVx1dtpaTwdd67YCJn7l/NojnjlJRORERE0i5nAwbn3PNm9iTei/xFZnaLc25poNjl9HQrus45tyf8oJktpieIuMU5d0Hg/P/gTfVTBnzezG53zr0eKIOZnQx8wN/cBLwymJ8pW9TWR7YwTKrqe9Dw3hNG8JNzDuCy987hd0+u5S8vvEvrnv53NSotzGf6mDL/U+4tR5czbXQZ40YUU1o08HT3XV2ONduaeX1TPa9tbOD1jQ28UdMQt16te7q479Ua7nu1hqrSQhbNGcdRs8dw1OwxTBtdFjGAXURERCQVcjZg8F2K182oFHjIzK7GCwBK8aY5/YxfbjVw7UAv7pyrN7P/A76LlyzuGTO7Hm9a1Z1406qeCXyanpwY/+2cy+msAsEWhklV/Z/9ZMqoMq46Yx++9J69uPnpdfz7zToaWzsYX1nM+BHFjBtRzLgRJWHrxUwZVcq4iuKEv4zn5Rl7ja9gr/EVfOBAb2x9R2cX72xt5rWN9Sx5axsPL6+LGUA0tOzpDh7AG/dw1OwxHLXXGI6cNZaJ/Qik0qXLQU1DK9vrWthUv5uNO1q6u2E1tnawaO+xXHLC3hTmqwVFREQk0+V0wOCce9nMzgVuByqBq6MUWw2c6pxrjHKsP74PjMYLTirwukFdGaXcHuAbzrnbB3mfrBFsYYjXJSmWsRXFXPG+uVzxvrmJqlZCFOTnMXfiCOZOHMHZh0ylua2Dh5dv5p5XNrHkrW0Rsz4Fbapv4e/LNvL3Zd6YjHEjiinIy6wWB+ccu1vyadoDXc8+E7PcKxvqqR5ZykcOm5bC2omIiMhg5HTAAOCcu8/M9sN7oT8Vb5rVduBt4O/AL5xzu+Ncoq/rO+ArYdOmHgNMx+um1OTf5wngRufc6qH8LNmiNtDCMHEALQzDTXlxAWcdOJmzDpzM9qY2Hnijjntf2cQL63b2ee7WxrY+y6RH/4KYx1ZtUcAgIiIyDOR8wADgnFsPXOZ/BnLe4/Tz7cg5twxv6lSJwzlHbWCWpOoM7nqTSGMqivnkEdP55BHT2VTfwpLVW3nmne0sfWcb25ra0129hAtPvCcinvz8fDo6Oujo6KCzs5P8/IGPnxKR9Onq6qKz08sllU3/fhUwSEbZ0dxOW0dkn/5JfSRfy0aTR5by0cOm8dHDpuGc460tTTzz9jaeeWc7z67Zzq7W4THzbnFBHlNGlTJ5VBkjigu4//Xa7mOhxHiaRlakR1lZGW1tXuthfX09Y8aMSXONRGQgmpqacH6CqGzJQA8KGCTDBFsX8gwmjMjtpGZmxpwJI5gzYQQXHD2Tzi7HitpdbGvKvC5J7e3tvLTsJcoKHR9832Imj6nsHkzeuqeTB9+sixinsaqukYOnj0pXdUUyzsiRI9m50+uSuGXLFjo7O6msrKS4OPETM4hI4nR1ddHU1ERdXV33vhEjRqSxRomlgEEySjBgGD+ihALNpBMhP8/Yd3JVuqsRVUtLCy1rvIBgTHlRxAtOSWE+s8eVs3pzU/e+FbW7FDCIhCkpKaGqqoqGhgYAtm/fzvbt2zGzrOreMJx0dHgtulu3bk1zTSSTdXZ2drcsgNe6UF5ensYaJZYCBskowQHPkwYxQ5JkrnkTKyMChpV1u9JYG5HMNGnSJIqKiiJeUJ1z3S+ukjrOOVpavP8vlZaWqpVH+qW0tJRp06Zl1fOigEEySk1wStUsniEpF82bNIJ7X+3ZXlGrgc8iQWbG2LFjqayspKmpiebmZtrb2+nqyukUPWnR1dXVHTBUVFSQl6cWb4kuPz+f0tJSRowYQXl5eVYFC6CAQTJMrxaGHJkhKVfMn1QZsb2qrpGuLkdehuWTEMkERUVFjB49mtGjR6e7KjmrpaWFlStXAnDwwQdn1SBWkYFQqCwZJZi0LZOzGcvAzZ8YGTA0tXWwcWdLjNIiIiKSCRQwSEapCbQwVOfglKrZbEJlMaPKCiP2rdA4BhERkYymgEEyRleXY/OuyBYGdUnKLmbGvEArw4paBQwiIiKZTAGDZIxtzW3s6XQR+9TCkH2C4xhWauCziIhIRlPAIBkjOH6hIM8YW5HbSduy0bxJkYls1CVJREQksylgkIwRnCFpQmUJ+Zo9J+ssCLQwrN++m+Y2zS8vIiKSqRQwSMbolYNBSduy0l7jK3oFgivr1C1JREQkUylgkIwRbGGYqKRtWamkMJ9ZY8sj9injs4iISOZSwCAZo6YhmOVZLQzZat4kzZQkIiIyXChgkIxRW68sz7lifmDgs2ZKEhERyVwKGCRj1AVaGCZpStWsFcz4vLKuka4uF6O0iIiIpJMCBskInV2OzY1tEfuqNYYhawVzMTS1dbAp0MIkIiIimUEBg2SELY2tdAa+YZ6kWZKy1oTKYkaWFUbsW65xDCIiIhlJAYNkhOCUqkUFeYwpL0pTbSTZzKx3tySNYxAREclIChgkIwSnVJ1UVYKZkrZls14Zn9XCICIikpEUMEhGqA20MEysVHekbBccx6BcDCIiIplJAYNkhJpAC0O1ZkjKesEuSet37Ka5rSNNtREREZFYFDBIRgi2MCgHQ/bbe0IFeWG9zpyDVZs1jkFERCTTKGCQjFC7SzkYck1JYT6zxlVE7NPAZxERkcyjgEEyQjDLc7VaGHJCcByDBj6LiIhkHgUMknbtHV1sbYpM2jZJSdtywryJkTMlaeCziIhI5lHAIGm3eVcrLjJnG9VK2pYTFgRnSqptxAUfBhEREUkrBQySdrUNkeMXSgvzqSotjFFaskkwF0NjWwcbd7bEKC0iIiLpoIBB0k5J23LXxMoSRpZFBocaxyAiIpJZFDBI2tUEp1RVd6ScYWZRxjFopiQREZFMooBB0q53C4MGPOcSzZQkIiKS2RQwSNoFxzBoStXcEsz4rBYGERGRzKKAQdKuVwuDkrbllODA53Xbm9nd3pGm2oiIiEiQAgZJu9rgGAa1MOSUORNGkBc2xt05WKVWBhERkYyhgEHSqnVPJ9ub2yP2VauFIaeUFOYzc2x5xL4VtQoYREREMoUCBkmrusD4BVALQy4KDnxWxmcREZHMoYBB0qomMH6horiAESVK2pZrNFOSiIhI5lLAIGml8QsCMD8w8HllbSPOuTTVRkRERMIpYJC00gxJAjAvMLVqY1sHG3e2xCgtIiIiqaSAQdJKORgEvJalqtLIrmiaKUlERCQzKGCQtAoGDMrynJvMjFnjImdKCrY+iYiISHoUpOImZrbIX33BOdevtwAzKwEOA3DOLUlW3SS9auqDXZLUwpCrJoyI/G+/eVdbmmoiIiIi4VISMACPA13AfsDyfp4zOey8VNVTUqx3lyS1MOSqCZXFEdtbGntPuSsiIiKpl8ouSdZ3kYSeJxlud3sHDS17IvZN1BiGnDW+Ui0MIiIimSiTxzCE6taZ1lpI0tTU9/4GuVpdknLW+BHBFgYFDCIiIpkgkwOG6f6yIa21kKQJDmqtKi2krEi9z3LVhEALw5Zd6pIkIiKSCZLydmZm02IcmmRmTX2cXgzMBr4HOODNRNZNMoeStkm48YExDNub22nv6KKoIJO/1xAREcl+yfo6d22UfQY8NIhr3TrEukiG6jXgWUnbclpwliSAbU1tei5ERETSLFlf3VngE2t/vE8b8GPn3B+SVEdJs15ZntXCkNNGlhVSlB/5J2mzuiWJiIikXbJaGC4MbN+E173of4BNcc5zQCtQC7zsnOur+5IMYzVqYZAwZsa4EcVsCsvNoZmSRERE0i8pAYNz7pbwbTO7yV+92znX3zwMkuVqg0nb1MKQ8yZURgYMW5WLQUREJO1SNSXN8f4y2tgGyVHBMQzKwSDBmZLUwiAiIpJ+KQkYnHNPpOI+Mnzsat1DU1tHxD5leZbeuRjUwiAiIpJumq9Q0iI4pSqohUGU7VlERCQTpTxLlpntDxwLzAJGAPl9nOKccxclvWKSUsEZksaUF1FS2NejINku2MKgWZJERETSL2UBg5nNBf4AHDGQ0/BmTlLAkGWC4xcmjVTrgvQew7C1US0MIiIi6ZaSgMHMJgNLgLH05GVoAnYCXamog2SW3jMkafyC9A4YlO1ZREQk/VLVwvBNYBxea8HvgP/nnFudontLBuqVg0HjF4TeXZIAtja1MVk5OkRERNImVV/bvR8vWLjVOfcZBQvSK8uzXgiF6Nmet2gcg4iISFqlKmCo9pe3puh+kuGCsyQpaZuAl+15fGVw4LPGMYiIiKRTqgKGnf6yPkX3kwzmnKMm2MKgMQziC3ZLUrZnERGR9EpVwPCiv5yTovtJBqvfvYfWPZFj3dXCICHK9iwiIpJZUhUw/BxvdqTPpOh+ksGCU6qaKWmb9OgdMKiFQUREJJ1SEjA45x4GfgQcb2Y3mFlhKu4rmSk44HlcRTGF+Zo2UzzjAl2StigXg4iISFqlKg/DecAK4Bm8VobTzewOYCWwu6/znXMaLJ1FglOqaoYkCacWBhERkcySqjwMN+NNqxoyCbikn+c6NLtSVgkmbVMOBgkXHPSsFgYREZH0SlXAAD0ZniXHBccwaIYkCRdsYdihbM8iIiJplaqAYWaK7iPDQE19cEpVtTBIjwmVyvYsIiKSSVISMDjn1qfiPjI89GphGKmAQXpUlRZSVJBHe0fP1Lubd7UqYBAREUkTtfFLSnV1OerUJUniMLPe4xiUi0FERCRtFDBISu3Y3U57Z2TStmq1MEhAcBzDFmV7FhERSZtUDnoGwMz2Bs4DjgQmAqXA+5xzb4eV2ReYBjQ7555IdR0leWrrI1/88vOM8SMUMEgktTCIiIhkjpQFDGaWB1wDXIrXshGaNckBRYHi04B/Ah1mNtM5tylV9ZTkqgkkbZswopj8PE2gJZGUi0FERCRzpLJL0o3AV4B8oAa4I1ZB59wDwFq/7IdTUjtJiWAOBiVtk2jGB2ZK2qxcDCIiImmTkoDBzE4ALvI3rwZmOOfO6eO0v+O1QrwnmXWT1Oqdg0HdkaS3YDe1LWphEBERSZtUdUn6jL98wDn3rX6e87y/3CcJ9ZE0qVHAIP0QzMWgbM8iIiLpk6ouSUfijVX4/QDO2egvJya+OpIuvbokaUpViSLYwhDK9iwiIiKpl6qAYby/XDeAc/b4y5TP5CTJE+ySpClVJZpY2Z5FREQk9VIVMDT7y3EDOGeKv9yR4Lr0YmbTzexaM1tpZs1mtsPMXjCzr5pZWYLvdaKZ3Wxmb/v3ajCz1WZ2h5l93swqEnm/TNLZ5XrNdqMWBokmlO05nGZKEhERSY9UfXu/BjgIWAA83M9zTvaXbyalRj4zOx24HagM210GHOJ/LjazU8PzRAzyPqOAm4AzoxyuBPYGPgQsBV4Zyr0y1bamNjq6XMS+SWphkChC2Z437uzpwqZcDCIiIumRqhaGh/BmPPqin48hLjNbAFyAN+7hgWRVyswOBP6K98LeBHwTOAo4AfitX2wOcL+ZjRjCfarwAqVQsHAX8HHgCOBQ4IPAdfSM28hKNYHxC4X5xtjy3l1PREDZnkVERDJFqloYfg78FzAb+LWZfcE51xGtoJm9F++b+BJgOz0v7slwHV6m6Q7gJOfc0rBjj5rZW3jJ5uYAlwNXDfI+1wMHA23AOc65ewPHXwTuMrNQnoqsFBy/MLGqhDwlbZMYguMY1CVJREQkPVLSwuCc2wx8zt+8CHjHzH4VVuRSM/uNmb0JPAhUA13ABc65pmTUycwOA471N38fCBZCrgVWhNWxcBD3OQb4pL/5rSjBQjfniRpIZYNgC8OkSo1fkNh652JQlyQREZF0SFmmZ+fcH4GPAruAqcBn8bocAVyMF0jMx+u61ASc7Zy7P4lVOits/aZoBZxzXcCt/uZI4PhB3OdL/rIB+MUgzs8avZK2afyCxKFszyIiIpkhZQEDgHPub8BewLeBZUAnXoAQ+rwJ/BDYyzl3V5Krc4y/bPbrEssTYetHD+QGZlZEz7iFh51zrf7+fDObamYzzCxn3pprG5SDQfpvgrI9i4iIZISUBgwAzrntzrnvOecOwxunMB6YBBQ75xY6577pnNuSgqrM95dv99ENaGWUc/prf7yfEeB1M6s0s58B24B3gbVAg5k9bGaLB3jtYaemXjkYpP+CLQzK9iwiIpIeaU2K5nf52Zbq+/rf6o/1N+POTOSc22lmzUA5XleqgVgQtp6HN7h570CZIuBE4AQzu9I596MB3gMzm9JHke5s2W1tbbS0tMQrmzTBLM9jSvPSVhdJjtbW1qjrg1FVFLm9o7mdhqZmivJT/j2HZKBEPmsiseg5k1Rpa8vsL8VyNYty+BSp/RlUHQoYBppUbXTY+tfxWhseBP4XeA1vOtcPAf8HVAH/Z2YrnXP3DPA+G/pb8LnnnuOdd94Z4OWHrtPBlsZ8vJ5nnnXLX+ah9SmviqTIkiVLhnR+8x4I/on6xwOPMFoz8UrAUJ81kf7QcybJtG1byr8/H5Bc/aouvC9Mez/Kh8K+gXa6Lw/c82HgNOfcC865NufcVufcr4HT8GaFAvihmWXdXKMN7eCI/LFGFsUoLAKUFUCBRSb629Wff60iIiKSUAltYTCzR/1V55w7Icr+wYi4VoKEtyv257U19J3mQPvPBNsvv+6c6wwWcs49ZWb/AD6MN05iIV4LRH/11VVqIvACwOGHH87s2bMHcOnEeOndenjppe7t4oI8PnDKe8nC2Cintba2dn8Lt2jRIkpKhjZO5f+tfIaNYWNfZiw4gJPmjx/SNSU7JPpZE4lGz5mkSjp6fwxEorskLfaXLsp+Bwzk7TBUPnitRGgMW+9PN6NQS8FAc0KE32erc+7lOGX/jRcwgJf9ud8Bg3Mu7jiM8Jfy4uJiSktTPzvR9tadEduTqkooKytLeT0kdUpKSob8rE2oKo0IGBraXFqeX8lsiXjWRPqi50ySqbg4s/vbJjpgWEL0F/xY+9PCOddqZtuBMUDcAcNmNoqegKHfYwWilI/7Uh8oO26A98l4wQHPmlJV+kPZnkVERNIvoQGDc27xQPan2XK8TM97mVlBnKlV54Wtr4hRJpY3w9bz+ygbfjzrsj0raZsMRjDb82ZlexYREUm5XB30DPCUvywHDo5T7riw9acHcgPn3Hq8fAsAM/oYzBw+sGDTQO4zHASTtlWrhUH6QbkYRERE0i+XA4a7w9YvjFbAzPKA8/zNeuCxQdznTn9ZCcQbvP3BsPWnYpYaptTCIIOhbM8iIiLpl7MBg3PueeBJf/MiMzsySrHL6cnufJ1zbk/4QTNbbGbO/9wc41Y/o2e2pJ+YWWWwgJl9gp4B4/c75wY6ViLj9cryrBYG6Qe1MIiIiKRfSgIGM1toZmvM7C0zm9yP8pPN7G0ze8fM5iSxapfiTZVaADxkZlea2RFmdryZ3Qhc45dbDVw7mBs4597FS9QG3nSpz5vZhWZ2sH+f64Gb/eO7gK8M8mfJWG0dnWxrinzRUwuD9MeEysjnZEdzO20dvWYmFhERkSRKVabnTwAzgH875/rsn++c22Rmq4H3+ef+bx+nDIpz7mUzOxe4Ha/L0NVRiq0GTnXONUY51t/7/NjMRuNle54L/CFKsS3AWc65twZ7n0y1uaH3t8KaJUn6I9glCWBrYxtTRmlKXhERkVRJVZek4/CmVb13AOfcg5eHIdFJ2yI45+4D9gN+ihcc7MYbr/Ai3gv+gc65txNwnyuBo4HbgHV42aMb8BKq/Q8wxzm3dKj3yUQ1gQHPZUX5VJakKlaV4ayytICigsg/U+qWJCIiklqpemsLdSsaSPbiN/zl3ATXpRd/NqPL/M9AznucASSj8wOCrAwK4gnOkDSpqkQZnqVfzIwJlcVs2NHzDGngs4iISGqlqoUhlE15IJmSQ2V7DRKW4aXXgOeR6o4k/RfslqRcDCIiIqmVqoBhp7+cOIBzQmUHPXZAMkNdcErVKg14lv7rPVOSWhhERERSKVUBQ2gg7/sHcM7J/vKdBNdFUqx3lyS1MEj/KduziIhIeqUqYPg3Xl//z5jZ/L4Km9k+wKfxBko/mOS6SZL17pKkFgbpv+DUqps1hkFERCSlUhUw3AA0AyXAo2Z2WqyCZnYG8AhQipcj4ZcpqaEkjVoYZCjGj4jskrRVsySJiIikVEpmSXLObTOzz+FNKToeuMfM1gBPAbV+sUnAscBMvNYIB3zeObc5FXWU5Ghp72Tn7ogE2WphkAFRC4OIiEh6pWwyfOfcH80sD6+1oQyYDcwKFAvNtdmMFyzcnqr6SXIEWxcAJqqFQQYgOOh55+49tHV0UlyQn6YaiYiI5JZUdUkCwDl3G7AX8H/A6/5uo6dF4TXgB8BeChayQ21ghqQRJQVUFCtpm/RfrGzPIiIikhopf3NzztUB3wC+YWYFwGj/0A7nXEeq6yPJVVMf2cJQrdYFGaDK0gKKC/Jo6+jq3rd5VxtTRpWlsVYiIiK5I6UtDEHOuQ7n3Bb/o2AhC/XKwaDxCzJAZtarW9JW5WIQERFJmbQGDJL9anolbVMLgwycsj2LiIikjwIGSargoOdqZXmWQdBMSSIiIumT0DEMZvaov+qccydE2T8YEdeS4aW2PtglSS0MMnDjArkYtmjQs4iISMoketDzYn/poux39Eyb2h+h8sFryTBSoxYGSQC1MIiIiKRPogOGJUR/wY+1X7JYU1sHja2RY9knKmCQQZjQa9CzWhhERERSJaEBg3Nu8UD2S3arre+dtE2DnmUwxvca9KwWBhERkVRJ6KBnM9vP/xQl8royPAVnSBpVVkhpkbLzysAFWxhC2Z5FREQk+RI9S9IrwEt42Zy7mdn/+p+xCb6fZLC6wPgFtS7IYE2I0pXt3e2701ATERGR3JOMaVWjDWy+Cvg2MD4J95MMVROYIalaSdtkkCpLCpkYGPi8sq4xTbURERHJLYkOGPb4S32VLL1yMKiFQYZi7sQREdurFDCIiIikRKIDhs3+8uAEX1eGodpglme1MMgQzAsEDGphEBERSY1kTKv6MeBHZjYbWE1PqwPAmWZ2yEAv6py7NUH1kxSqqQ+2MChgkMGbMyHQwrB5V5pqIiIiklsSHTD8EPgAUAVcEThmwPcHcU0HKGAYZpxzvVsY1CVJhiDYJWnDjhaa2zooL070nzEREREJl9AuSc65N4FFwCN4LQtG5CBoG+RHhpldLR3sbo+c9rJaAYMMwV7jK8jPi/xzsHqzuiWJiIgkW8K/mnPOLQNOMrMCYCxQAqzBayl4H/BWou8pmaemoXfStglVxVFKivRPSWE+M8aU8c7W5u59q+oaOXDaqDTWSkREJPslrS3fOdcB1AGYdX8rWOOcW5+se0rmqAt0RxpbUUxxgZK2ydDMnTgiImDQwGcREZHkS2jAYGb/5a/e5pzbGXboO3gtDFsSeT/JXMEWBuVgkESYO6GSB16v695WlyQREZHkS3QLw8/wAoNHgPCAYbG//xZgW4LvKRmotj444FkBgwydcjGIiIikXqqmFzkOL2AoT9H9JM2CLQyaIUkSIZiLYXtzO1sb2xg3QuNjREREkiXRidtCXyuPTPB1ZZhRC4Mkw9TRZZQURv7ZUiuDiIhIciU6YFjnL09L8HVlmKkNtjCMVAuDDF1+nkVJ4KaAQUREJJkS3SXpAWAe8HUzO4HemZ6/b2b1A7ymc85dlKD6SQpES9pWrRYGSZC5E0bw2saG7u1Vdcr4LCIikkyJDhiuBs4A9gIOBQ4JO2bAmQO8nuGNfVDAMIzs3L2Hto6uiH1qYZBE0cBnERGR1EpowOCc22FmhwBfAk4AJgPFwHS8F/9aIlscJAvV1Ed2R8ozmKBBqZIg8yZWRmyv3txEV5cjL09J4UVERJIhGZmed+G1NFwd2mdmoa+bT3LOLU/0PSWzBLsjjR9RQkF+oofLSK6aM7EiYrtlTyfv7tjNjLGahE1ERCQZ9BYnCdd7wLPGL0jijKsoZnR5UcQ+DXwWERFJnlQFDMcD7wHWpuh+kkY19cEBzxq/IIljZswNzpSkcQwiIiJJk5KAwTn3hP9p6bu0DHfBFoaJmiFJEkwDn0VERFInVZmeu5lZHl6Lw5HARKAM+KZzrjasTJFft07nXFuq6yhDo6RtkmzBgGGlplYVERFJmpQGDGZ2GvBzvFmTwv0/vBmUQi4GrgeazKzaOdecoipKAtQEWhiqNaWqJFgwYFi3fTetezopKcxPU41ERESyV8oGPZvZp4F7gBl4+RW2+8tofgc0ABXAB1JRP0mMri7H5l1qYZDkCmZ77uxyvLO1KU21ERERyW4pCRjMbG/gl/7mo8AC59z4WOWdc+3AnXgBxUnJr6EkyrbmNvZ0uoh9amGQRKsoLmDq6MjnSuMYREREkiNVLQxfwev+9CZwinNuZT/OedJfHpi0WknCBccvFOQZYyuUtE0STzMliYiIpEaqAob34GV6/pnfetAfb/vLqcmpkiRDcIakCZUl5CsDryRB74HPChhERESSIVUBwxR/+eoAzgkNdC5LcF0kiXrlYFDSNkmSuRMrI7ZXK3mbiIhIUqQqYAh1ah/Iy/8Yf9mQ4LpIEvXOwaDxC5Ic8wItDLUNrTTs3pOm2oiIiGSvVAUMm/zlrAGcc4y/XJPgukgS1TQEszyrhUGSY+bYcgrzI7u7rVIrg4iISMKlKmB4HG/Go/P7U9jMqoDP4bVMPJq8akmi1dZHtjBoSlVJlsL8PGaPq4jYt0oJ3ERERBIuVQHDjXgv/8eZ2QXxCprZGOBuvCzQHcCvk105SZy6QAvDJE2pKkkUHPisFgYREZHES0nA4Jx7GbgOr5Xh92b2VzM7J6zIUWb2MTP7Jd7sSIvwAozvOefWp6KOMnSdXY7NjW0R+6o1hkGSqFfAoJmSREREEq4ghfe6HCgGPg982P+EBkPfGFYu1Cn5Z86576euejJUWxpb6eyKTNo2SbMkSRIFBz6vrGvEOYeZpvIVERFJlFR1ScJ5vgi8D29Mg8MLDsI/AEuBU51zl6WqbpIYwSlViwryGFNelKbaSC6YE0je1tjaQW2gW5yIiIgMTSpbGABwzj0MPGxmI/CyOI8H8oHtwCvOuW2prpMkRnBK1UlVJfqmV5Jq8shSRhQX0NjW0b1vVV0j1Ro7IyIikjApDxhCnHONwJJ03V8SrzbQwjCxUt2RJLnMjDkTR7Bs/c7ufas2N3L8vPFprJWIiEh2SVmXJMl+NYEWBn3LK6mggc8iIiLJlZYWBjObACwG9gVG+7t3AG8AjzvnNqejXjI0wRYG5WCQVJg7offAZxEREUmclAYMZjYJ+AnwwTj37jCzO4HLnXO1KaucDFntLuVgkNQLtjC8s6WJPZ1dFOarAVVERCQRUvZ/VDPbH3gNOAcopPcMSaFPIXAu8KqZLUxV/WToglmeq9XCICkQnFq1vbOL9dub01QbERGR7JOSgMHMyoH7gTF4QcEjeEHBDKDE/8zACyYe8suMBe43s7JU1FGGpr2ji61NkUnbJilpm6TAyLIiJlQWR+xTtyQREZHESVULw5eAaqAL+LRz7iTn3N+dc+8659r9z7vOuTucc+8HLsbL0zAZ+GKK6ihDsHlXKy4yZxvVStomKRLMx6CBzyIiIomTqoDhTLwA4Gbn3O/7Kuyc+wNwE15LwweSXDdJgGCyrJLCPKpKC9NUG8k10TI+i4iISGKkKmCY4y//MoBz/hw4VzJYMGlbdVWpkrZJysydWBmx/frGBlywyUtEREQGJVUBQ4W/3DGAc0KZmMoTXBdJgprglKrqjiQpdMDUqojtul2tbNzZEqO0iIiIDESqAoat/nL+AM6Z5y+3JbgukgTBFgYNeJZUmj2ugtHlRRH7nl87kO8nREREJJZUBQzP4o1HuMzM+sz94Je5DG/cw7NJrpskQHAMg6ZUlVQyMw6ZPipi3wvrFDCIiIgkQqoChlv95QF4U6VWxyroH7sPOMjfdXNSayYJ0auFQUnbJMUOmzk6Yvt5BQwiIiIJkZJMz865+8zsbuAs4ERgjZk9BDwHbMFrSZgAHA68Fwj1LbjLOXd/KuooQ1MbHMOgFgZJsWDAsGZrM9ua2hhbURzjDBEREemPlAQMvo/itTScjRcQnOp/gkJT6/wdOC81VZOhaN3Tyfbm9oh91WphkBRbMKmS8qJ8mts7u/e9uG4H7993UhprJSIiMvylqksSzrk259y5wOnAv4AWvOAg/NPiHzvNOXeuc64t1vUkc9QFxi8ATFQLg6RYQX4eBwXGMTy/dmeM0iIiItJfqWxhAMDvYnS/meUDs4BQP4IdwBrnXGfMkyUj1QTGL1QUF1BZoqRtknqHzhjNk2/1TKymgc8iIiJDl/KAIcQPDN5K1/0lcTR+QTLFoTMixzG8WdNAU1sHFcVp+1MnIiIy7KWsS5Jkr7pdwaRtGr8g6XHgtJEU5vdkGO9y8NJ6dUsSEREZiqQEDGZ2hJn9w/98eIDnnh127sHJqJ8kVk19ZJck5WCQdCkpzGfh5Misz+qWJCIiMjTJamG4DjgTmArcM8Bz7/HPOxP4aYLrJUkQTNqmLM+STocG8zEo47OIiMiQJDxgMLPDgUP9zf9yzu0ZyPnOuXbgv/BmTTparQyZL9jCMGmkWhgkfQ4LjGN4ZUM9bR2aS0FERGSwktHCcI6/fMo5t3QwF/DPe8Lf/EhCaiVJE2xhqFYLg6TRIdNHYz3DGGjr6OKNTQ3pq5CIiMgwl4yA4Ui8zM0D7YoUdC9eK8NRQ66RJM3u9g4aWiIbkZSDQdKpqqyQuRNGROx7Tt2SREREBi0ZAcNsf/n6EK/zRuB6koFq6nsnbatWlyRJs+D0qi8oYBARERm0ZAQMI/3l1iFeJ3T+yHiFJL1qA0nbqkoLKSvSnPeSXsGBzy+u30lnl0tTbURERIa3ZAQMu/1l5RCvE+pT0BK3VAKY2XQzu9bMVppZs5ntMLMXzOyrZlaWpHuWmdkaM3P+Z10y7pNsvWdIUuuCpF9w4HNjawer6hrTVBsREZHhLRkBQ6hlYK8hXid0/lBbKuIys9OB14DLgLlAGTAKOAS4BnjZzIb6s0TzXWBmEq6bUsEsz9VK2iYZYGJVCVNHRz6LyscgIiIyOMkIGF7GG6x88hCvc2rY9ZLCzA4E/orXGtIEfBNvkPUJwG/9YnOA+81sRNSLDP6+XwZagWH9tWewS5JaGCRTBMcxPK+AQUREZFCSETD821+eZWb7DOYCZrYvcBbebEv/jl96SK4DSoEO4CTn3NXOuaXOuUedc58BvuaXmwNcnogbmlk+XjCSD1wNDOu3mJrglKpqYZAMcfjM3gOfndM4BhERkYFKRsDwF2CLf+07zGzMQE42s7HAnf75W/3rJZyZHQYc62/+PkbOiGuBFf76pWZWmIBbXwocDKwCfpSA66VVbTBpm1oYJEMEWxi2NLbx7o7dMUqLiIhILAkPGJxzu4Fv43VLmgO8YmZn9udcMzsLrwvS3nitC//rXy8ZzgpbvylaAedcF3CrvzkSOH4oNzSz6XhjFwA+52e1HtaCg56Vg0Eyxcyx5YytKIrY97ymVxURERmwpMx/6Zy70cwOAj4NVAP/8GcBehBYhtcC0QyUAxOAg/DGPEzHCzQAfuOc+00y6uc7xl82+3WK5Ymw9aOBh4Zwz1/h/cy3OeceH8J1MsKu1j00tXVE7FOWZ8kUZsahM0bzrzfquve9sG4HZx8yNY21EhERGX6SOWH+54A6vIHEecAMf188BnQB3we+k8S6Acz3l2875zrilFsZ5ZwBM7OPAKcAO0nQeIh0C86QBGphkMzSO2DYmcbaiIiIDE9JCxicN7rw22Z2D/AN4Ey8gb6xdAJ3Az90zr2UrHoBmFkJMNbf3BivrHNup5mFWkMG9dWkmY0CfuZv/rdzLqFTxZrZlD6KTAyttLW10dKSmNQW67c2RGyPLivEdbTTEi/8kqzW2toadT1d9qsuj9heu62Zd7fWM66iOE01kkTJtGdNspOeM0mVtra2dFchrqSn5PVf/j9sZlV43YD2B8bgJWZrBLYDrwJPOecaYl4oscKnSG3qR/lQwFAxyPv9GK/r1VJ6pmtNpA39Lfjcc8/xzjvvJOSmz2w2wmPAMmvnoYeG0mNLssmSJUvSXQW6HBTn59PWad37brpvCQeM0WxJ2SQTnjXJfnrOJJm2bduW7irElfSAIcQPBu73P+kW3m+mPwOPQ2HfgDvom9ki4FN4U7d+zmXRvI71bRaxPaooa340yRJ5BjMrHCsbep7Vd3aZAgYREZEBSFnAkGHC2xWLYpbqEeq/MKC+PGZWDPwGb2zGdc651wZy/gD01VVqIvACwOGHH87s2bMTctPH71kOm3r6h++31zROOmlOQq4tw1Nra2v3t3CLFi2ipCT9Y1rWlKxj5WNrure3UslJJx2WxhpJImTisybZR8+ZpEqien8kS64GDOHZlfvTzSjUEbo/3ZfCfROYi9dl6NsDPLffnHNxx2GY9Xy7WlxcTGlpYmYy2tK0J2J76tiKhF1bhr+SkpKMeB6O2ns814UFDKs2N9FhBYwoSURaFckEmfKsSXbTcybJVFyc2WPrcjJgcM61mtl2vLEUcQcM+wOWQwFDv8cK+L7uLx8BTg9/cQ8Tuna5P5MSwBbn3KMDvFfKBWdJUtI2yUT7Tx1JUX4e7Z1dgDeuYdn6nSyeOz7NNRMRERkecjJg8C3Hy/S8l5kVxJladV7Y+ooYZWIJdXe60P/EMxb4s7/+BJDRAYNzjpqGYJZnffMimaekMJ/9plTx4vqeKVWfXbNDAYOIiEg/JTzT8zDylL8sBw6OU+64sPWnk1ed4aV+9x5a93RF7FMLg2Sqw2eNjth+dOXmNNVERERk+MnlgOHusPWo3/6bWR5wnr9ZDzw2kBs456yvD7DeL74+bP/iAf0kaVDbENkdyUxJ2yRzvWfehIjt1ZubeHf77jTVRkREZHjJ2YDBOfc88KS/eZGZHRml2OX0ZHe+zjkXMcrXzBabmfM/NyevtpmnNtAdaVxFMYX5Ofs4SYY7YOpIxpRHToj2yAq1MoiIiPRHrr/hXYo3VWoB8JCZXWlmR5jZ8WZ2I3CNX241cG26KpmJagItDJNGavyCZK78POP4eZFjFv6jbkkiIiL9ktMBg3PuZeBcYBfe9KpX42VjfhT4jF9sNXCqc64x6kVyVG19ZAtDtbojSYY7cX5kt6Tn1uxgV+ueGKVFREQkJCUBg5md538qB3BORei8ZNbNOXcfsB/wU7zgYDfeeIUX8aZFPdA593Yy6zAcBccwaPyCZLpj9x5LUVi3uY4uxxOrtqaxRiIiIsNDqqZVvRlweC/hy/t5zgT/vC7g1qTUyuecWw9c5n8Gct7jeFmch3LvGUM5P11qerUwqEuSZLby4gKOnD2GJ1b3BAn/WbGZ0/evTmOtREREMt9w6JI0pBdySY5gC8OkkWphkMx34oLIbkmPrdpKR2dXjNIiIiICmR0w5PvLWAnVJE2cc9QFAwa1MMgwcEJg4HNDy56IhG4iIiLSWyYHDHP95Y601kJ62d7cTnvgW9lqtTDIMFA9spQFkyKHUv1H06uKiIjElZQxDGa2KMahQ81sbB+nFwOzgSvwxj28ksCqSQLU1ke2LuTnGeNHKGCQ4eHE+eNZXrure/s/K7bwzVMXpLFGIiIimS1Zg54fx3vZD2fAHwZwDfOvcWOC6iQJUhNI2jZhRDH5eRpqIsPDiQsm8PNHeyY+W7OtmXe2NjF7XEUaayUiIpK5ktklycI+0fb19dkIfNE5d3cS6yiDEMzBoKRtMpzsW13F+BHFEfvULUlERCS2ZLUwHB+2bniJ0BxwEbA2znkOaAVqnXMbklQ3GSLlYJDhLC/POGH+eP78fM+fmEdWbOEzi2ansVYiIiKZKykBg3PuifBts+5Ghuedc/3NwyAZqiYQMCjLsww3J86fEBEwLFu/k53N7YwqL0pjrURERDJTqmZJmgnMwsukLMNcry5JmlJVhpmj9xpLSWHPn7/OLsfjq7eksUYiIiKZKyUBg3Nuvf9RToUsEOySpClVZbgpKcznmL0iJ2x7ZIUCBhERkWgyJg+DmZ1uZreZ2b/M7FdmdlC66yS9dXY5Nu9S0jYZ/k6YH5n1ecmqrbR3KOuziIhIUEoCBjM73sy2mNm7ZjYyyvHvAXcDHwNOAj4LPGtmn0xF/aT/tjW10dEVOWPuJLUwyDAUzPrc2NbB82uVJ1JERCQoVS0MpwBjgRecc/XhB8xsP+Ab9EynWu8vC4AbzWxGiuoo/VATGL9QmG+MLS+OUVokc42vLGH/KVUR+x7R9KoiIiK9pCpgOAZvytRHohz7PF6AsBM42Dk3BjgM2IGX9flzKaqj9EO0KVXzlLRNhqlgt6T/rNyMc8GckyIiIrktVQHDJH/5ZpRjp+EFE79wzr0M4Jx7EfgFXiBxYkpqKP0SbGGYVKnxCzJ8nRgIGDbsaGH15qY01UZERCQzpSpgGOcv68N3mtlsYLK/eVfgnCf9pbIpZZBgC4PGL8hwNn/SiF55RNQtSUREJFKqAoZQn5WqwP5j/WWDc+6VwLHt/rIsWZWSgattUA4GyR5m1rtbkgIGERGRCKkKGOr85fzA/vf5y6ejnFPuL3cmpUYyKMrBINnmxAWRAcPLG+rZ2tiWptqIiIhknlQFDM/itTJ83szKAMxsFnAm3viFh6OcM8df1kU5JmlSW68cDJJdjpg1mvKi/O5t5+Bfb9SmsUYiIiKZJVUBw+/85X7AG2Z2B14QUQK0AH+Kcs4if7k6+dWT/ujo7GJLYzBgUAuDDG/FBfkcH8jJcOdLm9JUGxERkcyTkoDBOfcocB1eK8MM4AN4eRkAvuqc2xZe3sxK6Gl9WJKKOkrfNje2EcjZRvVItTDI8Pehg6ZEbL+6oZ63t2i2JBEREUhdCwPOua8AZwC34eVjuBU40Tl3Q5TiZwC7gHeB+1JVR4mvNjClanFBHqPKCtNUG5HEOXbvsYytiExA+I+XNqapNiIiIpklZQEDgHPun865851z73POXeC3PEQr9zfn3Azn3Ezn3PpU1lFiqwlOqVpVgpmStsnwV5Cfx1kHVEfsu+vlTXQGm9RERERyUEoDBhnegi0MGvAs2eRDB0d2S6ptaGXpO9tjlBYREckdChik35S0TbLZ/EmVzJ9UGbFP3ZJERESgIBU3MbNpQznfOfduouoigxdM2latFgbJMh86aDLfv39X9/a/3qjju2d1UFGckj+VIiIiGSlV/xdcO4RzHamrp8ShFgbJdmceMJkf/mtl99iFlj2dPPhGHR8OdFcSERHJJanqkmRD/EgGqAkkbVMLg2SbcSOKOW7OuIh9dy5TtyQREcltqfrm/sJ+lCnHy+78IWAy8DQ9Cd8kzdo6OtnW1BaxTy0Mko0+dNAUHl25pXt76ZrtbNy5mymjytJYKxERkfRJScDgnLulv2XN7KvAT4HPA0875/47aRWTftvc0NZrn2ZJkmx0wvzxVJYUsKu1o3vf3S9v4kvv2TuNtRIREUmfjJslyTm3xzn3JeBx4Ktm9r40V0mAmsCA57KifCpLNLREsk9JYT6n7R+Zk+HOlzbhnHIyiIhIbsq4gCHMjXjjFy5Jd0Wk9wxJStom2exDB02O2F67rZmXN9SnpzIiIiJplskBw1v+8pC01kKA3jMkVY9UdyTJXgdNG8XMseUR+zT4WUREclUmBwxVgaWkUW1ghqRJVRrwLNnLzPjggZGtDPe9WkNbR2eaaiQiIpI+mRwwnO8va9NaCwGidUlSC4Nkt7MCAcOu1g7+s2JLjNIiIiLZK+MCBjPb28x+jRcwOOCBNFdJiJKDQVOqSpabOrqMI2aNjtj3j5fULUlERHJPSqa5MbM1/SiWB4wERoTt2wL8IBl1koFRC4Pkog8eNIVn1+zo3n581Va2NbUxtqI4jbUSERFJrVS1MMzox2caUElPduelwGLnnLokpVlLeyc7d++J2KcxDJILTlk4iZLCnj+THV2Oe16pSWONREREUi9VE+n3J3FbF9AIrAWecM69ktQaSb8FWxcAJmmWJMkBFcUFvH+fidwdFiTcuWwjnzp6hqYVFhGRnJGqTM8XpuI+khzBKVVHlBRQUaykbZIbPnTwlIiAYXntLp5fu4PDZ41JY61ERERSJ+MGPUvm6ZWDQeMXJIccNXssU0ZFPvM3LunPsCwREZHskJKAwczW+J8vpeJ+kli19YEBz5ohSXJIfp7x6WNnRex7dOUWVtU1pqlGIiIiqZWqFoYpwHTglRTdTxKopiGYtE0tDJJbzj5kCqPKCiP2/UatDCIikiNSFTDU+cveo2cl4wUHPVdrhiTJMWVFBZx35IyIffe8somaev1JExGR7JeqgOE5f7lPiu4nCVQbSNqmGZIkF5135PReU6z+4am1aayRiIhIaqQqYLgBL7fCV8yssK/CkllqeiVtUwuD5J4xFcWcc8jUiH1/fv5dGgI5SkRERLJNSgIG59yjwA+B/YF/mtnUPk6RDNHU1kFja0fEPgUMkqsuPmYWeWHpF5rbO7n9ufXpq5CIiEgKpGQyfTP7X6ANeB14L7DGzJ4GXgN2Ap3xznfOfTfplZSogjMkgQY9S+6aNqaMUxZO4p+v9SSgv+npdVx0zExKCvPTWDMREZHkSVX2rasA5687IB841v/0hwKGNAnmYBhVVkhpkV6MJHd97rjZEQHDtqY27np5Ex89bFoaayUiIpI8qUzcZmGf4HZfH0mT4AxJal2QXLfv5CqO2WtsxL7fLllDZ5eLcYaIiMjwlqoxDHlD+aSijhJdTWCGpGolbRPhs8dFJnJbs62Zh5dvTlNtREREkksv4xKXWhhEejtmr7EsmFQZse/XT7yDc2plEBGR7KOAQeIKjmGYqBmSRDCzXq0Mr2yo5/m1O9JUIxERkeRRwCBxBTPZqkuSiOfUhZOYHEhieOOSNWmqjYiISPKkLWAws0ozm2xm0/r6pKuOuc4516uFQV2SRDwF+Xl8+tiZEfseXbmFVXWNaaqRiIhIcqQ0YDCz95rZXWa2FS//wrvA2j4++souTXa1drC7PTJFRrUCBpFu5xw6lZFlkcnrf/X422mqjYiISHKkLGAws58DDwJnAGPQtKoZLzjgGWBCVXEaaiKSmcqKCjjvyBkR++59tYY3NjWkp0IiIiJJkKpMzx8DvuRvtgJ3A8uAHUBXKuogA1cbmFJ1bEUxxQVK2iYS7oKjZnDTU2tpbOsAwDn44b9WcPtFh2Om7ztERGT4S1Wm58/6yw3Ae5xz76TovjIENQ0a8CzSl9HlRXxu8Wx+/O9V3fuefns7S97axnFzxqWxZiIiIomRqi5J+wEO+I6CheEj2MIwSVOqikT1qaNnMrEy8t/HDx9YoezPIiKSFVIVMIRGBb6covtJAgRbGDRDkkh0pUX5XHbSnIh9K+sauevlTWmqkYiISOKkKmBY5y8rUnQ/SQC1MIj034cOmsLcCSMi9l370Cpa93TGOENERGR4SFXA8A9/eUKK7icJEJwladJItTCIxJKfZ/z3KfMi9tU2tHLT0+vSUyEREZEESVXAcC1ezoUvm9m8vgpL+kVL2latFgaRuBbPGcdRs8dE7PvVY2+zo7k9TTUSEREZupQEDM65BuB9wGbgGTP7gpmNSsW9ZXB27t5DW0fkjLdqYRCJz8y48uT5Efsa2zr4xaNK5iYiIsNXQqdVNbO+sjKXASOB64Gfm9k2YHcf5zjn3OwEVE8GoKY+sjtSnsGEEUraJtKXhVOqOOuAau5+paZ7323PruP8o6YzfUx5GmsmIiIyOInOwzCjn+VCGZzH96Os5iVMg2B3pPEjSijIT1licJFh7fKT5vLA63W0d3qtdHs6HT/+9yp+8bGD0lwzERGRgUt0wHBLgq8nadJ7wLPGL4j019TRZZx/1HR+++Ta7n3/fK2Wi4+t54CpI9NXMRERkUFIaMDgnLswkdeT9KmpDw541vgFkYH44vF78dcXNrCrtaN73w8fWMFfPnMEZpbGmomIiAxMwvuYmFmXmXWY2YJEX1tSJ9jCMFEzJIkMyMiyIr70nr0i9j23dgcPLd+cphqJiIgMTrI6pevrs2FOSdtEhu68I2cwOTC72FX3vklTW0eMM0RERDKPRrFKVLW7IlsYqjWlqsiAlRTm87X3z43YV9vQyv/796o01UhERGTgFDBIL11djroGtTCIJMIZ+1dzzF5jI/bdsnQdr2yoT0+FREREBkgBg/SyrbmNPZ2Rs9mqhUFkcMyMH3xgX4oLev7cOgdX/uN19nR2xTlTREQkMyhgkF6C4xcK8oyxFUraJjJY08eUc+mJe0fsW1G7iz88tTbGGSIiIplDAYP0EpwhaUJlCfl5GscuMhSfPnYW8yaOiNj300dWs2FHX8nuRURE0ivRidvC3WRmzQm4jnPOnZCA60g/BXMwaPyCyNAV5udx9QcX8qEbnsH5Pf5a93Txzbvf4JYLD1VuBhERyVjJDBgOScA1DHB9lpKE6p3lWeMXRBLhoGmj+OQR07l16frufUtWb+XeV2s484DJaayZiIhIbMnskmQJ+Ega1DQEszyrhUEkUb76vrlMrIz8N/Xd+5ZTv7s9TTUSERGJL5kBw77OubwEfPKTWEcAzGy6mV1rZivNrNnMdpjZC2b2VTMrG+K1y8zsg2Z2g3/NnWa2x8y2m9lSM7vKzCYm6mdJBE2pKpI8I0oKueqMfSL2bW9u5+oHVqSpRiIiIvHl/KBnMzsdeA24DJgLlAGj8LpUXQO8bGZ7DfLa+wGbgTuBz/nXHInXFWw0cATwbWCVmZ07pB8kgWrr1SVJJJnev+9ETlowIWLf317cyNJ3tqepRiIiIrHldMBgZgcCfwUqgSbgm8BRwAnAb/1ic4D7zWxE1IvEVwlU+OtPA1cC7wUOAt4H3Ah0+eX+aGYnD+4nSZzOLsfmxraIfdVVChhEEu07Z+5DRXHkMLJv3vU6Le2daaqRiIhIdDkdMADXAaVAB3CSc+5q59xS59yjzrnPAF/zy80BLh/E9buAvwH7OOeOcc79n3PuEefcy865h5xznwM+iDewOx+43tI8VcqWxlY6uyLHmU8aqS5JIok2qaqUr75vbsS+Ndua+f79y9NUIxERkehyNmAws8OAY/3N3zvnlkYpdi0Q6lh8qZkVDuQezrlnnHPnOudivgE45+4B/uFvzgYOHMg9Ei04pWpRfh5jyovSVBuR7PaJI6ZzwNSREfv++Ny7/PvNuvRUSEREJIqcDRiAs8LWb4pWwDnXBdzqb44Ejk9SXR4LW5+dpHv0S3BK1YlVJZofXiRJ8vOMa8/Zn9LCyLkdvn7na73+LYqIiKRLLgcMx/jLZmBZnHJPhK0fnaS6FIetp7UDc62Stomk1OxxFVx1xoKIffW79/CVv77Sq3ugiIhIOiQjYJgJzAJWJ+HaiTTfX77tnOuIU25llHMS7biw9bTOrVgbzMGgGZJEku6cQ6Zy6sJJEfueXbODXz/xTppqJCIi0iPhmZ6dc+v7LpVeZlYCjPU3N8Yr65zbaWbNQDkwNQl12R841d983Tk34IDBzKb0UaQ7z0NbWxstLbG7Omzc0RSxPa68IG55kXCtra1R16Vv/3PyXrz07g5qG3pmKfvJQ6s5aEoFB0ypSmPNMpOeNUkFPWeSKm1tbX0XSqOEBwzDRPgUqU0xS/UIBQwVfRUcCDMrBn6HN0MSeNO6DsaG/hZ87rnneOed2N9artqQT3iS7Z2b1vDQQ/qWUwZuyZIl6a7CsHP2FLi+IR/n/xvsdI4v3f4iX92vk9Jc/WvdD3rWJBX0nEkybdu2Ld1ViCtXxzCEd8xv70f5UNiX6P45v8BL5gZwi3PuvgRff8B2BgLckcXRy4lI4s2uhPdNiRy3sL3N+PvaXP1TLSIimSBXv7MKb1fsz5yhodfmhPXNMbMrgYv9zReALw7hcn11lZro34PDDz+c2bOjT8TU3tlF49LHI/adctwRzJs4mJx1kotaW1u7v4VbtGgRJSUaND9Q7+nqYsvNL/PShobufcu25XH2Mftw5v6T4pyZW/SsSSroOZNUidf7IxPkasDQGLben25G5f6yP92X+mRmnwWu9jdXAqc455oHez3nXNxxGOHTohYXF1NaGr2hZNuO3QTnZJk5YSSlpcrDIANXUlIS81mT+H7+sYM4+bonaWztmY/hew+s5oi9JjBjbHmcM3OTnjVJBT1nkkzFxZndpSMn27mdc63Adn8z7oBhMxtFT8DQ77ECca73UeBX/uZ64L3OuYzouBacIamkMI+q0gHlqhORBJgyqowffnBhxL7m9k4+/8eXaGqLN6mbiIhI4uVkwOALZV/ey8zitbTMC1sf0pSnZnYGXiK4PKAWOKGv1oFUCiaKqq4qVdI2kTQ5bb9qzj448vuMFbW7+MIfX2JPZ1eaaiUiIrkolwOGp/xlOXBwnHLhORKeHuzNzOwE4G943cC247UsZFSHtWALw6SR6qspkk5XnbEPs8ZFdkFasnor37rrDZxTUjcREUmNXA4Y7g5bvzBaATPLA87zN+uBxwZzIzM7CrgHb/B0A/A+59ybg7lWMtXWR7YwTKpSX02RdCovLuAP5x/K6PLIcUR/fXEDv3j07TTVSkREck3OBgzOueeBJ/3Ni8zsyCjFLqcnu/N1zrk94QfNbLGZOf9zc7T7mNkBwP14LRnNwKnOuWUJ+BESriaY5blKLQwi6TZjbDm/O/8Qigsi/1xf+/Bq7lyWMT0aRUQki+VswOC7FG+q1ALgITO70syOMLPjzexG4Bq/3Grg2oFe3MxmA/8GRvq7vgU0mNm+cT7jh/xTDVJwDMOkkWphEMkEB00bxXUfOZDgkKKv3/kaT7+dEXMmiIhIFsvpgME59zJwLrALb3rVq4GlwKPAZ/xiq/FaBRqjXiS+Y4HwAOCnwOt9fL4wiPskRG19YAyDWhhEMsb7953I/562IGJfR5fjc7ctY2XdrjTVSkREckFOBwwAfnbl/fBe5lcDu/HGK7wIfB040DmX9Z2FW/d0sr05Mul1tVoYRDLKhUfP5OJjZkbsa2zr4MKbXqAu0KVQREQkUXI1cVsE59x64DL/M5DzHgdizjvqnLsZuHkIVUuZaC8bE9XCIJJxvnHKfDbVt/CvN+q699U2tHLBTc/z988dyYgS5U4REZHEyvkWBvHUBMYvVBQXUKkXD5GMk5dn/PTcAzh4+qiI/SvrGvnUzS/QrMRuIiKSYAoYBOjdwqDxCyKZq6Qwn9+edwgzx0bmaHhh3U4uvPkFdrcraBARkcRRwCBAtKRtGr8gkslGlxdx84WHMrYiMkfD82t38KmbX6ClvTNNNRMRkWyjgEEAqAkkbVMOBpHMN31MOX+8+Iheid2eXbODi299gdY9ChpERGToFDAIEKWFQVmeRYaFuRNH8MeLD2dUWeSYo6ff3s6nb31RQYOIiAyZAgYBercwTBqpFgaR4WL+pEpuv/hwRgaChiff2sZnblumoEFERIZEAYMAvVsYqtXCIDKs7FNdxe0XHU5lSeRs2UtWb+Xzty+jrUNBg4iIDI4CBmF3ewcNLXsi9ikHg8jws+/kKm6/+HBGBIKGx1Zt5Qu3v6SWBhERGRQFDEJNfe+kbdXqkiQyLO03ZSS3XXQ4I4ojg4b/rNzCBTc9z67WPTHOFBERiU4Bg/TKwVBVWkhZkZKAiwxXB0wdyS0XHUZFIGh4ds0OPnLjs2xp7P0lgYiISCwKGKRXlmclbRMZ/g6aNopbPnVor6Bhee0uPnzDUtZvb05TzUREZLhRwCDUBrokVStpm0hWOHj6aP7ymSMYW1Ecsf/dHbv50A1LeWNTQ5pqJiIiw4kCBqFWLQwiWWvfyVXc+fkjmTa6LGL/tqY2PvqbZ1n6zvY01UxERIYLBQxCTXBKVbUwiGSV6WPKuePzR7JgUmXE/sa2Ds6/6XkefKM2TTUTEZHhQAGDUBtI2jaxUi0MItlm/IgS/vLZIzhi1uiI/e0dXXzhjy9x27Prcc6lqXYiIpLJFDBIr6RtyvIskp0qSwq5+cLDeP8+EyP2dzn4n7vf4Gt3vKZcDSIi0osChhy3q3UPTW0dEfuU5Vkke5UU5vPLjx/ERw+b1uvY35dt5AO/ekYzKImISAQFDDkumIMBlOVZJNvl5xlXf2Bf/us9e/U6tqJ2F6dd/xSPLN+chpqJiEgmUsCQ42oC4xfGlBdRUpifptqISKqYGZedNJdffuwgyosi/803tnZw8a0vcs2DK+no7EpTDUVEJFMoYMhxGr8gkttO3W8S93zpGPYeX9Hr2K8ef4fz/vA825ra0lAzERHJFAoYclxwhqRJGr8gknP2Gl/B3V88mtP3r+517Jl3tnPaz5/iuTXK1yAikqsUMOS4XjkYNH5BJCeVFxfw848cwFWnL6AgzyKO1e1q5SO/fZYfPrCCtg7NoiQikmsUMOS4YJbniWphEMlZZsYFR8/kr589ggmVxRHHnIMbl6zhjOufZnnNrjTVUERE0kEBQ46rrQ9meVYLg0iuO3j6aO7/r2M5avaYXsdWbW7kzF8+xa8ef5vOLiV6ExHJBQoYcphzjpoGjWEQkd7GVhRz20WHc+XJ8yjKj/xfxZ5OxzUPruKcG5cqZ4OISA5QwJDDGlr20LoncsrESRrDICK+/Dzjs8fN5t5Ljmb+pMpex5et38nJ1z3JH59bj3NqbRARyVYKGHJYTaA7kpmStolIb/MmVnL3F4/iC4tnExgPze72Tr551xt89LfPsmZrU3oqKCIiSaWAIYcFBzyPqyimMF+PhIj0VlyQz9feP4+/ffZIpo0u63X82TU7eP91T3L9f96ivUPJ3kREsoneDnNYcErVSSM1fkFE4jtkxmj+demxfOzwab2OtXd0ce3Dqzn150+ybP2ONNRORESSQQFDDgsmbVMOBhHpj/LiAq7+wEJuvvBQJkf5ouGtLU186IalfOvu19nVuicNNRQRkURSwJDDaoMtDJohSUQGYPHc8Tx82SI+fezMXmMbAG5/9l1OvPYJ7nu1RoOiRUSGMQUMOawm2MKgHAwiMkBlRQV889QF3PPFY9h3cu+ZlLY0tnHJn1/mrF89w9J3tqehhiIiMlQKGHJYsIVBMySJyGAtnFLF3V84mm+dOp/Swvxex1/dUM9Hf/ssF9z0vDJFi4gMMwoYclRXl6NOXZJEJIEK8vO4+NhZPPSVRRw3Z1zUMo+v2sqp1z/JZX99hQ07dqe4hiIiMhgKGHLUjt3ttHdGTn2oLkkikghTR5dx84WHcsPHD2Lm2PJex52Df7y8iROufYLv/XM525va0lBLERHpLwUMOao2kLQtP88YP0IBg4gkhplx8sJJPPSVRXz/rH0ZW1Hcq0x7Zxe/f2otx/zoMa5+YAVbGxU4iIhkIgUMOaomkLRtwohi8qNNcyIiMgSF+Xl84ojpPPHVxVz+3jlUFBf0KtOyp5PfLFnDsdc8yvf+uZwtu1qjXElERNJFAUOOCuZgUNI2EUmm8uICLjlhb5746mIuPHoGhfm9v6Bo3eO3OFzzGFfd+2avbPQiIpIeChhyVO8cDOqOJCLJN6aimG+fvg+PXr6YDx00JWrLZntHFzc/s47jrnmcb939Ou9u1+BoEZF0UsCQo2oCAUO1WhhEJIWmji7j2nP259HLj+PcQ6ZSEC1w6Ozi9mffZfH/e4wv/vElXtlQn/qKioiIAoZc1atLkloYRCQNpo8p50cf3o/HrljMRw+bFrWrUpeD+1+v5axfPs05v17Kw8s306XM0SIiKdN79JnkBHVJEpFMMnV0GT/84EK+9J69uOHxt/nbCxt7Tf0M8Py6HTy/bgczx5RxWJVx6DgFDiIiyaYWhhzU2eWo26WkbSKSeSaPLOX7Zy3kia8t5uJjZlJe1DtrNMDa7bv565p8vr0sn6sfXM3KOmWPFhFJFgUMOWhbUxudXZHfyk1S0jYRySCTqkr51mkLeObKE7jy5HlMrIz+N6q5w7jtuY28/2dPcuYvn+ZPz71LY+ueFNdWRCS7qUtSDqoJjF8ozDfGlvdOqiQikm5VpYV89rjZXHj0TP75Wg2/WbKGlXWNUcu+uqGeVzfU871/LufU/SZx7qFTOWT6KMyUY0ZEZCgUMOSg4PiFiVUl5Clpm4hksKKCPD540BQ+cOBknnp7Gzc89hbPrNkZtWzLnk7uWLaRO5ZtZMaYsu7zpo4uS3GtRUSygwKGHBRsYdD4BREZLsyMY/cexyFTKvjjPQ/x7NY8Xm0oYWtTe9Ty67bv5icPr+YnD6/msBmj+cBBkzll4SSqSgtTXHMRkeFLAUMOCrYwVGuGJBEZhsaVwunTuvjpiUfx3Pom/vriBh5duaXXGK2Q0AxL3773Td67YAIfPHAyx+49jqICDecTEYlHAUMOqm0ItDAoaZuIDGMFeXmcuGACJy6YwJbGVu5ctom/vbiBtduao5Zv7+ji/tdquf+1WkaUFPDeBRM4ed9JHLv3WEoKo8/KJCKSyxQw5KCaerUwiEh2Gj+ihM8vns3njpvFyxvq+cdLG7nv1VoaWqLPnNTY2sE/XtrEP17aRHlRPu+ZP4FT9p3I4rnjKY0xpauISK5RwJCDerUwaAyDiGQZM+OgaaM4aNoo/ue0BTy2cit3vbyRR1duYU9n9C5Lze2d3PdqDfe9WkNpYT7HzRnHe+aP5/i54xk3QjPJiUjuUsCQYzq6HFsa2yL2TVQLg4hkseKCfN6/70Tev+9Edja388/Xa7nrpY289G59zHNa9nTy4Jt1PPhmHQD7T6niPfMm8J5549mnulIzy4lITlHAkGO2N7fjAl+uVWsMg4jkiFHlRXzyiOl88ojp1Da08O836njgjTpeWLej19/GcK9ubODVjQ389JHVjB9RzPFzx3P8vHEctddYKks045KIZDcFDDlma6B1obggj1Fl+p+diOSeSVWlXHD0TC44eiZbGlt56M3N/OuNWp5dsyPmTEsAWxrb+OuLG/jrixvIzzMOmjaSRXuPY9GccSycXKXWBxHJOgoYcsyWxsi5yqtHlioLqojkvPEjSvjEEdP5xBHT2dHcziPLN/Poyi08+dZWmts7Y57X2eV4Yd1OXli3k2sfXs2oskKO9YOHI2ePYbJacEUkCyhgyDHB8QuTNH5BRCTC6PIizjl0KuccOpX2ji6eX7uDR1du4dGVm1m3fXfcc3fu3sO9r9Zw76s1AEweWcphM0d3f2aNLdeXNCIy7ChgyDHBbKiaIUlEJLaigjyO2Xssx+w9lv89fQFrtjbx6MotPL5qK8+v20F7R1fc8zfVt3DXy5u46+VNAIytKOLQGaM5dMZoDpkxivmTKinMV+I4EclsChhyjNfC0PM/p+qRamEQEemvWeMqmDWugouPnUVLeyfPrt3OE6u2suStrazZGj1RXLhtTe386406/vWGN/tSaWE++0+t4pDpozl4ujcNbJXGlYlIhlHAkGO8gKGnVUEtDCIig1NalO/NljR3PAAbduxmyVtbWbJ6K8+t3UH97ujJ4sK17Onk2TU7eHbNju59cyZUcNC0Uew3ZST7Tali7sQRaoUQkbRSwJBjtja2QUFYwKAWBhGRhJg6uoyPHz6djx8+na4ux1tbmnh+3Q6eX7uD59duZ/Outr4vAqze3MTqzU385YUNgDeb3T7Vlew3ZST7T61ivykjmTmmXLMxiUjKKGDIMTt3d1BQ2bOtQc8iIomXl2fMnTiCuRNH8MkjpuOcY8OOFj+A2M6L63f2qwsTQFtHFy+9Wx+RaK6iuID5k0awYFIl+1RXsaC6kr0nVFBckJ+kn0hEcpkChhynLkkiIslnZkwbU8a0MWV8+OApAOxobuel9Tt5cf1OXlq/k1c31tPWxyDqkKa2ju7pXEMK8oy9xlewT3UV8yeNYN7ESuZPGsGYiuKk/EwikjsUMOSw8qJ8Kkv0CIiIpMPo8iJOXDCBExdMAKC9o4s3ahr84KGB1zbWs76PaVzDdXQ5VtY1srKuMWL/uBHFzJs4gvmTKpk3cQQHTx/F9DHlCf1ZRCS76W0xh01S0jYRkYxRVJDHQdO8mZJCdja389qmBl7bUM+rGxt4dWO9NxZtALY2trG1sY0n39oGgBlccvxeXHbS3ITWX0SylwKGHKbxCyIimW1UeRHHzRnHcXPGAeCcY0tjG8trdrG8dhdv1jSwvGZXnwnlwjkH1z/2NmcfMpWpo8uSVXURySIKGHJYtcYviIgMK2bGhMoSJlSWcPy88d37G1v3sLKukTc3NbCyrpEVtbtYtbmR1j3Rx0Q4Bw++UcenF81KVdVFZBhTwJDDNKWqiEh2GFFS2J1BOqSzy7F+e3N3APHQm5tZtblnfMMDb9QqYBCRflEmmBymFgYRkeyVn2fMGlfBKQsncflJc7nylHkRx19+t56a+pY01U5EhhMFDDlMLQwiIrnjqNlje82M9+AbdWmqjYgMJwoYcphyMIiI5I6igjxO2mdixL5/vVGbptqIyHCigCGHaZYkEZHccsrCyIDhxfU72byrNU21EZHhQgFDjqosKaC8WGPeRURyydF7jWVE2N/+0GxJIiLxKGDIUdUj1R1JRCTXFBfkd2eWDnngdXVLEpH4FDDkKHVHEhHJTSfvG9kt6fl1OwacPVpEcosChhw1SS0MIiI5adGccZQX5XdvOwf/flPdkkQkNgUMOapaLQwiIjmppDCfE+ZHdkvSbEkiEo8ChhylKVVFRHJXcLakpe9sZ3uTuiWJSHQKGHKUkraJiOSu4+aMp7Swp1tSl4OHlm9OY41EJJMpYADMbLqZXWtmK82s2cx2mNkLZvZVMytL4H1ONrO7zGyjmbX5y7vM7ORE3aO/qtXCICKSs0qL8nnPvPER+zRbkojEkvMBg5mdDrwGXAbMBcqAUcAhwDXAy2a21xDvkWdmvwMeAM4CJgNF/vIs4AEz+62Zpey/x0SNYRARyWmnLJwUsf3MO9vZ2dyeptqISCbL6YDBzA4E/gpUAk3AN4GjgBOA3/rF5gD3m9mIIdzqB8BF/vrLwEeBw/zly/7+i4HvD+Ee/Ta6vIiSsKZoERHJPYvnjqOksOc1oLPL8fAKdUsSkd5yOmAArgNKgQ7gJOfc1c65pc65R51znwG+5pebA1w+mBuY2RzgCn/zReBo59xfnHMvOOf+Ahzj7wf46lBbM/pDORhERKS8uIDFc9QtSUT6lrMBg5kdBhzrb/7eObc0SrFrgRX++qVmVjiIW30ZKPDXL3HOtYQfdM7tBi7xNwuArwziHgOiGZJERATg5MBsSU+/vY2G3XvSVBsRyVQ5GzDgjR0IuSlaAedcF3CrvzkSOH4gNzAzA870N1c6556NcZ9ngVX+5pn+eUlTrRmSREQEOGH+BIoKel4F9nQ6HlG3JBEJyOWA4Rh/2Qwsi1PuibD1owd4j5lAdZTrxLvPZGDGAO8zIGphEBERgIriAo6bMy5in5K4iUhQLgcM8/3l2865jjjlVkY5p78WxLhOou8zIGphEBGRkGAStyWrt9HYqm5JItKjoO8i2cfMSoCx/ubGeGWdczvNrBkoB6YO8FZTwtbj3gfYELY+oPuY2ZQ+ikwOrXQ27aCjvo633to9kFuI9EtbWxvbtm0D4J133qG4uDjNNZJspWctcWYWdmJN29nT5QBvFpBz/t99VJUOZtheduns6mLnzh0A3L76IfLzcvl7Vkmmxh1bwjczbirLnAwYgPApUpv6UT4UMFQk8T7NYesDvc+Gvot46m67jA/fNsCri4hITtmU7gqI5LZxwPp0VyJcrobK4X1y+pOlps1fDrTz/0Du0xa2rkEGIiIiIrlpfN9FUitXWxhaw9aL+lE+1NbdErfU0O4T3p4+0Pv01YVpGvC0v34E+vJIkmci8IK/fihQl8a6SHbTsyapoOdMUmUyEJpNs69xrymXqwFDY9h6f7r/lPvL/nRfGux9ysPWB3Qf51zc8RGBWVo39VVeZLACz1qdnjVJFj1rkgp6ziRVAs9af3q/pFROdklyzrUC2/3NuAOGzWwUPS/z/R4r4Av/w9LXwOTwVoKB3kdEREREJClyMmDwLfeXe5lZvJaWeWHrK2KWin+P4HUSfR8RERERkaTI5YDhKX9ZDhwcp9xxYetPxywV3VqgJsp1olnkLzcB6wZ4HxERERGRpMjlgOHusPULoxUwszzgPH+zHnhsIDdwzjngHn9znpkdEeM+R9DTwnCPf56IiIiISNrlbMDgnHseeNLfvMjMjoxS7HJ6si5f55yLSH1pZovNzPmfm2Pc6mdAp79+vZlFTJnqb1/vb3b45UVEREREMkLOBgy+S/GmMC0AHjKzK83sCDM73sxuBK7xy60Grh3MDZxzq4Ef+5uHAE+b2blmdoiZnYvXzekQ//iPnXNvDfaHERERERFJtFydVhUA59zL/kv77UAlcHWUYquBU51zjVGO9dc38ZJwfAo4EPhLlDK/B741hHuIiIiIiCScqbs8mNl0vNaGU/GmP20H3gb+DvzCObc7xnmL6RnXcItz7oI+7nMK8Bm85C9jgW14CWFudM79a6g/h4iIiIhIoilgEBERERGRmHJ9DIOIiIiIiMShgEFERERERGJSwCAiIiIiIjEpYBARERERkZgUMIiIiIiISEwKGEREREREJCYFDCIiIiIiEpMCBhERERERiUkBg4iIiIiIxKSAIcuZ2XQzu9bMVppZs5ntMLMXzOyrZlaW7vpJ5jKz8WZ2mpl918z+ZWbbzMz5n5sHcb2TzewuM9toZm3+8i4zOzkJ1ZdhxMwOMbP/NbOHwp6PJjNbbWY3mdkxA7yenjXpxcwqzewj/v8TnzCzt82swczazWyLmT1uZl8zszH9vN5RZna7ma03s1YzqzOzf5vZR5P9s8jwZWY/Cvt/qTOzxf04J+1/08w5l6p7SYqZ2enA7UBljCKrgVOdc2+nrlYyXJhZvD8OtzjnLujndfKA3wAXxSn2O+Czzrmu/tdQsoGZLQGO7UfRW4FPO+fa41xLz5rEZGYnAg/3o+g24BPOuX/HudZVwP8Q+4vX+4EPO+daB1pPyV5mdgDwAlAQtvt459zjMcpnzN80tTBkKTM7EPgrXrDQBHwTOAo4AfitX2wOcL+ZjUhLJWU4eRd4aJDn/oCeP3YvAx8FDvOXL/v7Lwa+P5QKyrBV7S9rgOuAD+M9H0cClwGb/OPnATf3cS09a9KXDXjB56XAB/Ges6OBc4G/A53AWOBeM9s/2gXM7LPAt/Heod7Be+YOA84CHvOLnQr8IVk/hAw/YS//BcCWfp6WMX/T1MKQpcK+tesAFjnnlgaOfxW4xt/8jnPuqtTWUDKdmX0H75uQF5xzm81sBrDWP9yvFgYzmwO8ifcH8kW8Z7El7HgZ8ARwCN6zOl8tXrnFzP6J9wJ3p3OuM8rxscDTeF9wABznnFsSpZyeNYnLzPKjPWOBMmcBd/mbdznnPhg4PhpYA1ThfZFysHNuW/g9/PNP93fF/PZYcouZfRn4KbAS7xm50j8U9RnJtL9pamHIQmZ2GD1N/L8PBgu+a4EV/vqlZlaYksrJsOGc+7Zz7p/Ouc1DuMyX6Wl6vST8j51/j93AJf5mAfCVIdxLhiHn3GnOub/FepHzX8YuD9v14RiX+jJ61iSOvoIFv8zdwCp/M1pXuYvxggWAr4cHC2H3+AJeSwXAVwdVWckqZjYN+J6/+TkgZtfKMF8mg/6mKWDITmeFrd8UrYDf1+1Wf3MkcHxyqyS5xswMONPfXOmcezZaOX9/6H/QZ/rniYR7LGx9dvCgnjVJsEZ/WRLl2Fn+chfwj2gnO+c2Ao/4myeo268AvwQq8Frnn+ircCb+TVPAkJ1CM4o0A8vilAt/aI9OXnUkR82kp396X38gQ8cnAzOSVSEZtorD1qN9S6xnTRLCzOYCB/ibKwPHivD6jwMsjTcAn57nrBivy4jkKDM7BzgN2AFc0c/TMu5vmgKG7DTfX77tnOuIUy78j+H8mKVEBmdB2PrKmKV6H9ezKEHHha2viHJcz5oMmpmVmdneZnYZ3stXqBvIzwJF5wD5/rqeM+mTmY3Em8wBonRhiyPj/qYV9F1EhhMzK8Gb4QFgY7yyzrmdZtYMlANTk103yTlTwtbjPot4M5eE6FmUbv7MIv8dtutvUYrpWZMBMbMLiNFl1/d/wJ8C+/ScyUBdA0zEm7jh9wM4L+OeNQUM2Se8r2RTP8qHAoaK5FRHcthAnsXmsHU9ixLuK/R0A/mHcy5aN0s9a5IorwCfcc69EOWYnjPpNzM7Fm+QfAfwOTewaUkz7llTl6TsEz5Iqz+j8Nv8ZWkS6iK5bSDPYlvYup5FAcDMjsP7phe8ecs/H6OonjUZqLuBhf4nNK/9XXjjF/5sZqdFOUfPmfSLP97lN4ABP3XOvTHAS2Tcs6YWhuwTnlWyqB/lQ4MJW+KWEhm4gTyL4YNa9SwKZrYP3gtcAd6zdLZzLlayIz1rMiDOuXqgPmzXC8BfzOyTwC3APWZ2kXPu5rAyes6kv74BzMPL1fGdQZyfcc+aWhiyT2PYen+apsr9ZX+6L4kMxECexfKwdT2LOc7MZuJlFh+FNyvSR6IlawujZ00Swjl3G17G5zzgF36ithA9Z9InM5tHT1K2S5xzzfHKx5Bxz5paGLKMc67VzLYDY4gcNNOLmY2i50HbEK+syCCED9SK+ywSOVBLz2IOM7NqvDnsqwEHfMo5d08fp+lZk0S6BzgH7/+P76dn8LOeM+mPr+C1CqwByszsI1HK7Bu2/h4zm+iv3+cHGBn3rClgyE7L8TJU7mVmBXGmVp0Xth5tqkKRoVgetj4vZqnex/Us5igzGws8DMzyd13inLs1zikhetYkkbaGrU8PW1+N1+KVj54ziS3URWgW8Od+lP+fsPWZeIOYM+5vmrokZaen/GU5cHCccuFzmz+dvOpIjloL1Pjrx8UrCCzyl5uAdcmqkGQuM6sC/k3P/OP/7Zz7ZT9P17MmiTQ5bL27i4efqO15f/NIf2BrLKHnsA14MbHVkxyQcX/TFDBkp7vD1i+MVsCf2/w8f7MeeCy5VZJc408hF+pKMs/MjohWzt8f+obkngFOPSdZwMzKgPuBg/xdP3DO/ai/5+tZkwQ7O2z99cCxu/1lJfDBaCeb2RTgRH/zP865xmjlJDs55y5wzlm8D5EDoY8PO7bOv0bG/U1TwJCFnHPPA0/6mxeZ2ZFRil1OT0bA65xze1JSOck1P8Nrwge43swipnzzt6/3NzvonVlVspz/Le1dwNH+ruucc98axKV+hp41icPMLvCTm8Yr8xXgFH9zLT3/Lw35HdDgr/+fmY0JnJ8P/IqejNA/HlKlJZf9jAz6m6YxDNnrUrxuRqXAQ2Z2NV4rQinwEeAzfrnVwLVpqaFkNDM7BtgrbNfYsPW9/Eyp3QLTD4b2rTazH+Nl6j0EeNrMfgS8A8wGvg4c6Bf/sXPurYT9ADJc/Bk4yV9/FPi9me0bp3y7c251cKeeNemHq4BrzexOvK677+B1ORqBl4/h4/QEru14Cdw6wy/gnNthZl8Hfo03vuE5M/sBXktENfBl4Hi/+J+dc48n8eeRLJZpf9NMLbLZy8xOB27HazqNZjVwqnPu7dTVSoYLM7sZOL+/5f1m1mjXyQN+C3wqzum/x/ufc9dA6ijDn5kN9H9C651zM2JcS8+axGRm64gcxBzLRrzZuR6Oc63v4A1Wjfp3D3gA+JBzrjXGcclhZnYV8G1/8/hYgWUm/U1Tl6Qs5py7D9gP+ClecLAbb7zCi/iRqYIFSTbnXJdz7iLgVLw+mTV4397V+NunOOcu1gucDJWeNenD+/C64/4DeA3YjNeVoxHvW9s78cb9zY0XLAA4574NHIM35eoGvOdsC94sXx9zzp2qYEGGKpP+pqmFQUREREREYlILg4iIiIiIxKSAQUREREREYlLAICIiIiIiMSlgEBERERGRmBQwiIiIiIhITAoYREREREQkJgUMIiIiIiISkwIGERERERGJSQGDiIiIiIjEpIBBRERERERiUsAgIiIiIiIxKWAQEREREZGYFDCIiIiIiEhMChhERERERCQmBQwiIiIiIhKTAgYREREREYlJAYOIyBCZ2VVm5szMZUBdZoTqYmYXpLs+ucbMLgj7/c9IwPU+5V/rdTOzBFQxI5nZ2f7PudrMCtNdHxGJpIBBRLKKmeWb2S7/5eOlPsqamW0Pe8H7VB/lzw8r+/nE1jzzmNkUPxh60sy2mtkeM2sxs41mtsTMrjOzD5tZVbrrmo3MrAK42t/8rnMu7QFpODN7yP+3cF0CLncnsBzYG7gkAdcTkQRSwCAiWcU51wk842/ub2aVcYrvA4wO2z62j8uHH18yiOoNG2b2aWAV8G3gGGAsUACUAJPxfhf/BfwduDFN1cx2/wVMwHuRviPNdYlgZiOA4/zN+4Z6PedcF/ADf/O/zax8qNcUkcRRwCAi2Sj0Mp8HHBWnXCgA6Axs91V+G95LHADOuaucc+acy4ouI2b2UeA3QBnQCtwAnAUcAhwKnAl8D3g5TVXMemZWClzmb/4001oXgPcBRcAu4IkEXfOvwCZgHPDZBF1TRBJAAYOIZKPwb/8XxSkXOvZ3fznbzKqjFTSz8cAcf/OpDHyBSwgzywd+4m82Aoc7577gnLvHObfMOfeic+5e59z/OucOAhYA/0hbhbPXJ4AxQBsZ1rrgO91f/ts5tycRF/RbB//qb37JzPSOIpIh9I9RRLLRC3jfjEP8VoPQsTuAd/oonyvdkQ4HJvrrNzrnXotX2Dm3wjn3t+RXK+dc5C/vd87Vp7MiQf6L/Cn+5j8TfPk/+suZwPEJvraIDJICBhHJOs65NuB5f/NQMysOljGzmXh98QGe8j8wiIChr1mSzGydf/xmf3uumf3W399mZpvN7C4zO6Kvn80f1P0FM3vOH9zdYGYvmdkV0X7OQZgWtv72YC8SbbYmfyacR8xsiz94eqWZ/dDMRvbzmseb2S1mtsbMdvs//+tm9uNYLUOJvoaZjTKz//Pr3uL/LI+Y2dn9uX8/6zgdL3ADbzBwrHKLw37Hi/1B/BeZ2VP+YP5dZva8mX0ycF6RmX3OzJ41sx1m1mhmT5vZOf2s4hF4Y1q6gAei1OtgM/u9eTMeNZtZq5ltMLNlZvZLMzvDLPqMT865l4C1/uZH+1kfEUk255w++uijT9Z98PrYO/+zKMrx8/1jq/3ti/3t12Jcb5l/vAHIDxy7KnSvGOeu84/fDHwAaA6rW/inAzg3zs9UgResRDvX+XU8MGz7gkH83j4Ydv7PhvD7nxFeD+D3ceq9CZgX51olwJ/jnO+AJuD0JF9jvl/XWOf/wf9ZQ9szBvm7Oz/sGrPilFscVu69wL1x6nadf84ovDEHscp9ox/1+6Ff9qkox76CNyYo3u/ZARVxrh/677QxGX8b9NFHn4F/1MIgItkqvBUgWqtBaN9TgeW+ZjYqvKA/I8z+/uYzzutrPRgLgT8Bm4Ev4X1TeyRewNEK5AO/MbNxMc6/Pazez+N9A3sIcCreOIyDGPqMReEDmT9rZu8Z4vUAvgB8isg6nwKEujJVA//2f88R/G+i7wA+4u+6D/gkcDTe7+5S4F2gHLjDzA5J0jUqgX/7dQWvr/0p/s/yMeBF4EL/Zx2q0H/j7c65Nf0853t44wr+iPc8HIz3u17lH/8vMzsRL2g9Cm8g+0l+uYuAGr/cd81snz7uFRq/EDE7kpntB/w/vN4La4HLgRPwgthFwKfxnv/mPq4fah2cbGZ79VFWRFIh3RGLPvroo08yPnjfxu/B+6bywSjHV/nHLgzbt9Xfd1qg7Pvo+Wb0yijXuip0PEZd1oWd/yJQGaXMx8PKfCXK8VPDjt8PFEQp879Efot7wSB/d/cFrvM88B3gZGBsP68xI3CNWHX+n7Ay10Q5/mn/WDvw/hj3GgW8QexvvRNxjR/38QwU4gUU4T/zjEH+/pf75z/SR7nFgftdGqXMRLyZjBywBa8b0VlRyu1HT8vAdXHuOTPsfvsEjn2XnpaaCXGuUQXkxTm+KOweMVvc9NFHn9R91MIgIlnJOddEz7flR/mz/wC9ZzwKO+1pfxlskUjkgOdPOed2Rdn/J3q+5Y3WIhL65roN+LRzriNKme/jvfQO1YV4A8dDDsULRh4AtprZKjO73swO6uf14tX5B/TU+SIzKwod8FsGvu5v/tw592C0izvndgJf9TePNrO9E3yNInoGIb8G/F+U8/f4ZRIxY9AUf7llAOc855zrlUDNOVcH3OVvjgP+5py7O0q51+h7HA/Aaf5yrXPuzcCx0GD51c65zbEu4JxrcF7ehVjCf+5ZccqJSIooYBCRbBZ6uR8BHBC2PzSd6mbn3Fth+58KHA8JvUC1EvkiPVCvuxizDjnnHD0BTsRLkh/sLPY3H3LO1RCF/xJ2yxDqF7rONrzuOp8BomXLnoPXpWqZmd1mfSfZ6m+dR+N1qwpZAMz21/uaWjQ8kDsywdc4GK8FAuAW/79VL865jcBDfdwjLn/geqhr1s4BnPqXOMdeHWC5eC/pUbsj+Wr95QIzOyzONfqyI2x9YsxSIpIyChhEJJs9GbZ+bJT18NaF8PIHm5c4K/Ttcujl5znnXPsQ6rOyj+OhF6VgX/7ZeEnUoO+A5fk+jveLc26Pc+63zrmD8WaT+ghe//QnifwW/RPAveEtOFEMpM4Lw9bDxxIsDZsRqNcHrxtMyMQEXyO8Tsn+/YdnHh9IwLA6zrH6AZbrNZYE+pXd+c94z0Yx8LSZ3efPxrRvrFmRYgj/uZXxWSQDKGAQkWz2JF4/aOhfwPASsBuvP3poitND8WbYgaF3R9rdx/FQN43gy3f4S2Rf3VRidgUZLOdcjXPur865rzrnFuG9TP+Qnvq+h/hTYA6kzuE/6/gBV9ZTFraeiGuk8vffGrZeOoDz4j1b4d1/+lMu1rtBKLtzI1GyOzvnVuI9BzuBArzuSzcArwNb/NaovrKpQ+TPnZCkcCIyNAXproCISLI453aY2ZvAvvhBgj/bTWjGo6cC5feY2fN43X8WAY+ReQnbonaHSWkFnNsBfMP/1vi//d1n483iFPWUQd4qPHA6HW/weH+Ev9Qn4hrhkv37r8ebXreAyEAlE4TGL8TM7uycu9PMHgHOxQswjsUbOzEWrzXqE2Z2C95YnljjGMJ/7vpEVFxEhkYBg4hkuyV4AcM4M5uHN8tLHl73k5ejlH8KL2AIBQqh8Qx7gKVJrWls4V00JvRRtq/jifRbegKGeNNfDqTO4f3Xt4et1zvnBjOgOxHXCP7+43XrGdLv3znnzGwbXivOqL7Kp4pFZneO1h2pm3OuAfiN/8HM5gNnApfgTUt7Pt6/vV6DtH3hP/e7g6+1iCSKuiSJSLYLjmMIBQLPuuj5FEKtDkf4A1CP8rdfcs71NX98srwDtPjrh/ZRtq/jiRQ+kDneN+8DqXP4C314QHd0fysVkIhrvB62norff+h+c+KWSq0j8FoKomZ3jsc5t8I593/+NUL/huJllQ7/uYMzMYlIGihgEJFsF96NaBE9LQbB8QshS/Hmoy/Hy9pbFeU6KeVPR/q4v3mSmU2KVs7/Fvj8odxrgINTwwcUx0sw1t867yRyVqaXgI3++mfMrISBS8Q1ltHTyvDJWL8jM5uMlwxtqEJB7txoyezSJDQ70lJ/Fq0Bc85toKd1ZmycoqGgaw/RZ+kSkRRTwCAiWc2fzvMdf/N4el5yn4xRfhc93/B+LexQuscv3OAvi4EbY8xKdCWRM/oMxslm9jczOzBeITMbDfw8bNc9cYrHq/N/01PnPzjn2kIH/D7uV/ubs4Bb/VafWHWqNLMvhe9L0DXagJv8zQPoydcQfl4BXhetouCxQQg9m3lEBmXpFAoY/hmrgJmdZWYj4xyfCszzN9fGuVdoVrKlfj4VEUkzjWEQkVzwJN7UpJP97Q7g2Tjln8J7MQzNR99F7BaJlHDO3Wdm9+G9uJ2ON23lT4G38GYCugBvoOmLDO0lMw9vAPPZZvYqXobmF/Dm2G/373UMXo6G0AxEy4if/+HFGHU+H2+6VvBaAb4X5dxfA+8FPuDX6yAzuxFv+tIGoBLvJXQxcAbeLEO/SMI1vovXjWYK8CMzOwC4FW9w9BzgMrxvxof6+wd4Bi/r+DjgBLzB92ljZjOAffzNeOMXvgz80czuBx4FVuD9fkfh/U4uoWcGpF/HuNcIeloY7opWRkRSTwGDiOSCJXgv1CEvO+fiTS/5FF5ispDXnXP1SajXQH0c+BdeX/zD6Z2E62Xgs3gv8IO1E6+feTnebFL7xy/Ow8BHY2RxDvkl3vz9FxA9cVgt8D5/sGwEfxDwuXgDZD+HF/hdE+devWY3StA1Gszs/cAjeAOSP0rvqWRvxptu9CaGwDnXbma3Apf79/jWUK6XAKHWhWjZnYPK8APOGMe7gG9Hyzbt+yDeNMYdxE8yJyIppC5JIpILgt2J+motCHZXSnd3JACcc41434JfgvetfxPenPiv4HVHOorIWYYGc4+n8b7ZPgP4Cd4LcA3QhvcStwOvX/mNwPHOuZOcc9tjXC78uhcCH8Mbi7Hdv95qvBf3fZxzy+Ocu8c59wW84OV6vC5jDXhjTRrwfv7fAx8G5ifxGm/ifdN+DV4rSRuwDa8F4GP+z5gov/WXs8zsiLglky9edudwH8VrefoT3u+zDu+ZacIbvHwDcKBz7vtxrvExf3mXc65usBUWkcSyGBnuRUREBs3vxhLqp36hc+7m9NVmeDKzB4CTgd855z6dpjqMwAuKioCTnHMPJ/Fe0/HGG+UDRzrn4nUbFJEUUguDiIhIZroSrwvPef6A4XQ4iTjZnRPsG3jBwoMKFkQyiwIGERGRDOScexWve08RXvCQDo3Ad4BLnHPtybqJHxBdgNdF7GvxS4tIqmnQs4iISOb6Bl43nVYzM5fifsTOuYeAh1Jwq6nAD4E1zrnX+yosIqmlMQwiIpJwGsMgIpI91CVJRERERERiUguDiIiIiIjEpBYGERERERGJSQGDiIiIiIjEpIBBRERERERiUsAgIiIiIiIxKWAQEREREZGYFDCIiIiIiEhMChhERERERCQmBQwiIiIiIhKTAgYREREREYlJAYOIiIiIiMSkgEFERERERGJSwCAiIiIiIjEpYBARERERkZgUMIiIiIiISEwKGEREREREJCYFDCIiIiIiEpMCBhERERERiUkBg4iIiIiIxKSAQUREREREYvr/K77S6/B2XIMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AACGAklEQVR4nO3dd5xcVf3/8ddne3aT3fSEFFJJQkhooSYQQQSkoyKIhSKIXRQr6lex4Vf8oWJDVJAmKKB0ROBLSQgBAoSWQnqvm77J7mbL+f1x7+zO3J2ZbTNzZ2fez8djHrfMufeeTW4293PP+ZxjzjlERERERETiKQi7AiIiIiIikr0UMIiIiIiISEIKGEREREREJCEFDCIiIiIikpACBhERERERSUgBg4iIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAGDiIiIiIgkpIBBREREREQSUsAgIiIiIiIJKWAQEREREZGEisKugKSfmZUCU/3NrUBTiNURERERkViFwCB//R3nXH2YlQlSwJAfpgLzwq6EiIiIiLTraOC1sCsRTV2SREREREQkIbUw5IetkZVZs2YxZsyYMOsiOay2tpZZs2YBMHPmTHr16hVyjSRX6V6TTNB9JpmycuVKZs6cGdncmqxsGBQw5IeWnIWhQ4cyYsSIMOsiOay2tpaBAwcCMGLECP3nKmmje00yQfeZZEptbW30ZtblmqpLkoiIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAGDiIiIiIgkpIBBREREREQSKgq7AiIiItLW/v37qampYe/evezfv5/m5uawq5R3mpubGTBgAABr1qyhoEDvWSW+wsJCysrKqKyspKKiAjMLu0oppYBBREQkizjnqK6uprq6Ouyq5D3nHL169QKgqalJQZsk1NjYSH19Pbt27aJXr14ceOCBORVgKmAQERHJIhs3bmTXrl0x+8yMwsLCkGqU3yJviouK9MgkiTU1NeGcA6C2tpY1a9YwatSonGlp0N0vIiKSJerq6mKChQEDBlBZWUlpaWnOPHj0JM3NzezevRuAysrKnHpjLKnV3NxMTU0NmzZtoqmpidraWvbu3Uvv3r3DrlpK6M4XERHJEjt37mxZHzx4MIMHD6asrEzBgkiWKygooLKykqFDh7bs27NnT4g1Si0FDCIiIlli3759Let9+/YNryIi0iW9e/duCfBra2tDrk3qKGAQERHJEk1NTYDXX145CyI9T0FBQcu/3ci/51yggEFERERERBJSwCAiIiIiIgkpYBARERERkYQUMIiIiIiISEIKGEREREREJCEFDCIiIpK3br/9dswMM2PVqlVhV0ckKylgEBEREclBzc3NLFy4kNtvv50vfOELHH300S2zhpsZzz//fIfOc9JJJ7Uc094nkejAzMwYN25ch669du1aCgsLY46NDuy2bNnSsv/DH/5w0nPt3Lkz5lzPPvts0vI/+tGPWsr+5z//6VB9c1VR2BUQERERkdS76667uOyyy8KuRlwrVqzgpZdeYvr06UnL/f3vf6e5uTnh94MHD2bixIm89957vPjii0nP9eKLL8aca/bs2bz//e9PWH727NkAFBYWMmPGjKTnznUKGERERCRvXXbZZVn7UN1dzrmW9eLiYqZOnUpDQwPvvPNOl8531FFH8be//a3b9SorK6Ouro677rqr3YDhrrvuijkmnpkzZ/Lee++xdetWFi9ezKRJk+KWiw4AmpqaWrbjaWxs5OWXXwbgsMMOo7Kyst2fK5epS5KIiIhIDpo8eTK//e1vmTt3Lrt37+b1119vt9tOMhUVFUyZMiXppyPOPfdcAO677z7279+fsNwbb7zBwoULATjvvPMSlps5c2bL+qxZsxKWi3z30Y9+FICXX36ZhoaGhNfeu3dvm/PnKwUMIiIiIjnomGOO4ctf/jLHHXccZWVlYVenxUUXXURJSQnbt2/n8ccfT1gu0rpw9NFHJ2w1ADjxxBNb1hO1GtTW1vL6668DcPXVV9OrVy/27t3LG2+8Ebd89HkUMChgEBERkTzWkVGSmpqauOOOOzj77LMZNmwYpaWlDBgwgBNOOIFf/epX1NbWJjx/c3Mzzz77LN/4xjeYMWMGAwcOpLi4mL59+3L44YfzjW98gzVr1qTpp8tO/fv356yzzgJag4KgxsZG7r33XgA+9alPJT3fqFGjOPDAA4HEAUOkNaFPnz4cffTRHHPMMUnLR/abWUxAkq8UMIiIiIgksHbtWk466SQ+/elP8/jjj7Nx40b279/P9u3bmTNnDl//+tc59NBDWbJkSdzjf/zjH3PKKadw44038tJLL7Ft2zYaGxvZtWsXb731FjfeeCMHH3wwDz74YIZ/snBFgoDHH3+c7du3t/n+qaeeYvPmzRQVFfGxj32s3fNFWgFWr17N2rVr23wf6Y503HHHUVhYyAknnBCzP5pzriWB+uCDD2bgwIEd/KlylwIGERERkTi2bdvGGWecwbvvvktpaSlf+tKXuP/++5k3bx7PPfcc1157LeXl5SxbtowzzjiDXbt2tTlHY2MjBxxwAF/4whe46667mDNnDq+//joPPfQQ3/rWt+jduzf79u3j4x//OIsWLQrhp+y4xYsXc+yxx9K3b1/KysoYMWIE5513HnfeeWfCXIBEzjrrLPr378/+/fu577772nwfaXn44Ac/yKBBg9o9X3t5DJEWg0igEFnOmTMnJjkcYNGiRWzbtq3NefOZRkkSERHpQZqbHTv2JU4UzUX9yksoKEg8xn+6XH311axfv56RI0fy3HPPtZk74KSTTuKjH/0oJ554IitWrOCGG27gZz/7WUyZK6+8kh/+8IcUFxfH7D/yyCM577zzWnIM1q9fz/XXX5+wi0422Lx5M5s3b27ZXr9+PevXr+eRRx7hF7/4BQ888AAHH3xwh85VUlLCRRddxM0338xdd93F5z73uZbv9uzZw8MPPwzAJZdc0qHzBfMYPvGJT7RsR494FCk3ffp0CgoK2L59OwsWLIhJ2Fb+QlsKGERERHqQHfv2M+2nz4RdjYx6/fsfYEDv0oxec9WqVS1vvm+44QbGjBkTt9wRRxzBF7/4RW644QZuv/32NgHD6NGjk15nxIgRfPOb3+SrX/0qjzzyCM65pBOghaGgoIBTTjmFM888k8MOO4wBAwawZ88e3njjDW655RYWLVrEwoULOfnkk3n11Vdb8gna86lPfYqbb76Zl156iRUrVjB27FgAHnjgAWpra6mqquKcc87p0LkmTZrE4MGD2bJlS5u8hMiIR8XFxRx77LEAVFZWMnXqVN566y1mz56tgKEd6pIkIiIiEvD444/T1NREeXk5p556atKykYfKDRs2tJvAvHv3blauXMmCBQt49913effddykvL4/5Ltv8+9//5plnnuGaa67hlFNO4fDDD+fEE0/k6quv5q233uLSSy8FvBaIr371qx0+7/HHH8/48eMBuPvuu1v2R1pZPvrRj3ZqdKdI68GiRYuorq5u2R/ponTEEUe0/FkDCfMYIgHD2LFjGT58eIevn8sUMIiIiIgEvPbaawDs27ePgQMHUlhY2DKaUvBz9tlntxy3adOmNudavXo1X/7ylxk9ejRVVVWMHTuWKVOmMHXqVKZOncpVV13VUjb6QTdb9O3bN+F3xcXF/PWvf2XixIkAPPjgg6xfv77D544kP0cChrVr1/L8888DHe+OFBEJGKKTlqE1AAiOdhTZjm5RWLNmTUvQp9GRWilgEBEREQnYsmVLl47bt29fzPZ//vMfJk+ezO9//3tWr17d7vHJhmjNVkVFRVxxxRUt2y+88EKHj/3kJz8JwNKlS3n55Ze5++67cc4xevTolhaAjoruPhQJAqKDh+D5Itvr169vadlRd6T4lMMgIiLSg/QrL+H1738g7GpkVL/ykoxfs6mpCYABAwbwyCOP0Lt3bwoK2n/PGp3rUF1dzcc//nH27dtH7969+cY3vsHpp5/OuHHjqKqqoqTE+7meffZZTjnlFIA2I/b0FJMnT25Z70wLw9ixY5kxYwZz5szhrrvu4rnnngO8QKKzuRyHHXYYVVVV7Nq1q6Wb0YIFC1qGbQ0GDMOHD2f06NGsWrWKWbNmMWbMGAUMCShgAMxsFPAV4CxgJFAPLAfuA/7gnNuX5PCOXmM08HngA8A4oALYAywGngT+5Jzr2usMERHJGwUFlvEE4Hw0YMAAAGpqapg4cSL9+vXrUMAQ7YEHHmDnzp2A11XnAx+IH+jFm4egp+lOovYll1zCnDlzuO2226irqwPan6wtnoKCAmbMmMETTzzB/PnzqampaQkAJk2aFHc+hRNOOIFVq1Yxe/ZsLr300pZAY9iwYS35FaIuSZjZOcDbwDXARKAc6AccBdwAzDezbt0xZvYpYCHwLeBIoAovWOsHHA/8CFhkZsmzqkRERCQjjjjiCADq6+uZP39+l86xYMECwJvZOFGwAK35Ej3ZwoULW9aHDRvWqWMvvPBCSktLW4KFY489lgkTJnSpHpG8g6amJubOndtm/oWgyP7Zs2dTXV3N4sWLY84jnrwOGMzsCOCfQCVQA3wPmA6cAvzFLzYBeNzM+nTxGjOA24FeQDPwN+B84BjgAuBRv2h/4GEzG9uV64iIiEjqnHPOOS1vzW+++eYunaOxsRGAuro6mpub45bZt29fVs+90BGNjY3cdtttLdud7crTt29fzj//fEpLSyktLW0ZdakrghO4dTRgWLJkCf/6179auoSpO1KsvA4YgJvwHuQbgdOcc9c75+Y65551zl2F1yIAXtDw9S5e41pa/5y/7Jz7tHPuYefcPOfcv5xz5wK/8r/vhdfSISIiIiGaOHEiF1xwAeANK/rrX/86afmVK1dy7733xuw76KCDAC8oiDebcVNTE1deeSUbNmxIUa1T77nnnmvpVhVPQ0MDV155Zcss1eeccw4jR47s9HX+8Y9/UFdXR11dHZ///Oe7Wl2OOuooevXqBcA999zDunXrgMQtBpMnT6Z///6AN99GhAKGWHmbw2BmxwCRu+dW59zcOMVuBC4HDgauNrOfOec6N/e512IBsM0598cEZX5Ma6BwfCfPn9OWbN7De5v2cNzYAQzqoz67IiKSOX/84x+ZN28eq1at4hvf+AaPPPIIl1xyCYcccgilpaVs27aNt956iyeffJJnn32WD33oQ1x88cUtx1944YV897vfpb6+nssvv5w333yTU089laqqKhYsWMDvfvc7Xn/99Zak33S4/fbbY7bffPPNlvUnn3ySVatWtWyPHz++zZv4O+64g3PPPZdzzz2Xk046iYkTJ1JZWUlNTQ2vv/46f/7zn1u6Iw0ePJibbropLT9HR5WUlHDsscfy/PPPs2LFCsDrIhWZFC7IzJg+fTqPPfZYS/kBAwZwyCGHZKzOPUHeBgx43YIi/havgHOu2czuBH4O9AVOBp7q5HUiQzsknInFObfLzKqBgVHl896LS6u5/PZXaWhyDOxdwt+vPI6JQ7vUM0xERKTT+vfvz5NPPsnll1/O3LlzmTVrVptJvqJVVlbGbI8YMYKbb76ZK6+8krq6On7xi1/wi1/8IqbMRRddxGc+85mkOQ7dcfnllyf8LliXSy+9NG7XnZqaGu655x7uueeehOeaOnUq//jHPxLOiJ1JM2fObJnLAWDGjBlJy59wwgk89thjMdvZNtt22PI5YIj8i9gLvJ6kXPRgwjPofMDwHl6ic8J/QWZWiRcsRMoL8MDra2lo8voSVtfs50v3vMHDX5pBeUk+37YiIpJJQ4YM4YknnmD27Nn885//ZO7cuWzatImGhgb69u3LQQcdxPHHH8+5554btxvL5ZdfzsSJE/nlL3/JnDlz2LlzJwMHDuSwww7j8ssv58ILL4x5uM023/72tzn88MOZO3cuCxcuZOvWrWzfvp3S0lKGDBnCUUcdxQUXXMCHPvQhCgsLw64u0LY7UXvzOQS7K6k7UlvWU8f77S4z24r3kP6Wc+7wJOX6AZHxzu53zl3Yyet8Bvizv/l559yf4pT5JfANf/NU59wznblGB+owAlgLXlJPpE9ltrvktleZtWRrzL4LjxrBDRccFlKNpD21tbU89ZQXU5922mkt/UhFUi1X77WlS5fS2NhIUVFRj/ldncuam5vZvXs34LUedHZYVclPXfl3vHTp0uiRoUY659alrYJdkJevas2sjNY3+kn/QpxzO8xsL968CZ3P4oHb8FozLgH+YGbTgEeAjcCBwKdo7R71s64EC35AkMzQyEp9fX2PmUVyf0Njm333vbaOaSMrOffQoXGOkLBFhsQLroukWq7ea83NzS2jtCQaVUcyJ/rvQH8f0hnOOZqbmzv8zFVfX5/mGnVPXgYMQHRH+JoOlI8EDL07eyHnXBNwqZk9CnwXuNL/RHsOuL4bLQtrO1rwlVdeYfny5V28TGZtrS4E2vYh/J+HF7B75dsMzo0XijkrWT9fkVTKpXttwIAB9OrVCzNrebMt2aGmpiOPCyLeMLO1tbXU1ta2zOvQnurq6jTXqnvytW2tLGp9fwfKR8K+Lj2imtnBeC0MUxMUOR64wsyGd+X8uaopQW+5/c3G7UsKadDLHhEREZG0y9cWhuj2646MShQZz7PTfXnM7ES8ydmqgNXA94Gn8fIihgDnAj8BPgbMNLPTnHMLOnmZ9rpKDQXmgTd74rhx4zp5+nD8edU8qNkT97v1+4w3mkfxPx+cmOFaSTJ1dXUtb3tnzpxJWVlZO0eIdE2u3mtr1qyhqamJoqKiNiPuSOY1Nze3tCz07t07ozkMW7ZsYcuWLZ0+rqSkpMuzJEtqbN26lV69etG7d2+mTZvWoWOyvfdHvgYM0U+hHelmVOEvO9UeaWalwL14wcIm4Djn3KaoIuuAP5rZC8BrwDDgDuCozlynvcSY6KHBSktLe0xyYLCFobDAaGpu3XnPvPWcOGEIZ0w9IMM1k44oKyvrMfea9Gy5dK8VFBS09JVXgm12KSgoyOjfyZ/+9Cd+9KMfdfq4UaNGxcytIOEwMwoKCjr8u6m0NLvnmsrLgME5V2dm24ABQNKEYX+UpEjA0OFcAd8HgUg3o98FgoXo+iwws7vxchummdlhzrm3OnmtnNPYHBsxfPHk8fx51nLqovoifetfbzNleBUj+5entS7OObbW1LN2+z7Wbq9lzfZ9rNm+jz11DTQ7P7nJQbNzuKhl79IihlaVMbiylKGVZQzxP0Oryuhdmpf//ERERKSHyecnloV4Mz2PN7Mi51zbIXk8k6LWF3XyGgdHrb/RTtnXaU2GngTkfcDQFAgYJh/Qhx+fO4Vv/evtln176hr50r3zuf+zx1NS1P03P845Vm/bx7sbdvHO+l0s21zDmu37WLtjX0ygkgq9S4uYPKyS6eMGMGP8QA4b0TclP4OIiPR81113Hdddd13Y1RAB8jtgeBEvYKgApgGvJCj3vqj1zs7bHh2EtPdnXZzguLzV0BT7gF5UUMBHjxrBS8ureejNDS3731q7k0tue4XzDx/OyZMGM6SyY32Zm5odq7bt5d31u3h3vRcgLNiwmz11mfnjr6lv5NWV23l15XZ+88xSyksKOXp0/5YA4uADKiks0EyTIiIiEq58DhgeAq711y8nTsBgZgV4oxsB7MQb/rQzVkatnwg8lqggsYHJyoSl8khjIImhqNAwM376oam8tW4XK6v3tnz38ortvLzCm19v6vAq3j9pMKccPJgpw6ooKDBq6htZvHE3izbuZuHGPSzauJv3Nu2htqEpoz9TMvv2N/HCkq284E9W17e8mDOmHMAnjzuQQ4ZVhVw7ERERyVd5GzA45141s9l4D/JXmNkdzrm5gWJfp7Vb0U3OuYboL83sJFqDiDucc5cFjv8/YB9QDnzezO52zr0TrIuZnQF8yN9cD7zZlZ8p1zQGJskpLvS66/QuLeL3Hz+CD/3xJfY3tu0m9I7fWnDT/y1lUJ9SyksKWb1tX0rqVFJYwIh+vRjZv5yR/XsxqHcZRYVeK0CBGQUGZt46wM59DWzaXcdm/7NpVx27O9iCsXNfA/e+uoZ7X13D4SP78oljD+TsQ4fRq6QwJT+LiIiISEfkbcDguxqvm1Ev4Ckzux4vAOiFN8zpVX65JcCNnT25c26nmf0v8GO8yeJeMrPf4Q2rugNvWNXzgM/QOifGd5xzmmEAaAi2MER1zzlkWBW//djhfPOBt5N2Idq6p2szJw6oKGHK8CoOGVbJ2EG9GdmvFwcOKGdInzIKutlNqHZ/E5t317GiuoaXlm1jzvJtLNqYfIKmN9fu5M21O/nJYwu5YNpIPn7sgYwf3Ol5BEVEREQ6La8DBufcfDO7CLgbqASuj1NsCXCWcy7+hADt+ynQHy846Y3XDeraOOUagO865+7u4nVyTmMwh6EwNiH4g1MO4NgxA3juvS383+ItzHpvK3vqO59/MKhPKVOHVzFleBVThlUydUQVQyvLYoajTaVeJYWMHljB6IEVvH/SEAC2793P3OXbmLO8mrnLt8V0t4q2u66R2+as5LY5K5kyvJLykuz6J9zc3MyO7YX0L3XsHbyRkycfwAFVuTHcpYiISL7KrqeNEDjnHjWzQ/Ee6M/CG2Z1P7AMuB/4vXOuy/1ZnHMO+FrUsKknAKPwuinV+Nd5AbjFObekOz9LrmkIjJJUXNj2Ab5fRQkfPnIEHz5yBA1NzcxbtZ1nF23h2cVbWBF46C4sMMYNquDgAyqjPn0Y3Cf8CZ/6V5Rw1qEHcNah3pwSa7fv419vrOMfr65l0+66uMe8uz55q0R4jOV7jHkPL4KHFzF2UAUnjB/IjPEDOW7sAKp6Fbd/ChEREckaeR8wADjnVgPX+J/OHPc80KHX0M651/GGTpUOCrYwtDdiUHFhAdPHDWT6uIF8/+zJrKzey7xV2ykwY9LQPowf3Juy4p7R/39k/3K++oEJfOnk8fzf4i38/ZU1zPKToXuaFVv3smLrXu6cu5oCg0NH9OWy6aM57/BhaWvFEempCgsLaWxspLGxkaamJgoLe8bvLBHxNDc309TkDaiSS/9+FTBIVmpu9iZCi1Zc2Lk5CsYMrGDMwIr2C2axosICTj9kKKcfMpTV2/Zyz6truP+1dWzfuz/sqnVJs/PyMb76zzcpLynktEOGhl0lkaxSXl5Ofb2Xe7Vz504GDBgQco1EpDNqamrwOpeQMzPQgwIGyVLBWZ4hNuk5H40aUMG1ZxzMNadOYM6yatbvjN9VKUwN+/fz9oJFrNxjrNpXwq4kCelPvLNRAYNIQN++fdmxYwcAW7ZsoampicrKSkpLS9UiJ5LFmpubqampYdOmTS37+vTpE2KNUksBg2Sl4JCq0PkWhlxVWlTYkiydbWpraxmwYyEn4zjlAyeyYsd+XlxWzZxl1cxbtSNmGNxVKRrqViSXlJWVUVVVxa5duwDYtm0b27Ztw8xyqntDT9LY6L342Lq1Z3YLlcxoampqaVkAr3WhoqJn93KIpoBBslJwSFWgZb4D6RkKC4xDR/Tl0BF9+cJJ43lu8RYuv31ey/ertsUfCUok3x1wwAGUlJTEPKA651oeXCVznHPU1tYC3gOgWnmkI3r16sWBBx6YU/eLAgbJSsGEZ4CiArUw9GSjA/kkO/c1sHPffvqWl4RUI5HsZGYMHDiQyspKampq2Lt3L/v376c5TsurpFdzc3NLwNC7d28K9P+QJFBYWEivXr3o06cPFRUVORUsgAIGyVLxchjiDasqPceIfr0oLDCaov5uV23bx+EKGETiKikpoX///vTv3z/squSt2tpaFi9eDMC0adNyKolVpDMUKktWaojXwqAchh6tuLCAEf1i/7NdrW5JIiIiWU9PYJKVmjRKUk4aPSC2W1KiGa1FREQkeyhgkKwUN+lZAUOPN3pAecz2ao2UJCIikvUUMEhWijesanszPUv2CyY+q4VBREQk+ylgkKzUGGhhKC60nBtxIB8FuyQph0FERCT7KWCQrBRMetaQqrkh2MKwY18Du/Y1hFQbERER6Qg9hUlWCg6rqknbckNkaNVomsBNREQkuylgkKwUbGEo1pCqOSHe0KoKGERERLKbnsIkKwVzGDRCUu4YFchjWFWtkZJERESymQIGyUrBeRgUMOSOMYGhVdXCICIikt0UMEhWapP0rC5JOaNNC4MCBhERkaympzDJSkp6zl1jBga7JClgEBERyWYKGCQrtUl61rCqOWNUoEuShlYVERHJbnoKk6zUJulZLQw5Y0S/8jZDq67erlYGERGRbKWAQbJSY7NyGHJVSVEBw/vGDq26Ut2SREREspaewiQrNQRaGIo1SlJOCc74vHqbhlYVERHJVgoYJCs1thklSQFDLhkdHFpVLQwiIiJZSwGDZKU2oyQp6TmnaGhVERGRnkNPYZKVNKxqbhszMDh5m7okiYiIZCsFDJKV2nRJUgtDTgm2MGzfu59dtRpaVUREJBvpKUyyUpukZ7Uw5JSR/coJ5rGvVrckERGRrKSAQbKShlXNbSVFBQzvFzu0qroliYiIZCc9hUlWCk7cpmFVc8/oYOKzRkoSERHJSgoYJCsFuyQp6Tn3tAkY1CVJREQkKylgkKykLkm5Lzh5m1oYREREspOewiQrtZ2HQS0MuSY4eZtmexYREclOChgkK2lY1dwXbGHYtnc/u+s0tKqIiEi20VOYZKU2Sc/KYcg5cYdWrVYrg4iISLZRwCBZqUEzPee8eEOrrlTis4iISNZRwCBZSV2S8kNwpKTVSnwWERHJOnoKk6ykmZ7zQzBgUAuDiIhI9lHAIFlJw6rmh1EaKUlERCTr6SlMslIw6VnDquamMZqLQUREJOspYJCs1KaFQQFDTho1QEOrioiIZDsFDJKV2rQwqEtSThrZv5eGVhUREclyegqTrBQcVlVJz7mptKiQYX1jh1ZdpcRnERGRrJKRgMHMZvqfXu2XbjmmLHJcOusm2UnDquYP5TGIiIhkt0w9hT0PPAuM6cQxw6OOkzzTtkuSWhhyVXCkpFUaKUlERCSrZPK1bVef+PSkmIcaAknPxcphyFnBuRjUJUlERCS7ZPNTWKRuTaHWQkKhYVXzR5vZnhUwiIiIZJVsDhhG+ctdodZCQtEmh0FdknLW6IGxXZKqa/azR0OrioiIZI2idJzUzA5M8NUBZlbTzuGlwDjgJ4ADFqSybtIzNDYHWxiyObaV7hjZvxwzcFF/5au37WPK8KrwKiUiIiIt0hIwACvj7DPgqS6c685u1kV6oDYBg1oYclZpUSHDqnqxfmdty76V1XsVMIiIiGSJdL22tcAn0f5kn3rgl86529JUR8liDU1Kes4nwaFVlccgIiKSPdLVwnB5YPtveN2L/gdYn+Q4B9QBG4H5zrn2ui9JjlLSc34ZNaCcF5e1bq/UbM8iIiJZIy0Bg3PujuhtM/ubv/qQc25hOq4puaVRw6rmFbUwiIiIZK90tTAEnewv4+U2iMRwztGgidvyyijNxSAiIpK1MhIwOOdeyMR1JDc0BRKeQaMk5boxCYZW7VNWHFKNREREJEJPYZJ1giMkgXIYct2Ift7QqtFWb1Meg4iISDbIVJekFmZ2GHAiMBboAxS2c4hzzl2R9opJ1ogbMKhLUk4rK247tKrmYhAREckOGQsYzGwicBtwXGcOwxs5SQFDHgnO8gxKes4Hw/qWxQQMW/fUhVgbERERichIwGBmw4FZwEBa52WoAXYAbZ8OJa8FE55BXZLywaA+pTHbW2vqQ6qJiIiIRMtUC8P3gEF4rQV/Bf6fc25Jhq4tPUxwSFWAIrUw5LxBvQMBwx4FDCIiItkgUwHDB/GChTudc1dl6JrSQwUnbQMoVg5Dzgu2MFTX7A+pJiIiIhItU69th/nLOzN0PenBGuLkMGhY1dw3UC0MIiIiWSlTT2E7/OXODF1PejANq5qf2uQwKGAQERHJCpkKGF7zlxMydD3pwYJdkgoMChQw5Ly2XZLqaY4TPIqIiEhmZSpg+C3e6EjKX5B2BZOelfCcH4IBQ2OzY1dtQ0i1ERERkYiMPIk5554GfgGcbGY3m1lxJq4rPVNwWNVitS7khQEVpW32aWhVERGR8GVqHoZLgEXAS3itDOeY2QPAYmBfe8c755QsnUeCE7ephSE/lBQV0Le8mJ37WlsVtu6pZ8KQPiHWSkRERDI1rOrteMOqRhwAfLmDxzo0ulJeCSY9a0jV/DGod2mbgEFERETClclXt9aNj+SR4LCqGlI1f8RLfBYREZFwZaqFYUyGriM5IDhKUpFaGPKG5mIQERHJPhkJGJxzqzNxHckNwVGSipXDkDc0F4OIiEj20ZOYZJ1gDkOhRknKG20CBnVJEhERCZ0CBsk6bbokKWDIG4PUJUlERCTrZCqHoYWZHQRcAhwPDAV6Aac755ZFlZkCHAjsdc69kOk6SriCSc/qkpQ/BirpWUREJOtkLGAwswLgBuBqvJaNyGtjB5QEih8IPAY0mtkY59z6TNVTwhfskqSk5/wRbGHYtnc/jU3NmotDREQkRJn8X/gW4GtAIbABeCBRQefcE8BKv+wFGamdZI3gxG3FGlY1bwRzGJyD7Xv3h1QbERERgQwFDGZ2CnCFv3k9MNo5d2E7h92P1wrx/nTWTbJPg4ZVzVv9K0oIpqwo8VlERCRcmXp1e5W/fMI5933nXFMHjnnVXx6SpjpJlgoOq6ruKPmjsMDoX6HEZxERkWySqSex4/FyFW7txDHr/OXQ1FdHslmwhaFYoyTlFc3FICIikl0yFTAM9perOnFMg7/M+EhOEq4mzcOQ14IBQ3WNchhERETClKmAYa+/HNSJY0b4y+0prksbZjbKzG40s8VmttfMtpvZPDP7ppmVp/haHzCz281smX+tXWa2xMweMLPPm1nvVF6vJ2qT9KwuSXlFczGIiIhkl0y9vV8BHAlMBp7u4DFn+MsFaamRz8zOAe4GKqN2lwNH+Z8rzeys6HkiunidfsDfgPPifF0JHAR8BJgLvNmda/V0DRpWNa8N7BM7yrKSnkVERMKVqVe3T+GNePRFfz6GpMxsMnAZXt7DE+mqlJkdAfwT74G9BvgeMB04BfiLX2wC8LiZ9enGdarwAqVIsPAg8AngOOBo4MPATbTmbeS1YAtDkYZVzSttWxjqQqqJiIiIQOZaGH4LfAUYB/zJzL7gnGuMV9DMTsV7E18GbKP1wT0dbsKbaboROM05Nzfqu2fNbCneZHMTgK8D13XxOr8DpgH1wIXOuUcC378GPGhmkXkq8lqbpGe1MOQV5TCIiIhkl4y8unXObQY+529eASw3sz9GFbnazP5sZguAJ4FhQDNwmXOuJh11MrNjgBP9zVsDwULEjcCiqDoWd+E6JwCf8je/HydYaOE8cQOpfNJ2WFUFDPlEoySJiIhkl4z19XDO/R24GNgNjAQ+i9flCOBKvEDiYLyuSzXAR51zj6exSudHrf8tXgHnXDNwp7/ZFzi5C9f5kr/cBfy+C8fnncbgxG3qkpRXgl2SdtU2UN/YkalbREREJB0y+iTmnLsPGA/8EHgdaMILECKfBcDPgfHOuQfTXJ0T/OVevy6JvBC1PqMzFzCzElrzFp52ztX5+wvNbKSZjTazss6cMx+oS1J+C7YwgLoliYiIhCnjr26dc9uccz9xzh2Dl6cwGDgAKHXOTXXOfc85tyUDVTnYXy5rpxvQ4jjHdNRheD8jwDtmVmlmvwGqgTXASmCXmT1tZid18tw5qynQJalQLQx5papXcZsgsVrdkkREREIT6qRofpef6kxf13+rP9DfTDoykXNuh5ntBSrwulJ1xuSo9QK85OaDAmVKgA8Ap5jZtc65X3TyGpjZiHaKtMyWXV9fT21tbWcvkVF1DYH4rbkp6+ssnrq6urjrnTWwooSNu1uDhPXb9jBhYNuWB8lfqbrXRJLRfSaZUl+f3S/G8nUW5eghUjuSVB0JGDo7qVr/qPVv47U2PAn8AHgbbzjXjwD/C1QB/2tmi51zD3fyOms7WvCVV15h+fLlnTx9Zm3YWEB049fqlct56qluTYMhIZg1a1aXjy1qKsTrpeh54dX5NKx2iQ+QvNade02ko3SfSTpVV2f8/Xmn5Gtfj+i8gY50jo6Efb06eZ2KwDWfBs52zs1zztU757Y65/4EnI03KhTAz80srzvtB1IY0ETP+aeyJPYm2NMQUkVEREQktS0MZvasv+qcc6fE2d8VMedKkeh2xZKEpVpF+kJ0tl9MsP3y2865NsO9OOdeNLN/Axfg5UlMxWuB6Kj2ukoNBeYBHHvssYwbN64Tp868+7e8CTu2t2wfPHEip00/MLwKSYfV1dW1vIWbOXMmZWVdy+mfXbeIBTs2tmz3HXogp502MSV1lNyQqntNJBndZ5Ip2d77I9Vdkk7yl8G+Ayf5+zrz5jxSPh39EPZErXekm1GkpaCzc0JEX2erc25+krL/xQsYwJv9ucMBg3MuaR5GdINFaWkpvXp1tqEks5oDt0mv0pKsr7O0VVZW1uW/twP6VcRs76ht0j0gCXXnXhPpKN1nkk6lpdmdp5fqgGEW8R/wE+0PhXOuzsy2AQOApAnDZtaP1oChw7kCcconfagPlB3UyevklOA8DBpWNf8M7K3J20RERLJFSgMG59xJndkfsoV4Mz2PN7OiJEOrTopaX5SgTCILotYL2ykb/X1ez/bc0GamZyUx5Js2sz3XKGAQEREJSz4/ib3oLyuAaUnKvS9qfU5nLuCcW4033wLA6HaSmaMTC9Z35jq5pqk5toWhsEAtDPkmGDBoHgYREZHw5HPA8FDU+uXxCphZAXCJv7kTeK4L1/mXv6wEkiVvfzhq/cWEpfKAZnqWQYEuSXv3N7G3Pq8b3kREREKTtwGDc+5VYLa/eYWZHR+n2Ndpnd35JudczOCOZnaSmTn/c3uCS/2G1tGSfmVmlcECZvZJWhPGH3fOdTZXIqc0NgW6JGmm57wzsE/b5K9qdUsSEREJRUaexMxsqpmtMLOlZja8A+WHm9kyM1tuZhPSWLWr8YZKLQKeMrNrzew4MzvZzG4BbvDLLQFu7MoFnHNr8CZqA2+41FfN7HIzm+Zf53fA7f73u4GvdfFnyRmNzWphyHcVJYX0Ko5N+1His4iISDgyNdPzJ4HRwH+dc+32z3fOrTezJcDp/rE/aOeQLnHOzTezi4C78boMXR+n2BLgLOfcnjjfdfQ6vzSz/nizPU8EbotTbAtwvnNuaVevkysa1MKQ98yMQX1KWbN9X8s+tTCIiIiEI1NPYu/DG1b1kU4c8zDePAypnrQthnPuUeBQ4Nd4wcE+vHyF1/Ae8I9wzi1LwXWuBWYAdwGr8GaP3oU3odr/ABOcc3O7e51cEBxWtUgtDHmpzUhJamEQEREJRaZaGCLdijoze/G7/jLt07v6oxld4386c9zzdGIyOj8gUFDQjsbAsKrFGlY1Lw3sHTsJuwIGERGRcGTqSSwym3JnZkqOlG2TJCy5LThKkoZVzU+ai0FERCQ7ZCpg2OEvh3bimEjZLucOSM8UnIdBSc/5aVDvspjtrXv2h1QTERGR/JapgCGSyPvBThxzhr9cnuK6SJZT0rOAWhhERESyRaaexP6L19f/KjM7uL3CZnYI8Bm8ROkn01w3yTLBYVWV9JyfgjkMmu1ZREQkHJkKGG4G9gJlwLNmdnaigmZ2LvAM0AtvjoQ/ZKSGkhWcc3G6JKmFIR/Fa2FwziUoLSIiIumSkVGSnHPVZvY5vCFFBwMPm9kK4EVgo1/sAOBEYAxea4QDPu+c25yJOkp2CCY8AxQp6TkvBQOG/Y3N7K5rpKpXcUg1EhERyU+ZGlYV59zfzawAr7WhHBgHjA0UizwZ7sULFu7OVP0kOwSHVAW1MOSrgb1L2+zbuqdeAYOIiEiGZfRJzDl3FzAe+F/gHX+30dqi8DbwM2C8goX8FLeFQTkMeamsuJA+ZbHvNDQXg4iISOZlrIUhwjm3Cfgu8F0zKwL6+19td841Zro+kl0am9q2MGgehvw1qE8pe+pafy1Ua6QkERGRjAu1r4dzrtE5t8X/KFiQNgnPAMUaVjVvDQp0S1ILg4iISObpSUyySkOcgEFdkvKX5mIQEREJnwIGySrxuiQp6Tl/BROf1cIgIiKSeSnNYTCzZ/1V55w7Jc7+rog5l+Q2Dasq0YItDMphEBERybxUJz2f5C+DT30n+fs68+QXKa+ZmvJIvGFVlfScv9p0SVILg4iISMalOmCYRfwH/ET7RWI0NgVneTbMFDDkKwUMIiIi4UtpwOCcO6kz+0WCGgI5DEUaISmvBUdJ2rZ3P83NjgK1OomIiGRMSp/GzOxQ/1OSyvNK/ggOq6r8hfwWbGFoanbs2Lc/pNqIiIjkp1S/vn0TeANvNucWZvYD/zMwxdeTHBNMetaQqvmtf0UJwR5pGlpVREQks9LR3yPeE951wA+BwWm4nuSQYNJzkYZUzWvFhQX0L49tsFQeg4iISGal+mmswV/2SvF5JU+0SXpWl6S8p7kYREREwpXqgGGzv5yW4vNKnmiT9KwWhrynuRhERETClY5hVT8O/MLMxgFLaG11ADjPzI7q7Emdc3emqH6S5RqDSc/KYch7GlpVREQkXKkOGH4OfAioAr4R+M6An3bhnA5QwJAngi0MxRpWNe8pYBAREQlXSp/GnHMLgJnAM3gtC0ZsErR18SN5IpjDoBYGGdg7kPSsLkkiIiIZleoWBpxzrwOnmVkRMBAoA1bgtRScDixN9TUld2geBglqk8OwR/MwiIiIZFLKA4YI51wjsAnAWgdS3+CcW52ua0rP16BhVSVgUO+ymG21MIiIiGRWSgMGM/uKv3qXc25H1Fc/wmth2JLK60nuadMlSS0MeS/YwrB9734ampopVjApIiKSEan+H/c3wK+BAwL7T/I/FSm+nuSYNknPeijMe8EcBoBtNeqWJCIikilp65IU8D68FgYFDJKUhlWVoH7lJRQWWEx+S3VNPUOrypIcJSIiIqmS6te3df6yb4rPK3miMThxm4ZVzXsFBdZ2pCQNrSoiIpIxqX4aW+Uvz07xeSVPNARyGIrVwiBoLgYREZEwpbpL0hPAJODbZnYKbWd6/qmZ7ezkOZ1z7ooU1U+yXKNGSZI4BvYOBAwaKUlERCRjUh0wXA+cC4wHjgaOivrOgPM6eT7Dy31QwJAn2uQwaJQkAQYFAwa1MIiIiGRMSgMG59x2MzsK+BJwCjAcKAVG4T34byS2xUEkhoZVlXjadElSC4OIiEjGpGOm5914LQ3XR/aZWaSfyWnOuYWpvqbkjjZJz+qSJCiHQUREJEx6GpOs0tCspGdpK5jDUK0WBhERkYzJ1DwMJ/vLlRm6nvRQGlZV4lELg4iISHgyEjA4517IxHWk5wvmMKiFQaBtwLCnrpG6hibKigtDqpGIiEj+yFQLQwszK8BrcTgeGAqUA99zzm2MKlPi163JOadXiXkk2CVJMz0LwJDKtrM6L9tSw5ThVSHURkREJL9ktL+HmZ0NLAOeAn4EfB64FOgXKHolsAfYYmYVmayjhEtdkiSe3qVFjBpQHrPv3fW7QqqNiIhIfsnY05iZfQZ4GBiNN7/CNn8Zz1+BXUBv4EOZqJ9kB83DIIkEWxPeUcAgIiKSERkJGMzsIOAP/uazwGTn3OBE5Z1z+4F/4QUUp6W/hpItNKyqJDI1EDCohUFERCQzMvU09jW8nIQFwJnOucUdOGa2vzwibbWSrBNsYVDSs0QEA4ZFm/bQEAgwRUREJPUyFTC8H2+m59/4rQcdscxfjkxPlSQbBR8A1SVJIqYMiw0Y9jc2s2TznpBqIyIikj8yFTCM8JdvdeKYvf6yPGkpySnBYVXVJUkiqsqLObC/Ep9FREQyLVNPY5GnwM48/A/wl3oiyCOa6VmSCXZLUuKziIhI+mUqYFjvL8d24pgT/OWKFNdFspiGVZVk2o6UtDukmoiIiOSPTD2NPY834tGlHSlsZlXA5/BaJp5NX7Uk27TtkqQWBmnVJvF5424lPouIiKRZpgKGW/Ae/t9nZpclK2hmA4CH8GaBbgT+lO7KSfZobFYLgyQ2ZXhlzPb+xmaWbq4JqTYiIiL5ISNPY865+cBNeK0Mt5rZP83swqgi083s42b2B7zRkWbiBRg/cc6tzkQdJTu0mbhNLQwSpW95CSP794rZp8RnERGR9Mrk69uvAzfjBQ0XAPfSmgx9C3AXXjekKr/MTc65n2awfpIFgl2SlPQsQUp8FhERyayMBQzO80XgdLycBocXGER/AOYCZznnrslU3SR7tJ2HQV2SJFbbxGcFDCIiIulUlOkLOueeBp42sz54szgPBgqBbcCbzrnqTNdJsoe6JEl7ghO4Ldq4m8amZs3ZISIikiYZDxginHN7gFlhXV+yU7CFoVgPgRIQ7JJU39jM0i01HHxAZYIjREREpDv0NCZZpc2wqgVqYZBY/SpKGN43NvFZ3ZJERETSJ5QWBjMbApwETAH6+7u3A+8CzzvnNodRLwmfhlWVjpg6vIr1O2tbtt9dv4sLjxoZYo1ERERyV0YDBjM7APgV8OEk1240s38BX3fObcxY5SQrKIdBOmLqiCqeXLCpZVtDq4qIiKRPxl7fmtlhwNvAhUAxbUdIinyKgYuAt8xsaqbqJ+Frana42HhBw6pKXMGRkhb6ic8iIiKSehkJGMysAngcGIAXFDyDFxSMBsr8z2i8YOIpv8xA4HEzK89EHSV8wYRnUJckiS+Y+FzX0MzyrXtDqo2IiEhuy9TT2JeAYUAz8Bnn3GnOufudc2ucc/v9zxrn3APOuQ8CV+LN0zAc+GKG6ighC3ZHAnVJkvj6K/FZREQkYzIVMJyHFwDc7py7tb3CzrnbgL/htTR8KM11kywRr0uJhlWVRKYMjx1GVXkMIiIi6ZGpp7EJ/vIfnTjm3sCxkuMamuK0MGhYVUkg2C1JLQwiIiLpkamAobe/3N6JY3b4y4oU10WyVHBIVUCz90pCbRKfN+ymKU63NhEREemeTD2NbfWXB3fimEn+sjrFdZEsFZy0DdTCIIkFWxhqG5pYvrUmpNqIiIjkrkwFDC/j5SNcY2btzv3gl7kGL+/h5TTXTbKEkp6lMwb0LmVYVVnMvnfWqVuSiIhIqmUqYLjTXx6ON1TqsEQF/e8eBY70d92e1ppJ1oib9KxhVSWJYLck5TGIiIikXkZmenbOPWpmDwHnAx8AVpjZU8ArwBa8loQhwLHAqUCJf+iDzrnHM1FHCV8w6bnAoEBdkiSJqcOreGrh5pZtjZQkIiKSehkJGHwX47U0fBQvIDjL/wRFnhDvBy7JTNUkGwSTnpXwLO2ZMiK2hWGBn/hcqEBTREQkZTL2ROacq3fOXQScA/wHqMULDqI/tf53ZzvnLnLO1WeqfhK+YAtDsR76pB1ThrVNfF6hxGcREZGUymQLAwB+F6PHzawQGAv097/aDqxwzjVluk6SHYI5DGphkPYM6lPK0MoyNu2ua9n3zvpdHDSkT4i1EhERyS2hPZE555qcc0udc6/4n6UKFvJbcJSkYo2QJB2gxGcREZH00itcyRrBgEH90KUjgvMxKPFZREQktdISMJjZcWb2b/9zQSeP/WjUsdPSUT/JTm26JGlIVemAqSMqY7YXaMZnERGRlErXE9lNwHnASODhTh77sH/cecCvU1wvyWJtkp7VJUk6INglad/+JlZWK/FZREQkVVIeMJjZscDR/uZXnHMNnTneObcf+AreqEkz1MqQPzSsqnTF4D5lDKksjdmnPAYREZHUSccT2YX+8kXn3NyunMA/7gV/82MpqZVkvcZAC0ORchikg4J5DO+s2x1STURERHJPOgKG4/Fmbu5sV6SgR/BaGaZ3u0bSIzQEchiK1cIgHdR2pKSd4VREREQkB6XjiWycv3ynm+d5N3A+yXHBUZKKlMMgHXTYiL4x22+t3UXtfo3SLCIikgrpCBj6+sut3TxP5Pi+yQpJ7giOklSsUZKkg44a3S9mGN79Tc3MW7U9xBqJiIjkjnQ8ke3zl5VJS7UvMlVrbTfP0y4zG2VmN5rZYjPba2bbzWyemX3TzMrTdM1yM1thZs7/rErHdXoSzcMgXdWnrJhDR8R2S5qzvDqk2oiIiOSWdAQMkZaB8d08T+T47rZUJGVm5wBvA9cAE4FyoB9wFHADMN/MuvuzxPNjYEwazttjtUl6Vpck6YQTxg+M2X5p2baQaiIiIpJb0hEwzMdLVj6jm+c5K+p8aWFmRwD/xGsNqQG+h5dkfQrwF7/YBOBxM+sT9yRdv+5XgTpgT6rO29M1NCvpWbpu+rjYgOHdDbvYuW9/SLURERHJHel4IvuvvzzfzA7pygnMbApwPt5oS/9NXrpbbgJ6AY3Aac65651zc51zzzrnrgK+5ZebAHw9FRc0s0K8YKQQuB5QR2ufhlWV7jhyVF/Kilt/pTkHL69QK4OIiEh3pSNg+AewxT/3A2Y2oDMHm9lA4F/+8Vv986WcmR0DnOhv3ppgzogbgUX++tVmVpyCS18NTAPeA36RgvPljDZJz2phkE4oLSrk6NH9Y/bNUbckERGRbkv5E5lzbh/wQ7xuSROAN83svI4ca2bn43VBOgivdeEH/vnS4fyo9b/FK+Ccawbu9Df7Aid354JmNgovdwHgc/6s1uJr0LCq0k3BbklKfBYREem+onSc1Dl3i5kdCXwGGAb82x8F6EngdbwWiL1ABTAEOBIv52EUXqAB8Gfn3J/TUT/fCf5yr1+nRF6IWp8BPNWNa/4R72e+yzn3fDfOk5OCLQxFGlZVOmnG+NgGzRVb97JpVx1Dq8pCqpGIiEjPl5aAwfc5YBNeInEBMNrfl4wBzcBPgR+lsW4AB/vLZc65xiTlFsc5ptPM7GPAmcAOUpQPkWsaAjkMxWphkE46ZFgVlWVF7K5r/Sc9Z1k1H5k2IsRaiYiI9GxpCxiccw74oZk9DHwXOA8v0TeRJuAh4OfOuTfSVS8AMysDIn0X1iUr65zbYWaR1pCRXbxeP+A3/uZ3nHMpHSrWzNp7GhoaWamvr6e2Nu1TW3RJ/f6GmG3X3Jy1dZX46urq4q5n0jGj+/HM4tZ/Yi+8t5kzJ3cqlUp6gGy41yT36T6TTKmvrw+7Ckmls4UBAP/h/wIzq8LrBnQYMABvYrY9wDbgLeBF59yudNfHFz1Eak0HykcCht5dvN4v8bpezaV1uNZUWtvRgq+88grLly9PQxW6b9WaAqLTajauX8tTT60Or0LSLbNmzQrlun3rjeh3Ey8s2sh/y9dharDKWWHda5JfdJ9JOlVXZ3fOXdoDhgg/GHjc/4QtukNzRxKPI2Ffr85eyMxmAp/GG7r1c37Li8QR6JGERlWVrphQFXsj7WowttTBkE7/6xURERHIYMCQZaLbFUs6UL7UX3aqf4yZlQJ/xsvNuMk593Znju+E9rpKDQXmARx77LGMGzcuTdXonmdqFsDWzS3b48eO5rQPpGOSbUmXurq6lrdwM2fOpKws88nGzjn+unwOW/a0vgsoOGAypx2jPIZckg33muQ+3WeSKdna+yMiXwOG6NmVO9LNqMJfdqT7UrTvARPxugz9sJPHdphzLmkehkX1xSgtLaVXr+x81dpssaMi9Sotydq6SvvKyspC+/s7Yfwg/j1/fcv2vDW7uPJ9B4VSF0m/MO81yR+6zySdSktL2y8UorwMGJxzdWa2DS+XIulrRz9hORIwdDhXwPdtf/kMcI7F70QdOXeFP5ISwBbn3LOdvFaPp2FVJVWmjx8YEzDMXb6NpmZHofq5iYiIdFpeBgy+hXgzPY83s6IkQ6tOilpflKBMIpHuTpf7n2QGAvf66y8AeRgwaOI2SY3gfAy76xpZsGEXh47oG06FREREerB8foX7or+sAKYlKfe+qPU56auOtJnpWW+DpYsOqOrF2IEVMfvmLNsWUm1ERER6tnwOGB6KWo/79t/MCoBL/M2dwHOduYBzztr7AJFxQ1dH7T+pUz9JjmhqDnRJKszn21O6a3qgleGl5dk9ZJ2IiEi2ytsnMufcq8Bsf/MKMzs+TrGv0zq7803OuZiZxczsJDNz/uf29NU2P2imZ0mlGeMGxmzPW7Wd+samkGojIiLSc+VtwOC7Gm+o1CLgKTO71syOM7OTzewW4Aa/3BLgxrAqmS+U9CypdPy4ATGTtdU1NPPG6p2h1UdERKSnyusnMufcfOAiYDfe8KrX483G/CxwlV9sCXCWc25P3JNIyjQGcxjUwiDd0Le8hEOGVcbsU7ckERGRzstIwGBml/ifyvZLtxzTO3JcOuvmnHsUOBT4NV5wsA8vX+E1vGFRj3DOLUtnHcSjLkmSasFuSXOWKWAQERHprEwNq3o74PAewhd28Jgh/nHNwJ1pqZXPObcauMb/dOa45/Fmce7OtUd35/hcoi5JkmrTxw/kllkrWrbfWreLPXUN9CkrDrFWIiIiPUtPeCLTa+Y8EeySpBYG6a6jR/eLuY+amh2vrtweYo1ERER6nmwOGAr9ZaIJ1STHNARaGArVwiDdVF5SxBEH9ovZp/kYREREOiebn8gm+ku9DswTTUp6ljQI5jEo8VlERKRz0pLDYGYzE3x1tJkNTPBdRCkwDvgGXt7DmymsmmSxNknPamGQFJgxfgC/fqZ1e/GmPWzdU8+gPqXhVUpERKQHSVfS8/N4D/vRDLitE+cw/xy3pKhOkuUa28z0rBYG6b7DRvaloqSQvftbJ217aXk15x0+PMRaiYiI9BzpfIVrUZ94+9r7rAO+6Jx7KI11lCzSqGFVJQ2KCws4duyAmH3PLd4SUm1ERER6nnS1MJwctW54E6E54ApgZZLjHFAHbHTOrU1T3SRLBZOeNayqpMr7Jgzi2agg4f8WbaG+sYnSosIkR4mIiAikKWBwzr0QvW3W8qb4VedcR+dhkDyjmZ4lXT44ZSg/fGRBy/ae+kbmLKvm/ZOGhFgrERGRniFTr3DHAGPxZlIWacM512aUpOJCtTBIagypLGPaqNjhVf/zzqaQaiMiItKzZOSJzDm32v9oTgWJKzhCEkBhgVoYJHXOmDI0ZvuphZvbdIMTERGRtrLmFa6ZnWNmd5nZf8zsj2Z2ZNh1kswJti6AhlWV1Dpj6gEx27tqG5i7XJO4iYiItCcjT2RmdrKZbTGzNWbWN873PwEeAj4OnAZ8FnjZzD6VifpJ+Bqa277pVQ6DpNLwvr04bGTfmH3/eXdjOJURERHpQTL1CvdMYCAwzzm3M/oLMzsU+C6tw6nu9JdFwC1mNjpDdZQQBYdUBQUMknpnBrol/XfBZhrVLUlERCSpTAUMJ+ANmfpMnO8+jxcg7ACmOecGAMcA2/Fmff5chuooIYr30KYuSZJqZ0yJ7Za0fe9+Xl21PaTaiIiI9AyZeiKL/C+9IM53Z+MFE793zs0HcM69BvweL5D4QEZqKKFqiJPDoBYGSbUDB5RzyLDKmH0aLUlERCS5TAUMg/zlzuidZjYOGO5vPhg4Zra/HJe+akm2iNvCoGFVJQ3ODCQ/P7lgU9ykexEREfFk6oks8qq4KrD/RH+5yzn3ZuC7yPAl5emqlGSPeMOqFmlYVUmD4PCqW/fU8/rqHSHVRkREJPtlKmCItPkfHNh/ur+cE+eYCn+p/8nzQLw3vJqHQdJh7KDeTBraJ2bfE+9otCQREZFEMhUwvIzXyvB5MysHMLOxwHl4+QtPxzlmgr9UB+M8EJxAq6jAMFPAIOkRTH7+74JNNKtbkoiISFyZChj+6i8PBd41swfwgogyoBa4J84xM/3lkvRXT8LWGHhYU8KzpNOZU2O7JW3cVceb63aGUxkREZEsl5GAwTn3LHATXivDaOBDePMyAHzTOVcdXd7MymhtfZiViTpKuIJJzxpSVdLpoCF9GD+4d8y+/6hbkoiISFwZeypzzn0NOBe4C28+hjuBDzjnbo5T/FxgN7AGeDRTdZTwBJOe1cIg6RZMfn7inU04p25JIiIiQRl9jeuce8w5d6lz7nTn3GV+y0O8cvc550Y758Y451Znso4SjsbmQA6DhlSVNAvmMazfWcs763eFVBsREZHspacyyQqNgRaGYo2QJGl28AF9GD0gdtTm/7yrMRZERESCFDBIVmgzSpJaGCTNzIwzApO4/eedjeqWJCIiElCUiYuY2YHdOd45tyZVdZHsFJyHQZO2SSacOeUAbn5+ecv2qm37WLRxD5OHVYZYKxERkeySkYABWNmNYx2Zq6eEpEHDqkoIpgyvZES/XqzbUduy7z/vblTAICIiEiVT/T6smx/JccFhVYs0rKpkgJnFGS1Jw6uKiIhEy9Sb+8s7UKYCb3bnjwDDgTm0TvgmOa5N0rNaGCRDzph6AH+Z3doIunzrXhZv2s2koWplEBERgQwFDM65Ozpa1sy+Cfwa+Dwwxzn3nbRVTLJGg4ZVlZAcPqIvB1SVsXFXXcu+++at4wfnTA6xViIiItkj657KnHMNzrkvAc8D3zSz00OukmRAsIVBSc+SKQUFxvlHDI/Z96831lHX0BRSjURERLJL1gUMUW7By1/4ctgVkfQLDqtarBYGyaCPHT0yZntXbQNPak4GERERILsDhqX+8qhQayEZ0ahRkiREowZUcML4gTH77nlVozmLiIhAdgcMVYGl5DDNwyBhu/iY2OliXl25nWVbakKqjYiISPbI5oDhUn+pMQ7zQJuZnjWsqmTYqZOHMKCiJGbfP9TKICIikn0Bg5kdZGZ/wgsYHPBEyFWSDGiT9KwuSZJhJUUFXHDUiJh9/3pjHfWNSn4WEZH8lpFhVc1sRQeKFQB9gT5R+7YAP0tHnSS7BIdVVdKzhOFjRx/ILS+0/rrasa+B/y7YzLmHDQuxViIiIuHK1MRto7twzFzg0845dUnKAxpWVbLBmIEVTB83gJeWb2vZd+8raxQwiIhIXstUwNCRiduagT3ASuAF59ybaa2RZJXGYA6DWhgkJB875sCYgGHuim2s2FrD2EG9Q6yViIhIeDI10/PlmbiO9FwNgVGSipXDICE5/ZAh9CsvZse+hpZ9/5y3lmvPPDjEWomIiIRHr3ElK7RpYdAoSRKS0qJCLpgWm/x8/+tKfhYRkfyVkacyM1vhf76UietJz6OJ2ySbfCwwJ8P2vft5euHmkGojIiISrky9xh0BjALezND1pIdR0rNkk3GDenPsmP4x++7VnAwiIpKnMhUwbPKXtRm6nvQwjc1Kepbs8vFjY1sZ5izbxqrqvSHVRkREJDyZeip7xV8ekqHrSQ/TEGhhKFYLg4Ts9EOG0re8OGbfP+atDak2IiIi4clUwHAzYMDXzKy4vcKSfzSsqmSbsuJCPnJkbPLzA6+vZX9jc4IjREREclNGnsqcc88CPwcOAx4zs5GZuK70HMGkZw2rKtng4mNif1VV1+zn/xYp+VlERPJLRuZhMLMfAPXAO8CpwAozmwO8DewAko5X6Jz7cdorKaFqaDOsqgIGCd/4wX04ZnR/Xl21vWXfPa+u4YypB4RYKxERkczK1EzP1wGRV8gOKARO9D8doYAhxwVHSSpUlyTJEh87ZmRMwDB7aTULNuzikGFVIdZKREQkczL5VGZRn+B2ex/JcW26JKmFQbLEmVMPoF8g+fm3/7c0pNqIiIhkXqZyGAq688lEHSVcGlZVslVZcSFXnjg2Zt9/F2xm0cbdIdVIREQks/RUJlkh2CVJSc+STS45fhRVvdTKICIi+UkBg2SFtknPujUle/QpK+aKE8bE7PvPu5t4b9OekGokIiKSOXoqk6wQzGEoUguDZJnLZoymsix2nIjfPqtWBhERyX2hBQxmVmlmw83swPY+YdVRMkddkiTbVZYV8+lAK8MT72xk6Wa1MoiISG7LaMBgZqea2YNmthVv/oU1wMp2PisyWUcJh7okSU9w+Ywx9CltbWVwDn777LIQayQiIpJ+GXsqM7PfAk8C5wID0LCqEqVNlyQNqypZqKpXMZfPGB2z77G3N7Bsi1oZREQkd2VqpuePA1/yN+uAh4DXge1Ac4LDJI80BlsYNKyqZKlPnzCG2+asoqa+EfBaGX7/7DJ+87EjQq6ZiIhIemRqpufP+su1wPudc8szdF3pIZT0LD1F3/ISLps+mt8/19oV6ZG3NvCVUw5i7KDeIdZMREQkPTL1GvdQwAE/UrAg8bRJelYOg2SxK04YQ0VJYct2s9/KICIikosy9VQWmfFofoauJz1MQ5uZntXCINmrX0UJl0wfHbPvoTfXs7J6bzgVEhERSaNMBQyr/KXa66WNpmaHi21g0LCqkvU+c+JYytXKICIieSBTAcO//eUpGbqe9CDBIVVBw6pK9utfUcKnjh8Vs++hN9ezeptaGUREJLdk6qnsRrw5F75qZpMydE3pIYIJz6AuSdIzfObEsfQqbm1laGp23PSMZn8WEZHckpGAwTm3Czgd2Ay8ZGZfMLN+mbi2ZL/gkKqgFgbpGQb2LuWTx8VORv/v+et5Y82OkGokIiKSeikdVtXM2puVuRzoC/wO+K2ZVQP72jnGOefGpaB6kqXUwiA92VUzx3Hvq2tb5mUAuO6RBTz0hRkUaAJCERHJAameh2F0B8tFZnAe3IGybZ8mJacEh1QFDasqPcegPqVcfcpB/OyJRS373l63iwdeX8eFR48MsWYiIiKpkeqA4Y4Un0/yQNykZ7UwSA9y6fTR3DtvDSu2tiY83/DfxXxw6lAqy4qTHCkiIpL9UhowOOcuT+X5JD+oS5L0dCVFBfzg7Mlc9rd5Lfuqa/bz22eW8v2zJ4dYMxERke5Leb8PM2s2s0Yz0/+S0iHxkp7VJUl6mpMmDuYDB8f2srz9pVUs27InpBqJiIikRrqeyvR6WDqsIZDDUGAoWVR6pO+fNZmSwtZfq43Njh89uhAXnJlQRESkB9FrXAldY3NsC0NRoW5L6ZlGD6zgyhPHxOybvbSapxduDqlGIiIi3acnMwldMIehSK0L0oN98eTxDKksjdn3k8cXUtfQFFKNREREukcBg4QuOKyqAgbpySpKi/jumQfH7Fu7vZa/zm5vmhoREZHspIBBQhdMei5WlyTp4c49bBhHjYqdzP4Pzy1nw87akGokIiLSdXoyk9A1BLskaUhV6eHMjOvOPQSLupVrG5r4+X8Wh1cpERGRLkr1xG3R/mZme9sv1i7nnDslBeeRLBVsYSjSkKqSA6YMr+LiYw7knlfWtOx79K0NXHzMSKaPGxhizURERDonnQHDUSk4hwEajzDHBYdVLVYLg+SIb5w2kcfe2sDuusaWfd964G3++9WZVJSm89eviIhI6qTzVa6l4CN5QMOqSq7qX1HCN06fGLNv3Y5arn9iUUg1EhER6bx0PplNcc4VpOBTmMY6AmBmo8zsRjNbbGZ7zWy7mc0zs2+aWXk3z11uZh82s5v9c+4wswYz22Zmc83sOjMbmqqfpSfSKEmSyz557CiOGd0/Zt/fX1nD7KVbQ6qRiIhI5+T9q1wzOwd4G7gGmAiUA/3wulTdAMw3s/FdPPehwGbgX8Dn/HP2xesK1h84Dvgh8J6ZXdStH6QHazMPg7okSQ4pKDB++dFD6VUc++7j2w+8ze66hpBqJSIi0nF5HTCY2RHAP4FKoAb4HjAdOAX4i19sAvC4mfXpwiUqgd7++hzgWuBU4EjgdOAWoNkv93czO6NrP0nPpqRnyXWjBlRw7ZmTYvZt2FXHTx9bGFKNREREOi7fn8xuAnoBjcBpzrnrnXNznXPPOueuAr7ll5sAfL0L528G7gMOcc6d4Jz7X+fcM865+c65p5xznwM+jJfYXQj8zszy7vV6cFhVJT1LLvrksaOYPm5AzL77XlvHc4u3hFQjERGRjsnbgMHMjgFO9Ddvdc7NjVPsRiCSnXi1mRV35hrOuZeccxc55xK+RnTOPQz8298cBxzRmWvkArUwSD4oKDB+8ZFDqSiJ7Zr0nX+/za596pokIiLZK5+fzM6PWv9bvALOuWbgTn+zL3BymuryXNT6uDRdI2u1SXpWC4PkqJH9y/n+2ZNj9m3eXc91jy4IqUYiIiLty+eA4QR/uRd4PUm5F6LWZ6SpLqVR601pukbWaggMq1qsYVUlh33s6JHMnDAoZt+D89fz3wWbQqqRiIhIcul4MhsDjAWWpOHcqXSwv1zmnGtMUm5xnGNS7X1R63k3QLuGVZV8Ymb84iNT6VMWO3Hb9x58h+1794dUKxERkcRSPtWoc251qs+ZamZWBgz0N9clK+uc22Fme4EKYGQa6nIYcJa/+Y5zrtMBg5mNaKdIyzwP9fX11NbWdvYSaVVbH/uQVIDLujpKx9TV1cVdl1h9S+C7px/EtQ+3/nOvrtnPd//9Fr/6yCHk4dgHnaZ7TTJB95lkSn19fdhVSCrlAUMPET1Eak0HykcCht7tFewMMysF/oo3QhJ4w7p2xdqOFnzllVdYvnx5Fy+THkvXFBDd2LVl8yaeempDeBWSlJg1a1bYVchqvRwc0q+ABTta7/0nF2yhqnYj04e4JEdKkO41yQTdZ5JO1dXVYVchqXztLF4Wtd6RPgCRsK9Xiuvxe7zJ3ADucM49muLz9wiBFAaUwiD5wAwuGttMeWFscPDAygLWduQ1hoiISIbkawtDdLtiSQfKR5KSU9ZPxsyuBa70N+cBX+zG6drrKjXUvwbHHnss48Zl10BMrz25BDa29gw7cMRwTjstXekikk51dXUtb+FmzpxJWVlZO0dI5dgtfPX+d1u2m5xx79rePHDV0fTt1amRnPOK7jXJBN1nkinZ1vsjKF8Dhj1R6x3pZlThL1Py3s/MPgtc728uBs50zu3t6vmcc0nzMKL7Q5eWltKrV6obSrrJYselLyspzr46SqeVlZXp77EDzp82irc37OW2OStb9q3fWcf3HnmPv15yFAUaBKBdutckE3SfSTqVlpa2XyhEedn5wzlXB2zzN5MmDJtZP1oDhg7nCiQ538XAH/3N1cCpzrns7riWZo0aVlXy3LVnTmLaqH4x+55dvIWbX8juN04iIpIf8vnJLDL78ngzS9bSMilqvVtDnprZuXgTwRUAG4FT2msdyAcNGlZV8lxxYQF/+PiRDKiI7SF541PvMWdZXr9PEBGRLJDPAcOL/rICmJakXPQcCXO6ejEzOwW4D68b2Da8lgW9PgQam2JbGIrUwiB5aGhVGb+9+Aii4+VmB1+5dz6bdmk4RxERCU8+P5k9FLV+ebwCZlYAXOJv7gSe68qFzGw68DBe8vQu4HTn3IKunCsXNTSrhUEEYMb4gXz9tIkx+7bt3c8X73mDhkBgLSIikil5GzA4514FZvubV5jZ8XGKfZ3W2Z1vcs41RH9pZieZmfM/t8e7jpkdDjyO15KxFzjLOfd6Cn6EnNEU7JJUqIBB8tfn3zeOUyYNjtn3+uod/PyJxQmOEBERSa+8DRh8V+MNlVoEPGVm15rZcWZ2spndAtzgl1sC3NjZk5vZOOC/QF9/1/eBXWY2JclncMIT5iglPYu0KigwfnXh4YzoFzsay21zVvLY25rQUEREMi9fh1UFwDk338wuAu4GKmkd6jTaErxWgT1xvmvPiUB0APDrDhzzI+C6Llyrx1LSs0isqvJibv7END7yp5fY39gaUF9z31v0ryhh+riBIdZORETyTd6/yvVnVz4U72F+CbAPL1/hNeDbwBHOuWWhVTAPBFsYlPQsAlNHVPGjcw+J2be/sZnP3PEab67dGU6lREQkL+V1C0OEc241cI3/6cxxzwMJX4c7524Hbu9G1fJCsIWhWDkMIgB87OiRvL1uF/e+uqZl3979TVz2t1e577PHM2FInxBrJyIi+UKvciV0bYZVLdBtKQLeLO0/PX8KZ04dGrN/574GPnXrK6zdvi+kmomISD7Rk5mErjE4rKpaGERaFBYYv77ocE48KDZvYfPuej7x11fYsltzNIiISHopYJDQKelZJLnSokJu+dQ0po3qF7N/zfZ9fOrWV9m5b39INRMRkXyggEFC16SkZ5F2lZcUcdulRzNpaGzewnub93DZ3+axt74xpJqJiEiu05OZhK4xmPSsFgaRuKrKi7nrimMZPaA8Zv+ba3dy1V2vUdfQFFLNREQklylgkNA1qIVBpMMG9Snl7iuP5YCqspj9c5Zt4zN3vsa+/WppEBGR1NKTmYQu2MKgpGeR5Eb0K+euK46lf0VJzP7ZS6u59LZX2V3XEFLNREQkFylgkNC1mYdBw6qKtGv84N7c+elj6FMaO53OvFU7+MRfXmHHXiVCi4hIaujJTELXdqZntTCIdMSU4VXcfeWx9C0vjtn/zvpdXPTnuRpyVUREUkIBg4SuTdKzAgaRDjtsZF/+edXxDOxdGrN/yeYaLrxlLut2aHI3ERHpHgUMErqGwEzPheqSJNIpE4f24f7PHc+wQCL0qm37uPBPc1lZvTekmomISC7Qk5mErik407OGVRXptDEDK7j/89PbDLm6YVcdH/3TXBZv2h1SzUREpKdTwCChcs7R2BzskqTbUqQrhvftxX2fPZ6JQ2Ind6uuqeeiW17mlRXbQqqZiIj0ZHoyk1AFgwVQ0rNIdwyuLOMfVx3HoSOqYvbvqm3gk7e+woPz14VUMxER6akUMEioggnPoGFVRbqrX0UJf7/yWI4e3S9mf0OT42v/fItfP70E59r+2xMREYlHT2YSquAsz6AWBpFU6FNWzJ2fPpYPHDy4zXc3/d9SvvrPN6lraAqhZiIi0tMoYJBQxWthUMAgkhq9Sgq55VNH8ekZY9p89/CbG/jkX19huyZ4ExGRdihgkFA1NrVtYVCXJJHUKSwwfnDOZH5y3iEEByB7bfUOPvTHOSzfWhNO5UREpEfQk5mEqiFO0nOhWhhEUu5Tx4/m1suOpqKkMGb/6m37+PAfX+KlZdUh1UxERLKdAgYJVZOSnkUy5uSJg7n/c9M5IDDBW2QEpV89vSRuq5+IiOQ3PZlJqJT0LJJZk4dV8tAXZzBleGXM/mYHv/2/pVz8l5dZv7M2pNqJiEg2UsAgoYqb9KyZnkXSakhlGfd99nhOnTykzXfzVu3gjN/M4j/vbAyhZiIiko0UMEioGgLdH4oKDDMFDCLpVl5SxC2fnMa3PjiRwkCQvruukc///Q2+++A71O7X0KsiIvlOAYOEKjjTs7ojiWROQYHxhZPGc//njmdEv15tvr/nlTWc94cXeW/TnhBqJyIi2UIBg4QqmGCphGeRzDvywH48cfWJnH3oAW2+W7K5hnN//yJ/nb2CpjijmomISO7T05mEqqFJLQwi2aCyrJjfXXwEN1xwKL2KY4derW9s5qePL+LDN7+k1gYRkTykgEFCFXxjWagWBpHQmBkXHjWSx75yApMPqGzz/Vtrd3L272bz66eXUN+o3AYRkXyhpzMJVXBY1WK1MIiEbtyg3jz4xel8esaYNt81NDlu+r+lnPO7F5m/ZkcItRMRkUxTwCChCg6rqi5JItmhtKiQH5wzmfs/dzxjB1W0+X7J5ho+fPNL/OSxhezb3xhCDUVEJFMUMEiolPQskt2OHt2fJ75yIl88eVyb4Vedg1tfXMlpv57FMws345ySokVEcpGeziRUDRpWVSTrlRUX8s3TJ/HIl2ZwyLC2uQ3rdtRy5Z2v8enb57Gqem8INRQRkXRSwCChCrYwFKmFQSRrHTKsioe/OINvf3ASJUVt/60+995WTvv1LP7ff99TNyURkRyipzMJVTCHQUnPItmtqLCAz580jievPpFjxvRv8/3+pmZ+/9wyPnDjCzzxzkZ1UxIRyQEKGCRUwVGSigp1S4r0BGMH9eafVx3Hry86jEF9Stt8v2FXHV/4+xt88tZXWLJZczeIiPRkejqTULWdh0EtDCI9hZnxoSNG8OzX38dnThxDUZx/v3OWbeP038ziq/+Yz4qtNSHUUkREuksBg4QqONOzuiSJ9Dx9yor53lmT+c/VJzJ93IA23zsHD725gQ/86gWuue9NJUaLiPQwChgkVEp6FskdBw3pw9+vPJY/fuJIhlWVtfm+2cG/31jPKb96gW/e/xZrtu0LoZYiItJZejqTUDU2q4VBJJeYGWdOPYBnvv4+vnLKQfQuLWpTpqnZcf/r63j/jc/znX+9rcBBRCTLKWCQUDWohUEkJ5WXFHHNqROY/a2T+eLJ4ygvKWxTprHZ8Y95aznp/z3Hl++dz7vrd4VQUxERaY+eziRUwWFVNXGbSG7pV1HCN0+fxOxvncxn3zeWXsVtA4dmB4++tYGzf/cin7r1FeYsq9ZwrCIiWUQBg4QqOKxqsYZVFclJA3qXcu0ZBzPrWydz5QljKI0z8RvA7KXVfOKvr3Du7+fw2Nsb2oykJiIimaenMwlVsIVBw6qK5LZBfUr5/tmTme0HDhVxuioBvLN+F1+6Zz4n/7/nufXFleyua8hwTUVEJEIBg4Qq+PZQSc8i+WFwZRnfP3syL33nFL5x2gQGVJTELbdm+z5+8thCjrv+//j+Q++wVJPAiYhkXNvhK0QySEnPIvmtqryYL73/IK48cSwPvL6Ov8xeweo4oybt29/E3S+v4e6X1zBj/AAunjaMZgdqlBQRST8FDBIqJT2LCEBZcSGfPG4UFx9zIE++u4k/vbCcdxKMmjRn2TbmLNtG/9JCZgxp5rDd9Yzu1SvDNRYRyR8KGCRUSnoWkWiFBcZZhx7AmVOH8urK7dwxdxX/XbA5bvLz9nrj0TWFPPbrOcwYP5APHTGcD04ZSkWcuR9ERKTr9FtVQtWmhUH9C0QEbwK4Y8cO4NixA9iws5a7X17NP+atZfve/W3KOuDFZdW8uKya7z/0Lh+cMpQPHzmc6eMGaiAFEZEUUMAgoWoMtDAUqYVBRAKG9e3Ftz44ia+cchCPvrWBO+au4t31u+OWrW1o4sH563lw/nqGVJZyzqHDOOewYRw6ogozBQ8iIl2hgEFC1RBoYSjW20ARSaCsuJCPHjWSC6aNYO7Szdz06Dze3G7UN8X/vbF5dz1/fXElf31xJaMGlLcEDxOH9slwzUVEejYFDBKqxsAoSYVKehaRdpgZR4ys4uPjm7mgCWzkYTz+7hZmLa1OONHb6m37+P1zy/j9c8uYMKQ35xw6jLMPG8aYgRUZrr2ISM+jgEFC1Rich0HDqopIJ5QUwmlThnDB0aPZuqeeR97awIPz1yXssgSwZHMNNz69hBufXsKEIb05dfIQPnDwEA4b0ZcCtXKKiLShgEFCpWFVRSRVBvUp5YoTxnDFCWNYsnkPj761gUff2sCqOPM6RCzZXMOSzTX84bnlDO5TyikHD+HUyYOZPm4gZcXxZ6EWEck3ChgkVEp6FpF0mDCkD18/bSLXnDqBd9fv5tG3N/DYWxvYsKsu4TFb9tRz76truPfVNZSXFHLC+IG8b+IgZh40iJH9yzNYexGR7KKAQUKlpGcRSSczY+qIKqaOqOI7H5zEG2t28OhbG3j8nU1U19QnPG7f/iaeWriZpxZuBmDswApmThjEzAkDOXbMAM31ICJ5Rb/xJFRqYRCRTCkoMI4a3Z+jRvfnB+ccwptrd/D0wi08vXATy7fuTXrsiuq9rKjey+0vraK40DhqVH9OnDCQGeMGMmV4leZ7EJGcpoBBQhXMYShWDoOIZEBhgTFtVH+mjerPd86YxIqtNTyzaDNPL9zM66t3kGCwJcBrGZ27YhtzV2wD3qOyrIjjxg7ghIMGMn3cQMYNqtCcDyKSUxQwSKgaAsOqFmmUJBEJwdhBvblqUG+umjmObTX1PPfeVmYt2cqLy6rjzi4dbXddY0z3pSGVpcwYN5Cjx/Rn2qh+jB/UW6MviUiPpoBBQhUcVlXN+iIStgG9S7lg2ggumDaC5mbHgg27mbV0Ky8s2cobq3e0+b0VtHl3Pf+ev55/z18PQJ+yIo48sB/TRnmfw0b2pbdyIESkB9FvLAmVuiSJSDYrKGhNmv7iyePZU9fA3OXbmL20mjnLq1nRTu4DwJ66Rl5Y4gUcAAUGE4dWcvjIvhwxsi+HH9hXrRAiktUUMEiolPQsIj1Jn7JiTjtkKKcdMhSATbvqmLPMCx5eWraNTbsTD9sa0exg0cbdLNq4m3tfXQNA79IiDh1RxeEj+7Z8BleWpfVnERHpKAUMEqo2LQx6wyYiPcjQqjI+Mm0EH5k2AuccK6r38tKyal5dtYM3Vu9g/c7aDp2npr6Rl5Zv46Xl21r2De5TypThVUwZVskhw6uYMryKYVVlSqgWkYxTwCChapP0rBYGEemhzIxxg3ozblBvPnX8aAA27qrljdU7eX31Dl5fs4OFG3a1mX8mkS176nl28RaeXbylZV+/8mKmDK9i8gGVTBzah0lDKxk3uILSIs1KLSLpo4BBQhVMHixSDoOI5JADqnpx1qG9OOvQAwCoa2ji7XW7eHPtDt5cu5M31+xMOvt00I59DcxeWs3spdUt+4oKjLGDKpg01AsiDj6gDxOG9GF4315qjRCRlFDAIKFq2yVJLQwikrvKigs5Zkx/jhnTv2Xflt11zF+7kzfX7mT+mh28s24Xe/c3dficjc2OJZtrWLK5Bt5q3d+7tIjxg3szcUgfDhrSm4lDvUBicJ9SBRIi0ikKGCRUDW2SnvWfmIjkl8GVZZx+yFBO9xOpm5sdK7ft5d31u1iwYTfvrt/Fu+t3sbuusVPnralv9Fox1u6M2T+8by+uO/cQTp08JFU/gojkOAUMEpqmZocLdOUtUtKziOS5goLWXIjzDh8OgHOOtdtreXfDLhZs2MV7m/awaOOeDidVR1u/s5av/fNN5nz7/VSVF6e6+iKSgxQwSGiCQ6qCkp5FROIxMw4cUM6BA8o5c+oBLft31zWwZNMeFm/aw+JNu1m8cQ/vbd7DnnZaI2rqG3lywUYuOvrAdFddRHKAAgYJTTB/AdTCICLSGZVlxRw1uj9HjW7NiXDOsXl3Pe9t3sPSzXt4b9Melmyp4b1Nu6lraH1R8+hbChhEpGMUMEho4gUMxWphEBHpFjNjaFUZQ6vKeN+EQS37H397I1+8542W7ZeWV7NlTx2D+2iCOBFJTk9nEppgwjMo6VlEJF1OOXgwFSWt8zU0O3ji7Y0h1khEegoFDBKauC0MGlZVRCQtyooLOc0fiSnikbc2hFQbEelJ9HQmoQnO8gxqYRARSadzDjsgZvuNNTtZu31fSLURkZ5CAYOEJjjLMyhgEBFJpxPGD6JvYCjVR99WK4OIJKeAQULTGK+FQV2SRETSpqSogDOmxLYyPPKmAgYRSU5PZxKaYAuDGRRqWFURkbQ697BhMduLN3nDr4qIJKKAQUITTHpWwrOISPodM6Y/QypLY/Yp+VlEktETmoQmOKyq8hdERNKvsMA4+9DYVoZH3tqAc23zykREQAGDhCjYwqBZnkVEMiPYLWn1tn28vW5XSLURkWyngAEws1FmdqOZLTazvWa23czmmdk3zaw8hdc5w8weNLN1ZlbvLx80szNSdY2eJJj0rFmeRUQy49ARVYwaEPvfm7oliUgief+EZmbnAG8D1wATgXKgH3AUcAMw38zGd/MaBWb2V+AJ4HxgOFDiL88HnjCzv5hZXv19NASSntUlSUQkM8ysTSvDY29voCnOcNciInn1gBpkZkcA/wQqgRrge8B04BTgL36xCcDjZtanG5f6GXCFvz4fuBg4xl/O9/dfCfy0G9focYItDBpSVUQkc4IBw+bd9by6cntItRGRbJbvT2g3Ab2ARuA059z1zrm5zrlnnXNXAd/yy00Avt6VC5jZBOAb/uZrwAzn3D+cc/Occ/8ATvD3A3yzu60ZPUlwWFW1MIiIZM5BQ/owaWjsuzB1SxKRePI2YDCzY4AT/c1bnXNz4xS7EVjkr19tZsVxyrTnq0CRv/5l51xt9JfOuX3Al/3NIuBrXbhGj6SkZxGRcJ17eGwrw3/e3cj+xraTaopIfsvbgAEvdyDib/EKOOeagTv9zb7AyZ25gJkZcJ6/udg593KC67wMvOdvnucfl/Mam5X0LCISpnMCw6vu3NfAi8u2hlQbEclW+fyEdoK/3Au8nqTcC1HrMzp5jTFA5LfxC8kKRn0/HBjdyev0SA3BFgZ1SRIRyaiR/cs58sC+MfseeVPdkkQkVj4HDAf7y2XOucYk5RbHOaajJic4T6qv0yMp6VlEJHzB5OenFm6mdn9TSLURkWxU1H6R3GNmZcBAf3NdsrLOuR1mtheoAEZ28lIjotaTXgdYG7XeqeuY2Yh2igyPrHz19ln06d9e7JIZG3fX0bh7X8t2/c56li5dGmKNpLvq6+uprq4GYPny5ZSWloZcI8lVutdSZ3LvBpr3VBMZh2I38OFfPkxVWVfS9nJLU3MzO3Z4I0fdveQpCvViS9Jkz/Yt0ZuFYdUjkbwMGIDoYSFqOlA+EjD0TuN19katd/Y6a9sv4nni+is7eerMWQ9M+H7YtRARkfVhV0Akvw0CVoddiWj5GiqXRa3v70D5en/ZK43XqY9a7+x1RERERCQ3DA67AkH52sJQF7Ve0oHykbbu2qSluned6Pb0zl6nvS5MBwJz/PXj0MsjSZ+hwDx//WhgU4h1kdyme00yQfeZZMpwIDKaZnb0HY+SrwHDnqj1jnT/qfCXHem+1NXrVEStd+o6zrmk+RGBUVrXt1depKsC99om3WuSLrrXJBN0n0mmBO61jvR+yai87JLknKsDtvmbSROGzawfrQ/zHc4V8EX/YmkvMTm6laCz1xERERERSYu8DBh8C/3leDNL1tIyKWp9UcJSya8RPE+qryMiIiIikhb5HDC86C8rgGlJyr0van1OwlLxrQQiM+C8L1lBYKa/XA+s6uR1RERERETSIp8Dhoei1i+PV8DMCoBL/M2dwHOduYBzzgEP+5uTzOy4BNc5jtYWhof940REREREQpe3AYNz7lVgtr95hZkdH6fY12mddfkm51xD9JdmdpKZOf9ze4JL/QaITJn5OzOLGTLV3/6dv9nolxcRERERyQp5GzD4rsYbwrQIeMrMrjWz48zsZDO7BbjBL7cEuLErF3DOLQF+6W8eBcwxs4vM7Cgzuwivm9NR/ve/dM5pqmMRERERyRr5OqwqAM65+f5D+91AJXB9nGJLgLOcc3vifNdR38ObhOPTwBHAP+KUuRXQPMciIiIiklVM3eXBzEbhtTachTf86X5gGXA/8Hvn3L4Ex51Ea17DHc65y9q5zpnAVXiTvwwEqvEmhLnFOfef7v4cIiIiIiKppoBBREREREQSyvccBhERERERSUIBg4iIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAFDjjOzUWZ2o5ktNrO9ZrbdzOaZ2TfNrDzs+kn2MrPBZna2mf3YzP5jZtVm5vzP7V043xlm9qCZrTOzen/5oJmdkYbqSw9iZkeZ2Q/M7Kmo+6PGzJaY2d/M7IROnk/3mrRhZpVm9jH//8QXzGyZme0ys/1mtsXMnjezb5nZgA6eb7qZ3W1mq82szsw2mdl/zezidP8s0nOZ2S+i/i91ZnZSB44J/XeaOecydS3JMDM7B7gbqExQZAlwlnNuWeZqJT2FmSX75XCHc+6yDp6nAPgzcEWSYn8FPuuca+54DSUXmNks4MQOFL0T+Ixzbn+Sc+lek4TM7APA0x0oWg180jn33yTnug74HxK/eH0cuMA5V9fZekruMrPDgXlAUdTuk51zzyconzW/09TCkKPM7Ajgn3jBQg3wPWA6cArwF7/YBOBxM+sTSiWlJ1kDPNXFY39G6y+7+cDFwDH+cr6//0rgp92poPRYw/zlBuAm4AK8++N44Bpgvf/9JcDt7ZxL95q0Zy1e8Hk18GG8+2wGcBFwP9AEDAQeMbPD4p3AzD4L/BDvGWo53j13DHA+8Jxf7CzgtnT9ENLzRD38FwFbOnhY1vxOUwtDjop6a9cIzHTOzQ18/03gBn/zR8656zJbQ8l2ZvYjvDch85xzm81sNLDS/7pDLQxmNgFYgPcL8jW8e7E26vty4AXgKLx79WC1eOUXM3sM7wHuX865pjjfDwTm4L3gAHifc25WnHK61yQpMyuMd48FypwPPOhvPuic+3Dg+/7ACqAK70XKNOdcdfQ1/OPP8XclfHss+cXMvgr8GliMd49c638V9x7Jtt9pamHIQWZ2DK1N/LcGgwXfjcAif/1qMyvOSOWkx3DO/dA595hzbnM3TvNVWptevxz9y86/xj7gy/5mEfC1blxLeiDn3NnOufsSPcj5D2Nfj9p1QYJTfRXda5JEe8GCX+Yh4D1/M15XuSvxggWAb0cHC1HX+AJeSwXAN7tUWckpZnYg8BN/83NAwq6VUb5KFv1OU8CQm86PWv9bvAJ+X7c7/c2+wMnprZLkGzMz4Dx/c7Fz7uV45fz9kf+gz/OPE4n2XNT6uOCXutckxfb4y7I4353vL3cD/453sHNuHfCMv3mKuv0K8AegN17r/AvtFc7G32kKGHJTZESRvcDrScpF37Qz0lcdyVNjaO2f3t4vyMj3w4HR6aqQ9FilUevx3hLrXpOUMLOJwOH+5uLAdyV4/ccB5iZLwKf1PivF6zIiecrMLgTOBrYD3+jgYVn3O00BQ2462F8uc841JikX/cvw4ISlRLpmctT64oSl2n6ve1GC3he1vijO97rXpMvMrNzMDjKza/AeviLdQH4TKDoBKPTXdZ9Ju8ysL95gDhCnC1sSWfc7raj9ItKTmFkZ3ggPAOuSlXXO7TCzvUAFMDLddZO8MyJqPem9iDdySYTuRWnhjyzynahd98UppntNOsXMLiNBl13f/wL3BPbpPpPOugEYijdww62dOC7r7jUFDLknuq9kTQfKRwKG3umpjuSxztyLe6PWdS9KtK/R2g3k3865eN0sda9JqrwJXOWcmxfnO91n0mFmdiJeknwj8DnXuWFJs+5eU5ek3BOdpNWRLPx6f9krDXWR/NaZe7E+al33ogBgZu/De9ML3rjln09QVPeadNZDwFT/ExnX/kG8/IV7zezsOMfoPpMO8fNd/gwY8Gvn3LudPEXW3WtqYcg90bNKlnSgfCSZsDZpKZHO68y9GJ3UqntRMLND8B7givDupY865xJNdqR7TTrFObcT2Bm1ax7wDzP7FHAH8LCZXeGcuz2qjO4z6ajvApPw5ur4UReOz7p7TS0MuWdP1HpHmqYq/GVHui+JdEZn7sWKqHXdi3nOzMbgzSzeD29UpI/Fm6wtiu41SQnn3F14Mz4XAL/3J2qL0H0m7TKzSbROyvZl59zeZOUTyLp7TS0MOcY5V2dm24ABxCbNtGFm/Wi90dYmKyvSBdGJWknvRWITtXQv5jEzG4Y3hv0wwAGfds493M5hutcklR4GLsT7//GDtCY/6z6TjvgaXqvACqDczD4Wp8yUqPX3m9lQf/1RP8DIuntNAUNuWog3Q+V4MytKMrTqpKj1eEMVinTHwqj1SQlLtf1e92KeMrOBwNPAWH/Xl51zdyY5JEL3mqTS1qj1UVHrS/BavArRfSaJRboIjQXu7UD5/4laH4OXxJx1v9PUJSk3vegvK4BpScpFj20+J33VkTy1Etjgr78vWUFgpr9cD6xKV4Uke5lZFfBfWscf/45z7g8dPFz3mqTS8Kj1li4e/kRtr/qbx/uJrYlE7sN64LXUVk/yQNb9TlPAkJseilq/PF4Bf2zzS/zNncBz6a2S5Bt/CLlIV5JJZnZcvHL+/sgbkoc7OfSc5AAzKwceB470d/3MOfeLjh6ve01S7KNR6+8EvnvIX1YCH453sJmNAD7gb/6fc25PvHKSm5xzlznnLNmH2ETok6O+W+WfI+t+pylgyEHOuVeB2f7mFWZ2fJxiX6d1RsCbnHMNGamc5Jvf4DXhA/zOzGKGfPO3f+dvNtJ2ZlXJcf5b2geBGf6um5xz3+/CqX6D7jVJwswu8yc3TVbma8CZ/uZKWv8vjfgrsMtf/18zGxA4vhD4I60zQv+yW5WWfPYbsuh3mnIYctfVeN2MegFPmdn1eK0IvYCPAVf55ZYAN4ZSQ8lqZnYCMD5q18Co9fH+TKktAsMPRvYtMbNf4s3UexQwx8x+ASwHxgHfBo7wi//SObc0ZT+A9BT3Aqf5688Ct5rZlCTl9zvnlgR36l6TDrgOuNHM/oXXdXc5XpejPnjzMXyC1sB1P94Ebk3RJ3DObTezbwN/wstveMXMfobXEjEM+Cpwsl/8Xufc82n8eSSHZdvvNFOLbO4ys3OAu/GaTuNZApzlnFuWuVpJT2FmtwOXdrS838wa7zwFwF+ATyc5/Fa8/5ybO1NH6fnMrLP/Ca12zo1OcC7da5KQma0iNok5kXV4o3M9neRcP8JLVo37ew94AviIc64uwfeSx8zsOuCH/ubJiQLLbPqdpi5JOcw59yhwKPBrvOBgH16+wmv4kamCBUk351yzc+4K4Cy8Ppkb8N7ebfC3z3TOXakHOOku3WvSjtPxuuP+G3gb2IzXlWMP3lvbf+Hl/U1MFiwAOOd+CJyAN+TqWrz7bAveKF8fd86dpWBBuiubfqephUFERERERBJSC4OIiIiIiCSkgEFERERERBJSwCAiIiIiIgkpYBARERERkYQUMIiIiIiISEIKGEREREREJCEFDCIiIiIikpACBhERERERSUgBg4iIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAGDiEg3mdl1ZubMzGVBXUZH6mJml4Vdn3xjZpdF/fmPTsH5Pu2f6x0zsxRUMSuZ2Uf9n3OJmRWHXR8RiaWAQURyipkVmtlu/+HjjXbKmplti3rA+3Q75S+NKvv51NY8+5jZCD8Ymm1mW82swcxqzWydmc0ys5vM7AIzqwq7rrnIzHoD1/ubP3bOhR6QRjOzp/x/Czel4HT/AhYCBwFfTsH5RCSFFDCISE5xzjUBL/mbh5lZZZLihwD9o7ZPbOf00d/P6kL1egwz+wzwHvBD4ARgIFAElAHD8f4svgLcD9wSUjVz3VeAIXgP0g+EXJcYZtYHeJ+/+Wh3z+ecawZ+5m9+x8wquntOEUkdBQwikosiD/MFwPQk5SIBQFNgu73y1XgPcQA4565zzplzLie6jJjZxcCfgXKgDrgZOB84CjgaOA/4CTA/pCrmPDPrBVzjb/4621oXgNOBEmA38EKKzvlPYD0wCPhsis4pIimggEFEclH02/+ZScpFvrvfX44zs2HxCprZYGCCv/liFj7ApYSZFQK/8jf3AMc6577gnHvYOfe6c+4159wjzrkfOOeOBCYD/w6twrnrk8AAoJ4sa13wneMv/+uca0jFCf3WwX/6m18yMz2jiGQJ/WMUkVw0D+/NOCRvNYh89wCwvJ3y+dId6VhgqL9+i3Pu7WSFnXOLnHP3pb9aeecKf/m4c25nmBUJ8h/kz/Q3H0vx6f/uL8cAJ6f43CLSRQoYRCTnOOfqgVf9zaPNrDRYxszG4PXFB3jR/0AXAob2Rkkys1X+97f72xPN7C/+/noz22xmD5rZce39bH5S9xfM7BU/uXuXmb1hZt+I93N2wYFR68u6epJ4ozX5I+E8Y2Zb/OTpxWb2czPr28Fznmxmd5jZCjPb5//875jZLxO1DKX6HGbWz8z+1697rf+zPGNmH+3I9TtYx1F4gRt4ycCJyp0U9Wd8kp/Ef4WZvegn8+82s1fN7FOB40rM7HNm9rKZbTezPWY2x8wu7GAVj8PLaWkGnohTr2lmdqt5Ix7tNbM6M1trZq+b2R/M7Fyz+CM+OefeAFb6mxd3sD4ikm7OOX300UefnPvg9bF3/mdmnO8v9b9b4m9f6W+/neB8r/vf7wIKA99dF7lWgmNX+d/fDnwI2BtVt+hPI3BRkp+pN16wEu9Y59fxiKjty7rw5/bhqON/040//9HR9QBuTVLv9cCkJOcqA+5NcrwDaoBz0nyOg/26Jjr+Nv9njWyP7uKf3aVR5xibpNxJUeVOBR5JUreb/GP64eUcJCr33Q7U7+d+2RfjfPc1vJygZH/ODuid5PyRv6d16fjdoI8++nT+oxYGEclV0a0A8VoNIvteDCynmFm/6IL+iDCH+ZsvOa+vdVdMBe4BNgNfwntTezxewFEHFAJ/NrNBCY6/O6rer+K9gT0KOAsvD+NIuj9iUXQi82fN7P3dPB/AF4BPE1vnM4FIV6ZhwH/9P+cY/pvoB4CP+bseBT4FzMD7s7saWANUAA+Y2VFpOkcl8F+/ruD1tT/T/1k+DrwGXO7/rN0V+Tve5pxb0cFjfoKXV/B3vPthGt6f9Xv+918xsw/gBa3T8RLZT/PLXQFs8Mv92MwOaedakfyFmNGRzOxQ4P/h9V5YCXwdOAUviJ0JfAbv/t/bzvkjrYPDzWx8O2VFJBPCjlj00UcffdLxwXsb34D3pvLJON+/5393edS+rf6+swNlT6f1zei1cc51XeT7BHVZFXX8a0BlnDKfiCrztTjfnxX1/eNAUZwyPyD2Le5lXfyzezRwnleBHwFnAAM7eI7RgXMkqvP/RJW5Ic73n/G/2w98MMG1+gHvkvitdyrO8ct27oFivIAi+mce3cU//4X+8c+0U+6kwPWujlNmKN5IRg7YgteN6Pw45Q6ltWXgpiTXHBN1vUMC3/2Y1paaIUnOUQUUJPl+ZtQ1Era46aOPPpn7qIVBRHKSc66G1rfl0/3Rf4C2Ix5FHTbHXwZbJFKZ8Pxp59zuOPvvofUtb7wWkcib63rgM865xjhlfor30Ntdl+MljkccjReMPAFsNbP3zOx3ZnZkB8+XrM4/o7XOV5hZSeQLv2Xg2/7mb51zT8Y7uXNuB/BNf3OGmR2U4nOU0JqE/Dbwv3GOb/DLpGLEoBH+cksnjnnFOddmAjXn3CbgQX9zEHCfc+6hOOXepv08HoCz/eVK59yCwHeRZPklzrnNiU7gnNvlvHkXEon+uccmKSciGaKAQURyWeThvg9weNT+yHCqm51zS6P2vxj4PiLyAFVH7IN0Z73jEow65JxztAY4MQ9JfrBzkr/5lHNuA3H4D2F3dKN+kfNU43XXuQqIN1v2BLwuVa+b2V3W/iRbHa1zf7xuVRGTgXH+entDi0YHcsen+BzT8FogAO7w/67acM6tA55q5xpJ+Ynrka5ZOzpx6D+SfPdWJ8sle0iP2x3Jt9FfTjazY5Kcoz3bo9aHJiwlIhmjgEFEctnsqPUT46xHty5El59m3sRZkbfLkYefV5xz+7tRn8XtfB95UAr25R+HN4katB+wvNrO9x3inGtwzv3FOTcNbzSpj+H1T59N7Fv0TwKPRLfgxNGZOk+NWo/OJZgbNSJQmw9eN5iIoSk+R3Sd0v3nHz3zeGcChiVJvtvZyXJtckmgQ7M734t3b5QCc8zsUX80pimJRkVKIPrn1ozPIllAAYOI5LLZeP2goWMBwxvAPrz+6JEhTo/GG2EHut8daV8730e6aQQfvqMfItvrppKwK0hXOec2OOf+6Zz7pnNuJt7D9M9pre/7ST4EZmfqHP2zDu50ZT3lUeupOEcm//zrotZ7deK4ZPdWdPefjpRL9GwQmd15D3Fmd3bOLca7D3YARXjdl24G3gG2+K1R7c2mDrE/d0omhROR7ikKuwIiIuninNtuZguAKfhBgj/aTWTEoxcD5RvM7FW87j8zgefIvgnb4naHyWgFnNsOfNd/a/wdf/dH8UZxintIFy8VHTidg5c83hHRD/WpOEe0dP/578QbXreI2EAlG0TyFxLO7uyc+5eZPQNchBdgnIiXOzEQrzXqk2Z2B14uT6I8huife2cqKi4i3aOAQURy3Sy8gGGQmU3CG+WlAK/7yfw45V/ECxgigUIkn6EBmJvWmiYW3UVjSDtl2/s+lf5Ca8CQbPjLztQ5uv/6tqj1nc65riR0p+IcwT//ZN16uvXn75xzZlaN14rTr73ymWKxszvH647Uwjm3C/iz/8HMDgbOA76MNyztpXj/9tokafuif+41Xa+1iKSKuiSJSK4L5jFEAoGXXfz5FCKtDsf5CajT/e03nHPtjR+fLsuBWn/96HbKtvd9KkUnMid7896ZOkc/0EcHdDM6WqmAVJzjnaj1TPz5R643IWmpzDoOr6Ug7uzOyTjnFjnn/tc/R+TfULJZpaN/7uBITCISAgUMIpLrorsRzaS1xSCYvxAxF288+gq8WXur4pwno/zhSJ/3N08zswPilfPfAl/anWt1Mjk1OqE42QRjHa3zDmJHZXoDWOevX2VmZXReKs7xOq2tDJ9K9GdkZsPxJkPrrkiQOzHeZHYhiYyONNcfRavTnHNraW2dGZikaCToaiD+KF0ikmEKGEQkp/nDeS73N0+m9SF3doLyu2l9w/utqK/Czl+42V+WArckGJXoWmJH9OmKM8zsPjM7IlkhM+sP/DZq18NJiier83dorfNtzrn6yBd+H/fr/c2xwJ1+q0+iOlWa2Zei96XoHPXA3/zNw2mdryH6uCK8Llolwe+6IHJvFhAblIUpEjA8lqiAmZ1vZn2TfD8SmORvrkxyrcioZHP9+VREJGTKYRCRfDAbb2jS4f52I/BykvIv4j0YRsajbyZxi0RGOOceNbNH8R7czsEbtvLXwFK8kYAuw0s0fY3uPWQW4CUwf9TM3sKboXke3hj7+/1rnYA3R0NkBKLXST7/w2sJ6nwp3nCt4LUC/CTOsX8CTgU+5NfrSDO7BW/40l1AJd5D6EnAuXijDP0+Def4MV43mhHAL8zscOBOvOToCcA1eG/Gu/vnD/AS3qzjg4BT8JLvQ2Nmo4FD/M1k+QtfBf5uZo8DzwKL8P58++H9mXyZ1hGQ/pTgWn1obWF4MF4ZEck8BQwikg9m4T1QR8x3ziUbXvJFvInJIt5xzu1MQ7066xPAf/D64h9L20m45gOfxXuA76odeP3MK/BGkzoseXGeBi5OMItzxB/wxu+/jPgTh20ETveTZWP4ScAX4SXIfg4v8LshybXajG6UonPsMrMPAs/gJSRfTNuhZG/HG270b3SDc26/md0JfN2/xve7c74UiLQuxJvdOagcP+BM8H0z8MN4s037Pow3jHEjySeZE5EMUpckEckHwe5E7bUWBLsrhd0dCQDn3B68t+BfxnvrX4M3Jv6beN2RphM7ylBXrjEH7832ucCv8B6ANwD1eA9x2/H6ld8CnOycO805ty3B6aLPeznwcbxcjG3++ZbgPbgf4pxbmOTYBufcF/CCl9/hdRnbhZdrsgvv578VuAA4OI3nWID3pv0GvFaSeqAarwXg4/7PmCp/8Zdjzey4pCXTL9nsztEuxmt5ugfvz3MT3j1Tg5e8fDNwhHPup0nO8XF/+aBzblNXKywiqWUJZrgXERHpMr8bS6Sf+uXOudvDq03PZGZPAGcAf3XOfSakOvTBC4pKgNOcc0+n8Vqj8PKNCoHjnXPJug2KSAaphUFERCQ7XYvXhecSP2E4DKeRZHbnFPsuXrDwpIIFkeyigEFERCQLOefewuveU4IXPIRhD/Aj4MvOuf3puogfEF2G10XsW8lLi0imKelZREQke30Xr5tOnZmZy3A/YufcU8BTGbjUSODnwArn3DvtFRaRzFIOg4iIpJxyGEREcoe6JImIiIiISEJqYRARERERkYTUwiAiIiIiIgkpYBARERERkYQUMIiIiIiISEIKGEREREREJCEFDCIiIiIikpACBhERERERSUgBg4iIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAGDiIiIiIgkpIBBREREREQSUsAgIiIiIiIJKWAQEREREZGEFDCIiIiIiEhC/x9T4Amm5d7WCQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -250,11 +250,11 @@ "name": "stdout", "output_type": "stream", "text": [ + "iea_15MW_floating\n", + "iea_10MW\n", "iea_15MW\n", "iea_15MW_multi_dim_cp_ct\n", - "nrel_5MW\n", - "iea_10MW\n", - "iea_15MW_floating\n" + "nrel_5MW\n" ] } ], @@ -263,7 +263,13 @@ "tl = TurbineLibrary()\n", "\n", "# Load the internal library, except the 20 MW turbine\n", - "tl.load_internal_library(exclude=[\"x_20MW.yaml\"])\n", + "tl.load_internal_library(exclude=[\n", + " \"iea_10MW.yaml\",\n", + " \"iea_15MW.yaml\",\n", + " \"nrel_5MW.yaml\",\n", + " \"nrel_5MW_v3legacy.yaml\",\n", + " \"x_20MW.yaml\",\n", + "])\n", "for turbine in tl.turbine_map:\n", " print(turbine)" ] @@ -295,11 +301,11 @@ "name": "stdout", "output_type": "stream", "text": [ + "iea_15MW_floating\n", + "iea_10MW\n", "iea_15MW\n", "iea_15MW_multi_dim_cp_ct\n", "nrel_5MW\n", - "iea_10MW\n", - "iea_15MW_floating\n", "x_20MW\n" ] } @@ -338,7 +344,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXxU1fnH8c9JQhYCARLWQDCscQMMCMgmAUUWF3CpS9lBBf1pRUBZtCgKaGWRRVFaS2K1FamC1ULVahlABEVaFEQksiUga9gSyEKS8/tjkiGTPZDMEPi+X695Zebec859bm4ImXnuOY+x1iIiIiIiIiIiIiIiIuJNPt4OQERERERERERERERERAkLERERERERERERERHxOiUsRERERERERERERETE65SwEBERERERERERERERr1PCQkREREREREREREREvE4JCxERERERERERERER8TolLERERERERERERERExOuUsBAREREREREREREREa9TwkJERERERERERERERLxOCQsREREREREREREREfE6JSxERERERERERERERMTrlLAQERERERERERERERGvU8JCRERERERERERERES8TgkLERERERERERERERHxOiUsRERERERERERERETE65SwEBERERERERERERERr1PCQkREREREREREREREvE4JCxERERERERERERER8TolLERERERERERERERExOuUsBAREREREREREREREa+7bBIWxpiGxpgxxpjPjTEJxpgMY8xBY8yHxpiOhbR/3hhji3lEeuE0RERERESkghljAo0xc4wxa4wxvxpj0nLeO6wzxgw3xlQppE9ITp+9xph0Y8weY8xMY0y1Io7hY4x53BizxRiTaow5Yox5zxjTtOLPUERERETk4mSstd6OwSOMMS8DE4CdgAM4ArQABgAG+K219v087Z8HngPeBvYUMuRca+2JCgxZRERERES8wBhTG0gEvgV24HzvUAvoC1wBfA70tdZm57QPBr4CrsvZ9z8gGrgF2AjcaK1Ny3eMPwEPAj8CK4Bw4F4gBbjBWhtfoScpIiIiInIR8vN2AB70LRBjrV2dd6MxphvwJfCGMeYja216vn5x1lqHh2IUERERERHvOwbUsNZm5N1ojPED/o0zEdEXZ6IB4GmcyYo/WGsn5mmfe9PUk8BLebb3wJmsWAP0yj2OMeZvwErgNaB3RZyYiIiIiMjF7LJZEspauyx/siJn+1pgFc47plp5PDAREREREbmoWGuz8ycrcrZnAstzXjYHMMYYnMmHFODFfF1ezNn+YL7tD+V8/X3e41hr/4VzNvgtxpjGF3gaIiIiIiKVzuU0w6I4Z3O+Zhay78acGhfZQDzwhbU25XwOYoxpVEITf+BK4DDOaedZ53McEREREZE8fIE6Oc+3FDKjWErJGOMD9Ml5uTXnawucyzl9Zq09nbe9tfa0MWYd0NsYE2GtTczZFQOcBtYVcpjPcvZ3B94pQ2x6ryEiIiIinlQh7zMu+4RFzp1LNwMHgC2FNJma7/UJY8wT1tq/nMfhEktuIiIiIiJSYdoD33k7iMrCGOMPTMZZ8y4MuAnnh/6x1tovc5q1yPlaVM2JeJzLO7UAEnPqXTQAtlprC0sa5I7TopB9xdF7DRERERHxlnJ7n3FZJyyMMVVw3rUUAEzI94bhe2AEzinZB4D6wG3AC0CcMeaEtfZjz0YsIiIiIiIe5A88l+e1BWYBk/Jsq5Hz9WQRY5zK166s7UVERERELhuXbcIiZzp3HHAj8Cdrrdt0a2vt8nxd9gCvGWN+wllobxpQ1oRFRAn7GwIbAP79739zxRVXlHF48Zb09HS++eYbADp27EhAQICXI5LS0rWrvHTtKiddt8pL167y2rt3L7169cp9ecSbsVQ2OUvBmpz3DuHA7cAMoJMxpp+19lSxA3hWqd9rrFmzhvr161d8RCIiIiJyyTp48CA33nhj7stye59xWSYsct5wLAZ+C7wLjC5tX2vtl8aYnUArY0xIWd6kWGv3lRCX6/kVV1xBixZlnQUu3pKamsrOnTsBaNasGUFBQV6OSEpL167y0rWrnHTdKi9du0uG6hacB2ttNrAPeMMYcxRYCjwDTODcTImiZkSE5Hw9me9raduXNsZSv9do0qQJjRqVVPJCRERERKRo+d4Tltv7DJ/yGqiyyElWxAJDgfeAYTlvQMriaM7XquUZm4iIiIiIXPQ+z/kak/O1pJoTbjUucgpzHwCaGGN8S2ovIiIiInI5uawSFnmSFUOA94HBRRS6K26MYOAa4DTnEhciIiIiInJ5CM/5ejbnazzwK9Al572CS87rLsBua23eotirgdx9+fXO+bqm3CIWEREREakkLpuERZ5loIYAfwcGFZWsMMZUN8a0LGR7EPAnoDqw1FqbWYEhi4iIiIiIFxhjrjbGFJhNnbNtTs7LlQDWWgu8BVQDfp+vy+9ztv8p3/Y/5nx90Rjjn2f8vjhnbnxurd17gachIiIiIlLpXE41LKbgXAYqBdgBPJt3HdccH1lrNwNhwHZjzEbgJ+AgUA+4GWgEbAGe8kzY7qy1HD16lNOnT3P27NmSO4hHZGdnExYWBkBCQgI+PpdNLrDSK69rV6VKFYKDg6lduzaF/G4RERGRyuVeYKwx5itgD3AKZ9HqvjjfK6wFXs3T/hWgPzDBGBMN/BdoC9wCbATm5h3cWrvKGPMW8CDwX2PMCqABcB9wDHi8ok5MRERERORidjklLCJzvlbDWSCvMHuAzTjfJCwEOgD9gFpAKs7kxXzgNWttasWFWjhrLYcOHeL48eOePrSUwFrrKjSTlZVFdnZZy6KIt5TXtcvMzCQ1NZWsrCzq1aunpIWIiEjl9k+cSz91BjrhfA9xEvgBWAIszjvb2lp72hjTHXgeuBvogbNOxWxgahHvHUbhvBHqYeAJnDdWLQeesdburJjTEhERERG5uF02CQtr7TBgWCnbngIeq8h4zsfRo0fdkhW+vr76UPQiknst/Pwum39Wl4wLvXbWWrKynCvMHT9+HF9fX+rUqVNu8YmIiIhnWWu/A74rY5+TwJM5j9K0z8Z5M9T8MgcoIiIiInKJ0ierlcjp06ddzxs0aEDNmjW9F4y4yc7O5tSpUwCEhIRoSahKpLyu3YkTJzhw4ADg/LeqhIWIiIiIiIiIiEjZ6FPVSiS3ZoWvr6+SFSIXmZo1a+Lr6ws4l4cSERERERERERGRslHCohLSMlAiF6fcf5vWWi9HIiIiIiIiIiIiUvkoYSEiIiIiIiIiIiIiIl6nhIV4RExMDGPGjPF2GCIiIiIiIiIiIiJykVLCQjxi2bJlvPjiix451po1a7j99tsJDw/HGMNHH31UoM2wYcMwxrg9+vTp49Ymd/uGDRvctqenpxMWFoYxBofDAUDnzp158skn3dq9+eabGGOIi4srcOxu3bpd8HmKiIiIiIiIiIiIXEqUsBCPCA0NpXr16h451unTp2nTpg2vv/56se369OnDgQMHXI/33nuvQJuIiAhiY2Pdti1fvpxq1aq5bYuJiWHdunVu21atWkVERIQrqZHL4XDQs2fPMpyRiIiIiIiIiIiIyKVPCQvxiLxLQqWnpzN+/HgaNmxIcHAwHTt2dPtQPykpiQceeICGDRtStWpVWrVqVWgyoSh9+/Zl2rRp3HnnncW2CwgIoH79+q5HrVq1CrQZOnQoS5YsITU11bVt8eLFDB06tMD5xcfHc+jQIde21atXM3HiRLdz2717N3v37qVHjx6lPh8RERERERERERGRy4ESFuJxjz32GOvXr2fJkiX88MMP/OY3v6FPnz7Ex8cDkJaWRrt27VixYgVbt27l4YcfZvDgwXz77bflGofD4aBu3bpERUXxyCOPkJSUVKBNu3btiIyM5MMPPwQgISGBNWvWMHjwYLd2Xbp0oUqVKqxduxaAbdu2kZqaysiRI0lKSmL37t2Ac9ZFYGAgnTp1KtdzEREREREREREREans/LwdgFy42xd8xZHkdI8ft071AD55vGuZ+iQkJBAbG0tCQgLh4eEAjB8/nk8//ZTY2FhmzJhBw4YNGT9+vKvP448/zmeffcbSpUvp0KFDucTep08f7rrrLpo0acLOnTuZPHkyffv2Zf369fj6+rq1HTFiBIsXL2bQoEHExcXRr18/6tSp49YmODiYtm3b8tVXXzFixAgcDgddu3YlICCAzp0743A4aNKkCQ6Hg06dOhEQEFAu5yEiIiIiIiIiIiJyqVDC4hJwJDmdg6fSvB1GqWzZsoWsrCxatmzptj23kDVAVlYWM2bMYOnSpezfv5+MjAzS09OpWrVqucVx//33u563atWK1q1b06xZMxwOBzfddJNb20GDBjFx4kR27dpFXFwc8+fPL3TMrl278o9//ANwzt6IiYkBoHv37jgcDoYPH47D4eChhx4qt/MQERERERERERERuVQoYXEJqFPdO3frn89xU1JS8PX1ZdOmTQVmMuQWsp45cybz5s1j7ty5tGrViuDgYMaMGUNGRka5xF2Ypk2bUrt2bX755ZcCCYuwsDBuu+02Ro4cSVpaGn379iU5ObnAGN26dWP27Nns378fh8PhmiXSvXt3Fi1axM6dO0lMTFTBbREREREREREREZFCKGFxCSjrskzeFB0dTVZWFocPH6Zbt26Ftlm3bh39+/dn0KBBAGRnZ7Njxw6uvvrqCotr3759JCUl0aBBg0L3jxgxgn79+jFhwoQCiZZcHTp0wN/fnzfeeMNVhwOgffv2HDlyhMWLFxMcHFxuy1qJiIiIiIiIiIiIXEqUsBCPatmyJQMHDmTIkCHMnj2b6Ohojhw5wpdffknr1q259dZbadGiBR988AFff/01tWrVYs6cORw6dKjUCYuUlBR++eUX1+vdu3ezefNmQkNDady4MSkpKUydOpW7776b+vXrs3PnTp5++mmaN29O7969Cx2zT58+HDlyhJCQkCKPGxQUxPXXX89rr71Gly5dXIkNf39/brjhBhYsWOAqzi0iIiIiIiIiIiIi7ny8HYBcfmJjYxkyZAjjxo0jKiqKAQMGsHHjRho3bgzAs88+S9u2benduzcxMTHUr1+fAQMGlHr87777jujoaKKjowEYO3Ys0dHRTJkyBQBfX19++OEH7rjjDlq2bMnIkSNp164da9euLbIYtjGG2rVr4+/vX+yxu3XrRnJysqt+Ra7u3buTnJxMjx49Sn0eIiIiIiIiIiIiIpcTY631dgySwxjTCEgE2LFjBy1atHDbHx8fT2ZmJn5+fgX2iXdlZ2dz6tQpAEJCQvDxUS6wsijPa6d/o56VmprK559/DsAtt9xCUFCQlyOS0tB1q7x07Sqv+Ph4WrZsmfsywlq7z5vxiHfkfa+RmJhIo0aNvByRiIiIiFRm+/btIyIiIvdlub3P0KeqIiIiIiIiIiIiIiLidUpYSKWSkJBAtWrVinwkJCR4O0QREREREREREREROQ8qui2VSnh4OJs3by52v4iIiIiIiIiIiIhUPkpYSKXi5+dH8+bNvR2GiIiIiIiIiIiIiJQzLQklIiIiIiIiIiIiIiJep4SFiIiIiIiIiIiIiIh4nRIWIiIiIiIiIiIiIiLidUpYiIiIiIiIiIiIiIiI1ylhISIiIiIiIiIiIiIiXqeEhVRqxhg++ugjb4chIiIiIiIiIiIiIhdICQu5bERGRmKMcXu8/PLLrv0OhwNjDLVq1SItLc2t78aNG119AFJSUqhSpQpLlixxazdixAh8fX3Zs2dPgWP//ve/r5gTExEREREREREREbkEKGEhF6WzZ89WyLgvvPACBw4ccD0ef/zxAm2qV6/O8uXL3bb9+c9/pnHjxq7X1apV4/rrr8fhcLi1W7duHREREW7bd+/ezd69e+nZs2e5nouIiIiIiIiIiIjIpUQJC/GImJgYfve73/H0008TGhpK/fr1ef755137jTG88cYb3HHHHQQHBzN9+nQA/vGPf9C2bVsCAwNp2rQpU6dOJTMz87zjqF69OvXr13c9goODC7QZOnQoixcvdr1OTU1lyZIlDB061K1djx493BITP//8M2lpaYwePdptu8PhICAggE6dOp133CIiIiIiIiIiIiKXOiUsxGPefvttgoOD+eabb3jllVd44YUX+Pe//+3a//zzz3PnnXeyZcsWRowYwdq1axkyZAhPPPEE27ZtY9GiRcTFxbmSGefj5ZdfJiwsjOjoaGbOnFlo8mPw4MGsXbuWhIQEAD788EMiIyNp27atW7sePXrw888/c+DAAQDWrl3LDTfcUCCRsWrVKjp16kRgYOB5xy0iIiIiIiIiIiJyqfPzdgBSDhZ1h5TDnj9utbowanWpm7du3ZrnnnsOgBYtWvDaa6/x5Zdf0qtXLwB++9vfMnz4cFf7ESNGMHHiRNfMhqZNm/Liiy/y9NNPu8Ypi9/97ne0bduW0NBQvv76ayZNmsSBAweYM2eOW7u6devSt29f4uLimDJlCosXL2bEiBEFxuvSpQv+/v44HA7uu+8+1q1bR5cuXWjXrh1Hjx5l9+7dNGnShNWrVzNy5MgyxysiIiIiIiIiIiJyOVHC4lKQchiSf/V2FCVq3bq12+sGDRpw+PC5RMv111/vtv/7779n3bp1bjMqsrKySEtL48yZM1StWrVMxx87dqxbLP7+/owaNYqXXnqJgIAAt7YjRozgiSeeYNCgQaxfv56///3vrF271q1N1apVad++vVvC4vHHH8fPz4/OnTvjcDiw1pKQkECPHj3KFKuIiIiIiIiIiIjI5UYJi0tBtbqV4rhVqlRxe22MITs72/U6fz2JlJQUpk6dyl133VVgrPJYXqljx45kZmayZ88eoqKi3Pb17duXhx9+mJEjR3L77bcTFhZW6Bg9evTg/fff58cffyQtLY02bdoA0L17d1atWkV2djZVq1alY8eOFxyviIiIiIiIiIiIyKVMCYtLQRmWZapM2rZty88//0zz5s0rZPzNmzfj4+ND3boFEy9+fn4MGTKEV155hX/9619FjtGjRw+mTZvGe++9R8eOHfH19QXgxhtv5I9//CPWWtfSUSIiIiIiIiIiIiJSNCUs5KI1ZcoUbrvtNho3bsw999yDj48P33//PVu3bmXatGllGmv9+vV888039OjRg+rVq7N+/XqefPJJBg0aRK1atQrt8+KLL/LUU08VObsCoHPnzgQEBPDaa6+5LTnVoUMHDh8+zD/+8Q8mTZpUplhFRERERERERERELkc+3g5ApCi9e/fmn//8J59//jnt27fnhhtu4NVXX+WKK64o81gBAQEsWbKE7t27c8011zB9+nSefPJJ/vjHPxbZx9/fn9q1a2OMKbJNYGAgN9xwA8nJyXTt2tXteLnbVb9CREREREREREREpGSaYSEe4XA4Cmz76KOPXM+ttYX26927N7179y5y3KL65de2bVs2bNhQbJuYmJhixxswYECh+x0OB9nZ2Zw6dcpt+6pVq0oVm4iIiIiIiIiIiIhohoWIiIiIiIiIiIiIiFwElLCQS8KMGTOoVq1aoY++fft6OzwRERERERERERERKYGWhJJLwujRo7n33nsL3RcUFOThaERERERERERERESkrJSwkEtCaGgooaGh3g5DRERERERERERERM6TloQSERERERERERERERGvU8JCRERERERERERERES8TgkLERERERERERERERHxOiUsRERERERERERERETE65SwEBERERERERERERERr1PCQjwiJiaGMWPGeDsMEREREREREREREblIKWEhHrFs2TJefPFFjxxrzZo13H777YSHh2OM4aOPPirQxlrLlClTaNCgAUFBQdx8883Ex8e7tTHGYIxhw4YNbtvT09MJCwvDGIPD4QCgc+fOPPnkk27t3nzzTYwxxMXFuW0fNmwY3bp1u+DzFBEREZGKYYxpaIwZY4z53BiTYIzJMMYcNMZ8aIzpWEj7540xtphHZBHH6W2MWW2MSTbGnDLGrDLG3FThJygiIiIicpFSwkI8IjQ0lOrVq3vkWKdPn6ZNmza8/vrrRbZ55ZVXmD9/Pm+++SbffPMNwcHB9O7dm7S0NLd2ERERxMbGum1bvnw51apVc9sWExPDunXr3LatWrWKiIgIV1Ijl8PhoGfPnudxZiIiIiLiIY8DrwJNgc+B2cBXQH/ga2PMfUX0exuYWsjjRP6GxphBwKfAVUBcTt9rgH8bY+4pv1MREREREak8lLAQj8i7JFR6ejrjx4+nYcOGBAcH07FjR7cP9ZOSknjggQdo2LAhVatWpVWrVrz33nulPlbfvn2ZNm0ad955Z6H7rbXMnTuXZ599lv79+9O6dWv+8pe/8OuvvxaYjTF06FCWLFlCamqqa9vixYsZOnRogfOLj4/n0KFDrm2rV69m4sSJbue2e/du9u7dS48ePUp9PiIiIiLicd8CMdba5tbaB621k6y19wA9gCzgDWNMQCH94qy1zxfyOJG3kTGmFrAAOAq0tdY+bq19HGgLJOWM75m7fURERERELiJKWIjHPfbYY6xfv54lS5bwww8/8Jvf/IY+ffq4lmRKS0ujXbt2rFixgq1bt/Lwww8zePBgvv3223I5/u7duzl48CA333yza1uNGjXo2LEj69evd2vbrl07IiMj+fDDDwFISEhgzZo1DB482K1dly5dqFKlCmvXrgVg27ZtpKamMnLkSJKSkti9ezfgnHURGBhIp06dyuVcRERERKT8WWuXWWtXF7J9LbAKqAW0uoBD/AaoCSyw1u7LM/4+4DWgNlD43TciIiIiIpcwP28HIBfuvn/ex9HUox4/bu2g2rx/2/tl6pOQkEBsbCwJCQmEh4cDMH78eD799FNiY2OZMWMGDRs2ZPz48a4+jz/+OJ999hlLly6lQ4cOFxz3wYMHAahXr57b9nr16rn25TVixAgWL17MoEGDiIuLo1+/ftSpU8etTXBwMG3btuWrr75ixIgROBwOunbtSkBAAJ07d8bhcNCkSRMcDgedOnUiIKCwG/JEREREpBI4m/M1s5B9N+bUuMgG4oEvrLUphbSLyfn6eSH7PgOeB7oDfyltUMaYRiU0qZ/7JDU11W0GsYiIiEhlctXU/3g7hEveT8+VvJx9Rf09qYTFJeBo6lEOnzns7TBKZcuWLWRlZdGyZUu37bmFrAGysrKYMWMGS5cuZf/+/WRkZJCenk7VqlW9ETKDBg1i4sSJ7Nq1i7i4OObPn19ou65du/KPf/wDcNapiImJAaB79+44HA6GDx+Ow+HgoYce8lToIiIiIlKOjDGNgZuBA8CWQppMzff6hDHmCWtt/sRDi5yv8YWMEZ+vTWkllrbhmjVrqF27dhmHFxEREblY6CPtivb554XdV+Pu6NGKuYFeV/cSUDvIO282zue4KSkp+Pr6smnTJnx9fd325RaynjlzJvPmzWPu3Lm0atWK4OBgxowZQ0ZGRrnEXb++8+ayQ4cO0aBBA9f2Q4cOcd111xVoHxYWxm233cbIkSNJS0ujb9++JCcnF2jXrVs3Zs+ezf79+3E4HK5ZIt27d2fRokXs3LmTxMREFdwWERERqYSMMVWAd4AAYIK1NivP7u+BEYADZzKjPnAb8AIQZ4w5Ya39OE/7GjlfTxZyqFP52oiIiIiIXDaUsLgElHVZJm+Kjo4mKyuLw4cP061bt0LbrFu3jv79+zNo0CAAsrOz2bFjB1dffXW5xNCkSRPq16/Pl19+6UpQnDp1im+++YZHHnmk0D4jRoygX79+TJgwoUCiJVeHDh3w9/fnjTfecNXhAGjfvj1Hjhxh8eLFBAcHl8uyViIiIiLiOcYYHyAOuBH4k7X2nbz7rbXL83XZA7xmjPkJ+DcwDfiYihVRwv76wEaAG2+8kUaNSlpBSkREROQitV5LQlW0W265pcQ2+/btK7HN+VDCQjyqZcuWDBw4kCFDhjB79myio6M5cuQIX375Ja1bt+bWW2+lRYsWfPDBB3z99dfUqlWLOXPmcOjQoVInLFJSUvjll19cr3fv3s3mzZsJDQ2lcePGGGMYM2YM06ZNo0WLFjRp0oTf//73hIeHM2DAgELH7NOnD0eOHCEkJKTI4wYFBXH99dfz2muv0aVLF1diw9/fnxtuuIEFCxa4inOLiIiISOWQk6xYDPwWeBcYXdq+1tovjTE7gVbGmBBrbe7sidyZFTWApHzdQvK1Ke2xin3HaIxxPQ8KCiIoKKgsw4uIiIjIZaQ0fytW1N+TPhUyqkgxYmNjGTJkCOPGjSMqKooBAwawceNGGjduDMCzzz5L27Zt6d27NzExMdSvX7/IREJhvvvuO6Kjo4mOjgZg7NixREdHM2XKFFebp59+mscff5yHH36Y9u3bk5KSwqeffkpgYGChYxpjqF27Nv7+/sUeu1u3biQnJ7vqV+Tq3r07ycnJ9OjRo9TnISIiIiLelZOsiAWGAu8Bw6y12WUcJndx37wF2YqrU1FcfQsRERERkUuaZliIRzgcDtfzKlWqMHXqVKZOzV+T0Ck0NJSPPvrovI8VExODtbbYNsYYXnjhBV544YUi2xQ3Rs2aNQvdP3HiRGbMmIGPj3su8LnnnuO5554rIXIRERERuVjkSVYMAd4HBuerW1GaMYKBa4DTnEtcAKwGHgBuATbk69Y7TxsRERERkcuKZliIiIiIiIjkkWcZqCHA34FBRSUrjDHVjTEtC9keBPwJqA4stdZm5tm9FOeST48bYxrl6dMIeAxnciN/XQwRERERkUveZTXDwhjTEPgN0A+4EmfhuWPAOuAVa+03hfQJAZ4H7s5pfwDnm5ap1toUz0QuuRISEoqtZbFt2zbX0lIiIiIiIudpCs5loFKAHcCzeWtA5PjIWrsZCAO2G2M2Aj8BB4F6wM1AI2AL8FTejtba48aYx4B3gP8aY97P2XVfznj3WWuTK+C8REREREQuapdVwgJ4HJgA7AQ+B47gXCN2ADDAGPNba23um4XcKdyrgety2r8HRAPjge7GmButtWmePIHLXXh4OJs3by52v4iIiIjIBYrM+VoNeKaINnuAzThvgFoIdMB5Y1QtIBVn8mI+8Jq1NjV/Z2vtu8aYo8BkYDhggU3ANGvtF+V0HiIiIiIilcrllrD4Foix1rqtB2uM6QZ8CbxhjPnIWpues+tpnMmKP1hrJ+Zp/zLOxMeTwEueCFyc/Pz8aN68ubfDEBEREZFLmLV2GDCslG1P4VzG6XyO8ynw6fn0FRERERG5FF1WNSystcvyJytytq8FVuG8G6oVgHHO+X4Q5zTwF/N1eTFn+4MVGrCIiIiIiIiIiIiIyGXicpthUZyzOV9zi+G1AMKBz6y1p/M2tNaeNsasA3obYyKstYkejFNERERERERELjGRE1d4O4RL3p6Xb62QcXXtKp6uXeVUUddNLm1KWADGmMY4i+IdwFkUD5wJC4D4IrrFA71z2pUqYWGMaVRCk/q5T9LT00lNdV/qNjs7G2ut67lcPPJeD12byqW8r521luzs7AL/fkty8uRJDhw4wNmzZ8nIyCjxkZWVdcGxVnbWWtf3effu3RRSDFUuQrpuBZX2e5D7N0BFHL9x48bccsstxcaSlpZW6HO5+KWnp5fcSERERERE5CJw2ScsjDFVgHeAAGCCtTb3U8AaOV9PFtH1VL52pVHqmRjffPMNO3fudNsWFhZGUFAQxhhOnTpVRE/xtpSUFG+HIOfpQq9dZmYmqamppKamsn379lL3S0tLY/v27RX2YeTlQB/GVU66bhePY8eOkZycTEhISKnar1mzpoIjkvJ09OhRb4cgIiIiIiJSKpd1wsIY4wPEATcCf7LWvuPdiETkcpSUlFSmZIWPj4/uSheRcpE7Kwzg9OnTpU5YiIiIiIiIiFSEyzZhkZOsWAz8FngXGJ2vSe7MiqJmUITka1caESXsrw9sBOjYsSPNmjVz25mQkEBWVhZ+fn6V7gOFnj170qZNG1599VVvh1IhsrOzXXfnV6tWDR+f8qtn/9FHH/H000+ze/duHnvsMdq0acPYsWM5duxYuR2jKE2bNuWJJ57giSeeqPBjlUZSUhLXXHMNGzZsIDIyslzGLO2169y5M+PGjePuu+8ucqwjR44QFBREtWrVaNeuXalj+NOf/gQ4l2W56aabCAwMxN/f3/WoUqUK/v7+BAQEUKVKlXL9+arM0tLSXHd533jjjQQGBno5IikNXbeLy/Hjx/njH/8IQHBwMLfcckuRbXXtKq/8s3ZFREREREQuVpdlwiInWRELDAHeA4ZZa/MvXp9bu6IFhSupxkUB1tp9JcTleh4QEEBQUJDbfh8fH9ddkJXtA8tly5Z59IPWNWvWMHPmTDZt2sSBAwdYvnw5AwYMcGszbNgw3n77bbdtvXv35tNPP3W9zr0m69ev54YbbnBtT09PJzw8nGPHjrFq1SpuvPFGevXqxbXXXsuf//xn13m++eabPPLII8TGxjJs2DC3Y+/cuZO1a9eWeC6PPPIIw4cP53e/+x3Vq1fnww8/BMr3ZyAuLo4xY8Zw4sQJt+0bN24kODj4ovl5e+mll+jfvz9NmzYF4Pvvv+fll1/mq6++4ujRo0RGRjJ69OgyJ1jWrVvHggUL+OGHH4r8eXn22Wd58sknufvuu4v9fhhj8PHxKfDvtyhHjx51JZ8iIiLo2rVrmWIXp8DAwFJ/z+XioevmfYGBgQQGBpKWlsahQ4cIDAws1QwuXbvKJSAgwNshiIiIiIiIlMrF8SmkB+VLVrwPDM5TtyKveOBXoIsxJjjfGMFAF2C3tbbUdSkuZ6GhoVSvXt1jxzt9+jRt2rTh9ddfL7Zdnz59OHDggOvx3nvvFWgTERFBbGys27bly5dTrVo1t21du3Zl3bp1bttWrVpFREQEDofDbbvD4aBnz54lnkdKSgqHDx+md+/ehIeHe/R7CFCnTh2qVq3q0WMW5cyZM/z5z39m5MiRrm2bNm2ibt26vPvuu/z4448888wzTJo0iddee63MY1977bUsWLCgyDZ9+/YlOTmZf/3rX+d9DoX5+eefXc+joqLKdWwRkZIYYwgPDwec/+eoRpaIiIiIiIh402WVsMizDNQQ4O/AoCKSFVjngvJvAdWA3+fb/fuc7X+quGgvLTExMYwZM8b1Oj09nfHjx9OwYUOCg4Pp2LGj24f6SUlJPPDAAzRs2JCqVavSqlWrQpMJRenbty/Tpk3jzjvvLLZdQEAA9evXdz1q1apVoM3QoUNZsmQJqamprm2LFy9m6NChbu26detGfHw8Bw8edG1bvXo1EydOdDu33bt3s3fvXnr06FFsbA6Hw5Wg6NmzJ8aYAomPXG+88QbNmjXD39+fqKgo3nnHvRzLnDlzaNWqFcHBwURERPDoo4+6lkFyOBwMHz6ckydPYozBGMPzzz8PQGRkJHPnznWNY4zhrbfe4s4776Rq1aq0aNGCjz/+2O1YH3/8MS1atCAwMJAePXrw9ttvY4wpMHujrFauXElAQIDbTJcRI0Ywb948unfvTtOmTRk0aBDDhw9n2bJlZRq7V69ePPvss8X+vPj6+tKvXz+WLFly3udQmLzFua+88spyHVtEpDRyExYAv/76qxcjERERERERkcvdZZWwAKYAQ4EUYAfwrDHm+XyP6/K0fwX4HphgjPnMGPOSMeYzYALOWhNzPRv+peOxxx5j/fr1LFmyhB9++IHf/OY39OnTh/h45wpbaWlptGvXjhUrVrB161YefvhhBg8ezLfffluucTgcDurWrUtUVBSPPPIISUlJBdq0a9eOyMhI11JMCQkJrFmzhsGDB7u169ixI1WqVGHVqlUAbNu2jdTUVEaOHElSUhK7d+8GnLMuAgMD6dSpU7Gxde7c2XX3/YcffsiBAwfo3LlzgXbLly/niSeeYNy4cWzdupVRo0YxfPhwVxzgXD5q/vz5/Pjjj7z99tv85z//4emnn3YdZ+7cuYSEhLhmmowfP77IuKZOncq9997LDz/8QL9+/Rg4cKBrSaPdu3dzzz33MGDAAL7//ntGjRrFM888U+x5ltbatWtLVRfi5MmThIaGlssx8+vQoUOplvEqrZSUFBITnZO0ateuTVhYWLmNLSJSWkpYiIiIiIiIyMXicqthEZnztRpQ1Keoe4DNANba08aY7sDzwN1AD+AAMBuYaq1NLXwIz0uKjeNYXFyJ7QKvvpqINxa6bUt85FHStm0rsW/osGGEDR92nhGek5CQQGxsLAkJCa4PScaPH8+nn35KbGwsM2bMoGHDhm4fmj/++ON89tlnLF26lA4dOlxwDOBcDuquu+6iSZMm7Ny5k8mTJ9O3b1/Wr1+Pr6+vW9sRI0awePFiBg0aRFxcHP369aNOnTpubYKDg2nbti2rV69m4MCBOBwOunbtSkBAAJ07d8bhcNCkSRMcDgedOnUqcT1pf39/6tatCziX1Kpfv36h7WbNmsWwYcN49NFHARg7diwbNmxg1qxZrlkceWe3REZGMm3aNEaPHs3ChQvx9/enRo0aGGOKPEZew4YN44EHHgBgxowZzJ8/n2+//ZY+ffqwaNEioqKimDlzJuBc4mjr1q1Mnz69xHFLsnfvXrcP1Qrz9ddf8/7777NixYoLPl5hwsPDSUxMJDs7u1zqeuQm6ECzK0TEe5SwkIudMaYecBPQFqgH1AKOA4eATcB/rLWHvBehiIiIiIiUl8sqYWGtHQYMK2Ofk8CTOY+LVnZKCpmHSn6fllXIB9JZx46Vqm92zhJCF2rLli1kZWXRsmVLt+3p6emuO8yzsrKYMWMGS5cuZf/+/WRkZJCenl6u9RTuv/9+1/NWrVrRunVrmjVrhsPh4KabbnJrO2jQICZOnMiuXbuIi4tj/vz5hY7ZtWtXPvnkE8A5eyMmJgaA7t27u5ZecjgcPPTQQ+V2Hj/99BMPP/yw27YuXbowb9481+svvviCl156ie3bt3Pq1CkyMzNJS0vjzJkzZf6etm7d2vU8ODiYkJAQDh8+DDjrMbRv396tfUkJptGjR/Puu++6XqcU8XOWmppKYGBgkeNs3bqV/v3789xzz3HLLbeUeB7nIygoiOzsbNLT08ul2Gze5aBUv0JEvKVGjRpUrVqVM2fO8Ouvv2KtLVXhbZGKZIypAtwH/B+Q+8dEYT+YNqf9N8DrwFJr7VmPBCkiIiIiIuXuskpYXMp8qlXDr169Etv5FrJUjm9oaKn6+uQrMn2+UlJS8PX1ZdOmTQVmMuQWsp45cybz5s1j7ty5rtoLY8aMISMjo1xiKEzTpk2pXbs2v/zyS4GERVhYGLfddhsjR44kLS3NVYA5v27dujF79mz279+Pw+FwzRLp3r07ixYtYufOnSQmJpaq4HZ52bNnD7fddhuPPPII06dPJzQ0lK+++oqRI0eSkZFR5oRFlSpV3F4bY8jOzj7v+F544YVil6DKVbt2bY4fP17ovm3btnHTTTfx8MMP8+yzz553LCU5duwYwcHB5ZKsyMjIYOfOnYAz8dOwYcMLHlNE5HwYY2jYsCHx8fGkpqZy4sSJQms6iXiKMWYw8BLQAGeS4giwHvgRSAJOATWAMOBaoBNwA9AReNkYM8la+24hQ4uIiIiIyEVOCYtLRNjw81+uKf8SURUtOjqarKwsDh8+TLdu3Qpts27dOvr378+gQYMAyM7OZseOHVx99dUVFte+fftISkqiQYMGhe4fMWIE/fr1Y8KECQUSLbk6dOiAv78/CxcudNXhAGjfvj1Hjhxh8eLFBAcHl9uyVgBXXXUV69atcysCvm7dOtf3atOmTWRnZzN79mzXMkZLly51G8Pf35+srELrz5dJVFQUK1eudNu2cePGYvvUrVvXtfRVcaKjo91mYuT68ccf6dmzJ0OHDi2XpaeKs3XrVqKjo8tlrF27dpGZmQk4v2/lscSUiMj5Cg8Pdy1Tt3//fiUsxGuMMetxzqg4CswH4qy135ei33XAcOAB4G1jzKPW2oLFv0RERERE5KKmT8jE41q2bMnAgQMZMmQIy5YtY/fu3Xz77be89NJLrtoDLVq04N///jdff/01P/30E6NGjeJQKZatypWSksLmzZvZvHkz4CwGvXnzZhISElz7n3rqKTZs2MCePXv48ssv6d+/P82bN6d3796FjtmnTx+OHDnCCy+8UORxg4KCuOGGG1iwYAFdunRxJTb8/f3dtuefpXAhnnrqKeLi4njjjTeIj49nzpw5LFu2zDVroXnz5pw9e5YFCxawa9cu3nnnHd588023MSIjI0lJSeHLL7/k6NGjnDlz5rxiGTVqFNu3b2fChAns2LGDpUuXEpdTW+VClxfp3bs3P/74o9ssi61bt9KjRw9uueUWxo4dy8GDBzl48CBHjhwp09gpKSls2bKlyJ+XXGvXri235aZyC6qDloMSEe9THQu5iLQAngYaW2ufLE2yAsBau9la+wQQAUwEWpbQRURERERELkJKWIhXxMbGMmTIEMaNG0dUVBQDBgxg48aNNG7cGIBnn32Wtm3b0rt3b2JiYqhfvz4DBgwo9fjfffcd0dHRrrvhx44dS3R0NFOmTAHA19eXH374gTvuuIOWLVsycuRI2rVrx9q1a4sshm2MoXbt2vj7+xd77JiYGJKTk131K3J1796d5ORkVyHs8jJgwADmzZvHrFmzuOaaa1i0aBGxsbGu47dp04Y5c+bwhz/8gWuvvZa//vWvvPTSS25jdO7cmdGjR3PfffdRp04dXnnllfOKpUmTJnzwwQcsW7aM1q1b88Ybb/DMM8769iUVGS9Jq1ataNu2rdvskA8++IAjR47w7rvv0qBBA9cjbx2NPXv2YIzB4XAUOfbmzZu58cYbXTNi8v+8gPOO46+//prhw4df0HmAc8ZQbsKiSpUqNG3a9ILHFBG5EEpYyEWkqbV2trU2/Xw6W2vTrbUzAf3nKiIiIiJSCRlrrbdjkBzGmEZAIsCOHTto0aKF2/74+HgyMzPx8/MrsE+8Kzs7m1OnTgEQEhKi5X3ymD59Om+++SaJiYkXPNaKFSt46qmn2Lp1a6m/x6tWreKuu+5i165dhS5xUtprN2HCBI4fP84f//jHIo9V2n+jCQkJLF68GIArr7zSrQC8lF5qaiqff/45ALfccku51BaRiqfrdvGaPXs2ycnJBAQEMGHChAK/D3XtKq/4+HhatnRNOIiw1u7zZjziHXnfayQmJtKoUSMvRyQi+UVOXOHtEC55e16+tULG1bWreLp2lZOuW+VVmmu3b98+IiIicl+W2/sM1bAQkXK1cOFC2rdvT1hYGOvWrWPmzJk89thj5TL2rbfeSnx8PPv378/7C7FYK1euZPLkyRe8HnvdunUZO3bsBY2RK+9yUFdeeWW5jCkicqEaNmzI9u3bSU9P59ixY9SuXdvbIYmIiIiIiMhlRgkLqXQSEhKKLb69bds219JSF7u+ffuydu3aQvdNnjyZyZMneziiCxcfH8+0adM4duwYjRs3Zty4cUyaNKncxh8zZkyZ2s+cObNcjjtu3LhyGQdg+/btgHOZMc2WEpGLRXh4uOv306+//qqEhVx0jDG+QBgQWFQba21CUftEREREROTip4SFVDrh4eGu4shF7a8s3nrrLVJTUwvdFxoa6uFoyserr77Kq6++6u0wLlpHjx4lKSkJgMaNGxMcHOzliEREnPL+/7l//35at27txWhEzjHGdAaeA24EiismZtH7GxERERGRSk1/0Eul4+fnR/Pmzb0dRrlo2LCht0MQD8u9exkgKirKi5GIiLhT4W25GBljegL/AqrkbDoGJHsvIhERERERqUhKWIiIeFDe+hVKWIjIxaRq1arUrFmTEydOcODAAbKysvD19fV2WCLTcCYr5gLTrLXHvBuOiIiIiIhUJB9vByAicrlISUkhMTERgDp16hAWFubliERE3OXOssjMzOTo0aNejkYEgOuAzdbasUpWiIiIiIhc+pSwEBHxkB07driea3aFiFyM8i5VqGWh5CKRAmwvsZWIiIiIiFwSlLAQEfGQvMtBXXnllV6MRESkcPkLb4tcBDYALb0dhIiIiIiIeIYSFiIiHpCRkcHOnTsBqFatmtuHgiIiF4sGDRq4nmuGhVwkpgOtjDG/9XYgIiIiIiJS8ZSwEI+IiYlhzJgx3g6jUvroo49o3rw5vr6+jBkzhri4OGrWrOmRY0dGRjJ37lyPHKs0kpKSqFu3Lnv27PHocTMyMoiMjOS777477zF27dpFZmYmAC1btsTHR79+ReTiExgY6Kqvc+jQIdfvLRFvsdZ+A9wHzDfGvGeMGWKMiTHG3FjYw9vxioiIiIjIhdEnZuIRy5Yt48UXX/TY8dasWcPtt99OeHg4xhg++uijAm2GDRuGMcbt0adPH7c2uds3bNjgtj09PZ2wsDCMMTgcDgB69erFk08+6dbuzTffxBhDXFxcgWN369atVOcyatQo7rnnHhITEyvse1hUEmTjxo08/PDDFXLM8zF9+nT69+9PZGQkAN9//z0PPPAAERERBAUFcdVVVzFv3rwyj/vyyy9Tq1YtfH19Xdc875JN/v7+jB8/ngkTJpx37Nu3n1t+W8tBicjFLHcGWFZWFocPH/ZyNCIA+AJngHuBWOBLYFUhj/94K0ARERERESkfSliIR4SGhlK9enWPHe/06dO0adOG119/vdh2ffr04cCBA67He++9V6BNREQEsbGxbtuWL19OtWrV3LZ17dqVdevWuW1btWoVERERrqRGLofDQc+ePUs8j5SUFA4fPkzv3r0JDw/36PcQoE6dOlStWtWjxyzKmTNn+POf/8zIkSNd2zZt2kTdunV59913+fHHH3nmmWeYNGkSr732WpnHv/LKK9m/f7/rZ+Grr75y2z9w4EC++uorfvzxxzKPnZ2d7Sq4XaVKFZo0aVLmMUREPEWFt+ViYoy5A3gfaAQcB/4LrCnisdZLYYqIiIiISDlRwkI8Iv+SUOnp6YwfP56GDRsSHBxMx44d3T7UT0pK4oEHHqBhw4ZUrVqVVq1aFZpMKErfvn2ZNm0ad955Z7HtAgICqF+/vutRq1atAm2GDh3KkiVLSE1NdW1bvHgxQ4cOdWvXrVs34uPjOXjwoGvb6tWrmThxotu57d69m71799KjR49iY3M4HK4ERc+ePd1mc+T3xhtv0KxZM/z9/YmKiuKdd95x2z9nzhxatWpFcHAwERERPProo6SkpLiOM3z4cE6ePOmaXfD8888DBZeEMsbw1ltvceedd1K1alVatGjBxx9/7Hasjz/+mBYtWhAYGEiPHj14++23McZw4sSJYs+3JCtXriQgIIAbbrjBtW3EiBHMmzeP7t2707RpUwYNGsTw4cNZtmxZmcf38/Nz+1moXbu22/5atWrRpUsXlixZUuaxExMTOXPmDADNmzenSpUqZR5DRMRT8tbYUcJCLgLPAgb4HVDPWtveWtujqIeXYxURERERkQukhIV4xWOPPcb69etZsmQJP/zwA7/5zW/o06cP8fHxAKSlpdGuXTtWrFjB1q1befjhhxk8eDDffvttucbhcDioW7cuUVFRPPLIIyQlJRVo065dOyIjI/nwww8BSEhIYM2aNQwePNitXceOHalSpQqrVq0CYNu2baSmpjJy5EiSkpLYvXs34Jx1ERgYSKdOnYqNrXPnzvz8888AfPjhhxw4cIDOnTsXaLd8+XKeeOIJxo0bx9atWxk1ahTDhw93xQHg4+PD/Pnz+fHHH3n77bf5z3/+w9NPP+06zty5cwkJCXHNLhg/fnyRcU2dOpV7772XH374gX79+jFw4ECOHTsGOJMx99xzDwMGDOD7779n1KhRPPPMM8WeZ2mtXbuWdu3aldju5MmThIaGlnn8Xbt20ahRI5o2bcrAgQNJSEgo0KZDhw6sXVv2mzdzryNAVFRUmfuLiHhS/fr1McYAsH//fi9HI8LVwHpr7WvW2ixvByMiIiIiIhXLz9sBSPnY/EUCm79ILLFdncbVufXR1m7bViz8gSMJySX2ve7mCK67ufF5x5grISGB2NhYEhISXHdxjh8/nk8//ZTY2FhmzJhBw4YN3T40f/zxx/nss89YunQpHTp0uOAYwLkc1F133UWTJk3YuXMnkydPpm/fvqxfvx5fX1+3tiNGjGDx4sUMGjSIuLg4+vXrR506ddzaBAcH07ZtW1avXs3AgQNxOBx07dqVgIAAOnfujMPhoEmTJjgcDjp16kRAQECx8fn7+1O3bl3AuaRW/fr1C203a9Yshg0bxqOPPgrA2LFj2bBhA7NmzXLN4sg7uyUyMpJp06YxevRoFi5ciL+/PzVq1MAYU+Qx8ho2bBgPPPAAADNmzGD+/Pl8++239OnTh0WLFhEVFcXMmTMB54fzW7duZfr06SWOW5K9e/e63fVbmK+//pr333+fFStWlGnsdu3a8frrr3Pddddx6NAhpk6dSrdu3di6davbMlzh4eHs3bu3zLHnJiyMMbRs2bLM/UVEPMnf3586depw+PBhDh8+zNmzZzUzTLzpNFD2/3xFRERERKRSUsLiEpGRmsnpE+kltqtWq+CH5KnJGaXqm5GaeV6x5bdlyxaysrIKfHCbW8ganIU+Z8yYwdKlS9m/fz8ZGRmkp6eXaz2F+++/3/W8VatWtG7dmmbNmuFwOLjpppvc2g4aNIiJEyeya9cu4uLimD9/fqFjdu3alU8++QRwzt6IiYkBoHv37q6llxwOBw899FC5ncdPP/1UoDB2ly5d3IpPf/HFF7z00kts376dU6dOkZmZSVpaGmfOnCnz97R163MJr+DgYEJCQlxFWX/++Wfat2/v1r6kBNPo0aN59913Xa9zl6rKLzU1lcDAwCLH2bp1K/379+e5557jlltuKfE88urVqxcAISEh+Pj40LFjR6644gqWLl3qVjMjKCjItbRTaR05csQ1c6dx48YXTU0QEZHihIeHc/jwYay1HDx4kIiICG+HJJcvBxDt7SBERERERMQzlLC4RPgH+RFcs/g79gGCqvsXuq00ff2DyufHJSUlBV9fXzZt2lRgJkNuIeuZM2cyb9485s6d66q9MGbMGDIyMsolhsI0bdqU2rVr88svvxRIWISFhXHbbbcxcuRI0tLS6Nu3L8nJBWeldOvWjdmzZ7N//34cDodrlkj37t1ZtGgRO3fuJDExsVQFt8vLnj17uO2223jkkUeYPn06oaGhfPXVV4wcOZKMjIwyf4Ce/y5bYwzZ2dnnHd8LL7xQ7BJUuWrXrs3x48cL3bdt2zZuuukmHn74YZ599tnzjiVXzZo1admyJb/88ovb9mPHjhWYWVMSLQclIpVReHg4mzdvBpx1LJSwEC/6PbDJGDPRWvuyt4MREREREZGKpYTFJeK6mxuf93JN+ZeIqmjR0dFkZWVx+PBhunXrVmibdevW0b9/fwYNGgRAdnY2O3bs4Oqrr66wuPbt20dSUhINGjQodP+IESPo168fEyZMKJBoydWhQwf8/f1ZuHChqw4HQPv27Tly5AiLFy8mODi43Ja1ArjqqqtYt26dWxHwdevWub5XmzZtIjs7m9mzZ+Pj4yxbs3TpUrcx/P39ycq68GWho6KiWLlypdu2jRs3Ftunbt26rqWvihMdHe02EyPXjz/+SM+ePRk6dGi5LD0FzqTazp07C9Qp2bp1K9HRZbvJc/v27a7nV155ZbnEJyJS0Ro2bOh6rsLb4mU3AIuB6caYO4BPgQSg0LslrLV/8WBsIiIiIiJSzpSwEI9r2bIlAwcOZMiQIcyePZvo6GiOHDnCl19+SevWrbn11ltp0aIFH3zwAV9//TW1atVizpw5HDp0qNQJi5SUFLe743fv3s3mzZsJDQ2lcePGpKSkMHXqVO6++27q16/Pzp07efrpp2nevDm9e/cudMw+ffpw5MgRQkJCijxuUFAQN9xwAwsWLKBLly6uxIa/v7/b9vJcC/ypp57i3nvvJTo6mptvvplPPvmEZcuW8cUXXwDQvHlzzp49y4IFC7j99ttZt24db775ptsYkZGRpKSk8OWXX9KmTRuqVq16XksXjRo1ijlz5jBhwgRGjhzJ5s2biYuLA3AVcD1fvXv3ZtKkSRw/fpxatWoBzgRCz5496d27N2PHjuXgwYMA+Pr6lmkmxO9//3v69OnDVVddxcGDB3nuuefw9fV11erItXbtWl588cVSj5uSksK+ffsAqFOnznkVAxcR8YZ69erh4+NDdna2EhbibXGABQzO5EXHEtorYSEiIiIiUon5eDsAuTzFxsYyZMgQxo0bR1RUFAMGDGDjxo00buycJfLss8/Stm1bevfuTUxMDPXr12fAgAGlHv+7774jOjradTf82LFjiY6OZsqUKYDzA+0ffviBO+64g5YtWzJy5EjatWvH2rVriyyGbYyhdu3a+PsXXFYrr5iYGJKTk131K3J1796d5ORkVyHs8jJgwADmzZvHrFmzuOaaa1i0aBGxsbGu47dp04Y5c+bwhz/8gWuvvZa//vWvvPTSS25jdO7cmdGjR3PfffdRp04dXnnllfOKpUmTJnzwwQcsW7aM1q1b88Ybb/DMM88AlFhkvCStWrWibdu2brNDPvjgA44cOcK7775LgwYNXI+8dTT27NmDMQaHw1Hk2Pv37+fBBx/kqquu4t577yUsLIwNGza4JT3Wr1/PyZMnueeee0od844dO1zPNbtCRCoTPz8/6tWrBzhr8aSnl1zrSqSC/CXn8XbO4y8lPEREREREpBIz1lpvxyA5jDGNgERwftDZokULt/3x8fFkZmbi5+dXYJ94V3Z2NqdOnQLOFW4Wp+nTp/Pmm2+SmJh4wWOtWLGCp556iq1bt5b6e7xq1Sruuusudu3a5ZqZkVdpr919991HmzZtmDx5cpHHyv9v9G9/+5srafHggw/SqFGjUsUspZOamsrnn38OwC233EJQUJCXI5LS0HWrPD755BM2bdoEwLBhw6hXr56uXSUVHx9Py5Ytc19GWGv3eTMe8Y687zUSExP1d4nIRShy4gpvh3DJ2/PyrRUyrq5dxdO1q5x03Sqv0ly7ffv25a13WG7vM/SpqoiUq4ULF7Jx40Z27drFO++8w8yZM93qa1yIW2+9lYcffpj9+/eXus/KlSuZPHlyocmK0srIyKBVq1Y8+eSTZeqza9cuwFlMPjw8/LyPLyLiDXl/b2lZKBEREREREfEE1bCQSichIaHYWhbbtm1zLS11sevbty9r164tdN/kyZOLvZv/YhUfH8+0adM4duwYjRs3Zty4cUyaNKncxh8zZkyZ2s+cOfOCj+nv78+zzz5bpj47d+4kMzMTcBYj16wbEals8hfezl1mUURERERERKSiKGEhlU54eDibN28udn9l8dZbb5GamlrovspaoPnVV1/l1Vdf9XYYXrd9+3bX86ioKC9GIiJyfurUqYOfnx+ZmZmaYSEeY4y501q7vBzGuctau6w8YhIREREREc9RwkIqHT8/P5o3b+7tMMpF3rtX5dJhreXnn38GnLMzmjZt6uWIRETKztfXl/r167Nv3z6OHTtGWlqat0OSy8OHxphvgOettZ+VpaMxxgD9gCnA9YBvBcQnIiIiIiIVSGuUiIiUs9TUVNcHey1btsTPT7lhEamc8s5aPHjwoBcjkcvIk0AUsNIYk2CMmWaM6WGMCS6ssTEm2BjT0xjzEpAAfAy0yBlHREREREQqGX2KJiJSzlJSUlzPr7rqKi9GIiJyYZSwEE+z1s4zxvwVeB4YCkwGJgHZxph9QBJwCggBwoBGOG/CMsBpYCEw1Vp71PPRi4iIiIjIhVLCQkSkHFlrOX36NOBcTuVSWb5MRC5PeZcuPHDgAMHBhd7kLlKucpINjxljngFGAAOAjsAVOY+8MoB1wEdArLX2pOciFRERERGR8qaEhYhIOcrKyiIzMxOA5s2bExAQ4OWIRETOX1hYGP7+/mRkZHDw4EGaNWvm7ZDkMpKTfHgVeNUYEwhcA9QDagAngMPAj9ZaFVgREREREblEKGEhIlKOzp4963p+5ZVXejESEZEL5+PjQ4MGDdi7dy+nTp3i7NmzVKlSxdthyWUoJymxydtxiIiIiIhIxVLRbRGRcpSbsDDGEBUV5eVoREQuXN46FmfOnPFiJCKeY4xpaIwZY4z5PKf4d4Yx5qAx5kNjTMci+oQYY+YYY/YaY9KNMXuMMTONMdWKaO9jjHncGLPFGJNqjDlijHnPGNO0Ys9OREREROTipYSFeERMTAxjxozxdhiV0kcffUTz5s3x9fVlzJgxxMXFUbNmTY8cOzIykrlz53rkWKWRlJRE3bp12bNnj8ePfcMNN/Dhhx8W28ZaS3Z2NuD83lWtWtUToYmIVCglLOQy9TjO5aiaAp8Ds4GvgP7A18aY+/I2NsYEA6uBJ4HtOX1/BsYD/8lZ0iq/RcB8nAXD5wOfAncBG40xLSrgnERERERELnpKWIhHLFu2jBdffNFjx1uzZg2333474eHhGGP46KOPCrQZNmwYxhi3R58+fdza5G7fsGGD2/b09HTCwsIwxuBwOADo1asXTz75pFu7N998E2MMcXFxBY7drVu3Up3LqFGjuOeee0hMTKyw72FRSZCNGzfy8MMPV8gxz8f06dPp378/kZGRBfYlJSXRqFEjjDGcOHGiTOOuW7eO+++/39W/sJ+XZ599lokTJ7oSEoXJyspyPb/qqqvKFIOIyMVKCQu5TH0LxFhrm1trH7TWTrLW3gP0ALKAN4wxeQtVPQ1cB/zBWtvbWjvRWtsb+APQHmciw8UY0wN4EFgDtLXWTrDWDsZZYDwUeK1iT09ERERE5OKkhIV4RGhoKNWrV/fY8U6fPk2bNm14/fXXi23Xp08fDhw44Hq89957BdpEREQQGxvrtm358uVUq+Y+u79r166sW7fObduqVauIiIhwJTVyORwOevbsWeJ5pKSkcPjwYXr37k14eLhHv4cAderUuWhmCZw5c4Y///nPjBw5stD9I0eOpHXr1uc99rXXXsuCBQuKbNO3b1+Sk5P517/+VWSbvMkM1a8QkUtFaGgogYHOm8PPnDmDtdbLEYlUPGvtMmvt6kK2rwVWAbWAVgDGGIMz+ZAC5L+75MWc7Q/m2/5QztffW2sz8oz/L8AB3GKMaXzhZyIiIiIiUrmo6LZ4RExMDNddd51reaH09HSeeeYZ3nvvPU6cOMG1117LH/7wB2JiYgDn3fKPPfYYa9as4fjx4zRr1ozJkyfzwAMPlOp4ffv2pW/fviW2CwgIoH79+sW2GTp0KPPnz2fu3LkEBQUBsHjxYoYOHeo246Fbt27MnTuXgwcPuu5GXb16NVOmTOGVV15xtdu9ezd79+6lR48exR7X4XC42uQmN1atWlVo2zfeeINZs2aRmJhIkyZNePbZZxk8eLBr/5w5c4iNjWXXrl2EhoZy++2388orr1CtWjUcDgfDhw8HnDNKAJ577jmef/55IiMjGTNmjGs5L2MMf/rTn1ixYgWfffYZDRs2ZPbs2dxxxx2uY3388ceMGzeOxMREOnXqxLBhwxg2bBjHjx+/oKWsVq5cSUBAADfccEOh53/ixAmmTJlSbEKhKL169aJXr16EhIQU2cbX15d+/fqxZMkSbr311gL7MzMzXR/iBQYGFjuWiEhlYowhPDycXbt2kZmZ6arVI3IZy/1HkJnztQUQDnxmrT2dt6G19rQxZh3Q2xgTYa1NzNkVA5wG3O92cfosZ3934J3SBmWMaVRCE9cfvampqaSmppZ2aBGRS4Z+91VeunaVk65b5VWaa1dR19crCQtjTE2gN3AT0Baoh/MupePAIWAT8B+cf/Sf8EaMlc13/1zOphUfldiubpNm3Pn0FLdty195gcO7d5bYt92tA7j+tjvPN0Q3jz32GNu2bWPJkiWEh4ezfPly+vTpw5YtW2jRogVpaWm0a9eOCRMmEBISwooVKxg8eDDNmjWjQ4cO5RIDOJMCdevWpVatWvTs2ZNp06YRFhbm1qZdu3ZERkby4YcfMmjQIBISElizZg2vv/66W8KiY8eOVKlShVWrVjFw4EC2bdtGamoqI0eOZMKECezevZsmTZqwatUqAgMD6dSpU7Gxde7cmZ9//pmoqCg+/PBDOnfuTGhoaIH6DcuXL+eJJ55g7ty53Hzzzfzzn/9k+PDhNGrUyJXw8PHxYf78+TRp0oRdu3bx6KOP8vTTT7Nw4UI6d+7M3LlzmTJlCj///DNAgdkjeU2dOpVXXnmFmTNnsmDBAgYOHMjevXsJDQ1l9+7d3HPPPTzxxBM8+OCD/O9//2P8+PFluSRFWrt2Le3atSuwfdu2bbzwwgt888037Nq1q1yOVZQOHTrw8ssvF7ovLS3N9by475+ISGWUm7AALQsll7ecWQ83AweALTmbc+tNxBfRLR7ne58WQGJOvYsGwFZrbVYR7fOOW1qJJTdxWrNmDbVr1y7j8CJS8XRPaUX7/PPPK2hkXbuKpmtXOem6VV6luXZHjx6tkGN79OoaY1oBTwAPAIE4C8zlVRVoiDOJ8SCQZoz5G7DAWvuDJ2OtbDJSz5ByLKnEdtXDCr4xST11slR9M1LL5wOKhIQEYmNjSUhIcM1EGD9+PJ9++imxsbHMmDGDhg0bun3Q/fjjj/PZZ5+xdOnScktY9OnTh7vuuosmTZqwc+dOJk+eTN++fVm/fj2+vr5ubUeMGMHixYsZNGgQcXFx9OvXjzp16ri1CQ4Opm3btqxevZqBAwficDjo2rUrAQEBdO7cGYfDQZMmTXA4HHTq1ImAgACK4+/vT926dQHnchxFzQSZNWsWw4YN49FHHwVg7NixbNiwgVmzZrkSFnkLnkdGRjJt2jRGjx7NwoUL8ff3p0aNGhhjSpxtAs76G7kzXWbMmMH8+fP59ttv6dOnD4sWLSIqKoqZM2cCEBUVxdatW5k+fXqJ45Zk7969buuog3OmzgMPPMDMmTNp3LhxhScswsPDSUxMJDs7Gx8f9xX18maVg4ODKzQOERFPUx0LETDGVME54yEAmJAn2VAj5+vJIrqeyteurO1FRERERC4bHklYGGPqAi8BQ3HWzTgKrAC+Bn4EknD+YV4DCAOuBToDNwIjgeHGmDhgsrX2sCdirmz8g6pSLTSsxHZBIQXf9wSF1ChVX/+g8qllsGXLFrKysmjZsqXb9txC1uAsXjxjxgyWLl3K/v37ycjIID09vVzrKdx///2u561ataJ169Y0a9YMh8PBTTfd5NZ20KBBTJw4kV27dhEXF8f8+fMLHbNr16588skngHP2Ru4SV927d3ctveRwOHjooYcK7X8+fvrppwKFsbt06cK8efNcr7/44gteeukltm/fzqlTp8jMzCQtLY0zZ86U+Xuat05EcHAwISEhHD7s/Gf5888/0759e7f2JSWYRo8ezbvvvut6nZKSUmi71NRU1xrquSZNmsRVV13FoEGDynQO5ysoKIjs7GzS09Ndy4OB8+c1d4kUX19f/P39PRKPiIinKGEh3mKMmQIkW2tf9XIcPkAczvcnf7LWlnqpJg+KKGF/fWAjwI033kijRiWtICUiHrf+P96O4JJ3yy23VMzAunYVTteuctJ1q7xKc+327dtXIcf21AyLeKA68E/gz8AKa21mMe0/B+YYY/yA24EROY+7cS4dJflcf9ud571cU/4loipaSkoKvr6+bNq0qcBMhtyldGbOnMm8efOYO3curVq1Ijg4mDFjxpCRkVHYkOWiadOm1K5dm19++aVAwiIsLIzbbruNkSNHkpaW5irAnF+3bt2YPXs2+/fvx+FwuGaJdO/enUWLFrFz504SExNLVXC7vOzZs4fbbruNRx55hOnTpxMaGspXX33FyJEjycjIKHPCokqVKm6vjTFuxabL6oUXXijVslG1a9fm+PHjbtv+85//sGXLFj744AMAVw2J2rVr88wzzzB16tTzjqswx44dIzg42C1ZAe7LQeX//oiIXApq1KhB1apVOXPmjApvi6dNwfkewmsJi5xkxWLgt8C7wOh8TXJnShQ1IyIkX7uyti8Va22x7xhza5WB8yaM/H/PiIhcDvS7r/LStaucdN0qr9Jcu4q6vp5KWHwLTLTWbipLp5ykxnJguTGmPTCjIoITz4qOjiYrK4vDhw/TrVu3QtusW7eO/v37u+6cz87OZseOHVx99dUVFte+fftISkqiQYMGhe4fMWIE/fr1Y8KECQUSLbk6dOiAv78/CxcudNXhAGjfvj1Hjhxh8eLFBAcHl2sdjquuuop169YxdOhQ17Z169a5vlebNm0iOzub2bNnu5YxWrp0qdsY/v7+ZGUVtoRy2URFRbFy5Uq3bRs3biy2T926dV1LXxUnOjrabSYGwIcffui2FNPGjRsZMWIEa9eupVmzZmWIvHS2bt1KdHR0ge15Y1DCQkQuRbnLBu7atYusrCxOnjxZrrMeRYpxGPBatcacZEUsMAR4Dxhmrc1/p0ZJNSfcalzkFOI+ADQxxvgWUseipJoYIiWKnLjC2yFc0va8fKu3QxAREblkeSRhYa3tVQ5jbAQueBzxvpYtWzJw4ECGDBnC7NmziY6O5siRI3z55Ze0bt2aW2+9lRYtWvDBBx/w9ddfU6tWLebMmcOhQ4dKnbBISUnhl19+cb3evXs3mzdvJjQ0lMaNG5OSksLUqVO5++67qV+/Pjt37uTpp5+mefPm9O7du9Ax+/Tpw5EjRwgJCSl0PzgzizfccAMLFiygS5cursSGv7+/2/by/FD7qaee4t577yU6Opqbb76ZTz75hGXLlvHFF18A0Lx5c86ePcuCBQu4/fbbWbduHW+++abbGJGRkaSkpPDll1/Spk0bqlatel4fRI0aNYo5c+YwYcIERo4cyebNm4mLiwPc7+o7H71792bSpEkcP36cWrWcE63yJyVyi/1cddVV1KxZs9Rjp6SksHv3blftifw/L7nWrl1bYEpcdna2a+aPMaZAbQsRkUtFbsIC4PDhw0Um+EXK2Vqg/O70KIN8yYr3gcHFFMn+FehijAm21p7OM0Yw0AXYba3NWxR7NXB/zr41+cbL/WM0/3YRERERkUuePlkTr4iNjWXIkCGMGzeOqKgoBgwYwMaNG10fDj/77LO0bduW3r17ExMTQ/369RkwYECpx//uu++Ijo523Q0/duxYoqOjmTLFufyVr68vP/zwA3fccQctW7Zk5MiRtGvXjrVr1xZZDNsYQ+3atUusTxATE0NycrKrfkWu7t27k5yc7CqEXV4GDBjAvHnzmDVrFtdccw2LFi0iNjbWdfw2bdowZ84c/vCHP3Dttdfy17/+lZdeesltjM6dOzN69Gjuu+8+6tSpwyuvvHJesTRp0oQPPviAZcuW0bp1a9544w2eeeYZgBKLjJekVatWtG3btsDskJLs2bMHYwwOh6PINps3b+bGG290zYjJ//MCsH//fr7++muGDx/u1jfvclBKVojIpax69equ53l/94lUsBeAcGPMNHOhdz+UQZ5loIYAfwcGFZGswDrXSHsLqAb8Pt/u3+ds/1O+7X/M+fqiMcb1x6Uxpi8QA3xurd17gachIiIiIlLpGE+sQWyMGQ6sstbuqfCDVWLGmEZAIsCOHTto0cJ9Vnl8fDyZmZn4+fkV2CfelZ2dzalTpwAICQnRB9d5TJ8+nTfffJPExMSSG5dgxYoVPPXUU2zdurXU3+NVq1Zx1113sWvXLtfMjLxKe+0mTJjA8ePH+eMf/+i2/dixY64P7pKTk8nOzta/UQ9JTU3l888/B5zFoLQ2ZuWg61Z5fffdd/zzn/8E4Oabb6Zr165ejkhKKz4+npYtW+a+jCip1sHFxBgzBOcshAeBHcBHwB6KWCbKWvuXcjru88BzQAowDyis/t5H1trNOe2DgXVAG5z1+P4LtAVuwVnouru11i1mY8yfcJ7Xj8AKoAFwX84xO1lrd5THueQ5nuu9RmJioopuX+K0JFTFqqgloXTdKp6uXeWla1c56bpVXqW5dvv27SMiIiL3Zbm9z/BUDYs/A9YYkwCsyn1UpjdLIlI6CxcupH379oSFhbFu3TpmzpzJY489Vi5j33rrrcTHx7N///68vxCLtXLlSiZPnlxosqIs6taty9ixY922ZWdnu5IVPj4++Pj4XFABchGRi1ne5QzPnj3rxUjkMhMHWMAAUcDTJbQvl4QFEJnztRrwTBFt9gCbwVWXojvwPHA30AM4AMwGpuZPVuQYBWwBHgaewJmoWA48Y63dWQ7nICIiIiJS6XgqYbENuBq4AhgGDAUwxuzCPYFx0EPxSCWWkJBQbC2Lbdu2udUduJj17duXtWvXFrpv8uTJTJ482cMRXbj4+HimTZvGsWPHaNy4MePGjWPSpEnlNv6YMWPK1H7mzJnlctxx48YV2Jaenu56HhgYSHJycrkcS0TkYpR3ScTc2j0iHvAXnAkLj7LWDsP5vqUsfU4CT+Y8StM+G5if8xARERERETxXdPtaY0xtnOux9sj5ehXQLOcxEsAYs4NzCQyHtfaIJ+KTyiU8PJzNmzcXu7+yeOutt0hNLXRFA0JDQz0cTfl49dVXefXVV70dhkfkXcM9MDDQi5GIiFS8vDMslLAQT8lJHIiIiIiIyGXCUzMssNYeBT7IeWCMqYt7AiMqz2NUTpttwH+stU94Kk65+Pn5+dG8eXNvh1EuGjZs6O0Q5DxZa10JC2PMBRcVFxG52OWdYaEloURERERERKQieCxhkZ+19jCwNOeBMaYe55IXPYAWwDU4l5JSwkJELirp6elY61yhIjAwEGOMlyMSEalYqmEhFwNjTHOgDpBU3kWpRURERETE+3y8HUAua+0h4Oucx3rgmHcjEhEpmpaDEpHLjRIW4i3GGF9jzLPGmIPAz8BXwMQ8+wcaY742xlzjtSBFRERERKRceG2GBYAxphHnZlXEAJG5u4Ak4CNgtecjExEpWt7loAAtByUilwUV3RZvMMb4Av8EbgEygZ9wzsDOax3wDnAX8KNHAxQRERERkXLl0YSFMSYc92WfmuTuAg4DH+JMUKy21m71ZGwiIqWVkZFBdnY24Jxd4eNz0UxWExGpMH5+5/5s1AwL8aDRQG/gP8AQa+2vxpjsvA2stXuMMTtxJjVe9EKMIiIiIiJSTjySsDDG/BFnkqIZzuQEwAHgfc4lKLZ7IhYRkQul5aBE5HJkjMHHx4fs7GzNsBBPGopzqdjfWGuPF9PuJ6CNZ0ISEREREZGK4qnbgh/Emaz4L/AQ0NJa29Ba+1tr7SIlKy59MTExjBkzxtthVEofffQRzZs3x9fXlzFjxhAXF0fNmjU9cuzIyEjmzp3rkWOVRlJSEnXr1mXPnj0ePW5GRgaRkZF89913Wg5KRC5ruTPKNMNCPOhK4NsSkhUAJ4G6HohHREREREQqkCfXMTFAW2A6MM0Y84gxJv/6s3KJWrZsGS++6LkZ+mvWrOH2228nPDwcYwwfffRRgTbDhg3DGOP26NOnj1ub3O0bNmxw256enk5YWBjGGBwOBwC9evXiySefdGv35ptvYowhLi6uwLG7detWqnMZNWoU99xzD4mJiRX2PSwqCbJx40YefvjhCjnm+Zg+fTr9+/cnMjKywL6kpCQaNWqEMYYTJ06UadyXX36ZWrVq4evr67rmV155pWu/v78/48ePZ8KECZw9e5asrCzXdl9f3ws5JRGRSiX3d55mWIgH+QLppWjXoJTtRERERETkIuaphEUEMASIBVKAe4HXgS3GmEPGmL8bY/7PGHONh+IRDwsNDaV69eoeO97p06dp06YNr7/+erHt+vTpw4EDB1yP9957r0CbiIgIYmNj3bYtX76catWquW3r2rUr69atc9u2atUqIiIiXEmNXA6Hg549e5Z4HikpKRw+fJjevXsTHh7u0e8hQJ06dahatapHj1mUM2fO8Oc//5mRI0cWun/kyJG0bt36vMe/8sor2b9/v+tn4auvvnLbP3DgQL766iv+97//ubYFBQWd9/FERCojzbAQL9gLFPsfvDGmCnAtEO+RiEREREREpMJ4JGFhrd1vrX3XWvugtbY50BhnAiMOZwLjbmAB8IMx5rAx5gNjzGPGmFblGYcxZpAxZpEx5jtjTLoxxhpjhhXR9vmc/UU9Issztktd/iWh0tPTGT9+PA0bNiQ4OJiOHTu6faiflJTEAw88QMOGDalatSqtWrUqNJlQlL59+zJt2jTuvPPOYtsFBARQv35916NWrVoF2gwdOpQlS5aQmprq2rZ48WKGDh3q1q5bt27Ex8dz8OBB17bVq1czceJEt3PbvXs3e/fupUePHsXG5nA4XAmKnj17us3myO+NN96gWbNm+Pv7ExUVxTvvvOO2f86cObRq1Yrg4GAiIiJ49NFHSUlJcR1n+PDhnDx50jW74PnnnwcKLglljOGtt97izjvvpGrVqrRo0YKPP/7Y7Vgff/wxLVq0IDAwkB49evD222+f16yH/FauXElAQAA33HBDoed/4sQJxo8ff97j+/n5uf0s1K5d221/rVq16NKlC++//75rm+pXiMjlJjdhkZWV5ZptJlLBPgUijTHFTfl8HKgDrPBMSCIiIiIiUlE8UnQ7P2vtPuDdnAfGmAigB87C3N2Bu4A7c/YlWWvLaz3aacAVwFGcRb+vKEWft4E9hWw/UU4xlYvktftIWbu/xHZVGlaj9lD3iSxH3/6Rs/tTSuxbrVtDqndrdN4x5vXYY4+xbds2lixZQnh4OMuXL6dPnz5s2bKFFi1akJaWRrt27ZgwYQIhISGsWLGCwYMH06xZMzp06FAuMYDzw/q6detSq1YtevbsybRp0wgLC3Nr065dOyIjI/nwww8ZNGgQCQkJrFmzhtdff91tiaaOHTtSpUoVVq1axcCBA9m2bRupqamMHDmSCRMmsHv3bpo0acKqVasIDAykU6dOxcbWuXNnfv75Z6Kiovjwww/p3LkzoaGhBeo3LF++nCeeeIK5c+dy8803889//pPhw4fTqFEjV1LEx8eH+fPn06RJE3bt2sWjjz7K008/zcKFC+ncuTNz585lypQp/PzzzwAFZo/kNXXqVF555RVmzpzJggULGDhwIHv37iU0NJTdu3dzzz338MQTT/Dggw/yv//974KSCHmtXbuWdu3aFdi+bds2XnjhBb755ht27dp13uPv2rWLRo0aua7NSy+9ROPGjd3atGvXzjWLpkqVKiUuB3Um5QxJyamYwHMzMWx6OvbYsVLFZOrVw/icyyvb5GRsSsn/VvGvgk+Ye8Il++gROJtZ8jGrVcPkmcljs7Kwhw+XLt6wMIy//7m+qanY0iSqfAw+9eq7x3viOKSmFdHBKT09nVPHUsgMrsb+E6kEplln38OHICu75Hhr1MDkmUFkz57FHj1acryAqVMH43fuv1CbkoxNLsW18fPDp04dt03Zx5IgveTldUxwMCYk5NwxrcXmSZAW27dWLUyeBJtNS8UeP1Gqvj4NGri9tidPYs+cKbljQAA+oaFum7IPHyb9zBlSDjmXot+3fXehdWBMSHVM8LnfQzYzE3vkSKniNXVqY/yqnOt7+jT21KmSO/r64FO3nnu8x45BeskrzJiqQZgaNd37HjwAthTx1qpZaX5HpKenk53nn1ZGRoZmmoknzASGAQtzlpNdmrM92BjTFufM7bE4/75/zSsRioiIiIhIufFKwiI/a20i8BfgL8aYhjhnX4wDQoGw4vqW0YNAvLV2rzFmIvBSKfrEWWsd5RhDhchOyyLrVMkfePnWLLiEQ/bps6Xqm51WPndSJiQkEBsbS0JCAuHh4QCMHz+eTz/9lNjYWGbMmEHDhg3dPuh+/PHH+eyzz1i6dGm5JSz69OnDXXfdRZMmTdi5cyeTJ0+mb9++rF+/vsAH0SNGjGDx4sUMGjSIuLg4+vXrR518HzoGBwfTtm1bVq9ezcCBA3E4HHTt2pWAgAA6d+6Mw+GgSZMmOBwOOnXqVGKxZn9/f+rWdebqQkNDqV+/fqHtZs2axbBhw3j00UcBGDt2LBs2bGDWrFmuhEXe2S2RkZFMmzaN0aNHs3DhQvz9/alRowbGmCKPkdewYcN44IEHAJgxYwbz58/n22+/pU+fPixatIioqChmzpwJQFRUFFu3bmX69OkljluSvXv3un5ecqWnp/PAAw8wc+ZMGjdufN4Ji3bt2vH6669z3XXXcejQIaZOnUq3bt3YunWr2zJcderUYd++fUDJy0Ht+OZ7Tj44nFej7+Xr8HOTxa45uotZXy0sVVwDbptBut+5BMCQbf/igR1flthva1gTnur2f27b5jnm0vLEvhL7vn1VH5ZE3ex6XS3jDH9fOaVU8T7R/XfsqHUuydN93/+Y+N1fS+yXXCWIe291r88ydtMSeiV+V2LflIbX8Yf2g+C/613b/vqvqYSmJ5fYd3b0fXxxRXvX68iTv/LGqjkl9gP4bZ8pHA88lzy4J34VI38s+cbe3SENeLTnOLdtL331Jtcd/aXEvn9vHsPia29zvfbJzmLFxxNKFe+kLqPYXKeF63X7g9t4YcPiEvtlGR9u6/+K27bRP3xE/11fFdHjnG/rXclznR502/anL/5Ao5QjtM15nZnzyO+NVv35uNm5Oj91Tx/j7X/PKPGYAA/e9DT7q5+7z6Hv7vX87vsPS+x3KKgWw3o/47bt2W/i6HJga4l9V0bewILr7nHbtvyTSQRmlbxs0osdhlaq3xEpfe7Ct6YzIXT27FklLKTCWWsPGGMGAMuA3+GcTWGBe3IeBueNRHdba0uXdRYRERERkYuW1xMWxph6OGdW9Mh5NM/dlfO1FPcnlo619ovyGuti4xPoi2+If8ntgqsUuq1UfQPLp7jwli1byMrKomXLlm7bcwtZg3OpiRkzZrB06VL2799PRkYG6enp5VpP4f7773c9b9WqFa1bt6ZZs2Y4HA5uuukmt7aDBg1i4sSJ7Nq1i7i4OObPn1/omF27duWTTz4BnLM3YmJiAOjevbtr6SWHw8FDDz1Ubufx008/FSiM3aVLF+bNm+d6/cUXX/DSSy+xfft2Tp06RWZmJmlpaZw5c6bM39O8dSKCg4MJCQnhcM4d+D///DPt27d3a19Sgmn06NG8++67rtcpRdwdnJqaWmAJpkmTJnHVVVcxaNCgMp1Dfr169QIgJCQEHx8fOnbsyBVXXMHSpUtdNTOstfj6+rqWBitpOagdL7xEs7POtsZmY42nSgaJiFSg7HN/lqnwtniKtXZNTq27J4F+QFOcS9smAv8CZlprS55qLCIiIiIiFz2PJyyMMbVxT1BE5e7K02w7sCrn4fBgeIW50RjTEcjGWcjvC2ttKdZbKMgYU9J6Sq7b29PT091qJgBkZ2djrXU9zyu4SzjBXdzvPi9K/r6hg68qVb/C+paFtZbs7GxOnTqFr68vGzduLDCToVq1amRnZ/PKK68wb948t9oLTz75ZM5yFGWPITs7u8R+kZGR1K5dmx07drjVl8jOzqZWrVrceuutjBw5krS0NHr37k1ycnKBsbt168bs2bNJTEzE4XAwduxYsrOz6datG4sWLSI+Pp7ExERiYmJKdR65bfIeI//Xws4v78/Jnj17uO222xg9ejQvvvgioaGhfPXVVzz00EOkpaURGBhY6Jh5x8q73dfX1+21MYbMzEzXz2f+9oWdQ17PP/88Y8eOLdA+v7CwMI4dO+a2/z//+Q9btmzhgw8+cDvv2rVrM3nyZFctjuIUFmtISAgtW7YkPj7ete3s2bMcO3aMsLAwqlSpgo+PT5Hfr5OHk2i283sAfrP7K0J73EhWzhI1tY6eZcexjiXGBdDrmnqufgA1TRQ7/Er+9XM6rAF9r3FfSe/k4Wh2nGhYYt/aV7Wg75Xn+lbJSGPHntLF2/aaCJrVOte3QUgTdpwpue/ZKgEF4vVLu4Yd1YtPklprSa5Rn+iwbOrUqeP6fbJ/7/UcTS95yaLIa5rR94pzx61+0ocdh0p3rt2vbkB6ULDrdd0qLdhhS+6bHBJW4FxTj7Vmx9GSJxOGtLjSra/JzmbHL6WL95qrr6BB3XN964SeYcepkvtaYwrEWzXzKnYEljxz4Gy9Kwr0PfJrW04nHyc9zbnMUkBgAMaYAn3Dr25O3+bn+gadDmTH/tKda6drGnK6+rl6RBFVm7HjbMl9U6tWLxBvdnIrdtQKLqLHOQGRVxXou3tnB3yzSl6GreXVkdRoeK7vxfw74kxGFsm+QdTEOeMyOTmZ4OCSvz/ifemlWNrsYmetPQRMzHmIiIiIiMglyiMJC2PMXZxLUlydd1fO11/Ik6Cw1pZuUW7PmJrv9QljzBPW2r+cx1iJpW34zTffsHPnTrdtYWFhBAUFYYzhVGnW476IZGZmkpGRwalTp2jRogVZWVns3r2bzp07F2h76tQpVq9eTd++fbnjjjsA5wfJufUczufcU1NTS+y3f/9+kpKSqFGjhlvb3L733Xcf9957L0888QSnT592JSzOnDnjmhXQoUMH/P39mTt3LmlpabRo0YJTp04RFRXFkSNHePPNNwkODubKK68s1XnkPUZu+7S0NKy1rtctWrRg9erVbgXGV69e7Tr2V199RXZ2NlOmTHEVS82tg5GcnIyPj4+reGr+mLKzs0lLSyv0+5HLWutqExkZyb///W+3/bk1H3KPlV9gYKDbbIWivi9XXXUVS5cuddsfGxvrltj73//+x2OPPcbKlStp0qRJmX9Wcq9jSkoKv/zyC/fcc49rjIyMDLZv384111xTZJyZmZmkpqaStnsPuR/hJbVpQ6/QPGvvhxhoWnwx+Fy9yLdm/w2NnY8S1AL68Kv7xv5dSnXMFkCL/H2Hli7eTmRB3r7XVINrSu5bhULi7XEVUHwy1eDMeEeRDRw6t+P+3qWKtxXQKu9xQyj1ufbgJHDy3Ibr68P1JfetTiHnemvplrlrAjQ5z2vjPELec/WHqJL7GgqJt1sz56MEdQrre7czGVxSuXrn1T+/a9ONVCBPwr9NKLQpuW8QhcR7SxugTYl9I4CI/H0H3V5iP4BowP3aXLy/I35OMiTu+pWaOP9M+/rrr4uteSQXj6OlrM9zMTLG3AgctNbuKKFdC6CBtXaNZyITEREREZGK4KkZFh/gXNopN0Gxh3MJilUX6RTu74EROGd4HMA5++E24AUgzhhzwlr7sffCq7yaN2/Ob37zGx555BGmTZtG69atOXr0KKtXr+aaa66hd+/eNGvWjH/84x9888031KxZk4ULF3L48GGioqJKPgDOD5x3797ter137162bNlCzZo1iYiIICUlhT/84Q/ccccd1KtXj927d/Pcc8/RtGnTAstB5br55pv55Zdf3Goa5BcUFMT111/Pn/70Jzp06OC649vf39+1Pbc4d3n53e9+x/Dhw2nVqhUxMTF8+umnfPLJJ3z00UcANGnShLNnz/LHP/6RPn36sGHDBmJjY93GaNy4MSkpKaxevZprr72WoKCg81p+a/jw4SxcuJDnnnuOwYMHs2XLFv72t7+Vx2nSs2dPXnjhBU6cOEHNmjUB57nldSynUG1UVBQ1atQo9di///3v6dOnDxERERw4cICXX34ZX19f7r77bsCZlMnKyuLbb7/lqaeews+v6F+d2WczCU4/DcCh4FBCYwoWChcRqYwCfCDTnks8Z2WVT20rkRI4gFhgZAntnsb5t3v5rGEqIiIiIiJe4amExX7gP5xLUOz10HHPm7V2eb5Ne4DXjDE/Af8GpgFlTVhElLC/PrARoGPHjjRr5n4Ha0JCAllZWfj5+RESElJY/4uWn58f/v7+rrjfeecdpk+fzpQpU9i/fz+1a9emY8eO3H333YSEhDB16lT27dvHPffcQ9WqVXnooYcYMGAAJ0+eLNW5//e//3VLPDzzjLOQ6pAhQ4iNjaVKlSr8/PPPDBw4kBMnThAeHk6vXr144YUXChTTDgoKch0z74fgucsBVa1alWrVqrnuzr/pppv4+uuvufnmm91i7dmzJ2vXri2wvTh5j5HbJzAwEGOM6/UDDzzAiRMnmDNnDpMmTaJJkyb8+c9/pl+/foCznsXs2bOZNWsWL7zwAt26dWPGjBkMGzaM6tWrExISQq9evRg1ahQjR44kKSmJKVOm8Nxzz+Hj40NgYKBbvHm/H+BcEiq3TatWrVi6dClPPfUUixYtolOnTjzzzDP83//9H3Xq1Cmx7kNxOnXqRNu2bfnXv/7FqFGjCm2Tm2TJPS9wziZp1qwZX375paumSP7v8f79+3nwwQc5duwYderUoUuXLqxfv56mTZsCzqU01q5dS3JyMnfddVeRyZDDhw/jm5bmep12/1D63tr3vM9ZipeWlsaaNc4baW+88cYL+vkSz9F1q7xqOb6j+r8/5mgL5wqXrVq14sorr/RyVFIa+WftVkIF144TEREREZFLksld8/1yY4yZCLwEDLfWxpWxbzzO4uA1rLXltjZTTo2LRIAdO3bQokULt/3x8fFkZmbi5+dXYJ94V25tDjhXuFmcpk+fzptvvkliYqlXRCvSihUreOqpp9i6dWupv8erVq3irrvuYteuXdSqVavA/tJcu+PHjzN06FCuvvpqnnvuOYKCggo91vZtP5Fx4Fey9uzhxB/foeuaz6kSUHJBezk/qampfP755wDccsstRV4XubjoulVe//tiHftefYlN7a8HoH///kRHR3s5KimN+Ph4WrZsmfsywlq7z5vxlIUxJhuIs9aOKKHdB0Bfa60KqxQh73uNxMREGjUqqbyeVGaRE1d4O4RL2p6Xb62QcXXdKp6uXeWla1c56bpVXqW5dvv27SMiwnV/frm9z/B40e1LxFGcCYuqQOUqJiFSwRYuXEj79u0JCwtj3bp1zJw5k8cee6xcxr711luJj49n//79eX8hFmvlypVMnjy50GRFaeQmNK688koefvhhAgICCm1nrcVmZJx7PfRBJStE5JISVKM6fpnnColn5PmdJ1KejDH5i7FUK2RbLj/gGuAWoNJPJRERERERudx5quh2+IX0t9b+WnIrzzDGBON8U3QaZ+JCPCwhIYGrr766yP3btm2jceOSi45eDPr27cvatWsL3Td58mQmT57s4YguXHx8PNOmTePYsWM0btyYcePGMWnSpHIbf8yYMWVqP3PmzAs6Xnp6OlWqVGHMmDEEBQUVObPj9LGT+FjnEl7pVQLpPvT+CzquiMjFpmqNakpYiKfswVn/LtfdOY/iGODdigpIREREREQ8w1MzLPbh/qajLCwenglijKkONLDW7si3PQj4E1AdiLXWZhbWXypWeHg4mzdvLnZ/ZfHWW2+Rmppa6L7Q0FAPR1M+Xn31VV599VVvh1Fuzpw543peVCFyay0pp1Jcr01EBL5+qvkpIpeW4JohSliIpyRw7r1DY+AMRd8olIHzvcaHwBsVH5qIiIiIiFQkTy8JdT4F88qtyJ4x5kGga87LVjlfHzTGxOQ8/8pa+xYQBmw3xmwEfgIOAvWAm4FGwBbgqfKKS8rGz8+P5s2bezuMctGwYUNvhyDFyMrKIj09HQAfHx/8/Qtf4ulU2lkOV6lGtu9JMqoEEtqgrifDFBHxiMDgIHwys1yvlbCQimKtjcx9nlPD4u8l1bAQEREREZFLg6cTFt8Ci4H3rLXJHj42OJMVQ/Nt65LzyPUWcAxYCHQA+gG1gFScyYv5wGvW2sJvixeRS0ZaWprreVBQEMYUzJ9aazl0ypnUyDY+VKlZw2PxiYh4ko+PD1n23O/Bs2fPejEauYwMB37xdhAiIiIiIuIZnkpY3AeMAHoB7YE5xpgPgT9ba9d4KAastcOAYaVodwoonyrBIlJplWY5qJOpZ0k767zj2NfH4O+jpaBE5NKVZc79jtMMC/EEa+3b3o5BREREREQ8p/DqseXMWvt3a21fIBJ4HjgEDAZWGWPijTGTjTFaG0dELhqZmZmuu4f9/Pzw8yuY383OziblSJJr3Tp/P4/8ShUR8ZrMPH86KmEhnmSMaWaMecUY85Ux5mdjzCt59nU0xjxsjNE0RxERERGRSs6jn65Za/dZa1+01jbDWQ/iPSAcmAbsMcasNMbcY4yp4sm4RETyy1sMvajloFKOHCMsOYkrTh0glLP4+ZRbyR0RkYtSljmXvFXCQjzFGDMM2AqMBzoDzYHaeZpUxVlw+06PByciIiIiIuXKa7cDW2v/Y60dBDQA/g/YDPQB3ge2eSsuERFrrdtyUEFBQQXaZGdnY5KOAlAlO4ta1QI8Fp+IiLdsahqNtRaAtPR0L0cjlwNjzA3An4AM4GmgI5D/DoHVwEngds9GJyIiIiIi5c3r65dYa09Za9/AWefiE5xvQDSdW0S85uzZs2RlOetS+Pv7F7ocVPKho/hlZwKQ7h9EcM0Qj8YoIuING6/pQibOOhbpGSq6LR7xNM73B7daa2dZazfmb2CtzcZ589PVHo5NRERERETKmVcTFsaYQGPMYGPMKmAHzruiTgF/9WZccvFYtmwZvXr1ok6dOoSEhNCpUyc+++yzAu1ef/11IiMjCQwMpGPHjnz77bdu+yMjIzHGsGTJkgJ9r7nmGowxxMXFAXD//ffTp08ftzaffvopxhief/55t+3PP/88jRs3vrCTlItO/uWg8svOysbneJLrtX+9uh6JS0TE2/x94GxOwkJLQomHdAG+tdZ+VUK7gzhnbouIiIiISCXmlYRFTmG8RTjfWMQBNwJrgaFAA2vtk96ISy4+a9asoVevXqxcuZJNmzbRo0cPbr/9dv73v/+52rz//vuMHTuW5557jv/+97+0adOG3r17c/jwYbexIiIiiI2Nddu2YcMGDh48SHBwsGtbjx49WLduHZmZma5tq1atIiIiAofD4dZ/1apV9OjRoxzPWLzNWltiwiL50BH8sp0zMNIDgqhao7rH4hMR8aZAX8i0zj8fzyphIZ5RE0goRbsgwL9iQxERERERkYrmsYSFMaaOMWacMWYr8DXwEM7ZFDOAFtbaHtbad6y1qcUOJJXOkSNHqF+/PjNmzHBt+/rrr/H39+fLL78stu/cuXN5+umnad++PS1atGDGjBm0aNGCTz75xNVmzpw5PPTQQwwfPpyrr76aN998k6pVq7J48WK3sQYOHMjq1atJTEx0bVu8eDEDBw50W/KnR48epKSk8N1337m2ORwOJk6cyDfffENaWhoAaWlpfPPNN0pYXGLS09PJzs4GIDAwEB8f91+TWVlZ+J445nrtX6+eR+MTEfGmAB9LlnWWD8g8qyWhxCOSgCtK0a45zpuhRERERESkEiu4MHsFMMYsB/rlHO8s8CGwGPjM5lZulPO2aNEiUlJSPH7catWqMWrUqBLb1alTh8WLFzNgwABuueUWoqKiGDx4MI899hg33XRTmY6ZnZ1NcnIyoaGhgHM5ik2bNjFp0iRXGx8fH26++WbWr1/v1rdevXr07t2bt99+m2effZYzZ87w/vvvs3r1av7yl7+42rVs2ZLw8HBWrVrFDTfcQHJyMv/973/55z//yYIFC1i/fj09evTg66+/Jj09XQmLS0xJsytSDh7BP3d2RWBVaoZU81hsIiLeduN/v+B09SyO1qlDdnaWM4nr6+vtsOTStgG43RhzjbX2x8IaGGO6ANcA73o0MhERERERKXceSVgA/QELfIfzjUQSEAo8YIwpsbO19m8VGl0ll5KSQnJysrfDKFa/fv146KGHGDhwINdffz3BwcG89NJLZR5n1qxZpKSkcO+99wJw9OhRsrKyqJfvLvd69eqxffv2Av1HjBjBuHHjeOaZZ/jggw9o1qwZ1113XYF2PXr0wOFwMGnSJNauXUvLli2pU6cON954Iw6Hw7W/SZMmXHHFFa478qVyy87Ods2gMcYQGBjotj8r0312RUB9za4QkctLdoA/fpnn/uY4e/asEhZS0V4HBgAfGmPut9ZuzrvTGHMVzhuhLLDQ49GJiIiIiEi58lTCItf1OY+yUsKiGNWqeecO77Ied9asWVx77bX8/e9/Z9OmTQQEBJSp/9/+9jemTp3KP/7xD+rWPb8ix7feeiujRo1izZo1LF68mBEjRhTaLiYmhjFjxnD27FkcDgcxMTEAdO/enUWLFgG4Ehdy6UhPTyd30ldQUBD5E6qnko4TaJ3JqfTAYGpWCy4whojIJS3AH7/UczWeMjIyCiR3RcqTtfZLY8wcYCywyRizE2dyorcx5gfgapzL3L5ird3gxVBFRERERKQceCphsQbnGwupAKVZlulisHPnTn799Veys7PZs2cPrVq1KnXfJUuW8OCDD/L3v/+dm2++2bW9du3a+Pr6cujQIbf2hw4don79+gXG8fPzY/DgwTz33HN88803LF++vNDj9ejRg9OnT7Nx40ZWrVrFU089BTgTFiNGjODYsWN88803leZ7L6VT3HJQ1loO2wCyQ+pTI/00ofXreDo8ERGvswEB+CW7JyxEKpq1drwx5mfgeZy1KgAa5DyOAlOtta97KTwRERERESlHHklYWGtjPHEcuXhlZGQwaNAg7rvvPqKionjwwQfZsmVLqWZKvPfee4wYMYIlS5Zw6623uu3z9/enXbt2fPnllwwYMABwLuvz5Zdf8thjjxU63ogRI5g1axb33XcftWrVKrRNs2bNiIiI4OOPP2bz5s10794dgIYNG9KwYUNmz55NRkaGZlhcQrKzs10fvPn6+uLv7++2/3R6JumZWeDjR2rNMAKrVfVGmCIiXmUCA/DNzHK9VsJCPMVa+ydjzFtANNAU56yKRGCjtTaz2M4iIiIiIlJpeHpJKLlMPfPMM5w8eZL58+dTrVo1Vq5cyYgRI/jnP/9ZbL+//e1vDB06lHnz5tGxY0cOHjwIOO9+r1GjBgBjx45l6NChXH/99XTo0IG5c+dy+vRphg8fXuiYV111FUePHqVq1eI/cO7RowcLFy6kefPmbjUyunfvzoIFC1zFueXSkJV17gO4wpaDOnb63IdyYcHuyQwRkcuFT0AAVTLPul4rYSGeZJ3rNv435yEiIiIiIpcgH28HIJc+h8PB3LlzeeeddwgJCcHHx4d33nmHtWvX8sYbbxTb949//COZmZn83//9Hw0aNHA9nnjiCVeb++67j1mzZjFlyhSuu+46Nm/ezKefflqgEHdeYWFhBZb8ya9Hjx4kJye76lfk6t69O8nJyZpdcYnJn7DI62xmFqdSnR/Q+fn4EBJUxaOxiYhcLEyQP36ZWhJKREREREREKoZHZlgYY8Kttb9eLOOIZ8XExHD27Fm3bZGRkZw8ebLEvg6Ho1THeOyxx4pcAgpgz549xfY/ceJEgW3Dhg1j2LBhBbYPHTqUoUOHliouqRyys7PJznYW0/bz86NKFfeExOmDh7ni1AlO+gfjFxqKT77ZFyIilwvfQH+3JaHy//8uUlGMMY2AGCAcKKrSu7XWvuixoEREREREpNx5akmoeGPMAuAP1trjZe1sjAkFJgL/BwSXd3AicnnLzHO3cP6lwqy1+J46iV92FmFpp/AJVLFtEbl8+QYFaIaFeJQxxheYDzzMudnh+e8csDnbLKCEhYiIiIhIJeaphMXnwNPA48aY5cDbwBprbXpRHYwxATjvohoG9Md5J9VHFR2oeNY111zD3r17C923aNEiBg4c6OGI5HJjrS12OajTx0/hl+38cC7dP4iaVYtfSkxE5FLmp4SFeN6zwCNAJvBPIB5I9mpEIiIiIiJSYTySsLDW3mmMuRl4Ffgt8ABw1hizGfgJSAJOASFAGHA10AaogvNuqa3AWGvtF56IVzxn5cqVRS4nUVwNCpHycvbsWZw1PMHf3x9fX1+3/ZnHjpG7xbdWLQ9HJyJycfEL8udvLW6iGacBJSzEI4b9P3t3Hh9XVf9//HVmMpN9a9I03dN933e6QAu0QAFZRcQFlUVFxV1UREAUEf19EUFEQVAEUWRR9lLoAoWWlu77vm9J0+yzz/n9Mekk0y1Lk0ySvp+Pxzwy99x7zv2kt5k293PP+QAeYKq1VsW2RURERETauZaaYUF1smGYMeZC4BvATGB89QtqpnIf4wNeBR5RoqL96tmzZ7xDkLOcx+OJvj+h2LbPj9sbuSkXMk5Sc7JaMjQRkVbH6XSwM7MrfdgMKGEhLSIfmK9khYiIiIjI2aHFEhbHWGvfAd6pXvJpMjAK6ARkAiXAYWA58OHplow6mx17GlxEzkw4HMbr9Ua3ExMTY/ZXFh7hWEswPQOHw8HpHPvZNCrKLSLtmKn1Waii29IC9qMloEREREREzhotnrA4pjoZ8V71S+rB5XIRDAYJhUKUlJSQlZUV75BE2jSPxxNNMjidzpiEhA1Him0fk9wx57RjlZSURGthJCTE7aNVRKTZ1f6s1AwLaQEvA58zxiTqYSYRERERkfZPd9XakNTU1OjyNQcOHODw4cN6krsVCVYXIS0sLIxzJFJffr8/mrBwOByUlZVF94UCQYwvMvsibBwk7N1zynGOL9ydmpraTBGLiMRf36P7oEPkvRIW0gLuBS4FnjfG3GytLYp3QCIiIiIi0nyUsGhDcnNzCYVCHD16FCDmBqnEl7U2mkxKTk5WIqkNCIVClJdHVpgwxuByuaLvAaoKi3AFIzfiQhlZJFUnpOqSnZ1Nbm5uM0QsItI6XLL2PVZPGwOAr9ayeiLNwVpbZoyZBMwHthljPgF2A+GTH26/0hTnNcZ8DpgKjAGGAW7gS9bap09y7N3Az08zXC9r7c6T9JsF/AQYTaSe3yfAfdbad88wfBERERGRNksJizbEGEOnTp1wOp1UVlYSDAZVz6KVCIfD0YRFWlpanbUOJP6OHj1KSUkJAElJSbjd7ui18wVDFO4vItdTStjhIGtSt5g1249njCEhIYHU1FRyc3OVsBKRdi3srPnvo6fKE8dI5GxQXffuaWAoYIDzTnO4BZokYQHcB/QEioAD1e/r8jdg50naS45vqE6IPAMUEvn+AK4jUuvv09ba/zQ4YhERERGRdkAJizbGGEPHjh3p2LFjvEORWjweDxs3bgRgzJgxJCcnxzkiOR2/389//vMffD4fCQkJDBo0iISEhOi1e2juZh5a5SYxmMEPBqdw04AB8Q5ZRKTVCDldYC0Yg1czLKT53QNcBhwlcoN/C1DRAue9Cdhird1ljLkDuL8efZ621s6v6yBjTDbwByLJkNHW2r3V7Q8AK4DHjDFvW2tVbFxEREREzjpKWIjIWWf9+vX4fJG6nQMHDowpkh0MhfnX0ki9ioArkUuuOjcuMYqItFYhdyIJwSBBl0s1LKQlXE9khsJIa+2pC0o1MWvt3GYc/logC/j5sWRF9Tn3GmMeAe4GrgT+3owxiIiIiIi0SkpYiMhZ55NPPom+HzFiBOvXr49uz99UyIHSyBPD0wfk0SVLs2VERGqrnbAI+APxDkfavzxgTksmK87ANGPMBCL1NbYAc621J5sNcl711zkn2fc2kYTFuTQwYWGM6VbHIfnH3ng8nuhypiLScPr5abt07douXbu2Sdet7arPtWuu66uEhYicVQ4fPsyePZF7Hh07dqRr164xCYuP//4iaf6OVLhTuGFij3iFKSLSaoUSIwkLgGAoGOdo5CxwqgLbrdE9x22XGGNut9Yen3joV/11y0nG2HLcMQ1R76TOwoULyc3NbcQppO3Qr/rNac6ck+Ubm4KuW3PTtWu7dO3aJl23tqs+166oqKhZzh2XysDGmGnGmMnxOLeInN2WL18efT9mzJiYAtl7N+7gU688wrNv3cu3tr7Nuf3z4hGiiEirFna7owmLUCgU52jkLPAccJ4xJivegZzGKuDLQG8gGegFfJNIEfCnjTGXH3d8ZvXX0pOMVXbcMSIiIiIiZ5V4paPmV79mxOn8InIWCgQCrFq1CgCn08nw4cNj9q978jkGYHGHg/Qr6IjTYU42jIjIWc0mJpIQjNQCDmMJhUI4nc44RyXt2P1EllB6wxjzFWvthjjHcwJr7cvHNe0EHjHGbADeAe4D/tcCoXSvY38+sBRg2rRpdOtW1wpS0qZ99F68I2jXZs6c2TwD67o1O127tkvXrm3SdWu76nPt9u7dW+cxjRGvhMVRYH+czi0iZ6kNGzZE19cbPHgwKSkp0e1QIET+onci742DsV/7YtziFBFp1ZISSfAcjW4GAgElLKQ5vQW4gInAGmPMbk69TJS11p7fksGdjrX2XWPMNmCYMSbDWnts9sSxmRWZwJHjumUcd0xDznfa3xhrzypNTk4mOVl1ukQaSz8/bZeuXdula9c26bq1XfW5ds11feOVsFhJ49ZlFRFptNrFtseMGROzr3jZRgZ5IvcRdvQbxdA+ql8hInIyNikRKmx02+/3k5SUFMeIpJ07r9Z7B1BQ/ToZe4r2eCoC+gIp1Cz3tAUYS+T3oeMTFqerbyEiIiIi0u7FK2HxMPCyMWa2tfb1OMUgImeRoqIidu3aBUBOTg49e/aM2Z/z8ZLo+9zPXt+isYmItCVHBg1lzdZ0+lbfZ/X7/XGOSNq56fEOoLGMManAEKCSSOLimAXA9cBMYPFx3WbVOkZERERE5KwTr4TFCuARIkmLp4EXiaz16jnZwdba3S0WmYi0S6crtl2+/whj9m8GoDAth8nXXNTi8YmItBWJTkvQOqLbSlhIc7LWtuob98aYdKCztXbzce3JwF+AdOApa22w1u5/Aw8A3zTG/PXYUk7GmG7AN4gkN46viyEiIiIiclaIV8JiR/VXA3yl+nUqlvjFKSLtQDAYZOXKlUCk2PaIESNi9y9cFn1fdv5snAlai11E5FQSHRCg5nNSCQtpj4wxNwFTqjeHVX+9yRhzXvX7D6y1TwA5wEZjzFJgA3AQ6ARcAHQD1gA/qD22tfaoMeYbwDPAcmPMv6p3XVc93nXW2vLm+L5ERERERFq7eCUC9tA615gVkXZo48aNVFVVATBo0CBSU1Oj+3xeHwPWLwUgaByMU7FtEZHTSnSiGRZyNpgCHP+fgsnVr2OeAIqBPwLjgUuAbCKzxjcQWQb3EWvtCbPIrbX/MMYUAT8BvkTkd6NPgPustXOb9lsREREREWk74pKwsNYWxOO8InJ2ql1se/To0TH7lj77P7r5KgDYPmAswwq6tGhsIiJtTVLIz6R9a/AW5AAQCATiHJGcDYwxY4FrgAFABpGZ2sez1trzm+J81tobgRvrcVwZkWWcGnOOt4C3GtNXRERERKS90lJLItKuFRcXs2NHZBW6Dh06UFBQELP/iUAXOg27giu2vU/OddfEIUIRkbYl0eVgSOEOPqlOWGiGhTQ3Y8xvge9Qk6SwxCYsjm1rBreIiIiISBunhIWItGu1i22PHj0ah6NmGZPlu4+y5JAP+kxh6eBJzL18RjxCFBFpU5wJThyhUHRbCQtpTsaYa4HvAnuBXwBXAxcCs4B+wA3AJODXwNtxClNERERERJqIo+5Dmo8xZqox5t/GmL3GGJ8x5sla+y40xvzKGJMfzxhFpO0KhUKsWLECAIfDwciRI2P2P/nBjuj787oRk8wQEZGTMw5DWDUspOXcAoSA8621fwEOAFhr37HW/tFaOxn4JZGkRmn8whQRERERkaYQt7tzxpg7gflE1qLtAriIndpdCvwIuKrFgxORdmHTpk1UVlYCMHDgQNLS0qL79hRX8eaaAwCkuSxjcrWKhIhIfYVtzX/ZlLCQZjYKWGKt3XKaY35OJJFxZ8uEJCIiIiIizSUuCQtjzMXAvcA+4NNAp+OPsdZ+DBQCl7ZsdCLSXhy/HFRtS3/2K76x/AW6lx9iaqcwLk2uEBGpN+twRt+r6LY0s3Rgd61tP4AxJvoUgrU2DCwBJrdsaCIiIiIi0tTiVcPidsAHXGytXQdgjDnZcauIrE0rItIgR48eZevWrQBkZWXRu3fv6L7SoqP0XPAag4I+ZuxdzoZJPwWS4hSpiEjbEzY1CQuf1xfHSOQsUAhk1douqv5aAKyt1Z4KZLRMSCIiIiIi0lzi9UzxOODjY8mK0ygEVMNCRBrsWO0KOLHY9qKH/0pKMHKDbefIKaSkK1khItIgTlf0bVVVVRwDkbPATqBnre0VRJaR/eyxhuqad+cCu1o0MhERERERaXLxSlikAgfrcVwmcS4MLiJtT+1i28aYmGLbAZ+f9Ndfim73/dqXWzo8EZE2z7rc0ffeKk8cI5GzwLvAQGNMQfX2m0Ax8CNjzAvGmN8RWQ4qFXgxPiGKiIiIiEhTiVcy4BDQtx7HDQD2NHMsItLObNmyhfLycgAGDBhARkbNChEfPP0iuZXFAGzrPYI+Y4bEJUYRkbbM4UqMvvd6vXGMRM4CzwN/BboDWGsrgS8BXuBq4DvV+5YD98cpRhERERERaSLxqmHxAfAZY8xka+2ikx1gjLmUSFLj8RaNTETavKVLl0bf1y62HQ6H8T/3j+h2xy/f2JJhiYi0G0cKBoCtAGPwB0PxDkfaMWvtBuDm49peNcb0Ay4DOgAbgFettfrLKCIiIiLSxsVrhsXvAAu8ZIy5whgTkzgxxlwEPAEEgD/EIT4RaaMOHz7Mtm3bgEix7b59ayZzrXrrfXoc2g7AvpxujLtqZlxiFBFp6/ZPuYgAkcLbAWvjHI2cjay1+621j1tr77fWvqJkhYiIiIhI+xCXhIW1djnwPSCXyFqzJUQSGFcbY0qA14E84HvW2vXxiFFE2qbFixdH30+cODGm2PbePz8ZfW+vuT5mn4iI1F+K21mTsAj44xyNiIiIiIiItBdxu1tnrf09cAmwFEgGDJAOZABrgMuttY/EKz4RaXsqKytZvXo1AImJiYwaNSq6b+fqzfTauAyAkuQMpt56fVxiFBFpD1LdToI28t/IYDAQ52hERERERESkvYhXDQsArLVvA28bY3KAXkQSKHustQfiGZeItE3Lli0jGAwCMGrUKBITa4rCvv7eKgaldKBz1RGOXHg5SSnJ8QpTRKTNS3E7CVY/9xKu/twVaQrGmBCRmdeDrbWbq7fry1pr4/r7jYiIiIiInJlW8R96a+0R4Ei84xCRtisYDEaLbRtjmDBhQnRfqSfAo8XpeC/8EVML1/P/vnVjnKIUEWkfOq1bRu/ifZTkdsCGQ4RCIZxOZ7zDkvbBVL9qbzekr4iIiIiItGFxSVgYY24E5lpr98bj/CLS/qxbt46KigoABg4cSHZ2dnTf8x/vpsofAuOg++WXkNOtU7zCFBFpFxJdTpICvuh2IBBQwkKahLXWcbptERERERFp3+I1w+KvgDXGbAHmVr/es9aWxSkeEWnDrLV89NFH0e2JEydG3wdCYZ7+cGd0+8uTe7VkaCIi7VJiehoJtZaC8vv9JCUlxTEiERERERERaQ/i9cTS08AeoD/wdeBF4IgxZrEx5j5jzHnGGFecYhORNmbXrl0cPHgQgC5dutCjR4/ovvdeeg/Xnp0AXDAoj94d0+IRoohIu5KUmX5CwkJERERERETkTMVlhoW19ssAxph+wAXAhcB5wPjq148BjzHmA+Ada+3v4hGniLQNx8+uMCayhHU4HMb84bc8fngXSzsNpN8Nv49XiCIi7UpSRirOYE0tZCUspLkYYxzAWGAIkEOkIHcxsAb4xFpr4xieiIiIiIg0sbgW3bbWbgG2AI+ZyB3GsUQSGBcAk4GZ1e+VsBCRkyouLmbTpk0ApKenM2TIkOi+Fa/Pp/vhXQB0DlcxYUi3uMQoItLepGSk4woGottKWEhTq55t/UPgO0D2KQ47Yoz5HfA7a23wFMeIiIiIiEgb0pqK2LmA9OpXBjXJFBO3iESk1VuyZEn0/fjx42OKvu7/y1+j7x2fvgGHozV95ImItF0pmSfWsBBpKsaYVOAd4F6gA5HfBwLAIaCw+r0BcoFfAW8ZY5LjE62IiIiIiDSluM6wMMaMJLIc1AXAFCCJyC8fZcDr1BTkFhE5gdfrZcWKFQAkJCQwZsyY6L5tKzbQe/NyAIpTsphy06fjEqOISHuUkpkWsyRUIBA4zdEiDfZbYBrgBf4A/ANYe2z5p+plooYCnwduA6YDDwLfiEu07VjBHa/HO4R2beevZ8c7BBEREZFWJy4JC2PM88AMIuvQHntiajE1CYqPrbWhU4/Q6PN+DpgKjAGGAW7gS9bap09xfAZwN3A1kA8cAF4A7rHWVjR1fCLSMMuXL48+1Tty5EhSUlKi+9Y+/Dj9iSxrfXTWFSQmJ8UlRhGR9sjpdGLDNaUDNMNCmooxpgdwC5EHmKZba1ccf4y1NgysBn5gjPknMA+41Rjza2vt3hYNWEREREREmlS81kf5NJFkxWrgKiDbWnuutfYX1tqPmiNZUe0+Ir8A9SSSfDil6qnoC4ism7sR+D9gE/B94D1jjO5+isRRKBSKWQ5qwoQJ0ffFBwrp8fE8ALxON5Nvv6nF4xMRae9srf9GKmEhTeiG6q93nCxZcTxr7XLgDsBZq6+IiIiIiLRR8UpYlBOZWTECeBZ4yRjzPWPMiGY+701AgbW2I/CnOo79ITASeMBaO8tae4e1dhbwADCOSCJDROJk48aNlJaWAtC3b186duwY3ffh//2FpFDk5tnuCTPIzs+JS4wiIu3Z4j4To++VsJAmNInIUlBPNaDPU9V9zmmWiEREREREpMXEK2HRAZgM/BxYRs26s8uNMYeMMc8ZY75kjOnWlCe11s611u6q6zhjjCGS3KgAfnHc7l9Ut+uRbZE4Wrx4cfT9pEmTou/Lj5bR8e2XAAhhGPatW1s8NhGRs8He7gOj75WwkCY0BFhhrfXVt4O11gssJ1LXQkRERERE2rC41LCoXvLpo+rXL4wxKcB5RIpvnw9cV/3CGLPZWjuohUPsB3QB3rbWVtbeYa2tNMYsAmYZY7pba/fUd9B6JGDyj73x+Xx4PJ6GxCxx5PV6T/pemsf+/fvZsyfyo5ebm0vnzp2jPy/vPPJ3BvkiP7bbhk5k5oCep/1Zas5rV10bVJqJ1+uN/hl7PB79ebcRum6xLM33/Vtrsdjo17ANR88ZtuET9h3/CtkQFhv5ai0er4eDoYPkOHLwer0kJDij56qorNL/W1oxn6/e9/5bgw5Ekg8NtZ9IskNERERERNqwuCQsjmetrQLeAN6oXhbqBuAbQBLQPw4h9av+uuUU+7cAs6qPq3fCoiHHLlmyhG3btjVgaGktFi5cGO8Q2r0dO3ZE36ekpPDOO+8A4A/BPb6eDJnwJa7fPJfyaROZM2dOvcdtymu3IbCBtzxvcSR8pMnGlNN4Nd4BSKPourVJKSYF33wfVZWuaNu2HTsb9HkrLauoqCjeITREOpHlYxuqEkhr4lhERERERKSFxT1hUT3r4EJqZlccW4jeAAEiszBaWmb119JT7C877jgRaSF+v5+SkhIAEhISyM7Oju778LChIuhgSech+IcO4sae4RaPrzJcyWue11gTWNPi5xYRaQlVtootwS108HaPLi4a8gfiG5S0J2eyZG28lrsVEREREZEmEpeEhTHmCiIJiguomc1gAAusBeZWvxZUz75oL7rXsT8fWAowYcIE+vTp0/wRSZPwer3Rp/OnTZtGUlJSnCNqv+bPnx99P378eKZOnQqANxDiFw9/BETWUb/72on071T3g5ZNde2stbyz5x0eW/EYJYGSaHufzD6kJKQ0akw5vXA4TFlZJH+ckZGBw6H7VG2BrlvLMRiMMRgMDuPAYMCAA0e0vfb+6IvIV6dxYkzNvv0V+1lRtAKAzr06M/h/n7C+Tx4A6UmJzJw5M57frpxGG5y1m2aM6dHQPs0SiYiIiIiItKh4zbB4qdb7PdQkKN611h6OT0gxjs2sONUMiozjjqsXa+3e0+2P1PqOSExMJDk5uSHDSyuRlJSka9dM/H4/q1atAsDpdDJp0qTon/VL76+mqCKSrLhoSD4jCjqecpxTaey1O1x1mF8s/gXz98yPtmUmZnLH+DuY3Wt2zM+2NB2PxxNdgmbmhTP1c9dG6Lq1XfN2zGPFwkjCojJcSV5yanRfMBDQtWzFEhMT4x1CQ11d/RIRERERkbNMvBIWrwDvAHOttaeqExFPx2Lqd4r9ddW4EJFmsHLlymhh7KFDh5Keng6At8pDwR238svUPJ4bcAHfPH9Ki8RjreWVra/w4NIHKQ/ULLd9Yc8L+cmEn5CbnNsicYiItIRMd81zHKX+UhzJKWAtGENAS0JJ02pspr/5qtiLiIiIiEiLiEvCwlp7VTzO2wBbgP3AZGNMqrW28tgOY0wqMBnYYa1tSMFtETkD4XCYxYsXR7cnTpwYfT//oafoWVVCh6oSMrLSGNLlm80ez/6K/dz94d18dKCmzE5OUg4/nfhTLux5YbOfX0SkpWUm1kpY+EpJSO1MQrCMoMtFMKiEhTSZXvEOQERERERE4ifuRbdbI2utNcY8AdwF/Ay4o9bunxFZI/dX8YhN5Gy1detWiouLASgoKKBz584A+Dxe0l78R/S4gm9/o1njCNsw/9r0Lx765CGqgjUldi7vczk/HPfDmBt6IiLtyfEzLJypfUkoK44kLEKhOEYm7Ym1dle8YxARERERkfiJa8LCGDMIuB2YDnStbt4HvAc8bK3d0MTnuwk4tlbMsOqvNxljzqt+/4G19onq978BPgX8yBgzClgOjAZmEimM/VBTxiYip7do0aLo+9qzKxb84W90rzwKwLbeI7j0/EnNFkOZv4zb37udZYeWRds6pXTirkl3Ma3btGY7r4hIa5CSkIITJyFClPpLSUhLJaE4CEDIhuMcnYiIiIiIiLQHcUtYGGNuBP4EuIhdp7Zf9etLxphbrbV/a8LTTgG+eFzb5OrXMU8AWGsrjTHnAncTKfo3HTgA/A64x1rracK4ROQ0du7cya5dkQcuc3Jy6N+/PwB+r4+kfz8TPa7r7bc1axwPffJQTLLimv7X8N0x3yXdnd6s5xURaQ2MMSSbZCpsBaW+UlxpaSQEjyUsVDpAREREREREzlxcEhbGmDHAXwAn8BrwJLCtendv4CvAZcBfjDHrrLXLTjpQA1lrbwRubMDxpcB3ql8iEicLFiyIvp82bRoOhyPS/sd/0K3iCADbC4Yye9bUZothV9kuXtryEgCprlR+P/33TOg8odnOJyLSGqWYlEjCwl9KUkZ6NGFhDYRCIZxOZ5wjFBERERERkbYsXjMsfgA4gK9Ya586bt9a4H/VMzD+CnwPuL5lwxOR1mLXrl3s2LEDgA4dOjB06FAAAj4/7udrJmB1/mbzzq54ZMUjhGxkjfYbh9yoZIWInJVSTAoAvpAPR6o7mrAACAQCSliIiIiIiIjIGXHE6bxTgZUnSVZEWWufJlI3QgvDi5zFFi5cGH0/derU6M2whY8/R15ZIQA7egxi9Ozzmi2GdUfW8dbOtwDokNSBLwz+QrOdS0SkNUtxpETfh1OJSVj4/f54hCQiIiIiIiLtSLwSFrlAfQpqb6w+VkTOQnv27GHbtshqcVlZWQwfPhyAYCCI49mno8d1vO3rzRrHw8sfjr6/ZfgtpLhSTnO0iEj7lWySo+/93bP4oNPQmm0lLEREREREROQMxSthUQL0qMdxPYDS5g1FRFqrU82ueGPdIX4/5FOszenFzq79GfepC5othiUHlvDh/g8B6JrWlWv7X9ts5xIRae2OLQkF4HdU4XW4a7aVsBAREREREZEzFK8aFkuBi4wxM6y1753sAGPMDGAy8EaLRiYircK+ffvYsmULAJmZmYwYMQKAcNjyh/e2siWvPys79uPZG4Y1WwzWWn6//PfR7dtG3obb6T5NDxGR9q12wsIbqiBATc0KJSykORhj7gLKrbX/F+9YRERERESk+cVrhsUfqs/9qjHmN8aYIcaYlOrXUGPMb4FXax0rImeZ2rMrpkyZQkJCJL/61rqDbDlcAcCYgg6cM6w+k7Ua573d77GmaA0AfbP6ckmvS5rtXCIibUHthEVlsAxrahIWgUAgHiFJ+3cXcG68gxARERERkZYRl4SFtfZt4JdAMvA9YDVQXv1aBXynet991to58YhRROLnwIEDbNq0CYD09HRGjRoFQCgU5uG5m6PHfev8fhhjmiWGYDjIwytqalfcPvp2nA7naXqIiLR/tYtul/hKGHJkV3RbMyykmRwGPPEOQkREREREWka8Zlhgrf0ZcAkwD/ABpvrlB94DLrHW/jxe8YlI/JxqdsWiv73EV/7zAKMOb2ZEt0ym9cttthhe3fYq20u3AzAqbxTndtPDnSIitYtul/hKGHywJomshIU0k/eB8fEOQkREREREWka8algAYK19C3jLGOMEcqqbj1hrQ3EMS0Ti6NChQ2zYsAGAtLQ0Ro8eDUA4HMb31z8z9MgefvXhnzlyyeBmm13hC/n446o/Rre/PfrbzXYuEZG2pPaSUKW+UrqbmmdflLCQZnIvsMwYcx/wM2utjXdAIiIiIiLSfFo0YWGM6QtcBRQQmVWxEvi3tdZDZLq3iJzlas+umDx5Mi6XC4AP//FfuhXtAWBvxx6cf9WFzRbD8xuf52DlQQCmdZvG6E6jm+1cIiJtSe2ERYmvBGrVsPB6vXGISM4CY4C/Az8GrjbGvALs5BTLRFlr/95ikYmIiIiISJNrsYSFMebbwG+A4xeB/4Ux5hJr7dqWikVEWqfCwkLWrVsHQGpqKmPGjAEgGAjifbxmxkPSV27B4WieFe3K/eU8seYJAAyGb436VrOcR0SkLTp+SSjrqPmvZGV5RTxCkvbvacASWTp2APDDOo5vsoSFMeZzwFQiSZNhgBv4krX26VMcnwHcDVwN5AMHgBeAe6y1J/yAGGMcwG3ALUBfoAKYC/zUWru9qb4PEREREZG2pEUSFsaYKcDviPyiUQlsAjKA3kA34EVjzCBrbbgl4hGR1qn27IpzzjkHt9sNwLw//I1uR/YCsLdjT87/wpXNFsPf1v0t8tQwcEnvSxjQYUCznUtEpK1xGidJJOHFS6mvFJz50X1VFVVxjEzasb8TSVjEw31AT6CISPKh56kONMakAguAkcAc4J/AKOD7wLnGmGnW2uOnIT0O3ASsAx4GugCfBmYaYyZaa7c06XcjIiIiItIGtNQMi28QSVb8DfiGtbYSwBgzHHiRyBNFFwFvtFA8ItLKFBUVsXZtZKJVSkoKY8eOBaCytIKUfzwRPS7ru99rttkVR7xH+Pv6yIOZCSaB20be1iznERFpy5IdyXjDXkp8JTjcPaLt3iolLKTpWWtvjOPpbwK2WGt3GWPuAO4/zbE/JJKseMBae8exRmPMr4EfAd+p3d8YM716/IXAhdZaf3X7c0R+J3oEmNWk342IiIiISBvQPHf9TjQJ2AvceixZAWCtXQ3cTiSZMbGFYhGRVuj999/nWB3NSZMmkZiYCMC8Xz5Mh6oSALb1Gcm4K5uvdsVT65/CE4wsiX1N/2vont692c4lItJWHatjUeYrw+FOirZ7PSctKSDSZllr51prd9V1nDHGEEk+VAC/OG73L6rbbzqu/ebqrz87lqyoPuebwHwisyx6ICIiIiJylmmpGRadgDdq/2e8lg+qv+a1UCwi0soUFxezevVqAJKTkxk/fjwAh3cfoPMb/wYghKH/XXeccowzjiFUzEvbX4rEkJDMrSNubbZziYi0ZccSFhYLrprSZH6vL14hyVmkOjmQU71Z3EqWlO1HZDmnt2s/nAVgra00xiwCZhljultr91TvOo/IUrmLTjLe29X7zwWeqW8QxphudRwSXcPN4/HgUZIx7nQN2i5du7ZL167t0rVrm3Td2q76XLvmur4tlbBwAyUn22GtLYv83oG7hWIRkVam9uyKiRMnRmdXfPTzB+gfjNwA2zr+fK6YMKLZYnjP+x7BcBCAzw/+PLnJuc12LhGRtuxYwgLAJtdM1g0EAvEIR84SxpjzgR8QKYJ9bGqP1xizEPittfbduAUXSVgAnKrmxBYiyzv1A/ZU17voDKy11oZOcXztcetrT92HRCxcuJDc3Pr8X6elfl08O82ZM6cZR9e1a07Nd+103Zqbrl3bpWvXNum6tV31uXZFRUXNcu6WWhJKROSkjh49yqpVqwBITExkwoQJAGwrrOAPyUP5JK8/ngQ3E+/5UbPFcDB0kFWBSAyZiZncOOTGZjuXiEhbVzthUZWbDtUJ50Dc6iJLe2eMuYtIIeuZQDKR5WRN9ftZwBxjzJ3xi5DM6q+lp9hfdtxxDT1eREREROSs0ZLpqL7GmC80Zr+19u/NFJOIxNkHH3xAOBxZzWHixIkkJUUemnzgzY1szejMnefcwo9HZXJrr7pWOWi8uZ65kaVNgJuH3Uy6O73ZziUi0tYlO5Kj7/dNGEhgwXpchPEnuOIYlbRXxpgLgLsBP/Bn4ElgW/Xu3sBXgFuAe4wxH1pr34tHnK1EXcW38oGlANOmTaNbt3r83+qjs/mPs/nNnDmz+QbXtWtWzXbtdN2ana5d26Vr1zbpurVd9bl2e/fubZZzt2TCYnL162TsafZbQAkLkXaotLSUFStWAOB2u5k4cSIAH+8oZs76QwDkpSfy+SsnNlsMKwtXsjG4MXKu5DyuG3Bds51LRKQ9qD3DImQqCeDERZiQloSS5vEtIr8PfMpa+/Zx+1YDtxtjXgfeBG4H4vHb67GZEqeaEZFx3HENPb5erLWn/Y2xehleIFIzLDk5+TRHS0vQNWi7dO3aLl27tkvXrm3SdWu76nPtmuv6tlTCYjdonQARifX+++9HZ1dMmDCB5ORkwuEwv35tbfSY717YnxR383xUBUIBHlj+QHT75iE3k5SQdJoeIiJSO2ERNBUErQMMhEPBOEYl7dgE4MOTJCuirLVzjDEfApNaLqwYddWciKlxUV2I+wDQyxjjPEkdi7pqYoiIiIiItFstkrCw1ha0xHlEpO0oKipi+fLlALhcrujsigV/fp6v/u1P/HXIbIpHTODasXWtbtB4f137V7aVRlaV6OzszOyC2c12LhGR9qJ2wiIQriBYXRLNhjTDQppFFrCrHsftAsY3byintAXYD0w2xqRaayuP7agusD0Z2GGtrV0UewHwmep9C48bb1b11+PbRURERETaPRXdFpG4mDt3bnR2xeTJk0lNTcVb5cH55GN0ryjk50ue5q6CIE6HqWOkxtleup3HVz8OgAMHVyZfSYKjJVfJExFpm2onLBIPHaB7aWQJP2yYUOj4B8VFzlgRMLAexw2sPrbFWWst8ASQBvzsuN0/q27/y3Htf67++gtjjPtYozHmYuA8YI61tj6JGhERERGRdkV350Skxe3cuZONGyN1I9LS0jjnnHMAePeBx+hdHrnXsL3HYC6+YkaznD9sw9zz4T0EwpGngScnTqZLQpdmOZeISHtTu+i2N1RJZ6+Dyuol9wOBAE6nM16hSfu0CLjaGPNZa+1zJzvAGHMDMBp4oSlPbIy5CZhSvTms+utNxpjzqt9/YK19ovr9b4BPAT8yxowCllfHNJNIoeuHao9trZ1njHkCuAlYXl2HozNwHVAMfLMpvxcRERERkbZCCQsRaVHhcJg5c+ZEt2fMmIHb7ebowSN0fPnZyDEYev7kRzgczTMJ7D+b/8Pyw5HlqLqldWO6c3qznEdEpD2qPcOi1FVFQrCm9o/f7ycpSbWApEk9CFwF/N0YcwXwN2BH9b7ewI3AFUAI+G0Tn3sK8MXj2iZXv455AqJ1Kc4F7gauBqYDB4DfAfdYaz0nGf9WYA1wC5GC4RXAy8BPrbXbmu7bEBERERFpO5SwEJEWtXbtWvbv3w9Ap06dGDlyJADv3/0g/fxVAGwbMYXLz2ueZagPVR7i/33y/6LbPx7zY46uOtos5xIRaY/cuHE5XATCAYodlSQEa/476ff74xiZtEfW2qXGmK8BjwLXEEkG1GaAIHCbtXZpE5/7RiIJkfoeXwp8p/pVn+PDwMPVLxERERERQQkLEWlBgUCAd999N7o9c+ZMHA4Hu9ZtpWDhawD4HQmMuueOZjm/tZb7ltxHZSBSC/OqflcxrtM45jCnjp6NEwqEKT/qPeV+l9tJalZiTFvZEQ/hkK1z7OQ0F4kprppzhcKUHzn1uWpL75CEM6Fm9orPE8RTXvdNRofDkJGbHNNWWeoj4Kt7zXp3UgIpGe6YttLCKmzd3yopGW7cSTX/XAX9ISpKfPi8XoKVkRonZYUefEknDpaZm4ypVQfFWxHAW1V3YeAEl4O07NinxMuLvYSC4Tr7JqW6SEqtuTbhsKWs6GQP1p4oLTuRBFfNcjp+b5CqsrqvjTGGzI6x16aqzI/fG6yzryvRSWrmcX8PizyEw3VfnJR0N+7kmmtT1995IHrdnMmx43srA3gr6742zgQH6R1ir03FUR/BQN1/DxNTEkhOq/l7aK2ltLB+1yY1KxGXu+baBHwhKkt99eqblZcSs+0p9+Pz1OPatLLPiJprB5nuTIq8RRyxZTiDadFjlbCQ5mCt/Ysx5iPg28C5QNfqXfuA+cDvrbVr4xOdiIiIiIg0JSUsRKTFLFmyhNLSUgD69u1Lnz59AFh19/30C0duNu467zJGDOzdLOd/Z9c7zN8zH4CcpBy+O+a7UPf950bZte4Ic/+6/rQ3YHsM7sBl3xoZ0/baH1Zx9GBVneNPvqYvIy/oEd2uKvXz7F2L6xXb9XdNoEOX1Oj2tk8OM+8fG+vsl5adyBfvnxzT9v6/NrNteWGdfQdN7syMzw+KafvXfUvrleyYdfNQ+o7Ji24X7qngpQc/ORYVAP9ZuPKkfW9+aFpMsmPVvD0se31nnefM753B1T8cG9P29l/WcmhHWZ19x13ai/GX9opuB3yhel+bq384hvzemdHtXWuPMOeJdXX2cyc5ufmhc2PaFr+yjQ0fHqizb5/ReVx0y9CYtpd+u5zKkrpvxk///EAGT66p/1JSWMXz935cZz9II/+8ipiWDR8e4MMXt9bZM7tzKp/9+YSYtvf+vp49G+qeKTXigu5MuaZfTFt9r81l3xpBj8E50e39W0t47Q+r6tX3tj/F1uP55M1drHpvT539WudnRBqOxDC5kztRRBGl/jIId44eq4SFNJfqhMRN8Y5DRERERESaV/MsEC8icpzKykref/99IPI0+IUXXgjAmnc/ot+aDwEoT0xl2j3fb5bzl/pK+dWSX0W3fzLhJ2QmZp6mR+PtWF3EG4+trtfT4iIibU3Y56BH8WAAfCEf1JrwEQjoc0+aljFmmjGmfz2O62eMmdYSMYmIiIiISPPRDAsRaRELFizA54s8sT1q1Cg6deqEtZZdD/yOPtXHFF39ecZ37NAs5//dst9xxHsEgOndp3Nhzwub5TwAfk8wumRLfu9MMjqevABtTpe0E9oKhufSsWfdT7Znd06N2Xa5nfSf0Kle8dVewgcgs2Nyvfom1Vpe5pgu/bJwuurOfef3OjE51G9sHsF6LLGU1iF2SZzkNBf9J3QiFAxx4EBkBkHnzp1xJjhP6OuotRwUQG7XtHp9r5kdU05o6zG4A5l5ySc5OlZu19jr6nCael+bpLTYP+P0nKR69a29jNQx+b0zCYXq/vPtVJBxQlvvUR3x1WPprMzjlghLTE6oM95j183hjF3WKDs/pV7fa9pxSyQBdBvYgeTjlhw7mbwe6Se01ffaHL9sVmpmYr37Hq9jz/R69W1tnxFlRzwc3BqZZZQerPmsrr20m2ZYSDOYDzwFfKWO434IfBk48QNRRERERETaDCUsRKTZFRUVsWzZMgBcLhfTp08H4N0Nh/lV/0v5UsBBv8pDnP+DW5vl/IsPLOblrS8DkOZK46cTfooxpo5ejTdgQj7hUJi9G49y/hcH4XDWfzLbOVf1bdQ5k9JcXPilIY3q23VANl0HZDeq7/Dp3RvVD2D6cUtE1VdWpxQu/NIQPB4Pc+bsAODcmf1ITq47mdBndB59RufVedzJjL+scUuVudzORl+b/F6ZJ0321MfgKV0YPKVL3QeexLTr6nyY+aTSspPq/F5rX7faCoblUjAst1HnHT2rZ6P6GWMafW1yu6U1uu+ACfkMmJDfqL7x/IzYuf4wrz8cKROQGqiV6Kr1cXosMS3SxJrvH20REREREWlVlLAQkWY3d+5cwuHIk96TJ08mPT0dbyDEL9/YwP60jvxywhf505UDSEw++UyEM+EJerj3o3uj298Z8x06pTbuqeiGGHROFwZO6tysiRERkZaUklEzAyjRVzODI+yomWJRVVHZojGJ1JIN1K+yvIiIiIiItFpKWIhIs9q1axcbN0aKtaalpXHOOecA8KcF29hRFLmxNa4gm1nj+5xyjDPx2KrH2FMeKW47Om801/S/psnPsX7RfoCY4sOAkhUi0q7UXnYrwVszo2lHj87Rx98rvJphIWfOGNPjuKa0k7QdkwAMAWYC25o1MBERERERaXZKWIhIswmHw7z99tvR7RkzZuB2u9m+cSdPzVkHDjcJDsN9Vwxrlpv764+s5+/r/g6Ay+Hi7nPuxmHqvzxTfaxduI8Fz20CA84ER6OXeRERae0SXA5MgsUGDaaqZrbFjt4d6b0/8mC7xx+KV3jSvuwkppw7V1e/TscA/2iugEREREREpGUoYSEizWbdunXs3x+ZfZCXl8fIkSMJh8NsuP37PHJoL48Pu5wh11/BgPwTC+GeqWA4yN0f3k3IRm6efXXEV+mV2atJz7HqvT188O8tkQ0LRXsrGDChSU8hItKqOBPDBINObJUjcjvZgE2oWYWnSjMspGnspiZh0QOoAopOcawf2Au8CDzW/KGJiIiIiEhzUsJCRJpFIBBg7ty50e2ZM2ficDh477Fn6b1rHQBfXf8aI6d8q1nO/8z6Z9hQvAGAftn9+NKQLzXp+Cve2c2HL26Nbo+e1ZOJVzSuKLOISFvRYYQX44DO4zvCh5G2kNMLRGoQeVV0W5qAtbbg2HtjTBh4wVr75fhFJCIiIiIiLUUJCxFpFh9//DGlpaUA9OnTh759+1JSWEzynx+OHhP+xndJy0hr8nPvLtvNoysfBcBguGfSPbicrjp61d+yN3ey5L/bo9tjZxcw/tJeqlkhIu2eOzMMQE5mFscKV1hbzrGEha9KRbelyX0J2FrnUSIiIiIi0i407WLuIiJAZWUlCxcuBCKFp2fOnAnAgjvuI8tTBsDWfqOZ9qWmL4AdDAf56Qc/xReKPOV7w6AbGNZxWJOMba3l41e3xyQrJlzemwmX9VayQkTOKpmJmdH3o1bsjL4PFZ1q1R6RxrHW/s1auyjecYiIiIiISMvQDAsRaXILFy7EV70syMiRI+nUqRNr3ltCn0VvAeB1uhnxwL3Ncu6/rP4LKwtXAtA1rSvfHPXNJht79Xt7Wfr6zuj2pKv6MHpmzyYbX0SkrUh3pWMwWCxVrpploILBQByjkvbMGJMAXANMB7pWN+8D5gH/sdYG4xWbiIiIiIg0HSUsRKRJHTlyhKVLlwLgcrmYPn06wUCQA3f/nO7V9TP3f+qzjBrcp8nPvfLwSv60+k8AOI2TX0/9NSmulCYZu7LUx0evbItuT7m2HyPO794kY4uItBUhr8Fb5GTtewfpWzmcLamrqHR5SbUWjCEY0j1jaXrGmJHAf4BeRBcji7oJ+IUx5lpr7coWDk1ERERERJqYloQSkSY1Z84cwuHIGufnnHMOGRkZvPObP9H98C4ADmR34cK7vt3k563wV3DH+3cQtpFz3zriVkbmjWyy8VMzE7n8WyNITncx5qKeSlaIyFkpWOng6JpkPnl9N71KhwNQ5vKSEIwkKkLVn/8iTcUY0wWYA/QGDgO/B75V/XoIOAT0Ad42xnSOU5giIiIiItJENMNCRJrMhg0b2LRpEwBpaWmcc845HNyxl7znn4wek/mTO3EnJTb5uX+15Ffsq9gHwKi8Udw87OYmP0eXftlcd+d4ktPdTT62iEhb4EiqSUikB7MBKHV66OULEnS5okljkSb0IyAXeAK43Vrrqb3TGPMT4GEiMy1+CHynxSMUEREREZEmoxkWItIkvF4vb7zxRnR71qxZJCYm8sw/5oKNLAW1efR5jLlsepOf+43tb/Dq9lcBSHOlcf/U+0lwNE8+NjUzEYdDBbZF5OzkTLTR9yn+dAC8blMzwwJ70n4iZ+BiYDfwteOTFQDWWi/w9epjZrdwbCIiIiIi0sSUsBCRJjFv3jzKy8sB6Nu3L0OHDuWDLUU8WtmRW87/IfN7T2Dyb+5u8vPuq9jHLxb/Irp958Q76ZrW9TQ96m/527tY+voObFg34EREABwJYJyRz0S3LxUATyLRhEXYKKErTa478KG1NnSqA6oLbn9UfayIiIiIiLRhWhJKRM7Yvn37WLJkCQAJCQnMnj0bXzDMz/67FoAjyZl0uOdecrt1atLzBsNBfvz+j6kIVABwae9Lmd27aR6u3LmmKFJk28KRvRXMunkoRjMrRERwJlqCVYYET2R5P6+rJmFhHYZQKITT6YxniNK++ICMehyXXn2siIiIiIi0YZphISJnJBQK8eqrr0a3p0+fTnZ2No8v2M6OokoAxvTM5toxTf/Q4xNrnmDF4RUAdE3ryk8m/KRJxi05VMU7f13PsZVNcrqlKVkhIlLNkRipU2ECCSSEXHjcNQkLgEAgEK/QpH1aD0w3xpzyPxLGmB7AdGBdi0UlIiIiIiLNQgkLETkjixcv5uDBgwB06tSJiRMnsn3lRnwPPUhKwIPTYfjllUObvO7DqsJV/GnVnwBwGAe/nvpr0t3pZzyu3xPkjcdW4/dEbr71HtWRsRcXnPG4IiLtRUwdi0AGvuMSFn6/Px5hSfv1dyAZmGuMueT4ncaYS4F3gKTqY0VEREREpA3TklAi0mhHjx5l/vz50e3LLrsMYwwb7vgZl+1cy+Q9K1l5210MzK/PSg71V+Gv4I6FdxCqXs761uG3MjJv5BmPa8OWd/62nqMHqwDo0CWV8784SLMrRERqiS28nUlZ0hFWdMmlY3WbEhbSxP4CXA2cD7xqjCkGdlTv6wV0AAwwt/pYERERERFpwzTDQkQaxVrL66+/Hl36Y/z48XTr1o0Ff36e3jsjtStsQgJfuHZak5/7/o/vZ2/FXgBGdBzBLcNvaZJxV7y9l52riwBITEngkq8Nw52kvK6ISG2O42ZYAJSn1CR2lbCQplRdbHs28BugEsgBxla/cqrbHgAutdaG4xWniIiIiIg0Dd2JE5FGWbduHVu3bgUgPT2dGTNmcHj3AZIf+7/oMeHbvkt6dtPOrnhzx5v8b9v/AEh1pfLrqb8mwXHmH2WegwmsXBFJghgDM78yhMyOKWc8rohIe5OQEiY9NxFHqiXgiNQ4Dju1JJQ0H2utH7jDGPNzIomKrtW79gHLrLUqti0iIiIi0k4oYSEiDebxeHjzzTej25dccglut5slt32fvr4KALb2H83sG69q0vPur9jPLz76RXT7pxN+Srf0bmc8bqDcQfHqpOj2xCv70GNIzhmPKyLSHqV0DjLzi6MpDZfywH82ABB21iQpVHRbmkt1YmLRyfYZY7KAH1hrf9qiQYmIiIiISJPSklAi0mBz586lsrISgAEDBjBo0CDm/r8n6btlOQCliWlMeOS3OBxN9xETCof48fs/pjxQDsAlvS7hsj6XNcnYxmFxJkdWkeg3rhOjLuzRJOOKiLRnmYmZ0fcdS8ui7z2VVfEIR85SxpgMY8w9wE7gjjiHIyIiIiIiZ0gzLESkQXbt2sUnn3wCgNvt5pJLLmHn6s3kPv1o9JjAd+4gr0fnJj3vn1f/meWHIwmRLqlduHPinU02dkKqJW9SFTmhAUy6oh/GqMi2iEhdkhOSSXQm4gv5GLSrhIO9Iu1ltZIXIo1ljBkDXAZ0Ag4B/7PWLq+1Pwn4LvB9IJNI4e31cQhVRERERESakGZYiEi9BYNBXnvttej2jBkzSE1JZePt3yM5GFk+evOY6Uy98eomPe+CPQt4bNVjADiMg/un3k+6O71Jz+FIgHGX9cTldjbpuCIi7dmxWRYhU1PDorKsPF7hSDthjPkt8DHwM+CW6q9LjTF3V+8fRyQ58QsgC9gDfBkYHodwRURERESkCSlhISL1tmjRIgoLCwHo0qUL48eP55XfP0PPA5Hi24VpOUz/w/1Nes6dpTu54/07sFgAvjnqm4zuNPqMxrTWsnbhPvzeYN0Hi4jICT58YTv/eWAZFy69BQC/o6aGRVV5ZbzCknbAGDObyMwJA5QDy4GtQBj4mTHmeuAdoAA4Wn1sf2vt09bacFyCFhERERGRJqOEhYjUS1FREQsXLgTAGMNll13G+gPl/Lg4j9+PvIbKhCTS7v4FGR0y6xip/ioDlXx73repCEQKeV/Y80K+MvQrZzzuind2s+C5Tbz8u+VUlfnr7iAiIjGO7Kvk0I4y0ss64gg7CdRKWHirVMNCzsjN1V//AHSy1o6z1g4gMntiE/A3IAOYBwy01j5krdU/5iIiIiIi7YQSFiJSJ2str732GqFQCICJEyeSnZvHd/61kkAY3iqYyMJ7n2D0pdOb9Jx3fnAn20q3AdA3qy/3Tb7vjOtLbFpykI9eioxZtKeCA1u11rqISEOlZLij75MD6fidoei2z+ONR0jSfowhUkD7O9Za37FGa+0G4NtEavCVAVdYa4viEaCIiIiIiDQfJSxEpE6rVq1i586dAGRmZjJ9+nQefHsTWw5HZj4M7pzBNy4f1aTnfHLtk8zdPReAdFc6D01/iBRXyhmNuWdDMe/9fUN0e8LlvegzOveMxhQRORslZ7ii71P9mfgSapbY8/mUsJAz0hFYcYrlnRZXf33fWqtiKSIiIiIi7ZASFiJyWqWlpbz11lvR7dmzZ7Py9QWsfPFNANwJDh76zEjcCU33cfL+3vd5ePnDABgMv572a3pm9DyjMQt3l/Pmn9YQDkVqYQyZ1pUxFxecaagiImel2jMsUgIZ+BJqZlgE/VqdR86IGyg92Q5r7bFpkYUtF46IiIiIiLSkhHgHICKtVzgc5qWXXsLrjTwtO3ToUDpm5VD4iy9yX1UJr/Y6h9wf/oj+ndKb7Jy7y3bzo/d/FC2yfdvI25jWbdoZjVlW5OG1R1YR8EVuqPUakcu0z/Q/4+WlRETOVim1Zlik+DPwuIIcmwMXDATiE5SIiIiIiIi0eUpYiMgpffDBB+zatQuILAU1e/Zs3vniN+lXVQLA0NBRZk3t02TnqwpUcfu82yn3R1Z5mNF9BjcPv7mOXqfnrQjw6h9WRYtr5/fO4MKvDMHhULJCRKSxkmvPsPBn4HXVLAkVDAVP1kWkIfoaY77QmP3W2r83U0wiIiIiItIClLCogzFmJ3CqtWgWWGvPa7loRFrOnj17mDdvHgDGGK666ioW/+1l+q1eBEClK4lhf/gdzgRnk5zPWsvPFv2MrSVbAeiV2YtfTvklDtP4paYC/hCv/3EVJYeqAMjqlMLsr4/A5W6amEVEzla1l4RKDWRQlBSCsAVjCDq04qicscnVr5Oxp9lvASUsRERERETaMCUs6qcUeOgk7TtbNgyRluH1ennxxRexNrIs07Rp03D5DWl//F30mNJbvsPYAb2a7JxPrXuKObvmAJDqSuX3039PmjvtjMY0BlIzE4HIzbXLvjmCpDRXHb1ERKQuKZm1l4TKZN0gB312WFwYPEkpp+kpUqfdUL0upIiIiIiInHWUsKifEmvt3fEOQqSlvPHGG5SUlADQrVs3pk6dytuXXk9vf2SmwpbBE7j0ts812fk+3Pchv1/+++j2/VPup1fmmSdDElxOZt48lMUvb6Pf+E5k5Caf8ZgiIgJJqS6Mw2DDlpRABgBBE8ZlHdiQalhI41lrC+Idg4iIiIiIxI8SFiISY9WqVaxevRqAxMRErr76aub++jF671wLwNHkDKY8+iCOJlryY0/5Hn6w8AeEbRiAr4/4OtN7TG+SsQEcDsM5V/dtsvFERASMwzD24p4EnQHu3/gkAEETApuADYfiHJ2IiIiIiIi0VUpY1E+iMeZGoAtQBiy11i5p6CDGmG51HJJ/7I3P58Pj8TT0FBInXq/3pO/bmpKSEl5//fXo9syZM9n64Sq6PPd4tC343TtIzkprkr+fnqCHb737Lcr8ZQBM7TKVL/T/whmNvXb+froOzCI7v35LkrSKaxcO4Vz7LxwHV8fn/G2UCYUYvn9/5P2b7xB0qjZJW6Dr1nYdu3ZHU/rg9U5j2AWdCYVD7CpcA0DQEYRwIoSC+j9MK+Pz+eIdgoiIiIiISL0oYVE/+cBTtRuMMUuB66212xowzp76HrhkyRK2bWvI0NJaLFy4MN4hNIq1ls2bN+P3+wHo0KEDG7bvIev/PUqf6qdllw6bQmaGgzlz5pzx+cI2zL+q/sXWQKTIdq4jl3Mrz2XuO3MbPWbZVjdlWxJxvLmDjuM9uNLDDeofj2vnClYwducfyStf2+LnbusSgOjCYUVxDEQaRNet7Tp27XrxLu+/0ZHitAEAJJkkfKEq8ku8+NJScRDm7bffxhgT13ilRlGRfthERERERKRtaJo1Xdq3p4DzgU5AKjAKeAYYB7xrjEmPY2wiTebgwYNUVUVqVLjdbjp37cbTW5zcPf5GNmb3YFvHAlI/fVGTnMtay+ue11kXWBc5H24+m/pZkkxSo8cs2xZJVgCE/Q58xa3/qe10zx7O3XS3khUi0uZ0qNwafZ9iUggbyKzwR9vC4YYljEVERERERERAMyzqZK2957imlcAXqp8a/DxwM/D/6jlc9zr25wNLASZMmECfPn3qH6jEldfrjT6dP23aNJKSGn/jPR727NnDypUrAXA4HFx33XU8s6aSrWV7IDmL31x0O/+8fjCdundqkvM9tf4plqyNrKrmNE4enPIgkzpPavR4a+btZ+/mXdHtcZf3ZNj0LvXqG69r59j4P9xv3IcJRJZNsSk5+Gf9FpvRtUXO3x74/X6WL18OwOjRo3G73XGOSOpD163tCh7aQNpbtwPQN9vQ64IL8VYGeXXuHCp9n+AIB6PHTpkyhfR0PdPRWmjWroiIiIiItBVKWDTe40QSFpOpZ8LCWrv3dPtrL52QmJhIcnLymcQncZKUlNSmrp3H4+G1117DWgvA9OnTWVeRzNOLNwLgchoeuXEiBT07NMn5Xt7yMo+tfSy6fe/ke5nRe0ajx1v17h6W/q8mWTHxit6MuaigUWO1yLULh+C9X8AH/1fT1nkk5jPPkphZV5kbqc16PJRuLAbA1WMsSW3o5+5spuvWdnmyC6A6YZFQtpMtnxxlwXObGMXVlPb2QzgQPdbhcLSpfwvbu8TExHiHICIiIiIiUi9aEqrxji0GnBrXKETOgLWWV199lbKySNHrgoICOphkDn7/+6RUP/l/12VDGNNEyYqFexdyz0c1k5a+PfrbXN7n8kaPt3reXj54YUt0e8LlvRqdrGgRnqPw7LWxyYoR18OX3wIlK0SktUvMwJuQCYCjeDspGTWzY1ICGWBrZlgcq4ckIiIiIiIi0hCaYdF4E6q/7oxnECJnYsWKFaxfvx6IzC6YMWU6O67/PFPLC+l1dC+Lbr2Lz03o0STnWl24mu/N/x4hGyng/blBn+PLQ7/c6PHWLtjL+//aHN0eN7uAsZf0Ok2PODu0Hp7/LBzdEdk2Tpj1K5hwK6gwrYi0ERWJ+SQFSzGVh0lNqUlQpPozsdRMJPV5vfEIT0RERERERNo4zbA4DWPMQGNMysnagQeqN59r2ahEmkZRURFvvvlmdPvSSy9l9bd+RF55IQA2OYUffmZSzFJljbWjdAe3vXsb3lDkBtasgln8YNwPGj124Z5yFvyzJlkx5uKejLu0FScr1r0CT1xQk6xIyYEv/BcmflXJChFpUyqT8qPvU8P7o+9T/BmECUW3y0vLWzQuERERERERaR+UsDi9zwAHjTGvGWMeNcb8xhjzCrCaSIHs+621C+MaoUgj+P1+/vOf/xAIRNYbHzNmDDuefJE+21cBUJ6YysDHHyUl/cxXPDtcdZivvvNVSnwlAIzPH8+vpvwKh2n8x0/H7ulMvKI3AKNn9WDC5b2bJLHS5MIhmHsPvPBFCFRG2vKHwy3zodfUuIYmItIYFYk1CYtk7w6o/uhNCWQQombGRXlJaUuHJhJ3xpidxhh7itf8kxyfaIy5yxizxRjjNcbsN8b82RiTF4fwRURERERaBS0JdXrzgEHAKGAqkEKkdsUbwB+ttXPiGJtIo1hreeWVVzh48CAAubm5ZBzxkffm8wCEMNg776PH4D5nfK5yfzlfn/t19ldGnsIdkD2Ah6Y/hNvprqNn3cZcVEB+r0y69M9qncmKqmJ46RbY+k5N2/Dr4LLfg0uFaEWkbaqdsHCWbCU5bTKe8gAp/gxCjpqERaVmWMjZqxR46CTtO2tvGGMcwH+BWcBi4EWgH3ATcL4xZqK1trBZIxURERERaYWUsDgNa+0CYEG84xBpSgsWLIjWrXC73UwaNhb7ja9F9++66ovMvvaiMz6PP+Tn9nm3s+noJgC6pHbhsQseI92d3qjxyoo8ZOTG3ujvOiD7jONsFnuWwn++BKV7ItvGCTPvg4lf0xJQItKmVdRaEoojW0nJmBFJWAQy8NVKWFRVVMYhOpFWocRae3c9jvsikWTFP4EbrLUWwBjzVeAx4D7g1uYKUkRERESktdKSUCJnkfXr1zN//vzo9uyLLqHkjp+SGojUltgyaDwX3/eDMz5P2Ib58fs/ZunBpQBkJWbxpwv/RMeUjo0ab/mcXTx712J2rik649ialbXw0aPw1EU1yYrkDvD5l2HS15WsEJE2r8qdhz22DtSRraRmRmbMOW0C+zrUPAfjceqZGJE63Fz99cfHkhXVHge2AzcYYzQlU0RERETOOvptUuQsceDAAV5++eXo9vnnn8+u+x6i39HIck0Hsjtz3pMP43CcWR7TWssDHz/AnF2RFdOSE5J59PxH6ZXZ8KLYNmxZ9NJWVs2N3Px/+89r+cxdE8js2Ap/f/cchf9+Aza+VtPWfSJc81fI7Bq/uEREmlDY4aLK3ZFU/2Eo2kpK15ol/nZ0SmZUSeS9x+mKT4Ai8ZdojLkR6AKUAUuttUtqH2CMSQImAJustbtq77PWWmPMO0RmV4wF3q/viY0x3eo4JDpFyuPx4PF46ju0NBNdg7ZL167t0rVru3Tt2iZdt7arPteuua6vEhYiZ4GKigqef/75aJHt4cOHs96bCyUe+gFVriR6PPIwGR0yz/hcf1nzF57b+BwATuPkt+f+luEdhzd4nFAwzHt/38Dmjw9F28Zc3JOM3KQzjrHJ7VseKaxdsrumbfLtMONnoJt2ItLOVCTmRxIW/nJSkmuWgXKFaj6fvT5fPEITaQ3ygadqNxhjlgLXW2u3VTf1ITLTfcspxjjW3o8GJCyAPfU9cOHCheTm5tbjSP262JzmzGnOkoi6ds2p+a6drltz07Vru3Tt2iZdt7arPteuqKh5VkLR1RVp54LBIP/6178oLS0FoGvXriT1Gcevn1+NHfd5Nm9dwBWXTWTMmKFnfK7HVj3GH1f+Mbp99zl3M63btAaP4/cGefvPa9m9vhiIrKR07mcHMGRqK5upYC18/BeY81MI+SNtSVlw5eMw4MzrgIiItEYVSfl0Kl8NwPBBZQw6dyIXv3khjgAMLe8DgN/vj2eIIvHyFJEEw1qgAugPfBf4PPCuMWaYtbYcOPaESOkpximr/nrmT5KIiIiIiLQxSliItGPWWl577TX27Ik8cJeens7gKRfx5WfXYi1gDN2+ejNTL+x/xud5dOWjPL768Wjbd8d8lyv6XtHgsTwVfl57ZDWHd0Z+V3cmOJh50xB6j2xc/Ytm4y2F/30L1r9S09ZtHFzzFGR1j1tYIiLNrTKxpvB2qn8bdJpCamoyFaUV0Xa/ZljIWchae89xTSuBL5hIDavPE6lb8f+aMYS6/gOSDywFmDZtGt261bWCFPDRe2celZzSzJkzm29wXbtm1WzXTtet2enatV26dm2TrlvbVZ9rt3fv3mY5txIWIu3Y4sWLWblyJQAJCQlMGTWBe5+Yh8+VA8BVo7ry7Qv6ndE5rLU8vOJhnljzRLTt+2O/zxeHfLHBY5Ud8fDqw6soOVQFgDs5gdlfH0aXftlnFGOTO7AK/v1FOLqjpm3SN+D8n0OC+9T9RETagYpaCQuObAUgKzGLrruLI4vcAK79u0/SU+Ss9TiRhMVkIgmLYzMrTjWDIqP666lmYJyUtfa0vzFWJ04ASE5OJjm5FdYEO8voGrRdunZtl65d26Vr1zbpurVd9bl2zXV9lbAQaae2bt0as97c9Cnn4v3BT/i5t4J7J9xI5sTx/Prq4TG/vDaUtZb/++T/eGpdzVLNd4y/gxsG3dDgscKhcEyyIiXTzeXfGklO17RGx9fkrIVlf4W3fgyh6qeHkzLhisdg4Oz4xiYi0kIqkmonLCJL8mclZlHhDIKNNIfCoThEJtJqHVvcN7X663YgTKRGxckcaz9VjQsRERERkXZLCQuRdqioqIgXXngBayN3jiaOn0jFz++nR3khAN/a9DoTHr4Vd4Kj0eew1vKbpb/hHxv+EW376YSf8pmBn2nUeA6ng6mf7sfrj64mo2Myl31zBBm5rSgTX1EIr94Om16vaesyGq59CrILTji8rKiQVe+8QVnh4ZMON+NLt5KcnhHd3r5iKRven19nGGkdcjj3c1+OaVvyygsU7d5ZZ99eI8cweNqMmLbXH36wzn4A4y6/mryC3tHtwzu3s/R/L9ar7+xv/SBme/3C99ix8pM6++X2KGDCFdfGtC34x1+pKD4CQCgU5OCBgwC8s309TmfNP2mDpp5H71Hjotue8jLee+px6mPaDV8iPaemEOnutatZ897bdfZLSkvj/C9/LaZt+Rv/5cDWzXX27T54GMMviK178vaffk+wHnUARl10GV36D4xuHz2wjw9feK7OfgAzb/0mrsSaQsmblyxiy5IP6+yXld+ZyZ/+XEzbon//g5KDB+rs23Pk2JjtgM/LnMf/UK94z7n2s2R3rqlls3/zRla89Wqd/RLcbmZ99faYttVz32LP+jV19u3ctz+jL/lUTNu7f30Mb0XFKXrUGDZjFj2GDo9ulx8pYuGzT52mR43W+Blx7GcuqUMuYUcijrAPW7SVDYv203PLGA57k8FtwRjCNlzn+UTOIhOqv+4EsNZ6jDEfAxONMT2ttbuOHWgiT5JcCFQCy1o6UBERERGReFPCQqSd8Xg8PPfcc/iq1w8f0H8A/j89Q79DkeWLilOyGPLkn8hMSWz0Oay13P/x/fxz4z+jbXdNuotr+197ml516zEkh4u/NoxOvTJITmtFSyttfD1Sr6KqqKZt/K0w8xeQEPvnWHr4IEteeYF1898lHAqecsipn72R5PSa7aP797Fx0YI6Q+nQtfsJNyP3rFvNrtUr6uybkpl1ws3I+pwTYMhx/apKjta77/EJi8M7t9Wrb8/yshMSFjtWLOPI3hOXmtmya1vMdqfefWMSFkG/v97xTrjy0zEJi9LDB+vVN61DzgkJi32bNrB58Qd19k1wu09IWGxevAi/p6rOvn3HTQRqEhae8rJ6f68X3PT1mO2i3Tvr1bdzvwEnJCx2rV7BgS2b6uyblpsHqVnR7XAoXO94R110aUzCovxIUb36upOTT0hYHNi6uV59w8HgCQmLrcuWUHGk6BQ9anQfMjwmYeH3VNX7e23NnxEVu7axc2h/erMGc3Q7H/5nKx08A3C7OhDIWE3Q5SJ8bKqFyFnCGDMQ2G2trTpJ+wPVm7WzyX8GJgL3G2NusMeeMoFbgd7An621nmYOW0RERESk1VHCQqQdCYVCvPDCCxQXFwOQl5dH4rsf02/zcgCqEhLp8PAjdO3fq9HnCNswv1z8S/69+d8AGAz3nHMPV/a7skHjWGvZs76Y7oM7xCxLVTAs9zS9Wpi3LLL808qaWSSk5MLlD590Cagje3fztx98AxvWk8Ui0r7t8+fR2wmEA6SkGXweSApmYIPBSMKi8asNirRVnwG+a4xZCOwiMkOiP3AJ4ALut9YurHX834DrgOuBXsaYBUBf4CpgB3BnC8YuIiIiItJqKGEh0k5Ya3n77bfZvn07ACkpKeTvL2fQorcACBoHgbt+xaApYxp9jrANc+9H9/LilshSQA7j4L7J93FZn8saNE4oGGbhvzaz/v39TLyiN2MuKmh0TM1m5yJ45atQUutp/gGXwGUPQ1rHk3bp0LU7+X36cWDLJtzJyYy66DIGT5uBM+HEj9q07A4x20OnX1j9pPzpOZwnjnXxbd8l6PfV2dednHJC201/eOIkR54oJTMrZrvroCH17nu8CVdex6iL6v47k+A+cRbQ1T+5Nzpzxev18v777wMwdepUkpJqljZKSkuP6ZealV3veNM65MRsD5g0JeYp+VMxjhOXWDv/y19l2g031tnXlXTi8mdf+M0foB5PqSdnxNZszSvoU+/v1X3ceUdf/CmGnHt+nf2cCa4T2i7/7k8IBQN19g07nCxcVLPslDspqd7xpmbF/tz0HjW2nn1PvHs+9bNfZOJVn66z58n+Hl5/72/qlZisvaQTRJbSqvffw1b4GVF86CAv3Re5h3qoMilaFjgl2c9RDAk2EWcoUrsifAb1kUTaqHnAIGAUMBVIIVK74g3gj9baObUPttaGjTGfAu4gUpD7O0Ax8CRwp7W2sAVjFxERERFpNZSwEGkn3n//fT7++GMAHA4H/ZI6MPCvv4vuP3jzd7nw05c0evxQOMRdH97F/7b9L3IO4+BXU37F7N4NKzZdVebnrcfXcGBbKQCL/7udXiM60qFzah09W0jAC/Pugw8fIXqz2J0GFz8AI2+A6ptwh3ZsY8uSRUy+7vPRGSLGGCZ/+vPs37yBURddRlJa/QuGJ6akkpjSuD+D1KzsRvUDyMzLr/ugk3AlJjW6b3J6xgk3cuur9lJNbo8HV1pknIyOnUhOPnXNE4fT2eh43ckpJ72RWx/HJ3oaIjOvU6P6Jbjdjf5ek9LSGvT3trbjEz2n4vHErnBiHI7G/z1MSiIzqXF9UzIy4bhkT31l5OY1qp8zwdXo77U1fEa40jJwuBMJ+30cPurDpkc+ElMTyjmWvXCGIp+bIWfjaySJtEXW2gVA/dZ8q+njA+6pfomIiIiICEpYiLQLH3/8Me+99150e1j3vvR58FfR7a2zP8tl3/1Ko8cPhoPcuehOXt8eKTjtNE4emPYAswpmNWicw7vKePNPa6g4GnnS15ngYPrnB7aaZIU5tBbe+BYcXl/T2HMyXPHHaGHtA1s3sfjF59m+fCkAPYaOoMfQETWHDx9Jz+EjWzBqEZGWYYwhsUMunoP78FT5qAy6SXP5STFFRKdbVK8FZR0OQqEQTqczfgGLiIiIiIhIm6OEhUgbt2rVKt54443o9qhJ01j4zHz6Vy9XsnnMdC578KeNHt8b9PKTD37CO7veASDBJPDguQ9yQc8LGjTO5qUHee/vGwkFInGlZiVy8VeH0amgcU/aNykbpt+h10lc9QqEq5e0cbphxs9g0m3gcFJVVsqCZ55k/cL3YrqumvNGTMJCRKQ9O5awyMjNpaI6YZEa2kukRjBAzcyKQCCghIWIiIiIiIg0iBIWIm3Yxo0beeWVV6Lbo8dP4jcrYW+3CRw0yVxbspZLnvw/HCdZW78+jniO8K1532J14WoAEhwJ/O7c3zGjx4x6jxEOW5b8dxvL366pBZHfO4OLbh1GauaJa8O3NHNkK1O2/JKcyi01jZ2GwVWPQ6ch2HCYte/NYeGzT+GtKI8ekp7TkXGfupph02fGIWoRkfjIHjiM7MEjuHj2pSQ/PAi8kOLbDkwDwFKToPD7/TG1ZURERERERETqooSFSBu1Y8cOXnjhBayNrBc+fORoHt+SzN6jkZvqR8dO4fxbv4876cTiuPWxvWQ7X3/36+yr2AdASkIKvzvvd0zpOqXeY/g8QeY8sY7d645E2wZN7sy5nxmA0xXn9c2Dflj0EIkLHyQp5AfAGgdm8rfhvDsgIZGiPbuY+8Sj7NtYs0RUYkoqkz/zeYafP+ukhYdFRNoz57FC7cZATl/Yt4xU79bo/pI0VzRl4ff7Wz5AERERERERadOUsBBpg/bu3cs///lPQqEQAAP69mPpvG2sS+4PQJfMJJ760jjSG5msWHJgCd+Z9x3KA5HkR15KHo+e/ygDOwxs8FhlRZECu8ZhmHJtP4ad1zVapDpudi+GV2+Hwo0ci6TSnUfCtU+Q2O9cAIp27+SZO24nXP1nDDBw8rmc94WbzqiArYhIu1GdsEhxHo02BZ1unAQBqPL44hWZiIiIiIiItFFKWIi0MYcPH+bZZ5+NPrla0L0nOX/6G18o2sORUZ9m+ZCp/P0r4+mU0bhlOF7e8jL3fnQvQRu54TSww0AemfEInVI7NXisxOQELvnaMF57dDXTPzeQbgPifKPfWwpz74Zlf402WeNka8eL2NT5Cs7vNj7antO9Jz2GjmDnquVk5Xfmgq/cpmLaIiK15fQFINVRTFZ2iE12N56EShLDkeX+yio98YxORERERERE2iAlLETakOLiYv7+97/j8URuAnXJ70Lnp5+ne9EeAL648W1+cP9t9M1Lb/DYYRvmkRWP8Jc1f4m2Tes2jQenPUiKK6V+Y4QtnnJ/TG2K7PxUbrh7Ag5nHJeAshY2/A/e+CFUHKxp7zIK38wHWb9qPyGfN6aLMYbzv/J11i98l/GfupYEt7uFgxYRaZ08hYeY99c/cWTzWqa6sihIK+GGS1ZzWdF8knclk1UyGIByj7eOkURERERERERiKWEh0kaUl5fzzDPPUFFRAUBebkd6PvsiPQojxayPJmfQ6Ykn6FuQ1+CxfSEfP/vgZ7y5881o22cHfpYfjvshTofzND1rxVfs5Z2/rsPvCXHNHWNIcNX0i2uyonQvvPED2PRGTZsrFc7/GYy/hVCVh5JNcziyahk7u3dl0KSaGh1ZnfI559ob4hC0iEjrFawoZ8NH8wA41DGdgrQSOLKNrMQsnJ6K6HHlR4rjFKGIiIiIiIi0VUpYiLQBVVVVPPPMMxw9GlknPDsri94v/K9WsiKTvCeepO+YIQ0eu9hbzO3v3c7KwpUAOIyDH477ITcMqv+N+q2fHGb+sxvxVUWWkfro5W1M/XT/BsfSpMIhWPoEvHsv+GtuoNFvFsz+HWR1Z8fKT5j3t79wdP9eABY+8wR9R43FldS45bRERM4GiR1you8PedMib45sJatgAF32HMVXnTf37D8Qh+hERERERESkLVPCQqSV8/l8PPvssxw+fBiA9LR0+r/yFj0PRZIVxSlZ5D/5V/qMGtTgsXeU7uC2d29jT3lkSankhGR+M+03nNf9vHr1D/hCvP/vzWxYVHNTKr1DEn1HN3yWR5PavwJe/z7sW1bTlpoHl/wGBl9B4Z5dLHj0Z+xavSKmW/chIwiHQ4iIyKm50jNJcCcS9Ps47M+MNB7ZSuaA8QQcwehx3qqqOEUoIiIiIiIibZUSFiKtmM/n45///Cf79u0DICU5mYFvzKXg4C4AjqRm0+WvT9F7xIAGj/3xgY/5zvzvUOYvA6BjckceOf8RBucMrlf/wt3lzHlyHSWHam5I9R2bx3mfHUBiiqvB8TSJ8kORGRUrnwVsTfuYG+GCu6n0waK/PMLa997B2nB0d2JOHrmjJzL9hs+TmJzc4mGLiLQlxuEgt0cBB7duotTnwhtKYHvRKDq9OR6fszcVRBLqvioV3RYREREREZGGUcJCpJWqqqri2WefjSYrEhOT6D3/Y3rv3wlEkhXdnnqaguENW3opbMM8seYJHl35KOHqm/b9s/vz6PmPkp+aX2d/G7asnLuHxf/dRjgUSQokJDqZdl1/Bk7KxxjToHiaRNAHi/8IC38bu/xTbn+47PfYHpP4+JUXWPLKCwS8NTfQMjrmMeHqz7K9tCI+cYuItFEde/bi4NZNABz2puK16TiOpOF0B6LHBHy+eIUnIiIiIiIibZQSFiKtUFlZGc888wyFhYUAuBMTWewYzPzuGfxqzzaqElPp8ben6Tm0X4PGPeI5wk8++Akf7v8w2jal6xR+e+5vSXWl1tnfhi2vPbqK3etqCqnm9Uznwi8PIatTSoNiaRLWwsbXYM6dcHRnTXtiJpz3Ixh3MyS4McDhXTuiyQp3cjITrryO0RdfTiAUYsecOS0fu4hIG9axoHf0/SFvGukpkRpLxjqj7QG/EhYiIiIiIiLSMEpYiLQyR44c4e9//zulpaUApKSkstAOYu1RAx168n+zvskvv3wuPYf0bdC4Sw8u5UcLf0ShJ5IEMRi+NuJr3DL8FpwOZx29I4zDkFeQEU1YjJrZgwmX98aZ4GhQLE3i4Fp46w7Y+X7tAGH0F2HGndiUnJhZE9M++0W2L/+YIdPO55xrP0tKZhYAAY+WLBERaajc4xIW+WknJiyCgcAJ/URERERERERORwkLkVbkwIED/OMf/6CyshKAtNQ05gYGsrEscuO9e4dkfn3z9XTLrv9shlA4xBNrnuCPq/4YXQIqJymHB6Y9wITOExoc47hLCjh6oJIhU7vSfVCHBvc/Y5VFMO+X8MnTUKsOBQVT4aJfc7AykQ//8Ai9R49n5MxLorsz8/K55dGnSE7PaPmYRUTamezOXXG6XIQCAQ5700hxVCfDbU0COxQKnqq7iIiIiIiIyEkpYSHSSuzatYvnnnsOX/Wa3+lJKYx/4SVszkA2Dr+KHjmp/POWiXTNqn9R6CJPET9+/8csPrA42jah8wR+PfXX5CbnnravtZbtKwopLfQwelbPaLvD6eCiW4Y18LtrAkE/LH0C5v8afKU17dkFMPM+DiUO4qNn/sm2ZUsAKNy1g6HnXUCC2x09VMkKEZGm4UxIoGOPAg5u28JRfwouIp/LtWdYhMKheIUnIiIiIiIibZQSFiKtwKZNm3jhhRcIBiNPo2YkJDLtuX+S6vdyadlHlPfsx9d+8m06Z9Y/WfHxgY/50fs/oshTBIDDOPjaiK9x87Cb61wCqrzYy8LnN7NzdRHGYeg+qAMde6Q3/hs8E6EgrH4e5j8Apbtr2t1pMPV7FHadzUcvv8iWjx+P6WYcDkoOHSC3e09ERKTpDZsxi77jJtFpzf+RHCjDQQAbrvn3JVx7FpyIiIiIiIhIPShhIRJnq1at4pVXXsFaC0BGEC584VkSQpEnU7f3Gsb37vsqmfVMVoTCIf685s/8adWfojeLcpNzeWDqA4zvPP60fcNhy9oFe1n8ynYCvsj5bdiyZdmhlk9YhEOw9iWYfz8Ub6u1w8DIGzgy6Ct8+OY7bH7kezHd0jrkMPGq6xg6/UKcCa6WjVlE5Cwy/IKLIm88L8Lm9aQ4jlIe7ggWMBCqVUdIREREREREpD6UsBCJo8WLF/PWW29Ft7NLqzj/7ddxhiOJhs3jL+CSv/wOV6L7VEPEKPIUccf7d7DkwJJo28TOE7l/6v11LgFVtLeCef/YyOGdZdG2lAw3U6/rT5/RHRvybZ0Za2HDqzDvV1C4IXZf3wuw03/K2/9dyLrnfx45tlpqdgcmXHEtw2bMilkGSkREmllOXwBSnUepCOdhrBNrQpRmZMc5MBEREREREWlrlLAQiQNrLfPnz2fBggXRtrz9RZy38F0MEMaw85ovcdm938PhcJx6oFrjvb3rbX61+Fcc9R0FIktAfX3E17lp2E2nXQIq6A+x9PWdrHxnN+FwTQJgyNQuTLqyD4kpLTRLwVrY8g7Muw8OrIrd13MKzLgTek7CAAmJS6LJipTMLMZ/6hqGX3gxLndiy8QqIiI1jiUsHJF/f4x1YglFlvQTERERERERaQAlLERaWCgU4q233mLp0qXRth5bdzJx2RIM4HMkUPqdO5l983X1Gq/IU8QvF/+SubvnRts6JnfkgWkPMC5/3Gn7lhV5+O/vV1JW6Im2ZeencN7nBtKlb1aDvq8zsn0BvHcf7P04ptl2HcfeXl+g44QrSUqvWZJqwhXXsu2TJYy+6DJGzpyNKymp5WIVEZGoYCDAEW8ah452ok/iPOZ0LSbJk0iidWGsim6LiIiIiIhIwyhhIdKCKioqeOGFF9i1a1e0LXfbASYtiyzhVJqUTtID/49zZ02pcyxrLa/veJ1ff/xrSn2l0fYLelzAnRPvJCc5p84x0rITcSdFZl84EgxjLy5g9MyeOF11z+o4Y9bCjoWw8EHY+X7MrnDecDbnXceyT7ZyaO6/mVKRzIQrro3uT8/J5eY/PInDefri4SIi0rze++tjrHlvDtCf6wtWUpFfjt07kUR/Fg6rGRYiIiIiIiLSMEpYiLSQPXv28O9//5vy8nIAjHHwYbCAg7kDGZKyButOpM+Tf6HnkL51jnW46jC/+OgXzN87P9qWnZjNTyb+hFk9Z2FOUeg0FAzjTKhJRjicDs67YSAfvbSVadcPoEPn1DP7JusjFIT1r8CHD5+w9JM/ezBr0i9l+SfbKFtQU9tjxVuvMmb2FSS4apanUrJCRCT+8gr6RN8f8qSR5asipSIIbnBiCYVCOPV5LSIiIiIiIvWkhIVIM7PWsnTpUt566y3C1cW0He5kXi0voNCmQSL85zM/4r4bp5Cdd/pZEdZaXtn6Cg8ufZDyQHm0/aKCi/jxhB/TIanDyfuFLZs/PshHr2xn1s1D6dwnM7qvU0EGV3x3dBN8p3XwVcCKf8DiR6Fkd8yuitR+LHddwOqVO/BVfRSzL6+gD2Mvv6petTxak1C5H0eSE+OquVEX9gWpWllYr/4pw3Jx1KofEjhchW9H6Wl6RDjcTlJG5cW0eTcfJXjUW2dfV8dkEntnxbRVLj2IrVXb5FSS+maRkJMc3Q6V+/GsP1JnP4DUMZ0wtRJp/r3l+PdV1Nkv5D4xLs/aIkKVgTr7urum4e5Ws8yYDYap/ORQveJNHpyDM72msHuwyIN3W0md/YzTkDo2P6bNu62EYJHnFD1qJHRIIqlfbAHjyuWHsIFwnX0Te2XiykuJboerAlStKaqzH0DKqDwc7pq/w/79Ffj3lJ+mR4QjOYGU4R1j2jwbiwmV+gj4A+QeitSb8S4rJOSOrZPjyk8lsWdGdNtaS+XHB+sVb9KADiRk1dSyCZb48G4qrlfftAmdY7Z9u8oIHKyss58zM5HkgbGfvVWrCgl7655d4O6RgbtWori1f0aEM05MPOT1qklYHPamkek9Qmp5gNLqf84CgYASFiIiIiIiIlJvSliINCO/38/rr7/OqlU1MwlSKry8FOpDYWIaANeO6cYvrxyGO+H0N+QPVh7k7o/uZtG+RdG2nKQcfjbxZ5zf8/xT9juwrZQP/r2Zw7siNxk/eGEL1/xwDMZx8lkYTa7iMCx5HJY+Ad6SmF1VOaNYWDaSDSt2Eg6tjdnXa+QYxl52Nd2HDDvljJHWJFjiw7+jFF/1K1joIecLg0keXJOECnuClLy8tV7jJfbKjLkZ6dtZWq++zszEE25GVn58AM/aupMHqePyT0hYlLy6Heuvex36DjcMjElYBIu99f5eU0Z2jElYeDYUU/7u7tP0iEjolgrdY9vKF+yt1w31jAt6xCYsAuF6x+vqnBqTsPDvq6hXX5PkPCFhUbX8MFX1SJQkD889IWFR+tZOwmX+OvtmX90vJmERKvPX+3tNHtgBaiUsfFtLKH1jR539EjqlnJCwqFi0D9+WEgB6ErlJX7l91/FdSZvSNSZhAdQ73twvD41NWByqrHff4xMWntWFVCzaX2e/xP7ZJyQsyubuIlhYdyIq89LesQmLVv4ZkTgqF44rGdSxZwHGOLA2zCFvGlk+Hz5T8/PhqfKQpDpDIiIiIiIiUk9KWIg0k+LiYv71r39x6FDNzcieW3cw/pOldMtdz0/PuZnvzRrIbdP7nvaGvLWWF7e8yG+X/ZbKQM3Tvpf2vpQ7xt9BZmLmSfuVHfGw+OVtbFl2OKY9JcON3xciMbmZf/yLtsCHf4BVz0PIF7uv74Uw+Vu48sex5WtfJByKPInscCYwaOp5jJ19Bbk9Cpo3vjNgrSVU7I0kJ7aX4ttZRqj4xKeTfdtLYxIWIiLtjSsxiQ5du3Fk726O+FJxbfkJ/qytQOTfnrLiErI7ZJ9+EBEREREREZFqSliINIPNmzfz0ksv4fVGbmI7rGX8hx/Rc88eAHqXH+SZS7oz5dx+px1nU/EmHlj6AEsPLo225SXncdekuzi3+7kn7eP3BlkxZzcr3tlNqNZyMR26pDLl2n50H3TyZaOaxLFC2kseh01vADVL9hzxp3Oo43QGf/YO6DQEABcweNoMNnwwjxEXXsKoiy4jLbsZ42siR/62Hu/G0ywz4zC4u6WRkBP7VLEj2UX2Nf3rdY7aT/BD5Gnq+vQ17hNn6qRO6kLSwLoTJwm5Jz4FnXVlXwjVvSSUu2t6zHZCTlK9v1dz3Oyi5ME5JGTX/UR20BWGnXti2tLP70G4ou4loVxdYuu1GJej3vEmdIiNzd09vX7XJuHExGTquE4k9jp50rE2Z3biCW1Zl/bG+uteEspdEDtbwZnhrv+1OS6xmdQ/O+ap/lNxJJ+4BFD61G6kjMjDH/Czbm1kRtWQoUNxu2L/rrs6pZzQt77xHt/XlZ9a777HSxmZh6tzWp3HOTPdJ7Rlziog7K17ZpK7e+z4rf0zIpRuYOOJ7Z169eHI3t2EMdhQIcbWXP/S4qNArzrHFhEREREREQElLESalLWWDz74gEWLapZtSqryct78eWSWlQGwvecQxvzpIfJ7dTvlOEc8R3hk5SO8tOUlwrbmhuQVfa/gB+N+QIY744Q+1lo2LDrAkle3U1Vas0xMUpqLCZf3ZvDkzjiczVQHovIIrHoOlj0FxduizcGwYYunG6v9Q9h7sBLn7gp63dyD5FpdJ11zPVM/+0XcScknjhtnoTIfvh1lpIyIXdomoWNy7E27BIO7ewaJvTNJ7JWBu0dGzLr/xzgSnaSO7dSoWFwdU3B1PPFGbn0k9clqVD+A1OOWjqkvZ5q70d+ru2sa7q513yj2eDywM7bt+KV56sskOBodb0KHpBOSGPWVWJBJYkHdCYuTOX7JpfpypLga//cwPxVXfmrdB55EUv/IU/YOj4cjhyOfUUkjc0lOPv3PvjGm0fE6MxMb//ewezru7ul1H3gSyUNzG9WvtX9GeDyeyGefBf/mEkj0kDywA3m9+rL+/XkAGLsLE6753CgvqbuuhoiIiIiIiMgxSliINJFgMMiuXbsoq05MAHTad4BzFn+EOxAgaBzsvvILXHTv93EmnLwAqT/k57kNz/H46sepCNQUHe6a1pU7J97JlK5TTnl+YwzbVhyOJiscTsPwGd0Ze3FPEuvxRHSDWQu7PoRPnoL1/4VQTZKkxJ/E6qq+rD2ah8cbACJLWYUCAdbNn8vYS6+MHpuS0bibtc3BWkvgUCWe9UfwrC8mUF0Lwd0znYSsmhvSSf2yCRysJLFXJom9MnF3Tz9hloCISHvkDBoGr8ykfPFWXPkpJA3IplPvmsLbJrgfY2vqgVSV1V24XEREREREROQYJSxEmsDu3bvZtGkTfn/1TXtrGb5qNQM3bsQARWk5pP3yfmbPmnrS/tZa5u2Zx2+X/ZY95TVL3KS6Url52M18bvDnSHTGLgkTCoRxOE1M8exxs3uxe10xvUbkcs7VfcnKa9zTtqdVVRypS/HJ01C0KdrsDTnZXJbLBn9/9kZXS6pZmqdD1+6MuPBiBk+d0fQxnQEbtqSVJZBZ7KLkkbWEi30nHONdX0zaOV2i20n9s6NPi4uInE1CCRZ/Ygh3wEHgYBWBvRXkFfSO7g+HjsQsCeUpL49HmCIiIiIiItJGKWEhcgZ8Ph/vvPMOy5Yti7aFw4bpC+aTX11se8ugCUx9/Hdk5518ffBNxZt4cOmDLDm4JNpmMFzV7yq+Meob5CbHLi0SDITYsOgAy9/exZRP96NPrSV78ntn8pm7xpPTpe7ldBrEWtjzcWQ2xbqXIXhcgenkbF7eO579h6timh3OBPpPnMyICy6m66Ahpy0uHg/F/9qEZ/0RBvgiS2yFiU1WuDqnkjQ4h8S+WXGITkSkdSrq5COtIjJzr3LpQbKv6kd2564EivficDjw2poZZ96qqlMNIyIiIiIiInICJSxEGmnbtm3873//o7S0Zn3uw+E0Fvh7k520nemOIxz6wm1c+sNbcDhOXC7oVHUqxnYay4/G/4iBHQbGHB8MhFj/wX6Wv72bypLIjfWlr++k94iOMbMsmjRZUbwdVr8Aa/4NR7YCkdzFQW86+UnlmJ7nwNgvwaDLGfDO2+z/218AyO7SjaHnXcDQ8y4gJTOr6eJpJBsIEyiswn3cn024KoD11SqMayKFa5MG50QKPzeyLoGISHt2NMdPrz0OrD9M1cpCMmf35nO/fgj3299nycIQH4RqZlj4PJ44RioiIiIiIiJtjRIWIg3k9Xp55513+OSTT6JtYRx8HOjGxlAeYHj3/Bu4eOp3mDVp5An9KwOV/HPjP3lyzZMxdSq6pXXj+2O/z4weM2JmIgT9Ida9v5/lc3bFFNMGSO+QhN8bbNoaFRWFkVkUq/8F+2pmjhT7ktlQmsf68nzK/G5u+MHt5I+9MLp/wDnTKDl8kMFTZ9Cpd9+4zqaw1hIs9ODdfBTflqP4tpeCw9DlromYWoXHE/tn49tdxpGUKkqzA4y+agqpHRpXZFdE5GwRdoJ7aAd8y4uw/hCe1YWkjsuHnL6kOj/CBGstCeVW4ldERERERETqTwkLkQbYunUr//vf/2IKa3c8dJgNFTls7NoJgE+P7sI9Vwwn2R1bWLvUV8pzG5/jH+v/QZm/pn+qK5Vbht/C5wZ9DrfTHW2vOOpl7YJ9rHt/P97KQMxYvUbkMm52Lzr2aKKb6/5K2Pg6rP43bHsPbAhrodCXytbyHLaW51Doi52dsGHtDvLH1mynZmUz48ZbmyaeBrLWEir24tteindbCb7tpYTL/Ccc599TTmJBTZHvtPGdcY7MZtncdwBwJOsjUUSkPpJGd8S3vAiILAt1LGGR4ngjpoZFeYbq/YiIiIiIiEj96e6cSD14PB7mzJnDihUrom3OYJARK1fRd+tWxrpSWNttKLMGJPPtywbGJCuKvcU8s/4Z/rnxn1QGKqPtp6tT4a0M8I+fLSYUDMe09x7ZkbGzC+jYvQkSFaEAbJsXWe5p4+sQiKwzfsCTxqayjmwtz6E0kHxCN2Mc9Bg2gm6Dh555DE0gXBXg0MMrCJWcWCz7GEeGm6T+2ZjE2I8843Jggq2rroaISFvg7JKCq3MqgQOV+HeXEzhYiSunL6mOoxCumcnm83lPM4qIiIiIiIhILCUsROqwefNmXn31VcrLy6NtnQ4eZNzSpaRWVuFzJHDwwk/xzVFOEhJt9JjDVYd5et3TvLDpBbyhmhs2TuNkdu/ZfGXYV+id2RuIzBCovYRSUqqLgmE5bFtRiMNh6DMmj9GzepLb7QzrU/gqYNu7kQTF5rfAW3rCIWuq+rKm+MSESH7f/gw8ZxoDzplGWnaHM4ujgay1hI768O8qgwRDyrCO0X2OkyyHZdwO3AWZJPXJImlANgmdUlpdwW8RkbbMGEPquHxK/rcNiMyyWF+1lB370vA5/gG5wwDwBlR0W0REREREROpPCQuRUygrK2Pu3LmsXr062pYQCDBy5Up6b9uOAbb2G83w++9mQJ9uzJkzB4D9lft5buVzvLz1ZQLhmqWcEhwJXNn3Sr409Et0T+8OQGWJj7UL97FjdRHX3jEWZ0LNU6kjL+xBdpdUhk7tSmpWYuO/kYpC2PxmJEmxbR6EfFQFE9hVmc32igHMyN9GcmoaDLkChn2avkdcrPnNvTicTroNHkbfcRPpO3Yi6Tm5dZ6qqdhgGP/+Cvy7yvDvKsO3q5xweWSJJ1fXtJiEBUDSwA4Eizwk9s4ksU8W7m5pMbUqRESk6aWM7EjJGzsgGKZqxWGOpOzjoDcNp6smeR8IqOi2iIiIiIiI1J8SFiLH8fl8LFq0iI8++ohAoCbhkH/gAGOXLiO1qorCtByct3+Pyz5/JRBZMqowVMhC30J+/sbPCdlQtF+SM4lr+l/DF4d8kfzUfKy17N9awtoF+9j2yWHC4ciNnW3LD9N/fH7N+Xpnkt+7pt5CgxRvh41vwMbXYPdiwtZyyJvOjopO7KjI5qA3HYjMOCg4/zMMueY2SIgkRXp0DXDxbd+l9+jxJKWd4YyOBggcqqTyk8ORJMW+cgjakx+3v4KwJxhTbyL7ir4tFaaIiFRzpLhIq/53K2VcPh0/2s3mpYsgXLOcYc6+3fEKT0RERERERNogJSxEqoVCIZYvX878+fOprKypNUEwzLhPltFrxw4CjgS2XnI959/zPVLSUwmEA8zbPY/nNzzP0vKlMeOlJKTwmYGf4fODP09uci6lhR4+nreDTUsOUlYY+8SpcRhKDp3BshlBH+xZEimYvXkOHF5HVdDFzsosdlT0Z1dlNp7QiUsnAew8HGJIQs0MjgSXi8HTZjQ+ljqEvUEC+ytIyE3BmVFTZDxU4qNi4d6T9jGJTtw90knsmYG7IBPj0uwJEZHWIOvyPtH3nXpF3ptaCYvayQsRERERERGRuihhIWc9ay2bNm1i7ty5FBUVRdvD1rAx1JGtnmwu2vc62/uMYOj993LZ8P4crDzIkyv+yktbXqLIUxQzXrornc8P/jyfHfRZMhMz2frJYRbO+4QDW0+sF5GU5mLI1C4MndaVtOykhgQNhZsiCYpt78GuRdGi2ce8tm8ge6qyTto9t3tPCkaOodfIsXQdOLj+522gsD9EYH8F/r0VBPZV4N9bTrDIAxayruxL2oTO0WPdPTKi7xNyknD3zMDdM4PEnhkk5KVgHKpBISLSmuVVJyyw4ci/U8YQNkowi4iIiIiISP0pYSFntX379jFnzhx27doV074zlM0nwW6U2yR65qdQ9ejfuHjyID7c/yG/e/cPLNy3kLCNfWo0x5HDOPc4fnjxD+mYUVNj4cj+ithkhYFuA7IZODGfPmPySHA56xdsZRFsn1+dpJhHsPQABzwZ7K3K5ICnF1d0X0f0nn63cRRkD2HPh5FiqO7kZHoMHUmvUWMoGDGGjNyOpzzNmapccRjf1hIC+8oJHKqCk6/sRGBfRcy2IzmB3K8MxdU5FWea++SdRESk1UrNyiYtI42KsorIzAqnk7Cznv/GiYiIiIiIiKCEhZyljh49yrvvvsvatWtj2nMKixi4Zj3/Gfs1cjt34Ocz+jF1YCKvbv8vv3n5++yr2BdzvNM4md59Opf3vJzD75fj3eEmXJoANZMFGDAhn2Wv7yS7cyoDJ+bTf3yn+s2mqCyC3Yth90ew830C+9ZwwJPO3qpM9lTlcMDTi5CteXL1cI9ryB83C3qfB2l59Nm3B2/uXHqNHEOXAYNwJpx8SaiGssEwwSIPgQOVhCr8pE/tFrPfu64Iz9ojJ+/sNLg6p+LumkZS/w4n7E7ql90kMYqISMsKVfipWnGYqXnX8VbZUxgbwuIk7NB/NUVERERERKT+9FuknFWKiopYunQpy5YtIxSqKYydVlbOiNWr6Lp3H4cyO3H/5GwSRwd5e9f/8cuX3iMYDsaMk5eSx9W9rmVS6HxKNgfZ8UYRnvJIgeptywrp1L3mxntWXgrX/3wC2fkpGHOKZY2shSPbYE91gmL3YjiylbCFRYU92VeVyUHvpJgExfEOdruK/OGzo9s5Xbsz7YYvNeaPKRJSKEzwiJfg4SoChZ7I1wOVBAqrIFQ9bcJpSJvUBZNQE5crPzWSsHCAq1Mq7m7puLql4e6ahis/NeZYERFpH0r+uw3PmiIyyKVzSm/Kq2tXhJz6zBcREREREZH6U8JC2j2/38+6detYsWIFu3fvjtmX6PUyZN06+mzdxqGsTiy/6TrWjfUyb/+dVC6sPGGsc7Mv4LzwpSTuzWHfwhI+DOw54ZgdK49wzpWxbR06p8Y2BP1wcHV0BkVg5xIOFfsIWQc9U0uihzkMbCzLoyxw4oyMzLxOdBs0jO5DhtFt0FAy8zrV/w+llrAvkoxxJNZ8HPh2l1H4p9UQPsV6TseELMEiD678mu8vZXQnkgZ0wJWfgqnvclciItKmpYzthGdNpKZT7/QRbAlvwAJhJSxERERERESkAZSwkHbJWsu+fftYvnw5a9euxe/3x+x3BoP037yZgRs2cjgjk/99bhSv9dpOWeBFiC1nQXZiNlf0vYJhO2aw+Y1iDgFQHDuey+DKCpDcKcgl14+LHSDghUPr4MBKOLCK0L6VFO/ZwaGqJA56MjjgSafQNwCLoVNSOT17rQSHC7qMgh4TyXeUUbZuG1mdOtNt8DC6Dx5Kt8FDycjNq/efR9gfIlTsJVjkIXjEE5k5UeQhWOQhVOYn61N9SJvUJXp8QnbSyZMVDkjomIIrPxVX51Rc+ak4sxNjDknokAQdGlBAXERE2rykftk4MxMJlfronNwbp91IGLAOQzAYJCFB/+UUERERERGRuum3R2lXKisrWb16NcuXL6ewsPCE/WFviFEb1lCwcyeHMlw8fkUiH/Q5ijUlEAAsZHvy6VU5hJ4jspk5+HwmdJ6Ay+FiqznM5ndrEhUpmW4KhuVSMDyX3J5JvDf/XZwhH8nFK2DrRjiwKpKkOLyBQ1XJrDjamcPeNIr9aYTsiJPGX+jPIPC5/+HqOR5cyQBMGb6f89xu0jvknvL7ttZiA2Ec7tgZDUdf3IJ3UzGhMv8pekYECz0x2440F+6CDJwZ7kiCIi+FhP/P3n2HV1ZVbxz/vkmm0XvvHUWKIL0qRVDAQpf2oyugFBUBaYJUUcQCAkpVQVQQRaUKCIgoHaVJV3pnYGqyfn+sfWbOXJKZZCbJTWbez/Pkuclp99zsnJt79tp7rXlHMGS+mZzSyczMPkAtYqY15ufdm56jRS3M1DIvbzMSgHfffpc553aNIjMzMzMzM5syByxs0Ovo6ODJJ5/k3nvv5bHHHqOj5M2ujIsWntEwnhr2Fhr+OMvEU3xvm3buW3o80MJc7y/MQu8szaLvLs8iI5endcxQADbb8EMst/ACE46z2IfmYr7FZ2WxleZmyRVmYt4R/0Ov3w+vPMaY+//Fav95hPdHjuLuG2fiQ7O/wtzDJgYBRrW38a+3F6BTEvMsshgLLLM8Cy67HCyyFgyZOENhzgUWIiJof28c7W+Nof3N0Yx/czTtb46Z5LF1liEs8LVJZ3d0vD9ussGKlpnaaJt3JlobioBLYr4DOg+qmJmZdWbmNebn3Zufg4BZW0ZMCFi89errDliYmZmZmZlZtzhg0Q2SPgacAKwLDAEeAr4bEb9q6onN4N544w3uv/9+7r//ft55550PrJ/n1Vd5a/wrXLXms3S0TQwe/OyTC7Hw28uxxWNLs+C7SzN8/Mwf2Bfgf4+/xXIfaoXX/wOvPcbQVx/jk3M/yhv3PM8LN4zk4bEjeLN8vT1uOLD4hH1nHzImAxZqhXlXYN7lPwLP/w9JzLngQsy7+FLMu8RSLLjM8sy/1NK0dQyh/e2xtL8zhpb2SWdJjPrX67xxxWPE2HYmZ/z4DqIjUMvEwt5t84ygZeY22uYeUb6G0zbPxO9bZhrSnV+1mZnZFLXNOZxhy87JmMffZLgm/i97t2MyO5nN4HyfYWZmZmY2KQcspkDSJsB1wGjgcuBd4PPAFZIWjYgzm3l+M5px48bxyCOPcN999/H0009/YP2w0aNZ8umnWfKppxk6egy3rDrvJMEKgHX/+xkWfmP5To8/tG0Uc494ktn4N3Pd9zD856FJ1l/55Oq8ObaLmRI1ry64Oey6J8z/IRgygpki9dD49QABAABJREFU2GX2hxgxZFYY1UH7yLG0vzSW9sfH8Orb90H7xHoR8+y1Eq3LTRyJqmGtkw9WtIrWOYbRNudwYmw7Gj7xsp5tiyWYfcslp3i+ZmZmvWHmjy3AmMffZEhMDFi8Ovq9Jp6R2cDl+wwzMzMzsw9ywGIyJLUB5wMdwIYRcX9Z/i3gbuBkSb+OiGe7Por1hhdeeIF7772XBx58iHFjx0yyTh0dLPDSy8z/4nsMGz0br869Gneuvg1tzI9axjHfkFNYfeaF+OiQOfhoexsvjXib+8c9RbS/Q0u8xjD+hzreYmz7WN5pb6WaqzHPsCGsMuuk5zHf8DbEAgxtnYlhLcMZ1joTI4bOzKwzz4U0guFtMzP7iDmZadl5YJEPTTxHiY6/j2TkmLen+Frb35709bXNMYy2eUbQOmcGJVrnHEbbHMMn/Nwy69BJZlVM8rvpYrmZmVlfGLHiXLTMPIS2MRMDFq+983oTz8hsYPJ9hpmZmZlZ5xywmLyPA0sDF1Y3EQAR8bakk4GLgD2AbzXl7KZjEcH777/Pfffex51/vZX3x477wDZDR8Os78xK29iFGNeyOs/P/z7R8R4RI2kZ9QztHf8i4j0ufOBNFhvxwIT9XnttdWYbtwxDWoYzpHUYQ1sWZUjLMgxtGc6QlmEMaRnG0JbhtErEUnOguZeCeZaHeZfjQ78by9CXR3R94u3ASFAng0lbZxnC+DGTzpTQiDbaZh9Ky2zDaJt9GC2zDWXIQrNMsk3bPCNY4Ktr9Oj3Z2Zm1gxqa2Gm1edjyB2PTVj2xnuvNfGMzAYs32eYmZmZmXXCAYvJ27g8Xt/JuuvK40bdPZikRaawycLVN1d9/xzmnG0OIAhAHUF05PcQRAfE8Fbal5uDiLJVQNuDr8G4DqgyDEX5NoKImLB8zDzDGLvorHTkJrS8M4ZZH3s7f4iJ6YkgctwXMWHxa8vMzrjZh9ERuWz2Z99ittfG1p4LNPGpJh5J8PjKc0D7aBg/CjrGMP9/QTGEjlYY3wrtLWJ8ixjfCnQyO2A843lpppd4U6+xx/82oI13adUTtKqNtpY2WjWUtpYhtLbNxxANobVlCM+89QQt456ZeJBxbXx4li26boWO/BpP8Phap9DSUkaJtsOoWV9kzBOvdL0vwBAx5PUxvPnEpPUhxn1EwAg00xBaZmqjZeY2aGtp2HksvP8iPDH5p7DeM2bMGF57LTvTnnzySYYNG9bkM7LuctsNTm63wau7bdcx7xgeeeNe3hmR/z/H/vk6zr/7URQT/6+3tLTQOnQotLQQs8wEQHS8z/i2dhjzHowdR7SL8eNaGNo+dJLjt7UNQW2txJAhMGIY0RHA+4wf2g7v5GeZjnEtxPhW2jom/ajbNnQYahExYjgMaSM6xgFjGdc2Gr37PgDjx7TS2t5KSy2tFYIhw4bnec4yM7SI6BhNR+s4OtpHwagxEDBubCtDxg9B1F5raxutQ9qgtY2YuRyj4z3Gt3XAqHdgfAcxXrSPb2VI+6SfHdqGDEWtLcSwYTBsCNExHhjDuCHj0DvvAtA+tgWNb6U1Gl7rsOFIELPMxKtvvVlfNWmxLGuWjctjr9xnQM/uNZ5++mlGjRo1uW0BGP+OA4596Ykn+u5Dv9uub/VV27nd+p7bbvBy2w1ObrfBqztt99JLL9V/7LX7DEU0ditbRdKVwHbAGhFxTyfr3wXejIjFunk8/7LNzMzMrJk+FhH/bPZJzOh6+z6j7ON7DTMzMzNrll67z2gc3m2Tmr08dlV44J3aNmZmZmZmA918zT4BA3yfYWZmZmbWKaeE6l+LTmH9YsAd5fu1gf/17elYL1oA+Ef5/mPAS5PZ1gYWt93g5bYbnNxug5fbbvBaGLirfP9oM0/E+tSU7jWGAisArwCvktXXphd+fxq83HaDl9tucHK7DV5uu8Frem67VmDe8v1DvXVQBywmrxrx1NXoptmAN7tY9wER8d/JrZcmqdnwvyltbwNHQ9u95LYbPNx2g5fbbnByuw1ebrvBq6HtxjbrPGwSvXqfAVO+1yie6skxBwu/Pw1ebrvBy203OLndBi+33eA1A7Tds719QKeEmryqusiyjSskLQDMgssjm5mZmZlZz/g+w8zMzMysEw5YTN6t5XHzTtZt0bCNmZmZmZlZd/g+w8zMzMysEw5YTN5N5LTpXSStWi2UNDtwFDml/pLmnJqZmZmZmQ1Svs8wMzMzM+uEa1hMRkSMl7QPcB1wm6TLgXeBzwOLA1+NiGeaeIpmZmZmZjbI+D7DzMzMzKxzDlhMQUT8RdL6wAnAjsAQsur5ERFxRVNPzszMzMzMBiXfZ5iZmZmZfZADFt0QEXcDWzb7PMzMzMzMbPrh+wwzMzMzs0m5hoWZmZmZmZmZmZmZmTWdIqLZ52BmZmZmZmZmZmZmZjM4z7AwMzMzMzMzMzMzM7Omc8DCzMzMzMzMzMzMzMyazgELMzMzMzMzMzMzMzNrOgcszMzMzMzMzMzMzMys6RywMDMzMzMzMzMzMzOzpnPAwszMzMzMzMzMzMzMms4BCzMzMzMzMzMzMzMzazoHLMzMzMzMzMzMzMzMrOkcsDAzMzMzMzMzMzMzs6ZzwMLMzMzMzMwGHElq9jlYz7ndBi+3nZmZDQQOWAwgkj4m6Y+S3pL0nqS7JO3Q7POyrkl6RlJ08XVLs8/PQNKukn4i6Z+SxpS22XMy288m6buSni3bPyPpDEmz9ONpz/B60m6Sjp/MdRiSlujfs59xSVpY0iGSrpf0nKSxkl6S9BtJa3Wxj6+5AaCnbefrbuCQNLxcQ7dJekHS6NJ2d0j6P0lDOtnH150NeJIUEdHs87CecbsNblXbSRre7HMxMxvoSj/u0Gafx/SordknYEnSJsB1wGjgcuBd4PPAFZIWjYgzm3l+NllvA2d1svyZ/j0N68JJwOLAa8CL5ftOSZoZuBVYFbge+CWwGvBVYCNJG0bE6L4+YQN60G41F9P5dfdWr52VTcnBwBHAk+Q19CqwLPAZ4DOSdomIK6qNfc0NKD1quxpfd803C/BF4G7gWrLt5gS2BH4G7CRpy4joAF93NnhEREhaD9gb2D8ixjX7nGzKSru1AGcAf42IqyW1VO9BNrCVGRbfBoZLOjIixjT7nKxz1WwYBwjN+p+k+YA/AItExELNPp/pkQMWA4CkNuB8oAPYMCLuL8u/Rd58nizp1xHxbPPO0ibjrYg4vtknYV3aB3giIp6V9A3glMls+3WyA+e0iPhGtVDSqWRH3qFT2N96T0/arXJRRNzSt6dlU3A3sHFE3FpfKGkD4CbgHElX125+fc0NHD1tu4qvu+Z7A5g9IsbWF5bPlzcAm5PBi2vLKl93NiiUv+GfAB8CzgXu9uj9QeML5HvJ4sDVDlYMKmuR/wv+HRGHNftkrGv12TDVQANJQxzcHXwc1B2UXgeGAwtIWjci7vRnlN7llFADw8eBpYFfVMEKgIh4GzgZGArs0ZxTMxvcIuLG7gT7ygiVfYCRwIkNq08sy/fp/TO0znS33WxgiYjfNnZ4l+V/Bf5Cjvr+CPiaG2h60nY2sERER2OwoiwfD1xVflwGfN3ZwFSNEm5Y1lr+hi8piz4JHkk80DS2Xe3na8hZ6CtKWqbfT8ymqMyC6cw/gHuBD0tav2zruhYDlKRjyawcKwBExDilmZp8atYDDlYMLuUzSjs50xxgM/BnlN7mgMXAsHF5vL6TddeVx43651RsKgyTtKekoyQd1FWedhvwlgUWAu6IiPfqK8rPdwBLSVq0GSdn3bKhpCMkfU3SZ5yLfcCpRnuNL4++5gaPxrar83U3QJXOqE+WHx8uj77ubEApo0onyZlflrWXTe4E3gGWK+nMbACop6Kp5+4uP4tMc3wdsAD5nmMDRK3tOhqvqVon3OVl0UZlW3fCDUCSRgDLAVsDHy3L9gTagS8378xsSkpQqaX288qSfipplWael3VO0paSVi7ft9Y+o9xNfkZZ3p9Rep9TQg0My5bHJxpXRMRLkkbWtrGBZwHgwvoCSf8Ado6IJ5tzSjYVurwOa8u3KNs93y9nZD11QsPPb0n6SkRc0unW1m8kLQZsStYjeags9jU3CHTRdnW+7gaI0ml4FCBgbuATwArAhRFxU9nM150NKKXTdHUyBc09kk4vy6oOgdeA/wGbkH/bLuo8ANSCTCcAS0o6OyL+KaktIsZLGgs8AuwArAzc1tDJY01Sa7sjgX0kfSMirizXVdU+95CdcCtIGuY6FgPWaOCbZBqvo8tsi+WAm4FHnGZoYKq9F0aZCTOcrBn3f8Djkp6MiJHNPEebENydh0ypugZwi6RPRcSo2mavAP8ls+ZU763+jNJLPMNiYJi9PL7dxfp3atvYwHIh2SEwPzAzWbTyUuBjwE2SZm3iuVnPdOc6rG9nA8cDwF7AUsAIYEmygHAAF0naponnNsOTNIR8XxwGHFG7GfY1N8BNpu3A191ANBQ4DjgWOBBYHvgOsF9tG193NhD9BtiO/Ls9vCzrAIiIR4FHgQWBTzXl7KxTknYHjiHrVXxX0swlWFF11txRNt0FwMGKgUPSRmRh7SXJGlXrMGnf0EvlawtgSNnHaaEGiPoMJ+A9cgbs8uT/7kOB3SLidw5WDEzVe6GkY4C7yA7xzcj/e9tRZstYc0V6lQxaQAYGL5U0b22bx4DHgPmAz/b/WU7fHLAwmwYRcUJE3BwRr0TE+xFxf0TsTnbwLA7s2+RTNJvuRcRVEXFhRDwdEaMj4pmI+CGwfdnkpGae34ysTHW+CNgQOD8iLm3uGVl3TantfN0NPBExMiIEtAKLkp2/+5AjwmZr6snZDK+rOhXl2wvK44PAqZJ2JgOllZ+Xx42UBWU9crEfTaaj+mbgZXImxSLAryUtUrVPRNxIBpuWccrc5uiqTkWpWfUo8DjZhpcB29TWP0qmEpwH2Lbvz9S6o3rPbHgP3I7s13uN7PD+d0S8WLZ3kGkAkrSIpBvIWcr3kOnzribriK0ObFfvFLfmqH1G+Rk5m+koMv3adyQtVdv0svK4nqSh/ozSexywGBiqUW5djWabja5HwtnA9JPyuF5Tz8J6ojvXYX07G+BKCpQngY+4s67/lZvkn5EjKy8DDmjYxNfcANWNtuuSr7vmK0W4/xsR55CzK9YDji6rfd1Zv6unR6g6ABrSz/yL7Ki5i/wMfT6wZ+0Qj5IpypYHPHu5n5W6FJ31G4wjizO3AF8hZ51/R9LyMCFN3R/J95WF++l0raakV5tQY6Tkza864X4LzAF8nuzoPl3Sx2u7V4HCtd0J11xVvYPayPwNJR0sae3yv35H4Ktk1ocdJM3fzPO1KdqofJ1DzmA+PiLOJK/FfwK7Aus28fxmSOW6Wrp8X6+l9W+ynMIz5Ofq7YDv13atPqOsALiWXy9ywGJgqPIIf6BOhaQFyD/6rnIN28D0Wnl04Z3Bo8vrsGG5r8XBpboWZ2rqWcxgSsfGhcAewC+BPTuZlu5rbgDqZttNia+7geP68rhxefR1Z/2udHgvKelXwM6lzkFIquopPk2+byxGpoR6ADhe0v+V9W8AT5EzvmaDrkeOW++TdDjww1ogohrl/TIZoJ6d7LD5EplC6Adl/diyfCiwfn1f6xuNI+olfRG4s5amsR4ovA+Yl5yRtz0ZNLxM0mrlOI+QudlXZNIZT9bPSmqaDkkrSboZ+D2Zju2YUmPkfuAqcpT+DmQ+fRdLb6IpzG7ZvTyeGxGvVP/PyqCfU8n0qntJWqJvz9JKMHCEpO8AtwDfkjRLVUurbPY4Wctvq4i4GDgF2FTS+ZLmIOtsPQlsQBkQ5M8ovcO/xIHh1vK4eSfrtmjYxgaHatrzM808CeuRJ4AXyKl8kwSays/rAU9HhIuQDhKl3T5M5nZ9bQqbWy+pdXjvDlxB5tHtLG+1r7kBpgdtN7lj+LobWBYqj+PKo68763Nd3KjvSI5KPJWJsyeqOhX3kx2jHwXayVld9wE/krR1RLwE3EmmO9ux7OPc7L2sYfR9tWxlcrTvAWRHzmwR0V4LNv2ZrC/y0Yi4ADgdWF/SJWWW3Y1k59tna/s6TU0vq43Aj9qy+YBlyOvqR5KWa7huHiPrVHy+XIMHkkGLS8gO76eA58r385Zjuv+on1XXS0mVdxM5W+l7ZGDiM1VB9Ih4rywPYDdJy5T92jo7rvWNLtJ2TVinrA/3HnmtvVRWRe198XbyfXULYPP6DCnrXZJmL8HAUWSw7xZgZ7Im04QZFhHxMPAfYE1Js5NB+aOAvYGTgTHk/7pWJtZs8meUXuB/OAPDTeQHgl0krVotLBfDUcBY8oODDSCSVpD0gdGjklYATis//qJ/z8qmVvlQcQE5o+mYhtXHlOXn9/d52eRJmlXScp0sH0G216zAryJifL+f3Ayolkpod+BKYNeuOrx9zQ0sPWk7X3cDi6QPdfF5ZCbgu+XHP4KvO+sf1Y26pF0kbVYWn0d2BCxEFvndqOGG/hJgFWCJiHgIOAL4B/BTSZ8j358APlbukayXlY6bdknLSjq0LHuQbLebyFH43y8zZKr397+QqTCqVELnkalpdiVTZrxOBsAXpcyy8Kjv3lcbgb+CpPPLslci4nCyc21h4CJJG9b2eZgcOfxRSXNHxJ1kQHA+4MdkeqE/l813Kvu4E66fldloswKHAe8DBwMnRcQtETGuYfN7yGtwc2BrSa3VtSpprv487xmRNDHVoaRNJB0paccqeBQR7aXNxpDp2D5Z7Vqr/fMK2Y5Dyffclfr5ZcwQJH0TeEXS/gARcTuwFzlTYh/gJEmL1Ha5jByQtUBEvB0R3yM/Y+9F/q/7ddluVUlz9tPLmO7JnxcGBkmbkMV2RgOXA++SOewWB75actrZACLpePKDw23As2SkfDlgK2AIcEpEHNW0EzQAJO1DuUECPkKOMrqDjJID3F5GhFWjS+8gb5ivJ/PyfpT80PcPYKMSgbc+1t12K1NlnyLb5xFypMr8wKZkAciHgE0i4vX+O/sZV3lfPI4cNfR9oLMO66vLSD5fcwNIT9rO193AUvs8cjs5s/MdsnNqS2Bu4K/AFtW15OvO+loJaN5AdlJfB2xd6zT7OjnL4kngGxHxm7J8A+APwHcj4oSybAGysPPcZB2WXcr3n/YsoN5XRvieRgYcxgA7RsQ1Zd1iwLVkh833gB9GxNO10aabAktWo70lnUx2rF5H/i38CDgoIs4tnXruhOhlkk4iBzsCHBoR3y/LZwdOJHOvPwAcFhF3lHX7knn0V4yIJ8qy7cmZMq8CPwQuIvsnDoqIN/rtBdkEpU2uAPar3bd2eh0pU7f9nhz0+kWyzbcGdiPfc+/vr/OeHinruYwtI/Cr4Hxb7X/cgmQtpk/XdnsM2LsEBZG0BfAnclT+5yJiZJmZ0RIR45S1ZG4s+x4PfCci3u+P1zcjkHQk8O3y4wPAurXPyJsBx5IZU34aEV8syzck/wd+LyKOLcvayP+Zh5LvkeuR75uf9WeUXhIR/hogX8Ca5BvX22T0/O/kB8Wmn5u/Om2vjcgPDo+XNhtH5ra7Gti82efnrwntdBE5Nbarr4satp+dvBF7jvyg9yzwHWDWZr+WGemru+1G5rL+IXA38Eq5Dt8p759fA0Y0+7XMSF/daLcgayLU9/E1NwC+etJ2vu4G1hewBjmi8mHgzdIer5EdvfsBbZ3s4+vOX332RaZ+6ih/i68D/1db10p2qr5B1q7YvixfFLifHNE9a237jcig22gyyNEBbFDWtTT7tU5PX8A8wN/K73g02TkzorZ+Y3KmxXgyfWA1+PFI8l7oMw3tfCp5T1u129VlnZr9WqfHL7KTtKP8H3gPmK22biEy73oHOdBgwbJ8vfL/+1u1bUUGvF8ic7OPKv/f52v2a5xRv8iR3B3AtuXnD/xfb2i/Pcr2L5EDFN4r1+KazX4tg/WLzE5zJhl87exzVVt5PKX8bzse+BxwUmmLx4BZatvfWJYf3Un7XUgOQrmtvH8u0ezXPz19AfvW3t86gGMa1q9ODr7qIAchV/8fHyifUervrQsA3yrbjiyPH2/2a5xevjzDwszMzMzMzLptcqPkJX2aDIL+DfgU2dn5mcgizZTaBl8gO37eBjaLiH9KOo+cqbxZRDxSO95aZIBt7bLovIg4oE9e2Ays5Eq/jkwNNwuwPHBARJxX2+bDwM+BlYGzIuKwku7kcTJwcQZk6iBJ85Mdp6fWnmaJiHiuP17P9GYK11wL2UG6N9kWG1Guk/p+kn5Opvi6gUy79hR5nT4L7BwRb9eOuRmZInK2smiNiLi3L16bda4axS/pEDJocRBwTuPfQX20f23ZceTMyVmBi8MZO6aJpOFkJ/dQYP36tSDpE+Q19S2y8PIN5Ej8asbZd8iZsKdExNFl2Spk6qcWcoT+VcDMZLBwv3Ks+ckgyU4R8SvPTuuZycxC2oFMe3cuEwdQrBkRT9WuuVXIWZ8LA8dHxLckfZf87LJx/TNKOeZFTCymvlVE/BmbZq5hYWZmZmZmZlOkot4JoA8W4v0LMIIcIfozMrXCPtXKiHgnIs4h087MDvyspMC4lBwJvlg5blvZ/u/kiMg3yVoXTrk6FdRQULthXUtEjCWLnc9NdmYDfLHK413y4f+L7JR5CjikpCF6l0wvt0W90zQiXo6I08kAx7Nk6hMHK6ZC+d13FaxQ+b0/Cwwjc60/D+wnaaWIiNLZCvB14KfAJ8iZkq1kp9wq5Ejh+jFvIFNF3gB8wcGK/le7np4jZ0msx8QA0oSC3KWDdaikdWv7nkAGLNasghVyAe6pFhGjyQD8np1cC61k+3yNDDKcHhFjNLFg9vnAncChklYqx3sA2J+cQfE9Mj3n7eRs18fJTB5PlP0/VvZxsKJnZqv/UF0vZHHtmcgZE0cCc1E+V5RrqaW0z0FkuxxT/tf9gvz/uEQ5Xmvt889hZMB4hIMVvccBCzMzMzMzM5uiKCR9VNJBZVljId4RZPqL9ckOz9HAvpJWhgkj+SFzSJ8ELEPWQViF7DDfvRy3ygneUjrKV4iIPSPijU6CJDYFkQW1WyQdJGmFhnVVGz5O1lB8juxEWwU4oL5/ZCHuL5MzZ75OjgS+A1hL0lJVh0+tjfaNiCUj4uq+fo3Tq1rbnSxpsyr4VNqj6sS8nex4e5Gs+QJwdtl/dAlC/A84AbgAWBf4LZmKbUEyLVsV2Ko69n4cEVtExC/Lumq59YPa7/te4C4y3d62VQCqNnNmUTI4/H1Js1T7R8R7pe1bS/t3Vp/MamrX1gf+1iPijjLTYZEyq6Jafj0ZCBxCzhocVoKMY8v6x4CLgTayPkK130/J+j8/IIO+t5Mp4beJLN5dBRqrwIV1g6RPS3ocuKHxf10xE/AC8FkyQPQysJekjcr6KrD3BzJo8TIZ0DiQrFHxBZhQRL2jXFtvRMSFJVDlwGAv8Qc9MzMzMzMzmyJJw0pamX8CZ0v6pqQlyrpWgIh4jey0WRh4i+wQWAz4Ulk/tnTmvEumu/g2sCIZ3JgFWFbS4tVzVp3pEfFqmeDR2kmQxKZAWej1fbIT+xeS1q+tq2ZfvFwelyc70UYC/yfpY2V5td2fyYK+L5OzX3YiayF8GrLNam1UpUVxJ85UKh1po4FvkPntj4MPBAvbyNQmm5OzWv4GbCzpc7X1RMR/yWvxT2TqqOPL+t3K+vbaNTeuPH91bXuEdz+qft8R8QyZZu8V8v3yy5KGSJpd0ifJtGtbAL8ja8w0Hqfdbdc9JVAAJVhQm51E+Xl+clbEjyQtW1t1Tlm+NrBoCTLWR+D/lmyf7SRtWY7VGhHPRsRXImKXiNg2Iq4s/+c2BU4k6yzc1Ecvd7pTZrBcQw6EWAO4UNIX6tuU6+lNYOHS3seUVceW9VVR9faIuAvYiwxw7Ep+RvmwpKVrx6vPOHVgsBc5YGFmZmZmZmaT6GI09VyUlE1kR8oxwE8lLVDr6IEccb8kWdT9DHLE/q5VR00lIt6OiG+TI75bgGXL15KdnVOZ4NHe2TrrWuk0W5TMv/4KsBJwkaQvwySddHeRAYYFS6fO6eTo+2o2zbjSkdMREfcDewL/AVYgU6EsK2mm+nPXOl3didMNXVx3z5MBh3fJYvZflHRB6TwFoMxCepPsLA0yUAhZ+6Bqu3rA76vkqO+q03WNMlL/A3zNTT1NJhVbN/ev/h6uItPXzEEGKJ4A/kGmqfksmYbopJK6yKaSpNUlvQN8HyakgkLSupLmj6zF9ENgOTJQS9nuMeA8cnbSCWVxR20E/uvk9fYycJykEZ1dV5LWIVPynU3+HzyTLOJt3RARD5OfJzqAW8nA00WSdievncodwHKlbS4g64lsImnPsl61Y15PBovvJ+uMDKWLvnQHBnuXAxZmZmZmZmYGTKhTUU81U+80e4lM4zSaTN90JTmS8U8NwYiXyGKvG5eZFMeTaRgOkjS8jD5VrTPvOLKTAbIjwfnyp0I1mrex07t0UF9Ddnq2kKO1nwK+J+loSQuWTUeQgagNys9nkmmidpT0mcbni4ibyPRDj5ZFf4qI93vxJc0w6rMYJA2pLW+LiKfITupZyXRrZ5Cjfi+T9JHaYf4JrFqOcxV5fS4m6ciyvqXqJI0sGnsccG1Z982IeL6PXt4MqXSGtpfv1yud4UvV10/pGLWA3/sRcRlZf+RbZMDicfJaXjoizijHdB/ftHmZnKXyOUnzS/qwpEeBy4EPl21OJYOIu6lWN4Sc/XQr+X65XrmW6zPL/gz8HliTrIcxgbIGyW+Aq8mR/iPJ/59neUbhlDVcS2eQswnnAX5Czjj7Gfn/rPImGcCo0kB9tTweKWn2Whq+6rhXkDVKfgysFxFO09UP/GZmZmZmZmZmE4r7llGha0j6haQ5a51mQaaauRz4OJkCY09gPuCS2ujEh8l7zbnKzxeTHTlbUmpUlONVnacvkqP5V4yIT0fEO337SqcvVadKrWPrA6O6I+IVMm3JzORsi7PJUcQnAueXEb9PkR05c0uaIyJGkbNohpLBplljYo2K+sjvzwGtEfHHvnuV06da21Ud26cB363Nnqja9BjgNTLl0+3ALsDqwO9K+hjItCVzSVqj/Hwq2fH5LUnzVmlqqueOLIK+Pdl2V/XVa5yRlEBs1aZVvZ87yEK//wD+LeknkpacmtHYEXF3RBwfEZsB20fEYRHxoibWqXDn9lQq//+qlGlzke31EBmg/075noh4lXzfXIYMWgwry98CfgQEE+vHjC9/By1lltk5wGci4te151VkvYuLyVkaO0XEmhFxV/3vySYqn0/2kLSVpAWra6n8np8ggxYfBj5Kpi28GNhd0m+UKSdvAIZR+sQj4lbyc82yTAxeRO2zz7iIuCUiDoqIt6Z15pR1jwMWZmZmZmZmM7BqVG7p0Jxd0sXA3cAmwNL1bUsw4UdkeprtgGfJQMSDwM8knUgW/n2e7NCpAh1VnugDJC1SOnHqnaevR8RjDTMvrBtqnTXbS7oeuF7S7yRt2TDC9y5yFPAWwKoRcRjZ8bYZWaB0QzIAsQJZh4SIuJIcGfxxYI/aU05I9RQRj3Uymtgmo3Emk6SdJf2XHMXbTglUlABRWwloHF52Py4iLicDReOAKyXtBdwGzEZ2sBIR95Hpa1qB08q+jZ3kY9x2vacEfKME9RYGLiODhD8gZ6f9jexAvaQ2s2lqn2sUTOikdZ2KaVf9/j5UHhcCfg1sTRagf7W27cXkbMAdqc2WKIGIXwKrVQH8cv1W1/N9EXFNWd44E+6aiDimtr6l+nvq3Zc5eEmaT9Kvyd/9BWRh7IckHV9+X1XA7gfkzL/dgfUjYm/gAGAb4GYypddoJs6aAfg6+X76JUkfrq7jTs5hwkw161sOWJiZmZmZmc3Aqpt8SUeQKTE+RXZwbkvmdm70EBm0WBE4BHiE7NS5ghyd+HOyk3TNWjDkdrKDYdWyTae58Uv/jDsDekDSPJJ+Qf7+5wNmJwMM1wI/qI0AHkmO4H2OLKa9ZkQcR3a6LU+mENqSTN+1Qe0pjiHTpBwmafmuOtDCdSq6rTaTaRVJfyOvmUeAnYFv1ztHq99rRFxKBhI3k7R3RNwCfIZMBXUB8GUy9/rHak/1vXLcPSWt3zgCvx546pMXOgOS9DVy9tKRZO2Rg8pMiGPJ99argPWAoyTNPa3P51kVU6cKGHQyQ2128ppqAZaKiOcjYnw9qBdZkP44Mq3QHrUZUZBBwpfI+k5tXV1btWtvkvfTTs7HyP9z5PvcpsDJ5ICJ7cmZZ8cCJ0laCCbMdjmBnB34tTJj8AIyWPgWmSJqOLBSCS62lNk1pwBzktdup23gduk/DliYmZmZmZnNwCStI+k5shPgt8BuwMmR6Uc+0Dld0lf8nCxCuSPw6cjaBfuSo4hXJEenPk92fldOLY/zVJ3o1iu2K19nATtExOrAOuQo1P2BE2qjuR8nR58uCewtabaIuBrYh+wMXx94hyyYXqUruYcMhizBpIVLbSpJapN0DlkLZi7gYLJj+4oqWFHvUK11ln6lPH5dWQT4EbKexRnkjKj3KQVjSyfcq8D5ZZ9p7hy3iTRparRq2Rxk8HZvMj/+z0qwFknDyvvkiWSKqN0oNUes/1TXU1cBA7KzegMyRdBHJR1aljcG+24mZ9B8mnz/rZbfRQal/gss3tOUTp5R0aWPkb/rc4DTIuJ3EfEbcubfn8kZaPvUtv8NcB3wSSamoryUDHLcS35++V1DAOJE8v/j4VjTydeCmZmZmZnZjEnScHJU4VeAXwBHRea2rzo8O0pH25iG/VqAXcmir78BvhIRL5R1nyI76y6PiHvLMpUUC0tF1kqwaVQ6wmYjO2sWARYv7VX9rtcgC/RuCBwZET8o+y1Opi1Zjuwkv7wca6ay/X3A1WVGRvVcswJjG/8ObOqU0cKXkum5joqIUzvZZs6IeLP2c3U9XkJee6dFxJG19fsDrwJ/iYg3q7+Dsm5IGRVuvaA+cl7SXMDwiHihvC+uR85Wmg/YNyJ+2vj7l3QQpY5MRBzakM6ms+ert+VQoKOM+p+w3KZMWaeiqhczC1mDaU7gdeDaiHi29v75EeCvZPrDNSNrhUzSTpKWI2tdPAzsFxH/qo5df/+0aaes7/M1YJ2I+Ht1TZX/XR8h00MNAXaPiBvKPmuTgfuHgO0i4j9l+XzkDIuXygCMSf42ys+TvSat73mGhZmZmZmZ2QyodMyMJmdL/A1Yt1ouaVVgX0k/B/4g6duS1qz2LTfyfwR+T4563Lq27lrg6CpYUZZVo1mfKs/hOhXTqPxOxwMLAv8DhpXfazWi9x4ytddIYC9Ja5Xl/yNnY8wJ7KJSUyQi3gO+AfyisbMtIt6NiDFyrYNeERGvkTOa3gHWkrSQpFkl7SDpB5IeBv4o6UxNLKJdtetXydHeX5K0cu2w50fEb6sgR62DW6Vjz203jWrpesZLmlnSKWRH6W+U6dI6yIDfT8su65eOz3H1/cmR36OBTysL3nfaMVp7vqouxjrk6O+NquV980qnT7VgxcHkDMCzgG+SaZz+IOnjtf9VDwE/BhYGjiqHaKw78ThwJjmjbffa8pHleXzNTYX6rJTa99X/pBEwIS1XlV7vQTLYPj85c7Da5i6yDVemNvsiIl6JiOeqYEVZ5mDFAOOAhZmZmZmZ2Qyo1tl1D5n+YlFyBOPOZHHmc4CNyUDGkcAtkuo3/a+Ro4THA7tKWhEm3OxPdjR3uE7FFHUzqDMTWXdkjogYFVl8tyrwGsDfyXZchewcHVpGht9EFpT9JPDZ6mARMW5yHTXhWgfd0s22+yd5nX2K7Ew7lSzmuyNZA2YJ4FDg6hJsqtr1FTJn+6xkgImyvNN2q3XAuu2mUS0I9AWyFsw+ZEfq7cCYss1Icrbaf4C1gDXLPhNSdQFPlq83gLGdpJaaEKgoPy9L1gv6GfBtYLG+e5XTL0nzS7oAOJ58D9yffG/8HJky7RRJ9fo9p5PtuJektWsBj7klLVW2OZucafiTxufzNdczkj5cZj9MSF9X+5xSzTb7aNm2MRj0C+BOYHOyhlPlO+TMs90lrVf2nez7s4MVA4MDFmZmZmZmZjOoWkqRP5BFmg8ELiE7Rz9JdratSnbMDQfOlrRM7RB3kZ2u65K5oX2zP41qnZXtkoZJ2k3SvGXdJPfwkTUKXgaWk7RN2aa1tn40GZh4nGzPxcry18lc3SOBnSSt0tnxrWd62HajmFgE/XgyPc0ZwArk9bQE2Rk6T1m/RG3fk8t+O3XW7tZ3JH2cHFX/CPm+uFNEfC0inqlt9hg5an8FJtaKqXSQNRJWAF6gDBKvHb+e/mk+SbuQneHfAV4BVo2IC/v8hU5nyvX3SeDzZIDhiIj4aUQ8SqZ0eptMLbS7pJlgQvHm08hR/aeWQMUnyZkZ35W0YkS8FRF7RcRTjYEn6x5Jn5P0d3Lm0QPArZI+r0zbVbkHaAcOLoMixtd/35H1Yc4l6yytWgU0IuJZcjbbAsBXy74eMDEI+MOImZmZmZnZDKo2+vpp4FdkrucfRMTqEXF9RPwvIp6IiJ+RN/3DKQUpS8fae2Sn68vA4bW0QzaVap2VO5AdlBfSSTCo1kF9cXncv8rD3dBx9hxZ52J1Ji28fA9ZkHkdYLfSng42TYPutl3Nf4DvkR3cW0bEsRHxBvBWZL2QM8iC55uRaU3QxIL1h5XH49wJ1z/K7/7r5MymIyIL/76hotqujKz/NXArWYD7zDK6fw5JWwEnkDPTzmn8uyjpn0ZI2pRs/4vIejM7RsRGJf2NdaEKDDYGD8rveThwSkQcHhFPShoq6cdkQLeN/D/2OSZNcfhTsibJhmSQ6lfAF4A7I4veT3hep+jqGUkLS/oF+TsVOQDifmB54EfkbE8AIuJvZEBjceDL1SEaDvkwmfJw3YaAxk/L8sXIALANAg5YmJkNQpI2lhSSju/D5zi+PMfGffUcg4WkJcrv4qIe7reapPYyMmpAkrRPOcePNPtczMysOWo39deTQYnvleVVx0+VeuGH5AjHLSXNU+ucqfJ4fyci/t5vJz6dkjSbpMOAC8hOtHHAjsoCrxPapeqgjojfkOmFtiQ70qDWkRMR7wL/Lj9uXls+CriMTKXxU3e2Tbvutl2lpE67ipzZdHdjKqCI+B9ZNLaFLNANMLas+y05A2NfB5r6zbxkx/VNEXGHsq6EqqkTDdu+SI7EH0cGLW4ng4Q/IYOHX4+I6xufoHwmP4a8NncGToqIRSLiyr56UdMDSa31oGvDrJUquHsROVMFSZuTHdy7kWnzdiVTIs5JBnAXqR3+aDJQ/7ey7dwRcXr9+X0N9oykBck0eJuRs1j2jIjtImJLsh7IzMC2JUVU5ZjyeKSkhSKio7oGy/JngPeBFZSFz6v30ZHABmUgxit9/+qsNzhgYWbWDyStXTq8/9zF+rPK+ke7WH9IWX9i357p1CsDi3aVdLOk1yWNlfSypPsk/VjSRs0+xyb4LvAomRe8T0lao/yNHNTDXS8GniVHcJmZ2SAmaXtJf6yC0I2do12p3dS/Bvw6Ip4rP1cdMO0laDGaTGHyIvBGrXN1LPDdiBiwn1MGmQ3JDrKRwHbkLIgNKKNNG2ZZVB01J5THwyUtWDpyWiUNLcurUdmvlf2qoMdDEbFrRDzSOCLZpkq3264SES9ExM0RMbqhk7Vqu9fqj2UEfmv5/pCIuLe717pNs6HkKP2hKsWyuwr0leV/JQMPY8lZTl8jO2mXiIgfwAdnApBBx2+QszMWiohv9ckrGcQaf2fVDKNybawr6TxJP1MWsF+zFtwdU94b5yELac9JBiK+WYLtD5Aj8VcHdqiOHxH/iYjvATtHxBER8aakNr9nTpOPk3/r5wLHR8S/a+tuIv9nrUgJ0JY2vo8soj0vGQyESVOqvUPOfnq6BCkmiJKyTS6EPmj4n5qZWf/4J3njsl4X/yQ3AQJYXtICXawHuLk83k3+A/9hb5/oNPgZcCmZ5/pacqTlL4G3yFFF+zbrxJpBmd92Y+DMfhpxs215/F1Pdioj+74HbKFSiMzMzAatNckc3dvB1I34bEwrUxs9PB5YnyzM/QL5uaW+X5UKxx04024k+ZlqnYj4E9np/SKwiyYWDa0CDlWw6Vqy9shHyAETlA68seWYW5XHZ8u6Sf42nM6k13S77RpV106tbau2q4qi311tW79O66PKrc+NJkflL1y+JtHJrLQ3ydk2o4Clgfsj4kcR8XptRkDje+cvgdUiYscSRDZyRH51DTW+V5UgxJySLiFnsmwNbEPOXLpLUmPQZzsyuHhaRJwXEVVB5/eB2YG5yFoWa5TnroLz75efWyJivN8zp8nd5IC54yNiXP19MSJeJmdzzg/M2rDf0cDfge0knUSmiKpmbBxHXpc/7+pJw4XQBw0HLMzM+kH5x/hXYBbgY/V1kuYmby6vKos2aVjfQo7MGkNOQyUi3o+IRwfKh1hJG5CFAu8nRwztHhFHllFfm5AfNn7cxFNshi+SNye/7qfn2xa4NyKen4p9Lyfz6B7Qu6dkZmb97GQyF/7u1czGqR15XU9No8zzvS2ZfuZp4MQuUqB8oCPJei4ibgFOiCwWCpk3/WxgWTJVybDSQVd1cFcdnV8B7iVTEP1S0nqSVpR0IDl45AZy5Gpnz+kO717Q07Zr2DfqwQdJy0g6nRzpfWlE/KGL5/Q113/eJTtaVwY+Lmk4TJwNU3WcAxdKWq20zf1kGqEtgM/VZse019uuFnx8ICIe6MfXNOBJWoic+fB9SYuWZY3/275FFtQ+gwxWrETWj3kd+KakAzSxiPPM5fHVhmPsS86Ov4Rs49mh8wBJL7ysGd2T5GeJ9ob3PSlrxQwBnq/ubcu11RoRb5N1ZP5MzpL5i6RfkvWCvg7cSNa6sEHOAQszs/7zl/K4ccPyjcg8w2cDb9AQsABWIaer/i0iRkPXNSwkPVO+ZpH0fUkvSBoj6UFJ23V2UpIWLTe1b0gaKelWSRv28LWtUx4vjoh3GldGxFsRcWfD815UXsNSkr4u6QlJoyU9LelYSUO6ON8NJf1e0mvltT0h6SRJM03r9mWk0xGS/lPO5T+SjqSH/y/Ljcq2wHWNvw/V6mGUToQ/SHpL0pulHeYp260j6SZJ75R1F0iauYvnW5IMev2utmx2Sd+S9O/Sru+U13OxpMXr+0fEq8At5EiVWTAzs0GpjBKtRhzuLmmmrjpHu3GskDRE0ieAbwM/ID+PnBgR9/fmedsH1Ub8VgNfLiPz328HfLph26h15OxHFhjdkRws8w+y7Z4HDo8s5Gx9qCdt14lhkpaWdDg52OerZAec0wI1WelUfZccZPY8cCTwGZg4G0Y5Iv8c8v5uzrJuFNmZ+gSwCw2D16xrkvaSdCgZdDiPvC/+QBF7SSsDXyLvZ46LiH9ExEuR9X0OBJ4CDiWDGJDviyPJANKq5X70y2Q9iz9FxL7AvBHRaYDXpl1kOrWR5fvGwN3cwIcps8r0wbpNfyX/x51KzmJaC1iSDBZvHhEv9ONLsT7igIWZWf+pAhaNAYlNyJH4d5E3lp2tr+8/JUPIopmbA78hb5KWBn6lLC42gXLq5N+AncgPBFXQ5AZg7W4+H+SHSIDlerBP5SzgCPJm7AfkTJITyOnQk5D0RfKD6Hpk2qmzgf+SU0Nv0MRcv1O1PflB+FTy/+OPyNEZhwHf7+Fr2pBsh7sms82SwJ3AMHKq+ANkO1wtaX1yBOTIck5PkiMjf9DFsT5THn8HE0ZaXkcWJnujHOM84D5yxNGynRzjb2RO3nW78frMzGzgupz8zLA9mRajxyOwlUUs1yNHn15GdgQ9QKYpuahXz9a6JbL48plkqpI9JC1QAhWNHTn3ls62HckO1XOAHSJi7Yh4eGqCVzZtptR2Dc4kC6QfR35+3yciPhURT/bfGU+/NGmB3ql1HZlOdXbgZ5LOkLSnpFPJfPxbkUHD+mCtp8i2XZUMJg+fxnOYrpWg3fXkPdJHgBFk4PxNYE9Jq5XtqmLai5MDAK+JiNHKWYHVumvImn3LApuWZY+QAcGtyVohfyPvSZ8h0xxTpe3qw5dpXVuFzExxa/l5ks8wteDhN8n7/I+Tn09OLevdbtMBFxsxM+s/9wFvA+tKGhJZOwByxsVdETFG0q3AtpIWiYj/1tZD9wMWC5GjRjaujfb5BRkQOIwMZlROIfM8fjMivl0tlLQf8JMevLbryCJXB0ianRx59I/adPjJWRtYpXq9ko4mAyafl/T5MjIGSR8iAw4PAp+IiCpIgqRvlNdyMHkzMDXbbwzsRXbIrBcR75XlJ5NTuXuiqgVxz2S22RA4JCK+X55HwB/Im5zfk0XdqgDEELIOym6Sjix5Peu2BZ6pTR9fiRxpcnVEfLa+oSZOsW30z9q5X9/JejMzG2DKTXtjqop2SceSgyD2lHR7RPxPmXO7W2ksyqyM+8mBD+8DP4+Iu8pztgJdFpq1PvUn4Gqyk2074IeNbSqpLTK3+pWNO1fr+uVMrdEU2664lCwyex953bVDXnfRUF/Geqb+O5Q0SzW6u7P30c7UUnaNl3QumaLodLJoM8B7ZEq+T0fEbQ37tku6lhxAdFE1a94+qAwoOwFYg0zxc21EvAW8Jek0MuXTrpIeqF0Ti5bH5WCSGS8qAYxbyAGCOwAnldnl35D0DrACGXy6MiIuq5+Lr7mmWbM83gaT1MiaKTI1dnW9RpnB9ExZX30+cbtNBzzDwsysn5R/nLeROTPXBJA0Lznd8ZayWTWKYJOyvqpfMYosLtVdh8bEQn2U6azPUpuCXD4M7gi8Qum0r7mAnLbcLSXY8HlyevQuwJXAM5JekXSFsgB1V75fC85UHzCPLj/uWdtufzLQfnA9+FCcTo4C3Xkatt+9PH6rClaU8/kfPZ9hsUh5bAws1D1JBlSq5wlyVCzAfVWwoqwbR9bCaAM+VD+IsgbK+nRebHtU44KIGFPdoDWoznWRTtaZmdkAolLQtepAa1iniLiDLPa7BZ2kz+iO8r/w4Ig4uB6siIa869Z/IlM+fY+cjbq7pKUhB2lI2qlsMyEgUf1t1GZhOFjRJN1pu7LdXcDXI+KS0sk9od5BM857elJ+n3NKOofMe/87SWtTBvJ2MeOl8RhVnYnRJSj4ETI17ibAVhGxRkTcptTSsO8LEXFARNz9wSNbzQLkjO97IuI7EfFIbd3ZZNHzXchsApUbgHHAqiqpb+uBqMgUQk8CC0harPaeeHJE7A58pgpWeHT+tJnWGUzl97858ERE/KcsG1YGFx5bHoFOa4v488l0xDMszMz61y3kyKpNgDvI2RNiYsDifnIWxibkCKtVgTmAG+sBiCl4KyKe7mT5f5lYawJgeTIF0M2No3zKyMo76Dx1UKci4sZy87UxOXtgdbIjfQdgB0mnRMRRnez6106W/Y0sAr1abVmVomoLZT7tRuPIETJTu/0qkzmfzpZNztzl8a3JbPNgJx+oXiyP93eyfbVuoYblnwJamTRg8Qg5s2RnSYuQI/puAe6fTIfVG+Vxnsmcs5mZNVHVAVN1PEvajeygeYcstnxd7fPCKeRI7j0l/SUiHujJLAuAiHi/PE9LZL5pd5o23z1kmqfDgQMlPUoO8Fhb0hsRMWGWZK2zzgViB4ZutV1EjKs6/XzNTb3GmROS1iJTAy1IprNdnZyR/G3gB1NznZRBQJMMKqvN5Oi047S7MzpmYG3kLKNlACRtS878PykifijpOHL23+6S7qpmX5Cpn7YANgMuKAH91hKomhkYWrb7X0xa/0JlW/+f6wW98Le9NDm483sAklYhswkcQN6nPjyNx7dBwgELM7P+VS+8fVJ5HE35oFsCBbczsW5F9XhzD57j7S6Wj2fSmXWzl8dXuth+crMDOlU6UG4sX9UI0D3Jm7MjJf06Iu6d0vOUD5av184RMu8vTJx9MSU93X52oAN4rZN1Pf1dVDMbJpef9gPFyck2mtK6xnROnyGDDROCKpFT1T8OHE/OfKlm0Lwq6YfAtzv5MD6iPL4/mXM2M7MmqqVF2IDswFmO7ICZjRwAcbmkb0bEsxHxTEmfcSrwBUkPls8ZPe4sc4d389WCVe9LupicJfpFshbWSOCwerDCBo6paTt3aE+92uj5xvetz5H3XXuQg6M+QhbDPkLSoxFxQ0+Dup2ZUoe327Zr5ff/lKQrgaMlPUume/or8Hy5lq6SdA3ZnjeQbfgaOdhvI7I9X4yIa8s95azkzPtlgWMa28eB3d5VBlJ8mEzrNXoq/t4/Sg7Ge0PS/5FF0z9KBqQOjMx+YDMAp4QyM+tfD5DFwtYtKZk2odSvqG1zC7CEpCXoef2KnqgCG/N1sX7+aX2CyBzKFwC/KIsaC4p3+jxlKujcTBp8qTrxZ4sIdfU1Ddu/Tf5f7GyGQU9/F6+Wx7kmu9U0Uhbs25zM7TpJmoeIeD0iDiZrlHwIOIgMbJxA5oNtVJ3rq52sMzOzAULSR8lRwh3Al8nUkSuSgwO+AHyntvm5wL/K8k3phno6B2Xh0hGNy23KejutSC1YtRawHznjchjwI2CBiDirrHc7TSO33eBVOrQ7SnB2GWUx7E0kzUEO8jkxIq6OiJcj4kby8/FCwCGSRlRB3Sa+hBlaLWiwIjlDZWGyZsV2EfG7Wuf3CWSQfg9Jy5Tlt5KzZZYGLpJ0vKRDyFTAx5A1Hn/Tby9mBiRpJfLzyfIRMWoqg3NVCutPkcXrhwObRMRnIutxtfoanTE4YGFm1o/Kh7BbydHs25Afxm5p2KyqY7Ep2QkxkokFkXvT4+QoozVKx/cEZWTSur34XJ3VTKhs0MmydchZgPfVllXTrdf+4Oad6un2VcHqzs6ns2WT81B5XL6H+/XUpmRNlM7qVwB5kxwRj0TEj8gp0pB/e42qc32ok3VmZtbPJtNpuh+wOHBkRPy4vMc/Sd7YPwV8XtLnACLiHXK23YJkx85sJfXFB272ayloqs7V1ckA925OYdJ9SvXivktImrekJJnqTuly3HWBn5OdrDcDH4qsMfK+pDa307Rx2w0O6qTWhCat6zNE0unAo8DPgJuAP5Ad4P+U1FKbhfE74M/AlsBuPTgHd5j2EUm7krMh/k72WS4eWSR7wv/FiLgP+CGZhnjHsuztiPg+cBw5SOtYMjXiLsAVwCci4rH+fTXTp+p6q/1cXQ9tZNrlCXWvpuK4VQrr5YGDImKliLi1/v7s98oZgwMWZmb9r5otcVx5vKVh/b3Au8BXyDRFf20cPd8byqyOX5EzLA5vWL0PmWaiWyR9UtK2jR9eyrplKAU/gds72f0ryjoL1fZDydExABfVtvsxmRbpB5IW6+R55pC02jRsf2l5PLa6MS3bLUy2RU9UQae1erhfT21LFm+8rr6w3GAv0cn21UyR0Z2sq8711k7WmZlZP6t1mn5J0v7KopPzA1uRta1+X9YvU0aRXgQsBVxOdtBVx/kNcC0ZrN62LKvndW8MVCwp6SCyo+9b5OcE3zd2Q9XpXNKQLKNMa3ITcDdwq6RNmVjgt0cdnqV9RpOjhHeIiE0j4tGq87XManUnzlRy2w0OkvYBfiNpqfryhnulT5HBh58Ah5C58Ncl7206ygAy1TpTv1wevyRp0RL06PQ9r4v3y+W72n5G15NrpbbttWQNxE9RrhlJn6o2q+1yBvACGVSfcM8VESeS9zVrkalxV42I/SLivZ52oFvnYmIdrQXLe1j1/rU4mb747bJdj+qBlOOeT86KWTgiflyep616f+6t12ADn2tYmJn1vypgsRJ583JXfWW5UboD+GTD9n3hG8AngJMkrU/OaFiR7Ay5nkw31B0rkDcDr0m6DXiS/EC5TDnWUOCciPh7J/veBTwg6QrgPbIo+fLAb0snCwAR8bCkL5EpLx6T9MfyPLOSHTQbkZ01B0zl9n+RdCHwf8BDkq4ip+vvWM7x0938XUAWvH6KiTMael25MdoauCmy4F/dqsBvJd0N/Bt4iZxS/Rkyhcj3Go4l8u/gkYh4vK/O2czMJq9hdPeswHnk/6GryPzN48nUhf+SNDv5P3YP8v/1PcBaEfGPsv+QiBhXDn0cOVvzMEk3RMRLZRvVOt7mBj4O7F2O909g7Yi4u+9f+fSh1tH5VTIFyVtkgdD3yc6zK4DDgIunsoP6/ojYufqh/vdi08ZtN2hsSQZeryQ/awMgaXHgNvJe5mWytsGxEfF6WT+EnN1yFPDF2vtsa0T8R9L3yQFK+5F1Dj5Qz6Dh/XJe8v3yEHI0/4HAM33wege12u9reER0NmDqA9tGxJuS3irX5KlkGqejKSlwNbE49kuSTiIHqX1B0r2RBetbIwtx/6M6dm1Gja+5XlAG/f2BvFe+VNLPIuIhYJayyTPTcPiLq+uvBCrG98XgTRv4HLAwM+t/D5OFwebhg/UrKrfSDwGLiHhROUX9dGALclrtPWRH+8fpfsDi52Tapy3IAnabkfkmXyMDHxfVgw8NDiFnYOwDLAa8SKavOKWT8z1f0v3kDeOGZIf928BzZCf8xdOyPbAvmSprX/Km5r/Ad8mZKN0OWJQP2D8BTpO0Zh919qxNzpi4upN1/wROI2ugfAqYgwxa3AicERF3NWy/Ifm7P6QPztPMzLqpDFpYmCww+RI5KvgYMoj/Ypkx+BzwWWAmMljxLrBnRFzScLj1JN0dEe9HxL2STiQD0y/Vni8kDSP/p3yBHJXc1fFsCkqn6L7k/9OrgMuAm0sn25JkZ+p+kp6MiNvVwwK/tU6cqsPOnW+9xG03MJVA6qiIeL8sOpgMRvy2YdNxZHDp02Q9ts0j4nVJQyNiLHlvsRU5Gv9nEfGPMtq+Cj59g3wPPEjSnyPijto5VLNvQlnTZ11gV2An8v3yexHxTK+/+OlAGRT1bWC4pCO7uO/9gFrw4ipJVwOfkXRgZIrb+iyLC8n/W18gZ/L/qvHaKu3ngtq963VyBuZeZKDvK5LOAZYkr4m3J7PvZDW8VzpQMQOTZx6amVkzSLqI7GhZcnr8kC9pLnLk15URsW8fHP804GvAQvXOp6k81mXkiLWly4gkMzNrgtKB9jo5avEp4IGI2KVhm18B25EdbScAJzV2xkj6JrA7sEdE/G0yz7d02W4vsvDsGRHxjd57RTMWSfORqbTagS9HxLNl+WbkAIgPl3UXAIdExJj6qG1rHrfdwCPp8+RMil2BX9Z/1+W9cgvgz7UOzr2AM8l0qesDT0UW0W4tweD9gHOBP0TENrVjtZXA1CFkW28dEdc2tq+kVckUQ/sCcwMnR0SV4tc6IWlt4A7g3xHxkR7uW7XbKsBfyf+Na0XEKw2zEbcm6/l9OSJ+2MsvwTpRXRvKNMobkjMzP0kOpIBM6XVzRLzR02P2/tnaYOU8e2ZmZn2gfEA7hSxyungfPMW2wN97IVixHDlC7CQHK8zM+odqRV9ry9pKB8yxZMBiEXKWIsqivFXu7XOBUeTMxm/XgxWSli4zKQ4kO4keaXiOxnziGwOHAg8AizlYMWXqpF5XJSJeAU6PiG0j4llJ85eUl9eRnagHA/8iA06f6uo4Dc+n2vdtylpfNhXcdoPOWHLm9f5kQBWYEKy4gUxJ88na9peSs9TnA9YrwYo2Mh0qEXEe2fH9aUnb147VXtafBcwVEdeWn6t0RotL+iI5mv/ocoyFHayYqPH/Wc0/yPqMH1amH+52XYsSrFBEPECmR1wcOLKs7qht93ty0JWDFf2kNgPmvYj4U0RsR85yqQZIXAr8VdI+khao9lMnNUSqv4fa9baUpI9N7v3aZgwOWJiZmfWd7wMnkemWelVErBAR6/TCoRYhR+j+qBeOZWZmU1BLCdOhLNa6iaSlqtQHEXE2cD9Zc2m2stuEFDIRcTNwdln/gKSvSVpH0tfJXN5fI2svndgYiK51CFQdRjcA60fEpyPif334sgc9TcyBXhUb3UbSJyStXEaZVm4v6z9MFkDfkky9uXdJZ/IjcnT2FyQtUEapfuC+vJNOnFXI4NJWk+kctE647QaX2vvTTeSslw2A7asOzPJeWH1u/YKkOcryccAPyJQ03yrLqjavOkq/RdYC+royXdSE9EGlc/ytekeppI8AZ5XnC/L9cvsS4Jrh1f7WOxqupXqdlsvLoo3Ktj0ZRV/9LZwCPE0OBFu9XHsTOr8j4unOBgJY36u1w83AvGTQ4lxgZjLQdLekU8u11Nqw7yR1YSTtBFwC/JCs92kzMF/MZmZmfSQiRkfEtyLir80+l65ExM0RcWJkfl8zM+sjtU7TDkmzS/oZ8CDwR+AJSYdLWrRsflh5/D9Js5V96p0xp5NpSeYhaxbdQeZoXxE4OCI+GxETCtI2qo2OfC4iHuzdVzq4SVpXWVB3klHDtbQzO0l6Bvg1GfC5H7ha0oL17cjO7g2Ak8lZjA+U5cPL4xpkepn6PhPUOnEWVaayOY9s65WYNIe7FW676UPpjB4SWbfiarI22yHA8rVtfkOmAfo8WdOnWn4T2eG5qKSjy+KWWsD3JjLN1Opkge36+2H1WM+b/x4wJ7BPRHw0Iu7s7dc7mNX+1o8EHqzNXFEtGHQP8A6wgrJmUk+OX6X0eh34DlmX75tlXXvjtp1dj9a3qpkwZIBiUeDRiDgU+BB5jb0EfJ0MYswHkwZ1JY2QtClwBnARsAzwnYi4v59fig0wrmFhZmZmZmbWT8qN+oXA5sBfgDfJXOyLkIGIkyPz419Fpv87OCJ+VB+JWDvW4mSnQBs5cvEP9RHFjR06NnmSjiBH8h4TEd+uLW8hB/sdQXaW/Y0MNN1DdpjuRY7O/3pE3K8s4HwXOcNy+ajl8Zb0NTIV42rkiOFPRKnl1TDadHYyZdf/AdsADwNfiYi/9NXrH8zcdtOHxvctScPJ4OzpZIfnMRExsqxbFfg72aZ7R8STZfmKwO/JFEILRcSr1Sjw0rm6LLA9cMrkRvt39p5rHyRpI/J/GcAbwNbA3TGxxsQKZOBpLmCpiBjZk99tw7V1AnCeZwQOPJIWBp4DTouIo2rL5yPfSz8wgE/SauT78D7k38e3I+KEfjplG+CcE8zMzMzMzKyPlRGE+wF3knnXjwV+HhHvSVqZDGIcQM66+A2ZQmZb4EBJf4qIp1TSSVXHjCwM/GzD87RGRLuDFVPlGuBLwKv133UZ5bs48EWyg/SQamaKpAfJGgeHAl+WdETpIP0XsDTwMeC6kmZma+AY4HBgKDC26vAuzxNluzWBnYE9yFztB0bEOX3/8gc1t910oNbJvT050+xlMnj0BrAbOavilrLt/ZJ+ULbbCfh2Wf6IpJ+Qs1rOAPbMxdFROr+fIGfP0Pie2nAuDlbUdPW7iohbJT1KBgbbgcuArwJXlfWPSnoY+BwZwPtFT563XFtVKsXjJncu1lTVDLIx9YWR6dNegYntJmkJshbQvsDKwK/IwRmv9usZ24DmgIWZmZmZmVkfKrMq1icL9i4E3BxZABaAiHiwpC/5I5mT/W8R8YykM8iaFAeQI8An20HTkIbDeqh0dK7RRafJF8i226HW4b0SsBXZrgCPlA5vkR3onwXOknQ1mVZmU7Jw840R8XTjE0hamhz5vR+wBJk3/7DI3Pw2GW67wa/87keQqX8OIGtYPAE8Q6bpWhDYX9LDEfFa2e07ZLBiN0k3RsTfy/Kfku27u6SfVqO760GI8n7pTu9uKh3NQ6OkkS3tVaXb+i05Sn5jcnbL6ZLejqy5BPBzMmCxjqRfRw9T0dbbye02YFWfPR7uaoPyN7QsmcJyZ+A+YL2I+FtX+9iMyzUszMzMzMzM+lDpJDuXLEq5LlClNGmrbfNnsjjpNkzMyf4N4FWyM279sk+X93AeETztSqf1JpJul7QlTCgquhiZh/1pSXNK2hv4CXAq8BiwbEScUY4RwLXAUWTn9VfI0eH/BnbqrMO72Ao4CXgKWC4iDnaHd/e57Qa38rtfjgwwXU/OTvlaRBwCfIZM47UjsLkm1gR6ify9L0e+Tw4py98ga1m8Taaa6er5rAslIFH/+YvAnZK2qRbVAuT3kQWXFyUDdyOByyStVo7zCPBfYAWgR3UsGs/D7TZgfYIsTP/kFLZ7v2y3V0Ss7mCFdcUBCzMzMzMzsz5WOtbOJW/Ul5G0QESMbwhAnAiMBnaV9JHSMXMEMD+ZtqbTIr/W6xYjA0vbKYuetwNjgdmAg4Efk4WUFwC2jojNY2L+/HmUBYNHRcQPyHQXnwbWj4htIuLZxqBTrUPuGmCTiNg0Iv7THy90OuS2G9w+D8xK1il4HKC0ySPACWSO/EPJjvHKhcDdZd8tq4URcSEwb0T8rp/Ofbqg1NIwG2U+shjyR4EfSVqu4X/RY2Rx5e0iiyUfSAYtLgE+TgbyniU7tectx+xWf2R1HpIWkDTPNL486zs/jIjWmEKx7Ij4X0TsGhEX9c9p2WDlgIWZmZmZmVn/+DNZn2INMnXGJAGI0in3XWAtSqqaclN/DlnzwvrHJWR6rh3JOiKQ+djHk7nZtwEOj4ilI+LaaqcyY+bXZL2EKnXJExFxc0TcV5a1Ngadqg65iHg2OilMaj3ithvcZimPL8CEdhlflt0E/AFYnQxIDQeIiDFkQfX5yVoks1UHK0Hh1n469+lCpA5JK0g6vyx7JSIOB34ALAxcJGnD2j4PA48Dq0maOyLuJK/B+cgg4fzAdWXznco+XQbf67MqJM0iaQsyzddFbs+BKUoh9PrMUbNp4YCFmZmZmZlZP4iIkcBZ5CyL3Ure+8aRpmeRnXVflbRu2e/AiPhXY2oM6xulE/pEMp/+bpIWAh4gO8LbgKMj4qz6PpJWI4vNrg68WTtO47FdY6QPue2aT9LM5XFqOi7fLI+fggw4RESUANIoMq0eZLHeFaudIuJG4HvAGRHxTv2Abreek3QSmQZtb0lfqa06lqzP8lHgDEnr1db9oiyfC6AE+g4ii9T/hpwdA7CSpDm7eF6VfUNSi6Q1ynNeRs7UuNvtObBFxPgpb2U2ZQ5YmJmZmZmZ9Z+7gfOBLYBPVQVEax01b5C1K75dRqkCGdRw7u7+E1m891yy2PIOkUV+zyNz4h8p6cCSomRZSQeRgaYtgLOBq5tz1gZuu2bQRKcA90ga0ZOOy1rQ9pfAKGBTScuVda1ANar+QTKosRxwQMNsisMj4jqsN8xbHt8GTq5+zxHxNnAKGRz6GHCBpAXLtv8m6xPsWjvOr4EvkanaTgHGAEsDQzp70lr6p6WBL5Mzpr5K1pWZPyK+1Uuvz8wGOPkzr5mZmZmZWf8pnTHXA28B+0XEPSVw4ZuzAUTSIsC9wCvALhHxoKSdyBHGc5LtJzKNzfPAIRFxTZNO12rcds0h6SZgE+DzEXHVVOw/HPg+OYPi7MiC2/X1R5H1EZ4ANgRWioh/19b7fbQbJvd7KsGj44G9yTRPG5E1RQ6o7yfpF2R6pxvIWktPAX8ja1XsXIIb1TE3A64ka8kArBER93by3POSdS72IWdU3AV8aUp1Ecxs+uOAhZmZmZmZWT8qsykOJEep/gA4tqSL+sB27nxrLkmHAmeSo/C/FhHtklYAtgKWAMYBD0bExbV9WiaXn936h9uu/5T6Hu0lULRaRPy+tq5Hv1NJy5MpvJYEvkXWLhgHbAYcBvwc+CvwTqn7Yz1QtVUX61TSMe0NnEYGIo4li5yvHBEPSxoeEaNLWx8H/B8ZWNianB24K/DxiHis4dhfIa+9iyLil50893LlOTcD3gEOi4jLe+dVm9lg44CFmZmZmZlZP5M0D9np9j7wqYh4qcmnZJ2QNAK4E1gA2Csi/tSwfkJnrKQ25+8eONx2fWNyHd61bRYDtoqIc6fyOTYiAxMLAW8A75LFnh8BtouIJ8p2DjBNhTKL4iTgL8DNJdhUvx6WJ3/XnyZrUlwC3BIRHy/rq8DGIsDRwP7ArWTqtZ8Dm0fEjSWdV1XEe0hEjKudwyQB+XK9vgicExFH9vkvwcwGNAcszMzMzMzMmkDS8o2jUG3gkbQ18DvgGrLj+42G4rATvm/iaVon3HZ9R9LCEfG/Tjqih5CFzlcANomIW7sT5Ojk+MsBu5CFnGcH/hQRp/biS5ghlWDQDWQR+heAn0XEsQ3bfJgMQFwGHArcDqxDBot+W2/zEvz4PbAlmaprWeDSiNiji+f/wN9CFTAstU9G9eLLNbNBygELMzMzMzOzJvLo7oFP0m1k4dhNIuLpZp+PdZ/brveUAM/iwM3kzIe1q/cuSZ8DnoiIhyTtCfwMuCkiNqv2ndrAkKRhETGmfO/3y27q7HcuaSngP+SslTfIOi6/A46OiJdr2z1Bpkz7vKTPAr8BnouIJapjAy1ldsaKwNeBKkjxCPDJiHi+T1+gmU23Wpp9AmZmZmZmZjMyd74NCttHxBLu8B6U3HbTQNLqktaGCTNR3iYLmn8U2KisfwC4Ati4bHcRcD3wiRK8gGnof4qIMZJaSge83y+noKRiqmYRDaktb4uIp4BTgVmBx4AzgL2AyyR9pHaYfwKrluNcRRbNXkxSla6ppZopUWqJHAdcW9Z908EKM5sWnmFhZmZmZmZm1g0e3T14ue16TtLKwP3AHcBmETG6LP8wGZCYGZgNeBA4nxyp/0KpWbAuORPjGeBjEfGua070rU7qQpwGzAScFBEvV7//EtB4EZgHWJ+cgfRj4C1gv1J/4kwykLFZRPxT0mpkmqgRwEIR8WpjeidJw4ExTrFmZtPKMyzMzMzMzMzMusEd3oOX267nIuJB4M/AesDutVVbAAuSwYpbyFoTP46I/1YBiYi4E7gQWI5MFwTQrY7sqraIdY9SSxUokLSzpP8CXwPagapNOkrgrh04vOx+XERcDnwOGAdcKWkv4DayfUeXfe8Dfgi0AqeVfRvbc0yZ1dHWV6/VzGYMDliYmZmZmZmZmdkEVVoh4Cvl8YuSFivfd5Dpf/5DpoZ6s3RUtzTs+21yJP+BklYo21TrulTreJ+76vyujm0fFKlD0iqS/gb8nKwjsTPw7Yh4tbbt+PJ4KXA3sJmkvSPiFuAzZCqoC4AvAwI+Vnuq75Xj7ilp/cbZMlW7OThoZtPKb/hmZmZmZmZmZjZBKabcGhFPAGcDqwAHlHVnATuQHdizkYEJarMr2suI//+WbeYAjqnWdfZ89VkVkmaV9Gngu8BB9WPbB0lqk3QOcB8wF3AwcFBEXFEFK6rfb5mNUc2AqIJRX5c0f6lFsRdZ12IT4H0yaEFpz1fJ1F8Ac/fDSzOzGZRrWJiZmZmZmZmZGfW6BLWaB8PJmRKjgW0i4h9l/UJkB/aWwMYRcVvjcUrn+F3ASsBnIuLPDc8xoe5CmX2xBhkM2RtoA/aPiJ/3z6sfnCTNA1xKpuo6KiJO7WSbOSPizdrPVdteAuwKnBYRR9bW7w+8CvwlIt5saKchETGuj1+Wmc3AHLAwMzMzMzMzM7MJJK0EPFZ1TEvaDzgXuCQi9qxttx2ZQuh+YFOgvR6AKEGLzwNXAv+MiDW7eL7lgK2B/YFlyEDIoRHxft+8wumLpA2A3wN/AQ4E3iUDSRuQsyXeBe4EflmKaFdtMx/wAvAesEGpWzIhoNHJ86iqU+HUT2bWVxywMDMzMzMzMzMzJM0K/AJYDdi6FFuu1j0ArAjsGBFXlWUjgO8D+wB7R8SFZfl8wFIRcVf5+Xjg8oh4tOH55icDHfsCGwJ/Bb4YEf/uy9c5mNRnpExmmxHAyWSw4iRgfjK907vA62RarvnJ4MTngbtrgaWjyj6XR8QuffQyzMy6zQELMzMzMzMzMzOjpH/6MnAicCrwnYh4t6zbiBzBfzPw2dry9YGfAkOBLwFDgM8CnyCDD9fWjl+lIhKwJvA14NPAK8AhEfHbfnmhg0BDGqZhZKqsP0fEq53NgJC0IjnLYilgFHAmcBYQZD2K08g6JH8BvhQRT9f2fQZYjEzbdU13giRmZn3FRbfNzMzMzMzMzIyIGA38BriNnDWxRm3drcBVwMeB/6stvx34AVmI+VrgCmBn4CcNwQrVOtnbgFWBrYCTI2IxBysmVQtW7EAGdC4Eti/rOitC/h+yyPljwJYRcWxEvAG8FRFjyGLaVwCbASuXYw8r+x5WHo8rwRAHK8ysaTzDwszMzMzMzMxsBiNpb2AYcH5EjKvVJxDZMX4hWXviGxHxUtlnUeBZ4FEyZdSTZflMwDpkAOIt4IdVkef6TIGG518IeCciRvbxSx2UJM1GBo2OB1rJQcd3A/tGxONdzLJYCFiBrFcxpvH3XqtFcm5EfKlhFsdZZI2Se/v2lZmZTZ5nWJiZmZmZmZmZzUAkLQ8cBXwLWA5yRH+tA/tW4Fdk4GLDEsQgIp4nayWsAOxXO+SoiLgJOCIiToyINyW1dhWsKMd6wcGKydoQOBoYCWxHFiLfgJy90uksi/I7vTkiRtd/75KGlm9fqz+WNm8t3x8SEfdKcl+hmTWV34TMzMzMzMzMzKZDktoafm4BiIjHgO8AMwEHlBkSE0TEy8ClwNvkKP9lauu+CfwPOFDSJxr2G189T0S0dxWssG4ZSbbBOhHxJzJg8SKwi6T1YGJ7NqoCTLX2HltWfbY83l1tW0//1JC2y8ysKRywMDMzMzMzMzObjtQ6qqsAwhqSRjRs9ifgerIexVpl+6h1gj9Q1m8CfLJh/2+RwY45qv3qB3an97SLiFuAEyLi2bLoEeBsYFlgN0nDagXMG/eNevBB0jKSTicLd18aEX/o4jkdYDKzpnPAwszMzMzMzMxsOlLrqN5J0hPATcCNwFdr2zwDXAaMAQ6VNHe1b5kh8TrwAlk/YQdgpdq+5wPzRsRv+ucVzZiqOiDl+/Fke91Dpoj69BR2HyZpaUmHAz8m2/5GMthkZjZgOWBhZmZmZmZmZjaIqai+L487kSPy3wBuAVYETi2Flyt/Aa4gO78/JWkITDJDogP4J7AesI+kWaodI+L1qk5FX742mygi/gecCcwF7CFpgYZZMXVnAv8GjgOWBvaJiE9VhdLNzAYqebaXmZmZmZmZmdngJKmtlvqpNSLaJQ0DbgOeA46OiMclrQP8EFgc+BRwd+ns3hg4FxgHHBwRt5TAxbbABcBJwEeAP0fEL/v55VkDSbMDFwJbA4dGxA+72G5tYEfgPuDnVa2K6m+kv87XzKynHLAwMzMzMzMzMxvkJH2JrEVxL/BfYHdgv1JAu9pmNzJo8WfgixHxhqShZGHtM4B3yBkXswEbknUTdo6Ikf35WmzyJG1A1iD5N9k+T0r6ELByRFxe225IRIwr3ztQYWaDggMWZmZmZmZmZmaDSKkxUdWpWBH4JbAyMB5oA0YBI4EPldRNQyJinKT5gFOAPYCdgKvKjIxZyrLTAQHDgWuBAyPiucbntOaSNBNwAnA4cBbwKLAnsDbwyYi4vratwAW1zWzwcMDCzMzMzMzMzGyQkbQUMAT4LLA9cB5Zk2IP4P+AdmDXiLi1Yb9NyVRPLwLbR8R/G465JPBWRNxTljlQMUBIUhV4kLQSOVNmbmAYGaA6NiLOat4ZmplNOxfdNjMzMzMzMzMbRCStBfwH+DY5yv68iPhJRDxOzpI4G1gI2EzSrGWf1rL7HcClZPqo7SS1lfWKiKci4qZasKLVwYqpV/ud94pasGItYD+yjYcBPwIWqIIVLoRuZoOZZ1iYmZmZmZmZmQ0ikuYHLgK2AJ4AViopn9oiYryk5chC2ssCu0XELWW/lojokLRqWf8RYO2IeKgJL2O6VQIGLbVC10sA7wHvR8R79ZkSU3HcdYBLgKWAm4GDIuLRsr4NaHf6JzMbzDzDwszMzMzMzMysCaZ2JHwppP0d4G1ylP3y1ary+B8yRdRcwO4lwFHf/37gSuA24JWpOQfrXBWMKLVBlpF0JXATcDdwa0nJNWFWS0+OXQIRo4F/ADtExKYR8aiklhKMGu9ghZkNdg5YmJmZmZmZmZk1QS3Fz/Cp2P1ucqT9zMBm5XjttZoTtwC/BnYANigd6R21NEU/jogtS/DDeklERAkgfB24jyyE/ThwL7AAcAWwS7XtVDzF/RGxc0T8Giam7XLqLjObXjhgYWZmZmZmZmbWBEonAydLGtaTfSPiXeCnwAvA9pJWblj/EnAx8AawP7BcWd5eHkeVc+jVOgszOklDgAOAQ4CrgL2BrSPi88AGQCuwn6T1y/Y96purAhPVflV7mplNLxywMDMzMzMzMzNrjrWAI4DNImLMVOz/CFlge23gc5KGN8yi+CfwW+ATwKKdHcAd3r1uTmArMm3TMRFxfakrshlwDTAbsCbwBUnDSnv1ODWYZ1SY2fTKRbfNzMzMzMzMzPpQLU1T4/JW4C5gdWDDiLi9pwWZJS1KBiXmAvaNiJsb1i8LtEXEI9P0ImyCqrj5ZNZvGBG3le/nJ4NK25NpoS4E9gUWBvaPiN9Oqc3r60th7ZaIGNt7r8jMbODwDAszMzMzMzMzsz5QjZwvo+hnbljXWmY3XF4WbVS27enI0v8CZwKLA9tJmqccv0oZ9EREPFLqKkxVkW9Ltd/p+PLzNpI+IWnlhva9vaz/MNm+WwKnA3tHxI+AHwFzk7MsFqjqXnTyfNXfTxWsWAU4FNiqp6mkzMwGC7+5mZmZmZmZmZn1gVpH85HAg5K2Lz+rlorpHuAdYIWe1rGoPcd1wO/I2gmfKMs7GrbrmMoizzMcSetKmrd8P6HvrFY/YidJz5BFzW8A7geulrRgfTsyULEBcDJwUkQ8UJZXRdbXAD7fsM8Etb+fRSXtB5wHnAasBDj4ZGbTJQcszMzMzMzMzMz6iKSNgG8DSwLnSFqHSftjXipfWwBDyj496oyOiDfJUfuXkB3oNpUkHUHOkNgPJi1yLalN0tFkWqengKPIANGPgfWAiyWtWrYfAuwMvAmcFxEja08zHLiPrCtymKQlas+v2vezS9oW+AFwLjAC+EREnOTaI2Y2vWpr9gmYmZmZmZmZmQ12XdWpiIhbJT1KBinagcuArwJXlfWPSnoY+BywDfCLqTyFv1T1K3paB8MmcQ3wJeDVepuWtF6LA18E/g4cEhEPAkh6EBhDpmv6sqQjIuJVSf8ClgY+BlxX6k9sDRwDHA4MBcZGxDPVk5f0UG1kYe6dgT2ADuDAiDin71++mVlzOWBhZmZmZmZmZjaNSof20KoYchkp31JGwv8W2AfYGPg9cLqkt2sFsn9OBizWkfTrqSmoXEsf1GngxLqn1PtYIyJe7WT1F4CFgB1qwYqVgK2A7co2j5Rghcjgx2eBsyRdDcwJbAr8C7gxIp5ufAJJS5MFuvcDliBnzhwWEeN671WamQ1cTgllZmZmZmZmZtZDjWmbJH0RuFPSNtWiWtqe+4B5yRRA2wMjgcskrVaO8whZPHsFoEd1LBrPw8GKaVcCDptIul3SlpBF0oHFyHojT0uaU9LewE+AU4HHgGUj4oxyjACuJdNGLQF8BdgN+DewU2fBimIr4CQy5dRyEXGwgxVmNiNxwMLMzMzMzMzMrJuUWuoplyTNBywDfBT4kaTlGgIHj5F1KraLiPuBA8mgxSXAx8nO6WfJeggfKPY8ObWZFQtImmcaX55NtBiwLrCdpNlK8GksMBtwMFm34jxgAWDriNg8Ip4EkDSPpCERMSoifgCsDHwaWD8itomIZxvbtxZ4ugbYJCI2jYj/9McLNTMbSBywMDMzMzMzMzPrpkgdklaQdH5Z9kpEHE4WR14YuEjShrV9HgYeB1aTNHdE3AnsCMxHdnzPD1xXNt+p7NPlTImGwsyzSNoC+Gl53tZefLkzskuAP5LttG1ZdhUwnqxBsg1weEQsHRHXVjuV+hO/JmtdVPVEnoiImyPivrKstbF9q8BTRDwbEX/t25dmZjZwOWBhZmZmZmZmZtYDkk4iU/vsLekrtVXHkjUHPgqcIWm92rpflOVzAZTO64PIwsu/AZ4r260kac4unldl35DUImmN8pyXkTM17q6lobJpUAIIJwIjgN0kLQQ8QAYx2oCjI+Ks+j6SViPbYnXgzdpxGo/tNjIz64IDFmZmZmZmZmZmPTNveXwbOFnSbAAR8TZwCvA94GPABZIWLNv+G3gf2LV2nF8DXyLTD50CjAGWBoZ09qS19E9LA18mZwF8layVMH9EfKuXXp8BEfF34FyyUPYOEfEamQbqbeBISQeWVFzLSjoIOAvYAjgbuLo5Z21mNripk0CvmZmZmZmZmdkMq6Tx6bTDpNQeOB7Ym0zztBFwXkQcUN9P0i/I9E43AEeQdSr+Rtaq2LkEN6pjbgZcSdZHAFgjIu7t5LnnJetc7EPOqLgL+FKpi2F9QNIiwL3AK8AuEfGgpJ3ImTRzAm8BAmYBngcOiYhrmnS6ZmaDnmdYmJmZmZmZmZkVpb5AV8EKldoDzwLDyPQ/zwP7SVqppGoaXjb/OllX4hPAD4FW4A/AKmSh5gki4gbgODK48YUughXLkaP7LwA+RHaer+tgRd+KiP+Ss18+BOxZ/j4uB9YjZ7dcBvwM2CcilqqCFd0tmm5mZpPyDAszMzMzMzMzs5rS2XwS8Bfg5ohol9RSFUqWtDzwCPBpsibFJcAtEfHxsl4leLEIcDSwP3ArGXD4ObB5RNxYCmRXRbyHRMS42jlMMstD0gjgReCciDiyz38JNkH53d9JBpr2iog/Nayv/220RcT4Jpymmdl0wdFeMzMzMzMzM7NC0kbAaOAbwIXkzAeqDumiDXgD2JwMQPwN2FjS52rrq9H5BwJ/IlNHHV/W71bWt1fHrYIVJYhBQ7CiLSJGAQs6WNH/yu/+WGB+YH9Jc0EGlapZN7XvHawwM5sGDliYmZmZmZmZ2QxJkjpZ/DwZcHgXGAd8UdIFkuavNoiIfwFvAouWwMJ3yqrvlvXjSv91awlIfBW4GFi2bLeGpEU7O6eIaO9k2fjyOGoqXqb1goj4PXA7sCowe1kWVWCp/r2ZmU09ByzMzMzMzMzMbIZSn8UgaUhteVtEPAWcCswKPAacAewFXCbpI7XD/JPsvCYiriKLZi8mqZoB0VIFHyLiEXKmxrVl3Tcj4vk+ennWd7aPiCUi4ulmn4iZ2fTKNSzMzMzMzMzMbIbQSV2I04CZgJMi4uWqFkEJaLwIzAOsDywG/Bh4C9iv1J84kwxkbBYR/5S0GlmnYgSwUES8WmZYtNeebzgwxiPxBzfXqTAz6zueYWFmZmZmZmZm07WSnqmlChRI2lnSf4GvAe1AVUeio3RGtwOHl92Pi4jLgc+RKaKulLQXcBswG1nvgoi4D/gh0AqcVvZtDEyMKbM62vrqtVrfc7DCzKzveIaFmZmZmZmZmc0QJK0CnAusBdwEXADcHBGvdrH9XcCawL4R8VNJKwJnA58A/gJsAuwdEReW7ecFbgFWBDaMiNv79hWZmZlNXzzDwszMzMzMzMyma5LaJJ0D3AfMBRwMHBQRV1TBiqoAd5mNUc2A+Ep5/Lqk+Ustir3IuhabAO8D1X4t5Vjnl33m7oeXZmZmNl3xDAszMzMzMzMzm65Jmge4FNgCOCoiTu1kmzkj4s3az1U9i0uAXYHTIuLI2vr9gVeBv0TEm/X6GJKGRMS4Pn5ZZmZm0x0HLMzMzMzMzMxsuidpA+D3ZCqnA4F3gS2BDcjZEu8CdwK/LEW0WyOiXdJ8wAvAe8AGEfFgOV5LRHR08jyq6lS41oGZmVnPOGBhZmZmZmZmZoNaFVyYwjYjgJPJYMVJwPxkeqd3gdeBOcqyF4DPA3fXZkwcVfa5PCJ26aOXYWZmNsNzwMLMzMzMzMzMBqWGNEzDgB2AP0fEq53NgChFs38PLAWMAs4EzgKCrEdxGnAAOQvjSxHxdG3fZ4DFgM9ExDXdCZKYmZlZz7jotpmZmZmZmZkNSrVgxQ7AK8CFwPZl3QfSNQH/Ab4HPAZsGRHHRsQbwFsRMYYspn0FsBmwcjn2sLLvYeXxuBIMcbDCzMyslzlgYWZmZmZmZmaDkqTZJB0GXAC0AeOAHSUtV9ZP0u9RCmFfRaaFuluSyvIoj/8D7iD7S7You40t634LnA3s20UwxMzMzKaRAxZmZmZmZmZmNlhtCBwNjAS2A84ni2jvDJ3PsoiIFyLi5ogYHbU82ZKGlm9fqz+WAtqt5ftDIuLexkCImZmZ9Q7/gzUzMzMzMzOzwWokcCmwTkT8iQxYvAjsImk9+OAsi0o1u6JaHxFjy6rPlse7q23r6Z9K3QzPsDAzM+sDDliYmZmZmZmZ2aAUEbcAJ0TEs2XRI2TapmWB3SQNi4iOKjjRsG/Ugw+SlpF0Olm4+9KI+EMXzxmdLTczM7NpJ/+fNTMzMzMzM7PphaSFgauBJYH9I+I3JTDxgQ4QScOBhYHPkDUrNgX+BHw5Ip7st5M2MzMzwDMszMzMzMzMzGw6UgpnnwnMBewhaYEym6KzPpAzgX8DxwFLA/tExKccrDAzM2uOtmafgJmZmZmZmZlZL/sTOctia7IY9w+7qDtxKTAWuA/4eVWrQlJrvW6FmZmZ9Q+nhDIzMzMzMzOz6Y6kDcjAxb+BnSPiSUkfAlaOiMtr2w2JiHHlewcqzMzMmsgzLMzMzMzMzMxsenQPcA5wOHCgpEeBPYG1Jb0REdcDRMS4qii3gxVmZmbN5RkWZmZmZmZmZjbdqBfYlrQS8GdgbmAYMBI4NiLOat4ZmpmZWVc8w8LMzMzMzMzMmqa30zDVghVrAV8AFiqrfgQcERHvl/UTAhtmZmY2MDhgYWZmZmZmZmb9rqRhaqkVul4CeA94PyLem9qAQjnuOsAlwFLAzcBBEfFoWd8GtDtYYWZmNvC0NPsEzMzMzMzMzGzGUgUjIqJd0jKSrgRuAu4GbpW0KWWQZVVfortKIGI08A9gh4jYNCIeldQiqSUixjtYYWZmNjC5hoWZmZmZmZmZ9TtJLcBXgWOAt4CHgfeBtYARwGERcfHUHjsiOmo/92raKTMzM+sbTgllZmZmZmZmZv1K0hBgX+AQ4CrgMuDmiBgvaUngPmA/SU9GxO2NAYgpqbat9nOwwszMbHBwSigzMzMzMzMz629zAluRaZuOiYjrS7BiM+AaYDZgTeALkoZFREdPU0PBxMCFmZmZDQ4OWJiZmZmZmZlZryvFrTsVEa8Ap0fEthHxrKT5JV0BXAeMAQ4G/gVsB3yqm8+n2vdtkoZO0wswMzOzfueUUGZmZmZmZmbWa2ppmMaXn7cB3gNeBZ6MiPfKpreX9R8GfgisDpwO/DIiHpA0FvgJOcvizoh4qbPUULUC3lF+XgXYHHhC0jWeZWFmZjZ4eIaFmZmZmZmZmfWYpHUlzVu+n9C/UKsfsZOkZ4BfAzcA9wNXS1qwvh2wJbABcDJwUkQ8UJYPL49rAJ9v2GeCWqBiUUn7AecBpwErAT1OI2VmZmbN44CFmZmZmZmZmfWIpCPIGRL7waRFrks6pqOBC4GngKOATwA/BtYDLpa0atl+CLAz8CZwXkSMrD3NcLL49qLAYZKWqD1/Pf3T7JK2BX4AnAuMAD4RESe52LaZmdng4pRQZmZmZmZmZtZT1wBfAl6tp2kqxbEXB74I/B04JCIeBJD0IFmf4lDgy5KOiIhXJf0LWBr4GHBdqX2xNXAMcDgwFBgbEc9UTx4RUbZbkwx47AF0AAdGxDl9//LNzMysLzhgYWZmZmZmZmY9EhGPSFojIl7tZPUXgIWAHWrBipWArcgi2gCPlGCFyODHZ4GzJF0NzAlsShbdvjEinm58AklLA9uTMzyWAH4EHBYR43rvVZqZmVl/c0ooMzMzMzMzM+uxEnDYRNLtkrYEkNQKLAa8AzwtaU5Je5PFs08FHgOWjYgzyjECuJZMG7UE8BVgN+DfwE6dBSuKrYCTyJRTy0XEwQ5WmJmZDX6eYWFmZmZmZmZmU2sxYF1gO0l3RMQ7ksYCswEHA0sCOwDPAFtHxLXVjpLmAd6OiFHADyT9maxX8WZE3Fe2mZBuqvysEuS4Brg/Iv7aL6/SzMzM+oXy/7yZmZmZmZmZWc+UlE6/BzYGvhgRl0r6BPCnssk44OiIOKthvzbgRuC3EXF2LRBR36bVRbPNzMxmLE4JZWZmZmZmZmZTpQQZTgRGALtJWgh4APgjmdWhs2DFasBlwOrAm7XjNB7bwQozM7MZjAMWZmZmZmZmZjbVIuLvwLlkoewdIuI14DzgbeBISQdKWkDSspIOAs4CtgDOBq5uzlmbmZnZQOSUUGZmZmZmZmY2TSQtAtwLvALsEhEPStoJ+BEwJ/AWIGAW4HngkIi4pkmna2ZmZgOUAxZmZmZmZmZmNs0kHQqcSc6g+FpEtEtaAdgKWIKsZ/FgRFxc22eSotpmZmY2Y3PAwszMzMzMzMymmaQRwJ3AAsBeEfGnhvUTghOS2iJifBNO08zMzAYw17AwMzMzMzMzs2kWEaOAY4H5gf0lzQWgIiI6at87WGFmZmYf4BkWZmZmZmZmZtZrJN0GLAZsEhFPN/t8zMzMbPBwwMLMzMzMzMzMeo2k+SPi5Wafh5mZmQ0+DliYmZmZmZmZWa9znQozMzPrKQcszMzMzMzMzMzMzMys6Vx028zMzMzMzMzMzMzMms4BCzMzMzMzMzMzMzMzazoHLMzMzMzMzMzMzMzMrOkcsDAzMzMzMzMzMzMzs6ZzwMLMzMzMzMzMzMzMzJrOAQszMzMzMzMzMzMzM2s6ByzMzMzMzMzMzMzMzKzpHLAwMzMzMzMzMzMzM7Omc8DCzMzMzMzMzMzMzMyazgELMzMzMzMzMzMzMzNrOgcszMzMzMzMzMzMzMys6RywMDMzMzMzMzMzMzOzpnPAwszMzMzMzMzMzMzMms4BCzMzMzMzMzMzMzMzazoHLMzMzMzMzMzMzMzMrOkcsDAzMzMzMzMzMzMzs6ZzwMLMzMzMzMzMzMzMzJrOAQszMzMzMzMzMzMzM2s6ByzMzMzMzMzMzMzMzKzpHLAwMzMzMzMzMzMzM7Omc8DCzMzMzMzMzMzMzMyazgELMzMzMzMzMzMzMzNrOgcszMzMzMzMzMzMzMys6RywMDMzMzMzMzMzMzOzpnPAwszMzMzMzMzMzMzMms4BCzMzMzMzMzMzMzMzazoHLMzMzMzMzMzMzMzMrOkcsDAzMzMzMzMzMzMzs6ZzwMLMzMzMzMzMzMzMzJrOAQszMzMzMzMzMzMzM2s6ByzMzMzMzMzMzMzMzKzpHLAwMzMzMzMzMzMzM7Omc8DCzMzMzMzMzMzMzMyabroMWEjaVdJPJP1T0hhJIWnPqThOi6SDJT0kaZSkVyX9UtJSfXDaZmZmZmY2AEhaWNIhkq6X9JyksZJekvQbSWt1sc9skr4r6dlyD/KMpDMkzdLF9r7XMDMzMzNroIho9jn0OknPAIsDrwHvle//LyIu6uFxzgf2Af4FXAssBOwAjATWjogneu+szczMzMxsIJB0KnAE8CRwC/AqsCzwGUDALhFxRW37mYHbgVWB64H7gNWAzYF/ABtGxOiG5/C9hpmZmZlZg+k1YLEp8EREPCvpG8Ap9DBgIWkT4GbgNmCziBhblm8J/BG4PiK26PWTNzMzMzOzppL0OeD1iLi1YfkGwE1kUGHBiBhTlp8AHAucFhHfqG1fBT6OiohTast9r2FmZmZm1onpMiVURNwYEc9O42H2LY/HVDcQ5dh/IkdZbS5psWl8DjMzMzMzG2Ai4reNwYqy/K/AX4A5gY8ASBI5U2IkcGLDLieW5fs0LPe9hpmZmZlZJ9qafQID2MZkOqk7Oll3XVm/EXBpdw8oaZEpbDIUWAF4hZx23t7dY5uZmZmZdaEVmLd8/1A1K8Cm2rjyOL48Lkumc7ouIt6rbxgR70m6A9hC0qIR8XxZtTG+1zAzMzOzwa1P7jMcsOhEyUG7IPBwRHT2Qb7KJ7tsDw/9/JQ3MTMzMzPrMx8D/tnskxisyqyHTYEXgYfK4uqeoKuaE08AW5Ttnve9hpmZmZlNh3rtPmO6TAnVC2Yvj293sf6dhu3MzMzMzGw6JmkIOeNhGHBELdjQ03sH32uYmZmZmXXBMyz616JTWL8wcBfADTfcwOKLL973Z2S9YsyYMfz9738HYK211mLYsGFNPiPrLrfd4OW2G5zcboOX227wevbZZ9lss82qH19t5rkMVpJagIuADYHzI6LbqZr6UbfvNW677TYWWGCBvj8jMzMzM5tuvfTSS2y44YbVj712n+GAReeq0U5djWqarWG7bomI/05ufdbrS4svvjjLLtvTWeDTkQj43z3w+pPd32e+FWDBVfrunCZj1KhRPPlknuvSSy/NiBEjmnIe1nNuu8HLbTc4ud0GL7fddMN1C3qoBCt+BuwCXAYc0LBJT+8dmn6vseSSS7LIIlMqeWFmZmZm1rWGe8Jeu89wwKITpTjei8CSklo7yS07pTy1Nq0e+T38aree77fclrDp8Rm8MDMzMzObBiVYcSGwO/BLYM+I6GjYbEo1Jya5d/C9hpmZmZlZ11zDomu3AjMD63WybovyeFv/nc4M5rm7pm6/x/8E56wD13wZ3n2pd8/JzMzMzGYYDcGKK4DdJlMk+wVgvVJQu36M6n7i6YioF8X2vYaZmZmZWSdm+BkWkuYB5gFei4jXaqvOA3YCTpS0WUSMLdtvCWwMXB8Rz/b3+c4w2sdM/H69Q2D2KUxZH/Mu3H0+vPsCRAfcezE8dCWscxCs92UYNmufnq6ZmZmZTT9qaaB2B64Edu0iWEFEhKQLgGOBY4Bv1FYfA8wCnNywm+81zMzMzMw6MV0GLCTtA6xffvxIedxH0sbl+9sj4oLy/UHAccAJwPHVMSLiL+XGYx/gXknXAgsCOwJvAAf34Uuw8aMnfr/Kzt1L8bTWAfD3c+Cv34Ox78K49+G20+GeC2GjI2D1PaF1SJ+dspnZjCAieO2113jvvfcYN25cj/fv6Ohg7rnnBuC5556jpcWTPQcLt93ANmTIEGaeeWbmmWeeSWoV2FQ7FtgDGAk8Dnyzk9/r1RFxf/n+dGBb4AhJqwH3Ah8FNgf+AZxV39H3GmZmZmZmnZsuAxZksGKPhmXrMemU6wuYsv2Bh4D9gK+QNyxXAUdHRA+qQVuPja/NsGgb2r19hs4EGxwOH90DbjsD/vFT6BgH770Kf/wq/P3crG+xwqfBN/JmZj0WEbz88su8+eab03SMqjBXe3s7HR2NqeBtoHLbDWzjx49n1KhRtLe3M//88ztoMe2WKI+zAEd3sc0zwP0woS7FRuQAqM8DmwAvAmcCJ0TEqE72972GmZmZmVmD6TJgERF7Ant2c9vjqc2saFjXAZxdvqw/TRKwGN6zfWeeB7Y8DdbaH276Fvzrqlz++n/gil1h0bVg85Ng0TV773zNzGYAr7322iTBitbW1qnqFK32aWubLj+GTNfcdgNTRNDentmK3nzzTVpbW5l33nmbfFaDW0/uJ2r7vA0cWr66s73vNczMzMzMGvhu0wamaQlYVOZaCra/KOtY3HAsPHtHLn/+7/CzT8Kuv4alPz7Np2pmNqN47733Jny/4IILMsccc/T4GB0dHbzzzjsAzDbbbE4rNIi47Qa2t956ixdffBHIa9UBCzMzMzMzG4x8p2kDU72GRWs3U0J1ZZE1YM9rYefLYZ7lc1m0wzVfzmLdZmbWLVXNitbW1qkKVphZ35ljjjlobW0FMj2UmZmZmZnZYOSAhQ1M7WMnfj+1MyzqJFh+S/jinbDkRrns7efhxhOm/dhmZjMY58Y3G5iqazMimnwmZmZmZmZmU8cBCxuYqhkWaoXWXsxc1toG25wNQ2bKn/9xPjxzR+8d38zMzMzMzMzMzMymigMWNjBVNSx6Y3ZFozmXgE8cN/Hnaw6Cse/3/vOYmdmAsfHGG3PIIYc0+zTMzMzMzMzMbDIcsLCBqZph0TaN9Su6suZ+sOha+f0bT8EtJ/fN85iZ2YDw29/+lhNPPLFfnuu2225j6623ZqGFFkISV1999Qe22XPPPZE0ydcn/5+9O4+rssofOP45LJdVlEVAFAUVyEoNzV0TrBE0S62mcjLXFutno5mlWWNaLk2WuUymMyU0NWWW2lRWVg5XzS0zLfcVBE0RUQRkk3vP748LV67syu733eu+uM95znOe78O9GDzfe843OtqmT2H7tm3bbNpzc3Px9vZGKYXRaASge/fujBs3zqbf0qVLUUoRGxtb7Nx9+vS57usUQgghhBBCCCGqmiQsRN2UX1DDojpmWADY2cG9/wB7J8v21nfg5M7qOZcQQoha5+XlRaNGjWrkXJcuXaJjx4688847ZfaLjo7m9OnT1scnn3xSrE9gYCAxMTE2bWvWrMHd3d2mLTIy0pq8KBQXF0dgYGCxdqPRSL9+/Sp+QUIIIYQQQgghRA2RhIWom6wzLJyq7xxNQyFiquW5NsN//+/KUlRCCCEalKJLQuXm5jJ58mSaN2+Om5sb3bp1s7mpn5qayrBhw2jevDmurq60b9++xGRCaQYMGMCsWbMYOnRomf2cnJzw9/e3Pjw9PYv1GTlyJCtWrCA7O9vatnz5ckaOHGnTLzIykkOHDnHmzBlr24YNG5g6darNtcXHx3PixAkiIyMrfD1CCCGEEEIIIURNkYSFqJsKEwf21ZiwAOj5V2h2m+V5ygHY9Fb1nk8IIUStGz9+PFu3bmXFihX8/vvv/PnPfyY6OpojR44AkJOTQ+fOnVm7di179+7liSee4NFHH+Xnn3+u0jiMRiO+vr6EhYXx1FNPkZqaWqxP586dCQoKYtWqVQAkJiayceNGHn30UZt+vXr1wtHRkbi4OAD2799PdnY2Y8eOJTU1lfj4eMAy68LZ2ZkePXpU6bUIIYQQQgghhBBVwaG2AxCiRKbCotvVnLCwd4DB/4B/RoA535KwaHcP+Lev3vMKIUQDcs/in0jJqOgMNY1ZawDslALUNZ+3aSMnvnqmd6WOSUxMJCYmhsTERAICAgCYPHky3333HTExMcyZM4fmzZszefJk6zHPPPMM69atY+XKlXTt2vWa4y0qOjqa++67j+DgYI4dO8a0adMYMGAAW7duxd7e3qbvmDFjWL58OcOHDyc2NpaBAwfStGlTmz5ubm507doVo9HIsGHDMBqN9O7dGycnJ3r27InRaCQ4OBij0UiPHj1wcqrm/78KIYQQQgghhBDXQBIWou4xm8FUzTUsivJvD32egw1/tyQt/vt/8Nj/LMkMIYQQ5UrJyOVMek5th1Ehe/bswWQyERoaatNeWMgawGQyMWfOHFauXMmpU6fIy8sjNzcXV1fXKovj4Ycftj5v3749HTp0oE2bNhiNRu68806bvsOHD2fq1KkcP36c2NhYFi1aVOKYERERfPbZZ4Bl9kZERAQAffv2xWg0Mnr0aIxGI48//niVXYcQQgghhBBCCFGV5I6sqHtMRT6lW90zLAr1mQz7v7QsC3X6N9iyCPpMqplzCyFEPde0UWX+ra7aGRaVlZmZib29PTt37iw2k6GwkPW8efNYuHAhCxYsoH379ri5uTFx4kTy8vKuOdbytG7dGh8fH44ePVosYeHt7c2gQYMYO3YsOTk5DBgwgIyMjGJjREZGMnv2bE6dOoXRaLTOEunbty/Lli3j2LFjJCUlScFtIYQQQgghhBB1liQsRN2TXwsJCwcDDH4H3r/LUoDb+LplaSifkJo5vxBC1GOVWZbJbDaTnp4OgIeHB3Z2NVtOKzw8HJPJxNmzZ+nTp0+JfTZv3szgwYMZPnw4YIn58OHD3HzzzdUW18mTJ0lNTaVZs2Yl7h8zZgwDBw5kypQpxRIthXr27InBYGDJkiXWOhwAXbp0ISUlheXLl1uXjhJCCCGEEEIIIeoiKbot6h6bhEUNLAlVqEVn6PF/luemXMvSUGZTzZ1fCCFEtQsNDeWRRx5hxIgRrF69mvj4eH7++Wfmzp3L2rVrAQgJCeGHH35gy5YtHDhwgCeffJLk5OQKnyMzM5Pdu3eze/duAOLj49m9ezeJiYnW/c8//zzbtm0jISGB9evXM3jwYNq2bUtUVFSJY0ZHR5OSksKrr75a6nldXFzo3r07ixcvplevXtbEhsFgsGl3dHSs8LUIIYQQQgghhBA1SRIWou7JL7IOur2hZs8dMQ28WlueJ22Hn/9Vs+cXQghR7WJiYhgxYgTPPfccYWFhDBkyhB07dtCyZUsAXn75ZTp16kRUVBQRERH4+/szZMiQCo//yy+/EB4eTnh4OACTJk0iPDyc6dOnA2Bvb8/vv//OvffeS2hoKGPHjqVz585s2rSp1GLYSil8fHwwGMr+/2JkZCQZGRnW+hWF+vbtS0ZGBpGRkRW+DiGEEEIIIYQQoqbJklCi7jEVWSO8JmdYABhc4d5/QOxAy/b6mRAWDZ5BNRuHEEKIKmU0Gq3PHR0dmTlzJjNnziyxr5eXF1988cU1nysiIgJdUKejJC4uLqxbt67cccoao0mTJiXunzFjBjNmzCjW/sorr/DKK6+Ue04hhBBCCCGEEKI2yQwLUfcUnWFRUzUsigrqBV0eszy/nAVf/hXKuGkkhBBCCCGEEEIIIYQQ4vpJwkLUPbVVw6Kou2ZA40DL8/gNsPUftROHEEKIOiUxMRF3d/dSH4V1KoQQQgghhBBCCFF5siSUqHtsZljUcA2LQk6N4J6F8NF9lu0fpkPTmyDkT7UTjxBCiDohICDAWky7tP1CCCGEEEIIIYS4NpKwEHVPXZhhAdD2TrjjBdj4BmgzfD4GHlsPTUNrLyYhhBC1ysHBgbZt29Z2GEIIIYQQQgghRIMkS0KJuscmYVELNSyKingRbhpkeZ6bDp88DNkXajcmIYQQQgghhBBCCCGEaIAkYSHqnqJLQtnXcsLCzg6GLgO/Wy3b54/BZ6PBlF+7cQkhhBBCCCGEEEIIIUQDIwkLUfeY8q48r+0ZFgBO7vDwx+Dqbdk+Hgffv1y7MQkhhBBCCCGEEEIIIUQDIwkLUffYFN2uxRoWRXm2goc+AjtHy/b2d+HXf9duTEIIIYQQQgghhBBCCNGASMJC1D11qYZFUa16wt1vXdn+ehKc2Fp78QghhBBCCCGEEEIIIUQDIgkLUffU1YQFQOeR0PVJy3PzZfh0OKQl1m5MQgghao1Sii+++KK2wxBCCCGEEEIIIRoESViIuscmYVFHloQqKmoOtI6wPM86B5/8BfIu1WpIQggh6r6goCCUUjaP119/3brfaDSilMLT05OcnBybY3fs2GE9BiAzMxNHR0dWrFhh0+/hhx9GKUVCQkKxc//tb3+rngsTQgghhBBCCCGqiCQsRN1TtIaFvaH24iiNvQM8EANerS3byXswrP0raHPtxiWEEKLKXL58uVrGffXVVzl9+rT18cwzzxTr06hRI9asWWPT9v7779OyZUvrtru7O7fffjtGo9Gmn9FoJDAw0KY9Pj6eEydO0K9fvyq9FiGEEEIIIYQQoqpJwkLUPXWx6PbVXL1g2Apw8gDA/vBaws58UbsxCSGEKFVERAR//etfeeGFF/Dy8sLf358ZM2ZY9yulePfdd7n33ntxc3Nj9uzZAPz3v/+lU6dOODs707p1a2bOnEl+fv41x9GoUSP8/f2tDzc3t2J9Ro4cyfLly63b2dnZrFixgpEjR9r0i4yMtElMHDhwgJycHJ566imbdqPRiJOTEz169LjmuIUQQgghhBBCiJogCQtR95jyrjyvazUsimoaBve/D1iW57jpzBcEXPi5dmMSQghRqg8++AA3Nze2b9/OG2+8wauvvsoPP/xg3T9jxgyGDh3Knj17GDNmDJs2bWLEiBFMmDCB/fv3s2zZMmJjY63JjGvx+uuv4+3tTXh4OPPmzSsx+fHoo4+yadMmEhMtNZJWrVpFUFAQnTp1sukXGRnJoUOHOH36NABxcXH07t2bfv362SQs4uLi6NGjB87OdfRDAEIIIYQQQgghRAGH2g5AiGLqwwyLQqH94U8z4YfpAISf+Cf5p++G1j1rOTAhhKhBy/pC5tkKdVWAR8ESekpd5+cm3H3hyQ0V7t6hQwdeeeUVAEJCQvjHP/7B+vXr+dOf/gTAX/7yF0aPHm3tP2bMGKZOnWqd2dC6dWtee+01XnjhBes4lfHXv/6VTp064eXlxZYtW3jxxRc5ffo08+fPt+nn6+vLgAEDiI2NZfr06SxfvpwxY8YUG69Xr14YDAaMRiPDhg3DaDTSt29fOnfuzLlz54iPjyc4OJgNGzYwduzYSscrhBBCCCGEEELUNElYiLrHpuh2HZ5hUajnX8n/43cc9n2Og87DfuVfYPRa8LultiMTQoiakXkWMv6oUFdF4by0mtehQweb7WbNmnH27JVEy+23326z/7fffmPz5s02MypMJhM5OTlkZWXh6upaqfNPmjTJJhaDwcCTTz7J3LlzcXKy/f/dmDFjmDBhAsOHD2fr1q189tlnbNq0yaaPq6srXbp0sSYsNmzYwPPPP4+DgwM9e/bEaDSitSYxMZHIyMhKxSqEEEIIIYQQQtQGSViIuqe+JSyU4nL0m6Sd2INP5iFUzgX49xAY/S34tK3t6IQQovq5+1a4qwZ0kRkW15W8qMR5ARwdHW22lVKYzWbr9tX1JDIzM5k5cyb33XdfsbGqYnmlbt26kZ+fT0JCAmFhYTb7BgwYwBNPPMHYsWO555578Pb2LnGMyMhIPv30U/bt20d2drZ12ai+ffsSFxeH2WzG1dWVbt26XXe8QtxIlFLDgT5AZ6A9YABGa61jS+irKzBkS611UkH/ICC+jL4ztdYzKhmyEEIIIYQQDYIkLETdY5OwqONLQhVycGZ760n0PPp3PLOOw6Wz8O97LUkLz1a1HZ0QQlSvSizLpM1m0tPTAfDw8EDZ1d1yWp06deLQoUO0bVs9yefdu3djZ2eHr2/xxIuDgwMjRozgjTfe4Ntvvy11jMjISGbNmsXHH39M7969sbe3B+COO+7gn//8J1pr69JRQohKmQW0As4Bpwuel2ZmKe1tgUeA/YXJiqv8BnxRQruxwlEKIYQQQgjRwEjCQtQ9RWtY2NefGyz59i5sbfM80cn/wO7sPkg/BR/cA2O+A4+A2g5PCCFEJU2fPp1BgwbRsmVLHnjgAezs7Pjtt9/Yu3cvs2bNqtRYW7duZfv27URGRtKoUSO2bt3Ks88+y/Dhw/H09CzxmNdee43nn3++1NkVAD179sTJyYnFixfz0ksvWdu7du3K2bNn+e9//8uLL75YqViFEAA8BhzRWp9QSk0F5pbWsbTZEEqpxQVP3y/l0N0yk0IIIYQQQghbdfdjjeLGZcq78ry+zLAocNnBjdwHV4BPqKUh7QT8ezBkptRuYEIIISotKiqKr7/+mu+//54uXbrQvXt33n77bVq1qvzMOScnJ1asWEHfvn255ZZbmD17Ns8++yz//Oc/Sz3GYDDg4+ODUqUvnOXs7Ez37t3JyMggIiLC5nyF7VK/QojK01r/qLU+ca3HK6WcscyuyAM+rLLAhBBCCCGEaOBkhoWoe6wzLBTYO5bZtU5yawoj/gsxA+BCApw7DB8OgZFfgatXbUcnhBA3JKPRWKztiy++sD7XuuQl6KOiooiKiip13NKOu1qnTp3Ytm1bmX0iIiLKHG/IkCEl7i/p2gDi4uIqFJsQolrcB3gCn2utS/vkSoBS6v+AxkAyYNRaH7vWEyqlWpTTxb/wSXZ2NtnZ2dd6KiGEEEIIIart90lJWIi6p7CGhYMTlPGp0jrNIwBGfAkxAyH9JCTvhY/utyQynD1qOzohhBBCCFG9xhZ8fa+MPn8qeBTSSqn/AOO01peu4Zwl1cko0caNG/Hx8bmGUwghhBBCCGFx7ty5ahlXloQSdU/RhEV95tnKkqBwKyim+sev8PFDkHctf38KIYSoy+bMmYO7u3uJjwEDBtR2eEKIGqSUCgYigUTghxK6ZAGvAZ2BJoAXcBfwMzAc+HeNBCqEEEIIIUQdJDMsRN1jTVjUr/oVJfJpa0laxA6E7AuQuAVWPALDVoBjA7g+IYQQAIwbN44HH3ywxH0uLi41HI0QopaNARQQo7U2X71Ta30WmH5V83ql1FbgV+A+pVQnrfWvlTxvYDn7/YEdAHfccQctWpS3gpQQQgghhBClO3nyZLWMKwkLUfcU1rCwr+czLAr53QyProEP7oXcdDgeB5+Ngoc+rJ81OoQQQhTj5eWFl5fUKRLiRqeUsgNGAWZgeWWO1VpnKaU+BGYBvbAkLypzfJl/MaoiS626uLhIMlUIIYQQQlyX6vp9UpaEEnVPQ1kSqqiAcHjkM3B0tWwf/hZWPwFmU+3GJYQQQgghqlI00AL4QWudeA3HFy4E7FZ1IQkhhBBCCFF/SMJC1D2mBrQkVFEtu8OwT67MHNm3GlaOkJoWQgghhBANR0WKbZelW8HXhOsPRQghhBBCiPpHEhaibtH6ypJQDWmGRaHWEfDQR2BXsBTUwa8h9m7ISK7VsIQQQgghxPVRSjUF7gFSgC/L6Beuiq7PdKX9PmAkcAH4trriFEIIIYQQoi6TGhaibjHlXXneEBMWAKH94S+fwsqRkJcBf+yC9+6Ev6y01LsQQgghhBC1Sin1GNC7YLN9wdfHlFIRBc9/0lpfPYtiBOAIfKi1zqN0bwNtCopsnwTsgU4F58sFRmmtL173RQghhBBCCFEPyQwLUbcU1q+AhpuwAGh7J4z9HjxaWLYvJsHyKDi6vnbjEkIIIYQQYEkejCx4dCpo61WkrXcJx1R0OaiPgL1Ad2Ac8CQQUHDcbVrrUmdnCCGEEEII0dBJwkLULTYJiwZWw+JqfjfD4+uh2W2W7dx0+M+fYWdsbUYlhBBCCHHD01qP0lqrMh6jSjjm5oJ9B8oZ+z2t9QCtdUuttavW2llr3UZr/bjW+mC1XZQQQgghhBD1gCQsRN1SWL8CwN5Qe3HUlEb+MPobCLvbsq1N8NUE+OEVMJtrNzYhhGhAIiIimDhxYm2HIYQQQgghhBBCiDJIwkLULTY1LBr4DItCBjd46EPoMf5K2+YF8PkouJxdW1EJIUSDsnr1al577bUaOdfGjRu55557CAgIQCnFF198UayP1prp06fTrFkzXFxcuOuuuzhy5IhNH6UUSim2bdtm056bm4u3tzdKKYxGIwDdu3dn3LhxNv2WLl2KUorY2Fib9lGjRtGnT5/rvk4hhBBCCCGEEKKqScJC1C1FZ1g05BoWV7Ozh6jZMPBNUAU/lvv/Cx/cA5kptRubEEI0AF5eXjRq1KhGznXp0iU6duzIO++8U2qfN954g0WLFrF06VK2b9+Om5sbUVFR5OTk2PQLDAwkJibGpm3NmjW4u7vbtEVGRlqTF4Xi4uIIDAws1m40GunXr1/lL0wIIYQQQgghhKhmkrAQdcuNmrAo1PVxGPYpGApuRJ3cAe/dCSmHajcuIYSo54ouCZWbm8vkyZNp3rw5bm5udOvWzeamfmpqKsOGDaN58+a4urrSvn17Pvnkkwqfa8CAAcyaNYuhQ4eWuF9rzYIFC3j55ZcZPHgwHTp04N///jd//PFHsdkYI0eOZMWKFWRnX5lxt3z5ckaOHGnTLzIykkOHDnHmzBlr24YNG5g6darNtcXHx3PixAkiIyMrfD1CCCGEEEIIIURNcajtAISwkV90SagbMGEBENofRn8LHz8EGX9A2gl470/w5xhoe2dtRyeEEMU89PVDnMs+V+H+2qwBUHbqus7r4+LDp4M+rfRx48ePZ//+/axYsYKAgADWrFlDdHQ0e/bsISQkhJycHDp37syUKVPw8PBg7dq1PProo7Rp04auXbteV8xgSRqcOXOGu+66y9rWuHFjunXrxtatW3n44Yet7Z07dyYoKIhVq1YxfPhwEhMT2bhxI++8847NEle9evXC0dGRuLg4hg0bxv79+8nOzmbs2LFMmTKF+Ph4goODiYuLw9nZmR49elz3dQghhBBCCCGEEFVNEhaibrGZYXGD1LAoSbMO8Ph6+PhBOLMHci/CR/dD5DToMxnsZHKUEKLuOJd9jrNZZ2s7jApJTEwkJiaGxMREAgICAJg8eTLfffcdMTExzJkzh+bNmzN58mTrMc888wzr1q1j5cqVVZKwKJwF4efnZ9Pu5+dnM0Oi0JgxY1i+fDnDhw8nNjaWgQMH0rRpU5s+bm5udO3aFaPRyLBhwzAajfTu3RsnJyd69uyJ0WgkODgYo9FIjx49cHK6QT8UIIQQQgghhBCiTpOEhahb8nOvPLe/wW+meATA6O9g1WNw+FtAQ9xsyzJRQ5eBq1dtRyiEEIBlpkNlVOUMi8ras2cPJpOJ0NBQm/bCQtYAJpOJOXPmsHLlSk6dOkVeXh65ubm4urpeV7zXavjw4UydOpXjx48TGxvLokWLSuwXERHBZ599BljqVERERADQt29fjEYjo0ePxmg08vjjj9dU6EIIIYQQQgghRKVIwkLULTd6DYurObnDwx/DT/MtyQpthiPfwz/7woMfQsBttR2hEEJUalkms9lMeno6AB4eHtjV8IyxzMxM7O3t2blzJ/b29jb7CgtZz5s3j4ULF7JgwQLat2+Pm5sbEydOJC8vr6QhK83f3x+A5ORkmjVrZm1PTk7mtttuK9bf29ubQYMGMXbsWHJychgwYAAZGRnF+kVGRjJ79mxOnTqF0Wi0zhLp27cvy5Yt49ixYyQlJUnBbSGEEEIIIYQQdZasKyPqFlPRGhY38JJQRdnZwR2TYfhqcLV8+pe0RHi/P/z679qNTQgh6pnw8HBMJhNnz56lbdu2No/CRMLmzZsZPHgww4cPp2PHjrRu3ZrDhw9XWQzBwcH4+/uzfv16a1t6ejrbt28vtbbEmDFjMBqNjBgxoliipVDPnj0xGAwsWbLEWocDoEuXLqSkpLB8+XLr0lFCCCGEEEIIIURdJDMsRN0iMyxK1yYSntwIK0fCqV/AlAtfPgNJ22Hgm+DoUtsRCiFEnRcaGsojjzzCiBEjeOuttwgPDyclJYX169fToUMH7r77bkJCQvj888/ZsmULnp6ezJ8/n+TkZG6++eYKnSMzM5OjR49at+Pj49m9ezdeXl60bNkSpRQTJ05k1qxZhISEEBwczN/+9jcCAgIYMmRIiWNGR0eTkpKCh4dHqed1cXGhe/fuLF68mF69elkTGwaDwabd0dGx4t8wIYQQQgghhKhjgqaure0QGryE1++utXPLDAtRtxSpYZGelktOVnYtBlMHNW4Bo7+FLkXWH9/1kWW2xfn42otLCCHqkZiYGEaMGMFzzz1HWFgYQ4YMYceOHbRs2RKAl19+mU6dOhEVFUVERAT+/v6lJhJK8ssvvxAeHk54eDgAkyZNIjw8nOnTp1v7vPDCCzzzzDM88cQTdOnShczMTL777jucnUueXaiUwsfHB4PBUOa5IyMjycjIsNavKNS3b18yMjKIjIys8HUIIYQQQgghhBA1TWmtazsGUUAp1QJIAjh8+DAhISG1HFEt2PIP+P4lLiUbSDA2JdPgSv6U6fT6y721HVmZsrOz+f777wHo378/Li41MNvh95Xw1QS4nGXZdm4MQ/8JYdHVf+4GpFZeO1El5LWreUeOHCE/Px8HB4dr/n9UbdewENdOXru6r7Sf0SNHjhQtNB+otT5ZKwGKWlX0b42kpCRatGhRyxEJIYQQQlwbmWFR/Soyw+LkyZMEBgYWblbZ3xnyl6aoWwqWhEo77oqd1njkXsLr1Sl89exMTPmmWg6ujunwIDy2HrzbWrZzLsInD8H/ZoFZvldCCCGEEEIIIYQQQoj6pcEmLJRSXZRS3yil0pRSl5RS25RSD1ZyjACl1EKl1P6CMZKVUj8ppR5VSpVc8VJcn4IloXLO2y550fbbFXx7zzBS/0ipjajqLr+b4fE4aHfPlbaN8yBmIKQeq724hBCigUpMTMTd3b3UR2JiYm2HKIQQQgghhBBC1FsNsui2UioSWAfkACuADOB+4FOlVKDW+q0KjNEa2A54F4z1FeABDAH+DfQDRldH/Dc0kyVhEXhHKvPO/Jk/7d2Ja24W9mjaxO9h/z1DaDJvPu37davlQOsQZw948EPYshh+nAHaBEnbYGlvuGsmdHkMZNkOIYSoEgEBAezevbvM/UIIIYQQQgghhLg2DS5hoZRyAP4FmIE7tNa7C9pfBX4G5iilPtdanyhnqMmADzBRa72wyPgvAr8Bo5RSMyowjqiMghkWhkYmfjbcjB42gT/lJKJf+xuNczPxuXSevPGP8f2o8fR/4claDrYOUQp6/RVadIEvxsGFBEtti2+fh4NfweB3oEnL2o5SCCHqPQcHB9q2bVvbYQghhBBCCCGEEA1SQ/zYdT+gDfBxYbICQGt9EZgDGICRFRindcHXb4o2aq3TgJ8KNn2uM1ZxtYIaFgB5OHJbyyZ0eyCaFp99RqKf5SUxmPNJ+++XTFm5i5zLUqvBRqseMG6zZVZFofiNsKQn7PwAtK692IQQQgghhBBCCCGEEKIMDW6GBRBR8PX7EvatK/jatwLj7AWigIFA0RkWTYBewBlgf2UCU0q1KKeLf+GT3NxcsrOzKzN8g+CYe8n6pszFkXa+LmRnZ+Md6Ee31R8RN+kVfHdvY26X4Vz49Q9+/yOdRQ+2p4WnS63GnZOTU+Lz2mEP/WZh17o/jt88i13GKcjLgK/+imnfF+RFvwWNmtVyjHVH3XrtRGXIa1fzzGYzuiDxaTabr3mMkp6Luk9eu/pBa43ZbLb5PTI3N7cWIxJCCCGEEEKIimuICYuQgq9Hrt6htT6jlMos0qcs84B7gLeVUtHA71ypYZEFDNVaVzajkFTRjtu3b+fYsRuvaHKnpBM4/d4IF6/LeHrmsmfbRvaqK/vt7ruT/3XuQeaZRmCGA2cyGfzOFkYG5XCTr2PtBV7Exo0bazsEK4fgv3HryY9pdd4Sk/3x/2G/rBd7WjzKSc+elqWkhFVdeu1E5chrVzO8vb1xcXFBKUV6evp1j5eZmVkFUYnaIK9d3ZSfn092djbZ2dkcPHjQ2n7u3LlajEoIIYQQQgghKq4hLgnVuODrxVL2pxfpUyqtdTLQA/gOiAZeAMYVHPtvLHUsRBXLO5dD6v5GnPzJi0d/+6HE++kdWrny7K0mfJwtn/K1y87m9qULuPjR15zfG48pL7+Go6678u1d2d3qMba1nkSOQxMADKYsOp9YRtf4hThdLu3HRAghhBBCCCGEEEIIIWpWQ5xhUSWUUm2Br4BMoA+wG2gCDAdmAVFKqT5a68oUUQgsZ78/sAOgW7dutGnTppJR13/J382zPnfsGE6//v1L7Xt/zmWmrdnHHR+8R8ClVAL2/AR7fiLPzoFTzVqTd0tHfHp04aZ+PXDzcKu2mLMzLnH25Gl+3rAFU1Y2LZsFQO5lLmdlkW1w5VS7zmRfNpGdZybrsolb163A4+wpMJnQjo5ogxPa4AROTiiDAeXkhHJ2JrvtTeTddCvOjna4Guxp6u6Eb/4lvAOa4uBY2R/d/ujsx8n/8WUc9q8CoNnFX/HPS+ByxN8w3fog2NlX/TenHsjJybF+Ov+OO+7A2dm5liMSFSWvXc1LTEzEZDLh4OCAh4fHNY1hNputn853d3fHzq4hfnaiYZLXru5LSUnBxcUFd3d3OnfubG2/EWftCiGEEEIIIeqnhpiwKPzIeGmzKDyACxUYJxZoBbTWWp8paMsEXldK+QETgYeB/1Q0MK31ybL2qyLTCZycnHBxqd26DLUh948s63P/Ht3K/B64uLjwz5Hd+PZIN0xfHMZeW9bTNpjzCT51GE4dhu8/4/SrdpzyC+Zir374jhjO7a08aeRsWT4qP9/EpbR0Ll3I4NLFdHIuZpB9MYO8jEvkZWRwOTOT/PQMfu91NxdzzKRlXeZCVh7h276hz28/4pZ7CSfTZQC6lBDjfq9WvHlHE5u2t/fuIuRCYrnfixWh/fjgyJUfUaXNfPnlVDKBiy4eZDbyJK+JN2Yvb+x9/XBu5k+jFs3wDg6k1a0hODoZrv6GwYPL4cBQ+GoiZJ1DZZ/H8O2z8Ov78KdXoe2d5cbVkDk7O9+QP3cNgbx2NcPOzs5au6Aqblbb2dnV2E3viIgIbrvtNhYsWFAj52tIvvjiCyZPnkx8fDxPPPEE7du3Z9q0aaSlpVX7uYOCgpg4cSITJ06s9nNVRGpqKu3atePnn38mKCioRs/dvXt3nn/+ee6///4y+ymlsLOzs/k30cnJqbrDE0IIIYQQQogq0RATFoW1K0KAnUV3KKX8AXfg57IGUEo1wlJY+9ciyYqi4rAkLMKpRMJClM+cXFAUUmnCInuW29/e3o5Bc6dyctRDHPh6PVk7duB1dB8+manWPg7aTKszx/hiVzOmmHZgp8DLzYD/6XjmrX/bZjwHoFEJ55maE0yG4cosjVYXL+GVlVZufM75ecXash0qdtMgz862Jkfj3Es4FCRlvLLSLOdPji923GVgbI/RXOjUk3bNGnGTvwftmjgQ5uOCl78PtLsHWvaAtc/B/i8sByXvhY/ugzb9LIkL//YVilEIIeqL1atX4+hYc7WONm7cyLx589i5cyenT59mzZo1DBkyxKbPqFGj+OCDD2zaoqKi+O6776zbhR9m2Lp1K927d7e25+bmEhAQwPnz54mLiyMiIoLu3btz2223sXTpUmu/pUuX8tRTTxETE8OoUaNszn3s2DE2bdpU7rU8+eSTjB49mvHjx6O15quvvqrMt6JCYmNjmThxYrEkyI4dO3Bzq75ZkpU1e/ZsBg8ebE1W/Pbbb7z++uv89NNPnDt3jqCgIMaNG8eECRMqNW5F3i8vv/wyzz77LEOHDpXZLUIIIYQQQogGqyEmLDYALwL9gRVX7Ysq0qcshR9N9yllf9OCr7mVjk6UKv38RXSaGQUYGufj7lluqRGrFmHBtAh7DHgMgKSDxzn8wyYyf96Bx+G9+F9MZq93awDMGs5l5uFSibd/o7wsm4RFhmtjLrg0JtvFjTzXRlx2deeinSLHzYlG3t44urrh4OqGg3dTFvfuiLuzAVdHe1wNDjg/2g4XB4WDwZHcrBzyLmWRm5XD5axs8rJzyM/O5nJWDr38W9DBvyU5l01k5OSTkXSKY0fDcbqYintGGh45GdihS4z3kLs/yacusueUZcJRZNKvvLDzY/a7eZLm3xJzcFsa3dKf1p3vpHni+zik7LYceOx/cCwObvsLRL4EjZtX+HskhBB1mZeXV42e79KlS3Ts2JExY8Zw3333ldovOjqamJgY63ZJn4QPDAwkJibGJmGxZs0a3N3dOX/+vLUtMjKSNWvW2BwbFxdHYGAgRqPRJmFhNBoZOXJkudeRmZnJ2bNniYqKIiAgoEqKrVdG06ZNy+9UQ7Kysnj//fdZt26dtW3nzp34+vry0UcfERgYyJYtW3jiiSewt7dn/PjxFR67Iu+XAQMG8Nhjj/Htt99y9913X/f1CCGEEEIIIURd1BATFuuB48BflFKLtNa7AZRSjYFpQB6WotkUtDfDsnzUaa31RQCtdapS6hAQppR6TGv9XpH+TYDJBZtx1X85N46Dxu3W2Q1OPubrGivwptYE3tQasNyMORN/kr+k5NLmdDY/x58nIycf30Y+JPq3xuTkgsnZBbOLCzi7olxdsXNzw87NFUd3dxw9GvFmjx408fbE082RJi4GHO2j+P3EPRw8spukU0lkncvCKcsJO2sdezOYMyAlA9YcR6MxKzMajVaWh9nOjHbU2DnZ4ejsiLOLM25ubjRq2ghPD098PDShnjk082xGI5dGQAiMirBeY15OLmdP/EFKwknSE/8g64/T5CUno8+exb1lC86ez0YX5DOCL/4BgPelC3gfuwDHfoMfIQs4hCLbtQ2N3bNo7JOJb4cM2P0fzHtWkXP7OFwiJ6GcK548aii01mRnZpGecp6McxfITE0j60IauWnptOjcntBuHWs7RCFEJVy9JFRubi4vvfQSn3zyCWlpadx66638/e9/JyIiArAs/TN+/Hg2btzIhQsXaNOmDdOmTWPYsGEVOt+AAQMYMGBAuf2cnJzw9/cvs8/IkSNZtGgRCxYssC7zs3z5ckaOHMlrr71m7RcZGcnrr7/OmTNnrGNu2LCB6dOn88Ybb1j7xcfHc+LECSIjI8s8r9FotPbp168fQKmzK959913efPNNkpKSCA4O5uWXX+bRRx+17p8/fz4xMTEcP34cLy8v7rnnHt544w3c3d0xGo2MHj0auDKj5JVXXmHGjBnFloRSSvGvf/2LtWvXsm7dOpo3b85bb73Fvffeaz3Xl19+yXPPPUdSUhI9evRg1KhRjBo1igsXLtCkSZMyr7ks33zzDU5OTjaJozFjxtj0ad26NVu3bmX16tWVSlhU5P1ib2/PwIEDWbFihSQshBBCCCGEEA1Wg0tYaK3zlVKPAeuAjUqpFUAGcD+WmhSTtdYJRQ6Zi+Wu9mgsdSsKPQt8CfxLKfUwsAvwBO7FMsNildb6x+q9mhvL2e07ryQs/Kp2qQP/4BbcHQzF/rx/6d6Sutswm80cP3ucXw59Q3xSPBfPXsQh0wEH85UfHxfKXjtfobDXBUWtCydFmLCs31RQtiOv4L8LXCAR2xoXl+0uY3I14eLlgr+fPyGBIYS3Di+YWRJc7HxDgOw8E4eSMzhwOp18DpKQ/QdNzybidjnnyrUphVYK55xccnPs+c0+iA46nsYqC0x52G1fxKG5n5KW35iz3kGYHQzFzlVod5f+nG7R1rrtmXqa7hvXlNq/qB8GjSXf8cqnikMO/Ezbg7+Ue1yapz9bI2w/idrTuIrGF5IBUFpR2jvpyM3dOHJzd0wmE2eS7XDOSMd5/v0YcrJwzs3CNS8bgznf2t+54AGQbefA4Y8/J/S2sApdnxA3gtSYWM7Hxpbbz+nmdnjMnWvTlvTU0+Ts31/usV6jRuE9etQ1Rmhr/Pjx7N+/nxUrVhAQEMCaNWuIjo5mz549hISEkJOTQ+fOnZkyZQoeHh6sXbuWRx99lDZt2tC1a9cqiQEsSQFfX188PT3p168fs2bNwtvb26ZP586dCQoKYtWqVQwfPpzExEQ2btzIO++8Y5Ow6NWrF46OjsTFxTFs2DD2799PdnY2Y8eOZcqUKcTHxxMcHExcXBzOzs706NGjzNh69uzJoUOHCAsLY9WqVXTv3h0HBwcSE23/H7VmzRomTJjAggULuOuuu/j6668ZPXo0LVq0sCY87OzsWLRoEcHBwRw/fpynn36aF154gSVLltCzZ08WLFjA9OnTOXToEGAp6l2amTNn8sYbbzBv3jwWL17MI488wokTJ/Dy8iI+Pp4HHniACRMm8Nhjj7Fr1y4mT55c6liVsWnTJptC1qW5ePFitc3o6dq1K6+//nq1jC2EEEIIIYQQdUGDS1gAaK3jlFK9gZnAQ4AjsAeYorX+tIJjfKuU6gk8D/QG+gI5wAHgVeDd6oj9Rqb377U+d21Wc+uMXy3pXBK/HPmFY4nHOH/2PPqixin/ys10Z+tt6ys0mizHLEwGE04GJ9CgzdryVWswY0lUaFBmBRrszHY4mhxRqGLjXc3R7IhjpiM6U3M68TSnd5xmIxvJMeRg18iOJj5NaBnQkluDbiW0eSjJacmcOn+K5PPJZF9MJe12RcJNt5Nz6VZ0Rh72OQp7syPYFf8+b766oV8Fv3F5x2h2/JhN0+6ObSp0aNMko812plPFj212fJ3NdnxLd2hpudFlZzJhyMsr/sjNI+3ibk6cOEOu2UCuduJybiNallAT5GorQu/k21bdGHzKxEu3VShEIW4I5sxM8pOTy+3nUMJsAtP58xU61pyZeU2xXS0xMZGYmBgSExMJCAgAYPLkyXz33XfExMQwZ84cmjdvbnOj+5lnnmHdunWsXLmyyhIW0dHR3HfffQQHB3Ps2DGmTZvGgAED2Lp1K/b29jZ9x4wZw/Llyxk+fDixsbEMHDiw2HJJbm5udO3aFaPRyLBhwzAajfTu3RsnJyd69uyJ0WgkODgYo9FIjx49yi3EbDAY8PX1BSxLavn7+5e4JNSbb77JqFGjePrppwGYNGkS27Zt480337QmLIoWzQ4KCmLWrFmMGzeOJUuWYDAYaNy4MUqpcmebgKX+RuFMlzlz5rBo0SJ+/vlnoqOjWbZsGWFhYcybNw+AsLAw9u7dy+zZs8sdtzwnTpywvl9Ks2XLFj799FPWrl173ecrSUBAAElJSZjNZqljIYQQQgghhGiQGmTCAkBr/TNQ7loMWutRwKhS9u0AHqzSwESJzGYzTZMs9dLtDGZcmrrWyHlPXzjNjsM7OHriKKlnUzFfNON0+coNHAMlzyjIdcjFrokdPv4+3BR0Ex1adeCXLZYZAf3797cu2VGey/mXSU5P5sz5M5y7eI7U9FQuZl4kMzOT7Kxs8rLzMOWaUDnKJq5CznnOkApZqVkcPHSQgxws83yOOGLJ30GpUw8aELO9PTkuLuSU8HrYAV0vg2WqSxa4ZvFtdBRNk5NpnHoe5yyNydmVfFc3zK7u4N4I5e7OsTQXzrp58eVvfzB1QDvs7cpPOAlxI7Bzd8fBz6/cfvZeniW0eVXoWLsyPnVfGXv27MFkMhEaGmrTnpuba53dYDKZmDNnDitXruTUqVPk5eWRm5uLq2vV/f/p4Ycftj5v3749HTp0oE2bNhiNRu68806bvsOHD2fq1KkcP36c2NhYFi1aVOKYERERfPbZZ4Bl9kbhEld9+/a1Lr1kNBp5/PHHq+w6Dhw4wBNPPGHT1qtXLxYuXGjd/vHHH5k7dy4HDx4kPT2d/Px8cnJyyMrKqvT3tEOHDtbnbm5ueHh4cPbsWQAOHTpEly5dbPqXl2AaN24cH330kXU7s5TEWHZ2Ns7OxT+0UGjv3r0MHjyYV155hf79+5d7HdfCxcUFs9lMbm5uhX/XEEIIIYQQQoj6pMEmLET9cjL5IuubhzMsbT2OzvnkOXjz0bfvkZKaUuXn0lpzKf0SpjQTzpev3HhwpORZHZftLmNqZKKJbxNat2xNl9AuBPvZLsOUnZ19TbE4OjjSwqsFLbxalNs3OS2Z3cd3c/TkUVKSU8hOy8YxyxEHXfkf48t2lzE5miy5i/Lut2sTXM7GLt+EKlrjWym0nQPYOaLt7DHbKXSRsZQGO3PJRcGvZrK3DcLOrG3PVYlj7U0FB2rADMpkh53ZHgdd/qyd9CZNSC9Y3/yy3WXwhtZtW/Onzn+ipU9LAL784Bc4kExyei4/x5+nRxvvMkYU4sbhPbpiyzWZzeZin9IPfHdJNUVVsszMTOzt7dm5c2exmQyFSxHNmzePhQsXsmDBAtq3b4+bmxsTJ04kLy+v2uJq3bo1Pj4+HD16tFjCwtvbm0GDBjF27FhycnIYMGAAGRkZxcaIjIxk9uzZnDp1CqPRaJ0l0rdvX5YtW8axY8dISkqy1qSoCQkJCQwaNIinnnqK2bNn4+XlxU8//cTYsWPJy8urdMLC0dH233OlFGbztde+evXVVyu0bJSPjw8XLlwocd/+/fu58847eeKJJ3j55ZevOZbynD9/Hjc3N0lWCCGEEEIIIRosSViIOmFXchb/an8PU50+xQ7Nvy7fzh/bT1bb+RwL/rtavson3z0fdx93WrVoRce2Hbkl8Bbs7exLGKVm+TXxI6pTFFGdoqxtJrOJfUn72Jewj6Q/kkg7l4Yp24Sdkx0GFwMubi40amQp4u3r6Uszr2Y092pOE7cmlTu51pC4Fba9Cwe/Bl1wY8hUsL9VL+j+FIQNhDrwvSpJTl4OKekpnMs4x/n086RlppF+KZ2LGRf549QfmC+Zcct1sy7R5Wh2hBRISkli+dblZLtm4x3oTfumoaw/YIfGni9/OyUJCyHqofDwcEwmE2fPnqVPnz4l9tm8eTODBw9m+PDhgCXRcvjwYW6++eZqi+vkyZOkpqbSrFmzEvePGTOGgQMHMmXKlGKJlkI9e/bEYDCwZMkSax0OgC5dupCSksLy5cutS0dVlXbt2rF582ZGjhxpbdu8ebP1e7Vz507MZjNvvfWWdRmjlStX2oxhMBgwmUxcr7CwML755hubth07dpR5jK+vr3Xpq7KEh4fbzMQotG/fPvr168fIkSOrZOmpsuzdu5fw8PBqPYcQQgghhBBC1CZJWIg6YVdiGg6YsC/4WH2yqWqW/ShLvson3y0fNx83ApsH0rFtRzq06lAnkhMVZW9nT4dWHejQqkP5na+HUtCqp+Vx4QTs+Bf8+m/IuWjZf2Kz5dGkJXR9AsIfBZcm1RtTJTkbnAn0CSTQJ9CmPTs7m++//x6A9l3as3HfRo4ePYpO0ZakRQGXLBeyDmWRxW4edTajcsw0jvuBVboPXl5eNGnShMaNG1sfDg7yz6sQdVVoaCiPPPIII0aM4K233iI8PJyUlBTWr19Phw4duPvuuwkJCeHzzz9ny5YteHp6Mn/+fJKTkyucsMjMzOTo0aPW7fj4eHbv3o2XlxctW7YkMzOTmTNncv/99+Pv78+xY8d44YUXaNu2LVFRUSWOGR0dTUpKCh4eHqWe18XFhe7du7N48WJ69eplTWwYDAab9qtnKVyP559/ngcffJDw8HDuuusuvvrqK1avXs2PP/4IQNu2bbl8+TKLFy/mnnvuYfPmzSxdutRmjKCgIDIzM1m/fj0dO3bE1dX1mpbfevLJJ5k/fz5Tpkxh7Nix7N69m9iCYvBKXd8SflFRUbz44otcuHABT0/L0mZ79+6lX79+REVFMWnSJM6cOQOAvb19sRojZSnv/VJo06ZN1bbclBBCCCGEEELUBXJHTdQJu5LSMJBv3TYVeWsGdg+kuW/zKj2fj4cPHYI6YHAouUaFKINnK+g/CyJehN8+ge3L4Nxhy760RPj+ZYibA57BYHAFgxsY3C1fHYtuu15pM12G/By4nH3V1yy4nAP52QVfc8DOARycwcGp4Kvhqu3Cr87gezO07F7hWR/NPJsx6k+j4E+Ql5/Hxn0b+WXvL1w4eQGX7CvLb9hhB852pDs3Yc+ePSWO5e7uTuPGjWnSpIn14enpaU1sVOXNQiFE5cXExDBr1iyee+45Tp06hY+PD927d2fQoEEAvPzyyxw/fpyoqChcXV154oknGDJkCBcvXqzQ+L/88ou14DRYClEDjBw5ktjYWOzt7fn999/54IMPSEtLIyAggP79+/Paa6+VWgxbKYWPj0+5546MjGTjxo3W+hWF+vbtS1xcnE1cVWHIkCEsXLiQN998kwkTJhAcHExMTIz1/B07dmT+/Pn8/e9/58UXX+SOO+5g7ty5jBgxwjpGz549GTduHA899BCpqam88sorzJgxo9KxBAcH8/nnn/Pcc8+xcOFCevTowUsvvcRTTz1VbpHx8rRv355OnTqxcuVKnnzySQA+//xzUlJS+Oijj2xmX7Rq1YqEhATAsiRWcHAwcXFxxV6TQuW9XwBOnTrFli1bSpzlIaqeUmo40AfoDLQHDMBorXVsCX1nAK+UMVyw1jqhhOOigGlAJyyLWe4EZmmt119n+EIIIYQQQtRbSusKLhQvqp1SqgWQBHD48GFCQkJqOaKakZOdQ79pq8k2wC6XpwD4m/vD2GdalsT485g/c0vLW2ozxHIV/ZR+ZYpuNwhmMxz7H2x/F47+WNvRFOfqDWED4KZB0DoSHG0Lplb0tTt65ijrflnHrv278L3UCNd8V/KvI+ng7u5eLJERGBhYoWVJhMUN/XNXS44cOUJ+fj4ODg7X/P+oojUsPDw8rEsEibqvvr52s2fPZunSpSQlJV33WGvXruX5559n7969Fb7+uLg47rvvPo4fP26dmXEtpkyZwoULF/jnP/9Zap/SfkaPHDlStMh8oNa6+tbdbCCUUglAK+AccKngeXkJiw+AhBKGW6C1TrvqmOHAh0AK8GlB80OAD/Cg1vrz67+KYnFa/9ZISkqiRYvya6gJIYQQQtRFQVPX1nYIDV7C63eX2+fkyZMEBlpXMqmyvzOqdYaFUsoExGqtx5bT719Y/gCQGR83oIMbfub9b1/jgrM75292wyv0EiZtT+Fn4t2c3Wo1PlEOOzsIucvySDkMPy+Dg2sty0Vdzqrt6CArFXZ9ZHk4ulnivGkQhPSv1LJVbf3b0ubuNgzJH8Iv57exdLEJl3xH0tw98Fi8iDzTZS5evMjFixdJS0vj4sWLZGZmljpeZmYmmZmZnDxp+2/56NGjadWq1bVerRBC3PCWLFlCly5d8Pb2ZvPmzcybN4/x48dXydh33303R44c4dSpU0V/MS/TN998w7Rp064rWQGWWhuFMy9EjXgMOKK1PqGUmgrMrcAxsVprY3mdlFKewGIsyZBOhX/YKaX+DuwC3lVKrdNaZ1xz9EIIIYQQQtRT1Z0gUAWPivYVN6A/tu4kGPDMyUTZWWb8aH3lU4vuztVfz0JUkaahcPdblgeA2WRJWuRdKuGReWWfvSM4uFhmPzi4gGPBw8H5qq9OljHzcy3LQxX9arqqLTvNMvPj6I9XEieXL8H+/1oedg4QfAf2bfrjfNmFHMfybyQppYgKiuLdi++yrZ0i6tfL+F5I5Y8tv3HnX0cX63/58mXS09NJS0vjwoULpKWl2TxKSmgcOnRIEhZC1HGJiYll1rLYv3+/Td2BumzAgAFs2rSpxH3Tpk1j2rRpNRzR9Tty5AizZs3i/PnztGzZkueee44XX3yxysafOHFipfrPmzevSs773HPPVck4omK01tU5bfTPQBPglaKfQtNan1RK/QOYAQwF/l2NMQghhBBCCFEn1ZUZDa7A5doOQtSO/L2/W5+7eOcBoM1Xag64u0jCot6yswenRpZHbbh9tKUexnEjHPgaDn0D2ect+8z5cOx/GI79jyjgnFsY9s0zoOMDxZaNKioqKIp3f3uXn26xI+pXEwA5334LJSQsHB0d8fb2xtvbu8SxLl++TFpaGmfPnuWzzz4DIDk5+bouWQhR/QICAti9e3eZ++uL9957j+zs7BL3eXl51XA0VePtt9/m7bffru0wxI3pDqVUN8AMHAF+1FqXNN0youDr9yXsW4clYdGXSiYsCpZ8Kot/4ZPs7OxSf/aFEEIIIYSoyO+K1fX7ZK0nLJRSTYDewOlaDkXUEs8ES8HmPHsHnBpbCm9rbUlYmDHjXMbNYyHK5ehiqWERNgBM+ZC0zZK8OPg1XLyynrnPpUPw9f/B+r/BbX+B28eAd5tiw7Vp0oa2TdpyWB/hbGPwvQitEvaRkniapi2bVS40R0eaNm2Kj48PLi4uZGdnS8JCiHrAwcGBtm3b1nYYVaJ58+a1HYIQDcnMq7bTlFITtNZXJx4KC4wcKWGMI1f1qYwKF2rZuHEjPj4+13AKIYQQQoi6oNZvaTd4hTVDy3Lu3LlqOXeVv7pKqeNXNT2glIoo4/z+gD2wrKpjEXXfmeNJ+FyyfOL9gp8/yi7RssNsV/DFXFuhiYbI3gGCelse0XPhzO9c3rOGnJ0raJRbkDPNPg9b/2F5BPe1JC5uutuybFWB6KBo/pF2lM03K4Zu1dhrMzv//TnRLz9zTWEppfDz8yMhIcFa28LdXWYWCSGEEPXEb8AYwIjlQ1j+wCDgVSBWKZWmtf6ySP/GBV8vljBW+lV9hBA3kAlb5QZcdVvYI79axpXXrvrJa1c/VdfrJhq26vipDCryXAPuBY/S5AFfAPVvkWRx3Q4bt9O0cCM4EPgZAFVQw8KsJGEhqolS0Kwj+U1C+V/WbXhdOkwPxwM4HPoaTJalyYjfYHm4+UKnR6HTSPBsRVRQFP/Y/Q9+utmOoVsty0Kx/nu4xoQFgL+/PwkJCYBlWShJWAghhBD1g9Z6zVVNCcA/lFIHgB+AWcCXVx9XDcqrBO8P7AC44447aNGivBWkhBA1buv/ajuCBq9///7VM7C8dtVOXrv6SV63+qsir93JkyfL7XMtqiNhEVzwVQHHgc+B50vpmwekaK0l3XaDSvvlV2vCosnNLSHD8tyucEkomWEhaoJSnHcP43L/Z3C4+03Y/R/YGQPnCyaMXToLm96CTfOh7V0EdR7JTZ6hHOQwiU2hZQp4nTtFYsIZWgb5l32uUvj5+VmfJycn06ZN8eWohBBCCFF/aK3XK6WOAe2VUh5a68LZE4UzKxoDqVcd5nFVn8qcr8y/GJVS1ucuLi64uLhU9hRCCFHvyb999Ze8dvWTvG71V0Veu+p6fas8YaG1PlH4XCn1AbCpaJsQRTke3m99HtgxCH6yPLcrKLqt7XUtRCVuaG7e0Ouv0GO8ZXbFzhg4uNZSpBsNR3+Aoz8Q5e3LQQ9nPr3Djvy0cLa6/plnEzJ5OujaTnt1wkIIIYQQDcI5oC3gypXlno4At2OpU3F1wqKs+hZCCCGEEEI0eHbVObjWerTWenl1nkPUX5dz8/A7Ew9Aqpsn3n6WJXDMgH3BDIvqfYcKUQY7O2gTCQ/+G57dB/1ehsYtrbujLlpqr+wItSOj46+86PQxh36JA31tSbamTZtaP/koCQshhBCi/lNKuQG3AJewJC4KbSj4WtI8+6ir+gghhBBCCHFDkdvBotYc+f0IquDm7vlWoZCfA0AO9igsN26VvSr1eCFqTCN/uON5mLAbHlkFHR4i0M6Zm3NzATjqZM+dzj+yMHMyeW93gPWvwdmDlTqFo6Mj3t7eAKSkpGAymar6KoS4oUVERDBx4sTaDqNe+uKLL2jbti2Ojo68+OKLfPzxx3h5edXIuYOCgliwYEGNnKsiUlNT8fX1tdYcqil5eXkEBQXxyy+/1Oh5RfmUUo2UUqEltLsA/wIaASuvWgJ3JZYln55RSrUockwLYDyW5MbVdTGEEEIIIYS4IVR7wqLgl/gpSqkflFL7lVLHS3kcq+5YRN2yy+zO/XfP4v8iniXzz49aExYZytHaRzlIwkLUIXb2EHIX3PdPmHyE6Db3WHetc3MFwDEtETa9CUu6wbu9YNtSMFWsTI+/v6X+hclk4ty5c+X0FkJUxurVq3nttddq7HwbN27knnvuISAgAKUUX3zxRbE+o0aNQill84iOjrbpU9i+bds2m/bc3Fy8vb1RSmE0GgHo3r0748aNs+m3dOlSlFLExsYWO3efPn0qdC1PPvkkDzzwACdOnGDatGkVOqayYmNjadKkSbH2HTt28MQTT1TLOa/F7NmzGTx4MEFBQQD89ttvDBs2jMDAQFxcXGjXrh0LFy6s9LgzZswo9l646aabrPsNBgOTJ09mypQpVXUpohxKqceUUrFKqVjgzwXN1jal1GMFbd7AQaXU9oL215VSMcBhYBiwh6vq+WmtL2BJTPgAvyqlFiulFgO/Foz3tNY6o9ovUgghhBBCiDqoWhMWSqkA4DdgDnAncBMQVMZD3EB2JaZhtrPneJPmhPXsBPl5AGQqg7WPnb1MAhJ1lMGV/t0mWTd/O+3H7k2tOP6d75VVoZL3wndT4MMhkHm23CGljoUQ1cfLy4tGjRrV2PkuXbpEx44deeedd8rsFx0dzenTp62PTz75pFifwMBAYmJibNrWrFmDu7u7TVtkZKQ1eVEoLi6OwMDAYu1Go5F+/fqVex2ZmZmcPXuWqKgoAgICavR7CJbl8lxdXWv0nKXJysri/fffZ+zYsda2nTt34uvry0cffcS+fft46aWXePHFF/nHP/5R6fFvueUWm/fCTz/9ZLP/kUce4aeffmLfvn3XfS2iQnoDIwsenQraehVp613Qdh5YAihgIPAccD/wB/AC0E1rfXWdCrTWHwEDgIPAaGAUsB/or7X+rFquSAghhBBCiHqguu8Gz8GSiPgNeBjoCASX8mhdzbGIOmZX4gUAHO0VtwR4WGdYXCoyw8LOQRIWou5q7t6cDj4dAOi9JwunU5fJS3cgwe9JaNHlSseETbC0D5zYUuZ4krAQovpcvSRUbm4ukydPpnnz5ri5udGtWzebm/qpqakMGzaM5s2b4+rqSvv27UtMJpRmwIABzJo1i6FDh5bZz8nJCX9/f+vD09OzWJ+RI0eyYsUKsrOzrW3Lly9n5MiRNv0iIyM5dOgQZ86csbZt2LCBqVOn2lxbfHw8J06cIDIysszYjEajNUHRr18/7O3ti91EL/Tuu+/Spk0bDAYDYWFhfPjhhzb758+fT/v27XFzcyMwMJCnn36azMxM63lGjx7NxYsXrbMLZsyYARRfEkopxXvvvcfQoUNxdXUlJCSEL7/80uZcX375JSEhITg7OxMZGckHH3yAUoq0tLQyr7c833zzDU5OTnTv3t3aNmbMGBYuXEjfvn1p3bo1w4cPZ/To0axevbrS4zs4ONi8F3x8fGz2e3p60qtXL1asWHFd1yEqRms9SmutyniMKuiXrrUer7XuqrX21Vo7aq09tNbdtNbztNbZZZzjO631HVprd611I611hNb6xxq7SCGEEEIIIeogh2oePwpIBiK11her+VyiHrmYdZljKZcAuDmgMc6O9pBvqQeQVSRhYe9gXyvxCVFR/YP68/u53/npFsVt8ZapFb/vyCM45kdI3AafjYKM05B5BmIHwV0zoOczoIovdyYJC1Gf7f4xkd0/JpXbzyfQnd6PtLJpW7vkd1ISy1/95La7ArntrpbXHGNR48ePZ//+/axYsYKAgADWrFlDdHQ0e/bsISQkhJycHDp37syUKVPw8PBg7dq1PProo7Rp04auXbtWSQxguVnv6+uLp6cn/fr1Y9asWdZ6NoU6d+5MUFAQq1atYvjw4SQmJrJx40beeecdm2WuevXqhaOjI3FxcQwbNoz9+/eTnZ3N2LFjmTJlCvHx8QQHBxMXF4ezszM9evQoM7aePXty6NAhwsLCWLVqFd27d8fBwYHExESbfmvWrGHChAksWLCAu+66i6+//prRo0fTokULa1LEzs6ORYsWERwczPHjx3n66ad54YUXWLJkCT179mTBggVMnz6dQ4cOARSbPVLUzJkzeeONN5g3bx6LFy/mkUce4cSJE3h5eREfH88DDzzAhAkTeOyxx9i1axeTJ0+u1GtSmk2bNtG5c+dy+128ePGaanwcOXKEgIAA62szd+5cWra0fb937dqVTZs2VXpsIYQQQgghhKgvqvvj657AVklWiKvt+87IjK3v8/ChH7nDyZK4wCQJC1H/RAVFAbAjVJFb8Hb1+3UzeTm50LI7PLkJgvtadmgT/PA3+HQ45BT/Z9HDwwNnZ2dAEhai/snLzudSWm65j5zMy8WOzc7Iq9CxedkVqwdTnsTERGJiYvjss8/o06cPbdq0YfLkyfTu3du69FLz5s2ZPHkyt912G61bt+aZZ54hOjqalStXVkkMYFkO6t///jfr16/n73//Oxs2bGDAgAGYTKZifceMGcPy5csBS72HgQMH0rRpU5s+bm5udO3a1Tqbwmg00rt3b5ycnOjZs6dNe48ePXByciozPoPBgK+vL2BZUsvf3x+DwVCs35tvvsmoUaN4+umnCQ0NZdKkSdx33328+eab1j4TJ04kMjKSoKAga2Km8HtpMBho3LgxSinr7IKyEhajRo1i2LBhtG3bljlz5pCZmcnPP/8MwLJlywgLC2PevHmEhYXx8MMPM2rUqDKvs6JOnDhBQEBAmX22bNnCp59+Wum6G926dSM2NpbvvvuOd999l/j4ePr06UNGhm0iLyAggBMnTlQ69vpOKWWvlOqplBqvlHpNKfWPgq/jlVI9lFLyC6MQQgghhBANRHXPsEiiBgp7i/on9aetdEs+QLfkA5y+q2BZ4IIZFjlcSVg4OjqWdLgQdYa/mz+3Nb2N3Sm7+TVE0eOgpnFuJr+s+Z6ew+4B96bw6BowzoWN8ywHHfwalu2DB/8NzTpYxyq8WZeQkEBGRgaXLl3Czc2tlq5MiMoxuDjg1qTsG+AAzu7F/113aWSo0LEGl6r5tWXPnj2YTCZCQ0Nt2gsLWQOYTCbmzJnDypUrOXXqFHl5eeTm5lZpPYWHH37Y+rx9+/Z06NCBNm3aYDQaufPOO236Dh8+nKlTp3L8+HFiY2NZtGhRiWNGRETw2WeW5e+NRiMREREA9O3b17r0ktFo5PHHH6+y6zhw4ECxG/S9evWyKT79448/MnfuXA4ePEh6ejr5+fnk5OSQlZVV6e9phw5X/t10c3PDw8ODs2ctdYIOHTpEly5dbPqXNyNm3LhxfPTRR9btwqWqrpadnW1NKpdk7969DB48mFdeeYX+/fuXex1FDRgwwPq8Q4cOdOvWjVatWrFy5UqbmhkuLi5kZWVVauz6TCnVG/g/4G6g6P8QFaCLbGcqpdYC72itN9dgiEIIIYQQQogqVt0Ji8+BJ5RSblrrS9V8LlGPqAN7rc9b31GwFnRBDYtsJQkLUb9EB0ezO2U3P91iSVgAnPviKxh2j6WDnT30exladIXVj0NOGlyIh/f/BAPfhE6PWsfy8/MjISEBsMyyaN1ayvuI+uG2u1pWaLkms9lMenq6TdvdT3copXf1yMzMxN7enp07d2Jvb/vB7MJP9s+bN4+FCxeyYMECa+2FiRMnkpeXV21xtW7dGh8fH44ePVosYeHt7c2gQYMYO3YsOTk5DBgwoNin78FSx2L27NmcOnUKo9FoXQ6pb9++LFu2jGPHjpGUlFShgttVJSEhgUGDBvHUU08xe/ZsvLy8+Omnnxg7dix5eXmVTlhc/buBUgqz2XzN8b366qsVWjbKx8eHCxculLhv//793HnnnTzxxBO8/PLL1xxLoSZNmhAaGsrRo0dt2s+fP19sZk1DpJTqA7wNhGNJTpiBPcA+IBVIBxoD3sCtwM1Y6uU9pJT6FZiktZa1s4QQQgghhKiHqnv2w2tYZlmsVEr5VvO5RD1hNpnwO3UMgIvOjWh5SxvLjnzLTaAcSViIeuZPrf6EQrGrtSLTyVKbosW+n7l08apP6Yb2hyc3QkC4ZTs/B74cD//9P7hsqckpdSyEqH7h4eGYTCbOnj1L27ZtbR7+/v4AbN68mcGDBzN8+HA6duxI69atOXz4cLXGdfLkSVJTU2nWrFmJ+8eMGYPRaGTEiBHFEi2FevbsicFgYMmSJdY6HABdunQhJSWF5cuXW5eOqirt2rVj82bbD7Vv3ryZm2++GYCdO3diNpt566236N69O6Ghofzxxx82/Q0GQ4lLYVVWWFgYv/zyi03bjh07yjzG19fX5j1QmvDwcPbv31+sfd++fURGRjJy5Ehmz559bYFfJTMzk2PHjhV7L+zdu5fw8PAqOUddpZRaARiB9sCXwFDAU2t9m9b6Ea31X7XWL2utn9Fa/0Vr3QHwAu4HvgY6AEal1Ce1dAlCCCGEEEKI61DdCYt/AMeAAcBRpdT/lFKxSqnlJTzer+ZYRB1xfPcB3PMsyxmca9EWO7uCt2HBDIuiS0I5GcpfIkSI2ubr6ksnv07kOyi232Rpc8nP5edP/lu8s2crGLMObh9zpW3XR/DenyD1mCQshKgBoaGhPPLII4wYMYLVq1cTHx/Pzz//zNy5c1m7di0AISEh/PDDD2zZsoUDBw7w5JNPVupnMjMzk927d7N7924A4uPj2b17t7VgdWZmJs8//zzbtm0jISGB9evXM3jwYNq2bUtUVFSJY0ZHR5OSksKrr75a6nldXFzo3r07ixcvplevXtbEhsFgsGmvyg8EPP/888TGxvLuu+9y5MgR5s+fz+rVq62zFtq2bcvly5dZvHgxx48f58MPP2Tp0qU2YwQFBZGZmcn69es5d+7cNS979OSTT3Lw4EGmTJnC4cOHWblyJbGxsYBlJsb1iIqKYt++fTazLPbu3UtkZCT9+/dn0qRJnDlzhjNnzpCSklKpsSdPnsyGDRtISEhgy5YtDB06FHt7e4YNG2bTb9OmTZVebqoeGgosAVpqrYdqrf+rtS4+nagIrXW61nqN1now0BJYWjCOEEIIIYQQop6p7oTFKGBIwXN3IAIYUdBe0kPcABI2/nxl4+ZbrzwvSFjkFVmpTBIWor4oLL790y1Xbohlrv2m5M4OTjDobRj6T3AsWAoleQ/8KxJf53zrTbUzZ85Ua8xC3MhiYmIYMWIEzz33HGFhYQwZMoQdO3bQsqVlWauXX36ZTp06ERUVRUREBP7+/gwZMqTC4//yyy+Eh4dbPw0/adIkwsPDmT59OgD29vb8/vvv3HvvvYSGhjJ27Fg6d+7Mpk2bSi2GrZTCx8enxMLXRUVGRpKRkWGtX1Gob9++ZGRkEBkZWeHrqIghQ4awcOFC3nzzTW655RaWLVtGTEyM9fwdO3Zk/vz5/P3vf+fWW2/lP//5D3PnzrUZo2fPnowbN46HHnqIpk2b8sYbb1xTLMHBwXz++eesXr2aDh068O677/LSSy8BlFtkvDzt27enU6dONoXXP//8c1JSUvjoo49o1qyZ9VG0jkZCQgJKKWvR85KcPHmSYcOGERYWxoMPPoi3tzfbtm2zWf5p69atXLx4kQceeOC6rqMeCCuYPXFNWXutdbLW+v+AdlUclxBCCCGEEKIGKK11+b2udXClRlamv9b6g+qKpT5QSrXAsoQWhw8fJiQkpJYjqh7/HTWB0G3fA5AxewFd7y/4JOlHD8DRH1jo1JMLud0ACIsMY1jfYaUNVWdkZ2fz/feWa+rfvz8uLi61HJGoqKp67c5ln+POz+5Em0y8+47GK9PMYc9A+n7/JU0alV6kleT9sHIEpB6xbEdM4x973Th37hz29vZMmzat1KVfbnTyc1fzjhw5Qn5+Pg4ODtf8/6iiNSw8PDyuzLITdV59fe1mz57N0qVLSUpKuu6x1q5dy/PPP8/evXsrfP1xcXHcd999HD9+HE9Pz2s+90MPPUTHjh2ZNm1aqX1K+xk9cuRI0SLzgVrrk9cciKi3iv6tkZSURIsWLWo5IiHE1YKmrq3tEBq8hNfvrpZx5bWrfvLa1U/yutVfFXntTp48SWBgYOFmlf2dUa1Ft2/0BIQomevRAwCYUdwU2f3KDlMuAHlKZliI+sfHxYcufl3YfmY7SwdqkjIeJcGpI68fOMvDXcsoROx3Mzz0ESyxJOk4uw8/v3s4d+4cJpOJ1NRUfH2lBJAQQlTUkiVL6NKlC97e3mzevJl58+Yxfvz4Khn77rvv5siRI5w6daroL+Zl+uabb5g2bdp1JSvy8vJo3749zz777DWPIYQQQgghhBD1Qf34aJxoMDLT0mmWegqAM14BeHg1vrIz35KwyNdX1tV2NbjWaHxCXI/+QZZ1xXe3seOPFpaCsv/d/UdZh1h4twWHglkYyfukjoUQdVxiYiLu7u6lPgrrVNQHAwYMKPU65syZU9vhXZMjR44wePBgbr75Zl577TWee+45ZsyYUWXjT5w4scLJCoB58+bx/PPPX9c5DQYDL7/8sswkE0IIIYQQQjR41TrDoiil1M1AT6ApsE9r/WVBux3goLXOq6lYRO05uGEHbtoMQGabm2x3FtSwyFdXEhYuTvKHuag/7mp1F3O2z8GkTbh47iEvJZpt8amcuZiDf+MyloWyd4CmN8Hp3ZbC295NrLuSk5Np3759tccuhKi4gIAAazHt0vbXF++99x7Z2dkl7vPy8qrhaKrG22+/zdtvv13bYYgqpJRqDUwB7gQCgNKm4GqtdY39fSOEEEIIIYSoetX+C71SKhCIAYpWePwA+LLg+ePAEqVUf631+uqOR9Su3+wasz38QW46f4J2vfrY7sy35KzycaSwbLGrk8ywEPWHl7MXXf27svX0Vsz257FzPok5JxDjoXKWhQLwu9WSsEDj75BubZbC20LUPQ4ODrRt27a2w6gSzZs3r+0QhCiTUiocMALuYP0VsdTu1R6QEEIIIYQQolpV65JQSikvYAPQD9gHvEvxPyRWAmbg3uqMRdQNP6fB9626sij8z7QZOtB2Z8EMC1ORPJqrsyQsRP0SHRwNQONLmvG/f8bbGxZh+Ofi8g/0u9n61CPzOM7OlhkZsiSUEEKIG9zfgUbAaqAz4KG1tivtUbuhCiGEEEIIIa5Xdf9SPwUIAt4EOmqti1U81FpfAPYAvas5FlHLtNbsSkwDoJGTA22butt2KKhhYebKklDuzlf1EaKOu7PlnTgoB/LsYcD+P7jpQiJuR/aXf6DfLdan6ux+ax2LjIwMsrKyqitcIYQQoq7rARwCHtRa79JaZ9Z2QEIIIYQQQojqU90Ji8FAAjBVa63L6Hccy3q0ogE7fTGHsxmWpETHwCbY2V012cZk2Vd06WFJWIj6prFTY7oHdCfbWXHa09Lmdy6Jy7nllOnxu/XK8+S9UnhbCCGEsLgM7C7nbwkhhBBCCCFEA1HdCYtWwK9aF1RZLl0eUD8rO4oK2/vTLm5PPkCjvEuEt2xSvEPBDAuNvbXJzdmthqIToupEBUUBkOBnSco5mS5zfFc5syzcfMC9IEmRvA9/SVgIIYQQAL8CLWo7CCGEEEIIIUTNqO6ERQ6WNWfL0xK4WM2xiFqW8+UaXtv6Piu/eYVuF44V71BQw6JwhoUZM86OzjUZohBVol/LfjjYOXDc/8osoqTtu8o/0LegjkX2efw8riyNJoW3hRBC3MDeBHoopSJqOQ4hhBBCCCFEDajuhMVBoJNSqtSPySulfICOwO/VHIuoZYYjB63Pb+rV2Xan2QTmfACUtsywMNmZaiw2IaqSh8GDXgG9iL8ySYJL+ypXx6Kp6TRKWRIeMsNCiOsXERHBxIkTazuMeumLL76gbdu2ODo68uKLL/Lxxx/j5VUzE2ODgoJYsGBBjZyrIlJTU/H19SUhIaHGz929e3dWrVpV4+etbVrr74AJwH+VUnOVUncopYKUUi1LetR2vEIIIYQQQojrU90Ji88Bb2C+Uqq0c80DXIFPqzkWUYtys3NolpwAwFmPpvi08LPtULAcFIAyWxIWZrvyVhITou66s+WdxBeZYWE4fqT8g4rUsTCkHrTeEDx79iwmkyTwhLgeq1ev5rXXXqux823cuJF77rmHgIAAlFJ88cUXxfqMGjUKpZTNIzo62qZPYfu2bdts2nNzc/H29kYphdFoBCw3tMeNG2fTb+nSpSiliI2NLXbuPn36VOhannzySR544AFOnDjBtGnTKnRMZcXGxtKkSZNi7Tt27OCJJ56olnNei9mzZzN48GCCgoKK7UtNTaVFixYopUhLS6vUuBV5v7z88stMnToVs/mG/P3oV+AP4AUgDjgGxJfwOF5bAQohhBBCCCGqRnUnLN4B9gKPAT8rpQr/ym2jlJqklNoKjAB2A7HVHIuoRYc2/4qhYAbFxaCw4h0KloOCKzMstJ3UVhT1VzvvdmS4Ks4VLIrnm3wCU345SYciMyxI3mctvG0ymTh//nw1RSrEjcHLy4tGjSqySmXVuHTpEh07duSdd94ps190dDSnT5+2Pj755JNifQIDA4mJibFpW7NmDe7u7jZtkZGR1uRFobi4OAIDA4u1G41G+vXrV+51ZGZmcvbsWaKioggICKjR7yFA06ZNcXV1rdFzliYrK4v333+fsWPHlrh/7NixdOjQ4ZrGrsj7ZcCAAWRkZPDtt99e0znqK6VUb2A9EAYo4DyQWMojqZbCFEIIIYQQQlSRak1YaK1zgChgK9AJKPxoY28sMyu6Ab8Ag7TWl6szFlG7Tm3ZYX1uKOmP+SIzLOwkYSEagNaNW2Ov7K2zLFwv55C472jZBzUNA1VQdD55P/7+/tZdUsdCiOtz9ZJQubm5TJ48mebNm+Pm5ka3bt1sbuqnpqYybNgwmjdvjqurK+3bty8xmVCaAQMGMGvWLIYOHVpmPycnJ/z9/a0PT0/PYn1GjhzJihUryM7OtrYtX76ckSNH2vSLjIzk0KFDNv9ebNiwgalTp9pcW3x8PCdOnCAyMrLM2IxGozVB0a9fP+zt7fnpp59K7Pvuu+/Spk0bDAYDYWFhfPjhhzb758+fT/v27XFzcyMwMJCnn36azMxM63lGjx7NxYsXrTNKZsyYARRfEkopxXvvvcfQoUNxdXUlJCSEL7/80uZcX375JSEhITg7OxMZGckHH3xwTbMervbNN9/g5ORE9+7dS7z+tLQ0Jk+efE1jV+T9Ym9vz8CBA1mxYsU1naMemwU4A/MBb611U611cGmPWo5VCCGEEEIIcZ0cqvsEWuvTQG+lVBRwN9AaS6IkCfgW+K/WWu5MN3CX91wpUdK8x+3FO5gsCQszYF+QsMC+BgITopoY7A0ENw4mwe8QXQpWgzqx7VeCO5Yww6iQgxP4hEDKQUg5iF9Tb+uu5ORk2rdvX81RC3Htfvl6DTvXflFuP9+gNkQ++VebtjVvvMrZ+GPlHtv57iHcPqjsBEBFjR8/nv3797NixQoCAgJYs2YN0dHR7Nmzh5CQEHJycujcuTNTpkzBw8ODtWvX8uijj9KmTRu6du1aJTGA5Wa9r68vnp6e9OvXj1mzZuHt7W3Tp3PnzgQFBbFq1SqGDx9OYmIiGzdu5J133rFZ5qpXr144OjoSFxfHsGHD2L9/P9nZ2YwdO5YpU6YQHx9PcHAwcXFxODs706NHjzJj69mzJ4cOHSIsLIxVq1bRvXt3HBwcSExMtOm3Zs0aJkyYwIIFC7jrrrv4+uuvGT16NC1atLAmRezs7Fi0aBHBwcEcP36cp59+mhdeeIElS5bQs2dPFixYwPTp0zl06BBAsdkjRc2cOZM33niDefPmsXjxYh555BFOnDiBl5cX8fHxPPDAA0yYMIHHHnuMXbt2XXMS4WqbNm2ic+fOxdr379/Pq6++yvbt2zl+vHpXJOratSuvv/56tZ6jDuoE7NJaV80LKYQQQgghhKjTqj1hUUhrvQ5YV1PnE3VLk4TDAOTaOdCuZ3jxDgUzLLKxR2H5RLqyV8X7CVGPhHiGsKv1ETSaAwymm08bIso7yO8WS8LCfBk/xyxrsxTeFnVdXnYWmedTy+3XyNunWFt2+sUKHZuXnVVun4pITEwkJiaGxMREAgICAJg8eTLfffcdMTExzJkzh+bNm9vc6H7mmWdYt24dK1eurLKERXR0NPfddx/BwcEcO3aMadOmMWDAALZu3Yq9vW3WfsyYMSxfvpzhw4cTGxvLwIEDadq0qU0fNzc3unbtitFoZNiwYRiNRnr37o2TkxM9e/bEaDQSHByM0WikR48eODk5lRmfwWDA19cXsCyp5e/vT3p6erF+b775JqNGjeLpp58GYNKkSWzbto0333zTmrAoOrslKCiIWbNmMW7cOJYsWYLBYKBx48YopWxmlpVm1KhRDBs2DIA5c+awaNEifv75Z6Kjo1m2bBlhYWHMmzcPgLCwMPbu3cvs2bPLHbc8J06csL5fCuXm5jJs2DDmzZtHy5Ytqz1hERAQQFJSEmazGTu76l7Ztc7IAw7VdhBCCCGEEEKImlFjCQtx40pJPE3TjHMAnPEL4jYX5+KdCmpYZCoDFMy3kYSFqO9CPUP5tvm3HG2uyD7lhuFiBQ7yuwX2rgKg8aV4nJycyM3NlYSFqPMMLq64e3mX28+lUePibR6NK3SswaVqahns2bMHk8lEaGioTXthIWuw1I6ZM2cOK1eu5NSpU+Tl5ZGbm1ul9RQefvhh6/P27dvToUMH2rRpg9Fo5M4777TpO3z4cKZOncrx48eJjY1l0aJFJY4ZERHBZ599Blhmb0RERADQt29f69JLRqORxx9/vMqu48CBA8UKY/fq1YuFCxdat3/88Ufmzp3LwYMHSU9PJz8/n5ycHLKysir9PS1aJ8LNzQ0PDw/Onj0LwKFDh+jSpYtN//ISTOPGjeOjjz6ybhcuVXW17OxsnJ1tf4d58cUXadeuHcOHD6/UNVwrFxcXzGYzubm5uLi41Mg564DtQGi5vYQQQgghhBANgiQsRLU7ZNxG4W2o3NCbS+6UnwdARpGEhZ3DDfPJQdFAhXpeub9i53SGfacuorVGqTKScb5XCm+rlP34+bUkMTGR9PT0a7qxJ0RNuX3Q0Aot12Q2m4t9Sn/oC9OrK6wSZWZmYm9vz86dO4vNZChcimjevHksXLiQBQsWWGsvTJw4kby8vGqLq3Xr1vj4+HD06NFiCQtvb28GDRrE2LFjycnJsRZgvlpkZCSzZ8/m1KlTGI1G6yyRvn37smzZMo4dO0ZSUlKFCm5XlYSEBAYNGsRTTz3F7Nmz8fLy4qeffmLs2LHk5eVV+t81R0dHm22lFGaz+Zrje/XVVyu0bJSPjw8XLlywafvf//7Hnj17+PzzzwEoXOXUx8eHl156iZkzZ15zXCU5f/48bm5uN1KyAiw18DYqpYZprSteSEYIIYQQQghRL1VpwkIpdRzL7ea7tNbxBdsVpbXWbaoyHlE3HE/JJLVJC9pc/IPGnUtYDgqsMywuqSs3IewdpIiFqN+KJizsnU+TmpJHcnou/o1LmGVUyO9KwoLkffj7d7WuF5+cnExwsNQTFeJ6hYeHYzKZOHv2LH369Cmxz+bNmxk8eLD1k/Nms5nDhw9z882lJN6rwMmTJ0lNTaVZs2Yl7h8zZgwDBw5kypQpxRIthXr27InBYGDJkiXWOhwAXbp0ISUlheXLl1uXjqoq7dq1Y/PmzTZFwDdv3mz9Xu3cuROz2cxbb71lXcZo5cqVNmMYDAZMJtN1xxIWFsY333xj07Zjx44yj/H19bUufVWW8PBwm5kYAKtWrbIphr5jxw7GjBnDpk2baNOm6n+t3bt3L+Hhpfwu1XAZgAXAh0qpe7HUwEvEUvqsGK31xpoLTQghhBBCCFHVqnqGRRCWhIVjke2KksLbDdS6xiFsjpiIU34ecUMiS+5UUMMiq0jCws5eZliI+s3P1Y9Gjo24lJtOq/STNE/8hYNbvPAfUEah28YtwKkx5F6E5H343eRn3SUJCyGqRmhoKI888ggjRozgrbfeIjw8nJSUFNavX0+HDh24++67CQkJ4fPPP2fLli14enoyf/58kpOTK5ywyMzM5OjRo9bt+Ph4du/ejZeXFy1btiQzM5OZM2dy//334+/vz7Fjx3jhhRdo27YtUVFRJY4ZHR1NSkoKHh4epZ7XxcWF7t27s3jxYnr16mVNbBgMBpv2q2cpXI/nn3+eBx98kPDwcO666y6++uorVq9ezY8//ghA27ZtuXz5MosXL+aee+5h8+bNLF261GaMoKAgMjMzWb9+PR07dsTV1fWaZpQ9+eSTzJ8/nylTpjB27Fh2795NbGwsQNmz2yogKiqKF198kQsXLuDp6QlQLClx7pxlCcx27drRpEmTCo9d3vul0KZNm+jfv/91XEW9ZMTyd4ICHix4lEYjM8iFEEIIIYSo16r6jnAw0Bo4XmS7oo/WVRyLqANMZs1vSZaF+z29PAjwbVJKx+IJCwdH+XtT1G9KKUI8Q+h2SPP2BxeZ/OsKMgpu4JVx0JVZFumn8Gty5Yad1LEQourExMQwYsQInnvuOcLCwhgyZAg7duyw3hx++eWX6dSpE1FRUURERODv78+QIUMqPP4vv/xCeHi49dPwkyZNIjw8nOnTLctf2dvb8/vvv3PvvfcSGhrK2LFj6dy5M5s2bSq1GLZSCh8fHwwGQ5nnjoyMJCMjw1q/olDfvn3JyMiwFsKuKkOGDGHhwoW8+eab3HLLLSxbtoyYmBjr+Tt27Mj8+fP5+9//zq233sp//vMf5s6dazNGz549GTduHA899BBNmzbljTfeuKZYgoOD+fzzz1m9ejUdOnTg3Xff5aWXXgIot8h4edq3b0+nTp2KzQ4pT0JCAkopjEZjqX3Ke78AnDp1ii1btjB69Ohrir8e21jw2FDkeWmPTbUUoxBCCCGEEKKKVOkdYa31ibK2xY3n6NlMMnPzAQhv2aT0jgVLQmVTJGHhIAkLUf+FeoZi9Nt5peHIwfIP8rsZErcA4GtOsTZLwkKIa3f1zWJHR0dmzpxZao0BLy8vvvjii2s+X0REhLWeQUlcXFxYt25dueOUNUaTJk1K3D9jxgxmzJhRrP2VV17hlVdeKfecpZ2jsE7EX/7yF8aNG2fT76mnnuKpp54qdZxnn32WZ5991qbt0Ucftdl+9913effdd23aEhISbLZLut60tDSb7XvvvZd7773Xuj179mxatGhRrGD2tZg+fTrPP/88jz/+uHV5q6JKet3j4+Np0qQJHTt2LHXc8t4vAIsWLWLUqFG0aNHi2oKvp7TWEbUdgxBCCCGEEKLmyB1hUa12Hb9ys7XshIVlhkV2kRkWBseyP0EqRH0Q6hXKp56QZQDXPPA8FV/+QUXqWBjOH8Tb25vU1FTOnj2LyWQqde16IYQQsGTJErp06YK3tzebN29m3rx5jB8/vkrGvvvuuzly5AinTp0iMDCwQsd88803TJs2zbqM1LXy9fVl0qRJ1zWGEEIIIYQQQtR11ZqwUEoFApHAdq31oVL63AR0Bf6ntT5ZnfGImufyzpvE7t/NQa9WdPpzyZ9iBawzLHKLJCwcDVW3vrYQtSWkSQhaKRL84OYk8L50gXMnk/Fp4Vf6QX63XnmevBc/v96kpqaSn5/P+fPnadq0afUHLoQoVWJiYpm1LPbv329Td6AuGzBgAJs2lbyKzrRp05g2bVoNR3T9jhw5wqxZszh//jwtW7bkueee48UXX6yy8SdOnFip/vPmzauS8z733HNVMo4QQgghhBBC1GXVPcPiGeA54JYy+iggFngdqH9/FYsyNTp+CL/sC3j/cZHWbQNK75ifB0BukbdkeWt0C1EfhHiGABDvp7g5ybLcx9EtO/F5cGDpB/m2u/I8eR9+ofezf/9+y2ZysiQshKhlAQEB7N69u8z99cV7771HdnZ2ifu8vLxqOJqq8fbbb/P222/XdhjiGimlOmmtf60r4wghhBBCCCFqVnUnLPoDB7TWpS7arrU+oJTaD0QjCYsG5WLKefwunAbgtE8g7Ru7l965cIZFkRoWTo7XVxxTiLrAzdGNFu4tiPdPBCwJi9Rde6CshIVTI2jSCtJOwNkD+PX2te5KTk7m1ltvLf1YIUS1c3BwoG3btrUdRpVo3rx5bYcgxNV2KKU+A2aU9TdEaZRStwCvAPcD17yGolJqONAH6Ay0BwzAaK117FX9HIF7Cx5dgUAs/8Pfj+VDWf/UWpuuOiYIKGuNyJla6xnXGrsQQgghhBD1WXUnLAKBktcZsHUU6FXNsYgadnDDz3gU3KDNbntT2Z0LaljkqStvSWfD9RfHFKIuCPUM5YhfknXbdLgihbdvtSQsLl/Cz+WytVkKbwshhGjgFgH/B/xZKbUVy03/9VrrUm/wK6VaA38CRmFJGpiAhdcZxyygFXAOOF3wvCRtgM+BTGA98CXQGLgHWAIMVErdq0uuqv4b8EUJ7cbrCVwIIYQQQoj6rLoTFq5AyesM2MoGGlVzLKKGpWz/BY+C5263dSy7s8mSsLhcZIaFs5MkLETDEOIZgtFnPXkOYMgHj6Tj5R/kdwscWgtAk6wEnJycyM3N5cyZM9UcrRBCCFF7tNbPKqX+CcwDBgA9AJRSKcABIBVIBzwAb6AdUHStxG+AF7TWB64zlMeAI1rrE0qpqcDcUvplYEmwfKC1vlTYqJR6DkviYRDwAPBZCcfulpkUQgghhBBC2KruhMVp4LYK9OsInK3eUESN27/X+jT4ju5l9y2YYXFZF0lYyAwL0UCEeoZitlOcaAohp8Ev/SwXz12gsY9n6Qf5XSn9o84ewM/Pj8TERNLT08nOzsbFxaUGIhdCCCFqXkGyYZBSKgQYDwwGWgK+pRySiGWmwjta6yNVFMOPFex3CstMiqvbLyml5gMfA30pOWEhhBBCCCGEuEp1Jyw2AcOVUvdrrVeV1EEpdR9wE5Zf5kUDYTabaXryKAAZBldu7xhW9gEFNSzyi7wlXZ1cqy0+IWpSqGcoAAn+Ct80ew43akO7o6fpUsGEBcl78fN7mMTERMtmcjJBQUHVGLEQQghR+wqSDxOACQXLPoUDfliWXErD8oGnX8taLqqWFa7pmF/K/gCl1P9huZ5kwKi1PnatJ1NKtSini3/hk+zsbLKzKzIRXgghGhb5t6/+kteufpLXrf6qyGtXXa9vdScsFgKPAP8u+AV6udY6A0Ap1QgYA8wGzFjWqxUNxIk9R/DItcyKP9siBDs7u7IPKJhhYcIBVdAkCQvRUAQ2CsTZ3pmYu7JZFuHNpfjHecXkQpeyDvJqDQ7OlmRe8j782vhZd0nCQgghxI1Ga30cqMCainXKmIKv35ey/08Fj0JaKfUfYFzR5aUqIan8LhYbN27Ex8fnGk4hhKhe1X2LRnz/fWn/JF8vee2qm7x29ZO8bvVXRV67c+fOVcu5y7mLfH201r8CLwIuwHzgvFIqUSmVCJwvaHMFXtZa/1ydsYiadXzjdutzffMtZfQsUCRhUcjN2a3K4xKiNtjb2dOmSRvyHRTK6TyoPPaeSi/7IDt78G1neX7+OP7eja27pPC2EJUXERHBxIkTazuMeumLL76gbdu2ODo68uKLL/Lxxx/j5eVVI+cOCgpiwYIFNXKuikhNTcXX15eEhIQaPW9eXh5BQUH88ssvNXpece2UUk9gqcHxP631N1ftzgJeAzoDTQAv4C7gZ2A48O+ai1QIIYQQQoi6pdrTUVrreUqpQ8BMLLUqik5V/g2YqbX+orrjEDUrc9du6/OmXTuXf0DBklBmLQkL0TCFeoayL3UfSmnsnJLZ94d3+Qf53QJ/7AI0TdV5a7MU3hai8lavXo2jo2P5HavIxo0bmTdvHjt37uT06dOsWbOGIUOG2PQZNWoUH3zwgU1bVFQU3333nXVbKcu8w61bt9K9+5V6ULm5uQQEBHD+/Hni4uKIiIige/fu3HbbbSxdutTab+nSpTz11FPExMQwatQom3MfO3aMTZs2lXstTz75JKNHj2b8+PForfnqq68q862okNjYWCZOnEhaWppN+44dO3Bzqzu/D8yePZvBgweXOMstNTWVjh07curUKS5cuECTJk0qPO6MGTOYOXOmTVtYWBgHDx4EwGAwMHnyZKZMmcL69euv5xJEDVBKDQL+AZzAkoCwobU+C0y/qnm9Umor8Ctwn1KqU8GHvyojsJz9/sAOgDvuuIMWLcpbQUoIUeO2/q+2I2jw+vfvXz0Dy2tX7eS1q5/kdau/KvLanTx5slrOXSPzZ7TWXwJfKqX8sBTMA0jUWsvHhBuo2I73cMkxhJvOn2BmRDkFtwFMeQCYsbc2NXJuVF3hCVHjCutYANg7neFocguycy/j4lTGDVTfK7OTnM4fwsvLi/Pnz3P27FnMZnP5S60JIaxqakZAoUuXLtGxY0fGjBnDfffdV2q/6OhoYmJirNtOTk7F+gQGBhITE2OTsFizZg3u7u6cP38lmRkZGcmaNWtsjo2LiyMwMBCj0WiTsDAajYwcObLc68jMzOTs2bNERUUREBBAeno5s8OqWNOmTWv0fGXJysri/fffZ926dSXuHzt2LB06dODUqVPXNP4tt9zCjz9eqfPs4GD7a/ojjzzCc889x759+7jllgrMXhW1Qik1EPgcS02Kflrr0xU9VmudpZT6EJgF9MKSvKgwrXWZfzEWJkABXFxccHFxqczwQgjRIMi/ffWXvHb1k7xu9VdFXrvqen1r9G6X1jpZa72j4FGtyQqlVBel1DdKqTSl1CWl1Dal1IPXMI6vUuptpdQRpVSOUipVKbVVKfVUdcTdEORcNrEnOZvDni3Z32MAnr4VuElUMMMCmWEhGqgQzxAAeu0zM3fdt3z61csc2bSj7INsCm/vw8/PUsciPz/f5ialEKJ8Vy8JlZuby+TJk2nevDlubm5069YNo9Fo3Z+amsqwYcNo3rw5rq6utG/fnk8++aTC5xswYACzZs1i6NChZfZzcnLC39/f+vD09CzWZ+TIkaxYscKmoNny5cuLJRwiIyM5dOiQzSysDRs2MHXqVJtri4+P58SJE0RGRpYZm9FopFEjy4cH+vXrh729PT/99FOJfd99913atGmDwWAgLCyMDz/80Gb//Pnzad++PW5ubgQGBvL000+TmZlpPc/o0aO5ePEiSimUUsyYMQMoviSUUor33nuPoUOH4urqSkhICF9++aXNub788ktCQkJwdnYmMjKSDz74AKVUsdkblfXNN9/g5ORkkzgqev1paWlMnjz5msd3cHCweS9cXV/A09OTXr16sWLFims+h6heSqm7gdXAOSCyoO5GZRUuBCy/CAshhBBCiBtSg6xQopSKBNYBOcAKIAO4H/hUKRWotX6rguPchqVIniewFsunpdyBdsA9wLtVHnwDsO+Pi+SbNQDhgU0qdlBBDQtd8JY0YcLgYKiO8ISoFYUJC48suOWM5RPKJ375jQ539Sz9oKsTFkEDOHDggGUzOVmKZYo6JWPTSTI3lf/JcocANxyH2C5Dcu6DfVw+lVnuse59mtOoT9UsYTJ+/Hj279/PihUrCAgIYM2aNURHR7Nnzx5CQkLIycmhc+fOTJkyBQ8PD9auXcujjz5KmzZt6Nq1a5XEAJab9b6+vnh6etKvXz9mzZqFt7ftknGdO3cmKCiIVatWMXz4cBITE9m4cSPvvPMOr732mrVfr169cHR0JC4ujmHDhrF//36ys7MZO3YsU6ZMIT4+nuDgYOLi4nB2dqZHjx5lxtazZ08OHTpEWFgYq1atonv37jg4OJCYmGjTb82aNUyYMIEFCxZw11138fXXXzN69GhatGhhTYrY2dmxaNEigoODOX78OE8//TQvvPACS5YsoWfPnixYsIDp06dz6NAhANzd3UuNa+bMmbzxxhvMmzePxYsX88gjj3DixAm8vLyIj4/ngQceYMKECTz22GPs2rXrupIIRW3atInOnYsvc7l//35effVVtm/fzvHj114T+siRIwQEBFhfm7lz59KyZUubPl27dq3QMl6i5hUkK1ZhqdMXqbU+eo1DdSv4mlAVcQkhhBBCCFHfVGnCQik1ouDpGq11RpHtCtFaX3eBOaWUA/AvwAzcobXeXdD+KpZCdnOUUp9rrU+UM44H8N+Czc5a699LOI8owa7ENOvz8JbFPylaooIZFqpghoXZzlzVYQlRq7ycvWjq0pR4/7PWttz9+8s+yM0H3P0h8wwk78O/m59115kzZ2RJEFGnmHNMmNLzyu1n17j4kkfmS5crdKw5x3RNsV0tMTGRmJgYEhMTCQgIAGDy5Ml89913xMTEMGfOHJo3b25zo/uZZ55h3bp1rFy5ssoSFtHR0dx3330EBwdz7Ngxpk2bxoABA9i6dSv29vY2fceMGcPy5csZPnw4sbGxDBw4sNhySW5ubnTt2hWj0ciwYcMwGo307t0bJycnevbsidFoJDg4GKPRSI8ePUpcfqoog8GAr68vYFlSy9/fv8Qlod58801GjRrF008/DcCkSZPYtm0bb775pjVhUXR2S1BQELNmzWLcuHEsWbIEg8FA48aNUUrh7+9f7vdt1KhRDBs2DIA5c+awaNEifv75Z6Kjo1m2bBlhYWHMmzcPsNSB2Lt3L7Nnzy533PKcOHHC+n4plJuby7Bhw5g3bx4tW7a85oRFt27diI2NJSwsjNOnTzNz5kz69OnD3r17rbNcAAICAjhxosxfYUUtUEoNwJKsuIAlWXGknP7hwG6ttb6q/T5gZME431ZTuEIIIYQQQtRpVX3TPRbQwDYssxoKtyvquhMWQD+gDRBTmKwA0FpfVErNKYhpJPBqOeM8jaXextirkxUF4+VXQawNkv70P9x/+iKHPFsS3ryMT48XlW+5UaW05QaNJCxEQxTqGcpO3ysJC5eECnz40u8WS8Ii+zx+7ldW8UtOlhJAom6xc7bH3qP8mXF2bsV/9bBzc6zYsc725fapiD179mAymQgNDbVpz83Ntc5uMJlMzJkzh5UrV3Lq1Cny8vLIzc3F1dW1SmIAePjhh63P27dvT4cOHWjTpg1Go5E777zTpu/w4cOZOnUqx48fJzY2lkWLFpU4ZkREBJ999hlgmb0REREBQN++fa1LLxmNRh5//PEqu44DBw7wxBNP2LT16tWLhQsXWrd//PFH5s6dy8GDB0lPTyc/P5+cnByysrIq/T3t0KGD9bmbmxseHh6cPWv5t/XQoUN06dLFpn95CaZx48bx0UcfWbcLl6q6WnZ2Ns7OzjZtL774Iu3atWP48GJ1lStlwIAB1ucdOnSgW7dutGrVipUrVzJ27FjrPhcXF7Kysq7rXKJilFKPAb0LNtsXfH1MKRVR8PwnrfV7SqmbgDWAE2AEhhWtFVEgQWsdW2T7baBNQZHtk4A90KngfLnAKK31xaq8HiGEEEIIIeqLqk5Y/BtLguLiVds1KaLg6/cl7Cuskti3AuM8hCX2VUqpMKA/4AIcBL7TWpf/UdCrKKXKW8fC+rHC3Nxcm7Wq65Obt3xD76w0sh2caOExukLX4XQ5GzuuzLDQdrpeXX9OTk6Jz0XdV5OvXXCjYDY7beYPLwg4D37nTnIx7SIGp9Jv1Dp4h+J4bD0ALhePYDAYyMvL48yZM/XqZ6Q6yM9dzTObzRR+INhstk0su/UKwK1XQEmHFRuj8IZw4Rhej7arVAzXSmuN2WwmPT0de3t7duzYUWwmg7u7O2azmTfeeIOFCxfa1F549tlnyc3NvaYYzGZzuccFBQXh4+PD4cOHbepLmM1mPD09ufvuuxk7diw5OTlERUWRkZFRbOy+ffsye/ZskpKSMBqNTJo0CbPZTJ8+fVi2bBlHjhwhKSmJiIiICl1HYZ+S4i+6ffX+ou+ThIQEBg0axLhx43jttdfw8vLip59+4vHHHycnJwdnZ2eb81yt8HUrZG9vb7OtlCI/P9/6/ry6f1nXADBjxgwmTZpU4nUV5e3tzfnz5232/+9//2PPnj18/vnnNtft4+PDtGnTrLU4KsvDw4PQ0FCOHDlic77U1FSaNm1a5mtXeP1F/x+Rm5t7TXHc4Hpj+ZBTUb0KHoXew/L7e+F0pYcp2QYsH5oq9BGW5Wq7Az5Y6gqeKhjvLa31wesJXAghhBBCiPqsShMWWutRZW3XkJCCr8WmYmutzyilMov0KZFSyoDlk1QpwDPATGwLlB9XSg3RWu+pZGxJFe24fft2jh07Vsnha9+llIuEZ6UBkOTTgqS4/1XouD9lpuEK2BfMsDBh4vvvS8o51X0bN26s7RDENaru1y47z3LzKN5PEXBeYzDn89+YFTRuXfoSKC3OmylcMf3Yli9xdAwhLy+P9PR0vvnmGxwcZHU6kJ+7muLt7Y2LiwtKqRKXBqqs0j7JXh3y8/OtPzshISGYTCbi4+Pp2bP4TMD09HQ2bNjAgAEDuPfeewHLTezCeg7Xcu3Z2dnlHnfq1ClSU1Np3LixTd/CYx966CEefPBBJkyYwKVLl6wJi6ysLGv/W2+9FYPBwIIFC8jJySEkJIT09HTCwsJISUlh6dKluLm5cdNNN1XoOoqeo+jrpbW2Hh8SEsKGDRtsCoxv2LDBeu6ffvoJs9nM9OnTsbOz/DqVkJBgHd/Ozg6TyYTJZCoWk9lsJicnp8TvR9FYCvsEBQXxww8/2OzfvHmzzbmu5uzsbDNzorTvS7t27Vi5cqXN/piYGJvEwK5duxg/fjzffPMNwcHB1/xzkpmZydGjR3nggQdsxti1axe33HJLqePm5+eTnZ1NdnY2Bw9eued97ty5EvvXB0opExCrtR5bTr9/AaO11lXyP8aCv2NGVaCfESg2paKcY97DkpwQQgghhBBCXKX4X23XQSm1XCk1psh2S6WUV1WeowIaF3wtbRp1epE+pfHCMjXbG5gOvAD4AS2A14Bg4CullHOpI9ygso+etD6/ENCyjJ627HQ+ZsC+cIaFqumJOUJUP397S2Ii3v/KfY3LJ/4o85h050Drc4/sJFxcXKzbMqtAiGvTtm1b/vznP/PUU0/x1VdfceLECXbu3Mn8+fNZt84yGbNNmzbExcWxfft2Dh06xLPPPmtddqgiMjMz2bNnD3v2WD7bcOLECfbs2UNSUpJ1/9/+9jd27NhBYmIiGzZs4JFHHqF169bFloMqdNddd3H06FGmTZtW6nldXFy4/fbb+de//kXXrl2tM0gMBoO1vVu3bjg6Olb4Wsrz17/+lY8//pj333+fY8eO8c477/DVV1/xzDPPABAcHMzly5f55z//SUJCwv+zd9/xUVXpH8c/Z2bSQ0JoCS0QqnQQELBQBWzYe8XurrqubdW1u6u7v1V3XXfXvoq6a1l7F5UuIL33HnpCSa8zc35/zGSSQBowk8b3/XrNK3fuPefcZ7xJMPe55zx88MEHvPXWW+XGSE5OJicnhxkzZrB///6jXvbo+uuvZ8OGDTz++ONs3LiRzz77jPfee++YPyPA6NGjWbt2LRkZGYF9KSkp9OzZM/Dq0KED4KudcWiNkao8+uijzJ49m9TUVObNm8c111yD0+nkoosuKtdu7ty55WbfHCcMNU8IHFHiQERERERE6p9gP5o70f/1Tf/XLfimP1f5RFQ9VJLIcQL/tNY+X+bYY/4loi4FLsY3pbum2ldzPAlYAL7ii507dz6CoeuH77+dE9juMHoEQ8eNq1G/iFWWnDLfjs4IJ+Nq2Lc+KCgoCDzhPXz48MPWuJb6qzavXZGniFc+fYUtiaVLeTTLyq76e91diN3wBMbrpq0rg4EnDgzcUO3QoQMDBw6svG8jp5+72peamorH48HlchEXF3dUY5RdEio2NrbCJ95DweVyER4eHoj73Xff5emnn+axxx5j586dtGjRgiFDhnDRRRcRFxfHk08+yY4dO7j44ouJjo7m5ptv5vzzzyczM7NGn33x4sXlEg8PP/wwANdeey1vvfUWYWFhrFu3jquuuoqMjAzatGnD2LFjeeqppw670R0VFRU4Z3x86TMXJcsCRUdHl4vp9NNPZ86cOZx++unl9o8ePZpZs2Ydtr8qZc8RGxsbuHbGmMAYV1xxBRkZGfz1r3/loYceIiUlhX//+9+cddZZgK+exfPPP89zzz3HU089xWmnncYzzzzDxIkTadKkCXFxcYwdO5Zbb72VG2+8kf379/PYY4/x+OOP43A4iIyMLBdv2f8eJbGUtOnTpw//+9//uP/++3n11VcZNmwYDz/8MLfffjstW7Y8pt8Tw4YN48QTT+S7777j1ltvrbBNST2Oks8FvtkknTt3ZsqUKYGaIodKS0vj5ptvDiz5dMoppzB37lw6deoUaDN37lyys7O55ppryiWvy0pPTycqKorY2Nhy/z40xFm7RyEaKK7rIERERERE5NgEO2HhAco+snckT0QFS8nMispmUcQBB2s4BsCXFRz/El/CYhBHkLCw1u6o6njZAn0RERGV/jFan0VuLF1+oOfpp9X8M3gKyTHhgYonDpejQX5+8C0t0VBjP96F+tpFEUVKfApbEktXrIvctqmac0ZB866QvgbH/g20b9M6cGTv3r36XvPTz13tcDgcgRvYwUg0OByOWktYTJ8+vdz7iIgInnrqKZ566qkK27do0YIvvvjiqM83evToQD2DisTExNRo6cOqxmjWrFmFx5988kmefPLJw/Y/8cQTR1xToew5Sq79lVdeyW233Vbu2t1+++3cfvvtlY5zzz33lKsTAXDddeXLA7zyyiu88sor5faVLB1VoqLPW3bGA8D555/P+eefH3j/9NNP065du6AUTH/ssce4//77ufXWWyv83q3oum/bto2mTZsyYMCASr/fP/zww2rP/eKLL3L//fcTExNTZTtjDA5H+f+PioiIqKJHw2eMaYqv5sTuOg5FpN7o+OA3dR1Co7b1z2fXdQgiIuobak4AAQAASURBVCKNVrATFmlAf2OMsVX9hR1aJXcCuwKLyh4wxiQBscD8qgaw1uYaY3YCbYGMCpqU7NPdsTKKCgppvWcLAOmxzenRsfriqwBYC54ich1RpQkLZ+3cwBKpbV0TurIxYyPpcdAyCxL3bsPj9uB0OSvvlNgL0teAt5iksGxcLhdut5vU1NTaC1xEpIF46aWXGDx4MM2bN2f27Nk8++yz3HHHHUEZ++yzz2bDhg3s3LmT9u2rmzjr8+233/L73/+ehISEoz5vUVERffr04e677z7qMRoSY8zmQ3ZdbIwZWUlzF75Zyk7g1RCGJSIiIiIitSDYCYupwFX4ilJv8e87wxhTk8rL1lpb8aLNR2YG8BAwDvjgkGPjy7SpzlTgGqAnsPiQYz39X7ceXYiN0/q5S4nw+GbiH+zYveYd3YUA5DjCwL9STpU3b0UasG4J3fhuy3d8MMJBTtaprAs/hfcP5tOpZWzlnRJ7wcqPAXDtW0u7du3YunUrmZmZZGRk0LRp09oJXkQA39JYPXv2rPT46tWrSU6ueR2nunTmmWcya9asCo/9/ve/r7JeRn21YcMG/vjHP3LgwAGSk5O59957eeihh4I2/m9/+9sjav/ss88e8znDw8N55JFHjnmcBqRjmW2L74GjKv6hpAj4HGh437AiIiIiIlJOsBMWDwDdgMFAB/++JP+rOsGakTEF2AxcaYx50Vq7FMAYE4/vj5gi4J2SxsaY1viWj9ptrS27FNQr+BIWDxpjvrbWZvjbJwF34bu1/kmQYm4UdsxZELjoYb1717yj21c4OK/MamJKWEhj1S2hGwCzejso3BdGUXpzVu3KqiZhUebnae9KOnQYGVgmJTU1VQkLkVrWpk0bli5dWuXxhuKNN94gPz+/wmPNmjWr5WiC429/+xt/+9vf6joMOTYp/q8G3//XfwzcX0nbIiDdWuuujcBERERERCS0gpqwsNbuAoYYYzrgS1hMB74H/i+Y56kmBrcx5iZgMjDTGPMBkA1c5I/pPmvt1jJd/gRcB1yPr0B4yThzjDF/Be4BlhtjvsJXn+M8oBXwe2vt+tB/ooajaPnywHabYYNr3tFTBECeUcJCGr+ShAWAM3IPAKt2ZTGhXxU3OBPLPMm9dxXJw64NvE1NTaVv375Bj1NEKudyuejSpUtdhxEUbdu2resQRA5jrd1Wsm2MeRuYVXafiIiIiIg0XsGeYQEE/sjY5i8ivcdaW5MlmIJ5/mnGmFOBJ4HL8CUaVgAPWGurr2pYOs69xpgVwO3ARHyzQJYAt1lrPwt64A3czObd2do+n66ZOxh12sCad/TPsMgnPLArLCysstYiDVpidCJNwpuQXZSNI6IkYZFZdae4thAZDwWZsHcV7dq1wxiDtVZ1LEREpFGz1l5f1zGIiIiIiEjtCWrCwl+r4ntr7V/8u66ntAh2rbLWzgfOrEG7ifiSEZUdn0SZmRdSsYO5RXwcdwIMPIEByU05M/oI6pH7a1jkl5lhoYSFNFbGGLoldGPR3kW0zsmg7c55dN+Qiff6wTgclRSbN8a3LNS22ZC9iwhPLq1bt2bXrl2kpaWRl5dHdHR07X4QERERERERERGRIKvk7thRGwmcUOb9m8CNQT6H1ENLd2QEtge0Tziyzv4ZFoWmNH8WHhZeWWuRBq9r064A3DjZy4MLPuKCVT+wa/3Wqjsl9irdTitf0Hf79u0hiFJERKR+MMY0McY8YIz50Riz2hizuZLXprqOVUREREREjk2wExbFQGSZ98b/kkZuSWpGYHtActMj6+z21bAoLFN0OzxcCQtpvLo189Wx2JJUum/z3MVVd2p1SB2LMgkLLQslIiKNlTGmDbAMeAYYg+/hqI5VvEREREREpAELdsJiN76i2zFBHlfquV0LlhJd7JspceQJC/8MizIrlEWERwQrNJF6p6Tw9uak0nxu5rKVVXdK7F26vXdluYTFtm2qQyoiIo3WM/gSEcuAy4F+QEolr051E6KIiIiIiARLsItufwP8Ckgzxuz177vYGDOyBn2ttbZzkOORWuBxe7js/T9zfXEBa5K60rbpWUc2gD9hUVymhkVkeGRlrUUavJIlobYmliYszMb1VXdq1aN0e+9qYmNjad68Ofv372fXrl0UFxer9ouIiDRG44G9wChrbWZdByMiIiIiIqEV7BkWvwc+BsLwPQllgViqnrZd9iUN0OYlq4ktzseBJSKuCcYc4SpgHt+SUEVWCQs5PkSHRdMuth17m0KufzJRwq4tVXeKiIWEFN922mrwegOzLLxeLzt37gxdwCLHsU8//ZSxY8fSsmVL4uLiGDZsGJMnTz6s3b/+9S86duxIZGQkQ4YMYf78+eWOd+zYEWMMH3zwwWF9e/XqhTGGSZMmAXD55ZdzxhlnlGvz/fffY4zhiSeeKLf/iSeeKDfjSqQRSgDmKlkhIiIiInJ8CGrCwlqbaa29FIjGl4Aw+BIYlU3b1hTuRmDrrNKbMqZX7ypaVsI/w8JdZsJPVETUMcclUp91S+gGxrA10fe+WV4Gaam7q+5UUni7OA8ObqFDhw6BQ1oWSiQ0Zs6cydixY/n2229ZtGgRo0aNYsKECSxZsiTQ5sMPP+See+7h8ccfZ/HixfTr14/x48eTlpZWbqz27dvz1ltvldv3yy+/sGfPHmJiSlfTHDVqFLNnz8btdgf2TZs2jfbt2zN9+vRy/adNm8aoUaOC+IlF6p3tBP8hKxERERERqadC8j//1lq3tbakCmyOtXZbTV6hiEVCL2/p0sB2qyGDjnwAd6HvS9mERbgSFtK4BQpvl1kWatOcagpvlyQsQIW3RY5Aeno6SUlJPPPMM4F9c+bMITw8nClTplTZ94UXXuB3v/sdgwcPpmvXrjzzzDN07dqVr776KtDmr3/9KzfffDPXX389PXv25JVXXiE6Opo333yz3FhXXXUVM2bMYPv27YF9b775JldddRUuV+m/gaNGjSInJ4eFCxcG9k2fPp0HH3yQefPmUVDgS/QXFBQwb948JSyksfsYOE018kREREREjg8hfVrJWuuw1t4QynNI3YvZtBYAD4YeI0468gEqSFhER0YHJTaR+qqk8PaWMoW39y9dXnWnsgmLtNUkJCQQGxsLwPbt2/F4PEGPU6QxaNmyJW+++SZPPPEECxcuJDs7m2uuuYY77riDMWPGHNFYXq+X7OxsmjVrBkBRURGLFi3i9NNPD7RxOBycfvrpzJ07t1zfxMRExo8fz9tvvw1AXl4eH374ITfcUP5/lbp160abNm2YNm0aANnZ2SxevJhLLrmEjh07BsadM2cOhYWFSlhIY/cHfLMs/meMaVXXwYiIiIiISGgFu+h2pYwx8cBgoCWwzVo7p7bOLaGTfTCLpP2+tfP3NG9L74S4Ix/En7Dw4gpk0GIi9RCdNG4lhbfLzrDwrltXdafEMkuu7V2JMYYOHTqwatUqioqK2Lt3L23atAlFuCJVevXVV8nJyalxe2stwJHXPDpEbGwst956a43annXWWdx8881cddVVDBo0iJiYGP70pz8d8Tmfe+45cnJyuPTSSwHYt28fHo+HxMTEcu0SExNZu3btYf1vuOEG7r33Xh5++GE+/vhjOnfuTP/+/Q9rN2rUKKZPn85DDz3ErFmz6NatGy1btmT48OFMnz49cDwlJaXc8nAiDZ0x5s0Kdm8Gzgc2GmMWAqmAt4J21lp7YwjDExERERGREAt5wsIY0wT4G3BNmfO9DczxH78JeAq4wFo7L9TxSHCtnT6PWHw3nnI7n3B0g/hrWHht6bdjTIQSFtK4tW/SnkhnJLua53Mg1kFqZAqbY1tzblWdEjqCKwrc+bB3FQDJycmsWuXbTk1NVcJC6kROTg7Z2dl1HUa1nnvuOXr37s1HH33EokWLiIiIOKL+7733Hk8++SRffPEFrVod3YPeZ599NrfeeiszZ87kzTffPGx2RYmRI0fy29/+luLiYqZPn87IkSMBGDFiBK+++ipAIHEh0shMrOJYLDCyiuMWUMJCRERERKQBC2nCwhgTBUwHBgBpwELgrEOafQ28iu+pKSUsGpi98xYS69+OruAJ0RopM8OiRJOoJscWmEg953Q46dK0Cyv3r+S22w3Z628EG86dBcXERYZV3MnhhFY9YNdiOLAFinIPq2MxdOjQWvoEIqVKliarqWDOsDgSmzZtYteuXXi9XrZu3UqfPn1q3PeDDz7gpptu4qOPPiq3/FOLFi1wOp3s3bu3XPu9e/eSlJR02Dgul4trrrmGxx9/nHnz5vHZZ59VeL5Ro0aRm5vLggULmDZtGvfffz/gS1jccMMNHDhwgHnz5tV4holIA3J9XQcgIiIiIiJ1J9QzLO7Bl6x4H7jFWptrjCk3fdtau8cYswbQI4INkF29MrDd8dTBRzeIx5ewsJphIceZbs26sXL/SnCAI2Iv3oL2rN6VxdBOzSvvlNjLl7DAQtpaEtsMICIigsLCQrZt24a19phvAoscqSO5ae71esnKygIgLi4OhyOk5bQCioqKuPrqq7nsssvo3r07N910EytWrKjRTIn333+fG264gQ8++ICzzz673LHw8HAGDhzIlClTOP/88wHfZ5wyZQp33HFHhePdcMMNPPfcc1x22WUkJCRU2KZz5860b9+eL7/8kqVLlzJixAgA2rZtS9u2bXn++ecpKirSDAtpdKy1b9d1DCIiIiIiUndCfZfgMmAPcKO1NreKduuBdiGORYLMWktBVg5eDDlhUXQ6sVf1nSriXxIKf8LCYzyEuSp5wlykESmpYwHgjNgDwMKtB6ruVK6OxQocDgft27cHIDc3lwMHqukvcpx6+OGHyczM5MUXX+SBBx6gW7dulS7HVNZ7773Htddey/PPP8+QIUPYs2cPe/bsITMzM9Dmnnvu4fXXX+ftt99mzZo1/OpXvyI3N5frr6/4QfEePXqwb98+3nrrrSrPPWrUKF566SW6dOlSrkbGiBEj+Mc//hEozi0iIiIiIiLSWIQ6YdEZmG+tLaimXR7QIsSxSJDtOJjP/UNv4ZKz/8D/rnwIp8t5dAP5l4Qy+Pp7TUU1FEUan24J3QLbjsjdOL0eVk+eVXWnpDJL2GyaCnDYslAiUt706dN54YUXePfddwOzOt59911mzZrFyy+/XGXf1157Dbfbze23307r1q0Dr7vuuivQ5rLLLuO5557jscceo3///ixdupTvv//+sELcZTVv3pyoqKgqzz1q1Ciys7MD9StKjBgxguzsbM2uEBERERERkUYn1EtCeYCaPCrfDqhqBobUQ0u3ZwCQFxZJ60Fdq25clZKEhX+GhdehhIUcH7omlP7cXLZ2LWfNXUh8UR4bLz2JLgN7V9yp/RCIbgF5+2D9ZCjIokOHDoHD27ZtY8CAAaEOXaRBGTlyJMXFxeX2dezYsdwsicpMnz69Rue44447Kl0CCmDr1q1V9s/IyDhs38SJE5k4ceJh+6+77jquu+66GsUl0tAZY96sYdMiYB++mnnfWmuLQheViIiIiIiESqgTFpuAfsYYl7XWXVEDY0ws0BdYHeJYJMiWpGYEtgckNz36gQIJC98MC+uwxxCVSMOREJlAy6iWpOenY8OyiS/KB2DNe59VnrBwuqDX+bDgDd9yauu+pU3Pi3A6nXg8Hs2wEBGRxmai/2vJ/yAeWqjp0P0W2GuMuc5a+2OIYxMRERERkSAL9ZJQXwKtgUeqaPMIEA98FuJYJMiWbD8Y2O7frunRD+SvYeH0z7CwTiUs5PhRsizUrO6lD4LGzJledac+l5Rur/iIsLCwwDr2Bw4cIDs7O9hhijRavXr1IjY2tsLXf//737oOT0TgeuCf+BISu4C/A3cDvwVeAHb4j/0LeAyYASQBnxtjTqj9cEVERERE5FiEeobF3/D9kfGoMaY/8D///kRjzIXApcAlwFbglRDHIkFUkJfPLZMeYWN8W7Z16U9CzNlHP5inCA/g9M+wCHkaTaQe6ZbQjdm7ZrM/zrCldWtSdu+m9cFdrPtlKd2H9q+4U7uTIL49ZG6HTdMgdx8dOnRg+/btgK+ORa9evWrvQ4g0YN9+++1hy0WVqKoGhYjUmvn4khEvAA9Ya8v9wBpjHgD+DNwKnGSt/aMx5gl8yYt7gFtqNVoRERERETkmIU1YWGszjDFn4JtpcS4wAd807TP8LwNsAyZYa1XDogFZO2sRHbP20DFrD+ubRx/bYO4CssuUOjHOQ2f6izReZetYpJ7UgZQvdgOw/v3PKk9YOBzQ+0KY/XewHlj9OcnJw0vHUcJCpMbK1oARkXrpSWA3cK+19rBpuNbaYmPMffj+1ngS38NQTwM3A6NrM1ARERERETl2IX+W3Vq7GugN/Br4BlgDrAN+wvfUUy9/G2lAds1dENiO6Nvv2AZzF5JjwgNvHS5NsZDjR8mSUACpQ2Lx+pfgbvLLdLzeKgrQ9764dHvFJ7Rv3z7wdtu2bUGPU6SsCu4Zikg9UPKzaUyjevhjBLCgomRFCf+xBcBw//tiYAXQplYiFBERERGRoKmVO8PW2gJr7SvW2nOttb2ttT2tteOttS9Ya/NqIwYJLvfKFYHtdicPPsbBCskzpZN9jKtR/ZEtUqWU+BRc/u//da5dpLb1zbhIzExj7ezFlXdM6gMt/MmO1DlEFe0PLF+zd+9eCgoKQhq3HJ/Cwnyz4TweDxkZGXUbjIiUk5GRgcfjAcDlCvWqr7UqDkioQbumQJMy7w9SWpBbREREREQaiEb114zUnoSt6wEodIbRa1j/YxvMXUiuIxz8D5M7nc5jG0+kAQl3htMxviMbMzayOXMzdtRE+I/v52vjh5/T87RBFXc0xjfLYvozvvcrPyU5uTN79+7FWsuOHTvo0qVL7XwIOW7ExMSQn58PwO7du0lLSzuqJ7ndbjcA6enpQY1PQk/Xrn6y1gaSFeD7WW1ENgEjjTFdrLUbK2pgjOkKjALKHm8N7K+F+EREREREJIhqLWFhjBmK7w+Jtv5dO4Fp1tpfaisGCY49W3bQIsf399/upBT6R4RX06Ma7gLyytSwcIYpYSHHl24J3diYsRG3102L8wbh+Y/BiaXpvBl4vV4cjkomw/Upm7D4mOST/8WCBb7l2rZt26aEhQRdixYt8Hg8HDx4EKDcDdKastYGkh5RUVGNbemaRk3XrmFISEigRYsWdR1GML0FPAtMN8Y8DrxfMkPbGBMFXIGvdkU4MMm/PwzoB8w+lhMbY64GTgMGAn3857jeWjupkvZxwBPARUASvtobHwFPWmtzKmjvAG7HVxi8C5CDb9nch621m48ldhERERGRhirkCQtjTDLwX+Dkkl3+r9Z/fDZwtbU2NdSxSHCsn/4LLf3bRd16HvuA7kLyTGnCopEtYyBSra4JXWGLb3tv9AGcySfQJG0ns1v2IGFLOn06J1bcsXlnaN0fdi+F3cvo0KS05kVqqn6lSvAZY0hMTMTpdJKbm4vb7T7iehZerzdw0zs2NrbyhJzUO7p29ZcxBpfLRUxMDC1atGhsyaQXgJHA2cBrwGvGmH34/pYo+V9SA3zrbwvQE1iK72+QY/FHoAOwD1/yoUNlDY0xMcAMoD/wA/A+MAC4DxhhjBlurT10vcZXgZuAVcCL+GpuXAqMM8YMtdZuOMb4RUREREQanJDeGTbGNAWmASlAATAZ37RugE7AGcCpwBRjzCBrbWYo45HgyFi4JPDXYdNBA459QE8h+aZ0yWElLOR407tF78D2lNQpnHz/E9z+0zasccC6A5UnLAD6XOJLWABxW76ladOmZGRksHPnTtxut36eJOiMMbRs2ZKWLVtW37gC+fn5rF27FoCBAwcSFRUVzPAkhHTtpC5Yaz3GmHOBO4Hf4PsbouwvoK34bva/aK31+vsswzez+1jdBGyw1m4zxjwI/KmKtr/Dl6z4P2vtgyU7jTF/Bh4A7i7b3xgzyj/+TGCstbbIv/89fMmXfwLjg/AZREREREQalFA/GncvvmTFt0AXa+0F1tr7/K8L8f3B8Y3/670hjkWCJGzd6sB2t5FDj31AdwH5ZZaECgsPq6KxSOMzKHEQLaJ8y3fM2DGDkwa1xuGv5fL18t1VP8He+0ICE9dWfkxycjLgW2d+165doQxbRESkVlifF621XYD2wDD/K9la28la+0JJsiLI5/3JWrutunbGN6XlJnxLOv3hkMN/8O+/6ZD9N/u/PlqSrPCf8ztgOr5ZFslHGbqIiIiISIMV6kdvLwDSgUtL1poty1q7xxhzGb7FUC4EHgtxPHKM3EXFJO7xLam7PyaBHp2D8HeUu5BCZ2mSIiIs4tjHFGlAXA4XZ6eczdur38btdTNv71RO6ZLCzPXp7MzIZ+n2DAYkJ1TcOa4NdDgFtv0M+zfSoaeD5f5DqampgQSGiIhIY2Ct3YmvFl590hXfck6TrbW5ZQ9Ya3P9S+CON8a0t9Zu9x8aCeRScZ2Nyf7jI4B3axqEMaZdNU2SSjby8/MDS7yJyJHTz0/DpWvXcOnaNUy6bg1XTa5dqK5vqBMWKcA3FSUrSlhr84wxM/CtSyv13Ia0HB4ddjMnHNjGCW3iOfVYB7TWn7Ao/VYMDzvGIt4iDdCEzhN4e/XbAHy5+UvO6/NnZq5PJ6Egi7lfTGXAnRdV3rnPRb6EBZCcvZCSX+2qYyEiIlIruvq/VlZzYgO+5Z26Atv99S5aAyuttZ5K2pcdt6a2V9/EZ+bMmY2tOLscRsuChtIPP/wQopF13UJN167h0rVrmHTdGq6aXLt9+/aF5NyhvroeoCbr+7iAoE/jluBbsjObVc1TWNU8hUfO7nHsA3qKAUtRmW+TiHDNsJDjT/dm3emW0I31B9ezPH05Dw7I5+k5r9E/bQMZ0fF4fnU+Tpez4s49z4dv7wevmxabPiU6eiJ5eXmkpqbi9XpVGFdERBoMY8y1/s3PrLXZZd7XiLX2nRCEVZ14/9fK6vFlHdLuSNuLiIiIiBw3Qp2w2ACMNMY0tdZmVNTAGNMMX1G89SGORYJgSerBwPaA5KbHPqC7AIAiU/qtGBGhhIUcn87tfC7PLXwOgOl7JpPSJApHmqVZXgbLJs/ixLNHVtwxuhl0Hg0bfsBk7yQ5OZa1qXkUFBSQnp5OYmIVRbtFRETql0mABX4Bssu8r6m6SFjUF+2rOZ4ELAAYPnw47dpVt4KUNGhzp9Z1BI3auHHjQjOwrlvI6do1XLp2DZOuW8NVk2u3Y8eOkJw71AmLj4BngG+MMbdYa1eVPWiM6QO8CsQBH4Y4FgmCJdszAAhzGnq1CcJDXx5fjcFiWzrDIio86tjHFWmAzko5i78u+ite6+Wbzd9w7+mXwKZlAGz/9MvKExYAvS+GDb7pesneVNYSCfiWhVLCQkREGpB38CUoMg95X5+VxFrZ/xzHHdLuSNvXiLW2yr8YfbXBfaKiooiK0v9zixwt/fw0XLp2DZeuXcOk69Zw1eTaher6hjph8XfgMmAYsMwYswRfgW2ATkB/wAEsBV4McSxyjA6mHaDX3O9wJiQT06sHkWGVLE9zJPwzLIrLfCtGReiXmRyfWka3ZFibYczeOZudOTuJPCOF4tedhHk9tFw8G3exG1dYJb+2TzgLXJHgLiA5fQolZYG2bdvG4MGDa+9DiIiIHANr7cSq3tdT1dWcKFfjwl+IezeQYoxxVlDHorqaGCIiIiIijVZIFza31uYDo4H/+XcNBC72v0707/sQON1aWxDKWOTYrZ32C7et+IIXZv6D65Z/FZxB3YW+L2USFtER0cEZW6QBOrfTuYHtnw7OYFuXfgAk5Gex5NvplXeMaALdzwSgdeFGwpy+X+8qvC0iIhJyG4BdwCn+gtoB/venAFustWWLYs8ASo4darz/68wQxCoiIiIiUq+FvBKrtfagtfZyIAW4BnjQ/7oGSLHWXmGtPRDqOOTY7VuwKLAdO6B/cAb1Jyw8ZYpua4aFHM9GJY8iJsx3r2Py1slEjh0TOLbrs2oShb0vBsCJl3ZR+QBkZWWRkZERklhFRERqmzEm3BjT2l8Hr16w1lrgDSAWePSQw4/6979+yP7X/F//YIwJL9lpjDkTGAn8YK3dFpKARURERETqsVAvCRXgf6Lov7V1Pgk+s7q0BEmn4UOCM6h/SSgPrkD2LCYipvL2Io1clCuKsR3G8vnGz8ktziXvtDgKX3YR4XWTuHQuxYVFhEWEV9y561iIiIfCTJLzVrKFgYBvWaimTZvW3ocQEREJMmPM1cBvgAH4Hrp6G7jBf+wC4BLgYWvtlkoHOfJz3gSc6n/bx//1JmPMSP/2z9baN/zbfwHOAx4wxgwAFuObUT4OX6HrF8qOba2dZox5A7gJWGyM+QZojW853QPAncH6HCIiIiIiDUnQZ1gYYyKNMXHGmIgatI2oaVupW16vl1Y7fMvoZkbE0qF3ZUv0HiH/DAtrS3NnMVFKWMjx7dzOpctCTd43le3dBgAQX5DNoq+mVt7RFQE9JgDQwVt6v0bLQomISEPmv7H/NjAIyAfMIU3WA5cDFwX51KcC1/lfJcvZnlJmX0kyA2ttLjACX2KiB3AvcALwPDDGv1TuoW4F7vJv3wWcBXwGnGStXR/kzyIiIiIi0iAENWFhjAkD1gB7gd416NLL33aFMSYIFZwlVLYsW0eTojwA0tt3xeEI0reOf4aFt8xkn9iI2OCMLdJADUwcSOuY1gDM2TUH57jTAsf2fvF11Z37+O7VtGM3BgsoYSEiIg2XMeYqfDMpVgKDgfhD21hrVwE7gDODeW5r7URrraniNfGQ9pnW2ruttcnW2nBrbQdr7X3W2uxKxvdaa1+01va21kZaa1tYay+31m4K5ucQEREREWlIgj3D4hKgA/C8tXZRdY2ttYuB54DOwIVBjkWCaMvMXwLbpkev4A3sKQLKz7BoEtUkeOOLNEAO4+CcTucA4LEe9g6y5LkiWN68Ez+6WlPs8VbeueNwiGlJOG5akwZAeno6eXl5tRG6iIhIsN0C5ADnWGsX+etFVGQFvpp5IiIiIiLSgAU7YXEB4Ab+dgR9/gp4gYuDHIsEUe6SZYHtlkMGBm9g/wwLrG+Cjcd4cDo02UZkQucJge1v9/7If+79Jw+c9mu+TuzP7I37Ku/odEGvCwDowI7Abs2yEBGRBqofMM9fD68qB4DEWohHRERERERCKNgJixOBxdba/TXtYK09CCwEgngXXIItetMaALwYThgZpILbEKhhYShNWIgIpMSn0KeFr77n2gNr6dOrdLnub5bvrrpzn0sASGZnYNemTVpdQkREGqQIILMG7VoC+h9JEREREZEGLtgJiyRg61H02wa0Dm4oEiy5mTm03ud7UntPs9bEt0gI3uAlCQv/klDWUdksf5HjT9lZFunMISbcl9ibvGoPRe4qloVqNxiaJtORHbgoBmDZsmUUFBSENF4REZEQ2ImviHWljDEG6AlsqZWIREREREQkZIKdsDBHOabD31fqodUbdzGrTV92Rzcjp9MJwR3cvySUw78klHUqYSFS4oyOZ+By+JJ5k7d+x+k9WmKsl/Y71jP3p3mVdzQGel9EFIX0wzc7qqioiKVLl9ZC1CIiIkE1BTjBGHNeFW2uAdoBP9ZOSCIiIiIiEirBTlik4yugfaQ6AVUsyi51aXGOk/8bfDU3jPs9+b++N7iD+2dYOLyaYSFyqITIBE5rexoA6fnp9A9byjuT/8hzP79E5ltvVd25t68s0BCWBnbNmzcPr7eKmRkiIiL1z3NAIfCeMea3xpg2JQeMMc2MMbcBLwG5wIt1FKOIiIiIiARJsBMWS4B+xpjkmnYwxnQEBgCLgxyLBMnS7RmB7QGdWgZ3cE8hxRic/hoWqN62SDnndj43sL2u6RqiPEUAtF01n7ycvMo7JvaClifQiv10YhsABw8eZMOGDSGNV0REJJistRuA6/D93fI8sB2w/n3pwL8AFzDRWptaV3GKiIiIiEhwBDth8YV/zCN5uunvZfpKPbQkNQOA2AgXXVrFBndwdyG5hAXeGqdWBhMpa3i74cSFxwEwZc8MdvQaCEC0u5AFH35TeUdjysyyWBLYPW9eFUtJiYiI1EPW2o+AwcBHQDa+pWQNUAB8BQyz1n5SdxGKiIiIiEiwBDth8S6+otsTjDEfG2NaVdbQGNPSGPMxMAFf0e13gxyLBMGutAwOHsgCoF/7eJyOICcU3AVkm9KEhcMZ7G9JkYYt3BnOmSlnAlDgKeDA8LaBY7kfflB15z4XA4aubKGZ8f0cb968mbS0tFCFKyIiEhLW2pXW2suBBKAVkAQ0sdaeb61dUnVvERERERFpKIJ6d9ha6wYuBvKBC4BtxpjPjTEPG2Nu9r8eNsZ8DqT62xQAl/j7Sj2z/vPv+eSbR3hx2t8YnxmCpWTcheQ6yiQsXEpYiBxqQucJge05KdtJi/MtzZaSupoVU6uYMdEsBXqehwM4yS4K7NYsCxERaaiszz5rbZq1VoWZREREREQaGVewB7TWLjbGDMc3ZTsFOBffLIqySh7T3wpcam2ZO2lSr2QuWkKi9dI1cyf7WwZ5OSjwJSyMEhYiVenboi8d4jqwLWsb89MWcs55V9Hq3UkAbP7XK/QZPaTyzqfdC6s/pz+rmcqpFBHGsmXLGDNmDNHR0bXzAURERKRB6vhgFctPyjHb+uez6zoEERERkXon6AkLCCQtugNXAucBg4CSas3pwCJ8NSv+q5kV9VvE+tWB7e6jhgb/BO5C8svUsHC5QvItKdKgGWM4p9M5/Gvpv7BY9o5tQtJHTYgvyKbzqnlsWb6OlL7dK+7cui90O4PI9d8zgJXMYwBut5vFixdz6qmn1u4HERERqYYx5rFj6W+tfSpYsYiIiIiISO0L2d1hfyLiHf9LGqDC/AKS9m4FIK1JS3q0bx38k7gLyDPhgbdKWIhUrCRhAfDNru9pM/Zc4r/6L04sy//2MilvvVB559Pug/XfcxJLmEd/wDB//nyGDRuG0+msjfBFRERq6gnAHkN/JSxERERERBow3R2WSq2fs4QIr28CTGbHbqE5iaeI/DJLQrnC9C0pUpF2TdoxMHEgi/YuYkvmFlpefz/5331ElLuI5PnTSN97gJaJzSru3H4wpIyg+ZYZdGML6+lEVlYWa9eupVevXrX7QURERKo2k8oTFiOAvcDa2gtHRERERERqk+4OS6V2zFlAR/92WJ++oTmJu4CCMt+GYWFhVTQWOb6d2/lcFu31lfyZmj2LHqedxbZNu/ik6wguWL6Pe8ZWkrAAGH4fbJnBEJawnk6Ar/i2EhYiIlKfWGtHVnbMGOMFvrPW3lB7EYmIiIiISG1ShWOpVPGK5YHtticPDs1J3IUUlJlhER4WXkVjkePb2A5jiXBGAPD9lu8Z8PRD/HPQZWxvksg7c7eSV1RFSaCOp0H7IXQilZbsAyA1NZVdu3bVRugiIiIiIiIiIiLVUsJCKhW/ZT0AhQ4X3U8ZEJqTuAspLFN0OyI8IjTnEWkEmoQ3YVT7UQAcLDzIppwFnNuvDQAZecV8uGB75Z2NgdPuwwBDWBrYPW/evBBGLCIiIiIiIiIiUnNKWEiF9u3YQ6vsdAD2JHYkIioyNCdyF1CkhIVIjU3oPCGwPWnlJG4enhJ4/+aMjRQVFVfeuetYSOpLX9YQSQEAK1euJCcnJ2TxioiIiIiIiIiI1JQSFlKhtbMXB7YLu/UM3YnchRSVqWGhhIVI1U5teyqd4zsDsDR9KQftKk7vFMc5m2fz5MdP8PPrH1Te2RgYfh/huBnICgA8Hg8LFy6sjdBFRERERERERESqpISFVGheQmcuOespHhl2E1ETzgvdiTyFFJeZYREVERW6c4k0Ag7j4Lb+twXev7z0ZW5pUcDtyz+jdd4BvO+9g9frrXyAEyZAi+4MZhkGX7sFCxbgdldR/0JERERERERERKQWhDRhYYxJNsY0q0G7BGNMcihjkSOzJDWDnPBoFiWeQO9TQ1S/AsBdiNuUzrBQwkKkeuM6jCs3y8J9UjTbW3UEoO3+Hcz76LvKOzsccNq9NCWbHmwEIDc3l1WrVoU6bBERERERERERkSqFeobFFuDZGrT7C7A5xLFIDXm8lqXbMwBIjIugdXyI6lcAuAtw29KERXREdOjOJdJIHDbLYvkrhF99beD9wX+/WfUAvS+ChI4MYUlg17x587DWBj1WERGRI2GMubayl79Jlxq0ERERERGRBirUCQvjf9W0bfBObMxgY8y3xpgMY0yuMeYXY8ylxzBegjFmpzHGGmO+D2as9c2m9BxyCn3Lwwxon4AxQb005bkL8aCEhciROnSWhWt8e9LiWgKQkrqaFVPnVd7Z6YJT7yaZXbRmLwC7du1i+/btIY9bRESkGpOAtyp5WeCUKo5Xk7EXEREREZH6rr7UsGgCFAVrMGPMKGA2cCrwP+AVIAn40Bhz71EO+08gPjgR1m+bPvuGu5b8j3Fb53FS0xA/ca2EhchROXSWxaurXiX/gssD7zf/65WqB+h3BSauLUNYGtg1b14VSQ4REZHakXoML2XeRUREREQauDpNWBhjHMaYPsBofH9kBGNMF/A64AWGW2tvsdbeC/QD1gPPGGM6HOGYFwFXAg8EI8b6rujnnzlj23zuXvoRfW1W6E7kcYP14C2zJFRsZCwAaduy+Pe9s3jrdz8z55ONHNyTG7o4RBqoQ2dZRF18ApmRTQDovGoeW5atq7yzKwJO/g29WUcMvp+v1atXk5mZGfK4RUREKmOt7WitTTnaV13HLyIiIiIixyboCQtjjKfk5d91Xdl9hxwvBpYCzYFPgxTCaKAz8J61dmnJTmttJvAMEA5cV9PBjDEtgZeBd4FvghRjvRa7eS0AHuPghOGDQncidwEAtswMi9goX8JizicbKcgtJi+riCU/pvLeE/P49LlFrJ27m+JCT4XDiRxvDp1l8caGt0gfey4ATizL//Zy1QOceC2umGYMYgUA1loWLFgQsnhFRERERERERESqEooZFqbMyx7y/tCXG9gKPA88HqTzj/R//aGCY5P9X0ccwXivAB7grmOIqcHIOpBJ0oFdAOxu3pbYpnGhO5nHtwqYLTPDIiYihn07stm5PuOw5rs3ZjLl7TVMenA2BbnFoYtLpAE5dJZF9DWDyHeFA9Bh/hTSt++uvHN4NAy7nUEsw4EvEbho0SKKi/XzJSIiIiIiIiIitc9VfZMjY60NJEGMMV5gkrX2hmCfpwpd/V83HHrAWrvHGJNTpk2VjDFXAxcC51trDxpjjqmGhTGmXTVNkko2CgsLyc/PP5bTHZUVP86iGb66FTmduoc2hpwMogD8CQuP8VBUWMTiH7YGmpx4Zntc4Q7W/5JGxl5fLM3bRWMdbvLz3YF2Xo/F4QxhcfBqFBQUVLgt9V9juHY39LiBh395GIC3tv+Hi4aModPcH5mSPAjX7E3ccl7Tyjv3vorYn1+gd8F6ltOD/Px8Fi5cSP/+/Wsl9mPRGK7d8UjXreHStWu4CgsL6zoEERERERGRGgl6wuIQTwJLQnyOQ5UkFSpbiD2LGhTPNsa0AV4E3rfWfhGk2GpcCHDevHls2rQpSKetuf3fTWNYyXbzZvzwQ0UTVYIjunAvYwFjnYAvYTF58g8c3BkJxoVxwh73ahxAzAAIy3CQuyOMwti9/PDDzsA41sLeWTE4I724or04oyyuKC/OKC+uKIsjwmJCmMuwFvCC9YD1GqZOnoX1Al6DteCM9OIML23vLYbC/S6sBeMAjD8+g++ro/R9WKwX4zzkXBDSz3M8mzlzZl2HcFS81ksrRyvSvGks27eMXsMu449xD7E/Ip7olRm0Dv+BCGfl/bs3HcmQPXNZTg8Apk6dyp49e3A46rTM0RFpqNfueKfr1nDp2jUs+/btq+sQREREREREaiSkCQtr7ZOhHD/E3sBXY+M3dR1IbYrbWVr7PKJz+5Cey+n1zZAw+O6keo0XY6BZ3wLiuhqKcxw4/N+hxkBEgpeIhMOfECzc58Sd68Cd66BwfwUnMjaQxGjWP79c8iB/r5OiTGe5BENg2+tLEFiPISLBQ1yXonLD7pkZgzvfgLfq7EFC73xi2pfOBvEUONi/JKra/z4ASSNycEXbwPvc7WFkrI7A4QLjsjhcFuMss+2yOFzgjPLSpGP5ZX2sVaKjsXIYB6MiR/Fh3ocA/Bw5l5S2fdm/D/Lchl/SDCNa20r7b245jnFp39PVu5kNdKK4uJi0tDSSkpIq7SMiIiIiIiIiIhJsIU1YGGOcQAyQZ611l9kfBfwO6I+vhsWz1tpdQTptycyKymZRxAEHqxrAGHMdcCZwibU2mI+kVZcBSAIWAAwZMoTOnTsH8dTV83q9rHjsjwDkhEdz4fVXhPQJa7NnOawFh9f3bWhdlnHjxh3xOBsXpjN/7VYKctwVN7AGT57Bm+9g/Jmn43CWfqafP9zE+k1p1Z4jqU0rxozrXm7fh78swp1bVEmPUj169OKEkxMD7zPT8vnk56XV9gMYMXI4MU0jAu9XTNvFglXb8BYDxYbKyo83aRHBuFtOLLdvylvr2LMxi6gmYUQ1CSPS/zUi2kVElItw/9f4xCjiWkTWKL7GoKCgIPCk8PDhw4mMLP3s1lo8bovH7cVT7PV/tcQ0DSesqikLdWCMdwzzf5jPlqwtpHpSeXBMOAs/9H2HzD0YzRNXDyPMWfnPs41ezdh577GRjlgc7N+/n4suuoiYmJja+ghHrKprJ/WXrlvDpWvXcNXFrF0REREREZGjEeoloR4DHsFXCHsWgDHGANOBQZQW5r7QGNPfWltlIqGGSmpXdAUWlT1gjEkCYoH51YwxwP/1I1PxI+njjTEWWGat7V/TwKy1O6o6XvZcERERREXV7Cn8YNm6fD3xhTkA7G3XhcGhvlHpv9/rsCUbHNVn7nNaMr1PbU9+djHZBwrI3u9/HfC/9ueTvb+A8CgXMbHlP1NERFiNzmE95rDYmreOJTK6CFe4A+OEjMwD4LC0bpNEeHgYDqfB4XKQmBxfrq9p4WLYBZ0xxmCtxevx4vVY38vrf3ks1mNp0jSWiKjSH9MmTaNomdyEonw3RYUeivPduIu9h8UbGx95WLyFOW4K83yvknogFTlxfDLDLugSeO/xePnPI3MJi3RRXf5q3I29adam9L/x1uX7+OWL6m+SRESHccG95RMscz/fxLYV1ecLO/RuwbALyif3Pnt+MYV51ReOHnJeZ5K6lsabk+7mszcW+ZIT/gRFRSJjw7jo/oE0TYyu9hy16df9f839M+8HYPKe9xjR/XZ+WbWTwYtn8ct7Bxh3y6WVdz7tLlotfpOBxStYSD+KioqYO3cuEyZMqKXoj01k5OHf81L/6bo1XLp2DUtERET1jUREREREROqBUCcsxgB7rLWzyuybAAwG1gMv4ZvJMA64GfhLEM45A3jIP+YHhxwbX6ZNVebiS2wcKha4DNgBTAZSK2jTYG2e+Qut/du2R+/Qn9BTSBEGpz9z4fJE4i724Ao78ifXjTFEx4UTHRdOYse4CtsUFx4+H6H3iHak9GuJw2Vwuhw4XQ4cTt922X1h4YfHNOE3/QPb+fn5gXofo8Z1q/ImTmRMGCeO73CEn9Cnx8lt6HFym3L7vB4vRQUeigs9FOW7Kcx343AcnmiLiY+gSfNI8rOKKkxylIiILp/EKcpzk3OwEKi+YKe7uPx/48J8N/t35lbbLzL28MRRzsGCGvVt3vbwH9WDe3LJz64+YVFUQVIjP6v6WTMFucXsWHew3iUsxnYYS+f4zmzK3MSStCX8ru0Wfv3XZ4krzmP/5pnkXnYWMfEV/WoDYlvBqfcwctrzLOcEiohg8eLFnHTSSSQmJlbcR0RERAAwxkwE3qqm2VRr7Rh/+yeAx6tom2Kt3RqU4EREREREGpBQJyxSgLWH7DsP36yKq6y1i4wxL+FLAFxMcBIWU4DNwJXGmBettUsBjDHxwO+BIuCdksbGmNb4lo/aba3NBLDWfgh8eOjAxpiO+BIWq6y1NwUh1nplSWQSk3ucyQkHt9H9lKGhP6G7kFxKb1RHZyfwzu/nMPT8zvQ8pU0VHY9ORUv4NGsTU25GQEPkcDqIjHEQGVP1bJEzbu0D+JY5Ki70kJdVRH52MYV5xRTmuSnI9X1t3aVpuX7FRR5i4sMpzHf7fnKrcOiMJOMAV1j1y4pV1MbpdNSor8NVQd+wmvU1hyR2wiKcNGkeiSvMgTPMl6wqu22MYdvK/Uz4TT/adkuodvza5nQ4ua3fbYFZFj8Wf0NCu07EbVlJ89yDTHn8Oc594YnKBzj5TmKXvMtpGQuYwqlYa/nxxx+5+uqra+cDiIiINFxLgcrq910M9ML3wNOh3sa3RO6hMoIRlIiIiIhIQxPqhEVzYM8h+04BdlprFwFYa93GmF+AoNwh9493E74/CGYaYz4AsoGLgA7AfYc8rfQn4DrgemBSMGJoqGYWxrCs+xgAlp0xMvQndBeQbcIDN8GNdZKfXYyzghvQEjzGGMIjXYRHumjaqvr2cc2jmPh/px7VuboNTqLb4KMr3Dz62h6MvrbHUfW97plTatw2P790eaz4VlFc+/TJR3XO+qLcLIt9S7nk7odw37Ual/WS/MMnbFt1NR16dam4c1gkjH+aoR9ex0L6kkkcGzduZOPGjXTpUkkfERGRWmKMGYpvqdl2+JaW3QFMt9bOrcu4APwPSS09dL8xJhy4A3DjS04capK1dnooYxMRERERaUhCfWfYja/oNgDGmAR8tSVmH9Ium8qLZB8xa+004FT/eS4DfgXsBS631j4frPM0JgXFHlbv8tUr79wyhvjomtV2OCbuQnIdpecx1kF0fDhdBtbgLrqIVMjpcHJrv1sD7z/2TGbzaWcDEOF1s/zhp6oe4IRzCOt0GmP4ObDrhx9+wOutfBkxERGRUDLGdDbGzMb3//ZPA7/G9//3fwR+NsbMMcbU18z6+fge4vraWru3jmMREREREan3Qj3DYjMw1BjjsNZ6gXPwPQ318yHtWgHpwTyxtXY+vvoY1bWbCEys4Zhb8cXf6KzalUWxxzfVYUByLS114y4k14QH3hrroM/IdpphIQ2G9VqWTd1ORlo+I6/sXtfhBIzrMI5X4l9hc+ZmFqctZuJvnydz/nTiC7LpsnYB8z+ZzEkXja+4szFwxv/R+6WT+YU97CKJtLQ0lixZwsCBA2v3g4iIyHHPGNMGmAUkAXnA98AW/+GOwBn4ZmrPNMYMttburIs4q1CyjOwblRwfbowZAniBDcBP1tqcozmRMaZdNU0C017z8/PLzTKVuqFr0HDp2jVcunYNl65dw6Tr1nDV5NqF6vqGOmHxJb66EV8YY34CHgA8wFclDYxv0fsBwJoQxyJVWDd7EZ0zdrA1rjUDkpvWzkndBWTbMvUjjINepwW/doVIqHz/2ko2L/XlWtufkEDnE+vH7KCSWha/m/k7ACZt+y9XXXMz8a//FYCc5/5C8TmjCIsIr3iAVifgGHIL4+d9wVtcBsDUqVPp3bs3ERERtfIZRERE/J7Cd6P9E+DX1tpyDzkZY1oAL+GrE/EkpQmCOmeM6QCMwbd01feVNDu07kWGMeYua+07Fbau2vaaNpw5cyYtWrSoQctQ/7l4fPvhhx9COLquXSiF7trpuoWarl3DpWvXMOm6NVw1uXb79u0LyblD/Sj7X4BVwNnA3/D9sfGstTa1TJtTgRYcPutCalHsx//hn9Nf4ONvHmGAI7d2TuouZE/BoNL38UVENankBqpIPdSxb+kf+tP+u5bcjMI6jKa8cR3G0Sm+EwCL0xYTc0kPtrfqCEDrg7v46f9ernqAkQ/SIbqQHmwAIDc3l9mzD13NT0REJOTOBHYBVx2arACw1u4Drva3OauWY6vO9fj+3ppkrfUccmwZcAPQCYgCUoA78VV3m2SMObc2AxURERERqS9Cmo6y1mYZY07C98RTIrDAWjvjkGbNgb8DH4YyFqlas23rAbDG0LVf11o5p3UXsi9vMMTvAsCZVFwr5xUJlhOGJbFtxT42LUmnMNfNlLdXM+HO/hhH3a8cd+gsi78sfpZHH7of7r4dgBYfvU36DZfRsl0lRdGjmsKYxxj71WOsoxNenMyZM4eBAwcSHx+0kkMiIiLVaQZ8Ya0tqqyBtbbIGPMzcF7thVU1Y4wDX8LCAm8eetxa+9khu7YC/zTGrAF+xFef48sjPG37ao4nAQsAhg8fTrt21a0gBcydeoQhyJEYN25c6AbXtQupkF07XbeQ07VruHTtGiZdt4arJtdux44dITl3yOfPWGvzgXerOP458Hmo45DK7d6USvPcgwDsSerEieG1UHAb2LY9kmJvU3wPxEFYvGpXSMNijGHkVSewe3MmeZlFbF9zkOXTd9BvdHX3C2rHuA7jeKf5O6zcv5LNmZtZ0G8dbfoPJ3nFXD7pMoKwOTv5w6WVJCwABlxDswX/5qQ9S/mFgbjdbqZMmcKFF15Yex9CRESOdzuAmGpbQTRQn+pXnA4kA1OstVuqa1zCWjvFGLMJ6GOMibPWZh1B3yr/YvStxOsTFRVFVFRUTYeWENE1aLh07RouXbuGS9euYdJ1a7hqcu1CdX11h1hYP31eYNvdvWetnXf5upZYUzo7PiysdhIlIsEUGRvGmOt6BN7P/XQT+3cdVa3MoHM6nDxx8hM4jROA11e8TtuHJ/Lbs37PB91P5z9L9rByZ2blAziccNazDGcekRQAsHz5cnbt2lUb4YuIiAB8BIw0xrStrIH/2Gjg41qLqnrVFduuSsliwNFBikVEREREpMEIacLCGDP8SF6hjEUql7FocWC76aABtXbeUf1WERazJPA+IlzFfKVhSu7ZnL6jfcsqeNxefnxzNZ5ibx1H5dO9WXcm9poIQLG3mH/seIUrzh4IgLXwxJersNZWPkDyUKL7nMsIfgnsmjx5ctV9REREgucPwApgqjHmnEMPGmPOBqYAyzm8gHWdMMY0x7c81QHg0KWfqusbA/QCcilNXIiIiIiIHDdCPcNiOjCthi8tPlZHwtetDmx3Gzm01s7bJDwTE7ss8D4yPLLWzi0SbMPO70yzNr4VK/bvyGHel5vrOKJSt/W7jfZNfMtULU5bTHziYjq18MW6cNtBvlq4teoBxj7FYNdGmuFbOm7btm2sW7culCGLiMhxyhgztewL+AbwAl2BL4wx+40xi/yv/fjqPHT1t/m67iIv5xogHPiPtbbw0IPGmCbGmG4V7I8CXgeaAP+z1rpDHqmIiIiISD0T6oTFzEpePwPby7SbC8wKcSxSgeLCIlrv8S2rmx7bnKSUGhTfCxZ3IcWULgOlGRbSkLnCnYy9oScOl2996M3L0iku8lTTq3ZEuiJ5bNhjgfcvLnmB34xvRXRxATes/Jr4X11D9sEqlsiOa4Nr+G8ZW+bX9A8//IDbrfsoIiISdCMreJ3sP2aABGCA/5Xg32f8bUbWXphVutH/tbLloJoDa40x84wxk4wxfzbGvAWsB67AN6Pk/lqIU0RERESk3glp0W1r7ciqjhtj+gKT8E15PiuUsUjF1v+ylAhPMQAHOxz2oFdIWGt9Rf/cBRSZ0m/BqHAV4pGGrUW7Jgw9tzMZe3M55ZKuhIU76zqkgKGth3Je5/P4YtMX5BTnMHP/Gzy5LYveG2cDMO3xZzn3xT9UPsCwOzhh8bskZ+wglXYcOHCAhQsXMnRo7c3KEhGR48Koug7gWBhjTgJ6A/OttSsqaXYAeAk4Cd/fQAlAPrAGeBH4p7U2vxbCFRERERGpd0KasKiOtXa5MeZCYBW+p4j+XJfxHI+2z15AB/92WJ8+IT+fx+3lk78sIqVfC3rlG9y2TMIiQgkLafj6j23vS8jVQ/cNuo9ZO2dxoOAAP277kVNuvZ/i3/xCmPXQ8afP2LLsalL6da+4c1gk5oxnGP/B3bzOlQDMmDGdfv36ERWln10REQkOa+2Muo7hWFhr5+Ob8VFVmyzgjtqJSERERESkYQn1klDVstZuBRYA19ZxKMelnfty2BcZB0DrYYNCfr5Ni9NIT81m/ldbmLluCO4yS0JFR0aH/PwioVZfkxUATSOb8sDgBwLvX8p4m00jfZPbwrweVj76VNUDdD+Ltp170Zc1AOTnFzBt2rSQxSsiIiIiIiIiIseXOk9Y+KUDHes6iOPRf9sO4ZozHuOGMx+jx/DBIT2XtZZlU0pLl/RNXISX0iVzoiOUsJDGJy+riM1L0us6jIAzU87klLanAJCWl8aqi6M4GOVLWnZZv5i5H35TeWdj4Iw/M8b8ggtf/Yr58+ezeXP9KTAuIiIiIiIiIiINV50nLIwx4cBgIK+uYzneZOQVsTk9F4DELslERkWG9Hx7NmeRti0bgBbtY2kdtQVPmRkWMZExIT2/SG2b/t463n5wNpNfX0leVlFdhwP4ZoA8OvRRoly+ZZz+t+MzdlxxbuB4wd+eo6igsPIBWnYnfshVjOHnwK7PP/+c/HwttS0iIsFnjJl6BK8pdR2viIiIiIgcmzpLWBhjYowxg4BPgPaA1hWpZUu3ZwS2ByQ3Dfn5lk8tnV3Rb0x7jKcAb5kaFjERSlhI4xIR5cTrtXi9lnXz9tR1OAFtY9tyR3/f0tkWy/td5rMtqRMASRl7+PGpF6oeYOQDDIneSQqpAGRlZfHtt9+GMmQRETl+jazBa0SZbRERERERacBCmrAwxngqewFZwDzgbCATeCSUscjhlmw7GNgekJwQ0nNlHyhgk39ZnKgmYXQdmAjuQmyZJaFiI2NDGoNIbetxcpvA9prZu7DW1mE05V3Z40p6Nu8JwMbszay/sT9ef43Q9p+/y6qZCyrvHBmP45I3OZ+fiKAAgBUrVrBy5cqQxy0iIsedUZW8xgA3AJ/iK3L9J2B0HcUoIiIiIiJBEuoZFqaKlxvYBrwBnGitXRfiWOQQnV58ir/O+Ae3Lv+C/q2iQnquFdN3YL2+m7W9R7TDGeYATyFWMyykEWuaGE3rLvEAHNyTx57NWXUcUSmXw8WTJz+J0/iShpP4jtXDffd5wrwe5vz1NfKLPJUPkHIa8eMf4Owyk+O+/upLsrLqz2cUEZGGz1o7o5LXNGvtJGvtxcBvgXuBjDoNVkREREREjllIExbWWkcVrwhrbSdr7S3W2q2hjEMO53F7aJO6lh4HtzFq11LaJcaH7FzFhR5W/7wLAIfL0Ht4W98BdyH4ExZu48bhqPOSKiJB1/PU8rMs6pMTmp3Atb2uBaDYW8x3E7LY1qojb/Y8iz91P5c/frO66gGG/po+vXrRC1++uaCwiM8//QSv1xvq0EVERAKstS8C24En6jgUERERERE5RrpDfJzasmwNsUW+Oufp7buGNFmw7pfdFOa5Aeg2OJHouHDfAXcBxp+w8Dp0g1Map84ntiI80jeLYcOiNIoK3HUcUXm/6vcr2sW2A2DBgSVsfe4qvup1Ol7j4L/zUvlhVRW1N4zBnPcPzm6xk1hyANi8dRsLFlSxnJSIiEhoLANOresgRERERETk2IS6hoXXGLM4lOeQo7Nl5vzAtunZO6Tn8rgtEdG+xETf0e1LD7iLMNZ3I9c66s/a/iLBFBbupOvgRADchR42Lkyr44jKi3JF8eiwRwPv39n0Evec0Trw/oFPlrM3q6DyAcJjiL5yEueHzQ7s+nHyd6Snp4ckXhERkUo0A1QQTURERESkgQv1DItcoJo1RaQu5C1dGthuNWRgSM/Vb0x7rn3mZM64pTct2zcpPeAuwOGfYaGEhTRmPU4pXRZqdT1bFgrg5DYnc27ncwHILspmUd7LjOvZEoA229cz9YY78birqGfRrBNdLnmSk1gKgNsLn73/Nh5PFX1ERESCxBgzHDgN2FTXsYiIiIiIyLFxVd/kmGwAWoX4HHIUYjatBcCD4YSRQ0J+vvBIF51PLPOt4PWAtxgn/hkWTiUspPFq1aEJzdvGsn9nDnu3ZHFgVy7N2tSvIvP3DbqPn3f+zIGCA8zZNYeJPXqT+MMeLlv4GU4s3z/xV87+4/2VD9BtHKcPX8KmmTvZTzN2Hchh5uQvGXXWBbX3IUREpNExxjxWxeEmQA9gPL4Hsd6olaBERERERCRkQj3D4j/AacaYziE+jxyBnIwskvbtAGBP87bENQtdwe1KuQspwIHD/y1onKb2YxCpJcYYepzSmlYdmjDiyu7ENouo65AOkxCZwF+G/wWH8f1MTlrzGr3GtKDkJ7P9J2+zctq8KscIH3k/FyZn4cA3s2Lm/CVs37IxlGGLiEjj9wTwuP/roa97gbMAA/zdWvtCrUcnIiIiIiJBFeqExQvAZGCqMeZKY0xkiM8nNbBmxnyc+GY05HY6IWTn2bpiH/nZRRUf9BSSS1jpe5V/l0au78h2XPLQYHoPb0t4ZKgntx2dIa2H8JsBvwm8/0fkx6wZeToAYdZD+oMPkJORVfkADgdtr/w7I6I2AGBx8Nn7kygqLAxp3CIi0qg9CTzl/3ro62FgItDRWntPXQUoIiIiIiLBE+q7ZhvxPfHUHngXeNcYkwbkV9DWWms1E6MW7P1lUaAiYXT/fiE5R0FuMZNfW4m10Gt4G067tFv5Bu5Cchxh4PW9dbiUsZDGzTgaxiyiG3rfwPL05UzdPpWsoiw+GreT+FXtaZe+naTMvUy582HOe/cflQ8QGc+p1z3K+lf/yU6byIEiFz/85++cc+Pvau9DiIhIo2GtfbKuYxARERERkdoT6rvEHYEO/m3jfyX691f0klrgXbUysN3xtJNCco7VP+/CXezF4/ZCReUp3AXkmNIZFkpYiNQPxhj+eOof6RDn+9W9Ons9P/+qKwXOcAC6LfiJGf/+qMoxnEm9uHD8CMIoBmDh9jzW//xFaAMXEREREREREZEGL9R3iVOO4NUpxLEIYK3l730v4Ikh1/NJz3F0OrFX0M/h8XhZMd1XIwMDfUa1O7yRu4g8Ex5463Q5gx6HSH1krWXP5kymvbuG7AMFdR1OhZqEN+FvI/9GlCsKgE+LZ7LokuGB41F//zO7NqRWOUbzoZczrlPpz/UXU+aQu3dzaAIWEREREREREZFGIaRLQllrt4VyfDlyuzIL2OSOYFPrXoQPHxGSRMHmJenkHPStWd+xTwuatoo+vJG7gLwyNSxcrvq5pr9IsK2YvpNZH64HILZZJIPPTqnjiCrWNaErjw97nAdnPQjAS51+pln3nvRYt5omRXksvf1uEr/9X5W/QwZd+Sjrnv8dG/PjybVRfP7m37jit0/jiIqrrY8hIiINjDHmsWPpb619KlixiIiIiIhI7dNd4uPMktSDge0B7ZuG5BzLpmwPbPcbXcHsCgB3IfllloRyhelbUY4PKf1aMOt/68HCmtm7GXRmx3pb3+LsTmezPH057619j2LrZtKFGTzw9zia5WXRZsd63v9gKldfPbbS/sYVxnkT7+alV14m30awobA5P77yEON/8wI4wyrtJyIix7UnqHhB0ZpSwkJEREREpAFT4YDjzJLUjMD2gOSEoI+/Z0sme7dkAdC8bQxtu1dyDk8heUpYyHGoSbNIkns2AyD7QAE71h6spkfdum/QffRr2Q+ALaTx5dVt2Rjfht+M/C1PrilmxY7MKvs3SUzmkgnjceAFYG5mSxa99Tuwx3IvSkREGrGZVbwMkFZNGxERERERacBCnrAwxiQbY142xmwwxuQZYzyVvNyhjkUg5rP3GZO6kLY56fQPwQyL5VN3BLb7jm6PMZU8Oe4uoLDMBJ9wV3jF7UQaoZ6ntAlsr56zqw4jqV6YM4znRzxPs0hfkuXb5ht4755TSY1LothjufmdhezKyK9yjE4njuSsk3sH3n+zI5bNnzwZ0rhFRKRhstaOtNaOqujlb/JdZcfLtBERERERkQYqpAkLY8wJwBLgFqAzEInvyaiKXprtEWIFefmMmfs59y3+gKfnv0VCTHCTBDkHC9i0KA2AyNgwup2UWHljdyGFZWZYhIcrYSHHj459WxDVxPf9v3lpOgU5xXUcUdUSYxJ5bsRzOI2vXsXKgk/pluIrur0nq4CJ//6FA/syqhxj0LhLGdqtFQBenPxvZQH7pr4U0rhFRERERERERKRhCXWS4GkgAfgBGArEW2sdlb1CHMtxb93sxYR7fRNZslK6B338VbN24fX6lnnpPbwtrrAqCnq7CygsU3Q7PEwJCzl+OF0Oug1JAsDrtqybv6eOI6re4KTB3HXiXYH32U3epX3LPFxeN+d99wbzL72WvJy8KscYd/ltdG0ZAUABkbw3cx15Sz4OadwiIiIiIiIiItJwhDpJMAJIBc6z1s631maH+HxShV1zFgS2w/v2Dfr4A8YlM/zybjRrE0Pv4W2rbuwuKpewiAiPCHo8IvVZz5NLl4VaM3sXtgHUdJjYayKnJ58OQE5xNgmd3ufB5R8yesdiOuzawJSrbsNdXPnqfg6Hg4tvuodW0b73B0jgf198j2ezlhwXEREREREREZHQJyyigfnW2qIQn0dqoHjFisB2u5MHB3388EgXfUa24/JHTyKmaTUJCHcBxWVqWERGRAY9HpH6rFmbGJI6xQGwf2cuadvqfz7XGMMfTvkDHeM6ArAlawObLwgj31+Dpsu6BXxzy314vd5Kx4iIiODKm+8ixuVrs5V2fPOfl7F7VoY8fhERERERERERqd9CnbDYDMSE+BxSQ023rQeg0OGi27D+ITtPpYW2y3IXUlymhkVUeFTI4hGpr3qUKb69eUlaHUZSc7Hhsfxt5N+Icvl+Zr+KXMz3N56I2/j+Oek2dzLf/v7/qhyjaUICl19zPU7jS1os9nZn7lsPQ+aO0AYvIiIiIiIiIiL1WqgTFu8Cw40xLUN8HqlGWupuWmbvA2BPUgrhkcFbgumolrLxFFJsS2dYREUoYSHHny4DW3HC0CTOu3sAQ8/rXNfh1FiXhC48P+J5XMb3M/x+s4X8dNmgwPHOn7/Djy+8VeUY7TukcN65EwLvfyjsz7o3boO8A6EJWkRERERERERE6j1X9U2OyfPAGOA7Y8xEa63W/Kgj66f9QnP/dlG3nkEde/JrK4mICaPv6HY0bxNbs07uQjxlvv2iI6KDGpNIQxAe6WLMxOD+PNaW09qdxp+G/4nfzfgdFsubKYuJPmMAw79fAkDSq88xJ7EFJ18xodIx+g4YzP60NGbMXQAYPsnuyw1v30jSTe9BmJKYIiLHI2PMtdU06VJVG2vtO0EOSUREREREalFQExbGmKkV7A4DTgSWGmNS8RXhrmiBc2utHRPMeKTUgYWLAgmL+IEDgjbuwT25bFqSDsD2NQe45g/DMI6aLAlVgAcXTv/b6EglLEQamjM6nkFuUS5PzH0CgH/2X07UwZ4Mnrcal/US+fQjrGjVgj5jhlU6xoixZ7JvXzqrNmyliHDe35vCTR/eSpMr3wKHs9J+IiLSaE0CKpu+a4FT/K/KjithISIiIiLSgAV7hsXIKo45gI7+V0WOYl0hqSnXutWB7a4jK795eKSWTytdc77PiHY1S1YAuAvxlklYxESo1IkIgNdrcdT056geuKjbReQU5/DcwufAGJ4buY5HMjvRZ+1motxFrPzDn4nr/x4dmlf8M+5wODj/0qs4+Nq/2JWeQSZxfLAxl4lf/Iaw815U0kJE5PiTiv4uEBERERE5bgU7YTEqyONJEHi8lllNu7C/wEtSURY9uiYHZdyC3GLWzt0NgCvCSY9TWte8s7sQb5kaFrGRNVxKSqQRchd52Lg4jTWzd+MKd3LOHX1rVry+nriu13VkFmby+orXsQ7Ds+fu4PHsNuQVRPLkidfQ4s35fPKrk2kRW3HtnLCwMK649kZef/kfZOUVsZPWfLpsAxe7b8Z54avgDKvlTyQiInXFWtuxrmMQEREREZG6E9SEhbV2RjDHk+DYkJbN+51GQKcRnNUnibFBGnfN7N24i3yre/UYmkRkzBHcVHQXYMsmLKKUsJDjl8ftZe5nm8jLLAJ8P1s9T21Tx1EdmTsH3El2UTYfrPuAAqeXP11+gIjsm8lNiyJ3fx43TlrAezcPJSai4n92mjRpwhXXXM+bb7xOscfLGrry8aoNXFx4Fc7L3lZNCxERERERERGR44AjmIMZY6YaY34XzDHl2C1JzQhsD2ifEJQxvR4vy6dvD7zvO7r9kQ3gKcL682UWS5RuRspxLCI6jFFXnxB4//NHG8jal1+HER05YwwPDXmIczqdA0BWuJvsVpNo2XwPAMt2ZHLXS1PIOphV6RitW7fmsiuuxOlfEmsNXfl4Yxie/1wKhdmh/xAiIiLHwBiz1RhjK3lNr6B9hDHmMWPMBmNMgTFmlzHmNWNMqzoIX0RERESkXghqwgJfDYsTqmsktWtJ6sHA9oDkpkEZc/PSfeQcKASgQ5/mNE08wqLZ7gKwvrXpPcaDwxHsb0WRhqVjnxb0ONm3rFpxoYep767BehvWEt4O4+APp/yBUe19qwMWePJxtfk3TZqkE1eYy8Xv/Ym5F1zBgT37Kh2jS5cuXHHlVTj9vxPW0JWPt8Xheft8yDtQGx9DRETkWGQCT1bwmlS2kTHGAXzhP7YPeAGYC9wEzDXGtKy1iEVERERE6hHdJT4O7FixDmO9uByG3m3jgzLm8mmlsyv6jTrC2RUA7kKMf0kor8MblJhEGrpTLulKbIKvzsPOdRmsmLGzjiM6ci6Hi2dHPMuQpCEA5Lizie/0Fr9f+jYdsveSvGcziy+6gr1bd1U6hi9pcSVOZ2nS4qNdSbjfOgey99TK5xARETlKGdbaJyp4TTqk3XXAeOB94GRr7YPW2ouAXwOdgD/WbtgiIiIiIvWDEhaNXEb6AR7+8Ak++uYxHtzwNZFhzmMeM21bFrs3ZgKQ0DqGdj2OYpkpdwEO/wwLJSxEfCKiXIy+tkfg/dxPN5KxN68OIzo6Ec4I/j767/Rp0QeAzKIDfH1+DhmRvlo1bffvYM1lV7B97eZKx+jSpQtXXHElLqfv98RauvJxeifc/z4TDm4L/YcQEREJrZv9Xx+y1padUvkqsBm4yhijNVNFRERE5LgT1KLbUv+smz6fOCwx7gJaxoYHZcyC3GLiWkaRlZ5Pv9HtMMYc+SDuIhz+GRbW0bCWvREJpfY9mtF7RFtWztiJu9jLlLfXcMF9J+JwHMXPWR2KCYvh5dNfZuL3E9mYsZFlTQ/w4i0tuP3fDprnZpGYmca2q66m6I1/03lAjwrHKJlp8f577+H2eFhLFz7KgEvePBvXtZ9C7FHM7hIREQmtCGPMRKANkAUssNbOK9vAGBMJDAHWWWvLZeGttdYY8yNwKzAImFXTExtj2lXTJKlkIz8/n/z8hlUvqzHSNWi4dO0aLl27hkvXrmHSdWu4anLtQnV9lbBo5NLnLSTOvx07oH9Qxkzu2ZyrnhzKtpX7aXfC0RXx9hbnB2ZYcOyTPkQalWEXdCZ19QGy0vPZszmTpT+lcuK4DnUd1hGLj4jntbGvcd3317E9ezsrY/bxl5vjuOetBBIzD9I89yBp119H0T9fpsepAysco3PnzuWSFuvowkfZvqSFuey/tfyJREREqpUEvFV2hzFmAXCFtXaTf1dnfDPdN1QyRsn+rhxBwgLYXn0Tn5kzZ9KiRYsatNSfi6H0ww8/hHB0XbtQCt2103ULNV27hkvXrmHSdWu4anLt9u2rvEbpsQjFklDXGWM8R/FyhyAWWbMysJkyfGjQhnU4DCl9WxAWfnTZhiJ3EQ7/t59xNqwnx0VCLTzSxZjreoABp8sRqOXQELWMbsmkMybRNaErAFuisvjD9UXsaO67SdK0IJucX9/C0sk/VzpGSdLC5fL9vllHFz7KH4rrvUtIyKnsXo+IiEitewsYAyQCMcAA4F1gMDDFGNPE366kqFxmJeNkHdJOREREROS4EYp0lO4+1xNer5dWOzYCkB0RQ/e+3eo4olI57tL8lBIWIodr06Upwy/rRttuCTRrE1PX4RyTVtGtmHTGJH4z9Tcs2ruItKhCnri2mIffb0XKnjRii/LIv/cOfol8k6EjTqxwjM6dO3PllVfx3nvv4Xa7WUdnPiqCCzc+y6JOdwDjavdDiYiIHMJa++Qhu5YC1/qXT70GX92Kv4YwhOrWSkwCFgAMHz6cdu2qW0EKmDv12KOSSo0bF8L/f9G1C6mQXTtdt5DTtWu4dO0aJl23hqsm127Hjh0hOXcoEhbfA/8XgnHlCG1dvp4mhbkApLXrgsNxbE9p796YQUR0WFBunuZ4SgttK2EhUrE+I2twI6GBiAuP49Wxr/LAzAeYkjqFrEgvj1+5n0c+bkW31DRmtenLSz/s5qVWexnTI7HCMTp16sSVV15ZLmnxiR3HJZtegPmxMPy3cDQ1dURERELrVXwJi1PwJSxKZlZUNoOiZEXXymZgVMhaW+VfjGXrzkVFRREVpZredU3XoOHStWu4dO0aLl27hknXreGqybUL1fUNRcJij7V2RgjGlSO0ZeYvtCl506P3MY1lrWXG++vYvzOX9j2bccYtvQmPPPpvn1yvJ7DtcDXc5W5EapvH7cXZQH9mIpwRPD/ieZ6e9zQfrf+IggjDk5ft55KFPXg97iK8Hrj13UX87bL+TOjXpsIxDk1arKczHzCBS6Y9Q9i+1TDh7xAeXcufTEREpEoli/uWPPWzGfDiq1FRkZL9WvdQRERERI47DfOul9RIzpKlge2WQwYd01g71x1k/07fbI2ifPcxJSsAcj02sO1yqVCOSHXcxR7mfLqRT/6yCI/bW32HesrpcPLo0Ef5df9fA1DsMrw3dAOden8HeHB7Lb/5YAkffjWv0jE6derEVVddFfjdsYmO/JvLObBiMrw5HjJSa+OjiIiI1NQQ/9etANbafGA+0N0Y06FsQ+ObBjEWyAUW1mKMIiIiIiL1ghIWjVj0xrUAeDF0H3nSMY21bGrpDPN+Y6pbHrd6ed7ShIUz7OgKd4scT6a8vYYlP6SSnprNwm+31nU4x8QYw6/6/YpHhz6Kw/j+GdrrnU2n3h+CKaRDxm66PngLX0y8i6KCwgrHSElJ4dJLL8Xp9P3+SKc5b3A52/bsh9dGwpaZtfVxREREMMacYIw5bIqfMeYESpfLfa/Modf8X/9kTLn1DG8FOgH/9Sc2RERERESOK0pYNFL5+YVEZR8EYE9Ca5q2bHbUY2XszWPrCt9M9tiECDoNaHlswVlLvrf07zLNsBCp3onjO+Bw+H5uFn2/jb1bs+o4omN3afdL+euIvxLuCAcg3bOcrt3f5vF5/ybKU0S3X37gp3MuZ9+OvRX2b9++Pd27dyciIgKAPKJ5m4tYkpcI75wPv7wM1lbYV0REJMguB/YYY742xvzLGPMXY8znwHJ8xa7/ZK0tm01/G5gMXAHMMcb82RjzMfASsAV4pHbDFxERERGpH5SwaKRW7c3l6vGPcv3Yh1h06a+Oaazl03eA/55fn5HtcDqP8dvGU0S+CQu8DQsLq6KxiAC0bN+Ewed0BMB6LVMmrcZd5Km6UwMwpsMYXh37Kk3CmgCwx2xm8lgnxQ7fzImUHWtZc/5FrJmzuML+ERERdOvWjY4dOwLgxckXjOdHOwzv9w/C57+CYj2gKiIiITcN+A7oBlwN3I1vKahvgfHW2t+XbWyt9QLnAU8ALf3tTwH+DQyz1qbXWuQiIiIiIvVIUBMW1lqHtfaGYI4pR2dJagYYw56Y5rQ/5eiXgyrMd7N2zm4AXGEOep5acSHcI+IuoIDSJEV4WPixjylyHDhxfAdadfDd2D+4J48pb6/B6234MwgGJQ1i0pmTaBXVCoBvembyl+tiOBjlW1mjRc5+8m+5nplvflxhf5fLxSWXXMLgwYMD+2YzmA+ZQOGyj+HNMyBzR4V9RUREgsFaO8Nae5m1tpu1Nt5aG2atbW2tPd9a+0MlfQqttU9aa7tYayP87W+21lY8tVBERERE5DigGRaN1JLtBwPbA5KbHvU4a2bvorjQ9xR392GtiYwJwmwIdyEFRgkLkSPlcDoYc11PXGG+X90bF6Ux8/112Eaw7FG3hG68e9a7dIzrCMCypDx+f0MRW1s1BSDKXUTLvzzK1/f9Aa/38KLjDoeDs88+m7POOouSpcDX0YU3uZTM3Rvh1RGwdXZtfRwRERERERERETkKSlg0UktSMwCICXfStVWToxrD67Usn1b6VHLfUe2CERq4CygqO8MiXAkLkZpq1iaG8bf0DtSzWDVrF/O+3FzHUQVHm9g2/Oes/zC83XAA9sfBw9dms6BnQqBN56/f4+uLbiAno+IaHieddBJXXXVVoK7FXlrxOleyI88J75wLc1+CChIeIiIiIiIiIiJS95SwaIR2btjG3V//lRtWfc05Jg2nw1TfqQKpK/eTvb8AgOSezWjWOiY4AbqLKKK00HZEeERwxhU5TnTs04IxE3uA/0d70XfbWPfL7roNKkjiI+L5x+h/cOeAOzEYisMMz56bxcej4yhJM3Rau4AH/vwxOzMqrk3RpUsXbrrpJhISfImOHGKYxKWs8HaCyQ/Bfy6AzJ219IlERERERERERKSmlLBohDZO/4U++zdzyYbpnHJg/VGPk9y7OWfe1oe23ZrSd0z74AXoLqCozJJQkeGRwRtb5DjR7aQkTru0GwBtujYlpV/LOo4oeBzGwS19b+GVsa/QNKIpGMP/huTx/CXh5IW5eK33uXxDIpe+vpBNFU+0oGXLltx888106NABADcuPuFspnAyns0z4eVhsPwjaATLaYmIiIiIiIiINBaNNmFhjBlsjPnWGJNhjMk1xvxijLm0hn2NMeZMY8zLxpjlxphMY0yeMWaZMeb3xph6fYc9c9GSwHazQQOPehyHw9Cpf0vOv+dEOvRqHozQfNyFuMvMsIiKiAre2CLHkb6j2jHupl5M+E0/wqNc1XdoYE5uczL/O+d/9GnRB4AFXbzcfatlzuh9YIo5kFfMv1Y7+XmXrbCuRXR0NNdccw0DBgwI7JvFEP7NZewrMPDpTfDx9ZB3oNY+k4iIiIiIiIiIVK5RJiyMMaOA2cCpwP+AV4Ak4ENjzL01GCIC+Ba4HtgFvAb8G4gCngZmGmOiQxB6UISvXx3Y7jZqaB1GUglPIcVWCQuRYOg6KBFXmLPcvsZQhLtE69jWTDpjEpd1vwyAg00MhdG/0Kr765iwA3isIebbH5l62c3s27H3sP4ul4tzzz2XcePGBYpx7yKJV7mahfTBrvoMXhoGG36q1c8lIiIiIiIiIiKHa3QJC2OMC3gd8ALDrbW3WGvvBfoB64FnjDEdqhnGAzwCtLbWnmGtvd9aeyfQC/gKGAzcHrIPcQyKCgpJ2rMFgPQmLWiV3PqIxwj5zU53AZ4yRbeVsBAJntzMQj7/6xLSU7PrOpSgCXeG88jQR3jm1GeIdPomuOWbVBK6/ov+2dO4ZMM0umxcwvoJ5zLvo+8P62+M4eSTT+bGG2+kWbNmABQTxteczvucS05OJvz3Ivj6HijKrdXPJiIiIiIiIiIipRpdwgIYDXQG3rPWLi3Zaa3NBJ4BwoHrqhrAWltsrX3aWnvw0P3An/xvRwQz6GBZN3cpEV43AAc7djuqMRZ+u5Wv/rGU1FX7Q5O8cBfiKbMkVGxEbLVdFnz5CWvnzOTg7p3YCpZ+ERHIPlDAp88tZteGDL76x1Iy9ubVdUhBNaHzBP5z1n9IbpIMQLHNJbb59+RE+n6fJORnEffo3Xx52wMU5hUc1r9du3bcdtttDBo0KLBvPZ15mWtYRwos/De8chpsX1A7H0hERERERERERMppfIuew0j/1x8qODbZ//VYkg3F/q/uI+1ojGlXTZOkko3CwkLy8/OP9BSkzvqFTv5tZ89eRzyGx+1l+bQdFOQUs33NAS599ERimkYccRxVceRl48FFySI2LuOqMs7iwgJmvTcpkDwJi4yiRXJHWnZIoUXHTrTskEJC67Y4nM5Kxwi1goKCCrel/mtU187pITLWRVY65GcX88ULSzj7N72C/jNcl5Kjkpk0ZhJPLniSGTtnsKyz4b6bvdz5VSR9tvquX9fpXzJz3BLa/N+f6HRiz8PGGDNmDB06dOC7774jLy+PXGJ4n/MZxDLGHZhJ2JvjcA+9C/cpd4MzvLY/YqPXqH7mjjO6dg1XYWFhXYcgIiIiIiJSI40xYdHV/3XDoQestXuMMTll2hyNG/xfK0qIVGd7TRvOmzePTZs2HfEJ8ubPD2zviwnnhx+OLMzcHS4KcnxLNEW2Kmb2/BlHHEN12h1YiC1Tw2LR/EWsC1sHgDsvl8wNa2jW50SMwzcBKD99b7mZHsUF+exev4bd69cE9hmnE1dME9qNnYAzorQmen7abvLT9+IMD8cR5n+Fh2McTrBe37jW4ggLJyKhfGHxvD078RYVYr3W19brb+/1Yv3v8XqJSmxDZItWgX7TfvqRAysWg39sG/jqnxlSMg7QvP9gwmKalMabvpfsLesB41tv3/8yxoDDgXE4MU4nzrBw4ruVvxFbcGAfnvw8jNOJw+XCuMJw+F/G5cI4nYE1/KViM2fOrOsQjpmrM4Tti6Y420nOwUI+eX4BrYbk4Whk991Pt6cTGRnJTwU/kRHr4Y+XF3P2fCdXTPcS5rW027edwluu571RE2g+ZjDGcfj3fqdOnUhNTSUrKwuAhfRjC+250H5P27l/I2/Jxyxvfy0HYrvX9sc7bjSGn7njla5dw7Jv3766DkFERERERKRGGmPCIt7/NbOS41ll2hwRY8yZwK3AGnxFuOudpL2pABQ5XDRJObL6FdZCztbSu5qxHYuCGlsJh7cYa0tnQ4T776R6i4vYNWMyRQf3U3hwP0mnjsbhCiM8PoHWI8ZReGA/hQf3UXhgP+68nPKxezwUZ2VgnOW/pfN27+DgqqXVxhSV1Ja2o88qt2/fojkUZWZU27f5gCHlEhbWXUzmupXV9gNI6NW/3PvirAyyNq6ttp8zMuqwhEXGmuXkbKsiyWUMDpeL2I5daDX41HKH9syZBl4PxulPbPi/OspsG6eT6KS2hMXGBfq58/PI3Zla/QcF4jp1CyShAAr2p1N4cH+1/VyRUcS0K192Jmf7VjyF1T/dG9msBRHNWgTeez1usrdsrLhxSVLJn1BqktIVV2RpfZWCA+nkbN2EtZaIZi1o0qFzuc9TXzjCoMWgfNJ+icaT78Cd42TfwmhanJSHoxH9xjfGcFrkaXQJ68InuZ+wx7uHr4fAyg4O7vrC0PaAmwhPMSf/9CkrN6zHc83FRDWJLDdGWFgYnTp1Yv/+/ezYsQNrLftpxr+5jBH8wqkFCzhtw9OkNjuV1W0uozDsqP7pEBERERERERGRGmpEt69CyxgzGPgQXyLkEmvt0cytb1/N8SRgAcCQIUPo3LnzEQ2+f/c+srN9T9DtatWBs845q5oe5e3emMl3368GoEVyDOdcOjQkT+Q7F23H7vHNqLBYzhp/Ftbr5bu//x9F/hvYzsJ8hp9yCtHxTSscoyAnm/RtW9i3bQvpWzezL3ULBTk5jD/zzHIxz9ybysFV1cfULCGBcePGldv3wczJHKhBwqJb1670GD488LTp0KHD2Pr5+9WfFDjllFNo1rb022L1DCdp86p/ajUqJuaweL9fV03Cwlq8xcW0bd2GUYf0ff3TdymuwfIe4++4j86DhgTe71q3hs8/+2+1/QDOv/EWwsrMfpn3yfssmj+r2n6tu53AuBtuLrfvoycfJH1L9TOQTrrwcgaV+awFOdm8+eFbNYp31HkX0Kpj6c/g+jmz+On7zwPvXQfTGXPzHTRp3qKC3nUv6+QCvnlxJfnZxRRlOilcncTpN3VvVMtDFRQUMHPmTG5rchtbE7fy7oZ32Zrk4YEbLNdNcTB2iW9WU3hmBn/eHMczF/dlaEqzCsfav38/X3/9NXv27MGLk2mcwno6cQ5TSD7wM+1zl1N82u/wDJhIo8r81IGS6wYwfPhwIiMjq+kh9YWuXcN1NLN2RURERERE6kJjvOtSMrOiskdh44CDlRyrkDFmEL4loLzAeGttDW6BH85au6Oa8wS2IyIiiIqKqqL14TZmeXlj8DWccDCVTn26HnH/tT+XrqI14PQOREdHH1H/GnNY8C8J5TEeoqOj+fG1f5C6YikAETExXPT7p2ieVPkMkaioKBJatqJbmZvnFRl01vl0HjCYwrxcCnNzKMjNpTAvF6/HjXE4cDicGIeDhNZtDvvvNXjCheRnZ+FwOHG4nId8dQXet2iXXO6mTXyLFlzxh2cxDgfGOPzn8X0t2edwOMAYmjRvjtMVFujb89QRJPfohdfr9T3x73/a3+vx4HG78biL8RQX43A5D4u31/BRJHXqgru4iOLCAooLCikuyPdvF1BUUEBxQT4JiUmH9XUX1Ww2TUR4eLm+ERE1X2coKjKKsDL/nVxlPndVHA7HYfE6TM1mNoS5XOX7empeeibcFVb+s0aVvzG3a+0qPnrsfk6/+Q66Dzv10O51Lqp9FOfeNYDP/7qYwjw3+3fm8vXfV3H27X1p2b5J9QM0IC7j4tf9f80Z3c7gkZ8fYWPGRl4/w7C0E0z8wfDc0PHszvNyw7tLuf7kFO4e25UmkeW//9q1a8fNN9/MjBkzmDVrFtZadtKa17iSISxlVOEcIn56BFZ8AGc/D8lD6+jTNi6RkZFH/G+V1A+6dg1LRETjSVaLiIiIiEjj1hgTFiV33bsCi8oeMMYkAbHA/EM7VcafrPgRcADjrLULghRn0C1OK+Dntv34uW0//nnFgCPqm5mez5blvtkZMfHhdD6xVTU9joG7AONfEsrr8DD/849YMdVXa8PpcnH+fY/SvF11k1Fqpnm79kc9Vu+Rp9e4bdmi4U5XGG269Tiqc0bFNiEq9uhuJncbevQ3zW975R3cRUW4i4t8X/0vT+B9Ie7iYlqllJ/1k9C6LeNu/U2NzuFwlf9102XwUOJbJVbbr6JZNkMvvIz87Kxq+yZ26lLufVhE5GHxFhUVsXr1KjAO+vTtS2RkJA6nk6aHJMySe/fj8if/Ql5mBtPefp3s/ekU5Obw9Qt/ZsvS0xk98RbCo0KU5DtKLdrFcuF9A/n6X8vI3l9AbkYhqav2N7qERYlezXvx4Tkf8vKyl3lz5Zss6AaLO1u8jv8Snn46RfuH8+bsLWycPI1rOkcx+s7rcLpKl6dzOp2MHj2aLl268OWXX7Jv3z4sDn7hRFbRjTOYTs+9KzFvjod+V8LYJyE2hL8rRURERERERESOM40xYTEDeAgYB3xwyLHxZdpUq0yywolvZsW8YAUZCku2ZwS2ByQnHFHfFdN3gL+ude+R7XC6Qrg2v7sQh3+GhfFafv7gncCh8b++m3Y9e4fu3FKhypbeqk5M0wT6jB5XfcMKJHXuSlLnrkfVt8vgo3u63RUWdli8+fn57Cj0AND95OGVPjEcHRdPdJxv4lb7Xn358Y1/sX6ub0mrVdN/YueaVZx153207lq/CjQ3axPDxQ8M4tuXl5OQGM2J4ztU36kBC3eGc9eJdzG6/Wgenv0wWzK3AG4iWn1PWJPVFG+/gGt++ZB2P6Xz0xef0Oaxx+gzuvxMreTkZG677TbmzJnDzJkzcbvdZBPLR5xDZ7ZyFlNpvuw9WPsNjH4YBt0Izsb4z6mIiIiIiIiISO2qfxVjj90UYDNwpTGmf8lOY0w88HugCHinzP7WxpgT/Mcps38gvmSFCzjTWju3FmI/al6vZWlqBgCtmkTQJr7m60oX5btZPXsXAM4wB71OaxOKEEu5C3H4Z1iEF9jA7lOvuI4ep4wI7blFgiAyNpZz7vodZ/z6bsL8hbkz9u7moz8+QkFOTjW9a190XDjn3z2AkVefEJK6NPVRn5Z9+GjCR0zsNRGD7zM7olI5zf6ddjnpACTv2Yzj19fzxTV3kL59d7n+LpeL4cOHc/vtt9O1a2libRMdeYlrmc4Q3IU58N3v4LWRsK1e/xMhIiIiIiIiItIgNLqEhbXWDdyE77PNNMa8Zox5HlgGdAN+b63dWqbLn4A1wAUlO4wxzfAlK5oCPwNjjTFPHPL6bW18nprauHozAzYtpFXeAfq3iz+im5J52UWBJWK6n5RIVGzN6xIcDW9RAc7ADAtfUdy+Y87gpPMuDul5RYLJGEOvEWO49v9eDMyqOO2Ka4mMja3jyCrmCnceNnNq+9oDfPvycooKal7boyGJcEZw76B7eefMd+gQ55tZMr87/OFyBzub+f5bOLB0WzCFrWedzXd/eJHiwvL1XBISErjyyiu57LLLiIuLA8CDi+mczEtcwyaSYe8KeOsMeP8KSFtTux9SRERERERERKQRaZRrWFhrpxljTgWeBC4DwoAVwAPW2g9rMEQcULKm0hn+16G2AS8ce7TBse37qTy08D8AbIy/GRhc475NW0Vzwb0nkp6aTXhU6L8lCorzMcQAvoRFyoBBjLnxV8fNk9/SuDRNas3lT/6FNT9Pp+fw0eWOeb0eHA5nJT3r1oHduXz/6kqK8t18+txizrm9L7EJNZ+Z1ZD0b9WfjyZ8xKSVk3hz5ZusSCngvpssZyxycMksS3SRJbY4n9j/vszM774k7oEHGXxeaQ0bYww9evSgU6dOzJgxg7lz52Kt5QAJvMtF9GYt45lJk3Xfwvrvod8VMPIhaBqcWjwiIiIiIiIiIseLRjfDooS1dr619kxrbby1NtpaO6SiZIW1dqK11lhrJ5XZt9W/r6pXx9r8PNXJW7Y8sJ00qO9RjdEyuQnxLStevz+YsosLA9vFMXDObx/A4ayfN3VFasLhdNJrxJjDkm4z/zuJb//5PO7i4jqKrHIFOcWUhLt/Rw4f/Xkh6anZdRtUCEW5ovhV/1/x1QVfcVbKWXichm9OcnDXrQ6m9ym9bm0O7CT2gTt5484/sisjv9wYERERjBs3jttuu4327UuTESs5gRe5nmkMpdA6Yel/4R8DYfLDkHeg1j6jiIiIiIiIiEhD12gTFsebmM1rAfBg6DHipDqOpmp5RQWBbU8zF+GRoU+SiNS2bcuXsujrz1gzaxrT3369rsM5TJuuTbnodwOJa+GbVZGXWcSnzy1i89L0Oo4stJJikvi/4f/Hu2e+S+/mvcmMNbx0jpOHr3GyKcmXuCg2Tt6y7Rj53HSe/mY1B3LLLxOVmJjI9ddfz7nnnhso0l5MGDMYxt+5kXn0w+0phrn/hL/3g5nPQVFurX9WEREREREREZGGRgmLRiDrQCZJ+3cCsKdFO2KbxtWoX8bePLavPoC1tvrGx8hay+LvvqIgJ4dcd+nT5g6XZlZI41RUkIczLAyAZT9+y+qZU+s4osMlJMVw8QODSOoUD4C7yMt3r65g/leb8Xi8dRxdaPVv1Z//nv1fnj71aVpGtWRDO8Pvr3PwypkO/ndaGGnttlDkdvP6rC2c9n9T+fcb35CRXjpbwuFwcOKJJ3LnnXcyePBgHA7fP6d5RPEdo/kXE1lBN7yFWTD1D/DiAFjwb/DUv9k2IiIiIiIiIiL1hRIWjcDa6fNw4ks65HY+ocb9Fv+wjS9fXMr7T81n/66cUIUHwIIvP2HapFd5/7H72ZddWuDXqYSFNFJdTzqZ02/8deD9j6//i/RtW+owoopFNQnnvLv703Vwom+HhQXfbOXTZxeTsTevboMLMYdxcG7nc/n6gq+5uc/NhLkimNrfwRenuIls/Skxnf6OK24Zxfl5dPvnU6wfM5Zvfv8XcjNLf19GR0dz9tlnc/vtt9OrV6/A/oPE8wln8zpX+gpz5+yFb+6Bfw2BlZ+A11MXH1lEREREREREpF5TwqIRSJu3KLAd3b9/jfrkZxexft5eAHIzCmnSLHTFdtfOnsGs9yYBcGDndvZllj65XfIEukhj1HvUWPqMGQ+Au6iQL//6DAW5oU0OHg1XmJOxN/RkyHmdMA7fskhpW7P46h9L8TbymRYA0WHR/ObE3/DF+V8wrsO4wH5HxF6i2r7PhZl/pkVBFk2K8uj06VssGzmG75/5F4X5pcvbNW/enEsuuYSbb76ZlJSUwP7dJPIuF/EOF7KLVnBgE3x8gy9xsfQ9zbgQERERERERESlDCYtGwK5eGdhOGV6z+hWrZu3E4/bdiOxxSmvCI10hiW3HmpV8/9LfAu9PuewaopuWzrAIU8JCGrnRE2+lVUpnADL27Ob7l16olWXYjpQxhkFnduSi+wcS38pXl+G0y7rhcB4//0y0a9KO50c+z1vj36Jfy36B/Qt65jGjt6EkdZOQn0WHd/7JvNNO56e/v4W7uPR3Wtu2bbn22mu5+uqrSUpKCuzfTAde4yo+5kwOEA/7N8Dnv4J/nOhbKqq4NPkhIiIiIiIiInK8On7uRDVSXq+Xlts3AJATHk1Kvx7V9vG4vayY7qt5YQz0HdkuJLHt37mdL579Ix6372Zen9HjGHLBpeSXeWLbpYSFNHKu8HDOvechImNiAdi08BcWfPlJHUdVucSUOC57+CTG3diLjn1alDvW2OtalBiUNIh3z3yX18e9zsDEgaQlGP41wcl9NzmZ190E2rXM2U/bl//CzOHjmP7aB4HEhTGGLl26cMstt3DhhRfStGnTQJ+VnMA/uJ5POYM0mkNGqm+pqL/3g7n/UnFuERERERERETmuKWHRwG1fs5n4gmwA9rbtXKOaEBsXpZGXVQRASv+WxLWICnpcuRkH+fRPTwSWv+nY70TG3PhrjDEUlLnnGR4eHvRzi9Q38a2SOOvO+3wZQuDn998hdeXyOo6qcmERztKaFn7WWr5/dSVT311DUYG7kp6NhzGGoa2HMumMSbw5/k2GtB7CjpaG5y908tB1TpamlCYuWh/cTeJfn+TZGx7lfwu2U+SfveZwOOjbty933HEHZ5xxBlFRvt+1FsNyevAS1/IBE9hJIuTsgcm/hxf6wMxnoSCzTj63iIiIiIiIiEhdUsKigVu9cTdLW3Qm3xmO94Te1ba31rJ86vbA+36j2wc9puKCAj77v6fISvfVyGjZsRMT7n4Qp8u37FS5hEWYEhZyfEgZMIihF14OQHR8PI4GVnB+9c+72Lp8H2tm7+bDpxewZ/Pxc0N9cNJg3hj3Bu+c+Q6ntDmFTW0Mz1zu5IkrHaxr62tT5HTwv5bd+d0nyxn+l2m8MWszuYW+xI7L5WLo0KHcddddjBw5MpC4AFhLF17nSt7hQrbQDpu3H6b+Ef7WB6b8AXL318VHFhERERERERGpE6EpXCC1Zp5pxqRTf4XDennzyr7Vtt+zKZO0bb4ZGS3ax9K6S3xQ4/F6PXz94l/Yu9m3TFVs8xZc+MDjhEdFB9oUlUlYRIRHBPX8IvXZsIsvx+txM+CMCcQmNKvrcI6IK8xBWIST4kIPWen5fPrsIgae2ZFBZ3XE6To+ct8DWg3glbGvsCJ9Ba8uf5UZzODRawz9tlhaH4Di3v8gInMQew+czB+/KWDTy69zcmIkJ9/3K5q3bUVkZCQjR45k2LBhLFq0iLlz55Kd7ft9vJkObKYD7djNacyna+FmHLOegzkvQvczod+V0GUMOLWMnoiIiIiIiIg0XkpYNHBLt2cA4DUO+ndtXW37ZWVnV4xpjzHm/9m77/C4iquBw7+zXb1blmTLvfeCDRhM7xAIgSSQQCrp+ZKQQkhCAum9kF4hgRQSCCX0booxBoONwb1LtiWr9+3z/TF3pV0VW7ZlS7LP+zz77O5te1eju9LOmTlnP1sfPBOPE0jPAMCXls7lX76ZzPyClG3CpqtzUwMW6njicrk59ar3DfZpHJIpJ5YwckIOT962jqptzRgDrz68g82vVnPy5RMZN6dwwD9PhqpZRbP41Vm/Yl3dOv7wxh94Sp5izXgQwvjyl+PNewlP/STe/vBWsl4Lsevx//LCyeey4AufYNSUcfj9fk4++WQWLVrEmjVreOGFF2hoaACgkhL+yaWMoJZTWMmM2Cbc6+6HdfdDRhHMeifMvQpGzhrkn4JSSimllFJKKaXUwNOAxTAWisZYt6cZgPFFGeSm7z+9UltTiG2v1wCQlu1j0oLi/W5/KNweL+d/8npyikdSNnUGReVje2wTMV2dmgFfYMDPQanhxMTj1O2uoHD0mME+lQPKKUrn7Z+fz2uP7eSVB3cQjxua9nXwyO/WUjoplyVXTGTEmOzBPs2jZnrBdH5+xs/Z1riNv6//Ow9sfYBgLIiIYWbjBtIjdjpZIBZm8vMPUv/CI6yadyrTPvMxJi+eg8fjYcGCBcydO5d169bx/PPPs2/fPgD2Uch/uZCnZSnzzWrm8RZZbTWw4tf2VjwL5l4Ns66EzKLB/DEopZRSSimllFJKDZjjI4/HMeqtnXWEozEA5o3OO+D2GTl+rvjyQiYvLmbOmaNwe49M84sIJ1/5HsbMmttzpTFETFfu/jTfwBf8Vmq4CLa2ct+PvsU/vvp56ip3Dfbp9IvL7WLhheO44ssLKZ2U27l8z+ZG7v7+qzTXdQzeyQ2S8bnjuemkm3jiiif4zPzPMCJ9BGsmuPj0x908skAIOUMDvCbG5NeeJfa+d/PIWZfy1C//RntrO263m1mzZvHxj3+cq666ilGjRnUeu9Fk8jSn8DM+wl28jS2UEweoXguP3Qg/nQr/eLedgRENDcr7V0oppZRSSimllBooOsNiGKv629+56+E72ZBfTtbcT/ZrnxFjsjnnAzMG9Dz2bNqAPz2DglH9KOAdjxI1Xb92aX4NWKjj18r7/8O2114B4IGffJf3fPenKfVehrKi8iwuu34e21fXsvy/W2iq6WDy4pFkFxy/13RuIJcPz/ow75vxPp7c+SR3rLuD23LWcs8SwwWvxjnvNUNm0G47dvcm+PX3WPb3v/Hq127lqkWjmTgiiylTpjB58mR27NjBiy++yJYtWwCII6xnAuuZQJ67g/mxVczjLTLj7bDpEXtLy4OZV9iUUaXz4ThJ0aWUUkoppZRSSqljhwYshrHom2+QHWlnUfUG4qUDWzy7v+r37ObeH9wCxnDpF77GqOkz979DNEgs6dcuPTA8OmeVOhJOuuIqdqx5jZqd26nfU8ljv/0FF3/uy8OmFoSIMH5eEWNmFfDmst1MmJ+amigei7Nl1T4mLhiBy338TOjzurxcMO4CLhh3AWtq1nDnuju5O/MJHjgxyhlrDGevjjOqzm67fFwmd760lj+/sJ1F4/K5elE5500tZNy4cYwbN46GhgZee+01Xn/9dVpbWwFoiKXxFKfwjJzCVHcFC6IrGccuXB0N8Mof7a1wik0ZNftdkH3g+kZKKaUOj4iUAVcCFwJTgZFAPfAi8ENjzMvdtr8Z+MZ+DjnOGLPjiJysUkoppZRSQ5gGLIaxvB2bAAi6fcxcPKfP7YwxAAPeCdre3MR/v/8Ngq0tALzyv3v6EbAIEcXT+YuX4c8Y0HNSajjx+gNccv2N/P3GzxFqb2PTyy/ywE++w7kf+wxpmVmDfXr95va4mHNWzxlW65fv5dm/b2TVoztZ8o6JlM8oGISzG1xziuYw57Q57G3dyz83/pN7su7h4ROamFoJZ78e5/mTt5CR9T2iLdNZte8Edv5lEyXP/ZKqxWcw/br3MemEmZx11lmcfvrpbNy4kVWrVrF161YA4gbWRUezjtHk+aLMj77K7PhacmiF2o3w5DfgqVtg/Bk2eDH1IvAevzNglFLqCPs0cAOwFXgcqAEmAZcBl4nI1caYu3rZ76/Ajl6WNx6Rs1RKKaWUUmqI04DFMFW1rYLCtnr7eORY5vn7Lri96616lv93C3POHM3kRcV4fO4+t+2vSCjIfT/4Jk3VVQAUlo/lwk9/8cA7RkPEk1JCZQQ0YKGOb3kjSzn/k9dz/4+/Dcaw5ZUVVG/fykX/9yXKpkwb7NM7ZNFIjJf/tx2A+j1t/O+XayiZmMOC88dSPiN/2MwiGSglmSVcv+B6PjHnEzy560nu2XQPvxr9KgBCDG/2WrzZa7lki4/sUDvZzz1I9LkHebR0EnLu+ZzwviuZPn0606dPp6GhgVWrVvH666/T1tYGQEPYw1OcyFOcyFh/E7NDLzOdzQRMGLY+ZW/+HJhxmQ1ejF6sKaOUUmpgrQRON8YsS14oIqcCTwG/FZH7jDHdCw7dbox59iido1JKKaWUUkPe8ZOj4xiz6dmuWeWRKfuvSbHm6Qrq97TxzJ0bqFhff9ivHY/HePiXP2bvlo0AZOYXcPmXb8af3o/0TtEgJilOlhnIPOzzUWq4m7hwMZd98SYCzqyKltoa7rr5Bl6+7z+YeHyQz+7QeLxuzr9uJiPGdM0U2buliQd/tYZ/f/cVNr9aTTxuBvEMB0fAE+Di8Rdz2/m38b/L/scHZn6A/EB+53qf6SCcFFMes2cz5bf/ksozz+B/l7yHZ373D/weH2effTbXX38973znOxk/fnzKa+wI5fAA5/Jj1yf5j/cKNjKeKC4INcFrf4W/nAe3zoXHvgo7l0M8dpTevVJKHbuMMf/tHqxwlj8PPAPkAbOO+okppZRSSik1zOgMi2Gq8dXXSGSLz1k4v8/t6ve0UbHOBimyCwOMmVV42K+97G9/ZssrKwDwpaXx9hu+QVZBP48bDWGSZlhkpmnAQimACQsWce0Pf8lDt/6I3RvewsTjvPDPv5JfNopJJ5w02Kd3SEon5XLFDQvZ/Go1rz68g4aqdgBqK1p5/E9vkV20jfnnljP1xBLc3uMvfj42ZyzXL7ieT8/9NMsql3H35ru586zl3HtSnKVvGs5aE2d0rd3Wa2JM3Pwa/Pw11v/qh6w+9yomf/yDnDx1WuesizfeeIM33niDujpbICMah7fio3mL0aS548w065kdf4NRVCENO+ClX9lbegFMPh+mXAgTzgSf1hZSSqkBFnHuo72sWyoii4E4sBl40hjTeigvIiKjDrDJyMSDjo4OOjo6DuVl1ADSNhi+tO2GL2274UvbbnjSdhu++tN2R6p9NWAxTHk3ret8PPn0xX1u98YzFZ2PZ58xGpfr8FKArHrofl575AEAxOXiks/dyIix4w+wV5KkGRZx4gS8gcM6H6WOJVkFhbzz69/lpXv+yYr/3sWkRScxceGJg31ah0VcwuRFI5m0sJjta2pZ9egO9u20dW+aazp4/q7NjJ1dSEaOf5DPdPB43V7OHnM2Z485m72te7l3y73cW3QvD5+wl7HVcOpbcZasM+Q73Vfp0RDPteziW39ezoisDC6ZU8pls0s49dRTWbp0Kbt37+aNN97gzTffpL3dBok6Yi5eYQavMIM8T4jZ0dVMZyMjqEPa62D13+3NkwYTzrDBi8nnQ2bRfs5cKaXUgYhIOXA2sBdY28smt3R73iginzHG/O0QXq7iwJtYzz33HIWF/RlwpF8Xj6THH3/8CB5d2+5IOnJtp+12pGnbDV/adsOTttvw1Z+2q62tPSKvra07DEVCYUbutbnhazPymTa+Z7FbgGBrhI0rbI0Jb8DNtJNLDut1N7+8nGfv+FPn83M+8inGzul7dkevYmEwNt9JXDQNiVLdudxulrzzvZTPmE3R2PE9aj0YY4Zl/QdxCePnFTFubiGVGxt47dGdVG5oYNrJJT2CFbFYHLf7+JtxAbbWxSfmfoKPzv4oK/au4NEdj3Jf+VPceUYzM3YZTn3LMGu7Ye3iZWS6VtLcMoPbX5/Nm/8J8/ENj9C86FTGv+NtnH/++Zx33nls3bqVN954gw0bNhCN2oG9DVE/y1jMMhZT4AszPfoW0+LrKGEfEu2AjQ/bG2JrXUy9ECZfAIWTtO6FUkodBBHxAncAfuAGY0zyP79rgA8Cz2KDGSOBi4FvAreLSKMx5oGje8ZKKaWUUkoNPg1YDEObXl5DIBYGoH7s5D63e+uF3UQjNv/99JNL8aUdXnO31NeCsTnnT3zHu5l1xrkHf5BoEHFSQsVdGrBQqi+jZ8zusWzba6+w8v67ufDTXyC7cHiOfBcRRk/NZ/TUfKp3NJOe7UtZHw5G+ectL1M+s4CZS8soGp3Vx5GObW6XmyVlS1hStoSvn/h1Xtr7Eo/teIw7Jj1NW6gF4xKEIN7cVXhzV3Huq1DcFKX4iXvgiXt4IauQhhNOYezbL+byyy8nHA6zfv163njjDbZv3975OnVhH88zj+eZR64vxnSzkWmRNZRRhQsDFSvs7YmvQ944O+ti8nkwZgl4fPt5B0opdXwTERdwO7AU+KMx5o7k9caYe7vtsgP4lYisB54Avg0cbMCi91FMXUYCrwAsXbqUUaMOlEEKeOnpgzwFdTDOPfcQvk/1l7bdEXXE2k7b7YjTthu+tO2GJ2234as/bVdZWXlEXlsDFsNQxfJXGeM89szsvXZfLBZn7bO77ROBWWf04wvJAcy/4G1k5uWz443XOfnK9xzaQaIhXJ0zLIZnMWGlBkNLfS2P/OZnBFuaueOG/+O8j3+WiQv7Tgc3HBSPze6xbN0Le2htCLHu+T2se34PxeOymXlaGRPnj8Djc/dylGOf1+1l6ailLB21lHAszIu7X+SxnY/xzK5naI+2gzEEInHiQGJeSlFLLUVP3wdP38fyjDzqFixh9KUX8d73vJe29jbWr1/PunXr2LlzZ+frNIbdLGc6y5lOtg+mubYzPfgKo9ljgxcN2+Hl39qbL8umjpp8Pkw6BzJHDMaPRimlhiQnWPEX4GrgTuBj/d3XGPOUiGwFZolItjGm+SD23e83xuQZmmlpaaSlpfX30OoI0TYYvrTthi9tu+FL22540nYbvvrTdkeqfTVgMQw9Oe5EVpwVYGr9Tj5x3jm9brPttRraGkMAjJtdSE7RwPwCTT7xFCafeMqhHyAawuXMsDAuDVgo1V8dzc34AgGCLc0EW1u4/0ffYsLCEzn1qvdRMOpAAyqHj2g4jtfvJhKyM7CqtzdTvb2ZF/6zmaknlTDz1DJyi4/fotA+t48zys/gjPIzCEaDvLjnRR7b/hi/eM+z+BrbWbTJsHijYcZOg9tOiKOgrYGC5x6E5x7kO3deROzd7+e8mRN4zzUnEOpoY8OGDaxfv57t27djnFl0zWF4mXG8zDgyfMJEXy2T2l5hgtlGGiEIt8D6B+wNgbL5TvDiXBg5G1zHZ0ovpZRyghW3AdcC/wTeb4w52H96a4GJQDrQ74CFUkoppZRSxwINWAxDr1c2UZk1gurcYn51wvRet1nzdFfNvTlnHlpnZiQconrLZkZNn3lI+/cmHu7A7cywwGUG7LhKHetGjB3PNd+/lcd/fyubVy4HYOurK9i2aiUzzzyHk6+4msz8gkE+y8O38MKxzD5zFJtWVvPmst3U7baVpkNtUdY8WcGaJysYNTWP+eeOoXDc8T1SI+AJcFb5WZxVfhbBaJCVVStZVrGMP1Q+S0dtNQs3G07cYJi1w+BxuspWzH6Ordvr+fvaqfgjk7kwx8VZ7Ts55ZJzecc73sHGjRtZt24d27ZtIx63O7WFDWvCBazhfAQYlR5mYuQtJkXWMZJ9dvbF7lX29sx3IJBrU0aNOxXGngIjZmgAQyl1XOgWrLgLuKZb3Yr+HCMDmAG0YQMXSimllFJKHVc0YDHMNLVH2FrTBsD00hwC3p4pUqLhGNmFadTsbCGvNIPSybkH/TomHueRX/2ELa+s4OwPfYLZZ59/uKcOQEeoDcFORxcNWCh1UAKZmVxy/Y28tewpXvzX32htqMeYOGufeoz1zz/Lgosu5YS3vQN/esZgn+ph8QU8zFxaxoxTS6na1sybz1WyZdU+4lH7mVG5oYHR0/OP+4BFsoAn0Jk26mvma2yo38Czlc/yQMUybq18kwVbDFMrDRUl7fjkFch7BWNcBJZlMualekJ3/oZXswppnLGAMacv5dzrPsrefVWdwYtIJAKAASrafVQwj2eYR4YXJrr3MCn4OhPYaWdfBBth40P2BpCWZwMYY50ARva4Qfs5KaXUkZKUBupa4D/Ae/sKVohIFlBijNnUbXka8EcgC7jNGBM9smetlFJKKaXU0KMBi2FmdWVj5+N5o3N73cbjc3Puh2bQevlE2ptDKflq+2vZnX9h88t2FPezd/yZ8QsWkZmXfyinnKI11Nr5WNwasFDqYIkIM08/myknncJrDz/AyvvvJtzRTjQc4uV7/40xhlOvet9gn+aAEBFKJuRQMiGHU66cxPrle3nrud20NYaZdnIJ0NUPVL+njcY99UyYP4JAhnfwTnoIEBGmFUxjWsE0Pj7n4+xr38dzlc+xrGIZ/r0rCMWCznZx5lfUd+43oqWWESsegxWPUfVDF3tKJ5G1YDEXn3sGaaOL2LZtK1u2bKG2tmvAb1sE1kRKWUMpApSldTAusolx0c2MYi8+otDRABsetDcgkJbPCb7x1GZNRfaVwej5OgNDKXUs+DrwPqAV2AR8rZf/we8zxqwGCoANIvIKsB6oAoqBs4FRwFrgi0fntJVSSimllBpaNGAxzFTdfS/XrnuD9fljmD9iyn63zczzk5nnP+jXeP3R/7HqofsAEJeLSz57w4AEKwBagu2dj13u3gMpJhandcVeWp/fTbwjijvbhzvLhyvL3ruz7ePAxFzcWb4BOS+lhhuvP8Dit7+TWWedx8v3/pvVjz2E1+9n4cVvH+xTOyLSMn3MP3cM884up35vG2mZPjo6OjrXb3xpH+tfqOK5uzYxdmYhkxcVM2ZWAZ5eZqEdb0akj+CKyVdwxeQrOlNHvbj7RZbvWc6fz93O3G2GudviTKmkM3WUNx5nbOVGqNwI9/+NhyafxPorPsFJ86ZwYpGHeONetmzZwvbt21NmX1R2pFHJHJ5nDm6BskAHYyMbOwMYXmJIRz2lHfWUNr0Kt90JgRwoPxnGnGxnYpTMBvfxHXRSSg1LY537TOCrfWyzA1gN1AO/ARYBFwJ5QAc2eHEr8CtjTEfvh1BKKaWUUurYpgGLYSbj+Se5avtaANK/cNmAH3/LKyt4+vY/dD4/+8OfYNy8hQN2/LZQO2BH0vYWsIjWdVB7+1tEa7q+o0VrOlKeJxReNyslYNHxZi2ND21DPK7OGx4X4k08F8TjwpXuJffi8SnHan1pD+FKZ/aHMbbnzRiMSX3un5hL5omlKfvW/vUtYsEIk+qyEKBp9wZaXK7OfRKHzDlvLIGJuZ37hfe20fCfjZAYfZf4cYiTNCvpeeEHZ+Lyd3W8tq/eR/vqGnAJ4gJcYh+Lc+8RxO3CnR8g65SylPNtX1tDvC2CuF12W7ezj0vA7dy7BE9+AE9BV8odEzdEqtvpD09BAJev63zjHVGiThH4/REB78jUdEbRxhDxjgNnRHAF3HjyAinLItVtHKjMZTQUxB0RYt6uGT/xcIxIVVtXG8axxYid591/NoMpPTuHM953HfMvuITail2kZWWnrH/z2SfJzMtnzOx5hzTbaqgRl1BQlpmyzMRh+2o76j8eNWxbXcO21TX40jxMmF/ElEUjKZ2Ua3+3j3PJqaMA9rTuYfme5Szfs5zfbH+J8q3NzN1mmLPNMLKxa78NU1fyQkcly1aOI9Y+jtLQKL6w9knmLVxI5qJptEmYrVu3psy+iBnY1ZHGLubyHHNxu2CUv52x4Q2Mi21hFFV4iEGwCTY9Ym8A3gwoX9wVwCidD97Ua1sppYYaY8z7gff3c9tm4FNH8nyUUkoppZQarjRgMYzEojGKd28FoCmQxZTpE1LWR8Ixtry6j0knjDikUcV7t2zkoVt/1NnJvuiyK5l91sDUrkjoiIQA29HrdvdMAeLO8dtO4cTz/ADx1ggm3DMFsDs7dXZFvCNKrOHAneKubF+PgEVoayMdb9YdeN+0nqN+Q1ubMOEY2dh10ebWHtsAxNsjKc9NOEZkT9sBX9NunJo+K1LTQXBDfR8bd/GNzuoRsGh9fjfhXS0H3DfrrHJyzhnTdQqhGPt+8Vq/TrfoE3Pwl3d1nAc3NVD/zw0H3E8CbspuPjllWfMTO2lfVX3AfdNmF1Jw9bSUZTV/fpN4c/iA++ZO8FI3omu7aF2Qmt+s2e8+3lGZpM8dQcb8EbjSB380eM6IkeSMGJmyrL25iWdu/z3hjg6Kxoxj3gWXMHXJaXh9Bz/zakgTOPcj09i5ppHNr1TT7rR5uCPK+hf3sv7FvWTm+Zl0QjEzTysje4gEm4aC0szSztkXsaUx3qp7i+V7lnP7npfYu3E1s7dFmbnTsG4MuAN7cQf2Qv5yJm+IM2l9HNa/DHeAJy2L8gmzKF84n8DUcXRIhJ07d1Jf3/U5FYvDzo50djKfZczHhaEsrYMxka2Mjm5lNHtIJwSRNtj6tL0BuP1QtgDK5ttb6TzIG9cV7FVKKaWUUkoppdQxQwMWw8j2NevJDNsR7jWjJ+HqlvN744oqlv1jIy/du4XTrp7ChHkj+n3sxuoq7v3BN4mGbYf/1CWnccq7rx24k3e0JwcsPG5MJI54u96HeFzkXDSOlmcryb1kPL5RWQDEQzFiLWHizWFiLfbmzunW6eoSXJleTDSOicYh2nuNDPH0kiu9nx1fxvRyzMPpM3OLE6AxXYGa3k67+2vE+1n/o5dZLCbWv32P59Ho/fl1iFS20lTZSmBS7pAIWPTmzWeeIOykTarZuZ3Hf3crz/39dmafeS5zzr2Q7ML+f0YMZSJQODqT0ZOLOPkdE9m9oYFNK6vY+noNkZANdrY2hHj98V2Mm12oAYs+uF1uZhfNZnbRbD4252O0nNXCyqqVvFr1KiXVq2iq34jBTlmaWpn6OZLX0ULem8vhTVv7qNmfhpRPZdSChbiXnkS8qZpdu3bS0NDQuU8coaIjnQpmAbMAKPJHGB3fRXlkM+XsIY8mJBaCXcvtLSGQawMXiVvZfMgu0yCGUkoppZRSSik1zGnAYhjZ/txKRjmPZfrMlHXGGN54ugKAjpbIQXXIdbQ089/v30xHcxMAo6fP4ryPf/aIpI/piHTNMihqK2Dv91dSdN2slDRAgan5BKbmp7y+y+/G5U+Dwr7fV8aCYjIWFHc+N8ZAzNgARiTeFcjopb8+56LxZJ9dbju7BJuWKSklk023BOLrOXOl5CuLCAaDPPnUUyBw9jlnk5aWlpLqqbefpX9MNqO+c0qf76czBZFzjGRZZ4wmc0lpV6qiuL2ZxH3MvvfkYFBC9rljiLdG7M8mFrf7xLr2TezvG5uaWgi3kLFoZI/j9cadmTr7xVMQ6Ne+vZ2vf3yOTVt1AN5uaYIA0ueNwBwgnVQ0GiUYak5Z5kr32p+viM1glvh9EMHEDaHNDUT2tOEtycBbnJrCquOtWhAhMDmv9+DYUXTCJZeTM6KYVQ/ex94tGwEItjSz8v67eeWB/zJx0YnMO/8SRk2beUykiwJwuYTR0/MZPT2fpVfH2LGmlk0rq9j1Vj3eNDfF43NStn9zWSVbX69h7KxCxswsILc4fZDOfOjJ8mVxVvlZnFV+FgAt4RZW71vNqupVrMp/leUz1jJtZ5QZOw3TKgyBpElk2aEOsje/zvrWdXwpexOu8Bim5s/kxLGllNdvpqp+Lx2hDsLh1BlQNSEvNUzgNewMwgxPnHLZS3lkM2VUUcI+vMQg2AjbnrG3hIwiJ4AxvyuIkXlsBOWUUkoppZRSSqnjhQYshpH21as7H49YvCBlXcX6ehqq7OyLkok5FJVn9fu49bsraa236ZDyy0bzts9/FY/3yIwYTw5YlNUWE49FaHxwG4Uf6uowHaiOUxEBp24FB0h/7sn1A4eWJsfl9yBxN8aJZYjbZetDHCZJBE96e02fG3oJnvRH2pRDK6Du8rnJu3zSIe3rG5XVOVvmYHUPRB2M3AvGHXCbjo4O2h7flLLMne0j95IJfewBXDCOyL72nmm+jKHpsR1E93XgSveQNquQjIUj8Y0+tPd+uMTlYspJpzLlpFPZu3kjrz/6Pza+9ALxWBRj4mx+eTmbX17OxBNO5NIvfG1QzvFI8vrcTDqhmEknFNPREqZudyuubjOHtq2uoXJDA5UbGnjhP5vJLU5nzMwCxswqoHRiLu5BDjoNJVm+LE4ddSqnjjoVFkDHBR2srVnLqupV/HrPSlrWrGbSzjBTKw1TKg2ZQdg4Joyv4EXgRbYAm2rS+eNv2pndHqUyL5/G8TOITptKvCiXNhOmuro6ZSZbW9TFespYj01tJ8AIf5CyWAVl0R2UUUURdbgx0FYDmx+3t4TsUVDmBDHK5kPJXEjLPYo/NaWUUkoppZRSSh0MDVgMIxlbbQ2AGMLU0xenrFvzVGXn4zlnjT6o45ZNnc67b/kBj/3uF7zt+q8QyOw5Un0gRPa1k1U5D7D1CDzYDnd3ls+mb/IeGyO81fHBO6LnSPzI3jai+2wKpnh7lLaXq2h7uYr0BcXkXjRuUFNHlUyaQsmkKZx2zYdY88QjvPHkI7Q12vQ8o6b1nLF1rMy4SEjL8jFqamqwLh43tNSn1r1prG6nsbqdNU9V4PG5KJ2YS9nUPCbMKyKnSGdfJEvzpLGoZBGLShbB3I8TOS/CxoaNvFHzBvdUv8GeN1+lMlaVsk9JSxt57TZNV3lDPeWrnodVzwMQFaGyaAS1k2cSGjOGcGEOTY11hEJdbWSA6lCAaibxGjaA6nFBia+NssgOSmM7KaOaPBpxATRX2tv6/3WdRP4EpxaGE8QYMQ0CqTNvlFJKKaWUUkopNTg0YDFMtDY2M7JuNwBVBWXMzO/qXGmoamPXW3aGRFZBgHFzig76+CPGjue93/v5EemkjLdHaH5yF60r9uKVfPDagEU0I8aIa+YO2uhzpQaatzidgvfPoP31fQTX1WEiNt9/+6pqghvryb10IumzCgf1HDNy8zj5yqtZ/PYr2bTiRdY+/TgzTj87ZZu9mzfw5B9/zZQlpzH15KXkjDi0GS5DncslXH3zYhr2trPjzVp2rq1j79Ymmx4NiIbj7FpXz6519aRlelMCFiZu+kz3drzyur3MLJzJzMKZXD3tajgdGoONrK1dy9ratby6dzVVzat5ZEErUysNY/aBKylFn8cYxu6rZuy+angBPn3VVHanT2Ri+himpxVSEmwh3tFIS7A9ZRZGNA4VwQwqmAHMAMDnMhR7WymOVDAyvodiaiimFh9RqN9qb2v/0/XiWSVQOBmKpkLRFOc2FTIG93pVSimllFJKKaWONxqwGCbWL3uFTGM7P9vGT0lZ98bTXbMrZp0+qkfKk97s27GNojHjUjrbBrrjzcQMbSv30vzETuLtto5A1B3rXF83p1WDFeqYIm4XaVPzSZuaTzwUo31VNU2P7cCEYsRbI9T/fT3tMwrIu3QC7uxDS0E2UNweL9NOOZ1pp5zeY936F5ZRs2sHNbt28MI//0rp5GlMPeU0ppx4Cuk5uUf9XI8kESG/NIP80gzmnzuGYFuEinX17HyzjsoN9bQ12RoL3Wdn7HyrjmX/2MioKXmMmppH6eQ8svIPkHvuOJQbyO1KIzXXzt7Z9K5N/GvZv7i/fRf+hn2kbd3F2KoI46sMo2ptEKPDB/vKN+NxbWEHsAN453IPV6wIEvZ42Da6jH2jxxIcUUIwzUtHJLUWRjguVISyqGA6MN1Zash3dzAytodiqhlJLcXUkEML0rIXWvbC9mWpbyAt3wliOMGMwsn2ll0GLk0XppRSSimllFJKDTQNWAwT1SteJZGoKX3OnM7lwbYIG1bsBcDjdzN9SckBj7V11cvc/6PvMPvs8znzAx/F5T60WggHJND2clVnsEK8LqrTN4GT3cPv739hcKWGG5ffTebJpaTNKKDhvi0E19cDEHyrjgYDhddOP8ARBk9LXU3K8z2b1rNn03qeuf0PjJk1l6lLTmPiCSfhTz/2UiQFMryddS+MMTRWt1O1rblHMKJyQwOtDSE2rKhiwwqb9igrP0DJxBxKJuZSMiGH/JIMpB8B5OOJiFCeVc5c31zm+uZy7jvPxef3sb1pO+vq13F/xevsW72KYPUujCuWsu+4GvvHwxeNMnX7TqZu39m5LuTzsaukmD2jy2kqKyeank6ko7X7q1MfS6eeiaxjYudSv0QpknpGxKsZQR0jqKWIOjJpRzrqYddye0vmSYPCiV0BjMJJ9r5gInj1b5tSSimllFJKKXWoNGAxTKzKKOPN8acwtX4n00/tql+x7sU9RMN25sW0k0rwHyBHftXWzTz4ix9iTJw1TzzMyAmTmHnGOUfknMUl5Fwynto/riV93giyzx9L1W2/g5AtZhwIZByR11VqKHHn+Cm4djoda2tpfGArJhQj96IDFwMfTJd98SYaq6vYuPw51r/wLHWVuwAw8Tg71rzGjjWv4fb+itOu+RDzzrt4kM/2yBER8kZmkDey52dVPBrH43URddJ+AbTUB2lZGWTTSpv2zp/uYfoppZx8+cQe+6subpebiXkTmZg3kbdNeBucDrF4jB3NO1hXt441+95kdfVbrJy5noasDsZWG8prwBftOoY/HGbSzgom7azgoYXLueOsAO7gSHLaSxlpRnDSrmZCWbmEvV7imJTXDxkPlWYElYxIWZ7mijJC6hkR28MI6iiijiLqSacDiXZA1Vp7SyGQOxoKJkH+eMgfB3lj7S13DPiPTI0opZRSSimllFLqWKEBi2HAGMODMpKa2ZeR5few5oRZncvfem5353azzxi13+M07avi3h/cQtQpYDrlpFOZcdpZA3KO8fYIzU/tIn3uiJQ0T4EJuRR/fgFeJ/d7NN412jhNAxbqOCEipM8uwj8hl0hlC56C1BHY0fog7hw/4h46o/Fzi0ey+O3vZNFlV1K7awcbXlzGhuXP0VyzD4BYJEJeSVnKPm2NDdRVVlA2dRpuz+AVGD8all41hSVXTKJqWxOVGxvYu7WR6m3NKQGMUHuUbn3jGGN45aEd5I1MZ8SYLLIL07QORi/cLjcTcicwIXcCl0y4BABzqWFf+z42NWzilZoN7Fz7KpGNG8mvrGVMdZxxVYasIFQUCeKKEE+voCG9AloM5z9uZ2vERWjNzKQ+L5c9I4toKCgimJlFtJeZhh1xDzsZwc5ugYyAK0ahq4nCaBUF1FNIPQU0kE8jHuLQuMvetj7V841ljOgKYCRu+eMgt9zW0XAdoRmPSimllFJKKaXUMKEBi2FgT1OQmhYbZJhbnttZo0JEuOz6+by5bDdtjSFyi/tOz9LR2sJ/v3cz7U2NAJRNncH5n/gccpg5uE3M0PbKXpoft3UqwpWtFH1sdkoHnDepUG1qwEJHmqrjizvDi3tKai2EeDhGzR/fwJXuJe/ySfjKhtZ1ISIUjRlH0ZhxnHLV+9izaQMbXnyWyvVvUT5jdsq2m1e+xFN//g1ef4DRM2czbs4Cxs6ZT+7IA6eqG47cXhdlU/Iom5IHQCwWp2ZXC3u3NLF3SyN7tzZRMjEnZZ+WuiCvPLi987k/3UPh6CxGjMmiqDxLgxj7ISIUZxRTnFFsa2LMuw6ASDzCzqadbKzfwPPrV9HcsoOc+B6aonsBw+iarqiRyxiyW1rIbmlh7K6KzuURj4fm7Gx+c+FYXN5iCuKZZMU8eKLx7qdBMO6mMp5PJanXsmDIcwcpMDUUxmvIp7HzlkMLLgy07bO3ypU936DLY2tj5JZ33XJGO49H23XuYzsQqJRSSimllFJKacBiGHh9V0Pn43mjc1PWZeUHOOntE/a7fzQS4YEff4f6PbY4d17pKC794tfw+HyHdV7BzQ00PriNaHV757Lw7lai1e14e0mhAjZgkeiGS/cfe/nvlTpYzY/vJNYQItYQYt8vX8c3LpuM+cWkzSrEFRhaH9EiQtmUaZRNmYYxpken+o41qwCIhIJsW7WSbatsp2zuyBLGzpnP6OmzKJs6g4zcvKN+7keD2+1i5LgcRo7LYd455RhjMN1mWOzZ0pjyPNQeZffGBnZv7PqcTwQxzv/ITAIZ2kF9IF6XtzOl1EUTulKUhWNhdjXvYkvdZp6ct4qm9W/h2VVBQXUjo2pjlNaBzymT4Y1GyWms562yJuJJdUfe9bybpRuzaMrOoSE3h/q8XNqysoj4exZYNwj1sTTqKWcz5SnrXGKDGXmmgfxYtRPIaCKfRnJpxkMM4lFo3GlvvRGXDVpkl0HOKMgpg+zEvbMsvQA02KWUUkoppZRSahgbWr1hqldbX15DfkcT9Wk5zCs/uI4+E4/z2G9/TuX6NwFIz8nl8i/fTFpm1gH27FuktoOmh7Z1FhFOSJtTRM4FY/Hk9uzISYgZV+cvXXpAAxZKpc0uJLi5oTPwF97eTHh7M40PbCUwo4CM+cX4J+YOueLNvc0AmL70TPxp6ex44/XO2VwAjVV7WV31EKsfewiAeedfwpkf+OjROtVBIyI9+o7Hzizkwk/MpmZnMzW7Wti3q4X2pnDKNqH2KDW7WvCnpf6JXvNUBTUVLRSUZlIwKoOCskzSs306G6MPPrevM5Bx/sQL4DK7PG7iVLVVsaV2ExvWvkrDxnXIrl3E2xqJu0IpxyirCVNUU0tRTW3K8qjbTUtWFi3ZWTRnZbOzJJfKkiKyoj7cpmd7xI1QF02jjjSgNGWdYMj2RMmVVvLiNeTFasmjiVyayKPJFv8GMHFoqrC3ih4vYXkCkF1qgxfZo+zj7BKbbiqrxD7PKNLUU0oppZRSSimlhiwNWAwDU/7+a/5etZXqtFxmf+FRAOJx05kaan9euOsONry4DACPz8/bv/R1cotHHtJ5xDuiND+9i9bleyDWNWzYOyqT3Esm4B+TfeBjmK5OkkxNCaUU/vJsij89j9ble2h7pYpoTQcAJhKnY3UNHatrcGX7yD5zNJknlh7gaINr8uIlTF68BBOPs2/ndnasXsWON15jz8b1xGOxzu3ySlNrX0RCQR799c8onTKdsqnTGTF2PK5eagocCwKZXsbNLmTc7MLOZW1NIWp2trAvKYiRNzK9R5Bq55u1VKxv6HG8grJMCspsACNvZAb5pRk9gh2qi0tclGaWUppZytKxp8MlXes+E+2goqWCdTVbeaN6MztPepmGol3k1zYxsi5CcSMEIuCJxchrbCSvsRGASr/w1AluMJAWSyMznMmnHkkjnJZJa2YmjdlZtGdmEnf3bBeD0BT10kQeO8kDJqes97gMeZ4IudJMXrSG3Ng+cmghhxayaSGTNjqTO0aDUL/N3voibsga6QQwSiArKaiRWWzXZRZDWp7O1lBKKaWUUkopddRpj8YQF2zvoGSfkx7C6yO/MIe2xhB3/+BVpp1cwszTRpGe3Xtqp1B7Oxtfeh4AERcXfeZLjJw4uddt+6P+ro0EN3TNqnBl+8g5fyzpc0f0e/S3BiyU6kk8LrKWjiLz1DIila20raqmfU0NpiMKQLw5nBIkHOrE5aJ43ASKx01g8dvfSai9nd0b3rK3jesYNW1myvZ7N29i08svsunlFwHw+gOMGDeBkRMmMXLCJIonTCK3uOSYnUmQkeMnY7afsUlBjEg41mO7+r3tPZYFWyM9UkrNP38MJ13WlSowHjdUbW0kb2QGaVmHlwrwWJfmSWNy3mQm503msskXwKld65pCTVQ07WLdxjXsXbeW0M7teKuqya1tYmOZvVYR6PB04A63M21TahsaIBgI0JqZSWuWDWS0ZmayaXQO4s7Ab3pP/xWNCzVhHzUUAoXAtJT1LoFsb4wcVwc5pomcSA058VpyaCGXZnJpwkvSuZgYNO+2t937+WG4/U4Ao7gzkOHx51NeW0tDxsR+/0yVUkoppZRSSqmDoQGLIW7ji6/hi9uOkOZxUwBYu6yS1oYQrzy0g3jccOKlvdew8Kenc/W3fsy9P/wm05eeycSFiw/rXLLOHG0DFh4XWUvLyDptNC7/QY6CTgpYZAR6r3Oh1PFKRPCNzsI3Oovci8cT3FBP22v7CG1uIG3uiJRtOzbW0/zkLgKTcglMzMNXnoV4XH0ceXD509MZP/8Exs8/odf1ezdvSHkeCQU7Axydx8jIoGTiFC7/8s2Ia2i+z4Hk9fX8bH3vt06kYW87dbtbqd3dSv3uVmp3t9HRnJpSKr8k9bO1ubaDe3/yOmBnZOSXZJA7Mp2cojTnZh97D/bz/DiT488hZ8QsZo6YlRLIALgqFmF3yx7e2LeVt6q3U7l7E0+e+hqZ9U3kNbZT1BQjvxXSgkHSgkGKartSTP17ppvdhYIn7iEjksHCrWmctiGDtowM2jIzaM3IpC0zg3gfs47iBhrDbhrJBDKBsh7bZPqEPG+EPFcbufF68iJ7yQtXkkcTWbTZguDdxULQtMveHF5gHhDHRfiEuTBhyUH/HJVSSimllFJKqf3RgMUQt2f5K4x1HvtmzyYajvHWc3sAcLmEWaeN2u/+6Tm5vPuWH+L2HFxTR2s7iIdj+Eq7ZkH4y7PJvWwCgSn5ePL6rlOxP8YJWMSJE/Ae2jGUOh6Ix0XazELSZhYSD8V6BAdDGxuIVLQQqWih5ekKxOfCPz4X/6RcApPy8BSlDZsZCSdc+g7Gzz+Byg1vsXvDOvZsWk9LbU3KNqG2Nlrr63oEKxrWv0E8HGJzTgZlE6eQV1J6zKaT8njdFJVnUVSeWoOovTlM3e5W6ve20VDVzogxqesb9rZ1Pg62RtizuZE9mxt7HD8928fVNy/Gn9410r+jJYy4BH+6Z9j8Pg0Gr9vL2NwxjM0dw9sSExnf3bU+GA2yfd92tqxfTfWWDbRX7sBdXU16XSONmV4wTURdUZr8TWQ3NDB1Yzzl+MmzM9rT02lPT6c2L51VUzNJi6WRHk3HF+979kxr2NAa9lBBDpADjOtc53IJueleitKF0kCIUncDpWY3Ge17oLUK2ut6HM9FHO+yb8P4hzVtlFJKKaWUUkqpAaUBiyEusnZt5+NRJ5/AppXVBNsiAExcOIKMXH/K9q0N9QQys/B4uzqcDiZYEQ9GaX66gtYXd+Mdkc6IT89LSfd0WDn0Y1HE2HOJSfTQj6PUcaa3mUzRxtTiwCYcJ7ihnuCGepoAd44P/8Q80ucUEZicd5TO9NC4XG6KxoyjaMw45p13MQDtTY1Ub9tC1dbNVG3bTPXWzRSPn9Rj3+atG4g0N/HEW6sBcHu9FJSVUzRmLIXl9lZUPpaM3KH9Mzgc6dk+0rPzGT0tv9f1mXkBZp0xioa9bdTvbetR5DshEo7h61b74pWHd7D2mUp8ATdZBWlkFwbILkgjqyBAdmGgc5kvoP9O7E/AE2Ba6TSmlU6Ds1LXfQCIxqNUte7jrX07qcxdzbNj3iRWvRd/bR1Zja3kNwcpbA5SVBvs3G/daFh+etfP3RP3cMM9Pka0ptOeYYMaidkZbRkZBNPSej23eNxQ3xqmvhU2ApAH5JGdczKjxo6idGQxpXlplGbEkda9RB66gcxQNe5dy2HbszDhjAH+aSmllFJKKaWUOp5pD8MQl7vDdh+E3F6mnTiH//5oTee6OWeNTtk22NbK3d/+GmnZ2Vz6+a8RyOx/jQgTN7S9UkXz4zuJOwGRyN422l/bR8bC4gF4J0AshCRmWLjiB9hYKbU/hddOJ9YcIri5kdCWRoKbG4i3RjrXx5rCtK+qxpXhTQlYmLghXNmCryQT8Q7d1ErpObmMm7eQcfMWAmCMIRaJpGwT7mgn0tyUsiwWibBvx1b27diasvyc6z7F7LPP73weCQVpa2wku6gIl+vYnJGR0H1WRrAtQtO+Dppq2+19TQfNNR14fK4esyianSLw4WCMut2t1O1u7fU1pp5cwlnXptZW2LG2lvRsH5l5AdKyvDpDYz88Lg+jsksZlV0KE0+CS3tu0x5uZ+vOjezcsp66nduoDjcxM9NHfbCG5kg9HaaB3Ka9lNQ09/oaUbe7M83UM3Oz2D4qk4xoBhmRDDKiGXhM6r+EzU3NrGtax7p16zqXuSMddKSdxwLfCt4R3gRPfwvGn66zLJRSSimllFJKDRgNWAxh1Tv2UNRqUzHsHTmOgh3t1O+xqT1KJuQwYkx257axaIQHfvJd6iptrulHf/szLvviTf16neDWRpr+t41IVVfaEDxC1qmjSJtV2PeOByvaFbAw0rOgrFLq4Liz/WQsKCZjQTHGGCJV7YQ2NxDc3EBoezNE4wQm5absE61pp+Y3a8AteEsyOmtm+EZn4SlIS5lRNZSICB5fasobbyCNMW97N+HGekYX5tO4dze1O7fTsHcPxqQGRfPLUtPn7d64nnu+cxNuj4ec4hLySkrJKynruh9ZSkZe/jHZyR7I8BIY56V4XPYBtx0xJotYNE5zXZDWuiDxeO/F39OzUgtGx+OGh3+7FuNs7/a6yMzzk5UfIC3bQ3O9D3cgTuX6BsqnelLSUKnepfvSmTVpHrMmzetzG/MBQ239PjZvfJM92zfSsruCyL4qXA11+JqayGhpJ7u1lipvE2vyI4jY9imvNnzj32nUF+RTn5dPfUE+DXl5xLrN0Ix50/BF01jLRQR9ft6zexVsfASmXnhE37tSSimllFJKqeOHBiyGsE3PriARLohMns6apys6180+s2t2hTGGx353KxVvvQFAWlY2p1/z4QMeP1rXQePD2wm+lZqfOm12ITnnj8OTP8A1JqIhXM4ITg1YKDWwRARfSQa+kgyylo7CROKEdjbhH5PaKR2uaLEPYoZIZSuRylbaXtprjxHw4BudiXdkBt7iDNIXjBjSHfYigjczC29mFgvPPZc0J+VNJByivrKCml07qN21nZqdOygcPTZl34a9uwGIRaPU766gfndF98Pj8fkpLB/De77z05TlbY0NeAMBfIHeU+wcSxZdMr7zcTxuaGsM0VLXQXNtkObaDlrqgjTXBSkoS53R19YY6gxWAMQicTubY1+Hs8SmM3z8zQ1c/sUMSibkdG67Z3MDa56qJD3HR0aOn4xcH+k5fjJyfKRn+wlkenEN0cDaYBMRigqKKTq5GE4+q8/tzgFaQyG21FaztX4Pe3dt4c3zXiJeX4u3sZ6iHTsZ+1YHHkkjkpZDU14+9fn5NObmdhb/fit6ClWyhZHPfAcmnw+uoTtjSymllFJKKaXU8KEBiyGs4dXXOgMWgRkL2LzWBhYy8/2Mn9s182H5v+9k/fPPAODx+rjsS18nd2TJfo/d9koVDfdtgVhXh5K3LJPci8fjH5eznz0PXTzc3pVyQlNCKXVEiddFYGLPug2e/DTSFxQTrmgm2tl5bJlglNDmRkKbG3Fl+3qkg+tYX4eJGrwj04f0bAyvz0/x+IkUj5/Y5zbZhUVMPOEkGvbuprF6b490UwDRcIhoKNRj+eN/+CXbVq0kLSubnOKR5BQVkz2imOyCIrIKi8guGkF2YRH+9IwBfV+DzeUSsvIDZOUHKO1ZTiSFx+ti8dvG09IQpLU+SEt9iJb6INFQz2B1Rk7qzJn6PW1sW13TY7sEEUjL8pFXksFln0udbVC9vZlYNEZalo+0TJ8tFj5Ef08HW6bfz9yycuaWlcOsE+Gi9/a6XTwep65qHzu3bqJi6wYe2bue0lAOvniA3/nP4ubqB+Gt/8KsK47yO1BKKaWUUkopdSzSgMUQVl/bRNjlwRePEvOMA2yu9tmnj8bltiMZ1z79OCv+e5fdQYQL/+8LlE6eesBje0dlgTP61ZXlJee8saTPLz6iHTttHV255kUDFkoNCv/4HPzjbVAyHowSrmghXNlCeFcL4YqWzjoY3uL0Hvu2PFtJeKeTH9/jwjsiDU9hGp6CNDwFAec+DdcwqFcwYcFiJixYDEA8HqO1ro76vbttAGPvHhr27qZpXzX5o8p77NtUXQVAR0szHS3NVG3Z1OtrnPiOd7PknV2dwPFYjI3LnyOzoJCM3Hwy8/OP2VkaaVk+Fl44NmWZMYZQe5TavU288PQKYkEXY8omkJHjT9murY+i4F3HgfbmMGlZPdNIrfzfNnatq+98Li4hkOklPcvrBDHsffmMAsbMLEjZt705TCDD0/n3VVkul4ui0pEUlY5kxsIT2Hr3P6nfthWf8UJoEo91TOS8Z78H0y8Dt/5bqZRSSimllFLq8Og3yyEqbuCHky8iXH42C+INfGF0Prs3tRGLGaYtsbMndqxexRN//FXnPmdc+2EmLTq59+MFo7gCXc3tK8kg8+RSxOsm64xRuPxH/lehtb2x87G4es+DrpQ6elwBD4FJeQQm2ZkYxhjiLWEiVe3gTg042BoZSXVuonEie9qI7Gmju5wLx5G1tKtmhInECO1sxpMbwJ3rRzxDq0PY5XLbWRFFIxg7u+/6AAmjps0kkJlFU001rfV1tge9Fxm5+SnPWxvqePhXP0lZ5ktLs8GLvHwynFtmXj4zTj+btMwsjiUiQiDDS0FZBmnFMSDGgnPLcXcr/r7wwrFMP6WU9qYwbU0h2ptCtDWFaW8O094UsvfNYTLzeqYtbGtODXaYuKGjOUxHcxjo+l31pXlSAhaRcIzbvvQCAP50D/4ML2mZXlvvI3HvPB4/t4j0bF/KayAM+SDdQJmUXcCjaZsobrcBo9fN6SypuY3MN/4F83qfpaGUUkoppZRSSvWXBiyGqB117bSHY+DyUDBnFidcNI65Z5dTs6uFQIaXfTu28cDPvo+J25kK8y+8lPkXXtrjONG6Dpoe3k5kXzvFn52PJI0czb1kwlF7PwBtHS2dj10asFBqyBER3Nl+3Nn+nisN5F0xmUhVG9GqNiLV7UTrOqCXS7l7/ZtIdTu1f3qz87kry4s7N4An14/budnHAbwlGUM+hc/ZH/5E5+NoJEJzzT5aamtorttHc00NLbU1tNTto2DU6JT9mmt7pjkKd3QQ7tjdWVMjYcrJpwJdAYvXH3uQlfffTUZOLunOLflx57LcPNKzj0xav6PF7XF1pp46WDOXltG0r52O1ggdLWE6WrruY9GumX3dZ2cEW7tSgoXao4TaozTXpKZMSygem50SsNj8ajVP/W19Z1DDn+7pvPenefGle/CneUjP9jHphNQ0a9FIDLfbNeR/57s7c+wCdi1fRktuIcH0LP7eeAYfffYHMOtK8PTy+aGUUkoppZRSSvWTBiyGqHV7mzsfzxttRz97/W5KJ+UC8Or//kskaDtTJp5wEqdd88GU/eOhKC3PVNDy/O7OOhWtK/aStaTsKJx971qDXQELzbih1PAiLiF9ViHM6qqfY6Jxog1BonVBonUdxJx7T7d0UtG6YMrzeEuEeEuESEUL3ZV9awkkdd62r6khXNmCO9vn3Pydj4cCj9dLfmkZ+aUH/mzNLizitGs+RGtDPW3OrbWhnrbGesIdSZ3jImTkpNYfaamrpdW57c/IiZN7FAl/4V930N7cSHp2DmlZOaRnZ5OWlU0gMwt/Zqa9T0/H5XL3/40PUTOX9t4OxhgiwRgdrTZ40dvsjLGzCuhojRBsixBsjRBqj/Z6LH9G6r9OwbYI8aihvSlM+37SWWUVBHoELJ74yzq2ra7B53fjS/PgT/fgS3NuARvo8KV5KJmYw9ikaw+gbncrHp8bX5obX8CD+yjOXPL5fZSfsIB1G7Zh3G6qsmfwavVbLHztb7DouqN2HkoppZRSSimljj0asBii1u1t7Xw8rzy3x/rzPv4ZRISGqj1c+H9f6OxoMnFD+6pqmh7b0ZmLHsCV6cWd0TPf99HU3tGVjsPtHl6jSZVSPYnHhbcoHW9Rz3oXyTwFATKXlhFrDBFrDBFtDBFvCfeYneHK9CLd0gMFN9bT/tq+3l8/4Ga6ZBPxGjoyq0g7a1zK+khVGxLw4M70Dok0VNmFI1h48dt7XRfuaKe1oYG2xno6WppxuVODB263m/ScXDqamzGm7xpAvc2u2Pzyi9Tvqdz/yYlw+jUfZsFFXTP1gm2tvPCvOwhkZBLIyMCfkYk/IwN/egaBjMyk50M/2CEinYGAnKKe67PyA1z0yTkpy+KxOKH2KMG2iA1ktEYItUdSZlcA+AIeCsoyCbXbbaKR3tvHn97zX65wRxQMhIMxwsEYrQ09i7wDzI6MSglYGGO469srU7KRuTyCL+DBF3Djde59AQ+L3zaeovKu2Tot9UF2rq3F67fb2Xu3vfe78fntMpdH9pvm6uLL303FjZ+hObcU43LxbPhs5jz7I7xz3wO+/X8mKKWUUkoppZRSfdGAxRC1+M6fcaI/m4pRS5mQfWaP9W6Pl/M/eT2RYAden02/ENreROP/tqbmlHcLWaeUkXXG6JQaFoOhPdTe+VgDFkodP3yjsvCNSq3HYKJxYk02eJEIZNDLx0Kspe8R6yYYIw0PaR0Q6zaLA2Dfb9dgQjEAG7jI8uJK9+JK96Tcp80qxFvYVfzaxOIQp0fw5EjypaWTn5be50yNJe+6hiXvuoZ4PEawpYW2pkbak26J5yPGjOuxb3tLcy9H7MYYvIHUWQftTY2sefyhfp3/B3/xB/JGlnY+3/76q6x7/hn86RmdQQ5/ejq+9AzE7aGjpgqX10drfR1pZaP2c+TB43K7bKHuLB95+9lu6kklTD2ppPN5NBwj2BYl3BEl1BEl1B4h3BHF4+sZ1MkbmUG4I0o4GCPUYfeJ9RLw8KWl/v2OhGI9SqfEo4agE1hJNu/c1MLxtRUtLPtn74Xik7k9Lj76y9NSghbrnt9L7atp+HJiRE+PcdUNN3PHT35Me2Y2rdmF/HPvOK595Y+w5DMHPL5SSimllFJKKdUbDVgMURP2bSM9fwLBzJnc9fWXmX9+ObNPH0EgM7NzGztiNJ1oY4imh7bRsTY1VUjajAJyLhyHpyCt++EHRTDc1aHo0ZxQSh3XxOPCU5B2wM+nvLdPItYYJNYcTrqFiDWHiTaFiDYFccUFV7cZZCYS7wxWAJhglGgwCvSsS+AtzUgJWIS2N9maGx4XrjRPrzdJ8+AKeMhcUppSfyDeEQVjEL8HOQKBWZfL3Vmvor+u/eGtdDQ3097cREfi1tpCsLWVYGsLwbZWQq2tZBemTj0ItvZM2dUXf3pGyvN9O7ez4cVlB9zvwTdW8oGf/DZl2SO/+gn7dmzDm5aGL5CGz7n3BtLwBQKd9yMnTqF08tTO/YwxNOzdjTcQwOsP4PX7cXuO/sxCj89Nps8NeQeu5bD03ZN7LItF453BjrBz6y2F1fRTS4l0RAmHYp1Bj0gw6szWiBKP2oiG158aKIkkXRf74/a6esywqNvdRrDGQ7DGw4O3vslFH59D0ZgSdtbZgRK70hey5Yk/MHHBByCQ3a/XUUoppZRSSimlkmnAYgirKDsDsJ0XezY8xppHX+XyG2+moCy1kKuJxOhYV9f53FuSQc7F4wlMyD2ap3tAHeGuVBe+IZCeRSk19HnyAz2KeCd0dHTw+GOP44rDmUvmpawz8TgZi0cSa40Qb40Qbw0Ta42kBDES3OmpndrxRO2CaJx4S9imr+r15ISsU1NnRDQ9toO2FXsBEJ8LCXhwBdy4Ap6ux34PvvIsMk4YmbJvcEsDiODyuRG/G5ff3ovXfVjBj6z8QrLyCw+8YTdF5eN47/d+TkdrC6G2NkLtrQRbWwm1txFqa7OBjvY2Qq2t+NNTUwCF29v6OGoqb6BnwKph7x5qK3YecN8TL39XSsAiGgpx2+c+lrKNy+3uDF54AwE8fhvMOPvDn6CofGzndjVOgMXj9+P1+fH4A3h8Prx+Px6f37n34fUHKOo2i8UYs9/USQfL7ema2dEXX8DDGe+Z2ud6gFgkTiQUw5uWGrAYOT6Hs943jUjIBjYioRiRYMzeJ908vcwwioa6Zn/U727n3999hXM++EHu/sONtOSXEvV6ebDxRD674jdw+pcP8p0rpZRSSimllFIasBiywr4s9o2YD4Cwjq2vPArAv75xAx/6xR8IZHTNtPAWpZN5Uintr+8j+7wxZCwcmTLid6gIRcKA7YDxevRXTyk1AATibnB1G0Xu8nvIe/ukHpubaJx4R5R4e4R4m733FKV129eNb2w28Y4opiNq73tJ0+NK6/k5Fg92FWo24TgmHCbeS0ameDjWI2BRf9dG4i2RnhsDeJxAhs9NzkXjbQF0R7QxRPOTO531Lhvg6OXe5XXjK89KqedhonEQkF5mvXkDAYrHT+z9fA5g0WXvZOYZ5xBqbyfU3kbYuQ+1t9PW3MSm9esw0QhjZs/rsa/L48Hj8xMN917Poev8UtstEuqZFiweizmvmxpAiUVSf861FTtZef/dB3xf/owMPvWXu1KWPfbbX7DhxWfxOMENj8+H1+fH7fXh8XntvddL+cw5LLjospR9V95/N/FYDLfXi8frde59uL3Ofh4Pbp+PgrLRKbNqYtEoofa2zn1cbk+PoInb68LdS9AhuzCN7MJDm3l56tUTaUvfRf3qNKLtLkLtUR789RqmLHo/b2y8n3Agjcbc0dzz4CO8Y9FHID3/kF5HKaWUUkoppdTx65jtNRaRE4BbgJMBL7AW+Kkx5t8HcQw/cANwDTAaqAceBL5mjOm9CuwAqSpejHF5iEW2E2l7vHP50rPeS+s9u/BfNQXxdnXQZZ9TTvbZ5YNep2J/gtGugIXPO7gFwJVSxyfxuHBn+XDvZ/R6YEo+gSmpHa0mGicetMGLRCDDxE2PfX0lGcTbo5hglHgw1nUfTp3Z0T3AAvQ6+6NT1BCPRqE9Ct1eN94Spv3V6r73TVJy04m4kwIWLcsqaX5iJ7hAPG7EK869q+vmceEdmUHu2yakHKv1pT3EmsOIp2s7PGKfe1wEPAHSPOl4SkelpP5qb2+n1fMkcYEF55xpgyburgLP777lB/Z9xWKEgx1EgkHCHR1EQkEiwQ7CQXvffaYDIkxfembnttFwiEgwZPcLBYmG7ONYNIrXnzprJxLaf3AkwePrmeYpEg4Ri0ZtEKGt75klaVk9UyS9cv/dBNtaD/i6F37q80w79YzO5zU7t/P3r3wuZRu3x2MDHR6vE/Dw4nZ7uOrbP04Z5LBh+XNseHGZ3c7jsQEirxeXx9O1zO0hq7CQWWecm/IaezauJdS4mZxpOaQH51HxViMY2PlykLSsCYTZA8CqrMUseeqHjLzk+wd8b0od7wbiO4tSSimllFLHkqHbu30YROQM4DEgCPwLaAHeAdwlIqONMT/pxzFcwP3AecAK4B5gEvBh4CwROdEYU3OE3gJVxSeQHq0m0vogECfDk8Pp068mc00WQepoeWE32Wd0FdJ0+Yd+U4YiXSOP/d6+OwuVUmqoEY8Ld6YPd+b+P7uyThtN1mmjeyw3cZMSvJBeCjBnnVGOCUWJh2KYUMzeh2POTI0Y8bB93n1mRzzcv5oEAC5f6oh7E3VmjsRxXgsg2mM/E+sZnGl7bR+RigPXucg+u5zss8d0HSsUY/YqW8a6/tXXuzZ0O8EOt4DbhXiEgmumk1XaNZskuLWRlhUViDsDtrVS59mAuMXOEHELJ5VfamuP+Nxkn5VabDq4tZFYXRDjMkiNi/aGWue1hNH507jyI7cQi0WJSJiIL2wDHqEQ0VAI0x4jEg7h8fvtLBqX2JmMbiG7sIiiMeOIhsPOLWSDGOEIxnTNzHH3EqiPRvqYUdNN9327zxABOoMm3eu0uFypbV6/u4Ktr758wNcsmTilR8DilXvvonrrZgDyR61i1KQTqNw0AiQNb8sE3J5mYv5WfCadP7y5ga+fXg1Zxf15i0odlwbiO4tSSimllFLHmqHfy32QRMQD/BGIA0uNMaud5d8EVgLfFZG7jTEHSpD9Pmyw4p/Ae4wxxjnOx4DfAt8GPnpE3gQQdhs8rffhEWF67mlMyV2Eq6Wr0yG4sYGs00cPaN7sIy0S7epUC/QySlUppY5V4hIk3Ysrve/ZZdln9Ax09IdvdBbFn52PicRtUCMS7wp0RLru4+E4dKsf5M714xubbfeJxDFRZx/nOU6gQnpJLUSkn4GS7jWLoj2DHwDEDCYWI2Vtt01jzWFCmxsP+JKuDE+PgEX7q9W0v9735EiXc8ueW0TBu1PrQ+z51gribTZIsOfNl1LWTZBJTPBNRgJC3uWTSJ87onNdaE8L9XeuxwhIi1B962s22OF2gQsun/95DHEMhvY5UaJEiEUiRCNhvPtc+Gt9xE2MrE3pNFRvsX/zXYKrNcyp095FPBYjaNrYbbYSi0ScoEWEIlOG1/iIxWIEX68n4msGsUGWQI2fUelTMMRpidTTHKlLeT9FgdEYEyfHVUi4ogWEzgBNIJZOljefYKyN+spd1FfuwuX24PZNAvcMspumUTviZdy4iIWm8L+7v84lH/j9AdtLqePRAH5nUUoppZRS6phyzAUsgDOBCcBtiX/8AYwxTSLyXeB2bDDimwc4znXO/Y2JYIXj98AXgfeIyGeNMR09dz180bbHGF80mVl5pxJwZ3Qud2V6yTlvLOkLiodVsAIgHO0aaRrw9V5EVyml1MFx+dy4RmYceMNeZC4uIXNxSZ/rTdzYWRimZ5Ah78opxDsimKixwY2oE/SIpd77x3RLheQSGvLDuOJQmFeAGLEzOKJxTMxgYnGI2vsegZJoz1oivXL1DLCYWP/27a0GVG/pv7pWYs+3e3QFkBjE6rvSTXUP8YhzA5i8+BTcGV0BreandtG8yfZTxhraaCM13VQpYwHwlmVy+qc/mbJu3+/WEN5hi6c0P7A9Zd0IihlRfJnd94RcPItziEYixGNRYsEI3NlgN4zAvl+vTtn3RDkfRtnHL9c8yI7Wt4jHosQ71gPrCVAAUgAmG0FYXpHGabvXk102rcfPRik1YN9ZlFJKKaWUOqYciwGL0537x3tZ95hzf9r+DiAiAWAxsLH7qCZjjBGRJ7CzKxYCz/f3xERk1AE2KUs8mJK+gDLfROrbWoFWcAv+uYUEFmXT6muCzU39fdkho7a2mWiznVnRVO9h8+bNg3xGAycUClFbWwvA1q1b8ft1BslwoW03fGnbDRFu59aX6D7Y3DWzIRQKsbJgBwCLFxfvt93amnZD8p+7HDDXjIB43JmRYSDu3MeMDSxEDbigrdvfmGhJkFiar2s7Z9/EzcSAuKEprZm6bvu25XfYOiRxwKTub4xzjJihuaYSb9Lf51h1By3hOuc16Hq9XrRv34ok1TYJ7qkm2Hzgclnu9Faau51vS80eYs3tB9w30AaBjsQAAheIl8Z+vCZAyflnEt6Zy9ZVKwi1tlLkH8Vsz9mU76zh+dxKJ7GYi1u/cRNv/+zNKfv2NuAieVlinIjpJVA2kPt2f97Xvgd6zf7uKyIYY474+fa2bUVFRfLT/V2x6ug53bk/5O8s3R3Md43t27fT0XHgcVfR5tqDOQV1kI7k9yFtuyPrSLWdttuRp203fGnbDU/absNXf9quqqoq+emAfc+Q3r7kDGci8h/gCmChMWZVL+tbgAZjTHmPnbu2mQG8CTxojLmkl/WfB34MfMgY85eDOLdj64etlFJKKaWGmxOMMa8O9kkc7wbiO0sv++h3DaWUUkopNVgG7HtGL0mph70c576vKQjNSdsczjGSt1NKKaWUUmo4GHHgTdRRMBDfWZRSSimllDrmHIspoYayA1VULQdedB6fCOw+sqejBtBI4BXn8QlA1X62VUOLtt3wpW03PGm7DV/adsNXGbDCebxhME9EHVEH+q7hA6YC+4AaepbWGc7082n40rYbvrTthidtt+FL2274Opbbzg0UOY/XDtRBj8WARWKUUl8jkrKBhgE4RvJ2/WKMqdzf+m75hncfaHs1dHRruyptu+FD22740rYbnrTdhi9tu+GrW9uFB+s8VIqB+M6Sop/X5LaDOeZwoZ9Pw5e23fClbTc8absNX9p2w9dx0HY7D7zJwTkWU0IlKoJM6r5CREYCmUnb9GUbtjxmj2N0O/axUzVaKaWUUkopdbQMxHcWpZRSSimljjnHYsBimXN/bi/rzuu2Ta+MMR3ASmCKiIxJXic2LHYO0AZowUKllFJKKaXUwTrs7yxKKaWUUkodi47FgMVT2BkSV4vI3MRCEckBvoKdBv+3pOUlIjLVWZ/sD8799yR17s5HgfHA353AhlJKKaWUUkodjIP6zqKUUkoppdTx4pirYWGMiYrIh4HHgOdE5F9AC/AOYAzwBWPMjqRdvge8D/gAcHvS8r8C7wKuAsaJyDJgInA5sB342pF9J0oppZRSSqlj0SF8Z1FKKaWUUuq4cCzOsMAY8wxwCvAiNujwcaAaeLcx5if9PEYcuBS4GVvt/HPAEuDPwEnGmJqBP3OllFJKKaXU8WAgvrMopZRSSil1rDnmZlgkGGNWAhf0Y7v3A+/vY10IuMW5KaWUUkoppdSA6e93FqWUUkoppY4Xx+QMC6WUUkoppZRSSimllFJKDS9ijBnsc1BKKaWUUkoppZRSSiml1HFOZ1gopZRSSimllFJKKaWUUmrQacBCKaWUUkoppZRSSimllFKDTgMWSimllFJKKaWUUkoppZQadBqwUEoppZRSSimllFJKKaXUoNOAhVJKKaWUUkoppZRSSimlBp0GLJRSSimllFJKKaWUUkopNeg0YKGUUkoppZRSSimllFJKqUGnAQullFJKKaWUUkoppZRSSg06DVgopZRSSimllFJKKaWUUmrQacBCKaWUUkoppZRSSimllFKDTgMWQ4iInCAiD4tIo4i0icgKEXnnYJ+X6puI7BAR08ft2cE+PwUi8l4R+b2IvCoiIadt3r+f7bNF5KcistPZfoeI/EhEMo/iaR/3DqbdROTm/VyHRkTGHt2zP36JSJmIfFZEHheRXSISFpEqEblHRBb3sY9ec0PAwbadXndDh4gEnGvoORHZIyJBp+1eFJEPiIi3l330ulPDgojIYJ+DOnjabsOXtp1SSvWf04/rG+zzOBZ5BvsElCUiZwCPAUHgX0AL8A7gLhEZbYz5yWCen9qvJuDnvSzfcXRPQ/Xh28AYoBbY6zzulYhkAMuAucDjwD+BecAXgNNEZKkxJnikT1gBB9FuSf5K79dd44CdlTqQTwM3AFux11ANMAm4DLhMRK42xtyV2FivuSHloNouiV53gy8T+DiwEngI23Z5wAXAX4B3i8gFxpg46HWnhg8REWOMGezzUAdH2214S7SdiAT0b8HQlggu6fWm1NEnIiOAB4FRxpjSwT6fY5EGLIYAEfEAfwTiwFJjzGpn+TexXz6/KyJ3G2N2Dt5Zqv1oNMbcPNgnofr0YWCzMWaniHwZ+N5+tv0StgPnB8aYLycWisj3sR15nzvA/mrgHEy7JdxujHn2yJ6WOoCVwOnGmGXJC0XkVOAp4Lcicp8xJuSs0mtu6DjYtkvQ627w1QM5xphw8kLn/8sngHOxwYuHnFV63alhwRhjRGQJ8CHgo8aYyGCfkzowp91cwI+A540x94mIKxE0VUOb0wn+HSAgIjf28ndfDRG9BZdExKuflUodFXVAABgpIicbY5ZrwH5gaUqooeFMYALwj0SwAsAY0wR8F/AB7xucU1NqeDPGPNmfYJ/zz/mHgVbgW91Wf8tZ/uGBP0PVm/62mxpajDH/7d7h7Sx/HngGO+p7Fug1N9QcTNupocUYE+8erHCWR4F7nacTQa87Nbw4QbffA+/HzgLSdDXDx3uwwc/3gv2cGtzTUQdhMTZ4fY4GK4Y+Efk6NivHVABjTESs9EE+NXUQnCCvGiZExG2MiWFnmgOcAzrbaaDpRTE0nO7cP97Lusec+9OOzqmoQ+AXkfeLyFdE5FN95WlXQ94koBR40RjTlrzCef4iMF5ERg/Gyal+WSoiN4jIF0XkMs3FPuQkRntFnXu95oaP7m2XTK+7Icr58nu+8/RN516vOzXk9BaEcDoDosDfnEXng3YGDDXd2y7p+QPYtLnTRGTiUT8xdUD76SB9BXgNmCEipzjbaqBwCBKRNGAycAkw31n2fiAG/N/gnZk6WBrUHdpE5AIRme08TgQrwM5QbwamOClX1QDSlFBDwyTnfnP3FcaYKhFpTdpGDT0jgduSF4jIK8BVxpitg3NK6hD0eR0mLT/P2a7iqJyROli3dHveKCKfMcb8rdet1VEjIuXA2dh6JGudxXrNDQN9tF0yve6GCKfg31cAAQqAs4CpwG3GmKeczfS6U0NKcqqgRFoTZ1miM2A5tjNgsohkdA+0qcGRSHvhpH/yJWZ5Oc8FW5fxMeyo01JgyyCerkqS1Hbx7tdUoiNORP4FLMAOmnxBA4VDVhD4GnZWzFed2RaTgaeB9ZqKbehyPicl6e/fbOAzwK3GmDWDenIK6GyjQmxK1YXAsyJykTGmI2mzfUAlNmtOIkWbpoUaIDrDYmjIce6b+ljfnLSNGlpuw3YIFAMZ2OnqdwAnAE+JSNYgnps6OP25DpO3U0PHGuCDwHggDRiHLSBsgNtF5G2DeG7HPRHxYj8X/cANSZ1Qes0NcftpO9DrbijyAd8Avg58EpgC/Bj4SNI2et2pIcXpNF0gIv8GPuN80Y+LiNvZpBbYDZyBDcbpaO8hICl3/i3An0RkofPc46wLA+ux6QQ7R6UO0umqJEltdyPwhohc6TyXpL/zq7B/D6aKiH9wzlT1JfEZ6LRlG3YG7BTs3+7PAdcYY+7XYMXQ5AQGE0HDdBHJBy4DPgCcr7OVhwanjWqwQQuwgcE7RKQoaZuNwEZgBPD2o3+WxzYNWCh1GIwxtxhjnjbG7DPGtBtjVhtjrsV28IwBrhvkU1TqmGeMudcYc5sxZrsxJmiM2WGM+RVwpbPJtwfz/I5nTrqB24GlwB+NMXcM7hmp/jpQ2+l1N/QYY1qNMQK4gdHYoMWHsSPCsgf15JTav3uAK7C/s593lsUBjDEbgA1ACXDRoJyd6pWIXAvchK1X8VNntH40aXTpi86mVwN0C3qrQSQip2ELa48DfisiJ5HaN1Tl3M4DvM4+GigcZImgX7fR21dg264W+7m5zhiz19le22wISnwWishNwArsCP5zsO13BU56LzW4koLsf8HOZvoKNv3aj0VkfNKmdzr3S5wZhzq7YoBowGJoSIxy62s0WzZ9j4RTQ9Pvnfslg3oW6mD05zpM3k4NcU4KlK3ALO2sO/qcDu+/YDsq7gQ+1m0TveaGqH60XZ/0uht8ThHuSmPMb7GzK5YAX3VW63WnBkVfdSqch39y7t8Avi8iV2FndiX83bk/TUS82hlwdO2n0/NpoBo7k2IUcLeIjEq0jzHmSWywaaLW+BscfdWpMMYsw7bNJmwb3gm8LWn9Bmzto0Lg0iN/pmp/xHIldXQvFZFPi8iJzt/6dwFfwGZ9eKeIFA/m+ar9E5FRIvIENq3qKmz6vPuAVmwqtiuSR/Gro8O5riY4j5NTU67DllPYgf2/+grgF0m7bsCmUZ0K6OyYAaQBi6EhkUe4R50KERmJ/aXvK9ewGppqnXstvDN89Hkddluu1+LwkrgW0wf1LI4zzhfk24D3Af8E3t/LtHS95oagfrbdgeh1N3Q87tyf7tzrdaeOuuR8zokgRbf0M29hO2pWYAf9/BF4f9IhEp0BUwBNt3qUOXUpeus3iGCLM7uwudfPwo48nQKddXUexgZCy47S6aokTsoZX+K50/GdCBT+F8gF3oEd2f1DETkzafdEoPBEHTU8uJLSB80UkaeB/2FnN90kIn5jzGrgXmyn9zux+fS7z8RQQ8dpzu232JSrNxtjfoK9Fl8F3gucPIjnd9xwPhPTROTHwLPAN0Uks1tqyk3YWn4XGmP+CnwPOFtE/igiudi0lVuBU3EGBPUVLFYHR3+IQ8My5/7cXtad120bNTwkRhHtGMyTUAdlM7AHO5UvJdDkPF8CbDfGaBHSYcJptxnY3K61B9hcDZCkDu9rgbuweXR7SwOh19wQcxBtt79j6HU3tJQ69xHnXq87ddQ5Hd7jnDoVVyXqHIiIx9lkO/bzohybEmoNcLOIfMBZXw9sw6aoywbtDDiaROTzwK+SAhGJtDTV2E6aHGxQ6RPY766/dNaHneU+4JTkfdWR0X02jIh8HFieVFcqOVD4OlCETSF4JTZoeKeIzHOOsx5bTHYaqTOe1FGUaFNn5tlT2ODfz7CBicuMMSEAp3j6z7C1xK4RkYnOfp7ejquOrAOk47rWuf+dMWZf4u+ZM0v5+9g2/KCIjD2yZ3l8E5EcJxjYgQ32PQtchU1x2DnDwhjzJrAFWCQiOdi/cV8BPgR8FwgBT2JTsiZSIGr9mAGg/+gNDU9h/wm/WkTmJhY6F8NXsEXL/jY4p6b6IiJTRaTH6FERmQr8wHn6j6N7VupQOSNQ/oSd0XRTt9U3Ocv/eLTPS+2fiGSJyORelqdh2ysL+LcxJnrUT+44lJRK6FrgP8B7++rw1mtuaDmYttPrbmgRkel9/D+SDvzUefow6HWnjo4+ggnvwqZR+D5dsycSdSpWYztG5wMxbBq614Ffi8glxpgqYDm2M+Bdzj7aGTDAuo2+TyybjR3t+zHsyNNsY0wsqRP0UWx9kfnGmD8BPwROEZG/OWkBn8R2vr09aV/Nqz/AklIGmaRlI4CJ2Ovq1yIyudt1sxFbp+IdzjX4SWzQ4m/YEfrbgF3O4yLnmNp/dJQ5wd0s4HqgHfg08G1jzLPGmEi3zVcBf8AOhL1EbHHnKIDYws7qCJPe64x0rhMRL3ZQTyv2+gMwSZ+LL2A/V88Dzk2eIaUGjoh8DdgnIh8FMMa8AHwQG4T/MPBtERmVtMud2AFZI40xTcaYn2H/x/4gNj3U3c52c0Uk7yi9jWOe6CyxoUFEzsDmrgsC/wJasFPCxgBfcKaIqSFERG7G/uPwHLAT+4dnMnAhtjjZ94wxXxm0E1QAiMiHcUZ1AbOw/7S/iI2SA7zgfMFKjC59EZiDTaPxmrP9ucArwGlOBF4dYf1tN2fkyTZs+6zH/uNXDJyNzae8FjjDGFN39M7++OV8Ln4D+0/4L4DeOqzvc74Y6zU3hBxM2+l1N7Qk/T/yAnZmZzN2BOYFQAHwPHBe4lrS604dLSJyNVBjjHnC6Sw7B5tqLgac7eTRT2z7YWx6jOnGmM1OR/kvsaO7P4addbEZm8bmQ8YYrbNyhIjIJOBip0MmMRjrl9iUT38FrkvqBE3DzqJ41BjzUREpwAaVfuVs+3/YNF/vBN5mjHn4aL+f44nTVp83xlyXtOwX2E7uFcCXjTHPJa17BpvC+AJjTJ2IzMN2ljZi/6a/D/gm8DVjzHeP2htRKUTkSuzM148kfW/tTLXXbdsp2JRRYeDj2M/OS4BrsO2/+mid9/EmuU2c/r0Tsf8vrzLGbEna7p/Yz8n3GWPucIKN8aT11wM/xg5svsEY89rRfB/HOhG5EfiO83QNcHLS/8jnAF/HZkz5szHm487ypdji6D8zxnzdWebBDlT+HLYPdwlQA7xdZyoPEGOM3obIDVgEPIItdNgOvAy8a7DPS299ttdp2H8cNjltFsHmtrsPOHewz09vne10O3ZkV1+327ttn4OdTrsL+4/eTuw/DFmD/V6Op1t/2w2bGuJXwEpgn3MdNjufn18E0gb7vRxPt360m8HWREjeR6+5IXA7mLbT625o3YCF2BGVbwINTnvUYgvifgTw9LKPXnd6O2I37ACendgZFI8k/w4CX3KWb8aO7E4sP9X5f/obSctGYotdVmNHPD6N7VwYPdjv8Vi8AYKdIREHOrABhsS6cmwwOg78BBjnLM/BjsjfA/iTtv8udgDe3cBHsUHwjyVeZ7Df67F4A77ttE8c+EzS8hzgVuzAyJeBJUnrrnPaZlLSsiuxadpWYmddxrFZA/IH+z0erzfsSO44cKnzvMff9aRtBRtoimMHlLyIHVjZDiwa7Pcy3G+Az7l3JS1L/htXAjyQdC3GsYN7Tk7a5jxn+eNAprPMDXidx2cm7ft1IH2w3/exdHM+96qwtSfiwE3d1i9I+nv3PWdZofP/x6NAdtK2I7FB3Th20FccOHOw3+OxctMZFkoppZRSSimlBoSIXAH8GzuTohk7W/w2Z50buAH4AjZA8SVjzH9EZDR2VHAVcKUxpsXZ/jRsR+wJ2M6FcdhZQM93H5WqDo+IFGLbYDE2kPkUcIXpGnl6OjZ13GnAHcAHjTHGGa36Zexo4fucbd3YEaz/hx3QNQ54wBhzWV8jw9XhEZHfYzvimrB1Q0qMMc3OulLsLIsbsKmgzjTG7BWRJdig4s9N16hhAc7H1rSKAfnAG8Alxph9R/ddHd8Sn3Ei8lls0OJTwG+7Xz+9fRaKyDewMyezgL8azdhxWJx0aD8CAtiAYLTbeo8xJioi3wPejZ1h9gZ2ButXsEH6BcaYVmf7J7GBiZuMMd9JOo5gU7ROwnZ+lwFnGWN2HNl3eOzZzyykdwK/AX6HbZt6bDBvW9I1Nwd4EPvzv9kY800R+SnwHuB0Y8z6bse8na7aJBcaYx49Ym/sOKI5CJVSSimllFJK9dsB6hAEsR0AjwJ5wEdEpBjA2No4vwK+ik19+wcRWWhs+oSVwExsajmc7ZdhgxuvYTu9wXYYoMGKAdeMbbtV2BH2F2DTyABgjHkWG4B4EzuCO9EB+h9sp+gUEXFJV7HSnwE309VubxORcg1WHJr9XXNOZ2o1Nji0GkjDzpZJdNrtMcbciE3JNgW4XWztzLVABbBQbP1MjPUItu0zsAW3TyDpulRHR9Jn3C7sLIkl2FmuQNfvhNPB6hORk5P2vQUbsFiUCFaIFuA+HD5skeUPALOTV4jIWUDYSdG5CJsG73vGmP8aY76GDTZNAm5M2u3z2IDEt0TkMyJSLiLTsOmFTsJ2qN+L/fxc5LyO1v85ONnJT5J+fs8C6dgZEzdig7Jfgc5ryWWMWYMNEL4G3CQi38bONCsAxjrHcyfV9bke+/uRpsGKgaMBC6WUUkoppZRSB+QU900ZtdhLId5nsB2mL2BHii7GpnQCwBjTbIz5LbZDNQf4i4iciR21X4pNP9TZuWaMeRk7crwBm35Ia8QdAulWULvbOpcxJowtdl6AHYkP8PFE4VGngO9b2FGk24DPOp04LdjUJuclB5GMMdXGmB8Cf8emCLvcGLPrCLy1Y57zs+810ONcj3Hsz9iPLQ5bgQ0UznRmwQSczb8E/Blbj+RX2DQ0D2JrGo3sdswnsLWtngDeYzSP/lGX1MH6GrYGyRXApYn2TPxOODPU/gL8QkQyE/sbY9qMMUGnY1W6zwpQ/WeMCQIXYdOjdr8W3NiA0hexNd1+aIwJSVfB7D8Cy4HPichM53hrsOnytmKDu69h/2b+GJty/C7srAywAUP6+gxQqUTkYhHZBDzh1PXpLh2bxvDt2J93NfBBZ0YnQCKw9yA2aFGN/b/jk9gaFYlBEzEnwCHGmHpjzG1Ou2tgcIBowEIppZRSSiml1AE5o6+NiMwXkU85y7rPdEjDpp05BdvhGQSuE1tIm6ROnO9g0z1NxBZ1noPtML/WOW6isLPL6Sifaox5vzGmvpcgiToAY0zMmQHxqe6dOEltuAk782UXthNtDrboeef+xpg3sDMtXsZ2gH8Tmyd/sYiMT4xQTWqj64wx4xLpotTBS2q774rIOYngk9MeiU7MF7AjhfdiZzCBrV2B02ktxpjdwC3An4CTsUXsV2Pz7o92junG1kEA+I0x5jxjzD+ddTrC+yhKtK2TDuh2bN2w7wD/JyJeEckRkfOB72PrItyPrUnS/Tgx7ezun6Rrq8fvujHmRWPMv0VklDOrIrH8cWwg0ItNyeZ3goxhZ/1GbIooD7YmRWK/P2OL2/8SG/R9AVvD9m3OLLVEoDERuFAH4ASEHsD+X7EQuE1E3pO8jXM9NQBlzs/5JmfV15314cRMQWPMCuCD2ADHe4FMYIaITEg6XvIADg0MDiD9R08ppZRSSiml1AGJiF9E/g68CtwqIl8TkbHOOjeAMaYW22lTBjRiRzCWA59w1oedzpwWbFqh7wDTsMGNTGCSiIxJvGaiM90YU+NM8HBrOqiDJyLnYQvv3gr8Q0ROSVqXmH1R7dxPwXaitQIfEJETnOWJ7R4FPu5sfx02Z3szcDHYNktqo5DzGjrq9BA5I3+D2Foht2Gvle7BQg82Fdu52FktLwGni8jlSesxxlRir8VHsPVIbnbWX+OsjyVdcxHn9RPXtnZ6H6T9zWzq5/6JjvN7selrcrEBis3AK9g0NW/Hjur/tjMTQB0ipwMbnGBB0uwknOfF2FkRvxaRSUmrfussPxEY7QQZk1MG/RcbULpCRC5wjuU2xuw0xnzGGHO1MeZSY2s6iYicDXwLW7vpqSP0do85xpg3sQHZOLAM2463i8i12Gsn4UVgshNg+BM2FeIZIvJ+Z70kHfNx7GfvamyaPB999KXrZ+TA0oCFUkoppZRSSqkUfYymzsdJ2YTtSLkJ+LOIjEzq6AHbGTAOW7z5R9gR++9NdNQkGGOajC04+ifsd9NJzm0cvXAmeMR6W6f65nSajcZ2tOzD1gq5XUT+D1I66VZgAwwlzijUH2JH3ydm00SckadxY8xq4P3AFmAqNhXKJBFJT37tpFHiOuq0H/q47iqwAYcWIIJN1fUnp/MUAGcWUgO2s9RgA4Vg8+cn2i454PcF7KjvRKfrQie1UA96zR0apzM05jxeIiILRGR88voDHSPp+mk3xtyJTef1TWzAYhN25sUEY8yPnGNqH99hcNqoGfgFdKaCQkROFpFiY0w1Np3aZGygFme7jcAfsB3dtziL40kpg+qw11s18A0RSevtuhKRk7Ap+W7F/h38CbamkNqPbtfSj7DB+UJsPZG/Y1OmJReeb8AGMBJpoL7g3N8oIjlJs9oSx70Lm/LrN8ASY4zOejkK9MNMKaWUUkoppRTQWaciOdVMcmdAFTaNUxCbvuk/2NQLj3QLRlRhCzGf7sykuBmbN/pTIhJwOgMkafTxN7BBC7DBDs2XfwgSnZXdO0KdDuoHsKO0XdhOzm3Az0TkqyJS4myahg1Eneo8/wm2U/RdInJZ99czxjyFTT+0wVn0iDGmfQDf0nEjeRaDiHiTlnuMMduwo+qzsOnWfoRNU3KniMxKOsyrwFznOPdir89yEUkU+00URMcYsx573T3krPuaMabiCL2944bzuZYohp1In/cittDvK8A6Efm9iIw7lNHYxpiVxpibjTHnAFcaY643xuyVrjoVOvvs8FRj02pdLiLFIjJDRDYA/wJmONt8HxtEvEaSCp1jZz8tw35eLnHaP3lm2aPA/7BFtC9KflGxRdPvAe7DpiZqxf79/Lm2aU8islBE3iciF4pISeJacv532Yz9jJwBzMfOAvwrcK2I3OPM4HwCW/PHBWCMWYZt40l0BS9MUsAwYox51hjzKWNM4+HOnFL9owELpZRSSimllFKdxX2dUaELReQfIpKX9KXdYFPN/As4E5sC4/3ACOBvSekU3sR+18x3nv8V25FzAU6NCud4ic7TvdjR/NOMMRcbY5qP7Ds9tiR1kCY6tnp0phhj9mHTlmRgZ1vcih1F/C3gj86I323YkacFIpJrjOnAzqLxYYNNWaarRkVyqprLAbcx5uEj9y6PTUltlxiJ/wPgp0mzJxJtehNQi0359AJwNbAAuN9JHwM2z3q+iCx0nn8f2/H5TREpSqSpSby2sUXQr8S23b1H6j0eT5zPT+NcI2XYIugZ2BRr38Z+fl6H/bws2c+h+vNaHdDZSat1Kg6T8/cvkTItHxtgWosN0P/YeYwxpgb7uTkRG7TwO8sbgV8Dhq76MdHE74Mzy+y3wGXGmLuTXleMrXfxV+wsjXcbYxYZY1YkB8AUiMgIEbkbO7DhT9jC2GtF5ObE7D9n019iA+nXAqcYYz6Ercf0NuBp7AyZIF1BKLA1mSLAJ0RkRqLdejmHzsCvOrI0YKGUUkoppZRSx7HEl3KnQzNHRP4KrATOACYkb+sEE36NTU9zBbATG4h4A/iLiHwLW/i3Atuhkwh0JApbfkxERjmdAcmdp3XGmI3dZl6ofkgaXXqliDwOPC4i94vIBd1G+K7AjgI+D5hrjLke2/F2DvCEiCzFBiCmYuuQYIz5D3Zk8JnA+5JesjPVkzFmYy+jidV+dJ/JJCJXiUglNu1IDCdQ4QSIPE4H2eed3b9hjPkXNlAUAf4jIh8EngOysR1xGGNex6avcQM/cPbt3qkd0rYbWCLyRWww8EZsKq9POTMhvo4dWX8vsAT4iogUHO7r6Qj8AZO4NqY796XA3cAl2AL0NUnb/hXbaf4ukmZLOIGIfwLzEgF85/pNXM+vG2MecJZ3nwn3gDHmpqT1rkQAbGDf5vAkIoXYIMXZwHex/39ciQ3kfh34toiUQmfw6BZssP2LTgD+T9hgYSM2RVQAmOkEF11OsOp7QB722u312tLr7ejRgIVSSimllFJKHccSX8BF5AZsSoyLsB2cl2KLUXa3Fhu0mAZ8FliP7dS5C5tO4e/YTtJFScGQF7CdDXOdbXrNje/0z+joxYMgIoUi8g/sz38EkIMNMDwE/DJpBHArdgTvLmwx7UXGmG9gO92mYFMIXYBN33Vq0kvchE2Tcr2ITOmrA81onYp+S5rJNEdEXsJeM+uBq4DvJHeOJn6uxpg7sIHEc0TkQ8aYZ4HLsKmg/gT8HzaH/glJL/Uz57jvF5FTune2JQeejsgbPYZ1m2mUWJaL/Sz8EDY//l+czz5ExG9syrRvYVNEXYOTwksdfYm262WGWg72mnIB440xFcaYaHJQz9iC9N/A1kF4X9KMKLBBwipsfSdPX9dWt5mLPc5LO8Z7OAG4GDtL5QfGmPuNMfdgA+mPYgO6H07a/h7gMeB8umZ23oENcryGLaJ9f7ef87ewszM+jxp0GrBQSimllFJKqeOYiJwkIruwoxb/i+1I+66x+dJ7dE476Sv+jv3C/y7gYqcj7jps2pNp2NGpFdjO74TvO/eFiU50NSCucG4/B95pjFkAnIQdAfxR4Jak9DObsB0y44APiUi2MeY+bEfPSuAUoBlbMD2RrmQVNhgyFttBpw6TiHhE5LfYWjD5wKexI/HvSgQrkjtUkzpLP+Pcf0lsEeD12HoWP8LOiGrHBi0SI7RrgD86+xz2aH5lJUbNO7NT8hMju7HXzled+xlAoi29xpgQgLEF6/+LnQ1zsbN+v31zyYERsfUOPN2Xq/5JXE99BQywo+tPxaY+nC8in3OWdw/2PY1N+XUx9vM3sXwFdhZNJTDmYNtIZ1T06XTn/j5jTFC6av2sBL6MHWzxcRE5BzqDsLdgZ858UEQmGps6bRtwITbY+6SzbdxJCRYzxnzGGFN9oGtSHXmi14JSSimllFJKHZ9EJIBNg/AZ4B/AV4zNbZ/o8Iw7I4ND3fZzAe/FFnC+B/iMMWaPs+4i7OjifxljXnOWidO5N97pMFCHyekIy8aOLh0FjHHaK/GzXgh8E1gK3GiM+aWz3xhs2pLJ2E7yfznHSne2fx3bKdSa9FpZQLj774E6NE56kzuw6bm+Yoz5fi/b5BljGpKeJ67Hv2GvvR8YY25MWv9RbAf5M8aYhsTvgbPO64wKV4eh2880A/ga9rNOgPcbm9YuE9vpfSM2ddCHkmaxJa7NScAabJH72capR3GA13MBi7EdtyuNLXqvDkKiU9p5nImtwZQH1AEPGWN2JrXRLOB5bPrDRcYWN0+uk4CITMbWungT+Igx5q3EsZM/P9XB6fZ7n2iPm7ABiDOd2WXd9/kwdgbhv4EPmK4aL78EPgn80Bjz5X6+fko7q8GhESOllFJKKaWUOg45HQFB7GyJl4CTE8tFZC5wnYj8HXhQRL4jIosS+zpf5h8G/ocdYXpJ0rqHgK8mghXOssRo1m3Oa2idisPk/EyjQAm249Pv/FwTI3pXYVN7tWJHmC52lu/GzsbIA64Wp6aIMaYNO1L1H90724wxLcaYkGitgwFhjKnFzmhqBhaLSKmIZInIO0XklyLyJvCwiPxEuopoJ9r1C9jR3p8QkdlJh/2jMea/iSBHtw6/iLbd4Uv6mb4Hm1rtw9jr6wUgMYOiFRv83YINMCxy9umc+QJsdW71QLj7KPzE86TXm4RNv/cX4DtA+ZF7l8eupGDFp7EzAH+ODTr9Cvt37sykv1Vrgd8AZcBXnEN0rzuxCfgJdkbbtUnLW53X0WvuIIjIDBEZQdJssKQZJ4ng7Xxn2+4/238Ay4FzsSkRE36MDeReKyJLnH33+/+HBiuGBg1YKKWUUkoppdRxKKkjYBU2/cVobNHfq7DFmX+LHc17Mna08LPOKMbE/rXArdhO8/eKyDToHJ2439HcRutUHFA/gzrp2FQYucaYDielRaLAqwFexrbjHOBiEfE5qTKewhaUPR94e+JgxpjI/jprjNY66Jd+tt2r2OvsImzH9/exI/Lfha0BMxb4HHCfE2xKtOs+bJHZLGyACWd5r+2W1AGrbTcARORMbCf1emy7vdsY80VjzI6kzTZiO8Gn0pV6LSGOTTk0FdhDUhF75/jJo8tHiMjVwO+xHa/7gLnGmNuO+Bs9BolIsYj8CbgZ+xn4Uexn4+XYTvLviUhy/Z4fYgNPHxSRE5MCHgUiMt7Z5lbsTMPfd389veb6R0QuF5GXsTUn1gDLROQdziyYhFVADPi08z9GNDnQZ2xayt9h0xbOTQQ0jDE7scHhkcAXnH31/49hQAMWSimllFJKKXWcSuocexBbpPmTwN+wnaPnY0cHz8V2zAWAW0VkYtIhVmA7XU/GFrPU0YmHKWl0dUxE/CJyjYgUOetSvsMbW6OgGpgsIm9ztnEnrQ9iAxObsO1Z7iyvw9ayaAXeLSJzeju+OjgH2XYddBVBvxmbnuZH2I7sk7EBi1uBQmf92KR9v+vs9+7e2l0dGWJr73wJGyi8wdjCv/XOrLTkztMo9rpbhi3A/ROnszxXRC7EpraJAr/t/nnppL9JE5Gzsb8Pt2PTt73LGHOaMeaNo/BWjznO9Xc+8A7sz/QGY8yfjTEbsCmdmoBZ2JH46QDGmEbsLLU04PtOoOJ87MyMn4rINGNMozHmg8aYbd1nyqj9E5EyEfkHNo2TYP+fWA1MAX6NHTwBgDHmJWxAYwzwf4lDdDvkm9gZhCd3C2j82Vlejv08VcOA/jOilFLDkIicLiJGRG4+gq9xs/Mapx+p1xguRGSs87O4/SD3myciMWdk1JAkIh92znHWYJ+LUkqpoy9p9PV2bKfBWuCXxpgFxpjHjTG7jTGbjTF/wY5SDACfh85gRxu207Ua+HxS2iF1iJJGV78TO6L6NnoJBiV1UP/Vuf+oODnau3Wc7cLWuVhAauHlVdiCzCcB1zjtqcGmw9DftkuyBfgZdkT+BcaYrxtj6oFGY+uF/Ahb8PwcYLZz7ETB+uud+2/oqOGjpghbE+YpY8yLIuJKBH2TZ0k49mI7tiPYoMUL2Gvu99hr8UvGmMe7v4DzP/lN2ILOVwHfNsaMMsb850i9qWNJIjDYPXjgXH8B4HvGmM8bY7aKLWD+G2xA14P9O3Y5qSkO/wz8B9vu67F/J98DLDe26H3n6/byO6D6ICIl2Fll52CDQu83xlxhjLkAm14rA7jUSRGVcJNzf6OIlBpb08eV1NY7gHZgqtg6Ion/b1qBU53/a/Yd+XenBoIGLJRS6igQkROdDu9H+1j/c2f9hj7Wf9ZZ/60je6aHzhlY9F4ReVpE6kQkLCLVIvK6iPxGRE4b7HMcBD8FNmDTbBxRIrLQ+R351EHu+ldgJ/YLsVJKqeNQ0pf9x7FBiZ85yxMdP4lc0b/CpmS4QEQKkzpnEnm8f2yMefmonfgxSkSyReR64E/YTrQI8C6xBV472yXRQW2MuQebXugCbEcaJI08Nca0AOucp+cmLe/Ador+A/izdrYdvv62XYKTOu1e7MymlUkzNBIdbbuBF7F9N+c5u4Wddf/FzsC4TgNNR40P2+ntE5E0Y0y8r+vGWf489hoLY4OGX8R20o41xvwSenasY6/hL2NnZ5QaY755RN7JMUZE3MlB125pthLB3duxqbUQkXOxI/KvwabNey+2ffKwAdxRSYf/KjZQ/5KzbYEx5ofJr6/X4EE7E/u7/jvgZmPMuqR1TwFvANNwPu+cgNDr2LoiRdhgIKSmVGvGzn7abnrWYdrhHEfrigwTGrBQSqmj41XslPslffyRPAMwwBQRGdnHeoCnnfuV2D/gvxroEz0MfwHuwKaNeAjbcfFPoBE7qui6wTqxwSA2v+3pwE+O0j+wlzr39x/MTs4X5Z8B54lTiEwppdTwJCJXisjDiVlz3TtH+5LUOVoL3G2M2eU8T/z9ijn/vwSxOdf3AvVJnath4KfGmCE7sGKYWYrtIGsFrsDOgjgVJz1Gt1kWic7OW5z7z4tIiTPy1C0iPmd5Io1MrbNfIuix1hjzXmPMek1nMiD63XYJxpg9xpinjTHBbp2sibarTb53Uga5ncefNca81t9rXR22ILaTu8y5peglyNuADV51ABOA1caYXxtj6pI62DuLozv7/BOYZ4x5l/OZrLrp/lmVmGHkXBsni8gfROQvYgvYL0oK7oacz8ZCbCHtPGwg4mtOsH0NNnXQAuCdieMbY7YYY34GXGWMucEY0yAiHv3MPCwrsQPmbjbGRJI/w4wx1djBEcXYWj3JvoqtzXSFiHwbmyIqMWPjG9jr8u99vajRuiLDhv5RU0qpo8D5w/g8kAmckLxORAqw+TLvdRad0W29C/tFJ4Qd1YExpt0Ys2Go/BMrtjjZ+7E5J8caY641xtzofIk6A/vPxm8G8RQHw8exX07uPkqvdynwmjGm4hD2/Rc2j+7HBvaUlFJKHWWLsDm6r4BDG/HZPa1MUrqTKHAKtjD3HuxAi+T9une6qUPXih0EcpIx5hFsp/de4OrE4IKkgEMi2PQQtvbILOwMT5wOvLBzzAud+53OupTfDU1nMmD63XbdJa6dpLZNtF2iKPrKxLbJ12nyqHJ1xLVg22E2cKaIBKAruOR0hucBt4nIPOeaWo0dlX8ecHlSsCmWfM0lXctrjDFrjuJ7GhZEpCRxDXX/rEr83EXkb9jUW5cAb8POXFohIt1nqVyBDS7+wBjzB2NMg7O8HcgB8rG1LBY6r50Izrc7z13GmKh+Zh6WrcC3jJPCMPEZ5mRt8ANeoCLx3TYRhDfGNGHryDyKDTo9IyL/xKbf+xLwJLbWhRrmNGChlFJHzzPO/endlp+GnbZ/K1BPt4AFMAc7+uMlYwsn9lnDQkR2OLdMEfmFiOwRkZCIvCEiV/R2UiIyWkT+KSL1ItIqIstEZOlBvreTnPu/GmOau680thjZ8m6ve7vzHsaLyJdEZLOIBEVku4h8XUS8fZzvUhH5n4jUOu9ts4h8W5ziaIezvTPS6QYR2eKcyxYRuZGD/HvpfFG5FHis+89DkuphiMg0EXlQRBpFpMFph0Jnu5NE5CkRaXbW/UlEMvp4vXHYDor7k5bliMg3RWSd067Nzvv5q4iMSd7f2IKdz2JHqmQezHtVSik1pHwXmwv/WnFSMfbVOXogSR00Rmye70ux/6tsx3YymN46a7QD5/AZY54FbjHG7HQWrcf+7CdhU5X4nc6bRAd3Ikj0GeA1bAqif4rIEud/jU9iZ7s+gU210dtraof3ADjYtuu2r+nWcTdRRH6IHel9hzHmwT5eU6+5o8BpmxbsILMK4EbgMugKLjkd3L/Ffr/Lc9Z1YDtTNwNX023wmjowESnFznz4hYiMdpZ1/9v2TWxB7R9hgxUzsfVj6oCvicjHkr7nJL5T1XQ7xnXYdL5/wwalcqD3AMkAvK3jmrHp1Fqdx90DdwXADJwgrfRMg/g88C5serUGYDEwDvvZe64xZs9RfCvqCNGAhVJKHT2JgEX3gMQZ2JH4K7CzMHpbn7z/gXixOajPBe7B5k2dAPxbbK7OTmKnTr4EvBv7D0EiaPIEcGI/Xw/sP4IAkw9in4SfAzdgR0P8EjuT5BbsdOgUIvJxbMf6EmzaqVuBSuzU0Ceka+r8IW2PLRr6fezfx19jR2dcD/ziIN/TUmw7rNjPNuOA5YAfO1V8DbYd7hORU7AdCq3OOW3FdjT8so9jXebc3w+dHRePYQuT1TvH+APwOvYf+Em9HOMlbE7ek/vx/pRSSg1BzijRRIqEa0Ukva/O0X4cy4iIV0TOAr6D/RuUhw1WrB7I81Y9JY34TczUvRNbsPcK4OJu25qkkacfAf6M7cx5HngF23YVwOeNLeSsjqCDabte+EVkgoh8Hjs7+QvY/5G1jsEAkNQCvYfqMWw61RzgLyLyIxF5v4h8H5uP/0LsNZg8WGsbNl3uXOxnc+Awz+G4ICIfFJHPYb9r/gE7kK9HEXsRmQ18Avu97xvGmFeMMVXG1vf5JPbn/zlsEAPs52IrdsbLXGcA3f9h61k8Yoy5DigyxvQa4FVH3BxsZoplzvOUgFFS8PBr2O/5Z2LTqH3fWe9GDX/GGL3pTW9609tRuAFubD2HVsCbtHwt8LTz+HPYP8ijktY/4Cw7NWnZ6c6ym7u9xg5n+X2AL2n5Wc7yR7ttf7uz/Kvdln/EWW6A0/vx3kYBTUAcmzPyCmDMAfZJvPa+bu/Xh/3nxADvSFo+HVu4cDW20Fnysb7sbP/5w9g+8TNdDWQkLS/Djr4xwP+3d99hdlXVG8e/K5kQooK0EEQCUboiHekgAiIgoNJBBAXpHRQRDdKbaKQqoHSFH0gVkRZpIqDSBAIiTRCF0DukvL8/1j7Jyc2dZPpkJu/neea5d87Zp9w5c9tee691Xhuv9Yml/XpN1o2o/W33qy0PMqgicqTIZrV1g8iAxjhgWJN93koWF6t+/1zZz5VN2g4GPtZk+aZlmyN6+7niH//4xz/+6fgP+XnjFrL45NYd3McAshPgdTKdzTvAtWTax15/jDPrDzmwYSL52XC+6lq10nZLckDIScAWteXR249jZvxp67UjB8x8UJ6/TwLf7u1z7y8/wMDa/Y/V7rf5OVG1JQf5bEnOOJtYft4i6xau1cq285MBjc/39t9iRv8hB9vdWP6uvwbmINMRvkTW41mufk3JFFATgd3K77PU1s1KDuKaSNaqgCzafHxZ9gbwYrl/C7XvsPX/Gf/06PU/vFyPRRqWf6Th92j4faDf4/rPj2dYmJn1EOUUxtvJKaifB4iIoeR0x1tLs2oUwTplfVW/4j2yuFRbHaDJeW9Rjg55ltoU5DK7YGvyg9/JDdufQ05bbhNJz5NTcJ8jpzpfBjwTES9FxKWRBahb8/OyfbWvD8kZEJB1MSq7AS3APpJeYUonkkGFbTvR/pvl9khJ79TO5z+0f4bFAuX2xWm0eZKc8VEdR2QtCYD7JV1dWzeOrIXRQgZiJomsgbIGzYttv9e4QFls7u0mbatzXaDJOjMzmwG1klZmAjCSHJ24U0R8srRt83c/5cjVB8iZmpcD60raRNIzJX2i61T0juvJQSkb0kqdkijFfiVdJukESd+VdHm1rnzesJ433WtXXEjOrNgbWEzSr8EjhruCMlf+nBFxJpn3/uqIWIX8fN2m18jq+aMskH4ZOUhoVfK720aSVpR0e6QBDdu+IGl3SfdOvWerlO+oRwArkjUJTlKmF34OOIGcJfGNKIW2y2bDy+1ikN8nNbk2wvvkd+33KIW0JY2V9H1yhP7V5Kz4b0paV5PTuaGGmk42fZ39fFBe674EPCHpX2XZ4Ij4AjCy3AJNU3VN8Htc/9HS2ydgZjaTuZUcAbIO8GdyVH8wOWDxADnKYx3yC8uy5IiSm+sBiOl4XdLTTZY/z+RaEwCLkyNORpcPcpMo00f8meapg5qSdHNELEw+prWAFciO9K2ArSLiOEk/aLLpHU2W/YUsAr1cbVmVomqDkp6i0ThgiU60X2Ya59Ns2bTMXW5fn0abh5p8oPpvuX2gSftq3fwNyzcmR5PUAxZjyNFH20bEAuQX5FuBB1r5cgx5GI2PAAA5L0lEQVSZOgpgnmmcs5mZzQBKx/N4aVLOe9XWhaQ/R8TZZD7uLYFR03j9b0rSOxGxj0qR0bLvge7A6T2S3oiIn5GdOd+MiOslPRkRnwGWlnSJMgURMLlgeunYm1hfZz2rLdeutLs7Iv5eBqtMes75edd+TV4bVwbOBz5Bphhagcx9fwxwantfIwHKIKApBpXVXiebdpw2npdNZT4yRe3fJf2kYd0pwI7kALmbyMLLlPvjgGUjYiFJz9b/zpLuiIgngfkiYkHg+fKaeCxMeU38Ptc5XfC/vTA5uPNnABGxDFkbcnfye+rDndy/9REOWJiZ9ax64e2jy+37lA+6JVBwJ5PrVlS3o9txjDdaWT6eKWsXfbzcvtRK+2nNDmiqfBG+ufxUo/x2IovPHRoRl0u6b3rHKSNiXqmdI8Bc5fawxvataG/7j5NTT19usq69f4tqZsO08tNOVZycvEbTW9dYjPyrZLBhUlBF0vgyq+XH5MyXagbN2Ig4DTimyQfxIeX2XczMbIZUdapUHc8RsQPZQfMmWWz5htoAh+PIkdw7RcSfJD1YdVy39XhVsKLW4e1OnN73d/Jz1UHAXhHxGPlZa5WIeFXSjVXDWmedC8TOGNp07SSNq0Yp+znXfjG5QG/j//3Xye9dO5KDoz5HFsM+JCIek3RTe18jm5neNXOwYrpagA+BRQAiYjPgl8DRkk6LiMPJ2X/fjIi7Jb1ODhK7BtgAWB84pwRrB5bvlR8l00S9DvxHU9a/aAzs+jnXCeVzyWfJWTLvd+D/fXlyMN6rEfEtsgbJ8uT13UuZ/cBmAk4JZWbWsx4k6xOsVqa7rgPcrSkLIN4KjIiIEWRAA9pecLs9qsDGvK2sH9bZA5TRn+cAvymLGguKNz1OmQo6N1MGX6pO/NklRWs/nWj/Bvm+2GyGQXv/FmPL7VzTbNVJpWDfl4DrGkdNSnpF0j5kDY7PkKkFXiU/PH6vye6qcx3bZJ2Zmc0AaiNA14yIR8nOth3J4PwVwK8iYqHS9hkyfcbSwPalU6ajBbjd4d3Lah3Y75KjxF8A9iBz4i8FHFgPVtiMoyPXrgQm3bHdTtXrXHmtWySyGPY6ETEHOcjnKElXSXpR0s3k5+P5gf0jYkhHXyOta5SgwVNkeuGFIuJZ4ErgceC5cn2vJDuvvw58rWz6Mpmd4H0yALUxTBoENxv5fFuUrEc4RUDCgd2uExFLka9xi0t6r4OvYVUK643J4vWzAutI+qqk/4TTUs40HLAwM+tB5YPQbeRo9k2BJZmcDqpS1bFYj6xf8TZZwK2r/ZP8ULdi6fiepIxMWq0Lj9WsZkJlzSbLViVH19xfW1ZNt15l6uZNtbf9g9M4n2bLpuUf5Xbxdm7XXuuRNVGa1a8AJn3hHSPpdHLEEeT/XqPqXP/RZJ2Zmc0gImJ5skNgIrAv+R61JDlye3ugnkLjF8AjZfl6bdx/1O7PEhFDGpfb9EUX1xyoBatWBnYlO1kHk0Wa55M0qqz3deokX7sZWzSpNRGTa7coIgZFxInAY2TB5luA35Mpmv4WEQNqszCuJtMKbQjs0I5z8LXqBrWgwZLk9fokcBKwhaSrax3gR5BplXeMiEXK8tvI9F4LA+dFxI8jYn+yduGPgL+SMzOsk6rnW+336vnQQqbmurssb9dradlvlcJ6cWBvSUtJui1SlSLPwdyZgAMWZmY9r5otcXi5vbVh/X3AW8B+ZJqiOxpHz3eFMqvj/8gZFgc1rN6FUrSsLSLiyxGxWeOHl7JuETJ/NsCdTTbfL7LOQtV+FvLDJsB5tXZnkGmRTi25RxuPM0dELNeJ9heW25Fl2nDV7pPktWiPKui0cju3a6/NgA+AG+oLI6KaodOominyfpN11bne1mSdmZn1sGl80d8VWAg4VNIZJSj9JDkS8Slg84j4OoCkN8n0gJ8gO3ZmLx16U3W21UaBV52rK5Az8naoUmZ07SPsn+qdKuX3ERExtPps0dGOzrLf1YCLyVHho4HPSNpH0rsR0eLr1Dm+djO+iNgF+F1EfLq+vOG70sZk8OGXwP5kLvzVyO82E0uneNReY/ctt3tGxPAqPVArx298nfxURCzeWntrv4j4Bjkb4h6yz3IhSWPLuoEAku4HTiPrJm5dlr0h6efkd+xXgZFkasTtgEuBdSU93rOPpn/S5LSUnyizYqrXroXI9MVvlHbtSq9V9ns2GWT6pKQzynFayiA8p+uaibiGhZlZz6sCFkuRHcd311eWqat/Br7c0L47fB9YFzg6ItYgZzQsCWwE3EimG2qLJcgvAy9HxO3Ak+Sol0XKvmYBzpR0T5Nt7wYejIhLgXfIouSLA1dImjQKRtLDEbEnOYL08Yj4QznObMCngbXJAMfuHWz/p4g4F/gW8I+IuJIc/bZ1OcevtPFvAVnw+ikmz2jocuWL0SbALcqCf3XLAldExL3Ao8D/yBFKXyVH5P6sYV9B/h+MkfTP7jpnMzNru1qn6Z7ABPI9aw7yffVmSdeW9YuQ71E7ku9vl5Ajiqv9/C4iriNn190AXFjvGK06SusdcGSH33fIHO8jyU4jdxRMR63TeUK5LseRubcHAK9ExPfJgQHj2ttBXTpR3ydHCX9f0uXlmNVIcRfU7gRfuz5jQ3LAzmXkZ20AIlPh3U5+l3mRLMI8UtIrZf0gMlj0A2CP2uvrQEn/ioifkwOUdgV+1Cw9UP26R8RQ4ItkQORVMs/+M93wePu09jxXam2vI58rL5GzX7aKiAslXUd+v6ycRH5P2yEibq6+Z0o6KiJOJYMeQ8nvN0+XY7igdhcog/5+T35XvjAifi3pH8DHSpNnOrH786vnXwlUjPdr5MzJUWAzs573MJMLOzfWr6jUR7l3W8BC0n/JEUeXkqmT9iNrR6xPFqNrq4vJjo1bySJbu5d9rUwGPraQtGcr2+5PjqJYnxzhNCs5GnTbJud7NjlN9KpyvvuTBUXnITvhR3WmfXkMh5JTkPcmvxT9tGzXZuXD9i+BRSPi8+3Zth1WIWdMXNVk3d/IvOUiO50OIuuh3AysLumahvZrAQuS52xmZr2kPqsiImaLiN+So0i/RNYamki+hz0SER+PiG3L+p+SswpXlrSdpDdKB13lcLIj4cCImK92jHoH3NwRsSUZ6D+FnMG3iqSj3cHTNtXI7Ij4HtlxugqZgvM+YD7y89Z2VdsOHOIBSdvWOrwHquTr75pHMPPytZsxldelj9QW7QPsSdbsqRsHvEsGbzcFTpL0SuTMbcjvFk+RndsrlX0PJD8rQw7iehnYOyJWbziHSbMqImJIRKxLfnc5j0w/dL6yZpA1qL2/zNrWtpJeA/5Zbo8vqw8r68bXAn3/A44mZ85sX73nlefW65L+KukPkp4uz+0Bfi/rMq8AR5KDAfcjBx+eTqaffIsp61C2Sy1YMcCBiplbeNahmZn1hog4jxwN+qn++CE/IuYivxhdJuk73bD/E4DvAvOXD+yd2ddFZHBmYUmvd8HpmZlZB0WmIlyenB13OXAWOetwTGSKwxvJUY03kO+jbwEHS7qgYT9fAO5VFvolIo4gR5pe0tBuMNk5uz2ZRqXp/mz6SofZd4AfkoMELgJGl062T5Ed4Y8Ah0i6s3TItLvDuqPbWet87WY8EbE5OZPiG8BvG2aGDQQ2AP5Y6+D8NnAyGWxdA3hKWUR7YJnBvitZ1+f3kjat7aulXOf9yeDvJpKua5wdEBHLApuT/ydzA8dKqlL8WhMl2HMMOSDt0FYG6k1vH1eQs8T3kXR6TJm2bTCZYm0JcubM/zU7hw4GGa0V1d80Ml3eWsDOZHaIKri4Ffn6+Wp799n1Z2t9lWdYmJmZdYPyAe04Mmf4Qt1wiM2Ae7ogWLEYsA1wtIMVZma9q3TCPULWmDoP+LOkYySNAZD0bzLt4EJkp9lxZNHexmDFD8lAxzLVMkmHNwlWLEymSLmI7HD4uaR5HazosDnJlF1/JdPK3Fg6QtcHrgFmBz5PjgYeXDpT210XwR3e3cLXbsbzIfBfYDeyUDkw6XXyJjIlzZdr7S8kZ6nPS84onhhZX28igKSzgDuAr5TZZNW+JpT1o4C5Suqh+uyAhSJiD+BccqT/HWR+fQcrpm9l4BBg/fYGK2ozDo8A3gYOjoh5S/CpqmXxATkLY07yuk/FneBdrzYb5h1J10vaghz0UGVouBC4IyJ2aZjVOVVtrvoMpvL7pyNipWhSG9NmLg5YmJmZdZ+fk1OVpyr63VmSlpC0ahfsagHyi8DpXbAvMzNrgyo9RcOyljJqdCQ5g2IBcjYFkUV5qy/6vwDeIztwjql3gEbEwhFxFJlP/c/AmIZjNHawfgE4AHgQWFDS97vmEfZf0+pEkfQScKKkzSQ9GxHDImt03UCO+t6HDEhtQaZsbMvxona/pZbixtrJ165vqP3dbgF+DawJbFldv/I6WX1u3T4i5ijLxwGnkrPEjizLquLA1evnkWT6vO9FxCz1FEFlhPfr9f+TiPgcmUL2dDJ91BqStiz/L1Y0vp/V/JVMq/bZyHqJbS5eXwITIelBMgC/EJm6F0oQqrS7lpwlflpHz986rvbcGk3WDPkL+Tnlo+R1uzciji/PpYEN205RFyYitgEuIFNdLtVDD8FmUA5YmJmZdRNJ70s6UtIdvX0urZE0WtJRkj7s7XMxM5sZVClhyujfxSNinYj4dNWxJukU4AFgNnJUN8DEqmNN0miyxsRsZN7o70bEqpG5988g0wXeDRzVOHOu1jFQdRjdRHbAfUXSf7rxYfd50VAgOSI2jYh1I2LpkhajcmdZ/1myAPqGZL77nSWdTnZ8zk12tM5X0mpM9b28yajTZcjg0kbT6By0Jnzt+pbydx2kTGd3FVmbbX9g8Vqb3wFXkymavlZbfgvZ4Tk8Ig4riwfUXj9vIdNMrUAW2K6PFq9u63nz3yFH7+8iaXlJd3X14+3Lav/rExueS/UC19XMvrVL2/bMeKjeq44DniZnrq9Q/kcmdX6rVqeio4/FOqYKLJEBiuHAY5IOAD5DPsf+B3yPDGLMC03rwqxHFlE/D1gE+ImkB3r4odgMxk9mMzPrFZJ2khTqh/UrzMzMGtU6TSdGFsz+NZne6Q/AExFxUEQML80PLLffiojZyzb1zpgTyZRQ8wAnkLMpfgwsSeb5/pqkp1o7l1rH3L8lPdS1j7Rvi4jVImJouT/p+7Im58nfJiKeIeuL3EQGl66KiE/U25Gd3WsCx5JpFx8sy6visyuSna1N0wTVOruHR+beP4u81ksxuRPPanzt+r6YnOpnXFn0CJleZhiwS0R8rNb8CPLvuWNkervKGWQduR9HxNAqhVCtg/vHZK2Sac4uLqO/n5L0BUm/7uxj649q/+uHAg/F5FRbUZu98nfgTWCJyJoT7dl/VYPkFeAnwBzktUMNBbTlIva9pvwfDARmAV4sy96VdA7wFWBtSatLer7WnohYjkyzdhGwHXCcpPkkXdYLD8NmMA5YmJmZmZmZdbNap2mQKQO/THac/orsXDua7JAbLOlWcvTwMmQh7LILVbnYX5P0KzI/+MZkXaPtgE9LOrscZ6pc0TZtEXEIOcq+GnldXbMBJaXPYWQe+6fI2h/rkp2jqwPnRxblrQo4bwu8Bpwl6e3aYWYlCzgPBw6MiBG149dTCH08IjYjU9z8AhgCrCvp6MaOOvO16y80uZjylhHxF3J0/reAV8nXwhVrbR8g/8ZrkfXYquVjgF+SHagnTV48KcXQE5KObW2GTG0/rn3QBhGxNllY+1PAmRGxKlP2Nf6v/GwADCrbtCdwV73vnQkcBezdBadtXa8KyE5Rq0TSSyrZBqrnW0SMiIi9yNfkHwC3knVhjujRM7YZmouYmJmZmZmZdbOS8mBX4C4yWDESuFjSOxGxNPnFfXdy1sXvyBQymwF7RcT1kp6Kkk6q2qekZ4FnG44zUNIEd4x2yDXAnsDY+t+6jPJdCNgDuAfYv5qZEhEPkR00BwD7RsQhksZGxCPAwsBKwA2RefE3AX4EHESORP2wPtO0dKC2kMWdtwV2JDvr9iqdddY6X7s+rnRiDyFH0u9O1rB4AniGnPXyCWC3iHhY0stls5+QwYodIuJmSfeU5b8ii6h/MyJ+VXWY1oMQJXjhEflt1Pj+U5F0W0Q8RgYpJpCj5Q8GrizrH4uIh4GvA5sCv2nPcavAUplBcfi0zsV6VfWZ4+HWGpTX40XJWU7bkgHg1SX9pbVtbOblgIWZmZmZmVk3Kh1xa5AFe+cHRks6q1ov6aEyAvwPZH78v0h6JiJOImtS7A58b3odNA1pOKydJI2JiBUljW2yenvy2m1V6/BeiuwU3aK0GVM6vIPsQP8aMCoiriLz4K9Hpri5WdLTjQcoaW22JANbI8iUNQfW0uNYK3zt+r7SMb0Yeb1uBPaV9E+AiPglWZtia+DaiLikdGD/LyKOJmfL7BAR90kaJ+nViLgAWBaYq7Xj9cDD6jdKZ/MsKnXvynOlqg9yBbAL8AXgWuDEiHhDWXMJ4GIyYLFqRFyudtbOq7/3OdA0w1qXLEz/5HTavVvafVvSed19UtZ3OSWUmZmZmZlZNyodY78ARgOrAW8DlBHZVZs/kulPNmVyEdnvA2PJjrg1yjZOYdKNSqf1OhFxZ0RsCJPSay1I5mF/OiLmjIidybQzxwOPA4tKOqnsQ8B1ZKqLEcB+ZDqbR4FtmnV4FxuRqcGeAhaTtI87vNvO165f2ByYjUzHVQUrBpU0T0cA/yZnxAyvbXMucG/ZdsNqoaRzgaGSru6hc+9XGtM2RcQewF0RsWm1qBYgvx8YSl6XLcn3uIsiYrmynzHA88ASQLvqWDSeh9/nZlinSRqo6RTLlvQfSd9wsMKmxwELMzMzMzOzbibpf2TQQsAiETGfpPENAYijgPeBb0TE50rHzCFkwdkDyn48srT7LUgGlraILHo+AfgQmB3YhxzNfRYwH7CJpC9JehIgIuYpHazvSToVWJosOrqGpE0lPdsYdKp1yF0DrCNpPUn/6okH2g/52vVtVVHtF2BSUHd8WXYL8HtgBfL6zgog6QOyEPMwMrXX7NXOymus6/m0Q6QBDemz5gUWAZYHTo+IxRreix4n61RsUTqs9yKDFhcAXyQDec+So/CHln22qT+yOo+ImC8i5unkw7NuIuk/MOVADLPOcMDCzMzMzMysZ/yRrE+xIpk6Y4oARBlF/FOymPYWZdl5wJlkzQvrGReQ6bm2JuuIQOZjH0/mZt8UOEjSwpKuqzYqHTWXk/USqtQlT0gaLen+smxgY9Cp6pCT9GyVa986zNeul0XER8ttRzouXyu3G0MGHEqqqJD0HjlLDeA7wJLVRpJuBn4GnCTpzfoOnSavfZQmRsQSEXF2WfaSpIPIIuefBM6LiLVq2zwM/BNYLiLmlnQX+RyclwwSDgNuKM23Kdu0Gnyvz6qIiI9FxAZkXZLzHICasUkaP/1WZtPngIWZmZmZmVkPkPQ2MIqcZbFDyXvfONJ0FDm6+OCIWK1st5ekRxpTY1j3KJ3QR5EFgHeIiPmBB8mO8BbgMEmj6ttExHJksdkVKJ2uzVKXuPO0e/na9Y6Y7Djg7xExpD0dl7XXwN8C7wHrlXoWVVqvqpP6IfIaLQbs3jCb4iBJN2CdVuqCPArsHBH71VaNJOuzLA+cFBGr19b9piyfC6AE+vYmi9T/jkznBbBURMzZynGjbKuIGBARK5ZjXkTO1LjXz0OzmYMDFmZmZmZmZj3nXuBsYANg46qAaK2j5lWydsUxZZQqkB16zt3dcyTdQ6bwWo8s1vwymUroDeDQiNirpChZNCL2JgNNGwCnAFf1zlkb+Nr1hjIqX8DnyWDCl9u5fTXa/jmyc3plYM+ybkIt+LEVmTbvdnKWxQL1/Tio22WGlts3gGOrwJCkN4DjyNksKwHnRMQnSttHyYLK36jt53LyOi5YtvsAWBgY1OygtfRPCwP7kjOmDibrygyTdGQXPT4zm8GFP/OamZmZmZn1nNIZcyPwOrCrpL+XwIW/nM1AImIB4D7gJWA7SQ9FxDbkCOM5yesXZN7954D9JV3TS6drNb52Pauky5pQ/u7LSbq2tm5Ae2rvRMTi5IyYTwFHkqmAxgHrAwcCFwN3AG+WNHrWTtN6vymzXX4M7EymeVqbLIK+e327iPgNmd7pJrLW0lPAX8haFduW4Ea1z/WBy8haMgArSrqvybGHknUudiFnVNwN7KnpFHI2s/7HAQszMzMzM7MeVEYB70WOUj0VGFnSRU3VzkGM3hURBwAnk6Pwv1s6ZZcANgJGkB2pD0k6v7ZNuzporXv42nWPKjgxnTYLAhtJ+kUHj7E2GZiYH3gVeIusnTCGLOz8RGnn69VO07p+1XtOROwMnEAGIkYCw4GlJT0cEbNKer8Epw4HvkUGFjYhZwd+A/iipMcb9r0f+dw7T9Jvmxx7sXLM9YE3gQMlXdI1j9rM+hoHLMzMzMzMzHpYRMxDjhJ+F9hY0v96+ZSsiYgYAtwFzAd8W9L1DesndZhGRIsLjs44fO26V0R8UtJ/ImKQpHG15YPIuiFLAOtIuq0tQY4m+18M2I6si/Bx4HpJx3fhQ5hplVkURwN/AkaXYF79+bA4GRz6ClmT4gLgVklfLOurwMYCwGHAbsBtZOq1i4EvSbq51B+ping3/p9MEZAvz9f/AmdKOrTb/whmNkNzwMLMzMzMzKwXRMTijaNQbcYTEZsAVwPXkB3frzYUh510vxdP05rwteta5e+1EDCanPmwShXoiYivA09I+kdE7AT8GrhF0vrVth39O0fEYEkflPsOLnVCmb1yE1mE/gXg15JGNrT5LBmAuAg4ALgTWJWc3XJFPfhQgh/XAhsCTwCLAhdK2rGV408VvKquaSnW/l4XPlwz66NcdNvMzMzMzKwXVMGKiGjp7XOx1pV8/HcCy5IjvetFhqe4bzMWX7vOi4gVImIVmBTYeYOsD7I8sHZZ/yBwKfCF0u48sk7PuiV4AZ3of5L0QUQMKEEPByvaqJUi5M+RwYq3yLRoe0TEORExrGog6RHgNWB4ueY/Kat+WtaPizSwzMo4GDifDFYArBgRw5udU7OZNtU1dbDCzCqeYWFmZmZmZmY2DRExTNKLvX0e1n6+dh0XEUsDDwB/BtaX9H5Z/lkyIPFRspDyQ8DZ5GyWF0oKoNXImRjPACtJess1J3pGfRZDw2yIaibDsWS9iRvJa3Q8cAtZN+Ifpe1vgc9LWrj8fimwJXCYpOMaZ0qUuiWnAxsDm0u6sqcer5n1P55hYWZmZmZmZjYNVYe3Z8P0Pb52HSfpIeCPwOrAN2urNgA+QQYrbiVrTZwh6fkqICHpLuBcYDHge9Uu23LcVmYG2HTUUpxVwYoTgJ/WZk9UwaIfAS8DXyJnIG0HrABcHRHrlTYvAHNFxIrl9+OBt4EjI2JoqXsxsDq2pH+TAY2BDlaYWWc5YGFmZmZmZmbWBk5H03f52rVPrTN6v3K7RxlFD9nxfR3wLzI11GulJsiAhm2PIQsp7xURS5Q2kzq5W1Ol6YqIuatAU7Vvm1pJzzSg9nfbNiKeB74LTKAEKsrMl5YS0DiobH64pEuAr5Mpoi6LiG8Dt5MBqffLtvcDpwEDgRPKto0BqA/KNXZw0Mw6xS/4ZmZmZmZmZmY2STWCXtITwCnAMsDuZd0oYCvgZ2Sn9jFl+cTatgMkPV/azEGO6m9awwCmnFUREbNFxFfImgl71/dtUyulWCZGxDIR8RfgYmAMsC1wjKSxtbZVvYgLgXuB9SNiZ0m3Al8F/gacA+wLBLBS7VA/K/vdKSLWaLwmtdowDg6aWac4YGFmZmZmZmZmZjTMgKhG0H+fLLb9rYhYCSYVSL4auJ7swF6rcVfldhRZpHvziPhy4zFqaYwUEQMjYmXgx8BFwObAWGyaIqIlIs4E7gfmAvYB9pZ0aRWsqP7OZTZGNQOimj3zvVLrZQzwbeAkYB3gXcp1LAGosWStEoC5e+ChmdlMygELMzMzMzMzMzOr1z9Yikz/Qym2fQgwDNir1vYFsk7Fm2Rtg5Z6HYUyQ2M8cBwwC3Bk/RjlfpXGaDFgf+BC4ADgUmBeSRd35+PtJ+YARpT750o6XdLjTdpUszHGlwDEPWRgaFHyb4+k5yQdAuxB1i2p6lFUsydGAYMlXd1dD8bMLMp7g5mZmZmZmZmZzcQiYjbgN8BywCaldkG17kFgSWDrqrByRAwBfg7sAuws6dyyfF7g05LuLr//GLhE0mMNxxsGrAd8B1gLuAPYQ9Kj3fk4+5uIWBO4FvgTGVR6C9gQWJOcLfEWcBfwW0l/K8GkCeU6vQC8A6xZCq1XMyqmSsMVEVHVqXDqJzPrLp5hYWZmZmZmZmZmkIWX7wCGAl8tAYzKvkALWUR7NpiUGuoC4AlgZERsGBGbkoWZ/y8iNi7tfizpsVph7ijpn04HfgV8GthC0toOVkypLYXKydoT5wIbk8Gj44Hzga3JmTIjyJkrV5W/e1Vv5CVgJDAbmfqLsrxpzRDXqTCznuCAhZmZmZmZmZmZVemffgfcTnZ8r1hbdxuZIuiLwLdqy+8ETiXrGlxHpnPaFvilpOuqdmV0ftUR3gIsC2wEHCtpQUlXdN8j63sa0msNjogdImJoWTdFf14JHJ0F/JusAbITWYtiCWA1MmBxCjBPWT+itu2xZbttSrCprUESM7Nu4ZRQZmZmZmZmZmYzmYjYGRgMnC1pXC3dTwBbkiP2LwO+L+l/ZZvhwLPAY2TKqCfL8o8Aq5IBiNeB0yS9VtaFmnQ+RcT8wJuS3u7mh9qnRcRWZLHrjwL7SjqjlXaDgF2BvYHdJN1ellfX9ZPAscD2wOaSro6IwZI+iIivA5eThbtXam2GhZlZT/AMCzMzMzMzMzOzmUhELA78gCyEvRhkup9acOE24P/IwMVatdH+z5Gd3kuQneOV9yTdAhwi6ShJr0XEwNaCFWVfLzhY0bqImD0iDgTOIWekjAO2LgXKm82yGEfOgNkLuLd2zao0Tv8B/kz2BW5QNvuwrLuCnIHxHQcrzKy3OWBhZmZmZmZmZtYPRURLw+8DACQ9DvwE+Aiwe5khMYmkF4ELgTfI1FCL1Nb9EPgPWcti3YbtxlfHkTShtWCFtclawGHA28AW5CyLNcl0W03rTJQg0GhJ79f/9hExS7n7cv22BKkGlvv7S7qvMRBiZtbT/CJkZmZmZmZmZtaP1AITVQBhxYgY0tDseuBGsh7FyqW9ah3WD5b16wBfbtj+SDLYMUe1XX3HHqXfJd4mg0arSrqeDFj8F9guIlaHqWdZVKrZFbX/gw/Lqq+V23urtpIm1LfztTOz3uaAhZmZmZmZmZlZP1J1OkfENhHxBHALcDNwcK3NM8BFwAfAARExd7VtmSHxCvACMBDYCliqtu3ZwFBJv+uZRzTzkXQrcISkZ8uiMWTapkWBHUr9iYlVcKJhW9WDDxGxSEScSF7HCyX9vpVjekaMmfU6ByzMzMzMzMzMzPqwKKr75XYbsoP7VeBWYEng+Iio1574E3Ap8BVg41K4uT5DYiLwN2B1YJeI+Fi1oaRXqjoV3fnYZmZV4fJyfzwZYPo7mSLqK9PZfHBELBwRBwFnkMGqm8nZMWZmMywHLMzMzMzMzMzM+qiIaFEREQPL7WDgALJ49g6SNgM2Bu4Hjo2IlcsI/FfI4tr/BL5LBiaIiEERsQWwd1l/IXBrY5Fs16noWaVw9snAXMCOETFfQxqvupOBR4HDgYWBXSRtLOnJnjtjM7P2C7+vmJmZmZmZmZn1bRGxJ1mL4j7geeCbwK6lgHbVZgfgNOCPwB6SXi0FmXcBTgLeJGdczE4WfR4DbNsYqLDeExEfB84FNgEOkHRaK+1WAbYmg1QXV7UqSlBrQrNtzMxmBA5YmJmZmZmZmZn1IaXGRFWfYEngt8DSwHigBXiPLNr8mZK6aZCkcRExL3AcsCOwDXClpAkl1dOOwIlAALMC1wF7Sfp34zGtd0XEmmTR9EfJgNKTEfEZYGlJl9TaDZI0rtx3oMLM+gQHLMzMzMzMzMzM+piI+DQwCPgasCVwFlmTYkfgW8AE4BuSbmvYbj3gHOC/wJaSnm/Y56eA1yX9vSxzoGIGExEfAY4ADgJGAY8BOwGrAF+WdGOtbYALaptZ3+GAhZmZmZmZmZlZHxIRKwN/Aa4A1gZ+KOmXZd3HgT2AY8jZFCdIeqsaYR8RQ4AfAIcBBwKnSRpfalqo4TgelT8DqV+jiFiKTO01NzCYnFEzUtKo3jtDM7POc9FtMzMzMzMzM7O+5RngBuDrwKvAr2FSAe43yEDGbeRsixUgC2SX2RLvAb8D7iWDGkuW9VONaHWwonMiYmBX7q8WrFgZ2BWYnwxWnA7MVwUrqlkVZmZ9kQMWZmZmZmZmZma9oKMdy6WQ9k+AN8hO68WrVeX2X2SKqLmAb0bEsIbtHwAuA24HXurIOVjrIk2anRIRIyJiaER8tFrfif2uBlwM7A2MJuuU7CPp3YhoaTZTxsysL3HAwszMzMzMzMysF9RGzM/agc3vBS4APgqsX/ZXzaKYCNwKXA5sBaxZOrIn1kb9nyFpwxL8sC5SBQzKtVgkIi4DbiGv122lhkhL1bY9+y7/L+8DfwW2krSepMciYkC57uMdrDCzvs41LMzMzMzMzMzMekHpsD4GmBU4VNIH7dx+aeAPwL+B3SU9VC+SHRFfBM4DHgf2lvR4k324TkUXi4gBwMHAj4DXgYeBd4GVgSHAgZLO7+i+60XQff3MrL/xDAszMzMzMzMzs96xMnAIsH57gxXFGOAUYBXg6xExa8Msir+R9SzWBYY324E7u7tWRAwCdgf2B64EdgY2kbQ5sCYwENg1ItYo7dvVN1cLRg0ov/v6mVm/4hkWZmZmZmZmZmbdqHFUfG35QOBusjD2WpLubG8NgogYTgYl5gK+I2l0w/pFgRZJYzr1IKxNImJesgj6BGBfSc+W5esDPwU+W9adA+wv6QPXnTAzm8wzLMzMzMzMzMzMukFVo6DMevhow7oqlc8lZdHapW17O66fB04GFgK2iIh5yv6rEfhPSBpT6hx0qNizTSkiWlpbJ+kl4ERJm0l6NiKGRcSlwA3AB8A+wCPAFsDGbTxe1O63RMQsnXoAZmYzMAcszMzMzMzMzMy6Qa2o9qHAQxGxZfk9aql8/g68CSwREYM7eIwbgKvJVETrluUTG9pN9Cj+zqkFgcaX3zeNiHUjYumGgNSdZf1nyYDUhsCJwM6STgdOB+YGto+I+SSpWWqoWsCr+j9aBjgA2Ki9qaTMzPoKv7iZmZmZmZmZmXWTiFibLKz9KeDMiFiVKftj/ld+NgAGlW3aNRNC0mtkJ/gFwE1dcNoztYhYLSKGlvuTrlWtfsQ2EfEMcDn5934AuCoiPlFvRwYq1gSOBY6W9GBZPmu5XRHYvGGbSWqBiuERsStwFnACsBTg2TJm1i85YGFmZmZmZmZm1kmtjXiXdBvwGPBP4EXgImDT2vrHgIeBeerLO+BPknaS9KpTP3VcRBxCzpDYFaYscl3SMR0GnAs8BfyAnNFyBrA6cH5ELFvaDwK2BV4DzpL0du0wswL3k4XQD4yIEbXj19M/fTwiNgNOBX4BDAHWlXS0i22bWX/lgIWZmZmZmZmZWSeVOhWTagtEGlh+vQKYgxxNPxE4MSK+WNv84nK7akTM0pHUTbXR+AOc+qlTrgGeA8Y2mV0xHNgDuIcsmP0TSX8CDgfOBNYD9o2IoZLGkbUqBgErwaT6E18DfkQGIPYBjpf0TO04Ku1WA44GLgS+AOwlaelyPDOzfqvVIkFmZmZmZmZmZtZcqUOh2u97ADtHxJGSrgHqdSruB4aSHd5bkiP0L4qIjcl0QmPI4tlLAIOBDzt6Hs1SC1nblQLlK0oa22T19sD8wFaSHgKIiKWAjcgi2gBjJI0tMyWuAb4GjIqIq4A5yaDGI8DNkp5uPEBELEz+j+wKjCBTfR1YAiBmZv2eZ1iYmZmZmZmZmbVRmTkxoCFYMS+wCLA8cHpELNYQOHicrFOxhaQHgL2At8maE18k0ws9S6YXmqp2wrTUZlbMFxHzdPLhGVACDutExJ0RsSFAmS2zIFkg/emImDMidgZ+CRxPXuNFJZ1U9iHgOjJt1AhgP2AH4FFgm2bBimIjcmbFU8BikvZxsMLMZiYOWJiZmZmZmZmZtZHSxIhYIiLOLsteknQQWWvgk8B5EbFWbZuHyRoWy0XE3JLuArYG5iXrHwwDbijNtynbtDpToqHOwcciYgPgV+W4A1vbztplQWA1YIuImL3MlvkQmJ1M5XQGWQR7PmATSV+S9CRARMwTEYMkvSfpVGBp4CvAGpI2lfRsY0Cqdk2vAdaRtJ6kf/XEAzUzm5E4YGFmZmZmZmZm1g4RcTQ5Un7niNivtmokmcJneeCkiFi9tu43ZflcAJLuB/YGZgF+B/y7tFsqIuZs5bhRtlUpAr1iOeZF5EyNe12MuctcAPyBDCxtVpZdCYwHDiYLpB8kaWFJ11UbRUQLcDlZ66JK2fWEpNHlmhMRAxsDUtVMGUnPSrqjex+amdmMywELMzMzMzMzM7P2GVpu3wCOjYjZASS9ARwH/IwstHxORHyitH0UeBf4Rm0/lwN7kqP5jwM+ABYmCzVPpZb+aWFgX7JT/WAy9dAwSUd20eOb6ZW/9VHAEGCHiJgfeJAMYrQAh0kaVd8mIpYjg0crAK/V9tO4bweVzMxa4YCFmZmZmZmZmVlNPeVSk3UDgBeB/5IFs4cAJ1bbSXpB0qHAJcDiZJqmZYF/AM8BK0XEx2FSeqnrydoGHyULbq8ELNDKsYdGxDZk3YSfAq8Dy0vaSdKbnXzY1kDSPcAvyELZW0l6mUwD9QZwaETsVWqHLBoRewOjgA2AU4Creueszcz6NgcszMzMzMzMzMyKkq5nqlHxZV2UVD7PksGFi8ggxK4RsVRJ1TRraf49sq7EusBpwEDg98AyZN2DSSTdBBwO3ARsL+m+JsdejOwsPwf4DLCdpNVKEW/rPscBLwO7RMTSkv5ApntqIWuWPArcS86qGQ7sKOkwSW/11gmbmfVl0cp7sJmZmZmZmZnZTKnMojga+BMwWtKEiBhQ1R2IiMWBMWQh5bnI1Ey3SvpiWR8leLEAcBiwG3AbGXC4GPiSpJtLgeyqiPcgSeNq5xD1wElEDCFndZxZZnBYD4mIA4CTyRkU3y3/D0sAGwEjgHHAQ5LOr20z6f/FzMzazgELMzMzMzMzM7MiItYmZzq0AC8Av5Y0sqHNZ8kAxEXAAcCdwKrAFpKuqAcfSvDjWmBD4AlgUeBCSTu2cvyBjTUOIqJF0viIGCLpvS58uNYGJVh0Fzkz5tsljVd9fT2Y1SJpfC+cpplZv+CUUGZmZmZmZmY2U2qlVsVzZLDiLXLk/B4RcU5EDKsaSHqELKo8vMyC+ElZ9dOyflykgaUj+2DgfDJYAbBiRAxvdk7NCjJXHeAOVvSO8ncfCQwDdouIuSD/f6o0YbX7DlaYmXWCAxZmZmZmZmZmNlMpqZgoaZsG1Za3SHoKOB6YDXgcOAn4NnBRRHyutpu/AcuW/VwJXAYsGBFVuqYBVfBB0hiyRsV1Zd0PJT3XTQ/PuoGka8mZNMsC9aLparxvZmYd55RQZmZmZmZmZjZTaFIX4gTgI8DRkl6sUvuUgMZ/gXmANYAFgTOA14FdS/2Jk8lAxvqS/hYRy5FpooYA80sa25jeqRTk/sAd231TRAyT9GJvn4eZWX/mGRZmZmZmZmZm1q+VbD0DqkBBRGwbEc8D3wUmABMBSrCipQQZDiqbHy7pEuDrZIqoyyLi28DtwOzA+2Xb+4HTgIHACWXbxsDEB2VWR0t3PVbrPlWwwtfPzKz7eIaFmZmZmZmZmc0UImIZ4BfAysAtwDnAaEljW2l/N/B54DuSfhURSwKnAOsCfwLWAXaWdG5pPxS4FVgSWEvSnd37iMzMzPoXz7AwMzMzMzMzs34tIloi4kzgfmAuYB9gb0mXVsGKqgB3mY1RjaDfr9x+r6QDGkOmgTqJDFa8C1TbDSj7OrtsM3cPPDQzM7N+xTMszMzMzMzMzKxfi4h5gAuBDYAfSDq+SZs5Jb1W+72qZ3EB8A3gBEmH1tbvBowF/iTptXp9jIgYJGlcNz8sMzOzfscBCzMzMzMzMzPr9yJiTeBaMpXTXsBbwIbAmuRsibeAu4DfliLaAyVNiIh5gReAd4A1JT1U9jdA0sQmx4mqToWk8T3y4MzMzPoJByzMzMzMzMzMrE+rggvTaTMEOJYMVhwNDCPTO70FvALMUZa9AGwO3FubMfGDss0lkrbrpodhZmY203PAwszMzMzMzMz6pIY0TIOBrYA/ShrbbAZEKZp9LfBp4D3gZGAUILIexQnA7uQsjD0lPV3b9hlgQeCrkq5pS5DEzMzM2sdFt83MzMzMzMysT6oFK7YCXgLOBbYs66ZK1wT8C/gZ8DiwoaSRkl4FXpf0AVlM+1JgfWDpsu/BZdsDy+3hJRjiYIWZmVkXc8DCzMzMzMzMzPqkiJg9Ig4EzgFagHHA1hGxWFk/Rb9HKYR9JZkW6t6IiLJc5fY/wJ/J/pINymYflnVXAKcA32klGGJmZmad5ICFmZmZmZmZmfVVawGHAW8DWwBnk0W0t4XmsywkvSBptKT3VcuTHRGzlLsv129LAe2B5f7+ku5rDISYmZlZ1/AbrJmZmZmZmZn1VW8DFwKrSrqeDFj8F9guIlaHqWdZVKrZFdV6SR+WVV8rt/dWbevpn0rdDM+wMDMz6wYOWJiZmZmZmZlZnyTpVuAISc+WRWPItE2LAjtExGBJE6vgRMO2qgcfImKRiDiRLNx9oaTft3JMNVtuZmZmnRd+nzUzMzMzMzOz/iIiPglcBXwK2E3S70pgYqoOkIiYFfgk8FWyZsV6wPXAvpKe7LGTNjMzM8AzLMzMzMzMzMysHymFs08G5gJ2jIj5ymyKZn0gJwOPAocDCwO7SNrYwQozM7Pe0dLbJ2BmZmZmZmZm1sWuJ2dZbEIW4z6tlboTFwIfAvcDF1e1KiJiYL1uhZmZmfUMp4QyMzMzMzMzs34nItYkAxePAttKejIiPgMsLemSWrtBksaV+w5UmJmZ9SLPsDAzMzMzMzOz/ujvwJnAQcBeEfEYsBOwSkS8KulGAEnjqqLcDlaYmZn1Ls+wMDMzMzMzM7N+o15gOyKWAv4IzA0MBt4GRkoa1XtnaGZmZq3xDAszMzMzMzMz6zVdnYapFqxYGdgemL+sOh04RNK7Zf2kwIaZmZnNGBywMDMzMzMzM7MeV9IwDagVuh4BvAO8K+mdjgYUyn5XBS4APg2MBvaW9FhZ3wJMcLDCzMxsxjOgt0/AzMzMzMzMzGYuVTBC0oSIWCQiLgNuAe4FbouI9SiDLKv6Em1VAhHvA38FtpK0nqTHImJARAyQNN7BCjMzsxmTa1iYmZmZmZmZWY+LiAHAwcCPgNeBh4F3gZWBIcCBks7v6L4lTaz93qVpp8zMzKx7OCWUmZmZmZmZmfWoiBgEfAfYH7gSuAgYLWl8RHwKuB/YNSKelHRnYwBieqq21XYOVpiZmfUNTgllZmZmZmZmZj1tTmAjMm3TjyTdWIIV6wPXALMDnwe2j4jBkia2NzUUTA5cmJmZWd/ggIWZmZmZmZmZdblS3LopSS8BJ0raTNKzETEsIi4FbgA+APYBHgG2ADZu4/Gidr8lImbp1AMwMzOzHueUUGZmZmZmZmbWZWppmMaX3zcF3gHGAk9Keqc0vbOs/yxwGrACcCLwW0kPRsSHwC/JWRZ3Sfpfs9RQtQLeKr8vA3wJeCIirvEsCzMzs77DMyzMzMzMzMzMrN0iYrWIGFruT+pfqNWP2CYingEuB24CHgCuiohP1NsBGwJrAscCR0t6sCyftdyuCGzesM0ktUDF8IjYFTgLOAFYCmh3GikzMzPrPQ5YmJmZmZmZmVm7RMQh5AyJXWHKItclHdNhwLnAU8APgHWBM4DVgfMjYtnSfhCwLfAacJakt2uHmZUsvj0cODAiRtSOX0//9PGI2Aw4FfgFMARYV9LRLrZtZmbWtzgllJmZmZmZmZm11zXAnsDYepqmUhx7IWAP4B5gf0kPAUTEQ2R9igOAfSPiEEljI+IRYGFgJeCGUvtiE+BHwEHALMCHkp6pDi5Jpd3nyYDHjsBEYC9JZ3b/wzczM7Pu4ICFmZmZmZmZmbWLpDERsaKksU1Wbw/MD2xVC1YsBWxEFtEGGFOCFUEGP74GjIqIq4A5gfXIots3S3q68QARsTCwJTnDYwRwOnCgpHFd9yjNzMyspzkllJmZmZmZmZm1Wwk4rBMRd0bEhgARMRBYEHgTeDoi5oyIncni2ccDjwOLSjqp7EPAdWTaqBHAfsAOwKPANs2CFcVGwNFkyqnFJO3jYIWZmVnf5xkWZmZmZmZmZtZRCwKrAVtExJ8lvRkRHwKzA/sAnwK2Ap4BNpF0XbVhRMwDvCHpPeDUiPgjWa/iNUn3lzaT0k2V36MEOa4BHpB0R488SjMzM+sRke/zZmZmZmZmZmbtU1I6XQt8AdhD0oURsS5wfWkyDjhM0qiG7VqAm4ErJJ1SC0TU2wx00WwzM7OZi1NCmZmZmZmZmVmHlCDDUcAQYIeImB94EPgDmdWhWbBiOeAiYAXgtdp+GvftYIWZmdlMxgELMzMzMzMzM+swSfcAvyALZW8l6WXgLOAN4NCI2Csi5ouIRSNib2AUsAFwCnBV75y1mZmZzYicEsrMzMzMzMzMOiUiFgDuA14CtpP0UERsA5wOzAm8DgTwMeA5YH9J1/TS6ZqZmdkMygELMzMzMzMzM+u0iDgAOJmcQfFdSRMiYglgI2AEWc/iIUnn17aZoqi2mZmZzdwcsDAzMzMzMzOzTouIIcBdwHzAtyVd37B+UnAiIlokje+F0zQzM7MZmGtYmJmZmZmZmVmnSXoPGAkMA3aLiLkAopA0sXbfwQozMzObimdYmJmZmZmZmVmXiYjbgQWBdSQ93dvnY2ZmZn2HAxZmZmZmZmZm1mUiYpikF3v7PMzMzKzvccDCzMzMzMzMzLqc61SYmZlZezlgYWZmZmZmZmZmZmZmvc5Ft83MzMzMzMzMzMzMrNc5YGFmZmZmZmZmZmZmZr3OAQszMzMzMzMzMzMzM+t1DliYmZmZmZmZmZmZmVmvc8DCzMzMzMzMzMzMzMx6nQMWZmZmZmZmZmZmZmbW6xywMDMzMzMzMzMzMzOzXueAhZmZmZmZmZmZmZmZ9ToHLMzMzMzMzMzMzMzMrNc5YGFmZmZmZmZmZmZmZr3OAQszMzMzMzMzMzMzM+t1DliYmZmZmZmZmZmZmVmvc8DCzMzMzMzMzMzMzMx6nQMWZmZmZmZmZmZmZmbW6xywMDMzMzMzMzMzMzOzXueAhZmZmZmZmZmZmZmZ9ToHLMzMzMzMzMzMzMzMrNc5YGFmZmZmZmZmZmZmZr3OAQszMzMzMzMzMzMzM+t1DliYmZmZmZmZmZmZmVmvc8DCzMzMzMzMzMzMzMx6nQMWZmZmZmZmZmZmZmbW6/4fmpvLLocL9HcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXxU1f3/8dfJvkCAsAjBYFhTF6CBsoMEXFjc0FqVsoOK+sNvEVA2vyoK2IogYEVpLYnVVqSIVItVKzKACIr0i4ioIFsAWcOakIVkzu+PSYZM9oRJJgnv5+Mxj5k599xzzs0dQu79zDkfY61FRERERERERERERETEl/x8PQAREREREREREREREREFLERERERERERERERExOcUsBAREREREREREREREZ9TwEJERERERERERERERHxOAQsREREREREREREREfE5BSxERERERERERERERMTnFLAQERERERERERERERGfU8BCRERERERERERERER8TgELERERERERERERERHxOQUsRERERERERERERETE5xSwEBERERERERERERERn1PAQkREREREREREREREfE4BCxERERERERERERER8TkFLERERERERERERERExOcUsBAREREREREREREREZ9TwEJERERERERERERERHxOAQsREREREREREREREfE5BSxERERERERERERERMTnFLAQERERERERERERERGfU8BCRERERERERERERER8rkYGLIwxTY0x440xnxhjkowxmcaYI8aYd40xXYrYJ8IYM88Ys98Yk2GM2WeMmWOMqVWO/vsZY9YaY84ZY84aY9YYY2649CMTERERERFfMcaE5FwzrDPG/GyMSc+5zthgjBlljAksZJ8yXWcYY/yMMY8aY741xqQZY44bY942xrSo+CMUEREREfEtY6319Ri8zhjze2AysBtwAMeB1sAgwAC/tda+k6d+OPA58EvgE+D/gDjgZmAzcL21Nr2UfQ8F3szpM7ePe4EGwD3W2uWXdHAiIiIiIuITxpgGwAHgK2Anrr/56wEDgKtwXUsMsNY6c+qX+TrDGPNn4H7gO2AVEAXcA6QAXa21uyr0IEVEREREfKimBizuApKttWvzlfcCVuP6Y7+JtTYjp3wG8BTwB2vtlDz1cwMf06y1z5ei33rAHiALiLPWHswpvxLXxQlAC2vtuUs8RBERERERqWTGGD8gwFqbma88APgPEA/caq1dlVNepusMY0wf4DNgHXBTbj/GmAHAh8An1tp+FXeEIiIiIiK+VSOXhLLWrsgfrMgpXw+swfUtqLYAxhiD6xtMKcBz+XZ5Lqf8/lJ2/RugLvBybrAip9+DwB9xzbK4syzHIiIiIiIiVYO11pk/WJFTngW8l/O2FZT7OuOBnOf/zduPtfbfuGaO32yMaXaJhyEiIiIiUmUF+HoAPnAh5zkr57k1rmnWH1trU/NWtNamGmM2AP2MMdHW2gMltB2f8/xJIds+Bp4BegN/Le1gc2ZnFCcI+AVwDNeU9OzSti0iIiIilzV/oGHO629zZx9L2eXMvOif83Z7znN5rjPigVRgQyHdfJyzvTeuJWhLOzZdT4iIiIhIRaiQ64nLKmCR822kG4HDwLc5xa1znotaC3YX0C+nXkkBi+La2pWvTmmV1KeIiIiIyKXqBHzt60FUF8aYIGAarvx49YEbcN30T7DWrs6pVqbrjJx8F02A7dbawoIGup4QERERkarKa9cTl03AwhgTiOubSMHA5DwXAXVyns8UsevZfPWKU1xbZWlHRERERESqriDg6TzvLfAiMDVPWVmvM7x5XSIiIiIiUi1dFgGLnCnaicD1wJ+ttaWeQl0FRJewvSmwCeA///kPV111VcWPSC5ZRkYGX375JQBdunQhODjYxyOSkuicVU86b9WTzlv1o3NWPe3fv5+bbrop9+1xX46lurHWpuBKU+GHa9mn24DZQDdjzEBr7dliG6hcpb6eWLduHY0bN674EYmIiIhItXfkyBGuv/763Ldeu56o8QGLnIuIJcBvgbeAh/JVyf0GU1HfVIrIV684edtKvoR23PIm7y6MK5efy1VXXUXr1mWdIS6+kJaWxu7duwFo2bIloaGhPh6RlETnrHrSeauedN6qH52zGkF5C8rBWusEDgKvGmNOAMuA6cBkyn6d4c3rkrxjLPX1RPPmzbnyypJSXoiIiIiIkP+6z2vXE37eaqgqyglWJAAjgLeBkTkXFXmVtBZsSWvPlratsrQjIiIiIiLVyyc5z/E5z2W6zshJzH0YaG6M8S+pvoiIiIhITVRjAxZ5ghXDgXeAYcUkr/sZ6JGT6C5vG+FAD2CvtbY0yerW5jzfXMi2fvnqiIiIiIhIzRGV83wh57k81xlrgdxt+eVeT6zz2ohFRERERKqYGhmwyLMM1HDgH8DQIoIVWGst8DpQC/jffJv/N6f8z/naDzPG/MIY0yxf/WW4pmg/aoy5Mk/9K4FxwAngvfIel4iIiIiI+I4x5hpjTFgh5WHAvJy3H0L5rjOAP+U8P2eMCcrT/gBcMzc+sdbuv8TDEBERERGpsmpqDouncC0DlQLsBJ7MuzZrjpXW2q05r18A7gAmG2PigP8CHXDNlNgMzM+3b2dgDa5vQMXnFlprTxljxgFvAv81xryTs+leoD5wr7X23KUfXtlYazlx4gSpqalcuHCh5B2kwjmdTurXrw9AUlISfn41MnZYo3j7nAUGBhIeHk6DBg0o5PeTiIiIVE33ABOMMZ8D+4CzuJJWD8D19/564KU89ct0nWGtXWOMeR24H9f1xCqgCa7riZPAoxV1YCIiIiIiVUFNDVjE5DzXwpX0rjD7gK3gWi/WGNMbeAb4NdAH1/qxc4EZ1tq00nZsrX0rJ+HeNGAUYIEtwExr7adlPI5LZq3l6NGjnDp1qrK7lmJYa92JabKzs3E686dWkarG2+csKyuLtLQ0srOzueKKKxS0EBERqR7+hWvpp+5AN1zXG2eAbcBSYIm1Niu3cjmvM8YC3wIPAr/D9SWs94Dp1trdFXNYIiIiIiJVQ40MWFhrRwIjy7jPGeCxnEdJdR1AkXcXrbUfAR+Vpf+KcuLECY9ghb+/v26MVhG55yEgoEb+M6yRvHXOrLVkZ7tWqTt16hT+/v40bNjwkscnIiIiFcta+zXwdRn3KfV1Rk59J7Aw5yEiIiIiclnRndIaLjU11f26SZMm1K1b13eDETen08nZs2cBiIiI0JJQ1YC3z9np06c5fPgw4Pp3qoCFiIiIiIiIiIhc7nSXtIbLzVnh7++vYIVIFVK3bl38/f0B1/JQIiIiIiIiIiIilzsFLC4TWgZKpOrJ/XdprfXxSERERERERERERHxPAQsREREREREREREREfE5BSykSoqPj2f8+PG+Hka1tHLlSlq1aoW/vz/jx48nMTGx0pYDi4mJYf78+ZXSV2kkJyfTqFEj9u3bV+l9d+3alXfffbfS+xUREREREREREamuFLCQKmnFihU899xzldbfunXruO2224iKisIYw8qVKwvUGTlyJMYYj0f//v096uSWb9q0yaM8IyOD+vXrY4zB4XAAcNNNN/HYY4951HvttdcwxpCYmFig7169epXqWMaOHcvdd9/NgQMHKuxnWFQQZPPmzTz44IMV0md5zJo1izvuuIOYmBgAvvnmGwYPHkx0dDShoaFcffXVLFiwoMztlubz8uSTTzJlyhScTuclHoWIiIiIiIiIiMjlQQELqZIiIyOpXbt2pfWXmppK+/bteeWVV4qt179/fw4fPux+vP322wXqREdHk5CQ4FH23nvvUatWLY+ynj17smHDBo+yNWvWEB0d7Q5q5HI4HPTt27fE40hJSeHYsWP069ePqKioSv0ZAjRs2JCwsLBK7bMo58+f5y9/+Qtjxoxxl23ZsoVGjRrx1ltv8d133zF9+nSmTp3KH//4xzK1XZrPy4ABAzh37hz//ve/y30MIiIiIiIiIiIilxMFLKRKyr8kVEZGBpMmTaJp06aEh4fTpUsXj5v6ycnJDB48mKZNmxIWFkbbtm0LDSYUZcCAAcycOZM777yz2HrBwcE0btzY/ahXr16BOiNGjGDp0qWkpaW5y5YsWcKIESM86vXq1Ytdu3Zx5MgRd9natWuZMmWKx7Ht3buX/fv306dPn2LH5nA43AGKvn37eszmyO/VV1+lZcuWBAUFERsby5tvvumxfd68ebRt25bw8HCio6N55JFHSElJcfczatQozpw5455R8swzzwAFl4QyxvD6669z5513EhYWRuvWrXn//fc9+nr//fdp3bo1ISEh9OnThzfeeANjDKdPny72eEvy4YcfEhwcTNeuXd1lo0ePZsGCBfTu3ZsWLVowdOhQRo0axYoVK8rUdmk+L/7+/gwcOJClS5eW+xhEREREREREREQuJwpYSLUwbtw4Nm7cyNKlS9m2bRu/+c1v6N+/P7t27QIgPT2djh07smrVKrZv386DDz7IsGHD+Oqrr7w6DofDQaNGjYiNjeXhhx8mOTm5QJ2OHTsSExPjzl+QlJTEunXrGDZsmEe9Ll26EBgYyJo1awDYsWMHaWlpjBkzhuTkZPbu3Qu4Zl2EhITQrVu3YsfWvXt3fvzxRwDeffddDh8+TPfu3QvUe++99/jd737HxIkT2b59O2PHjmXUqFHucQD4+fmxcOFCvvvuO9544w0+++wznnjiCXc/8+fPJyIiwj3TZNKkSUWOa8aMGdxzzz1s27aNgQMHMmTIEE6ePAm4gjF33303gwYN4ptvvmHs2LFMnz692OMsrfXr19OxY8cS6505c4bIyEiv9Jlf586dWb9+fYW0LSIiIiIiIiIiUtME+HoA4juvr9/D6+v3lljvuqYRvD6ik0fZ/W9sZvuhsyXue3+v5tzfq0W5xwiuG/4JCQkkJSURFRUFwKRJk/joo49ISEhg9uzZNG3a1OOm+aOPPsrHH3/MsmXL6Ny58yX1n6t///7cddddNG/enN27dzNt2jQGDBjAxo0b8ff396g7evRolixZwtChQ0lMTGTgwIE0bNjQo054eDgdOnRg7dq1DBkyBIfDQc+ePQkODqZ79+44HA6aN2+Ow+GgW7duBAcHFzu+oKAgGjVqBLiW1GrcuHGh9V588UVGjhzJI488AsCECRPYtGkTL774onsWR97ZLTExMcycOZOHHnqIRYsWERQURJ06dTDGFNlHXiNHjmTw4MEAzJ49m4ULF/LVV1/Rv39/Fi9eTGxsLHPmzAEgNjaW7du3M2vWrBLbLcn+/fvdn5eifPHFF7zzzjusWrXqkvsrTFRUFAcOHMDpdOLnp/iwiIiIiIiIiIhIcRSwuIydS8/iyNn0Eus1qRtSoCw5NbNU+55LzyrX2PL69ttvyc7Opk2bNh7luYmsAbKzs5k9ezbLli3j0KFDZGZmkpGR4dV8Cvfdd5/7ddu2bWnXrh0tW7bE4XBwww03eNQdOnQoU6ZMYc+ePSQmJrJw4cJC2+zZsycffPAB4Jq9ER8fD0Dv3r3dSy85HA4eeOABrx3H999/XyAxdo8ePTyST3/66ac8//zz/PDDD5w9e5asrCzS09M5f/58mX+m7dq1c78ODw8nIiKCY8eOAfDjjz/SqZNnMKykANNDDz3EW2+95X6fu1RVfmlpaYSEFPzs5tq+fTt33HEHTz/9NDfffHOJx1EeoaGhOJ1OMjIyCA0NrZA+REREREREREREagoFLC5jtUMCaBxR9A3dXPXDgwotK82+tUMu/SOWkpKCv78/W7ZsKTCTITeR9Zw5c1iwYAHz5893514YP348mZmZl9x/UVq0aEGDBg346aefCgQs6tevz6233sqYMWNIT093J2DOr1evXsydO5dDhw7hcDjcs0R69+7N4sWL2b17NwcOHChVwm1v2bdvH7feeisPP/wws2bNIjIyks8//5wxY8aQmZlZ5oBFYGCgx3tjDE6ns9zje/bZZ4tdgipXgwYNOHXqVKHbduzYwQ033MCDDz7Ik08+We6xlOTkyZOEh4crWCEiIiIiIiIiIlIKClhcxu7v1aLcyzXlXyKqIsXFxZGdnc2xY8fo1atXoXU2bNjAHXfcwdChQwFwOp3s3LmTa665psLGdfDgQZKTk2nSpEmh20ePHs3AgQOZPHlygUBLrs6dOxMUFMSiRYvceTgAOnXqxPHjx1myZAnh4eFeW9YK4Oqrr2bDhg0eScA3bNjg/llt2bIFp9PJ3Llz3csYLVu2zKONoKAgsrOzL3kssbGxfPjhhx5lmzdvLnafRo0auZe+Kk5cXJzHTIxc3333HX379mXEiBFeWXqqONu3bycuLq5C+xAREREREREREakpFLCQKq9NmzYMGTKE4cOHM3fuXOLi4jh+/DirV6+mXbt23HLLLbRu3Zrly5fzxRdfUK9ePebNm8fRo0dLHbBISUnhp59+cr/fu3cvW7duJTIykmbNmpGSksKMGTP49a9/TePGjdm9ezdPPPEErVq1ol+/foW22b9/f44fP05ERESR/YaGhtK1a1defvllevTo4Q5sBAUFeZTnn6VwKR5//HHuuece4uLiuPHGG/nggw9YsWIFn376KQCtWrXiwoULvPzyy9x2221s2LCB1157zaONmJgYUlJSWL16Ne3btycsLKxcy2+NHTuWefPmMXnyZMaMGcPWrVtJTEwEXDMxLkW/fv2YOnUqp06dol69eoArgNC3b1/69evHhAkTOHLkCAD+/v4FcowUJyUlhT179rjf5/+85Fq/fn2FLTclIiIiIiIiIiJS0ygLrFQLCQkJDB8+nIkTJxIbG8ugQYPYvHmz++bwk08+SYcOHejXrx/x8fE0btyYQYMGlbr9r7/+mri4OPe34SdMmEBcXBxPPfUU4LqhvW3bNm6//XbatGnDmDFj6NixI+vXry8yGbYxhgYNGhAUVHBJrbzi4+M5d+6cO39Frt69e3Pu3Dl3ImxvGTRoEAsWLODFF1/k2muvZfHixSQkJLj7b9++PfPmzeMPf/gD1113HX/72994/vnnPdro3r07Dz30EPfeey8NGzbkhRdeKNdYmjdvzvLly1mxYgXt2rXj1VdfZfr06QAlJhkvSdu2benQoYPH7JDly5dz/Phx3nrrLZo0aeJ+5M2jsW/fPowxOByOItsu6fMCcOjQIb744gtGjRp1ScchIiIiIiIiIiJyuTDWWl+PQS6BMeZK4ADAzp07ad26tcf2Xbt2kZWVRUBAQIFt4jtOp5OzZ88CEBER4V56SWDWrFm89tprHDhw4JLbWrVqFY8//jjbt28v9c94zZo13HXXXezZs8c9MwPKfs4mT57MqVOn+NOf/lRkHf37rHhpaWl88sknANx8883KJ1JN6LxVPzpn1dOuXbto06ZN7ttoa+1BX45HfCPv9cSBAwe48sorfTwiEREREakODh48SHR0dO5br11PaEkoEfGpRYsW0alTJ+rXr8+GDRuYM2cO48aN80rbt9xyC7t27eLQoUN5f4EW68MPP2TatGkewYryaNSoERMmTLikNkRERERERERERC4nClhIjZeUlFRsLosdO3Z45B2oygYMGMD69esL3TZt2jSmTZtWySO6dLt27WLmzJmcPHmSZs2aMXHiRKZOneq19sePH1+m+nPmzPFKvxMnTvRKOyIiIiIiIiIiIpcLBSykxouKimLr1q3Fbq8uXn/9ddLS0grdFhkZWcmj8Y6XXnqJl156ydfDEBERERERERERER9TwEJqvICAAFq1auXrYXhF06ZNfT0EERERERERERERkQqhTL8iIiIiIiIiIiIiIuJzCliIiIiIiIiIiIiIiIjPKWAhIiIiIiIiIiIiIiI+p4CFiIiIiIiIiIiIiIj4nAIWIiIiIiIiIiIiIiLicwpYSJUUHx/P+PHjfT2MamnlypW0atUKf39/xo8fT2JiInXr1q2UvmNiYpg/f36l9FUaycnJNGrUiH379lVqv5mZmcTExPD1119Xar8iIiIiIiIiIiLVmQIWUiWtWLGC5557rtL6W7duHbfddhtRUVEYY1i5cmWBOiNHjsQY4/Ho37+/R53c8k2bNnmUZ2RkUL9+fYwxOBwOAG666SYee+wxj3qvvfYaxhgSExML9N2rV69SHcvYsWO5++67OXDgQIX9DIsKgmzevJkHH3ywQvosj1mzZnHHHXcQExMDwDfffMPgwYOJjo4mNDSUq6++mgULFpS53RkzZhT4LPziF79wbw8KCmLSpElMnjzZW4ciIiIiIiIiIiJS4ylgIVVSZGQktWvXrrT+UlNTad++Pa+88kqx9fr378/hw4fdj7fffrtAnejoaBISEjzK3nvvPWrVquVR1rNnTzZs2OBRtmbNGqKjo91BjVwOh4O+ffuWeBwpKSkcO3aMfv36ERUVVak/Q4CGDRsSFhZWqX0W5fz58/zlL39hzJgx7rItW7bQqFEj3nrrLb777jumT5/O1KlT+eMf/1jm9q+99lqPz8Lnn3/usX3IkCF8/vnnfPfdd5d8LCIiIiIiIiIiIpcDBSykSsq/JFRGRgaTJk2iadOmhIeH06VLF4+b+snJyQwePJimTZsSFhZG27ZtCw0mFGXAgAHMnDmTO++8s9h6wcHBNG7c2P2oV69egTojRoxg6dKlpKWlucuWLFnCiBEjPOr16tWLXbt2ceTIEXfZ2rVrmTJlisex7d27l/3799OnT59ix+ZwONwBir59+3rM5sjv1VdfpWXLlgQFBREbG8ubb77psX3evHm0bduW8PBwoqOjeeSRR0hJSXH3M2rUKM6cOeOeXfDMM88ABZeEMsbw+uuvc+eddxIWFkbr1q15//33Pfp6//33ad26NSEhIfTp04c33ngDYwynT58u9nhL8uGHHxIcHEzXrl3dZaNHj2bBggX07t2bFi1aMHToUEaNGsWKFSvK3H5AQIDHZ6FBgwYe2+vVq0ePHj1YunTpJR2HiIiIiIiIiIjI5UIBC6kWxo0bx8aNG1m6dCnbtm3jN7/5Df3792fXrl0ApKen07FjR1atWsX27dt58MEHGTZsGF999ZVXx+FwOGjUqBGxsbE8/PDDJCcnF6jTsWNHYmJiePfddwFISkpi3bp1DBs2zKNely5dCAwMZM2aNQDs2LGDtLQ0xowZQ3JyMnv37gVcsy5CQkLo1q1bsWPr3r07P/74IwDvvvsuhw8fpnv37gXqvffee/zud79j4sSJbN++nbFjxzJq1Cj3OAD8/PxYuHAh3333HW+88QafffYZTzzxhLuf+fPnExER4Z5dMGnSpCLHNWPGDO655x62bdvGwIEDGTJkCCdPngRcwZi7776bQYMG8c033zB27FimT59e7HGW1vr16+nYsWOJ9c6cOUNkZGSZ29+1axdRUVG0aNGCIUOGkJSUVKBO586dWb9+fZnbFhERERERERERuRwF+HoA4kNf/BE2Fr8EEgBN2sNv831L/O/3weFvSt632/+D7uPKN74cSUlJJCQkkJSURFRUFACTJk3io48+IiEhgdmzZ9O0aVOPm+aPPvooH3/8McuWLaNz586X1H+u/v37c9ddd9G8eXN2797NtGnTGDBgABs3bsTf39+j7ujRo1myZAlDhw4lMTGRgQMH0rBhQ4864eHhdOjQgbVr1zJkyBAcDgc9e/YkODiY7t2743A4aN68OQ6Hg27duhEcHFzs+IKCgmjUqBHgWlKrcePGhdZ78cUXGTlyJI888ggAEyZMYNOmTbz44ovuWRx5Z7fExMQwc+ZMHnroIRYtWkRQUBB16tTBGFNkH3mNHDmSwYMHAzB79mwWLlzIV199Rf/+/Vm8eDGxsbHMmTMHgNjYWLZv386sWbNKbLck+/fvd39eivLFF1/wzjvvsGrVqjK13blzZxITE4mNjeXw4cPMmDGDXr16sX37do9luKKioti/f3+5xi8iIiIiIiIiInK5UcDicpZxDs79XHK9Ok0Llp0/Ubp9M86VfVz5fPvtt2RnZ9OmTRvPpnMSWQNkZ2cze/Zsli1bxqFDh8jMzCQjI8Or+RTuu+8+9+u2bdvSrl07WrZsicPh4IYbbvCoO3ToUKZMmcKePXtITExk4cKFhbbZs2dPPvjgA8A1eyM+Ph6A3r17u5decjgcPPDAA147ju+//75AYuwePXp4JJ/+9NNPef755/nhhx84e/YsWVlZpKenc/78+TL/TNu1a+d+HR4eTkREBMeOHQPgxx9/pFOnTh71SwowPfTQQ7z11lvu97lLVeWXlpZGSEhIke1s376dO+64g6effpqbb765xOPIa8CAAfj5uSaotWvXji5dunDVVVexbNkyj5wZoaGhnD9/vkxti4iIiIiIiIiIXK5qZMDCGDMU6AV0BNoCQcAoa21iIXVtKZpsZq09UIp+9wFXFbF5rbU2vhR9VZ7g2lC7+G+gAxDWoPCy0uwbfOlJn1NSUvD392fLli0FZjLkJrKeM2cOCxYsYP78+e7cC+PHjyczM/OS+y9KixYtaNCgAT/99FOBgEX9+vW59dZbGTNmDOnp6QwYMIBz5woGb3r16sXcuXM5dOgQDofDPUukd+/eLF68mN27d3PgwIFSJdz2ln379nHrrbfy8MMPM2vWLCIjI/n8888ZM2YMmZmZZQ5YBAYGerw3xuB0Oss9vmeffbbYJahyNWjQgFOnThW6bceOHdxwww08+OCDPPnkk+UeS666devSpk0bfvrpJ4/ykydPFphZIyIiIiIiIiIiIoWrkQELYCauwMEJ4DBFBxEAZhRR3goYAuwoTbAijzPA/ELK95WhjcrRfVz5l2vKv0RUBYqLiyM7O5tjx47Rq1evQuts2LCBO+64g6FDhwLgdDrZuXMn11xzTYWN6+DBgyQnJ9OkSZNCt48ePZqBAwcyefLkAoGWXJ07dyYoKIhFixa583AAdOrUiePHj7NkyRLCw8O9tqwVwNVXX82GDRs8koBv2LDB/bPasmULTqeTuXPnumcRLFu2zKONoKAgsrOzL3kssbGxfPjhhx5lmzdvLnafRo0auZe+Kk5cXJzHTIxc3333HX379mXEiBFeWXoKXEG13bt3F8hTsn37duLi4rzSh4iIiIiIiIiISE1XUwMW9wO7rLX7jTFTgOeLqmitfaawcmPMyzkv/1LGvk8X1aaUT5s2bRgyZAjDhw9n7ty5xMXFcfz4cVavXk27du245ZZbaN26NcuXL+eLL76gXr16zJs3j6NHj5Y6YJGSkuLx7fi9e/eydetWIiMjadasGSkpKcyYMYNf//rXNG7cmN27d/PEE0/QqlUr+vXrV2ib/fv35/jx40RERBTZb2hoKF27duXll1+mR48e7sBGUFCQR3n+WQqX4vHHH+eee+4hLi6OG2+8kQ8++IAVK1bw6aefAtCqVSsuXLjAyy+/zG233caGDRt47bXXPNqIiYkhJSWF1atX0759e8LCwsq1/NbYsWOZN28ekydPZsyYMWzdupXExETANRPjUvTr14+pU6dy6tQp6tWrB7gCCH379qVfv35MmDCBI0eOAODv71+mmRCPP/44t99+O1dddRU///wzTz/9NP7+/u5cHbnWr1/Pc889d0nHISIiIiIiIiIicrnw8/UAKoK19lNrbbkz3RpjQnDNrsgE3vTawKTcEhISGD58OBMnTiQ2NpZBgwaxefNmmjVrBsCTTz5Jhw4d6NevH/Hx8TRu3JhBgwaVuv2vv/6auLg497fhJ0yYQFxcHE899RTguqG9bds2br/9dtq0acOYMWPo2LEj69evLzIZtjGGBg0aEBQUVGzf8fHxnDt3zp2/Ilfv3r05d+6cOxG2twwaNIgFCxbw4osvcu2117J48WISEhLc/bdv35558+bxhz/8geuuu46//e1vPP+8Z8yve/fuPPTQQ9x77700bNiQF154oVxjad68OcuXL2fFihW0a9eOV199lenTpwOUmGS8JG3btqVDhw4es0OWL1/O8ePHeeutt2jSpIn7kTePxr59+zDG4HA4imz74MGDDB48mNjYWO655x7q16/Ppk2bPIIeGzdu5MyZM9x9992XdBwiIiIiIiIiIiKXC2NtaVI4VF95ZlgUmsOiiH1+C/wNWG6t/U0Z+toHBANTgSjgLLDZWvtlGYedt80rS6jSGNgMruTULVu29NiYlJREdnY2gYGBBbaJ7zidTney6Fq1armXXhKYPXs2ixcvZv/+cscc3VatWsXkyZPZtm1bqX/Ga9as4e677+ann35yz8yAsp+z++67j/bt2zN16tQi6+zevZsLFy7g7+/vDr6Jd6Wnp7Nu3ToArr/++mITsUvVofNW/eicVU+7d++mbdu2uW+jrbUHfTke8Y2c640DAAcOHODKK0u6/BARERERcX2hNzo6Ovet164nauqSUJdqTM7z6+XYtzGQkLfAGLMZGGyt3V2O9kqdP+PLL79k927PLurXr09oaCjGGM6ePVuO7qWi5d4Ev1y9/vrrdOjQgcjISDZt2sScOXN44IEHvPJ57dWrF8OGDeOHH34o9cX3ypUreeyxx/D39y9yDCWds8zMTNq0acPo0aOLPY6srCzS0tJIS0vjhx9+KNX4pPxyb6ZK9aLzVv3onFUfJ06c8PUQREREREREPChgkY8xpjnQB0gC/lPG3ROA9cB2IAVoA0wAhgGrjTFtrbXnvDhcKYUDBw7QrVu3Irdv3LgxbzSwSrv77rvZtGlTodsee+wxJk6cWMkjunR79uxh7ty5nDp1iiuvvJJx48bx2GOPea39hx9+uEz1vZFzIigoiEmTJl1yOyIiIiIiIiIiIpcTBSwKGg0YIMFa6yzLjtbaGfmKtgLDc5IHDwMeAOaVcTwl3Ul3LwnVpUuXIpeECggIKDb5c00WGxvLf//73yK3x8TEEBBQuf8UyrskVEJCAmlpaYVui4yMrJbn+I9//CN//OMffT2MElXEMl7Hjx8nNDSUWrVq0bFjx0tuTwrSMjXVk85b9aNzVj3ln5krIiIiIiLiawpY5GGM8QNGAk5giRebXowrYNGDMgYsSlr7KycYAriSFIeGhnps9/Pzw+l0ul9fjoKCgmjTpo2vh1EkPz+/Up+b6jITpKYryzkriTEGPz+/Av92xftCQkL0c66GdN6qH52z6iM4ONjXQxAREREREfFwed7BLlp/4ErgP9baJC+2m7tAcLgX2xQRERERERERERERqTEUsPB0Kcm2i9Ml53mfl9sVEREREREREREREakRFLDIYYxpCNwGHAfeL6ZeoDHmF8aYlvnKf2GMCSuk/i+AP+S8/bsXhywiIiIiIiIiIiIiUmPUyBwWxpj7gZ45b9vmPN9vjInPef25tTb/LIrhQCDwprU2s5jmmwLfA/uBmDzl9wETjDHrcralAm2AgTntPm+tXVee4xERERERERERERERqelqZMACV7BiRL6yHjmPXPkDFpe6HNQa4GogDugFhOHKXfEhsMha+0k52xURERERERERERERqfFq5JJQ1tqR1lpTzGNkIftck7Pt+xLa3pdTLyZf+Vpr7b3W2jbW2jrW2kBrbRNr7SAFK8ouPj6e8ePH+3oY1dLKlStp1aoV/v7+jB8/nsTEROrWrVspfcfExDB//vxK6as0kpOTadSoEfv27av0vrt27cq7775b6f2KiIiIiIiIiIhUVzUyYCHV34oVK3juuecqrb9169Zx2223ERUVhTGGlStXFqgzcuRIjDEej/79+3vUyS3ftGmTR3lGRgb169fHGIPD4QDgpptu4rHHHvOo99prr2GMITExsUDfvXr1KtWxjB07lrvvvpsDBw5U2M+wqCDI5s2befDBByukz/KYNWsWd9xxBzExMQW2JScnc+WVV2KM4fTp02VqtzSflyeffJIpU6bgdDrLN3gRERGpcowxTY0x440xnxhjkowxmcaYI8aYd40xXQqp/4wxxhbziCmin37GmLXGmHPGmLPGmDXGmBsq/ABFRERERHxMAQupkiIjI6ldu3al9Zeamkr79u155ZVXiq3Xv39/Dh8+7H68/fbbBepER0eTkJDgUfbee+9Rq1Ytj7KePXuyYcMGj7I1a9YQHR3tDmrkcjgc9O3bt8TjSElJ4dixY/Tr14+oqKhK/RkCNGzYkLCwArnnfeL8+fP85S9/YcyYMYVuHzNmDO3atStX26X5vAwYMIBz587x73//u1x9iIiISJX0KPAS0AL4BJgLfA7cAXxhjLm3iP3eAGYU8jidv6IxZijwEa7lZhNz9r0W+I8x5m7vHYqIiIiISNWjgIVUSfmXhMrIyGDSpEk0bdqU8PBwunTp4nFTPzk5mcGDB9O0aVPCwsJo27ZtocGEogwYMICZM2dy5513FlsvODiYxo0bux/16tUrUGfEiBEsXbqUtLQ0d9mSJUsYMcIzrUqvXr3YtWsXR44ccZetXbuWKVOmeBzb3r172b9/P3369Cl2bA6Hwx2g6Nu3r8dsjvxeffVVWrZsSVBQELGxsbz55pse2+fNm0fbtm0JDw8nOjqaRx55hJSUFHc/o0aN4syZM+4ZJc888wxQcEkoYwyvv/46d955J2FhYbRu3Zr333/fo6/333+f1q1bExISQp8+fXjjjTfKNeshvw8//JDg4GC6du1a6PGfPn2aSZMmlavt0nxe/P39GThwIEuXLi1XHyIiIlIlfQXEW2tbWWvvt9ZOtdbeDfQBsoFXjTHBheyXaK19ppDH6byVjDH1gJdx5cLrYK191Fr7KNABSM5pv3K/kSIiIiIiUokUsJBqYdy4cWzcuJGlS5eybds2fvOb39C/f3927doFQHp6Oh07dmTVqlVs376dBx98kGHDhvHVV195dRwOh4NGjRoRGxvLww8/THJycoE6HTt2JCYmxp2/ICkpiXXr1jFs2DCPel26dCEwMJA1a9YAsGPHDtLS0hgzZgzJycns3bsXcM26CAkJoVu3bsWOrXv37vz4448AvPvuuxw+fJju3bsXqPfee+/xu9/9jokTJ7J9+3bGjh3LqFGj3OMA8PPzY+HChXz33Xe88cYbfPbZZzzxxBPufubPn09ERIR7pklxN/5nzJjBPffcw7Zt2xg4cCBDhgzh5MmTgCsYc/fddzNo0CC++eYbxo4dy/Tp04s9ztJav349HTt2LFC+Y8cOnn32Wf7617/i51exvwI7d+7M+vXrK7QPERERqTzW2hXW2rWFlK8H1gD1gLaX0MVvgLrAy9bag3naPwj8EWgAFP8NGxERERGRaizA1wMQ33njuzf4646/lljvmshrePmGlz3KHl39KDtO7ihx3+HXDGfEtSNKrFecpKQkEhISSEpKIioqCoBJkybx0UcfkZCQwOzZs2natKnHTfNHH32Ujz/+mGXLltG5c+dL6j9X//79ueuuu2jevDm7d+9m2rRpDBgwgI0bN+Lv7+9Rd/To0SxZsoShQ4eSmJjIwIEDadiwoUed8PBwOnTowNq1axkyZAgOh4OePXsSHBxM9+7dcTgcNG/eHIfDQbdu3QgOLuzLehcFBQXRqFEjwLWkVuPGjQut9+KLLzJy5EgeeeQRACZMmMCmTZt48cUX3bM48s5uiYmJYebMmTz00EMsWrSIoKAg6tSpgzGmyD7yGjlyJIMHDwZg9uzZLFy4kK+++or+/fuzePFiYmNjmTNnDgCxsbFs376dWbNmldhuSfbv3+/+vOTKyMhg8ODBzJkzh2bNmrFnz55L7qc4UVFRHDhwAKfTWeHBEREREfG5CznPWYVsuz4nx4UT2AV8aq1NKaRefM7zJ4Vs+xh4BugNlPxHfA5jzJUlVHH/QZeWluYxS1hERESkqrp6xme+HkKN9v3TJS9NX1F/NypgcRlLvZDKsfPHSqzXOLzgTemTGSdLtW/qhdRyjS2vb7/9luzsbNq0aeNRnpvIGiA7O5vZs2ezbNkyDh06RGZmJhkZGV7Np3Dfffe5X7dt25Z27drRsmVLHA4HN9zgmQNx6NChTJkyhT179pCYmMjChQsLbbNnz5588MEHgGv2Rnx8PAC9e/d2L73kcDh44IEHvHYc33//fYHE2D169GDBggXu959++inPP/88P/zwA2fPniUrK4v09HTOnz9f5p9p3jwR4eHhREREcOyY67Pz448/0qlTJ4/6JQWYHnroId566y33+9ylqvJLS0sjJCTEo2zq1KlcffXVDB06tEzHUF6hoaE4nU4yMjIIDQ2tlD5FRESk8hljmgE3AoeBbwupMiPf+9PGmN9Za/MHHlrnPO8qpI1d+eqU1oHSVly3bh0NGjQoY/MiIiIivqDb2hXpk08K+/6MpxMnTlRI3zqzl7HwwHAahTUqsV5kcGShZaXZNzwwvFxjyyslJQV/f3+2bNlSYCZDbiLrOXPmsGDBAubPn+/OvTB+/HgyMzMvuf+itGjRggYNGvDTTz8VCFjUr1+fW2+9lTFjxpCenu5OwJxfr169mDt3LocOHcLhcLhnifTu3ZvFixeze/duDhw4UKqE296yb98+br31Vh5++GFmzZpFZGQkn3/+OWPGjCEzM7PMAYvAwECP98YYnE5nucf37LPPlir3RIMGDTh16pRH2Weffca3337L8uXLAbDWuutOnz6dGTPy30u4NCdPniQ8PFzBChERkRrMGBMIvAkEA5Ottdl5Nn8DjAYcuIIZjYFbgWeBRGPMaWtt3gRfdXKezxTS1dl8dUREREREahwFLC5jI64dUe7lmvIvEVWR4uLiyM7O5tixY/Tq1avQOhs2bOCOO+5wf3Pe6XSyc+dOrrnmmgob18GDB0lOTqZJkyaFbh89ejQDBw5k8uTJBQItuTp37kxQUBCLFi1y5+EA6NSpE8ePH2fJkiWEh4d7bVkrgKuvvpoNGzZ4JAHfsGGD+2e1ZcsWnE4nc+fOdS9jtGzZMo82goKCyM7O5lLFxsby4YcfepRt3ry52H0aNWrkXvqqOHFxcR4zMcCV2yPvdLXNmzczevRo1q9fT8uWLcsw8tLZvn07cXFxXm9XREREqgZjjB+QCFwP/Nla+2be7dba9/Ltsg/4ozHme+A/wEzgfSpWdAnbGwObAa6//nquvLKkFaREREREqoCNWhKqIt18880l1jl48GCJdcpDAQup8tq0acOQIUMYPnw4c+fOJS4ujuPHj7N69WratWvHLbfcQuvWrVm+fDlffPEF9erVY968eRw9erTUAYuUlBR++ukn9/u9e/eydetWIiMjadasGSkpKcyYMYNf//rXNG7cmN27d/PEE0/QqlUr+vXrV2ib/fv35/jx40RERBTZb2hoKF27duXll1+mR48e7sBGUFCQR3n+WQqX4vHHH+eee+4hLi6OG2+8kQ8++IAVK1bw6aefAtCqVSsuXLjAyy+/zG233caGDRt47bXXPNqIiYkhJSWF1atX0759e8LCwsq1/NbYsWOZN28ekydPZsyYMWzdupXExETANRPjUvTr14+pU6dy6tQp6tWrB1AgKJE7de3qq6+mbt26pW47JSXFI/9F/s9LrvXr15fqF7yIiIhUPznBiiXAb4G3gIdKu6+1drUxZjfQ1hgTYa3NnT2RO7OiDpCcb7eIfHVK21exV5J5/+YKDQ3VzFARERERKdXfhBX1d6OywEq1kJCQwPDhw5k4cSKxsbEMGjSIzZs3u28OP/nkk3To0IF+/foRHx9P48aNGTRoUKnb//rrr4mLi3N/G37ChAnExcXx1FNPAeDv78+2bdu4/fbbadOmDWPGjKFjx46sX7++yGTYxhgaNGhAUFBQsX3Hx8dz7tw5d/6KXL179+bcuXPuRNjeMmjQIBYsWMCLL77Itddey+LFi0lISHD33759e+bNm8cf/vAHrrvuOv72t7/x/PPPe7TRvXt3HnroIe69914aNmzICy+8UK6xNG/enOXLl7NixQratWvHq6++yvTp0wFKTDJekrZt29KhQ4cCs0NKsm/fPowxOByOIuuU9HkBOHToEF988QWjRo0q1/hFRESk6soJViQAI4C3gZHW2rKueZm76G/eb30Ul6eiuPwWIiIiIiI1gsldw12qJ2PMleQk0tu5cyetW3te2+zatYusrCwCAgIKbBPfcTqdnD3r+iJdRESEe+klgVmzZvHaa69x4ECp80MWadWqVTz++ONs37691D/jNWvWcNddd7Fnzx73zAwo+zmbPHkyp06d4k9/+lORdfTvs+KlpaW5E0XdfPPN+tZoNaHzVv3onFVPu3btok2bNrlvo0v6Jr645AlWDAfeAYbky1tRmjbCceW08APqWmuzcsrHAq8BT1trn823z9PAM8CIQpJ1l1ve64kDBw5oSSgRERGpFmKmrPL1EGq0fb+/pcQ6Bw8eJDravfqo164ntCSUiPjUokWL6NSpE/Xr12fDhg3MmTOHcePGeaXtW265hV27dnHo0KG8v0CL9eGHHzJt2jSPYEV5NGrUiAkTJlxSGyIiIlK15FkGajjwD2BoUcEKY0xtoIm1dme+8lDgz0BtICE3WJFjGfAH4FFjzJLci76coMI4XLMy8ufFEBERERGpMRSwkBovKSmp2FwWO3bs8Mg7UJUNGDCA9evXF7pt2rRpTJs2rZJHdOl27drFzJkzOXnyJM2aNWPixIlMnTrVa+2PHz++TPXnzJnjlX4nTpzolXZERESkSnkK1zJQKcBO4MlC8m6ttNZuBeoDPxhjNgPfA0eAK4AbgSuBb4HH8+5orT1ljBkHvAn81xjzTs6me3Pau9dae64CjktEREREpEpQwEJqvKioKLZu3Vrs9uri9ddfJy0trdBtkZGRlTwa73jppZd46aWXfD0MERERkdKIyXmuBUwvos4+YCtwElgEdAYGAvWANFzBi4XAH621Bf6ws9a+ZYw5AUwDRgEW2ALMtNZ+6qXjEBERERGpkhSwkBovICCAVq1a+XoYXtG0aVNfD0FERETksmWtHQmMLGXds7iWcSpPPx8BH5VnXxERERGR6kyZfkVERERERERERERExOc0w0JEREREREREpIqJmbLK10Oo0fb9/pYKaVfnrWLpvFU/FXXOpObSDAsREREREREREREREfE5BSxERERERERERERERMTnFLAQERERERERERERERGfU8BCqqT4+HjGjx/v62FUSytXrqRVq1b4+/szfvx4EhMTqVu3bqX0HRMTw/z58yulr9JITk6mUaNG7Nu3r1L7zczMJCYmhq+//rpS+xUREREREREREanOFLCQKmnFihU899xzldbfunXruO2224iKisIYw8qVKwvUGTlyJMYYj0f//v096uSWb9q0yaM8IyOD+vXrY4zB4XAAcNNNN/HYY4951HvttdcwxpCYmFig7169epXqWMaOHcvdd9/NgQMHKuxnWFQQZPPmzTz44IMV0md5zJo1izvuuIOYmJgC25KTk7nyyisxxnD69OkytTtjxowCn4Vf/OIX7u1BQUFMmjSJyZMnX+IRiIiIiIiIiIiIXD4UsJAqKTIyktq1a1daf6mpqbRv355XXnml2Hr9+/fn8OHD7sfbb79doE50dDQJCQkeZe+99x61atXyKOvZsycbNmzwKFuzZg3R0dHuoEYuh8NB3759SzyOlJQUjh07Rr9+/YiKiqrUnyFAw4YNCQsLq9Q+i3L+/Hn+8pe/MGbMmEK3jxkzhnbt2pW7/Wuvvdbjs/D55597bB8yZAiff/453333Xbn7EBERERERERERuZwoYCFVUv4loTIyMpg0aRJNmzYlPDycLl26eNzUT05OZvDgwTRt2pSwsDDatm1baDChKAMGDGDmzJnceeedxdYLDg6mcePG7ke9evUK1BkxYgRLly4lLS3NXbZkyRJGjBjhUa9Xr17s2rWLI0eOuMvWrl3LlClTPI5t79697N+/nz59+hQ7NofD4Q5Q9O3b12M2R36vvvoqLVu2JCgoiNjYWN58802P7fPmzaNt27aEh4cTHR3NI488QkpKirufUaNGcebMGffsgmeeeQYouCSUMYbXX3+dO++8k7CwMFq3bs3777/v0df7779P69atCQkJoU+fPrzxxhvlmvWQ34cffkhwcDBdu3Yt9PhPnz7NpEmTyt1+QECAx2ehQYMGHtvr1atHjx49WLp0abn7EBERERERERERuZwoYCHVwrhx49i4cSNLly5l27Zt/OY3v6F///7s2rULgPT0dDp27MiqVavYvn07Dz74IMOGDeOrr77y6jgcDgeNGjUiNjaWhx9+mOTk5AJ1OnbsSExMDO+++y4ASUlJrFu3jmHDhnnU69KlC4GBgaxZswaAHTt2kJaWxpgxY0hOTmbv3r2Aa9ZFSEgI3bp1K3Zs3bt358cffwTg3Xff5fDhw3Tv3r1Avffee4/f/e53TJw4ke3btzN27FhGjRrlHgeAn58fCxcu5LvvvuONN97gs88+44knnnD3M3/+fCIiItyzC4q78T9jxgzuuecetm3bxsCBAxkyZAgnT54EXMGYu+++m0GDBvHNN98wduxYpk+fXuxxltb69evp2LFjgfIdO3bw7LPP8te//hU/v/L/Cty1axdRUVG0aNGCIUOGkJSUVKBO586dWb9+fbn7EBERERERERERuZwE+HoA4jvJCYmczJcroTAh11xD9KuLPMoOPPwI6Tt2lLhv5MiR1B81spwjdElKSiIhIYGkpCSioqIAmDRpEh999BEJCQnMnj2bpk2betw0f/TRR/n4449ZtmwZnTt3vqT+c/Xv35+77rqL5s2bs3v3bqZNm8aAAQPYuHEj/v7+HnVHjx7NkiVLGDp0KImJiQwcOJCGDRt61AkPD6dDhw6sXbuWIUOG4HA46NmzJ8HBwXTv3h2Hw0Hz5s1xOBx069aN4ODgYscXFBREo0aNANeSWo0bNy603osvvsjIkSN55JFHAJgwYQKbNm3ixRdfdM/iyDu7JSYmhpkzZ/LQQw+xaNEigoKCqFOnDsaYIvvIa+TIkQwePBiA2bNns3DhQr766iv69+/P4sWLiY2NZc6cOQDExsayfft2Zs2aVWK7Jdm/f7/785IrIyODwYMHM2fOHJo1a8aePXvK1Xbnzp1JTEwkNjaWw4cPM2PGDHr16sX27ds9luGKiopi//79l3QcIiIiUjhjzBXADUAH4AqgHnAKOApsAT6z1h713QhFRERERKSsFLC4jDlTUsg6WvI1XHYhN6WzT54s1b7OnGWELsW3335LdnY2bdq08SjPTWQNkJ2dzezZs1m2bBmHDh0iMzOTjIwMr+ZTuO+++9yv27ZtS7t27WjZsiUOh4MbbrjBo+7QoUOZMmUKe/bsITExkYULFxbaZs+ePfnggw8A1+yN+Ph4AHr37u1eesnhcPDAAw947Ti+//77Aomxe/TowYIFC9zvP/30U55//nl++OEHzp49S1ZWFunp6Zw/f77MP9O8eSLCw8OJiIjg2LFjAPz444906tTJo35JAaaHHnqIt956y/0+pYjPWFpaGiEhIR5lU6dO5eqrr2bo0KFlOob8BgwY4J6d0a5dO7p06cJVV13FsmXLPHJmhIaGcv78+UvqS0RERC4yxgQC9wL/D8j9o8EUUtXm1P8SeAVYZq29UCmDFBERERGRclPA4jLmV6sWAVdcUWI9/8jIQstKs69fvkTT5ZGSkoK/vz9btmwpMJMhN5H1nDlzWLBgAfPnz3fnXhg/fjyZmZmX3H9RWrRoQYMGDfjpp58KBCzq16/PrbfeypgxY0hPT2fAgAGcO3euQBu9evVi7ty5HDp0CIfD4Z4l0rt3bxYvXszu3bs5cOBAqRJue8u+ffu49dZbefjhh5k1axaRkZF8/vnnjBkzhszMzDIHLAIDAz3eG2NwOp3lHt+zzz5bqtwTDRo04NSpUx5ln332Gd9++y3Lly8HwFrrrjt9+nRmzJhRrjHVrVuXNm3a8NNPP3mUnzx5ssDMGhERESkfY8ww4HmgCa4gxXFgI/AdkAycBeoA9YHrgG5AV6AL8HtjzFRr7VuFNC0iIiIiIlWEAhaXsfqjyr9cU/4loipSXFwc2dnZHDt2jF69ehVaZ8OGDdxxxx3ub847nU527tzJNddcU2HjOnjwIMnJyTRp0qTQ7aNHj2bgwIFMnjy5QKAlV+fOnQkKCmLRokXuPBwAnTp14vjx4yxZsoTw8HCvLWsFcPXVV7NhwwaPJOAbNmxw/6y2bNmC0+lk7ty57lkEy5Yt82gjKCiI7OzsSx5LbGwsH374oUfZ5s2bi92nUaNG7qWvihMXF+cxEwNcuT3yJkPfvHkzo0ePZv369bRs2bIMI/eUkpLC7t27C+Qp2b59O3FxceVuV0RERFyMMRtxzag4ASwEEq2135Riv18Co4DBwBvGmEestQWTfImIiIiISJWgpNtS5bVp04YhQ4YwfPhwVqxYwd69e/nqq694/vnnWbVqFQCtW7fmP//5D1988QXff/89Y8eO5WgplqzKlZKSwtatW9m6dSvgSga9detWdyLllJQUHn/8cTZt2sS+fftYvXo1d9xxB61ataJfv36Fttm/f3+OHz/Os88+W2S/oaGhdO3alZdffpkePXq4AxtBQUEe5flnKVyKxx9/nMTERF599VV27drFvHnzWLFihXvWQqtWrbhw4QIvv/wye/bs4c033+S1117zaCMmJoaUlBRWr17NiRMnyr3s0dixY/nhhx+YPHkyO3fuZNmyZSTm5FUxprDVHUqvX79+fPfddx6zLFq2bMl1113nfjRv3hxwBXFKEwTJ9fjjj7N27Vr27dvHF198wZ133om/v787V0eu9evXc/PNN1/ScYiIiAgArYEngGbW2sdKE6wAsNZutdb+DogGpgBtSthFRERERER8SAELqRYSEhIYPnw4EydOJDY2lkGDBrF582aaNWsGwJNPPkmHDh3o168f8fHxNG7cmEGDBpW6/a+//pq4uDj3t+EnTJhAXFwcTz31FAD+/v5s27aN22+/nTZt2jBmzBg6duzI+vXri0yGbYyhQYMGBAUFFdt3fHw8586dc+evyNW7d2/OnTvnToTtLYMGDWLBggW8+OKLXHvttSxevJiEhAR3/+3bt2fevHn84Q9/4LrrruNvf/sbzz//vEcb3bt356GHHuLee++lYcOGvPDCC+UaS/PmzVm+fDkrVqygXbt2vPrqq0yfPh2gxCTjJWnbti0dOnQoMDukJPv27cMYg8PhKLLOwYMHGTx4MLGxsdxzzz3Ur1+fTZs2eSz/tHHjRs6cOcPdd99d3kMQERGRi1pYa+daazPKs7O1NsNaOwdo4eVxiYiIiIiIF5ncNdxrEmPMUKAX0BFoCwQBo6y1iYXUfQZ4upjmmltr95Wh7zbATKAvEA7sBF4DXrMV8MM2xlwJHADYuXMnrVu39ti+a9cusrKyCAgIKLBNfMfpdHL27FkAIiIi3EsvCcyaNYvXXnuNAwcOXHJbq1at4vHHH2f79u2l/hmvWbOGu+66iz179lCvXj13eVnP2b333kv79u2ZNm1akXX077PipaWl8cknnwBw8803Exoa6uMRSWnovFU/OmfV065du2jTxj3hINpae9CX4xHfyHs9ceDAAa688kofj0hEcsVMWeXrIdRo+35/S4W0q/NWsXTeqh+ds+qpNOft4MGDREdH57712vVETc1hMRO4Ctcat4dzXpfkDWBfIeWnS9upMeYa4AsgFFgG/AzcAiwCrgEeLW1bIpeLRYsW0alTJ+rXr8+GDRuYM2cO48aN80rbt9xyC7t27eLQoUN5f4EW68MPP2TatGkewYqyyszMpG3btjz22GPlbuP5D7/n9PkLJda7q0NTurSo735/7Gw6cz/ZWao+pgz4BfXCL84AWr/rOP/65nCJ+zWsHcykfrEeZX/5fC87jxRMLJ9fj9YNuL19lEfZ5OXbsJQczx3dszm/aBzhfr/z6DleX7+n2H2ysrI5dMiP+1p6Jnr/17afWb/zRIl9tr6iFvf38vwy7rz/7OTomfQS9x3Yrgm921ycdXPm/AVmf/h9ifsBjL+pNU3qXLzhu3nfSZZ/XfL/+xGhAUy/xTN3z9++3M+2A2dK3LdjTD3u+ZXnv5On/7md9AvOIva4aHCXZvwyuq77fVLyeV5Z81PRO+TxzO3XEhp0Mc/PpzuO8u9vD3HokCsouO797wnwL/jnSnRkKOP6egb6XlnzE0nJJS9R1/fqRvS7trH7ffqFbJ7+53elGu/D8S2JaRDufv/twTO8tWl/ifsFBfjx3KDrPMqWbznI5r0nS9z3uqYRDOsW41FW1X5HZGVnceiQH7UDoUNKJtEKWIiIiIiIiEg51NSAxf3ALmvtfmPMFOD5knbAlbjPcYn9vgrUAQZaa/8NYIz5X+BTYJwx5u/W2o2X2IeUUVJSUrHJt3fs2OFeWqqqGzBgAOvXry9027Rp04r9Nn9VtWvXLmbOnMnJkydp1qwZEydOZOrUqV5rf/z48WWqP2fOnEvuMygoiCeffLJUda0t/Fb9B9/8zM+luCn+y2Z1PW5Gnk2/wDtfl252yv/c2Jq8YZmdR1NKtW/LhuEFAhbrdh5n7c7jJe4bFuxfIGCxbMsBSjP/bEDbJh4Bi6Nn01lWipv4UDBg8c2B06U61p6tGhQIWHy8/Qg/Hi05ONOyUbhHwCLtQnapz82onjEeAYu9x1NLte8VEcEFAhZf7E5m1baSA1FOawsELFb83yHOpWeVuG/P1g08AhbJqRmlPtZpt1xNKBcDFt/9fJZ3/+8w7lUrjxU+9vbRdQsELD774Rhb9p8qtH5eV0QEewQssp221OP9za+u9AhYHDx1vlT7hgX5FwhYfL3vZKn2PZPWuEDAomr+jnCds0jHXv7wm1+Wqg8RbzDG+AP1gZCi6lhrkypvRCIiIiIiUl41MmBhrf20svvMWQrqemBNbrAiZyyZOUELB/AAoIBFJYuKinIn0y5qe3Xx+uuvk5aWVui2yMjISh6Nd7z00ku89NJLvh6Gz5xLz2LngbP856BhaJerqBPmvQTrIiK+kHSq5FkuIt5gjOmOa2nX63EtAVsUSw297hERERERqWlqZA6LvPLMsCgph8XTQAbgBHYBn1prU8rQz4PAYmCqtfb3+bb5A2eAo9balmUcf0mLyDYGNgN8++23tGzp2XxSUhLZ2dkEBgYW2Ca+43Q6SUlxfbxq1aqlHBbVQEWcs59++omDJ1PYc/w8iat/4KW7r6VeuCtgcfhsBtnZJS/FUy8siPDgi99Oz8q2HDlb8reuARrXCSHAz7jfp6Rnczots8T9Avz9aBzhmRT9REom6ReyS9y3VnAAdfMFZQ6eSsMYU8QeF9UPDyQk8OKxpl/I5kRK8ePNupDFjzt/JDIY2rdvR1CQ637WmbQLpZo5EBLoT4NanvfAjp7N4EIpzk3d0EBqhVy8P5bttBwuxTfiwTUDIND/4mcsNSObU+dLPjf+foYmdTy/YHwyNZPzmSWfm/CgAPfnL9fPp9NxluLvhPrhQR7LOmVmOTl2rnR5caPqhpLnY8jZ9CxOnk3jx50/AhDbJpaAwIL3GYMC/GlU2/PcHDuXSWZWyccaERpIRJ5z47Tw8+nCg8H5P5sNawcTHHDx3KRlZpOcmklJf0/5GUNUXc9zcyr1AqmZJX8OQ4P8qR/ueaxV7XdE5oUL/HvzLupFhHLDTX3oENOgVH2Ib+3evZu2bdvmvq1WOSyMMX2BfwO5v7hOAkVOf7PWNq+McVVHymEhUnVpffaKpXX1qyedt+pH56x6Ug6LqmFGvvenjTG/s9b+tZT7565LsSv/BmtttjFmL3CNMSbAWlvy3YmLSp15+Msvv2T37t0eZfXr1yc0NBRjjDthsFQtuTfBpfrw1jnLvJCNdTqJSj/MnYdXsu7llV5pVwr6Gfh59b98PQwpxJYStn/zuc5bdZF7i/On9IOciL3Wp2OR0jlxouRcPlXYTFzBivnATGttyQlhRERERESkytPXuuEbYDTQAley7Oa4kmNbINEYc3sp26mT81xUZtOzuH7etcs/VBGpSbKtJTQ7jYAyxTBFRKq28z8rVYBUil8CW621ExSsEBERERGpOS77GRbW2vfyFe0D/miM+R74D65vb71f2ePKI7qE7e4lobp06VLkklABAQFEREQUtr/4gJaEqn68fc4yLmTj58zC37qWdKndoCGtOne/5HGKp6zsbA4ccE1Ui46OJsDfv4Q9pCrQeat+si5c4Nv/fAhA7fBwbr75Zh+PSEoj/8zcaiYF+MHXgxAREREREe+67AMWRbHWrjbG7AbaGmMirLUlraeUO7OiThHbI3DN2ihybd0ixlHs2l9519YODg4mNDTUY7ufnx9Op9P9WqoePz8/nZtq5lLPmbWWMyeOY3LXvPf35+7pzxEZpTWjvS0tLY1PPvkEgF4331zgd6RUTTpv1c/58+f59tN/g7WcTU3TOasmgoODS65UdW0C2vh6ECIiIiIi4l26S1q83IV9w0pRNzd3Rev8G3KSbjcH9pYxf4WI1EApp05CeirgimI2jGmpYIWIVGvGGC4Y1/dgfj5Rpu9miJTXLFxfLPqtrwciIiIiIiLeoxkWRTDGhAPXAqlcDFwUZ23O883A7/Nt6wmE56kjpRAfH88vf/lL5s+f7+uhiHhN2rmzpJ66uNS2MyiMWlquTURqgGy/AAKdF/C3WWQ7Lf5+puSdRMrJWvulMeZe4HVjzG3Av4EkwFlE/XWVOT4RERERESmfy3qGhTGmtjGmwFRyY0wo8GdcCbKX5Z8VYYz5hTHmF3nLrLU/AuuAPsaYAXnqBgHP5bx93cuHUKOtWLGC5557ruSKXrBu3Tpuu+02oqKiMMawcuXKAnWstTz11FM0adKE0NBQbrzxRnbt2uVRxxiDMYZNmzZ5lGdkZFC/fn2MMTgcDgBuuukmHnvsMY96r732GsYYEhMTPcpHjhxJr169Lvk4xbcy0s5z9vgx9/ts409YuJZNEZGawenn+h5MgPMCGVnZPh6NXCb8gfPAPUACsBpYU8jjM18NUEREREREyqZGBiyMMfcbYxKNMYnAb3KK3WXGmPtzyuoDPxhjvswp/70xJgHYCQwGvgUeL6SL73Me+T2CK5fFSmPMX40xfwD+C/QC/mit/cJrB3kZiIyMpHbt2pXSV2pqKu3bt+eVV14pss4LL7zAwoULee211/jyyy8JDw+nX79+pKene9SLjo4mISHBo+y9996jVq1aHmU9e/Zkw4YNHmVr1qwhOjraHdTI5XA46Nu3bzmOTKqKCxkZnDlyGJuTtyI9IBTr509wgJIJi0jN4A5Y2CzSMhWwkIpljLkdeAe4EjiF62/udUU81vtomCIiIiIiUkY1MmCBawmmETmPDjllPfKU9cwpOwksAgwwEJgI/Br4GXgC6GKtTS5tp9ba74AuwPvALcDvcE1L/3/A/1zSEV2G4uPjGT9+POCaoTBp0iSaNm1KeHg4Xbp08bipn5yczODBg2natClhYWG0bduWt99+u9R9DRgwgJkzZ3LnnXcWut1ay/z583nyySe54447aNeuHX/961/5+eefC8zGGDFiBEuXLiUtLc1dtmTJEkaMGOFRr1evXuzatYsjR464y9auXcuUKVM8jm3v3r3s37+fPn36lPp4pGrJzsri9JGfcTpdq1QEh4UTfWUUoUEKVohIzWH9AwEItFmcz1TKLqlwT+L6G/5/gCustZ2stX2Kevh4rCIiIiIiUko1MmBhrR1prTXFPEbm1DtrrR1nre1srW1krQ201kZYa7tYa+dYa9OKaN9YawtdmNla+6O19jfW2vrW2hBrbTtr7SKb+7VqKZdx48axceNGli5dyrZt2/jNb35D//793Usypaen07FjR1atWsX27dt58MEHGTZsGF999ZVX+t+7dy9HjhzhxhtvdJfVqVOHLl26sHHjRo+6HTt2JCYmhnfffReApKQk1q1bx7BhwzzqdenShcDAQNasWQPAjh07SEtLY8yYMSQnJ7N3717ANesiJCSEbt26eeVYpHI5nU5OH/mZ7CzXzbvA4GDqXNEYf38//IzWdxeRmsPmzLAwwPm09OIri1y6a4CN1to/Wms1pUdEREREpIZQ0u3L1LLZmzl/NrNS+wyLCOKeaZ3KvF9SUhIJCQkkJSURFRUFwKRJk/joo49ISEhg9uzZNG3alEmTJrn3efTRR/n4449ZtmwZnTt3vuSx586CuOKKKzzKr7jiCo8ZErlGjx7NkiVLGDp0KImJiQwcOJCGDRt61AkPD6dDhw6sXbuWIUOG4HA46NmzJ8HBwXTv3h2Hw0Hz5s1xOBx069aN4ODgSz4OqVzWWs4cPcyFjAwA/AMDqds4Cj+/GhkrFpHLnPW/+GdlaqoCFlLhUoH9vh6EiIiIiIh4lwIWl6nzZzNJPZ3h62GUyrfffkt2djZt2njmR89NZA2QnZ3N7NmzWbZsGYcOHSIzM5OMjAzCwsJ8MWSGDh3KlClT2LNnD4mJiSxcuLDQej179uSDDz4AXHkq4uPjAejduzcOh4NRo0bhcDh44IEHKmvo4iXWWs6dOE7G+fMA+Pn74V+3IVbBChGpqfIGLM4XOklVxJscQJyvByEiIiIiIt6lgMVlKiwiqNr0mZKSgr+/P1u2bMHf33PN/9xE1nPmzGHBggXMnz+ftm3bEh4ezvjx48nM9M4sksaNGwNw9OhRmjRp4i4/evQov/zlLwvUr1+/PrfeeitjxowhPT2dAQMGcO7cuQL1evXqxdy5czl06BAOh8M9S6R3794sXryY3bt3c+DAASXcrobOnznF+bNnADDGEFr/CvaeuYDfuSwa1Q6mUUSIj0coIuJleQIW5xWwkIr3v8AWY8wUa+3vfT0YERERERHxDgUsLlPlWZrJV+Li4sjOzubYsWP06tWr0DobNmzgjjvuYOjQoYArb8DOnTu55pprvDKG5s2b07hxY1avXu0OUJw9e5Yvv/yShx9+uNB9Ro8ezcCBA5k8eXKBQEuuzp07ExQUxKJFi9x5OAA6derE8ePHWbJkCeHh4V5Z1koqT3Z2FiknT7rfRzRsRHKWa2aF01r8/ZS7QkRqHpPn/7r0NAUspMJ1BZYAs4wxtwMfAUmAs7DK1tq/VuLYRERERESknBSwkCqvTZs2DBkyhOHDhzN37lzi4uI4fvw4q1evpl27dtxyyy20bt2a5cuX88UXX1CvXj3mzZvH0aNHSx2wSElJ4aeffnK/37t3L1u3biUyMpJmzZphjGH8+PHMnDmT1q1b07x5c/73f/+XqKgoBg0aVGib/fv35/jx40RERBTZb2hoKF27duXll1+mR48e7sBGUFCQR3lgYGDpf2Dic5nnz2OtBSAsog5B4bU4fdg1w8bPGOqGVf4MJxGRinZlRABnD7te/+rK2r4djFwOEgGLK897V6BLCfUVsBARERERqQYUsJBqISEhgZkzZzJx4kQOHTpEgwYN6Nq1K7feeisATz75JHv27KFfv36EhYXx4IMPMmjQIM6cOVOq9r/++mv69Onjfj9hwgQARowYQWJiIgBPPPEEqampPPjgg5w+fZqePXvy0UcfERJS+NI+xhgaNGhQYt/x8fGsW7fOnb8iV+/evVmzZo3HuKR6SE9Ncb8OqV2b0+cv4MwJYNQLC9QMCxGpkfwDLv5ZmZVRPfJkSbX2V1wBCxERERERqUEUsJAqy+FwuF8HBgYyY8YMZsyYUWjdyMhIVq5cWe6+4uPj3d+IL4oxhmeffZZnn322yDrFtVG3bl33dqfz4moFTz/9dKHH9fTTT/P000+XNHSpYpxOJ5nuRNv+BAaHkHzmYgAjMjzYV0MTEalQJk/A4kJGug9HIpcDa+1IX49BRERERES8z8/XAxARqUky0y4uBxUcHs75zGzSL2QDEBYUQGhQ4flMRESqO788SbcvZGqGhYiIiIiIiJSdAhZS4yUlJVGrVq0iH0lJSb4eotQgGamp7tchYbU4mZrpfl8/XLkrRKTmSrUXAxbf7D3mw5GIiIiIiIhIdaUloaTGi4qKYuvWrcVuF/EGay0Z510BC+Pnh19wCKdPu5aD8vcz1AlV8nQRqbnS8gQs9h057buBSI1kjLnTWvueF9q5y1q7whtjEhERERER71PAQmq8gIAAWrVq5ethyGXgQno6zmzX8k/BoWGcTstyLw9VLywIPyXbFpEaLCDQn6yc11oSSirAu8aYL4FnrLUfl2VHY4wBBgJPAb8CtD6jiIiIiEgVpYCFiIiXZJy/mFw7ODycWmGuGRUnUzOJ1HJQIlLDBQYGuAMW2QpYiPc9BjwNfGiMOQT8FVgNfGWtTc1f2RgTDnQBbgKGAlHAmZx2RERERESkilLAQkTEC6y1pOfmrzAQHBaOn78fDWsH06BWEK4vd4qI1FwBgRf/rMzOzCympkjZWWsXGGP+BjwDjACmAVMBpzHmIJAMnAUigPrAlbjy9RkgFVgEzLDWnqj80YuIiIiISGkpYCEi4gVZFzLJvnABgKCQUPz8L642oWCFiFwOgvIELJwXNMNCvC8n2DDOGDMdGA0MwjWL4qqcR16ZwAZgJZBgrT1TeSMVEREREZHyUsBCRMQLMlIvrkYRHF7LhyMREfENz4CFZlhIxckJPrwEvGSMCQGuBa4A6gCngWPAd9badJ8NUkREREREykUBCxERL8gbsMjyD+bImTQiQgMJDfTXDAsRuSwEBga6X9usCz4ciVxOcoISW3w9DhERERER8Q4/Xw9ARKS6y866wIUM15c4A4KDOZXu5Ni5DH46lsL5zGwfj05EpHL4B+T5HkyWZlhIzWSMaWqMGW+M+cQYk2SMyTTGHDHGvGuM6VLEPhHGmHnGmP3GmAxjzD5jzBxjTKFTMo0xfsaYR40x3xpj0owxx40xbxtjWlTs0YmIiIiI+J4CFlJlxcfHM378eF8PQ6REGann3a+DQ8NJycgCIMDfj7Ag/6J2ExGpUYxHwEIzLKTGehTXclQtgE+AucDnwB3AF8aYe/NWNsaEA2uBx4Afcvb9EZgEfJazpFV+i4GFuBKGLwQ+Au4CNhtjWlfAMYmIiIiIVBkKWEiVtWLFCp577rlK6WvdunXcdtttREVFYYxh5cqVBeqMHDkSY4zHo3///h51css3bdrkUZ6RkUH9+vUxxuBwOAC46aabeOyxxzzqvfbaaxhjSExMLNB3r169Lvk4pWJknE9xv84KDMZpLQB1QgK0HJSIXDaM/8UAbZ1A68ORiFSor4B4a20ra+391tqp1tq7gT5ANvCqMSY4T/0ngF8Cf7DW9rPWTrHW9gP+AHTCFchwM8b0Ae4H1gEdrLWTrbXDcCUYjwT+WLGHJyIiIiLiWwpYSJUVGRlJ7dq1K6Wv1NRU2rdvzyuvvFJsvf79+3P48GH34+233y5QJzo6moSEBI+y9957j1q1PGf99+zZkw0bNniUrVmzhujoaHdQI5fD4aBv375lOCKpLM7sbDLT0gDXcijnLlwMUESEBha1m4hIjWOMcQctmtbS7DKpmay1K6y1awspXw+sAeoBbQGM61sL9wMpQP5v4TyXU35/vvIHcp7/11rrXlvNWvtvwAHcbIxpdulHIiIiIiJSNSnptlRZ8fHx/PKXv2T+/PlkZGQwffp03n77bU6fPs11113HH/7wB+Lj4wFITk5m3LhxrFu3jlOnTtGyZUumTZvG4MGDS9XXgAEDGDBgQIn1goODady4cbF1RowYwcKFC5k/fz6hoaEALFmyhBEjRnjMGOnVqxfz58/nyJEjREVFAbB27VqeeuopXnjhBXe9vXv3sn//fvr06VOqY5HKlZF2HpszoyI4LJxj6a7loPz9DOHB+hUrIpcXExCAzc7mQmaGr4ci4gu5a6Fl5Ty3BqKAj621qXkrWmtTjTEbgH7GmGhr7YGcTfFAKuD5rRaXj3O29wbeLO2gjDFXllDF/cdtWloaaTlfxBARqen0+6560nmrfnTOqqfSnLeKOrcVejfNGFMX6AfcAHQArsD1raNTwFFgC/AZrj/iT1fkWMTTW1PHk3r6VKX2GV63HkOfn1+ufceNG8eOHTtYunQpUVFRvPfee/Tv359vv/2W1q1bk56eTseOHZk8eTIRERGsWrWKYcOG0bJlSzp37uy1Y3A4HDRq1Ih69erRt29fZs6cSf369T3qdOzYkZiYGN59912GDh1KUlIS69at45VXXvEIWHTp0oXAwEDWrFnDkCFD2LFjB2lpaYwZM4bJkyezd+9emjdvzpo1awgJCaFbt25eOw7xnozUi/cfnEGhZGe4kmxHhATip+WgROQy4+cfgJMMsjIUsJDLS86shxuBw8C3OcW5+SZ2FbHbLlzXSq2BAzn5LpoA26212UXUz9tuaR0ouYrLunXraNCgQRmbF5GKoy9AVaRPPvmkglrWeatIOm/Vj85Z9VSa83bixIkK6btCzqwxpi3wO2AwEIIrYVxeYUBTXEGM+4F0Y8zfgZettdsqYkziKfX0KVJOJvt6GKWSlJREQkICSUlJ7pkIkyZN4qOPPiIhIYHZs2fTtGlTJk2a5N7n0Ucf5eOPP2bZsmVeC1j079+fu+66i+bNm7N7926mTZvGgAED2LhxI/7+nktfjB49miVLljB06FASExMZOHAgDRs29KgTHh5Ohw4dWLt2LUOGDMHhcNCzZ0+Cg4Pp3r07DoeD5s2b43A46NatG8HBwUjVYq2TjPOugIWfvx8p2f64lq/WclAicnnKTbytGRZyOTHGBOKa8RAMTM4TbKiT83ymiF3P5qtX1voiIiIiIjWOVwMWxphGwPPACFz5MU4Aq4AvgO+AZFx/aNcB6gPXAd2B64ExwChjTCIwzVp7zJtjE0/hdetVmz6//fZbsrOzadOmjUd5biJrgOzsbGbPns2yZcs4dOgQmZmZZGRkEBYWdsnjznXfffe5X7dt25Z27drRsmVLHA4HN9xwg0fdoUOHMmXKFPbs2UNiYiILFy4stM2ePXvywQcfAK7ZG7lLXPXu3RuHw8GoUaNwOBw88MADhe4vvpWZlo51OgEICg3nRM5yUH7GUFvLQYnIZehsdiChQNr5NE6kZNCgloLtUjGMMU8B56y1L/l4HH5AIq7rmT9ba0u9VFMlii5he2NgM8D111/PlVeWtIKUiFSajZ/5egQ12s0331wxDeu8VSidt+pH56x6Ks15O3jwYIX07e07aruA2sC/gL8Aq6y1WcXU/wSYZ4wJAG4DRuc8fo1r6SipIOVdmskXUlJS8Pf3Z8uWLQVmMuQmsp4zZw4LFixg/vz5tG3blvDwcMaPH09mZmZhTXpFixYtaNCgAT/99FOBgEX9+vW59dZbGTNmDOnp6QwYMIBz584VaKNXr17MnTuXQ4cO4XA43LNEevfuzeLFi9m9ezcHDhxQwu0qKiM15eKb4FCyUlzBi9ohAfj5aTkoEbn8XDABhAJ+1klqmgIWUqGewnXN4bOARU6wYgnwW+At4KF8VXJnShQ1IyIiX72y1i8Va22xV5ImzxKWoaGh7hxsIiI1nX7fVU86b9WPzln1VJrzVlHn1tsBi6+AKdbaLWXZKSeo8R7wnjGmEzDby+OSaiwuLo7s7GyOHTtGr169Cq2zYcMG7rjjDoYOHQqA0+lk586dXHPNNRU2roMHD5KcnEyTJk0K3T569GgGDhzI5MmTCwRacnXu3JmgoCAWLVrkzsMB0KlTJ44fP86SJUsIDw/3ah4O8Q5rrXs5KGMMtWvX4qpgJ2fTLmg5KBG5bFm/i39apqSmQcOIYmqLXJJjgM8yOOYEKxKA4cDbwEhrrTNftZJyTnjkuMhJxH0YaG6M8S8kj0VJOTFEihUzZZWvh1Bj7fv9Lb4egoiISI3h1YCFtfYmL7SxGbjkdqTmaNOmDUOGDGH48OHMnTuXuLg4jh8/zurVq2nXrh233HILrVu3Zvny5XzxxRfUq1ePefPmcfTo0VIHLFJSUvjpp5/c7/fu3cvWrVuJjIykWbNmpKSkMGPGDH7961/TuHFjdu/ezRNPPEGrVq3o169foW3279+f48ePExFR9M2a0NBQunbtyssvv0yPHj3cgY2goCCP8sBA3QCvarIyM8jOck0gCwoNxd/fnzqh/tRRsEJELmf+F/+0TE312b1kuTysB3zyjY58wYp3gGHFJMn+GehhjAm31qbmaSMc6AHstdbmTYq9FrgvZ9u6fO3l/tGZv1xEREREpMbw8/UAREojISGB4cOHM3HiRGJjYxk0aBCbN2+mWbNmADz55JN06NCBfv36ER8fT+PGjRk0aFCp2//666+Ji4sjLi4OgAkTJhAXF8dTTz0FgL+/P9u2beP222+nTZs2jBkzho4dO7J+/foik2EbY2jQoAFBQUHF9h0fH8+5c+fc+Sty9e7dm3PnztGnT59SH4dUnoxU9z0HgsNr+XAkIiJVSJ6Axfk0BSykQj0LRBljZpq8axpVsDzLQA0H/gEMLSJYgbXWAq8DtYD/zbf5f3PK/5yv/E85z88ZY9x/RBpjBgDxwCfW2v2XeBgiIiIiIlWWt5NujwLWWGv3ebNduTw5HA7368DAQGbMmMGMGTMKrRsZGcnKlSvL3Vd8fDyua8rChYaG8vHHH5fYTnFt1K1b173d6by4YsDTTz9d6HE9/fTTPP300yX2Kb6RnjdgERbuw5GIiFQheZZAPH9eAQupUB2BvwJTgV8bY1YC+yhimShr7V+91O9TwAggBdgJPFlIvGSltXZrzusXgDuAycaYOOC/QAfgZlyJrufnG+caY8zrwP3Af40xq4AmwL3ASeBRLx2HiIiIiEiV5O0cFn8BrDEmCViT+ygp0ZuISHWSfeECWZkZAASGhHA05QJhQU5qhwTg76eJayJy+TIBF/+0TD+f7sORyGUgEbCAAWKBJ0qo762ARUzOcy1gehF19gFbwZ2XojfwDPBroA9wGJgLzLDWFhZgGQt8CzwI/A5XcOQ9YLq1drcXjkFEREREpMrydsBiB3ANcBUwEte3jzDG7MEzgHHEy/2KFCkpKanYXBY7duxwLy0lUhq5ybYBAkLCOJTiCl7UCg6gRUMtDyUily+/PEtCpaVrhoVUqL/iClhUKmvtSFzXOWXZ5wzwWM6jNPWdwMKch4iIiIjIZcXbSbevM8Y0wLW+ap+c56uBljmPMQDGmJ1cDGA4rLXHvTkOkbyioqLYunVrsdtFyiLj/Hn363S/IMC1dHXtECXcFpHLW94ZFhlpmmEhFScncCAiIiIiIjWMt2dYYK09ASzPeWCMaYRnACM2z2NsTp0dwGfW2t95YwzGmKFAL1xr27YFgoBR1trEfPUCgdtzHp2BaFzf1NqBa5r5n4pKoldEv/twzS4pzFprbXwZDkO8JCAggFatWvl6GFJDWKeTCznfGg4IDOJU5sVtdUK9/itVRKRa8Q+4GLjNSFfAQkRERERERMqmwu+uWWuPActyHhhjruBi8KIP0Bq4FtdSUl4JWAAzcQUOTuBaI7aoIEJLXIGVFGA18D5QB7gNWAQMNMbcbovLpFzQGfIlz8uxrwxtiEgV5bxwMUIREBpGWoYrphka6E9QgH9Ru4mIXBbqhPqTkfO6VWSwT8cilxdjTCugIZBsrd3p6/GIiIiIiEj5VPrXga21R40xX+Ca9RAC1AcivdzN/cAua+1+Y8wU4Pki6p0D/h/whrXWvSi9MWYi4ABuBe4G/lGGvk9ba58pz6BFpOrLzsxwv870DwacANQJ1XJQIiJ1QgM4lvO6UZifT8ciNZ8xxh+YCozDFawAeAMYnbN9CK6/9R+w1n7nk0GKiIiIiEiZVErAwhhzJRdnVcQDMbmbgGRgJbDWW/1Zaz8tZb1DuGZS5C9PNcbMA/4O9KZsAQsRqaGstTgvXADAz9+fc1nGvS1CAQsREfzy5LC4kJFRTE2RS5MTrPgXcDOQBXyPa8Z2XhuAN4G7AAUsRERERESqgQoJWBhjovBc9ql57ibgGPAurgDFWmvt9ooYgxdcyHnOKuN+wcaYkUAUcBbYbK39sryDyAn2FKdx7ouMjAzS0tI8NjqdTnJXtHI6neUdhnhZ3nOh81I9OJ1O13JQOf+eAkPDSM10LQcVHOBHkL8p17m01uJ0Ogv82xXvSM+zhn661tOvNnTeqp/c82T8L/5pmZaaqt9tVVxG9Q4qPQT0Az4DhltrfzbGePxHbK3dZ4zZjSuo8ZwPxigiIiIiImXk1YCFMeZPuIIULXEFJ8CVQ+IdLgYofvBmnxVodM7zJ2XcrzGQkLfAGLMZGGyt3V2OcRwobcUvv/yS3bs9u6hfvz6hoaEYYzh79mw5upeKlpKS4ushSCk5My/mrzjvvDi7Itg4y/XvKysri7S0NNLS0vjhh+ryq7H6Wrduna+HIOWg81bN5AlYfPvdD5wMKeufUVKZTpw44eshXIoRwEngN9baU8XU+x5oXzlDEhERERGRS+XtxYXvxxWs+C/wANDGWtvUWvtba+3i6hKsMMY8CAwAPrPWfliGXROAG4ArgHAgDtc09E7AamNMbW+PVcquXr16rFq1ytfDkGrGtRxUTsDCGM4T5N4WVunZgEREqqbz9uIvxF2nyjpJVaRMfgF8VUKwAuAM0KgSxiMiIiIiIl5QEbfZDNABmAU4jDG5Myt2VEBfXmeMuRX4I7AfGFqWfa21M/IVbQWGG2MAhuEK4swr45CiS9jeGNgM0KVLF1q2bOmxMSkpiezsbAICAoiIiChj1zVXaGhoqX4eLVq0YP/+/R5ls2fPZvLkyQA4HA5uuOEG6taty6FDhwgJCXHX27x5M127dgUgOzublJQU6tevzxtvvME999zjnlkxduxYli1bxu7du4mJifHoe+jQoTz77LOXerjiBRnnz5ORs+RTUGgYTSNrcTY9i7TMbOrXdc1iKqvjx48TGhpKrVq16Nixo7eHLLiWqcn9hv7111/v8W9Uqi6dt+on95wFBV780zI0MICbb77Zh6OSkuSfmVvN+AOlWdOqSSnriYiIiIhIFeDtgEU0nsm178l5WGPMCWAd4AAc1toql/jOGDMQWA4cBfpaaw97qenFuAIWPShjwMJae7C47XlvkgYHBxMaGuqx3c/Pz72uvp+ftyfUVC0XLlwgMLB0iY/9/PxK/fN49tlneeCBB9zva9eu7d4397l27dr885//ZPDgwe56CQkJNGvWjKSkJPz8/IiIiOBXv/oV69at47777nPXW7t2LdHR0axbt44WLVoAsHfvXvbv388NN9xQ489bdZF5PtX9OqRWLcKCAwkLvvRE28YY/Pz8CvzbFe8LCQnRz7ka0nmrXvIGLGzWBZ27Ki44ONjXQ7gU+4F2xVUwxgQC1wG7KmVEIiIiIiJyybx6J9Rae8ha+5a19n5rbSugGTAcSARSgF8DLwPbjDHHjDHLjTHjjDFtvTmO8jDG3AKsAE4Afay1e7zYfO4CweFebLPGi4+P53/+53944okniIyMpHHjxjzzzDPu7cYYXn31VW6//XbCw8OZNWsWAP/85z/p0KEDISEhtGjRghkzZpCVVf5lKWrXrk3jxo3dj/DwgqdxxIgRLFmyxP0+LS2NpUuXMmLECI96ffr0weFwuN//+OOPpKen8/DDD3uUOxwOgoOD6datW7nHLd5jrSUjN2BhDMGhYb4dkIhIFRWQJ2BBVmbRFUUu3UdATM5SrkV5FGgIaC1QEREREZFqokJXXs+ZHfBWzgNjTN4ZGL2Bu4A7c7YlW2t9sr5sTrDiXVyJ+/pYa3/ychddcp73ebndcjv68v/hPFe5NxL8agdxxaNxZdrnjTfeYMKECXz55Zds3LiRkSNH0qNHD2666SYAnnnmGX7/+98zf/58AgICWL9+PcOHD2fhwoX06tWL3bt38+CDruvYp59+ulzj/v3vf89zzz1Hs2bN+O1vf8tjjz1GQIDnP51hw4YxZ84ckpKSaNasGe+++y4xMTF06NDBo16fPn14/vnnOXz4MOHh4axfv54ePXrQt29fFi9e7K63Zs0aunXrpmVQqojMtDSc2dkA+AUGYTTrRUSkUH55/3/MuuC7gcjlYA4wElhkjLkGWJZTHm6M6YBrlvcEXF8c+qNPRigiIiIiImVWqXfdrLUHrLV/tdaOBq4HpgOncOW9qF+ZY8lljBmAK1hxClewotgp48aYQGPML4wxLfOV/8IYU+Br18aYXwB/yHn7dy8N+5I5z2WSfbZyH+UJkLRr146nn36a1q1bM3z4cH71q1+xevVq9/bf/va3jBo1ihYtWtCsWTNmzJjBlClTGDFiBC1atOCmm27iueee8wgGlMX//M//sHTpUtasWcPYsWOZPXs2TzzxRIF6jRo1YsCAASQmJgKwZMkSRo8eXaBejx49CAoKcs+m2LBhA71796Zjx46cOHGCvXv3Aq5lovr06VOuMYv3ZaSmuF87A4I5di6D9AvZWGt9OCoRkarHI2CRrYCFVJycpVsHAaeB/wHWAxa4G1d+tyfImeFtrT1ReCsiIiIiIlLVVOgMi7yMMVfgmlnRJ+fRKndTzrPX7vwZY+4Heua8zV1u6n5jTHzO68+tta/nBBPeA4Jx5dYYXEji3H3W2sQ875sC3+NaNzcmT/l9wARjzLqcbalAG2AgEAg8b61dd4mH5jV+tYOqRZ/t2nkuTdykSROOHTvmfv+rX/3KY/s333zDhg0b3MtDgSvhdXp6OufPnycsrGxL+UyYMMFjLEFBQYwdO5bnn3++wLrPo0eP5ne/+x1Dhw5l48aN/OMf/2D9+vUedcLCwujUqRNr167llltuYcOGDUyZMoWAgAC6d++Ow+HAWktSUpICFlWEtZb03ICFMaQSROq5DI6dy6BFg3BqhVx6HgsRkZrC+PnhxA8/nPhphoVUMGvtOmPMtcBjuP7mboHrC1kHgH8Dc6y1h3w4RBERERERKaMKC1gYYxrgGaCIzd2Up9oPwJqch8OL3fcERuQr65HzyPU60BhXsAJcAYfCrMWVg6Mka4CrgTigFxCGawr6h8Aia+0npRl4ZSnr0ky+kj+JtjHGnUQcKJBPIiUlhRkzZnDXXXcVaMsbyyt16dKFrKws9u3bR2xsrMe2AQMG8OCDDzJmzBhuu+026tcvfNJQnz59eOedd/j+++9JT093LxvVu3dv1qxZg9PpJCwsjC5duhS6v1SuzLTzHstBpTldv8L8jSEsuNJiviIi1Ua2fwB+2Zn4ORWwkIpnrT0KTMl5iIiIiIhINefVu23GmLu4GKS4Ju+mnOefyBOgsNYe8Wb/uay1I3GtaVtSPQeeAZTStL2vsH2stWtxBTfEhzp06MCPP/5Iq1atSq5cDlu3bsXPz49GjQqmWwkICGD48OG88MIL/Pvf/y6yjT59+jBz5kyWL19Oly5d8Pf3B+D666/nT3/6E9Za99JR4nvpKZ7LQTldsQtqhwbiV3BGlojIZc/pFwjZmfg7L2CtpZDZqyKXzBhzPXDEWruzhHqtgSZVaaaziIiIiIgUzdtfD16Oa2mn3CvTfVwMUKzRlGypaE899RS33norzZo14+6778bPz49vvvmG7du3M3PmzDK1tXHjRr788kv69OlD7dq12bhxI4899hhDhw6lXr16he7z3HPP8fjjjxc5uwKge/fuBAcH8+c//9ljyanOnTtz7Ngx/vnPfzJ16tQyjVUqhrWWjPOugIXxM6Sai0GkOiGaXSEiUhjrHwgXIMCZxYVsS1CAAhZSIRxAAjCmhHpPAKMB/4oekIiIiIiIXDpvJ90+BLyF66KgubW2hbV2jLX2LQUrpDL069ePf/3rX3zyySd06tSJrl278tJLL3HVVVeVua3g4GCWLl1K7969ufbaa5k1axaPPfYYf/rTn4rcJygoiAYNGhT7bdKQkBC6du3KuXPn6Nmzp7s8ODjYXa78FVWDazko1xJkwaHhpGW7zqufMcpdISJShIZ1awFQK8AS4KdghVQofcBERERERGoYr35F2Fob7c325PLmcDgKlK1cudL92trC87T369ePfv36FdluUfvl16FDBzZt2lRsnfj4+GLbGzRoUKHbP/vsM86ePVugfM2aNaUam1SOvMtB2eBQslNdr2sF++Ovm3AiIoUKCwvlHJCdmYFWg5IqoB6Q7utBiIiIiIhI6WhNExGRQljrzLMclB8pzgAgC4A6oZpdISJSlIDgi8vnZV3IJDAo2IejkZrEGNMsX1GtQspyBQDXAjcDuyt0YCIiIiIi4jXeTroddSn7W2t/9tZYREoye/ZsZs+eXei2Xr16FZs4W2q+zLS0i8tBhYVzIt2VbdvPQG3lrxARKVJAngBFVkaGAhbiTftw5cvL9eucR3EMriVrRURERESkGvD2XbeDeF5ElIVFMz6kEj300EPcc889hW4LDQ2t5NFIVZN3OShnUCjZF1y/2kL9XTksRESkcKnZF1Ok/XziLC1rR/hwNFLDJHHxWqMZcB44UUTdTFzXJu8Cr1b80ERERERExBsqKkBQnrt5ugMolSoyMpLIyEhfD0OqIOt0kpF6cTmoOhG1MUEXOHE2jXCFVUVEinX0vBP/nNf7jp6iZfMrfToeqTmstTG5r40xTuAf1trRvhuRiIiIiIh4W0XdevsKWAK8ba09V0F9iIhUiIy0NJxO13JQIeHh+Pv7USc0EHMhzccjExGp+vzzLAGVlqbfm1JhRgE/+XoQIiIiIiLiXX4lVymTe4FPgF/hmnp92BjzhjHmei/3IyJSYTJSL8ZZg8Nr+3AkIiLVT0DQxaTbaeczfDgSqcmstW9Yazf4ehwiIiIiIuJdXg1YWGv/Ya0dAMQAzwBHgWHAGmPMLmPMNGNMU2/2KSLiTdbpJD01FQA/Pz+Clc9ERKRMAoIvzrBI1wwLqWDGmJbGmBeMMZ8bY340xryQZ1sXY8yDxpg6vhyjiIiIiIiUnrdnWABgrT1orX3OWtsSuBF4G4gCZgL7jDEfGmPuNsYEVkT/IiLllZF2HpuzHFRgWDhJp9I4k3YBp7Ul7CkiIgCBeZaEykhP9+FIpKYzxowEtgOTgO5AK6BBniphuGZ931npgxMRERERkXKpkIBFXtbaz6y1Q4EmwP8DtgL9gXeAHRXdv4hIWWSkpLhfXwgI4UzaBfYnp3IiJdOHoxIRqT6CQi4GLDIVsJAKYozpCvwZyASeALoAJl+1tcAZ4LbKHZ2IiIiIiJRXhQcscllrz1prX8WV5+IDXBcUmp4tIlWG0+kk/XzOclD+fpzN8ndvqxMa4KthiYhUK8F5loTKzFAOC6kwT+C6nrjFWvuitXZz/grWWieuL0tdU8ljExERERGRcqqUgIUxJsQYM8wYswbYietbTmeBv1VG/3J5WbFiBTfddBMNGzYkIiKCbt268fHHHxeo98orrxATE0NISAhdunThq6++8tgeExODMYalS5cW2Pfaa6/FGENiYiIA9913H/379/eo89FHH2GM4ZlnnvEof+aZZ4iJibmkY5SKkZlnOaiA0HDOX8gGIDTQn+AA/+J2FRGRHMEhIe7XmRmaYSEVpgfwlbX28xLqHcE101tERERERKqBCg1Y5CS6W4zrQiERuB5YD4wAmlhrH6vI/uXytG7dOm666SY+/PBDtmzZQp8+fbjtttv4v//7P3edd955hwkTJvD000/z3//+l/bt29OvXz+OHTvm0VZ0dDQJCQkeZZs2beLIkSOEh4e7y/r06cOGDRvIyspyl61Zs4bo6GgcDofH/mvWrCE+Pt57Byxek55nOahM/4s33OqGBfliOCIi1VLegEWWZlhIxakLJJWiXiig/8hFRERERKoJrwcsjDENjTETjTHbgS+AB3DNppgNtLbW9rHWvmmtTfN231JzHD9+nMaNGzN79mx32RdffEFQUBCrV68udt/58+fzxBNP0KlTJ1q3bs3s2bNp3bo1H3zwgbvOvHnzeOCBBxg1ahTXXHMNr732GmFhYSxZssSjrSFDhrB27VoOHDjgLluyZAlDhgwhIODiEkF9+vQhJSWFr7/+2l3mcDiYMmUKX375Jek5a3inp6fz5ZdfKmBRBTmdTjLcy0H5c+bCxV+PdcMCfTUsEZFqJzws1P06xDh9OBKp4ZKBq0pRrxWuL0+JiIiIiEg14NVF2Y0x7wEDc9q9ALwLLAE+ttZab/Yll2bx4sWk5Pk2eWWoVasWY8eOLVXdhg0bsmTJEgYNGsTNN99MbGwsw4YNY9y4cdxwww1l6tfpdHLu3DkiIyMByMzMZMuWLUydOtVdx8/PjxtvvJGNGzd67HvFFVfQr18/3njjDZ588knOnz/PO++8w9q1a/nrX//qrtemTRuioqJYs2YNXbt25dy5c/z3v//lX//6Fy+//DIbN26kT58+fPHFF2RkZNCnT58yHYNUvMzzF5eD8g8JIyPL9bpWcACB/n44nbrpJiJSGs0aRbAl53WHpuHF1hW5BJuA24wx11prvyusgjGmB3At8FaljkxERERERMrN21lk7wAs8DWuC4NkIBIYbIwpcWdr7d+9PB4pQkpKCufOnfP1MIo1cOBAHnjgAYYMGcKvfvUrwsPDef7558vczosvvkhKSgr33HMPACdOnCA7O5srrrjCo94VV1zBDz/8UGD/0aNHM3HiRKZPn87y5ctp2bIlv/zlLwvU69OnDw6Hg6lTp7J+/XratGlDw4YNuf7663E4HO7tzZs356qrruLs2bNlPhapOOmpF/89ZPgHQ87qXloOSkSkbAKCLibd1pJQUoFeAQYB7xpj7rPWbs270RhzNa4vTllgUaWPTkREREREysXbAYtcv8p5lJUCFpWkVq1a1aLPF198keuuu45//OMfbNmyheDg4JJ3yuPvf/87M2bM4J///CeNGjUqc/8At9xyC2PHjmXdunUsWbKE0aNHF1ovPj6e8ePHc+HCBRwOh3vZp969e7N48WIAd+BCqpb8y0GdvOAHWIwxRIRW1K9JEZGaySNgkamAhVQMa+1qY8w8YAKwxRizG1dwop8xZhtwDa7lb1+w1m7y4VBFRERERKQMvH0nbh2uCwWp4kq7NJOv7d69m59//hmn08m+ffto27ZtqfddunQp999/P//4xz+48cYb3eUNGjTA39+fo0ePetQ/evQojRs3LtBOQEAAw4YN4+mnn+bLL7/kvffeK7S/Pn36kJqayubNm1mzZg2PP/444ApYjB49mpMnT/Lll19Wm5/95STzfCrW6frV5R8SRlaW63VESAABfl5P9SMiUqMF5PlywQXNsJAKZK2dZIz5EXgGV64KgCY5jxPADGvtKz4anoiIiIiIlINXAxbW2nhvtieXt8zMTIYOHcq9995LbGws999/P99++22pZkq8/fbbjB49mqVLl3LLLbd4bAsKCqJjx46sXr2aQYMGAa5v2K9evZpx48YV2t7o0aN58cUXuffee6lXr16hdVq2bEl0dDTvv/8+W7dupXfv3gA0bdqUpk2bMnfuXDIzMzXDogpKz5PPpVZEBK0DgjmdlkmtYM2uEBEpq8A8AYvt+49zmw/HIjWftfbPxpjXgTigBa5ZFQeAzdbaLJ8OTkREREREykx346TKmj59OmfOnGHhwoXUqlWLDz/8kNGjR/Ovf/2r2P3+/ve/M2LECBYsWECXLl04cuQIAKGhodSpUweACRMmMGLECH71q1/RuXNn5s+fT2pqKqNGjSq0zauvvpoTJ04QFhZWbN99+vRh0aJFtGrVyiNHRu/evXn55ZfdybmVwLnqyL8cVFBoKMYYQoNCfTwyEZHqKSDoYu6fsynnfTgSuVxYay3w35yHiIiIiIhUY1rrRKokh8PB/P/P3n3HyV3V+x9/nWnbW7LpvZNGCxAgEBJKAgKiVBVLRBBRvAo2ftcGF7yiV722a0MFBJUiiDQhIZACISGBhBQS0kivm+270+f8/vjOzuwmu9nZ3ZlteT8fj33sfMs5389yssPO9/M95/Pzn/PII49QWFiIy+XikUceYenSpfz2t789bts//OEPRCIRvvSlLzFo0KDE11e+8pXEOTfccAM/+clP+N73vsepp57KmjVreOmll44pxN1Y3759yck5/k3s2bNnU1NTk6hf0eCCCy6gpqZGsyu6oWB9Hc59DsjOy8cY08URiYj0bG5vMmHhioa7MBIRERERERHpadI6w8IYM9hau6+79CM916xZswiHm97kGDlyJFVVVa22XbRoUUrXuP3221tcAgpgx44dx21fWVl5zL558+Yxb968Y/Z/5jOf4TOf+UxKcUnnCjZaDiqrC4rRN6ivDiUSJ5I+gUCIaNBJQtVXh4iFlKfvCTRuPU/DmBm3xRhDxOXBE4tglLCQDDPGDAVmAYOB7BZOs9baezstKBERERERabd0Lwm1xRjzK+BH1tqKtjY2xvQB7gK+BOSlOTYRkSZi0WiT5aB2V0cpjAQozvHh83TODdJIKMqhD2qZ/9PdnXK9E5OTiHrs1be7OA5pG41bz5OPcVl2DDlCzOWFWARXTCUEJDOMMW7gl8DnSc4aP3qapI3vs4ASFiIiIiIiPUC6ExbzgW8CXzbG/BN4GFhirQ221MAYk4XzVNQ84CqcJ6OeSXNc0otMnjyZnTt3Nnvs97//PTfeeGMnRyQ9VaCuNjGrwWTlUh+OUl8VJRK1DC7ObA2LcDBKOBTFXxMmHIxm9FoiIp3FxgybVxwi5vZCxI87FsZaq+X2JBO+A9wGRIDngS1ATZdGJCIiIiIiHZbWhIW19qPGmIuB/wU+AXwcCBtj1gAbgSNANVAI9AUmAacAXpynn9YDd1prX0lnXNK7vPjii8csF9XgeDUoRI7mr6lOvK4zWYnXxbnejF0zGolRVxkkUBfGRpNLQPUbXkB+SdZxWkp7RGNRDh06BED//v1xu9xdHJGkQuPW80RjUXatcybXhvwRrNt5H/XGIgQjMbK9GkNJu3mAHzjfWqti2yIiIiIivUS6Z1gQTzZMNcZcAtwOzAHOin9Bcmp2gyDwHPBrJSokFSNGjOjqEKQXiIRChAMBANw+H9UR520py+MmJwM31mIxS311CP9RtSqM29BveAEXfWSSnkDOAL/fz/z5uwC4eM5J5ORkduaMpIfGrefx+/08+PVl2KghFIiCxym87bER/KGoEhaSCQOBRUpWiIiIiIj0LmlPWDSw1i4AFsSXfJoBnAYMAIqASuAQ8A6w7HhLRkl6qJivSFOB2uSqEdaXC/FJO8W53rQmDqy1BGrD1FUFiTWaUWFcBpfHkFfkw+fzKVkhIj2e8Vhs1BAORMHjzLBwE6MuEKQkz9fF0UkvtA8tASUiIiIi0utkLGHRIJ6MeDX+JZ3M6/USiUSIRqNUVlZSXFzc1SGJdDlrbXI5KAPV1ocz+QuKc9K3HFTQH6G2IkA0HGuyP6fARwQ/1FoMBo8n42/FIiIZ5/JYYkEIB6IYTzJBUVfnh74FXRiZ9FL/BD5pjMnSw08iIiIiIr2H7pL1cnl5efj9fgD279/PoUOH9CR3NxGJRAA4fPhwF0dy4onFooQDzr0Nl9tFoG4fAG4X7PK3PB5tGbNIOEYs0jRR4XIb3F4XlUGIRpOFtvPy8tr8M4iIdDcm/ldlKBilpE8efqcMCVkm2nIjkfb7L+AK4DFjzC3W2rKuDkhERERERDqu1yYsjDGfBM4HpgFTAR/wWWvtQy2cXwjcDVyDsybufuBJ4B5rbW0brz0X+E/gdJzHtt8G7rPWLmzPz9IRpaWlRKNRKiqcQpiNb5JK17HWJhJJOTk5SiJ1Mn9NdaJ+Bdl5VEec9aCKc7z4XM23acuYRcIx/NWhxLbbY8jK9YLLdczvYElJCaWlpR34aUREugeXJ77snYVh/YrYvNXZLE7fxDWRBGtttTHmHGARsM0Y8zawC4g1f7r9XLqu3ZbPGcaYu4HvH6e7UdbaHc206zafJ0REREREOlOvTVgA9wEjgDKc5EOLlZqNMXnAYuBUYD7wd5yaG18HLjDGzLTWBlK5aPwDzCPAYeCh+O4bcOp5XG+t/Ud7fpj2MsYwYMAA3G43dXV1RCIR1bPoBmKxWOLmd35+Pi5XC3fJJe1isShHdu/ARmO4PG4O5A3DH3Z+J84dk4fH0/xYtGXMyvdU4691kiAlA/Mo7Jvd5LgxzjJQeXl5lJaWKmElIr1CImEBuFzJJaHCIa3WI+kXr5P3EDAFMMCs45xugbQlLGjD54xGHgZ2NLO/8ugd3e3zhIiIiIhIZ+rNCYubgS3W2p3GmLuAHx7n3G/iJCt+ZK29q2GnMeZ+4FvAHa20bzi/BPgVzoeX0621e+L7fwSsBn5rjHnZWtupBQKNMfTr149+/fp15mXlOPx+P5s2bQJg2rRp5OTkdHFEJ471i15h7ROPADDqvIv5waFC/OEo540t5ZYrJrTYLtUxO7SzmvlP7QagsDSbC++ZjMuthJSI9H6m0V+Vxp2cVhEJKmEhGXEPcCVQgXNzfwvQplnRHdCWzxkNHrLWLmrtpO76eUJEREREpLP02oSFtfaVVM4zzqPNN+N8wLn3qMP3Al+KH0/lg8h1QDHw/YYPF/FY9hhjfo2z5NRHgb+kEpuIpN97i5MrKZw991LeGj6G597dz7A+6UkavfPyrsTr0+aMULJCRE4YjWdYGFfyT8xAfHaaSJp9HGd2wqnW2t2deeFUP2e0kz5PiIiIiMgJrdcmLNpgHDAYeNlaW9f4gLW2zhjzBjDXGDMshQ9Ds+Lf5zdz7GWcDxgX0IYPGMaYoa2cMrDhRTAYTCxZI91bIBBo9rVkVvXhg+x+bx0AxQMHUzx0OMZG+OjJzuyj4/3+pDJmVYf8bFvtVJnNKfAy4tRi/U52Mf2u9Uwat54nEAhgGiUsPjicHLdX1+3iE+NansEmXSfYs2e/9Afmd3ayogNmGmOm49TY2AK80kKdvFnx713yecLv9+tvF5F20O9Nz6Rx65k0bj2PxqxnSmXcMjW2Slg4CQtwPjg0ZwswN35eax+IjtfXlqPOSVXKH8JWrFjBtm3b2ti9dLUlS5Z0dQgnjPJ17yReuwYMYcGCBe3qp6Uxq1iXBdZZt903uJZXX8vkA5jSVvpd65k0bj2Hy5NcBqq6qo6Gre3btjN/fnP3XqWrlZWVdXUIHdFSge3u6p6jtiuNMV+x1h6deOjSzxNLliyhtLS0jd1Lz6GP/5mSuf/PacwySePWM2nceh6NWc+Uyrhl6vNERtcqMcbMNMbMyOQ10qAo/r2qhePVR53X3r7a0o+IpJm1luoPNie2s4aPTWv/0YChbq9ze854LHnDQmntX0Sku2tcw8LVaCMWiXRBNHIC+BswyxhT3NWBtOJd4CZgNJADjAK+jFMI/CFjzIePOl+fJ0RERETkhJbpVNSi+NeFGb5ObzasleMDgZUA06dPZ8yYMZmPSDosEAgknhqeOXMm2dnZXRxR77fv/Y1sq3XqUxaPncR97/fl0sn9+dT0oZw0sKDV9q2N2Vv/2sF+ux+AqbOGcsblw9P8E0h76HetZ9K49TyBQICXHluW2C7tO4CK+DPdfUqKmTNnThdFJsfTw2fm/hBn+aQXjTGfs9Zu7OJ4mmWt/edRu3YAvzbGbAQWAPcBz2Y4jJQ/T8ycOZOhQ1tbQUp6rDdf7eoIeq2M/X9OY5ZRGreeSePW82jMeqZUxm3Pnj2tntMemU5YVAD7MnyNjmp4eqmlJ5UKjzov1b6OdKCfhMbF9prj1Ax3ZGVlkZOTnsLB0nmys7M1bp1g6/LXE6/39ptC/YEoT6/Zz5mjSzltVP829XX0mAXqwmx606ld4fa6mDZnFDk5vvQELmmj37WeSePWczSuYeF1Jd8DY5GIxrCbysrK6uoQOuIlwAucDawzxuyi5WWirLX2os4MrjXW2oXGmG3AVGNMobW2YfZEl36eyMnJ0e+rSDvo96Zn0rj1TBq3nkdj1jOlMm6ZGttMJyzW0PY1Vjtba2vBtlbj4ui+zoi3OfoDRlv6EZE0CgcDbF6+FABvdg5PH+kDQK7PzZWnDO5w/+sW7SESjAIw6dxB5BYqWSEiJx5XkyWhkvUsIj27sLN0X7MavXYBI+NfzbEt7O9qZcBYIJfkck/6PCEiIiIiJ7RMJyx+CfzTGHO5tfaFDF+rvbbgzAKZYYzJs9bWNRwwxuQBM4APrLWpFKtbDHwcmAMsP+rY3EbniEgn2vrWm4T8fgCyxp1GZa3zJOEVJw8iP6tjb4PhYJS1rzoPLhqX4dRLtBSUiJyYXN7kPWGXTb63RkJKWEhGzO7qADoi/jljMlCHk7hooM8TIiIiInJCy3TCYjXwa5ykxUPAUzjrtvqbO9lauyvD8TR3TWuM+SPwPeC7wF2NDn8XyAf+u3EbY0wuMByoPyrmJ4AfAV82xvy5Yfq1MWYocDvOh5Gj17EVkQzbsCS5ruFbnmSdlxvO7Hhy4b039hGoCwMw7sz+FJZqqqOInJgaLwlFrFHR7XCoC6KR3s5a2+1v2htjCoBB1trNR+3PAR4ACoAHrbWNK9Pr84SIiIiInNAynbD4IP7dAJ+Lf7XEpjMeY8zNwHnxzanx7zcbY2bFX79urf1j/PWPgauAbxljTgPeAU7HebJpJfDzo7o/C3gN5+mmhv6w1lYYY24HHgHeMcY8Hj90A9AXuMFaW5OGH09EUlRddpid69YAkFvan4UVeWBgXP98Th9e3KG+o5EYaxYkc5anzxnRof5ERHoyV5OEhTv5UjMspJdpw+eMvsAmY8xKYCNwABgAXAwMBdYB32jctz5PiIiIiMiJLtMJi9103Zqx5wGfOWrfjPhXgz8CWGvrjDEXAHcD1+BMMd8P/BS4x1rb7IyQ5lhrHzXGlAH/CXwW5+d/G7jPWvtK+34UEWmvjUtfA+u8DVUPOQWqneWgbjhzWJMik+2x+a2D1FY4N+JGnlxK3yH5HQtWRKQHM8kcBTbaKGER0QwL6XVS/ZxRDvwG52GnDwElODPNN+Isnfvr5j5n6POEiIiIiJzIMpqwsNaOzGT/rVx7HjCvDedXAXfEv1o7dxHOrJGWjr8EvJTqtUUkM6y1TZaDejEwBACv23D16UM71nfMsnr+zsT26XM1u0JETmzGBcZtsVFDLJxMWJxUmt2FUUlvZ4w5A7gWmAAU0vzf6NZae1G6rpnq5wxrbTXOMk7tuYY+T4iIiIjICSnTMyxERLrM/i3vU7HPKYidO2I8O0NOfYk5kwbSJ8/Xob4/eLeMigP1AAweV8ygMUUdC1ZEpBcwHidhEQ4n7xnnuGJdGJH0ZsaYn+A8bNTwD87SNGHRsN1VM75FRERERKSNXF0dgIhIpry3ZGHideHUcxnRNxdwloPqCGstb7/caHbFpZpdISICyToW4UDynnE4qBoWkn7GmOuAO4G9wK3A/PihuTizGt7ESVbcD1zYFTGKiIiIiEjbdcoMC2PM+cCXgXOBfsCj1trPxY9dglMz4pfW2gOdEY+I9H6RUIhNy5YA4MnK4rprP8THs3JYuaOcM0f26VDf+7dWc2hHNQClw/IZPqlj/YmI9BYm/pdlOGhxuT3EohEiSlhIZnweiAIXWWu3GGPOBbDWLgAWAL8xxtyLU9T6ia4LU0RERERE2iLjMyyMMd8BFuGsLTsY8NJ0qnYV8C3g6kzHIiInjm1vryBYVwfA+LPOxZeTi8tlmD66Ly5Xx4ptr31lb+L16XNHdLh4t4hIb9EwwwILLq+z9F5VTV0XRiS92GnACmvtluOc831gP/CdzglJREREREQ6KqMJC2PMZcB/4UzVvh4YcPQ51tq3gMPAFZmMRUROLBsWJ5eDmnRB2upsEqpysW9zFQCF/XIYc1q/tPUtItLTGU+yVEBd1EnmHqmq7apwpHcrAHY12g4BGGPyG3ZYa2PACmBG54YmIiIiIiLtleklob4CBIHLrLUbgJaeRH4XGJfhWETkBFFbUc6Od98BIKekL+H+o9PWd832ZLHu0+cMx+VWKSARkQauRn9ZWpcXAHcsQixmOzy7TeQoh4HiRttl8e8jgfWN9ucBhZ0TkoiIiIiIdFSm77SdCbzVkKw4jsPAwAzHIiIniI2vL8LGYgDs6zeZi/93Kdf/7k32Vfo71G+41uA/4NyNyy30MeFsvW2JiDTmajTDwridhIXHRghEol0VkvReO4ARjbZX4yw7+4mGHcaYgcAFwM5OjUxERERERNot0wmLPCCVQtpFnRCLiJwArLVsWPRKYvulwFAAtpfVUpqf1aG+az7w0VCC55SLh+HxujvUn4hIb9N4SShczow0r41QHwh3UUTSiy0ETjLGjIxv/xsoB75ljHnSGPNTnOWg8oCnuiZEERERERFpq0wvCXUQGJvCeROA3RmORUROAHs3beDIHmdJa/fAUZS5iwC4+vSh+Dztz4vWVgSp3+s8LezLcTPl/CEdD1ZEpJdpboYFQK0/QGlhTleEJL3XY8BgYBiww1pbZ4z5bHz/NY3Oexv4YRfEJyIiIiIi7ZDphMXrwMeMMTOstW80d4Ix5gqcpMbvMxyLiJwA1sx/MfF6dd5EcFaG4vozhnWo37UL94J1ZldMPG8gvpxMv32KiPQ8ptFbo8uVTFjU1fmBks4PSHota+1G4Jaj9j1njBkHXAn0ATYCz1lrtSaZiIiIiEgPkek7bj8FbgCeNsbcCjzf+KAx5lLgj0AY+FWGYxGRXq6usoItK5YB4M0r4PXIEHDBmSNLGNs/v9391lYE2Lz8EADGbZl8waC0xCsi0ts0mWHRKGFRX9+xGkIiqbLW7kMPQomIiIiI9FgZrRthrX0H+BpQirN2bCVggWuMMZXAC0B/4GvW2vcyGYuI9H5rF75ELBoBoHLY6URdTk72hjOHd6jfd+bvIhZ1bsLljwiRnedtpYWIyImpcQ0LtxIWIiIiIiIi0kYZL3Rtrf0F8CFgJZCDU7G2ACgE1gEfttb+OtNxiEjvFotGWfvKSwAY4+L50AgA8rM8fGjqwHb3W1cZ5L2l+5x+3Zb8USocKyLSElejubvGKGEhIiIiIiIibdMpi7Bba18GXjbG9AVG4SRKdltr93fG9UWk99u2agW15UcAyBo9hUOxPAA+fOpgcn3tf6tbPX8X0YhTCCNveBi3z7bSQkTkxNV4hoXLeGkoHBAKBLsmIOk1jDFRnJnak6y1m+PbqbLWWhWfEhERERHpATr1D3dr7RHgSGdeU0RODGvmJ0vkrMyZCHXO64+d2f5i23VVQdYv3QuA2+uiYFSoQzGKiPR2jWtY9MnN4XD89SkDc7omIOlNTPyr8XZb2oqIiIiISA+Q0YSFMWYe8Iq1dk8mryMiJ7Yje3aza/1aAIoHDuLT115CdNlOympDTB1S1O5+1yzYRTTszK44acYAqrKq0hKviEhv1ThhYW1ySahwSDMspGOsta7jbYuIiIiISO+Q6RkWfwasMWYL8Er861VrbXWGrysiJ5B3F7yYeH3qnMuZNnEgF04cSH0ogjHte6iyvjrE+iXJ2RVTZw/m9eWb0xKviEhvZRr9ZRmLJu8nR4JKWIiIiIiIiEjrMp2weAi4EBgf/7oNiBlj3iaZwHjDWqsqtiLSLqGAnw2LFwLg8WUx+YKLE8c6UrtizSu7iISc2RWTzx9MbqGvY4GKiJwAjAs8PheRUIxo1J3YrxkWIiIiIiIikoqMJiystTcBGGPGARcDlwCzgLPiX/8P8BtjXgcWWGt/msl4RKT32bj0NUL+egBOmnEB2fn5He7TXxti3eL47AqPi9PnjABiHe5XRORE4M1yEwnFiISTMyzW7Sjj5C6MSXofY4wLOAOYDPTFKchdDqwD3rbW2uM0FxERERGRbqpTim5ba7cAW4DfGmd9ljNwEhgXAzOAOfHXSliISMqstax5+YXE9guRUXg2HmT2hP64XO2vr/nuK7uJBKMATDpvMHnFWfj9/g7HKyJyIvBmu/HXhJskLHYfruy6gKRXMcZ4gW8CdwAlLZx2xBjzU+Cn1tpIpwUnIiIiIiId1hXF6rxAQfyrkGTSpP13F0XkhLR30wbKdu8EwDdoFM/ucfG5h1dx3wsb291noC7M2kV7AHB5DKfPHZ6WWEVEThS+bGcpqFijJaEiWhJK0sAYkwcsAP4L6IPz+SEMHAQOx18boBT4b+AlY0xO10QrIiIiIiLt0SkzLIwxp+IsB3UxcB6QjfNhohp4gWQ9CxGRlDWeXbEqbxI4kyL4yGmD293nuwt3Ew44HU08dzD5JdkdilFE5ETjjScsTKM/M6OhUFeFI73LT4CZQAD4FfAosL5h+af4MlFTgE8BXwJmA/8D3N4l0fZiI+96ofWTpN123H95V4cgIiIi0mUymrAwxjyGU3S7L8knoJaTTFC8Za2NZjIGEemdaivK2fLWMgA8eQUsjQwBA2eMKOHkocXt6jNQF2btq7sBcLkN0y4dka5wRUROGA0JC2dSrSMWVsJCOsYYMxz4PM4DT7OttauPPsdaGwPWAt8wxvwdeA241Rhzv7V2T6cGLCIiIiIi7ZLpJaGux0lWrAWuBkqstRdYa++11r6pZIWItNe6hS8TizpvIfsHnELMODfIbjpvVLv7XPvaHkLx2RUnnTOIgj6aXSEi0la+7PjzMCb5XIwSFpIGN8a/39VcsuJo1tp3gLsAd6O2IiIiIiLSzWU6YVGDM7PiFOCvwNPGmK8ZY07J8HVFpBeLRiKsfeXfzoYxPB8eCcCQ4hzmTBrQrj6D/khydoVLsytERNqroYaFUxvZYZWwkI47B2cpqAfb0ObBeJtzMxKRiIiIiIikXaZrWPQBzsKpXXExzjqycwBrjCkDFuIUzlugadoikqptb6+gtqIcgPCQidR6CgD49Dkj8Ljbl4dd99pugvURACacPZDCUtXoFBFpj+SSUMk/M21ECQvpsMnAamttyhXcrbUBY8w7OHUtRERERESkB8joDAtrbTS+9NO91toLgBLgCuAXwAHgBuCPwE5jzMZMxiIivUfjYtuv2LEA5HjdfOzM4e3qLxSIsOYVZ3aFcRmmXabZFSIi7eXNiicsGs2wQAkL6bg+wP52tNsXbysiIiIiIj1ApmdYNGGtrQdeBF6MLwt1I3A7kA2M78xYRKRnOrJnF7s3rAXAFPVjq3cwANdOG0pRrvd4TVu0btGexOyK8WcNoKhfbnqCFRE5AfkSMyzcWJy1QU003IURSS9RgLPcbFvVAflpjkVERERERDKk0xIWxpihwCU4S0NdBPRrOASEgTc7KxYR6bnWzH8x8bpy5JlQbQCYN2Nku/oLBSKsWRCfXWHgjMva14+IiDi8Oc6fl8YYcHkhFqbAY7s4KukFOjIzPNN1+0REREREJE0ymrAwxnyEZP2KcQ27AQusB16Jfy2Oz74QEWlRyF/Pe0sWAuDxZfGfX/k0n6iJsWzrEcb0a9/Dk+uX7CVQ5zz5O+7MARQP0OwKEZGO8DUsCQX4fFmEA2H6ZpsujEh6kXxjTFvXf9TsChERERGRHiTTMyyebvR6N8kExUJr7aEMX1tEepn3li4i5PcDMPG8C8jOy+ekPDhpYGG7+nNmV+xyNgyc8aGR6QlUROQEliy6DcblLNUXCaZcJ1nkeK6Jf4mIiIiISC+V6YTFM8AC4BVr7ZYMX0tEejFrLWtefj6xfercKzrc59pX9+Cvic+umNafkoF5He5TRORE1zhh4YonLMLBQFeFI71Le6fqaE0yEREREZEeIqMJC2vt1ZnsP12MMfOAB1s57VVr7UWt9DMLeO04p3zWWvtQW2ITEcfejRs4sseZDVE8chylw0d1qL9AXZjV8dkVxmU468rRHY5RREQaF90GYxoSFkGstU5dC5H26dj/+EVEREREpEfotKLb3dwa4J4Wjl0LTAZebkN/i4FFLVxHRNph9fwXEq//4R/Boz9bzJdmj+XaaUPb19+CXYT8EQBOOmegaleIiKRJ4xkW/oiToLCxGIeq6hhQrHIC0j7W2p1dHYOIiIiIiGRepyQsjDETga8As4Eh8d17gVeBX1prN3ZGHC2x1q6hmWSCMcYH3A5EgIfb0OUia+3d6YhNRKD68CG2rHjD2cjO5/2c0cTK6vigrLZd/dVVBVn76m4AXB7DmZd38UObFTtgxxtgY8cey+8P4+c23bfpBagvb73fQafAoJOT2+EArHsytZgmfAjy+ia3y7c7MbbGkwUnX990347XnfatKRkFo85vum/tExBJYSmZETOg75jkdn05bHoedyjM8CMbAHC/WwY+77Ftp14H3pzk9oF1sG9169fMKYGJVzbdt3k+1B5ove2AyTBkWnI7FoM1jzY64ThPoY+9GAoHJbcrd8P2Ra1f0xg47ZNN9+1+Cw6/33rboiEw5sKm+zY8A8Ga1tsOPRP6n5TcDlTDe/86bhN3OMTwIxvYV3xm0wOH33dibk1WPkz+aNN9216Dqj2tty0dD8OnN9235m8Qi7bedvQFUNyoHnDNQdgyv/V2AKd8HNyN/izbtxoOrG+9XTd5jzAVOxh+ZDFBTyE+7wWJ/dZ6Ev+aa2v9SliIiIiIiIjIcWU8YRFfbul3gJemd2DGxb8+a4y51VrbloRAZ/kI0Bd4xlp7sItjETlhvf3CM9iYczN/bcFkYsaNx2X41Nkj29XfOy/tJBJy+pty/hAK+mSnK9S2O7wZ/ngxBKuaPz783GNvRi7+Mexf03rfF36n6c3IUB08e3tqcd3yWtOExZ5VqbXN6XNswuKdR2DtY623nXrdsQmLl/8T6g633vYjv2uasKjaA89+GR9wWsO+XS20HX9p04TF1lfglbtbv+aAqccmLJb9EnYsbb3tjK80TVjYKDz75dbbAXz62aYJi4MbUhsbl+fYhMXaJ2DlA623HTf32ITFwntSS0Rd9j9NExb1R1qNt2HcjuRNaHpgx1J44WutX7N4xLEJi7cegPdfaP78xs646diExfN3pJY4u+GvTRMWR7am/js39dqmCYuNz8HSn7berpu8R7j2vc1pu/4EQHgFeLyziIRjiSWhAOrq61PrW0RERERERE5YGU1YGGOmAQ8AbuB54E/Atvjh0cDngCuBB4wxG6y1qzIZTzvcHP/+xza2G2eM+SqQA+zBqX+xtz0BGGNaW+9mYMOLYDCI3+9vz2WkkwUCgWZfy7ECdbWsfTW+IpvHy4qciQDMndSfIp9t87/52vIg65c4v44en4vJswek1EdGxixQRdbfP4arpWQFEI3FCB0VX5aN4Uqh+3A4QqRx24CfnJZPbxpaMIht1NYdCuFLoZ0FAkfF641GUvqfTSQaJXxU22xrU6qwGgqHiDZqa4JBUk1D+QMBcCfbesJhmpmHcYyYjRE8Kl5fLIa7hfMbC0eOGptoOOWxCYZCxBq1dYWCZKXQriNjE41Fm/l3aFP6d9iRsYGmv2/ucDilf4cxa5sZm2hKYxOJRI79d0hqlX7bOzaA8z4USW57IpGU/h12l/eImL82OTY7l+HNvshJWFhPotpxRUWV/k7pZoLBYFeHICIiIiIi0kSmZ1h8A3ABn7PWHl3Uej3wbHwGxp+BrwEfz3A8KTPGjAAuwkk4vNTG5p+IfzWIGGN+BXzDWpvCmhJN7E71xBUrVrBt27bWT5RuZcmSJV0dQrdWvmE1kfgNla0F4wm4ndtpE9jL/PltzwOWr8siFnVuq+UM9bP0zUVt7iMtY2ZjnL39Zwyodn5nq7OHsr3fJcecFvAWc3B+0yVlBuXMwjds2jHnHq3yUC5Vjdq6YiGGDftsSuHtf2crIe+hxHZesJ7SFNrGjJfdR8XbNziOvGE3tdq2PtSfsqPaDu13Da5YuNW2R7YHqNuXbOuN1DA4xZ91z9LlRF3J28qF9TmUpNA25Mln/1HxDvBMJ3vY+FbbVleUUtG4rY0xIsV4D67bQ+D9ZNucUBn9U2hrMew6Kt4+tUMoSKGtn74cOqrt4KLL8Oa3fvO5fI+h5kiyrSfqZ0iKP2vQW9jk963Ab+mTQtuIO4e9R8XbLzaV3GGDWmiRVFM3mPKj2g4ffCOmuSXbjnLo/XL8O5Jts8KVDEzxZ9316iKsSaZUiutKKEqhbfd5j3Bxcfy1/8hewtEg4AKb/JlWrVxF5YEPUupfOkdZWVlXhyAiIiIiItJEphMW5wNrmklWJFhrHzLG3A7MzHAsbfVZnGTLQ21IMhwG7sKZTbIDyAPOAe4H7sB5wDWFtSxEBCAWjVD1vlN/wGJ4I+8UAEbmW0YUtL2/cK2hfq/zzLLxWApGh9IWa1u5bISQOw+AkDuPFaPvoD6rX0pt9xef0a5rxlw+dpbOblfbuqwB1GUNaFfbIwUTOVIwsV1t9/SZ0a52YU9Bu3/W6tzhVOcOb/3EZhwsOrVd7TCudsfr95W2u215/njK81tPsDRnX8nZ7WoXcee0O96anCHU5Axp/cRmHC6c2q52ALv6XtD6Sc0Ieovb/bNW5o2mMm90u9p21XtEvbcPueFyfJEajMeZV+HCS8MfUeFwW5/ZEBERERERkRNNphMWpcBrKZy3CWj/nYQ0M8a4cBIWFmf2R0qstRuADY121QH/MsasANYC/2GM+ZG19lCzHTRvWCvHBwIrAaZPn86YMWNaOV26g0AgkHhqeObMmWRnd2ENhW7svUWvsD3gPMFdPeAkqr1FAPzHpVOYM7ntN89f+8tmsEcAOH3OcE65pLUV15IyMmb2csJv/QY78BTOG3Fex/uTY+h3rWfSuPU8gUCA0KYCcsPlZMXqKO1fwv7qamhUw2LEiBHMmXP+cXqRzqaZuSIiIiIi0t1kOmFRCaTymOpwoOVF3DvfxTgxLbTWdnjtAmvtAWPMv3BqYkwHnmtD2z3HO25MclXtrKwscnJSXX1auovs7GyNWzNsLMa785MFcl9yTwJgUFE2V542HK87lRXak8r21PDBaidZkVPg5fQ5o/Blt+8tMK1jNuvr6elHWqXftZ5J49Zz1HjyATCxCNk5znu0afSnZjQS0Vh2M1lZqVZZERERERER6Rxtu+PXdiuBc40xF7Z0QvzYDGBFhmNpi/YW2z6ehkWC89LYp0ivte3tt6jY5+Tr/H1HciirPwC3nD+6zckKgBX/2p54Pe3Ske1OVnRI7WEo3976eSIiPVDInVyrz+eJ155pNMOicQF1kY4yxnzPGHNHV8chIiIiIiLplemExa/i13jOGPNjY8xkY0xu/GuKMeYnJGcb/CrDsaTEGNMXuAooB/6Zxq6nx7/vSGOfIr3WyueeTry+8LrruW7aUAYWZvPxs9peW+DA9ip2rHNmV+SXZDF55uC0xZmySAie+DT8YTZse7Xzry8ikmGh+AwLAJ/72IRFKBDs7JCkd/se0L4CMyIiIiIi0m1l9BFja+3LxpgfAN/GKTbdXMFpA9xrrZ2fyVja4FOAD3jUWtvsJ2tjTClOfY4ya21Zo/3TrLVvN3P+V4DZwBbi9SZEpGV739/IvvffA6Dv0OGcc8F5nOtyEQhHyfa629SXtZblzyTX6D7z8lF42thHWvz7m7BrmfP6X1+GL78NXq3LLyK9R8jTaIaFKwC4miwJNbrE1wVRSS92CPB3dRAiIiIiIpJeGV8TxVr7XWPMG8DXgXOBhjt0QeB14KfW2pcyHUcbfC7+/XjLQd0OfB+4B7i70f6njDFhYBWwB2f5p7OB03DqeXzSWhtNc7wivc6q555KvD7jyqsxLmcyWFuTFQB7NlWwd3MlAEX9c5hwzsC0xNgmK/8Ebz/ovHZnwfV/UbJCRHqdytxR7OpzPoPGTsFXXwjUgkn+qdk327TcWKTtlgJndXUQIiIiIiKSXp2yiHs8IfGSMcYN9I3vPtLdbt4bY84CpgBvWWvXtaOL3wJzgZk4P2cM2An8HCcxc9wC2iIC5fv2snWVU9Imr6QPE89r/2oP1lqWN6pdcdaVo3C3o/5Fh+x4w5ld0eDKX8DQaZ0bg4hIJzhYdCoHi06l3+w5+FaWA+83WRIqEtSSUJJW/wWsMsbcB3zXWmu7OiAREREREem4jCQsjDFjgauBkTgzKdYAT1hr/TjTt7sla+1bOEtUtXbe3TSdWdGw/0fAj9IemMgJ5O3n/wnxew4rcyeTt3Iv150xrF2zKz54t4xDO6oB6Dskj3HTBqQ11lZV7nLqVsQizvY5t8OpH+/cGEREuoAv23nPbrwkVDikhIWk1TTgL8D/A64xxjyDUyuu2WWirLV/6bTIRERERESk3dKesDDGfBX4MXD03cV7jTEfstauT/c1RaR3qKusYMOShQBYTxZLPeNY+K8NVPnD3H7huDb1FYtZVjybnF0x/aoxGFcnLkcSqofHPgH18TI3o2fDxfd03vVFRLqQLzv+J2ajGRYVVbVdFI30Ug8BFudhownAN497tpPcSAtjzCeB83GSJlNx6t991lr7UAvnF+I87HQNMBDYDzwJ3GOtPeYXwxjjAr4EfB4YC9QCrwDfttZuP/p8EREREZHeJK0JC2PMecBPcT441AHvA4XAaGAoTo2HidbaWDqvKyK9w+qXnicaDgOwNn8iIVcWeT43N04f0ea+tq46SPm+OgAGjCpk5NS+rbRII2vh2S/DgfjKciWj4No/g7tTVuETEelasSg+d8h53aiGxTvbDnJVF4UkvdJfcBIWXeE+YARQhpN8aPEPFWNMHrAYOBWYD/wdp77d14ELjDEzrbWBo5r9HrgZ2AD8EhgMXA/MMcacba3dktafRkRERESkG0n33bPbcZIVDwO3W2vrAIwxJwNP4TwhdCnwYpqvKyI9XCjg5935LwBgjYu3C6YC8MlzRlCS52tTX9FojBXPfZDYPvuq0RjTibMrdi2H9f9wXvvy4eN/h9w+nXd9EZEuYGIR5q7/D3yr6/CWXgV8BkjOsIiFQ10Wm/Q+1tp5XXj5m4Et1tqdxpi7gB8e59xv4iQrfmStvathpzHmfuBbwB2N2xtjZsf7XwJcYq0Nxff/Decz1K9xauaJiIiIiPRK6a4+ew6wB7i1IVkBYK1dC3wFJ5lxdpqvKSK9wPrXFhCoc1ZF2FIwjjpPPtleF7ecP7rNfW1atp/qw84S1kNPKmHoSZ2cLBh+Nlz3MOT1d4ps95/YudcXEekC1uXBbcMYLL7wQQBMoxkWNqKEhfQO1tpXrLU7WzvPOE9L3IyzpNO9Rx2+N77/5qP23xL//t2GZEX8mv8GFuHMshjeztBFRERERLq9dM+wGAC82PiP60Zej3/vn+ZrikgPF4tGefuFZxLbqwpOAeATZ42gND+rTX2FAhFWPp+cXTH9qrYnPDrMGJj8ERh7kTPDQkTkBBHyFOAJBckK7nd2NKphQSTcNUHJCSGeHGhY/7G8myxBOw5nOaeXGz/MBWCtrTPGvAHMNcYMs9bujh+ahbO07hvN9Pdy/PgFwCOpBmGMGdrKKQMbXvj9fvz+ZuuWSyfSGPQ8GrOeSePWM2nceh6NWc+UyrhlamzTnbDwAZXNHbDWVseXZGnb2i4i0uu9v/x1qg8fAmBP3nCO+Pric7u49YK2JxveeWkndVVOznTkyaUMHFWU1ljbJKug664tItIFQu58cinDG4gnLBr/qakZFpIBxpiLgG/gFMHOju8OGGOWAD+x1i7ssuCchAVASzUntuAs7zQO2B2vdzEIWG+tjbZwfuN+U7W79VMcS5YsobS0NIUzVZcrk+bPn5+hnjVumaIx65k0bj2Txq3n0Zj1TKmMW1lZWUaune4loURE2sRay6pnn05sv1VwKgDXnzmUAYXZLbRqXtXhela/sgsAl8cw49qxaYuzVWE/bM7U/4RFRHqGoMdJ1LoJ4vYajHFhcQNgopphIelljPkeTiHrOUAOzvKzJv56LjDfGPOdrouQhqcmqlo4Xn3UeW09X0RERESk18lEKmqsMebT7Tlurf1LBuIRkW5s1/p3ObRjGwBl2f3Zmz0Yj8vwhQvGtLmv15/cSixiATj1ouEU989Na6zHtfjH8PrPYOKV8KGfQMHA1tuIiPQyIU9yGTyfz+APWzAesFFc0UgXRia9jTHmYuBuIAT8AfgTsC1+eDTwOeDzwD3GmGXW2le7Is5uYlgrxwcCKwFmzpzJ0KGtrSAFvHki/+fMvDlz5mSmY41bxmjMeiaNW8+kcet5NGY9UyrjtmfPnoxcOxMJixnxr+bY4xy3gBIWIieYVc8lZ1dkn34RvkNuPnraEIaWtC3ZsHPDEXasdaai5RX5mHbZiLTGeVwH1sGyXzqv338JZn9HCQsROSGFPMml8Hw+i78ODB4giDumGRaSVv+B8/nhKmvty0cdWwt8xRjzAvBv4CtAV3yibZgp0dKMiMKjzmvr+Smx1h73k2R82V4AcnJyyMnJaUv3kgEag55HY9Yzadx6Jo1bz6Mx65lSGbdMjW26Exa7cD44iIi06vDOD9jx7jsAFPYbwB23f4wv1LX9hlY0EuP1J5LLQ59z9Vh82Z20lmEsCs9+GWLxJ4dnfh36n9Q51xYR6WaazLDwRgGXU3jbgjsWxlrb5OaoSAdMB5Y1k6xIsNbON8YsA87pvLCaaK3mRJMaF/FC3PuBUcYYdzN1LFqriSEiIiIi0uOl9Y6etXZkOvsTkd5tZaPZFdMu/wgut5sBhe4297P2tT1UHqwHYODoIsafNSBtMbZqxe9g32rndekEOO+Ozru2iEg3E3I3mmHhCQNZGOPBAh4bIRy1+DxKWEhaFAM7UzhvJ3BWZkNp0RZgHzDDGJNnra1rOBAvsD0D+MBa27go9mLgY/FjS47qb278+9H7RURERER6DRXdFpEuUb5vD5teXwxAdn4BU2df0q5+6qqCrHzhA2fDwMyPje+8p3crdsKr95G4+Id/BZ6szrm2iEg31GRJKFcw/soLgMdG8RhNxJW0KQNSmdJ4UvzcTmettcAfgXzgu0cd/m58/wNH7f9D/Pu9xhhfw05jzGXALGC+tTaVRI2IiIiISI/USWumiIg0tezJv2FtDAA7+QLCLk/8llbbLH9mG+GAs2LCpPMG0294QSst0sRaeP4OCDszOzjzczB8eudcW0SkmyrPH0fw6ofIKhqIb34W7KnEGG9ivdBoOIzL3faZdCLNeAO4xhjzCWvt35o7wRhzI3A68GQ6L2yMuRk4L745Nf79ZmPMrPjr1621f4y//jFwFfAtY8xpwDvxmObgFLr+eeO+rbWvGWP+CNwMvBOvwzEIuAEoB76czp9FRERERKS70QwLEel0h3d+wPvLnNUMgu4cfnFgIOf/6DWq6ttWv+LA9io2vXkAgKxcD2d/eHTaY23Ruidh20LndcFguOj7nXdtEZFuKuAtITbuUhhxDr78PGenST4fEw4FW2gp0mb/g1M77y/GmCeMMZcbYybFv64wxvwDeBiIAj9J87XPAz4T/zo9vm9Go30NyQziy0BdgJOYmAh8DWfWx0+Bi6y1/mb6vxWnUDjx7x8C/gmcZa3dnOafRURERESkW9EMCxHpdMue/Gvi9VtFpxF2eTl9RAlFuanPsbAxy9LHk5/Zz7pyFDkFvuO0SKP6Mvj3t5Lbl/8Usgs759oiIj2EN6fhz8zke3skqISFpIe1dqUx5jbg/4BrgWuOOsUAEeBL1tqVab72PGBeG86vAu6If6Vyfgz4ZfxLREREROSEohkWItKpDmzbwtaVywHwe/NYVzAZgC9fOLZN/Wx8cz+HdtYA0GdwHlNmDklvoMcTi8Hws53Xkz4CJ32o864tItJDZMUTFqbRDIu9ZVVdFY70QtbaB3BmOPwZ2A4E41/bgT8Bp8fPERERERGRHkIzLESkU73xxKOJ18sLTyfq8jB7Qj9OHlqcch/B+jDLn9mW2D7/+nG43J2Yf83vDx/7G7z3Lxh+TuddV0SkBzB734ZwJb5ygNwmS0LtPlzFxIldFpr0Qtba9Tj1HkREREREpBdQwkJEOs2eTRvYseZtAGo9BbxXMBGXgbsua9vdq5Uv7MBf49S7GHN6P4ae1CftsbbKGJj8kc6/rohIN+d77jao2oU3ehnweRovCRWor++yuKR3McbMBA60VtPBGDMOGGStXdI5kYmIiIiISEdoSSgR6RTWWt54/JHE9vLiM4gZN9dNG8aEgQUp91O+r451r+0BwO11ce41bVtKqiNMLNJp1xIR6bFynSSyL1zmbDeaYeH3q4aFpM0i4FutnQR8E3gts6GIiIiIiEi6KGEhIp1i17p32fPeegAqvUVsyh9PttfFnXPGp9yHtZalT2wmFrMAnD53BIV9czIS79Fcu5ZxyXtfZ1Dlqk65nohIT2Vz4gkLlzObwpjkDItgINAlMUmvZbo6ABERERERSS8lLEQk446dXXEm1ri45fzRDCjMTrmfD94tY8+mCgAK+mRz+pzhaY+1Wf5KvM9/mZxwOWd98Etcm1/snOuKiPRAiYSFqYvvSc6wUMJCukAJoH94IiIiIiI9hGpYiEjGbX9nJfu3vu9slAxkT/EESrM93HrBmJT7iISivP7klsT2jGvH4vG50x1q8178Oq6avQCU5Z9E3ti5nXNdEZGeKKcvAD7jd7YbzbAIKWEhHWCMOfpJhfxm9jXwAJOBOcC2jAYmIiIiIiJpo4SFiGSUjcV444lHE9sfvukmPnXS6Ww7XEd+VupvQWte2UXNEedG15AJJYw+rV/aY23W2idh3ZMAhN25vDPi85zv6qREiYhID2Rzj14SKvleHwqqhoV0yA7ANtq+Jv51PAZ4tJVzRERERESkm1DCQkQyastbyzi8YzsAA0aPZeyZ52CMoX8bloKqKQ/w9r93AmBchvOvH4cxnbBsdeUueOHOxOa7w+bh95Vm/roiIj1Yckmo+AwLkjMswkpYSMfsIpmwGA7UA2UtnBsC9gBPAb/NfGgiIiIiIpIOSliISMbEYlHeeOKvie0ZN3yqXYmGZU9vJRKOATDlgiH0HZKfthhbFIvC07dCsBqAyKRr2Jt1duavKyLSwzUkLNwmgtsVI9pohkVECQvpAGvtyIbXxpgY8KS19qaui0hERERERNJNRbdFJGM2vbGE8r27AYj1H0mfCVPb3MfezRVsXXUIgOx8L2ddMSqtMbbojZ/DrmXO66LhhOf8sHOuKyLS08WXhALweSOYRjUscl3RrohIeqfPAn/q6iBERERERCS9lLAQkYyIRiIsezI5u+IZ18nM/sliKutDKfcRi8ZY+niy0PbZV40mO897nBZpsvcdeO2/ndfGBVf/HrIKM39dEZFewGaXAAZy+uDzRGg8oXfygJwui0t6F2vtw9baN7o6DhERERERSS8tCSUiGbFh8StUHTwAwO7sIezNGcKVY0spzvWl3sfSfRzZWwtAv+EFTJwxOCOxHqOuDHx5EKiC8+6AEeeC3996OxERwZaOh+8dAZcb33+vhOrkMlBaEkrSzThV3a8FZgND4rv3Aq8B/7DWRroqNhERERERaTslLEQk7SKhEG8+9Vhie3nJWfjcLr45d0LKfQRqw6x4dnti+/zrx+FydUKhbYDxc+C2N+GNX8Cs/9c51xQR6S2MC1xuAHzZbkyjGhbhkBIWkj7GmFOBfwCjgKP/SLgZuNcYc521dk0nhyYiIiIiIu2khIWIpN3ahS9Te6QMgA9yRnAgeyA3nzOCYX1yU+5jxbPbCdY7D0WOnz6AQWOLMxFqy4qGwId+3LnXFBHpZbzZHiC5lJ9mWEi6GGMGA/OBUuAg8BiwLX54NPAxYAzwsjHmVGvt/i4JVERERERE2kQJCxFJq3AwwIp/Pp7YXl5yJoXZHm6/cGzKfRzeXcOGpXsB8GS5Ofejqbdtt3AAvNmZv46IyAnEl+OGRjMs3t9b3oXRSC/zLZxkxR+Br1hrm6zdaIz5T+CXODMtvgnc0ekRioiIiIhIm6nodpwxZocxxrbwtaiNfd1ojHnLGFNnjKkwxjxvjDk9Q6GLdCtrXn6B+qpKALbkjqYsqx9fvnBcyrUrrLUsfXwz1jrbZ35oJHnFWRmKNnFRePyT8NQtTt0KERHpmBV/gGe+SNbuhYCbhtV66utVD0jS5jJgF3Db0ckKAGttAPhi/JzLOzk2ERERERFpJ82waKoK+Hkz+3ek2oEx5tvAfcBO4HdAAc6U9GXGmIustW90PEyR7qm+uooVzzwBgAVWlJzJ0JIcPn3uiJT72LLqIPu3OkmDov45nHLhsEyE2tRbD8DWBc7rig/gcwvAdFK9DBGR3mjbQtj8Et6aGzFmCs6fnGFMNNzVkUnvMQz4p7U22tIJ1tqIMeZN4COdFpWIiIiIiHSIEhZNVVpr725vY2PMOOBuYDNwlrW2Kr7/N8By4AFjzBRrbSwNsYp0O68/9heCdXUAbMyfQIWvD3fPnUCWx51S+1AgwrKntiW2z7tuHG5vhieCHdoEC76b3L7gLiUrREQ6KqcPAD4Tf/DdeMGGcSthIekTBApTOK8gfq6IiIiIiPQAWhIqvT6LkwT6QUOyAsBauwb4OzAROK9rQhPJrAPbtrDu1fnOhjeLdYNmMHVIEVeePDjlPt55aSd1lc49hRFT+zJyamkmQk0K1cNTN0Mk4GyfdSuMuziz1xQRORHkxhMWrnoATLyOhTumhIWkzXvAbGNMi1MxjTHDgdnAhk6LSkREREREOkQzLJrKMsbMAwYD1cBKa+2KNrSfFf8+v5ljLwPzgAuAJal2aIwZ2sopAxteBINB/H6tDd0TBAKBZl/3VDYW45U//YaGwhPnXnMDn7jgYsrrQgSDqf181WUBVi/YBYDLbTjjymGZ/fdsLd4Xv4Ln4DoAYn3HEzzvLmjhmt1lzGzMEj3sd9bcklYFg0Fy6pwZPnU7K4hk1XdxRJIKjVvP0zBmEU+MQCCAx1eEl0YzLPAC4I5FqK+vx2gmW7cQDPboiQd/AX4DvGKMucNa+2Ljg8aYK4CfAtnxc0VEREREpAdQwqKpgcCDjXcYY1YCH7fWbmu+SRPjgFpr7YFmjm1pdE5b7E71xBUrVrBtWyphSneyZEnK+atuq3r7Zg5tc/6JewuLOWg9HFr6GgBbU+yj7O1sYlHnhlbeiAArVi/NRKgJI8pe5dTdTr2NiMvHkn7zqHkttWt21Zj5Ai7GbSwgO5DaElvimEQRAIG12+j56cETh8at52kYs/cqV5Dr3s9pgM/Ek03xGRYeG+GFl+bjcyth0R2UlZV1dQgd8QBwDXAR8Jwxphz4IH5sFNAHp9r7K/FzRURERESkB9CSUEkP4nzgGQDkAacBjwBnAguNMQUp9FGEU7i7OdWNzhHpNWLhEEfWvJXY7jftHIy7bTfUA4fdBA45yQpXVoyCMaG0xni0krptnLznkcT2muE3U5PT2mSmruULuhj/npIVItL99SnzEfI4fzY1LAnVkLBwYQmFVcpLOi5ebPty4MdAHdAXOCP+1Te+70fAFaofJyIiIiLSc2iGRZy19p6jdq0BPh1fsuBTwC3Azzo5LIAW1+WNGwisBJg+fTpjxozJfETSYYFAIPGU/syZM8nOzu7iiNpv2WN/IRpwlvwIDJrIrOs/RXGON+X20UiMZ/7nXYg/Q33eteMZe0a/TITqqC8j66G7cNkoAJEzPs/ki77H5FaadeWYRauCVD/0PrGgk8hx9cnCOyqVOqMSjUbZv38fAIMGDcbdxmSadA2NW88TjUYJrj2CO2YoNLmMPmc2fPCLxAwLgzexkt0ZZ53F8IF9uy5YSejpM3OttSHgLmPM93ESFUPih/YCq6y1PXrNKxERERGRE5ESFq37PU7CYgatJyyqaHkGRWGjc1Jmrd1zvOON14DOysoiJyenLd1LN5Cdnd1jx+3I3t2sXeAsGR0xbh53n87mZzbx8E1npdzH6gW7qDrkJCsGji5kynnDMru2uSmCIafDpn0w/Bw8l/03HnfqCRbo3DGLVAap/MsWYpVOssLTL4d+nz8Zd4GvU67f0/n9flbMdxYmO2nO6B77u3ai0bj1PH6/n92bD5Fb78HWRPAVDQIa1bAwyT85I5GYxrSbyMrK6uoQ0iKemHijuWPGmGLgG9bab3dqUCIiIiIi0i5aEqp1DYv75qVw7hYg3xgzsJlj4xqdI9LjWWt57aE/EIs6MxXeKTqVWl8hX58zIeU+6qqCrHwhvty0gfNvGJ/5QqzZhXDDo3Dp/XDdQ9DGZEVnilYFOfzAWqLlTkLHU5pDv1uUrBCR7imUFV91J2aJWef5jeSSUMn32mwT7ezQ5ARkjCk0xtwD7ADu6uJwREREREQkRZph0brp8e87Ujh3MXAOMAf4y1HH5jY6R6TH27ZqBTvXrgagxp3P20Wn8ZlzRzJ1aOplWpY9vZVwwLlxNWnGYPqP6KRljoyBs2/rnGu1U7Q6yOEH1hE9Ek9W9M2m3y1TcRcqWSEi3VPIlywTEAnk4J5wOb6sUpgPptGfnAUe21xzkZQYY6YBV+LUnTsIPGutfafR8WzgTuDrODOfDfBeF4QqIiIiIiLtoBkWgDHmJGNMbnP7cYr1Afyt0f6ieJtBRzV5EIgA3zbGFDU6/1Tg48BG4PU0hy/S6SKhEIv+8kBi+/W+51JaXMDX2jC74v3l+9m84iAAvhwPZ181Ou1xJpRvh6q9mes/zaLVIQ4/sI5ImbOUirtvNqWfPxl3Ue9YukNEeqfEDAsgWh2Gj/8N99W/xO1xNZlhEQmprIC0jzHmJ8BbwHeBz8e/rzTG3B0/fiZOcuJeoBjYDdwEnNwF4YqIiIiISDtohoXjY8CdxpglwE6gDhgPfAjwAj+01i5pdP5HcZITDwPzGnZaazfHPzDdB7xrjHkKKIj3D3CLtTaGSA+36rmnqTrkJBt2Zw9ma+5ofn/VZPKzUntLKd9fx6K/vZ/YPv+GceRkapmjUB08diPUHoJr/wyjL8jMddIkWhPi8ANriRyOJyv6ZNPvlpPxKFkhIt1ck4RFRTIp4ctxE6hJ/v8hHFTCQtrOGHM5zswJgGqcZVYLgdHAd40x7wO/je8rx/l7/DfxwtwiIiIiItJDKGHheA2YCJwGnA/k4tSueBHng878VDuy1v7AGLMD+CpwGxAClgLfbTxdXaSnqi47xIpnngQghmFJ3/OYM3kgcyc3V7rlWOFQlJcfWE8k5NzYmnjuIE46++jJSmliLTz3FTgUXwnipf8HX1gKLndmrtdB0dr4zIqGZEVJFv1umYqnWMkKEen+GicsIpWBxGtvtgdDcoZFwB9ApB1uiX//FfDNeKFtjDETgadwHiTy4Pxdf4O1tqzZXkREREREpFtTwgKw1i6mDbUlrLUPAQ8d5/hfgb92ODCRbmjxow8mlvNYWziFYH5/7v7w5JTbL318M+X76gDoMziP8z82PiNxAvDWH2Cdk1zBV+AU2e7uyYpDToFad3GWM7OiJLuLIxMRSU3IlyymHa1sNMMi291kSag3N+9nwlmdGpr0DtNwasrd0XjGsrV2ozHmq8BLODMvPmKtremSCEVEREREpMNUw0JEUrZr/Vo2v7kUAL8rm7eKz+RrcyYwuDgnpfbvL9/Pxjf2A+DxuZh7yxS8vgwlEHatgJf/M7n9kf+DfhlMjnRAtC5M2R/XETkYT1YUxWdW9FGyQkR6jrDPYo1TUDtaGYQF34f7R+A7sBxM8hmZUEAzLKRd+gGrW1hedXn8+1IlK0REREREejbNsBCRlMSiUV576PeJ7UEXXcNZZgifOXdkSu2PrltxwScm0GdQXrrDdNQchCc/A7GIs33uf8CkqzJzrQ6K1oYo++N6wgfiyYpCH/0+PxVP39SSQCIi3YaBkC9GVtBNtCoINgaBSnyuegz5idOCAdWwkHbxAVXNHbDWVhtjAA53akQiIiIiIpJ2SliISErWzH+Rst07ARgweiyfuOl6bjIu4jcIjqtT61ZEgvDkPKhxZnIw8ny46PuZuVYHRauCHP5jsmaFq9BH6edPVrJCRHqshoRFrD5CzNcPF+Az9WBKEueEg5phISIiIiIiIs1TwkJEWlVfXcWyJx9NbF/42VtxtaEWRKfVrYjF4JnbYNcyZ7tgMFz7Z3B3v7e6SHmAw39cR7TcuXHnLvJRevNUvKVKVohIzxXKikF8QZ6o7e8kLFz+JktChUOaYSHtNtYY8+n2HLfW/iVDMYmIiIiISBp1v7t4ItLtLP3bwwTrnITDpJkXMnj8xJTbdmrdit3LYf1TzmtvLnzsUcjvn5lrdUD4UD1lf1xHtDoEgLtvNv0+p5oVItLzhbKS5QWi0RK8ODMsDMmi29FgqAsik15iRvyrOfY4xy2ghIWIiIiISA+ghIWIHNeOd99h/WvzAQgZL4sKzuTiaAyv29Vq206tWwEw4ly47iF45ovOzIoh0zJ3rXYK7aul7E/ridWFAfD0z6XfzVNwF2Z1cWQiIh3XOGERCRcADUtCJf/kjIa0JJS0yy6cxIOIiIiIiPRiSliISIuC9XW8/PtfJrbf6HM2Q01uSsmKTq1b0djkjzp1K/JKM3+tNgruqqbszxuwAacYuHdwHqWfm4o7z9tKSxGRniHkazTDIugsceczfjCNZliEw50el/R81tqRXR2DiIiIiIhknhIWItKiRX/5I7VHygDYlT2UHaWn8McPT06pbafVrQjVgy+36b5umKwIbKvkyMMbsPEEjm9EIaXzJuPK0duwiPQeoaxo4nW03ln+z+eqp/GfnLGwaliIiIiIiIhI81p/TFpETkjbV69k/WsLAGcpqFdLZ/GdKyYxsKj1OgudVreiYif8+gxY9WD6+04j/6Zyyh5MJiuyxhRRetMUJStEpNdpsiRUjQXjcmpYNJphQVg1LERERERERKR5ulsmIscI1NYy//e/Smwv7Xsu008eyw1nDmu1bafVrfBXwF+vg+q98PxXwRiYNi/91+mg+nVllD+2CaLOstvZJ/Wh740TMV7li0Wk94m5weS4sf4o0cog5JTgCzStYTGmj2r2iIiIiIiISPOUsBCRY7z28B+oqygHYGfOMA4OOIW/XDMVY8xx23Va3YpIEB77JJTFEyN9x8LED6f/Oh1U9/ZBKv6xOVEiNOfkUvrcMAGTQg0QEZGeylXkI+r3E60KYT/xv/jKs+CvyT85vUS6MDoRERERERHpzpSwEJEmtq5awXtLXgUg6PKxsHQWP7/2FErzW38itlPqVsRi8MwXYefrznZuKdz4D8jtk/5rdUDt8n1UPrMtsZ07bQAl14zDuI6f9BER6elcRVlED/ghZokNuxRv/yjGLAfcQJRIUDUsREREREREpHlKWIhIgr+mmlce+HVie0mfGVx5zkQumTSg1badVrfi1Xth/T+c154c+MTj0GdU+q/TTjZmqZ6/k5pFuxP78s8dTNEVo5tNVtSH63low0Os2L+CqI1S6CvkNxf/psk5v13zW97Y90ar154xeAa3nXpbk323vXIbNaGaVtt+4ZQvcN6Q8xLbH1R9wHff+G6r7QD+76L/oyirKLH97LZneeL9J1ptN6JwBD847wdN9t23/D42lW9qte2Vo6/khpNuSGyHoiFuevmmY86LxWJU1lQC8PjCx3G5XHx7+reZ2Hdi4pxVB1bx83d+3uo1vS4vD17atF7Kg+sfZOGuha22PX3A6dw57c4m++5cdCeH6g+12nbe5HlcPOLixPaBugN8ffHXW20H8JMLfsLAvIGJ7QU7F/Dwhodbbdc/tz8/m/WzJvt+tupnvHPonVbbXjz8YuZNmddk37yX5hGJtf5U/R3T7mDagGmJ7b2RvXxu4edwuVqflfTg3AfxupN1Eh7b9BjPb3++1XYT+0zk22d/u8m+b7/+bXZW72y17Q0TbuDKMVcmtquCVXxp4ZdabQdw34z7GFk0MrH9+t7X+d27v2u1XXd9j2j4Xcs3+UzN+Qa++P5IZRBfSbz2kfGAjRIJKWEhIiIiIiIizVPCQkQSXn3w99RVVgBQ0Xcs9cNP4ztXTGq1XafVrVj1ILzecBPVwLV/gqFnpP867WQjMcqf3Iz/3cOJfQWzhlE4d0Szy2kt2r2IH674Ifvq9iX29ck+dqbIzpqdvHv43VavP6zg2BojG8o2UBGsaLVtRaDpOf6IP6VrAkRttMn2ofpDKbUNRY8tvLu1cmtKbc8Y0HTcLbbVdruPOEmk2nBtk/3VoeqUrulz+Y7Zt7d2b0ptS7JLjtm38chG9tTuabVtmb+syXYoGkp5bMLR8DF9tfff0gdVH6TU9qQ+Jx2zb+3htYRj4WbObqo6WN1kO2iDrDuyrtV24PwbaGx/3f7UxtV97LhurticUuJs1rBZTbYjsUjKY+OP+JtsVwQqUmrbE94jlgXeYhYnAxCtDJI1OD9+xAsEqan1N9tORERERERERAkLEQFgy4plbHpjMQBZeXl847++w22ePPKzjv820Wl1KzbPhxe+lty+7Mdw0uXpv047xerDlD3yHqEP4jdcDRR/eAz55ww+5tz9tfu5/637eXX3q50cpYhI5m2Obk8mLA6W4S7ajMtlMcaDtVBbV9/FEYqIiIiIiEh3Zay1rZ8l3ZYxZiiwG2Dz5s2MGzeuiyOSVPj9fubPnw/AnDlzyMnJ6dJ46qureOhrX8RfXQXAZbd/jUnnz06p7auPbEwsBdVncB7X3nVG+peCigThl6dDdfxp9HNuh7k/OH6bNDvemEWO+Cl7aAORw85Tw8bros/HTyJnUt8mfYRjYf763l/5zbu/afJ09fRB0/n29G8zonAEAC7TdPmbmI2lHGd72xpMk1kg1tpjnljvSFtD87U7jp550pb/Jx19zea0NG7t/Vl749i0pCt/1oZxs9ZyyZxLUnqPPPpn1dikt21r8fr9fq5++mr2Rfcx0T+an+1wli3LG3mYkgOf5U8HH6Kq6lls9DAR4+Ybf3sGl2r6dLktW7Ywfnyi3tQwa23r076k12n8eWL37t0MHTq01TYj73oh02Gd0Hbcn5mHcjRumaMx65k0bj2Txq3n0Zj1TKmM2549exg2LDGTP22fJzTDQkRY+OffJZIVY844m4nnzUqpXafVrfBkwY1PwMMfhpHnwSX3pv8a7RTaXUPZwxuI1TrL3bjyvZTOm4xvaMEx5371ta+yZM+SxHbf7L5848xv8KFRH2p2yagGR99gbIv2tjXGtJhkyHTbdLYzJnmTtfHrY85pZ7wn0th01c/qMq52tdfYZLbt0fG6jItSVyn7ovs46DmS2B8NOctB+Vx+nCWhwGOj+ENh8rKPXY5LpDcyxuwARrRweLG1dtZR52cB3wI+BQwDyoHnge9Ya1svfiQiIiIi0oMpYSFygnv/zaVsfnMpACF3Nv0v+0RKN407rW5FgwGT4eZXoHAIpFCAtzP4Nxyh/LFN2LDzhLKnXw6ln52Cp092s+dfPe5qluxZgsFw/YTr+Y/T/4NCX2FnhiwikjH93P0gDBWeaqzLYmKGaMBJSvhMvbMkVPzc2jq/EhZyoqkCft7M/h2NN4wxLuBfwFxgOfAUMA64GbjIGHO2tfbw0Z2IiIiIiPQWSliInMDqKitY8MffJLZf7XMeAyoN57bSrlPqVlTsgKLhTZMTfUal9xodUPvGXiqf307D3TffqCJKPzURV67zBHHMxqgP15Pvy0+0uXDYhXx2ymeZM2IOU0qndEXYIiIZM8EzgdycXC6bfhmugz5sRYhInRuMk7DAeBPn1tb5GdC3qAujFel0ldbau1M47zM4yYq/Azfa+JqHxpgvAL8F7gNuzVSQIiIiIiJdrXs8piwinc5ayyt//A3B2hoAtuaOpv8p05l37shW2y59fDPl++oAp27F+R8b30qLNjqwDv4wC579MsSi6e27oyzUvbybyueSyYqcU/vR73NTEsmKI/4jfH7B5/nmkm82qa1gjOHOaXcqWSEivdJgz2CmZ03njP5n4C126o7YIMRsDj5XPY2fk6lT4W2RltwS//7/bNMCTb8HtgM3GmO6tviZiIiIiEgGaYaFyAlq0xuL2bryTQD8rmzeHjKbf11/aqtFUDNet+LQRvjLVeCvgDWPQt8xcP6d6eu/A0wURm3NJ1B+MLGvYPYwCi8ZgYn/d3v38LvcuehODtU7S0wv3LWQi0dc3CXxioh0FU9JFqEPnNdR2w+f8WNM8s/O+np/F0Um0mWyjDHzgMFANbDSWrui8QnGmGxgOvC+tXZn42PWWmuMWYAzu+IMYGmqF44X1T6egQ0v/H4/fr9+P7uaxqDn0Zj1TBq3nknj1vNozHqmVMYtU2OrhIXICah83x7mP/B/ie1FpTP59rVnMajo+A/sZbxuRdkWp7B2fbxg69Cz4Kxbjt+mk0SrQ4x/r5D82vjbpguKPzKW/LOcpbCstTzx/hPcv/J+IrEIAP1y+qlGhYickNzFWYnXEQbEl4RK7qvXhxY58QwEHmy8wxizEvi4tXZbfNcYnBnwW1roo2H/ONqQsAB2p3rikiVLKC0tTeFMfYzMpPnz52eoZ41bpmjMeiaNW8+kcet5NGY9UyrjVlZWlpFra2RFTjChgJ9//eQHRALOzaJNeeOYeO75XHXqkOO2y3jdiiPb4OEroc6ZmcDg0+CT/4CsgvRdo52CO6qoenRjMlnhc1F640SyJ/QBwB/xc9/y+3h227OJNqf3P52fzvoppTmpfOgXEekd6mJ1vH3obSKBCsZSDEDUOxKfyw8kE9z1dUpYyAnlQZwEw3qgFhgP3Al8ClhojJlqra0BGgq7VLXQT3X8uwrAiIiIiEivpYSFyAnEWsv83/+K8r3Og3ZHvCW8N2ouL1w1udW2Ga1bUbHTmVlR4yw1xcCp8Kl/QnbXfh631lK3Yj+Vz26HmLOMdNAXpf9nJ5E9yklW7K7ZzR2v3cH7FcmZJ5+a9CnumHYHXpe32X5FRHqrxcHFLFu0jNNrJ/IDvgxA1DUUr9mFaVR0OxIKdlWIIp3OWnvPUbvWAJ82xoCTtLgF+FkGQxjWyvGBwEqAmTNnMnRoaytIAW++2vGopEVz5szJTMcat4zRmPVMGreeSePW82jMeqZUxm3Pnj0ZubYSFiInkNUvPcf7y5YAEDJe5g+6jN9/ejrFub7jttu4LIN1K6r2wMNXQHX8Ta7/ZPjUvyCnJD39t5ONxKh4Ziv1q5L1KqoLw2wfX8vggbkALNmzhLuW3kVNyClcnuPJ4b/O/S8uHXVpl8QsItLVSl3OrLLD3orEvqgZQJZrMzSqYTGpv2oGi+AU0v4UMAMnYdEws6KlJzYa1plsaQZGs6y1x/0kGU+cAJCTk0NOjn4/u5rGoOfRmPVMGreeSePW82jMeqZUxi1TY+vKSK8i0u3s3fQeix/5U2L71f4X8rXrzmPaiOMnBrasOshrj25KbKe1bkX1fnjoCqjc5WyXToBP/wvy+qan/3aKVgU5/Pu1TZIV2WcPYMukGqJeZ6aFtZbH3388kawYWTiSv33ob0pWiMgJrZ+7HwCHvOWJfZGSs/F99CdAoxkWQc2wEAEaFv1t+MNqOxDDqVHRnIb9LdW4EBERERHp8TTDQuQEUFdZwfM/v59YNArAGVdezdWX3sCo0uMnHrasOsiCP7+HjS+HNOWCIemtW2Fc4IkXYe0zBj7zLOT3S1//7RDcUcWRRzcSqw0DYLwuSq4Zh5lQAPM3Js4zxvDf5/03Nzx/AxNKJnDfefdR4Ov6ehsiIl2pYYZF0BWi3hsgN5xNtCqMN8fbZIZFWAkLEYDp8e87AKy1fmPMW8DZxpgR1tqdDScaZxrEJUAdsKqzAxURERER6SxKWIj0crFolBd+8WNqK5ynXYdNmsr5H/8MLvfxl3Q6OlkxccYgZt6QxroVAAUDYN4L8NxX4LIfQ8HA9PbfBtZa6pbvp/K5ZL0Kd3EWfT81Cd+QfPx+P2EbxttoDfairCIeuewRSnNKmyynICJyoso3+eR786kN13LYW8GI8CCi1UF8WW7VsJATkjHmJGCXtba+mf0/im/+rdGhPwBnAz80xtxorbXx/bcCo4E/WGtVtV5EREREei0lLER6uaV/f5jd760DIL+kD5d/5ZvtSlbMvvEkjCsNN+VjMXA1Wo0urxQ+9teO99sBNhyj4l9N61VkjS2mz8dPwp3nJWZj/PX9v/Jg9YPcVnBbk7b9crt2RoiISHdijGFkwUjWl69nr+sQIxgEMfDGYjT+s3PDrjKmdV2YIp3pY8CdxpglwE6cGRLjgQ/hrJP2Q2vtkkbnPwzcAHwcGGWMWQyMBa4GPgC+04mxi4iIiIh0OtWwEOnFtqxYxqrnngYgiovQBZ8ir7j1mhUZS1ZseAb+PBcC1R3vK00iVUEO/aFpvYr8mUMo/ewU3HleDtYd5NYFt/KLd39Bta3mqfqniNlYF0YsItK9jSgcAcDhRnUsPCv/Co1mWOw/0n3+PyCSYa8B/8ZJUnwSuANnKagXgbnW2v9sfLK1NgZcBdwN9IufPwP4E3COtfZwp0UuIiIiItIFNMNCpJcq37eHF/7vZ4nt1/ucw8dGTzhum4wmK1b+CV74GmDh8Rvhxn8k61d0Ef/GI1Q8uZlYfQRI1qvIPbU/AAt2LuCeN++hKliVaDPQPVAJCxGR4xhZMBKAw96KxD7Xljcw5sOJbS0JJScKa+1iYHEb2wSBe+JfIiIiIiInFCUsRHqhcCDAP//nB0SDAQDezxvL5Is/xCemD2+xTcaSFdbCovth8f3JfUXDwRx/WapMsuEYVf/+gNpl+xL73CXxehWD86kL13H/W/fzzNZnEsf75/TnctfljPGOwePSW6eISEuGFzj/rznUaIaFoRBn9RtHNBTq7LBERERERESkB9CSUIAxZogx5qvGmPnGmF3GmJAx5oAx5iljzPQ29DPLGGOP8zUvgz+GCOAUj37p97+kct9uAI54Syg/7SruvmpKi20ylqyIReGFO5smK2Z8Fa76Nbi75qZ/+FA9h/5vTZNkRfakvvS//TR8g/N59/C7XPfcdU2SFZeMuIS/zvkrY7xjuiBiEZGeZWThSDzGg6c4O7HP2r40/l9KLKyEhYiIiIiIiBxLjwk7vgx8C9gGzAcOA+OAjwAfMcZ8wlr7eBv6Wwwsamb/mg5FKZKC1S89z+ZlTu3GkPGyfNSV/P0z55DlaX5GQ8aSFeEAPH0zbHwuuW/uf8M5X+pYv+1kraV+5UEqn9uGDceXdPIYiq8YTd70QRhjeHjDw/zv2/9L1EYByPXk8v+m/z+uGnMVgUCgS+IWEelpRhSM4K1PvoWr1rJ/wwoAovTH54rQ8E5qlbAQERERERGRZihh4XgLmBVfYzbBGHM+sBD4rTHmmfh6sqlYZK29O80xirRq7/sbee0vDyS2XxtwIf9z88UMKMxu9vyMJSsCVfDYjbBjqbPt8sBHfgsnX9+xftsp5o9Q8fQW/OvKEvs8A3Lp+/GT8A7MS+wbmDcwkaw4ud/J3H/e/QwrHNbp8YqI9GQu48Lr8mLzLbgNRG08YRFOnGMjSliIiIiIiIjIsZSwAKy1T7ewf6kx5jVgDjAVWNWpgYm0Qfm+vTz1o/+CmDN74J2iU/jMJz7MtBF9mj1/69uHMpOs8FfAQ1fCwXXOtjcPbvgLjL24Y/22U3BHFeWPvU+0MplvzJs+kKLLR+PyNZ11MnfkXN7c9yYDcgdwy8m3qFaFiEgHGJfBXZRFtDxAxPYjy7UreVAJCxEREREREWmG7sa1ruFxwEgb2owzxnwVyAH2AK9aa/e25+LGmKGtnDKw4UUwGMTv97fnMtLJGi8vlI6lhuorK3jqB98hXFcDwO7sIQy+8KNcfXL/Zv9NfLDmCIse2YyNr4w0fnp/zr56BIFgGpY9innxFY/AfXAdNqcPwWsfxQ4+HTr536aNWfxL9+NfvA+cnAwm203eh0eSNbGEbVXbeXHHi9wy+RaMSSZpvnnqNzHGEA6GCZN8GjjdYyadQ+PWM2ncep6WxswUeqE8gLV5ZJsQYAALkZD+ZukGgsFUJw+LiIiIiIh0DiUsjsMYMxy4GNgPrGtD00/EvxpEjDG/Ar5hbXy9mdTtTvXEFStWsG3btjZ2L11tyZIlHWofC4fY88rzhCqOAOAq7MPu0Zfwiay9zJ9/bJ6sfr+H8nezwTo36XOHhqgr2caCV9L3b8eV/VFO6VPJlgFXULu+DNbPT1vfqfAGXYzakkdBjTexr6YgzAfjKgnsOsCbW95kYWAhYcJU76jmZN/Jbeq/o2MmXUPj1jNp3HqeJUuWsC+yjyXBJXykYgYzOAWAAo8FvEAIEw4xf37n/r9BjlVWVtb6SSIiIiIiIp3I1dUBdFfGGC/wCJAFfCvFRMNh4C5gCpAPDMAp3L0VuAP4cUaClROWjUbZv2RBIlnhyctn+IWX8ulJXjzN/HY3l6womRLEdGAVKBOLUOjf1WRfzOVl9YjPU5s9uP0dt4eF0oNZTH63MJGssFj2Da1n8+Qadrr38Pva3/NS4KXE7Ik3gm9gre3cOEVEerkIEdaH17PTm0yc57gsGOdZmew2TVwVERERERGRE4VmWDTDGOMCHgJmAg9Yax9JpZ21dgOwodGuOuBfxpgVwFrgP4wxP7LWHmpDOK1V/B0IrASYPn06Y8aMaUPX0lUCgUDiqeGZM2eSnd18UezjsbEYL/325/gP7gMgO7+Aj377XkoGDWn2/A/WHGHRy5sTyyONm96P864f07GaFXWH8T1zM67DGwl+5mVsyaj299VB0fIAtc/tJLKjJrHPVeQj/+pR5A/2smjDA/xt898SRbUNhhvG3cAXpnyBXG9uq/2nY8yk82nceiaNW89z9JgFTIA//OsPHPKUJ87JzuuHMV6shQIvzJkzp6vClTjNzBURERERke5GCYujxJMVf8ZZ0ulR4Asd7dNae8AY8y/gZmA68Fwb2u453vHGa+9nZWWRk5PT3jCli2RnZ7d53Ky1vPrQH/hg5ZsAxNxervzGdxk8emyz5299+xCLHtmSqFkx8dxBzP5kBwts71kFj38KauIJk+e+AJ9fTIema7SDjVlqX99L9YKd2HAssT932gCKLx/Fyqp3uGfBPeyuSa6uNrZ4LPecew8n92vbUlAN2jNm0vU0bj2Txq3nyc7OpiSnhD7ZfTjsrUju7zcBtr4EQDQc0rh2A1lZWV0dgoiIiIiISBNKWDQST1Y8CHwa+Dswz1obO36rlDUsEpyXpv7kBLby2adZ85KT94phWDhoLh/tM7zZc7e+fYj5f9qAjTlTK9KSrHjnEXjhToiGnO2CwXD5/3Z6siJ8oI7yp7YQ3p2cVeEuyaLk6nF4xhRw95v/xT+3/jNxzOvycuvJt3LTlJvwur3NdSkiImkysnAkh6qSS0J5I8kloSKhENbaJg9eiIiIiIiIiChhEXdUsuJx4FPtKJB9PNPj33eksU85AW1YvJClf3swsb2k/yy+/8XrGNs//5hz056siITgpbtg1Z+S+4afC9c/DPn929dnO9hIjJpFu6l+bTdE42tcGcg/ZzCFc0fiynID4I/4E21O73863z/3+4wuGt1pcYqInMhGFY1iw4H1iW1POAqmIVlsiYbDeHy+rglOREREREREuiUlLGiyDNSngSeBTx4vWWGMKQVKgTJrbVmj/dOstW83c/5XgNnAFuL1JkTaY8eat3npt79IbC8vOYvbv3Aj54zpe8y5aU9W1ByEJz4Nu5cn9531eZjzA/B03g2n0O4ayv+xmcjB+sQ+T78cSq4ZR9bIoibnfuusb7GubB2fnfxZrptwHS7TTCVyERHJiFFFowi6QlS5aymK5uMORDF4GkopcbC8miEDS7s0RhEREREREelelLBwfA/4DFALbAa+08wSBc9Ya9fEX98OfB+4B7i70TlPGWPCwCpgD87yT2cDpwGVtJIIETmeA9u28PRPfkBDIYq1BZO59nPzmDt54DHnpj1ZsXslPPEpqNnvbLuz4Ir/hdNubF9/7RALRalesJPa1/cmCofjgoILhhE4J5v/WvtjTgudxrXjr020Kc0p5bmPPofXpeWfREQ626iiUQAc8pZTFM3H+EMYk0xw19b5W2oqIiIiIiIiJyglLBwj49/zgW+3cM4OYE0r/fwWmAvMBPoCMWAn8HPgp60V0BZpScWBfTx23/ewYadmxNbcUZz7yZu54cxj61ZkpGZFxA81B5zXhUPghkdhyOnt768NrLX415VR9eIHRCuDif3eQXnkfXQEf6t8ij8+90f8ET+v732duSPnUuArSJ6nZIWISJcYVegkLA57yhnHcAwusj151IWd43X1SliIiIiIiIhIU0pYANbaecC8Npx/N01nVjTs/xHwozSFJQJAXWUFf73n20TrncLSe7MHMeLqz3PrrHHHnLtx2T5ee/T99CYrAEbNhPPugN1vwXUPQX6/jvWXotDeWiqf20ZoR3Vyp8dQeNFwlg17j5+9dRf76/YnDkViETZXbGbagGmdEp+IiLRscP5gvC4vh7wViX157gLq4q/rNcNCREREREREjqKEhUg3VlNexj/u/Q7B8sMAlHn74Jt7M9+6YkqT8yKhKEse38zGN5I37zuUrPhgCYw4D1yNaj7M/k/AgDvzbxvR2hDVL++kbtWB5PJPQNa4YsrOs/zn9u+w+o3Vif1u4+b6CdfzxVO+SHF2ccbjS6dYMEj9ihW4i4rIOeWU5P76esr/+teU+ij+6EfxlCbXgQ9s3kzt4sWttnNl59DnU59ssq/m1dcIbtvaatussWMpmD27yb7yvzxCLBhotW3BrFlkjUsm3CKHD1P5zDOttgPo88lP4srJSWzXr15N/apVLZ4fCUco2bKZaH4+zJnT5FjVc88TPrC/hZZJOaecQt5ZZyW2bSTCkQcfPE6LpKLLL8c7eHBiO7RjB9ULFrTazrjc9P3cTU321b7+BoGN77Xa1jd8BIVzm/6sFY89TrSmuoUWSXnnnkvO5MmJ7WhVFRVPPNFqO4CS66/HXZSsI+Nfv4G6N5e12s5dUEjJx25osq9uwSuULFoEQNXefdR5m3/fyZ40ifwZM5rsO/KnP2FjsVavWzhnDr4RIxLb4b17qXrxxVbbAfS96SaM252Md8Vb+Ne+22o776DBFF1xeZN9lU89TaT8SKtt8848k5xTT01sd7f3iMTvWm4usfPOg5wc3C43t5x8C5NyhjiLZQK5nvxEm3q/EhYiIiIiIiLSlBIWIt1U5cED/OO+b1N16CAAeX1KYe4X+cqVZ9C4xkrloXpe+sN6juypTeybcsEQZt4wvu3JimAtvPQtWP0ozP1vOOdLyWPuzC+tZCMxapfto3rhLmwwWe7F0zcbe3EfflH7IP9a/q8mbWYMnsE3zvwGY4rHZDy+dIlUVFC7eDG1r75G7euvY+vr6XfnnU0TFn4/h3/6s5T6y58xo8nNyODGjSm1dffpc8zNyOp//5vq555rtW3hh688JmFR9pvfEK2sbLWtd8CAJgmL8MFDKf+sxdde2zRhseItDv/858dt0w8IDBlyzP7Kxx8/brKjQd/Pf75pwiIaTTnenFNOaZKwCG7bllJb4/Mdk7CoWfgKlX9/rNW2+RdeeEzC4sif/kR49+5W27ry8pomLCorU/5ZC+fObZqwWLMmpbbe4cOPSVjUPv8c/ZYsBaDi3y+12LbkE584JmFx6Oe/gHC41etmjRnbJGER2r0n5Z+172c+A40TFq8v5cgDf2y1Xe5ZZx2TsCh/9FGCGze2ftE772yasOiG7xENc+8qjIu8++4F4LZTbqPeHKZ81SYAct25ifP9SliIiIiIiIjIUZSwEOmGjuzZxZP3foe6ynIAigYM5Lrv3EdR/6YFtretPsSrD28kFHBu7nt8LmZ9YgITzh7U9ovuWw1P3QxH4k/OLvg+TPgQ9BnVoZ8lFdZaApvKqXrhAyJlyRtYJstN4UXDyT93ML9495f8a3syWTGycCTfOPMbnD/k/CYJnO4qtGsXNa++Su3CV6l/5x2IRltvJCLSA9W9/DL2+9/DeJ1Et7s4K3GsccIi6G99RpaIiIiIiIicWJSwEOlmDm7fyt/u+TaxgLPKd9+hw7n22/eS36dv4pxoNMabT2/j3YXJJ6aLB+Ry6a1T6Ds4/5g+jysWgzd/DQv/C2Lxp5K9eXD5T6BkZEd/nFaFD9VT+fx2gpuTa5xjIO+MgRTOGYG7wAfAvMnzeOz9x3AZF1885YvccNINPaKgdsXjT1Dx6CMEtzS/zJK7pIT82bPJP6/pU+KuggKG/vpXKV3DO3Rok+3cM89MqW3DzcTG+nz608c8nd8cz8Bjk2KDf3Q/NoUn27MbPcEP4Bs+LOWf1ZWX12S7YM4cssa2PLsmGAqxZs0aYtnZnHTUsX5f/UpKM0J8I0c22TYeT8rxNp5JApA9dWpqbRsvxxZXcsMNx8wmaE7jJ+kbDPz+97GB1p9mz5ow4Zi+Uv1Zj75u/gUz8Q5M4d9hoxkzDYo+9zm2xv+7n3rqqWT5fM22PfrfPsDQn/8vWNvM2U1lT2n67zBr/LiUf1Y8Tf98Kvrwh5vMkGqJu6TkmH0DvvUtYrU1rbb1jWn677y7vUcEQyF2/PZ35G3Zgo1ECG7fTnb835OnJDt5bXfydTCghIWIiIiIiIg0pYSFSDeyZ+N6Hv/vuyHk3MSpKxjI577zA/Ib3eSqKQ8w/4/rObA9uR79uDP6M+uTJ+HLbuOvdPV+eOYLsH1Rct/g0+CaP0HfzC6xFKkKUvPabure2g+Nlpt3j8hj4UmrifTbxryC5M3e4uxifnrBT5nUdxIl2cfe9OuuouVHjklW+EaMIP+iiyi46EJyTj21yVr4DVw+HwUXX9yua3oHD26yDFFb5EydAlOntH5iM/IvuKBd7dyFhe3+WbNGjyJrdMuzgDx+P3UtJFFyzzijXdc0bnf7x6Z/f7ztbJt90klkn3R02iU1RyfEUuXKy2v3z+obNgzfsGHtapt98snUHTgAQN7s2eQ0k9RoScFFF7Xrmp4+fdr/73DcuGOSU6nKO3t6u9p1t/cIj9/Pke3bqZwxg3O+cCvZxcWJY9XuOqwbTBTy3MnkUzAQbFcMIiIiIiIi0nspYSHSTXyw5m2e+vF9mKhzc3Vf1kD6XvFFihrd9Nm14QgL/vwegTrnHJfHcN6145hywZC2LYtkLbz3DDx/J/jL4zsNnPdVmPWf4Gn+aeZ0iFaHqFm0m9oV+yGafAraVeTj7SkfcH/Nr6jeVU3+/nw+Ou6jFGUl18SfMaR9N10zzYbD1C5eTOU/nmLg977b5EZg/oUXcviXvyLnlFPIv+hCCi68EN/o0T1iGSsRkbYIxBNUrqzkElC1oVpmPjmTP7nuZnC0Pznu5LGQZliIiIiIiIjIUZSwEOkGNi1/g+d/8WNMzKlrsDNnGBNu/DJfvHgixhhiMcvKFz5g1Ys7IH6Pv6BPNpfeOoX+IwrbfsF3/w7P3JbcLhgEH/0djJ7V4Z+lJdGaEDWL91C7fD9EGk2p8LnYPrGMe+wvOFR+OLE7EAmw6sAqLhrRvqelO0No504q//EUlc/8k+jhMgAqp0yh3+3JYuVZ48czbumSZpfpERHp7fJ9+fTL6cchbwWDw/3xujx4jY+wDTGqpPsv6yciIiIiIiKdSwkLkS62fulrLP7z7zDWuYm/LXcUM27+KjfOcJZkqq8OseDPG9izKVnjYeTUvlw0bxLZee282TP5o7D4R1CxA066Aq78JeT1bbVZe0TrwtQs2UPdsn3YcKNEhdfFjvHl/Nj9ez4I7UzsdhkXV46+kltPuZVhBe1bTiaTTDhM7Ysvcuhfz1L/1lvHHK9btqxJwsIYo2SFiJyQrLUYYxhVNIrD3vLE/lxPIVXhMgpcrdcaERERERERkROLEhYiXajs/ffY+vYbNCwO9H7BBK68/atceapzo37f1krmP7CeuqoQAMbA2R8Zw2mXDMe42rCkUO1hyO+X3PbmwId/Bf4KmPhhp+M0i9WHqVm6l9o39mFD0eQBj4sd445wr/kl+2IHE/UrDIZLR13KbafcxqiilmsSdJXQ1q30/+czFLz7LmX+o4oXezwUzJ5N8XXXkpdCUWQRkV7LWmqff54jS5YSOXKEkX/7K6OKRnGomYRFsL71QvAiIiIiIiJyYlHCQqSLHFq3hup1KxPbG4qm8uk7v8qskwZgrWXNgt28+cw2bMx5AjW30MecmyczZHwbCk4HquHVe+GdR+ALr0Pp2OSxUTPT9aM0EasPU/PGPmpf34sNNk5UGPKnD6LggmHM3/Uo+94+mDh08fCL+eKpX2RcSfuK1naG0NZtFC9f3mSfb+RIiq+7lqKrrtIsChERAGOofuxxQhs2ABDas5eRhSNZ7V2aOCXX4yxlqISFiIiIiIiIHE0JC5FOFo2EWfron5skK9b1PYPbv/kfnDGyD8H6MAsf3sgH75Yljg+ZUMwlN00mryiruS6PZS1sfBb+/S2o2e/se+EO+PSzGZlNARA54qfm9b3UrzrYZOkn6wLXaUUMnDMBdzz+a8dfy0PrH+LC4Rfy6cmfZnTR6IzE1B7hffuofvFFck45hdwzz0zsz71gJjGfD6ylYM4cSj92AzlnnKHi2SIiR8mdPSuRsKh9dSGjLhrDfM+/ksfjCYvKqrquCE9ERERERES6MSUsRDpRzZEynvv5/ezfvCmxr3LSxfy/Wz/HhIEFHN5Vw0t/WEd1WSBxfNplIzjrytG4Ul0CqnIXvPgN2PxScp83F8ZeAjYGxp2uHweA4M5qapfswf/ekURBcABrLG/2X8/vCh5jzogPcVfRyYljhb5C5l87n2xPdlpjaa9IRQU1L8+n+vnnqV+1CoDCD32oScLClZPDnptuIjh4EJdceSU5OTldFa6ISLeWO2sWlb/+PwBqFr7KqKsvbrIkVF48YbF9f0Wz7UVEREREROTEpYSFSCf5YO1qnv/F/xCqrXZ2uFz0O2MGX/zirWRnZ7N+yV5ef2IL0YgzOyErz8PF8yYxcmqKSw2F6uDN38DrP4NwfXL/uDnwoZ9AyYi0/Sw2ZvFvKKN26V5Cu2qaHIu6Yyzq8zaPFj7LAd8RAJ7e8jS3nXIbRVlFifO6OlkRKS+nZuFCahYsoO7N5RAONzle89prxAIBXNnJOAOjRnZylCIiPY939Gi8I4YT3rmL+lWrGBvOpiY7ufxTwwwLwqEuilBERERERES6KyUsRDLMxmK89uTjvPP03zDxKQgFfftRdMYMsvv2IxyM8vrf32PzW8maDgNGFTL3likU9Enhpn4sCu/8BRbdD7UHkvvzB8JlP4JJV6VtGahYMErdqgPUvrGPaHmgybFan5+ni17h+eIl1HiSy3xMLZ3KvMnzyPfmpyWGjvK/+y6HfvozZyZFLHbMcd/o0RRdeQWFV1zRJFkhIiKpMcZQcOFFlD/4IESj1C9ZyqDiwVS5ayiKFpDriSevI+HjdyQiIiIiIiInHCUsRDIoUFfL3/7nR1RsXE1DyqCseBTz7v4Or7+5nHCti+f+dx2VB5NPnp48eyjnXjMWt8eV4lUMrPxTMllh3HDGTXDRdyG76PhNUxSpDFC3fD+1yw9gA5Emx/bkHOKJ4pdYVLiKsCsSj8hwwdALmDdlHqf3P71L6zzYaBTjTi6DZbJzqH/rrSbneAYOpPCyyyi68gqyJk5UXQoRkQ4quDiesABqXlnIqGtHcchbQVG0gBx3PgaDiWqGhYiIiIiIiDSlhIVIhhzYvo2//fBebLVTPNsCGwaczW1f/QK5BXnU7/NQsT4bG3WSFd5sNxd+aiJjp/Vv24VcLrjkbnj0GjjpCrjo+9BvfIfjt9EYgY3l1L51gOCWiib1KQCyxhWTN2MQN627l/31TmHvfjn9+MjYj3DN+GsYkj+kwzG0h43FCLy3kdpXX6VmwQIKL/8QpV/4QjLu8ePwjhiOwVAwZw4Fcy4he8oUJSlERNIo59RTcffpQ7S8nNo33uCue58nuvMIofcqcBkXOe58AtFI6x2JiIiIiIjICUUJC5EMeOvll1j80O9wxZybMX5XFntPuZr/uf1aXNURXvnTJsrXJ4s29x2Sx6Wfn0rxgNzjd3x4Myy8B867A4aekdw/5iK4bRkMmNzh2CNH/NStPEDdqoPEapsu1xE1MQpOG0j++UPxDcoD4NrQtaw+tJprx1/LzKEz8bq8HY6hraKVldS+8QZ1S5ZS+/rrRI8cSRyrmb+gScLCGMPIxx7DXVysJIWISIYYt5v82bOoeuppbH09vtWbiJYMJ4RTaDvXU0hVtLZrgxQREREREZFuRwkLkTSKhEI88atfsv+tRTQs6HQwqx+DPnor959/Cm8/vZ1Nb+7HNpqtMO6sfsz+5CS8PnezfQJQcwAW/RDeeQRsFPwVMO+FZG0KYzqUrLCRGP4NZdS9dYDgtqpjjh/0HuHlomW8XLyMRy/9O30K8xLHbpl6S5fc+A/t2kXV889Tt2Qp/rVrm61HAWB8PmJ+P66cZILIU1LSWWGKiJywCi66iKqnngbA/85qcs4alziW6ynEFa7oqtBERERERESkm1LCQiRNKvbv5ZEf/oDwwV2JfVv6TOX6W75I9gdB/n7PCqLh5E11V1aMoglBzv/42JaTFVV7YPlvYdWfIVyf3H9kG1Tvg6KOLbsUPlRP3VsHqH/nILH6pktzRIiyvGAt/y5+nTV5m4gZi8Gw6uAqhhUOS5zXWckKa22TawXe20jZL391zHkmN5e8c84h//zzyZ89G++ANi6xJSIiaZF37rn0+9qdFFx0EVmjR1O/7nDiWK6nEJfVklAiIiIiIiLSlBIWIh0UjYRZ+ezTLH/6MaJhZwmliHGzc/xlfHzaJWx59AOCjZIBvhwPJ180mH2hDbhamlRx8D1Y9ktY9yTEGt3Q8RXAeV+Bs78IvrwWGh9fpDKIf+1h6tceJrzn2OU49noP8XLxGywoXk6lpwaAkYUjuXLMlVwx+goG5w9u13XbKlpdTf2qVdQtX079irfo+7mbKPrwhxPH8849B9xuiEbxjR1D/vkzyZ95PjnTpuHy+TolRhERaZkrO5vSW25JbC+sXMxpDAAgz1MESliIiIiIiIjIUZSwEOmAfZs3Mv/3v+LInuSsCgpLcU+4jrPKilj/752J3W6Pi5NnD+X0S0dgXREOzN9wbIfhADzxadjyctP9nmyY9lmY+XXIK21znNGaEP71ZdS/e5jQjupjT3Ab1pd+wCNZz7A2dzMY6JPdh0+O+iRXjLmCSX0mZXwmRay+nvq336F+xXLqlq8g8N57TZZ5qntzeZOEhbuwkCE//19yJk3CO6RrCnyLiEjqXq1awmlcBzgzLAwxgqEwWb7Or30kIiIiIiIi3ZMSFiLtEKyv48nf/Z4DK17D4BSkMC4XY8+cS3XlVKq2Rqgj5Ow3MOGcQZx1xSgK+mQD4Pe38FSpNxuiweR2Tgmc9Xnnq42Jilh9GP+GI9S/e5jgtkqwx57jHZJP7mn9yT2tP6sPVLBl+W4uH345V4y+grMHnY3Hlfm3iMpnnqHyiSedOhSRFv67GEO05thES+Ell2Q4OhERSZf+pYMImTA+6yXXU+jsjIRACQsRERERERGJU8JCpI3eWbKEV/70W9yBGhrmHPQZPIqsojns3pwHJG+6jzy5lLM/Mpq+g/OP6ccVCzOochXYi5semPFVp0bFObfDaZ+ErGPbtiTmjxDYVE79u4cJbKmA6LFZil2+/SwqXMXFl13FWZNPS+yfM3IOFw2/iFxvbsrXS5W1lvCePfhXr6bwsssw3uTNqciBA/jfeeeYNlnjx5M7fTp5Z08n94wzcBcVpT0uERHJvOD2D6h+4QXmvvAyFdPGMyDaP5GwiIRCZOW2b4lDERERERER6X2UsBBJUXVZGY/87/8S2PouDaUnwsaDLT6fuvpTqPe7EucOGlPEOR8dw6Cxxcd2dGQbnlUPc8mGh8iOVBHcdg5MvSp5fPQs+I/V4G79iVNrLZFD9QQ2lePfVE5oZzXEjj1vv/cwiwvfZnHhKnZk7cPj8jDCdQpnMSNxTpY7C1qqqdFGsWCQwIb38K9ejX/NaupXryFaVgaAb9RocqZOSZybO326s3/kSHLPnk7e9OnknnUWnr590xOMiIh0qdoliyn7v/8jB6ieXA7e/vhcWXiNj0go2Gp7EREREREROXEoYSHSilgsyitPPcOaf/4VdzSU2F+fNZKSrIsxFNIw1aJkUB7nfGQ0I08ubVrzIVgL7z0Dqx+FXW/iBRrSEZ7lv26asDDmuMkKG44R2F5JYFM5gU3lRCuav9lT5qlgceHbLCl8m83ZO8n15nLekPP4wvD/4Pyh51PoK2zff5DmYrKWyiefJLB+A4ENGwhu3oyNFyA/mn/16iYJi5ypUxm7eBHeAQPSFo+IiHQfBRddxKH7fwRAVuUR6Ofsz/UUEg4qYSEiIiIiIiJJSliIHMfW9et55ne/xRzemZxV4colO2c2Jd7xiaREfkkWZ105iglnD8LliicqrIVdbzpJig3PQLiuSd8xXBwonkafC+9udWJDpCqYSFAEt1Ziw81MowA8pTmsK97Gn8OPsSFnGyU5JcweNpuvDP8m0wdNd2ZRdIANhQhs3oL115N75pmJ/cYYjvzhAcJ79jTbzlVYSM6pp5B72mmJGRWJth6PkhUiIr2Yb9gwssaPJ7h5MwVHyhslLIrYc7CS0mEjujZAERERERER6TaUsBBpxr7NG3n9ib+ye90aGs2TwGRNJT/7fIzLKZ6dleth2qUjmTprCB7fUWmH138GC//r2M5LJxCecj0Ly/oR9BYzZ/Dpx5wSrQoS/KCK4HbnK1LmbzbOMBF8owopnDyQ7JP64C3NYe9Bwxm7z+Nbw7/P1NKpuF3tW+cpUlFB8P3NBDe/T+D99wlu3ERgyxYIh8maNJHRTz/d5PzsyZOdhIUx+EaOJOfUU8k57VRyTzsN35gxGJerhSuJiEhvV3DxRQQ3byZWX57Yl+cpZM/+Ck7turBERERERESkm1HCQqSR/VveZ9mTf2XHu02LQFtXCVm5F+PyDgPA7XVxyoVDOW3OCLLzvFBzEEIG8vsnG510ZTJhkVUIU66G0z4FQ6YRCQQIzp+fODVSFSS4vYrQ9iqC2yuJHAm0GGO5u4qV+Rt4K389q/M28p0LvseHx0xLHJ82YBrTBkxrsf3x1K9cSdkfHiD4/vtEDh1q8bzglq3EQiFcPl9iX9+bP0efT95I1sRJuPNVQFVERJLyL7yIst/8FutPJixyPYVU1jafkBcREREREZETkxIWIsCW9Rt47qGHsLs3NtlvXEW4s6fj9k3EGDfGwMRzB/1/9u47zq6qauP475mZNErohN6rdKX3jiCIIr1LV0ApKgLSBKmiCCqKSEdBRBDllS4gKCJdlCa99xZIn/X+sfZJTm5mkkwyk5nJPN988rkzp91z75l9y157r8VqWy/KTGNegYd/Bk/eCK/8C9b/Fmz8vXE7z7UUrPE1mP+zsMzW0H8GAKI1GPPOMGZ/uz8zf9iP9598jNb3R9KeUYzm6UEv8vCMT3L/TP/mpRneZJV5VmGt+TbisHmPYenZl56sx9g6bBgjX3iBEc89x8jnnmfEc88yx377MWi55cZtM2Ikn/ztb20fQKL/YosxcLnP5D6jRkEtYDFohRUm6zzMzKzvGbjcZ2iZZx7GfPzu2GUztAzmjU8+mcheZmZmZmZm1tc4YGF92jOP/4cbLr4EXmkMVAwugYrPIGVKpcVWmpM11hrG7O9cDVfeCO88Pf7Bnrxx/IAFEJ8/jTHvDWfkE0MZ+eobjHxlKCNf+QhGBosyEwCtNAQrmkX/BWfmlribm+Munp7hJRaZc1FWG7Ia35rvWFYZsgqDWgZN9HF9+q9/MeLZZ8cGJ0Y+9xyjXnttgu1mXGut8QIWA5fJ4EfTLLMwcOmlGbD00gxceikGLL00AxZfnKYZZpjo/ZqZmbVFEjNvvDHvX3XN2GUztAxm9EcfdeNZmZmZmZmZWU/jgIX1SU//wdkb6wABAABJREFU5wluuOgi1BCooGkwLbVAxcAZ+7H4Ms0sM+AW5nnrt3D9G20fcK5liaW2Ysw7Qxn5+nBGvfoxI18ZyohXPoLhbRfIrozSKP43wyustsb6DFxsVvovNDNN/ZtZ6vURLMFqrDjniszQb1ygIEaOZOQLLzDy5ZcZ+fLLNA0cxKzbfXm8Y77+veMY+eKLk3weRj773Hi/t8w5J0vcdSctc889tqC4mZlZZ5h50014/ze/YeToYfRvGcQMLYNp/eTN7j4tMzMzMzMz60EcsKiRtBpwErA20A/4N/CjiPhdB44xADgK2ANYEHgP+DPwvYhovyiAdbnhn3zCzX+6iSdvv4WWj14dr5g2TTOXQMVyDJihP4utPBdLrjqE+ZeZjean/gy/+/HYTSPEmBjCqDk3Y/Qs6zFSizP8/VbG3DWCptsenuR5vNnyLs8MeolnBr7EE4Oe44M5hrH8vCuw1prbMbD/TGO3W3nUPHz60EN8+vrDfPja64x8+WVGvfwyo15/HVrHBUEGLLPMBAGL/ostNl7AomnmmRmw2GL0X2wx+i+2aP686GL0X3CBCc6v35Ahk/FsmpmZdcwMq61G08wzM3LkUPq3DGJQ80zEp59292mZ9Vid8d3EzMzMzKy3ccCikLQRcDMwHLgK+Bj4CnC1pAUj4uzJOEYT8EdgC+A+4FpgSWA/YBNJa0bE2130EKwNEcErT/yHu669gdf/cz9NMXr8P3rNRMugNRgwaGkWm+UZluRMFtpuD5pX24DW4aMZ/eanjBz5WUaN2YURsSDDWpaGUXPS1NoMr5H/yYKhTW3d/4xN/FOP8MzAF3l60It8MtMnLNF/LpYcPTcL/u9jVnttXlZ4dx7i3ncYsMynMPe4gMUn997LGyd9f5KPcdRLLxER482ImHWH7Zlpgw3GBiea55jDMybMzKxbqV8/5jr8MF59aBQATWqi/8gx3XxWZj1TZ3w3MTMzMzPrjRywACS1AL8CWoH1I+KRsvz7wP3AqZJ+HxGTyrGzFxms+C2wW0REOc5BwPnAKcCBXfIgbDwfv/cuD/zpJv77t9sY/nHGiOoBBTXPRf8By7Ps4FYWHfQMc7Q8SMScfMomvPaXmWj+yz9o/XR0bY/d8hj1RTWttPJu0zswewuLrbgS/ReYmf4LzMRohrHgXieyzEcjaXn/Y+LTYcCz4+1bZe+efe+96Df33GOXt8wzzwT30zTzzPRfcEH6LbRQuV2Q/gsuCBFQC0jMvPHGk/tUmZmZTTOz77orLz11NYzI3/uPbu7eEzLrgTrxu4mZmZmZWa/jgEXaGFgcuLj6QgAQER9KOhW4hAxGTGq4+/7l9ugqWFH8Evg2sJukwyJiWGeduI0zetQobvrDbTx5+63MMPQNBjXPyOwtszBo5vkZ2DwTg1oGM0O/IczYbyADmpsYQDWbYU0+rgUi9Cm00nZkIqKV4SPeYuQnr8NHr9H8/uvow9do/fhNBraOYuQOn2eWzbcdu33TmBYGP/UatLYSbR5xnFGvvQ6fHff7wM98hiHHHEO/+ealZZ556b/A/DTPOusUPTdmZmY9xYst7zLniPkA6NfqgIVZGzrru4mZmZmZWa/jgEXasNze0sa6m8vtBhM7gKSBwBrAU42jnSIiJN1Kzq5YFfjb5J6YpAmLDIxv/uqHa3/yc+aYdRZoDVqhdJBH/otWaIVZhyzMzLPMMXbnT4e+z1sv/48gcpR+5B5U/yOPBbDosqvR3Nx/7L6vvfQ0Q997AyLG7jO2Uz4Ye4zmATOw5HJrjXfSTz12D2NGDBt3P7TS2KMfBDPMPj8LzbcMoz4ZzuhhIxk1dDjD3n+HZvrRQjMt6kc/NdOsFlqamunXNJCVWlaB2SZ8okYCI0d9ygejqnzZ77T9jEbQNFM/NFMLzTP3p2mmfrxy1/XM9NxzxLD3Idooot2/GWhm4DvD+ec//zneqrfmmgtGjkCzzErz4ME0Dx5MzDwzbw4dypiZZ2KRFVag/5AhfDTLLNCwL0svlbefDIWnnmr7fG2aGDlyJK+88goADzzwAP3795/EHj1HX04HNmLEiPGu24ABA7r5jGxyjBw5kldffRWABx98sFe1t76qI9fspeFvM8PHLwDw0fARXHnmuQwfNYbWkZ+i8h47sGkAzWqCpmY0wyBGxSiGt46kpUn0bxUwLtDx6fBRaHS+twuYoXlQrujfH/Xvz7AxIxjNaAY2i6ZRgqbct7U1GD58BGrN6R4tamZAUznvQYNQczMfj/kkf20CtfYb93hHtzJ6xDAUOcBhQFN/WtQMEppxRkbTyrAxw2gCBtI03vkOGzEGRg0d+/ugpoE0SdDcjAYNYmTrSEbEKPo1i36jBcp9I4JhI0ai0cMBaJYY2DQwDzJgAOrXj0/HDGMMrQxshqbRLWNnX44eE4wcMRy1jgSgn/rRv6mFtz94r35pHD3qOTYst1P83aSuI98nnn/+eYYNm/TYqtEftfM52jrFM8880yXH9XXrOr5mvZOvW+/k69b7+Jr1TpNz3d544436r532fULjTwTomyRdA2wPrBoRD7ax/mPg/YhYaCLHWA54HPhzRGzTxvojgR8C+0bERR04N18gMzMzM+tqq0XEA919EtY5300atvf3CTMzMzPrap32faKtOsF90Szl9sN21n9U22ZqjlHfzszMzMysp5h70pvYNNIZ303MzMzMzHolp4Tq+RacxPqFgHvLz2sCr3bt6VgnmQf4V/l5NeCNiWxrPYOvWe/k69Y7+br1Pr5mvdP8wH3l5ye780SsS03q+0R/YBngLeBtYEyXn9G049em3snXrffxNeudfN16J1+33md6vmbNwFzl53931kEdsEjV6KX2RioNBt7vhGPUt5ssEfHKxNY35KZ/dVLbW8/QcN3e8HXr+XzNeidft97J16338TXrnRqu28juOg+bQGd8NxlrMtvjc5N7vN7Er029k69b7+Nr1jv5uvVOvm69Tx+4Zi9OepOOcUqoVFURWbJxhaR5gJlq27TnOaC1rWM0HLtrKs2YmZmZmdn0oDO+m5iZmZmZ9UoOWKS7yu3mbazbomGbNkXEMOB+YGlJC9fXKUNpmwGfAC5maGZmZmZm7Znq7yZmZmZmZr2VAxbpdnKGxK6SVq4WSpoFOIacIn9Zbfm8kpYp6+suKLenafz5PgcCiwFXlsCGmZmZmZlZWzr03cTMzMzMbHriGhZARIyWtB9wM3C3pKuAj4GvAAsD34qIF2q7nAbsBXwVuKS2/FJgJ2AXYFFJdwFLANsBzwPf69pHYmZmZmZmvdkUfDcxMzMzM5tueIZFERF/BdYF7iWDDl8D3gR2joizJ/MYrcC2wIlkhfTDgXWAXwNrRcTbnX/mZmZmZmY2PemM7yZmZmZmZr2RZ1jURMT9wJaTsd3ewN7trBsBnFT+m5mZmZmZddjkfjcxMzMzM5ueeIaFmZmZmZmZmZmZmZl1O0VEd5+DmZmZmZmZmZmZmZn1cZ5hYWZmZmZmZmZmZmZm3c4BCzMzMzMzMzMzMzMz63YOWJiZmZmZmZmZmZmZWbdzwMLMzMzMzMzMzMzMzLqdAxZmZmZmZmZmZmZmZtbtHLAwMzMzMzMzMzMzM7Nu54CFmZmZmZmZmZmZmZl1OwcszMzMzMzMzMzMzMys2zlgYWZmZmZmZmZmZmZm3c4BCzMzMzMzM+s1JKm7z8E6xtfMbNpwWzOz6YEDFr2YpNUk/Z+kDyR9Iuk+STt293lZ+yS9ICna+X9nd59fXyZpd0m/lPSApBHlmuw9ke0HS/qRpBfL9i9IOkvSTNPwtPu8jlw3SSdOpP2FpEWm7dn3TZLml3SYpFskvSRppKQ3JF0raY129nF760YdvWZuaz2DpIGl3dwt6TVJw8t1u1fSVyX1a2MftzXr8SQpIqK7z8Mmn6+Z2bRTtTVJA7v7XMz6gtI327+7z2N609LdJ2BTRtJGwM3AcOAq4GPgK8DVkhaMiLO78/xsoj4Ezmlj+QvT9jSswSnAwsA7wOvl5zZJmhG4C1gZuAX4LbAK8C1gA0nrR8Twrj5hAzpw3Woupe329kGnnZVNzKHAUcCzZPt5G1gS+BLwJUm7RsTV1cZubz1Ch65Zjdta95oJ+BpwP3Ajed1mA7YELgJ2lrRlRLSC25r1HhERktYB9gUOjIhR3X1ONnHlmjUBZwF/i4jrJTVVrz9m1nnKDIsfAAMlHR0RI7r7nKxt1WwYB3R7J0lzA38GFoiI+br7fKY3Dlj0QpJagF8BrcD6EfFIWf598kvpqZJ+HxEvdt9Z2kR8EBEndvdJ2AT2A56JiBclfRc4bSLbfofs0DkjIr5bLZR0Otmpd/gk9rfO05HrVrkkIu7s2tOyibgf2DAi7qovlLQecDtwvqTra1+u3N66X0evWcVtrXu9B8wSESPrC8vnyFuBzcngxY1lldua9Qrlb/iXwGeAXwD3ewR/r7Ab+TqyMHC9gxW9h4NLvc4a5Pv2fyPiiO4+GWtffTZMNShEUj8H4nuNd4GBwDyS1o6Iv/vzSOdxSqjeaWNgceA3VbACICI+BE4F+gN7dc+pmfVOEXHb5AT5yiiI/YChwMkNq08uy/fr/DO0tkzudbOeIyL+0NjxXZb/DfgrOQJ8BXB76yk6cs2s54iI1sZgRVk+Griu/LoEuK1Zz1SNPG1Y1lz+hi8riz4PHp3akzRet9rvN5AzzZeVtMQ0PzGbYg5W9Exl1lJb/gU8BCwnad2yreta9FCSjiczpSwDEBGjlGbo5lOziSifR8aQM8oBNgN/HulMDlj0ThuW21vaWHdzud1g2pyKTYEBkvaWdIykQ9rL2W491pLAfMC9EfFJfUX5/V5gMUkLdsfJ2WRZX9JRkr4t6UvOzd6jVKOJRpdbt7eer/Ga1bmt9UClg+Pz5dfHy63bmvUoZUT3eHnYy7IxZZO/Ax8BS5V0ZtbN6qlN6rm8y+8iUxnfDMxDvt5YD1U6S5tqv68o6deSVurO87JUa2utja9/tU7Uq8qiDcq27kTtgSQNApYCtgE+W5btDYwBvtF9Z2aNJG0pacXyc3Pt88j95OeRpf15pHM5JVTvtGS5faZxRUS8IWlobRvreeYBLq4vkPQvYJeIeLZ7Tsk6oN32V1u+Rdnu5WlyRtZRJzX8/oGkb0bEZW1ubdOEpIWATclaJP8ui93eerB2rlmd21oPUDoOjwEEzAFsAiwDXBwRt5fN3NasRykdcZ8j05o8KOnMsqzqJHgHeBXYiPzbdmHnblYLMJ0ELCrp3Ih4QFJLRIyWNBJ4AtgRWBG4u6HTx3qA2jWJMsJ7IFmz6qvA05KejYih3XmOfV2trR0N7CfpuxFxTXkNrNrTg2Qn6jKSBriORY81HPgemcbr2DLbYingDuAJp2PrXiU4OCeZPnVV4E5JX4iIYbXN3gJeITPhVG3Tn0c6gWdY9E6zlNsP21n/UW0b61kuJjsKhgAzksUsLwdWA26XNHM3nptNnslpf/XtrOd4FNgHWAwYBCxKFhMO4BJJX+zGc+vTJPUjXwsHAEfVvmy5vfVQE7lm4LbW0/QHTgCOBw4GlgZ+CBxQ28ZtzXqia4Htyb/bI8uyVoCIeBJ4EpgX+EK3nJ1NQNKewHFkvYofSZqxBCuqzpt7y6a7AjhY0fNU10TSccB9ZEfdZmTb254yCty6l6QNyMLai5K1xNZi/P69N8r/LYB+ZR+nheoh6jPSgE/ImcpLk5+zDgf2iIg/OljRvSK9TQYtIANLl0uaq7bNU8BTwNzAl6f9WU6/HLAwm4Yi4qSIuCMi3oqITyPikYjYk+z0WRjYv5tP0Wy6FRHXRcTFEfF8RAyPiBci4qfADmWTU7rz/PqqknLgEmB94FcRcXn3npFNyqSumdtazxIRQyNCQDOwINn5ux85Smxwt56c9Xnt1akoP15Ybh8DTpe0CxkkrVxZbjdQFin1aMZpZCIdn3cAb5IzKRYAfi9pgeraRMRtZKBpCafF7ZkkLSDpVnKW5INkGq/ryVpGnwO2r3fWWddqr05FqS32JPA02eauAL5YW/8kmfZxTmDbrj9TmxzV+1vD+9X2ZN/sO2Rg8L8R8XrZ3kGmblT7PHIRORvmGDJ91w8lLVbb9Ipyu46k/v480jkcsOidqtFv7Y1yG0z7I+SsZ/pluV2nW8/CJsfktL/6dtbDlZQozwIruPNu2ipfwi4iR1peARzUsInbWw8zGdesXW5r3asU4X4lIs4nZ1esAxxbVrut2TRXT5lQdQo0pDT5D9lJeh/5WflXwN61QzxJpihbGvAs5Wmo1KVoqy9hFFnstwn4Jjmz/IeSloaxKer+j3xNmX8ana51zAbl//nkDMoTI+Js4CvAA8DuwNrdeH59SkmFN7YmTKkvUnWi/gGYlbw2rcCZkjau7V4Fddd0J2r3qurC1GYwrS/pUElrls9lOwHfIjNx7ChpSHeeb19Vrsvi5ed63az/kiUVXiA/Q28P/KS2a/V5ZBnANfs6iQMWvVOVX3iCOhWS5iEbSHs5iK1neqfcukhPz9du+2tY7jbYu1RtcIZuPYs+pHR0XAzsBfwW2LuNac9ubz3IZF6zSXFb6xluKbcbllu3NZvmSqf3opJ+B+xSah2EpKrO4vPka8ZCZEqoR4ETJX21rH8PeI6c7TUY2h+NbJ1L0pHAT2uBiGrU8JtkYHoWsgPn62RKmvPK+pFleX9g3fq+Nu1MYtT2nuX2FxHxVtWmyqCD08n0jvtIWqRrz7Jvarw2kr4G/L2WTrMe1H0YmIucPbkDGeC9QtIq5ThPkLn1l2X82Wk2jZXUQq2Slpd0B/AnMn3ecaXGyCPAdeRsph3Jeggulj4NlGDSIEk/BO4Evi9ppqpuVtnsabJm31YRcSlwGrCppF9JmpWsqfUssB5l8I8/j0w9P4G9013ldvM21m3RsI31DtWU6Be68yRssjwDvEZO9xsvwFR+Xwd4PiJclLSXKNdtOTJ/6DuT2Nw6Qa3je0/gajJPa1t5rN3eeogOXLOJHcNtreeYr9yOKrdua9bl2vnyvhM5UvF0xs2eqOpUPEJ2tn0WGEPO6HoY+JmkbSLiDeDvZLqznco+zvfdiRpGc1fLViRH2R9EduwMjogxtUDTTWRtkc9GxIXAmcC6ki4rs+tuIzu9v1zb12lPpoF20tGMXaesT/UJ2fH9RlkVtetzD3l9twA2r4/8t6lTG4EftWVzA0uQr4E/k7RUw2vcU+R1+kp5vTyYvHaXkR3ezwEvlZ/nKsd0H+A0VrUfZVrD28nZZT8mAxNfqgqiR8QnZXkAe0haouzX0tZxbepJmqUEk4aRwaI7gV3IGkxjZ1hExOPA/4DVJc1CBuGPAfYFTgVGkO9tzYyr0eTPI1PJL1a90+3km8+uklauFpaGcwwwknyTsh5E0jKSJhhRKmkZ4Izy62+m7VlZR5UPkReSM5mOa1h9XFn+q2l9XjZxkmaWtFQbyweR12tm4HcRMXqan1wfU0sptCdwDbB7ex3fbm89Q0eumdtazyHpM+187pgB+FH59f/Abc2mjerLu6RdJW1WFl9Adg7MRxaO3aDhS/5lwErAIhHxb+Ao4F/AryVtR742AaxWvgtZJyodOWMkLSnp8LLsMfKa3U6O6v5JmR1Tva7/lUyNUaWmuYBMdbI7mULjXTLwvSBlloVHEXc9aVy6NUkbSTpa0k5Vp2hEjImIUWTH26zA56tdazVI3iLrWvQnr/3y0/hhTLdqI/CXkfSrsuytiDiS7BydH7hE0vq1fR4nR35/VtIcEfF3Mng7N/BzMr3QTWXzncs+7kSdxsrMwZmBI4BPgUOBUyLiztLm6h4kXzM3B7aR1Fy9tkqafVqe9/RO0veAtyQdCBAR9wD7kDMl9gNOkbRAbZcryIFX80TEhxHxY/Lz9D7ke9vvy3YrS5ptGj2M6Zr82aB3krQRWQBrOHAV8DGZu3Bh4Fslz6T1IJJOJN+k7gZeJEevLAVsBfQDTouIY7rtBPs4SftRvjQBK5AjWe4lI+kA95RRYtVo03vJL9C3kLl6P0t+sPgXsEGJ0lsXm9zrVqatP0denyfI0UhDgE3JopD/BjaKiHen3dn3TeW18ARyBNhPgLY6rq8vI8Xc3nqAjlwzt7Weo/a54x5yBudHZIfHlsAcwN+ALar247ZmXa0EM28lO6pvBrapdcR8h5xl8Szw3Yi4tixfD/gz8KOIOKksm4cs7jwHWYdl1/Lz1p4F1LnKyOAzyIDDCGCniLihrFsIuJHswPkx8NOIeL42+nRTYNFq9LCkU8mOupvJv4OfAYdExC9KZ7o7JqaSsk7ByDIyuAoQttTa2bxkPZita7s9BexbOruRtAXwF3K08HYRMbTMzGiKiFHKGgm3lX1PBH4YEZ9Oi8c3vZN0CjkAFeDwiPhJWT4LcDKZO/9R4IiIuLes25+sN7JsRDxTlu1Azmx6G/gpcAnZZ3RIRLw3zR6QjVWuydXAAbU+hTZf95Sp9v5EDkT+GnnNtwH2IN8fH5lW5z29knQ08IPy66PA2rXPw5sBx5NZUH4dEV8ry9cn3/N+HBHHl2Ut5Hvk4WQbW4dsd1/255FOEBH+30v/A6uTHyY+JCO1/yQ/RHb7ufl/m9drA/JN6ulyzUaRefCuBzbv7vPr6//JD3Ixkf+XNGw/C/nl7CXyw8SLwA+Bmbv7sfSl/5N73cjc1j8F7gfeKu3vo/K6+W1gUHc/lr7yfzKuWZC1Eer7uL31kmvmttZz/gOrkqP0HgfeL9fiHbKj9wCgpY193Nb8v8v+k6mfWsvf4rvAV2vrmsmOuvfI2hU7lOULAo+Qo4Rnrm2/ARl0G04GOVqB9cq6pu5+rNPLf2BO4B/l+R1OdtYMqq3fkJxpMZpMG1gNiDya/L7zpYZrfDr5vbW6ZteXderux9qb/5OZM84mg0Btvba3lNvTSvs6EdgOOKVch6eAmWrb31aWH9twHJXrfA85CO9ZcvZTtz8H08N/MpjUWt6zPwEG19bNV65fKzkgZN6yfJ3yOev7DddpS3LQyKvAsPI5bO7ufox99T85Er8V2Lb8PkE7bbh+e5Xt3yAHk3xSXjtX7+7HMj38B/avtY9W4LiG9Z8jB1m1kgOLq/fDR8vnkXrbnAf4ftl2aLnduLsf4/Tw3zMszMzMzMzMbKpNbKS8pK3JAOg/gC+QHWhfiizUTKlvsBvZ6fohsFlEPCDpAnJG8mYR8UTteGuQAbY1y6ILIuKgLnlgfVSpUXAzmRZuJmBp4KCIuKC2zXLAlcCKwDkRcURJM/Q0Gbg4CzIVjaQhZEfc6bW7WSQiXpoWj2d6JWkg2fnWH1g3Ih6qrduEnNHyfbIg7K3kCOFq5ssPydl4p0XEsWXZSmRqmiZy5PB1wIxkJ/gB5VhDyCDJzhHxO8+SmbRJvD42kYGkfcm2swHlNa2+n6QryZRst5Ip8p4jX1NfBHaJiA9rx9yMTOU5uCxatf63YV2vmu0k6TAyaHEIcH7j30F9VlRt2QnkLNeZgUvDWVQ6bCKzWHYk06b9gnGDJVaPiOdq12wlcobn/MCJEfF9ST8iP6dsWP88Uo55CZk+F7I4903YVHENCzMzMzMzM5tiKuodA5qwuOtfgUHk6OyLyHQL+1UrI+KjiDifTGUyC3BRST9zOTm6eKFy3Jay/T/JUZLvk7UunFq1g9RQULthXVNEjCQLnc9Bdo4CfK3K613yq/+H7KR5DjispLX5mEwtt0W9Ey4i3oyIM8kAx4tkyiEHK6ZSRAwng4B7t9Eh3UyOzv42GWQ4MyJGaFzB7F+RxesPl7R8Od6jwIHkDIofkykC7yFn3D1NZg14puy/WtnHwYqJKG2lvWCFSjt5ERhA5sp/GThA0vIRESUoBfAd4NfAJuSM1mayU3UlcqR3/Zi3kik9bwV2c7Bi2qu9/r1EtsN1GBdAGluQu3SQ95e0dm3fk8iAxepVsEIuwN1Rg+u/VM83WVx7BnLGxNHA7JTPEOVaNJXXwUPI17/jynvbb8j3w0XK8Zprn3WOIAOOgxys6BwOWJiZmZmZmdkUi0LSZyUdUpY1FncdRKaeWZfsRBsO7C9pRRg7mh8yr/QpwBJkLYSVyE7zPctxq3z8TaWzfJmI2Dsi3msjSGITEVlQu0nSIZKWaVhXXb+nyTqJL5Gd1ysBB9X3jyzE/Q1y1sx3yBH49wJrSFqs6gCqXZ/9I2LRiLi+qx/j9KQKMNU63caKiHvLTIcFyqyKavktZAd3P3Lm0oDSeT6yrH8KuBRoIfO2V/v9mqxDch4ZfLqHTD/9xcji3VUHehW4sImotbVTJW1Wu5ZNtUDGPWTH6etkfR6Ac8v+w0sQ4lXgJOBCYG3gD2TavHnJFHrV30n1N/LziNgiIn5b1k3wt2Ndp/Z8PwTcR6ZG3LYKQNVmzixIBvJ/Immmav+I+KRc++Zy/duqI2cNJG0t6Wng1sb3tmIG4DXgy2Qg9k1gH0kblPVVYOjPZNDiTTKgcTBZo2I3yHZd3t8UEe9FxMUlIOzAUifwBzozMzMzMzObYpIGlFQlDwDnSvqepEXKumaAiHiH7DCdH/iA7CRYCPh6WT+ydKR+TKaa+QGwLBncmAlYUtLC1X1WHeoR8XaZ4NHcRpDEJkJZYPlTslP0N5LWra2rZl+8WW6XJjuvhwJflbRaWV5tdxNZIPZNcubLzmRu/a0hr1ft+lTpiNyp0wElUAAlWFAbdU/5fQg5K+JnkpasrTq/LF8TWLB0ntdHBv8B+COwvaQty7GaI+LFiPhmROwaEdtGxDWlrW1KFoF+laxhYpNQOkKHA98l64CcABMEdlvI1DSbk7OQ/gFsKGm72noi4hXydfMvZOqoE8v6Pcr6MbXXx1Hl/qvXYc+EmYaq5zsiXiBTIr5Fvrd9Q1I/SbNI+jyZJm8Lsh1OEJQo19TXbjKUmWI3kIMeVgUulrRbfZtyPd4H5i+vq8eVVceX9SNLMHFMRNwH7EMGOHYnP48sJ2nx2vHqs0sdWOokDliYmZmZmZnZZGlnhO7slJRNZCfmccCvJc1T62SFHHW/KFnU/Sxy1P7uVSdpJSI+jIgfkKOIm4Aly/9F2zqnMsFjTFvrrG2ls3pBsu7BW8DywCWSvgHjdY7fRwYY5i2dPGeSo7mrmTSjSsdOa0Q8AuwN/A9YhkxBtKSkGer3XevEc6dOB0j6nKSPgJ/A2FRQSFpb0pDIejA/BZYiA0aU7Z4CLiBH3Z9UFrfWRga/S86yeBM4QdKgttqTpLXI1GDnkm3xbLKIt9W08xr5Mhlw+BgYRaZWu7AEmQAoM8beJ4NKQQZ1IWsfVG2tHpz9FnndquDUqmWk/gT8+jjlNJHUeZO5f/X3cB2ZfmhWMkDxDPAvMs3Ql8l0badU7dqmTEQ8Tn52aAXuIgO8l0jak3zuK/cCS5XXwAvJuj0bSdq7rFftmLeQwcZHyHo+/WmnP92Bpc7jgIWZmZmZmZlNVOkoq6cvqXfEvEGmcRpOpm+6hhzd+JeGYMQbZAHRDctMihPJ1AyHSBpYRn6r1kF0AtnxANm54BzsHVSNom/sRC0dnjeQnWhN5Ojf54AfSzpW0rxl00FkEGq98vvZZJqonSR9qfH+IuJ2Mp3Nk2XRXyLi0058SH3Zm+To6+0kDZG0nKQngauA5co2p5Od43uolg+fHNV/F3nd1ikp3OozXG4C/gSsTtbDGEuZW/9a4HpyBPJQsg2f41lN49RnMUjqV1veEhHPkddmZjI13lnkqO0rJK1QO8wDwMrlONeRr6ULSTq6rG+qgg+RRX9PAG4s674XES930cPrk0pn9pjy8zolaLhYff2kjlEL0H4aEVeQ9Ue+TwYsniZfexePiLPKMd1POwUarsVZ5OzBOYFfkjOWLiLfvyrvkwGMKg3Ut8rt0ZJmqaVxq457NVkL6OfAOhHhdHhdzA3BzMzMzMzM2lVG9EYZkb2qpN9Imq3WERNk+pKrgI3J9DN7A3MDl9VGLD5Ofgedvfx+KdmJuiWlRkU5XtUh9zo5on/ZiNg6Ij7q2kc6/ag6WWodyhOMEo6It8h0QTOSsy3OJUfvnwz8qoy0f47s2JlD0qwRMYycQdOfDDTNHONqVNRHEm8HNEfE/3Xdo+w7ShusUgHNTo7M/jcZJPxh+ZmIeJu8fkuQQYsBZfkHwM+AYFxdhNGlc72pzHY5H/hSRPy+dr+KrHdxKTlLY+eIWD0i7ivBxT5fE6HW1qqO7TOAH9VmT1Rt8DjgHTLl0z3ArsDngD+WNFuQaWdml7Rq+f10MkD0fUlzVem8qvuOLFq/A9nWruuqx9iX1P+uS/v4rKR7yULN/wL+K+mXkhadktH0EXF/RJwYEZsBO0TEERHxusbVqXAQcDKUzyJ7SdpK0rzVtSivZ8+QQYvlgM+SaQovBfaUdK0yveStZJH7JoCIuIv8DLMk44IXUfucMyoi7oyIQyLig6mdeWOT5oCFmZmZmZmZTaAa6Vk6yWaRdClwP7ARsHh92xJM+BmZ8mR74EUyEPEYcJGkk8lisi+TnalVoKPKHX2QpAVKB1G9Q+7diHiqYeaFTUKt82YHSbcAt0j6o6QtG0bW30eOvt8CWDkijiA7vDcjC5auTwYgliFrkBAR15Aj8jcG9qrd5dhUTxHxVBuj+G3KVR2jnym38wG/B7YhCyu/Xdv2UnJG0k7UZkuUQMRvgVWqIGIZ/V/VO3g4Im4oyxtn5NwQEcfV1jeVIGafTX/SOOtM0i6SXiFHYY+hBCpKQK+lBDSOLLufEBFXkYG9UcA1kvYB7gYGk4EoIuJhMs1XM3BG2bfxOR/httZ5qr/rEoSdH7iCDOqeR84k/AfZAX5ZbSbalN7XMBjbnlynYjJImlvS78nXuAvJwtj/lnRieR6rgM955Ey/PYF1I2Jf4CDgi8AdZOq84YybnQbwHbI9fl3SctXfQRvnMHamk3UdByzMzMzMzMxsAtUXf0lHkelovkB2mm1L5ntu9G8yaLEscBjwBNmhejU5YvFKsuNt9Vow5B6y02Hlsk2b+dZLH5I7CCaTpDkl/YZ87ucGZiEDDDcC59VG3g8lR86/RBbTXj0iTiA7u5cmU9JsSabuWq92F8eR6YmOkLR0ex1t4ToVU6QKGLQxU2YWMm1QE7BYRLwcEaPrndWRhZZPINOd7FUb6Q/Z+f0GWWOmpb3r0zB7aoLz8ijwsa9JrZJWkvQP8vXtCWAX4Af1IFL1PEfE5WTQdzNJ+0bEncCXyGt6IfANMnf+arW7+nE57t6S1m187uuBwi55oH2QpG+Ts82OJmuPHFJmQhxPvg9eB6wDHCNpjqm9P7enySNpTrKdbAqcSg6O2IGcuXQ8cIqk+WDsrLKTyNmA3y4zBC8kg00fkCmiBgLLl+BUU+QsttOA2chr3+a18fWaNhywMDMzMzMzswlIWkvSS2THwB+APYBTS0qLCTqoI1PHXEkWptwJ2DqyfsH+5MjUZcmR4S+THeCV08vtnFVHuk217cv/c4AdI+JzwFrkqNQDgZNqo4OfJkejLgrsK2lwRFwP7Ed2rq4LfEQWS6/SBD1IBkMWYfxCpjYVyqj9lvYCBmQn2npk6pLPSjq8LG/sxL6DHBm+Nfl3UC2/j+xsfQVYuKMpnTwCfBxJLZLOJ+v2zA4cSnZsX10FK+qBp1pQ6Zvl9jvKYulPkPUsziJnr31KKfhbOlHfBn5V9pnqznEbR+OnsquWzUoG2vcl6xtcVALrSBpQ3tNOJlNE7UGpOWLTxGrka9r5wBkR8ceIuJac6XcTOYNpv9r21wI3A59nXNrJy8kgx0PkZ5U/NgQgTibfD4/EupX8fmNmZmZmZmZ1kgaSIw2/CfwGOCYyX3rVidZaOm9GNOzXBOxOFhK9FvhmRLxW1n2B7AC6KiIeKstU0i4sFlkvwaZC6XwbTHbeLAAsXK5V9TyvShZ8XR84OiLOK/stTKYLWorsdL2qHGuGsv3DwPVlRkZ1XzMDIxv/BmzKKOtUVHUQZiLrwMwGvAvcGBEv1q7jCsDfyBRsq0fmwK+nQ0HSUmTO/ceBAyLiP9Wx69fRpkwZ7X05mU7tmIg4vY1tZouI92u/V6+dl5Gvk2dExNG19QcCbwN/jYj3q+td1vUrs2esE9RnGEmaHRgYEa+V97B1yNllcwP7R8SvG59/SYdQ6v5ExOGN7a+N+6tfy/5Aa5kdNXa5TZyyPsy3gbUi4p/VNSnvVSuQ6aH6AXtGxK1lnzXJQP2/ge0j4n9l+dzkDIs3ymCL8V6Dy+8TvabWtTzDwszMzMzMzMYqHSjDydkS/wDWrpZLWhnYX9KVwJ8l/UDS6tW+5cv9/wF/IkdCblNbdyNwbBWsKMuqkeTPlftwnYqpUJ7P0cC8wKvAgPKcVqOIHyTTeg0F9pG0Rln+KjkbYzZgV5V6IhHxCfBd4DeNndwR8XFEjJBz53eKWrDiUHIW0jnA98g0Tn+WtHGtvfwb+DkwP3BMOURj3YmngbPJmTX1ovZDy/34uk2FiHiHnH32EbCGpPkkzSxpR0nnSXoc+D9JZ2tcEe3qGn2LnBXzdUkr1g77q4j4QxXkqHVwq3TM+ppNpVpas9GSZpR0GtnRfa0yvV0rGaD9ddll3dJxPaq+PzlyfziwtaRB7XVs1+6vqouxFjl6f4Nqedc80t6tPvOl9nP1HjQIxqa/q9KzPUYG14eQMwWrbe4jXytXpDb7IiLeioiXqmBFWeZgRQ/igIWZmZmZmZmNVetAeZBMPbMgOapxF7JA8/nAhmQg42jgTkn1joB3yJGno4HdJS0LYzsAJjpCOFynYqImM6AzA1lzZNaIGBZZzLUqABzAP8lruBLZ2da/jDS+nSzk/Hngy9XBImLUxDpuwrnzO4WkIZIuBE4kr8WB5DXajkwFdJqkeh2RM4H/kYGnNWsBjzkkLVa2OZec7fTLxvvzdZu4yWxrD5CviV8gO0NPJ4ue70TW61kEOBy4vgQHq3b4Fplzf2YyIEhZ3mY7qwWqfM2mUi0ItBtZu2c/siP8HmBE2WYoObPwf8AawOpln7GpuoBny//3gJFtpJYaG6govy9J1na6CPgBsFDXPcreS9JyZfbD2PRntc8k1Wylz5ZtGwN4vwH+DmxO1myq/JCcubSnpHXKvhNt3w5WdD8HLMzMzMzMzGw8tTQVfyYLNR8MXEZ2uH2e7MBZmezsGQicK2mJ2iHuIzvy1ibzRbsDYCrUOr/GSBogaQ9Jc5V1432vj8x5/yawlKQvlm2aa+uHk4GJp8lruVBZ/i6Zu3sosLOkldo6vnW+8hx/HvgKGWA4KiJ+HRFPkimdPiRTnuwpaQYYW1T2DHK08eklUPF5cmbGjyQtGxEfRMQ+EfFcY4eqta2DbW0Y44rWn0im8ToLWIZ87VuEDBrNWdYvUtv31LLfzm21U+s6kjYmZx89Qb6H7RwR346IF2qbPUXOblqGcbV9Kq1kLZllgNcog/xrx6+nf5pb0q5k0PCHwFvAyhFxcZc/0F5E0naS/knOXHkUuEvSV5Tp8SoPAmOAQ8sAiNH117XI+iK/IOsqrVwFNCLiRXI21DzAt8q+HhzRw/mDh5mZmZmZmY2nNqL3eeB3ZP7n8yLicxFxS0S8GhHPRMRFZEfAQEqRytJZ8wnZkfcmcGQt9ZBNgVrn145kh9fFtBEIqnV4XlpuD6zycjd0WL9E1rn4HOMX8n2QLPC7FrBHuZYONHWSqsO7MXhQnuOBwGkRcWREPCupv6Sfk4GlFrItbcf4adZ+TebaX5/sfP0dsBvw98hizmPv16lnJs/ktrWa/wE/Jju4t4yI4yPiPeCDyPouZ5EF6jcj09IgaUDZ94hye4I7UaeN8tx/h5yJdlRk4eb3VFTbldksvwfuIgtwn11mQc0qaSvgJHIW4fmNfxcl/dMgSZuS1/8Ssj7QThGxQUlfZICk+SX9hnztEjnY4RFgaeBn5MxOACLiH2RAY2HgG9UhGg75OJnicO2GgMavy/KFyACi9XAOWJiZTackbSgpJJ3YhfdxYrmPDbvqPnoLSYuU5+KSDu63iqQxZeRNjyRpv3KOK3T3uZiZ2bRT+6J/CxmU+HFZXnW6VukYfkqOetxS0py1jtEqh/4PI+Kf0+zEp0OSBks6AriQ7LweBeykLKw89ppUHZ4RcS2ZrmZLsgMbah07EfEx8N/y6+a15cOAK8jUGr92J3fnkNRcD/40jMaugkyXkCOwkbQ52fG2B5m+a3cyLdtsZCBpgdrhjyWDhf8o284REWfW799Bp8k3uW2tUtLcXUfOQru/MRVQRLxKFv1tIgt0A4ws6/5AzsDY39dompmLDPDdHhH3KutKqJo60bDt6+SMpVFk0OIeMqj7SzLY+52IuKXxDsp3puPI19JdgFMiYoGIuKarHlRvJGleMo3aZuRssb0jYvuI2JKsuzMjsG1JEVU5rtweLWm+yCL2TbXPKy8AnwLLSJqp1g6HAuuVQRdvdf2js6nlgIWZWQ8hac3S4X1TO+vPKeufbGf9YWX9yV17plOuDFzZXdIdkt6VNFLSm5IelvRzSRt09zl2gx8BT5I5wruUpFXL38ghHdz1UuBFcoSQmZn1MpJ2kPR/VeC5scOtPbUv+u8Av4+Il8rvVcfamBK0GE6mxXgdeK/WYTcS+FFE9NjPJr3I+mTH9FBge3IWxHqU0acNsyyqjpuTyu2RkuYtHTvNkvqX5dUo33fKflXQ498RsXtEPNE4E8AmrfE5q0bOl1HXa0u6QNJFysLMq9eCTCPKNZqTLKQ9GxmI+F4J+D1KjhD+HLBjdfyI+F9E/BjYJSKOioj3JbX42k2xyW5rlYh4LSLuiIjhDcGoqq29U78tfwvN5efDIuKhyX1dtqnWn5zN1F+lWHZ7gdmy/G9k4GEkOSvt22Qn+yIRcR5M2ObJIPF3ydkZ80XE97vkkfR+G5PP1S+AEyPiv7V1t5PvUctSAnzltfRhsoj2XGQwCcZPyfUROXvm+RKkGCtKyi+5eH2v4BdEM7Oe4wHyg/E67byJbgQEsLSkedpZD3BHub2ffIP/aWef6FS4CLiczHl9Iznq8rfAB+Solf2768S6gzJ/6obA2dNoVNW25faPHdmpjBz7MbCFSqEyMzPrVVYn8+NvD1M22roxVUltROpoYF2yMPdr5GeV+n5VehV3nk6doeRnqLUi4i9kJ+rrwK4aV0S0CjhUgaYbybojK5ADJCgd5yPLMbcqty+WdeP9XchphCabpHmr69D4nJUgxGySLiNHaG8DfJEckX+fpMbOzO3JTvMzIuKCiKgKzX4KzALMTtayWLXcdxUg/LT83hQRo33tpthkt7VG1bWotcWqrVVF7O+vtq2/ptZn31iXG07OXpq//B9PGzMI3ydn2wwDFgceiYifRcS7tZlTje9zvwVWiYidSsDf2nY/OSDuxIgYVW9XEfEmOXNzCFmcvu5Y4J/A9pJOIVNEVTM2TiCv65Xt3Wm4eH2v4ICFmVkPUd44/wbMBKxWXydpDvLL5nVl0UYN65vIkT8jyOngRMSnEfFkT/mQJGk9shDdI+SIlD0j4ugyqmgj8sPIz7vxFLvD18gPv7+fRve3LfBQRLw8BfteReZpPahzT8nMzKaBU8n86ntWsxmndDRvPd2JMsf+tmRKk+eBk9tJqzFBJ651TETcCZwUWTwUsl7BucCSZIqgAaVjvOowrTrOvgk8RKa0+a2kdSQtK+lgcrDIreRI1rbu0x2ok0HSfOTMh59IWrAsa2xf3ycLap9FBiuWJ+sivAt8T9JBGldcdsZy+3bDMfYnZ+VeRtZCmAXaDpB0wsPqszra1hr2jXrwQdISks4kZ8RcHhF/buc+/fo47XxMdpSvCGwsaSCMmw1TBRiBiyWtUq7NI2S6tS2A7WqzY8bUr10tWPxoRDw6DR9Tb/Us+blhTEO7kbLWSD/g5eq7a7k2zRHxIVmH5CZyNtpfJf2WrDfzHeA2staF9WIOWJiZ9Sx/LbcbNizfgMw7fC7wHg0BC2Alctr4PyJiOLRfw0LSC+X/TJJ+Iuk1SSMkPSZp+7ZOStKC5Uvue5KGSrpL0vodfGxrldtLI+KjxpUR8UFE/L3hfi8pj2ExSd+R9Iyk4ZKel3S8pH7tnO/6kv4k6Z3y2J6RdIqkGaZ2+zKS5ihJ/yvn8j9JR9PB99TyQXhb4ObG50O1ehilU+HPkj6Q9H65DnOW7daSdLukj8q6CyXN2M79LUoGvf5YWzaLpO9L+m+5rh+Vx3OppIXr+0fE28Cd5EiWmTAzs16jjNCuRiHuKWmG9jrcJuNYIamfpE2AHwDnkZ9BTo6IRzrzvG18tZH21UCXK8h86tsDWzdsG7WOnQPIgqM7kYNj/kVet5eBIyMLA1sHSdpH0uFk0OEC8vN4W4XQVwS+Tn6OOiEi/hURb0TWGTkYeA44nAxiQF6foWTH6Mrlc/A3yHoWf4mI/YG5IqLNQJNNvY60tTYMkLS4pCPJwVjfIjtQnRaom5VO8Y/JQYAvA0cDX4Jxs2GUM5fOJ79/z1bWDSM7w58BdqVhcKFNmch0XEPLz42BnzmA5SizkjRhnaa/ke9pp5OzYNYAFiWDjZtHxGvT8KFYF3DAwsysZ6kCFo0BiY3Ikfj3kV8021pf339S+pEFNDcHriU/hC8O/E5Z5G8s5dTKfwA7kx8YqqDJrcCak3l/kF/mAJbqwD6Vc4CjyA/755EzSU4ip9uOR9LXyC+E65Bpp84FXiGnjt6qcblkp2h78gvp6eR76M/I0RtHAD/p4GNan7wO901km0WBvwMDyKnIj5LX4XpJ65IjIoeWc3qWHCl5XjvH+lK5/SOMHXl5M1m47L1yjAuAh8mRf0u2cYx/kDlf156Mx2dmZj3LVeTnhB3IlDQdHtWrLGy5Djny+wqyE/ZRMvXFJZ16tjZJkcV8zyZTBO0laZ4SqGjs2HmodHLvRHbQnQ/sGBFrRsTjUxK46stKZ/Qt5GezFYBBZPDufWBvSauU7api2guTA49uiIjhyplJ1bobyFphSwKblmVPkB3d25A58P9BfhZ+gUyvSpWOpgsfptVMqq01OJssaH8C+f1qv4j4QkQ8O+3OePql8QssT6mbyXS3swAXSTpL0t6STifrKWxFBnnrg+meI6/tymTgf+BUnoNN3Epk5om7yu/jfV6pBZ++R36P35j8LHJ6We/Xx17OhUbMzHqWh4EPgbUl9YusHQA54+K+iBgh6S5gW0kLRMQrtfUw+QGL+cjRWxvWRpP8hgwIHEEGMyqnkXkgvxcRP6gWSjoA+GUHHtvNZBGsgyTNQo5s+VdtuvXErAmsVD1eSceSAZOvSPpKGaGGpM+QAYfHgE0iogqSIOm75bEcSn7YnJLtNwT2ITtn1omIT8ryU8mpwh1R1YJ4cCLbrA8cFhE/Kfcj4M/kh+g/kcUVqwBEP7IOyh6Sji55P+u2BV6oTU9enhyJcn1EfLm+ocZNwW30QO3cb2ljvZmZ9QDli3xjmpgxko4nBz7sLemeiHhVme9+slLIlFkZj5CDHT4FroyI+8p9NgPtFi+1LvMX4Hqyc3t74KeN11NSS2RNg2sad67WTZMznQ6UgSwnAauSqUdujIgPgA8knUGmfNpd0qMxrkbBguV2KRhvJLdKAONOcmDSjsApZVbrdyV9BCxDdqpeExFX1M8lGurKWJebZFsrLieLBD9MvkaOgXyN9DWbOvXnUNJM1ej8tt7z2lJL2TVa0i/IVG5nksXtAT4h0yduHRF3N+w7RtKN5ACvS6qsBtZlVi+3d8N49bBmiEx9XV3vKDNgXijrq88ibmu9nGdYmJn1IOWN9W4yd+3qAJLmIqdD3lk2q0YZbFTWV/UrhpHFpybX4TGuEBxlWvmL1Ka4li9lOwFvUTrtay4kp8VOlhJs+Ao5/XZX4BrgBUlvSbpaWYC6PT+pBWeqL3rHll/3rm13IBmMP7QefCjOJEeE7jIV2+9Zbr9fBSvK+bxKx2dYLFBuGwMLdc+SAZXqfoIcIQvwcBWsKOtGkbUwWoDP1A+irIGyLm0X2x7WuCAiRlRfABpU57pAG+vMzKybqRQJrTplGtYpIu4lC8huQRupayZHef87NCIOrQcroiGXt00bkSmffkzOPt1T0uKQgzIk7Vy2GRuQqP4uarMwHKzomHnImaYPRsQPI+KJ2rpzyWK+u5KzmCu3AqOAlauUm/UO1pLa5FlgHkkL1a7NqRGxJ/ClKljhUcPdZ3LaWtnuPuA7EXFZ6eQeW++gO857elKez9kknU/WLfijpDUpg7HbmfHSeIyq3Q0vQdwVyNTFGwFbRcSqEXG3UlPDvq9FxEERcf+ER7bK1M6AKW1mc+CZiPhfWTagDB48vtwCbdbw8WeR6YRnWJiZ9Tx3kiN3NgLuJWdPiHEBi0fIWRgbkSN4VgZmBW6rByAm4YOIeL6N5a8wrtYEwNJkCqA7GkeRlFGW99J26qA2RcRt5cP9huTsgc+RHek7AjtKOi0ijmlj17+1sewfZBHoVWrLqhRVWyhzazcaRY5Um9LtV5rI+bS1bGLmKLcfTGSbx9r4wPV6uX2kje2rdfM1LP8C0Mz4AYsnyJklu0hagBwxdifwyEQ6r94rt3NO5JzNzGwaqzo/q85nSXuQnaMfkQWXb659RjiNHB28t6S/RsSjHZllARARn5b7aYrMQe2OuO71IJnm6UjgYElPkgM61pT0XkSMnRVZ66xzYeYp00KOnl8CQFl0/pfkzIifSjqBnIG0p6T7qtkXZOqnLYDNgAtLULG5dMDOCPQv270a49e/UNnWba1nmKy2FhGjqk5bX7Mp1zhzQtIaZAq1ecl0w58jZ4z/ADhvSl7XyiCt8Qb91WZytNnxPbkzOvqqTnhuFicHb/4YQNJKZLaAg8jvoY9P5fGtF3DAwsys56kX3j6l3A6nfJAqgYJ7GFe3orq9owP38WE7y0cz/uy7WcrtW+1sP7HZAW0qnSm3lf/VaNC9yQ//R0v6fUQ8NKn7KV/w3q2dI2ReWRg3+2JSOrr9LEAr8E4b6zr6XFQzGyaW/3SC4uTkNZrUusZ0Tl8igw1jgyplKvTGwInkzJdqBs3bkn4K/KCNL1iDyu2nEzlnMzObxmqpEtYjO0+XIjs/B5ODHq6S9L2IeDEiXiipa04HdpP0WPls0eEOGHd6d69aoOpTSZeSs0K/Rta+GgocUQ9W2NQpQYPnJF0DHCvpRTLd09+Al8v1uE7SDcB25MyKi8nPjZeTRXyPkvR6RNxYPsvOTM74XRI4rvGzlwNMPcOUtDV3aE+52iyjxr/77cjvxXuRg9dWINvYUZKejIhbOxqAb8ukgky+thNXBk0sR6bPGz4Fz9dnycF270n6KnBwWXYDcHBkdgObzjkllJlZz/MoWbRv7ZKSaSNK/YraNncCi0hahI7Xr+iIKrAxdzvrh0ztHUTmVL4Q+E1Z1FhQvM37KVNF52D84EvViT84ItTe/6nY/kPyvbOtGQYdfS7eLrezT3SrqaQsCLc5mWN5vLQPEfFuRBxK1ij5DHAIGdg4iczL3Kg617fbWGdmZt1I0mfJkaetwDfIdJHLkgMCdgN+WNv8F8B/yvJNmQz1FA/KosGDGpfbxHV2Op9aoGoN4AByhuUA4GfAPBFxTlnva9QJap2gy5Ijr+cna1ZsHxF/rHXKnUQGCveStERZfhc5Cnxx4BJJJ0o6jExBehxZW+7aafZgpnNua71XCQ61lkD6Espi2BtJmpUchHVyRFwfEW9GxG3k95f5gMMkDaoC8N34EPo0ScuTn0WWjohhUxjcqVJUf4Esfj4Q2CgivhRZe6vZ13j654CFmVkPU74M3UWOZv8i+aXozobNqjoWm5IdEkMZVxC5Mz1NjmJZtXR8j1VGvqzdiffVVs2EynptLFuLnCn4cG1ZNZ13zQk3b1NHt68KVrd1Pm0tm5h/l9ulO7hfR21K1kRpq34FkF/CIuKJiPgZmaoA8m+vUXWu/25jnZmZTQMT6Yg7AFgYODoifl5e158lv+w/B3xF0nYAEfEROcNuXrJTdXBJOzNBB0AtrUnVYfc5Mqi9h9NiTJ6SC71eLHYRSXOVVEBT3MlZjrs2cCXZaXcH8JnI+iKfSmrxNepcknYnZ0P8k+xPWTiySPbYthkRDwM/JdOf7lSWfRgRPwFOIAeHHE+mZ9sVuBrYJCKemraPZvrjttY7qI1aExq/BlM/SWcCTwIXAbcDfyYDhQ9IaqrNwvgjcBOwJbBHB87BHd5Tobpetd+r57OFTKs8tsbVFBy3SlG9NHBIRCwfEXfV27fb2vTPAQszs56pmi1xQrm9s2H9Q8DHwDfJNEV/axw93xnKrI7fkTMsjmxYvR+ZcmKySPq8pG0bP9yUdUtQin8C97Sx+zeVdRaq7fuTo9QALqlt93MyLdJ5khZq435mlbTKVGx/ebk9vvriU7abn7wWHVEFndbo4H4dtS1ZHPDm+sLyBW6RNravZooMb2Ndda53tbHOzMymgVpH3NclHagsRDkE2IqsZ/Wnsn6JMoL7EmAx4Cqy06c6zrXAjWSAetuyrJ4rvDFQsaikQ8jOo++Tnw38fXISqk7Mkv5nCWU6oduB+4G7JG3KuIKxHepAK9dmODk6f8eI2DQinqw688osVnfqtKMjz3dt2xvJ2mtfoDzvkr5QbVbb5SzgNTKwN/azXkScTH6eWoNMyblyRBwQEZ90tGPPxue21jtI2g+4VtJi9eUN32W/QAYffgkcRtYyWJv87tlaBvip1ma+UW6/LmnBEvRo8/2pnfe2pdvb3toW42pmzVvaQPX3vzCZnvjDsl2HariU4/6KnH02f0T8vNxPS9W+O+sxWM/mGhZmZj1TFbBYnvxwfF99Zfkgfi/w+Ybtu8J3gU2AUyStS85oWJbsGLmFTDc0OZYhP2y+I+lu4Fnyi90S5Vj9gfMj4p9t7Hsf8Kikq4FPyKLkSwN/KB0uAETE45K+Tqa/eErS/5X7mZnsrNmA7Lg5aAq3/6uki4GvAv+WdB05HXynco5bT+ZzAVnw+jnGzWjodOWD9zbA7ZEF5epWBv4g6X7gv8AbZGqDL5HpRH7ccCyRfwdPRMTTXXXOZmY2oYYRwzMDF5DvPdeROZ1Hk+kK/yNpFvJ9dS/yPfpBYI2I+FfZv19EjCqHPoGcoXmEpFsj4o2yjWqdOXMAGwP7luM9AKwZEfd3/SPv/WodZ98iU/98QBYM/ZTstL4aOAK4dAo7PB+JiF2qX+p/KzZxtb/xgRHR1kCNCbaNiPclfVCu6+lkGqdjKak3Na449huSTiEHx+wm6aHIQszNkYW4/1UduzZS3NdtKrit9RpbkkHya8jvQgBIWhi4m/yu+SZZA+b4iHi3rO9Hzm45Bvha7T2xOSL+J+kn5ACyA8h6MBPUsWh4b5uLfG87jJz1dDDwQhc83ulSGdT3Z/K78OWSLoqIfwMzlU1emIrDX1pdvxKoGN0VgzOtZ3PAwsysZ3qcLNA3JxPWr6jcxTQIWETE68op0GcCW5DT2x8kO9o3ZvIDFleSaZ+2IAukbUbmo3yHDHxcUg8+NDiMnIGxH7AQ8DqZyuK0Ns73V5IeIb+QrE922H8IvER2wl86NdsD+5OpsvYnPzS/AvyInIky2QGL8qXql8AZklbvoo6fNckZE9e3se4B4AyyBsoXgFnJoMVtwFkRcV/D9uuTz/1hXXCeZmY2EWWgwvxk0ck3yJGmx5GB+9fLLMGXgC8DM5DBio+BvSPisobDrSPp/oj4NCIeknQyGYx+o3Z/IWkA+T6yGznStb3j2USUTrb9yffP64ArgDtK5/aiZOfcAZKejYh71MGCsbVOnaqj3B2ok6kMxvgBMFDS0e183p5ALXhxnaTrgS9JOjgytWZ95P7FZNvZjZxB/LvG61M6UF1QuxO4rfVMJeg9LCI+LYsOJYMRf2jYdBQZXNqarJe3eUS8K6l/RIwkv/ttRc5auigi/lVmWFTBp++Sbe0QSTdFxL21c6hm34Sy/tLawO7AzuR7248j4oVOf/DTt3fJ2Zb7kIGib0o6H1iUfE4/nMi+E9XQ1hyo6KPkWWtmZtZTSbqE7HRZdHr8EClpdnJk0TURsX8XHP8M4NvAfPWOqCk81hXkiKjFy8hAMzObRkqnzLvkSMbngEcjYteGbX4HbE923pwEnNLYGSfpe8CewF4R8Y+J3N/iZbt9yGKmZ0XEdzvvEfUdkuYm02iNAb4RES+W5ZuRAx6WK+suBA6LiBH1UcDWdSStCdwL/DciVujgvs0lkLgS8Deyfa4REW81zIjahqwj9o2I+GknPwSrcVvreSR9hZxJsTvw2/pzXd7XtgBuqnVQ7wOcTaazXRd4LrKIdtXeDgB+Afw5Ir5YO1ZLCUwdRl7rbSLixsbrK2llMhXb/sAcwKkRUaVgtg6onltlmuT1yVmYnycHTUCmzrsjIt7r6DE7/2ytN3KONjMzs25SPsCdRhY8XbgL7mJb4J+dEKxYihyBdIqDFWZmXUe1QqK1ZS2l8/N4MmCxADkzEWWh1yqH9y+AYeRsxh/UgxWSFi8zKQ4mO2ifaLiPxnzuGwKHA48CCzlYMXFqoz5XJSLeAs6MiG0j4kVJQ0qKy5vJTrlDgf+QwaYvtHechvtT7ecWZW0va0djm6r5F1kXbjll2tPJrm1QOk8VEY+SKdoWBo4uq1tr2/2JHOzhYEUncFvrdUaSM+MPJIPfwNhgxa1kSqHP17a/nMwiMDewTglWtFDaVERcQAYIt5a0Q+1YY8r6c4DZI+LG8nuV/mlhSV8jZz0dW44xv4MVU6420+yTiPhLRGxPznCpBkNcDvxN0n6S5qn2Uxu1eqp2Vrtei0labWLt3aZ/DliYmZl1r58Ap5DpljpVRCwTEWt1wqEWIEfr/qwTjmVmZm2opRlpVRYA3UjSYlU6hIg4F3iErLM0uOw2Ni1JRNwBnFvWPyrp25LWkvQdMo/+t8l6Syc3Bp9rnQRV59ytwLoRsXVEvNqFD7tX07jaA1Xx0S9K2kTSimXUaeWesn45svj5lmSqzX1LGqGfkaN9d5M0Txm1OsF39TY6dVYiA0tbTaRTvs+qPV+tDdejXn/gqrJog7JtR0b3Vu3lNOB5cgDK58r1G9spFxHPtxWMtMnntta71N5LbidnvawH7FB1QJe2V32v2E3SrGX5KOA8MqXQ98uy6ppXber7ZN2m7yjTRY1NzVWCiB/UO7olrQCcU+4vyPe2HUqAyzpB7drcAcxFBi1+AcxIBnTvl3R6uRbNDfuOV1dE0s7AZcBPyXqe1kf5hdbMzKwbRcTwiPh+RPytu8+lPRFxR0ScHJk/1szMOlGtI65V0iySLgIeA/4PeEbSkZIWLJsfUW6/Kmlw2afeEXommepiTrJO0b1k3u9lgUMj4ssRMbbIaaPaiMmXIuKxzn2kvZektZUFWscbrV9LY7KzpBeA35PBnkeA6yXNW9+O7DxdDziVnLX4aFk+sNyuSqYrqe8zVq1TZ0FlapQLyOu8POPXTjDGe76OBh6rjchWrZPzQeAjYBll3ZaOHL9KVfMu8EOyHtj3yroxjdu2dU1tfG5r04cSCOoXWbfierJ23mHA0rVtriXTpX2FrL9ULb+d7LBeUNKxZXFTLTh/O5lm6nNkge36e1d1W6978AkwG7BfRHw2Iv7e2Y+3r6tmnJEBigWBJyPicOAz5DV6A/gOGcSYG8YPCkoaJGlT4CzgEmAJ4IcR8cg0fijWg7iGhZmZmZmZWTcrX94vBjYH/gq8T+b3XoAMRJwamXP9OjLl36ER8bP66MTasRYmOwpayNGMf66PUm3sTLX2STqKHEF/XET8oLa8iRwAeBTZSf0PMsj0INkBtw852vs7EfGIsiDwfeSMyqWjltdb0rfJ1IurkCP1N4lSu6th9OksZLqurwJfBB4HvhkRf+2qx9/bSdqAbE8A7wHbAPfHuBoTy5AdqrMDi0XE0Lba1ESOX78+JwEXeFbSlHFbmz40vsdIGkgG0s8kO6yPi4ihZd3KwD/Ja7pvRDxbli8L/IlMtTZfRLxdjeIvneNLAjsAp02srXakLdvUkzQ/8BJwRkQcU1s+N9kWJxigJ2kVsh3vR74O/yAiTppGp2w9mPOBmZmZmZmZdZMyqvAA4O9kLu/jgSsj4hNJK5JBjIPIWRfXkmlJtgUOlvSXiHhOJZ1UdczIYrMvNtxPc0SMcbCiw24Avg68XX+ey+j6hYGvkR1uh1WzUiQ9RubMPxz4hqSjSofbf4DFgdWAm0vakm2A44Ajgf7AyKoDtdxPlO1WB3YB9iLzuR8cEed3/cPvHRrbQCUi7pL0JNnhPQa4AvgWcF1Z/6Skx4HtyI7p33TkfquUQmUGxQkTOxebJLe16UAtGLgDOSvwTTJ49B6wBzmr4s6y7SOSzivb7Qz8oCx/QtIvyVktZwF75+JoLUGIZ8jZMxNtbw5WTHPVDKQR9YWR6bfegnHXS9IiZC2Z/YEVgd+RAzHenqZnbD2WAxZmZmZmZmbdoMyqWJcsAjsfcEdkUVEAIuKxkhLj/8g83/+IiBcknUXWpDiIHFU80c7RhhQ41gGl42zVdjpRdiOv2461DtTlga3IawrwROlAFdkh+2XgHEnXk2lKNiULAd8WEc833oGkxcmRxAcAi5B52I+IzPVuRekA6x8lfWV5vqs0Mn8gR+9uSI7aPlPSh5F1XwCuJAMWa0n6fXQwBWaMX+BeDlZMGbe13q8894PIFGkHkTUsngFeINN0zQscKOnxiHin7PZDMlixh6TbIuKfZfmvyeu7p6RfV6Pz60EIt7cep/qc8Xh7G5TX6iXJdJW7AA+TBdb/0d4+1je5hoWZmZmZmVk3KB0vvyALVa4NVGkyWmrb3EQWj/0i4/J8fxd4m+zgWbfs0+53O48ynTqlE3QjSfdI2hLGFhldiKx/8Lyk2STtC/wSOB14ClgyIs4qxwjgRuAYsjP0m+Ro4/8CO7fVgVpsBZwCPAcsFRGHugN1vKK+1e9fA/4u6YvVolqQ7mGyEOyCZIf0UOAKSauU4zwBvAIsA3SojkXjebitTR23td6tPPdLkQGmW8jZKd+OiMOAL5FpvHYCNte4+k1vkM/7UuR7Wr+y/D2ylsWHZKqg9u7Peo5NyMLmz05iu0/LdvtExOccrLC2OGBhZmZmZmbWTUpnzS/IL+9LSJonIkY3BCBOBoYDu0taoXTSHAUMIVOhtFk41jrVQmRQaXtlwfMxwEhgMHAo8HOyMO88wDYRsXktH/ucygK0wyLiPDL9xdbAuhHxxYh4sTHgVOsIvwHYKCI2jYj/TYsH2pMpNTWMsp6bLNL6WeBnkpZqaA9PkUVft48s4nowGbS4DNiY7KB+kexsm6Dg88RU5yFpHklzTuXDs+S21rt9BZiZrOfyNEC5Jk8AJ5E1Dg4nA4iVi4H7y75bVgsj4mJgroj44zQ6d5s6P42I5phEseyIeDUido+IS6bNaVlv5ICFmZmZmZlZ97qJrE+xKpm2ZrwAROno+RGwBiX9Sfmifz5Z88K63mVkaq6dyBoikHUQRpM1Eb4IHBkRi0fEjdVOZbbM78n8+1UKk2ci4o6IeLgsa24MOFUd4RHxYrRRqLSvitQqaRlJvyrL3oqII4HzgPmBSyStX9vnceBpYBVJc0TE38nrODfZ+T0EuLlsvnPZp90AYH1WhaSZJG1Bpq+5pMwGsKnjtta7zVRuX4Ox12V0WXY78Gfgc2RAaiBARIwgC6oPIWuRDK4OVgL4ble9QES8CuPPEjWbUg5YmJmZmZmZdaOIGAqcQ86y2KPkUm8c5X0O2QH0LUlrl/0Ojoj/NKalsc5XOjVPJvOz7yFpPuBRsmO1BTg2Is6p7yNpFbLI8+eA92vHaTy264t0gKRTyPQ++0r6Zm3V8WTdgc8CZ0lap7buN2X57AClA/sQsvjyteSob4DlJc3Wzv2q7BuSmiStWu7zCnKmxv2+llPPba37SZqx3E5Jx/P75fYLkAGH0mYUEcPIFIiQxZaXrXaKiNuAHwNnRcRH9QP6uvUuETF60luZTZwDFmZmZmZmZt3vfuBXwBbAF6piorVO0vfI2hU/KCPEgQxqOI/3tBFZDPYXZPHeHSOLxl5A5lg/WtLBJTXQkpIOIYNMWwDnAtd3z1lPl+Yqtx8Cp1ajsSPiQ+A0stNzNeBCSfOWbf9L5k3fvXac3wNfJ1MQnQaMABYH+rV1p7X0T4sD3yBnAnyLrJcwJCK+30mPr89zW5v2NM5pwIOSBnWk47kWYP8tMAzYVNJSZV0zUM2SeIwMaiwFHNQwm+LIiLgZM+vz5M+2ZmZmZmZm3a90hN4CfAAcEBEPlsCFv7T1EJIWAB4C3gJ2jYjHJO1Mjuyfjbx2ItOivAwcFhE3dNPp9koT+5svnaInAvuSaZ42IHPlH1TfT9JvyPROt5L1Xp4D/kHWqtilBDeqY24GXEPWSABYNSIeauO+5yLrXOxHzqi4D/j6pPK125RxW+sekm4HNgK+EhHXTcH+A4GfkDMozo0suF1ffwxZR+YZYH1g+Yj4b2293/PMzAELMzMzMzOznqDMpjiYHCF+HnB8SRc1wXbu0Ok+kg4HziZHdX87IsZIWgbYClgEGAU8FhGX1vZpmlhdBEulxkCb6V+qv3tJ+wJnkIGI48nivStGxOOSBkbE8NLZfQLwVTKwsA05Q2l3YOOIeKrh2N8kr98lEfHbNu57qXKfmwEfAUdExFWd86itPW5r007V9krbWSUi/lRb16HnVNLSZAqvRYHvkzVeRpHt5wjgSuBvwEelRpOZ2XgcsDAzMzMzM+shJM1JduR8CnwhIt7o5lOyBpIGAX8H5gH2iYi/NKwf27knqcX5vDumzKI4BfgrcEfpRK0/p0sDTwBbkzUpLgPujIiNy/oqsLEAcCxwIHAXmVLoSmDziLitpKmpinj3i4hRtXMYLyhYrvnrwPkRcXSXPwkGuK11lYkFBmvbLARsFRG/mML72IBsb/MB7wEfA/OTbXf7iHimbOcAk5lNwAELMzMzMzOzHkTS0o0jwK1nkbQN8EfgBrIj9b2Gosxjf+7G0+x1SifnrWRx5deAiyLi+IZtliMDEFcAhwP3AGuRnaB/qAcfSvDjT8CWZAqaJYHLI2Kvdu5/go7cqiO85PQf1okP1yaD21rXkTR/RLzaRsCuH1nofBlgo4i4a3KCHG0cfylgV7Lg/SzAXyLi9E58CGY2nXLAwszMzMzMrAfyiOGeTdLdZMHmjSLi+e4+n96mrdRmkhYD/keOxn6PrE/wR+DYiHiztt0zZCqgr0j6MnAt8FJELFIdG2gqszOWBb4DVEGKJ4DPR8TLXfoArdO4rXWe0jYWBu4g29ia1fuMpO2AZyLi35L2Bi4Cbo+Izap9pzQwJGlARIwoP/u9zcwmqqm7T8DMzMzMzMwm5A6dHm+HiFjEHagdU1IxVaPj+9WWt0TEc8DpwMzAU8BZwD7AFZJWqB3mAWDlcpzryKLZC0mq0jU1VaPBS478E4Aby7rvOVjR67itTQVJn5O0JoydifIhWdD8s8AGZf2jwNXAhmW7S4BbgE1K8AKmog8xIkZIaipBD7+3mdlEeYaFmZmZmZmZ2RTyaOHJ00ZdiDOAGYBTIuLNKpd9CWi8DswJrEuOrP858AFwQKk/cTYZyNgsIh6QtAqZJmoQMF9EvN2YwkbSQGCEUwf1Xm5rHSdpReAR4F6yvQwvy5cjAxIzAoOBx4BfkTOaXittcW1yJsYLwGoR8bFrTpjZtOAZFmZmZmZmZmZTyB2oE6fUVAUKJO0i6RXg28AYoBWgdJC2lCDDkWX3EyLiKmA7YBRwjaR9gLvJTtbhZd+HgZ8CzcAZZd/GwMSIMqujpaseq3Utt7WOi4jHgJuAdYA9a6u2AOYl29GdZK2Jn0fEK1VAIiL+DlwMLEWmVYMJ21WbqtoiZmZTwgELMzMzMzMzM+sSkVolrSTpH8CVZB2JXYAfRMTbtW1Hl9vLgfuBzSTtGxF3Al8iU0FdCHwDELBa7a5+XI67t6R1G0eBVwETd3pbX1GlXwO+WW6/Jmmh8nMrmSbtf2RqqPdLQK+pYd8fkDOeDpa0TNmmWteuWoByjipIWB3bzGxS/GJhZmZmZmZmZl1CUouk84GHgdmBQ4FDIuLqKlhRjcYuszGqGRBVJ+t3JA0ptSj2IetabAR8SgYtKDM43iZT2gDMMQ0emlmPVorON0fEM8C5wErAQWXdOcCOZKBvMBmYoDa7YkxpV6+UbWYFjqvWtXV/9VkVkmaWtDXwI+CQ+rHNzCbFNSzMzMzMzMzMrEtImhO4nExBc0xEnN7GNrNFxPu136t6FpcBuwNnRMTRtfUHAm8Df42I9+v1MST1i4hRXfywzHqsev2WWlsaSM6UGA58MSL+VdbPRwb6tgQ2jIi7G49Tgoj3AcsDX4qImxruo97+moFVyWDIvkALcGBEXDltHr2ZTQ8csDAzMzMzMzOzLiNpPeBPwF+Bg4GPyQ7S9cjZEh8Dfwd+W4poVx2lcwOvAZ8A65V8/GM7Ydu4H1V1Kpz6yfo6ScsDT1UBPEkHAL8ALouIvWvbbU+mWnsE2BQYUw9AlLb4FeAa4IGIWL2d+1sK2AY4EFiCDIQcHhGfds0jNLPplQMWZmZmZmZmZjZF6iOtJ7LNIOBUMlhxCjCETO/0MfAumW5mCBmc+Apwf63D9Jiyz1URsWsXPQyz6YakmYHfAKsA25Si9NW6R4FlgZ0i4rqybBDwE2A/YN+IuLgsnxtYLCLuK7+fSLbDJxvubwgZ6NgfWB/4G/C1iPhvVz5OM5t+OWBhZmZmZmZmZh3SkAZmAJkC5qaIeLutGRCSliVnWSwGDAPOBs4BgqxHcQaZX/+vwNcj4vnavi8AC5HpaG6YnCCJWV9V0j99AzgZOB34YUR8XNZtQLaxO4Av15avC/wa6A98HegHfBnYhAw+3Fg7fpVmSsDqwLeBrYG3gMMi4g/T5IGa2XTLRbfNzMzMzMzMrENqwYodyY7Ki4Edyrq2iuv+jyze+xSwZUQcHxHvAR9ExAiymPbVwGbAiuXYA8q+R5TbE0pnqYMVZu2IiOHAtcDd5KyJVWvr7gKuAzYGvlpbfg9wHlmw/kayLe4C/LIhWKFa+24BVga2Ak6NiIUcrDCzzuAZFmZmZmZmZmbWIZIGk52hJwLN5IDI+4H9I+LpdmZZzAcsQ9arGBENHRK1HPu/iIivN8ziOIfMvf9Q1z4ys95D0r7AAOBXETGqVsdFZADxYrL2xHcj4o2yz4LAi8CTZMqoZ8vyGYC1yADEB8BPI+L9sk6N7bUsnw/4KCKGdvFDNbM+xDMszMzMzMzMzKyj1geOBYYC25MFdtcjR2W3OcsiIl6LiDsiYni981NS//LjO/Xb0vHaXH4+LCIekuR+DDNA0tLAMcD3gaVgbJupggt3Ab8jAxfrlyAGEfEyWVNmGeCA2iGHRcTtwFERcXJEvC+pub1gRTnWaw5WmFln8xu9mZmZmZmZmXXUUOByYK2I+AsZsHgd2FXSOpC57tvaseo4rdZHxMiy6svl9v5q23r6p4Z0NGZ9gqSWht+rdvMU8ENgBuCgMkNirIh4k2yjH5KzoZaorfse8CpwsKRNGvYbXd1PRIxpL1hhZtZVHLAwMzMzMzMzsw6JiDuBkyLixbLoCeBcYElgD0kDaoV5G/eNevBB0hKSziQLd18eEX9u5z7dcWp9Ri0wUQUQVpU0qGGzvwC3kPUo1ijbRy1Y+GhZvxHw+Yb9v08GO2at9qsf2MFBM+suDliYmZmZmZmZWYdV+e3Lz6OBK4AHyRRRW09i9wGSFpd0JPBz4FvAbWQnqlmfVwvo7SzpGeB2so18q7bNC2S7GwEcLmmOat8yQ+Jd4DWyzsyOwPK1fX8FzBUR106bR2RmNnkcsDAzMzMzMzOzqRYRrwJnA7MDe0map2G0d93ZwH+BE4DFgf0i4gtVAWCzvkZF9XO53ZmcufQecCewLHB6KVBf+StwNRkk/IKkfjDeDIlW4AFgHWA/STNVO0bEu1Wdiq58bGZmHSHPqDQzMzMzMzOzziBpFuBiYBvg8Ij4aTvbrQnsBDwMXFnVqpDUXK9bYdYXSGqppX5qjogxkgYAdwMvAcdGxNOS1gJ+CiwMfAG4vwQFNwR+AYwCDo2IO0vgYlvgQuAUYAXgpoj47TR+eGZmHeKAhZmZmZmZmZl1Gknrkbn1/wvsEhHPSvoMsGJEXFXbrl9EjCo/O1BhfZ6kr5O1KB4CXgH2BA4oBbSrbfYggxY3AV+LiPck9ScLa58FfETOuBgMrE/Wl9klIoZOy8diZjalHLAwMzMzMzMzs04jaQbgJOBI4BzgSWBvYE3g8xFxS21bgQtqW99TakxUdSqWBX4LrAiMBlqAYcBQ4DMldVO/iBglaW7gNGAvYGfgujIjY6ay7ExAwEDgRuDgiHip8T7NzHoqByzMzMzMzMzMbKpJUhV4kLQ8OQJ8DmAA2fF6fESc031naNazSFoM6Ad8GdgBuICsSbEX8FVgDLB7RNzVsN+mZKqn14EdIuKVhmMuCnwQEQ+WZQ5UmFmv4aLbZmZmZmZmZn2QpObOPF4tWLEGcAAwHxms+BkwTxWscIFfs7Ht5H/AD8jZSBdExC8j4mlylsS5ZBvaTNLMZZ+qzd4LXE6mj9peUktZr4h4LiJurwUrmh2sMLPexDMszMzMzMzMzPqQEjBoqhW6XgT4BPg0Ij6pz5SYguOuBVwGLAbcARwSEU+W9S3AGKd/MgNJQ4BLgC2AZ4DlS8qnlogYLWkpspD2ksAeEXFn2a8pIlolrVzWrwCsGRH/7oaHYWbW6TzDwszMzMzMzKyPqIIRJef9EpKuAW4H7gfuKqlmxo7W7sixSyBiOPAvYMeI2DQinpTUVDpZRztYYdObKZ0xVApp/xD4kJxJsXS1qtz+j0wRNTuwZwlw1Pd/BLgGuBt4a0rOwcysJ3LAwszMzMzMzKyPiIgoAYTvAA+ThbCfBh4C5gGuBnattp2Cu3gkInaJiN/DuHQ0Tklj06taKrSBU7D7/eSMpBmBzcrxxtRqTtwJ/B7YEVivBBxba6mhfh4RW5bgh5nZdMEBCzMzMzMzM7M+QlI/4CDgMOA6YF9gm4j4CrAe0AwcIGndsn2H+g2qwES1X5V2ymx6pXQqcKqkAR3ZNyI+Bn4NvAbsIGnFhvVvAJcC7wEHAkuV5WPK7bByDp1aj8bMrDs5YGFmZmZmZmbWd8wGbEWmbTouIm4p+fI3A24ABgOrA7tJGlBGc3c45Y1nVFgfsgZwFLBZRIyYgv2fIAtsrwlsJ2lgwyyKB4A/AJsAC7Z1AAcGzWx64qLbZmZmZmZmZtORqmjvRNavHxF3l5+HkJ2lO5BpoS4G9gfmBw6MiD9Mqgh3fX0prN0UESM77xGZdb9amqbG5c3AfcDngPUj4p6OFq6XtCAZlJgd2D8i7mhYvyTQEhFPTNWDMDPrBTzDwszMzMzMzGw6UEvDNLr8/kVJm0haUdKMtU3vKeuXA64CtgTOBPaNiJ8BPwPmIGdZzFPVvWjj/lTurwpWrAQcDmzV0VRSZj1V7e+8taEdVTVaxpDtCGCDsm1HRwe/ApwNLAxsL2nOcvyqTT8TEU+U+jNTVOTbzKy38AcIMzMzMzMzs15E0tqS5io/j/1eX6sfsbOkF8hivbcCjwDXS5q3vh0ZqFgPOBU4JSIeLcur4sGrAl9p2GesWqBiQUkHABcAZwDLA+5UtelC7e/8aOAxSTuU31VLxfQg8BGwTEfrWNTu42bgj2SNmU3K8taG7VqnIBhiZtarOGBhZmZmZmZm1ktIOoqcIXEAjF/kWlKLpGPJtE7PAceQHZ8/B9YBLpW0ctm+H7AL8D5wQUQMrd3NQOBhMl/+EZIWqd2/aj/PImlb4DzgF8AgYJOIOMU59W16ImkD4AfAosD5ktZi/D61N8r/LYB+ZZ8OBe0i4n1ydtNlZKDRzKxPaunuEzAzMzMzMzOzyXYD8HXg7XpO/ZKuZmHga8A/gcMi4jEASY8BI8h0Td+QdFREvC3pP8DiwGrAzaX+xDbAccCRQH9gZES8UN15SQ/VQhbm3gXYC2gFDo6I87v+4Zt1nfbqVETEXZKeJIMUY4ArgG8B15X1T0p6HNgO+CLwmyk8hb9W9Ss6WgfDzGx64YCFmZmZmZmZWS9R8tivGhFvt7F6N2A+YMdasGJ5YCtg+7LNEyVYITL48WXgHEnXA7MBmwL/AW6LiOcb70DS4mSB7gOARcgR4UdExKjOe5Rm3aME/vpXReNLO2kqM4b+AOwHbAj8CThT0oe1AtlXkgGLtST9fkoKz9fST7UZODEz6wucEsrMzMzMzMysFykBh40k3SNpS8jiv8BCZB795yXNJmlf4JfA6cBTwJIRcVY5RgA3kmmjFgG+CewB/BfYua1gRbEVcAqZcmqpiDjUwQrrrRrTNkn6GvB3SV+sFtXSmz0MzEWmStsBGApcIWmVcpwnyOLZywAdqmPReB4OVphZX+aAhZmZmZmZmVnvsxCwNrC9pMGlU3UkMBg4lKxbcQEwD7BNRGweEc8CSJpTUr+IGBYR5wErAlsD60bEFyPixXox77JP1aF6A7BRRGwaEf+bFg/UrLMpNdVTLkmaG1gC+CzwM0lLNQQOniLrVGwfEY8AB5NBi8uAjckg3otk3Zi5yjEnq9+tNrNiHklzTuXDMzPr1RywMDMzMzMzM+t9LgP+D9gJ2LYsuw4YTebW/yJwZEQsHhE3VjuV+hO/J2tdVHnyn4mIOyLi4bKsuXGEd9WhGhEvRsTfuvahmXWtSK2SlpH0q7LsrYg4kiwiPz9wiaT1a/s8DjwNrCJpjoj4O9n+5iYDhEOAm8vmO5d92p0p0VDAfiZJWwC/Lvfb3IkP18ysV3HAwszMzMzMzKyXKQGEk4FBwB6S5gMeJYMYLcCxEXFOfR9Jq5DFgj8HvF87TuOxxzQuM5veSDqFTIG2r6Rv1lYdT9Zm+SxwlqR1aut+U5bPDlCCfIeQBeqvBV4q2y0vabZ27ldl35DUJGnVcp9XkDM17ncbNLO+zAELMzMzMzMzs14oIv4J/IIslL1jRLxDpoH6EDha0sElxcySkg4BzgG2AM4Fru+eszbrMeYqtx8Cp0oaDBARHwKnAT8GVgMulDRv2fa/wKfA7rXj/B74Opmm7TRgBLA40K+tO62lf1oc+AY5W+pbZE2ZIRHx/U56fGZmvZLaGExhZmZmZmZmZr2ApAWAh4C3gF0j4jFJO5MjxGcDPgAEzAS8DBwWETd00+maTTMl3VmbnV6ltsSJwL5kmqcNgAsi4qD6fpJ+Q6Z3uhU4iqxT8Q+yVsUuJbhRHXMz4BqyjgzAqhHxUBv3PRdZ52I/ckbFfcDXS10MM7M+zzMszMzMzMzMzHqpiHiFHNX9GWDvUn/iKmAdctT2FcBFwH4RsVgVrJjcYsBmvVFpB+0FK1RqS7wIDCDbyMvAAZKWL6maBpbNv0PWldgE+CnQDPwZWIksaD9WRNwKnEAGN3ZrJ1ixFDkL6kKyze4aEWs7WGFmNo5nWJiZmZmZmZn1YpIGAX8nO1D3iYi/NKxvqor/SmqJiNHdcJpm01QJyp0C/BW4IyLGNLSFpYEngK3JmhSXAXdGxMZlvUrwYgHgWOBA4C4y4HAlsHlE3FYKZFdFvPtFxKjaOYw3y6O01deB8yPi6C5/EszMeiGPqDAzMzMzMzPrxSJiGFm0dwhwoKTZITtLq9HktZ8drLDpnqQNgOHAd4GLyZkPVMGKogV4D9icDED8A9hQ0na19dUspoOBv5Cpo04s6/co68dUx62CFSWIQUOwoqW01XkdrDAza58DFmZmZmZmZma9XET8CbgHWBmYpSyLqsO0/rPZ9ESS2lj8Mhlw+BgYBXxN0oWShlQbRMR/gPeBBUvb+GFZ9aOyflSJ8zWXgMS3gEuBJct2q0pasK1ziogxbSwbXW6HTcHDNDPrMxywMDMzMzMzM5s+7BARi0TE8919ImZdrT6LQVK/2vKWiHgOOB2YGXgKOAvYB7hC0gq1wzxABvmIiOvIotkLSapmQDRVwYeIeIKcqXFjWfe9iHi5ix6emVmf5RoWZmZmZmZmZtMR16mw6VkbdSHOAGYATomIN6s6FSWg8TowJ7AusBDwc+AD4IBSf+JsMpCxWUQ8IGkVsk7FIGC+iHi7zLAYU7u/gcAIz1gyM+sanmFhZmZmZmZmNh1xsMKmRyU9U1MVKJC0i6RXgG8DY4CqjkRrCdqNAY4su58QEVcB25Epoq6RtA9wNzCYrHdBRDwM/BRoBs4o+zYGJkaUWR0tXfVYzcz6Ms+wMDMzMzMzMzOzXkHSSsAvgDWA24ELgTsi4u12tr8PWB3YPyJ+LWlZ4FxgE+CvwEbAvhFxcdl+LuBOYFlg/Yi4p2sfkZmZ1XmGhZmZmZmZmZmZ9WiSWiSdDzwMzA4cChwSEVdXwYqqAHeZjVHNgPhmuf2OpCGlFsU+ZF2LjYBPgWq/pnKsX5V95pgGD83MzGo8w8LMzMzMzMzMzHo0SXMClwNbAMdExOltbDNbRLxf+72qZ3EZsDtwRkQcXVt/IPA28NeIeL9eH0NSv4gY1cUPy8zMGjhgYWZmZmZmZmZmPZ6k9YA/kamcDgY+BrYE1iNnS3wM/B34bSmi3RwRYyTNDbwGfAKsFxGPleM1RURrG/ejqk6Fa8KYmU1bDliYmZmZmZmZmVm3qoILk9hmEHAqGaw4BRhCpnf6GHgXmLUsew34CnB/bcbEMWWfqyJi1y56GGZmNpUcsDAzMzMzMzMzs27RkIZpALAjcFNEvN3WDIhSNPtPwGLAMOBs4BwgyHoUZwAHkbMwvh4Rz9f2fQFYCPhSRNwwOUESMzObtlx028zMzMzMzMzMukUtWLEj8BZwMbBDWTdBuibgf8CPgaeALSPi+Ih4D/ggIkaQxbSvBjYDVizHHlD2PaLcnlCCIQ5WmJn1MA5YmJmZmZmZmZlZt5A0WNIRwIVACzAK2EnSUmX9eH1XpRD2dWRaqPslqSyPcvsqcC/Z57VF2W1kWfcH4Fxg/3aCIWZm1s0csDAzMzMzMzMzs+6yPnAsMBTYHvgVWUR7F2h7lkVEvBYRd0TE8KjlOpfUv/z4Tv22FNBuLj8fFhEPNQZCzMysZ/CLs5mZmZmZmZmZdZehwOXAWhHxFzJg8Tqwq6R1YMJZFpVqdkW1PiJGllVfLrf3V9vW0z+VuhmeYWFm1gM5YGFmZmZmZmZmZt0iIu4EToqIF8uiJ8i0TUsCe0gaEBGtVXCiYd+oBx8kLSHpTLJw9+UR8ed27jPaWm5mZt1Pfo02MzMzMzMzM7OeQtL8wPXAosCBEXFtCUxM0IklaSAwP/AlsmbFpsBfgG9ExLPT7KTNzKxTeIaFmZmZmZmZmZn1GKVw9tnA7MBekuYpsyna6sc6G/gvcAKwOLBfRHzBwQozs96ppbtPwMzMzMzMzMzMrMFfyFkW25DFuH/aTt2Jy4GRwMPAlVWtCknN9boVZmbWOzgllJmZmZmZmZmZ9TiS1iMDF/8FdomIZyV9BlgxIq6qbdcvIkaVnx2oMDPrxTzDwszMzMzMzMzMeqIHgfOBI4GDJT0J7A2sKem9iLgFICJGVUW5HawwM+vdPMPCzMzMzMzMzMx6jHqBbUnLAzcBcwADgKHA8RFxTvedoZmZdRXPsDAzMzMzMzMzsynW2WmYasGKNYDdgPnKqp8BR0XEp2X92MCGmZlNHxywMDMzMzMzMzOzDitpmJpqha4XAT4BPo2IT6Y0oFCOuxZwGbAYcAdwSEQ8Wda3AGMcrDAzm/40dfcJmJmZmZmZmZlZ71IFIyJijKQlJF0D3A7cD9wlaVPKQNmqvsTkKoGI4cC/gB0jYtOIeFJSk6SmiBjtYIWZ2fTJNSzMzMzMzMzMzKzDJDUB3wKOAz4AHgc+BdYABgFHRMSlU3rsiGit/d6paafMzKxnckooMzMzMzMzMzPrEEn9gP2Bw4DrgCuAOyJitKRFgYeBAyQ9GxH3NAYgJqXattrPwQozs77BKaHMzMzMzMzMzKyjZgO2ItM2HRcRt5RgxWbADcBgYHVgN0kDIqK1o6mhYFzgwszM+gYHLMzMzMzMzMzMbAKluHWbIuIt4MyI2DYiXpQ0RNLVwM3ACOBQ4D/A9sAXJvP+VPu5RVL/qXoAZmbW6zgllJmZmZmZmZmZjVVLwzS6/P5F4BPgbeDZiPikbHpPWb8c8FPgc8CZwG8j4lFJI4FfkrMs/h4Rb7SVGqpWwDvK7ysBmwPPSLrBsyzMzPoOz7AwMzMzMzMzM+uDJK0taa7y89g+olr9iJ0lvQD8HrgVeAS4XtK89e2ALYH1gFOBUyLi0bJ8YLldFfhKwz5j1QIVC0o6ALgAOANYHuhwGikzM+u9HLAwMzMzMzMzM+tjJB1FzpA4AMYvcl3SMR0LXAw8BxwDbAL8HFgHuFTSymX7fsAuwPvABRExtHY3A8ni2wsCR0hapHb/9fRPs0jaFjgP+AUwCNgkIk5xsW0zs77FKaHMzMzMzMzMzPqeG4CvA2/X0zSV4tgLA18D/gkcFhGPAUh6jKxPcTjwDUlHRcTbkv4DLA6sBtxcal9sAxwHHAn0B0ZGxAvVnUdElO1WJwMeewGtwMERcX7XP3wzM+uJHLAwMzMzMzMzM+tjIuIJSatGxNttrN4NmA/YsRasWB7YiiyiDfBECVaIDH58GThH0vXAbMCmZNHt2yLi+cY7kLQ4sAM5w2MR4GfAERExqvMepZmZ9TZOCWVmZmZmZmZm1geVgMNGku6RtCWApGZgIeAj4HlJs0nalyyefTrwFLBkRJxVjhHAjWTaqEWAbwJ7AP8Fdm4rWFFsBZxCppxaKiIOdbDCzMw8w8LMzMzMzMzMrO9aCFgb2F7SvRHxkaSRwGDgUGBRYEfgBWCbiLix2lHSnMCHETEMOE/STWS9ivcj4uGyzdh0U+V3lSDHDcAjEfG3afIozcysV1C+R5iZmZmZmZmZWV9TUjr9CdgQ+FpEXC5pE+AvZZNRwLERcU7Dfi3AbcAfIuLcWiCivk2zi2abmVlHOCWUmZmZmZmZmVkfVYIMJwODgD0kzQc8CvwfmZmjrWDFKsAVwOeA92vHaTy2gxVmZtYhDliYmZmZmZmZmfVhEfFP4BdkoewdI+Id4ALgQ+BoSQdLmkfSkpIOAc4BtgDOBa7vnrM2M7PpkVNCmZmZmZmZmZn1cZIWAB4C3gJ2jYjHJO0M/AyYDfgAEDAT8DJwWETc0E2na2Zm0ykHLMzMzMzMzMzMDEmHA2eTMyi+HRFjJC0DbAUsQtazeCwiLq3tM15RbTMzs6nhgIWZmZmZmZmZmSFpEPB3YB5gn4j4S8P6scEJSS0RMbobTtPMzKZjrmFhZmZmZmZmZmZExDDgeGAIcKCk2QFURERr7WcHK8zMrNN5hoWZmZmZmZmZmY0l6W5gIWCjiHi+u8/HzMz6DgcszMzMzMzMzMxsLElDIuLN7j4PMzPrexywMDMzMzMzMzOzCbhOhZmZTWsOWJiZmZmZmZmZmZmZWbdz0W0zMzMzMzMzMzMzM+t2DliYmZmZmZmZmZmZmVm3c8DCzMzMzMzMzMzMzMy6nQMWZmZmZmZmZmZmZmbW7RywMDMzMzMzMzMzMzOzbueAhZmZmZmZmZmZmZmZdTsHLMzMzMzMzMzMzMzMrNs5YGFmZmZmZmZmZmZmZt3OAQszMzMzMzMzMzMzM+t2DliYmZmZmZmZmZmZmVm3c8DCzMzMzMzMzMzMzMy6nQMWZmZmZmZmZmZmZmbW7RywMDMzMzMzMzMzMzOzbueAhZmZmZmZmZmZmZmZdTsHLMzMzMzMzMzMzMzMrNs5YGFmZmZmZmZmZmZmZt3OAQszMzMzMzMzMzMzM+t2DliYmZmZmZmZmZmZmVm3c8DCzMzMzMzMzMzMzMy6nQMWZmZmZmZmZmZmZmbW7RywMDMzMzMzMzMzMzOzbueAhZmZmZmZmZmZmZmZdTsHLMzMzMzMzMzMzMzMrNs5YGFmZmZmZmZmZmZmZt3OAQszMzMzMzMzMzMzM+t2DliYmZmZmZmZmZmZmVm3c8DCzMzMzMzMzMzMzMy6nQMWZmZmZmZmZmZmZmbW7RywMDMzMzMzMzMzMzOzbueAhZmZmZmZmZmZmZmZdTsHLMzMzMzMzMzMzMzMrNs5YGFmZmZmZmZmZmZmZt3OAQszMzMzMzMzMzMzM+t2DlgUknaX9EtJD0gaISkk7T0Fx2mSdKikf0saJultSb+VtFgXnLaZmZmZmU0jkuaXdJikWyS9JGmkpDckXStpjXb2GSzpR5JeLN8zXpB0lqSZ2tne3yfMzMzMrM9SRHT3OfQIkl4AFgbeAT4pP381Ii7p4HF+BewH/Ae4EZgP2BEYCqwZEc903lmbmZmZmdm0Iul04CjgWeBO4G1gSeBLgIBdI+Lq2vYzAvcAKwO3AA8DqwCbA/8C1o+I4Q334e8TZmZmZtZnOWBRSNoUeCYiXpT0XeA0OhiwkLQRcAdwN7BZRIwsy7cE/g+4JSK26PSTNzMzMzOzLidpO+DdiLirYfl6wO1kUGHeiBhRlp8EHA+cERHfrW1fBT6OiYjTasv9fcLMzMzM+jSnhCoi4raIeHEqD7N/uT2u+nJRjv0XcgTW5pIWmsr7MDMzMzOzbhARf2gMVpTlfwP+CswGrAAgSeRMiaHAyQ27nFyW79ew3N8nzMzMzKxPa+nuE5jObEimk7q3jXU3l/UbAJdP7gElLTCJTfoDywBvkVPSx0zusc3MzMysT2sG5io//7uaFWBTbFS5HV1ulyTTOd0cEZ/UN4yITyTdC2whacGIeLms2hB/nzAzMzOz3qFLvk84YNFJSn7aeYHHI6KtD/lVrtklO3jolye9iZmZmZnZVFkNeKC7T6K3KrMeNgVeB/5dFlef+9urOfEMsEXZ7mV/nzAzMzOzXqzTvk84JVTnmaXcftjO+o8atjMzMzMzs15OUj9yxsMA4KhasKGj3w/8fcLMzMzM+jzPsOj5FpzE+vmB+wBuvfVWFl544a4/I5tqI0aM4J///CcAa6yxBgMGDOjmM7JJ8TXrnXzdeidft97H16x3evHFF9lss82qX9/uznPprSQ1AZcA6wO/iojJTtU0DU3294m7776beeaZp+vPyMzMzMx6vTfeeIP111+/+rXTvk84YNF5qpFQ7Y14Gtyw3WSJiFcmtj5r+aWFF16YJZfs6Azx6UNEMPLljxn97vDJ2l5Av/lnot/cM3TtibVj2LBhPPvsswAsvvjiDBo0qFvOwyafr1nv5OvWO/m69T6+ZtMF1y3ooBKsuAjYFbgCOKhhk45+P+j27xOLLrooCywwqZIXZmZmZmY0fu/rtO8TDlh0klI473VgUUnNbeSdnVQOW5sKwx5/h/eufLJjOwlmWGVuBm++CC2zeiSomZmZmU2eEqy4GNgT+C2wd0S0Nmw2qZoT430/8PcJMzMzMzPXsOhsdwEzAuu0sW6Lcnv3tDudvmPkCx9NeqNGAZ8+9BZv/PABPrzpBVqHj+78EzMzMzOz6UpDsOJqYI+JFMl+DVinFNSuH6P6zvB8RNSLYvv7hJmZmZn1aZ5hMQUkzQnMCbwTEe/UVl0A7AycLGmziBhZtt8S2BC4JSJenNbn2xfE6HED2mbecAGaZ5n4jIkxQ0cx9O+vEcNGw+hWPr7zZT751+sM3nRhZlx9HtTsWJ6ZmZmZja+WBmpP4Bpg93aCFURESLoQOB44DvhubfVxwEzAqQ27+fuEmZmZmfVpDlgUkvYD1i2/rlBu95O0Yfn5noi4sPx8CHACcBJwYnWMiPhr+VKyH/CQpBuBeYGdgPeAQ7vwIfRpMTrG/jzDZ4dMVm2KmdeZj4/ueJmh/3gNxgStn4zmgz8+y9B7X2OWzy/CwOXmGC+nr5mZTVxE8M477/DJJ58watSoKT5Oa2src8wxBwAvvfQSTU0OIvd0vmY9V79+/ZhxxhmZc845/bmmcxwP7AUMBZ4GvtfG83p9RDxSfj4T2BY4StIqwEPAZ4HNgX8B59R39PcJMzMzM+vrHLAYZ13yy0fdOow/HftCJu1A4N/AAcA3yS8z1wHHRsSznXCe1ob6DAs1T96X8aYZ+jHr1osx09rz8eHNLzDs0SxmP/qdYbx7xRP0X2Qws2y1KAMWGjyJI5mZWUTw5ptv8v7773fKsariXWPGjKG1tTEtvPU0vmY91+jRoxk2bBhjxoxhyJAhDlpMvUXK7UzAse1s8wLwyP+zd+fxUVX34/9fZ2Yy2UN2QkIgYYugBCNlByFoJSAWXGrlI8rWAvrVj1RQEP1VUMBWFAErYmshVlspsvjRQtWKjCCiIooQEAgkkBAgCdkn+8zc3x+TDBmyh6zwfj4e88jMueeee25mEsh93/N+g6MuxWjsNzndC8QCF4BXgaWaphXXsL/8PSGEEEIIIa5bErCooGnadGB6A/suocrKiiu22YC1FQ/RSpwCFi6Nu6vT4O9GwJQbKBsZRu6OJEc9jLIz+WSu+wn36EA6xUVi8Hdr1jkLIcS15NKlS07BCr1ef1UXRiv3NRjkvyodhbxn7Y+maVit9mxFOTk56PV6goKC2nhWHVtj/maosk8e8PuKR0P6y98TQgghhBDiuiV/UYprQ5WABU2sP2EM9yZoTjQlx7LJ+yQZS6b9hrfiw5coPZVL8BO3YKinNoYQQlyvCgsLHc+7dOmCr69vk8ey2Wzk59uDxz4+PpJeqAOQ96z9ys3N5cKFC4D951QCFkIIIYQQQoj2TP6aFNeEq1lhUZVSCvcbA+g87xZ8J/dE5+kCgK3IQu72U2iaVs8IQghxfaqsWaHX668qWCGEaF6+vr7o9XrAnh5KCCGEEEIIIdozCViIa0LVotuqiSssqlJ6HV5DQ+n85EB03kYASo5nO+pcCCGEqJnkxxei/an8uZQbL4QQQgghhBDtnQQsxDXBscJC1/Ci2w2h93TBb3JPx+vcj09jNZc12/hCCCGEEEIIIYQQQggh7CRgIa4JlQELZWj+j7T7jYG49w8EwFZoIfffSc1+DCGEEG1jzJgxzJs3r62n0SF9+OGH9OrVC71ez+9//3v++c9/0r1791Y5dkREBKtXr26VYzVEVlYWwcHBnDlzptWPPXToULZu3drqxxVCCCGEEEKIliABC3FNaMmABYDvr3qi3O016osPZVL8c1aLHEcIIUTr2rZtGy+++GKrHW/Pnj3cddddhIaGopTiww8/rNZn+vTpKKWcHnFxcU59Ktu/+eYbp/bS0lICAgJQSmEymQD7Be25c+c69Vu/fj1KKeLj46sde9SoUQ06lzlz5nDfffeRmprKCy+80KB9Gis+Pr7GmigHDhxg9uzZLXLMpli+fDmTJk0iIiICgJ9++okpU6YQHh6Ou7s7ffv2Zc2aNY0etyGfl+eee45FixZhs9mqDyCEEEIIIYQQHYwELMS1oTIlVAsFLPTeRnwn9nC8zt1+CluJFK4UQoiOzt/fH29v71Y7XmFhIQMGDOCNN96os19cXBwXLlxwPN5///1qfcLDw9m4caNT2/bt2/Hy8nJqi42NdQQvKu3evZvw8PBq7SaTibFjx9Z7HmazmYyMDMaNG0doaGirfg8BgoKC8PDwaNVj1qaoqIi//e1vzJo1y9F28OBBgoODee+99zh69CjPPvsszzzzDH/+858bNXZDPi/jx4+noKCA//znP00+ByGEEEIIIYRoLyRgIa4JLb3CAsDjlmBc+/gBYM0vI+8/yS12LCGEEK3jypRQpaWlLFiwgLCwMDw9PRkyZIjTRf2srCymTJlCWFgYHh4e9O/fv8ZgQm3Gjx/PsmXLuPvuu+vs5+rqSkhIiOPh5+dXrc+0adPYtGkTxcXFjrYNGzYwbdo0p36xsbGcOHGCixcvOtq+/PJLFi1a5HRuycnJnD17ltjY2DrnZjKZHAGKsWPHOq3muNKbb75Jz549MRqNREVF8e677zptX7VqFf3798fT05Pw8HAeffRRzGaz4zgzZswgLy/PsaJkyZIlQPWUUEop3n77be6++248PDzo3bs3H330kdOxPvroI3r37o2bmxuxsbG88847KKXIzc2t83zrs3PnTlxdXRk6dKijbebMmaxZs4bRo0fTo0cPpk6dyowZM9i2bVujxm7I50Wv1zNhwgQ2bdrU5HMQQgghhBBCiPZCAhbimqCVawAoQ/MV3L6SUgq/u3uhjPYfm8JvL1KalNtixxNCCNH6HnvsMfbv38+mTZs4fPgwv/71r4mLiyMxMRGAkpISBg4cyI4dO0hISGD27Nk89NBDfPfdd806D5PJRHBwMFFRUTzyyCNkZVVPRThw4EAiIiIc9QtSUlLYs2cPDz30kFO/ESNG4OLiwu7duwE4duwYxcXFzJo1i6ysLJKT7QH43bt34+bmxrBhw+qc2/Dhwzlx4gQAW7du5cKFCwwfPrxav+3bt/PEE08wf/58EhISmDNnDjNmzHDMA0Cn07F27VqOHj3KO++8wxdffMHTTz/tOM7q1avx8fFxrDRZsGBBrfNaunQp999/P4cPH2bChAk8+OCDZGdnA/ZgzH333cfkyZP56aefmDNnDs8++2yd59lQe/fuZeDAgfX2y8vLw9/fv1mOeaXBgwezd+/eFhlbCCGEEEIIIVqToa0nIERz0Kwtv8ICwODnRqdxEeR+bC+8nbM1kc7zbkG56Fv0uEII0VG9vTeJt/fWvyLtpjAf3p42yKntiS3HOJFRBNQdjP7tqEh+O6pHnX0aIiUlhY0bN5KSkkJoaCgACxYs4JNPPmHjxo2sWLGCsLAwp4vmjz/+OJ9++imbN29m8ODBVz0HsKeDuueee4iMjOT06dMsXryY8ePHs3//fvR6539vZs6cyYYNG5g6dSrx8fFMmDCBoKAgpz6enp4MHjwYk8nElClTMJlMjBw5EldXV4YPH47JZCIyMhKTycSwYcNwdXWtc35Go5Hg4GDAnlIrJCSkxvoJr7zyCtOnT+fRRx8F4Mknn+Sbb77hlVdecaziqLq6JSIigmXLljF37lzWrVuH0WikU6dOKKUICQmp9/s2ffp0pkyZAsCKFStYu3Yt3333HXFxcbz11ltERUWxcuVKAKKiokhISGD58uX1jlufs2fPOj4vtfn666/517/+xY4dO676eDUJDQ0lNTUVm82GTif3IwkhhBBCCCE6LglYiA5Ps2lgrVxh0fJ/pHsOC6Xo8CXKzuZjySoh//MUOo2PbPHjCiFER1RQYuFifkm9/br4ulVryymycDG/tEHHaA5HjhzBarXSp08fp/bKQtYAVquVFStWsHnzZtLS0igrK6O0tLRZ6yk88MADjuf9+/cnOjqanj17YjKZuO2225z6Tp06lUWLFpGUlER8fDxr166tccwxY8bwwQcfAPbVG2PGjAFg9OjRjtRLJpOJ3/3ud812Hj///HO1wtgjRoxwKj79+eef89JLL3H8+HHy8/OxWCyUlJRQVFTU6O9pdHS047mnpyc+Pj5kZGQAcOLECQYNcg6I1Rdgmjt3Lu+9957jdWWqqisVFxfj5lb981spISGBSZMm8fzzz3PHHXfUex5N4e7ujs1mo7S0FHd39xY5hhBCCCGEEEK0BglYiI7PevmuztYIWCidwu/e3qSv+QGsGgV7z+HePxBj19YtOCqEEB2Bt5uBEJ/aL+ZWCvA0Vmvz8zAQ4uNKfSssvN2a578zZrMZvV7PwYMHq61kqCxkvXLlStasWcPq1asdtRfmzZtHWVlZs8yhJj169CAwMJBTp05VC1gEBAQwceJEZs2aRUlJiaMA85ViY2NZvnw5aWlpmEwmxyqR0aNH89Zbb3H69GlSU1MbVHC7uZw5c4aJEyfyyCOPsHz5cvz9/fnqq6+YNWsWZWVljQ5YuLi4OL1WStW48qOhXnjhhTpTUFUKDAwkJyenxm3Hjh3jtttuY/bs2Tz33HNNnkt9srOz8fT0lGCFEEIIIYQQosOTgIXo8LTyKhcjWiFgAeAS7IHPbd3I/+ws2OypoYIfuxmllzQMQghR1W9H9WhyuqY19/XDx8en1VLcxMTEYLVaycjIYNSoUTX22bdvH5MmTWLq1KkA2Gw2Tp48Sb9+/VpsXufOnSMrK4suXbrUuH3mzJlMmDCBhQsXVgu0VBo+fDhGo5F169Y56nAADBo0iMzMTDZs2OBIHdVc+vbty759+5yKgO/bt8/xvTp48CA2m41XX33V8R5v3rzZaQyj0YjVar3quURFRbFz506ntgMHDtS5T3BwsCP1VV1iYmKcVmJUOnr0KGPHjmXatGnNknqqLgkJCcTExLToMYQQQgghhBCiNcjVVdHhaRbN8bw1VlhU8h7dFZcQTwDKLxRSsOdcqx1bCCFE8+vTpw8PPvggDz/8MNu2bSM5OZnvvvuOl156yVF7oHfv3vz3v//l66+/5ueff2bOnDmkp6c3+Bhms5lDhw5x6NAhwF4M+tChQ6SkpDi2P/XUU3zzzTecOXOGXbt2MWnSJHr16sW4ceNqHDMuLo7MzExeeOGFWo/r7u7O0KFDef311xkxYoQjsGE0Gp3ar1ylcDWeeuop4uPjefPNN0lMTGTVqlVs27bNsWqhV69elJeX8/rrr5OUlMS7777L+vXrncaIiIjAbDaza9cuLl26RFFRUZPmMmfOHI4fP87ChQs5efIkmzdvJj4+HrCvxLga48aN4+jRo06rLBISEoiNjeWOO+7gySef5OLFi1y8eJHMzMxGjV3f56XS3r17WyzdlBBCCCGEEEK0JglYiA5Ps1RNCXV1Fx0aQ+l1+N3X25GpJP/zFMozmnYhRQghRPuwceNGHn74YebPn09UVBSTJ0/mwIEDdOvWDYDnnnuOW265hXHjxjFmzBhCQkKYPHlyg8f//vvviYmJcdwN/+STTxITE8Mf/vAHAPR6PYcPH+ZXv/oVffr0YdasWQwcOJC9e/fWWgxbKUVgYCBGY/W0WlXFxsZSUFDgqF9RafTo0RQUFDgKYTeXyZMns2bNGl555RVuvPFG3nrrLTZu3Og4/oABA1i1ahV/+tOfuOmmm/jHP/7BSy+95DTG8OHDmTt3Lr/5zW8ICgri5ZdfbtJcIiMj2bJlC9u2bSM6Opo333yTZ599FqDeIuP16d+/P7fccovT6pAtW7aQmZnJe++9R5cuXRyPqnU0zpw5g1IKk8lU69j1fV4A0tLS+Prrr5kxY8ZVnYcQQgghhBBCtAdK07T6e4l2SynVFUgFOHnyJL17927jGbW+8owi0lcdBMDjlmD8749q1ePn/icZ85f21RXG7j4EzYlG6eoOnBQXF/PZZ58BcMcdd0jO6Q5A3rOOSd631pOYmIjFYsFgMFz1v0U2m438/HyAVk0JJZquI75ny5cvZ/369aSmpl71WDt27OCpp54iISGhwee+e/du7rnnHpKSkvDz82vysRcuXEhOTg5/+ctfau1T289nYmJi1SLz4ZqmyXLR61DVvydSU1Pp2rVrG89ICCGEEEJ0BOfOnSM8PLzyZbP9PSE1LESH57zCovUvkHS6vRslCZewZJVQdjafwm8u4DU8tNXnIYQQQojarVu3jkGDBhEQEMC+fftYuXIljz32WLOMfeedd5KYmEhaWlrV/7DXaefOnSxevPiqghVgr7Xx5JNPXtUYQgghhBBCCNFeSMBCdHgtEbDQbBp5mcVcOmcm67wZnU7h7m3E3dvF/tXL/tXVw4By0eN3b28y/3IEgLz/JOPao5OjvoUQQojrQ0pKSp3Ft48dO+ZILdXejR8/nr1799a4bfHixSxevLiVZ3T1EhMTWbZsGdnZ2XTr1o358+fzzDPPNNv48+bNa1T/lStXNstx58+f3yzjCCGEEEIIIUR7IAEL0fFVCVjg0viARXmZlaw0M1nnzFxKNXPpXAGX0gqxlFrr3VenU7hVBDGiPAwEFVnQym2krf+J4tHhuPm7VQQ67MEOF1f9VRf3FEII0T6FhoY6iiPXtr2jePvttykuLq5xm7+/fyvPpnm89tprvPbaa209DSGEEEIIIYQQdZCAhejwNMvlOixKX3cwoDCvlEvnzFxKLbCvnjhnJje9iKaWcrHZNIryyijKK+MbYJSXAV+DwlBipeTfSewutFJ1aL2LDndvF9w8DZhL3HH1t1JaWC559YUQ4hpgMBjo1atXW0+jWYSFhbX1FIQQQgghhBBCXIckYCE6PKeUUBUrLGw2jdz0IvtqiVSzI0hRXFDeoDF9At0I7OpNYLgXAWFe6HSKooIySszlFBWUUVxQRklB5fNyigvKsFk1vi20MNrbgJtOEeSi4yZ3jSPFl+dnLbdhzi7FnF0KGCjJNPCvF37ghqFdiB7bFT9JIyWEEEIIIYQQQgghhLhOScBCdHhVAxanf7rEqW/SyTpfiLXcVsdedjqDIiDUi8CuXgSGexHY1ZuArl64ujfuR0PTNMpKrBTnl1GUmIN1ZxLKBj1c9Xj39iPDqKe4SnCjxFzuWNVhKbORsCeNhD1pdO8fwIDbwuka5Sepo4QQQgghhBBCCCGEENcVCViIDq9qwOJCUj4ZZTUHKtw8XSqCEvZHQFdv/Lp4oNdffaFupRSu7gZc3Q34dvag0FVPztZEAILSCug3OxrX7j6O/oWFRfznw12YU1woveCGpWLOZ49kcfZIFgFhXgy4rSu9B3XG4KK/6vkJIYQQQgghhBBCCCFEeycBC9HhVQ1YVFaM6BTk7lgxURmk8PR1bbVVC56DQig7b6Zw/wWwamS9e4zgx2MwdHIF7MW6Xbxs+PUrZfTsESQdzObI7nOYc0oByEoz88Xfj7N/+2luujWMm0Z3xcPH2CpzF0IIIYQQQgghhBBCiLYgAQvR8VVJ/WTT4L6Fv6BzpE8dO7QO34k9sKQXUZqUh81cTtbfjxE8Nxp1xYoJVw8Dt9zRnZtvC+f0j5n8tCuV9OR8AIoLyjmw4wwHPz1Ln8Eh3HxbOAFhXm1xOkIIIYQQQgghhBBCCNGirj4XjhBtTLNqjudWwOjePlIoKb0O/wf7ovd3A6A8zUz21kQ0Tauxv06vo/cvOnPfwl9w79MD6TUwGKWzrwixWTSOf32BTS9+x/+t/pEzRy6h2WoeRwghRMONGTOGefPmtfU0OqQPP/yQXr16odfr+f3vf88///lPunfv3irHjoiIYPXq1a1yrIbIysoiODiYM2fOtOpxy8rKiIiI4Pvvv2/V4wohhBBCCCFES5GAhejwtCtWWOhd2s/HWu/pQuDD/VBG+5yKD2Vi3pNW734hPTox7nc38dCyYdz8y24YqxQBP3c8hx1vHOafS78l4ctzlJdaW2z+Qghxrdu2bRsvvvhiqx1vz5493HXXXYSGhqKU4sMPP6zWZ/r06SilnB5xcXFOfSrbv/nmG6f20tJSAgICUEphMpkAGDp0KHPnznXqt379epRSxMfHVzv2qFGjGnQuc+bM4b777iM1NZUXXnihQfs0Vnx8PL6+vtXaDxw4wOzZs1vkmE2xfPlyJk2aREREBAA//fQTU6ZMITw8HHd3d/r27cuaNWsaPe6SJUuqfRZuuOEGx3aj0ciCBQtYuHBhc52KEEIIIYQQQrSp9nNlV4gm0qxVAhbQ7opUu4R44n9/lON13ifJlCXmNWhfb383Rtzbi2kvDWfUb3rjE+Tu2JabXsSX75/knWf2sX/7aUf9CyGEEA3n7++Pt7d3qx2vsLCQAQMG8MYbb9TZLy4ujgsXLjge77//frU+4eHhbNy40alt+/bteHk5pw6MjY11BC8q7d69m/Dw8GrtJpOJsWPH1nseZrOZjIwMxo0bR2hoaKt+DwGCgoLw8PBo1WPWpqioiL/97W/MmjXL0Xbw4EGCg4N57733OHr0KM8++yzPPPMMf/7znxs9/o033uj0Wfjqq6+ctj/44IN89dVXHD169KrPRQghhBBCCCHamgQsRIfnVHRbA0M7WmFRyf2mQHxu72Z/oYF5axKuxQ2fp9HNQHRsOA8uHcr4uf0J7e3r2FZaZOGHT8/y7rNf89nfjpJxNr+ZZy+EENeuK1NClZaWsmDBAsLCwvD09GTIkCFOF/WzsrKYMmUKYWFheHh40L9//xqDCbUZP348y5Yt4+67766zn6urKyEhIY6Hn59ftT7Tpk1j06ZNFBcXO9o2bNjAtGnTnPrFxsZy4sQJLl686Gj78ssvWbRokdO5JScnc/bsWWJjY+ucm8lkcgQoxo4d67Sa40pvvvkmPXv2xGg0EhUVxbvvvuu0fdWqVfTv3x9PT0/Cw8N59NFHMZvNjuPMmDGDvLw8x+qCJUuWANVTQimlePvtt7n77rvx8PCgd+/efPTRR07H+uijj+jduzdubm7ExsbyzjvvoJQiNze3zvOtz86dO3F1dWXo0KGOtpkzZ7JmzRpGjx5Njx49mDp1KjNmzGDbtm2NHt9gMDh9FgIDA522+/n5MWLECDZt2nRV5yGEEEIIIYQQ7UH7u7IrRCM5pYSifaWEqsp7bDfcbgwAQCu10uu4NzqLatQYOp2ix81B3D3/Fu5fPIiooSHo9BV1LmwaiQfS+eCl73nnmX18/Poh9m1J5OevL5B+Jl9SRwkhRAM89thj7N+/n02bNnH48GF+/etfExcXR2JiIgAlJSUMHDiQHTt2kJCQwOzZs3nooYf47rvvmnUeJpOJ4OBgoqKieOSRR8jKyqrWZ+DAgURERLB161YAUlJS2LNnDw899JBTvxEjRuDi4sLu3bsBOHbsGMXFxcyaNYusrCySk5MB+6oLNzc3hg0bVufchg8fzokTJwDYunUrFy5cYPjw4dX6bd++nSeeeIL58+eTkJDAnDlzmDFjhmMeADqdjrVr13L06FHeeecdvvjiC55++mnHcVavXo2Pj49jdcGCBQtqndfSpUu5//77OXz4MBMmTODBBx8kOzsbsAdj7rvvPiZPnsxPP/3EnDlzePbZZ+s8z4bau3cvAwcOrLdfXl4e/v7+jR4/MTGR0NBQevTowYMPPkhKSkq1PoMHD2bv3r2NHlsIIYQQQggh2htD/V2EaOeqFN22oTku4Lc3Sqfwvz+KzDcPUX6xCLcSPT0SPZ1SWjVGUDdvbp/ej2F39yThyzQSvkyjpLAcAHNOKeacUlKOZjvt4xPohn8XT/xDvfAP9cQ/1BO/EI92l0ZLCHEN+frPsL/u9EcAdBkA/+N8h7jnR7NQmcfq33fY/4PhjzVxgpelpKSwceNGUlJSCA0NBWDBggV88sknbNy4kRUrVhAWFuZ00fzxxx/n008/ZfPmzQwePPiq5wD2dFD33HMPkZGRnD59msWLFzN+/Hj279+PXu/8+3rmzJls2LCBqVOnEh8fz4QJEwgKCnLq4+npyeDBgzGZTEyZMgWTycTIkSNxdXVl+PDhmEwmIiMjMZlMDBs2DFdX1zrnZzQaCQ4OBuwptUJCQrDZqv9b9sorrzB9+nQeffRRAJ588km++eYbXnnlFccqjqqrWyIiIli2bBlz585l3bp1GI1GOnXqhFKKkJCQer9v06dPZ8qUKQCsWLGCtWvX8t133xEXF8dbb71FVFQUK1euBCAqKoqEhASWL19e77j1OXv2rOPzUpuvv/6af/3rX+zYsaNRYw8ZMoT4+HiioqK4cOECS5cuZdSoUSQkJDil4QoNDeXs2bNNmr8QQgghhBBCtCcSsBAdXtUVFkqvQ6n2GbAA0LnqCXj4RtJf/wGt2EqnXCPmD8/g/j/9ULqmzduzkytDftWDgXHdOfHtRU5+l05WmpnSIku1vvmXSsi/VMKZI5fv1FUKOgV7VAQyKh5dPPHt7IHe0D5XqwghOpDSAig4X3+/TmHVmlRRFqoh+5YWNGFi1R05cgSr1UqfPn2ch68oZA1gtVpZsWIFmzdvJi0tjbKyMkpLS5u1nsIDDzzgeN6/f3+io6Pp2bMnJpOJ2267zanv1KlTWbRoEUlJScTHx7N27doaxxwzZgwffPABYF+9MWbMGABGjx7tSL1kMpn43e9+12zn8fPPP1crjD1ixAin4tOff/45L730EsePHyc/Px+LxUJJSQlFRUWN/p5GR0c7nnt6euLj40NGRgYAJ06cYNCgQU796wswzZ07l/fee8/xujJV1ZWKi4txc3OrdZyEhAQmTZrE888/zx133FHveVQ1fvx4x/Po6GiGDBlC9+7d2bx5s1PNDHd3d4qKiho1thBCCCGEEEK0RxKwEB2e0wqFdpoOqiqDvxve9/ci9+/H0WmKsoRscrefwveeXlcVbDEY9dw4KowbR4WhaRqFuWVkXzCTfb7Q/rhg/3plaihNsxfwzk0vIulQpqNdp1N06mwPZASE2YMYQd288Q5wa9dBISFEO+PqDd51330OgEdgtSbNIwDNO5R6f+O4Nk/BZ7PZjF6v5+DBg9VWMlQWsl65ciVr1qxh9erVjtoL8+bNo6ysrFnmUJMePXoQGBjIqVOnqgUsAgICmDhxIrNmzaKkpITx48dTUFA9gBMbG8vy5ctJS0vDZDI5VomMHj2at956i9OnT5OamtqggtvN5cyZM0ycOJFHHnmE5cuX4+/vz1dffcWsWbMoKytrdMDCxcXF6bVSqsaVHw31wgsv1JmCqlJgYCA5OTk1bjt27Bi33XYbs2fP5rnnnmvyXCr5+vrSp08fTp065dSenZ1dbWWNaDlKqanAKGAg0B8wAjM0TYuvoa92ZVsNummallrRPwJIrqPvUk3TljRyykIIIYQQQnQYErAQHV7VFRY6Q8e4kO4S4c3pKDO9TnihNEXhgYsoo45OE3s0SzBAKYWXnytefq506xfgaNdsGgU5JZeDGBWBjJwLhVjKnS/q2GwaORXbTv9wud3V00Bwdx+Cu3kT3N2HoO7eePm5ShBDCFGz4Y81OV1T4a/+ho+PD0rXOsHomJgYrFYrGRkZjBo1qsY++/btY9KkSUydOhUAm83GyZMn6devX4vN69y5c2RlZdGlS5cat8+cOZMJEyawcOHCaoGWSsOHD8doNLJu3TpHHQ6AQYMGkZmZyYYNGxypo5pL37592bdvn1MR8H379jm+VwcPHsRms/Hqq6+iq3iPN2/e7DSG0WjEar36GkxRUVHs3LnTqe3AgQN17hMcHOxIfVWXmJgYp5UYlY4ePcrYsWOZNm1as6SeAntQ7fTp09XqlCQkJBATE9MsxxANsgzoDlwCLlQ8r83SWtp7AQ8CxyqDFVf4CfiwhnZTg2cphBBCCCFEByQBC9HhaZYqF9o7UAqjfL9yknsV0uOUF2hg3nce5Wag0y/r+pv36iidwifAHZ8AdyL6X76b2WbTyL9UXG01Rk56ITaL842BpYUWUo9lk3rscn0Mdx8jwd29nYIYnp3qzoEuhBDtTZ8+fXjwwQd5+OGHefXVV4mJiSEzM5Ndu3YRHR3NnXfeSe/evdmyZQtff/01fn5+rFq1ivT09AYHLMxms9Pd8cnJyRw6dAh/f3+6deuG2Wxm6dKl3HvvvYSEhHD69GmefvppevXqxbhx42ocMy4ujszMTHx8fGo9rru7O0OHDuX1119nxIgRjsCG0Wh0ar9ylcLVeOqpp7j//vuJiYnh9ttv5+OPP2bbtm18/vnnAPTq1Yvy8nJef/117rrrLvbt28f69eudxoiIiMBsNrNr1y4GDBiAh4dHk9JvzZkzh1WrVrFw4UJmzZrFoUOHiI+PB7jqgPu4ceN45plnyMnJwc/PD7AHEMaOHcu4ceN48sknuXjxIgB6vb5RKyEWLFjAXXfdRffu3Tl//jzPP/88er3eUauj0t69e3nxxRev6jxEo/wWSNQ07axSahHwUm0da1sNoZR6veLp32rZ9ZCspBBCCCGEENcjCViIDk+rckFddbDi0TmBZXj2jaDwozMAFOxKQeeqx/vWrq06D51O4RvsgW+wBz1uvnwhxWa1kZdZTFZaIVnnzWSmFJBxJp/ignKn/Yvzyzh7JIuzVWpjePq62oMY3S8HMdy9jK12TkII0RQbN25k2bJlzJ8/n7S0NAIDAxk6dCgTJ04E4LnnniMpKYlx48bh4eHB7NmzmTx5Mnl5eQ0a//vvv3cUnAZ7IWqAadOmER8fj16v5/Dhw7zzzjvk5uYSGhrKHXfcwYsvvlhrMWylFIGB1VNqXSk2NpY9e/Y46ldUGj16NLt373aaV3OYPHkya9as4ZVXXuGJJ54gMjKSjRs3Oo4/YMAAVq1axZ/+9CeeeeYZbr31Vl566SUefvhhxxjDhw9n7ty5/OY3vyErK4vnn3+eJUuWNHoukZGRbNmyhfnz57NmzRqGDRvGs88+yyOPPFJvkfH69O/fn1tuuYXNmzczZ84cALZs2UJmZibvvfee0+qL7t27c+bMGcCeEisyMpLdu3dXe08qnTt3jilTppCVlUVQUBAjR47km2++cQp67N+/n7y8PO67776rOg/RcJqmfX41+yul3LCvrigD3m2WSQkhhBBCCHGNUJrWkLSqor1SSnUFUgFOnjxJ796923hGrS/jjUOUpdrzdX/t7cr9zzZfOouWUlxczGeffQbAHXfcgeVgNnn/TnJs9727F15Dak790dY0TcOcU0rm2QIyzuaTkWL/WlpYvcj3lbwD3BwBjODu3gR188bVo/nu5m1JV75n7u7ubTwj0RDyvrWexMRELBYLBoPhqv8tstls5OfnA+Dj4+NIFyTar474ni1fvpz169eTmlpTNp7G2bFjB0899RQJCQkNPvfdu3dzzz33kJSU5FiZ0RS/+c1vGDBgAIsXL661T20/n4mJiVWLzIdrmnauyRO5TlVZYVFjDYta9vkf4B/AFk3Tfn3FtgjsNSz+C/wf0AlIB0yapp1u4hzruxMmBDgA9r8nunZt3RtnhBBCCCFEx3Tu3LkW+XtCVliIDs9WUXvBqmkYjB1rhUUl75FhaKVW8v97FoDcD0+hM+rxiKk/d3ZrU0rh7e+Gt78bPWLsd3hqmkZBVgkZZ+0rMDJS8sk8W0BZiXPe8YKsEgqySjj9w+Xi3r6dPbj59nD6jQyVOhhCCCFazLp16xg0aBABAQHs27ePlStX8thjTauvcqU777yTxMRE0tLSCA8Pb9A+O3fuZPHixVcVrCgrK6N///78/ve/b/IYok3Mqvj6dh19flnxqKQppf4BzNU0rbCRx2twVG7Pnj0NWrElhBBCCCHEpUuXWmRcCViIDq+yhoUN0Lu0/zs6a+M9NhxbmRXzl+dAg+wPTqCMOtxvbP9/NCql8Al0xyfQnV4D7UEWzaaRl1lsX4VRsRojM6UAS5lzce/c9CJM/zjBhVN5jH4wCpcOGnQSQoiUlJQ6a1kcO3aMbt26teKMmm78+PHs3bu3xm2LFy+u827+9ioxMZFly5aRnZ1Nt27dmD9/Ps8880yzjT9v3rxG9V+5cuVVH9NoNPLcc89d9Tii9SilIoFYIAX7KoorFQEvYi+4fRrQAbcAy4GpgAdwb2vMVQghhBBCiLYgAQvR4WmOFRYdO2ChlKJTXARaqZXCby6ADbL+eZzA6Tfi1rvpd1+2FaVT+Hb2wLezB30GhwD24t45Fwsr0kkVkH4mn4wz9hQiJ769yKVzZsbPvYlOQY0vqCqEEG0tNDSUQ4cO1bm9o3j77bcpLi6ucZu/v38rz6Z5vPbaa7z22mttPQ0hZgIK2Khpmu3KjZqmZQB/uKJ5l1JqP/ADcI9S6hZN035oxDHrW/bjSAl16623SkooIYQQQgjRIOfOtUxGWQlYiA6v6goLQwcOWIA9aOH7q55opVaKfswAq0bW348ROOsmXCM6tfX0rppOpwgI9SIg1IsbhtlrdCR+n84X7x7HUmolK83M5hXfc/uMfkRGt/+VJUIIUZXBYKBXr15tPY1mERYW1tZTEOKao5TSAdOx/7d1Q2P21TStSCn1LrAMGIE9eNHQfev8S7JqSk53d3ep9ySEEEIIIRqkpf7f2LGv7gpBlYBFB19hUUnpFH739cHtxgDAvoLk0sajlJ0raOOZtYzev+jMrxf+At/O9lUVZcUWdq47zLcfJWGzaW08OyGEEEKIZhMHdAX+q2laShP2r0wS7Nl8UxJCCCGEEKJ96fhXd4WwVqSEAgyGa+MjrfSKgCk34NrHngpKK7WS+XYCJadz23ZiLcQ/1JNfL/oFPSuKeAN8v/MM//7zT5SYy9twZkIIIYQQzaYhxbbrMqTi65mrn4oQQgghhBDt07VxdVdctzRNsxevAGyaht7l2inYrAw6Aqb2xRjhA4BWYuHShgQKf8xo45m1DKO7gXGzb2L4vb1QOntqgtRj2WxecYCMs/ltPDshhBBCiKZTSgUBdwGZwEd19ItRVXM0XW6/B5gG5AD/aal5CiGEEEII0dakhoXo2GwaVGQNuhZqWFxJZ9QTOOMmsv/5MyUncsCqkfOvE1izS/AeG04Nf892aEopYn7ZjeBu3nz6dgLFBeUUZJewdeVBRj8QRb+RHadgrRBCCCGuTUqp3wIjK172r/j6W6XUmIrnX2maduUqiocBF+BdTdPK6hj+NaBnRZHtc4AeuKXieKXAdE3T8q76JIQQQgghhGinrq2ru+K6U1m/Aq6dGhZX0rnqCXj4RjyHhDja8v97lpwtiWhWWx17dlxhUX7cv3gwIT3sq0tsFo3d7x3ni3d/xlJubePZCSGEEOI6NxL7aodp2IMJYC+EXdk2soZ9GpoO6j0gARgKzAXmAKEV+92saVqtqzOEEEIIIYS4FsgKC9GhaZbLRZmtXJsBC7DXtPCd3AuDvzt5/0kGoOhgOta8UgKm9kXndu39KHv5uTL5yVvYt/UUR3afA+DnfRe4lGombvZN+AS6t/EMhRBCCHE90jRtOjC9kfv0a2C/t2l6jQshhBBCCCE6vGvz6q64bly5wuJaSwlVlVIK79Fd8f+fG8BgTwVVeiqXjDd/wpJb0sazaxl6g45bf9OH22f0c7y3mSkFbH7pAClHs9p4dkKIa8GYMWOYN29eW0+jQ/rwww/p1asXer2e3//+9/zzn/+ke/furXLsiIgIVq9e3SrHaoisrCyCg4M5c+ZMqx976NChbN26tdWPK4QQQgghhBAt4dq9uiuuD1UCFlau7YBFJY/oIIJ+F43Ow76qwpJeRMYbhyhLM7fxzFpO1JAQ7l34C3yC7KsqSgstfPznnziwIxnNptWztxBC1G7btm28+OKLrXa8PXv2cNdddxEaGopSig8//LBan+nTp6OUcnrExcU59als/+abb5zaS0tLCQgIQCmFyWQC7Be0586d69Rv/fr1KKWIj4+vduxRo0Y16FzmzJnDfffdR2pqKi+88EKD9mms+Ph4fH19q7UfOHCA2bNnt8gxm2L58uVMmjSJiIiIatuysrLo2rUrSilyc3MbNW5DPi/PPfccixYtwma7NtNECiGEEEIIIa4v1/7VXXFNux5qWNTEtbsPwY/ejCHADQBbQTmZb/1E8c/X7qqDwK5e3P/ML4iIDrQ3aPDdx8nsePMwJYXlbTs5IUSH5e/vj7e3d6sdr7CwkAEDBvDGG2/U2S8uLo4LFy44Hu+//361PuHh4WzcuNGpbfv27Xh5eTm1xcbGOoIXlXbv3k14eHi1dpPJxNixY+s9D7PZTEZGBuPGjSM0NLRVv4cAQUFBeHh4tOoxa1NUVMTf/vY3Zs2aVeP2WbNmER0d3aSxG/J5GT9+PAUFBfznP/9p0jGEEEIIIYQQoj25Pq7uimuWVl4lYIF23QQsAAyB7gQ9ejPG7vbC1FqZjay/H8O8/3wbz6zluHq4MGFuf4ZM6gH2rFicPZLFBy8d4NK5gradnBCiQ7oyJVRpaSkLFiwgLCwMT09PhgwZ4nRRPysriylTphAWFoaHhwf9+/evMZhQm/Hjx7Ns2TLuvvvuOvu5uroSEhLiePj5+VXrM23aNDZt2kRxcbGjbcOGDUybNs2pX2xsLCdOnODixYuOti+//JJFixY5nVtycjJnz54lNja2zrmZTCZHgGLs2LFOqzmu9Oabb9KzZ0+MRiNRUVG8++67TttXrVpF//798fT0JDw8nEcffRSz2ew4zowZM8jLy3OsKFmyZAlQPSWUUoq3336bu+++Gw8PD3r37s1HHznXJv7oo4/o3bs3bm5uxMbG8s477zRp1cOVdu7ciaurK0OHDq3x/HNzc1mwYEGTxm7I50Wv1zNhwgQ2bdrUpGMIIYQQQgghRHty7VXqFdcVzVql6LYGBoO+DWfT+vSeLgT9tj/Zm09QfOQSaJD7f6exZJXQaXwkSq/aeorNTukUvxgfQXB3b/77t2OUFJaTf6mELX86yJgHo7hhaJe2nqIQoop3jr7D34/9vd5+/fz78fptrzu1Lfp2EYn5ifXu+3C/h5l247R6+zXEY489xrFjx9i0aROhoaFs376duLg4jhw5Qu/evSkpKWHgwIEsXLgQHx8fduzYwUMPPUTPnj0ZPHhws8wB7Bfrg4OD8fPzY+zYsSxbtoyAgACnPgMHDiQiIoKtW7cydepUUlJS2LNnD2+88YZTmqsRI0bg4uLC7t27mTJlCseOHaO4uJhZs2axcOFCkpOTiYyMZPfu3bi5uTFs2LA65zZ8+HBOnDhBVFQUW7duZfjw4fj6+nL8+HGnftu3b+eJJ55g9erV3H777fz73/9mxowZdO3a1REU0el0rF27lsjISJKSknj00Ud5+umnWbduHcOHD2f16tX84Q9/4MSJEwDVVo9UtXTpUl5++WVWrlzJ66+/zoMPPsjZs2fx9/cnOTmZ++67jyeeeILf/va3/Pjjj00OIlxp7969DBw4sFr7sWPHeOGFF/j2229JSkpqlmPVZvDgwfzxj39s0WMIIYQQQgghRGu4fm5HF9ck5xUWoDdefx9p5aLDf8oNeI3u6mgzf5XGpb8dwVpQ1oYza1nd+gXw68W/ILi7/S5fa7mNXfE/8+U/T2AtlzzeQrQXheWFZBRl1PvILs2utm9uaW6D9i0sL2yWuaakpLBx40Y++OADRo0aRc+ePVmwYAEjR450pF4KCwtjwYIF3HzzzfTo0YPHH3+cuLg4Nm/e3CxzAHs6qL///e/s2rWLP/3pT3z55ZeMHz8eq9Vare/MmTPZsGEDYK/3MGHCBIKCgpz6eHp6MnjwYMcqCJPJxMiRI3F1dWX48OFO7cOGDcPV1bXO+RmNRoKDgwF7Sq2QkBCMRmO1fq+88grTp0/n0UcfpU+fPjz55JPcc889vPLKK44+8+bNIzY2loiICEdgpvJ7aTQa6dSpE0opx0qTugIW06dPZ8qUKfTq1YsVK1ZgNpv57rvvAHjrrbeIiopi5cqVREVF8cADDzB9+vQ6z7Ohzp49S2hoqFNbaWkpU6ZMYeXKlXTr1q1ZjlOX0NBQUlNTpY6FEEIIIYQQosOTFRaiQ9OszjUsDIbrL2AB9lUHvuMjMfi7kft/p8GmUZqUR8brP+I/tS+u3XzaeootwifAnbsX3MLezYkc22tPhZWwJ43M1ALiZt+El59bG89QCOHp4kmwR3C9/fxd/au1+br6NmhfTxfPJs3tSkeOHMFqtdKnTx+n9spC1gBWq5UVK1awefNm0tLSKCsro7S0tFnrKTzwwAOO5/379yc6OpqePXtiMpm47bbbnPpOnTqVRYsWkZSURHx8PGvXrq1xzDFjxvDBBx8A9sDEmDFjABg9erQj9ZLJZOJ3v/tds53Hzz//XK0w9ogRI1izZo3j9eeff85LL73E8ePHyc/Px2KxUFJSQlFRUaO/p1XrRHh6euLj40NGRgYAJ06cYNCgQU7961sRM3fuXN577z3H68pUVVcqLi7Gzc3535tnnnmGvn37MnXq1EadQ1O5u7tjs9koLS3F3d29VY4phBBCCCGEEC1BAhaiY6tyJ72V66fodm28hnTBJcSTrPd+xlZQhjW/jMy3DuM7sQeeQ7ug1LWXIsrgoif2wRvoHOHDnvdPYrXYSE/OZ/OKA4yf058uvXzbeopCXNem3Tityema/jjkj/j4+KDTtc7vdrPZjF6v5+DBg+j1zikGK+/sX7lyJWvWrGH16tWO2gvz5s2jrKzlVrT16NGDwMBATp06VS1gERAQwMSJE5k1axYlJSWOAsxXio2NZfny5aSlpWEymRzpkEaPHs1bb73F6dOnSU1NbVDB7eZy5swZJk6cyCOPPMLy5cvx9/fnq6++YtasWZSVlTU6YOHi4uL0Wil1VSsOXnjhhQaljQoMDCQnJ8ep7YsvvuDIkSNs2bIFAE3THH2fffZZli5d2uR51SQ7OxtPT08JVgghhBBCCCE6PAlYiA5NszivsLjeAxYArt196Py/MWT982fKkvPBqpH7f6cpSy3Ad3IvdMZrs85HvxGhBIV785+3jlCQVUJxQTk73jzM/YsH4RMgF3CEEPWLiYnBarWSkZHBqFGjauyzb98+Jk2a5Lhz3mazcfLkSfr169di8zp37hxZWVl06VJzjZ6ZM2cyYcIEFi5cWC3QUmn48OEYjUbWrVvnqMMBMGjQIDIzM9mwYYMjdVRz6du3L/v27XMqAr5v3z7H9+rgwYPYbDZeffVVR1DqytRaRqOxxlRYjRUVFcXOnTud2g4cOFDnPsHBwY7UV3WJiYlxWokBsHXrVqdi6AcOHGDmzJns3buXnj17NmLmDZOQkEBMTEyzjyuEEEIIIYQQrU0CFqJD0yyXi27bAIMELADQexsJ+m1/8v5zBvNXaQAU/ZBB+YVCAqb2xXCNXsAP6ubN/YsH8clfjpB2IpfSQguf/iWBuxfcgsHl2gzUCCGaT58+fXjwwQd5+OGHefXVV4mJiSEzM5Ndu3YRHR3NnXfeSe/evdmyZQtff/01fn5+rFq1ivT09AYHLMxmM6dOnXK8Tk5O5tChQ/j7+9OtWzfMZjNLly7l3nvvJSQkhNOnT/P000/Tq1cvxo0bV+OYcXFxZGZm4uNTe/o/d3d3hg4dyuuvv86IESMcgQ2j0ejUfuUqhavx1FNPcf/99xMTE8Ptt9/Oxx9/zLZt2/j8888B6NWrF+Xl5bz++uvcdddd7Nu3j/Xr1zuNERERgdlsZteuXQwYMAAPD48mpd+aM2cOq1atYuHChcyaNYtDhw4RHx8PcNWrD8eNG8czzzxDTk4Ofn5+ANWCEpcuXQLsQRxfX98Gj13f56XS3r17ueOOO67iLIQQQgghhOhYIhbtaOspXNPO/PHONju2XN0VHVrVFRZWNKzyiXZQeh2+E3vg/z83oCqKkZdfKCT99UMUH69e3PZa4ebpwvg5/fEJtOcTzzhbwN7NiW08KyFER7Fx40Yefvhh5s+fT1RUFJMnT+bAgQOOi8PPPfcct9xyC+PGjWPMmDGEhIQwefLkBo///fffExMT47gb/sknnyQmJoY//OEPAOj1eg4fPsyvfvUr+vTpw6xZsxg4cCB79+6ttRi2UorAwMAaC19XFRsbS0FBgaN+RaXRo0dTUFBAbGxsg8+jISZPnsyaNWt45ZVXuPHGG3nrrbfYuHGj4/gDBgxg1apV/OlPf+Kmm27iH//4By+99JLTGMOHD2fu3Ln85je/ISgoiJdffrlJc4mMjGTLli1s27aN6Oho3nzzTZ599lmAeouM16d///7ccsstjS68fubMGZRSjqLnNanv8wKQlpbG119/zYwZM5o0fyGEEEIIIYRoT1RlTl3RMSmlugKpACdPnqR3795tPKPWVfBVGnn/TgLg+0ILKwMsvPQ/N3Nrn6A2nlndiouL+eyzzwC44447WjzndHl6IVnv/ozl0uX0FN63dcPntm4o3bVX1wIgM7WArS8fxFpR52Tsw33pO7zmdCoN0drvmWge8r61nsTERCwWCwaD4ar/LbLZbOTn5wO0ag0L0XQd8T1bvnw569evJzU19arH2rFjB0899RQJCQkNPvfdu3dzzz33kJSU5FiZ0RQLFy4kJyeHv/zlL7X2qe3nMzExsWqR+XBN0841eSKiw6r690Rqaipdu3Zt4xkJIYQQQtRPVli0rIassDh37hzh4eGVL5vt74n2/9ekEHVwqmEBZBaX8fCG7/jzF4nYbBKMq+TS2ZPgx27G7cYAR1vBrhSy3jmKrai8DWfWcoLCvRnzP1GO11++f4LM1OqFaIUQQlwf1q1bx4EDB0hKSuLdd99l5cqVTvU1rsadd97J7NmzSUtLa/A+O3fuZPHixVcVrAB7rY0XX3zxqsYQQgghhBBCiPZCAhZVKKUGKaV2KqVylVKFSqlvlFL3N3KMUKXUGqXUsYox0pVSXymlHlJKSRL95lY1JZQGlWU5X/nsJHPeO0h+ybV5Mb4pdG4GAqb2pdP4CKhYVFFyIof0NT9QkpjTpnNrKTcM60K/UaEAWMttfPLWEUqv0QCNEKLtpaSk4OXlVesjJSWlrafYYOPHj6/1PFasWNHW02uSxMREJk2aRL9+/XjxxReZP38+S5Ysabbx582bV/XuonqtXLmSp5566qqPO3/+fDp37nzV4wghhBBCCCFEeyBFtysopWKBT4ESYBNQANwL/EspFa5p2qsNGKMH8C0QUDHWx4APMBn4OzAWkATDzahq0W2L5QIDPA38WOyJpsF/j6Uz6c/7WD91IFEh3m04y/ZDKYX36HBcwrzJfv9nbIUWrHllXPpbAp7DutBpfCQ647UVVxt1f28upRSQcbaA/EslfB7/MxPm9r9mU2EJIdpOaGgohw4dqnN7R/H2229TXFxc4zZ/f/9Wnk3zeO2113jttdfaehpCCCGEEEIIIeogAQtAKWUA/oo9q9CtmqYdqmh/AfgOWKGU2qJp2tl6hloABALzNE1bU2X8Z4CfgOlKqSUNGEc0UNWUUKVFXzLiaBp3D72d13L7kF2qkXypkMlv7OPl+6K5a0DHuVDU0tx6+RL8v7eQ88FJSk/lAlC4/wKlJ3Pwuz8K1+4+bTvBZmRw0TNu9k1sXnGA0kILZw5f4ofPzjIwLqKtpyaEuMYYDAZ69erV1tNoFmFhYW09BSGEEEIIIYQQ1yFJCWU3FugJ/LMyWAGgaVoesAIwAg1Jctyj4uvOqo2apuUCX1W8DLzKuYoqnGpYaBYAMr75nEfyPmKIj/3O0OJyKy9/epyScmuNY1yvDJ1cCZx5E76/6olysf8qsGSVkLn+J/L+k+z0ve3ofALc+eXMGx2psL79vyRSj2e37aSEEEIIIYQQQgghhBBOZIWF3ZiKr5/VsO3Tiq+jGzBOAjAOmABUXWHhC4wALgLHGjMxpVTXerqEVD4pLS2tNX3DtcpSpUaFVbsckMi/cI6hGe/S54axfFDai9X33YRmKaPY0hazrK6kpKTG521BH+NHp27umD9MxnKuEDQo+PIcRT9n4XV3JIYQjzadX3MJ7uFBzB1d+fHTc2gafPbXBCYtiMbT17VB+7en90w0nLxvrcdms6FpmuP51Y5V03PRfsl71v5pmobNZnP6v2JpaWkbzkgIIYQQQgghqpOAhV3viq+JV27QNO2iUspcpU9dVgJ3Aa8ppeKAw1yuYVEE3K1pWmMjCqkN7fjtt99y+vTpRg7fsUWkehKA/YKztWKFhcHTC0uhGZvViu/R/zI3MIHkb3I55+nl2E/TQLWTEgZ79uxp6ynYdYXOOjdCU93RaQprRjG5fznK+a7FXAwrcaxO6Mg0BW5B7pRkGigptLB9zQGChhShGrnWrN28Z6JR5H1rWQEBAbi7u6OUIj8/v9nGNZvNzTaWaB3ynrU/FouF4uJiiouLOX78uKP90qVLbTgrIYQQQgghhKhOUkLZdar4mlfL9vwqfWqlaVo6MAz4BIgDngbmVuz7d+x1LEQzKrNcvopuq1hhEXbbnfj2jXa0Wy9dIHXnVgrOnLK/1uDNn3X8O0XHWbP9tQAUpIeVcLx/PkUe9uCP0hRhqR7ckOCDa3HH/3WhFPhFF6N3t9/9W5arJ/d4w1ZYCCGEEEIIIYQQQgghWpassGhGSqlewMeAGRgFHAJ8ganAMmCcUmqUpmmNKaYQXs/2EOAAwJAhQ+jZs2cjZ92xnUw6Ann2dAaVKyxuu2McbvfcR9rxo+z6658xZ13CVl5G+te78bGVczgslhN5lziRB/9N0+Fp1HNLt04M6u7LL7r7cVOoNy76lrk4b9M0zKUW0nMKMe3/jlKronffG7Ggp7jMitGg41fRIU77/PWrsxw6l4dep3Az6HA16HBz0ePqeK7D1aCnd7Anw3r4O+1bbrU16Vw0q43iLy9Q/NUF0MDTbOCmBD88RofiNrQzytCxgxeXBpj595oEbFaNwrNGfjGqHz0HBtW5T0lJieMO/VtvvRU3N7fWmKq4SvK+tZ6UlBSsVisGgwEfH5+rGstmsznu0vfy8kKn69i/c64H8p61b5mZmbi7u+Pl5cXAgQMd7dfbylwhhBBCCCFE+ycBC7vKlRW1raLwAXIaME480B3ooWnaxYo2M/BHpVRnYB7wAPCPhk5M07RzdW1XVfIaubq64u7u3tChrwnFVYpSVBbd9urUCRejK71ifkHXlX/miw3r+fkrEwCJ33yFl0cCYT63kuYeBkBhmZW9p7LZe8pehNndRc/A7n7c3jeY6SMinY5XbrVRWGqhsMxKYakFc6nF/rrUWtFuIbeonGnDIujk4eLYb/P3qby082fyisux2TTcbCV4WQpxs5XgeuAMbtZSXG2lBLpY8evvT6nZTElhASXmQorSs+hVUoQO+6oARZUlIZpGCVAC/KDsETIAFzdXjO4enC/SKFUu6Izu6N3ccXX3wN3TAy9vLzp5e+Hn50NE9zCCQsPwCQrG4HJ5zh539qK0fzA5m09iuVQMFo2iXWmUHrxEp7gI3AcEOX3+OpLwPu7c+kAfTP84AcC+zUl0ifQnIMyrnj3t3NzcrruftWuBvG8tS6fTOWoXNOfFap1O16IXv8eMGcPNN9/M6tWrW+wY16oPP/yQBQsWkJyczGOPPUZUVBTPPPMMOTk5LR6wiIiIYN68ecybN69Fj9NQWVlZ9O3bl++++46IiIhWO25ZWRl9+vRhy5Yt/OIXv6izr1IKnU7n9HvQ1VVWGQohhBBCCCHaFwlY2FXWrugNHKy6QSkVAngB39U1gFLKG3th7R+qBCuq2o09YBFDIwIWom4lxRYqiytUFt02uBgd2908vZjw+AIibxnErrfXUVpUiCrK5Z7ij3HtfQsX9H4kFLqRYvUiz8UHm9JTXG7lq1OX8HTVOwUsLuaVMPSlXbVPRtNw0crxshQSY8gkQJVgzsnGnJNF1ulz3Hb2PJ7WIjwtheipvSDpkSsO4VJztxqOjyOUUVZcTFlxMY57nItxSnhmrnikYa8UD4BSeAcE4tu5C506h+AbHIJvSBc6/SoEtwQvSg5kggbW3FKyN53AZd95fO+MxDWi3mxp7VK/kaFcTM7n+NcXsJTZ2PnmYe5b9AvcvYz17yyEuGZs27YNF5cG/6a9anv27GHlypUcPHiQCxcusH37diZPnuzUZ/r06bzzzjtObePGjeOTTz5xvK4MGO/fv5+hQ4c62ktLSwkNDSU7O5vdu3czZswYhg4dys0338z69esd/davX88jjzzCxo0bmT59utOxT58+zd69e+s9lzlz5jBjxgz+93//F09PT/7xj+b/7018fDzz5s0jNzfXqf3AgQN4eno2+/Gaavny5UyaNKnGYEVWVhYDBgwgLS2NnJwcfH19GzzukiVLWLp0qVNbVFSUow6F0WhkwYIFLFy4kF276vg/ihBCCCGEEEJ0EBKwsPsSeAa4A9h0xbZxVfrUpfIqZ2At2yvzzZQ2enaiRsVlVqzlNkCPTbOhYcNgdK3xrv++I0YTFtWXT954jdRjR0DTKD15EH/g1spOSke5hx+Z+k5cVN7cXHQj54674x/aFZvVSlFGJt2LzuJhLcLTWmT/ailyeu1Sscrju3XV59vliteaTo+mlH3FhFblweX61jq9HqOnF0Z3T5Rej4ZC0zT7V8BWEaTQAKNeh4er/Ue6vKSEkqIiCgrM6K1lDfuGahoFlzIpuJRJ6tHD1TYH+HRjYNDt+NnsH+Xy1AIy1x/G/cYAfMZH4hLYse5cV0ox+oE+XEot4FKqmfxLJfxn/REmPRGD3kVSmQhxvfD396+/UzMqLCxkwIABzJw5k3vuuafWfnFxcWzcuNHxuqY74cPDw9m4caNTwGL79u14eXmRnZ3taIuNjWX79u1O++7evZvw8HBMJpNTwMJkMjFt2rR6z8NsNpORkcG4ceMIDQ11rK5pLUFBdafxa01FRUX87W9/49NPP61x+6xZs4iOjiYtLa1J49944418/vnnjtcGg/N/3x988EHmz5/P0aNHufHGG5t0DCGEEEIIIYRoLyRgYbcLSAL+Rym1VtO0QwBKqU7AYqAMe9FsKtq7YE8fdUHTtDwATdOylFIngCil1G81TXu7Sn9fYEHFy90tfzrXh4TzeRg1QF0uuG2oI7WBT2Awv/7/lvP9jg/5+oN/YCm9Inak2XApzCKULEKBoi9+4l9f/NOpy6+aOFdN6bC6eaDzDQAvH8oMRsqpPZ2STqdDr9ej0+ko1+sp0etxc3PD09PT6eHh4VGtzc3NzSloo9lslBQVk5Gdx4XMHDKy8riUm09OTgE5ubnkZWQwNlRPUVY6uekXKTEX1DinrPwUPsvfQIh7JAP8x+BrDAag+GgWRccuQZQrQXf1xS3g6nLXtyaDUc+ER6LZ8sfvKcov48KpPEz/OM7YaX0ble7KatMoKCknv9hCfkk5+cXl5BWX4+aiZ0SvQIwdvOaHENeyK1NClZaW8uyzz/L++++Tm5vLTTfdxJ/+9CfGjBkD2O+Wf+yxx9izZw85OTn07NmTxYsXM2XKlAYdb/z48YwfP77efq6uroSEhNTZZ9q0aaxdu5bVq1c70vxs2LCBadOm8eKLLzr6xcbG8sc//pGLFy86xvzyyy/5wx/+wMsvv+zol5yczNmzZ4mNja3zuCaTydFn7NixALXe3f/mm2/yyiuvkJqaSmRkJM899xwPPfSQY/uqVavYuHEjSUlJ+Pv7c9ddd/Hyyy/j5eWFyWRixowZwOUVJc8//zxLliyplhJKKcVf//pXduzYwaeffkpYWBivvvoqv/rV5X+5P/roI+bPn09qairDhg1j+vTpTJ8+vdGrHq60c+dOXF1dnQJHVc8/NzeXP/zhD/znP/9p0vgGg6HOz4Kfnx8jRoxg06ZNTu+7EEIIIYQQQnREErAANE2zKKV+C3wK7FFKbQIKgHux16RYoGnamSq7vARMA2Zgr1tR6ffAR8BflVIPAD8CftivcwcBWzVN+xzRLH5MyWHAlemgjHWn81E6HYPuuoeb75hAzoXzZKelkn0+jezz58g+f46cC2nVAxkN4ObphYevH15+fnj4+qM8vSnVGTBbrOSYC8nJy0fTtPoHqmCz2ardrVpQUEBmZma9++p0OgICAujcuTMhISF07tyZzp070y28C927hda7f0mhmXc++Z5P9h9DZ86iU3k+PpY8fMtz8bIWc6H4DBfT3qG7103c5DcCd4OXfYnH8RJSj+7naGkCPxpysNWTYqVXkDehfpdXZZSUW/kuOave+QH8IiIAD6Pe8fpCbjGJGTUHWqpyddEzJDLAqe3Y+TxyLCV0KragNDjyBXx7QE+xl96pX4i3K66lWaB0/EQ5vl268sTOc1y0epBXXvt7+7tRkTx7Z78GnZcQ16KsjfFkx8fX28+tXz/C33Renpa94CkyExNr2eMy/+nTCZgxvYkzdPbYY49x7NgxNm3aRGhoKNu3bycuLo4jR47Qu3dvSkpKGDhwIAsXLsTHx4cdO3bw0EMP0bNnTwYPHtwscwB7UCA4OBg/Pz/Gjh3LsmXLCAhw/v01cOBAIiIi2Lp1K1OnTiUlJYU9e/bwxhtvOF24HjFiBC4uLuzevZspU6Zw7NgxiouLmTVrFgsXLiQ5OZnIyEh2796Nm5sbw4YNq3Nuw4cP58SJE0RFRbF161aGDx+Or6+vI01Rpe3bt/PEE0+wevVqbr/9dv79738zY8YMunbt6gh46HQ61q5dS2RkJElJSTz66KM8/fTTrFu3juHDh7N69Wr+8Ic/cOKEveaQl1fttYaWLl3Kyy+/zMqVK3n99dd58MEHOXv2LP7+/iQnJ3PffffxxBNP8Nvf/pYff/yRBQsW1DpWY+zdu9epkHWlY8eO8cILL/Dtt9+SlJTU5PETExMJDQ11vDcvvfQS3bp1c+ozePDgBqXxEkIIIYQQQoj2TgIWFTRN262UGgksBX6DvXTAEWChpmn/auAY/1FKDQeeAkYCo7HXQ/4ZeAF4syXmfr06lJrLoIrnlQW3XeoJWFRycXUjOKIHwRE9nNo1m42C7Ev2IEaaPYiRe/E8ehcXPH398PT1t3/188Ozkx+evn6U2jTSMzM5f/4858+f5+T585Rnmes8vtFoxGg0otfrHRegbDYbVqu11q9FRUVYLJY6x60cJzMzk8zMTBISHBUq8PDwcAQvKgMZQUFBlJeXYzabMZvNFBQUYDabifAqZeqwzmTnuZOTm09xkR+apYyqZ5UAJHCg+gQ8QWFAT90BmmRzPsnmfKc2fQOzSv2YfqlaW0P2tWBhX2p69Q0+kOepUDYLympFWS24ll9+rqwWCnIsFFit6KzlfHXyKErTuAN7rKZAb6+BkufSiTxDJ/tzQyfyXDqx6UAqC8ZF4WrQVz+uENcBm9mMJb2Gn7srWGu4g9yWm9ugfW3mun/nNlRKSgobN24kJSWF0FB7gHfBggV88sknbNy4kRUrVhAWFuZ0ofvxxx/n008/ZfPmzc0WsIiLi+Oee+4hMjKS06dPs3jxYsaPH8/+/fvR651/l8ycOZMNGzYwdepU4uPjmTBhQrV0SZ6engwePBiTycSUKVMwmUyMHDkSV1dXhg8fjslkIjIyEpPJxLBhw+otxGw0GgkOtq+y8/f3JyQkpMaUUK+88grTp0/n0UcfBeDJJ5/km2++4ZVXXnEELKoWzY6IiGDZsmXMnTuXdevWYTQa6dSpE0qpelebgL3+RuVKlxUrVrB27Vq+++474uLieOutt4iKimLlypWAvQ5EQkICy5cvr3fc+pw9e9bxealUWlrKlClTWLlyJd26dWtywGLIkCHEx8cTFRXFhQsXWLp0KaNGjSIhIQFvb29Hv9DQUM6ePXtV5yGEEEIIIYQQ7YEELKrQNO07oN48DZqmTQem17LtAHB/s05M1OhQSi4uFR/hyyss6r7IUh+l0+ETGIxPYDAR0TFO2zRNIy8vj/Pnz3P2/HnO/5zI+fPnKSkpqXtMpejcuTNhYWGOh5eXlyMf9R133OFI5VGfsrIyCgsL63wUFBSQlZVV7eJRUVERycnJJCcnN+I7ch3R69H0erSG1N61WjEU5aM352Ew5+FjMeNjNRNect6pm0XpuRg9mZzCckI6ScBCXJ90Xl4YOneut5++hloSOl/fBu2rq+Ou+8Y4cuQIVquVPn36OLWXlpY6gstWq5UVK1awefNm0tLSKCsro7S0FA8Pj2aZA8ADDzzgeN6/f3+io6Pp2bMnJpOJ2267zanv1KlTWbRoEUlJScTHx7N27doaxxwzZgwffPABYF+9UZniavTo0Y7USyaTid/97nfNdh4///wzs2fPdmobMWIEa9ascbz+/PPPeemllzh+/Dj5+flYLBZKSkooKipq9Pc0Ojra8dzT0xMfHx8yMjIAOHHiBIMGDXLqX1+Aae7cubz33nuO1+ZaAmPFxcW4ubk5tT3zzDP07duXqVOnNuocrlQ1fVh0dDRDhgyhe/fubN68mVmzZjm2ubu7U1RUdFXHEkIIIYQQQoj2QAIWokOy2TTmjO6J+8epoEG5VkaZbyA5bl7897//beZj2VcsnD9/vkEXAzp16kTXrl0dwYkuXbpgvGLlR3FxcZPmUrkyw8/Pr85+FouFS5cukZ6eTnp6OhcvXiQ9PZ3CwsJGH9NgMODt7Y2np2e1O3uvZCuzYskqRiuxVtumuSls7jo0gz2Nl16n0FWttYGGxdqwtFkGvUJVqQFi0zSstvr3VQoMOud6ElabhtVmo6y8rOLCYxnUszoEvR6Ltx8Wbz9KAUNZCbr8bAwFeehKCh0zM2hWYvJ+JKTTjAadlxDXooAZTU/X5P/KSnx8fNDpWqcOjNlsRq/Xc/DgwWq/7ypTEa1cuZI1a9awevVq+vfvj6enJ/PmzaOsrKzF5tWjRw8CAwM5depUtYBFQEAAEydOZNasWZSUlDB+/HgKCqqnyIuNjWX58uWkpaVhMpkcq0RGjx7NW2+9xenTp0lNTXXUpGgNZ86cYeLEiTzyyCMsX74cf39/vvrqK2bNmkVZWVmjAxYuV6QiVEpdVTHwF154oUFpowIDA8nJyXFq++KLLzhy5AhbtmwBcKSFDAwM5Nlnn2Xp0qVNmpOvry99+vTh1KlTTu3Z2dntqhC5EEIIIYQQQjSVBCxEh6TTKaYNjyD13+dA00gyXKK0SwSlwL59+1ptHl5eXoSGhhIaGuoITtSVX7u1VBbovDKFhtlsdgQv0tPTycrKwmg04u3tjZeXF15eXo7nlV9dXV0bVYAaoDQlH/NXaRQnXILKa0VlQD649uiE18gw3G7wR+kaN25rKC+zsP2177l4NhtNZ8EnxIWBd3WlsMjM4cOHKSkpobS01Cl4ZTG6QWAoZYGhuLq4EODpQXHKKcovnCPzTBKFuTl4+tYdZBJCtL2YmBisVisZGRmMGjWqxj779u1j0qRJjjvnbTYbJ0+epF+/lqtVc+7cObKysujSpUuN22fOnMmECRNYuHBhrYHl4cOHYzQaWbdunaMOB8CgQYPIzMxkw4YNjtRRzaVv377s27ePadOmOdr27dvn+F4dPHgQm83Gq6++6ghKbd682WkMo9GI1Vo9CN5YUVFR7Ny506ntwIEa0hpWERwc7Eh9VZeYmBinlRgAW7dudbo54cCBA8ycOZO9e/fSs2fPRszcmdls5vTp006FywESEhKIiYmpZS8hhBBCCCGE6DgkYCE6LE3TUBV31efrm7ZioTHc3d0dgYnKIIWPj0+LH7c5eXl50atXL3r16tWix3Ht5oPr//hgyS3FvP88hd9eRCux198oTcqjNCkPfYAbXsND8fxFZ3Su7edXkYvRwMRHbmHLH7+nILuEonNw/lu49cEBjtQiv/zlL8nOzubkyZMkJiZy4cIFx/6l5eWcz80DnyDwCUJZyvnbhg2EdA3H19eXTp06Ob526tSpwenAhBAtr0+fPjz44IM8/PDDvPrqq8TExJCZmcmuXbuIjo7mzjvvpHfv3mzZsoWvv/4aPz8/Vq1aRXp6eoMDFmaz2enu+OTkZA4dOoS/vz/dunXDbDazdOlS7r33XkJCQjh9+jRPP/00vXr1Yty4cTWOGRcXR2ZmZp3/Jrm7uzN06FBef/11RowY4QhsGI1Gp/YrVylcjaeeeor777+fmJgYbr/9dj7++GO2bdvmSInYq1cvysvLef3117nrrrvYt28f69evdxojIiICs9nMrl27GDBgAB4eHk1KvzVnzhxWrVrFwoULmTVrFocOHSK+ohh8Y4PyVxo3bhzPPPMMOTk5jhWQVwYlLl2y117q27cvvr6+DR57wYIF3HXXXXTv3p3z58/z/PPPo9frHbU6Ku3du9ep0LoQQgghhBBCdFTt5yqhEI1luZy2p5zLd19OmjSp3pRJjVV5kflqL2pcbwy+rviOj8Tntm4UHUzHvO88lkv24JI1q4S8j5PI//QsBn9XlFGPctWjjHp0juc6+/PK1wYdmtWGVmZDs9jQyisf1irP7duw2MCgQxl0KIOyf3WpfK2zb6t4rXPV49rTF4O/PQe5h4+RO/9fNFtfPkh5qZXTP2TiFWB0/MZUStG1a1e6du3K2LFjyc/P59SpU5w8eZLTp09TXl7u+B5oBhey8wvIPnasxu+Rq6ur4/Pl6+uLn5+f0/Mr86ILIVrWxo0bWbZsGfPnzyctLY3AwECGDh3KxIkTAXjuuedISkpi3LhxeHh4MHv2bCZPnkxeXl6Dxv/+++8dBafBXogaYNq0acTHx6PX6zl8+DDvvPMOubm5hIaGcscdd/Diiy/WWgxbKUVgYGC9x46NjWXPnj2O+hWVRo8eze7du53m1RwmT57MmjVreOWVV3jiiSeIjIxk48aNjuMPGDCAVatW8ac//YlnnnmGW2+9lZdeeomHH37YMcbw4cOZO3cuv/nNb8jKyuL5559nyZIljZ5LZGQkW7ZsYf78+axZs4Zhw4bx7LPP8sgjj9RbZLw+/fv355ZbbmHz5s3MmTOnwfudOXOGyMhIdu/eXe09qXTu3DmmTJlCVlYWQUFBjBw5km+++cYp/dP+/fvJy8vjvvvuu6rzEA2nlJoKjAIGAv0BIzBD07T4GvouAZ6vY7hITdPO1LDfOGAxcAv2XJUHgWWapu26yukLIYQQQgjRrqnKnLqiY1JKdQVSAU6ePEnv3r3beEYtz2K1ceBMDjcFeJL3R3s6h53qG8672usz/O///i/+NRRvbU+Ki4v57LPPgMYV3e7oNJtGyckczF+lUXoqt62nU41LqCfuNwbiflMAhmAPziZksXPdYSp/TfpFF+MZZqnzPbNYLJw9e5YTx49zcO+X2PQGNIOLvYBGE7i5uVULZISEhNCtWzcJoDXA9fqz1hYSExOxWCwYDIar/rfIZrORn58P0Ko1LETTdcT3bPny5axfv57U1NSrHmvHjh089dRTJCQkNPjcd+/ezT333ENSUtJV3Wjxm9/8hgEDBrB48eJa+9T285mYmFi1yHy4pmnnmjyR64hS6gzQHbgEFFY8ry9g8Q5wpobhVmualnvFPlOBd4FM4F8Vzb8BAoH7NU3bcvVn4XQ8x98TqampdO3atTmHF0IIIYRoERGLdrT1FK5pZ/54Z719zp07R3h4eOXLZvt7ot2tsFBKWYF4TdNm1dPvr9j/MGh35yBa1sl0M1P++g0BKP4PbwCs6nJRzeZMZyGal9Ip3G/wx/0Gf8ovFlLwVRolJ7LRSuwrJNpa+flCys8Xkv/fsxgC3fG7MYDRv+yG6bMUAHKOuGHwqDv9mMFgoGfPnvTs2ZPShO9J+uEAmlL8X9hkpt12IwO7uJKbm0teXp7ja15eXq2FYUtKSrh48SIXL150ao+Li2Po0KHNc+JCCHEdWLduHYMGDSIgIIB9+/axcuVKHnvssWYZ+8477yQxMZG0tLSq/2Gv086dO1m8ePFVBSvKysro378/v//975s8hmiS3wKJmqadVUotAl5qwD7xmqaZ6uuklPIDXsceDLml8o8+pdSfgB+BN5VSn2qaVtDk2QshhBBCCNGOtceL/ari0dC+4jrzY2oO4PzhtSABi47GJcQT//scd3Wi2TS0MitamRVbqdWe9qnUiq3cilZqb9fKbc6pnVx0KBd9xdeqDz3oFVi1y6mjLFUe5faUUZWvLVklFB/Lovyc2TEfy6ViCr48RyfgzkBXUgrLuVCukf2DGwW3l+Detf479btHx5D0wwGUphFYdJHPz/XjtxOqF0W12WwUFBSQm5vreOTk5Die5+XlceVquBMnTkjAQoh2JiUlpc5aFseOHaNbt26tOKOmGz9+PHv37q1x2+LFi+u8m7+9SkxMZNmyZWRnZ9OtWzfmz5/PM88802zjz5s3r1H9V65cedXHNBqNPPfcc1c9jmgcTdM+b8Hhfw34As9XvUNN07RzSqk/A0uAu4G/t+AchBBCCCGEaDPtMWDRUB5Aeb29xDXnUEouAMYq8SqrBCw6PKVTKDcDuBnQt8HxfcZ2w5JbQvHRLIoTsig7k2fPGA0YLDZ6uOrp4QplNj1J647iMTsar4i6i6537385OBFefI6Pk7O5mFdCSCfnuhQ6nc5RhLt79+7VxrFareTn55Obm8sHH3xAUVERFy9etBeel7RQQrQboaGhHDp0qM7tHcXbb79NcXHNK8rae9rF2rz22mu89tprbT0Ncf26VSk1BLABicDnmqaZa+g3puLrZzVs+xR7wGI0jQhYVKR8qktI5ZPi4uJaf/aFEEIIIcT1oyH/J2yp/zd2yICFUsoXGAlcaOOpiDZwKDUXAHelHBeUK1NCKUCvb4vL3eJaYPB1w3tEGN4jwrCayyj5OZvio1mUJOaA1f5hM+oUXW0auet/oijCB6/hobj3C7AX8r6Cf1hXvAICMWddIqzkPDqrhX8fPs9vR/Vo1Lz0ej1+fn74+fnRpUsXTp8+TXFxMWazGW9v72Y5dyHE1TMYDPTq1autp9EswsLC2noKQlxrll7xOlcp9YSmaVcGHiqLjCTWMEbiFX0aqsGFWvbs2UNgYGAjhxdCCCGEaAsd8rJ2h1FZD7Quly5dapFjt4t3VimVdEXTfUqpMbV0N2C/C0gPvNWC0xLtUH5JOacy7Tej9Qn0tJciBKzKfjFZ3wGKfIqOQe9lxHNQCJ6DQrCVWMg/ks7Zz4/jm+uCvmJVQ9mZfLLP5KPzcrH3HRyCwe/y6gmlFBHRMSTs/i8GzUpo6QU++img0QGLqjp37szp06cBSE9Pl4CFEEII0b79BMwETNhvtgoBJgIvAPFKqVxN0z6q0r9Txde8GsbKv6KPEOIa98T+dnHJ5pq1ZpilRcaV961lyfvW8bTUeyauXe3lpzGiynMN8Kp41KYM+BDoeAmUxVU5nJpHZSr/fsFeUBG8cAQs9BKwEM1P52bA9SZ/zpw3Y8vW43nEm256hZfeHriwmcsp2J1KgSkVtyh/PId2wa2PH0qn6F4RsADoVpzKvnPhJF8qJDLQs0lz6dy5s+N5enr6NXM3txBCCHEt0jRt+xVNZ4A/K6V+Bv4LLAM+unK/ZlZfJfgQ4ADArbfeSteu9WWQEkK0mv1ftPUMrml33HFHywws71uLkvet45H3rGNqyPt27ty5evs0RXsJWERWfFVAErAFeKqWvmVApqZpEp67Dh2qKLgN0CfAC6gIWFTkhjJIOijRwnT+Vno83If//uU4/jqIMOoIddWhNECDkuPZlBzPRu/niufgLnTt3ReUAk0jvNj+i/zjn87zv7c1NpuD3ZUBCyGEEEJ0PJqm7VJKnQb6K6V8NE2rXD1RubKiE5B1xW4+V/Rp6LHq/Euyaj0sd3d33N3dGzO8EEJ0WPL7rmOS963jkfesY2rI+9ZS7227uB1d07SzFY8zwDvAJ1XarnxckGDF9evHioLbAD39PRzPbRV/Zxn07SUGJ65lYVG+jJ3Wl0sWje+LrHyaW05plB/6TkZHH2tOKfmfniH3jeOMi5hBD+8BhFkK8bAU8dFP59Eqlwo1UmBgILqK1GcSsBBCCCE6tMqkvx5V2uqqU1FXfQshhBBCCCGuCe0iYFGVpmkzNE3b0NbzEO2PpmmOgtud3F3o7GG/OKyhXQ5YGCRgIVpH1JAQht3dE4BSDT49kEnZnT0JeLgfrn387OvFADTwJYhBgXH8qttjrNK7M8Pfh9Li8iYd12AwOIphZmZmYrFI/FYIIYToaJRSnsCNQCGXAxcAX1Z8rWkN/rgr+gghhBBCCHHNaXcBCyFqk1dcjp+nPUhxc7gvmtV+h7oNzXFx2MVFAhai9cTc0Y3oWHueZ82m8cnbCeR7uBA08yZCFvwCn9u7YQi8vDxOr/TcpDox+riZrD9+T/a/TlByItvxWW6oyrRQNpuNrKwrs0UIIRpjzJgxzJs3r62nIYS4BimlvJVSfWpodwf+CngDm69YPb4Ze8qnx5VSXavs0xV4DHtw48q6GEIIIYQQQlwz2mXAouI/9wuVUv9VSh1TSiXV8jjd1nMVrcfXw8jnT47m8JI7WDb5JrDYALBgdfQxuLi01fTEdUgpxchf96bnLcEAWMps7HjjJ3IzijAEuONze3c6zx9I4CM3kWj+gWJLgWNfrcxK0Y8ZXNp4lAsrviX3o9NYC8oadFypYyFE89m2bRsvvvhiqxxrz5493HXXXYSGhqKU4sMPP6zWR9M0/vCHP9ClSxfc3d25/fbbSUx0zv6ilEIpxTfffOPUXlpaSkBAAEopTCYTAEOHDmXu3LlO/davX49Sivj4eKf26dOnM2rUqKs+TyGudUqp3yql4pVS8cCvK5odbUqp31a0BQDHlVLfVrT/USm1ETgJTAGOcEXdPk3TcrAHJgKBH5RSryulXgd+qBjvUU3TChBCCCGEEOIa1e4CFkqpUOAnYAVwG3ADEFHHQ1xnfNxcCPf3QKshYOEiAQvRypROcfuMvoT29gWguKCcj9ceoijfHnxQSuHW3Y/c8Fw+Tn2T3RfeR3eDB8rtcoF4W2E55q/Pk772R0rP1F9HUwIWQjQff39/vL29W+VYhYWFDBgwgDfeeKPWPi+//DJr165l/fr1fPvtt3h6ejJu3DhKSkqc+oWHh7Nx40antu3bt+Pl5eXUFhsb6wheVNq9ezfh4eHV2k0mE2PHjm38iQlx/RkJTKt43FLRNqJK28iKtmxgHfa1wBOA+cC9wHngaWCIpmnVlkpqmvYeMB44DswApgPHgDs0TfugRc5ICCGEEEKIdqLdBSywByoisActHgAGAJG1PHq0zRRFe6CVVwQslM3RZjQaa+suRIsxuOiZ8Eh//EM9Aci/VMKON36irORyhofu0begoZFRkkJawFl0j99M5u1huPcPBIM9p5mtoIzMvxymYG9anUW5JWAhRPOpmhKqtLSUBQsWEBYWhqenJ0OGDHG6qJ+VlcWUKVMICwvDw8OD/v378/777zf4WOPHj2fZsmXcfffdNW7XNI3Vq1fz3HPPMWnSJKKjo/n73//O+fPnq63GmDZtGps2baK4uNjRtmHDBqZNm+bULzY2lhMnTnDx4kVH25dffsmiRYuczi05OZmzZ88SGxvb4PMR4nqladp0TdNUHY/pFf3yNU17TNO0wZqmBWua5qJpmo+maUM0TVupaVpxHcf4RNO0WzVN89I0zVvTtDGapn3eaicphBBCCCFEG2mPCf/HAelArKZp9d9qLK5bmrX6Cguj0bWtpiOuc64eLtz1+AC2vnwQc04pGWcL+PSvCUx4NBq9XkfEgBhH3x3/MfHO1674exj5dvFt+BZZyN50nNLTeWCDvB1JlKXk43dfb3Su1X9Ne3t74+7uTnFxsQQsRLu2ecUBx2qjxtGw2exBO51OcbmKfcN4+Bi5f/GgRh/1scce49ixY2zatInQ0FC2b99OXFwcR44coXfv3pSUlDBw4EAWLlyIj48PO3bs4KGHHqJnz54MHjy40ce7UnJyMhcvXuT22293tHXq1IkhQ4awf/9+HnjgAUf7wIEDiYiIYOvWrUydOpWUlBT27NnDG2+84ZTiasSIEbi4uLB7926mTJnCsWPHKC4uZtasWSxcuJDk5GQiIyPZvXs3bm5uDBs27KrPQwghhBBCCCGEaKr2uMLCD9gvwQpR1eFzudy+6ksWfPATX5+6BFxeYWGlygoLVwlYiLbj5efGxMcH4OphDzKkHM3m+51nAPDrEoZ3YBAAnjkp6KwWsgrL2Hc6C723kcBZ/fEeE+4Yq/jIJTL+fIjy9MJqx1FKOVZZFBQUUFhYvY8Q7UFRfhmFuaVNeJRRnF9OcX45hbmNH6MpQZKUlBQ2btzIBx98wKhRo+jZsycLFixg5MiRjtRLYWFhLFiwgJtvvpkePXrw+OOPExcXx+bNm5vl+1W5CqLqKqrK11VXSFSaOXMmGzZsACA+Pp4JEyYQFBTk1MfT05PBgwc7VlOYTCZGjhyJq6srw4cPd2ofNmwYrvLvqOhAlFJ6pdRwpdRjSqkXlVJ/rvj6mFJqmFJKX/8oQgghhBBCiPakPa6wSKV9BlJEG/rhbA6nMsycyjAT3bUTw3sFolntd99a1OUVFq5ucqFFtK2AUC8mPBLNh6/9iGbTOP1DJkPu6oFSiojoGI588Rk6m4XQkgukeoTz0aHzjO4ThNIpOsVFYAz3JvuDE2glViyZxWS8cQi/e/vgMcD5ImTnzp05c+YMABkZGURGRrbB2QpRNw+fpqbpu/oVFo115MgRrFYrffr0cWqvLGQNYLVaWbFiBZs3byYtLY2ysjJKS0vx8PBo9PGaw9SpU1m0aBFJSUnEx8ezdu3aGvuNGTOGDz6wp703mUyMGTMGgNGjR2MymZgxYwYmk4nf/e53rTV1Ia6KUmok8P+AOwHPqpuAqjkVzUqpHcAbmqbta8UpCiGEEEIIIZqoPQYstgCzlVKemqbJbcMCgEOpuY7nN4f72p9U1rBwWmHh1oqzEqJmob19CQr3IuNsATkXCikpLMfN04Xu0bdw5IvPAOhVnkYq4Xx29CIl5Tfh5mK/CdT9xgA6d44h672fKb9YiFZmI/v945Sl5NNpfCTKYI/nXlnHQgIWoj1qSlomAJvNRn5+PgA+Pj7odC1/H4PZbEav13Pw4EH0euebsisLWa9cuZI1a9awevVq+vfvj6enJ/PmzaOsrClpr6oLCQkB7D/TXbp0cbSnp6dz8803V+sfEBDAxIkTmTVrFiUlJYwfP56CgoJq/WJjY1m+fDlpaWmYTCYWLFgA2AMWb731FqdPnyY1NVUKbot2Tyk1CngNiMEenLABR4CjQBaQD3QCAoCbgH7Ya+L9Rin1A/Ckpml722DqQgghhBBCiAZqjysZXsS+ymKzUiq4rScj2ocfKwIWRoOOG0J8ANAsNdWwkKLbon0I6dnJ8Tw92X7htVv/AaDsd4pHWc4DUFBqwXQiw2lfQ6A7QY8OwOOWy78CzfvOk/nXI1jzSgEpvC1Ec4uJicFqtZKRkUGvXr2cHpWBhH379jFp0iSmTp3KgAED6NGjBydPnmy2OURGRhISEsKuXbscbfn5+Xz77be11paYOXMmJpOJhx9+uFqgpdLw4cMxGo2sW7fOUYcDYNCgQWRmZrJhwwZH6igh2iul1CbABPQHPgLuBvw0TbtZ07QHNU37X03TntM07XFN0/5H07RowB+4F/g3EA2YlFLvt9EpCCGEEEIIIRqgPa6w+DNwGvsfIaeUUt8DKVDlNvrLNE3TZrXm5ETryy4s42xWEQD9wzphrLjD/HLA4vJHw8XFpfUnKEQNQnp04vAX5wC4mJRH95sCcPfyJqRnby6eOolLfjoenQopMnjy0U/nibupi9P+OqMev1/3wdjdh9yPToNVo+xsPumv/4j/lBsICr+cIkoCFkJcvT59+vDggw/y8MMP8+qrrxITE0NmZia7du0iOjqaO++8k969e7Nlyxa+/vpr/Pz8WLVqFenp6fTr169BxzCbzZw6dcrxOjk5mUOHDuHv70+3bt1QSjFv3jyWLVtG7969iYyM5P/7//4/QkNDmTx5co1jxsXFkZmZiY+PT63HdXd3Z+jQobz++uuMGDHCEdgwGo1O7fJvqGjn7gbWAcs0TWvQP3yapuUD24HtSqnOwB8A+dtBCCGEEEKIdqw9Biymczn3rBcwpo6+GvJHxzXvp5rSQQG2ypRQVWpYyMUW0V50qbLC4sLpPMfziOgYLp6y35Hdz3aR7+nJ5z9nUFBSjreb8+dXKYXXkC4YQ73I+sfPWHNLsZnLufT2EQJn3kRAQABZWVlkZGRgs9laJW2OENeyjRs3smzZMubPn09aWhqBgYEMHTqUiRMnAvDcc8+RlJTEuHHj8PDwYPbs2UyePJm8vLx6Rrb7/vvviY2Ndbx+8sknAZg2bRrx8fEAPP300xQWFjJ79mxyc3MZOXIkn3zyCW5uNac8VEoRGBhY77FjY2PZs2ePo35FpdGjR7N7926neQnRTkVpmnamqTtXBDn+n1LqleabkhBCCCGEEKK5tceAxYy2noBoX35MyXE8j+nm63huK7MHKqqmhJKAhWgvvPzc8PJzxZxTSvqZfGxWGzq9ju7RMXyz7V8ADDRk8D09KbPY+OxoOvcO7FrjWMZwb4IfjyF703FKE3NBs6eI6ty5M1lZWVgsFrKzsxt00VII4cxkMjmeu7i4sHTpUpYuXVpjX39/fz788MMmH2vMmDFomlZnH6UUL7zwAi+88EKtfeoaw9fXt8btS5YsYcmSJdXan3/+eZ5//vk65yREe3A1wYorxklujnGEEEIIIYQQLaPdBSw0TXunrecg2pcfa1lhUZkSyiopoUQ7FdKzE6e+z8BSaiUrrZCgbt506X0DLm7ulJcU45mVBIFDQSk++ul8rQELAL2nC4EzbuL8kv1oZVbKLxbSeVhnjh07BtjTQknAQgghhBBCCCGEEEJ0ZJI/RLRrNpvmSAkV6OVKmK+7Y5smKaFEOxfS43JaqItJ9pQxeoOBbjdFA1BuzucmdzPDegRwZ3SXGseoSukULiEeAFhzSwn2uxygkDoWQrStlJQUvLy8an2kpKS09RSFEEIIIYQQQoh2r92tsKhKKdUPGA4EAUc1Tfuool0HGDRNK2vL+YmWl3SpkPwSC2BPB6WUcmxz1LCQFRainbqyjkX/MfYVFN2jYzj9/bcALB6gZ/jdQxs8pkuIJ2UpBQD46y4X2ZWAhRBtKzQ0lEOHDtW5XQjRvJRSPYCFwG1AKOBaS1dN07R2/XePEEIIIYQQwq5d/sddKRUObASqVoB8B/io4vnvgHVKqTs0TdvV2vMTraernzvv/24oh1JziQz0cNpWmRKqHIujTQIWoj0J6OqFwUWHpdzmWGEB9sLbldISDsHdv27wmC4hno7nHgV6jEYjZWVlErAQoo0ZDAZ69erV1tMQ4rqhlIoBTIAXoOruXe92IYQQQgghRDvR7lJCKaX8gS+BscBR4E2q/5GxGbABv2rd2YnW5uaiZ1jPAB4Z05O4m5xT5lQGLCxVAhYGQ7uMwYnrlF6vIzjCvgqiIKuEwtxSAHxDQvEJ6gxA2vGjlJeWNHjMypRQAJb0Ijp3to+Tm5tLSUnDxxFCCCE6uD8B3sA2YCDgo2marrZH205VCCGEEEII0VDt8T/vC4EI4BVggKZpj13ZQdO0HOAIMLJ1pybaFYsGQDlSw0K0XyE9q9exUEo5VllYLRbO/XwUq00jMb2AojJLjeNUqrrCovxioSNgAZCRkdGcUxdCCCHas2HACeB+TdN+1DTN3NYTEkIIIYQQQly99hiwmAScARZpmqbV0S8Je65acZ26vMJCAhai/epSpfD2hSppobpH3+x4vuM/Jm58/hN++doeDpzJqXM8nYcLeh8jYA9YBAcHO7ZJWighhBDXkXLgUD1/LwghhBBCCCE6mPYYsOgO/KBpmq2efmWAfyvMR7SRUxkFvPP1GX5KzaXMUsPHwWb/+1QCFqI969zjcmHsi6cvByzCbxqAUvZfwbZzJyipKCJ/9Hwe9TFUrLLQSqwEeQU42iVgIYQQ4jryA9C1rSchhBBCCCGEaF7tMWBRgj0fbX26AfVf2RMd1hfHM3j+o6NMemMf2344V71D5QoLZQ9YKECv17fiDIWon7uXEd/O9roTmSkFWMqtFe3ehPTsDUD5pfN4WgoBOJqWX++YLl0up4Xys1yuaSEBCyGEENeRV4BhSqkxbTwPIYQQQgghRDNqjwGL48AtSinP2joopQKBAcDhVpuVaHU/puQ6nt/czbd6B8cKC3vgQqdTKHVlfXYh2l5lHQubVSPjbIGjvfuAGMfzyLI0oGErLKrWsdBlW/D19QXsAQubrb7FaUKIqsaMGcO8efPaehpCiEbSNO0T4Ang/5RSLymlblVKRSilutX0aOv5CiGEEEIIIRqmPQYstgABwCpVmS+lupWAB/CvVpuVaHWHUnMB8DTq6R3svOhGs2qoiozF1oqAhV7XHj/OQjjXsaiaFqp79OWAxY22CwCcySqioKS8zvFcOl9eVVG18HZZWRl5ebLwTIjG2LZtGy+++GKrHGvPnj3cddddhIaGopTiww8/rNZn+vTpKKWcHnFxcU59Ktu/+eYbp/bS0lICAgJQSmEymQAYOnQoc+fOdeq3fv16lFLEx8dXO/aoUaOu+jyFaEU/AOeBp4HdwGkguYZHUltNUAghhBBCCNE47fEK7xtAAvBb4Dul1OKK9p5KqSeVUvuBh4FDQHybzFC0uIt5JVzIKwEguqsvep3zygnNevkucquyPzdIOijRToVUDVhUKbzdpVcURnd3AALzz0JF3dCfLxRQF5dgD6j4mbBUCViApIUSorH8/f3x9m5IJsqrV1hYyIABA3jjjTfq7BcXF8eFCxccj/fff79an/DwcDZu3OjUtn37dry8vJzaYmNjHcGLSrt37yY8PLxau8lkYuzYsQ0/ISHakFJqJLALiMKeGTQbSKnlkdpG0xRCCCGEEEI0UrsLWGiaVgKMA/YDtwCVtz2OxL6yYgjwPTBR07S6b0MWHdah1BzH85ga0kFp5dUDFlK/QrRXfiEeuHoYAHvAQqsITOgNBsJvHACArrSQwLJLQP1poZRBhyHIHugozywmODDYsU0CFkI0TtWUUKWlpSxYsICwsDA8PT0ZMmSI00X9rKwspkyZQlhYGB4eHvTv37/GYEJtxo8fz7Jly7j77rvr7Ofq6kpISIjj4efnV63PtGnT2LRpE8XFxY62DRs2MG3aNKd+sbGxnDhxgosXLzravvzySxYtWuR0bsnJyZw9e5bY2NgGn48QbWwZ4AasAgI0TQvSNC2ytkcbz1UIIYQQQgjRQIa2nkBNNE27AIxUSo0D7gR6YA+upAL/Af5Pq7ziJ65JP1akgwK4Ody3eoeKFRYaGlbsHwWDvl1+nIVA6RSdIzuRcjSL4oJy8jKL8Q22p3WKiI7h9Pf2tC7dis9xyTWIo+cbUHg7xBNLehFYNQKNl1dwSMBCtCfvPTOPwtyc+jvWoLIei64J6f48ff2Y+tLqRu/32GOPcezYMTZt2kRoaCjbt28nLi6OI0eO0Lt3b0pKShg4cCALFy7Ex8eHHTt28NBDD9GzZ08GDx7c6OPVxmQyERwcjJ+fH2PHjmXZsmUEBAQ49Rk4cCARERFs3bqVqVOnkpKSwp49e3jjjTecUlyNGDECFxcXdu/ezZQpUzh27BjFxcXMmjWLhQsXkpycTGRkJLt378bNzY1hw4Y123kI0cJuAX7UNG1BW09ECCGEEEII0Xza9RVeTdM+BT5t63mI1neonoLblSssbGhoFdmiDAZZYSHary49fUg5mgXYV1lUBiy6R9/s6NO19Dw/ENPggEXxT5kAeBW7YDAYsFgsErAQ7Uphbg7m7Ky2nkaDpKSksHHjRlJSUggNDQVgwYIFfPLJJ2zcuJEVK1YQFhbGggWXr40+/vjjfPrpp2zevLnZAhZxcXHcc889REZGcvr0aRYvXsz48ePZv39/tZWEM2fOZMOGDUydOpX4+HgmTJhAUFCQUx9PT08GDx6MyWRiypQpmEwmRo4ciaurK8OHD8dkMhEZGYnJZGLYsGG4uro2y3kI0QrKgBNtPQkhhBBCCCFE82rXAQtxfbJYbRw+Z0+JE+brTrC3W7U+mtW+qsKC1dHm4uLSOhMUoglCrii8fcPQLgD4hoTi6uFJaVEhwRb7neiXzKVYrDYM+trvLHcJuVx425peTHBwMOfPnycrK4uysjKMRmMLnYkQDefpWz2VUUNd7QqLxjpy5AhWq5U+ffo4tVcWsgawWq2sWLGCzZs3k5aWRllZGaWlpXh4eNQ0ZJM88MADjuf9+/cnOjqanj17YjKZuO2225z6Tp06lUWLFpGUlER8fDxr166tccwxY8bwwQcfAPbVG2PGjAFg9OjRmEwmZsyYgclk4ne/+12znYcQreBboE+9vYQQQgghhBAdigQsRLtzMt1Mcbk9EFHT6gq4vMLCyuVaFhKwEO1ZcIQPStnralctvK2UIrBbd9KOH8O9rADT44PpHhqIUqqO0ewrLCqVX7AX3j5//jwAmZmZhIWFtcyJCNEITUnLBPZgRX6+faWRj49Pk4IWjWU2m9Hr9Rw8eLDaSobKQtYrV65kzZo1rF69mv79++Pp6cm8efMoKytrsXn16NGDwMBATp06VS1gERAQwMSJE5k1axYlJSWMHz+egoKCamPExsayfPly0tLSMJlMjlUio0eP5q233uL06dOkpqZKwW3R0bwI7FFKTdE0reHFZIQQQgghhBDtWpsHLJRSSYAG3K5pWnLF64bSNE3r2UJTE21EKbizfxcOpeYSU1P9CkCz2AMVFnV5hYXRRe4oF+2X0c1AQFcvLqWayTpfSGmxBVd3+6/gwG6RpB0/BoAhPx0VFlTXUADofV1Rrnq0UivlF4vo3LezY1t6eroELIRopJiYGKxWKxkZGYwaNarGPvv27WPSpElMnToVsAdWTp48Sb9+/VpsXufOnSMrK4suXbrUuH3mzJlMmDCBhQsXVgu0VBo+fDhGo5F169Y56nAADBo0iMzMTDZs2OBIHSVEB2IEVgPvKqV+hb3OXQpUuZulCk3T9rTe1IQQQgghhBBN1eYBCyACe8DCpcrrhpLC29egvl18eOPBWwCw2mp+ix0Bi6orLCQFjmjnuvT05VKqGTRIT86jWz97mpmgbt0dfTJTztC17031jqWUwiXEk7Kz+VjzSgnyvXwxU+pYCNF4ffr04cEHH+Thhx/m1VdfJSYmhszMTHbt2kV0dDR33nknvXv3ZsuWLXz99df4+fmxatUq0tPTGxywMJvNnDp1yvE6OTmZQ4cO4e/vT7du3TCbzSxdupR7772XkJAQTp8+zdNPP02vXr0YN25cjWPGxcWRmZmJj49Prcd1d3dn6NChvP7664wYMcIR2DAajU7tslJRdDAm7H8LKOD+ikdtNNrH3z1CCCGEEEKIerSH/7hHVnxNu+K1EOh1taTFcQQsqqywkICFaOdCevpwxGR/fvH05YBFYLfLv/YupZxp8HguIR6UnbWnzfHXvBztErAQomk2btzIsmXLmD9/PmlpaQQGBjJ06FAmTpwIwHPPPUdSUhLjxo3Dw8OD2bNnM3nyZPLy8uoZ2e77778nNjbW8frJJ58EYNq0acTHx6PX6zl8+DDvvPMOubm5hIaGcscdd/Diiy/WWgxbKUVgYGC9x46NjWXPnj2O+hWVRo8eze7du53mJUQHsQe5eUkIIYQQQohrTpsHLDRNO1vXayFqUmNKKLeaL+YI0V44Fd6uUsciMPzyCotTxxPZ//ExEjMKiJ8xuPagHc51LFxybXh7e1NQUEB6ejqaptVbB0MIYS9CXcnFxYWlS5eydOnSGvv6+/vz4YcfNvlYY8aMQdNqv77q7u7Op59+Wu84dY3h6+tb4/YlS5awZMmSau3PP/88zz//fL3HFKK90TRtTFvPQQghhBBCCNH8Wr6KpRCNUFBSTkm5td5+msV+MaZq0W1XV7cWm5cQzcHb3w3PTvaVQBeT87FVpDxz9fDAJ8heg8J8IZUNXyWxN/ESyZfMdY7n0qVK4e2L9sLbAMXFxTUW3hVCCCGEEEIIIYQQoj1rdwELpVS4UuphpVRUHX1uqOjTtTXnJlpe/L4z9F/yKb/681f8lJpbaz+thpRQrm4SsBDtm1KKkJ72VRblJVayzxc6tgV1jwBAZy3Dx2IPNhw9n1/neC6dqwYsihwBC5C0UEK0tpSUFLy8vGp9pKSktPUUhRBCCCGEEEKIdq/dBSyAx4GN2Avo1UYB8cCjrTEh0XoOpeZSbtU4fC4PH/fai3/WVHTbWEt+byHak9rTQkU4ngeUZQH1Byx07gb0neyf+/KLhQQHBzu2ScBCiNYVGhrKoUOHan2Ehoa29RSF6NCUUre0p3GEEEIIIYQQLaM9BizuAH7WNO14bR00TfsZOAbEtdqsRIvTNI1DFasqfD1ciAjwqL1vDTUsXFxqD3AI0V5UrrAAe+HtSpUrLAACyrIBOHq+/kK+lWmhtFIrQR5+jnYJWAjRugwGA7169ar1YTC0edkwITq6A0qpTUqpG5qys1LqRqXUZuDA1U5EKTVVKfWWUup7pVSpUkpTSk2voZ+LUupepdQ7SqmflVJmpVSBUupbpdQjSil9DftEVIxX22PJ1c5fCCGEEEKI9qw9/vUcDuxtQL9TwIgWnotoRanZxWQVlgFwc7hv3QWDa1hhIQEL0REEhXujN+iwWmxcqGWFRZiWw/dAQlp+vcWzXUI8KDluD3D4lLih0+mw2WwSsBBCCHGtWQv8P+DXSqn92Fdb79I0Lbm2HZRSPYBfAtOBwYAVWNMMc1kGdAcuARcqntekJ7AFMAO7gI+ATsBdwDpgglLqV5qmaTXs+xPwYQ3tpquZuBBCCCGEEO1dewxYeADFDehXDHi38FxEK/oxNcfx/OZw3zr7VhbdrlrDQgIWoiPQG3QER3hz4VQe+ZnFFOWX4eFjxK9LKHoXF6zl5QRb7D8LecXlpOUW09Wv9tVGLiGX61jYLpUQFBREeno6ly5dwmKxyF3dQgghrgmapv1eKfUXYCUwHhgGoJTKBH4GsoB8wAcIAPoCQVWG2Ak8XbFS+2r9FkjUNO2sUmoR8FIt/QqwB1ne0TTNUbhKKTUfe+BhInAf8EEN+x7SNG1JM8xVCCGEEEKIDqU9poS6ANzcgH4D+P/Zu+/4qur7j+Ov7x3ZCQkECCMhLAEB2eBkOHDXvbfV2m1rW2trf1Y7tLvW2mGHo7buvcUBooKAbFH2CBsSCNm56/v749zcDDIhN/cmvJ8+zuOee873fM/nejLI+Zzv9wN7ohuKdKRldYpst5ywqJkSSiMspPNprI6Fy+2mR788ABIrinCHAkArCm/nNF54OxQKsXfv3naNW0REJJastV9Ya88BhgMPAluBXsA04EKckRQXht/3Cu//MzDcWntuOyUrsNa+a63d0op22621f62brAhvLwf+EH47rT1iEhERERHpKuLx0dsPgauNMRdZa59vrIEx5kKcP1Se6NDIJKqWFhRH1lubsAhqhIV0QvUSFhsOMGis8wBozwH57Nm8AWMt3f372ZvYk1U7Sjh9ZE6TfXl6JoPbQNDi31VO78m9I/t2795Nnz59ovdBREREYsBauw64Fbg1PO3TOKA3znRLxTgPNS1pbrqoOOAPvwaa2N/XGPMNnM+0G5hjrd1wKCcyxvRvoUnkHxqVlZVUVrZmsLuISOenn3edk65b56Nr1jm15rpF69rGY8LiT8BVwH/C/7h+2FpbCmCMSQduBH4JhHDmspUuoDoQ5PPwk+SDslPJTElotn3I5yQqNCWUdEaNjbAAyM6tnQK7h6+IvYk9+byFwtvG7cLbMxn/rgoCeyvolV0/YSEiItKVWWs3AhtjHcchuDH8OquJ/aeFlxrWGPM/4KsNR2y0wtbWNpw7dy7Z2dlt7F5Eoiceb9l0HbNmNfUj+HDpukWTrlvno2vWObXmuhUWFkbl3HE3JZS1dgnwIyAZZ6j0PmNMgTGmANgX3pYC/MRauzB2kUp7+nxHCb6gM2qipdEVACG/poSSzislI4FuPZMB2LOllGD46zl7wMBImwnplXxt+mCumtJUHc9akWmhQtDDnRHZroSFSOwYY3jppZdiHYaIxCFjzFdw6nC8b619o8HuCuDnwAQgE+gOnAosBK4G/tNxkYqIiIiIdLy4TEVZa39rjFkD3INTq6LuMOblwD3W2pdiEZtEx7rdZZH1cXmZLba3vnDCQiMspJPKGdyNA3srCQZC7N1aSs6gbvTMy4/sH5tWxfy/xrEAAQAASURBVCVnDG9VX56cVMCpV5FQYkhJSaGiokIJC5FOIj8/ny1b6k+Hf99993HHHXcAMGfOHGbMmEFmZiY7d+4kKSkp0m7RokVMnjwZAGstZWVlZGVl8fjjj3P55ZdH2l1++eU8/fTTbNq0ifz8/Hrnvuaaa/j5z38exU8oIjWMMefg1N/YgpOAqMdauwe4q8Hm94wx84ElwIXGmPHhh7xaK7eF/TnAIoCpU6fSv39LM0iJSIeZ/36sI+jSZs6cGZ2Odd2iStet89E165xac922bdsWlXPHZcICwFr7CvCKMaY3kBfeXGCt1R24LujSSbmcMqIXy7cVMzwno8X2IX/NlFAaYSGdU86gbqz5ZBfgTAuVM6gbKd0ySc7oRmXJAQoLNre6r7qFtwPhwtubNm2ivLycsrIy0tLS2jt8kSOW3++Pyu+bn/3sZ9x8882R9+np6Qe1SU9P58UXX+SKK66IbPv3v/9NXl4eBQUFAKSlpTFx4kTmzJlTL2ExZ84ccnNzmTNnDtdffz0AmzZtYsuWLZx88snt/nlE5GDGmLOA53BqUpxsrd3Z2mOttRXGmMeBXwAn4CQvWntss39JGmMi68nJySQnJ7e2axGRTk0/7zonXbfOR9esc2rNdYvWtY27KaEastbuttYuCi9RTVYYYyYZY94wxhQbY8qNMZ8YYy49hH56GWP+aIxZZ4ypMsYUGWPmG2O+Fo24u4oeaYmcPLw3fTNb/mKvnRJKIyykc+ozuH7hbXBuGNSMsqg4UEx58f5W9eXtU5uw8O8qp3dv1bEQaa3p06fz7W9/m9tvv53u3buTk5PD3XffHdlvjOFvf/sbX/rSl0hNTeWXv/wlAC+//DLjx48nKSmJQYMGcc899xAINFU7t2Xp6enk5OREltTU1IPaXHfddTz88MOR95WVlTz11FNcd9119drNmDGDOXPmRN5/8cUXVFVV8bWvfa3e9jlz5pCYmMhxxx13yHGLSOsYY84GXgAKgRnh2httVTNJ8ME/IEREREREuoi4HWHR0YwxM4C3gSrgKaAUuAh42hiTa639fSv7GYtTPC8LeB3nKao0YARwLvC3dg/+CGTDCYtgnREWbrc7VuGItFlWn1QSktz4qoLs3HAAay3GGLLz8in4bDkAe7ZsxgQS2FfhY3xeVpN9uTMSMEkebFWAwK5yeo+rn7AYPHhw1D+PSGN2/3kpoVJfm4+zgLXOz/cK48I03/wgrvQEen9rXKvbP/bYY9x2220sWLCA+fPnc/3113PCCSdw2mlOvdu7776bX/3qV9x///14PB4+/PBDrr32Wh544AFOOukkNmzYwFe+8hUAfvrTn7YxWsevfvUrfv7zn5OXl8eVV17Jd7/7XTye+v9Mu+aaa/jtb39LQUEBeXl5PP/88+Tn5zN+/Ph67WbMmMF9993Hzp076dOnD7Nnz+bEE0/k5JNP5qGHHoq0mz17Nscdd1y9KaZEpP2FkxXP49Tjm2GtXX+IXU0Jv25uj7hEREREROJRzBMWxphrw6svWmtL67xvFWvtYReeM8Z4gH8CIWCqtXZZePvPcArc3WuMec5au6XpXsAYkwG8HH47wVq7opHzSDuwgfo1LFzG1BvOLhLvXC5D70Hd2Pr5PipKfJQWVZGRnVyvjsVPHpnFx0k7GNQzlfe/N73JvowxeHNS8G0uIVjio2e3PpF9GmEhsRQq9REsaXvCoi7bTrE055hjjokkGoYOHcqDDz7Ie++9F0lYXHnlldxwww2R9jfeeCN33HFHZGTDoEGD+PnPf87tt99+SAmLb3/724wfP57u3bszb948fvSjH7Fz507+8Ic/1GvXq1cvzjzzTB599FHuuusuHn74YW688caD+jvhhBNISEhgzpw5XHHFFcyZM4dp06YxYcIECgsL2bRpEwMHDuSDDz7gy1/+cpvjFZHWM8aciZOs2I+TrFjXQvtxwDJrrW2w/ULgunA/b0YpXBERERGRmIuHG+iP4tyP+ARnVEPN+9Y67IQFcDIwGHikJlkBYK09YIy5NxzTdcDPWujn6zj1Nr7cMFkR7u/Q54rowv63YAurdpQwNjeT00fm0C255amdGiYs3C4lK6TzyQknLMCpY5GRnUx2nYRF31AxAJsKyymvDpCa2PSPbG9OKr7NJQBkBlIwxmCtVcJCYsqVnnBIx9UdYWEOcYRFWxxzzDH13vfp04c9e/ZE3k+cOLHe/uXLl/Pxxx9HpocCCAaDVFVVUVFRQUpKSpvOf9ttt9WLJSEhgVtuuYX77ruPxMTEem1vvPFGbr31Vq6++mrmz5/Ps88+y4cfflivTUpKCpMmTYokLD744AN+8IMf4PF4OP7445kzZw7WWgoKCpgxY0abYhURMMbcBJwYfjs6/HqTMWZ6eP0ja+2/jDHDgReBRGAOcEUjD9hsttY+Wuf9H4HB4SLb2wA3MD58vmrgemvtgfb8PCIiIiIi8SQeEhb/wbk3caDB+440Pfw6q5F9b4dfp7Win8twYn/eGDMMmAkkA6uBt6y1bX7M1BjTv4UmOTUr1dXVVFZWtvUUMff68u3M27ifJxYUML5fKgm0poZFEBcQMM4NLbfL1ak+e1VVVaPrEr+icc2696+dhmXrmiJyR3cjpUfPSLKhR3URpIC1sGzzXsbnZTbdWY/aG7S+neVkZWWxb98+9u7dS3l5OS5X3Jcsigp9r3WcUChEzQPBoZDzs7nnN8Yccl9lZWWAU0T6UL5+a2JoDY/Hc1D7YDAY2ZacnFxvf1lZGXfffTcXXHDBQX0lJCRE2oZCoTbFUWPSpEkEAgE2btzIsGHD6vV3+umnU1lZyZe//GXOOeccsrKy6u2vMX36dJ555hlWrlxJZWUlY8eOJRQKMXXqVN5//30CgUAksXEoMTZUt4/26E/an7WWUChU799L1dXVMYyoUzsR52Gmuk4ILzX+hfPv9Jqs4+VN9PUBzsNRNf6LMy3tsUA2Ts3B7eH+fm+tXX04gYuIiIiIxLuYJyystdc3976DDA2/HjRE21q7yxhTVqdNo4wxCThPWO0FvgXcQ/2i5huNMedba1e2MbatrW24YMECNmzY0MbuYytkYekWN2DI8Fo+W/Ahq1rxKO2I8m6k4I6MsAgGAsya1Vi+Kf7NnTs31iFIG7XXNQv5wSlxY9iwYgdlGc6U1p60DPylB/CU7MZkhrDGxQuzF1HYp+lcbmqph+FkALBl8VpCrnCdl2CQV199leTklhOBXZ2+16KrR48eJCcnY4yhpKSk3fqtSVxESyAQwOfz1Ys5EAjg9/sj2yorK+vtP+aYY/jss8+45ZZbmo234XGtNX/+fFwuF8nJyZSUlFBRUQFAaWkpLpeLSy+9lAceeIBnn32WkpKSyA3ouueaPHkyv/zlL3n00UeZMmUK5eXlAIwfP56HHnoIn8/HlClTqKqqavdkXrSvmbRdIBCgsrKSyspKVq+uvd9dWFjYzFHxzRgTBB611jY7r5kx5p/ADdbadvu7J/z3yvWtaDcH2jZIzFr7L5zkhIiIiIjIESnmj9waYx42xtxY532eMaZ7B4fRLfza1PDqkjptmtIdZ8h2D+Au4HagN9Af+DkwEHjVGKPKlnXsrYLKoPN33IA0S2vLULhCTsMANVOGaEoo6XxcXvCmO1/D/lIXofCkcQmZzo9AEwqS6Xd+LG0rb/5rvDK5dsa55ApPvQSFRhaItK/bb7+dp556il//+td88cUXrFmzhueff55f/OIXbe5r4cKF/O1vf2PlypVs3ryZZ555hjvvvJNLL72UzMzMRo+58847Wb9+PaecckqT/U6ePJnExET++c9/csIJtQ9919SxePPNNznxxBObPF6kEzC0PhmgfyiKiIiIiHQSMR9hQe3TSQ+HXzfhDIvubFUga5I/buBBa+3v6+y7KzxF1KXAxThDvVsrt4X9OcAigClTpjB48OA2dB17Ly7bCcu+AODUcUOYeVJ+q47bu3gJoWAAa5wnztPS0pg5c2a0wmx3VVVVkae9p06dSlKS8ljxLlrXbN6BjayetxswHDNkCn2P6saiygMs2roJgGz/PvYnZFHizmDmzMnN9rV/3QpCxT7SfAkcd9xxvPDCCwDk5OQwbVprZrXrevS91nEKCgoIBoN4PB4yMjIOq6/2mBKqtTweDwkJCfVi9ng8eL3eyLbk5OR6+y+44AJeeeUVfvGLX/CnP/0Jr9fL8OHDufHGG+u1a3hcY7p3787LL7/Mr3/9a6qrqxk4cCDf/e53+e53vxupX1FTEyM9PT3SX3Z2dr3zAPXOlZGRwbHHHssHH3zA6aefXm/fsccey5w5czjjjDMO+1rV6MhrJm23d+9ekpOTSUtLY8KECZHtnW1k7iFKAfyxDkJERERERFonHhIWQaBuleW2PC3VXmpGVjQ1iiID2N/KPgBeaWT/KzgJi4m0IWFhrd3W3P66IwsSExM73bQvq3aVR9YnDe7Z6vhNCPzUzpGd4PV2us9eIykpqdPGfqRqz2vW/6ju4YQF7NtWyeAxOfQZXDsD3RBPKeuA9XvLcXsTSfA0fROwvE8aVcX7wBeiX7dIeRt2796trzH0vRZtLpcrUrugPW9Wu1yuqN78njNnzkHbXn755ch6TV2Ohs4880zOPPPMJvtt6riGJk6cyCeffNJsm5NPPrnZ/i688MJG9zf22QBmz57dqtgOVbSvmRwaY0xkqrEaDYu6dzXGmEycehM7YxyKSFzIv+P1WIfQZW3+1dmxDkFERKTLiIe/JvcAY01s5/SpqV1xUJ0KY0wOziTzB9W3qMtaW45TEA+guJEmNdt0t6yOZVuLATAGjumf2foDQzZSvwLA6/U201gkfuUMrs2Tbl/r5EV75uZHtvW1zjZ/0LJuT2mzfXlzUiPrKWXuyJPT27ZtIxgMNnWYiIhIp2CM2VizhDddXHdbg6UA5++M/sCbsYtaRERERETaIh4SFu8DI3GKUr8f3naGMeb9VizvtVMMH4RfG5tT6PQGbZpTE//Rjeyr2ba59WF1bZW+IKt3OTdgj+qVTlpi6wb8WGsxIUvA1I6wUMJCOquM7GQysp1pinauP4CvMkC3Xr3xJjrbUsv3Rtqu2t588d66CQv/rnLy8vKcdb+fXbt2tXfoItIK9957L2lpaY0uzY3QEJFG5ddZLM5DRflNLP2BEPA88OMOjFFERERERA5DPEwJ9UPgKGASMCC8LSe8tKR18y207D1gI3ClMeYBa+0yAGNMN5w/cHzAf2oaG2P64EwftdNaW3cqqL8D1wB3GGNes9YWh9vnALdS+0eTACu3HyAYci7huLzM1h8YdI6pN8IiQQkL6ZyMMQwY2YOVH2wnFLRsXb2PweN6kZ07gJ3r12BLivBm+UhKTqGsOtBsX96clMi6f3c5A4YO4LPPPgOc+gL9+vWL6mcRkYN99atf5dJLL210n6YoE2mzgeFXg/Nv9+eAHzTR1gfstdY2/8tTRERERETiSswTFtbaHcAUY8wAnITFHOAt4NcdGEPAGHMT8DYw1xjzFFAKXBSO6fvW2s11DrkPuA64AadAeE0/84wxfwBuA1YYY17Fqc9xHtAL+LG1dm30P1HnsGxrbVmQsbmZrT7OBpyRFXUTFgkJXXsOZunaBozOZuUHzoxyW1YWOQmLAfnsXL8GgKcvyWfshLG4XM3PnOfJTga3gaDFv7OcvFPyIvu2bNnCcccdF70PISKN6t69O927d491GCJdgrV2S826MeYx4MO620REREREpPOLecKiRviPjS3hUha7rLWtmYKpPc8/2xhzInAPcBlOomEl8ENr7dNt6Od7xpiVwDeA63FGgSwFvmqtfbHdA+/EThiSzW2nHcXSgv1MzM9q9XE1CYtg3aLbSlhIJ9bvqEw8XhcBf4gtnxVhQ5bsOnUsPAd2t5isADBuF95eKfh3lhMoqqRvVjaJiYlUV1dTUFDgTKcW03JBIiIi7cNae0OsYxARERERkfYX84RFuG7FW9ba34Q33UALBa6jxVq7EGhxQmlr7fU4yYim9j9KnZEX0riRfbsxsm+3lhs2YAPhKaFMnREWiUpYSOflSXDTb3gWW1YWUVHio3BbGT0H5Ef27y3Y1Oq+vDmp+HeWQwgCeyvJy8tj3bp1VFRUUFRURHZ2dhQ+gYiIiIiIiIiIyOGLh6Lb04Hhdd4/DHw5NqFIZ1A7JVTtCIvEJCUspHPLH9Ujsr55ZSHZefmR93u3bG51P00V3ganjoWIiEhXYYxJN8b80BjzjjHmc2PMxiaWDbGOVUREREREWifmIywAP5BU570JLyKNa6SGRWJSUlOtRTqFvDoJiy2fFTHp7IGkde9B2b4i9hZs5r43PufznaUcO6gH35gxpMl+vH0aJCxG1U9YjB8/PjofQEREpAMZY/oCH+HUm2vpbwcb/YhERERERKQ9xMMIi504RbdTW2wpXcbSgv18sbOEYKjtfz9GRliYugmL5HaLTSQWMnok072v82Nw9+YSKkt99AyPsvBVlPO/91fy4bpCPtlY1Gw/3pyUyLp/Vzl9+/bF7XYDGmEhIiJdyr1APrAcuBwYAwxsYhkUmxBFRERERKSt4mGExevA14A9xpjd4W0XG2Omt+JYa60dHK3AJHrue3M1CzftIyXBzfwfnUK3ZG+rj2286HZCu8co0tEGjOrBvh3lYKFgVRHZeflsWrYYgIGuA6wkjVU7Spotnu1KT8CV4iFUEcC/qxyv10vfvn3ZunUr+/bto6ysjLS0tI78WCIiItFwOrAbmGGtPRDrYEREREREpH3EwwiLHwPPAV6cp6QskBZeb80inUwgGGLlNufvyqyUhDYlK6DxGhZeb9v6EIlH+aPr1LH4rCgywgJgWEIZAPvKfewqqWqyD2MMnt7OSI1QqZ9guV91LESi5IUXXuC0006jZ8+eZGRkcNxxx/H2228f1O4vf/kL+fn5JCUlMWXKFBYuXFhvf35+PsYYnnrqqYOOHTlyJMYYHn30UQAuv/xyzjjjjHpt3nrrLYwx3H333fW233333fW+/0W6mCxgvpIVIiIiIiJdS8wTFtbaA9baS4EUnASEwUlgNDWkW8O7O7k1u0up9DvTOY3Ly2zz8TbgTCNVd0ooJSykK+g9qBsJyc7At62f76N7/9objb2D+yPrq7aXNNtPQsM6FkpYiETF3LlzOe2003jjjTdYvHgxM2bM4Nxzz2Xp0qWRNk8//TS33XYbP/3pT1myZAljxozh9NNPZ8+ePfX6ys3N5ZFHHqm37ZNPPmHXrl2kptZ+T8+YMYOPP/6YQCAQ2TZ79mxyc3OZM2dOveNnz57NjBkz2vETi8SVrcTB3zIiIiIiItK+4uYf+dbagLW25k5ambV2S2uWmAYth2TZ1uLI+tjczDYfb/0HF932eOJhdjORw+N2u8g7ujsA1RUBfFXdcIXrTySV7o60+2xH8w+TeurWsdhZTm5ubuS9EhYi9e3du5ecnBzuvffeyLZ58+aRkJDAe++91+yx999/P7fffjuTJk1i6NCh3HvvvQwdOpRXX3010uYPf/gDN998MzfccANHH300f//730lJSeHhhx+u19dVV13FBx98wNatWyPbHn74Ya666qp6v+NmzJhBWVkZn376aWTbnDlzuOOOO1iwYAFVVc4IrKqqKhYsWKCEhXRlzwEnqQ6eiIiIiEjXEjcJixrWWpe19sZYxyHRs6ygOLJ+KCMsCGpKKOm6BtSZFmrb6mK69+0PgL9oNy7rJOlW7Wh+hIU3p/4Ii5SUFHr27AnAzp07qa6ubu+wRTqtnj178vDDD3P33Xfz6aefUlpayjXXXMM3v/lNTjnllDb1FQqFKC0tpXt3J/Ho8/lYvHgxp556aqSNy+Xi1FNPZf78+fWO7d27N6effjqPPfYYABUVFTz99NPceGP9fxIdddRR9O3bl9mzZwNQWlrKkiVLuOSSS8jPz4/0O2/ePKqrq5WwkK7s5zijLJ4xxvSKdTAiIiIiItI+4vqxdGNMN2AS0BPYYq2dF+OQpB0sDY+w8LoNI/t2a/PxNSMsgpoSSrqgvKN7OBPjWdjymVN4u3DrFmwoSD9K2Uomn7eUsOhdJ2Gxu8LpNy+PvXv3Yq1l+/btDBqkGfUk+h566CHKysoO6Vhrnen/miow35y0tDRuueWWVrc/66yzuPnmm7nqqquYOHEiqamp3HfffW0+7+9+9zvKysq49NJLASgsLCQYDNK7d+967Xr37s3q1asPOv7GG2/ke9/7HnfeeSfPPfccgwcPZuzYsQe1mzFjBnPmzOFHP/oRH374IUcddRQ9e/Zk6tSpzJkzJ7J/4MCBDBgwoM2fQyQeGWMebmTzRuB8YL0x5lOgAOo80VLLWmu/HMXwRERERESkncRlwsIYkw78EbiG2hgfA+aF998E/Ay4wFq7ICZByiE5UOln/R7n5tWIPhkked1t7sNqhIV0YSkZCfQakMGezSUUbS+n35D+kX2jksvZWpXJ9uJK9pf7yEpNaLQPV6Ibd/ckgvuqCOwqx4YseXl5LF68GHCmhVLCQjpCWVkZpaWlsQ6jVX73u98xatQonn32WRYvXkxiYmKbjn/iiSe45557ePnll+nV69Ae9j777LO55ZZbmDt3Lg8//PBBoytqTJ8+ne985zv4/X7mzJnD9OnTAZg2bRoPPfQQQCRxIdKFXN/MvjRgejP7LaCEhYiIiIhIJxB3CQtjTDIwBxgH7AE+Bc5q0Ow14CGcJ6qUsOhEVmwrjqwfSv0KAOsPF91GIyyka8of3YM9m51RFAF/VmR7rjkA9APg850lnDAku8k+vDmpBPdVYf0hgvuqVHhbYiItLe2Qjz3cERZttWHDBnbs2EEoFGLz5s2MHj261cc+9dRT3HTTTTz77LP1pn/Kzs7G7Xaze/fueu13795NTk7OQf14PB6uueYafvrTn7JgwQJefPHFRs83Y8YMysvLWbRoEbNnz+YHP/gB4CQsbrzxRvbt28eCBQvaNMpEpBO4IdYBiIiIiIhI9MVdwgK4DSdZ8STwFWttuTGm3tBua+0uY8wXgB4d7GTq1q845IRF4OCi20pYSFcyYFQPFr66CYADhbUFtHv693HTiQMZ2S+DYTnpzfbhzUmh6vMiwKljkTmyB+np6ZSWlrJ161aCwSBud9tHOIm0xaHeMA+FQpSUOEm7jIwMXK7oltzy+XxcffXVXHbZZQwbNoybbrqJlStXtmqkxJNPPsmNN97IU089xdlnn11vX0JCAhMmTOC9997j/PPPB5zP9t577/HNb36z0f5uvPFGfve733HZZZeRlZXVaJvBgweTm5vLK6+8wrJly5g2bRoA/fr1o1+/fvz+97/H5/NphIV0Kdbax2Idg4iIiIiIRF88JiwuA3YBX7bWVjXTbi0wuWNCkvZiDGSnJVJYVs24vMZvxLQk5HcSFYE6eSyPJx6/lEUOTc/cdJIzEqgs8bFrU5DElFSqK8oJFe3gJ+cc3ao+GhbeTh6VTV5eHqtWrcLv97N792769u0brY8g0qnceeedHDhwgAceeIC0tDTeeOMNbrzxRl577bVmj3viiSe47rrr+NOf/sSUKVPYtWsXAMnJyXTr5tRouu2227juuuuYOHEikydP5v7776e8vJwbbmj8YfERI0ZQWFhISkpKo/trzJgxg7/+9a8MGTKkXo2MadOm8ec//zlSnFtERERERESkM4nuI4uHZjCwsIVkBUAF0PR8KBKXvnnyUBbdeQof/XAG+T2avxnTlJCvfg0Llzm0KUNE4pVxGQaM6gFA0G9Jz3bqWJTtK6KyrHX1ABL61k6JU7WuGEDTQok0Ys6cOdx///08/vjjkdEcjz/+OB9++CF/+9vfmj32H//4B4FAgG984xv06dMnstx6662RNpdddhm/+93vuOuuuxg7dizLli3jrbfeOqgQd109evQgOTm52XPPmDGD0tLSSP2KGtOmTaO0tFSjK0RERERERKRTisfH0oNAa+b36Q+URzkWiQJjDP2zDi1ZARDyOSMsguEpodwmHvNuIocnf1QPVs/bCYDLkw2sAaCwYDO5R7c8t767RxKeXikE9lTg21JCoPjgOhbHHntsVGIX6UymT5+O3++vty0/P58DBw60eOycOXNadY5vfvObTU4BBbB58+Zmjy8uLj5o2/XXX8/1119/0PbrrruO6667rlVxiXRmxpiHW9nUBxTi1MV7w1rri15UIiIiIiJyuOIxYbEBGGOM8VhrA401MMakAccAn3doZBIXIiMsjJOwcLk0ukK6nv4juuNyGUIhS2VZRmT73i2byRg4nHc+382uA5V88+ShjR5vjCFlTE9K3tkCQOXyQnqf1JeEhAR8Ph8FBQVYazU6SUREOqvrw682/NrwF1rD7RbYbYy5zlr7TpRjExERERGRQxSPj6a/AvQBftJMm58A3YAXOyQiaRfW2pYbtUKkhkV4SiiPS4WDpetJTPbQZ6gzB351ZbfI9sKCzZz1pw/5/rPLeeD99ZRW+ZvqguQxPSPrFSv24nK5yM3NBaCsrIz9+/dHKXqRrmHkyJGkpaU1uvzvf/+LdXgiR7obgAdxEhI7gD8B3wW+A9wPbAvv+wtwF/ABkAO8ZIwZ3vHhioiIiIhIa8TjCIs/4vwB8n/GmLHAM+HtvY0xFwKXApcAm4G/xyJAOTRX/PMTAkHLuLxMfnTmiEMeGWH9NTUswlNCueMx7yZy+AaMymb7mmKMu7ZcT2HBZk6dPIPH5m/BFwjx3hd7OH9cv0aP92Yn4+2Xhn97mbPsrSAvL48NGzYAzrRQ3bt375DPItIZvfHGGwdNF1WjuRoUItIhFuIkI+4HfmitrffNaoz5IfAr4BZgsrX2F8aYu3GSF7cBX+nQaEVEREREpFXi7k6vtbYYOAPYBHwJeBxnCPcZwLM4CYsC4FxrrWpYdBLVgSBLthTz6Zb9vLd6z2FN4xTyhwgRImScERsej0ZYSNdUU3jbmAQ8iVkAFG7dwlmjciJtXluxs9k+UuqMsqhcUciAAQMi77ds2dKe4Yp0OQMGDGDIkCGNLunp6bEOT+RIdw+wE/hew2QFQHjb98Nt7glv/mX4/ckdFaSIiIiIiLRN3CUsAKy1nwOjgK8DrwNf4FScfRfniaiR4TbSSXy+owRf0BkZMTY387D6sv5gZDooAI8nHgcKiRy+rJwUMrKTALAhZySEv7qKoSk+eqUnAjB37V5KmpsW6pg600It30Pfvn1xuZwf/QUFBdEKXY5g7TX9n4i0n5rvyy5Wt2gasMg280MnvG8RMDX83g+sBPp2SIQiIiIiItJmcZmwALDWVllr/26t/ZK1dpS19mhr7enW2vuttRWxjk/aZtnW4sj6uMNNWARsZDooAI/He1j9icQrYwwDRoWng6ozLVTR1s2cNboPAL5giHc/391kH57MRBLynaLdgT2VUOSnb1/nPk1RURHl5RqoJu3D63V+FgeDQYqLi2MbjIhEFBcXEww6/27qYg95ZABZrWiXCdQdErWf2oLcIiIiIiISZ7rUXy0Sv5YWFEfWx+W15m/LptlAiKCpHWHh9erLWLquAaN6sHLONlzunpE0XWHBFs6ZeDqPztsMwOsrdnLh+P5N9pEypie+zSUAVC7fS15eHtu2bQOcURYjRoyI5keQI0RqaiqVlZUA7Ny5kz179hzW09yBQACAvXv3tkt8En26ZvHHWhtJVoDzfdqFbACmG2OGWGvXN9bAGDMUmAHU3d8HKOqA+ERERERE5BDE9Z1eY8yxOH9k1FSU3Q7MttZ+Eruo5FDUjLBI9LgYlnOY834HQ/VGWCR4Ew6vP5E41u+oTDxeF6Fg7QiLvQWbOOfCLHIykthVUsWH6wo5UOmnW3Ljo42SR2dT/MoGsFCxYi+55+ZG9ilhIe0lOzubYDDI/v37AerdJG0ra20k+ZGcnNzVprHpknTN4l9WVhbZ2dktN+w8HgF+C8wxxvwUeLJmFLYxJhm4Aqd2RQLwaHi7FxgDfHw4JzbGXA2cBEwARofPcYO19tEm2mcAdwMXATk4dTSeBe6x1pY10t4FfAOnMPgQoAxnatw7rbUbDyd2EREREZF4F5cJC2NMHvA/4PiaTeFXG97/MXC1tVYTsHcCRWXVFOxzZvEa3a8bXvdhzkQWsPVqWNRMQyLSFXkS3PQfnsWmFQHADQQpLNiCy2U4c3QOj3y8OTIt1EUTGh9l4U5LIHFIJtXrignuqyLHVT9hIdIejDH07t0bt9tNeXk5gUDgkOtZhEKhyM3vtLS0SN0ViV+6ZvHJGIPH4yE1NZXs7Oyulki6H5gOnA38A/iHMaYQ5++FmgJOBngj3BbgaGAZzt8Zh+MXwACgECf5MKCphsaYVOADYCwwC3gSGIdTEHyaMWaqtbaqwWEPATcBq4AHcGpuXArMNMYca61dd5jxi4iIiIjErbhLWBhjMoHZwECgCngbZ8g3wCDgDOBE4D1jzERr7YFYxCmtV69+RV7mYfdnG46wSEw87D5F4tmAUT3YvLII4+6BDe5h/64d+KurOOeYPjzy8WYAXl+5s8mEBUDKMT2pXlcMgFlbTnZ2NoWFhezcuROfz0dCgkYqyeEzxtCzZ0969uzZcuNmVFZWsnr1agAmTJhAcnJye4QnUaRrJh3NWhs0xnwJ+BbwbZy/E+r+8NmMc7P/AWttKHzMcpzR24frJmCdtXaLMeYO4L5m2t6Ok6z4tbX2jpqNxphfAT8Evlv3eGPMjHD/c4HTrLW+8PYncJIvDwKnt8NnEBERERGJS/H4+Nv3cJIVbwBDrLUXWGu/H14uxPlj5PXw6/diGKe0Ut2Exdjcw6tfAUDQEqhTw0I3WqWrGzDamcLD5Q7fh7GWom1bGZebxcnDe/HDM4Zz97kjm+0jeWQPcDtP1lasKCQ31xllEQqF2L59e/SCFxERiRLreMBaOwTIBY4LL3nW2kHW2vtrkhXtfN53rbVbWmpnnCEtN+FM6fTzBrt/Ht5+U4PtN4df/68mWRE+55vAHJxRFnmHGLqIiIiISNyLuxEWwAXAXuDSmnlo67LW7jLGXAZsAi4E7urg+KSN6hbcHtsOIyxMyNYfYZGkERbStaV3T6J731T2bKxfxyJn8FAevn5Sq/pwpXhJOiqLqi/2ESr10Te5J0vD+woKChg4cGAUIhcREekY1trtOPXu4slQnOmc3rbWltfdYa0tD09ze7oxJtdauzW8azpQTuN1Nt4O758GPN7aIIwxTQ/BdOTUrFRWVkamdxOR1tP3Teek69Y56bp1PrpmnVNrrlu0rm08JiwGAq83lqyoYa2tMMZ8gDNnrcS53186hqUFxXyxs4S+3ZIOv8MGCYvERE07IV3fgFE92LulTsJi86Y295EypidVX+wDIHtf7fei6liIiIhExdDwa1M1J9bhTO80FNgarnfRB/jMWhtson3dfltra8tNHHPnzu1qxdmlnnj8879rmDVrVpR61jWLJl23zknXrfPRNeucWnPdCgsLo3LueLyyQaA1VZQ9QLsP8Zb21zsjiTNG5XDGqJyWG7eCCVmCrtpLn5jUDkkQkTiXP7oHS97qhVM/1LJu4TymX3cTLpe71X0kjeiB8bqw/hAJa6pIS0ujrKyMrVu3EgqFVCRXRETiljHm2vDqi9ba0jrvW8Va+58ohNWSbuHXpmrulTRo19b2IiIiIiJdTjwmLNYB040xmdba4sYaGGO64xTMW9uRgUns2ZDFWOqPsFBhTzkC5AzqRlJaOv6KgYT8GynbV0TBimXkj52AtZbPd5bwxsqdjO6X2WRy0JXoJmlEdypXFGIrg/Tvn8PqsvX4fD52795Nnz59OvhTiYiItNqjgAU+AUrrvG+tWCQs4kVuC/tzgEUAU6dOpX//lmaQkk5r/vuxjqDLmjlzZnQ61jWLKl23zknXrfPRNeucWnPdtm3bFpVzx2PC4lngXuB1Y8xXrLWr6u40xowGHgIygKdjEJ/EUtAZWRGoM7gmMVE1LKTrc7ld5B7dnTXFIwn5NwKwcs675I+dwGfbSzj3wY8AmHpUz2ZHM6WM6UnlCmfIXi9fBqvD2wsKCpSwEBGRePYfnATFgQbv41lNrE2NiMho0K6t7VvFWtvsX5JObXBHcnIyyXoYSKTN9H3TOem6dU66bp2Prlnn1JrrFq1rG48Jiz8BlwHHAcuNMUtxCmwDDALGAi5gGfBADOKTNvjbnA30zUxiXG4WeT1SDrs/6w8nLEztCAuvtzUziIl0fgNG9WDdokFgksFWsmHRfCrLShnVL4N+mclsL65k3vpC9pf7yEpNaLSPpKO6YxLd2OogPXYlODNM4SQspkyZ0oGfRkREpPWstdc39z5OtVRzol6Ni3Ah7p3AQGOMu5E6Fi3VxBARERER6fTibsJya20lcDLwTHjTBODi8DI+vO1p4FRrbVXHRyitVekL8rtZa7j1qWV85fFP26VPG3AepKs7wkIJCzlSDBjZA7fbgzthBADBQIDVH83BGMNZo51RFYGQZdbnu5rsw3hdJI/sAUBWdTIJHuf7p6CgAGvj/UFVERGRTmUdsAM4IVxQOyL8/gRgk7W2blHsD4CafQ2dHn6dG4VYRURERETiQtwlLACstfuttZcDA4FrgDvCyzXAQGvtFdbafbGMUVq2cvsBgiHnBujY3Mx26dMGnERFEI2wkCNPcnoCA8dk404cFdn22ex3ATj7mL6Rba+t2NlsPyljewHgwkXvhO4AlJaWUlxc3M4Ri4iIdAxjTIIxpk+41l1csM6TAP8C0oD/a7D7/8Lb/9lg+z/Crz83xkSGSxpjzgSmA7OstVuiErCIiIiISByIxymhIsJPG/0v1nHIoVlasD+yPi4vs136rElYBIxGWMiRaeS0fmxYuhfj7o0N7mbP5g3s2byRMQMG1k4LtaGIfeU+ujcxLVTi4G64Uj2EygP0Kktlazh1XVBQQFZWVgd+GhERkcNjjLka+DYwDudhrMeAG8P7LgAuAe601m5qspO2n/Mm4MTw29Hh15uMMdPD6x9Za/8VXv8NcB7wQ2PMOGAJzqjxmTiFru+v27e1drYx5l/ATcASY8zrQB+cKXP3Ad9qr88hIiIiIhKP4mKEhTEmyRiTYYxpsXqyMSaxtW0ltpZtLY6sj81tn5ugkYRFnREWHk9c591E2lX/YVlk9k6pP8pizjsYYzjnGKdodjBkmbWqmWmh3C6SR2UD0DtQW9ezoKAgSlGLiIi0v/CN/ceAiUAlkcpMEWuBy4GL2vnUJwLXhZeaKWtPqLOtJpmBtbYcmIaTmBgBfA8YDvweOCU8HW5DtwC3htdvBc4CXgQmW2vXtvNnERERERGJKzFPWBhjvMAXwG5gVAvNAUaG2640xrijGZscnqUFxQCkJrgZ0iutXfpsLGGhERZyJDHGMPKkvri9wwDnR+AXH84h4PdzdjhhAfD6yhamhRrTE4CeoW6Y8P0dJSxERKSzMMZchTOS4jNgEtCtYRtr7SpgG3Bme57bWnu9tdY0s1zfoP0Ba+13rbV51toEa+0Aa+33rbWlTfQfstY+YK0dZa1NstZmW2svt9ZuaM/PISIiIiISj2KesMAZpj0A+L21dnFLja21S4DfAYOBC6McmxyiXQeq2FXi1EQfk5uJ29XwgbdDFElYaEooOXINP64PnsQUXAlDAagqK2XDpwsY3a8bud2TAZi3oYiisuom+0jI74YrIwEvbrJD6QDs3buXioqK6H8AERGRw/cVoAw4x1q7OFwvojErceriiYiIiIhIJxAPCYsLgADwxzYc8wcgBFwclYjksC3bWlu/or0KbgPYgPO3aNBoSig5ciWlehk6oRfuhJGRbavC00KdPdopvh0MWd5etbvJPozLkHKMM8qid6j2odStW7dGKWoREZF2NQZYEK5515x9QO8OiEdERERERNpBPCQsxgNLrLVFrT3AWrsf+BSYELWo5LDUTAcFMC6v/Yr42gYjLFyAyxUPX8YiHWvktH64PHngckZHbF6+lNKiQs4d04dzx/Tl71dP4MLx/Zrto2ZaqN6hzMi29evXRy1mERGRdpQIHGhFu55QZy5RERERERGJa/FwpzcH2HwIx20B+rTYSmJiab2C25nt1m/DGhYu005TTYl0Mr3zM+iZlx4ZZWFtiM/nvs/Ivt348xXjOGNUDkne5sv8ePun4e6eRN9QFm7r/DpYsWIF1dVNTyUlIiISJ7bjFLFukjHGAEcDmzokIhEREREROWzxkLAwHFocrvCxEoemHdWTE4dkM6JPBj3TE9ut30jCwoRHWLRXbQyRTsYYw6ip/epNC/XZnHdoegrvxvtIGdOTRLwMCeYAUF1dzfLly9s9XhERkXb2HjDcGHNeM22uAfoD73RMSCIiIiIicrjiIWGxF6eAdlsNAgrbORZpJ9+YMYT/3jSFN759Yrv223CEhVvTQckRbOik3iSmdsflyQWgeNdOtq9e1aY+aqaFOjrYP7JtwYIFhEKhpg4RERGJB78DqoEnjDHfMcb0rdlhjOlujPkq8FegHHggRjGKiIiIiEgbxcPd3qXAGGNMXmsPMMbkA+OAJdEKStqHaecpm6zfuYkaDNew8Ljj4UtYJDYSkjwMn5KDO2FUZNtns98FoMIX4PUVO/n6/xazt7TpKZ48vVPw9Eqhh02nTzATgKKiIjZu3BjV2EVERA6HtXYdcB3O3zO/B7YCNrxtL/AXwANcb60tiFWcIiIiIiLSNvFwt/dlnDja8uTTn+ocK0eQYHWQEJZgeEoot6v5OfpFurqRU/vhShgCJACw9pOP8FVW8NfZG/jGE0t4Y+Uu3vpsZ5PH10wLBXB0MDeyfcGCBVGNW0RE5HBZa58FJgHPAqU408UaoAp4FTjOWvt87CIUEREREZG2ioeExeM4RbfPNcY8Z4zp1VRDY0xPY8xzwLk4Rbcf75gQpS22FJUTCrV+Hv22CFUHCYangwLweJSwkCNbj35p9B2ajTthOAD+6irWfPIRZ43uE2nz+Cdbmq1tkTK2JxgYEMomjSQA1q1bR1FRUXSDFxEROUzW2s+stZcDWUAvIAdIt9aeb61dGtvoRERERESkrWKesLDWBoCLgUrgAmCLMeYlY8ydxpibw8udxpiXgIJwmyrgkvCxEkcOVPqZ9ts5jP3ZLO5+pW1z6bdG0BciQO3c+h6Pt93PIdLZjJraD3dineLbs9/l6L4ZTBiQBcDa3WXMWbO3yeM9PZJJProHLlyM8NfWsli4cGH0ghYREWlH1lFord1jrVUhJhERERGRTsoT6wAArLVLjDFTcYZzDwS+hDOKoq6aYgibgUuttYs7LkJprRXbigEoqQo0+0T3oQr5gwRM7QgLrycuvoRFYmrwuF6kZObiL++BDRWxY83n7Nuxna9MHcQtjzs/Kh+au4EZw5scwEb6jFwqVxUxLNiXpd6NBAixdOlSTj75ZBITEzvqo4iIiEgnkH/H67EOoUvb/KuzYx2CiIiISMzEzd3ecNJiGHAlcB4wEegZ3r0XWIxTs+J/GlkRv5YVFEfWx+Zltnv/IX/9ERZer0ZYiLi9Lo4+oS8LXx5JoHIuAKvmvMNpl1/HoOxUNhaW88nGfazYVswx/TMb7SOhfzqJR2XB2v0MDuSwxrMDn8/H8uXLmTx5cgd+GhERkYMZY+46nOOttT9rr1hERERERCR64iZhAZHpof4TXqQTWrq1OLI+Njer3fu3vvo1LLwJSliIABx9Yj8WvzWCQOVHQIhVH7zPCZddw00nDeLHL64E4KG5G/nLleOb7CNjei571+5nZDCXNZ4dgFN8e+LEibhcMZ9BUEREjmx3A4czfFcJCxERERGRTiCuEhbSuVlrWRZOWGSmeMnvkdLu53BGWNRJWHgT2v0cIp1Rt57JDBiVy/oFAwn5N1BevI/NK5Zw4fjx/OGdNRSW+Xhz5U4KiirIa+J7M3FQNxLyM+i+GfoEM9npLqaoqIiNGzcyZMiQjv1AIiIi9c2l6YTFNGA3sLrjwhERERERkWjQI7PSbrbuq2RfuQ+AsbmZGGNaOKLtbCBEwNROCZWgufVFIkZN7Yc7YVTk/Wez3yHJ6+b64/MBCFn490cbm+0jfUYuACODuZFtCxYsaP9gRURE2sBaO91aO6OxJdzkzab212kjIiIiIiJxTgkLaTdLt+6PrI+LwnRQALbBCIvEBI2wEKkxYHQ2Gb2GgXFGUGz4dAEVJQe4+tgBpCS4Adhf4cfapmfUSDoqC2/fVPJC2aTZJADWrVtHUVFR9D+AiIiIiIiIiIgc0ZSwkHazNMoFtyE8wqJO0e2EpKSonEekM3K5DCNPysWdMAKAUDDI6o/mkJmSwK8vOoZ3b5vGA1eMa3b0kzGG9Bm5uHAxItA/sn3hwoVRj19ERERERERERI5sSlhIu1lWt+B2/8zonCQQImDqjLBQwkKknqNP7Is3aXTk/cr3Z2Gt5dwxfRnSK61VfSSPzMbTM5lhwb64rfNrYunSpVRXV0clZhEREREREREREVDCQtpJMGTZUVwJwKCeqXRL8UblPDZo642wUMJCpL7UbokMnjgM4+4DQOHWLezZtKFNfRiXIX1aLkl4GRLMAcDn87Fs2bL2DldERERERERERCRCCQtpF26XYcGPT2H296fz24uPid6JgpZgnRoWSUnJ0TuXSCc1amo/3IkjI++XzXq93v5AMMTbq3YRDDVdyyJlXE/cmYn1im8vXLiQUCjU5DEiIiIiIiIiIiKHI+4SFsaYPGNM91a0yzLG5HVETNI6xhgGZqcyYUCLl+/QBRtMCZWshIVIQ/2GZdG93zgwiQCs+uB9DuzZBcA7n+9mxu/ncMvji3nn891N9mHcLtKn9ae7TaNPMAuAoqIiNm7cGP0PICIiIiIiIiIiRyRPrANoxCbgUeDLLbT7DXAD8fkZJFoaTAnl9UZn6imRzswYw+jpA/lg63gCVfOxoSCfvPA0p3/1Vrxuw9Z9zvRt/5i7gTNG5TTZT+rE3pS8V8DIiv7sdO8HYMGCBQwZMqRDPoeIiEgNY8y1LTQZ0lwba+1/2jkkERERERGJgni82W/CS2vbtt+JjZkE3AMcD3iBlcAfrLXPHGJ/WcBnQF/gbWvtGe0V65HKhCyBOlNCKWEh0rjhx/Vh4SsTKa1eAraaVR+8x5QLLmPaUb0ZnpPO6l2lLCko5tPN+5iY3/ioKON1k35SP/LerCbNJlFmqli3bh1FRUX06NGjgz+RiIgc4R4FmprL0AInhJem9ithISIiIiLSCcTdlFBtkA742qszY8wM4GPgROAZ4O9ADvC0MeZ7h9jtg0C39okwfhWVVXPFPz7h12+tZtHmfdE9WUgjLERaIynVy5TzjsaTOB4AGwrxyfNPYYzh5pMGRdo9NLf5KZ5Sp/TBnZTA0YH+kW0LFy6MTtAiIiJNKziMZWsM4hURERERkUPQ6RIWxhiXMWY0cDLOHyDt0acH+CcQAqZaa79irf0eMAZYC9xrjBnQxj4vAq4EftgeMcazZVuLmb+xiL/N2cCsVbuiei4TsvVqWEQSFtsXw6/z4XdHwTt3QdGGqMYh0hmMmt6PHgNOjNSy+Hzu+xTv2sm5Y/qSk5EEwLtf7GbD3rIm+3AleUg7vg9HBfvits6vjKVLl1JdXR39DyAiIhJmrc231g481CXW8YuIiIiISOvERcLCGBOsWcKbrqu7rcF+P7AM6AG80E4hnAwMBp6w1i6r2WitPQDcCyQA17W2M2NMT+BvwOPA6+0UY9xatrU4sj42Nytq57HWYiyNj7CYdRdU7oey3fDxn+DP4+GRs2HFM+CvjFpMIvHM7XYx7crReBInAGBtiI+ffZIEj4sbT8wPb4N/fdj8KIu0E/qRnJDIkKBT78Ln87Fs2bJohi4iIiIiIiIiIkeguEhYUFu3wuDMMWuaWQLAZuD3wE/b6fzTw6+zGtn3dvh1Whv6+zsQBG49jJg6jaUFxZH1cXmZ0TtRyGKAYMMaFjtXwJaPDm6/5SN44Wb4/XAoWBC9uETiWO7w7gyZfFpklMXqj+ewf9cOrpicR3qiU8bo+SXb2Vva9IgJd6qX1Ml9GBnMjWxbuHAhoVCoyWNERERERERERETaKi6KbltrI4kTY0wIeNRae2MHhjA0/Lqu4Q5r7S5jTFmdNs0yxlwNXAicb63db4w5rBoWxpj+LTTJqVmprq6msrJjRxOErGXZ1v0A9ExLIDPBRi0G63MSFQFTe5M0EAjgmvfXyBey/8TbwZOEe8X/cO1zpoWyQR9VGYOgg//fNKeqqqrRdYlfnfmaTT5/KBsWT8Rf/jHYELMf+w9nfvtWLpnQl4fnFeALhPjX3HV85+TBTfbhndyD7vPT6RPMYqd7P0VFRXz++ecMHtz0MfGgM1+3I5muW+eja9Y5aXo/ERERERGJN3GRsGjgHmBpB5+zJqlwoIn9JbSieLYxpi/wAPCktfbldoqt1UUCFyxYwIYNHVu7YVcFlFU7X0Y53ireeeedqJ3L7TeMJYtAzQgLa3nnnXfoX5LBkKRcUvxFvF0yhKA7CfLuonuPteQXzsHvTmblB/Pq9TVq239Jrd5NRUJPKhKyqUzIpiK8+DzpYEzUPoexQdwhHwkhPy4b4NN3nsNlgxgbwGUD+N2pVCT2qndMTvFiDCGscRPCjTVurHERMnXW8VCZ0AO/JzVqsYtj7ty5sQ6hzboNO5rCpZ+CrWbTko959bm+DEjshtu4CVrDf+dv5ijfBjzNjLvLy05h5N5cdrqdJOXrr7/OsGHDMFH8fmlPnfG6ia5bZ6Rr1nkUFhbGOgQREREREZF64i5hYa29J9YxHIZ/4dTY+HasA+kom8tqb1Tmp9uonssVHlhRk7AwOOfb1v0EtmUdT4qv0ElWABjDvrRh7EsbdlA/nmAlA4rm4An5Gj1PwCRQmdCDioRs1vS5gP2pQyL7ulVspk/xp7isH5cN4gonHSJLKIDb+vG7k/l04Lfq9Tt+89/pt38BrjpTWjWmoPtJLB1wc/1jC/6JN1jR7HEAS/K+wtYeJ0bep1XtYOqauwm4kwm4kgi4k/HXWQ+4k6n2pFPt6cb2rCkE3CktnkM6p25D4cC6CfhL5wGWwk+X0e/kaRzby2KxzOgTajZZAbCrbxVH7+5B91Aa+1xlVFZWsn//frp3794hn0FERERERERERLq2uEtYGGPcQCpQYa0N1NmeDNwOjMWpYfFba+2OdjptzciKpkZRZAD7m+vAGHMdcCZwibW2PR9Xy21hfw6wCGDKlCkdPj3LvNdWA85luHjGRCbnR6/odnBfFcVLPotMCeVxuZk5c2ab+3FtnY97dSL4Gk9YeKyP9OqdpFfvJPOcewjlHR/Z5/7sGRJef6XFc9iUHgfF5n31ZVz7m09WAPTN6UXPBsd61iRDRcsJi1FjxjHi6NpjzY4leL+owhtqeXqOYV/6DqT1jrx3L/sPnkUPYVN6YlN7QmpPbFImNjkLkrphkzKd19Re2KyBLfbf2VVVVUWeGp46dSpJSUn1G4QCEKiGQCUmUA2BaqwnCTL6xiDaxq3vOZJZf1kCtorKXesYP+KrnHZa/zaNkCgNbGTKqqG8meAMhNu/fz8XX3wxHk/c/ToBWnHdJC7punU+umadU0ePzBUREREREWlJPN5hugv4CU4h7A8BjHM3bQ4wkdrC3BcaY8Zaa5tNJLRSTe2KocDiujuMMTlAGrCwhT7GhV+fbeLm3+nGGAsst9aObW1g1tptze2ve67ExESSk5Nb23W7WLGjDACXgYmDepGcGL0vKb/HSVTUFN12u8yhfd6jToY7CqBsNxzYCsUFtUvk/VYIVJLYeyjUPUdS66ZbMoHqg2PLHgw5x4A3maArkT37Swm5PPTu0x9PQjK4veBOwNNvPJ6Gx864E3xlEPRDKOjcHA/5w6/B8PYACTnD6sebmATZw6C61Fl8ZUBjI2EMyd37g7vO9SvbAfs2OEtz+k+GmxpMBfb8TbD785b+N8EJt8KYy2rfl+yE/17U8nEAVzwBWfm171e9BB/8puXj0nvDNS/W3/bWj2HjnGYPS7QhhrmHs6bPBSQlJdVe3/tywVcOtolk1Mn/B1O/33JcHWDUiYNZ/OpJFG15B7DMfvgJrv3V3W3qw3NqPr7P9tE/2INt7iJKSkpYvnw5J554YssHx1i96yadhq5b56Nr1nkkJibGOgQREREREZF64jFhcQqwy1r7YZ1t5wKTgLXAX3FGMswEbgZacYeyRR8APwr3+VSDfafXadOc+TiJjYbSgMuAbcDbQMGhhxlfKnwB1uwqAeCo3umkRjFZAWADzo32AE7iwh2sgm2Lof+EtnfmckFGH2fJndzIySyUF0JKj/rb80+Ca18Gd0L9xVN3PQm8jdyoOflOZwF8lZUsnDULgJkzZx6coGho0pfb/hnB+X/zzTq5tlAI/OVQXRZOYpRA+V6o3F8/WQFgQ5CQDr7S5s+R3Miomh3LoOigGvYHq9xX/33ID3tWtXwcQKDBCJnK/a07trrk4G0HClo81gUk9eh98I5QoOlkBcDsXzpfN3lTWo4tyowxnPX1q3j8jg/BVrF302IKVq0nb2TttGcHKvwkel0ked2N9uHtnUrqpBwmLxrCdlcR1sCHH37IuHHjSE1V/RQREZG6jDHXA4+00Ox9a+0p4fZ3Az9tpu1Aa+3mdglORERERCQOxWPCYiCwusG283AeC7/KWrvYGPNXnATAxbRPwuI9YCNwpTHmAWvtMgBjTDfgx4AP+E9NY2NMH5zpo3Zaaw8AWGufBp5u2LExJh8nYbHKWntTO8QaN1zGcP/l41hWUEyvjOg/oWcDISyWYHhKKLe/FP51Moy9Cs7/a/uezBhI63nw9vTeztJZuVyQmO4s9Gm+7cyfO4u/Esr21CY2Koud16piZz176MHHBn3gacXTta6GP4JM646Dgwuju9ytO9bTyNeqO6HFYy0QMo38yMw5BoLVTqLKk1j7WlkMmz5wEj8vfgW+/knjiawO1is/m9xRp7B15euA5e2/P8rNf/4FwZDlqUUF/H7WWm44Pp9vndLIdQ3LmDmAHiv2clSgL2s8O6iuruaDDz7grLPO6rgPIiIi0jksA5qq0XcxMBLnoaaGHsOZBreh4vYISkREREQkXsVjwqIHsKvBthOA7dbaxQDW2oAx5hPg2PY4Ybi/m3D+WJhrjHkKKAUuAgYA32/wJNN9wHXADcCj7RFDZ5TkdfOlMX350piOmaPf+kOR0RUAnpqn2nNj/+R6l+ZNhqwBztJa31lxaOfKzIWfNPz2b6Xx1zrLobj44RabVFVWsjI8KqaeLzd2jwEIBuDRs2DPamdaqDhIVtQ46+tX849vvI8NVVKyZzmfzV1J8oiB3PXyKoIhy1/nbODiif3p063xmN1pCWScMoAJr1ewwb2LgAnx6aefMnnyZLKzszv404iIyJHOGHMsznSy/XGmj90GzLHWzo9lXADhB6GWNdxujEkAvgkEcJITDT1qrZ0TzdhEREREROKRK9YBNCKAU3QbAGNMFk5tiY8btCul6SLZbWatnQ2cGD7PZcDXgN3A5dba37fXeeTQ2WCIALVT73gIQHJ3OObSGEYl0gS3By78J3x9Hoy+ONbR1JPWPZ1hx58Zfmf54PH/kp+VwjXHOkmpSn+QX7/ZcKBbgz6O60NGz0yOCTjHhEIh3n333WiGLSIiUo8xZrAx5mOcf7//Evg6zr/hfwF8ZIyZZ4wZ0lwfMXQ+zoNar1lrd8c4FhERERGRuBGPIyw2AscaY1zW2hBwDs6TUh81aNcL2NueJ7bWLsSpj9FSu+uB61vZ52ac+OVw+UME64yw8NoATLg+rp5cF6mnLaNSOtipX76ctZ+8RShQQVXJKua/sIjvnjOel5dtZ3+Fn5eW7eCa4wYwYUD3Ro83HhfdzhnE6EfKWO3ZToXxsXr1arZs2cKAAfH7uUVEpGswxvQFPgRygArgLWBTeHc+cAbOaOy5xphJ1trtsYizGTVTxf6rif1TjTFTgBCwDnjXWlt2KCcyxvRvoUlOzUplZSWVlZWHchppR7oGnY+uWeek69Y56bp1PrpmnVNrrlu0rm08Jixewakb8bIx5l3gh0AQeLWmgTHGAOOAL2ISobC/3Mf8jUWMzc2kT7ckTMN6AlEQ9IcImDojLEwAJnWpsiByJNgyH/KOPbgGRwdLTElh7MzzWPLGkwAsfv05xp0+lttmDuP/XvoMgHte/ZyXvn4CLlfjsSYP6076sGwmrB/Mh17nx/GsWbO46aabOuRngoiIHNF+hnOj/Xng69baeg8yGWOygb/i1Im4h9oEQcwZYwYAp+BMXfVWE80a1r0oNsbcaq39T6Otm7e1tQ3nzp3byukd4/HPyK5jVmPTkLYLXbdo0TXrnHTdOiddt85H16xzas11KywsjMq543FKqN8Aq4CzgT/i/CHyW2ttQZ02JwLZHDzqQjrIJxuL+Pr/lnD8r97nL7PXd8g5Q75gvSmhvKlZ0K1fh5xb5LBVHYAXvwqPnAFLH491NACceNlFeBKcGfgCVV8w+z/zuHJyHsNz0gFYse0Azy3Z1mwf3c4ZxFDbl6yQ08/27dtZtWpVdAMXERFxRkXvAK5qmKwAsNYWAleH25zVwbG15Aacv8MetdYGG+xbDtwIDAKSgYHAtwALPGqM+VJHBioiIiIi0tHiLhVlrS0xxkzGeRqqN7DIWvtBg2Y9gD8BT3d0fOJYtrU4sj4sJ6NDzhmsCtQruu3tkd8h5xVpF1sXwnJnNANv3gH5J0L3QTENyZuUxKQvXcT855yHNdcteI0JZ43nrnOP5sp/LgDgN2+t4cxROaQneRvvo2cKGSf0Y/LHQ3k7YRkA7777LsOHD8fjibtfMSIi0nV0B1621vqaamCt9RljPgLO67iwmmeMceEkLCzwcMP91toXG2zaDDxojPkCeAenPscrbTxtbgv7c4BFAFOnTqV//5ZmkALmv9/GEKQtZs6cGZ2Odd2iRtesc9J165x03TofXbPOqTXXbdu25h9yPVRxeTfJWlsJNPkIsrX2JeCljopHDra0oDiyPjY3s0POGdq7pd6UUAmZvTvkvCLtYuhpMP46WPIY+MvhhVvghjed4twxNOncL/Hpay/iryol5F/D+499xBV3n8WZo3J487NdFJZV8+Ds9fzozBFN9pFxSh55i3fTz9+d7e59FBcXs3DhQo4//vgO/CQiInKE2QaktqJdChBP9StOBfKA96y1m1pqXMNa+54xZgMw2hiTYa0tacOxzf4lWXcax+TkZJKTVR8u1nQNOh9ds85J161z0nXrfHTNOqfWXLdoXdt4nBJK4lwgGGLl9gMA9M9Kpmd6YoecN7hrfb2i2wkJHXNekXZz+r2Qle+sb1sIH98fy2gAZ5TFsRdeHHm/Z8MbfP7Rdn581ggSPM6viBeWbKfS13DGilquJA+ZZwxkcmCI87wozhzYFRUVUY1dRESOaM8C040xTc4PGt53MvBch0XVspaKbTenZpLglHaKRUREREQk7sRdwsIYM7UtS6zjPRKt2V1Kpd+5edlRoysAQn1PqFfDIiFRCQvpZBLT4IJ/gAn/6J1zH+xYGtuYgHFnnE1Ktx4AhAJb+PDJ1+mZ6OVr0wZz7XEDmPWdqSQnuJvtI2Vib3L65HBUsA8AVVVVzJ07N+qxi4jIEevnwErgfWPMOQ13GmPOBt4DVnBwAeuYMMb0wJmeah/QcOqnlo5NBUYC5dQmLkREREREupx4nBJqDpFndFtkic/P0KXFYjoogJA/RMDUGWGRpISFdEJ5U+DE2+DD30EoAC98BW6ZC97YDZH0JiYx85av89Jvfg5Axf53mffcZL573bhW92FchsxzBzPhoSI2uHcTNCEWLlzI5MmT6d69e7RCFxGRI4QxprFJikPAUOBlY0wxTr0HgHwgM7w+H3gNOCWqAbbONUAC8F9rbXXDncaYdKCPtXZtg+3JwD+BdOARa22gI4IVEREREYmFeLzZP5fGExYuYAC1RePmA/6OCkpq1S24PS4vq8POa/3BeiMskhI1B550UtPvgPXvws5lULgW3r0bzvx1TEMaPGEKA8dNYdPSBWArWfHe0xxzylCy+6e1uo/Egd3IPqY/x3yex1LPZkKhEO+++y6XXnppFCMXEZEjxPRm9hkgK7w0dDytfxgq2r4cfm1qOqgewGpjzCLgC2AX0Bun7kV/nBElP4h2kCIiIiIisRR3CQtr7fTm9htjjgEexRkOfVYHhCQN1CQsvG7DyL4Z0T9hZTEkZzojLOokLBKTk6J/bpFocHvhwn/AQ1MhUAUL/g5HnQ6DT45pWKd95Wv8+9vLCfqrCFZ/xqx/zuKKuy+IFOMsLKtmza5SThiS3WQf3c4ayDFf7GG13UGl8fH555+zdetWcnNzmzxGRESkFWbEOoDDYYyZDIwCFlprVzbRbB/wV2Ayzt85WUAlTvLiAeBBa21lB4QrIiIiIhIzcZewaIm1doUx5kJgFc4TRr+KcUhHlAOVftbvKQNgRJ8MkrzNz2t/2KyFh8+ApG7Ykh/UmxIqKUqV6EU6RM9hcNrP4M3bYfAp0HNErCMivXs2U6+8jtmPPQTArrUvseaTyQw/rj8Pf7SJP77rzFAx5/vT6ZHW+JRsnswkekzLZ/zsHXzsXQPA22+/zZe//OVI4kNERKStrLUfxDqGw2GtXYgzEqS5NiXANzsmIhERERGR+BR3Rbdbw1q7GVgEXBvjUI44+8t9TB7YnSSvi3EdUb9i4xzY+wVs/QRbvKvBCIuU6J9fJJom3QyX/Reufh4y+sQ6GgDGnnEW3fsOAsCG9vH+o//DVxXg850llFYFKK0K8Pt31jbbR9rU/hydOpDMkPM9um3bNlaubOphUhEREREREREREUenTFiE7cUpqCcdKD87lWduOY6Vd5/O904fFv0TLvh7ZNWm9CVInaLbCQnRP79INLlcMOJciKORBy6Xm3O+811qfj1UFs/jo2cWcvvpw0hNcEZUPbmwgFU7DjTdR4KbrLMHMzkwNLLtzTffpKSkJKqxi4iIiIiIiIhI59YpExbGmARgElAR61iOVF63i4wkb3RPUrQB1r7trGf0x3oy6o2w8HqjfH6RI1TPAQMZfco54XdBls96HG9lkG+d4iQgrIWfvfo51jZdwzT5mGwG5w5kYLAXAJWVlbzyyivNHiMiItJaxpj327C8F+t4RURERESkdTpVwsIYk2qMmQg8D+QCs2MckkTTwn8A4Zubk2+CoCVglLCQLirggy9ehXfviXUkAMy47loSU3sAEPJv5Y0Hn+GGE/LJ7+FM87Rg0z5eWb6jyeONMWR9aQgnBIeTYp3RUOvXr2fx4sXRD15ERI4E01uxTKuzLiIiIiIinUDcJSyMMcGmFqAEWACcDRwAfhLTYI8wwZDtuKejq0pg6f+cdU8yjL8OG7QE6kwJpYSFdCn/OQ+evho++oMzuijGvIlJnP612rqfu9a9zuZPt/CTs4+ObLvr5VXsPFDZZB8J/dLofcZRnOSvLSj+9ltvU1RUFJ2gRUTkSDKjieUU4EbgBZwi1/cBJ8coRhERERERaaO4S1jg/GHR1BIAtgD/AsZba9fEKsgj0WsrdjDxF+/y5UcXsXDTvuiebNkT4Ct11o+5FFK6QzCkhIV0XUedXru+7H+xi6OOoZMm0W/4ZOeNreLdf/2T6UOyOecYp0D4gUo/tz29nFCo6URm2kn9OGrkcIYH+gHgD/h58cUXCYVCTR4jIiLSEmvtB00ss621j1prLwa+A3wPKI5psCIiIiIi0mpxl7Cw1rqaWRKttYOstV+x1m6OdaxHmqUFxRSV+3hv9R4q/cGWDzhUoRAsfKj2/ZSvOq+aEkq6sjFXgHGKWrPsCQhF8XusDc75zjdxuZMAqCpdyez/vsMvzx9N327Otvkbi/jnhxubPN4YQ9bFQzkhczTpoWQAtm3bxscffxz94EVE5IhmrX0A2ArcHeNQRERERESkleIuYSHxa+nW4sj62P6Z0TvR+ndgX/gG6MCp0Ds8BU0oRLCm6La1uFz68pUuJL137SiL0p2w4f3YxhOWltWdKRdeHXm/8t3/Yksr+f2lYzEGemckMrJvt2b7cCV6yLn2GKYzChMejDH7/dns2rUrmqGLiIgALAdOjHUQIiIiIiLSOnF3x9cYEzLGLIl1HFJfdSDIFztKABjUM5VuKVEc3ZCaDUNnOutTvhbZbOrUsIi7L1yR9jCuNjHA0sdjF0cDx134JdJ6DATABot55Y//4rjBPbj/srG8detUThya3WIf3l4pjLhkCscEBwAQsiGef/o5AoFAVGMXEZEjXncgLdZBiIiIiIhI68Tjfd9y4PNYByH1rdpRgi/oJAvG5WZF92T9JsBVz8K3ltSb19/Y2imhXMZENwaRWBg6E1J7Oeur34DywtjGE2ZcLs797nep+ZWxd9McvvhoJeeN7UdWakKr+0kZnc1Jx55E95Bz32jv/kLee/vdaIQsIiKCMWYqcBKwIdaxiIiIiIhI68RjwmId0CvWQUh9ywqKI+tj8zI75qQ9BoPLHXlrQnVGWChhIV2R2wtjLnfWQ35Y8Uxs46mj79BBDJp4ZvhdiHf//ReC/vqjI6y1bN1X0Ww/Pc4czGm9p+Cyzvfw/EWfsGXT5ihELCIiXZkx5q5mlt8aY14D3sP5e+dfMQ5XRERERERaKR4TFv8FTjLGDI51IFJrWZ36FeNyM2MSg7EQCNewcLuUsJAuqt60UP8Fa2MXSwNnf+tGPAndAfBVbOOV+2unrdpTWsUNjy7i/L98zN7S6ib7MG7DUddNYZJnaGTb808+R3V108eIiIg04m7gp+HXhsv3gLMAA/zJWnt/h0cnIiIiIiKHJB4TFvcDbwPvG2OuNMYkxTgeAZZu3Q9AktfFsJz06Jxk1YvwxasQCh60y1qLAYLGGWHhVsFt6ap6DoP+k531Patg7+rYxlNHQlIi0675auT9xk9fZP6LHwPwqzdXM2fNXorKfdz+3HJsM4kWd1oC0685i94hp1h3ia+MN558ObrBi4hIV3MP8LPwa8PlTuB6IN9ae1usAhQRERERkbbzxDqARqzHeRoqF3gceNwYsweobKSttdZqJEaUFZVVs3Wf879/dL9ueN1RSBYEAzDr/+DAVsgcAF+bB4l16iMGLMHwdFAAHre7kU5EuohjvwY7jnVGW/QcFuto6hk783jWLjiFrZ+9B4SY/8yD9Mzrz4/PGsHctYUUllUze81e/vvJFq45Lr/JfpLzMzl3+pk8+sGzBEyQ5Zs/Z9jCFRw9+ZgO+ywiItJ5WWvviXUMIiIiIiLS/uLxMfV8YEB43YSX3uHtjS0SZXWngxobremg1rzhJCvAuUFbN1kB2GAoUr8CwONRwkK6sFEXwsyfx12yosaFd3yTtO75ANhQKa/96XfYfVX89pLaZMMvXv+CdbtLm+2n34xhTO07IfL+1Tdfp2xfSVRiFhERERERERGR+BePCYuBbVgGxSjGI8r0Yb14+ztT+fVFozl3TN/onGTB32vXp9xy0G7rD0XqVwB4PPE4OEjkyODxern8Zz/F7U0BIFi9iWd/+RATe2Zw3XFOvrk6EOLWp5ZRHTh4ircaxhhOvGEmed5eAFTaal789zOEgqEmjxERERERERERka4r7u76Wmu3xDoGqc/tMgzLSY9e7YqdK2CLMw8+2UfB4FMOamIDIQJGCQs5QlkLJr4KzXfr2ZNzv/tDXvrNTwGoLP6Q5389gNt+fD7zNhSxbk8Zn+8s4fez1vLjs0Y02Y8rwcMF117K3//9ENX42VC+jXn/e5cTr53ZUR9FREQ6AWPMXYdzvLX2Z+0Vi4iIiIiIRI/u+krsLXiodn3KLY3emLWB+lNCeT3ejohMJLZKdsLyJ2HZE3DVs9B9YKwjqmfwhAlM+tJlLHrlacBStOV53vl7Dn+8cgwX/n0+vmCIf8zdyLSjenLCkOwm+8nKzebME07lpY/fBOC9DfPp8UYPRpw1ocljRETkiHM3YA/jeCUsREREREQ6gXicEkqOJOWFsPJZZz2xGxxzeaPNbMDWmxLKm6CEhRwBlj8J790DRetg2f9iHU2jTrziSvoNH+O8sRUUrHiCHbMK+MHpR0XafO+Z5Ryo8Dfbz9jTpjA+b5TTjbG8tOAtdizcGLW4RUSk05nbzGKAPS20ERERERGRTiAuExbGmDxjzN+MMeuMMRXGmGATSyDWsXZ1H67byx/fWcvsNXsoq47C/+5PH4FgtbM+/pqDim1HBEIETe0Ii4SEhPaPRSTejL0STLjA/LInINR0PYhYcbncfOl7t5OckQWADWzn8w9eZFQRnBgeVXHa0b1JS2p5QN/Z113AgG5OnZxq4+eZ15/nwPq90QteREQ6DWvtdGvtjMaWcJM3m9pfp42IiIiIiMS5uEtYGGOGA0uBrwCDgSScp6YaW+Iu/q7mjZW7+NN767jhkUV8tv1A+3Ye9MOifznrxgWTv9JkU2dKqNqbtUpYyBEhPQeGnuasl2yHjbNjG08TUjK6cd73f4xxOcmVYPUiFr06m6/n9uauc47mZ+eNxO1quQaH2+3m8luuISshA4BiU85z/32a6t1lUY1fRERERERERETiQzze8P8lkAXMAo4FullrXU0tsQ2161u2tRgAl4HR/bq1b+db5kHZLmd92FmQNaDJpiFfsMGUUEpYyBFi3NW160v/G7s4WtBv2AimXX1D5L2/4k2WPL+UkzPSMW0oGJ6ckszVN11LonG+x7dSyGv/fJ5gqa/dYxYRERERERERkfgSjzf8pwEFwHnW2oXW2tJYB3SkKq8OsGZXCQDDcjJITWznGu2DpsE3FsKkm+C4bzTbNOgLEqgzJVRiYlL7xiISr4aeDinhgtWrX4eKfbGNpxnjzzqPoZOPd97Yanxlr/HWP5exe3NJpM1n2w/wxIKCZvvp0Subyy6/FBdOomNlYBNz//4Goer4mxJLRERERERERETaTzwmLFKAhdZaPU4bYyu3HyBknfWxuZnROUnPYXD272HA8c02C1bVH2GRmJgYnXhE4o0nAcaEi9EHfbDimdjG0wxjDKd/7Va69e4DgA3upurAbF7/y3IO7K3kg7V7ueyh+dz50kpeX7Gz2b4GDRvCGaeeEXk/t2w5Kx+eiw2GmjlKREREREREREQ6s3hMWGwEUmMdhNROBwUwLloJi1YKVgcJUmeERZJGWMgRpN60UI+DtbGLpQWJKal86bYf4fZ6AQhWL6esaAWvPbicJWsLKfcFsRa++/QyFmwsaravySdOYdLoCQBYY3lj1zw2PbUUG8efX0REREREREREDl08JiweB6YaY3rGOpAj3dKC/ZH1sXmZ7dexrwJCbZvaJdighkVicnL7xSMS73qNgH4TnfXdn8HO5bGNpwW98gdx8g1fjbz3l7/Lvh1byPuigkvH9gPAFwxx838+Zd3u5mf9O+P8sxjU16lvU238vLLmPfa+tT56wYuIiIiIiIiISMzEY8Li98B84E1jzKhYB3MkqxlhkZ7oYUjPtPbr+KM/wJ/Hw/y/QHXrSpSEqhvUsFDCQo40NaMsvCmwd3VsY2mF0SfPZOS0U8Lv/PhKX2DH2s1MP+Bm2lCnJkdJVYDrH1nE7pKqJvtxu91ceu0V9EjPAqDYVcEr896idMGOaH8EERGJI8aYa5tawk2GtKKNiIiIiIjEuXauotx2xpj3G9nsBcYDy4wxBThFuBubuNxaa09pZLscpp0HKtldUg3AMbndcLlM+3Tsr4JPH4GKQnjnLhh5ASSmt3hYyB+qN8IiKTmlfeIR6SxGXQTGwMgLISkj1tG0yBjDKV/+GkXbCti1YR3Ycnxlz7Fx8WVcf/IIivr5+Gx7CduLK7n+kUU8c8uxpCd5G+0rKSmJq264hn/89SGqAtVscxfx9mtvcna3C0ge3r2DP5mIiMTIo0BTcwJa4ITw0tT+/0QhJhERERERaWfxMMJieiNLzR8bLiAfmNpEu+kdEeCRaGlBcWS9XQtuf/ack6wAOPo8yOjbqsNCDaeEUg0LOdIkZcCE6ztFsqKGNzGJC390D9m5zpROhErxlT7HqvfXcsfgfvTPckZKfbGzhK/9dwm+QNMFtbt3785lV12OCyd5+pl7K/OeeIfqjQei/jlERCQuFBzGsjUG8YqIiIiIyCGI+QgLYEasA5CD9c9K5upj81i2tZiJA9rpCWZrYcHfa99P+WrTbRsI+UME60wJlZCQ0D4xiUhUJadncPFPfsHTd/+Q/Tt3YEPF+MqeZ9nLLn59xWi+MXc1xRV+PlpfyB0vrOD3l4zBmMZHdA0cOJCzzjmb1157DYCPzGpSH0li7DVTSToqqyM/loiIdDBrbX6sYxARERERkeiLecLCWvtBrGOQgx3TP5Nj+me2b6db5sGulc563/HQf1KrD7UNpoTyehufOkbkiFG4Dta/C8d+LdaRtCg1M4uLf/ILnvrpDykt3IsNFuIrfYEVz3i4/6oR3PLmKgIhy+T87k0mK2pMnDiRvXv2smDhAqyxvONajv2PZewVJ5I8MruDPpGIiIiIiIiIiERDzKeEMsa8b4y5PdZxSAdY8Lfa9WO/5szH30rOlFC1Iyw8npjn2kRiZ+E/4e8nwlt3wMbOkfPNyO7FJT/5BSndMgGwwd1UHniBdc+t43dnHM2/rp3I5ZPzWtXXzNNncvSIowEImhDvulew/ImPqFi6J1rhi4iIHDJjzGZjjG1imdNI+0RjzF3GmHXGmCpjzA5jzD+MMb1iEL6IiIiISIeKecICpw7F8FgHIVFWXACrX3fW03Lg6PPbdLgNhAgYjbAQAZzp1QJVzvrL34Tq0tjG00pZffpxyU9+QVJaOgA2sJ2yPS+y/40tTOmb2ep+3G43F118Ub2kxTueFax4dh5lC3ZGI3QREZHDdQC4p5Hl0bqNjDEu4OXwvkLgfmA+cBMw3xjTs8MiFhERERGJgXhIWEic2ba/gr2l1e3b6cJ/gg2PkJj0ZfC0rQaFDdjaERbW4na72zc+kc5k0k2Qf5KzfqAAZv1fbONpg+y8fC768c/wJjkFt0OBzRQVvMBrDy7FX12blHxs3mbueXUV1tpG+6lJWowYMQIIJy28K1j18kJKP9we/Q8iIiLSNsXW2rsbWR5t0O464HTgSeB4a+0d1tqLgK8Dg4BfdGzYIiIiIiIdSwkLOcj9765j0i/f5cRfv8+mwvLD79BXDksec9bdCTDh+jZ3Yf3BSA0LfdHKEc/lgvMeBG+q837xI7D+vdjG1AY5g4dy4R0/xeN1Epch/3q2f/Ecb/9zBaFgiGc+3cpPX1nFIx9v5kcvrCQYajppcfHFF9dLWszyLufzNz+l5N0tTSY7RERE4tjN4dcf2fq/yB4CNgJXGWOSOz4sEREREZGOoUIAcpClBfsB2F1SRZ9uSYffob8SRl4Ay592XtPaPv1uKBAgaJwRFq2vfCHShWXlw8yfwevfc96/8m34+jxI6hbTsFqr/4hRnPf9O3nxNz8nFAwQ8n3B+oXP8UFWMvaoFFwGQhaeWrSVSn+Q310yBq/74HRlTdLi2WefZfXq1ZGkBe/DMF+QhOk5Mfh0IiIiB0k0xlwP9AVKgEXW2gV1GxhjkoApwBpr7Za6+6y11hjzDnALMBH4sLUnNsb0b6FJ5JdlZWUllZWVre1aokTXoPPRNeucdN06J123zkfXrHNqzXWL1rVVwkLqOVDpZ8NeZ1TF0X0ySPK2w9RLqdlw7p/glJ/WzrvfVv5QnREWSlmIADDhRvj8Fdj0AZRsg1k/gS/9OdZRtVr+2Amc853befWPv8KGQgSrl7P8bS+jA5dy/yVjuO25FQRClpeX7aDSF+TPV44j0XPwz6SapMVzzz1XL2lhPoKB5T7wokyniIjEWg7wSN0NxphFwBXW2g3hTYNxBhOva6KPmu1DaUPCAtja2oZz584lOzu7FS31Z2Q0zZo1K0o967pFi65Z56Tr1jnpunU+umadU2uuW2FhYVTOHS+z61xnjAkewhKIdeBdzfKtxZH1sbmZ7dt5SnfI6HtIh9pgnYSFbjyKOGqmhkpIc94v+Q+seze2MbXR0MnHc8bXv0tNRiFY/Skr33sK3zs7ePCCY0gIj6qY9flubv7PYip9wUb78Xg8XHzxxQwbNszpx4R427ucTUvXkL8+FTQ7lIiIxM4jwClAbyAVGAc8DkwC3jPGpIfb1QyTPNBEPyUN2omIiIiIdDnxkorSLeg4saxOwmJcXlbsAmnABoMEwlNCuYy+XEQiMvNg5i/gte8471+9Fb69BDyJMQ2rLY4+aQb+qire/ddfAAhWL2HryjIyi87jwXNHcuusz6n0B5m7di/XPbKQf183kfQk70H9eDweLrnkEp555hnWrl0bSVqcvm8sg9amYU8JdfRHExERwVp7T4NNy4BrjfNv2mtw6lb8IYoh5LawPwdYBDB16lT6929pBilg/vuHH5U0aebMmdHpWNctanTNOiddt85J163z0TXrnFpz3bZt2xaVc8dLwuIt4NexDkLqJywOe4TFvo2wdhaMvRKSMg6rKxsMQHgmGLe7HaapEulKJlwPn78M+zfBeX/pVMmKGmNOOxOX2807/3wQGwoR8q9l//YnqXryfP541hB+sGgDpdUBFm7ax9X/XshjN0wiMyXhoH48Hg+XXnppvaTFLO8yTt8/lpJH15B47Ujc3Trf/x8REemSHsJJWJyAk7CoGVnR1AiKmn9QNzUCo1HW2mb/kjR1HgZKTk4mOVk1vWNN16Dz0TXrnHTdOiddt85H16xzas11i9a1jZeExS5r7QexDuJIZ62NFNzOSvEyoEfK4XW44CFY8Hd4/xdw2eMweMYhdxWwtdPAeFzxMpOZSJwwBi78B3hTIDEt1tEcstEnzyQ1M4tX//grAr5qbGAblfufZP0rF/KL44dw95bt7K/0s7mwnN0l1Y0mLKA2afH000+zbt06AibE2wnLOHlnkNCDPnpcfTSJAw4viSoiItIOaib9TQ2/bgRCODUqGlOzvakaFyIiIiIinZ7u/EpEwb4K9lf4AWd0hTmcqZeqSmDp/5z1UAD6jDms2IKh2oSFRliINCKtV6dOVtQYNH4Sl/70XpLTnYSCDRVRXfIkBR+v4ocp3RmWlcJjN05mWE56s/14PB4uu+wyBg0aBEDAhHjHu5wVFRvY84/llC/aFfXPIiIi0oIp4dfNANbaSmAhMMwYM6BuQ+P8w/w0oBz4tANjFBERERHpUEpYSET96aAOs37FsifAV+qsj7nMKbh9GELUzj3v9cTLwCCROBYKwfrOVYC7Rp8hw7jiF7+jW+8+zgZbhq/0afauXsU15UnkeerXr7C28YraHo+HCy64gMzMTKedgU+865hnVlP0/Br2v7weG1RdCxERiR5jzHBjzEHDlo0xw6mdEveJOrv+EX69z9R/eugWYBDwv3BiQ0RERESkS1LCQiJ2l1SR4Ha+JMbmZR56R6EQLHyo9v2Urx5eYECozpRQ3oSDi+2KSB37NsFj58J/L4LVb8Q6mkOSldOXK3/+W3oPCs9+Yavxlb3Avm3Lee7Xn7J5hTOLRihk+eYTS3liQUGj/Xg8HvLz8+ndu3dk2xee7bztXc7++Vsp/PdnBMt8Uf88IiJyxLoc2GWMec0Y8xdjzG+MMS8BK3CKXd9nrZ1bp/1jwNvAFcA8Y8yvjDHPAX8FNgE/6djwRUREREQ6lhIWEvGVqYNZec9MXvz68UwccBgjLNbNcgpuAwyaDr1GHHZsQWqfoPZ6lbAQaVbBfNjykbP+2negYl9MwzlUKd0yufSn9zJw7ITwliD+8teoLF7E639bweK3NvOHWWt4feVOfvziSu5+ZRWBRkZMGGPo27cvZ599Nq5wDZzt7n28kvAphZt2sefBZfh2lHXgJxMRkSPIbOBN4CjgauC7OFNBvQGcbq39cd3G1toQcB5wN9Az3P4E4N/AcdbavR0WuYiIiIhIDMQ8YWGtdVlrb4x1HOJI9LgZl5dFauJhTLu04O+16+0wugLqTwmVkNB4oV0RCRtzBQw93Vkv2w3PXAv+qtjGdIgSkpI57wf/x6gZp0W2BSrn4C//gPkvbsC1cB+ecD7z0XmbueHRRRwI1+JpaNSoUVx33XUkJycDUOwq5+WERew4sJu9f1tOxQrdAxIRkfZlrf3AWnuZtfYoa203a63XWtvHWnu+tXZWE8dUW2vvsdYOsdYmhtvfbK3d3dHxi4iIiIh0tJgnLKSL2bMaNs521rMG1t40PQw2aAkaJSxEWs0YOPdPkByuHbP5Q3jhZqhTvL4zcXs8zLzl2xx70RWRbcHqxfjL3yBhexnf92TSHWea7w/XFXL+Xz9mw97GR0wMGDCAm266iR49egBQZfy8kbCUdcEd7HtiNQfe2owNNV4TQ0REREREREREoksJC2lf9UZX3AKuw/8Ss8EQgbpFt5WwEGlZRh+48mnwhut8fvEKvP49aKJAdbwzxnDCpVdx2s3fxBjn50rIvwZf6VP49+zhFl8aIzzOz4ZNheWc/5ePmbu28RETPXr04KabbmLgwIEABE2IOQmrWOzZSMmcAooeW0WwvPFRGiIiIiIiIiIiEj1KWAgA97y6iq/9dzEPfbCBCl/g0DoJVMPnLznrCWkw9qr2CS4QImhqnwxPTEpsn35FurrcyXDp4+AKT/G2+BGYfW9sYzpMx5x6Buf94E48Cc7PARvcg6/0v1QfWMu5+zycnpgKQGlVgOsfWch/PtnaaI4mOTmZq6++mgkTJkS2LfVsYrZ3FWVrCtl9/2Iq13TO2h8iIiIiIiIiIp2VEhYCwLtf7ObNz3bxx3fXkuA+xC8LTyJ8czGcchec8B1IymiX2GwgRIDahEVCohIWIq029FQ4v87Ip7m/gQUPxS6edjB4whSu/OXvyczp42yw1fjLXsJX/hGjdwW4ITEDl4WQhfveXse8PabRftxuN+eccw4zZ86MbNvo3s0bCUsoKS2l6JFV7H9pPSFf55xKS0RERERERESks1HCog5jzCRjzBvGmGJjTLkx5hNjzKWtPNYYY840xvzNGLPCGHPAGFNhjFlujPmxMSYp2vEfqsKyarbuqwRgdL9ueA41YQGQ2gNO+h5M+0E7RQfWX39KqMTEuP1fKRKfjrkEzvh17fsNsyEUarp9J9AzL5+r77ufIZOOi2wLVi3AX/YiPXaW8B1PN5JDMKx3GhOzm54GyxjD8ccfz+WXX47X6wVgj6uEFxIXsMG1i/JPdrLngaX4tpZG/TOJiIiIiIiIiBzplLAIM8bMAD4GTgSeAf4O5ABPG2O+14ouEoE3gBuAHcA/gH8DycAvgbnGmJQohH7YlhUUR9bH5WXFLpAm2KCtN8IiMUkJC5E2O/arcNL3YcwVcNnj7VJfJtYSU1L50vd+zNSrb8SEP08osIXqkv9idm/hVpvOfdMHk+huua/hw4dz44030q1bNwB8JsDshFXM8a6iorCUPX9bRsl7Bdhg56wBIiIiIiIiIiLSGXT+O1btwBjjAf4JhICp1tqvWGu/B4wB1gL3GmMGtNBNEPgJ0Mdae4a19gfW2m8BI4FXgUnAN6L2IQ7Dsq3FkfWxuZmH1om/sl1iaUzIFyRg6oywSEqO2rlEurSTfwLn/RXc3lhH0m6MMUw690Iu+b9fktIt09loS/GVPk313k9Z+PA6KnZ6Iu3X7ynlZ69+TpX/4Gme+vTpw1e/+lVGjx5d2969ixcSFrDLFlPyzhb2PrScQGH0ft6JiIiIiIiIiBzJlLBwnAwMBp6w1i6r2WitPQDcCyQA1zXXgbXWb639pbV2f8PtwH3ht9PaM+j2snRrbciHlLDYuRx+NwzevhP2b2m/wMKCVcF6IyySkltOWCzfu5y3N7/N1pKt2MYq7oociYw5eGRF8VbYuzY28bSj3KNHc82vH6Df8KPDW0IEKt+nsvh1ipZ6OLA2gcpqP996chkPf7yJ8x78mLW7D57mKTk5mYsuuogLL7yQxHC9nDJXFa8nLGaxZwNVBQfY/cASyhbu1M8WEREREREREZF25mm5yRFhevh1ViP73g6/Hk6ywR9+DbT1QGNM/xaa5NSsVFdXU1nZtid/Q9ayPDzCold6ApkJts19eD9+EE/1AZj/IL70/gTHXd+m41tSUVpRr4aFcbvrxRiyIVym/k3YZ754hlc2vQJAmjeNYVnDGJ45nGFZwxiRNYLc9NyDjulIVVVVja5L/OqK18wUriHhmSsAg+/qV7AZ/WId0mFxJyVzzvf/j0+ee4Llb70KQMi3Gl9gLwfWfokXfruCykA5GFizu5Rz//wRP5w5hMsn9sOY+oW5hw4dyg033MBrr73Gtm3bsAaWejazzbWP6f6R2BfWU/7ZXtLOzceV1nVGrMSLrvj91tXpmnVO1dXVsQ5BRERERESkHiUsHEPDr+sa7rDW7jLGlNVpcyhuDL82lhBpydbWNlywYAEbNmxoU+e7KqCs2vkyyPFW8c4777Tp+AR/CTNXvQCAz53CrF09CM46lI/ZtLQ9XoKmdoTFosWLSVq1CoDSUCmPlj3KGclnMNRbe4kWlS6KrJf5y1i8ZzGL9yyujZsEMl2ZHJ94PBMTJ0a2+62fT6o/IdEkkmySSTJJJJkkDAaLJUgQiyVkQ+R58vCa2huVRcEidgZ3EiRIiBBB67yGCBGyIYLh/5JNMlMSp0SOmzt3LgurF7InuCfS3ob/C9nadYAhniGMTxxf7//PaxWvYbGYmv+MwV3zn3HjwYPHeDjKcxQ93D0ix1WGKtke3I7XeEkwCSSQQKJJJMEk4MET04ROvJs7d26sQ2gXx63/Db1KdwDgf+RcPhx6J35Peoyjagfdc8g58RR2fzIXG/BjQ0X4Sv5LKDCdixNGsSHFxVteP5WBED97Yy0vzl/NFYNDpDaSd8jOziYYDLJz504A9rpKeDFhIccFjuKotZY9f1rK9gEVFPX0gTn4eDl8XeX77Uiia9Z5FBYWxjoEERERERGRepSwcHQLvx5oYn9JnTZtYow5E7gF+AKnCHdc2VxWe4ctP63t05vkF72P2zoDR7b0mEbQndhusdUwQVNvhIXb7VTQ9Vkfj5c/zu7Qbh4vf5zLUi5jZMJIAE5NOpVtgW3sDO5ke3A7pbb+1C8+fOwJ7cFnffW2V9pK3q56m9a4Lf02uru7R96vDazl9crXWzyuh6tHvYQFwBr/GtYE1rR4bLJJZjz1ExaLfIsIcvB8/A11S+lWL2GxK7SLR8sfbbJ9AglOIsMk8I30b5Boaq/tSt9K1vjX4DEevHidV+PFQ+2rwZDhyuAo71H1+v3M9xlVtuWnb/t7+pPjjgwgwmd9rPCtaPE4gJHekSS7aqcO2xvcy5ZAy9OVeY2XMQlj6m3b4N/A/lDttGkWWy8RFcJJRvVx92GYd1i9Yz+o+oCxCWPp5jqkHx9Rt2TALZy47hekVe8mvWoHx274A/OG/JCgu/MXtk/LG0RCZnd2ffguvgP7AT+BincI+dYz2J7GLZ5U3k/0syIhyMr9LgpWGK4ZEmJot/o/B40x5OTkkJ6ezpYtW6iuriZggnzo/YKtrkJO9I8gf0Ma2Xv8FAysoDK15e9FERERERERERFpnBIWUWSMmQQ8jZMIucRaeyjj7nNb2J8DLAKYMmUKgwcPblPnH7+6GnCesL5oxkQm52e1/uCgj6S/fR8Aa1zkXvgz+ndrKdy22/fRTjZsrx38cuqpp+Lxerh93u3sOODE3iulF9eccg3ZydkAzGRmvT4KKwtZW7yW1ftXs2b/GtYUr2F/9X4mjJ7AzIG1bTcc2FA7CVgLjj/xePLS8yLvS9aX8PqSlhMWicmJTJ06NfIE6tSpU3n707dZs6PlhMWAvAHMHF//s/302Z9CK3JNkydM5vg+x0feL9i1AJp5CNaHz0noWDjztDPxuGp/XKxevppla5a1eM4pvafwzWnfrLft32/9m00lm1o89tYxtzJzWO1n3V2xm5+99rMWjwO4bOplDO5W+73w8saXeenTl1o8rldyL34w8wf1tv1o3o94b9t7LR57/qDzmTmx/rW594V7+ST4CT+e+GNOyT2lVbF3NFM8GfvfczHle+hesYGz9jxI9UWPQ1rvWIfWLkpPm8lLf/otpRudOh2hwCaqSx7DmzyDmcERjA14eSuxmj3AXz5385UTB/CN6QPxug8eYeTz+XjvvfdYscJJnG1272WP6wDH+Y8iv7QXR6/sRtLkXiTP6Icr0d2RH7PLqaqqqvczMimp8yfRujpds86prSNzRUREREREok0JC0fNyIqmHoPOAPY3sa9RxpiJOFNAhYDTrbWrDiUwa+22Fs4TWU9MTCS5FQWp67p52hBG53VnacF+Jg7qRXJiG74kVrwK5XucOIafTVLOUS0ccGjc1k2gzpRQ6enp/Hbxb/lwx4eAU6Pib6f+jdysppMlucm55HbP5RTq3zS21tb7f5jnzuOP0/9Iqa+UEl8Jpb5SSn2lWCxu48ZlXLhdzlRLPTN6kpxU+/97Ur9JfN/1fTwujzMVU51Xr8uL2+XGYzykeFPq3chJSkri9sm383X/153+w+epWdzGHYkx1Zta75wAT53zlDN1lHWmkAraIP6QH3/Qjz/kxxfy4Qv6OCbnmHpfHwN7DOTm0TdTFayiMlBJhb+CikAFlf5K532gggp/BQEbID21/jRBgVaWY3G73Qd9TbZ2qimv11vv2KRQ629+JSUm1Ts2ISGhdQcaDoq3ZkRPi1z1j7XW4na5KfWV8qP5P+LCwgv54aQfkuJNaV1/HSV5OFzzIjx6FlQdwLVrBcn/PQeufAZ6H93y8Z1A72OnkZY7kAPLFlBxoBhsNf6Kt3D519PLnsK1/lQWJwT4ONnPPz/ewplj+jM2N/OgfpKTk7nwwgsZMWIEr7zyCpWVlVQYH+8lfEZusAfHB4bBgj34Pi8m8+yBJI/peVBtDGm7pKSkNv9uk9jSNes8EhPbf2SsiIiIiIjI4VDCwlHz+P5QYHHdHcaYHCANWNjazsLJincAFzDTWruohUNiZmjvdIb2TueaYwe0/eAFf69dn/K19guqgaAvWDsllIUn1zzJ/774HwAe4+EP0//AkKwhh9R3w5uJGQkZnDrg1EPqa3j34QzvPrxVbRsWNs/vln9I56w576EYkDGAb4//9iEd+42x3+CqEVdRHaymKliFL+ijKhB+Db+3WHql9Dr42HHfoNRX2kiv9Y3KHlXvfUZCBvccf0+r4uuZ0rPe+3G9xrXq2KRGpkK6dNilnNDvBHw+H6vCtVPGjB5DcmIybpcbr3GSUX1S+9Q7rjJQyfF9j+ftzc6QnRfWvcCS3Uv41dRfMbLHyFZ9jg6TMwpufBv+dwkc2OosD58Olz4Gg0+OdXTtIrVfHmdechnznnyM1R9/AEDIv57qku14U05hIkcx3O8mcVJ3xvRvfgqvESNG0K9fP1599VXWrXN+fWx1F/Gc6xPGBwYyujSPfU+tIXHRLjLPG4K3V5wlqURERERERERE4pQSFo4PgB8BM4GnGuw7vU6bFtVJVrhxRlYsaK8g48rWRbA9nNvpPRoGHN98+8MQ8gUjNRpcFn6z6DeRfXcddxfH9T0uaueWxmUmZZKZlHlIx5424LRDOi7Fm8KFQy88pGMHdhvIwG4DD+nYKX2ceiOVlZUkr3eeGJ6ZP7PFp4dTvCn8dupvObHfidy74F4qA5VsLtnM1W9cza3jbuXakdfGV2HzXiPgpvfgyctgx1KoLoH/XQrfXgKZeS0f3wkkpaVz9rd/wNApx/Puv/5KZckBsJX4y18j6BtGasrJmIX7eaVkGdOuGEZm7xSq/EHe+mwXXxrTF5erNsGZkZHBlVdeyRdffMGbb75JaWkpQRNikXcD6927OME/nJwNsPtPS0g/qR/pJ+fhStA0USIiIiIiIiIizYmju2Ux9R6wEbjSGDO2ZqMxphvwY8AH/KfO9j7GmOHh/dTZPgEnWeEBzrTWzu+A2GNjwd9q14/9KkRx2pOQL0jAOCMsjLXYcMGGrxzzFS4YekHUzityuIwxnD/kfJ4999nIqIpAKMDvF/+eW965hT0Ve2IcYQPpveH612HY2c77k3/SZZIVdR015QSu/91fGDq5NtEa8q+huuQ/BH0b2LZ6P0/+fAELXtnIP2av5ztPL+OCv81jxbbiev0YYzj66KP5xje+wZQpUyIjtva7ynktcTFzPV9QFfRROmcbu/+wmMrPCrG2FQVnRERE/p+9uw6TqzofOP4947Ou2d24O0kgQUMIBLcWKBRrKUWKFGuRFlpoS7FSqND+oNBSXIu7axKIC8SJJ+u+O7vj5/fHubM7s5aNrr2f57nPzFybM3tzJ7vnPed9hRBCCCGE6KMkYAForcPAJZifxxdKqUeUUvcDy4DRwC1a601xh9wNrAKaesuVUlmYYEUGMBs4Vin1+xbLdfvi83TWO98UMfe7cuoDnatHkCB/P0jJh6QcmHjmnm9cnEggRNiaYYHV2XfSsJO4aspVHRwlRPcxJG0IT534FBdPvBiF6dT+uuhrznzjTKr91V3buJZcyXD2U3DW4zD92q5uzV6TlJ7Bqb+8mZOuvgFPcopZqX2EfK8T9L1HJFjPwnc2Uf/aNoaFbCzbWs33/28ON7+ynEpfMOFcHo+HE088kUsvvZT+/fs3rV/rKOQl91essxURrvZT8fQqyv61nMCmGoQQQgghhBBCCCFEa5ISyqK1/lQpdTjwB+BswAl8A/xKa/1CJ06RBmRaz0+wlpY2A3/b/dbuPq01v39jBaV1AdI8DpbedlxCupMdOvwXcMjPoWIdODtfDHlXmICFNcMCzQH9DuCP0/8oxWxFj+K0O7lu6nUc0v8QfvPlbyhtLOXEYSfucmqtvcpmhwltzF5a9RYMPhSSs/d9m/YCpRTjDj+SQeP348N//5MNi025oWhwJYHgOhyeA0nzTOVMn5u1zgifeEM8N38r73xTzA3Hj+G8gwZjj/ve7N+/P5dccgkLFizg448/JhgM4lchPnetZG2kkOnhsWRshrJ/LcczPpv0E4ZKfQshhBBCCCGEEEKIODLDIo7Wer7W+kStdbrWOklrfXBbwQqt9YVaa6W1fjxu3SZrXUfL0H35eTpSVOOntC4AwH4D03cuWBHjcEHe3i8eHA2Em2ZYOJWDB2Y9gMvu2uvvK8TecEjBIbz8vZf58fgf88tpv+zq5nTedx/BixfAo8dAxfqubs0elZKVzWk33cbxl1+LyxsLIIQI++cSqHmMSGAlo4I2Lq5zc6DfQV1DiFtf+5bv/XM2izZXJpzLZrNx8MEHc9VVVzFhQvP3Y5G9mlfc85jrWEMjQfwrKyj56yKqXllHpDawDz+tEEIIIYQQQgghRPclAYs+aunW6qbn+w/KbH/HbiAUCmFl0cFus5HuTu/4ACG6uQxPBjcdeBNuuzthfbGvGF/I10Wt6kA0Au/+GnQEKjfAf46Gzb2rRI9SiolHHcvFf3+EyceehLJZ/z3qekIN7xGsewZbcBtH+p1cUOdmQNjGisJafvDQV9zwv2WtzpeWlsZZZ53F+eefT0ZGBgBRNCsd23jRM5cl9o2EdATf/GKK/7yQmvc3EfXvQno+IYQQQgghhBBCiF5EAhZ91JItVU3PpwzK6NxBWsOcB6B6y95pVAuPLH+EJ1c8STjUnC/eruSfrOid5myfw1lvnsXv5v6u+xVmttnhx69CP2vGQGMVPPk9mPdIU12Z3iIpPYNjLrmSn/z5/xh+wIFN63WklFD9/wjWv052qJrz6t2c0ODEG4VhOcntnm/UqFFceeWVHHnkkTidTgBCRFjk3MCL7rmssm8jEgpT9+lWiu9dQN3s7ehwdK9/TiGEEEIIIYQQQojuSHp/+6j4GRZTBmd07qDNc+DDW+Hvk+GTO/dKu2Le2vAW/1jyD/688M+U+8qa1tts8k9W9D51wTpu+uImqgPVvL/pfZ5d/WxXN6m1jEFw0XswYpZ5HQnCuzfCM2dCXUnXtm0vyB44iNN/9TvO/O0d5A4Z1rQ+GlpPsPZJQg2fMNEf4vJ6L2O2hSjfVt+0T3VDkLK65jRPLpeLI488kmuuuYZp06Y11d9pVEHmONfwsnsem2xlRBpC1Ly1geL7FuJbVIKO9K5gkBBCCCGEEEIIIcSOSO9vHxSKRFm+rQaAQVleclLcOzjCMu9f5lFHIWf0XmodLChewG1zbmt6bdPN9TUcdvtee18hukqqK5Xbp9/e9Pq+hfexrKx1mqEu50mD816Eg69oXvfdR/DQobD67a5r1140ZL8p/Oiev3H85deSnJllrY0SCSwlUPMoNMxn9ewtvHDHfF6+dyGrvy7igQ/WMfPPn3L/B2uo9YeazpWamsopp5zCz3/+c8aNG9e0vkY18JFrOW+5FlGiqolUB6j631pK/rIQ34JimXEhhBBCCCGEEEKIPkMCFn3QmuI6AlYH2JTO1q+o2tzcIZmSD+O/v1fatrFmI9d9eh2hqOnkO2v0WbhtzQW27Q4JWIje6ejBR3PhhAsBCEfDXP/Z9VT6Kzs+qCvYnXDiPXD+y5CSZ9Y1VMDz58Hcf3Zt2/YSm81u6lv87REOO+t8HO5YkDdIuHE2gZr/EPYvoGh9OR8/voqk94s5qEbx9IfrOeLeT3n48/X4Q5Gm8+Xk5HD22Wdz0UUXMWjQoKb1JbYa3nQv4kPncqqVj3CFn6qX11F830Lqvy5EhyRwIYQQQgghhBBCiN5NAhZ90JKEgtsZnTtowb/NzAqAAy8Gh6vj/XdBRWMFV350JbXBWgCmD5jOLQffQiTa3NEnAQvRm117wLUc0O8AAEoaSrj5y5sT/v13K6OOgSvmwpiTzWtXKow7pWvbtJc5PR4OPfNcLv77v5l41HFgpXZCNxJu/NIELhrn44mGODDg5JI6D8eVKl5+fS1H3vspT3+9mUC4+XoOHjyYiy66iHPOOYecnJym9ZvtZbzs/ppPnN9QoeqIVAeofm09RX82NS6iwW76b0IIIYQQQgghhBBiN0nAog9KKLjdmfoVQR8sftI8t7tg6k/3eJv8YT/XfHoN2+q3ATAmcwz3z7wfh81BRDd3zjldzj3+3kJ0Fw6bg/tm3ke2JxuAuYVzeXj5w13cqg4k58A5z8CpD8Apf4XMoV3don0iJTOL4y+/hgvv+z/GHHZEXODCT9hvzbhonIfWAYaE7Xy/wc3p2xTvPbeaE+78lH9/sQFfIAyAUoqxY8dyxRVXcMopp5CSkmJOBWywl/Kqez4fOJdRqmqI1gZNjYs/LaD2s61ErXMIIYQQQgghhBBC9BYSsOiDBmUmMSYvFbfDxoT+aTs+YNlz4Dc1L9jvLEjJ3aPtieoot8y+heVlywHol9SPfx79T5KdyU3bY1wSsBC9XG5SLn+e+Wdsynw9/2vZv5izfU4Xt6oDSsHUn8CksxLXB+rhlZ9B1aYuada+kD1wMKdcexMX3vcgY6fPRFnXzAQu5hCsfZRw49doHSBFKw4NODmjSLHyxfX8/L45RCLN3212u51p06ZxzTXXcPTRR5OUlNS0bYu9nDfcC3nHuZhCWyURX5Da9zZRdM8Caj/aTLQh1LJpQgghhBBCCCGEED2SBCz6oF8cO5r3f3EES287DveOUixpDfPiRngffNkeb8+DSx/kw80fApDkSOLBox8kPzm/aXskPmDh7mSBcCF6sAPzD+Tq/a8GQKO5+cubqQvWdXGrdtJ7v4blL8BDh8Oy5813SS+VPXAQJ19zIxf+5UHGzziqKXCho37C/rmE6h8l1DgXHfVjQzEybOfArRGeufVrFr67CV9NoOlcLpeLGTNmcN1113HCCSeQltYcVC60V/GOawlvuhaxxVZOtDFE7UdbKLxrPhXPr8a/rgod7b0/ZyGEEEIIIYQQQvR+jq5ugOg6Xlcn6kGs/wTK15rngw+Dgsl7vB0nDTuJtza8RbGvmPtm3seYrDEJ2yM0p4RyeSRgIfqGiyZexLLSZSwoWcCth95Kqiu1q5vUeY3VsPEL8zxYB69eBkuehuPv3CvfId1FVv+BnHjV9Rzyg3OY9+qLrPzyU3Q0SjTsh/DXEFmKw7sfmknY7OnUVfqZ9/oGFry5kX7jM/nGE+Gnp41lSE4yLpeLQw45hGnTprFs2TJmz55NVZVJ51dqq+ED1zKyoylMDg9laLgfjUvLaFxahj3dTdIB/Uiamoczx9vFPxEhhBBCCCGEEEKInSMBC9GxZc81Pz/k8r3yFsMzhvP0SU+zpHQJMwbOaLU9SvOIYbcELEQfYVM27jj8DqoD1QxJG9LVzdk53gy4fDa8e1Pzd8imL+HhmTDlfJj1W0gr6NIm7k2ZBQM44cpfcMgZ5/D1qy+w8otP0NEokZCfSGgBqIWkZk8gENwPm72AaFRT/G0lucCTi78iPCyZM84Yw+QRWTgcDqZOncqUKVNYsWIFX375JWVlZQBU2Or5xPUtaSQxNtSf0ZECPDVQ9+lW6j7dimtIGklT+5E0KRebR/67F0IIIYQQQgghRPcnPRh9TGMw0rmZFTHf/z8YeQysfB3GnLzX2pXjzeHYIce2uS1Kc0oor1dGDIu+I92dTro7vaubsWs8aXD6v2DcqfD+b6BqI6Bh6dOw4lU4/Do49CpwJe3oTD1WRn4BJ1xxHYeccQ4LXn+JlV98QjgUBK2pK/8W+JbUnGFEmEwkPBSlbGRFbbC+kU//vIT/ZdqZMGMApx0zDK/LwaRJk5g4cSJr1qzhiy++oKioCIBaGpjv/I6Fzg0Mi/RjXHgAeTqd4OZagptrqX5jA96J2SRPzcM9IgNlU137gxFCCCGEEEIIIYRohwQs+hCtNdP/9AkZXiczx+Tyu1Mn7Pgghxsmn2OWPaTYV8zTK5/m2gOuxWnfcRHtiGoOWHi8nj3WDiF6olfXvcrk3MkMzxje1U3pnLEnw8hjYf4j8Pm9EKiBkA8+vRPWvAOXfmoKd/diGXn5HPuzq5h+zo9Z9uE7LH3/bRpqqgGoK98IbMSblkPQPQVHaCxKuXCiKKiKUvnGVu59Zwuesel8//ujGDsonXHjxjF27FjWr1/PnDlz2LhxI2CCu+vtxay3F5NpS2VsoICRkXzcYaekjBJCCCGEEEIIIUSPIAGLPmRzRQOVviCVviBDsrtmVLMv5OPnH/+ctVVrWV25mr8c9RfSXGkdHhNJSAklHWyib/KH/dw5705e++41hqcP57mTnyPJ2UNmJzhccNhVMPlc+PweWPAo6AhM/WmvD1bES0pL59AfnMuBp/6A1XM+Z9Hbr1G+dTMAjbXlwEfYPHMhawrhhvG4lfluzAkr+LaWd79dyIoDcpl50jByBqYycuRIRo4cSXl5OYsWLWLp0qU0NjYCUBWt4ytnHQtc6xmh8xkb6E+OTiVSE0hIGZU8LQ/vfjmSMkoIIfYSpdQA4CzgJGAskA9UAnOAe7XW81rs/3vgdx2ccpjWetNeaawQQgghhBDdgPRQ9CFLt1Y3Pd9/cGbHO4eDppNxDwpFQ1z/2fWsrTJFvLfXbyccDXd4jNaaaNwMC7fMsBB9lEazomIFABtqNnDhexfy55l/7ln1LZKz4aQ/w4GXmKDF/j9K3F5XDGE/ZA7tkubtKw6Xi4lHHcuEI49h8/IlLHr7NTYtWwxAyN8AhXNBfYU9fzS+0Cjc4eEo5cCFonhxOS8sLidvWBoTjxjAoMnZ5OTkcPzxxzNr1ixWrlzJwoUL2bp1KwBhHWEN21nj3k6uK4NRDXkMD+fhwRmXMmo93ok5JE3th3u4pIwSQog97GrgV8B64AOgDBgFnAacppQ6T2v9QhvHPQFsamN99V5ppRBCCCGEEN2EBCz6kPiAxZRBGe3vGI3AQ4dB/kQ4+AoYfPBuv7fWmrvm3cWcwjkApLnSePCYB8nyZHV8YEQTjqthITMsRF/ldXj5y8y/cO7b51IfqmdV5SrOfutsfnfo7zhx2Ild3bydkzsGTrq39foPbzP1LSafC9OvhewR+75t+5BSiqGTD2Do5AMo37KJRe+8waovPyESDoPW+IrWAGuIepLQqeOxh8YA/VBKUbKxlpKNtYTsUJrtYOIRAzj18MFMnjyZyZMnU1JSwqJFi1i2bBmBQACAsmA1ZY5q5jnXMdjejxENuQyK5mAPQcOSUhqWlGLPMCmjkqfm4ciW71shhNgD5gNHaq0/j1+plJoBfAw8pJR6TWsdaHHc41rrz/ZRG4UQQgghhOg2JGDRhyzZUtX0fHJHAYt1H0DFOrM0VsMFr+32ez+24jFeWvsSAE6bk78f9XeGpQ/b4XE6HCUcX8MiKXm32yJETzU0fShPnPgE1392PZtqN+EL+bjpi5uYXzyfXx34KzyOHjwDafsiWG4NMF38BCx5CiacATN+CXmdqLfTw+UMHsrxl1/D4ef8mOUfv8eKzz6iprQEsGZd+BcSZiEpWf2xuSYQaByOsiXjjMCA0jBVL23mztc3wsgUjp41hJnj8jjppJM45phj+Pbbb1m4cCGFhYUARHSUjeFiNrqK8dhdDIvkMTKQRz+dRqQ6QN0nW6n7ZCuuwal4J2TjGZ+NM7eHpB8TQohuRmv9Sjvrv1RKfQocB+wHLNynDRNCCCGEEKKbkoBFH+EPRVhZVAvAiNxk0r0dFLv++qHm5wdfvtvv/d6m9/jror82vf7j9D8yLX9ap47V4ShhIk2vvUnSaSb6ttGZo3nhlBe44+s7eHPDmwC8tPYllpUt476Z9zE8vYcU424pexTMuMEU5w7Ugo7Cty+ZZfSJMON6GHRgV7dyr0vOyOTQH5zLIaefzbZV3/Ltpx+ydt5cwkEz8La+shAoRNnsuDNGEQqOxuEYhlJ2BoVssKqBJatX8mLyCgYckMup0wdzwP77c8ABB1BUVMTy5ctZvnw5Pp8PAH8kyCq2ssq9lXRHCiP8uYyMFJCmvQS31BHcUkfNu5tw9PPiHZ+Dd0I2zgEpkjZKCCH2jJD12FaO1COUUgcDUWAd8JHWun5X3kQpNXAHu+THnjQ2NjbVQxJdR65BzyPXrGeS69YzyXXreeSa9UyduW5769pKwKKPWFFYSyhiild3WL+iZCVstGasZw2HUcft1vsuLV3Kb778TdPrq6ZcxcnDT+708dFQlEhcwMLt6cEjyIXYQ5KcSdx5+J0cmH8gd827C3/Ez7qqdZzz1jk8dvxjTMjpgTMSPGlw9K1w2NWw4D/w9YPQUGG2rX3XLENnmBkXw4/q9cW6lc3GoAmTGDRhErMuuoI1X33Jis8+onDtKgB0NIK/cjWwGlxJRB0jcdhGY3MMJBkbU+oV+otynplbyv25Dv578xEUFBRQUFDAMcccw4YNG1i+fDmrVq0iHDb9ZDXhehY76lns2Ei+PZPh/n4MjeSShJtwaSN1pVup+2wrtjQX3vHZeMdn4x6ejnLYuvAnJYQQPZNSajBwDFAEfNPGLn9o8bpaKXWt1vrJXXi7rZ3d8YsvviAnJ6cTe8qfkXvTBx98sJfOLNdtb5Fr1jPJdeuZ5Lr1PHLNeqbOXLfy8vK98t5yZfuITtevmP9w8/ODLgPbrndEba3dytWfXE0wGgTgtJGn8bNJP9upc0T84YSUUE5nBzNDhOhDlFKcPup09svZjxs+v4H1NesZlTmK0Vmju7ppu8ebAUfcAIdcCYufhLkPQO12s23Tl9BYBZfP7tIm7mvupCQmHX08k44+nsrCbaz47CNWfvEJ9VWVAESCDRBcTojlKEcyyj4Sh3M0yjGAEWE7I4o0L/zuaybM6M/og/NJy/aSO2AIPxg1ikAgwMqVK1m+fDkbN25ses/iSBXFzirmOtfQ35nDkIYshkb6kYybaG0Q39dF+L4uQrnteMZm4R2fhWd0Fjav/FohhBA7opRyAk8BbuBXWutI3OZlwEXAZ5hgRj5wCnA78LhSqlpr/ca+bbEQQgghhBD7jvQs9BHx9Sv2H5zR9k4NlbDMyiHvSoUp5+3We6a50xiePpzFpYs5uOBgbjv0NtROjooO+yPNKaE02O323WqTEL3NyMyRPHvys/xt8d/4yYSf4LT1kqCeKwkOuRymXWRqW8z5G1R8Z2ZYxH+PaA3BenCndllT96Ws/gOZcd6FTD/7x2xavpgVn3/ChsXzCVuFtXXYhw4vIxhYhrIlY3OOwu4aQ11lf+a9sZF5b2wkLdfLV/X1BLPd7H9gHidPHc1P9t+fmpoavvnmG5YtW0ZZWVnTexaGyil0lvOVcy0FbhO8GBbKJRkPOhChcVkZjcvKwAbuoel4xmXhGZeNM0eKdgshREtKKRvwOHAE8G+t9VPx27XWr7Y4ZBPwT6XUKuBD4A5gZwMWg3awPR9YAHDEEUcwcOCOMkgBX32yk00QO+O443Zvlnu75LrtNXLNeia5bj2TXLeeR65Zz9SZ67Zt27a98t4SsOgjvtleA4DXaWdMXjsde4ufgLCVe2z/802Klt2Q7k7n38f9m38t+xcXTrxwlzpSI4EwYcwMCztqpwMeQvQFSc4kbjn4llbr11SuYWXFSk4beVrPvXccLjjgxyaAuuZdGHNi4vZNX8Jz58KkH8KBl/SJAt0ANrud4fsfyPD9DyTk97NhyQLWzP2SjUsWEg6ZWW066iMSWEoksBRUCnbXaOyu0dSU5jNB2WFbGL1tG4++sRVfuoPhE7M5fuZ+XDl9OiUlJaxYsYKVK1dSUVHR9L5FgXKK7OV8bV9LvjeHIY3ZDPVnk4oXohDYUENgQw01b2/Ekes1sy/GZeEako6y99B/g0IIsYdYwYr/AucBTwOdLhantf5YKbUe2E8plaa1rt2JYzv8SzL+dwSv14vXKwHnribXoOeRa9YzyXXrmeS69TxyzXqmzly3vXVtJWDRR7x77Qy+2VZDUY0fh72NNE+RMMz/j/VCwUE7l7qpPS67i2sOuGaXj4/EzbCwaensEqKzfCEf139+PZtrN/P2hrf5xbRfMCG7B3fm2+ww7pTW6xc8amZYLPyvWQYfagIX404Fh3vft7MLOD0exhw6gzGHziDY2MD6RfNZ89VsNi1dSMSqT4GuJxJYTCSwGFQSdudwbM6R2JyDyI84oTIKX5TxzhelVHsVmcPSOPjQcVx5xZGUV5SzcuVKVq5cmTDzorixnGLKmeeBfklZDAxlMaA+g1ydhg1FuKyR+rLt1H+5HeV14BmTiXdsFu5RmdiTe8lMICGE6CQrWPEYcAHwHHCh1jra8VGtlAMjgSSg0wELIYQQQgghehIJWPQRSS4HBw/Pbn+H1W9BrTX4atRxkD1il97npbUvcdSgo8j2dvBeOyESiBBWsYDFHjmlEH3CB5s+YHPtZgDmFc/jnLfO4aRhJ3H1/lczMLUTqR56Aq0hJQ+cyRDymXVbvjJLci7s/2PUxHO7to37mMubxLjDj2Tc4UcSaPCxfuE81nz1JZuWLSEaiQUvGogEvyUS/BaUE5tjCHbnSGzOYThsXnIagZW1LFxZyzLPOgaMzmTgmJGcc/qBRBwNTcGL0tLSpvctbaiklEoWu8HjcDPIkUv/ujQGRrLx4kI3hmlcWkbj0jJQ4MxPxj08HfeIDNzD0qX2hRCiV2sRrHgB+HGLuhWdOUcyMAHwYQIXQgghhBBC9ErSQyAMVwrk7wfF35i88bvg1XWv8oev/sCj3zzKg8c8yLD0YbvdrHBjiEhcSighROecPup00txp3L/wfrbWbQXgnY3v8OHmDzl37Ln8bNLPSHend3Erd5NScNK9MOu3ps7Fgv9A2WqzzVcGs/+Ce87fOCh1MqsLzujatnYBd1Iy44+YxfgjZuGvr+e7hV+zfuHXbFq2hHDQ1LxAh4iGviMa+g5QaOcAnI6R2JwjsNnTCfkjbFpezqblpm8s7FLY8r2MmXQ8Jx7rZmvRBlatWkVRUVHT+/rDAdaFt7HOCTghz5PFQH8mAwNZ5OhUlFaEinyEinzUzyk0AYz+Kc0BjKG7l45QCCG6k7g0UBcA/wN+1F6wQimVChRorde2WO8F/g2kAo9prcN7t9VCCCGEEEJ0HQlYCGPUMTDyaNi2AAYeuNOHf1X4Fbd/dTsA2+q3saB4wR4JWAQb/E01LGwSsBBipxw9+GiOGHAEL659kYeXPUxVoIpQNMSTK5/k1e9e5dL9LuW8cefhtvfw1EmeNDjoUpMKavNcE7hY9QZEwygdpaB2Cevyv9fVrexSnpQUJh55DBOPPIZQwM/mb5axfuHXrF84j8a6WFYRjQptIxzaBo2f4fDmYrcPJqoHYnMORCk3jqCGLQ2s27KZdW9B0GsjY+g0jjsiFYe3lk1bN7B+/XoCVhFwgBJ/JSVUssi9niSHhwG2HPJ9qRREM0nVHhPA2F5PaHs99V9uBxs4CpIZoL3UpYWJBiIgKU+FED3XbcBPgHpgLfDbNupKvaa1XgpkA6uVUguAVUAxkAccAwwEvgFu3DfNFkIIIYQQomtIwKKXi0Q1v3p5OeML0jhoWBYTB3QwolopGHTQTr/Huqp1/PKzXxK2Bnv9aNyP+OGYH+5qkxMEfX60Mrmg2gtY6FCIqueeo+Kxx4nW1eHIzW1e+vVreu4cOICk/fffI+0Soqdw2p2cP+58vjfiezz27WM8ufJJApEAdcE6/rLoLxT7irn54Ju7upl7hlIwdLpZ6kpg8ZNEF/6X2rCLqqThifsuewFqtppi3RmDu6a9XcTp9jBy2sGMnHYw0WiEwrWrWb9wHt8t+Irq4uaZEuHGMsKUAYtQyobN259IdAAux2CUowClHLgaozSsqmHJqho0EE7LZ+DwkYwYbacuVML69d8lpI5qCPtZhzX7Akh1JdNfZ5HnS6V/NJMUPBCF8HYf+XjJL4SqPy2hfkAK7mHpZhmahi1JamAIIXqModZjCvCbdvbZBCwFKoEHgYOAk4BMoBETvHgA+KfWunHvNVUIIYQQQoiuJwGLXm59WT0vLTK1KU6YkM+/fjx1j56/tKGUKz++kvpQPQBHDTqKG6bdsMfOH2j0Nz230UaxcGD7TTdR9+57Ta+D9fUEN25stZ9n4kSGvfS/hHVbLruM0LbtKJcLm8uFcrutxXrtMq/TTj6J5IOagznhigpK77vf5NDXUbTWENXNryNRiEbROkr+bbfh7Nev6di6Tz6h/PHHGVheAVpT9PwL2JQyx0ajaMy5HP36Mej//pnQ3pI/3UvDvHmmY1YpsNlAgUI1r1OK1FlHkX3JJYk/p+tvQIdCYLehbHbzaHegnM64xUHaKafiGTO6+bOWl1P36admu92BctjB4Wh+brejHE6Uw4538mSUo/lrJVRaSqSqqs3rFs/m9eIanNhpHNy0iWjcKO32OHJycGQ310zR4TCB9et3eByAa/BgbN7moduRmhpCxcVt7hv0+3EVFYHWBNetwztpUsL2wIaNRCor0NGo9W8hivJ48E6ciHJ2fedqqiuVaw64hh+O+SEPLn2Q1757DYfNwQUTLujqpu0dqXkw80YC0y5n/jsvmnsj3lf/MCnwPvkjDDncBC7Gfx+8GV3S3K5is9kZOHYCA8dO4Ijzf0rl9q18t+Br1i+aR/F364jVg9U6SqRhG7CNIPPQyknI2R+PfTAOxxCUPRelFM7aMLVLq1myFGwOJwXDDmHiJBchbxWlVdvYsHEDoVCo6f3rgj7W4GONy7xOd6VQoLOaZmAk4wYNoW31hLZZMzBiNTCGpeMeno5raBr2FNe+/+EJIUQnaK0vBC7s5L61wFV7sz1CCCGEEEJ0dxKw6OWWbqluej5lcEbrHVa9Ban5MHDaTp+7IdTAVR9fRbHPdPBOyJ7APTPuwW6z72JrWwv6mwMW9tbT5wHIPPfcpoCFc9AgwhUV6IaGVvs54oIGMaEtW9sMbrTkHjkyIWARbWig5tVXd3gcQPT66xNeh0tK8M9fQJL1ur0ueeeAAa3WBbdswb9y5Y7bO2pUq3V1H32E7kQAwLPffgkBi+DmzRTfetsOjwMYs2hhQsCi6ulnqHjkkR0elzRtGkOefiph3fZfXt+pz5p73XXkXH5Z0+tIXR0bv39ap9o79KWX8E6c0PS6/osvKLzxpvb3tx6Ln3yK9K/mJmwrf+ghat98s9Ux9qws0k48kfTvnYpn0iTaSAOxT+Un53P79Nv50fgfsaJ8BQNSEv+dvbz2Zew2OycOO7Hnp4oCsDlodOUkrqvcaIIVMZtnm+WdG2HMCbDfWTD8KHCn7Nu2djGlFNkDB5M9cDAHn/5D/L56tq38li3fLmPzN0up3L61eV8dwhXcTJTNBPmSqM1DxNEfr30gNscAlL0f0bCdwnXVFK4zx4RteSTnDiR7CKRnN1JVXcTWrVsJh5tTsdcE66mhntVW/CHZ5mGAPYe8hlTyoumk66TEGhhzCwFw9EvCNTgV16BUXANTceYnoextB7mFEEIIIYQQQgjRfUnAopdbsrV5dPv+gzISN4aD8PYvob4EBh0MF74N9s6NBI9EI9z0xU2sqlwFQP/k/vzz6H+S5EzawZE7JxjXwW5TNiJ1dUSqq3ENGtS0Pvmgg8j5+c9JOXIm3v32M+2r9xEuKyVcVmaW0jKc/fu3Or/N68WWkoIOBMzsg/Zonfha7URH2K4cG5s90XK1zQYOhzWTI25puV8bHXU6Gu1Uc1vOBujw59JSN5hJsE+09TO3tR2IiFRWUvXMM1Q98wzOIYPJvuhiMs/eMynTdsfozNGMzhydsC4QCfDAkgeo9Ffy10V/5czRZ3L2mLPpl9Q62NejZQ2Da5fBN/8zqaEqrB71SABWvm4WuxuGzYCT/wKZQ7q2vV3Ek5zCyAMPYeSBhwBQX1nRFLzY8u0y6isrmva1Rf3YghsIs8G8truwuwegowXYHANRjnwcUQeUhKgtgVocBByD8OSOIGtIhMysRqori9i2bRuRSHMtWl/Uz9roNtZaXy1eh5t8lUluYwr5kQyydSp2bIRLGwiXNtCwsMTs6FA4C1JwDUzBNTAV18AUHLlJ7d6nQgghhBBCCCGE6B4kYNHLLbFmWNhtiv0GtqhfsfI1E6wASMnrdLBCa8098+/h822fA5DqTOXBYx4kx5uzgyN3XjgUbHpuC4VZf8KJuAYOZMjzzyWMVM+9OnH2vD0lGXvKMNzDOi78PeyVl5ue62gUHQyiAwGigUDTcx0I4MjLSzjOmdeP4W+/ZYIPygokWOmYlM1mgg02O8qmsGdmJhyb8YMzcB13LB9/8gkoxTHHHos3KclK76Q6HIE/8B8PtLle7yCAATDy448gGoVIxAQvIhF0JIIOh9HBEDpkFvfoxNkZrmHDKbjjj0SDQQibY4iE0WHr2Ei4ab2yJ86u8ew3kYwf7rhz3jWkdYdw6nHH4pk4cYfHesaPS3htc7k69Z4AjsyMxHYMHtzuseFImG1bTXq1wWPGtNqefMQR2HNyrH8LNrApgps3U//Jp00zW0KbtxCpquxU27rC7O2zqfSb9lX6K3lk+SP895v/ctzQ4zh/3PlMyp20gzP0IJlD4YgbYcYNULgElr8I374EvjKzPRKAjV9CcovvtYZK8KTDHpxJ1lOkZGUz/ohZjD9iFlprKgu3seXbZWz5ZhnbVq/A31S8G6KRINGGjYCZwaaxgyMPh2MgNkd/bPYC3GEvFAVpLIJGXNQ5hzBy3GQGDofacAkrV31LQ0OD+X6zNIYDbKSYjQ7AAQ6bnX72TPr5U+gXSSc3moYXF4Q1oa11hLbW4cPU5VAuO84ByVYAw8zGsGe6u3zWkxBCCCGEEEIIIZpJwKIX8wXCrC2pA2BMXipJrrjLrTV8/VDz64Mv7/R5NZqINiNgHcrBX4/6KyMyRuyRNrcUn+uc+noiFRU0VlRQ+9ZbpJ966h59L2WzoTwe8HjYUVekcjpxj9i1z6ycTmxeL9qajaCczoQ0Srt0zlj9ig4420iJ1RnOvH5knHnmLh2bduyxpB177C4dm3N55/9NxrMlJ1Nw+x926Vjv5Ml4J09uc1tjYyOLP/gAgCnHHddqe/rJJ5N+8smt1kfq66n74ENq3nyDhnnzSTvllITtgQ0bKP3TvaR//3ukHnfcbv9b2B2zBs3iqROf4tlVz/Lh5g8J6zBhHeadje/wzsZ3mJQzifPGncdxQ47D2ckAZ7enFAw4wCzH3QEbP4PV78Da96HfOHAlJ+7/zg2w/lMYdRyMPh5GzOpzdS/ASh81YBDZAwax//GnoKNRKgu3sW3Vt2xbtYJtq75NmIGhiEC4kEi4kKb5E7ZM7I7+KEcBNkcBKTqbyuXVVC4HlJv01Cm4vSGCaTZSUxpRVFNRWUIg0JwqMByNUBgtp9BeTuyLO82ZTK5OI7sxmX7RNLJ1Gk7s6GCE4MZaghubAyu2ZIdJITUwlk4qRephCCGEEEIIIYQQXUgCFr3Y8m01RK2Bqa3qV2xbCIWLzfP8/WDIYZ0+r03ZuPWQWxmUOohMTyYHFxy8ZxrcQqiwEH9pCaRa72ulCUk9/ni8+x+wV95TiD3NnpJCxhmnk3HG6YQrK3FkZSVsr3njDeo//5z6zz/HM2ECBXfegWfs2C5pq1KKKf2mMKXfFEp8Jbyw5gVeWvsSVQGTWm55+XKWf7mcR799lJdPfbn3jUy3O2DkMWbRGvw1idsjIfjuI7N++fNmUTbofwAMPxKGzzTp9Ry9oPbHTlI2W1P9i8nHnoTWmtqykqbgxbZV31JdXJR4ULSKSLAKgiusFS5sjnwrgNEfXV2AvdaDtwTCuIB0UhmM29lANLUevHWEVDWBcGLNotqQj1p8rLdiagpFliuN3EgaOf5kcqNpZOpkbNiI+sL411ThX9OcPtGe4W4KXjgHpuLMT8ae3EsCdEIIIYQQQgghRDcnAYterMP6FfPiZ1dcscPR+S0ppfjpxJ/uRuvaF21spOLR/1Lxn/8QPvzCpoCFw25n8JNPJBS/FqInaRmsAGhYuLDpuX/FCjaeeRbZl15CzhVXYHN13UjvvOQ8rjngGn426We8u/Fdnln1DGuq1gBwxIAjWgUraoO1pLnSuqKpe4dSrWdO+GtMYOK7TyBoZq+ho7B9oVm+vA8cXhh8CBzzO+i//75udbehlCK9Xz7p/fKZMPNowNTA2L5mJYVrV1O0djUlG9cTjYTjjgoSDW+B8JamWRjKlo6y98Nm74dy5GKz98MdSoHKZCAPLxCx+Qm5agk76wg564g469GquWaPRlMRrKGCGrDiDnZlI8uZRmYoiaxgMlk6lexoCm6cRKoDNFYHaPymvOkcthQnzn5JOPol4cyzHvslYUtx9r7AnRBCCCGEEEII0YUkYNGLLbXqVwDsHz/DorbQFJUFSMqBiT/Y4bm21W3DF/IxJqt17v49yTd3LoW/+S3hIjMSNxpXINU7dKgEK0SvM+TJJ2n4+mtK7r6bwLrvIBym4qF/Uffhh/S/4w68U6Z0afs8Dg+njzqd00aexqKSRTy7+lnOGXtOwj7b6rZx6qunckj/Qzhp2EkcPfhokpxJXdTivSg5B374JISDsGWuSRu1/lMoW9W8T7gRNnwKjnsSj60thKAPskfudIC4t0jJymbMoTMYc+gMAMLBICUb11O0dhWF60wQo75FjRcdrUFHa4iG1jWvU0nY7P2wWQEMZe+HO5KLx2/S3mk0EYePkLOuOYjh8EHcjz2io5QFqymjuimIAZBi95IVTiY7kkJWNJVsnUKq9hKtDxGoryGwIXHWjS3J0RS8aH70Yk9zS4FvIYQQQgghhBBiF0jAopfSWrNkazUAqR4Hw3NSmjcueBSi1qjWaT8Fp6fDc9UEavj5xz+n2FfM/Ufez+EDDt9LrQZbampTsAKHA+1pTq3icElKDtH7KJuN5MMOY+jLL1Pxr4cpf+QRCIcJfreeTeeeR9YFF5B77TXYkro2AKCUYlr+NKblT2u17d2N7xLWYWZvn83s7bPx2D0cNegoThp+EtP7T+899S5iHC4rBdSR5nVdMWz8AjZ8ZpZoBHJbBHcXPgZf3AvJuWYGxuDDYMihkLefSUXVBzlcLgaMGceAMeMA8/9WXUUZhWtXs3Xlt6xZvJBgdQU6Ekk4TukGdHgTkfCm5pkYdhfe1ALsjlwi0Sy0PxNPKAelCsy5VYSwo74piBF21hOxNyYEMQDqI43Uq0a2OJpnVziwk0kymeFkMnUKmTqZzGgKSbiINoQJbqoluKk24TzKacPRLwlHrhdnrgliOHOTcOR4UQ7bnv1BCiGEEEIIIYQQvUjf7CXpAyJRzeUzR7B0azUuuw1bbKRnyA+LHjPPbQ6YdnGH5wlFQvzys1+yoWYDAPcvvJ9DCg7BYdsz/3S01gnpNLz77Uf6aacRrqgg7+Zfs+qxz5q2udxSCFX0XjaXi9xrrib1+OMouuU3+FesAK2pfOIJfPPmMeyVl1G27tnRmeRMIj85n2JfMQD+iJ93N73Lu5veJd2dzjGDj+GIgUdwcMHBJDuTd3C2Hig1Hyb90Cxag6+89SyKjZ+bR18ZrHrTLACuFBh0EAw+1CwDp4HTu2/b300opUjL6UdaTj+G7H8gDbkD0NEoB06aSG3Rdko3bWha/HWJAQIdCdJQvRnYnLC+wZ6K35FNxJGLPZSDO5hLKgW4lB1NhLCjgbCznrDDZ4IYDh/alhggCROhjFrKHInv6cJJJilkhZNMICOaTIZOxoMTQlFC2+sJba+nMeFDgj3LY4IX2R4cWR7s2V4cWR4cmR6Us3ve40IIIYQQQgghxL4iAYteymG3cfHhw1pvWPMONFSY5xNOh7SCds+hteb3X/2e+cXzAcjyZPHArAf2SLBCB4NUPvU09Z9+yuAnHkfZ7U3b8m//Q1Pu/oj+pGm9y9P3CtmKvsczZgxDX3ieyieeoOyBf6ADATLP/mG3DVYAnD/ufM4dey5LSpfwzoZ3eH/z+9QETOqcmkANL697mZfXvcyJw07k3iPu7eLW7mVKQUpu6/XjTgV3GmydB4G4ju9gPaz/xCwAB10GJ8X9jLRuPm8fpGw2svoPZMCIUYw7/EggNhOjnNJNGyjbtIHSTesp3bSB2rLSVscnRepIitRBYFPTuqCyU+bIoMGZRSSSxQljxxPVBQQbk6mtDFFXV9MUwAg7fIQdPqJ2f6vZGEFClFBFiaMqYb0LJ+k6mYyIlwydTIZOIl0nkaa92LSNSIWfSIW/jQ8L9jQX9iwPjixvU0DDke3FnunGliz1MoQQQgghhBBC9H4SsOhrJpxu8rB//S9TbLsD/1r+L95Y/wYAbrubB2Y9wKDUQbv19lpr6j/7jNJ7/kRwsxkJW/3Sy2Se/cOmfeILDUd180hXt1cCFqJvUA4H2RdfTMqsWVS/8CIZZ5+dsF2Hw2C3d6vOS5uyMTVvKlPzpvLrg37N3MK5vL3xbT7b+hmNYTPGvGU6uYZQA39a8CcO638Yh/Y/tHcV7W7psKvNEo1A6UrY/JWpg7H5K6gvbt5v8CGJx1VtgodnQv/Jpoh3//2hYApkDu27QQylSMvJJS0nl5HTDm5aH2jwUb5lM2VbNlG+ZSNlmzdRvnUTwcaEOQ44dITsUAXZIRO8X/3lPHNem42MvHwqbalsaUgiZM8CexYu21BStZN0WyNJ9kZwNBB2+Ig4fETtwVbtCxKiTFVT5qhObLdWpOAlM5pEhk42QYyolzTtJQk3SisiNUEiNUGCG2tbnVc5bdgz3TgyPdgzPdgzYs/NoxQAF0IIIYQQQgjRG0jAoq9RCoYdYZYOvLn+TR5c+qA5BMXdM+5mcu7k3XrrwPr1lNx9D77ZsxPaE9q2td1jIuim5+6kvpkmRfRd7mHDyPv1r1qtL77jDhoXLSb99NNJP/UUHLltjOjvQk67k5mDZjJz0EwaQg0sKF7A7O2zOaz/YQn7LShewCvrXuGVda9gV3Ym5U7i0P6HMi1vGvvl7IfH0XF9nR7JZof8/cxy8M/MDIqqjbDla9g8F4ZMT9y/aCkEakyNjI1fNK/3ZFgBjClQMBnyJvbpgt4A7qRkBowdz4Cx45vWaa2pLSs1QYzNGynbsomyLZuoLi5ER6MJx+tolKqiQlKBCS3O3WjzUO1MZ7sjHZ8jg7AjnanDJjJ9+FDKK6qpqCynxleFP1xHxNHQZiBDK00dDdTZG9hCecI2m7aRqr2kk0S6FcRIs2ZlJGsPNhQ6FCVc2ki4tLHVuQFw2HBkurFnuLGnu3FYj/aM5nU2l73tY4UQQgghhBBCiG5CAha9UCgSZenWaib2T8e7C50TC4oXcNvc25pe/3LqLzl2yLG73J5ITQ1l//d/VD3zLMQVT/VOm0r+LbfgGT++3WOjNHcoeVMkYCGEb958qp9/AYDSe++l9P77STn8cNJPP42Uo47C5u5eM5GSnElNwYuW5hbObXoe0RGWlC5hSekSABw2BxOyJ3BA3gEclH9Qq9kZvYZSkDXcLFPOa7092ACpBVBXlLjeXw0bPjULgCcdfpVYv4HKDSawkZS1N1reIyilSO+XR3q/vITZGJFwiOriIiq2b6Vy21bzuH0blYXbCAcDrc7jjfrxBvwUBEqaV1bA/IWQlJ5BZkF/cnLzeGaFj5A9HWXPJ8npId0WJdUWwGNrxG5vJOpoBBVtdf6oilKjfNTggxbZ35RWJGkPaSSRrj2kRb2kahPUSNVeXLFf5cJRwmWNhMvaCWgAtiRHYhAjzW3SUKW7sae7sKe5sbklqCGEEEIIIYQQoutIwKIXWlVUy1n/+gqHTfGzI4Zz0wljIRIG+44v94bqDVz76bWEo2EAzh5zNj+Z8JNdaoeORKj+30uU/f3vRKqac3w7CgrIu/EGUk88cYfpKyJxAYuktJRdaocQvYn2N+KdMoXGpUvNikiE+s8/p/7zz7GlpZF28klknHYankmTun16mF9O+yUzB85kduFsZm+fzcaajU3bwtEwy8qWsaxsGQuLF7YKWNQH60lx9YHvhP3PN0ttkZltUbgUCpdA4WJTwDsmb2Lr2RVv/QI2fGYCHnkTzNJvAuSOgZzR4Erahx+ke7E7nGQPHEz2wMHQHMdAR6PUlpdRuT0WxNhKVXEh1UWF1FdVtnmuhppqGmqqgZW0SOiF3+aixpFOiTONGkcaPnsaDmcK5x80HMJRKqurqauvoSFYS1g1gtKtzq+Vxqca8dFIEUCLeIJTO0nRXtLwkq69pEbdpGgPydpDivY0BzSAaEOYaEOYUJGv3Z+NctsTAhgmoOHCnmoFNFJd2FOdKHv3rasjhBBCCCGEEKLnkoBFL7R0azUA4agmN9Uabf3R72DbAjj4Mhj3PbA72zx2RcUKfCHTkTFjwAx+fdCvd7nTM7hpE8W33w5W2g3l8ZB96SVkX3QRNm/nZktE4zpvklKSd6kdQvQmKTNnkjJzJoGNG6l5/XVqXn+DcJEZfR+traX6ueepfu55XCNHMOzll7vdjIt4brubwwYcxmEDDuOmA29ie/12FhYvZHHpYhaXLGZT7SYADuh3QMJxWmtOe/007MrOhJwJTMyZyMTsiYzPHt97gxhpBWYZc6J5rTXUFprgRckKs62lkhXmsa7ILN99FLdRQcZgyB1rUlONPGavf4SeQNlsTTMyhu0/LWFbyO+nuqSIquJCqooKqY579FVXtXk+TzSIJ1hGXrAsYf2mN8Fmt5OSlcOAnFy2hd0sLNfgSMbl8uCxO/E6FF5bCJfdj7L5wdZ6ZgZASIWoUiGqsOpetAhoOLSDJDykKC+p2k1qxE1K1AQzUrXH1M+IqyiuAxHCpQ2ESxs6/FnZkh3YU13Y0tzYU11oryK3yE3AE0VHWwdehBBCCCGEEEKIzpCARS+0dEt10/MpgzIgUA+LnzJ50AuXwrCZpvB2G04dcSrp7nQe/eZR7pt5Hw7brv8TcY8YQcbZP6T6uedJO/lk+t1wPc6CNjrVOhA/w8Kb3HdHAwvRknvYMPpddx2511xDw7x51Lz2GrUffIi2Cgw7++W1Clb4V6/GNXx4QmH77mRAygAGjBzA90d+H4DyxnKWlC5hcOrghP0KfYWUNJQ0Pf9w84eAqbczNH0oE7MnNgUyhnmH7dsPsa8oBekDzDLulNbbw0GY+AMTtCj+xqSQSqCherNZJv0wcVPlRnjnRsgZZaWrGmYe0wd3aqZeb+X0eMgdMozcIa3/TQUbG6gqLqKmpIjqkmKqS5qf15WXo3UbaaAiEWrLSqgtM/+Wp7XaA/w2N3WOFOrtKfhdyfTLymLy4DwaQ+ALhGgM+vEFfGhbANoZWxBWYWqpp5Z6s0+LS6i0jWTlJdWWRLpKMrM0Qi5Sw57ElFMt2+8LE/WFobg5sDEYM7Cg4YOtJJ0+pu0GCSGEEEIIIYQQHei7PQ+92BJrhoXLbmN8/zRY/F8TrACYdFa7wYqYIwYewYwBM3ZqZkXU56Pq+RfIuuDHKGfz7I3ca64h/ZRTSJo6dac/B7QIWCTJDAshWlI2G8mHHkryoYeSd+tt1L3/PjWvvUb66acn7KeDQTafdz46GiXpoANJmT6d5OnTcY0Y0W1TR+V4c9qsn1MXrGNq3lRWVqykMdycr1+j2VizkY01G3lzw5sAPHvcswnHVvmrsCkb6e70vdv4ruZwwYl/Ms9jszFKVkDZ6rhlDQTrTYqoeCUr4LsPzRLP5jCzMmI1N7KGw0GXgU1SA7m8SeQNG0HesBGttkXCIWpKS60ARhE1pcVUl5RQV15GbXkp/vq6ds/riQbwBAPkUgGNQA1sa86cZuIPdi+19mSC7jS0KwWbw4PD6cRpt+Owg80eQduDbaabAtAqSj0+6qM+miql2GmaqeHERbI9mWxnBnmuTAocmWTpJGyNESJ1QYi0Pq9/QRnhmUNwZHk69fMTQgghhBBCCCFiJGDRy1Q3BNlYblI6je+fhtumYN7DzTscfHmrY9ZWrWV05uiEdZ3twNTRKLVvvUXpffcTLi1FOexk/aS55oUjMxPHLgYrIDEllCdJZlgI0RF7SjIZPziDjB+c0Wpb47JlRBvMSGjfF1/i++JLABx5eSRPn07yYYeRfNihOLK6f4HmsVljefyExwlHw2yo2cCK8hV8W/4tKypWsKZqTVMNHq/Dy9C0oWxgQ9OxT696mkeWP0J+cj5jMscwOnN00zI4bfBuzSrrtuJnY4w+rnm91lCzDVLzE/evWNf2eaJhU8i70vp5erPgkCsS95nzdxPwyBgCmUOaH9MGgK1vFnO2O5xk9R9AVv8BbW4P+hupKy+nrryU2vIyasvLzPOKMmrLyqivLCcaibR7fk+kEU+kEYLl7e4TUnY86Tl40zPRzmRCNjf+iKIhEkU5IOoItxvQCBGkOhKkOlLFer+JlqioHUc4hWRHBtnpufTPyCXbm0xkcwl59S6Iamo/3kLWWaPbPKcQQgghhBBCCNGeXtgz07fF6lcA7D84A9Z/0tz5NORwyN8vYf/nVj/H3fPu5vpp13PB+At2aqR14/LllNx5F43LljWtK3/4ETLOOWeP5c0Px2ZYaHA45J+rELvKlppK+umn45szh3BpadP6cEkJNa+8Qs0rrwDgHDKY4a+91uk6M13JYXM0BRtOH2VmlAQjQdZWreXb8m+pC9a1CkCsrVwLQLGvmGJfMZ9v+7xpm9vuZkTGCEZmjGTGwBmcMPSEffdhuoJSkDGo9frp18Gks5uDEwnLRjMrA8wMi5a++xg2ft56vc0B6QNNACNjEIw5CcaevEc/Tk/l8njJHjiI7IFtXAsgGo3QUFNDXUUZdRXlJrhRWW6eV5RRX1FBfVUFOtp2jQsAp44QqS6hvrqkaZ0NiFV80YB2OIk43YTdqURdyeD0gNOJdtrRLf771bYIIVcN1dRQ3bCZ9Q2gog5coVTG2zKZHB1Mw+ISUo8ciDNXBhsIIYQQQgghhOg86QHuZZa0rF8x77bmjYckzq74fOvn3DP/HjSa+xbex345+3FAXmJx27aESkop+8tfqHn99YT1KbNmkXfTjXu0yG9EmQ4YO7Zum7ZGiJ7AM3Ys/e++C601we++o37OHHxz5tKwYAHa70/Yt2WwouLRRwmVlOCdNBnvlMk4Bwzotvejy+4yRbhzJgLQ2NiYsH1c9jhqg7WsrVpLfag+YVsgEmBlxUpWVqwk3Z2eELDQWnPVJ1dRkFzAkLQhDEkbwtC0ofRP6d/7ZmUoBWn9zTL08MRtWoOvzAQvom2M+q/e3PY5o2Go2mQWgLSBiQGLkB/+PtmaCTIQR3I+w0t9NLoysW3PgpwhkJIHju5bRH5vsdnspGRmkZKZRcHItutCRCMRfNVV1FWU46uqpL6qgvqqSut5JfWVJqgR8PnaPF4BKhzCFg7hbKxvtV3b7EQ8SUS8yUStR+10t9gnTMBdxRKqKIvUcHxoMrUfbyH7nLG7/TMQQgghhBBCCNF39LJeFhE/w+KglHL47iPzImOwGdFqWVmxkhu/uJGoVQj0ookX7TBYEQ0EqHz8Ccoffhjd0Fxk0zViBHk330zK4dP33AcBdFQ31bCw6+7ZOSpET6OUwj1qFO5Ro8i+8EKigQCNixfjmzOHhoWLcI1snYO/5o03CaxZQxVPAWDPysKz30Q8o8fgHj0a95jRuIcNS6hf011dOeVKrpxyJVprCn2FrK1cy9qqtaypWsO6qnVsrt2MRjM0bWjCceWN5Xyx7YtW57MrOwXJBQxIHcDAlIEMTB3IaSNPI8fbca2gHkspSOlnlrZcMReqt0CVVdA79li9Gaq2NNdTajmzo3Y71BebZfsinEDTfMCN/2jeLykbfvoe5MalGqpYD6WrTGqrlDzTtj4W2LDZ7aRm55Ca3fG/u1DAj6+qqimg0VBTja+6Cl91FQ3VVfhqqpse42dsqGgER0MdjobmehtRu4OoN5mIJ5mIN4moJxntMN8B2+wVbIiUMGKZInTkIJz5UoNKCCGEEEIIIUTnSMCil4kFLLKTXeSvfrJ5w0E/a8ofXuwr5qqPr2oqVnv80OO59oBrOzyvDgbZePoZBDc054K3paWRe/XVZJ5z9l7pqNThCOG4GRZCiD3P5nY3Fe1uS7SxkcB33yWsi1RW4vv8C3yfx3XgO50U3H47Gaef1rRKR6OgVLecjaGUYkDKAAakDOCowUc1rW8MN7KldgvZ3uyE/TfXtj1zIKIjbKvfxrb6bcxjHmC+U+N9uuVT3lj/Bv1T+lOQXEBBSgEFyQX0T+5Puju9W/58dpkrGfqNM0tbGqugequZvRHPXw2pBVBXjElQ1I6GCvBmJq5b8w588NvEdZ4MK4DRD1Ksx5zRMPUniftpbYIwfYTT7SEjv4CM/IIO99PRKI31dVYgoxpfjQloNNTWmCBHTTUN1dU01FbTUFVKtDyMBsKpmfgHmqDnV861DAxkU/vhZrJ/PH4ffDohhBBCCCGEEL2BBCx6kerGEFnJLmoaQxza34Fa9pzZ4EyC/X8EQH2wnis/vpKyxjIApuRO4c7D78SmOg4IKJeLlCOPpHLDBrDZyDznbHKuvhpHZmaHx+2OsD9CGJNyRGZYCNE1bF4vo+fMpvGbb2hcuozG5cvxL19OpKYmccdQCGde4qj7xqXL2HrZZbhHjsQ1ZAiuIYNxDh6Ma7B5bk9L24efpHO8Di9jslqn3ZmaN5Uvzv6CzbWb2VS7yTzWbDLBirptTemlbMpGfnJiEetvyr/hoy0ftft+BckmgDE5dzJXTEksYh2IBHDbe9FsAW9m64ADwICpcP1qCAehdjuBsvWsmPM+nlAVo/un4WgoM8EMX5mZZRGvrrj1+fzVZilb3bxu4IGtAxaPnQTlayA51yxJ2c3Pk3PMkpQN2aMgNW93P32PoWw2ktLSSUpLh8Ed76u1xu+rp6qkhA9ffYmthUWE0zLxqxALHN9x+Aonwe31uAakdHwiIYQQQgghhBACCVj0KhleJ5/ecCTVDUF8xRvg6xmw9n2YfC54MwlFQ1z/+fWsqzJFuAenDuaBWQ+02RkWrqrC5vVi83ia1uVccTmh7dvJufJKPGNGtzpmTwv5gk1Ft21IwEKIrmLPyCBlxgxSZswATAdluLAQ/9q1BNauI7B2LYG1a3CPTvxeCKxbR7SujsYlS2hcsqTN8zqHDMY9ciT977xzn3yWXaWUItOTSaYnkyn9piRs01pTG6xlW902yhrLcNoSZ5xtr9/e7nkbw41sqNnAhpoNbW4/561zKKwvpF9SP3KTcsn15prn3tym1zneHPKS8/A6un+h9B1yuCBrGFFvPltXm3oLw445DkdHReBHnwDeDKgvNcGL+lKTWqquBMJxNUxS2gg41JeYWRsNFYnBjZaOvR2mx81E9FXAs2eZYEZSNnizICnLBGOSshJfp+SDvff+uqWUwpuSCnYHGaPGUVVcQnUkAnY7qx2FjIwU4PlwMzkXTujqpgohhBBCCCGE6AF671/QfVhGkouM4WNh+Asmt7fDjdaaO7++k7mFcwFId6fz4DEPkulJHOmqQyGqnn+Bsn/+k+yfXkjO5c2Fuu2pqQz8+9/22edoqG1AK5MaRGZYCNF9KKVwDhiAc8AAUo86qv0doxEc+fmEi9sYAQ9EqquJVFcTra1rtW3bL36Bf8VKnAUFOPv3tx7Nc4e1zubuHjMPlFKku9NJd6e3uf3Ow+/k6v2vpshXRJGviML6Qop9xRTWF1LkK6LYV4w/4qcgpXWanrLGMhrCDWyq3cSm2k3ttuG2Q2/jrNFnNb0u8ZXw4LIHyfZkk+3NbnrM8mSR5cki3Z2+w5l1PcawGWZpSWsI1DUHMJxJrffJGGQKgvvKIdR2QWrABCDi+cpg+6LOte/qxZAdVxtmzbuw9BnwpJvUVZ70Fou1LinLpLXqYQYfdAihuZ/jyzAzrmY7V5O7Oo3UzbW4h3S/WVVCCCGEEEIIIboXCVj0dlYnSVF9IR9s/gAAp83J34/6O0PShiTsWj9nDiV3303wu/UAlD/8COmnn44zr2vSYDTW1Dc9t0kNCyF6nMxzzyXz3HOJ+nwEt24luHkLwS2bCW3ZYj3fQri4GNfg1jlngpvNfqEtW9o9vz0ri5zLLyPrggua1ulwmPrZs3Hm5eHo1w8dN0usqzhsDgammoLcbdFaUxWoIqqjCesj0QhjMsdQ2lBKWWMZvg461LM9iWmSttdv55V1r7S7v03ZyHBnkOnO5KmTniLVldq0bVXFKjbXbSbTnWkCMS4TjPE6vD2r3oZS4EkzS87Itve54PXm50GfCVz4yk1AIrY0VkLBpMTj/C1SonWkZQqskhWw6s0dH9dvPFz5VeK6t34JZWuswEYauK3P50lvfu5Og+yRkDmk7fPuZXa3hxPPPJtX3nyLqDeZapuPb+xbSPowi9xL9tvxCYQQQgghhBBC9GkSsOgj+qf05+kTn+bnH/+caw64hql5U5u2BTdvpuRP91L/yScJx6QddxzKbt/XTW3SUNfcOWeXlFBC9Fi25GQ8Y8fiGTu21bao30+0vr7VentyCrbUVKJ1rWdfxEQqK6HFLIFweTnbLo+rA+FwMCwlhXBqKiXvvIu7Xz/sOdk4snNIP/UU7Oltz4rYl5RSZHmyWq232+w8evyjTa99IR9lDWWUNZZR2lBKeWM5JQ0lVDRWtApAV/grOnzPqI5S6a+kyl9FkiNx5sE7G9/h8RWPtzrGYXM0BS/S3ekc0O8Arpt6XcI+X2z7Aq01qa5U0lxppLpSSXWl9oxghyvZLJ3p6B98MNxWCY3VzSmlGiuhodI8NlY1P/e0+DfWWNW59rQ8DqBwCRQu3vGxM38FR93S/Drog/tGgysF3KnNiysF3Cnm0ZVs1u3/o8Si6A2VULPV2sfaz5kEtvYHEoyYehBj533FytpGUIoljo0MW9+PtA2DcA/P6NznF0IIIYQQQgjRJ0nAohe5+KmlfH/Mar43oJZRM85ulTN7eMZwXjvttaaaFZH6eir+9S8qnngSQqGm/TyTJpH/m1vwTp68T9vfUsDXnHtcalgI0TvZPJ6EWjkxQ556EoBIXR2hwiJChdsJFRURLiy0XhcSKi3B2T8xjVK4tDTxROEwzupqnNXVNG7dSlxFA1JnHZUQsKh64UXKH/4Xjqxs7BkZ7S6Ofrl4Ru/9Oj4tJTuTSU5PZmj60B3uO73/dF469SUqGiuo8FdQ3lhORWMFVYGqpkBFld90nNttiYHpSn9lm+cMR8NU+CuagiGZ7tbFs++edzfb6re1Wu+wOUhzpZHmSiPFmcIl+13C0UOObtpeE6jhzfVvkuJKIdWZilM72R7ejlu5KW8sJ9uR3f2CHjY7JGebZWfMuhUOuQL8tWamRqul2jxmDWt9bKihc+/hTk18HaiDYL1Z6ttO0dZk1HGJAYt1H8KrP2u9nzO5OcjjSsGVnAvpFzZtPvVnV7Lu1t8SysgioqLMcawh+91+5F05pXtdRyGEEEIIIYQQ3YoELHqRDeUNDIw+zah1n8GSu6k4/UGyhsxI6BiIBStq3nyTkj/dS6S8vGmbIzeXfjdcT9qpp6I6GDm5r/h9zR0zkhJKiL7JnpqKfUwqnjGdCxDYs7LJ+fnPCZeWEiotIVRcQsO2bTh8rdMp2bMTO5pDRYWEC4sIFxZ1+B6eiRMZ9tL/EtZtv/Emgls2Y09Lx56Whi0ttem5PT0NW1oa9rQ0XEOH4szf+3UJkpxJjMkas0vHnjriVEZmjKQmUENNsIbaQG3zo7XOF/K1WbOjNljb5jnD0TCV/sqmYEh9KHFWTbGvmD8t+FObx/7tzb8BJo1VkiOJ1097nX5J/Zq2f7rlU97f/D7JjmSSnEkkOZLMY+y59TrDnbHLP5M9yumB9IGwK5N7rvwaQo0QqDUBj0CtFeCojVtXBwMPSjwuEoTcsWZbbEG3/R4tgx3BdmY5hXxmsW4tlTog4TN5U9M48fQzePOD99FON4X2SlZv/46MdUPxjG4d7BJCCCGEEEIIIUACFr1KBnWcZp8DQEWwjh8tvIv9tx7AHw77A067M2Hf4KbNTcEK5XKR9dOfkvOzS7ElJ+/zdrcn6Pc3Pbf3luKwQoi9yjVwALlXX9X0urGxkQ8++AAiEWZNm4bT5yNcXk6kurpV0W5ld2DPyiJSXQ3RKO1pK41UYPVqAuvW7bB9ub/4BTmXNY9WD1dVseF738OemoYtNQV7Siq21FRsKcnYk5OxxS2pxx+PI7O5ozdS7yPq82FLTsLm9e6xFH6HFBzCIQWHdLhPKBoiFAm1Wn/1/ldTE6ihNlhLXbCu9WOglvpQPSmulITj6trrFI8T1VHqQ/V4HIkzclZXrebtDW/v8Pjx2eN54ZQXEtZd/P7FrKxYicfhwevwtrscNegoZg6a2XRcOBrmrQ1vmePsXjwOD267G6/Di9vubnode77HCpwrBa4ks+xMQe6MwfDzec2vo1EzWyNYD4F6E5QI+szz1BbF33PGwNSfWvv7rJkavub9Y69drYuaHzBI8aXNRSwJ1tfOtQx8YwAjrj9UZlkIIYQQQgghhGiTBCx6ke/b5+JWIfxKcc2gIWzzbWfbhu0kOZP47SG/Tdg3+5KLqX7lFbwTJ9LvphtxDRrURa1uX8AfbHouAQshxG6x23Hk5uJpo8B3TO7VV5F79VXoaJRoXR2R6moiVVWEq6vNc2tp6/tSdxDgiGdLTeyoj9bWEikrJ1JW3s4RzZIOOighYFH7ztsU3/a7ptfK7cbm9WJLSkIlebElJWPzenEOGED/u+5MOFftBx8QKizE5k3C5vWgvF5sHi+2JC/K4zHrPW4zMyQlsc0ATpsTp83Zav05Y8/Z4eeI6ihaJ47uH5o+lHtm3EN9sJ66UB3VDdWs2rCKgA6QnpuOP+rHF/LhC/la1dxo6GSapJbHgQmU1IfqW834aKkguSAhYOEL+bh1zq2det+nT3qaybnNKRa/3PYlf138V9w2Ny67qymwEXsee0x1pXLV/lclnGtRySKKfEW4bGYfp91pjrG5cNmblxRnSpszYJrYbKZ2hTsFUtvfDYBhM8yyAwFfPXz0cfOKdR/BM2dy6eDDuX/1aCKpafhViAXV39J/1WiSxufs8JxCCCGEEEIIIfoeCVjEUUodCPwBOAxwAt8Af9Fav7gT53ADvwJ+DAwCKoG3gN9qrUs7OnZ3/cDxBVHg5txslofMeMYBjhzO/8pJ2eIHyb3yyqZ9bV4vw155OaHzq7sJBwNNz1vmWBdCiL1F2WzY09PNTIohnSjADIx4+y10JGICHbW1RGpqidTWmIBETS2R2lqidXV4J05MOE6HQjjy84nW1RFtI21VvJYz4KK+xI56HQgQCQTMDJE4rmGtayFUv/QSvi++3OHnyjz/fPJvTQx4rzvyKJTdbgIbbrd59LhRLuu524Vyucn88Y8San2Eioqo/+wzs5/bjXI5zfEuF0luN7OcQ1BuF7ZUF+ER/fiw+EMAjjv8ODweT7sj8i+ddClnjj6ThlADDeGGdh8LkgtaHTswdSD+iJ/GcCP+sHkMRAKt9ms5q8Mf9rfapz0ee+Kxlf5K1lXteDZOlierVcDixTUv8s7Gd3Z47CnDT+HuGXcnrDvupeOoD9UnBDdigSen3Ty6bC4u2e8SDipoTilVVF/Ef7/9b9M+LY+JLTqiQYNTOc1sjNcuBzRJ27/kJHctb0ePImpTrHEUsuTFrznstpNRNpllIURH9sTfJkIIIYQQQvQ0ErCwKKWOAt4H/MDzQB3wA+AFpdQgrfX9nTiHDXgdOB74GngZGAVcAhytlDpEa122lz4C/VQNf8nK4qPkJNCao9a4uGJuGH/J4wScTtJPPTVhZHB3DlYAhELhpuc2CVgIIbo5Zbc3FebuLPfIkYz67FMAE/Dw+YjUmuBFy6XleV2DBpJ67DFEfQ1EGxqINjaapaEBbb1Ga2xeb6v31Y2d63BXnsS0WTocJly8g6LNltQTjoe4gEVg3TqK/3B7p44dsnhRwuuSu++m6tnnUE4nyuWyHp0opxObywVOJ16ni6ypU8m76caEY0vvv59wVRXKWU2x8y5zrMMce4tjDMo5EeV0kHTQQXjGjiUSjeCP+Gmoq6J+7lyCtihppRn46uejnA6Uw4GLEHcU/Aw/IQIqTE26kwaCBCIB/GE/gWADgZCfRoKkudIS2hPVUbwOL/6wH91eHQmaa07FC0aCbezZmsvuarWuNliLL9RxUAzgjNFnJLwubSzl+TXPd+p9f5P2GxOwcCbB2U8TffECbPUlTHUtY37VcEoyhwIwP7qSUfOm0O/QgZ06rxB90Z7420QIIYQQQoieSAIWgFLKAfwbiAJHaK2XWutvB+YDdymlXtJab97BqX6CCVY8B5yvrZwXSqnLgYeAO4DL9sqHAF5LTuaJ9DRGFGou/DjKmG2NQCMAWmsaFi7qlqmf2hMON+dHd+yh3OxCCNFdKbvdFOlOS9vxzkDqMceQeswx7W7XWqP9fnSoda2J3GuvIVxaagU4Gon6G9GNjUQb/UQbG8xzfwDP2LGJ5wyFcPQvQPsDaL+faCAAkUib72/zJM4siPo7GSRxu1vNptChEITD6HAY3djY7rH2rKxW62rfe5/Q1q07fN+83/4Wz9ix2G12km3JOOsrKL/BpNyqtpZ48WXgR7z3Lq6hQ5teVz77LCW3/9Ecaz+WGrsd5XCA08kEu51nHF6wp+AcNJDcRx8iEAkQjJiAR8Pf/oVevgocNja/9VNTm8RhR9kdXBiq5qzoaCJKUzFpEFtnjCQYCTYdO/H5RUR1hPy1hZTO+5s51m5D2R2ct9ZLAAchIiwe7aAoPWpqkURDJNeGmLRRE7VBqu0batfYUHYb2OxEa9czeUOUqIKoDVYOVui465NZp0lthKgCb6AShyvZpPwafAjPzLqW95Y/yg/Kizkr8jb/CVyG3+2gxtbAF299wA8O/qnMshCiDXvwbxMhhBBCCCF6HAlYGLOAEcBjsT8IALTWNUqpu4DHMcGIHQ0NvdR6vFknJuh+GLgROF8pdZ3Wuv3elt3wjDONK9+KcOQ3iSM2k2ceQd6vfoV7+PC98bZ7TTjcPMPC4WidK10IIUT7lFIorxfamGGRNG3aLp3T5vUy6pNPEtbpUIhoIIgOBtCBAFG/Hx0M4hqYOHreO2ECBXfdhQ5a+waDRAMBdDCEDlivgwFUGzWLnHn5eMaPR4dC5vhQiGgoCMEQUWsd4TDK2fr/irYCNm1peWxnjwOg5f9R4bggTiSCjkRMG1uwud0kO5NJdjan+9qyvRLft2sAaFmdw2UtAKOGHMBp+1+dsH3VpROtANJGKpidsO3YuOdXn/ogqUcd1fS6bu5ctv3jYvPijf+yPW5fD/CbuNdV7z9MyKYJR8OEoiHS/vMamS9/bm39h/kM//wn3vHjaXStIy0zwCP5Wdw7NMopG+aj9GFoBasc21j+v/lMPvvgVj8XIcQe+9tECCGEEEKIHkcCFsaR1uMHbWx733qc2ca2JkopD3AwsKblaCettVZKfYiZXTEN2HHi8Obz7ihfwoDYk8ufCDKAaFNHg3PwINIuugR14FQ2BoOwenVn37ZbKK4spZZaAKpCNaxbt+Oc3z1FIBCgvNwU2V2/fj1ud+vUH6J7kWvWM8l16yI2GxQWtl6/38TW69pQsX594nU7ehYcPSthn9i4/Pj5d42RSKv/K8J/vN0ERMJhCIVM0CMSgXDYmrURQYdDFOfnUR53bLS6hobzzzMBh3DYOiYCkTCE49eF2VhSjK2xObzQGA5RN2aMOb8VsCAcNsGE2OtIBLvLRbRFe8uqqgh0IlhSX1NNXYtjizs5iyVcVIwn7lj/1q2UdzJAMzCQD3EzLKqDaRS3PLaqCubMYRQmLybAhjz481lbOGPtaPxeE3Z5a+7bOMcng90KUlljPVoWZQeaZt0opcx261Ep1XRcW8fGz9bp6NgdvSfQlMBrZ4+NvWdcI9tt7x79rJ1o75YtW+JPIdNZu48jrcdd/tsk3s78PbFx40YaO5jJFhOuLe/s24tdsLf+7pHrtvfINeuZ5Lr1THLdeh65Zj1TZ65bcWLK6D3294Rq6w+lvkYp9T/gTGCa1npRG9vrgCqt9eAOzjEB+BZ4S2t9ahvbrwfuAy7WWv93J9omF0gIIYQQQuxtB2qtF3Z1I8Se+dukxf7y94QQQgghhNjb9tjfE63zLvRN6dZjTTvba+P22Z1zxO8nhBBCCCFEd9GvqxsgmuyJv02EEEIIIYTokSQlVPe3oyrZg4E51vNDICH1tOi+8oEF1vMDgeIO9hXdg1yznkmuW88k163nkWvWMw0Avrae96zcoWJn7OjvCRcwFigFyoBIx7v3KPLd1DPJdet55Jr1THLdeia5bj1Pb75mdiDXev7NnjqpBCyM2Oil9kYqpQFVe+Ac8ft1itZ6W0fb4/MVA9t3tL/oHlpct2K5bt2fXLOeSa5bzyTXreeRa9YztbhurSvDi66yJ/42adLJ+3FDZ8/Xk8h3U88k163nkWvWM8l165nkuvU8feCabd7xLjtHUkIZsSoio1puUErlAylx+7RnAxBt6xwtzt17KkcLIYQQQggh9rQ98beJEEIIIYQQPZIELIzPrcfj2th2fIt92qS1bgTmA2OUUkPitykTSjsW8AFSzFAIIYQQQgjRnt3+20QIIYQQQoieSgIWxseYGRLnKaWmxFYqpdKBWzBT5J+MW1+glBprbY/3iPV4t0qc73MZMBx4xgpsCCGEEEIIIURbdupvEyGEEEIIIXoTqWEBaK3DSqlLgPeBL5RSzwN1wA+AIcANWutNcYfcDfwE+CnweNz6J4CzgXOBYUqpz4GRwBnARuC3e/eTCCGEEEIIIXqyXfjbRAghhBBCiF5DZlhYtNafAocDczBBhyuAEuAcrfX9nTxHFPg+8HtMhfRfANOBR4FDtdZle77lQgghhBBCiN5kT/xtIoQQQgghRE8kMyziaK3nAyd2Yr8LgQvb2RYA/mAtQgghhBBCCLHTOvu3iRBCCCGEEL2JzLAQQgghhBBCCCGEEEIIIUSXU1rrrm6DEEIIIYQQQgghhBBCCCH6OJlhIYQQQgghhBBCCCGEEEKILicBCyGEEEIIIYQQQgghhBBCdDkJWAghhBBCCCGEEEIIIYQQostJwEIIIYQQQgghhBBCCCGEEF1OAhZCCCGEEEIIIYQQQgghhOhyErAQQgghhBBCCCGEEEIIIUSXk4CFEEIIIYQQQgghhBBCCCG6nAQshBBCCCGEEEIIIYQQQgjR5SRgIYQQQgghhBBCCCGEEEKILicBCyGEEEIIIYQQQgghhBBCdDkJWPRgSqkDlVLvKKWqlVI+pdTXSqkfdnW7RPuUUpuUUrqd5bOubl9fppT6kVLqYaXUQqVUwLomF3awf5pS6i9Kqc3W/puUUn9WSqXsw2b3eTtz3ZRSv+/g/tNKqaH7tvV9k1JqgFLqOqXUB0qpLUqpoFKqWCn1slLq4HaOkfutC+3sNZN7rXtQSnms++YLpVShUspvXbc5SqmfKqWcbRwj95roEZRSqqvbIHaOXDMh9g2514TYt6y+WVdXt6O3cXR1A8SuUUodBbwP+IHngTrgB8ALSqlBWuv7u7J9okM1wN/aWL9p3zZDtHAHMAQoB4qs521SSiUDnwNTgA+A54D9gRuAmUqpI7TW/r3dYAHsxHWL8wRt32/Ve6xVoiNXA78C1mPunzJgFHAacJpS6jyt9QuxneV+6xZ26prFkXuta6UAVwDzgbcx1y0TOBH4L3COUupErXUU5F4TPYdSSmmtdVe3Q3SeXDMh9p3YvaaU8sj/291bLLgk3489k1KqH/AWMFBr3b+r29PbSMCiB1JKOYB/A1HgCK31Umv97Zg/Su9SSr2ktd7cda0UHajWWv++qxshWrkEWKe13qyU+jVwdwf73oTp0PmT1vrXsZVKqXswnXq/2MHxYs/ZmesW87jW+rO92yzRgfnAkVrrz+NXKqVmAB8DDymlXtNaB6xNcr91vZ29ZjFyr3WtSiBdax2MX2n9HvkhcBwmePG2tUnuNdEjaK21Umo6cDFwmdY61NVtEh2zrpkN+DPwpdb6NaWULRYwFULsOVYn+J2ARyl1cxu/n4luoq3gklLKKf+v9RgVgAfIV0odprWeKwH6PUdSQvVMs4ARwLOxYAWA1roGuAtwAT/pmqYJ0TNprT/qTJDP+gXwEqAe+GOLzX+01l+y51so2tLZ6ya6D631Ky07vq31XwKfYkaA7wdyv3UXO3PNRPehtY62DFZY68PAq9bLkSD3muhZrKDbw8CFmFlAkgKlZzgfE/j8EZjvqK5tjugsK9gkeo6DMQMNjpVgRfenlLoNkyllLIDWOqSMpC5umuiAUsqutY5gZpQDHAsyW2ZPkv94eqYjrccP2tj2vvU4c980RewCt1LqQqXULUqpq9rL2S66rVFAf2CO1toXv8F6PQcYrpQa1BWNE51yhFLqV0qpG5VSp0lu9m4lNpoobD3K/db9tbxm8eRe64asjqcTrJffWo9yr4lup60ghNVBEAaetFadANJB0J20vG5xr9/ApMYdp5Qauc8bJnaZBJe6pw4CSQuAxcAEpdTh1r4S1O2GlFJeYDRwKnCAte5CIAJc03UtEy0ppU5USk2ynseCFWBmotcCY6z0qmIPkZRQPdMo63Fdyw1a62KlVH3cPqL7yQcei1+hlFoAnKu1Xt81TRI7od37L2798dZ+W/dJi8TO+kOL19VKqWu11k+2ubfYJ5RSg4FjMLVIvrFWy/3WjbVzzeLJvdYNWEUAbwEUkA0cDYwFHtNaf2ztJvea6Fbi0wXFUmVY62IdBHMxHQSjlVLJLQNtYt+LpcGw0j+5YjO8rNcKU3vxfcwo1P7Ad13YXNEB63qpuHtwEnAt8IDWelmXNk7E32vRlt9/sY5UpdTzwFTMQNbZEtTttvzAbzGzYn5jzbYYDXwCrJLUeV3L+i7MwaRPnQZ8ppQ6WWvdGLdbKbANkwknluJL0kLtATLDomdKtx5r2tleG7eP6F4ew3QU5AHJmGnsTwEHAh8rpVK7sG2iczpz/8XvJ7qPZcBFwHDACwzDFBPWwONKqe91Ydv6NKWUE/Nd6AZ+FdchJfdbN9XBNQO517obF/A74Dbg58AY4D7gZ3H7yL0muhWrI26qUupF4Frrj/+oUspu7VIObAeOwgTjZARxF4vLxf4H4D9KqWnWa4e1LQiswqQRbBql2kXNFe2wOrxjneFJSqks4DTgp8AJMluy68XdazcDy5VSZ1mvVdzvY4sw/3ePVUq5u6aloj2x/6+sa+nDzFQeg/k96xfAj7XWr0uwomtZ34VlmKAFmMDSU0qp3Lh91gBrgH7A6fu+lb2XBCyE2Ie01n/QWn+itS7VWjdorZdqrS/AdPoMAS7t4iYK0WtprV/VWj+mtd6otfZrrTdprf8JnGXtckdXtq+vsqazPw4cAfxba/1U17ZI7MiOrpnca92L1rpea60AOzAIE7S4BDNKLK1LGydEx14GzsT8m73eWhcF0FqvBlYDBcDJXdI60YpS6gLgVky9ir9Yo7/DcaNN51i7ngfQItgtuoHYNVFK3Qp8jRlZfCzm3jsTK22N6FpKqZmYwtrDgIeUUoeS2L9XbC3HA07rGAnqdrFYkLbF6PszMdeuHHOfrdRaF1n7yzXrQnFB9f9iZsPcgknfdZ9Sanjcrk9bj9OtGYYyu2IPkIBFzxQb/dbeKLc02h8hJ7qnh63H6V3aCtEZnbn/4vcT3ZyVEmU9sJ903u1bVsf3fzEdF08Dl7fYRe63bqYT16xdcq91LasI9zat9UOY2RXTgd9Ym+VeE12ivToV1tP/WI/LgXuUUudiZnXFPGM9zlRKOaWDYN/poBPtE6AEM5NiIPCSUmpg7NporT/CBJpGSh2/7kkpNVAp9SEmreMiTBqv14B6TIqhM+NHF4u9q706FVrrzzH30lrMPfc08L247asxdapygO/v/ZaKjijDFhcQPEIpdbVS6hDr97KzgRswmTh+qJTK68r29lXWdRlhPY9PQ7kSU1JhE+Z36DOBv8cduhqTMnUsILPQ9hAJWPRMsfzCrepUKKXyMTdIezmIRfdUbj1KkZ7ur937r8V6uQd7ltg9mNSlrehDrD/AHgN+AjwHXNjGtGe537qRTl6zHZF7rXv4wHo80nqUe03sc/E5nmNBihYpTVZgOkm/xgzu+TdwYdwpYh0EYwBJq7oPWXUp2upLCGGK/dowNQ+OxoxEHQNNNXXewQRBB+yj5oqdM9NaHsKkfPy91vp+4AfAQuBHwGFd2L4+xUrN5Yq9tjq+Y0HdV4AMzLWJAvcqpWbFHR4L6h4io767VlyatYlKqU+ANzGz0W5VSrm11kuBVzHBwR9i6iG0nIkh9gLrnvIqpe4DPgNuV0qltEhDuRZTs+8krfUTwN3AMUqpfyulMjApKtcDM7AG/7QXbBSdJz/Anulz6/G4NrYd32If0TPERhht6spGiE5ZBxRipvslBJis19OBjVprKUraQ1jXbQImf2j5DnYXe0Bcx/cFwAuYPK1tpYWQ+62b2Ilr1tE55F7rPvpbjyHrUe41sc9Znd7DrDoV58ZqHSilHNYuGzHfFYMxKaGWAb9XSv3U2l4JbMCkp0sD6SDYV5RS1wP/jAtExNKclGA6bdIxAaUrMX+f/sPaHrTWu4DD448V+84O0sxcYD3+S2tdGrunrFmS92DqUV2klBq6d1vZN7W8NkqpK4C5qrn+V3xQdwmQi0n3eBYmwPu0Ump/6zyrMMWAx5E4O03sQ7Fras0S/BgTrP0rJjBxmtY6AGAVT/8r5h77sVJqpHWco63zit2nlEq3gkmNmGDRZ8C5mJSGTTMstNbfAt8BByml0jH/p90CXAzcBQSAjzDpV2MpD6X+yG6SX+h6po8xv5yfp5SaEltp3Ti3YAqaPdk1TRPtUUqNVUq1GlGqlBoL/Ml6+ey+bZXYWdYoh/9gZjLd2mLzrdb6f+/rdomOKaVSlVKj21jvxVyvVOBFrXV4nzeuj4lLKXQB8D/gR+11fMv91j3szDWTe637UEqNb+f3jiTgL9bLd0DuNbFvtBNMOBuTWuEemmdPxOpULMV0th0ARDAp6JYA/6eUOlVrXQzMxXQQnG0dIx0Ee1CL0dyxdZMwo+wvx4xETdNaR+I61d7D1BY5QGv9H+Be4HCl1JNWOsCPMB1yp8cdK3na9wHVdv78pm1KKSdmUEE9pv4BgI67PrMx1/d44Lj4kf9i98SlDNJx6/oBIzHfgf+nlBrd4jtuDeY6/cD6vvw55to9iRmhvwHYYj3Ptc4pfYD7mBWITwV+CTQAVwN3aK0/01qHWuy+CHgEMzj5VKWUPfY7s1Iqa1+2u7dTSv0WKFVKXQagtZ4NXIQJul8C3KGUGhh3yNOYgVf5WusarfVfMb9PX4RJD/WStd8UpVTmPvoYvZqSGUY9k1LqKEw+ST/wPFCHmQo4BLjBmrYpuhGl1O8x/0l9AWzG/DI4GjgJUwjrbq31LV3WwD5OKXUJ1kgvYD/ML4ZzMJF0gNnWH12x0aZzgMmYtBqLrf2PAxYAM60ovdjLOnvdrFFgGzDXZxXml/s84BhMjuVvgKO01hX7rvV9k/Vd+DvMH1R/B9rquH7N+sNL7rduYGeumdxr3Ufc7x2zMTM4azGj+k4EsoEvgeNj94/ca2JfUUqdB5RprT+0OmCOxaSZiwDHWLnZY/tegklNM15rvc7qLP8HZsTw5ZhZF+swqVEu1lpLnZW9QCk1CjjF6qCJDbj6Bybl0xPApXGdal7MLIr3tNaXKaWyMQGlf1r7XoNJ8fVD4Hta63f29efpi5RKSMF2FHAI5v/rRVrr7+L2ew5zvX6itX7K6kSPxm3/JXAfZhDlr7TWi/fl5+jtrHvreq31pXHr/o7p5P4a+LXW+ou4bZ9i0kqfqLWuUErtjwkqVWN+9/oJcDvwW631Xfvsg4gESqmzMDOUfxbXp9B0T7bYdwwmZVQQuALz/9ypwI8x13/pvmp3b6WUuhlTtB7Mz/ewuN+HjwVuw2RBeVRrfYW1/gjgbeCvWuvbrHUOzODjX2D6ZacDZcDpMit5D9Bay9JDF+Ag4F1MAcQGYB5wdle3S5Z2r9dMzH9Sa61rFsLkwXsNOK6r29fXF+BxzGiv9pbHW+yfjpmyuQXzy8RmzC/vqV39WfrS0tnrhkkV8U9gPlBq3X+11vfmjYC3qz9LX1k6cc00pjZC/DFyv/WQayb3WvdZgGmYUXrfAlXWtSjHFMX9GeBo4xi512TZawtmoM5mzAyKd+P/DQI3WevXYUYLx9bPsH5v/l3cunxMAcwSzCjITzAdDoO6+jP2tgVQmBkSUaARE2CIbRuMCUJHgfuBYdb6dMwI70LAHbf/XZhBdi8Bl2GC35fH3qerP2tvWACX9WiLWxd/nxUAb1jXLLaswnTWxfY53lr/AZBirbMDTuv5rLhjbwOSuvpz95YFuCPuZ3tt3Pp04AHMYNV5wPS4bZda99KouHVnYVLqzcfMjo1iMjlkdfVn7KsLZiR+FPi+9brV72Bx+ypMoCmKGfgzBzPYtQE4qKs/S29YrPumGFN7Igrc2mL71Lj/3+621uVYv2u8B6TF7ZuPCQpGMYO7osCsrv6MvWGRGRZCCCGEEEIIIfYqpdSZwIuYmRS1mFnhj1nb7MCvgBswAYqbtNb/U0oNwow0LQbO0lrXWfvPxHTuHYjpcBiGmQX0ZcsR4WLXKaVyMD//gzFBzI+BM3XzSNQjMWnjZgJPARdprbU1evXXmFH6r1n72jEjWq/BDNoaBryhtT6tvZHGonOsND9/BjyYju5wi+0OrXVYKXU3cA5mpstyzCy6WzCBwqla63pr/48wgYlbtdZ3xp1HYVJEjsJ0yg0AjtZab9q7n7BvUEo9jOlIrcHUeSnQWtda2/pjZln8CpMKapbWukgpNR0TAP6bbh71rYATMLXHIkAW5nqfqrUu3befqm+L/X+klLoOE7S4Cnio5fddW/9vKaV+h5nlmgo8oSWLyk7rYBbLD4EHgX9hvgMrMcGgDXHXbDLwFuZ77vda69uVUn8BzgeO1FqvanHOx2muAXSS1vq9vfbB+gjJXyeEEEIIIYQQYrftoBaBH9Mp8B6QCfxMKZUHoE1dnH8Cv8GkuH1EKTVNm5QK84GJmLRyWPt/jgluLMZ0fIPpRECCFXtULea6LcKM2D4Rk5YEAK31Z5gAxLeYEcGxDrX/YTrZxiilbKq5eOlfgd/TfM2+p5QaLMGK3ebCFH/9KTApfoNS6mggaKUJPAiTjuturfUrWuvfYjpRRwE3xx12PSYg8Uel1LVKqcFKqXGYtCeHYjr6XsVcx4Os95E6JDvQ0c/ICjqVYIJ5SwEvZnZTrNO1UGt9MyZ93hjgcWXqmX4DbAWmKVPTFG28i7lXkzEFtw8k7jtU7Btx/x9twcySmI6ZjQw0/5uwOshdSqnD4o79AyZgcVAsWKGkAPfOSot/EXcPfgYkYWZM3IwJ6t0CTdfCprVehgkwLQZuVUrdgZmplA0Mtc5nj6sL80vM97BXghV7hgQshBBCCCGEEELsMqtgbMJIxjaKu36K6YSbjRmlfTAmpRMAWutarfVDmE66dOC/SqlZmJH7/TEpiJo6bLTW8zCjkaswKYikFtxOUi0KarfYZtNaBzGFzrMxI7sBrogVIrUKwq7AjCrdAFxnderUYVIKHR8fQNJal2it7wWewaQHO0NrvWUvfLQ+RWvtB07GpGdsWVPCjukovRFTU+perXVANRfM/jemeP0vlFITrfMtw6TtWo8JMi3G3Lf3YdIbv4CZlQGmIxwJOnXMulfa/BlZ351RzD3hxhT33YoJ6k60Zi15rN1vAh7F1I/5J+b6voWpP5Xf4pwfYmqQfQic38a/DbGXxXWQL8bUIDkT+H7sesb+TVizCf8L/F0plRI7Xmvt01r7rY5x1XL2lGibUuoUpdRa4EOrLkxLSZi0hadjvtdKgIus2ZsAscDQW5igRQnmd4yfY2pUxAZIRKwAh9JaV2qtH7O+XyWwtAdIwEIIIYQQQgghxC6zRvRqpdQBSqmrrHUtZzp4MalMDsd0ovmBS5UppE1cB+qdmHRPIzGFnSdjOs0vsM4bK+5sszrLx2qtL9RaV7YRJBEd0FpHrBkQV7Xs1Im7fmsxs162YDqvJ2MKnjcdr7VejplpMQ/ToXo7Ju/6wUqp4bERq3HX51Kt9bBYuijRObEAU1sj9bXWc7TWLyqlBlqzKmLrP8B0cDsxqYbcVud50Nq+BpMiyoGpSRE77lFM0eZ/YIJPszH1Mr9nzZaJdaDHAheiA3H32l1KqWPjrqUtLpAxGzPSuwgz2wxM7QqsTmultd4O/AH4D3AY8ApmRkYBMMg6px1TBwHgQa318Vrr56xtMhNmH4pdWytt2uOY+m53AtcopZxKqXSl1AnAPZj6Ma9japK0PE9EgoKdYwVe38D8DjENeEwpdX78Ptb1qAIGWN9nt1qbbrO2B2MzA7XWXwMXYQIcPwJSgAlKqRFx54sfrCGBpT1EfqETQgghhBBCCLHLlFJupdQzwELgAaXUb5VSQ61tdgCtdTmmw3QAUI0Z1TgYuNLaHrQ6UuswqYXuBMZhghspwCil1JDYe8Y61LXWZdYED7ukg9o5SqnjMYVcHwCeVUodHrctNvuixHocg+m8rgd+qpQ60Fof2+894Apr/0sxtRJqgVPAXK+46xOw3kNGoe4Eq2MNrGBB3Kh7rNd5mFkR/6eUGhW36SFr/SGY4vSRFqlMXsF0lJ6plDrROpdda71Za32t1vo8rfX3takro5RSxwB/xNSP+XgvfdxexRq57cfUdnkM873WMrDrwKTNOw4zC+kr4Eil1Blx29Fab8N8b76LqR/ze2v7j63tkbjvx5D1/rHvYen03kkdzUTr5PGxINGrmPRDGZgAxTpgASbN0OmY2U93WDOmxC7SWn+LCehFgc8x35ePK6UuwPzsY+YAo60Aw38wqQ+PUkpdaG1Xcef8AHPvLsWkWXPRTn+63GN7jgQshBBCCCGEEEJ0SjsjdLOwUjZhOjFvBR5VSuXHdbKC6SAYhing/GfMqP0fxTpJY7TWNdoU+/0P5m/WUdYyjDZYEzwibW0TbbM6qwdhOl5KMXVCHldKXQMJneNfYwIMBdao1Hsxo7ljM2lC1kjUqNZ6KXAh8B0wFpOCaJRSKin+veNGHcso1J2glJqqlKoF/g5NqaBQSh2mlMrTWpdg0gSNxgSMsPZbAzyC6YD7g7U6GpfKpAIzy6IE+J1SytvW/aSUOhSTGuwBzL14P6a2iYjTznfkVkzAoQ4IYVKr/ccKMgFgzRirwgSVNCaoC6bOSOxeiw/O3oC5brHg1DQrtVAr8v24a6z7I2I9n27dg8Pjt+/oHHHfdw1a66cx6bxuxwQs1mJmXozQWv/ZOqf00+6CFtfiz5hgfA6mbs8zmJRb8YXLqzABjFgaqBusx5uVUulxs6Ji530Bk1rvQWC61lpml+1lciMIIYQQQgghhOiQ1VEWn74kvoOgGJPGyY9J3/Q/TDqGd1sEI4oxxZiPtGZS/B6TS/oqpZTH6iBQcSNaf4cJWoAJdkgO9p0U6/xq2bFmdXi+gRn1a8N0mm0A/qqU+o1SqsDa1YsJQs2wXt+P6WQ7Wyl1Wsv301p/jElns9pa9a7WumEPfqS+rASTLuYMpVSeUmqCUmo18DwwwdrnHkzn+I9VXAFfzKj+zzHXbbqVwi1+hst7wJuYItonx7+pMsWAXwZew6RMqcfcw3+TWU3N4mcxKKWccesdWusNmGuTikmN92dMmpmnlVL7xZ1mITDFOs+rmO/SwUqpWFH0WAF7tNarMN+Rb1vbfqu13rqXPl6fYf0fFCuGHUt1OAdTqHkBsFIp9bBSatiujKbXWs/XWv9ea30scJbW+pda6yLVXKdC7qlOUEpNU0r9RCl1klKqIHYtrN9T1mHusQnAAZhZf08AFyilXrZma36IqRljA9Baf475Lh1Fc/BCxwWcQlrrz7TWV2mtq3d35o3YMQlYCCGEEEIIIYRolzWiV1sjsqcppZ5VSmXG/SGvMelLngdmYdLPXAj0A56MS7HwLeZv0Czr9ROYTtQTsWpUWOeLdcgVYUb0j9Nan6K1rt27n7T3iOtwi3V+tepc0VqXYtIFJWNmWzyAGb3/R+Df1kj7DZiRqNlKqQytdSNmBo0LE2hK1c01KuJTn5wB2LXW7+y9T9l3WPdgLBVQFqbj9BtMkPA+6zla6zLM9RuJCVq4rfXVwP8Bmua6CGGrQ9ZmzXZ5CDhNa/1S3PsqbepdPIGZpXGO1vogrfXX8R27fVncvRYbif8n4C9xsydi9+CtQDkm5dNs4DxgKvC6Mmm2wOTJz1JKTbNe34MJEN2ulMq1grpN97I2RevPwtxrr+6tz9iXWP/Xaes7bQCmCHoyJiXeHZj/6y7F/N9W0MGpOvNejdDUyS51KjpBKdVPKfUSZhDDfzCFsb9RSv0+NtvP2vUfmMD5BcDhWuuLMfWXvgd8gpmJ5qc52AumBlMIuFIpNSH276CNNjQFDsXeIwELIYQQQgghhBCtxP5QtzrJ0pVSTwDzgaOAEfH7WsGE/8OkPDkT2IwJRCwH/quU+iOmmOxWTGdqLNARK3Z5uVJqoNVBEN8hV6G1XtNi5oXYgbjRpmcppT4APlBKva6UOrHFyPqvMaPvjwemaK1/ienwPhb4UCl1BCYAMRZTgwSt9f8wI/JnAT+Je8umVE9a6zVtjOIXuy7WkTneeuwPvASciimsXBa37xOYzryziZstYQUingP2jwURrdH/sXoHS7TWb1jrW87IeUNrfWvcdlusY3fPfsyeo+WsM6XUuUqpbZi0MRGsQIUV0HNYHZzXW4f/Tmv9PCawFwL+p5S6CPgCSMN0pKK1XoJJ82UH/mQd2/JnHpB7bc9SSt2ICd7ejEnldZU1E+I2zD31KjAduEUplb277yezKjpHKZWDCVIcA9yF+V3jLEwg8DbgDqVUf2gK0v4BE1y/0Qq4/wcTbKrGpIjyABOt4JTNCgrfDWRirn2b10au174hAQshhBBCCCGEEK3E/ihXSv0Kk47mZEyn2fcxBSpb+gYTtBgHXAeswnSovoBJsfAMpuPtoLhgyGxMB8QUa582861bfaMyorGTlFI5SqlnMT/7fkA6JsDwNvCPuJH39ZiR81swxbQP0lr/DtPZPQaTkuZETOquGXFvcSsmPdEvlVJj2uu41lKnYpfEAgZtzJRJx6QNsgHDtdZbtdbh+M5qbQot/w6Tn/0ncSP9wXR+F2NqzDjauz4tZk+1apd02DV9J0WVUpOVUl9hvt9WAecCd8YHkWI/Z631U5ig77FKqYu11p8Bp2Gu6X+AazC1Rg6Me6u/Wue9UCl1eMuffXygcK980F6sxcyw2LoMzP9bF2PqG/zX+n8KpZRbmxR3f8SkiPoxVgovsU8cCJyCmQ32J63161rrlzGB8/cwAcFL4vZ/GXgfOIHmWZxPYYIcizFFtF9vcU/9ETM743pEl5KAhRBCCCGEEEKIVpRShyqltmBGMr6C6Zy5S5sc3K06qK3UMc9gOgHOBk6xOncuxaTSGIcZGb4V0wEec4/1mBPrSBe77Uxr+RvwQ631VOBQzMj7y4A/xKUzWYvpoBkGXKyUStNav4bp+JkPHA7UYoqlx9IELcIEQ4ZiOsbFHmCN2ne0FzDAjPqdgUm/doBS6hfW+pad2J9gUtmcgvl3EFv/NWZ0+DZgyM6mdOrLMypaUko5lFIPYer2ZAFXY0bivxALVsQHnuKCStdajzcpUyx9FaaexZ8xs9caMEGL2EyWMuDf1jG7PZpfGLHZRdbslKzYyHzMd91vrMcJQOxaOrXWAQCt9VLM/4lpmHtsh8Wy4+81ZerCOFquFzt0pPX4mtbar5prxcwHfo0ZWHGFUupYaAri/QEzK+kipdRIK/XWBuAkTLDwI2vfqDKp9yJa62u11iU7uqZi71Ly/40QQgghhBBCiHhKKQ8mNcK1wLPALdrkS491okWt0aaBFsfZgB9hiji/DFyrtS60tp2MGbH6vNZ6sbVOWR1Gw61OBLEbrM6vNMxo04HAEOtaxX7O04DbgSOAm7XW/7COG4JJFzQa0+n6vHWuJGv/JZhOovq490oFgi3/DYhdE+sss56nYOrAZAIVwNta681x13E/4EtMCraDtCnaG5+/HaXUaEyti2+Bn2mtV8TOHX8dxa6x0tM8hUmndovW+p429snUWlfFvY59dz6J+Z78k9b65rjtl2E6yD/VWlfFrre1zWnNnhG7ocXPNBn4Leb/JQVcqE0KwhRMcPBmTIq1i+NmHMbuwVHAMmA7MElb9Sh28H424GBMx/t8rfXHe/Gj9mgtfm6xn/mtmADELGt2UstjLsHMGHwR+KlurhHyD+DnwL1a61938v0Tvk/FvifRIiGEEEIIIYQQTazOAT9mtsRXwGGx9UqpKcClSqlngLeUUncqpQ6KHWv9gf8O8CZm5OmpcdveBn4TC1ZY62IjyTdY7yF1KnaD9fMMAwWYjjS39TONjeJdhEnrVY8ZcXqwtX47ZjZGJnCesuqJaK19mJGrz7bs5NZa12mtA0py5+8RccGKqzGzkP6G6Uz9J+ZemxV3v3wDPAgMAG6xTtGy7sRa4H7MzJr4ovb11vvIddsNWutyzOyzWuBgpVR/pVSqUuqHSql/KKW+Bd5RSt2vmotox67RDZhZMVcqpSbFnfbfWutXYkGOFh22Iblmuy/uZ3o+JhXeJZjvw9lAbAZFPSZQ/x0mwHCQdUzTzBdgvbVUAsGWMyVir+PebxQmVeJ/gTuBwXvvU/ZcSqkJSql+xM0mipvZFQv+HWDt2/J+eBaYiylsPytu/X2YQOAFSqnp1rEd/q4hwYquJwELIYQQQgghhBBN4joHFmFSzwzCFJI9F1Og+SHMCNHDMCNQP7NGNsaOLwcewHSc/0gpNQ6aRix2OEJYS52KDnUyoJOESY2RobVutFJcxAoAa2Ae5hpOBk5RSrms1BkfYwo5nwCcHjuZ1jrUUeeNltz5e4RSKk8p9R/g95hrcRnmGp2B6by7WykVX0fkXkyH6kVKqUPiAh7ZSqnh1j4PYGY7Pdzy/eS6dayT99pCzHfiyZiO73swI/LPxtTrGQr8AnjNCg7G7sNSTJHgVExAEGt9m/dZXKBKrtkeoJSahQnmrcJct3O01jdqrTfF7bYGEywcS3OqvJgoJjXbWKCQ/2/vvsPsqqo3jn9XCiGi9NBLkK5IEZDem4CAQuggSO9dEFG6VFGkS68CPzqISAsgHaUKBESaFKW3UFPe3x9rn8nJzZ2QmUwyM5n38zzz3JnTz9zZc+/da++1SkmT2vHrswNmiIgtyDb4W+BtYFFJF0zwG+1GImLDiHiYrDnxJHBPRGxUZrtUHiUL2u9Z3k8MrweKlCkozyLTFC5aBTQkvUoGF2cCDij7+r1GF+eAhZmZmZmZmY2m1uHyZ7JQ8+7AxWSH2w/JEaeLkp09kwOnRMQ8tUM8RHbkLUsWuPSIxfFQG607IiL6RcTWETGgrBvtc70y5/1bwHwRsX7Zpndt/RdkYOJf5HM5R1n+HlnLYiiwWUQs0uz41vHK7/iHwEZkgOEgSedJeo5M6fQR8D1yhPA3ACR9SM6W6Q8cVwIVPyRnZvwuIhaU9KGk7SS91DgC3JprY1v7nFFF6w8n03idSHZkL0sGLE4Bpi/rB9b2Pabst1mzdmoTRmSdpAPJwO5BysLN75cZhPXO7+Hk/8l7yALcJ5Wg4tQRsQ6Zmmg4cGbja1tJX9Q/IlYn/x4uJNPtbSppJUlPTYRb7RYiYtaI+BOZxinI9w5PAPMDp5MDJQCQ9CAZ0JiTLFAPDTPLyP+XbwDLNgQ0zivL5yDbo3VxfuNhZjaJioiVI0IRcfgEPMfh5RwrT6hzdBcRMbD8Li5s436LRcSIMvKmS4qIHco1fq+zr8XMzCaO2ojel8mOhH8Cp0paXNJtkt6Q9IKk88mRi5MD+0NLsONTsiPvLWD/Wuoha4faaN1NyBG6F9AkEFTr8LyoPO4cpTZCQ4f1f8g6F4szeiHfR8kCv8sAW5fn0oGmDlJ1eDcGD8rveHLgWEn7S3oxsjDvGWRgqQ/ZljZk9DRr5wFXkTVJhpBtdUvgAWUx55bz1keAW+vGta3V/Bv4PTkif21Jh0p6H/hQWd/lRLJA/RrAwuXY/cq++5XHwzzqe6IZQLaXOyXdHxG9qgB9kzbyXzIAOIwMWtxH/o/8I/m/80BJtzWeoHxm+jVZ+H5z4GhJs0m6akLdVHcUETOTs5LWIIOv20oaJGltMo3dFMAGJUVU5dfl8eCImEVZE6ZX7X/qK2Th+gUi6/VU72WGAiuU9zBvT/i7s/HlgIWZWRcREUuXDu+/trL+5LL+uVbW71PWHzVhr7T9ysCVrSJicES8FxFfRcRbEfF4RJwRESt19jV2gt8Bz5EpNyaoiFii/I3s0cZdLwJeJT9wmZlZD1HrALiNDEr8viyvOl2r/NGnkWka1o6I6WudPlUO/d9KeniiXfgkKCKmjIj9gHPJzuthwKaRhZVbnpOqw1PSNWS6mrXJDmyojUSV9AnwbPlxzdryz8lOtj8B57mTu2NERO968KchfUwVZLqQTBlDRKxJjhTemkzftRWZlm0aMpA0W+3wh5DBwge3t3CpAABEWklEQVTLttNJOqF+fgedxt24trVKSXN3HTkL7ZHaDI2qo/QN4H6y/22tsttXZd215AyMHf0cTTSTkcHBySKiv6SRrf2fK8vvJf8nfkUGeX9OdrIPlHQqjBmAJP/n/oKcnTGLpCMnyJ10f6uSv6uzgMMlPVtbdyfwFLAgpb2UoN7jZP2eAWQwCUZPyfUxOXvmZY1Zd+mVchzXgukGHLAwM+s6/kFOwV+ulRfRVQAB80fETK2sBxhcHh8hX+BP6+gLHQ/nA5eQKSRuJjsxLgc+JEet7NhZF9YZIvOnrgycNJE+pGxQHm9oy07lg9jvgbWiFCozM7PuIyI2joi/VDPlGjvcWlPrcHsXuFrSf8rP1WvWiPKe5Qsyj/d/gfdrHXZfAb+T1GUHU3QjK5Id00OBQeQsiBUo6TIaZllUnWdHlMf9I2LmMhK1d0RMVpZXaUneLftVQY9/StpK0pAmHXH2NRp/Z9XI+ZImZtmIODsizo8szPyDWpDpy/IcTU8W0p6GDET8qgT8niRTmiwObFIdX9K/Jf0e2FzSQZI+iIg+fu7abZzbWkXSm5IGS/qiIRhVtbV364/lb6F3+X4fSY+N6/9lG29fkMHAWcvXaJoE5D8gg1efA3MDT0g6XdJ7tUBkS3H0ss/lwGKSNi2vn9bcI+SAuMOVReVb2oCkt8iBEDOStV7qDiFrMQ2KiKPJFFHVjI3DyOf1stZOKteC6Rb8D9HMrIsoL5z3At8Elqyvi4jpyLy115VFqzSs70W+kf6SHF2FpM8kPddV3iRFFgnclsxJOVDSTyUdXN6kr0K+GTmjEy+xM+xKvvm9eiKdbwPgMUmvtWPfK8g8rbt07CWZmdlE8AMyP/4gaN9o68ZUJbUUGsOB5cnC3G+Sgyvq+zV25Fj7DCUHfSwj6RayE/W/wBbVYIJawKEKNN1M1h35Hjmjk9Jx/lU55jrl8dWybrS/C6cRGncRMXP1PDT+zkoQYpqIuJhMKbMesD45Iv+hiGgcfT2I7DQ/XtLZkj4oyz8DpgKmJWtZLFHOXQUIPys/95I03M9du41zW2tUPRe1tli1taqI/SPVtvX/qfXZNzbBfUI+DwsDq0bE5DAquFS1V+CCiFistKMnyNlLawEb1oJNI+rtrPa/90lJT07Ee+quXgSOUklZWLWBkpWhH9AXeK367FoF3SV9RNYh+SsZ3L0rIi4n07cdCNxB1rqwbswBCzOzruWu8rhyw/KVyGn8pwDv0xCwABYhR2E9qCyk2GoNi4h4pXx9MyL+EBFvRsSXEfFURAxqdlERMXtEXB4R70fE0Ii4JyJWbOO9LVMeL5L0ceNKZVHABxrOe2G5h29HxIER8UJEfBERL0fEoRHRt5XrXTEiboqId8u9vRARR0cpUjg+25eRNAdFxL/Ltfw7Ig6mja+p5Y3wBsCtjb+PqNXDiIgFI+LPEfFhRHxQnofpy3bLRMSdEfFxWXduREzRyvnmIjssbqgtmyoijoyIZ8vz+nG5n4siYs76/soCnneTI1m+2ZZ7NTOzTncMmV/9p1HSL7Z3NG+tc1SROfY3IN+fvEx2PNRTM7Rw5+n4kXQ3cISkV8uiIeTvfV4yRVC/0plTdZhWAaK9gcfIlDaXR8Ry5b3F7uTs1tvJ1BvNzukO1HEQEbOQMx/+EBGzl2WN7etIsqD2iWSwYiGyLsJ7wK8iYpfa+6vqvdw7DcfYkUwjejHZ2ToVNA+QdMBt9VhtbWsN+6qh43WeiDiBnBFziaQ/t3JO/3+cCMpz8wk5CPA14GDgxzAquBQZCDyT/Pw9TVn3OdkZ/gKwBQ2DC619lOm4hpbvGwM/0wHfpQT5Ysy0h/cCm5LpuT4AlgLmItvumpLenIi3YhOAAxZmZl1LFbBoDEisQo7Ef4ichdFsfX3/r9OXzEe9JnANmZdzbuD/InPmtoicWvkgsBn5hqEKmtwOLD2O54P8QAYwXxv2qZwMHESOljiVnElyBDnddjQRsSvZsb4cmXbqFOB1curo7TFqana7ticLiB5HvoaeTo7e2A/4QxvvaUXyeXhoLNvMBTwA9COnIj9JPg/XR8TyZAfD0HJNL5IdD6e2cqwfl8cboKUj41aycNn75RhnA4+TH6TnbXKMB8mcr8uOw/2ZmVkXUUZoV2kTfhoR32itw20cjqWI6BsRqwG/IV93piGDFU905HXb6Goj7auZuZeSBWAHAT9q2Fa1kag7AeeRnTv3An8nn7fXgP2VhYGtjSJiu4jYl3yPezY5gKhZIfSFgd3I95uHSfq7pP8p64zsDrwE7EsGMSCfn6HkSO5Fy8Cdvch6FrdI2hEYIKlpoMnGX1vaWhP9ImLuiNifnD1+APkZxnUMOkCMXmC5vW4l091OBZwfESdGxLYRcRxZT2Ed8n9mfTDdS2Q640XJ19HJx/MabOwWITNP3FN+Hi2oVws+/Yr8HL8qmYbruLK+N9a9SfKXv/zlL391kS+gN1nPYSjQt7b8n8Dg8v2+5Av2bLX1N5ZlK9SWrVyWHd5wjlfK8uuByWrLVyvL/9qw/YVl+SENy3cqywWsPA73NhvwETCSzCk5CJjza/apzv12w/1ORr55EbBRbfl3yMJ4T5AFB+vH+kXZfv/x2L76nT4BTFFbPis5Ck7AheP4XJ9Qtl+9ybqBtd/t3rXlQQZVRI4k2aC2ri8Z0BgGzNjkmHeTxceqn79XjnNdk237Ad9ssnz9ss8Rnd1W/OUvf/nLX237It9j3EkWpNy0ncfoRXYMfEimSPkUuIlM9djp99gTv8iBDCPJ94IzVc9TK9tuTA4AOREYVFsenX0f3emLHORzW/m9nw9MTaZEe5usC7JY2a53eVyvbLtz+Xmy2rrJycEjI8laFZDFZI8ryz4C3irf30ntvXN1DH9NtOd9nNoaOaDpy/K/9kVgu86+9knlq/43X/+s0pb/YdW2pe1tTM4OHFm+PiHrSq7Yyr6zkAGNH3T272JS/yJrUYwE5mlY/o1mz2f9b8SvaZPGl2dYmJl1Icopjn8jp4L/ACAiBpDTIe8um1WjDFYp66v6FZ+TxafG1b4alVcV5SitV6lNcS2zCzYlP4Cd1LD/ueS02HEi6XVyKvxr5FTaq4BXIuLtiLgysgB1a/5Q9q+O9RU5AwKyLkZlZ6APsKek9xjdCWRQYfPx2P6n5fFISZ/WrucN2j7DYrby+NZYtnmRnPFRnUdkLQmAxyXdUFs3jKyF0YcMxLSIrIGyPM2LbX/euEBZ9HFok22ra52tyTozM+siWklVMgI4lByxuG1EzFq2HefPhMpR40+QszOvBlaTtJ6kV0rKRNepmPhuIQehrE0rNUqiFI+VdJWk4yX9XNLV1bry/sLGQXlvfASwBJkr/URlWtPXgOPJWRJbRSm0XXabvTzOB/k+VqNytn9Bvsf/nFJIW9I7kn5Bjhy+gZyN+1NJq2lUmiLUUFfGJrivbWvFJeTMij2A+SSdDx7x3RFKu5kmIs4k6xbcEBFLk59/xun1rPp/pyyQfhU5iGsZ8rP1OpKWkPS3SL0a9n1T0i6SHhnzyFYZ3/cCpa2sCbwg6d9lWb+IWBk4tDwCTVPijfBr2qShz9dvYmZmE9nd5EisVYD7yVH9waiAxRPkaKtVyDfEi5Iju+6oByC+xoeSXm6y/HVG1ZoAmJ8cfTK4fKBqoUwlcT/NUwc1JemOiJibvKcVgcXJjvRNgE0i4lhJv2yy671Nlj1IFoFerLasSlG1VklV0WgYsMB4bL/IWK6n2bKxma48fjiWbZ5q8obrv+XxiSbbV+tmaVi+LjnapB6wGEKOAtw8ImYjP4DdDTzRyocvyNRRANOP5ZrNzKyTlM7n4VJLHnXV1oWk+yPiHDIX/sbAyWP5n9+UpE8jYk+VAr/l2L3dedo5JH0UEb8nO3d+GhG3SHoxIr4DLCzpCmVKG2BUsfTSoT6yvs7GyUxkasxHJf22Yd0pwDbkwJzbyYKwlO+HAYtGxJySXq23T0n3RsSLwEwRMQfwenlujoFRz1n53m2tk4xLWyvbPRQRj5bBRC3PmZ+3tmvyOrYUcBEwM5mKbXGydsFvgFPb+noGUAZpjTbor9bOmnZ8N16Xja4Dfjdzk4M3fw8QEYuQtR93IT+HPj2ex7duwAELM7Oup154++jy+AXljVQJFNzHqLoV1ePgNpzjo1aWD2f0+kZTlce3W9l+bLMDmiofjO8oX9Wov23J4mYHR8TVkh77uvOUETbv1a4RYNryeEjj9q1o6/ZTkVNT322yrq2/i2pmw9jyn45RnJx8jr5uXWMx8h+TwYaWoIqk4WVWy+HkzJdqBs07EXEa8JsmH6z6l8fPMDOzLqPqPKk6nyNia7Jz9GOy4PKttUENx5Kjg7eNiLskPVl1Xo/r+apgRa3T2x1xnetR8n3U/sDuEfEc+d5q6Yh4X9Jt1Ya1TnIXZm6fPsBXwDwAkUXn/wgcLem0iDiMnIH004h4SNKH5OCUG4G1gDWAc0vQqHd5PzsFmSbqQ+ANjV7/ojHA5LbWucaprUkaVo0y93PWdjGqwHLj/6kNyc/F25CD175HFsM+KCKek3R7W1/Pmvm658zBirEr70G+S85G+6Idv6/vk4Pt3o+In5G1fr5P/h/dXZndwCZxTgllZtb1PEnWJ1i2TDtfBXhIoxdEvBsYGBEDyYAGjHvB7baoAhsztLJ+xvE9QRkJei7wp7KosaB40/OUqaLTMXrwperEn1JStPY1Htt/RL52Npth0NbfxTvlcdqxbjWeSkG4NYGbG0dRSnpP0p5kDY7vkFPX3yffXB7Y5HDVtb7TZJ2ZmXWS2ujrFSLiWbIDZxsyIH8tcF5EzFm2fYVMXbMwsGXpEG1vAW53eneiWofoZ+So4zeBXckc6wsB+9WDFTZ+SkfoS2Ra0zkj4lXgOuB54LXSlq4jO9U2BH5Sdn2XnBX9Bdmxui60DL75FvmczUvWQRuto9QBpq6hPW2tBJHdsd1G1WtSeV2aJ7IY9ioRMTU5COsoSddLekvSHeTnl1mAfSKif3tfz6xjRMRCZBuZX9Ln7WwDVYrqdcni55MDq0j6saQ3wikoewQHLMzMupjygeQecjT7+sCCjEoHVanqWKxO1q8YShYI62j/Ij9cLVE6vluUkS/LduC5mtVMqKzQZNky5Ci3x2vLqum8S4+5eVNt3f7JsVxPs2Vj88/yOH8b92ur1cmaKM3qVwAtH6iGSDqdHPkH+bfXqLrWfzZZZ2ZmnSgivk92EowE9iJflxYkRwNvCdTT15wFPFOWrz6Ox4/a95NFRP/G5TZ20cE57GuBqqWAnchOu35k0d+ZJJ1c1vs56gC1oMGCZKqYWRlVwPyGWsfcEWQ6120iYp6y/B4ybc3cwIURcXhE7EPWTPs18HdyZoZ1ALe1ri2a1JqIUbV2FBF9I+IE4DmysP2dwJ/JdvePiOhVm4VxA5l+bW1g6zZcg5+r8VA9X7Wfq99nHzIF3kNleZvaYjlulaJ6fmAPSQtJuidSlWLNwcBJnAMWZmZdUzVb4rDyeHfD+seAT4C9yTRF9zaOnu8IZVbH/5EzLPZvWL0DpXjguIiIH0bEBo1vbsq6echc2gD3Ndl978g6C9X2k5Ef+gAurG13BpkW6dTIHMCN55k6IhYbj+0vKY+Hlun71Xazks9FW1RBp6XauF9bbQB8CdxaXxgR1QydRtVMkS+arKuu9Z4m68zMbCIYy4f/nYA5gYMlnVEC0S+SoxNfAjaKiA0BJH1MpgScmexUnbJ0Eo3RgVMbWVx12C1OzsLbukpX07F3OOmpd7KUnwdGxIDqvUR7O87KcZcFLiNHGQ8GviNpT0mfRUQfP0cdKyK2ImdDPEz2p8wp6Z2yrjeApMeB08h6bZuWZR9J+gP53v594FAyPdsWwJVkAfvnJ+7dTHrc1rq+iNgBuCYivl1f3vBZdl0y+PBHYB+ylsGy5GfPkSV4GLXXw73K424RMXuVRq2V8ze+ps0VEfO3tr01p1EpKGeOnH1W/e3PSaYn/qhs16aUaOW455DB3FklnVHO06cMsnOKtR7CNSzMzLqmKmCxENlx/FB9ZZlCfj/ww4btJ4RfAKsBR0fE8uSMhgWBdYDbyHRD42IB8s3muxHxN+BFcvTZPOVYkwFnSnq4yb4PAU9GxJXAp2RR8vmBayW1jEaT9HRE7EaOJn0+Iv5SzvMt4NvASmSAY5d2bn9XRFwA/Az4Z0RcR46u2rRc44/G8XcBWfD6JUbNaOhw5Y33esCdyoJydYsC10bEI8CzwP/IkYI/Jkfn/r7hWEH+HQyR9K8Jdc1mZjZ2tY643YAR5OvU1ORr6R2Sbirr5yFfl7YhX9OuIEepVse5JiJuJmfU3QpcUu9sqzrf6p06ZCfSjmTe8EPJDlt3HoxFrRNzRHlOjiVzcfcC3ouIX5ADAYa1tcOzdMp9QY7O/4Wkq8s5q5HHLqg9Fm35fde2vZn8fb9NjureJCIukXQz+b62ciL5/nDriLijen8r6aiIOJUMegwg31e9XM7hgtrjwW2t21ibHFB1FflZCIDItIV/Iz9rvkUWqz9U0ntlfV8yWPRLYNfaa2FvSf+OiD+QA8h2An6tJmnU6s97RAwAViUDIu+TdRJemQD3O0kqg/r+TH4WviQizpf0T+CbZZNXxuPwF1XPXwlUDHcb63kcQTQz65qeZlRh58b6FZX6KPcJFrCQ9F9yRMuVZOqkvcnaEWuQxc7G1WVkJ8fdZBGuXcqxliIDH4Mk7dbKvvuQoyzWIEfQTE6ODN28yfWeQ04jvb5c7z5kcdHpyU74k8dn+3IPB5NTkvcg33T/ruw3zsqb5T8C80bED9qybxssTc6YuL7Jun+QOcxFdkDtT9ZDuQNYTtKNDduvCMxBXrOZmU1E9VkVEfGtiLicHMG9JllfaCT5uvVMREwVEZuX9b8jZxIuJWkLSR+VTp/KYWTnwn4RMVPtHPVOnekiYmMyuH8KOWtvaUlHu3P161UjfSPiQLIjbmky5eZjwEzk+6stqm3bcYonJG1e60DtrZL/vWPuYNJV+xuffFy3lfQB8K/yeFxZfUhZN7zWgf0/4GhyRPiWVbsrz8+Hkv4u6S+SXi5/H73cnsaP21rXVF5DvlFbtCewG1lfqW4Y8BkZaF8fOFHSe5Ez6yE/+71EBgGXLMfuTX6WgRxk9y6wR0Qs13ANLbMqIqJ/RKxGfra8kEzTdpGyvpONu/eAI8nBfnuTgwtPJ1NNfsLodSbbpBas6OVARc8VnrFmZmZdVURcSI4MnWtSfBMZEdOSb7yvkrTjBDj+8cDPgVnKB+fxOdalZHBmbkkfdsDlmZlZG0SmH/w+OSPuauBscqbhkMi0hreRIx1vJV87PwEOkHRxw3FWBh5RFo8lIo4gR3lf0bBdP7LDb0syNUfT49nYlY7qHYFfkYMCLgUGl87tuciO1WeAgyTdVzpo2twB2t79erLSifkbciDMwa0MEPq6Y1xLzk7dU9LpMXo6on5k6qAFyBHh/9fsGtrZeW4N3Na6nojYiJxJsRVwecMsvt7AWsBfax3U2wEnkYHx5YGXlEW0eyszDOxE1mD6s6T1a8fqU57nfchA/XqSbm5sXxGxKLAR+XcyHXCMpCoFs7VB9buNTLe2IrA9mf2hCk5tQra/99t6zI6/WuuOPMPCzMysk5Q3cMeS+cPnnACn2AB4uAOCFfMBmwFHO1hhZjbxlY6dZ8i6UhcC90v6jaQhAJL+Q6YanJPsiDmWLATbGKz4FRnoWKRaJumwJsGKucm0G5eSnRB/kDSDgxXtMg2ZruvvZJqS20rH2hrAjcCUwA/IUfj9Sudcm/PsuwO1XZYCDgLWaGuwojbr6QhgKHBARMxQOlWrWhZfkrMwpiHrwY3BnXMdym2t6/kK+C+wM1moHGhpP7eTKYV+WNv+EjKLwAzkjO+RkfUPRwJIOhu4F/hRmflXHWtEWX8yMK0yRVt9FtWcEbErcAE5I+pesj6CgxXtVJt19qmkWyQNIgc4VBkYLgHujYgdGmZwjlGHqz4Dpvz87YhYMprUvrSewwELMzOzzvUHMmXAGEW/x5ekBSQt0wGHmo38QH56BxzLzMxaUaWGaVjWp4zYPpScQTEbOZuCyEKv1Yf/s4DPyc7T39Q71SJi7og4iszRfT8wpOEcjZ12KwP7Ak8Cc0j6Rcfc4aRpbJ0qkt4GTpC0gaRXI2LGyJpct5KjiPckg1GDyBSN43K+qH3fp5YyxZpobFM1fyfTBX03sk7bOBdlLoGJkPQkGQSck0wZCqVztWx3Ezk79bT2Xr+N4rbWPdR+b3cC5wMrABtXz195Tas+V2wZEVOX5cOAU8kZfUeWZVVx5+q17kgy1eGBETFZPZVaaZMf1v9OIuJ7ZIrf08n0UctL2rj8vVgHqD03g8naPA+S70mmIP8/PhIRx5XnonfDvqPVFYmIzYCLybSWC02kW7AuyAELMzOzTiTpC0lHSrq3s6+lNZIGSzpK0ledfS1mZpOqKs1IGVE6f0SsEhHfrjprJJ0CPAF8ixwpDDCy6qyRNJisMfEtMpf0zyNimch87meQKQIfAo5qnC1X6yyoOpluJzt1fiTpjQl4291aNBTcjYj1I2K1iFi4pMmo3FfWf5csfr42mT99e0mnkx1p05EddzOVNBtjfFZvMgp1ETKwtM5YOuV7rNrva2TD81EvcF3NLlqpbNuWGQ9VezkWeJmcMbt4ef5aOuVUq1PR3nvp6dzWupfye+2rTD14PVk7bx9g/to21wA3kCmaflJbfifZYT17RBxSFveqvdbdSaaZWpwssF0f7V891usefErOvtlB0vclPdDR99vTVQFcMkAxO/CcpH2B75DP0f+AA8kgxgzQtK7I6sCJ5CzSeYDfSnpiIt+KdSH+R2tmZl2WpG0lhSbB+hVmZmYwWkfcyMiC2eeT6Z3+ArwQEftHxOxl8/3K488iYsqyT70j9AQyJdT0wPHkbIrDgQXJHPs/kfRSa9dS6+z5j6SnOvZOu6+IWDYiBpTvWz5Da1Te9c0i4hWytsjtZGDp+oiYub4d2Xm6AnAMmWbxybK8Kvq8BNl51zTtTK3zdPbIXO5nk8/zQozqPLei9vs6GHgqRqWQidqo7EeBj4EFImtOtOX4VW7994DfAlOT9RNQQwFtuTjzOHFb6/5iVEq0YWXRM2R6oBmBHSLim7XNjyB/n9tEpiKsnEHW+Ts8IgaUDvHetUDg4WRbG+vs79LWX5K0sqTzx/ferHWlzfQGJgPeKss+k3QuWUh9JUnLSXq9tj0RsRiZputSYAvgWEkzSbqqE27DuhAHLMzMzMzMzDpJrSMuyDSBPyQ7484jO2yOJjt5+km6mxyRughZCLscQlV+7w8knUfm5l+XrGW0BfBtSeeU84yRP9paFxEHkaO2q5G81fPVq6SIOYTMi/4SWfdjNbKzbTngosgir1VB4M2BD4CzJQ2tnWZysiDw7MB+ETGwdv56SpqpImIDMmXKWUB/YDVJRzd2kFuKiJXIwtpzAWdGxDKM3g/yv/K1FtC37NOWDumq7Z0JHAXs0QGX3SO5rU0aNKro/MYR8SA50+VnwPvk69YStW2fIH/HK5L18qrlQ4A/kh3gJ45a3JKK7QVJx7Q2Q6Z2HNeImbiqgN5oNYEkva2STaB6viJiYETsTrbpXwJ3k3VFjpioV2xdlguYmJmZmZmZdZKSBmEn4AEyWHEocJmkTyNiYfLD/C7krItryLQkGwC7R8Qtkl6Kkk6qOqakV4FXG87TW9IId7a12Y3AbsA79d9zGV0/J7Ar8DCwTzUrJSKeIjts9gX2ioiDJL0TEc8AcwNLArdG5llfD/g1sD85MvWr+szS0iHXhywWvDmwDdlJvnvpJDdGpVRrXC7pnoh4jgxSjCBH8R4AXFfWPxcRTwMbAusDf2rLeasO0zKD4rCxXYt9Lbe1bq4EffqTM452IWtYvAC8Qs56mRnYOSKelvRu2e23ZLBi64i4Q9LDZfl5ZBH1n0bEeVWHdz0IUYIXbmtdR/X+4unWNijteV5ylszmZABxOUkPtraP9UwOWJiZmZmZmXWC0rmzPFkEdhZgsKSzq/WSniqjiv9C5lx/UNIrEXEiWZNiF+DAr+uwaUiBY20gaUhELCHpnSartySft01qHagLkZ1sg8o2Q0oHapAdsj8BTo6I68m86quTKVPukPRy4wlKmpSNyaDWQDIFyn61dCtGSyfYZCr1tsrvu8p7fy2wA1lM/ibghIj4SFn3BeAyMmCxTERcrTbW7NLoBe7dgdpObmvdXwn6zEc+X7cBe0n6F0BE/JGsTbEpcFNEXFECff+LiKPJ2TJbR8RjkoZJej8iLgYWBaZt7XwT4bZs3K1GFjZ/8Wu2+6xst52kCyf0RVn35JRQZmZmZmZmnaB0tpwFDAaWBYYClFG+1TZ/JVNqrM+owqS/AN4hO3eWL/s4LcYEUjpBV4mI+yJibWhJrTUHWf/g5YiYJiK2J9OYHAc8D8wr6cRyDAE3k6kvBgJ7k+lRngU2a9aBWqxDpgV7CZhP0p7uQB0zbVNE7Ao8EBHrV4tqQbrHgQFkGqCNyXZ2aUQsVo4zBHgdWABoUx2LxutwWxs/bmuThI2Ab5HpuKpgRd+S5ukI4D/kjJjZa/tcADxS9l27WijpAmCApBsm0rXb+DlNUm99TbFsSW9I2srBChsbByzMzMzMzMw6iaT/kUELAfNExEyShjcEII4CvgC2iojvlQ65g8gipvuW43hU94Q1BxlUGhRZ8HwE8BUwJbAnOTr4bGAmYD1Ja0p6ESAipi8ddp9LOhVYmCxCuryk9SW92hhwqnWE3wisIml1Sf+eGDfalUXq1ZAWZgZgHuD7wOkRMV9De3ierFMxqHSk7U4GLS4GViU7qF8lRwePUfB5bKrriIiZImL68bw9S25r3VtVVPtNaAnADy/L7gT+DCxOPr+TA0j6kiyiPSOZ2mvK6mDl9dC1l7oBSW/A6IMuzNrLAQszMzMzM7PO9VeyPsUSZNqa0QIQZWTq78hi2oPKsguBM8maFzbhXUym5tqUrCECWQdhOFkTYX1gf0lzS7q52ql03FxN5t+vUga9IGmwpMfLst6NAaeqI1zSq1XudsvfS0n/tEBEnFOWvS1pf7J476zAhRGxYm2fp4F/AYtFxHSSHiCfxxnIzu8ZgVvL5puVfVoNANZnVUTENyNiLTLf/oXuWO0QbmudLCKmKI/t6Xj+oDyuCxlwKKmiQtLn5IxCgB2BBaudJN0B/B44UdLH9QPKKQ27FUnDv34rs7FzwMLMzMzMzKwTSRoKnEzOsti65FJvHOV9Mjli9YCIWLbst7ukZxrT0ljHK52aR5EFZbeOiFmAJ8mO1T7AIZJOru8TEYuRRZ4Xp3TiNUsZ5M64tin57p8Fto+IvWurDiXrDnwfODEilqut+1NZPi1A6cDegyy+fA2ZpgZgoYiYppXzRtlXEdErIpYo57yUnKnxiJ/L8ee21jlilGOBRyOif1s6nmuvV5cDnwOrl3oWVVqvKpj3FPkczQfs0jCbYn9Jt2JmPZ4DFmZmZmZmZp3vEeAcYC1g3TIadWStk/R9snbFb8oIcSA7iZw3f+KQ9DCZvmt1svjvu2Rqmo+AgyNi95IaaN6I2IMMMq0FnAJc3zlXPUkaUB4/Ao6pOjwlfQQcS47SXhI4NyJmLts+SxZ63ap2nKuB3cgURMcCXwJzA32bnbSW/mluYC9yJsABZL2EGSUd2UH31+O5rU18ZfaSgB+QwYQftnH/aubKa2TwaCmyfSFpRC34sQmZ4vBv5CyL2erHcQDezCALUXX2NZiZmZmZmfV4pSP0NuBDYCdJj5bAhT+0dRERMRvwGPA2sIWkpyJiM3Jk/zTkcxdkHvfXgH0k3dhJl9stje1vvoziPhzYnkzztBJZ3HeX+n4R8ScyvdPtZL2Xl4AHyVoVm5fgRnXMNYCryBoJAEtIeqzJuQeQdS52IGdUPATspq8pMGvt47Y2cZV0WSPK730xSTfV1vUaW5q0Jsean5wRMxdwJJkybRiwBrAfcBlwL/BxSXloZjYaByzMzMzMzMy6gDKydHdyhPipwKElXdQY2zmI0XkiYl/gJHJU989LJ98CwDrAQLJj7ilJF9X2aVOHX09VdZq2si5KOqbtgePJQMShwOzAwpKejojJJX1ROl0PA35GBhbWI2cobQWsKun5hmPvTT5/F0q6vMm55yvnXAP4GNhP0hUdc9fWGre1CWNs7ay2zRzAOpLOauc5ViIDE7MA7wOfkDVmhgCDJL1QtvPzZWZjcMDCzMzMzMysi4iI6cmRp58B60r6XydfkjWIiP7AA8BMwHaSbmlY39IBFxF9XIC0bcosiqOBu4DBpZO6/judn+z0/BFZk+Ji4G5Jq5b1VWBjNuAQYGfgHjKl0GXAmpLuKHn1qyLefSUNq13DaEHB8pz/FzhT0sET/JdggNvahBYRs0p6o8nff1+ybsgCwCqS7hmXIEeT488HbEHWj5kKuEXScR14C2Y2iXLAwszMzMzMrAuJiPkbR4Bb1xIR6wE3ADeSHanvNxRlbvm+Ey+z2ymjsm8niyu/CZwv6dCGbb5LBiAuBfYF7gOWIUdtX1vvfC3Bj5uAtYEXgHmBSyRt08r5x+iUrTrCSxHizzvwdm0cuK11rPL7mhMYTM58WLoK9ETEhsALkv4ZEdsC5wN3Slqj2re9v+eI6Cfpy/K9g0tmNlYuum1mZmZmZtaFVMGKiOjT2ddizZX87vcBi5Ijh+tFa0f73pprpbjua2Sw4hMy3c+uEXFuRMxYbSDpGeADYPbyO/5tWfW7sn5YpN5l9P0BwEVksAJgiYiYvdk1NRtBXnWsOljROdzWxl9ELB4RS0NLYOcjsj7I94GVyvongSuBlct2F5I1lVYrwQsYjz5ESV9GRK8S9HCwwszGyjMszMzMzMzMzNooImaU9FZnX0d3U5/F0DAboprJcAxZb+I2chT4ccCdZN2If5ZtLwd+IGnu8vOVwMbAIZKObZwpUfLxnw6sC2wk6bqJdb82/tzW2i8iFgaeAO4H1pD0RVn+XbKNTUEWnH8KOIeczfJmSZW2LNkGXwGWlPSJa06Y2cTgGRZmZmZmZmZmbVR1oHomzLippe6pghXHA7+rzZ6oOkF/DbwLrEmOrN8CWBy4ISJWL9u8CUwbEUuUn48DhgJHRsSAUveid3VuSf8hAxq9HazoftzW2k/SU8BfgeWAn9ZWrQXMTAYr7ibb2RmSXq8CEpIeAC4A5gMOrA45LudtZQaVmdk4ccDCzMzMzMzMrJ2c3mTsSnqmXlXanojYPCJeB34OjKAEKsqI7j4loLF/2f0wSVcAG5Ipoq6KiO2Av5EdrV+UfR8HTgN6A8eXfRs7Vr8sNQ/c6d1Nua21TS1ot3d53LXMNoJsdzcD/yZTQ31Q2kevhn1/Qxac3z0iFijbtAQDW1Nr79NVba46tpnZ1/E/CzMzMzMzMzObIEqJgZERsUhEPAhcBgwBNgd+I+md2rZVvYhLgEeANSJie0l3Az8G/gGcC+wFBLBk7VS/L8fdNiKWb0xbU6t54E5v6xGqmUaSXgBOARYBdinrTgY2IdvNlGRggtrsihEl0Ph62WZqcvZT01ovMPqsioj4VkT8iKwts0f92GZmX8cBCzMzMzMzMzObICKiT0ScCTwOTAvsCewh6coqWFF1dJbZGNUMiGpU+IGlhsEQYDvgRGAV4DMyaEHpWH2HzMEPMN1EuDWzLqlhBkQ10+gXZLHtn0XEktBSSP4G4BYy0Ldi46HK48lkke6NIuKHjeeopXtTRPSOiKWAw4FLgY2AdzAzawMHLMzMzMzMzMxsQpkaGFi+v0DS6ZKeb7JNNRtjeAlAPEx2eM4L7FPWvybpIGBXMh9/VY+imj1xMtBP0g0T6mbMurpanZiFyDRplGLbBwEzArvXtn2TrFPxMVkDpk+93kyZoTEcOBaYDDiyfo7yfZX+aT6yrV4C7AtcCcwg6bIJeb9mNumJ8n/FzMzMzMzMzKzDRcQKwE3AXWRn6SfA2sAK5GyJT4AHgMsl/aN0ko6IiBnIAtufAiuUAsLVjIox0stERFR1Kpz6yXqqiPgW8CdgMWC9UuOlWvcksCCwaVWAPiL6A38AdgC2l3RBWT4D8G1JD5WfDweukPRcw/lmBFYHdgRWBO4FdpX07IS8TzObdHmGhZmZmZmZmZm1y7gU4CVrT1wArEt2ih4HXARsSo4AH0iOyL6+pJOp8ui/DRwKfItMaUNZ3jQXvutUmAFZoP5eYADw4xLAqOwF9CGLaH8LWlJDXQy8ABwaEWtHxPpkAfv/i4h1y3aHS3quVpg7Sns9HTgP+DYwSNJKDlaY2fhwwMLMzMzMzMzM2qQhbUy/iNg6IgaUdaP1NZQO0bOB/5C57bcla1EsACxLBixOAaYv6wfW9j2m7LdZ6UQd1yCJWY9U0j9dA/yNDBAuUVt3D5lKbVXgZ7Xl9wGnkvVfbibTOW0O/FHSzdV2ZRZTFTDsAywKrAMcI2kOSddOuDszs57CKaHMzMzMzMzMrF0iYhOy2PUUwF6Szmhlu77ATsAewM6S/laWV2mcZgWOAbYENpJ0Q0T0k/RlRGwIXE0W7l6ytRkWZj1NRGwP9APOkTSs1p4C2Jic2XQV8AtJ/yv7zA68CjxHpox6sSz/BrAMGYD4EDhN0gdlXahJB2JEzAJ8LGnoBL5VM+tBPMPCzMzMzMzMzNokIqaMiP2Ac8mR1sOATUvh3WazLIaRI7t3Bx6pzdCo0ji9AdxP9lOsVXb7qqy7lpyBsaODFWYpIuYHfkkWwp4Psj3Vggv3AP9HBi5WrLW518jg4AJkELHyuaQ7gYMkHSXpg4jo3VqwohzrTQcrzKyjOWBhZmZmZmZmZm21InAIMBQYRM6yWIFMI9O0zkTp3Bws6Yt6B2hETFa+fbf+WDpfe5fv95H0WGMgxGxSFxF9Gn7uBSDpeeC3wDeAXcoMiRaS3gIuAT4iU0PNU1v3K+ANspbFag37Da/OI2lEa8EKM7MJxS/0ZmZmZmZmZtZWQ8nO0GUk3UIGLP4LbBERy8GYsywq1UjvWsfrV2XVT8rjI9W2kkbU9/MMC+spau2jCiAsERH9Gza7BbiNrEexVNletbb3ZFm/CvDDhv2PJIMdU1f71Q/stmZmncUBCzMzMzMzMzNrE0l3A0dIerUsGkKmbZoX2LrUnxhZBSca9lU9+BAR80TECcAmwCWS/tzKOT3S23qMWvvYLCJeAO4E7gAOqG3zCnAp8CWwb0RMV+1bZki8B7wJ9Cbb10K1fc8BBki6ZuLckZnZuHHAwszMzMzMzMzarCrIW74fTnacPkqmiPrR1+zeLyLmjoj9gTPITtg7yFHfZj1OFNX35XEzMhD4PnA3sCBwXETUa0/cBVxJtrl1S4H7+gyJkcA/gOWAHSLim9WOkt6r6lRMyHszM2sLByzMzMzMzMzMbLyVwtknAdMC20TETA3paepOAp4FDgPmBnaQtK6kFyfeFZt1DRHRR0VE9C6P/YB9yeLZW0vaAFgXeBw4JiKWKjOV3iOLa/8L+DkZmCAi+kbEIGCPsv4S4O7GItmuU2FmXU34f5KZmZmZmZmZdYSImAq4AFgP2FfSaa1stzSwKdn5ellVq6J01o5oto/ZpC4idiNrUTwGvA78FNipFNCuttkaOA34K7CrpPdL4fodgBOBj8kZF1MCK5Lp2jZvDFSYmXVVDliYmZmZmZmZWYeJiBXIYsDPkh2lL0bEd4CFJV1R266vpGHlewcqrEcpNSaqOhULApcDCwPDgT7A52Rx+++U1E19JQ2LiBmAY4FtgM2A6ySNKKmetgFOAAKYHLgZ2F3SfxrPaWbWVTlgYWZmZmZmZmYdJiK+ARwB7A+cDDwHbAssDfxQ0m21bQNcUNt6poj4NtAX+AmwMXA2WZNiG+BnwAhgK0n3NOy3OnAu8F9gY0mvNxxzLuBDSY+WZQ5UmFm34YCFmZmZmZmZmY23kk9f5fuFyJQ10wH9yJHih0o6ufOu0KzriIilgAeBa4GVgF9J+mNZNxWwK/AbcjbF8ZI+qWYiRUR/4JfAIcB+wGmShtfbYO08nr1kZt2Ki26bmZmZmZmZ9UAR0bsjj1cLViwF7ATMQgYrTgdmqoIV1awKsx7uFeBWYEPgfeB8aCnA/REZyLiHnG2xOGSB7DJb4nPgGuARMqixYFk/xqhkByvMrLtxwMLMzMzMzMysB4nUMuo6IgZGxICImKJaPx7HXRa4DNgDGEzm399T0mcR0afZCHCz7qy97aUU0v4t8BEZ3Ju/WlUe/02miJoW+GlEzNiw/xPAVcDfgLfbcw1mZl2RAxZmZmZmZmZmPUQVMCgjteeJiKuAO8mR2veU3Ph9qm3bcuwSiPgC+DuwiaTVJT0XEb3KqPDhDlbYpKY2s2jyduz+CHAxMAWwRjleNYtiJHA3cDWwCbBCab8ja7OjzpC0dgl+mJlNElzDwszMzMzMzKwHiYhewAHAr4EPgaeBz4ClgP7AfpIuau+x68V9nT/fJnUlsPcbYHLgYElftnH/hYG/AP8BdpH0VL0dRcSqwIXA88Aekp5vcgy3MzObZHiGhZmZmZmZmVkPERF9gV2AfYDrgO2B9SRtBKwA9AZ2iojly/Zt6jeodbL2Kj+7E9UmdUsBBwFrtDVYUQwBTgGWBjaMiMkbZlH8g6xnsRowe7MDuJ2Z2aTEMyzMzMzMzMzMeoiImIEs7jsC2EvSq2X5GsDvgO+WdecC+0j60nUnzMacPVRb3ht4iCyMvaKk+9raZiJidjIoMS2wo6TBDevnBfpIGjJeN2Fm1g14hoWZmZmZmZnZJCQi+rS2TtLbwAmSNpD0akTMGBFXArcCXwJ7As8Ag4B1x/F8Ufu+T0RMNl43YNaFVH/fZdbDFA3rqlRMV5RFK5Vt2xrgex04CZgTGBQR05fjVzOVXpA0pNSDaVeRbzOz7sIBCzMzMzMzM7NJQK1zc3j5ef2IWC0iFm7oaL2vrP8u2dG6NnACsL2k04HTgemALSNiJklqlhqq1pFbFR1eBNgXWKetqaTMuqra3/fBwFMRsXH5OWqpmB4FPgYWiIh+7TzHrcANZMq21crykQ3bjfRsJzOb1PkNhJmZmZmZmVk3EhHLRsSA8n3L5/pa/YjNIuIV4GrgduAJ4PqImLm+HRmoWAE4Bjha0pNl+eTlcQlgo4Z9WtQ6cmePiJ2As4HjgYUAjwK3SUZErEQW1p4LODMilmH0PrX/la+1gL5lnza1AUkfkMHCi8l2a2bWIzlgYWZmZmZmZtZNRMRB5AyJnWD0ItclHdMhwAXAS8AvyZHaZwDLARdFxKJl+77A5sAHwNmShtZOMznwOFngd7+IGFg7fz3901QRsQFwKnAW0B9YTdLRLgJs3VFrM4Mk3QM8B/wLeAu4FFi/tv454Glg+vrydrhL0raS3nfqJzPrqRywMDMzMzMzM+s+bgReA95pMrtidmBX4GGyYPZvJd0FHAacCawO7BURAyQNI2tV9AWWhJb6Ez8Bfk0GIPYEjpP0Su08KtstCxwNXAKsDOwuaeFyPrNuqdSpaKnBEql3+fFaYGpy1tFI4ISIWLW2+2XlcZmImKw9qZtqs5Z6OfWTmfVUrRbiMjMzMzMzM7OupRTeXULSO01WbwnMAmwi6SmAiFgIWIcsog0wRNI7ZfT2jcBPgJMj4npgGjKo8Qxwh6SXG08QEXMDG5MzPAaSKWz2KwEQs26l1KFQ7eddge0j4khJNwL1OhWPAwPIwODG5EymSyNiXTLt2hCyePYCQD/gq/ZeR7MUbGZmPYVnWJiZmZmZmZl1IyXgsEpE3BcRawOUUeBzkIV/X46IaSJie+CPwHHA88C8kk4sxxBwM5k2aiCwN7A18CywWbNgRbEOObPiJWA+SXs6WGHdTZk50ashWDEDMA/wfeD0iJivIXDwPFmnYpCkJ4DdgaFkzYlVyTbxKpmGbYwaM2NTm1kxU0RMP563Z2bWrTlgYWZmZmZmZtb9zAEsCwyKiCnLKPCvgCnJVE5nkEWwZwLWk7SmpBcBImL6iOgr6XNJpwILAz8Clpe0vqRXGztaa/n0bwRWkbS6pH9PjBs162hKIyNigYg4pyx7W9L+ZE2WWYELI2LF2j5PkzUsFouI6SQ9AGwKzEC2txmBW8vmm5V9Wp0p0VAP5psRsRZwXjlv79b2MzOb1DlgYWZmZmZmZtb9XAz8heww3aAsuw4YDhxAFv7dX9Lckm6udoqIPsDVZK2LKhXNC5IGS3q8LOvd2NFajQCX9KqkeyfsrZlNeBFxNDmjaPuI2Lu26lAy1dn3gRMjYrnauj+V5dMClDazBzAZcA3wn7LdQhExTSvnjbKvIqJXRCxRznkpOVPjERetN7OezAELMzMzMzMzs26mBBCOAvoDW0fELMCTZBCjD3CIpJPr+0TEYmSn6OLAB7XjNB7bnaXWEwwojx8Bx0TElACSPgKOBX5PFqQ/NyJmLts+C3wGbFU7ztXAbuSsp2OBL4G5yYL2Y6ilf5ob2IsMPh5ApmibUdKRHXR/ZmbdkgMWZmZmZmZmZt2QpIeBs8hC2ZtIepdMA/URcHBE7F5y4s8bEXsAJwNrAacA13fOVZtNHPWUS03W9QLeAv5LFszuD5xQ7SfpTUkHA1cA85NpmhYF/gm8BiwZEVNBS3qpW8gaMFOQBbeXBGZr5dwDImIzsr7M74APge9L2lbSx+N522Zm3Z4DFmZmZmZmZmbd17HAu8AOEbGwpL+Q6Z76kLn4nwUeIUeLzw5sI+kQSZ901gWbTWglrdkYs4fKuigpz14lgwuXkkGInSJioZKqafKy+YFkXYnVgNOA3sCfgUXI+jAtJN0OHAbcDmwp6bEm556PDCqeC3wH2ELSsqWIt5mZAdHK/28zMzMzMzMz6wYiYl/gJHIGxc8ljYiIBYB1gIHAMOApSRfV9uk1toLAZt1dmUVxNHAXMLi0i5a/+4iYHxhCFpyflkzNdLekVcv6KMGL2YBDgJ2Be8iAw2XAmpLuKAWyqyLefSUNq11D1AMnEdGfnNVxZpnBYWZmDRywMDMzMzMzM+vGSifoA+SI7+1Kepr6+nonbR9JwzvhMs0mmohYiZzp0Ad4Ezhf0qEN23yXDEBcCuwL3AcsAwySdG09+FCCHzcBawMvAPMCl0jappXz926sBVO1vYjoL+nzDrxdM7NJilNCmZmZmZmZmXVjpfPzUGBGYOeImBZydHeV/qb2vYMVNklppVbFa2Sw4hNyhtGuEXFuRMxYbSDpGbL4/OxlFsRvy6rflfXDSrPpXQJ+BwAXkcEKgCUiYvZm19SscH3V9hysMDMbOwcszMzMzMzMzLo5STeRI8QXBerFgNX4vdmkoKRioqRt6ltb3kfSS8BxwLeA54ETge2ASyPie7XD/INsM0i6DrgKmCMiqnRNvargg6QhZI2Km8u6X0l6bQLdnplZj+WUUGZmZmZmZmaTgIiYUdJbnX0dZhNSk7oQxwPfAI6W9FaVAq0ENP4LTA8sD8wBnAF8COxU6k+cRAYy1pD0j4hYjEwT1R+YRdI7jemdSkHuLx0ANDObMDzDwszMzMzMzGwSUAUrIqJPZ1+LWUcr6Zl6VYGCiNg8Il4Hfg6MAEYClGBFnxJk2L/sfpikK4ANyRRRV0XEdsDfgCmBL8q+jwOnAb2B48u+jYGJL8usDrczM7MJwDMszMzMzMzMzMysW4iIRYCzgKWAO4FzgcGS3mll+4eAHwA7SjovIhYETgFWA+4CVgG2l3RB2X4AcDewILCipPsm7B2ZmVmdZ1iYmZmZmZmZmVmXFhF9IuJM4HFgWmBPYA9JV1bBiqoAd5mNUc2A2Ls8HljSpg0h00CdSAYrPgOq/XqVY51T9pluItyamZnVeIaFmZmZmZmZmZl1aRExPXAJsBbwS0nHNdlmGkkf1H6u6llcDGwFHC/p4Nr6nYF3gLskfVCvjxERfSUNm8C3ZWZmDRywMDMzMzMzMzOzLi8iVgBuIlM57Q58AqwNrEDOlvgEeAC4vBTR7i1pRETMALwJfAqsIOmpcrxekkY2OU9UdSokDZ8oN2dmZoADFmZmZmZmZmZm1smq4MLXbNMfOIYMVhwNzEimd/oEeA+Yuix7E9gIeKQ2Y+KXZZ8rJG0xgW7DzMzGkwMWZmZmZmZmZmbWKRrSMPUDNgH+KumdZjMgStHsm4BvA58DJwEnAyLrURwP7ELOwthN0su1fV8B5gB+LOnGcQmSmJnZxOWi22ZmZmZmZmZm1ilqwYpNgLeBC4CNy7ox0jUB/wZ+DzwPrC3pUEnvAx9K+pIspn0lsAawcDl2v7LvfuXxsBIMcbDCzKyLccDCzMzMzMzMzMw6RURMGRH7AecCfYBhwKYRMV9ZP1rfVSmEfR2ZFuqRiIiyXOXxDeB+ss9rrbLbV2XdtcApwI6tBEPMzKyTOWBhZmZmZmZmZmadZUXgEGAoMAg4hyyivTk0n2Uh6U1JgyV9oVqu84iYrHz7bv2xFNDuXb7fR9JjjYEQMzPrGvzP2czMzMzMzMzMOstQ4BJgGUm3kAGL/wJbRMRyMOYsi0o1u6JaL+mrsuon5fGRatt6+qdSN8MzLMzMuiAHLMzMzMzMzMzMrFNIuhs4QtKrZdEQMm3TvMDWEdFP0sgqONGwr+rBh4iYJyJOIAt3XyLpz62cU82Wm5lZ5wv/jzYzMzMzMzMzs64iImYFrgfmAnaWdE0JTIzRiRURkwOzAj8ma1asDtwC7CXpxYl20WZm1iE8w8LMzMzMzMzMzLqMUjj7JGBaYJuImKnMpmjWj3US8CxwGDA3sIOkdR2sMDPrnvp09gWYmZmZmZmZmZk1uIWcZbEeWYz7tFbqTlwCfAU8DlxW1aqIiN71uhVmZtY9OCWUmZmZmZmZmZl1ORGxAhm4eBbYXNKLEfEdYGFJV9S26ytpWPnegQozs27MMyzMzMzMzMzMzKwrehQ4E9gf2D0ingO2BZaOiPcl3QYgaVhVlNvBCjOz7s0zLMzMzMzMzMzMrMuoF9iOiIWAvwLTAf2AocChkk7uvCs0M7MJxTMszMzMzMzMzMys3To6DVMtWLEUsCUwS1l1OnCQpM/K+pbAhpmZTRocsDAzMzMzMzMzszYraZh61QpdDwQ+BT6T9Gl7AwrluMsAFwPfBgYDe0h6rqzvA4xwsMLMbNLTq7MvwMzMzMzMzMzMupcqGCFpRETMExFXAXcCjwD3RMTqlIGyVX2JcVUCEV8Afwc2kbS6pOcioldE9JI03MEKM7NJk2tYmJmZmZmZmZlZm0VEL+AA4NfAh8DTwGfAUkB/YD9JF7X32JJG1n7u0LRTZmbWNTkllJmZmZmZmZmZtUlE9AV2BPYBrgMuBQZLGh4RcwGPAztFxIuS7msMQHydattqPwcrzMx6BqeEMjMzMzMzMzOztpoGWIdM2/RrSbeVYMUawI3AlMAPgC0jop+kkW1NDQWjAhdmZtYzOGBhZmZmZmZmZmZjKMWtm5L0NnCCpA0kvRoRM0bElcCtwJfAnsAzwCBg3XE8X9S+7xMRk43XDZiZWbfjlFBmZmZmZmZmZtailoZpePl5feBT4B3gRUmflk3vK+u/C5wGLA6cAFwu6cmI+Ar4IznL4gFJ/2uWGqpWwFvl50WANYEXIuJGz7IwM+s5PMPCzMzMzMzMzKwHiohlI2JA+b6lj6hWP2KziHgFuBq4HXgCuD4iZq5vB6wNrAAcAxwt6cmyfPLyuASwUcM+LWqBitkjYifgbOB4YCGgzWmkzMys+3LAwszMzMzMzMysh4mIg8gZEjvB6EWuSzqmQ4ALgJeAXwKrAWcAywEXRcSiZfu+wObAB8DZkobWTjM5WXx7dmC/iBhYO389/dNUEbEBcCpwFtAfWE3S0S62bWbWszgllJmZmZmZmZlZz3MjsBvwTj1NUymOPSewK/AwsI+kpwAi4imyPsW+wF4RcZCkdyLiGWBuYEng1lL7Yj3g18D+wGTAV5JeqU4uSWW7H5ABj22AkcDuks6c8LdvZmZdkQMWZmZmZmZmZmY9jKQhEbGEpHearN4SmAXYpBasWAhYhyyiDTCkBCuCDH78BDg5Iq4HpgFWJ4tu3yHp5cYTRMTcwMbkDI+BwOnAfpKGddxdmplZd+OUUGZmZmZmZmZmPVAJOKwSEfdFxNoAEdEbmAP4GHg5IqaJiO3J4tnHAc8D80o6sRxDwM1k2qiBwN7A1sCzwGbNghXFOsDRZMqp+STt6WCFmZl5hoWZmZmZmZmZWc81B7AsMCgi7pf0cUR8BUwJ7AnMBWwCvAKsJ+nmaseImB74SNLnwKkR8VeyXsUHkh4v27Skmyo/Rwly3Ag8IeneiXKXZmbWLUS+RpiZmZmZmZmZWU9TUjrdBKwM7CrpkohYDbilbDIMOETSyQ379QHuAK6VdEotEFHfpreLZpuZWVs4JZSZmZmZmZmZWQ9VggxHAf2BrSNiFuBJ4C9kZo5mwYrFgEuBxYEPasdpPLaDFWZm1iYOWJiZmZmZmZmZ9WCSHgbOIgtlbyLpXeBs4CPg4IjYPSJmioh5I2IP4GRgLeAU4PrOuWozM5sUOSWUmZmZmZmZmVkPFxGzAY8BbwNbSHoqIjYDTgemAT4EAvgm8Bqwj6QbO+lyzcxsEuWAhZmZmZmZmZmZERH7AieRMyh+LmlERCwArAMMJOtZPCXpoto+oxXVNjMzGx8OWJiZmZmZmZmZGRHRH3gAmAnYTtItDetbghMR0UfS8E64TDMzm4S5hoWZmZmZmZmZmSHpc+BQYEZg54iYFiAKSSNr3ztYYWZmHc4zLMzMzMzMzMzMrEVE/A2YA1hF0sudfT1mZtZzOGBhZmZmZmZmZmYtImJGSW919nWYmVnP44CFmZmZmZmZmZmNwXUqzMxsYnPAwszMzMzMzMzMzMzMOp2LbpuZmZmZmZmZmZmZWadzwMLMzMzMzMzMzMzMzDqdAxZmZmZmZmZmZmZmZtbpHLAwMzMzMzMzMzMzM7NO54CFmZmZmZmZmZmZmZl1OgcszMzMzMzMzMzMzMys0zlgYWZmZmZmZmZmZmZmnc4BCzMzMzMzMzMzMzMz63QOWJiZmZmZmZmZmZmZWadzwMLMzMzMzMzMzMzMzDqdAxZmZmZmZmZmZmZmZtbpHLAwMzMzMzMzMzMzM7NO54CFmZmZmZmZmZmZmZl1OgcszMzMzMzMzMzMzMys0zlgYWZmZmZmZmZmZmZmnc4BCzMzMzMzMzMzMzMz63QOWJiZmZmZmZmZmZmZWadzwMLMzMzMzMzMzMzMzDqdAxZmZmZmZmZmZmZmZtbpHLAwMzMzMzMzMzMzM7NO54CFmZmZmZmZmZmZmZl1OgcszMzMzMzMzMzMzMys0/0/ZNsSeIWht3cAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -391,11 +397,11 @@ "text": [ " Turbine | Rotor Diameter (m) | Hub Height (m) | Air Density (ρ)\n", "---------------------------------------------------------------------------------\n", + " iea_15MW_floating | 242.24 | 150.0 | 1.225\n", + " iea_10MW | 198.00 | 119.0 | 1.225\n", " iea_15MW | 242.24 | 150.0 | 1.225\n", " iea_15MW_multi_dim_cp_ct | 242.24 | 150.0 | 1.225\n", " nrel_5MW | 126.00 | 90.0 | 1.225\n", - " iea_10MW | 198.00 | 119.0 | 1.225\n", - " iea_15MW_floating | 242.24 | 150.0 | 1.225\n", " x_20MW | 252.00 | 165.0 | 1.225\n" ] } @@ -408,7 +414,7 @@ " print(f\"{name:>25}\", end=\" | \")\n", " print(f\"{t.turbine.rotor_diameter:>18,.2f}\", end=\" | \")\n", " print(f\"{t.turbine.hub_height:>14,.1f}\", end=\" | \")\n", - " print(f\"{t.turbine.ref_density_cp_ct:>15,.3f}\")" + " print(f\"{t.turbine.ref_air_density:>15,.3f}\")" ] } ], diff --git a/floris/tools/convert_turbine_v3_to_v4.py b/floris/tools/convert_turbine_v3_to_v4.py index 21067ac93..97a3ae5ed 100644 --- a/floris/tools/convert_turbine_v3_to_v4.py +++ b/floris/tools/convert_turbine_v3_to_v4.py @@ -24,62 +24,62 @@ """ import sys -from ipaddress import v4_int_to_packed from pathlib import Path from floris.tools import build_turbine_dict, check_smooth_power_curve from floris.utilities import load_yaml -if len(sys.argv) != 2: - raise Exception("Usage: python convert_turbine_yaml_v3_to_v4.py .yaml") - -input_yaml = sys.argv[1] - -# Handling the path and new filename -input_path = Path(input_yaml) -split_input = input_path.parts -[filename_v3, extension] = split_input[-1].split(".") -filename_v4 = filename_v3 + "_v4" -split_output = list(split_input[:-1]) + [filename_v4+"."+extension] -output_path = Path(*split_output) - -# Load existing v3 model -v3_turbine_dict = load_yaml(input_yaml) - -# Split into components expected by build_turbine_dict -power_thrust_table = v3_turbine_dict["power_thrust_table"] -power_thrust_table["power_coefficient"] = power_thrust_table["power"] -power_thrust_table["thrust_coefficient"] = power_thrust_table["thrust"] -power_thrust_table.pop("power") -power_thrust_table.pop("thrust") - -valid_properties = [ - "generator_efficiency", - "hub_height", - "pP", - "pT", - "rotor_diameter", - "TSR", - "ref_air_density", - "ref_tilt" -] - -turbine_properties = {k:v for k,v in v3_turbine_dict.items() if k in valid_properties} -turbine_properties["ref_air_density"] = v3_turbine_dict["ref_density_cp_ct"] -if "ref_tilt_cp_ct" in v3_turbine_dict: - turbine_properties["ref_tilt"] = v3_turbine_dict["ref_tilt_cp_ct"] - -# Convert to v4 and print new yaml -v4_turbine_dict = build_turbine_dict( - power_thrust_table, - v3_turbine_dict["turbine_type"], - output_path, - **turbine_properties -) - -if not check_smooth_power_curve(v4_turbine_dict["power_thrust_table"]["power"], tolerance=0.001): - print( - "Non-smoothness detected in output power curve. ", - "Check above-rated power in generated v4 yaml file." +if __name__ == "__main__": + if len(sys.argv) != 2: + raise Exception("Usage: python convert_turbine_yaml_v3_to_v4.py .yaml") + + input_yaml = sys.argv[1] + + # Handling the path and new filename + input_path = Path(input_yaml) + split_input = input_path.parts + [filename_v3, extension] = split_input[-1].split(".") + filename_v4 = filename_v3 + "_v4" + split_output = list(split_input[:-1]) + [filename_v4+"."+extension] + output_path = Path(*split_output) + + # Load existing v3 model + v3_turbine_dict = load_yaml(input_yaml) + + # Split into components expected by build_turbine_dict + power_thrust_table = v3_turbine_dict["power_thrust_table"] + power_thrust_table["power_coefficient"] = power_thrust_table["power"] + power_thrust_table["thrust_coefficient"] = power_thrust_table["thrust"] + power_thrust_table.pop("power") + power_thrust_table.pop("thrust") + + valid_properties = [ + "generator_efficiency", + "hub_height", + "pP", + "pT", + "rotor_diameter", + "TSR", + "ref_air_density", + "ref_tilt" + ] + + turbine_properties = {k:v for k,v in v3_turbine_dict.items() if k in valid_properties} + turbine_properties["ref_air_density"] = v3_turbine_dict["ref_density_cp_ct"] + if "ref_tilt_cp_ct" in v3_turbine_dict: + turbine_properties["ref_tilt"] = v3_turbine_dict["ref_tilt_cp_ct"] + + # Convert to v4 and print new yaml + v4_turbine_dict = build_turbine_dict( + power_thrust_table, + v3_turbine_dict["turbine_type"], + output_path, + **turbine_properties ) + + if not check_smooth_power_curve(v4_turbine_dict["power_thrust_table"]["power"], tolerance=0.001): + print( + "Non-smoothness detected in output power curve. ", + "Check above-rated power in generated v4 yaml file." + ) diff --git a/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml b/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml index 58b2b3a1f..efac909cb 100644 --- a/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml +++ b/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml @@ -5,8 +5,8 @@ pP: 1.88 pT: 1.88 rotor_diameter: 242.24 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 6.0 +ref_air_density: 1.225 +ref_tilt: 6.0 multi_dimensional_cp_ct: True power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' floating_tilt_table: diff --git a/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml b/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml index d01e52633..139bd45e0 100644 --- a/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml +++ b/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml @@ -5,7 +5,7 @@ pP: 1.88 pT: 1.88 rotor_diameter: 242.24 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 6.0 +ref_air_density: 1.225 +ref_tilt: 6.0 multi_dimensional_cp_ct: True power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' diff --git a/floris/turbine_library/turbine_previewer.py b/floris/turbine_library/turbine_previewer.py index 727782e34..2c624a559 100644 --- a/floris/turbine_library/turbine_previewer.py +++ b/floris/turbine_library/turbine_previewer.py @@ -112,7 +112,7 @@ def from_turbine_dict(cls, config_dict: dict): return cls(turbine=TurbineMultiDimensional.from_dict(config_dict)) return cls(turbine=Turbine.from_dict(config_dict)) - def power_curve( + def power_curve( self, wind_speeds: NDArrayFloat = DEFAULT_WIND_SPEEDS, ) -> tuple[NDArrayFloat, NDArrayFloat] | tuple[NDArrayFloat, dict[tuple, NDArrayFloat]]: @@ -128,7 +128,7 @@ def power_curve( Returns the wind speed array and the power array, or the wind speed array and a dictionary of the multidimensional parameters and their associated power arrays. """ - shape = (1, wind_speeds.size, 1) + shape = (wind_speeds.size, 1) if self.turbine.multi_dimensional_cp_ct: power_interps = { k: multidim_power_down_select( @@ -168,8 +168,8 @@ def Ct_curve( tuple[NDArrayFloat, NDArrayFloat] Returns the wind speed array and the thrust coefficient array. """ - shape = (1, wind_speeds.size, 1) - shape_single = (1, 1, 1) + shape = (wind_speeds.size, 1) + shape_single = (1, 1) if self.turbine.multi_dimensional_cp_ct: fCt_interps = { k: multidim_Ct_down_select( diff --git a/floris/turbine_library/x_20MW.yaml b/floris/turbine_library/x_20MW.yaml index 79dcf0476..9d515db89 100644 --- a/floris/turbine_library/x_20MW.yaml +++ b/floris/turbine_library/x_20MW.yaml @@ -5,8 +5,8 @@ pP: 1.88 pT: 1.88 rotor_diameter: 252.0 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 5.0 +ref_air_density: 1.225 +ref_tilt: 5.0 power_thrust_table: power: - 0.000000 @@ -64,7 +64,7 @@ power_thrust_table: - 0.033935 - 0.000000 - 0.000000 - thrust: + thrust_coefficient: - 0.000000 - 0.000000 - 0.770100 From 8e6fb6b54c1a7824d801499cf90037dd4bb59fb4 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Wed, 10 Jan 2024 16:53:05 -0500 Subject: [PATCH 27/78] Add an interface option for turbine operation model definitions (#770) * add power to 5MW model, matches https://github.com/NREL/floris/blob/main/floris/turbine_library/nrel_5MW.yaml with extension for before cut in and after cut out. Rename thrust field. * Removing Cp interp and replacing with direct power interp; updating thrust_coefficient key name. * Convert to W for power_interp; remove ref air density from power calc (tests need updating yet). * Minor updates for plot axes---contains temporary limitation to NREL 5MW turbine only, will remove prior to merge into v4 branch. * Updating 15mw based on https://github.com/IEAWindTask37/IEA-15-240-RWT/blob/master/Documentation/IEA-15-240-RWT_tabular.xlsx * 10mw updated. * Updating turbine curve conversion utility and example. * Utility for converting from v3 turbine models to v4. * Ruff and isort. * Changing names to check out v3 versions. * Renaming again... * Converting old models over. * So that tests run, using v4 5MW. * Updates to test_build_turbine_dict. * Updating conftest, test_power() to reflect absolute power in turbine yaml. * air density removed from power() calls in reg tests. * Reinstating accidentally overwritten file. * Convert from `ref_density_cp_ct` to `ref_air_density`. * `ref_tilt` replaces `ref_tilt_cp_ct` * Ruff, isort; remove AIR_DENSITY from turbine_unit_test.test_power(). * Clearing empty lines. * Check for smoothness; not yet passing `smooth enough` test. * Tests passing for smoothness. * Converter prints warning if nonsmooth; added handling for no R4. * Update build_turbine_dict test for clarity and simplicity. Ruff, isort. * Bugfixes in example after semantic changes to build_turbine_dict. * Moving turbine into its own simulation directory; updating names of interp functions. * SimpleTurbine power module. * Turbine submodule pieces. * Added thrust coefficient to SimpleTurbine. * Adding extra arguments to Ct(), power(), and axial_induction(). * Updating turbine_unit_test for new layout. * Add handling for different model types. * cosine loss model option, but currently matches simple. * Moving velocities to own file (may need renaming). * Temp; runs, still todo items for power(). * Now passing all the way through the power calculation. * Updating thrust model to match power. * Update imports in tests. * Passing arguments as kwargs. * cosine loss model; move various turbine parameters inside power_thrust_table; call power() and thrust_coefficient() with kwargs. * Update tests calling power; turbine model structure. * emg reg tests failing.' * Jensen reg passes. * TB reg tests pass. * CC, gauss reg tests good. * Fix bug in how tilt_angles are passed through. * Turbine building utilities updated. * removing unnecessary attributes from Farm class.' * Updated axial_induction() keywords for consistency. * Note to return to axial_induction() model. * rename rotor_effective_velocity.py * Move rotor velocity tests to individual module. * tests for air density correction. * add base class for turbine models; add tests. * init test passes. * test_power, test_Ct now passing. * axial_induction passes. * Remove ref_tilt argument from Ct() * isort, ruff. * Remove multidim utilities and their imports. * working through example 30 to go through full multidim example. * example 30 now runs. Can likely remove commented out code, but will leave for the time being and clean up later. * 31 now runs. * isort. * End of file. * Moving multidim functionality onto turbine.py * Remove turbine_multi_dim.py * Missed a reference... * ruff, isort. * removing unneeded TODOs. * moving turbine utilities. * Move multidim selector to utilities, model map to top of turbine.py * Rename power_interp power_function throughout. * comments for turbine.py * Adding descriptions for the turbine submodels. * fix end of file. * Disclaimers and copyrights. * removing sorting of uneeded properties from full_flow solvers. * Inherit from correct base class. * Turbine library updates for examples 17 and 18. * Example 24. * ex. 33. * ruff. * Return nrel_5MW.yaml to converted (rather than updated) version. * Remove unused code * Remove extra lines at end of file * Move rotor velocity module up to floris.simulation * Consolidate turbine models into one module * Move turbine preprocessing to floris.turbine_library * Fix line length linting and isort errors * Update API for turbine previewer * Prevent test file from being exported * Bug fix in example * Remove duplicate code * Rename Farm setup function to reflect the data * Move axial_induction functionality to submodels; propagate changes. * add axial induction model tests. * Rename Ct functions throughout. * Update fi method call. * Line length. * Missed the constructors. * Rename to . * Remove unused library in dependencies This was previously used for the multidimension turbine, but it has since been consolidated and flatten_dict isn't used * Remove unused import * Fix incorrect type hints --------- Co-authored-by: Rafael M Mudafort --- docs/turbine_interaction.ipynb | 72 +- examples/18_check_turbine.py | 9 +- examples/24_floating_turbine_models.py | 8 +- examples/30_multi_dimensional_cp_ct.py | 6 +- examples/31_multi_dimensional_cp_ct_2Hs.py | 4 +- examples/33_specify_turbine_power_curve.py | 8 +- .../turbine_files/nrel_5MW_fixed.yaml | 106 +-- .../turbine_files/nrel_5MW_floating.yaml | 106 +-- .../nrel_5MW_floating_defined_floating.yaml | 106 +-- .../nrel_5MW_floating_fixedtilt15.yaml | 106 +-- .../nrel_5MW_floating_fixedtilt5.yaml | 106 +-- floris/simulation/__init__.py | 16 +- floris/simulation/farm.py | 139 +--- floris/simulation/floris.py | 25 +- floris/simulation/rotor_velocity.py | 244 +++++++ floris/simulation/solver.py | 433 +++-------- floris/simulation/turbine.py | 684 ------------------ floris/simulation/turbine/__init__.py | 18 + floris/simulation/turbine/operation_models.py | 317 ++++++++ floris/simulation/turbine/turbine.py | 624 ++++++++++++++++ floris/simulation/turbine_multi_dim.py | 498 ------------- floris/tools/__init__.py | 1 - floris/tools/convert_turbine_v3_to_v4.py | 9 +- floris/tools/floris_interface.py | 101 +-- floris/tools/uncertainty_interface.py | 4 +- floris/turbine_library/__init__.py | 4 + floris/turbine_library/iea_10MW.yaml | 345 ++++----- floris/turbine_library/iea_10MW_v3legacy.yaml | 178 +++++ .../turbine_library/iea_10MW_v4converted.yaml | 9 +- .../turbine_library/iea_10MW_v4updated.yaml | 8 +- floris/turbine_library/iea_15MW.yaml | 333 ++++----- .../iea_15MW_floating_multi_dim_cp_ct.yaml | 11 +- ...5MW_floating_multi_dim_cp_ct_v3legacy.yaml | 29 + .../iea_15MW_multi_dim_cp_ct.yaml | 11 +- floris/turbine_library/iea_15MW_v3legacy.yaml | 172 +++++ .../turbine_library/iea_15MW_v4converted.yaml | 9 +- .../turbine_library/iea_15MW_v4updated.yaml | 8 +- floris/turbine_library/nrel_5MW.yaml | 264 +++---- .../turbine_library/nrel_5MW_v4converted.yaml | 9 +- .../turbine_library/nrel_5MW_v4updated.yaml | 28 +- floris/turbine_library/turbine_previewer.py | 129 ++-- .../turbine_utilities.py | 15 +- setup.py | 1 - tests/conftest.py | 15 +- .../cumulative_curl_regression_test.py | 122 ++-- .../empirical_gauss_regression_test.py | 157 ++-- .../floris_interface_regression_test.py | 34 +- tests/reg_tests/gauss_regression_test.py | 174 ++--- .../jensen_jimenez_regression_test.py | 87 +-- tests/reg_tests/none_regression_test.py | 44 +- tests/reg_tests/turbopark_regression_test.py | 70 +- tests/rotor_velocity_unit_test.py | 198 +++++ tests/turbine_multi_dim_unit_test.py | 232 +++--- tests/turbine_operation_models_test.py | 215 ++++++ tests/turbine_unit_test.py | 348 +++------ tests/turbine_utilities_unit_test.py | 22 +- 56 files changed, 3566 insertions(+), 3465 deletions(-) create mode 100644 floris/simulation/rotor_velocity.py delete mode 100644 floris/simulation/turbine.py create mode 100644 floris/simulation/turbine/__init__.py create mode 100644 floris/simulation/turbine/operation_models.py create mode 100644 floris/simulation/turbine/turbine.py delete mode 100644 floris/simulation/turbine_multi_dim.py create mode 100644 floris/turbine_library/iea_10MW_v3legacy.yaml create mode 100644 floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml create mode 100644 floris/turbine_library/iea_15MW_v3legacy.yaml rename floris/{tools => turbine_library}/turbine_utilities.py (97%) create mode 100644 tests/rotor_velocity_unit_test.py create mode 100644 tests/turbine_operation_models_test.py diff --git a/docs/turbine_interaction.ipynb b/docs/turbine_interaction.ipynb index 13c5e9d97..bf02cb008 100644 --- a/docs/turbine_interaction.ipynb +++ b/docs/turbine_interaction.ipynb @@ -251,10 +251,10 @@ "output_type": "stream", "text": [ "iea_15MW_floating\n", - "iea_10MW\n", - "iea_15MW\n", "iea_15MW_multi_dim_cp_ct\n", - "nrel_5MW\n" + "iea_15MW\n", + "nrel_5MW\n", + "iea_10MW\n" ] } ], @@ -264,9 +264,9 @@ "\n", "# Load the internal library, except the 20 MW turbine\n", "tl.load_internal_library(exclude=[\n", - " \"iea_10MW.yaml\",\n", - " \"iea_15MW.yaml\",\n", - " \"nrel_5MW.yaml\",\n", + " \"iea_10MW_v3legacy.yaml\",\n", + " \"iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml\",\n", + " \"iea_15MW_v3legacy.yaml\",\n", " \"nrel_5MW_v3legacy.yaml\",\n", " \"x_20MW.yaml\",\n", "])\n", @@ -296,24 +296,13 @@ "metadata": { "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "iea_15MW_floating\n", - "iea_10MW\n", - "iea_15MW\n", - "iea_15MW_multi_dim_cp_ct\n", - "nrel_5MW\n", - "x_20MW\n" - ] - } - ], + "outputs": [], "source": [ - "tl.load_internal_library(which=[\"x_20MW.yaml\"])\n", - "for turbine in tl.turbine_map:\n", - " print(turbine)" + "# tl.load_internal_library(which=[\"x_20MW.yaml\"])\n", + "# for turbine in tl.turbine_map:\n", + "# print(turbine)\n", + "\n", + "# TODO Removed until 20MW turbine is updated to v4" ] }, { @@ -344,7 +333,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXxU1f3/8dfJvkCAsAjBYFhTF6CBsoMEXFjc0FqVsoOK+sNvEVA2vyoK2IogYEVpLYnVVqSIVItVKzKACIr0i4ioIFsAWcOakIVkzu+PSYZM9oRJJgnv5+Mxj5k599xzzs0dQu79zDkfY61FRERERERERERERETEl/x8PQAREREREREREREREREFLERERERERERERERExOcUsBAREREREREREREREZ9TwEJERERERERERERERHxOAQsREREREREREREREfE5BSxERERERERERERERMTnFLAQERERERERERERERGfU8BCRERERERERERERER8TgELERERERERERERERHxOQUsRERERERERERERETE5xSwEBERERERERERERERn1PAQkREREREREREREREfE4BCxERERERERERERER8TkFLERERERERERERERExOcUsBAREREREREREREREZ9TwEJERERERERERERERHxOAQsREREREREREREREfE5BSxERERERERERERERMTnFLAQERERERERERERERGfU8BCRERERERERERERER8rkYGLIwxTY0x440xnxhjkowxmcaYI8aYd40xXYrYJ8IYM88Ys98Yk2GM2WeMmWOMqVWO/vsZY9YaY84ZY84aY9YYY2649CMTERERERFfMcaE5FwzrDPG/GyMSc+5zthgjBlljAksZJ8yXWcYY/yMMY8aY741xqQZY44bY942xrSo+CMUEREREfEtY6319Ri8zhjze2AysBtwAMeB1sAgwAC/tda+k6d+OPA58EvgE+D/gDjgZmAzcL21Nr2UfQ8F3szpM7ePe4EGwD3W2uWXdHAiIiIiIuITxpgGwAHgK2Anrr/56wEDgKtwXUsMsNY6c+qX+TrDGPNn4H7gO2AVEAXcA6QAXa21uyr0IEVEREREfKimBizuApKttWvzlfcCVuP6Y7+JtTYjp3wG8BTwB2vtlDz1cwMf06y1z5ei33rAHiALiLPWHswpvxLXxQlAC2vtuUs8RBERERERqWTGGD8gwFqbma88APgPEA/caq1dlVNepusMY0wf4DNgHXBTbj/GmAHAh8An1tp+FXeEIiIiIiK+VSOXhLLWrsgfrMgpXw+swfUtqLYAxhiD6xtMKcBz+XZ5Lqf8/lJ2/RugLvBybrAip9+DwB9xzbK4syzHIiIiIiIiVYO11pk/WJFTngW8l/O2FZT7OuOBnOf/zduPtfbfuGaO32yMaXaJhyEiIiIiUmUF+HoAPnAh5zkr57k1rmnWH1trU/NWtNamGmM2AP2MMdHW2gMltB2f8/xJIds+Bp4BegN/Le1gc2ZnFCcI+AVwDNeU9OzSti0iIiIilzV/oGHO629zZx9L2eXMvOif83Z7znN5rjPigVRgQyHdfJyzvTeuJWhLOzZdT4iIiIhIRaiQ64nLKmCR822kG4HDwLc5xa1znotaC3YX0C+nXkkBi+La2pWvTmmV1KeIiIiIyKXqBHzt60FUF8aYIGAarvx49YEbcN30T7DWrs6pVqbrjJx8F02A7dbawoIGup4QERERkarKa9cTl03AwhgTiOubSMHA5DwXAXVyns8UsevZfPWKU1xbZWlHRERERESqriDg6TzvLfAiMDVPWVmvM7x5XSIiIiIiUi1dFgGLnCnaicD1wJ+ttaWeQl0FRJewvSmwCeA///kPV111VcWPSC5ZRkYGX375JQBdunQhODjYxyOSkuicVU86b9WTzlv1o3NWPe3fv5+bbrop9+1xX46lurHWpuBKU+GHa9mn24DZQDdjzEBr7dliG6hcpb6eWLduHY0bN674EYmIiIhItXfkyBGuv/763Ldeu56o8QGLnIuIJcBvgbeAh/JVyf0GU1HfVIrIV684edtKvoR23PIm7y6MK5efy1VXXUXr1mWdIS6+kJaWxu7duwFo2bIloaGhPh6RlETnrHrSeauedN6qH52zGkF5C8rBWusEDgKvGmNOAMuA6cBkyn6d4c3rkrxjLPX1RPPmzbnyypJSXoiIiIiIkP+6z2vXE37eaqgqyglWJAAjgLeBkTkXFXmVtBZsSWvPlratsrQjIiIiIiLVyyc5z/E5z2W6zshJzH0YaG6M8S+pvoiIiIhITVRjAxZ5ghXDgXeAYcUkr/sZ6JGT6C5vG+FAD2CvtbY0yerW5jzfXMi2fvnqiIiIiIhIzRGV83wh57k81xlrgdxt+eVeT6zz2ohFRERERKqYGhmwyLMM1HDgH8DQIoIVWGst8DpQC/jffJv/N6f8z/naDzPG/MIY0yxf/WW4pmg/aoy5Mk/9K4FxwAngvfIel4iIiIiI+I4x5hpjTFgh5WHAvJy3H0L5rjOAP+U8P2eMCcrT/gBcMzc+sdbuv8TDEBERERGpsmpqDouncC0DlQLsBJ7MuzZrjpXW2q05r18A7gAmG2PigP8CHXDNlNgMzM+3b2dgDa5vQMXnFlprTxljxgFvAv81xryTs+leoD5wr7X23KUfXtlYazlx4gSpqalcuHCh5B2kwjmdTurXrw9AUlISfn41MnZYo3j7nAUGBhIeHk6DBg0o5PeTiIiIVE33ABOMMZ8D+4CzuJJWD8D19/564KU89ct0nWGtXWOMeR24H9f1xCqgCa7riZPAoxV1YCIiIiIiVUFNDVjE5DzXwpX0rjD7gK3gWi/WGNMbeAb4NdAH1/qxc4EZ1tq00nZsrX0rJ+HeNGAUYIEtwExr7adlPI5LZq3l6NGjnDp1qrK7lmJYa92JabKzs3E686dWkarG2+csKyuLtLQ0srOzueKKKxS0EBERqR7+hWvpp+5AN1zXG2eAbcBSYIm1Niu3cjmvM8YC3wIPAr/D9SWs94Dp1trdFXNYIiIiIiJVQ40MWFhrRwIjy7jPGeCxnEdJdR1AkXcXrbUfAR+Vpf+KcuLECY9ghb+/v26MVhG55yEgoEb+M6yRvHXOrLVkZ7tWqTt16hT+/v40bNjwkscnIiIiFcta+zXwdRn3KfV1Rk59J7Aw5yEiIiIiclnRndIaLjU11f26SZMm1K1b13eDETen08nZs2cBiIiI0JJQ1YC3z9np06c5fPgw4Pp3qoCFiIiIiIiIiIhc7nSXtIbLzVnh7++vYIVIFVK3bl38/f0B1/JQIiIiIiIiIiIilzsFLC4TWgZKpOrJ/XdprfXxSERERERERERERHxPAQsREREREREREREREfE5BSykSoqPj2f8+PG+Hka1tHLlSlq1aoW/vz/jx48nMTGx0pYDi4mJYf78+ZXSV2kkJyfTqFEj9u3bV+l9d+3alXfffbfS+xUREREREREREamuFLCQKmnFihU899xzldbfunXruO2224iKisIYw8qVKwvUGTlyJMYYj0f//v096uSWb9q0yaM8IyOD+vXrY4zB4XAAcNNNN/HYY4951HvttdcwxpCYmFig7169epXqWMaOHcvdd9/NgQMHKuxnWFQQZPPmzTz44IMV0md5zJo1izvuuIOYmBgAvvnmGwYPHkx0dDShoaFcffXVLFiwoMztlubz8uSTTzJlyhScTuclHoWIiIiIiIiIiMjlQQELqZIiIyOpXbt2pfWXmppK+/bteeWVV4qt179/fw4fPux+vP322wXqREdHk5CQ4FH23nvvUatWLY+ynj17smHDBo+yNWvWEB0d7Q5q5HI4HPTt27fE40hJSeHYsWP069ePqKioSv0ZAjRs2JCwsLBK7bMo58+f5y9/+Qtjxoxxl23ZsoVGjRrx1ltv8d133zF9+nSmTp3KH//4xzK1XZrPy4ABAzh37hz//ve/y30MIiIiIiIiIiIilxMFLKRKyr8kVEZGBpMmTaJp06aEh4fTpUsXj5v6ycnJDB48mKZNmxIWFkbbtm0LDSYUZcCAAcycOZM777yz2HrBwcE0btzY/ahXr16BOiNGjGDp0qWkpaW5y5YsWcKIESM86vXq1Ytdu3Zx5MgRd9natWuZMmWKx7Ht3buX/fv306dPn2LH5nA43AGKvn37eszmyO/VV1+lZcuWBAUFERsby5tvvumxfd68ebRt25bw8HCio6N55JFHSElJcfczatQozpw5455R8swzzwAFl4QyxvD6669z5513EhYWRuvWrXn//fc9+nr//fdp3bo1ISEh9OnThzfeeANjDKdPny72eEvy4YcfEhwcTNeuXd1lo0ePZsGCBfTu3ZsWLVowdOhQRo0axYoVK8rUdmk+L/7+/gwcOJClS5eW+xhEREREREREREQuJwpYSLUwbtw4Nm7cyNKlS9m2bRu/+c1v6N+/P7t27QIgPT2djh07smrVKrZv386DDz7IsGHD+Oqrr7w6DofDQaNGjYiNjeXhhx8mOTm5QJ2OHTsSExPjzl+QlJTEunXrGDZsmEe9Ll26EBgYyJo1awDYsWMHaWlpjBkzhuTkZPbu3Qu4Zl2EhITQrVu3YsfWvXt3fvzxRwDeffddDh8+TPfu3QvUe++99/jd737HxIkT2b59O2PHjmXUqFHucQD4+fmxcOFCvvvuO9544w0+++wznnjiCXc/8+fPJyIiwj3TZNKkSUWOa8aMGdxzzz1s27aNgQMHMmTIEE6ePAm4gjF33303gwYN4ptvvmHs2LFMnz692OMsrfXr19OxY8cS6505c4bIyEiv9Jlf586dWb9+fYW0LSIiIiIiIiIiUtME+HoA4juvr9/D6+v3lljvuqYRvD6ik0fZ/W9sZvuhsyXue3+v5tzfq0W5xwiuG/4JCQkkJSURFRUFwKRJk/joo49ISEhg9uzZNG3a1OOm+aOPPsrHH3/MsmXL6Ny58yX1n6t///7cddddNG/enN27dzNt2jQGDBjAxo0b8ff396g7evRolixZwtChQ0lMTGTgwIE0bNjQo054eDgdOnRg7dq1DBkyBIfDQc+ePQkODqZ79+44HA6aN2+Ow+GgW7duBAcHFzu+oKAgGjVqBLiW1GrcuHGh9V588UVGjhzJI488AsCECRPYtGkTL774onsWR97ZLTExMcycOZOHHnqIRYsWERQURJ06dTDGFNlHXiNHjmTw4MEAzJ49m4ULF/LVV1/Rv39/Fi9eTGxsLHPmzAEgNjaW7du3M2vWrBLbLcn+/fvdn5eifPHFF7zzzjusWrXqkvsrTFRUFAcOHMDpdOLnp/iwiIiIiIiIiIhIcRSwuIydS8/iyNn0Eus1qRtSoCw5NbNU+55LzyrX2PL69ttvyc7Opk2bNh7luYmsAbKzs5k9ezbLli3j0KFDZGZmkpGR4dV8Cvfdd5/7ddu2bWnXrh0tW7bE4XBwww03eNQdOnQoU6ZMYc+ePSQmJrJw4cJC2+zZsycffPAB4Jq9ER8fD0Dv3r3dSy85HA4eeOABrx3H999/XyAxdo8ePTyST3/66ac8//zz/PDDD5w9e5asrCzS09M5f/58mX+m7dq1c78ODw8nIiKCY8eOAfDjjz/SqZNnMKykANNDDz3EW2+95X6fu1RVfmlpaYSEFPzs5tq+fTt33HEHTz/9NDfffHOJx1EeoaGhOJ1OMjIyCA0NrZA+REREREREREREagoFLC5jtUMCaBxR9A3dXPXDgwotK82+tUMu/SOWkpKCv78/W7ZsKTCTITeR9Zw5c1iwYAHz5893514YP348mZmZl9x/UVq0aEGDBg346aefCgQs6tevz6233sqYMWNIT093J2DOr1evXsydO5dDhw7hcDjcs0R69+7N4sWL2b17NwcOHChVwm1v2bdvH7feeisPP/wws2bNIjIyks8//5wxY8aQmZlZ5oBFYGCgx3tjDE6ns9zje/bZZ4tdgipXgwYNOHXqVKHbduzYwQ033MCDDz7Ik08+We6xlOTkyZOEh4crWCEiIiIiIiIiIlIKClhcxu7v1aLcyzXlXyKqIsXFxZGdnc2xY8fo1atXoXU2bNjAHXfcwdChQwFwOp3s3LmTa665psLGdfDgQZKTk2nSpEmh20ePHs3AgQOZPHlygUBLrs6dOxMUFMSiRYvceTgAOnXqxPHjx1myZAnh4eFeW9YK4Oqrr2bDhg0eScA3bNjg/llt2bIFp9PJ3Llz3csYLVu2zKONoKAgsrOzL3kssbGxfPjhhx5lmzdvLnafRo0auZe+Kk5cXJzHTIxc3333HX379mXEiBFeWXqqONu3bycuLq5C+xAREREREREREakpFLCQKq9NmzYMGTKE4cOHM3fuXOLi4jh+/DirV6+mXbt23HLLLbRu3Zrly5fzxRdfUK9ePebNm8fRo0dLHbBISUnhp59+cr/fu3cvW7duJTIykmbNmpGSksKMGTP49a9/TePGjdm9ezdPPPEErVq1ol+/foW22b9/f44fP05ERESR/YaGhtK1a1defvllevTo4Q5sBAUFeZTnn6VwKR5//HHuuece4uLiuPHGG/nggw9YsWIFn376KQCtWrXiwoULvPzyy9x2221s2LCB1157zaONmJgYUlJSWL16Ne3btycsLKxcy2+NHTuWefPmMXnyZMaMGcPWrVtJTEwEXDMxLkW/fv2YOnUqp06dol69eoArgNC3b1/69evHhAkTOHLkCAD+/v4FcowUJyUlhT179rjf5/+85Fq/fn2FLTclIiIiIiIiIiJS0ygLrFQLCQkJDB8+nIkTJxIbG8ugQYPYvHmz++bwk08+SYcOHejXrx/x8fE0btyYQYMGlbr9r7/+mri4OPe34SdMmEBcXBxPPfUU4LqhvW3bNm6//XbatGnDmDFj6NixI+vXry8yGbYxhgYNGhAUVHBJrbzi4+M5d+6cO39Frt69e3Pu3Dl3ImxvGTRoEAsWLODFF1/k2muvZfHixSQkJLj7b9++PfPmzeMPf/gD1113HX/72994/vnnPdro3r07Dz30EPfeey8NGzbkhRdeKNdYmjdvzvLly1mxYgXt2rXj1VdfZfr06QAlJhkvSdu2benQoYPH7JDly5dz/Phx3nrrLZo0aeJ+5M2jsW/fPowxOByOItsu6fMCcOjQIb744gtGjRp1ScchIiIiIiIiIiJyuTDWWl+PQS6BMeZK4ADAzp07ad26tcf2Xbt2kZWVRUBAQIFt4jtOp5OzZ88CEBER4V56SWDWrFm89tprHDhw4JLbWrVqFY8//jjbt28v9c94zZo13HXXXezZs8c9MwPKfs4mT57MqVOn+NOf/lRkHf37rHhpaWl88sknANx8883KJ1JN6LxVPzpn1dOuXbto06ZN7ttoa+1BX45HfCPv9cSBAwe48sorfTwiEREREakODh48SHR0dO5br11PaEkoEfGpRYsW0alTJ+rXr8+GDRuYM2cO48aN80rbt9xyC7t27eLQoUN5f4EW68MPP2TatGkewYryaNSoERMmTLikNkRERERERERERC4nClhIjZeUlFRsLosdO3Z45B2oygYMGMD69esL3TZt2jSmTZtWySO6dLt27WLmzJmcPHmSZs2aMXHiRKZOneq19sePH1+m+nPmzPFKvxMnTvRKOyIiIiIiIiIiIpcLBSykxouKimLr1q3Fbq8uXn/9ddLS0grdFhkZWcmj8Y6XXnqJl156ydfDEBERERERERERER9TwEJqvICAAFq1auXrYXhF06ZNfT0EERERERERERERkQqhTL8iIiIiIiIiIiIiIuJzCliIiIiIiIiIiIiIiIjPKWAhIiIiIiIiIiIiIiI+p4CFiIiIiIiIiIiIiIj4nAIWIiIiIiIiIiIiIiLicwpYSJUUHx/P+PHjfT2MamnlypW0atUKf39/xo8fT2JiInXr1q2UvmNiYpg/f36l9FUaycnJNGrUiH379lVqv5mZmcTExPD1119Xar8iIiIiIiIiIiLVmQIWUiWtWLGC5557rtL6W7duHbfddhtRUVEYY1i5cmWBOiNHjsQY4/Ho37+/R53c8k2bNnmUZ2RkUL9+fYwxOBwOAG666SYee+wxj3qvvfYaxhgSExML9N2rV69SHcvYsWO5++67OXDgQIX9DIsKgmzevJkHH3ywQvosj1mzZnHHHXcQExMDwDfffMPgwYOJjo4mNDSUq6++mgULFpS53RkzZhT4LPziF79wbw8KCmLSpElMnjzZW4ciIiIiIiIiIiJS4ylgIVVSZGQktWvXrrT+UlNTad++Pa+88kqx9fr378/hw4fdj7fffrtAnejoaBISEjzK3nvvPWrVquVR1rNnTzZs2OBRtmbNGqKjo91BjVwOh4O+ffuWeBwpKSkcO3aMfv36ERUVVak/Q4CGDRsSFhZWqX0W5fz58/zlL39hzJgx7rItW7bQqFEj3nrrLb777jumT5/O1KlT+eMf/1jm9q+99lqPz8Lnn3/usX3IkCF8/vnnfPfdd5d8LCIiIiIiIiIiIpcDBSykSsq/JFRGRgaTJk2iadOmhIeH06VLF4+b+snJyQwePJimTZsSFhZG27ZtCw0mFGXAgAHMnDmTO++8s9h6wcHBNG7c2P2oV69egTojRoxg6dKlpKWlucuWLFnCiBEjPOr16tWLXbt2ceTIEXfZ2rVrmTJlisex7d27l/3799OnT59ix+ZwONwBir59+3rM5sjv1VdfpWXLlgQFBREbG8ubb77psX3evHm0bduW8PBwoqOjeeSRR0hJSXH3M2rUKM6cOeOeXfDMM88ABZeEMsbw+uuvc+eddxIWFkbr1q15//33Pfp6//33ad26NSEhIfTp04c33ngDYwynT58u9nhL8uGHHxIcHEzXrl3dZaNHj2bBggX07t2bFi1aMHToUEaNGsWKFSvK3H5AQIDHZ6FBgwYe2+vVq0ePHj1YunTpJR2HiIiIiIiIiIjI5UIBC6kWxo0bx8aNG1m6dCnbtm3jN7/5Df3792fXrl0ApKen07FjR1atWsX27dt58MEHGTZsGF999ZVXx+FwOGjUqBGxsbE8/PDDJCcnF6jTsWNHYmJiePfddwFISkpi3bp1DBs2zKNely5dCAwMZM2aNQDs2LGDtLQ0xowZQ3JyMnv37gVcsy5CQkLo1q1bsWPr3r07P/74IwDvvvsuhw8fpnv37gXqvffee/zud79j4sSJbN++nbFjxzJq1Cj3OAD8/PxYuHAh3333HW+88QafffYZTzzxhLuf+fPnExER4Z5dMGnSpCLHNWPGDO655x62bdvGwIEDGTJkCCdPngRcwZi7776bQYMG8c033zB27FimT59e7HGW1vr16+nYsWOJ9c6cOUNkZGSZ29+1axdRUVG0aNGCIUOGkJSUVKBO586dWb9+fZnbFhERERERERERuRwF+HoA4kNf/BE2Fr8EEgBN2sNv831L/O/3weFvSt632/+D7uPKN74cSUlJJCQkkJSURFRUFACTJk3io48+IiEhgdmzZ9O0aVOPm+aPPvooH3/8McuWLaNz586X1H+u/v37c9ddd9G8eXN2797NtGnTGDBgABs3bsTf39+j7ujRo1myZAlDhw4lMTGRgQMH0rBhQ4864eHhdOjQgbVr1zJkyBAcDgc9e/YkODiY7t2743A4aN68OQ6Hg27duhEcHFzs+IKCgmjUqBHgWlKrcePGhdZ78cUXGTlyJI888ggAEyZMYNOmTbz44ovuWRx5Z7fExMQwc+ZMHnroIRYtWkRQUBB16tTBGFNkH3mNHDmSwYMHAzB79mwWLlzIV199Rf/+/Vm8eDGxsbHMmTMHgNjYWLZv386sWbNKbLck+/fvd39eivLFF1/wzjvvsGrVqjK13blzZxITE4mNjeXw4cPMmDGDXr16sX37do9luKKioti/f3+5xi8iIiIiIiIiInK5UcDicpZxDs79XHK9Ok0Llp0/Ubp9M86VfVz5fPvtt2RnZ9OmTRvPpnMSWQNkZ2cze/Zsli1bxqFDh8jMzCQjI8Or+RTuu+8+9+u2bdvSrl07WrZsicPh4IYbbvCoO3ToUKZMmcKePXtITExk4cKFhbbZs2dPPvjgA8A1eyM+Ph6A3r17u5decjgcPPDAA147ju+//75AYuwePXp4JJ/+9NNPef755/nhhx84e/YsWVlZpKenc/78+TL/TNu1a+d+HR4eTkREBMeOHQPgxx9/pFOnTh71SwowPfTQQ7z11lvu97lLVeWXlpZGSEhIke1s376dO+64g6effpqbb765xOPIa8CAAfj5uSaotWvXji5dunDVVVexbNkyj5wZoaGhnD9/vkxti4iIiIiIiIiIXK5qZMDCGDMU6AV0BNoCQcAoa21iIXVtKZpsZq09UIp+9wFXFbF5rbU2vhR9VZ7g2lC7+G+gAxDWoPCy0uwbfOlJn1NSUvD392fLli0FZjLkJrKeM2cOCxYsYP78+e7cC+PHjyczM/OS+y9KixYtaNCgAT/99FOBgEX9+vW59dZbGTNmDOnp6QwYMIBz5woGb3r16sXcuXM5dOgQDofDPUukd+/eLF68mN27d3PgwIFSJdz2ln379nHrrbfy8MMPM2vWLCIjI/n8888ZM2YMmZmZZQ5YBAYGerw3xuB0Oss9vmeffbbYJahyNWjQgFOnThW6bceOHdxwww08+OCDPPnkk+UeS666devSpk0bfvrpJ4/ykydPFphZIyIiIiIiIiIiIoWrkQELYCauwMEJ4DBFBxEAZhRR3goYAuwoTbAijzPA/ELK95WhjcrRfVz5l2vKv0RUBYqLiyM7O5tjx47Rq1evQuts2LCBO+64g6FDhwLgdDrZuXMn11xzTYWN6+DBgyQnJ9OkSZNCt48ePZqBAwcyefLkAoGWXJ07dyYoKIhFixa583AAdOrUiePHj7NkyRLCw8O9tqwVwNVXX82GDRs8koBv2LDB/bPasmULTqeTuXPnumcRLFu2zKONoKAgsrOzL3kssbGxfPjhhx5lmzdvLnafRo0auZe+Kk5cXJzHTIxc3333HX379mXEiBFeWXoKXEG13bt3F8hTsn37duLi4rzSh4iIiIiIiIiISE1XUwMW9wO7rLX7jTFTgOeLqmitfaawcmPMyzkv/1LGvk8X1aaUT5s2bRgyZAjDhw9n7ty5xMXFcfz4cVavXk27du245ZZbaN26NcuXL+eLL76gXr16zJs3j6NHj5Y6YJGSkuLx7fi9e/eydetWIiMjadasGSkpKcyYMYNf//rXNG7cmN27d/PEE0/QqlUr+vXrV2ib/fv35/jx40RERBTZb2hoKF27duXll1+mR48e7sBGUFCQR3n+WQqX4vHHH+eee+4hLi6OG2+8kQ8++IAVK1bw6aefAtCqVSsuXLjAyy+/zG233caGDRt47bXXPNqIiYkhJSWF1atX0759e8LCwsq1/NbYsWOZN28ekydPZsyYMWzdupXExETANRPjUvTr14+pU6dy6tQp6tWrB7gCCH379qVfv35MmDCBI0eOAODv71+mmRCPP/44t99+O1dddRU///wzTz/9NP7+/u5cHbnWr1/Pc889d0nHISIiIiIiIiIicrnw8/UAKoK19lNrbbkz3RpjQnDNrsgE3vTawKTcEhISGD58OBMnTiQ2NpZBgwaxefNmmjVrBsCTTz5Jhw4d6NevH/Hx8TRu3JhBgwaVuv2vv/6auLg497fhJ0yYQFxcHE899RTguqG9bds2br/9dtq0acOYMWPo2LEj69evLzIZtjGGBg0aEBQUVGzf8fHxnDt3zp2/Ilfv3r05d+6cOxG2twwaNIgFCxbw4osvcu2117J48WISEhLc/bdv35558+bxhz/8geuuu46//e1vPP+8Z8yve/fuPPTQQ9x77700bNiQF154oVxjad68OcuXL2fFihW0a9eOV199lenTpwOUmGS8JG3btqVDhw4es0OWL1/O8ePHeeutt2jSpIn7kTePxr59+zDG4HA4imz74MGDDB48mNjYWO655x7q16/Ppk2bPIIeGzdu5MyZM9x9992XdBwiIiIiIiIiIiKXC2NtaVI4VF95ZlgUmsOiiH1+C/wNWG6t/U0Z+toHBANTgSjgLLDZWvtlGYedt80rS6jSGNgMruTULVu29NiYlJREdnY2gYGBBbaJ7zidTney6Fq1armXXhKYPXs2ixcvZv/+cscc3VatWsXkyZPZtm1bqX/Ga9as4e677+ann35yz8yAsp+z++67j/bt2zN16tQi6+zevZsLFy7g7+/vDr6Jd6Wnp7Nu3ToArr/++mITsUvVofNW/eicVU+7d++mbdu2uW+jrbUHfTke8Y2c640DAAcOHODKK0u6/BARERERcX2hNzo6Ovet164nauqSUJdqTM7z6+XYtzGQkLfAGLMZGGyt3V2O9kqdP+PLL79k927PLurXr09oaCjGGM6ePVuO7qWi5d4Ev1y9/vrrdOjQgcjISDZt2sScOXN44IEHvPJ57dWrF8OGDeOHH34o9cX3ypUreeyxx/D39y9yDCWds8zMTNq0acPo0aOLPY6srCzS0tJIS0vjhx9+KNX4pPxyb6ZK9aLzVv3onFUfJ06c8PUQREREREREPChgkY8xpjnQB0gC/lPG3ROA9cB2IAVoA0wAhgGrjTFtrbXnvDhcKYUDBw7QrVu3Irdv3LgxbzSwSrv77rvZtGlTodsee+wxJk6cWMkjunR79uxh7ty5nDp1iiuvvJJx48bx2GOPea39hx9+uEz1vZFzIigoiEmTJl1yOyIiIiIiIiIiIpcTBSwKGg0YIMFa6yzLjtbaGfmKtgLDc5IHDwMeAOaVcTwl3Ul3LwnVpUuXIpeECggIKDb5c00WGxvLf//73yK3x8TEEBBQuf8UyrskVEJCAmlpaYVui4yMrJbn+I9//CN//OMffT2MElXEMl7Hjx8nNDSUWrVq0bFjx0tuTwrSMjXVk85b9aNzVj3ln5krIiIiIiLiawpY5GGM8QNGAk5giRebXowrYNGDMgYsSlr7KycYAriSFIeGhnps9/Pzw+l0ul9fjoKCgmjTpo2vh1EkPz+/Up+b6jITpKYryzkriTEGPz+/Av92xftCQkL0c66GdN6qH52z6iM4ONjXQxAREREREfFwed7BLlp/4ErgP9baJC+2m7tAcLgX2xQRERERERERERERqTEUsPB0Kcm2i9Ml53mfl9sVEREREREREREREakRFLDIYYxpCNwGHAfeL6ZeoDHmF8aYlvnKf2GMCSuk/i+AP+S8/bsXhywiIiIiIiIiIiIiUmPUyBwWxpj7gZ45b9vmPN9vjInPef25tTb/LIrhQCDwprU2s5jmmwLfA/uBmDzl9wETjDHrcralAm2AgTntPm+tXVee4xERERERERERERERqelqZMACV7BiRL6yHjmPXPkDFpe6HNQa4GogDugFhOHKXfEhsMha+0k52xURERERERERERERqfFq5JJQ1tqR1lpTzGNkIftck7Pt+xLa3pdTLyZf+Vpr7b3W2jbW2jrW2kBrbRNr7SAFK8ouPj6e8ePH+3oY1dLKlStp1aoV/v7+jB8/nsTEROrWrVspfcfExDB//vxK6as0kpOTadSoEfv27av0vrt27cq7775b6f2KiIiIiIiIiIhUVzUyYCHV34oVK3juuecqrb9169Zx2223ERUVhTGGlStXFqgzcuRIjDEej/79+3vUyS3ftGmTR3lGRgb169fHGIPD4QDgpptu4rHHHvOo99prr2GMITExsUDfvXr1KtWxjB07lrvvvpsDBw5U2M+wqCDI5s2befDBByukz/KYNWsWd9xxBzExMQW2JScnc+WVV2KM4fTp02VqtzSflyeffJIpU6bgdDrLN3gRERGpcowxTY0x440xnxhjkowxmcaYI8aYd40xXQqp/4wxxhbziCmin37GmLXGmHPGmLPGmDXGmBsq/ABFRERERHxMAQupkiIjI6ldu3al9Zeamkr79u155ZVXiq3Xv39/Dh8+7H68/fbbBepER0eTkJDgUfbee+9Rq1Ytj7KePXuyYcMGj7I1a9YQHR3tDmrkcjgc9O3bt8TjSElJ4dixY/Tr14+oqKhK/RkCNGzYkLCwArnnfeL8+fP85S9/YcyYMYVuHzNmDO3atStX26X5vAwYMIBz587x73//u1x9iIiISJX0KPAS0AL4BJgLfA7cAXxhjLm3iP3eAGYU8jidv6IxZijwEa7lZhNz9r0W+I8x5m7vHYqIiIiISNWjgIVUSfmXhMrIyGDSpEk0bdqU8PBwunTp4nFTPzk5mcGDB9O0aVPCwsJo27ZtocGEogwYMICZM2dy5513FlsvODiYxo0bux/16tUrUGfEiBEsXbqUtLQ0d9mSJUsYMcIzrUqvXr3YtWsXR44ccZetXbuWKVOmeBzb3r172b9/P3369Cl2bA6Hwx2g6Nu3r8dsjvxeffVVWrZsSVBQELGxsbz55pse2+fNm0fbtm0JDw8nOjqaRx55hJSUFHc/o0aN4syZM+4ZJc888wxQcEkoYwyvv/46d955J2FhYbRu3Zr333/fo6/333+f1q1bExISQp8+fXjjjTfKNeshvw8//JDg4GC6du1a6PGfPn2aSZMmlavt0nxe/P39GThwIEuXLi1XHyIiIlIlfQXEW2tbWWvvt9ZOtdbeDfQBsoFXjTHBheyXaK19ppDH6byVjDH1gJdx5cLrYK191Fr7KNABSM5pv3K/kSIiIiIiUokUsJBqYdy4cWzcuJGlS5eybds2fvOb39C/f3927doFQHp6Oh07dmTVqlVs376dBx98kGHDhvHVV195dRwOh4NGjRoRGxvLww8/THJycoE6HTt2JCYmxp2/ICkpiXXr1jFs2DCPel26dCEwMJA1a9YAsGPHDtLS0hgzZgzJycns3bsXcM26CAkJoVu3bsWOrXv37vz4448AvPvuuxw+fJju3bsXqPfee+/xu9/9jokTJ7J9+3bGjh3LqFGj3OMA8PPzY+HChXz33Xe88cYbfPbZZzzxxBPufubPn09ERIR7pklxN/5nzJjBPffcw7Zt2xg4cCBDhgzh5MmTgCsYc/fddzNo0CC++eYbxo4dy/Tp04s9ztJav349HTt2LFC+Y8cOnn32Wf7617/i51exvwI7d+7M+vXrK7QPERERqTzW2hXW2rWFlK8H1gD1gLaX0MVvgLrAy9bag3naPwj8EWgAFP8NGxERERGRaizA1wMQ33njuzf4646/lljvmshrePmGlz3KHl39KDtO7ihx3+HXDGfEtSNKrFecpKQkEhISSEpKIioqCoBJkybx0UcfkZCQwOzZs2natKnHTfNHH32Ujz/+mGXLltG5c+dL6j9X//79ueuuu2jevDm7d+9m2rRpDBgwgI0bN+Lv7+9Rd/To0SxZsoShQ4eSmJjIwIEDadiwoUed8PBwOnTowNq1axkyZAgOh4OePXsSHBxM9+7dcTgcNG/eHIfDQbdu3QgOLuzLehcFBQXRqFEjwLWkVuPGjQut9+KLLzJy5EgeeeQRACZMmMCmTZt48cUX3bM48s5uiYmJYebMmTz00EMsWrSIoKAg6tSpgzGmyD7yGjlyJIMHDwZg9uzZLFy4kK+++or+/fuzePFiYmNjmTNnDgCxsbFs376dWbNmldhuSfbv3+/+vOTKyMhg8ODBzJkzh2bNmrFnz55L7qc4UVFRHDhwAKfTWeHBEREREfG5CznPWYVsuz4nx4UT2AV8aq1NKaRefM7zJ4Vs+xh4BugNlPxHfA5jzJUlVHH/QZeWluYxS1hERESkqrp6xme+HkKN9v3TJS9NX1F/NypgcRlLvZDKsfPHSqzXOLzgTemTGSdLtW/qhdRyjS2vb7/9luzsbNq0aeNRnpvIGiA7O5vZs2ezbNkyDh06RGZmJhkZGV7Np3Dfffe5X7dt25Z27drRsmVLHA4HN9zgmQNx6NChTJkyhT179pCYmMjChQsLbbNnz5588MEHgGv2Rnx8PAC9e/d2L73kcDh44IEHvHYc33//fYHE2D169GDBggXu959++inPP/88P/zwA2fPniUrK4v09HTOnz9f5p9p3jwR4eHhREREcOyY67Pz448/0qlTJ4/6JQWYHnroId566y33+9ylqvJLS0sjJCTEo2zq1KlcffXVDB06tEzHUF6hoaE4nU4yMjIIDQ2tlD5FRESk8hljmgE3AoeBbwupMiPf+9PGmN9Za/MHHlrnPO8qpI1d+eqU1oHSVly3bh0NGjQoY/MiIiIivqDb2hXpk08K+/6MpxMnTlRI3zqzl7HwwHAahTUqsV5kcGShZaXZNzwwvFxjyyslJQV/f3+2bNlSYCZDbiLrOXPmsGDBAubPn+/OvTB+/HgyMzMvuf+itGjRggYNGvDTTz8VCFjUr1+fW2+9lTFjxpCenu5OwJxfr169mDt3LocOHcLhcLhnifTu3ZvFixeze/duDhw4UKqE296yb98+br31Vh5++GFmzZpFZGQkn3/+OWPGjCEzM7PMAYvAwECP98YYnE5nucf37LPPlir3RIMGDTh16pRH2Weffca3337L8uXLAbDWuutOnz6dGTPy30u4NCdPniQ8PFzBChERkRrMGBMIvAkEA5Ottdl5Nn8DjAYcuIIZjYFbgWeBRGPMaWtt3gRfdXKezxTS1dl8dUREREREahwFLC5jI64dUe7lmvIvEVWR4uLiyM7O5tixY/Tq1avQOhs2bOCOO+5wf3Pe6XSyc+dOrrnmmgob18GDB0lOTqZJkyaFbh89ejQDBw5k8uTJBQItuTp37kxQUBCLFi1y5+EA6NSpE8ePH2fJkiWEh4d7bVkrgKuvvpoNGzZ4JAHfsGGD+2e1ZcsWnE4nc+fOdS9jtGzZMo82goKCyM7O5lLFxsby4YcfepRt3ry52H0aNWrkXvqqOHFxcR4zMcCV2yPvdLXNmzczevRo1q9fT8uWLcsw8tLZvn07cXFxXm9XREREqgZjjB+QCFwP/Nla+2be7dba9/Ltsg/4ozHme+A/wEzgfSpWdAnbGwObAa6//nquvLKkFaREREREqoCNWhKqIt18880l1jl48GCJdcpDAQup8tq0acOQIUMYPnw4c+fOJS4ujuPHj7N69WratWvHLbfcQuvWrVm+fDlffPEF9erVY968eRw9erTUAYuUlBR++ukn9/u9e/eydetWIiMjadasGSkpKcyYMYNf//rXNG7cmN27d/PEE0/QqlUr+vXrV2ib/fv35/jx40RERBTZb2hoKF27duXll1+mR48e7sBGUFCQR3n+WQqX4vHHH+eee+4hLi6OG2+8kQ8++IAVK1bw6aefAtCqVSsuXLjAyy+/zG233caGDRt47bXXPNqIiYkhJSWF1atX0759e8LCwsq1/NbYsWOZN28ekydPZsyYMWzdupXExETANRPjUvTr14+pU6dy6tQp6tWrB1AgKJE7de3qq6+mbt26pW47JSXFI/9F/s9LrvXr15fqF7yIiIhUPznBiiXAb4G3gIdKu6+1drUxZjfQ1hgTYa3NnT2RO7OiDpCcb7eIfHVK21exV5J5/+YKDQ3VzFARERERKdXfhBX1d6OywEq1kJCQwPDhw5k4cSKxsbEMGjSIzZs3u28OP/nkk3To0IF+/foRHx9P48aNGTRoUKnb//rrr4mLi3N/G37ChAnExcXx1FNPAeDv78+2bdu4/fbbadOmDWPGjKFjx46sX7++yGTYxhgaNGhAUFBQsX3Hx8dz7tw5d/6KXL179+bcuXPuRNjeMmjQIBYsWMCLL77Itddey+LFi0lISHD33759e+bNm8cf/vAHrrvuOv72t7/x/PPPe7TRvXt3HnroIe69914aNmzICy+8UK6xNG/enOXLl7NixQratWvHq6++yvTp0wFKTDJekrZt29KhQ4cCs0NKsm/fPowxOByOIuuU9HkBOHToEF988QWjRo0q1/hFRESk6soJViQAI4C3gZHW2rKueZm76G/eb30Ul6eiuPwWIiIiIiI1gsldw12qJ2PMleQk0tu5cyetW3te2+zatYusrCwCAgIKbBPfcTqdnD3r+iJdRESEe+klgVmzZvHaa69x4ECp80MWadWqVTz++ONs37691D/jNWvWcNddd7Fnzx73zAwo+zmbPHkyp06d4k9/+lORdfTvs+KlpaW5E0XdfPPN+tZoNaHzVv3onFVPu3btok2bNrlvo0v6Jr645AlWDAfeAYbky1tRmjbCceW08APqWmuzcsrHAq8BT1trn823z9PAM8CIQpJ1l1ve64kDBw5oSSgRERGpFmKmrPL1EGq0fb+/pcQ6Bw8eJDravfqo164ntCSUiPjUokWL6NSpE/Xr12fDhg3MmTOHcePGeaXtW265hV27dnHo0KG8v0CL9eGHHzJt2jSPYEV5NGrUiAkTJlxSGyIiIlK15FkGajjwD2BoUcEKY0xtoIm1dme+8lDgz0BtICE3WJFjGfAH4FFjzJLci76coMI4XLMy8ufFEBERERGpMRSwkBovKSmp2FwWO3bs8Mg7UJUNGDCA9evXF7pt2rRpTJs2rZJHdOl27drFzJkzOXnyJM2aNWPixIlMnTrVa+2PHz++TPXnzJnjlX4nTpzolXZERESkSnkK1zJQKcBO4MlC8m6ttNZuBeoDPxhjNgPfA0eAK4AbgSuBb4HH8+5orT1ljBkHvAn81xjzTs6me3Pau9dae64CjktEREREpEpQwEJqvKioKLZu3Vrs9uri9ddfJy0trdBtkZGRlTwa73jppZd46aWXfD0MERERkdKIyXmuBUwvos4+YCtwElgEdAYGAvWANFzBi4XAH621Bf6ws9a+ZYw5AUwDRgEW2ALMtNZ+6qXjEBERERGpkhSwkBovICCAVq1a+XoYXtG0aVNfD0FERETksmWtHQmMLGXds7iWcSpPPx8BH5VnXxERERGR6kyZfkVERERERERERERExOc0w0JEREREREREpIqJmbLK10Oo0fb9/pYKaVfnrWLpvFU/FXXOpObSDAsREREREREREREREfE5BSxERERERERERERERMTnFLAQERERERERERERERGfU8BCqqT4+HjGjx/v62FUSytXrqRVq1b4+/szfvx4EhMTqVu3bqX0HRMTw/z58yulr9JITk6mUaNG7Nu3r1L7zczMJCYmhq+//rpS+xUREREREREREanOFLCQKmnFihU899xzldbfunXruO2224iKisIYw8qVKwvUGTlyJMYYj0f//v096uSWb9q0yaM8IyOD+vXrY4zB4XAAcNNNN/HYY4951HvttdcwxpCYmFig7169epXqWMaOHcvdd9/NgQMHKuxnWFQQZPPmzTz44IMV0md5zJo1izvuuIOYmJgC25KTk7nyyisxxnD69OkytTtjxowCn4Vf/OIX7u1BQUFMmjSJyZMnX+IRiIiIiIiIiIiIXD4UsJAqKTIyktq1a1daf6mpqbRv355XXnml2Hr9+/fn8OHD7sfbb79doE50dDQJCQkeZe+99x61atXyKOvZsycbNmzwKFuzZg3R0dHuoEYuh8NB3759SzyOlJQUjh07Rr9+/YiKiqrUnyFAw4YNCQsLq9Q+i3L+/Hn+8pe/MGbMmEK3jxkzhnbt2pW7/Wuvvdbjs/D55597bB8yZAiff/453333Xbn7EBERERERERERuZwoYCFVUv4loTIyMpg0aRJNmzYlPDycLl26eNzUT05OZvDgwTRt2pSwsDDatm1baDChKAMGDGDmzJnceeedxdYLDg6mcePG7ke9evUK1BkxYgRLly4lLS3NXbZkyRJGjBjhUa9Xr17s2rWLI0eOuMvWrl3LlClTPI5t79697N+/nz59+hQ7NofD4Q5Q9O3b12M2R36vvvoqLVu2JCgoiNjYWN58802P7fPmzaNt27aEh4cTHR3NI488QkpKirufUaNGcebMGffsgmeeeQYouCSUMYbXX3+dO++8k7CwMFq3bs3777/v0df7779P69atCQkJoU+fPrzxxhvlmvWQ34cffkhwcDBdu3Yt9PhPnz7NpEmTyt1+QECAx2ehQYMGHtvr1atHjx49WLp0abn7EBERERERERERuZwoYCHVwrhx49i4cSNLly5l27Zt/OY3v6F///7s2rULgPT0dDp27MiqVavYvn07Dz74IMOGDeOrr77y6jgcDgeNGjUiNjaWhx9+mOTk5AJ1OnbsSExMDO+++y4ASUlJrFu3jmHDhnnU69KlC4GBgaxZswaAHTt2kJaWxpgxY0hOTmbv3r2Aa9ZFSEgI3bp1K3Zs3bt358cffwTg3Xff5fDhw3Tv3r1Avffee4/f/e53TJw4ke3btzN27FhGjRrlHgeAn58fCxcu5LvvvuONN97gs88+44knnnD3M3/+fCIiItyzC4q78T9jxgzuuecetm3bxsCBAxkyZAgnT54EXMGYu+++m0GDBvHNN98wduxYpk+fXuxxltb69evp2LFjgfIdO3bw7LPP8te//hU/v/L/Cty1axdRUVG0aNGCIUOGkJSUVKBO586dWb9+fbn7EBERERERERERuZwE+HoA4jvJCYmczJcroTAh11xD9KuLPMoOPPwI6Tt2lLhv5MiR1B81spwjdElKSiIhIYGkpCSioqIAmDRpEh999BEJCQnMnj2bpk2betw0f/TRR/n4449ZtmwZnTt3vqT+c/Xv35+77rqL5s2bs3v3bqZNm8aAAQPYuHEj/v7+HnVHjx7NkiVLGDp0KImJiQwcOJCGDRt61AkPD6dDhw6sXbuWIUOG4HA46NmzJ8HBwXTv3h2Hw0Hz5s1xOBx069aN4ODgYscXFBREo0aNANeSWo0bNy603osvvsjIkSN55JFHAJgwYQKbNm3ixRdfdM/iyDu7JSYmhpkzZ/LQQw+xaNEigoKCqFOnDsaYIvvIa+TIkQwePBiA2bNns3DhQr766iv69+/P4sWLiY2NZc6cOQDExsayfft2Zs2aVWK7Jdm/f7/785IrIyODwYMHM2fOHJo1a8aePXvK1Xbnzp1JTEwkNjaWw4cPM2PGDHr16sX27ds9luGKiopi//79l3QcIiIiUjhjzBXADUAH4AqgHnAKOApsAT6z1h713QhFRERERKSsFLC4jDlTUsg6WvI1XHYhN6WzT54s1b7OnGWELsW3335LdnY2bdq08SjPTWQNkJ2dzezZs1m2bBmHDh0iMzOTjIwMr+ZTuO+++9yv27ZtS7t27WjZsiUOh4MbbrjBo+7QoUOZMmUKe/bsITExkYULFxbaZs+ePfnggw8A1+yN+Ph4AHr37u1eesnhcPDAAw947Ti+//77Aomxe/TowYIFC9zvP/30U55//nl++OEHzp49S1ZWFunp6Zw/f77MP9O8eSLCw8OJiIjg2LFjAPz444906tTJo35JAaaHHnqIt956y/0+pYjPWFpaGiEhIR5lU6dO5eqrr2bo0KFlOob8BgwY4J6d0a5dO7p06cJVV13FsmXLPHJmhIaGcv78+UvqS0RERC4yxgQC9wL/D8j9o8EUUtXm1P8SeAVYZq29UCmDFBERERGRclPA4jLmV6sWAVdcUWI9/8jIQstKs69fvkTT5ZGSkoK/vz9btmwpMJMhN5H1nDlzWLBgAfPnz3fnXhg/fjyZmZmX3H9RWrRoQYMGDfjpp58KBCzq16/PrbfeypgxY0hPT2fAgAGcO3euQBu9evVi7ty5HDp0CIfD4Z4l0rt3bxYvXszu3bs5cOBAqRJue8u+ffu49dZbefjhh5k1axaRkZF8/vnnjBkzhszMzDIHLAIDAz3eG2NwOp3lHt+zzz5bqtwTDRo04NSpUx5ln332Gd9++y3Lly8HwFrrrjt9+nRmzJhRrjHVrVuXNm3a8NNPP3mUnzx5ssDMGhERESkfY8ww4HmgCa4gxXFgI/AdkAycBeoA9YHrgG5AV6AL8HtjzFRr7VuFNC0iIiIiIlWEAhaXsfqjyr9cU/4loipSXFwc2dnZHDt2jF69ehVaZ8OGDdxxxx3ub847nU527tzJNddcU2HjOnjwIMnJyTRp0qTQ7aNHj2bgwIFMnjy5QKAlV+fOnQkKCmLRokXuPBwAnTp14vjx4yxZsoTw8HCvLWsFcPXVV7NhwwaPJOAbNmxw/6y2bNmC0+lk7ty57lkEy5Yt82gjKCiI7OzsSx5LbGwsH374oUfZ5s2bi92nUaNG7qWvihMXF+cxEwNcuT3yJkPfvHkzo0ePZv369bRs2bIMI/eUkpLC7t27C+Qp2b59O3FxceVuV0RERFyMMRtxzag4ASwEEq2135Riv18Co4DBwBvGmEestQWTfImIiIiISJWgpNtS5bVp04YhQ4YwfPhwVqxYwd69e/nqq694/vnnWbVqFQCtW7fmP//5D1988QXff/89Y8eO5WgplqzKlZKSwtatW9m6dSvgSga9detWdyLllJQUHn/8cTZt2sS+fftYvXo1d9xxB61ataJfv36Fttm/f3+OHz/Os88+W2S/oaGhdO3alZdffpkePXq4AxtBQUEe5flnKVyKxx9/nMTERF599VV27drFvHnzWLFihXvWQqtWrbhw4QIvv/wye/bs4c033+S1117zaCMmJoaUlBRWr17NiRMnyr3s0dixY/nhhx+YPHkyO3fuZNmyZSTm5FUxprDVHUqvX79+fPfddx6zLFq2bMl1113nfjRv3hxwBXFKEwTJ9fjjj7N27Vr27dvHF198wZ133om/v787V0eu9evXc/PNN1/ScYiIiAgArYEngGbW2sdKE6wAsNZutdb+DogGpgBtSthFRERERER8SAELqRYSEhIYPnw4EydOJDY2lkGDBrF582aaNWsGwJNPPkmHDh3o168f8fHxNG7cmEGDBpW6/a+//pq4uDj3t+EnTJhAXFwcTz31FAD+/v5s27aN22+/nTZt2jBmzBg6duzI+vXri0yGbYyhQYMGBAUFFdt3fHw8586dc+evyNW7d2/OnTvnToTtLYMGDWLBggW8+OKLXHvttSxevJiEhAR3/+3bt2fevHn84Q9/4LrrruNvf/sbzz//vEcb3bt356GHHuLee++lYcOGvPDCC+UaS/PmzVm+fDkrVqygXbt2vPrqq0yfPh2gxCTjJWnbti0dOnQoMDukJPv27cMYg8PhKLLOwYMHGTx4MLGxsdxzzz3Ur1+fTZs2eSz/tHHjRs6cOcPdd99d3kMQERGRi1pYa+daazPKs7O1NsNaOwdo4eVxiYiIiIiIF5ncNdxrEmPMUKAX0BFoCwQBo6y1iYXUfQZ4upjmmltr95Wh7zbATKAvEA7sBF4DXrMV8MM2xlwJHADYuXMnrVu39ti+a9cusrKyCAgIKLBNfMfpdHL27FkAIiIi3EsvCcyaNYvXXnuNAwcOXHJbq1at4vHHH2f79u2l/hmvWbOGu+66iz179lCvXj13eVnP2b333kv79u2ZNm1akXX077PipaWl8cknnwBw8803Exoa6uMRSWnovFU/OmfV065du2jTxj3hINpae9CX4xHfyHs9ceDAAa688kofj0hEcsVMWeXrIdRo+35/S4W0q/NWsXTeqh+ds+qpNOft4MGDREdH57712vVETc1hMRO4Ctcat4dzXpfkDWBfIeWnS9upMeYa4AsgFFgG/AzcAiwCrgEeLW1bIpeLRYsW0alTJ+rXr8+GDRuYM2cO48aN80rbt9xyC7t27eLQoUN5f4EW68MPP2TatGkewYqyyszMpG3btjz22GPlbuP5D7/n9PkLJda7q0NTurSo735/7Gw6cz/ZWao+pgz4BfXCL84AWr/rOP/65nCJ+zWsHcykfrEeZX/5fC87jxRMLJ9fj9YNuL19lEfZ5OXbsJQczx3dszm/aBzhfr/z6DleX7+n2H2ysrI5dMiP+1p6Jnr/17afWb/zRIl9tr6iFvf38vwy7rz/7OTomfQS9x3Yrgm921ycdXPm/AVmf/h9ifsBjL+pNU3qXLzhu3nfSZZ/XfL/+xGhAUy/xTN3z9++3M+2A2dK3LdjTD3u+ZXnv5On/7md9AvOIva4aHCXZvwyuq77fVLyeV5Z81PRO+TxzO3XEhp0Mc/PpzuO8u9vD3HokCsouO797wnwL/jnSnRkKOP6egb6XlnzE0nJJS9R1/fqRvS7trH7ffqFbJ7+53elGu/D8S2JaRDufv/twTO8tWl/ifsFBfjx3KDrPMqWbznI5r0nS9z3uqYRDOsW41FW1X5HZGVnceiQH7UDoUNKJtEKWIiIiIiIiEg51NSAxf3ALmvtfmPMFOD5knbAlbjPcYn9vgrUAQZaa/8NYIz5X+BTYJwx5u/W2o2X2IeUUVJSUrHJt3fs2OFeWqqqGzBgAOvXry9027Rp04r9Nn9VtWvXLmbOnMnJkydp1qwZEydOZOrUqV5rf/z48WWqP2fOnEvuMygoiCeffLJUda0t/Fb9B9/8zM+luCn+y2Z1PW5Gnk2/wDtfl252yv/c2Jq8YZmdR1NKtW/LhuEFAhbrdh5n7c7jJe4bFuxfIGCxbMsBSjP/bEDbJh4Bi6Nn01lWipv4UDBg8c2B06U61p6tGhQIWHy8/Qg/Hi05ONOyUbhHwCLtQnapz82onjEeAYu9x1NLte8VEcEFAhZf7E5m1baSA1FOawsELFb83yHOpWeVuG/P1g08AhbJqRmlPtZpt1xNKBcDFt/9fJZ3/+8w7lUrjxU+9vbRdQsELD774Rhb9p8qtH5eV0QEewQssp221OP9za+u9AhYHDx1vlT7hgX5FwhYfL3vZKn2PZPWuEDAomr+jnCds0jHXv7wm1+Wqg8RbzDG+AP1gZCi6lhrkypvRCIiIiIiUl41MmBhrf20svvMWQrqemBNbrAiZyyZOUELB/AAoIBFJYuKinIn0y5qe3Xx+uuvk5aWVui2yMjISh6Nd7z00ku89NJLvh6Gz5xLz2LngbP856BhaJerqBPmvQTrIiK+kHSq5FkuIt5gjOmOa2nX63EtAVsUSw297hERERERqWlqZA6LvPLMsCgph8XTQAbgBHYBn1prU8rQz4PAYmCqtfb3+bb5A2eAo9balmUcf0mLyDYGNgN8++23tGzp2XxSUhLZ2dkEBgYW2Ca+43Q6SUlxfbxq1aqlHBbVQEWcs59++omDJ1PYc/w8iat/4KW7r6VeuCtgcfhsBtnZJS/FUy8siPDgi99Oz8q2HDlb8reuARrXCSHAz7jfp6Rnczots8T9Avz9aBzhmRT9REom6ReyS9y3VnAAdfMFZQ6eSsMYU8QeF9UPDyQk8OKxpl/I5kRK8ePNupDFjzt/JDIY2rdvR1CQ637WmbQLpZo5EBLoT4NanvfAjp7N4EIpzk3d0EBqhVy8P5bttBwuxTfiwTUDIND/4mcsNSObU+dLPjf+foYmdTy/YHwyNZPzmSWfm/CgAPfnL9fPp9NxluLvhPrhQR7LOmVmOTl2rnR5caPqhpLnY8jZ9CxOnk3jx50/AhDbJpaAwIL3GYMC/GlU2/PcHDuXSWZWyccaERpIRJ5z47Tw8+nCg8H5P5sNawcTHHDx3KRlZpOcmklJf0/5GUNUXc9zcyr1AqmZJX8OQ4P8qR/ueaxV7XdE5oUL/HvzLupFhHLDTX3oENOgVH2Ib+3evZu2bdvmvq1WOSyMMX2BfwO5v7hOAkVOf7PWNq+McVVHymEhUnVpffaKpXX1qyedt+pH56x6Ug6LqmFGvvenjTG/s9b+tZT7565LsSv/BmtttjFmL3CNMSbAWlvy3YmLSp15+Msvv2T37t0eZfXr1yc0NBRjjDthsFQtuTfBpfrw1jnLvJCNdTqJSj/MnYdXsu7llV5pVwr6Gfh59b98PQwpxJYStn/zuc5bdZF7i/On9IOciL3Wp2OR0jlxouRcPlXYTFzBivnATGttyQlhRERERESkytPXuuEbYDTQAley7Oa4kmNbINEYc3sp26mT81xUZtOzuH7etcs/VBGpSbKtJTQ7jYAyxTBFRKq28z8rVYBUil8CW621ExSsEBERERGpOS77GRbW2vfyFe0D/miM+R74D65vb71f2ePKI7qE7e4lobp06VLkklABAQFEREQUtr/4gJaEqn68fc4yLmTj58zC37qWdKndoCGtOne/5HGKp6zsbA4ccE1Ui46OJsDfv4Q9pCrQeat+si5c4Nv/fAhA7fBwbr75Zh+PSEoj/8zcaiYF+MHXgxAREREREe+67AMWRbHWrjbG7AbaGmMirLUlraeUO7OiThHbI3DN2ihybd0ixlHs2l9519YODg4mNDTUY7ufnx9Op9P9WqoePz8/nZtq5lLPmbWWMyeOY3LXvPf35+7pzxEZpTWjvS0tLY1PPvkEgF4331zgd6RUTTpv1c/58+f59tN/g7WcTU3TOasmgoODS65UdW0C2vh6ECIiIiIi4l26S1q83IV9w0pRNzd3Rev8G3KSbjcH9pYxf4WI1EApp05CeirgimI2jGmpYIWIVGvGGC4Y1/dgfj5Rpu9miJTXLFxfLPqtrwciIiIiIiLeoxkWRTDGhAPXAqlcDFwUZ23O883A7/Nt6wmE56kjpRAfH88vf/lL5s+f7+uhiHhN2rmzpJ66uNS2MyiMWlquTURqgGy/AAKdF/C3WWQ7Lf5+puSdRMrJWvulMeZe4HVjzG3Av4EkwFlE/XWVOT4RERERESmfy3qGhTGmtjGmwFRyY0wo8GdcCbKX5Z8VYYz5hTHmF3nLrLU/AuuAPsaYAXnqBgHP5bx93cuHUKOtWLGC5557ruSKXrBu3Tpuu+02oqKiMMawcuXKAnWstTz11FM0adKE0NBQbrzxRnbt2uVRxxiDMYZNmzZ5lGdkZFC/fn2MMTgcDgBuuukmHnvsMY96r732GsYYEhMTPcpHjhxJr169Lvk4xbcy0s5z9vgx9/ts409YuJZNEZGawenn+h5MgPMCGVnZPh6NXCb8gfPAPUACsBpYU8jjM18NUEREREREyqZGBiyMMfcbYxKNMYnAb3KK3WXGmPtzyuoDPxhjvswp/70xJgHYCQwGvgUeL6SL73Me+T2CK5fFSmPMX40xfwD+C/QC/mit/cJrB3kZiIyMpHbt2pXSV2pqKu3bt+eVV14pss4LL7zAwoULee211/jyyy8JDw+nX79+pKene9SLjo4mISHBo+y9996jVq1aHmU9e/Zkw4YNHmVr1qwhOjraHdTI5XA46Nu3bzmOTKqKCxkZnDlyGJuTtyI9IBTr509wgJIJi0jN4A5Y2CzSMhWwkIpljLkdeAe4EjiF62/udUU81vtomCIiIiIiUkY1MmCBawmmETmPDjllPfKU9cwpOwksAgwwEJgI/Br4GXgC6GKtTS5tp9ba74AuwPvALcDvcE1L/3/A/1zSEV2G4uPjGT9+POCaoTBp0iSaNm1KeHg4Xbp08bipn5yczODBg2natClhYWG0bduWt99+u9R9DRgwgJkzZ3LnnXcWut1ay/z583nyySe54447aNeuHX/961/5+eefC8zGGDFiBEuXLiUtLc1dtmTJEkaMGOFRr1evXuzatYsjR464y9auXcuUKVM8jm3v3r3s37+fPn36lPp4pGrJzsri9JGfcTpdq1QEh4UTfWUUoUEKVohIzWH9AwEItFmcz1TKLqlwT+L6G/5/gCustZ2stX2Kevh4rCIiIiIiUko1MmBhrR1prTXFPEbm1DtrrR1nre1srW1krQ201kZYa7tYa+dYa9OKaN9YawtdmNla+6O19jfW2vrW2hBrbTtr7SKb+7VqKZdx48axceNGli5dyrZt2/jNb35D//793Usypaen07FjR1atWsX27dt58MEHGTZsGF999ZVX+t+7dy9HjhzhxhtvdJfVqVOHLl26sHHjRo+6HTt2JCYmhnfffReApKQk1q1bx7BhwzzqdenShcDAQNasWQPAjh07SEtLY8yYMSQnJ7N3717ANesiJCSEbt26eeVYpHI5nU5OH/mZ7CzXzbvA4GDqXNEYf38//IzWdxeRmsPmzLAwwPm09OIri1y6a4CN1to/Wms1pUdEREREpIZQ0u3L1LLZmzl/NrNS+wyLCOKeaZ3KvF9SUhIJCQkkJSURFRUFwKRJk/joo49ISEhg9uzZNG3alEmTJrn3efTRR/n4449ZtmwZnTt3vuSx586CuOKKKzzKr7jiCo8ZErlGjx7NkiVLGDp0KImJiQwcOJCGDRt61AkPD6dDhw6sXbuWIUOG4HA46NmzJ8HBwXTv3h2Hw0Hz5s1xOBx069aN4ODgSz4OqVzWWs4cPcyFjAwA/AMDqds4Cj+/GhkrFpHLnPW/+GdlaqoCFlLhUoH9vh6EiIiIiIh4lwIWl6nzZzNJPZ3h62GUyrfffkt2djZt2njmR89NZA2QnZ3N7NmzWbZsGYcOHSIzM5OMjAzCwsJ8MWSGDh3KlClT2LNnD4mJiSxcuLDQej179uSDDz4AXHkq4uPjAejduzcOh4NRo0bhcDh44IEHKmvo4iXWWs6dOE7G+fMA+Pn74V+3IVbBChGpqfIGLM4XOklVxJscQJyvByEiIiIiIt6lgMVlKiwiqNr0mZKSgr+/P1u2bMHf33PN/9xE1nPmzGHBggXMnz+ftm3bEh4ezvjx48nM9M4sksaNGwNw9OhRmjRp4i4/evQov/zlLwvUr1+/PrfeeitjxowhPT2dAQMGcO7cuQL1evXqxdy5czl06BAOh8M9S6R3794sXryY3bt3c+DAASXcrobOnznF+bNnADDGEFr/CvaeuYDfuSwa1Q6mUUSIj0coIuJleQIW5xWwkIr3v8AWY8wUa+3vfT0YERERERHxDgUsLlPlWZrJV+Li4sjOzubYsWP06tWr0DobNmzgjjvuYOjQoYArb8DOnTu55pprvDKG5s2b07hxY1avXu0OUJw9e5Yvv/yShx9+uNB9Ro8ezcCBA5k8eXKBQEuuzp07ExQUxKJFi9x5OAA6derE8ePHWbJkCeHh4V5Z1koqT3Z2FiknT7rfRzRsRHKWa2aF01r8/ZS7QkRqHpPn/7r0NAUspMJ1BZYAs4wxtwMfAUmAs7DK1tq/VuLYRERERESknBSwkCqvTZs2DBkyhOHDhzN37lzi4uI4fvw4q1evpl27dtxyyy20bt2a5cuX88UXX1CvXj3mzZvH0aNHSx2wSElJ4aeffnK/37t3L1u3biUyMpJmzZphjGH8+PHMnDmT1q1b07x5c/73f/+XqKgoBg0aVGib/fv35/jx40RERBTZb2hoKF27duXll1+mR48e7sBGUFCQR3lgYGDpf2Dic5nnz2OtBSAsog5B4bU4fdg1w8bPGOqGVf4MJxGRinZlRABnD7te/+rK2r4djFwOEgGLK897V6BLCfUVsBARERERqQYUsJBqISEhgZkzZzJx4kQOHTpEgwYN6Nq1K7feeisATz75JHv27KFfv36EhYXx4IMPMmjQIM6cOVOq9r/++mv69Onjfj9hwgQARowYQWJiIgBPPPEEqampPPjgg5w+fZqePXvy0UcfERJS+NI+xhgaNGhQYt/x8fGsW7fOnb8iV+/evVmzZo3HuKR6SE9Ncb8OqV2b0+cv4MwJYNQLC9QMCxGpkfwDLv5ZmZVRPfJkSbX2V1wBCxERERERqUEUsJAqy+FwuF8HBgYyY8YMZsyYUWjdyMhIVq5cWe6+4uPj3d+IL4oxhmeffZZnn322yDrFtVG3bl33dqfz4moFTz/9dKHH9fTTT/P000+XNHSpYpxOJ5nuRNv+BAaHkHzmYgAjMjzYV0MTEalQJk/A4kJGug9HIpcDa+1IX49BRERERES8z8/XAxARqUky0y4uBxUcHs75zGzSL2QDEBYUQGhQ4flMRESqO788SbcvZGqGhYiIiIiIiJSdAhZS4yUlJVGrVq0iH0lJSb4eotQgGamp7tchYbU4mZrpfl8/XLkrRKTmSrUXAxbf7D3mw5GIiIiIiIhIdaUloaTGi4qKYuvWrcVuF/EGay0Z510BC+Pnh19wCKdPu5aD8vcz1AlV8nQRqbnS8gQs9h057buBSI1kjLnTWvueF9q5y1q7whtjEhERERER71PAQmq8gIAAWrVq5ethyGXgQno6zmzX8k/BoWGcTstyLw9VLywIPyXbFpEaLCDQn6yc11oSSirAu8aYL4FnrLUfl2VHY4wBBgJPAb8CtD6jiIiIiEgVpYCFiIiXZJy/mFw7ODycWmGuGRUnUzOJ1HJQIlLDBQYGuAMW2QpYiPc9BjwNfGiMOQT8FVgNfGWtTc1f2RgTDnQBbgKGAlHAmZx2RERERESkilLAQkTEC6y1pOfmrzAQHBaOn78fDWsH06BWEK4vd4qI1FwBgRf/rMzOzCympkjZWWsXGGP+BjwDjACmAVMBpzHmIJAMnAUigPrAlbjy9RkgFVgEzLDWnqj80YuIiIiISGkpYCEi4gVZFzLJvnABgKCQUPz8L642oWCFiFwOgvIELJwXNMNCvC8n2DDOGDMdGA0MwjWL4qqcR16ZwAZgJZBgrT1TeSMVEREREZHyUsBCRMQLMlIvrkYRHF7LhyMREfENz4CFZlhIxckJPrwEvGSMCQGuBa4A6gCngWPAd9badJ8NUkREREREykUBCxERL8gbsMjyD+bImTQiQgMJDfTXDAsRuSwEBga6X9usCz4ciVxOcoISW3w9DhERERER8Q4/Xw9ARKS6y866wIUM15c4A4KDOZXu5Ni5DH46lsL5zGwfj05EpHL4B+T5HkyWZlhIzWSMaWqMGW+M+cQYk2SMyTTGHDHGvGuM6VLEPhHGmHnGmP3GmAxjzD5jzBxjTKFTMo0xfsaYR40x3xpj0owxx40xbxtjWlTs0YmIiIiI+J4CFlJlxcfHM378eF8PQ6REGann3a+DQ8NJycgCIMDfj7Ag/6J2ExGpUYxHwEIzLKTGehTXclQtgE+AucDnwB3AF8aYe/NWNsaEA2uBx4Afcvb9EZgEfJazpFV+i4GFuBKGLwQ+Au4CNhtjWlfAMYmIiIiIVBkKWEiVtWLFCp577rlK6WvdunXcdtttREVFYYxh5cqVBeqMHDkSY4zHo3///h51css3bdrkUZ6RkUH9+vUxxuBwOAC46aabeOyxxzzqvfbaaxhjSExMLNB3r169Lvk4pWJknE9xv84KDMZpLQB1QgK0HJSIXDaM/8UAbZ1A68ORiFSor4B4a20ra+391tqp1tq7gT5ANvCqMSY4T/0ngF8Cf7DW9rPWTrHW9gP+AHTCFchwM8b0Ae4H1gEdrLWTrbXDcCUYjwT+WLGHJyIiIiLiWwpYSJUVGRlJ7dq1K6Wv1NRU2rdvzyuvvFJsvf79+3P48GH34+233y5QJzo6moSEBI+y9957j1q1PGf99+zZkw0bNniUrVmzhujoaHdQI5fD4aBv375lOCKpLM7sbDLT0gDXcijnLlwMUESEBha1m4hIjWOMcQctmtbS7DKpmay1K6y1awspXw+sAeoBbQGM61sL9wMpQP5v4TyXU35/vvIHcp7/11rrXlvNWvtvwAHcbIxpdulHIiIiIiJSNSnptlRZ8fHx/PKXv2T+/PlkZGQwffp03n77bU6fPs11113HH/7wB+Lj4wFITk5m3LhxrFu3jlOnTtGyZUumTZvG4MGDS9XXgAEDGDBgQIn1goODady4cbF1RowYwcKFC5k/fz6hoaEALFmyhBEjRnjMGOnVqxfz58/nyJEjREVFAbB27VqeeuopXnjhBXe9vXv3sn//fvr06VOqY5HKlZF2HpszoyI4LJxj6a7loPz9DOHB+hUrIpcXExCAzc7mQmaGr4ci4gu5a6Fl5Ty3BqKAj621qXkrWmtTjTEbgH7GmGhr7YGcTfFAKuD5rRaXj3O29wbeLO2gjDFXllDF/cdtWloaaTlfxBARqen0+6560nmrfnTOqqfSnLeKOrcVejfNGFMX6AfcAHQArsD1raNTwFFgC/AZrj/iT1fkWMTTW1PHk3r6VKX2GV63HkOfn1+ufceNG8eOHTtYunQpUVFRvPfee/Tv359vv/2W1q1bk56eTseOHZk8eTIRERGsWrWKYcOG0bJlSzp37uy1Y3A4HDRq1Ih69erRt29fZs6cSf369T3qdOzYkZiYGN59912GDh1KUlIS69at45VXXvEIWHTp0oXAwEDWrFnDkCFD2LFjB2lpaYwZM4bJkyezd+9emjdvzpo1awgJCaFbt25eOw7xnozUi/cfnEGhZGe4kmxHhATip+WgROQy4+cfgJMMsjIUsJDLS86shxuBw8C3OcW5+SZ2FbHbLlzXSq2BAzn5LpoA26212UXUz9tuaR0ouYrLunXraNCgQRmbF5GKoy9AVaRPPvmkglrWeatIOm/Vj85Z9VSa83bixIkK6btCzqwxpi3wO2AwEIIrYVxeYUBTXEGM+4F0Y8zfgZettdsqYkziKfX0KVJOJvt6GKWSlJREQkICSUlJ7pkIkyZN4qOPPiIhIYHZs2fTtGlTJk2a5N7n0Ucf5eOPP2bZsmVeC1j079+fu+66i+bNm7N7926mTZvGgAED2LhxI/7+nktfjB49miVLljB06FASExMZOHAgDRs29KgTHh5Ohw4dWLt2LUOGDMHhcNCzZ0+Cg4Pp3r07DoeD5s2b43A46NatG8HBwUjVYq2TjPOugIWfvx8p2f64lq/WclAicnnKTbytGRZyOTHGBOKa8RAMTM4TbKiT83ymiF3P5qtX1voiIiIiIjWOVwMWxphGwPPACFz5MU4Aq4AvgO+AZFx/aNcB6gPXAd2B64ExwChjTCIwzVp7zJtjE0/hdetVmz6//fZbsrOzadOmjUd5biJrgOzsbGbPns2yZcs4dOgQmZmZZGRkEBYWdsnjznXfffe5X7dt25Z27drRsmVLHA4HN9xwg0fdoUOHMmXKFPbs2UNiYiILFy4stM2ePXvywQcfAK7ZG7lLXPXu3RuHw8GoUaNwOBw88MADhe4vvpWZlo51OgEICg3nRM5yUH7GUFvLQYnIZehsdiChQNr5NE6kZNCgloLtUjGMMU8B56y1L/l4HH5AIq7rmT9ba0u9VFMlii5he2NgM8D111/PlVeWtIKUiFSajZ/5egQ12s0331wxDeu8VSidt+pH56x6Ks15O3jwYIX07e07aruA2sC/gL8Aq6y1WcXU/wSYZ4wJAG4DRuc8fo1r6SipIOVdmskXUlJS8Pf3Z8uWLQVmMuQmsp4zZw4LFixg/vz5tG3blvDwcMaPH09mZmZhTXpFixYtaNCgAT/99FOBgEX9+vW59dZbGTNmDOnp6QwYMIBz584VaKNXr17MnTuXQ4cO4XA43LNEevfuzeLFi9m9ezcHDhxQwu0qKiM15eKb4FCyUlzBi9ohAfj5aTkoEbn8XDABhAJ+1klqmgIWUqGewnXN4bOARU6wYgnwW+At4KF8VXJnShQ1IyIiX72y1i8Va22xV5ImzxKWoaGh7hxsIiI1nX7fVU86b9WPzln1VJrzVlHn1tsBi6+AKdbaLWXZKSeo8R7wnjGmEzDby+OSaiwuLo7s7GyOHTtGr169Cq2zYcMG7rjjDoYOHQqA0+lk586dXHPNNRU2roMHD5KcnEyTJk0K3T569GgGDhzI5MmTCwRacnXu3JmgoCAWLVrkzsMB0KlTJ44fP86SJUsIDw/3ah4O8Q5rrXs5KGMMtWvX4qpgJ2fTLmg5KBG5bFm/i39apqSmQcOIYmqLXJJjgM8yOOYEKxKA4cDbwEhrrTNftZJyTnjkuMhJxH0YaG6M8S8kj0VJOTFEihUzZZWvh1Bj7fv9Lb4egoiISI3h1YCFtfYmL7SxGbjkdqTmaNOmDUOGDGH48OHMnTuXuLg4jh8/zurVq2nXrh233HILrVu3Zvny5XzxxRfUq1ePefPmcfTo0VIHLFJSUvjpp5/c7/fu3cvWrVuJjIykWbNmpKSkMGPGDH7961/TuHFjdu/ezRNPPEGrVq3o169foW3279+f48ePExFR9M2a0NBQunbtyssvv0yPHj3cgY2goCCP8sBA3QCvarIyM8jOck0gCwoNxd/fnzqh/tRRsEJELmf+F/+0TE312b1kuTysB3zyjY58wYp3gGHFJMn+GehhjAm31qbmaSMc6AHstdbmTYq9FrgvZ9u6fO3l/tGZv1xEREREpMbw8/UAREojISGB4cOHM3HiRGJjYxk0aBCbN2+mWbNmADz55JN06NCBfv36ER8fT+PGjRk0aFCp2//666+Ji4sjLi4OgAkTJhAXF8dTTz0FgL+/P9u2beP222+nTZs2jBkzho4dO7J+/foik2EbY2jQoAFBQUHF9h0fH8+5c+fc+Sty9e7dm3PnztGnT59SH4dUnoxU9z0HgsNr+XAkIiJVSJ6Axfk0BSykQj0LRBljZpq8axpVsDzLQA0H/gEMLSJYgbXWAq8DtYD/zbf5f3PK/5yv/E85z88ZY9x/RBpjBgDxwCfW2v2XeBgiIiIiIlWWt5NujwLWWGv3ebNduTw5HA7368DAQGbMmMGMGTMKrRsZGcnKlSvL3Vd8fDyua8rChYaG8vHHH5fYTnFt1K1b173d6by4YsDTTz9d6HE9/fTTPP300yX2Kb6RnjdgERbuw5GIiFQheZZAPH9eAQupUB2BvwJTgV8bY1YC+yhimShr7V+91O9TwAggBdgJPFlIvGSltXZrzusXgDuAycaYOOC/QAfgZlyJrufnG+caY8zrwP3Af40xq4AmwL3ASeBRLx2HiIiIiEiV5O0cFn8BrDEmCViT+ygp0ZuISHWSfeECWZkZAASGhHA05QJhQU5qhwTg76eJayJy+TIBF/+0TD+f7sORyGUgEbCAAWKBJ0qo762ARUzOcy1gehF19gFbwZ2XojfwDPBroA9wGJgLzLDWFhZgGQt8CzwI/A5XcOQ9YLq1drcXjkFEREREpMrydsBiB3ANcBUwEte3jzDG7MEzgHHEy/2KFCkpKanYXBY7duxwLy0lUhq5ybYBAkLCOJTiCl7UCg6gRUMtDyUily+/PEtCpaVrhoVUqL/iClhUKmvtSFzXOWXZ5wzwWM6jNPWdwMKch4iIiIjIZcXbSbevM8Y0wLW+ap+c56uBljmPMQDGmJ1cDGA4rLXHvTkOkbyioqLYunVrsdtFyiLj/Hn363S/IMC1dHXtECXcFpHLW94ZFhlpmmEhFScncCAiIiIiIjWMt2dYYK09ASzPeWCMaYRnACM2z2NsTp0dwGfW2t95YwzGmKFAL1xr27YFgoBR1trEfPUCgdtzHp2BaFzf1NqBa5r5n4pKoldEv/twzS4pzFprbXwZDkO8JCAggFatWvl6GFJDWKeTCznfGg4IDOJU5sVtdUK9/itVRKRa8Q+4GLjNSFfAQkRERERERMqmwu+uWWuPActyHhhjruBi8KIP0Bq4FtdSUl4JWAAzcQUOTuBaI7aoIEJLXIGVFGA18D5QB7gNWAQMNMbcbovLpFzQGfIlz8uxrwxtiEgV5bxwMUIREBpGWoYrphka6E9QgH9Ru4mIXBbqhPqTkfO6VWSwT8cilxdjTCugIZBsrd3p6/GIiIiIiEj5VPrXga21R40xX+Ca9RAC1AcivdzN/cAua+1+Y8wU4Pki6p0D/h/whrXWvSi9MWYi4ABuBe4G/lGGvk9ba58pz6BFpOrLzsxwv870DwacANQJ1XJQIiJ1QgM4lvO6UZifT8ciNZ8xxh+YCozDFawAeAMYnbN9CK6/9R+w1n7nk0GKiIiIiEiZVErAwhhzJRdnVcQDMbmbgGRgJbDWW/1Zaz8tZb1DuGZS5C9PNcbMA/4O9KZsAQsRqaGstTgvXADAz9+fc1nGvS1CAQsREfzy5LC4kJFRTE2RS5MTrPgXcDOQBXyPa8Z2XhuAN4G7AAUsRERERESqgQoJWBhjovBc9ql57ibgGPAurgDFWmvt9ooYgxdcyHnOKuN+wcaYkUAUcBbYbK39sryDyAn2FKdx7ouMjAzS0tI8NjqdTnJXtHI6neUdhnhZ3nOh81I9OJ1O13JQOf+eAkPDSM10LQcVHOBHkL8p17m01uJ0Ogv82xXvSM+zhn661tOvNnTeqp/c82T8L/5pmZaaqt9tVVxG9Q4qPQT0Az4DhltrfzbGePxHbK3dZ4zZjSuo8ZwPxigiIiIiImXk1YCFMeZPuIIULXEFJ8CVQ+IdLgYofvBmnxVodM7zJ2XcrzGQkLfAGLMZGGyt3V2OcRwobcUvv/yS3bs9u6hfvz6hoaEYYzh79mw5upeKlpKS4ushSCk5My/mrzjvvDi7Itg4y/XvKysri7S0NNLS0vjhh+ryq7H6Wrduna+HIOWg81bN5AlYfPvdD5wMKeufUVKZTpw44eshXIoRwEngN9baU8XU+x5oXzlDEhERERGRS+XtxYXvxxWs+C/wANDGWtvUWvtba+3i6hKsMMY8CAwAPrPWfliGXROAG4ArgHAgDtc09E7AamNMbW+PVcquXr16rFq1ytfDkGrGtRxUTsDCGM4T5N4WVunZgEREqqbz9uIvxF2nyjpJVaRMfgF8VUKwAuAM0KgSxiMiIiIiIl5QEbfZDNABmAU4jDG5Myt2VEBfXmeMuRX4I7AfGFqWfa21M/IVbQWGG2MAhuEK4swr45CiS9jeGNgM0KVLF1q2bOmxMSkpiezsbAICAoiIiChj1zVXaGhoqX4eLVq0YP/+/R5ls2fPZvLkyQA4HA5uuOEG6taty6FDhwgJCXHX27x5M127dgUgOzublJQU6tevzxtvvME999zjnlkxduxYli1bxu7du4mJifHoe+jQoTz77LOXerjiBRnnz5ORs+RTUGgYTSNrcTY9i7TMbOrXdc1iKqvjx48TGhpKrVq16Nixo7eHLLiWqcn9hv7111/v8W9Uqi6dt+on95wFBV780zI0MICbb77Zh6OSkuSfmVvN+AOlWdOqSSnriYiIiIhIFeDtgEU0nsm178l5WGPMCWAd4AAc1toql/jOGDMQWA4cBfpaaw97qenFuAIWPShjwMJae7C47XlvkgYHBxMaGuqx3c/Pz72uvp+ftyfUVC0XLlwgMLB0iY/9/PxK/fN49tlneeCBB9zva9eu7d4397l27dr885//ZPDgwe56CQkJNGvWjKSkJPz8/IiIiOBXv/oV69at47777nPXW7t2LdHR0axbt44WLVoAsHfvXvbv388NN9xQ489bdZF5PtX9OqRWLcKCAwkLvvRE28YY/Pz8CvzbFe8LCQnRz7ka0nmrXvIGLGzWBZ27Ki44ONjXQ7gU+4F2xVUwxgQC1wG7KmVEIiIiIiJyybx6J9Rae8ha+5a19n5rbSugGTAcSARSgF8DLwPbjDHHjDHLjTHjjDFtvTmO8jDG3AKsAE4Afay1e7zYfO4CweFebLPGi4+P53/+53944okniIyMpHHjxjzzzDPu7cYYXn31VW6//XbCw8OZNWsWAP/85z/p0KEDISEhtGjRghkzZpCVVf5lKWrXrk3jxo3dj/DwgqdxxIgRLFmyxP0+LS2NpUuXMmLECI96ffr0weFwuN//+OOPpKen8/DDD3uUOxwOgoOD6datW7nHLd5jrSUjN2BhDMGhYb4dkIhIFRWQJ2BBVmbRFUUu3UdATM5SrkV5FGgIaC1QEREREZFqokJXXs+ZHfBWzgNjTN4ZGL2Bu4A7c7YlW2t9sr5sTrDiXVyJ+/pYa3/ychddcp73ebndcjv68v/hPFe5NxL8agdxxaNxZdrnjTfeYMKECXz55Zds3LiRkSNH0qNHD2666SYAnnnmGX7/+98zf/58AgICWL9+PcOHD2fhwoX06tWL3bt38+CDruvYp59+ulzj/v3vf89zzz1Hs2bN+O1vf8tjjz1GQIDnP51hw4YxZ84ckpKSaNasGe+++y4xMTF06NDBo16fPn14/vnnOXz4MOHh4axfv54ePXrQt29fFi9e7K63Zs0aunXrpmVQqojMtDSc2dkA+AUGYTTrRUSkUH55/3/MuuC7gcjlYA4wElhkjLkGWJZTHm6M6YBrlvcEXF8c+qNPRigiIiIiImVWqXfdrLUHrLV/tdaOBq4HpgOncOW9qF+ZY8lljBmAK1hxClewotgp48aYQGPML4wxLfOV/8IYU+Br18aYXwB/yHn7dy8N+5I5z2WSfbZyH+UJkLRr146nn36a1q1bM3z4cH71q1+xevVq9/bf/va3jBo1ihYtWtCsWTNmzJjBlClTGDFiBC1atOCmm27iueee8wgGlMX//M//sHTpUtasWcPYsWOZPXs2TzzxRIF6jRo1YsCAASQmJgKwZMkSRo8eXaBejx49CAoKcs+m2LBhA71796Zjx46cOHGCvXv3Aq5lovr06VOuMYv3ZaSmuF87A4I5di6D9AvZWGt9OCoRkarHI2CRrYCFVJycpVsHAaeB/wHWAxa4G1d+tyfImeFtrT1ReCsiIiIiIlLVVOgMi7yMMVfgmlnRJ+fRKndTzrPX7vwZY+4Heua8zV1u6n5jTHzO68+tta/nBBPeA4Jx5dYYXEji3H3W2sQ875sC3+NaNzcmT/l9wARjzLqcbalAG2AgEAg8b61dd4mH5jV+tYOqRZ/t2nkuTdykSROOHTvmfv+rX/3KY/s333zDhg0b3MtDgSvhdXp6OufPnycsrGxL+UyYMMFjLEFBQYwdO5bnn3++wLrPo0eP5ne/+x1Dhw5l48aN/OMf/2D9+vUedcLCwujUqRNr167llltuYcOGDUyZMoWAgAC6d++Ow+HAWktSUpICFlWEtZb03ICFMaQSROq5DI6dy6BFg3BqhVx6HgsRkZrC+PnhxA8/nPhphoVUMGvtOmPMtcBjuP7mboHrC1kHgH8Dc6y1h3w4RBERERERKaMKC1gYYxrgGaCIzd2Up9oPwJqch8OL3fcERuQr65HzyPU60BhXsAJcAYfCrMWVg6Mka4CrgTigFxCGawr6h8Aia+0npRl4ZSnr0ky+kj+JtjHGnUQcKJBPIiUlhRkzZnDXXXcVaMsbyyt16dKFrKws9u3bR2xsrMe2AQMG8OCDDzJmzBhuu+026tcvfNJQnz59eOedd/j+++9JT093LxvVu3dv1qxZg9PpJCwsjC5duhS6v1SuzLTzHstBpTldv8L8jSEsuNJiviIi1Ua2fwB+2Zn4ORWwkIpnrT0KTMl5iIiIiIhINefVu23GmLu4GKS4Ju+mnOefyBOgsNYe8Wb/uay1I3GtaVtSPQeeAZTStL2vsH2stWtxBTfEhzp06MCPP/5Iq1atSq5cDlu3bsXPz49GjQqmWwkICGD48OG88MIL/Pvf/y6yjT59+jBz5kyWL19Oly5d8Pf3B+D666/nT3/6E9Za99JR4nvpKZ7LQTldsQtqhwbiV3BGlojIZc/pFwjZmfg7L2CtpZDZqyKXzBhzPXDEWruzhHqtgSZVaaaziIiIiIgUzdtfD16Oa2mn3CvTfVwMUKzRlGypaE899RS33norzZo14+6778bPz49vvvmG7du3M3PmzDK1tXHjRr788kv69OlD7dq12bhxI4899hhDhw6lXr16he7z3HPP8fjjjxc5uwKge/fuBAcH8+c//9ljyanOnTtz7Ngx/vnPfzJ16tQyjVUqhrWWjPOugIXxM6Sai0GkOiGaXSEiUhjrHwgXIMCZxYVsS1CAAhZSIRxAAjCmhHpPAKMB/4oekIiIiIiIXDpvJ90+BLyF66KgubW2hbV2jLX2LQUrpDL069ePf/3rX3zyySd06tSJrl278tJLL3HVVVeVua3g4GCWLl1K7969ufbaa5k1axaPPfYYf/rTn4rcJygoiAYNGhT7bdKQkBC6du3KuXPn6Nmzp7s8ODjYXa78FVWDazko1xJkwaHhpGW7zqufMcpdISJShIZ1awFQK8AS4KdghVQofcBERERERGoYr35F2Fob7c325PLmcDgKlK1cudL92trC87T369ePfv36FdluUfvl16FDBzZt2lRsnfj4+GLbGzRoUKHbP/vsM86ePVugfM2aNaUam1SOvMtB2eBQslNdr2sF++Ovm3AiIoUKCwvlHJCdmYFWg5IqoB6Q7utBiIiIiIhI6WhNExGRQljrzLMclB8pzgAgC4A6oZpdISJSlIDgi8vnZV3IJDAo2IejkZrEGNMsX1GtQspyBQDXAjcDuyt0YCIiIiIi4jXeTroddSn7W2t/9tZYREoye/ZsZs+eXei2Xr16FZs4W2q+zLS0i8tBhYVzIt2VbdvPQG3lrxARKVJAngBFVkaGAhbiTftw5cvL9eucR3EMriVrRURERESkGvD2XbeDeF5ElIVFMz6kEj300EPcc889hW4LDQ2t5NFIVZN3OShnUCjZF1y/2kL9XTksRESkcKnZF1Ok/XziLC1rR/hwNFLDJHHxWqMZcB44UUTdTFzXJu8Cr1b80ERERERExBsqKkBQnrt5ugMolSoyMpLIyEhfD0OqIOt0kpF6cTmoOhG1MUEXOHE2jXCFVUVEinX0vBP/nNf7jp6iZfMrfToeqTmstTG5r40xTuAf1trRvhuRiIiIiIh4W0XdevsKWAK8ba09V0F9iIhUiIy0NJxO13JQIeHh+Pv7USc0EHMhzccjExGp+vzzLAGVlqbfm1JhRgE/+XoQIiIiIiLiXX4lVymTe4FPgF/hmnp92BjzhjHmei/3IyJSYTJSL8ZZg8Nr+3AkIiLVT0DQxaTbaeczfDgSqcmstW9Yazf4ehwiIiIiIuJdXg1YWGv/Ya0dAMQAzwBHgWHAGmPMLmPMNGNMU2/2KSLiTdbpJD01FQA/Pz+Clc9ERKRMAoIvzrBI1wwLqWDGmJbGmBeMMZ8bY340xryQZ1sXY8yDxpg6vhyjiIiIiIiUnrdnWABgrT1orX3OWtsSuBF4G4gCZgL7jDEfGmPuNsYEVkT/IiLllZF2HpuzHFRgWDhJp9I4k3YBp7Ul7CkiIgCBeZaEykhP9+FIpKYzxowEtgOTgO5AK6BBniphuGZ931npgxMRERERkXKpkIBFXtbaz6y1Q4EmwP8DtgL9gXeAHRXdv4hIWWSkpLhfXwgI4UzaBfYnp3IiJdOHoxIRqT6CQi4GLDIVsJAKYozpCvwZyASeALoAJl+1tcAZ4LbKHZ2IiIiIiJRXhQcscllrz1prX8WV5+IDXBcUmp4tIlWG0+kk/XzOclD+fpzN8ndvqxMa4KthiYhUK8F5loTKzFAOC6kwT+C6nrjFWvuitXZz/grWWieuL0tdU8ljExERERGRcqqUgIUxJsQYM8wYswbYietbTmeBv1VG/3J5WbFiBTfddBMNGzYkIiKCbt268fHHHxeo98orrxATE0NISAhdunThq6++8tgeExODMYalS5cW2Pfaa6/FGENiYiIA9913H/379/eo89FHH2GM4ZlnnvEof+aZZ4iJibmkY5SKkZlnOaiA0HDOX8gGIDTQn+AA/+J2FRGRHMEhIe7XmRmaYSEVpgfwlbX28xLqHcE101tERERERKqBCg1Y5CS6W4zrQiERuB5YD4wAmlhrH6vI/uXytG7dOm666SY+/PBDtmzZQp8+fbjtttv4v//7P3edd955hwkTJvD000/z3//+l/bt29OvXz+OHTvm0VZ0dDQJCQkeZZs2beLIkSOEh4e7y/r06cOGDRvIyspyl61Zs4bo6GgcDofH/mvWrCE+Pt57Byxek55nOahM/4s33OqGBfliOCIi1VLegEWWZlhIxakLJJWiXiig/8hFRERERKoJrwcsjDENjTETjTHbgS+AB3DNppgNtLbW9rHWvmmtTfN231JzHD9+nMaNGzN79mx32RdffEFQUBCrV68udt/58+fzxBNP0KlTJ1q3bs3s2bNp3bo1H3zwgbvOvHnzeOCBBxg1ahTXXHMNr732GmFhYSxZssSjrSFDhrB27VoOHDjgLluyZAlDhgwhIODiEkF9+vQhJSWFr7/+2l3mcDiYMmUKX375Jek5a3inp6fz5ZdfKmBRBTmdTjLcy0H5c+bCxV+PdcMCfTUsEZFqJzws1P06xDh9OBKp4ZKBq0pRrxWuL0+JiIiIiEg14NVF2Y0x7wEDc9q9ALwLLAE+ttZab/Yll2bx4sWk5Pk2eWWoVasWY8eOLVXdhg0bsmTJEgYNGsTNN99MbGwsw4YNY9y4cdxwww1l6tfpdHLu3DkiIyMByMzMZMuWLUydOtVdx8/PjxtvvJGNGzd67HvFFVfQr18/3njjDZ588knOnz/PO++8w9q1a/nrX//qrtemTRuioqJYs2YNXbt25dy5c/z3v//lX//6Fy+//DIbN26kT58+fPHFF2RkZNCnT58yHYNUvMzzF5eD8g8JIyPL9bpWcACB/n44nbrpJiJSGs0aRbAl53WHpuHF1hW5BJuA24wx11prvyusgjGmB3At8FaljkxERERERMrN21lk7wAs8DWuC4NkIBIYbIwpcWdr7d+9PB4pQkpKCufOnfP1MIo1cOBAHnjgAYYMGcKvfvUrwsPDef7558vczosvvkhKSgr33HMPACdOnCA7O5srrrjCo94VV1zBDz/8UGD/0aNHM3HiRKZPn87y5ctp2bIlv/zlLwvU69OnDw6Hg6lTp7J+/XratGlDw4YNuf7663E4HO7tzZs356qrruLs2bNlPhapOOmpF/89ZPgHQ87qXloOSkSkbAKCLibd1pJQUoFeAQYB7xpj7rPWbs270RhzNa4vTllgUaWPTkREREREysXbAYtcv8p5lJUCFpWkVq1a1aLPF198keuuu45//OMfbNmyheDg4JJ3yuPvf/87M2bM4J///CeNGjUqc/8At9xyC2PHjmXdunUsWbKE0aNHF1ovPj6e8ePHc+HCBRwOh3vZp969e7N48WIAd+BCqpb8y0GdvOAHWIwxRIRW1K9JEZGaySNgkamAhVQMa+1qY8w8YAKwxRizG1dwop8xZhtwDa7lb1+w1m7y4VBFRERERKQMvH0nbh2uCwWp4kq7NJOv7d69m59//hmn08m+ffto27ZtqfddunQp999/P//4xz+48cYb3eUNGjTA39+fo0ePetQ/evQojRs3LtBOQEAAw4YN4+mnn+bLL7/kvffeK7S/Pn36kJqayubNm1mzZg2PP/444ApYjB49mpMnT/Lll19Wm5/95STzfCrW6frV5R8SRlaW63VESAABfl5P9SMiUqMF5PlywQXNsJAKZK2dZIz5EXgGV64KgCY5jxPADGvtKz4anoiIiIiIlINXAxbW2nhvtieXt8zMTIYOHcq9995LbGws999/P99++22pZkq8/fbbjB49mqVLl3LLLbd4bAsKCqJjx46sXr2aQYMGAa5v2K9evZpx48YV2t7o0aN58cUXuffee6lXr16hdVq2bEl0dDTvv/8+W7dupXfv3gA0bdqUpk2bMnfuXDIzMzXDogpKz5PPpVZEBK0DgjmdlkmtYM2uEBEpq8A8AYvt+49zmw/HIjWftfbPxpjXgTigBa5ZFQeAzdbaLJ8OTkREREREykx346TKmj59OmfOnGHhwoXUqlWLDz/8kNGjR/Ovf/2r2P3+/ve/M2LECBYsWECXLl04cuQIAKGhodSpUweACRMmMGLECH71q1/RuXNn5s+fT2pqKqNGjSq0zauvvpoTJ04QFhZWbN99+vRh0aJFtGrVyiNHRu/evXn55ZfdybmVwLnqyL8cVFBoKMYYQoNCfTwyEZHqKSDoYu6fsynnfTgSuVxYay3w35yHiIiIiIhUY1rrRKokh8PB/P/P3n3HyV3V+x9/nWnbW7LpvZNGCxAgEBJKAgKiVBVLRBBRvAo2ftcGF7yiV722a0MFBJUiiDQhIZACISGBhBQS0kivm+270+f8/vjOzuwmu9nZ3ZlteT8fj33sfMs5389yssPO9/M95/Pzn/PII49QWFiIy+XikUceYenSpfz2t789bts//OEPRCIRvvSlLzFo0KDE11e+8pXEOTfccAM/+clP+N73vsepp57KmjVreOmll44pxN1Y3759yck5/k3s2bNnU1NTk6hf0eCCCy6gpqZGsyu6oWB9Hc59DsjOy8cY08URiYj0bG5vMmHhioa7MBIRERERERHpadI6w8IYM9hau6+79CM916xZswiHm97kGDlyJFVVVa22XbRoUUrXuP3221tcAgpgx44dx21fWVl5zL558+Yxb968Y/Z/5jOf4TOf+UxKcUnnCjZaDiqrC4rRN6ivDiUSJ5I+gUCIaNBJQtVXh4iFlKfvCTRuPU/DmBm3xRhDxOXBE4tglLCQDDPGDAVmAYOB7BZOs9baezstKBERERERabd0Lwm1xRjzK+BH1tqKtjY2xvQB7gK+BOSlOTYRkSZi0WiT5aB2V0cpjAQozvHh83TODdJIKMqhD2qZ/9PdnXK9E5OTiHrs1be7OA5pG41bz5OPcVl2DDlCzOWFWARXTCUEJDOMMW7gl8DnSc4aP3qapI3vs4ASFiIiIiIiPUC6ExbzgW8CXzbG/BN4GFhirQ221MAYk4XzVNQ84CqcJ6OeSXNc0otMnjyZnTt3Nnvs97//PTfeeGMnRyQ9VaCuNjGrwWTlUh+OUl8VJRK1DC7ObA2LcDBKOBTFXxMmHIxm9FoiIp3FxgybVxwi5vZCxI87FsZaq+X2JBO+A9wGRIDngS1ATZdGJCIiIiIiHZbWhIW19qPGmIuB/wU+AXwcCBtj1gAbgSNANVAI9AUmAacAXpynn9YDd1prX0lnXNK7vPjii8csF9XgeDUoRI7mr6lOvK4zWYnXxbnejF0zGolRVxkkUBfGRpNLQPUbXkB+SdZxWkp7RGNRDh06BED//v1xu9xdHJGkQuPW80RjUXatcybXhvwRrNt5H/XGIgQjMbK9GkNJu3mAHzjfWqti2yIiIiIivUS6Z1gQTzZMNcZcAtwOzAHOin9Bcmp2gyDwHPBrJSokFSNGjOjqEKQXiIRChAMBANw+H9UR520py+MmJwM31mIxS311CP9RtSqM29BveAEXfWSSnkDOAL/fz/z5uwC4eM5J5ORkduaMpIfGrefx+/08+PVl2KghFIiCxym87bER/KGoEhaSCQOBRUpWiIiIiIj0LmlPWDSw1i4AFsSXfJoBnAYMAIqASuAQ8A6w7HhLRkl6qJivSFOB2uSqEdaXC/FJO8W53rQmDqy1BGrD1FUFiTWaUWFcBpfHkFfkw+fzKVkhIj2e8Vhs1BAORMHjzLBwE6MuEKQkz9fF0UkvtA8tASUiIiIi0utkLGHRIJ6MeDX+JZ3M6/USiUSIRqNUVlZSXFzc1SGJdDlrbXI5KAPV1ocz+QuKc9K3HFTQH6G2IkA0HGuyP6fARwQ/1FoMBo8n42/FIiIZ5/JYYkEIB6IYTzJBUVfnh74FXRiZ9FL/BD5pjMnSw08iIiIiIr2H7pL1cnl5efj9fgD279/PoUOH9CR3NxGJRAA4fPhwF0dy4onFooQDzr0Nl9tFoG4fAG4X7PK3PB5tGbNIOEYs0jRR4XIb3F4XlUGIRpOFtvPy8tr8M4iIdDcm/ldlKBilpE8efqcMCVkm2nIjkfb7L+AK4DFjzC3W2rKuDkhERERERDqu1yYsjDGfBM4HpgFTAR/wWWvtQy2cXwjcDVyDsybufuBJ4B5rbW0brz0X+E/gdJzHtt8G7rPWLmzPz9IRpaWlRKNRKiqcQpiNb5JK17HWJhJJOTk5SiJ1Mn9NdaJ+Bdl5VEec9aCKc7z4XM23acuYRcIx/NWhxLbbY8jK9YLLdczvYElJCaWlpR34aUREugeXJ77snYVh/YrYvNXZLE7fxDWRBGtttTHmHGARsM0Y8zawC4g1f7r9XLqu3ZbPGcaYu4HvH6e7UdbaHc206zafJ0REREREOlOvTVgA9wEjgDKc5EOLlZqNMXnAYuBUYD7wd5yaG18HLjDGzLTWBlK5aPwDzCPAYeCh+O4bcOp5XG+t/Ud7fpj2MsYwYMAA3G43dXV1RCIR1bPoBmKxWOLmd35+Pi5XC3fJJe1isShHdu/ARmO4PG4O5A3DH3Z+J84dk4fH0/xYtGXMyvdU4691kiAlA/Mo7Jvd5LgxzjJQeXl5lJaWKmElIr1CImEBuFzJJaHCIa3WI+kXr5P3EDAFMMCs45xugbQlLGjD54xGHgZ2NLO/8ugd3e3zhIiIiIhIZ+rNCYubgS3W2p3GmLuAHx7n3G/iJCt+ZK29q2GnMeZ+4FvAHa20bzi/BPgVzoeX0621e+L7fwSsBn5rjHnZWtupBQKNMfTr149+/fp15mXlOPx+P5s2bQJg2rRp5OTkdHFEJ471i15h7ROPADDqvIv5waFC/OEo540t5ZYrJrTYLtUxO7SzmvlP7QagsDSbC++ZjMuthJSI9H6m0V+Vxp2cVhEJKmEhGXEPcCVQgXNzfwvQplnRHdCWzxkNHrLWLmrtpO76eUJEREREpLP02oSFtfaVVM4zzqPNN+N8wLn3qMP3Al+KH0/lg8h1QDHw/YYPF/FY9hhjfo2z5NRHgb+kEpuIpN97i5MrKZw991LeGj6G597dz7A+6UkavfPyrsTr0+aMULJCRE4YjWdYGFfyT8xAfHaaSJp9HGd2wqnW2t2deeFUP2e0kz5PiIiIiMgJrdcmLNpgHDAYeNlaW9f4gLW2zhjzBjDXGDMshQ9Ds+Lf5zdz7GWcDxgX0IYPGMaYoa2cMrDhRTAYTCxZI91bIBBo9rVkVvXhg+x+bx0AxQMHUzx0OMZG+OjJzuyj4/3+pDJmVYf8bFvtVJnNKfAy4tRi/U52Mf2u9Uwat54nEAhgGiUsPjicHLdX1+3iE+NansEmXSfYs2e/9Afmd3ayogNmGmOm49TY2AK80kKdvFnx713yecLv9+tvF5F20O9Nz6Rx65k0bj2PxqxnSmXcMjW2Slg4CQtwPjg0ZwswN35eax+IjtfXlqPOSVXKH8JWrFjBtm3b2ti9dLUlS5Z0dQgnjPJ17yReuwYMYcGCBe3qp6Uxq1iXBdZZt903uJZXX8vkA5jSVvpd65k0bj2Hy5NcBqq6qo6Gre3btjN/fnP3XqWrlZWVdXUIHdFSge3u6p6jtiuNMV+x1h6deOjSzxNLliyhtLS0jd1Lz6GP/5mSuf/PacwySePWM2nceh6NWc+Uyrhl6vNERtcqMcbMNMbMyOQ10qAo/r2qhePVR53X3r7a0o+IpJm1luoPNie2s4aPTWv/0YChbq9ze854LHnDQmntX0Sku2tcw8LVaCMWiXRBNHIC+BswyxhT3NWBtOJd4CZgNJADjAK+jFMI/CFjzIePOl+fJ0RERETkhJbpVNSi+NeFGb5ObzasleMDgZUA06dPZ8yYMZmPSDosEAgknhqeOXMm2dnZXRxR77fv/Y1sq3XqUxaPncR97/fl0sn9+dT0oZw0sKDV9q2N2Vv/2sF+ux+AqbOGcsblw9P8E0h76HetZ9K49TyBQICXHluW2C7tO4CK+DPdfUqKmTNnThdFJsfTw2fm/hBn+aQXjTGfs9Zu7OJ4mmWt/edRu3YAvzbGbAQWAPcBz2Y4jJQ/T8ycOZOhQ1tbQUp6rDdf7eoIeq2M/X9OY5ZRGreeSePW82jMeqZUxm3Pnj2tntMemU5YVAD7MnyNjmp4eqmlJ5UKjzov1b6OdKCfhMbF9prj1Ax3ZGVlkZOTnsLB0nmys7M1bp1g6/LXE6/39ptC/YEoT6/Zz5mjSzltVP829XX0mAXqwmx606ld4fa6mDZnFDk5vvQELmmj37WeSePWczSuYeF1Jd8DY5GIxrCbysrK6uoQOuIlwAucDawzxuyi5WWirLX2os4MrjXW2oXGmG3AVGNMobW2YfZEl36eyMnJ0e+rSDvo96Zn0rj1TBq3nkdj1jOlMm6ZGttMJyzW0PY1Vjtba2vBtlbj4ui+zoi3OfoDRlv6EZE0CgcDbF6+FABvdg5PH+kDQK7PzZWnDO5w/+sW7SESjAIw6dxB5BYqWSEiJx5XkyWhkvUsIj27sLN0X7MavXYBI+NfzbEt7O9qZcBYIJfkck/6PCEiIiIiJ7RMJyx+CfzTGHO5tfaFDF+rvbbgzAKZYYzJs9bWNRwwxuQBM4APrLWpFKtbDHwcmAMsP+rY3EbniEgn2vrWm4T8fgCyxp1GZa3zJOEVJw8iP6tjb4PhYJS1rzoPLhqX4dRLtBSUiJyYXN7kPWGXTb63RkJKWEhGzO7qADoi/jljMlCHk7hooM8TIiIiInJCy3TCYjXwa5ykxUPAUzjrtvqbO9lauyvD8TR3TWuM+SPwPeC7wF2NDn8XyAf+u3EbY0wuMByoPyrmJ4AfAV82xvy5Yfq1MWYocDvOh5Gj17EVkQzbsCS5ruFbnmSdlxvO7Hhy4b039hGoCwMw7sz+FJZqqqOInJgaLwlFrFHR7XCoC6KR3s5a2+1v2htjCoBB1trNR+3PAR4ACoAHrbWNK9Pr84SIiIiInNAynbD4IP7dAJ+Lf7XEpjMeY8zNwHnxzanx7zcbY2bFX79urf1j/PWPgauAbxljTgPeAU7HebJpJfDzo7o/C3gN5+mmhv6w1lYYY24HHgHeMcY8Hj90A9AXuMFaW5OGH09EUlRddpid69YAkFvan4UVeWBgXP98Th9e3KG+o5EYaxYkc5anzxnRof5ERHoyV5OEhTv5UjMspJdpw+eMvsAmY8xKYCNwABgAXAwMBdYB32jctz5PiIiIiMiJLtMJi9103Zqx5wGfOWrfjPhXgz8CWGvrjDEXAHcD1+BMMd8P/BS4x1rb7IyQ5lhrHzXGlAH/CXwW5+d/G7jPWvtK+34UEWmvjUtfA+u8DVUPOQWqneWgbjhzWJMik+2x+a2D1FY4N+JGnlxK3yH5HQtWRKQHM8kcBTbaKGER0QwL6XVS/ZxRDvwG52GnDwElODPNN+Isnfvr5j5n6POEiIiIiJzIMpqwsNaOzGT/rVx7HjCvDedXAXfEv1o7dxHOrJGWjr8EvJTqtUUkM6y1TZaDejEwBACv23D16UM71nfMsnr+zsT26XM1u0JETmzGBcZtsVFDLJxMWJxUmt2FUUlvZ4w5A7gWmAAU0vzf6NZae1G6rpnq5wxrbTXOMk7tuYY+T4iIiIjICSnTMyxERLrM/i3vU7HPKYidO2I8O0NOfYk5kwbSJ8/Xob4/eLeMigP1AAweV8ygMUUdC1ZEpBcwHidhEQ4n7xnnuGJdGJH0ZsaYn+A8bNTwD87SNGHRsN1VM75FRERERKSNXF0dgIhIpry3ZGHideHUcxnRNxdwloPqCGstb7/caHbFpZpdISICyToW4UDynnE4qBoWkn7GmOuAO4G9wK3A/PihuTizGt7ESVbcD1zYFTGKiIiIiEjbdcoMC2PM+cCXgXOBfsCj1trPxY9dglMz4pfW2gOdEY+I9H6RUIhNy5YA4MnK4rprP8THs3JYuaOcM0f26VDf+7dWc2hHNQClw/IZPqlj/YmI9BYm/pdlOGhxuT3EohEiSlhIZnweiAIXWWu3GGPOBbDWLgAWAL8xxtyLU9T6ia4LU0RERERE2iLjMyyMMd8BFuGsLTsY8NJ0qnYV8C3g6kzHIiInjm1vryBYVwfA+LPOxZeTi8tlmD66Ly5Xx4ptr31lb+L16XNHdLh4t4hIb9EwwwILLq+z9F5VTV0XRiS92GnACmvtluOc831gP/CdzglJREREREQ6KqMJC2PMZcB/4UzVvh4YcPQ51tq3gMPAFZmMRUROLBsWJ5eDmnRB2upsEqpysW9zFQCF/XIYc1q/tPUtItLTGU+yVEBd1EnmHqmq7apwpHcrAHY12g4BGGPyG3ZYa2PACmBG54YmIiIiIiLtleklob4CBIHLrLUbgJaeRH4XGJfhWETkBFFbUc6Od98BIKekL+H+o9PWd832ZLHu0+cMx+VWKSARkQauRn9ZWpcXAHcsQixmOzy7TeQoh4HiRttl8e8jgfWN9ucBhZ0TkoiIiIiIdFSm77SdCbzVkKw4jsPAwAzHIiIniI2vL8LGYgDs6zeZi/93Kdf/7k32Vfo71G+41uA/4NyNyy30MeFsvW2JiDTmajTDwridhIXHRghEol0VkvReO4ARjbZX4yw7+4mGHcaYgcAFwM5OjUxERERERNot0wmLPCCVQtpFnRCLiJwArLVsWPRKYvulwFAAtpfVUpqf1aG+az7w0VCC55SLh+HxujvUn4hIb9N4SShczow0r41QHwh3UUTSiy0ETjLGjIxv/xsoB75ljHnSGPNTnOWg8oCnuiZEERERERFpq0wvCXUQGJvCeROA3RmORUROAHs3beDIHmdJa/fAUZS5iwC4+vSh+Dztz4vWVgSp3+s8LezLcTPl/CEdD1ZEpJdpboYFQK0/QGlhTleEJL3XY8BgYBiww1pbZ4z5bHz/NY3Oexv4YRfEJyIiIiIi7ZDphMXrwMeMMTOstW80d4Ix5gqcpMbvMxyLiJwA1sx/MfF6dd5EcFaG4vozhnWo37UL94J1ZldMPG8gvpxMv32KiPQ8ptFbo8uVTFjU1fmBks4PSHota+1G4Jaj9j1njBkHXAn0ATYCz1lrtSaZiIiIiEgPkek7bj8FbgCeNsbcCjzf+KAx5lLgj0AY+FWGYxGRXq6usoItK5YB4M0r4PXIEHDBmSNLGNs/v9391lYE2Lz8EADGbZl8waC0xCsi0ts0mWHRKGFRX9+xGkIiqbLW7kMPQomIiIiI9FgZrRthrX0H+BpQirN2bCVggWuMMZXAC0B/4GvW2vcyGYuI9H5rF75ELBoBoHLY6URdTk72hjOHd6jfd+bvIhZ1bsLljwiRnedtpYWIyImpcQ0LtxIWIiIiIiIi0kYZL3Rtrf0F8CFgJZCDU7G2ACgE1gEfttb+OtNxiEjvFotGWfvKSwAY4+L50AgA8rM8fGjqwHb3W1cZ5L2l+5x+3Zb8USocKyLSElejubvGKGEhIiIiIiIibdMpi7Bba18GXjbG9AVG4SRKdltr93fG9UWk99u2agW15UcAyBo9hUOxPAA+fOpgcn3tf6tbPX8X0YhTCCNveBi3z7bSQkTkxNV4hoXLeGkoHBAKBLsmIOk1jDFRnJnak6y1m+PbqbLWWhWfEhERERHpATr1D3dr7RHgSGdeU0RODGvmJ0vkrMyZCHXO64+d2f5i23VVQdYv3QuA2+uiYFSoQzGKiPR2jWtY9MnN4XD89SkDc7omIOlNTPyr8XZb2oqIiIiISA+Q0YSFMWYe8Iq1dk8mryMiJ7Yje3aza/1aAIoHDuLT115CdNlOympDTB1S1O5+1yzYRTTszK44acYAqrKq0hKviEhv1ThhYW1ySahwSDMspGOsta7jbYuIiIiISO+Q6RkWfwasMWYL8Er861VrbXWGrysiJ5B3F7yYeH3qnMuZNnEgF04cSH0ogjHte6iyvjrE+iXJ2RVTZw/m9eWb0xKviEhvZRr9ZRmLJu8nR4JKWIiIiIiIiEjrMp2weAi4EBgf/7oNiBlj3iaZwHjDWqsqtiLSLqGAnw2LFwLg8WUx+YKLE8c6UrtizSu7iISc2RWTzx9MbqGvY4GKiJwAjAs8PheRUIxo1J3YrxkWIiIiIiIikoqMJiystTcBGGPGARcDlwCzgLPiX/8P8BtjXgcWWGt/msl4RKT32bj0NUL+egBOmnEB2fn5He7TXxti3eL47AqPi9PnjABiHe5XRORE4M1yEwnFiISTMyzW7Sjj5C6MSXofY4wLOAOYDPTFKchdDqwD3rbW2uM0FxERERGRbqpTim5ba7cAW4DfGmd9ljNwEhgXAzOAOfHXSliISMqstax5+YXE9guRUXg2HmT2hP64XO2vr/nuK7uJBKMATDpvMHnFWfj9/g7HKyJyIvBmu/HXhJskLHYfruy6gKRXMcZ4gW8CdwAlLZx2xBjzU+Cn1tpIpwUnIiIiIiId1hXF6rxAQfyrkGTSpP13F0XkhLR30wbKdu8EwDdoFM/ucfG5h1dx3wsb291noC7M2kV7AHB5DKfPHZ6WWEVEThS+bGcpqFijJaEiWhJK0sAYkwcsAP4L6IPz+SEMHAQOx18boBT4b+AlY0xO10QrIiIiIiLt0SkzLIwxp+IsB3UxcB6QjfNhohp4gWQ9CxGRlDWeXbEqbxI4kyL4yGmD293nuwt3Ew44HU08dzD5JdkdilFE5ETjjScsTKM/M6OhUFeFI73LT4CZQAD4FfAosL5h+af4MlFTgE8BXwJmA/8D3N4l0fZiI+96ofWTpN123H95V4cgIiIi0mUymrAwxjyGU3S7L8knoJaTTFC8Za2NZjIGEemdaivK2fLWMgA8eQUsjQwBA2eMKOHkocXt6jNQF2btq7sBcLkN0y4dka5wRUROGA0JC2dSrSMWVsJCOsYYMxz4PM4DT7OttauPPsdaGwPWAt8wxvwdeA241Rhzv7V2T6cGLCIiIiIi7ZLpJaGux0lWrAWuBkqstRdYa++11r6pZIWItNe6hS8TizpvIfsHnELMODfIbjpvVLv7XPvaHkLx2RUnnTOIgj6aXSEi0la+7PjzMCb5XIwSFpIGN8a/39VcsuJo1tp3gLsAd6O2IiIiIiLSzWU6YVGDM7PiFOCvwNPGmK8ZY07J8HVFpBeLRiKsfeXfzoYxPB8eCcCQ4hzmTBrQrj6D/khydoVLsytERNqroYaFUxvZYZWwkI47B2cpqAfb0ObBeJtzMxKRiIiIiIikXaZrWPQBzsKpXXExzjqycwBrjCkDFuIUzlugadoikqptb6+gtqIcgPCQidR6CgD49Dkj8Ljbl4dd99pugvURACacPZDCUtXoFBFpj+SSUMk/M21ECQvpsMnAamttyhXcrbUBY8w7OHUtRERERESkB8joDAtrbTS+9NO91toLgBLgCuAXwAHgBuCPwE5jzMZMxiIivUfjYtuv2LEA5HjdfOzM4e3qLxSIsOYVZ3aFcRmmXabZFSIi7eXNiicsGs2wQAkL6bg+wP52tNsXbysiIiIiIj1ApmdYNGGtrQdeBF6MLwt1I3A7kA2M78xYRKRnOrJnF7s3rAXAFPVjq3cwANdOG0pRrvd4TVu0btGexOyK8WcNoKhfbnqCFRE5AfkSMyzcWJy1QU003IURSS9RgLPcbFvVAflpjkVERERERDKk0xIWxpihwCU4S0NdBPRrOASEgTc7KxYR6bnWzH8x8bpy5JlQbQCYN2Nku/oLBSKsWRCfXWHgjMva14+IiDi8Oc6fl8YYcHkhFqbAY7s4KukFOjIzPNN1+0REREREJE0ymrAwxnyEZP2KcQ27AQusB16Jfy2Oz74QEWlRyF/Pe0sWAuDxZfGfX/k0n6iJsWzrEcb0a9/Dk+uX7CVQ5zz5O+7MARQP0OwKEZGO8DUsCQX4fFmEA2H6ZpsujEh6kXxjTFvXf9TsChERERGRHiTTMyyebvR6N8kExUJr7aEMX1tEepn3li4i5PcDMPG8C8jOy+ekPDhpYGG7+nNmV+xyNgyc8aGR6QlUROQEliy6DcblLNUXCaZcJ1nkeK6Jf4mIiIiISC+V6YTFM8AC4BVr7ZYMX0tEejFrLWtefj6xfercKzrc59pX9+Cvic+umNafkoF5He5TRORE1zhh4YonLMLBQFeFI71Le6fqaE0yEREREZEeIqMJC2vt1ZnsP12MMfOAB1s57VVr7UWt9DMLeO04p3zWWvtQW2ITEcfejRs4sseZDVE8chylw0d1qL9AXZjV8dkVxmU468rRHY5RREQaF90GYxoSFkGstU5dC5H26dj/+EVEREREpEfotKLb3dwa4J4Wjl0LTAZebkN/i4FFLVxHRNph9fwXEq//4R/Boz9bzJdmj+XaaUPb19+CXYT8EQBOOmegaleIiKRJ4xkW/oiToLCxGIeq6hhQrHIC0j7W2p1dHYOIiIiIiGRepyQsjDETga8As4Eh8d17gVeBX1prN3ZGHC2x1q6hmWSCMcYH3A5EgIfb0OUia+3d6YhNRKD68CG2rHjD2cjO5/2c0cTK6vigrLZd/dVVBVn76m4AXB7DmZd38UObFTtgxxtgY8cey+8P4+c23bfpBagvb73fQafAoJOT2+EArHsytZgmfAjy+ia3y7c7MbbGkwUnX990347XnfatKRkFo85vum/tExBJYSmZETOg75jkdn05bHoedyjM8CMbAHC/WwY+77Ftp14H3pzk9oF1sG9169fMKYGJVzbdt3k+1B5ove2AyTBkWnI7FoM1jzY64ThPoY+9GAoHJbcrd8P2Ra1f0xg47ZNN9+1+Cw6/33rboiEw5sKm+zY8A8Ga1tsOPRP6n5TcDlTDe/86bhN3OMTwIxvYV3xm0wOH33dibk1WPkz+aNN9216Dqj2tty0dD8OnN9235m8Qi7bedvQFUNyoHnDNQdgyv/V2AKd8HNyN/izbtxoOrG+9XTd5jzAVOxh+ZDFBTyE+7wWJ/dZ6Ev+aa2v9SliIiIiIiIjIcWU8YRFfbul3gJemd2DGxb8+a4y51VrbloRAZ/kI0Bd4xlp7sItjETlhvf3CM9iYczN/bcFkYsaNx2X41Nkj29XfOy/tJBJy+pty/hAK+mSnK9S2O7wZ/ngxBKuaPz783GNvRi7+Mexf03rfF36n6c3IUB08e3tqcd3yWtOExZ5VqbXN6XNswuKdR2DtY623nXrdsQmLl/8T6g633vYjv2uasKjaA89+GR9wWsO+XS20HX9p04TF1lfglbtbv+aAqccmLJb9EnYsbb3tjK80TVjYKDz75dbbAXz62aYJi4MbUhsbl+fYhMXaJ2DlA623HTf32ITFwntSS0Rd9j9NExb1R1qNt2HcjuRNaHpgx1J44WutX7N4xLEJi7cegPdfaP78xs646diExfN3pJY4u+GvTRMWR7am/js39dqmCYuNz8HSn7berpu8R7j2vc1pu/4EQHgFeLyziIRjiSWhAOrq61PrW0RERERERE5YGU1YGGOmAQ8AbuB54E/Atvjh0cDngCuBB4wxG6y1qzIZTzvcHP/+xza2G2eM+SqQA+zBqX+xtz0BGGNaW+9mYMOLYDCI3+9vz2WkkwUCgWZfy7ECdbWsfTW+IpvHy4qciQDMndSfIp9t87/52vIg65c4v44en4vJswek1EdGxixQRdbfP4arpWQFEI3FCB0VX5aN4Uqh+3A4QqRx24CfnJZPbxpaMIht1NYdCuFLoZ0FAkfF641GUvqfTSQaJXxU22xrU6qwGgqHiDZqa4JBUk1D+QMBcCfbesJhmpmHcYyYjRE8Kl5fLIa7hfMbC0eOGptoOOWxCYZCxBq1dYWCZKXQriNjE41Fm/l3aFP6d9iRsYGmv2/ucDilf4cxa5sZm2hKYxOJRI79d0hqlX7bOzaA8z4USW57IpGU/h12l/eImL82OTY7l+HNvshJWFhPotpxRUWV/k7pZoLBYFeHICIiIiIi0kSmZ1h8A3ABn7PWHl3Uej3wbHwGxp+BrwEfz3A8KTPGjAAuwkk4vNTG5p+IfzWIGGN+BXzDWpvCmhJN7E71xBUrVrBt27bWT5RuZcmSJV0dQrdWvmE1kfgNla0F4wm4ndtpE9jL/PltzwOWr8siFnVuq+UM9bP0zUVt7iMtY2ZjnL39Zwyodn5nq7OHsr3fJcecFvAWc3B+0yVlBuXMwjds2jHnHq3yUC5Vjdq6YiGGDftsSuHtf2crIe+hxHZesJ7SFNrGjJfdR8XbNziOvGE3tdq2PtSfsqPaDu13Da5YuNW2R7YHqNuXbOuN1DA4xZ91z9LlRF3J28qF9TmUpNA25Mln/1HxDvBMJ3vY+FbbVleUUtG4rY0xIsV4D67bQ+D9ZNucUBn9U2hrMew6Kt4+tUMoSKGtn74cOqrt4KLL8Oa3fvO5fI+h5kiyrSfqZ0iKP2vQW9jk963Ab+mTQtuIO4e9R8XbLzaV3GGDWmiRVFM3mPKj2g4ffCOmuSXbjnLo/XL8O5Jts8KVDEzxZ9316iKsSaZUiutKKEqhbfd5j3Bxcfy1/8hewtEg4AKb/JlWrVxF5YEPUupfOkdZWVlXhyAiIiIiItJEphMW5wNrmklWJFhrHzLG3A7MzHAsbfVZnGTLQ21IMhwG7sKZTbIDyAPOAe4H7sB5wDWFtSxEBCAWjVD1vlN/wGJ4I+8UAEbmW0YUtL2/cK2hfq/zzLLxWApGh9IWa1u5bISQOw+AkDuPFaPvoD6rX0pt9xef0a5rxlw+dpbOblfbuqwB1GUNaFfbIwUTOVIwsV1t9/SZ0a52YU9Bu3/W6tzhVOcOb/3EZhwsOrVd7TCudsfr95W2u215/njK81tPsDRnX8nZ7WoXcee0O96anCHU5Axp/cRmHC6c2q52ALv6XtD6Sc0Ieovb/bNW5o2mMm90u9p21XtEvbcPueFyfJEajMeZV+HCS8MfUeFwW5/ZEBERERERkRNNphMWpcBrKZy3CWj/nYQ0M8a4cBIWFmf2R0qstRuADY121QH/MsasANYC/2GM+ZG19lCzHTRvWCvHBwIrAaZPn86YMWNaOV26g0AgkHhqeObMmWRnd2ENhW7svUWvsD3gPMFdPeAkqr1FAPzHpVOYM7ntN89f+8tmsEcAOH3OcE65pLUV15IyMmb2csJv/QY78BTOG3Fex/uTY+h3rWfSuPU8gUCA0KYCcsPlZMXqKO1fwv7qamhUw2LEiBHMmXP+cXqRzqaZuSIiIiIi0t1kOmFRCaTymOpwoOVF3DvfxTgxLbTWdnjtAmvtAWPMv3BqYkwHnmtD2z3HO25MclXtrKwscnJSXX1auovs7GyNWzNsLMa785MFcl9yTwJgUFE2V542HK87lRXak8r21PDBaidZkVPg5fQ5o/Blt+8tMK1jNuvr6elHWqXftZ5J49Zz1HjyATCxCNk5znu0afSnZjQS0Vh2M1lZqVZZERERERER6Rxtu+PXdiuBc40xF7Z0QvzYDGBFhmNpi/YW2z6ehkWC89LYp0ivte3tt6jY5+Tr/H1HciirPwC3nD+6zckKgBX/2p54Pe3Ske1OVnRI7WEo3976eSIiPVDInVyrz+eJ155pNMOicQF1kY4yxnzPGHNHV8chIiIiIiLplemExa/i13jOGPNjY8xkY0xu/GuKMeYnJGcb/CrDsaTEGNMXuAooB/6Zxq6nx7/vSGOfIr3WyueeTry+8LrruW7aUAYWZvPxs9peW+DA9ip2rHNmV+SXZDF55uC0xZmySAie+DT8YTZse7Xzry8ikmGh+AwLAJ/72IRFKBDs7JCkd/se0L4CMyIiIiIi0m1l9BFja+3LxpgfAN/GKTbdXMFpA9xrrZ2fyVja4FOAD3jUWtvsJ2tjTClOfY4ya21Zo/3TrLVvN3P+V4DZwBbi9SZEpGV739/IvvffA6Dv0OGcc8F5nOtyEQhHyfa629SXtZblzyTX6D7z8lF42thHWvz7m7BrmfP6X1+GL78NXq3LLyK9R8jTaIaFKwC4miwJNbrE1wVRSS92CPB3dRAiIiIiIpJeGV8TxVr7XWPMG8DXgXOBhjt0QeB14KfW2pcyHUcbfC7+/XjLQd0OfB+4B7i70f6njDFhYBWwB2f5p7OB03DqeXzSWhtNc7wivc6q555KvD7jyqsxLmcyWFuTFQB7NlWwd3MlAEX9c5hwzsC0xNgmK/8Ebz/ovHZnwfV/UbJCRHqdytxR7OpzPoPGTsFXXwjUgkn+qdk327TcWKTtlgJndXUQIiIiIiKSXp2yiHs8IfGSMcYN9I3vPtLdbt4bY84CpgBvWWvXtaOL3wJzgZk4P2cM2An8HCcxc9wC2iIC5fv2snWVU9Imr6QPE89r/2oP1lqWN6pdcdaVo3C3o/5Fh+x4w5ld0eDKX8DQaZ0bg4hIJzhYdCoHi06l3+w5+FaWA+83WRIqEtSSUJJW/wWsMsbcB3zXWmu7OiAREREREem4jCQsjDFjgauBkTgzKdYAT1hr/TjTt7sla+1bOEtUtXbe3TSdWdGw/0fAj9IemMgJ5O3n/wnxew4rcyeTt3Iv150xrF2zKz54t4xDO6oB6Dskj3HTBqQ11lZV7nLqVsQizvY5t8OpH+/cGEREuoAv23nPbrwkVDikhIWk1TTgL8D/A64xxjyDUyuu2WWirLV/6bTIRERERESk3dKesDDGfBX4MXD03cV7jTEfstauT/c1RaR3qKusYMOShQBYTxZLPeNY+K8NVPnD3H7huDb1FYtZVjybnF0x/aoxGFcnLkcSqofHPgH18TI3o2fDxfd03vVFRLqQLzv+J2ajGRYVVbVdFI30Ug8BFudhownAN497tpPcSAtjzCeB83GSJlNx6t991lr7UAvnF+I87HQNMBDYDzwJ3GOtPeYXwxjjAr4EfB4YC9QCrwDfttZuP/p8EREREZHeJK0JC2PMecBPcT441AHvA4XAaGAoTo2HidbaWDqvKyK9w+qXnicaDgOwNn8iIVcWeT43N04f0ea+tq46SPm+OgAGjCpk5NS+rbRII2vh2S/DgfjKciWj4No/g7tTVuETEelasSg+d8h53aiGxTvbDnJVF4UkvdJfcBIWXeE+YARQhpN8aPEPFWNMHrAYOBWYD/wdp77d14ELjDEzrbWBo5r9HrgZ2AD8EhgMXA/MMcacba3dktafRkRERESkG0n33bPbcZIVDwO3W2vrAIwxJwNP4TwhdCnwYpqvKyI9XCjg5935LwBgjYu3C6YC8MlzRlCS52tTX9FojBXPfZDYPvuq0RjTibMrdi2H9f9wXvvy4eN/h9w+nXd9EZEuYGIR5q7/D3yr6/CWXgV8BkjOsIiFQ10Wm/Q+1tp5XXj5m4Et1tqdxpi7gB8e59xv4iQrfmStvathpzHmfuBbwB2N2xtjZsf7XwJcYq0Nxff/Decz1K9xauaJiIiIiPRK6a4+ew6wB7i1IVkBYK1dC3wFJ5lxdpqvKSK9wPrXFhCoc1ZF2FIwjjpPPtleF7ecP7rNfW1atp/qw84S1kNPKmHoSZ2cLBh+Nlz3MOT1d4ps95/YudcXEekC1uXBbcMYLL7wQQBMoxkWNqKEhfQO1tpXrLU7WzvPOE9L3IyzpNO9Rx2+N77/5qP23xL//t2GZEX8mv8GFuHMshjeztBFRERERLq9dM+wGAC82PiP60Zej3/vn+ZrikgPF4tGefuFZxLbqwpOAeATZ42gND+rTX2FAhFWPp+cXTH9qrYnPDrMGJj8ERh7kTPDQkTkBBHyFOAJBckK7nd2NKphQSTcNUHJCSGeHGhY/7G8myxBOw5nOaeXGz/MBWCtrTPGvAHMNcYMs9bujh+ahbO07hvN9Pdy/PgFwCOpBmGMGdrKKQMbXvj9fvz+ZuuWSyfSGPQ8GrOeSePWM2nceh6NWc+UyrhlamzTnbDwAZXNHbDWVseXZGnb2i4i0uu9v/x1qg8fAmBP3nCO+Pric7u49YK2JxveeWkndVVOznTkyaUMHFWU1ljbJKug664tItIFQu58cinDG4gnLBr/qakZFpIBxpiLgG/gFMHOju8OGGOWAD+x1i7ssuCchAVASzUntuAs7zQO2B2vdzEIWG+tjbZwfuN+U7W79VMcS5YsobS0NIUzVZcrk+bPn5+hnjVumaIx65k0bj2Txq3n0Zj1TKmMW1lZWUaune4loURE2sRay6pnn05sv1VwKgDXnzmUAYXZLbRqXtXhela/sgsAl8cw49qxaYuzVWE/bM7U/4RFRHqGoMdJ1LoJ4vYajHFhcQNgopphIelljPkeTiHrOUAOzvKzJv56LjDfGPOdrouQhqcmqlo4Xn3UeW09X0RERESk18lEKmqsMebT7Tlurf1LBuIRkW5s1/p3ObRjGwBl2f3Zmz0Yj8vwhQvGtLmv15/cSixiATj1ouEU989Na6zHtfjH8PrPYOKV8KGfQMHA1tuIiPQyIU9yGTyfz+APWzAesFFc0UgXRia9jTHmYuBuIAT8AfgTsC1+eDTwOeDzwD3GmGXW2le7Is5uYlgrxwcCKwFmzpzJ0KGtrSAFvHki/+fMvDlz5mSmY41bxmjMeiaNW8+kcet5NGY9UyrjtmfPnoxcOxMJixnxr+bY4xy3gBIWIieYVc8lZ1dkn34RvkNuPnraEIaWtC3ZsHPDEXasdaai5RX5mHbZiLTGeVwH1sGyXzqv338JZn9HCQsROSGFPMml8Hw+i78ODB4giDumGRaSVv+B8/nhKmvty0cdWwt8xRjzAvBv4CtAV3yibZgp0dKMiMKjzmvr+Smx1h73k2R82V4AcnJyyMnJaUv3kgEag55HY9Yzadx6Jo1bz6Mx65lSGbdMjW26Exa7cD44iIi06vDOD9jx7jsAFPYbwB23f4wv1LX9hlY0EuP1J5LLQ59z9Vh82Z20lmEsCs9+GWLxJ4dnfh36n9Q51xYR6WaazLDwRgGXU3jbgjsWxlrb5OaoSAdMB5Y1k6xIsNbON8YsA87pvLCaaK3mRJMaF/FC3PuBUcYYdzN1LFqriSEiIiIi0uOl9Y6etXZkOvsTkd5tZaPZFdMu/wgut5sBhe4297P2tT1UHqwHYODoIsafNSBtMbZqxe9g32rndekEOO+Ozru2iEg3E3I3mmHhCQNZGOPBAh4bIRy1+DxKWEhaFAM7UzhvJ3BWZkNp0RZgHzDDGJNnra1rOBAvsD0D+MBa27go9mLgY/FjS47qb278+9H7RURERER6DRXdFpEuUb5vD5teXwxAdn4BU2df0q5+6qqCrHzhA2fDwMyPje+8p3crdsKr95G4+Id/BZ6szrm2iEg31GRJKFcw/soLgMdG8RhNxJW0KQNSmdJ4UvzcTmettcAfgXzgu0cd/m58/wNH7f9D/Pu9xhhfw05jzGXALGC+tTaVRI2IiIiISI/USWumiIg0tezJv2FtDAA7+QLCLk/8llbbLH9mG+GAs2LCpPMG0294QSst0sRaeP4OCDszOzjzczB8eudcW0SkmyrPH0fw6ofIKhqIb34W7KnEGG9ivdBoOIzL3faZdCLNeAO4xhjzCWvt35o7wRhzI3A68GQ6L2yMuRk4L745Nf79ZmPMrPjr1621f4y//jFwFfAtY8xpwDvxmObgFLr+eeO+rbWvGWP+CNwMvBOvwzEIuAEoB76czp9FRERERKS70QwLEel0h3d+wPvLnNUMgu4cfnFgIOf/6DWq6ttWv+LA9io2vXkAgKxcD2d/eHTaY23Ruidh20LndcFguOj7nXdtEZFuKuAtITbuUhhxDr78PGenST4fEw4FW2gp0mb/g1M77y/GmCeMMZcbYybFv64wxvwDeBiIAj9J87XPAz4T/zo9vm9Go30NyQziy0BdgJOYmAh8DWfWx0+Bi6y1/mb6vxWnUDjx7x8C/gmcZa3dnOafRURERESkW9EMCxHpdMue/Gvi9VtFpxF2eTl9RAlFuanPsbAxy9LHk5/Zz7pyFDkFvuO0SKP6Mvj3t5Lbl/8Usgs759oiIj2EN6fhz8zke3skqISFpIe1dqUx5jbg/4BrgWuOOsUAEeBL1tqVab72PGBeG86vAu6If6Vyfgz4ZfxLREREROSEohkWItKpDmzbwtaVywHwe/NYVzAZgC9fOLZN/Wx8cz+HdtYA0GdwHlNmDklvoMcTi8Hws53Xkz4CJ32o864tItJDZMUTFqbRDIu9ZVVdFY70QtbaB3BmOPwZ2A4E41/bgT8Bp8fPERERERGRHkIzLESkU73xxKOJ18sLTyfq8jB7Qj9OHlqcch/B+jDLn9mW2D7/+nG43J2Yf83vDx/7G7z3Lxh+TuddV0SkBzB734ZwJb5ygNwmS0LtPlzFxIldFpr0Qtba9Tj1HkREREREpBdQwkJEOs2eTRvYseZtAGo9BbxXMBGXgbsua9vdq5Uv7MBf49S7GHN6P4ae1CftsbbKGJj8kc6/rohIN+d77jao2oU3ehnweRovCRWor++yuKR3McbMBA60VtPBGDMOGGStXdI5kYmIiIiISEdoSSgR6RTWWt54/JHE9vLiM4gZN9dNG8aEgQUp91O+r451r+0BwO11ce41bVtKqiNMLNJp1xIR6bFynSSyL1zmbDeaYeH3q4aFpM0i4FutnQR8E3gts6GIiIiIiEi6KGEhIp1i17p32fPeegAqvUVsyh9PttfFnXPGp9yHtZalT2wmFrMAnD53BIV9czIS79Fcu5ZxyXtfZ1Dlqk65nohIT2Vz4gkLlzObwpjkDItgINAlMUmvZbo6ABERERERSS8lLEQk446dXXEm1ri45fzRDCjMTrmfD94tY8+mCgAK+mRz+pzhaY+1Wf5KvM9/mZxwOWd98Etcm1/snOuKiPRAiYSFqYvvSc6wUMJCukAJoH94IiIiIiI9hGpYiEjGbX9nJfu3vu9slAxkT/EESrM93HrBmJT7iISivP7klsT2jGvH4vG50x1q8178Oq6avQCU5Z9E3ti5nXNdEZGeKKcvAD7jd7YbzbAIKWEhHWCMOfpJhfxm9jXwAJOBOcC2jAYmIiIiIiJpo4SFiGSUjcV444lHE9sfvukmPnXS6Ww7XEd+VupvQWte2UXNEedG15AJJYw+rV/aY23W2idh3ZMAhN25vDPi85zv6qREiYhID2Rzj14SKvleHwqqhoV0yA7ANtq+Jv51PAZ4tJVzRERERESkm1DCQkQyastbyzi8YzsAA0aPZeyZ52CMoX8bloKqKQ/w9r93AmBchvOvH4cxnbBsdeUueOHOxOa7w+bh95Vm/roiIj1Yckmo+AwLkjMswkpYSMfsIpmwGA7UA2UtnBsC9gBPAb/NfGgiIiIiIpIOSliISMbEYlHeeOKvie0ZN3yqXYmGZU9vJRKOATDlgiH0HZKfthhbFIvC07dCsBqAyKRr2Jt1duavKyLSwzUkLNwmgtsVI9pohkVECQvpAGvtyIbXxpgY8KS19qaui0hERERERNJNRbdFJGM2vbGE8r27AYj1H0mfCVPb3MfezRVsXXUIgOx8L2ddMSqtMbbojZ/DrmXO66LhhOf8sHOuKyLS08WXhALweSOYRjUscl3RrohIeqfPAn/q6iBERERERCS9lLAQkYyIRiIsezI5u+IZ18nM/sliKutDKfcRi8ZY+niy0PbZV40mO897nBZpsvcdeO2/ndfGBVf/HrIKM39dEZFewGaXAAZy+uDzRGg8oXfygJwui0t6F2vtw9baN7o6DhERERERSS8tCSUiGbFh8StUHTwAwO7sIezNGcKVY0spzvWl3sfSfRzZWwtAv+EFTJwxOCOxHqOuDHx5EKiC8+6AEeeC3996OxERwZaOh+8dAZcb33+vhOrkMlBaEkrSzThV3a8FZgND4rv3Aq8B/7DWRroqNhERERERaTslLEQk7SKhEG8+9Vhie3nJWfjcLr45d0LKfQRqw6x4dnti+/zrx+FydUKhbYDxc+C2N+GNX8Cs/9c51xQR6S2MC1xuAHzZbkyjGhbhkBIWkj7GmFOBfwCjgKP/SLgZuNcYc521dk0nhyYiIiIiIu2khIWIpN3ahS9Te6QMgA9yRnAgeyA3nzOCYX1yU+5jxbPbCdY7D0WOnz6AQWOLMxFqy4qGwId+3LnXFBHpZbzZHiC5lJ9mWEi6GGMGA/OBUuAg8BiwLX54NPAxYAzwsjHmVGvt/i4JVERERERE2kQJCxFJq3AwwIp/Pp7YXl5yJoXZHm6/cGzKfRzeXcOGpXsB8GS5Ofejqbdtt3AAvNmZv46IyAnEl+OGRjMs3t9b3oXRSC/zLZxkxR+Br1hrm6zdaIz5T+CXODMtvgnc0ekRioiIiIhIm6nodpwxZocxxrbwtaiNfd1ojHnLGFNnjKkwxjxvjDk9Q6GLdCtrXn6B+qpKALbkjqYsqx9fvnBcyrUrrLUsfXwz1jrbZ35oJHnFWRmKNnFRePyT8NQtTt0KERHpmBV/gGe+SNbuhYCbhtV66utVD0jS5jJgF3Db0ckKAGttAPhi/JzLOzk2ERERERFpJ82waKoK+Hkz+3ek2oEx5tvAfcBO4HdAAc6U9GXGmIustW90PEyR7qm+uooVzzwBgAVWlJzJ0JIcPn3uiJT72LLqIPu3OkmDov45nHLhsEyE2tRbD8DWBc7rig/gcwvAdFK9DBGR3mjbQtj8Et6aGzFmCs6fnGFMNNzVkUnvMQz4p7U22tIJ1tqIMeZN4COdFpWIiIiIiHSIEhZNVVpr725vY2PMOOBuYDNwlrW2Kr7/N8By4AFjzBRrbSwNsYp0O68/9heCdXUAbMyfQIWvD3fPnUCWx51S+1AgwrKntiW2z7tuHG5vhieCHdoEC76b3L7gLiUrREQ6KqcPAD4Tf/DdeMGGcSthIekTBApTOK8gfq6IiIiIiPQAWhIqvT6LkwT6QUOyAsBauwb4OzAROK9rQhPJrAPbtrDu1fnOhjeLdYNmMHVIEVeePDjlPt55aSd1lc49hRFT+zJyamkmQk0K1cNTN0Mk4GyfdSuMuziz1xQRORHkxhMWrnoATLyOhTumhIWkzXvAbGNMi1MxjTHDgdnAhk6LSkREREREOkQzLJrKMsbMAwYD1cBKa+2KNrSfFf8+v5ljLwPzgAuAJal2aIwZ2sopAxteBINB/H6tDd0TBAKBZl/3VDYW45U//YaGwhPnXnMDn7jgYsrrQgSDqf181WUBVi/YBYDLbTjjymGZ/fdsLd4Xv4Ln4DoAYn3HEzzvLmjhmt1lzGzMEj3sd9bcklYFg0Fy6pwZPnU7K4hk1XdxRJIKjVvP0zBmEU+MQCCAx1eEl0YzLPAC4I5FqK+vx2gmW7cQDPboiQd/AX4DvGKMucNa+2Ljg8aYK4CfAtnxc0VEREREpAdQwqKpgcCDjXcYY1YCH7fWbmu+SRPjgFpr7YFmjm1pdE5b7E71xBUrVrBtWyphSneyZEnK+atuq3r7Zg5tc/6JewuLOWg9HFr6GgBbU+yj7O1sYlHnhlbeiAArVi/NRKgJI8pe5dTdTr2NiMvHkn7zqHkttWt21Zj5Ai7GbSwgO5DaElvimEQRAIG12+j56cETh8at52kYs/cqV5Dr3s9pgM/Ek03xGRYeG+GFl+bjcyth0R2UlZV1dQgd8QBwDXAR8Jwxphz4IH5sFNAHp9r7K/FzRURERESkB9CSUEkP4nzgGQDkAacBjwBnAguNMQUp9FGEU7i7OdWNzhHpNWLhEEfWvJXY7jftHIy7bTfUA4fdBA45yQpXVoyCMaG0xni0krptnLznkcT2muE3U5PT2mSmruULuhj/npIVItL99SnzEfI4fzY1LAnVkLBwYQmFVcpLOi5ebPty4MdAHdAXOCP+1Te+70fAFaofJyIiIiLSc2iGRZy19p6jdq0BPh1fsuBTwC3Azzo5LIAW1+WNGwisBJg+fTpjxozJfETSYYFAIPGU/syZM8nOzu7iiNpv2WN/IRpwlvwIDJrIrOs/RXGON+X20UiMZ/7nXYg/Q33eteMZe0a/TITqqC8j66G7cNkoAJEzPs/ki77H5FaadeWYRauCVD/0PrGgk8hx9cnCOyqVOqMSjUbZv38fAIMGDcbdxmSadA2NW88TjUYJrj2CO2YoNLmMPmc2fPCLxAwLgzexkt0ZZ53F8IF9uy5YSejpM3OttSHgLmPM93ESFUPih/YCq6y1PXrNKxERERGRE5ESFq37PU7CYgatJyyqaHkGRWGjc1Jmrd1zvOON14DOysoiJyenLd1LN5Cdnd1jx+3I3t2sXeAsGR0xbh53n87mZzbx8E1npdzH6gW7qDrkJCsGji5kynnDMru2uSmCIafDpn0w/Bw8l/03HnfqCRbo3DGLVAap/MsWYpVOssLTL4d+nz8Zd4GvU67f0/n9flbMdxYmO2nO6B77u3ai0bj1PH6/n92bD5Fb78HWRPAVDQIa1bAwyT85I5GYxrSbyMrK6uoQ0iKemHijuWPGmGLgG9bab3dqUCIiIiIi0i5aEqp1DYv75qVw7hYg3xgzsJlj4xqdI9LjWWt57aE/EIs6MxXeKTqVWl8hX58zIeU+6qqCrHwhvty0gfNvGJ/5QqzZhXDDo3Dp/XDdQ9DGZEVnilYFOfzAWqLlTkLHU5pDv1uUrBCR7imUFV91J2aJWef5jeSSUMn32mwT7ezQ5ARkjCk0xtwD7ADu6uJwREREREQkRZph0brp8e87Ujh3MXAOMAf4y1HH5jY6R6TH27ZqBTvXrgagxp3P20Wn8ZlzRzJ1aOplWpY9vZVwwLlxNWnGYPqP6KRljoyBs2/rnGu1U7Q6yOEH1hE9Ek9W9M2m3y1TcRcqWSEi3VPIlywTEAnk4J5wOb6sUpgPptGfnAUe21xzkZQYY6YBV+LUnTsIPGutfafR8WzgTuDrODOfDfBeF4QqIiIiIiLtoBkWgDHmJGNMbnP7cYr1Afyt0f6ieJtBRzV5EIgA3zbGFDU6/1Tg48BG4PU0hy/S6SKhEIv+8kBi+/W+51JaXMDX2jC74v3l+9m84iAAvhwPZ181Ou1xJpRvh6q9mes/zaLVIQ4/sI5ImbOUirtvNqWfPxl3Ue9YukNEeqfEDAsgWh2Gj/8N99W/xO1xNZlhEQmprIC0jzHmJ8BbwHeBz8e/rzTG3B0/fiZOcuJeoBjYDdwEnNwF4YqIiIiISDtohoXjY8CdxpglwE6gDhgPfAjwAj+01i5pdP5HcZITDwPzGnZaazfHPzDdB7xrjHkKKIj3D3CLtTaGSA+36rmnqTrkJBt2Zw9ma+5ofn/VZPKzUntLKd9fx6K/vZ/YPv+GceRkapmjUB08diPUHoJr/wyjL8jMddIkWhPi8ANriRyOJyv6ZNPvlpPxKFkhIt1ck4RFRTIp4ctxE6hJ/v8hHFTCQtrOGHM5zswJgGqcZVYLgdHAd40x7wO/je8rx/l7/DfxwtwiIiIiItJDKGHheA2YCJwGnA/k4tSueBHng878VDuy1v7AGLMD+CpwGxAClgLfbTxdXaSnqi47xIpnngQghmFJ3/OYM3kgcyc3V7rlWOFQlJcfWE8k5NzYmnjuIE46++jJSmliLTz3FTgUXwnipf8HX1gKLndmrtdB0dr4zIqGZEVJFv1umYqnWMkKEen+GicsIpWBxGtvtgdDcoZFwB9ApB1uiX//FfDNeKFtjDETgadwHiTy4Pxdf4O1tqzZXkREREREpFtTwgKw1i6mDbUlrLUPAQ8d5/hfgb92ODCRbmjxow8mlvNYWziFYH5/7v7w5JTbL318M+X76gDoMziP8z82PiNxAvDWH2Cdk1zBV+AU2e7uyYpDToFad3GWM7OiJLuLIxMRSU3IlyymHa1sNMMi291kSag3N+9nwlmdGpr0DtNwasrd0XjGsrV2ozHmq8BLODMvPmKtremSCEVEREREpMNUw0JEUrZr/Vo2v7kUAL8rm7eKz+RrcyYwuDgnpfbvL9/Pxjf2A+DxuZh7yxS8vgwlEHatgJf/M7n9kf+DfhlMjnRAtC5M2R/XETkYT1YUxWdW9FGyQkR6jrDPYo1TUDtaGYQF34f7R+A7sBxM8hmZUEAzLKRd+gGrW1hedXn8+1IlK0REREREejbNsBCRlMSiUV576PeJ7UEXXcNZZgifOXdkSu2PrltxwScm0GdQXrrDdNQchCc/A7GIs33uf8CkqzJzrQ6K1oYo++N6wgfiyYpCH/0+PxVP39SSQCIi3YaBkC9GVtBNtCoINgaBSnyuegz5idOCAdWwkHbxAVXNHbDWVhtjAA53akQiIiIiIpJ2SliISErWzH+Rst07ARgweiyfuOl6bjIu4jcIjqtT61ZEgvDkPKhxZnIw8ny46PuZuVYHRauCHP5jsmaFq9BH6edPVrJCRHqshoRFrD5CzNcPF+Az9WBKEueEg5phISIiIiIiIs1TwkJEWlVfXcWyJx9NbF/42VtxtaEWRKfVrYjF4JnbYNcyZ7tgMFz7Z3B3v7e6SHmAw39cR7TcuXHnLvJRevNUvKVKVohIzxXKikF8QZ6o7e8kLFz+JktChUOaYSHtNtYY8+n2HLfW/iVDMYmIiIiISBp1v7t4ItLtLP3bwwTrnITDpJkXMnj8xJTbdmrdit3LYf1TzmtvLnzsUcjvn5lrdUD4UD1lf1xHtDoEgLtvNv0+p5oVItLzhbKS5QWi0RK8ODMsDMmi29FgqAsik15iRvyrOfY4xy2ghIWIiIiISA+ghIWIHNeOd99h/WvzAQgZL4sKzuTiaAyv29Vq206tWwEw4ly47iF45ovOzIoh0zJ3rXYK7aul7E/ridWFAfD0z6XfzVNwF2Z1cWQiIh3XOGERCRcADUtCJf/kjIa0JJS0yy6cxIOIiIiIiPRiSliISIuC9XW8/PtfJrbf6HM2Q01uSsmKTq1b0djkjzp1K/JKM3+tNgruqqbszxuwAacYuHdwHqWfm4o7z9tKSxGRniHkazTDIugsceczfjCNZliEw50el/R81tqRXR2DiIiIiIhknhIWItKiRX/5I7VHygDYlT2UHaWn8McPT06pbafVrQjVgy+36b5umKwIbKvkyMMbsPEEjm9EIaXzJuPK0duwiPQeoaxo4nW03ln+z+eqp/GfnLGwaliIiIiIiIhI81p/TFpETkjbV69k/WsLAGcpqFdLZ/GdKyYxsKj1OgudVreiYif8+gxY9WD6+04j/6Zyyh5MJiuyxhRRetMUJStEpNdpsiRUjQXjcmpYNJphQVg1LERERERERKR5ulsmIscI1NYy//e/Smwv7Xsu008eyw1nDmu1bafVrfBXwF+vg+q98PxXwRiYNi/91+mg+nVllD+2CaLOstvZJ/Wh740TMV7li0Wk94m5weS4sf4o0cog5JTgCzStYTGmj2r2iIiIiIiISPOUsBCRY7z28B+oqygHYGfOMA4OOIW/XDMVY8xx23Va3YpIEB77JJTFEyN9x8LED6f/Oh1U9/ZBKv6xOVEiNOfkUvrcMAGTQg0QEZGeylXkI+r3E60KYT/xv/jKs+CvyT85vUS6MDoRERERERHpzpSwEJEmtq5awXtLXgUg6PKxsHQWP7/2FErzW38itlPqVsRi8MwXYefrznZuKdz4D8jtk/5rdUDt8n1UPrMtsZ07bQAl14zDuI6f9BER6elcRVlED/ghZokNuxRv/yjGLAfcQJRIUDUsREREREREpHlKWIhIgr+mmlce+HVie0mfGVx5zkQumTSg1badVrfi1Xth/T+c154c+MTj0GdU+q/TTjZmqZ6/k5pFuxP78s8dTNEVo5tNVtSH63low0Os2L+CqI1S6CvkNxf/psk5v13zW97Y90ar154xeAa3nXpbk323vXIbNaGaVtt+4ZQvcN6Q8xLbH1R9wHff+G6r7QD+76L/oyirKLH97LZneeL9J1ptN6JwBD847wdN9t23/D42lW9qte2Vo6/khpNuSGyHoiFuevmmY86LxWJU1lQC8PjCx3G5XHx7+reZ2Hdi4pxVB1bx83d+3uo1vS4vD17atF7Kg+sfZOGuha22PX3A6dw57c4m++5cdCeH6g+12nbe5HlcPOLixPaBugN8ffHXW20H8JMLfsLAvIGJ7QU7F/Dwhodbbdc/tz8/m/WzJvt+tupnvHPonVbbXjz8YuZNmddk37yX5hGJtf5U/R3T7mDagGmJ7b2RvXxu4edwuVqflfTg3AfxupN1Eh7b9BjPb3++1XYT+0zk22d/u8m+b7/+bXZW72y17Q0TbuDKMVcmtquCVXxp4ZdabQdw34z7GFk0MrH9+t7X+d27v2u1XXd9j2j4Xcs3+UzN+Qa++P5IZRBfSbz2kfGAjRIJKWEhIiIiIiIizVPCQkQSXn3w99RVVgBQ0Xcs9cNP4ztXTGq1XafVrVj1ILzecBPVwLV/gqFnpP867WQjMcqf3Iz/3cOJfQWzhlE4d0Szy2kt2r2IH674Ifvq9iX29ck+dqbIzpqdvHv43VavP6zg2BojG8o2UBGsaLVtRaDpOf6IP6VrAkRttMn2ofpDKbUNRY8tvLu1cmtKbc8Y0HTcLbbVdruPOEmk2nBtk/3VoeqUrulz+Y7Zt7d2b0ptS7JLjtm38chG9tTuabVtmb+syXYoGkp5bMLR8DF9tfff0gdVH6TU9qQ+Jx2zb+3htYRj4WbObqo6WN1kO2iDrDuyrtV24PwbaGx/3f7UxtV97LhurticUuJs1rBZTbYjsUjKY+OP+JtsVwQqUmrbE94jlgXeYhYnAxCtDJI1OD9+xAsEqan1N9tORERERERERAkLEQFgy4plbHpjMQBZeXl847++w22ePPKzjv820Wl1KzbPhxe+lty+7Mdw0uXpv047xerDlD3yHqEP4jdcDRR/eAz55ww+5tz9tfu5/637eXX3q50cpYhI5m2Obk8mLA6W4S7ajMtlMcaDtVBbV9/FEYqIiIiIiEh3Zay1rZ8l3ZYxZiiwG2Dz5s2MGzeuiyOSVPj9fubPnw/AnDlzyMnJ6dJ46qureOhrX8RfXQXAZbd/jUnnz06p7auPbEwsBdVncB7X3nVG+peCigThl6dDdfxp9HNuh7k/OH6bNDvemEWO+Cl7aAORw85Tw8bros/HTyJnUt8mfYRjYf763l/5zbu/afJ09fRB0/n29G8zonAEAC7TdPmbmI2lHGd72xpMk1kg1tpjnljvSFtD87U7jp550pb/Jx19zea0NG7t/Vl749i0pCt/1oZxs9ZyyZxLUnqPPPpn1dikt21r8fr9fq5++mr2Rfcx0T+an+1wli3LG3mYkgOf5U8HH6Kq6lls9DAR4+Ybf3sGl2r6dLktW7Ywfnyi3tQwa23r076k12n8eWL37t0MHTq01TYj73oh02Gd0Hbcn5mHcjRumaMx65k0bj2Txq3n0Zj1TKmM2549exg2LDGTP22fJzTDQkRY+OffJZIVY844m4nnzUqpXafVrfBkwY1PwMMfhpHnwSX3pv8a7RTaXUPZwxuI1TrL3bjyvZTOm4xvaMEx5371ta+yZM+SxHbf7L5848xv8KFRH2p2yagGR99gbIv2tjXGtJhkyHTbdLYzJnmTtfHrY85pZ7wn0th01c/qMq52tdfYZLbt0fG6jItSVyn7ovs46DmS2B8NOctB+Vx+nCWhwGOj+ENh8rKPXY5LpDcyxuwARrRweLG1dtZR52cB3wI+BQwDyoHnge9Ya1svfiQiIiIi0oMpYSFygnv/zaVsfnMpACF3Nv0v+0RKN407rW5FgwGT4eZXoHAIpFCAtzP4Nxyh/LFN2LDzhLKnXw6ln52Cp092s+dfPe5qluxZgsFw/YTr+Y/T/4NCX2FnhiwikjH93P0gDBWeaqzLYmKGaMBJSvhMvbMkVPzc2jq/EhZyoqkCft7M/h2NN4wxLuBfwFxgOfAUMA64GbjIGHO2tfbw0Z2IiIiIiPQWSliInMDqKitY8MffJLZf7XMeAyoN57bSrlPqVlTsgKLhTZMTfUal9xodUPvGXiqf307D3TffqCJKPzURV67zBHHMxqgP15Pvy0+0uXDYhXx2ymeZM2IOU0qndEXYIiIZM8EzgdycXC6bfhmugz5sRYhInRuMk7DAeBPn1tb5GdC3qAujFel0ldbau1M47zM4yYq/Azfa+JqHxpgvAL8F7gNuzVSQIiIiIiJdrXs8piwinc5ayyt//A3B2hoAtuaOpv8p05l37shW2y59fDPl++oAp27F+R8b30qLNjqwDv4wC579MsSi6e27oyzUvbybyueSyYqcU/vR73NTEsmKI/4jfH7B5/nmkm82qa1gjOHOaXcqWSEivdJgz2CmZ03njP5n4C126o7YIMRsDj5XPY2fk6lT4W2RltwS//7/bNMCTb8HtgM3GmO6tviZiIiIiEgGaYaFyAlq0xuL2bryTQD8rmzeHjKbf11/aqtFUDNet+LQRvjLVeCvgDWPQt8xcP6d6eu/A0wURm3NJ1B+MLGvYPYwCi8ZgYn/d3v38LvcuehODtU7S0wv3LWQi0dc3CXxioh0FU9JFqEPnNdR2w+f8WNM8s/O+np/F0Um0mWyjDHzgMFANbDSWrui8QnGmGxgOvC+tXZn42PWWmuMWYAzu+IMYGmqF44X1T6egQ0v/H4/fr9+P7uaxqDn0Zj1TBq3nknj1vNozHqmVMYtU2OrhIXICah83x7mP/B/ie1FpTP59rVnMajo+A/sZbxuRdkWp7B2fbxg69Cz4Kxbjt+mk0SrQ4x/r5D82vjbpguKPzKW/LOcpbCstTzx/hPcv/J+IrEIAP1y+qlGhYickNzFWYnXEQbEl4RK7qvXhxY58QwEHmy8wxizEvi4tXZbfNcYnBnwW1roo2H/ONqQsAB2p3rikiVLKC0tTeFMfYzMpPnz52eoZ41bpmjMeiaNW8+kcet5NGY9UyrjVlZWlpFra2RFTjChgJ9//eQHRALOzaJNeeOYeO75XHXqkOO2y3jdiiPb4OEroc6ZmcDg0+CT/4CsgvRdo52CO6qoenRjMlnhc1F640SyJ/QBwB/xc9/y+3h227OJNqf3P52fzvoppTmpfOgXEekd6mJ1vH3obSKBCsZSDEDUOxKfyw8kE9z1dUpYyAnlQZwEw3qgFhgP3Al8ClhojJlqra0BGgq7VLXQT3X8uwrAiIiIiEivpYSFyAnEWsv83/+K8r3Og3ZHvCW8N2ouL1w1udW2Ga1bUbHTmVlR4yw1xcCp8Kl/QnbXfh631lK3Yj+Vz26HmLOMdNAXpf9nJ5E9yklW7K7ZzR2v3cH7FcmZJ5+a9CnumHYHXpe32X5FRHqrxcHFLFu0jNNrJ/IDvgxA1DUUr9mFaVR0OxIKdlWIIp3OWnvPUbvWAJ82xoCTtLgF+FkGQxjWyvGBwEqAmTNnMnRoaytIAW++2vGopEVz5szJTMcat4zRmPVMGreeSePW82jMeqZUxm3Pnj0ZubYSFiInkNUvPcf7y5YAEDJe5g+6jN9/ejrFub7jttu4LIN1K6r2wMNXQHX8Ta7/ZPjUvyCnJD39t5ONxKh4Ziv1q5L1KqoLw2wfX8vggbkALNmzhLuW3kVNyClcnuPJ4b/O/S8uHXVpl8QsItLVSl3OrLLD3orEvqgZQJZrMzSqYTGpv2oGi+AU0v4UMAMnYdEws6KlJzYa1plsaQZGs6y1x/0kGU+cAJCTk0NOjn4/u5rGoOfRmPVMGreeSePW82jMeqZUxi1TY+vKSK8i0u3s3fQeix/5U2L71f4X8rXrzmPaiOMnBrasOshrj25KbKe1bkX1fnjoCqjc5WyXToBP/wvy+qan/3aKVgU5/Pu1TZIV2WcPYMukGqJeZ6aFtZbH3388kawYWTiSv33ob0pWiMgJrZ+7HwCHvOWJfZGSs/F99CdAoxkWQc2wEAEaFv1t+MNqOxDDqVHRnIb9LdW4EBERERHp8TTDQuQEUFdZwfM/v59YNArAGVdezdWX3sCo0uMnHrasOsiCP7+HjS+HNOWCIemtW2Fc4IkXYe0zBj7zLOT3S1//7RDcUcWRRzcSqw0DYLwuSq4Zh5lQAPM3Js4zxvDf5/03Nzx/AxNKJnDfefdR4Ov6ehsiIl2pYYZF0BWi3hsgN5xNtCqMN8fbZIZFWAkLEYDp8e87AKy1fmPMW8DZxpgR1tqdDScaZxrEJUAdsKqzAxURERER6SxKWIj0crFolBd+8WNqK5ynXYdNmsr5H/8MLvfxl3Q6OlkxccYgZt6QxroVAAUDYN4L8NxX4LIfQ8HA9PbfBtZa6pbvp/K5ZL0Kd3EWfT81Cd+QfPx+P2EbxttoDfairCIeuewRSnNKmyynICJyoso3+eR786kN13LYW8GI8CCi1UF8WW7VsJATkjHmJGCXtba+mf0/im/+rdGhPwBnAz80xtxorbXx/bcCo4E/WGtVtV5EREREei0lLER6uaV/f5jd760DIL+kD5d/5ZvtSlbMvvEkjCsNN+VjMXA1Wo0urxQ+9teO99sBNhyj4l9N61VkjS2mz8dPwp3nJWZj/PX9v/Jg9YPcVnBbk7b9crt2RoiISHdijGFkwUjWl69nr+sQIxgEMfDGYjT+s3PDrjKmdV2YIp3pY8CdxpglwE6cGRLjgQ/hrJP2Q2vtkkbnPwzcAHwcGGWMWQyMBa4GPgC+04mxi4iIiIh0OtWwEOnFtqxYxqrnngYgiovQBZ8ir7j1mhUZS1ZseAb+PBcC1R3vK00iVUEO/aFpvYr8mUMo/ewU3HleDtYd5NYFt/KLd39Bta3mqfqniNlYF0YsItK9jSgcAcDhRnUsPCv/Co1mWOw/0n3+PyCSYa8B/8ZJUnwSuANnKagXgbnW2v9sfLK1NgZcBdwN9IufPwP4E3COtfZwp0UuIiIiItIFNMNCpJcq37eHF/7vZ4nt1/ucw8dGTzhum4wmK1b+CV74GmDh8Rvhxn8k61d0Ef/GI1Q8uZlYfQRI1qvIPbU/AAt2LuCeN++hKliVaDPQPVAJCxGR4xhZMBKAw96KxD7Xljcw5sOJbS0JJScKa+1iYHEb2wSBe+JfIiIiIiInFCUsRHqhcCDAP//nB0SDAQDezxvL5Is/xCemD2+xTcaSFdbCovth8f3JfUXDwRx/WapMsuEYVf/+gNpl+xL73CXxehWD86kL13H/W/fzzNZnEsf75/TnctfljPGOwePSW6eISEuGFzj/rznUaIaFoRBn9RtHNBTq7LBERERERESkB9CSUIAxZogx5qvGmPnGmF3GmJAx5oAx5iljzPQ29DPLGGOP8zUvgz+GCOAUj37p97+kct9uAI54Syg/7SruvmpKi20ylqyIReGFO5smK2Z8Fa76Nbi75qZ/+FA9h/5vTZNkRfakvvS//TR8g/N59/C7XPfcdU2SFZeMuIS/zvkrY7xjuiBiEZGeZWThSDzGg6c4O7HP2r40/l9KLKyEhYiIiIiIiBxLjwk7vgx8C9gGzAcOA+OAjwAfMcZ8wlr7eBv6Wwwsamb/mg5FKZKC1S89z+ZlTu3GkPGyfNSV/P0z55DlaX5GQ8aSFeEAPH0zbHwuuW/uf8M5X+pYv+1kraV+5UEqn9uGDceXdPIYiq8YTd70QRhjeHjDw/zv2/9L1EYByPXk8v+m/z+uGnMVgUCgS+IWEelpRhSM4K1PvoWr1rJ/wwoAovTH54rQ8E5qlbAQERERERGRZihh4XgLmBVfYzbBGHM+sBD4rTHmmfh6sqlYZK29O80xirRq7/sbee0vDyS2XxtwIf9z88UMKMxu9vyMJSsCVfDYjbBjqbPt8sBHfgsnX9+xftsp5o9Q8fQW/OvKEvs8A3Lp+/GT8A7MS+wbmDcwkaw4ud/J3H/e/QwrHNbp8YqI9GQu48Lr8mLzLbgNRG08YRFOnGMjSliIiIiIiIjIsZSwAKy1T7ewf6kx5jVgDjAVWNWpgYm0Qfm+vTz1o/+CmDN74J2iU/jMJz7MtBF9mj1/69uHMpOs8FfAQ1fCwXXOtjcPbvgLjL24Y/22U3BHFeWPvU+0MplvzJs+kKLLR+PyNZ11MnfkXN7c9yYDcgdwy8m3qFaFiEgHGJfBXZRFtDxAxPYjy7UreVAJCxEREREREWmG7sa1ruFxwEgb2owzxnwVyAH2AK9aa/e25+LGmKGtnDKw4UUwGMTv97fnMtLJGi8vlI6lhuorK3jqB98hXFcDwO7sIQy+8KNcfXL/Zv9NfLDmCIse2YyNr4w0fnp/zr56BIFgGpY9innxFY/AfXAdNqcPwWsfxQ4+HTr536aNWfxL9+NfvA+cnAwm203eh0eSNbGEbVXbeXHHi9wy+RaMSSZpvnnqNzHGEA6GCZN8GjjdYyadQ+PWM2ncep6WxswUeqE8gLV5ZJsQYAALkZD+ZukGgsFUJw+LiIiIiIh0DiUsjsMYMxy4GNgPrGtD00/EvxpEjDG/Ar5hbXy9mdTtTvXEFStWsG3btjZ2L11tyZIlHWofC4fY88rzhCqOAOAq7MPu0Zfwiay9zJ9/bJ6sfr+H8nezwTo36XOHhqgr2caCV9L3b8eV/VFO6VPJlgFXULu+DNbPT1vfqfAGXYzakkdBjTexr6YgzAfjKgnsOsCbW95kYWAhYcJU76jmZN/Jbeq/o2MmXUPj1jNp3HqeJUuWsC+yjyXBJXykYgYzOAWAAo8FvEAIEw4xf37n/r9BjlVWVtb6SSIiIiIiIp3I1dUBdFfGGC/wCJAFfCvFRMNh4C5gCpAPDMAp3L0VuAP4cUaClROWjUbZv2RBIlnhyctn+IWX8ulJXjzN/HY3l6womRLEdGAVKBOLUOjf1WRfzOVl9YjPU5s9uP0dt4eF0oNZTH63MJGssFj2Da1n8+Qadrr38Pva3/NS4KXE7Ik3gm9gre3cOEVEerkIEdaH17PTm0yc57gsGOdZmew2TVwVERERERGRE4VmWDTDGOMCHgJmAg9Yax9JpZ21dgOwodGuOuBfxpgVwFrgP4wxP7LWHmpDOK1V/B0IrASYPn06Y8aMaUPX0lUCgUDiqeGZM2eSnd18UezjsbEYL/325/gP7gMgO7+Aj377XkoGDWn2/A/WHGHRy5sTyyONm96P864f07GaFXWH8T1zM67DGwl+5mVsyaj299VB0fIAtc/tJLKjJrHPVeQj/+pR5A/2smjDA/xt898SRbUNhhvG3cAXpnyBXG9uq/2nY8yk82nceiaNW89z9JgFTIA//OsPHPKUJ87JzuuHMV6shQIvzJkzp6vClTjNzBURERERke5GCYujxJMVf8ZZ0ulR4Asd7dNae8AY8y/gZmA68Fwb2u453vHGa+9nZWWRk5PT3jCli2RnZ7d53Ky1vPrQH/hg5ZsAxNxervzGdxk8emyz5299+xCLHtmSqFkx8dxBzP5kBwts71kFj38KauIJk+e+AJ9fTIema7SDjVlqX99L9YKd2HAssT932gCKLx/Fyqp3uGfBPeyuSa6uNrZ4LPecew8n92vbUlAN2jNm0vU0bj2Txq3nyc7OpiSnhD7ZfTjsrUju7zcBtr4EQDQc0rh2A1lZWV0dgoiIiIiISBNKWDQST1Y8CHwa+Dswz1obO36rlDUsEpyXpv7kBLby2adZ85KT94phWDhoLh/tM7zZc7e+fYj5f9qAjTlTK9KSrHjnEXjhToiGnO2CwXD5/3Z6siJ8oI7yp7YQ3p2cVeEuyaLk6nF4xhRw95v/xT+3/jNxzOvycuvJt3LTlJvwur3NdSkiImkysnAkh6qSS0J5I8kloSKhENbaJg9eiIiIiIiIiChhEXdUsuJx4FPtKJB9PNPj33eksU85AW1YvJClf3swsb2k/yy+/8XrGNs//5hz056siITgpbtg1Z+S+4afC9c/DPn929dnO9hIjJpFu6l+bTdE42tcGcg/ZzCFc0fiynID4I/4E21O73863z/3+4wuGt1pcYqInMhGFY1iw4H1iW1POAqmIVlsiYbDeHy+rglOREREREREuiUlLGiyDNSngSeBTx4vWWGMKQVKgTJrbVmj/dOstW83c/5XgNnAFuL1JkTaY8eat3npt79IbC8vOYvbv3Aj54zpe8y5aU9W1ByEJz4Nu5cn9531eZjzA/B03g2n0O4ayv+xmcjB+sQ+T78cSq4ZR9bIoibnfuusb7GubB2fnfxZrptwHS7TTCVyERHJiFFFowi6QlS5aymK5uMORDF4GkopcbC8miEDS7s0RhEREREREelelLBwfA/4DFALbAa+08wSBc9Ya9fEX98OfB+4B7i70TlPGWPCwCpgD87yT2cDpwGVtJIIETmeA9u28PRPfkBDIYq1BZO59nPzmDt54DHnpj1ZsXslPPEpqNnvbLuz4Ir/hdNubF9/7RALRalesJPa1/cmCofjgoILhhE4J5v/WvtjTgudxrXjr020Kc0p5bmPPofXpeWfREQ626iiUQAc8pZTFM3H+EMYk0xw19b5W2oqIiIiIiIiJyglLBwj49/zgW+3cM4OYE0r/fwWmAvMBPoCMWAn8HPgp60V0BZpScWBfTx23/ewYadmxNbcUZz7yZu54cxj61ZkpGZFxA81B5zXhUPghkdhyOnt768NrLX415VR9eIHRCuDif3eQXnkfXQEf6t8ij8+90f8ET+v732duSPnUuArSJ6nZIWISJcYVegkLA57yhnHcAwusj151IWd43X1SliIiIiIiIhIU0pYANbaecC8Npx/N01nVjTs/xHwozSFJQJAXWUFf73n20TrncLSe7MHMeLqz3PrrHHHnLtx2T5ee/T99CYrAEbNhPPugN1vwXUPQX6/jvWXotDeWiqf20ZoR3Vyp8dQeNFwlg17j5+9dRf76/YnDkViETZXbGbagGmdEp+IiLRscP5gvC4vh7wViX157gLq4q/rNcNCREREREREjqKEhUg3VlNexj/u/Q7B8sMAlHn74Jt7M9+6YkqT8yKhKEse38zGN5I37zuUrPhgCYw4D1yNaj7M/k/AgDvzbxvR2hDVL++kbtWB5PJPQNa4YsrOs/zn9u+w+o3Vif1u4+b6CdfzxVO+SHF2ccbjS6dYMEj9ihW4i4rIOeWU5P76esr/+teU+ij+6EfxlCbXgQ9s3kzt4sWttnNl59DnU59ssq/m1dcIbtvaatussWMpmD27yb7yvzxCLBhotW3BrFlkjUsm3CKHD1P5zDOttgPo88lP4srJSWzXr15N/apVLZ4fCUco2bKZaH4+zJnT5FjVc88TPrC/hZZJOaecQt5ZZyW2bSTCkQcfPE6LpKLLL8c7eHBiO7RjB9ULFrTazrjc9P3cTU321b7+BoGN77Xa1jd8BIVzm/6sFY89TrSmuoUWSXnnnkvO5MmJ7WhVFRVPPNFqO4CS66/HXZSsI+Nfv4G6N5e12s5dUEjJx25osq9uwSuULFoEQNXefdR5m3/fyZ40ifwZM5rsO/KnP2FjsVavWzhnDr4RIxLb4b17qXrxxVbbAfS96SaM252Md8Vb+Ne+22o776DBFF1xeZN9lU89TaT8SKtt8848k5xTT01sd7f3iMTvWm4usfPOg5wc3C43t5x8C5NyhjiLZQK5nvxEm3q/EhYiIiIiIiLSlBIWIt1U5cED/OO+b1N16CAAeX1KYe4X+cqVZ9C4xkrloXpe+sN6juypTeybcsEQZt4wvu3JimAtvPQtWP0ozP1vOOdLyWPuzC+tZCMxapfto3rhLmwwWe7F0zcbe3EfflH7IP9a/q8mbWYMnsE3zvwGY4rHZDy+dIlUVFC7eDG1r75G7euvY+vr6XfnnU0TFn4/h3/6s5T6y58xo8nNyODGjSm1dffpc8zNyOp//5vq555rtW3hh688JmFR9pvfEK2sbLWtd8CAJgmL8MFDKf+sxdde2zRhseItDv/858dt0w8IDBlyzP7Kxx8/brKjQd/Pf75pwiIaTTnenFNOaZKwCG7bllJb4/Mdk7CoWfgKlX9/rNW2+RdeeEzC4sif/kR49+5W27ry8pomLCorU/5ZC+fObZqwWLMmpbbe4cOPSVjUPv8c/ZYsBaDi3y+12LbkE584JmFx6Oe/gHC41etmjRnbJGER2r0n5Z+172c+A40TFq8v5cgDf2y1Xe5ZZx2TsCh/9FGCGze2ftE772yasOiG7xENc+8qjIu8++4F4LZTbqPeHKZ81SYAct25ifP9SliIiIiIiIjIUZSwEOmGjuzZxZP3foe6ynIAigYM5Lrv3EdR/6YFtretPsSrD28kFHBu7nt8LmZ9YgITzh7U9ovuWw1P3QxH4k/OLvg+TPgQ9BnVoZ8lFdZaApvKqXrhAyJlyRtYJstN4UXDyT93ML9495f8a3syWTGycCTfOPMbnD/k/CYJnO4qtGsXNa++Su3CV6l/5x2IRltvJCLSA9W9/DL2+9/DeJ1Et7s4K3GsccIi6G99RpaIiIiIiIicWJSwEOlmDm7fyt/u+TaxgLPKd9+hw7n22/eS36dv4pxoNMabT2/j3YXJJ6aLB+Ry6a1T6Ds4/5g+jysWgzd/DQv/C2Lxp5K9eXD5T6BkZEd/nFaFD9VT+fx2gpuTa5xjIO+MgRTOGYG7wAfAvMnzeOz9x3AZF1885YvccNINPaKgdsXjT1Dx6CMEtzS/zJK7pIT82bPJP6/pU+KuggKG/vpXKV3DO3Rok+3cM89MqW3DzcTG+nz608c8nd8cz8Bjk2KDf3Q/NoUn27MbPcEP4Bs+LOWf1ZWX12S7YM4cssa2PLsmGAqxZs0aYtnZnHTUsX5f/UpKM0J8I0c22TYeT8rxNp5JApA9dWpqbRsvxxZXcsMNx8wmaE7jJ+kbDPz+97GB1p9mz5ow4Zi+Uv1Zj75u/gUz8Q5M4d9hoxkzDYo+9zm2xv+7n3rqqWT5fM22PfrfPsDQn/8vWNvM2U1lT2n67zBr/LiUf1Y8Tf98Kvrwh5vMkGqJu6TkmH0DvvUtYrU1rbb1jWn677y7vUcEQyF2/PZ35G3Zgo1ECG7fTnb835OnJDt5bXfydTCghIWIiIiIiIg0pYSFSDeyZ+N6Hv/vuyHk3MSpKxjI577zA/Ib3eSqKQ8w/4/rObA9uR79uDP6M+uTJ+HLbuOvdPV+eOYLsH1Rct/g0+CaP0HfzC6xFKkKUvPabure2g+Nlpt3j8hj4UmrifTbxryC5M3e4uxifnrBT5nUdxIl2cfe9OuuouVHjklW+EaMIP+iiyi46EJyTj21yVr4DVw+HwUXX9yua3oHD26yDFFb5EydAlOntH5iM/IvuKBd7dyFhe3+WbNGjyJrdMuzgDx+P3UtJFFyzzijXdc0bnf7x6Z/f7ztbJt90klkn3R02iU1RyfEUuXKy2v3z+obNgzfsGHtapt98snUHTgAQN7s2eQ0k9RoScFFF7Xrmp4+fdr/73DcuGOSU6nKO3t6u9p1t/cIj9/Pke3bqZwxg3O+cCvZxcWJY9XuOqwbTBTy3MnkUzAQbFcMIiIiIiIi0nspYSHSTXyw5m2e+vF9mKhzc3Vf1kD6XvFFihrd9Nm14QgL/vwegTrnHJfHcN6145hywZC2LYtkLbz3DDx/J/jL4zsNnPdVmPWf4Gn+aeZ0iFaHqFm0m9oV+yGafAraVeTj7SkfcH/Nr6jeVU3+/nw+Ou6jFGUl18SfMaR9N10zzYbD1C5eTOU/nmLg977b5EZg/oUXcviXvyLnlFPIv+hCCi68EN/o0T1iGSsRkbYIxBNUrqzkElC1oVpmPjmTP7nuZnC0Pznu5LGQZliIiIiIiIjIUZSwEOkGNi1/g+d/8WNMzKlrsDNnGBNu/DJfvHgixhhiMcvKFz5g1Ys7IH6Pv6BPNpfeOoX+IwrbfsF3/w7P3JbcLhgEH/0djJ7V4Z+lJdGaEDWL91C7fD9EGk2p8LnYPrGMe+wvOFR+OLE7EAmw6sAqLhrRvqelO0No504q//EUlc/8k+jhMgAqp0yh3+3JYuVZ48czbumSZpfpERHp7fJ9+fTL6cchbwWDw/3xujx4jY+wDTGqpPsv6yciIiIiIiKdSwkLkS62fulrLP7z7zDWuYm/LXcUM27+KjfOcJZkqq8OseDPG9izKVnjYeTUvlw0bxLZee282TP5o7D4R1CxA066Aq78JeT1bbVZe0TrwtQs2UPdsn3YcKNEhdfFjvHl/Nj9ez4I7UzsdhkXV46+kltPuZVhBe1bTiaTTDhM7Ysvcuhfz1L/1lvHHK9btqxJwsIYo2SFiJyQrLUYYxhVNIrD3vLE/lxPIVXhMgpcrdcaERERERERkROLEhYiXajs/ffY+vYbNCwO9H7BBK68/atceapzo37f1krmP7CeuqoQAMbA2R8Zw2mXDMe42rCkUO1hyO+X3PbmwId/Bf4KmPhhp+M0i9WHqVm6l9o39mFD0eQBj4sd445wr/kl+2IHE/UrDIZLR13KbafcxqiilmsSdJXQ1q30/+czFLz7LmX+o4oXezwUzJ5N8XXXkpdCUWQRkV7LWmqff54jS5YSOXKEkX/7K6OKRnGomYRFsL71QvAiIiIiIiJyYlHCQqSLHFq3hup1KxPbG4qm8uk7v8qskwZgrWXNgt28+cw2bMx5AjW30MecmyczZHwbCk4HquHVe+GdR+ALr0Pp2OSxUTPT9aM0EasPU/PGPmpf34sNNk5UGPKnD6LggmHM3/Uo+94+mDh08fCL+eKpX2RcSfuK1naG0NZtFC9f3mSfb+RIiq+7lqKrrtIsChERAGOofuxxQhs2ABDas5eRhSNZ7V2aOCXX4yxlqISFiIiIiIiIHE0JC5FOFo2EWfron5skK9b1PYPbv/kfnDGyD8H6MAsf3sgH75Yljg+ZUMwlN00mryiruS6PZS1sfBb+/S2o2e/se+EO+PSzGZlNARA54qfm9b3UrzrYZOkn6wLXaUUMnDMBdzz+a8dfy0PrH+LC4Rfy6cmfZnTR6IzE1B7hffuofvFFck45hdwzz0zsz71gJjGfD6ylYM4cSj92AzlnnKHi2SIiR8mdPSuRsKh9dSGjLhrDfM+/ksfjCYvKqrquCE9ERERERES6MSUsRDpRzZEynvv5/ezfvCmxr3LSxfy/Wz/HhIEFHN5Vw0t/WEd1WSBxfNplIzjrytG4Ul0CqnIXvPgN2PxScp83F8ZeAjYGxp2uHweA4M5qapfswf/ekURBcABrLG/2X8/vCh5jzogPcVfRyYljhb5C5l87n2xPdlpjaa9IRQU1L8+n+vnnqV+1CoDCD32oScLClZPDnptuIjh4EJdceSU5OTldFa6ISLeWO2sWlb/+PwBqFr7KqKsvbrIkVF48YbF9f0Wz7UVEREREROTEpYSFSCf5YO1qnv/F/xCqrXZ2uFz0O2MGX/zirWRnZ7N+yV5ef2IL0YgzOyErz8PF8yYxcmqKSw2F6uDN38DrP4NwfXL/uDnwoZ9AyYi0/Sw2ZvFvKKN26V5Cu2qaHIu6Yyzq8zaPFj7LAd8RAJ7e8jS3nXIbRVlFifO6OlkRKS+nZuFCahYsoO7N5RAONzle89prxAIBXNnJOAOjRnZylCIiPY939Gi8I4YT3rmL+lWrGBvOpiY7ufxTwwwLwqEuilBERERERES6KyUsRDLMxmK89uTjvPP03zDxKQgFfftRdMYMsvv2IxyM8vrf32PzW8maDgNGFTL3likU9Enhpn4sCu/8BRbdD7UHkvvzB8JlP4JJV6VtGahYMErdqgPUvrGPaHmgybFan5+ni17h+eIl1HiSy3xMLZ3KvMnzyPfmpyWGjvK/+y6HfvozZyZFLHbMcd/o0RRdeQWFV1zRJFkhIiKpMcZQcOFFlD/4IESj1C9ZyqDiwVS5ayiKFpDriSevI+HjdyQiIiIiIiInHCUsRDIoUFfL3/7nR1RsXE1DyqCseBTz7v4Or7+5nHCti+f+dx2VB5NPnp48eyjnXjMWt8eV4lUMrPxTMllh3HDGTXDRdyG76PhNUxSpDFC3fD+1yw9gA5Emx/bkHOKJ4pdYVLiKsCsSj8hwwdALmDdlHqf3P71L6zzYaBTjTi6DZbJzqH/rrSbneAYOpPCyyyi68gqyJk5UXQoRkQ4quDiesABqXlnIqGtHcchbQVG0gBx3PgaDiWqGhYiIiIiIiDSlhIVIhhzYvo2//fBebLVTPNsCGwaczW1f/QK5BXnU7/NQsT4bG3WSFd5sNxd+aiJjp/Vv24VcLrjkbnj0GjjpCrjo+9BvfIfjt9EYgY3l1L51gOCWiib1KQCyxhWTN2MQN627l/31TmHvfjn9+MjYj3DN+GsYkj+kwzG0h43FCLy3kdpXX6VmwQIKL/8QpV/4QjLu8ePwjhiOwVAwZw4Fcy4he8oUJSlERNIo59RTcffpQ7S8nNo33uCue58nuvMIofcqcBkXOe58AtFI6x2JiIiIiIjICUUJC5EMeOvll1j80O9wxZybMX5XFntPuZr/uf1aXNURXvnTJsrXJ4s29x2Sx6Wfn0rxgNzjd3x4Myy8B867A4aekdw/5iK4bRkMmNzh2CNH/NStPEDdqoPEapsu1xE1MQpOG0j++UPxDcoD4NrQtaw+tJprx1/LzKEz8bq8HY6hraKVldS+8QZ1S5ZS+/rrRI8cSRyrmb+gScLCGMPIxx7DXVysJIWISIYYt5v82bOoeuppbH09vtWbiJYMJ4RTaDvXU0hVtLZrgxQREREREZFuRwkLkTSKhEI88atfsv+tRTQs6HQwqx+DPnor959/Cm8/vZ1Nb+7HNpqtMO6sfsz+5CS8PnezfQJQcwAW/RDeeQRsFPwVMO+FZG0KYzqUrLCRGP4NZdS9dYDgtqpjjh/0HuHlomW8XLyMRy/9O30K8xLHbpl6S5fc+A/t2kXV889Tt2Qp/rVrm61HAWB8PmJ+P66cZILIU1LSWWGKiJywCi66iKqnngbA/85qcs4alziW6ynEFa7oqtBERERERESkm1LCQiRNKvbv5ZEf/oDwwV2JfVv6TOX6W75I9gdB/n7PCqLh5E11V1aMoglBzv/42JaTFVV7YPlvYdWfIVyf3H9kG1Tvg6KOLbsUPlRP3VsHqH/nILH6pktzRIiyvGAt/y5+nTV5m4gZi8Gw6uAqhhUOS5zXWckKa22TawXe20jZL391zHkmN5e8c84h//zzyZ89G++ANi6xJSIiaZF37rn0+9qdFFx0EVmjR1O/7nDiWK6nEJfVklAiIiIiIiLSlBIWIh0UjYRZ+ezTLH/6MaJhZwmliHGzc/xlfHzaJWx59AOCjZIBvhwPJ180mH2hDbhamlRx8D1Y9ktY9yTEGt3Q8RXAeV+Bs78IvrwWGh9fpDKIf+1h6tceJrzn2OU49noP8XLxGywoXk6lpwaAkYUjuXLMlVwx+goG5w9u13XbKlpdTf2qVdQtX079irfo+7mbKPrwhxPH8849B9xuiEbxjR1D/vkzyZ95PjnTpuHy+TolRhERaZkrO5vSW25JbC+sXMxpDAAgz1MESliIiIiIiIjIUZSwEOmAfZs3Mv/3v+LInuSsCgpLcU+4jrPKilj/752J3W6Pi5NnD+X0S0dgXREOzN9wbIfhADzxadjyctP9nmyY9lmY+XXIK21znNGaEP71ZdS/e5jQjupjT3Ab1pd+wCNZz7A2dzMY6JPdh0+O+iRXjLmCSX0mZXwmRay+nvq336F+xXLqlq8g8N57TZZ5qntzeZOEhbuwkCE//19yJk3CO6RrCnyLiEjqXq1awmlcBzgzLAwxgqEwWb7Or30kIiIiIiIi3ZMSFiLtEKyv48nf/Z4DK17D4BSkMC4XY8+cS3XlVKq2Rqgj5Ow3MOGcQZx1xSgK+mQD4Pe38FSpNxuiweR2Tgmc9Xnnq42Jilh9GP+GI9S/e5jgtkqwx57jHZJP7mn9yT2tP6sPVLBl+W4uH345V4y+grMHnY3Hlfm3iMpnnqHyiSedOhSRFv67GEO05thES+Ell2Q4OhERSZf+pYMImTA+6yXXU+jsjIRACQsRERERERGJU8JCpI3eWbKEV/70W9yBGhrmHPQZPIqsojns3pwHJG+6jzy5lLM/Mpq+g/OP6ccVCzOochXYi5semPFVp0bFObfDaZ+ErGPbtiTmjxDYVE79u4cJbKmA6LFZil2+/SwqXMXFl13FWZNPS+yfM3IOFw2/iFxvbsrXS5W1lvCePfhXr6bwsssw3uTNqciBA/jfeeeYNlnjx5M7fTp5Z08n94wzcBcVpT0uERHJvOD2D6h+4QXmvvAyFdPGMyDaP5GwiIRCZOW2b4lDERERERER6X2UsBBJUXVZGY/87/8S2PouDaUnwsaDLT6fuvpTqPe7EucOGlPEOR8dw6Cxxcd2dGQbnlUPc8mGh8iOVBHcdg5MvSp5fPQs+I/V4G79iVNrLZFD9QQ2lePfVE5oZzXEjj1vv/cwiwvfZnHhKnZk7cPj8jDCdQpnMSNxTpY7C1qqqdFGsWCQwIb38K9ejX/NaupXryFaVgaAb9RocqZOSZybO326s3/kSHLPnk7e9OnknnUWnr590xOMiIh0qdoliyn7v/8jB6ieXA7e/vhcWXiNj0go2Gp7EREREREROXEoYSHSilgsyitPPcOaf/4VdzSU2F+fNZKSrIsxFNIw1aJkUB7nfGQ0I08ubVrzIVgL7z0Dqx+FXW/iBRrSEZ7lv26asDDmuMkKG44R2F5JYFM5gU3lRCuav9lT5qlgceHbLCl8m83ZO8n15nLekPP4wvD/4Pyh51PoK2zff5DmYrKWyiefJLB+A4ENGwhu3oyNFyA/mn/16iYJi5ypUxm7eBHeAQPSFo+IiHQfBRddxKH7fwRAVuUR6Ofsz/UUEg4qYSEiIiIiIiJJSliIHMfW9et55ne/xRzemZxV4colO2c2Jd7xiaREfkkWZ105iglnD8LliicqrIVdbzpJig3PQLiuSd8xXBwonkafC+9udWJDpCqYSFAEt1Ziw81MowA8pTmsK97Gn8OPsSFnGyU5JcweNpuvDP8m0wdNd2ZRdIANhQhs3oL115N75pmJ/cYYjvzhAcJ79jTbzlVYSM6pp5B72mmJGRWJth6PkhUiIr2Yb9gwssaPJ7h5MwVHyhslLIrYc7CS0mEjujZAERERERER6TaUsBBpxr7NG3n9ib+ye90aGs2TwGRNJT/7fIzLKZ6dleth2qUjmTprCB7fUWmH138GC//r2M5LJxCecj0Ly/oR9BYzZ/Dpx5wSrQoS/KCK4HbnK1LmbzbOMBF8owopnDyQ7JP64C3NYe9Bwxm7z+Nbw7/P1NKpuF3tW+cpUlFB8P3NBDe/T+D99wlu3ERgyxYIh8maNJHRTz/d5PzsyZOdhIUx+EaOJOfUU8k57VRyTzsN35gxGJerhSuJiEhvV3DxRQQ3byZWX57Yl+cpZM/+Ck7turBERERERESkm1HCQqSR/VveZ9mTf2XHu02LQFtXCVm5F+PyDgPA7XVxyoVDOW3OCLLzvFBzEEIG8vsnG510ZTJhkVUIU66G0z4FQ6YRCQQIzp+fODVSFSS4vYrQ9iqC2yuJHAm0GGO5u4qV+Rt4K389q/M28p0LvseHx0xLHJ82YBrTBkxrsf3x1K9cSdkfHiD4/vtEDh1q8bzglq3EQiFcPl9iX9+bP0efT95I1sRJuPNVQFVERJLyL7yIst/8FutPJixyPYVU1jafkBcREREREZETkxIWIsCW9Rt47qGHsLs3NtlvXEW4s6fj9k3EGDfGwMRzB/1/9u47zq6qauP475mZNErohN6rdKX3jiCIIr1LV0ApKgLSBKmiCCqKSEdBRBDllS4gKCJdlCa99xZIn/X+sfZJTm5mkkwyk5nJPN988rkzp91z75l9y157r8VqWy/KTGNegYd/Bk/eCK/8C9b/Fmz8vXE7z7UUrPE1mP+zsMzW0H8GAKI1GPPOMGZ/uz8zf9iP9598jNb3R9KeUYzm6UEv8vCMT3L/TP/mpRneZJV5VmGt+TbisHmPYenZl56sx9g6bBgjX3iBEc89x8jnnmfEc88yx377MWi55cZtM2Ikn/ztb20fQKL/YosxcLnP5D6jRkEtYDFohRUm6zzMzKzvGbjcZ2iZZx7GfPzu2GUztAzmjU8+mcheZmZmZmZm1tc4YGF92jOP/4cbLr4EXmkMVAwugYrPIGVKpcVWmpM11hrG7O9cDVfeCO88Pf7Bnrxx/IAFEJ8/jTHvDWfkE0MZ+eobjHxlKCNf+QhGBosyEwCtNAQrmkX/BWfmlribm+Munp7hJRaZc1FWG7Ia35rvWFYZsgqDWgZN9HF9+q9/MeLZZ8cGJ0Y+9xyjXnttgu1mXGut8QIWA5fJ4EfTLLMwcOmlGbD00gxceikGLL00AxZfnKYZZpjo/ZqZmbVFEjNvvDHvX3XN2GUztAxm9EcfdeNZmZmZmZmZWU/jgIX1SU//wdkb6wABAABJREFU5wluuOgi1BCooGkwLbVAxcAZ+7H4Ms0sM+AW5nnrt3D9G20fcK5liaW2Ysw7Qxn5+nBGvfoxI18ZyohXPoLhbRfIrozSKP43wyustsb6DFxsVvovNDNN/ZtZ6vURLMFqrDjniszQb1ygIEaOZOQLLzDy5ZcZ+fLLNA0cxKzbfXm8Y77+veMY+eKLk3weRj773Hi/t8w5J0vcdSctc889tqC4mZlZZ5h50014/ze/YeToYfRvGcQMLYNp/eTN7j4tMzMzMzMz60EcsKiRtBpwErA20A/4N/CjiPhdB44xADgK2ANYEHgP+DPwvYhovyiAdbnhn3zCzX+6iSdvv4WWj14dr5g2TTOXQMVyDJihP4utPBdLrjqE+ZeZjean/gy/+/HYTSPEmBjCqDk3Y/Qs6zFSizP8/VbG3DWCptsenuR5vNnyLs8MeolnBr7EE4Oe44M5hrH8vCuw1prbMbD/TGO3W3nUPHz60EN8+vrDfPja64x8+WVGvfwyo15/HVrHBUEGLLPMBAGL/ostNl7AomnmmRmw2GL0X2wx+i+2aP686GL0X3CBCc6v35Ahk/FsmpmZdcwMq61G08wzM3LkUPq3DGJQ80zEp59292mZ9Vid8d3EzMzMzKy3ccCikLQRcDMwHLgK+Bj4CnC1pAUj4uzJOEYT8EdgC+A+4FpgSWA/YBNJa0bE2130EKwNEcErT/yHu669gdf/cz9NMXr8P3rNRMugNRgwaGkWm+UZluRMFtpuD5pX24DW4aMZ/eanjBz5WUaN2YURsSDDWpaGUXPS1NoMr5H/yYKhTW3d/4xN/FOP8MzAF3l60It8MtMnLNF/LpYcPTcL/u9jVnttXlZ4dx7i3ncYsMynMPe4gMUn997LGyd9f5KPcdRLLxER482ImHWH7Zlpgw3GBiea55jDMybMzKxbqV8/5jr8MF59aBQATWqi/8gx3XxWZj1TZ3w3MTMzMzPrjRywACS1AL8CWoH1I+KRsvz7wP3AqZJ+HxGTyrGzFxms+C2wW0REOc5BwPnAKcCBXfIgbDwfv/cuD/zpJv77t9sY/nHGiOoBBTXPRf8By7Ps4FYWHfQMc7Q8SMScfMomvPaXmWj+yz9o/XR0bY/d8hj1RTWttPJu0zswewuLrbgS/ReYmf4LzMRohrHgXieyzEcjaXn/Y+LTYcCz4+1bZe+efe+96Df33GOXt8wzzwT30zTzzPRfcEH6LbRQuV2Q/gsuCBFQC0jMvPHGk/tUmZmZTTOz77orLz11NYzI3/uPbu7eEzLrgTrxu4mZmZmZWa/jgEXaGFgcuLj6QgAQER9KOhW4hAxGTGq4+/7l9ugqWFH8Evg2sJukwyJiWGeduI0zetQobvrDbTx5+63MMPQNBjXPyOwtszBo5vkZ2DwTg1oGM0O/IczYbyADmpsYQDWbYU0+rgUi9Cm00nZkIqKV4SPeYuQnr8NHr9H8/uvow9do/fhNBraOYuQOn2eWzbcdu33TmBYGP/UatLYSbR5xnFGvvQ6fHff7wM98hiHHHEO/+ealZZ556b/A/DTPOusUPTdmZmY9xYst7zLniPkA6NfqgIVZGzrru4mZmZmZWa/jgEXasNze0sa6m8vtBhM7gKSBwBrAU42jnSIiJN1Kzq5YFfjb5J6YpAmLDIxv/uqHa3/yc+aYdRZoDVqhdJBH/otWaIVZhyzMzLPMMXbnT4e+z1sv/48gcpR+5B5U/yOPBbDosqvR3Nx/7L6vvfQ0Q997AyLG7jO2Uz4Ye4zmATOw5HJrjXfSTz12D2NGDBt3P7TS2KMfBDPMPj8LzbcMoz4ZzuhhIxk1dDjD3n+HZvrRQjMt6kc/NdOsFlqamunXNJCVWlaB2SZ8okYCI0d9ygejqnzZ77T9jEbQNFM/NFMLzTP3p2mmfrxy1/XM9NxzxLD3Idooot2/GWhm4DvD+ec//zneqrfmmgtGjkCzzErz4ME0Dx5MzDwzbw4dypiZZ2KRFVag/5AhfDTLLNCwL0svlbefDIWnnmr7fG2aGDlyJK+88goADzzwAP3795/EHj1HX04HNmLEiPGu24ABA7r5jGxyjBw5kldffRWABx98sFe1t76qI9fspeFvM8PHLwDw0fARXHnmuQwfNYbWkZ+i8h47sGkAzWqCpmY0wyBGxSiGt46kpUn0bxUwLtDx6fBRaHS+twuYoXlQrujfH/Xvz7AxIxjNaAY2i6ZRgqbct7U1GD58BGrN6R4tamZAUznvQYNQczMfj/kkf20CtfYb93hHtzJ6xDAUOcBhQFN/WtQMEppxRkbTyrAxw2gCBtI03vkOGzEGRg0d+/ugpoE0SdDcjAYNYmTrSEbEKPo1i36jBcp9I4JhI0ai0cMBaJYY2DQwDzJgAOrXj0/HDGMMrQxshqbRLWNnX44eE4wcMRy1jgSgn/rRv6mFtz94r35pHD3qOTYst1P83aSuI98nnn/+eYYNm/TYqtEftfM52jrFM8880yXH9XXrOr5mvZOvW+/k69b7+Jr1TpNz3d544436r532fULjTwTomyRdA2wPrBoRD7ax/mPg/YhYaCLHWA54HPhzRGzTxvojgR8C+0bERR04N18gMzMzM+tqq0XEA919EtY5300atvf3CTMzMzPrap32faKtOsF90Szl9sN21n9U22ZqjlHfzszMzMysp5h70pvYNNIZ303MzMzMzHolp4Tq+RacxPqFgHvLz2sCr3bt6VgnmQf4V/l5NeCNiWxrPYOvWe/k69Y7+br1Pr5mvdP8wH3l5ye780SsS03q+0R/YBngLeBtYEyXn9G049em3snXrffxNeudfN16J1+33md6vmbNwFzl53931kEdsEjV6KX2RioNBt7vhGPUt5ssEfHKxNY35KZ/dVLbW8/QcN3e8HXr+XzNeidft97J16338TXrnRqu28juOg+bQGd8NxlrMtvjc5N7vN7Er029k69b7+Nr1jv5uvVOvm69Tx+4Zi9OepOOcUqoVFURWbJxhaR5gJlq27TnOaC1rWM0HLtrKs2YmZmZmdn0oDO+m5iZmZmZ9UoOWKS7yu3mbazbomGbNkXEMOB+YGlJC9fXKUNpmwGfAC5maGZmZmZm7Znq7yZmZmZmZr2VAxbpdnKGxK6SVq4WSpoFOIacIn9Zbfm8kpYp6+suKLenafz5PgcCiwFXlsCGmZmZmZlZWzr03cTMzMzMbHriGhZARIyWtB9wM3C3pKuAj4GvAAsD34qIF2q7nAbsBXwVuKS2/FJgJ2AXYFFJdwFLANsBzwPf69pHYmZmZmZmvdkUfDcxMzMzM5tueIZFERF/BdYF7iWDDl8D3gR2joizJ/MYrcC2wIlkhfTDgXWAXwNrRcTbnX/mZmZmZmY2PemM7yZmZmZmZr2RZ1jURMT9wJaTsd3ewN7trBsBnFT+m5mZmZmZddjkfjcxMzMzM5ueeIaFmZmZmZmZmZmZmZl1O0VEd5+DmZmZmZmZmZmZmZn1cZ5hYWZmZmZmZmZmZmZm3c4BCzMzMzMzMzMzMzMz63YOWJiZmZmZmZmZmZmZWbdzwMLMzMzMzMzMzMzMzLqdAxZmZmZmZmZmZmZmZtbtHLAwMzMzMzMzMzMzM7Nu54CFmZmZmZmZmZmZmZl1OwcszMzMzMzMzMzMzMys2zlgYWZmZmZmZmZmZmZm3c4BCzMzMzMzM+s1JKm7z8E6xtfMbNpwWzOz6YEDFr2YpNUk/Z+kDyR9Iuk+STt293lZ+yS9ICna+X9nd59fXyZpd0m/lPSApBHlmuw9ke0HS/qRpBfL9i9IOkvSTNPwtPu8jlw3SSdOpP2FpEWm7dn3TZLml3SYpFskvSRppKQ3JF0raY129nF760YdvWZuaz2DpIGl3dwt6TVJw8t1u1fSVyX1a2MftzXr8SQpIqK7z8Mmn6+Z2bRTtTVJA7v7XMz6gtI327+7z2N609LdJ2BTRtJGwM3AcOAq4GPgK8DVkhaMiLO78/xsoj4Ezmlj+QvT9jSswSnAwsA7wOvl5zZJmhG4C1gZuAX4LbAK8C1gA0nrR8Twrj5hAzpw3Woupe329kGnnZVNzKHAUcCzZPt5G1gS+BLwJUm7RsTV1cZubz1Ch65Zjdta95oJ+BpwP3Ajed1mA7YELgJ2lrRlRLSC25r1HhERktYB9gUOjIhR3X1ONnHlmjUBZwF/i4jrJTVVrz9m1nnKDIsfAAMlHR0RI7r7nKxt1WwYB3R7J0lzA38GFoiI+br7fKY3Dlj0QpJagF8BrcD6EfFIWf598kvpqZJ+HxEvdt9Z2kR8EBEndvdJ2AT2A56JiBclfRc4bSLbfofs0DkjIr5bLZR0Otmpd/gk9rfO05HrVrkkIu7s2tOyibgf2DAi7qovlLQecDtwvqTra1+u3N66X0evWcVtrXu9B8wSESPrC8vnyFuBzcngxY1lldua9Qrlb/iXwGeAXwD3ewR/r7Ab+TqyMHC9gxW9h4NLvc4a5Pv2fyPiiO4+GWtffTZMNShEUj8H4nuNd4GBwDyS1o6Iv/vzSOdxSqjeaWNgceA3VbACICI+BE4F+gN7dc+pmfVOEXHb5AT5yiiI/YChwMkNq08uy/fr/DO0tkzudbOeIyL+0NjxXZb/DfgrOQJ8BXB76yk6cs2s54iI1sZgRVk+Griu/LoEuK1Zz1SNPG1Y1lz+hi8riz4PHp3akzRet9rvN5AzzZeVtMQ0PzGbYg5W9Exl1lJb/gU8BCwnad2yreta9FCSjiczpSwDEBGjlGbo5lOziSifR8aQM8oBNgN/HulMDlj0ThuW21vaWHdzud1g2pyKTYEBkvaWdIykQ9rL2W491pLAfMC9EfFJfUX5/V5gMUkLdsfJ2WRZX9JRkr4t6UvOzd6jVKOJRpdbt7eer/Ga1bmt9UClg+Pz5dfHy63bmvUoZUT3eHnYy7IxZZO/Ax8BS5V0ZtbN6qlN6rm8y+8iUxnfDMxDvt5YD1U6S5tqv68o6deSVurO87JUa2utja9/tU7Uq8qiDcq27kTtgSQNApYCtgE+W5btDYwBvtF9Z2aNJG0pacXyc3Pt88j95OeRpf15pHM5JVTvtGS5faZxRUS8IWlobRvreeYBLq4vkPQvYJeIeLZ7Tsk6oN32V1u+Rdnu5WlyRtZRJzX8/oGkb0bEZW1ubdOEpIWATclaJP8ui93eerB2rlmd21oPUDoOjwEEzAFsAiwDXBwRt5fN3NasRykdcZ8j05o8KOnMsqzqJHgHeBXYiPzbdmHnblYLMJ0ELCrp3Ih4QFJLRIyWNBJ4AtgRWBG4u6HTx3qA2jWJMsJ7IFmz6qvA05KejYih3XmOfV2trR0N7CfpuxFxTXkNrNrTg2Qn6jKSBriORY81HPgemcbr2DLbYingDuAJp2PrXiU4OCeZPnVV4E5JX4iIYbXN3gJeITPhVG3Tn0c6gWdY9E6zlNsP21n/UW0b61kuJjsKhgAzksUsLwdWA26XNHM3nptNnslpf/XtrOd4FNgHWAwYBCxKFhMO4BJJX+zGc+vTJPUjXwsHAEfVvmy5vfVQE7lm4LbW0/QHTgCOBw4GlgZ+CBxQ28ZtzXqia4Htyb/bI8uyVoCIeBJ4EpgX+EK3nJ1NQNKewHFkvYofSZqxBCuqzpt7y6a7AjhY0fNU10TSccB9ZEfdZmTb254yCty6l6QNyMLai5K1xNZi/P69N8r/LYB+ZR+nheoh6jPSgE/ImcpLk5+zDgf2iIg/OljRvSK9TQYtIANLl0uaq7bNU8BTwNzAl6f9WU6/HLAwm4Yi4qSIuCMi3oqITyPikYjYk+z0WRjYv5tP0Wy6FRHXRcTFEfF8RAyPiBci4qfADmWTU7rz/PqqknLgEmB94FcRcXn3npFNyqSumdtazxIRQyNCQDOwINn5ux85Smxwt56c9Xnt1akoP15Ybh8DTpe0CxkkrVxZbjdQFin1aMZpZCIdn3cAb5IzKRYAfi9pgeraRMRtZKBpCafF7ZkkLSDpVnKW5INkGq/ryVpGnwO2r3fWWddqr05FqS32JPA02eauAL5YW/8kmfZxTmDbrj9TmxzV+1vD+9X2ZN/sO2Rg8L8R8XrZ3kGmblT7PHIRORvmGDJ91w8lLVbb9Ipyu46k/v480jkcsOidqtFv7Y1yG0z7I+SsZ/pluV2nW8/CJsfktL/6dtbDlZQozwIruPNu2ipfwi4iR1peARzUsInbWw8zGdesXW5r3asU4X4lIs4nZ1esAxxbVrut2TRXT5lQdQo0pDT5D9lJeh/5WflXwN61QzxJpihbGvAs5Wmo1KVoqy9hFFnstwn4Jjmz/IeSloaxKer+j3xNmX8ana51zAbl//nkDMoTI+Js4CvAA8DuwNrdeH59SkmFN7YmTKkvUnWi/gGYlbw2rcCZkjau7V4Fddd0J2r3qurC1GYwrS/pUElrls9lOwHfIjNx7ChpSHeeb19Vrsvi5ed63az/kiUVXiA/Q28P/KS2a/V5ZBnANfs6iQMWvVOVX3iCOhWS5iEbSHs5iK1neqfcukhPz9du+2tY7jbYu1RtcIZuPYs+pHR0XAzsBfwW2LuNac9ubz3IZF6zSXFb6xluKbcbllu3NZvmSqf3opJ+B+xSah2EpKrO4vPka8ZCZEqoR4ETJX21rH8PeI6c7TUY2h+NbJ1L0pHAT2uBiGrU8JtkYHoWsgPn62RKmvPK+pFleX9g3fq+Nu1MYtT2nuX2FxHxVtWmyqCD08n0jvtIWqRrz7Jvarw2kr4G/L2WTrMe1H0YmIucPbkDGeC9QtIq5ThPkLn1l2X82Wk2jZXUQq2Slpd0B/AnMn3ecaXGyCPAdeRsph3Jeggulj4NlGDSIEk/BO4Evi9ppqpuVtnsabJm31YRcSlwGrCppF9JmpWsqfUssB5l8I8/j0w9P4G9013ldvM21m3RsI31DtWU6Be68yRssjwDvEZO9xsvwFR+Xwd4PiJclLSXKNdtOTJ/6DuT2Nw6Qa3je0/gajJPa1t5rN3eeogOXLOJHcNtreeYr9yOKrdua9bl2vnyvhM5UvF0xs2eqOpUPEJ2tn0WGEPO6HoY+JmkbSLiDeDvZLqznco+zvfdiRpGc1fLViRH2R9EduwMjogxtUDTTWRtkc9GxIXAmcC6ki4rs+tuIzu9v1zb12lPpoF20tGMXaesT/UJ2fH9RlkVtetzD3l9twA2r4/8t6lTG4EftWVzA0uQr4E/k7RUw2vcU+R1+kp5vTyYvHaXkR3ezwEvlZ/nKsd0H+A0VrUfZVrD28nZZT8mAxNfqgqiR8QnZXkAe0haouzX0tZxbepJmqUEk4aRwaI7gV3IGkxjZ1hExOPA/4DVJc1CBuGPAfYFTgVGkO9tzYyr0eTPI1PJL1a90+3km8+uklauFpaGcwwwknyTsh5E0jKSJhhRKmkZ4Izy62+m7VlZR5UPkReSM5mOa1h9XFn+q2l9XjZxkmaWtFQbyweR12tm4HcRMXqan1wfU0sptCdwDbB7ex3fbm89Q0eumdtazyHpM+187pgB+FH59f/Abc2mjerLu6RdJW1WFl9Adg7MRxaO3aDhS/5lwErAIhHxb+Ao4F/AryVtR742AaxWvgtZJyodOWMkLSnp8LLsMfKa3U6O6v5JmR1Tva7/lUyNUaWmuYBMdbI7mULjXTLwvSBlloVHEXc9aVy6NUkbSTpa0k5Vp2hEjImIUWTH26zA56tdazVI3iLrWvQnr/3y0/hhTLdqI/CXkfSrsuytiDiS7BydH7hE0vq1fR4nR35/VtIcEfF3Mng7N/BzMr3QTWXzncs+7kSdxsrMwZmBI4BPgUOBUyLiztLm6h4kXzM3B7aR1Fy9tkqafVqe9/RO0veAtyQdCBAR9wD7kDMl9gNOkbRAbZcryIFX80TEhxHxY/Lz9D7ke9vvy3YrS5ptGj2M6Zr82aB3krQRWQBrOHAV8DGZu3Bh4Fslz6T1IJJOJN+k7gZeJEevLAVsBfQDTouIY7rtBPs4SftRvjQBK5AjWe4lI+kA95RRYtVo03vJL9C3kLl6P0t+sPgXsEGJ0lsXm9zrVqatP0denyfI0UhDgE3JopD/BjaKiHen3dn3TeW18ARyBNhPgLY6rq8vI8Xc3nqAjlwzt7Weo/a54x5yBudHZIfHlsAcwN+ALar247ZmXa0EM28lO6pvBrapdcR8h5xl8Szw3Yi4tixfD/gz8KOIOKksm4cs7jwHWYdl1/Lz1p4F1LnKyOAzyIDDCGCniLihrFsIuJHswPkx8NOIeL42+nRTYNFq9LCkU8mOupvJv4OfAYdExC9KZ7o7JqaSsk7ByDIyuAoQttTa2bxkPZita7s9BexbOruRtAXwF3K08HYRMbTMzGiKiFHKGgm3lX1PBH4YEZ9Oi8c3vZN0CjkAFeDwiPhJWT4LcDKZO/9R4IiIuLes25+sN7JsRDxTlu1Azmx6G/gpcAnZZ3RIRLw3zR6QjVWuydXAAbU+hTZf95Sp9v5EDkT+GnnNtwH2IN8fH5lW5z29knQ08IPy66PA2rXPw5sBx5NZUH4dEV8ry9cn3/N+HBHHl2Ut5Hvk4WQbW4dsd1/255FOEBH+30v/A6uTHyY+JCO1/yQ/RHb7ufl/m9drA/JN6ulyzUaRefCuBzbv7vPr6//JD3Ixkf+XNGw/C/nl7CXyw8SLwA+Bmbv7sfSl/5N73cjc1j8F7gfeKu3vo/K6+W1gUHc/lr7yfzKuWZC1Eer7uL31kmvmttZz/gOrkqP0HgfeL9fiHbKj9wCgpY193Nb8v8v+k6mfWsvf4rvAV2vrmsmOuvfI2hU7lOULAo+Qo4Rnrm2/ARl0G04GOVqB9cq6pu5+rNPLf2BO4B/l+R1OdtYMqq3fkJxpMZpMG1gNiDya/L7zpYZrfDr5vbW6ZteXderux9qb/5OZM84mg0Btvba3lNvTSvs6EdgOOKVch6eAmWrb31aWH9twHJXrfA85CO9ZcvZTtz8H08N/MpjUWt6zPwEG19bNV65fKzkgZN6yfJ3yOev7DddpS3LQyKvAsPI5bO7ufox99T85Er8V2Lb8PkE7bbh+e5Xt3yAHk3xSXjtX7+7HMj38B/avtY9W4LiG9Z8jB1m1kgOLq/fDR8vnkXrbnAf4ftl2aLnduLsf4/Tw3zMszMzMzMzMbKpNbKS8pK3JAOg/gC+QHWhfiizUTKlvsBvZ6fohsFlEPCDpAnJG8mYR8UTteGuQAbY1y6ILIuKgLnlgfVSpUXAzmRZuJmBp4KCIuKC2zXLAlcCKwDkRcURJM/Q0Gbg4CzIVjaQhZEfc6bW7WSQiXpoWj2d6JWkg2fnWH1g3Ih6qrduEnNHyfbIg7K3kCOFq5ssPydl4p0XEsWXZSmRqmiZy5PB1wIxkJ/gB5VhDyCDJzhHxO8+SmbRJvD42kYGkfcm2swHlNa2+n6QryZRst5Ip8p4jX1NfBHaJiA9rx9yMTOU5uCxatf63YV2vmu0k6TAyaHEIcH7j30F9VlRt2QnkLNeZgUvDWVQ6bCKzWHYk06b9gnGDJVaPiOdq12wlcobn/MCJEfF9ST8iP6dsWP88Uo55CZk+F7I4903YVHENCzMzMzMzM5tiKuodA5qwuOtfgUHk6OyLyHQL+1UrI+KjiDifTGUyC3BRST9zOTm6eKFy3Jay/T/JUZLvk7UunFq1g9RQULthXVNEjCQLnc9Bdo4CfK3K613yq/+H7KR5DjispLX5mEwtt0W9Ey4i3oyIM8kAx4tkyiEHK6ZSRAwng4B7t9Eh3UyOzv42GWQ4MyJGaFzB7F+RxesPl7R8Od6jwIHkDIofkykC7yFn3D1NZg14puy/WtnHwYqJKG2lvWCFSjt5ERhA5sp/GThA0vIRESUoBfAd4NfAJuSM1mayU3UlcqR3/Zi3kik9bwV2c7Bi2qu9/r1EtsN1GBdAGluQu3SQ95e0dm3fk8iAxepVsEIuwN1Rg+u/VM83WVx7BnLGxNHA7JTPEOVaNJXXwUPI17/jynvbb8j3w0XK8Zprn3WOIAOOgxys6BwOWJiZmZmZmdkUi0LSZyUdUpY1FncdRKaeWZfsRBsO7C9pRRg7mh8yr/QpwBJkLYSVyE7zPctxq3z8TaWzfJmI2Dsi3msjSGITEVlQu0nSIZKWaVhXXb+nyTqJL5Gd1ysBB9X3jyzE/Q1y1sx3yBH49wJrSFqs6gCqXZ/9I2LRiLi+qx/j9KQKMNU63caKiHvLTIcFyqyKavktZAd3P3Lm0oDSeT6yrH8KuBRoIfO2V/v9mqxDch4ZfLqHTD/9xcji3VUHehW4sImotbVTJW1Wu5ZNtUDGPWTH6etkfR6Ac8v+w0sQ4lXgJOBCYG3gD2TavHnJFHrV30n1N/LziNgiIn5b1k3wt2Ndp/Z8PwTcR6ZG3LYKQNVmzixIBvJ/Immmav+I+KRc++Zy/duqI2cNJG0t6Wng1sb3tmIG4DXgy2Qg9k1gH0kblPVVYOjPZNDiTTKgcTBZo2I3yHZd3t8UEe9FxMUlIOzAUifwBzozMzMzMzObYpIGlFQlDwDnSvqepEXKumaAiHiH7DCdH/iA7CRYCPh6WT+ydKR+TKaa+QGwLBncmAlYUtLC1X1WHeoR8XaZ4NHcRpDEJkJZYPlTslP0N5LWra2rZl+8WW6XJjuvhwJflbRaWV5tdxNZIPZNcubLzmRu/a0hr1ft+lTpiNyp0wElUAAlWFAbdU/5fQg5K+JnkpasrTq/LF8TWLB0ntdHBv8B+COwvaQty7GaI+LFiPhmROwaEdtGxDWlrW1KFoF+laxhYpNQOkKHA98l64CcABMEdlvI1DSbk7OQ/gFsKGm72noi4hXydfMvZOqoE8v6Pcr6MbXXx1Hl/qvXYc+EmYaq5zsiXiBTIr5Fvrd9Q1I/SbNI+jyZJm8Lsh1OEJQo19TXbjKUmWI3kIMeVgUulrRbfZtyPd4H5i+vq8eVVceX9SNLMHFMRNwH7EMGOHYnP48sJ2nx2vHqs0sdWOokDliYmZmZmZnZZGlnhO7slJRNZCfmccCvJc1T62SFHHW/KFnU/Sxy1P7uVSdpJSI+jIgfkKOIm4Aly/9F2zqnMsFjTFvrrG2ls3pBsu7BW8DywCWSvgHjdY7fRwYY5i2dPGeSo7mrmTSjSsdOa0Q8AuwN/A9YhkxBtKSkGer3XevEc6dOB0j6nKSPgJ/A2FRQSFpb0pDIejA/BZYiA0aU7Z4CLiBH3Z9UFrfWRga/S86yeBM4QdKgttqTpLXI1GDnkm3xbLKIt9W08xr5Mhlw+BgYRaZWu7AEmQAoM8beJ4NKQQZ1IWsfVG2tHpz9FnndquDUqmWk/gT8+jjlNJHUeZO5f/X3cB2ZfmhWMkDxDPAvMs3Ql8l0badU7dqmTEQ8Tn52aAXuIgO8l0jak3zuK/cCS5XXwAvJuj0bSdq7rFftmLeQwcZHyHo+/WmnP92Bpc7jgIWZmZmZmZlNVOkoq6cvqXfEvEGmcRpOpm+6hhzd+JeGYMQbZAHRDctMihPJ1AyHSBpYRn6r1kF0AtnxANm54BzsHVSNom/sRC0dnjeQnWhN5Ojf54AfSzpW0rxl00FkEGq98vvZZJqonSR9qfH+IuJ2Mp3Nk2XRXyLi0058SH3Zm+To6+0kDZG0nKQngauA5co2p5Od43uolg+fHNV/F3nd1ikp3OozXG4C/gSsTtbDGEuZW/9a4HpyBPJQsg2f41lN49RnMUjqV1veEhHPkddmZjI13lnkqO0rJK1QO8wDwMrlONeRr6ULSTq6rG+qgg+RRX9PAG4s674XES930cPrk0pn9pjy8zolaLhYff2kjlEL0H4aEVeQ9Ue+TwYsniZfexePiLPKMd1POwUarsVZ5OzBOYFfkjOWLiLfvyrvkwGMKg3Ut8rt0ZJmqaVxq457NVkL6OfAOhHhdHhdzA3BzMzMzMzM2lVG9EYZkb2qpN9Imq3WERNk+pKrgI3J9DN7A3MDl9VGLD5Ofgedvfx+KdmJuiWlRkU5XtUh9zo5on/ZiNg6Ij7q2kc6/ag6WWodyhOMEo6It8h0QTOSsy3OJUfvnwz8qoy0f47s2JlD0qwRMYycQdOfDDTNHONqVNRHEm8HNEfE/3Xdo+w7ShusUgHNTo7M/jcZJPxh+ZmIeJu8fkuQQYsBZfkHwM+AYFxdhNGlc72pzHY5H/hSRPy+dr+KrHdxKTlLY+eIWD0i7ivBxT5fE6HW1qqO7TOAH9VmT1Rt8DjgHTLl0z3ArsDngD+WNFuQaWdml7Rq+f10MkD0fUlzVem8qvuOLFq/A9nWruuqx9iX1P+uS/v4rKR7yULN/wL+K+mXkhadktH0EXF/RJwYEZsBO0TEERHxusbVqXAQcDKUzyJ7SdpK0rzVtSivZ8+QQYvlgM+SaQovBfaUdK0yveStZJH7JoCIuIv8DLMk44IXUfucMyoi7oyIQyLig6mdeWOT5oCFmZmZmZmZTaAa6Vk6yWaRdClwP7ARsHh92xJM+BmZ8mR74EUyEPEYcJGkk8lisi+TnalVoKPKHX2QpAVKB1G9Q+7diHiqYeaFTUKt82YHSbcAt0j6o6QtG0bW30eOvt8CWDkijiA7vDcjC5auTwYgliFrkBAR15Aj8jcG9qrd5dhUTxHxVBuj+G3KVR2jnym38wG/B7YhCyu/Xdv2UnJG0k7UZkuUQMRvgVWqIGIZ/V/VO3g4Im4oyxtn5NwQEcfV1jeVIGafTX/SOOtM0i6SXiFHYY+hBCpKQK+lBDSOLLufEBFXkYG9UcA1kvYB7gYGk4EoIuJhMs1XM3BG2bfxOR/httZ5qr/rEoSdH7iCDOqeR84k/AfZAX5ZbSbalN7XMBjbnlynYjJImlvS78nXuAvJwtj/lnRieR6rgM955Ey/PYF1I2Jf4CDgi8AdZOq84YybnQbwHbI9fl3SctXfQRvnMHamk3UdByzMzMzMzMxsAtUXf0lHkelovkB2mm1L5ntu9G8yaLEscBjwBNmhejU5YvFKsuNt9Vow5B6y02Hlsk2b+dZLH5I7CCaTpDkl/YZ87ucGZiEDDDcC59VG3g8lR86/RBbTXj0iTiA7u5cmU9JsSabuWq92F8eR6YmOkLR0ex1t4ToVU6QKGLQxU2YWMm1QE7BYRLwcEaPrndWRhZZPINOd7FUb6Q/Z+f0GWWOmpb3r0zB7aoLz8ijwsa9JrZJWkvQP8vXtCWAX4Af1IFL1PEfE5WTQdzNJ+0bEncCXyGt6IfANMnf+arW7+nE57t6S1m187uuBwi55oH2QpG+Ts82OJmuPHFJmQhxPvg9eB6wDHCNpjqm9P7enySNpTrKdbAqcSg6O2IGcuXQ8cIqk+WDsrLKTyNmA3y4zBC8kg00fkCmiBgLLl+BUU+QsttOA2chr3+a18fWaNhywMDMzMzMzswlIWkvSS2THwB+APYBTS0qLCTqoI1PHXEkWptwJ2DqyfsH+5MjUZcmR4S+THeCV08vtnFVHuk217cv/c4AdI+JzwFrkqNQDgZNqo4OfJkejLgrsK2lwRFwP7Ed2rq4LfEQWS6/SBD1IBkMWYfxCpjYVyqj9lvYCBmQn2npk6pLPSjq8LG/sxL6DHBm+Nfl3UC2/j+xsfQVYuKMpnTwCfBxJLZLOJ+v2zA4cSnZsX10FK+qBp1pQ6Zvl9jvKYulPkPUsziJnr31KKfhbOlHfBn5V9pnqznEbR+OnsquWzUoG2vcl6xtcVALrSBpQ3tNOJlNE7UGpOWLTxGrka9r5wBkR8ceIuJac6XcTOYNpv9r21wI3A59nXNrJy8kgx0PkZ5U/NgQgTibfD4/EupX8fmNmZmZmZmZ1kgaSIw2/CfwGOCYyX3rVidZaOm9GNOzXBOxOFhK9FvhmRLxW1n2B7AC6KiIeKstU0i4sFlkvwaZC6XwbTHbeLAAsXK5V9TyvShZ8XR84OiLOK/stTKYLWorsdL2qHGuGsv3DwPVlRkZ1XzMDIxv/BmzKKOtUVHUQZiLrwMwGvAvcGBEv1q7jCsDfyBRsq0fmwK+nQ0HSUmTO/ceBAyLiP9Wx69fRpkwZ7X05mU7tmIg4vY1tZouI92u/V6+dl5Gvk2dExNG19QcCbwN/jYj3q+td1vUrs2esE9RnGEmaHRgYEa+V97B1yNllcwP7R8SvG59/SYdQ6v5ExOGN7a+N+6tfy/5Aa5kdNXa5TZyyPsy3gbUi4p/VNSnvVSuQ6aH6AXtGxK1lnzXJQP2/ge0j4n9l+dzkDIs3ymCL8V6Dy+8TvabWtTzDwszMzMzMzMYqHSjDydkS/wDWrpZLWhnYX9KVwJ8l/UDS6tW+5cv9/wF/IkdCblNbdyNwbBWsKMuqkeTPlftwnYqpUJ7P0cC8wKvAgPKcVqOIHyTTeg0F9pG0Rln+KjkbYzZgV5V6IhHxCfBd4DeNndwR8XFEjJBz53eKWrDiUHIW0jnA98g0Tn+WtHGtvfwb+DkwP3BMOURj3YmngbPJmTX1ovZDy/34uk2FiHiHnH32EbCGpPkkzSxpR0nnSXoc+D9JZ2tcEe3qGn2LnBXzdUkr1g77q4j4QxXkqHVwq3TM+ppNpVpas9GSZpR0GtnRfa0yvV0rGaD9ddll3dJxPaq+PzlyfziwtaRB7XVs1+6vqouxFjl6f4Nqedc80t6tPvOl9nP1HjQIxqa/q9KzPUYG14eQMwWrbe4jXytXpDb7IiLeioiXqmBFWeZgRQ/igIWZmZmZmZmNVetAeZBMPbMgOapxF7JA8/nAhmQg42jgTkn1joB3yJGno4HdJS0LYzsAJjpCOFynYqImM6AzA1lzZNaIGBZZzLUqABzAP8lruBLZ2da/jDS+nSzk/Hngy9XBImLUxDpuwrnzO4WkIZIuBE4kr8WB5DXajkwFdJqkeh2RM4H/kYGnNWsBjzkkLVa2OZec7fTLxvvzdZu4yWxrD5CviV8gO0NPJ4ue70TW61kEOBy4vgQHq3b4Fplzf2YyIEhZ3mY7qwWqfM2mUi0ItBtZu2c/siP8HmBE2WYoObPwf8AawOpln7GpuoBny//3gJFtpJYaG6govy9J1na6CPgBsFDXPcreS9JyZfbD2PRntc8k1Wylz5ZtGwN4vwH+DmxO1myq/JCcubSnpHXKvhNt3w5WdD8HLMzMzMzMzGw8tTQVfyYLNR8MXEZ2uH2e7MBZmezsGQicK2mJ2iHuIzvy1ibzRbsDYCrUOr/GSBogaQ9Jc5V1432vj8x5/yawlKQvlm2aa+uHk4GJp8lruVBZ/i6Zu3sosLOkldo6vnW+8hx/HvgKGWA4KiJ+HRFPkimdPiRTnuwpaQYYW1T2DHK08eklUPF5cmbGjyQtGxEfRMQ+EfFcY4eqta2DbW0Y44rWn0im8ToLWIZ87VuEDBrNWdYvUtv31LLfzm21U+s6kjYmZx89Qb6H7RwR346IF2qbPUXOblqGcbV9Kq1kLZllgNcog/xrx6+nf5pb0q5k0PCHwFvAyhFxcZc/0F5E0naS/knOXHkUuEvSV5Tp8SoPAmOAQ8sAiNH117XI+iK/IOsqrVwFNCLiRXI21DzAt8q+HhzRw/mDh5mZmZmZmY2nNqL3eeB3ZP7n8yLicxFxS0S8GhHPRMRFZEfAQEqRytJZ8wnZkfcmcGQt9ZBNgVrn145kh9fFtBEIqnV4XlpuD6zycjd0WL9E1rn4HOMX8n2QLPC7FrBHuZYONHWSqsO7MXhQnuOBwGkRcWREPCupv6Sfk4GlFrItbcf4adZ+TebaX5/sfP0dsBvw98hizmPv16lnJs/ktrWa/wE/Jju4t4yI4yPiPeCDyPouZ5EF6jcj09IgaUDZ94hye4I7UaeN8tx/h5yJdlRk4eb3VFTbldksvwfuIgtwn11mQc0qaSvgJHIW4fmNfxcl/dMgSZuS1/8Ssj7QThGxQUlfZICk+SX9hnztEjnY4RFgaeBn5MxOACLiH2RAY2HgG9UhGg75OJnicO2GgMavy/KFyACi9XAOWJiZTackbSgpJJ3YhfdxYrmPDbvqPnoLSYuU5+KSDu63iqQxZeRNjyRpv3KOK3T3uZiZ2bRT+6J/CxmU+HFZXnW6VukYfkqOetxS0py1jtEqh/4PI+Kf0+zEp0OSBks6AriQ7LweBeykLKw89ppUHZ4RcS2ZrmZLsgMbah07EfEx8N/y6+a15cOAK8jUGr92J3fnkNRcD/40jMaugkyXkCOwkbQ52fG2B5m+a3cyLdtsZCBpgdrhjyWDhf8o284REWfW799Bp8k3uW2tUtLcXUfOQru/MRVQRLxKFv1tIgt0A4ws6/5AzsDY39dompmLDPDdHhH3KutKqJo60bDt6+SMpVFk0OIeMqj7SzLY+52IuKXxDsp3puPI19JdgFMiYoGIuKarHlRvJGleMo3aZuRssb0jYvuI2JKsuzMjsG1JEVU5rtweLWm+yCL2TbXPKy8AnwLLSJqp1g6HAuuVQRdvdf2js6nlgIWZWQ8hac3S4X1TO+vPKeufbGf9YWX9yV17plOuDFzZXdIdkt6VNFLSm5IelvRzSRt09zl2gx8BT5I5wruUpFXL38ghHdz1UuBFcoSQmZn1MpJ2kPR/VeC5scOtPbUv+u8Av4+Il8rvVcfamBK0GE6mxXgdeK/WYTcS+FFE9NjPJr3I+mTH9FBge3IWxHqU0acNsyyqjpuTyu2RkuYtHTvNkvqX5dUo33fKflXQ498RsXtEPNE4E8AmrfE5q0bOl1HXa0u6QNJFysLMq9eCTCPKNZqTLKQ9GxmI+F4J+D1KjhD+HLBjdfyI+F9E/BjYJSKOioj3JbX42k2xyW5rlYh4LSLuiIjhDcGoqq29U78tfwvN5efDIuKhyX1dtqnWn5zN1F+lWHZ7gdmy/G9k4GEkOSvt22Qn+yIRcR5M2ObJIPF3ydkZ80XE97vkkfR+G5PP1S+AEyPiv7V1t5PvUctSAnzltfRhsoj2XGQwCcZPyfUROXvm+RKkGCtKyi+5eH2v4BdEM7Oe4wHyg/E67byJbgQEsLSkedpZD3BHub2ffIP/aWef6FS4CLiczHl9Iznq8rfAB+Solf2768S6gzJ/6obA2dNoVNW25faPHdmpjBz7MbCFSqEyMzPrVVYn8+NvD1M22roxVUltROpoYF2yMPdr5GeV+n5VehV3nk6doeRnqLUi4i9kJ+rrwK4aV0S0CjhUgaYbybojK5ADJCgd5yPLMbcqty+WdeP9XchphCabpHmr69D4nJUgxGySLiNHaG8DfJEckX+fpMbOzO3JTvMzIuKCiKgKzX4KzALMTtayWLXcdxUg/LT83hQRo33tpthkt7VG1bWotcWqrVVF7O+vtq2/ptZn31iXG07OXpq//B9PGzMI3ydn2wwDFgceiYifRcS7tZlTje9zvwVWiYidSsDf2nY/OSDuxIgYVW9XEfEmOXNzCFmcvu5Y4J/A9pJOIVNEVTM2TiCv65Xt3Wm4eH2v4ICFmVkPUd44/wbMBKxWXydpDvLL5nVl0UYN65vIkT8jyOngRMSnEfFkT/mQJGk9shDdI+SIlD0j4ugyqmgj8sPIz7vxFLvD18gPv7+fRve3LfBQRLw8BfteReZpPahzT8nMzKaBU8n86ntWsxmndDRvPd2JMsf+tmRKk+eBk9tJqzFBJ651TETcCZwUWTwUsl7BucCSZIqgAaVjvOowrTrOvgk8RKa0+a2kdSQtK+lgcrDIreRI1rbu0x2ok0HSfOTMh59IWrAsa2xf3ycLap9FBiuWJ+sivAt8T9JBGldcdsZy+3bDMfYnZ+VeRtZCmAXaDpB0wsPqszra1hr2jXrwQdISks4kZ8RcHhF/buc+/fo47XxMdpSvCGwsaSCMmw1TBRiBiyWtUq7NI2S6tS2A7WqzY8bUr10tWPxoRDw6DR9Tb/Us+blhTEO7kbLWSD/g5eq7a7k2zRHxIVmH5CZyNtpfJf2WrDfzHeA2staF9WIOWJiZ9Sx/LbcbNizfgMw7fC7wHg0BC2Alctr4PyJiOLRfw0LSC+X/TJJ+Iuk1SSMkPSZp+7ZOStKC5Uvue5KGSrpL0vodfGxrldtLI+KjxpUR8UFE/L3hfi8pj2ExSd+R9Iyk4ZKel3S8pH7tnO/6kv4k6Z3y2J6RdIqkGaZ2+zKS5ihJ/yvn8j9JR9PB99TyQXhb4ObG50O1ehilU+HPkj6Q9H65DnOW7daSdLukj8q6CyXN2M79LUoGvf5YWzaLpO9L+m+5rh+Vx3OppIXr+0fE28Cd5EiWmTAzs16jjNCuRiHuKWmG9jrcJuNYIamfpE2AHwDnkZ9BTo6IRzrzvG18tZH21UCXK8h86tsDWzdsG7WOnQPIgqM7kYNj/kVet5eBIyMLA1sHSdpH0uFk0OEC8vN4W4XQVwS+Tn6OOiEi/hURb0TWGTkYeA44nAxiQF6foWTH6Mrlc/A3yHoWf4mI/YG5IqLNQJNNvY60tTYMkLS4pCPJwVjfIjtQnRaom5VO8Y/JQYAvA0cDX4Jxs2GUM5fOJ79/z1bWDSM7w58BdqVhcKFNmch0XEPLz42BnzmA5SizkjRhnaa/ke9pp5OzYNYAFiWDjZtHxGvT8KFYF3DAwsysZ6kCFo0BiY3Ikfj3kV8021pf339S+pEFNDcHriU/hC8O/E5Z5G8s5dTKfwA7kx8YqqDJrcCak3l/kF/mAJbqwD6Vc4CjyA/755EzSU4ip9uOR9LXyC+E65Bpp84FXiGnjt6qcblkp2h78gvp6eR76M/I0RtHAD/p4GNan7wO901km0WBvwMDyKnIj5LX4XpJ65IjIoeWc3qWHCl5XjvH+lK5/SOMHXl5M1m47L1yjAuAh8mRf0u2cYx/kDlf156Mx2dmZj3LVeTnhB3IlDQdHtWrLGy5Djny+wqyE/ZRMvXFJZ16tjZJkcV8zyZTBO0laZ4SqGjs2HmodHLvRHbQnQ/sGBFrRsTjUxK46stKZ/Qt5GezFYBBZPDufWBvSauU7api2guTA49uiIjhyplJ1bobyFphSwKblmVPkB3d25A58P9BfhZ+gUyvSpWOpgsfptVMqq01OJssaH8C+f1qv4j4QkQ8O+3OePql8QssT6mbyXS3swAXSTpL0t6STifrKWxFBnnrg+meI6/tymTgf+BUnoNN3Epk5om7yu/jfV6pBZ++R36P35j8LHJ6We/Xx17OhUbMzHqWh4EPgbUl9YusHQA54+K+iBgh6S5gW0kLRMQrtfUw+QGL+cjRWxvWRpP8hgwIHEEGMyqnkXkgvxcRP6gWSjoA+GUHHtvNZBGsgyTNQo5s+VdtuvXErAmsVD1eSceSAZOvSPpKGaGGpM+QAYfHgE0iogqSIOm75bEcSn7YnJLtNwT2ITtn1omIT8ryU8mpwh1R1YJ4cCLbrA8cFhE/Kfcj4M/kh+g/kcUVqwBEP7IOyh6Sji55P+u2BV6oTU9enhyJcn1EfLm+ocZNwW30QO3cb2ljvZmZ9QDli3xjmpgxko4nBz7sLemeiHhVme9+slLIlFkZj5CDHT4FroyI+8p9NgPtFi+1LvMX4Hqyc3t74KeN11NSS2RNg2sad67WTZMznQ6UgSwnAauSqUdujIgPgA8knUGmfNpd0qMxrkbBguV2KRhvJLdKAONOcmDSjsApZVbrdyV9BCxDdqpeExFX1M8lGurKWJebZFsrLieLBD9MvkaOgXyN9DWbOvXnUNJM1ej8tt7z2lJL2TVa0i/IVG5nksXtAT4h0yduHRF3N+w7RtKN5ACvS6qsBtZlVi+3d8N49bBmiEx9XV3vKDNgXijrq88ibmu9nGdYmJn1IOWN9W4yd+3qAJLmIqdD3lk2q0YZbFTWV/UrhpHFpybX4TGuEBxlWvmL1Ka4li9lOwFvUTrtay4kp8VOlhJs+Ao5/XZX4BrgBUlvSbpaWYC6PT+pBWeqL3rHll/3rm13IBmMP7QefCjOJEeE7jIV2+9Zbr9fBSvK+bxKx2dYLFBuGwMLdc+SAZXqfoIcIQvwcBWsKOtGkbUwWoDP1A+irIGyLm0X2x7WuCAiRlRfABpU57pAG+vMzKybqRQJrTplGtYpIu4lC8huQRupayZHef87NCIOrQcroiGXt00bkSmffkzOPt1T0uKQgzIk7Vy2GRuQqP4uarMwHKzomHnImaYPRsQPI+KJ2rpzyWK+u5KzmCu3AqOAlauUm/UO1pLa5FlgHkkL1a7NqRGxJ/ClKljhUcPdZ3LaWtnuPuA7EXFZ6eQeW++gO857elKez9kknU/WLfijpDUpg7HbmfHSeIyq3Q0vQdwVyNTFGwFbRcSqEXG3UlPDvq9FxEERcf+ER7bK1M6AKW1mc+CZiPhfWTagDB48vtwCbdbw8WeR6YRnWJiZ9Tx3kiN3NgLuJWdPiHEBi0fIWRgbkSN4VgZmBW6rByAm4YOIeL6N5a8wrtYEwNJkCqA7GkeRlFGW99J26qA2RcRt5cP9huTsgc+RHek7AjtKOi0ijmlj17+1sewfZBHoVWrLqhRVWyhzazcaRY5Um9LtV5rI+bS1bGLmKLcfTGSbx9r4wPV6uX2kje2rdfM1LP8C0Mz4AYsnyJklu0hagBwxdifwyEQ6r94rt3NO5JzNzGwaqzo/q85nSXuQnaMfkQWXb659RjiNHB28t6S/RsSjHZllARARn5b7aYrMQe2OuO71IJnm6UjgYElPkgM61pT0XkSMnRVZ66xzYeYp00KOnl8CQFl0/pfkzIifSjqBnIG0p6T7qtkXZOqnLYDNgAtLULG5dMDOCPQv270a49e/UNnWba1nmKy2FhGjqk5bX7Mp1zhzQtIaZAq1ecl0w58jZ4z/ADhvSl7XyiCt8Qb91WZytNnxPbkzOvqqTnhuFicHb/4YQNJKZLaAg8jvoY9P5fGtF3DAwsys56kX3j6l3A6nfJAqgYJ7GFe3orq9owP38WE7y0cz/uy7WcrtW+1sP7HZAW0qnSm3lf/VaNC9yQ//R0v6fUQ8NKn7KV/w3q2dI2ReWRg3+2JSOrr9LEAr8E4b6zr6XFQzGyaW/3SC4uTkNZrUusZ0Tl8igw1jgyplKvTGwInkzJdqBs3bkn4K/KCNL1iDyu2nEzlnMzObxmqpEtYjO0+XIjs/B5ODHq6S9L2IeDEiXiipa04HdpP0WPls0eEOGHd6d69aoOpTSZeSs0K/Rta+GgocUQ9W2NQpQYPnJF0DHCvpRTLd09+Al8v1uE7SDcB25MyKi8nPjZeTRXyPkvR6RNxYPsvOTM74XRI4rvGzlwNMPcOUtDV3aE+52iyjxr/77cjvxXuRg9dWINvYUZKejIhbOxqAb8ukgky+thNXBk0sR6bPGz4Fz9dnycF270n6KnBwWXYDcHBkdgObzjkllJlZz/MoWbRv7ZKSaSNK/YraNncCi0hahI7Xr+iIKrAxdzvrh0ztHUTmVL4Q+E1Z1FhQvM37KVNF52D84EvViT84ItTe/6nY/kPyvbOtGQYdfS7eLrezT3SrqaQsCLc5mWN5vLQPEfFuRBxK1ij5DHAIGdg4iczL3Kg617fbWGdmZt1I0mfJkaetwDfIdJHLkgMCdgN+WNv8F8B/yvJNmQz1FA/KosGDGpfbxHV2Op9aoGoN4AByhuUA4GfAPBFxTlnva9QJap2gy5Ijr+cna1ZsHxF/rHXKnUQGCveStERZfhc5Cnxx4BJJJ0o6jExBehxZW+7aafZgpnNua71XCQ61lkD6Espi2BtJmpUchHVyRFwfEW9GxG3k95f5gMMkDaoC8N34EPo0ScuTn0WWjohhUxjcqVJUf4Esfj4Q2CgivhRZe6vZ13j654CFmVkPU74M3UWOZv8i+aXozobNqjoWm5IdEkMZVxC5Mz1NjmJZtXR8j1VGvqzdiffVVs2EynptLFuLnCn4cG1ZNZ13zQk3b1NHt68KVrd1Pm0tm5h/l9ulO7hfR21K1kRpq34FkF/CIuKJiPgZmaoA8m+vUXWu/25jnZmZTQMT6Yg7AFgYODoifl5e158lv+w/B3xF0nYAEfEROcNuXrJTdXBJOzNBB0AtrUnVYfc5Mqi9h9NiTJ6SC71eLHYRSXOVVEBT3MlZjrs2cCXZaXcH8JnI+iKfSmrxNepcknYnZ0P8k+xPWTiySPbYthkRDwM/JdOf7lSWfRgRPwFOIAeHHE+mZ9sVuBrYJCKemraPZvrjttY7qI1aExq/BlM/SWcCTwIXAbcDfyYDhQ9IaqrNwvgjcBOwJbBHB87BHd5Tobpetd+r57OFTKs8tsbVFBy3SlG9NHBIRCwfEXfV27fb2vTPAQszs56pmi1xQrm9s2H9Q8DHwDfJNEV/axw93xnKrI7fkTMsjmxYvR+ZcmKySPq8pG0bP9yUdUtQin8C97Sx+zeVdRaq7fuTo9QALqlt93MyLdJ5khZq435mlbTKVGx/ebk9vvriU7abn7wWHVEFndbo4H4dtS1ZHPDm+sLyBW6RNravZooMb2Ndda53tbHOzMymgVpH3NclHagsRDkE2IqsZ/Wnsn6JMoL7EmAx4Cqy06c6zrXAjWSAetuyrJ4rvDFQsaikQ8jOo++Tnw38fXISqk7Mkv5nCWU6oduB+4G7JG3KuIKxHepAK9dmODk6f8eI2DQinqw688osVnfqtKMjz3dt2xvJ2mtfoDzvkr5QbVbb5SzgNTKwN/azXkScTH6eWoNMyblyRBwQEZ90tGPPxue21jtI2g+4VtJi9eUN32W/QAYffgkcRtYyWJv87tlaBvip1ma+UW6/LmnBEvRo8/2pnfe2pdvb3toW42pmzVvaQPX3vzCZnvjDsl2HariU4/6KnH02f0T8vNxPS9W+O+sxWM/mGhZmZj1TFbBYnvxwfF99Zfkgfi/w+Ybtu8J3gU2AUyStS85oWJbsGLmFTDc0OZYhP2y+I+lu4Fnyi90S5Vj9gfMj4p9t7Hsf8Kikq4FPyKLkSwN/KB0uAETE45K+Tqa/eErS/5X7mZnsrNmA7Lg5aAq3/6uki4GvAv+WdB05HXynco5bT+ZzAVnw+jnGzWjodOWD9zbA7ZEF5epWBv4g6X7gv8AbZGqDL5HpRH7ccCyRfwdPRMTTXXXOZmY2oYYRwzMDF5DvPdeROZ1Hk+kK/yNpFvJ9dS/yPfpBYI2I+FfZv19EjCqHPoGcoXmEpFsj4o2yjWqdOXMAGwP7luM9AKwZEfd3/SPv/WodZ98iU/98QBYM/ZTstL4aOAK4dAo7PB+JiF2qX+p/KzZxtb/xgRHR1kCNCbaNiPclfVCu6+lkGqdjKak3Na449huSTiEHx+wm6aHIQszNkYW4/1UduzZS3NdtKrit9RpbkkHya8jvQgBIWhi4m/yu+SZZA+b4iHi3rO9Hzm45Bvha7T2xOSL+J+kn5ACyA8h6MBPUsWh4b5uLfG87jJz1dDDwQhc83ulSGdT3Z/K78OWSLoqIfwMzlU1emIrDX1pdvxKoGN0VgzOtZ3PAwsysZ3qcLNA3JxPWr6jcxTQIWETE68op0GcCW5DT2x8kO9o3ZvIDFleSaZ+2IAukbUbmo3yHDHxcUg8+NDiMnIGxH7AQ8DqZyuK0Ns73V5IeIb+QrE922H8IvER2wl86NdsD+5OpsvYnPzS/AvyInIky2QGL8qXql8AZklbvoo6fNckZE9e3se4B4AyyBsoXgFnJoMVtwFkRcV/D9uuTz/1hXXCeZmY2EWWgwvxk0ck3yJGmx5GB+9fLLMGXgC8DM5DBio+BvSPisobDrSPp/oj4NCIeknQyGYx+o3Z/IWkA+T6yGznStb3j2USUTrb9yffP64ArgDtK5/aiZOfcAZKejYh71MGCsbVOnaqj3B2ok6kMxvgBMFDS0e183p5ALXhxnaTrgS9JOjgytWZ95P7FZNvZjZxB/LvG61M6UF1QuxO4rfVMJeg9LCI+LYsOJYMRf2jYdBQZXNqarJe3eUS8K6l/RIwkv/ttRc5auigi/lVmWFTBp++Sbe0QSTdFxL21c6hm34Sy/tLawO7AzuR7248j4oVOf/DTt3fJ2Zb7kIGib0o6H1iUfE4/nMi+E9XQ1hyo6KPkWWtmZtZTSbqE7HRZdHr8EClpdnJk0TURsX8XHP8M4NvAfPWOqCk81hXkiKjFy8hAMzObRkqnzLvkSMbngEcjYteGbX4HbE923pwEnNLYGSfpe8CewF4R8Y+J3N/iZbt9yGKmZ0XEdzvvEfUdkuYm02iNAb4RES+W5ZuRAx6WK+suBA6LiBH1UcDWdSStCdwL/DciVujgvs0lkLgS8Deyfa4REW81zIjahqwj9o2I+GknPwSrcVvreSR9hZxJsTvw2/pzXd7XtgBuqnVQ7wOcTaazXRd4LrKIdtXeDgB+Afw5Ir5YO1ZLCUwdRl7rbSLixsbrK2llMhXb/sAcwKkRUaVgtg6onltlmuT1yVmYnycHTUCmzrsjIt7r6DE7/2ytN3KONjMzs25SPsCdRhY8XbgL7mJb4J+dEKxYihyBdIqDFWZmXUe1QqK1ZS2l8/N4MmCxADkzEWWh1yqH9y+AYeRsxh/UgxWSFi8zKQ4mO2ifaLiPxnzuGwKHA48CCzlYMXFqoz5XJSLeAs6MiG0j4kVJQ0qKy5vJTrlDgf+QwaYvtHechvtT7ecWZW0va0djm6r5F1kXbjll2tPJrm1QOk8VEY+SKdoWBo4uq1tr2/2JHOzhYEUncFvrdUaSM+MPJIPfwNhgxa1kSqHP17a/nMwiMDewTglWtFDaVERcQAYIt5a0Q+1YY8r6c4DZI+LG8nuV/mlhSV8jZz0dW44xv4MVU6420+yTiPhLRGxPznCpBkNcDvxN0n6S5qn2Uxu1eqp2Vrtei0labWLt3aZ/DliYmZl1r58Ap5DpljpVRCwTEWt1wqEWIEfr/qwTjmVmZm2opRlpVRYA3UjSYlU6hIg4F3iErLM0uOw2Ni1JRNwBnFvWPyrp25LWkvQdMo/+t8l6Syc3Bp9rnQRV59ytwLoRsXVEvNqFD7tX07jaA1Xx0S9K2kTSimXUaeWesn45svj5lmSqzX1LGqGfkaN9d5M0Txm1OsF39TY6dVYiA0tbTaRTvs+qPV+tDdejXn/gqrJog7JtR0b3Vu3lNOB5cgDK58r1G9spFxHPtxWMtMnntta71N5LbidnvawH7FB1QJe2V32v2E3SrGX5KOA8MqXQ98uy6ppXber7ZN2m7yjTRY1NzVWCiB/UO7olrQCcU+4vyPe2HUqAyzpB7drcAcxFBi1+AcxIBnTvl3R6uRbNDfuOV1dE0s7AZcBPyXqe1kf5hdbMzKwbRcTwiPh+RPytu8+lPRFxR0ScHJk/1szMOlGtI65V0iySLgIeA/4PeEbSkZIWLJsfUW6/Kmlw2afeEXommepiTrJO0b1k3u9lgUMj4ssRMbbIaaPaiMmXIuKxzn2kvZektZUFWscbrV9LY7KzpBeA35PBnkeA6yXNW9+O7DxdDziVnLX4aFk+sNyuSqYrqe8zVq1TZ0FlapQLyOu8POPXTjDGe76OBh6rjchWrZPzQeAjYBll3ZaOHL9KVfMu8EOyHtj3yroxjdu2dU1tfG5r04cSCOoXWbfierJ23mHA0rVtriXTpX2FrL9ULb+d7LBeUNKxZXFTLTh/O5lm6nNkge36e1d1W6978AkwG7BfRHw2Iv7e2Y+3r6tmnJEBigWBJyPicOAz5DV6A/gOGcSYG8YPCkoaJGlT4CzgEmAJ4IcR8cg0fijWg7iGhZmZmZmZWTcrX94vBjYH/gq8T+b3XoAMRJwamXP9OjLl36ER8bP66MTasRYmOwpayNGMf66PUm3sTLX2STqKHEF/XET8oLa8iRwAeBTZSf0PMsj0INkBtw852vs7EfGIsiDwfeSMyqWjltdb0rfJ1IurkCP1N4lSu6th9OksZLqurwJfBB4HvhkRf+2qx9/bSdqAbE8A7wHbAPfHuBoTy5AdqrMDi0XE0Lba1ESOX78+JwEXeFbSlHFbmz40vsdIGkgG0s8kO6yPi4ihZd3KwD/Ja7pvRDxbli8L/IlMtTZfRLxdjeIvneNLAjsAp02srXakLdvUkzQ/8BJwRkQcU1s+N9kWJxigJ2kVsh3vR74O/yAiTppGp2w9mPOBmZmZmZmZdZMyqvAA4O9kLu/jgSsj4hNJK5JBjIPIWRfXkmlJtgUOlvSXiHhOJZ1UdczIYrMvNtxPc0SMcbCiw24Avg68XX+ey+j6hYGvkR1uh1WzUiQ9RubMPxz4hqSjSofbf4DFgdWAm0vakm2A44Ajgf7AyKoDtdxPlO1WB3YB9iLzuR8cEed3/cPvHRrbQCUi7pL0JNnhPQa4AvgWcF1Z/6Skx4HtyI7p33TkfquUQmUGxQkTOxebJLe16UAtGLgDOSvwTTJ49B6wBzmr4s6y7SOSzivb7Qz8oCx/QtIvyVktZwF75+JoLUGIZ8jZMxNtbw5WTHPVDKQR9YWR6bfegnHXS9IiZC2Z/YEVgd+RAzHenqZnbD2WAxZmZmZmZmbdoMyqWJcsAjsfcEdkUVEAIuKxkhLj/8g83/+IiBcknUXWpDiIHFU80c7RhhQ41gGl42zVdjpRdiOv2461DtTlga3IawrwROlAFdkh+2XgHEnXk2lKNiULAd8WEc833oGkxcmRxAcAi5B52I+IzPVuRekA6x8lfWV5vqs0Mn8gR+9uSI7aPlPSh5F1XwCuJAMWa0n6fXQwBWaMX+BeDlZMGbe13q8894PIFGkHkTUsngFeINN0zQscKOnxiHin7PZDMlixh6TbIuKfZfmvyeu7p6RfV6Pz60EIt7cep/qc8Xh7G5TX6iXJdJW7AA+TBdb/0d4+1je5hoWZmZmZmVk3KB0vvyALVa4NVGkyWmrb3EQWj/0i4/J8fxd4m+zgWbfs0+53O48ynTqlE3QjSfdI2hLGFhldiKx/8Lyk2STtC/wSOB14ClgyIs4qxwjgRuAYsjP0m+Ro4/8CO7fVgVpsBZwCPAcsFRGHugN1vKK+1e9fA/4u6YvVolqQ7mGyEOyCZIf0UOAKSauU4zwBvAIsA3SojkXjebitTR23td6tPPdLkQGmW8jZKd+OiMOAL5FpvHYCNte4+k1vkM/7UuR7Wr+y/D2ylsWHZKqg9u7Peo5NyMLmz05iu0/LdvtExOccrLC2OGBhZmZmZmbWTUpnzS/IL+9LSJonIkY3BCBOBoYDu0taoXTSHAUMIVOhtFk41jrVQmRQaXtlwfMxwEhgMHAo8HOyMO88wDYRsXktH/ucygK0wyLiPDL9xdbAuhHxxYh4sTHgVOsIvwHYKCI2jYj/TYsH2pMpNTWMsp6bLNL6WeBnkpZqaA9PkUVft48s4nowGbS4DNiY7KB+kexsm6Dg88RU5yFpHklzTuXDs+S21rt9BZiZrOfyNEC5Jk8AJ5E1Dg4nA4iVi4H7y75bVgsj4mJgroj44zQ6d5s6P42I5phEseyIeDUido+IS6bNaVlv5ICFmZmZmZlZ97qJrE+xKpm2ZrwAROno+RGwBiX9Sfmifz5Z88K63mVkaq6dyBoikHUQRpM1Eb4IHBkRi0fEjdVOZbbM78n8+1UKk2ci4o6IeLgsa24MOFUd4RHxYrRRqLSvitQqaRlJvyrL3oqII4HzgPmBSyStX9vnceBpYBVJc0TE38nrODfZ+T0EuLlsvnPZp90AYH1WhaSZJG1Bpq+5pMwGsKnjtta7zVRuX4Ox12V0WXY78Gfgc2RAaiBARIwgC6oPIWuRDK4OVgL4ble9QES8CuPPEjWbUg5YmJmZmZmZdaOIGAqcQ86y2KPkUm8c5X0O2QH0LUlrl/0Ojoj/NKalsc5XOjVPJvOz7yFpPuBRsmO1BTg2Is6p7yNpFbLI8+eA92vHaTy264t0gKRTyPQ++0r6Zm3V8WTdgc8CZ0lap7buN2X57AClA/sQsvjyteSob4DlJc3Wzv2q7BuSmiStWu7zCnKmxv2+llPPba37SZqx3E5Jx/P75fYLkAGH0mYUEcPIFIiQxZaXrXaKiNuAHwNnRcRH9QP6uvUuETF60luZTZwDFmZmZmZmZt3vfuBXwBbAF6piorVO0vfI2hU/KCPEgQxqOI/3tBFZDPYXZPHeHSOLxl5A5lg/WtLBJTXQkpIOIYNMWwDnAtd3z1lPl+Yqtx8Cp1ajsSPiQ+A0stNzNeBCSfOWbf9L5k3fvXac3wNfJ1MQnQaMABYH+rV1p7X0T4sD3yBnAnyLrJcwJCK+30mPr89zW5v2NM5pwIOSBnWk47kWYP8tMAzYVNJSZV0zUM2SeIwMaiwFHNQwm+LIiLgZM+vz5M+2ZmZmZmZm3a90hN4CfAAcEBEPlsCFv7T1EJIWAB4C3gJ2jYjHJO1Mjuyfjbx2ItOivAwcFhE3dNPp9koT+5svnaInAvuSaZ42IHPlH1TfT9JvyPROt5L1Xp4D/kHWqtilBDeqY24GXEPWSABYNSIeauO+5yLrXOxHzqi4D/j6pPK125RxW+sekm4HNgK+EhHXTcH+A4GfkDMozo0suF1ffwxZR+YZYH1g+Yj4b2293/PMzAELMzMzMzOznqDMpjiYHCF+HnB8SRc1wXbu0Ok+kg4HziZHdX87IsZIWgbYClgEGAU8FhGX1vZpmlhdBEulxkCb6V+qv3tJ+wJnkIGI48nivStGxOOSBkbE8NLZfQLwVTKwsA05Q2l3YOOIeKrh2N8kr98lEfHbNu57qXKfmwEfAUdExFWd86itPW5r007V9krbWSUi/lRb16HnVNLSZAqvRYHvkzVeRpHt5wjgSuBvwEelRpOZ2XgcsDAzMzMzM+shJM1JduR8CnwhIt7o5lOyBpIGAX8H5gH2iYi/NKwf27knqcX5vDumzKI4BfgrcEfpRK0/p0sDTwBbkzUpLgPujIiNy/oqsLEAcCxwIHAXmVLoSmDziLitpKmpinj3i4hRtXMYLyhYrvnrwPkRcXSXPwkGuK11lYkFBmvbLARsFRG/mML72IBsb/MB7wEfA/OTbXf7iHimbOcAk5lNwAELMzMzMzOzHkTS0o0jwK1nkbQN8EfgBrIj9b2Gosxjf+7G0+x1SifnrWRx5deAiyLi+IZtliMDEFcAhwP3AGuRnaB/qAcfSvDjT8CWZAqaJYHLI2Kvdu5/go7cqiO85PQf1okP1yaD21rXkTR/RLzaRsCuH1nofBlgo4i4a3KCHG0cfylgV7Lg/SzAXyLi9E58CGY2nXLAwszMzMzMrAfyiOGeTdLdZMHmjSLi+e4+n96mrdRmkhYD/keOxn6PrE/wR+DYiHiztt0zZCqgr0j6MnAt8FJELFIdG2gqszOWBb4DVEGKJ4DPR8TLXfoArdO4rXWe0jYWBu4g29ia1fuMpO2AZyLi35L2Bi4Cbo+Izap9pzQwJGlARIwoP/u9zcwmqqm7T8DMzMzMzMwm5A6dHm+HiFjEHagdU1IxVaPj+9WWt0TEc8DpwMzAU8BZwD7AFZJWqB3mAWDlcpzryKLZC0mq0jU1VaPBS478E4Aby7rvOVjR67itTQVJn5O0JoydifIhWdD8s8AGZf2jwNXAhmW7S4BbgE1K8AKmog8xIkZIaipBD7+3mdlEeYaFmZmZmZmZ2RTyaOHJ00ZdiDOAGYBTIuLNKpd9CWi8DswJrEuOrP858AFwQKk/cTYZyNgsIh6QtAqZJmoQMF9EvN2YwkbSQGCEUwf1Xm5rHSdpReAR4F6yvQwvy5cjAxIzAoOBx4BfkTOaXittcW1yJsYLwGoR8bFrTpjZtOAZFmZmZmZmZmZTyB2oE6fUVAUKJO0i6RXg28AYoBWgdJC2lCDDkWX3EyLiKmA7YBRwjaR9gLvJTtbhZd+HgZ8CzcAZZd/GwMSIMqujpaseq3Utt7WOi4jHgJuAdYA9a6u2AOYl29GdZK2Jn0fEK1VAIiL+DlwMLEWmVYMJ21WbqtoiZmZTwgELMzMzMzMzM+sSkVolrSTpH8CVZB2JXYAfRMTbtW1Hl9vLgfuBzSTtGxF3Al8iU0FdCHwDELBa7a5+XI67t6R1G0eBVwETd3pbX1GlXwO+WW6/Jmmh8nMrmSbtf2RqqPdLQK+pYd8fkDOeDpa0TNmmWteuWoByjipIWB3bzGxS/GJhZmZmZmZmZl1CUouk84GHgdmBQ4FDIuLqKlhRjcYuszGqGRBVJ+t3JA0ptSj2IetabAR8SgYtKDM43iZT2gDMMQ0emlmPVorON0fEM8C5wErAQWXdOcCOZKBvMBmYoDa7YkxpV6+UbWYFjqvWtXV/9VkVkmaWtDXwI+CQ+rHNzCbFNSzMzMzMzMzMrEtImhO4nExBc0xEnN7GNrNFxPu136t6FpcBuwNnRMTRtfUHAm8Df42I9+v1MST1i4hRXfywzHqsev2WWlsaSM6UGA58MSL+VdbPRwb6tgQ2jIi7G49Tgoj3AcsDX4qImxruo97+moFVyWDIvkALcGBEXDltHr2ZTQ8csDAzMzMzMzOzLiNpPeBPwF+Bg4GPyQ7S9cjZEh8Dfwd+W4poVx2lcwOvAZ8A65V8/GM7Ydu4H1V1Kpz6yfo6ScsDT1UBPEkHAL8ALouIvWvbbU+mWnsE2BQYUw9AlLb4FeAa4IGIWL2d+1sK2AY4EFiCDIQcHhGfds0jNLPplQMWZmZmZmZmZjZF6iOtJ7LNIOBUMlhxCjCETO/0MfAumW5mCBmc+Apwf63D9Jiyz1URsWsXPQyz6YakmYHfAKsA25Si9NW6R4FlgZ0i4rqybBDwE2A/YN+IuLgsnxtYLCLuK7+fSLbDJxvubwgZ6NgfWB/4G/C1iPhvVz5OM5t+OWBhZmZmZmZmZh3SkAZmAJkC5qaIeLutGRCSliVnWSwGDAPOBs4BgqxHcQaZX/+vwNcj4vnavi8AC5HpaG6YnCCJWV9V0j99AzgZOB34YUR8XNZtQLaxO4Av15avC/wa6A98HegHfBnYhAw+3Fg7fpVmSsDqwLeBrYG3gMMi4g/T5IGa2XTLRbfNzMzMzMzMrENqwYodyY7Ki4Edyrq2iuv+jyze+xSwZUQcHxHvAR9ExAiymPbVwGbAiuXYA8q+R5TbE0pnqYMVZu2IiOHAtcDd5KyJVWvr7gKuAzYGvlpbfg9wHlmw/kayLe4C/LIhWKFa+24BVga2Ak6NiIUcrDCzzuAZFmZmZmZmZmbWIZIGk52hJwLN5IDI+4H9I+LpdmZZzAcsQ9arGBENHRK1HPu/iIivN8ziOIfMvf9Q1z4ys95D0r7AAOBXETGqVsdFZADxYrL2xHcj4o2yz4LAi8CTZMqoZ8vyGYC1yADEB8BPI+L9sk6N7bUsnw/4KCKGdvFDNbM+xDMszMzMzMzMzKyj1geOBYYC25MFdtcjR2W3OcsiIl6LiDsiYni981NS//LjO/Xb0vHaXH4+LCIekuR+DDNA0tLAMcD3gaVgbJupggt3Ab8jAxfrlyAGEfEyWVNmGeCA2iGHRcTtwFERcXJEvC+pub1gRTnWaw5WmFln8xu9mZmZmZmZmXXUUOByYK2I+AsZsHgd2FXSOpC57tvaseo4rdZHxMiy6svl9v5q23r6p4Z0NGZ9gqSWht+rdvMU8ENgBuCgMkNirIh4k2yjH5KzoZaorfse8CpwsKRNGvYbXd1PRIxpL1hhZtZVHLAwMzMzMzMzsw6JiDuBkyLixbLoCeBcYElgD0kDaoV5G/eNevBB0hKSziQLd18eEX9u5z7dcWp9Ri0wUQUQVpU0qGGzvwC3kPUo1ijbRy1Y+GhZvxHw+Yb9v08GO2at9qsf2MFBM+suDliYmZmZmZmZWYdV+e3Lz6OBK4AHyRRRW09i9wGSFpd0JPBz4FvAbWQnqlmfVwvo7SzpGeB2so18q7bNC2S7GwEcLmmOat8yQ+Jd4DWyzsyOwPK1fX8FzBUR106bR2RmNnkcsDAzMzMzMzOzqRYRrwJnA7MDe0map2G0d93ZwH+BE4DFgf0i4gtVAWCzvkZF9XO53ZmcufQecCewLHB6KVBf+StwNRkk/IKkfjDeDIlW4AFgHWA/STNVO0bEu1Wdiq58bGZmHSHPqDQzMzMzMzOzziBpFuBiYBvg8Ij4aTvbrQnsBDwMXFnVqpDUXK9bYdYXSGqppX5qjogxkgYAdwMvAcdGxNOS1gJ+CiwMfAG4vwQFNwR+AYwCDo2IO0vgYlvgQuAUYAXgpoj47TR+eGZmHeKAhZmZmZmZmZl1Gknrkbn1/wvsEhHPSvoMsGJEXFXbrl9EjCo/O1BhfZ6kr5O1KB4CXgH2BA4oBbSrbfYggxY3AV+LiPck9ScLa58FfETOuBgMrE/Wl9klIoZOy8diZjalHLAwMzMzMzMzs04jaQbgJOBI4BzgSWBvYE3g8xFxS21bgQtqW99TakxUdSqWBX4LrAiMBlqAYcBQ4DMldVO/iBglaW7gNGAvYGfgujIjY6ay7ExAwEDgRuDgiHip8T7NzHoqByzMzMzMzMzMbKpJUhV4kLQ8OQJ8DmAA2fF6fESc031naNazSFoM6Ad8GdgBuICsSbEX8FVgDLB7RNzVsN+mZKqn14EdIuKVhmMuCnwQEQ+WZQ5UmFmv4aLbZmZmZmZmZn2QpObOPF4tWLEGcAAwHxms+BkwTxWscIFfs7Ht5H/AD8jZSBdExC8j4mlylsS5ZBvaTNLMZZ+qzd4LXE6mj9peUktZr4h4LiJurwUrmh2sMLPexDMszMzMzMzMzPqQEjBoqhW6XgT4BPg0Ij6pz5SYguOuBVwGLAbcARwSEU+W9S3AGKd/MgNJQ4BLgC2AZ4DlS8qnlogYLWkpspD2ksAeEXFn2a8pIlolrVzWrwCsGRH/7oaHYWbW6TzDwszMzMzMzKyPqIIRJef9EpKuAW4H7gfuKqlmxo7W7sixSyBiOPAvYMeI2DQinpTUVDpZRztYYdObKZ0xVApp/xD4kJxJsXS1qtz+j0wRNTuwZwlw1Pd/BLgGuBt4a0rOwcysJ3LAwszMzMzMzKyPiIgoAYTvAA+ThbCfBh4C5gGuBnattp2Cu3gkInaJiN/DuHQ0Tklj06taKrSBU7D7/eSMpBmBzcrxxtRqTtwJ/B7YEVivBBxba6mhfh4RW5bgh5nZdMEBCzMzMzMzM7M+QlI/4CDgMOA6YF9gm4j4CrAe0AwcIGndsn2H+g2qwES1X5V2ymx6pXQqcKqkAR3ZNyI+Bn4NvAbsIGnFhvVvAJcC7wEHAkuV5WPK7bByDp1aj8bMrDs5YGFmZmZmZmbWd8wGbEWmbTouIm4p+fI3A24ABgOrA7tJGlBGc3c45Y1nVFgfsgZwFLBZRIyYgv2fIAtsrwlsJ2lgwyyKB4A/AJsAC7Z1AAcGzWx64qLbZmZmZmZmZtORqmjvRNavHxF3l5+HkJ2lO5BpoS4G9gfmBw6MiD9Mqgh3fX0prN0UESM77xGZdb9amqbG5c3AfcDngPUj4p6OFq6XtCAZlJgd2D8i7mhYvyTQEhFPTNWDMDPrBTzDwszMzMzMzGw6UEvDNLr8/kVJm0haUdKMtU3vKeuXA64CtgTOBPaNiJ8BPwPmIGdZzFPVvWjj/lTurwpWrAQcDmzV0VRSZj1V7e+8taEdVTVaxpDtCGCDsm1HRwe/ApwNLAxsL2nOcvyqTT8TEU+U+jNTVOTbzKy38AcIMzMzMzMzs15E0tqS5io/j/1eX6sfsbOkF8hivbcCjwDXS5q3vh0ZqFgPOBU4JSIeLcur4sGrAl9p2GesWqBiQUkHABcAZwDLA+5UtelC7e/8aOAxSTuU31VLxfQg8BGwTEfrWNTu42bgj2SNmU3K8taG7VqnIBhiZtarOGBhZmZmZmZm1ktIOoqcIXEAjF/kWlKLpGPJtE7PAceQHZ8/B9YBLpW0ctm+H7AL8D5wQUQMrd3NQOBhMl/+EZIWqd2/aj/PImlb4DzgF8AgYJOIOMU59W16ImkD4AfAosD5ktZi/D61N8r/LYB+ZZ8OBe0i4n1ydtNlZKDRzKxPaunuEzAzMzMzMzOzyXYD8HXg7XpO/ZKuZmHga8A/gcMi4jEASY8BI8h0Td+QdFREvC3pP8DiwGrAzaX+xDbAccCRQH9gZES8UN15SQ/VQhbm3gXYC2gFDo6I87v+4Zt1nfbqVETEXZKeJIMUY4ArgG8B15X1T0p6HNgO+CLwmyk8hb9W9Ss6WgfDzGx64YCFmZmZmZmZWS9R8tivGhFvt7F6N2A+YMdasGJ5YCtg+7LNEyVYITL48WXgHEnXA7MBmwL/AW6LiOcb70DS4mSB7gOARcgR4UdExKjOe5Rm3aME/vpXReNLO2kqM4b+AOwHbAj8CThT0oe1AtlXkgGLtST9fkoKz9fST7UZODEz6wucEsrMzMzMzMysFykBh40k3SNpS8jiv8BCZB795yXNJmlf4JfA6cBTwJIRcVY5RgA3kmmjFgG+CewB/BfYua1gRbEVcAqZcmqpiDjUwQrrrRrTNkn6GvB3SV+sFtXSmz0MzEWmStsBGApcIWmVcpwnyOLZywAdqmPReB4OVphZX+aAhZmZmZmZmVnvsxCwNrC9pMGlU3UkMBg4lKxbcQEwD7BNRGweEc8CSJpTUr+IGBYR5wErAlsD60bEFyPixXox77JP1aF6A7BRRGwaEf+bFg/UrLMpNdVTLkmaG1gC+CzwM0lLNQQOniLrVGwfEY8AB5NBi8uAjckg3otk3Zi5yjEnq9+tNrNiHklzTuXDMzPr1RywMDMzMzMzM+t9LgP+D9gJ2LYsuw4YTebW/yJwZEQsHhE3VjuV+hO/J2tdVHnyn4mIOyLi4bKsuXGEd9WhGhEvRsTfuvahmXWtSK2SlpH0q7LsrYg4kiwiPz9wiaT1a/s8DjwNrCJpjoj4O9n+5iYDhEOAm8vmO5d92p0p0VDAfiZJWwC/Lvfb3IkP18ysV3HAwszMzMzMzKyXKQGEk4FBwB6S5gMeJYMYLcCxEXFOfR9Jq5DFgj8HvF87TuOxxzQuM5veSDqFTIG2r6Rv1lYdT9Zm+SxwlqR1aut+U5bPDlCCfIeQBeqvBV4q2y0vabZ27ldl35DUJGnVcp9XkDM17ncbNLO+zAELMzMzMzMzs14oIv4J/IIslL1jRLxDpoH6EDha0sElxcySkg4BzgG2AM4Fru+eszbrMeYqtx8Cp0oaDBARHwKnAT8GVgMulDRv2fa/wKfA7rXj/B74Opmm7TRgBLA40K+tO62lf1oc+AY5W+pbZE2ZIRHx/U56fGZmvZLaGExhZmZmZmZmZr2ApAWAh4C3gF0j4jFJO5MjxGcDPgAEzAS8DBwWETd00+maTTMl3VmbnV6ltsSJwL5kmqcNgAsi4qD6fpJ+Q6Z3uhU4iqxT8Q+yVsUuJbhRHXMz4BqyjgzAqhHxUBv3PRdZ52I/ckbFfcDXS10MM7M+zzMszMzMzMzMzHqpiHiFHNX9GWDvUn/iKmAdctT2FcBFwH4RsVgVrJjcYsBmvVFpB+0FK1RqS7wIDCDbyMvAAZKWL6maBpbNv0PWldgE+CnQDPwZWIksaD9WRNwKnEAGN3ZrJ1ixFDkL6kKyze4aEWs7WGFmNo5nWJiZmZmZmZn1YpIGAX8nO1D3iYi/NKxvqor/SmqJiNHdcJpm01QJyp0C/BW4IyLGNLSFpYEngK3JmhSXAXdGxMZlvUrwYgHgWOBA4C4y4HAlsHlE3FYKZFdFvPtFxKjaOYw3y6O01deB8yPi6C5/EszMeiGPqDAzMzMzMzPrxSJiGFm0dwhwoKTZITtLq9HktZ8drLDpnqQNgOHAd4GLyZkPVMGKogV4D9icDED8A9hQ0na19dUspoOBv5Cpo04s6/co68dUx62CFSWIQUOwoqW01XkdrDAza58DFmZmZmZmZma9XET8CbgHWBmYpSyLqsO0/rPZ9ESS2lj8Mhlw+BgYBXxN0oWShlQbRMR/gPeBBUvb+GFZ9aOyflSJ8zWXgMS3gEuBJct2q0pasK1ziogxbSwbXW6HTcHDNDPrMxywMDMzMzMzM5s+7BARi0TE8919ImZdrT6LQVK/2vKWiHgOOB2YGXgKOAvYB7hC0gq1wzxABvmIiOvIotkLSapmQDRVwYeIeIKcqXFjWfe9iHi5ix6emVmf5RoWZmZmZmZmZtMR16mw6VkbdSHOAGYATomIN6s6FSWg8TowJ7AusBDwc+AD4IBSf+JsMpCxWUQ8IGkVsk7FIGC+iHi7zLAYU7u/gcAIz1gyM+sanmFhZmZmZmZmNh1xsMKmRyU9U1MVKJC0i6RXgG8DY4CqjkRrCdqNAY4su58QEVcB25Epoq6RtA9wNzCYrHdBRDwM/BRoBs4o+zYGJkaUWR0tXfVYzcz6Ms+wMDMzMzMzMzOzXkHSSsAvgDWA24ELgTsi4u12tr8PWB3YPyJ+LWlZ4FxgE+CvwEbAvhFxcdl+LuBOYFlg/Yi4p2sfkZmZ1XmGhZmZmZmZmZmZ9WiSWiSdDzwMzA4cChwSEVdXwYqqAHeZjVHNgPhmuf2OpCGlFsU+ZF2LjYBPgWq/pnKsX5V95pgGD83MzGo8w8LMzMzMzMzMzHo0SXMClwNbAMdExOltbDNbRLxf+72qZ3EZsDtwRkQcXVt/IPA28NeIeL9eH0NSv4gY1cUPy8zMGjhgYWZmZmZmZmZmPZ6k9YA/kamcDgY+BrYE1iNnS3wM/B34bSmi3RwRYyTNDbwGfAKsFxGPleM1RURrG/ejqk6Fa8KYmU1bDliYmZmZmZmZmVm3qoILk9hmEHAqGaw4BRhCpnf6GHgXmLUsew34CnB/bcbEMWWfqyJi1y56GGZmNpUcsDAzMzMzMzMzs27RkIZpALAjcFNEvN3WDIhSNPtPwGLAMOBs4BwgyHoUZwAHkbMwvh4Rz9f2fQFYCPhSRNwwOUESMzObtlx028zMzMzMzMzMukUtWLEj8BZwMbBDWTdBuibgf8CPgaeALSPi+Ih4D/ggIkaQxbSvBjYDVizHHlD2PaLcnlCCIQ5WmJn1MA5YmJmZmZmZmZlZt5A0WNIRwIVACzAK2EnSUmX9eH1XpRD2dWRaqPslqSyPcvsqcC/Z57VF2W1kWfcH4Fxg/3aCIWZm1s0csDAzMzMzMzMzs+6yPnAsMBTYHvgVWUR7F2h7lkVEvBYRd0TE8KjlOpfUv/z4Tv22FNBuLj8fFhEPNQZCzMysZ/CLs5mZmZmZmZmZdZehwOXAWhHxFzJg8Tqwq6R1YMJZFpVqdkW1PiJGllVfLrf3V9vW0z+VuhmeYWFm1gM5YGFmZmZmZmZmZt0iIu4EToqIF8uiJ8i0TUsCe0gaEBGtVXCiYd+oBx8kLSHpTLJw9+UR8ed27jPaWm5mZt1Pfo02MzMzMzMzM7OeQtL8wPXAosCBEXFtCUxM0IklaSAwP/AlsmbFpsBfgG9ExLPT7KTNzKxTeIaFmZmZmZmZmZn1GKVw9tnA7MBekuYpsyna6sc6G/gvcAKwOLBfRHzBwQozs96ppbtPwMzMzMzMzMzMrMFfyFkW25DFuH/aTt2Jy4GRwMPAlVWtCknN9boVZmbWOzgllJmZmZmZmZmZ9TiS1iMDF/8FdomIZyV9BlgxIq6qbdcvIkaVnx2oMDPrxTzDwszMzMzMzMzMeqIHgfOBI4GDJT0J7A2sKem9iLgFICJGVUW5HawwM+vdPMPCzMzMzMzMzMx6jHqBbUnLAzcBcwADgKHA8RFxTvedoZmZdRXPsDAzMzMzMzMzsynW2WmYasGKNYDdgPnKqp8BR0XEp2X92MCGmZlNHxywMDMzMzMzMzOzDitpmJpqha4XAT4BPo2IT6Y0oFCOuxZwGbAYcAdwSEQ8Wda3AGMcrDAzm/40dfcJmJmZmZmZmZlZ71IFIyJijKQlJF0D3A7cD9wlaVPKQNmqvsTkKoGI4cC/gB0jYtOIeFJSk6SmiBjtYIWZ2fTJNSzMzMzMzMzMzKzDJDUB3wKOAz4AHgc+BdYABgFHRMSlU3rsiGit/d6paafMzKxnckooMzMzMzMzMzPrEEn9gP2Bw4DrgCuAOyJitKRFgYeBAyQ9GxH3NAYgJqXattrPwQozs77BKaHMzMzMzMzMzKyjZgO2ItM2HRcRt5RgxWbADcBgYHVgN0kDIqK1o6mhYFzgwszM+gYHLMzMzMzMzMzMbAKluHWbIuIt4MyI2DYiXpQ0RNLVwM3ACOBQ4D/A9sAXJvP+VPu5RVL/qXoAZmbW6zgllJmZmZmZmZmZjVVLwzS6/P5F4BPgbeDZiPikbHpPWb8c8FPgc8CZwG8j4lFJI4FfkrMs/h4Rb7SVGqpWwDvK7ysBmwPPSLrBsyzMzPoOz7AwMzMzMzMzM+uDJK0taa7y89g+olr9iJ0lvQD8HrgVeAS4XtK89e2ALYH1gFOBUyLi0bJ8YLldFfhKwz5j1QIVC0o6ALgAOANYHuhwGikzM+u9HLAwMzMzMzMzM+tjJB1FzpA4AMYvcl3SMR0LXAw8BxwDbAL8HFgHuFTSymX7fsAuwPvABRExtHY3A8ni2wsCR0hapHb/9fRPs0jaFjgP+AUwCNgkIk5xsW0zs77FKaHMzMzMzMzMzPqeG4CvA2/X0zSV4tgLA18D/gkcFhGPAUh6jKxPcTjwDUlHRcTbkv4DLA6sBtxcal9sAxwHHAn0B0ZGxAvVnUdElO1WJwMeewGtwMERcX7XP3wzM+uJHLAwMzMzMzMzM+tjIuIJSatGxNttrN4NmA/YsRasWB7YiiyiDfBECVaIDH58GThH0vXAbMCmZNHt2yLi+cY7kLQ4sAM5w2MR4GfAERExqvMepZmZ9TZOCWVmZmZmZmZm1geVgMNGku6RtCWApGZgIeAj4HlJs0nalyyefTrwFLBkRJxVjhHAjWTaqEWAbwJ7AP8Fdm4rWFFsBZxCppxaKiIOdbDCzMw8w8LMzMzMzMzMrO9aCFgb2F7SvRHxkaSRwGDgUGBRYEfgBWCbiLix2lHSnMCHETEMOE/STWS9ivcj4uGyzdh0U+V3lSDHDcAjEfG3afIozcysV1C+R5iZmZmZmZmZWV9TUjr9CdgQ+FpEXC5pE+AvZZNRwLERcU7Dfi3AbcAfIuLcWiCivk2zi2abmVlHOCWUmZmZmZmZmVkfVYIMJwODgD0kzQc8CvwfmZmjrWDFKsAVwOeA92vHaTy2gxVmZtYhDliYmZmZmZmZmfVhEfFP4BdkoewdI+Id4ALgQ+BoSQdLmkfSkpIOAc4BtgDOBa7vnrM2M7PpkVNCmZmZmZmZmZn1cZIWAB4C3gJ2jYjHJO0M/AyYDfgAEDAT8DJwWETc0E2na2Zm0ykHLMzMzMzMzMzMDEmHA2eTMyi+HRFjJC0DbAUsQtazeCwiLq3tM15RbTMzs6nhgIWZmZmZmZmZmSFpEPB3YB5gn4j4S8P6scEJSS0RMbobTtPMzKZjrmFhZmZmZmZmZmZExDDgeGAIcKCk2QFURERr7WcHK8zMrNN5hoWZmZmZmZmZmY0l6W5gIWCjiHi+u8/HzMz6DgcszMzMzMzMzMxsLElDIuLN7j4PMzPrexywMDMzMzMzMzOzCbhOhZmZTWsOWJiZmZmZmZmZmZmZWbdz0W0zMzMzMzMzMzMzM+t2DliYmZmZmZmZmZmZmVm3c8DCzMzMzMzMzMzMzMy6nQMWZmZmZmZmZmZmZmbW7RywMDMzMzMzMzMzMzOzbueAhZmZmZmZmZmZmZmZdTsHLMzMzMzMzMzMzMzMrNs5YGFmZmZmZmZmZmZmZt3OAQszMzMzMzMzMzMzM+t2DliYmZmZmZmZmZmZmVm3c8DCzMzMzMzMzMzMzMy6nQMWZmZmZmZmZmZmZmbW7RywMDMzMzMzMzMzMzOzbueAhZmZmZmZmZmZmZmZdTsHLMzMzMzMzMzMzMzMrNs5YGFmZmZmZmZmZmZmZt3OAQszMzMzMzMzMzMzM+t2DliYmZmZmZmZmZmZmVm3c8DCzMzMzMzMzMzMzMy6nQMWZmZmZmZmZmZmZmbW7RywMDMzMzMzMzMzMzOzbueAhZmZmZmZmZmZmZmZdTsHLMzMzMzMzMzMzMzMrNs5YGFmZmZmZmZmZmZmZt3OAQszMzMzMzMzMzMzM+t2DliYmZmZmZmZmZmZmVm3c8DCzMzMzMzMzMzMzMy6nQMWZmZmZmZmZmZmZmbW7RywMDMzMzMzMzMzMzOzbueAhZmZmZmZmZmZmZmZdTsHLMzMzMzMzMzMzMzMrNs5YGFmZmZmZmZmZmZmZt3OAQszMzMzMzMzMzMzM+t2DlgUknaX9EtJD0gaISkk7T0Fx2mSdKikf0saJultSb+VtFgXnLaZmZmZmU0jkuaXdJikWyS9JGmkpDckXStpjXb2GSzpR5JeLN8zXpB0lqSZ2tne3yfMzMzMrM9SRHT3OfQIkl4AFgbeAT4pP381Ii7p4HF+BewH/Ae4EZgP2BEYCqwZEc903lmbmZmZmdm0Iul04CjgWeBO4G1gSeBLgIBdI+Lq2vYzAvcAKwO3AA8DqwCbA/8C1o+I4Q334e8TZmZmZtZnOWBRSNoUeCYiXpT0XeA0OhiwkLQRcAdwN7BZRIwsy7cE/g+4JSK26PSTNzMzMzOzLidpO+DdiLirYfl6wO1kUGHeiBhRlp8EHA+cERHfrW1fBT6OiYjTasv9fcLMzMzM+jSnhCoi4raIeHEqD7N/uT2u+nJRjv0XcgTW5pIWmsr7MDMzMzOzbhARf2gMVpTlfwP+CswGrAAgSeRMiaHAyQ27nFyW79ew3N8nzMzMzKxPa+nuE5jObEimk7q3jXU3l/UbAJdP7gElLTCJTfoDywBvkVPSx0zusc3MzMysT2sG5io//7uaFWBTbFS5HV1ulyTTOd0cEZ/UN4yITyTdC2whacGIeLms2hB/nzAzMzOz3qFLvk84YNFJSn7aeYHHI6KtD/lVrtklO3jolye9iZmZmZnZVFkNeKC7T6K3KrMeNgVeB/5dFlef+9urOfEMsEXZ7mV/nzAzMzOzXqzTvk84JVTnmaXcftjO+o8atjMzMzMzs15OUj9yxsMA4KhasKGj3w/8fcLMzMzM+jzPsOj5FpzE+vmB+wBuvfVWFl544a4/I5tqI0aM4J///CcAa6yxBgMGDOjmM7JJ8TXrnXzdeidft97H16x3evHFF9lss82qX9/uznPprSQ1AZcA6wO/iojJTtU0DU3294m7776beeaZp+vPyMzMzMx6vTfeeIP111+/+rXTvk84YNF5qpFQ7Y14Gtyw3WSJiFcmtj5r+aWFF16YJZfs6Azx6UNEMPLljxn97vDJ2l5Av/lnot/cM3TtibVj2LBhPPvsswAsvvjiDBo0qFvOwyafr1nv5OvWO/m69T6+ZtMF1y3ooBKsuAjYFbgCOKhhk45+P+j27xOLLrooCywwqZIXZmZmZmY0fu/rtO8TDlh0klI473VgUUnNbeSdnVQOW5sKwx5/h/eufLJjOwlmWGVuBm++CC2zeiSomZmZmU2eEqy4GNgT+C2wd0S0Nmw2qZoT430/8PcJMzMzMzPXsOhsdwEzAuu0sW6Lcnv3tDudvmPkCx9NeqNGAZ8+9BZv/PABPrzpBVqHj+78EzMzMzOz6UpDsOJqYI+JFMl+DVinFNSuH6P6zvB8RNSLYvv7hJmZmZn1aZ5hMQUkzQnMCbwTEe/UVl0A7AycLGmziBhZtt8S2BC4JSJenNbn2xfE6HED2mbecAGaZ5n4jIkxQ0cx9O+vEcNGw+hWPr7zZT751+sM3nRhZlx9HtTsWJ6ZmZmZja+WBmpP4Bpg93aCFURESLoQOB44DvhubfVxwEzAqQ27+fuEmZmZmfVpDlgUkvYD1i2/rlBu95O0Yfn5noi4sPx8CHACcBJwYnWMiPhr+VKyH/CQpBuBeYGdgPeAQ7vwIfRpMTrG/jzDZ4dMVm2KmdeZj4/ueJmh/3gNxgStn4zmgz8+y9B7X2OWzy/CwOXmGC+nr5mZTVxE8M477/DJJ58watSoKT5Oa2src8wxBwAvvfQSTU0OIvd0vmY9V79+/ZhxxhmZc845/bmmcxwP7AUMBZ4GvtfG83p9RDxSfj4T2BY4StIqwEPAZ4HNgX8B59R39PcJMzMzM+vrHLAYZ13yy0fdOow/HftCJu1A4N/AAcA3yS8z1wHHRsSznXCe1ob6DAs1T96X8aYZ+jHr1osx09rz8eHNLzDs0SxmP/qdYbx7xRP0X2Qws2y1KAMWGjyJI5mZWUTw5ptv8v7773fKsariXWPGjKG1tTEtvPU0vmY91+jRoxk2bBhjxoxhyJAhDlpMvUXK7UzAse1s8wLwyP+zd+fxUVX34/9fZ2Yy2UN2QkIgYYugBCNlByFoJSAWXGrlI8rWAvrVj1RQEP1VUMBWFAErYmshVlspsvjRQtWKjCCiIooQEAgkkBAgCdkn+8zc3x+TDBmyh6zwfj4e88jMueeee25mEsh93/N+g6MuxWjsNzndC8QCF4BXgaWaphXXsL/8PSGEEEIIIa5bErCooGnadGB6A/suocrKiiu22YC1FQ/RSpwCFi6Nu6vT4O9GwJQbKBsZRu6OJEc9jLIz+WSu+wn36EA6xUVi8Hdr1jkLIcS15NKlS07BCr1ef1UXRiv3NRjkvyodhbxn7Y+maVit9mxFOTk56PV6goKC2nhWHVtj/maosk8e8PuKR0P6y98TQgghhBDiuiV/UYprQ5WABU2sP2EM9yZoTjQlx7LJ+yQZS6b9hrfiw5coPZVL8BO3YKinNoYQQlyvCgsLHc+7dOmCr69vk8ey2Wzk59uDxz4+PpJeqAOQ96z9ys3N5cKFC4D951QCFkIIIYQQQoj2TP6aFNeEq1lhUZVSCvcbA+g87xZ8J/dE5+kCgK3IQu72U2iaVs8IQghxfaqsWaHX668qWCGEaF6+vr7o9XrAnh5KCCGEEEIIIdozCViIa0LVotuqiSssqlJ6HV5DQ+n85EB03kYASo5nO+pcCCGEqJnkxxei/an8uZQbL4QQQgghhBDtnQQsxDXBscJC1/Ci2w2h93TBb3JPx+vcj09jNZc12/hCCCGEEEIIIYQQQggh7CRgIa4JlQELZWj+j7T7jYG49w8EwFZoIfffSc1+DCGEEG1jzJgxzJs3r62n0SF9+OGH9OrVC71ez+9//3v++c9/0r1791Y5dkREBKtXr26VYzVEVlYWwcHBnDlzptWPPXToULZu3drqxxVCCCGEEEKIliABC3FNaMmABYDvr3qi3O016osPZVL8c1aLHEcIIUTr2rZtGy+++GKrHW/Pnj3cddddhIaGopTiww8/rNZn+vTpKKWcHnFxcU59Ktu/+eYbp/bS0lICAgJQSmEymQD7Be25c+c69Vu/fj1KKeLj46sde9SoUQ06lzlz5nDfffeRmprKCy+80KB9Gis+Pr7GmigHDhxg9uzZLXLMpli+fDmTJk0iIiICgJ9++okpU6YQHh6Ou7s7ffv2Zc2aNY0etyGfl+eee45FixZhs9mqDyCEEEIIIYQQHYwELMS1oTIlVAsFLPTeRnwn9nC8zt1+CluJFK4UQoiOzt/fH29v71Y7XmFhIQMGDOCNN96os19cXBwXLlxwPN5///1qfcLDw9m4caNT2/bt2/Hy8nJqi42NdQQvKu3evZvw8PBq7SaTibFjx9Z7HmazmYyMDMaNG0doaGirfg8BgoKC8PDwaNVj1qaoqIi//e1vzJo1y9F28OBBgoODee+99zh69CjPPvsszzzzDH/+858bNXZDPi/jx4+noKCA//znP00+ByGEEEIIIYRoLyRgIa4JLb3CAsDjlmBc+/gBYM0vI+8/yS12LCGEEK3jypRQpaWlLFiwgLCwMDw9PRkyZIjTRf2srCymTJlCWFgYHh4e9O/fv8ZgQm3Gjx/PsmXLuPvuu+vs5+rqSkhIiOPh5+dXrc+0adPYtGkTxcXFjrYNGzYwbdo0p36xsbGcOHGCixcvOtq+/PJLFi1a5HRuycnJnD17ltjY2DrnZjKZHAGKsWPHOq3muNKbb75Jz549MRqNREVF8e677zptX7VqFf3798fT05Pw8HAeffRRzGaz4zgzZswgLy/PsaJkyZIlQPWUUEop3n77be6++248PDzo3bs3H330kdOxPvroI3r37o2bmxuxsbG88847KKXIzc2t83zrs3PnTlxdXRk6dKijbebMmaxZs4bRo0fTo0cPpk6dyowZM9i2bVujxm7I50Wv1zNhwgQ2bdrU5HMQQgghhBBCiPZCAhbimqCVawAoQ/MV3L6SUgq/u3uhjPYfm8JvL1KalNtixxNCCNH6HnvsMfbv38+mTZs4fPgwv/71r4mLiyMxMRGAkpISBg4cyI4dO0hISGD27Nk89NBDfPfdd806D5PJRHBwMFFRUTzyyCNkZVVPRThw4EAiIiIc9QtSUlLYs2cPDz30kFO/ESNG4OLiwu7duwE4duwYxcXFzJo1i6ysLJKT7QH43bt34+bmxrBhw+qc2/Dhwzlx4gQAW7du5cKFCwwfPrxav+3bt/PEE08wf/58EhISmDNnDjNmzHDMA0Cn07F27VqOHj3KO++8wxdffMHTTz/tOM7q1avx8fFxrDRZsGBBrfNaunQp999/P4cPH2bChAk8+OCDZGdnA/ZgzH333cfkyZP56aefmDNnDs8++2yd59lQe/fuZeDAgfX2y8vLw9/fv1mOeaXBgwezd+/eFhlbCCGEEEIIIVqToa0nIERz0Kwtv8ICwODnRqdxEeR+bC+8nbM1kc7zbkG56Fv0uEII0VG9vTeJt/fWvyLtpjAf3p42yKntiS3HOJFRBNQdjP7tqEh+O6pHnX0aIiUlhY0bN5KSkkJoaCgACxYs4JNPPmHjxo2sWLGCsLAwp4vmjz/+OJ9++imbN29m8ODBVz0HsKeDuueee4iMjOT06dMsXryY8ePHs3//fvR6539vZs6cyYYNG5g6dSrx8fFMmDCBoKAgpz6enp4MHjwYk8nElClTMJlMjBw5EldXV4YPH47JZCIyMhKTycSwYcNwdXWtc35Go5Hg4GDAnlIrJCSkxvoJr7zyCtOnT+fRRx8F4Mknn+Sbb77hlVdecaziqLq6JSIigmXLljF37lzWrVuH0WikU6dOKKUICQmp9/s2ffp0pkyZAsCKFStYu3Yt3333HXFxcbz11ltERUWxcuVKAKKiokhISGD58uX1jlufs2fPOj4vtfn666/517/+xY4dO676eDUJDQ0lNTUVm82GTif3IwkhhBBCCCE6LglYiA5Ps2lgrVxh0fJ/pHsOC6Xo8CXKzuZjySoh//MUOo2PbPHjCiFER1RQYuFifkm9/br4ulVryymycDG/tEHHaA5HjhzBarXSp08fp/bKQtYAVquVFStWsHnzZtLS0igrK6O0tLRZ6yk88MADjuf9+/cnOjqanj17YjKZuO2225z6Tp06lUWLFpGUlER8fDxr166tccwxY8bwwQcfAPbVG2PGjAFg9OjRjtRLJpOJ3/3ud812Hj///HO1wtgjRoxwKj79+eef89JLL3H8+HHy8/OxWCyUlJRQVFTU6O9pdHS047mnpyc+Pj5kZGQAcOLECQYNcg6I1Rdgmjt3Lu+9957jdWWqqisVFxfj5lb981spISGBSZMm8fzzz3PHHXfUex5N4e7ujs1mo7S0FHd39xY5hhBCCCGEEEK0BglYiI7PevmuztYIWCidwu/e3qSv+QGsGgV7z+HePxBj19YtOCqEEB2Bt5uBEJ/aL+ZWCvA0Vmvz8zAQ4uNKfSssvN2a578zZrMZvV7PwYMHq61kqCxkvXLlStasWcPq1asdtRfmzZtHWVlZs8yhJj169CAwMJBTp05VC1gEBAQwceJEZs2aRUlJiaMA85ViY2NZvnw5aWlpmEwmxyqR0aNH89Zbb3H69GlSU1MbVHC7uZw5c4aJEyfyyCOPsHz5cvz9/fnqq6+YNWsWZWVljQ5YuLi4OL1WStW48qOhXnjhhTpTUFUKDAwkJyenxm3Hjh3jtttuY/bs2Tz33HNNnkt9srOz8fT0lGCFEEIIIYQQosOTgIXo8LTyKhcjWiFgAeAS7IHPbd3I/+ws2OypoYIfuxmllzQMQghR1W9H9WhyuqY19/XDx8en1VLcxMTEYLVaycjIYNSoUTX22bdvH5MmTWLq1KkA2Gw2Tp48Sb9+/VpsXufOnSMrK4suXbrUuH3mzJlMmDCBhQsXVgu0VBo+fDhGo5F169Y56nAADBo0iMzMTDZs2OBIHdVc+vbty759+5yKgO/bt8/xvTp48CA2m41XX33V8R5v3rzZaQyj0YjVar3quURFRbFz506ntgMHDtS5T3BwsCP1VV1iYmKcVmJUOnr0KGPHjmXatGnNknqqLgkJCcTExLToMYQQQgghhBCiNcjVVdHhaRbN8bw1VlhU8h7dFZcQTwDKLxRSsOdcqx1bCCFE8+vTpw8PPvggDz/8MNu2bSM5OZnvvvuOl156yVF7oHfv3vz3v//l66+/5ueff2bOnDmkp6c3+Bhms5lDhw5x6NAhwF4M+tChQ6SkpDi2P/XUU3zzzTecOXOGXbt2MWnSJHr16sW4ceNqHDMuLo7MzExeeOGFWo/r7u7O0KFDef311xkxYoQjsGE0Gp3ar1ylcDWeeuop4uPjefPNN0lMTGTVqlVs27bNsWqhV69elJeX8/rrr5OUlMS7777L+vXrncaIiIjAbDaza9cuLl26RFFRUZPmMmfOHI4fP87ChQs5efIkmzdvJj4+HrCvxLga48aN4+jRo06rLBISEoiNjeWOO+7gySef5OLFi1y8eJHMzMxGjV3f56XS3r17WyzdlBBCCCGEEEK0JglYiA5Ps1RNCXV1Fx0aQ+l1+N3X25GpJP/zFMozmnYhRQghRPuwceNGHn74YebPn09UVBSTJ0/mwIEDdOvWDYDnnnuOW265hXHjxjFmzBhCQkKYPHlyg8f//vvviYmJcdwN/+STTxITE8Mf/vAHAPR6PYcPH+ZXv/oVffr0YdasWQwcOJC9e/fWWgxbKUVgYCBGY/W0WlXFxsZSUFDgqF9RafTo0RQUFDgKYTeXyZMns2bNGl555RVuvPFG3nrrLTZu3Og4/oABA1i1ahV/+tOfuOmmm/jHP/7BSy+95DTG8OHDmTt3Lr/5zW8ICgri5ZdfbtJcIiMj2bJlC9u2bSM6Opo333yTZ599FqDeIuP16d+/P7fccovT6pAtW7aQmZnJe++9R5cuXRyPqnU0zpw5g1IKk8lU69j1fV4A0tLS+Prrr5kxY8ZVnYcQQgghhBBCtAdK07T6e4l2SynVFUgFOHnyJL17927jGbW+8owi0lcdBMDjlmD8749q1ePn/icZ85f21RXG7j4EzYlG6eoOnBQXF/PZZ58BcMcdd0jO6Q5A3rOOSd631pOYmIjFYsFgMFz1v0U2m438/HyAVk0JJZquI75ny5cvZ/369aSmpl71WDt27OCpp54iISGhwee+e/du7rnnHpKSkvDz82vysRcuXEhOTg5/+ctfau1T289nYmJi1SLz4ZqmyXLR61DVvydSU1Pp2rVrG89ICCGEEEJ0BOfOnSM8PLzyZbP9PSE1LESH57zCovUvkHS6vRslCZewZJVQdjafwm8u4DU8tNXnIYQQQojarVu3jkGDBhEQEMC+fftYuXIljz32WLOMfeedd5KYmEhaWlrV/7DXaefOnSxevPiqghVgr7Xx5JNPXtUYQgghhBBCCNFeSMBCdHgtEbDQbBp5mcVcOmcm67wZnU7h7m3E3dvF/tXL/tXVw4By0eN3b28y/3IEgLz/JOPao5OjvoUQQojrQ0pKSp3Ft48dO+ZILdXejR8/nr1799a4bfHixSxevLiVZ3T1EhMTWbZsGdnZ2XTr1o358+fzzDPPNNv48+bNa1T/lStXNstx58+f3yzjCCGEEEIIIUR7IAEL0fFVCVjg0viARXmZlaw0M1nnzFxKNXPpXAGX0gqxlFrr3VenU7hVBDGiPAwEFVnQym2krf+J4tHhuPm7VQQ67MEOF1f9VRf3FEII0T6FhoY6iiPXtr2jePvttykuLq5xm7+/fyvPpnm89tprvPbaa209DSGEEEIIIYQQdZCAhejwNMvlOixKX3cwoDCvlEvnzFxKLbCvnjhnJje9iKaWcrHZNIryyijKK+MbYJSXAV+DwlBipeTfSewutFJ1aL2LDndvF9w8DZhL3HH1t1JaWC559YUQ4hpgMBjo1atXW0+jWYSFhbX1FIQQQgghhBBCXIckYCE6PKeUUBUrLGw2jdz0IvtqiVSzI0hRXFDeoDF9At0I7OpNYLgXAWFe6HSKooIySszlFBWUUVxQRklB5fNyigvKsFk1vi20MNrbgJtOEeSi4yZ3jSPFl+dnLbdhzi7FnF0KGCjJNPCvF37ghqFdiB7bFT9JIyWEEEIIIYQQQgghhLhOScBCdHhVAxanf7rEqW/SyTpfiLXcVsdedjqDIiDUi8CuXgSGexHY1ZuArl64ujfuR0PTNMpKrBTnl1GUmIN1ZxLKBj1c9Xj39iPDqKe4SnCjxFzuWNVhKbORsCeNhD1pdO8fwIDbwuka5Sepo4QQQgghhBBCCCGEENcVCViIDq9qwOJCUj4ZZTUHKtw8XSqCEvZHQFdv/Lp4oNdffaFupRSu7gZc3Q34dvag0FVPztZEAILSCug3OxrX7j6O/oWFRfznw12YU1woveCGpWLOZ49kcfZIFgFhXgy4rSu9B3XG4KK/6vkJIYQQQgghhBBCCCFEeycBC9HhVQ1YVFaM6BTk7lgxURmk8PR1bbVVC56DQig7b6Zw/wWwamS9e4zgx2MwdHIF7MW6Xbxs+PUrZfTsESQdzObI7nOYc0oByEoz88Xfj7N/+2luujWMm0Z3xcPH2CpzF0IIIYQQQgghhBBCiLYgAQvR8VVJ/WTT4L6Fv6BzpE8dO7QO34k9sKQXUZqUh81cTtbfjxE8Nxp1xYoJVw8Dt9zRnZtvC+f0j5n8tCuV9OR8AIoLyjmw4wwHPz1Ln8Eh3HxbOAFhXm1xOkIIIYQQQgghhBBCCNGirj4XjhBtTLNqjudWwOjePlIoKb0O/wf7ovd3A6A8zUz21kQ0Tauxv06vo/cvOnPfwl9w79MD6TUwGKWzrwixWTSOf32BTS9+x/+t/pEzRy6h2WoeRwghRMONGTOGefPmtfU0OqQPP/yQXr16odfr+f3vf88///lPunfv3irHjoiIYPXq1a1yrIbIysoiODiYM2fOtOpxy8rKiIiI4Pvvv2/V4wohhBBCCCFES5GAhejwtCtWWOhd2s/HWu/pQuDD/VBG+5yKD2Vi3pNW734hPTox7nc38dCyYdz8y24YqxQBP3c8hx1vHOafS78l4ctzlJdaW2z+Qghxrdu2bRsvvvhiqx1vz5493HXXXYSGhqKU4sMPP6zWZ/r06SilnB5xcXFOfSrbv/nmG6f20tJSAgICUEphMpkAGDp0KHPnznXqt379epRSxMfHVzv2qFGjGnQuc+bM4b777iM1NZUXXnihQfs0Vnx8PL6+vtXaDxw4wOzZs1vkmE2xfPlyJk2aREREBAA//fQTU6ZMITw8HHd3d/r27cuaNWsaPe6SJUuqfRZuuOEGx3aj0ciCBQtYuHBhc52KEEIIIYQQQrSp9nNlV4gm0qxVAhbQ7opUu4R44n9/lON13ifJlCXmNWhfb383Rtzbi2kvDWfUb3rjE+Tu2JabXsSX75/knWf2sX/7aUf9CyGEEA3n7++Pt7d3qx2vsLCQAQMG8MYbb9TZLy4ujgsXLjge77//frU+4eHhbNy40alt+/bteHk5pw6MjY11BC8q7d69m/Dw8GrtJpOJsWPH1nseZrOZjIwMxo0bR2hoaKt+DwGCgoLw8PBo1WPWpqioiL/97W/MmjXL0Xbw4EGCg4N57733OHr0KM8++yzPPPMMf/7znxs9/o033uj0Wfjqq6+ctj/44IN89dVXHD169KrPRQghhBBCCCHamgQsRIfnVHRbA0M7WmFRyf2mQHxu72Z/oYF5axKuxQ2fp9HNQHRsOA8uHcr4uf0J7e3r2FZaZOGHT8/y7rNf89nfjpJxNr+ZZy+EENeuK1NClZaWsmDBAsLCwvD09GTIkCFOF/WzsrKYMmUKYWFheHh40L9//xqDCbUZP348y5Yt4+67766zn6urKyEhIY6Hn59ftT7Tpk1j06ZNFBcXO9o2bNjAtGnTnPrFxsZy4sQJLl686Gj78ssvWbRokdO5JScnc/bsWWJjY+ucm8lkcgQoxo4d67Sa40pvvvkmPXv2xGg0EhUVxbvvvuu0fdWqVfTv3x9PT0/Cw8N59NFHMZvNjuPMmDGDvLw8x+qCJUuWANVTQimlePvtt7n77rvx8PCgd+/efPTRR07H+uijj+jduzdubm7ExsbyzjvvoJQiNze3zvOtz86dO3F1dWXo0KGOtpkzZ7JmzRpGjx5Njx49mDp1KjNmzGDbtm2NHt9gMDh9FgIDA522+/n5MWLECDZt2nRV5yGEEEIIIYQQ7UH7u7IrRCM5pYSifaWEqsp7bDfcbgwAQCu10uu4NzqLatQYOp2ix81B3D3/Fu5fPIiooSHo9BV1LmwaiQfS+eCl73nnmX18/Poh9m1J5OevL5B+Jl9SRwkhRAM89thj7N+/n02bNnH48GF+/etfExcXR2JiIgAlJSUMHDiQHTt2kJCQwOzZs3nooYf47rvvmnUeJpOJ4OBgoqKieOSRR8jKyqrWZ+DAgURERLB161YAUlJS2LNnDw899JBTvxEjRuDi4sLu3bsBOHbsGMXFxcyaNYusrCySk5MB+6oLNzc3hg0bVufchg8fzokTJwDYunUrFy5cYPjw4dX6bd++nSeeeIL58+eTkJDAnDlzmDFjhmMeADqdjrVr13L06FHeeecdvvjiC55++mnHcVavXo2Pj49jdcGCBQtqndfSpUu5//77OXz4MBMmTODBBx8kOzsbsAdj7rvvPiZPnsxPP/3EnDlzePbZZ+s8z4bau3cvAwcOrLdfXl4e/v7+jR4/MTGR0NBQevTowYMPPkhKSkq1PoMHD2bv3r2NHlsIIYQQQggh2htD/V2EaOeqFN22oTku4Lc3Sqfwvz+KzDcPUX6xCLcSPT0SPZ1SWjVGUDdvbp/ej2F39yThyzQSvkyjpLAcAHNOKeacUlKOZjvt4xPohn8XT/xDvfAP9cQ/1BO/EI92l0ZLCHEN+frPsL/u9EcAdBkA/+N8h7jnR7NQmcfq33fY/4PhjzVxgpelpKSwceNGUlJSCA0NBWDBggV88sknbNy4kRUrVhAWFuZ00fzxxx/n008/ZfPmzQwePPiq5wD2dFD33HMPkZGRnD59msWLFzN+/Hj279+PXu/8+3rmzJls2LCBqVOnEh8fz4QJEwgKCnLq4+npyeDBgzGZTEyZMgWTycTIkSNxdXVl+PDhmEwmIiMjMZlMDBs2DFdX1zrnZzQaCQ4OBuwptUJCQrDZqv9b9sorrzB9+nQeffRRAJ588km++eYbXnnlFccqjqqrWyIiIli2bBlz585l3bp1GI1GOnXqhFKKkJCQer9v06dPZ8qUKQCsWLGCtWvX8t133xEXF8dbb71FVFQUK1euBCAqKoqEhASWL19e77j1OXv2rOPzUpuvv/6af/3rX+zYsaNRYw8ZMoT4+HiioqK4cOECS5cuZdSoUSQkJDil4QoNDeXs2bNNmr8QQgghhBBCtCcSsBAdXtUVFkqvQ6n2GbAA0LnqCXj4RtJf/wGt2EqnXCPmD8/g/j/9ULqmzduzkytDftWDgXHdOfHtRU5+l05WmpnSIku1vvmXSsi/VMKZI5fv1FUKOgV7VAQyKh5dPPHt7IHe0D5XqwghOpDSAig4X3+/TmHVmlRRFqoh+5YWNGFi1R05cgSr1UqfPn2ch68oZA1gtVpZsWIFmzdvJi0tjbKyMkpLS5u1nsIDDzzgeN6/f3+io6Pp2bMnJpOJ2267zanv1KlTWbRoEUlJScTHx7N27doaxxwzZgwffPABYF+9MWbMGABGjx7tSL1kMpn43e9+12zn8fPPP1crjD1ixAin4tOff/45L730EsePHyc/Px+LxUJJSQlFRUWN/p5GR0c7nnt6euLj40NGRgYAJ06cYNCgQU796wswzZ07l/fee8/xujJV1ZWKi4txc3OrdZyEhAQmTZrE888/zx133FHveVQ1fvx4x/Po6GiGDBlC9+7d2bx5s1PNDHd3d4qKiho1thBCCCGEEEK0RxKwEB2e0wqFdpoOqiqDvxve9/ci9+/H0WmKsoRscrefwveeXlcVbDEY9dw4KowbR4WhaRqFuWVkXzCTfb7Q/rhg/3plaihNsxfwzk0vIulQpqNdp1N06mwPZASE2YMYQd288Q5wa9dBISFEO+PqDd51330OgEdgtSbNIwDNO5R6f+O4Nk/BZ7PZjF6v5+DBg9VWMlQWsl65ciVr1qxh9erVjtoL8+bNo6ysrFnmUJMePXoQGBjIqVOnqgUsAgICmDhxIrNmzaKkpITx48dTUFA9gBMbG8vy5ctJS0vDZDI5VomMHj2at956i9OnT5OamtqggtvN5cyZM0ycOJFHHnmE5cuX4+/vz1dffcWsWbMoKytrdMDCxcXF6bVSqsaVHw31wgsv1JmCqlJgYCA5OTk1bjt27Bi33XYbs2fP5rnnnmvyXCr5+vrSp08fTp065dSenZ1dbWWNaDlKqanAKGAg0B8wAjM0TYuvoa92ZVsNummallrRPwJIrqPvUk3TljRyykIIIYQQQnQYErAQHV7VFRY6Q8e4kO4S4c3pKDO9TnihNEXhgYsoo45OE3s0SzBAKYWXnytefq506xfgaNdsGgU5JZeDGBWBjJwLhVjKnS/q2GwaORXbTv9wud3V00Bwdx+Cu3kT3N2HoO7eePm5ShBDCFGz4Y81OV1T4a/+ho+PD0rXOsHomJgYrFYrGRkZjBo1qsY++/btY9KkSUydOhUAm83GyZMn6devX4vN69y5c2RlZdGlS5cat8+cOZMJEyawcOHCaoGWSsOHD8doNLJu3TpHHQ6AQYMGkZmZyYYNGxypo5pL37592bdvn1MR8H379jm+VwcPHsRms/Hqq6+iq3iPN2/e7DSG0WjEar36GkxRUVHs3LnTqe3AgQN17hMcHOxIfVWXmJgYp5UYlY4ePcrYsWOZNm1as6SeAntQ7fTp09XqlCQkJBATE9MsxxANsgzoDlwCLlQ8r83SWtp7AQ8CxyqDFVf4CfiwhnZTg2cphBBCCCFEByQBC9HhaZYqF9o7UAqjfL9yknsV0uOUF2hg3nce5Wag0y/r+pv36iidwifAHZ8AdyL6X76b2WbTyL9UXG01Rk56ITaL842BpYUWUo9lk3rscn0Mdx8jwd29nYIYnp3qzoEuhBDtTZ8+fXjwwQd5+OGHefXVV4mJiSEzM5Ndu3YRHR3NnXfeSe/evdmyZQtff/01fn5+rFq1ivT09AYHLMxms9Pd8cnJyRw6dAh/f3+6deuG2Wxm6dKl3HvvvYSEhHD69GmefvppevXqxbhx42ocMy4ujszMTHx8fGo9rru7O0OHDuX1119nxIgRjsCG0Wh0ar9ylcLVeOqpp7j//vuJiYnh9ttv5+OPP2bbtm18/vnnAPTq1Yvy8nJef/117rrrLvbt28f69eudxoiIiMBsNrNr1y4GDBiAh4dHk9JvzZkzh1WrVrFw4UJmzZrFoUOHiI+PB7jqgPu4ceN45plnyMnJwc/PD7AHEMaOHcu4ceN48sknuXjxIgB6vb5RKyEWLFjAXXfdRffu3Tl//jzPP/88er3eUauj0t69e3nxxRev6jxEo/wWSNQ07axSahHwUm0da1sNoZR6veLp32rZ9ZCspBBCCCGEENcjCViIDk+rckFddbDi0TmBZXj2jaDwozMAFOxKQeeqx/vWrq06D51O4RvsgW+wBz1uvnwhxWa1kZdZTFZaIVnnzWSmFJBxJp/ignKn/Yvzyzh7JIuzVWpjePq62oMY3S8HMdy9jK12TkII0RQbN25k2bJlzJ8/n7S0NAIDAxk6dCgTJ04E4LnnniMpKYlx48bh4eHB7NmzmTx5Mnl5eQ0a//vvv3cUnAZ7IWqAadOmER8fj16v5/Dhw7zzzjvk5uYSGhrKHXfcwYsvvlhrMWylFIGB1VNqXSk2NpY9e/Y46ldUGj16NLt373aaV3OYPHkya9as4ZVXXuGJJ54gMjKSjRs3Oo4/YMAAVq1axZ/+9CeeeeYZbr31Vl566SUefvhhxxjDhw9n7ty5/OY3vyErK4vnn3+eJUuWNHoukZGRbNmyhfnz57NmzRqGDRvGs88+yyOPPFJvkfH69O/fn1tuuYXNmzczZ84cALZs2UJmZibvvfee0+qL7t27c+bMGcCeEisyMpLdu3dXe08qnTt3jilTppCVlUVQUBAjR47km2++cQp67N+/n7y8PO67776rOg/RcJqmfX41+yul3LCvrigD3m2WSQkhhBBCCHGNUJrWkLSqor1SSnUFUgFOnjxJ796923hGrS/jjUOUpdrzdX/t7cr9zzZfOouWUlxczGeffQbAHXfcgeVgNnn/TnJs9727F15Dak790dY0TcOcU0rm2QIyzuaTkWL/WlpYvcj3lbwD3BwBjODu3gR188bVo/nu5m1JV75n7u7ubTwj0RDyvrWexMRELBYLBoPhqv8tstls5OfnA+Dj4+NIFyTar474ni1fvpz169eTmlpTNp7G2bFjB0899RQJCQkNPvfdu3dzzz33kJSU5FiZ0RS/+c1vGDBgAIsXL661T20/n4mJiVWLzIdrmnauyRO5TlVZYVFjDYta9vkf4B/AFk3Tfn3FtgjsNSz+C/wf0AlIB0yapp1u4hzruxMmBDgA9r8nunZt3RtnhBBCCCFEx3Tu3LkW+XtCVliIDs9WUXvBqmkYjB1rhUUl75FhaKVW8v97FoDcD0+hM+rxiKk/d3ZrU0rh7e+Gt78bPWLsd3hqmkZBVgkZZ+0rMDJS8sk8W0BZiXPe8YKsEgqySjj9w+Xi3r6dPbj59nD6jQyVOhhCCCFazLp16xg0aBABAQHs27ePlStX8thjTauvcqU777yTxMRE0tLSCA8Pb9A+O3fuZPHixVcVrCgrK6N///78/ve/b/IYok3Mqvj6dh19flnxqKQppf4BzNU0rbCRx2twVG7Pnj0NWrElhBBCCCHEpUuXWmRcCViIDq+yhoUN0Lu0/zs6a+M9NhxbmRXzl+dAg+wPTqCMOtxvbP9/NCql8Al0xyfQnV4D7UEWzaaRl1lsX4VRsRojM6UAS5lzce/c9CJM/zjBhVN5jH4wCpcOGnQSQoiUlJQ6a1kcO3aMbt26teKMmm78+PHs3bu3xm2LFy+u827+9ioxMZFly5aRnZ1Nt27dmD9/Ps8880yzjT9v3rxG9V+5cuVVH9NoNPLcc89d9Tii9SilIoFYIAX7KoorFQEvYi+4fRrQAbcAy4GpgAdwb2vMVQghhBBCiLYgAQvR4WmOFRYdO2ChlKJTXARaqZXCby6ADbL+eZzA6Tfi1rvpd1+2FaVT+Hb2wLezB30GhwD24t45Fwsr0kkVkH4mn4wz9hQiJ769yKVzZsbPvYlOQY0vqCqEEG0tNDSUQ4cO1bm9o3j77bcpLi6ucZu/v38rz6Z5vPbaa7z22mttPQ0hZgIK2Khpmu3KjZqmZQB/uKJ5l1JqP/ADcI9S6hZN035oxDHrW/bjSAl16623SkooIYQQQgjRIOfOtUxGWQlYiA6v6goLQwcOWIA9aOH7q55opVaKfswAq0bW348ROOsmXCM6tfX0rppOpwgI9SIg1IsbhtlrdCR+n84X7x7HUmolK83M5hXfc/uMfkRGt/+VJUIIUZXBYKBXr15tPY1mERYW1tZTEOKao5TSAdOx/7d1Q2P21TStSCn1LrAMGIE9eNHQfev8S7JqSk53d3ep9ySEEEIIIRqkpf7f2LGv7gpBlYBFB19hUUnpFH739cHtxgDAvoLk0sajlJ0raOOZtYzev+jMrxf+At/O9lUVZcUWdq47zLcfJWGzaW08OyGEEEKIZhMHdAX+q2laShP2r0wS7Nl8UxJCCCGEEKJ96fhXd4WwVqSEAgyGa+MjrfSKgCk34NrHngpKK7WS+XYCJadz23ZiLcQ/1JNfL/oFPSuKeAN8v/MM//7zT5SYy9twZkIIIYQQzaYhxbbrMqTi65mrn4oQQgghhBDt07VxdVdctzRNsxevAGyaht7l2inYrAw6Aqb2xRjhA4BWYuHShgQKf8xo45m1DKO7gXGzb2L4vb1QOntqgtRj2WxecYCMs/ltPDshhBBCiKZTSgUBdwGZwEd19ItRVXM0XW6/B5gG5AD/aal5CiGEEEII0dakhoXo2GwaVGQNuhZqWFxJZ9QTOOMmsv/5MyUncsCqkfOvE1izS/AeG04Nf892aEopYn7ZjeBu3nz6dgLFBeUUZJewdeVBRj8QRb+RHadgrRBCCCGuTUqp3wIjK172r/j6W6XUmIrnX2maduUqiocBF+BdTdPK6hj+NaBnRZHtc4AeuKXieKXAdE3T8q76JIQQQgghhGinrq2ru+K6U1m/Aq6dGhZX0rnqCXj4RjyHhDja8v97lpwtiWhWWx17dlxhUX7cv3gwIT3sq0tsFo3d7x3ni3d/xlJubePZCSGEEOI6NxL7aodp2IMJYC+EXdk2soZ9GpoO6j0gARgKzAXmAKEV+92saVqtqzOEEEIIIYS4FsgKC9GhaZbLRZmtXJsBC7DXtPCd3AuDvzt5/0kGoOhgOta8UgKm9kXndu39KHv5uTL5yVvYt/UUR3afA+DnfRe4lGombvZN+AS6t/EMhRBCCHE90jRtOjC9kfv0a2C/t2l6jQshhBBCCCE6vGvz6q64bly5wuJaSwlVlVIK79Fd8f+fG8BgTwVVeiqXjDd/wpJb0sazaxl6g45bf9OH22f0c7y3mSkFbH7pAClHs9p4dkKIa8GYMWOYN29eW0+jQ/rwww/p1asXer2e3//+9/zzn/+ke/furXLsiIgIVq9e3SrHaoisrCyCg4M5c+ZMqx976NChbN26tdWPK4QQQgghhBAt4dq9uiuuD1UCFlau7YBFJY/oIIJ+F43Ow76qwpJeRMYbhyhLM7fxzFpO1JAQ7l34C3yC7KsqSgstfPznnziwIxnNptWztxBC1G7btm28+OKLrXa8PXv2cNdddxEaGopSig8//LBan+nTp6OUcnrExcU59als/+abb5zaS0tLCQgIQCmFyWQC7Be0586d69Rv/fr1KKWIj4+vduxRo0Y16FzmzJnDfffdR2pqKi+88EKD9mms+Ph4fH19q7UfOHCA2bNnt8gxm2L58uVMmjSJiIiIatuysrLo2rUrSilyc3MbNW5DPi/PPfccixYtwma7NtNECiGEEEIIIa4v1/7VXXFNux5qWNTEtbsPwY/ejCHADQBbQTmZb/1E8c/X7qqDwK5e3P/ML4iIDrQ3aPDdx8nsePMwJYXlbTs5IUSH5e/vj7e3d6sdr7CwkAEDBvDGG2/U2S8uLo4LFy44Hu+//361PuHh4WzcuNGpbfv27Xh5eTm1xcbGOoIXlXbv3k14eHi1dpPJxNixY+s9D7PZTEZGBuPGjSM0NLRVv4cAQUFBeHh4tOoxa1NUVMTf/vY3Zs2aVeP2WbNmER0d3aSxG/J5GT9+PAUFBfznP/9p0jGEEEIIIYQQoj25Pq7uimuWVl4lYIF23QQsAAyB7gQ9ejPG7vbC1FqZjay/H8O8/3wbz6zluHq4MGFuf4ZM6gH2rFicPZLFBy8d4NK5gradnBCiQ7oyJVRpaSkLFiwgLCwMT09PhgwZ4nRRPysriylTphAWFoaHhwf9+/evMZhQm/Hjx7Ns2TLuvvvuOvu5uroSEhLiePj5+VXrM23aNDZt2kRxcbGjbcOGDUybNs2pX2xsLCdOnODixYuOti+//JJFixY5nVtycjJnz54lNja2zrmZTCZHgGLs2LFOqzmu9Oabb9KzZ0+MRiNRUVG8++67TttXrVpF//798fT0JDw8nEcffRSz2ew4zowZM8jLy3OsKFmyZAlQPSWUUoq3336bu+++Gw8PD3r37s1HHznXJv7oo4/o3bs3bm5uxMbG8s477zRp1cOVdu7ciaurK0OHDq3x/HNzc1mwYEGTxm7I50Wv1zNhwgQ2bdrUpGMIIYQQQgghRHty7VXqFdcVzVql6LYGBoO+DWfT+vSeLgT9tj/Zm09QfOQSaJD7f6exZJXQaXwkSq/aeorNTukUvxgfQXB3b/77t2OUFJaTf6mELX86yJgHo7hhaJe2nqIQoop3jr7D34/9vd5+/fz78fptrzu1Lfp2EYn5ifXu+3C/h5l247R6+zXEY489xrFjx9i0aROhoaFs376duLg4jhw5Qu/evSkpKWHgwIEsXLgQHx8fduzYwUMPPUTPnj0ZPHhws8wB7Bfrg4OD8fPzY+zYsSxbtoyAgACnPgMHDiQiIoKtW7cydepUUlJS2LNnD2+88YZTmqsRI0bg4uLC7t27mTJlCseOHaO4uJhZs2axcOFCkpOTiYyMZPfu3bi5uTFs2LA65zZ8+HBOnDhBVFQUW7duZfjw4fj6+nL8+HGnftu3b+eJJ55g9erV3H777fz73/9mxowZdO3a1REU0el0rF27lsjISJKSknj00Ud5+umnWbduHcOHD2f16tX84Q9/4MSJEwDVVo9UtXTpUl5++WVWrlzJ66+/zoMPPsjZs2fx9/cnOTmZ++67jyeeeILf/va3/Pjjj00OIlxp7969DBw4sFr7sWPHeOGFF/j2229JSkpqlmPVZvDgwfzxj39s0WMIIYQQQgghRGu4fm5HF9ck5xUWoDdefx9p5aLDf8oNeI3u6mgzf5XGpb8dwVpQ1oYza1nd+gXw68W/ILi7/S5fa7mNXfE/8+U/T2AtlzzeQrQXheWFZBRl1PvILs2utm9uaW6D9i0sL2yWuaakpLBx40Y++OADRo0aRc+ePVmwYAEjR450pF4KCwtjwYIF3HzzzfTo0YPHH3+cuLg4Nm/e3CxzAHs6qL///e/s2rWLP/3pT3z55ZeMHz8eq9Vare/MmTPZsGEDYK/3MGHCBIKCgpz6eHp6MnjwYMcqCJPJxMiRI3F1dWX48OFO7cOGDcPV1bXO+RmNRoKDgwF7Sq2QkBCMRmO1fq+88grTp0/n0UcfpU+fPjz55JPcc889vPLKK44+8+bNIzY2loiICEdgpvJ7aTQa6dSpE0opx0qTugIW06dPZ8qUKfTq1YsVK1ZgNpv57rvvAHjrrbeIiopi5cqVREVF8cADDzB9+vQ6z7Ohzp49S2hoqFNbaWkpU6ZMYeXKlXTr1q1ZjlOX0NBQUlNTpY6FEEIIIYQQosOTFRaiQ9OszjUsDIbrL2AB9lUHvuMjMfi7kft/p8GmUZqUR8brP+I/tS+u3XzaeootwifAnbsX3MLezYkc22tPhZWwJ43M1ALiZt+El59bG89QCOHp4kmwR3C9/fxd/au1+br6NmhfTxfPJs3tSkeOHMFqtdKnTx+n9spC1gBWq5UVK1awefNm0tLSKCsro7S0tFnrKTzwwAOO5/379yc6OpqePXtiMpm47bbbnPpOnTqVRYsWkZSURHx8PGvXrq1xzDFjxvDBBx8A9sDEmDFjABg9erQj9ZLJZOJ3v/tds53Hzz//XK0w9ogRI1izZo3j9eeff85LL73E8ePHyc/Px2KxUFJSQlFRUaO/p1XrRHh6euLj40NGRgYAJ06cYNCgQU7961sRM3fuXN577z3H68pUVVcqLi7Gzc3535tnnnmGvn37MnXq1EadQ1O5u7tjs9koLS3F3d29VY4phBBCCCGEEC1BAhaiY6tyJ72V66fodm28hnTBJcSTrPd+xlZQhjW/jMy3DuM7sQeeQ7ug1LWXIsrgoif2wRvoHOHDnvdPYrXYSE/OZ/OKA4yf058uvXzbeopCXNem3Tityema/jjkj/j4+KDTtc7vdrPZjF6v5+DBg+j1zikGK+/sX7lyJWvWrGH16tWO2gvz5s2jrKzlVrT16NGDwMBATp06VS1gERAQwMSJE5k1axYlJSWOAsxXio2NZfny5aSlpWEymRzpkEaPHs1bb73F6dOnSU1NbVDB7eZy5swZJk6cyCOPPMLy5cvx9/fnq6++YtasWZSVlTU6YOHi4uL0Wil1VSsOXnjhhQaljQoMDCQnJ8ep7YsvvuDIkSNs2bIFAE3THH2fffZZli5d2uR51SQ7OxtPT08JVgghhBBCCCE6PAlYiA5NszivsLjeAxYArt196Py/MWT982fKkvPBqpH7f6cpSy3Ad3IvdMZrs85HvxGhBIV785+3jlCQVUJxQTk73jzM/YsH4RMgF3CEEPWLiYnBarWSkZHBqFGjauyzb98+Jk2a5Lhz3mazcfLkSfr169di8zp37hxZWVl06VJzjZ6ZM2cyYcIEFi5cWC3QUmn48OEYjUbWrVvnqMMBMGjQIDIzM9mwYYMjdVRz6du3L/v27XMqAr5v3z7H9+rgwYPYbDZeffVVR1DqytRaRqOxxlRYjRUVFcXOnTud2g4cOFDnPsHBwY7UV3WJiYlxWokBsHXrVqdi6AcOHGDmzJns3buXnj17NmLmDZOQkEBMTEyzjyuEEEIIIYQQrU0CFqJD0yyXi27bAIMELADQexsJ+m1/8v5zBvNXaQAU/ZBB+YVCAqb2xXCNXsAP6ubN/YsH8clfjpB2IpfSQguf/iWBuxfcgsHl2gzUCCGaT58+fXjwwQd5+OGHefXVV4mJiSEzM5Ndu3YRHR3NnXfeSe/evdmyZQtff/01fn5+rFq1ivT09AYHLMxmM6dOnXK8Tk5O5tChQ/j7+9OtWzfMZjNLly7l3nvvJSQkhNOnT/P000/Tq1cvxo0bV+OYcXFxZGZm4uNTe/o/d3d3hg4dyuuvv86IESMcgQ2j0ejUfuUqhavx1FNPcf/99xMTE8Ptt9/Oxx9/zLZt2/j8888B6NWrF+Xl5bz++uvcdddd7Nu3j/Xr1zuNERERgdlsZteuXQwYMAAPD48mpd+aM2cOq1atYuHChcyaNYtDhw4RHx8PcNWrD8eNG8czzzxDTk4Ofn5+ANWCEpcuXQLsQRxfX98Gj13f56XS3r17ueOOO67iLIQQQgghhOhYIhbtaOspXNPO/PHONju2XN0VHVrVFRZWNKzyiXZQeh2+E3vg/z83oCqKkZdfKCT99UMUH69e3PZa4ebpwvg5/fEJtOcTzzhbwN7NiW08KyFER7Fx40Yefvhh5s+fT1RUFJMnT+bAgQOOi8PPPfcct9xyC+PGjWPMmDGEhIQwefLkBo///fffExMT47gb/sknnyQmJoY//OEPAOj1eg4fPsyvfvUr+vTpw6xZsxg4cCB79+6ttRi2UorAwMAaC19XFRsbS0FBgaN+RaXRo0dTUFBAbGxsg8+jISZPnsyaNWt45ZVXuPHGG3nrrbfYuHGj4/gDBgxg1apV/OlPf+Kmm27iH//4By+99JLTGMOHD2fu3Ln85je/ISgoiJdffrlJc4mMjGTLli1s27aN6Oho3nzzTZ599lmAeouM16d///7ccsstjS68fubMGZRSjqLnNanv8wKQlpbG119/zYwZM5o0fyGEEEIIIYRoT1RlTl3RMSmlugKpACdPnqR3795tPKPWVfBVGnn/TgLg+0ILKwMsvPQ/N3Nrn6A2nlndiouL+eyzzwC44447WjzndHl6IVnv/ozl0uX0FN63dcPntm4o3bVX1wIgM7WArS8fxFpR52Tsw33pO7zmdCoN0drvmWge8r61nsTERCwWCwaD4ar/LbLZbOTn5wO0ag0L0XQd8T1bvnw569evJzU19arH2rFjB0899RQJCQkNPvfdu3dzzz33kJSU5FiZ0RQLFy4kJyeHv/zlL7X2qe3nMzExsWqR+XBN0841eSKiw6r690Rqaipdu3Zt4xkJIYQQQtRPVli0rIassDh37hzh4eGVL5vt74n2/9ekEHVwqmEBZBaX8fCG7/jzF4nYbBKMq+TS2ZPgx27G7cYAR1vBrhSy3jmKrai8DWfWcoLCvRnzP1GO11++f4LM1OqFaIUQQlwf1q1bx4EDB0hKSuLdd99l5cqVTvU1rsadd97J7NmzSUtLa/A+O3fuZPHixVcVrAB7rY0XX3zxqsYQQgghhBBCiPZCAhZVKKUGKaV2KqVylVKFSqlvlFL3N3KMUKXUGqXUsYox0pVSXymlHlJKSRL95lY1JZQGlWU5X/nsJHPeO0h+ybV5Mb4pdG4GAqb2pdP4CKhYVFFyIof0NT9QkpjTpnNrKTcM60K/UaEAWMttfPLWEUqv0QCNEKLtpaSk4OXlVesjJSWlrafYYOPHj6/1PFasWNHW02uSxMREJk2aRL9+/XjxxReZP38+S5Ysabbx582bV/XuonqtXLmSp5566qqPO3/+fDp37nzV4wghhBBCCCFEeyBFtysopWKBT4ESYBNQANwL/EspFa5p2qsNGKMH8C0QUDHWx4APMBn4OzAWkATDzahq0W2L5QIDPA38WOyJpsF/j6Uz6c/7WD91IFEh3m04y/ZDKYX36HBcwrzJfv9nbIUWrHllXPpbAp7DutBpfCQ647UVVxt1f28upRSQcbaA/EslfB7/MxPm9r9mU2EJIdpOaGgohw4dqnN7R/H2229TXFxc4zZ/f/9Wnk3zeO2113jttdfaehpCCCGEEEIIIeogAQtAKWUA/oo9q9CtmqYdqmh/AfgOWKGU2qJp2tl6hloABALzNE1bU2X8Z4CfgOlKqSUNGEc0UNWUUKVFXzLiaBp3D72d13L7kF2qkXypkMlv7OPl+6K5a0DHuVDU0tx6+RL8v7eQ88FJSk/lAlC4/wKlJ3Pwuz8K1+4+bTvBZmRw0TNu9k1sXnGA0kILZw5f4ofPzjIwLqKtpyaEuMYYDAZ69erV1tNoFmFhYW09BSGEEEIIIYQQ1yFJCWU3FugJ/LMyWAGgaVoesAIwAg1Jctyj4uvOqo2apuUCX1W8DLzKuYoqnGpYaBYAMr75nEfyPmKIj/3O0OJyKy9/epyScmuNY1yvDJ1cCZx5E76/6olysf8qsGSVkLn+J/L+k+z0ve3ofALc+eXMGx2psL79vyRSj2e37aSEEEIIIYQQQgghhBBOZIWF3ZiKr5/VsO3Tiq+jGzBOAjAOmABUXWHhC4wALgLHGjMxpVTXerqEVD4pLS2tNX3DtcpSpUaFVbsckMi/cI6hGe/S54axfFDai9X33YRmKaPY0hazrK6kpKTG521BH+NHp27umD9MxnKuEDQo+PIcRT9n4XV3JIYQjzadX3MJ7uFBzB1d+fHTc2gafPbXBCYtiMbT17VB+7en90w0nLxvrcdms6FpmuP51Y5V03PRfsl71v5pmobNZnP6v2JpaWkbzkgIIYQQQgghqpOAhV3viq+JV27QNO2iUspcpU9dVgJ3Aa8ppeKAw1yuYVEE3K1pWmMjCqkN7fjtt99y+vTpRg7fsUWkehKA/YKztWKFhcHTC0uhGZvViu/R/zI3MIHkb3I55+nl2E/TQLWTEgZ79uxp6ynYdYXOOjdCU93RaQprRjG5fznK+a7FXAwrcaxO6Mg0BW5B7pRkGigptLB9zQGChhShGrnWrN28Z6JR5H1rWQEBAbi7u6OUIj8/v9nGNZvNzTaWaB3ynrU/FouF4uJiiouLOX78uKP90qVLbTgrIYQQQgghhKhOUkLZdar4mlfL9vwqfWqlaVo6MAz4BIgDngbmVuz7d+x1LEQzKrNcvopuq1hhEXbbnfj2jXa0Wy9dIHXnVgrOnLK/1uDNn3X8O0XHWbP9tQAUpIeVcLx/PkUe9uCP0hRhqR7ckOCDa3HH/3WhFPhFF6N3t9/9W5arJ/d4w1ZYCCGEEEIIIYQQQgghWpassGhGSqlewMeAGRgFHAJ8ganAMmCcUmqUpmmNKaYQXs/2EOAAwJAhQ+jZs2cjZ92xnUw6Ann2dAaVKyxuu2McbvfcR9rxo+z6658xZ13CVl5G+te78bGVczgslhN5lziRB/9N0+Fp1HNLt04M6u7LL7r7cVOoNy76lrk4b9M0zKUW0nMKMe3/jlKronffG7Ggp7jMitGg41fRIU77/PWrsxw6l4dep3Az6HA16HBz0ePqeK7D1aCnd7Anw3r4O+1bbrU16Vw0q43iLy9Q/NUF0MDTbOCmBD88RofiNrQzytCxgxeXBpj595oEbFaNwrNGfjGqHz0HBtW5T0lJieMO/VtvvRU3N7fWmKq4SvK+tZ6UlBSsVisGgwEfH5+rGstmsznu0vfy8kKn69i/c64H8p61b5mZmbi7u+Pl5cXAgQMd7dfbylwhhBBCCCFE+ycBC7vKlRW1raLwAXIaME480B3ooWnaxYo2M/BHpVRnYB7wAPCPhk5M07RzdW1XVfIaubq64u7u3tChrwnFVYpSVBbd9urUCRejK71ifkHXlX/miw3r+fkrEwCJ33yFl0cCYT63kuYeBkBhmZW9p7LZe8pehNndRc/A7n7c3jeY6SMinY5XbrVRWGqhsMxKYakFc6nF/rrUWtFuIbeonGnDIujk4eLYb/P3qby082fyisux2TTcbCV4WQpxs5XgeuAMbtZSXG2lBLpY8evvT6nZTElhASXmQorSs+hVUoQO+6oARZUlIZpGCVAC/KDsETIAFzdXjO4enC/SKFUu6Izu6N3ccXX3wN3TAy9vLzp5e+Hn50NE9zCCQsPwCQrG4HJ5zh539qK0fzA5m09iuVQMFo2iXWmUHrxEp7gI3AcEOX3+OpLwPu7c+kAfTP84AcC+zUl0ifQnIMyrnj3t3NzcrruftWuBvG8tS6fTOWoXNOfFap1O16IXv8eMGcPNN9/M6tWrW+wY16oPP/yQBQsWkJyczGOPPUZUVBTPPPMMOTk5LR6wiIiIYN68ecybN69Fj9NQWVlZ9O3bl++++46IiIhWO25ZWRl9+vRhy5Yt/OIXv6izr1IKnU7n9HvQ1VVWGQohhBBCCCHaFwlY2FXWrugNHKy6QSkVAngB39U1gFLKG3th7R+qBCuq2o09YBFDIwIWom4lxRYqiytUFt02uBgd2908vZjw+AIibxnErrfXUVpUiCrK5Z7ij3HtfQsX9H4kFLqRYvUiz8UHm9JTXG7lq1OX8HTVOwUsLuaVMPSlXbVPRtNw0crxshQSY8gkQJVgzsnGnJNF1ulz3Hb2PJ7WIjwtheipvSDpkSsO4VJztxqOjyOUUVZcTFlxMY57nItxSnhmrnikYa8UD4BSeAcE4tu5C506h+AbHIJvSBc6/SoEtwQvSg5kggbW3FKyN53AZd95fO+MxDWi3mxp7VK/kaFcTM7n+NcXsJTZ2PnmYe5b9AvcvYz17yyEuGZs27YNF5cG/6a9anv27GHlypUcPHiQCxcusH37diZPnuzUZ/r06bzzzjtObePGjeOTTz5xvK4MGO/fv5+hQ4c62ktLSwkNDSU7O5vdu3czZswYhg4dys0338z69esd/davX88jjzzCxo0bmT59utOxT58+zd69e+s9lzlz5jBjxgz+93//F09PT/7xj+b/7018fDzz5s0jNzfXqf3AgQN4eno2+/Gaavny5UyaNKnGYEVWVhYDBgwgLS2NnJwcfH19GzzukiVLWLp0qVNbVFSUow6F0WhkwYIFLFy4kF276vg/ihBCCCGEEEJ0EBKwsPsSeAa4A9h0xbZxVfrUpfIqZ2At2yvzzZQ2enaiRsVlVqzlNkCPTbOhYcNgdK3xrv++I0YTFtWXT954jdRjR0DTKD15EH/g1spOSke5hx+Z+k5cVN7cXHQj54674x/aFZvVSlFGJt2LzuJhLcLTWmT/ailyeu1Sscrju3XV59vliteaTo+mlH3FhFblweX61jq9HqOnF0Z3T5Rej4ZC0zT7V8BWEaTQAKNeh4er/Ue6vKSEkqIiCgrM6K1lDfuGahoFlzIpuJRJ6tHD1TYH+HRjYNDt+NnsH+Xy1AIy1x/G/cYAfMZH4hLYse5cV0ox+oE+XEot4FKqmfxLJfxn/REmPRGD3kVSmQhxvfD396+/UzMqLCxkwIABzJw5k3vuuafWfnFxcWzcuNHxuqY74cPDw9m4caNTwGL79u14eXmRnZ3taIuNjWX79u1O++7evZvw8HBMJpNTwMJkMjFt2rR6z8NsNpORkcG4ceMIDQ11rK5pLUFBdafxa01FRUX87W9/49NPP61x+6xZs4iOjiYtLa1J49944418/vnnjtcGg/N/3x988EHmz5/P0aNHufHGG5t0DCGEEEIIIYRoLyRgYbcLSAL+Rym1VtO0QwBKqU7AYqAMe9FsKtq7YE8fdUHTtDwATdOylFIngCil1G81TXu7Sn9fYEHFy90tfzrXh4TzeRg1QF0uuG2oI7WBT2Awv/7/lvP9jg/5+oN/YCm9Inak2XApzCKULEKBoi9+4l9f/NOpy6+aOFdN6bC6eaDzDQAvH8oMRsqpPZ2STqdDr9ej0+ko1+sp0etxc3PD09PT6eHh4VGtzc3NzSloo9lslBQVk5Gdx4XMHDKy8riUm09OTgE5ubnkZWQwNlRPUVY6uekXKTEX1DinrPwUPsvfQIh7JAP8x+BrDAag+GgWRccuQZQrQXf1xS3g6nLXtyaDUc+ER6LZ8sfvKcov48KpPEz/OM7YaX0ble7KatMoKCknv9hCfkk5+cXl5BWX4+aiZ0SvQIwdvOaHENeyK1NClZaW8uyzz/L++++Tm5vLTTfdxJ/+9CfGjBkD2O+Wf+yxx9izZw85OTn07NmTxYsXM2XKlAYdb/z48YwfP77efq6uroSEhNTZZ9q0aaxdu5bVq1c70vxs2LCBadOm8eKLLzr6xcbG8sc//pGLFy86xvzyyy/5wx/+wMsvv+zol5yczNmzZ4mNja3zuCaTydFn7NixALXe3f/mm2/yyiuvkJqaSmRkJM899xwPPfSQY/uqVavYuHEjSUlJ+Pv7c9ddd/Hyyy/j5eWFyWRixowZwOUVJc8//zxLliyplhJKKcVf//pXduzYwaeffkpYWBivvvoqv/rV5X+5P/roI+bPn09qairDhg1j+vTpTJ8+vdGrHq60c+dOXF1dnQJHVc8/NzeXP/zhD/znP/9p0vgGg6HOz4Kfnx8jRoxg06ZNTu+7EEIIIYQQQnREErAANE2zKKV+C3wK7FFKbQIKgHux16RYoGnamSq7vARMA2Zgr1tR6ffAR8BflVIPAD8CftivcwcBWzVN+xzRLH5MyWHAlemgjHWn81E6HYPuuoeb75hAzoXzZKelkn0+jezz58g+f46cC2nVAxkN4ObphYevH15+fnj4+qM8vSnVGTBbrOSYC8nJy0fTtPoHqmCz2ardrVpQUEBmZma9++p0OgICAujcuTMhISF07tyZzp070y28C927hda7f0mhmXc++Z5P9h9DZ86iU3k+PpY8fMtz8bIWc6H4DBfT3qG7103c5DcCd4OXfYnH8RJSj+7naGkCPxpysNWTYqVXkDehfpdXZZSUW/kuOave+QH8IiIAD6Pe8fpCbjGJGTUHWqpyddEzJDLAqe3Y+TxyLCV0KragNDjyBXx7QE+xl96pX4i3K66lWaB0/EQ5vl268sTOc1y0epBXXvt7+7tRkTx7Z78GnZcQ16KsjfFkx8fX28+tXz/C33Renpa94CkyExNr2eMy/+nTCZgxvYkzdPbYY49x7NgxNm3aRGhoKNu3bycuLo4jR47Qu3dvSkpKGDhwIAsXLsTHx4cdO3bw0EMP0bNnTwYPHtwscwB7UCA4OBg/Pz/Gjh3LsmXLCAhw/v01cOBAIiIi2Lp1K1OnTiUlJYU9e/bwxhtvOF24HjFiBC4uLuzevZspU6Zw7NgxiouLmTVrFgsXLiQ5OZnIyEh2796Nm5sbw4YNq3Nuw4cP58SJE0RFRbF161aGDx+Or6+vI01Rpe3bt/PEE0+wevVqbr/9dv79738zY8YMunbt6gh46HQ61q5dS2RkJElJSTz66KM8/fTTrFu3juHDh7N69Wr+8Ic/cOKEveaQl1fttYaWLl3Kyy+/zMqVK3n99dd58MEHOXv2LP7+/iQnJ3PffffxxBNP8Nvf/pYff/yRBQsW1DpWY+zdu9epkHWlY8eO8cILL/Dtt9+SlJTU5PETExMJDQ11vDcvvfQS3bp1c+ozePDgBqXxEkIIIYQQQoj2TgIWFTRN262UGgksBX6DvXTAEWChpmn/auAY/1FKDQeeAkYCo7HXQ/4ZeAF4syXmfr06lJrLoIrnlQW3XeoJWFRycXUjOKIHwRE9nNo1m42C7Ev2IEaaPYiRe/E8ehcXPH398PT1t3/188Ozkx+evn6U2jTSMzM5f/4858+f5+T585Rnmes8vtFoxGg0otfrHRegbDYbVqu11q9FRUVYLJY6x60cJzMzk8zMTBISHBUq8PDwcAQvKgMZQUFBlJeXYzabMZvNFBQUYDabifAqZeqwzmTnuZOTm09xkR+apYyqZ5UAJHCg+gQ8QWFAT90BmmRzPsnmfKc2fQOzSv2YfqlaW0P2tWBhX2p69Q0+kOepUDYLympFWS24ll9+rqwWCnIsFFit6KzlfHXyKErTuAN7rKZAb6+BkufSiTxDJ/tzQyfyXDqx6UAqC8ZF4WrQVz+uENcBm9mMJb2Gn7srWGu4g9yWm9ugfW3mun/nNlRKSgobN24kJSWF0FB7gHfBggV88sknbNy4kRUrVhAWFuZ0ofvxxx/n008/ZfPmzc0WsIiLi+Oee+4hMjKS06dPs3jxYsaPH8/+/fvR651/l8ycOZMNGzYwdepU4uPjmTBhQrV0SZ6engwePBiTycSUKVMwmUyMHDkSV1dXhg8fjslkIjIyEpPJxLBhw+otxGw0GgkOtq+y8/f3JyQkpMaUUK+88grTp0/n0UcfBeDJJ5/km2++4ZVXXnEELKoWzY6IiGDZsmXMnTuXdevWYTQa6dSpE0qpelebgL3+RuVKlxUrVrB27Vq+++474uLieOutt4iKimLlypWAvQ5EQkICy5cvr3fc+pw9e9bxealUWlrKlClTWLlyJd26dWtywGLIkCHEx8cTFRXFhQsXWLp0KaNGjSIhIQFvb29Hv9DQUM6ePXtV5yGEEEIIIYQQ7YEELKrQNO07oN48DZqmTQem17LtAHB/s05M1OhQSi4uFR/hyyss6r7IUh+l0+ETGIxPYDAR0TFO2zRNIy8vj/Pnz3P2/HnO/5zI+fPnKSkpqXtMpejcuTNhYWGOh5eXlyMf9R133OFI5VGfsrIyCgsL63wUFBSQlZVV7eJRUVERycnJJCcnN+I7ch3R69H0erSG1N61WjEU5aM352Ew5+FjMeNjNRNect6pm0XpuRg9mZzCckI6ScBCXJ90Xl4YOneut5++hloSOl/fBu2rq+Ou+8Y4cuQIVquVPn36OLWXlpY6gstWq5UVK1awefNm0tLSKCsro7S0FA8Pj2aZA8ADDzzgeN6/f3+io6Pp2bMnJpOJ2267zanv1KlTWbRoEUlJScTHx7N27doaxxwzZgwffPABYF+9UZniavTo0Y7USyaTid/97nfNdh4///wzs2fPdmobMWIEa9ascbz+/PPPeemllzh+/Dj5+flYLBZKSkooKipq9Pc0Ojra8dzT0xMfHx8yMjIAOHHiBIMGDXLqX1+Aae7cubz33nuO1+ZaAmPFxcW4ubk5tT3zzDP07duXqVOnNuocrlQ1fVh0dDRDhgyhe/fubN68mVmzZjm2ubu7U1RUdFXHEkIIIYQQQoj2QAIWokOy2TTmjO6J+8epoEG5VkaZbyA5bl7897//beZj2VcsnD9/vkEXAzp16kTXrl0dwYkuXbpgvGLlR3FxcZPmUrkyw8/Pr85+FouFS5cukZ6eTnp6OhcvXiQ9PZ3CwsJGH9NgMODt7Y2np2e1O3uvZCuzYskqRiuxVtumuSls7jo0gz2Nl16n0FWttYGGxdqwtFkGvUJVqQFi0zSstvr3VQoMOud6ElabhtVmo6y8rOLCYxnUszoEvR6Ltx8Wbz9KAUNZCbr8bAwFeehKCh0zM2hWYvJ+JKTTjAadlxDXooAZTU/X5P/KSnx8fNDpWqcOjNlsRq/Xc/DgwWq/7ypTEa1cuZI1a9awevVq+vfvj6enJ/PmzaOsrKzF5tWjRw8CAwM5depUtYBFQEAAEydOZNasWZSUlDB+/HgKCqqnyIuNjWX58uWkpaVhMpkcq0RGjx7NW2+9xenTp0lNTXXUpGgNZ86cYeLEiTzyyCMsX74cf39/vvrqK2bNmkVZWVmjAxYuV6QiVEpdVTHwF154oUFpowIDA8nJyXFq++KLLzhy5AhbtmwBcKSFDAwM5Nlnn2Xp0qVNmpOvry99+vTh1KlTTu3Z2dntqhC5EEIIIYQQQjSVBCxEh6TTKaYNjyD13+dA00gyXKK0SwSlwL59+1ptHl5eXoSGhhIaGuoITtSVX7u1VBbovDKFhtlsdgQv0tPTycrKwmg04u3tjZeXF15eXo7nlV9dXV0bVYAaoDQlH/NXaRQnXILKa0VlQD649uiE18gw3G7wR+kaN25rKC+zsP2177l4NhtNZ8EnxIWBd3WlsMjM4cOHKSkpobS01Cl4ZTG6QWAoZYGhuLq4EODpQXHKKcovnCPzTBKFuTl4+tYdZBJCtL2YmBisVisZGRmMGjWqxj779u1j0qRJjjvnbTYbJ0+epF+/lqtVc+7cObKysujSpUuN22fOnMmECRNYuHBhrYHl4cOHYzQaWbdunaMOB8CgQYPIzMxkw4YNjtRRzaVv377s27ePadOmOdr27dvn+F4dPHgQm83Gq6++6ghKbd682WkMo9GI1Vo9CN5YUVFR7Ny506ntwIEa0hpWERwc7Eh9VZeYmBinlRgAW7dudbo54cCBA8ycOZO9e/fSs2fPRszcmdls5vTp006FywESEhKIiYmpZS8hhBBCCCGE6DgkYCE6LE3TUBV31efrm7ZioTHc3d0dgYnKIIWPj0+LH7c5eXl50atXL3r16tWix3Ht5oPr//hgyS3FvP88hd9eRCux198oTcqjNCkPfYAbXsND8fxFZ3Su7edXkYvRwMRHbmHLH7+nILuEonNw/lu49cEBjtQiv/zlL8nOzubkyZMkJiZy4cIFx/6l5eWcz80DnyDwCUJZyvnbhg2EdA3H19eXTp06Ob526tSpwenAhBAtr0+fPjz44IM8/PDDvPrqq8TExJCZmcmuXbuIjo7mzjvvpHfv3mzZsoWvv/4aPz8/Vq1aRXp6eoMDFmaz2enu+OTkZA4dOoS/vz/dunXDbDazdOlS7r33XkJCQjh9+jRPP/00vXr1Yty4cTWOGRcXR2ZmZp3/Jrm7uzN06FBef/11RowY4QhsGI1Gp/YrVylcjaeeeor777+fmJgYbr/9dj7++GO2bdvmSInYq1cvysvLef3117nrrrvYt28f69evdxojIiICs9nMrl27GDBgAB4eHk1KvzVnzhxWrVrFwoULmTVrFocOHSK+ohh8Y4PyVxo3bhzPPPMMOTk5jhWQVwYlLl2y117q27cvvr6+DR57wYIF3HXXXXTv3p3z58/z/PPPo9frHbU6Ku3du9ep0LoQQgghhBBCdFTt5yqhEI1luZy2p5zLd19OmjSp3pRJjVV5kflqL2pcbwy+rviOj8Tntm4UHUzHvO88lkv24JI1q4S8j5PI//QsBn9XlFGPctWjjHp0juc6+/PK1wYdmtWGVmZDs9jQyisf1irP7duw2MCgQxl0KIOyf3WpfK2zb6t4rXPV49rTF4O/PQe5h4+RO/9fNFtfPkh5qZXTP2TiFWB0/MZUStG1a1e6du3K2LFjyc/P59SpU5w8eZLTp09TXl7u+B5oBhey8wvIPnasxu+Rq6ur4/Pl6+uLn5+f0/Mr86ILIVrWxo0bWbZsGfPnzyctLY3AwECGDh3KxIkTAXjuuedISkpi3LhxeHh4MHv2bCZPnkxeXl6Dxv/+++8dBafBXogaYNq0acTHx6PX6zl8+DDvvPMOubm5hIaGcscdd/Diiy/WWgxbKUVgYGC9x46NjWXPnj2O+hWVRo8eze7du53m1RwmT57MmjVreOWVV3jiiSeIjIxk48aNjuMPGDCAVatW8ac//YlnnnmGW2+9lZdeeomHH37YMcbw4cOZO3cuv/nNb8jKyuL5559nyZIljZ5LZGQkW7ZsYf78+axZs4Zhw4bx7LPP8sgjj9RbZLw+/fv355ZbbmHz5s3MmTOnwfudOXOGyMhIdu/eXe09qXTu3DmmTJlCVlYWQUFBjBw5km+++cYp/dP+/fvJy8vjvvvuu6rzEA2nlJoKjAIGAv0BIzBD07T4GvouAZ6vY7hITdPO1LDfOGAxcAv2XJUHgWWapu26yukLIYQQQgjRrqnKnLqiY1JKdQVSAU6ePEnv3r3beEYtz2K1ceBMDjcFeJL3R3s6h53qG8672usz/O///i/+NRRvbU+Ki4v57LPPgMYV3e7oNJtGyckczF+lUXoqt62nU41LqCfuNwbiflMAhmAPziZksXPdYSp/TfpFF+MZZqnzPbNYLJw9e5YTx49zcO+X2PQGNIOLvYBGE7i5uVULZISEhNCtWzcJoDXA9fqz1hYSExOxWCwYDIar/rfIZrORn58P0Ko1LETTdcT3bPny5axfv57U1NSrHmvHjh089dRTJCQkNPjcd+/ezT333ENSUtJV3Wjxm9/8hgEDBrB48eJa+9T285mYmFi1yHy4pmnnmjyR64hS6gzQHbgEFFY8ry9g8Q5wpobhVmualnvFPlOBd4FM4F8Vzb8BAoH7NU3bcvVn4XQ8x98TqampdO3atTmHF0IIIYRoERGLdrT1FK5pZ/54Z719zp07R3h4eOXLZvt7ot2tsFBKWYF4TdNm1dPvr9j/MGh35yBa1sl0M1P++g0BKP4PbwCs6nJRzeZMZyGal9Ip3G/wx/0Gf8ovFlLwVRolJ7LRSuwrJNpa+flCys8Xkv/fsxgC3fG7MYDRv+yG6bMUAHKOuGHwqDv9mMFgoGfPnvTs2ZPShO9J+uEAmlL8X9hkpt12IwO7uJKbm0teXp7ja15eXq2FYUtKSrh48SIXL150ao+Li2Po0KHNc+JCCHEdWLduHYMGDSIgIIB9+/axcuVKHnvssWYZ+8477yQxMZG0tLSq/2Gv086dO1m8ePFVBSvKysro378/v//975s8hmiS3wKJmqadVUotAl5qwD7xmqaZ6uuklPIDXsceDLml8o8+pdSfgB+BN5VSn2qaVtDk2QshhBBCCNGOtceL/ari0dC+4jrzY2oO4PzhtSABi47GJcQT//scd3Wi2TS0MitamRVbqdWe9qnUiq3cilZqb9fKbc6pnVx0KBd9xdeqDz3oFVi1y6mjLFUe5faUUZWvLVklFB/Lovyc2TEfy6ViCr48RyfgzkBXUgrLuVCukf2DGwW3l+Detf479btHx5D0wwGUphFYdJHPz/XjtxOqF0W12WwUFBSQm5vreOTk5Die5+XlceVquBMnTkjAQoh2JiUlpc5aFseOHaNbt26tOKOmGz9+PHv37q1x2+LFi+u8m7+9SkxMZNmyZWRnZ9OtWzfmz5/PM88802zjz5s3r1H9V65cedXHNBqNPPfcc1c9jmgcTdM+b8Hhfw34As9XvUNN07RzSqk/A0uAu4G/t+AchBBCCCGEaDPtMWDRUB5Aeb29xDXnUEouAMYq8SqrBCw6PKVTKDcDuBnQt8HxfcZ2w5JbQvHRLIoTsig7k2fPGA0YLDZ6uOrp4QplNj1J647iMTsar4i6i6537385OBFefI6Pk7O5mFdCSCfnuhQ6nc5RhLt79+7VxrFareTn55Obm8sHH3xAUVERFy9etBeel7RQQrQboaGhHDp0qM7tHcXbb79NcXHNK8rae9rF2rz22mu89tprbT0Ncf26VSk1BLABicDnmqaZa+g3puLrZzVs+xR7wGI0jQhYVKR8qktI5ZPi4uJaf/aFEEIIIcT1oyH/J2yp/zd2yICFUsoXGAlcaOOpiDZwKDUXAHelHBeUK1NCKUCvb4vL3eJaYPB1w3tEGN4jwrCayyj5OZvio1mUJOaA1f5hM+oUXW0auet/oijCB6/hobj3C7AX8r6Cf1hXvAICMWddIqzkPDqrhX8fPs9vR/Vo1Lz0ej1+fn74+fnRpUsXTp8+TXFxMWazGW9v72Y5dyHE1TMYDPTq1autp9EswsLC2noKQlxrll7xOlcp9YSmaVcGHiqLjCTWMEbiFX0aqsGFWvbs2UNgYGAjhxdCCCGEaAsd8rJ2h1FZD7Quly5dapFjt4t3VimVdEXTfUqpMbV0N2C/C0gPvNWC0xLtUH5JOacy7Tej9Qn0tJciBKzKfjFZ3wGKfIqOQe9lxHNQCJ6DQrCVWMg/ks7Zz4/jm+uCvmJVQ9mZfLLP5KPzcrH3HRyCwe/y6gmlFBHRMSTs/i8GzUpo6QU++img0QGLqjp37szp06cBSE9Pl4CFEEII0b79BMwETNhvtgoBJgIvAPFKqVxN0z6q0r9Txde8GsbKv6KPEOIa98T+dnHJ5pq1ZpilRcaV961lyfvW8bTUeyauXe3lpzGiynMN8Kp41KYM+BDoeAmUxVU5nJpHZSr/fsFeUBG8cAQs9BKwEM1P52bA9SZ/zpw3Y8vW43nEm256hZfeHriwmcsp2J1KgSkVtyh/PId2wa2PH0qn6F4RsADoVpzKvnPhJF8qJDLQs0lz6dy5s+N5enr6NXM3txBCCHEt0jRt+xVNZ4A/K6V+Bv4LLAM+unK/ZlZfJfgQ4ADArbfeSteu9WWQEkK0mv1ftPUMrml33HFHywws71uLkvet45H3rGNqyPt27ty5evs0RXsJWERWfFVAErAFeKqWvmVApqZpEp67Dh2qKLgN0CfAC6gIWFTkhjJIOijRwnT+Vno83If//uU4/jqIMOoIddWhNECDkuPZlBzPRu/niufgLnTt3ReUAk0jvNj+i/zjn87zv7c1NpuD3ZUBCyGEEEJ0PJqm7VJKnQb6K6V8NE2rXD1RubKiE5B1xW4+V/Rp6LHq/Euyaj0sd3d33N3dGzO8EEJ0WPL7rmOS963jkfesY2rI+9ZS7227uB1d07SzFY8zwDvAJ1XarnxckGDF9evHioLbAD39PRzPbRV/Zxn07SUGJ65lYVG+jJ3Wl0sWje+LrHyaW05plB/6TkZHH2tOKfmfniH3jeOMi5hBD+8BhFkK8bAU8dFP59Eqlwo1UmBgILqK1GcSsBBCCCE6tMqkvx5V2uqqU1FXfQshhBBCCCGuCe0iYFGVpmkzNE3b0NbzEO2PpmmOgtud3F3o7GG/OKyhXQ5YGCRgIVpH1JAQht3dE4BSDT49kEnZnT0JeLgfrn387OvFADTwJYhBgXH8qttjrNK7M8Pfh9Li8iYd12AwOIphZmZmYrFI/FYIIYToaJRSnsCNQCGXAxcAX1Z8rWkN/rgr+gghhBBCCHHNaXcBCyFqk1dcjp+nPUhxc7gvmtV+h7oNzXFx2MVFAhai9cTc0Y3oWHueZ82m8cnbCeR7uBA08yZCFvwCn9u7YQi8vDxOr/TcpDox+riZrD9+T/a/TlByItvxWW6oyrRQNpuNrKwrs0UIIRpjzJgxzJs3r62nIYS4BimlvJVSfWpodwf+CngDm69YPb4Ze8qnx5VSXavs0xV4DHtw48q6GEIIIYQQQlwz2mXAouI/9wuVUv9VSh1TSiXV8jjd1nMVrcfXw8jnT47m8JI7WDb5JrDYALBgdfQxuLi01fTEdUgpxchf96bnLcEAWMps7HjjJ3IzijAEuONze3c6zx9I4CM3kWj+gWJLgWNfrcxK0Y8ZXNp4lAsrviX3o9NYC8oadFypYyFE89m2bRsvvvhiqxxrz5493HXXXYSGhqKU4sMPP6zWR9M0/vCHP9ClSxfc3d25/fbbSUx0zv6ilEIpxTfffOPUXlpaSkBAAEopTCYTAEOHDmXu3LlO/davX49Sivj4eKf26dOnM2rUqKs+TyGudUqp3yql4pVS8cCvK5odbUqp31a0BQDHlVLfVrT/USm1ETgJTAGOcEXdPk3TcrAHJgKBH5RSryulXgd+qBjvUU3TChBCCCGEEOIa1e4CFkqpUOAnYAVwG3ADEFHHQ1xnfNxcCPf3QKshYOEiAQvRypROcfuMvoT29gWguKCcj9ceoijfHnxQSuHW3Y/c8Fw+Tn2T3RfeR3eDB8rtcoF4W2E55q/Pk772R0rP1F9HUwIWQjQff39/vL29W+VYhYWFDBgwgDfeeKPWPi+//DJr165l/fr1fPvtt3h6ejJu3DhKSkqc+oWHh7Nx40antu3bt+Pl5eXUFhsb6wheVNq9ezfh4eHV2k0mE2PHjm38iQlx/RkJTKt43FLRNqJK28iKtmxgHfa1wBOA+cC9wHngaWCIpmnVlkpqmvYeMB44DswApgPHgDs0TfugRc5ICCGEEEKIdqLdBSywByoisActHgAGAJG1PHq0zRRFe6CVVwQslM3RZjQaa+suRIsxuOiZ8Eh//EM9Aci/VMKON36irORyhofu0begoZFRkkJawFl0j99M5u1huPcPBIM9p5mtoIzMvxymYG9anUW5JWAhRPOpmhKqtLSUBQsWEBYWhqenJ0OGDHG6qJ+VlcWUKVMICwvDw8OD/v378/777zf4WOPHj2fZsmXcfffdNW7XNI3Vq1fz3HPPMWnSJKKjo/n73//O+fPnq63GmDZtGps2baK4uNjRtmHDBqZNm+bULzY2lhMnTnDx4kVH25dffsmiRYuczi05OZmzZ88SGxvb4PMR4nqladp0TdNUHY/pFf3yNU17TNO0wZqmBWua5qJpmo+maUM0TVupaVpxHcf4RNO0WzVN89I0zVvTtDGapn3eaicphBBCCCFEG2mPCf/HAelArKZp9d9qLK5bmrX6Cguj0bWtpiOuc64eLtz1+AC2vnwQc04pGWcL+PSvCUx4NBq9XkfEgBhH3x3/MfHO1674exj5dvFt+BZZyN50nNLTeWCDvB1JlKXk43dfb3Su1X9Ne3t74+7uTnFxsQQsRLu2ecUBx2qjxtGw2exBO51OcbmKfcN4+Bi5f/GgRh/1scce49ixY2zatInQ0FC2b99OXFwcR44coXfv3pSUlDBw4EAWLlyIj48PO3bs4KGHHqJnz54MHjy40ce7UnJyMhcvXuT22293tHXq1IkhQ4awf/9+HnjgAUf7wIEDiYiIYOvWrUydOpWUlBT27NnDG2+84ZTiasSIEbi4uLB7926mTJnCsWPHKC4uZtasWSxcuJDk5GQiIyPZvXs3bm5uDBs27KrPQwghhBBCCCGEaKr2uMLCD9gvwQpR1eFzudy+6ksWfPATX5+6BFxeYWGlygoLVwlYiLbj5efGxMcH4OphDzKkHM3m+51nAPDrEoZ3YBAAnjkp6KwWsgrL2Hc6C723kcBZ/fEeE+4Yq/jIJTL+fIjy9MJqx1FKOVZZFBQUUFhYvY8Q7UFRfhmFuaVNeJRRnF9OcX45hbmNH6MpQZKUlBQ2btzIBx98wKhRo+jZsycLFixg5MiRjtRLYWFhLFiwgJtvvpkePXrw+OOPExcXx+bNm5vl+1W5CqLqKqrK11VXSFSaOXMmGzZsACA+Pp4JEyYQFBTk1MfT05PBgwc7VlOYTCZGjhyJq6srw4cPd2ofNmwYrvLvqOhAlFJ6pdRwpdRjSqkXlVJ/rvj6mFJqmFJKX/8oQgghhBBCiPakPa6wSKV9BlJEG/rhbA6nMsycyjAT3bUTw3sFolntd99a1OUVFq5ucqFFtK2AUC8mPBLNh6/9iGbTOP1DJkPu6oFSiojoGI588Rk6m4XQkgukeoTz0aHzjO4ThNIpOsVFYAz3JvuDE2glViyZxWS8cQi/e/vgMcD5ImTnzp05c+YMABkZGURGRrbB2QpRNw+fpqbpu/oVFo115MgRrFYrffr0cWqvLGQNYLVaWbFiBZs3byYtLY2ysjJKS0vx8PBo9PGaw9SpU1m0aBFJSUnEx8ezdu3aGvuNGTOGDz6wp703mUyMGTMGgNGjR2MymZgxYwYmk4nf/e53rTV1Ia6KUmok8P+AOwHPqpuAqjkVzUqpHcAbmqbta8UpCiGEEEIIIZqoPQYstgCzlVKemqbJbcMCgEOpuY7nN4f72p9U1rBwWmHh1oqzEqJmob19CQr3IuNsATkXCikpLMfN04Xu0bdw5IvPAOhVnkYq4Xx29CIl5Tfh5mK/CdT9xgA6d44h672fKb9YiFZmI/v945Sl5NNpfCTKYI/nXlnHQgIWoj1qSlomAJvNRn5+PgA+Pj7odC1/H4PZbEav13Pw4EH0euebsisLWa9cuZI1a9awevVq+vfvj6enJ/PmzaOsrClpr6oLCQkB7D/TXbp0cbSnp6dz8803V+sfEBDAxIkTmTVrFiUlJYwfP56CgoJq/WJjY1m+fDlpaWmYTCYWLFgA2AMWb731FqdPnyY1NVUKbot2Tyk1CngNiMEenLABR4CjQBaQD3QCAoCbgH7Ya+L9Rin1A/Ckpml722DqQgghhBBCiAZqjysZXsS+ymKzUiq4rScj2ocfKwIWRoOOG0J8ANAsNdWwkKLbon0I6dnJ8Tw92X7htVv/AaDsd4pHWc4DUFBqwXQiw2lfQ6A7QY8OwOOWy78CzfvOk/nXI1jzSgEpvC1Ec4uJicFqtZKRkUGvXr2cHpWBhH379jFp0iSmTp3KgAED6NGjBydPnmy2OURGRhISEsKuXbscbfn5+Xz77be11paYOXMmJpOJhx9+uFqgpdLw4cMxGo2sW7fOUYcDYNCgQWRmZrJhwwZH6igh2iul1CbABPQHPgLuBvw0TbtZ07QHNU37X03TntM07XFN0/5H07RowB+4F/g3EA2YlFLvt9EpCCGEEEIIIRqgPa6w+DNwGvsfIaeUUt8DKVDlNvrLNE3TZrXm5ETryy4s42xWEQD9wzphrLjD/HLA4vJHw8XFpfUnKEQNQnp04vAX5wC4mJRH95sCcPfyJqRnby6eOolLfjoenQopMnjy0U/nibupi9P+OqMev1/3wdjdh9yPToNVo+xsPumv/4j/lBsICr+cIkoCFkJcvT59+vDggw/y8MMP8+qrrxITE0NmZia7du0iOjqaO++8k969e7Nlyxa+/vpr/Pz8WLVqFenp6fTr169BxzCbzZw6dcrxOjk5mUOHDuHv70+3bt1QSjFv3jyWLVtG7969iYyM5P/7//4/QkNDmTx5co1jxsXFkZmZiY+PT63HdXd3Z+jQobz++uuMGDHCEdgwGo1O7fJvqGjn7gbWAcs0TWvQP3yapuUD24HtSqnOwB8A+dtBCCGEEEKIdqw9Biymczn3rBcwpo6+GvJHxzXvp5rSQQG2ypRQVWpYyMUW0V50qbLC4sLpPMfziOgYLp6y35Hdz3aR7+nJ5z9nUFBSjreb8+dXKYXXkC4YQ73I+sfPWHNLsZnLufT2EQJn3kRAQABZWVlkZGRgs9laJW2OENeyjRs3smzZMubPn09aWhqBgYEMHTqUiRMnAvDcc8+RlJTEuHHj8PDwYPbs2UyePJm8vLx6Rrb7/vvviY2Ndbx+8sknAZg2bRrx8fEAPP300xQWFjJ79mxyc3MZOXIkn3zyCW5uNac8VEoRGBhY77FjY2PZs2ePo35FpdGjR7N7926neQnRTkVpmnamqTtXBDn+n1LqleabkhBCCCGEEKK5tceAxYy2noBoX35MyXE8j+nm63huK7MHKqqmhJKAhWgvvPzc8PJzxZxTSvqZfGxWGzq9ju7RMXyz7V8ADDRk8D09KbPY+OxoOvcO7FrjWMZwb4IfjyF703FKE3NBs6eI6ty5M1lZWVgsFrKzsxt00VII4cxkMjmeu7i4sHTpUpYuXVpjX39/fz788MMmH2vMmDFomlZnH6UUL7zwAi+88EKtfeoaw9fXt8btS5YsYcmSJdXan3/+eZ5//vk65yREe3A1wYorxklujnGEEEIIIYQQLaPdBSw0TXunrecg2pcfa1lhUZkSyiopoUQ7FdKzE6e+z8BSaiUrrZCgbt506X0DLm7ulJcU45mVBIFDQSk++ul8rQELAL2nC4EzbuL8kv1oZVbKLxbSeVhnjh07BtjTQknAQgghhBBCCCGEEEJ0ZJI/RLRrNpvmSAkV6OVKmK+7Y5smKaFEOxfS43JaqItJ9pQxeoOBbjdFA1BuzucmdzPDegRwZ3SXGseoSukULiEeAFhzSwn2uxygkDoWQrStlJQUvLy8an2kpKS09RSFEEIIIYQQQoh2r92tsKhKKdUPGA4EAUc1Tfuool0HGDRNK2vL+YmWl3SpkPwSC2BPB6WUcmxz1LCQFRainbqyjkX/MfYVFN2jYzj9/bcALB6gZ/jdQxs8pkuIJ2UpBQD46y4X2ZWAhRBtKzQ0lEOHDtW5XQjRvJRSPYCFwG1AKOBaS1dN07R2/XePEEIIIYQQwq5d/sddKRUObASqVoB8B/io4vnvgHVKqTs0TdvV2vMTraernzvv/24oh1JziQz0cNpWmRKqHIujTQIWoj0J6OqFwUWHpdzmWGEB9sLbldISDsHdv27wmC4hno7nHgV6jEYjZWVlErAQoo0ZDAZ69erV1tMQ4rqhlIoBTIAXoOruXe92IYQQQgghRDvR7lJCKaX8gS+BscBR4E2q/5GxGbABv2rd2YnW5uaiZ1jPAB4Z05O4m5xT5lQGLCxVAhYGQ7uMwYnrlF6vIzjCvgqiIKuEwtxSAHxDQvEJ6gxA2vGjlJeWNHjMypRQAJb0Ijp3to+Tm5tLSUnDxxFCCCE6uD8B3sA2YCDgo2marrZH205VCCGEEEII0VDt8T/vC4EI4BVggKZpj13ZQdO0HOAIMLJ1pybaFYsGQDlSw0K0XyE9q9exUEo5VllYLRbO/XwUq00jMb2AojJLjeNUqrrCovxioSNgAZCRkdGcUxdCCCHas2HACeB+TdN+1DTN3NYTEkIIIYQQQly99hiwmAScARZpmqbV0S8Je65acZ26vMJCAhai/epSpfD2hSppobpH3+x4vuM/Jm58/hN++doeDpzJqXM8nYcLeh8jYA9YBAcHO7ZJWighhBDXkXLgUD1/LwghhBBCCCE6mPYYsOgO/KBpmq2efmWAfyvMR7SRUxkFvPP1GX5KzaXMUsPHwWb/+1QCFqI969zjcmHsi6cvByzCbxqAUvZfwbZzJyipKCJ/9Hwe9TFUrLLQSqwEeQU42iVgIYQQ4jryA9C1rSchhBBCCCGEaF7tMWBRgj0fbX26AfVf2RMd1hfHM3j+o6NMemMf2344V71D5QoLZQ9YKECv17fiDIWon7uXEd/O9roTmSkFWMqtFe3ehPTsDUD5pfN4WgoBOJqWX++YLl0up4Xys1yuaSEBCyGEENeRV4BhSqkxbTwPIYQQQgghRDNqjwGL48AtSinP2joopQKBAcDhVpuVaHU/puQ6nt/czbd6B8cKC3vgQqdTKHVlfXYh2l5lHQubVSPjbIGjvfuAGMfzyLI0oGErLKrWsdBlW/D19QXsAQubrb7FaUKIqsaMGcO8efPaehpCiEbSNO0T4Ang/5RSLymlblVKRSilutX0aOv5CiGEEEIIIRqmPQYstgABwCpVmS+lupWAB/CvVpuVaHWHUnMB8DTq6R3svOhGs2qoiozF1oqAhV7XHj/OQjjXsaiaFqp79OWAxY22CwCcySqioKS8zvFcOl9eVVG18HZZWRl5ebLwTIjG2LZtGy+++GKrHGvPnj3cddddhIaGopTiww8/rNZn+vTpKKWcHnFxcU59Ktu/+eYbp/bS0lICAgJQSmEymQAYOnQoc+fOdeq3fv16lFLEx8dXO/aoUaOu+jyFaEU/AOeBp4HdwGkguYZHUltNUAghhBBCCNE47fEK7xtAAvBb4Dul1OKK9p5KqSeVUvuBh4FDQHybzFC0uIt5JVzIKwEguqsvep3zygnNevkucquyPzdIOijRToVUDVhUKbzdpVcURnd3AALzz0JF3dCfLxRQF5dgD6j4mbBUCViApIUSorH8/f3x9m5IJsqrV1hYyIABA3jjjTfq7BcXF8eFCxccj/fff79an/DwcDZu3OjUtn37dry8vJzaYmNjHcGLSrt37yY8PLxau8lkYuzYsQ0/ISHakFJqJLALiMKeGTQbSKnlkdpG0xRCCCGEEEI0UrsLWGiaVgKMA/YDtwCVtz2OxL6yYgjwPTBR07S6b0MWHdah1BzH85ga0kFp5dUDFlK/QrRXfiEeuHoYAHvAQqsITOgNBsJvHACArrSQwLJLQP1poZRBhyHIHugozywmODDYsU0CFkI0TtWUUKWlpSxYsICwsDA8PT0ZMmSI00X9rKwspkyZQlhYGB4eHvTv37/GYEJtxo8fz7Jly7j77rvr7Ofq6kpISIjj4efnV63PtGnT2LRpE8XFxY62DRs2MG3aNKd+sbGxnDhxgosXLzravvzySxYtWuR0bsnJyZw9e5bY2NgGn48QbWwZ4AasAgI0TQvSNC2ytkcbz1UIIYQQQgjRQIa2nkBNNE27AIxUSo0D7gR6YA+upAL/Af5Pq7ziJ65JP1akgwK4Ody3eoeKFRYaGlbsHwWDvl1+nIVA6RSdIzuRcjSL4oJy8jKL8Q22p3WKiI7h9Pf2tC7dis9xyTWIo+cbUHg7xBNLehFYNQKNl1dwSMBCtCfvPTOPwtyc+jvWoLIei64J6f48ff2Y+tLqRu/32GOPcezYMTZt2kRoaCjbt28nLi6OI0eO0Lt3b0pKShg4cCALFy7Ex8eHHTt28NBDD9GzZ08GDx7c6OPVxmQyERwcjJ+fH2PHjmXZsmUEBAQ49Rk4cCARERFs3bqVqVOnkpKSwp49e3jjjTecUlyNGDECFxcXdu/ezZQpUzh27BjFxcXMmjWLhQsXkpycTGRkJLt378bNzY1hw4Y123kI0cJuAX7UNG1BW09ECCGEEEII0Xza9RVeTdM+BT5t63mI1neonoLblSssbGhoFdmiDAZZYSHary49fUg5mgXYV1lUBiy6R9/s6NO19Dw/ENPggEXxT5kAeBW7YDAYsFgsErAQ7Uphbg7m7Ky2nkaDpKSksHHjRlJSUggNDQVgwYIFfPLJJ2zcuJEVK1YQFhbGggWXr40+/vjjfPrpp2zevLnZAhZxcXHcc889REZGcvr0aRYvXsz48ePZv39/tZWEM2fOZMOGDUydOpX4+HgmTJhAUFCQUx9PT08GDx6MyWRiypQpmEwmRo4ciaurK8OHD8dkMhEZGYnJZGLYsGG4uro2y3kI0QrKgBNtPQkhhBBCCCFE82rXAQtxfbJYbRw+Z0+JE+brTrC3W7U+mtW+qsKC1dHm4uLSOhMUoglCrii8fcPQLgD4hoTi6uFJaVEhwRb7neiXzKVYrDYM+trvLHcJuVx425peTHBwMOfPnycrK4uysjKMRmMLnYkQDefpWz2VUUNd7QqLxjpy5AhWq5U+ffo4tVcWsgawWq2sWLGCzZs3k5aWRllZGaWlpXh4eNQ0ZJM88MADjuf9+/cnOjqanj17YjKZuO2225z6Tp06lUWLFpGUlER8fDxr166tccwxY8bwwQcfAPbVG2PGjAFg9OjRmEwmZsyYgclk4ne/+12znYcQreBboE+9vYQQQgghhBAdigQsRLtzMt1Mcbk9EFHT6gq4vMLCyuVaFhKwEO1ZcIQPStnralctvK2UIrBbd9KOH8O9rADT44PpHhqIUqqO0ewrLCqVX7AX3j5//jwAmZmZhIWFtcyJCNEITUnLBPZgRX6+faWRj49Pk4IWjWU2m9Hr9Rw8eLDaSobKQtYrV65kzZo1rF69mv79++Pp6cm8efMoKytrsXn16NGDwMBATp06VS1gERAQwMSJE5k1axYlJSWMHz+egoKCamPExsayfPly0tLSMJlMjlUio0eP5q233uL06dOkpqZKwW3R0bwI7FFKTdE0reHFZIQQQgghhBDtWpsHLJRSSYAG3K5pWnLF64bSNE3r2UJTE21EKbizfxcOpeYSU1P9CkCz2AMVFnV5hYXRRe4oF+2X0c1AQFcvLqWayTpfSGmxBVd3+6/gwG6RpB0/BoAhPx0VFlTXUADofV1Rrnq0UivlF4vo3LezY1t6eroELIRopJiYGKxWKxkZGYwaNarGPvv27WPSpElMnToVsAdWTp48Sb9+/VpsXufOnSMrK4suXbrUuH3mzJlMmDCBhQsXVgu0VBo+fDhGo5F169Y56nAADBo0iMzMTDZs2OBIHSVEB2IEVgPvKqV+hb3OXQpUuZulCk3T9rTe1IQQQgghhBBN1eYBCyACe8DCpcrrhpLC29egvl18eOPBWwCw2mp+ix0Bi6orLCQFjmjnuvT05VKqGTRIT86jWz97mpmgbt0dfTJTztC17031jqWUwiXEk7Kz+VjzSgnyvXwxU+pYCNF4ffr04cEHH+Thhx/m1VdfJSYmhszMTHbt2kV0dDR33nknvXv3ZsuWLXz99df4+fmxatUq0tPTGxywMJvNnDp1yvE6OTmZQ4cO4e/vT7du3TCbzSxdupR7772XkJAQTp8+zdNPP02vXr0YN25cjWPGxcWRmZmJj49Prcd1d3dn6NChvP7664wYMcIR2DAajU7tslJRdDAm7H8LKOD+ikdtNNrH3z1CCCGEEEKIerSH/7hHVnxNu+K1EOh1taTFcQQsqqywkICFaOdCevpwxGR/fvH05YBFYLfLv/YupZxp8HguIR6UnbWnzfHXvBztErAQomk2btzIsmXLmD9/PmlpaQQGBjJ06FAmTpwIwHPPPUdSUhLjxo3Dw8OD2bNnM3nyZPLy8uoZ2e77778nNjbW8frJJ58EYNq0acTHx6PX6zl8+DDvvPMOubm5hIaGcscdd/Diiy/WWgxbKUVgYGC9x46NjWXPnj2O+hWVRo8eze7du53mJUQHsQe5eUkIIYQQQohrTpsHLDRNO1vXayFqUmNKKLeaL+YI0V44Fd6uUsciMPzyCotTxxPZ//ExEjMKiJ8xuPagHc51LFxybXh7e1NQUEB6ejqaptVbB0MIYS9CXcnFxYWlS5eydOnSGvv6+/vz4YcfNvlYY8aMQdNqv77q7u7Op59+Wu84dY3h6+tb4/YlS5awZMmSau3PP/88zz//fL3HFKK90TRtTFvPQQghhBBCCNH8Wr6KpRCNUFBSTkm5td5+msV+MaZq0W1XV7cWm5cQzcHb3w3PTvaVQBeT87FVpDxz9fDAJ8heg8J8IZUNXyWxN/ESyZfMdY7n0qVK4e2L9sLbAMXFxTUW3hVCCCGEEEIIIYQQoj1rdwELpVS4UuphpVRUHX1uqOjTtTXnJlpe/L4z9F/yKb/681f8lJpbaz+thpRQrm4SsBDtm1KKkJ72VRblJVayzxc6tgV1jwBAZy3Dx2IPNhw9n1/neC6dqwYsihwBC5C0UEK0tpSUFLy8vGp9pKSktPUUhRBCCCGEEEKIdq/dBSyAx4GN2Avo1UYB8cCjrTEh0XoOpeZSbtU4fC4PH/fai3/WVHTbWEt+byHak9rTQkU4ngeUZQH1Byx07gb0neyf+/KLhQQHBzu2ScBCiNYVGhrKoUOHan2Ehoa29RSF6NCUUre0p3GEEEIIIYQQLaM9BizuAH7WNO14bR00TfsZOAbEtdqsRIvTNI1DFasqfD1ciAjwqL1vDTUsXFxqD3AI0V5UrrAAe+HtSpUrLAACyrIBOHq+/kK+lWmhtFIrQR5+jnYJWAjRugwGA7169ar1YTC0edkwITq6A0qpTUqpG5qys1LqRqXUZuDA1U5EKTVVKfWWUup7pVSpUkpTSk2voZ+LUupepdQ7SqmflVJmpVSBUupbpdQjSil9DftEVIxX22PJ1c5fCCGEEEKI9qw9/vUcDuxtQL9TwIgWnotoRanZxWQVlgFwc7hv3QWDa1hhIQEL0REEhXujN+iwWmxcqGWFRZiWw/dAQlp+vcWzXUI8KDluD3D4lLih0+mw2WwSsBBCCHGtWQv8P+DXSqn92Fdb79I0Lbm2HZRSPYBfAtOBwYAVWNMMc1kGdAcuARcqntekJ7AFMAO7gI+ATsBdwDpgglLqV5qmaTXs+xPwYQ3tpquZuBBCCCGEEO1dewxYeADFDehXDHi38FxEK/oxNcfx/OZw3zr7VhbdrlrDQgIWoiPQG3QER3hz4VQe+ZnFFOWX4eFjxK9LKHoXF6zl5QRb7D8LecXlpOUW09Wv9tVGLiGX61jYLpUQFBREeno6ly5dwmKxyF3dQgghrgmapv1eKfUXYCUwHhgGoJTKBH4GsoB8wAcIAPoCQVWG2Ak8XbFS+2r9FkjUNO2sUmoR8FIt/QqwB1ne0TTNUbhKKTUfe+BhInAf8EEN+x7SNG1JM8xVCCGEEEKIDqU9poS6ANzcgH4D+P/Zu+/4qur7j+Ov7x3ZCQkECCMhLAEB2eBkOHDXvbfV2m1rW2trf1Y7tLvW2mGHo7buvcUBooKAbFH2CBsSCNm56/v749zcDDIhN/cmvJ8+zuOee873fM/nejLI+Zzv9wN7ohuKdKRldYpst5ywqJkSSiMspPNprI6Fy+2mR788ABIrinCHAkArCm/nNF54OxQKsXfv3naNW0REJJastV9Ya88BhgMPAluBXsA04EKckRQXht/3Cu//MzDcWntuOyUrsNa+a63d0op22621f62brAhvLwf+EH47rT1iEhERERHpKuLx0dsPgauNMRdZa59vrIEx5kKcP1Se6NDIJKqWFhRH1lubsAhqhIV0QvUSFhsOMGis8wBozwH57Nm8AWMt3f372ZvYk1U7Sjh9ZE6TfXl6JoPbQNDi31VO78m9I/t2795Nnz59ovdBREREYsBauw64Fbg1PO3TOKA3znRLxTgPNS1pbrqoOOAPvwaa2N/XGPMNnM+0G5hjrd1wKCcyxvRvoUnkHxqVlZVUVrZmsLuISOenn3edk65b56Nr1jm15rpF69rGY8LiT8BVwH/C/7h+2FpbCmCMSQduBH4JhHDmspUuoDoQ5PPwk+SDslPJTElotn3I5yQqNCWUdEaNjbAAyM6tnQK7h6+IvYk9+byFwtvG7cLbMxn/rgoCeyvolV0/YSEiItKVWWs3AhtjHcchuDH8OquJ/aeFlxrWGPM/4KsNR2y0wtbWNpw7dy7Z2dlt7F5Eoiceb9l0HbNmNfUj+HDpukWTrlvno2vWObXmuhUWFkbl3HE3JZS1dgnwIyAZZ6j0PmNMgTGmANgX3pYC/MRauzB2kUp7+nxHCb6gM2qipdEVACG/poSSzislI4FuPZMB2LOllGD46zl7wMBImwnplXxt+mCumtJUHc9akWmhQtDDnRHZroSFSOwYY3jppZdiHYaIxCFjzFdw6nC8b619o8HuCuDnwAQgE+gOnAosBK4G/tNxkYqIiIiIdLy4TEVZa39rjFkD3INTq6LuMOblwD3W2pdiEZtEx7rdZZH1cXmZLba3vnDCQiMspJPKGdyNA3srCQZC7N1aSs6gbvTMy4/sH5tWxfy/xrEAAQAASURBVCVnDG9VX56cVMCpV5FQYkhJSaGiokIJC5FOIj8/ny1b6k+Hf99993HHHXcAMGfOHGbMmEFmZiY7d+4kKSkp0m7RokVMnjwZAGstZWVlZGVl8fjjj3P55ZdH2l1++eU8/fTTbNq0ifz8/Hrnvuaaa/j5z38exU8oIjWMMefg1N/YgpOAqMdauwe4q8Hm94wx84ElwIXGmPHhh7xaK7eF/TnAIoCpU6fSv39LM0iJSIeZ/36sI+jSZs6cGZ2Odd2iStet89E165xac922bdsWlXPHZcICwFr7CvCKMaY3kBfeXGCt1R24LujSSbmcMqIXy7cVMzwno8X2IX/NlFAaYSGdU86gbqz5ZBfgTAuVM6gbKd0ySc7oRmXJAQoLNre6r7qFtwPhwtubNm2ivLycsrIy0tLS2jt8kSOW3++Pyu+bn/3sZ9x8882R9+np6Qe1SU9P58UXX+SKK66IbPv3v/9NXl4eBQUFAKSlpTFx4kTmzJlTL2ExZ84ccnNzmTNnDtdffz0AmzZtYsuWLZx88snt/nlE5GDGmLOA53BqUpxsrd3Z2mOttRXGmMeBXwAn4CQvWntss39JGmMi68nJySQnJ7e2axGRTk0/7zonXbfOR9esc2rNdYvWtY27KaEastbuttYuCi9RTVYYYyYZY94wxhQbY8qNMZ8YYy49hH56GWP+aIxZZ4ypMsYUGWPmG2O+Fo24u4oeaYmcPLw3fTNb/mKvnRJKIyykc+ozuH7hbXBuGNSMsqg4UEx58f5W9eXtU5uw8O8qp3dv1bEQaa3p06fz7W9/m9tvv53u3buTk5PD3XffHdlvjOFvf/sbX/rSl0hNTeWXv/wlAC+//DLjx48nKSmJQYMGcc899xAINFU7t2Xp6enk5OREltTU1IPaXHfddTz88MOR95WVlTz11FNcd9119drNmDGDOXPmRN5/8cUXVFVV8bWvfa3e9jlz5pCYmMhxxx13yHGLSOsYY84GXgAKgRnh2httVTNJ8ME/IEREREREuoi4HWHR0YwxM4C3gSrgKaAUuAh42hiTa639fSv7GYtTPC8LeB3nKao0YARwLvC3dg/+CGTDCYtgnREWbrc7VuGItFlWn1QSktz4qoLs3HAAay3GGLLz8in4bDkAe7ZsxgQS2FfhY3xeVpN9uTMSMEkebFWAwK5yeo+rn7AYPHhw1D+PSGN2/3kpoVJfm4+zgLXOz/cK48I03/wgrvQEen9rXKvbP/bYY9x2220sWLCA+fPnc/3113PCCSdw2mlOvdu7776bX/3qV9x///14PB4+/PBDrr32Wh544AFOOukkNmzYwFe+8hUAfvrTn7YxWsevfvUrfv7zn5OXl8eVV17Jd7/7XTye+v9Mu+aaa/jtb39LQUEBeXl5PP/88+Tn5zN+/Ph67WbMmMF9993Hzp076dOnD7Nnz+bEE0/k5JNP5qGHHoq0mz17Nscdd1y9KaZEpP2FkxXP49Tjm2GtXX+IXU0Jv25uj7hEREREROJRzBMWxphrw6svWmtL67xvFWvtYReeM8Z4gH8CIWCqtXZZePvPcArc3WuMec5au6XpXsAYkwG8HH47wVq7opHzSDuwgfo1LFzG1BvOLhLvXC5D70Hd2Pr5PipKfJQWVZGRnVyvjsVPHpnFx0k7GNQzlfe/N73JvowxeHNS8G0uIVjio2e3PpF9GmEhsRQq9REsaXvCoi7bTrE055hjjokkGoYOHcqDDz7Ie++9F0lYXHnlldxwww2R9jfeeCN33HFHZGTDoEGD+PnPf87tt99+SAmLb3/724wfP57u3bszb948fvSjH7Fz507+8Ic/1GvXq1cvzjzzTB599FHuuusuHn74YW688caD+jvhhBNISEhgzpw5XHHFFcyZM4dp06YxYcIECgsL2bRpEwMHDuSDDz7gy1/+cpvjFZHWM8aciZOs2I+TrFjXQvtxwDJrrW2w/ULgunA/b0YpXBERERGRmIuHG+iP4tyP+ARnVEPN+9Y67IQFcDIwGHikJlkBYK09YIy5NxzTdcDPWujn6zj1Nr7cMFkR7u/Q54rowv63YAurdpQwNjeT00fm0C255amdGiYs3C4lK6TzyQknLMCpY5GRnUx2nYRF31AxAJsKyymvDpCa2PSPbG9OKr7NJQBkBlIwxmCtVcJCYsqVnnBIx9UdYWEOcYRFWxxzzDH13vfp04c9e/ZE3k+cOLHe/uXLl/Pxxx9HpocCCAaDVFVVUVFRQUpKSpvOf9ttt9WLJSEhgVtuuYX77ruPxMTEem1vvPFGbr31Vq6++mrmz5/Ps88+y4cfflivTUpKCpMmTYokLD744AN+8IMf4PF4OP7445kzZw7WWgoKCpgxY0abYhURMMbcBJwYfjs6/HqTMWZ6eP0ja+2/jDHDgReBRGAOcEUjD9hsttY+Wuf9H4HB4SLb2wA3MD58vmrgemvtgfb8PCIiIiIi8SQeEhb/wbk3caDB+440Pfw6q5F9b4dfp7Win8twYn/eGDMMmAkkA6uBt6y1bX7M1BjTv4UmOTUr1dXVVFZWtvUUMff68u3M27ifJxYUML5fKgm0poZFEBcQMM4NLbfL1ak+e1VVVaPrEr+icc2696+dhmXrmiJyR3cjpUfPSLKhR3URpIC1sGzzXsbnZTbdWY/aG7S+neVkZWWxb98+9u7dS3l5OS5X3Jcsigp9r3WcUChEzQPBoZDzs7nnN8Yccl9lZWWAU0T6UL5+a2JoDY/Hc1D7YDAY2ZacnFxvf1lZGXfffTcXXHDBQX0lJCRE2oZCoTbFUWPSpEkEAgE2btzIsGHD6vV3+umnU1lZyZe//GXOOeccsrKy6u2vMX36dJ555hlWrlxJZWUlY8eOJRQKMXXqVN5//30CgUAksXEoMTZUt4/26E/an7WWUChU799L1dXVMYyoUzsR52Gmuk4ILzX+hfPv9Jqs4+VN9PUBzsNRNf6LMy3tsUA2Ts3B7eH+fm+tXX04gYuIiIiIxLuYJyystdc3976DDA2/HjRE21q7yxhTVqdNo4wxCThPWO0FvgXcQ/2i5huNMedba1e2MbatrW24YMECNmzY0MbuYytkYekWN2DI8Fo+W/Ahq1rxKO2I8m6k4I6MsAgGAsya1Vi+Kf7NnTs31iFIG7XXNQv5wSlxY9iwYgdlGc6U1p60DPylB/CU7MZkhrDGxQuzF1HYp+lcbmqph+FkALBl8VpCrnCdl2CQV199leTklhOBXZ2+16KrR48eJCcnY4yhpKSk3fqtSVxESyAQwOfz1Ys5EAjg9/sj2yorK+vtP+aYY/jss8+45ZZbmo234XGtNX/+fFwuF8nJyZSUlFBRUQFAaWkpLpeLSy+9lAceeIBnn32WkpKSyA3ouueaPHkyv/zlL3n00UeZMmUK5eXlAIwfP56HHnoIn8/HlClTqKqqavdkXrSvmbRdIBCgsrKSyspKVq+uvd9dWFjYzFHxzRgTBB611jY7r5kx5p/ADdbadvu7J/z3yvWtaDcH2jZIzFr7L5zkhIiIiIjIESnmj9waYx42xtxY532eMaZ7B4fRLfza1PDqkjptmtIdZ8h2D+Au4HagN9Af+DkwEHjVGKPKlnXsrYLKoPN33IA0S2vLULhCTsMANVOGaEoo6XxcXvCmO1/D/lIXofCkcQmZzo9AEwqS6Xd+LG0rb/5rvDK5dsa55ApPvQSFRhaItK/bb7+dp556il//+td88cUXrFmzhueff55f/OIXbe5r4cKF/O1vf2PlypVs3ryZZ555hjvvvJNLL72UzMzMRo+58847Wb9+PaecckqT/U6ePJnExET++c9/csIJtQ9919SxePPNNznxxBObPF6kEzC0PhmgfyiKiIiIiHQSMR9hQe3TSQ+HXzfhDIvubFUga5I/buBBa+3v6+y7KzxF1KXAxThDvVsrt4X9OcAigClTpjB48OA2dB17Ly7bCcu+AODUcUOYeVJ+q47bu3gJoWAAa5wnztPS0pg5c2a0wmx3VVVVkae9p06dSlKS8ljxLlrXbN6BjayetxswHDNkCn2P6saiygMs2roJgGz/PvYnZFHizmDmzMnN9rV/3QpCxT7SfAkcd9xxvPDCCwDk5OQwbVprZrXrevS91nEKCgoIBoN4PB4yMjIOq6/2mBKqtTweDwkJCfVi9ng8eL3eyLbk5OR6+y+44AJeeeUVfvGLX/CnP/0Jr9fL8OHDufHGG+u1a3hcY7p3787LL7/Mr3/9a6qrqxk4cCDf/e53+e53vxupX1FTEyM9PT3SX3Z2dr3zAPXOlZGRwbHHHssHH3zA6aefXm/fsccey5w5czjjjDMO+1rV6MhrJm23d+9ekpOTSUtLY8KECZHtnW1k7iFKAfyxDkJERERERFonHhIWQaBuleW2PC3VXmpGVjQ1iiID2N/KPgBeaWT/KzgJi4m0IWFhrd3W3P66IwsSExM73bQvq3aVR9YnDe7Z6vhNCPzUzpGd4PV2us9eIykpqdPGfqRqz2vW/6ju4YQF7NtWyeAxOfQZXDsD3RBPKeuA9XvLcXsTSfA0fROwvE8aVcX7wBeiX7dIeRt2796trzH0vRZtLpcrUrugPW9Wu1yuqN78njNnzkHbXn755ch6TV2Ohs4880zOPPPMJvtt6riGJk6cyCeffNJsm5NPPrnZ/i688MJG9zf22QBmz57dqtgOVbSvmRwaY0xkqrEaDYu6dzXGmEycehM7YxyKSFzIv+P1WIfQZW3+1dmxDkFERKTLiIe/JvcAY01s5/SpqV1xUJ0KY0wOziTzB9W3qMtaW45TEA+guJEmNdt0t6yOZVuLATAGjumf2foDQzZSvwLA6/U201gkfuUMrs2Tbl/r5EV75uZHtvW1zjZ/0LJuT2mzfXlzUiPrKWXuyJPT27ZtIxgMNnWYiIhIp2CM2VizhDddXHdbg6UA5++M/sCbsYtaRERERETaIh4SFu8DI3GKUr8f3naGMeb9VizvtVMMH4RfG5tT6PQGbZpTE//Rjeyr2ba59WF1bZW+IKt3OTdgj+qVTlpi6wb8WGsxIUvA1I6wUMJCOquM7GQysp1pinauP4CvMkC3Xr3xJjrbUsv3Rtqu2t588d66CQv/rnLy8vKcdb+fXbt2tXfoItIK9957L2lpaY0uzY3QEJFG5ddZLM5DRflNLP2BEPA88OMOjFFERERERA5DPEwJ9UPgKGASMCC8LSe8tKR18y207D1gI3ClMeYBa+0yAGNMN5w/cHzAf2oaG2P64EwftdNaW3cqqL8D1wB3GGNes9YWh9vnALdS+0eTACu3HyAYci7huLzM1h8YdI6pN8IiQQkL6ZyMMQwY2YOVH2wnFLRsXb2PweN6kZ07gJ3r12BLivBm+UhKTqGsOtBsX96clMi6f3c5A4YO4LPPPgOc+gL9+vWL6mcRkYN99atf5dJLL210n6YoE2mzgeFXg/Nv9+eAHzTR1gfstdY2/8tTRERERETiSswTFtbaHcAUY8wAnITFHOAt4NcdGEPAGHMT8DYw1xjzFFAKXBSO6fvW2s11DrkPuA64AadAeE0/84wxfwBuA1YYY17Fqc9xHtAL+LG1dm30P1HnsGxrbVmQsbmZrT7OBpyRFXUTFgkJXXsOZunaBozOZuUHzoxyW1YWOQmLAfnsXL8GgKcvyWfshLG4XM3PnOfJTga3gaDFv7OcvFPyIvu2bNnCcccdF70PISKN6t69O927d491GCJdgrV2S826MeYx4MO620REREREpPOLecKiRviPjS3hUha7rLWtmYKpPc8/2xhzInAPcBlOomEl8ENr7dNt6Od7xpiVwDeA63FGgSwFvmqtfbHdA+/EThiSzW2nHcXSgv1MzM9q9XE1CYtg3aLbSlhIJ9bvqEw8XhcBf4gtnxVhQ5bsOnUsPAd2t5isADBuF95eKfh3lhMoqqRvVjaJiYlUV1dTUFDgTKcW03JBIiIi7cNae0OsYxARERERkfYX84RFuG7FW9ba34Q33UALBa6jxVq7EGhxQmlr7fU4yYim9j9KnZEX0riRfbsxsm+3lhs2YAPhKaFMnREWiUpYSOflSXDTb3gWW1YWUVHio3BbGT0H5Ef27y3Y1Oq+vDmp+HeWQwgCeyvJy8tj3bp1VFRUUFRURHZ2dhQ+gYiIiIiIiIiIyOGLh6Lb04Hhdd4/DHw5NqFIZ1A7JVTtCIvEJCUspHPLH9Ujsr55ZSHZefmR93u3bG51P00V3ganjoWIiEhXYYxJN8b80BjzjjHmc2PMxiaWDbGOVUREREREWifmIywAP5BU570JLyKNa6SGRWJSUlOtRTqFvDoJiy2fFTHp7IGkde9B2b4i9hZs5r43PufznaUcO6gH35gxpMl+vH0aJCxG1U9YjB8/PjofQEREpAMZY/oCH+HUm2vpbwcb/YhERERERKQ9xMMIi504RbdTW2wpXcbSgv18sbOEYKjtfz9GRliYugmL5HaLTSQWMnok072v82Nw9+YSKkt99AyPsvBVlPO/91fy4bpCPtlY1Gw/3pyUyLp/Vzl9+/bF7XYDGmEhIiJdyr1APrAcuBwYAwxsYhkUmxBFRERERKSt4mGExevA14A9xpjd4W0XG2Omt+JYa60dHK3AJHrue3M1CzftIyXBzfwfnUK3ZG+rj2286HZCu8co0tEGjOrBvh3lYKFgVRHZeflsWrYYgIGuA6wkjVU7Spotnu1KT8CV4iFUEcC/qxyv10vfvn3ZunUr+/bto6ysjLS0tI78WCIiItFwOrAbmGGtPRDrYEREREREpH3EwwiLHwPPAV6cp6QskBZeb80inUwgGGLlNufvyqyUhDYlK6DxGhZeb9v6EIlH+aPr1LH4rCgywgJgWEIZAPvKfewqqWqyD2MMnt7OSI1QqZ9guV91LESi5IUXXuC0006jZ8+eZGRkcNxxx/H2228f1O4vf/kL+fn5JCUlMWXKFBYuXFhvf35+PsYYnnrqqYOOHTlyJMYYHn30UQAuv/xyzjjjjHpt3nrrLYwx3H333fW233333fW+/0W6mCxgvpIVIiIiIiJdS8wTFtbaA9baS4EUnASEwUlgNDWkW8O7O7k1u0up9DvTOY3Ly2zz8TbgTCNVd0ooJSykK+g9qBsJyc7At62f76N7/9objb2D+yPrq7aXNNtPQsM6FkpYiETF3LlzOe2003jjjTdYvHgxM2bM4Nxzz2Xp0qWRNk8//TS33XYbP/3pT1myZAljxozh9NNPZ8+ePfX6ys3N5ZFHHqm37ZNPPmHXrl2kptZ+T8+YMYOPP/6YQCAQ2TZ79mxyc3OZM2dOveNnz57NjBkz2vETi8SVrcTB3zIiIiIiItK+4uYf+dbagLW25k5ambV2S2uWmAYth2TZ1uLI+tjczDYfb/0HF932eOJhdjORw+N2u8g7ujsA1RUBfFXdcIXrTySV7o60+2xH8w+TeurWsdhZTm5ubuS9EhYi9e3du5ecnBzuvffeyLZ58+aRkJDAe++91+yx999/P7fffjuTJk1i6NCh3HvvvQwdOpRXX3010uYPf/gDN998MzfccANHH300f//730lJSeHhhx+u19dVV13FBx98wNatWyPbHn74Ya666qp6v+NmzJhBWVkZn376aWTbnDlzuOOOO1iwYAFVVc4IrKqqKhYsWKCEhXRlzwEnqQ6eiIiIiEjXEjcJixrWWpe19sZYxyHRs6ygOLJ+KCMsCGpKKOm6BtSZFmrb6mK69+0PgL9oNy7rJOlW7Wh+hIU3p/4Ii5SUFHr27AnAzp07qa6ubu+wRTqtnj178vDDD3P33Xfz6aefUlpayjXXXMM3v/lNTjnllDb1FQqFKC0tpXt3J/Ho8/lYvHgxp556aqSNy+Xi1FNPZf78+fWO7d27N6effjqPPfYYABUVFTz99NPceGP9fxIdddRR9O3bl9mzZwNQWlrKkiVLuOSSS8jPz4/0O2/ePKqrq5WwkK7s5zijLJ4xxvSKdTAiIiIiItI+4vqxdGNMN2AS0BPYYq2dF+OQpB0sDY+w8LoNI/t2a/PxNSMsgpoSSrqgvKN7OBPjWdjymVN4u3DrFmwoSD9K2Uomn7eUsOhdJ2Gxu8LpNy+PvXv3Yq1l+/btDBqkGfUk+h566CHKysoO6Vhrnen/miow35y0tDRuueWWVrc/66yzuPnmm7nqqquYOHEiqamp3HfffW0+7+9+9zvKysq49NJLASgsLCQYDNK7d+967Xr37s3q1asPOv7GG2/ke9/7HnfeeSfPPfccgwcPZuzYsQe1mzFjBnPmzOFHP/oRH374IUcddRQ9e/Zk6tSpzJkzJ7J/4MCBDBgwoM2fQyQeGWMebmTzRuB8YL0x5lOgAOo80VLLWmu/HMXwRERERESkncRlwsIYkw78EbiG2hgfA+aF998E/Ay4wFq7ICZByiE5UOln/R7n5tWIPhkked1t7sNqhIV0YSkZCfQakMGezSUUbS+n35D+kX2jksvZWpXJ9uJK9pf7yEpNaLQPV6Ibd/ckgvuqCOwqx4YseXl5LF68GHCmhVLCQjpCWVkZpaWlsQ6jVX73u98xatQonn32WRYvXkxiYmKbjn/iiSe45557ePnll+nV69Ae9j777LO55ZZbmDt3Lg8//PBBoytqTJ8+ne985zv4/X7mzJnD9OnTAZg2bRoPPfQQQCRxIdKFXN/MvjRgejP7LaCEhYiIiIhIJxB3CQtjTDIwBxgH7AE+Bc5q0Ow14CGcJ6qUsOhEVmwrjqwfSv0KAOsPF91GIyyka8of3YM9m51RFAF/VmR7rjkA9APg850lnDAku8k+vDmpBPdVYf0hgvuqVHhbYiItLe2Qjz3cERZttWHDBnbs2EEoFGLz5s2MHj261cc+9dRT3HTTTTz77LP1pn/Kzs7G7Xaze/fueu13795NTk7OQf14PB6uueYafvrTn7JgwQJefPHFRs83Y8YMysvLWbRoEbNnz+YHP/gB4CQsbrzxRvbt28eCBQvaNMpEpBO4IdYBiIiIiIhI9MVdwgK4DSdZ8STwFWttuTGm3tBua+0uY8wXgB4d7GTq1q845IRF4OCi20pYSFcyYFQPFr66CYADhbUFtHv693HTiQMZ2S+DYTnpzfbhzUmh6vMiwKljkTmyB+np6ZSWlrJ161aCwSBud9tHOIm0xaHeMA+FQpSUOEm7jIwMXK7oltzy+XxcffXVXHbZZQwbNoybbrqJlStXtmqkxJNPPsmNN97IU089xdlnn11vX0JCAhMmTOC9997j/PPPB5zP9t577/HNb36z0f5uvPFGfve733HZZZeRlZXVaJvBgweTm5vLK6+8wrJly5g2bRoA/fr1o1+/fvz+97/H5/NphIV0Kdbax2Idg4iIiIiIRF88JiwuA3YBX7bWVjXTbi0wuWNCkvZiDGSnJVJYVs24vMZvxLQk5HcSFYE6eSyPJx6/lEUOTc/cdJIzEqgs8bFrU5DElFSqK8oJFe3gJ+cc3ao+GhbeTh6VTV5eHqtWrcLv97N792769u0brY8g0qnceeedHDhwgAceeIC0tDTeeOMNbrzxRl577bVmj3viiSe47rrr+NOf/sSUKVPYtWsXAMnJyXTr5tRouu2227juuuuYOHEikydP5v7776e8vJwbbmj8YfERI0ZQWFhISkpKo/trzJgxg7/+9a8MGTKkXo2MadOm8ec//zlSnFtERERERESkM4nuI4uHZjCwsIVkBUAF0PR8KBKXvnnyUBbdeQof/XAG+T2avxnTlJCvfg0Llzm0KUNE4pVxGQaM6gFA0G9Jz3bqWJTtK6KyrHX1ABL61k6JU7WuGEDTQok0Ys6cOdx///08/vjjkdEcjz/+OB9++CF/+9vfmj32H//4B4FAgG984xv06dMnstx6662RNpdddhm/+93vuOuuuxg7dizLli3jrbfeOqgQd109evQgOTm52XPPmDGD0tLSSP2KGtOmTaO0tFSjK0RERERERKRTisfH0oNAa+b36Q+URzkWiQJjDP2zDi1ZARDyOSMsguEpodwmHvNuIocnf1QPVs/bCYDLkw2sAaCwYDO5R7c8t767RxKeXikE9lTg21JCoPjgOhbHHntsVGIX6UymT5+O3++vty0/P58DBw60eOycOXNadY5vfvObTU4BBbB58+Zmjy8uLj5o2/XXX8/1119/0PbrrruO6667rlVxiXRmxpiHW9nUBxTi1MV7w1rri15UIiIiIiJyuOIxYbEBGGOM8VhrA401MMakAccAn3doZBIXIiMsjJOwcLk0ukK6nv4juuNyGUIhS2VZRmT73i2byRg4nHc+382uA5V88+ShjR5vjCFlTE9K3tkCQOXyQnqf1JeEhAR8Ph8FBQVYazU6SUREOqvrw682/NrwF1rD7RbYbYy5zlr7TpRjExERERGRQxSPj6a/AvQBftJMm58A3YAXOyQiaRfW2pYbtUKkhkV4SiiPS4WDpetJTPbQZ6gzB351ZbfI9sKCzZz1pw/5/rPLeeD99ZRW+ZvqguQxPSPrFSv24nK5yM3NBaCsrIz9+/dHKXqRrmHkyJGkpaU1uvzvf/+LdXgiR7obgAdxEhI7gD8B3wW+A9wPbAvv+wtwF/ABkAO8ZIwZ3vHhioiIiIhIa8TjCIs/4vwB8n/GmLHAM+HtvY0xFwKXApcAm4G/xyJAOTRX/PMTAkHLuLxMfnTmiEMeGWH9NTUswlNCueMx7yZy+AaMymb7mmKMu7ZcT2HBZk6dPIPH5m/BFwjx3hd7OH9cv0aP92Yn4+2Xhn97mbPsrSAvL48NGzYAzrRQ3bt375DPItIZvfHGGwdNF1WjuRoUItIhFuIkI+4HfmitrffNaoz5IfAr4BZgsrX2F8aYu3GSF7cBX+nQaEVEREREpFXi7k6vtbYYOAPYBHwJeBxnCPcZwLM4CYsC4FxrrWpYdBLVgSBLthTz6Zb9vLd6z2FN4xTyhwgRImScERsej0ZYSNdUU3jbmAQ8iVkAFG7dwlmjciJtXluxs9k+UuqMsqhcUciAAQMi77ds2dKe4Yp0OQMGDGDIkCGNLunp6bEOT+RIdw+wE/hew2QFQHjb98Nt7glv/mX4/ckdFaSIiIiIiLRN3CUsAKy1nwOjgK8DrwNf4FScfRfniaiR4TbSSXy+owRf0BkZMTY387D6sv5gZDooAI8nHgcKiRy+rJwUMrKTALAhZySEv7qKoSk+eqUnAjB37V5KmpsW6pg600It30Pfvn1xuZwf/QUFBdEKXY5g7TX9n4i0n5rvyy5Wt2gasMg280MnvG8RMDX83g+sBPp2SIQiIiIiItJmcZmwALDWVllr/26t/ZK1dpS19mhr7enW2vuttRWxjk/aZtnW4sj6uMNNWARsZDooAI/He1j9icQrYwwDRoWng6ozLVTR1s2cNboPAL5giHc/391kH57MRBLynaLdgT2VUOSnb1/nPk1RURHl5RqoJu3D63V+FgeDQYqLi2MbjIhEFBcXEww6/27qYg95ZABZrWiXCdQdErWf2oLcIiIiIiISZ7rUXy0Sv5YWFEfWx+W15m/LptlAiKCpHWHh9erLWLquAaN6sHLONlzunpE0XWHBFs6ZeDqPztsMwOsrdnLh+P5N9pEypie+zSUAVC7fS15eHtu2bQOcURYjRoyI5keQI0RqaiqVlZUA7Ny5kz179hzW09yBQACAvXv3tkt8En26ZvHHWhtJVoDzfdqFbACmG2OGWGvXN9bAGDMUmAHU3d8HKOqA+ERERERE5BDE9Z1eY8yxOH9k1FSU3Q7MttZ+Eruo5FDUjLBI9LgYlnOY834HQ/VGWCR4Ew6vP5E41u+oTDxeF6Fg7QiLvQWbOOfCLHIykthVUsWH6wo5UOmnW3Ljo42SR2dT/MoGsFCxYi+55+ZG9ilhIe0lOzubYDDI/v37AerdJG0ra20k+ZGcnNzVprHpknTN4l9WVhbZ2dktN+w8HgF+C8wxxvwUeLJmFLYxJhm4Aqd2RQLwaHi7FxgDfHw4JzbGXA2cBEwARofPcYO19tEm2mcAdwMXATk4dTSeBe6x1pY10t4FfAOnMPgQoAxnatw7rbUbDyd2EREREZF4F5cJC2NMHvA/4PiaTeFXG97/MXC1tVYTsHcCRWXVFOxzZvEa3a8bXvdhzkQWsPVqWNRMQyLSFXkS3PQfnsWmFQHADQQpLNiCy2U4c3QOj3y8OTIt1EUTGh9l4U5LIHFIJtXrignuqyLHVT9hIdIejDH07t0bt9tNeXk5gUDgkOtZhEKhyM3vtLS0SN0ViV+6ZvHJGIPH4yE1NZXs7Oyulki6H5gOnA38A/iHMaYQ5++FmgJOBngj3BbgaGAZzt8Zh+MXwACgECf5MKCphsaYVOADYCwwC3gSGIdTEHyaMWaqtbaqwWEPATcBq4AHcGpuXArMNMYca61dd5jxi4iIiIjErbhLWBhjMoHZwECgCngbZ8g3wCDgDOBE4D1jzERr7YFYxCmtV69+RV7mYfdnG46wSEw87D5F4tmAUT3YvLII4+6BDe5h/64d+KurOOeYPjzy8WYAXl+5s8mEBUDKMT2pXlcMgFlbTnZ2NoWFhezcuROfz0dCgkYqyeEzxtCzZ0969uzZcuNmVFZWsnr1agAmTJhAcnJye4QnUaRrJh3NWhs0xnwJ+BbwbZy/E+r+8NmMc7P/AWttKHzMcpzR24frJmCdtXaLMeYO4L5m2t6Ok6z4tbX2jpqNxphfAT8Evlv3eGPMjHD/c4HTrLW+8PYncJIvDwKnt8NnEBERERGJS/H4+Nv3cJIVbwBDrLUXWGu/H14uxPlj5PXw6/diGKe0Ut2Exdjcw6tfAUDQEqhTw0I3WqWrGzDamcLD5Q7fh7GWom1bGZebxcnDe/HDM4Zz97kjm+0jeWQPcDtP1lasKCQ31xllEQqF2L59e/SCFxERiRLreMBaOwTIBY4LL3nW2kHW2vtrkhXtfN53rbVbWmpnnCEtN+FM6fTzBrt/Ht5+U4PtN4df/68mWRE+55vAHJxRFnmHGLqIiIiISNyLuxEWwAXAXuDSmnlo67LW7jLGXAZsAi4E7urg+KSN6hbcHtsOIyxMyNYfYZGkERbStaV3T6J731T2bKxfxyJn8FAevn5Sq/pwpXhJOiqLqi/2ESr10Te5J0vD+woKChg4cGAUIhcREekY1trtOPXu4slQnOmc3rbWltfdYa0tD09ze7oxJtdauzW8azpQTuN1Nt4O758GPN7aIIwxTQ/BdOTUrFRWVkamdxOR1tP3Teek69Y56bp1PrpmnVNrrlu0rm08JiwGAq83lqyoYa2tMMZ8gDNnrcS53186hqUFxXyxs4S+3ZIOv8MGCYvERE07IV3fgFE92LulTsJi86Y295EypidVX+wDIHtf7fei6liIiIhExdDwa1M1J9bhTO80FNgarnfRB/jMWhtson3dfltra8tNHHPnzu1qxdmlnnj8879rmDVrVpR61jWLJl23zknXrfPRNeucWnPdCgsLo3LueLyyQaA1VZQ9QLsP8Zb21zsjiTNG5XDGqJyWG7eCCVmCrtpLn5jUDkkQkTiXP7oHS97qhVM/1LJu4TymX3cTLpe71X0kjeiB8bqw/hAJa6pIS0ujrKyMrVu3EgqFVCRXRETiljHm2vDqi9ba0jrvW8Va+58ohNWSbuHXpmrulTRo19b2IiIiIiJdTjwmLNYB040xmdba4sYaGGO64xTMW9uRgUns2ZDFWOqPsFBhTzkC5AzqRlJaOv6KgYT8GynbV0TBimXkj52AtZbPd5bwxsqdjO6X2WRy0JXoJmlEdypXFGIrg/Tvn8PqsvX4fD52795Nnz59OvhTiYiItNqjgAU+AUrrvG+tWCQs4kVuC/tzgEUAU6dOpX//lmaQkk5r/vuxjqDLmjlzZnQ61jWLKl23zknXrfPRNeucWnPdtm3bFpVzx2PC4lngXuB1Y8xXrLWr6u40xowGHgIygKdjEJ/EUtAZWRGoM7gmMVE1LKTrc7ld5B7dnTXFIwn5NwKwcs675I+dwGfbSzj3wY8AmHpUz2ZHM6WM6UnlCmfIXi9fBqvD2wsKCpSwEBGRePYfnATFgQbv41lNrE2NiMho0K6t7VvFWtvsX5JObXBHcnIyyXoYSKTN9H3TOem6dU66bp2Prlnn1JrrFq1rG48Jiz8BlwHHAcuNMUtxCmwDDALGAi5gGfBADOKTNvjbnA30zUxiXG4WeT1SDrs/6w8nLEztCAuvtzUziIl0fgNG9WDdokFgksFWsmHRfCrLShnVL4N+mclsL65k3vpC9pf7yEpNaLSPpKO6YxLd2OogPXYlODNM4SQspkyZ0oGfRkREpPWstdc39z5OtVRzol6Ni3Ah7p3AQGOMu5E6Fi3VxBARERER6fTibsJya20lcDLwTHjTBODi8DI+vO1p4FRrbVXHRyitVekL8rtZa7j1qWV85fFP26VPG3AepKs7wkIJCzlSDBjZA7fbgzthBADBQIDVH83BGMNZo51RFYGQZdbnu5rsw3hdJI/sAUBWdTIJHuf7p6CgAGvj/UFVERGRTmUdsAM4IVxQOyL8/gRgk7W2blHsD4CafQ2dHn6dG4VYRURERETiQtwlLACstfuttZcDA4FrgDvCyzXAQGvtFdbafbGMUVq2cvsBgiHnBujY3Mx26dMGnERFEI2wkCNPcnoCA8dk404cFdn22ex3ATj7mL6Rba+t2NlsPyljewHgwkXvhO4AlJaWUlxc3M4Ri4iIdAxjTIIxpk+41l1csM6TAP8C0oD/a7D7/8Lb/9lg+z/Crz83xkSGSxpjzgSmA7OstVuiErCIiIiISByIxymhIsJPG/0v1nHIoVlasD+yPi4vs136rElYBIxGWMiRaeS0fmxYuhfj7o0N7mbP5g3s2byRMQMG1k4LtaGIfeU+ujcxLVTi4G64Uj2EygP0Kktlazh1XVBQQFZWVgd+GhERkcNjjLka+DYwDudhrMeAG8P7LgAuAe601m5qspO2n/Mm4MTw29Hh15uMMdPD6x9Za/8VXv8NcB7wQ2PMOGAJzqjxmTiFru+v27e1drYx5l/ATcASY8zrQB+cKXP3Ad9qr88hIiIiIhKP4mKEhTEmyRiTYYxpsXqyMSaxtW0ltpZtLY6sj81tn5ugkYRFnREWHk9c591E2lX/YVlk9k6pP8pizjsYYzjnGKdodjBkmbWqmWmh3C6SR2UD0DtQW9ezoKAgSlGLiIi0v/CN/ceAiUAlkcpMEWuBy4GL2vnUJwLXhZeaKWtPqLOtJpmBtbYcmIaTmBgBfA8YDvweOCU8HW5DtwC3htdvBc4CXgQmW2vXtvNnERERERGJKzFPWBhjvMAXwG5gVAvNAUaG2640xrijGZscnqUFxQCkJrgZ0iutXfpsLGGhERZyJDHGMPKkvri9wwDnR+AXH84h4PdzdjhhAfD6yhamhRrTE4CeoW6Y8P0dJSxERKSzMMZchTOS4jNgEtCtYRtr7SpgG3Bme57bWnu9tdY0s1zfoP0Ba+13rbV51toEa+0Aa+33rbWlTfQfstY+YK0dZa1NstZmW2svt9ZuaM/PISIiIiISj2KesMAZpj0A+L21dnFLja21S4DfAYOBC6McmxyiXQeq2FXi1EQfk5uJ29XwgbdDFElYaEooOXINP64PnsQUXAlDAagqK2XDpwsY3a8bud2TAZi3oYiisuom+0jI74YrIwEvbrJD6QDs3buXioqK6H8AERGRw/cVoAw4x1q7OFwvojErceriiYiIiIhIJxAPCYsLgADwxzYc8wcgBFwclYjksC3bWlu/or0KbgPYgPO3aNBoSig5ciWlehk6oRfuhJGRbavC00KdPdopvh0MWd5etbvJPozLkHKMM8qid6j2odStW7dGKWoREZF2NQZYEK5515x9QO8OiEdERERERNpBPCQsxgNLrLVFrT3AWrsf+BSYELWo5LDUTAcFMC6v/Yr42gYjLFyAyxUPX8YiHWvktH64PHngckZHbF6+lNKiQs4d04dzx/Tl71dP4MLx/Zrto2ZaqN6hzMi29evXRy1mERGRdpQIHGhFu55QZy5RERERERGJa/FwpzcH2HwIx20B+rTYSmJiab2C25nt1m/DGhYu005TTYl0Mr3zM+iZlx4ZZWFtiM/nvs/Ivt348xXjOGNUDkne5sv8ePun4e6eRN9QFm7r/DpYsWIF1dVNTyUlIiISJ7bjFLFukjHGAEcDmzokIhEREREROWzxkLAwHFocrvCxEoemHdWTE4dkM6JPBj3TE9ut30jCwoRHWLRXbQyRTsYYw6ip/epNC/XZnHdoegrvxvtIGdOTRLwMCeYAUF1dzfLly9s9XhERkXb2HjDcGHNeM22uAfoD73RMSCIiIiIicrjiIWGxF6eAdlsNAgrbORZpJ9+YMYT/3jSFN759Yrv223CEhVvTQckRbOik3iSmdsflyQWgeNdOtq9e1aY+aqaFOjrYP7JtwYIFhEKhpg4RERGJB78DqoEnjDHfMcb0rdlhjOlujPkq8FegHHggRjGKiIiIiEgbxcPd3qXAGGNMXmsPMMbkA+OAJdEKStqHaecpm6zfuYkaDNew8Ljj4UtYJDYSkjwMn5KDO2FUZNtns98FoMIX4PUVO/n6/xazt7TpKZ48vVPw9Eqhh02nTzATgKKiIjZu3BjV2EVERA6HtXYdcB3O3zO/B7YCNrxtL/AXwANcb60tiFWcIiIiIiLSNvFwt/dlnDja8uTTn+ocK0eQYHWQEJZgeEoot6v5OfpFurqRU/vhShgCJACw9pOP8FVW8NfZG/jGE0t4Y+Uu3vpsZ5PH10wLBXB0MDeyfcGCBVGNW0RE5HBZa58FJgHPAqU408UaoAp4FTjOWvt87CIUEREREZG2ioeExeM4RbfPNcY8Z4zp1VRDY0xPY8xzwLk4Rbcf75gQpS22FJUTCrV+Hv22CFUHCYangwLweJSwkCNbj35p9B2ajTthOAD+6irWfPIRZ43uE2nz+Cdbmq1tkTK2JxgYEMomjSQA1q1bR1FRUXSDFxEROUzW2s+stZcDWUAvIAdIt9aeb61dGtvoRERERESkrWKesLDWBoCLgUrgAmCLMeYlY8ydxpibw8udxpiXgIJwmyrgkvCxEkcOVPqZ9ts5jP3ZLO5+pW1z6bdG0BciQO3c+h6Pt93PIdLZjJraD3dineLbs9/l6L4ZTBiQBcDa3WXMWbO3yeM9PZJJProHLlyM8NfWsli4cGH0ghYREWlH1lFord1jrVUhJhERERGRTsoT6wAArLVLjDFTcYZzDwS+hDOKoq6aYgibgUuttYs7LkJprRXbigEoqQo0+0T3oQr5gwRM7QgLrycuvoRFYmrwuF6kZObiL++BDRWxY83n7Nuxna9MHcQtjzs/Kh+au4EZw5scwEb6jFwqVxUxLNiXpd6NBAixdOlSTj75ZBITEzvqo4iIiEgnkH/H67EOoUvb/KuzYx2CiIiISMzEzd3ecNJiGHAlcB4wEegZ3r0XWIxTs+J/GlkRv5YVFEfWx+Zltnv/IX/9ERZer0ZYiLi9Lo4+oS8LXx5JoHIuAKvmvMNpl1/HoOxUNhaW88nGfazYVswx/TMb7SOhfzqJR2XB2v0MDuSwxrMDn8/H8uXLmTx5cgd+GhERkYMZY+46nOOttT9rr1hERERERCR64iZhAZHpof4TXqQTWrq1OLI+Njer3fu3vvo1LLwJSliIABx9Yj8WvzWCQOVHQIhVH7zPCZddw00nDeLHL64E4KG5G/nLleOb7CNjei571+5nZDCXNZ4dgFN8e+LEibhcMZ9BUEREjmx3A4czfFcJCxERERGRTiCuEhbSuVlrWRZOWGSmeMnvkdLu53BGWNRJWHgT2v0cIp1Rt57JDBiVy/oFAwn5N1BevI/NK5Zw4fjx/OGdNRSW+Xhz5U4KiirIa+J7M3FQNxLyM+i+GfoEM9npLqaoqIiNGzcyZMiQjv1AIiIi9c2l6YTFNGA3sLrjwhERERERkWjQI7PSbrbuq2RfuQ+AsbmZGGNaOKLtbCBEwNROCZWgufVFIkZN7Yc7YVTk/Wez3yHJ6+b64/MBCFn490cbm+0jfUYuACODuZFtCxYsaP9gRURE2sBaO91aO6OxJdzkzab212kjIiIiIiJxTgkLaTdLt+6PrI+LwnRQALbBCIvEBI2wEKkxYHQ2Gb2GgXFGUGz4dAEVJQe4+tgBpCS4Adhf4cfapmfUSDoqC2/fVPJC2aTZJADWrVtHUVFR9D+AiIiIiIiIiIgc0ZSwkHazNMoFtyE8wqJO0e2EpKSonEekM3K5DCNPysWdMAKAUDDI6o/mkJmSwK8vOoZ3b5vGA1eMa3b0kzGG9Bm5uHAxItA/sn3hwoVRj19ERERERERERI5sSlhIu1lWt+B2/8zonCQQImDqjLBQwkKknqNP7Is3aXTk/cr3Z2Gt5dwxfRnSK61VfSSPzMbTM5lhwb64rfNrYunSpVRXV0clZhEREREREREREVDCQtpJMGTZUVwJwKCeqXRL8UblPDZo642wUMJCpL7UbokMnjgM4+4DQOHWLezZtKFNfRiXIX1aLkl4GRLMAcDn87Fs2bL2DldERERERERERCRCCQtpF26XYcGPT2H296fz24uPid6JgpZgnRoWSUnJ0TuXSCc1amo/3IkjI++XzXq93v5AMMTbq3YRDDVdyyJlXE/cmYn1im8vXLiQUCjU5DEiIiIiIiIiIiKHI+4SFsaYPGNM91a0yzLG5HVETNI6xhgGZqcyYUCLl+/QBRtMCZWshIVIQ/2GZdG93zgwiQCs+uB9DuzZBcA7n+9mxu/ncMvji3nn891N9mHcLtKn9ae7TaNPMAuAoqIiNm7cGP0PICIiIiIiIiIiRyRPrANoxCbgUeDLLbT7DXAD8fkZJFoaTAnl9UZn6imRzswYw+jpA/lg63gCVfOxoSCfvPA0p3/1Vrxuw9Z9zvRt/5i7gTNG5TTZT+rE3pS8V8DIiv7sdO8HYMGCBQwZMqRDPoeIiEgNY8y1LTQZ0lwba+1/2jkkERERERGJgni82W/CS2vbtt+JjZkE3AMcD3iBlcAfrLXPHGJ/WcBnQF/gbWvtGe0V65HKhCyBOlNCKWEh0rjhx/Vh4SsTKa1eAraaVR+8x5QLLmPaUb0ZnpPO6l2lLCko5tPN+5iY3/ioKON1k35SP/LerCbNJlFmqli3bh1FRUX06NGjgz+RiIgc4R4FmprL0AInhJem9ithISIiIiLSCcTdlFBtkA742qszY8wM4GPgROAZ4O9ADvC0MeZ7h9jtg0C39okwfhWVVXPFPz7h12+tZtHmfdE9WUgjLERaIynVy5TzjsaTOB4AGwrxyfNPYYzh5pMGRdo9NLf5KZ5Sp/TBnZTA0YH+kW0LFy6MTtAiIiJNKziMZWsM4hURERERkUPQ6RIWxhiXMWY0cDLOHyDt0acH+CcQAqZaa79irf0eMAZYC9xrjBnQxj4vAq4EftgeMcazZVuLmb+xiL/N2cCsVbuiei4TsvVqWEQSFtsXw6/z4XdHwTt3QdGGqMYh0hmMmt6PHgNOjNSy+Hzu+xTv2sm5Y/qSk5EEwLtf7GbD3rIm+3AleUg7vg9HBfvits6vjKVLl1JdXR39DyAiIhJmrc231g481CXW8YuIiIiISOvERcLCGBOsWcKbrqu7rcF+P7AM6AG80E4hnAwMBp6w1i6r2WitPQDcCyQA17W2M2NMT+BvwOPA6+0UY9xatrU4sj42Nytq57HWYiyNj7CYdRdU7oey3fDxn+DP4+GRs2HFM+CvjFpMIvHM7XYx7crReBInAGBtiI+ffZIEj4sbT8wPb4N/fdj8KIu0E/qRnJDIkKBT78Ln87Fs2bJohi4iIiIiIiIiIkeguEhYUFu3wuDMMWuaWQLAZuD3wE/b6fzTw6+zGtn3dvh1Whv6+zsQBG49jJg6jaUFxZH1cXmZ0TtRyGKAYMMaFjtXwJaPDm6/5SN44Wb4/XAoWBC9uETiWO7w7gyZfFpklMXqj+ewf9cOrpicR3qiU8bo+SXb2Vva9IgJd6qX1Ml9GBnMjWxbuHAhoVCoyWNERERERERERETaKi6KbltrI4kTY0wIeNRae2MHhjA0/Lqu4Q5r7S5jTFmdNs0yxlwNXAicb63db4w5rBoWxpj+LTTJqVmprq6msrJjRxOErGXZ1v0A9ExLIDPBRi0G63MSFQFTe5M0EAjgmvfXyBey/8TbwZOEe8X/cO1zpoWyQR9VGYOgg//fNKeqqqrRdYlfnfmaTT5/KBsWT8Rf/jHYELMf+w9nfvtWLpnQl4fnFeALhPjX3HV85+TBTfbhndyD7vPT6RPMYqd7P0VFRXz++ecMHtz0MfGgM1+3I5muW+eja9Y5aXo/ERERERGJN3GRsGjgHmBpB5+zJqlwoIn9JbSieLYxpi/wAPCktfbldoqt1UUCFyxYwIYNHVu7YVcFlFU7X0Y53ireeeedqJ3L7TeMJYtAzQgLa3nnnXfoX5LBkKRcUvxFvF0yhKA7CfLuonuPteQXzsHvTmblB/Pq9TVq239Jrd5NRUJPKhKyqUzIpiK8+DzpYEzUPoexQdwhHwkhPy4b4NN3nsNlgxgbwGUD+N2pVCT2qndMTvFiDCGscRPCjTVurHERMnXW8VCZ0AO/JzVqsYtj7ty5sQ6hzboNO5rCpZ+CrWbTko959bm+DEjshtu4CVrDf+dv5ijfBjzNjLvLy05h5N5cdrqdJOXrr7/OsGHDMFH8fmlPnfG6ia5bZ6Rr1nkUFhbGOgQREREREZF64i5hYa29J9YxHIZ/4dTY+HasA+kom8tqb1Tmp9uonssVHlhRk7AwOOfb1v0EtmUdT4qv0ElWABjDvrRh7EsbdlA/nmAlA4rm4An5Gj1PwCRQmdCDioRs1vS5gP2pQyL7ulVspk/xp7isH5cN4gonHSJLKIDb+vG7k/l04Lfq9Tt+89/pt38BrjpTWjWmoPtJLB1wc/1jC/6JN1jR7HEAS/K+wtYeJ0bep1XtYOqauwm4kwm4kgi4k/HXWQ+4k6n2pFPt6cb2rCkE3CktnkM6p25D4cC6CfhL5wGWwk+X0e/kaRzby2KxzOgTajZZAbCrbxVH7+5B91Aa+1xlVFZWsn//frp3794hn0FERERERERERLq2uEtYGGPcQCpQYa0N1NmeDNwOjMWpYfFba+2OdjptzciKpkZRZAD7m+vAGHMdcCZwibW2PR9Xy21hfw6wCGDKlCkdPj3LvNdWA85luHjGRCbnR6/odnBfFcVLPotMCeVxuZk5c2ab+3FtnY97dSL4Gk9YeKyP9OqdpFfvJPOcewjlHR/Z5/7sGRJef6XFc9iUHgfF5n31ZVz7m09WAPTN6UXPBsd61iRDRcsJi1FjxjHi6NpjzY4leL+owhtqeXqOYV/6DqT1jrx3L/sPnkUPYVN6YlN7QmpPbFImNjkLkrphkzKd19Re2KyBLfbf2VVVVUWeGp46dSpJSUn1G4QCEKiGQCUmUA2BaqwnCTL6xiDaxq3vOZJZf1kCtorKXesYP+KrnHZa/zaNkCgNbGTKqqG8meAMhNu/fz8XX3wxHk/c/ToBWnHdJC7punU+umadU0ePzBUREREREWlJPN5hugv4CU4h7A8BjHM3bQ4wkdrC3BcaY8Zaa5tNJLRSTe2KocDiujuMMTlAGrCwhT7GhV+fbeLm3+nGGAsst9aObW1g1tptze2ve67ExESSk5Nb23W7WLGjDACXgYmDepGcGL0vKb/HSVTUFN12u8yhfd6jToY7CqBsNxzYCsUFtUvk/VYIVJLYeyjUPUdS66ZbMoHqg2PLHgw5x4A3maArkT37Swm5PPTu0x9PQjK4veBOwNNvPJ6Gx864E3xlEPRDKOjcHA/5w6/B8PYACTnD6sebmATZw6C61Fl8ZUBjI2EMyd37g7vO9SvbAfs2OEtz+k+GmxpMBfb8TbD785b+N8EJt8KYy2rfl+yE/17U8nEAVzwBWfm171e9BB/8puXj0nvDNS/W3/bWj2HjnGYPS7QhhrmHs6bPBSQlJdVe3/tywVcOtolk1Mn/B1O/33JcHWDUiYNZ/OpJFG15B7DMfvgJrv3V3W3qw3NqPr7P9tE/2INt7iJKSkpYvnw5J554YssHx1i96yadhq5b56Nr1nkkJibGOgQREREREZF64jFhcQqwy1r7YZ1t5wKTgLXAX3FGMswEbgZacYeyRR8APwr3+VSDfafXadOc+TiJjYbSgMuAbcDbQMGhhxlfKnwB1uwqAeCo3umkRjFZAWADzo32AE7iwh2sgm2Lof+EtnfmckFGH2fJndzIySyUF0JKj/rb80+Ca18Gd0L9xVN3PQm8jdyoOflOZwF8lZUsnDULgJkzZx6coGho0pfb/hnB+X/zzTq5tlAI/OVQXRZOYpRA+V6o3F8/WQFgQ5CQDr7S5s+R3Miomh3LoOigGvYHq9xX/33ID3tWtXwcQKDBCJnK/a07trrk4G0HClo81gUk9eh98I5QoOlkBcDsXzpfN3lTWo4tyowxnPX1q3j8jg/BVrF302IKVq0nb2TttGcHKvwkel0ked2N9uHtnUrqpBwmLxrCdlcR1sCHH37IuHHjSE1V/RQREZG6jDHXA4+00Ox9a+0p4fZ3Az9tpu1Aa+3mdglORERERCQOxWPCYiCwusG283AeC7/KWrvYGPNXnATAxbRPwuI9YCNwpTHmAWvtMgBjTDfgx4AP+E9NY2NMH5zpo3Zaaw8AWGufBp5u2LExJh8nYbHKWntTO8QaN1zGcP/l41hWUEyvjOg/oWcDISyWYHhKKLe/FP51Moy9Cs7/a/uezBhI63nw9vTeztJZuVyQmO4s9Gm+7cyfO4u/Esr21CY2Koud16piZz176MHHBn3gacXTta6GP4JM646Dgwuju9ytO9bTyNeqO6HFYy0QMo38yMw5BoLVTqLKk1j7WlkMmz5wEj8vfgW+/knjiawO1is/m9xRp7B15euA5e2/P8rNf/4FwZDlqUUF/H7WWm44Pp9vndLIdQ3LmDmAHiv2clSgL2s8O6iuruaDDz7grLPO6rgPIiIi0jksA5qq0XcxMBLnoaaGHsOZBreh4vYISkREREQkXsVjwqIHsKvBthOA7dbaxQDW2oAx5hPg2PY4Ybi/m3D+WJhrjHkKKAUuAgYA32/wJNN9wHXADcCj7RFDZ5TkdfOlMX350piOmaPf+kOR0RUAnpqn2nNj/+R6l+ZNhqwBztJa31lxaOfKzIWfNPz2b6Xx1zrLobj44RabVFVWsjI8KqaeLzd2jwEIBuDRs2DPamdaqDhIVtQ46+tX849vvI8NVVKyZzmfzV1J8oiB3PXyKoIhy1/nbODiif3p063xmN1pCWScMoAJr1ewwb2LgAnx6aefMnnyZLKzszv404iIyJHOGHMsznSy/XGmj90GzLHWzo9lXADhB6GWNdxujEkAvgkEcJITDT1qrZ0TzdhEREREROKRK9YBNCKAU3QbAGNMFk5tiY8btCul6SLZbWatnQ2cGD7PZcDXgN3A5dba37fXeeTQ2WCIALVT73gIQHJ3OObSGEYl0gS3By78J3x9Hoy+ONbR1JPWPZ1hx58Zfmf54PH/kp+VwjXHOkmpSn+QX7/ZcKBbgz6O60NGz0yOCTjHhEIh3n333WiGLSIiUo8xZrAx5mOcf7//Evg6zr/hfwF8ZIyZZ4wZ0lwfMXQ+zoNar1lrd8c4FhERERGRuBGPIyw2AscaY1zW2hBwDs6TUh81aNcL2NueJ7bWLsSpj9FSu+uB61vZ52ac+OVw+UME64yw8NoATLg+rp5cF6mnLaNSOtipX76ctZ+8RShQQVXJKua/sIjvnjOel5dtZ3+Fn5eW7eCa4wYwYUD3Ro83HhfdzhnE6EfKWO3ZToXxsXr1arZs2cKAAfH7uUVEpGswxvQFPgRygArgLWBTeHc+cAbOaOy5xphJ1trtsYizGTVTxf6rif1TjTFTgBCwDnjXWlt2KCcyxvRvoUlOzUplZSWVlZWHchppR7oGnY+uWeek69Y56bp1PrpmnVNrrlu0rm08Jixewakb8bIx5l3gh0AQeLWmgTHGAOOAL2ISobC/3Mf8jUWMzc2kT7ckTMN6AlEQ9IcImDojLEwAJnWpsiByJNgyH/KOPbgGRwdLTElh7MzzWPLGkwAsfv05xp0+lttmDuP/XvoMgHte/ZyXvn4CLlfjsSYP6076sGwmrB/Mh17nx/GsWbO46aabOuRngoiIHNF+hnOj/Xng69baeg8yGWOygb/i1Im4h9oEQcwZYwYAp+BMXfVWE80a1r0oNsbcaq39T6Otm7e1tQ3nzp3byukd4/HPyK5jVmPTkLYLXbdo0TXrnHTdOiddt85H16xzas11KywsjMq543FKqN8Aq4CzgT/i/CHyW2ttQZ02JwLZHDzqQjrIJxuL+Pr/lnD8r97nL7PXd8g5Q75gvSmhvKlZ0K1fh5xb5LBVHYAXvwqPnAFLH491NACceNlFeBKcGfgCVV8w+z/zuHJyHsNz0gFYse0Azy3Z1mwf3c4ZxFDbl6yQ08/27dtZtWpVdAMXERFxRkXvAK5qmKwAsNYWAleH25zVwbG15Aacv8MetdYGG+xbDtwIDAKSgYHAtwALPGqM+VJHBioiIiIi0tHiLhVlrS0xxkzGeRqqN7DIWvtBg2Y9gD8BT3d0fOJYtrU4sj4sJ6NDzhmsCtQruu3tkd8h5xVpF1sXwnJnNANv3gH5J0L3QTENyZuUxKQvXcT855yHNdcteI0JZ43nrnOP5sp/LgDgN2+t4cxROaQneRvvo2cKGSf0Y/LHQ3k7YRkA7777LsOHD8fjibtfMSIi0nV0B1621vqaamCt9RljPgLO67iwmmeMceEkLCzwcMP91toXG2zaDDxojPkCeAenPscrbTxtbgv7c4BFAFOnTqV//5ZmkALmv9/GEKQtZs6cGZ2Odd2iRtesc9J165x03TofXbPOqTXXbdu25h9yPVRxeTfJWlsJNPkIsrX2JeCljopHDra0oDiyPjY3s0POGdq7pd6UUAmZvTvkvCLtYuhpMP46WPIY+MvhhVvghjed4twxNOncL/Hpay/iryol5F/D+499xBV3n8WZo3J487NdFJZV8+Ds9fzozBFN9pFxSh55i3fTz9+d7e59FBcXs3DhQo4//vgO/CQiInKE2QaktqJdChBP9StOBfKA96y1m1pqXMNa+54xZgMw2hiTYa0tacOxzf4lWXcax+TkZJKTVR8u1nQNOh9ds85J161z0nXrfHTNOqfWXLdoXdt4nBJK4lwgGGLl9gMA9M9Kpmd6YoecN7hrfb2i2wkJHXNekXZz+r2Qle+sb1sIH98fy2gAZ5TFsRdeHHm/Z8MbfP7Rdn581ggSPM6viBeWbKfS13DGilquJA+ZZwxkcmCI87wozhzYFRUVUY1dRESOaM8C040xTc4PGt53MvBch0XVspaKbTenZpLglHaKRUREREQk7sRdwsIYM7UtS6zjPRKt2V1Kpd+5edlRoysAQn1PqFfDIiFRCQvpZBLT4IJ/gAn/6J1zH+xYGtuYgHFnnE1Ktx4AhAJb+PDJ1+mZ6OVr0wZz7XEDmPWdqSQnuJvtI2Vib3L65HBUsA8AVVVVzJ07N+qxi4jIEevnwErgfWPMOQ13GmPOBt4DVnBwAeuYMMb0wJmeah/QcOqnlo5NBUYC5dQmLkREREREupx4nBJqDpFndFtkic/P0KXFYjoogJA/RMDUGWGRpISFdEJ5U+DE2+DD30EoAC98BW6ZC97YDZH0JiYx85av89Jvfg5Axf53mffcZL573bhW92FchsxzBzPhoSI2uHcTNCEWLlzI5MmT6d69e7RCFxGRI4QxprFJikPAUOBlY0wxTr0HgHwgM7w+H3gNOCWqAbbONUAC8F9rbXXDncaYdKCPtXZtg+3JwD+BdOARa22gI4IVEREREYmFeLzZP5fGExYuYAC1RePmA/6OCkpq1S24PS4vq8POa/3BeiMskhI1B550UtPvgPXvws5lULgW3r0bzvx1TEMaPGEKA8dNYdPSBWArWfHe0xxzylCy+6e1uo/Egd3IPqY/x3yex1LPZkKhEO+++y6XXnppFCMXEZEjxPRm9hkgK7w0dDytfxgq2r4cfm1qOqgewGpjzCLgC2AX0Bun7kV/nBElP4h2kCIiIiIisRR3CQtr7fTm9htjjgEexRkOfVYHhCQN1CQsvG7DyL4Z0T9hZTEkZzojLOokLBKTk6J/bpFocHvhwn/AQ1MhUAUL/g5HnQ6DT45pWKd95Wv8+9vLCfqrCFZ/xqx/zuKKuy+IFOMsLKtmza5SThiS3WQf3c4ayDFf7GG13UGl8fH555+zdetWcnNzmzxGRESkFWbEOoDDYYyZDIwCFlprVzbRbB/wV2Ayzt85WUAlTvLiAeBBa21lB4QrIiIiIhIzcZewaIm1doUx5kJgFc4TRr+KcUhHlAOVftbvKQNgRJ8MkrzNz2t/2KyFh8+ApG7Ykh/UmxIqKUqV6EU6RM9hcNrP4M3bYfAp0HNErCMivXs2U6+8jtmPPQTArrUvseaTyQw/rj8Pf7SJP77rzFAx5/vT6ZHW+JRsnswkekzLZ/zsHXzsXQPA22+/zZe//OVI4kNERKStrLUfxDqGw2GtXYgzEqS5NiXANzsmIhERERGR+BR3Rbdbw1q7GVgEXBvjUI44+8t9TB7YnSSvi3EdUb9i4xzY+wVs/QRbvKvBCIuU6J9fJJom3QyX/Reufh4y+sQ6GgDGnnEW3fsOAsCG9vH+o//DVxXg850llFYFKK0K8Pt31jbbR9rU/hydOpDMkPM9um3bNlaubOphUhEREREREREREUenTFiE7cUpqCcdKD87lWduOY6Vd5/O904fFv0TLvh7ZNWm9CVInaLbCQnRP79INLlcMOJciKORBy6Xm3O+811qfj1UFs/jo2cWcvvpw0hNcEZUPbmwgFU7DjTdR4KbrLMHMzkwNLLtzTffpKSkJKqxi4iIiIiIiIhI59YpExbGmARgElAR61iOVF63i4wkb3RPUrQB1r7trGf0x3oy6o2w8HqjfH6RI1TPAQMZfco54XdBls96HG9lkG+d4iQgrIWfvfo51jZdwzT5mGwG5w5kYLAXAJWVlbzyyivNHiMiItJaxpj327C8F+t4RURERESkdTpVwsIYk2qMmQg8D+QCs2MckkTTwn8A4Zubk2+CoCVglLCQLirggy9ehXfviXUkAMy47loSU3sAEPJv5Y0Hn+GGE/LJ7+FM87Rg0z5eWb6jyeONMWR9aQgnBIeTYp3RUOvXr2fx4sXRD15ERI4E01uxTKuzLiIiIiIinUDcJSyMMcGmFqAEWACcDRwAfhLTYI8wwZDtuKejq0pg6f+cdU8yjL8OG7QE6kwJpYSFdCn/OQ+evho++oMzuijGvIlJnP612rqfu9a9zuZPt/CTs4+ObLvr5VXsPFDZZB8J/dLofcZRnOSvLSj+9ltvU1RUFJ2gRUTkSDKjieUU4EbgBZwi1/cBJ8coRhERERERaaO4S1jg/GHR1BIAtgD/AsZba9fEKsgj0WsrdjDxF+/y5UcXsXDTvuiebNkT4Ct11o+5FFK6QzCkhIV0XUedXru+7H+xi6OOoZMm0W/4ZOeNreLdf/2T6UOyOecYp0D4gUo/tz29nFCo6URm2kn9OGrkcIYH+gHgD/h58cUXCYVCTR4jIiLSEmvtB00ss621j1prLwa+A3wPKI5psCIiIiIi0mpxl7Cw1rqaWRKttYOstV+x1m6OdaxHmqUFxRSV+3hv9R4q/cGWDzhUoRAsfKj2/ZSvOq+aEkq6sjFXgHGKWrPsCQhF8XusDc75zjdxuZMAqCpdyez/vsMvzx9N327Otvkbi/jnhxubPN4YQ9bFQzkhczTpoWQAtm3bxscffxz94EVE5IhmrX0A2ArcHeNQRERERESkleIuYSHxa+nW4sj62P6Z0TvR+ndgX/gG6MCp0Ds8BU0oRLCm6La1uFz68pUuJL137SiL0p2w4f3YxhOWltWdKRdeHXm/8t3/Yksr+f2lYzEGemckMrJvt2b7cCV6yLn2GKYzChMejDH7/dns2rUrmqGLiIgALAdOjHUQIiIiIiLSOnF3x9cYEzLGLIl1HFJfdSDIFztKABjUM5VuKVEc3ZCaDUNnOutTvhbZbOrUsIi7L1yR9jCuNjHA0sdjF0cDx134JdJ6DATABot55Y//4rjBPbj/srG8detUThya3WIf3l4pjLhkCscEBwAQsiGef/o5AoFAVGMXEZEjXncgLdZBiIiIiIhI68Tjfd9y4PNYByH1rdpRgi/oJAvG5WZF92T9JsBVz8K3ltSb19/Y2imhXMZENwaRWBg6E1J7Oeur34DywtjGE2ZcLs797nep+ZWxd9McvvhoJeeN7UdWakKr+0kZnc1Jx55E95Bz32jv/kLee/vdaIQsIiKCMWYqcBKwIdaxiIiIiIhI68RjwmId0CvWQUh9ywqKI+tj8zI75qQ9BoPLHXlrQnVGWChhIV2R2wtjLnfWQ35Y8Uxs46mj79BBDJp4ZvhdiHf//ReC/vqjI6y1bN1X0Ww/Pc4czGm9p+Cyzvfw/EWfsGXT5ihELCIiXZkx5q5mlt8aY14D3sP5e+dfMQ5XRERERERaKR4TFv8FTjLGDI51IFJrWZ36FeNyM2MSg7EQCNewcLuUsJAuqt60UP8Fa2MXSwNnf+tGPAndAfBVbOOV+2unrdpTWsUNjy7i/L98zN7S6ib7MG7DUddNYZJnaGTb808+R3V108eIiIg04m7gp+HXhsv3gLMAA/zJWnt/h0cnIiIiIiKHJB4TFvcDbwPvG2OuNMYkxTgeAZZu3Q9AktfFsJz06Jxk1YvwxasQCh60y1qLAYLGGWHhVsFt6ap6DoP+k531Patg7+rYxlNHQlIi0675auT9xk9fZP6LHwPwqzdXM2fNXorKfdz+3HJsM4kWd1oC0685i94hp1h3ia+MN558ObrBi4hIV3MP8LPwa8PlTuB6IN9ae1usAhQRERERkbbzxDqARqzHeRoqF3gceNwYsweobKSttdZqJEaUFZVVs3Wf879/dL9ueN1RSBYEAzDr/+DAVsgcAF+bB4l16iMGLMHwdFAAHre7kU5EuohjvwY7jnVGW/QcFuto6hk783jWLjiFrZ+9B4SY/8yD9Mzrz4/PGsHctYUUllUze81e/vvJFq45Lr/JfpLzMzl3+pk8+sGzBEyQ5Zs/Z9jCFRw9+ZgO+ywiItJ5WWvviXUMIiIiIiLS/uLxMfV8YEB43YSX3uHtjS0SZXWngxobremg1rzhJCvAuUFbN1kB2GAoUr8CwONRwkK6sFEXwsyfx12yosaFd3yTtO75ANhQKa/96XfYfVX89pLaZMMvXv+CdbtLm+2n34xhTO07IfL+1Tdfp2xfSVRiFhERERERERGR+BePCYuBbVgGxSjGI8r0Yb14+ztT+fVFozl3TN/onGTB32vXp9xy0G7rD0XqVwB4PPE4OEjkyODxern8Zz/F7U0BIFi9iWd/+RATe2Zw3XFOvrk6EOLWp5ZRHTh4ircaxhhOvGEmed5eAFTaal789zOEgqEmjxERERERERERka4r7u76Wmu3xDoGqc/tMgzLSY9e7YqdK2CLMw8+2UfB4FMOamIDIQJGCQs5QlkLJr4KzXfr2ZNzv/tDXvrNTwGoLP6Q5389gNt+fD7zNhSxbk8Zn+8s4fez1vLjs0Y02Y8rwcMF117K3//9ENX42VC+jXn/e5cTr53ZUR9FREQ6AWPMXYdzvLX2Z+0Vi4iIiIiIRI/u+krsLXiodn3KLY3emLWB+lNCeT3ejohMJLZKdsLyJ2HZE3DVs9B9YKwjqmfwhAlM+tJlLHrlacBStOV53vl7Dn+8cgwX/n0+vmCIf8zdyLSjenLCkOwm+8nKzebME07lpY/fBOC9DfPp8UYPRpw1ocljRETkiHM3YA/jeCUsREREREQ6gXicEkqOJOWFsPJZZz2xGxxzeaPNbMDWmxLKm6CEhRwBlj8J790DRetg2f9iHU2jTrziSvoNH+O8sRUUrHiCHbMK+MHpR0XafO+Z5Ryo8Dfbz9jTpjA+b5TTjbG8tOAtdizcGLW4RUSk05nbzGKAPS20ERERERGRTiAuExbGmDxjzN+MMeuMMRXGmGATSyDWsXZ1H67byx/fWcvsNXsoq47C/+5PH4FgtbM+/pqDim1HBEIETe0Ii4SEhPaPRSTejL0STLjA/LInINR0PYhYcbncfOl7t5OckQWADWzn8w9eZFQRnBgeVXHa0b1JS2p5QN/Z113AgG5OnZxq4+eZ15/nwPq90QteREQ6DWvtdGvtjMaWcJM3m9pfp42IiIiIiMS5uEtYGGOGA0uBrwCDgSScp6YaW+Iu/q7mjZW7+NN767jhkUV8tv1A+3Ye9MOifznrxgWTv9JkU2dKqNqbtUpYyBEhPQeGnuasl2yHjbNjG08TUjK6cd73f4xxOcmVYPUiFr06m6/n9uauc47mZ+eNxO1quQaH2+3m8luuISshA4BiU85z/32a6t1lUY1fRERERERERETiQzze8P8lkAXMAo4FullrXU0tsQ2161u2tRgAl4HR/bq1b+db5kHZLmd92FmQNaDJpiFfsMGUUEpYyBFi3NW160v/G7s4WtBv2AimXX1D5L2/4k2WPL+UkzPSMW0oGJ6ckszVN11LonG+x7dSyGv/fJ5gqa/dYxYRERERERERkfgSjzf8pwEFwHnW2oXW2tJYB3SkKq8OsGZXCQDDcjJITWznGu2DpsE3FsKkm+C4bzTbNOgLEqgzJVRiYlL7xiISr4aeDinhgtWrX4eKfbGNpxnjzzqPoZOPd97Yanxlr/HWP5exe3NJpM1n2w/wxIKCZvvp0Subyy6/FBdOomNlYBNz//4Goer4mxJLRERERERERETaTzwmLFKAhdZaPU4bYyu3HyBknfWxuZnROUnPYXD272HA8c02C1bVH2GRmJgYnXhE4o0nAcaEi9EHfbDimdjG0wxjDKd/7Va69e4DgA3upurAbF7/y3IO7K3kg7V7ueyh+dz50kpeX7Gz2b4GDRvCGaeeEXk/t2w5Kx+eiw2GmjlKREREREREREQ6s3hMWGwEUmMdhNROBwUwLloJi1YKVgcJUmeERZJGWMgRpN60UI+DtbGLpQWJKal86bYf4fZ6AQhWL6esaAWvPbicJWsLKfcFsRa++/QyFmwsaravySdOYdLoCQBYY3lj1zw2PbUUG8efX0REREREREREDl08JiweB6YaY3rGOpAj3dKC/ZH1sXmZ7dexrwJCbZvaJdighkVicnL7xSMS73qNgH4TnfXdn8HO5bGNpwW98gdx8g1fjbz3l7/Lvh1byPuigkvH9gPAFwxx838+Zd3u5mf9O+P8sxjU16lvU238vLLmPfa+tT56wYuIiIiIiIiISMzEY8Li98B84E1jzKhYB3MkqxlhkZ7oYUjPtPbr+KM/wJ/Hw/y/QHXrSpSEqhvUsFDCQo40NaMsvCmwd3VsY2mF0SfPZOS0U8Lv/PhKX2DH2s1MP+Bm2lCnJkdJVYDrH1nE7pKqJvtxu91ceu0V9EjPAqDYVcEr896idMGOaH8EERGJI8aYa5tawk2GtKKNiIiIiIjEuXauotx2xpj3G9nsBcYDy4wxBThFuBubuNxaa09pZLscpp0HKtldUg3AMbndcLlM+3Tsr4JPH4GKQnjnLhh5ASSmt3hYyB+qN8IiKTmlfeIR6SxGXQTGwMgLISkj1tG0yBjDKV/+GkXbCti1YR3Ycnxlz7Fx8WVcf/IIivr5+Gx7CduLK7n+kUU8c8uxpCd5G+0rKSmJq264hn/89SGqAtVscxfx9mtvcna3C0ge3r2DP5mIiMTIo0BTcwJa4ITw0tT+/0QhJhERERERaWfxMMJieiNLzR8bLiAfmNpEu+kdEeCRaGlBcWS9XQtuf/ack6wAOPo8yOjbqsNCDaeEUg0LOdIkZcCE6ztFsqKGNzGJC390D9m5zpROhErxlT7HqvfXcsfgfvTPckZKfbGzhK/9dwm+QNMFtbt3785lV12OCyd5+pl7K/OeeIfqjQei/jlERCQuFBzGsjUG8YqIiIiIyCGI+QgLYEasA5CD9c9K5upj81i2tZiJA9rpCWZrYcHfa99P+WrTbRsI+UME60wJlZCQ0D4xiUhUJadncPFPfsHTd/+Q/Tt3YEPF+MqeZ9nLLn59xWi+MXc1xRV+PlpfyB0vrOD3l4zBmMZHdA0cOJCzzjmb1157DYCPzGpSH0li7DVTSToqqyM/loiIdDBrbX6sYxARERERkeiLecLCWvtBrGOQgx3TP5Nj+me2b6db5sGulc563/HQf1KrD7UNpoTyehufOkbkiFG4Dta/C8d+LdaRtCg1M4uLf/ILnvrpDykt3IsNFuIrfYEVz3i4/6oR3PLmKgIhy+T87k0mK2pMnDiRvXv2smDhAqyxvONajv2PZewVJ5I8MruDPpGIiIiIiIiIiERDzKeEMsa8b4y5PdZxSAdY8Lfa9WO/5szH30rOlFC1Iyw8npjn2kRiZ+E/4e8nwlt3wMbOkfPNyO7FJT/5BSndMgGwwd1UHniBdc+t43dnHM2/rp3I5ZPzWtXXzNNncvSIowEImhDvulew/ImPqFi6J1rhi4iIHDJjzGZjjG1imdNI+0RjzF3GmHXGmCpjzA5jzD+MMb1iEL6IiIiISIeKecICpw7F8FgHIVFWXACrX3fW03Lg6PPbdLgNhAgYjbAQAZzp1QJVzvrL34Tq0tjG00pZffpxyU9+QVJaOgA2sJ2yPS+y/40tTOmb2ep+3G43F118Ub2kxTueFax4dh5lC3ZGI3QREZHDdQC4p5Hl0bqNjDEu4OXwvkLgfmA+cBMw3xjTs8MiFhERERGJgXhIWEic2ba/gr2l1e3b6cJ/gg2PkJj0ZfC0rQaFDdjaERbW4na72zc+kc5k0k2Qf5KzfqAAZv1fbONpg+y8fC768c/wJjkFt0OBzRQVvMBrDy7FX12blHxs3mbueXUV1tpG+6lJWowYMQIIJy28K1j18kJKP9we/Q8iIiLSNsXW2rsbWR5t0O464HTgSeB4a+0d1tqLgK8Dg4BfdGzYIiIiIiIdSwkLOcj9765j0i/f5cRfv8+mwvLD79BXDksec9bdCTDh+jZ3Yf3BSA0LfdHKEc/lgvMeBG+q837xI7D+vdjG1AY5g4dy4R0/xeN1Epch/3q2f/Ecb/9zBaFgiGc+3cpPX1nFIx9v5kcvrCQYajppcfHFF9dLWszyLufzNz+l5N0tTSY7RERE4tjN4dcf2fq/yB4CNgJXGWOSOz4sEREREZGOoUIAcpClBfsB2F1SRZ9uSYffob8SRl4Ay592XtPaPv1uKBAgaJwRFq2vfCHShWXlw8yfwevfc96/8m34+jxI6hbTsFqr/4hRnPf9O3nxNz8nFAwQ8n3B+oXP8UFWMvaoFFwGQhaeWrSVSn+Q310yBq/74HRlTdLi2WefZfXq1ZGkBe/DMF+QhOk5Mfh0IiIiB0k0xlwP9AVKgEXW2gV1GxhjkoApwBpr7Za6+6y11hjzDnALMBH4sLUnNsb0b6FJ5JdlZWUllZWVre1aokTXoPPRNeucdN06J123zkfXrHNqzXWL1rVVwkLqOVDpZ8NeZ1TF0X0ySPK2w9RLqdlw7p/glJ/WzrvfVv5QnREWSlmIADDhRvj8Fdj0AZRsg1k/gS/9OdZRtVr+2Amc853befWPv8KGQgSrl7P8bS+jA5dy/yVjuO25FQRClpeX7aDSF+TPV44j0XPwz6SapMVzzz1XL2lhPoKB5T7wokyniIjEWg7wSN0NxphFwBXW2g3hTYNxBhOva6KPmu1DaUPCAtja2oZz584lOzu7FS31Z2Q0zZo1K0o967pFi65Z56Tr1jnpunU+umadU2uuW2FhYVTOHS+z61xnjAkewhKIdeBdzfKtxZH1sbmZ7dt5SnfI6HtIh9pgnYSFbjyKOGqmhkpIc94v+Q+seze2MbXR0MnHc8bXv0tNRiFY/Skr33sK3zs7ePCCY0gIj6qY9flubv7PYip9wUb78Xg8XHzxxQwbNszpx4R427ucTUvXkL8+FTQ7lIiIxM4jwClAbyAVGAc8DkwC3jPGpIfb1QyTPNBEPyUN2omIiIiIdDnxkorSLeg4saxOwmJcXlbsAmnABoMEwlNCuYy+XEQiMvNg5i/gte8471+9Fb69BDyJMQ2rLY4+aQb+qire/ddfAAhWL2HryjIyi87jwXNHcuusz6n0B5m7di/XPbKQf183kfQk70H9eDweLrnkEp555hnWrl0bSVqcvm8sg9amYU8JdfRHExERwVp7T4NNy4BrjfNv2mtw6lb8IYoh5LawPwdYBDB16lT6929pBilg/vuHH5U0aebMmdHpWNctanTNOiddt85J163z0TXrnFpz3bZt2xaVc8dLwuIt4NexDkLqJywOe4TFvo2wdhaMvRKSMg6rKxsMQHgmGLe7HaapEulKJlwPn78M+zfBeX/pVMmKGmNOOxOX2807/3wQGwoR8q9l//YnqXryfP541hB+sGgDpdUBFm7ax9X/XshjN0wiMyXhoH48Hg+XXnppvaTFLO8yTt8/lpJH15B47Ujc3Trf/x8REemSHsJJWJyAk7CoGVnR1AiKmn9QNzUCo1HW2mb/kjR1HgZKTk4mOVk1vWNN16Dz0TXrnHTdOiddt85H16xzas11i9a1jZeExS5r7QexDuJIZ62NFNzOSvEyoEfK4XW44CFY8Hd4/xdw2eMweMYhdxWwtdPAeFzxMpOZSJwwBi78B3hTIDEt1tEcstEnzyQ1M4tX//grAr5qbGAblfufZP0rF/KL44dw95bt7K/0s7mwnN0l1Y0mLKA2afH000+zbt06AibE2wnLOHlnkNCDPnpcfTSJAw4viSoiItIOaib9TQ2/bgRCODUqGlOzvakaFyIiIiIinZ7u/EpEwb4K9lf4AWd0hTmcqZeqSmDp/5z1UAD6jDms2IKh2oSFRliINCKtV6dOVtQYNH4Sl/70XpLTnYSCDRVRXfIkBR+v4ocp3RmWlcJjN05mWE56s/14PB4uu+wyBg0aBEDAhHjHu5wVFRvY84/llC/aFfXPIiIi0oIp4dfNANbaSmAhMMwYM6BuQ+P8w/w0oBz4tANjFBERERHpUEpYSET96aAOs37FsifAV+qsj7nMKbh9GELUzj3v9cTLwCCROBYKwfrOVYC7Rp8hw7jiF7+jW+8+zgZbhq/0afauXsU15UnkeerXr7C28YraHo+HCy64gMzMTKedgU+865hnVlP0/Br2v7weG1RdCxERiR5jzHBjzEHDlo0xw6mdEveJOrv+EX69z9R/eugWYBDwv3BiQ0RERESkS1LCQiJ2l1SR4Ha+JMbmZR56R6EQLHyo9v2Urx5eYECozpRQ3oSDi+2KSB37NsFj58J/L4LVb8Q6mkOSldOXK3/+W3oPCs9+Yavxlb3Avm3Lee7Xn7J5hTOLRihk+eYTS3liQUGj/Xg8HvLz8+ndu3dk2xee7bztXc7++Vsp/PdnBMt8Uf88IiJyxLoc2GWMec0Y8xdjzG+MMS8BK3CKXd9nrZ1bp/1jwNvAFcA8Y8yvjDHPAX8FNgE/6djwRUREREQ6lhIWEvGVqYNZec9MXvz68UwccBgjLNbNcgpuAwyaDr1GHHZsQWqfoPZ6lbAQaVbBfNjykbP+2negYl9MwzlUKd0yufSn9zJw7ITwliD+8teoLF7E639bweK3NvOHWWt4feVOfvziSu5+ZRWBRkZMGGPo27cvZ599Nq5wDZzt7n28kvAphZt2sefBZfh2lHXgJxMRkSPIbOBN4CjgauC7OFNBvQGcbq39cd3G1toQcB5wN9Az3P4E4N/AcdbavR0WuYiIiIhIDMQ8YWGtdVlrb4x1HOJI9LgZl5dFauJhTLu04O+16+0wugLqTwmVkNB4oV0RCRtzBQw93Vkv2w3PXAv+qtjGdIgSkpI57wf/x6gZp0W2BSrn4C//gPkvbsC1cB+ecD7z0XmbueHRRRwI1+JpaNSoUVx33XUkJycDUOwq5+WERew4sJu9f1tOxQrdAxIRkfZlrf3AWnuZtfYoa203a63XWtvHWnu+tXZWE8dUW2vvsdYOsdYmhtvfbK3d3dHxi4iIiIh0tJgnLKSL2bMaNs521rMG1t40PQw2aAkaJSxEWs0YOPdPkByuHbP5Q3jhZqhTvL4zcXs8zLzl2xx70RWRbcHqxfjL3yBhexnf92TSHWea7w/XFXL+Xz9mw97GR0wMGDCAm266iR49egBQZfy8kbCUdcEd7HtiNQfe2owNNV4TQ0REREREREREoksJC2lf9UZX3AKuw/8Ss8EQgbpFt5WwEGlZRh+48mnwhut8fvEKvP49aKJAdbwzxnDCpVdx2s3fxBjn50rIvwZf6VP49+zhFl8aIzzOz4ZNheWc/5ePmbu28RETPXr04KabbmLgwIEABE2IOQmrWOzZSMmcAooeW0WwvPFRGiIiIiIiIiIiEj1KWAgA97y6iq/9dzEPfbCBCl/g0DoJVMPnLznrCWkw9qr2CS4QImhqnwxPTEpsn35FurrcyXDp4+AKT/G2+BGYfW9sYzpMx5x6Buf94E48Cc7PARvcg6/0v1QfWMu5+zycnpgKQGlVgOsfWch/PtnaaI4mOTmZq6++mgkTJkS2LfVsYrZ3FWVrCtl9/2Iq13TO2h8iIiIiIiIiIp2VEhYCwLtf7ObNz3bxx3fXkuA+xC8LTyJ8czGcchec8B1IymiX2GwgRIDahEVCohIWIq029FQ4v87Ip7m/gQUPxS6edjB4whSu/OXvyczp42yw1fjLXsJX/hGjdwW4ITEDl4WQhfveXse8PabRftxuN+eccw4zZ86MbNvo3s0bCUsoKS2l6JFV7H9pPSFf55xKS0RERERERESks1HCog5jzCRjzBvGmGJjTLkx5hNjzKWtPNYYY840xvzNGLPCGHPAGFNhjFlujPmxMSYp2vEfqsKyarbuqwRgdL9ueA41YQGQ2gNO+h5M+0E7RQfWX39KqMTEuP1fKRKfjrkEzvh17fsNsyEUarp9J9AzL5+r77ufIZOOi2wLVi3AX/YiPXaW8B1PN5JDMKx3GhOzm54GyxjD8ccfz+WXX47X6wVgj6uEFxIXsMG1i/JPdrLngaX4tpZG/TOJiIiIiIiIiBzplLAIM8bMAD4GTgSeAf4O5ABPG2O+14ouEoE3gBuAHcA/gH8DycAvgbnGmJQohH7YlhUUR9bH5WXFLpAm2KCtN8IiMUkJC5E2O/arcNL3YcwVcNnj7VJfJtYSU1L50vd+zNSrb8SEP08osIXqkv9idm/hVpvOfdMHk+huua/hw4dz44030q1bNwB8JsDshFXM8a6iorCUPX9bRsl7Bdhg56wBIiIiIiIiIiLSGXT+O1btwBjjAf4JhICp1tqvWGu/B4wB1gL3GmMGtNBNEPgJ0Mdae4a19gfW2m8BI4FXgUnAN6L2IQ7Dsq3FkfWxuZmH1om/sl1iaUzIFyRg6oywSEqO2rlEurSTfwLn/RXc3lhH0m6MMUw690Iu+b9fktIt09loS/GVPk313k9Z+PA6KnZ6Iu3X7ynlZ69+TpX/4Gme+vTpw1e/+lVGjx5d2969ixcSFrDLFlPyzhb2PrScQGH0ft6JiIiIiIiIiBzJlLBwnAwMBp6w1i6r2WitPQDcCyQA1zXXgbXWb639pbV2f8PtwH3ht9PaM+j2snRrbciHlLDYuRx+NwzevhP2b2m/wMKCVcF6IyySkltOWCzfu5y3N7/N1pKt2MYq7oociYw5eGRF8VbYuzY28bSj3KNHc82vH6Df8KPDW0IEKt+nsvh1ipZ6OLA2gcpqP996chkPf7yJ8x78mLW7D57mKTk5mYsuuogLL7yQxHC9nDJXFa8nLGaxZwNVBQfY/cASyhbu1M8WEREREREREZF25mm5yRFhevh1ViP73g6/Hk6ywR9+DbT1QGNM/xaa5NSsVFdXU1nZtid/Q9ayPDzCold6ApkJts19eD9+EE/1AZj/IL70/gTHXd+m41tSUVpRr4aFcbvrxRiyIVym/k3YZ754hlc2vQJAmjeNYVnDGJ45nGFZwxiRNYLc9NyDjulIVVVVja5L/OqK18wUriHhmSsAg+/qV7AZ/WId0mFxJyVzzvf/j0+ee4Llb70KQMi3Gl9gLwfWfokXfruCykA5GFizu5Rz//wRP5w5hMsn9sOY+oW5hw4dyg033MBrr73Gtm3bsAaWejazzbWP6f6R2BfWU/7ZXtLOzceV1nVGrMSLrvj91tXpmnVO1dXVsQ5BRERERESkHiUsHEPDr+sa7rDW7jLGlNVpcyhuDL82lhBpydbWNlywYAEbNmxoU+e7KqCs2vkyyPFW8c4777Tp+AR/CTNXvQCAz53CrF09CM46lI/ZtLQ9XoKmdoTFosWLSVq1CoDSUCmPlj3KGclnMNRbe4kWlS6KrJf5y1i8ZzGL9yyujZsEMl2ZHJ94PBMTJ0a2+62fT6o/IdEkkmySSTJJJJkkDAaLJUgQiyVkQ+R58vCa2huVRcEidgZ3EiRIiBBB67yGCBGyIYLh/5JNMlMSp0SOmzt3LgurF7InuCfS3ob/C9nadYAhniGMTxxf7//PaxWvYbGYmv+MwV3zn3HjwYPHeDjKcxQ93D0ix1WGKtke3I7XeEkwCSSQQKJJJMEk4MET04ROvJs7d26sQ2gXx63/Db1KdwDgf+RcPhx6J35Peoyjagfdc8g58RR2fzIXG/BjQ0X4Sv5LKDCdixNGsSHFxVteP5WBED97Yy0vzl/NFYNDpDaSd8jOziYYDLJz504A9rpKeDFhIccFjuKotZY9f1rK9gEVFPX0gTn4eDl8XeX77Uiia9Z5FBYWxjoEERERERGRepSwcHQLvx5oYn9JnTZtYow5E7gF+AKnCHdc2VxWe4ctP63t05vkF72P2zoDR7b0mEbQndhusdUwQVNvhIXb7VTQ9Vkfj5c/zu7Qbh4vf5zLUi5jZMJIAE5NOpVtgW3sDO5ke3A7pbb+1C8+fOwJ7cFnffW2V9pK3q56m9a4Lf02uru7R96vDazl9crXWzyuh6tHvYQFwBr/GtYE1rR4bLJJZjz1ExaLfIsIcvB8/A11S+lWL2GxK7SLR8sfbbJ9AglOIsMk8I30b5Boaq/tSt9K1vjX4DEevHidV+PFQ+2rwZDhyuAo71H1+v3M9xlVtuWnb/t7+pPjjgwgwmd9rPCtaPE4gJHekSS7aqcO2xvcy5ZAy9OVeY2XMQlj6m3b4N/A/lDttGkWWy8RFcJJRvVx92GYd1i9Yz+o+oCxCWPp5jqkHx9Rt2TALZy47hekVe8mvWoHx274A/OG/JCgu/MXtk/LG0RCZnd2ffguvgP7AT+BincI+dYz2J7GLZ5U3k/0syIhyMr9LgpWGK4ZEmJot/o/B40x5OTkkJ6ezpYtW6iuriZggnzo/YKtrkJO9I8gf0Ma2Xv8FAysoDK15e9FERERERERERFpnBIWUWSMmQQ8jZMIucRaeyjj7nNb2J8DLAKYMmUKgwcPblPnH7+6GnCesL5oxkQm52e1/uCgj6S/fR8Aa1zkXvgz+ndrKdy22/fRTjZsrx38cuqpp+Lxerh93u3sOODE3iulF9eccg3ZydkAzGRmvT4KKwtZW7yW1ftXs2b/GtYUr2F/9X4mjJ7AzIG1bTcc2FA7CVgLjj/xePLS8yLvS9aX8PqSlhMWicmJTJ06NfIE6tSpU3n707dZs6PlhMWAvAHMHF//s/302Z9CK3JNkydM5vg+x0feL9i1AJp5CNaHz0noWDjztDPxuGp/XKxevppla5a1eM4pvafwzWnfrLft32/9m00lm1o89tYxtzJzWO1n3V2xm5+99rMWjwO4bOplDO5W+73w8saXeenTl1o8rldyL34w8wf1tv1o3o94b9t7LR57/qDzmTmx/rW594V7+ST4CT+e+GNOyT2lVbF3NFM8GfvfczHle+hesYGz9jxI9UWPQ1rvWIfWLkpPm8lLf/otpRudOh2hwCaqSx7DmzyDmcERjA14eSuxmj3AXz5385UTB/CN6QPxug8eYeTz+XjvvfdYscJJnG1272WP6wDH+Y8iv7QXR6/sRtLkXiTP6Icr0d2RH7PLqaqqqvczMimp8yfRujpds86prSNzRUREREREok0JC0fNyIqmHoPOAPY3sa9RxpiJOFNAhYDTrbWrDiUwa+22Fs4TWU9MTCS5FQWp67p52hBG53VnacF+Jg7qRXJiG74kVrwK5XucOIafTVLOUS0ccGjc1k2gzpRQ6enp/Hbxb/lwx4eAU6Pib6f+jdysppMlucm55HbP5RTq3zS21tb7f5jnzuOP0/9Iqa+UEl8Jpb5SSn2lWCxu48ZlXLhdzlRLPTN6kpxU+/97Ur9JfN/1fTwujzMVU51Xr8uL2+XGYzykeFPq3chJSkri9sm383X/153+w+epWdzGHYkx1Zta75wAT53zlDN1lHWmkAraIP6QH3/Qjz/kxxfy4Qv6OCbnmHpfHwN7DOTm0TdTFayiMlBJhb+CikAFlf5K532gggp/BQEbID21/jRBgVaWY3G73Qd9TbZ2qimv11vv2KRQ629+JSUm1Ts2ISGhdQcaDoq3ZkRPi1z1j7XW4na5KfWV8qP5P+LCwgv54aQfkuJNaV1/HSV5OFzzIjx6FlQdwLVrBcn/PQeufAZ6H93y8Z1A72OnkZY7kAPLFlBxoBhsNf6Kt3D519PLnsK1/lQWJwT4ONnPPz/ewplj+jM2N/OgfpKTk7nwwgsZMWIEr7zyCpWVlVQYH+8lfEZusAfHB4bBgj34Pi8m8+yBJI/peVBtDGm7pKSkNv9uk9jSNes8EhPbf2SsiIiIiIjI4VDCwlHz+P5QYHHdHcaYHCANWNjazsLJincAFzDTWruohUNiZmjvdIb2TueaYwe0/eAFf69dn/K19guqgaAvWDsllIUn1zzJ/774HwAe4+EP0//AkKwhh9R3w5uJGQkZnDrg1EPqa3j34QzvPrxVbRsWNs/vln9I56w576EYkDGAb4//9iEd+42x3+CqEVdRHaymKliFL+ijKhB+Db+3WHql9Dr42HHfoNRX2kiv9Y3KHlXvfUZCBvccf0+r4uuZ0rPe+3G9xrXq2KRGpkK6dNilnNDvBHw+H6vCtVPGjB5DcmIybpcbr3GSUX1S+9Q7rjJQyfF9j+ftzc6QnRfWvcCS3Uv41dRfMbLHyFZ9jg6TMwpufBv+dwkc2OosD58Olz4Gg0+OdXTtIrVfHmdechnznnyM1R9/AEDIv57qku14U05hIkcx3O8mcVJ3xvRvfgqvESNG0K9fP1599VXWrXN+fWx1F/Gc6xPGBwYyujSPfU+tIXHRLjLPG4K3V5wlqURERERERERE4pQSFo4PgB8BM4GnGuw7vU6bFtVJVrhxRlYsaK8g48rWRbA9nNvpPRoGHN98+8MQ8gUjNRpcFn6z6DeRfXcddxfH9T0uaueWxmUmZZKZlHlIx5424LRDOi7Fm8KFQy88pGMHdhvIwG4DD+nYKX2ceiOVlZUkr3eeGJ6ZP7PFp4dTvCn8dupvObHfidy74F4qA5VsLtnM1W9cza3jbuXakdfGV2HzXiPgpvfgyctgx1KoLoH/XQrfXgKZeS0f3wkkpaVz9rd/wNApx/Puv/5KZckBsJX4y18j6BtGasrJmIX7eaVkGdOuGEZm7xSq/EHe+mwXXxrTF5erNsGZkZHBlVdeyRdffMGbb75JaWkpQRNikXcD6927OME/nJwNsPtPS0g/qR/pJ+fhStA0USIiIiIiIiIizYmju2Ux9R6wEbjSGDO2ZqMxphvwY8AH/KfO9j7GmOHh/dTZPgEnWeEBzrTWzu+A2GNjwd9q14/9KkRx2pOQL0jAOCMsjLXYcMGGrxzzFS4YekHUzityuIwxnD/kfJ4999nIqIpAKMDvF/+eW965hT0Ve2IcYQPpveH612HY2c77k3/SZZIVdR015QSu/91fGDq5NtEa8q+huuQ/BH0b2LZ6P0/+fAELXtnIP2av5ztPL+OCv81jxbbiev0YYzj66KP5xje+wZQpUyIjtva7ynktcTFzPV9QFfRROmcbu/+wmMrPCrG2FQVnRERE/p+9uw6TqzofOP4947Ou2d24O0kgQUMIBLcWKBRrKUWKFGuRFlpoS7FSqND+oNBSXIu7axKIC8SJJ+u+O7vj5/fHubM7s5aNrr2f57nPzFybM3tzJ7vnPed9hRBCCCGE6KMkYAForcPAJZifxxdKqUeUUvcDy4DRwC1a601xh9wNrAKaesuVUlmYYEUGMBs4Vin1+xbLdfvi83TWO98UMfe7cuoDnatHkCB/P0jJh6QcmHjmnm9cnEggRNiaYYHV2XfSsJO4aspVHRwlRPcxJG0IT534FBdPvBiF6dT+uuhrznzjTKr91V3buJZcyXD2U3DW4zD92q5uzV6TlJ7Bqb+8mZOuvgFPcopZqX2EfK8T9L1HJFjPwnc2Uf/aNoaFbCzbWs33/28ON7+ynEpfMOFcHo+HE088kUsvvZT+/fs3rV/rKOQl91essxURrvZT8fQqyv61nMCmGoQQQgghhBBCCCFEa5ISyqK1/lQpdTjwB+BswAl8A/xKa/1CJ06RBmRaz0+wlpY2A3/b/dbuPq01v39jBaV1AdI8DpbedlxCupMdOvwXcMjPoWIdODtfDHlXmICFNcMCzQH9DuCP0/8oxWxFj+K0O7lu6nUc0v8QfvPlbyhtLOXEYSfucmqtvcpmhwltzF5a9RYMPhSSs/d9m/YCpRTjDj+SQeP348N//5MNi025oWhwJYHgOhyeA0nzTOVMn5u1zgifeEM8N38r73xTzA3Hj+G8gwZjj/ve7N+/P5dccgkLFizg448/JhgM4lchPnetZG2kkOnhsWRshrJ/LcczPpv0E4ZKfQshhBBCCCGEEEKIODLDIo7Wer7W+kStdbrWOklrfXBbwQqt9YVaa6W1fjxu3SZrXUfL0H35eTpSVOOntC4AwH4D03cuWBHjcEHe3i8eHA2Em2ZYOJWDB2Y9gMvu2uvvK8TecEjBIbz8vZf58fgf88tpv+zq5nTedx/BixfAo8dAxfqubs0elZKVzWk33cbxl1+LyxsLIIQI++cSqHmMSGAlo4I2Lq5zc6DfQV1DiFtf+5bv/XM2izZXJpzLZrNx8MEHc9VVVzFhQvP3Y5G9mlfc85jrWEMjQfwrKyj56yKqXllHpDawDz+tEEIIIYQQQgghRPclAYs+aunW6qbn+w/KbH/HbiAUCmFl0cFus5HuTu/4ACG6uQxPBjcdeBNuuzthfbGvGF/I10Wt6kA0Au/+GnQEKjfAf46Gzb2rRI9SiolHHcvFf3+EyceehLJZ/z3qekIN7xGsewZbcBtH+p1cUOdmQNjGisJafvDQV9zwv2WtzpeWlsZZZ53F+eefT0ZGBgBRNCsd23jRM5cl9o2EdATf/GKK/7yQmvc3EfXvQno+IYQQQgghhBBCiF5EAhZ91JItVU3PpwzK6NxBWsOcB6B6y95pVAuPLH+EJ1c8STjUnC/eruSfrOid5myfw1lvnsXv5v6u+xVmttnhx69CP2vGQGMVPPk9mPdIU12Z3iIpPYNjLrmSn/z5/xh+wIFN63WklFD9/wjWv052qJrz6t2c0ODEG4VhOcntnm/UqFFceeWVHHnkkTidTgBCRFjk3MCL7rmssm8jEgpT9+lWiu9dQN3s7ehwdK9/TiGEEEIIIYQQQojuSHp/+6j4GRZTBmd07qDNc+DDW+Hvk+GTO/dKu2Le2vAW/1jyD/688M+U+8qa1tts8k9W9D51wTpu+uImqgPVvL/pfZ5d/WxXN6m1jEFw0XswYpZ5HQnCuzfCM2dCXUnXtm0vyB44iNN/9TvO/O0d5A4Z1rQ+GlpPsPZJQg2fMNEf4vJ6L2O2hSjfVt+0T3VDkLK65jRPLpeLI488kmuuuYZp06Y11d9pVEHmONfwsnsem2xlRBpC1Ly1geL7FuJbVIKO9K5gkBBCCCGEEEIIIcSOSO9vHxSKRFm+rQaAQVleclLcOzjCMu9f5lFHIWf0XmodLChewG1zbmt6bdPN9TUcdvtee18hukqqK5Xbp9/e9Pq+hfexrKx1mqEu50mD816Eg69oXvfdR/DQobD67a5r1140ZL8p/Oiev3H85deSnJllrY0SCSwlUPMoNMxn9ewtvHDHfF6+dyGrvy7igQ/WMfPPn3L/B2uo9YeazpWamsopp5zCz3/+c8aNG9e0vkY18JFrOW+5FlGiqolUB6j631pK/rIQ34JimXEhhBBCCCGEEEKIPkMCFn3QmuI6AlYH2JTO1q+o2tzcIZmSD+O/v1fatrFmI9d9eh2hqOnkO2v0WbhtzQW27Q4JWIje6ejBR3PhhAsBCEfDXP/Z9VT6Kzs+qCvYnXDiPXD+y5CSZ9Y1VMDz58Hcf3Zt2/YSm81u6lv87REOO+t8HO5YkDdIuHE2gZr/EPYvoGh9OR8/voqk94s5qEbx9IfrOeLeT3n48/X4Q5Gm8+Xk5HD22Wdz0UUXMWjQoKb1JbYa3nQv4kPncqqVj3CFn6qX11F830Lqvy5EhyRwIYQQQgghhBBCiN5NAhZ90JKEgtsZnTtowb/NzAqAAy8Gh6vj/XdBRWMFV350JbXBWgCmD5jOLQffQiTa3NEnAQvRm117wLUc0O8AAEoaSrj5y5sT/v13K6OOgSvmwpiTzWtXKow7pWvbtJc5PR4OPfNcLv77v5l41HFgpXZCNxJu/NIELhrn44mGODDg5JI6D8eVKl5+fS1H3vspT3+9mUC4+XoOHjyYiy66iHPOOYecnJym9ZvtZbzs/ppPnN9QoeqIVAeofm09RX82NS6iwW76b0IIIYQQQgghhBBiN0nAog9KKLjdmfoVQR8sftI8t7tg6k/3eJv8YT/XfHoN2+q3ATAmcwz3z7wfh81BRDd3zjldzj3+3kJ0Fw6bg/tm3ke2JxuAuYVzeXj5w13cqg4k58A5z8CpD8Apf4XMoV3don0iJTOL4y+/hgvv+z/GHHZEXODCT9hvzbhonIfWAYaE7Xy/wc3p2xTvPbeaE+78lH9/sQFfIAyAUoqxY8dyxRVXcMopp5CSkmJOBWywl/Kqez4fOJdRqmqI1gZNjYs/LaD2s61ErXMIIYQQQgghhBBC9BYSsOiDBmUmMSYvFbfDxoT+aTs+YNlz4Dc1L9jvLEjJ3aPtieoot8y+heVlywHol9SPfx79T5KdyU3bY1wSsBC9XG5SLn+e+Wdsynw9/2vZv5izfU4Xt6oDSsHUn8CksxLXB+rhlZ9B1aYuada+kD1wMKdcexMX3vcgY6fPRFnXzAQu5hCsfZRw49doHSBFKw4NODmjSLHyxfX8/L45RCLN3212u51p06ZxzTXXcPTRR5OUlNS0bYu9nDfcC3nHuZhCWyURX5Da9zZRdM8Caj/aTLQh1LJpQgghhBBCCCGEED2SBCz6oF8cO5r3f3EES287DveOUixpDfPiRngffNkeb8+DSx/kw80fApDkSOLBox8kPzm/aXskPmDh7mSBcCF6sAPzD+Tq/a8GQKO5+cubqQvWdXGrdtJ7v4blL8BDh8Oy5813SS+VPXAQJ19zIxf+5UHGzziqKXCho37C/rmE6h8l1DgXHfVjQzEybOfArRGeufVrFr67CV9NoOlcLpeLGTNmcN1113HCCSeQltYcVC60V/GOawlvuhaxxVZOtDFE7UdbKLxrPhXPr8a/rgod7b0/ZyGEEEIIIYQQQvR+jq5ugOg6Xlcn6kGs/wTK15rngw+Dgsl7vB0nDTuJtza8RbGvmPtm3seYrDEJ2yM0p4RyeSRgIfqGiyZexLLSZSwoWcCth95Kqiu1q5vUeY3VsPEL8zxYB69eBkuehuPv3CvfId1FVv+BnHjV9Rzyg3OY9+qLrPzyU3Q0SjTsh/DXEFmKw7sfmknY7OnUVfqZ9/oGFry5kX7jM/nGE+Gnp41lSE4yLpeLQw45hGnTprFs2TJmz55NVZVJ51dqq+ED1zKyoylMDg9laLgfjUvLaFxahj3dTdIB/Uiamoczx9vFPxEhhBBCCCGEEEKInSMBC9GxZc81Pz/k8r3yFsMzhvP0SU+zpHQJMwbOaLU9SvOIYbcELEQfYVM27jj8DqoD1QxJG9LVzdk53gy4fDa8e1Pzd8imL+HhmTDlfJj1W0gr6NIm7k2ZBQM44cpfcMgZ5/D1qy+w8otP0NEokZCfSGgBqIWkZk8gENwPm72AaFRT/G0lucCTi78iPCyZM84Yw+QRWTgcDqZOncqUKVNYsWIFX375JWVlZQBU2Or5xPUtaSQxNtSf0ZECPDVQ9+lW6j7dimtIGklT+5E0KRebR/67F0IIIYQQQgghRPcnPRh9TGMw0rmZFTHf/z8YeQysfB3GnLzX2pXjzeHYIce2uS1Kc0oor1dGDIu+I92dTro7vaubsWs8aXD6v2DcqfD+b6BqI6Bh6dOw4lU4/Do49CpwJe3oTD1WRn4BJ1xxHYeccQ4LXn+JlV98QjgUBK2pK/8W+JbUnGFEmEwkPBSlbGRFbbC+kU//vIT/ZdqZMGMApx0zDK/LwaRJk5g4cSJr1qzhiy++oKioCIBaGpjv/I6Fzg0Mi/RjXHgAeTqd4OZagptrqX5jA96J2SRPzcM9IgNlU137gxFCCCGEEEIIIYRohwQs+hCtNdP/9AkZXiczx+Tyu1Mn7Pgghxsmn2OWPaTYV8zTK5/m2gOuxWnfcRHtiGoOWHi8nj3WDiF6olfXvcrk3MkMzxje1U3pnLEnw8hjYf4j8Pm9EKiBkA8+vRPWvAOXfmoKd/diGXn5HPuzq5h+zo9Z9uE7LH3/bRpqqgGoK98IbMSblkPQPQVHaCxKuXCiKKiKUvnGVu59Zwuesel8//ujGDsonXHjxjF27FjWr1/PnDlz2LhxI2CCu+vtxay3F5NpS2VsoICRkXzcYaekjBJCCCGEEEIIIUSPIAGLPmRzRQOVviCVviBDsrtmVLMv5OPnH/+ctVVrWV25mr8c9RfSXGkdHhNJSAklHWyib/KH/dw5705e++41hqcP57mTnyPJ2UNmJzhccNhVMPlc+PweWPAo6AhM/WmvD1bES0pL59AfnMuBp/6A1XM+Z9Hbr1G+dTMAjbXlwEfYPHMhawrhhvG4lfluzAkr+LaWd79dyIoDcpl50jByBqYycuRIRo4cSXl5OYsWLWLp0qU0NjYCUBWt4ytnHQtc6xmh8xkb6E+OTiVSE0hIGZU8LQ/vfjmSMkoIIfYSpdQA4CzgJGAskA9UAnOAe7XW81rs/3vgdx2ccpjWetNeaawQQgghhBDdgPRQ9CFLt1Y3Pd9/cGbHO4eDppNxDwpFQ1z/2fWsrTJFvLfXbyccDXd4jNaaaNwMC7fMsBB9lEazomIFABtqNnDhexfy55l/7ln1LZKz4aQ/w4GXmKDF/j9K3F5XDGE/ZA7tkubtKw6Xi4lHHcuEI49h8/IlLHr7NTYtWwxAyN8AhXNBfYU9fzS+0Cjc4eEo5cCFonhxOS8sLidvWBoTjxjAoMnZ5OTkcPzxxzNr1ixWrlzJwoUL2bp1KwBhHWEN21nj3k6uK4NRDXkMD+fhwRmXMmo93ok5JE3th3u4pIwSQog97GrgV8B64AOgDBgFnAacppQ6T2v9QhvHPQFsamN99V5ppRBCCCGEEN2EBCz6kPiAxZRBGe3vGI3AQ4dB/kQ4+AoYfPBuv7fWmrvm3cWcwjkApLnSePCYB8nyZHV8YEQTjqthITMsRF/ldXj5y8y/cO7b51IfqmdV5SrOfutsfnfo7zhx2Ild3bydkzsGTrq39foPbzP1LSafC9OvhewR+75t+5BSiqGTD2Do5AMo37KJRe+8waovPyESDoPW+IrWAGuIepLQqeOxh8YA/VBKUbKxlpKNtYTsUJrtYOIRAzj18MFMnjyZyZMnU1JSwqJFi1i2bBmBQACAsmA1ZY5q5jnXMdjejxENuQyK5mAPQcOSUhqWlGLPMCmjkqfm4ciW71shhNgD5gNHaq0/j1+plJoBfAw8pJR6TWsdaHHc41rrz/ZRG4UQQgghhOg2JGDRhyzZUtX0fHJHAYt1H0DFOrM0VsMFr+32ez+24jFeWvsSAE6bk78f9XeGpQ/b4XE6HCUcX8MiKXm32yJETzU0fShPnPgE1392PZtqN+EL+bjpi5uYXzyfXx34KzyOHjwDafsiWG4NMF38BCx5CiacATN+CXmdqLfTw+UMHsrxl1/D4ef8mOUfv8eKzz6iprQEsGZd+BcSZiEpWf2xuSYQaByOsiXjjMCA0jBVL23mztc3wsgUjp41hJnj8jjppJM45phj+Pbbb1m4cCGFhYUARHSUjeFiNrqK8dhdDIvkMTKQRz+dRqQ6QN0nW6n7ZCuuwal4J2TjGZ+NM7eHpB8TQohuRmv9Sjvrv1RKfQocB+wHLNynDRNCCCGEEKKbkoBFH+EPRVhZVAvAiNxk0r0dFLv++qHm5wdfvtvv/d6m9/jror82vf7j9D8yLX9ap47V4ShhIk2vvUnSaSb6ttGZo3nhlBe44+s7eHPDmwC8tPYllpUt476Z9zE8vYcU424pexTMuMEU5w7Ugo7Cty+ZZfSJMON6GHRgV7dyr0vOyOTQH5zLIaefzbZV3/Ltpx+ydt5cwkEz8La+shAoRNnsuDNGEQqOxuEYhlJ2BoVssKqBJatX8mLyCgYckMup0wdzwP77c8ABB1BUVMTy5ctZvnw5Pp8PAH8kyCq2ssq9lXRHCiP8uYyMFJCmvQS31BHcUkfNu5tw9PPiHZ+Dd0I2zgEpkjZKCCH2jJD12FaO1COUUgcDUWAd8JHWun5X3kQpNXAHu+THnjQ2NjbVQxJdR65BzyPXrGeS69YzyXXreeSa9UyduW5769pKwKKPWFFYSyhiild3WL+iZCVstGasZw2HUcft1vsuLV3Kb778TdPrq6ZcxcnDT+708dFQlEhcwMLt6cEjyIXYQ5KcSdx5+J0cmH8gd827C3/Ez7qqdZzz1jk8dvxjTMjpgTMSPGlw9K1w2NWw4D/w9YPQUGG2rX3XLENnmBkXw4/q9cW6lc3GoAmTGDRhErMuuoI1X33Jis8+onDtKgB0NIK/cjWwGlxJRB0jcdhGY3MMJBkbU+oV+otynplbyv25Dv578xEUFBRQUFDAMcccw4YNG1i+fDmrVq0iHDb9ZDXhehY76lns2Ei+PZPh/n4MjeSShJtwaSN1pVup+2wrtjQX3vHZeMdn4x6ejnLYuvAnJYQQPZNSajBwDFAEfNPGLn9o8bpaKXWt1vrJXXi7rZ3d8YsvviAnJ6cTe8qfkXvTBx98sJfOLNdtb5Fr1jPJdeuZ5Lr1PHLNeqbOXLfy8vK98t5yZfuITtevmP9w8/ODLgPbrndEba3dytWfXE0wGgTgtJGn8bNJP9upc0T84YSUUE5nBzNDhOhDlFKcPup09svZjxs+v4H1NesZlTmK0Vmju7ppu8ebAUfcAIdcCYufhLkPQO12s23Tl9BYBZfP7tIm7mvupCQmHX08k44+nsrCbaz47CNWfvEJ9VWVAESCDRBcTojlKEcyyj4Sh3M0yjGAEWE7I4o0L/zuaybM6M/og/NJy/aSO2AIPxg1ikAgwMqVK1m+fDkbN25ses/iSBXFzirmOtfQ35nDkIYshkb6kYybaG0Q39dF+L4uQrnteMZm4R2fhWd0Fjav/FohhBA7opRyAk8BbuBXWutI3OZlwEXAZ5hgRj5wCnA78LhSqlpr/ca+bbEQQgghhBD7jvQs9BHx9Sv2H5zR9k4NlbDMyiHvSoUp5+3We6a50xiePpzFpYs5uOBgbjv0NtROjooO+yPNKaE02O323WqTEL3NyMyRPHvys/xt8d/4yYSf4LT1kqCeKwkOuRymXWRqW8z5G1R8Z2ZYxH+PaA3BenCndllT96Ws/gOZcd6FTD/7x2xavpgVn3/ChsXzCVuFtXXYhw4vIxhYhrIlY3OOwu4aQ11lf+a9sZF5b2wkLdfLV/X1BLPd7H9gHidPHc1P9t+fmpoavvnmG5YtW0ZZWVnTexaGyil0lvOVcy0FbhO8GBbKJRkPOhChcVkZjcvKwAbuoel4xmXhGZeNM0eKdgshREtKKRvwOHAE8G+t9VPx27XWr7Y4ZBPwT6XUKuBD4A5gZwMWg3awPR9YAHDEEUcwcOCOMkgBX32yk00QO+O443Zvlnu75LrtNXLNeia5bj2TXLeeR65Zz9SZ67Zt27a98t4SsOgjvtleA4DXaWdMXjsde4ufgLCVe2z/802Klt2Q7k7n38f9m38t+xcXTrxwlzpSI4EwYcwMCztqpwMeQvQFSc4kbjn4llbr11SuYWXFSk4beVrPvXccLjjgxyaAuuZdGHNi4vZNX8Jz58KkH8KBl/SJAt0ANrud4fsfyPD9DyTk97NhyQLWzP2SjUsWEg6ZWW066iMSWEoksBRUCnbXaOyu0dSU5jNB2WFbGL1tG4++sRVfuoPhE7M5fuZ+XDl9OiUlJaxYsYKVK1dSUVHR9L5FgXKK7OV8bV9LvjeHIY3ZDPVnk4oXohDYUENgQw01b2/Ekes1sy/GZeEako6y99B/g0IIsYdYwYr/AucBTwOdLhantf5YKbUe2E8plaa1rt2JYzv8SzL+dwSv14vXKwHnribXoOeRa9YzyXXrmeS69TxyzXqmzly3vXVtJWDRR7x77Qy+2VZDUY0fh72NNE+RMMz/j/VCwUE7l7qpPS67i2sOuGaXj4/EzbCwaensEqKzfCEf139+PZtrN/P2hrf5xbRfMCG7B3fm2+ww7pTW6xc8amZYLPyvWQYfagIX404Fh3vft7MLOD0exhw6gzGHziDY2MD6RfNZ89VsNi1dSMSqT4GuJxJYTCSwGFQSdudwbM6R2JyDyI84oTIKX5TxzhelVHsVmcPSOPjQcVx5xZGUV5SzcuVKVq5cmTDzorixnGLKmeeBfklZDAxlMaA+g1ydhg1FuKyR+rLt1H+5HeV14BmTiXdsFu5RmdiTe8lMICGE6CQrWPEYcAHwHHCh1jra8VGtlAMjgSSg0wELIYQQQgghehIJWPQRSS4HBw/Pbn+H1W9BrTX4atRxkD1il97npbUvcdSgo8j2dvBeOyESiBBWsYDFHjmlEH3CB5s+YHPtZgDmFc/jnLfO4aRhJ3H1/lczMLUTqR56Aq0hJQ+cyRDymXVbvjJLci7s/2PUxHO7to37mMubxLjDj2Tc4UcSaPCxfuE81nz1JZuWLSEaiQUvGogEvyUS/BaUE5tjCHbnSGzOYThsXnIagZW1LFxZyzLPOgaMzmTgmJGcc/qBRBwNTcGL0tLSpvctbaiklEoWu8HjcDPIkUv/ujQGRrLx4kI3hmlcWkbj0jJQ4MxPxj08HfeIDNzD0qX2hRCiV2sRrHgB+HGLuhWdOUcyMAHwYQIXQgghhBBC9ErSQyAMVwrk7wfF35i88bvg1XWv8oev/sCj3zzKg8c8yLD0YbvdrHBjiEhcSighROecPup00txp3L/wfrbWbQXgnY3v8OHmDzl37Ln8bNLPSHend3Erd5NScNK9MOu3ps7Fgv9A2WqzzVcGs/+Ce87fOCh1MqsLzujatnYBd1Iy44+YxfgjZuGvr+e7hV+zfuHXbFq2hHDQ1LxAh4iGviMa+g5QaOcAnI6R2JwjsNnTCfkjbFpezqblpm8s7FLY8r2MmXQ8Jx7rZmvRBlatWkVRUVHT+/rDAdaFt7HOCTghz5PFQH8mAwNZ5OhUlFaEinyEinzUzyk0AYz+Kc0BjKG7l45QCCG6k7g0UBcA/wN+1F6wQimVChRorde2WO8F/g2kAo9prcN7t9VCCCGEEEJ0HQlYCGPUMTDyaNi2AAYeuNOHf1X4Fbd/dTsA2+q3saB4wR4JWAQb/E01LGwSsBBipxw9+GiOGHAEL659kYeXPUxVoIpQNMSTK5/k1e9e5dL9LuW8cefhtvfw1EmeNDjoUpMKavNcE7hY9QZEwygdpaB2Cevyv9fVrexSnpQUJh55DBOPPIZQwM/mb5axfuHXrF84j8a6WFYRjQptIxzaBo2f4fDmYrcPJqoHYnMORCk3jqCGLQ2s27KZdW9B0GsjY+g0jjsiFYe3lk1bN7B+/XoCVhFwgBJ/JSVUssi9niSHhwG2HPJ9qRREM0nVHhPA2F5PaHs99V9uBxs4CpIZoL3UpYWJBiIgKU+FED3XbcBPgHpgLfDbNupKvaa1XgpkA6uVUguAVUAxkAccAwwEvgFu3DfNFkIIIYQQomtIwKKXi0Q1v3p5OeML0jhoWBYTB3QwolopGHTQTr/Huqp1/PKzXxK2Bnv9aNyP+OGYH+5qkxMEfX60Mrmg2gtY6FCIqueeo+Kxx4nW1eHIzW1e+vVreu4cOICk/fffI+0Soqdw2p2cP+58vjfiezz27WM8ufJJApEAdcE6/rLoLxT7irn54Ju7upl7hlIwdLpZ6kpg8ZNEF/6X2rCLqqThifsuewFqtppi3RmDu6a9XcTp9jBy2sGMnHYw0WiEwrWrWb9wHt8t+Irq4uaZEuHGMsKUAYtQyobN259IdAAux2CUowClHLgaozSsqmHJqho0EE7LZ+DwkYwYbacuVML69d8lpI5qCPtZhzX7Akh1JdNfZ5HnS6V/NJMUPBCF8HYf+XjJL4SqPy2hfkAK7mHpZhmahi1JamAIIXqModZjCvCbdvbZBCwFKoEHgYOAk4BMoBETvHgA+KfWunHvNVUIIYQQQoiuJwGLXm59WT0vLTK1KU6YkM+/fjx1j56/tKGUKz++kvpQPQBHDTqKG6bdsMfOH2j0Nz230UaxcGD7TTdR9+57Ta+D9fUEN25stZ9n4kSGvfS/hHVbLruM0LbtKJcLm8uFcrutxXrtMq/TTj6J5IOagznhigpK77vf5NDXUbTWENXNryNRiEbROkr+bbfh7Nev6di6Tz6h/PHHGVheAVpT9PwL2JQyx0ajaMy5HP36Mej//pnQ3pI/3UvDvHmmY1YpsNlAgUI1r1OK1FlHkX3JJYk/p+tvQIdCYLehbHbzaHegnM64xUHaKafiGTO6+bOWl1P36admu92BctjB4Wh+brejHE6Uw4538mSUo/lrJVRaSqSqqs3rFs/m9eIanNhpHNy0iWjcKO32OHJycGQ310zR4TCB9et3eByAa/BgbN7moduRmhpCxcVt7hv0+3EVFYHWBNetwztpUsL2wIaNRCor0NGo9W8hivJ48E6ciHJ2fedqqiuVaw64hh+O+SEPLn2Q1757DYfNwQUTLujqpu0dqXkw80YC0y5n/jsvmnsj3lf/MCnwPvkjDDncBC7Gfx+8GV3S3K5is9kZOHYCA8dO4Ijzf0rl9q18t+Br1i+aR/F364jVg9U6SqRhG7CNIPPQyknI2R+PfTAOxxCUPRelFM7aMLVLq1myFGwOJwXDDmHiJBchbxWlVdvYsHEDoVCo6f3rgj7W4GONy7xOd6VQoLOaZmAk4wYNoW31hLZZMzBiNTCGpeMeno5raBr2FNe+/+EJIUQnaK0vBC7s5L61wFV7sz1CCCGEEEJ0dxKw6OWWbqluej5lcEbrHVa9Ban5MHDaTp+7IdTAVR9fRbHPdPBOyJ7APTPuwW6z72JrWwv6mwMW9tbT5wHIPPfcpoCFc9AgwhUV6IaGVvs54oIGMaEtW9sMbrTkHjkyIWARbWig5tVXd3gcQPT66xNeh0tK8M9fQJL1ur0ueeeAAa3WBbdswb9y5Y7bO2pUq3V1H32E7kQAwLPffgkBi+DmzRTfetsOjwMYs2hhQsCi6ulnqHjkkR0elzRtGkOefiph3fZfXt+pz5p73XXkXH5Z0+tIXR0bv39ap9o79KWX8E6c0PS6/osvKLzxpvb3tx6Ln3yK9K/mJmwrf+ghat98s9Ux9qws0k48kfTvnYpn0iTaSAOxT+Un53P79Nv50fgfsaJ8BQNSEv+dvbz2Zew2OycOO7Hnp4oCsDlodOUkrqvcaIIVMZtnm+WdG2HMCbDfWTD8KHCn7Nu2djGlFNkDB5M9cDAHn/5D/L56tq38li3fLmPzN0up3L61eV8dwhXcTJTNBPmSqM1DxNEfr30gNscAlL0f0bCdwnXVFK4zx4RteSTnDiR7CKRnN1JVXcTWrVsJh5tTsdcE66mhntVW/CHZ5mGAPYe8hlTyoumk66TEGhhzCwFw9EvCNTgV16BUXANTceYnoextB7mFEEIIIYQQQgjRfUnAopdbsrV5dPv+gzISN4aD8PYvob4EBh0MF74N9s6NBI9EI9z0xU2sqlwFQP/k/vzz6H+S5EzawZE7JxjXwW5TNiJ1dUSqq3ENGtS0Pvmgg8j5+c9JOXIm3v32M+2r9xEuKyVcVmaW0jKc/fu3Or/N68WWkoIOBMzsg/Zonfha7URH2K4cG5s90XK1zQYOhzWTI25puV8bHXU6Gu1Uc1vOBujw59JSN5hJsE+09TO3tR2IiFRWUvXMM1Q98wzOIYPJvuhiMs/eMynTdsfozNGMzhydsC4QCfDAkgeo9Ffy10V/5czRZ3L2mLPpl9Q62NejZQ2Da5fBN/8zqaEqrB71SABWvm4WuxuGzYCT/wKZQ7q2vV3Ek5zCyAMPYeSBhwBQX1nRFLzY8u0y6isrmva1Rf3YghsIs8G8truwuwegowXYHANRjnwcUQeUhKgtgVocBByD8OSOIGtIhMysRqori9i2bRuRSHMtWl/Uz9roNtZaXy1eh5t8lUluYwr5kQyydSp2bIRLGwiXNtCwsMTs6FA4C1JwDUzBNTAV18AUHLlJ7d6nQgghhBBCCCGE6B4kYNHLLbFmWNhtiv0GtqhfsfI1E6wASMnrdLBCa8098+/h822fA5DqTOXBYx4kx5uzgyN3XjgUbHpuC4VZf8KJuAYOZMjzzyWMVM+9OnH2vD0lGXvKMNzDOi78PeyVl5ue62gUHQyiAwGigUDTcx0I4MjLSzjOmdeP4W+/ZYIPygokWOmYlM1mgg02O8qmsGdmJhyb8YMzcB13LB9/8gkoxTHHHos3KclK76Q6HIE/8B8PtLle7yCAATDy448gGoVIxAQvIhF0JIIOh9HBEDpkFvfoxNkZrmHDKbjjj0SDQQibY4iE0WHr2Ei4ab2yJ86u8ew3kYwf7rhz3jWkdYdw6nHH4pk4cYfHesaPS3htc7k69Z4AjsyMxHYMHtzuseFImG1bTXq1wWPGtNqefMQR2HNyrH8LNrApgps3U//Jp00zW0KbtxCpquxU27rC7O2zqfSb9lX6K3lk+SP895v/ctzQ4zh/3PlMyp20gzP0IJlD4YgbYcYNULgElr8I374EvjKzPRKAjV9CcovvtYZK8KTDHpxJ1lOkZGUz/ohZjD9iFlprKgu3seXbZWz5ZhnbVq/A31S8G6KRINGGjYCZwaaxgyMPh2MgNkd/bPYC3GEvFAVpLIJGXNQ5hzBy3GQGDofacAkrV31LQ0OD+X6zNIYDbKSYjQ7AAQ6bnX72TPr5U+gXSSc3moYXF4Q1oa11hLbW4cPU5VAuO84ByVYAw8zGsGe6u3zWkxBCCCGEEEIIIZpJwKIX8wXCrC2pA2BMXipJrrjLrTV8/VDz64Mv7/R5NZqINiNgHcrBX4/6KyMyRuyRNrcUn+uc+noiFRU0VlRQ+9ZbpJ966h59L2WzoTwe8HjYUVekcjpxj9i1z6ycTmxeL9qajaCczoQ0Srt0zlj9ig4420iJ1RnOvH5knHnmLh2bduyxpB177C4dm3N55/9NxrMlJ1Nw+x926Vjv5Ml4J09uc1tjYyOLP/gAgCnHHddqe/rJJ5N+8smt1kfq66n74ENq3nyDhnnzSTvllITtgQ0bKP3TvaR//3ukHnfcbv9b2B2zBs3iqROf4tlVz/Lh5g8J6zBhHeadje/wzsZ3mJQzifPGncdxQ47D2ckAZ7enFAw4wCzH3QEbP4PV78Da96HfOHAlJ+7/zg2w/lMYdRyMPh5GzOpzdS/ASh81YBDZAwax//GnoKNRKgu3sW3Vt2xbtYJtq75NmIGhiEC4kEi4kKb5E7ZM7I7+KEcBNkcBKTqbyuXVVC4HlJv01Cm4vSGCaTZSUxpRVFNRWUIg0JwqMByNUBgtp9BeTuyLO82ZTK5OI7sxmX7RNLJ1Gk7s6GCE4MZaghubAyu2ZIdJITUwlk4qRephCCGEEEIIIYQQXUgCFr3Y8m01RK2Bqa3qV2xbCIWLzfP8/WDIYZ0+r03ZuPWQWxmUOohMTyYHFxy8ZxrcQqiwEH9pCaRa72ulCUk9/ni8+x+wV95TiD3NnpJCxhmnk3HG6YQrK3FkZSVsr3njDeo//5z6zz/HM2ECBXfegWfs2C5pq1KKKf2mMKXfFEp8Jbyw5gVeWvsSVQGTWm55+XKWf7mcR799lJdPfbn3jUy3O2DkMWbRGvw1idsjIfjuI7N++fNmUTbofwAMPxKGzzTp9Ry9oPbHTlI2W1P9i8nHnoTWmtqykqbgxbZV31JdXJR4ULSKSLAKgiusFS5sjnwrgNEfXV2AvdaDtwTCuIB0UhmM29lANLUevHWEVDWBcGLNotqQj1p8rLdiagpFliuN3EgaOf5kcqNpZOpkbNiI+sL411ThX9OcPtGe4W4KXjgHpuLMT8ae3EsCdEIIIYQQQgghRDcnAYterMP6FfPiZ1dcscPR+S0ppfjpxJ/uRuvaF21spOLR/1Lxn/8QPvzCpoCFw25n8JNPJBS/FqInaRmsAGhYuLDpuX/FCjaeeRbZl15CzhVXYHN13UjvvOQ8rjngGn426We8u/Fdnln1DGuq1gBwxIAjWgUraoO1pLnSuqKpe4dSrWdO+GtMYOK7TyBoZq+ho7B9oVm+vA8cXhh8CBzzO+i//75udbehlCK9Xz7p/fKZMPNowNTA2L5mJYVrV1O0djUlG9cTjYTjjgoSDW+B8JamWRjKlo6y98Nm74dy5GKz98MdSoHKZCAPLxCx+Qm5agk76wg564g469GquWaPRlMRrKGCGrDiDnZlI8uZRmYoiaxgMlk6lexoCm6cRKoDNFYHaPymvOkcthQnzn5JOPol4cyzHvslYUtx9r7AnRBCCCGEEEII0YUkYNGLLbXqVwDsHz/DorbQFJUFSMqBiT/Y4bm21W3DF/IxJqt17v49yTd3LoW/+S3hIjMSNxpXINU7dKgEK0SvM+TJJ2n4+mtK7r6bwLrvIBym4qF/Uffhh/S/4w68U6Z0afs8Dg+njzqd00aexqKSRTy7+lnOGXtOwj7b6rZx6qunckj/Qzhp2EkcPfhokpxJXdTivSg5B374JISDsGWuSRu1/lMoW9W8T7gRNnwKjnsSj60thKAPskfudIC4t0jJymbMoTMYc+gMAMLBICUb11O0dhWF60wQo75FjRcdrUFHa4iG1jWvU0nY7P2wWQEMZe+HO5KLx2/S3mk0EYePkLOuOYjh8EHcjz2io5QFqymjuimIAZBi95IVTiY7kkJWNJVsnUKq9hKtDxGoryGwIXHWjS3J0RS8aH70Yk9zS4FvIYQQQgghhBBiF0jAopfSWrNkazUAqR4Hw3NSmjcueBSi1qjWaT8Fp6fDc9UEavj5xz+n2FfM/Ufez+EDDt9LrQZbampTsAKHA+1pTq3icElKDtH7KJuN5MMOY+jLL1Pxr4cpf+QRCIcJfreeTeeeR9YFF5B77TXYkro2AKCUYlr+NKblT2u17d2N7xLWYWZvn83s7bPx2D0cNegoThp+EtP7T+899S5iHC4rBdSR5nVdMWz8AjZ8ZpZoBHJbBHcXPgZf3AvJuWYGxuDDYMihkLefSUXVBzlcLgaMGceAMeMA8/9WXUUZhWtXs3Xlt6xZvJBgdQU6Ekk4TukGdHgTkfCm5pkYdhfe1ALsjlwi0Sy0PxNPKAelCsy5VYSwo74piBF21hOxNyYEMQDqI43Uq0a2OJpnVziwk0kymeFkMnUKmTqZzGgKSbiINoQJbqoluKk24TzKacPRLwlHrhdnrgliOHOTcOR4UQ7bnv1BCiGEEEIIIYQQvUjf7CXpAyJRzeUzR7B0azUuuw1bbKRnyA+LHjPPbQ6YdnGH5wlFQvzys1+yoWYDAPcvvJ9DCg7BYdsz/3S01gnpNLz77Uf6aacRrqgg7+Zfs+qxz5q2udxSCFX0XjaXi9xrrib1+OMouuU3+FesAK2pfOIJfPPmMeyVl1G27tnRmeRMIj85n2JfMQD+iJ93N73Lu5veJd2dzjGDj+GIgUdwcMHBJDuTd3C2Hig1Hyb90Cxag6+89SyKjZ+bR18ZrHrTLACuFBh0EAw+1CwDp4HTu2/b300opUjL6UdaTj+G7H8gDbkD0NEoB06aSG3Rdko3bWha/HWJAQIdCdJQvRnYnLC+wZ6K35FNxJGLPZSDO5hLKgW4lB1NhLCjgbCznrDDZ4IYDh/alhggCROhjFrKHInv6cJJJilkhZNMICOaTIZOxoMTQlFC2+sJba+nMeFDgj3LY4IX2R4cWR7s2V4cWR4cmR6Us3ve40IIIYQQQgghxL4iAYteymG3cfHhw1pvWPMONFSY5xNOh7SCds+hteb3X/2e+cXzAcjyZPHArAf2SLBCB4NUPvU09Z9+yuAnHkfZ7U3b8m//Q1Pu/oj+pGm9y9P3CtmKvsczZgxDX3ieyieeoOyBf6ADATLP/mG3DVYAnD/ufM4dey5LSpfwzoZ3eH/z+9QETOqcmkANL697mZfXvcyJw07k3iPu7eLW7mVKQUpu6/XjTgV3GmydB4G4ju9gPaz/xCwAB10GJ8X9jLRuPm8fpGw2svoPZMCIUYw7/EggNhOjnNJNGyjbtIHSTesp3bSB2rLSVscnRepIitRBYFPTuqCyU+bIoMGZRSSSxQljxxPVBQQbk6mtDFFXV9MUwAg7fIQdPqJ2f6vZGEFClFBFiaMqYb0LJ+k6mYyIlwydTIZOIl0nkaa92LSNSIWfSIW/jQ8L9jQX9iwPjixvU0DDke3FnunGliz1MoQQQgghhBBC9H4SsOhrJpxu8rB//S9TbLsD/1r+L95Y/wYAbrubB2Y9wKDUQbv19lpr6j/7jNJ7/kRwsxkJW/3Sy2Se/cOmfeILDUd180hXt1cCFqJvUA4H2RdfTMqsWVS/8CIZZ5+dsF2Hw2C3d6vOS5uyMTVvKlPzpvLrg37N3MK5vL3xbT7b+hmNYTPGvGU6uYZQA39a8CcO638Yh/Y/tHcV7W7psKvNEo1A6UrY/JWpg7H5K6gvbt5v8CGJx1VtgodnQv/Jpoh3//2hYApkDu27QQylSMvJJS0nl5HTDm5aH2jwUb5lM2VbNlG+ZSNlmzdRvnUTwcaEOQ44dITsUAXZIRO8X/3lPHNem42MvHwqbalsaUgiZM8CexYu21BStZN0WyNJ9kZwNBB2+Ig4fETtwVbtCxKiTFVT5qhObLdWpOAlM5pEhk42QYyolzTtJQk3SisiNUEiNUGCG2tbnVc5bdgz3TgyPdgzPdgzYs/NoxQAF0IIIYQQQgjRG0jAoq9RCoYdYZYOvLn+TR5c+qA5BMXdM+5mcu7k3XrrwPr1lNx9D77ZsxPaE9q2td1jIuim5+6kvpkmRfRd7mHDyPv1r1qtL77jDhoXLSb99NNJP/UUHLltjOjvQk67k5mDZjJz0EwaQg0sKF7A7O2zOaz/YQn7LShewCvrXuGVda9gV3Ym5U7i0P6HMi1vGvvl7IfH0XF9nR7JZof8/cxy8M/MDIqqjbDla9g8F4ZMT9y/aCkEakyNjI1fNK/3ZFgBjClQMBnyJvbpgt4A7qRkBowdz4Cx45vWaa2pLSs1QYzNGynbsomyLZuoLi5ER6MJx+tolKqiQlKBCS3O3WjzUO1MZ7sjHZ8jg7AjnanDJjJ9+FDKK6qpqCynxleFP1xHxNHQZiBDK00dDdTZG9hCecI2m7aRqr2kk0S6FcRIs2ZlJGsPNhQ6FCVc2ki4tLHVuQFw2HBkurFnuLGnu3FYj/aM5nU2l73tY4UQQgghhBBCiG5CAha9UCgSZenWaib2T8e7C50TC4oXcNvc25pe/3LqLzl2yLG73J5ITQ1l//d/VD3zLMQVT/VOm0r+LbfgGT++3WOjNHcoeVMkYCGEb958qp9/AYDSe++l9P77STn8cNJPP42Uo47C5u5eM5GSnElNwYuW5hbObXoe0RGWlC5hSekSABw2BxOyJ3BA3gEclH9Qq9kZvYZSkDXcLFPOa7092ACpBVBXlLjeXw0bPjULgCcdfpVYv4HKDSawkZS1N1reIyilSO+XR3q/vITZGJFwiOriIiq2b6Vy21bzuH0blYXbCAcDrc7jjfrxBvwUBEqaV1bA/IWQlJ5BZkF/cnLzeGaFj5A9HWXPJ8npId0WJdUWwGNrxG5vJOpoBBVtdf6oilKjfNTggxbZ35RWJGkPaSSRrj2kRb2kahPUSNVeXLFf5cJRwmWNhMvaCWgAtiRHYhAjzW3SUKW7sae7sKe5sbklqCGEEEIIIYQQoutIwKIXWlVUy1n/+gqHTfGzI4Zz0wljIRIG+44v94bqDVz76bWEo2EAzh5zNj+Z8JNdaoeORKj+30uU/f3vRKqac3w7CgrIu/EGUk88cYfpKyJxAYuktJRdaocQvYn2N+KdMoXGpUvNikiE+s8/p/7zz7GlpZF28klknHYankmTun16mF9O+yUzB85kduFsZm+fzcaajU3bwtEwy8qWsaxsGQuLF7YKWNQH60lx9YHvhP3PN0ttkZltUbgUCpdA4WJTwDsmb2Lr2RVv/QI2fGYCHnkTzNJvAuSOgZzR4Erahx+ke7E7nGQPHEz2wMHQHMdAR6PUlpdRuT0WxNhKVXEh1UWF1FdVtnmuhppqGmqqgZW0SOiF3+aixpFOiTONGkcaPnsaDmcK5x80HMJRKqurqauvoSFYS1g1gtKtzq+Vxqca8dFIEUCLeIJTO0nRXtLwkq69pEbdpGgPydpDivY0BzSAaEOYaEOYUJGv3Z+NctsTAhgmoOHCnmoFNFJd2FOdKHv3rasjhBBCCCGEEKLnkoBFL7R0azUA4agmN9Uabf3R72DbAjj4Mhj3PbA72zx2RcUKfCHTkTFjwAx+fdCvd7nTM7hpE8W33w5W2g3l8ZB96SVkX3QRNm/nZktE4zpvklKSd6kdQvQmKTNnkjJzJoGNG6l5/XVqXn+DcJEZfR+traX6ueepfu55XCNHMOzll7vdjIt4brubwwYcxmEDDuOmA29ie/12FhYvZHHpYhaXLGZT7SYADuh3QMJxWmtOe/007MrOhJwJTMyZyMTsiYzPHt97gxhpBWYZc6J5rTXUFprgRckKs62lkhXmsa7ILN99FLdRQcZgyB1rUlONPGavf4SeQNlsTTMyhu0/LWFbyO+nuqSIquJCqooKqY579FVXtXk+TzSIJ1hGXrAsYf2mN8Fmt5OSlcOAnFy2hd0sLNfgSMbl8uCxO/E6FF5bCJfdj7L5wdZ6ZgZASIWoUiGqsOpetAhoOLSDJDykKC+p2k1qxE1K1AQzUrXH1M+IqyiuAxHCpQ2ESxs6/FnZkh3YU13Y0tzYU11oryK3yE3AE0VHWwdehBBCCCGEEEKIzpCARS+0dEt10/MpgzIgUA+LnzJ50AuXwrCZpvB2G04dcSrp7nQe/eZR7pt5Hw7brv8TcY8YQcbZP6T6uedJO/lk+t1wPc6CNjrVOhA/w8Kb3HdHAwvRknvYMPpddx2511xDw7x51Lz2GrUffIi2Cgw7++W1Clb4V6/GNXx4QmH77mRAygAGjBzA90d+H4DyxnKWlC5hcOrghP0KfYWUNJQ0Pf9w84eAqbczNH0oE7MnNgUyhnmH7dsPsa8oBekDzDLulNbbw0GY+AMTtCj+xqSQSqCherNZJv0wcVPlRnjnRsgZZaWrGmYe0wd3aqZeb+X0eMgdMozcIa3/TQUbG6gqLqKmpIjqkmKqS5qf15WXo3UbaaAiEWrLSqgtM/+Wp7XaA/w2N3WOFOrtKfhdyfTLymLy4DwaQ+ALhGgM+vEFfGhbANoZWxBWYWqpp5Z6s0+LS6i0jWTlJdWWRLpKMrM0Qi5Sw57ElFMt2+8LE/WFobg5sDEYM7Cg4YOtJJ0+pu0GCSGEEEIIIYQQHei7PQ+92BJrhoXLbmN8/zRY/F8TrACYdFa7wYqYIwYewYwBM3ZqZkXU56Pq+RfIuuDHKGfz7I3ca64h/ZRTSJo6dac/B7QIWCTJDAshWlI2G8mHHkryoYeSd+tt1L3/PjWvvUb66acn7KeDQTafdz46GiXpoANJmT6d5OnTcY0Y0W1TR+V4c9qsn1MXrGNq3lRWVqykMdycr1+j2VizkY01G3lzw5sAPHvcswnHVvmrsCkb6e70vdv4ruZwwYl/Ms9jszFKVkDZ6rhlDQTrTYqoeCUr4LsPzRLP5jCzMmI1N7KGw0GXgU1SA7m8SeQNG0HesBGttkXCIWpKS60ARhE1pcVUl5RQV15GbXkp/vq6ds/riQbwBAPkUgGNQA1sa86cZuIPdi+19mSC7jS0KwWbw4PD6cRpt+Owg80eQduDbaabAtAqSj0+6qM+miql2GmaqeHERbI9mWxnBnmuTAocmWTpJGyNESJ1QYi0Pq9/QRnhmUNwZHk69fMTQgghhBBCCCFiJGDRy1Q3BNlYblI6je+fhtumYN7DzTscfHmrY9ZWrWV05uiEdZ3twNTRKLVvvUXpffcTLi1FOexk/aS55oUjMxPHLgYrIDEllCdJZlgI0RF7SjIZPziDjB+c0Wpb47JlRBvMSGjfF1/i++JLABx5eSRPn07yYYeRfNihOLK6f4HmsVljefyExwlHw2yo2cCK8hV8W/4tKypWsKZqTVMNHq/Dy9C0oWxgQ9OxT696mkeWP0J+cj5jMscwOnN00zI4bfBuzSrrtuJnY4w+rnm91lCzDVLzE/evWNf2eaJhU8i70vp5erPgkCsS95nzdxPwyBgCmUOaH9MGgK1vFnO2O5xk9R9AVv8BbW4P+hupKy+nrryU2vIyasvLzPOKMmrLyqivLCcaibR7fk+kEU+kEYLl7e4TUnY86Tl40zPRzmRCNjf+iKIhEkU5IOoItxvQCBGkOhKkOlLFer+JlqioHUc4hWRHBtnpufTPyCXbm0xkcwl59S6Iamo/3kLWWaPbPKcQQgghhBBCCNGeXtgz07fF6lcA7D84A9Z/0tz5NORwyN8vYf/nVj/H3fPu5vpp13PB+At2aqR14/LllNx5F43LljWtK3/4ETLOOWeP5c0Px2ZYaHA45J+rELvKlppK+umn45szh3BpadP6cEkJNa+8Qs0rrwDgHDKY4a+91uk6M13JYXM0BRtOH2VmlAQjQdZWreXb8m+pC9a1CkCsrVwLQLGvmGJfMZ9v+7xpm9vuZkTGCEZmjGTGwBmcMPSEffdhuoJSkDGo9frp18Gks5uDEwnLRjMrA8wMi5a++xg2ft56vc0B6QNNACNjEIw5CcaevEc/Tk/l8njJHjiI7IFtXAsgGo3QUFNDXUUZdRXlJrhRWW6eV5RRX1FBfVUFOtp2jQsAp44QqS6hvrqkaZ0NiFV80YB2OIk43YTdqURdyeD0gNOJdtrRLf771bYIIVcN1dRQ3bCZ9Q2gog5coVTG2zKZHB1Mw+ISUo8ciDNXBhsIIYQQQgghhOg86QHuZZa0rF8x77bmjYckzq74fOvn3DP/HjSa+xbex345+3FAXmJx27aESkop+8tfqHn99YT1KbNmkXfTjXu0yG9EmQ4YO7Zum7ZGiJ7AM3Ys/e++C601we++o37OHHxz5tKwYAHa70/Yt2WwouLRRwmVlOCdNBnvlMk4Bwzotvejy+4yRbhzJgLQ2NiYsH1c9jhqg7WsrVpLfag+YVsgEmBlxUpWVqwk3Z2eELDQWnPVJ1dRkFzAkLQhDEkbwtC0ofRP6d/7ZmUoBWn9zTL08MRtWoOvzAQvom2M+q/e3PY5o2Go2mQWgLSBiQGLkB/+PtmaCTIQR3I+w0t9NLoysW3PgpwhkJIHju5bRH5vsdnspGRmkZKZRcHItutCRCMRfNVV1FWU46uqpL6qgvqqSut5JfWVJqgR8PnaPF4BKhzCFg7hbKxvtV3b7EQ8SUS8yUStR+10t9gnTMBdxRKqKIvUcHxoMrUfbyH7nLG7/TMQQgghhBBCCNF39LJeFhE/w+KglHL47iPzImOwGdFqWVmxkhu/uJGoVQj0ookX7TBYEQ0EqHz8Ccoffhjd0Fxk0zViBHk330zK4dP33AcBdFQ31bCw6+7ZOSpET6OUwj1qFO5Ro8i+8EKigQCNixfjmzOHhoWLcI1snYO/5o03CaxZQxVPAWDPysKz30Q8o8fgHj0a95jRuIcNS6hf011dOeVKrpxyJVprCn2FrK1cy9qqtaypWsO6qnVsrt2MRjM0bWjCceWN5Xyx7YtW57MrOwXJBQxIHcDAlIEMTB3IaSNPI8fbca2gHkspSOlnlrZcMReqt0CVVdA79li9Gaq2NNdTajmzo3Y71BebZfsinEDTfMCN/2jeLykbfvoe5MalGqpYD6WrTGqrlDzTtj4W2LDZ7aRm55Ca3fG/u1DAj6+qqimg0VBTja+6Cl91FQ3VVfhqqpse42dsqGgER0MdjobmehtRu4OoN5mIJ5mIN4moJxntMN8B2+wVbIiUMGKZInTkIJz5UoNKCCGEEEIIIUTnSMCil4kFLLKTXeSvfrJ5w0E/a8ofXuwr5qqPr2oqVnv80OO59oBrOzyvDgbZePoZBDc054K3paWRe/XVZJ5z9l7pqNThCOG4GRZCiD3P5nY3Fe1uS7SxkcB33yWsi1RW4vv8C3yfx3XgO50U3H47Gaef1rRKR6OgVLecjaGUYkDKAAakDOCowUc1rW8MN7KldgvZ3uyE/TfXtj1zIKIjbKvfxrb6bcxjHmC+U+N9uuVT3lj/Bv1T+lOQXEBBSgEFyQX0T+5Puju9W/58dpkrGfqNM0tbGqugequZvRHPXw2pBVBXjElQ1I6GCvBmJq5b8w588NvEdZ4MK4DRD1Ksx5zRMPUniftpbYIwfYTT7SEjv4CM/IIO99PRKI31dVYgoxpfjQloNNTWmCBHTTUN1dU01FbTUFVKtDyMBsKpmfgHmqDnV861DAxkU/vhZrJ/PH4ffDohhBBCCCGEEL2BBCx6kerGEFnJLmoaQxza34Fa9pzZ4EyC/X8EQH2wnis/vpKyxjIApuRO4c7D78SmOg4IKJeLlCOPpHLDBrDZyDznbHKuvhpHZmaHx+2OsD9CGJNyRGZYCNE1bF4vo+fMpvGbb2hcuozG5cvxL19OpKYmccdQCGde4qj7xqXL2HrZZbhHjsQ1ZAiuIYNxDh6Ma7B5bk9L24efpHO8Di9jslqn3ZmaN5Uvzv6CzbWb2VS7yTzWbDLBirptTemlbMpGfnJiEetvyr/hoy0ftft+BckmgDE5dzJXTEksYh2IBHDbe9FsAW9m64ADwICpcP1qCAehdjuBsvWsmPM+nlAVo/un4WgoM8EMX5mZZRGvrrj1+fzVZilb3bxu4IGtAxaPnQTlayA51yxJ2c3Pk3PMkpQN2aMgNW93P32PoWw2ktLSSUpLh8Ed76u1xu+rp6qkhA9ffYmthUWE0zLxqxALHN9x+Aonwe31uAakdHwiIYQQQgghhBACCVj0KhleJ5/ecCTVDUF8xRvg6xmw9n2YfC54MwlFQ1z/+fWsqzJFuAenDuaBWQ+02RkWrqrC5vVi83ia1uVccTmh7dvJufJKPGNGtzpmTwv5gk1Ft21IwEKIrmLPyCBlxgxSZswATAdluLAQ/9q1BNauI7B2LYG1a3CPTvxeCKxbR7SujsYlS2hcsqTN8zqHDMY9ciT977xzn3yWXaWUItOTSaYnkyn9piRs01pTG6xlW902yhrLcNoSZ5xtr9/e7nkbw41sqNnAhpoNbW4/561zKKwvpF9SP3KTcsn15prn3tym1zneHPKS8/A6un+h9B1yuCBrGFFvPltXm3oLw445DkdHReBHnwDeDKgvNcGL+lKTWqquBMJxNUxS2gg41JeYWRsNFYnBjZaOvR2mx81E9FXAs2eZYEZSNnizICnLBGOSshJfp+SDvff+uqWUwpuSCnYHGaPGUVVcQnUkAnY7qx2FjIwU4PlwMzkXTujqpgohhBBCCCGE6AF671/QfVhGkouM4WNh+Asmt7fDjdaaO7++k7mFcwFId6fz4DEPkulJHOmqQyGqnn+Bsn/+k+yfXkjO5c2Fuu2pqQz8+9/22edoqG1AK5MaRGZYCNF9KKVwDhiAc8AAUo86qv0doxEc+fmEi9sYAQ9EqquJVFcTra1rtW3bL36Bf8VKnAUFOPv3tx7Nc4e1zubuHjMPlFKku9NJd6e3uf3Ow+/k6v2vpshXRJGviML6Qop9xRTWF1LkK6LYV4w/4qcgpXWanrLGMhrCDWyq3cSm2k3ttuG2Q2/jrNFnNb0u8ZXw4LIHyfZkk+3NbnrM8mSR5cki3Z2+w5l1PcawGWZpSWsI1DUHMJxJrffJGGQKgvvKIdR2QWrABCDi+cpg+6LOte/qxZAdVxtmzbuw9BnwpJvUVZ70Fou1LinLpLXqYQYfdAihuZ/jyzAzrmY7V5O7Oo3UzbW4h3S/WVVCCCGEEEIIIboXCVj0dlYnSVF9IR9s/gAAp83J34/6O0PShiTsWj9nDiV3303wu/UAlD/8COmnn44zr2vSYDTW1Dc9t0kNCyF6nMxzzyXz3HOJ+nwEt24luHkLwS2bCW3ZYj3fQri4GNfg1jlngpvNfqEtW9o9vz0ri5zLLyPrggua1ulwmPrZs3Hm5eHo1w8dN0usqzhsDgammoLcbdFaUxWoIqqjCesj0QhjMsdQ2lBKWWMZvg461LM9iWmSttdv55V1r7S7v03ZyHBnkOnO5KmTniLVldq0bVXFKjbXbSbTnWkCMS4TjPE6vD2r3oZS4EkzS87Itve54PXm50GfCVz4yk1AIrY0VkLBpMTj/C1SonWkZQqskhWw6s0dH9dvPFz5VeK6t34JZWuswEYauK3P50lvfu5Og+yRkDmk7fPuZXa3hxPPPJtX3nyLqDeZapuPb+xbSPowi9xL9tvxCYQQQgghhBBC9GkSsOgj+qf05+kTn+bnH/+caw64hql5U5u2BTdvpuRP91L/yScJx6QddxzKbt/XTW3SUNfcOWeXlFBC9Fi25GQ8Y8fiGTu21bao30+0vr7VentyCrbUVKJ1rWdfxEQqK6HFLIFweTnbLo+rA+FwMCwlhXBqKiXvvIu7Xz/sOdk4snNIP/UU7Oltz4rYl5RSZHmyWq232+w8evyjTa99IR9lDWWUNZZR2lBKeWM5JQ0lVDRWtApAV/grOnzPqI5S6a+kyl9FkiNx5sE7G9/h8RWPtzrGYXM0BS/S3ekc0O8Arpt6XcI+X2z7Aq01qa5U0lxppLpSSXWl9oxghyvZLJ3p6B98MNxWCY3VzSmlGiuhodI8NlY1P/e0+DfWWNW59rQ8DqBwCRQu3vGxM38FR93S/Drog/tGgysF3KnNiysF3Cnm0ZVs1u3/o8Si6A2VULPV2sfaz5kEtvYHEoyYehBj533FytpGUIoljo0MW9+PtA2DcA/P6NznF0IIIYQQQgjRJ0nAohe5+KmlfH/Mar43oJZRM85ulTN7eMZwXjvttaaaFZH6eir+9S8qnngSQqGm/TyTJpH/m1vwTp68T9vfUsDXnHtcalgI0TvZPJ6EWjkxQ556EoBIXR2hwiJChdsJFRURLiy0XhcSKi3B2T8xjVK4tDTxROEwzupqnNXVNG7dSlxFA1JnHZUQsKh64UXKH/4Xjqxs7BkZ7S6Ofrl4Ru/9Oj4tJTuTSU5PZmj60B3uO73/dF469SUqGiuo8FdQ3lhORWMFVYGqpkBFld90nNttiYHpSn9lm+cMR8NU+CuagiGZ7tbFs++edzfb6re1Wu+wOUhzpZHmSiPFmcIl+13C0UOObtpeE6jhzfVvkuJKIdWZilM72R7ejlu5KW8sJ9uR3f2CHjY7JGebZWfMuhUOuQL8tWamRqul2jxmDWt9bKihc+/hTk18HaiDYL1Z6ttO0dZk1HGJAYt1H8KrP2u9nzO5OcjjSsGVnAvpFzZtPvVnV7Lu1t8SysgioqLMcawh+91+5F05pXtdRyGEEEIIIYQQ3YoELHqRDeUNDIw+zah1n8GSu6k4/UGyhsxI6BiIBStq3nyTkj/dS6S8vGmbIzeXfjdcT9qpp6I6GDm5r/h9zR0zkhJKiL7JnpqKfUwqnjGdCxDYs7LJ+fnPCZeWEiotIVRcQsO2bTh8rdMp2bMTO5pDRYWEC4sIFxZ1+B6eiRMZ9tL/EtZtv/Emgls2Y09Lx56Whi0ttem5PT0NW1oa9rQ0XEOH4szf+3UJkpxJjMkas0vHnjriVEZmjKQmUENNsIbaQG3zo7XOF/K1WbOjNljb5jnD0TCV/sqmYEh9KHFWTbGvmD8t+FObx/7tzb8BJo1VkiOJ1097nX5J/Zq2f7rlU97f/D7JjmSSnEkkOZLMY+y59TrDnbHLP5M9yumB9IGwK5N7rvwaQo0QqDUBj0CtFeCojVtXBwMPSjwuEoTcsWZbbEG3/R4tgx3BdmY5hXxmsW4tlTog4TN5U9M48fQzePOD99FON4X2SlZv/46MdUPxjG4d7BJCCCGEEEIIIUACFr1KBnWcZp8DQEWwjh8tvIv9tx7AHw77A067M2Hf4KbNTcEK5XKR9dOfkvOzS7ElJ+/zdrcn6Pc3Pbf3luKwQoi9yjVwALlXX9X0urGxkQ8++AAiEWZNm4bT5yNcXk6kurpV0W5ld2DPyiJSXQ3RKO1pK41UYPVqAuvW7bB9ub/4BTmXNY9WD1dVseF738OemoYtNQV7Siq21FRsKcnYk5OxxS2pxx+PI7O5ozdS7yPq82FLTsLm9e6xFH6HFBzCIQWHdLhPKBoiFAm1Wn/1/ldTE6ihNlhLXbCu9WOglvpQPSmulITj6trrFI8T1VHqQ/V4HIkzclZXrebtDW/v8Pjx2eN54ZQXEtZd/P7FrKxYicfhwevwtrscNegoZg6a2XRcOBrmrQ1vmePsXjwOD267G6/Di9vubnode77HCpwrBa4ks+xMQe6MwfDzec2vo1EzWyNYD4F6E5QI+szz1BbF33PGwNSfWvv7rJkavub9Y69drYuaHzBI8aXNRSwJ1tfOtQx8YwAjrj9UZlkIIYQQQgghhGiTBCx6ke/b5+JWIfxKcc2gIWzzbWfbhu0kOZP47SG/Tdg3+5KLqX7lFbwTJ9LvphtxDRrURa1uX8AfbHouAQshxG6x23Hk5uJpo8B3TO7VV5F79VXoaJRoXR2R6moiVVWEq6vNc2tp6/tSdxDgiGdLTeyoj9bWEikrJ1JW3s4RzZIOOighYFH7ztsU3/a7ptfK7cbm9WJLSkIlebElJWPzenEOGED/u+5MOFftBx8QKizE5k3C5vWgvF5sHi+2JC/K4zHrPW4zMyQlsc0ATpsTp83Zav05Y8/Z4eeI6ihaJ47uH5o+lHtm3EN9sJ66UB3VDdWs2rCKgA6QnpuOP+rHF/LhC/la1dxo6GSapJbHgQmU1IfqW834aKkguSAhYOEL+bh1zq2det+nT3qaybnNKRa/3PYlf138V9w2Ny67qymwEXsee0x1pXLV/lclnGtRySKKfEW4bGYfp91pjrG5cNmblxRnSpszYJrYbKZ2hTsFUtvfDYBhM8yyAwFfPXz0cfOKdR/BM2dy6eDDuX/1aCKpafhViAXV39J/1WiSxufs8JxCCCGEEEIIIfoeCVjEUUodCPwBOAxwAt8Af9Fav7gT53ADvwJ+DAwCKoG3gN9qrUs7OnZ3/cDxBVHg5txslofMeMYBjhzO/8pJ2eIHyb3yyqZ9bV4vw155OaHzq7sJBwNNz1vmWBdCiL1F2WzY09PNTIohnSjADIx4+y10JGICHbW1RGpqidTWmIBETS2R2lqidXV4J05MOE6HQjjy84nW1RFtI21VvJYz4KK+xI56HQgQCQTMDJE4rmGtayFUv/QSvi++3OHnyjz/fPJvTQx4rzvyKJTdbgIbbrd59LhRLuu524Vyucn88Y8San2Eioqo/+wzs5/bjXI5zfEuF0luN7OcQ1BuF7ZUF+ER/fiw+EMAjjv8ODweT7sj8i+ddClnjj6ThlADDeGGdh8LkgtaHTswdSD+iJ/GcCP+sHkMRAKt9ms5q8Mf9rfapz0ee+Kxlf5K1lXteDZOlierVcDixTUv8s7Gd3Z47CnDT+HuGXcnrDvupeOoD9UnBDdigSen3Ty6bC4u2e8SDipoTilVVF/Ef7/9b9M+LY+JLTqiQYNTOc1sjNcuBzRJ27/kJHctb0ePImpTrHEUsuTFrznstpNRNpllIURH9sTfJkIIIYQQQvQ0ErCwKKWOAt4H/MDzQB3wA+AFpdQgrfX9nTiHDXgdOB74GngZGAVcAhytlDpEa122lz4C/VQNf8nK4qPkJNCao9a4uGJuGH/J4wScTtJPPTVhZHB3DlYAhELhpuc2CVgIIbo5Zbc3FebuLPfIkYz67FMAE/Dw+YjUmuBFy6XleV2DBpJ67DFEfQ1EGxqINjaapaEBbb1Ga2xeb6v31Y2d63BXnsS0WTocJly8g6LNltQTjoe4gEVg3TqK/3B7p44dsnhRwuuSu++m6tnnUE4nyuWyHp0opxObywVOJ16ni6ypU8m76caEY0vvv59wVRXKWU2x8y5zrMMce4tjDMo5EeV0kHTQQXjGjiUSjeCP+Gmoq6J+7lyCtihppRn46uejnA6Uw4GLEHcU/Aw/IQIqTE26kwaCBCIB/GE/gWADgZCfRoKkudIS2hPVUbwOL/6wH91eHQmaa07FC0aCbezZmsvuarWuNliLL9RxUAzgjNFnJLwubSzl+TXPd+p9f5P2GxOwcCbB2U8TffECbPUlTHUtY37VcEoyhwIwP7qSUfOm0O/QgZ06rxB90Z7420QIIYQQQoieSAIWgFLKAfwbiAJHaK2XWutvB+YDdymlXtJab97BqX6CCVY8B5yvrZwXSqnLgYeAO4DL9sqHAF5LTuaJ9DRGFGou/DjKmG2NQCMAWmsaFi7qlqmf2hMON+dHd+yh3OxCCNFdKbvdFOlOS9vxzkDqMceQeswx7W7XWqP9fnSoda2J3GuvIVxaagU4Gon6G9GNjUQb/UQbG8xzfwDP2LGJ5wyFcPQvQPsDaL+faCAAkUib72/zJM4siPo7GSRxu1vNptChEITD6HAY3djY7rH2rKxW62rfe5/Q1q07fN+83/4Wz9ix2G12km3JOOsrKL/BpNyqtpZ48WXgR7z3Lq6hQ5teVz77LCW3/9Ecaz+WGrsd5XCA08kEu51nHF6wp+AcNJDcRx8iEAkQjJiAR8Pf/oVevgocNja/9VNTm8RhR9kdXBiq5qzoaCJKUzFpEFtnjCQYCTYdO/H5RUR1hPy1hZTO+5s51m5D2R2ct9ZLAAchIiwe7aAoPWpqkURDJNeGmLRRE7VBqu0batfYUHYb2OxEa9czeUOUqIKoDVYOVui465NZp0lthKgCb6AShyvZpPwafAjPzLqW95Y/yg/Kizkr8jb/CVyG3+2gxtbAF299wA8O/qnMshCiDXvwbxMhhBBCCCF6HAlYGLOAEcBjsT8IALTWNUqpu4DHMcGIHQ0NvdR6vFknJuh+GLgROF8pdZ3Wuv3elt3wjDONK9+KcOQ3iSM2k2ceQd6vfoV7+PC98bZ7TTjcPMPC4WidK10IIUT7lFIorxfamGGRNG3aLp3T5vUy6pNPEtbpUIhoIIgOBtCBAFG/Hx0M4hqYOHreO2ECBXfdhQ5a+waDRAMBdDCEDlivgwFUGzWLnHn5eMaPR4dC5vhQiGgoCMEQUWsd4TDK2fr/irYCNm1peWxnjwOg5f9R4bggTiSCjkRMG1uwud0kO5NJdjan+9qyvRLft2sAaFmdw2UtAKOGHMBp+1+dsH3VpROtANJGKpidsO3YuOdXn/ogqUcd1fS6bu5ctv3jYvPijf+yPW5fD/CbuNdV7z9MyKYJR8OEoiHS/vMamS9/bm39h/kM//wn3vHjaXStIy0zwCP5Wdw7NMopG+aj9GFoBasc21j+v/lMPvvgVj8XIcQe+9tECCGEEEKIHkcCFsaR1uMHbWx733qc2ca2JkopD3AwsKblaCettVZKfYiZXTEN2HHi8Obz7ihfwoDYk8ufCDKAaFNHg3PwINIuugR14FQ2BoOwenVn37ZbKK4spZZaAKpCNaxbt+Oc3z1FIBCgvNwU2V2/fj1ud+vUH6J7kWvWM8l16yI2GxQWtl6/38TW69pQsX594nU7ehYcPSthn9i4/Pj5d42RSKv/K8J/vN0ERMJhCIVM0CMSgXDYmrURQYdDFOfnUR53bLS6hobzzzMBh3DYOiYCkTCE49eF2VhSjK2xObzQGA5RN2aMOb8VsCAcNsGE2OtIBLvLRbRFe8uqqgh0IlhSX1NNXYtjizs5iyVcVIwn7lj/1q2UdzJAMzCQD3EzLKqDaRS3PLaqCubMYRQmLybAhjz481lbOGPtaPxeE3Z5a+7bOMcng90KUlljPVoWZQeaZt0opcx261Ep1XRcW8fGz9bp6NgdvSfQlMBrZ4+NvWdcI9tt7x79rJ1o75YtW+JPIdNZu48jrcdd/tsk3s78PbFx40YaO5jJFhOuLe/s24tdsLf+7pHrtvfINeuZ5Lr1THLdeh65Zj1TZ65bcWLK6D3294Rq6w+lvkYp9T/gTGCa1npRG9vrgCqt9eAOzjEB+BZ4S2t9ahvbrwfuAy7WWv93J9omF0gIIYQQQuxtB2qtF3Z1I8Se+dukxf7y94QQQgghhNjb9tjfE63zLvRN6dZjTTvba+P22Z1zxO8nhBBCCCFEd9GvqxsgmuyJv02EEEIIIYTokSQlVPe3oyrZg4E51vNDICH1tOi+8oEF1vMDgeIO9hXdg1yznkmuW88k163nkWvWMw0Avrae96zcoWJn7OjvCRcwFigFyoBIx7v3KPLd1DPJdet55Jr1THLdeia5bj1Pb75mdiDXev7NnjqpBCyM2Oil9kYqpQFVe+Ac8ft1itZ6W0fb4/MVA9t3tL/oHlpct2K5bt2fXLOeSa5bzyTXreeRa9YztbhurSvDi66yJ/42adLJ+3FDZ8/Xk8h3U88k163nkWvWM8l165nkuvU8feCabd7xLjtHUkIZsSoio1puUErlAylx+7RnAxBt6xwtzt17KkcLIYQQQggh9rQ98beJEEIIIYQQPZIELIzPrcfj2th2fIt92qS1bgTmA2OUUkPitykTSjsW8AFSzFAIIYQQQgjRnt3+20QIIYQQQoieSgIWxseYGRLnKaWmxFYqpdKBWzBT5J+MW1+glBprbY/3iPV4t0qc73MZMBx4xgpsCCGEEEIIIURbdupvEyGEEEIIIXoTqWEBaK3DSqlLgPeBL5RSzwN1wA+AIcANWutNcYfcDfwE+CnweNz6J4CzgXOBYUqpz4GRwBnARuC3e/eTCCGEEEIIIXqyXfjbRAghhBBCiF5DZlhYtNafAocDczBBhyuAEuAcrfX9nTxHFPg+8HtMhfRfANOBR4FDtdZle77lQgghhBBCiN5kT/xtIoQQQgghRE8kMyziaK3nAyd2Yr8LgQvb2RYA/mAtQgghhBBCCLHTOvu3iRBCCCGEEL2JzLAQQgghhBBCCCGEEEIIIUSXU1rrrm6DEEIIIYQQQgghhBBCCCH6OJlhIYQQQgghhBBCCCGEEEKILicBCyGEEEIIIYQQQgghhBBCdDkJWAghhBBCCCGEEEIIIYQQostJwEIIIYQQQgghhBBCCCGEEF1OAhZCCCGEEEIIIYQQQgghhOhyErAQQgghhBBCCCGEEEIIIUSXk4CFEEIIIYQQQgghhBBCCCG6nAQshBBCCCGEEEIIIYQQQgjR5SRgIYQQQgghhBBCCCGEEEKILicBCyGEEEIIIYQQQgghhBBCdDkJWPRgSqkDlVLvKKWqlVI+pdTXSqkfdnW7RPuUUpuUUrqd5bOubl9fppT6kVLqYaXUQqVUwLomF3awf5pS6i9Kqc3W/puUUn9WSqXsw2b3eTtz3ZRSv+/g/tNKqaH7tvV9k1JqgFLqOqXUB0qpLUqpoFKqWCn1slLq4HaOkfutC+3sNZN7rXtQSnms++YLpVShUspvXbc5SqmfKqWcbRwj95roEZRSqqvbIHaOXDMh9g2514TYt6y+WVdXt6O3cXR1A8SuUUodBbwP+IHngTrgB8ALSqlBWuv7u7J9okM1wN/aWL9p3zZDtHAHMAQoB4qs521SSiUDnwNTgA+A54D9gRuAmUqpI7TW/r3dYAHsxHWL8wRt32/Ve6xVoiNXA78C1mPunzJgFHAacJpS6jyt9QuxneV+6xZ26prFkXuta6UAVwDzgbcx1y0TOBH4L3COUupErXUU5F4TPYdSSmmtdVe3Q3SeXDMh9p3YvaaU8sj/291bLLgk3489k1KqH/AWMFBr3b+r29PbSMCiB1JKOYB/A1HgCK31Umv97Zg/Su9SSr2ktd7cda0UHajWWv++qxshWrkEWKe13qyU+jVwdwf73oTp0PmT1vrXsZVKqXswnXq/2MHxYs/ZmesW87jW+rO92yzRgfnAkVrrz+NXKqVmAB8DDymlXtNaB6xNcr91vZ29ZjFyr3WtSiBdax2MX2n9HvkhcBwmePG2tUnuNdEjaK21Umo6cDFwmdY61NVtEh2zrpkN+DPwpdb6NaWULRYwFULsOVYn+J2ARyl1cxu/n4luoq3gklLKKf+v9RgVgAfIV0odprWeKwH6PUdSQvVMs4ARwLOxYAWA1roGuAtwAT/pmqYJ0TNprT/qTJDP+gXwEqAe+GOLzX+01l+y51so2tLZ6ya6D631Ky07vq31XwKfYkaA7wdyv3UXO3PNRPehtY62DFZY68PAq9bLkSD3muhZrKDbw8CFmFlAkgKlZzgfE/j8EZjvqK5tjugsK9gkeo6DMQMNjpVgRfenlLoNkyllLIDWOqSMpC5umuiAUsqutY5gZpQDHAsyW2ZPkv94eqYjrccP2tj2vvU4c980RewCt1LqQqXULUqpq9rL2S66rVFAf2CO1toXv8F6PQcYrpQa1BWNE51yhFLqV0qpG5VSp0lu9m4lNpoobD3K/db9tbxm8eRe64asjqcTrJffWo9yr4lup60ghNVBEAaetFadANJB0J20vG5xr9/ApMYdp5Qauc8bJnaZBJe6pw4CSQuAxcAEpdTh1r4S1O2GlFJeYDRwKnCAte5CIAJc03UtEy0ppU5USk2ynseCFWBmotcCY6z0qmIPkZRQPdMo63Fdyw1a62KlVH3cPqL7yQcei1+hlFoAnKu1Xt81TRI7od37L2798dZ+W/dJi8TO+kOL19VKqWu11k+2ubfYJ5RSg4FjMLVIvrFWy/3WjbVzzeLJvdYNWEUAbwEUkA0cDYwFHtNaf2ztJvea6Fbi0wXFUmVY62IdBHMxHQSjlVLJLQNtYt+LpcGw0j+5YjO8rNcKU3vxfcwo1P7Ad13YXNEB63qpuHtwEnAt8IDWelmXNk7E32vRlt9/sY5UpdTzwFTMQNbZEtTttvzAbzGzYn5jzbYYDXwCrJLUeV3L+i7MwaRPnQZ8ppQ6WWvdGLdbKbANkwknluJL0kLtATLDomdKtx5r2tleG7eP6F4ew3QU5AHJmGnsTwEHAh8rpVK7sG2iczpz/8XvJ7qPZcBFwHDACwzDFBPWwONKqe91Ydv6NKWUE/Nd6AZ+FdchJfdbN9XBNQO517obF/A74Dbg58AY4D7gZ3H7yL0muhWrI26qUupF4Frrj/+oUspu7VIObAeOwgTjZARxF4vLxf4H4D9KqWnWa4e1LQiswqQRbBql2kXNFe2wOrxjneFJSqks4DTgp8AJMluy68XdazcDy5VSZ1mvVdzvY4sw/3ePVUq5u6aloj2x/6+sa+nDzFQeg/k96xfAj7XWr0uwomtZ34VlmKAFmMDSU0qp3Lh91gBrgH7A6fu+lb2XBCyE2Ie01n/QWn+itS7VWjdorZdqrS/AdPoMAS7t4iYK0WtprV/VWj+mtd6otfZrrTdprf8JnGXtckdXtq+vsqazPw4cAfxba/1U17ZI7MiOrpnca92L1rpea60AOzAIE7S4BDNKLK1LGydEx14GzsT8m73eWhcF0FqvBlYDBcDJXdI60YpS6gLgVky9ir9Yo7/DcaNN51i7ngfQItgtuoHYNVFK3Qp8jRlZfCzm3jsTK22N6FpKqZmYwtrDgIeUUoeS2L9XbC3HA07rGAnqdrFYkLbF6PszMdeuHHOfrdRaF1n7yzXrQnFB9f9iZsPcgknfdZ9Sanjcrk9bj9OtGYYyu2IPkIBFzxQb/dbeKLc02h8hJ7qnh63H6V3aCtEZnbn/4vcT3ZyVEmU9sJ903u1bVsf3fzEdF08Dl7fYRe63bqYT16xdcq91LasI9zat9UOY2RXTgd9Ym+VeE12ivToV1tP/WI/LgXuUUudiZnXFPGM9zlRKOaWDYN/poBPtE6AEM5NiIPCSUmpg7NporT/CBJpGSh2/7kkpNVAp9SEmreMiTBqv14B6TIqhM+NHF4u9q706FVrrzzH30lrMPfc08L247asxdapygO/v/ZaKjijDFhcQPEIpdbVS6hDr97KzgRswmTh+qJTK68r29lXWdRlhPY9PQ7kSU1JhE+Z36DOBv8cduhqTMnUsILPQ9hAJWPRMsfzCrepUKKXyMTdIezmIRfdUbj1KkZ7ur937r8V6uQd7ltg9mNSlrehDrD/AHgN+AjwHXNjGtGe537qRTl6zHZF7rXv4wHo80nqUe03sc/E5nmNBihYpTVZgOkm/xgzu+TdwYdwpYh0EYwBJq7oPWXUp2upLCGGK/dowNQ+OxoxEHQNNNXXewQRBB+yj5oqdM9NaHsKkfPy91vp+4AfAQuBHwGFd2L4+xUrN5Yq9tjq+Y0HdV4AMzLWJAvcqpWbFHR4L6h4io767VlyatYlKqU+ANzGz0W5VSrm11kuBVzHBwR9i6iG0nIkh9gLrnvIqpe4DPgNuV0qltEhDuRZTs+8krfUTwN3AMUqpfyulMjApKtcDM7AG/7QXbBSdJz/Anulz6/G4NrYd32If0TPERhht6spGiE5ZBxRipvslBJis19OBjVprKUraQ1jXbQImf2j5DnYXe0Bcx/cFwAuYPK1tpYWQ+62b2Ilr1tE55F7rPvpbjyHrUe41sc9Znd7DrDoV58ZqHSilHNYuGzHfFYMxKaGWAb9XSv3U2l4JbMCkp0sD6SDYV5RS1wP/jAtExNKclGA6bdIxAaUrMX+f/sPaHrTWu4DD448V+84O0sxcYD3+S2tdGrunrFmS92DqUV2klBq6d1vZN7W8NkqpK4C5qrn+V3xQdwmQi0n3eBYmwPu0Ump/6zyrMMWAx5E4O03sQ7Fras0S/BgTrP0rJjBxmtY6AGAVT/8r5h77sVJqpHWco63zit2nlEq3gkmNmGDRZ8C5mJSGTTMstNbfAt8BByml0jH/p90CXAzcBQSAjzDpV2MpD6X+yG6SX+h6po8xv5yfp5SaEltp3Ti3YAqaPdk1TRPtUUqNVUq1GlGqlBoL/Ml6+ey+bZXYWdYoh/9gZjLd2mLzrdb6f+/rdomOKaVSlVKj21jvxVyvVOBFrXV4nzeuj4lLKXQB8D/gR+11fMv91j3szDWTe637UEqNb+f3jiTgL9bLd0DuNbFvtBNMOBuTWuEemmdPxOpULMV0th0ARDAp6JYA/6eUOlVrXQzMxXQQnG0dIx0Ee1CL0dyxdZMwo+wvx4xETdNaR+I61d7D1BY5QGv9H+Be4HCl1JNWOsCPMB1yp8cdK3na9wHVdv78pm1KKSdmUEE9pv4BgI67PrMx1/d44Lj4kf9i98SlDNJx6/oBIzHfgf+nlBrd4jtuDeY6/cD6vvw55to9iRmhvwHYYj3Ptc4pfYD7mBWITwV+CTQAVwN3aK0/01qHWuy+CHgEMzj5VKWUPfY7s1Iqa1+2u7dTSv0WKFVKXQagtZ4NXIQJul8C3KGUGhh3yNOYgVf5WusarfVfMb9PX4RJD/WStd8UpVTmPvoYvZqSGUY9k1LqKEw+ST/wPFCHmQo4BLjBmrYpuhGl1O8x/0l9AWzG/DI4GjgJUwjrbq31LV3WwD5OKXUJ1kgvYD/ML4ZzMJF0gNnWH12x0aZzgMmYtBqLrf2PAxYAM60ovdjLOnvdrFFgGzDXZxXml/s84BhMjuVvgKO01hX7rvV9k/Vd+DvMH1R/B9rquH7N+sNL7rduYGeumdxr3Ufc7x2zMTM4azGj+k4EsoEvgeNj94/ca2JfUUqdB5RprT+0OmCOxaSZiwDHWLnZY/tegklNM15rvc7qLP8HZsTw5ZhZF+swqVEu1lpLnZW9QCk1CjjF6qCJDbj6Bybl0xPApXGdal7MLIr3tNaXKaWyMQGlf1r7XoNJ8fVD4Hta63f29efpi5RKSMF2FHAI5v/rRVrr7+L2ew5zvX6itX7K6kSPxm3/JXAfZhDlr7TWi/fl5+jtrHvreq31pXHr/o7p5P4a+LXW+ou4bZ9i0kqfqLWuUErtjwkqVWN+9/oJcDvwW631Xfvsg4gESqmzMDOUfxbXp9B0T7bYdwwmZVQQuALz/9ypwI8x13/pvmp3b6WUuhlTtB7Mz/ewuN+HjwVuw2RBeVRrfYW1/gjgbeCvWuvbrHUOzODjX2D6ZacDZcDpMit5D9Bay9JDF+Ag4F1MAcQGYB5wdle3S5Z2r9dMzH9Sa61rFsLkwXsNOK6r29fXF+BxzGiv9pbHW+yfjpmyuQXzy8RmzC/vqV39WfrS0tnrhkkV8U9gPlBq3X+11vfmjYC3qz9LX1k6cc00pjZC/DFyv/WQayb3WvdZgGmYUXrfAlXWtSjHFMX9GeBo4xi512TZawtmoM5mzAyKd+P/DQI3WevXYUYLx9bPsH5v/l3cunxMAcwSzCjITzAdDoO6+jP2tgVQmBkSUaARE2CIbRuMCUJHgfuBYdb6dMwI70LAHbf/XZhBdi8Bl2GC35fH3qerP2tvWACX9WiLWxd/nxUAb1jXLLaswnTWxfY53lr/AZBirbMDTuv5rLhjbwOSuvpz95YFuCPuZ3tt3Pp04AHMYNV5wPS4bZda99KouHVnYVLqzcfMjo1iMjlkdfVn7KsLZiR+FPi+9brV72Bx+ypMoCmKGfgzBzPYtQE4qKs/S29YrPumGFN7Igrc2mL71Lj/3+621uVYv2u8B6TF7ZuPCQpGMYO7osCsrv6MvWGRGRZCCCGEEEIIIfYqpdSZwIuYmRS1mFnhj1nb7MCvgBswAYqbtNb/U0oNwow0LQbO0lrXWfvPxHTuHYjpcBiGmQX0ZcsR4WLXKaVyMD//gzFBzI+BM3XzSNQjMWnjZgJPARdprbU1evXXmFH6r1n72jEjWq/BDNoaBryhtT6tvZHGonOsND9/BjyYju5wi+0OrXVYKXU3cA5mpstyzCy6WzCBwqla63pr/48wgYlbtdZ3xp1HYVJEjsJ0yg0AjtZab9q7n7BvUEo9jOlIrcHUeSnQWtda2/pjZln8CpMKapbWukgpNR0TAP6bbh71rYATMLXHIkAW5nqfqrUu3befqm+L/X+klLoOE7S4Cnio5fddW/9vKaV+h5nlmgo8oSWLyk7rYBbLD4EHgX9hvgMrMcGgDXHXbDLwFuZ77vda69uVUn8BzgeO1FqvanHOx2muAXSS1vq9vfbB+gjJXyeEEEIIIYQQYrftoBaBH9Mp8B6QCfxMKZUHoE1dnH8Cv8GkuH1EKTVNm5QK84GJmLRyWPt/jgluLMZ0fIPpRECCFXtULea6LcKM2D4Rk5YEAK31Z5gAxLeYEcGxDrX/YTrZxiilbKq5eOlfgd/TfM2+p5QaLMGK3ebCFH/9KTApfoNS6mggaKUJPAiTjuturfUrWuvfYjpRRwE3xx12PSYg8Uel1LVKqcFKqXGYtCeHYjr6XsVcx4Os95E6JDvQ0c/ICjqVYIJ5SwEvZnZTrNO1UGt9MyZ93hjgcWXqmX4DbAWmKVPTFG28i7lXkzEFtw8k7jtU7Btx/x9twcySmI6ZjQw0/5uwOshdSqnD4o79AyZgcVAsWKGkAPfOSot/EXcPfgYkYWZM3IwJ6t0CTdfCprVehgkwLQZuVUrdgZmplA0Mtc5nj6sL80vM97BXghV7hgQshBBCCCGEEELsMqtgbMJIxjaKu36K6YSbjRmlfTAmpRMAWutarfVDmE66dOC/SqlZmJH7/TEpiJo6bLTW8zCjkaswKYikFtxOUi0KarfYZtNaBzGFzrMxI7sBrogVIrUKwq7AjCrdAFxnderUYVIKHR8fQNJal2it7wWewaQHO0NrvWUvfLQ+RWvtB07GpGdsWVPCjukovRFTU+perXVANRfM/jemeP0vlFITrfMtw6TtWo8JMi3G3Lf3YdIbv4CZlQGmIxwJOnXMulfa/BlZ351RzD3hxhT33YoJ6k60Zi15rN1vAh7F1I/5J+b6voWpP5Xf4pwfYmqQfQic38a/DbGXxXWQL8bUIDkT+H7sesb+TVizCf8L/F0plRI7Xmvt01r7rY5x1XL2lGibUuoUpdRa4EOrLkxLSZi0hadjvtdKgIus2ZsAscDQW5igRQnmd4yfY2pUxAZIRKwAh9JaV2qtH7O+XyWwtAdIwEIIIYQQQgghxC6zRvRqpdQBSqmrrHUtZzp4MalMDsd0ovmBS5UppE1cB+qdmHRPIzGFnSdjOs0vsM4bK+5sszrLx2qtL9RaV7YRJBEd0FpHrBkQV7Xs1Im7fmsxs162YDqvJ2MKnjcdr7VejplpMQ/ToXo7Ju/6wUqp4bERq3HX51Kt9bBYuijRObEAU1sj9bXWc7TWLyqlBlqzKmLrP8B0cDsxqYbcVud50Nq+BpMiyoGpSRE77lFM0eZ/YIJPszH1Mr9nzZaJdaDHAheiA3H32l1KqWPjrqUtLpAxGzPSuwgz2wxM7QqsTmultd4O/AH4D3AY8ApmRkYBMMg6px1TBwHgQa318Vrr56xtMhNmH4pdWytt2uOY+m53AtcopZxKqXSl1AnAPZj6Ma9japK0PE9EgoKdYwVe38D8DjENeEwpdX78Ptb1qAIGWN9nt1qbbrO2B2MzA7XWXwMXYQIcPwJSgAlKqRFx54sfrCGBpT1EfqETQgghhBBCCLHLlFJupdQzwELgAaXUb5VSQ61tdgCtdTmmw3QAUI0Z1TgYuNLaHrQ6UuswqYXuBMZhghspwCil1JDYe8Y61LXWZdYED7ukg9o5SqnjMYVcHwCeVUodHrctNvuixHocg+m8rgd+qpQ60Fof2+894Apr/0sxtRJqgVPAXK+46xOw3kNGoe4Eq2MNrGBB3Kh7rNd5mFkR/6eUGhW36SFr/SGY4vSRFqlMXsF0lJ6plDrROpdda71Za32t1vo8rfX3takro5RSxwB/xNSP+XgvfdxexRq57cfUdnkM873WMrDrwKTNOw4zC+kr4Eil1Blx29Fab8N8b76LqR/ze2v7j63tkbjvx5D1/rHvYen03kkdzUTr5PGxINGrmPRDGZgAxTpgASbN0OmY2U93WDOmxC7SWn+LCehFgc8x35ePK6UuwPzsY+YAo60Aw38wqQ+PUkpdaG1Xcef8AHPvLsWkWXPRTn+63GN7jgQshBBCCCGEEEJ0SjsjdLOwUjZhOjFvBR5VSuXHdbKC6SAYhing/GfMqP0fxTpJY7TWNdoU+/0P5m/WUdYyjDZYEzwibW0TbbM6qwdhOl5KMXVCHldKXQMJneNfYwIMBdao1Hsxo7ljM2lC1kjUqNZ6KXAh8B0wFpOCaJRSKin+veNGHcso1J2glJqqlKoF/g5NqaBQSh2mlMrTWpdg0gSNxgSMsPZbAzyC6YD7g7U6GpfKpAIzy6IE+J1SytvW/aSUOhSTGuwBzL14P6a2iYjTznfkVkzAoQ4IYVKr/ccKMgFgzRirwgSVNCaoC6bOSOxeiw/O3oC5brHg1DQrtVAr8v24a6z7I2I9n27dg8Pjt+/oHHHfdw1a66cx6bxuxwQs1mJmXozQWv/ZOqf00+6CFtfiz5hgfA6mbs8zmJRb8YXLqzABjFgaqBusx5uVUulxs6Ji530Bk1rvQWC61lpml+1lciMIIYQQQgghhOiQ1VEWn74kvoOgGJPGyY9J3/Q/TDqGd1sEI4oxxZiPtGZS/B6TS/oqpZTH6iBQcSNaf4cJWoAJdkgO9p0U6/xq2bFmdXi+gRn1a8N0mm0A/qqU+o1SqsDa1YsJQs2wXt+P6WQ7Wyl1Wsv301p/jElns9pa9a7WumEPfqS+rASTLuYMpVSeUmqCUmo18DwwwdrnHkzn+I9VXAFfzKj+zzHXbbqVwi1+hst7wJuYItonx7+pMsWAXwZew6RMqcfcw3+TWU3N4mcxKKWccesdWusNmGuTikmN92dMmpmnlVL7xZ1mITDFOs+rmO/SwUqpWFH0WAF7tNarMN+Rb1vbfqu13rqXPl6fYf0fFCuGHUt1OAdTqHkBsFIp9bBSatiujKbXWs/XWv9ea30scJbW+pda6yLVXKdC7qlOUEpNU0r9RCl1klKqIHYtrN9T1mHusQnAAZhZf08AFyilXrZma36IqRljA9Baf475Lh1Fc/BCxwWcQlrrz7TWV2mtq3d35o3YMQlYCCGEEEIIIYRolzWiV1sjsqcppZ5VSmXG/SGvMelLngdmYdLPXAj0A56MS7HwLeZv0Czr9ROYTtQTsWpUWOeLdcgVYUb0j9Nan6K1rt27n7T3iOtwi3V+tepc0VqXYtIFJWNmWzyAGb3/R+Df1kj7DZiRqNlKqQytdSNmBo0LE2hK1c01KuJTn5wB2LXW7+y9T9l3WPdgLBVQFqbj9BtMkPA+6zla6zLM9RuJCVq4rfXVwP8Bmua6CGGrQ9ZmzXZ5CDhNa/1S3PsqbepdPIGZpXGO1vogrfXX8R27fVncvRYbif8n4C9xsydi9+CtQDkm5dNs4DxgKvC6Mmm2wOTJz1JKTbNe34MJEN2ulMq1grpN97I2RevPwtxrr+6tz9iXWP/Xaes7bQCmCHoyJiXeHZj/6y7F/N9W0MGpOvNejdDUyS51KjpBKdVPKfUSZhDDfzCFsb9RSv0+NtvP2vUfmMD5BcDhWuuLMfWXvgd8gpmJ5qc52AumBlMIuFIpNSH276CNNjQFDsXeIwELIYQQQgghhBCtxP5QtzrJ0pVSTwDzgaOAEfH7WsGE/8OkPDkT2IwJRCwH/quU+iOmmOxWTGdqLNARK3Z5uVJqoNVBEN8hV6G1XtNi5oXYgbjRpmcppT4APlBKva6UOrHFyPqvMaPvjwemaK1/ienwPhb4UCl1BCYAMRZTgwSt9f8wI/JnAT+Je8umVE9a6zVtjOIXuy7WkTneeuwPvASciimsXBa37xOYzryziZstYQUingP2jwURrdH/sXoHS7TWb1jrW87IeUNrfWvcdlusY3fPfsyeo+WsM6XUuUqpbZi0MRGsQIUV0HNYHZzXW4f/Tmv9PCawFwL+p5S6CPgCSMN0pKK1XoJJ82UH/mQd2/JnHpB7bc9SSt2ICd7ejEnldZU1E+I2zD31KjAduEUplb277yezKjpHKZWDCVIcA9yF+V3jLEwg8DbgDqVUf2gK0v4BE1y/0Qq4/wcTbKrGpIjyABOt4JTNCgrfDWRirn2b10au174hAQshhBBCCCGEEK3E/ihXSv0Kk47mZEyn2fcxBSpb+gYTtBgHXAeswnSovoBJsfAMpuPtoLhgyGxMB8QUa582861bfaMyorGTlFI5SqlnMT/7fkA6JsDwNvCPuJH39ZiR81swxbQP0lr/DtPZPQaTkuZETOquGXFvcSsmPdEvlVJj2uu41lKnYpfEAgZtzJRJx6QNsgHDtdZbtdbh+M5qbQot/w6Tn/0ncSP9wXR+F2NqzDjauz4tZk+1apd02DV9J0WVUpOVUl9hvt9WAecCd8YHkWI/Z631U5ig77FKqYu11p8Bp2Gu6X+AazC1Rg6Me6u/Wue9UCl1eMuffXygcK980F6sxcyw2LoMzP9bF2PqG/zX+n8KpZRbmxR3f8SkiPoxVgovsU8cCJyCmQ32J63161rrlzGB8/cwAcFL4vZ/GXgfOIHmWZxPYYIcizFFtF9vcU/9ETM743pEl5KAhRBCCCGEEEKIVpRShyqltmBGMr6C6Zy5S5sc3K06qK3UMc9gOgHOBk6xOncuxaTSGIcZGb4V0wEec4/1mBPrSBe77Uxr+RvwQ631VOBQzMj7y4A/xKUzWYvpoBkGXKyUStNav4bp+JkPHA7UYoqlx9IELcIEQ4ZiOsbFHmCN2ne0FzDAjPqdgUm/doBS6hfW+pad2J9gUtmcgvl3EFv/NWZ0+DZgyM6mdOrLMypaUko5lFIPYer2ZAFXY0bivxALVsQHnuKCStdajzcpUyx9FaaexZ8xs9caMEGL2EyWMuDf1jG7PZpfGLHZRdbslKzYyHzMd91vrMcJQOxaOrXWAQCt9VLM/4lpmHtsh8Wy4+81ZerCOFquFzt0pPX4mtbar5prxcwHfo0ZWHGFUupYaAri/QEzK+kipdRIK/XWBuAkTLDwI2vfqDKp9yJa62u11iU7uqZi71Ly/40QQgghhBBCiHhKKQ8mNcK1wLPALdrkS491okWt0aaBFsfZgB9hiji/DFyrtS60tp2MGbH6vNZ6sbVOWR1Gw61OBLEbrM6vNMxo04HAEOtaxX7O04DbgSOAm7XW/7COG4JJFzQa0+n6vHWuJGv/JZhOovq490oFgi3/DYhdE+sss56nYOrAZAIVwNta681x13E/4EtMCraDtCnaG5+/HaXUaEyti2+Bn2mtV8TOHX8dxa6x0tM8hUmndovW+p429snUWlfFvY59dz6J+Z78k9b65rjtl2E6yD/VWlfFrre1zWnNnhG7ocXPNBn4Leb/JQVcqE0KwhRMcPBmTIq1i+NmHMbuwVHAMmA7MElb9Sh28H424GBMx/t8rfXHe/Gj9mgtfm6xn/mtmADELGt2UstjLsHMGHwR+KlurhHyD+DnwL1a61938v0Tvk/FvifRIiGEEEIIIYQQTazOAT9mtsRXwGGx9UqpKcClSqlngLeUUncqpQ6KHWv9gf8O8CZm5OmpcdveBn4TC1ZY62IjyTdY7yF1KnaD9fMMAwWYjjS39TONjeJdhEnrVY8ZcXqwtX47ZjZGJnCesuqJaK19mJGrz7bs5NZa12mtA0py5+8RccGKqzGzkP6G6Uz9J+ZemxV3v3wDPAgMAG6xTtGy7sRa4H7MzJr4ovb11vvIddsNWutyzOyzWuBgpVR/pVSqUuqHSql/KKW+Bd5RSt2vmotox67RDZhZMVcqpSbFnfbfWutXYkGOFh22Iblmuy/uZ3o+JhXeJZjvw9lAbAZFPSZQ/x0mwHCQdUzTzBdgvbVUAsGWMyVir+PebxQmVeJ/gTuBwXvvU/ZcSqkJSql+xM0mipvZFQv+HWDt2/J+eBaYiylsPytu/X2YQOAFSqnp1rEd/q4hwYquJwELIYQQQgghhBBN4joHFmFSzwzCFJI9F1Og+SHMCNHDMCNQP7NGNsaOLwcewHSc/0gpNQ6aRix2OEJYS52KDnUyoJOESY2RobVutFJcxAoAa2Ae5hpOBk5RSrms1BkfYwo5nwCcHjuZ1jrUUeeNltz5e4RSKk8p9R/g95hrcRnmGp2B6by7WykVX0fkXkyH6kVKqUPiAh7ZSqnh1j4PYGY7Pdzy/eS6dayT99pCzHfiyZiO73swI/LPxtTrGQr8AnjNCg7G7sNSTJHgVExAEGt9m/dZXKBKrtkeoJSahQnmrcJct3O01jdqrTfF7bYGEywcS3OqvJgoJjXbWKCQ/2/vvsPsqqo3jn9XCiGi9NBLkK5IEZDem4CAQuggSO9dEFG6VFGkS68CPzqISAsgHaUKBESaFKW3UFPe3x9rn8nJzZ2QmUwyM5n38zzz3JnTz9zZc+/da++1SkmT2vHrswNmiIgtyDb4W+BtYFFJF0zwG+1GImLDiHiYrDnxJHBPRGxUZrtUHiUL2u9Z3k8MrweKlCkozyLTFC5aBTQkvUoGF2cCDij7+r1GF+eAhZmZmZmZmY2m1uHyZ7JQ8+7AxWSH2w/JEaeLkp09kwOnRMQ8tUM8RHbkLUsWuPSIxfFQG607IiL6RcTWETGgrBvtc70y5/1bwHwRsX7Zpndt/RdkYOJf5HM5R1n+HlnLYiiwWUQs0uz41vHK7/iHwEZkgOEgSedJeo5M6fQR8D1yhPA3ACR9SM6W6Q8cVwIVPyRnZvwuIhaU9KGk7SS91DgC3JprY1v7nFFF6w8n03idSHZkL0sGLE4Bpi/rB9b2Pabst1mzdmoTRmSdpAPJwO5BysLN75cZhPXO7+Hk/8l7yALcJ5Wg4tQRsQ6Zmmg4cGbja1tJX9Q/IlYn/x4uJNPtbSppJUlPTYRb7RYiYtaI+BOZxinI9w5PAPMDp5MDJQCQ9CAZ0JiTLFAPDTPLyP+XbwDLNgQ0zivL5yDbo3VxfuNhZjaJioiVI0IRcfgEPMfh5RwrT6hzdBcRMbD8Li5s436LRcSIMvKmS4qIHco1fq+zr8XMzCaO2ojel8mOhH8Cp0paXNJtkt6Q9IKk88mRi5MD+0NLsONTsiPvLWD/Wuoha4faaN1NyBG6F9AkEFTr8LyoPO4cpTZCQ4f1f8g6F4szeiHfR8kCv8sAW5fn0oGmDlJ1eDcGD8rveHLgWEn7S3oxsjDvGWRgqQ/ZljZk9DRr5wFXkTVJhpBtdUvgAWUx55bz1keAW+vGta3V/Bv4PTkif21Jh0p6H/hQWd/lRLJA/RrAwuXY/cq++5XHwzzqe6IZQLaXOyXdHxG9qgB9kzbyXzIAOIwMWtxH/o/8I/m/80BJtzWeoHxm+jVZ+H5z4GhJs0m6akLdVHcUETOTs5LWIIOv20oaJGltMo3dFMAGJUVU5dfl8eCImEVZE6ZX7X/qK2Th+gUi6/VU72WGAiuU9zBvT/i7s/HlgIWZWRcREUuXDu+/trL+5LL+uVbW71PWHzVhr7T9ysCVrSJicES8FxFfRcRbEfF4RJwRESt19jV2gt8Bz5EpNyaoiFii/I3s0cZdLwJeJT9wmZlZD1HrALiNDEr8viyvOl2r/NGnkWka1o6I6WudPlUO/d9KeniiXfgkKCKmjIj9gHPJzuthwKaRhZVbnpOqw1PSNWS6mrXJDmyojUSV9AnwbPlxzdryz8lOtj8B57mTu2NERO968KchfUwVZLqQTBlDRKxJjhTemkzftRWZlm0aMpA0W+3wh5DBwge3t3CpAABEWklEQVTLttNJOqF+fgedxt24trVKSXN3HTkL7ZHaDI2qo/QN4H6y/22tsttXZd215AyMHf0cTTSTkcHBySKiv6SRrf2fK8vvJf8nfkUGeX9OdrIPlHQqjBmAJP/n/oKcnTGLpCMnyJ10f6uSv6uzgMMlPVtbdyfwFLAgpb2UoN7jZP2eAWQwCUZPyfUxOXvmZY1Zd+mVchzXgukGHLAwM+s6/kFOwV+ulRfRVQAB80fETK2sBxhcHh8hX+BP6+gLHQ/nA5eQKSRuJjsxLgc+JEet7NhZF9YZIvOnrgycNJE+pGxQHm9oy07lg9jvgbWiFCozM7PuIyI2joi/VDPlGjvcWlPrcHsXuFrSf8rP1WvWiPKe5Qsyj/d/gfdrHXZfAb+T1GUHU3QjK5Id00OBQeQsiBUo6TIaZllUnWdHlMf9I2LmMhK1d0RMVpZXaUneLftVQY9/StpK0pAmHXH2NRp/Z9XI+ZImZtmIODsizo8szPyDWpDpy/IcTU8W0p6GDET8qgT8niRTmiwObFIdX9K/Jf0e2FzSQZI+iIg+fu7abZzbWkXSm5IGS/qiIRhVtbV364/lb6F3+X4fSY+N6/9lG29fkMHAWcvXaJoE5D8gg1efA3MDT0g6XdJ7tUBkS3H0ss/lwGKSNi2vn9bcI+SAuMOVReVb2oCkt8iBEDOStV7qDiFrMQ2KiKPJFFHVjI3DyOf1stZOKteC6Rb8D9HMrIsoL5z3At8Elqyvi4jpyLy115VFqzSs70W+kf6SHF2FpM8kPddV3iRFFgnclsxJOVDSTyUdXN6kr0K+GTmjEy+xM+xKvvm9eiKdbwPgMUmvtWPfK8g8rbt07CWZmdlE8AMyP/4gaN9o68ZUJbUUGsOB5cnC3G+Sgyvq+zV25Fj7DCUHfSwj6RayE/W/wBbVYIJawKEKNN1M1h35Hjmjk9Jx/lU55jrl8dWybrS/C6cRGncRMXP1PDT+zkoQYpqIuJhMKbMesD45Iv+hiGgcfT2I7DQ/XtLZkj4oyz8DpgKmJWtZLFHOXQUIPys/95I03M9du41zW2tUPRe1tli1taqI/SPVtvX/qfXZNzbBfUI+DwsDq0bE5DAquFS1V+CCiFistKMnyNlLawEb1oJNI+rtrPa/90lJT07Ee+quXgSOUklZWLWBkpWhH9AXeK367FoF3SV9RNYh+SsZ3L0rIi4n07cdCNxB1rqwbswBCzOzruWu8rhyw/KVyGn8pwDv0xCwABYhR2E9qCyk2GoNi4h4pXx9MyL+EBFvRsSXEfFURAxqdlERMXtEXB4R70fE0Ii4JyJWbOO9LVMeL5L0ceNKZVHABxrOe2G5h29HxIER8UJEfBERL0fEoRHRt5XrXTEiboqId8u9vRARR0cpUjg+25eRNAdFxL/Ltfw7Ig6mja+p5Y3wBsCtjb+PqNXDiIgFI+LPEfFhRHxQnofpy3bLRMSdEfFxWXduREzRyvnmIjssbqgtmyoijoyIZ8vz+nG5n4siYs76/soCnneTI1m+2ZZ7NTOzTncMmV/9p1HSL7Z3NG+tc1SROfY3IN+fvEx2PNRTM7Rw5+n4kXQ3cISkV8uiIeTvfV4yRVC/0plTdZhWAaK9gcfIlDaXR8Ry5b3F7uTs1tvJ1BvNzukO1HEQEbOQMx/+EBGzl2WN7etIsqD2iWSwYiGyLsJ7wK8iYpfa+6vqvdw7DcfYkUwjejHZ2ToVNA+QdMBt9VhtbWsN+6qh43WeiDiBnBFziaQ/t3JO/3+cCMpz8wk5CPA14GDgxzAquBQZCDyT/Pw9TVn3OdkZ/gKwBQ2DC619lOm4hpbvGwM/0wHfpQT5Ysy0h/cCm5LpuT4AlgLmItvumpLenIi3YhOAAxZmZl1LFbBoDEisQo7Ef4ichdFsfX3/r9OXzEe9JnANmZdzbuD/InPmtoicWvkgsBn5hqEKmtwOLD2O54P8QAYwXxv2qZwMHESOljiVnElyBDnddjQRsSvZsb4cmXbqFOB1curo7TFqana7ticLiB5HvoaeTo7e2A/4QxvvaUXyeXhoLNvMBTwA9COnIj9JPg/XR8TyZAfD0HJNL5IdD6e2cqwfl8cboKUj41aycNn75RhnA4+TH6TnbXKMB8mcr8uOw/2ZmVkXUUZoV2kTfhoR32itw20cjqWI6BsRqwG/IV93piGDFU905HXb6Goj7auZuZeSBWAHAT9q2Fa1kag7AeeRnTv3An8nn7fXgP2VhYGtjSJiu4jYl3yPezY5gKhZIfSFgd3I95uHSfq7pP8p64zsDrwE7EsGMSCfn6HkSO5Fy8Cdvch6FrdI2hEYIKlpoMnGX1vaWhP9ImLuiNifnD1+APkZxnUMOkCMXmC5vW4l091OBZwfESdGxLYRcRxZT2Ed8n9mfTDdS2Q640XJ19HJx/MabOwWITNP3FN+Hi2oVws+/Yr8HL8qmYbruLK+N9a9SfKXv/zlL391kS+gN1nPYSjQt7b8n8Dg8v2+5Av2bLX1N5ZlK9SWrVyWHd5wjlfK8uuByWrLVyvL/9qw/YVl+SENy3cqywWsPA73NhvwETCSzCk5CJjza/apzv12w/1ORr55EbBRbfl3yMJ4T5AFB+vH+kXZfv/x2L76nT4BTFFbPis5Ck7AheP4XJ9Qtl+9ybqBtd/t3rXlQQZVRI4k2aC2ri8Z0BgGzNjkmHeTxceqn79XjnNdk237Ad9ssnz9ss8Rnd1W/OUvf/nLX237It9j3EkWpNy0ncfoRXYMfEimSPkUuIlM9djp99gTv8iBDCPJ94IzVc9TK9tuTA4AOREYVFsenX0f3emLHORzW/m9nw9MTaZEe5usC7JY2a53eVyvbLtz+Xmy2rrJycEjI8laFZDFZI8ryz4C3irf30ntvXN1DH9NtOd9nNoaOaDpy/K/9kVgu86+9knlq/43X/+s0pb/YdW2pe1tTM4OHFm+PiHrSq7Yyr6zkAGNH3T272JS/yJrUYwE5mlY/o1mz2f9b8SvaZPGl2dYmJl1Icopjn8jp4L/ACAiBpDTIe8um1WjDFYp66v6FZ+TxafG1b4alVcV5SitV6lNcS2zCzYlP4Cd1LD/ueS02HEi6XVyKvxr5FTaq4BXIuLtiLgysgB1a/5Q9q+O9RU5AwKyLkZlZ6APsKek9xjdCWRQYfPx2P6n5fFISZ/WrucN2j7DYrby+NZYtnmRnPFRnUdkLQmAxyXdUFs3jKyF0YcMxLSIrIGyPM2LbX/euEBZ9HFok22ra52tyTozM+siWklVMgI4lByxuG1EzFq2HefPhMpR40+QszOvBlaTtJ6kV0rKRNepmPhuIQehrE0rNUqiFI+VdJWk4yX9XNLV1bry/sLGQXlvfASwBJkr/URlWtPXgOPJWRJbRSm0XXabvTzOB/k+VqNytn9Bvsf/nFJIW9I7kn5Bjhy+gZyN+1NJq2lUmiLUUFfGJrivbWvFJeTMij2A+SSdDx7x3RFKu5kmIs4k6xbcEBFLk59/xun1rPp/pyyQfhU5iGsZ8rP1OpKWkPS3SL0a9n1T0i6SHhnzyFYZ3/cCpa2sCbwg6d9lWb+IWBk4tDwCTVPijfBr2qShz9dvYmZmE9nd5EisVYD7yVH9waiAxRPkaKtVyDfEi5Iju+6oByC+xoeSXm6y/HVG1ZoAmJ8cfTK4fKBqoUwlcT/NUwc1JemOiJibvKcVgcXJjvRNgE0i4lhJv2yy671Nlj1IFoFerLasSlG1VklV0WgYsMB4bL/IWK6n2bKxma48fjiWbZ5q8obrv+XxiSbbV+tmaVi+LjnapB6wGEKOAtw8ImYjP4DdDTzRyocvyNRRANOP5ZrNzKyTlM7n4VJLHnXV1oWk+yPiHDIX/sbAyWP5n9+UpE8jYk+VAr/l2L3dedo5JH0UEb8nO3d+GhG3SHoxIr4DLCzpCmVKG2BUsfTSoT6yvs7GyUxkasxHJf22Yd0pwDbkwJzbyYKwlO+HAYtGxJySXq23T0n3RsSLwEwRMQfwenlujoFRz1n53m2tk4xLWyvbPRQRj5bBRC3PmZ+3tmvyOrYUcBEwM5mKbXGydsFvgFPb+noGUAZpjTbor9bOmnZ8N16Xja4Dfjdzk4M3fw8QEYuQtR93IT+HPj2ex7duwAELM7Oup154++jy+AXljVQJFNzHqLoV1ePgNpzjo1aWD2f0+kZTlce3W9l+bLMDmiofjO8oX9Wov23J4mYHR8TVkh77uvOUETbv1a4RYNryeEjj9q1o6/ZTkVNT322yrq2/i2pmw9jyn45RnJx8jr5uXWMx8h+TwYaWoIqk4WVWy+HkzJdqBs07EXEa8JsmH6z6l8fPMDOzLqPqPKk6nyNia7Jz9GOy4PKttUENx5Kjg7eNiLskPVl1Xo/r+apgRa3T2x1xnetR8n3U/sDuEfEc+d5q6Yh4X9Jt1Ya1TnIXZm6fPsBXwDwAkUXn/wgcLem0iDiMnIH004h4SNKH5OCUG4G1gDWAc0vQqHd5PzsFmSbqQ+ANjV7/ojHA5LbWucaprUkaVo0y93PWdjGqwHLj/6kNyc/F25CD175HFsM+KCKek3R7W1/Pmvm658zBirEr70G+S85G+6Idv6/vk4Pt3o+In5G1fr5P/h/dXZndwCZxTgllZtb1PEnWJ1i2TDtfBXhIoxdEvBsYGBEDyYAGjHvB7baoAhsztLJ+xvE9QRkJei7wp7KosaB40/OUqaLTMXrwperEn1JStPY1Htt/RL52Npth0NbfxTvlcdqxbjWeSkG4NYGbG0dRSnpP0p5kDY7vkFPX3yffXB7Y5HDVtb7TZJ2ZmXWS2ujrFSLiWbIDZxsyIH8tcF5EzFm2fYVMXbMwsGXpEG1vAW53eneiWofoZ+So4zeBXckc6wsB+9WDFTZ+SkfoS2Ra0zkj4lXgOuB54LXSlq4jO9U2BH5Sdn2XnBX9Bdmxui60DL75FvmczUvWQRuto9QBpq6hPW2tBJHdsd1G1WtSeV2aJ7IY9ioRMTU5COsoSddLekvSHeTnl1mAfSKif3tfz6xjRMRCZBuZX9Ln7WwDVYrqdcni55MDq0j6saQ3wikoewQHLMzMupjygeQecjT7+sCCjEoHVanqWKxO1q8YShYI62j/Ij9cLVE6vluUkS/LduC5mtVMqKzQZNky5Ci3x2vLqum8S4+5eVNt3f7JsVxPs2Vj88/yOH8b92ur1cmaKM3qVwAtH6iGSDqdHPkH+bfXqLrWfzZZZ2ZmnSgivk92EowE9iJflxYkRwNvCdTT15wFPFOWrz6Ox4/a95NFRP/G5TZ20cE57GuBqqWAnchOu35k0d+ZJJ1c1vs56gC1oMGCZKqYWRlVwPyGWsfcEWQ6120iYp6y/B4ybc3cwIURcXhE7EPWTPs18HdyZoZ1ALe1ri2a1JqIUbV2FBF9I+IE4DmysP2dwJ/JdvePiOhVm4VxA5l+bW1g6zZcg5+r8VA9X7Wfq99nHzIF3kNleZvaYjlulaJ6fmAPSQtJuidSlWLNwcBJnAMWZmZdUzVb4rDyeHfD+seAT4C9yTRF9zaOnu8IZVbH/5EzLPZvWL0DpXjguIiIH0bEBo1vbsq6echc2gD3Ndl978g6C9X2k5Ef+gAurG13BpkW6dTIHMCN55k6IhYbj+0vKY+Hlun71Xazks9FW1RBp6XauF9bbQB8CdxaXxgR1QydRtVMkS+arKuu9Z4m68zMbCIYy4f/nYA5gYMlnVEC0S+SoxNfAjaKiA0BJH1MpgScmexUnbJ0Eo3RgVMbWVx12C1OzsLbukpX07F3OOmpd7KUnwdGxIDqvUR7O87KcZcFLiNHGQ8GviNpT0mfRUQfP0cdKyK2ImdDPEz2p8wp6Z2yrjeApMeB08h6bZuWZR9J+gP53v594FAyPdsWwJVkAfvnJ+7dTHrc1rq+iNgBuCYivl1f3vBZdl0y+PBHYB+ylsGy5GfPkSV4GLXXw73K424RMXuVRq2V8ze+ps0VEfO3tr01p1EpKGeOnH1W/e3PSaYn/qhs16aUaOW455DB3FklnVHO06cMsnOKtR7CNSzMzLqmKmCxENlx/FB9ZZlCfj/ww4btJ4RfAKsBR0fE8uSMhgWBdYDbyHRD42IB8s3muxHxN+BFcvTZPOVYkwFnSnq4yb4PAU9GxJXAp2RR8vmBayW1jEaT9HRE7EaOJn0+Iv5SzvMt4NvASmSAY5d2bn9XRFwA/Az4Z0RcR46u2rRc44/G8XcBWfD6JUbNaOhw5Y33esCdyoJydYsC10bEI8CzwP/IkYI/Jkfn/r7hWEH+HQyR9K8Jdc1mZjZ2tY643YAR5OvU1ORr6R2Sbirr5yFfl7YhX9OuIEepVse5JiJuJmfU3QpcUu9sqzrf6p06ZCfSjmTe8EPJDlt3HoxFrRNzRHlOjiVzcfcC3ouIX5ADAYa1tcOzdMp9QY7O/4Wkq8s5q5HHLqg9Fm35fde2vZn8fb9NjureJCIukXQz+b62ciL5/nDriLijen8r6aiIOJUMegwg31e9XM7hgtrjwW2t21ibHFB1FflZCIDItIV/Iz9rvkUWqz9U0ntlfV8yWPRLYNfaa2FvSf+OiD+QA8h2An6tJmnU6s97RAwAViUDIu+TdRJemQD3O0kqg/r+TH4WviQizpf0T+CbZZNXxuPwF1XPXwlUDHcb63kcQTQz65qeZlRh58b6FZX6KPcJFrCQ9F9yRMuVZOqkvcnaEWuQxc7G1WVkJ8fdZBGuXcqxliIDH4Mk7dbKvvuQoyzWIEfQTE6ODN28yfWeQ04jvb5c7z5kcdHpyU74k8dn+3IPB5NTkvcg33T/ruw3zsqb5T8C80bED9qybxssTc6YuL7Jun+QOcxFdkDtT9ZDuQNYTtKNDduvCMxBXrOZmU1E9VkVEfGtiLicHMG9JllfaCT5uvVMREwVEZuX9b8jZxIuJWkLSR+VTp/KYWTnwn4RMVPtHPVOnekiYmMyuH8KOWtvaUlHu3P161UjfSPiQLIjbmky5eZjwEzk+6stqm3bcYonJG1e60DtrZL/vWPuYNJV+xuffFy3lfQB8K/yeFxZfUhZN7zWgf0/4GhyRPiWVbsrz8+Hkv4u6S+SXi5/H73cnsaP21rXVF5DvlFbtCewG1lfqW4Y8BkZaF8fOFHSe5Ez6yE/+71EBgGXLMfuTX6WgRxk9y6wR0Qs13ANLbMqIqJ/RKxGfra8kEzTdpGyvpONu/eAI8nBfnuTgwtPJ1NNfsLodSbbpBas6OVARc8VnrFmZmZdVURcSI4MnWtSfBMZEdOSb7yvkrTjBDj+8cDPgVnKB+fxOdalZHBmbkkfdsDlmZlZG0SmH/w+OSPuauBscqbhkMi0hreRIx1vJV87PwEOkHRxw3FWBh5RFo8lIo4gR3lf0bBdP7LDb0syNUfT49nYlY7qHYFfkYMCLgUGl87tuciO1WeAgyTdVzpo2twB2t79erLSifkbciDMwa0MEPq6Y1xLzk7dU9LpMXo6on5k6qAFyBHh/9fsGtrZeW4N3Na6nojYiJxJsRVwecMsvt7AWsBfax3U2wEnkYHx5YGXlEW0eyszDOxE1mD6s6T1a8fqU57nfchA/XqSbm5sXxGxKLAR+XcyHXCMpCoFs7VB9buNTLe2IrA9mf2hCk5tQra/99t6zI6/WuuOPMPCzMysk5Q3cMeS+cPnnACn2AB4uAOCFfMBmwFHO1hhZjbxlY6dZ8i6UhcC90v6jaQhAJL+Q6YanJPsiDmWLATbGKz4FRnoWKRaJumwJsGKucm0G5eSnRB/kDSDgxXtMg2ZruvvZJqS20rH2hrAjcCUwA/IUfj9Sudcm/PsuwO1XZYCDgLWaGuwojbr6QhgKHBARMxQOlWrWhZfkrMwpiHrwY3BnXMdym2t6/kK+C+wM1moHGhpP7eTKYV+WNv+EjKLwAzkjO+RkfUPRwJIOhu4F/hRmflXHWtEWX8yMK0yRVt9FtWcEbErcAE5I+pesj6CgxXtVJt19qmkWyQNIgc4VBkYLgHujYgdGmZwjlGHqz4Dpvz87YhYMprUvrSewwELMzOzzvUHMmXAGEW/x5ekBSQt0wGHmo38QH56BxzLzMxaUaWGaVjWp4zYPpScQTEbOZuCyEKv1Yf/s4DPyc7T39Q71SJi7og4iszRfT8wpOEcjZ12KwP7Ak8Cc0j6Rcfc4aRpbJ0qkt4GTpC0gaRXI2LGyJpct5KjiPckg1GDyBSN43K+qH3fp5YyxZpobFM1fyfTBX03sk7bOBdlLoGJkPQkGQSck0wZCqVztWx3Ezk79bT2Xr+N4rbWPdR+b3cC5wMrABtXz195Tas+V2wZEVOX5cOAU8kZfUeWZVVx5+q17kgy1eGBETFZPZVaaZMf1v9OIuJ7ZIrf08n0UctL2rj8vVgHqD03g8naPA+S70mmIP8/PhIRx5XnonfDvqPVFYmIzYCLybSWC02kW7AuyAELMzOzTiTpC0lHSrq3s6+lNZIGSzpK0ledfS1mZpOqKs1IGVE6f0SsEhHfrjprJJ0CPAF8ixwpDDCy6qyRNJisMfEtMpf0zyNimch87meQKQIfAo5qnC1X6yyoOpluJzt1fiTpjQl4291aNBTcjYj1I2K1iFi4pMmo3FfWf5csfr42mT99e0mnkx1p05EddzOVNBtjfFZvMgp1ETKwtM5YOuV7rNrva2TD81EvcF3NLlqpbNuWGQ9VezkWeJmcMbt4ef5aOuVUq1PR3nvp6dzWupfye+2rTD14PVk7bx9g/to21wA3kCmaflJbfifZYT17RBxSFveqvdbdSaaZWpwssF0f7V891usefErOvtlB0vclPdDR99vTVQFcMkAxO/CcpH2B75DP0f+AA8kgxgzQtK7I6sCJ5CzSeYDfSnpiIt+KdSH+R2tmZl2WpG0lhSbB+hVmZmYwWkfcyMiC2eeT6Z3+ArwQEftHxOxl8/3K488iYsqyT70j9AQyJdT0wPHkbIrDgQXJHPs/kfRSa9dS6+z5j6SnOvZOu6+IWDYiBpTvWz5Da1Te9c0i4hWytsjtZGDp+oiYub4d2Xm6AnAMmWbxybK8Kvq8BNl51zTtTK3zdPbIXO5nk8/zQozqPLei9vs6GHgqRqWQidqo7EeBj4EFImtOtOX4VW7994DfAlOT9RNQQwFtuTjzOHFb6/5iVEq0YWXRM2R6oBmBHSLim7XNjyB/n9tEpiKsnEHW+Ts8IgaUDvHetUDg4WRbG+vs79LWX5K0sqTzx/ferHWlzfQGJgPeKss+k3QuWUh9JUnLSXq9tj0RsRiZputSYAvgWEkzSbqqE27DuhAHLMzMzMzMzDpJrSMuyDSBPyQ7484jO2yOJjt5+km6mxyRughZCLscQlV+7w8knUfm5l+XrGW0BfBtSeeU84yRP9paFxEHkaO2q5G81fPVq6SIOYTMi/4SWfdjNbKzbTngosgir1VB4M2BD4CzJQ2tnWZysiDw7MB+ETGwdv56SpqpImIDMmXKWUB/YDVJRzd2kFuKiJXIwtpzAWdGxDKM3g/yv/K1FtC37NOWDumq7Z0JHAXs0QGX3SO5rU0aNKro/MYR8SA50+VnwPvk69YStW2fIH/HK5L18qrlQ4A/kh3gJ45a3JKK7QVJx7Q2Q6Z2HNeImbiqgN5oNYEkva2STaB6viJiYETsTrbpXwJ3k3VFjpioV2xdlguYmJmZmZmZdZKSBmEn4AEyWHEocJmkTyNiYfLD/C7krItryLQkGwC7R8Qtkl6Kkk6qOqakV4FXG87TW9IId7a12Y3AbsA79d9zGV0/J7Ar8DCwTzUrJSKeIjts9gX2ioiDJL0TEc8AcwNLArdG5llfD/g1sD85MvWr+szS0iHXhywWvDmwDdlJvnvpJDdGpVRrXC7pnoh4jgxSjCBH8R4AXFfWPxcRTwMbAusDf2rLeasO0zKD4rCxXYt9Lbe1bq4EffqTM452IWtYvAC8Qs56mRnYOSKelvRu2e23ZLBi64i4Q9LDZfl5ZBH1n0bEeVWHdz0IUYIXbmtdR/X+4unWNijteV5ylszmZABxOUkPtraP9UwOWJiZmZmZmXWC0rmzPFkEdhZgsKSzq/WSniqjiv9C5lx/UNIrEXEiWZNiF+DAr+uwaUiBY20gaUhELCHpnSartySft01qHagLkZ1sg8o2Q0oHapAdsj8BTo6I68m86quTKVPukPRy4wlKmpSNyaDWQDIFyn61dCtGSyfYZCr1tsrvu8p7fy2wA1lM/ibghIj4SFn3BeAyMmCxTERcrTbW7NLoBe7dgdpObmvdXwn6zEc+X7cBe0n6F0BE/JGsTbEpcFNEXFECff+LiKPJ2TJbR8RjkoZJej8iLgYWBaZt7XwT4bZs3K1GFjZ/8Wu2+6xst52kCyf0RVn35JRQZmZmZmZmnaB0tpwFDAaWBYYClFG+1TZ/JVNqrM+owqS/AN4hO3eWL/s4LcYEUjpBV4mI+yJibWhJrTUHWf/g5YiYJiK2J9OYHAc8D8wr6cRyDAE3k6kvBgJ7k+lRngU2a9aBWqxDpgV7CZhP0p7uQB0zbVNE7Ao8EBHrV4tqQbrHgQFkGqCNyXZ2aUQsVo4zBHgdWABoUx2LxutwWxs/bmuThI2Ab5HpuKpgRd+S5ukI4D/kjJjZa/tcADxS9l27WijpAmCApBsm0rXb+DlNUm99TbFsSW9I2srBChsbByzMzMzMzMw6iaT/kUELAfNExEyShjcEII4CvgC2iojvlQ65g8gipvuW43hU94Q1BxlUGhRZ8HwE8BUwJbAnOTr4bGAmYD1Ja0p6ESAipi8ddp9LOhVYmCxCuryk9SW92hhwqnWE3wisIml1Sf+eGDfalUXq1ZAWZgZgHuD7wOkRMV9De3ierFMxqHSk7U4GLS4GViU7qF8lRwePUfB5bKrriIiZImL68bw9S25r3VtVVPtNaAnADy/L7gT+DCxOPr+TA0j6kiyiPSOZ2mvK6mDl9dC1l7oBSW/A6IMuzNrLAQszMzMzM7PO9VeyPsUSZNqa0QIQZWTq78hi2oPKsguBM8maFzbhXUym5tqUrCECWQdhOFkTYX1gf0lzS7q52ql03FxN5t+vUga9IGmwpMfLst6NAaeqI1zSq1XudsvfS0n/tEBEnFOWvS1pf7J476zAhRGxYm2fp4F/AYtFxHSSHiCfxxnIzu8ZgVvL5puVfVoNANZnVUTENyNiLTLf/oXuWO0QbmudLCKmKI/t6Xj+oDyuCxlwKKmiQtLn5IxCgB2BBaudJN0B/B44UdLH9QPKKQ27FUnDv34rs7FzwMLMzMzMzKwTSRoKnEzOsti65FJvHOV9Mjli9YCIWLbst7ukZxrT0ljHK52aR5EFZbeOiFmAJ8mO1T7AIZJOru8TEYuRRZ4Xp3TiNUsZ5M64tin57p8Fto+IvWurDiXrDnwfODEilqut+1NZPi1A6cDegyy+fA2ZpgZgoYiYppXzRtlXEdErIpYo57yUnKnxiJ/L8ee21jlilGOBRyOif1s6nmuvV5cDnwOrl3oWVVqvKpj3FPkczQfs0jCbYn9Jt2JmPZ4DFmZmZmZmZp3vEeAcYC1g3TIadWStk/R9snbFb8oIcSA7iZw3f+KQ9DCZvmt1svjvu2Rqmo+AgyNi95IaaN6I2IMMMq0FnAJc3zlXPUkaUB4/Ao6pOjwlfQQcS47SXhI4NyJmLts+SxZ63ap2nKuB3cgURMcCXwJzA32bnbSW/mluYC9yJsABZL2EGSUd2UH31+O5rU18ZfaSgB+QwYQftnH/aubKa2TwaCmyfSFpRC34sQmZ4vBv5CyL2erHcQDezCALUXX2NZiZmZmZmfV4pSP0NuBDYCdJj5bAhT+0dRERMRvwGPA2sIWkpyJiM3Jk/zTkcxdkHvfXgH0k3dhJl9stje1vvoziPhzYnkzztBJZ3HeX+n4R8ScyvdPtZL2Xl4AHyVoVm5fgRnXMNYCryBoJAEtIeqzJuQeQdS52IGdUPATspq8pMGvt47Y2cZV0WSPK730xSTfV1vUaW5q0Jsean5wRMxdwJJkybRiwBrAfcBlwL/BxSXloZjYaByzMzMzMzMy6gDKydHdyhPipwKElXdQY2zmI0XkiYl/gJHJU989LJ98CwDrAQLJj7ilJF9X2aVOHX09VdZq2si5KOqbtgePJQMShwOzAwpKejojJJX1ROl0PA35GBhbWI2cobQWsKun5hmPvTT5/F0q6vMm55yvnXAP4GNhP0hUdc9fWGre1CWNs7ay2zRzAOpLOauc5ViIDE7MA7wOfkDVmhgCDJL1QtvPzZWZjcMDCzMzMzMysi4iI6cmRp58B60r6XydfkjWIiP7AA8BMwHaSbmlY39IBFxF9XIC0bcosiqOBu4DBpZO6/judn+z0/BFZk+Ji4G5Jq5b1VWBjNuAQYGfgHjKl0GXAmpLuKHn1qyLefSUNq13DaEHB8pz/FzhT0sET/JdggNvahBYRs0p6o8nff1+ybsgCwCqS7hmXIEeT488HbEHWj5kKuEXScR14C2Y2iXLAwszMzMzMrAuJiPkbR4Bb1xIR6wE3ADeSHanvNxRlbvm+Ey+z2ymjsm8niyu/CZwv6dCGbb5LBiAuBfYF7gOWIUdtX1vvfC3Bj5uAtYEXgHmBSyRt08r5x+iUrTrCSxHizzvwdm0cuK11rPL7mhMYTM58WLoK9ETEhsALkv4ZEdsC5wN3Slqj2re9v+eI6Cfpy/K9g0tmNlYuum1mZmZmZtaFVMGKiOjT2ddizZX87vcBi5Ijh+tFa0f73pprpbjua2Sw4hMy3c+uEXFuRMxYbSDpGeADYPbyO/5tWfW7sn5YpN5l9P0BwEVksAJgiYiYvdk1NRtBXnWsOljROdzWxl9ELB4RS0NLYOcjsj7I94GVyvongSuBlct2F5I1lVYrwQsYjz5ESV9GRK8S9HCwwszGyjMszMzMzMzMzNooImaU9FZnX0d3U5/F0DAboprJcAxZb+I2chT4ccCdZN2If5ZtLwd+IGnu8vOVwMbAIZKObZwpUfLxnw6sC2wk6bqJdb82/tzW2i8iFgaeAO4H1pD0RVn+XbKNTUEWnH8KOIeczfJmSZW2LNkGXwGWlPSJa06Y2cTgGRZmZmZmZmZmbVR1oHomzLippe6pghXHA7+rzZ6oOkF/DbwLrEmOrN8CWBy4ISJWL9u8CUwbEUuUn48DhgJHRsSAUveid3VuSf8hAxq9HazoftzW2k/SU8BfgeWAn9ZWrQXMTAYr7ibb2RmSXq8CEpIeAC4A5gMOrA45LudtZQaVmdk4ccDCzMzMzMzMrJ2c3mTsSnqmXlXanojYPCJeB34OjKAEKsqI7j4loLF/2f0wSVcAG5Ipoq6KiO2Av5EdrV+UfR8HTgN6A8eXfRs7Vr8sNQ/c6d1Nua21TS1ot3d53LXMNoJsdzcD/yZTQ31Q2kevhn1/Qxac3z0iFijbtAQDW1Nr79NVba46tpnZ1/E/CzMzMzMzMzObIEqJgZERsUhEPAhcBgwBNgd+I+md2rZVvYhLgEeANSJie0l3Az8G/gGcC+wFBLBk7VS/L8fdNiKWb0xbU6t54E5v6xGqmUaSXgBOARYBdinrTgY2IdvNlGRggtrsihEl0Ph62WZqcvZT01ovMPqsioj4VkT8iKwts0f92GZmX8cBCzMzMzMzMzObICKiT0ScCTwOTAvsCewh6coqWFF1dJbZGNUMiGpU+IGlhsEQYDvgRGAV4DMyaEHpWH2HzMEPMN1EuDWzLqlhBkQ10+gXZLHtn0XEktBSSP4G4BYy0Ldi46HK48lkke6NIuKHjeeopXtTRPSOiKWAw4FLgY2AdzAzawMHLMzMzMzMzMxsQpkaGFi+v0DS6ZKeb7JNNRtjeAlAPEx2eM4L7FPWvybpIGBXMh9/VY+imj1xMtBP0g0T6mbMurpanZiFyDRplGLbBwEzArvXtn2TrFPxMVkDpk+93kyZoTEcOBaYDDiyfo7yfZX+aT6yrV4C7AtcCcwg6bIJeb9mNumJ8n/FzMzMzMzMzKzDRcQKwE3AXWRn6SfA2sAK5GyJT4AHgMsl/aN0ko6IiBnIAtufAiuUAsLVjIox0stERFR1Kpz6yXqqiPgW8CdgMWC9UuOlWvcksCCwaVWAPiL6A38AdgC2l3RBWT4D8G1JD5WfDweukPRcw/lmBFYHdgRWBO4FdpX07IS8TzObdHmGhZmZmZmZmZm1y7gU4CVrT1wArEt2ih4HXARsSo4AH0iOyL6+pJOp8ui/DRwKfItMaUNZ3jQXvutUmAFZoP5eYADw4xLAqOwF9CGLaH8LWlJDXQy8ABwaEWtHxPpkAfv/i4h1y3aHS3quVpg7Sns9HTgP+DYwSNJKDlaY2fhwwMLMzMzMzMzM2qQhbUy/iNg6IgaUdaP1NZQO0bOB/5C57bcla1EsACxLBixOAaYv6wfW9j2m7LdZ6UQd1yCJWY9U0j9dA/yNDBAuUVt3D5lKbVXgZ7Xl9wGnkvVfbibTOW0O/FHSzdV2ZRZTFTDsAywKrAMcI2kOSddOuDszs57CKaHMzMzMzMzMrF0iYhOy2PUUwF6Szmhlu77ATsAewM6S/laWV2mcZgWOAbYENpJ0Q0T0k/RlRGwIXE0W7l6ytRkWZj1NRGwP9APOkTSs1p4C2Jic2XQV8AtJ/yv7zA68CjxHpox6sSz/BrAMGYD4EDhN0gdlXahJB2JEzAJ8LGnoBL5VM+tBPMPCzMzMzMzMzNokIqaMiP2Ac8mR1sOATUvh3WazLIaRI7t3Bx6pzdCo0ji9AdxP9lOsVXb7qqy7lpyBsaODFWYpIuYHfkkWwp4Psj3Vggv3AP9HBi5WrLW518jg4AJkELHyuaQ7gYMkHSXpg4jo3VqwohzrTQcrzKyjOWBhZmZmZmZmZm21InAIMBQYRM6yWIFMI9O0zkTp3Bws6Yt6B2hETFa+fbf+WDpfe5fv95H0WGMgxGxSFxF9Gn7uBSDpeeC3wDeAXcoMiRaS3gIuAT4iU0PNU1v3K+ANspbFag37Da/OI2lEa8EKM7MJxS/0ZmZmZmZmZtZWQ8nO0GUk3UIGLP4LbBERy8GYsywq1UjvWsfrV2XVT8rjI9W2kkbU9/MMC+spau2jCiAsERH9Gza7BbiNrEexVNletbb3ZFm/CvDDhv2PJIMdU1f71Q/stmZmncUBCzMzMzMzMzNrE0l3A0dIerUsGkKmbZoX2LrUnxhZBSca9lU9+BAR80TECcAmwCWS/tzKOT3S23qMWvvYLCJeAO4E7gAOqG3zCnAp8CWwb0RMV+1bZki8B7wJ9Cbb10K1fc8BBki6ZuLckZnZuHHAwszMzMzMzMzarCrIW74fTnacPkqmiPrR1+zeLyLmjoj9gTPITtg7yFHfZj1OFNX35XEzMhD4PnA3sCBwXETUa0/cBVxJtrl1S4H7+gyJkcA/gOWAHSLim9WOkt6r6lRMyHszM2sLByzMzMzMzMzMbLyVwtknAdMC20TETA3paepOAp4FDgPmBnaQtK6kFyfeFZt1DRHRR0VE9C6P/YB9yeLZW0vaAFgXeBw4JiKWKjOV3iOLa/8L+DkZmCAi+kbEIGCPsv4S4O7GItmuU2FmXU34f5KZmZmZmZmZdYSImAq4AFgP2FfSaa1stzSwKdn5ellVq6J01o5oto/ZpC4idiNrUTwGvA78FNipFNCuttkaOA34K7CrpPdL4fodgBOBj8kZF1MCK5Lp2jZvDFSYmXVVDliYmZmZmZmZWYeJiBXIYsDPkh2lL0bEd4CFJV1R266vpGHlewcqrEcpNSaqOhULApcDCwPDgT7A52Rx+++U1E19JQ2LiBmAY4FtgM2A6ySNKKmetgFOAAKYHLgZ2F3SfxrPaWbWVTlgYWZmZmZmZmYdJiK+ARwB7A+cDDwHbAssDfxQ0m21bQNcUNt6poj4NtAX+AmwMXA2WZNiG+BnwAhgK0n3NOy3OnAu8F9gY0mvNxxzLuBDSY+WZQ5UmFm34YCFmZmZmZmZmY23kk9f5fuFyJQ10wH9yJHih0o6ufOu0KzriIilgAeBa4GVgF9J+mNZNxWwK/AbcjbF8ZI+qWYiRUR/4JfAIcB+wGmShtfbYO08nr1kZt2Ki26bmZmZmZmZ9UAR0bsjj1cLViwF7ATMQgYrTgdmqoIV1awKsx7uFeBWYEPgfeB8aCnA/REZyLiHnG2xOGSB7DJb4nPgGuARMqixYFk/xqhkByvMrLtxwMLMzMzMzMysB4nUMuo6IgZGxICImKJaPx7HXRa4DNgDGEzm399T0mcR0afZCHCz7qy97aUU0v4t8BEZ3Ju/WlUe/02miJoW+GlEzNiw/xPAVcDfgLfbcw1mZl2RAxZmZmZmZmZmPUQVMCgjteeJiKuAO8mR2veU3Ph9qm3bcuwSiPgC+DuwiaTVJT0XEb3KqPDhDlbYpKY2s2jyduz+CHAxMAWwRjleNYtiJHA3cDWwCbBCab8ja7OjzpC0dgl+mJlNElzDwszMzMzMzKwHiYhewAHAr4EPgaeBz4ClgP7AfpIuau+x68V9nT/fJnUlsPcbYHLgYElftnH/hYG/AP8BdpH0VL0dRcSqwIXA88Aekp5vcgy3MzObZHiGhZmZmZmZmVkPERF9gV2AfYDrgO2B9SRtBKwA9AZ2iojly/Zt6jeodbL2Kj+7E9UmdUsBBwFrtDVYUQwBTgGWBjaMiMkbZlH8g6xnsRowe7MDuJ2Z2aTEMyzMzMzMzMzMeoiImIEs7jsC2EvSq2X5GsDvgO+WdecC+0j60nUnzMacPVRb3ht4iCyMvaKk+9raZiJidjIoMS2wo6TBDevnBfpIGjJeN2Fm1g14hoWZmZmZmZnZJCQi+rS2TtLbwAmSNpD0akTMGBFXArcCXwJ7As8Ag4B1x/F8Ufu+T0RMNl43YNaFVH/fZdbDFA3rqlRMV5RFK5Vt2xrgex04CZgTGBQR05fjVzOVXpA0pNSDaVeRbzOz7sIBCzMzMzMzM7NJQK1zc3j5ef2IWC0iFm7oaL2vrP8u2dG6NnACsL2k04HTgemALSNiJklqlhqq1pFbFR1eBNgXWKetqaTMuqra3/fBwFMRsXH5OWqpmB4FPgYWiIh+7TzHrcANZMq21crykQ3bjfRsJzOb1PkNhJmZmZmZmVk3EhHLRsSA8n3L5/pa/YjNIuIV4GrgduAJ4PqImLm+HRmoWAE4Bjha0pNl+eTlcQlgo4Z9WtQ6cmePiJ2As4HjgYUAjwK3SUZErEQW1p4LODMilmH0PrX/la+1gL5lnza1AUkfkMHCi8l2a2bWIzlgYWZmZmZmZtZNRMRB5AyJnWD0ItclHdMhwAXAS8AvyZHaZwDLARdFxKJl+77A5sAHwNmShtZOMznwOFngd7+IGFg7fz3901QRsQFwKnAW0B9YTdLRLgJs3VFrM4Mk3QM8B/wLeAu4FFi/tv454Glg+vrydrhL0raS3nfqJzPrqRywMDMzMzMzM+s+bgReA95pMrtidmBX4GGyYPZvJd0FHAacCawO7BURAyQNI2tV9AWWhJb6Ez8Bfk0GIPYEjpP0Su08KtstCxwNXAKsDOwuaeFyPrNuqdSpaKnBEql3+fFaYGpy1tFI4ISIWLW2+2XlcZmImKw9qZtqs5Z6OfWTmfVUrRbiMjMzMzMzM7OupRTeXULSO01WbwnMAmwi6SmAiFgIWIcsog0wRNI7ZfT2jcBPgJMj4npgGjKo8Qxwh6SXG08QEXMDG5MzPAaSKWz2KwEQs26l1KFQ7eddge0j4khJNwL1OhWPAwPIwODG5EymSyNiXTLt2hCyePYCQD/gq/ZeR7MUbGZmPYVnWJiZmZmZmZl1IyXgsEpE3BcRawOUUeBzkIV/X46IaSJie+CPwHHA88C8kk4sxxBwM5k2aiCwN7A18CywWbNgRbEOObPiJWA+SXs6WGHdTZk50ashWDEDMA/wfeD0iJivIXDwPFmnYpCkJ4DdgaFkzYlVyTbxKpmGbYwaM2NTm1kxU0RMP563Z2bWrTlgYWZmZmZmZtb9zAEsCwyKiCnLKPCvgCnJVE5nkEWwZwLWk7SmpBcBImL6iOgr6XNJpwILAz8Clpe0vqRXGztaa/n0bwRWkbS6pH9PjBs162hKIyNigYg4pyx7W9L+ZE2WWYELI2LF2j5PkzUsFouI6SQ9AGwKzEC2txmBW8vmm5V9Wp0p0VAP5psRsRZwXjlv79b2MzOb1DlgYWZmZmZmZtb9XAz8heww3aAsuw4YDhxAFv7dX9Lckm6udoqIPsDVZK2LKhXNC5IGS3q8LOvd2NFajQCX9KqkeyfsrZlNeBFxNDmjaPuI2Lu26lAy1dn3gRMjYrnauj+V5dMClDazBzAZcA3wn7LdQhExTSvnjbKvIqJXRCxRznkpOVPjERetN7OezAELMzMzMzMzs26mBBCOAvoDW0fELMCTZBCjD3CIpJPr+0TEYmSn6OLAB7XjNB7bnaXWEwwojx8Bx0TElACSPgKOBX5PFqQ/NyJmLts+C3wGbFU7ztXAbuSsp2OBL4G5yYL2Y6ilf5ob2IsMPh5ApmibUdKRHXR/ZmbdkgMWZmZmZmZmZt2QpIeBs8hC2ZtIepdMA/URcHBE7F5y4s8bEXsAJwNrAacA13fOVZtNHPWUS03W9QLeAv5LFszuD5xQ7SfpTUkHA1cA85NpmhYF/gm8BiwZEVNBS3qpW8gaMFOQBbeXBGZr5dwDImIzsr7M74APge9L2lbSx+N522Zm3Z4DFmZmZmZmZmbd17HAu8AOEbGwpL+Q6Z76kLn4nwUeIUeLzw5sI+kQSZ901gWbTWglrdkYs4fKuigpz14lgwuXkkGInSJioZKqafKy+YFkXYnVgNOA3sCfgUXI+jAtJN0OHAbcDmwp6bEm556PDCqeC3wH2ELSsqWIt5mZAdHK/28zMzMzMzMz6wYiYl/gJHIGxc8ljYiIBYB1gIHAMOApSRfV9uk1toLAZt1dmUVxNHAXMLi0i5a/+4iYHxhCFpyflkzNdLekVcv6KMGL2YBDgJ2Be8iAw2XAmpLuKAWyqyLefSUNq11D1AMnEdGfnNVxZpnBYWZmDRywMDMzMzMzM+vGSifoA+SI7+1Kepr6+nonbR9JwzvhMs0mmohYiZzp0Ad4Ezhf0qEN23yXDEBcCuwL3AcsAwySdG09+FCCHzcBawMvAPMCl0jappXz926sBVO1vYjoL+nzDrxdM7NJilNCmZmZmZmZmXVjpfPzUGBGYOeImBZydHeV/qb2vYMVNklppVbFa2Sw4hNyhtGuEXFuRMxYbSDpGbL4/OxlFsRvy6rflfXDSrPpXQJ+BwAXkcEKgCUiYvZm19SscH3V9hysMDMbOwcszMzMzMzMzLo5STeRI8QXBerFgNX4vdmkoKRioqRt6ltb3kfSS8BxwLeA54ETge2ASyPie7XD/INsM0i6DrgKmCMiqnRNvargg6QhZI2Km8u6X0l6bQLdnplZj+WUUGZmZmZmZmaTgIiYUdJbnX0dZhNSk7oQxwPfAI6W9FaVAq0ENP4LTA8sD8wBnAF8COxU6k+cRAYy1pD0j4hYjEwT1R+YRdI7jemdSkHuLx0ANDObMDzDwszMzMzMzGwSUAUrIqJPZ1+LWUcr6Zl6VYGCiNg8Il4Hfg6MAEYClGBFnxJk2L/sfpikK4ANyRRRV0XEdsDfgCmBL8q+jwOnAb2B48u+jYGJL8usDrczM7MJwDMszMzMzMzMzMysW4iIRYCzgKWAO4FzgcGS3mll+4eAHwA7SjovIhYETgFWA+4CVgG2l3RB2X4AcDewILCipPsm7B2ZmVmdZ1iYmZmZmZmZmVmXFhF9IuJM4HFgWmBPYA9JV1bBiqoAd5mNUc2A2Ls8HljSpg0h00CdSAYrPgOq/XqVY51T9pluItyamZnVeIaFmZmZmZmZmZl1aRExPXAJsBbwS0nHNdlmGkkf1H6u6llcDGwFHC/p4Nr6nYF3gLskfVCvjxERfSUNm8C3ZWZmDRywMDMzMzMzMzOzLi8iVgBuIlM57Q58AqwNrEDOlvgEeAC4vBTR7i1pRETMALwJfAqsIOmpcrxekkY2OU9UdSokDZ8oN2dmZoADFmZmZmZmZmZm1smq4MLXbNMfOIYMVhwNzEimd/oEeA+Yuix7E9gIeKQ2Y+KXZZ8rJG0xgW7DzMzGkwMWZmZmZmZmZmbWKRrSMPUDNgH+KumdZjMgStHsm4BvA58DJwEnAyLrURwP7ELOwthN0su1fV8B5gB+LOnGcQmSmJnZxOWi22ZmZmZmZmZm1ilqwYpNgLeBC4CNy7ox0jUB/wZ+DzwPrC3pUEnvAx9K+pIspn0lsAawcDl2v7LvfuXxsBIMcbDCzKyLccDCzMzMzMzMzMw6RURMGRH7AecCfYBhwKYRMV9ZP1rfVSmEfR2ZFuqRiIiyXOXxDeB+ss9rrbLbV2XdtcApwI6tBEPMzKyTOWBhZmZmZmZmZmadZUXgEGAoMAg4hyyivTk0n2Uh6U1JgyV9oVqu84iYrHz7bv2xFNDuXb7fR9JjjYEQMzPrGvzP2czMzMzMzMzMOstQ4BJgGUm3kAGL/wJbRMRyMOYsi0o1u6JaL+mrsuon5fGRatt6+qdSN8MzLMzMuiAHLMzMzMzMzMzMrFNIuhs4QtKrZdEQMm3TvMDWEdFP0sgqONGwr+rBh4iYJyJOIAt3XyLpz62cU82Wm5lZ5wv/jzYzMzMzMzMzs64iImYFrgfmAnaWdE0JTIzRiRURkwOzAj8ma1asDtwC7CXpxYl20WZm1iE8w8LMzMzMzMzMzLqMUjj7JGBaYJuImKnMpmjWj3US8CxwGDA3sIOkdR2sMDPrnvp09gWYmZmZmZmZmZk1uIWcZbEeWYz7tFbqTlwCfAU8DlxW1aqIiN71uhVmZtY9OCWUmZmZmZmZmZl1ORGxAhm4eBbYXNKLEfEdYGFJV9S26ytpWPnegQozs27MMyzMzMzMzMzMzKwrehQ4E9gf2D0ingO2BZaOiPcl3QYgaVhVlNvBCjOz7s0zLMzMzMzMzMzMrMuoF9iOiIWAvwLTAf2AocChkk7uvCs0M7MJxTMszMzMzMzMzMys3To6DVMtWLEUsCUwS1l1OnCQpM/K+pbAhpmZTRocsDAzMzMzMzMzszYraZh61QpdDwQ+BT6T9Gl7AwrluMsAFwPfBgYDe0h6rqzvA4xwsMLMbNLTq7MvwMzMzMzMzMzMupcqGCFpRETMExFXAXcCjwD3RMTqlIGyVX2JcVUCEV8Afwc2kbS6pOcioldE9JI03MEKM7NJk2tYmJmZmZmZmZlZm0VEL+AA4NfAh8DTwGfAUkB/YD9JF7X32JJG1n7u0LRTZmbWNTkllJmZmZmZmZmZtUlE9AV2BPYBrgMuBQZLGh4RcwGPAztFxIuS7msMQHydattqPwcrzMx6BqeEMjMzMzMzMzOztpoGWIdM2/RrSbeVYMUawI3AlMAPgC0jop+kkW1NDQWjAhdmZtYzOGBhZmZmZmZmZmZjKMWtm5L0NnCCpA0kvRoRM0bElcCtwJfAnsAzwCBg3XE8X9S+7xMRk43XDZiZWbfjlFBmZmZmZmZmZtailoZpePl5feBT4B3gRUmflk3vK+u/C5wGLA6cAFwu6cmI+Ar4IznL4gFJ/2uWGqpWwFvl50WANYEXIuJGz7IwM+s5PMPCzMzMzMzMzKwHiohlI2JA+b6lj6hWP2KziHgFuBq4HXgCuD4iZq5vB6wNrAAcAxwt6cmyfPLyuASwUcM+LWqBitkjYifgbOB4YCGgzWmkzMys+3LAwszMzMzMzMysh4mIg8gZEjvB6EWuSzqmQ4ALgJeAXwKrAWcAywEXRcSiZfu+wObAB8DZkobWTjM5WXx7dmC/iBhYO389/dNUEbEBcCpwFtAfWE3S0S62bWbWszgllJmZmZmZmZlZz3MjsBvwTj1NUymOPSewK/AwsI+kpwAi4imyPsW+wF4RcZCkdyLiGWBuYEng1lL7Yj3g18D+wGTAV5JeqU4uSWW7H5ABj22AkcDuks6c8LdvZmZdkQMWZmZmZmZmZmY9jKQhEbGEpHearN4SmAXYpBasWAhYhyyiDTCkBCuCDH78BDg5Iq4HpgFWJ4tu3yHp5cYTRMTcwMbkDI+BwOnAfpKGddxdmplZd+OUUGZmZmZmZmZmPVAJOKwSEfdFxNoAEdEbmAP4GHg5IqaJiO3J4tnHAc8D80o6sRxDwM1k2qiBwN7A1sCzwGbNghXFOsDRZMqp+STt6WCFmZl5hoWZmZmZmZmZWc81B7AsMCgi7pf0cUR8BUwJ7AnMBWwCvAKsJ+nmaseImB74SNLnwKkR8VeyXsUHkh4v27Skmyo/Rwly3Ag8IeneiXKXZmbWLUS+RpiZmZmZmZmZWU9TUjrdBKwM7CrpkohYDbilbDIMOETSyQ379QHuAK6VdEotEFHfpreLZpuZWVs4JZSZmZmZmZmZWQ9VggxHAf2BrSNiFuBJ4C9kZo5mwYrFgEuBxYEPasdpPLaDFWZm1iYOWJiZmZmZmZmZ9WCSHgbOIgtlbyLpXeBs4CPg4IjYPSJmioh5I2IP4GRgLeAU4PrOuWozM5sUOSWUmZmZmZmZmVkPFxGzAY8BbwNbSHoqIjYDTgemAT4EAvgm8Bqwj6QbO+lyzcxsEuWAhZmZmZmZmZmZERH7AieRMyh+LmlERCwArAMMJOtZPCXpoto+oxXVNjMzGx8OWJiZmZmZmZmZGRHRH3gAmAnYTtItDetbghMR0UfS8E64TDMzm4S5hoWZmZmZmZmZmSHpc+BQYEZg54iYFiAKSSNr3ztYYWZmHc4zLMzMzMzMzMzMrEVE/A2YA1hF0sudfT1mZtZzOGBhZmZmZmZmZmYtImJGSW919nWYmVnP44CFmZmZmZmZmZmNwXUqzMxsYnPAwszMzMzMzMzMzMzMOp2LbpuZmZmZmZmZmZmZWadzwMLMzMzMzMzMzMzMzDqdAxZmZmZmZmZmZmZmZtbpHLAwMzMzMzMzMzMzM7NO54CFmZmZmZmZmZmZmZl1OgcszMzMzMzMzMzMzMys0zlgYWZmZmZmZmZmZmZmnc4BCzMzMzMzMzMzMzMz63QOWJiZmZmZmZmZmZmZWadzwMLMzMzMzMzMzMzMzDqdAxZmZmZmZmZmZmZmZtbpHLAwMzMzMzMzMzMzM7NO54CFmZmZmZmZmZmZmZl1OgcszMzMzMzMzMzMzMys0zlgYWZmZmZmZmZmZmZmnc4BCzMzMzMzMzMzMzMz63QOWJiZmZmZmZmZmZmZWadzwMLMzMzMzMzMzMzMzDqdAxZmZmZmZmZmZmZmZtbpHLAwMzMzMzMzMzMzM7NO54CFmZmZmZmZmZmZmZl1OgcszMzMzMzMzMzMzMys0/0/ZNsSeIWht3cAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXxU1f3/8dfJvkCEsAhhMaypC9BA2UECVlnc0FqVgrJEQf3qtwgouLSKAtYiCGhRWiWh2m8pReSrP6xakQFEUKRfRMQlhiWAIBDWQBaSOb8/ZjJksi+TTBLez8djHjNz7rnnfG7uTWDmc885xlqLiIiIiIiIiIiIiIiIPwX4OwARERERERERERERERElLERERERERERERERExO+UsBAREREREREREREREb9TwkJERERERERERERERPxOCQsREREREREREREREfE7JSxERERERERERERERMTvlLAQERERERERERERERG/U8JCRERERERERERERET8TgkLERERERERERERERHxOyUsRERERERERERERETE75SwEBERERERERERERERv1PCQkRERERERERERERE/E4JCxERERERERERERER8TslLERERERERERERERExO+UsBAREREREREREREREb9TwkJERERERERERERERPxOCQsREREREREREREREfE7JSxERERERERERERERMTvlLAQERERERERERERERG/U8JCRERERERERERERET8rl4mLIwxrYwxk40xHxpj0owxOcaYw8aYt4wxvUvYJ8oYM98Ys88Yk22M2WuMmWuMaVCJ/ocaY9YbY84YY04bY9YZY66p+pGJiIiIiIi/VPRzhjHmaWOMLeURW0I/+jwhIiIiIhelIH8HUE0eAqYDqcCHwFGgEzASGGmM+Y219h/5lY0xkcB64Ofu+n8H4oFpwCBjzNXW2qzydGyMGQO84e4z2V18B/BvY8zt1tqVVT04ERERERHxiwp9zihgGbC3mPKThQv0eUJERERELmbGWuvvGHzOGHMrkG6tXV+ofCCwFsgAWlprs93lM4HfA89ba2cUqP8HXB9IHrfWPleOfhsDu4FcIN5ae8Bd3hr4P3e19tbaM1U8RBERERERqWGV+JzxNPAUMNha6yhH+/o8ISIiIiIXtXo5JZS1dlXhDxHu8o3AOqAx0AXAGGOAe3B9uHi20C7PusvvKWfXvwYaAS/lf7hw93sAeBloCtxSkWMREREREZHaoSKfMypJnydERERE5KJWX6eEKs1593Ou+7kTEAN8YK09W7CitfasMWYTMNQY08Zau7+MthPczx8Ws+0D4GlgEPDX8gbrvpuqNCHAz4AjuIaN55W3bRERERG5qAUCzdyvv8ofFSCVVvhzRkFXu9e4cAIpwEfW2oxi6iW4n/V5QkRERERqu2r5PHFRJSyMMW2BXwKHgK/cxZ3czykl7JYCDHXXKythUVpbKYXqlFdZfYqIiIiIVFVP4At/B1FXlfA5o6CZhd6fNMb81lpbOPGgzxMiIiIiUhf57PNEvZwSqjjGmGBci9eFAtOttfl3Dl3ifj5Vwq6nC9UrTWltVaQdERERERGpA0r5nAHwJTABaA+EA+1wLdxtgWRjzE2FmtPnCRERERG5qF0UIyyMMQFAMnA18Bdr7Rv+jahC2pSxvRWwBeDf//43l112WfVHJFWWnZ3NZ599BkDv3r0JDQ31c0RSFp2zuknnrW7Seat7dM7qpn379nHttdfmvz3qz1jqqrI+Z1hr3y60y17gZWPMN8C/gVnAO9UcZrk/T2zYsIEWLVpUczgiIiIiUh8cPnyYq6++Ov+tzz5P1PuEhftDxFLgN8CbwH2FquTfvVTSnUpRheqVpmBb6VVox6PgYnvFca0Z7nLZZZfRqVNFR4iLP2RmZpKamgpAhw4dCA8P93NEUhads7pJ561u0nmre3TO6gWtW1BB5ficUSJr7VpjTCrQxRgTZa3NHz3h188T7dq1o3Xrspa8EBERERGh8Oc+n32eqNdTQrk/RCQBY4G/A+Ostc5C1cqaC7asNS7K21ZF2hERERERkVqqnJ8zynLM/RxRoEyfJ0RERETkolZvExYFPkTcDfwDuKvQfLL5UoAfgf7GmMhCbUQC/YE91tryLFa33v18XTHbhhaqIyIiIiIidUwFPmeU1kYkcCVwlguJC9DnCRERERG5yNXLhEWB4dl3A/8ExpT0IcJaa4HXgAbA7wpt/p27/C+F2o8wxvzMGNO2UP0VuIZoP2SMaV2gfmvgQVwfRgrPYysiIiIiInVART5nGGMaGmM6F1MejuvzRUNghbU2t8BmfZ4QERERkYtafV3D4ve4hmdnAN8DTxacm9VttbV2u/v1H4GbgenGmHjgP0B3XHc2bQUWFNq3F7AO191NCfmF1toTxpgHgTeA/xhj/uHedAfQBLjDWnum6odXMdZajh07xtmzZzl//nxNdy/FcDqdNGnSBIC0tDQCAupl7rBe8fU5Cw4OJjIykqZNm1LM3ycRERGpnSryOaMJ8K0xZivwDXAYuBT4JdAa+Ap4pOCOtfXzhIiIiIhITamvCYtY93MD4IkS6uwFtgNYa88aYwYBTwO/AgYDh4B5wExrbWZ5O7bWvmmMOQY8DowHLLANmGWt/aiCx1Fl1lp++uknTpw4UdNdSymstZ6FafLy8nA6KzrlsdQ0X5+z3NxcMjMzycvL49JLL1XSQkREpG6IdT+X53PGcWAxrpudRgCNgUxcyYtFwMvFfc6obZ8nRERERERqUr1MWFhrxwHjKrjPKeBh96Osug6gxG8XrbXvA+9XpP/qcuzYMa9kRWBgoL4YrSXyz0NQUL38NayXfHXOrLXk5blmjzhx4gSBgYE0a9asyvGJiIhI9arI5wxr7Wlc0zhVpp9a83lCRERERKQm6ZvSeu7s2bOe1y1btqRRo0b+C0Y8nE4np0+fBiAqKkpTQtUBvj5nJ0+e5NChQ4Dr91QJCxERERERERERudjpW9J6Ln/NisDAQCUrRGqRRo0aERgYCLimhxIREREREREREbnYKWFxkdA0UCK1T/7vpbXWz5GIiIiIiIiIiIj4n6aEEhERERERERERn4idscbfIUg57P3D9TXSj66H2q+mrgXQ9VAX1OT1UBKNsJBaKSEhgcmTJ/s7jDpp9erVdOzYkcDAQCZPnkxycnKNTQcWGxvLggULaqSv8khPT6d58+bs3bu3xvvu06cPb731Vo33KyIiIiIiIiIiUlcpYSG10qpVq3j22WdrrL8NGzZw4403EhMTgzGG1atXF6kzbtw4jDFej2HDhnnVyS/fsmWLV3l2djZNmjTBGIPD4QDg2muv5eGHH/aq9+qrr2KMITk5uUjfAwcOLNexTJo0idtuu439+/dX28+wpCTI1q1bmThxYrX0WRmzZ8/m5ptvJjY2FoAvv/ySUaNG0aZNG8LDw7n88stZuHBhhdstz/Xy5JNPMmPGDJxOZxWPQkRERERERERE5OKghIXUStHR0TRs2LDG+jt79izdunXjT3/6U6n1hg0bxqFDhzyPv//970XqtGnThqSkJK+yt99+mwYNGniVDRgwgE2bNnmVrVu3jjZt2niSGvkcDgdDhgwp8zgyMjI4cuQIQ4cOJSYmpkZ/hgDNmjUjIiKiRvssyblz53j99ddJTEz0lG3bto3mzZvz5ptv8vXXX/PEE0/w2GOP8fLLL1eo7fJcL8OHD+fMmTP861//qvQxiIiIiIiIiIiIXEyUsJBaqfCUUNnZ2UybNo1WrVoRGRlJ7969vb7UT09PZ9SoUbRq1YqIiAi6dOlSbDKhJMOHD2fWrFnccsstpdYLDQ2lRYsWnkfjxo2L1Bk7dizLly8nMzPTU7Z06VLGjh3rVW/gwIGkpKRw+PBhT9n69euZMWOG17Ht2bOHffv2MXjw4FJjczgcngTFkCFDvEZzFPbKK6/QoUMHQkJCiIuL44033vDaPn/+fLp06UJkZCRt2rThgQceICMjw9PP+PHjOXXqlGdEydNPPw0UnRLKGMNrr73GLbfcQkREBJ06deKdd97x6uudd96hU6dOhIWFMXjwYJYtW4YxhpMnT5Z6vGV57733CA0NpU+fPp6yCRMmsHDhQgYNGkT79u0ZM2YM48ePZ9WqVRVquzzXS2BgICNGjGD58uWVPgYREREREREREZGLiRIWUic8+OCDbN68meXLl7Njxw5+/etfM2zYMFJSUgDIysqiR48erFmzhp07dzJx4kTuuusuPv/8c5/G4XA4aN68OXFxcdx///2kp6cXqdOjRw9iY2M96xekpaWxYcMG7rrrLq96vXv3Jjg4mHXr1gGwa9cuMjMzSUxMJD09nT179gCuURdhYWH07du31Nj69evHd999B8Bbb73FoUOH6NevX5F6b7/9Nr/97W+ZOnUqO3fuZNKkSYwfP94TB0BAQACLFi3i66+/ZtmyZXz88cc8+uijnn4WLFhAVFSUZ6TJtGnTSoxr5syZ3H777ezYsYMRI0YwevRojh8/DriSMbfddhsjR47kyy+/ZNKkSTzxxBOlHmd5bdy4kR49epRZ79SpU0RHR/ukz8J69erFxo0bq6VtERERERERERGR+ibI3wGI/7y2cTevbdxTZr2rWkXx2tieXmX3LNvKzoOny9z3noHtuGdg+0rHCK4v/JOSkkhLSyMmJgaAadOm8f7775OUlMScOXNo1aqV15fmDz30EB988AErVqygV69eVeo/37Bhw7j11ltp164dqampPP744wwfPpzNmzcTGBjoVXfChAksXbqUMWPGkJyczIgRI2jWrJlXncjISLp378769esZPXo0DoeDAQMGEBoaSr9+/XA4HLRr1w6Hw0Hfvn0JDQ0tNb6QkBCaN28OuKbUatGiRbH1XnjhBcaNG8cDDzwAwJQpU9iyZQsvvPCCZxRHwdEtsbGxzJo1i/vuu4/FixcTEhLCJZdcgjGmxD4KGjduHKNGjQJgzpw5LFq0iM8//5xhw4axZMkS4uLimDt3LgBxcXHs3LmT2bNnl9luWfbt2+e5Xkry6aef8o9//IM1a9ZUub/ixMTEsH//fpxOJwEByg+LiIiIiIiIiIiURgmLi9iZrFwOn84qs17LRmFFytLP5pRr3zNZuZWKraCvvvqKvLw8Onfu7FWev5A1QF5eHnPmzGHFihUcPHiQnJwcsrOzfbqewp133ul53aVLF7p27UqHDh1wOBxcc801XnXHjBnDjBkz2L17N8nJySxatKjYNgcMGMC7774LuEZvJCQkADBo0CDP1EsOh4N7773XZ8fxzTffFFkYu3///l6LT3/00Uc899xzfPvtt5w+fZrc3FyysrI4d+5chX+mXbt29byOjIwkKiqKI0eOAPDdd9/Rs6d3MqysBNN9993Hm2++6XmfP1VVYZmZmYSFFb128+3cuZObb76Zp556iuuuu67M46iM8PBwnE4n2dnZhIeHV0sfIiIiIiIiIiIi9YUSFhexhmFBtIgq+QvdfE0iQ4otK8++DcOqfollZGQQGBjItm3bioxkyF/Ieu7cuSxcuJAFCxZ41l6YPHkyOTk5Ve6/JO3bt6dp06b88MMPRRIWTZo04YYbbiAxMZGsrCzPAsyFDRw4kHnz5nHw4EEcDodnlMigQYNYsmQJqamp7N+/v1wLbvvK3r17ueGGG7j//vuZPXs20dHRfPLJJyQmJpKTk1PhhEVwcLDXe2MMTqez0vE988wzpU5Bla9p06acOHGi2G27du3immuuYeLEiTz55JOVjqUsx48fJzIyUskKERERERERERGRclDC4iJ2z8D2lZ6uqfAUUdUpPj6evLw8jhw5wsCBA4uts2nTJm6++WbGjBkDgNPp5Pvvv+eKK66otrgOHDhAeno6LVu2LHb7hAkTGDFiBNOnTy+SaMnXq1cvQkJCWLx4sWcdDoCePXty9OhRli5dSmRkpM+mtQK4/PLL2bRpk9ci4Js2bfL8rLZt24bT6WTevHmeaYxWrFjh1UZISAh5eXlVjiUuLo733nvPq2zr1q2l7tO8eXPP1FeliY+P9xqJke/rr79myJAhjB071idTT5Vm586dxMfHV2sfIiIiIiIiIiIi9YUSFlLrde7cmdGjR3P33Xczb9484uPjOXr0KGvXrqVr165cf/31dOrUiZUrV/Lpp5/SuHFj5s+fz08//VTuhEVGRgY//PCD5/2ePXvYvn070dHRtG3bloyMDGbOnMmvfvUrWrRoQWpqKo8++igdO3Zk6NChxbY5bNgwjh49SlRUVIn9hoeH06dPH1566SX69+/vSWyEhIR4lRcepVAVjzzyCLfffjvx8fH88pe/5N1332XVqlV89NFHAHTs2JHz58/z0ksvceONN7Jp0yZeffVVrzZiY2PJyMhg7dq1dOvWjYiIiEpNvzVp0iTmz5/P9OnTSUxMZPv27SQnJwOukRhVMXToUB577DFOnDhB48aNAVcCYciQIQwdOpQpU6Zw+PBhAAIDA4usMVKajIwMdu/e7Xlf+HrJt3HjxmqbbkpERERERERERKS+0SqwUickJSVx9913M3XqVOLi4hg5ciRbt271fDn85JNP0r17d4YOHUpCQgItWrRg5MiR5W7/iy++ID4+3nM3/JQpU4iPj+f3v/894PpCe8eOHdx000107tyZxMREevTowcaNG0tcDNsYQ9OmTQkJKTqlVkEJCQmcOXPGs35FvkGDBnHmzBnPQti+MnLkSBYuXMgLL7zAlVdeyZIlS0hKSvL0361bN+bPn8/zzz/PVVddxd/+9jeee+45rzb69evHfffdxx133EGzZs344x//WKlY2rVrx8qVK1m1ahVdu3bllVde4YknngAoc5HxsnTp0oXu3bt7jQ5ZuXIlR48e5c0336Rly5aeR8F1NPbu3YsxBofDUWLbZV0vAAcPHuTTTz9l/PjxVToOERERERERERGRi4Wx1vo7BqkCY0xrYD/A999/T6dOnby2p6SkkJubS1BQUJFt4j9Op5PTp08DEBUV5Zl6SWD27Nm8+uqr7N+/v8ptrVmzhkceeYSdO3eW+2e8bt06br31Vnbv3u0ZmQEVP2fTp0/nxIkT/PnPfy6xjn4/q19mZiYffvghANddd53WE6kjdN7qHp2zuiklJYXOnTvnv21jrT3gz3jEPwp+nti/fz+tW7f2c0QiUtfFzljj7xCkHPb+4foa6UfXQ+1XU9cC6HqoCypyPRw4cIA2bdrkv/XZ5wlNCSUifrV48WJ69uxJkyZN2LRpE3PnzuXBBx/0SdvXX389KSkpHDx4sOAf0FK99957PP74417Jispo3rw5U6ZMqVIbIiIiIiIiIiIiFxMlLKTeS0tLK3Uti127dnmtO1CbDR8+nI0bNxa77fHHH+fxxx+v4YiqLiUlhVmzZnH8+HHatm3L1KlTeeyxx3zW/uTJkytUf+7cuT7pd+rUqT5pR0RERERERERE5GKhhIXUezExMWzfvr3U7XXFa6+9RmZmZrHboqOjazga33jxxRd58cUX/R2GiIiIiIiIiIiI+JkSFlLvBQUF0bFjR3+H4ROtWrXydwgiIiIiIiIiIiIi1UIr/YqIiIiIiIiIiIiIiN8pYSEiIiIiIiIiIiIiIn6nhIWIiIiIiIiIiIiIiPidEhYiIiIiIiIiIiIiIuJ3SliIiIiIiIiIiIiIiIjfKWEhtVJCQgKTJ0/2dxh10urVq+nYsSOBgYFMnjyZ5ORkGjVqVCN9x8bGsmDBghrpqzzS09Np3rw5e/furdF+c3JyiI2N5YsvvqjRfkVEREREREREROoyJSykVlq1ahXPPvtsjfW3YcMGbrzxRmJiYjDGsHr16iJ1xo0bhzHG6zFs2DCvOvnlW7Zs8SrPzs6mSZMmGGNwOBwAXHvttTz88MNe9V599VWMMSQnJxfpe+DAgeU6lkmTJnHbbbexf//+avsZlpQE2bp1KxMnTqyWPitj9uzZ3HzzzcTGxgLw5ZdfMmrUKNq0aUN4eDiXX345CxcurHC7M2fOLHIt/OxnP/NsDwkJYdq0aUyfPt1XhyIiIiIiIiIiIlLvKWEhtVJ0dDQNGzassf7Onj1Lt27d+NOf/lRqvWHDhnHo0CHP4+9//3uROm3atCEpKcmr7O2336ZBgwZeZQMGDGDTpk1eZevWraNNmzaepEY+h8PBkCFDyjyOjIwMjhw5wtChQ4mJianRnyFAs2bNiIiIqNE+S3Lu3Dlef/11EhMTPWXbtm2jefPmvPnmm3z99dc88cQTPPbYY7z88ssVbv/KK6/0uhY++eQTr+2jR4/mk08+4euvv67ysYiIiIiIiIiIiFwMlLCQWqnwlFDZ2dlMmzaNVq1aERkZSe/evb2+1E9PT2fUqFG0atWKiIgIunTpUmwyoSTDhw9n1qxZ3HLLLaXWCw0NpUWLFp5H48aNi9QZO3Ysy5cvJzMz01O2dOlSxo4d61Vv4MCBpKSkcPjwYU/Z+vXrmTFjhtex7dmzh3379jF48OBSY3M4HJ4ExZAhQ7xGcxT2yiuv0KFDB0JCQoiLi+ONN97w2j5//ny6dOlCZGQkbdq04YEHHiAjI8PTz/jx4zl16pRndMHTTz8NFJ0SyhjDa6+9xi233EJERASdOnXinXfe8errnXfeoVOnToSFhTF48GCWLVuGMYaTJ0+Werxlee+99wgNDaVPnz6esgkTJrBw4UIGDRpE+/btGTNmDOPHj2fVqlUVbj8oKMjrWmjatKnX9saNG9O/f3+WL19epeMQERERERERERG5WChhIXXCgw8+yObNm1m+fDk7duzg17/+NcOGDSMlJQWArKwsevTowZo1a9i5cycTJ07krrvu4vPPP/dpHA6Hg+bNmxMXF8f9999Penp6kTo9evQgNjaWt956C4C0tDQ2bNjAXXfd5VWvd+/eBAcHs27dOgB27dpFZmYmiYmJpKens2fPHsA16iIsLIy+ffuWGlu/fv347rvvAHjrrbc4dOgQ/fr1K1Lv7bff5re//S1Tp05l586dTJo0ifHjx3viAAgICGDRokV8/fXXLFu2jI8//phHH33U08+CBQuIioryjC6YNm1aiXHNnDmT22+/nR07djBixAhGjx7N8ePHAVcy5rbbbmPkyJF8+eWXTJo0iSeeeKLU4yyvjRs30qNHjzLrnTp1iujo6Aq3n5KSQkxMDO3bt2f06NGkpaUVqdOrVy82btxY4bZFREREREREREQuRkH+DkD86NOXYXPpUyAB0LIb/KbQXeL/cycc+rLsffv+F/R7sHLxuaWlpZGUlERaWhoxMTEATJs2jffff5+kpCTmzJlDq1atvL40f+ihh/jggw9YsWIFvXr1qlL/+YYNG8att95Ku3btSE1N5fHHH2f48OFs3ryZwMBAr7oTJkxg6dKljBkzhuTkZEaMGEGzZs286kRGRtK9e3fWr1/P6NGjcTgcDBgwgNDQUPr164fD4aBdu3Y4HA769u1LaGhoqfGFhITQvHlzwDWlVosWLYqt98ILLzBu3DgeeOABAKZMmcKWLVt44YUXPKM4Co5uiY2NZdasWdx3330sXryYkJAQLrnkEowxJfZR0Lhx4xg1ahQAc+bMYdGiRXz++ecMGzaMJUuWEBcXx9y5cwGIi4tj586dzJ49u8x2y7Jv3z7P9VKSTz/9lH/84x+sWbOmQm336tWL5ORk4uLiOHToEDNnzmTgwIHs3LnTaxqumJgY9u3bV6n4RURERERERERELjZKWFzMss/AmR/LrndJq6Jl546Vb9/sMxWPq5CvvvqKvLw8Onfu7N20eyFrgLy8PObMmcOKFSs4ePAgOTk5ZGdn+3Q9hTvvvNPzukuXLnTt2pUOHTrgcDi45pprvOqOGTOGGTNmsHv3bpKTk1m0aFGxbQ4YMIB3330XcI3eSEhIAGDQoEGeqZccDgf33nuvz47jm2++KbIwdv/+/b0Wn/7oo4947rnn+Pbbbzl9+jS5ublkZWVx7ty5Cv9Mu3bt6nkdGRlJVFQUR44cAeC7776jZ8+eXvXLSjDdd999vPnmm573+VNVFZaZmUlYWFiJ7ezcuZObb76Zp556iuuuu67M4yho+PDhBAS4Bqh17dqV3r17c9lll7FixQqvNTPCw8M5d+5chdoWERERERERERG5WNXLhIUxZgwwEOgBdAFCgPHW2uRi6tpyNNnWWru/HP3uBS4rYfN6a21COfqqOaENoWHpd6ADENG0+LLy7Bta9UWfMzIyCAwMZNu2bUVGMuQvZD137lwWLlzIggULPGsvTJ48mZycnCr3X5L27dvTtGlTfvjhhyIJiyZNmnDDDTeQmJhIVlYWw4cP58yZosmbgQMHMm/ePA4ePIjD4fCMEhk0aBBLliwhNTWV/fv3l2vBbV/Zu3cvN9xwA/fffz+zZ88mOjqaTz75hMTERHJyciqcsAgODvZ6b4zB6XRWOr5nnnmm1Cmo8jVt2pQTJ04Uu23Xrl1cc801TJw4kSeffLLSseRr1KgRnTt35ocffvAqP378eJGRNSIiIiIiIiIiIlK8epmwAGbhShwcAw5RchIBYGYJ5R2B0cCu8iQrCjgFLCimfG8F2qgZ/R6s/HRNhaeIqkbx8fHk5eVx5MgRBg4cWGydTZs2cfPNNzNmzBgAnE4n33//PVdccUW1xXXgwAHS09Np2bJlsdsnTJjAiBEjmD59epFES75evXoREhLC4sWLPetwAPTs2ZOjR4+ydOlSIiMjfTatFcDll1/Opk2bvBYB37Rpk+dntW3bNpxOJ/PmzfOMIlixYoVXGyEhIeTl5VU5lri4ON577z2vsq1bt5a6T/PmzT1TX5UmPj7eayRGvq+//pohQ4YwduxYn0w9Ba6kWmpqapF1Snbu3El8fLxP+hAREREREREREanv6mvC4h4gxVq7zxgzA3iupIrW2qeLKzfGvOR++XoF+z5ZUptSOZ07d2b06NHcfffdzJs3j/j4eI4ePcratWvp2rUr119/PZ06dWLlypV8+umnNG7cmPnz5/PTTz+VO2GRkZHhdXf8nj172L59O9HR0bRt25aMjAxmzpzJr371K1q0aEFqaiqPPvooHTt2ZOjQocW2OWzYMI4ePUpUVFSJ/YaHh9OnTx9eeukl+vfv70lshISEeJUXHqVQFY888gi333478fHx/PKXv+Tdd99l1apVfPTRRwB07NiR8+fP89JLL3HjjTeyadMmXn31Va82YmNjycjIYO3atXTr1o2IiIhKTb81adIk5s+fz/Tp00lMTGT79u0kJycDrpEYVTF06FAee+wxTpw4QePGjQFXAmHIkCEMHTqUKVOmcPjwYQACAwMrNBLikUce4aabbuKyyy7jxx9/5KmnniIwMNCzVke+jRs38uyzz1bpOERERERERERERC4WAf4OoDpYaz+y1lZ6pVtjTBiu0RU5wBs+C0wqLSkpibvvvpupU6cSFxfHyJEj2bp1K23btgXgySefpHv37gwdOpSEhARatGjByJEjy93+F198QXx8vOdu+ClTphAfH8/vf/97wPWF9o4dO7jpppvo3LkziYmJ9OjRg40bN5a4GLYxhqZNmxISElJq3wkJCZw5c8azfkW+QYMGcebMGc9C2L4ycuRIFi5cyAsvvMCVV17JkiVLSEpK8vTfrVs35s+fz/PPP89VV13F3/72N557zjvn169fP+677z7uuOMOmjVrxh//+MdKxdKuXTtWrlzJqlWr6Nq1K6+88gpPPPEEQJmLjJelS5cudO/e3Wt0yMqVKzl69ChvvvkmLVu29DwKrqOxd+9ejDE4HI4S2z5w4ACjRo0iLi6O22+/nSZNmrBlyxavpMfmzZs5deoUt912W5WOQ0RERERERERE5GJhrC3PEg51V4ERFsWuYVHCPr8B/gastNb+ugJ97QVCgceAGOA0sNVa+1kFwy7YZusyqrQAtoJrceoOHTp4bUxLSyMvL4/g4OAi28R/nE6nZ7HoBg0aeKZeEpgzZw5Llixh375K5xw91qxZw/Tp09mxY0e5f8br1q3jtttu44cffvCMzICKn7M777yTbt268dhjj5VYJzU1lfPnzxMYGOhJvolvZWVlsWHDBgCuvvrqUhdil9pD563u0Tmrm1JTU+nSpUv+2zbW2gP+jEf8w/15Yz/A/v37ad26rI8fIiKli52xxt8hSDns/cP1NdKProfar6auBdD1UBdU5Ho4cOAAbdq0yX/rs88T9XVKqKpKdD+/Vol9WwBJBQuMMVuBUdba1Eq0V+71Mz777DNSU727aNKkCeHh4RhjOH36dCW6l+qW/yX4xeq1116je/fuREdHs2XLFubOncu9997rk+t14MCB3HXXXXz77bfl/vC9evVqHn74YQIDA0uMoaxzlpOTQ+fOnZkwYUKpx5Gbm0tmZiaZmZl8++235YpPKi//y1SpW3Te6h6ds7rj2LFj/g5BRERERETEixIWhRhj2gGDgTTg3xXcPQnYCOwEMoDOwBTgLmCtMaaLtfaMD8OVcti/fz99+/YtcfvmzZsLZgNrtdtuu40tW7YUu+3hhx9m6tSpNRxR1e3evZt58+Zx4sQJWrduzYMPPsjDDz/ss/bvv//+CtX3xZoTISEhTJs2rcrtiIiIiIiIiIiIXEyUsChqAmCAJGutsyI7WmtnFiraDtztXjz4LuBeYH4F4ynrm3TPlFC9e/cucUqooKCgUhd/rs/i4uL4z3/+U+L22NhYgoJq9lehslNCJSUlkZmZWey26OjoOnmOX375ZV5++WV/h1Gm6pjG6+jRo4SHh9OgQQN69OhR5fakKE1TUzfpvNU9Omd1U+GRuSIiIiIiIv6mhEUBxpgAYBzgBJb6sOkluBIW/algwqKsub/cyRDAtUhxeHi41/aAgACcTqfn9cUoJCSEzp07+zuMEgUEBJT73NSVkSD1XUXOWVmMMQQEBBT53RXfCwsL08+5DtJ5q3t0zuqO0NBQf4cgIiIiIiLi5eL8Brtkw4DWwL+ttWk+bDd/guBIH7YpIiIiIiIiIiIiIlJvKGHhrSqLbZemt/t5r4/bFRERERERERERERGpF5SwcDPGNANuBI4C75RSL9gY8zNjTIdC5T8zxkQUU/9nwPPut//jw5BFREREREREREREROqNermGhTHmHmCA+20X9/M9xpgE9+tPrLWFR1HcDQQDb1hrc0ppvhXwDbAPiC1QficwxRizwb3tLNAZGOFu9zlr7YbKHI+IiIiIiIiIiIiISH1XLxMWuJIVYwuV9Xc/8hVOWFR1Oqh1wOVAPDAQiMC1dsV7wGJr7YeVbFdEREREREREREREpN6rl1NCWWvHWWtNKY9xxexzhXvbN2W0vdddL7ZQ+Xpr7R3W2s7W2kustcHW2pbW2pFKVlRcQkICkydP9ncYddLq1avp2LEjgYGBTJ48meTkZBo1alQjfcfGxrJgwYIa6as80tPTad68OXv37q3xvvv06cNbb71V4/2KiIiIiIiIiIjUVfUyYSF136pVq3j22WdrrL8NGzZw4403EhMTgzGG1atXF6kzbtw4jDFej2HDhnnVyS/fsmWLV3l2djZNmjTBGIPD4QDg2muv5eGHH/aq9+qrr2KMITk5uUjfAwcOLNexTJo0idtuu439+/dX28+wpCTI1q1bmThxYrX0WRmzZ8/m5ptvJjY2tsi29PR0WrdujTGGkydPVqjd8lwvTz75JDNmzMDpdFYueBERERERERERkYuMEhZSK0VHR9OwYcMa6+/s2bN069aNP/3pT6XWGzZsGIcOHfI8/v73vxep06ZNG5KSkrzK3n77bRo0aOBVNmDAADZt2uRVtm7dOtq0aeNJauRzOBwMGTKkzOPIyMjgyJEjDB06lJiYmBr9GQI0a9aMiIgia8/7xblz53j99ddJTEwsdntiYiJdu3atVNvluV6GDx/OmTNn+Ne//lWpPkRERERERERERC42SlhIrVR4Sqjs7GymTZtGq1atiIyMpHfv3l5f6qenpzNq1ChatWpFREQEXbp0KTaZUJLhw4cza9YsbrnlllLrhYaG0qJFC8+jcePGReqMHTuW5cuXk5mZ6SlbunQpY8d6L6sycOBAUlJSOHz4sKds/fr1zJgxw+vY9uzZw759+xg8eHCpsTkcDk+CYsiQIV6jOQp75ZVX6NChAyEhIcTFxfHGG294bZ8/fz5dunQhMjKSNm3a8MADD5CRkeHpZ/z48Zw6dcozouTpp58Gik4JZYzhtdde45ZbbiEiIoJOnTrxzjvvePX1zjvv0KlTJ8LCwhg8eDDLli2r1KiHwt577z1CQ0Pp06dPscd/8uRJpk2bVqm2y3O9BAYGMmLECJYvX16pPkRERERERERERC42SlhInfDggw+yefNmli9fzo4dO/j1r3/NsGHDSElJASArK4sePXqwZs0adu7cycSJE7nrrrv4/PPPfRqHw+GgefPmxMXFcf/995Oenl6kTo8ePYiNjfWsX5CWlsaGDRu46667vOr17t2b4OBg1q1bB8CuXbvIzMwkMTGR9PR09uzZA7hGXYSFhdG3b99SY+vXrx/fffcdAG+99RaHDh2iX79+Req9/fbb/Pa3v2Xq1Kns3LmTSZMmMX78eE8cAAEBASxatIivv/6aZcuW8fHHH/Poo496+lmwYAFRUVGekSalffE/c+ZMbr/9dnbs2MGIESMYPXo0x48fB1zJmNtuu42RI0fy5ZdfMmnSJJ544olSj7O8Nm7cSI8ePYqU79q1i2eeeYa//vWvBARU75/AXr16sXHjxmrtQ0REREREREREpL4I8ncA4j/Lvl7GX3f9tcx6V0RfwUvXvORV9tDah9h1fFeZ+959xd2MvXJsmfVKk5aWRlJSEmlpacTExAAwbdo03n//fZKSkpgzZw6tWrXy+tL8oYce4oMPPmDFihX06tWrSv3nGzZsGLfeeivt2rUjNTWVxx9/nOHDh7N582YCAwO96k6YMIGlS5cyZswYkpOTGTFiBM2aNfOqExkZSffu3Vm/fj2jR4/G4XAwYMAAQkND6devHw6Hg3bt2uFwOOjbty+hoaGlxhcSEkLz5s0B15RaLVq0KLbeCy+8wLhx43jggQcAmDJlClu2bOGFF17wjOIoOLolNjaWWbNmcd9997F48WJCQkK45JJLMMaU2EdB48aNY9SoUQDMmTOHRYsW8fnnnzNs2DCWLFlCXFwcc+fOBSAuLo6dO3cye/bsMtsty759+zzXS77s7GxGjRrF3Llzadu2Lbt3765yP6WJiYlh//79OJ3Oak+OiIiIiIiIiIiI1HVKWFzEzp4/y5FzR8qs1yKy6JfSx7OPl2vfs+fPViq2gr766ivy8vLo3LmzV3n+QtYAeXl5zJkzhxUrVnDw4EFycnLIzs726XoKd955p+d1ly5d6Nq1Kx06dMDhcHDNNdd41R0zZgwzZsxg9+7dJCcns2jRomLbHDBgAO+++y7gGr2RkJAAwKBBgzxTLzkcDu69916fHcc333xTZGHs/v37s3DhQs/7jz76iOeee45vv/2W06dPk5ubS1ZWFufOnavwz7TgOhGRkZFERUVx5Ijr2vnuu+/o2bOnV/2yEkz33Xcfb775pud9/lRVhWVmZhIWFuZV9thjj3H55ZczZsyYCh1DZYWHh+N0OsnOziY8PLxG+hQREREREREREamrlLC4iEUGR9I8onmZ9aJDo4stK8++kcGRlYqtoIyMDAIDA9m2bVuRkQz5C1nPnTuXhQsXsmDBAs/aC5MnTyYnJ6fK/Zekffv2NG3alB9++KFIwqJJkybccMMNJCYmkpWV5VmAubCBAwcyb948Dh48iMPh8IwSGTRoEEuWLCE1NZX9+/eXa8FtX9m7dy833HAD999/P7NnzyY6OppPPvmExMREcnJyKpywCA4O9npvjMHpdFY6vmeeeaZca080bdqUEydOeJV9/PHHfPXVV6xcuRIAa62n7hNPPMHMmTMrHVdxjh8/TmRkpJIVIiIiIiIiIiIi5aCExUVs7JVjKz1dU+EpoqpTfHw8eXl5HDlyhIEDBxZbZ9OmTdx8882eO+edTifff/89V1xxRbXFdeDAAdLT02nZsmWx2ydMmMCIESOYPn16kURLvl69ehESEsLixYs963AA9OzZk6NHj7J06VIiIyN9Nq0VwOWXX86mTZu8FgHftGmT52e1bds2nE4n8+bN80xjtGLFCq82QkJCyMvLq3IscXFxvPfee15lW7duLXWf5s2be6a+Kk18fLzXSAxwre1RcDH0rVu3MmHCBDZu3EiHDh0qEHn57Ny5k/j4eJ+3KyIiIiIiIiIiUh8pYSG1XufOnRk9ejR333038+bNIz4+nqNHj7J27Vq6du3K9ddfT6dOnVi5ciWffvopjRs3Zv78+fz000/lTlhkZGTwww8/eN7v2bOH7du3Ex0dTdu2bcnIyGDmzJn86le/okWLFqSmpvLoo4/SsWNHhg4dWmybw4YN4+jRo0RFRZXYb3h4OH369OGll16if//+nsRGSEiIV3nhUQpV8cgjj3D77bcTHx/PL3/5S959911WrVrFRx99BEDHjh05f/48L730EjfeeCObNm3i1Vdf9WojNjaWjIwM1q5dS7du3YiIiKjU9FuTJk1i/vz5TJ8+ncTERLZv305ycjLgGolRFUOHDuWxxx7jxIkTNG7cGKBIUuLYsWOAK4nTqFGjcredkZHhtf5F4esl38aNG7nuuuuqcBQiIiIiIiIiIiIXD60CK3VCUlISd999N1OnTiUuLo6RI0eydetWz5fDTz75JN27d2fo0KEkJCTQokULRo4cWe72v/jiC+Lj4z13w0+ZMoX4+Hh+//vfAxAYGMiOHTu46aab6Ny5M4mJifTo0YONGzeWuBi2MYamTZsSEhJSat8JCQmcOXPGs35FvkGDBnHmzBnPQti+MnLkSBYuXMgLL7zAlVdeyZIlS0hKSvL0361bN+bPn8/zzz/PVVddxd/+9jeee+45rzb69evHfffdxx133EGzZs344x//WKlY2rVrx8qVK1m1ahVdu3bllVde4YknngAoc5HxsnTp0oXu3bsXGR1Slr1792KMweFwlFinrOsF4ODBg3z66aeMHz++UvGLiIiIiIiIiIhcbEz+HO5SNxljWgP7Ab7//ns6derktT0lJYXc3FyCgoKKbBP/cTqdnD59GoCoqCjP1EsCs2fP5tVXX2X//v1VbmvNmjU88sgj7Ny5s9w/43Xr1nHrrbeye/duz8gMqPg5mz59OidOnODPf/5ziXX0+1n9MjMz+fDDDwG47rrrtJ5IHaHzVvfonNVNKSkpdO7cOf9tG2vtAX/GI/5R8PPE/v37ad26tZ8jEpG6LnbGGn+HIOWw9w/X10g/uh5qv5q6FkDXQ11QkevhwIEDtGnTJv+tzz5PaEooEfGrxYsX07NnT5o0acKmTZuYO3cuDz74oE/avv7660lJSeHgwYMF/4CW6r333uPxxx/3SlZURvPmzZkyZUqV2hAREREREREREbmYKGEh9V5aWlqpa1ns2rXLa92B2mz48OFs3Lix2G2PP/44jz/+eA1HVHUpKSnMmjWL48eP07ZtW6ZOncpjjz3ms/YnT55cofpz5871Sb9Tp071STsiIiJSexhjWgG/BkYAPwNaAMeBTcAfrbWfFbNPFPA08Ct3/UPAP4GZ1tqMYuoHAP8FTAQ6AhnAR8AT1trdheuLiIiIiNQnSlhIvRcTE8P27dtL3V5XvPbaa2RmZha7LTo6uoaj8Y0XX3yRF1980d9hiIiIiJTHQ8B0IBX4EDgKdAJGAiONMb+x1v4jv7IxJhJYD/zcXf/vQDwwDRhkjLnaWptVqI8lwD3A18AiIAa4HbjOGNPHWptSbUcnIiIiIuJnSlhIvRcUFETHjh39HYZPtGrVyt8hiIiIiFzMPgcSrLXrCxYaYwYCa4FXjDGrrbXZ7k2P4kpWPG+tnVGg/h9wJT4eBp4rUD4YV7JiA3CttTbHXf4/wHvAy8DQ6jk0ERERERH/00q/IiIiIiIi5WCtXVU4WeEu3wisAxoDXQCMMQZX8iEDeLbQLs+6y+8pVH6v+/l3+ckKd/v/Ahy4RlnUjblMRUREREQqQQkLERERERGRqjvvfs51P3fCNZ3TJmvt2YIV3e83Ae2NMW0KbEoA8rcV9oH7eZCvAhYRERERqW00JZSIiIiIiEgVuEc9/BLXgtpfuYs7uZ9LWnMiBdf0Tp2A/e71LloCO621eSXUL9hueWNrXUaVFvkvMjMzS1wvTURE6hf9vZd8uhakoIpcD9V17ShhISIiIiIiUknGmGDgDSAUmF4g2XCJ+/lUCbueLlSvovXLa395K27YsIGmTZtWsHkRkcL0VVNd8OGHH9ZQT7oearuauxZA10PtV5Hr4dixY9USg6aEEhERERERqQRjTACQDFwN/MVa+4Z/IxIRERERqduU1pJaKSEhgZ///OcsWLDA36HUOatXr2batGns2bOHhx56iJ///OdMnjyZkydPVnvfsbGxTJ48mcmTJ1d7X+WRnp7O5Zdfzueff05sbGyN9ZuTk0Pnzp1ZuXIlv/jFL2qsXxEREak57mTFUuA3wJvAfYWq5I+UKGlERFShehWtX15tytjeAtgKcPXVV9O6dVkzSImIlGHzx/6OQMrhuuuuq5mOdD3UejV2LYCuhzqgItfDgQMHqiUGJSykVlq1ahXBwcE11t+GDRuYO3cu27Zt49ChQ7z99tuMHDnSq864ceNYtmyZV9nQoUN5//33Pe+NMQBs3ryZPn36eMqzs7OJiYnh+PHjrFu3jquvvpprr72Wq666itdff91T79VXX+X+++8nKSmJcePGefWdmprKxo0byzyWSZMmMX78eP77v/+bhg0b8tZbb1XkR1EuycnJxSZBtm7dSmRkpM/7q6zZs2dz8803F5usSE9Pp1u3bhw8eJATJ07QqFGjcrc7c+ZMnnnmGa+yuLg4vv32WwBCQkKYNm0a06dPZ+3atVU5BBEREamF3MmKJOBu4O/AOGuts1C1stac8Frjwlp71hhzCGhnjAksZh2LstbEKJa1ttRPkvn/fwUIDw8nPDy8Is2LiEgdpb/3kk/XghRUkeuhuq4dJSykVoqOjq7R/s6ePUu3bt2YMGECt956a4n1hg0bRlJSkud9aGhokTpt2rQhKSnJK2Hx9ttv06BBA44fP+4pGzBgAGvWrPHad926dbRp0waHw+GVsHA4HIwdO7bM48jIyODIkSMMHTqUmJiYMuv7WrNmzWq8z5KcO3eO119/nQ8++KDY7YmJiXTt2pWDBw9Wqv0rr7ySjz76yPM+KMj7z+no0aOZOnUqX3/9NVdeeWWl+hAREZHap1Cy4h/AXaUskv0j0N8YE2mtPVugjUigP7DHWltwjYn1wJ3ubRsKtTfU/Vy4XKRWiJ2xpuxK4ld7/3C9v0MQEREpk9awkFopISHBa1qh7Oxspk2bRqtWrYiMjKR37944HA7P9vT0dEaNGkWrVq2IiIigS5cu/P3vfy93f8OHD2fWrFnccsstpdYLDQ2lRYsWnkfjxo2L1Bk7dizLly8nMzPTU7Z06dIiCYeBAweSkpLC4cOHPWXr169nxowZXse2Z88e9u3bx+DBg0uNzeFw0LBhQwCGDBmCMcarnYJeeeUVOnToQEhICHFxcbzxhvd0y/Pnz6dLly5ERkbSpk0bHnjgATIyMjz9jB8/nlOnTmGMwRjD008/DbimhCo4jZcxhtdee41bbrmFiIgIOnXqxDvvvOPV1zvvvEOnTp0ICwtj8ODBLFu2DGNMlaeweu+99wgNDfVKHBU8/pMnTzJt2rRKtx8UFOR1LRReoLJx48b079+f5cuXV7oPERERqV0KTAN1N/BPYEwJyQqstRZ4DWgA/K7Q5t+5y/9SqPzP7udnjTEhBfodDiQAH1pr91XxMEREREREai0lLKROePDBB9m8eTPLly9nx44d/PrXv2bYsGGkpLhGxGdlZdGjRw/WrFnDzp07mThxInfddReff/65T+NwOBw0b96cuLg47r//ftLT04vU6dGjB7GxsZ6pmNLS0tiwYQN33XWXV73evXsTHBzMunXrANi1axeZmZkkJiaSnp7Onj17ANeoi7CwMPr27VtqbP369eO7774D4K233uLQoUP069evSL23336b3/72t0ydOpWdO3d6ppDKjwMgICCARYsW8fXXX7Ns2TI+/vhjHn30UU8/CxYsICoqikOHDnHo0KFSv/ifOXMmt99+Ozt27GDEiBGMHj3aM9Jkz5493HbbbYwcOZIvv/ySSZMm8cQTT5R6nOW1ceNGevToUaR8165dPPPMM/z1r38lIKDyfwJTUlKIiYmhffv2jB49mrS0tCJ1evXqVa5pvERERKTO+D0wFsgAvgeeNMY8Xejx8wL1/wh8CUw3xnxgjHnOGPMBMB3XuhELCjZurV2HK8lxNfAfY8zzxpi/AquB48BD1Xp0IiIiIiJ+pimhLmLpSckcT04us17YFVfQ5pXFXmX773+ArF27ytw3etw4mowfV8kIXdLS0khKSiItLc0zzdG0adN4//33SUpKYs6cObRq1crrS/OHHnqIDz74gBUrVtCrV68q9Z9v2LBh3HrrrbRr147U1FQef/xxhg8fzubNmwkMDPSqO2HCBJYuXcqYMWNITk5mxIgRRaZLioyMpHv37qxfv57Ro0fjcDgYMGAAoaGh9OvXD4fDQbt27XA4HPTt27fY6acKCgkJoXnz5oBrSq0WLVoUW++FF15g3LhxPPDAAwBMmTKFLVu28MILL3hGcRQc3RIbG8usWbO47777WLx4MSEhIVxyySUYY0rso6Bx48YxatQoAObMmcOiRYv4/PPPGTZsGEuWLCEuLo65c+cCrnUgdu7cyezZs8tstyz79u0rMi1WdnY2o0aNYu7cubRt25bdu3dXqu1evXqRnJxMXFwchw4dYubMmQwcOJCdO3d6RrkAxMTEsG+fboIUERGpDsaYS4FrgO7ApUBj4ATwE7AN+Nha+5OPu411PzcASrrLYi+wHTzrUgwCngZ+BQwGDgHzgJnW2sxi9p8EfAVMBH6LKznyNvCEtTbVB8cgIiIiIlJrKWFxEXNmZJD7U9mf4fKK+VI67/jxcu3rdE8jVBVfffUVeXl5dO7c2as8OzubJk2auOLJy2POnDmsWLGCgwcPkpOTQ3Z2NhEREVXuP9+dd97ped2lSxe6du1Khw4dcDgcXHPNNV51x4wZw4wZM9i9ezfJycksWrSo2DYHDBjAu+++C7hGbyQkJAAwaNAgz9RLDoeDe++912fH8c033zBx4kSvsv79+7Nw4ULP+48++ojnnnuOb7/9ltOnT5Obm0tWVhbnzp2r8M+0a9eunteRkZFERUVx5MgRAL777jt69uzpVb+sBNN9993Hm2++6XmfUcI1lpmZSVhYmFfZY489xuWXX86YMWMqdAyFDR8+3DM6o2vXrvTu3ZvLLruMFStWkJiY6KkXHh7OuXPnqtSXiIiIXGCMCQbuAP4LyP9PgymmqnXX/wz4E7DCWnu+qv1ba8cB4yq4zyngYfejPPWdwCL3Q0RERETkoqKExUUsoEEDgi69tMx6gcUsgB0YHV2ufQMaNKhUbAVlZGQQGBjItm3bioxkaOBuf+7cuSxcuJAFCxZ41l6YPHkyOTk5Ve6/JO3bt6dp06b88MMPRRIWTZo04YYbbiAxMZGsrCyGDx/OmTNnirQxcOBA5s2bx8GDB3E4HJ5RIoMGDWLJkiWkpqayf/9+hgwZUm3HUdjevXu54YYbuP/++5k9ezbR0dF88sknJCYmkpOTU+GERXBwsNd7YwxOp7PS8T3zzDPlWnuiadOmnDhxwqvs448/5quvvmLlypUAuKaWdtV94oknmDlzZqViatSoEZ07d+aHH37wKj9+/HitWohcRESkLjPG3AU8B7TElaQ4CmwGvgbSgdPAJUAT4CqgL9AH6A38wRjzmLX2zWKaFhERERGRWkIJi4tYk/GVn66p8BRR1Sk+Pp68vDyOHDnCwIEDi62zadMmbr75Zs+d806nk++//54rrrii2uI6cOAA6enptGzZstjtEyZMYMSIEUyfPr1IoiVfr169CAkJYfHixZ51OAB69uzJ0aNHWbp0KZGRkT6b1grg8ssvZ9OmTV6LgG/atMnzs9q2bRtOp5N58+Z5RhGsWLHCq42QkBDy8opdX7JC4uLieO+997zKtm7dWuo+zZs390x9VZr4+HivkRjgWtuj4GLoW7duZcKECWzcuJEOHTpUIHJvGRkZpKamFlmnZOfOncTHx1e6XREREXExxmzGNaLiGK6RB8nW2i/Lsd/PgfHAKGCZMeYBa23RRb5ERERERKRW0KLbUut17tyZ0aNHc/fdd7Nq1Sr27NnD559/znPPPceaNWsA6NSpE//+97/59NNP+eabb5g0aRI/lWPKqnwZGRls376d7du3A67FoLdv3+5ZSDkjI4NHHnmELVu2sHfvXtauXcvNN99Mx44dGTp0aLFtDhs2jKNHj/LMM8+U2G94eDh9+vThpZdeon///p7ERkhIiFd54VEKVfHII4+QnJzMK6+8QkpKCvPnz2fVqlWeUQsdO3bk/PnzvPTSS+zevZs33niDV1991auN2NhYMjIyWLt2LceOHav0tEeTJk3i22+/Zfr06Xz//fesWLGCZPe6KsYUN7tD+Q0dOpSvv/7aa5RFhw4duOqqqzyPdu3aAa4kTnmSIPkeeeQR1q9fz969e/n000+55ZZbCAwM9KzVkW/jxo1cd911VToOERERAaAT8CjQ1lr7cHmSFQDW2u3W2t8CbYAZQOcydhERERERET9SwkLqhKSkJO6++26mTp1KXFwcI0eOZOvWrbRt2xaAJ598ku7duzN06FASEhJo0aIFI0eOLHf7X3zxBfHx8Z674adMmUJ8fDy///3vAQgMDGTHjh3cdNNNdO7cmcTERHr06MHGjRtLXAzbGEPTpk0JCQkpte+EhATOnDnjWb8i36BBgzhz5oxnIWxfGTlyJAsXLuSFF17gyiuvZMmSJSQlJXn679atG/Pnz+f555/nqquu4m9/+xvPPfecVxv9+vXjvvvu44477qBZs2b88Y9/rFQs7dq1Y+XKlaxatYquXbvyyiuv8MQTrvUry1pkvCxdunShe/fuRUaHlGXv3r0YY3A4HCXWOXDgAKNGjSIuLo7bb7+dJk2asGXLFq/pnzZv3sypU6e47bbbKnsIIiIickF7a+08a212ZXa21mZba+cC7X0cl4iIiIiI+JDJn8O9PjHGjAEGAj2ALkAIMN5am1xM3aeBp0pprp21dm8F+u4MzAKGAJHA98CrwKu2Gn7YxpjWwH6A77//nk6dOnltT0lJITc3l6CgoCLbxH+cTienT58GICoqyjP1ksDs2bN59dVX2b9/f5XbWrNmDY888gg7d+4s98943bp13HrrrezevZvGjRt7yit6zu644w66devG448/XmId/X5Wv8zMTD788EMArrvuOsLDw/0ckZSHzlvdo3NWN6WkpNC5s2fAQRtr7QF/xiP+UfDzxP79+2ndurWfI5K6KnbGGn+HIGXY+4fra6QfXQt1g64HyVdT1wLoeqgLKnI9HDhwgDZt2uS/9dnnifq6hsUs4DJcc9wecr8uyzJgbzHlJ8vbqTHmCuBTIBxYAfwIXA8sBq4AHipvWyIXi8WLF9OzZ0+aNGnCpk2bmDt3Lg8++KBP2r7++utJSUnh4MGDBf+Aluq9997j8ccf90pWVFROTg5dunTh4YcfLlf9rIzzrPvbt1jnhZzml/tPkpNb9uLksU0iaRZ1YTRKVk4eXx08Va5+u7VuREjwhcTL4VNZ7D9e9vReYcGBdGl9iVfZ94fPcCrzfJn7XhoVRtto74Xbt+49Xq54O13akEbhF6ZHO5V5nu9/KrqYfUFOp+XcuTDaN7R8cjyVwCDXtGv7j5/j8KmsMvuMCg8mrkVDr7KdB0+RmVP2Gi5toiNocUmY531OrpMv958scz+AK1tdQkTIhbVvjp3JZs+xs2XuFxwUwM/bNPIqSz2SwfGzOWXu27RBKO2aRXqV/WffCfKcZefa2zdrQJMGF0aTnc3KZdeh02XuB9C9bWMCAy9MAffjiUz2nzjHubOun92u7dsIKGaKuMjQIK6IifIq++bH02Rk55bZZ0yjcFo1vvCFep7T8p99J0rZ44LLW0bRIOzCf59OnM3hhyMZZe4XEGDocZn335U9x85y7EzZN4s3jgyhY/MGXmW17W+E01rXOQuxXNH1LJ3aKWEhIiIiIiIiFVdfExb3ACnW2n3GmBnAc2XtgGvhPkcV+30FuAQYYa39F4Ax5nfAR8CDxpj/sdZurmIfUkFpaWmlLr69a9cuz9RStd3w4cPZuHFjsdsef/zxUu/mr61SUlKYNWsWx48fp23btkydOpXHHnvMZ+1Pnjy5QvXnzp1b5T5DQkJ48skny1U3L8/JkX1n+Haj95eAIe5HWY79mM2xQmUNiq1ZVOqPRdd5Ke++3+wr+qVlefY9+2M23+D9ZWl5+zz0YzaHKtFnFMGcOw3fHzxS4X2dZPNNqveX0YHl3PfEj9kU/gq8vMe678cjRcrKfW7SMouUlWffLLL55nvvJEN5v3I+8mM2hSMub7zf/3i4SFkUrvMGwOmSki3ZfLOnaBKnPP2e/jGb04XuRyhvvPt/PFqpPgG+OVD4Ci7fvufJ5psU7+RcbfwbkX/O3nrzO2b8rmk5exGpOmNMINAECCupjrU2reYiEhERERGRyqqXCQtr7Uc13ad7KqirgXX5yQp3LDnupIUDuBdQwqKGxcTEeBbTLml7XfHaa6+RmVn0y0iA6OjoGo7GN1588UVefPFFf4fhN2fPnqcezswnIhex3NNlj7YS8QVjTD9cU7teTek5PEs9/dwjIiIiIlLf6D/uF1xtjOkNOIEU4CNrbdlzPFyQ4H7+sJhtnwBngUEVDco9p2xpWuS/yM7OLvJlttPpJH/pDKez7Kkj6qOAgADaty99fcWa/tkU7K8ifbds2bLc7YpvVfaclcZaiz3v/v3E0n9CHC2auu5pP3gqi9y8svtpEhlCg9ALf8rP5zn5sRxTHQHENAojuMBaHKezcjlxruypg4ICA2h1ifdNrEfOZJF5vpR43TP6NAwNIjrS+zulfcfPYSg65U9hzRqEEF5gmqTMnDyOlDGdzvmc83y962uahsIvevYgNMQ1Nc6Jczmczip76qDw4ACaN/Q+1h9PZXG+HOemcUQwUWEXprDKdTo5eLJ856blJaGEBF441ozsXNLLMa1TUIChVSPvcRFHM7I5V44prBqEBtGk0LnZfyITZzkyak0bhBJZ4Nxk5+Zx+HT51sVt3TicwAJTPp3MPM+xU+f4etfXAFx5xZUEhwQX2S80KIAWUd7n5vDpLLLLMU3SJeHBXtOL5VnLgRPFJ4MLaxEVSmjQhWM9dz6Po+WY1inAGNo09j436WdzyjWFVXhIIM0bhHqV1ba/EdnZOXz9xj4AWjcIKTG5LrVLdnal1q+uFYwxQ4B/Qf5wLI4Dpc8TKCIiIiIitZ4SFhfMLPT+pDHmt9bav5Zz//wVc1MKb7DW5hlj9gBXGGOCrLVlfztxQblXHv7ss89ITU31KmvSpAnh4eEYYzwLBkvtkpFRkbyY1Aa+Omc5OXnkfxV4NCKP/Ye2sb/ojDGlKjpxUAX2PVj5fX+sbJ9Aapm1ild0cpryiWnmet7x3dZK7b+vkv367dxUcr36I8DuSvZZHceaf95OHP2qxH0reah+OzeHq7D8WJ24DgMagNOQk3HWswC31G7HjhWeMKxOmYUrWbEAmGWtLd+CSCIiIiIiUqsFlF2l3vsSmAC0xzVddztci2NbINkYc1M528lfgbaklSxP4/p5Nyxhu4hcZAreuB51maZQEZG6zbgHnlhn2SOmRHzg58B2a+0UJStEREREROqPi36EhbX27UJFe4GXjTHfAP/GdffWOzUdVwFtytjeAtgK0Lt3bzp06OC1MS0tjby8PIKCgoiKiqqmEKWinE6n5y79Bg0aEBCg3GFt5+tzlpWVS4A7YZEXAPclJhAYqOvA17KystiwYQMAV199NWFhJa7HKrWIzlvdk5WVxT8+3kYehpCgUK67rr+/Q5JyKDwyt47JAL71dxAiIiIiIuJbF33CoiTW2rXGmFSgizEmylpb1nxK+SMrLilhexSuURsVmlvXWlvqBBKmwLzfoaGhhId7z48dEBDgmW9fX4rXTgEBATo3dYwvztnp0xfmgQ9qEEyDBpFVDUvKEBYWVuRvpNR+Om91R577z2JWVp7OWR0RGhpadqXaawvQ2d9BiIiIiIiIb+lb0tLlT+wbUY66+WtXdCq8wRgTiGuqqT0VXL9CROqhPKcTsl2JRAs0v7Q8f2JERGq3E+6Z7XKyy17kXcQHZuO6seg3/g5ERERERER8RyMsSmCMiQSuBM5yIXFRmvXu5+uAPxTaNgCILFBHyiEhIYGf//znLFiwwN+hiPjUyZPZnmyxDYSwUP0pFpG6z+me5y4IQ26uk6Ag3Rcj1cda+5kx5g7gNWPMjcC/gDTAWUL9DTUZn4iIiIiIVM5F/UnSGNPQGFNkKLkxJhz4C64FslcUHhVhjPmZMeZnBcustd8BG4DBxpjhBeqGAM+6377m40Oo11atWsWzzz5bdkUf2LBhAzfeeCMxMTEYY1i9enWROuPGjcMY4/UYNmyYV5388i1btniVZ2dn06RJE4wxOBwOAK699loefvhhr3qvvvoqxhiSk5OL9D1w4MAqH6fUDjlnL/xJCQ1TskJE6oeCa22fzTzvv0DkYhIInANuB5KAtcC6Yh4f+ytAERERERGpmHr5TZkx5h5coxoAurif7zHGJLhff2KtfQ1oAnxrjNkKfAMcBi4Ffgm0Br4CHimmi2/yuypU/gCwCVhtjPkHcAi4HtdIjZettZ9W7cguLtHR0TXW19mzZ+nWrRsTJkzg1ltvLbHesGHDSEpK8rwvbu7nNm3akJSURJ8+fTxlb7/9Ng0aNOD48eOesgEDBrBmzRqvfdetW0ebNm1wOByMGzfOU+5wOBg7dmxlDk1qmfM5eQQ6XXchWwOhoYF+jkhExDfyR1gAZJw9zyUN6/T6CFLLGWNuAv6B6was48AeXAtxi4iIiIhIHVZfR1gMAMa6H93dZf0LlOUnM44Di3ElHkYAU4FfAT8CjwK9rbXp5e3UWvs10Bt4B1ei4re4hqX/F/DfVTqii1BCQgKTJ08GXCMUpk2bRqtWrYiMjKR3796ekQoA6enpjBo1ilatWhEREUGXLl34+9//Xu6+hg8fzqxZs7jllltKrRcaGkqLFi08j8aNGxepM3bsWJYvX05mZqanbOnSpUUSDgMHDiQlJYXDhw97ytavX8+MGTO8jm3Pnj3s27ePwYMHl/t4pPbKyrhw13FgYADGFM57iojUTbbA/yrPntMIC6l2T+L6P/x/A5daa3taaweX9PBzrCIiIiIiUk71MmFhrR1nrTWlPMa565221j5ore1lrW1urQ221kZZa3tba+daazNLaN9Ya4v9ltFa+5219tfW2ibW2jBrbVdr7WJrrS2uvpTPgw8+yObNm1m+fDk7duzg17/+NcOGDSMlxbXWeVZWFj169GDNmjXs3LmTiRMnctddd/H555/7NA6Hw0Hz5s2Ji4vj/vvvJz29aD6rR48exMbG8tZbbwGQlpbGhg0buOuuu7zq9e7dm+DgYNatWwfArl27yMzMJDExkfT0dPbs2QO4Rl2EhYXRt29fnx6L1Dyn05J11v0lnjGa311E6pcCIyzOaUooqX5XAJuttS9ba7XSu4iIiIhIPVEvp4SSsq2Ys5Vzp3NqtM+IqBBuf7xnhfdLS0sjKSmJtLQ0YmJiAJg2bRrvv/8+SUlJzJkzh1atWjFt2jTPPg899BAffPABK1asoFevXj6Jf9iwYdx66620a9eO1NRUHn/8cYYPH87mzZsJDPSe1mfChAksXbqUMWPGkJyczIgRI2jWrJlXncjISLp378769esZPXo0DoeDAQMGEBoaSr9+/XA4HLRr1w6Hw0Hfvn2LnX5K6pbsc+ex7umgwiKCOJXt54BERHypwD+F587lllxPxDfOAvv8HYSIiIiIiPiWEhYXqXOnczh7sm58W/rVV1+Rl5dH587e66PnL2QNkJeXx5w5c1ixYgUHDx4kJyeH7OxsIiIifBbHnXfe6XndpUsXunbtSocOHXA4HFxzzTVedceMGcOMGTPYvXs3ycnJLFq0qNg2BwwYwLvvvgu4Rm8kJCQAMGjQIBwOB+PHj8fhcHDvvff67DjEfzJOXUgShjcMhhN+DEZExNcKjLDIzFLCQqqdA4j3dxAiIiIiIuJbSlhcpCKiQupMnxkZGQQGBrJt27YiIxkaNGgAwNy5c1m4cCELFiygS5cuREZGMnnyZHJyqm8USfv27WnatCk//PBDkYRFkyZNuOGGG0hMTCQrK4vhw4dz5syZIm0MHDiQefPmcfDgQRwOh2eUyKBBg1iyZAmpqans37+fIUOGVNtxSM3IOJuDzXW63gQagkK02LaI1C+mwJ+1zEwlLKTa/Q7YZoyZYa39g7+DERERERER31DC4iJVmamZ/CU+Pp68vDyOHDnCwIEDi62zadMmbr75ZsaMGQOA0+nk+++/54orrqi2uA4cOEB6ejotW7YsdvuECRMYMWIE06dPL5JoyderVy9CQkJYvHixZx0OgJ49e3L06FGWLl1KZGSkz6a1Ev85cyrHM1tKQFigFtsWkXrHBF4YYZGjERZS/foAS4HZxpibgPeBNMBZXGVr7V9rMDYREREREakkJSyk1uvcuTOjR4/m7rvvZt68ecTHx3P06FHWrl1L165duf766+nUqRMrV67k008/pXHjxsyfP5+ffvqp3AmLjIwMfvjhB8/7PXv2sH37dqKjo2nbti0ZGRnMnDmTX/3qV7Ro0YLU1FQeffRROnbsyNChQ4ttc9iwYRw9epSoqKgS+w0PD6dPnz689NJL9O/f35PYCAkJ8SoPDg6uwE9MapvcXCcB513fn1igUaMw/wYkIlINOjSynDnsen1Vi5L/7RPxkWRc/6waXMmL3mXUV8JCRERERKQOUMJC6oSkpCRmzZrF1KlTOXjwIE2bNqVPnz7ccMMNADz55JPs3r2boUOHEhERwcSJExk5ciSnTp0qV/tffPEFgwcP9ryfMmUKAGPHjiU5OZnAwEB27NjBsmXLOHnyJDExMVx33XU8++yzJS6GbYyhadOmZfadkJDAhg0bPOtX5Bs0aBDr1q3zikvqphMns8gfT2FDAggKCvBrPCIi1SGowP8qc3OKvcldxJf+iithISIiIiIi9YgSFlJrORwOz+vg4GBmzpzJzJkzi60bHR3N6tWrK91XQkIC1pb8mTc8PJwPPvigzHZKa6NRo0ae7U7nhS9ynnrqqWKP66mnnuKpp54qs0+p3ay15J7L9UwH1TCq+ASXiEhdV3BKqPM5eX6MRC4G1tpx/o5BRERERER8T7f5iohUo4yz58n/Di8vACIjNb2XiNRPBRfdzlXCQkRERERERCpBCQup99LS0mjQoEGJj7S0NH+HKPVYxulsz+uQCCUrRKT+Op13YYTF9wdP+zESERERERERqas0JZTUezExMWzfvr3U7SLV4fz5PALOu6cBA5o00nRQIlJ/nXVCiPv1j+nn/BqL1D/GmFustW/7oJ1brbWrfBGTiIiIiIj4nhIWUu8FBQXRsWNHf4chF6ETJ7M9i20TEkBgoAa1iUj9FRx0YYRF3nktui0+95Yx5jPgaWtt2QuLFWCMMcAI4PfAL4DA0vcQERERERF/0bdnIiLVwFpLQM6FL+yiNLpCROq54AK3wTjP25IrilTOw0Ac8J4xJs0YM8sYM9gYE1lcZWNMpDFmiDHmOSANeAfo5G5HRERERERqKY2wEBGpBuez83DmuhIWwaGBRIRr/QoRqd+Cgi257tf5f/9EfMVau9AY8zfgaWAs8DjwGOA0xhwA0oHTQBTQBGiN6+YsA5wFFgMzrbXHaj56EREREREpLyUsRESqQeaZ857X4Q1DSqkpIlI/hARBlvu1VcJCqoE72fCgMeYJYAIwEugNXOZ+FJQDbAJWA0nW2lM1F6mIiIiIiFSWEhYiIj7mzHOSfc6VsAgIMIRG6E+tiNR/ocEFpoHK1ZRQUn3cyYcXgReNMWHAlcClwCXASeAI8LW1NqvERkREREREpFbSt2giIj526nSO53VoZDCutT5FROq3oIL/q8xTwkJqhjspsc3fcYiIiIiIiG9o0W0RER/LOnthOihC9GdWRC4OgQFwHleiIsCphIWIiIiIiIhUnL5Jk4uOMYbVq1f7Owypp3LznAS47yx2Ag0itdi2iFw8ct0DyoyWsBAREREREZFKUMJCpBSxsbEYY7wef/jDHzzbHQ4HxhgaN25MVpb3NMlbt2717AOQkZFBcHAwy5cv96o3atQojDHs3bu3SN+/+93vqufApNqcPp2DZwKokABNByUiF5cAV8I2PEB/+0RERERERKTilLCQeuP8+fNlV6qEZ555hkOHDnkeDz30UJE6DRs25O233/Yqe/3112nbtq3nfYMGDfjFL36Bw+Hwqrd+/XratGnjVb5nzx727dvHkCFDfHosUv3yF9sGCNfoChG5yDQMcyUsIgMD/RyJiIiIiIiI1EVKWEitlZCQwH//93/z6KOPEh0dTYsWLXj66ac9240xvPLKK9x0001ERkYye/ZsAP73f/+X7t27ExYWRvv27Zk5cya5ubmVjqNhw4a0aNHC84iMjCxSZ+zYsSxdutTzPjMzk+XLlzN27FiveoMHD/ZKTHz33XdkZWVx//33e5U7HA5CQ0Pp27dvpeOWmpfndGJyL0wH1bBBiH8DEhGpYcadpzifk+ffQERERERERKROCqrOxo0xjYChwDVAd+BSoDFwAvgJ2AZ8DHxgrT1ZnbGItzcfm8zZkydqtM/IRo0Z89yCCu2zbNkypkyZwmeffcbmzZsZN24c/fv359prrwXg6aef5g9/+AMLFiwgKCiIjRs3cvfdd7No0SIGDhxIamoqEydOBOCpp56qVNx/+MMfePbZZ2nbti2/+c1vePjhhwkK8v7Vueuuu5g7dy5paWm0bduWt956i9jYWLp37+5Vb/DgwTz33HMcOnSIyMhINm7cSP/+/RkyZAhLlizx1Fu3bh19+/YlLCysUjGLf5w5k+PJAtsgQ4CmRBGRi4wJdCdtcy3OPCcBgbo3RkRERERERMqvWhIWxpguwG+BUUAYUPhbuwigFa4kxj1AljHmf4CXrLU7qiMm8Xb25Akyjqf7O4wyde3a1ZNo6NSpEy+//DJr1671JCx+85vfMH78eE/9CRMmMGPGDM/Ihvbt2/Pss8/y6KOPViph8d///d90796d6OhoPv30Ux577DEOHTrE/Pnzveo1b96c4cOHk5yczO9//3uWLl3KhAkTirTXv39/QkJCcDgcXH/99WzatIlBgwbRo0cPjh07xp49e2jXrh3r168nMTGxwvGKf2WezSV/EpQwTQclIhchUyA/kXveSYgSFiIiIiIiIlIBPk1YGGOaA88BY3FNN3UMWAN8CnwNpAOngUuAJsBVQD/gaiARGG+MSQYet9Ye8WVs4i2yUeM60WfXrl293rds2ZIjRy5cGr/4xS+8tn/55Zds2rTJMz0UQF5eHllZWZw7d46IiIgK9T9lyhSvWEJCQpg0aRLPPfccoaGhXnUnTJjAb3/7W8aMGcPmzZv55z//ycaNG73qRERE0LNnT9avX+9JWMyYMYOgoCD69euHw+HAWktaWhqDBw+uUKziX05rMeedAFggqqGmgxKRi8/hbNdQWoAjJzJp3bKhX+OR+ssY83vgjLX2RX/HIiIiIiIivuPrERYpQEPg/wGvA2ustaUtHvAhMN8YEwTcCExwP37Fhc+7Ug0qOjWTvwQHe9+lbozB6XR63hdeTyIjI4OZM2dy6623FmnLF9Mr9e7dm9zcXPbu3UtcXJzXtuHDhzNx4kQSExO58cYbadKkSbFtDB48mH/84x988803ZGVleaaNGjRoEOvWrcPpdBIREUHv3r2rHK/UnIyMC9NBOYMMgbqrWEQuQtkFXmecPe+3OOSi8HtcnzmUsBARERERqUd8nbD4HJhhrd1WkZ3cSY23gbeNMT2BOT6OSy4S3bt357vvvqNjx47V0v727dsJCAigefPmRbYFBQVx991388c//pF//etfJbYxePBgZs2axcqVK+nduzeBga5JhK6++mr+/Oc/Y631TB0ldYc5bz2vQyM0HZSIXJxswIW/hecyS7tnRaTKjgCZ/g5CRERERER8y6cJC2vttT5oYytQ5Xbk4vT73/+eG264gbZt23LbbbcREBDAl19+yc6dO5k1a1aF2tq8eTOfffYZgwcPpmHDhmzevJmHH36YMWPG0Lhx8QOAnn32WR555JESR1cA9OvXj9DQUP7yl794TTnVq1cvjhw5wv/+7//y2GOPVShW8S9rLdnnLnwx1+iS0FJqi4jUXwXXsDh3TiMspFptBHr5OwgREREREfEtzVki9crQoUP5f//v//Hhhx/Ss2dP+vTpw4svvshll11W4bZCQ0NZvnw5gwYN4sorr2T27Nk8/PDD/PnPfy5xn5CQEJo2bYoxhdeZvyAsLIw+ffpw5swZBgwY4NVffrnWr6hbcnOcOPNcU5WFhAUREFDy+RcRqdcCL4ywyNQIC6lezwAxxphZprT/eImIiIiISJ3i60W3xwPrrLV7fdmuXJwcDkeRstWrV3teW2uLbAdX0mLo0KEltlvSfoV1796dLVu2lFonISGh1PZGjhxZ7PaPP/6Y06dPFylft25duWKT2iW7wF3EoRG+nmlPRKTuMAUTFllKWEi16gH8FXgM+JUxZjWwlxKmibLW/rXGIhMRERERkUrz9TdrrwPWGJMGrMt/WGsP+LgfEZFawVrL2Yzz5N/aGaKEhYhcxApOCZWthIVUr2TAAgaIAx4to74SFiIiIiIidYCvv1nbBVwBXAaMA8YCGGN2453AOOzjfkUqbM6cOcyZU/z67gMHDix14WyRfJlZuRin647ivABDYKBm2hORi1dAgf9ZZmfl+S8QuRj8FVfCQkRERERE6hFfL7p9lTGmKZAADHY/Xw50cD8SAYwx33MhgeGw1h71ZRwi5XHfffdx++23F7stPDy8hqORuirjTI7ndVBYoB8jERHxv4ACU0LlZGuEhVQfa+04f8cgIiIiIiK+5/O5S6y1x4CV7gfGmOZ4JzDiCjwmuevsAj621v7WFzEYY8YAA3HNbdsFCAHGW2uTC9ULBm5yP3oBbXDdqbUL1zDzP1try317oDFmL67RJcVZb61NqMBhSDWLjo4mOjra32FIHZeXlUd+mqJhVIhfYxER8bfAAnnbnGyNsBAREREREZGKqfbJ1q21R4AV7gfGmEu5kLwYDHQCrsQ1lZRPEhbALFyJg2PAIUpOInTAlVjJANYC7wCXADcCi4ERxpibbHlXaXY5BSwopnxvBdoQkTogKyuX/JuJ8wyEhWr9ChG5uEVHOMlPU7S9RKMVpeYYYzoCzYB0a+33/o5HREREREQqp8a/XbPW/mSM+RTXqIcwoAng69vc7wFSrLX7jDEzgOdKqHcG+C9gmbX2bH6hMWYq4ABuAG4D/lmBvk9aa5+uTNAiUrecLjAdVKCmgxIRoXG4624RgOiwYL/GIvWfMSYQeAx4EFeyAmAZMMG9fTSu/+vfa6392i9BioiIiIhIhdRIwsIY05oLoyoSgNj8TUA6sBpY76v+rLUflbPeQVwjKQqXnzXGzAf+BxhExRIWInKRyMvK9UwH1aChpoMSETEF1rDIzXH6MRKp79zJiv8HXAfkAt/gGrFd0CbgDeBWQAkLEREREZE6oFoSFsaYGLynfWqXvwk4AryFK0Gx3lq7szpi8IHz7ueKrhgZaowZB8QAp4Gt1trPKhuEO9lTmhb5L7Kzs8nMzPTa6HQ6yZ/RyunUFwe1RcFzofNSNxQ+Zznn8wh0F7mmgwqs1Lm01uJ0Oov87opvZGVlFftaajedt7on/zyZAoPNss7l6G9bLZedne3vEKriPmAo8DFwt7X2R2OM1z/E1tq9xphUXEmNZ/0Qo4iIiIiIVJBPExbGmD/jSlJ0wJWcANcaEv/gQoLiW1/2WY0muJ8/rOB+LYCkggXGmK3AKGttaiXi2F/eip999hmpqd5dNGnShPDwcIwxnD59uhLdS3XLyMjwdwhSQRkZGZzLNAS5/8w5A22lfr9yc3PJzMwkMzOTb7+tK38a664NGzb4OwSpBJ23OibgwgiL1D0HOPvhD34MRspy7NixsivVXmOB48CvrbUnSqn3DdCtZkISEREREZGqCvBxe/fgSlb8B7gX6GytbWWt/Y21dkldSVYYYyYCw4GPrbXvVWDXJOAa4FIgEojHNQy9J7DWGNPQ17HWZzfccAOPPfaYv8MQKZY9f+F1cLAtuaKIyEUko8D97QfPmJIrilTdz4DPy0hWAJwCmtdAPCIiIiIi4gPVMSWUAboDswGHMSZ/ZMWuaujL54wxNwAvA/uAMRXZ11o7s1DRduBuYwzAXbiSOPMrGFKbMra3ALYC9O7dmw4dOnhtTEtLIy8vj6CgIKKioirYtX+tXr2a4OBgGjas/jzPhg0beOGFF/jPf/7DoUOHeOuttxg5cqRXHWstTz/9NK+99honT56kf//+/OlPf6JTp06eOoGBrrkwNm3aRJ8+fTzl2dnZtG7dmuPHj7N27Vquvvpq+vbty1VXXcVf/vIXAgJcucNXX32V//qv/+L1119n3Lhxnv3Hjx/P7t27Wb/eZ0u9SAU5nU7PaJjIiEhyTrmmOXEaaNakIe7f8wo5evQo4eHhNGjQgB49evg0XnHJysry3KF/9dVXExYW5ueIpDx03uqe/HMWEmw55y4LCQzhuusG+jUuKV3hkbl1TCBQnjmtWpaznoiIiIiI1AK+Tli0wXtx7dvdD2uMOQZsAByAw1pb6xa+M8aMAFYCPwFDrLWHfNT0ElwJi/5UMGFhrT1Q2vaCX5KGhoYSHh7utT0gIMAzr37+l+J1RdOmTWusr8zMTH7+85+TmJjIrbfeSkBAQJGf1/PPP89LL73EsmXLaNeuHb/73e8YPnw4u3bt8voyrU2bNixbtox+/fp5yv73f/+XBg0acPz4cU/bAwYMYM2aNV59rV+/njZt2rBhwwYmTJjg2X/9+vWMHTu2zp3D+io3+8ItxJENQjyJqsowxhAQEFDkd1d8LywsTD/nOkjnrW4JDb7w2jjRuavlQkND/R1CVewDupZWwRgTDFwFpNRIRCIiIiIiUmU+/fbTWnvQWvumtfYea21HoC1wN5AMZAC/Al4CdhhjjhhjVhpjHjTGdPFlHJVhjLkeWAUcAwZba3f7sPn8CYIjfdhmvZeQkMDkyZMB1wiFadOm0apVKyIjI+nduzcOh8NTNz09nVGjRtGqVSsiIiLo0qULf//738vd1/Dhw5k1axa33HJLsduttSxYsIAnn3ySm2++ma5du/LXv/6VH3/8kdWrV3vVHTt2LMuXL/daaHTp0qWMHTvWq97AgQNJSUnh8OHDnrL169czY8YMr2Pbs2cP+/btY/DgweU+Hqle2Zl5ntehEdUxUE1EpG4KDAAnrmnyTJ6my5Nq9T4Q657KtSQPAc2ANb7s2BgzxhizxBjzhTEm2xhjjTHjSqj7tHt7SY/YEvYbaoxZb4w5Y4w5bYxZZ4y5xpfHISIiIiJSG1XrN23u0QFvuh8YYwqOwBgE3Arc4t6Wbq31y/yy7mTFW7gW7htsrfX1CpG93c97fdxupf300v/hPJNTo30GNAzh0ofiK7Xvgw8+yK5du1i+fDkxMTG8/fbbDBs2jK+++opOnTqRlZVFjx49mD59OlFRUaxZs4a77rqLDh060KtXryrHvmfPHg4fPswvf/lLT9kll1xC79692bx5M3feeaenvEePHsTGxvLWW28xZswY0tLS2LBhA3/605949tlnPfV69+5NcHAw69atY/To0ezatYvMzEwSExOZPn06e/bsoV27dqxbt46wsDD69u1b5eOQqrMWzme5EhYBAYbg0MqPrhARqW8CAiDXQIhVwkKq3VxgHLDYGHMFsMJdHmmM6Y5rlPcUXDcOvezjvmcBl7nbPuR+XZZlFP9Z4GThAmPMGFzr4B3FdeMXwB3Av40xt1trV1Y4YhERERGROqJGbw221u4H/gr81RjTCtfoi6lANNCkJmPJZ4wZjitZcQJXsqLUIePuoeUdgPPW2tQC5T8D0qy15wrV/xnwvPvt//gy9qpwnskh73TNJiwqKy0tjaSkJNLS0oiJiQFg2rRpvP/++yQlJTFnzhxatWrFtGnTPPs89NBDfPDBB6xYscInCYv8URCXXnqpV/mll17qNUIi34QJE1i6dCljxowhOTmZESNG0KxZM686kZGRdO/enfXr1zN69GgcDgcDBgwgNDSUfv364XA4aNeuHQ6Hg759+9b1aRvqjewcCLCuL+FCIoIqtXaFiEh9lmcACwHOMquKVJq19pAxZiSuEdL/jWs0hQVucz8MrmTAr6y1x0poprLuAVKstfuMMTOA58qxT7K11lFWJWNMY1wj0o8B3fOnhzXGPA/8H/CKMeYDa+2ZSkcvIiIiIlKL1VjCwhhzKa6RFYPdj475m9zPPrsNzxhzDzDA/TZ/uql7jDEJ7tefWGtfcycT3gZCca2tMaqYLx/3WmuTC7xvBXyDa97c2ALldwJTjDEb3NvOAp2BEUAw8Jy1dkMVD81nAhqG1Jk+v/rqK/Ly8ujcubNXeXZ2Nk2auPJceXl5zJkzhxUrVnDw4EFycnLIzs4mIiKiynFXxpgxY5gxYwa7d+8mOTmZRYsWFVtvwIABvPvuuwA4HA4SEhIAGDRoEA6Hg/Hjx+NwOLj33ntrKnQpQ16O8cylZ4O1poiISGF57v9KBTg1wkKql7V2gzHmSuBhXP/nbo9rytv9wL+Audbag9XQ70e+brOAXwONgKcKrmVnrT1gjHkZeBrXCPW/VmMMIiIiIiJ+U20JC2NMU7wTFHH5mwpU+xZY5344fNj9AGBsobL+7ke+14AWuJIV4Eo4FGc9F4Zil2YdcDkQDwwEInDdGfUesNha+2F5Aq8plZ2ayR8yMjIIDAxk27ZtRRY3btCgAQBz585l4cKFLFiwgC5duhAZGcnkyZPJyfHNKJIWLVoA8NNPP9GyZUtP+U8//cTPf/7zIvWbNGnCDTfcQGJiIllZWQwfPpwzZ4reCDdw4EDmzZvHwYMHcTgcnlEigwYNYsmSJaSmprJ//36GDBnik+OQqnFaCHS6/oQ5gYYNaj7xJyJS2zkDDeRBkPIVUgOstT8BM9yP2uxqY0xvXP+FSAE+stZmFFMvwf1c3GeHD3AlLAZRgYSFMaZ1GVVa5L/IzMz0WodNROoX/X5LQboeJJ+uBSmoItdDdV07Pk1YGGNu5UKS4oqCm9zPP1AgQWGtLTqXjg9Ya8fhmtO2rHoOvBMo5Wl7b3H7WGvX40puiI/Fx8eTl5fHkSNHGDhwYLF1Nm3axM0338yYMWMAcDqdfP/991xxxRXF1q+odu3a0aJFC9auXetJUJw+fZrPPvuM+++/v9h9JkyYwIgRI5g+fXqRREu+Xr16ERISwuLFiz3rcAD07NmTo0ePsnTpUiIjI30yrZVUXU4OF0ZXBBkCAjQdlIhIYdb9hzLIuv49DgjQaDTxPWPM1cBha+33ZdTrBLSsBSOdZxZ6f9IY81trbeHEQyf3c3HT1KYUqlNe+8tbccOGDTRt2rSCzYvkq9EZp6USPvywpu6j1LVQF+h6kHw1dy2ArofaryLXw7Fjvp551cXXV8lKXFM75X+Lt5cLCYp11TEkW+q/zp07M3r0aO6++27mzZtHfHw8R48eZe3atXTt2pXrr7+eTp06sXLlSj799FMaN27M/Pnz+emnn8qdsMjIyOCHHy6stb5nzx62b99OdHQ0bdu2xRjD5MmTmTVrFp06daJdu3b87ne/IyYmhpEjRxbb5rBhwzh69ChRUVEl9hseHk6fPn146aWX6N+/vyexERIS4lUeHBxc/h+YVJu88xemgwqN0DkRESmODXQtYhGAITvHSXiYEhZSLRxAEpBYRr1HgQlA8XePVL8v3f07cC3Q3QK4AXgGSDbGnLTWvlOg/iXu51PFtHW6UB0RERERkXrH1wmLg8DHXEhQ7PNx+3KRSkpKYtasWUydOpWDBw/StGlT+vTpww033ADAk08+ye7duxk6dCgRERFMnDiRkSNHcupUcZ/1ivriiy8YPHiw5/2UKVMAGDt2LMnJyQA8+uijnD17lokTJ3Ly5EkGDBjA+++/T1hYWLFtGmPKdYdaQkICGzZs8KxfkW/QoEGsW7fOKy7xH2stge6J2S0QFaXpoEREitOhRQPSU93TIOZq5W2pVrV+qKO19u1CRXuBl40x3wD/BmYB7xTez8falLG9BbAV4Oqrr6Z167JmkBIpweaP/R2BlOG6666rmY50LdQJuh4kX41dC6DroQ6oyPVw4MCBsitVgk8TFtbasv4zLFJuDofD8zo4OJiZM2cyc2bh0fQu0dHRrF69utJ9JSQkYG3pk20bY3jmmWd45plnSqxTWhuNGjXybHc6L3yB89RTTxV7XE899RRPPfVUWaFLDTmTcd4zusIZaAgK1B3DIiLFaRARTLr7tTNXC1mI3zUGsvwdRGHW2rXGmFSgizEmylqbP3oi/26bS8Dzq5QvqlCd8vZV6idJYy7kfcLDwwkPD69I8yJSh+j3WwrS9SD5dC1IQRW5Hqrr2tHEYSIi5ZB59rxnLomQCP3pFBEpSVDIhYRu7vk8P0Yi9Y0xpm2hogbFlOULAq4ErgNSqzWwyjsGdAQiuDDdUwrwC1zrVBROWJS2voWIiIiISL3g60W3Y6qyv7X2R1/FIpIvLS2t1LUsdu3aRdu2JX3WFYG8PCfmvOsuYU0HJSJSusDgAgmLHE0JJT61F9c/xfl+5X6UxgBvVldAlWWMicSVUDmLK3GRbz0wCleiZUuh3YYWqCMiIiIiUi/5+jbhA3h/iKgIi0Z8SDWIiYlh+/btpW4XKc2pMzme6aByAyyBAbV+ymwREb85lZPref3T8UyatGrgx2iknknjwmeNtsA5vL/sLygH12eTt4BXqj+0oowxDYGW1trvC5WHA38BGgJJ1trcAptXAM8DDxljluZP52SMaQ08iOt4C6+LISIiIiJSb1RXgqAy3+bpG0CpFkFBQXTs2NHfYUgdFlDgDuHAEM3HLiJSmn2nswhzv95/7CxX0Myv8Uj9Ya2NzX9tjHEC/7TWTqjpOIwx9wAD3G+7uJ/vMcYkuF9/Yq19DWgCfGuM2Qp8AxwGLgV+CbQGvgIeKdi2tfaEMeZB4A3gP8aYf7g33eFu7w5r7ZnqOC4RERERkdqguhIWnwNLgb/rP9S1Q1kLSotI8Zx5TnKy3HOwGwj14WxQ+b+XBRe7FBGp64IKTAmVlZVbSk2RKhkP/OCnvgcAYwuV9Xc/8r0GHAcWA72AEbgWAM/ElbxYBLxsrc0s3Li19k1jzDHgcVzHaYFtwCxr7Ue+PRQRERERkdrF1wmLO4AJwLVAT2C+MeYt4HVr7QYf9yXlEBwcTG5uLnl5eZw8eZJGjRr5OySROiU7MxfciYWAYIuvcgsnT54kL8+VCAkK0mx4IlJ/BIcEeObsyc7UottSPay1y/zY9zhgXDnqncY1jVNl+ngfeL8y+4qIiIiI1GU+/ZbMWvtP4J/uOVbH4/qP/F3AGGPMbiAJWGatPejLfqVkkZGRZGa6btw6dOgQR44c0d3ctURuruuu06NHj/o5EilNbk4ezjz3SIhAMAFVP2fWWk+yAly/pyIi9UVQSCDn3a+zszXCQqqXMaYDMAnoBzQD/tda+6h7W2+gG/APa+0p/0UpIiIiIiLlVS239boXh3sWeNYYMwTXqItbgFnATGPMv3FNGfW/1trzJbckVdW0aVPy8vI4ceIEgNeXpOI/1lpPIik8PFxJpFoqN9dJ5qkcAEygISDE9fvjy3PWuHFjmjZt6pO2RERqg5DQCwmLnGz9v0OqjzFmHK4FtUPdRRYo+I9qhHt7DpBck7GJiIiIiEjlVPs8JNbaj4GPjTFRwGhcyYthwFBgN9CpumO4mBljuPTSSwkMDOTs2bPk5uZqPYtawOl0ehIWDRo0ICAgoIw9xB9+PHQae8r1tZttEEh4eDZQ9XNmjCEoKIjIyEiaNm2qhJWI1CuhoYGcdb8+r4SFVBNjTB/gL8A54HfAeuCzQtXWA6eAG1HCQkRERESkTqixidPdc7i+Yoz5AHgR1weHS2qq/4uZMYZmzZrRrFkzf4cibpmZmXz77bcA9OjRg/DwcD9HJMX555/WcUmWK8HX+77OHNy3DdA5ExEpTUhooOf1+RwlLKTaPAoY4Hpr7SdAkRsArLVOY8x24Ioaj05ERERERCqlRm7rNsaEGWPuMsasA77Hlaw4DfytJvoXEamoHbuOepIVp8IMV8Y18XNEIiJ1Q1jYhYRFbo7Tj5FIPdcf+Dw/WVGKw0DLGohHRERERER8oFpHWLgXupsA3AE0dBdvwLV+xUprbWZ19i8iUlmOf+8l/yu36Csa+TMUEZE6xSthcV4jLKTaNALSylEvHAip3lBERERERMRXfJ6wMMY0A+4GxgOX4xqqfQB4CUiy1u72dZ8iIr7kdDo598MZGgIWy7DhHfwdkohInREZEex5HWa0RpNUm3TgsnLU64hrlIWIiIiIiNQBPk1YGGPeBka42z0PvIVrNMUHVis9i0gd8enWQzR0rbXNqYaBxLaJ8iySLiIipWt3aQO2uV/HNW3g11ikXtsC3GiMudJa+3VxFYwx/YErgTdrNDIREREREak0X4+wuBmwwBe4PhikA9HAqMKL4BXHWvs/Po5HRKTCtqzbT/6S2q1/3tSvsYiI1DVBwRdGVeRq0W2pPn8CRgJvGWPutNZuL7jRGHM5rhunLLC4xqMTEREREZFKqa41LH7hflSUEhYi4lfnc53YtLOAIRfLCE0HJSJSIUEhBRIW57XotlQPa+1aY8x8YAqwzRiTiis5MdQYswO4AggA/mit3eLHUEVEREREpAJ8nbDYgOuDgohIneTYsJ8Ip2tE2NkmwTSLDi9jDxERKcgrYaERFlKNrLXTjDHfAU/jWqsCoKX7cQyYaa39k5/CExERERGRSvBpwsJam+DL9kREalrA/rOe11f1jfFjJCIidVNAYADWgLGw78jZsncQqQJr7V+MMa8B8UB7XKMq9gNbrbW5fg1OREREREQqrLqmhBIRqXNyc/JI/b+jAISEBTJiaDs/RyQiUjflYAnFkJWl74ul+llrLfAf90NEREREROqwgLKriIhcHPZ+lc75LNf0Je27NycoONDPEYmI1E15rpn1CNCMUCIiIiIiIlIBPh1hYYyJsdb+WFvaERGpiO8/P+x53bnXpTXWr7UW59nzWgGoGjizzhOU4/rm1JlxnrxcJaHqAp23uif/nDkDXX/InAEGnBBo9YdNqpcxpjWQAMQAYSVUs9baZ2ssKBERERERqTRfTwmVYox5CXjeWnuiojsbY6KBGcB/AZE+jk1EpERHjp0jdccxAoCwhsG06ty42vu01pL1zXFOvb+H3COZ1d7fxaobrnN5YtuXfo5EKkLnre7pRmOcAZbsy07gdI/hDXT6Nyapv4wxgcAiYCIXRo2bQtWsu8wCSliIiIiIiNQBvk5YfAg8CjxkjHkbWAZssNZml7SDMSYU111R44Cbcd0ZtdrHcYmIlOpf76cS4L4R+ETTYAICCn/n4Vs5BzM4tWY32btPVWs/IiI1KcBpyP6/o9hA13fEwYDT6SQgQLOQis89CdwP5AL/D0gBzvg1IhERERERqTKfJiystbcYY34JvAj8BhgFnDfGbAe+AdKB00AU0AS4AugGBOO6+2knMMVa+5Ev4xIRKcuB7ek0cr/uO7hNtfWTeyqb0x/s5dz/HfGaAiq4VQMCLwmttn4vVnnOPI78dASA5pc2JzBAUwvVBTpvdU+eM4/z354EwGbleRIWBsO5rDwaRChhIT43DsgEBlprtdi2iIiIiEg94esRFriTDV2MMdcCDwLXAb3cD7gwNDtfNvAu8LISFSLiD3vSTnFJRh5gOBMMfX/R0ud9OLNzObP+ABkbD2LPX5gjJbBJGJcMa0f4VU0wpnpHdVyMMjMz2fLhbgA6XteP8PBwP0ck5aHzVvdkZmZy5NmtBDoNNjsPgi78Pcs4m0ODiGA/Rif1VAvAoWSFiIiIiEj94vOERT5r7b+Bf7unfOoPxAOXApcAJ4EjwH+AT0ubMkpEpLp98K/dGHceNaJTlE+nLrF5lrPbDnP6w304M857yk14EFFD2tKgb0tMkO48FpG6Ly/QuhMWTkzghYTF2XPnS9lLpNJ+RFNAiYiIiIjUO9WWsMjnTkZ87H6IiNQ6x785wSXu10Oua+ezdrO+O87J9/aQ+9O5C4WBhgZ9Y4ga0oYA3XEsIvWIM9DCebDZeQQUSMSeU8JCqsfbwBhjTKhufhIRERERqT+qPWEhIlKbbf/6KJdkuV6fCjdc9bMmVW7TWsuJt1I498VPXuXhVzXhkmHtCGqq6W1EpP7JC3ItzGOz82h+aTiZP+UAEGo0ikyqxTPADcByY8y91tpj/g5IRERERESqrt4mLIwxY4CBQA+gCxACjLfWJpdQPwp4GvgVrjlxDwH/BGZaazMq2PdQ4HGgO641O7YBs6y1aytzLCJSfdb/e6/nD2GTKxr7pM3s3ae8khUhbRpyyfXtCI29pJS9RETqtrxA63kd17Ih2787DUDD4Hr7303xI2vtaWNMX8ABpBpjtgFpgLP46jaxJuMTEREREZHKqc+fIGcBlwHHcCUfLiupojEmElgP/Bz4EPg7rjU3pgGDjDFXW2uzytOpO1HyBnAUSHYX34FrPY/brbUrK3MwIuJ7TqeTzB/O0BBwYhk2vL1P2j3j2O95fcmIdjQY2EoLaotIvVcwYREccOFvXm5Onj/CkXrOvU5eMnAVYICEUqpbQAkLEREREZE6oD4nLO4BUqy1+4wxM4DnSqn7KK5kxfPW2hn5hcaYPwDTgYfL2D+/fmPgJVxJku7W2gPu8ueB/wNeMcZ8YK3VAoEitcC2Lw7TMNf1+nRUIJe1jqpymzkHzpCdchKAwOgwGvRXskJELg5KWEgNmwncCJzAdbNQClChUdEiIiIiIlL71NuEhbX2o/LUM65vEu/B9QHn2UKbnwX+y729zIQF8GugEfBUfrLCHcsBY8zLuKacugX4a3liE5HqdfLrE57XXQe28kmbZ9Z7fvVpOKg1JlDJChG5OBRMWIQUSFhkZ+X6Ixyp/0YBJ4GfW2v3l1FXRERERETqiHqbsKiATkAM8IG19mzBDdbas8aYTcBQY0ybcnwYSnA/f1jMtg9wJSwGUYGEhTGmdRlVWuS/yM7OJjMzs7xNix9lZWUV+1pqTva5XFL/cwSA0IggEgbFlPr7U55zlpeeReZXrjU/TYNgAq6I0u+kn+l3rW7Seat7srKycBZIWKQcOul5/em3R7isa6OaD0rKlJ2d7e8QqqI58KGSFSIiIiIi9YsSFq6EBbiGkRcnBRjqrlfWB6LS2kopVKe8yv0h7LPPPiM1NbWCzYu/bdiwwd8hXJQy9gWTdz4MgOBm5/h4XbkGZQEln7O2qRH/n737Do+jOvs+/j1btOqS5d67MZhiMGDAYGwMpvcWAiGQQAjpkOSBJ6SRSvKGJE8aaQQSSui9GgzYYMAFF4wB29i4V8lWX2097x+zWq2adyXtaiX797kuXdqZOWfmXma8aOeec2764+xzc1kVS15LfZ+Sefq31jvpvPUeAz258de1e/bQ+Gfm5k3bmDNnQ3aCkn0qLy/Pdghd0V6BbelGo259PtshSAo23HF2tkMQERERSZkrkzs3xkw3xkzL5DHSoCT2u6qd7dUt2nV2Xx3Zj4hkkLVQs9kbXy4YHuryPr0BQ9/dPgDC7ii7B+qpcBE5sCROCeVLmA0vqhIWkhkPAjOMMaXZDkRERERERNIn0yMs3oj9nJLh4+zPhifZPghYDDB16lTGjh2b+YikyxoaGuJPDU+fPp3c3NwkPSSdFi3bxdYaZzRS4eA8zr74+KR9kp2zujmbabA7ASg6fginzjo2zVFLZ+jfWu+k89b7NDQ0sPKJd+PLQ/v3Z9cWp05QaUkZs2cfnq3QZB96+cjcX+JMx/qCMeaL1tqPshyPiIiIiIikQaYTFnuBbRk+Rlc1joZob+RDcYt2qe6rogv7iUss3t0Wp2a4w+fzkZeX15HdSw+Qm5ur89bNFr6+lYLY6+iYwg7/9295zqL1Ifa8t9tZ8LgonTESd15OmqKVdNG/td5J5633SBxhked2x1/bCDqHPZTP58t2CF3xEuAFjgNWGmM20f40UdZaO6s7gxMRERERkc7JdMJiOR2v2dDdktWWSFbjouW+jo71aZmw6Mh+RCRDamqDeLb4AUPIWC44r+sfUbXvbMcGnfsjBccMxF2oZIWIHHgSExaJn4KRkMoMSEbMSHjtAkbFftpi21kvIiIiIiI9TKYTFn8AnjTGnG2t7akV2dbijAKZZowpsNbWNW4wxhQA04BPrbWpFL+eB1wBzAbebbHt9IQ2IpIlTz/7CT7rjEwKDM6lT0nXppqJBiPULtjqLLig6KRhXQ1RRKRXapawSLg9HAkqYSEZMTPbAYiIiIiISPplOmGxDPgTTtLiXuBxYAPgb6uxtXZThuNp65jWGPNP4IfAD4BbEzb/ACgEfpHYxxiTD4wA6lvE/AjwK+Drxph/NU7nZIwZBnwNKAeezNR7EZHkNi7ZRWns9dRZI7u8v7rFO4jWhwHIP2IAnjLNtS8iB6aopylL4bVNr21YCQtJP2utHgISEREREdkPZTph8WnstwG+GPtpj01nPMaY64ATY4uHxX5fZ4yZEXv9lrX2n7HXvwbOB24xxhwJLAWOwhkpsRj4fYvdHwu8jjNaonF/WGv3GmO+BtwHLDXGPBzbdDnQF7jcWluThrcnIp2w4sPdlNY5N86qc2D68UO6tD8bjlI7f2t8uehkja4QkQNX4ggLd6TpdTSs2XhEREREREQkNZlOWGwme3PGngh8vsW6abGfRv8EsNbWGWNOBn4MXIwzxHw7cCdwu7W2zREhbbHW3m+MKQe+B1yL8/7fA35mrX21c29FRNJh7vPraSwv2ufQPrhcri7tr375biJVAQByDy7DO6ggSQ8Rkf1Xs4RFYpJCIyxEREREREQkRRlNWFhrR2Vy/0mOfQ1wTQfaVwE3xX6StX0DZ9RIe9tfAl5K9dgiknn+hjDRT2sBQwTLRedP6NL+bNRSM6+ptE3RjOFdjFBEpJczEHFZ3FGDK6HQ9oiSvCwGJfs7Y8zRwCXAQUAxbf+Nbq21s7o1MBERERER6ZRMj7AQEekRnn95HXlR5x5Gbb8cBg/s2miIhg8rCO92Bl/ljC7GN7K4yzGKiPR2UbeTsLDBCC6PIRq25Jh2n/EQ6RJjzG9wHjZqvMgszRMWjcual0xEREREpJfo2nwoIiK9RPWqyvjrI6YP7dK+rLVUz9sSXy7W6AoREaBpWqhoQxhvjhuAcFBTQkn6GWMuBW4GtgI3AHNim04Hvga8g5OsuAM4JRsxioiIiIhIx3VLwsIYc5Ix5hFjzBZjTMAYc3fCttOMMb8wxgzqjlhE5MBTs6eBhs11AOQUeznjlFFd2l94Qw2hzTUAeAcX4JvQp6shiojsFxoTFjYQweN1HnQPByPZDEn2X18CIsAsa+0/cOrPYa19xVr7F2vtNODnOEmNquyFKSIiIiIiHZHxhIUx5vvAGzhzyw4BvDQfql0F3AJclOlYROTA9PE727GxySAmnzwMt6drH33+t3bEXxfNGI7RdCciIgBEPLEPWwvEPhvr/eHsBST7syOBhdbatfto8yOcRMb3uyckERERERHpqowmLIwxZwI/wRmqfRkwsGUba+0iYDdwTiZjEZEDk41aPlqw3VkwMPH4wV3aX36tm9D6agDcfXPJO7RfV0MUEdlvNI6wANjrDwIQbFDCQjKiCNiUsBwEMMYUNq6w1kaBhcC07g1NREREREQ6K9NFt78JBIAzrbWrgPaeRF4BjM9wLCJyAFr47jZq9jQAMOKQMorKcru0v0Fb8+Kvi6YPw7g1ukJEpFFiwsLjdmodezBEwtEuj24TaWE3UJqwXB77PQr4IGF9AVDcPSGJiIiIiEhXZfqb4zHAosZkxT7sBlTDQkTS7rUX18dfD5rctdEQPr+L0j1eAFxFXgqOajVoTETkgJaYsMhJSOjWNYSyEY7s3zYAIxOWl+FMO/vZxhWxGnknAxu7NTIREREREem0TCcsCoAdSVtBSTfEIiIHmO076yjc7UxJ4ndZDj2ma3nRQdtyMbESPEUnDsN49bElIpIo2k7CorZOCQtJu7nARGPMqNjyi8Ae4BZjzKPGmDtxpoMqAB7PTogiIiIiItJRmZ4SaicwLoV2BwGbMxyLiBxgnn56De5YgsE1upC83M5/5EWqApTt9gFgct0UTNWgMBGRlhJHWHjdLiACQG29EhaSdg8BQ4DhwAZrbZ0x5trY+osT2r0H/DIL8YmIiIiISCdkOmHxFvAZY8w0a+2CthoYY87BSWr8LcOxiMgBJBqNsveDvfFJq085a0yX9ud/awcu6yQ/co8ZgKsLyQ8Rkf1VxJMwwsLVNMKivl6FtyW9rLUfAde3WPesMWY8cC5QBnwEPGutjWQhRBERERER6YRM33G7E7gceMIYcwPwXOJGY8wZwD+BEPDHDMciIgeQN9/dRrEzGxSVBYbJk/p3el/hqgCBZU4tz4jLknucaleIiLQlcYSFLyFh4fcrYSHdw1q7DT0IJSIiIiLSa2V0AnZr7VLg20A/nLljKwELXGyMqQSeBwYA37bWfpjJWETkwPLuq031NUccPaBL+6qdtwUizk24XYMbcOVrdIWISFvaT1hoSigRERERERFJLuMVY621/wecBSwG8gADFAHFwErgPGvtnzIdh4gcOPZWNeDb3gBA0FjOOyeVUjpti1QHqF203Xntsuwc3JCWGEVE9keJCYuchL8yNcJCREREREREUtEtjwlba18GXjbG9AVG4yRKNltrt3fH8UXkwPL0M2vxxupNhIbmUVLk6/S+auZtgbBzA273oAYiXpukh4jIgSuamLAwTSMsQkGVEJCuMcZEcEZqH2KtXRNbTpW11mp4pIiIiIhIL9Ctf7hbayuAiu48pogceLYtLack9nra7JGd3k+kJkjtwh3OgsfFziEaXSEisi+JIywGFeSwAj8AhwwoylZIsv8wsZ/E5Y70FRERERGRXiCjCQtjzDXAq9baLZk8johIox2fVlHid26YVfng+KMHd3pfNfO3QDgKQO7R/Qmb8rTEKCKyv0pMWLijTevDwWgbrUVSZ6117WtZRERERET2D5n+Q/9fwEZjzMfGmD8ZYy4wxhRn+JgicgB7/7Wm/OhZF47H5ercx1ykNkjdu7FZ6zwu8qYNSkd4IiL7tcSEhSvalKTQlFAiIiIiIiKSikxPCXUvcAowIfZzIxA1xrwHvBr7WWCtDWU4DhE5ANTuDbDuvV0A5BZ4OfSEIZ3eV82bW7Eh52Zb4dRBuAq9aYlRRGS/5gK8LghFMeGm5EVYCQsRERERERFJQUYTFtbaLwAYY8YDpwKnATOAY2M//wv4jTFvAa9Ya+/MZDwisn/7YN4WolHnBtmk6UPw5Lg7tZ9IXYi6d7Y5Cx5D0cnDCKLpTEREUmF8bmwoik1IUqzeWs2ULMYk+x9jjAs4GpgE9MUpyL0HWAm8Z621++guIiIiIiI9VLcU3bbWrgXWAncZYwzOl4tTYz/TgNmx10pYiEin1NYFWfjqJjyAy2U47ORhnd/XW1uxsfnWC44ZhLvYB35/miIVEdm/GZ8LWwuEmhK92yvqsxeQ7FeMMV7gf4CbgD7tNKswxtwJ3GmtDXdbcCIiIiIi0mXdkrBowQsUxX6KE2IwWYhFRPYTjz2xGk9s+hH/IB8Fpb5O7SdaH6L27djoCrehaMbwdIUoInJAMD5ndJsr3JSwiIQ0Sk26zhhTADwPnETTd4cgzsgKF1AK5AD9gF8ApxljzrXW6qkDEREREZFeolsSFsaYyTjTQZ0KnAjk4nzJqMb50tFYz0JEpMOi0SjbF++mOLY89YyRnd5XzVtbsQFnGpOCowfiKelc4kNE5EDVmLAwgBuIANGQZueRtPgNMB1oAP4I3A980Dj9U2yaqEOBzwFfBWYC/w/4WlaiFRERERGRDnNlcufGmIeMMbuA94Bf4dSvWAL8GGcqqL7W2vOttX+01n6UyVhEZP/18tyNFAed15X5hmnHDu3UfqL1IWoXJIyumKnRFSIiHdWYsADwxp6Bj0Y0wkK6xhgzAvgSzgNP06y1t1hrVybWqrDWRq2171trv4vzkFQtcIMxpvPzRLYdy1XGmL8ZY5YYYwLGGGuMuWYf7YuNMb81xmyMtd9gjPl/xpjCdtq7jDFfN8asNMb4jTG7jTH/NcaMSef7EBERERHpiTKasAAuwymC9z5wEdDHWnuytfan1tp3rLWRfXcXEUlu6dxN8dcTThrS6f3Uvr2taXTFlIF4SnO7HJuIyIHGlZCw8DRO2qMpoaTrroz9vtVauyxZY2vtUuBWnIE+VyZp3lE/w0mejAS276thbBqreTg1Nz4GfgesBr4DvGaMaeuPjb8Bf8AZqPQH4CWc71KLjTHj0/QeRERERER6pEwnLGpw/tA+AngAeMIY821jzBEZPq6IHCBWfrSb0konyVDnhvPPHtup/UQbwtS8FRtd4VLtChGRzjLNEhZOxsJGNCWUdNnxOFNB3dOBPvfE+pyQ5liuA0ZZa/sDf03S9n+AycCvrLWnW2tvtdaejjP6/BicREacMWZmbP/zgaNiI0k+B1wAlAF/SucbERERERHpaTKdsCjDmfrpRzhTQTXOI7vUGLPTGPOgMebadA/TFpEDx0tPfhJ/XXRYKTk5nSvNU7tgG7YhDED+UQPwlGl0hYhIZ7Q1JRRKWEjXTQKWWWsDqXaw1jYAS3HqWqSNtfZVa+3GZO2MMQYn+VAL/LTF5p/G1l/XYv31sd8/sNYGE475IvAGMDs2PZaIiIiIyH4po0W3Y1M+vRP7+akxJh+njsWpwCzg8tgPxpg11tqDMxmPiOxfdpXX491UDxhCWD57ycRO7ScaCFPz1lZnwQXFql0hItJpxpfwPIxxEhVGCQvpujKc5ENHbcNJdmTDeGAI8LK1ti5xg7W2zhizADjdGDPcWrs5tmkGUAcsaGN/L8e2nwzcl2oQKTwcNqjxhd/vx+/3p7pr6SV0TqWRrgVJpOtBGulakEQduR4yde1kNGHRkrW2HngBeCE2LdSVwNeAXGBCd8YiIr3f449/jBfn8d3giHwG9Mvv1H5q396O9cdGV0wegKdvXtpiFBE50CSOsHC7DGBxqYSFdF0RznSzHVUHtFncuhs01ptY2872tcDpsXabY/UuBgMftFPrr3E/Ha1jsTl5E8f8+fPp169fB3bdrV8npZPmzJnTTUfS9dDT6VqQRLoepFH3XQug66Hn68j1UF5enpEYuu0qiT3ZcxpNoyv6N24CQjijMEREUhKNRAl+VB3/EDv9gnGd208gQu2bW5wFA0UaXSEi0iWJCQuf20lY5LsyPQupHAC6chFl6wIsif2uamd7dYt2HW0vIiIiIrLfyWjCwhhzAU6C4lSangRyvrnCB8CrsZ95sdEXIiIp+XRFOZ4G55Fd15A8jjikf5Iebat7dzvR+tjoiiP64+3fuVEaIiLiSExYlOR5oT5AvlsJC0mLwk7Ub8jW6IqeJNnTGIOAxQDTp09n2LAOlBd857XORyXdZvbs2d1zIF0PPZ6uBUmk60Eaddu1ALoeeoGOXA9btmzJSAyZHmHxRMLrzTQlKOZaa3dl+Ngish9b8VrT7AbnXHJQp/YRDUSomZ8wuuIU1bAUEemqxIRFjsuZti8UbGt2G5EOuzj201s0jpRob0REcYt2HW2fEmvtPr9JOrXBHXl5eeTlaWrM/Y3OqTTStSCJdD1II10Lkqgj10Omrp1MJyyeAl4BXrXWtjd3q4hIh+zaWM32T5zv6n0GFzDs4D6d2k/tgq1E60IA5B3eH+8Aja4QEemqxISFJ5awiIYt0UgUl0ZaSNeY5E3alK2q78lqTjSrcRErxL0dGG2McbdRxyJZTQwRERERkV4vowkLa+1Fmdx/uhhjrgHuSdLsNWvtrCT7mQG8vo8m11pr7+1IbCLS2vzn1sdfH3HKsGZPBqYqWh9qGl3hguJTNbpCRCQdEhMW3oSP53AoSo4SFtJ5o7MdQCesBbYB04wxBdbausYNsQLb04BPrbWJRbHnAZ+JbZvfYn+nx363XC8iIiIist9QaXbHcuD2drZdAkwCXu7A/uYBb7RzHBHpgo2bq9m2sgI3BuNzMWHqoE7tp2b+VmyD8+Bi/lEDVbtCRCRNEhMWgWA4/nrXXj/DBhdlIyTZD1hrN2Y7ho6y1lpjzD+BHwI/AG5N2PwDnPoav2jR7e84CYufGmNOs9YGAYwxZwIzgDm98b+FiIiIiEiquiVhYYw5GPgmMBMYGlu9FXgN+IO19qPuiKM91trltJFMMMbkAF8DwsC/O7DLN6y1P05HbCLS3FOPrcYTmxEiODIfb447SY/WIjVBahdsdRbcJvujK/ZugA0LwEZbbyscABNOb77u4+ehfk/y/Q4+AgYf3rQcaoCVj6YW00FnQUHfpuU9650Yk/H44PDLmq/b8JbTP5k+o2H0Sc3Xvf8IhBuS9x05DfqObVqu3wMfP4c7GGJExSoA3CvKIcfbuu9hl4I3Yd7FHSth27Lkx8zrAwef23zdmjlQuyN534GTYOiUpuVoFJbfn9BgH6OGxp0KxYOblis3w/o3kh/TGDjyqubrNi+C3auT9y0ZCmNPab5u1VMQqEned9gxMGBi03JDNXz49D67uENBRlSsYlvpMc037F7txJyMrxAmXdh83brXoSqFgmD9JsCIqc3XLX8QoinUYBhzMpQmfJ7U7IS1c5L3AzjiCnAn/Fm2bRns+CB5vx7yGWH2bmBExTwCnmKMZ0Z8vTthIp7a2BR8Ir2dMeY64MTY4mGx39fFRlsDvGWt/Wfs9a+B84FbjDFHAkuBo4DZOIWuf5+4b2vt67Ekx3XAUmPM88Bg4HJgD/D1DLwlEREREZEeI+MJi9h0S38FvDS/AzM+9nOtMeYGa21HEgLd5QKgL/CUtXZnlmMROeDV1ocIra3GgyGC5byLO1dsu+b1zdiQkxwonDoYT2luOsPsmN1r4J+nQqCd+pkjTmh9M3Ler2H78uT7PuX7zW9GBuvgma+lFtf1rzdPWGxZklrfvLLWCYul98H7DyXve9ilrRMWL38P6nYn73vBX5snLKq2wDNfJwc4snHdpnb6TjijecLik1fh1R8nP+bAw1onLN7+A2x4M3nfad9snrCwEXgmxXtQVz/TPGGxc1Vq58blaZ2weP8RWPyP5H3Hn946YTH39tQSUWf+v+YJi/qKpPE2nreKghb/xje8Cc9/O/kxS0e2Tlgs+gesfj5536O/0Dph8dxNqSXOLn+gecKi4pPU/80ddknzhMVHz8Kbdybv10M+I1zb3uPITXcDEFoIxnsaNhQlMUVY7w8jsp84Efh8i3XTYj+N/gnxuhQnAz/GKRg+E9gO3Ancbq31t7H/G4CVwJdwHvqqBZ4EbrPWrkvf2xARERER6XkymrAwxkwB/gG4geeAu4HGP7LHAF8EzgX+YYxZZa1dksl4OuG62O9/7rNVa+ONMd8C8oAtOPUvtnYmAGPMsCRN4vPhBAIB/P62vvNIT9PQ0NDma9m3Rx5dQ17UyXvW9vcyeEBOh6/5SGWA2oXbnQWvC+/x/VPaR0bOWUMVvv9+Bld7yQogEo0SbBGfz0ZJZRb4UChMOLFvg5+89ps3Dy0QwCb0dQeD5KTQzwINLeL1RsIp/c8mHIkQatE319qUKqwGQ0EiCX1NIECqaSh/QwO4m/p6QiHaGIfRStRGCbSINycaJZUxP6Fwi3MTCaV8bgLBINGEvq5gAF8K/bpybiLRSBvXoU3pOuzKuYHm/97coVBK12HU2jbOTSSlcxMOh1tfh6RW6bez5wZwPocS7ud7wuGUrsOe8hkR9dc2nZuNb0PO6dAiYVFZWa+/U3qYQCCQ7RB6JWvtNcA1HWhfBdwU+0mlfRT4Q+xHREREROSAkukRFt8FXMAXrbUti1p/ADwTG4HxL+DbwBUZjidlxpiRwCychMNLHez+2dhPo7Ax5o/Ad621Kcwp0czm5E0cCxcuZN06PXTV28yfr7qJqYhGYdviAvrEbsMVDqlizpwUp1pJMPKTAvpFnFuI2wfU8d7br3d4H2k5ZzbKcet/y8Bq599sde4w1vc/rVWzBm8pO1u8z8F5M8gZPqVV25Yqd+VTldDXFQ0yfPi1KYW3feknBL274ssFgXr6pdA3arxsbhFv38B4CoZ/IWnf+uAAylv0Hdb/YlzR5NPIVKxvoG5bU19vuIYhKb7XLW++S8TVdFu5uD6PPin0DXoK2d4i3oGeqeQOn5C0b/XefuxN7GujjEwx3p0rt9CwuqlvXrCcASn0tRg2tYi3rHYoRSn09dOXXS36Dik5E29h8pvPe7YYaiqa+noifoam+F4D3uJm/96K/JayFPqG3XlsbRFv/+hh5A8f3E6PJjV1Q9jTou+IIVdi2pqyrYVdq/fg39DU1xeqZFCK73XTa29gTVNKpbSuDyUp9O05nxEuTo299ldsxR8JkIsbj22aE2r58g+o2bMipf1L9ygvL892CCIiIiIiIs1kOmFxErC8jWRFnLX2XmPM14DpGY6lo67FSbbc24Ekw26cYnrPARuAAuB44A6cJ6osTmJGRDpo/RYPfcJOsqI8J8LkIclvHrbk87vou9t5BjjsjrJzSPZGt7hsmKC7AICgu4CFY26i3tc/pb7bS4/u1DGjrhw29pvZqb51voHU+QZ2qm9F0cFUFB3cqb5byqYlb9SGkKeo0++1On8E1fmdq2uys2Ryp/phXJ2O15/Tr9N99xROYE9h8gRLW7b1Oa5T/cLuvE7HW5M3lJq8ockbtmF38WHJG7VjU9+TO9Uv4C3t9HutLBhDZcGYTvXN1mdEvbeM/NAecsI1RGLFKxJHxETCqYxTERERERERkQNZphMW/YBUHl/+mKaCdVlnjHHhJCwszuiPlFhrVwGrElbVAU8bYxYC7wPfMMb8ylq7q80dtG14ku2DcAr2MXXqVMaOHZukufQEDQ0N8aeGp0+fTm5uFmso9BIf3L6QXJwkxbgTBzN7dsev9ZrH1hFkLwBFJw9n1knHptw3I+fMnk1o0V+wg47gxJEnJm8vHaZ/a72Tzlvv09DQQPDjIvJDe/BF6ygZ0IdwXQ0uDG4gAgwfPorZszuXhJHM0MhcERERERHpaTKdsKgEUnlMdQTQ/iTu3e9UnJjmWms/7erOrLU7jDFP49TEmAo824G+W/a13ZimpxV9Ph95eanOPi09RW5urs5bEouX76C00klW1Lkt110wEV9Oxz6+gttqCa5ykhWuQi99Th6Jy5fKjPatpfWczfhOevYjSenfWu+k89Z71HgKATDRMJ5cEy/J4TEQsRCOGJ3LHsbnS7XKioiIiIiISPdIpSZjVywGTjDGnNJeg9i2acDCDMfSEZ0ttr0vjZMEF6RxnyIHhFcfXxt/XXpk3w4nKwCq52yMvy6aMbzTyYouqd0Ne9Z3/3FFRLpB0F0Uf+1yN9We8caerQgGOlrGS6R9xpgfGmNSKmItIiIiIiK9R6YTFn+MHeNZY8yvjTGTjDH5sZ9DjTG/oWm0wR8zHEtKjDF9gfOBPcCTadz11NjvDWncp8h+b++OOorLnRtffpflis8c0uF9BDZW0/DxHgDcJTkUTk1eeDftwkF45Gr4+0xY91r3H19EJMOCsREWAMbVlLDwxEaDBgPhVn1EuuCHQOcKzIiIiIiISI+V0YSFtfZl4OdAHk6x6feBmtjPCpxC1HnAz6y1czIZSwd8DqdG5P3W2kBbDYwx/YwxE40x/Vqsn9JO+28CM4G1xOpNiEhq3ntxo1NNBph+7hiKCnP23aEFay3VL2+ILxfPGonxZjpX24YX/wc2vQ0NlfD01yGUvYLfIiKZEPQkjLAw/vhrT2yExaiS/O4OSfZvuwB/0lYiIiIiItKrZLqGBdbaHxhjFgDfAU4AGitnBoC3gDuttS9lOo4O+GLs976mg/oa8CPgduDHCesfN8aEgCXAFpzpn44DjsSp53GVtVbzIYikqGp3PWsW7wTAV+Bh8sxkNehbC3xSSWC9UyLH0y+P/CkD0hpjShbfDe/d47x2++Cy/4BXRYRFZP9SmT+aTWUnMXjcoZhoCVAPNE0JVerL+J+dcmB5Ezg220GIiIiIiEh6dcs3x1hC4iVjjBvoG1td0dNu3htjjgUOBRZZa1d2Yhd3AacD03HeZxTYCPweJzGzzwLaItLcey9uxEad4RWTZw0nJ7djH1nWWqoSalcUnzoC4+7m0RUbFjijKxqd+38wrM3BWCIivdrOksnsLJlM/5mzca2oBD4BmkZYhIPRrMUm+6WfAEuMMT8DfmCttdkOSEREREREui4jCQtjzDjgImAUzkiK5cAj1lo/zvDtHslauwgwKbT7Mc1HVjSu/xXwq7QHJnIAWruhklVvb8cFeHPdHDZjWIf30fDhHkKbawDwDson7/D+aY4yicpNTt2KaGze9uO/BpOv6N4YRESywJXrjr/2YgBLONijnlOR3m8K8B/gf4GLjTFP4dSKa3OaKGvtf7otMhERERER6bS0JyyMMd8Cfg24W2z6qTHmLGvtB+k+pojsf5588CMKYq+Dowvw5Xs71N9GLVVzNsSXi2ePwriS5iPTJ1gPD30W6sud5TEz4dTbu+/4IiJZZHxNfwY2jrCoqg1mKRrZT92LU+XKAAcB/7PP1k5yQ0REREREeri0JiyMMScCd+J8cagDVgPFwBhgGE6Nh4OttZoTQETatWFzNb5N9YAhaCxXXHFwh/fhf3834Z3O/Ok5w4vIPbgszVHug7XwzNdhR2xmuT6j4ZJ/gVvzt4vIASAaweUKxRcbExarNlVyfpZCkv3Sf3ASFiIiIiIish9J992zr+EkK/4NfM1aWwdgjDkceBwYB5wBvJDm44rIfuSxBz8kLzY7mx1byKABBUl6NGcjUapeSahdcfoojOnG0RWb3oUPHnNe5xTCFf+F/G5MmIiIZIGJhjn9g2+Qs6yO0MALgC8CTUW3bVj3liV9rLXXZDsGERERERFJv3RXnz0e2ALc0JisALDWvg98EyeZcVyajyki+5Et22vwfOp8fISwXHblIR3eR917O4lUNADgG1dK7rjSdIaY3Ijj4NJ/Q8EAp8j2gI6PEBER6W2sy4PbhjBYXMGd8fWexoRxRAkLERERERER2bd0j7AYCLxgrW1rkuK3Yr8HpPmYIrIfeeSBj/DFRleERxUwbHBRh/pHAxGqX90UXy6ePTKt8aXEGJh0AYyb5YywEBE5QAQ9RXiCAUzDtvi6ximhjBIWkkHGGUrZN7a4R1PQioiIiIj0TukeYZEDVLa1wVpbndBGRKSVHbvqMOtqAAhjueTKjo9MqHljM9FqJ2eae3AZvhHFaY2xQ3xFTvJCROQAEXQ7SVqXf3t8nRIWkknGmFnGmJeAWmBn7KfGGPOiMWZWdqMTEREREZGOSnfCQkSk0x5+8ENyrHNnKzA8j1HDSzrUP1zhp2b+FmfBbSg9e0y6Q2xfyA9r5nTf8UREeqCAxxkVZwjEMxXuWMLCpefdJc2MMT8E5gCzgTyc6WdN7PXpwBxjzPezF6GIiIiIiHRUuqeEAhhnjLm6M9uttf/JQDwi0guU7/UTWV2NB0MEywVXdHx0ReVz6+NzpBedNBRPv7x0h9m+eb+Gt34LB58LZ/0GigZ137FFRHqIoKdpGjxXjiEatnhjI81cUY2wkPQxxpwK/BgIAn8H7gbWxTaPwan6/iXgdmPM29ba17IRp4iIiIiIdEwmEhbTYj9tsfvYbgElLEQOUB/N34YvNrrCPySXCWP6dKh/w+o9NHy0BwBXcQ5FM0ekPcZ27VgJb//Beb36JZj5fSUsROSAFPQ01R1yeS1RwBsbYeFWvkLS6xs43x/Ot9a+3GLb+8A3jTHPAy8C3wSUsBARERER6QXSnbDYhPPFQUQkZcGGMGvmxwq0GrjkqkM61N+Go87oipjSM0fj8rnTGWL7ohF45usQDTvL078DAyZ2z7FFRHqYxBEWxhMG3Hhjyx4L1lqMavtIekwF3m4jWRFnrZ1jjHkbOL77whIRERERka5Ia8LCWjsqnfsTkQPDB/O30lAXAmDCsQMZ28HRFbVvbyO82w9Azshi8ib3T3uM7Vr4V9i2zHnd7yA48abuO7aISA8TdCeMsHCHADcuY3BSyIZAMEKuLxMDfOUAVApsTKHdRuDYzIYiIiIiIiLpoqLbIpJV4WCE5a9schYMTDljVIf6R2qCVM9t6l963tjue3p370Z47WfED37eH8Hj655ji4j0QIlTQhnTEH/tafxYjmggrqRNOZDKkMaJsbYiIiIiItILKGEhIln14H8/xF/jjK4Ye+QAygYXdKh/1UsbsIEIAAXHDCJnaGGSHmliLTx3E4TqneVjvggjpnbPsUVEeqg9heMJXHQvXPsSrgFNtYQaExaRUDQ7gcn+aAFwpDHms+01MMZcCRwFvNVtUYmIiIiISJcoYSEiWVPvD7Fj0a748sRThnWof2BTNfXv7QTA5Hoonj0yrfHt08pHYd1c53XREJj1o+47tohID9Xg7UN0/Bkw8nhMYVMC2hsb+RYORrIVmux//h9O7bz/GGMeMcacbYw5JPZzjjHmMeDfQAT4TVYjFRERERGRlGkSYRHJmv8+/BEFEecmVlWZh1HjSlPua6OWymfWxZdLThuBuzAn3SG2rb4cXrylafnsOyG3uHuOLSLSS7gSalU0jrAIBzXCQtLDWrvYGHMj8GfgEuDiFk0MEAa+aq1d3N3xiYiIiIhI52iEhYhkRW1dkIrFu+PLJ18wtkP969/bSWhLLQCegfkUHDckrfHtUzQKI45zXh9yAUw8q/uOLSLSS5hcd/y1N5aw2F5Rn6VoZH9krf0HzpRP/wLWA4HYz3rgbuCoWBsREREREeklNMJCRLLiP//5ID66orLUzbRjh6bcN+oPU/XShvhy6bljMe5uKrQNUDgAPvMgfPg0jDi++44rItILmK3vQagS1x4X4BThbvyDc2tFPYdmLTLZH1lrPwCuy3YcIiIiIiKSHkpYiEi3276zjob39+LDEMVyxhUTO9S/eu4monVOoe68w/qR24GppNLGGJh0QfcfV0Skh8t59kao2oTLdTZwIwAeYwBLQ0M4q7HJ/sMYMx3YYa1dk6TdeGCwtXZ+90QmIiIiIiJdoSmhRKTbPXDP+/isMyKifkguU44YmHLf0M46at/e5ix4XJScNToTIbbJRHWjTUQkqfwyAEyoadq/ximhAn4V3Za0eQO4JVkj4H+A1zMbioiIiIiIpIsSFiLSrT5cU0HOBmcO8xCWy69NfXIQay2Vz66HqAWgeMYwPH1yMxJnS65Nb3Pah99hcOWSbjmeiEhvZfOchIXLNNWraCy6HQgo8Stp1Y3zQYqIiIiISHdQwkJEutVT//kQd+z+gjmomFHDS1Lu2/BhBYFPKgFwl/ooOnlYJkJszV+J97mvkxfaw7Gf/gHXmhe657giIr1QY8LCUBdf15iwCAY0wkK6XR+gIdtBiIiIiIhIalTDQkS6zfZ1lZSUO7Un/C7LF79wWMp9bShC5XPr48slZ4/BeN1pj7FNL3wHV81WAMoLJ1Iw7vTuOa6ISG+U1xcAF00jLLzGyViElLCQLjDGjGixqrCNdY08wCRgNrAuo4GJiIiIiEjaKGEhIt3CWss7TzTdL5hwyjD6lKQ+nVPN/K1E9gYA8I0tIe/QvmmPsU3vPworHwUg5M5n6cgvcZKrmxIlIiK9kG2sYWH88XWNIyxCQSUspEs2ADZh+eLYz74Y4P5MBSQiIiIiIumlhIWIdItPl5ezfV0VAKUD8zn7wvEp9w1XBqh5Y7Oz4ILSc8diTDdMW125CZ6/Ob64Yvg1+HP6Zf64IiK9WLyGBa1rWISD0WyEJPuPTTQlLEYA9UB5O22DwBbgceCuzIcmIiIiIiLpoISFiGRcJBLl7Sc/iS8ff+FY3O7US+hUvbAeG3JuchUeNwTvoIK0x9hKNAJP3ACBagDCh1zMVt9xmT+uiEgvF69hYcLgikLUFZ8SKhzSCAvpPGvtqMbXxpgo8Ki19gvZi0hERERERNJNRbdFJOP+c98HVO1ypgYZPK6E0UekPkohsL4S//vOw5OuAg/Fp7Y3VXWaLfg9bHrbeV0ygtDsX3bPcUVEervYlFAALrdTt6jxCZk8l/70lLS5Frg720GIiIiIiEh6aYSFiGRUeaWfikW7ycN5uvbws0elPJ2TjVgqn2kqtF18+ihc+d6MxNnM1qXw+i+c18YFF/0NfMWZP66IyH7A5vYBDOT1wdUQIRoCb+xj/6B+hVmNTfYf1tp/ZzsGERERERFJPyUsRCSj7vvXSvKizp2q6v5exh2cerHsukXbCe2oA8A7tJCCowdlJMbWBy6HnAJoqIITb4KRJ4Dfn7yfiIhg+02AH1aAy4354zLYWqsaFpIxxhgPcAkwExgaW70VeB14zFobzlZsIiIiIiLScUpYiEjGrNtYiWtNDWCIYLnw85NS7hupC1E1Z2N8ufTcMRhXNxTaBpgwG258Bxb8H8z43+45pojI/sK4wOUGwOWL/TYGFxAOqoaFpI8xZjLwGDAaaPlHwnXAT40xl1prl3dzaCIiIiIi0klKWIhIxjx6zyqKYvcPQqMLmDiuLEmPJtWvbMT6nYci848cgG9USUZibFfJUDjr1917TBGR/YyJJSzAmRYqpISFpIkxZggwB+gH7AQeAtbFNo8BPgOMBV42xky21m7PSqAiIiIiItIhSliISEYsWrqDwh0NgCFgLFd94bCU+wa31VK30LmvYHJclJw5KjNBJgo1gDc388cRETmAuHKb/tT0GNiwszaL0ch+5hacZMU/gW9aa5vN3WiM+R7wB5yRFv8D3NTtEYqIiIiISIe5sh1AT2GM2WCMse38vNHBfV1pjFlkjKkzxuw1xjxnjDkqQ6GL9EivPLQaExtdkT+5jIH9C1LqZ62l8pl1YJ3lolNG4C72ZSrMxoPCw1fB49c7dStERKRrFv4dnvoKZtOr8VVeYwgENMJC0uZMYBNwY8tkBYC1tgH4SqzN2d0cm4iIiIiIdJJGWDRXBfy+jfUbUt2BMeY24GfARuCvQBHOkPS3jTGzrLULuh6mSM/2/Jz1lFY7N6VqPfC1qw9Nua9/xW6CG6oB8PTLo+jEoUl6pMGif8Anrziv934KX3wFTDfVyxAR2R+tmwtrXsIVuho4HHBGWLiUr5D0GQ48aa1t96qy1oaNMe8AF3RbVCIiIiIi0iVKWDRXaa39cWc7G2PGAz8G1gDHWmurYuv/ArwL/MMYc6i1NpqGWEV6pFA4yornN9BYcWLEyYMpyPOm1DcaiFD1wqfx5ZJzxmA8GR4ItutjeOUHTcsn36pkhYhIV+U5NYuMqY+v8hhwR222IpL9TwAoTqFdUaytiIiIiIj0ApoSKr2uxUkC/bwxWQFgrV0O/Bc4GDgxO6GJdI/V726nJHZboCrXcNmFB6Xct+aNzUSqgwDkTiwjb2LqRbo7JVgPj18H4QZn+dgbYPypmT2miMiBIN/5/HbRlLDwAh7lKyR9PgRmGmOGt9fAGDMCmAms6raoRERERESkSzTCojmfMeYaYAhQDSy21i7sQP8Zsd9z2tj2MnANcDIwP9UdGmOGJWkyqPFFIBDA7281ha/0QA0NDW2+7u0C/jCLnl4fX55+yWiCoQCEkveN7GmgZv4WZ8FlyD11SGavZ2vxvvBNPDtXAhDtO4HAibdCO8fsKecsGo2wd+sWbFQDtVIRCAYJ7K0AYOva1fhycrIckaRC5633aTxnbl8uDQ0NeHJK8NJyhIXBY6Gurg6XS8/M9ASBQK8eePAf4C/Aq8aYm6y1LyRuNMacA9wJ5MbaioiIiIhIL6CERXODgHsSVxhjFgNXWGvXpdB/PFBrrd3Rxra1CW06YnOqDRcuXMi6damEKT3J/Pkp5696vL2rfPhrnBuLuQNCVFSsYE5b6bs2jP24kNKI03fHoHreey+z/11Glr/G5M2PABB25TC//zXUvP5mSn2zdc5CtTVse+NFQtUqDN4Zm198ItshSCfovPU+z27bzGGlOziSFiMsDBgML7z4KjmpzRQoGVZeXp7tELriH8DFwCzgWWPMHqBxXsnRQBlggFdjbUVEREREpBfQ421N7sH5wjMQKACOBO4DjgHmGmOKUthHCU7h7rZUJ7QR2e/UVbio2+TcgTJuS+khqT+1WbzXS+leJ1kR9EbZPiyzI4X61K3j8C33xZeXj7iOmrxkg5myK1RXw9a5zylZISI9Xs2GTwh6nD+bXC1qWAAEUhh1J5JMrNj22cCvgTqgL3B07KdvbN2vgHNUP05EREREpPfQCIsYa+3tLVYtB642TvHdzwHXA7/t5rAA2p2XN2YQsBhg6tSpjB07NvMRSZc1NDTEn9KfPn06ubm5WY6oawLBMHf9YHG88uUx54zi0BlDUuprI1Eq7/qQKM40S2XnjOXUw/tmKFKgvhzfvbfishEAwkd/iUmzfsikJN2yec5qKnbz1C9/RLiuFoCSgYMZdsih3Xb83iwSibBt23YAhgwZjNvtznJEkgqdt94nEomwesF8bCSMJxpm8vEz4dP/w9A6YXHUlOMYPTyVWsmSab19ZK61Ngjcaoz5EU6iYmhs01ZgibW2V895JSIiIiJyIFLCIrm/4SQsppE8YVFF+yMoihPapMxau2Vf22MJFQB8Ph95eXkd2b30ALm5ub3+vN1z71KKnVrZ1OW7mDJ7NC53agO4auZvIVrhJCtyRhRRcuzQZtd12pkSGHoUfLwNRhyP58xf4HF3bG6S7jxn1eW7eebXP6GmfDcAfYYM4/If/ZKC0j7dcvzezu/3Myc2L9kps2f3+n9rBwqdt97H7/ez/v3lBCv3UL93D94Sp8SWi+Y1LAAiEZfOaQ/h8/myHUJaxBITC9raZowpBb5rrb2tW4MSEREREZFO0ZRQyTVO7luQQtu1QKExZlAb28YntBHZb3y0dg/BFXsBiGI58YoJKScrIjVBquduchYMlJ43NrPJCoDcYrj8fjjjDrj0XuhgsqI71ewp59GffI+qnU5ZnD6Dh3LZD3+hZIWI9EiegkIAopEI9SHnmZjEotve2Me7z+jPT8k8Y0yxMeZ2YANwa5bDERERERGRFGmERXJTY783pNB2HnA8MBv4T4ttpye0EdkvRKNRnvjnSkpx7kIFRhVwwjGpTQUFUPXCp9iAMzVTwTGDyBmWSqmYNDAGjruxe47VSbV7Knj0J9+jcqczLU7poMFc+sOfU9inLMuRiYi0zZtfGH9dXRei8KCzceX2g4XOusYpoYpz9OendJ4xZgpwLk7duZ3AM9bapQnbc4Gbge/gjHw2wIdZCFVERERERDpBj7gBxpiJxpj8ttbjFOsDeDBhfUmsz+AWXe4BwsBtxpiShPaTgSuAj4C30hy+SNY88sQaSquchEOd2/LFGyen3Ldu6U7ql+0CwOS6KZ49MhMhOvash6qtmdt/mtXu3cMjP72Nvdu3AVA6cDCX/fCXFJX1y3JkIiLtaxxhAVCzpwKueBBz4R/imQpvbARdKBjJSnzS+xljfgMsAn4AfCn2e7Ex5sex7cfgJCd+CpQCm4EvAIdnIVwREREREekEPeLm+AxwszFmPrARqAMmAGcBXuCX1tr5Ce0vxElO/Bu4pnGltXZN7AvTz4AVxpjHgaLY/gGut9ZGM/tWRLrHrvJ6Nr+2lfzY6IqxZ4ygT0lqhahDu+qpfPKT+HLpuWNxF+ZkJE6CdfDQlVC7Cy75F4w5OTPHSZO6yr08+pPvsXebU76mZMBALv3hLyjqq2SFiPRsiQmL6t274q9dPg/RcCj+R2c4qD+FpOOMMWfjjJwAqMaZZrUYGAP8wBizGrgrtm4Pzt/jf4kV5hYRERERkV5CCQvH68DBwJHASUA+Tu2KF3C+6MxJdUfW2p8bYzYA3wJuBILAm8APEoeri/R29/51OQVRJ1lRVebhq+eOT9LDEQ1GqHjgI2zIuWGVf/RACqYMzEyQ1sKz34RdsZkgXvpf+PKb4HJn5nhdVF9VyaM/vY09sWRFcf+BXPbDX1Lcr3+WIxMRSc6TOCVU+e74a5PrhrpQfEqoBn+4u0OT/cP1sd9/BP4nVmgbY8zBwOM4DxJ5cP6uv9xaW97mXkREREREpEdTwgKw1s6jA7UlrLX3AvfuY/sDwANdDkykh3r9rU0UbGkAIGgsl9+Q+kwLlc+sI7zTKcLqGZhP6XljMxIjAIv+DisfdV7nFDlFtntqsqK6ikd+8j0qtjhFyIv69eeyH/6C4v4DshyZiEhqvIlTQlU0JSxcOW4iNBXdXryunIOnDurm6GQ/MAWnptxNiSOWrbUfGWO+BbyEM/LiAmttTVYiFBERERGRLlMNCxHpkEg4yvInP40vF0zpy9iRpSn1rVu6k/olOwEwXhd9rzwYV06GEgibFsLL32tavuDP0H9CZo7VRfXVVTz609uakhV9+3PZD39JyYAMjTwREckAd24exOpUVJfvhld+BHeMxOx4FwCXMbiAYEA1LKRT+gPL2ple9d3Y7zeVrBARERER6d2UsBCRDln+6iZy6pybTbX5Lq69JrXRFa3qVlwwDu+AVrXu06NmJzz6eYjGph054RtwyPmZOVYX1VdV8thPb6N80wYACsv6ctkPf0HpQD19LCK9i3G58OQXAFBTvhtsFBoqcZn6eBuvgZASFtI5OUBVWxustdWxl7vb2i4iIiIiIr2HEhYikrKq3fUsfn4D4DxEe+23jsLrSf4x0q11K8IBePQaqNnuLI86CWb9KDPH6qKaPeU89ONb2d2YrOhT5iQrBg3ObmAiIp3UWHi7obaGoKcEABd1TdsNhFR0W0RERERERNqhGhYikhJrLfMeXE0klnQ4fNZwBowoTqlvt9WtiEbhqRth09vOctEQuORf4O55H3VVu3bw6E9vo2qXM0VWYd9+XPr9n9Nn8NAsRyYi0nne/EIaYq9rwrn0BUzCCAuPgXBQIyyk08YZY67uzHZr7X8yFJOIiIiIiKRRz7uLJyI90pNPrWH7R3sBKCzzcew5o1Pq1611Kza/Cx887rz25sNn7ofCnle0umLrZh772fep3VMBQOnAwVzy/Z+pZoWI9HqehMLb1QEPfQEX/vg6rzHxxLdIJ0yL/bTF7mO7BbKWsDDGbABGtrN5nrV2Rov2PuAW4HPAcGAP8BzwfWvtrsxFKiIiIiKSfUpYiEhSO3fXsf6VLeThFFOddtl4cnKTf3x0a90KgJEnwKX3wlNfcUZWDJ2SuWN10q4N63ns5z/AX+1Mw9132Aguue2nFJb1zXJkIiJdl5iwqPFboPUIi6gSFtI5m3ASD71VFfD7NtZvSFwwxriAp4HTcYqJPw6MB64DZhljjrPWqlaHiIiIiOy3lLAQkaTuvWs5hVEnWVHV18O4yclHLXRr3YpEky506lYU9Mv8sTpo25qPeeKOHxGoc+ZzHzBqLBff9hPyi0uyHJmISHp48hNGWNQFAXCRUHQbJSykc6y1o7IdQxdVWmt/nEK7z+MkK/4LXGmttQDGmC8DdwE/A27IVJAiIiIiItmmotsisk9PPreWwm0BAILGcsUNR6TUr9vqVgTrW6/rgcmKzave57GffT+erBgy4WAu/eHPlawQkf2KN3GERbXz+WxMYtFtQzTcmx+SF8m462O//7cxWRHzN2A9cKUxJq/7wxIRERER6R4aYSEi7dqyvYZ1L2yKTwXV54QBjB6R/AZ7t9Wt2LsR7jkTpn8Xjr42/ftPk/XLFvPsnb8kHHKeNh5x6OGc/90fkJOr+w0isn9pNsJibxUYV7MRFh4DhDXCQg5IPmPMNcAQoBpYbK1dmNjAGJMLTAVWW2s3Jm6z1lpjzCs4oyuOBt5M9cDGmGFJmgxqfOH3+/H7/ftqK72Qzqk00rUgiXQ9SCNdC5KoI9dDpq4dJSxEpE3RaJR//2EZpbGpoCr7eLjxyklJ+3Vb3Qr/XnjgUqjeCs99C4yBKdek/zhdtGbhAp7/v/9HNBIGYMxRx3DuTf+LJycny5GJiKSfy+vFV1BIoK6W6vLdMKIPpiax6DaMKs1gLSORnmsQcE/iCmPMYuAKa+262KqxOCPg17azj8b14+lAwgLYnGrD+fPn069fR0aq6utkbzBnzpxuOpKuh55O14Ik0vUgjbrvWgBdDz1fR66H8vLyjMSgKaFEpE33PfghpXudm+x+l+Xz3zgSl2vfHxndVrciHICHroLy1c5y33Fw8HnpP04XrZo3l+d+96t4smLC8Sdx3rdvU7JCRPZrRX2dm521e8qJnnUnrjN+EN/mMfqKIgeke4BZwECgADgSuA84BphrjCmKtWscxlrVzn6qW7QTEREREdnv6DujiLTy4ZoK9i7YiTc2FdTYs0YwbHBRkl7dVLciGoWnvgIb33KW8/vBlY9Bfln6j9UFy+e8wNy7/xJfnjTjVGbf8HVcrgxMjSUi0oMU9u1H+aYNRCMR6oacRN6gAnh2CeDUsAgHNSWUHFistbe3WLUcuNoYA/A5nLoVv81gCMOTbB8ELAaYPn06w4Ylm0EqwTuvdT4q6TazZ8/ungPpeujxdC1IIl0P0qjbrgXQ9dALdOR62LJlS0ZiUMJCRJqJRi3P/H0lRdZJVtQO9XHhOeOT9uu2uhWv/RQ+eMx57cmDzz4MZaPTf5xOstEobz18H4ueejS+7sgzzmXm56/HtDFCpT5Uz72r7mXh9oVEbITinGL+cupfmrW5a/ldLNi2IOmxpw2Zxo2Tb2y27sZXb6QmWJO075eP+DInDj0xvvxp1af8YMEP9tGjyZ9n/ZkSX9PDns+se4ZHVj+StN/I4pH8/MSfN1v3s3d/xsd7Pk7a99wx53L5xMvjy8FIkC+8/IVW7aLRKJU1lQA8PPdhXC4Xt029jYP7Hhxvs2THEn6/9PdJj+l1ebnnjGazeXDPB/cwd9PcpH2PGngUN0+5udm6m9+4mV31u5L2vWbSNZw68tT48o66HXxn3neS9gP4zcm/YVBBfGpyXtn4Cv9e9e+k/QbkD+C3M5rfO/vtkt+ydNfSpH1PHXEq1xx6TbN117x0DeFoOGnfm6bcxJSBU+LLW8Nb+eLcLyYd3QVwz+n34HV748sPffwQz61/Lmm/g8sO5rbjbmu27ra3bmNj9cZ2ejS5/KDLOXfsufHlqkAVX5371aT9AH427WeMKhkVX35r61v8dcVfk/brqZ8Rjf/WCk0hlxVNjq+vKd9N/pDi+LLXQDgYSXo8kQPE33ASFtNwEhaNIyvaG0HR+I+pvREYbbLW7vObZCxxAkBeXh55eaqxtb/ROZVGuhYkka4HaaRrQRJ15HrI1LWjhIWINLNszkaKap2nX2s98KVvTEnSoxvrViy5B95qvIlq4JK7YdjR6T9OJ4VDIV6+6/d8vGBefN2xF1zKiZ+5utnNgEZvbH6DXy78JdvqtsXXleW2HimysWYjK3avSHr84UWtH6BcVb6KvYG9SfvubWjexh/2p3RMgIhtfvNxV/2ulPoGI8FW6z6p/CSlvkcPbH7eLTZpv80VzhTetaHaZuurg9UpHTPH1Xoqr621W1Pq2ye3T6t1H1V8xJba5E8jlPubzwkZjARTPjehSKjVvjp7LX1a9WlKfSeWTWy17v3d7xOKhtpo3Vx1oLrZcsAGWFmxMmk/cK6BRNvrtqd2Xt2tz+uavWtSSpzNGD6j2XI4Gk753PjDzYuT7W3Ym1Lf3vAZsTyQS+MVX12+m8FjDopv8xio9ydPXokcIBo/4Ativ9cDUZwaFW1pXN9ejQsRERERkV5PCQsRidu9qYZFz3wKODWsz7xuEn1KcvfZp9vqVqyZA89/u2n5zF/DxLPTf5xO8tfW8Mxvfs6Wjz4AwBgXM6/9Ekeefk6rtttrt3PHojt4bbOGQorI/meLKadPrExazdZPMVvc4LIQNXgwBBqSJ69EDhBTY783AFhr/caYRcBxxpiR1tr4UC/jPPlwGlAHLOnuQEVEREREuoux1iZvJT2WMWYYsBlgzZo1jB+ffOoeyT6/38+cOXMAZ264njD8LhyM8Mgvl7B3ex0AU84YyXEXJK9BseexNfGpoDwD8xnw1cnpnwoqHIA/HAXVsafRj/8anP7zffdJs32ds8qdO3jijh+zd5sTn8fn45xv/g9jp0xtto9QNMQDHz7AX1b8pdnT1VMHT+W2qbcxsngkAC7TfPqbqE19vvfO9jWYZqNArLWtnljvSl9D6xEmQKuRJx35f1LLY7alvfPW2fe6P56b9mTzvTaeN2stp80+LaXPyJbvVecmvX2Txev3+7noiYvYFtnGgMpcznrbSVxPPnw4s0IPsq3hAaKUUBexvFoT5st/moHbk3yqL8mstWvXMmHChMbF4cmmDpKOM8ZMBDZZa+vbWP86Tv2Ik62182PrrwX+BfwXuNLG/gdnjPkycBfwd2vtDWmOMf59YvPmzR2qYTHq1ufTGYpkyIY7uuchH10PPZ+uBUmk60Eadde1ALoeeoOOXA9btmxh+PD4SP60fZ/QCAsRAeDBf75PTSxZ0W94Iceck7wuRLfVrfD44MpH4N/nwagT4bSfpv8YnbTjkzU8+eufUF9VCUB+SSkX3vIjBo1tnTz81uvfYv6W+fHlvrl9+e4x3+Ws0We1OWVUo5Y3GDuis32NMe0mGTLdN539jGm6yZr4ulWbTsZ7IJ2bbL1Xl3F1qr/OTWb7tozXZVz0c/VjW2QbNblNIyiq66PgBWPqwZbgiXWpbwhTVNh6Oi6R/dBngJuNMfOBjTgjJCYAZwFe4JeNyYqYfwOXA1cAo40x84BxwEXAp8D3uzF2EREREZFup4SFiPDS3E+ped+Zn9y4DaddOynpk6/dVrei0cBJcN2rUDwUUijA2x0+Wfwuz//h/xEOBgAoGzKMi/73dkoGtD0l1kXjL2L+lvkYDJcddBnfOOobFOcUt9lWRKS36e/uDyHw+yIYtwsbiVJTG4A+4KKeCE7RbYDaupASFnKgeB04GDgSOAnIx6ld8QLwF2vtnMTG1tqoMeZ84Facgtw3AXuAu4HvW2t3d2PsIiIiIiLdTgkLkQPcrvJ63n9iPQWxJ2U9R/ahbEjBPvt0S92KvRugZETz5ERZ8lEf3WXpi8/y+r//DrGpiIYdcijnf/v75BYWAs40K/WhegpzCuN9Thl+Ctceei2zR87m0H6HZiVuEZFMOchzEPl5+Zw59Uw+WvIvanbvpqaqFvqAwZkNx2UMLqDWrzoWcmCw1s4D5nWwTwC4PfYjIiIiInJAUcJC5AB39x/eozjiJCsqi1zces3hSftUPrOO8E7n5pNnYD6l5yWvddEhO1bCv8+Fg86G8/4ArgxMM9VJ1loW/PffrHj5ufi6idNO5vQbv4XH6wWgwl/BLW/eQo4rhz/P+nOzKYlunnJzVuIWEcm0IZ4hDPEM4egBR7Ot//PU7N5Ng7+BYMSNy9TTWPLCY6CuTgkLERERERERaU0JC5ED2H8f+5jiXc5No4CxfOZrk5NOBZXxuhW7PoL/nA/+vbD8fug7Fk7qGTf5o+EwO995g7rNn8bXTb3wMqZddhUmNhJkxe4V3PzGzeyq3wXA3E1zOXXkqVmJV0QkW4r7DYi/rg77nIRFjNeA3x/ORlgiIiIiIiLSwylhIXKAWrexku1zt+KLTQU1+JQhjB1Zus8+Ga9bUb7WKaxdX+EsDzsWjr0+ffvvgtq9FWyd+zyBCicRYVwuTr3uKxw+6wzAGXnxyOpHuGPxHYSjzo24/nn9VaNCRA5Ixf36x1/XhPIo9TUlLDwG/JoSSkRERERERNqghIXIASgQDPPQH5dTap1kRXV/L1+99OB99sl43YqKdc40UHVOQoAhR8JVj4GvKH3H6KStH3/IM7/9BYGqSgC8ubmce9P/MnryFAD8YT8/e/dnPLPumXifowYcxZ0z7qRfXr9shCwikhV10Tre2/Uea8Ib4+uqXWWUkTjCwmiEhYiIiIiIiLRJCQuRA9AffruY0lon8VDntnzhG0cl7ZPRuhV7NzojK2q2O8uDDoPPPQm5Jek7RidYa1nxyou8fu/fiEYiAHjyC7nwlh8yfOIhAGyu2cxNr9/E6r2r4/0+d8jnuGnKTXhd3qzELSKSLfMC83j7jbcZsjuX2ThJ7ZpoMSZhSigPEA5GsxShiIiIiIiI9GRKWIgcYF589hPyN/gBiGA59rMHMbB/wT771C3JYN2Kqi3w73OgeouzPGASfO5pyOuTnv13UjgUYu7dd/HB63Pi6/IGDmHQtFn0GzkagPlb5nPrm7dSE6xxtnvy+MkJP+GM0WdkJWYRkWzr53JGldXlNY2gqI7k4TIN8WWPgYMHFHZ7bCIiIiIiItLzKWEhcgDZtbGajS9viS8XnTCAGdOG7bNP/fu72fvEmvhyWutWVG+He8+Byk3Ocr+D4OqnoaBvevbfSTV7ynn2zl+y/ZOmURNHnH4OtX0GxotrW2t5ePXD8WTFqOJR/G7G7xjXZ1xWYhYR6Qn6u53aFXW5kfi6mqJDMOd/Gx5dCzhTQmmEhYiIiIiIiLTFle0ARKR71FcHefGvK4mEnZtEw48ewLVXH7bvPu/vZs9DH0PsvlLBcYPTW7fCuMDjc16XjYXPPwOF/ffdJ8O2fLyK+2/9VjxZ4cnxcdbXv8O0Kz4fT1YAGGP4xYm/YGjhUE4ZfgoPnv2gkhUicsBrHGER9lgiPuczs3pPBa7cpinyPAZCwUib/UVEREREROTAphEWIgeASCTKy//4gNq9AQAGjSnm7M8fss8+LZMV+UcPTG/dCoCigXDN8/DsN+HMX0PRoPTuvwOstayY8wKv//vv8XoVxf0HcN63b2Pg6LH4/X5CNoTXNN10K/GVcN+Z99Evrx/GmGyFLiLSYxSaQgq9hdSGaqnLi1AcMNRUlENO02ek10BYCQsRERERERFpg0ZYiBwA/vTbxWxbWwlAfnEOZ3zpMNze9v/5t5Ws6HPReIwrDTfloy2mASnoB595AEqGdn3fnRQOBpnztz8w9193xZMVIw49git/8TsGjh5L1EZ5YPUD/K76d9REa5r17Z/fX8kKEZEYYwyjikYBUOlz6iXZaJRAsC7exmPg4y3V2QhPREREREREejglLET2c/c/9CGedbEbRS4444bDKCj1tds+o8mKVU/Bv06Hhp5zo6qmopyHb7+VD15/Jb7u6HMv4uLv/YT84hJ21u3khldu4P9W/B/VtprH6x8najX3uohIe0YWjwSgNrep8Hbt23fFX3uMYcfe+m6PS0RERERERHo+TQklsh97Z8k2Kt7Yjgcn2ZB/XH8Gjy1pt31GkxWL74bnvw1YePhKuPKxpvoVWbLuvUW8dNfvaahxEiieHB+zv/wNDp52MgCvbHyF29+5napAVbzPIPcgJSxERPahcYRFXV7TtE91H75Ige9MwBlhEQnpc1RERERERERaU8JCZD+1dUctb97zMQWxZEXtUB9f3UeR7YwlK6yFN+6AeXc0rSsZAcbdtf12QTgYZP4D97DspWfj64r7D+T879zGgFFjqAvVcceiO3jqk6fi2wfkDeBs19mM9Y7F49JHp4hIe0YUjQCgLq9phEVVOEpBLEftNRAN2myEJiIiIiIiIj2cpoQCjDFDjTHfMsbMMcZsMsYEjTE7jDGPG2OmdmA/M4wxdh8/12TwbYjEBYJh7v3NEgpiD7dW5hu+/p1j222fsWRFNALP39w8WTHtW3D+n8CdnZv+FVs28+BtNzdLVow9+jiu+uXvGDBqDCt2r+DSZy9tlqw4beRpPDD7AcZ601x0XERkPzSqeBQe46G434D4uuqQG3ASGB4M0bBGWIiIiIiIiEhrekzY8XXgFmAdMAfYDYwHLgAuMMZ81lr7cAf2Nw94o431y7sUpUiK/vi7JZTWOjeD6l2WK286mvw8b5ttM5asCDXAE9fBR02JAU7/BRz/1a7tt5Ostax8bQ6v3/t3wsEAAG6vlxlXX88Rp52JMYZ/r/o3v3vvd0Ssk+nJ9+Tzv1P/l/PHnk9DQ0NW4hYR6W1GFo1k0VWLCFTV8LdXrgagJuTD4MdShNeAVcJCRERERERE2qCEhWMRMMNaOy9xpTHmJGAucJcx5ilrbSDF/b1hrf1xmmMUScn9D31I3qdOMdMIlmOunMCo4cVtts1YsqKhCh66Eja86Sy7PHDBXXD4ZV3bb2fDqavllb//iTXvvhVf13fYCM7+5v/Qf8So+LpBBYPiyYrD+x/OHSfewfDi4d0drohIr+YyLrwuL56SUlxuD9FImJpwLi7qiFCExwARTQklIiIiIiIirSlhAVhrn2hn/ZvGmNeB2cBhwJJuDUykg95e3LzIduHx/Zkxre0b7hlLVvj3wr3nws6VzrK3AC7/D4w7tWv77aStH3/I83/8f9SU746vO+K0Mzn5c1/E68tt1vb0UafzzrZ3GJg/kOsPv161KkREusC4XBT160fVzh1Uh3JxmToi1im6TVgJCxEREREREWlNd+OSC8V+h/fZqrnxxphvAXnAFuA1a+3WzhzcGDMsSZNBjS8CgQB+v78zh5Fulji9ULqmGqoub2Dlfz+JJytqhuTwhcvGt3lNBFbtofbx9RC7X+Q7sh+5Zw2jIZCGWKJeckpH4t65EptXRuCS+7FDjoJuvjaj0QhLn32SxU89grXOG/UVFDDzCzcyZspUNlRv5oUNL3D9pOsxpilJ8z+T/wdjDKFAiFD8n39mzplkns5b76Tz1vu0d84K+vSlaucOAhE34Px/wG0M7ojV3yw9QCCQ6uBhERERERGR7qGExT4YY0YApwLbgZUd6PrZ2E+jsDHmj8B3rY3NN5O6zak2XLhwIevWrevg7iXb5s+f3+V9RBoMu97NJ+J3AVDpi3DQpArmzJnTqm1phZcxawoxscRGef8AG31r4JU1XY6jkSv3Qo4oq2TtwHOo/aAcPmgdRyaF6mrZ+c7rNOzaEV+X238QA0+YyeryPdz7zA+Z2zCXECGqN1RzeM7hHdp/Os6ZdD+dt95J5633mT9/PtvC25gfmM/g2kqG4gYgkjCzZk4k2ub/o6R7lZeXZzsEERERERGRZpSwaIcxxgvcB/iAW1JMNOwGbgWeAzYABcDxwB3ATTjPs387E/HKgSsagvIlefFkhacwwiFT62lrNqM2kxVj66ALs0CZaJiiwDaq80Y0xeTysmzklzq/006y1lK97mMqli0kGoqNjjCGskOPos+kyWyP7uCp2v+wLbIt3mdBYAGHeQ9rNspCRES6JkyYD0If4MktYSilAISiAdzO/6oo1EeuiIiIiIiItEEJizYYY1zAvcB04B/W2vtS6WetXQWsSlhVBzxtjFkIvA98wxjzK2vtrg6Ek6zi7yBgMcDUqVMZO3ZsB3Yt2dLQ0BB/anj69Onk5uYm6dG2mrogj/1+JbYmCEBhHx9nf2MSBaW+Vm0Dq/ZQ++76+LJvcj8mnDeSg7pyo75uNzlPXYdr90cEPv8yts/ozu+ri6p2buf1e/7G7o+b/gkW9u3HaTd8gz5jRvOPVf/gwTUPxotqGwyXj7+cLx/6ZfK9+Un3n65zJt1L56130nnrfVqeswbTwN+f/jt1eU3PewR9heTFcsklXi+zZ8/ORqiSQCNzRURERESkp1HCooVYsuJfOFM63Q98uav7tNbuMMY8DVwHTAWe7UDfLfvanvhUuM/nIy8vr7NhSpbk5uZ26rwFgmH+8ZtFlFY6N4NyC72c/60jKR3Y+uZ7/fu7qX2iqWZFWgpsb1kCD38OapzRCrnPfhm+NA+6eaRCNBph6fNPs+CRBwgHm6YbmTTjVGZ87jpW1Kzia69cyeaaptnVxpWO4/YTbufw/h2bCqpRZ8+ZZJfOW++k89b75Obm0ievD2W5ZdTl1sfXB0pHkLfbeW0iVue1B/D5Wj/gICIiIiIikk1KWCSIJSvuAa4G/gtcY62Npmn3jZMEF6Rpf3IAi4Sj/O7n78aTFUFjOf6qCe0mK/Y89DHEruS0JCuW3gfP3wwRZ2QHRUPg7N91e7KifNMGXv7bH9jxSVP9jeL+AzntS19j2KGH8ZN3fsKTnzwZ3+Z1ebnh8Bv4wqFfwOv2dmusIiIHmlHFo1iX93582R+ooTQ2PZQ7YolGorga54gSERERERERQQmLuBbJioeBz3WiQPa+TI393pDGfcoBKBqN8tvfLKRop5MsCGOZdNk4jpo8sFXbtCcrwkF46VZYcnfTuhEnwGX/hsIBndtnJ0TCIRY++SgLn3yEaCTsrDSGI884hxM/czU5uc5Tu/6wP97nqAFH8aMTfsSYkjHdFqeIyIFsdMlo3s9dFl+ur6+icaZLj4FwKEqOEhYiIiIiIiKSQAkLmk0DdTXwKHDVvpIVxph+QD+g3FpbnrB+irX2vTbafxOYCawlVm9CpLP+/Oel5G9wbsRHsQw7ewSzZ45s1S7tyYqanfDI1bD53aZ1x34JZv8cPDmd22cn7PhkDS//9f8o37wxvq7PkGGcfsM3GDrxkGZtbzn2FlaWr+TaSddy6UGX4jK6MSYi0l1Gl4wm7LE0eCPkhtzU1uyB2CxQXmPYtdfPsMFF2Q1SREREREREehQlLBw/BD4P1AJrgO+b1lPbPGWtXR57/TXgR8DtwI8T2jxujAkBS4AtONM/HQccCVSSJBEikszd976Pa1V1fLlk+kAuPnd8q3ZpT1ZsXgyPfA5qtjvLbh+c8zs48srO7a8TQoEGFjzyAEuff5rGmdqMy8Wx51/C2DNn8aeVf+HINUdyyYRL4n365fXj2QufxevS9E8iIt1tdMloAGrzwuSG3NRU744nLDwG6upDWYxOREREREREeiIlLByjYr8LgdvaabMBWJ5kP3cBpwPTgb44t4s3Ar8H7kxWQFtkXx5+4mP87+7G4CQdXEeWcvVnD23VLiM1K8J+qNnhvC4eCpffD0OP6vz+OsBay5p332Le/f+ipnx3fH3/UWOYef2XebH+LW5+7kL8YT9vbX2L00edTlFO0xO7SlaIiGTH6GInYVGXF6FfNYSiwfg2J2ERzlZoIiIiIiIi0kMpYQFYa68BrulA+x/TfGRF4/pfAb9KU1gicS+9+ik752zFHUtWBMYVcvMNrRMGdUt2sPeJtelNVgCMng4n3gSbF8Gl90Jh/67tL0U7P13H6/f+na0fr4qvc3u9HH/xFew5rIAvLv8W2+u2x7eFo2HW7F3DlIFTuiU+ERFp35DCIXhdXurynMREKBqIb/MaqNcICxEREREREWlBCQuRHm7H+io2PL0xnqyoHeLjuzcf3ayNDUXY+/Q66pfsjK/rUrLi0/kw8kRwJdR8mPk9wIA78x8b9VWVvPXQf1j5+itgbXz9yMOPZPj5p/DnzfewbEFTIVe3cXPZQZfxlSO+QmluacbjS6doIED9woW4S0rIO+KIpvX19ex54IGU9lF64YV4+vWLLzesWUPtvHlJ+7ly8yj73FXN1tW89jqBdZ8k7esbN46imTObrdvzn/uIBhqS9i2aMQPf+KapzMK7d1P51FNJ+wGUXXUVrry8+HL9smXUL1nSbvtwKEyftWuIFBbC7NnNtlU9+xyhHdvb6dkk74gjKDj22PiyDYepuOeelOItOftsvEOGxJeDGzZQ/corSfsZl5u+X/xCs3W1by2g4aMPk/bNGTGS4tObv9e9Dz1MpKa6nR5NCk44gbxJk+LLkaoq9j7ySNJ+AH0uuwx3SUl82f/BKureeTtpP3dRMX0+c3mzdXWvvEqfN94AoGrrNuq8bX/u5B5yCIXTpjVbV3H33dhoNOlxi2fPJmdkU/2f0NatVL3wQtJ+AH2/8AWM290U78JF+N9fkbSfd/AQSs45u9m6ysefILynImnfgmOOIW/y5PhyT/uMiP9by88neuKJkJeH2+Xm+sOvxx3cSs2G5S1GWBhqGzTCQkRERERERJpTwkKkB9v84R5e+NtKIiHn5ltkSC433XosroREQrjcT8UDHxHaXhdfV3DcYErPG9vxZEWgFl66BZbdD6f/Ao7/atM2d+anVoqEQyx78Vneefwhgv76+PrSQYOZfNmlPBmdx+3vfaNZn2lDpvHdY77L2NKxGY8vXcJ791I7bx61r71O7VtvYevr6X/zzc0TFn4/u+/8bUr7K5w2rdnNyMBHH6XU111W1upmZPWLL1L97LNJ+xafd26rhEX5X/5CpLIyaV/vwIHNEhahnbtSfq+ll1zSPGGxcBG7f//7ffbpDzQMHdpqfeXDD+8z2dGo75e+1DxhEYmkHG/eEUc0S1gE1q1Lqa/JyWmVsKiZ+yqV/30oad/CU05plbCouPtuQps3J+3rKihonrCorEz5vRaffnrzhMXy5Sn19Y4Y0SphUfvcs/Sf/yYAe198qd2+fT772VYJi12//z8IJX9y3zd2XLOERXDzlpTfa9/Pfx4SExZvvUnFP/6ZtF/+sce2Sljsuf9+Ah99lPygN9/cPGHRAz8jGsfe7TUuCn72UwBuPOJGVte/xXNzljcbYeEx0KCEhYiIiIiIiLSghIVID7Vm8Q7m3vsR0YgzwmDYxD6c/dXD8XibbpL5Pyhnz6NrsAGnlrvxuii9cBwFRw3s+AG3LYPHr4OK2JOzr/wIDjoLykZ3+b0kY61l/dLFzLvvn+zdvi2+Picvn+Mu/gxHnXkuf1zxZ57+4Jn4tlHFo/juMd/lpKEnYUwXp7zqBsFNm6h57TVq575G/dKlEIlkOyQRkYyoe/ll7I9+iPE6ie7ifk4qI2ybRlh4DQSUsBAREREREZEWlLAQ6YHuuW8ldQt203gbfvQR/Zh93aR4ssJGolS9uIHat7bG+3j659H3qoPxDizo2MGiUXjnTzD3JxCNPZXsLYCzfwN9RnX9zSRRsWUzb/znH2xYsbRppTEcNvM0pl3+OQpK+wBwzaRreGj1Q7iMi68c8RUun3h5ryiovffhR9h7/30E1rY9zZK7Tx8KZ86k8MTmT4m7iooY9qc/pnQM77BhzZbzjzkmpb6NNxMTlV19daun89viGTS41bohv7oDm8KT7bkJT/AD5IwYnvJ7dRU0v76LZs/GN6790TWBYJDly5cTzc1lYott/b/1zZRGhOSMGtVs2Xg8KcebOJIEIPeww1LrmzgdW0yfyy9vNZqgLYlP0jca9KMfYRv8Sfv6Djqo1b5Sfa8tj1t48nS8g1K4DhNGzDQq+eIX+ST2333y5Mn4cnLa7Nvy2gcY9vvfNZtKrj25hza/Dn0Txqf8XvE0//Op5Lzzmo2Qao+7T59W6wbecgvR2pqkfXPGNr/Oe9pnRCAYZMNdf6Vg7VpsOExg/XpyY9dTcf8BAERsmKiN4DJuPBgCDUrcioiIiIiISHNKWIj0INZa/vLXZbCiMp6smHDcIGZ9biIut3MDM1wZYM+DHxHc1HSDK++I/vS5aBwuXwf/SVdvh6e+DOvfaFo35Ei4+G7om9kplmoqyln45CO8P/elZvPNDzpoIntOKGPbsOJ4sgKgNLeUO0++k0P6HkKf3NY3/XqqyJ6KVsmKnJEjKZw1i6JZp5A3eXKzufAbuXJyKDr11E4d0ztkSLNpiDoi77BD4bBDO9W38OSTO9XPXVzc6ffqGzMa35j2RwF5/H7q2kmi5B99dJvrkzFud+fPzYABeDvZN3fiRHIntky7pKZlQixVroKCTr/XnOHDyRk+vFN9cw8/nLodOwAomDmTvDaSGu0pmjWrU8f0lJV1/jocP75VcipVBcdN7VS/nvYZ4fH7qVi/nspp0zj+yzeQW1oa3xbMsRiPGxuOEI4GyHHn4zEQDChhISIiIiIiIs0pYSHSQ0SjUX5/52J865pqUQTGFjDr6onxmhUNa/ay56GPidbHptFwG0rPGUPBcYM7Ni2StfDhU/DczeDfE1tp4MRvwYzvgaftp5nToXbvHhY99Sjvv/oikXDTdCCFffsRmT6Kv0RfoXpnNYV7Crlw/IWU+JrmxJ82tHM3XTPNhkLUzptH5WOPM+iHP2h2I7DwlFPY/Yc/knfEERTOOoWiU04hZ8yYXjGNlYhIRzTEElQuny++rjZYy/RHT+ainCEUh72EokFy3Pl4lbAQERERERGRNihhIdIDBINhfnfHQgq3NRUk5fASvvXlI3G5XNiopXruJmpe2wSxmU7cpT76XnUwOcOKOn7AFf+Fp25sWi4aDBf+FcbM6NL72Je6yr0sfuYxVsx5kXAoYR7z3Fy8U8fy35J3qAi8F1/fEG5gyY4lzBrZuaelu0Nw40YqH3ucyqeeJLK7HIDKQw+l/9eaipX7Jkxg/Jvz25ymR0Rkf1eYU0j/vP7U5UUorvcSjAYowCm6Pbo09ZEzIiIiIiIicmBQwkIky+r9If5252JKKpzRBhZLwQkDuPbqwwCI1AbZ89BqAp9UxvvkTiyj7LIJuPI7WcNh0oUw71ewdwNMPAfO/QMU9O3iO2lbfXUVS559gmUvP0c40JSQ8eT48B49iqfLlrEtuhpigy1cxsW5Y87lhiNuYHhR56aTySQTClH7wgvsevoZ6hctarW97u23myUsjDFKVojIAclaizGG0SWjqctdB0AoVnjbbQzFntbT4YmIiIiIiMiBTQkLkSyqD8Bff7GU0lqnhkMEy8DZQ7n8Imee+sCGKioe/JhodWxEgoHi00dRNH0YxtWBKYVqd0Nh/6Zlbx6c90fw74WDz4MMTE/kr63hveeeZOmLzxJKKPbr8ebgmTKSR0sXUuFaA7HyFQbDGaPP4MYjbmR0Sfs1CbIl+MknDHjyKYpWrKDc36J4scdD0cyZlF56CQUpFEUWEdlvWUvtc89RMf9NwhUVjHrwAUaXjGZ13moAwtGmxHXUrymhREREREREpDklLESypK7e8MnbefQNOXfsQ1jGXTSac2aPwVpL7ZtbqXrp0/gNfVeRl75XTMQ3pjT1gzRUw2s/haX3wZffgn7jmraNnp6+N5N4yNpalr74NO89/zRBf318vdvr5YhTz+SY8y/hka1PUfHeq/Ftp444la9M/grj+3SuaG13CH6yjtJ33222LmfUKEovvYSS88/XKAoREQBjqH7oYYKrVgEQ3LKVUcWjWJrnJCdC0aYpAaMN4TZ3ISIiIiIiIgcuJSxEsqB2b4CaJXn0DTnTYTQYy5SrDmLGtGFE/WH2PLqGhg8r4u19Y0oou2Ii7qIUi2FbCx89Ay/eAjXbnXXP3wRXP5OR0RQAlTu2894LT/PBG680m/rJuF2Mmz6dmZddQ1GZc1P/koJLuPeDezllxClcPelqxpSMyUhMnRHato3qF14g74gjyD/mmPj6/JOnE83JAWspmj2bfp+5nLyjj1bxbBGRFvJnzognLGpfm8voWWOpzXWSE6GEERZ1NcG2uouIiIiIiMgBTAkLkW628YMKXrlnFeE6J1kRzjHM+OIkphwxkODWWioe+IjInoZ4+6KZwyk+bWTqU0BVboIXvgtrXmpa582HcaeBjYJJ75zhW1d/xHvPPckni9/F2mjTBpeLnWMM84dv5IKjwpxX1jQCoTinmDmXzCHXk5vWWDorvHcvNS/Pofq556hfsgSA4rPOapawcOXlseULXyAwZDCnnXsueXkqFisi0pb8GTOo/NOfAaiZ+xqjLzqVurzWCYstO2uyEp+IiIiIiIj0XEpYiHSTYDDMy4+sYdNbO+Lr3PlRLr15Cv2HllK7cDuVz66DsAXAle+hz2UHkTexLMUD1ME7f4G3fguhpqmYGD8bzvoN9BmZtvcSjUb4ZNE7LHnuSbavXd18o8fNxpEBFg/fSW2+c4PqibVPcOMRN1LiK4k3y3ayIrxnDzVz51LzyivUvfMuhELNtte8/jrRhgZcuU1xNowe1c1Rioj0Pt4xY/COHEFo4ybqlyxhXCiXSIHzJ2filFDeiM1WiCIiIiIiItJDKWEh0g02ba3mvt81FdcGyB0QouzwBgqLvOx9eDX1y3fHt+UML6Lsyol4SlO4qR+NwNL/wBt3QG1TMoTCQXDmr+CQ89M2DVSwwc8Hr7/C0heepmrXzmbbIvlu3h+2h49HVBPIaXqfh/U7jGsmXUOhtzAtMXSVf8UKdt35W2ckRTTaanvOmDGUnHsOxeec0yxZISIiqTHGUHTKLPbccw9EItTPf5NhZSNpyKkjbJtGWHhbfwSLiIiIiIjIAU4JC5EMm/P6RlY8+gmlUSdpEAWOPW8E24OryPO7qPrHR0TKm6aAKjxhCCVnjcZ4XCkewcDiu5uSFcYNR38BZv0Ackv23TVF1eW7WDHnBVa8+iKBurpm22qKLStGVrB+SB1Rd2NEhpOHncw1h17DUQOOymqdBxuJYNxN02CZ3DzqFy1q1sYzaBDFZ55Jybnn4Dv4YNWlEBHpoqJTYwkLoObVuYy+ZDS1eSsIRZpGWORENcJCREREREREmlPCQiRDIuEof/3bMqIrK8nHuQFe57YcfcV4Dp/Sn8ADaxm5voBI1ElWGJ+bPhePJ//w/h07kMsFp/0Y7r8YJp4Ds34E/SekIf4w699bxPuvvcyGFUudQt4JRh5+JEeedR43fnIb2+udJEb/vP5cMO4CLp5wMUMLh3Y5hs6w0SgNH35E7WuvUfPKKxSffRb9vvzl+HbfhPF4R47AYCiaPZui2aeRe+ihSlKIiKRR3uTJuMvKiOzZQ+2CBdz60+eYv/ifBFbtibfxKl8hIiIiIiIiLShhIZIBO3bVcfedSyitiuCKJSsqi118/uajGWgMex76hDGfNE2R5B2UT9mVB+Ptn7/vHe9eA3NvhxNvgmFHN60fOwtufBsGTupy7JU7trPytZf54I1Xqa+qbLbNugyHnnQKU86+gP4jRwNwifsSlu1axiUTLmH6sOl4Xd4ux9BRkcpKahcsoG7+m9S+9RaRior4tpo5rzRLWBhjGPXQQ7hLS5WkEBHJEON2UzhzBlWPP4Gtrydn2ceU9hvIluj2eBsfyliIiIiIiIhIc0pYiKTZGwu2sOjB1ZRGnJvhFkv0kBK+/dlJ1L+xmZ3v7STxHo1vcl/6XnQQrhx3O3sEanbAG7+EpfeBjYB/L1zzfFNtCmO6lKwIh0J8suhtVr72Mps+eL/V9tq8MGuG1bJ2eC2XX3EJ/YuHx7ddf9j1WbnxH9y0iarnnqNu/pv433+/zXoUACYnh6jfjysvL77O06dPd4UpInLAKpo1i6rHnwDAv3QZRQeNblZ0OydbgYmIiIiIiEiPpYSFSJpYa7n33pXULNxNQWxUhd9lOfzcURxrXZT/fimEm26qB71Rto6s5+jzj24/WVG1Bd69C5b8C0L1Tesr1kH1Nijp2rRLFVs3s3Luy6ya/xoNNdXNtkWNZdOAetaMqGV7vwascWpTLNm5hOEJCYvuSlZYa5sdq+HDjyj/wx9btTP5+RQcfzyFJ51E4cyZeAcO6Jb4RESkuYITTqD/t2+maNYsfGPGUPnuW4SiTUW3c9AoNxEREREREWlOCQuRNKjcWc8bD66mfvVe3LEbMDUFhiumj8CzcBe1DeF4W5PrJm/aIJbWrMS2N6hi54fw9h9g5aMQbepLThGc+E047iuQU9CpWKvLd7PmnTf5+O032bl+bevt+SHWDK/lk2G1NPicBMuo4lGcO/ZczhlzDkMKh3TquB0Vqa6mfskS6t59l/qFi+j7xS9Qct558e0FJxwPbjdEIuSMG0vhSdMpnH4SeVOm4MrRc7siItnmys2l3/XXx5ffqV1G2CaMsFC+QkRERERERFpQwkKkCyKhKO+9vJH3XtpANOzM82SAwcNymepyE31ne9PsTx5D4QlDKZ4xjIAJY+esbL3DUAM8cjWsfbn5ek8uTLkWpn8HCvp1OM66yr2sWbiA1W/PZ+vHH7ba7vZ4qBzpZUG/T9lRFgADZbllXDL6LM4Zew6HlB2S8ZEU0fp66t9bSv3Cd6l7dyENH37YbJqnunfebZawcBcXM/T3vyPvkEPwDs1OgW8REUndu3XLOShhhIUHQyAYxpejP0dFRERERETEoW+IIp308usbWPXMBnz+ppvqo8t8HFbkwVQFiRJxVhrIP2ogxaeNxFPqc9b5w23sEfDmQqTpZg55feDYLzk/HUxUNNTWsnbR23z89nw2f/A+1rau8TBg9FgOOekUDpk+k1d3zeOFd3/K2SPO5pwx53Dc4OPwuDL/EVH51FNUPvKoU4ci3M5/F2OItJiyCqD4tNMyHJ2IiKTLiIFjCZodRG0El3HjNQYbtipmISIiIiIiInFKWIh00NYdtdz31+UU7QgSSz/Qz2s4emAevtoQVDVNd5F7cBklZ4zCO7D19E2uaIjBlUvAntp8w7RvOTUqjv8aHHkV+ApTjq2hrpZPly7m47fns2HFMqKR1gmAysIg6wfX84VLbmHW5HPj62fnz2bWiFnke/NTPl6qrLWEtmzBv2wZxWeeifF649vCO3bgX7q0VR/fhAnkT51KwXFTyT/6aNwlJWmPS0REMi+w/lOqn3+e05+fw/MDfISiQXzuPDzGGakoIiIiIiIi0kgJC5EURcJR7n/oQ8oX7KTIOtMjFblgQqGHYS4DtaF425yRxZScOQrfqDZuslesw7Pk35y26l5yw1UE1h0Ph53ftH3MDPjGMnB7W/dtwVrLnq2bWffeIj5dtoStqz/ERlvf/KnOD/Hp4Ho+HVxHZVEIj8vDDl/zEQs+tw/aq6nRQdFAgIZVH+Jftgz/8mXUL1tOpLwcgJzRY8g77NB42/ypU531o0aRf9xUCqZOJf/YY/H07ZueYEREJKtq58+j/M9/Jg/w9h1CKBrA587DayzhYCTb4YmIiIiIiEgPooSFSAqWrdzFC/d+SGldlFwMeQbG57kYldNYYtvhGZBPyRmjyD24rHnNh0AtfPgULLsfNr2DF2hMR3je/VPzhIUx+0xWhINBNq96n/XLFrN+6RKqd+9ss11dbjiepKgoCZLvzefEoTM5ZcQpnDTsJIpzijv7n6MVay2Vjz5KwweraFi1isCaNdhQqM22/mXLmiUs8g47jHHz3sA7cGDa4hERkZ6jaNYsdt3xKwDKakOEo85IRI8xhIMaYSEiIiIiIiJNlLAQ2Ye9VQ38++73ca2poRSD18AEn4vRue5mgxHcJTkUnzaS/KMGYlyxRIW1sOkdJ0mx6ikI1TXbdxQXO0qnUHbKj5MObKipKGf90sWsX7aYTR+sIBwItNmuz+ChVAyBl73vsbNPgLK8MmYOP5dTRpzC1MFTnVEUXWCDQRrWrMX668k/5pj4emMMFX//B6EtW9rs5youJm/yEeQfeWR8REW8r8ejZIWIyH4sZ/hwfBMmEFizhoGVYULW+X+Y2xi27aql79DUpz4UERERERGR/ZsSFiJtCPrDLH9tM289/ym+KLgxjPG5GJfrIidh5ITJ81A8cziFxw/GeFukHd76Lcz9Seud9zuI0KGXMbe8PwFvKbOHHNWqSc2ecrZ8+AGbP1zJlg8/YO/2rW3GGTGWoQdPYuLR0xhz1NH0GTyU93a+h2vzG8waMYvD+h2G29W5eZ7Ce/cSWL2GwJrVNKxeTeCjj2lYuxZCIXyHHMyYJ55o1j530iQnYWEMOaNGkTd5MnlHTib/yCPJGTsW43J1Kg4REen9ik6dRWDNGvJCYULRpqT7zl11HJbFuERERERERKRnUcJCJEHAH+b91zazYu5mAvVh8oFhOS4OynWR50qY4snjomjaEIpOHoYr3ws1OyFgoHBAU5uJ5zYlLHzFcOhFcOTnYOgUwg0NBObMiTetqSiPJSdWsvnDlVTu2N5ujP6cCJsH+NkyoJ5t/Rq4fcYNTBl7Xnz7lIFTmDJwSqfef/3ixZT//R8EVq8mvGtXu+0Caz8hGgziysmJr+t73Rcpu+pKfAcfgruwdZFxERE5cBWeMovyv9xFXjBMKDYlFECoru3pA0VEREREROTApISFCLCrvJ6HH/wQ3/o6Ig0RBnoNQ/PdDPQaPIm1KAwUHD2IolNH4AlthqV/ho+fhy2LYfp34JTvN7XtPwGm3ghDj4KJ50BOPgA2GmXvtq1Ur1+Df9d27n/1Gap3tV2HApxRFOWlAbb3bWDzAD81feCoQUdx8ZDjOX7w8RxUdlBK7zHq9xPcsIHA+vUE139KYP06+l53HXmTJjW1CQSpe/PNtndgDDljxpA76RCnTygECQmLvMP0jKyIiLQtd9IheAYNIndPBXUJIyyiSliIiIiIiIhIAiUs5IC2c3cdD93/IXZNNcPcLobmuBhU4sGbmKSIyT2kjJLJdXh3PQD3PQ/la5o3+Pj55gkLwJ7xS6p27mDHkiXsXP8JO9atZcf6tYQbGtqNyeX2MHj8BJb7NrDU9yl7+oQZO2ACxww8hhuHnMCRA48kz5O3z/dVv3gxgXXr4smJ4Pr1hLZta9Wu4PjjmyUscic6yQ9XSQm5Bx2E76CDyD1oAr6DDsI3diyu/Px9HldERKQtxhiKTjmFwH//S2XCCAtTV5/FqERERERERKSnUcJCDkjbd9bx8P0f0H9DHUd73Awu8pLjap2kcOV7yBvjIt/1Er5tD8ITO9reYf+DsRPOpHrHVnZu3MDOdWvZsf4TdqxbQ7B+3zdjIi7L3j4Rzp5xFSMOOYzB4w/C68tlzPZFXECUw/sdTr63KVFgg0GCGzYQ3LyZ4ObNuHLzKL3owubv7/s/ILhxY9L/DsF165ste/r1Y9y8N/AMGIBpI2kjIiLSWUWnzmLvgw8SjTQlLFx+fxYjEhERERERkZ5GCYsExphjgNuBEwAvsBL4rbX2kQ7swwfcAnwOGA7sAZ4Dvm+tbb8ogGRcNBrl9Tc3s3HuZsbWhDnX68JX4G3VzuS6yZvUj/wj+uMbW4JZ/Rw88tv4dmuhKpRLRfFRVOQfTEW4hB2bdlP57jKiwRuSxlGbG6a8JEBFSZDdfQK4hvThiCFHMvm4CyjMKYy3mxwaRP3SpdRvX0bVtu0EN28mtHkzoe3bIRqNt/NNnNgqYZEzZkyzhIWrqAjfmDHkjBlDzpjRzuvRY8gZPqxVfN6BA5O+BxERkY7KP+YYXEVF2HBiwqL9EYciB7p0fDcREREREeltlLCIMcbMBF4GGoCHgBrgYuBhY8xwa+2dKezDBTwNnA68CzwOjAeuA2YZY46z1u7O0FuQdlRX+FnxzDoaVpYzyuPiIJcBn7t5I1eYvPxV5AefIffsqzDHnECgvp7dmzdQtbeQPRWj2BXMZ6ftS3WdwYZtrOOaVsdL5CsuZm3uDipKgpSXBMjpW8iheaM4KjwA80klg7Z6OKxuEPbtcnwT62FAU8KibsECdtz+k6TvL7RpE9baZiMiSi+9hMKTT44nJ9x9+2rEhIiIZJXxeul/07f49M218XUuv6aEEmlLOr6biIiIiIj0RkpYAMYYD/APIApMt9Yuj63/CbAI+IUx5jFrbbI5dj6Pk6z4L3CltdbG9vNl4C7gZ0DyR/Cly0LBMBvnbaVy4Q6KqgOMdhnIaZ6kiNoIhuVEoguo9K+maq9hdziP6rsfx//XF2morUloPTzhtaUli6UhJ0zJoIEcdcxsBo4Zz6Ax4/B63Cz//KUUfOjGszeCrd8BNJ9Wqjr2u+yaz+MdMCC+3jNoUKvjuIqKyBk+HO+IEbHfw8kZPtwZ9pGQkCg65ZRU/1OJiIh0m7LPfhbX+7+KL5uQRliItJTG7yYiIiIiIr2OEhaOU4CxwD2NXwgArLVVxphfAPfiJCOSPe5+fez3/zYmK2L+BnwXuNIY8y1rrSZszoBoNMriuRvZM38LoxoiFLndDAJIqE0RtRF2Btazqe4DttRsIGwbp6UYkbCnCM5DbG2wFk80RF4oSLE/RJ/aIKX1QQoCIdzWErz0EI647Kqm5pEIxau3QTTaRpqjudC27XBU03LuIYcw8HvfwztkMJ5Bg8kZNhR3aWnK/z1ERER6om3eWg4JxRbCoX22FTlApeu7iYiIiIhIr6OEhWNG7PecNra9HPt98r52YIzJBaYCq1s+7WSttcaYV3BGVxwNvJlqYMaY1kUGmhva+OK5P/6NviV9wEaJWrDWYqPOo1lYsFHoM3AERSX9nJvn1lJbVUn51nVYLNbG2tnYa4DG/hiGjjoUt9uNjbUp37kFf/UesCbhZnzsdbQpSeBy59B/yOjY/p2Ydu/YiI2EAOMck1h7a+L7wYLHl09RQTGucBh3NAzhMDbgx2tceIwbr3HhNR68xkOO20eBu5B+QG3sx3kLUXY3bGFb/Vp2+D8lFG2aO7tN1lJQ1pfCsn4UlfWloG8/yl9+iqGf7CQvGMLdIvNQH/sByN/lZ+3atc227y4oIBoI4C4rw9WnD54+fbAlJWypriZSUsyEqVPJHTqUXX37sqtFX44/LmFHu50fyYpAIEB5eTkA69atw+fzZTkiSYXOW++k89b7dOScVUUCbK92ynpVB6p46nd/oz4UJtpQh7ERAPJceXiMCzxuTEEBARuiIeLH43aRGzEk/glb4w/gCtUBYDAUuvOdDT4fJtdHXdhPmBC5HheegAG30zccieL3N+CKOqM8vMZNrivX6VuQj/F4qArXAJYCt8FEcuLHbAhFCDfUYWwYgFyXD6/xgAFTXEzYRqmL1OIyhnzrahZvXSAMAWe/AAWufFzGgNeNyS+gIRokEG0gx+MiJ2TAOH2jNkpdQxBXyPmrw21c5LvynJ3m5mF8XmrDdUSIkOc2uMMeMC4AQuEogQY/JhoAIMd48bly2Ll3T+KpaTFfpmTRjNjvTn83SdSR7xOffvopfn/qz1aFq8tTbivZ0/L7Saboeuj5dC1IIl0P0qi7rgXQ9dAbdOR62LGj2Swyafs+YZoPBDgwGWMeBS4BjrbWvtfG9hpgr7V2RKvOTW0mAR8Az1lrz21j+7eB3wBftNb+qwOx6QSJiIiISKYdY61dku0gJD3fTVq01/cJEREREcm0tH2fcKVjJ/uBktjvqna2Vye06co+EtuJiIiIiPQUA5I3kW6Sju8mIiIiIiK9kqaE6vmGJ9k+AlgQe30csDWz4UiaDAIWx14fQ8tK3NIT6Zz1TjpvvZPOW++jc9Y7DQXejb3+OJuBSEYl+z6RA0wEdgG7cQq6HYj0OSaNdC1IIl0PkkjXgzTSteBwA/1jr1ema6dKWDgan15q70mlYmBvGvaR2C4l1tot+9pujElc3JqsvfQMLc7bDp23nk/nrHfSeeuddN56H52z3qnFeUtS5Eu6UTq+m8Sl+O9xfar721/pc0wa6VqQRLoeJJGuB2mka6GZjcmbdIymhHI0VhMZ33KDMWYQUJjQpj3rcepTt9pHi313XyUbERERERHpbdLx3UREREREpFdSwsIxL/Z7dhvbTm/Rpk3WWj+wCDjIGDMycZtx0m6nAXWAihmKiIiIiEh7uvzdRERERESkt1LCwjEXZ4TEZ40xkxtXGmNKgO/hDJH/T8L6wcaYibHtif4e+/1L03xs0A3AGOCBWGJDRERERESkLR36biIiIiIisj9RDQvAWhs2xlwHvAzMN8Y8BNQAFwMjge9YazckdPkl8HngWuDehPX/Bi4HrgBGG2PmAeOAi4BPge9n9p2IiIiIiEhv1onvJiIiIiIi+w2NsIix1r4OnAgswEk63AjsBD5jrb0zxX1EgfOBH+NUSL8JmAbcDRxvrd2d/shFRERERGR/ko7vJiIiIiIivZFGWCSw1i4Czkyh3TXANe1sCwC3x35EREREREQ6LNXvJiIiIiIi+xONsBARERERERERERERkawz1tpsxyAiIiIiIiIiIiIiIgc4jbAQEREREREREREREZGsU8JCRERERERERERERESyTgkLERERERERERERERHJOiUsREREREREREREREQk65SwEBERERERERERERGRrFPCQkREREREREREREREsk4JCxERERERERERERERyTolLEREREREREREREREJOuUsBARERERERERERERkaxTwkJERERERET2S8YYk+0YpGfQtSAiIvui/0/0HEpY9GLGmGOMMS8YYyqNMXXGmHeNMZdlOy5pnzFmgzHGtvPzRrbjO5AZY64yxvzNGLPEGBOInZNr9tG+2BjzW2PMxlj7DcaY/2eMKezGsA94HTlvxpgf7+PfnzXGjOre6A9MxpihxphvGWPmGGM2GWOCxpgdxpjHjTFT2+mjf29Z1NFzpn9rPYMxJjf272a+MWabMaYhdt4WGGOuNcZ42+ijf2uyXzHGGGutzXYckn26FkREJJnG/08YY3KzHcuBzpPtAKRzjDEzgZeBBuAhoIb/z959h0dVbX0c/64kNEFsiIiiqBT12rtiARv23nvvXnvvir33clWw67Vefb12xe61YkXFgr0gotJLst4/1j7xMCSQQJKZwO/zPHkmOX1yzsyZ2WvvtWBb4D4z6+Lulxbz+GSq/gSuqGH60KY9DCnQD1gY+A34Kf1eIzNrC7wILAc8DdwDLA8cC6xjZmu7+7jGPmAB6nHecm6j5tfbHw12VDI1hwMnAF8Sr59hQHdgK2ArM9vF3e/LFtbrrSTU65zl6LVWXO2Ag4E3gceJ8zYXsDFwK7CTmW3s7lWg15rMnNzdzawXsC9woLtPLPYxSXGka6EMuBh42d0fMbOy7D1QRGYtWU96BTIlL10X5wKtzewkdx9f7GOaVSlg0QyZWQXwL6AKWNvdB6XpZxNfSs8zswfc/ZviHaVMxR/ufmaxD0KmsB8wxN2/MbMTgfOnsuzxRIPOhe5+YjbRzC4gGvWOmsb60nDqc94yA9x9YOMelkzFm0Bvd38xP9HM1gKeA643s0dyHw71eiu++p6zjF5rxfU7MIe7T8hPTJ8jnwE2JIIXj6dZeq3JTCdd7zcCSwI3AG+qp/0sbVfivWxh4BEFK2ZtCljN2vI96bMOGWbWQoHtWd6qxOfeT9z96GIfzKxMKaGap3WBxYC7s2AFgLv/CZwHtAT2LM6hiTRP7v5sXYJ8KeK+HzAKOKdg9jlp+n4Nf4RSk7qeNykd7v5QYcN3mv4y8ALRA3xp0OutVNTnnEnpcPeqwmBFmj4JeDj92Q30WpPmL+spWzCtPF3vt6dJG4F6084KCq+H3N+PEqPdlzCzbk1+YFJSFKwQMzudyFKyOIC7T7QwW5EPTRpZGnFXk7eAd4F/mNmaaVnVtSgCBSyap97p8eka+SolLAABAABJREFU5j2VHtdpmkOR6dDKzPYys5PN7LDacrZLyeoOdAZedffR+Rnp71eBRc2sSzEOTupkbTM7wcyOM7OtlJu9pGQ9mialR73eSl/hOcvTa60EpS9oG6U/P0qPeq1Js5V6SU+WczpNq0yLvAb8BfRIqc9kJpVP8WJmLbPp6W8j0ik/BXQi3vNkFpIaostyfy9jZreY2bLFPC4pDjNrA/QANgdWSNP2AiqBfxbvyKQx5e4TVYWfCVJHh0oi7T6kdlV1dCgOpYRqnrqnxyGFM9z9ZzMblVtGSk8noH9+gpm9Bezs7l8W55CkHmp9/eWm903LfdckRyT1dVbB33+Y2RHufnuNS0uTMLOFgPWJWiQfpsl6vZWwWs5Znl5rJSA12p0MGDAPsB6wONDf3Z9Li+m1Js1WanRYkUjh8I6ZXZSmZQ0PvwE/AH2I14EKMM+kcoGrs4BFzOwqd3/bzCrcfZKZTQAGAzsAywAv5a4TmYnlzrOn3vOtiVpcewOfm9mX7j6qmMcoTW4ccCqRAuiUNNqiB/A8MFgpw2ZOufvEScB+Znaiu9+fPhdk94J3iI4Oi5tZK9WxKA6NsGie5kiPf9Yy/6/cMlJa+hMNBfMBbYlilncAKwPPmdnsRTw2qZu6vP7yy0npeB/YB1gUaAMsQhQTdmCAmW1RxGObpZlZC+K9sBVwQu7Dol5vJWoq5wz0Wis1LYEzgNOBQ4GewCXAAbll9FqT5u5BYDviGj8mTasCcPdPgU+B+YFNi3J00mTMbA/gNKJexWVm1jYFK7Ig1atp0V0AFKyYNWTn2cxOA94g6jdtQLxPbEfqYS8zv4Ji26OJUcI9ic84RwG7u/t/FKyYeZnZOkRh7UWIWnyrM3n7+M/ppy/QIq2jtFBNTAELkSbk7me5+/Pu/qu7j3H3Qe6+B9HoszCwf5EPUWSm5e4Pu3t/d//a3ce5+1B3vwbYPi3Sr5jHN6tKQ/MHAGsD/3L3O4p7RDIt0zpneq2VFncf5e4GlANdiAbd/YCBZta+qAcnUg+11alIv96cHj8ALjCznYmAauau9LhOKqqq0RXN3FQaj54HfiFGUiwIPGBmC2bn3N2fJQJY3ZSad9ZhZgua2TPE6M93iNRgjxA1mlYEtjOzeYt3hNLYsvtFwfv/dkS76G9E8OoTd/8pLa8G6mautjoVqTbfp8DnxP3iTmCL3PxPibSpHYAtG/9IpSYKWDRPWe+32nq5taf2HnJSmm5Mj72KehRSF3V5/eWXkxKXUqJ8CSytxrumlT5E3kr0crwTOKhgEb3eSkwdzlmt9ForrlSE+3t3v54YXdELOCXN1mtNSlo+hVPW6FSQvuFjouHxDeJz9b+AvXKb+JRIZ9YT0IjmmUCqS1FTe8ZEomBqGXAEMbr9EjPrCdVp8v5LvK8t0ESHK8W3Tvq5nhgZeqa7XwpsC7wN7AasUcTjk0aS1S7JjbJZ28wON7PV0meiHYFjiSwYO5jZfMU8Xmk4KT1kdT2jdC1kHR0eAuYk3gOqgIvMbN3c6llHh9XMrKU6OjQ9BSyapyy/8BR1KsysE9CO2nMQS2n6LT2qEGDpq/X1VzBdr8HmJXsNzlbUo5iFpEaG/sCewD3AXjUMvdbrrYTU8ZxNi15rpeHp9Ng7Peq1JiUtNU4vYmb/BnZONQnczLKajF8T7y8LESmh3gfONLO90/zfga+IkWHtofael9I8mNkxwDW5QETWe/oXIjg+BxGoOoRI63F1mj8hTW8JrJlfV5q3afSI3yM93uDuv2av/9SZ4gIibeU+Zta1cY9SmpqHKjNbysyeBx4j0sadluoTDAIeJkbc7ACsm61XpEOW6VT4HmBmBwOv5dLR5js6vAfMS4w+3p7o9HCnmS2ftjMY+B5YgslHbEoT0Ye05unF9LhhDfP6FiwjzUM2HHloMQ9C6mQI8CPQy8wmCzClv3sBX7u7ipI2E+m8/YPIYfrbNBaXBpBr+N4DuI/IFVtTDmm93kpEPc7Z1Lah11rp6JweJ6ZHvdakpNQSTNiRSN9xAX+PnsjqVAwiGhZWACqJ0V/vAdea2ebu/jPwGpEabce0jvKTNwMFPWKzacsQPeIPAs42s/buXpkLYD1J1CxZwd1vBi4C1jSz29MIv2eJBuqtc+sq/UszVUuqn+p5qe7WaKJB8uc0y3Pn/BXimukLbJjvkS3NW3aOU5rA54hRVZcTgYmtsmLK7j46TXdgdzPrltarqGm7Ulpyo2g8N60j0I34XHCtmfUouO9/RrwfbJs+QxxKvEfcTgStvgK+Tb/Pm7apNvQmpH928/Qc8eLZxcyWyyaa2RzAycAE4kUmJcTMFjezKXqUmtniwIXpz7ub9qikvtJN8GZiJNNpBbNPS9P/1dTHJVNnZrObWY8aprchztfswL/dfVKTH9wsJpdSaA/gfmC32hq+9XorDfU5Z3qtlQ4zW7KWzx2zAZelP/8Leq1J6ckaFcxsFzPbIE2+CdiZCLhdb2brFDQ+3A4sC3R19w+BE4C3gFvMbBvifQxg5fS9SZqB1Du60sy6m9lRadoHxLXwHNEz9so06ia7t7xApADL0nvcRKR82Q24EhhOBN+7kEZZqDd185RPDWdmfczsJDPbMWtwdvdKd58IjCfSv2yUrZqra/IrUdeiJXE9LdXET0MaSRqJNztwNDAGOBzo5+4D03WR9w7xXrEhsLmZlWfvKWY2d1Met9RPbhTN4mb2rzTtV3c/hhhdtwAwwMzWzq3zEVHDYgUzm8fdXyM6NHQEriNShD2ZFt8praOODk3IdF9unsysD1EoahxwLzCSyL22MHBsyscoJcTMziRulC8B3xC9PHoAmwAtgPPd/eSiHeAszsz2I31hAZYmIvGvAl+kaa+kHlpZb9NXiS/FTxN5clcgPty8Bazj7mOb7uhnXXU9b2l491fE+RlM9KaYD1ifKMj4IdDH3Yc33dHPmtJ74RlED5YrgZoarh9JPV30eisB9Tlneq2VjtznjleIEZx/EV/YNgbmAV4G+mavH73WpJSkwOczRIPyU8DmuYaj44lRFl8CJ7r7g2n6WsD/AZe5+1lpWieiCPM8RM2WXdLvm2nEUPOQekhfSAQcxgM7uvujad5CwOPE6L3LgWvc/esUkLqauPcskvWiNrPziAbLp4jr61rgMHe/ITV8q3GkBFnkj5+QelBnwcyK3HvC/ETtms1yq30G7JsaITGzvsATxOiabdx9VBqZUebuEy1y1z+b1j0TuMTdxzTF85PGZWbbEwHKA3Lf52t8vVukmHuM6AR8MJFecHNgd+J+M6ipjlvqx8z6ER24AY5y9yvT9DmAc4j6be8DR7v7q2ne/kRdmyXcfUiatj0xKm8YcA0wgGhzPczdf2+yJyTg7vpppj/AKsRN908iWvw/4gNc0Y9NPzWer3WIG+Xn6ZxNBH4iciVuWOzjm9V/iBuRT+VnQMHycxBfjL4lPtB8A1wCzF7s5zIr/dT1vBH5qq8B3gR+Ta+/v9L75nFAm2I/l1nlpw7nzInaCPl19HprJudMr7XS+QFWInoKfgSMSOfiN6Lx9gCgooZ19FrTT0n8EKmfqtJ1OxzYOzevnGiU+J2oXbF9mt4FGET0iJw9t/w6RIBuHBHkqALWSvPKiv1c9TPNa6ED8Ho6b+OIAEWb3PzexEiLSUTqwqxT5knEd66tCq6dC4jvztm18EiaZ8V+rvqZ4tyXAZcSgaWa7lkV6fH89F5wJrAN0C+d28+Adrnln03TTynYjqVr5xWic+GXxEitov8P9NMg19Fl6bxvmb9ualnWiFptVUSnm1eJjqZjgFWK/Vz0M9XzfGM6byPSOWufm9c5vU9UER2q5k/TexHfU84uuAY2Tuf/B2As8T2mY7Gf46z2oxEWIiIiIiIi0qSm1qPdzDYjgqWvA5sSjQVbeRRUJtUh2JVoyPwT2MDd3zazm4jRyxu4++Dc9lYlgnGrpUk3uftBjfLEpEGlegJPEanp2gE9gYPc/abcMv8A7gKWAa5w96NTSqDPicDFxRDpPMxsPqJB8oLcbrq6+7dN8Xyk7sysNdFo2BJY093fzc1bjxglczawVvr9cv97NM0lxCjD8939lDRtWSLtTxlwFFFouS3ROHlA2tZ8RJBkJ3f/t0beNF/ZiBwzO5IIWhwGXF94PvMjd3LTziBGmM4O3ObKYFJ00/jMUEYELPcl3vfXId3n8+uZ2V1EOsFniLSRXxGfM74Bdnb3P3Pb3IBIhds+TVop/x4kjU81LERERERERKRJpOKYkzU81FDI8gWgDdHj+VZgVWC/bKa7/+Xu1xNpG+YAbk0pXe4gelIulLZbkZb/H7A/0fPydv5OGyFFZgUFtQvmlbn7BKKA+jxEAxPAwWa2YLa+u39M1Fn6CjgypQYZSaS365tvjHT3X9z9IiLA8Q2RHkjBihLk7uOIgOVeNTQUlhO9qI8jggwXuft4+7tg9r+A14CjzGyptL33gQOJERSXE6kPXyFGEn5OZEMYktZfOa2jYEUzlXvdf0tcK734u/G5uiB3Cmq0NLM1cuueRQQsVsmCFaYC3EWT3udrC1ZYOtffAK2AO4kaRgeY2VLu7in4CXA8cAuwHjEivJxIJbks0Klgm88QKXGfAXZVsKLpKWAhIiIiIiIiTcITM1vBzA5L0woLWbYh0rmsSTQYjAP2N7NloLrXPcC5RPqXbkTNgmWJxu090nazHPdlqVF7cXffy91/ryFIIkXgUVC7zMwOM7PFC+Zl18XnRK3Gb4mG5mWBg/LrexTi/icxGud4orf8q8CqZrZoapQsy533/d19EXd/pLGfo0xdFrTKGpDz3P3VNNJhwTSqIpv+NNHw2IIYZdUqNWpOSPM/A24DKoDTc+vdQtQ2uZoIaL1CpNXewqN4d9awmQUupJnKXU/vAm8QqQa3zBqvc73uuxCB8SvNrF22vruPdvdxZlaeGrBrquEmTSB3nzjPzDbIvWeU5QIZrwBzE2nXT0nTrkrrj0vn8AfgLOBmYA3gISKV5PxEWsns/Si7dq5z977ufk+aN8V7lDQefUgTERERERGRJmFmrVJahreBq8zsVDPrmuaVA7j7b0Qj5ALAH0QP6IWAQ9L8CalxciSRvuVcYAkiuNEO6G5mC2f7zBq+3X1YGuBRXkOQRIogFUMeQzQs3W1ma+bmZaMvfkmPPYmG5lHA3ma2cpqeLfckUSj3F2JEzU5EfvLNIK6D3HnPUgep13SRpUABpGBBrjc06e/5iFER15pZ99ys69P01YAuqVGzPBeUegj4D7CdmW2ctlXu7t+4+xHuvou7b+nu96f3hfWJ4rw/EHVRpBnLGrLdfSiRYvBX4l7xTzNrYWZzmNlGRHq4vsS1MkVQwt0rNdKmuMxsHaLjwolEvZkzYIrODhVEbasNiRF0rwO9zWyb3Hzc/Xvis8QTROqoM9P83dP8ytxnholp/9lnE10HTUgBCxEREREREWlwtfRGnJuUsoloGDwNuMXMOuUaLiF6xy9CFIC/mOhdv1vW8Jhx9z/d/Vyix2QZ0D39LFLTMaUBHpU1zZOmlRqWuxA1Cn4FlgIGmNk/YbKG7DeIAMP8qfHxIqJHbDZCZ2KWh97dBwF7AV8AixPpgrqb2Wz5fecaM9VrusjMbEUz+wu4EqpTQWFma5jZfB61a64BehBBKNJynwE3Eb2hz0qTq9JoGnP34cQoi1+AM8ysTU2vfTNbnUg3dhXxvnEpUcRbimxqKePquH52D3qYqGczJxGgGAK8BdwNbE2kFOuXXXtSPLV8bviOCDiMBCYSaQFvTsFMANIoyhFE8NKJjg4Q9Uuy+0S+w8KxxPtDFgRdKY22mYI+MxSHAhYiIiIiIiLSYFKjQD5VQ74R4mcijdM4In3T/URKpycKghE/EwVPe6eRFGcCswGHmVnr1Jvacg1aZxBBC4hgh/JNl4isx3thQ1RqNHqUaEwsI3pBfwVcbmanmNn8adE2RHBrrfT3pUSaqB3NbKvC/bn7c0RKkE/TpCfcfUwDPiVpWL8QPdu3MbP5zOwfZvYpcC/wj7TMBUSj5e6WqzVA9LZ+kbgWeqV0c/lRM08CjwGrEPUwqlnULXgQeIRIGzWKeL+5QiOwii8FnSrT771SYGvR/PxpbSMXmBzj7ncStQvOJgIWnxPvOYu5+8Vpm2ojLZL8KAYza5GbXuHuXxHvAbMT6SIvBvYB7jSzpXObeRtYLm3nYeLzxUJmdlKaX5ZdU+4+mPjc8Hiad6q7f9dIT0+mg2lEi4iIiIiIiDSE1Hsxa2RaCTgaONTdR+SWaQ9cAexAND4PJApltgSOc/cBZtYbeB7Y2d3vS41TzxMpHA5y95tSg1Y+KDIP0CH1vJYiq+H8VNQ0oiGl4vkP8BJwLbAucCTwX2B7dx9rZm8SqaO2cvc/zGx7okjy88DW7j4yNTZ6rtF6MeBzpfEoXdn7hZntRPR2/x5YEPiAqCtwj7sPS8vuR4youBE40t2ztF7bEdfCIHdfMbftsjTaYnmi1/WjuXmWrpMtiALbb2Xzs4ZwXTdNr/B/b2YrEGngViFSv00gesVf4O4zNAomjbgZm34vJ0bn6Jw3sRruExcSnRP6ufsvuddxOVGfogNR32oh4DoibeQB7v6smV1KBDI2cPe302v/RSLo3Tmlhaz+jJL21xoYr3NfehQ9FBERERERkRmS9UxNjY9zmNltwJtAH6LhuJq7/0U0TI8kCqF+A2xMaqQ0s3OIhonviNEXWQPWaWkTB5nZgqnBsTy33eHu/lnByAspklyj4/Zm9jTwtJn9x8w2LugF/wbRU74vsJy7H03UEtgAeMbM1iZGYSxO1DbB3e8nes+vC+yZ22V1qid3/6yGHvdSWrJGwiXTY2fgAWBzouDtsNyytxGjp3YkN1rC3R8A7gGWN7O9oDo4luWhf68wGJFb91F3Py03vyyljVPjZRFk/3uLAssLEIHstkTQoh9Rl2B/4PbcCKzp3VcWrChz1alocoUjMc1sZzP7HjgOqASy129Vej1XAsek1c9w93uBbYgUUfeb2T5E0Ls9MYITd3+PSCdXDlyY1i08z+N1nyhNCliIiIiIiIjIDMkaB83sBCLFy6ZEA8GWwDs1rPIhEbRYguhNP5hopLyPyC19F9HIsEouGPIKkfZpubRMjbmlU5uXck4XmZl1MLO7iXPaEZiDCDA8DlxtZq0A3H0U0XP+W6KY9irufgbRMN2TSOuxMdHrdq3cLk4jUgkdbWY9a2twrGlUhxRHFjDI9aTPUi/NQaRzKQMWdffv3H1SvhHRowDuGUQdgj0tl7+eaJT8maiHU+NInrQNzz8WHpcrFVTRmdlxRD2Tk4i6BYe5+9HufjpxX3kY6AWcnEbVzRCd8+JI9+kqM1vWzF4n7vmDgZ2Bc/PByuz17O53EB0hNjCzfd19ILAV8d5xM/BPoqbNyrldXZ62u5eZrVl4vvNB7kZ5ojLdFLAQERERERGRGWJmq5vZt8B5wEPA7sB57v5mTQ3J7j6BaKAYRDRMb+ZRZ2B/oiftEkRv6++IhurMBemxQ9bgLSVru/RzBbBDStezOtFL/kDgrFwv6c+JXtSLAPuaWXt3fwTYj2igWhP4i0gJk6UReYcIhnQlGrGlRKXe1BW1BQyIxum1iLoVK5jZUWl6YePi80Sv+82Iayub/gbRkP09sHBd6hsUbFe965tYGkVhBdPmJALX+xLp/25NgWrMrFW6R5xDpBHcnVSvQJofM6sws+uJWlZzA4cTwan7/O80cNUBzlzw8oj0eLyZzedRi2Ifoq5FHyJ1YLZeWdrWv9I6MxzgkqajGhYiIiIiIiIy3VIO6POJhoS7gZPd/ds0L8s/3cpTzvncemXAbkTh0weBI9z9xzRvU6LB6l53fzdNy/LOL+pRhFNKUGpkak+kbFoQWDhdA9n5W4kofLs2cJK7X53WW5hI7dODaLi6N21rtrT8e8AjaURGtq/ZgQmF15aUDpu8rk07YC9gLmA48Li7f5O7NpYGXibSxa3i7j9l7yG57fUA3gI+InLXf5xtO39tSOnKj4Ixs7mB1u7+Y7on9CJGVXUE9nf3W8ysRRphk61/GHAVcKW7H1V4jdSwv+o6CWbWkqhXMSk/XZqWmXUA7iBSAZ7s7hfUsMxcPnn9q+zzxO3EZ4cL3f2k3PwDgWHAC+4+ouC8T3YNSelTwEJERERERESmS0Ej9JXA/EBvYmTEssCqRMN0R6Kn/H/c/c3c+h2AW4ANiUK6N+bmTbWBwQqKZ0rpMLO2wMdEmp4+xMiILAWIEdfEfUStkoPc/X+pB+02RNDiceAQd/8+ba8FUFlbo+TU0gBJaTCzw4nA0+xEjvoWxDVyRBo5kS13HnAicK27H17T69zMTgfOBC529xMK5ulaKFEFDchtgVOJwLQBe3nUIGpHjLg5iahbsq//nXIwu990B94HfgCW8VSPYhr7KyPuR72BN939uUZ8qlIHZrYW8BjwAnAoEajcmBht1Sf9/Rpwj0cR7XKPOlkdgR+B0cBa7v5B2l6NgavcdaP3hmZEKaFERERERERkuuR6p75DpHPpQhTN3JkopHw90UC0BtEANdDM9sut/xvRU3YSsJuZLQHVDQ9T7Q2pYEVxWN0Kms9G1DKZ093HehS1zYqoOvA/4tpYFtjMzFqmhqTniKLLGwFbZxtz94lT60GtRqjSZWbzmdnNRIDhOSId2LJEcGoe4PzUcJm5CPgC2MfMVsuNzpjHzBZNy1xFjMy6kQK6FkpXLniwK1GzZj9gFPAKMD4tM4oYqfcFEWBYJa1TneYH+DL9/A5MqCG1VFaTJNtfd6JW0q3AucBCjfcsBep8n3ib+JywKXEtXEAEqXYkalh1BY4CHjGzVfm7EPevwOlE8PPEbGO13SNyqej03tCMKGAhIiIiIiIi0y3Xi/X/iJ7xhwK3E40LGxENTssRDRKtgavMrFtuE28QjRZrANuDCqGWolwjYKWZtTKz3c1s3jRvsraFlDf8F6CHmW2RlinPzR9HBCY+J66RhdL04UQti1HATma2bE3bl+YhnbeNgG2JAMMJ7n6Lu39KpHT6E1ga2MPMZgNw9z+AC4E2wAUpULERUQvlMjNbwt3/cPd93P2rwsZqKW1mti5wKVEIeT9gJ3c/zt2H5hb7jCikvjh/17TJVBE98Bcnetl7Pq1TwaiKjma2CxHYugT4FVjO3fs3+hOdRdXzPjEWuIkIXp1JpIu7mDi3axABi6uADml+19y656X1dqrpHiPNn276IiIiIiIiMt1yvRe/Bv4NfAhc7e4ruvvT7v6Duw9x91uJotytgWOgunFpNNFo8QtwTOpJKSUm1wi4A9Hw158aAky5RqPb0uOBuVQe+cblb4k6FysyeTHUd4giqasDu6drRAGsEpY1RBYGD9J5aw2c7+7HuPuXZtbSzK4jglUVxOt+G6LYcrbeLUQdg7WJhu1/A7sCr3kU2a3er2oQNB9m1go4nhiBdYK7/8fdf7ckWy71hH8AeJEowH1pGqkzp5ltApxFjMq7vvC9IaX+aWNm6xON3wOIujg7uvs6WfogaRx1vU/kfAFcTgSpNnb30939d+APj9pEFxPpAzcAlknbbpXWPTo9npHeCzTqciaigIWIyEzKzHqbmZvZmY24jzPTPno31j6aCzPrmv4XA+q53vJmVpl6/5QkM9svHePSxT4WEREpTbnGpqeJoMTlaXrWkFmR5l9D5K/f2Mw65BobPyd63V7i7v9rsgOXOjOz9mZ2NHAz0dA8EdjRoghy9bnOGo3c/UEi5cfGRGMzRK560vyRwCfpzw1z08cCdxJpYW5Rg3TpMrPyfECpoKd7FrgaQPRux8w2JEZW7E6kBNuNSCE3FxGcWjC3+VOIwObradl53P2i/P4VyGp25iWCUM+5+6tmVpaNiKjhdf4TMapmIhG0eIUIZt5IBDmPd/enC3eQvq+cRryH7Az0c/cF3f3+xnpS8re63icyKfXjw8TIzDcL03m5+w/Aq0T7dd+02oQ07yFiBMb+ei+Y+ShgISJSIsxstdTg/WQt869I8z+tZf6Raf45jXuk0y91ntnNzJ43s+FmNsHMfjGz98zsOjNbp9jHWASXAZ8Seb8blZmtlK6Rw+q56m3AN0QPFxERmYmZ2fZm9t8sSF3XVDy5xoXfgAfc/dv0d9aIUJmCFuOINB4/Ab/nGicmAJe5e8l+jhHWJhqRRwHbEaMg1iIaBQtHWWSBibPS4zFmNr9H0e1yM2uZpme9nX9L62VBjw/dfTd3H6yUP6Wh8DxkPZpTj/Y1zOwmM7vVzK42s1Vygavx6bx3AE4mghPHAKem4GRWPHlFYIds++7+hbtfDuzs7ie4+wgzq9D10Ky1JEbctDSzNu5eVVtAMk1/mQg8TCBGYx1H1Dno6u5Xw5TXJREcPZEYndHZ3c9ulGcitanzfSLj7j+6+/PuPq4g6JndJ37LP6b3nPL0+5Hu/m5dP6tI86ETKiJSOt4mbuy9cr0Q8/oADvQ0s061zAd4Pj2+CSxB9GQsFbcCdxB5rB8nelLeA/xB9JzZv1gHVgwWOVx7A5c2Ua+QLdPjf+qzUur5cjnQ18x6NfhRiYhIKVmFyDm/HUxfD+bCtAy5HrSTgDWJwtw/Ep9r8utlqSTUIFmaRhGf41Z39yeIhqifgF2yzwe5gEMWwHqcqGeyNNFJg9TIPSFtc5P0+E2aN9n1ppQ/xWVm82fntvA8pCDEXGZ2O9H7fXNgC6Kn9BtmVthQvB3RmHmhu9/k7iPS9DHAHMDcRC2LldK+s2DmmPR3mbtP0vXQrI0jRtgskH4mU8OIvBFET/2xwGLAIHe/1t2H50b3FN437gGWd/cdUwBdmlad7xOFsnOYu49k94mt0+Ob2bL5zxn5UV4y81DAQkSkRKQv8S8D7YCV8/PMbB7ii97DaVKfgvllRM+F8cSwadx9jLt/Wiof1MxsLaKQ1iCiV8we7n5S6hXRB5gPuK6Ih1gMBxMfwB9oov1tCbzr7t9Nx7r3ErliD2rYQxIRkRJzHpFLeo9s5OP09lzMp3awyFu/JZG+4WvgnFrSgEzRMCqlwd0HAme5+zdp0mDifHYn0vm0So3YWaNT1oB4BPAukRbkHjPrZWZLmNmhRIeVZ4DnatmnGqGKxMw6EyMfrjSzLmla4XvB2URB7YuJYMVSRL764cCpZnaQmbVLy7ZNj8MKtrE/Mdr4diJH/RxQc4CkAZ6WFNdIotF5GWBdM2sNf/ekz4JgQH8zWz5dA4OIlGB9gW1yPesr89dILkj6vru/34TPSXLqe58oWNfzwQcz62ZmFxEjr+5w9/+rZZ/6zDATUsBCRKS0vJAeexdMX4fI+XsV8DsFAQtgWWJ49evuPg5qr2FhZkPTTzszu9LMfjSz8Wb2gZltV9NBmVmX9AXzdzMbZWYvmtna9Xxuq6fH29z9r8KZ7v6Hu79WsN8B6TksambHm9kQMxtnZl+b2elm1qKW413bzB4zs9/ScxtiZv3MbLYZXT715jnBzL5Ix/KFmZ1EPe+p6cP4lsBThf8Py9XDSF/o/8/M/jCzEek8dEjLrW5mz5nZX2nezWbWtpb9LUIEvf6TmzaHmZ1tZp+k8/pXej63mdnC+fXdfRgwENgu98VTRERmMqnXcz9gYSJoMVttjQt12JabWQszWw84F7ia+LxyjrsPasjjlqaR6xWfdba5k8grvx2wWcGyblFs+0/gAOAWYEeig85bxPXwHXCMR3FVKQFmto+ZHUUEHW4ivmfUVFx9GeAQ4vPhGe7+lrv/7FG75FDgK+AoIogBcc5HEY3Oy6XP9/8k6lk84e77A/O6e43BK2neUkP0SKID3nfAScBW8HdPeovRNdcT333nSvPGEoWbhwC7UNCxT0pPfe4TNWhlZouZ2TFEZ8ZjgWeJ4KjMQhSwEBEpLVnAojAg0Yfoif8G8SWvpvn59aelBVEUc0PgQeJDxGLAvy2K4VUzs/mJURs7ET1isqDJM8BqddwfxJcegB71WCdzBXAC8WHlamIkyVnEkN/JmNnBxBenXkTaqauA74lcms/Y37kwp2t54ovbBcQ99FrgKeBo4Mp6Pqe1ifPwxlSWWQR4DWhFDId+nzgPj5jZmkRvxFHpmL4keileXcu2tkqP/4HqXo9PEUXpfk/buAl4j+gh172GbbxO5J1dow7PT0REmq97ic8U2xNpXurdg9GimGovojf1nUTD5vtEqo4BDXq0UjQeBVEvJdL57GlmnVKgorAA97upQXpHoqHyemAHd1/N3T+anoCYNKzUSPg08ZlzaaANEWgcAexlZsun5bJi2gsTHaoedfdxFqOosnmPEjXQugPrp2mDiQbIzYn6Aq8Tn/GHEmljyVL9NOLTlBmQ3tdn9LX6FJFqdg7gVjO72Mz2MrMLgBuINHG3EN+BMl8R7zPLEYH01jN4DNKEpnWfKHAp8AlwBtE+sZ+7b+ruXzbdEUspqClHuoiIFM97wJ/AGmbWwqN2AMSIizfcfbyZvQhsaWYLuvv3uflQ94BFZ6KXU+9cj5a7iYDA0UQwI3M+kWP0VHc/N5toZgcAN9bjuT0F/AUcZGZzEL1r3soNF52a1YBls+drZqcQAZNtzWzb1JMLM1uSCDh8AKzn7lmQBDM7MT2Xw4kPQtOzfG9gH6LBpZe7j07TzyOGK9dHVgvinaksszZwpLtfmfZjwP8RH+QfI4oQZgGIFkQdlN3N7CR3/6VgW1sCQ3NDpJcCVgUecfet8wuaWSsimFLo7dyxP13DfBERaWZSr9fC1CuVZnY60UliLzN7xd1/sMghX6e0LGlUxiCiY8QY4C53fyPtsxyotdiqNDtPAI8QDdHbAdcUXidmVuFRf+D+wpWzeU1ypFKj1EHnLGAl4HjgcXf/A/jDzC4kUj7tZmbv53LHd0mPPWCyXvKWAhgDiQ5XOwD90mjdE83sL2BxosH6fne/M38sXlADR0pDGi1VmX5v5+6j0u9T3ENqkkv3M8nMbiDSjV1EFGAHGE2kI9zM3V8qWLfSzB4nOlcNyDIKSLMyzftEcgdRZP094nNDds2V671h1qIRFiIiJSTdhF8icryuAmBm8wL/IEYBQPRIgjSqwv6uXzEW+F89dneU/13IijT8+htyw2zTl5cdgV9JjfY5NxNDc+skBRu2JYYA7wLcDww1s1/N7D6LAtS1uTIXnMm+EJ2S/twrt9yBRDD+8HzwIbmI6OW58wwsv0d6PDsLVqTj+YH6j7BYMD0WBhbyviQCKtl+nOj1CvBeFqxI8yYStTAqgCXzG7GogbImNRfbHls4wd3HZ19CCmTHumAN80REpBmxVNQ0a0QqmGfu/ipRLLMvNaSDqYt0rzzc3Q/PByu8IPe4NG8p5dPlxAjYPcxsMYiOIWa2U1qmOiCRXW+5URgKVhRfJ2IE7Tvufom7D87Nu4oolLwLMTo78wwwEVguSyWab7x295eJz7KdzGyh3Pk+z933ALbKghUaVVH6UtBgLjO7HnjBzP5jZquROkLX0lu+cBvZtTEuBS+XJtIG9wE2cfeV3P0lC2UF6/7o7ge5+5tTbllKXV3uE2m5N4Dj3f32dM1V1ywpxnFL8WiEhYhI6RlI9DzoA7xKjJ4w/g5YDCJGYfQheiAsB8wJPJsPQEzDH+7+dQ3Tv+fvWhMAPYkUQM8X9mRJPSdfpebUQTVy92fTh5PexOiBFYmG9B2AHczsfHc/uYZVX65h2utEEejlc9OyFFV9LfJlF5pI9Oia3uWXncrx1DRtauZJj39MZZkPamjQ+Sk9Dqph+Wxe54LpmwLlTB6wGEyMLNnZzBYkerwMBAZNpUHq9/TYYSrHLCIiJSxrUMwaic1sd6LB8S+iMPJTuc8T5xM9Ifcysxfc/f36jLIAcPcxaT9l7l6lRoeZ1jtEmqdjgEPN7FOiU8lqZva7u1ePzMw1WqqIcumoIHo1dwMwsy2JkdT93P0aMzuDGC21h5m9kY2+IFI/9QU2AG5OAdDy1NDYFmiZlvvBJ69/YWlZvS+UqMKRE2a2KpHma34i1e+KxGjtc4Grp+f1nDpITdbhLteTvsagdl1HdEhJqtN9wt0nZoFtvTfMuhSwEBEpPfnC2/3S4zjSh7kUKHiFv+tWZI/P12Mff9YyfRKTj76bIz3+WsvyUxsdUKPUQPJs+sl6eO5FfHg5ycwecPd3p7Wf9EVoeO4YIfJiwt+jL6alvsvPAVQBv9Uwr77/i2xkw9RysE5RnJw4R9OaV5jOaSsi2FAdVEnDsdcFziRGvmQjaIaZ2TXAuTV8QGyTHsdM5ZhFRKSEZQ09ZrYW0SDZg2hQbE90kLjXzE5192/cfWhKB3MBsKuZfZA+h9S7wUiN0zOnXABsjJndRoxMPZiovzUKODofrJDSk4IGX5nZ/cApZvYNke7pZeC7dI4fNrNHgW2IkRX9ic/DdxAFkk8ws5/c/fH0GX12YiRzd+C0ws+UClqVrtxImMJzsw3xnXRPouPY0sR1cIKZferuz9Q3oF2TaTVQK1jR/EzPfULnWZQSSkSk9LxPFLdbI6Vk6kOqX5FbZiDQ1cy6Uv/6FfWRBTY61jJ/vhndgUc+45uBu9OkwoLiNe4nDQ+dh8mDL1kjfnt3t9p+ZmD5P4l7Z00jDOr7vxiWHuee6lIzyKIo3YZELuLJUi64+3B3P5yoUbIkcBgR2DiLyF9cKDvWYTXMExGRZsLMViB6ylYB/yRSSy5BdB7YFbgkt/gNwMdp+vrUQT7FlEUh3jaF06U4Gjr1Ti4AtipwADHKsxVwLdDJ3a9I83XuS1SugXkJolf7AkTNiu3c/T+5hsOziKDmnmbWLU1/kehhvxgwwMzONLMjidSqpxE18x5ssicjMyQ1LFelwHQ3i2LYfcxsTqID1Dnu/oi7/+LuzxLfHToDR5pZmyygXcSnIA1A9wkpBQpYiIiUmPSl4UWiN/sWxJeHgQWLZXUs1icaGUbxd0HkhvQ50ZNmpdTwXS31vlmjAfdVU82EzFo1TFudGCn4Xm5aNqR4tSkXr1F9l88KVtd0PDVNm5oP02PPeq5XX+sTNVFqql8BxIdIdx/s7tcSQ/ohrr1C2bF+WMM8EREpMVNpdDgAWBg4yd2vS/eAL4FbgK+Abc1sGwB3/4sYjTc/0VDZPqVymaJhIZfCIWucWJEIgO+uNB7FlXLC54vmdjWzeVPanuluKErbXQO4i2i8fB5Y0qNuyRgzq9C5L31mthsxGuJ/RDvRwh5FsqvfR9z9PeAaIq3rjmnan+5+JXAG0enldCKV3C7AfcB67v5Z0z4bmRqrodaETV7TqIWZXQR8CtwKPAf8HxHMetvMynKjMP4DPAlsDOxej2NQw3QJ0n1CSokCFiIipSkbLXFGehxYMP9dYCRwBJGm6OXC3vMNIY3q+DcxwuKYgtn7EWkk6sTMNjKzLbMPxAXzupEKegKv1LD6ERZ1FrLlWxK9uQAG5Ja7jkiLdLWZLVTDfuY0s+VnYPk70uPp2Qe3tNwCxLmojyzotGo916uvLYniZk/lJ6YPoF1rWD4bKTKuhnnZsb5YwzwRESkxuUaHQ8zsQDNrZWbzAZsQta8eS/O7pV7RA4BFgXuJRqpsOw8CjxPB7C3TtHxu88JAxSJmdhjR2HU28TlC3z2LJJeOozKd6/uJ8/sm8KKZrc/fhXPr1SCVzvk4oif9Du6+vrt/mjVqppG0aoRqQvU5h7llHydqym1KOpdmtmm2WG6Vi4EfiSBk9WdYdz+H+Jy4KpFqdDl3P8DdRzd0b22Zfma2H/CgmS2an17wPXJTIvhwI3AkUSh5DeJ7X1XqXGe58/rP9HiImXVJQY8a3+9ruVf0rG15aTq6T0ipUQ0LEZHSlAUsliJu7m/kZ6YPEq8CGxUs3xhOBNYD+pnZmsSIhiWIxo6niXRDdbE48YH3NzN7CfiS+ALULW2rJXC9u/+vhnXfAN43s/uA0URR8p7AQ6kRBQB3/8jMDiFSWnxmZv9N+5mdaIBZh2iMOWg6l3/BzPoDewMfmtnDxHDWHdMxblbH/wVEweuv+HtEQ4NLH/43B57zKGqXtxzwkJm9CXwC/EykANiKSBFyecG2jLgOBrv75411zCIiMmMKekfODtxE3KceJgrkTiJSG35sZnMQ9+A9ifv5O8Cq7v5WWr+Fu09Mmz6DGM15tJk94+4/p2Us1/g0D7AusG/a3tvAau7+ZuM/c6lNrgHxWCJNzx/AR0RNqlWJnvBHA7dNZ6PRIHffOfsjfw1K08u9Hlu7e00dUKZY1t1HmNkf6Vq5gEjjdAoppaj9XRz7ZzPrR3T62dXM3vUokFvuUYj7rWzbuV74uhZKx8ZE0Pl+4nsIAGa2MPAS8T3vF6JOyenuPjzNb0H0jD8ZODh3jyl39y/M7Eqi89YBRM2SKepYFNwr5iXuFUcSI3MOBYY2wvOVOtJ9QkqNAhYiIqXpI6KQXQemrF+ReZEmCFi4+09pCOdFQF9iGPg7REP7utQ9YHEXkfapL1GkbQOi4PRvROBjQD74UOBIYgTGfsBCwE9Eeorzazjef5nZIOID1dpEg/2fwLdEI/xtM7I8sD+RKmt/4oP798BlxEiUOgcs0ofCG4ELzWyVRmrMWY0YMfFIDfPeBi4kaqBsCsxJBC2eBS529zcKll+b+N8f2QjHKSIiDSR1algAWIF4X1+DaHx4KN3TFyLucVsDsxHBipHAXu5+e8HmepnZm+4+xt3fNbNziMD1z7n9uZm1Iu45uxI9c2vbnhRBamzcn7iHPwzcCTyfGqIXIRopDzCzL939Fatn4dxs2Vyjthqhiih1MjkXaG1mJ9XyPWIKueDFw2b2CLCVmR3qkTI036O6P/E635UYGf3vwnOeGqdVULvIUhB5rLuPSZMOJ4IRDxUsOpFomN6MqFW3obsPN7OW7j6B+N61CTGy5lZ3fyuNsMgark8krofDzOxJd381dwxZz323qGe0BrAbsBNxr7jc3Yc2+JOXetF9QkqNadSNiIiUKjMbQDSkLDIzfpA1s7mJ3k33u/v+jbD9C4HjgM75xqXp3NadRK+sxVIPOhERKUGpEWk4MQLwK+B9d9+lYJl/A9sRjU1nAf0KGx7M7FRgD2BPd399KvtbLC23D1FI82J3P7HhnpHMKDPrSKTnqgT+6e7fpOkbEJ0u/pHm3Qwc6e7j872hpXkxs9WAV4FP3H3peq5bnoKeywIvE+8lq7r7rwWjtzYn6qP9092vaeCnIA3AzLYlRlLsBtyTfz2n+0Rf4MlcQ/I+wKVEKtk1ga88imhn18QBwA3A/7n7FrltVaRG7SOJ95PN3f3xwvcQM1uOSBe2PzAPcJ67Z+mPpch0n5BSozxxIiIiReLuvxOjRPZMQ7Eb2pbA/xogWNGD6AXVT8EKEZHSYLnCp7lpFalB8XQiYLEgMYoRi6KWWc7xG4CxxMjHc/PBCjNbLI2kOJRo9BxcsI/C3NW9gaOA94GFFKwoDquhRljG3X8FLnL3Ld39GzObL6XZfIponDwc+JgIYm1a23YK9me53yss6otJEyp8/ee8RdS7+0dK51rnnPOpYdrc/X0indzCwElpdlVuuceITiwKVpSuCcSo9AOJYDJQHax4hiikvVFu+TuIEfwdgV4pWFFBOu/ufhMRxNrMzLbPbasyzb8CmNvdH09/Z+mfFjazg4mROaekbSygYEXT031CmhMFLERERIrrSqAfkW6pQbn74u6+egNsakGiB+61DbAtERGZQbmUClUWBUv7mNmingqnuvtVwCCiJlP7tFp1CgZ3fx64Ks1/38yOM7PVzex4Ijf9cURtpnMKA9W5RqisIeIZYE1338zdf2jEpy01yNUJmJT+3sLM1jOzZcysbW7RV9L8fxBF1Tcm0n3um1L+XEv0et7VzDql9C1TtBdk5z13HSxLBKw2mUoDujSg3DmoKjjH+bzw96ZJ66Rl69MLOnttnw98TXSsWTFdE9UFtN3965oCp1Jcuffm54ge82sB22eN1en6yD7T72pmc6bpE4GriTRNZ6dp2ftKdt7PJuogHZ/SRVWn9UmBrj/yjeJmtjRwRdqfE/eK7VPjuDQR3SekOdKFIiIiUkTuPs7dz3b3l4t9LLVx9+fd/ZyUw1ZERIok1+hQZWZzmNmtwAfAf4EhZnaMmXVJix+dHvc2s/ZpnXzj4kVEao4ORE2jV4k85UsAh7v71u5eXZS1UNYQ4e7fuvsHDftMpZCZrWFRqHaynvW5dC47mdlQ4AEiiDQIeMTM5s8vRzRArQWcR4ycfD9Nb50eVyLStuTXqZZrgOqSUsTcRFw/SzF5nQNpJLlzcBLwQa63u+UakN8B/gIWt6gxU5/tZ2mAhgOXEHXOTk3zKguXrek6keJJjcgtPOpWPELUrTsS6Jlb5kEipde2RD2jbPpzwO1AFzM7JU0uywW7nyPSTK1IFNjO3wuyx0m5wxkNzAXs5+4ruPtrDf185W+6T8jMRDUsREREREREmpHUe7E/sCHwAjCCyEe+IBGIOC/ll36YSA94uLtfmxo0vWBbCwNLAhVAOZGfvLpXbWEDpTQ9MzuB6O1+mrufm5teRnRCPIFoUH6dCF69QzQm7UP0mD3e3QdZFFV9gxjV2TOlpsy2dRyR/nF5olf9ep7qh+WvGzObg0gDtjewBfARcIS7v9BYz1+mZGbrEK99gN+BzYE3/e8aE4sTjdVzA4u6+6iaXv9T2X7+nJ8F3KQRVKWv8D3bzFoTgemLiFSAp7n7qDRvOeB/xPvGvu7+ZZq+BPAYkQ6ss7sPy0ZYpJRh3YHtgfOndj3V53qTGaf7hMxsFLAQERERERFpBsxsfaJX62vAiUStirvcfbSZLUMEMRYEDnH3B82sK1F4+1NgM3f/KksnNY39KFBRQlID4pPAucDNPnnNkUWInPBfEIVSP0jT5wFOJtJwDABOSA2PtxMNSDu6+1MpfcvmwG3AMUBLYIK7/6vgGCqAVYCdgT2JvPYnufv1jfbEham9Xs3sE6IhspLo+Xysuz+cm/8AsA2wm7vfXd8G5MJ91+W9Q0pDGnVzNPAL0fA8H1HXaDt3H5hb7pK0XGEj93FEj/jb3X2v7NwXXkO6JkqH7hMys6m14IqIiIiIiIiUhjSqYk2i4GVn4HmPIqgAuPsHKYXHf4n80q+7+1Azu5ioSXEQ0YNyWsEKU7CitLj7YDNbyd2H1TB7V+J62CHXCLUUsAlxrQAMTo1QBjxKpIC5wsweIdK1rE8UU33W3b8u3IGZLUb0qD4A6ErkMT/aI+e9NKLUSNwyS8uZzmGWouchYD+iJ/NjwEVm9qdHjRqAu4iAxepm9oDXM7VnQYOnqWG6tKVrow2RxusgoobFEGAokeJnfuBAM/vI3X9Lq11C9Jjf3cyedff/pem3EO8he5jZLZ5S1xYEK3RNlBDdJ2RmoxoWIiIiIiIiJS41FN0APA+sAWRpPSpyyzxJFMrcgr/zkp8IDCMapNZM69T6PVApPEpTakjqY2avmNnGUF0IdyGiVsHXZjaXme0L3AhcAHwGdHf3i9M2HHic6FHbFTgC2B34BNippkaoZBOgHzFap4e7H65GqMaRGgvzfx8MvGZmW2STcgHF94B5gS5EQ+Eo4E4zWz5tZzDwPbA40bt+uo9D7wulL52jHkTj9NPAoe5+nLsfCWxFpADaEdjQ/q6H9DPx2u5B3CNapOm/E7Us/iTSitW2Pykhuk/IzEQBCxERERERkWYgNS7dADjQzcw6ufukggDEOcA4YDczWzo1PpxApAQ5Km1HvWKbp4WIYNV2FoXUK4EJQHvgcOA6orhpJ2Bzd98wl5e+g0Uh3rHufjWwDLAZsKa7b+Hu3xQGsnKN1o8Cfdx9fXf/oime6KzGQllBD/aOQDdgBeBaM+tR8Nr9DPiZSPMzCDiUCFrcDqxLNBx+A6xHBDamGqzMy+Wi72RmHWbw6UnT2RaYnag58jlAet0PBs4CviXuA11y6/QH3kzrbpxNdPf+wLzu/p8mOnZpGLpPyExBAQsREREREZHm40ngQWAlIhXMZAGI1DB1GbAqKdWDuw8AridqXkjzdTuR8mtHopg6wMPAJOBYYmTNMe6+mLs/nq2URuE8AByc/jZ3H+Luz7v7e2laeWEgK2u0dvdvspQw0jg8VJnZ4mb2rzTtV3c/BrgaWAAYYGZr59b5CPgcWN7M5nH314hroyPRKDkf8FRafKe0Tq3ByvyoCjNrZ2Z9idRAA1IvbSl97dLjj1D92p+Upj0H/B+wItGY3RrA3ccTxZjnA/5pZu2zjaWAuM5986L7hMwUFLAQERERERFpJtx9FHAFMcpi95Q3urDn9BVEg9WxZrZGWu9Qd/+4MNWLNB+pYegcIk/97mbWGXifaJyqAE5x9yvy65jZ8sCdRCPliNx2CretuiVFZmb9iLQr+5rZEblZpxP54FcALjazXrl5d6fpcwOkhsXDiKK4DxI96gGWMrO5atmvpXXdzMrMbKW0zzuJkRpv6vpoOmbWNj1OT83ZEelxU4iAQzqv5u5jiZSCAPsDS2QrufuzwOXAxe7+V36DOvfNi+4TMrNQwEJERERERKR5eRP4F9AX2DQrfpprePydqF1xbup1DURQQ3nHmzePorg3EAVQd/AonnsTkWv+JDM7NKXx6W5mhxHBq77AVcAjxTlqqaN50+OfwHlZT3d3/xM4n2hQXhm42czmT8t+AowBdstt5wHgECI1zPnAeGAxoEVNO82lf1oM+CfRQ/tYIo/9fO5+dgM9P6mF/e184B0za+Puk6a54t/rZ2179wBjgfXNrEeaVw5koyQ+IBqkewAHFYymOMbdn0KaPd0nZGZg+rwqIiIiIiLSvKTGxaeBP4AD3P2dFLjQF7yZnJktCLwL/Ars4u4fmNlORC/8uYhrwoj0MN8BR7r7o0U6XEmm9vpMDc5nAvsSaZ7WIeoQHJRfz8zuJtI7PUPUpvkKeJ2oVbFzCm5k29wAuJ/IXQ+wkru/W8O+5yXqXOxHjKh4Azgk1cWQJmRmzwF9gG3d/eHpWL81cCUxguIqj4Lb+fknE7VOhgBrA0u5+ye5+bqHzCR0n5DmTgELERERERGRZiaNpjiU6HV9NXB6Shc1xXJqgJr5mNlRwKVEz9jj3L3SzBYHNgG6AhOBD9z9ttw6ZVOrYSCNJ+V+rzGdSvYaNbN9gQuJQMTpRGHkZdz9IzNr7e7jUiPkGcDeRGBhc2I01W7Auu7+WcG2jyCuiQHufk8N++6R9rkB8BdwtLvf2zDPWuoquz7S+V3e3R/LzavX69bMehLpfxYBzibqkEwkzvHRwF3Ay8BfqeaRzKR0n5DmTAELERERERGRZsjMOhANT2OATd395yIfkjQRM2sDvAZ0AvZx9ycK5lc3OplZRX3Sy0jjSKMo+gEvAM+nxsP8eeoJDAY2I2pS3A4MdPd10/wssLEgcApwIPAikerlLmBDd382pQDKini3cPeJuWOYLICZrqOfgOvd/aRG/yfIVINXuWUWAjZx9xumcx/rENdEZ+B3YCRRuH0wsJ27D0nLqXF6Jqb7hDRnCliIiIiIiIg0U2bWs7BXtcwazGxz4D/Ao0Rj1O8FBZSrfy/iYQrVDcjPEEVvfwRudffTC5b5BxGAuBM4CngFWJ1oYH4oH3xIwY/HgI2J9D7dgTvcfc9a9j9FI3nWQJnqJYxtwKcrdWBmC7j7DzUElVoQRZIXB/q4+4t1CXLUsP0ewC5EUfY5gCfc/YIGfArSDOg+Ic2VAhYiIiIiIiLNnHpHzprM7CWiuHIfd/+62McjNadhM7NFgS+Inu6/E3nj/wOc4u6/5JYbQqRo2dbMtgYeBL51967ZtoGyNDpjCeB4IAtSDAY2cvfvGvUJynRL529h4HniOlgte982s22AIe7+oZntBdwKPOfuG2TrTm+jspm1cvfx6XfdK2Yxuk9Ic1RW7AMQERERERGRGaMGqFnW9u7eVY1QxZdSMWW9llvkple4+1fABcDswGfAxcA+wJ1mtnRuM28Dy6XtPEwUzV7IzLJ0TWVZT/tUf+AM4PE071QFK0qPma1oZqtBdS/2P4liyCsA66T57wP3Ab3TcgOAp4H1UvACZqD9zt3Hm1lZCnroXjHr0X1Cmh2NsBARERERERFpxtRrunhqqAtxITAb0M/df8nyxKeAxk9AB2BNosfzdcAfwAGp/sSlRCBjA3d/28yWJ9JEtQE6u/uwwvRAZtYaGK+ULqXHzJYBBgGvEud0XJr+DyIg0RZoD3wA/IsYdfNjul7WIEZiDAVWdveRqjkhM0L3CWlONMJCREREREREpBlTI1TTs1CWBQrMbGcz+x44DqgEqgBS43NFCjIck1Y/w93vBbYBJgL3m9k+wEtEA/a4tO57wDVAOXBhWrcwMDE+jeqoaKznKtPH3T8AngR6AXvkZvUF5ifO9UCi1sR17v59FpBw99eA/kAPIvUXTHnua5TVJRDJ031CmhMFLERERERERERE6sFDlZkta2avA3cRdSR2Bs5192G5ZSelxzuAN4ENzGxfdx8IbEWkgroZ+CdgwMq5XV2etruXma1Z2MM+C5ioMbK0ZCnCgCPS48FmtlD6vYpI5fUFkRpqRAo6lRWsey4xKudQM1s8LZPNq1UuiDZPFsjKti0i0hzoDUtEREREREREpB7MrMLMrgfeA+YGDgcOc/f7smBF1tM9jcbIRkBkDdjHm9l8qRbFPkRdiz7AGCJoQRrBMYxIFwQwTxM8NWkAqTB6ubsPAa4ClgUOSvOuAHYgglHticAEudEVlencf5+WmRM4LZtX0/7yoyrMbHYz2wy4DDgsv20RkeZANSxEREREREREROrBzDoAdxDpfU529wtqWGYudx+R+zurZ3E7sBtwobuflJt/IDAMeMHdR+TrY5hZC3ef2MhPS2ZQvsZI7ny3JkZKjAO2cPe30vzORDBqY6C3u79UuJ0U6HoDWArYyt2fLNhH/hopB1YigiH7AhXAge5+V9M8exGRhqGAhYiIiIiIiIhIPZnZWsBjwAvAocBIovF5LWK0xEjgNeCeVEQ7a4TuCPwIjAbWSrUOqhu4a9iPZXUqlPqpeTCzpYDPsiCTmR0A3ADc7u575ZbbjkgHNghYH6jMByDS9bItcD/wtruvUsv+egCbAwcC3YhAyFHuPqZxnqGISONRwEJEREREREREJCffi30qy7QBziOCFf2A+Yj0TiOB4UQqn/mI4MS2wJu5xuiT0zr3uvsujfQ0pImZ2ezA3cDywOapcHo2731gCWBHd384TWsDXAnsB+zr7v3T9I7Aou7+Rvr7TOJa+bRgf/MRgY79gbWBl4GD3f2TxnyeIiKNSQELERERERERERGmSLHTikiv86S7D6tpBISZLUGMslgUGAtcClwBOFGP4kKidsELwCHu/nVu3aHAQkSqn0frEiSR0pbSP/0TOAe4ALjE3UemeesQ18HzwNa56WsCtwAtgUOAFsDWwHpE8OHx3PazNFMGrAIcB2wG/Aoc6e4PNckTFRFpRCq6LSIiIiIiIiIC5IIVOxCNwP2B7dO8mgoXf0EURv4M2NjdT3f334E/3H08UUz7PmADYJm07VZp3aPT4xmpIVrBimbO3ccBDwIvEaMmVsrNexF4GFgX2Ds3/RXgaqKo+uPE9bIzcGNBsMJy12AFsBywCXCeuy+kYIWIzCw0wkJEREREREREBDCz9kRD85lAOdHR801gf3f/vJZRFp2BxYl6FeO9oKElV7/gBnc/pGAUxxVEXYN3G/eZSUMzs32BVsC/3H1irtaIEUGu/kTtiRPd/ee0ThfgG+BTImXUl2n6bMDqRADiD+CarGB7/nop2H9n4C93H9XIT1VEpElphIWIiIiIiIiISFgbOAUYBWxHFC9ei+jxXuMoC3f/0d2fd/dx+YZlM2uZfv0t/5gatcvT70e6+7tmpvaZZsTMegInA2cDPaD6vGbBhReBfxOBi7VTEAN3/46oe7I4cEBuk2Pd/TngBHc/x91HmFl5bcGKtK0fFawQkZmRbogiIiIiIiIiImEUcAewurs/QQQsfgJ2MbNeEHUEaloxa5TO5rv7hDRr6/T4ZrZsPv1TQaofKSFmVlHwd3ZuPwMuAWYDDkojJKq5+y/EdfQnMWKnW27eqcAPwKFmtl7BepOy/bh7ZW3BChGRmZkCFiIiIiIiIiIigLsPBM5y92/SpMHAVUB3YHcza5Urely4rueDD2bWzcwuIgp33+Hu/1fLPtUoXWJygYksgLCSmbUpWOwJ4GmiHsWqaXnPBbTeT/P7ABsVrH82EeyYM1svv2EFsERkVqaAhYiIiIiIiIhIktUOSL9PAu4E3iFSRG02jdVbmdliZnYMcB1wLPAs0UAtzUQu6LSTmQ0BniPO47G5ZYYS18Z44CgzmydbN42QGA78SNRC2QFYKrfuv4B53f3BpnlGIiLNhwIWIiIiIiIiIiK1cPcfgEuBuYE9zaxTQU/6vEuBT4AzgMWA/dx906y4spQmS7Lf0+NOxOia34GBwBLABamIeuYF4D4ikLWpmbWAyUZIVAFvA72A/cysXbaiuw/P6lQ05nMTEWluTCMPRURERERERERqZ2ZzAP2BzYGj3P2aWpZbDdgReA+4K6tVYWbl+boVUjrMrCKX+qnc3SvNrBXwEvAtcIq7f25mqwPXAAsDmwJvpsBVb+AGYCJwuLsPTIGLLYGbgX7A0sCT7n5PEz89EZFmRwELEREREREREZFpMLO1iLoFnwA7u/uXZrYksIy735tbroW7T0y/K1DRTJjZIUQtineB74E9gANSAe1smd2JoMWTwMHu/ruZtSQKa18M/EWMuGgPrE3UQNnZ3Uc15XMREWnOFLAQEREREREREZkGM5sNOAs4BrgC+BTYC1gN2Mjdn84ta6CC2qUq1ZjI6lQsAdwDLANMAiqAscAoYMmUuqmFu080s47A+cCewE7Aw2lERrs07SLAgNbA48Ch7v5t4T5FRKR2CliIiIiIiIiIiNTCzCwLPJjZUkTv+nmAVkSj9unufkXxjlCmh5ktCrQAtga2B24ialLsCewNVAK7ufuLBeutT6R6+gnY3t2/L9jmIsAf7v5OmqZAhYhIPajotoiIiIiIiIjMNMysvCG3lwtWrAocAHQmghXXAp2yYIWKJzcf6Vx+AZxLjJi5yd1vdPfPiVESVxHneQMzmz2tk11XrwJ3EOmjtjOzijTf3P0rd38uF6woV7BCRKR+NMJCRERERERERJq9FDAoyxW67gqMBsa4++j8SInp2O7qwO3AosDzwGHu/mmaXwFUKv1T82Fm8wEDgL7AEGCplPKpwt0nmVkPopB2d2B3dx+Y1itz9yozWy7NXxpYzd0/LMLTEBGZKWmEhYiIiIiIiIg0a1kwItUT6GZm9wPPAW8CL6Y0PtU94euz7RSIGAe8Bezg7uu7+6dmVpYasCcpWFEc0zuqJRXSvgT4kxhJ0TOblR6/IFJEzQ3skQIc+fUHAfcDLwG/Ts8xiIhIzRSwEBEREREREZFmzd09BRCOB94jCmF/DrwLdALuA3bJlp2OXQxy953d/QH4O9WP0v0UVy5dV+vpWP1NYtRMW2CDtL3KXM2JgcADwA7AWikoVpVLDXWdu2+cgh8iItJAFLAQERERERERkWbNzFoABwFHAg8D+wKbu/u2wFpAOXCAma2Zlq9Xe0gWmMjWy9JOSXFZOA84z8xa1Wdddx8J3AL8CGxvZssUzP8ZuA34HTgQ6JGmV6bHsekYGrRmiojIrE4BCxERERERERFp7uYCNiHSNp3m7k+nWgQbAI8C7YFVgF3NrFXqKV/vdEIaUVFyVgVOADZw9/HTsf5gosD2asA2Zta6YBTF28BDwHpAl5o2oOCViEjDUtFtERERERERESl5WUHkqcxf291fSr/PRzREb0+kheoP7A8sABzo7g9Nqwh3fn4qrF3m7hMa7hlJXeXSNBVOLwfeAFYE1nb3V+pbXN3MuhBBibmB/d39+YL53YEKdx88Q09CRETqRCMsRERERERERKRk5dIwTUp/b2Fm65nZMmbWNrfoK2n+P4B7gY2Bi4B93f1a4FpgHmKURaes7kUN+7O0vyxYsSxwFLBJfVNJyYzJnYuqgnOd1RGpJM41wDpp2fr2zP0euBRYGNjOzDqk7WfX3RB3H5xqpExXkW8REak73WhFREREREREpOjMbA0zmzf9Xt1ekasfsZOZDSUKIT8DDAIeMbP588sRgYq1gPOAfu7+fpqeFWZeCdi2YJ1quUBFFzM7ALgJuBBYClCDdRPKnYuTgA/MbPv0t+VSMb0D/AUsXt86Frl9PAX8h6iDsl6aXlWwXNV0FmwXEZF6UMBCRERERERERIrKzE4gRkgcAJMXuTazCjM7hUjr9BVwMtGofB3QC7jNzJZLy7cAdgZGADe5+6jcbloD7xG1CI42s665/Vvu9znMbEvgauAGoA2wnrv3U72Cpmdm6wDnAosA15vZ6kzenvVz+ukLtEjr1Cuw5O4jiBE4txPBMBERKZKKYh+AiIiIiIiIiMzyHgUOAYbl6xWkVEALAwcD/wOOdPcPAMzsA2A8ka7pn2Z2grsPM7OPgcWAlYGnUv2JzYHTgGOAlsAEdx+a7Tylh6ogCnPvDOwJVAGHuvv1jf/0pbY6Fe7+opl9SgQpKoE7gWOBh9P8T83sI2AbYAvg7uk8hBey+hX1rYMhIiINRwELERERERERESmqVCNgJXcfVsPsXYHOwA65YMVSwCbAdmmZwSlYYUTwY2vgCjN7BJgLWB/4GHjW3b8u3IGZLUYU6D4A6Er0tj/a3Sc23LOUqUnBqZZZYfN0LsvSqJaHgP2A3sBjwEVm9meuQPZdRMBidTN7YHqKo+fST9UYOBERkaahlFAiIiIiIiIiUnQp4NDHzF4xs40hCisDCxE1Cr42s7nMbF/gRuAC4DOgu7tfnLbhwONE2qiuwBHA7sAnwE41BSuSTYB+RMqpHu5+uIIVjaswbZOZHQy8ZmZbZJNyKbjeA+Yl0nltD4wC7jSz5dN2BhPFsxcH6lXHovA4FKwQESkuBSxEREREREREpFQsBKwBbGdm7VOD9QSgPXA4UbfiJqATsLm7b+juXwKYWQcza+HuY939amAZYDNgTXffwt2/yRfzTutkjdWPAn3cfX13/6IpnuisykJZPuWSmXUEugErANeaWY+CwMFnRJ2K7dx9EHAoEbS4HViXCDR9Q9Q2maJw+9TkRlZ0MrMOM/j0RERkBilgISIiIiIiIiKl4nbgv8COwJZp2sPAJKJuwRbAMe6+mLs/nq2U6k88QNS6yGoQDHH35939vTStvLD3fNZY7e7fuPvLjfvUBOJ/ntI/LW5m/0rTfnX3Y4hC5wsAA8xs7dw6HwGfA8ub2Tzu/hpxjXQkgljzAU+lxXdK69Q6UqKgyHo7M+sL3JL2W96AT1dEROpJAQsRERERERERKQkpgHAO0AbY3cw6A+8TQYwK4BR3vyK/jpktTxRiXhEYkdtO4bYrC6dJcZhZPyJN175mdkRu1ulE/ZAVgIvNrFdu3t1p+twAKRB1GFFE/UHg27TcUmY2Vy37tbSum1mZma2U9nknMVLjTV0nIiLFpYCFiIiIiIiIiJQMd/8fcANRKHsHd/+NSAP1J3CSmR2a0vd0N7PDgCuAvsBVwCPFOWqpp3nT45/AeWbWHsDd/wTOBy4HVgZuNrP507KfAGOA3XLbeQA4hEgldj4wHlgMaFHTTnPpnxYD/kmM6DmWqHsyn7uf3UDPT0REppPV0OlARERERERERKRozGxB4F3gV2AXd//AzHYiet/PBfwBGNAO+A440t0fLdLhSoGUkqvGBqdUW+JMYF8izdM6wE3uflB+PTO7m0jv9AxwAlGn4nWiVsXOKbiRbXMD4H6i1gnASu7+bg37npeoc7EfMaLiDeCQVBdDRERKgEZYiIiIiIiIiEhJcffviR7zSwJ7pfoT9wK9iB7xdwK3Avu5+6JZsKKuhZal8aRzVVuwwlJtiW+AVsR5/A44wMyWSqmaWqfFjyfqSqwHXAOUA/8HLEsUXa/m7s8AZxDBjV1rCVb0IEbq3ExcV7u4+xoKVoiIlBaNsBARERERERGRkmNmbYDXiMbpfdz9iYL5ZVlhZTOrcPdJRThMqUEKHPUDXgCed/fKgvPVExgMbEbUpLgdGOju66b5loIXCwKnAAcCLxIBh7uADd392VQgOyvi3cLdJ+aOYbJRHul6+gm43t1PavR/goiITBf1PBARERERERGRkuPuY4mCyPMBB5rZ3BAN0VlP/dzvClaUCDNbBxgHnAj0J0Y+kAUrkgrgd2BDIgDxOtDbzLbJzc9G2hwKPEGkjjozzd89za/MtpsFK1IQg4JgRUW6nuZXsEJEpLQpYCEiIiIiIiIiJcndHwNeAZYD5kjTPGuMzv8uTc/MrIbJ3xEBh5HAROBgM7vZzObLFnD3j4ERQJd0/i5Jsy5L8yemWFR5CkgcC9wGdE/LrWRmXWo6JnevrGHapPQ4djqepoiINCEFLERERERERESklG3v7l3d/etiH4iE/CgGM2uRm17h7l8BFwCzA58BFwP7AHea2dK5zbxNBKJw94eJotkLmVk2AqIsCz64+2BipMbjad6p7v5dIz09EREpItWwEBEREREREZGSpzoVxVdDXYgLgdmAfu7+S1anIgU0fgI6AGsCCwHXAX8AB6T6E5cSgYwN3P1tM1ueqFPRBujs7sPSCIvK3P5aA+M1qkZEZOalERYiIiIiIiIiUvIUrCielJ6pLAsUmNnOZvY9cBxQCWR1JKpSYKkSOCatfoa73wtsQ6SIut/M9gFeAtoT9S5w9/eAa4By4MK0bmFgYnwa1VHRWM9VRESKSyMsRERERERERERkmsxsWeAGYFXgOeBm4Hl3H1bL8m8AqwD7u/stZrYEcBWwHvAC0AfY1937p+XnBQYCSwBru/srjfuMRESk1GiEhYiIiIiIiIiI1MrMKszseuA9YG7gcOAwd78vC1ZkBbjTaIxsBMQR6fF4M5sv1aLYh6hr0QcYA2TrlaVt/SutM08TPDURESkxGmEhIiIiIiIiIiK1MrMOwB1AX+Bkd7+ghmXmcvcRub+zeha3A7sBF7r7Sbn5BwLDgBfcfUS+PoaZtXD3iY38tEREpAQpYCEiIiIiIiIiIlNlZmsBjxGpnA4FRgIbA2sRoyVGAq8B96Qi2uXuXmlmHYEfgdHAWu7+QdpembtX1bAfy+pUqG6JiMisRwELEREREREREZFZWBZcmMYybYDziGBFP2A+Ir3TSGA4MGea9iOwLfBmbsTEyWmde919l0Z6GiIiMhNQwEJEREREREREZBZUkIapFbAD8KS7D6tpBEQqmv0YsCgwFrgUuAJwoh7FhcBBxCiMQ9z969y6Q4GFgK3c/dG6BElERGTWo6LbIiIiIiIiIiKzoFywYgfgV6A/sH2aN0W6JuAL4HLgM2Bjdz/d3X8H/nD38UQx7fuADYBl0rZbpXWPTo9npGCIghUiIjIFBSxERERERERERGZBZtbezI4GbgYqgInAjmbWI82frN0oFcJ+mEgL9aaZWZru6fEH4FWivalvWm1CmvcQcBWwfy3BEBEREQUsRERERERERERmUWsDpwCjgO2AfxFFtHeGmkdZuPuP7v68u4/zXJ5xM2uZfv0t/5gKaJen349093cLAyEiIiIZ3SBERERERERERGZNo4A7gNXd/QkiYPETsIuZ9YIpR1lkstEV2Xx3n5BmbZ0e38yWzad/SnUzNMJCRERqpICFiIiIiIiIiMgsyN0HAme5+zdp0mAibVN3YHcza+XuVVlwomBdzwcfzKybmV1EFO6+w93/r5Z9ek3TRUREAEz3CRERERERERERATCzBYBHgEWAA939wRSYmKIBycxaAwsAWxE1K9YHngD+6e5fNtlBi4jITEMjLEREREREREREBKgunH0pMDewp5l1SqMpampDuhT4BDgDWAzYz903VbBCRESmV0WxD0BERERERERERErKE8Qoi82JYtzX1FJ34g5gAvAecFdWq8LMyvN1K0REROpKKaFERERERERERGQyZrYWEbj4BNjZ3b80syWBZdz93txyLdx9YvpdgQoREZkhGmEhIiIiIiIiIiKF3gGuB44BDjWzT4G9gNXM7Hd3fxrA3SdmRbkVrBARkRmlERYiIiIiIiIiIgJAvsC2mS0FPAnMA7QCRgGnu/sVxTtCERGZmWmEhYiIiIiIiIhIM9XQaZhywYpVgV2BzmnWtcAJ7j4mza8ObIiIiDQUBSxERERERERERJqZlIapLFfouiswGhjj7qOnN6CQtrs6cDuwKPA8cJi7f5rmVwCVClaIiEhjKCv2AYiIiIiIiIiISN1lwQh3rzSzbmZ2P/Ac8CbwopmtT+qkmtWXqKsUiBgHvAXs4O7ru/unZlZmZmXuPknBChERaSyqYSEiIiIiIiIi0syYWRlwLHAa8AfwETAGWBVoAxzt7rdN77bdvSr3d4OmnRIREamNUkKJiIiIiIiIiDQjZtYC2B84EngYuBN43t0nmdkiwHvAAWb2pbu/UhiAmJZs2Ww9BStERKSpKCWUiIiIiIiIiEjzMhewCZG26TR3fzoFKzYAHgXaA6sAu5pZK3evqm9qKPg7cCEiItJUFLAQERERERERESkxqbh1jdz9V+Aid9/S3b8xs/nM7D7gKWA8cDjwMbAdsGkd92e53yvMrOUMPQEREZHpoJRQIiIiIiIiIiIlIpeGaVL6ewtgNDAM+NLdR6dFX0nz/wFcA6wIXATc4+7vm9kE4EZilMVr7v5zTamhcgW8Pf29LLAhMMTMHtUoCxERaUoaYSEiIiIiIiIi0sTMbA0zmzf9Xt0+k6sfsZOZDQUeAJ4BBgGPmNn8+eWAjYG1gPOAfu7+fpreOj2uBGxbsE61XKCii5kdANwEXAgsBdQ7jZSIiMiMUMBCRERERERERKQJmdkJxAiJA2DyItcpHdMpQH/gK+BkYD3gOqAXcJuZLZeWbwHsDIwAbnL3UbndtCaKb3cBjjazrrn959M/zWFmWwJXAzcAbYD13L2fim2LiEhTU0ooEREREREREZGm9ShwCDAsn6YpFcdeGDgY+B9wpLt/AGBmHxD1KY4C/mlmJ7j7MDP7GFgMWBl4KtW+2Bw4DTgGaAlMcPeh2c7d3dNyqxABjz2BKuBQd7++8Z++iIhIzRSwEBERERERERFpQu4+2MxWcvdhNczeFegM7JALViwFbEIU0QYYnIIVRgQ/tgauMLNHgLmA9Ymi28+6+9eFOzCzxYDtiREeXYFrgaPdfWLDPUsREZH6U0ooEREREREREZEmlgIOfczsFTPbGMDMyoGFgL+Ar81sLjPblyiefQHwGdDd3S9O23DgcSJtVFfgCGB34BNgp5qCFckmQD8i5VQPdz9cwQoRESkFGmEhIiIiIiIiIlIcCwFrANuZ2avu/peZTQDaA4cDiwA7AEOBzd398WxFM+sA/OnuY4GrzexJol7FCHd/Ly1TnW4q/W0pyPEoMMjdX26SZykiIlJHFvcpERERERERERFpSiml02NAb+Bgd7/DzNYDnkiLTAROcfcrCtarAJ4FHnL3q3KBiPwy5SqaLSIizY1SQomIiIiIiIiIFEEKMpwDtAF2N7POwPvAf4msGDUFK5YH7gRWBEbktlO4bQUrRESk2VHAQkRERERERESkSNz9f8ANRKHsHdz9N+Am4E/gJDM71Mw6mVl3MzsMuALoC1wFPFKcoxYREWkcSgklIiIiIiIiIlJEZrYg8C7wK7CLu39gZjsB1wJzAX8ABrQDvgOOdPdHi3S4IiIijUYBCxERERERERGRIjOzo4BLiREUx7l7pZktDmwCdCXqWXzg7rfl1pmsqLaIiEhzp4CFiIiIiIiIiEiRmVkb4DWgE7CPuz9RML86OGFmFe4+qQiHKSIi0qhUw0JEREREREREpMjcfSxwOjAfcKCZzQ1gibtX5X5XsEJERGZKGmEhIiIiIiIiIlIizOwlYCGgj7t/XezjERERaUoKWIiIiIiIiIiIlAgzm8/dfyn2cYiIiBSDAhYiIiIiIiIiIiVGdSpERGRWpICFiIiIiIiIiIiIiIgUnYpui4iIiIiIiIiIiIhI0SlgISIiIiIiIiIiIiIiRaeAhYiIiIiIiIiIiIiIFJ0CFiIiIiIiIiIiIiIiUnQKWIiIiIiIiIiIiIiISNEpYCEiIiIiIiIiIiIiIkWngIWIiIiIiIiIiIiIiBSdAhYiIiIiIiIiIiIiIlJ0CliIiIiIiIiIiIiIiEjRKWAhIiIiIiIiIiIiIiJFp4CFiIiIiIiIiIiIiIgUnQIWIiIiIiIiIiIiIiJSdApYiIiIiIiIiIiIiIhI0SlgISIiIiIiIiIiIiIiRaeAhYiIiIiIiIiIiIiIFJ0CFiIiIiIiIiIiIiIiUnQKWIiIiIiIiIiIiIiISNEpYCEiIiIiIiIiIiIiIkWngIWIiIiIiIiIiIiIiBSdAhYiIiIiIiIiIiIiIlJ0CliIiIiIiIiIiIiIiEjRKWAhIiIiIiIiIiIiIiJFp4CFiIiIiIiIiIiIiIgUnQIWIiIiIiIiIiIiIiJSdApYiIiIiIiIiIiIiIhI0SlgISIiIiIiIiIiIiIiRaeAhYiIiIiIiIiIiIiIFJ0CFiIiIiIiIiIiIiIiUnQKWIiIiIiIiIiIiIiISNEpYCEiIiIiIiIiIiIiIkWngIWIiIiIiIiIiIiIiBSdAhYiIiIiIiIiIiIiIlJ0CliIiIiIiIiIiIiIiEjRKWCRmNluZnajmb1tZuPNzM1sr+nYTpmZHW5mH5rZWDMbZmb3mNmijXDYIiIiIiLSRMxsATM70syeNrNvzWyCmf1sZg+a2aq1rNPezC4zs2/S94yhZnaxmbWrZXl9nxARERGRWZa5e7GPoSSY2VBgYeA3YHT6fW93H1DP7fwL2A/4GHgc6AzsAIwCVnP3IQ131CIiIiIi0lTM7ALgBOBLYCAwDOgObAUYsIu735dbvi3wCrAc8DTwHrA8sCHwFrC2u48r2Ie+T4iIiIjILEsBi8TM1geGuPs3ZnYicD71DFiYWR/geeAlYAN3n5Cmbwz8F3ja3fs2+MGLiIiIiEijM7NtgOHu/mLB9LWA54igwvzuPj5NPws4HbjQ3U/MLZ8FPk529/Nz0/V9QkRERERmaUoJlbj7s+7+zQxuZv/0eFr25SJt+wmiB9aGZrbQDO5DRERERESKwN0fKgxWpOkvAy8AcwFLA5iZESMlRgHnFKxyTpq+X8F0fZ8QERERkVlaRbEPYCbTm0gn9WoN855K89cB7qjrBs1swWks0hJYHPiVGJJeWddti4iIiMgsrRyYN/3+YTYqQKbbxPQ4KT12J9I5PeXuo/MLuvtoM3sV6GtmXdz9uzSrN/o+ISIiIiLNQ6N8n1DAooGk/LTzAx+5e00f8rNcs93ruenvpr2IiIiIiMgMWRl4u9gH0VylUQ/rAz8BH6bJ2ef+2mpODAH6puW+0/cJEREREWnGGuz7hFJCNZw50uOftcz/q2A5ERERERFp5sysBTHioRVwQi7YUN/vB/o+ISIiIiKzPI2wKH1dpjF/AeANgGeeeYaFF1648Y9IZtj48eP53//+B8Cqq65Kq1atinxEMi06Z82TzlvzpPPW/OicNU/ffPMNG2ywQfbnsGIeS3NlZmXAAGBt4F/uXudUTU2ozt8nXnrpJTp16tT4RyQiIiIizd7PP//M2muvnf3ZYN8nFLBoOFlPqNp6PLUvWK5O3P37qc2PWn5h4YUXpnv3+o4Qnzm4Oz8N+Yw/fvmpTssb0HHRbsyzwLS+vzWOsWPH8uWXXwKw2GKL0aZNm6Ich9SdzlnzpPPWPOm8NT86ZzMF1S2opxSsuBXYBbgTOKhgkfp+Pyj694lFFlmEBRecVskLEREREREKv/c12PcJBSwaSCqc9xOwiJmV15B3dlo5bGUGDPnfqzx2+QX1W8mMJdfqQ68dd6d9h3mnvbyIiIiICNXBiv7AHsA9wF7uXlWw2LRqTkz2/UDfJ0REREREVMOiob0ItAV61TCvb3p8qekOZ9bxw6ef1H8ldz556Xn6H3kgL99zG+PHjG74AxMRERGRmUpBsOI+YPepFMn+EeiVCmrnt5F9Z/ja3fNFsfV9QkRERERmaRphMR3MrAPQAfjN3X/LzboJ2Ak4x8w2cPcJafmNgd7A0+7+TVMf76ygctLE6t9X2XI72s3TYarLj/nzTwY9+RjjRo9i0sQJvPnI/Xz43FOsvv0uLLPeRpRX6KUhIiIiIpPLpYHaA7gf2K2WYAXu7mZ2M3A6cBpwYm72aUA74LyC1fR9QkRERERmaWqVTcxsP2DN9OfS6XE/M+udfn/F3W9Ovx8GnAGcBZyZbcPdX0hfSvYD3jWzx4H5gR2B34HDG/EpzNImTfg7YLHk2usxz4LTrk2xwiZb8L+H7mPQU/9H5aRJjB35F8/fegPvPfEYa+2yJ91WXn2ynL4iIjJ17s5vv/3G6NGjmThx4rRXqEVVVRXzzDMPAN9++y1lZRoQWup0zkpXixYtaNu2LR06dNDnmoZxOrAnMAr4HDi1hv/rI+4+KP1+EbAlcIKZLQ+8C6wAbAi8BVyRX1HfJ0RERERkVqeAxd/WJL585PVi8uHYNzNtBwIfAgcARxBfZh4GTnH3LxvgOKUG+REW5S1a1GmdNu1mp/ce+7H8Rpvx8j2389lrMbp+xE8/8Oil57HA4kuyzm77Mn/3no1yzCIiMxN355dffmHEiBENsq2seFdlZSVVVYVp4aXU6JyVrkmTJjF27FgqKyuZb775FLSYcV3TYzvglFqWGQoMguq6FOsQnZy2BfoAPwGXAme5+9ga1tf3CRERERGZZSlgkbj7XsBedVz2THIjKwrmVQFXpR9pIpMmTKj+vaKOAYvMHB07sdkRx7Piplvy4h238sOnHwNRF+PuU4+hx+prsfYuezJHx04NeswiIjOT3377bbJgRXl5+Qw1jGbrVihFX7Ohc1Z63J3KyshWNGLECMrLy5l33nmLfFTNW32+M+TW+RM4Kv3UZXl9nxARERGRWZa+UcpMoXLi3wGLuo6wKDR/t57seOYFfPn2/3jp7gGM+PF7AD5//WW+/eh99rjwKmafRm0MEZFZ1ejRo6t/n3/++Zlzzjmne1tVVVX89ddfALRv317phZoBnbPS9ccff/DTTz8B8TpVwEJEREREREqZvk3KTCGfEqqiRcvp3o6Z0W3l1djz4mtYb99DaNN+DgDGjfyLZ2++Fnef4WMVEZkZZTUrysvLZyhYISINa84556S8vByI9FAiIiIiIiKlTAELmSnki25P7wiLvPKKCpbbcBP2vux62s41NwBfvfsWn6Y6FyIiUjPlxxcpPdnrUh0vRERERESk1ClgITOFSSkllJWVUZZ6ETaENrO3Z719D67++4X+NzLmrz8bbPsiIiIiIiIiIiIiEhSwkJlCZUpFMiPpoGrTfeXV6bHamgCMHfkXLwy4qcH3ISIixdG7d2+OPPLIYh9Gs/TII4/QrVs3ysvLOeqoo7j77rtZeOGFm2TfXbt25YorrmiSfdXF8OHD6dixI0OHDm3yfa+22mo8+OCDTb5fERERERGRxqCAhcwUsoBFecuGD1gArLv3gbRu2w6AT199kS/febNR9iMiIk3roYce4pxzzmmy/b300ktsvvnmdO7cGTPjkUcemWKZvfbaCzOb7GejjTaabJls+htvvDHZ9PHjxzPPPPNgZgwcOBCIBu2DDjposuVuuOEGzIwBAwZMse+11lqrTs/lwAMPZLvttuO7777j7LPPrtM69TVgwIAaa6K89dZbHHDAAY2yz+lx7rnnsuWWW9K1a1cA3n//fXbeeWe6dOlCmzZtWGKJJbjyyivrvd26XC+nnnoqJ554IlVVVTP4LERERERERIpPAQuZKUxKRbcrKioaZftt55yL3nvuX/33szdfy/gxYxplXyIi0nTmnntuZp999ibb3+jRo1l22WW59tprp7rcRhttxE8//VT9c88990yxTJcuXejfv/9k0x5++GHatWs32bQ+ffpUBy8yL7zwAl26dJli+sCBA1l33XWn+TxGjRrFr7/+St++fencuXOT/g8B5p13XmabbbYm3WdtxowZwy233MK+++5bPe2dd96hY8eO3HnnnXz88ceccsopnHTSSVxzzTX12nZdrpeNN96YkSNH8sQTT0z3cxARERERESkVCljITKFyQtSwaKwRFgBLrr0uXZddAYBRvw/n5bv7T2MNEREpdYUpocaPH8+xxx7LAgssQNu2bVl11VUna9QfPnw4O++8MwsssACzzTYbSy+9dI3BhNpsvPHG9OvXj6233nqqy7Vq1YpOnTpV/8w111xTLLPnnnty7733Mnbs2Oppt956K3vuuedky/Xp04fPPvuMn3/+uXraiy++yIknnjjZc/v666/55ptv6NOnz1SPbeDAgdUBinXXXXey0RyFrr/+ehZbbDFatmxJz549ueOOOyabf9lll7H00kvTtm1bunTpwiGHHMKoUaOq97P33nvz559/Vo8oOfPMM4EpU0KZGTfffDNbb701s802G927d+fRRx+dbF+PPvoo3bt3p3Xr1vTp04fbbrsNM+OPP/6Y6vOdlv/+97+0atWK1VZbrXraPvvsw5VXXsk666zDoosuym677cbee+/NQw89VK9t1+V6KS8vZ5NNNuHee++d7ucgIiIiIiJSKhSwkJnCpCwlVEWLRtuHmbHB/ofRolVrAN5/5gm+++TDRtufiIg0vcMOO4zXX3+de++9lw8++IDtt9+ejTbaiCFDhgAwbtw4VlxxRR5//HE++ugjDjjgAHbffXfefLNhUwUOHDiQjh070rNnTw4++GCGDx8+xTIrrrgiXbt2ra5f8O233/LSSy+x++67T7Zcr169aNGiBS+88AIAn3zyCWPHjmXfffdl+PDhfP3110CMumjdujWrr776VI9tjTXW4LPPPgPgwQcf5KeffmKNNdaYYrmHH36YI444gmOOOYaPPvqIAw88kL333rv6OADKysq46qqr+Pjjj7ntttt4/vnnOf7446v3c8UVV9C+ffvqkSbHHntsrcd11llnscMOO/DBBx+wySabsOuuu/L7778DEYzZbrvt2GqrrXj//fc58MADOeWUU6b6POvq5ZdfZsUVV5zmcn/++Sdzzz13g+yz0CqrrMLLL7/cKNsWERERERFpSo2TP0ekiTVm0e289vN2ZM2d9+SFATcC8PSNV7HHxdfQomWrRt2viEhzdfPLX3Hzy19Pc7mlFmjPzXuuPNm0Ix74hM9+HQPYVNfdb61F2G+tRWfkMIFo8O/fvz/ffvstnTt3BuDYY4/lySefpH///px33nkssMACkzWaH3744Tz11FP8+9//ZpVVVpnhY4BIB7XNNtuwyCKL8OWXX3LyySez8cYb8/rrr1NeXj7Zsvvssw+33noru+22GwMGDGCTTTZh3nnnnWyZtm3bssoqqzBw4EB23nlnBg4cyJprrkmrVq1YY401GDhwIIsssggDBw5k9dVXp1Wrqd/TWrZsSceOHYFIqdWpU6ca6ydccskl7LXXXhxyyCEAHH300bzxxhtccskl1aM48qNbunbtSr9+/TjooIO47rrraNmyJXPMMQdmRqdOnab5f9trr73YeeedATjvvPO46qqrePPNN9loo4248cYb6dmzJxdffDEAPXv25KOPPuLcc8+d5nan5Ztvvqm+Xmrz2muvcd999/H444/P8P5q0rlzZ7777juqqqooK1N/JBERERERab70jUaaPa+qoqpyEgDlLRtvhEVmub6b0LnHEgD88fNPvP5A3VOBiIjMakaOm8TPf42b5s/w0ROmWHfEmEn8/Nf4aa47ctykBjnWDz/8kMrKSnr06EG7du2qf1588UW+/PJLACorKznnnHNYeumlmXvuuWnXrh1PPfUU3377bYMcA8BOO+3EFltswdJLL81WW23F//3f//HWW2/VmHZpt9124/XXX+err75iwIAB7LPPPjVus3fv3tXrDxw4kN69ewOwzjrrTDZ9Wumg6mPw4MH06tVrsmm9evVi8ODB1X8/++yzrLfeeiywwALMPvvs7L777gwfPpwx01Enaplllqn+vW3btrRv355ff/0VgM8++4yVV548IDatANNBBx002XVQm7Fjx9K6deta53/00UdsueWWnHHGGWy44YZ1eSr11qZNG6qqqhg/fnyjbF9ERERERKSpaISFNHtZwW2AikZMCZUpKytnwwP/yR0nHE7lpEm8/dhD9FxtTeZbtFuj71tEpLmZvXUFndrX3pibmaftlCPk5pqtgk7tWzGtERazt26YjzOjRo2ivLycd955Z4qRDFmD9cUXX8yVV17JFVdcUV174cgjj2TChCkDLg1l0UUXpUOHDnzxxRest956k82bZ5552Gyzzdh3330ZN25cdQHmQn369OHcc8/lhx9+YODAgdWjRNZZZx1uvPFGvvzyS7777rs6FdxuKEOHDmWzzTbj4IMP5txzz2XuuefmlVdeYd9992XChAn1LqrdosXknwHMrMaRH3V19tlnTzUFVaZDhw6MGDGixnmffPIJ6623HgcccACnnnrqdB/LtPz++++0bduWNm3aNNo+REREREREmoICFtLsVU74O2DRmEW38+ZZsAurbbszr953B15VxVM3XMmu511OeYVeUiIiefutteh0p2u6crslad++fZOluFl++eWprKzk119/Za211qpxmVdffZUtt9yS3XbbDYCqqio+//xzllxyyUY7ru+//57hw4cz//zz1zh/n332YZNNNuGEE06YItCSWWONNWjZsiXXXXdddR0OgJVXXplhw4Zx6623VqeOaihLLLEEr7766mRFwF999dXq/9U777xDVVUVl156afU5/ve//z3ZNlq2bEllZeUMH0vPnj3573//O9m0t956a6rrdOzYsTr11dQsv/zy3HnnnVNM//jjj1l33XXZc889GyT11NR89NFHLL/88o26DxERERERkaaglFDS7E2a+Hev1ooWjT/CIrPyFtsy70JdARj2zde8/dhDTbZvERFpeD169GDXXXdljz324KGHHuLrr7/mzTff5Pzzz6+uPdC9e3eeeeYZXnvtNQYPHsyBBx7IL7/8Uud9jBo1ikGDBjFo0CAgikEPGjSoOqXUqFGjOO6443jjjTcYOnQozz33HFtuuSXdunWjb9++NW5zo402YtiwYZx99tm17rdNmzasttpqXH311fTq1as6sNGyZcvJpheOUpgRxx13HAMGDOD6669nyJAhXHbZZTz00EPVoxa6devGxIkTufrqq/nqq6+44447uOGGGybbRteuXRk1ahTPPfccv/3223SligI48MAD+fTTTznhhBP4/PPP+fe//82AAQOAGIkxI/r27cvHH3882SiLjz76iD59+rDhhhty9NFH8/PPP/Pzzz8zbNiwem17WtdL5uWXX260dFMiIiIiIiJNSQELafaygtsA5U2QEurvfVXQ9+AjMYuX0esP3M3wH75rsv2LiEjD69+/P3vssQfHHHMMPXv2ZKuttuKtt95ioYUWAuDUU09lhRVWoG/fvvTu3ZtOnTqx1VZb1Xn7b7/9Nssvv3x1b/ijjz6a5ZdfntNPPx2A8vJyPvjgA7bYYgt69OjBvvvuy4orrsjLL79cazFsM6NDhw60nMYowz59+jBy5Mjq+hWZddZZh5EjRzZo/QqArbbaiiuvvJJLLrmEf/zjH9x4443079+/ev/LLrssl112GRdeeCFLLbUUd911F+eff/5k21hjjTU46KCD2HHHHZl33nm56KKLputYFllkER544AEeeughlllmGa6//npOOeUUgGkWGZ+WpZdemhVWWGGy0SEPPPAAw4YN484772T++eev/snX0Rg6dChmVmNtksy0rheAH374gddee4299957hp6HiIiIiIhIKTB3L/YxyAwwswWB7wA+//xzunfvXuQjanrDf/iOAUcfDMA/1lmPjQ45qkn3/9Jd/Xnr0QcB6NxjCXY660JsGulLxo4dy9NPPw3AhhtuqJzTzYDOWfOk89Z0hgwZwqRJk6ioqJjhe1FVVRV//fUXQJOmhJLp1xzP2bnnnssNN9zAd9/NeGeDxx9/nOOOO46PPvqozs/9hRdeYJtttuGrr75irrnmmu59n3DCCYwYMYKbbrqp1mVqe30OGTKEHj16ZH92cffvp/tApNnKf5/47rvvWHDBBYt8RCIiIiLSHHz//fd06dIl+7PBvk+U/rdJkWko1giLzOrb78KcnSKv+I+fD2bQ0483+TGIiIjI1F133XW89dZb1emnLr744snqa8yITTfdlAMOOIAffvihzuv897//5eSTT56hYAVErY1zzjlnhrYhIiIiIiJSKlQhWJq9yQIWLRsmYOFVzqTfxzHxx1FM/GUMZlDWriXl7VpQ1q4FZW1bUN62BdamghYtW7Hhgf/k32edBMBLdw9gwSWXrq5vISIis4Zvv/12qsW3P/nkk+rUUqVu44035uWXX65x3sknn8zJJ5/cxEc044YMGUK/fv34/fffWWihhTjmmGM46aSTGmz7Rx55ZL2Wv/jiixtkv8ccc0yDbEdERERERKQUKGAhzd7kRbennr+7JlUTKpn482gm/pR+fhzFxJ9H4xOqpr1ymVHWtgUt27VgsyUP4bdh3zKucgwfXvEIy2+9Ja3naU9ZuwhulLVrgbUsn+HiniIiUpo6d+5cXRy5tvnNxc0338zYsWNrnDf33HM38dE0jMsvv5zLL7+82IchIiIiIiIiU6GAhTR7k42waDH1ERaVIycw8cdRTMgCEz+NZtJvY2F6S7lUOVUjJ1A1cgJtmZ227f5RPWv0498zunD5ijLK27WA2crpNqYdI9tPomrsJFBafRGRZq+iooJu3boV+zAaxAILLFDsQxAREREREZFZkAIW0uxNygUsshEWXuVM+m3sFMGJqlETa9vMZMrnbk2L+dvScv62tJi/LZQZVaMmUjl6IlWjJlI1Ovt9QvV0KusQ9ZhUReUf4+EPmIOWzPFHS0Zc/gETVpyPdr0602Le2abnXyAiIiIiIiIiIiLS7ClgIc1eZUoJtVDbJZhr6Jz8cs17TPx5DEyqQ0qncqNFp7Z/Byc6t6PF/G0pa12/l4a74+MrqRw5gV8+GcKrt99BS2tF6/LZ6L7sGsw1Z6e/Ax7pp3pUx8QqRr/xE6Pf+InWi89NuzU702qxOZU6SkRERERERERERGYpClhIs1c5cSKLtluGlefdGH6BiYyqcbmy2SqqAxLx044WHdtg5WUzfAxmhrWuoKx1BQuusyxLVv7C0zdeBcCnr7zFDmeczwI9l6lefszoMbz02HN0/Lk1HYfPBhMjuDLu098Z9+nvtOjUlnZrdma2ZTtiLWb8+ERERERERERERERKnQIW0uxNmjiBOVrOO9m0inla/x2cSI/l7Vs22aiFpdfdkF+HfsWgp/6PqspJPHrpuex2/hXMPk8HAKzMGN+miu8WGUPPPVaj6sM/GfXaj1T+OR6AiT+PZsQDQ/jzyaG0XXV+2q02P+Wz17+guIiIiIiIiIiIiEhzoYCFNHuTJkyk3P6+lDseuhwtu8xexCMKvffYj+Hff8t3H3/AmD//4D+X9GPHsy6kRctWky1X1qaCtussSLs1F2DsR78x6pUfmPDdSACqRk1k5HPfMnLgd8y2XEdmX2sBWnRqW4ynIyIiIiIiIiIiItKolGtGmr3KSRMps/Lqv611+VSWbjrlFRVsftSJzNFxPgB++eoLnr7hKtxrLs5t5cZsy85Lx0OXY95DlqXNMh3+foVWOmPe+YVfrniXYTd/yNhPf8er6lDkW0REpqp3794ceeSRxT6MZumRRx6hW7dulJeXc9RRR3H33Xez8MILN8m+u3btyhVXXNEk+6qL4cOH07FjR4YOHdqk+50wYQJdu3bl7bffbtL9ioiIiIiINBYFLKTZq5wwYbIRFlZROpd1m9nbs+Vxp9GiVWsAPn31Rd5+7KFprtdqofbMs8sSdDp+ZdqtvcBkQZjxX/zB8AEf88vl/8/efcdHVaWPH/+cmcmkB1IIIZCQ0CIoILB0EIJKsWJZlRWprqBfXVFQbKt0V7GArog/XcCyK4so6i5YVmQEERRRpEkPJECAFEJ6JjNzfn9MMmTSE1Im8Lxfr3nlzr3nnvtcchMy97nnPNvJ3noSh9Veb/ELIcTF7pNPPmHu3LkNdryNGzdy4403EhkZiVKKTz/9tEybCRMmOGsjlXiNHDnSrU3x+q1bt7qtLygoIDQ0FKUUFosFgH79+jF16lS3dkuXLkUpxYoVK8oce/DgwdU6lylTpnD77beTlJTEnDlzqrVPTa1YsYLmzZuXWb9t2zbuu+++ejlmbcyfP5+bb76ZmJgYAH777TfGjBlDVFQUvr6+dO7cmcWLF9e431mzZpW5Fi677DLXdrPZzIwZM5g5c2ZdnYoQQgghhBBCNCrPubMrRC3ZbYUem7AAaBEdw6gHH3W93/ivFRzb+Wu19jU196H5de1o9WQfmt/YDmOoj2ubLSWPjE8Pk/z8T5z7MsFV/0IIIUT1hYSEEBjYcNMI5uTk0L17d954441K240cOZLk5GTX68MPPyzTJioqiuXLl7utW7NmDQEBAW7r4uPjXcmLYhs2bCAqKqrMeovFwrBhw6o8j+zsbM6cOcOIESOIjIxs0H9DgBYtWuDn59egx6xIbm4u//jHP5g8ebJr3fbt2wkPD+eDDz5gz549PP300zz55JP8/e9/r3H/l19+udu18P3337ttv/vuu/n+++/Zs2fPBZ+LEEIIIYQQQjQ2z7qzK0Qt2AoLMRpKJCy8PO+y7thnAP1v/5Pzjdb8781FWDMzqr2/wdtEwMDWREz/A6H3dMEc28y1TefZyLIcJ/mFbaSt3If1eFYdRy+EEBev0lNCFRQUMGPGDFq3bo2/vz99+/Z1u6mflpbGmDFjaN26NX5+fnTt2rXcZEJFRo0axbx587jlllsqbeft7U1ERITrFRwcXKbN+PHjWblyJXl5ea51y5YtY/z48W7t4uPj2b9/P6dOnXKt++6773jiiSfczi0hIYFjx44RHx9faWwWi8WVoBg2bJjbaI7S3nzzTdq3b4/ZbCYuLo7333/fbfsrr7xC165d8ff3JyoqigceeIDs7GzXcSZOnMi5c+dcowtmzZoFlJ0SSinFO++8wy233IKfnx8dO3bk888/dzvW559/TseOHfHx8SE+Pp53330XpRQZGRmVnm9V1q1bh7e3N/369XOtmzRpEosXL2bIkCG0a9eOsWPHMnHiRD75pOpRlqWZTCa3ayEsLMxte3BwMAMHDmTlypUXdB5CCCGEEEII4Qk8786uEDVks1oxePAIi2L9b7uLDr37A2DNyyV549fYrdYa9aEMCt/LQwmf0o3wh3rg1zMcjMq50aHJ25HCmb/vIPn5H0lZtpuMtUfI+fk01qQsmTpKCCGq4cEHH2TLli2sXLmSnTt38sc//pGRI0dy8OBBAPLz8+nVqxdr165l9+7d3Hfffdxzzz389NNPdRqHxWIhPDycuLg47r//ftLS0sq06dWrFzExMXz88ccAJCYmsnHjRu655x63dgMHDsTLy4sNGzYAsHfvXvLy8pg8eTJpaWkkJCQAzlEXPj4+9O/fv9LYBgwYwP79+wH4+OOPSU5OZsCAAWXarVmzhocffpjp06eze/dupkyZwsSJE11xABgMBl577TX27NnDu+++y7fffsvjjz/uOs6iRYsICgpyjS6YMWNGhXHNnj2bO+64g507d3Lddddx9913k56eDjiTMbfffjujR4/mt99+Y8qUKTz99NOVnmd1bdq0iV69elXZ7ty5c4SEhNS4/4MHDxIZGUm7du24++67SUxMLNOmT58+bNq0qcZ9CyGEEEIIIYSnMVXdRAjP5pwSqkSh7eIb+B5GGQyMevBRPvzrY6QmHqUw8xynN6/HXmpe8uoytw4g5I44mo2MJXvrSXK2JuPItQFgP2fFfs5KwYGzbvsYQ3zwCvfDK8IPU0t/vFr64dXCzyNHpQghLhI//B22VD79EQCtusOf3J8Q9/98Miplb9X79v8/GPBgLQM8LzExkeXLl5OYmEhkZCQAM2bM4Msvv2T58uUsWLCA1q1bu900f+ihh/jqq69YtWoVffr0ueAYwDkd1K233kpsbCyHDx/mqaeeYtSoUWzZsgWj0ejWdtKkSSxbtoyxY8eyYsUKrrvuOlq0aOHWxt/fnz59+mCxWBgzZgwWi4VBgwbh7e3NgAEDsFgsxMbGYrFY6N+/P97e3pXGZzabCQ8PB5xTakVEROBwOMq0e+mll5gwYQIPPPAAAI8++ihbt27lpZdeco3iKDm6JSYmhnnz5jF16lSWLFmC2WymWbNmKKWIiIio8t9twoQJjBkzBoAFCxbw2muv8dNPPzFy5Ejeeust4uLiWLhwIQBxcXHs3r2b+fPnV9lvVY4dO+a6Xiryww8/8O9//5u1a9fWqO++ffuyYsUK4uLiSE5OZvbs2QwePJjdu3e7TcMVGRnJsWPHahW/EEIIIYQQQngSSViIJs9ZdNvL+cbknDLCU5l9fBn92DO8/8Q0CnKyyU0+zvq3/86N0x7HYDBW3UE5jEFmmg2PISg+ipxfz5D76xkKk3PR+bYybe3p+djT88nfl35+pQJTqC+mln7OBEZRIsMU5uuxo1WEEE1IQRZknay6XbPWZVap3DRUdfYtqJup8Hbt2oXdbqdTp07u3RcVsgaw2+0sWLCAVatWceLECaxWKwUFBXVaT+Guu+5yLXft2pVu3brRvn17LBYLV199tVvbsWPH8sQTT3DkyBFWrFjBa6+9Vm6fQ4cO5aOPPgKcozeGDh0KwJAhQ1xTL1ksFv785z/X2Xn8/vvvZQpjDxw40K349DfffMPzzz/Pvn37yMzMxGazkZ+fT25ubo3/Tbt16+Za9vf3JygoiDNnzgCwf/9+evfu7da+qgTT1KlT+eCDD1zvi6eqKi0vLw8fH59ytwHs3r2bm2++meeee47hw4dXeR4ljRo1yrXcrVs3+vbtS9u2bVm1apVbzQxfX19yc3Nr1LcQQgghhBBCeCJJWIgmz2azuUZYKJPnJiuKNQuPYORDM/j8xbloh51DP27mm7ff4Nr7HrqgZIvyMhLQpxUBfVqhtcaRaaXwdC6Fp3MoPJ2L7XQuhadz0aWnhtJgS83DlppH/p4SU44YFKYw36IkhnNEhrl1AMZgb49OCgkhPIx3IARW/vQ5AH5hZVZpv1B0YCRV/sbxrpuCz9nZ2RiNRrZv315mJENxIeuFCxeyePFiFi1a5Kq9MG3aNKw1nOKvJtq1a0dYWBiHDh0qk7AIDQ3lhhtuYPLkyeTn5zNq1CiyssomcOLj45k/fz4nTpzAYrG4RokMGTKEt956i8OHD5OUlFStgtt15ejRo9xwww3cf//9zJ8/n5CQEL7//nsmT56M1WqtccLCy8vL7b1SqtyRH9U1Z86cSqegKhYWFsbZs2fL3bZ3716uvvpq7rvvPp555plax1KsefPmdOrUiUOHDrmtT09PLzOyRtQfpdRYYDDQC+gKmIGJWusV5bTV1egyWmudVNQ+BkiopO1srfWsGoYshBBCCCFEkyEJC9Hk2QutGItrWDSREQGtL7uciMHXkLzxa9CaXd9+jZePL0PH3VsnyQClFMZm3hibeePT6XyhVu3Q2M8VFCUwcig8lUvhmVxsZ3LRhaVu6jg0tqJtebvOrzb4mfBqHYC5TSDm1gF4tQnE2MwsSQwhRPkGPFjr6ZpybvoHQUFBKEPD/G7v0aMHdrudM2fOMHjw4HLbbN68mZtvvpmxY8cC4HA4OHDgAF26dKm3uI4fP05aWhqtWrUqd/ukSZO47rrrmDlzZplES7EBAwZgNptZsmSJqw4HQO/evUlJSWHZsmWuqaPqSufOndm8ebNbEfDNmze7/q22b9+Ow+Hg5ZdfxlD0PV61apVbH2azGbv9wmswxcXFsW7dOrd127Ztq3Sf8PBw19RXlenRo4fbSIxie/bsYdiwYYwfP75Opp4CZ1Lt8OHDZeqU7N69mx49etTJMUS1zAPaAqlActFyRWZXsL4DcDewtzhZUcpvwKflrLdUO0ohhBBCCCGaIElYiCavZNHtplSLwb91NC0HxHPmhw1orfll3WeYff0YeMfd9XZMZVCYgn0wBfvAZecLf2qHxp6eX3ZERkou2N0fDHTk2ig4mEHBwQzXOkOAF+Y2gUWJDGcywxhorrfzEEKI+tCpUyfuvvtuxo0bx8svv0yPHj1ISUlh/fr1dOvWjeuvv56OHTuyevVqfvjhB4KDg3nllVc4ffp0tRMW2dnZbk/HJyQksGPHDkJCQoiOjiY7O5vZs2dz2223ERERweHDh3n88cfp0KEDI0aMKLfPkSNHkpKSQlBQUIXH9fX1pV+/frz++usMHDjQldgwm81u60uPUrgQjz32GHfccQc9evTgmmuu4T//+Q+ffPIJ33zzDQAdOnSgsLCQ119/nRtvvJHNmzezdOlStz5iYmLIzs5m/fr1dO/eHT8/v1pNvzVlyhReeeUVZs6cyeTJk9mxYwcrVqwAuOCE+4gRI3jyySc5e/YswcHOhwR2797NsGHDGDFiBI8++iinTp0CwGg01mgkxIwZM7jxxhtp27YtJ0+e5LnnnsNoNLpqdRTbtGkTc+fOvaDzEDVyL3BQa31MKfUE8HxFDSsaDaGUer1o8R8V7LpDRlIIIYQQQohLUdO5uytEBZxFt50JC4OpdnUgGktg2/YMnTjV9X7rxx+y7T+fNHgcqmj6J9/LQwkaFk3omMtoOa0nrecMpOWjvQi5+zICr47G57IQDAFlb2Y5sgvJ35dO1vpE0t7dS/L8H0le8COp7+0lc30i+QfOYs8pbPDzEkKImlq+fDnjxo1j+vTpxMXFMXr0aLZt20Z0dDQAzzzzDD179mTEiBEMHTqUiIgIRo8eXe3+f/75Z3r06OF6Gv7RRx+lR48ePPvss4DzhvbOnTu56aab6NSpE5MnT6ZXr15s2rSpwmLYSinCwsIwmytPFMfHx5OVleWqX1FsyJAhZGVluQph15XRo0ezePFiXnrpJS6//HLeeustli9f7jp+9+7deeWVV3jhhRe44oor+Oc//8nzz7vf9x0wYABTp07lzjvvpEWLFrz44ou1iiU2NpbVq1fzySef0K1bN958802efvppgCqLjFela9eu9OzZ0210yOrVq0lJSeGDDz6gVatWrlfJOhpHjx5FKYXFYqmw7+PHjzNmzBji4uK44447CA0NZevWrW5Jjy1btnDu3Dluv/32CzoPUX1a62+01rWucq6U8sE5usIKvF9ngQkhhBBCCHERUFpXZ1pV4amUUm2AJIADBw7QsWPHRo6o4f3r6ekMst2EQRnwah1Ay4c8f0qEvLw8vv76awCGDx/O7xu+ZsO7b7u2X3Pv/9H92lEV7d6otNbYz1kpPJ6F9UQ21uNZFJ7IxpFbtsh3acZg7xIjMZxTShl8m8ZAr9LfM19f30aOSFSHfN8azsGDB7HZbJhMpgv+v8jhcJCZmQlAUFCQa7og4bma4vds/vz5LF26lKSk8mbjqZm1a9fy2GOPsXv37mqf+4YNG7j11ls5cuSIa2RGbdx55510796dp556qsI2Ff18Hjx4sGSR+Sit9fFaB3KJKjHCotwaFhXs8yfgn8BqrfUfS22LwVnD4n/AZ0Az4DRg0VofrmWMbapoEgFsA+fniTZtqmouhBBCCCGE8wGr+vg80TTuFApRCXthoevmgGoiNSxK63ndzVjz8ti8yjkH9jf/WILZx4fOg+v2ade6oJTC1NwbU3NvfK9wFsnVWmM/W4D1eBbW49muZIYucJ933H62gLyzBeTtSnWtM4X5EnBVa/x7R0gdDCGEEPVmyZIl9O7dm9DQUDZv3szChQt58MHa1Vcp7frrr+fgwYOcOHGCqKioau2zbt06nnrqqQtKVlitVrp27cojjzxS6z5Eo5hc9PWdStpcW/QqppVS/wSmaq1zani8amflNm7cSFhYWA27F0IIIYQQl6LU1NSqG9WCJCxEk6cLHVA0m0NTqmFRWt9b78San8e2zz8GrfliyauYfHzo2Lt/Y4dWJaUUphAfTCE++HVzTlOhHRpbWh6FJ7KxHj8/EqN0cW9bah4ZnxzCmpBJ81s6YDA3rWm9hBCiWGJiYqW1LPbu3euaWsrTjRo1ik2bNpW77amnnqr0aX5PdfDgQebNm0d6ejrR0dFMnz6dJ598ss76nzZtWo3aL1y48IKPaTabeeaZZy64H9FwlFKxQDyQiHMURWm5wFycBbcP45zCtycwHxgL+AG3NUSsQgghhBBCNAZJWIgmzy1h0URHWIDzpv/gP03AmpfHb/9bh3Y4WLvoBUbPfI6Ybp4/zVVpyqDwauGHVws//K4MB4qSGCm5rgSG9Xg2hUlZAOT+eobC5BxC7+mMKVSm7RFCND2RkZHs2LGj0u1NxTvvvENeXl6520JCQho4mrrx6quv8uqrrzZ2GEJMAhSwXGvtKL1Ra30GeLbU6vVKqS3AL8CtSqmeWutfanDMqob9uKaEuuqqq2RKKCGEEEIIUS3Hj9fPjLKSsBBNnrafr8PSlEdYgDNpcfWkqRTm57F30wbsNhufLZzHbU/Poc1llzd2eBdMGRReLf3xaumPf6+WAOTuTOHs6gNoq4PCUzmcfv1XQu6Iw7dLaCNHK4QQNWMymejQoUNjh1EnWrdu3dghCHHRUUoZgAmAA1hWk3211rlKqfeBecBAnMmL6u5b6SfJklNy+vr6Sr0nIYQQQghRLfX1d2PTvrsrBIDt/MNpTXmERTFlMDDi/ml0KJoKymYtYM3fZnP6yKFGjqx++HVrQfj/XYmphfOXnM63k/beXs59fRTt0FXsLYQQQgjRZIwE2gD/01on1mL/4kmC/esuJCGEEEIIITxL07+7Ky552lZihMVFkLAAMBiNXP/w48R07wmANS+Xj+Y9TeLunY0cWf3waulP+P9die8V50dVZH2bROry3dhzChsxMiGEEEKIOlOdYtuV6Vv09eiFhyKEEEIIIYRnujju7opLltYaZS+xwqQqbNvUmLy8uGn6U7QumgqqICeHjxc8y95NGxo5svph8DERcndnml0X6/rNVHAwgzOv/4r1eFbjBieEEEIIcQGUUi2AG4EU4PNK2vVQJedoOr/+VmA8cBb4or7iFEIIIYQQorFJwkI0aQ67HYM6fxkrL2MjRlP3vLx9uPXJWcT2+AMADruNL/7+Mls+/hCtL77pkpRSBF7VhrDJXTEEeAFgzyjgzJu/kfPTqUaOTgghhBAClFL3KqVWKKVWAH8sWu1ap5S6t5zdxgFewPtaa2sl3b8KJCqlVimlXlFKLVZKbQI+BgqBCVrrc3V4OkIIIYQQQngUSViIJs1eaMWgzteOVxfRCItiZh9fRj/2V7pfO8q17odV/+SrpYux22yNGFn98WnfnJYP9cAcHehcYdec/eQg6asPoAsdle8shBBCCFG/BuEc7TAe6Fm0bmCJdYPK2ae600F9AOwG+gFTgSlAZNF+V2qtKxydIYQQQgghxMXAVHUTITyXrbAQY8mEhdfFmYMzGI1cPfkBmoVHsPGfywHYY/mGrLRUbnr0Sbz9Lr7ai8Zm3rS4rxvn1iWQ/cNJAHJ/Pk1hcg6hd3fGFOLTyBEKIYQQ4lKktZ4ATKjhPl2q2e4dal/jQgghhBBCiCbv4ry7Ky4Z9tIJi4uk6HZ5lFL0vuk2bpj2BEYv53RJibt28OFfHyMz9UwjR1c/lMlA85vaE3JnnCsZVXgimzN//5X8A2cbOTohxMVg6NChTJs2rbHDaJI+/fRTOnTogNFo5JFHHuFf//oXbdu2bZBjx8TEsGjRogY5VnWkpaURHh7O0aNHG/zY/fr14+OPP27w4wohhBBCCCFEfbh47+6KS0KZhMVFOsKipLj+g/jjXxfgExgEQNrxRP719HROHznUyJHVH78e4bR44EqMoc5RFY5cG6nLd5O5PhHtuPhqeQghGs4nn3zC3LlzG+x4Gzdu5MYbbyQyMhKlFJ9++mmZNhMmTEAp5fYaOXKkW5vi9Vu3bnVbX1BQQGhoKEopLBYL4LyhPXXqVLd2S5cuRSnFihUryhx78ODB1TqXKVOmcPvtt5OUlMScOXOqtU9NrVixgubNm5dZv23bNu677756OWZtzJ8/n5tvvpmYmJgy29LS0mjTpg1KKTIyMmrUb3Wul2eeeYYnnngCh0OmTBRCCCGEEEI0fRf/3V1xUbMVWjGq84W2L+YRFiW1juvMn+a9RPOIVgDkZJzl37Oe4PD2nxo5svpjbuVPywd74NM5xLlCQ+b/jpH23l4cuYWNG5wQoskKCQkhMDCwwY6Xk5ND9+7deeONNyptN3LkSJKTk12vDz/8sEybqKgoli9f7rZuzZo1BAQEuK2Lj493JS+KbdiwgaioqDLrLRYLw4YNq/I8srOzOXPmDCNGjCAyMrJB/w0BWrRogZ+fX4MesyK5ubn84x//YPLkyeVunzx5Mt26datV39W5XkaNGkVWVhZffPFFrY4hhBBCCCGEEJ7k0ri7Ky5a9sLCUkW3L51LOjgikjFzXyIyzjklcmFBPp8tnMeOr9Y2cmT1x+BrIvSeLgSNaAtF9dXz96Vz+u87sJ7MbtzghBBNUukpoQoKCpgxYwatW7fG39+fvn37ut3UT0tLY8yYMbRu3Ro/Pz+6du1abjKhIqNGjWLevHnccsstlbbz9vYmIiLC9QoODi7TZvz48axcuZK8vDzXumXLljF+/Hi3dvHx8ezfv59Tp0651n333Xc88cQTbueWkJDAsWPHiI+PrzQ2i8XiSlAMGzbMbTRHaW+++Sbt27fHbDYTFxfH+++/77b9lVdeoWvXrvj7+xMVFcUDDzxAdna26zgTJ07k3LlzrhEls2bNAspOCaWU4p133uGWW27Bz8+Pjh078vnn7rWJP//8czp27IiPjw/x8fG8++67tRr1UNq6devw9vamX79+5Z5/RkYGM2bMqFXf1blejEYj1113HStXrqzVMYQQQgghhBDCk1w6d3fFRalM0e1LKGEB4BfUjD8+M49O/QYBoLWD9cvexPLe2zjs9kaOrn4ogyIoPpqwiVdg8HN+7+3p+ZxZ8hs52083cnRCiNLe3fMuV390dZWvh9Y/VGbfJ358gms/vrbKfd/d826dxfvggw+yZcsWVq5cyc6dO/njH//IyJEjOXjwIAD5+fn06tWLtWvXsnv3bu677z7uuecefvqpbke4WSwWwsPDiYuL4/777yctLa1Mm169ehETE+OqX5CYmMjGjRu555573NoNHDgQLy8vNmzYAMDevXvJy8tj8uTJpKWlkZCQADhHXfj4+NC/f/9KYxswYAD79+8H4OOPPyY5OZkBAwaUabdmzRoefvhhpk+fzu7du5kyZQoTJ050xQFgMBh47bXX2LNnD++++y7ffvstjz/+uOs4ixYtIigoyDXSpLIb/7Nnz+aOO+5g586dXHfdddx9992kp6cDzmTM7bffzujRo/ntt9+YMmUKTz/9dKXnWV2bNm2iV69eZdbv3buXOXPm8N5772Ew1O/fJ3369GHTpk31egwhhBBCCCGEaAiX1t1dcdGxF1ovuRoWpZnMZm54+HF633Sba932tZ+xet4z5GRcvIWpfToFE/5QD7zaFE19YnNw9qMDnP30ENom83gL4SlyCnM4k3umyld6QXqZfTMKMqq1b05hTp3EmpiYyPLly/noo48YPHgw7du3Z8aMGQwaNMg19VLr1q2ZMWMGV155Je3ateOhhx5i5MiRrFq1qk5iAOd0UO+99x7r16/nhRde4LvvvmPUqFHYy0lET5o0iWXLlgHOeg/XXXcdLVq0cGvj7+9Pnz59XKMgLBYLgwYNwtvbmwEDBrit79+/P97e3pXGZzabCQ8PB5xTakVERGA2m8u0e+mll5gwYQIPPPAAnTp14tFHH+XWW2/lpZdecrWZNm0a8fHxxMTEMGzYMObNm+f6tzSbzTRr1gyllGukSenprkqaMGECY8aMoUOHDixYsIDs7GxXIumtt94iLi6OhQsXEhcXx1133cWECRMqPc/qOnbsGJGRkW7rCgoKGDNmDAsXLiQ6OrpOjlOZyMhIkpKSpI6FEEIIIYQQoskzVd1ECM9Vuug2l9gIi2LKYOCquyfSLDyCb5cvxWG3k7R3Fx88OY0bH3mSyE6XNXaI9cIU7EP4lO5k/OcwOT85pzrJ2ZpM4YlsQsZ2xtSs8ptuQoj65+/lT7hfeJXtQrxDyqxr7t28Wvv6e/nXKrbSdu3ahd1up1OnTm7riwtZA9jtdhYsWMCqVas4ceIEVquVgoKCOq2ncNddd7mWu3btSrdu3Wjfvj0Wi4Wrr77are3YsWN54oknOHLkCCtWrOC1114rt8+hQ4fy0UcfAc7ExNChQwEYMmSIa+oli8XCn//85zo7j99//71MYeyBAweyePFi1/tvvvmG559/nn379pGZmYnNZiM/P5/c3Nwa/5uWrBPh7+9PUFAQZ86cAWD//v307t3brX2fPn0q7W/q1Kl88MEHrvfFU1WVlpeXh4+Pj9u6J598ks6dOzN27NganUNt+fr64nA4KCgowNfXt0GOKYQQQgghhBD1QRIWokmzyQgLN92vHUVYdAz/efV5cs6mk52exr9nPUH8+D/Tffh1KKUaO8Q6p7wMBN/aEXNUIGc/OwQ2jTUpizOv/UroPZ3xjmnW2CEKcUkbf/l4xl8+vuqG5fhb378RFBRU79PpFMvOzsZoNLJ9+3aMRqPbtuIn+xcuXMjixYtZtGiRq/bCtGnTsFqt9RZXu3btCAsL49ChQ2USFqGhodxwww1MnjyZ/Px8VwHm0uLj45k/fz4nTpzAYrG4plYaMmQIb731FocPHyYpKalaBbfrytGjR7nhhhu4//77mT9/PiEhIXz//fdMnjwZq9Va44SFl5eX23ul1AWNOJgzZ061ak+EhYVx9qz7iMZvv/2WXbt2sXr1agC01q62Tz/9NLNnz651XOVJT0/H399fkhVCCCGEEEKIJk8SFqJJsxUWYlDnbypdajUsytM6rjP3/G0x/130Asd/343DbmP9sjdJPrSfa+59AC9vn6o7aYL8e0fgFRlA2gd7sZ8twJFTSNp7ewl/qAem4IvznIUQdatHjx7Y7XbOnDnD4MGDy22zefNmbr75ZteT8w6HgwMHDtClS5d6i+v48eOkpaXRqlWrcrdPmjSJ6667jpkzZ5ZJtBQbMGAAZrOZJUuWuOpwAPTu3ZuUlBSWLVvmmjqqrnTu3JnNmze7FQHfvHmz699q+/btOBwOXn75ZVdSqvTUWmazudypsGoqLi6OdevWua3btm1bpfuEh4e7pr6qTI8ePdxGYoCztkfJYujbtm1j0qRJbNq0ifbt29cg8urZvXs3PXr0qPN+hRBCCCGEEKKhyd1d0aSVnhLqUh9hUcy/eTC3PzOPXtePdq3bu/FbPvzrY2ScSm68wOqZuXUALR/qgXc756gKR66NtH/+ji6UOb2FEFXr1KkTd999N+PGjeOTTz4hISGBn376ieeff561a9cC0LFjR/73v//xww8/8PvvvzNlyhROnz5d7WNkZ2ezY8cOduzYATiLQe/YsYPExETX9scee4ytW7dy9OhR1q9fz80330yHDh0YMWJEuX2OHDmSlJQU5syZU+FxfX196devH6+//joDBw50JTbMZrPb+tKjFC7EY489xooVK3jzzTc5ePAgr7zyCp988olr1EKHDh0oLCzk9ddf58iRI7z//vssXbrUrY+YmBiys7NZv349qamp5Obm1iqWKVOmsG/fPmbOnMmBAwdYtWoVK1asALjg0YcjRoxgz549bqMs2rdvzxVXXOF6xcbGAs4kTnWSIMWqul6Kbdq0ieHDh1/QeQghhBBCCCGEJ5C7u6JJK110O1+KLbsYTSaGjruXG6bNdI2qSDmWwAdPTePIL5U/VdqUGfy8CL2nC8YQ5zkXHs8m4z+HGzkqIURTsXz5csaNG8f06dOJi4tj9OjRbNu2zVU4+ZlnnqFnz56MGDGCoUOHEhERwejRo6vd/88//0yPHj1cT8M/+uij9OjRg2effRYAo9HIzp07uemmm+jUqROTJ0+mV69ebNq0qcJi2EopwsLCyi18XVJ8fDxZWVmu+hXFhgwZQlZWFvHx8dU+j+oYPXo0ixcv5qWXXuLyyy/nrbfeYvny5a7jd+/enVdeeYUXXniBK664gn/+8588//zzbn0MGDCAqVOncuedd9KiRQtefPHFWsUSGxvL6tWr+eSTT+jWrRtvvvkmTz/9NECVRcar0rVrV3r27FnjwutHjx5FKeUqel6eqq4XgBMnTvDDDz8wceLEWsUvhBBCCCGEEJ5EFc+pK5ompVQbIAngwIEDdOzYsZEjaljb136G7cs0Wvs7z3tNlpV2N8dy/fB2jRxZ5fLy8vj6668BGD58eL3POZ12PJHPXprP2eQTrnX9bx9D/9vGoBpobviGZj2ZzZklv0FREiv49k74/6Flrftr6O+ZqBvyfWs4Bw8exGazYTKZLvj/IofDQWZmJkCD1rAQtdcUv2fz589n6dKlJCUlXXBfa9eu5bHHHmP37t3VPvcNGzZw6623cuTIEYKDg2t97JkzZ3L27Fn+3//7fxW2qejn8+DBgyWLzEdprY/XOhDRZJX8PJGUlESbNm0aOSIhhBBCCNEUHD9+nKioqOK3dfZ5wvM/TQpRCbutEEOJERZmuyLhkwT+/vft2GW0hUtom2juXvAqHXr3d63bsvpD1rwwm7zsssVZLwbmyACCb+ngen/200NYT2Y3YkRCCCEa05IlS9i2bZtr+qmFCxe61de4ENdffz333XcfJ06cqLpxkXXr1vHUU09dULICnLU25s6de0F9CCGEEEIIIYSnkIRFCUqp3kqpdUqpDKVUjlJqq1Lqjhr2EamUWqyU2lvUx2ml1PdKqXuUUuVXwhS1ZrNaMRrOJywcgEKhdp/jhWe/J/VsXsU7X2K8/fy4afpTDP7TBJRy/ugn7NjOe48/xLGdOxo3uHri36sl/n0inG9sDtI++B1Hnq1xgxJCXLQSExMJCAio8FW67oAnGzVqVIXnsWDBgsYOr1YOHjzIzTffTJcuXZg7dy7Tp09n1qxZddb/tGnTSj5dVKWFCxfy2GOPXfBxp0+fTsuWtR9BKIQQQgghhBCexFR1k0uDUioe+ArIB1YCWcBtwL+VUlFa65er0Uc74EcgtKiv/wBBwGjgPWAYIBMM1yG7rRCjctYq0FqTbwAvh0ahaJZu451nt3DtvZfTq7t8kAfnPOd9br6diPYd+e+iF8jLyiQ7LZXV85/hyhHXc9WfJuLl49PYYdap5je2x3oym8Lj2djT80lftZ/Qe7qgDBdWZFUIIUqLjIx0FUeuaHtT8c4775CXV37SPyQkpIGjqRuvvvoqr776amOHIYQQQgghhBCiEpKwAJRSJuBtnA/oX6W13lG0fg7wE7BAKbVaa32siq5mAGHANK314hL9Pwn8BkxQSs2qRj+impxFtwOcy2h6x0dxNsjAgU+P4qMVgYWw6c3dHLz2LHfddlkjR+s5oq/ozj0vvMaXS14lcfdvAOz4ai1Hf/uFkQ88Suu4zo0cYd1RXgZC7+7Mmdd/xZFrI//3dLK+O05QfPWfghVCiOowmUx06NCh6oZNQOvWrRs7BCGEEEIIIYQQlyCZEsppGNAe+FdxsgJAa30OWACYgepMclxc6XldyZVa6wzg+6K3YRcYqyjBZi3EWFTDwqGhZWwQN45oz/XTe3CuaKCAF4q0/53E8u/92O1S16JYYGgYtz89l2ETp2AyewOQcSqZfz83k43/WoGtsLCRI6w7pmAfQu6Mg6JBFZlfHyX/0NnGDUoIIYQQQgghhBBCCOFGRlg4DS36+nU5274q+jqkGv3sBkYA1wElR1g0BwYCp4C9NQlMKdWmiiYRxQsFBQUVTt9wsSrIz3MlLOxomrfyJi8vj7atffnzX//AO6/9RtBp5433PRtOkJaYSfz4TvgGmhszbPLz88tdbgyXDbmGiLgurH/775w+fBCtHWz7bDWHt//INX9+iLC2sY0aX52J9sX3qkjyvjsJGtL+tY9mU7pgDKreteBJ3zNRffJ9azgOhwOttWv5Qvsqb1l4LvmeeT6tNQ6Hw+1vxYKCgkaMSAghhBBCCCHKUsU3Fy5lSqmPgNuBP2itt5ezPQs4q7WOrqKflsBGoCPORMdOztewyAXu1lpvrWFs1f4GvfPOO4SFXVoDOJI3f8s1+jp8jH5k223sG5iJKlGawOGA00e8sB/yBu3cYPB2EHJlHj4hckOlJO1wkPH7TtJ2bXf+wwEoRUjXngR3uRJluAgGZGnosC+AZhnOJEV2gI0Dl2eiL4JTE6KxhYaG4uvri5+fH61atWrscIQQJSQnJ5Obm0teXh5paWmu9ampqdx7773Fb6O01scbJUDRqIoekEoCSEpKok2bqp6XEkIIIYQQAo4fP05UlGvK9Tr7PCG36ZyaFX09V8H2zBJtKqS1Pg30B74ERgKPA1OL9n0PZx0LUYfy8xwYlRGAQoVbsgLAYIBWHQpp0TcXg7fzJryjwMCZH/34+WdvjiUbsNkbOmrPpAwGgi+/kqgRozE3LyqoqjXpO7dz/H+fYz2X0ajx1QkFCR1yKPB2ftMDsk20OebXyEEJIYQQQgghhBBCCCFApoSqU0qpDsB/gGxgMLADaA6MBeYBI5RSg7XWNblFXlVl4AhgG0Dfvn1p3759DaNu2t7+ZqNrSijMRoYPH15h27zrrGx49yCnDmdiQBGRYoYUM4lKkxtoJCjan8uuCKV3jxZ4m+vnR8Nud3A2s4CTyVn8uG0nhYUGIiOjsRcqCvJtGB1wWZg/hVYHNqsdW4GDfSeyyMy2ggGU0YDBpDB4Ob8aTQZMZgMmLwPhzX3o2CoQk5cB30Av/JqZMQeY8PGp+bnYb7udnz9bzS//XYPWmoK0FE58/Sm9b/4j3YZfj8ncuFNqXShbjxzOLdsHdk34KR/a9e+Md7fQSvfJz89n48aNAFx11VX4+Pg0RKjiAsn3reEkJiZit9sxmUwEBQVdUF8Oh4Ps7GwAAgICMFwMI7wucvI982wpKSn4+voSEBBAr169XOsPHz7ciFEJIYQQQgghRFmSsHAqHllR0SiKIKA6FXpXAG2BdlrrU0XrsoG/FU0XNQ24C/hndQOraiiNKjGkwNvbG19f3+p2fVEozLVi8HeOsDD7mSs9f19fX25+pAeLX9mGz5Fc13qzVpgzHbA7iwO7s9izMoGcQCMt2gVxwzXtaBkThNHLeeOlwGoj41wBmTmFZGVZycq2kpNtJTfXRn6ujfz8QvKyC+kSGoC2OsjPKaQgp5CUtDyys6x4O8BQVPnZiD9GIH1Piluc20l3e2/AmfVyKj/X5QBOcY5TnC6zLV9prGaFw8eIyd+ETzMzQSE+hIb50aqVP507hhDgXzoB4cvQsZOI6zuQL954hbPJJ7AXFrJ19b/Y+903DBoznssGXOV2/TUp7X1RN7cn45NDAOT89xj+bYPxivCv1u4+Pj6X3M/axUC+b/XLYDC4ahfU5c1qg8FQrze/hw4dypVXXsmiRYvq7RgXq08//ZQZM2aQkJDAgw8+SFxcHE8++SRnz56t94RFTEwM06ZNY9q0afV6nOpKS0ujc+fO/PTTT8TExDTYca1WK506dWL16tX84Q9/qLStUgqDweD2e9Db27u+QxRCCCGEEEKIGpGEhdPBoq8dAbcaFkqpCCAA+KmyDpRSgTgLa/9SIllR0gacCYse1CBhISpnsJ6vQxHYvOoP3SaTkemP92P3vjR+3HqC04fP4ZVmxc9x/sa7F4rmWQ4Kf8tgzW+/YPQy4OVtxJpvw2GruqSIAdhHZpn1vjTOzX0frfApAArscM4OJwvIJYtcnJMVb0Xj1dyb2A7NCWsTQGjrAELbBODfzEyrjnHc88Jivv/wPX798r9o7SAz5QzrXlvIL+s+Y8g9k2lz2eWNcl4Xyr93BNZjWeRuP40udJD63l7C/+9KjP5ejR2aEKIBffLJJ3h5NdzP/caNG1m4cCHbt28nOTmZNWvWMHr0aLc2EyZM4N1333VbN2LECL788kvX++KE8ZYtW+jXr59rfUFBAZGRkaSnp7NhwwaGDh1Kv379uPLKK1m6dKmr3dKlS7n//vtZvnw5EyZMcDv24cOH2bRpU5XnMmXKFCZOnMhf/vIX/P39+ec/6/7PmxUrVjBt2jQyMjLc1m/btg1//+olmRvC/Pnzufnmm8tNVqSlpdG9e3dOnDjB2bNnad68ebX7nTVrFrNnz3ZbFxcXx759+wAwm83MmDGDmTNnsn79+gs5BSGEEEIIIYTwCJKwcPoOeBIYDqwstW1EiTaVKX5EvaKq1y2KvhbUODpRrqxsK14lisZ7+Vb/htMVl4VyxWXOKYAcDge796exfdspTh06hzGtAH/7+eSCvdCBvfDCCnQbzAYyHQ7sJoU2G1BmRZ4tD4yasPAQfPzMmH2M+Pma6N0hDC9vo+uVY3eAEQptDvLy7OTlF5Kfbyc/30Z+gY2CfDuFVjvBPl60DvShsMBObqaVjLQ8fjuQhsmq8bFpTBUkTAwo7BlWDv18hkM/n3Gtzzdo8v2N+IT5EB49kO4Te5D642cc37MDgFOHDvDv52bSsc8ABv9pPMGtWl/Qv1FDU0oRPLo9hcnZFJ7MwZ6eT9r7e2lxb1eUSaYyEeJSERIS0qDHy8nJoXv37kyaNIlbb721wnYjR45k+fLlrvflPQkfFRXF8uXL3RIWa9asISAggPT086P14uPjWbNmjdu+GzZsICoqCovF4pawsFgsjB8/vsrzyM7O5syZM4wYMYLIyEjX6JqG0qJFi6obNZDc3Fz+8Y9/8NVXX5W7ffLkyXTr1o0TJ07Uqv/LL7+cb775xvXeZHL/8/3uu+9m+vTp7Nmzh8svb5oPEQghhBBCCCFEMUlYOK0HjgB/Ukq9prXeAaCUagY8BVhxFs2maH0rnNNHJWutzwFordOUUvuBOKXUvVrrd0q0bw7MKHq7of5P59Kw7ddTGDmfsDB41e4ms8FgoFvnFnTr7Lz54XA42Hf4LDlJOWQmZnMqIROH3YGXt5HDZ3PBy4DyUhi8jBi9Da7EgrevCR8fLwICzXSOaU54mC/efl54+5swGt1jy8vL4+uvvwZg+PCulU5TU3llhcrdUPTVbneQnJLL8RNZnD6dQ1pqHlnp+eRmFKAzrAQXKhx299EjPg6FT5YDsnLJTMgtGjMyDEdgLORtwmBLBeDgTz9w6OcfuSJ+JIPu+hN+QVXWp/cYystI6LjLOfPGrziyCrEezeTsJwcJ/mOnGk13VWhzkJ6RT/rZfOeUYZnOl7e3iWvj2+JbizoiQoiGUXpKqIKCAp5++mk+/PBDMjIyuOKKK3jhhRcYOnQo4Hxa/sEHH2Tjxo2cPXuW9u3b89RTTzFmzJhqHW/UqFGMGjWqynbe3t5ERERU2mb8+PG89tprLFq0yPX/yLJlyxg/fjxz5851tYuPj+dvf/sbp06dcvX53Xff8eyzz/Liiy+62iUkJHDs2DHi4+MrPa7FYnG1GTZsGECFT/e/+eabvPTSSyQlJREbG8szzzzDPffc49r+yiuvsHz5co4cOUJISAg33ngjL774IgEBAVgsFiZOnAicH1Hy3HPPMWvWrDJTQimlePvtt1m7di1fffUVrVu35uWXX+amm25yHevzzz9n+vTpJCUl0b9/fyZMmMCECRNqPOqhtHXr1uHt7e2WOCp5/hkZGTz77LN88cUXterfZDJVei0EBwczcOBAVq5c6fZ9F0IIIYQQQoimSO6iAVprm1LqXuArYKNSaiWQBdyGsybFDK310RK7PA+MBybirFtR7BHgc+BtpdRdwK9AMHATzhEWH2utv0HUif17UzGWuKlcV0/FGwwGunQMhY4XkirwLEajgTYRAbSJCCh3u93uIONULqnHs0k7ns2O3WfIOZ3nNlVWMT9TLDqgLXbrHmx5P4DOQTvs7Fq/ll3ffoMhqD95wT3AVPmIlzbBfoQHnn9iuMDmYM/Jc5XscV6XVkH4eBld71OyC0hKz61kDyezycAVke4JlSOpORhzrIwATChyfznDpl9Ps6fU5RTi54XZ6oPWsO7AHqz5dpJO5WByaLx1xcmNJbtSmP542ZtYQlwq0pavIH3Fiirb+XTpQtSbS9zWpc94jJSDByvY47yQCRMInTihlhG6e/DBB9m7dy8rV64kMjKSNWvWMHLkSHbt2kXHjh3Jz8+nV69ezJw5k6CgINauXcs999xD+/bt6dOnT53EAM6kQHh4OMHBwQwbNox58+YRGur+/1KvXr2IiYnh448/ZuzYsSQmJrJx40beeOMNtxvXAwcOxMvLiw0bNjBmzBj27t1LXl4ekydPZubMmSQkJBAbG8uGDRvw8fGhf//+lcY2YMAA9u/fT1xcHB9//DEDBgygefPmrmmKiq1Zs4aHH36YRYsWcc011/Df//6XiRMn0qZNG1fCw2Aw8NprrxEbG8uRI0d44IEHePzxx1myZAkDBgxg0aJFPPvss+zfvx9wFvSuyOzZs3nxxRdZuHAhr7/+OnfffTfHjh0jJCSEhIQEbr/9dh5++GHuvfdefv31V2bMmFFhXzWxadMmt0LWxfbu3cucOXP48ccfOXLkSK37P3jwIJGRka7vzfPPP090dLRbmz59+lRrGi8hhBBCCCGE8HSSsCiitd6glBoEzAbuBLyAXcBMrfW/q9nHF0qpAcBjwCBgCJAP/A7MAd6sj9gvVWeTsgkvMc2RKnEDW9SM0Whw1q5oHQB9YcBtHQBIOpnFzt0pJB7J4FxyLvasQsz5DvwcBkzeXTGa47Dl/4w9/2fABroAxzkLPlm/YvTpi9F8GUqV/2smKy2TrFLrqjs240Raepl11d338OmUMutswK9eit7+zlh7OsCebSe58PyoE3uajTycSZhTZ5zjTZyzp1c+EkMl5JCbV4hfDaYsE+Ji4sjOxnb6dJXt7OU8Qe7IyKjWvo7s7FrFVlpiYiLLly8nMTGRyMhIAGbMmMGXX37J8uXLWbBgAa1bt3a70f3QQw/x1VdfsWrVqjpLWIwcOZJbb72V2NhYDh8+zFNPPcWoUaPYsmULRqP7/3WTJk1i2bJljB07lhUrVnDdddeVmS7J39+fPn36YLFYGDNmDBaLhUGDBuHt7c2AAQOwWCzExsZisVjo379/lYWYzWYz4eHhgHNKrYiIiHKnhHrppZeYMGECDzzwAACPPvooW7du5aWXXnIlLEoWzY6JiWHevHlMnTqVJUuWYDabadasGUqpKkebgLP+RvFIlwULFvDaa6/x008/MXLkSN566y3i4uJYuHAh4KwDsXv3bubPn19lv1U5duyY63opVlBQwJgxY1i4cCHR0dG1Tlj07duXFStWEBcXR3JyMrNnz2bw4MHs3r2bwMBAV7vIyEiOHTt2QechhBBCCCGEEJ5AEhYlaK1/Aqqcp0FrPQGYUMG2bcAddRqYKJfpbKHbCAtMjVPU+mIWFRlIVGRgmfXnsgo4dCSDvIwCAgq7kJo0nIRf/kvmmV8A0I5z2HK/xpb3PUbvbpi8u6MMnlMctTwnCzW/59np7GtEKUVPPyPfZ9s4Zy+/vcGkyNWaQgPYTQrMBgxmA0YfI14+JnJP5NA81zn64vdfz9BrQNOq8SFEXTEEBGBq2bLKdsZyakkYmjev1r6GSp66r4ldu3Zht9vp1KmT2/qCggLX6Aa73c6CBQtYtWoVJ06cwGq1UlBQgJ+fX53EAHDXXXe5lrt27Uq3bt1o3749FouFq6++2q3t2LFjeeKJJzhy5AgrVqzgtddeK7fPoUOH8tFHHwHO0RvFU1wNGTLENfWSxWLhz3/+c52dx++//859993ntm7gwIEsXrzY9f6bb77h+eefZ9++fWRmZmKz2cjPzyc3N7fG/6bdunVzLfv7+xMUFMSZM87aTPv376d3795u7atKME2dOpUPPvjA9T67gsRYXl4ePj4+buuefPJJOnfuzNixY2t0DqWVnD6sW7du9O3bl7Zt27Jq1SomT57s2ubr60tubtUjDYUQQgghhBDC00nCQjRJWen5+NsVBrcRFlIouaE0C/SmV/eSNxGjYWIfzhw9guX9f5C0+zfnap2LPX8ruvBn2vQYQIfBI2ke2RYAf28Tfubzv4LsDgfpOdZqHT/Y34zJcP77nVdoIzvfVuV+BgOE+rvfVDqXZ8VqK3oyWGsc3yRhOJiBSSmGRPhhu70D+HuBvZBff/oBgGtHDiOwWeU3SH/58SRbljunR0ndcxYkYSEuUaETaz9dU8hLCwkKCsJgaJjf79nZ2RiNRrZv315mJEPxVEQLFy5k8eLFLFq0iK5du+Lv78+0adOwWqv3+6s22rVrR1hYGIcOHSqTsAgNDeWGG25g8uTJ5OfnM2rUKLKySo9fc9axmD9/PidOnMBisbhGiQwZMoS33nqLw4cPk5SU5KpJ0RCOHj3KDTfcwP3338/8+fMJCQnh+++/Z/LkyVit1honLLy83EeyKaUuqBj4nDlzqjVtVFhYGGfPnnVb9+2337Jr1y5Wr14NgNba1fbpp59m9uzZtYqpefPmdOrUiUOHDrmtT09P96hC5EIIIYQQQghRW5KwEE1SyjHnzRijoe5rWIjaC49pxx1/nc/JA/v4Zd1nHPhxM9rhwGG3kfjzRhJ/3kjU5d3oed3NhPX8AwaD+w3BZqEVFx+vTADe1PY2TUCw+9QnelwQKW/vxJqYhcopxO+bJFpM6UaB3YrRx3nDyWSuevqx7n+I4NdVh8nPKeTozlSs+TbMUnxbCI/Wo0cP7HY7Z86cYfDgweW22bx5MzfffLPryXmHw8GBAwfo0qVLvcV1/Phx0tLSaNWqVbnbJ02axHXXXcfMmTPLJFqKDRgwALPZzJIlS1x1OAB69+5NSkoKy5Ytc00dVVc6d+7M5s2bGT9+vGvd5s2bXf9W27dvx+Fw8PLLL7uSUqtWrXLrw2w2Y7dXMNStBuLi4li3bp3bum3btlW6T3h4uGvqq8r06NHDbSQGwMcff0xeXp7bsSZNmsSmTZto3759DSJ3l52dzeHDh90KlwPs3r2bHj161LpfIYQQQgghhPAUcvdMNEmnEs6htcaozicpZISF54jsdBmRnS4jMzWFHV/9l53rv6QgJweApD07Sdqzk+YtW9Fj1I1cMfQazL51N5XKhVJeBkLv6cKZN3Zgzyig8EQ2Zz86gO8tbWvUj9FooH2vcPZsPIGt0EHCb6nE9a16DnYhROPp1KkTd999N+PGjePll1+mR48epKSksH79erp168b1119Px44dWb16NT/88APBwcG88sornD59utoJi+zsbLen4xMSEtixYwchISFER0eTnZ3N7Nmzue2224iIiODw4cM8/vjjdOjQgREjRpTb58iRI0lJSSEoKKjC4/r6+tKvXz9ef/11Bg4c6EpsmM1mt/WlRylciMcee4w77riDHj16cM011/Cf//yHTz75hG+++QaADh06UFhYyOuvv86NN97I5s2bWbp0qVsfMTExZGdns379erp3746fn1+tpt+aMmUKr7zyCjNnzmTy5Mns2LGDFUXF4JW6sCklR4wYwZNPPsnZs2cJDg4GKJOUSE1NBZxJnObNm1e77xkzZnDjjTfStm1bTp48yXPPPYfRaHTV6ii2adMmt0LrQgghhBBCCNFUScJCNEmnEzIBO8YSBZ1lhIXnCQprwVV3T6T/bWPY8916fvnic84mnwAg43QyG1b8P75f+T7Nwlvi5eOD2ccXL28fzD4+ePn44uXj4/beZDZjtxViKyig0GrFZrVisxaU+9VeWIjRywujlxmTlxcmsxmjlxcmLzNGs3Odc5sZs58v0Zd3o1m4M6FgDDQTNuFyziz5DW21k7crFZrX/CZep97OhAXA9k3HJWEhRBOwfPly5s2bx/Tp0zlx4gRhYWH069ePG264AYBnnnmGI0eOMGLECPz8/LjvvvsYPXo0586dq1b/P//8s6vgNDgLUQOMHz+eFStWYDQa2blzJ++++y4ZGRlERkYyfPhw5s6dW2ExbKUUYWFhVR47Pj6ejRs3uupXFBsyZAgbNmxwi6sujB49msWLF/PSSy/x8MMPExsby/Lly13H7969O6+88govvPACTz75JFdddRXPP/8848aNc/UxYMAApk6dyp133klaWhrPPfccs2bNqnEssbGxrF69munTp7N48WL69+/P008/zf33319lkfGqdO3alZ49e7Jq1SqmTJlS7f2OHj1KbGwsGzZsKPM9KXb8+HHGjBlDWloaLVq0YNCgQWzdutVt+qctW7Zw7tw5br/99gs6D1F9SqmxwGCgF9AVMAMTtdYrymk7C3iuku5itdZHy9lvBPAU0BPQwHZgntZ6/QWGL4QQQgghhEdTxXPqiqZJKdUGSAI4cOAAHTt2bOSI6p/VauMf07/HXpBLK/t39G3hvInU/Ob2BPSPbOToqicvL4+vv/4agOHDh+PrW7upkJoa7XCQ8Nt2tq/9jMRdOxo7nDLCY9rToU8/OvYZQGibaPL3nyXt3T3O2wRAQods0ltYq/090w7NG9M3ovLs2NHcMacfEeGeXXz8YnOp/qw1hoMHD2Kz2TCZTBf8f5HD4SAzMxOgQWtYiNprit+z+fPns3TpUpKSki64r7Vr1/LYY4+xe/fuap/7hg0buPXWWzly5IhrZEZt3HnnnXTv3p2nnnqqwjYV/XwePHiwZJH5KK318VoHcglRSh0F2gKpQE7RclUJi3eBo+V0t0hrnVFqn7HA+0AK8O+i1XcCYcAdWuvVF34WbsdzfZ5ISkqiTZs2ddm9EEIIIYS4SB0/fpyoqKjit3X2ecLjRlgopezACq315CravY3zg4HHnYOoXzt2p+IodCAjLJoeZTDQrkdv2vXoTWriUbav+5yEX7dRkJuLzVrQ2OFx5uhhzhw9zA+r/klwq0g69BlA+z7d0T9mA9D2sD8F3tUv4KoMCmukD96HczCi+OKLI0wc37W+whdCCFGJJUuW0Lt3b0JDQ9m8eTMLFy7kwQcfrJO+r7/+eg4ePMiJEydK/sFeqXXr1vHUU09dULLCarXStWtXHnnkkVr3IWrlXuCg1vqYUuoJ4Plq7LNCa22pqpFSKhh4HWcypGfxhz6l1AvAr8CbSqmvtNZZtY5eCCGEEEIID+aJN/tV0au6bcUlZvfuFOeCtmMombCQGhZNSlh0DCOm/sX13uGwU5hfQGF+Htb8fArz8yjMz6ewIP/8e2sBJi8zJnPxyxsvs7fbe5PZjMnbG6PJhN1mw15Y6JwqqtDqWrYXWrEVFjrXWa1knD7FoW1bOX3koCues8kn2fbZaraxmn6RN9HWuzMGrWi/PwD72QKo5pP6/eOj+eXw7wCc3JVWt/+IQgiPkpiYWGkti7179xIdHd2AEdXeqFGj2LRpU7nbnnrqqUqf5vdUBw8eZN68eaSnpxMdHc306dN58skn66z/adOm1aj9woULL/iYZrOZZ5555oL7ETWjtf6mHrv/I9AceK7kE2pa6+NKqb8Ds4BbgPfqMQYhhBBCCCEajScmLKrLDyhs7CBEwzuTkEkgoGWExUXFYDDi7eeHdy2KqVbEqwbTkve79U4yU89waNtWDv70Ayd+34vWztEUP578L94RvkT4xuBlM3D6zW3kj+9IWIeYKvvt27Ml33n9TmAhNMu2k5B4jtjoZrU8IyGEJ4uMjGTHjh2Vbm8q3nnnHfLy8srdFhIS0sDR1I1XX32VV199tbHDEJeuq5RSfQEHcBD4RmudXU67oUVfvy5n21c4ExZDqEHComjKp8q4imzl5eVV+LMvhBBCCCFESfX1d2OTTFgopZoDg4DkRg5FNAKd5pw6yKELMRpKXMIywkJcoKCwcHqOuomeo24iN/Mch3/+kUPbtnBs56/8cOZTrml1D0HmULwLfTj+9y1Ymr9N1xEj6dC7H0ZT+UW5DQYDfh0C4fcsFIqvvjzC1Pt6NPCZCSEagslkokOHDo0dRp1o3bp1Y4cgxMVmdqn3GUqph7XWpRMPxUVGDlLWwVJtqqvahVo2btxIWFhYDbsXQgghhBCXotTU1Hrp1yMSFkqpI6VW3a6UGlpBcxPOp4CMwFv1GJbwQKln8wi0akCRa3ZgdMgIC1E//IKa0XXYcLoOG05Bbi77f/qBn9d+Q3/7EHyNAYT5tCE/LZe1i17Et5mzbberRxLUIrxMX0OujeH733cBkP57RgOfiRBCCCEa0W/AJMCC82GrCOAGYA6wQimVobX+vET74mGY58rpK7NUGyGE8EgPb/GIW02iCov72xrkOHI9eL6GuhZAroemoCGvh4p4ylUSU2JZAwFFr4pYgU+BpjeBsrgg27afQhWVLjE1N2I8KzUsRP3z9vOjY9+BJJzL4fDZXLoc8MPgMNDGvxM9Q69le9rX/LhmFT99uprYHr3oPvw6Yrr3xGAwAtC9SwvW+kCzfGiWp9m9L40rLgtt5LMSQgghRH3TWq8pteoo8Hel1O/A/4B5wOel96tjVVWCjwC2AVx11VW0aVPVDFJCCFGFLd82dgSiGoYPH94wB5LrweM12LUAcj00ATW5Ho4fP151o1rwlIRFbNFXBRwBVgOPVdDWCqRorRs/3SMa3OF96a5K6yER3hgyjK5tMsJCNISCYBPN/hRH1r8OgUPTIagHeY5s9p79Aa0dHPllG0d+2UZQi5Z0u3oEXa4aRmBoGMGXNcexIwOADf9LkISFEEIIcQnTWq9XSh0GuiqlgrTWxaMnikdWNAPSSu0WVKpNdY9V6SdJpZRr2dfXF19f35p0L4QQoomS3/eimFwLoqSaXA/1de14RMJCa32seFkp9S6wqeQ6IYqdO5FN86Ll2Gh/jPtlSijR8MztmxH8x06c/fd+ALo2H0zrKy9ny841ZKc55+/LTDnN9yvf4/t/v0+bzpfT8bK+7HOYUQZfcg5m4nA4MBjkmhVCCCEuYalAB8CP89M9HQT+gLNORemERWX1LYQQQgghhLgoeETCoiSt9cTGjkF4JofDgfc5G6DIV5rIlj6kK0lYiMbh3yMcR2YB5744CkBIYgj3PPgSJ3MP89v/1nH0t19Aa9Ca43t3c3zvbjQGjF6x+Jkv4/ihK4juVLbehRBCCCEufkopf+ByIAdn4qLYd8AYYDiwtdRuI0q0EUIIIYQQ4qIkd3hFk3HyRDa+DueQ9fwgEw6bDaOSGhai8QRc1YaAAZHONw44++F+olt24bYnZzN58dsM+OPdBLdq7WqvcOAoPExhzlo+nn0/X/z9ZRJ2bMdhtzfSGQghhg4dyrRp0xo7DCHERUgpFaiU6lTOel/gbSAQWFVqqttVOKd8ekgp1abEPm2AB3EmN0rXxRBCCCGEEOKi4ZF3eIv+uJ+plPqfUmqvUupIBa/DjR2raDh5p/Jcy316RWAvLMQgCQvRiJRSNLuhHb5dwwDQhQ5SV+zBlppH85YR9L99DBNfXcrY5xfR6/rR+DULdu3rsBWwd9MGPnn+OZZOHce3y98iJ+NsY52KEJesTz75hLlz5zbIsTZu3MiNN95IZGQkSik+/fTTMm0mTJiAUsrtNXLkSLc2xeu3bnV/+LqgoIDQ0FCUUlgsFgD69evH1KlT3dotXboUpRQrVqwoc+zBgwdf8HkKcbFTSt2rlFqhlFoB/LFotWudUureonWhwD6l1I9F6/+mlFoOHMA5imIXper2aa3P4kxMhAG/KKVeV0q9DvxS1N8DWuusej9JIYQQQgghGonH3eFVSkUCvwELgKuBy4CYSl7iEnEq4Xx9wU6Xh2ErtGJUUnRbNC5lUITcEYc5thkAjpxCUpbtxp5ldW5XipbtOjB03L1MWbqCNldMxGi+ApS3q4+8zHP8+uV/eP+Jhzm+b0+jnIcQl6qQkBACAwMb5Fg5OTl0796dN954o9J2I0eOJDk52fX68MMPy7SJiopi+fLlbuvWrFlDQECA27r4+HhX8qLYhg0biIqKKrPeYrEwbNiw6p+QEJeuQcD4olfPonUDS6wbVLQuHVgCKOA6YDpwG3ASeBzoq7UuXacCrfUHwChgHzARmADsBYZrrT+qlzMSQgghhBDCQ3jiHd4FOBMRvwF3Ad2B2Ape7RonRNEYTidkupZbxgRht1oxGpwjLDSAUTVOYOKSp7wMhI3rgqmlHwD29HxS392Do8B9qieDwUj3awfg5T8c72ZTCL3iT3TqOxCjlxcAOWfTWTX7Sbav/RStdYOfhxCXopJTQhUUFDBjxgxat26Nv78/ffv2dbupn5aWxpgxY2jdujV+fn507dq13GRCRUaNGsW8efO45ZZbKm3n7e1NRESE6xUcHFymzfjx41m5ciV5eedHHy5btozx48e7tYuPj2f//v2cOnXKte67777jiSeecDu3hIQEjh07Rnx8fLXPR4hLldZ6gtZaVfKaUNQuU2v9oNa6j9Y6XGvtpbUO0lr31Vov1FrnVXKML7XWV2mtA7TWgVrroVrrbxrsJIUQQgghhGgkHld0G2cxudNAvNb6XFWNxaXBXuggJck5+r1ZuC8+/l7YbTZ8iqeEMjqfZBeisRh8TYRNuoKUJTuwn7NSeDybtH/+Ttj4Lijj+dxwbLcwHAoMmEhNbsmfFt1BYW4W615fSOLunWiHA8t773DywD5GTP0LZl+/RjwrIS7MqgXbyM201mJPjcPhTNoZDArnw8nV5xdk5o6netf4qA8++CB79+5l5cqVREZGsmbNGkaOHMmuXbvo2LEj+fn59OrVi5kzZxIUFMTatWu55557aN++PX369Knx8SpisVgIDw8nODiYYcOGMW/ePEJDQ93a9OrVi5iYGD7++GPGjh1LYmIiGzdu5I033nCb4mrgwIF4eXmxYcMGxowZw969e8nLy2Py5MnMnDmThIQEYmNj2bBhAz4+PvTv37/OzkMIIYQQQgghhKgpT0xYBAPrJFkhStr6SzIOW9HNqzDnVDrOKaGKpvEwVrSnEA3H1MybsElXcObNneh8GwUHzpL5bRLNrm3rauPt50VWqIlmqTZ8HYqvLYncMLwdtz09l83//oCfPnXO9HBg6/ekJh7lpulPEdomurFOSYgLkptpJSejoLHDqJbExESWL19OYmIikZGRAMyYMYMvv/yS5cuXs2DBAlq3bs2MGTNc+zz00EN89dVXrFq1qs4SFiNHjuTWW28lNjaWw4cP89RTTzFq1Ci2bNmC0ej+n92kSZNYtmwZY8eOZcWKFVx33XW0aNHCrY2/vz99+vTBYrEwZswYLBYLgwYNwtvbmwEDBmCxWIiNjcVisdC/f3+8vb0RoqlQShmBvjinZWqJ83PEWZwPP20HftJa2yvuQQghhBBCCOFpPDFhkYRnTlUlGtHe3Smu5dxA5w0bt6LbMh2U8BBeLf0JG9+FlLd3ggPydqW6JSwAOvVuyekvTgCw+4dkbhjeDoPByOAx42nVIY4vl7xKQW4O6SeP88+nHmX41L9w2YCrGuN0hLggfkHmWu554SMsamrXrl3Y7XY6derktr64kDWA3W5nwYIFrFq1ihMnTmC1WikoKMDPr+5GQt11112u5a5du9KtWzfat2+PxWLh6quvdms7duxYnnjiCY4cOcKKFSt47bXXyu1z6NChfPSRMxlqsVgYOnQoAEOGDMFisTBx4kQsFgt//vOf6+w8hKhPSqlBwP8B1wP+JTdRNFNokWyl1FrgDa315gYMUQghhBBCCFFLnpiwWA3cp5Ty11rnNHYwwjOkHssmqGi58xXOp0edIyycl7AyScJCeA7v2GZ4RQZQeDwb25lcHLmFGPy8XNtHXtuO//flcby1wnw6n+zcQgKKtnfo3Y+7n3+V/7y8gJTEoxQW5LN28YskH9jHVWMnYjR5VXRYITxObaZlAnA4HGRmOusWBQUFYTDU/3MM2dnZGI1Gtm/fXmYkQ3Eh64ULF7J48WIWLVpE165d8ff3Z9q0aVittZn2qnratWtHWFgYhw4dKpOwCA0N5YYbbmDy5Mnk5+czatQosrKyyvQRHx/P/PnzOXHiBBaLxTVKZMiQIbz11lscPnyYpKQkKbgtPJ5SajDwKtADZ3LCAewC9gBpQCbQDAgFrgC64KyJd6dS6hfgUa31pkYIXQghhBBCCFFNnjiSYS7OURarlFLhjR2M8Awq3XkzyIamVzfnZWG3FmJUzptKyuSJl7K4lHm3DXItFyS530AM8PPC2tLH2U4rvvzfEbftwRGRjJn3El2uOn/z8JcvPmfV7KfISk+tx6iFuHT16NEDu93OmTNn6NChg9srIiICgM2bN3PzzTczduxYunfvTrt27Thw4EC9xnX8+HHS0tJo1apVudsnTZqExWJh3LhxZRItxQYMGIDZbGbJkiWuOhwAvXv3JiUlhWXLlrmmjhLCUymlVgIWoCvwOXALEKy1vlJrfbfW+i9a62e01g9prf+kte4GhAC3Af8FugEWpdSHjXQKQgghhBBCiGrwxLu8fwcOA6OAQ0qpb5VSK5RSy8p5/aORYxUNIPl0DoE253K2nwEfb+eoCrut0DXCAklYCA9jLpGwsB7LLLP9igHnbz4e2Ha6zHYvbx9GPvAI19z7fxhNzuv85IHf+eCJaSTu3lkPEQtxaevUqRN3330348aN45NPPiEhIYGffvqJ559/nrVr1wLQsWNH/ve///HDDz/w+++/M2XKFE6fLvvzW5Hs7Gx27NjBjh07AEhISGDHjh0kJia6tj/22GNs3bqVo0ePsn79em6++WY6dOjAiBEjyu1z5MiRpKSkMGfOnAqP6+vrS79+/Xj99dcZOHCgK7FhNpvd1nt5yQgu4dFuAZYA0VrrW7TWn2mtyw4pKkFrnam1XqO1vhmIBpYW9SOEEEIIIYTwUJ54l3cCMLpoOQAYCowrWl/eS1zktv1yyrXsHeHrWrYVWDEUj7Dw8sRLWVzKqkpYDB8aTZ7BOc22f2ohaRl5Zdoopeh+7Sjumv0igWHOqdByz2Wwet4zHNu5o34CF+IStnz5csaNG8f06dOJi4tj9OjRbNu2jehoZ+H7Z555hp49ezJixAiGDh1KREQEo0ePrnb/P//8Mz169KBHjx4APProo/To0YNnn30WAKPRyM6dO7npppvo1KkTkydPplevXmzatKnCYthKKcLCwjCbK6/bER8fT1ZWlqt+RbEhQ4aQlZVFfHx8tc9DiEYSVzR6ovpZwhK01qe11v8HdK7juIQQQgghhBB1yBNrWExs7ACEZ0nYn+66UKM6NHetdxTaXcsGr/KnwRCisZiaeWNs5o39XAHWpCy0XaNKFIc3m0042vhBYh4mFF98mcDYu7qU21dEh06MfX4R615/iWM7f0VrB7988Rltu13ZQGcjxMXLYrG4lr28vJg9ezazZ88ut21ISAiffvpprY81dOhQtNYVbvf19eWrr76qsp/K+mjevHm522fNmsWsWbPKrH/uued47rnnqjymEI1Na320jvpJqIt+hBBCCCGEEPXD4xIWWut3GzsG4VmyT+bSvGi5x5UtXet1ocO1rCRhITyQuW0geTsL0FYHhadyMLcOcNve+6rW7P3gEADHfk1xlgWtgF9QM259chZ/n3gXhfl5pCYdq8/QhRBCCCGEEEIIIYRocDKPjvBodpsD3yxnAYtcg6ZDTDPXNl1yhIVZEhbC87hNC5VYdlqoq/q1Iacobdw8005elrXS/gwGI2HRbQHITDlDQW5u3QUrhLggiYmJBAQEVPgqrlMhhBBCCCGEEEKIinncCIuSlFJdgAFAC2CP1vrzovUGwKS1rvzunmjydu1Pw1s7p9EpbO6FwXA+x+awnR9hYTB79KUsLlHeJRIWBccyCegf6bbdaDLQb2gUu75JAg2HfznDFUPaVNpni6gYkg/sAyA16Rit42QqbiE8QWRkpKuYdkXbhRB1SynVDpgJXA1EAuUXewGttZY/FoUQQgghhGgCPPIPd6VUFLAcKFkB8l3g86LlPwNLlFLDtdbrGzo+0XAM6edzUrGdgt03FjqgqCSAMslgIeF5vFr5o7wM6EJHuYW3ATr3jXAmLICju9OqTFgUj7AASE1MkISFEB7CZDLRoUOHxg5DiEuGUqoHYAECcP1FWHHzeg9ICCGEEEIIUSc87i6vUioE+A4YBuwB3qTsh4xVgAO4qWGjEw0tPSnbtTy4v/uNXG0rWcPC4y5lIVBGA15tAgGwny3AnllQpk1YmwC8/Zy545TErCr7DIuOcS2nJEodCyGEEJesF4BA4BOgFxCktTZU9GrcUIUQQgghhBDV5Yl/vM8EYoCXgO5a6wdLN9BanwV2AYMaNjTR0E4nnHMuKAhvG+i+0a5di5KwEJ7KfVqosgkJpRRhbZzFuHPPWUlLrbwuRcmERWri0TqJUQghhGiC+gP7gTu01r9qrbOr2kEIIYQQQgjh+TzxLu/NwFHgCa21rqTdEZxz1YqLVKHVTtqJHABCI/0x+5SawcxWImEhU0IJD2UukWiraFqoU4bzo4W2bD9VaX++AYEEhIQCzoRF5b8mhRBCiItWIbCjis8LQgghhBBCiCbGE+/ytgV+0Vo7qmhnBUIaIB7RSHbsOI12OD+DhpV4Sr1YyStEEhbCU5mjz1+71sTyExaBrfxcy8cOn62yz+JRFgW5OWSlpV5YgEIIIUTT9AtQeeEnIYQQQgghRJPjiXd583HOR1uVaOBcPcciGtHPv55/0vy4spXZXnKVJCyEpzL6e2Fq4QuA9UQ2urBsLrZzlzDX8rmTlU8JBdCi5LRQSUcvOEYhhBCiCXoJ6K+UGtrIcQghhBBCCCHqkCfe5d0H9FRK+VfUQCkVBnQHdjZYVKLBnU08PxXxFd1alG1QcoSF1LAQHsw1ysKusZ4oW8fiirgQbDhHExnOFVbZn1vh7WNH6yJEIUQdU0rx6aefNnYYQly0tNZfAg8DnymlnldKXaWUilFKRZf3aux4hRBCCCGEENXjiXd5VwOhwCtKqYriWwj4Af9usKhEgzNlOG/cWpWm++XhbtscdjuGEpevjLAQnqxk4e3y6liYzSZyfJ3XcGAhpGXkVdpfWFRb17IU3hai6YuJiUEp5fb629/+5tpusVhQShEcHEx+fr7bvtu2bXPtA5CdnY2XlxcrV650a3fXXXehlOLo0aNljv3Xv/61fk5MiPr3C3ASeBzYABwGEsp5HWmsAIUQQgghhBA144l3ed8AdgP3Aj8ppZ4qWt9eKfWoUmoLMA7YAaxolAhFvUtIPIe/3XnzJdffiFephIS9sBCjOl+EW0ZYCE9WsvB2wbGyIywATKHeruUdO1Mq7S+kdRQGoxGA1KRjdRChEKK6CgurHgVVG3PmzCE5Odn1euihh8q0CQwMZM2aNW7r/vGPfxAdff7h8YCAAP7whz9gsVjc2lksFqKiotzWJyQkcOzYMYYNG1an5yJEQ1BKDQLWA3GAAtKBxApeSY0UphBCCCGEEKKGPO4ur9Y6HxgBbAF6AnOLNg3CObKiL/AzcIPWun7uGohGt71E/Qq/SL8y222FVveEhYywEB7M1MIP5eO8Xq3HMtFal2nTIup8UuPwgfTK+/PyIrhVawDSTxzHbpNfhULU1tChQ/nLX/7C448/TkhICBEREcyaNcu1XSnFm2++yU033YS/vz/z588H4LPPPqNnz574+PjQrl07Zs+ejc1Wtt5SdQUGBhIREeF6+fuXnRlz/PjxLFu2zPU+Ly+PlStXMn78eLd28fHxbomJ33//nfz8fO6//3639RaLBW9vb/r371/ruIVoRPMAH+AVIFRr3UJrHVvRq5FjFUIIIYQQQlSTqeomDU9rnQwMUkqNAK4H2uFMriQBXwCf6fLu+ImLRuLBDIqfN2/bMbjM9tIjLJARFsKDKYPCu20g+fvP4sgpxJ6WjynM161Nx7gQftviHFmRfiKnyj7DomNIO56Iw24j/eQJt0LcQniKD56cRk7G2Vrt63A4CxUZDDX//e7fPJixzy+qdvt3332XRx99lB9//JEtW7YwYcIEBg4cyLXXXgvArFmz+Nvf/saiRYswmUxs2rSJcePG8dprrzF48GAOHz7MfffdB8Bzzz1X43gB/va3vzF37lyio6P505/+xCOPPILJ5P5n2j333MPChQtJTEwkOjqajz/+mJiYGHr27OnWLj4+nueff57k5GRatWrFhg0bGDRoEMOGDeOtt95ytduwYQP9+/fHx8enVjEL0ch6Ar9qrWc0diBCCCGEEEKIuuORCYtiWuuvgK8aOw7R8PJO5bkSFn/o2bLMdlthIQZldL2XERbC05mjg8jf77xxW3Ass0zC4squLfiVfRhQ6PSCKvtrER3D/h82As46FpKwEJ4oJ+Ms2elpjR1Glbp16+ZKNHTs2JG///3vrF+/3pWw+NOf/sTEiRNd7SdNmsQTTzzhGtnQrl075s6dy+OPP16rhMVf/vIXevbsSUhICD/88ANPPvkkycnJvPLKK27twsPDGTVqFCtWrODZZ59l2bJlTJo0qUx/AwcOxGw2Y7FYGDNmDBaLhSFDhtCrVy9SU1NJSEggNjaW7777jsmTJ9c4XiE8hBXY39hBCCGEEEIIIeqWRycsxKXJarXhn20HFNlGiG4dVKZNmRoWkrAQHs5csvB2Yib+vdwTcQH+ZrLNiiArBBRoCvJtePtU/Cs6rESCQgpvC0/l37zsCLnqutARFjXRrVs3t/etWrXizJkzrvd/+MMf3Lb/9ttvbN682TU9FIDdbic/P5/c3Fz8/MpOZViZRx991C0Ws9nMlClTeP755/H29nZrO2nSJB5++GHGjh3Lli1b+Oijj9i0aZNbGz8/P3r37u1KWHz33Xc89thjmEwmBgwYgMViQWtNYmIi8fHxNYpVCA/yI9CpsYMQQgghhBBC1C1JWAiPs2N3Kl44C27bQ7zKbSM1LERTY44KdJYE1c46FuXpGBfC6V3pGFCcO51LeNuyybpiJUdUpEjCQniomkzLVJLD4SAz0/lzEhQUVKukRU14ebn/X6OUciVMgDL1JLKzs5k9eza33nprmb7qYnqlvn37YrPZOHr0KHFxcW7bRo0axX333cfkyZO58cYbCQ0NLbeP+Ph4/v3vf7Nnzx7y8vJc00YNGTKEDRs24HA48PPzo2/fvhccrxCNZC6wUSk1Rmv9YWMHI4QQQgghhKgbjZ6wUEodATRwjdY6oeh9dWmtdft6Ck00kswS8/eHRAWU28ZeOmEhNSyEhzN4G/Fq5U/hyRwKT+fiyLdhKDWCokNRwgIgNSm70oRFYFgLzL5+WPNySU08Vq+xCyHc9ezZk/3799OhQ4d66X/Hjh0YDAbCw8PLbDOZTIwbN44XX3yRL774osI+4uPjmTdvHv/6178YNGgQRqNzGsWrrrqK//f//h9aa9fUUUI0UWZgEfC+UuomnHXuEgFHeY211hsbLjQhhBBCCCFEbTV6wgKIwZmw8Crxvrqk8PZFSJ21upZvjI8tt41MCSWaInPbIApP5jhHWSRm4dPJfdqaFlGBruWUxKxK+1JKERYdw8n9e8lKSyE/Jxsf//ITfEKIuvXss89yww03EB0dze23347BYOC3335j9+7dzJs3r0Z9bdmyhR9//JH4+HgCAwPZsmULjzzyCGPHjiU4uPyprebOnctjjz1W4egKgAEDBuDt7c3rr7/O008/7Vrfp08fzpw5w2effcaTTz5Zo1iF8DAWnJ8FFHBH0asiGs/43COEEEIIIYSogif84V58R/pEqffiEnU6wTkNiMGgaNk2sNw2ZYpuywgL0QR4tw0iZ0sy4Cy8XTphEVZiRFFKUuUJC4AW0W05uX8v4Kxj0abzFXUYrRCiIiNGjOC///0vc+bM4YUXXsDLy4vLLruMe++9t8Z9eXt7s3LlSmbNmkVBQQGxsbE88sgjbnUtSjObzYSFhVXar4+PD/369eO7775j6NChbsfr168fFotF6leIpm4j8vCSEEIIIYQQF51GT1horY9V9l5cWgrybJw95ZwSKiwqAJPZWG47Zw2L83OOywgL0RSULrxdmrefF6YgL2yZhZw8lkmhzYFXJdd2WFSMazk18ZgkLISoBYvFUmbdp59+6lrWuvz7oSNGjGDEiBEV9lvRfqX17NmTrVu3Vtpm6NChlfY3evTocreXd24AGzZsqFZsQngyrfXQxo5BCCGEEEIIUffkLq/wKEcPpLuelWsZU/H8/c4poWSEhWhajM29MQQ554u3JmahHWVvMKZ5OdcZHbBnf2ql/YW1jXEtpyYdrbM4hRBCCCGEEEIIIYRoDB53l1cpFaWUGqeUiqukzWVFbdo0ZGyi/n29Kcm1XNCs4gFApWtYYFT1GZYQdUIphXfRKAtdYKfwdG6ZNkGt/F3Lv+9Nq7S/sKi2ruWUY0frJkghRJ1asGABAQEB5b5GjRrV2OEJIYQQQgghhBAepdGnhCrHQ8B04PJK2ihgBfA34KkGiEk0kKzj2TQrWm7VrnmF7UomLLRBo5QkLETTYI4OIm+Xc+SE9Vgm5hIJCoDo9s1J2n0OgOSjZaeNKsnHP4DA0BZkpaWQmnQMreVnQQhPM3XqVO64o/xawL6+vg0cjRBNl1Kqp9b6F0/pRwghhBBCCFE/PG6EBTAc+F1rva+iBlrr34G9wMgGi0rUO4fDgTnTBkC+0nQpVZC4JFuhFaOhKN9WfpkLITySuUQheeuxsgmJ7l1buJbzzuRV2V+LommhrHm5ZKWmXHiAQog6FRISQocOHcp9tW7durHDE6Ip2aaUWqmUuqw2OyulLldKrQK2XWggSqmxSqm3lFI/K6UKlFJaKTWhnHZeSqnblFLvKqV+V0plK6WylFI/KqXuV0qV+StWKRVT1F9Fr1kXGr8QQgghhBCezBNHWEQBm6rR7hAwsJ5jEQ1o/+EMfB3Op8Pzg0wYDBXn02xWKwZV9GSqTAclmhBzZACYFNg0BeUU3m7bJohcg8bPofDJtuNwOCr9WQiLasuRX5z3XlISEwhqEV5vsQshhBCN6DXg/4A/KqW24BxtvV5rnVDRDkqpdsC1wASgD2AHFtdBLPOAtkAqkFy0XJ72wGogG1gPfA40A24ElgDXKaVu0lqXLWoFvwGflrPeciGBCyGEEEII4ek8MWHhB1T9WLGzTWCVrUSTsWPHaddyYGv/SlqC3VaIUQU430jCQjQhymTA3CYQ69FM7Gn52LOsGAPNbm2sgSb8ztnx0YpDR8/RqV3Fo43ComNcy6mJx2jfq299hS6EEEI0Gq31I0qp/wcsBEYB/QGUUinA70AakAkEAaFAZ6BFiS7WAY8XjdS+UPcCB7XWx5RSTwDPV9AuC2eS5V2tdU7xSqXUdJyJhxuA24GPytl3h9Z6Vh3EKoQQQgghRJPiiVNCJQNXVqNdd+BM/YYiGtKJw+dcy7FxFd+ghVJFtyVhIZoYc1HhbQBrOaMs/Fqen9d+1+7Kp3lqUSJhkZJ49IJjE0IIITyV1vp3rfUNwGXA34EkIBwYAtyKcyTFrUXvw4u2vw5cprW+sY6SFWitv9FaH6tGuxNa6yUlkxVF63OAV4reDqmLmIQQQgghhLhYeOIIi03AWKXUbVrrj8troJS6FecHlX81aGSiXhWczqP4Nm2fnhGVtrWVSFgokyQsRNPiHR1EdtFywbEsfC8Pc9veOrYZKQecLY4nnKMywZFtMBhNOOw2UiVhIYQQ4hKgtT4IPAw8XDTtUw+gJc7pljJwPtT0S2XTRXmAwqKvtgq2Ryql/g/nOZ0GLFrrw7U5kFKqTRVNXH945+XlkZdXncHuQgghmjr5fS+KybUgSqrJ9VBf144nJiwWA3cD7xX9cb1Ma50FoJQKBCYB8wEHzrlsxUUgN6+QgDwHoMjygpYtqpgSymrFUFyn0MsTBwoJUbGqCm9fcXkYG746AUDOqdxK+zKaTIS0bkNq4lHSTx7HVliIycurbgMWQgghPJTW+ghwpLHjqIVJRV+/rmD7tUWvYlop9U9gaukRG9WQVN2GGzduJCwsrOqGQghRKU+81SRK+/rriv4LqmtyPXi6hrsWQK4Hz1eT6yE1NbVeYvC4O71a61+AJwFfnEOl05VSiUqpRCC9aJ0f8IzW+qfGi1TUpZ9/O42JopESIebKGwP2Artr2WDyuMtYiEoZA8yYQn0AsJ7IQtscbtvj2gVjL8rHhRZWPYKoeFoo7XCQfqLa9ySEEMDQoUOZNm1aY4chhLiEKKXuw1mH41ut9bpSm3OBuUAvoDkQAlwD/ASMBd5ruEiFEEIIIYRoeB6Z1tJaL1RK7Qdm46xVUXIY82/AbK31p40Rm6gfR/addS23iKm6lrouPJ+wUDLCQjRB5rZB2NLywaaxnszGO/p8XQujyUBUu+acPJiBLdtGXrYV34CKE3luhbeTjhEe064+QxfiovLJJ5/g1UCjkjZu3MjChQvZvn07ycnJrFmzhtGjR7u10Vrz3HPP8fbbb5ORkcHAgQN588036dixo6uNUs5E5pYtW+jXr59rfUFBAZGRkaSnp7NhwwaGDh1Kv379uPLKK1m6dKmr3dKlS7n//vtZvnw5EyZMcK2fMGEChw8fZtOmTfXzDyCEQCl1A876G8dwJiDcaK3PAM+WWr1eKbUF+AW4VSnVs+ghr+qKqmJ7BLAN4KqrrqJNm6pmkBJCiCps+baxIxDVMHz48IY5kFwPHq/BrgWQ66EJqMn1cPz48XqJwSMTFgBa68+Bz5VSLYHootWJWuvTjRiWqCeRdgMHi5b79Y6ssr22np/uV3kZ6ykqIeqPuW0Qub+cAZzTQpVMWACERQVw8mAGAKmJ2UR1Camwr7Dotq7llGMJMDi+7gMW4iIVElLxz1Zdy8nJoXv37kyaNIlbb7213DYvvvgir732Gu+++y6xsbH89a9/ZcSIEezduxcfHx9Xu6ioKJYvX+6WsFizZg0BAQGkp6e71sXHx7NmzRq3Y2zYsIGoqCgsFotbwsJisTB+/Pg6OlshRGlKqeuA1ThrUgzTWidXd1+tda5S6n1gHjAQZ/KiuvtW+kmyOAkK4Ovri6+vbyWthRBCXCzk970oJteCKKkm10N9XTse/2i61vq01npb0atekxVKqd5KqXVKqQylVI5SaqtS6o5a9BOulHpVKXVQKZWvlEpTSm1RSt1fH3FfDE4fdc7jb/QycFnn0CrbO0qMsDCYPTbvJkSFvNueT1CUV8eiRdT5kUYpSVmV9tUiOta1nJp0rA6iE+LSUXJKqIKCAmbMmEHr1q3x9/enb9++WCwWV9u0tDTGjBlD69at8fPzo2vXrnz44YfVPtaoUaOYN28et9xyS7nbtdYsWrSIZ555hptvvplu3brx3nvvcfLkST799FO3tuPHj2flypVuRc6WLVtWJuEQHx/P/v37OXXqlGvdd999xxNPPOF2bgkJCRw7doz4eEl4ClEflFLXA58AqUB8Ue2NmiqeJLjyYm9CCCGEEEI0YXKnt4hSKh74CsgHVgJZwG3Av5VSUVrrl6vZz5U4i+cFA2txPkUVAHQGbgTerPPgm7i8LCuZKc4bLuHRgRiNVefRtE27lg1mGWEhmh5TuB/K24gusFNwLBOttdsTji2izycsDuxLo+eItuV1A0BASCje/v4U5OSQmni0PsMWokZOv/4rjixrjffTgNbO2i65ykDVlVzcGQLNtHyoR42P++CDD7J3715WrlxJZGQka9asYeTIkezatYuOHTuSn59Pr169mDlzJkFBQaxdu5Z77rmH9u3b06dPnxofr7SEhAROnTrFNddc41rXrFkz+vbty5YtW7jrrrtc63v16kVMTAwff/wxY8eOJTExkY0bN/LGG28wd+5cV7uBAwfi5eXFhg0bGDNmDHv37iUvL4/Jkyczc+ZMEhISiI2NZcOGDfj4+NC/f/8LPg8hhLuiZMXHOOvxxWutD9Wyq75FX4/WRVxCCCGEEEJ4okZPWCilxhUtrtFaZ5V4Xy1a6wsuPKeUMgFvAw7gKq31jqL1c3AWuFuglFqtta700WWlVBDwWdHbXlrrneUcR5RSPLoCIDw2qJKW52kZYSGaOGVQmKMDKTiYgSOrEPvZAkwh56d7CQr3xYbGhOLooYzK+1KKsKgYTuzbQ3Z6GnnZWfgGVF0LRoj65siyYs+secKiJF11kzqRmJjI8uXLSUxMJDLSOTXhjBkz+PLLL1m+fDkLFiygdevWzJgxw7XPQw89xFdffcWqVavqJGFRPAqiZcuWbutbtmzpNkKi2KRJk1i2bBljx45lxYoVXHfddbRo0cKtjb+/P3369MFisTBmzBgsFguDBg3C29ubAQMGYLFYiI2NxWKx0L9/f7y9vS/4PIQQ5ymlRuFMVpzFmaw4WEX7HsAOrbUutf5WYHxRP1/UU7hCCCGEEEI0Ok+407sC5/2IrThHNRS/r64LTlgAw4D2wPLiZAWA1vqcUmpBUUzjgTlV9PMAznobk0snK4r6s5XdRXzzfZJrOSiymiPc7SVHWHjCZSxEzXm3DaKgqE6FNTHTLWHh5WUkx9dAszxNQKEmI7OA5kEV30gMi3YmLABSE48S1aVrvcYuRHUYAisuFl+ZkiMsVC1HWNTUrl27sNvtdOrUyW19QUEBoaHOqQrtdjsLFixg1apVnDhxAqvVSkFBAX5+fjU+Xl0YO3YsTzzxBEeOHGHFihW89tpr5bYbOnQoH330EeCsUzF06FAAhgwZgsViYeLEiVgsFv785z83VOhCNGlKqXuBQUVvi//DvVcpNbRo+Xut9TtKqcuANYA3YAHGlBxNWeSo1npFifevAu2LimwfB4xAz6LjFQATtNbn6vJ8hBBCCCGE8CSecKf3PZz3Js6Vet+QhhZ9/bqcbV8VfR1SjX7uxBn7x0qpOGA44AvsA77UWtf4MVOlVJsqmkQULxQUFLjNZd1UnDpyjuCiZRViqNY5OArtzo9vgB1Hkzvv/Pz8cpeF56qP75mOOJ+AyDmUjopzHxVhCPaCPCsKxY8/H+eq/hUXpG/eqrVrOfnwQcJiO9RJjE2d/Kw1HIfDQfEDwQ6HM9nQ4v+617qv7OxsAAICAjAYal5yqziG6tBak5mZidFoZNu2bRiN7lMNBgQE4HA4ePHFF1m8eDGvvPIKXbt2xd/fn0ceeYSCgoIaHa9kjCX3Cw8PByA5OdltlMXp06fp3r27W1uHw0FwcDDXX389kydPJj8/nxEjRpCVlVWm7yFDhjB//nySkpKwWCw8+uijOBwOBg8ezFtvvcXBgwdJSkpi6NChtTqP4uOVtyw8h9Yah8P9b6aCgoJGjKhJG4TzYaaSBha9ir2D8+/04v/s76J83+F8OKrYBzinpe0HhOGsOXiiqL+Xtdb7LiRwIYQQQgghPF2jJyy01hMqe99AOhZ9LTNEW2t9SimVXaJNuZRSZpxPWKUADwGzcS9qfkQpNVprvauGsSVV3cTpxx9/5PDhwzXsvnHZHeCXHQAocgyaQ7//yJH9Ve9XkJMPRbNHHTp6mFNf76nXOOvTxo0bGzsEUUN19T0z2OBKglEozu5N5gcv94vfavACnKMutm4+QH7W7gr7yks57Vr+bcsPJDuktktp8rNWv0JDQ/H19UUpRWZm2ULytVWcuKgvNpsNq9VKx44dsdvtJCQkMGDAgDLtMjMz+e677xg1ahQ33XQT4Lwxv3//fuLi4mp1znl5eW77hYaG0rJlS9atW0e7du1cx/3xxx8ZN26cW9vife+8807uuOMOHn74YXJyclwJi9zcXFf7K664ArPZzKJFi8jPz6djx45kZmYSFxdHSkoKS5cuxd/fn8suu6xOvnf1/T0TNWez2cjLyyMvL499+87f705NTa1kL8+mlLIDK7TWk6to9zYwUWtdZ597ij6vTKhGOwvUbJCY1vodnMkJIYQQQgghLkmNnrBQSi3DOWx6WdH7aCBba53egGE0K/pa0fDqzBJtKhKC85n/UOBZ4HHgfcALmAI8A/xHKXWZ1loe8y2Skm7AWzs/x2X72KnuQ7QGff6zn6PmD94K4REcJsjzs+OXa8I314jBDiXzDM1C7M7JIABbVuUXunfzYNdyQUZD/voU4uLQoUMH/vjHP3L//fczb948unXrRmpqKt999x2XX345I0aMoH379nz22Wf8+OOPNG/enCVLlnDmzBni4uKqdYzs7GwSEhJc748dO8auXbto3rw5UVFRKKWYOnUqL730Eu3ataNt27YsWLCAiIgIrr/++nL7vOaaazh06BCBgRXXrfH19eUPf/gDb7/9Nn369HGNIDGbza71ffv2xcvLqwb/YkI0OkX1kwE1nVlOCCGEEEII0UgaPWHB+aeTlhV9TcA5LLrSp6U8UPHdRCPwd631yyW2PVs0RdQdwO04h3pXV1QV2yOAbQB9+/alffv2Nei68a1cfQAbaQCExQYzfPjgau33v693uJYv63IZV/YJr4/w6k1+fr7rae+rrroKHx+fKvYQja2+vmfZ1mMUbE9BoRgS1w+vducLz2flWPn3zp8xoPAt8GL48Ksq7ev9DevISk3BkZPJtddcg6rFNDoXG/lZaziJiYnY7XZMJhNBQUFV71CJupgSqrpMJhNms5mgoCDef/995s+fz7PPPsuJEycICwujb9++3HbbbQQFBTF79myOHz/O7bffjp+fH3/+858ZPXo0586dq9Y5//LLL1x99dWu908//TQA48aNY/ny5QD89a9/xW638+ijj5KRkcGgQYP48ssvXdNFFfP19XUds1mz889UFE/H5Ofn5xbTNddcww8//MA111zjtn7YsGFs2rSpzPqaasjvmai5lJQUfH19CQgIoFevXq71TW1kbi35AYWNHYQQQgghhBCiejwhYWHHOQqhWE2elqorxSMrKhpFEQScrWYfAJ+Xs/1znAmLP1CDhIXW+nhl20sW7vP29sbX17e6XXuElMQcistsx13RotrxqxIjLMx+Te+8S/Lx8WnS8V+K6vJ75mgfTMH2FOebUwX4Xn6+X19fX7LNiiArBBRoUF74+lT8a7tF21iyUlMozM+nMCeLZuERFba9FMnPWv0yGAyum+V1ebPaYDDU681vi8XiWvb29mbOnDnMmTOn3LZhYWF89tlntT7WsGHDXHU+KjN37lzmzp1b4fbK+ggJCSl3++zZs5k9e3aZ9bNmzWLWrFlVxlQT9f09E7WjlMJgMLj9HvT29q5kj6ZPKdUcZ72J5EYORYhLQswTaxs7BFGFo38rf8SmEEII4Uk84dPkGeBKVfLOe8Mrrl1Rpk6FUioCCKCc+hYlaa1zcBbEA8gop0nxOrlbVoItxTk7lgNNn57Vv7mqStTzVF6ecBkLUTvebc8/0VxwOKNsg+ZmAIwoftuTUmlfLaJjXMspx47WQXRCCCGE51BKHSl+Fa26veS6Uq9EnJ8z2gBfNF7UQgghhBBCiJrwhBEW3wJ34yxKXTyx80il1LfV2Fdrra+uulmVvgOeBIYDK0ttG1GiTVW+Be4BugC/lNrWpejr0dqFePHJyrYSmK8BRbZZEdyselO1aK3dExYmSViIpssY4oMxxAd7ej4FxzJx5NswlBhFEdzaH/sZKwD796XRr1erCvsKK5GwSE08Sofe/eotbiGEu8TERLp06VLh9r179xIdHd2AEQlxUYopsaxxPlQUUEl7K/Ap8FT9hSSEEEIIIYSoS56QsJgJdAJ6A22L1kUUvapS9bwK1bMeOAL8SSn1mtZ6B4BSqhnODzhW4L3ixkqpVjinj0rWWpecCmopzoTFE0qp/2qtM4raRwAPAw7g4zqKucn76ZdTGIpm/zK0qP6UBA67DaMqMYuYJCxEE6aUwicumJwtyWDXFBzKwPeKMNf22I7BHPrVOSNd3pn8SvtyG2GRdKxe4hVClC8yMpIdO3ZUul0IccFii74qnH+7rwYeq6CtFUjRWtsaIjAhhBBCCCFE3Wj0hIXW+iTQVynVFmfCwgJ8CbzQgDHYlFL3Al8BG5VSK4Es4LaimGZorY+W2OV5YDwwEWeB8OJ+flBKvQI8CuxUSv0HZ32Om4Fw4Cmt9YH6P6Om4cDeVNdyy9iKyoeUZbMWYlBG13sZYSGaOp/LQpwJCyBvX7pbwqJfzwgOrXLOfBFuq3zmvOYRkRhNJuw2G6nHEiptK4SoWyaTiQ4dOjR2GEJc1LTWrmy8UupdYFPJdUIIIYQQQoimr9ETFsWKPmwcKyplcUprXZ0pmOry+BuUUoOA2cCdOBMNu4CZWut/16Cf6UqpXcD/ARNwjgL5FZiqtV5T54E3YSEFUJyy6N69RbX3sxdaMarzl67UsBBNnU+7ZigvA7rQQf7+dLRDowzO5ESz5j4EhviQlZ5PyvFst22lGU0mQtpEk3L0CGdPncRmtWIymxvyVISoVlFpIUTDKv65bNyScXVLaz2xsWMQQgghhBBC1L1Gv9OrlPpWKfV4iVUTgXcaIxat9U9a61Fa62Zaaz+tdd/ykhVa6wlaa6W1XlFBPyu01r211v5a6wCt9WBJVpSVl5wHgJe3ke6Xh1d7P1thoXvCQkZYiCZOeRnxbt8cAEdWIYXJOW7bw6Kc03PbCuxknMmttK8WUc6Z9bTDQdqJpLoPVogKeHk5p+qz2+1kZGQ0bjBCCJeMjAzsdjvgHAkkhBBCCCGEEJ7MEz61DMW9EPUynNMs/dAIsYgGkn22gJyMAgDCY4IwVPDEeHlkhIW4GPlcFkz+vnQA8velY259voZoi+hAEn5zjkdKTcomOMK/wn5KF95uGdu+fgIWohR/f3/y8pyJ6OTkZM6cOXNBT3PbbM5p51NSUuokPlH/5HvmebTWrmQFOH9OLyZKqUDgAeAaoDXgU0FTrbWW/xCFEEIIIYRoAjwhYVGI+4cLVfQSF7HTR8/XKm8ZG1Sjfe0ywkJchHziQoDDgDNhEXR1tGubV+j5ovRfb06kY++WFfbjVng78WhdhylEhcLCwrDb7Zw96ywSX/ImaU1prV3JD19f34tqGpuLlXzPPF9wcDBhYWFVN2wilFKRwPc4681VdcHJXHVCCCGEEEI0EZ6QsEjGWXTbX2udU2VrcVHY+dsZ13LLmJolLGyFpYpuywgLcREwBftgaumH7XQu1uNZ2LOtGAOc9SeaRZ5/IjbjZOW/JkuPsBCioSilaNmyJUajkZycHGw2W63rWTgcDtfN74CAAAwG+T3v6eR75pmUUphMJvz9/QkLC7vYEkkLgBhgB/A34HcgsxHjEUIIIYQQQtQBT0hYrAXuB84opU4XrbtdKTW0GvvK8O4mau/uVJoXLfu18qvRvrbSU0LJCAtxkfC5LITs07mgIf/AWfx7OkdStG0TSJ5B4+tQeGfbcTgcFd4M9A8OwScgkPzsLElYiAanlKJFixa0aNHigvrJy8tj3759APTq1QtfX9+6CE/UI/meiUYwAjgNxGutz1XVWAghhBBCCNE0eMKd3qeA1YAXzqekNBBQtFydl2hirFYb/tnOqUKyjRDRsmbzKcuUUOJi5RsX4lourmcBYDAYKAhwXvO+DkVCUsUPkCqlCIt2Ft7OyThLbqbcwxFCCHFRCga2SLJCCCGEEEKIi0uj3+nVWp/TWt8B+OFMQCicCYzYarzaNULI4gL9sjsFr6Kphu0hXjXev3TCAtNFNb2BuISZ2waifJzTneUfyEDbz0+n49fy/NPKu3alVtpPi+hY13Jq4rE6jlIIIYTwCEl4wGcZIYQQQgghRN3ymD/ytdY2rXVi0dtsrfWx6rwaNWhRK3t3pbiWQ6ICarx/ySmhtEFfbPMxi0uYMhrw6RQMgM63YU08P5IiskStl8QjGZX2UzzCAiA1MaFugxRCCCE8w2pgsFKqZkN1hRBCCCGEEB7NYxIWxbTWBq31pMaOQ9SfM0ezXMuXXR5W4/3tJYpua0PtCroK4al8KpgW6vLLz9cEyD6VW2kfYVExruUUGWEhhBDi4jQX5yiLVUqp8MYORgghhBBCCFE3PKHodoWUUs2A3kAL4JjW+odGDknUAZ1WAIAdzR+ubFnj/W2FVsyGokvX41JuQlwYn7hg58R4GvL3p9NslHN6p84dgvmf0pi1wnTOVmkfbiMsko7WY7RCCCFEw1BKLStn9RFgNHBIKfUzkAg4ymmntdaT6zE8IYQQQgghRB3xyISFUioQeBW4h/Mxvgv8ULT9XmAOcIvW+sdGCVLUSkp63v9n767j4zjOP45/5kDMkm2ZmZntOHHYYeY02CYpN2mTppw27a+YctM0SSFpsGFmtB0z2zEzWzJIFutofn/s6STZQlvSnazvO6993ezu7Oxzuj052mdnhjSfUy5JdJGSHNfsNoL+QPUcFm4NByUnFndKHN4eqfh3FuPfV0agsAJPRgJuj4uyJBdxpZbkIOzLLyW3c92jYMQlJJLeJZfDefs4sHM7NhTCuJTdExGRdu2WBvalAKc1sN8CSliIiIiIiLQDMZewMMYkAp8CY4F8YDFw/hHV3gQewXmiSgmLdmTRkr2RsrdTwjG1EfT7cJvw3BfulohKJLYkDs7Ev9MZOq1iXQEpU7oCEJeTAKXlACxflc+5Z/att42cnn04nLePQGUlhfn7yMzt1vqBi4iItJ5box2AiIiIiIi0vphLWADfwUlWPAvcYa0tNcbU6tptrd1njFkLnB6NAOXYbV53KDKKU9d+6cfURsDnw1XVw8KjHhZy4kkYkkXRhzsAZ1ioqoTFwMFZ7N6+G4CU8obnb+nUuw+bF88H4MCObUpYiIhIu2at/W+0YxARERERkdYXi2OEXAPsA75krS1toN4GoEfbhCQtxRzyRcpjjmH+CnAm3XaHJ9027li8hEWOj7dbCq4ULwCVmwqxfidnO21iddKhaGdJg23Umnh7+7YWj1FERERERERERKSlxeLd3v7AQmttRSP1yoCcNohHWoi1lsTiIADeRA/DBmUeUztBX40Jh9XDQk5AxmVIGJwFgPWHqNxSCEB29xQS05x5X3asPoSvov7Jtzv37Rcpb1+1vNViFRERERERERERaSmxOCRUEPA2oV4PoKEeGBJjig5UUFHiB5zhoFzHOAlwqLL6Jq3xahILOTElDMmibEkeAOXrDpEwOAuXy9B/bCc+n7mbYCDEtlUHGDQxt87jM7p0JbtHLw7u2sGe9WsoOpBPWk7ntnwLIiIircYY858mVvUBB3DmxXvbWutrpL6IiIiIiERRLCYsNgOjjTEea22djw8bY1KAUcCaNo1MjkvetsORcpe+acfcjvXXTFjEYichkeOXMDADXAZClor1BVhrMcYwYHxnPp/pzGPx/rtb601YGGMYctJ05jz/FADr585m4sVXtFX4IiIire2W8GvVpE5Hdrs9crsF8jAmtoMAAQAASURBVIwxN1trP2jl2ERERERE5BjF4t3e14GuwI8bqPNjIB14pU0ikhaxb0tRpHw8CYtQZTBSdqmHhZygXAke4vs435PgoQoC+8sByO2fTnn4sg/uLuNgYXm9bQw+6ZRIed3cWa0XrIiISNu7FXgQJyGxB/gL8G3gLuDPwK7wvr8D9wEzgVzgVWPMkLYPV0REREREmiIWExZ/AnYDPzHGvGqMuT68vYsx5nJjzP+A7wLbgIejFKMcgzkLdkfKnXqlHnM7NhCKlJWwkBNZwpCsSLli3SEA3G4XtnsiAB4M772/rd7jM7t2p0u/AQDkb93MoT27660rIiLSziwEvoiTnOhnrf22tfYv1tq/Wmu/AwzA+bviVuBla+0ZwM+BROA7UYpZREREREQaEXMJC2ttIXAusBW4GHgSpwv3ucALwNXADuAia63msGgnysr9JJU5iYZiLySlxh1zWyFfdQ8LE6eEhZy4aiUs1h+KlMed3D1S3rpsf4NtDD5peqS8fp56WYiIyAnjfmAvcLe11n/kzvC2e8J17g9v/mV4/Yy2ClJERERERJon5hIWANbaNcAI4GvAW8BaYD3wIc4TUcPDdaSdWLw8D0/VEMLZx56sALCBGkNCxcfiNCwiLcPTKRF3VgIAlVuLCFU487ecelIPylzO0NwpBX4OFDQwLNTUGsNCzZmFtbbeuiIiIu3IqcAi28A/bOF9i4Dp4XU/sAro1iYRioiIiIhIs8VkwgLAWlthrX3YWnuxtXaEtXaYtfYca+2frbVl0Y5Pmmfd6gORcqfexz4cFADB6r9L3XFKWMiJyxhDwuBMZyVkqdhYCIDH44KeSU4Zw7vvba23jbScTnQfMgyAQ7t3cmDHttYMWUREpK2kAZlNqJcB1PyfzwKqJ+QWEREREZEYE7MJCzmxHNxRHCkPG9npuNqy/uq/MV1KWMgJrr5hoSbUGBZq+4qmDwulybdFROQEsRk4zRgzoL4KxpiBwOnhulW6AgdbOTYRERERETlGMZ2wMMZMMcb8wBjzYHj5gTFmSrTjkuZzHXKGFg5gGTeq8/E1FlTCQjqOhH7pGK/zq7pi/SFsyLn+p0/tQZm7alioAPsPNTAs1JSTMcZpY/1cDQslIiInhMeAeOBTY8yXjDFJVTuMMYnGmC8CHwNxwOPh7V5gNLDyeE5sjLnBGPOIMWaxMabSGGONMbc0UD/NGPNHY8z2cP1txpgHjDEp9dR3GWO+aYxZZYwpN8bsN8Y8a4zpdzxxi4iIiIi0BzGZsDDG9DLGzAbmAP+HM5fF18LlOcaYWcaYXtGMUZpu974SUpyh9ylJchF/nEkGG6i+2Vp1I1fkRGW8buL7ZwAQKvbj31MCgNvjwvRMBpxhod5rYFiopPQMeo0cDcDh/Dz2bdrQukGLiIi0vj/jzHXXDXgUKDbG5Blj9gElwD+B7sA74boAw4DlwNPHee7/A+4AeuNM4l0vY0wyMBP4NrAO+BPO3Hz3AB8bYxLqOOwR4K+ACb++C1wOLAr3GhEREREROWHF3N1eY0wG8AkwDagEXgf+GF5eC287GfjIGJMepTClGRYv2RcpJ+QmHnd7Jlij7Im5S1ikxSUMqR6iu2J9QaQ84ZTqOUMbHxaqxuTbGhZKRETaOWttELgYuAvYinNzvxPQOVzeDnwHuDhcF2vtCmvt6dbaZ4/z9LcBfay1nYCHG6l7LzAG+G14Pr7vW2vPAX4LTMRJZEQYY04Ptz8LGGet/Z619kbgUiALePA4YxcRERERiWmxeLf3bqAv8DYwwFp7mbX2nvByOdAP52mqfuG6EuO2bai+wdpzQFPmRmxEjdFslLCQjqDWPBbrquexOGVyD3xxBoDM4hAVpf562xg48SRcbqd30/p5swmFgvXWFRERaQ+s46/W2gFAT2BqeOllre1nrf2ztTbUCuf90Fq7vbF6xhiDk3woAX5xxO5fhLffdsT228OvP7HW+mqc8x3gU2CGepqLiIiIyIksFicAuAzYD1xtrS07cqe1dp8x5hqcJ6kuB+5r4/ikmUr2lpIRLo8d1+W426vVw0JDQkkH4MlIwNMliUBeGb5dxQRLfLhT4nB7XEw8uQcrPt6JDVq2rjjA0JO61tlGQkoKfceOZ/PiBZQWHGL32tX0HD6qjd+JiIhI67DW7gZ2RzuOIwzEGbLqPWttac0d1tpSY8wc4BxjTE9r7c7wrtOAUpyhcY/0Xnj/qcCTTQ3CGNOjkSq5VYXy8nLKy+ufF0tE2jd9v6UmXQ9SRdeC1NSc66G1rp1YTFj0Bd6qK1lRxVpbZoyZCVzQdmHJsbAhS47PEABsgov+vdKOv9GQqS6rh4V0EAlDsijJKwMLFRsKSA4n/wZM6MyKj517HJuW5NebsAAYfNJ0Ni9eADjDQilhISIi0qqq5pvYWM/+jcA54Xo7w/NddAU+rxrGqo76Ndttqp2NV3HMmjWLnJycZjYvUiUWby9ITe+//34bnUnXQnug60GqtN21ALoeYl9zrocDBw60SgyxeJUEAW8T6nmAFu/iLS2rIK+MQIXz91a/wVm4XMefYDA1EhYaEko6isTBWZTM3AU4w0JVJSy69EkjJTOekoJKdq09REWpn4Tkun+F9h8/CU9cPAFfJRsWzOWMW7+C2xOL/wyIiIjUZoy5KVx8xVpbXGO9Say1T7RCWI2pmm/vcD37i46o19z6IiIiIiInnFi8U7UROM0Yk2GtLayrgjEmCzgd2NCWgUnz5W0tipS79D3+3hU2FMJVY+oVDQklHUVc7zRMggdbEaBiQyE2aDFug3EZ+o/rzIqPdhIKWV5/azNXXz2k7jYSEuk3fhIb5s2moriIHZ+voO+Y8W38TkRERI7J4zgzmc0HimusN1U0Ehaxomcj+3OBRQDTp0+nR4/GRpASqce8j6MdgTRixowZbXMiXQvtgq4HqdJm1wLoemgHmnM97Nq1q1ViiMWExQvAr4C3jDF3WGtX19xpjBkJPAKkAc9FIT5phryt1Q+I5fY9/ofBAgE/blN92aqHhXQUxm1IGJRB+coD2IoAvu1FxPdzvlOmZ1Kk3sYleVBPwgJgyLTpbJg3G4B1c2YqYSEiIu3FEzgJisNHrMeyqljr+5/gtCPqNbd+k1hrG/xL0pkb3JGYmEhiYmJzmheRdkTfb6lJ14NU0bUgNTXnemitaycWExZ/Aa4BpgIrjDHLcCbYBugHjAFcwHLgr1GIT5ph9ar9TsFAp96px91e0HdEwkI9LKQDSRicRflKZ3zA8nUHIwmLqZO6MufJ9SQHIfVwgH35peR2Tq6zjb6jxxOXmISvvIxNi+YR8PnwxMW12XsQERE5FtbaWxpaj1GNzTlRa46L8ETce4G+xhh3HfNYNDYnhoiIiIhIuxdzd3utteXAGcDz4U3jgSvDy7jwtueAs6y1FW0foTRVUbGPUKHPKcdBXMLx58cCfh8u446sq4eFdCQJgzPB5TwFWbY0HxtwpvFxuVy4ezu9LNwY3nt/a71teOLiGDhpKgC+8nK2Ll/cylGLiIh0WBuBPcC08ITaEeH1acBWa23NSbFnAlX7jnRO+HVWK8QqIiIiIhITYvJur7W2wFp7LdAXuBH4fni5Eehrrb3OWnsomjFK4xYt24cL5+aqKye+RdoM+jUklHRc7pQ4EodlARAq8VO+5mBk36Tp1cNT71p58Khjaxpy0vRIed3c2S0cpYiISNszxsQZY7qG57qLCdZaC/wLSAF+csTun4S3//OI7Y+GX39hjIl0gTTGnAecBrxvrd3eKgGLiIiIiMSAWBwSKiL8tNHT0Y5Djs2GNQci5ZaYvwKcHhYaEko6suQpXSn/3ElIlM7fS9KoTgBMm9SVuU+uJyUIaUUB9uaV0rVL3cNC9RwxmsTUNMqLi9iyZCG+inLiEjRmpYiItD/GmBuAbwFjcR7G+i/wxfC+y4CrgB9Za+vvftj8c94GnBxeHRl+vc0Yc1q4/Jm19l/h8u+AS4DvGWPGAktxeo3PwJno+s8127bWfmKM+RdwG7DUGPMW0BVnyNxDwDdb6n2IiIiIiMSimLjba4xJMMakGWMafQzfGBPf1LoSXQU7SyLlESM7tUib6mEhHV18/ww8OU5yoXLLYfz5ZYAzLJS3j5OgcGF47/0t9bbh9ngYNMUZaSLgq2Tz4gWtHLWIiEjLC9/Y/y8wASgHzBFVNgDXAle08KlPBm4OL1VD1k6rsa0qmYG1thQ4FScxMRS4GxgC/AE4Mzwc7pG+DNwZLt8JnA+8Akyy1m5o4fciIiIiIhJTon631xjjBdYCecCIJhwyPFx3lTE1JjOQmOMp9APgM5ZRw1snYYHnyL9LRU5sxhiSJ+dG1ksX7I2UJ5/aI1LevarhYaEG1xoWSkNhi4hI+2KM+QJOT4rPgYnAUd15rbWrgV3AeS15bmvtLdZa08ByyxH1D1trv22t7WWtjbPW9rbW3mOtLa6n/ZC19q/W2hHW2gRrbY619lpr7eaWfB8iIiIiIrEo6gkLnG7avYE/WGuXNFbZWrsU+D3QH7i8lWOTY7Rl+2GSg+HJgVPceFuoJ0TNIaFCJoQxSlhIx5M8vguEv1OlS/IJ+YIATJ3QlZJwPi+tKMjufSX1NUGPIcNJyXSG+d62fCnlJXXeMxEREYlVdwAlwIXW2iXh+SLqsgpnXjwREREREWkHYiFhcRkQAP7UjGP+CISAK1slIjluS5fti5STuia1WLtBvx9XuGONjYWrVyQKXElekkblAGArApSv2O9sd7nw9klxyhjef7/+4bqNy8Xgk04BIBQMsGnhvFaOWkREpEWNBhaE57xryCGgSxvEIyIiIiIiLSAWbvmOA5Zaaxsev6QGa20BsBgY32pRyXHZsbEwUu4zKLPF2g34/bhd4UfIXfU9SCdy4kue0jVSLqkxLNRJp1UPC5VxwN9gGxoWSkRE2rF44HAT6nUCgq0ci4iIiIiItJBYSFjkAtuO4bjtQNdGa0lUlOdVzx84YVxuAzWbJ1hjSCj1sJCOLK5nKt6uziTb/l0l+HY5QzpNHt+VtJwEAPZuLKSsyFdvG7n9B5Hexfl+7vx8JaWFBa0ctYiISIvZjTOJdb2MM3boMKD+LociIiIiIhJTYuGWr+HY4nCFj5UYEwqGyCh3ej+UeaFnt9QWa7vWpNuacl06MGNM7V4W8/dGtg8Y74x8YS1sWb6/wTaGhHtZWBtiw/zPWjFiERGRFvURMMQYc0kDdW4EegAftE1IIiIiIiJyvGIhYbEfZwLt5uoHHGjhWKQFHNxTCkEnYTFqVOcWbTvg9+GKJCyUr5KOLWlMZ0y8k7krX7GfUHkAgAHjq793m5bkNdhG7WGhZrdClCIiIq3i90Al8Iwx5i5jTLeqHcaYLGPMV4CHgFLgr1GKUUREREREmikWEhbLgNHGmF5NPcAY0wcYCyxtraDk2OVtLYqUu/RNa9G2gz4/7vCk20YJC+ngXPFuksY5yQnrD1G61ElO5PRMIbWTMyzUrvWF7NxTXG8bOT17k93D+fW7Z/0aig7kt3LUIiIix89auxG4GefvmT8AOwEb3rYf+DvgAW6x1u6IVpwiIiIiItI8sZCweA0njuY8+fSXGsdKjMnbWj3/YW6/9BZtO1BZYxJhjxIWIimTq4eFKl2wF2stxhgOZTo9kQzw/ntb6j2+5rBQAGtnf9pKkYqIiLQsa+0LwETgBaAY5589A1QAbwBTrbUvRS9CERERERFprlhIWDyJM+n2RcaYF40x9Y4hZIzpZIx5EbgIZ9LtJ9smRGmOXZsKAXC5DTk9U1q0bVsZqF7xxMLlKxJd3txk4vo4PZkC+eX4wgnDk06r7rSWv+wgoVCo3jaGTDsVjJMAXPbemwR89U/ULSIiEkustZ9ba68FMoHOQC6Qaq291Fq7LLrRiYiIiIhIc0X9jq+1NgBcCZQDlwHbjTGvGmN+ZIy5Pbz8yBjzKrAjXKcCuCp8rMSQ/YfKKdlfAUBlihuPt2Vnxg75qj9ylxIWIgCk1DH59qRxuRQmOUmINB+8+d7Weo/PyO3KwIlTASgtOMTqmR+2YrQiIiItzzoOWGvzrbX1Z+lFRERERCSmeaIdAIC1dqkxZjpOd+6+wMU4vShqqhr/ZxtwtbV2SdtFKE21aMneSNmf4W3x9oO+YKRsvEpYiAAkjsjBlbyFUKmf8tUHCRb7cKfGMeS07ux7excAqz7aycXn9a+3jcmXXc3GhXMBWPjaS4w84xxc7pZNOIqIiMiJpc/334p2CNIE235zQbRDEBEREWmymEhYQCRpMRi4HrgEmAB0Cu/eDyzBmbPiafWsiF2b1x2KdNvp1sLzVwBYvxIWIkcyHhfJE7pQPHMXBC2li/eRdnovLj1/AA98sItUP2SUhJizcDfTJnWvs40u/QbQZ/Q4tq1YStH+PNbNncWwU05v43ciIiJSN2PMfcdzvLX25y0Vi4iIiIiItJ6YSVhAZHioJ8KLtENFu0vJCJdHj+7S4u2H/NW5KhMXU5evSFQlT8qleNYusFC6YB+pp/bE7XHRZWInyubuB2Dm61vqTVgATL70aratWArAwldfYOi0UzEuJQZFRCQm/Aywx3G8EhYiIiIiIu2A7vhKiwmFQsQXBQBDhbEMG5TZ4uewNYaEcrXw/Bgi7ZknO5H4gZlUbiggWFhJxYYCEodkcdWVQ3h4fj6JIUPqAR9rNx5i6MCsOtvoMWwE3YcMY/e6NRzctYNNi+czcNJJbfxORERE6jSL+hMWpwJ5wLq2C0dERERERFqDHp2VFrN+cyGJIWeqkYo0D65WeDLbBqr/TnXFK2EhUlPNybdLw5NvpyR5SRjmDM/mwvDmC+sbbGPypVdHygteeQFrj+dhVhERkZZhrT3NWnt6XUu4yjv17a9RR0REREREYpwSFtJili/Pi5RTuye3yjlsIBQpu7zqICRSU8KQLNzp8QBUrD9E4FAFAFddMxR/+KHUhF3llBVX1ttGnzHj6dzHmZw7b8tGtq9c1spRi4iIiIiIiIiIOJSwkBaza3NhpNxvSN1Dzhwv669OWLjjva1yDpH2yrgMyZNynRULpYv2AdClUzKZI53vpCsEq2ftqb8NY5h82VWR9QWvPt96AYuIiIiIiIiIiNSghIW0GH9eRaQ8aVxu65wkWHNIKCUsRI6UPDEXXM7QbKWL9kV6JV12zRCMs5lVn+4iUGM+mCMNmDSVzG49ANi15nN2r1vTukGLiIiIiIiIiIighIW0EF9lkJRy58ZosRc65yS1zolqzGHhjteQUCJHcqfFkTg8G4BQiZ/y1QcBSMtJpP/4zgCUF/tZN39fvW24XG4mXXJlZF29LEREREREREREpC0oYSEt4tCeEtw4j2/3HZzZeieqHhEKl1eTbovUJXly9eTbJeHJtwHGnt0rUp771lb8NeaEOdLQk08jNacTAFuXLSZ/25ZWiFRERERERERERKRazCUsjDG9jDGNToBgjMk0xvRqrJ60jbwtRZHysBGdWu9ENUex8cTc5SsSE+L7p+PJSQTAt/Uw/vwyADr3TiOxRzIA/sM+XntrU71tuD0eJl58RWR9wasvtGLEIiIiIiIiIiIiEItj6mwFHge+1Ei93wG3EpvvocPJ21adsMjtl95q5zFBIp+48SphIVIXYwzJk7ty+C2nV0TxzF1kXTUIgE4TctixqxSADTN3Yy8eiKma3OIII04/m/kv/Y+yw4VsmP8Zh/bcQFa37m3zJkRERGowxtzUSJUBDdWx1j7RwiGJiIiIiEgriMU7via8NLVuy53YmInGmLeNMYXGmFJjzHxjzNXH0V6mMWa3McYaY95tyVhjTd7WwwC4vS6yuie33omqp7DAqIeFSL2Sx3fGxDvDppUtzcO3sxiAC2b0pSjeqZNeZvn0s531tuGNi2f8BZc6K9ay8DX1shARkah5HHisnsUC0xrY/5+2D1dERERERI5Fe77jmwr4WqoxY8zpwBzgZOB54GEgF3jOGHP3MTb7INB63Q1ixO59JRQdqAAgsUsibnfrXVYmVJ2jUg8Lkfq5kryknd3bWbFQ8PpmbMjicrnoOaVLpN68t7c12M7os88nPtlJQq6d/QlFB/JbK2QREZGG7DiOpf7svIiIiIiIxJR2d8fXGOMyxowEzsD5A6Ql2vQA/8SZ0nm6tfYOa+3dwGhgA/ArY0zvZrZ5BXA98L2WiDGWLV6yL1I+EGcbqHn8aiUsavaw2L0EftsHfj8IPrgPDm5u1ThE2oOUqV3xdE4CwL+zmLKleQBccdlgSt3OdzW9IMCKNfvrbSM+KYmx514EQCgYZPEbr7Ry1CIiIkez1vax1vY91iXa8YuIiIiISNPERMLCGBOsWsKbbq657Yj9fmA5kA283EIhnAH0B56x1i6v2mitPQz8CogDbm5qY8aYTsA/gCeBt1ooxpi1bUNBpNxzQGarncdai8tWX7LGU2NEsPfvg/ICKMmDOX+Bv42Dxy6Alc+Dv7zVYhKJZcbtIuPifpH1w+9uI1QRIDHBQ+rI6u/quy9taLCdceddjDc+AYBVH71HaWFBg/VFRERERERERESORUwkLKiet8LgjEFrGlgCwDbgD8BPW+j8p4Vf369j33vh11Ob0d7DQBC48zhiajdK9pRGyuPGdWmg5vEJBYO4jDuybrzh8t6VsP2zow/Y/hm8fDv8YQjsWNBqcYnEsoQBmSSOyAYgVOKn6IPtAFx9zVB8xullkbC7gh27i+ttIzE1jVFnnQtAwO9j6duvtXLUIiIiIiIiIiLSEXmiHQCAtdWPzRtjQsDj1tovtmEIA8OvG4/cYa3dZ4wpqVGnQcaYG4DLgUuttQXGmOOaw8IY06ORKrlVhcrKSsrL27Y3QTAYIrEkCBjKXJaunbytFoO/ohy3qb5kKwOV+Mst3rkPRS5k/8n3gicB98qncR1yhoWyQR8Vaf2gjX82DamoqKizLLGrPX9m8Wd2o3xdAQRClMzdg3tUJkmdEwn2SYKt5XgwvPjsar769dH1tjHirPNY9t6bhAIBlr33FiNnXBiZ2yKWtefPrSPT59b+6DNrnyorK6MdgoiIiIiISC0xkbA4wv3AsjY+Z1VS4XA9+4towuTZxphuwF+BZ621LfUIcpMnCVywYAGbN7ft3A1797uIt85Ny+KEIB9++GGrnStYUUHPGgmLT2bPJOix9ChKY0BCT5L8B3mvaABBdwL0uo+s7A30OfApfnciq2bOrdXWiF1PkVyZR1lcJ8riciiPy6EsvPg8qWDMkadvMcYGcYd8xIX8uGyAxR+8iMsGMTaAywbwu5Mpi+9c65jcwiUYQljjJoQba9xY4yJkapTxUB6Xjd8T+zeR27tZs2ZFO4Rm65qbQLddSWBh59PL2TismOyuhuKtybgx2M2lvPnm+8TF1d9GSp8BFG1ah7+inFce+RtZI8a13RtoAe3xcxN9bu2RPrP248CBA9EOQUREREREpJaYS1hYa++PdgzH4V84c2x8K9qBtJX9+91khcsmLdhg3eNlQ4FaPSxC4eFsdmVNY1fmSST5DjjJCgBjOJQymEMpg49qxxMsp/fBT/GEfHWeJ2DiKI/Lpiwuh/VdL6MgeUBkX3rZNroWLsZl/bhsEFc46RBZQgHc1o/fncjivt+s1e64bQ/TvWABLhr+Oe3IOoVlvW+vfeyOf+INljV4HMDSXnewM/vkyHpKxR6mr/8ZAXciAVcCAXci/hrlgDuRSk8qlZ50dmdOJuBOavQc0j7t61ZB9v544ivdpBV5yTjkhWw/29ICdC7ykmANlXu8xPXx19tG5rDRFG1eD9ZSuP5zMoaMxOXxtuG7EBERERERERGRE1nMJSyMMW4gGSiz1gZqbE8E7gXG4Mxh8YC1dk8LnbaqZ0V9vSjSgAZnmTXG3AycB1xlrW3Jx9V6NrI/F1gEMHnyZPr379+Cp27c2pVLAOfG/6RpAzjj5MZGsDp2h/P3kbdgYWT9rHPPxhxDTwjXznm418WDr+6Ehcf6SK3cS2rlXjIuvJ9Qr5Mi+9yfP0/cW683eg6blM2MGTNqbfO+8RqugsaTOt1yO9PpiGM96xOhrPGExYjRYxk6rPpYs2cp3rUVeEOND88x+OK7IKV6DhL38ifwLHoEm9QJm9wJkjthEzKwiZmQkI5NyHBekztjM/s22n57V1FREXlqePr06SQkJNSuEApAoBIC5ZhAJQQqsZ4ESOsWhWjr5utbQPFzTi+sgXnZZFw5nAkjKnj1gZUABPelc9aXxuJy1/+9+mD/HjbOm02ospIuBBg744I2if1YNfq5SUzS59b+6DNrn9q6Z66IiIiIiEhjYi5hAdwH/BhnIuzZAMa5K/0pMIHqibkvN8aMsdY2mEhooqq5KwYCS2ruMMbkAinAwiMPOsLY8OsL9dxEP8cYY4EV1toxTQ3MWrurof01zxUfH09iYmJTm24RoQPOTf8QlmmTe5GYGN9q5yp1uSKTbocIkZR0jL0BBp0B398BJXlweCcU7qheIus7IVBOfJeBUPNnmtC04ZZMoPLozyKnP+SOAm8iQVc8+QXFhFweunTtgScuEdxecMfh6T4Oz5HHnv4j8JVA0A+hoHNzPOQPvwbD2wPE5Q6uHW98AuQMhspiZ/GV4Hx9joqYxKwe4K7xK6FkDxza7CwN6TEJbvug9raXboO8NY39mGDanTD6mur1or3w1BWNHwdw3TOQ2ad6ffWrMPN3jR+X2gVufKX2tnd/CFs+bfCweBtisHsI67teRkJCQvXn++ue4CsFW08y6oyfwPR7Go+rDSSMScC39CCVGwsJHfbhX3CQ7mf3ptfwbHasPkhJQSW7VhcxeHJuvW2cdMW1bJz/GVjLkjdeYvSZ55CckdmG7+LY1frcpN3Q59b+6DNrP+LjW+//20RERERERI5FLCYszgT2WWtn19h2ETAR2AA8hNOTYQZwO9CEO5SNmgn8INzm/47Yd06NOg2Zh5PYOFIKcA2wC3gP2HHsYcaWw8WVpFZawFAcb8hIa90/eoN+f2RIKOuy8MmvYOA50GN88xtzuSCtq7P0nHT0fmuh9AAkZdfe3ucUuOk1cMfVXjw1ywngreNGzRk/chbAV17OwvffB2DGjBlHJyiONPFLzX+P4PxsvlEj1xYKgb8UKkvCSYwiKN0P5QW1kxUANgRxqeArbvgciXXcrN6zHA4eNYf90coP1V4P+SF/dePHAQSO6CFTXtC0YyuLjt52eEejx7qAhOwuR+8IBepPVgB88kvnuuk1ufHYWpkxhoyL+pP356UQshTP3Eny+C6MndGLHasPAjDv1c10H5FFSnLdk1nk9OzNqDPOYeVH7+IrL+ez/z3JOV/pMKPgiYiINIsx5hbgsUaqfWytPTNc/2fATxuo29dau61FghMRERERiUGxmLDoC6w7YtslOI+Ff8Fau8QY8xBOAuBKWiZh8RGwBbjeGPNXa+1yAGNMOvBDnDGPnqiqbIzpijN81F5r7WEAa+1zwHNHNmyM6YOTsFhtrb2tBWKNGYd2leDC6eGR0aOuXE3LCvj9uF3hhAVBmPlbZxnzBbj0oZY9mTGQ0uno7aldnKW9crkgPtVZ6Npw3Rm/cBZ/OZTkVyc2ygud14pCp5wz8Ohjgz7wNOHpWteRv4JM046DoydGd7mbdqynjsSaO67RYy0QMnX8yswdBcFKJ1Hlia9+LS+ErTOdxM8rd8DX5tedyGpj3s5JpEzrRsns3RCwFL65he43DqXHkEx2rSugtKCSx/6zkm9+c0K9bUy79kbWz5tNZVkpn3/6AWNmnE+XfgPqrS8iItKBLQfqm6PvSmA4zkNNR/ovzjC4RypsiaBERERERGJVLCYssoF9R2ybBuy21i4BsNYGjDHzgSktccJwe7fh/LEwyxjzP6AYuALoDdxzxJNMvwZuBm4FHm+JGNqjgh0lkfJpJ7Xe3BVVgn5fdQ+LmnMy9Iz+k+snNG8iZPZ2lqa6a+WxnSujJ/z4yK9/E427yVmOxZX/abRKRXk5q8K9Ymr5Ul33GIBgAB4/H/LXOcNCxUCyokramb0oW55PqNhPxRpniKg+Z/dgx7pDuDAEVx9m8/ZC+vfOqPP4pLR0pl55HZ8+8S+wlo8ff5Rr7//tMc0pIyIicryMMVNwhpPtgTN87C7gU2vtvGjGBRB+EGr5kduNMXHAN4AATnLiSI9baz9tzdhERERERGKRK9oB1CGAM+k2AMaYTJy5JeYcUa+Y+ifJbjZr7SfAyeHzXAN8FcgDrrXW/qGlznMiydtWPbROl75prX6+oN+Pq+oJ91B4AurELBh1daufW6TZ3B64/J/wtbkw8spoR1OLK8FD+rnVE6UXvrGZUYOzqejjzAvjxfD8vz9vsI0x51xAZjcnUbln/RrWz53VegGLiIjUwRjT3xgzB+f/338JfA3n/+H/D/jMGDPXGBOrXQAvxXlQ601rbV6UYxERERERiRmx2MNiCzDFGOOy1oaAC3GelPrsiHqdgf0teWJr7UKc+TEaq3cLcEsT29wGnJCPHedtdRIW3gQ3mblNm4z6eAT8PuLCk25jw/MXjL8lpp5cF6mlOb1S2ljS2M6ULtiLb0cxgf3llMzdw823jebJ++aREDKk5fv4dM4OTpvWq87j3R4vp990Gy//5mcAzHz6MfpPmIw3PqEN34WIiHRUxphuwGwgFygD3gW2hnf3Ac7F6Y09yxgz0Vq7OxpxNqBqqNh/1bN/ujFmMhACNgIfWmtL6qnbIGNMY12hc6sK5eXllJeXH8tpJIbpM5UquhakJl0PUkXXgtTUnOuhta6dWExYvI4zb8RrxpgPge8BQeCNqgrGGXdkLLA2KhEKu3cXU1pYCUDn3qm4XK2fkwn4/CRG5hDwg3HDxBNqWhDpCLbPg15Tjp6Do40ZlyHjkgHkP7gMLBR9tIPcMZ3JmNSJivkHAJj7wmZOmdwDt6fuznh9x06g79gJbF22mJKDB1j42ktMu/oLbfk2RESk4/o5zo32l4CvWWtrPchkjMkBHsKZJ+J+qhMEUWeM6Q2ciTN01bv1VDty3otCY8yd1ton6qzdsJ1NrThr1ixycnKa0XQs/jkpR3q/rmFNW4Wuh1ina0Fq0vUgVdruWgBdD7GvOdfDgQMHWiWGWBwS6nfAauAC4E84f4g8YK3dUaPOyUAOR/e6kDYyd9GeSHmXK9gm5wxW+mus+WDYJZDevU3OLXLcKg7DK1+Bx86FZU9GOxoA4rqnkDzReajSVgY5/O5WbvrCcIrC85KnV1iefn5Ng22cdtPtuNxOz6fFr79E0f78Vo1ZREQk7DxgD/CFI5MVANbaA8AN4Trnt3FsjbkV5++wx621R/6P9Argi0A/IBHoC3wTsMDjxpiL2zJQEREREZG2FnNpLWttkTFmEs7TUF2ARdbamUdUywb+AjzX1vGJY+fGQsL3NOneP6NNzhmq8EHkrH6Y/JU2Oa9Ii9i5EFY865Tf+T70ORmy+kU3JiBtRm/KVh7AVgQoW5pP8uSujLu0H5ue2wJA3md5HDy/P9kZdQ+9ltWtO2PPu5glb75CwO9j5tOPcdFd32vLtyAiIh1TFvCatVXjhB7NWuszxnwGXNJ2YTXMGOPCSVhY4D9H7rfWvnLEpm3Ag8aYtcAHOPNzvN7M0/ZsZH8usAhg+vTp9OjR2AhSNcz7uJmhSDTMmDGjbU6k6yHm6VqQmnQ9SJU2uxZA10M70JzrYdeuXa0SQ8wlLACsteVAvY8gW2tfBV5tq3jkaOX7yiOpgwnjchus21JC+7cCowAwcV7oOalNzivSIgaeDeNuhqX/BX8pvPxluPUdZ3LuKHKnxJE+ozeFr28GoPD1zcz4+hiWfLiD9IMBkkKG//5rJd+5Z3K9bUy94lrWzPqY8qLDbJg3m10zLqDHsBFt9RZERKRj2gU0ZRK1JCCW5q84C+gFfGSt3dpY5SrW2o+MMZuBkcaYNGttUTOObfAvSVNjmMrExEQSEzU/3IlGn6lU0bUgNel6kCq6FqSm5lwPrXXtxOKQUBLjfL4AyaVO7/USD/Tsltom5w3u3VS9ktYp6nMAiDTbOb+CzD5OeddCmPPnaEYTkTy5K95c556Pf3cJpYv2cfmtIwhgAfBsKmHfruJ6j49PSubka2+KrH/830cJhdpmqDgREemwXgBOM8bUOz5oeN8ZwIttFlXjGptsuyFVgwQntVAsIiIiIiIxJ+YSFsaY6c1Zoh1vR7R01X68OMmCYKa3zc4b6j41Unald2qz84q0mPgUuOxRMOFfvZ/+GvYsi25MgHEbMi6uHp6q6L1tDOqWihmSBoAbw5LXG34IdMTpZ9G5T38A9m/bwueffNB6AYuIiMAvgFXAx8aYC4/caYy5APgIWMnRE1hHhTEmG2d4qkPAkUM/NXZsMjAcKKU6cSEiIiIicsKJuYQF8CnwSRMXDXwWBatXVc9rmNUrpc3OG/JXP7Ft4touUSLSonpNhpO/45RDAXj5DvCXRzcmIL5fBomjnURgqCzA4Q+289WvjiM5wxn8bdvKA+xYfbDe410uN6ffcntk/bP/PUlFaUnrBi0iIh2GMebjmgvwFhACBgKvGWMOGmOWhJeDOPM8DAzXeTN6kddyIxAHPGWtrTxypzEm1RgzqI7ticA/gVTgeWttoNUjFRERERGJklhMWMyqZ/kM2Fmj3jxgdptHJ+zfXj00zJBhbdfTwdZMWHhj8dIVaaLTvg9dxzjlAxvgw59FM5qI9PP7Rr5bpfP3Yg9VMPWy/pH9n72wkWAwVO/xPYaOYPDUUwAoLzrM/Jeebd2ARUSkIzmtjuWk8D4DZAJjw0tmeJsJ1zmt7cJs0JfCr/UNB5UNrDPGLDDGPG6M+Y0x5jFgA3AdTo+S77ZBnCIiIiIiURNzk25ba09raL8xZhTwOE536PPbICQ50kHngbAglglju7T++coLITGDkK86YeHyulv/vCKtxe2Fyx+FR6ZDoAIWPAyDzoH+Z0Q1LE96PKln9KLovW1gofD1TQy8fSSfz9zFvi1FFOwr440XN3DpNUPqbWP6DbeyeclCAr5Klr37JiPPPJfs7j3b7k2IiMiJ6vRoB3A8jDGTgBHAQmvtqnqqHQIeAibh/J2TCZQDa4G/Ag9aa6PfLVNEREREpBXFXMKiMdbalcaYy4HVOE8Y/SbKIXUo+w+Vk+pzyiWJLlKSWnloJmvhP+dCQjq28EzAGWffFd/uLl2R2joNhrN/Du/cC/3PhE5Dox0RAKmndKd08T6CByvwbS2iYtUBTr56EC/+ZjEAWz7dze5Te9A9t+7h4NJyOjPx4iuY9+IzhIJBZj7xLy7/QUwMHS4iIu2YtXZmtGM4HtbahRCeBK7+OkXAN9omIhERERGR2NQux9Wx1m4DFgE3RTmUDmfbhoJI2ds5ofVPuOVT2L8Wds7HFu6NbHbFKWEhJ4CJt8M1T8ENL0Fa12hHA4DxuMi4sHoC7sNvbaVT12SKuzpzWcRbw1P/XtlgGxMvvpzUbGe4uK3Ll7Bl2aLWC1hERERERERERE4Y7TJhEbYf6BPtIDqcg9XzA559Sq/WP9+Ch6vLyd0iRfWwkBOCywVDLwLT4AOXbS5xaDYJgzMBCBb5KP5kJ9ffNhKfsQAk7SxnwdK99R7vjU9g+g23RtY//e+/CAb8rRu0iIiIiIiIiIi0e+0yYWGMiQMmAmXRjqWjydtWFCn3GZTZuic7uBk2vOeU03pgPemRXe64Vh6KSqSDS7+oP7idRErx7F10i/cSP8r5zrswfPjMekKh+ifgHjz1FLoPGQZAwd7dzHvxf60ftIiIdBjGmI+bsXwU7XhFRERERKRp2lXCwhiTbIyZALwE9AQ+iXJIHYq1lrytTsIiIdlLeqfE1j3hwkcB54luJt0GQRvZ5Y5XwkJOMAEfrH0DPoyN+R68OYmkntLdWQlaCt/cwi23jKQ4/NXLKAnx3Evr6z3eGMPpt3wZ43L+mVnwynNsXrKgtcMWEZGO47QmLKfWKIuIiIiISDsQcwkLY0ywvgUoAhYAFwCHgR9HNdgOpiC/nIoSZ1iXLn3TMK05jE1FESx72il7EmHczRCs3u1OiGu9c4tEwxOXwHM3wGd/dHoXxYDU03vhSnO+axXrDmG2FzPknOqh4PZ8vIfN2wvrPb5L3/6ccv0tkfV3HvwjBfv2tFa4IiLSsZxez3Im8EXgZZxJrn8NnBGlGEVEREREpJliLmGB84dFfUsA2A78Cxhnra3/8V5pce/N2h4p+zNauYfD8mfAV+yUR10NSVm1Ehaaw0JOOIPOqS4vfzp6cdTgineTcX7fyPrhNzZz0Yw+HO7kfP8TrOF/f1tOMFD/0FATLryMQZOnAVBZVsrrf/gV/oqK1g1cREROeNbamfUsn1hrH7fWXgncBdwNFEY1WBERERERabKYS1hYa10NLPHW2n7W2justduiHWtHs2tTYaTs7ZzQeicKhWDhI9Xrk78CgKlxT9R4YmuSYpHjNvo6MG6nvPwZCAUbrt9GEkd3Iq5PGgCBgxWUzt3LbXeOp9TtDNGWURLi0X8tr/d4YwznfPVOsrr1AODAjm28/+jfsNbWe4yIiEhLsNb+FdgJ/CzKoYiIiIiISBPFXMJCYpc/v/qp6EnjclvvRJs+gENbnHLf6dDFmbiXWgkLXbpygkntUt3LongvbP44uvGEGWPIuLi/08cNKP54B9leN2OuHIANzzFjVx5m/47ietuIS0zi4nt+hDfBmfdm3ZyZLHv3zVaPXUREBFgBnBztIEREREREpGli7q6vMSZkjFka7TiktrJyP8nlTsag2Audc5Ja72TJOTBwhlOe/NXIZhOq7lVhvO7WO79ItIy9obq87MnoxXGEuG4pJE/uCoD1hSh8eyszTu9N2phsZ1vI8sF/VuP31d8rJLt7T8792l2R9ZlP/ovd69a0atwiIiJAFpAS7SBERERERKRpYi5hAZQCuosVYxYtz8NT9Yh1dnzrnqz7ePjCC/DNpbXG9Te2RsJCQ0LJiWjgDEju7JTXvQ2lB6IbTw3pM3rjSnLmjilfsZ/KLYf5wm2j6NQrFYCCfWXMfWlTg20MmjyNCRddDkAoGOSNP/+G0sKC1g1cREQ6LGPMdOAUYHO0YxERERERkaaJxYTFRqBztIOQ2tavrr5x2qlPatucNLs/uKp7UphQ9eWqIaHkhOT2wuhrnXLIDyufj248NbiSvKSd0yeyXvj6ZlzGcPYXh+HxOt/Hz2fuZtHc3Q22c8p1N9Nz+CgASgsO8caffkMwEGi1uEVE5MRkjLmvgeUBY8ybwEc4f+/8K8rhioiIiIhIE8XiXd+ngFOMMf2jHYhUO1hjfPphIzpFJQZXzR4W3li8dEVaQK1hoZ6CGJqcOnliLt5uyQD495VS/MkOMnOTmXbVwEidmU+tY+ee+uezcLndXHjnvaRk5wCwe91qZj39WOsGLiIiJ6KfAT8Nvx653A2cjzMD01+stX9u8+hEREREROSYxOJd3z8D7wEfG2OuN8YkRDkeAVyH/AAEsIwb1UoJi9WvwNo3IHT0OPjWWlzU6G2hHhZyouo0GHpMcsr5q2H/uujGU4NxhSfgDiv6cAelS/IYfko3SnO8ACSGDE/8dSmhUKjedpLSM7j42z/A5XaGmFr69musmzOzdYMXEZETzf3Az8OvRy4/Am4B+lhrvxOtAEVEREREpPk80Q6gDptwnobqCTwJPGmMyQfK66hrrbXqidHKdu8rISU8YktJsov4uFa4bIIBeP8ncHgnZPSGr86F+Or5EYN+Py5TI2GhHhZyIpvyVdgzxelt0WlwtKOpJb5POunn9eHwO9sAKHhpI+60OK7/+hie/cVCkkKGjMIgj/13FV+6dXS97XQdOJgzbr2DD//1EADvPfJXcnr1Iadn77Z4GyIi0s5Za++PdgwiIiIiItLyYvGubx+g6o6VCS9dwtvrWqSVLV6yL1JO6JLYOidZ/7aTrADnBm2NZAVAMODHY7zVG9yxeOmKtJARl8OMX8RcsqJKyvQeJE/p6qyELAefWktnaxh8cZ9InZIFB1i2Kr/BdkaddR7DTz0LgEBlJa//4ZdUlpW2VtgiIiIiIiIiIhLjYvGub99mLP2iFGOH0tlfPXfEmLFdWuckCx6uLk/+8lG7Az5fpIdFiBDGZY6qIyJtwxhnaKiEoVkA2MogBx5fzflTelDW20lqejC886/PKSv3N9jOmbd9lc59nI5yBXv38M7f/4RtYDgpERERERERERE5ccXckFDW2u3RjkFqy99WFClPGt+15U+wdyVsn+OUcwZB/zOPqhL0+3Eb53INGd3MlA7GWjCxlaQzLkPWdUM48M9V+HYWEyryceCxz/nyHaP5+/3zSfNBeiU8/OBSvvPdyfW2442L5+K7f8BT37+LitISNi+ez5znn+bka29sw3cjIiKxzhhz3/Ecb639eUvFIiIiIiIirSfmEhYSW2zIRhIWSelxpGTGt/xJFjxSXZ785TpvzAZqJCyssS0fg0gsKtoLK56F5c/AF16ArL7RjqgWV5yb7JuHkf+PFQQPVhDIK6PypU2ceeNQ5v17DR4M8ZtLefejrZx7Zv2xp3fO5fxvfZeXf/MzsJYFrzxHanYOo88+r+3ejIiIxLqfAcfzP4FKWIiIiIiItAOxOCSUxJCCfWX4KoIA5PZNx7T0U96lB2DVC045Ph1GXVtntaDfh9sVTli4lLCQDmLFs/DR/XBwIyx/OtrR1MmdEkfOrSNwJTvfz8othxmwpYj4sZmROitf3kL+/rIG2+k7Zjxn3HJHZP2jf/+DTYsXtE7QIiLSHs1qYDFAfiN1RERERESkHYjJhIUxppcx5h/GmI3GmDJjTLCeJRDtWE90sxfsipQzeqY0UPMYLX4MgpVOedyNR022XSXg9+EK97BACQvpKMZcD+G5W1j+DISC0Y2nHt6cRLJvHg4e55+UsmX5XNMrk8JUZz05aPjsv2sJ+BuOf+y5FzHx4isAsDbEW3/5HXs2rGvd4EVEpF2w1p5mrT29riVc5Z369teoIyIiIiIiMS7mEhbGmCHAMuAOoD+QgPPUVF1LzMV/olm3+mCkXJLcwj/uoB8W/cspGxdMuqOBqn7c4Ru36mEhHUZqLgw82ykX7YYtn0Q3ngbE90oj+9rBzm9moHTmLm44oxckOL839m46zIePrcWGGv7+nnLdzQyZdioAAV8lr/7u5xzas7tVYxcRERERERERkdgQizf8fwlkAu8DU4B0a62rviW6oZ74gvsrAAhhmTgut2Ub3z4XSvY55cHnQ2bveqsGfL7IHBYxedWKtJaxN1SXlz0VvTiaIHFEDhkX9ousu2ft5orLBuCJc760m5fmM+elTQ22YVwuzvnqXfQcPgqA8uIiXv71fZQWFrRe4CIiIiIiIiIiEhNi8dbvqcAO4BJr7UJrbXG0A+qoCosqSa10noYuiTdkpLXwhNv9ToWvL4SJt8HUrzdYNVjhj5Stu4Xn0RCJZQPPgaQcp7zuLSg7FN14GpEyrTsp07s7KxaCH27nnMv7Y1zO93bFRzv5z39WNtiGx+vlknt+RE6vPgAczs/jld/ej6+ivDVDFxERERERERGRKIvFhEUSsNBa64t2IB3doqX7cIXHd3HlJLTOSToNhgv+AL1ParBasLL6cjBKWEhH4omD0eHJ6IM+WPl8dONpgvRz+5I4ykmyWH+IuM92c/ol1T0vyhbu5/mX1zfYRnxSMpd//2ekZDvt5G3ZxJt/+g3BgKYuEhERERERERE5UcViwmILkBztIAQ2rq2evyK3X1oUI4FgZY2blJ7oxSESFbWGhXoSbGzP42JchqyrBhPX1/m9ESrxk7lqP+7BKc5+DHvf38WHM7c32E5qdg5X/OB+4pOcfxK2Ll/Ch//6OzbG37+IiIiIiIiIiBybWExYPAlMN8Z0inYgHV3hrpJIeeSozi3XsK8MQsFmHRKqlbCIxctWpBV1HgrdJzjlvM9h74roxtMExusi58ZheDolAhA4UM7lCXGU5cYB4MGw8n+bWLYqv8F2cnr25pLv/hi3x8lUfv7JB8x78ZnWDV5ERERERERERKIiFu/8/gGYB7xjjBkR7WA6Mm+hM2+Ez1hGDc1puYY/+yP8bRzM+ztUNm2KkqCveg4Lo4SFdERVvSy8SbB/XXRjaSJXkpecW0fgSvUC4NtezM39MylMdwMQbw0fPPw523YWNdhOz2EjOffr34msz3vxWVZ+9F7rBS4iIjHHGHNTfUu4yoAm1BERERERkRgX9cF1jDEf17HZC4wDlhtjduBMwh2qo5611p7ZmvF1VJu3F5IUdOaKKEtx42mpJIG/AhY/BmUH4IP7YPhlEJ/a6GEhX3UPCyUspEMacQUYA8Mvh4ToDtHWHJ6sBHJuGcH+R1ZgfSF8qw9x2+Su/HvWLtIrIDkIz/x+MV++fyrZGYn1tjPkpOmUHDrIzCf/DcCH//o7KVlZ9Bs7sa3eioiIRNfjQH1jAlpgWnipb/8TrRCTiIiIiIi0sKgnLIDTGtjnAvqEl7poIPNWsnRZXqSc3DWp5Rr+/EUnWQEw7BJI69akw6yveggpE6eEhXRACWkw/pZoR3FM4rqnkP2FoRz472oIgX9hHjec3Ztn39lOSgDSK+HhXy7gO784mcSE+v9ZmnDhZRQfPMDSt1/DhkK88affcMX376fHMHXGExHpAHag//cXERERETnhxULC4vRoByBHqxoOCqDf4KyWadRaWPBw9frkrzT50FCNhIXL426ZeESkzSQMziLzsoEUvLQRANdne7j4gt68/fo2EqwhozjEX34zn3vvOwmXq/6k5Gk3fomSQwfZMP8zApWVvPTrn3LJ3T+kz5jxbfVWREQkCqy1faIdg4iIiIiItL6oJyystTOjHYMcLXSgMlI+65ReLdPo9rmwb5VT7jYOejR9KJeQv0bCIk4JCxEObIRNH8KUr0Y7kiZLnphLoKCC4o93goXUOXuZdn4vFry1Aw+G1H0+Fr6+lSmX9q+3DeNycd7Xv4Ovopxty5cQ8FXy6gO/4IK7vsfAiVPb8N2IiIiIiIiIiEhLi/rYOsaYj40x90Y7DqkWDIbYv92ZDDs1O4GktLiWaXjBP6rLU77qjMffRNZfc0goJSykg1v4T3j4ZHj3+7ClfeV8087uTdK4zs5KwNJr2QEGnN41sn/Ju9tZ+t72BtvwxMVxyT0/ZuCkkwAIBgK88cdfs3b2J60Wt4iIyLEyxmwzxth6lk/rqB9vjLnPGLPRGFNhjNljjHnUGNM5CuGLiIiIiLSpqCcscOawGBLtIKTaod2lBPzOHOe5fVtoct/CHbDuLaeckgvDLm3W4dZfPee6Ky7qHYNEostaCFQ45de+AZXF0Y2nGYwxZF4+kPiBGQCEygKM217K9Bq9Kua9spkFr2/B2vqHKvd4vVx41/cYdoozqqANhXj7739k5Yfvtmr8IiIix+gwcH8dy+M1KxljXMBr4X0HgD8D84DbgHnGmE5tFrGIiIiISBTEQsJCYsy6NQci5S5901um0YX/BBtOOkz8Enia2WsjWH3j0h3nbZmYRNqribdBn1Oc8uEd8P5PohtPMxmPi+wvDMXbNRmA4KEKOm86xNSL+0bqLH57G3/43QJCoVB9zeByuzn3a99m9NnnORus5YN/PsiSt15tzfBFRESORaG19md1LI8fUe9m4BzgWeAka+33rbVXAF8D+gH/17Zhi4iIiIi0LSUs5ChzFuyJlIOZLZAc8JXC0v86ZXccjL+l2U2oh4VIDS4XXPIgeJ0b/ix5DDZ9FN2YmsmV4CHnluG4053kpX9XCb3yyzjlqoGROolby3jgl/PwB+pPWhiXizO/9DUmXHR5ZNunT/yLeS8+22APDRERkRh1e/j1B7b2P2SPAFuALxhjEts+LBERERGRtqE7v3IUG55wO4hl0JDs42/QXw7DL4MVzzmvKccw/G7NHhYJ6mEhQmYfmPFzeOtuZ/31b8HX5kJCC/WKagPu9Hhybh1B/sMrsBVBKtYdomd6HKmndOLw7HxcGFJ2V/L7n8/lOz+eQnw9yUpjDNO/cCtxCYnMfeFpAOa+8DS+inImXn5tW74lERGR+sQbY24BugFFwCJr7YKaFYwxCcBkYL21ttaETtZaa4z5APgyMAGY3dQTG2N6NFIlt6pQXl5OeXl5U5uWdkKfqVTRtSA16XqQKroWpKbmXA+tde0oYSG17D9UTprfKZckukhJaoHkQHIOXPQXOPOn1ePuN5OtnnNbCQuRKuO/CGteh60zoWgXvP9juPhv0Y6qWby5yWTfOIwD//kcgpbSBfu4cEIXPjizG3kf7cGNIS3fxx9+Npe7fjKVpMS6v//GGKZeeR3e+HhmPvUfABa/8TLlJcXY3N4YY9rybYmIiBwpF3is5gZjzCLgOmvt5vCm/jg94DfW00bV9oE0I2EB7GxqxVmzZpGTk9OMpvXnZHvw/vvvt9GZdD3EOl0LUpOuB6nSdtcC6HqIfc25Hg4cONB4pWMQK0NC3WyMCR7DEoh24CeahYv3Rsrezgkt23hSFqR1O6ZDTY0eFq54JSxEgOqhoeJSnPWlT8DGD6Mb0zFI6J9B1lWDIutli/M4fX8l/Wb0IIDz3U8/FOBPP5tLcYmvwbYmXHQ5Z9/+DQgnKFZ/8gH58z7FNjAXhoiISCt7DDgT6AIkA2OBJ4GJwEfGmNRwvapukofraafoiHoiIiIiIiecWElr6dHXGLFl/aFIFqt7/4xohlJbjXuNnoRmTtgtciLL6AUz/g/evMtZf+NO+NZS8MRHNazmShrTGQwUvLgR6w/h21HM+MJKUs7uwfIPduHFkHE4yF9/Npev/Hgy2Rn1D9896qxz8cbH885Df8KGQhRv20QoGCBwxhmQqGG/RUSkbVlr7z9i03LgpnDvvxtx5q34YyuG0LOR/bnAIoDp06fTo0djI0jVMO/jY49K2syMGTPa5kS6HmKergWpSdeDVGmzawF0PbQDzbkedu3a1SoxxErC4l3gt9EOQqBodykZ4fLo0ccw10RNh7bAhvdhzPWQkHZcTZmgiaS1XF738cUlcqIZfwuseQ0KtsIlf293yYoqSaM748lJ4uATqwke9hEs8jFg2X5STu3KrFl7ibeGjJIQj9w/ny/9cBJdOiXX29bQU07HEx/Pm3/5HaFAgNKd23j1Nz/l0u/+mNSs5gx1ISIi0moewUlYTMNJWFT1rKivB0XV/1DX1wOjTtbaBv+SrDlsYmJiIolK7p9w9JlKFV0LUpOuB6mia0Fqas710FrXTqwMCbXPWjvzWJZoB34iCYVCJBQ5o2xVuCxDB2YeX4MLHoF3vwd/HAabPzmupoyt/kPKeGPlshWJEcbA5Y/CV+ZAn5OjHc1xieueQudvjCWud/ieTMCSu+Ig507oRKUJDw9Vbnn3byspK2p4eKiBk07i/Du/h3E7ufn8LZt4+gffZs+Gta36HkRERJqoatDfqgz8Fpx+xQPrqV+1vb45LkRERERE2j3d+ZWIdZsKSAg5iYGKNA8u13FcHhVFsOxppxwKQNfRxxdcjSGhjEeXrchRUjpDfEq0o2gR7tQ4Ot0+kuRJuZFtaRsPc8ngDALhDlYl+eW88oelFB0ob7CtXiPH0GPGxXiSnZ9NaWEBz9//A1Z93JaTiomIiNRpcvh1G4C1thxYCAw2xvSuWdE43SDOBkqBxW0Yo4iIiIhIm9KdX4lYsTw/Uk7tVv9QK02y/BnwFTvl0dc4E24fB1dIPSxEmiUUgk3tbwLuKsbjIuOyAWRc0h9czvc/fl8ZV/ZMoXOGM49NYV4ZL/x6Mbs3FDTYVnxmNj3PuZRuQ4YDEAwEeP+Rv/LRfx4mGAi07hsREZEOzRgzxBiTVNd2qofEfabGrkfDr782Ncdqgi8D/YCnw4kNEREREZETku78SkThrpJIud+Q40gwhEKw8JHq9clfOY6oHIbqeSvUw0KkEYe2wn8vgqeugHVvRzuaY2aMIWVqN3K+NAJXkjOsky2sZGqcoV9OAgAVpX5e+dMyHntiVYNtuRMSueieHzPmnAsj25a/9yYv/fInlBU1ayhwERGR5rgW2GeMedMY83djzO+MMa8CK3Emu/61tXZWjfr/Bd4DrgPmGmN+Y4x5EXgI2Ar8uG3DFxERERFpW7rzKxE5vuqHuE6a2O3YG9r4vjPhNkC/06Dz0OMLDHDVmMMCJSxEGrZjHmz/zCm/eReUHYpqOMcroX8Gnb8xFm9uuOeXL8TIQJCJPZ11Y6Fs7n4e+M08fL76e0y4PR7O/OJXmPHlb+EKz2uxc80qnv7ht8nftqXV34eIiHRInwDvAIOAG4Bv4wwF9TZwjrX2hzUrW2tDwCXAz4BO4frTgH8DU621+9sschERERGRKIj6nV9rrcta+8Vox9HRBfxBDux0hnDK6JJEVmbCsTe24OHqcgv0rgD1sBBpltHXwcBznHJJHjx/E/grohvTcfJkJdDpq6NJHJEd2dat2MfYTnGR3w5J28p54MefkX+grMG2Rp4xg2t+9muSMzIBKNqfz7P3fZf182a3VvgiItJBWWtnWmuvsdYOstamW2u91tqu1tpLrbV1Tqhkra201t5vrR1grY0P17/dWpvX1vGLiIiIiLQ13fkVAA7sLCEUtADk9k079oby18GWT5xyZt/qm6bHIRQM4g7fkgwRxLhMI0eIdHDGwEV/gcTw0G7bZsPLt0MoGN24jpMr3k3W9UNJO7t6HtJefsv03ATijPP7K6MoxH/un8+KNQ0/gNpt0FC+8Os/kdt/IACBykre/PNvmf3sfwm185+TiIiIiIiIiEh7pYSFAJC3tShS7nI8CYtavSu+DK7jv8SCfj9u4wzfEiJ03O2JdAhpXeH658Abnudz7evw1t1gbXTjOk7GZUg7sxfZNw7DxDmJzLSKIGd3SiDF69RJ9cNHf1vJW+83PMxTalYO1/zstww/9czItoWvvsCrv/uF5rUQEREREREREYkCJSwEgI/m7IiU03ukHFsjgUpY86pTjkuBMV84/sCAQKA6YWFN+77ZKtKmek6Cq58El/P9Yclj8MmvohtTC0kcnk3nr43GneUMX+fxhTgjxUuXJOeftXhr2PLyVh5/Yg2hBvKcnrg4zvnqXZx20+2YcIJ167LFPPHdb7B12eJWfx8iIiIiIiIiIlJNCQsBwJ9f6bxi6dLzGBMWnnj4xhI48z6YdhckHEdPjRqCPh8uEx4SyqiHhUizDDwLLq3R82nW72DBI9GLpwV5c5Pp8o0xxA/IAJzJt6fEuRmS4cEALgyhZYdZvzgB28CvDmMM4y+4hCt++HMSUp3fW6WFBbz8m5/x4b//gb+yfc//ISIiIiIiIiLSXihhUYMxZqIx5m1jTKExptQYM98Yc3UTjzXGmPOMMf8wxqw0xhw2xpQZY1YYY35ojDmOWaxb1669xaQEnHJpsou4OM+xN5acDafcDad+t2WCAwI1hoSyLvWwEGm2UVfBub+tXt/8CQ12O2hHXElecm4dQcq0bpFtgzFM7RRHXHi6m9SDXvYvTKTssK/BtnqPHMPNDzxI3zHjI9tWvP8WT37vTvZt2tAq8YuIiIiIiIiISDUlLMKMMacDc4CTgeeBh4Fc4DljzN1NaCIeeBu4FdgDPAr8G0gEfgnMMsYktULox23xkrxIOTE39kIM+v24XRoSSuS4TPkKnHIPjL4OrnmyReaXiRXGbci4qD+ZVw4Ct5Ol6OS3nN4pngyvs+4r8PDKAyvYuvJAg22lZGZx2fd/xplf+hqeuHgACvbu5pmf3MO8l54lFNSE3CIiIiIiIiIireXEuWN1HIwxHuCfQAiYbq29w1p7NzAa2AD8yhjTu5FmgsCPga7W2nOttd+11n4TGA68AUwEvt5qb+I4bNtYECn3DA+t0mz+8pYJpq6mfZWRHha6YkWOwxk/hkseArc32pG0iuQJXej05VG4Up33l+ALMT3dS49EZ39laYC3H1rJH349n5LS+ntbGGMYM+N8bvztX+jSbyAANhRi7vNP87+f3kvBvj2t/l5ERERERERERDoi3f51nAH0B56x1i6v2mitPQz8CogDbm6oAWut31r7S2ttwZHbgV+HV09tyaBbSume0kh57NguzW9g7wr4/WB470dQsL0FI3MEK6pvLFp303pYrNi/gve2vcfOop1Yq14ZIgAYc3TPisKdsP/EGe4ovlcaXb4xFm/PVABMwDI+3suILAiPEEXC9jL+9oPPWLoqv8G2srr14LpfPMCUK67FGOfntnfjep6891us/Ohd/W4REREREREREWlhxzFZwQnltPDr+3Xsey/8ejzJBn/4NdDcA40xPRqpkltVqKyspLy8eT0dgsEQiSVBwFDmtnTt5G12G945D+KpPAzzHsSX2oPg2FuadXxjyotKqZoAxBp7VHwhG8Jlat+EfX7t87y+9XUAUrwpDM4czJCMIQzOHMzQzKH0TO151DFtqaKios6yxK4T8TMzB9YT9/x1gMF3w+vYtO7RDqllxEHqTQMpeWM7vpUHAegf8tI118XC/ZUcDkKaD2b/fRWLJ2bxhWsH4WpgiKxxF11Bt6Ej+fDRv1KUn4e/soIPHn2QjQvncdqtXyEpPaON3ljHcSJ+3050+szap8rKymiHICIiIiIiUosSFo6B4deNR+6w1u4zxpTUqHMsvhh+rSsh0pidTa24YMECNm/e3KzG9+53EW+TASiOD/Lhhx826/g4fxEzVr8MgM+dxPv7sgm+fyxvs37+HXuZwnAASirKeL9G+8WhYh4veZxzE89loLf6I1pUvChSLvGXsCR/CUvyl1THTRwZrgxOij+JCfETqs9l/cyvnE+8iSfRJJJgEkgwCRgMFkuQIBZLyIbo5emF11QPrXMweJC9wb0ECRIiRNA6ryFChGyIYPi/RJPI5PjJkeNmzZrFwsqF5AfzI/Vt+L+QrS4DDPAMYFz8uFo/nzfL3sRiMVX/GYO76j/jxoMHj/EwyDOIbHd25LjyUDm7g7vxGi9xJo444og38cSZODx4oprQiXWzZs2KdggtYuqm39G52BneyP/YRcwe+CP8ntQoR9WCkqBz73h6bE/CYEiqCHFaqpeN/iCbykJgDf5FBfx29RwGTSgnNbnh5nJOPQ+Wzado0zoAti1fwhP3fpOcsZNJ7TsQY0zDDcgxOVG+bx2JPrP248CBhuf1ERERERERaWtKWDjSw6+H69lfVKNOsxhjzgO+DKzFmYQ7puzf7yYrXHalNX8y2T4HP8ZtnY4j27NPJeiOb8HoHCZUPexKzUm3fdbHk6VPkhfK48nSJ7km6RqGxzmJjbMSzmJXYBd7g3vZHdxNsS2u1aYPH/mhfHy29jj25bac9yreoym+k/odstxZkfUNgQ28Vf5Wo8dlu7JrJSwA1vvXsz6wvtFjE00i46idsFjkW0SQxj+79KT0WgmLfaF9PF76eL3144hzEhkmjq+nfp14U/3ZrvKtYr1/PR7jwYvXeTVePFS/GgxprjQGeQfVavdz3+dU2Mafvu3h6UGuO9KBCJ/1sdK3stHjAIZ7h5PoSoys7w/uZ3ug8eHKvMbL6LjRtbZt9m+mIFQ90pvF1kpEhXCSUV3dXRnsHVzr2JkVMxkTN4Z01zH9+mh1S3t/mZM3/h8plXmkVuxhyuY/MnfA9wi6Exo/uD0wkN+tkpLUAL22JpNc6vyTN9Drpme6i3VlQbb7LF3KPOz5LBnP0Er696q/I5zL66XzpFNI7taL/IWzCVaUE6qsIH/+TIo2r6PThGnEZ2bXe7yIiIiIiIiIiDRMCYtWZIyZCDyHkwi5ylp7LP3uezayPxdYBDB58mT69+/frMbXrlgCODftJ00byOknN2NImKCPhH/cA4A1Lnpe/nN6pDcWbvNt/mgu7HXKqZlpzJhxCsFQkHvn3suew87T4Z2TOnPjmTeSk5gDwAxm1GrjQPkBNhRuYF3BOtYXrGd94XoKKgsYP3I8M/pW1918eHP1IGCNOOnkk+iV2iuyXrSpiLeWNp6wiE+MZ/r06ZEnUKdPn857i99j/Z7GExa9e/Vmxrja7+2nL/wUmjCU/qTxkzip60mR9QX7FkADD8H68DkJHQvnnX0eHlf1r4t1K9axfP3yRs85uctkvnHqN2pt+/e7/2Zr0dZGj71z9J3MGFz9XvPK8vj5mz9v9DiAa6ZfQ//06u/Ca1te49XFrzZ6XOfEznx3xndrbfvB3B/w0a6PGj320n6XMmNC7c/mVy//ivnB+fxwwg85s+eZTYq9rZnCSdinLsKU5pNVtpnz8x+k8oonIeUY5rOJQRUVFcyaNYt1I4uYmjoc/6x8bGWQBAxjkjz0jAuxqjwIQRd2dQKbK5P54u3DiY9r+J/HsiuvZvZT/2bzwnnOefbnseu9Vxl51nlMuuxq4hKT2uLtnbCqPjdwfkcmJJwgSbQTmD6z9qm5PXNFRERERERamxIWjqqeFfU9Bp0GFNSzr07GmAk4Q0CFgHOstauPJTBr7a5GzhMpx8fHk5iY2EDto3ULuSnGud990uSeJCY2o4fEyjeg1Jm01gy5gITcQY0ccGzcoer36Ipzk5iYyG8W/obZe2YDzhwV/zjrH/TMrD9Z0jOxJz2zenImtW8aW2tr/Qx7uXvxp9P+RLGvmCJfEcW+Yop9xVgsbuPGZVy4Xc5QS53SOpGYUP3znth9Ive47sHj8jhDMdV49bq8uF1uPMZDkjep1o2chIQE7p10L1/zf81pP3yeqsVt3JEYk73Jtc4J8L8L/+cMHWWdIaSCNog/5Mcf9OMP+fGFfPiCPkbljqp1ffTN7svtI2+nIlhBeaCcMn8ZZYEyyv3lznqgjDJ/GQEbIDW59jBBgSZOx+J2u4+6Jps61JTX6611bEKo6Te/EuITah0bFxfXtAMNR8Xrdrubdqyr9rHWWtwuN8W+Yn4w7wdcfuByvjfxeyR5Y+xGduIQuPEVePx8qDiMa99KEp+6EK5/HroMi3Z0LcdA6kndiZvUi8NvbaFs+X4Asj0upqcYtvpCrCsPYTaV8dpfVnP+rcPp1LP+4bESExO59O4fsW3lMj7+zz8o2LsHGwqx8v232LxoHqfe+CWGnDRdw0S1gISEhGb/2ybRpc+s/YiPb/mesSIiIiIiIsdDCQtH1dwVA4ElNXcYY3KBFGBhUxsLJys+AFzADGvtokYOiQpfRYCSPGcC65weKWSkNfOP1gUPV5cnf7UFI6vN+gKAM1eE8bh4as1TPL32aQA8xsMfT/sjAzIHHFPbR95MTItL46zeZx1TW0OyhjAka0iT6h45cXif9D7HdM6q8x6L3mm9+da4bx3TsV8f83W+MPQLVAYrqQhW4Av6qAiEX8PrFkvnpM5HHzv26xT7iutotbYROSNqrafFpXH/Sfc3Kb5OSZ1qrY/tPLZJxybUMRTS1YOvZlr3afh8PlavdvKOo0eOJjE+EbfLjdc4yaiuyV1rHVceKOekbifx3jany87LG19mad5SfjP9NwzPHt6k99FmckfAF9+Dp6+Cwzud5T/nwNX/hf5nRDu6FuVOjSPr2iEkTcyl8NVNBPaX4zKG/vFuunldfF4eZM+eMl741SJGTO/OpIv7kZDsrbe9PqPGctMDf2fxGy+z4JXnCfgqKS04xNt/fYDPP36PM279Ktk9Wr7nmYiIiIiIiIjIiUgJC8dM4AfADOB/R+w7p0adRtVIVrhxelYsaKkgW9r+HcXY8FBCXfqmNe/gnYtgdzi302Uk9D6p4frHIeirfpr/YOAQv1v0u8j6fVPvY2q3qa12bqlbRkIGGQkZx3Ts2b3PPqbjkrxJXD7w8mM6tm96X/qm9z2mYyd3deYbKS8vJ3GT88TwjD4zGn16OMmbxAPTH+Dk7ifzqwW/ojxQzraibdzw9g3cOfZObhp+U2xNbN55KNz2ETx7DexZBpVF8PTV8K2lkNGr8ePbmYT+GXS5cxzFs3dT/PEOrD9EosswMdlDvj/EyvIgq2buZuOSfBLGZ3HtVUNxe+r+vDxeL1Muv4ahJ5/GJ/99lM2LnV/7Oz5fyRP3fpMJF17KlMuvxashckREREREREREGhRDd8ui6iNgC3C9MWZM1UZjTDrwQ5xJHp6osb2rMWZIeD81to/HSVZ4gPOstfPaIPZjlre1KFLu0qeZCYsF/6guT/kKtOKwJ9ZXPaH0skMrsOEJG+4YdQeXDbys1c4rcryMMVw64FJeuOiFSK+KQCjAH5b8gS9/8GXyy/KjHOERUrvALW/B4Auc9TN+fEImK6oYj4u003vS5dvjSRiaFdne2evi9FQPQxJc+Er8FM7M47ffncmchbsbbC+9cxcu/e5PuPTe+0jr5MwBEgoGWPjaizx291fZuGAu1jZhwhkRERERERERkQ5KCQvAWhsAbsP5ecwyxjxqjPkDsAIYBPzQWrutxiG/BtYCkbvlxpgsnGRFBvAZcLYx5mdHLHe1xftpqhUrqm+W5vatb/qOeuSOhJRcSMqBEVe2cGS1hfzVCYtyUwHA+X3P5xtjvlHfISIxpXdab54870m+NOJLGJzk3vy987ny9SsprCiMbnBHikuGa56Eqx6HaXdGO5o24clKIOfm4WTfNAx3hjM0ntsYBie4OSPVQ2ePIb3csuw/6/jtL+awN6+0wfb6j5/ELX98iClXXIvb43RkLD6wn9f/+Cv+99PvsXvdmlZ/TyIiIiIiIiIi7ZGGhAqz1n5ijDkZuB+4BmfShFXA96y1zzWhiTQgM1w+N7wcaTvw5+OP9viFQiEObCsiCUOlsaR3bubkmCd/G6Z8HQ5uBG/rDnNiayQsgm7LuM7j+MW0X2gyW2lXvG4vd42/iyndpvCj2T8ivzyf8/qed8xDa7UqlxuG19F7ae2b0GsqJGe3fUxtIHFYNvEDMij+eAfFs3ZDyJLsNkxN8bDHF2JVeRCzu5JnfjafjMmduOmGEXjrGSbKGxfPtKtvYNgpp/PRfx5m+8plAOxZv4b//fRe+k+YwinX3az5LUREREREREREalDCogZr7ULgvCbUuwW45Yht24B2cwd9y44ikkJOuOUp7nrHZm+QJw66tP7kwTYQipTPHjiD28+YRJw7rtXPK9IapnSdwksXv8Sjqx7lznHtqAfDpg/h+Zsgszd84UXI7h/tiFqFK85N+rl9SRrbmcLXNlO55TAA3eJcdPYa1lWE2FIZomL+AR5Y/iknXTWQ06bVn3TI7NqdK374czYvXsDsZx7n0J5dAGxePJ8tSxYy4oyzOenK60nJOjGTQCIiIiIiIiIizaEhoTqoZcvyIuXkbslRjKRx1l+dsOic3oX0+GYOXyUSYzISMrh34r3Eu+Nrbd9Xuo9Sf8PDDUVFKAjvfB9sEA5tgX+dCdtjeoqe4+btkkzO7SPJvGYwrhQvAB5jGJHo5rRUD1luQ3oFrH5yI7/7yWwO7impty1jDAMmTuHm3/+ds+/4JimZznwZ1oZY9dF7/PvOO/jsf09QWRaDn72IiIiIiIiISBtSwqKD2rGpIFLuMzCzgZo1WAtz/gqFO1opqtoeXfkoT6x+olYPC1ecOgXJiWnO7jlc9cZV/HTuT2NvYmaXG258BTqHe1SVF8ATF8OCR53fCycoYwzJYzuTe/cEkqd0jfShS3MbTkn1MDbRTZyB5P1+nvvFQj56fA1FB8rrbc/ldjPqzHP44l8e5eRrbyIuMQmAgK+SBa88z7++dTtL3nqNgN/fFm9PRERERERERCTmKGHRQVXsq76pNmF8l6YdtH0OfPAT+Mto+PiXrRSZ480tb/K3ZX/jgcUPkF9c3RvEFe9t1fOKREOxr5h7Z91LYWUh7217j2fWPRPtkI6W0RO++C70P8NZD/rgne/C01dCje/oiciV6CHz0gF0/voYvN1TItt7xbs4K83DqEQXqQbWzd/H0z+dz4dPrWXnnuJ62/PGJzD5sqv50l//ybjzL8HldhKxFcVFfPrEP3ns219m9cyPCAWD9bYhIiIiIiIiInIiUsKiA6r0BUgudXotlHigR9fUph244GHn1YYgZ1ArRQeL9i3ivjn3RdbjbPV8FZ54zV0hJ57UuFR+Pu3nkfXfL/49K/aviGJE9UhIg+ufh8lfrd626UP4x1RY91b04mojcT1S6fz1MWRc0h+T4AbAawx9492cnubllBQ33V2w8bO9vPSLhfzlT4s4UFB/j4uktHROv/l2vvjnhxl68mmR7UX783n3oT/x2He+wqpP3icYUI8LEREREREREekYlLDogJau3I83PLZJKLOJPRYKtlffkEzJhWGXtEpsWw9v5a5P7sIfcm7QXTXoKjK81XNWuBLUw0JOTGf2OpNbht8CQCAU4O5P7+ZQxaHoBlUXtxfO+w184SVICffOKjsI/7se5j4Y3djagHEZUqZ2c4aJmpyLiav+ZzTL42Jcsodz0jyMiXeTvrGY//5wLv94eCklpb5620zvnMv537yHG37zF3qPGhvZXrhvL+8//Ff+fecdLH//bQK++tsQERERERERETkRKGHRAa35fH+knN27ib0rFv3T6VkBMPFL4Gn5ng4Hyw/ytQ+/RpGvCIBp3afxw8k/hBqjoniUsJAT2J3j7mRc53EA5JXl8YPZPyAYitFhgQaeBV+dC4MvcNbjUmHohdGNqQ25U+PIvGwgXX84mYxL+uPpkhTZF+cyDEhwc1aalzOSPHRZfZiH753Nvx9fSVl5/b0luvTtz5U/+gVX//TX9BoxOrK9+MB+Pvr3Q/z7W7ex5K3X8FdWtOp7ExERERERERGJFs1g3AHlbysiLVwePDyn8QN8pbD0CafsjoPxt7Z4TBWBCr71ybfYVbLLiStzMH849Q94XB5Mjfu17gQNCSUnLo/Lw+9P/T1XvXEVBysOMnfPXB5Z+QhfG/O1aIdWt+QcuPZp5/eDNwky+0Q7ojbnSvCQMrUbyVO64ttRTOn8vZSt2g8BZzLyTl4XnbwuRoUs25cf4rFFs3CPyuLa64aRkRZfZ5s9h42k57CR7NmwlvkvP8fWZYsBKCk4xKdP/JMFrz7PhAsvY8yM8yMTd4uIiIiIiIiInAjUw6IDSg3PXxHEMmFMEybcXvEsVBx2yiOvgpROLRpPyIb44Wc/ZOX+lQB0TurMg2c+SLI32algTaSuW5NuywmuU1InHjj1AVzG+fX88IqHmbN7TpSjaoAxMP5mGHVV7e2VJfDyHVCwLSphtTVjDPG908i6ZjBdfzCZ9PP74slOiOxPcBkGJ7i5OMXLhA1FvPPjuSx8fTMVpfX3uOg2aCiXf/9n3PDrPzNg4pTI9vKiw8x+5nH++fUvMu/FZ6koKWnV9yYiIiIiIiIi0laUsOhgKkr9mOIAAF16p5Gc2EgCwFpY8Ej1+uQvt3hMDy1/iA+2fwBAkieJh858iNzk3Mh+E6pOWLji3C1+fpFYMzF3It8c+00ALJYfzP4Bxb7iKEfVTO9+H1Y+B/84GVb8z/ld0kG4k72kTu9Bl7snkPOlESSOyI7kXY0x5HpdnJLkIeOz3Xx231zmPbuO0sLKetvr0m8Al9zzY2564EEGnzTdSRIBFaUlzH3haR75yk289dcH2L5yOaFYHUJMRERERERERKQJNCRUB5O/vShS7tovvYGaYZs/hgMbnHKvk6Dr6IbrH4Pz+57Pm1veZF/pPn5/6u8ZnDW41n4TMhDOUxiPcmzSMXxxxBdZkb+CRXmL+MnUn5Aa18T5ZmJBeSFsneWUfcXwypdh2VNwzi9b5XdIrDIuQ8LATBIGZpJRVEnpojwK5uzGXeYkjZNchiEuQ2h5PqsX57Em1cPk64cwdFB2ne116tWHC++8l5Ouup6Fr77AmtmfYEMhAn4f6+bMZN2cmaRmd2LY9DMYfuoZZHbt3pZvV0RERERERETkuClh0cHkba1OWHTpk9ZAzbAVz1aXp3ylFSKCfhn9eOr8p1iWv4xTepxy1H6XrZGkUMJCOgiXcfF/J/8fhZWF9E7rHe1wmicxA77yGbxzb/XvkG2z4ZFTYcwX4IwfQ1rXqIbY1txp8aSd2YvU03tSse4Qh2fvxr/1MAZwGUM3r6FbRYjif67m1ThD9wv7MXFq3QmHrG49OPdr32bKFdex9O3XWPvZp1SUOD1wig/uZ8Erz7HglefoNmgow087k8FTTyE+KbkN362IiIiIiIiIyLFRwqKD2bP5cKSc268JCYtL/g4DzoI1r8HgC1otrpzEHM7ufXad+0yNkcvUw0I6kvT4dNLjm9ATKhYlpMFlD8PQi+C9H0HBVsDC8qdg9Stw8l0w9RsQ17EmjTYuQ+KwbBKHZRM4VEHhZ7soWZiHJ+DMLZTqNkwIQvDVzXz68iaKBmdw+rVDSE05eoLujC65nHHrl5l+wxfZsnQhqz/9kK3Ll2BDTlt7Nqxlz4a1fPLYowyYNJURp51NzxEjcbk0tJ6IiIiIiIiIxCYlLDqQUCjEpnUHScAQijOk5SQ2fpAnHkZf6ywtZF/pPp5a8xR3jrsTr7vxSbSreliEbBDjMo3UFjmxvbLxFUZ3Gk2/jH7RDqVphlwAA86GhY/CzN9B5WHwl8Inv4T1b8Ptn0TmZOhoPFkJ5Fw8gOzz+5G3cC9739tGp0on2eA2hgFuA5uK2Hb/fDaleuh3cX9Gj8k9uh2vl0GTpzFo8jRKCwtYO/sTPv/0Qw7u2gGgIaNEREREREREpN1QwqIDWbuxgITwBNZFSS5MFG4SlvpL+fpHX2dDwQbWHVrHH0//I2lxDff0cIV7WITQZLLScVUEKvjlgl/y6qZX6Zfej2cveJYkbzvpneCJg5O+AaOvg5m/gUX/BhuE8bd22GRFTcbjIvek7uSe1J1DWwtZ8/x6uh6qJD78s8l0u5hYFiLw7AYWvLSZrOk96HdaT9zeo3ucJWdkMuGiyxl/4WXkb93M559+yLo5M+seMmrwMEacdhaDppxMfFI7uZZERNoZY0x34CrgfGAIkAscAuYAv7PWLjii/s+AnzbQZF9r7bZWCVZEREREJAYoYdGBrFiRHymndW9kPPOAz7nJ2IL8IT93f3o3GwqcSbx3l+wmEAo0eIy1Fnf4Mg2ZUIvGI9KeWCyrD64GYMvhLdzy7i08cOoD7Wt+i+RsOP8BmHibk7QYe0Pt/cX7IFABmX2iEl4syOqbwcnfm0yw0s/yVzbhWnGATtbZ5zGG7v4QfLSDtR/uINgvndzz+9Cl59FJX2MMXfoNoEu/AZx645fqHjJq/Rr2rF/Dx489wsDJJzH81DPpNXwUxqWh90REWtA3ge8Bm4H3gf3AQOBS4FJjzPXW2ufqOO6/wLY6the2SpQiIiIiIjFCCYsOZPfmQqqeoe03OKv+iqEg/OMkyB0Bk78KvSYf97mttfxqwa+Ys2cOAGlxaTx01kNkJTQQBxAKBnAZZ7z1EEpYSMeV6Enkj6f+keveuo4SfwlrD63lmjev4adTf8p5fc+LdnjN02kwnP+7o7d/cJ8zv8Xo62DanZDdv+1jixHueC/jrx0K18K+z/ez+fVNdD8cwBPukJJhgK2HKf3bct7DUjwkg9MvH0R2xtFD/dUcMqqk4BBrP/uU1TWHjPJVsnb2J6yd/QmpOZ0YfuqZDJ9+Jhm5HWtidBGRVrIQOM1aO7PmRmPMKcBHwD+MMa9aayuPOO5xa+2nbRSjiIiIiEjMUMKiA/HnV0TKkyY0cCNq4/twcKOzlBfCTa8e97kfW/0YL254EQCvy8tfTv8LfdP7NnpcwOfHbZzL1Lrsccch0p71Se/Df8/7L3d/ejfbirZR6i/l3ln3snDfQr438XskeBKiHeKx270EVoYfMF36X1j2JAy/HE75DnQZHt3Yoix3RCdyR3QiWO5n7wc7qFicR4LPGSIvzmUYjoENRWz/xULeTXCRMjmXc87pS0L80f/Ep2RmMfGiy5lw4WXkbd7I5zM/Yt2cT6ksLQWg+MB+5r/0P+a/9D+6DhzMgIlTGTBxKlndNN+FiMixsNa+XM/22caYT4AZwEhgcZsGJiIiIiISo5Sw6CBKyvyklIcAQ5EXOmU1MOH2/H9Ulyd/5bjP/e62d/nTkj9F1n8x7RdMyJ3QpGODgRoJCw0JJcKgzEE8d+Fz/N/8/+ONLW8A8OKGF1mxfwW/P/X39EtvJ5NxHyl7IJxyjzM5d2UR2BB8/qKzDDoPTrkbek6MdpRR5U700uPi/tiL+lG09hBb39hM5qEK3OG5Ljp7XXQOQsVne5n1yW42Zscx/IxeTJ/SDdcRwzwZY8gdMIjcAYM47cYvsXnJQlZ/+gHbVizDWud37d6N69m7cT2zn3mcrO49GTBxCgMmTiG330ANGyUi0jL84de6xkidboyZDISAjcCH1tqSYzmJMaZHI1Vyqwrl5eWUl5cfy2kkhukzlSq6FqQmXQ9SRdeC1NSc66G1rh0lLDqIxcvycOPc1DI58fVXzFsDW8M91rP6wcAZx3Xe5fnL+dHsH0XWvzHmG1zQ74ImH++vrMTtquphcVyhiJwwkrxJ/PLkXzIxdyK/WvArKoIVbCzYyLVvXstj5zzG8Jx22CMhIQ3O/Amc9E1Y9C+Y/xCUHXT2bXjHWfqc4vS46Hd6h56s2xhD+rBsxgzLJlBSyepXNuFde4i0cE43wWUYFu9maHGAvJc288zzG+l/Wk+GTu1GRpejJ9f2xMUxeOrJDJ56MiWHDrImPDzUgZ3bI3UO7d7Jwt07WfjqC6RkZtF/gpO86Dl8JG6Pt63euojICcMY0ws4C9gLrKqjyv1HrBcaY+601j5xDKfb2dSKs2bNIicnpxlN68/J9uD9999vozPpeoh1uhakJl0PUqXtrgXQ9RD7mnM9HDhwoFVi0FXSQaxfU30BdeqdWn/FhY9Ulyd9GY7jKdqdRTv55sffxBfyAXDpgEu5Y9QdzWojWFE9nK81GhJKpIoxhssGXsbInJHcM/MeNh/ezMDMgQzKGhTt0I5PYgZMvwemfA2WPgFz/wpFu51922ZDeQF85bOohhhLPCnxjL5xONZaStYfYutbW8jYX4GLcC8KryHX66Js7h4WfbKLss5J9JzQhU7DMulZx2TdKVnZTLrkSiZdciUF+/awedF8Ni2ez+71a8E6v4NLCg6x4oO3WfHB28QlJtF37AQGTJhMnzHjSUhOaeOfgIhI+2OM8QJPAvHA96y1wRq7VwBfBD7FSWbkAhcCPwceN8YUWmtfb9uIRURERETajhIWHcTBHcWkh8vDR3aqu1LZIVgRHkM+LhXGXH9c50yLT6Nfej+W5i9lctfJ3Df1Pkwzn4oOlvurV9zHFY7ICWlA5gCeueAZ/rz0z9w8/Ga8rhPkafe4JJjyFZjwRWduizl/hoObnB4WNX+PWAu+EohvIBHbARhjSB2Szagh2QSLfeyfvZOSeftI8DvdLpJchqGJbiiupOTD7Wx7dyszDZT1TWHajL4MH5x9VJuZud2YcNHlTLjocsoOF7J5yUI2LZrH9lXLCfqd382+8jLWz53F+rmzMC4XPYYMp9/4SfQfP4nMrpr3QkTkSMYYF/A4MB34p7X2yZr7rbWvHHHINuBBY8xa4APg/4DmJix6NrI/F1gEMH36dHr0aGwEqRrmfdzMUCQaZsw4vl7zTabrIebpWpCadD1IlTa7FkDXQzvQnOth165drRKDEhYdhLvAubnkxzKuvoTF0v9CIDz22NgvOEO0HIf0+HT+OeOfPLziYW4Zccsx3UgNVPoiZQ0JJVK3JG8SP5z8w6O2rz+0njUH13DpgEubnSyMGZ44GHejk0Bd/w4MPq/2/m2z4dnrYNTVMPG2Dj9BN4A7NY7c8/tjz+1HxYYCDs/ejX9zIVVXQIrbkOJ20xewu8o4/M/VvGtDHO6axNAZvRk1qstRbSalZzDyjBmMPGMGvopytq1YyqZF89mydGFkwm4bCrFzzSp2rlnFzCf/TWa3HvQbN5H+4yfRffAwXG5lnUWkYwsnK/4DXA88BTR5sjhr7UfGmM3ASGNMmrW2qBnHNviXZM3/R0hMTCQxsYG57qRd0mcqVXQtSE26HqSKrgWpqTnXQ2tdO0pYdABlRT5SwlP5JecmERdXx8ceDMDCf4VXDExq3tBN9Ylzx/Gtcd865uODFdUJC/WwEGm6Un8pd8+8m+1F23lry1t8e8K3GZ7djm/mu9ww9MKjty/6t9PDYvF/nKXXVCdxMfQi8DQwX08HYFyGxCFZJA7JIlBQQdnSfErWHCSwu4Sq/K8xhgwPZOCGA5UEn17P4ifXcSgjjs6Tcxl1Wm9cntrZ4riERAZNnsagydMIBgLsXreazUsWsmXJQgrz9kbqFezZxZI9u1jy5iskJKfQZ8x4+o2fRJ9RY0lMPb6EuIhIexNOVjwG3AQ8C9xirQ01s5kDwAAgCWhywkJEREREpD1RwqIDyNt6OFKudziodW9CUfjhq4EzILv/MZ3rxQ0vcnrP08lOPHp4kWMRrPRX5yk87fQJcZEoeH/b+2wvciZNXrBvAde+eS3n9z2fb479Jj1SmzHUQyyzFlK6gDcZ/M5T/uyY5yzJnWDsjZgR10U3xhjhyUwg7cxepJ3Zi1BlkMpth9m7aB/l6wtI91ffL3MbQ67bkFscgA93seODXVSkxhE/IINOk3NJ7pNW60lct8dDrxGj6TViNKfddBuH9uxiy5KFbF6ykD3r11J1L66itIR1c2aybs5MMIZOvfrQc/goeg4fRY+hwzX3hYic0I5IVjwH3HjEvBVNaSMZGA6U4iQuREREREROSEpYdAB5W6sfwOrSt56nWuNSIHck7FvljBt/DF7Z+Ar3z7uff6/6Nw+d9RB90/seUzs1hSoDkYSFcSthIdJUlw28jLT4NP6w+A/sLN4JwNtb3+aD7R9w3ZDruGPUHaTHpzfSSowzBs7/HZzxY2eei0X/gv3rnH2l++GzPxI/589MSh3Nuq6XRzfWGOKKd5M4OIt+g7MACJb42DZvD/sW7iWryE9qjYSEx0BKiQ+W51O4PJ+91nIgyUPi0CyGndGbuJzq7p/GGLK79yS7e08mXnwF5cVFbFu+hM1LFrJtxVIqy8JJJWvZv30r+7dvZenbr2GMi859+9Fj2Eh6DR9F9yHDa89TIiLSjtUYBuom4AXghvqSFcaYVKCrtXbDEdsTgX8CqcBj1tpA60YtIiIiIhI9Slh0AHnbmpCwGHgWDDgTdi2CHhObfY55e+bx83k/B2BXyS4W7VvUYgmLCI8msRBpjjN7ncn07tN5fsPzPLLiEQoqC/CH/Dyx5gle2fQKt4+8neuHXk+8u50PnZSQBpNud4aC2j7XSVysfR1CAYwN0bVoGRtzL452lDHLnRJH/7P70P/sPgBsXpnPhg+30aUwQHplgPiaY5sbQ8/yICzdT/7S/RQBxdnxdJ2US/cJXXEnV89VlJiaxtBTTmfoKaeHh45aw5Zli9i5eiX527Y4PWQAa0PkbdlE3pZNLHnzFYzLRac+/fAlJJPYuSu+8jKNqSoi7dl9wM1ACbAB+HEd80q9aq1dDmQD64wxi4C1wD6gC3AW0ANYBXy3bcIWEREREYkOJSxOcP5AiB0bC3EBcaleUjIT6q9sDPSc1OxzbCzYyHc+/Q6B8MNeNwy9gasHX32MEdcW9PmpmrzC1JOwsH4/Bc8+y8HHHidUXIynU6fqpXPnSNnboztJY8e2SFwi7YXX7eULQ7/Axf0v5rHPH+OJNU9QGayk2FfMH5f8kX2l+/jB5B9EO8yWYQz0meYsxXmw9AlCi/9DUSCOgqR+teuueA4O73Qm687oFZ14Y1T/UZ3pP6ozAP7KAPsW51OwLJ/ArmKyrMVT40ZbGpB2sBLe2c6et7dR4DZUdEmi/yk9yByRgyvO+f3tDB01il4jRgFQUVLCrrWfs3P1SnauXsn+HdsibdpQiPwtmwAoXLOCf898j859B9Bj2Ah6DhtB98HDSUjREFIi0m70Cb+mAD+qp842YDlwCHgImAScD2QC5TjJi78CD1pry1svVBERERGR6FPC4gS3au0BXEHnKdb9cbbF288vy+drH32NEn8JAKf3PJ17JtzTYu0HfQEiCQtv3QmL3ffeS/E770bWfSUl+LZuPapewogR9H3xhVrbdnz5y/h37cbExeGKi8PEx4eX8Hqcs552wfkkT6pO5gQOHiT/939wnhC2Iay1ELLV68EQhEJYGyL3vvvwdu4cObb444858Pjj9DhwEKxl7/+ew2WMc2wohMVpy9O5Mz3//mCtePN++zvKFixwbswaAy4XGDCY6m3GkHrG6WTfdlvtn9Pd92D9fnC7MC638+r2YLzeGouHtAsvImHwoOr3euAAxZ984ux3ezAeN3g81WW3G+PxYjxuEkePxniqf6348/MJFhTU9/FGuBITietV+6axb9s2QpWVjR7rycnBk109Z4oNBKjcvLnR4wDievXCVePJ7eDhw/j37auzrq+igri9e8FafBs3kjhqVK39lVu2Ejx0EBsKha+FECYhgcQRIzBeb51ttqXUuFS+Ne5bXD34ah5a/hCvbnoVj8vDTcNvinZorSO1C5z6XSonfIWFbz9/9BBD8/7mDIH38S+g98lO4mLYJZCYEZVwY5U33kPPad3oOa0bABs3F7D0w23EbSumu9+S7TbO7y+cIaGyQsDeMsqf30Dp8xvwpXjx9ksne3wXkgdkRob2S0hJYcDEKQyYOAWAsqLD4QTGKnauXsnBXTsiMVhryduykbwtG1ny5iuROTB6DBtBz6Ej6T50OElp7Xx4MxE5YVlrbwFuaWLdIuAbrRmPiIiIiEisU8LiBLdqRX6knNGzjidS174JqbnQY0Kz2y7zl/GNj77BvlLnBu/w7OH85pTf4Ha5Gzmy6ayvejLY+hIWmdddF0lYeHv2JHDwILas7Kh6nhpJgyr+HTvrTG4cKX7AgFoJi1BZGYdfeaXR4wBCd99daz2Ql0fFwkUkhdfruyXv7d79qG2+HTuoWLOm8XgHDjxqW/GHH2KbkABIGDmyVsLCt307+35yX6PHAQxesrhWwqLgqac5+OijjR6XNGECvZ96sta23d+5u0nvtdNdd5HzlS9H1oPFxWy95NImxdvnxRdJHDE8sl4yaxZ7vntv/fXDr/ueeJL0eXNr7Tvwj39Q9MYbRx3jzsoi7bzzSL/4IhJGjaKOYSDaVG5yLj+f9nNuGHYDqw+spntK7evspQ0v4Xa5Oa/vee1/qCgAl4fyuJza2w5tdZIVVbZ/5ixvfxcGnwsjr4J+p0O8nuI/0sD+mQzsnwlApS/AnM92kbdwH5kHK+lhIaNGTzgXkFDih5UHKFx5gHxrORDvxvZOpf/0HmQPyIx8H5LS0hk0eRqDJk8D4GDePt557hkq8vfhLi/m0K6d1UHUmANj2TvOdy67Ry+6DhxCbv+B5PYfSE6vPrg9+l8cERERERERkfZGf82f4PZtPUzVLbdBQ7Nr7wz44K3vQEke9JwMt7wF7qY9CR4MBbl31r2sPbQWgG7J3XjwzAdJ8iY1cmTzWH/1HBauOA/B4mKChYXE9ewZ2Z48aRI5X/86KaedSuLIkU58/8/eXYfJVV4PHP+eWfdk454QxbW4u7bQQrEiLdACRUspUKGFYhUqtIXCr1jxIkUKFHeKOwQS4i6bdZ+d8/vjvLN7d3Y22YQkKzmf55lnZq/Nnb135s68533Pqaklvmwp8WXL7LZ0GVnDh3fYfiwvj1hhIdrYaKMPOt2RlNEpshr1NNZk3eToidTJsRhkZoaRHJFb6nIZHdfVRKLDtLRPnTIaYKX/l1Q9YCTBepHufx5LH4hoWbGC8rvuovyuu8gaM5oB3zuF/kevnZRpX8Wk/pOY1H9Su2mNLY1c9/51rGhYwR/f/SNHTjqSoycfzeD8jsG+Xq10HJz7IXx8v6WGKptu01sa4bNH7JaRA+N2g0P+AP3HdO/+9lA52ZnsvfdY2HssAOWVDfzvxbnkzKyiZEUThQ1xCjPa3hfZIgxvSsD0ShqmV/KlKkuyY8RHFrLR7iMZvXFbYCm/uISiMeMpGjOe/fffH21uYsHnnzL/s0+YP/VTls6Z2e59WDZ/LmXz5/LJC08DkJGVxaAx40IAYxJDx0+k//ARxNZiQN0555xzzjnnnHNrnwcs+riW5dajPoHytW2Gtp/52cMWrAAoHNLlYIWqcs1b1/DS/JcAKMoq4vp9r2dg3sBVrLn6Ek0trY+b585ixoGXkD1yJGPuvaddT/VBZ7cfPZ9RWEBG4Thyxq288Pe4hx5sfayJBNrUhDY2kmhsbH2sjY1kDhnSbr2sIYPZ6PH/WPBBQiAhpGOSWMyCDbEMJCZk9O/fbt1+3/om2fvvx3PPPw8i7LvffuTl54f0TrLSHvgj/3Jd2um6igAGwITnnoVEAlpaLHjR0oK2tKDxONrUjDbbLWdS+9EZ2eM2YtgVvybR1ARxW4eWOBoP67bEW6dLRvvGwNzNN6Pft1fdOJ89pmODcNH++5G72WarXDd3k43b/R3Lzu7ScwJk9u/Xfj9Gj+503XhLnPnz5gMwevLkDvMLdt+djIEDw7kQg5jQNGcONc+/0DqypXnOXFrKV3Rp37rDqwteZUWD7d+KhhXc9NFN3PLxLew/dn+O3/h4thi0xSq20Iv0Hwu7Xwi7/RgWvg8f/Qs+eQBql9n8lkaY9QoUpHyu1a2A3BLwhu8O+pfkcvA32oJgDbXNLHx/KcveXULTvGqGxYTcSGAvT4SxzQqzqmHWVD5LKLVFWZRMGUDRFv1QbcvklV9cwsTtd2bi9juHbdew4PPPmD/1E+ZP/YQlM79sF5RtaW5m8ZfTWPzlNOBxALJy8xgybjxDwiiMYRMmUTxoSLePenLOOeecc84551wbD1j0YRVVjRQ1KiBU5wglRZH0Lqrwxg1tf+9wepe3qygtaoGETMnkj3v9kfH9xq+lvU55rnhbA1Td66+SV1ZGfVkZVf/5DyWHHbZWn0tiMSQ3F3JzWVVTpGRlkTN+zV6zZGURy8tDw2gEycpql0ZpjbaZrF+xEllpUmJ1RdaQwfQ78sg1Wrd4v/0o3m+/NVp34OldPyejYgUFDLv8sjVaN2/LLcnbcsu08+rr63nvaeu9vdX++3eYX3LIIZQcckiH6S01NVQ//QyVjz1K3ZtvUXzooe3mN86cydLf/JaSb3ydov33/8rnwlex96i9ueOgO7h76t08M+cZ4honrnGemPUET8x6gi0GbsFxGx/H/mP2J6uLAc4eTwRGbGO3/a+AWS/C50/AtKdg8MaQXdB++Sd+DDNegIn7w6QDYPzeXveiE7kFWWy06wg22tXSjs2dX8l7z8+DGZUMroszJCZkRQt4x4Ti2ji8u4T4O4uZqP0ojyV46eP3KRhZxLgtBjFsUimxgixyCwoZv+32jN/WUvU1NzawdNZMFs+YzuIZ01gy80vKFy1otz/NDfWtAY6kvKJiho6fyJDxkxg2wUZi5Jf0W/f/HOecc84555xzzqXlAYs+7K13FxPDGoMyB+W2nzn/HVj4nj0eujmM2bnL241JjF/s+AtGFY2if25/dhi2w9ra5XaaFy6kYeo0KLSirMQtNVHRAQeQt/U26+Q5nVvbMgoL6ffNI+j3zSOIr1hBZmlpu/mVjz5KzUsvUfPSS+RuuinDrryC3ClTumVfRYStBm/FVoO3YkntEu774j4emPYA5Y1WOP2j5R/x0SsfcfMnN/PgYQ/2vZ7pGZkwYV+7qUJDZfv5Lc3w5bM2/aN77SYxGL4NbLQnbLSHpdfL7AO1P9aB0SNLGH1iW3Hspctq+fi5uTRPK2dgTZzBQrsC3iUilBCDmhb4vAI+r2AR0IxSlxWDkhz6jSqmZGQhGQPyGFw6luHjJyNZFnJuqK1hycwvWTxjOktmTGfxzOlUL1/Wbp/qq6uY9cG7zPrg3dZpRQMHMWz8pDASYxKDxowlr6h4nf9/nHPOOeecc8455wGLPm361OWtj4duVNJ+5pvR0RVnrLJ3fioR4bubffer7F6nEvX1lN18C2X/+Actmx1KsghH1oB+jL7s9nbFr53rTVKDFQB177zT+rjh00+ZdeRRDDjtVAaecQax7Oz1uXvtDCkYwjnbnMP3t/g+T856krum3sUX5V8AsPuI3TsEK6qaqijO7kONuiIdR040VFpg4svnoanapmkCFrxjt1d+D5l5MHpH2PeXMHzr9b3XvcrgQQXsc0xbSreG6kbK3llKzWdlyKJa8uPp6+5kIZQ0KyxvQJc3UPH+0nbzpTCLrIF5ZJbm0r+0PwNH7c5WW+1PZmku9S21LJ01g8UzLF3U4hnTqa+uard+9fJlVC9fxrQ3X2udll/SjwEjRlE6cjQDRo5iwAi7zy/p1/cCd84555xzzjnnXDfygEUfVjm/lmSYYostB7XNqFpoRWUB8gfCZt9a5bbmV8+ntrmWyaUdc/evTbWvv87Cn/2c+KJFAEisLe3MwO+fQsH2q65p4FxvMuaf/6TujTdYcvXVNE7/EuJxym74O9XPPMPwK64gb6utunX/cjNzOWLiERw+4XDeXfIud39+N8dMOabdMvOr53PYvw9jx+E7cvC4g9ln9D7kZ+V30x6vQwUD4dv/hHgTzH3d0kbNeAGWTW1bJl4PM1+AzGvar1u1EJpqYcCE1Q4Qbyhyi3IYsdco2GsU9fX1PPP409Qty6SfDCO+pJ7c2jglLVAUE/JjbaMxUmlNM001zTTNruo4MzNGfmkOk0q3YpNNdyRj1xwaMxpYUb2IRYums3i2pZNqbmxot1pdZQV1lRXM++zj9vtcWNQugFE6YhSlI0ZSVBrq2TjnnHPOOeecc261eMCij0okEmRVNANCoyibT44Ujn37ZkjE7fF234Ws3LTbSKpsrOSHz/2QxbWLuXbPa9l1xK7rbL9jRUWtwQoyM8kc0BZoycj1NCuu75FYjIKdd2bsgw9S9vcbWX7TTRCP0/TlDGYfexylJ57IoHPPIZbfvQEAEWG7odux3dDtOsx7ctaTxDXOqwte5dUFr5Kbkcteo/bi4I0OZpfhu/SdehdJmdkhBdSe9nf1Ypj1Msx80W6JFhiUEtx951Z4+bdQMMhGYIzeGcbsBEM2t1RUrgPNgrzhcfbYf2Py8vIAaIkn+GRaGe99vIyKmZVklzUwoMnqX+THhIIY5KcU924nniC+tJ740vp2k/OB8UxkYuEmZOyQQ0tugtqWSipqllBWMZ/FS2ewonwBirZbr6GmmgWff8aCzz9rNz0zJ4fS4SPtNmKkjc4YPpJ+w0aQmdXH3g/OOeecc84559xa5K0kfVRlWQP5CWuwaemXTUZm6OnZ3ADv3mqPY5mw3Skr3U5zSzM/evFHzKycCcC171zLjsN2JDO2dk4dVW2XTiNv880pOfxw4mVlDLnkYqbe+S7U2bzMXG/kcX1XLDubQeecTdEB+7Popz+j4dNPQZUVt99O7ZtvMu6hB3tsj+38rHyGFgxlce1iABpaGnhy9pM8OftJSnJK2Hf0vuw+cnd2GLYDBVkFq9haL1Q0FLb4tt1UoXZ5x1EUs16y+9plMPUxuwFkF8Ko7WH0TnYbuR1k5a3f/e9FMjJjbLnJILbcpC2Y3RxPULaolsqFtSyfV83MeTUsnV1FbnMLBTEhP6MtkFEQRmdkdDI6I1HTTKLG6iXlkUUeIxnGSDbrtyOUChQKTVlN1LVUU1m/lOUr5rG8Yh61zRU0a1PrduKNjSydNYOls2a0275IjJLBQygdMZJ+Q4ZRMmQY/YYMpWTIUEoGDSGzG9PAOeecc84555xzPYEHLPqosrk1rY9332lE24wvnoC6Mnu86RFQPKzTbagqv/rfr3hr8VsAlOaWct3e162VYIU2NbHijjupeeEFRt9+G5KR0Tpv6OWXteXub2krhJqR6w05ru/LnTyZsffdy4rbb2fZdX9BGxvpf/S3e2ywAuD4jY/n2CnH8v7S93li5hM8NecpKhutYHVlYyUPTn+QB6c/yEHjDuK3u/+2m/d2HROBwkEdp298GOQUw7w3oTGSqqipBmY8bzeA7X8AB0f+R6pt23VpZWXGGDqqiKGjipi8w1DARhnOmFPFx58sY/rMCqoX15NV1UxBi/0fc4TW4EVqUCOvs9EZCYUqJZtMsulPP/ozpmAyhBhcIktpymykrqWSitqlrKhcSHVzObXxCuriVSiKaoKKJYuoWLKo4/ZFKCwdQL/BFsCwgMZQC2gMGkJecYnXy3DOOeecc8451+d5wKKPWjyrsvXxkHGRQribHmF52N/4uxXbXom/f/R3Hp3xKAA5GTlct/d1jCoa9ZX2S1WpefFFll7zG5rmzAGg4oEH6X/0t1uXaVdoOFJz1QMWbkMhmZkMOOUUCvfem4r7/kW/o49uN1/jccjI6FGNlzGJse2Qbdl2yLZcvP3FvL7wdR6f9TgvznuR+ril30lNJ1fXXMdv3v4NOw/fmZ2G79S3inan2vlsuyVaYOlnMOd/Vgdjzv+gZnHbcqN3bL9e+Wy4cQ8YvqUV8R6+NQzbCvqP9SDGSsRiMSaO68fEcf3aTV+8tJYPPl7K3FmVzF1UR2ZNnOJGpamupW1dID9lREZBRlvKqcxO/u+xZiG3OZdccinNGsJGAzdvnacoTRmN1LZUUlm7lKrGMmrjldQ0V1Abr6Ap0QCq1JQtp6ZsOfOnftJh+5nZORQPGkzJoMEUDxpC8aDB4W977AXAnXPOOeecc871BR6w6KOWzmrrwTtkbKQRUATG7W63lXhsxmNc/8H1tgrC1btdzZaDtvxK+9Q4YwZLrr6G2ldfbbc/zfPndbqORAIWmXkesHAblpxx4xhy8UUdpi++4grq332PkiOOoOSwQ8kclKZHfzfKyshij1F7sMeoPahrruPtxW/z6oJX2Xn4zu2We3vx2zw0/SEemv4QGZLBFoO2YKfhO7HdkO3YfODm5GauvL5OrxTLgKGb222H79sIivJZMPcNmPM6jNml/fKLPoDGSquRMevltum5/UIAYysYtiUM2cwLenfB0MEFHLjPuHbTVJXaikbKFtayYmEtL729gPJlDeTXJ8ii4/8zO3V0RnhcmCHkCmmDBoKQ05JLDrmUFgxpHZWR1CJx6rSG6sYVVNUvoyZe0RrQqItXkiBBvKmRFQvmsWJB+mtmZlY2RYMGUzxwEEUDBlI0YBBFAwdSPGAwRQMHUjRgIFk5ffA95ZxzzjnnnHOuT/GARR/U2BRn8RwLWBQPyiOvaPUa+t9e/DaXvn5p698/2vZH7DdmvzXen5bKSpb97W+U33U3tLT1Ys3bbluG/vSn5G6ySafrSqKt4ccDFs5B7ZtvUXHvfQAs/e1vWXrttRTuuislRxxO4V57EcvpWcXp87PyW4MXqV5f+Hrr4xZt4f2l7/P+0vcByIxlsumATdlmyDZsP3T7DqMz+gwRKN3Iblsd13F+Ux0UDYPqlBRCDRUw8wW7AeSWwEVz2i+zYqYFNvJL18We9xkiQmH/XAr75zJm0wFsvd9owAp8T59dwfQZ5SycW03l0jqay5vIrmuhqQXKW4CUItxCmtEZMSEvjNLI7iSglKGZFNGPopx+DM/ZqN08RWmSBmpbqqiqX051U1kYmWEBjcaEFXqKNzdRvnA+5Qvnd/pac4uKKRowsDWoUdh/AIWlA+xxqT3OzvUaKs4555xzzjnnuo8HLPqgdz5cisatEWVFsu2yJQ4Zqz7cMytmcu4L5xJPxAE4evLRnLTpSWu0H9rSQsX9D7Dsz3+mpby8dXrmsGEMufDHFB100CrTV4i2zY9le9Ft57ShnryttqL+gw9sQksLNS+9RM1LLxErLqb4kIPpd/jh5G6xRY9PD/Oj7X7EHiP34NWFr/LqgleZVTmrdV48EefDZR/y4bIPeWfxOx0CFjVNNRRmF67vXV7/tj7eblWLbLTFwg9g4fuw8D0r4J00ZLOOoyv+cz7MfNECHkM2tdvgTWHQZBg4CbLz1+ML6X0yMmNMmVDKlAkdAz5lFfVUL22gsbyRiiV1lC+uZdH8aiqX1qMJoTahLEsJZgBkCe1GZrQWA88U8oBYZ6MzNI+cWF7a0RkJaaFB6qmNV1BRt5TqRgto1MQrqYtX0qLx1mUbqqtoqK5i2eyZnb7u7Lz8tgBGCGgUlg6goH9/CvuXUtCvlIJ+/cnI9K+QzjnnnHPOOefWPv+12QdN/aStEStvaOgp+ewvYf7bsMMPYOOvQ0b6xv9Pyz6ltrkWgN1G7MbF21+8xo2eTbNns/jyyyFheZ0kN5cBp53KgO99j1he13pwSkIsoTggmT236LBz60vhHntQuMceNM6aReUjj1D5yKPEF1nv+0RVFRX33EvFPfeSPWE84x58sMeNuIjKychh5xE7s/OInfnJ137CgpoFvLP4Hd5b+h7vLXmP2VWzAdhm8Dbt1lNVDn/kcDIkg00HbspmAzdjswGbscmATfpuEKN4mN0mH2R/q0LVQgteLPnU5qVa8qndVy+y25fPRmYK9BsNg6ZYaqoJ+67zl9CXDOiXx4B+Ha9jLfEEsxdU8eWMChbMq6J8SR0N5U3EauPkNymoUNkClS1KutEZeSGAkRrUyIsJuZ0UA49pBvlaSH6skEGFIyHlLRDPjNMQq6M2XklVw3JWVC2ipmkFNfFKGlpqOmyvqb6OsvlzKZs/d6X/g7yiYgr6l7YGMXKKiqhYtJiswmISkdGUzjnnnHPOOefc6vCARR+0fHY1ReHxlM0GQmMNvHeH5UFf+AGM28MKb6dx2PjDKMkp4eaPb+b3e/yezNianyI548fT7+hvU3HPvRQfcgiDf3wBWcPSNKqtRIwMABLagnTSWOPchihn3DgGn3ceg845h7o336Ty4YepevoZtN4KXGcNHtIhWNHw+edkb7RR+8L2PciIwhGMmDCCb0z4BgDL65fz/tL3GV00ut1yC2sXsqRuSevjZ+Y8A1hP9LElY9lswGatgYxxee3rFfQZIlAywm4bH9pxfrwJNvuWBS0Wf2wppNpRqJhjty2+3X7WilnwxIUwcGJIVzXO7ktGd2mk3oYsIzPG+DH9GD+mX4d5zfEEM2ZXMHdOFcMyMqkua6CqrIHqsnoWLaoho0mpS0BdIhnIaB/QyATyM9KMzggppzI66VyQGc+kkGIKKWZI9igYuHXrPI1BS24LjRkN1CWqqGkqp7xmCWUV86mqX0Zcmzt9rfXVVdRXV7F87uwO817PyWS/U85Y1b/LOeecc84555zrwFse+qIVTQDEUbbbcgh8eJsFKwC2OKrTYEXS7iN3Z7cRu63WyIpEbS3l995H6YknIFltozcGnXMOJYceSv622672ywCIqY2qaMF7azqXjsRiFOy0EwU77cSQX1xK9VNPUfnww5QccUS75bSpiTnHHY8mEuRv/zUKd9mFgl12IXv8+B6bOmpg3sC09XOqm6rZdsi2fFb2GfXx+tbpijKrchazKmfx2MzHALh7/7vbrVveUE5MYpTklKzbne9umdlw0G/scXI0xpJPYdnnkdsX0FRjKaKilnwKXz5jt6hYpo3KSNbcKN0Itv8BxHz0W1dkrSTFFEBldSMzZ1cyb341yxbXULm8gYbKJqiNk92YIC8hVLVAVZrRGQC5yWLgaYIanY3OkARk1mWQSQEFFDCIYYzL2QSGhAXyYiTyIZ7VREOsPozSKKOidjErKhdRW15GSzzeYbufPPdftj/sCEoGD13Tf5dzzjnnnHPOuQ2UByz6mCXLaikKHSJr8mLk52TAmze2LbDD6R3WmVY+jUn9J7Wb1tUGTE0kqPrPf1j6+2uJL12KZGZQelJbzYvM/v3JXMNgBYCEfFAJD1g4t0oZhQX0+9Y36fetb3aYV//hhyTqrDhv7cuvUPvyKwBkDhlCwS67ULDzzhTsvBOZpT2/QPOU0incduBtxBNxZlbO5NPln/LJ8k/4tOxTvij/orUGT15mHmOLxzKTtnz9d069k5s+uomhBUOZ3H8yk/pPar2NLh79lUaV9VjR0RiT9m+brgqV86EopVG5bHr67STiVsh7Rfh/5pXCjim96F/7swU8+o2B/mPa7otHQCxj7b2mPqikKIetNx/M1psPTju/praJ8mX1UN9C9YoGqlc0ULW8nrc+XUZmQ4KWuNLQAmVpioFnEKmdkdEWyEgGNTobnUF9glg9ZJNJNkUUU8QwRgJbQomQMSaHWEkWibwEdbF6Pvn4fyyZ/zHVzWX878F7OfCM89bif8g555xzzjnn3IagD7bMbNjeem9x6+OcIXkw4/m2xqcxu8LQzdstf8/n93D1m1dzwXYXcOImJ65WT+v6jz5iyZVXUf/hh63Tlt94E/2OOWat5c3PSKaEIrFWtufchipWVETJEUdQ+9prxJcubZ0eX7KEyoceovKhhwDIGjOajR5+uMt1ZrpTZiyzNdhwxEQbUdLU0sS08ml8svwTqpuqOwQgpq2YBsDi2sUsrl3MS/Nfap2Xk5HD+H7jmdBvAruN3I0Dxx64/l5MdxCBfqM6Tt/lPNji6LbgRLvbLBuVATbCItWXz8GslzpOj2VCyUgLYPQbBZMPhimHrNWX09cVFmRTWNAxnVtyDFJLPMG8RTXMX1jN4sW1lC+vp7q8kcaqJhJ1cbKzslhW00xLY8fraU5ydEYkqJF8nNdZOsYWpaWsgZayBtsGsC07wMgd+Lj8ZT576Xm2/8ZRlA4fsZb+A84555xzzjnnNgQesOhjZn5e3npQR4wvgTd/1zZzx/ajK16a9xLXvHUNivL7d37P5gM3Z5sh7YvbptO8ZCnL/vAHKh95pN30wr33ZshPLlyrRX5jYgELFQ9YOPdV5E6ZwvCrr0JVafryS2pee43a116n7u230YaGdsumBivKbr6Z5iVLyNtiS/K22pKsESN6bBqp7IxsK8I9cDMA6uvr283feMDGVDVVMa18GjXN7QsON7Y08lnZZ3xW9hklOSXtAhaqylnPn8WwgmGMKR7DmOIxjC0ey/DC4X1vVIYIFA+329hd289ThdplFrxIpBn5VjEn/TYTcSifbTeA4pHtAxbNDfDnLcNIkJFkFgxlo6W11Gf3J7agFAaOgcIhkNlzi8h3t4zMGGNHFTN2VHGny6gqjbVxaioamD23ik9mrKC6opEVVU0srY1DfQuZTS3kNkIG9h6PYaMzkvUyUkdqZKb5LNik3y7Mq/2C/z1wN4ecc+G6esnOOeecc8455/qgPtbK4moW1tIvPP7auHr4z7P2R7/R1qM1+KzsMy58+UISaoGA7232vVUGKxKNjay47XaW33gjGlLLAGSPH8+QSy6hcNdd1uZLQRMJMsIp6iMsnFs7RISciRPJmTiRASefTKKxkfr33qP2tdeoe+ddsieM77BO5aOP0fjFF5RzBwAZpaXkbr4ZuZMmkzNpEjmTJ5Ezbly7+jU91ZlbncmZW52JqrKwdiHTVkxjWvk0vij/gunl05lTNQdFGVs8tt16y+uX8/L8lztsL0MyGFYwjBFFIxhZOJKRRSM5fMLhDMxbea2gXksECgfbLZ0zXoeKuVAeCnon7yvmQPnctnpKqSM7qhZAzWK7LXiXLKB1POCsv7Qtlz8AvvtfGBRJY1g2A5ZOtdRWhUNs3zywkZaIkFuYRW5hFgNHFrHdzulHP7TEEyxeXsfCxTVUrmhgRG42dVVN1FU2UVfVxIezK6ivaiI7rhTRFsgYmhVjZHaMDMlgmwH78tLr97PD4UcxcPTY9ftCnXPOOeecc871Wh6w6ENUldyqOCDUx5SNFt3VNnP777fmD19cu5iznjurtVjtAWMP4Nxtzl35tpuamHXEN2ma2ZYLPlZczKCzz6b/MUevk4bK5uYmMkLPZY11LDDqnPvqYjk5rUW700nU19P45ZftprWsWEHtSy9T+1KkAT8ri2GXX06/Iw5vnaSJBIj0yNEYIsKIwhGMKBzBXqP3ap1eH69nbtVcBuQNaLf8nKr0IwdatIX5NfOZXzOfN3kTsM/UqBfmvsCjMx5leOFwhhUMY1jhMIYVDGN4wXBKckp65P9njWUXwOCN7ZZOfTlUzLPRG1ENFVA0DKoXk66gdKu6Msjr337aF0/A0z9vPy23XwhgDIbCcD9wEmx7UvvlVC0I49rJyIwxYmghI4YWpp0fPcOra5pYsLiGefMreOrZaRzblE9+TBiaN46ReZN4/f67+foFP10/O+6cc84555xzrtfzgEUfsnBhLblqDS/xYiH20T02Iysftv4OADVNNZz53Jksq18GwFaDtuLKXa8kJrGVbluysyncc09WzJwJsRj9jzmagWefTWb//itd76toqW9qfaziAQvnukMsL49Jr71K/ccfU//Bh9R/9BENH31ES2Vl+wWbm8ka0r7Xff0HHzLvBz8gZ8IEsseMIXvMaLJGjyZ7tD3OKO48dU13ycvMY3Lp5A7Ttx2yLS8f/TJzquYwu2q23VfOtmBF9fzW9FIxiTG0oH0R64+Xf8yzc5/t9PmGFVgAY8tBW3LGVu2LWDe2NJKT0YdGC+T17xhwABixLVzwOcSboGoBjctm8OlrT5HbXM6k4cVk1i2zYEbtMhtlEVW9uOP2Girstuzztmkjv9YxYHHrwbD8CygYZLf8AW2PCwbaLX8ADJgIRUO+6qvvk4oKs5kyoZQxI/KoKf+YV1/OYv8cq7Wx9YB9ePLt/2PJzC8ZstGEbt5T55xzzjnnnHO9gQcs+pDm5W0N/NtvXgSyG0x7CrY8FvL605xo5oKXLmB6uRXhHl00muv2vi5tY1i8vJxYXh6x3NzWaQPPOJ3mBQsYeOaZ5E6e1GGdtS3eEAlY+AgL57pNRr9+FO62G4W77QbYaK74woU0TJtG47TpNE6bRuO0L8iZ1P5zoXH6dBLV1dS//z7177+fdrtZY0aTM2ECw6+8cr28ljUlIvTP7U//3P5sNXirdvNUlaqmKuZXz2dZ/TKyYu1HnC2oWdDpduvj9cysnMnMyplp5x/zn2NYWLOQwfmDGZQ/iEF5g+xx3qDWvwfmDWRIwRDyMnt+ofRVysyG0nEk8oYy7/NaAMbtuz+ZKysCP+lAyOsHNUsteFGz1FJLVS+BeKSGSWGagEPNEhu1UVfWPriRar/LYZfISMTaMrj7KAtm5A+AvFLIL7VgTH5p+78Lh0LGhvF1KxaD+Ga1LJmayZDMGPmZRWzSb2dev/8ujrjol929e84555xzzjnneoEN4xf0BqJsQQ2EIpkTtx0PU+6z3N6ZOagqV75xJa8vfB2AkpwSrt/3evrntu/pqs3NlN97H8v++lcGfPdkBp7eVqg7o6iIkX/+0/p6OcTrGtv+WPkAEOfceiQiZI0YQdaIERTttVfnCyZayBw6lPjiND3ggZaKCloqKkhUVXeYN//882n49DOyhg0ja/jwcG+PM8O0WE7PGHkgIpTklFCSU5J2/pW7XsnZW5/NotpFLKpdxMKahSyuXczCmoUsql3E4trFNLQ0MKxwWId1l9Uvoy5ex+yq2cyumt3pPly606UcNemo1r+X1C7h+g+vZ0DuAAbkDWi9L80tpTS3lJKcklWOrOs1xu1mt1Sq0FjdFsDIyu+4TL9RVhC8djk013b+HHml7f+uXQYL3u3a/p39HgyI1Ib54kn44C7ILbHUVbklKbcwLb/U0lr1MkMGKi1fG0zLe8vIEGFyydf478e3snDaVIZP6iRVmHPOOeecc845F3jAog8pm18HFIDAkDEh1UpoJFlUs5Cn5zwNQFYsiz/v9WfGFI9pt37Na6+x5OqrafpyBgDLb7yJkiOOIGtI96TBiDe0BSw0o1t2wTn3FfQ/9lj6H3ssidpamubNo2nOXJrmzqF57tzweC7xxYvJHj26w7pNc2y55rlzO91+RmkpA0//AaUnntg6TeNxal59lawhQ8gcPBiNjBLrLpmxTEYWWUHudFSV8sZyEppoN70l0cLk/pNZWreUZfXLqF1Jg/qA3PZpkhbULOCh6Q91unxMYvTL6Uf/nP7ccfAdFGUXtc6bWjaVOdVz6J/T3wIx2RaMycvM6131NkQgt9huAztJR3TiI22Pm2otcFG73AISyVv9Chi2Rfv1GlJSoq1MagqsJZ/C1MdWvd7gTeDM/7Wf9p8fwbIvQmCjGHLC68staXucUwwDJkD/Mem3ux5scvBoPvxoBWNaEsQkg20H7Mdr993FUb+4otv2yTnnnHPOOedc7+ABiz6kYkk9/fIL6D+0gOy89od2eOFw7jzoTn743A85Z5tz2HbItq3zmubMYclvfkvN88+3W6d4//2RjO6LFCQam9v+8ICFc71WrKCA3ClTyJ0ypcO8REMDiZqaDtMzCgqJFRWRqO44+iKpZcUKSBklEF++nPmnR+pAZGYyrrCQeFERS554kpzBg8kYOIDMAQMpOexQMkrSj4pYn0SE0tzSDtMzYhncfMDNrX/XNteyrG4Zy+qXsbRuKcvrl7Okbgll9WUdAtBlDWUrfc6EJljRsILyhnLyM9uPPHhi1hPc9ultHdbJjGW2Bi9KckrYZvA2nLftee2WeXn+y6gqRdlFFGcXU5RdRFF2Ue8IdmQX2K0rDf2jd4BLV0B9RVtKqfoVULfC7uvL2x7nppxj9eVd25/U9QAWvg8L31v1untcBHtFCl031cLvJ0F2IeQUtd2yCyGn0O6zC2za1t9pXxS9bgVUzgvLhOWy8i3/UycyMmOMPWFjam7+mIKMGEPyxjBj1ofM++xjRm2yeddev3POOeecc865DZIHLPoQTVidh/zcZdAS75Aze6N+G/Hw4Q+31qxoqamh7O9/p+z2f0JzW3Agd4stGPqzn5K35Zbrb+fTaGmIBix6eEOXc26NxHJz29XKSRpzxz8BaKmupnnhIpoXLqB50SLiCxeGvxfSvHQJWcPbp1GKL13afkPxOFkVFWRVVFA/bx6RigYU7b1Xu4BF+X3/YvmNfyezdAAZ/fp1esscPIjcSeu+jk+qgqwCCkoKGFsydpXL7jJ8Fx447AHK6ssoayhjef1yyurLKG8sbw1UlDdYw3lGrH1EeEXDirTbjCfilDWUtQZD+ud0LJ599ZtXM79mfofpmbFMirOLKc4upjCrkFM3P5V9xuzTOr+ysZLHZjxGYXYhRVlFZGkWC+ILyJEcltcvZ0DmgJ4X9IhlQMEAu62OvX8BO54BDVU2UqPDrcLuS8d1XLe5rmvPkVPU/u/GamiqsVtN+hRtrSbu3z5gMf0Z+Pf3Oy6XVdAW5MkuJLtgEJSc3Dp7xJRS7i/OZqfaOABbl+7FG/fezcjLrupZx9E555xzzjnnXI/iAYs+aGLZbXDdxZQdcT2lY3Zr1zCQDFZUPvYYS37zW1qWL2+dlzloEIN/fAHFhx2GrKTn5PrS0thMcs8l0xs3nNsQZRQVkTG5iNzJXQsQZJQOYOAPf0h86VKaly6hefES6ubPJ7O2YzqljAHtG5qbFy0kvnAR8YWLVvocuZttxrgH7m83bcGFP6Fp7hwyikvIKC4mVlzU+jijpJhYcTEZxcVkjx1L1tB1X5cgPyufyaWT12jdw8YfxoR+E6hsrKSyqZKqxqq2+zCttrk2bc2OqqaqtNuMJ+KsaFjRGgypaW4/qmZx7WJ+8/Zv0q77p8f+BFgaq/zMfB45/BEG5w9unf/C3Bd4as5TFGQWkJ+VT35mvt0nH4e/++X0W+P/yVqVlQslI2FNBvec+QY010NjlQU8GqtCgKMqMq0aRm7ffr2WJhg0xeYlb2j650gNdjR1MsqpudZu4a0lRSM6vKY9f7gVM658k5FZGeRlFtF/2UDmfPQ+Y7fcZnVfuXPOOeecc865DYQHLPqgIVnTKGuq5jvvXMXW87bhsp0vIysjq90yTbPntAYrJDub0u9+l4HfP41YQUF37HJaicZ4WyYoH2HhnOuC7JEjGHT2Wa1/19fX8/TTT0NLC3tvtx1ZtbXEly+npaKiQ9Fuycgko7SUlooKSCToTLo0Uo2ff07j9Omr3L9B55/PwB+09VaPl5cz8+tfJ6OomFhRIRmFRcSKiogVFpBRUEAscis64AAy+7eNamipqSVRW0usIJ9YXt5aS+G347Ad2XHYjitdpjnRTHNLc4fpZ299NpWNlVQ1VVHdVN3xvrGKmuYaCrML261X3VmjeERCE9Q015Cb2X5Ezufln/P4zMdXuf4mAzbhvkPvazftlKdO4bOyz8jNzCUvM6/T216j9mKPUXu0rhdPxPnPzP/Yehl55GbmkpORQ15mHjkZOa1/Jx+vtQLnIpCdb7fVKcjdbzT88M22vxMJG63RVAONNRaUaKq1x0Upxd8HToZtvxuWrw0jNWrblk/+nd2xqPmgird4fZtShn1UTobEmFS8HW/e9W/GbLG1j7JwzjnnnHPOOZeWByz6mEypJz9rPqeN2oz5tQuYP3MB+Vn5/HzHn7dbbsCpp1Dx0EPkbbYZg39yIdmjRnXTHneupaktYCGZ3T/iwznXi2VkkDloELlpCnwnDTr7LAadfRaaSJCorqalooKW8nLiFRX2ONzSfV7qSgIcUbGi9g31iaoqWpYtp2XZ8k7WaJO//fbtAhZVTzzO4kt/2fq35OQQy8sjlp+P5OcRyy8glpdH1ogRDL/qynbbqnr6aZoXLiSWl08sLxfJyyOWm0csPw/JzbXpuTk2MqSw/T4DZMWyyIpldZh+zJRjVvk6EppAtX3v/rElY7lmt2uoaaqhurmairoKps6cSqM2UjKohIZEA7XNtdQ213aouVHXxTRJqeuBBUpqmms6jPhINaxgWLuARW1zLb947Rddet47D76TLQe1pVh8Zf4r/PG9P5ITyyE7I7s1sJF8nLwvyi7irK3Paretd5e8y6LaRWTHbJmsjCxbJ5ZNdkbbrTCrMO0ImFaxmNWuyCmEos4XA2DcbnZbhcbaGnj2ubYJ05+Fu47ksLG78aSez5YSIyYxxjdMYea7bzJ+u5UHxZxzzjnnnHPObZg8YBEhIl8DLgN2BrKAj4E/qOq/VmMbOcBFwAnAKGAF8B/g56q6dGXrrg2DM2fws8H9+ajZcpOPyBzI8f/LYtl71zPozDNbl4vl5THuoQfbNX71NImmeOtjyfKAhXNu/ZBYjIySEhtJMaYLBZiB8Y//B21psUBHVRUtlVW0VFVaQKKyipaqKhLV1eRttlm79bS5mcyhQ0lUV5NIk7YqKnUEXKK2fUO9NjbS0thoI0Qissd1rIVQ8cAD1L78yipfV//jj2foL9oHvKfvuReSkWGBjZwcu8/NQbLD45xsJDuH/id8p12tj+ZFi6h58UVbLicHyc6y9bOzyc/JYe+sMUhONrGibOLjB/PM4mcA2H/X/cnNze20R/5pW5zGkZOOpK65jrp4Xaf3wwqGdVh3ZNFIGloaqI/X0xC3+8aWxg7LpY7qaIg3rPJ/17puRvt1VzSsYHr5qkfjlOaWdghY/OuLf/HErCdWue6hGx3K1btd3W7a/g/sT01zTbvgRjLwlJVh99mxbE7d/FS2H9aWUmpRzSJu+eSW1mVS10netEVBIUuybDTGw6cDSmz2y+zUv4qlZZdSmJnN4LzRvHvHi2y0zfY9Iv2kcz3Z2vht4pxzzjnnXG/jAYtARPYCngIagHuBauBbwH0iMkpVr+3CNmLAI8ABwBvAg8BE4FRgHxHZUVWXraOXAMCc4jk8W5APquz1RTZnvB6nYcltNGZlUXLYYe16BvfkYAUkAxZ2ikrW2kl14pxz64pkZLQW5u6qnAkTmPjiCwAW8KitpaXKghept9TtZo8aSdF++5KorSNRV0eivt5udXVo+BtVYnl5HZ5X67vW4C657dNmaTxOfPEqijYHRQceAJGAReP06Sy+7PIurTvmvXfb/b3k6qspv/seJCsLyc4O91lIVhax7GzIyiIvK5vSbbdlyE8ubLfu0muvJV5ejmRVsDjrKls309b9aeZkJGszJCuT/O23J3fKFFoSLTS0NFBXXU7N66/TFEtQvLQftTVvIVmZSGYm2TRzxbDv00AzjRKnsiSLOppobGmkId5AY1Mdjc0N1NNEcXZxu/1JaIK8zDwa4g1oZ3UkaKs5FdXU0tSl/192RnaHaVVNVdQ2rzwoBvDNSd9s9/fS+qXc+8W9XXrenxX/zAIWWflw9J0k/nUisZollDZ+wAJ5DjgIgE2ytuSzF19h0733WPkGnduArY3fJs4555xzzvVGHrAARCQT+D8gAeyuqh+E6ZcDbwFXicgDqjpnFZs6CQtW3AMcryHnhYicDtwAXAH8YJ28iOC5AYsZv1A5+bkEk+fXA/UAqCp177zbI1M/dSbR3EJbwMJ7YTrn+jbJyLAi3cXFq14YKNp3X4r23bfT+aqKNjSgzR1rTQw69xziS5eGAEc9iYZ6tL6eRH0Difo6e9zQSO6UKe232dxM5vBhaEMj2tBAorERWlrSPn8st/3IgkRDF4MkOTkdRlNoczPE42g8jtbXd7puRmlph2lV/32K5nnzVvm8Q37+c3KnTCEjlkFBrICsmjKW/9hSblWEW1S0DPz4/z5J9tixrX+vuPtullz+a1s3Yz8qMzKQzEzIymLTjAzuysyDjEKyRo1k0M030NjSSFOLBTzq/vR39KOpkBljzn++a7VJMjOQjExObq7gqMQkWkQp22IU83abQFNLU+u6m937LgltYei0hSx980+2bkYMycjkuGl5NJJJMy28NymTRSUJq0WSaKagqpktZimJGBTFPqbqixiSEYNYBomqGWw5M0FCIBGDz0YLGjk+/auVonpICOQ1riAzu8BSfo3ekbv2Ppf/fnQz31q+mP35O9Oqvsbg7IHkZRYy79+fsvGeuxKLeYcE51Ktxd8mzjnnnHPO9ToesDB7A+OBW5M/CABUtVJErgJuw4IRq+oaelq4v0TbJ+i+EbgQOF5EzlPVzltbvqKD3pjJXh+1bzwq2GN3hlx0ETkbbbSunnad0Oa21xHzERbOObdaRATJy4M0Iyzyt9tujbYZy8tj4vPPt5umzc0kGpvQpka0sZFEQwPa1ET2yJHtlsvbdFOGXXUV2hSWbWoi0diINjWjjeHvpkYkTYHqrCFDyd1kE7S52dZvbibR3ARNzSTCNOJxJKtjXY10AZt0Utft6noAZKY8bzxyHW5pQVtabB9TxHJyKMgqoCCrLd3X3AUrqP3kCwBSq3NkhxvAxDHbcPjWZ7ebP/W0zUIAaRZlvNpu3n6Rx2cfdj1Fe+3V+nf1668z/y+n2B+P3sKCyLK5wM8if5c/dSPNMSWeiNOcaKb4Hw/T/8GXwty/2Gv461/J22QT6rOnU9y/kZuGlvLbUQmOXnIrR1ScT2Yskwn5G/PBv55lm2MO6PB/cc6ttd8mzjnnnHPO9ToesDB7hvun08x7KtyvNG+BiOQCOwBfpPZ2UlUVkWew0RXbAatOHN623ZGrWGRE8kFd+Ux2/nwZi8LfWaNHUXzKaWRsvx1z4nGYNq2rT9sjzF+4iH5VVg20rjwB01ed87u3aGxsZPlyK7I7Y8YMcnI6pv5wPYsfs97Jj1s3icVg4cKO0zffrOO0NMpmzGh/3PbZG/bZu90yyT7+0XB2fUsL01OuFfFfX24BkXgcmpst6NHSAvF4GLXRgsabWTx0CMsj6yYqKqk7/jgLOMTjYZ0WaIlDPDotzqwli4nVt4UX6uPNVE+ebNsPAQvicQsmJP9uaSEjO5tEyv4uKy+nsQvBkprKCqpT1l3cxVEs8UWLyY2s2zBvHsu7GKAZ2TgUIiMsKpqKWZy6bnk5vPYaE7G8mAAzh8DvjppG5rz/saNMBmDFs0v5dNNPiGWGoxj6eqQWZQdaR92IiM0P9yLSul66daOjdVa27qqeE2hN4LW66yafM7KTne7vWn2tXdjfuXPnRjfhvUN6jj3D/Rr/Noland8Ts2bNon4lI9lSxauWd3lZ131Sr43rip8PPZ+fCy7KzweXtL7OBfDzoTdYnfNhcfuU0Wvt94Sk+6G0oRGR+4Ejge1U9d0086uBclUdvZJtbAp8AvxHVQ9LM/8C4PfAKap6y2rsmx8g55xzzjm3rn1NVd/p7p1wa+e3Scry/nvCOeecc86ta2vt94QXBjAl4b6yk/lVkWW+yjaiyznnnHPOOddTDO7uHXCt1sZvE+ecc84553olTwnV862qSvZo4LXweEdol3ra9VxDgbfD468Bi1eyrOsZ/Jj1Tn7ceic/br2PH7PeaQTwRnj8eXfuiFunVvV7IhuYAiwFlgEtK1+8z/LPMZfk54KL8vPBRfn54JL8XDAZwKDw+OO1tVEPWJhk76XOeioVA+VrYRvR5bpEVeevbH40XzGwYFXLu54h5bgt9uPW8/kx6538uPVOftx6Hz9mvVPKcetYGd51l7Xx26RVF9+PM7u6vb7KP8dckp8LLsrPBxfl54NL8nOhnTmrXmT1eEook6wmMjF1hogMBQojy3RmJpBIt42UbfedytHOOeecc865tW1t/DZxzjnnnHOuV/KAhXkp3O+fZt4BKcukpar1wFvAZBEZE50nFnbbD6gFvJihc84555xzrjNf+beJc84555xzvZUHLMxz2AiJ40Rkq+REESkBfooNkf9nZPowEZkS5kfdFO6vlvZjg34AbATcFQIbzjnnnHPOOZfOav02cc4555xzri/xGhaAqsZF5FTgKeBlEbkXqAa+BYwBfqyqsyOrXA2cBHwXuC0y/XbgaOBYYJyIvARMAL4JzAJ+vm5fiXPOOeecc643W4PfJs4555xzzvUZPsIiUNUXgF2B17CgwxnAEuAYVb22i9tIAN8AfoVVSD8f2AW4GdhJVZet/T13zjnnnHPO9SVr47eJc84555xzvZGPsIhQ1beAg7qw3MnAyZ3MawQuCzfnnHPOOeecW21d/W3inHPOOedcX+IjLJxzzjnnnHPOOeecc8451+1EVbt7H5xzzjnnnHPOOeecc845t4HzERbOOeecc84555xzzjnnnOt2HrBwzjnnnHPOOeecc84551y384CFc84555xzzjnnnHPOOee6nQcsnHPOOeecc84555xzzjnX7Txg4ZxzzjnnnHPOOeecc865bucBC+ecc84555xzzjnnnHPOdTsPWDjnnHPOOeecc84555xzrtt5wMI555xzzjnnnHPOOeecc93OAxbOOeecc84555xzzjnnnOt2HrBwzjnnnHPOOeecc84551y384BFLyYiXxORJ0SkQkRqReQNEfl2d++X65yIzBYR7eT2Ynfv34ZMRL4jIjeKyDsi0hiOyckrWb5YRP4gInPC8rNF5HciUrged3uDtzrHTUR+tZL3n4rI2PW79xsmERkhIueJyNMiMldEmkRksYg8KCI7dLKOv9+60eoeM3+v9QwikhveNy+LyEIRaQjH7TUR+a6IZKVZx99rrs8REenufXA9g58LzjnnVsavEz1HZnfvgFszIrIX8BTQANwLVAPfAu4TkVGqem137p9bqUrgT2mmz16/u+FSXAGMAZYDi8LjtESkAHgJ2Ap4GrgH2Br4MbCHiOyuqg3reocdsBrHLeJ20r/fKtbaXrmVORu4CJiBvX+WAROBw4HDReQ4Vb0vubC/33qE1TpmEf5e616FwBnAW8Dj2HHrDxwE3AIcIyIHqWoC/L3m+iYREVXV7t4P1/38XHDORSUbpv1zwUUlzwcRyfXvvd3LAxa9kIhkAv8HJIDdVfWDMP1y7EfpVSLygKrO6b69dCtRoaq/6u6dcB2cCkxX1TkicjFw9UqW/QnWoPMbVb04OVFErsEa9c5fxfpu7Vmd45Z0m6q+uG53y63EW8CeqvpSdKKI7AY8B9wgIg+ramOY5e+37re6xyzJ32vdawVQoqpN0Ynhe+QzwP5Y8OLxMMvfa67PUVUVkV2AU4AfqGpzd++T6x7hXIgBvwNeUdWHRSSWDNo65zYs6RqmRSTLrxMbthDIuhLIFZFL0vy+ceuJp4TqnfYGxgN3J4MVAKpaCVwFZAMndc+uOdc7qeqzXQnyhQvYqUAN8OuU2b8O009d+3vo0unqcXM9h6o+lNrwHaa/AryA9QDfHPz91lOszjFzPYeqJlKDFWF6HPh3+HMC+HvN9V0hQHcjcDI2YsjTPWzYjseCr98B+5zs3t1x3SkEsNwGTEQuxbKUTAFQ1WYx+d28a6777IB11NnPgxXdyz+ge6c9w/3TaeY9Fe73WD+74tZAjoicLCI/FZGzOsvZ7nqsicBw4DVVrY3OCH+/BmwkIqO6Y+dcl+wuIheJyIUicrjnZu9Rkj2a4uHe3289X+oxi/L3Wg8UGmgODH9+Eu79veZ6tXRBCBHJCAG6f4ZJB4Kn/9gQpJ4Pkb8fxdLzbiwiE9b7jrkexQNWGzYRyQMmAYcB24RpJwMtwDndt2dufVhJwPJt4D1gUxHZNSzrHR26gaeE6p0mhvvpqTNUdbGI1ESWcT3PUODW6AQReRs4VlVndM8uudXQ6fsvMv2AsNy89bJHbnVdlvJ3hYicq6r/TLu0Wy9EZDSwL1aL5OMw2d9vPVgnxyzK32s9gIhkAz8FBBgA7ANMAW5V1efCYv5ec71WNK1PMrVHmNYSFnkdqAImiUhBalDO9R3JOhUh/VN2cpRZ+Fuw+o9PAfthQdovu3F33XoWzgGJfF5sAZwLXKeqH3brzrnu0AD8HOtR/7Mw2mIS8Dww1VPG9U2R60Qi9TtB6OjQIiL3AttiHcFf9Y4O3cNHWPROJeG+spP5VZFlXM9yK9ZQMAQowIam3wF8DXhORIq6cd9c13Tl/RddzvUcHwLfAzYC8oBxWDFhBW4Tka93475t0EQkC/sszAEuijQy+futh1rJMQN/r/U02cAvgUuBHwKTgd8D348s4+8112uFRodtReRfwLmhMSIhIhlhkeXAAmAvLHDnvSX7qEhO+suAf4jIduHvzDCvCZiKpTLcIszL6GRzrg8JDZHJRsp8ESkFDge+Cxzoo0A3HCnFtmuxUcKTse845wMnqOojHqzomyLXiUuAj0TkqPC3RH7PvIt9950iIjnds6fOR1g4tx6pampv0w+AE8M18wTgNOAP63m3nNsgqOq/UybNBv4qIlOxArRXYKkC3HoUhuPeBuwO/J+q3tG9e+RWZVXHzN9rPYuq1mC/w2JYj+LDsJpnO4nIwapatdINONc7PAiMBnbE0nn8HkgAqOrnIvI5cARwCHBfd+2kW/dE5ETgF1iQfKyIHKSqtcletSLyWlj0OOCvKQF310clj7OI/AI4iraG6gRwJPA/4OVu20G3ziV7z6f0lj8S68i9HDsXPlPVRWF58Z71fZOI7IEV1ga4QUTmA29h3x8AFofbAUAW0Ojnw/rnIyx6p2Tvt856uRXTeQ851zPdGO536da9cF3RlfdfdDnXw4WUKDOAzUWkeFXLu7UnNKDegjUa3AmcnrKIv996mC4cs075e617hSLc81X1Bmx0xS7Az8Jsf6+5Hq+zOhXh4T/C/UfANSJyLDYCLOmucL+HiGR5o0Pvt5JRMs8DS7CRFCOBB0RkZPKYq+qzwOfABK8luOEQkZEi8gyWrvJdLDXYw0ANlvrlSBEZ1H176NaVUEQ7Fgla7S4iZ4vIjuE70dHAj7EsGN8WkSHdub9u7emsToWqvoRdB6Zh14s7ga9H5n+O1XkbCHxj3e+pS8cDFr1TMr9whzoVIjIUKKTzHMSuZ1oe7gu6dS9cV3T6/kuZ7u/B3iX5Hszv1r3YgIQvkLcCJwH3ACenGXrt77cepIvHbFX8vdYzPB3u9wz3/l5zPVq0Z2MySJGSvuFTrOHxDawj0P8BJ0c28TlWf2Uy4ClY+4AwWiJde0YzVjA1htUn2Af4vYhMhta6Pk9ggdgR62l3XffbI9xuwFJZ/kpVrwW+BbwDfAfYuRv3z60jkVRgm4nI88Bj2CisX4hIjqp+APwbC2B9G9g7uV437bJbS8Jxz07+HYJXyY4ODwH9sM+ABPBbEdk7snqyo8OOoSaSnw/rmQcseqeXwv3+aeYdkLKM6x2SvXtmd+dOuC6ZDiwEdhGRdgGm8PcuwCxV9aKkvUQ4bptiQ8OXr2JxtxZEGr5PxFJznNBJSgZ/v/UQq3HMVrYNf6/1HMPDfXO49/ea69FC4/S4UKfi2GRNAhFJpjiehX2ujAYuwGrp/EpEvhvmrwBmYqnsiqHznpeudxCRC7B0g8lARAaAqi7BRvOVYIGqM7HfyH8J85vC9Gxg1+i6rndbRW2aE8P931V1afL9H0Z/XoOlEPueiIxdt3vp1qfkORFG3T2HBSn/iAUmDlfVRoBQePmP2HlwgohMCOt5Gv1eJPUzQETOAF6P1M+LdnR4HxgEjMLSxNUAd4rI1mE7U4H5wMa0H7Hp1hP/ktY7PYd94T5ORLZKThSREuCnWDGxf3bPrrnOiMgUEenQo1REpgC/CX/evX73yq2uEFn/BzaS6Rcps38Rpv/f+t4vt3IiUiQik9JMz8OOVxHwL1WNr/ed28BEUgqdCNwPfKezhm9/v/UMq3PM/L3Wc4jIJp1878inrV7WE+DvNdfzdBJMOBrLN34NbaMnknUqPsAaFrbBclCfjjVG/E1EDlPVxcDrQEbYDl5QtXdI6RGbnLYF1iP+dOByESlW1ZZI4+J/gWHANqr6D+C3wK4i8s+QkvBZrGHyiMi6Xoi9l4oEqzr0gBaRDBHJwjpL1GB56QE0csxfxc6ZA4D9oz2yXe8WAttFwI+AOuBs4ApVfVFVm1MWfxe4CesYfJhYzYs4gFiRdtdDRdJ+aWTaYGAC9r3gbyIyKeW6/wX2efCt8B3ih9hnxD+xUTYzgbnh8aCwTW9DX4/ER7X0TiKyF5Z3sQG4F6jGhjKNAX4chje6HkREfoVdKF8G5mBfmiYBB2OFfK5W1Z922w5u4ETkVEIvK2Bz7ML2GvBlmPZq+MGT7G36GrAlllbjvbD8/sDbwB6qWr/+9n7D1dXjFnpLzcSOz1Tsy8kQYF8sv/HHwF6qWrb+9n7DFD4Lf4l9IfwzVvAw1cPhi6O/33qA1Tlm/l7rOSLfO17FRnBWYT0LDwIGAK8AByTfP/5ecz2RiBwHLFPVZ0KD0X5YSroWYN+Qhzq57KlYupdNVHV6aNT+C9Y78nRs1MV0LA3EKarqNVl6ERGZCByqqn8Mf0/Bju8+wO3AaZHGxTxsFMV/VfUHIjIAC1T9NSx7DpY67NvA11X1ifX9etzakZIubi9gR+x7yLuq+mVkuXuwc+AkVb0jNG4mIvN/BPwe6xx6kaq+tz5fh1t3ROQobHTw9yO/59MWUA4jth7DOgGfgV03DgNOAC5O/j5xPVO4LlygqqdFpv0ZC1S9gR3DlyPzXsDSsh+kqmUisjUWvKzAfrucBFwO/FxVr1pvL8QZVfVbL70B2wNPYgUQ64A3gaO7e7/81unx2gO7UE4Lx6wZWITlSty/u/dvQ78Bt2E9rTq73ZayfAk2bHQu9oVmDvYlt6i7X8uGdOvqccPSP/wVeAtYGt5/VeFz80Igr7tfy4Zy68IxU6w2QnQdf7/1kmPm77WecwO2w3oKfgKUh2OxHCtI+30gM806/l7zW4+4YZ165mAjKJ6Mnq/AT8L06VjPyOT03cJ37F9Gpg0FPsOKap4azv8PgVHd/Rr91uVzQbAREgmgHgswJOeNxgLhCeBaYFyYXoL1kl0I5ESWvwrr6PcA8AMsAH968nm6+7X6rdNzIDvcxyLTop8Jw4BHw3mQvE0Fdo4sc0CY/jRQGKZlAFnh8d6RdS8F8rv7dfttrZ0/fwjH9Rup506aZQVrpE5gnW5ewzqa1gHbd/dr8dtKj/MVkffwuZHpJcB1WGfvN4FdIvNOC9eBiZFpR2FpJt/CRpcnsEwopd39Gje0m4+wcM4555xzzjnXY4jIkcC/sJEUVdgI8lvDvAzgIuDHWIDiJ6p6v4iMwnrGLgaOUtXqsPweWEPG14AFwDhsxNArqb2sXc8jIgOx47oDFkh9DjhS20aH7YmlrtsDuAP4nqqqiFwCXIz1qH84LJsBXImNsFiEnQuPqurhnfW4dt0npF/5HZCLNUDGU+ZnqmpcRK4GjsFGz3yEjQ78KRbU3FZVa8Lyz2KBiV+o6pWR7QiW+nIi1jg5AthHVWev21fo1qXk57uInIcFLc4Cbkh9n6e7DojIL7ERpkXA7eoZTHo8EbkRC0BUYjWKhqlqVZg3HBtlcRGWCmpvVV0kIrtgnSL+pKqXhmUFOBCr3dcClGKfK4ep6tL1+6o2bJ5/yznnnHPOOefcerWKmgENWKHs/wL9ge+LyBAAtRo6fwV+hqXDvUlEtlMrCv8WsBmWgo6w/EtYcOM9rIEa4Pgwz4MVPV8Vdj68i/V6PQhLzwKAqr6IBSA+wXpGJxsW78caGyeLSCw0SrZgo8h+Rdu58HURGe3Bih4pGzgF+C6wRXSGiOwDNIX0h9tjKb6uVtWHVPXnWAP1ROCSyGoXYAGJX4vIuSIyWkQ2Bs4HdgKuB/6NnRvbh+fx2ia9VOTzfS42SmIXbCQw0HZsQ1AjW0R2jqx7GRaw2D4ZrBAvwN2tVvZeDMHNJVgg+gMgDxuZl0z/tVBVL8FSSk4GbhOrB/wxMA/YTqwmMGqexK4zBVjB7a8R+V7h1g8PWDjnnHPOOeecWy9Cccx2vdnTFLJ8AWtweBXr+bwDltIJAFWtUtUbsAaJEuAWEdkb62E/HEsV1NrApKpvYj0vy7FUQV43rodILaidMi+mqk1YAfUBWO9YgDNEZGRyfVX9FEvdMRM4T0SuwFI/PY3V6mkNTKnqElX9LXAXlnbsm6o6dx28NPcVqWoDcAiWdjK1pkQG1gh9IVYr67eq2hgpmP1/wOvA+SKyWdjeh1gqsBlY4Oo97DPm91ja5vuwURlgDZR4IKv3ijRwv4fVLzgS+IaI5ELbsQ2j824B/iwihcn1VbVWVRtC4XZJHeHj1p/wOZ/2vRiOTQL7PM8B7sSCEN8Xkc3CiLvcsPhPgJux2kd/xT5H/oPVbxuass1nsBp+zwDHp/kMcuuYByycc84555xzzq0Xofeiisg2InJWmJY60iEPS9uwK9Zg0ACcFgppE2mUvBJL9zQBK8C8Jda4fWLYbrIIcyw0ak9R1ZNVdUWaIInrBqraEkZAnBUKpkbnJc+LadhomrlYQ/OWWCH11vVV9SNspMWbWKPU5Vj++R1EZKPQizoWOe6nqeq4ZLoo132SQat0PahV9TVV/ZeIjAyjKpLTn8YaHrOwFDA5oVGzKcz/AksRlYnVpEiudzNWTPcvWEDrVawO6NfDCJxkw2YycOF6qWQDd0jtdRtWW+1K4BwRyRKREhE5ELgGq3HyCFbPIHU7LR646l6R68RVIrJf5DMjFjk2r2LpmxZhIzDBalcQAk+iqguAy4B/ADsDD2EjMoYBo8I2M7BaJgDXq+oBqnpPmOcjrtYjr2HhnHPOOeecc269EJEcrDfrsWHSpcCdqjo7NDi2hOVewEZP7Ib1rP85cJOqnh7mZ4RGjBIsN/mvgTIslVQlVsdiTprnF6x4b8u6fJ2ua0Qk2VCYjTUcnaOqr4Z5yWN8BFYo+zgsIPERNoLicFV9W0SyVLU5BCO2wGpejMAKL5diqYKuS3leCYGzTO853TOISJ6q1otIbhhdkZw+BAtWzcLyyE8P0ycDDwOTgI1VdVpobNQQoBoA/B34FnCIqj4Z/YxJeW7Bel3/BSgE9lTVGev0BbtV6ux4rcb6yfd5PvBN4AYszc9crCbOQCxI9UtV/d3a2Ge39onVonoGC0AuBG5J1pyILLMp8BI2wuJ8LICxE1bz6KHkdSIsG8OuEwdhwcmJwB2qelInz/+VzkO3ZrxXiXPOOeecc865ta6T3oilhJRNWBHsXwA3i8jQlAaB17Bc8k1Y4d25wHdE5KDoxlS1Uq2A7j+w37cTw20caYQBHt7w0AOERqNRWLBiKVZ/5DYROQda65WApXNpxIqozsZSgQ3DAlUkgxWqmlDVD4CTgS+BKVi6oImhwbJVpPe1Byu6mYhsKyJVwJ+hNRUUIrKziAxR1SVY+pZJWHFtwnJfADdhvaEvC5MTIVghqlqGjbJYAvwyBETSBSt2woKi12GfG9diwRHXjcIxTAawdwnnyUbR+avaRuR9Xqeqd2JBqcuxRupp2MiL8clghY+8636dHNd5WLCiGmjG0gL+IwQzAQijKMuBUeG4/z7M+kOY3xwyUmaE0Xs/xj4fJobltgvpwTrw7wzdw9+MzjnnnHPOOefWmtAoEE3VEG2EWIylcWrA0jfdj6V0ejIlGLEYK5q8p6pWY4WS84GzQg/slmTjQ1j+l1jQAizY4fmme4hkI2BqQ1RoNHoUK3QcwxoPZwJ/FJGficiwsGgeFtzaLfx9LdbYeLSIHJ76fKr6HJYS5PMw6UlVrVuLL8mtXUuwVDzfFJEhIrKpiHwO3AtsGpa5Bmu0PEEixZGBW7Fe1UeLyC7JUTOR+f/FelJvj9XDaCVWaPlBbJTGpUAN9nnzpzRp6tx6ED7Tk8Wwk6kDXwNeBN4GPhORG0Vk3JqkaVLVt1T1V6q6HzYK70equkja6lT4ce8myWt5OO5ZkemZqjoT+wwowtJF/g74HnCniGwe2cw7wFZhO//Gvl+MFpFLwvzW0ZWqOhX73vB4mPdzVZ23jl6eWwMesHDOOeecc845t1aE3ovJlCzbicjdItI/0tNVgf9hjZF7YwVwTwYGA/8UkZPDpj7Bfq+Whr9vxxomDyLUqAjbSzY+LMJ63m+sqoeqatW6faVuVSINj8lGwA4FtlV1KW1pWkZhvdz/jKX4+r/QK34m1nN2gIj0U9V6bGRONhbAKtK2GhXJoMi/sRQwGar6xLp7le6rCJ8X84Ezsff628DHWEDz9+ExqroMOycmYEGLnDC9AvgboLTlq4+HRs9YGEFzA5Y+7IHI84pavYvbsVEax6jq9qr6RrTR3K1f4dqh4b08AkvvU4Cl6roCu3achl0rhq1kU115rnporYPgdSq6SeQ6kRxN8xvgD5HRE8nrxy+A5cD+WLqn44BtgUdEZN+wzEKgVES2C39fgwUiLxeRQaGjQ+t1SFXnAkdh14l/r6vX6NaMByycc84555xzzn0lyV70oUGgRERuB94C9gLGR5cNwYS/YekdjgTmYIGIj4BbROTXWOHMeVgDZTLQ8YuwidNFZGRo2Io2PpSp6hcpIy9cN0k2AIrIUSLyNPC0iDwiIgel9IJ/A+spfwCwlar+CGuc3g94RkR2xwIQU7D6JKjq/Vjv+b2BkyJP2ZrqSVW/SNPj3vUsyUbiTcL9cKxeyWFYwdtlkWVvx0ZPHU1ktEQIRNwDbJ0MeIZe2Ykw/31VfTRMTx3l86iq/iIyP5ZsNF+7L9N1lYhciAUtL8HSAJ0VRkJcih33fwO7AD8Vq1Pylfioiu6ROhJTRI4VkfnAhUALIVARgtGZIaBxQVj9l6p6LxaUbgbuF5HvAS8DxVjAE1V9H0snlwH8Jqyb+t5u9OtEz+QBC+ecc84555xzX0my0UdELsJSvByCNRB8A3g3zSofY0GLjYHzsALJhwH3Ybml78IaGbaPBENexdI+bRWWSZtbOrQ3es7pbiYiA0XkbuyYDsaKqO+NpeD4S6SXfA3Wy30u8F0R2V5Vf4k1TE/G0nochKUE2y3yFL/AUgn9SEQmd9bIrF6nosdIBgzSjL4pwdK5xICNVHWeqsajjYhqBXN/CfQDTor0wAZrlFyM1cPptJB6ykivDvvljdfrT8qIqOS0fth14BRgD6y48qthXo5aardfYymiTiCk/3G9T2Qk5pYi8j/smj8VOBa4MhqsTL6fVfUOrCPEfiJyiqq+CByOfXb8AzgHq2nztchT/TFs92QR2TX1PR4Ncq+TF+rWmAcsnHPOOeecc859JSKyk4jMBa4CHsIak65SyxneoSE5pGO5C/gAa5g+NDRGnYal/tgY6209D2uoTrom3A9MNni7HuvIcPsT8G1V3RbYCesl/wPgskhal2lY2pdxwCkiUqyqDwOnYg1UuwJVWBH2ZEqfd7FgyFisEdv1UKE3dWZnAQOsN/1uWKq4bUTk/DA9tXHxeSxN0KHYuZWc/gbW834+MGZ1Uzr5iIr1KzkCJvRsLxWR4WFWFVZ/pgqrX7IsLJ+lqo0AqvoBdo0pxs6DVRbLjp4PYrVLMlOnu/VLRDJF5AasllUpcDY2mua+ZLAiGuCMBC/PDfc/EZEharUovofVtdgLqMOCFskRU8uA/wvrfOUROW79Ef9cds4555xzzjm3pkQkF7gaa0i4G/hpyA2dbDBIhN6xjSnrxYDvYMWWHwTOVdWFYd4hWA/be1X1vTBNQgPXRmp1DVwPFBqZirGUTSOBMeEcSB6/7YDLgd2BS1T1L2G9MVhqn0lYw9W9YVv5Yfn3gYfDiIzkcxUBTannlus5xOpUJPPTF2I1a/oDZcDjqjoncm5sDryCpYvbXq0gcizaK1pEJmG1Lj4Bvq+qnya3HT03XM+TPM7hcQHwc+xzXoCT1VL6FWIBrEuwNGCnREbwJc+TicCHwAJgCw31KFbxfDFgB2BP4C1VfW4dvlS3CiIyELgDSwX4U1W9Js0y/VW1PPJ38vvEP7HvDr9R1Usi83+ABbleUNXylOOfFUZpuV7CAxbOOeecc84559ZISiP0n4FhWIPQPGBLrIFodywl0FvAI6r6VmT9gcDNWCHN81T1xsi8lTYwRBtCXc8SGiM/xdL07IWNjEimABHsnLgPq1Vyuqq+GXrQfhMLWjwOnKlWkBkRyQJaOkvZs7I0QK5nEJGzscBTEZajPgs7R84NIyeSy10FXAz8TVXPTvc+F5FLgV8Bv1PVi1Lm+bnQw4nI8ViR9AQWiPwQO96zw/xNsREzceB7GoqhJ1cP9x9ivel3BhLRUTLRhurw90Qs1dRpWJq5U1T11nX3Cl1XiMhuwGPAC8APsUDlQdhoq73C368D96jqO8nPAhEZjBXYrgV2U9WPwvZi6a4Rke8p/tnQi3hKKOecc84555xzayTSKPQuls5lFFY081iskPINWABjZ6zH7Isicmpk/eVYw1Uc+I6IbAytDQ8r7Q3pwYruIV0raJ6P1TLpp6r1qtoabAjnzJvYubElcKiIZIeGpOewossHAkckN6aqzZ0FK8J8b4TqoURkiIj8AwswPIelA9sSC04NAK4ODZdJvwW+BL4nIjtGRmcMEJGNwjLXYSOzbiSFnws9m4jsDVyL1RU4FThGVS9MBiuCL7C6JFNoSxGXlMAatKdgjdbaWbBCRAaLyHHYefJ7YCmwlQcr1r0uXifewb4nHIKdC9dgo2qOxmpYjQXOBx4WkR1oK8S9FLgUC35enNxYZ9eI5Pngnw29iwcsnHPOOeecc86tsUgD0X+wnvE/BP6JNS4cCGyPFUc9FcgFrhORCZFNvIE1WuwMHAVe/LYnSvZwDj1cc0TkBBEZFOa1a1sIecOXAJNE5OthmYzI/AYsMDENO0dGh+llWC2LGuAYEdky3fZd7xCO24HAt7AAw0WqerOqfo6ldKoENgdOFJF8AFWtAH4D5AHXhEDFgVgtlD+IyMaqWqGq31PVmV6HoPcQqzv0EyygeZGqPqKqK0KNgtbjGBqWHwBewgpwXxsCX/1E5GDgMizIfUPqtSL0pM8TkX2xuga3YWnmjlbVPZK98d26sZrXiXrgJmAuFtA8GTtmU7DvA2Ox4OTAMH9sZN2rwnrHpLvGuN7PL/rOOddHicieIqIi8qt1+By/Cs+x57p6jt5CRMaG/8Vtq7ne1iLSEnr/9EgicmrYx827e1+cc871PJHei7OAfwEfA39R1W1V9WlVXaCq01X1Fqwody5wAbQGO2qxRoslwAWhJ6XrYSK9lr+N9VS+lTQBpkij0e3h/geRVB7RxuW5WJ2LbWlfDPVdrEjqTsAJ4RzxAFYPlmyITA0ehOOWC1ytqheo6gyxosfXY8GqTOx9/00sZU9yvZuB+7HUYVOxz5XjgdfViuy2Pm+0d73r8QZhx/Q5VX1NRGLJgHea47gIC1I1Y0GLV7HPhhuxz4yfqOrTqU8Qfq/8AivOfixwhaqOVNX719WLcm26ep2I+BL4Izaq5iBVvVRVVwAVarWJfoelD9wP2CJsOyes+6Nw/8vwWeCjLvsQD1g451wPISI7hgbv/3Yy/09h/uedzD8vzP/1ut3TNRc6z3xHRJ4XkTIRaRKRJSLyvohcLyJ7dPc+doM/AJ9jaTTWKRHZLpwjZ63mqrcDc7AvjM4551wHkYbKp7GgxB/D9GRDZmaY/1csf/1BIjIw0kg1DUsT8ntVfXO97bjrMhEpFpEfAf/AGpqbgaPFiiC3Hutko5GqPoil/DgIa2yGtvzzqGo18Fn4c//I9HqssfFu4GZvkO65RCQjGlBKSc2TDFzdhqXjQUT2x0ZWnIClBPsOlkKuPxacGhnZ/M+wwOb/wrIDVPW30ef3QFavk40FsLJFJE9VE529v8P0V7DPgiYsuHkhljZorKr+BToGybDPmoux0RnDVfXydfJKXFpdvU4khdSP/8ZGZr4VGaGR7AixAHgNa78+IKzWFOY9hI3AOM0/C/oeD1g451zP8Q42/H2XyI/6qL0ABSaLyNBO5gMki9a9BWyMNQz0FLcAd2BpIR7HGibuASqwnjOnddeOdQexHK57Ateupy9Z3wj3j6zOSuGL5B+BA0Rkl7W+V84553oMETlKRJ5IjqrraiqeSOPCcuABVZ0b/k5e31rC95sGLO/4ImBFpHGiCfiDqvbYjheO3bFG5BrgSGwUxG5YL+bUURbJRsTLwv0FIjJMreh2hohkh+nJ9CzLw3rJoMfHqvodVZ3qKX96htTjkOzRHFLw7CwiN4nILSLyFxHZPhK4agzHfSDwUyw4cQHw8xCc/BBYgPWa/3Zy+6r6par+EThWVS9S1XIRyfTzoVdrwAJWI8KtnTQB7nKs4bseGA98oKp/U9WySLAs2aM/eV7cA2ytqkeH65Fbv7p8nUhS1YWq+ryqNqQEPZPXieXR+/CZkxEen6eq73X1u4rrPfyAOudcDxFydb4CFAJfi84TkQFYftd/h0l7pcyPYV8EGrFeSKhqnap+3lO+qIkV0zsZ+ADrFXOiql4SvmTsBQwBru/GXewOZ2BfwB9YT8/3DeA9VZ23Buvei+WKPX3t7pJzzrkeZnss5/yRsGY9mFPTMkRSfsSBXbHC3AuxjhjR9VIbnlzPUoN1PNlJVZ/EGqIWAcclOzREAg7JANbjWD2TzbFRpYRG7qawzYPD/Zwwr9355il/upeIDEse29TjEIIQ/UXkn1i6nsOAr2M9pd8QkdSe7UdijZm/UdWbVLU8TK8DSoBSrJbFduG5k8HMuvB3TFXjfj70atVYp7otgL1FJBfaGqaT5xRwq4hsHY71B9gImwOAb0Yaqlui50LkM+dDVf1wPb4m116XrxOpku/5yHUkeZ04Ity/lVw2+j0jOsrL9R0esHDOuZ7lhXC/Z8r0PbAh9NcBK0gJWABbYr2V/qdWxLDTGhYiMjvcCkXkzyKyUEQaReQjETky3U6JyCgRuUdEVohIjYi8JCK7r+Zr2ync366qVakz1YrnvZ7yvLeF17CRiPxERKaLSIOIzBKRS0Ukq5P93V1EHhOR5eG1TReRKyQU8/sqy4fePBeJyJdhX74UkUtYzWtq+DL+DeCp1P+HROphiMjGIvIfEakQkfJwHAaG5XYSkedEpCrM+4eIFHTyfOOwxoJHItNKRORyEfksHNeq8HpuF5Ex0fXVime+CBwpIoWr81qdc871KldhuaRPlJCqcU17LkYaHFUsb/03sO8ys4BfhyBGh8ZHb5DsmVT1ReAyVZ0TJk3FjudELJ1PTmhwTDY6JQNP5wLvYWlB7hGRXcL3mx9iI2yfAZ7r5Dm9EaqbiMhwbOTDn0VkVJiW+llwOVZQ+3dYsGIzLF99GfBzETk98r0x+R11Wco2TsPSo/4Ta8gugfQBkrXwslw3CY3K1VgHvHnAJcDh0NYwHYJVN2C/ffuHefVYHYTpwHGkdOxzPcvqXidS1tVo8EFEJojIb7GRV3eo6n86eU7/ztAHecDCOed6lmTAIjUgsRfWE/8NbBRGuvnR9VclC8sxvT/wIJYbdDzwL7Hcsq1EZBg2auMYrFdDMmjyDLBjF58P7IcLwKTVWCfpT8BFwLPAX7CRJJdhQ37bEZEzsIb1XbC0U9cB87Ghqc9I29DSNVoeKwp6DXYN/RvwFFbw68+r+Zp2x47DGytZZhzwOpCDDYf+EDsOD4vIrtiP+5qwTzOwH/1/6WRbh4f7R6C1EeEprCjdirCNm4D3sR+cE9Ns439Y3tmdu/D6nHPO9UKh1/MVwBgsaJHfWeNCF7alIpIlIvsAV2LXqP5YsOKDtbnfbv2I9IpPjg6+EyuEeyRwaMqyKlZsuxL4PnAzcDT2XfZt7HyYB1ygVlzV9QAi8j0ROR/77n4T1jEqXXH1LYAzse/Rv1TVt1V1sVrtkh8CM4HzsSAG2DGvwXrJbxU6JJ2D1bN4UlVPAwapatrglet+Eopkf8XNPIWlmi0BbhGR34nIySJyDfB3bNTVzdhvoKSZWCrhrbDrUu5X3Ae3Dq3OdSKNHBEZLyIXYNkXfoy1AXgtkg2NqvrNb37zm996yA3IwOo51ABZkekfA8+Hx+djKRRGRuY/GqbtFpm2Z5j2q5TnmB2mPwxkR6bvE6b/N2X528L0n6VM/36YrsCeXXhtI4FKIAHchX1hGbOKdZLPvTTl9WZjhdQU+FZk+iZYYa8PsMJ80W1dHJa/4Cssn/yffgAURKaPwHqLKXBbF4/1b8Py+6aZNzbyvz03Ml2woIpiOV2/EZmXhQU0moEhabb5IjAr8vfmYTv/TrNsDlCYZvrXwzqXdfd7xW9+85vf/Lbubtj3keeAKuDoNdxGDOsMUIGlg6gFHsPSQnb7a/TbWj1fjgnf7x4FhiaPfyfLHoV1QvkdcGRkunT369jQb1jnpafDsbwF6Ielb1uK1RrZOiyXEe4PC8v+IPydHZmXi3WKSWC1KgAGYZ1+EthvgiXh8XNEfhMkt+G3nnWLHpfo74TVee8mlw3nx1HYaLtEuFVjNR1372Td4VhAY/vu/l/4bY3Ony5dJ7AOgY3h+8cM4Hvdve9+656bj7BwzrkeRC0X48vYkOntAURkELAp1uAM1lAPYVSFtNWvqAfeXI2nO1/b8kKi1ptpDpFhtmF0wdHYD5VrU9b/BzY0t0tUdT42ZHweNpz3fmC2iCwVkfvEClB35s9h/eS2mrAREGB1MZJ+AGQCZ6tqGe39FgsqHPsVlj8x3F+uqrWR/VnA6o+wGBnul6xkmRnYiI/k8yhWSwLgfVV9JDKvGauFkYkFYlqJ1UDZlfTFtutTJ6gVR6xJs2xyX0emmeecc64X6iQtQwtwKVZX62QRGRGW7fLvR7We2B9gIzkfAPZR1cNUdXZIr+h1KvqOJ7GOMAfRSe0TCUV0VfV+Vf2Nql6oqg8k54XvOK6bhO/8lwHbAT8BfqeWrnUe8BtslMR3JBTaDquNCveTwL6fq2pLSOnSgP12qScU0lbVZap6MfBz7DvpG8CJqrqPtqWPQVNq4LieIRzb/iJyA/CCiDwiIjtivz26dH1Ivs/Viivfj3Wg2gn7XXuwqm6nqi+LiaWsu1BVT1fVtzpu2fUCq7xOBHdgIyvOAiap6i1gaZnXz266niKzu3fAOedcBy9iPZb2Al7DevULbQGLD7BeSXthF/StsB5Qz0YDEKtQoaqz0kyfT1utCYDJWA+Y58MPj1Zq6SFeI33qoLRU9VkRGY+9pt2BbbGG9G8D3xaRq1X1p2lWfSXNtP9hRaC3jkxLpqg6IKSfSNUMTPkKy2+5kv1JN21lBoT7ipUs81GaH/CLwv0HaZZPzhueMv0QrLdsNGAxFestd6yIjMS+QL4IfNDJl0ew1FEAA1eyz84553qB0EgcV23NGa2ReaKqr4nI/2H55Y8C/rSS60NaqlorImdrKJobtp3hDZJ9i6pWisgfsVSjJ4rIk6o6Q0Q2AbZQ1XvV0oIAbUXYQ+N3IjrPdZuhWMrPd1X19ynzrgNOwjocPQP8N0x/BvuuvJWIjFHVOdHPElV9RURmAENFZDQwPxzvq6DtPAiP/XOhh0lzXdgBuB0YhqUL2xbYgZDub3WvDwChg1S7DneRcyFtEDN1v1zv0JXrRFjuDRF5N3TGaz0f/PNhw+MBC+ec63mihbevCPcNhC9zIVDwKm11K5L3z6/Gc1R2Mj1O+/pGJeF+aSfLr2x0QFrhR+mz4ZbscXcyVmDtEhF5QFXfW9XzhF4+ZZF9BCgN9z9LXb4Tq7t8CTaUdXmaeav7v0iObFhZDtYOxcmxY7SqeanFyA/Hgg2tQRVVjYdRLb/CRr4kR9AsE5G/Alem+WKYF+7rcM451yslG3uSjcQicgLW4FiFFUZ+KtIB4mqsJ+TJIvKCqn6YbGTu6vMlgxWRxmlvdOib3sW+y10A/FBEPse+3+0oIitU9enkgpEGbS+i3HNkAk3ABAAR+QZwI3CFqv5VRH6JjZY6UUTeUNUKrNPNo8ABwH7AP0IgKiN8Ty/A0kRVAAu0ff2L1KCVfy70EMmRDWnen9/EfpOehHUc2xwrhn2RiHyuqs+s7vUhnVWdCx6s6NW6dJ1Q1ebkKEz/bNhweUoo55zreT7E6hPsHIZn7wW8oe2LEb4IjBWRsVhAA7pecHt1JAMbgzuZP+SrPkHo3fkP4O4wKbWgeNrnCcNCB9A++JJsxC9WVens9hWWr8SunelGGKzu/2JZuC9d6VJfUShKtz/weGoPRlUtU9WzsRocm2BDb1dgKQF+kmZzyX1dlmaec865XiDSo3k3EfkMa3A6CQvePwTcLCJjwrKzsXQwWwDHh0bGNS3A7Y3TfVCkUakO6329EDgDyzW/GfCjaLDC9TyhkXkmlq51jIjMAf4NfAHMC+/7f2PBiW8CR4RVl2OjvRuwRutDoLVTURF2HkzE6ru1a3T0oFXPlPyMD5/zE8SKYe8lIv2wDlC/VtWHVXWJqj6L/XYYDpwnInlren1wfduaXCdCxwoPTm3APGDhnHM9TPji/hLWm/3rwMa0pYNKStax2BerX1GDFSlb26ZhP0K2Cw3frULvm53X4nOlq5mQtFuaaTthvcHej0xLDinesePiaa3u8h+uZH/STVuZj8P95NVcb3Xti9VESVe/Amj9QjhVVf+G9ZADO/dSJff14zTznHPO9RIisg3WaJAAzsGuYRtjPR+PB6IpYf4OfBqm79vF7UvkcbaI5KVOd91jbecBjwTAdgC+jzVe5mCFU4eq6p/CfD/2PVQkaLAxloZnBG1F0R+JNBpehqWpPUlEJoTpL2EpgcYDt4nIr0TkPKwW3C+At7GRGa6HSFdrQtpqzKiIZInIb4HPseLrzwH/wc6Nd0QkFhmF8QiWIuwg4ITV2Af/POjB/DrhegIPWDjnXM+UHC3xy3D/Ysr894Bq4FwsTdErqb3n14YwquNf2AiLC1Jmn0oostcVInKgiHwj+YU4Zd4ELD82wKtpVj9XrM5Ccvls7McRwG2R5a7H0iL9JeTKTX2efiKy9VdY/o5wf2kY5p5cbgR2LFZHMui0w2qut7q+ATQCT0UnikhyhE6q5EiRhjTzkvv6Upp5zjnnepiVNDp8HxgDXKKq14eg9QzgZmAm8C0R+SaAqlZh6QOHYQ2VxaFRq0PDQqQXZbJxYltsxN4Jnne8e4lprRMQvgcMSn6fWdOGorDdnYG7sN7WzwObqOrZqlonIpl+7Hs+EfkONhriTaydaIyqLgvzMgBU9X3gr1gduqPDtEpV/TP2m2UFcCmWSu444D5gH1X9Yv2+GtcZETkVeFBENopOT/kdeQgWfLgROA/4I9ZJbRKQCAEuiVxfzgn3Z4rIqGSqr06eP/UaMU5EJne2vFu//DrhehKvYeGccz1TMmCxGdZw/EZ0Zhhq/RpwYMry68LFwD7AFSKyKzaiYWPgYOBpLN1QV0zBvvAuF5GXgRlYL60JYVvZwA2q+maadd8APhSR+4BarCj5ZOAhVW3ttaWqn4jImVgP0S9E5InwPEXARsAeWIDj9DVc/gURuRX4LvCxiPwb6x1ydNjHQ7v4vwAreD2TthENa1348n8Y8JxaUbuorYCHROQt4DNgMdaj7nCsx+0fU7Yl2HkwVVWnrat9ds45t/ZEGh3OBFqwa1o/7Lr7rKo+FuZPwK5hJ2HXv3uxXrXJ7TwoIo9jo++eAu6INiwkGxqijVBYo9dpWJ7zS7FGUM9F3Q0iDUEt4VhfDWyDHZMyEbkY64zQvLqNRqFxsgHrSX+xqj4QnjPZA9sLaq9nq3MMI8s+jh3DpViP+W+LyB2q+jj2fT3pd9j33hNE5Nnk93ZV/bWI/AULegzCvi/OCs/hBbV7joOwzkz3Y79DABBLA/gy9jtvCVZQ/VJVLQvzs7CG5p8CZ0SuLRmq+qWI/BnrvPV94BfpUn1Fz0sRGQTsjQVEVgA/BGavg9frusivE66n8Simc871TJ/QVtg5tX5FUrSX+zoLWKjqIqxXzX1Y6qRzsdoR+2EF17rqLqzh4kVgUywIcC7Wa/9pbNj5mZ2sex42tHw/rBdPLtbb89g0+/t/WLqoh8P+nocVDB2INcL/6assH17DJdiw6LOwL/5/COt1WfiSdyMwUUS2X511V8OO2IiJh9PMewfLS65Yo9IFWD2UZ4FdVPXRlOV3B0Zj++ycc66Hio6qEJEiEbkH6xW9P1aLKIFd4z4VkRIROTbM/wM26nAHVT1OVStDI1XSL4FC4EciMjTyHNFGqAEichTWEeA6bITfjqp6hTdYdp9kj2cR+QnWILkjlvbzPWAo9h3vuOSya/AUH6jqsZFGqAwNefDXzitwqyPyfszt6rKqWg5MC/fXhNk/C/PikYbFxcAVWG/745OfEeGYV6jq26r6hKrOCudczN/73Sd8JudHJp0NnInVK4pqBuqwwPXXgd+papnYqHaw310zsUDV18K2M7DfEWAd3JYDZ4nILin70DqqQkTyRGQf7HfdbVgqsdvV6iW5buTXCdfTiI+4cc4511OJyG1Yb89xffGLrIiUYl/+71fV09bB9n8DXAgMDz8wv8q27sSCM+NVtWIt7J5zzrl1RCxV4TbY6LkHgJuwUYlTxVIgPo2NEHwKu85WAz9W1X+mbGdP4C21QpmIyGVYz+l7U5bLwRo3jsdSiaTdnuseoVH5NODnWMeEO4HnQ0P0OKxx6lPgIlV9NTQyr3Yj0pqu59au0EB8JdbB55JOOj6tahsPYaNuz1bVv6WkicnBUrpMwXrb/yvdPnh6l+4lIt/CRlJ8B7gnZVRcBnAA8N/ke1ZEvgdciwWadwVmqhXRzgij+7+P1TT6j6p+PbKtzPBZch4W+D5MVR9PPQdEZCvgW9hn0QDgKlVNpj923cyvE66n8REWzjnnXDdR1RXYcNuTwlDste0bwJtrIVgxCTgGuMKDFc4517OFhqhPsRpUtwGvqeqVqjoVQFXnYmkJx2CNE1djRS9TgxU/xwIdWyanqeov0wQrxmNpQu4ETgH+rKqDPVjRo/TH0oC9jaVreTo0Qu0HPAoUA9tjPeZzQiPlaucq90aoHmMH4CJgv9UNVkRGaF0G1AA/FpHBocE6WcuiERuF0R+rc9eBByt6hCZgEfADrMgx0HqMn8EKaR8YWf4ObAT/YGy0dUKs9mACQFVvAl4BDg0j6ZLbagnz/wSUhjRi0ZE+Y0TkDOBWbNTOK8AID1b0OH6dcD2KByycc8657vVnbGh9h6LfX5WqTlHVndbCpkZiP1z/tha25Zxzbi1IpltJmZYZekFfio2gGImNpkCsqGWyMfLvQD3WIHlltAFBRMaLyK+xnOKvAVNTniO1gWJP4HzgQ2C0ql68dl6hWx2hYTEtVV0K/FZVv6Gqc0RkiFhdsKew3tRnY0GuI7E0kV15Pok8zoykjnHrSer7P+JtLI3LpmL157pcLDcEJkRVP8QClmOwVKgQGq7Dco9ho27/uqb779aNyLF+DrgF2A04KvkZEa4Rye/0x4tIvzC9GfgLNkLu8jAtHraZvHZcjqUO/ImIZEfTfYXzpiL6WSQim2Ppdf+GpY/aVVWPCp9Jbj3z64TrTTxg4ZxzznUjVW1Q1ctV9ZXu3pfOqOrzqvprVW3q7n1xzjnXllIh9HCcLCJ7ichGycYlVb0O+AAownpFAiSSjUuq+jxWY6II+FBELhSRnULu6uuxdIJvAL9OHVkX6TWbbIh4BmuEOlRVF6zDl+3SkJSipSLydRHZR0S2EJGCyKKvhvmbYkXVD8LyyJ+iqn/DGhQHYA2YQ5P5zNM8X2s++vD3lljA6uCVNKC7tShyDBIpxzha4Do5EmqPsOzqjHhIvrevBmZhI4G3DedEa40cjdSpWNPX4ta+cJyyQiq/h7G6decBkyPLPAg8gqVoOiIy/Tngn8AoEflZmByLXDuew9JMbYsV2I7WQUneRwso12I9909V1W1U9fW1/Xrdqvl1wvVGfqI455zrsVT1ZFUV7YP1K5xzzrnVFWl0SIgVzL4FS+/0BDBdRC4QkVFh8R+F+++KSHFYJ9q4+FssJdRA4DfYaIpfARtjeeuPUNWZne1LpHFqrqp+tHZfqUslIjuLyKDwuPV3vLblnz9GRGZjNUuewQJWD4vIsOhyWAPUbsBVWKrHD8P0ZIHm7bBGzLSpOyINUKPEctrfhJ0/m9HW0O3WocgxuAT4KJKeRyI93t8FqoApYjUnVmf7yboFZcDvgX5YXns0pYC2etHcHiWStqs5TPoUS/U0BDhVRAoji1+GvWdPEkvtl3Q9VmPvVyIyKJkOLBKs+hV2Pqx05HU4H2eq6p6qestXfW1u1fw64foSD1g455xzzjnnXC8QaXQQLKXggVjDw81YA9MVWKNUjqq+iPWg3RIrhB02ocl85OWqejOW7/4QrO7RccBGqvp/4Xlae1O77iMiF2E9X5M9mpPnQSyk2fgZlh9+JlZPZB+s0XEX4HaxYrfJoqrHAuXATapaE3maXKyo6ijgRyIyNvL80bQeJSLyDSx1zN+BPGAfVb0itTHbrTsisgdWWHsccIOI7ET79p3F4XYAkBXWWZ2GwuTnxA3Ar4Gz1sJuu3VM2wqjHyUi/8N6yX8XWIFdB7aLLPsB9j7eHatVl5w+FbgRyAB+1za5NV3YdFW9qrPe9ZHteB2T9civE66vEf8Mcc4555xzzrmeT0T2xRojXgcuxmpV3KWqtSKyBdYYMRI4U1UfDI0JM4HPgUNVdWYyndQqnifDGxV6DhHZGPgv1kD9D21fc2QcVsT2S+Cc5GgXERmANUqdjxVfv0hVl4nIP4GvA0er6lNiOc0PA24HLgCygaZk0CryPJlYwdVjgZOwBu1LQoO2W0dW9n4Vkc+wIEUL1pD4Y1X9d2T+A8A3ge+o6t2hsbnLDUCpz92Vzw7XfUKDcR42KuZ0rIbFB1jA6iBgInAfNoJueVhnKJYyqgY4SVXfDNNLgQexlGJ7aJrUtat7Prl1y68Trq/ptOCKc84555xzzrmeITRG7YoVvBwOPK+qNyXnq+pHoQflE1h+6f+p6mwR+R1Wk+J04CddCFaIByt6FlWdKiLbqeqyNLOPx86Hb0caoTYDDsbOFYCpoRFKgEexnPV/EpGHsfzy+2KpY55V1VmpTxDSxRyFBcvGYqlgfhRJO+PWkZCeKVtDHbFwDJM1BR4CTsUK3z8G/FZEKtVq1ADchQUsdhKRB3Q1a5GlNHiKByt6tjDiYRL2mfA01jA9DUBEbsRqUxwNPCYi94Z0XotF5Aqsp/0JIvKeqjar6orQaL0VUNrZ862Hl+W6yK8Trq/xlFDOOeecc84518OFxqG/A88DO2M9YpM9GpPL/BdLAfJ12gqpXgwswxqjdg3reBqPXiY0JO0lIq+KyEHQmrJrNFarYJaI9BeRU7B0LtcAXwATVfV3YRsKPI71qB0LnIulifkMOCZdI1RwMJZubCYwSVXP9kaodSM1bZOInAG8LiJfT06KBBTfBwZh6VmOwj4T7hSRrcN2pgLzgSnAatWxSN0P/1zoNb4FFGGpfJLBiqyQ5ukyYC7Wm35UZJ1bgbfCugclJ6rqrcAgVX1kPe27+4r8OuH6Eg9YOOecc84551wvoKqLsaCFAhNEZKiqxlMCEL8GGoDviMjmofHhIqzo6vlhO95TuncajQWrjhQrpN4CNAHFwNlYL+mbgKHAYaq6v6rOABCRgaHhsl5V/wJsARwK7KqqX1fVOamBrEij9aPAXqq6r6p+uT5e6IZGTCwaGBCRwcAEYBvgbyIyKeW9+wVWp+LIUI/gh1jQ4p/A3ljD4RwsV32HQrwrk9wPERkqIgO/4stz60+yqPZCaA1ox8O054D/ANtinyG5AKraiBXRHgKcIyLFyY2F64vXMupd/Drh+gQPWDjnnHPOOedc7/FfLLf4dlgqmHYBiNCT9g9YMe0jw7TbgBuwmheu9/onlvLraKxIOsC/sQbJH2Mjay5Q1fGq+nhypdBo+QBwRvg7WTj3eVV9P0zLSA1kJRutVXVOuhz2bu1RkxCRKSLyf2HaUlW9ACtcOwK4TUR2j6zzCTAN2FpEBqjq69i5MRhrlBwCPBUWPyas02mwMjqqQkQKReQA4ObwvN5ovZ6ISEG4X5MU7uXh/hCwgENIFSWqWo+N0AM4Ddg4uZKqPgv8EfidqlZFN+gpAnsdv064PsEDFs4555xzzjnXS6hqDfAnbJTFCSFvdGrP6T9hPWx/LCI7h/V+qKqfpqZ6cb1HaBj6NVZY9wQRGQ58iDVOZQI/U9U/RdcRka2BO7Fe1eWR7aRu2xslu1moJfAZcIqInBuZdSmWD34b4Hcisktk3t1heilAaFg8CyuK+yCWAghgMxHp38nzSlhXRSQmItuF57wTG6nxlp8f65a0uRp4V0TyVDW+yhXb1k9+/t8D1AP7hnoWyZRAyYDTR9jnwCTg9JTRFBeo6lO4Xs2vE66v8ICFc84555xzzvUubwH/BxwAHJIsiBtpeFyB1a64MvS6BqxRy3PR926q+iaWFmxfrIDqciy9RyVwiYj8MKTxmSgiZ2HBqwOA64CHu2evXRcNCveVwFXJxmRVrQSuxnrAfw34h4gMC8t+BtQB34ls5wHgTCw1zNVAIzAeyEr3pJH0T+OBc7Ae2j/G8tgPUdXL19Lrc50II2wU2B4LJhy4musne73Pwxqed8DOAVS1JRL8+DaWMvBlbJTFyOh2PKDdN/h1wvUF4t9XnXPOOeecc653CY2LTwMVwPdV9d0QuPAfeH2ciIwE3gOWAsep6kcicgzWC78/dk4Ils9+HnCeqj7aTbvrgpW9P0MP+V8Bp2BpnvbACiefHl1PRO7G0js9g9WmmQn8D6tVcWwIbiS3uR9wP5a7HmA7VX0vzXMPwupcnIqNqHgDODPUxXDrQUi10xLe21ur6mORebHVqTskIpOx3vTjgMuxtF7NwH7Aj4C7gFeAqpBC0PVBfp1wvZ0HLJxzzjnnnHOulwk9YX+I9br+C3BpSBfVYTkPYvQ9InI+cC3WM/bC0Ng5BTgYGIs1UH6kqrdH1lmthk+39iQbpDuZJyEd0ynAb7BAxKXAKGALVf1ERHJVtSE0Qv4S+C4WWDgMG031HWBvVf0iZdvnYufEbap6T5rnnhSecz+gCviRqt67dl61S2dl50JkmdHAwar69zV8jj2wwMRwYAVQjdVBmYoVaZ8elvPPhD7MrxOuN/OAhXPOOeecc871QiIyEOspWwccoqqLu3mX3HoiInnA68BQ4Huq+mTK/NZGJxHJXJ18+G7dCKMorgBeAJ4PjYfR4zQZa1A+FKtJ8U/gRVXdO8xPBjZGAj8DfgC8hKV6uQvYX1WfDTULkkW8s1S1ObIP7QKY4TxaBNygqpes83+CayUiI1R1QZpjlIXVHJgC7KWqL3UlyJFm+5OA47AaJyXAk6p6zVp8Ca6H8+uE6808YOGcc84555xzvZSITE7tVe02DCJyGPAI8CjWGLUipYBy6+Nu3E1Ha4/3Z7CitwuBW1T10pRlNsUCEHcC5wOvAjthPeIfijZsh+DHY8BBwHRgInCHqp7UyfN3aPBONlCGAs/1a/Hluk6E9+QY4Hls5MOOyUZiEfkmMF1VPxaRk4FbgOdUdb/kumv6XhaRHFVtDI+9YXoD4tcJ11t50W3nnHPOOeec66WSwQoRyezufXHrV8hz/yqwFdaDOlq8t91jt/50Urh4HhasqMbSsJwhIv8QkSHJBVT1U6AcGBWO2+/DrD+E+c1iMkKv6B8Dt2PBCoDtRGRUun1K1zs/2WjtwYp1S0S2FZEdobVRuBKrLbANsEeY/yFwH7BnWO42rEbRPiF4AV+h/U5VG0UkFoIeHqzYgPh1wvVWPsLCOeecc84555zrhURkiKou6e79cO1HMaSMhkiOZLgKqzfxNNbD/hrgOaxuxMdh2XuA7VV1fPj7PuAo4GeqenXqSIlQ6+BvwCHAt1T13+vr9bpVE5EtgA+A14D9VLUhTN8UOw8KsKLoHwH/h/WEXxjSee2MnSezga+parXXF3Brwq8TrjfyERbOOeecc84551wvlGyE8hE23SeSUiUZrPgN8IfI6IlkA/MvgOXA/liP5+OAbYFHRGTfsMxCoFREtgt/XwPUAJeLyKBQ9yIj+dyqOhcLaGR4sKLnUdWPgP8CuwAnRmYdAAzDghUvYufC9ao6PxmQUNXXgVuBScBPkpvsyvN2MsrHbaD8OuF6Iw9YOOecc84555xzvZineVn/QnqmWDKdiogcKyLzgQuBFkKgIvSWzwwBjQvC6r9U1XuBb2Ipou4Xke8BL2ON2A1h3feBvwIZwG/CuqmN1o0hF703RvYgkcDSueH+jDAiBuzceBz4EksNVR6OYSxl3Suxoug/FJEpYZnWgFVnIufkgOR5kdy223D5dcL1Jv6B5ZxzzjnnnHPOObcaQur3hIhsKSL/A+4CpgLHAleq6rLIssl6EXcAbwH7icgpqvoicDjwDvAP4BxAgK9FnuqPYbsni8iuqSmBIrnovTGyB0mOhlHV6cB1wJbA6WHen4BvY8e2GAtMEBld0RKCYfPDMv2wETpp65FA+1EVIlIkIodi9U/Oim7bOed6Aw9YOOecc84555xzzq0GEckUkRuA94FS4GzgLFW9LxmsSDYih9EYyREQyR73Pwm55acC3wN+B+wF1GFBC0Kj9TKsvgHAgPXw0txXkDICIjka5mKs2PZ3ReRr0Frs/BHgSSwYtXvqpsL9n7Ai3d8SkQNTnyOSkkxFJENEdgB+BdwJfAtYhnPO9TIesHDOOeecc84555xbPf2AseHxrar6N1X9Is0yydEY8RCAeBNrTJ4InBfmz1PVi4AzsFoHyXoUydETfwJyVPWRdfVi3NoRqWWyGZbKi1Bs+yJgCPDDyLILsToVVVidksxoTZQwQiMOXA1kA5dHnyM8TqZ/moSdT3cA5wP3AYNV9a51+Xqdc25dkPDZ5pxzzjnnnHPOOee6SER2Ax4DXsAaoquBg4DdsNES1cDrwD2q+k5ogG4RkcFYge1aYLdQnDk5oqJD6h4RkWSdCk/91LOJSBFwN7A1cFioQ5Kc9yGwMXB0ski6iOQBfwZOBU5R1VvD9MHARqr6Rvj7V8C9qvp5yvMNAfYFTgN2B14BzlDVz9bl63TOuXXJR1g455xzzjnnnHPORXSluDFWe+JW4BCswfka4HbgaKx3/Vist/vDIVVPskbBUuBSoAhLF0SYnrbOgNep6FWasaDBIODwEMBIOgfIxIpoF0Fraqh/AtOBS0XkIBH5OlZk/V8ickhY7leq+nmkMLeEc+pvwM3ARsCRqrqHByucc72dByycc84555xzzjnnaFcToEVEckTkBBEZFOa1a0MJjc03AXOxugEnY7UopgA7YwGL64CBYf7YyLpXhfWOCQ3UXQ2SuB4spH96EHgZC2JtF5n3Epbua2/gu5HprwJ/wWqUPI6lczoWuFFVH08uF0baJINamcBWwMHAVao6WlUfWnevzDnn1h9PCeWcc84555xzzjkXISLfxopdFwDnqOr1nSyXBXwfOAv4gaq+HKYn0ziNAK4Cjge+paqPiEiOqjaKyDeBB7DC3V/rbISF65lE5BQgB/g/VW2OHHMBjsJG39wPXKyqi8M6o4A5wOdYyqgZYXo+sBMWgKgA/qqq5WGeaJrGOxEZDlSpas06fqnOObde+QgL55xzzjnnnHPOOUBEikXkR8A/sF7szcDRoahxulEWzViv+R8Cb0VGaCTTOC0AXsPaXw4IqzWFeQ9hIzBO82BF7yIik4GfYoWwJ4Ed80hw4SXgX1jgYvfIeTEPC2BNwQJdSfWq+hxwkar+WlXLRSSjs2BF2NZCD1Y45/oiD1g455xzzjnnnHPOmd2BnwE1wJHYKIvdsBQ9aetMhIbj51W1Idq4LCLZ4eHy6H1o2M4Ij89T1fdSAyGuZxCRzJS/YwCq+gXweyAfOD2MkGilqkuAO4BKLDXUhMi8nwMLsFoW+6SsF08+j6q2dBascM65vswviM4555xzzjnnnHOmBmto3klVn8QCFouA40RkF+g4yiIp2Ys+0qjdFGYdEe7fSi6rqi3R9XyERc8SOYbJAMJ2IpKXstiTwNNYPYodwvIaOT8+DPP3Ag5MWf9yLNjRL7ledMN+PjjnNmQesHDOOeecc84555wDVPVF4DJVnRMmTcXSNk0ETgj1JxLJ4ETKuhoNPojIBBH5LfBt4A5V/U8nz+m96HuYyDE8RkSmA88BzwI/jiwzG7gTaATOF5EByXXDCIkyYCGQgZ0Dm0XW/T9gkKo+uH5ekXPO9R4esHDOOeecc84555wLksWOw+M41ij9LpYi6tBVrJ4jIuNF5ALgeqyB+1msR73roSRIPg73x2DBqhXAi8DGwDUiEq098QJwH3ZeHBKKsEdHSCSAd4BdgFNFpDC5oqqWJetUrMvX5pxzvY0HLJxzzjnnnHPOOec6EQpnXwuUAieJyNCU1D9R1wKfAb8ExgOnquohqjpj/e2xWx0ikqmBiGSE+xzgfKx49gmq+g3gEOB94CoR2SGMpinDimtPAy7EAhOISJaIHAmcFebfAbyYWiTb61Q451xH4p+LzjnnnHPOOeecc50TkRLgVuAw4HxV/Wsny+0IHI01bN+VrFURGsJb0q3jegYROROrRfEeMB84Efh+KKCdXOYE4K/A/7d358Ga1fWdx9/f7tvQHTMY1kYU0oggKoMbiqBoEJABBwkKBEQGRxREFtkMBQSsJERZxHQhm0hiWIxYIBAIIi4ghjCRqCwjNIwiIA4G2mFfhG76M3+c39M5XG4Lvd3nNv1+VXU9y9nruVVddT7n+/1+G9gvyYNtuPrHgZOAR+kqLlaiG+A+C9h9dFAhSVowAwtJkiRJkqQXUFVb0A1avo3uJvSdVfV6YOMkF/TWm5JkTntvUDEBtRkTgzkVrwO+DmwMzAVGgKfoBrC/vrVumpJkTlWtAXwe2AvYDbgkybOt1dNewIlAAVOBK4D9k/xq9DElSQtmYCFJkiRJkvQCquoPgL8EDgNmArcDHwXeAfy3JN/prVvgQO2JrKpeDUwBdgJ2Ac6im0mxF/A/gWeBjyS5dtR2WwOn6p5kAAAVEElEQVRnA78Bdkny61H7XBd4OMlP2ncGFZK0EAwsJEmSJEmSFqDNKkh7vxFdO6BVgRXpnsI/NsnM4Z2hFlZVbQr8L+Bi4D3AXyT5clv2cmA/4G/oqilOSPLYoFqmqqYBRwFHA4cCpyaZ2/876R3HChtJWkgO3ZYkSZIkSS8ZVTV5Se6vF1ZsCuwDrEUXVpwGrDkIKwZVFVom3A1cBXwQeBD4e5g/gPsRuiDjWrpqi7dCNyC7VUs8BXwTuIEu1HhdW/68J4INKyRp4RlYSJIkSZKkZV515j/RXlUzqmr1qnrZYPli7Hdz4GvAAcDVdLMNDkzyZFWNjPV0vZa+Rf1N2yDtLwCP0AVQrx0saq+/oGsRtQrwP6pq+qjtbwIuBH4IPLAo5yBJGpuBhSRJkiRJWqYNAoP2FPxrqupC4Pt0T8Ff2+YOjAzWXZh9tyDid8C/A7sm2TrJ7VU1qT1xP9ewYjh61S9TF2HzG4BzgZcB27T9Daoo5gE/AC4CdgW2aH9j83oVPKcn2a6FH5KkJcQZFpIkSZIkaZlXVZOAw4FjgIeBnwFPApsC04BDk5yzqPvuD052NsHE0MKnvwGmAkcmeXoht98Y+BbwK+CTSW7p/9ZV9V7gH4A7gAOS3DHGPvxbkKQlyAoLSZIkSZK0TKuqKcAngYOBS4C9gR2SfAjYApgM7FNV72rrL9T9kN4N7EntszeoJ4ZNgSOAbRY2rGhmAacA7wA+WFVTR1VR/JhunsVWwNpj7cC/BUlasqywkCRJkiRJy7SqWoNucPKzwEFJ7mnfbwN8EXhDW3Y2cHCSp507sewYXeHS+34y8G90g7HfneS6hf1dq2ptulBiFeATSa4etXx9YCTJrMW6CEnSi2KFhSRJkiRJmvCqamRBy5I8AJyYZMck91TV9Kr6BnAV8DRwIHArsDPw/hd5vOq9H6mqFRbrArTQBr9Bq3p42ahlg1ZMF7Sv3tPWXdgQ6tfAycAfAztX1Wpt/4Nqmp8nmdVmlizSkG9J0otnYCFJkiRJkias3o3jue3zB6pqq6raeNRN7Ova8jfQ3cTeDjgR2DvJacBpwKrAHlW1ZpKM1Rqqd5N8MND5jcAhwPYL20pKi6f3GxwJ3FJVu7TP1WvF9BPgUWDDqlpxEY9xFfBPdG3Ftmrfzxu13jwrciRp6fM/WkmSJEmSNHRVtXlVrd7ez79f0ZsfsVtV3Q1cBHwXuAm4tKpe0V+PLqjYAvgccFySm9v3U9vrJsCHRm0zX+8m+dpVtQ9wFnACsBHgE/bjrKreQzdYe13gjKrajOfez/qP9m9bYErbZqF+pyQP0QVa59L9bUmShsTAQpIkSZIkDVVVHUFXIbEPPHfIdWvHdDTwVeCXwFF0T8GfDrwTOKeq3tTWnwLsDjwEnJXk8d5hpgI30g1PPrSqZvSO32//9PKq2hH4EnAmMA3YKslxDlheehZUvZLkWuB24P8A9wPnAx/oLb8d+BmwWv/7RXBNko8medDWT5I0PAYWkiRJkiRp2C4D7gVmj1FdsTawH/AjuoHZX0hyDfBZ4Axga+Cgqlo9yRy6WRVTgLfB/PkTOwHH0AUQBwLHJ7m7d5y09TYHjgPOA/4E2D/Jxu14WoranIr5c0KqM7l9vBj4I7rKmHnAiVX13t7mX2uvm1XVCovSuqlXWTPJ1k+SNDwLHFglSZIkSZI0HtpQ402SzB5j8R7AWsCuSW4BqKqNgO3phmgDzEoyuz0ZfxmwEzCzqi4FVqYLNW4FvpfkrtEHqKr1gF3oKjxm0LUHOrQFIFoK2hyK9D7vB+xdVX+V5DKgP6fiRmB1uvBqF7pqm/Or6v10rcFm0Q3P3hBYEXhmUc9jrDZhkqTxY4WFJEmSJEkauhY4bFlV11XVdgDtCft16IYq31VVK1fV3sCXgeOBO4D1k5zU9hHgCrq2UTOATwN7ArcBu40VVjTb01VW/BLYIMmBhhVLR6ucmDQqrFgDeA3wFuC0qtpgVHBwB92cip2T3ATsDzxON3PivXS/2z10rcKeNwfl9+lVVqxZVast5uVJkhaTgYUkSZIkSZoo1gE2B3auqpXaE/bPACvRtXI6nW4I9prADknel+ROgKparaqmJHkqyZeAjYH/DrwryQeS3DP6JnZvVsFlwJZJtk7yi/G40OVVOvOqasOq+kr77oEkh9HNDXkl8A9V9e7eNj+jm2Hx5qpaNcn1wJ8Ba9D9TUwHrmqr79a2WWClxKiZJX9YVdsCf9eOO3lB20mSlj4DC0mSJEmSNFGcC3yL7mb0ju27S4C5wOF0Q5UPS7JekisGG1XVCHAR3ayLQZufnye5OsmN7bvJo29iD56uT3JPkn9Zupemgao6jq7qZe+q+nRv0bF07bjeApxUVe/sLfvH9v0qAO13PQBYAfgm8Ku23kZVtfICjltt27SB7pu0Y55PV6lxg4PVJWm4DCwkSZIkSdKE0AKEvwamAXtW1VrAzXQhxghwdJKZ/W2q6s10N5zfCjzU28/ofXsjeuJYvb0+AnyuqlYCSPII8Hngb+mGpp9dVa9o694GPAl8pLefi4BP0VXmfB54GliPbuj68/TaP60HHEQXkB1O10ZsepK/WkLXJ0laRAYWkiRJkiRpwkjyI+BMukHZuyb5LV0bqEeAI6tq/zZvYP2qOgCYCWwLnAJcOpyzVl+/5dIYyyYB9wO/oRuYPQ04cbBdkvuSHAlcALyWrk3Tm4D/DdwLvK2qXg7z20tdSTen5GV0A7ffBrxqAcdevap2o5uB8kXgYeAtST6a5NHFvGxJ0hJgYCFJkiRJkiaazwO/BT5eVRsn+RZdu6cRujkHtwE30D2JvzawV5Kjkzw2rBNWp7Xeel6FS1tWrS3XPXThwvl0IcQ+VbVRa9U0ta3+53RzJbYCTgUmA/8MvJFuhsl8Sb4LfBb4LrBHkp+OcewN6IKvs4HXAx9Osnkb4i1JmiBqAf+HSJIkSZIkDU1VHQKcTFdB8Zkkz1bVhsD2wAxgDnBLknN620z6fcOWNT5aFcVxwDXA1e23m//bVNVrgVl0Q9FXoWvN9IMk723Lq4UXrwKOBvYFrqULHL4GvC/J99qA7MEQ7ylJ5vTOofrBSVVNo6vqOKNVcEiSJiADC0mSJEmSNOG0G8zX0z1N/7HW+qe/vH8DfCTJ3CGcpkapqvfQVTqMAPcBf5/k2FHrvIEugDgfOAS4DtgM2DnJxf3woYUflwPbAT8H1gfOS7LXAo4/efS8ksHfR1VNS/LUErxcSdISZksoSZIkSZI04bQby8cC04F9q2oV6J6cH7QW6r03rBiCBcyquJcurHiMrgpmv6o6u6qmD1ZIcivdgPS1WxXEF9qiL7blc9pPO7mFUocD59CFFQCbVNXaY53TWMPVB38fhhWSNPEZWEiSJEmSpAkpyeV0T9+/CegPWs7o9xo/rRUTrW3TlN73I0l+CRwP/BfgDuAk4GPA+VX1X3u7+THd70qSS4ALgXWqatCuadIgfEgyi25GxRVt2V8kuXcpXZ4kaYhsCSVJkiRJkiasqpqe5P5hn4fGnAtxAvAHwHFJ7h+06WqBxm+A1YB3AesApwMPA/u0+RMn0wUZ2yT5cVW9ma5N1DRgrSSzR7d3agO5nzakkqSXLissJEmSJEnShDUIK6pqZNjnsrxq7ZkmDYKCqtq9qn4NfAZ4FpgH0MKKkRYyHNY2/2ySC4AP0rWIurCqPgb8EFgJ+F3b9kbgVGAycELbdnQw8XSr6vBvQZJeoqywkCRJkiRJ0guqqjcCZwKbAt8HzgauTjJ7Aev/G/B24BNJ/q6qXgecAmwFXANsCeyd5Ktt/dWBHwCvA96d5Lqle0WSpInGCgtJkiRJkiQtUFWNVNUZwI3AKsCBwAFJvjEIKwYDuFs1xqAC4tPt9c9ba69ZdG2gTqILK54EBttNavv6Sttm1XG4NEnSBGOFhSRJkiRJkhaoqlYDzgO2BY5KcvwY66yc5KHe58E8i3OBjwAnJDmyt3xfYDZwTZKH+vMxqmpKkjlL+bIkSROQgYUkSZIkSZJ+r6raAricrpXT/sBjwHbAFnTVEo8B1wNfb0O0Jyd5tqrWAO4DngC2SHJL29+kJPPGOE4N5lQkmTsuFydJmjAMLCRJkiRJkpZjg3DhBdaZBnyOLqw4DphO197pMeD/AX/UvrsP+BBwQ69i4qi2zQVJPryULkOS9BJgYCFJkiRJkrQcGtWGaUVgV+DbSWaPVQHRhmZfDrwaeAo4GZgJhG4exQnAJ+mqMD6V5K7etncD6wB/muSyFxOSSJKWPw7dliRJkiRJWg71wopdgQeArwK7tGXPa9cE/AL4W+AOYLskxyZ5EHg4ydN0w7S/AWwDbNz2vWLb9tD2+tkWhhhWSJKex8BCkiRJkiRpOVRVK1XVocDZwAgwB/izqtqgLX/OfaM2CPsSurZQN1RVte/TXv8v8K9095u2bZs905ZdDJwCfGIBYYgkSQYWkiRJkiRJy6l3A0cDjwM7A1+hG6K9O4xdZZHkviRXJ/lden3Gq2qF9va3/dc2QHtye39wkp+ODkIkSRrwPwhJkiRJkqTl0+PAecBmSa6kCyx+A3y4qt4Jz6+yGBhUVwyWJ3mmLdqpvd4wWLff/qnNzbDCQpI0JgMLSZIkSZKk5VCSHwB/meSe9tUsurZN6wN7VtWKSeYNwolR26YfPlTVa6rqRLrB3ecl+ecFHDNjfS9JEkD5/4QkSZIkSZIAquqVwKXAusC+Sb7Zgonn3UCqqqnAK4E/pZtZsTVwJXBQkjvH7aQlSS8ZVlhIkiRJkiQJmD84+2RgFWCvqlqzVVOMdQ/pZOA24LPAesDHk7zfsEKStKhGhn0CkiRJkiRJmlCupKuy2IFuGPepC5g7cR7wDHAj8LXBrIqqmtyfWyFJ0otlSyhJkiRJkiQ9R1VtQRdc3AbsnuTOqno9sHGSC3rrTUkyp703qJAkLRYrLCRJkiRJkjTaT4AzgMOA/avqduCjwDuq6sEk3wFIMmcwlNuwQpK0uKywkCRJkiRJEgD9AdtVtRHwbWBVYEXgceDYJDOHd4aSpJcyKywkSZIkSZKWUUu6DVMvrNgU2ANYqy06DTgiyZNt+fxgQ5KkJcXAQpIkSZIkaRnT2jBN6g26ngE8ATyZ5IlFDRTafjcDzgVeDVwNHJDk9rZ8BHjWsEKStDRMGvYJSJIkSZIk6cUbhBFJnq2q11TVhcD3gRuAa6tqa9pDqoP5Ei9WCyJ+B/w7sGuSrZPcXlWTqmpSkrmGFZKkpcUZFpIkSZIkScuYqpoEHA4cAzwM/Ax4EtgUmAYcmuScRd13knm9z0u07ZQkSQtiSyhJkiRJkqRlSFVNAT4BHAxcApwPXJ1kblWtC9wI7FNVdya5bnQA8UIG6w62M6yQJI0XW0JJkiRJkiQtW1YGtqdr23RMku+0sGIb4DJgJeDtwB5VtWKSeQvbGgr+M7iQJGm8GFhIkiRJkiRNMG249ZiSPACcmGTHJPdU1fSq+gZwFfA0cCBwK7Az8P4XebzqvR+pqhUW6wIkSVoEtoSSJEmSJEmaIHptmOa2zx8AngBmA3cmeaKtel1b/gbgVOCtwInA15PcXFXPAF+mq7K4Psl/jNUaqjfAO+3zG4H3AT+vqsusspAkjScrLCRJkiRJksZZVW1eVau39/Pvz/TmR+xWVXcDFwHfBW4CLq2qV/TXA7YDtgA+BxyX5Ob2/dT2ugnwoVHbzNcLKtauqn2As4ATgI2AhW4jJUnS4jCwkCRJkiRJGkdVdQRdhcQ+8Nwh160d09HAV4FfAkcBWwGnA+8EzqmqN7X1pwC7Aw8BZyV5vHeYqXTDt9cGDq2qGb3j99s/vbyqdgS+BJwJTAO2SnKcw7YlSePNllCSJEmSJEnj6zLgU8DsfpumNhz7j4H9gB8BBye5BaCqbqGbT3EIcFBVHZFkdlXdCqwHvA24qs2+2AE4BjgMWAF4Jsndg4MnSVvv7XSBx17APGD/JGcs/cuXJGlsBhaSJEmSJEnjKMmsqtokyewxFu8BrAXs2gsrNgK2pxuiDTCrhRVFF37sBMysqkuBlYGt6YZufy/JXaMPUFXrAbvQVXjMAE4DDk0yZ8ldpSRJC8+WUJIkSZIkSeOsBQ5bVtV1VbUdQFVNBtYBHgXuqqqVq2pvuuHZxwN3AOsnOantI8AVdG2jZgCfBvYEbgN2GyusaLYHjqNrObVBkgMNKyRJE4EVFpIkSZIkScOxDrA5sHNV/WuSR6vqGWAl4EBgXWBX4G5ghyRXDDasqtWAR5I8BXypqr5NN6/ioSQ3tnXmt5tqn6uFHJcBNyX5l3G5SkmSXqTq/p+SJEmSJEnSeGotnS4H/gTYL8l5VbUVcGVbZQ5wdJKZo7YbAb4HXJzklF4Q0V9nskOzJUnLGltCSZIkSZIkDUELGf4amAbsWVVrATcD36LrijFWWPFm4HzgrcBDvf2M3rdhhSRpmWNgIUmSJEmSNCRJfgScSTcoe9ckvwXOAh4Bjqyq/atqzapav6oOAGYC2wKnAJcO56wlSVo6bAklSZIkSZI0RFX1KuCnwAPAh5PcUlW7AacBKwMPAwX8IXAvcHCSy4Z0upIkLTUGFpIkSZIkSUNWVYcAJ9NVUHwmybNVtSGwPTCDbp7FLUnO6W3znKHakiQt6wwsJEmSJEmShqyqpgHXA2sCH0ty5ajl88OJqhpJMncIpylJ0lLlDAtJkiRJkqQhS/IUcCwwHdi3qlYBqCbJvN57wwpJ0kuSFRaSJEmSJEkTRFX9EFgH2DLJXcM+H0mSxpOBhSRJkiRJ0gRRVdOT3D/s85AkaRgMLCRJkiRJkiYY51RIkpZHBhaSJEmSJEmSJGnoHLotSZIkSZIkSZKGzsBCkiRJkiRJkiQNnYGFJEmSJEmSJEkaOgMLSZIkSZIkSZI0dAYWkiRJkiRJkiRp6AwsJEmSJEmSJEnS0BlYSJIkSZIkSZKkoTOwkCRJkiRJkiRJQ2dgIUmSJEmSJEmShs7AQpIkSZIkSZIkDZ2BhSRJkiRJkiRJGjoDC0mSJEmSJEmSNHQGFpIkSZIkSZIkaegMLCRJkiRJkiRJ0tAZWEiSJEmSJEmSpKEzsJAkSZIkSZIkSUNnYCFJkiRJkiRJkobOwEKSJEmSJEmSJA2dgYUkSZIkSZIkSRo6AwtJkiRJkiRJkjR0BhaSJEmSJEmSJGnoDCwkSZIkSZIkSdLQ/X8M5m5CgZsLEAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -395,26 +384,41 @@ "name": "stdout", "output_type": "stream", "text": [ - " Turbine | Rotor Diameter (m) | Hub Height (m) | Air Density (ρ)\n", - "---------------------------------------------------------------------------------\n", - " iea_15MW_floating | 242.24 | 150.0 | 1.225\n", - " iea_10MW | 198.00 | 119.0 | 1.225\n", - " iea_15MW | 242.24 | 150.0 | 1.225\n", - " iea_15MW_multi_dim_cp_ct | 242.24 | 150.0 | 1.225\n", - " nrel_5MW | 126.00 | 90.0 | 1.225\n", - " x_20MW | 252.00 | 165.0 | 1.225\n" + " Turbine | Efficiency | Rotor Diameter (m) | Hub Height (m) | TSR | Air Density (ρ) | Tilt (º)\n", + "------------------------------------------------------------------------------------------------------------------\n", + " iea_15MW_floating | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", + " iea_15MW_multi_dim_cp_ct | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", + " iea_15MW | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", + " nrel_5MW | 1.00 | 126.00 | 90.0 | 8.0 | 1.225 | 5.000\n", + " iea_10MW | 1.00 | 198.00 | 119.0 | 8.0 | 1.225 | 6.000\n" ] } ], "source": [ - "header = f\"{'Turbine':>25} | Rotor Diameter (m) | Hub Height (m) | Air Density (ρ)\"\n", + "header = f\"\\\n", + "{'Turbine':>25} | \\\n", + "{'Efficiency':>10} | \\\n", + "{'Rotor Diameter (m)':>18} | \\\n", + "{'Hub Height (m)':>14} | \\\n", + "{'TSR':>6} | \\\n", + "{'Air Density (ρ)':>15} | \\\n", + "{'Tilt (º)':>8}\\\n", + "\"\n", "print(header)\n", "print(\"-\" * len(header))\n", "for name, t in tl.turbine_map.items():\n", " print(f\"{name:>25}\", end=\" | \")\n", + " print(f\"{t.turbine.generator_efficiency:>10,.2f}\", end=\" | \")\n", " print(f\"{t.turbine.rotor_diameter:>18,.2f}\", end=\" | \")\n", " print(f\"{t.turbine.hub_height:>14,.1f}\", end=\" | \")\n", - " print(f\"{t.turbine.ref_air_density:>15,.3f}\")" + " print(f\"{t.turbine.TSR:>6,.1f}\", end=\" | \")\n", + " if t.turbine.multi_dimensional_cp_ct:\n", + " condition_keys = list(t.turbine.power_thrust_table.keys())\n", + " print(f\"{t.turbine.power_thrust_table[condition_keys[0]]['ref_air_density']:>15,.3f}\", end=\" | \")\n", + " print(f\"{t.turbine.power_thrust_table[condition_keys[0]]['ref_tilt']:>8,.3f}\")\n", + " else:\n", + " print(f\"{t.turbine.power_thrust_table['ref_air_density']:>15,.3f}\", end=\" | \")\n", + " print(f\"{t.turbine.power_thrust_table['ref_tilt']:>8,.3f}\")" ] } ], diff --git a/examples/18_check_turbine.py b/examples/18_check_turbine.py index cb7a951d1..738cfa8c1 100644 --- a/examples/18_check_turbine.py +++ b/examples/18_check_turbine.py @@ -49,7 +49,14 @@ # TEMPORARY print(turbines) -turbines = turbines[1:] +turbines = [ + t for t in turbines + if "converted" not in t + if "updated" not in t + if "legacy" not in t + if t != "x_20MW" +] +print(turbines) # END TEMPORARY # Declare a set of figures for comparing cp and ct across models diff --git a/examples/24_floating_turbine_models.py b/examples/24_floating_turbine_models.py index 863b896a4..c94fbf538 100644 --- a/examples/24_floating_turbine_models.py +++ b/examples/24_floating_turbine_models.py @@ -67,9 +67,11 @@ power_floating_defined_floating = fi_floating_defined_floating.get_turbine_powers().flatten()/1000. # Grab Ct -ct_fixed = fi_fixed.get_turbine_Cts().flatten() -ct_floating = fi_floating.get_turbine_Cts().flatten() -ct_floating_defined_floating = fi_floating_defined_floating.get_turbine_Cts().flatten() +ct_fixed = fi_fixed.get_turbine_thrust_coefficients().flatten() +ct_floating = fi_floating.get_turbine_thrust_coefficients().flatten() +ct_floating_defined_floating = ( + fi_floating_defined_floating.get_turbine_thrust_coefficients().flatten() +) # Grab turbine tilt angles eff_vels = fi_fixed.turbine_average_velocities diff --git a/examples/30_multi_dimensional_cp_ct.py b/examples/30_multi_dimensional_cp_ct.py index 5de69d014..05df42c0f 100644 --- a/examples/30_multi_dimensional_cp_ct.py +++ b/examples/30_multi_dimensional_cp_ct.py @@ -72,7 +72,7 @@ fi.calculate_wake(yaw_angles=yaw_angles) # Get the turbine powers -turbine_powers = fi.get_turbine_powers_multidim() / 1000.0 +turbine_powers = fi.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 1 findex X 2 Turbines") print(turbine_powers) print("Shape: ",turbine_powers.shape) @@ -86,7 +86,7 @@ fi.reinitialize(wind_speeds=wind_speeds, wind_directions=wind_directions) yaw_angles = np.zeros([3, 2]) # 3 wind directions/ speeds, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) -turbine_powers = fi.get_turbine_powers_multidim() / 1000.0 +turbine_powers = fi.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") print(turbine_powers) print("Shape: ",turbine_powers.shape) @@ -100,7 +100,7 @@ fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) yaw_angles = np.zeros([9, 2]) # 9 wind directions/ speeds, 2 turbines fi.calculate_wake(yaw_angles=yaw_angles) -turbine_powers = fi.get_turbine_powers_multidim()/1000. +turbine_powers = fi.get_turbine_powers()/1000. print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") print(turbine_powers) print("Shape: ",turbine_powers.shape) diff --git a/examples/31_multi_dimensional_cp_ct_2Hs.py b/examples/31_multi_dimensional_cp_ct_2Hs.py index 9726fda61..57be38fc0 100644 --- a/examples/31_multi_dimensional_cp_ct_2Hs.py +++ b/examples/31_multi_dimensional_cp_ct_2Hs.py @@ -56,8 +56,8 @@ fi_hs_1.calculate_wake() # Collect the turbine powers in kW -turbine_powers = fi.get_turbine_powers_multidim()/1000. -turbine_powers_hs_1 = fi_hs_1.get_turbine_powers_multidim()/1000. +turbine_powers = fi.get_turbine_powers()/1000. +turbine_powers_hs_1 = fi_hs_1.get_turbine_powers()/1000. # Plot the power in each case and the difference in power fig, axarr = plt.subplots(1,3,sharex=True,figsize=(12,4)) diff --git a/examples/33_specify_turbine_power_curve.py b/examples/33_specify_turbine_power_curve.py index 8d80db8a6..870bbde1b 100644 --- a/examples/33_specify_turbine_power_curve.py +++ b/examples/33_specify_turbine_power_curve.py @@ -16,8 +16,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.simulation import turbine -from floris.tools import build_turbine_dict, FlorisInterface +from floris.tools import FlorisInterface +from floris.turbine_library import build_cosine_loss_turbine_dict """ @@ -39,7 +39,7 @@ "thrust_coefficient":[0, 0.9, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2] } -turbine_dict = build_turbine_dict( +turbine_dict = build_cosine_loss_turbine_dict( turbine_data_dict, "example_turbine", file_name=None, @@ -70,7 +70,7 @@ specified_powers = ( np.array(turbine_data_dict["power_coefficient"]) - *0.5*turbine_dict["ref_air_density"] + *0.5*turbine_dict["power_thrust_table"]["ref_air_density"] *turbine_dict["rotor_diameter"]**2*np.pi/4 *np.array(turbine_data_dict["wind_speed"])**3 )/1000 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml index b1755ab6c..af36a9bfa 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml @@ -1,67 +1,67 @@ turbine_type: 'nrel_5MW_floating' generator_efficiency: 1.0 hub_height: 90.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 126.0 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 5.0 correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 5.0 + pP: 1.88 + pT: 1.88 power: - 0.0 - - 0.000000 - - 0.000000 - - 0.178085 - - 0.289075 - - 0.349022 - - 0.384728 - - 0.406059 - - 0.420228 - - 0.428823 - - 0.433873 - - 0.436223 - - 0.436845 - - 0.436575 - - 0.436511 - - 0.436561 - - 0.436517 - - 0.435903 - - 0.434673 - - 0.433230 - - 0.430466 - - 0.378869 - - 0.335199 - - 0.297991 - - 0.266092 - - 0.238588 - - 0.214748 - - 0.193981 - - 0.175808 - - 0.159835 - - 0.145741 - - 0.133256 - - 0.122157 - - 0.112257 - - 0.103399 - - 0.095449 - - 0.088294 - - 0.081836 - - 0.075993 - - 0.070692 - - 0.065875 - - 0.061484 - - 0.057476 - - 0.053809 - - 0.050447 - - 0.047358 - - 0.044518 - - 0.041900 - - 0.039483 - 0.0 - 0.0 - thrust: + - 36.722155848902254 + - 94.65678115354163 + - 170.596391826316 + - 267.74933496419163 + - 387.64681352354114 + - 533.9617151673435 + - 707.4062402827329 + - 909.9965782677073 + - 1142.7197798534328 + - 1407.4994184495558 + - 1707.1272243371227 + - 2047.3355806543098 + - 2430.5778091805637 + - 2858.3081150622215 + - 3329.100627354195 + - 3842.9755943182267 + - 4403.86140594055 + - 4999.993508066915 + - 4999.99850473839 + - 4999.997854617397 + - 5000.00304890274 + - 5000.002113339491 + - 4999.997282778227 + - 5000.002243172759 + - 5000.000360590384 + - 5000.009074693787 + - 4999.987262704901 + - 5000.007345811091 + - 5000.006875165497 + - 4999.994990648268 + - 4999.97705933755 + - 4999.983698972648 + - 4999.991318085188 + - 5000.024022703328 + - 5000.016589748782 + - 5000.025709581146 + - 4999.944891236294 + - 5000.035324880168 + - 4999.967955734346 + - 5000.013248451465 + - 5000.063199891701 + - 5000.068982245371 + - 4999.9325188896555 + - 5000.011035557985 + - 5000.012771123277 + - 4717.243379938609 + - 0.0 + - 0.0 + thrust_coefficient: - 0.0 - 0.0 - 0.0 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml index cf3bc3049..c2b9675de 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml @@ -1,67 +1,67 @@ turbine_type: 'nrel_5MW_floating' generator_efficiency: 1.0 hub_height: 90.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 126.0 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 5.0 correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 5.0 + pP: 1.88 + pT: 1.88 power: - 0.0 - - 0.000000 - - 0.000000 - - 0.178085 - - 0.289075 - - 0.349022 - - 0.384728 - - 0.406059 - - 0.420228 - - 0.428823 - - 0.433873 - - 0.436223 - - 0.436845 - - 0.436575 - - 0.436511 - - 0.436561 - - 0.436517 - - 0.435903 - - 0.434673 - - 0.433230 - - 0.430466 - - 0.378869 - - 0.335199 - - 0.297991 - - 0.266092 - - 0.238588 - - 0.214748 - - 0.193981 - - 0.175808 - - 0.159835 - - 0.145741 - - 0.133256 - - 0.122157 - - 0.112257 - - 0.103399 - - 0.095449 - - 0.088294 - - 0.081836 - - 0.075993 - - 0.070692 - - 0.065875 - - 0.061484 - - 0.057476 - - 0.053809 - - 0.050447 - - 0.047358 - - 0.044518 - - 0.041900 - - 0.039483 - 0.0 - 0.0 - thrust: + - 36.722155848902254 + - 94.65678115354163 + - 170.596391826316 + - 267.74933496419163 + - 387.64681352354114 + - 533.9617151673435 + - 707.4062402827329 + - 909.9965782677073 + - 1142.7197798534328 + - 1407.4994184495558 + - 1707.1272243371227 + - 2047.3355806543098 + - 2430.5778091805637 + - 2858.3081150622215 + - 3329.100627354195 + - 3842.9755943182267 + - 4403.86140594055 + - 4999.993508066915 + - 4999.99850473839 + - 4999.997854617397 + - 5000.00304890274 + - 5000.002113339491 + - 4999.997282778227 + - 5000.002243172759 + - 5000.000360590384 + - 5000.009074693787 + - 4999.987262704901 + - 5000.007345811091 + - 5000.006875165497 + - 4999.994990648268 + - 4999.97705933755 + - 4999.983698972648 + - 4999.991318085188 + - 5000.024022703328 + - 5000.016589748782 + - 5000.025709581146 + - 4999.944891236294 + - 5000.035324880168 + - 4999.967955734346 + - 5000.013248451465 + - 5000.063199891701 + - 5000.068982245371 + - 4999.9325188896555 + - 5000.011035557985 + - 5000.012771123277 + - 4717.243379938609 + - 0.0 + - 0.0 + thrust_coefficient: - 0.0 - 0.0 - 0.0 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml index 4fa506e25..ee8232b2c 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml @@ -1,67 +1,67 @@ turbine_type: 'nrel_5MW_floating' generator_efficiency: 1.0 hub_height: 90.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 126.0 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 5.0 correct_cp_ct_for_tilt: False # Do not apply tilt correction to cp/ct power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 5.0 + pP: 1.88 + pT: 1.88 power: - 0.0 - - 0.000000 - - 0.000000 - - 0.178085 - - 0.289075 - - 0.349022 - - 0.384728 - - 0.406059 - - 0.420228 - - 0.428823 - - 0.433873 - - 0.436223 - - 0.436845 - - 0.436575 - - 0.436511 - - 0.436561 - - 0.436517 - - 0.435903 - - 0.434673 - - 0.433230 - - 0.430466 - - 0.378869 - - 0.335199 - - 0.297991 - - 0.266092 - - 0.238588 - - 0.214748 - - 0.193981 - - 0.175808 - - 0.159835 - - 0.145741 - - 0.133256 - - 0.122157 - - 0.112257 - - 0.103399 - - 0.095449 - - 0.088294 - - 0.081836 - - 0.075993 - - 0.070692 - - 0.065875 - - 0.061484 - - 0.057476 - - 0.053809 - - 0.050447 - - 0.047358 - - 0.044518 - - 0.041900 - - 0.039483 - 0.0 - 0.0 - thrust: + - 36.722155848902254 + - 94.65678115354163 + - 170.596391826316 + - 267.74933496419163 + - 387.64681352354114 + - 533.9617151673435 + - 707.4062402827329 + - 909.9965782677073 + - 1142.7197798534328 + - 1407.4994184495558 + - 1707.1272243371227 + - 2047.3355806543098 + - 2430.5778091805637 + - 2858.3081150622215 + - 3329.100627354195 + - 3842.9755943182267 + - 4403.86140594055 + - 4999.993508066915 + - 4999.99850473839 + - 4999.997854617397 + - 5000.00304890274 + - 5000.002113339491 + - 4999.997282778227 + - 5000.002243172759 + - 5000.000360590384 + - 5000.009074693787 + - 4999.987262704901 + - 5000.007345811091 + - 5000.006875165497 + - 4999.994990648268 + - 4999.97705933755 + - 4999.983698972648 + - 4999.991318085188 + - 5000.024022703328 + - 5000.016589748782 + - 5000.025709581146 + - 4999.944891236294 + - 5000.035324880168 + - 4999.967955734346 + - 5000.013248451465 + - 5000.063199891701 + - 5000.068982245371 + - 4999.9325188896555 + - 5000.011035557985 + - 5000.012771123277 + - 4717.243379938609 + - 0.0 + - 0.0 + thrust_coefficient: - 0.0 - 0.0 - 0.0 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml index da0d15a37..60460f641 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml @@ -1,67 +1,67 @@ turbine_type: 'nrel_5MW_floating' generator_efficiency: 1.0 hub_height: 90.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 126.0 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 5.0 correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 5.0 + pP: 1.88 + pT: 1.88 power: - 0.0 - - 0.000000 - - 0.000000 - - 0.178085 - - 0.289075 - - 0.349022 - - 0.384728 - - 0.406059 - - 0.420228 - - 0.428823 - - 0.433873 - - 0.436223 - - 0.436845 - - 0.436575 - - 0.436511 - - 0.436561 - - 0.436517 - - 0.435903 - - 0.434673 - - 0.433230 - - 0.430466 - - 0.378869 - - 0.335199 - - 0.297991 - - 0.266092 - - 0.238588 - - 0.214748 - - 0.193981 - - 0.175808 - - 0.159835 - - 0.145741 - - 0.133256 - - 0.122157 - - 0.112257 - - 0.103399 - - 0.095449 - - 0.088294 - - 0.081836 - - 0.075993 - - 0.070692 - - 0.065875 - - 0.061484 - - 0.057476 - - 0.053809 - - 0.050447 - - 0.047358 - - 0.044518 - - 0.041900 - - 0.039483 - 0.0 - 0.0 - thrust: + - 36.722155848902254 + - 94.65678115354163 + - 170.596391826316 + - 267.74933496419163 + - 387.64681352354114 + - 533.9617151673435 + - 707.4062402827329 + - 909.9965782677073 + - 1142.7197798534328 + - 1407.4994184495558 + - 1707.1272243371227 + - 2047.3355806543098 + - 2430.5778091805637 + - 2858.3081150622215 + - 3329.100627354195 + - 3842.9755943182267 + - 4403.86140594055 + - 4999.993508066915 + - 4999.99850473839 + - 4999.997854617397 + - 5000.00304890274 + - 5000.002113339491 + - 4999.997282778227 + - 5000.002243172759 + - 5000.000360590384 + - 5000.009074693787 + - 4999.987262704901 + - 5000.007345811091 + - 5000.006875165497 + - 4999.994990648268 + - 4999.97705933755 + - 4999.983698972648 + - 4999.991318085188 + - 5000.024022703328 + - 5000.016589748782 + - 5000.025709581146 + - 4999.944891236294 + - 5000.035324880168 + - 4999.967955734346 + - 5000.013248451465 + - 5000.063199891701 + - 5000.068982245371 + - 4999.9325188896555 + - 5000.011035557985 + - 5000.012771123277 + - 4717.243379938609 + - 0.0 + - 0.0 + thrust_coefficient: - 0.0 - 0.0 - 0.0 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml index b1755ab6c..af36a9bfa 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml @@ -1,67 +1,67 @@ turbine_type: 'nrel_5MW_floating' generator_efficiency: 1.0 hub_height: 90.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 126.0 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 5.0 correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 5.0 + pP: 1.88 + pT: 1.88 power: - 0.0 - - 0.000000 - - 0.000000 - - 0.178085 - - 0.289075 - - 0.349022 - - 0.384728 - - 0.406059 - - 0.420228 - - 0.428823 - - 0.433873 - - 0.436223 - - 0.436845 - - 0.436575 - - 0.436511 - - 0.436561 - - 0.436517 - - 0.435903 - - 0.434673 - - 0.433230 - - 0.430466 - - 0.378869 - - 0.335199 - - 0.297991 - - 0.266092 - - 0.238588 - - 0.214748 - - 0.193981 - - 0.175808 - - 0.159835 - - 0.145741 - - 0.133256 - - 0.122157 - - 0.112257 - - 0.103399 - - 0.095449 - - 0.088294 - - 0.081836 - - 0.075993 - - 0.070692 - - 0.065875 - - 0.061484 - - 0.057476 - - 0.053809 - - 0.050447 - - 0.047358 - - 0.044518 - - 0.041900 - - 0.039483 - 0.0 - 0.0 - thrust: + - 36.722155848902254 + - 94.65678115354163 + - 170.596391826316 + - 267.74933496419163 + - 387.64681352354114 + - 533.9617151673435 + - 707.4062402827329 + - 909.9965782677073 + - 1142.7197798534328 + - 1407.4994184495558 + - 1707.1272243371227 + - 2047.3355806543098 + - 2430.5778091805637 + - 2858.3081150622215 + - 3329.100627354195 + - 3842.9755943182267 + - 4403.86140594055 + - 4999.993508066915 + - 4999.99850473839 + - 4999.997854617397 + - 5000.00304890274 + - 5000.002113339491 + - 4999.997282778227 + - 5000.002243172759 + - 5000.000360590384 + - 5000.009074693787 + - 4999.987262704901 + - 5000.007345811091 + - 5000.006875165497 + - 4999.994990648268 + - 4999.97705933755 + - 4999.983698972648 + - 4999.991318085188 + - 5000.024022703328 + - 5000.016589748782 + - 5000.025709581146 + - 4999.944891236294 + - 5000.035324880168 + - 4999.967955734346 + - 5000.013248451465 + - 5000.063199891701 + - 5000.068982245371 + - 4999.9325188896555 + - 5000.011035557985 + - 5000.012771123277 + - 4717.243379938609 + - 0.0 + - 0.0 + thrust_coefficient: - 0.0 - 0.0 - 0.0 diff --git a/floris/simulation/__init__.py b/floris/simulation/__init__.py index b7b41ed16..2182951ca 100644 --- a/floris/simulation/__init__.py +++ b/floris/simulation/__init__.py @@ -37,19 +37,16 @@ import floris.logging_manager from .base import BaseClass, BaseModel, State -from .turbine import ( - average_velocity, +from .turbine.turbine import ( axial_induction, - compute_tilt_angles_for_floating_turbines, - Ct, power, - rotor_effective_velocity, + thrust_coefficient, Turbine ) -from .turbine_multi_dim import ( - axial_induction_multidim, - Ct_multidim, - TurbineMultiDimensional +from .rotor_velocity import ( + average_velocity, + rotor_effective_velocity, + compute_tilt_angles_for_floating_turbines, ) from .farm import Farm from .grid import ( @@ -70,7 +67,6 @@ full_flow_sequential_solver, full_flow_turbopark_solver, sequential_solver, - sequential_multidim_solver, turbopark_solver, ) from .floris import Floris diff --git a/floris/simulation/farm.py b/floris/simulation/farm.py index 0b58cc936..7544231fe 100644 --- a/floris/simulation/farm.py +++ b/floris/simulation/farm.py @@ -13,6 +13,7 @@ from __future__ import annotations import copy +from collections.abc import Callable from pathlib import Path from typing import ( Any, @@ -29,9 +30,8 @@ BaseClass, State, Turbine, - TurbineMultiDimensional, ) -from floris.simulation.turbine import compute_tilt_angles_for_floating_turbines +from floris.simulation.rotor_velocity import compute_tilt_angles_for_floating_turbines_map from floris.type_dec import ( convert_to_path, floris_array_converter, @@ -81,8 +81,8 @@ class Farm(BaseClass): turbine_definitions: list = field(init=False, validator=iter_validator(list, dict)) - turbine_fCts: Dict[str, interp1d] | List[interp1d] = field(init=False, factory=list) - turbine_fCts_sorted: NDArrayFloat = field(init=False, factory=list) + turbine_thrust_coefficient_functions: Dict[str, Callable] = field(init=False, factory=list) + turbine_axial_induction_functions: Dict[str, Callable] = field(init=False, factory=list) turbine_tilt_interps: dict[str, interp1d] = field(init=False, factory=dict) @@ -95,13 +95,13 @@ class Farm(BaseClass): hub_heights: NDArrayFloat = field(init=False) hub_heights_sorted: NDArrayFloat = field(init=False, factory=list) - turbine_map: List[Turbine | TurbineMultiDimensional] = field(init=False, factory=list) + turbine_map: List[Turbine] = field(init=False, factory=list) turbine_type_map: NDArrayObject = field(init=False, factory=list) turbine_type_map_sorted: NDArrayObject = field(init=False, factory=list) - turbine_power_interps: Dict[str, interp1d] | List[interp1d] = field(init=False, factory=list) - turbine_power_interps_sorted: NDArrayFloat = field(init=False, factory=list) + turbine_power_functions: Dict[str, Callable] = field(init=False, factory=list) + turbine_power_thrust_tables: Dict[str, dict] = field(init=False, factory=list) rotor_diameters: NDArrayFloat = field(init=False, factory=list) rotor_diameters_sorted: NDArrayFloat = field(init=False, factory=list) @@ -109,15 +109,6 @@ class Farm(BaseClass): TSRs: NDArrayFloat = field(init=False, factory=list) TSRs_sorted: NDArrayFloat = field(init=False, factory=list) - pPs: NDArrayFloat = field(init=False, factory=list) - pPs_sorted: NDArrayFloat = field(init=False, factory=list) - - pTs: NDArrayFloat = field(init=False, factory=list) - pTs_sorted: NDArrayFloat = field(init=False, factory=list) - - ref_air_densities: NDArrayFloat = field(init=False, factory=list) - ref_air_densities_sorted: NDArrayFloat = field(init=False, factory=list) - ref_tilts: NDArrayFloat = field(init=False, factory=list) ref_tilts_sorted: NDArrayFloat = field(init=False, factory=list) @@ -255,20 +246,9 @@ def construct_rotor_diameters(self): def construct_turbine_TSRs(self): self.TSRs = np.array([turb['TSR'] for turb in self.turbine_definitions]) - def construct_turbine_pPs(self): - self.pPs = np.array([turb['pP'] for turb in self.turbine_definitions]) - - def construct_turbine_pTs(self): - self.pTs = np.array([turb['pT'] for turb in self.turbine_definitions]) - - def construct_turbine_ref_air_densities(self): - self.ref_air_densities = np.array([ - turb['ref_air_density'] for turb in self.turbine_definitions - ]) - def construct_turbine_ref_tilts(self): self.ref_tilts = np.array( - [turb['ref_tilt'] for turb in self.turbine_definitions] + [turb['power_thrust_table']['ref_tilt'] for turb in self.turbine_definitions] ) def construct_turbine_correct_cp_ct_for_tilt(self): @@ -277,39 +257,32 @@ def construct_turbine_correct_cp_ct_for_tilt(self): ) def construct_turbine_map(self): - multi_key = "multi_dimensional_cp_ct" - if multi_key in self.turbine_definitions[0] and self.turbine_definitions[0][multi_key]: - self.turbine_map = [] - for turb in self.turbine_definitions: - _turb = {**turb, **{"turbine_library_path": self.internal_turbine_library}} - try: - self.turbine_map.append(TurbineMultiDimensional.from_dict(_turb)) - except FileNotFoundError: - _turb["turbine_library_path"] = self.turbine_library_path - self.turbine_map.append(TurbineMultiDimensional.from_dict(_turb)) - else: - self.turbine_map = [Turbine.from_dict(turb) for turb in self.turbine_definitions] - - def construct_turbine_fCts(self): - self.turbine_fCts = { - turb.turbine_type: turb.fCt_interp for turb in self.turbine_map + self.turbine_map = [Turbine.from_dict(turb) for turb in self.turbine_definitions] + + def construct_turbine_thrust_coefficient_functions(self): + self.turbine_thrust_coefficient_functions = { + turb.turbine_type: turb.thrust_coefficient_function for turb in self.turbine_map } - def construct_multidim_turbine_fCts(self): - self.turbine_fCts = [turb.fCt_interp for turb in self.turbine_map] + def construct_turbine_axial_induction_functions(self): + self.turbine_axial_induction_functions = { + turb.turbine_type: turb.axial_induction_function for turb in self.turbine_map + } def construct_turbine_tilt_interps(self): self.turbine_tilt_interps = { turb.turbine_type: turb.tilt_interp for turb in self.turbine_map } - def construct_turbine_power_interps(self): - self.turbine_power_interps = { - turb.turbine_type: turb.power_interp for turb in self.turbine_map + def construct_turbine_power_functions(self): + self.turbine_power_functions = { + turb.turbine_type: turb.power_function for turb in self.turbine_map } - def construct_multidim_turbine_power_interps(self): - self.turbine_power_interps = [turb.power_interp for turb in self.turbine_map] + def construct_turbine_power_thrust_tables(self): + self.turbine_power_thrust_tables = { + turb.turbine_type: turb.power_thrust_table for turb in self.turbine_map + } def expand_farm_properties(self, n_findex: int, sorted_coord_indices): template_shape = np.ones_like(sorted_coord_indices) @@ -318,26 +291,6 @@ def expand_farm_properties(self, n_findex: int, sorted_coord_indices): sorted_coord_indices, axis=1 ) - if 'multi_dimensional_cp_ct' in self.turbine_definitions[0].keys() \ - and self.turbine_definitions[0]['multi_dimensional_cp_ct'] is True: - findex_dim = np.shape(template_shape)[0] - - self.turbine_fCts_sorted = np.take_along_axis( - np.reshape( - np.repeat(self.turbine_fCts, findex_dim), - np.shape(template_shape) - ), - sorted_coord_indices, - axis=1 - ) - self.turbine_power_interps_sorted = np.take_along_axis( - np.reshape( - np.repeat(self.turbine_power_interps, findex_dim), - np.shape(template_shape) - ), - sorted_coord_indices, - axis=1 - ) self.rotor_diameters_sorted = np.take_along_axis( self.rotor_diameters * template_shape, sorted_coord_indices, @@ -348,11 +301,6 @@ def expand_farm_properties(self, n_findex: int, sorted_coord_indices): sorted_coord_indices, axis=1 ) - self.ref_air_densities_sorted = np.take_along_axis( - self.ref_air_densities * template_shape, - sorted_coord_indices, - axis=1 - ) self.ref_tilts_sorted = np.take_along_axis( self.ref_tilts * template_shape, sorted_coord_indices, @@ -363,16 +311,6 @@ def expand_farm_properties(self, n_findex: int, sorted_coord_indices): sorted_coord_indices, axis=1 ) - self.pPs_sorted = np.take_along_axis( - self.pPs * template_shape, - sorted_coord_indices, - axis=1 - ) - self.pTs_sorted = np.take_along_axis( - self.pTs * template_shape, - sorted_coord_indices, - axis=1 - ) # NOTE: Tilt angles are sorted twice - here and in initialize() self.tilt_angles_sorted = np.take_along_axis( @@ -404,7 +342,7 @@ def set_tilt_to_ref_tilt(self, n_findex: int): ) def calculate_tilt_for_eff_velocities(self, rotor_effective_velocities): - tilt_angles = compute_tilt_angles_for_floating_turbines( + tilt_angles = compute_tilt_angles_for_floating_turbines_map( self.turbine_type_map_sorted, self.tilt_angles_sorted, self.turbine_tilt_interps, @@ -413,18 +351,6 @@ def calculate_tilt_for_eff_velocities(self, rotor_effective_velocities): return tilt_angles def finalize(self, unsorted_indices): - if 'multi_dimensional_cp_ct' in self.turbine_definitions[0].keys() \ - and self.turbine_definitions[0]['multi_dimensional_cp_ct'] is True: - self.turbine_fCts = np.take_along_axis( - self.turbine_fCts_sorted, - unsorted_indices[:,:,0,0], - axis=1 - ) - self.turbine_power_interps = np.take_along_axis( - self.turbine_power_interps_sorted, - unsorted_indices[:,:,0,0], - axis=1 - ) self.yaw_angles = np.take_along_axis( self.yaw_angles_sorted, unsorted_indices[:,:,0,0], @@ -450,11 +376,6 @@ def finalize(self, unsorted_indices): unsorted_indices[:,:,0,0], axis=1 ) - self.ref_air_densities = np.take_along_axis( - self.ref_air_densities_sorted, - unsorted_indices[:,:,0,0], - axis=1 - ) self.ref_tilts = np.take_along_axis( self.ref_tilts_sorted, unsorted_indices[:,:,0,0], @@ -465,16 +386,6 @@ def finalize(self, unsorted_indices): unsorted_indices[:,:,0,0], axis=1 ) - self.pPs = np.take_along_axis( - self.pPs_sorted, - unsorted_indices[:,:,0,0], - axis=1 - ) - self.pTs = np.take_along_axis( - self.pTs_sorted, - unsorted_indices[:,:,0,0], - axis=1 - ) self.turbine_type_map = np.take_along_axis( self.turbine_type_map_sorted, unsorted_indices[:,:,0,0], diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index b7eaf7b86..e2e475e0e 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -36,7 +36,6 @@ full_flow_turbopark_solver, Grid, PointsGrid, - sequential_multidim_solver, sequential_solver, State, TurbineCubatureGrid, @@ -87,18 +86,13 @@ def __attrs_post_init__(self) -> None: # Initialize farm quantities that depend on other objects self.farm.construct_turbine_map() - if self.wake.model_strings['velocity_model'] == 'multidim_cp_ct': - self.farm.construct_multidim_turbine_fCts() - self.farm.construct_multidim_turbine_power_interps() - else: - self.farm.construct_turbine_fCts() - self.farm.construct_turbine_power_interps() + self.farm.construct_turbine_thrust_coefficient_functions() + self.farm.construct_turbine_axial_induction_functions() + self.farm.construct_turbine_power_functions() + self.farm.construct_turbine_power_thrust_tables() self.farm.construct_hub_heights() self.farm.construct_rotor_diameters() self.farm.construct_turbine_TSRs() - self.farm.construct_turbine_pPs() - self.farm.construct_turbine_pTs() - self.farm.construct_turbine_ref_air_densities() self.farm.construct_turbine_ref_tilts() self.farm.construct_turbine_tilt_interps() self.farm.construct_turbine_correct_cp_ct_for_tilt() @@ -177,8 +171,8 @@ def steady_state_atmospheric_condition(self): self.farm.correct_cp_ct_for_tilt.any(): self.logger.warning( "The current model does not account for vertical wake deflection due to " + - "tilt. Corrections to Cp and Ct can be included, but no vertical wake " + - "deflection will occur." + "tilt. Corrections to power and thrust coefficient can be included, but no " + + "vertical wake deflection will occur." ) if vel_model=="cc": @@ -202,13 +196,6 @@ def steady_state_atmospheric_condition(self): self.grid, self.wake ) - elif vel_model=="multidim_cp_ct": - sequential_multidim_solver( - self.farm, - self.flow_field, - self.grid, - self.wake - ) else: sequential_solver( self.farm, diff --git a/floris/simulation/rotor_velocity.py b/floris/simulation/rotor_velocity.py new file mode 100644 index 000000000..25f94d55d --- /dev/null +++ b/floris/simulation/rotor_velocity.py @@ -0,0 +1,244 @@ +# Copyright 2021 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +from __future__ import annotations + +import copy +from collections.abc import Iterable + +import numpy as np +from scipy.interpolate import interp1d + +from floris.type_dec import ( + NDArrayBool, + NDArrayFilter, + NDArrayFloat, + NDArrayInt, + NDArrayObject, +) +from floris.utilities import cosd + + +def rotor_velocity_yaw_correction( + pP: float, + yaw_angles: NDArrayFloat, + rotor_effective_velocities: NDArrayFloat, +) -> NDArrayFloat: + # Compute the rotor effective velocity adjusting for yaw settings + pW = pP / 3.0 # Convert from pP to w + # TODO: cosine loss hard coded + rotor_effective_velocities = rotor_effective_velocities * cosd(yaw_angles) ** pW + + return rotor_effective_velocities + +def rotor_velocity_tilt_correction( + tilt_angles: NDArrayFloat, + ref_tilt: NDArrayFloat, + pT: float, + tilt_interp: NDArrayObject, + correct_cp_ct_for_tilt: NDArrayBool, + rotor_effective_velocities: NDArrayFloat, +) -> NDArrayFloat: + # Compute the tilt, if using floating turbines + old_tilt_angle = copy.deepcopy(tilt_angles) + tilt_angles = compute_tilt_angles_for_floating_turbines( + tilt_angles, + tilt_interp, + rotor_effective_velocities, + ) + # Only update tilt angle if requested (if the tilt isn't accounted for in the Cp curve) + tilt_angles = np.where(correct_cp_ct_for_tilt, tilt_angles, old_tilt_angle) + + # Compute the rotor effective velocity adjusting for tilt + # TODO: cosine loss hard coded + relative_tilt = tilt_angles - ref_tilt + rotor_effective_velocities = rotor_effective_velocities * cosd(relative_tilt) ** (pT / 3.0) + return rotor_effective_velocities + +def simple_mean(array, axis=0): + return np.mean(array, axis=axis) + +def cubic_mean(array, axis=0): + return np.cbrt(np.mean(array ** 3.0, axis=axis)) + +def simple_cubature(array, cubature_weights, axis=0): + weights = cubature_weights.flatten() + weights = weights * len(weights) / np.sum(weights) + product = (array * weights[None, None, :, None]) + return simple_mean(product, axis) + +def cubic_cubature(array, cubature_weights, axis=0): + weights = cubature_weights.flatten() + weights = weights * len(weights) / np.sum(weights) + return np.cbrt(np.mean((array**3.0 * weights[None, None, :, None]), axis=axis)) + +def average_velocity( + velocities: NDArrayFloat, + ix_filter: NDArrayFilter | Iterable[int] | None = None, + method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None +) -> NDArrayFloat: + """This property calculates and returns the average of the velocity field + in turbine's rotor swept area. The average is calculated using the + user-specified method. This is a vectorized function, so it can be used + to calculate the average velocity for multiple turbines at once or + a single turbine. + + **Note:** The velocity is scaled to an effective velocity by the yaw. + + Args: + velocities (NDArrayFloat): The velocity field at each turbine; should be shape: + (number of turbines, ngrid, ngrid), or (ngrid, ngrid) for a single turbine. + ix_filter (NDArrayFilter | Iterable[int] | None], optional): The boolean array, or + integer indices (as an iterable or array) to filter out before calculation. + Defaults to None. + method (str, optional): The method to use for averaging. Options are: + - "simple-mean": The simple mean of the velocities + - "cubic-mean": The cubic mean of the velocities + - "simple-cubature": A cubature integration of the velocities + - "cubic-cubature": A cubature integration of the cube of the velocities + Defaults to "cubic-mean". + cubature_weights (NDArrayFloat, optional): The cubature weights to use for the + cubature integration methods. Defaults to None. + + Returns: + NDArrayFloat: The average velocity across the rotor(s). + """ + + # The input velocities are expected to be a 4 dimensional array with shape: + # (# findex, # turbines, grid resolution, grid resolution) + + if ix_filter is not None: + velocities = velocities[:, ix_filter] + + axis = tuple([2 + i for i in range(velocities.ndim - 2)]) + if method == "simple-mean": + return simple_mean(velocities, axis) + + elif method == "cubic-mean": + return cubic_mean(velocities, axis) + + elif method == "simple-cubature": + if cubature_weights is None: + raise ValueError("cubature_weights is required for 'simple-cubature' method.") + return simple_cubature(velocities, cubature_weights, axis) + + elif method == "cubic-cubature": + if cubature_weights is None: + raise ValueError("cubature_weights is required for 'cubic-cubature' method.") + return cubic_cubature(velocities, cubature_weights, axis) + + else: + raise ValueError("Incorrect method given.") + +def compute_tilt_angles_for_floating_turbines_map( + turbine_type_map: NDArrayObject, + tilt_angles: NDArrayFloat, + tilt_interps: dict[str, interp1d], + rotor_effective_velocities: NDArrayFloat, +) -> NDArrayFloat: + # Loop over each turbine type given to get tilt angles for all turbines + old_tilt_angles = copy.deepcopy(tilt_angles) + tilt_angles = np.zeros(np.shape(rotor_effective_velocities)) + turb_types = np.unique(turbine_type_map) + for turb_type in turb_types: + # If no tilt interpolation is specified, assume no modification to tilt + if tilt_interps[turb_type] is None: # Use passed tilt angles + tilt_angles += old_tilt_angles * (turbine_type_map == turb_type) + else: # Apply interpolated tilt angle + tilt_angles += compute_tilt_angles_for_floating_turbines( + tilt_angles, + tilt_interps[turb_type], + rotor_effective_velocities + ) * (turbine_type_map == turb_type) + + return tilt_angles + +def compute_tilt_angles_for_floating_turbines( + tilt_angles: NDArrayFloat, + tilt_interp: dict[str, interp1d], + rotor_effective_velocities: NDArrayFloat, +) -> NDArrayFloat: + # Loop over each turbine type given to get tilt angles for all turbines + # If no tilt interpolation is specified, assume no modification to tilt + if tilt_interp is None: + # TODO should this be break? Should it be continue? Do we want to support mixed + # fixed-bottom and floating? Or non-tilting floating? + pass + # Using a masked array, apply the tilt angle for all turbines of the current + # type to the main tilt angle array + else: + tilt_angles = tilt_interp(rotor_effective_velocities) + + return tilt_angles + +def rotor_effective_velocity( + air_density: float, + ref_air_density: float, + velocities: NDArrayFloat, + yaw_angle: NDArrayFloat, + tilt_angle: NDArrayFloat, + ref_tilt: NDArrayFloat, + pP: float, + pT: float, + tilt_interp: NDArrayObject, + correct_cp_ct_for_tilt: NDArrayBool, + turbine_type_map: NDArrayObject, + ix_filter: NDArrayInt | Iterable[int] | None = None, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None +) -> NDArrayFloat: + + if isinstance(yaw_angle, list): + yaw_angle = np.array(yaw_angle) + if isinstance(tilt_angle, list): + tilt_angle = np.array(tilt_angle) + + # Down-select inputs if ix_filter is given + if ix_filter is not None: + velocities = velocities[:, ix_filter] + yaw_angle = yaw_angle[:, ix_filter] + tilt_angle = tilt_angle[:, ix_filter] + ref_tilt = ref_tilt[:, ix_filter] + pP = pP[:, ix_filter] + pT = pT[:, ix_filter] + turbine_type_map = turbine_type_map[:, ix_filter] + + # Compute the rotor effective velocity adjusting for air density + average_velocities = average_velocity( + velocities, + method=average_method, + cubature_weights=cubature_weights + ) + rotor_effective_velocities = (air_density/ref_air_density)**(1/3) * average_velocities + + # Compute the rotor effective velocity adjusting for yaw settings + rotor_effective_velocities = rotor_velocity_yaw_correction( + pP, + yaw_angle, + rotor_effective_velocities + ) + + # Compute the tilt, if using floating turbines + rotor_effective_velocities = rotor_velocity_tilt_correction( + turbine_type_map, + tilt_angle, + ref_tilt, + pT, + tilt_interp, + correct_cp_ct_for_tilt, + rotor_effective_velocities, + ) + + return rotor_effective_velocities diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index 54872d88a..d32ef9d15 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -18,20 +18,15 @@ from floris.simulation import ( axial_induction, - Ct, Farm, FlowField, FlowFieldGrid, FlowFieldPlanarGrid, PointsGrid, + thrust_coefficient, TurbineGrid, ) -from floris.simulation.turbine import average_velocity -from floris.simulation.turbine_multi_dim import ( - axial_induction_multidim, - Ct_multidim, - multidim_Ct_down_select, -) +from floris.simulation.rotor_velocity import average_velocity from floris.simulation.wake import WakeModelManager from floris.simulation.wake_deflection.empirical_gauss import yaw_added_wake_mixing from floris.simulation.wake_deflection.gauss import ( @@ -101,34 +96,36 @@ def sequential_solver( u_i = flow_field.u_sorted[:, i:i+1] v_i = flow_field.v_sorted[:, i:i+1] - ct_i = Ct( + ct_i = thrust_coefficient( velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + yaw_angles=farm.yaw_angles_sorted, + tilt_angles=farm.tilt_angles_sorted, + thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions ) - # Since we are filtering for the i'th turbine in the Ct function, + # Since we are filtering for the i'th turbine in the thrust coefficient function, # get the first index here (0:1) ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + yaw_angles=farm.yaw_angles_sorted, + tilt_angles=farm.tilt_angles_sorted, + axial_induction_functions=farm.turbine_axial_induction_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) @@ -273,14 +270,12 @@ def full_flow_sequential_solver( turbine_grid_flow_field = copy.deepcopy(flow_field) turbine_grid_farm.construct_turbine_map() - turbine_grid_farm.construct_turbine_fCts() - turbine_grid_farm.construct_turbine_power_interps() + turbine_grid_farm.construct_turbine_thrust_coefficient_functions() + turbine_grid_farm.construct_turbine_axial_induction_functions() + turbine_grid_farm.construct_turbine_power_functions() turbine_grid_farm.construct_hub_heights() turbine_grid_farm.construct_rotor_diameters() turbine_grid_farm.construct_turbine_TSRs() - turbine_grid_farm.construct_turbine_pPs() - turbine_grid_farm.construct_turbine_pTs() - turbine_grid_farm.construct_turbine_ref_air_densities() turbine_grid_farm.construct_turbine_ref_tilts() turbine_grid_farm.construct_turbine_tilt_interps() turbine_grid_farm.construct_turbine_correct_cp_ct_for_tilt() @@ -331,29 +326,29 @@ def full_flow_sequential_solver( u_i = turbine_grid_flow_field.u_sorted[:, i:i+1] v_i = turbine_grid_flow_field.v_sorted[:, i:i+1] - ct_i = Ct( + ct_i = thrust_coefficient( velocities=turbine_grid_flow_field.u_sorted, - yaw_angle=turbine_grid_farm.yaw_angles_sorted, - tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt=turbine_grid_farm.ref_tilts_sorted, - fCt=turbine_grid_farm.turbine_fCts, - tilt_interp=turbine_grid_farm.turbine_tilt_interps, + yaw_angles=turbine_grid_farm.yaw_angles_sorted, + tilt_angles=turbine_grid_farm.tilt_angles_sorted, + thrust_coefficient_functions=turbine_grid_farm.turbine_thrust_coefficient_functions, + tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, + turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], ) - # Since we are filtering for the i'th turbine in the Ct function, + # Since we are filtering for the i'th turbine in the thrust_coefficient function, # get the first index here (0:1) ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=turbine_grid_flow_field.u_sorted, - yaw_angle=turbine_grid_farm.yaw_angles_sorted, - tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt=turbine_grid_farm.ref_tilts_sorted, - fCt=turbine_grid_farm.turbine_fCts, - tilt_interp=turbine_grid_farm.turbine_tilt_interps, + yaw_angles=turbine_grid_farm.yaw_angles_sorted, + tilt_angles=turbine_grid_farm.tilt_angles_sorted, + axial_induction_functions=turbine_grid_farm.turbine_axial_induction_functions, + tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, + turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], ) # Since we are filtering for the i'th turbine in the axial induction function, @@ -492,15 +487,15 @@ def cc_solver( ) turb_avg_vels = average_velocity(turb_inflow_field) - turb_Cts = Ct( + turb_Cts = thrust_coefficient( turb_avg_vels, farm.yaw_angles_sorted, farm.tilt_angles_sorted, - farm.ref_tilts_sorted, - farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + farm.turbine_thrust_coefficient_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, average_method=grid.average_method, cubature_weights=grid.cubature_weights ) @@ -509,11 +504,11 @@ def cc_solver( turb_avg_vels, farm.yaw_angles_sorted, farm.tilt_angles_sorted, - farm.ref_tilts_sorted, - farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + farm.turbine_axial_induction_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, cubature_weights=grid.cubature_weights @@ -525,13 +520,13 @@ def cc_solver( axial_induction_i = axial_induction( velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + yaw_angles=farm.yaw_angles_sorted, + tilt_angles=farm.tilt_angles_sorted, + axial_induction_functions=farm.turbine_axial_induction_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, cubature_weights=grid.cubature_weights @@ -675,14 +670,12 @@ def full_flow_cc_solver( turbine_grid_flow_field = copy.deepcopy(flow_field) turbine_grid_farm.construct_turbine_map() - turbine_grid_farm.construct_turbine_fCts() - turbine_grid_farm.construct_turbine_power_interps() + turbine_grid_farm.construct_turbine_thrust_coefficient_functions() + turbine_grid_farm.construct_turbine_axial_induction_functions() + turbine_grid_farm.construct_turbine_power_functions() turbine_grid_farm.construct_hub_heights() turbine_grid_farm.construct_rotor_diameters() turbine_grid_farm.construct_turbine_TSRs() - turbine_grid_farm.construct_turbine_pPs() - turbine_grid_farm.construct_turbine_pTs() - turbine_grid_farm.construct_turbine_ref_air_densities() turbine_grid_farm.construct_turbine_ref_tilts() turbine_grid_farm.construct_turbine_tilt_interps() turbine_grid_farm.construct_turbine_correct_cp_ct_for_tilt() @@ -737,15 +730,15 @@ def full_flow_cc_solver( v_i = turbine_grid_flow_field.v_sorted[:, i:i+1] turb_avg_vels = average_velocity(turbine_grid_flow_field.u_sorted) - turb_Cts = Ct( + turb_Cts = thrust_coefficient( velocities=turb_avg_vels, - yaw_angle=turbine_grid_farm.yaw_angles_sorted, - tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt=turbine_grid_farm.ref_tilts_sorted, - fCt=turbine_grid_farm.turbine_fCts, - tilt_interp=turbine_grid_farm.turbine_tilt_interps, + yaw_angles=turbine_grid_farm.yaw_angles_sorted, + tilt_angles=turbine_grid_farm.tilt_angles_sorted, + thrust_coefficient_functions=turbine_grid_farm.turbine_thrust_coefficient_functions, + tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, + turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, average_method=turbine_grid.average_method, cubature_weights=turbine_grid.cubature_weights ) @@ -753,13 +746,13 @@ def full_flow_cc_solver( axial_induction_i = axial_induction( velocities=turbine_grid_flow_field.u_sorted, - yaw_angle=turbine_grid_farm.yaw_angles_sorted, - tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt=turbine_grid_farm.ref_tilts_sorted, - fCt=turbine_grid_farm.turbine_fCts, - tilt_interp=turbine_grid_farm.turbine_tilt_interps, + yaw_angles=turbine_grid_farm.yaw_angles_sorted, + tilt_angles=turbine_grid_farm.tilt_angles_sorted, + axial_induction_functions=turbine_grid_farm.turbine_axial_induction_functions, + tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, + turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], average_method=turbine_grid.average_method, cubature_weights=turbine_grid.cubature_weights @@ -888,44 +881,44 @@ def turbopark_solver( u_i = flow_field.u_sorted[:, :, i:i+1] v_i = flow_field.v_sorted[:, :, i:i+1] - Cts = Ct( + Cts = thrust_coefficient( velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + yaw_angles=farm.yaw_angles_sorted, + tilt_angles=farm.tilt_angles_sorted, + thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, average_method=grid.average_method, cubature_weights=grid.cubature_weights ) - ct_i = Ct( + ct_i = thrust_coefficient( velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + yaw_angles=farm.yaw_angles_sorted, + tilt_angles=farm.tilt_angles_sorted, + thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, cubature_weights=grid.cubature_weights ) - # Since we are filtering for the i'th turbine in the Ct function, + # Since we are filtering for the i'th turbine in the thrust coefficient function, # get the first index here (0:1) ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + yaw_angles=farm.yaw_angles_sorted, + tilt_angles=farm.tilt_angles_sorted, + axial_induction_functions=farm.turbine_axial_induction_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, cubature_weights=grid.cubature_weights @@ -975,15 +968,15 @@ def turbopark_solver( yaw_ii = farm.yaw_angles_sorted[:, ii:ii+1, None, None] turbulence_intensity_ii = turbine_turbulence_intensity[:, ii:ii+1] - ct_ii = Ct( + ct_ii = thrust_coefficient( velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + yaw_angles=farm.yaw_angles_sorted, + tilt_angles=farm.tilt_angles_sorted, + thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[ii], average_method=grid.average_method, cubature_weights=grid.cubature_weights @@ -1170,31 +1163,31 @@ def empirical_gauss_solver( flow_field.u_sorted[:, i:i+1] flow_field.v_sorted[:, i:i+1] - ct_i = Ct( + ct_i = thrust_coefficient( velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + yaw_angles=farm.yaw_angles_sorted, + tilt_angles=farm.tilt_angles_sorted, + thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, cubature_weights=grid.cubature_weights ) - # Since we are filtering for the i'th turbine in the Ct function, + # Since we are filtering for the i'th turbine in the thrust coefficient function, # get the first index here (0:1) ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=farm.turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, + yaw_angles=farm.yaw_angles_sorted, + tilt_angles=farm.tilt_angles_sorted, + axial_induction_functions=farm.turbine_axial_induction_functions, + tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=farm.turbine_type_map_sorted, + turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, cubature_weights=grid.cubature_weights @@ -1314,14 +1307,12 @@ def full_flow_empirical_gauss_solver( turbine_grid_flow_field = copy.deepcopy(flow_field) turbine_grid_farm.construct_turbine_map() - turbine_grid_farm.construct_turbine_fCts() - turbine_grid_farm.construct_turbine_power_interps() + turbine_grid_farm.construct_turbine_thrust_coefficient_functions() + turbine_grid_farm.construct_turbine_axial_induction_functions() + turbine_grid_farm.construct_turbine_power_functions() turbine_grid_farm.construct_hub_heights() turbine_grid_farm.construct_rotor_diameters() turbine_grid_farm.construct_turbine_TSRs() - turbine_grid_farm.construct_turbine_pPs() - turbine_grid_farm.construct_turbine_pTs() - turbine_grid_farm.construct_turbine_ref_air_densities() turbine_grid_farm.construct_turbine_ref_tilts() turbine_grid_farm.construct_turbine_tilt_interps() turbine_grid_farm.construct_turbine_correct_cp_ct_for_tilt() @@ -1373,29 +1364,29 @@ def full_flow_empirical_gauss_solver( turbine_grid_flow_field.u_sorted[:, i:i+1] turbine_grid_flow_field.v_sorted[:, i:i+1] - ct_i = Ct( + ct_i = thrust_coefficient( velocities=turbine_grid_flow_field.u_sorted, - yaw_angle=turbine_grid_farm.yaw_angles_sorted, - tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt=turbine_grid_farm.ref_tilts_sorted, - fCt=turbine_grid_farm.turbine_fCts, - tilt_interp=turbine_grid_farm.turbine_tilt_interps, + yaw_angles=turbine_grid_farm.yaw_angles_sorted, + tilt_angles=turbine_grid_farm.tilt_angles_sorted, + thrust_coefficient_functions=turbine_grid_farm.turbine_thrust_coefficient_functions, + tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, + turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], ) - # Since we are filtering for the i'th turbine in the Ct function, + # Since we are filtering for the i'th turbine in the thrust coefficient function, # get the first index here (0:1) ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=turbine_grid_flow_field.u_sorted, - yaw_angle=turbine_grid_farm.yaw_angles_sorted, - tilt_angle=turbine_grid_farm.tilt_angles_sorted, - ref_tilt=turbine_grid_farm.ref_tilts_sorted, - fCt=turbine_grid_farm.turbine_fCts, - tilt_interp=turbine_grid_farm.turbine_tilt_interps, + yaw_angles=turbine_grid_farm.yaw_angles_sorted, + tilt_angles=turbine_grid_farm.tilt_angles_sorted, + axial_induction_functions=turbine_grid_farm.turbine_axial_induction_functions, + tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, + turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], ) # Since we are filtering for the i'th turbine in the axial induction function, @@ -1462,207 +1453,3 @@ def full_flow_empirical_gauss_solver( flow_field.u_sorted = flow_field.u_initial_sorted - wake_field flow_field.v_sorted += v_wake flow_field.w_sorted += w_wake - - -def sequential_multidim_solver( - farm: Farm, - flow_field: FlowField, - grid: TurbineGrid, - model_manager: WakeModelManager -) -> None: - # Algorithm - # For each turbine, calculate its effect on every downstream turbine. - # For the current turbine, we are calculating the deficit that it adds to downstream turbines. - # Integrate this into the main data structure. - # Move on to the next turbine. - - # <> - deflection_model_args = model_manager.deflection_model.prepare_function(grid, flow_field) - deficit_model_args = model_manager.velocity_model.prepare_function(grid, flow_field) - downselect_turbine_fCts = multidim_Ct_down_select( - farm.turbine_fCts_sorted, - flow_field.multidim_conditions, - ) - - # This is u_wake - wake_field = np.zeros_like(flow_field.u_initial_sorted) - v_wake = np.zeros_like(flow_field.v_initial_sorted) - w_wake = np.zeros_like(flow_field.w_initial_sorted) - - turbine_turbulence_intensity = ( - flow_field.turbulence_intensity * np.ones((flow_field.n_findex, farm.n_turbines, 1, 1)) - ) - ambient_turbulence_intensity = flow_field.turbulence_intensity - - # Calculate the velocity deficit sequentially from upstream to downstream turbines - for i in range(grid.n_turbines): - - # Get the current turbine quantities - x_i = np.mean(grid.x_sorted[:, i:i+1], axis=(2, 3)) - x_i = x_i[:, :, None, None] - y_i = np.mean(grid.y_sorted[:, i:i+1], axis=(2, 3)) - y_i = y_i[:, :, None, None] - z_i = np.mean(grid.z_sorted[:, i:i+1], axis=(2, 3)) - z_i = z_i[:, :, None, None] - - u_i = flow_field.u_sorted[:, i:i+1] - v_i = flow_field.v_sorted[:, i:i+1] - - ct_i = Ct_multidim( - velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=downselect_turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, - correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, - turbine_type_map=farm.turbine_type_map_sorted, - ix_filter=[i], - average_method=grid.average_method, - cubature_weights=grid.cubature_weights - ) - # Since we are filtering for the i'th turbine in the Ct function, - # get the first index here (0:1) - ct_i = ct_i[:, 0:1, None, None] - axial_induction_i = axial_induction_multidim( - velocities=flow_field.u_sorted, - yaw_angle=farm.yaw_angles_sorted, - tilt_angle=farm.tilt_angles_sorted, - ref_tilt=farm.ref_tilts_sorted, - fCt=downselect_turbine_fCts, - tilt_interp=farm.turbine_tilt_interps, - correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, - turbine_type_map=farm.turbine_type_map_sorted, - ix_filter=[i], - average_method=grid.average_method, - cubature_weights=grid.cubature_weights - ) - # Since we are filtering for the i'th turbine in the axial induction function, - # get the first index here (0:1) - axial_induction_i = axial_induction_i[:, 0:1, None, None] - turbulence_intensity_i = turbine_turbulence_intensity[:, i:i+1] - yaw_angle_i = farm.yaw_angles_sorted[:, i:i+1, None, None] - hub_height_i = farm.hub_heights_sorted[:, i:i+1, None, None] - rotor_diameter_i = farm.rotor_diameters_sorted[:, i:i+1, None, None] - TSR_i = farm.TSRs_sorted[:, i:i+1, None, None] - - effective_yaw_i = np.zeros_like(yaw_angle_i) - effective_yaw_i += yaw_angle_i - - if model_manager.enable_secondary_steering: - added_yaw = wake_added_yaw( - u_i, - v_i, - flow_field.u_initial_sorted, - grid.y_sorted[:, i:i+1] - y_i, - grid.z_sorted[:, i:i+1], - rotor_diameter_i, - hub_height_i, - ct_i, - TSR_i, - axial_induction_i, - flow_field.wind_shear, - ) - effective_yaw_i += added_yaw - - # Model calculations - # NOTE: exponential - deflection_field = model_manager.deflection_model.function( - x_i, - y_i, - effective_yaw_i, - turbulence_intensity_i, - ct_i, - rotor_diameter_i, - **deflection_model_args, - ) - - if model_manager.enable_transverse_velocities: - v_wake, w_wake = calculate_transverse_velocity( - u_i, - flow_field.u_initial_sorted, - flow_field.dudz_initial_sorted, - grid.x_sorted - x_i, - grid.y_sorted - y_i, - grid.z_sorted, - rotor_diameter_i, - hub_height_i, - yaw_angle_i, - ct_i, - TSR_i, - axial_induction_i, - flow_field.wind_shear, - ) - - if model_manager.enable_yaw_added_recovery: - I_mixing = yaw_added_turbulence_mixing( - u_i, - turbulence_intensity_i, - v_i, - flow_field.w_sorted[:, i:i+1], - v_wake[:, i:i+1], - w_wake[:, i:i+1], - ) - gch_gain = 2 - turbine_turbulence_intensity[:, i:i+1] = turbulence_intensity_i + gch_gain * I_mixing - - # NOTE: exponential - velocity_deficit = model_manager.velocity_model.function( - x_i, - y_i, - z_i, - axial_induction_i, - deflection_field, - yaw_angle_i, - turbulence_intensity_i, - ct_i, - hub_height_i, - rotor_diameter_i, - **deficit_model_args, - ) - - wake_field = model_manager.combination_model.function( - wake_field, - velocity_deficit * flow_field.u_initial_sorted - ) - - wake_added_turbulence_intensity = model_manager.turbulence_model.function( - ambient_turbulence_intensity, - grid.x_sorted, - x_i, - rotor_diameter_i, - axial_induction_i, - ) - - # Calculate wake overlap for wake-added turbulence (WAT) - area_overlap = ( - np.sum(velocity_deficit * flow_field.u_initial_sorted > 0.05, axis=(2, 3)) - / (grid.grid_resolution * grid.grid_resolution) - ) - area_overlap = area_overlap[:, :, None, None] - - # Modify wake added turbulence by wake area overlap - downstream_influence_length = 15 * rotor_diameter_i - ti_added = ( - area_overlap - * np.nan_to_num(wake_added_turbulence_intensity, posinf=0.0) - * (grid.x_sorted > x_i) - * (np.abs(y_i - grid.y_sorted) < 2 * rotor_diameter_i) - * (grid.x_sorted <= downstream_influence_length + x_i) - ) - - # Combine turbine TIs with WAT - turbine_turbulence_intensity = np.maximum( - np.sqrt( ti_added ** 2 + ambient_turbulence_intensity ** 2 ), - turbine_turbulence_intensity - ) - - flow_field.u_sorted = flow_field.u_initial_sorted - wake_field - flow_field.v_sorted += v_wake - flow_field.w_sorted += w_wake - - flow_field.turbulence_intensity_field_sorted = turbine_turbulence_intensity - flow_field.turbulence_intensity_field_sorted_avg = np.mean( - turbine_turbulence_intensity, - axis=(2,3) - )[:, :, None, None] diff --git a/floris/simulation/turbine.py b/floris/simulation/turbine.py deleted file mode 100644 index d7306ada5..000000000 --- a/floris/simulation/turbine.py +++ /dev/null @@ -1,684 +0,0 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - -from __future__ import annotations - -import copy -from collections.abc import Iterable - -import attrs -import numpy as np -from attrs import define, field -from scipy.interpolate import interp1d - -from floris.simulation import BaseClass -from floris.type_dec import ( - floris_numeric_dict_converter, - NDArrayBool, - NDArrayFilter, - NDArrayFloat, - NDArrayInt, - NDArrayObject, -) -from floris.utilities import cosd - - -def _rotor_velocity_yaw_correction( - pP: float, - yaw_angle: NDArrayFloat, - rotor_effective_velocities: NDArrayFloat, -) -> NDArrayFloat: - # Compute the rotor effective velocity adjusting for yaw settings - pW = pP / 3.0 # Convert from pP to w - rotor_effective_velocities = rotor_effective_velocities * cosd(yaw_angle) ** pW - - return rotor_effective_velocities - - -def _rotor_velocity_tilt_correction( - turbine_type_map: NDArrayObject, - tilt_angle: NDArrayFloat, - ref_tilt: NDArrayFloat, - pT: float, - tilt_interp: NDArrayObject, - correct_cp_ct_for_tilt: NDArrayBool, - rotor_effective_velocities: NDArrayFloat, -) -> NDArrayFloat: - # Compute the tilt, if using floating turbines - old_tilt_angle = copy.deepcopy(tilt_angle) - tilt_angle = compute_tilt_angles_for_floating_turbines( - turbine_type_map, - tilt_angle, - tilt_interp, - rotor_effective_velocities, - ) - # Only update tilt angle if requested (if the tilt isn't accounted for in the Cp curve) - tilt_angle = np.where(correct_cp_ct_for_tilt, tilt_angle, old_tilt_angle) - - # Compute the rotor effective velocity adjusting for tilt - relative_tilt = tilt_angle - ref_tilt - rotor_effective_velocities = rotor_effective_velocities * cosd(relative_tilt) ** (pT / 3.0) - return rotor_effective_velocities - - -def compute_tilt_angles_for_floating_turbines( - turbine_type_map: NDArrayObject, - tilt_angle: NDArrayFloat, - tilt_interp: dict[str, interp1d], - rotor_effective_velocities: NDArrayFloat, -) -> NDArrayFloat: - # Loop over each turbine type given to get tilt angles for all turbines - tilt_angles = np.zeros(np.shape(rotor_effective_velocities)) - turb_types = np.unique(turbine_type_map) - for turb_type in turb_types: - # If no tilt interpolation is specified, assume no modification to tilt - if tilt_interp[turb_type] is None: - # TODO should this be break? Should it be continue? Do we want to support mixed - # fixed-bottom and floating? Or non-tilting floating? - pass - # Using a masked array, apply the tilt angle for all turbines of the current - # type to the main tilt angle array - else: - tilt_angles += ( - tilt_interp[turb_type](rotor_effective_velocities) - * (turbine_type_map == turb_type) - ) - - # TODO: Not sure if this is the best way to do this? Basically replaces the initialized - # tilt_angles if there are non-zero tilt angles calculated above (meaning that the turbine - # definition contained a wind_speed/tilt table definition) - if not tilt_angles.all() == 0.0: - tilt_angle = tilt_angles - - return tilt_angle - - -def rotor_effective_velocity( - air_density: float, - ref_air_density: float, - velocities: NDArrayFloat, - yaw_angle: NDArrayFloat, - tilt_angle: NDArrayFloat, - ref_tilt: NDArrayFloat, - pP: float, - pT: float, - tilt_interp: NDArrayObject, - correct_cp_ct_for_tilt: NDArrayBool, - turbine_type_map: NDArrayObject, - ix_filter: NDArrayInt | Iterable[int] | None = None, - average_method: str = "cubic-mean", - cubature_weights: NDArrayFloat | None = None -) -> NDArrayFloat: - - if isinstance(yaw_angle, list): - yaw_angle = np.array(yaw_angle) - if isinstance(tilt_angle, list): - tilt_angle = np.array(tilt_angle) - - # Down-select inputs if ix_filter is given - if ix_filter is not None: - velocities = velocities[:, ix_filter] - yaw_angle = yaw_angle[:, ix_filter] - tilt_angle = tilt_angle[:, ix_filter] - ref_tilt = ref_tilt[:, ix_filter] - pP = pP[:, ix_filter] - pT = pT[:, ix_filter] - turbine_type_map = turbine_type_map[:, ix_filter] - - # Compute the rotor effective velocity adjusting for air density - # TODO: This correction is currently split across two functions: this one and `power`, where in - # `power` the returned power is multiplied by the reference air density - average_velocities = average_velocity( - velocities, - method=average_method, - cubature_weights=cubature_weights - ) - rotor_effective_velocities = (air_density/ref_air_density)**(1/3) * average_velocities - - # Compute the rotor effective velocity adjusting for yaw settings - rotor_effective_velocities = _rotor_velocity_yaw_correction( - pP, yaw_angle, rotor_effective_velocities - ) - - # Compute the tilt, if using floating turbines - rotor_effective_velocities = _rotor_velocity_tilt_correction( - turbine_type_map, - tilt_angle, - ref_tilt, - pT, - tilt_interp, - correct_cp_ct_for_tilt, - rotor_effective_velocities, - ) - - return rotor_effective_velocities - - -def power( - rotor_effective_velocities: NDArrayFloat, - power_interp: dict[str, interp1d], - turbine_type_map: NDArrayObject, - ix_filter: NDArrayInt | Iterable[int] | None = None, -) -> NDArrayFloat: - """Power produced by a turbine adjusted for yaw and tilt. Value - given in Watts. - - Args: - rotor_effective_velocities (NDArrayFloat[wd, ws, turbines]): The rotor - effective velocities at a turbine. Includes the air density correction. - power_interp (dict[str, interp1d]): A dictionary of power interpolation functions for - each turbine type. - turbine_type_map: (NDArrayObject[wd, ws, turbines]): The Turbine type definition for - each turbine. - ix_filter (NDArrayInt, optional): The boolean array, or - integer indices to filter out before calculation. Defaults to None. - - Returns: - NDArrayFloat: The power, in Watts, for each turbine after adjusting for yaw and tilt. - """ - # TODO: Change the order of input arguments to be consistent with the other - # utility functions - velocities first... - # Update to power calculation which replaces the fixed pP exponent with - # an exponent pW, that changes the effective wind speed input to the power - # calculation, rather than scaling the power. This better handles power - # loss to yaw in above rated conditions - # - # based on the paper "Optimising yaw control at wind farm level" by - # Ervin Bossanyi - - # TODO: check this - where is it? - # P = 1/2 rho A V^3 Cp - - # Down-select inputs if ix_filter is given - if ix_filter is not None: - rotor_effective_velocities = rotor_effective_velocities[:, ix_filter] - turbine_type_map = turbine_type_map[:, ix_filter] - - # Loop over each turbine type given to get power for all turbines - p = np.zeros(np.shape(rotor_effective_velocities)) - turb_types = np.unique(turbine_type_map) - for turb_type in turb_types: - # Using a masked array, apply the thrust coefficient for all turbines of the current - # type to the main thrust coefficient array - p += power_interp[turb_type](rotor_effective_velocities) * (turbine_type_map == turb_type) - - return p - - -def Ct( - velocities: NDArrayFloat, - yaw_angle: NDArrayFloat, - tilt_angle: NDArrayFloat, - ref_tilt: NDArrayFloat, - fCt: dict, - tilt_interp: NDArrayObject, - correct_cp_ct_for_tilt: NDArrayBool, - turbine_type_map: NDArrayObject, - ix_filter: NDArrayFilter | Iterable[int] | None = None, - average_method: str = "cubic-mean", - cubature_weights: NDArrayFloat | None = None -) -> NDArrayFloat: - - """Thrust coefficient of a turbine incorporating the yaw angle. - The value is interpolated from the coefficient of thrust vs - wind speed table using the rotor swept area average velocity. - - Args: - velocities (NDArrayFloat[findex, turbines, grid1, grid2]): The velocity field at - a turbine. - yaw_angle (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. - tilt_angle (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. - ref_tilt (NDArrayFloat[findex, turbines]): The reference tilt angle for each turbine - that the Cp/Ct tables are defined at. - fCt (dict): The thrust coefficient interpolation functions for each turbine. Keys are - the turbine type string and values are the interpolation functions. - tilt_interp (Iterable[tuple]): The tilt interpolation functions for each - turbine. - correct_cp_ct_for_tilt (NDArrayBool[findex, turbines]): Boolean for determining if the - turbines Cp and Ct should be corrected for tilt. - turbine_type_map: (NDArrayObject[findex, turbines]): The Turbine type definition - for each turbine. - ix_filter (NDArrayFilter | Iterable[int] | None, optional): The boolean array, or - integer indices as an iterable of array to filter out before calculation. - Defaults to None. - - Returns: - NDArrayFloat: Coefficient of thrust for each requested turbine. - """ - - if isinstance(yaw_angle, list): - yaw_angle = np.array(yaw_angle) - - if isinstance(tilt_angle, list): - tilt_angle = np.array(tilt_angle) - - # Down-select inputs if ix_filter is given - if ix_filter is not None: - velocities = velocities[:, ix_filter] - yaw_angle = yaw_angle[:, ix_filter] - tilt_angle = tilt_angle[:, ix_filter] - ref_tilt = ref_tilt[:, ix_filter] - turbine_type_map = turbine_type_map[:, ix_filter] - correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, ix_filter] - - average_velocities = average_velocity( - velocities, - method=average_method, - cubature_weights=cubature_weights - ) - - # Compute the tilt, if using floating turbines - old_tilt_angle = copy.deepcopy(tilt_angle) - tilt_angle = compute_tilt_angles_for_floating_turbines( - turbine_type_map, - tilt_angle, - tilt_interp, - average_velocities, - ) - # Only update tilt angle if requested (if the tilt isn't accounted for in the Ct curve) - tilt_angle = np.where(correct_cp_ct_for_tilt, tilt_angle, old_tilt_angle) - - # Loop over each turbine type given to get thrust coefficient for all turbines - thrust_coefficient = np.zeros(np.shape(average_velocities)) - turb_types = np.unique(turbine_type_map) - for turb_type in turb_types: - # Using a masked array, apply the thrust coefficient for all turbines of the current - # type to the main thrust coefficient array - thrust_coefficient += ( - fCt[turb_type](average_velocities) - * (turbine_type_map == turb_type) - ) - thrust_coefficient = np.clip(thrust_coefficient, 0.0001, 0.9999) - effective_thrust = thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt) - return effective_thrust - - -def axial_induction( - velocities: NDArrayFloat, # (findex, turbines, grid, grid) - yaw_angle: NDArrayFloat, # (findex, turbines) - tilt_angle: NDArrayFloat, # (findex, turbines) - ref_tilt: NDArrayFloat, - fCt: dict, # (turbines) - tilt_interp: NDArrayObject, # (turbines) - correct_cp_ct_for_tilt: NDArrayBool, # (findex, turbines) - turbine_type_map: NDArrayObject, # (findex, turbines) - ix_filter: NDArrayFilter | Iterable[int] | None = None, - average_method: str = "cubic-mean", - cubature_weights: NDArrayFloat | None = None -) -> NDArrayFloat: - """Axial induction factor of the turbine incorporating - the thrust coefficient and yaw angle. - - Args: - velocities (NDArrayFloat): The velocity field at each turbine; should be shape: - (number of turbines, ngrid, ngrid), or (ngrid, ngrid) for a single turbine. - yaw_angle (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. - tilt_angle (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. - ref_tilt (NDArrayFloat[findex, turbines]): The reference tilt angle for each turbine - that the Cp/Ct tables are defined at. - fCt (dict): The thrust coefficient interpolation functions for each turbine. Keys are - the turbine type string and values are the interpolation functions. - tilt_interp (Iterable[tuple]): The tilt interpolation functions for each - turbine. - correct_cp_ct_for_tilt (NDArrayBool[findex, turbines]): Boolean for determining if the - turbines Cp and Ct should be corrected for tilt. - turbine_type_map: (NDArrayObject[findex, turbines]): The Turbine type definition - for each turbine. - ix_filter (NDArrayFilter | Iterable[int] | None, optional): The boolean array, or - integer indices (as an array or iterable) to filter out before calculation. - Defaults to None. - - Returns: - Union[float, NDArrayFloat]: [description] - """ - - if isinstance(yaw_angle, list): - yaw_angle = np.array(yaw_angle) - - # TODO: Should the tilt_angle used for the return calculation be modified the same as the - # tilt_angle in Ct, if the user has supplied a tilt/wind_speed table? - if isinstance(tilt_angle, list): - tilt_angle = np.array(tilt_angle) - - # Get Ct first before modifying any data - thrust_coefficient = Ct( - velocities, - yaw_angle, - tilt_angle, - ref_tilt, - fCt, - tilt_interp, - correct_cp_ct_for_tilt, - turbine_type_map, - ix_filter, - average_method, - cubature_weights - ) - - # Then, process the input arguments as needed for this function - if ix_filter is not None: - yaw_angle = yaw_angle[:, ix_filter] - tilt_angle = tilt_angle[:, ix_filter] - ref_tilt = ref_tilt[:, ix_filter] - - return ( - 0.5 - / (cosd(yaw_angle) - * cosd(tilt_angle - ref_tilt)) - * ( - 1 - np.sqrt( - 1 - thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt) - ) - ) - ) - - -def simple_mean(array, axis=0): - return np.mean(array, axis=axis) - -def cubic_mean(array, axis=0): - return np.cbrt(np.mean(array ** 3.0, axis=axis)) - -def simple_cubature(array, cubature_weights, axis=0): - weights = cubature_weights.flatten() - weights = weights * len(weights) / np.sum(weights) - product = (array * weights[None, None, :, None]) - return simple_mean(product, axis) - -def cubic_cubature(array, cubature_weights, axis=0): - weights = cubature_weights.flatten() - weights = weights * len(weights) / np.sum(weights) - return np.cbrt(np.mean((array**3.0 * weights[None, None, :, None]), axis=axis)) - -def average_velocity( - velocities: NDArrayFloat, - ix_filter: NDArrayFilter | Iterable[int] | None = None, - method: str = "cubic-mean", - cubature_weights: NDArrayFloat | None = None -) -> NDArrayFloat: - """This property calculates and returns the average of the velocity field - in turbine's rotor swept area. The average is calculated using the - user-specified method. This is a vectorized function, so it can be used - to calculate the average velocity for multiple turbines at once or - a single turbine. - - **Note:** The velocity is scaled to an effective velocity by the yaw. - - Args: - velocities (NDArrayFloat): The velocity field at each turbine; should be shape: - (number of turbines, ngrid, ngrid), or (ngrid, ngrid) for a single turbine. - ix_filter (NDArrayFilter | Iterable[int] | None], optional): The boolean array, or - integer indices (as an iterable or array) to filter out before calculation. - Defaults to None. - method (str, optional): The method to use for averaging. Options are: - - "simple-mean": The simple mean of the velocities - - "cubic-mean": The cubic mean of the velocities - - "simple-cubature": A cubature integration of the velocities - - "cubic-cubature": A cubature integration of the cube of the velocities - Defaults to "cubic-mean". - cubature_weights (NDArrayFloat, optional): The cubature weights to use for the - cubature integration methods. Defaults to None. - - Returns: - NDArrayFloat: The average velocity across the rotor(s). - """ - - # The input velocities are expected to be a 5 dimensional array with shape: - # (# findex, # turbines, grid resolution, grid resolution) - - if ix_filter is not None: - velocities = velocities[:, ix_filter] - - axis = tuple([2 + i for i in range(velocities.ndim - 2)]) - if method == "simple-mean": - return simple_mean(velocities, axis) - - elif method == "cubic-mean": - return cubic_mean(velocities, axis) - - elif method == "simple-cubature": - if cubature_weights is None: - raise ValueError("cubature_weights is required for 'simple-cubature' method.") - return simple_cubature(velocities, cubature_weights, axis) - - elif method == "cubic-cubature": - if cubature_weights is None: - raise ValueError("cubature_weights is required for 'cubic-cubature' method.") - return cubic_cubature(velocities, cubature_weights, axis) - - else: - raise ValueError("Incorrect method given.") - -@define -class Turbine(BaseClass): - """ - A class containing the parameters and infrastructure to model a wind turbine's performance - for a particular atmospheric condition. - - Args: - turbine_type (str): An identifier for this type of turbine such as "NREL_5MW". - rotor_diameter (float): The rotor diameter in meters. - hub_height (float): The hub height in meters. - pP (float): The cosine exponent relating the yaw misalignment angle to turbine power. - pT (float): The cosine exponent relating the rotor tilt angle to turbine power. - TSR (float): The Tip Speed Ratio of the turbine. - generator_efficiency (float): The efficiency of the generator used to scale - power production. - ref_air_density (float): The density at which the provided Cp and Ct curves are defined. - ref_tilt (float): The implicit tilt of the turbine for which the Cp and Ct - curves are defined. This is typically the nacelle tilt. - power_thrust_table (dict[str, float]): Contains power coefficient and thrust coefficient - values at a series of wind speeds to define the turbine performance. - The dictionary must have the following three keys with equal length values: - { - "wind_speeds": List[float], - "power": List[float], - "thrust": List[float], - } - correct_cp_ct_for_tilt (bool): A flag to indicate whether to correct Cp and Ct for tilt - usually for a floating turbine. - Optional, defaults to False. - floating_tilt_table (dict[str, float]): Look up table of tilt angles at a series of - wind speeds. The dictionary must have the following keys with equal length values: - { - "wind_speeds": List[float], - "tilt": List[float], - } - Required if `correct_cp_ct_for_tilt = True`. Defaults to None. - """ - turbine_type: str = field() - rotor_diameter: float = field() - hub_height: float = field() - pP: float = field() - pT: float = field() - TSR: float = field() - generator_efficiency: float = field() - ref_air_density: float = field() - ref_tilt: float = field() - power_thrust_table: dict[str, NDArrayFloat] = field(converter=floris_numeric_dict_converter) - - correct_cp_ct_for_tilt: bool = field(default=False) - floating_tilt_table: dict[str, NDArrayFloat] | None = field(default=None) - - # Even though this Turbine class does not support the multidimensional features as they - # are implemented in TurbineMultiDim, providing the following two attributes here allows - # the turbine data inputs to keep the multidimensional Cp and Ct curve but switch them off - # with multi_dimensional_cp_ct = False - multi_dimensional_cp_ct: bool = field(default=False) - power_thrust_data_file: str = field(default=None) - - # Initialized in the post_init function - rotor_radius: float = field(init=False) - rotor_area: float = field(init=False) - fCt_interp: interp1d = field(init=False) - power_interp: interp1d = field(init=False) - tilt_interp: interp1d = field(init=False, default=None) - - def __attrs_post_init__(self) -> None: - self._initialize_power_thrust_interpolation() - self.__post_init__() - - def __post_init__(self) -> None: - self._initialize_tilt_interpolation() - - def _initialize_power_thrust_interpolation(self) -> None: - # TODO This validation for the power thrust tables should go in the turbine library - # since it's preprocessing - # Remove any duplicate wind speed entries - # _, duplicate_filter = np.unique(self.wind_speed, return_index=True) - # self.power = self.power[duplicate_filter] - # self.thrust = self.thrust[duplicate_filter] - # self.wind_speed = self.wind_speed[duplicate_filter] - - wind_speeds = self.power_thrust_table["wind_speed"] - self.power_interp = interp1d( - wind_speeds, - self.power_thrust_table["power"] * 1e3, # Convert to W - fill_value=0.0, - bounds_error=False, - ) - - """ - Given an array of wind speeds, this function returns an array of the - interpolated thrust coefficients from the power / thrust table used - to define the Turbine. The values are bound by the range of the input - values. Any requested wind speeds outside of the range of input wind - speeds are assigned Ct of 0.0001 or 0.9999. - - The fill_value arguments sets (upper, lower) bounds for any values - outside of the input range. - """ - self.fCt_interp = interp1d( - wind_speeds, - self.power_thrust_table["thrust_coefficient"], - fill_value=(0.0001, 0.9999), - bounds_error=False, - ) - - def _initialize_tilt_interpolation(self) -> None: - # TODO: - # Remove any duplicate wind speed entries - # _, duplicate_filter = np.unique(self.wind_speeds, return_index=True) - # self.tilt = self.tilt[duplicate_filter] - # self.wind_speeds = self.wind_speeds[duplicate_filter] - - if self.floating_tilt_table is not None: - self.floating_tilt_table = floris_numeric_dict_converter(self.floating_tilt_table) - - # If defined, create a tilt interpolation function for floating turbines. - # fill_value currently set to apply the min or max tilt angles if outside - # of the interpolation range. - if self.correct_cp_ct_for_tilt: - self.tilt_interp = interp1d( - self.floating_tilt_table["wind_speed"], - self.floating_tilt_table["tilt"], - fill_value=(0.0, self.floating_tilt_table["tilt"][-1]), - bounds_error=False, - ) - - @power_thrust_table.validator - def check_power_thrust_table(self, instance: attrs.Attribute, value: dict) -> None: - """ - Verify that the power and thrust tables are given with arrays of equal length - to the wind speed array. - """ - if (len(value.keys()) != 3 or - set(value.keys()) != {"wind_speed", "power", "thrust_coefficient"}): - raise ValueError( - """ - power_thrust_table dictionary must have the form: - { - "wind_speed": List[float], - "power": List[float], - "thrust_coefficient": List[float], - } - """ - ) - - if any(e.ndim > 1 for e in - (value["power"], value["thrust_coefficient"], value["wind_speed"]) - ): - raise ValueError("power, thrust_coefficient, and wind_speed inputs must be 1-D.") - - if (len( {value["power"].size, value["thrust_coefficient"].size, value["wind_speed"].size} ) - > 1): - raise ValueError( - "power, thrust_coefficient, and wind_speed tables must be the same size." - ) - - @rotor_diameter.validator - def reset_rotor_diameter_dependencies(self, instance: attrs.Attribute, value: float) -> None: - """Resets the `rotor_radius` and `rotor_area` attributes.""" - # Temporarily turn off validators to avoid infinite recursion - with attrs.validators.disabled(): - # Reset the values - self.rotor_radius = value / 2.0 - self.rotor_area = np.pi * self.rotor_radius ** 2.0 - - @rotor_radius.validator - def reset_rotor_radius(self, instance: attrs.Attribute, value: float) -> None: - """ - Resets the `rotor_diameter` value to trigger the recalculation of - `rotor_diameter`, `rotor_radius` and `rotor_area`. - """ - self.rotor_diameter = value * 2.0 - - @rotor_area.validator - def reset_rotor_area(self, instance: attrs.Attribute, value: float) -> None: - """ - Resets the `rotor_radius` value to trigger the recalculation of - `rotor_diameter`, `rotor_radius` and `rotor_area`. - """ - self.rotor_radius = (value / np.pi) ** 0.5 - - @floating_tilt_table.validator - def check_floating_tilt_table(self, instance: attrs.Attribute, value: dict | None) -> None: - """ - If the tilt / wind_speed table is defined, verify that the tilt and - wind_speed arrays are the same length. - """ - if value is None: - return - - if len(value.keys()) != 2 or set(value.keys()) != {"wind_speed", "tilt"}: - raise ValueError( - """ - floating_tilt_table dictionary must have the form: - { - "wind_speed": List[float], - "tilt": List[float], - } - """ - ) - - if any(len(np.shape(e)) > 1 for e in (value["tilt"], value["wind_speed"])): - raise ValueError("tilt and wind_speed inputs must be 1-D.") - - if len( {len(value["tilt"]), len(value["wind_speed"])} ) > 1: - raise ValueError("tilt and wind_speed inputs must be the same size.") - - @correct_cp_ct_for_tilt.validator - def check_for_cp_ct_correct_flag_if_floating( - self, - instance: attrs.Attribute, - value: bool - ) -> None: - """ - Check that the boolean flag exists for correcting Cp/Ct for tilt - if a tile/wind_speed table is also defined. - """ - if self.correct_cp_ct_for_tilt and self.floating_tilt_table is None: - raise ValueError( - "To enable the Cp and Ct tilt correction, a tilt table must be given." - ) diff --git a/floris/simulation/turbine/__init__.py b/floris/simulation/turbine/__init__.py new file mode 100644 index 000000000..f1ccca6d0 --- /dev/null +++ b/floris/simulation/turbine/__init__.py @@ -0,0 +1,18 @@ +# Copyright 2021 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +from floris.simulation.turbine.operation_models import ( + CosineLossTurbine, + SimpleTurbine, +) diff --git a/floris/simulation/turbine/operation_models.py b/floris/simulation/turbine/operation_models.py new file mode 100644 index 000000000..93173f364 --- /dev/null +++ b/floris/simulation/turbine/operation_models.py @@ -0,0 +1,317 @@ +# Copyright 2021 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +from __future__ import annotations + +import copy +from abc import abstractmethod +from typing import ( + Any, + Dict, + Final, +) + +import numpy as np +from attrs import define, field +from scipy.interpolate import interp1d + +from floris.simulation import BaseClass +from floris.simulation.rotor_velocity import ( + average_velocity, + compute_tilt_angles_for_floating_turbines, + rotor_velocity_tilt_correction, + rotor_velocity_yaw_correction, +) +from floris.type_dec import ( + NDArrayFloat, + NDArrayObject, +) +from floris.utilities import cosd + + +def rotor_velocity_air_density_correction( + velocities: NDArrayFloat, + air_density: float, + ref_air_density: float, +) -> NDArrayFloat: + # Produce equivalent velocities at the reference air density + # TODO: This could go on BaseTurbineModel + return (air_density/ref_air_density)**(1/3) * velocities + + +@define +class BaseOperationModel(BaseClass): + """ + Base class for turbine operation models. All turbine operation models must implement static + power(), thrust_coefficient(), and axial_induction() methods, which are called by power() and + thrust_coefficient() through the interface in the turbine.py module. + + Args: + BaseClass (_type_): _description_ + + Raises: + NotImplementedError: _description_ + NotImplementedError: _description_ + """ + @staticmethod + @abstractmethod + def power() -> None: + raise NotImplementedError("BaseOperationModel.power") + + @staticmethod + @abstractmethod + def thrust_coefficient() -> None: + raise NotImplementedError("BaseOperationModel.thrust_coefficient") + + @staticmethod + @abstractmethod + def axial_induction() -> None: + raise NotImplementedError("BaseOperationModel.axial_induction") + +@define +class SimpleTurbine(BaseOperationModel): + """ + Static class defining an actuator disk turbine model that is fully aligned with the flow. No + handling for yaw or tilt angles. + + As with all turbine submodules, implements only static power() and thrust_coefficient() methods, + which are called by power() and thrust_coefficient() on turbine.py, respectively. This class is + not intended to be instantiated; it simply defines a library of static methods. + + TODO: Should the turbine submodels each implement axial_induction()? + """ + + def power( + power_thrust_table: dict, + velocities: NDArrayFloat, + air_density: float, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + **_ # <- Allows other models to accept other keyword arguments + ): + # Construct power interpolant + power_interpolator = interp1d( + power_thrust_table["wind_speed"], + power_thrust_table["power"], + fill_value=0.0, + bounds_error=False, + ) + + # Compute the power-effective wind speed across the rotor + rotor_average_velocities = average_velocity( + velocities=velocities, + method=average_method, + cubature_weights=cubature_weights, + ) + + rotor_effective_velocities = rotor_velocity_air_density_correction( + velocities=rotor_average_velocities, + air_density=air_density, + ref_air_density=power_thrust_table["ref_air_density"] + ) + + # Compute power + power = power_interpolator(rotor_effective_velocities) * 1e3 # Convert to W + + return power + + def thrust_coefficient( + power_thrust_table: dict, + velocities: NDArrayFloat, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + **_ # <- Allows other models to accept other keyword arguments + ): + # Construct thrust coefficient interpolant + thrust_coefficient_interpolator = interp1d( + power_thrust_table["wind_speed"], + power_thrust_table["thrust_coefficient"], + fill_value=0.0001, + bounds_error=False, + ) + + # Compute the effective wind speed across the rotor + rotor_average_velocities = average_velocity( + velocities=velocities, + method=average_method, + cubature_weights=cubature_weights, + ) + + # TODO: Do we need an air density correction here? + + thrust_coefficient = thrust_coefficient_interpolator(rotor_average_velocities) + thrust_coefficient = np.clip(thrust_coefficient, 0.0001, 0.9999) + + return thrust_coefficient + + def axial_induction( + power_thrust_table: dict, + velocities: NDArrayFloat, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + **_ # <- Allows other models to accept other keyword arguments + ): + + thrust_coefficient = SimpleTurbine.thrust_coefficient( + power_thrust_table=power_thrust_table, + velocities=velocities, + average_method=average_method, + cubature_weights=cubature_weights, + ) + + return (1 - np.sqrt(1 - thrust_coefficient))/2 + + +@define +class CosineLossTurbine(BaseOperationModel): + """ + Static class defining an actuator disk turbine model that may be misaligned with the flow. + Nonzero tilt and yaw angles are handled via cosine relationships, with the power lost to yawing + defined by the pP exponent. This turbine submodel is the default, and matches the turbine + model in FLORIS v3. + + As with all turbine submodules, implements only static power() and thrust_coefficient() methods, + which are called by power() and thrust_coefficient() on turbine.py, respectively. This class is + not intended to be instantiated; it simply defines a library of static methods. + + TODO: Should the turbine submodels each implement axial_induction()? + """ + + def power( + power_thrust_table: dict, + velocities: NDArrayFloat, + air_density: float, + yaw_angles: NDArrayFloat, + tilt_angles: NDArrayFloat, + tilt_interp: NDArrayObject, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + correct_cp_ct_for_tilt: bool = False, + **_ # <- Allows other models to accept other keyword arguments + ): + # Construct power interpolant + power_interpolator = interp1d( + power_thrust_table["wind_speed"], + power_thrust_table["power"], + fill_value=0.0, + bounds_error=False, + ) + + # Compute the power-effective wind speed across the rotor + rotor_average_velocities = average_velocity( + velocities=velocities, + method=average_method, + cubature_weights=cubature_weights, + ) + + rotor_effective_velocities = rotor_velocity_air_density_correction( + velocities=rotor_average_velocities, + air_density=air_density, + ref_air_density=power_thrust_table["ref_air_density"] + ) + + rotor_effective_velocities = rotor_velocity_yaw_correction( + pP=power_thrust_table["pP"], + yaw_angles=yaw_angles, + rotor_effective_velocities=rotor_effective_velocities, + ) + + rotor_effective_velocities = rotor_velocity_tilt_correction( + tilt_angles=tilt_angles, + ref_tilt=power_thrust_table["ref_tilt"], + pT=power_thrust_table["pT"], + tilt_interp=tilt_interp, + correct_cp_ct_for_tilt=correct_cp_ct_for_tilt, + rotor_effective_velocities=rotor_effective_velocities, + ) + + # Compute power + power = power_interpolator(rotor_effective_velocities) * 1e3 # Convert to W + + return power + + def thrust_coefficient( + power_thrust_table: dict, + velocities: NDArrayFloat, + yaw_angles: NDArrayFloat, + tilt_angles: NDArrayFloat, + tilt_interp: NDArrayObject, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + correct_cp_ct_for_tilt: bool = False, + **_ # <- Allows other models to accept other keyword arguments + ): + # Construct thrust coefficient interpolant + thrust_coefficient_interpolator = interp1d( + power_thrust_table["wind_speed"], + power_thrust_table["thrust_coefficient"], + fill_value=0.0001, + bounds_error=False, + ) + + # Compute the effective wind speed across the rotor + rotor_average_velocities = average_velocity( + velocities=velocities, + method=average_method, + cubature_weights=cubature_weights, + ) + + # TODO: Do we need an air density correction here? + thrust_coefficient = thrust_coefficient_interpolator(rotor_average_velocities) + thrust_coefficient = np.clip(thrust_coefficient, 0.0001, 0.9999) + + # Apply tilt and yaw corrections + # Compute the tilt, if using floating turbines + old_tilt_angles = copy.deepcopy(tilt_angles) + tilt_angles = compute_tilt_angles_for_floating_turbines( + tilt_angles=tilt_angles, + tilt_interp=tilt_interp, + rotor_effective_velocities=rotor_average_velocities, + ) + # Only update tilt angle if requested (if the tilt isn't accounted for in the Ct curve) + tilt_angles = np.where(correct_cp_ct_for_tilt, tilt_angles, old_tilt_angles) + + thrust_coefficient = ( + thrust_coefficient + * cosd(yaw_angles) + * cosd(tilt_angles - power_thrust_table["ref_tilt"]) + ) + + return thrust_coefficient + + def axial_induction( + power_thrust_table: dict, + velocities: NDArrayFloat, + yaw_angles: NDArrayFloat, + tilt_angles: NDArrayFloat, + tilt_interp: NDArrayObject, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + correct_cp_ct_for_tilt: bool = False, + **_ # <- Allows other models to accept other keyword arguments + ): + + thrust_coefficient = CosineLossTurbine.thrust_coefficient( + power_thrust_table=power_thrust_table, + velocities=velocities, + yaw_angles=yaw_angles, + tilt_angles=tilt_angles, + tilt_interp=tilt_interp, + average_method=average_method, + cubature_weights=cubature_weights, + correct_cp_ct_for_tilt=correct_cp_ct_for_tilt + ) + + misalignment_loss = cosd(yaw_angles) * cosd(tilt_angles - power_thrust_table["ref_tilt"]) + return 0.5 / misalignment_loss * (1 - np.sqrt(1 - thrust_coefficient * misalignment_loss)) diff --git a/floris/simulation/turbine/turbine.py b/floris/simulation/turbine/turbine.py new file mode 100644 index 000000000..d9aa76999 --- /dev/null +++ b/floris/simulation/turbine/turbine.py @@ -0,0 +1,624 @@ +# Copyright 2021 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +from __future__ import annotations + +import copy +from collections.abc import Callable, Iterable +from pathlib import Path + +import attrs +import numpy as np +import pandas as pd +from attrs import define, field +from scipy.interpolate import interp1d + +from floris.simulation import BaseClass +from floris.simulation.turbine import ( + CosineLossTurbine, + SimpleTurbine, +) +from floris.type_dec import ( + convert_to_path, + floris_numeric_dict_converter, + NDArrayBool, + NDArrayFilter, + NDArrayFloat, + NDArrayInt, + NDArrayObject, +) +from floris.utilities import cosd + + +TURBINE_MODEL_MAP = { + "power_thrust_model": { + "simple": SimpleTurbine, + "cosine-loss": CosineLossTurbine + }, +} + + +def select_multidim_condition( + condition: dict | tuple, + specified_conditions: Iterable[tuple] +) -> tuple: + """ + Convert condition to the type expected by power_thrust_table and select + nearest specified condition + """ + if type(condition) is tuple: + pass + elif type(condition) is dict: + condition = tuple(condition.values()) + else: + raise TypeError("condition should be of type dict or tuple.") + + # Find the nearest key to the specified conditions. + specified_conditions = np.array(specified_conditions) + + # Find the nearest key to the specified conditions. + nearest_condition = np.zeros_like(condition) + for i, c in enumerate(condition): + nearest_condition[i] = ( + specified_conditions[:, i][np.absolute(specified_conditions[:, i] - c).argmin()] + ) + + return tuple(nearest_condition) + + +def power( + velocities: NDArrayFloat, + air_density: float, + power_functions: dict[str, Callable], + yaw_angles: NDArrayFloat, + tilt_angles: NDArrayFloat, + tilt_interps: dict[str, interp1d], + turbine_type_map: NDArrayObject, + turbine_power_thrust_tables: dict, + ix_filter: NDArrayInt | Iterable[int] | None = None, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + correct_cp_ct_for_tilt: bool = False, + multidim_condition: tuple | None = None, # Assuming only one condition at a time? +) -> NDArrayFloat: + """Power produced by a turbine adjusted for yaw and tilt. Value + given in Watts. + + Args: + velocities (NDArrayFloat[n_findex, n_turbines, n_grid, n_grid]): The velocities at a + turbine. + air_density (float): air density for simulation [kg/m^3] + power_functions (dict[str, Callable]): A dictionary of power functions for + each turbine type. Keys are the turbine type and values are the callable functions. + yaw_angles (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. + tilt_angles (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. + tilt_interps (Iterable[tuple]): The tilt interpolation functions for each + turbine. + turbine_type_map: (NDArrayObject[wd, ws, turbines]): The Turbine type definition for + each turbine. + turbine_power_thrust_tables: Reference data for the power and thrust representation + ix_filter (NDArrayInt, optional): The boolean array, or + integer indices to filter out before calculation. Defaults to None. + average_method (str, optional): The method for averaging over turbine rotor points + to determine a rotor-average wind speed. Defaults to "cubic-mean". + cubature_weights (NDArrayFloat | None): Weights for cubature averaging methods. Defaults to + None. + multidim_condition (tuple | None): The condition tuple used to select the appropriate + thrust coefficient relationship for multidimensional power/thrust tables. Defaults to + None. + + Returns: + NDArrayFloat: The power, in Watts, for each turbine after adjusting for yaw and tilt. + """ + # TODO: Change the order of input arguments to be consistent with the other + # utility functions - velocities first... + # Update to power calculation which replaces the fixed pP exponent with + # an exponent pW, that changes the effective wind speed input to the power + # calculation, rather than scaling the power. This better handles power + # loss to yaw in above rated conditions + # + # based on the paper "Optimising yaw control at wind farm level" by + # Ervin Bossanyi + + # Down-select inputs if ix_filter is given + if ix_filter is not None: + velocities = velocities[:, ix_filter] + yaw_angles = yaw_angles[:, ix_filter] + tilt_angles = tilt_angles[:, ix_filter] + turbine_type_map = turbine_type_map[:, ix_filter] + if type(correct_cp_ct_for_tilt) is bool: + pass + else: + correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, ix_filter] + + # Loop over each turbine type given to get power for all turbines + p = np.zeros(np.shape(velocities)[0:2]) + turb_types = np.unique(turbine_type_map) + for turb_type in turb_types: + # Handle possible multidimensional power thrust tables + if "power" in turbine_power_thrust_tables[turb_type]: # normal + power_thrust_table = turbine_power_thrust_tables[turb_type] + else: # assumed multidimensional, use multidim lookup + # Currently, only works for single mutlidim condition. May need to + # loop in the case where there are multiple conditions. + multidim_condition = select_multidim_condition( + multidim_condition, + list(turbine_power_thrust_tables[turb_type].keys()) + ) + power_thrust_table = turbine_power_thrust_tables[turb_type][multidim_condition] + + # Construct full set of possible keyword arguments for power() + power_model_kwargs = { + "power_thrust_table": power_thrust_table, + "velocities": velocities, + "air_density": air_density, + "yaw_angles": yaw_angles, + "tilt_angles": tilt_angles, + "tilt_interp": tilt_interps[turb_type], + "average_method": average_method, + "cubature_weights": cubature_weights, + "correct_cp_ct_for_tilt": correct_cp_ct_for_tilt, + } + + # Using a masked array, apply the power for all turbines of the current + # type to the main power + p += power_functions[turb_type](**power_model_kwargs) * (turbine_type_map == turb_type) + + return p + + +def thrust_coefficient( + velocities: NDArrayFloat, + yaw_angles: NDArrayFloat, + tilt_angles: NDArrayFloat, + thrust_coefficient_functions: dict[str, Callable], + tilt_interps: dict[str, interp1d], + correct_cp_ct_for_tilt: NDArrayBool, + turbine_type_map: NDArrayObject, + turbine_power_thrust_tables: dict, + ix_filter: NDArrayFilter | Iterable[int] | None = None, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + multidim_condition: tuple | None = None, # Assuming only one condition at a time? +) -> NDArrayFloat: + + """Thrust coefficient of a turbine. + The value is obtained from the coefficient of thrust specified by the callables specified + in the thrust_coefficient_functions. + + Args: + velocities (NDArrayFloat[findex, turbines, grid1, grid2]): The velocity field at + a turbine. + yaw_angles (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. + tilt_angles (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. + thrust_coefficient_functions (dict): The thrust coefficient functions for each turbine. Keys + are the turbine type string and values are the callable functions. + tilt_interps (Iterable[tuple]): The tilt interpolation functions for each + turbine. + correct_cp_ct_for_tilt (NDArrayBool[findex, turbines]): Boolean for determining if the + turbines Cp and Ct should be corrected for tilt. + turbine_type_map: (NDArrayObject[findex, turbines]): The Turbine type definition + for each turbine. + ix_filter (NDArrayFilter | Iterable[int] | None, optional): The boolean array, or + integer indices as an iterable of array to filter out before calculation. + Defaults to None. + average_method (str, optional): The method for averaging over turbine rotor points + to determine a rotor-average wind speed. Defaults to "cubic-mean". + cubature_weights (NDArrayFloat | None): Weights for cubature averaging methods. Defaults to + None. + multidim_condition (tuple | None): The condition tuple used to select the appropriate + thrust coefficient relationship for multidimensional power/thrust tables. Defaults to + None. + + Returns: + NDArrayFloat: Coefficient of thrust for each requested turbine. + """ + + # Down-select inputs if ix_filter is given + if ix_filter is not None: + velocities = velocities[:, ix_filter] + yaw_angles = yaw_angles[:, ix_filter] + tilt_angles = tilt_angles[:, ix_filter] + turbine_type_map = turbine_type_map[:, ix_filter] + if type(correct_cp_ct_for_tilt) is bool: + pass + else: + correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, ix_filter] + + # Loop over each turbine type given to get thrust coefficient for all turbines + thrust_coefficient = np.zeros(np.shape(velocities)[0:2]) + turb_types = np.unique(turbine_type_map) + for turb_type in turb_types: + # Handle possible multidimensional power thrust tables + if "thrust_coefficient" in turbine_power_thrust_tables[turb_type]: # normal + power_thrust_table = turbine_power_thrust_tables[turb_type] + else: # assumed multidimensional, use multidim lookup + # Currently, only works for single mutlidim condition. May need to + # loop in the case where there are multiple conditions. + multidim_condition = select_multidim_condition( + multidim_condition, + list(turbine_power_thrust_tables[turb_type].keys()) + ) + power_thrust_table = turbine_power_thrust_tables[turb_type][multidim_condition] + + # Construct full set of possible keyword arguments for thrust_coefficient() + thrust_model_kwargs = { + "power_thrust_table": power_thrust_table, + "velocities": velocities, + "yaw_angles": yaw_angles, + "tilt_angles": tilt_angles, + "tilt_interp": tilt_interps[turb_type], + "average_method": average_method, + "cubature_weights": cubature_weights, + "correct_cp_ct_for_tilt": correct_cp_ct_for_tilt, + } + + # Using a masked array, apply the thrust coefficient for all turbines of the current + # type to the main thrust coefficient array + thrust_coefficient += ( + thrust_coefficient_functions[turb_type](**thrust_model_kwargs) + * (turbine_type_map == turb_type) + ) + + return thrust_coefficient + + +def axial_induction( + velocities: NDArrayFloat, + yaw_angles: NDArrayFloat, + tilt_angles: NDArrayFloat, + axial_induction_functions: dict, + tilt_interps: NDArrayObject, + correct_cp_ct_for_tilt: NDArrayBool, + turbine_type_map: NDArrayObject, + turbine_power_thrust_tables: dict, + ix_filter: NDArrayFilter | Iterable[int] | None = None, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + multidim_condition: tuple | None = None, # Assuming only one condition at a time? +) -> NDArrayFloat: + """Axial induction factor of the turbine incorporating + the thrust coefficient and yaw angle. + + Args: + velocities (NDArrayFloat): The velocity field at each turbine; should be shape: + (number of turbines, ngrid, ngrid), or (ngrid, ngrid) for a single turbine. + yaw_angles (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. + tilt_angles (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. + axial_induction_functions (dict): The axial induction functions for each turbine. Keys are + the turbine type string and values are the callable functions. + tilt_interps (Iterable[tuple]): The tilt interpolation functions for each + turbine. + correct_cp_ct_for_tilt (NDArrayBool[findex, turbines]): Boolean for determining if the + turbines Cp and Ct should be corrected for tilt. + turbine_type_map: (NDArrayObject[findex, turbines]): The Turbine type definition + for each turbine. + ix_filter (NDArrayFilter | Iterable[int] | None, optional): The boolean array, or + integer indices (as an array or iterable) to filter out before calculation. + Defaults to None. + average_method (str, optional): The method for averaging over turbine rotor points + to determine a rotor-average wind speed. Defaults to "cubic-mean". + cubature_weights (NDArrayFloat | None): Weights for cubature averaging methods. Defaults to + None. + multidim_condition (tuple | None): The condition tuple used to select the appropriate + thrust coefficient relationship for multidimensional power/thrust tables. Defaults to + None. + + Returns: + Union[float, NDArrayFloat]: [description] + """ + + # Down-select inputs if ix_filter is given + if ix_filter is not None: + velocities = velocities[:, ix_filter] + yaw_angles = yaw_angles[:, ix_filter] + tilt_angles = tilt_angles[:, ix_filter] + turbine_type_map = turbine_type_map[:, ix_filter] + if type(correct_cp_ct_for_tilt) is bool: + pass + else: + correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, ix_filter] + + # Loop over each turbine type given to get axial induction for all turbines + axial_induction = np.zeros(np.shape(velocities)[0:2]) + turb_types = np.unique(turbine_type_map) + for turb_type in turb_types: + # Handle possible multidimensional power thrust tables + if "thrust_coefficient" in turbine_power_thrust_tables[turb_type]: # normal + power_thrust_table = turbine_power_thrust_tables[turb_type] + else: # assumed multidimensional, use multidim lookup + # Currently, only works for single mutlidim condition. May need to + # loop in the case where there are multiple conditions. + multidim_condition = select_multidim_condition( + multidim_condition, + list(turbine_power_thrust_tables[turb_type].keys()) + ) + power_thrust_table = turbine_power_thrust_tables[turb_type][multidim_condition] + + # Construct full set of possible keyword arguments for thrust_coefficient() + axial_induction_model_kwargs = { + "power_thrust_table": power_thrust_table, + "velocities": velocities, + "yaw_angles": yaw_angles, + "tilt_angles": tilt_angles, + "tilt_interp": tilt_interps[turb_type], + "average_method": average_method, + "cubature_weights": cubature_weights, + "correct_cp_ct_for_tilt": correct_cp_ct_for_tilt, + } + + # Using a masked array, apply the thrust coefficient for all turbines of the current + # type to the main thrust coefficient array + axial_induction += ( + axial_induction_functions[turb_type](**axial_induction_model_kwargs) + * (turbine_type_map == turb_type) + ) + + return axial_induction + + +@define +class Turbine(BaseClass): + """ + A class containing the parameters and infrastructure to model a wind turbine's performance + for a particular atmospheric condition. + + Args: + turbine_type (str): An identifier for this type of turbine such as "NREL_5MW". + rotor_diameter (float): The rotor diameter in meters. + hub_height (float): The hub height in meters. + TSR (float): The Tip Speed Ratio of the turbine. + generator_efficiency (float): The efficiency of the generator used to scale + power production. + power_thrust_table (dict[str, float]): Contains power coefficient and thrust coefficient + values at a series of wind speeds to define the turbine performance. + The dictionary must have the following three keys with equal length values: + { + "wind_speeds": List[float], + "power": List[float], + "thrust": List[float], + } + or, contain a key "power_thrust_data_file" pointing to the power/thrust data. + Optionally, power_thrust_table may include parameters for use in the turbine submodel, + for example: + pP (float): The cosine exponent relating the yaw misalignment angle to turbine + power. + pT (float): The cosine exponent relating the rotor tilt angle to turbine + power. + ref_air_density (float): The density at which the provided Cp and Ct curves are + defined. + ref_tilt (float): The implicit tilt of the turbine for which the Cp and Ct + curves are defined. This is typically the nacelle tilt. + correct_cp_ct_for_tilt (bool): A flag to indicate whether to correct Cp and Ct for tilt + usually for a floating turbine. + Optional, defaults to False. + floating_tilt_table (dict[str, float]): Look up table of tilt angles at a series of + wind speeds. The dictionary must have the following keys with equal length values: + { + "wind_speeds": List[float], + "tilt": List[float], + } + Required if `correct_cp_ct_for_tilt = True`. Defaults to None. + multi_dimensional_cp_ct (bool): Use a multidimensional power_thrust_table. Defaults to + False. + """ + turbine_type: str = field() + rotor_diameter: float = field() + hub_height: float = field() + TSR: float = field() + generator_efficiency: float = field() + power_thrust_table: dict = field(default={}) # conversion to numpy in __post_init__ + power_thrust_model: str = field(default="cosine-loss") + + correct_cp_ct_for_tilt: bool = field(default=False) + floating_tilt_table: dict[str, NDArrayFloat] | None = field(default=None) + + # Even though this Turbine class does not support the multidimensional features as they + # are implemented in TurbineMultiDim, providing the following two attributes here allows + # the turbine data inputs to keep the multidimensional Cp and Ct curve but switch them off + # with multi_dimensional_cp_ct = False + multi_dimensional_cp_ct: bool = field(default=False) + + # Initialized in the post_init function + rotor_radius: float = field(init=False) + rotor_area: float = field(init=False) + thrust_coefficient_function: Callable = field(init=False) + axial_induction_function: Callable = field(init=False) + power_function: Callable = field(init=False) + tilt_interp: interp1d = field(init=False, default=None) + power_thrust_data_file: str = field(default=None) + + # Only used by mutlidimensional turbines + turbine_library_path: Path = field( + default=Path(__file__).parents[2] / "turbine_library", + converter=convert_to_path, + validator=attrs.validators.instance_of(Path) + ) + + # Not to be provided by the user + condition_keys: list[str] = field(init=False, factory=list) + + def __attrs_post_init__(self) -> None: + self._initialize_power_thrust_functions() + self.__post_init__() + + def __post_init__(self) -> None: + self._initialize_tilt_interpolation() + if self.multi_dimensional_cp_ct: + self._initialize_multidim_power_thrust_table() + else: + self.power_thrust_table = floris_numeric_dict_converter(self.power_thrust_table) + + def _initialize_power_thrust_functions(self) -> None: + turbine_function_model = TURBINE_MODEL_MAP["power_thrust_model"][self.power_thrust_model] + self.thrust_coefficient_function = turbine_function_model.thrust_coefficient + self.axial_induction_function = turbine_function_model.axial_induction + self.power_function = turbine_function_model.power + + + def _initialize_tilt_interpolation(self) -> None: + # TODO: + # Remove any duplicate wind speed entries + # _, duplicate_filter = np.unique(self.wind_speeds, return_index=True) + # self.tilt = self.tilt[duplicate_filter] + # self.wind_speeds = self.wind_speeds[duplicate_filter] + + if self.floating_tilt_table is not None: + self.floating_tilt_table = floris_numeric_dict_converter(self.floating_tilt_table) + + # If defined, create a tilt interpolation function for floating turbines. + # fill_value currently set to apply the min or max tilt angles if outside + # of the interpolation range. + if self.correct_cp_ct_for_tilt: + self.tilt_interp = interp1d( + self.floating_tilt_table["wind_speed"], + self.floating_tilt_table["tilt"], + fill_value=(0.0, self.floating_tilt_table["tilt"][-1]), + bounds_error=False, + ) + + def _initialize_multidim_power_thrust_table(self): + # Collect reference information + power_thrust_table_ref = copy.deepcopy(self.power_thrust_table) + self.power_thrust_data_file = power_thrust_table_ref.pop("power_thrust_data_file") + + # Solidify the data file path and name + self.power_thrust_data_file = self.turbine_library_path / self.power_thrust_data_file + + # Read in the multi-dimensional data supplied by the user. + df = pd.read_csv(self.power_thrust_data_file) + + # Down-select the DataFrame to have just the ws, Cp, and Ct values + index_col = df.columns.values[:-3] + self.condition_keys = index_col.tolist() + df2 = df.set_index(index_col.tolist()) + + # Loop over the multi-dimensional keys to get the correct ws/Cp/Ct data to make + # the thrust_coefficient and power interpolants. + power_thrust_table_ = {} # Reset + for key in df2.index.unique(): + # Select the correct ws/Cp/Ct data + data = df2.loc[key] + + # Build the interpolants + power_thrust_table_.update({ + key: { + "wind_speed": data['ws'].values, + "power": ( + 0.5 * self.rotor_area * data['Cp'].values * self.generator_efficiency + * data['ws'].values ** 3 * power_thrust_table_ref["ref_air_density"] / 1000 + ), # TODO: convert this to 'power' or 'P' in data tables, as per PR #765 + "thrust_coefficient": data['Ct'].values, + **power_thrust_table_ref + }, + }) + # Add reference information at the lower level + + # Set on-object version + self.power_thrust_table = power_thrust_table_ + + @power_thrust_table.validator + def check_power_thrust_table(self, instance: attrs.Attribute, value: dict) -> None: + """ + Verify that the power and thrust tables are given with arrays of equal length + to the wind speed array. + """ + + if self.multi_dimensional_cp_ct: + if isinstance(list(value.keys())[0], tuple): + value = list(value.values())[0] # Check the first entry of multidim + elif "power_thrust_data_file" in value.keys(): + return None + else: + raise ValueError( + "power_thrust_data_file must be defined if multi_dimensional_cp_ct is True." + ) + + if not {"wind_speed", "power", "thrust_coefficient"} <= set(value.keys()): + raise ValueError( + """ + power_thrust_table dictionary must contain: + { + "wind_speed": List[float], + "power": List[float], + "thrust_coefficient": List[float], + } + """ + ) + + @rotor_diameter.validator + def reset_rotor_diameter_dependencies(self, instance: attrs.Attribute, value: float) -> None: + """Resets the `rotor_radius` and `rotor_area` attributes.""" + # Temporarily turn off validators to avoid infinite recursion + with attrs.validators.disabled(): + # Reset the values + self.rotor_radius = value / 2.0 + self.rotor_area = np.pi * self.rotor_radius ** 2.0 + + @rotor_radius.validator + def reset_rotor_radius(self, instance: attrs.Attribute, value: float) -> None: + """ + Resets the `rotor_diameter` value to trigger the recalculation of + `rotor_diameter`, `rotor_radius` and `rotor_area`. + """ + self.rotor_diameter = value * 2.0 + + @rotor_area.validator + def reset_rotor_area(self, instance: attrs.Attribute, value: float) -> None: + """ + Resets the `rotor_radius` value to trigger the recalculation of + `rotor_diameter`, `rotor_radius` and `rotor_area`. + """ + self.rotor_radius = (value / np.pi) ** 0.5 + + @floating_tilt_table.validator + def check_floating_tilt_table(self, instance: attrs.Attribute, value: dict | None) -> None: + """ + If the tilt / wind_speed table is defined, verify that the tilt and + wind_speed arrays are the same length. + """ + if value is None: + return + + if len(value.keys()) != 2 or set(value.keys()) != {"wind_speed", "tilt"}: + raise ValueError( + """ + floating_tilt_table dictionary must have the form: + { + "wind_speed": List[float], + "tilt": List[float], + } + """ + ) + + if any(len(np.shape(e)) > 1 for e in (value["tilt"], value["wind_speed"])): + raise ValueError("tilt and wind_speed inputs must be 1-D.") + + if len( {len(value["tilt"]), len(value["wind_speed"])} ) > 1: + raise ValueError("tilt and wind_speed inputs must be the same size.") + + @correct_cp_ct_for_tilt.validator + def check_for_cp_ct_correct_flag_if_floating( + self, + instance: attrs.Attribute, + value: bool + ) -> None: + """ + Check that the boolean flag exists for correcting Cp/Ct for tilt + if a tile/wind_speed table is also defined. + """ + if self.correct_cp_ct_for_tilt and self.floating_tilt_table is None: + raise ValueError( + "To enable the Cp and Ct tilt correction, a tilt table must be given." + ) diff --git a/floris/simulation/turbine_multi_dim.py b/floris/simulation/turbine_multi_dim.py deleted file mode 100644 index 3248ff4e4..000000000 --- a/floris/simulation/turbine_multi_dim.py +++ /dev/null @@ -1,498 +0,0 @@ -# Copyright 2023 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - -from __future__ import annotations - -import copy -from collections.abc import Iterable -from pathlib import Path - -import attrs -import numpy as np -import pandas as pd -from attrs import define, field -from flatten_dict import flatten -from scipy.interpolate import interp1d - -from floris.simulation import ( - average_velocity, - compute_tilt_angles_for_floating_turbines, - Turbine, -) -from floris.type_dec import ( - convert_to_path, - NDArrayBool, - NDArrayFilter, - NDArrayFloat, - NDArrayInt, - NDArrayObject, -) -from floris.utilities import cosd - - -def power_multidim( - ref_air_density: float, - rotor_effective_velocities: NDArrayFloat, - power_interp: NDArrayObject, - ix_filter: NDArrayInt | Iterable[int] | None = None, -) -> NDArrayFloat: - """Power produced by a turbine defined with multi-dimensional - Cp/Ct values, adjusted for yaw and tilt. Value given in Watts. - - Args: - ref_air_densities (NDArrayFloat[wd, ws, turbines]): The reference density for each turbine - rotor_effective_velocities (NDArrayFloat[wd, ws, turbines, grid1, grid2]): The rotor - effective velocities at a turbine. - power_interp (NDArrayObject[wd, ws, turbines]): The power interpolation function - for each turbine. - ix_filter (NDArrayInt, optional): The boolean array, or - integer indices to filter out before calculation. Defaults to None. - - Returns: - NDArrayFloat: The power, in Watts, for each turbine after adjusting for yaw and tilt. - """ - # TODO: Change the order of input arguments to be consistent with the other - # utility functions - velocities first... - # Update to power calculation which replaces the fixed pP exponent with - # an exponent pW, that changes the effective wind speed input to the power - # calculation, rather than scaling the power. This better handles power - # loss to yaw in above rated conditions - # - # based on the paper "Optimising yaw control at wind farm level" by - # Ervin Bossanyi - - # TODO: check this - where is it? - # P = 1/2 rho A V^3 Cp - - # Down-select inputs if ix_filter is given - if ix_filter is not None: - power_interp = power_interp[:, ix_filter] - rotor_effective_velocities = rotor_effective_velocities[:, ix_filter] - # Loop over each turbine to get power for all turbines - p = np.zeros(np.shape(rotor_effective_velocities)) - for i, findex in enumerate(power_interp): - for j, turb in enumerate(findex): - p[i, j] = power_interp[i, j](rotor_effective_velocities[i, j]) - - return p * ref_air_density - - -def Ct_multidim( - velocities: NDArrayFloat, - yaw_angle: NDArrayFloat, - tilt_angle: NDArrayFloat, - ref_tilt: NDArrayFloat, - fCt: list, - tilt_interp: NDArrayObject, - correct_cp_ct_for_tilt: NDArrayBool, - turbine_type_map: NDArrayObject, - ix_filter: NDArrayFilter | Iterable[int] | None = None, - average_method: str = "cubic-mean", - cubature_weights: NDArrayFloat | None = None -) -> NDArrayFloat: - - """Thrust coefficient of a turbine defined with multi-dimensional - Cp/Ct values, incorporating the yaw angle. The value is interpolated - from the coefficient of thrust vs wind speed table using the rotor - swept area average velocity. - - Args: - velocities (NDArrayFloat[wd, ws, turbines, grid1, grid2]): The velocity field at - a turbine. - yaw_angle (NDArrayFloat[wd, ws, turbines]): The yaw angle for each turbine. - tilt_angle (NDArrayFloat[wd, ws, turbines]): The tilt angle for each turbine. - ref_tilt (NDArrayFloat[wd, ws, turbines]): The reference tilt angle for each turbine - that the Cp/Ct tables are defined at. - fCt (list): The thrust coefficient interpolation functions for each turbine. - tilt_interp (Iterable[tuple]): The tilt interpolation functions for each - turbine. - correct_cp_ct_for_tilt (NDArrayBool[wd, ws, turbines]): Boolean for determining if the - turbines Cp and Ct should be corrected for tilt. - turbine_type_map: (NDArrayObject[wd, ws, turbines]): The Turbine type definition - for each turbine. - ix_filter (NDArrayFilter | Iterable[int] | None, optional): The boolean array, or - integer indices as an iterable of array to filter out before calculation. - Defaults to None. - - Returns: - NDArrayFloat: Coefficient of thrust for each requested turbine. - """ - - if isinstance(yaw_angle, list): - yaw_angle = np.array(yaw_angle) - - if isinstance(tilt_angle, list): - tilt_angle = np.array(tilt_angle) - - # Down-select inputs if ix_filter is given - if ix_filter is not None: - velocities = velocities[:, ix_filter] - yaw_angle = yaw_angle[:, ix_filter] - tilt_angle = tilt_angle[:, ix_filter] - ref_tilt = ref_tilt[:, ix_filter] - fCt = fCt[:, ix_filter] - turbine_type_map = turbine_type_map[:, ix_filter] - correct_cp_ct_for_tilt = correct_cp_ct_for_tilt[:, ix_filter] - - average_velocities = average_velocity( - velocities, - method=average_method, - cubature_weights=cubature_weights - ) - - # Compute the tilt, if using floating turbines - old_tilt_angle = copy.deepcopy(tilt_angle) - tilt_angle = compute_tilt_angles_for_floating_turbines( - turbine_type_map, - tilt_angle, - tilt_interp, - average_velocities, - ) - # Only update tilt angle if requested (if the tilt isn't accounted for in the Ct curve) - tilt_angle = np.where(correct_cp_ct_for_tilt, tilt_angle, old_tilt_angle) - - # Loop over each turbine to get thrust coefficient for all turbines - thrust_coefficient = np.zeros(np.shape(average_velocities)) - for i, findex in enumerate(fCt): - for j, turb in enumerate(findex): - thrust_coefficient[i, j] = fCt[i, j](average_velocities[i, j]) - thrust_coefficient = np.clip(thrust_coefficient, 0.0001, 0.9999) - effective_thrust = thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt) - return effective_thrust - - -def axial_induction_multidim( - velocities: NDArrayFloat, # (wind directions, wind speeds, turbines, grid, grid) - yaw_angle: NDArrayFloat, # (wind directions, wind speeds, turbines) - tilt_angle: NDArrayFloat, # (wind directions, wind speeds, turbines) - ref_tilt: NDArrayFloat, - fCt: list, # (turbines) - tilt_interp: NDArrayObject, # (turbines) - correct_cp_ct_for_tilt: NDArrayBool, # (wind directions, wind speeds, turbines) - turbine_type_map: NDArrayObject, # (wind directions, 1, turbines) - ix_filter: NDArrayFilter | Iterable[int] | None = None, - average_method: str = "cubic-mean", - cubature_weights: NDArrayFloat | None = None -) -> NDArrayFloat: - """Axial induction factor of the turbines defined with multi-dimensional - Cp/Ct values, incorporating the thrust coefficient and yaw angle. - - Args: - velocities (NDArrayFloat): The velocity field at each turbine; should be shape: - (number of turbines, ngrid, ngrid), or (ngrid, ngrid) for a single turbine. - yaw_angle (NDArrayFloat[wd, ws, turbines]): The yaw angle for each turbine. - tilt_angle (NDArrayFloat[wd, ws, turbines]): The tilt angle for each turbine. - ref_tilt (NDArrayFloat[wd, ws, turbines]): The reference tilt angle for each turbine - that the Cp/Ct tables are defined at. - fCt (list): The thrust coefficient interpolation functions for each turbine. - tilt_interp (Iterable[tuple]): The tilt interpolation functions for each - turbine. - correct_cp_ct_for_tilt (NDArrayBool[wd, ws, turbines]): Boolean for determining if the - turbines Cp and Ct should be corrected for tilt. - turbine_type_map: (NDArrayObject[wd, ws, turbines]): The Turbine type definition - for each turbine. - ix_filter (NDArrayFilter | Iterable[int] | None, optional): The boolean array, or - integer indices (as an array or iterable) to filter out before calculation. - Defaults to None. - - Returns: - Union[float, NDArrayFloat]: [description] - """ - - if isinstance(yaw_angle, list): - yaw_angle = np.array(yaw_angle) - - # TODO: Should the tilt_angle used for the return calculation be modified the same as the - # tilt_angle in Ct, if the user has supplied a tilt/wind_speed table? - if isinstance(tilt_angle, list): - tilt_angle = np.array(tilt_angle) - - # Get Ct first before modifying any data - thrust_coefficient = Ct_multidim( - velocities, - yaw_angle, - tilt_angle, - ref_tilt, - fCt, - tilt_interp, - correct_cp_ct_for_tilt, - turbine_type_map, - ix_filter, - average_method, - cubature_weights - ) - - # Then, process the input arguments as needed for this function - if ix_filter is not None: - yaw_angle = yaw_angle[:, ix_filter] - tilt_angle = tilt_angle[:, ix_filter] - ref_tilt = ref_tilt[:, ix_filter] - - return ( - 0.5 - / (cosd(yaw_angle) - * cosd(tilt_angle - ref_tilt)) - * ( - 1 - np.sqrt( - 1 - thrust_coefficient * cosd(yaw_angle) * cosd(tilt_angle - ref_tilt) - ) - ) - ) - - -def multidim_Ct_down_select( - turbine_fCts, - conditions, -) -> list: - """ - Ct interpolants are down selected from the multi-dimensional Ct data - provided for the turbine based on the specified conditions. - - Args: - turbine_fCts (NDArray[wd, ws, turbines]): The Ct interpolants generated from the - multi-dimensional Ct turbine data for all specified conditions. - conditions (dict): The conditions at which to determine which Ct interpolant to use. - - Returns: - NDArray: The down selected Ct interpolants for the selected conditions. - """ - downselect_turbine_fCts = np.empty_like(turbine_fCts) - # Loop over the wind directions, wind speeds, and turbines, finding the Ct interpolant - # that is closest to the specified multi-dimensional condition. - for i, findex in enumerate(turbine_fCts): - for j, turb in enumerate(findex): - # Get the interpolant keys in float type for comparison - keys_float = np.array([[float(v) for v in val] for val in turb.keys()]) - - # Find the nearest key to the specified conditions. - key_vals = [] - for ii, cond in enumerate(conditions.values()): - key_vals.append( - keys_float[:, ii][np.absolute(keys_float[:, ii] - cond).argmin()] - ) - - downselect_turbine_fCts[i, j] = turb[tuple(key_vals)] - - return downselect_turbine_fCts - - -def multidim_power_down_select( - power_interps, - conditions, -) -> list: - """ - Cp interpolants are down selected from the multi-dimensional Cp data - provided for the turbine based on the specified conditions. - - Args: - power_interps (NDArray[wd, ws, turbines]): The power interpolants generated from the - multi-dimensional Cp turbine data for all specified conditions. - conditions (dict): The conditions at which to determine which Ct interpolant to use. - - Returns: - NDArray: The down selected power interpolants for the selected conditions. - """ - downselect_power_interps = np.empty_like(power_interps) - # Loop over the wind directions, wind speeds, and turbines, finding the power interpolant - # that is closest to the specified multi-dimensional condition. - for i, findex in enumerate(power_interps): - for j, turb in enumerate(findex): - # Get the interpolant keys in float type for comparison - keys_float = np.array([[float(v) for v in val] for val in turb.keys()]) - - # Find the nearest key to the specified conditions. - key_vals = [] - for ii, cond in enumerate(conditions.values()): - key_vals.append( - keys_float[:, ii][np.absolute(keys_float[:, ii] - cond).argmin()] - ) - - # Use the constructed key to choose the correct interpolant - downselect_power_interps[i, j] = turb[tuple(key_vals)] - - return downselect_power_interps - - -@define -class MultiDimensionalPowerThrustTable(): - """Helper class to convert the multi-dimensional inputs to a dictionary of objects. - """ - - @classmethod - def from_dataframe(self, df) -> None: - # Validate the dataframe - if not all(ele in df.columns.values.tolist() for ele in ["ws", "Cp", "Ct"]): - print(df.columns.values.tolist()) - raise ValueError("Multidimensional data missing required ws/Cp/Ct data.") - if df.columns.values[-3:].tolist() != ["ws", "Cp", "Ct"]: - print(df.columns.values[-3:].tolist()) - raise ValueError( - "Multidimensional data not in correct form. ws, Cp, and Ct must be " - "defined as the last 3 columns, in that order." - ) - - # Extract the supplied dimensions, minus the required ws, Cp, and Ct columns. - keys = df.columns.values[:-3].tolist() - values = [df[df.columns.values[i]].unique().tolist() for i in range(len(keys))] - values = [[str(val) for val in value] for value in values] - - # Functions for recursively building a nested dictionary from - # an arbitrary number of paired-inputs. - def add_level(obj, k, v): - tmp = {} - for val in v: - tmp.update({val: []}) - obj.update({k: tmp}) - return obj - - def add_sub_level(obj, k): - tmp = {} - for key in k: - tmp.update({key: obj}) - return tmp - - obj = {} - # Reverse the lists to start from the lowest level of the dictionary - keys.reverse() - values.reverse() - # Recursively build a nested dictionary from the user-supplied dimensions - for i, key in enumerate(keys): - if i == 0: - obj = add_level(obj, key, values[i]) - else: - obj = add_sub_level(obj, values[i]) - obj = {key: obj} - - return flatten(obj) - - -@define -class TurbineMultiDimensional(Turbine): - """ - Turbine is a class containing objects pertaining to the individual - turbines. - - Turbine is a model class representing a particular wind turbine. It - is largely a container of data and parameters, but also contains - methods to probe properties for output. - - Parameters: - rotor_diameter (:py:obj: float): The rotor diameter (m). - hub_height (:py:obj: float): The hub height (m). - pP (:py:obj: float): The cosine exponent relating the yaw - misalignment angle to power. - pT (:py:obj: float): The cosine exponent relating the rotor - tilt angle to power. - generator_efficiency (:py:obj: float): The generator - efficiency factor used to scale the power production. - ref_air_density (:py:obj: float): The density at which the provided - cp and ct is defined - power_thrust_table (PowerThrustTable): A dictionary containing the - following key-value pairs: - - power (:py:obj: List[float]): The coefficient of power at - different wind speeds. - thrust (:py:obj: List[float]): The coefficient of thrust - at different wind speeds. - wind_speed (:py:obj: List[float]): The wind speeds for - which the power and thrust values are provided (m/s). - ngrid (*int*, optional): The square root of the number - of points to use on the turbine grid. This number will be - squared so that the points can be evenly distributed. - Defaults to 5. - rloc (:py:obj: float, optional): A value, from 0 to 1, that determines - the width/height of the grid of points on the rotor as a ratio of - the rotor radius. - Defaults to 0.5. - power_thrust_data_file (:py:obj:`str`): The path and name of the file containing the - multidimensional power thrust curve. The path may be an absolute location or a relative - path to where FLORIS is being run. - multi_dimensional_cp_ct (:py:obj:`bool`, optional): Indicates if the turbine definition is - single dimensional (False) or multidimensional (True). - turbine_library_path (:py:obj:`pathlib.Path`, optional): The - :py:attr:`Farm.turbine_library_path` or :py:attr:`Farm.internal_turbine_library_path`, - whichever is being used to load turbine definitions. - Defaults to the internal turbine library. - """ - multi_dimensional_cp_ct: bool = field(default=False) - power_thrust_table: dict = field(default={}) - # TODO power_thrust_data_file is actually required and should not default to None. - # However, the super class has optional attributes so a required attribute here breaks - power_thrust_data_file: str = field(default=None) - power_thrust_data: MultiDimensionalPowerThrustTable = field(default=None) - turbine_library_path: Path = field( - default=Path(__file__).parents[1] / "turbine_library", - converter=convert_to_path, - validator=attrs.validators.instance_of(Path) - ) - - # Not to be provided by the user - condition_keys: list[str] = field(init=False, factory=list) - - def __attrs_post_init__(self) -> None: - super().__post_init__() - - # Solidify the data file path and name - self.power_thrust_data_file = self.turbine_library_path / self.power_thrust_data_file - - # Read in the multi-dimensional data supplied by the user. - df = pd.read_csv(self.power_thrust_data_file) - - # Build the multi-dimensional power/thrust table - self.power_thrust_data = MultiDimensionalPowerThrustTable.from_dataframe(df) - - # Create placeholders for the interpolation functions - self.fCt_interp = {} - self.power_interp = {} - - # Down-select the DataFrame to have just the ws, Cp, and Ct values - index_col = df.columns.values[:-3] - self.condition_keys = index_col.tolist() - df2 = df.set_index(index_col.tolist()) - - # Loop over the multi-dimensional keys to get the correct ws/Cp/Ct data to make - # the Ct and power interpolants. - for key in df2.index.unique(): - # Select the correct ws/Cp/Ct data - data = df2.loc[key] - - # Build the interpolants - wind_speeds = data['ws'].values - cp_interp = interp1d( - wind_speeds, - data['Cp'].values, - fill_value=(0.0, 1.0), - bounds_error=False, - ) - self.power_interp.update({ - key: interp1d( - wind_speeds, - ( - 0.5 * self.rotor_area - * cp_interp(wind_speeds) - * self.generator_efficiency - * wind_speeds ** 3 - ), - bounds_error=False, - fill_value=0 - ) - }) - self.fCt_interp.update({ - key: interp1d( - wind_speeds, - data['Ct'].values, - fill_value=(0.0001, 0.9999), - bounds_error=False, - ) - }) diff --git a/floris/tools/__init__.py b/floris/tools/__init__.py index 4242e7be1..6a2cca91b 100644 --- a/floris/tools/__init__.py +++ b/floris/tools/__init__.py @@ -39,7 +39,6 @@ from .floris_interface import FlorisInterface from .floris_interface_legacy_reader import FlorisInterfaceLegacyV2 from .parallel_computing_interface import ParallelComputingInterface -from .turbine_utilities import build_turbine_dict, check_smooth_power_curve from .uncertainty_interface import UncertaintyInterface from .visualization import ( plot_rotor_values, diff --git a/floris/tools/convert_turbine_v3_to_v4.py b/floris/tools/convert_turbine_v3_to_v4.py index 97a3ae5ed..382074a47 100644 --- a/floris/tools/convert_turbine_v3_to_v4.py +++ b/floris/tools/convert_turbine_v3_to_v4.py @@ -26,7 +26,7 @@ import sys from pathlib import Path -from floris.tools import build_turbine_dict, check_smooth_power_curve +from floris.simulation.turbine import build_cosine_loss_turbine_dict, check_smooth_power_curve from floris.utilities import load_yaml @@ -71,14 +71,17 @@ turbine_properties["ref_tilt"] = v3_turbine_dict["ref_tilt_cp_ct"] # Convert to v4 and print new yaml - v4_turbine_dict = build_turbine_dict( + v4_turbine_dict = build_cosine_loss_turbine_dict( power_thrust_table, v3_turbine_dict["turbine_type"], output_path, **turbine_properties ) - if not check_smooth_power_curve(v4_turbine_dict["power_thrust_table"]["power"], tolerance=0.001): + if not check_smooth_power_curve( + v4_turbine_dict["power_thrust_table"]["power"], + tolerance=0.001 + ): print( "Non-smoothness detected in output power curve. ", "Check above-rated power in generated v4 yaml file." diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index 07e2eeb71..ef5b992b0 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -22,14 +22,12 @@ from floris.logging_manager import LoggingManager from floris.simulation import Floris, State -from floris.simulation.turbine import ( - average_velocity, +from floris.simulation.rotor_velocity import average_velocity +from floris.simulation.turbine.turbine import ( axial_induction, - Ct, power, - rotor_effective_velocity, + thrust_coefficient, ) -from floris.simulation.turbine_multi_dim import multidim_power_down_select, power_multidim from floris.tools.cut_plane import CutPlane from floris.type_dec import NDArrayFloat @@ -601,74 +599,52 @@ def get_turbine_powers(self) -> NDArrayFloat: ) # Check for negative velocities, which could indicate bad model # parameters or turbines very closely spaced. - if (self.turbine_effective_velocities < 0.).any(): - self.logger.warning("Some rotor effective velocities are negative.") + if (self.floris.flow_field.u < 0.).any(): + self.logger.warning("Some velocities at the rotor are negative.") turbine_powers = power( - rotor_effective_velocities=self.turbine_effective_velocities, - power_interp=self.floris.farm.turbine_power_interps, + velocities=self.floris.flow_field.u, + air_density=self.floris.flow_field.air_density, + power_functions=self.floris.farm.turbine_power_functions, + yaw_angles=self.floris.farm.yaw_angles, + tilt_angles=self.floris.farm.tilt_angles, + tilt_interps=self.floris.farm.turbine_tilt_interps, turbine_type_map=self.floris.farm.turbine_type_map, + turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, + correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, + multidim_condition=self.floris.flow_field.multidim_conditions ) return turbine_powers - def get_turbine_powers_multidim(self) -> NDArrayFloat: - """Calculates the power at each turbine in the wind farm - when using multi-dimensional Cp/Ct turbine definitions. - - Returns: - NDArrayFloat: Powers at each turbine. - """ - - # Confirm calculate wake has been run - if self.floris.state is not State.USED: - raise RuntimeError( - "Can't run function `FlorisInterface.get_turbine_powers_multidim` without " - "first running `FlorisInterface.calculate_wake`." - ) - # Check for negative velocities, which could indicate bad model - # parameters or turbines very closely spaced. - if (self.turbine_effective_velocities < 0.).any(): - self.logger.warning("Some rotor effective velocities are negative.") - - turbine_power_interps = multidim_power_down_select( - self.floris.farm.turbine_power_interps, - self.floris.flow_field.multidim_conditions - ) - - turbine_powers = power_multidim( - ref_air_density=self.floris.farm.ref_air_densities, - rotor_effective_velocities=self.turbine_effective_velocities, - power_interp=turbine_power_interps, - ) - return turbine_powers - - def get_turbine_Cts(self) -> NDArrayFloat: - turbine_Cts = Ct( + def get_turbine_thrust_coefficients(self) -> NDArrayFloat: + turbine_thrust_coefficients = thrust_coefficient( velocities=self.floris.flow_field.u, - yaw_angle=self.floris.farm.yaw_angles, - tilt_angle=self.floris.farm.tilt_angles, - ref_tilt=self.floris.farm.ref_tilts, - fCt=self.floris.farm.turbine_fCts, - tilt_interp=self.floris.farm.turbine_tilt_interps, + yaw_angles=self.floris.farm.yaw_angles, + tilt_angles=self.floris.farm.tilt_angles, + thrust_coefficient_functions=self.floris.farm.turbine_thrust_coefficient_functions, + tilt_interps=self.floris.farm.turbine_tilt_interps, correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, turbine_type_map=self.floris.farm.turbine_type_map, + turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, average_method=self.floris.grid.average_method, cubature_weights=self.floris.grid.cubature_weights, + multidim_condition=self.floris.flow_field.multidim_conditions ) - return turbine_Cts + return turbine_thrust_coefficients def get_turbine_ais(self) -> NDArrayFloat: turbine_ais = axial_induction( velocities=self.floris.flow_field.u, - yaw_angle=self.floris.farm.yaw_angles, - tilt_angle=self.floris.farm.tilt_angles, - ref_tilt=self.floris.farm.ref_tilts, - fCt=self.floris.farm.turbine_fCts, - tilt_interp=self.floris.farm.turbine_tilt_interps, + yaw_angles=self.floris.farm.yaw_angles, + tilt_angles=self.floris.farm.tilt_angles, + axial_induction_functions=self.floris.farm.turbine_axial_induction_functions, + tilt_interps=self.floris.farm.turbine_tilt_interps, correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, turbine_type_map=self.floris.farm.turbine_type_map, + turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, average_method=self.floris.grid.average_method, cubature_weights=self.floris.grid.cubature_weights, + multidim_condition=self.floris.flow_field.multidim_conditions ) return turbine_ais @@ -680,25 +656,6 @@ def turbine_average_velocities(self) -> NDArrayFloat: cubature_weights=self.floris.grid.cubature_weights ) - @property - def turbine_effective_velocities(self) -> NDArrayFloat: - rotor_effective_velocities = rotor_effective_velocity( - air_density=self.floris.flow_field.air_density, - ref_air_density=self.floris.farm.ref_air_densities, - velocities=self.floris.flow_field.u, - yaw_angle=self.floris.farm.yaw_angles, - tilt_angle=self.floris.farm.tilt_angles, - ref_tilt=self.floris.farm.ref_tilts, - pP=self.floris.farm.pPs, - pT=self.floris.farm.pTs, - tilt_interp=self.floris.farm.turbine_tilt_interps, - correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, - turbine_type_map=self.floris.farm.turbine_type_map, - average_method=self.floris.grid.average_method, - cubature_weights=self.floris.grid.cubature_weights - ) - return rotor_effective_velocities - def get_turbine_TIs(self) -> NDArrayFloat: return self.floris.flow_field.turbulence_intensity_field diff --git a/floris/tools/uncertainty_interface.py b/floris/tools/uncertainty_interface.py index b871bd86d..7f2b833ef 100644 --- a/floris/tools/uncertainty_interface.py +++ b/floris/tools/uncertainty_interface.py @@ -627,8 +627,8 @@ def assign_hub_height_to_ref_height(self): def get_turbine_layout(self, z=False): return self.fi.get_turbine_layout(z=z) - def get_turbine_Cts(self): - return self.fi.get_turbine_Cts() + def get_turbine_thrust_coefficients(self): + return self.fi.get_turbine_thrust_coefficients() def get_turbine_ais(self): return self.fi.get_turbine_ais() diff --git a/floris/turbine_library/__init__.py b/floris/turbine_library/__init__.py index 828c50eb2..42e1962f3 100644 --- a/floris/turbine_library/__init__.py +++ b/floris/turbine_library/__init__.py @@ -1 +1,5 @@ from floris.turbine_library.turbine_previewer import TurbineInterface, TurbineLibrary +from floris.turbine_library.turbine_utilities import ( + build_cosine_loss_turbine_dict, + check_smooth_power_curve, +) diff --git a/floris/turbine_library/iea_10MW.yaml b/floris/turbine_library/iea_10MW.yaml index eaa04d81b..daa58256d 100644 --- a/floris/turbine_library/iea_10MW.yaml +++ b/floris/turbine_library/iea_10MW.yaml @@ -1,178 +1,179 @@ -turbine_type: 'iea_10MW' +turbine_type: iea_10MW generator_efficiency: 1.0 hub_height: 119.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 198.0 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 6.0 +power_thrust_model: cosine-loss power_thrust_table: - power: - - 0.000000 - - 0.000000 - - 0.074 - - 0.325100 - - 0.376200 - - 0.402700 - - 0.415600 - - 0.423000 - - 0.427400 - - 0.429300 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.430500 - - 0.438256 - - 0.425908 - - 0.347037 - - 0.307306 - - 0.271523 - - 0.239552 - - 0.211166 - - 0.186093 - - 0.164033 - - 0.144688 - - 0.127760 - - 0.112969 - - 0.100062 - - 0.088800 - - 0.078975 - - 0.070401 - - 0.062913 - - 0.056368 - - 0.050640 - - 0.045620 - - 0.041216 - - 0.037344 - - 0.033935 - - 0.0 - - 0.0 - thrust: - - 0.0 - - 0.0 - - 0.7701 - - 0.7701 - - 0.7763 - - 0.7824 - - 0.7820 - - 0.7802 - - 0.7772 - - 0.7719 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7675 - - 0.7651 - - 0.7587 - - 0.5056 - - 0.4310 - - 0.3708 - - 0.3209 - - 0.2788 - - 0.2432 - - 0.2128 - - 0.1868 - - 0.1645 - - 0.1454 - - 0.1289 - - 0.1147 - - 0.1024 - - 0.0918 - - 0.0825 - - 0.0745 - - 0.0675 - - 0.0613 - - 0.0559 - - 0.0512 - - 0.0470 - - 0.0 - - 0.0 + ref_air_density: 1.225 + ref_tilt: 6.0 + pP: 1.88 + pT: 1.88 wind_speed: - - 0.0000 - - 2.9 - - 3.0 - - 4.0000 - - 4.5147 - - 5.0008 - - 5.4574 - - 5.8833 - - 6.2777 - - 6.6397 - - 6.9684 - - 7.2632 - - 7.5234 - - 7.7484 - - 7.9377 - - 8.0909 - - 8.2077 - - 8.2877 - - 8.3308 - - 8.3370 - - 8.3678 - - 8.4356 - - 8.5401 - - 8.6812 - - 8.8585 - - 9.0717 - - 9.3202 - - 9.6035 - - 9.9210 - - 10.2720 - - 10.6557 - - 10.7577 - - 11.5177 - - 11.9941 - - 12.4994 - - 13.0324 - - 13.5920 - - 14.1769 - - 14.7859 - - 15.4175 - - 16.0704 - - 16.7432 - - 17.4342 - - 18.1421 - - 18.8652 - - 19.6019 - - 20.3506 - - 21.1096 - - 21.8773 - - 22.6519 - - 23.4317 - - 24.2150 - - 25.010 - - 25.020 - - 50.0 + - 0.0 + - 2.9 + - 3.0 + - 4.0 + - 4.5147 + - 5.0008 + - 5.4574 + - 5.8833 + - 6.2777 + - 6.6397 + - 6.9684 + - 7.2632 + - 7.5234 + - 7.7484 + - 7.9377 + - 8.0909 + - 8.2077 + - 8.2877 + - 8.3308 + - 8.337 + - 8.3678 + - 8.4356 + - 8.5401 + - 8.6812 + - 8.8585 + - 9.0717 + - 9.3202 + - 9.6035 + - 9.921 + - 10.272 + - 10.6557 + - 10.7577 + - 11.5177 + - 11.9941 + - 12.4994 + - 13.0324 + - 13.592 + - 14.1769 + - 14.7859 + - 15.4175 + - 16.0704 + - 16.7432 + - 17.4342 + - 18.1421 + - 18.8652 + - 19.6019 + - 20.3506 + - 21.1096 + - 21.8773 + - 22.6519 + - 23.4317 + - 24.215 + - 25.01 + - 25.02 + - 50.0 + power: + - 0.0 + - 0.0 + - 37.68094958908877 + - 392.3948496148231 + - 652.8777029978363 + - 949.7874838458624 + - 1273.9701534366477 + - 1624.53736790407 + - 1994.1716868646631 + - 2369.9141552410333 + - 2742.7863681556505 + - 3105.823526184341 + - 3451.7173408365657 + - 3770.7597566998656 + - 4053.935262364495 + - 4293.221213633668 + - 4481.848670501228 + - 4614.183183672742 + - 4686.546075837561 + - 4697.017416780224 + - 4749.267597733971 + - 4865.648149450861 + - 5048.724054152798 + - 5303.127287084259 + - 5634.732904516438 + - 6051.44102592321 + - 6562.487084906048 + - 7179.28820897481 + - 7915.149369234113 + - 8799.632659018345 + - 10000.004148840422 + - 10000.010118342427 + - 9999.986697903953 + - 10000.00900096281 + - 10000.010994188466 + - 9999.985254153351 + - 10000.01026748458 + - 10000.005066662203 + - 10000.02018584477 + - 10000.017032649757 + - 10000.030351494535 + - 10000.023814906699 + - 10000.036965698706 + - 10000.045823704839 + - 10000.005313131529 + - 9999.992881648563 + - 9999.96325689038 + - 9999.976811614484 + - 10000.028061758208 + - 9999.89737385537 + - 10000.082694480527 + - 10000.014032855759 + - 10011.87188590296 + - 0.0 + - 0.0 + thrust_coefficient: + - 0.0 + - 0.0 + - 0.7701 + - 0.7701 + - 0.7763 + - 0.7824 + - 0.782 + - 0.7802 + - 0.7772 + - 0.7719 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7675 + - 0.7651 + - 0.7587 + - 0.5056 + - 0.431 + - 0.3708 + - 0.3209 + - 0.2788 + - 0.2432 + - 0.2128 + - 0.1868 + - 0.1645 + - 0.1454 + - 0.1289 + - 0.1147 + - 0.1024 + - 0.0918 + - 0.0825 + - 0.0745 + - 0.0675 + - 0.0613 + - 0.0559 + - 0.0512 + - 0.047 + - 0.0 + - 0.0 diff --git a/floris/turbine_library/iea_10MW_v3legacy.yaml b/floris/turbine_library/iea_10MW_v3legacy.yaml new file mode 100644 index 000000000..eaa04d81b --- /dev/null +++ b/floris/turbine_library/iea_10MW_v3legacy.yaml @@ -0,0 +1,178 @@ +turbine_type: 'iea_10MW' +generator_efficiency: 1.0 +hub_height: 119.0 +pP: 1.88 +pT: 1.88 +rotor_diameter: 198.0 +TSR: 8.0 +ref_density_cp_ct: 1.225 +ref_tilt_cp_ct: 6.0 +power_thrust_table: + power: + - 0.000000 + - 0.000000 + - 0.074 + - 0.325100 + - 0.376200 + - 0.402700 + - 0.415600 + - 0.423000 + - 0.427400 + - 0.429300 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.429800 + - 0.430500 + - 0.438256 + - 0.425908 + - 0.347037 + - 0.307306 + - 0.271523 + - 0.239552 + - 0.211166 + - 0.186093 + - 0.164033 + - 0.144688 + - 0.127760 + - 0.112969 + - 0.100062 + - 0.088800 + - 0.078975 + - 0.070401 + - 0.062913 + - 0.056368 + - 0.050640 + - 0.045620 + - 0.041216 + - 0.037344 + - 0.033935 + - 0.0 + - 0.0 + thrust: + - 0.0 + - 0.0 + - 0.7701 + - 0.7701 + - 0.7763 + - 0.7824 + - 0.7820 + - 0.7802 + - 0.7772 + - 0.7719 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7768 + - 0.7675 + - 0.7651 + - 0.7587 + - 0.5056 + - 0.4310 + - 0.3708 + - 0.3209 + - 0.2788 + - 0.2432 + - 0.2128 + - 0.1868 + - 0.1645 + - 0.1454 + - 0.1289 + - 0.1147 + - 0.1024 + - 0.0918 + - 0.0825 + - 0.0745 + - 0.0675 + - 0.0613 + - 0.0559 + - 0.0512 + - 0.0470 + - 0.0 + - 0.0 + wind_speed: + - 0.0000 + - 2.9 + - 3.0 + - 4.0000 + - 4.5147 + - 5.0008 + - 5.4574 + - 5.8833 + - 6.2777 + - 6.6397 + - 6.9684 + - 7.2632 + - 7.5234 + - 7.7484 + - 7.9377 + - 8.0909 + - 8.2077 + - 8.2877 + - 8.3308 + - 8.3370 + - 8.3678 + - 8.4356 + - 8.5401 + - 8.6812 + - 8.8585 + - 9.0717 + - 9.3202 + - 9.6035 + - 9.9210 + - 10.2720 + - 10.6557 + - 10.7577 + - 11.5177 + - 11.9941 + - 12.4994 + - 13.0324 + - 13.5920 + - 14.1769 + - 14.7859 + - 15.4175 + - 16.0704 + - 16.7432 + - 17.4342 + - 18.1421 + - 18.8652 + - 19.6019 + - 20.3506 + - 21.1096 + - 21.8773 + - 22.6519 + - 23.4317 + - 24.2150 + - 25.010 + - 25.020 + - 50.0 diff --git a/floris/turbine_library/iea_10MW_v4converted.yaml b/floris/turbine_library/iea_10MW_v4converted.yaml index 7258b388b..daa58256d 100644 --- a/floris/turbine_library/iea_10MW_v4converted.yaml +++ b/floris/turbine_library/iea_10MW_v4converted.yaml @@ -1,13 +1,14 @@ turbine_type: iea_10MW generator_efficiency: 1.0 hub_height: 119.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 198.0 TSR: 8.0 -ref_air_density: 1.225 -ref_tilt: 6.0 +power_thrust_model: cosine-loss power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 6.0 + pP: 1.88 + pT: 1.88 wind_speed: - 0.0 - 2.9 diff --git a/floris/turbine_library/iea_10MW_v4updated.yaml b/floris/turbine_library/iea_10MW_v4updated.yaml index 9328982ba..ae745b46b 100644 --- a/floris/turbine_library/iea_10MW_v4updated.yaml +++ b/floris/turbine_library/iea_10MW_v4updated.yaml @@ -3,13 +3,13 @@ turbine_type: 'iea_10MW' generator_efficiency: 1.0 hub_height: 119.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 198.0 TSR: 8.0 -ref_air_density: 1.225 -ref_tilt: 6.0 power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 6.0 + pP: 1.88 + pT: 1.88 power: - 0.000000 - 0.000000 diff --git a/floris/turbine_library/iea_15MW.yaml b/floris/turbine_library/iea_15MW.yaml index 0350cd9c4..d1f93dc4b 100644 --- a/floris/turbine_library/iea_15MW.yaml +++ b/floris/turbine_library/iea_15MW.yaml @@ -1,172 +1,173 @@ -turbine_type: 'iea_15MW' +turbine_type: iea_15MW generator_efficiency: 1.0 hub_height: 150.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 242.24 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 6.0 +power_thrust_model: cosine-loss power_thrust_table: - power: - - 0.000000 - - 0.049361236 - - 0.224324252 - - 0.312216418 - - 0.36009987 - - 0.38761204 - - 0.404010164 - - 0.413979324 - - 0.420083692 - - 0.423787764 - - 0.425977895 - - 0.427193272 - - 0.427183505 - - 0.426860928 - - 0.426617959 - - 0.426458783 - - 0.426385957 - - 0.426371389 - - 0.426268826 - - 0.426077456 - - 0.425795302 - - 0.425420049 - - 0.424948854 - - 0.424379028 - - 0.423707714 - - 0.422932811 - - 0.422052556 - - 0.421065815 - - 0.419972455 - - 0.419400676 - - 0.418981957 - - 0.385839135 - - 0.335840083 - - 0.29191329 - - 0.253572514 - - 0.220278082 - - 0.191477908 - - 0.166631343 - - 0.145236797 - - 0.126834289 - - 0.111011925 - - 0.097406118 - - 0.085699408 - - 0.075616912 - - 0.066922115 - - 0.059412477 - - 0.052915227 - - 0.04728299 - - 0.042390922 - - 0.038132739 - - 0.03441828 - - 0.0 - - 0.0 - thrust: - - 0.000000 - - 0.817533319 - - 0.792115292 - - 0.786401899 - - 0.788898744 - - 0.790774576 - - 0.79208669 - - 0.79185809 - - 0.7903853 - - 0.788253035 - - 0.785845184 - - 0.783367164 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.781531069 - - 0.758935311 - - 0.614478855 - - 0.498687801 - - 0.416354609 - - 0.351944846 - - 0.299832337 - - 0.256956606 - - 0.221322169 - - 0.19150758 - - 0.166435523 - - 0.145263684 - - 0.127319849 - - 0.11206048 - - 0.099042189 - - 0.087901155 - - 0.078337446 - - 0.07010295 - - 0.062991402 - - 0.056831647 - - 0.05148062 - - 0.046818787 - - 0.0 - - 0.0 + ref_air_density: 1.225 + ref_tilt: 6.0 + pP: 1.88 + pT: 1.88 wind_speed: - - 0.000 - - 3 - - 3.54953237 - - 4.067900771 - - 4.553906848 - - 5.006427063 - - 5.424415288 - - 5.806905228 - - 6.153012649 - - 6.461937428 - - 6.732965398 - - 6.965470002 - - 7.158913742 - - 7.312849418 - - 7.426921164 - - 7.500865272 - - 7.534510799 - - 7.541241633 - - 7.58833327 - - 7.675676842 - - 7.803070431 - - 7.970219531 - - 8.176737731 - - 8.422147605 - - 8.70588182 - - 9.027284445 - - 9.385612468 - - 9.780037514 - - 10.20964776 - - 10.67345004 - - 10.86770694 - - 11.17037214 - - 11.6992653 - - 12.25890683 - - 12.84800295 - - 13.46519181 - - 14.10904661 - - 14.77807889 - - 15.470742 - - 16.18543466 - - 16.92050464 - - 17.67425264 - - 18.44493615 - - 19.23077353 - - 20.02994808 - - 20.8406123 - - 21.66089211 - - 22.4888912 - - 23.32269542 - - 24.1603772 - - 25 - - 25.020 - - 50.0 + - 0.0 + - 3.0 + - 3.54953237 + - 4.067900771 + - 4.553906848 + - 5.006427063 + - 5.424415288 + - 5.806905228 + - 6.153012649 + - 6.461937428 + - 6.732965398 + - 6.965470002 + - 7.158913742 + - 7.312849418 + - 7.426921164 + - 7.500865272 + - 7.534510799 + - 7.541241633 + - 7.58833327 + - 7.675676842 + - 7.803070431 + - 7.970219531 + - 8.176737731 + - 8.422147605 + - 8.70588182 + - 9.027284445 + - 9.385612468 + - 9.780037514 + - 10.20964776 + - 10.67345004 + - 10.86770694 + - 11.17037214 + - 11.6992653 + - 12.25890683 + - 12.84800295 + - 13.46519181 + - 14.10904661 + - 14.77807889 + - 15.470742 + - 16.18543466 + - 16.92050464 + - 17.67425264 + - 18.44493615 + - 19.23077353 + - 20.02994808 + - 20.8406123 + - 21.66089211 + - 22.4888912 + - 23.32269542 + - 24.1603772 + - 25.0 + - 25.02 + - 50.0 + power: + - 0.0 + - 37.62161892251866 + - 283.1896270728138 + - 593.2728560522313 + - 959.9819840653767 + - 1372.9939673445779 + - 1820.2824213031413 + - 2288.234638675552 + - 2762.402356940621 + - 3227.9317849259483 + - 3670.23524006855 + - 4075.3355492549404 + - 4424.289670276729 + - 4712.31145096999 + - 4933.478791318434 + - 5080.411002639729 + - 5148.20416793432 + - 5161.8373266616445 + - 5257.877358155053 + - 5439.0905873988 + - 5710.644642926693 + - 6080.1808123220335 + - 6557.896472825747 + - 7156.656114121487 + - 7892.096068144686 + - 8782.7485712001 + - 9850.132658272489 + - 11118.833728910668 + - 12616.55466282621 + - 14395.650060011094 + - 15180.873696159935 + - 15180.878025972781 + - 15180.846427684693 + - 15180.874525641515 + - 15180.873081482694 + - 15180.868180147516 + - 15180.964634095619 + - 15180.928211309449 + - 15180.909227363609 + - 15180.898248776428 + - 15180.890850809097 + - 15180.885382324133 + - 15180.881159484874 + - 15180.877937975014 + - 15180.875500759283 + - 15180.873891022644 + - 15180.894816053498 + - 15180.873173416821 + - 15180.873965755092 + - 15180.875620174738 + - 15180.87762584068 + - 0.0 + - 0.0 + thrust_coefficient: + - 0.0 + - 0.817533319 + - 0.792115292 + - 0.786401899 + - 0.788898744 + - 0.790774576 + - 0.79208669 + - 0.79185809 + - 0.7903853 + - 0.788253035 + - 0.785845184 + - 0.783367164 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.781531069 + - 0.758935311 + - 0.614478855 + - 0.498687801 + - 0.416354609 + - 0.351944846 + - 0.299832337 + - 0.256956606 + - 0.221322169 + - 0.19150758 + - 0.166435523 + - 0.145263684 + - 0.127319849 + - 0.11206048 + - 0.099042189 + - 0.087901155 + - 0.078337446 + - 0.07010295 + - 0.062991402 + - 0.056831647 + - 0.05148062 + - 0.046818787 + - 0.0 + - 0.0 diff --git a/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml b/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml index efac909cb..127923ae4 100644 --- a/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml +++ b/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml @@ -1,14 +1,15 @@ turbine_type: 'iea_15MW_floating' generator_efficiency: 1.0 hub_height: 150.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 242.24 TSR: 8.0 -ref_air_density: 1.225 -ref_tilt: 6.0 multi_dimensional_cp_ct: True -power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' +power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 6.0 + pP: 1.88 + pT: 1.88 + power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' floating_tilt_table: tilt: - 5.747296314800103 diff --git a/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml b/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml new file mode 100644 index 000000000..58b2b3a1f --- /dev/null +++ b/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml @@ -0,0 +1,29 @@ +turbine_type: 'iea_15MW_floating' +generator_efficiency: 1.0 +hub_height: 150.0 +pP: 1.88 +pT: 1.88 +rotor_diameter: 242.24 +TSR: 8.0 +ref_density_cp_ct: 1.225 +ref_tilt_cp_ct: 6.0 +multi_dimensional_cp_ct: True +power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' +floating_tilt_table: + tilt: + - 5.747296314800103 + - 7.2342400188651068 + - 9.0468701999352397 + - 9.762182013267733 + - 8.795649572299896 + - 8.089078308325314 + - 7.7229584934943614 + wind_speed: + - 4.0 + - 6.0 + - 8.0 + - 10.0 + - 12.0 + - 14.0 + - 16.0 +correct_cp_ct_for_tilt: True diff --git a/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml b/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml index 139bd45e0..756f3dc1d 100644 --- a/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml +++ b/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml @@ -1,11 +1,12 @@ turbine_type: 'iea_15MW_multi_dim_cp_ct' generator_efficiency: 1.0 hub_height: 150.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 242.24 TSR: 8.0 -ref_air_density: 1.225 -ref_tilt: 6.0 multi_dimensional_cp_ct: True -power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' +power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 6.0 + pP: 1.88 + pT: 1.88 + power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' diff --git a/floris/turbine_library/iea_15MW_v3legacy.yaml b/floris/turbine_library/iea_15MW_v3legacy.yaml new file mode 100644 index 000000000..0350cd9c4 --- /dev/null +++ b/floris/turbine_library/iea_15MW_v3legacy.yaml @@ -0,0 +1,172 @@ +turbine_type: 'iea_15MW' +generator_efficiency: 1.0 +hub_height: 150.0 +pP: 1.88 +pT: 1.88 +rotor_diameter: 242.24 +TSR: 8.0 +ref_density_cp_ct: 1.225 +ref_tilt_cp_ct: 6.0 +power_thrust_table: + power: + - 0.000000 + - 0.049361236 + - 0.224324252 + - 0.312216418 + - 0.36009987 + - 0.38761204 + - 0.404010164 + - 0.413979324 + - 0.420083692 + - 0.423787764 + - 0.425977895 + - 0.427193272 + - 0.427183505 + - 0.426860928 + - 0.426617959 + - 0.426458783 + - 0.426385957 + - 0.426371389 + - 0.426268826 + - 0.426077456 + - 0.425795302 + - 0.425420049 + - 0.424948854 + - 0.424379028 + - 0.423707714 + - 0.422932811 + - 0.422052556 + - 0.421065815 + - 0.419972455 + - 0.419400676 + - 0.418981957 + - 0.385839135 + - 0.335840083 + - 0.29191329 + - 0.253572514 + - 0.220278082 + - 0.191477908 + - 0.166631343 + - 0.145236797 + - 0.126834289 + - 0.111011925 + - 0.097406118 + - 0.085699408 + - 0.075616912 + - 0.066922115 + - 0.059412477 + - 0.052915227 + - 0.04728299 + - 0.042390922 + - 0.038132739 + - 0.03441828 + - 0.0 + - 0.0 + thrust: + - 0.000000 + - 0.817533319 + - 0.792115292 + - 0.786401899 + - 0.788898744 + - 0.790774576 + - 0.79208669 + - 0.79185809 + - 0.7903853 + - 0.788253035 + - 0.785845184 + - 0.783367164 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.77853469 + - 0.781531069 + - 0.758935311 + - 0.614478855 + - 0.498687801 + - 0.416354609 + - 0.351944846 + - 0.299832337 + - 0.256956606 + - 0.221322169 + - 0.19150758 + - 0.166435523 + - 0.145263684 + - 0.127319849 + - 0.11206048 + - 0.099042189 + - 0.087901155 + - 0.078337446 + - 0.07010295 + - 0.062991402 + - 0.056831647 + - 0.05148062 + - 0.046818787 + - 0.0 + - 0.0 + wind_speed: + - 0.000 + - 3 + - 3.54953237 + - 4.067900771 + - 4.553906848 + - 5.006427063 + - 5.424415288 + - 5.806905228 + - 6.153012649 + - 6.461937428 + - 6.732965398 + - 6.965470002 + - 7.158913742 + - 7.312849418 + - 7.426921164 + - 7.500865272 + - 7.534510799 + - 7.541241633 + - 7.58833327 + - 7.675676842 + - 7.803070431 + - 7.970219531 + - 8.176737731 + - 8.422147605 + - 8.70588182 + - 9.027284445 + - 9.385612468 + - 9.780037514 + - 10.20964776 + - 10.67345004 + - 10.86770694 + - 11.17037214 + - 11.6992653 + - 12.25890683 + - 12.84800295 + - 13.46519181 + - 14.10904661 + - 14.77807889 + - 15.470742 + - 16.18543466 + - 16.92050464 + - 17.67425264 + - 18.44493615 + - 19.23077353 + - 20.02994808 + - 20.8406123 + - 21.66089211 + - 22.4888912 + - 23.32269542 + - 24.1603772 + - 25 + - 25.020 + - 50.0 diff --git a/floris/turbine_library/iea_15MW_v4converted.yaml b/floris/turbine_library/iea_15MW_v4converted.yaml index 66a7161cc..d1f93dc4b 100644 --- a/floris/turbine_library/iea_15MW_v4converted.yaml +++ b/floris/turbine_library/iea_15MW_v4converted.yaml @@ -1,13 +1,14 @@ turbine_type: iea_15MW generator_efficiency: 1.0 hub_height: 150.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 242.24 TSR: 8.0 -ref_air_density: 1.225 -ref_tilt: 6.0 +power_thrust_model: cosine-loss power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 6.0 + pP: 1.88 + pT: 1.88 wind_speed: - 0.0 - 3.0 diff --git a/floris/turbine_library/iea_15MW_v4updated.yaml b/floris/turbine_library/iea_15MW_v4updated.yaml index 45d48b525..163a3da74 100644 --- a/floris/turbine_library/iea_15MW_v4updated.yaml +++ b/floris/turbine_library/iea_15MW_v4updated.yaml @@ -4,13 +4,13 @@ turbine_type: 'iea_15MW' generator_efficiency: 1.0 hub_height: 150.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 242.24 TSR: 8.0 -ref_air_density: 1.225 -ref_tilt: 6.0 power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 6.0 + pP: 1.88 + pT: 1.88 power: - 0.000000 - 0.000000 diff --git a/floris/turbine_library/nrel_5MW.yaml b/floris/turbine_library/nrel_5MW.yaml index 4a202645c..4337ac8f7 100644 --- a/floris/turbine_library/nrel_5MW.yaml +++ b/floris/turbine_library/nrel_5MW.yaml @@ -17,14 +17,6 @@ generator_efficiency: 1.0 # Hub height. hub_height: 90.0 -### -# Cosine exponent for power loss due to yaw misalignment. -pP: 1.88 - -### -# Cosine exponent for power loss due to tilt. -pT: 1.88 - ### # Rotor diameter. rotor_diameter: 126.0 @@ -34,155 +26,179 @@ rotor_diameter: 126.0 TSR: 8.0 ### -# The air density at which the Cp and Ct curves are defined. -ref_air_density: 1.225 - -### -# The tilt angle at which the Cp and Ct curves are defined. This is used to capture -# the effects of a floating platform on a turbine's power and wake. -ref_tilt: 5.0 +# Model for power and thrust curve interpretation. +power_thrust_model: 'cosine-loss' ### # Cp and Ct as a function of wind speed for the turbine's full range of operating conditions. power_thrust_table: - power: - - 0.0 - - 0.0 - - 40.5 - - 177.7 - - 403.9 - - 737.6 - - 1187.2 - - 1771.1 - - 2518.6 - - 3448.41 - - 3552.15 - - 3657.95 - - 3765.16 - - 3873.95 - - 3984.49 - - 4096.56 - - 4210.69 - - 4326.15 - - 4443.41 - - 4562.51 - - 4683.43 - - 4806.18 - - 4929.92 - - 5000.37 - - 5000.02 - - 5000.0 - - 4999.99 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 0.0 - - 0.0 - thrust_coefficient: - - 0.0 - - 0.0 - - 2.497990147 - - 1.766833378 - - 1.408360153 - - 1.201348494 - - 1.065133759 - - 0.977936955 - - 0.936281559 - - 0.905425262 - - 0.902755344 - - 0.90016155 - - 0.895745235 - - 0.889630636 - - 0.883651878 - - 0.877788261 - - 0.872068513 - - 0.866439424 - - 0.860930874 - - 0.855544522 - - 0.850276473 - - 0.845148048 - - 0.840105118 - - 0.811165614 - - 0.764009698 - - 0.728584172 - - 0.698944675 - - 0.672754103 - - 0.649082557 - - 0.627368152 - - 0.471373796 - - 0.372703289 - - 0.30290131 - - 0.251235686 - - 0.211900735 - - 0.181210571 - - 0.156798163 - - 0.137091212 - - 0.120753164 - - 0.106941036 - - 0.095319286 - - 0.085631997 - - 0.077368152 - - 0.0 - - 0.0 + ### Power thrust table parameters + # The air density at which the Cp and Ct curves are defined. + ref_air_density: 1.225 + # The tilt angle at which the Cp and Ct curves are defined. This is used to capture + # the effects of a floating platform on a turbine's power and wake. + ref_tilt: 5.0 + # Cosine exponent for power loss due to tilt. + pT: 1.88 + # Cosine exponent for power loss due to yaw misalignment. + pP: 1.88 + ### Power thrust table data wind_speed: - 0.0 - - 2.9 + - 2.0 + - 2.5 - 3.0 + - 3.5 - 4.0 + - 4.5 - 5.0 + - 5.5 - 6.0 + - 6.5 - 7.0 + - 7.5 - 8.0 + - 8.5 - 9.0 + - 9.5 - 10.0 - - 10.1 - - 10.2 - - 10.3 - - 10.4 - 10.5 - - 10.6 - - 10.7 - - 10.8 - - 10.9 - 11.0 - - 11.1 - - 11.2 - - 11.3 - - 11.4 - 11.5 - - 11.6 - - 11.7 - - 11.8 - - 11.9 - 12.0 + - 12.5 - 13.0 + - 13.5 - 14.0 + - 14.5 - 15.0 + - 15.5 - 16.0 + - 16.5 - 17.0 + - 17.5 - 18.0 + - 18.5 - 19.0 + - 19.5 - 20.0 + - 20.5 - 21.0 + - 21.5 - 22.0 + - 22.5 - 23.0 + - 23.5 - 24.0 + - 24.5 - 25.0 - 25.01 + - 25.02 - 50.0 + power: + - 0.0 + - 0.0 + - 0.0 + - 36.722155848902254 + - 94.65678115354163 + - 170.596391826316 + - 267.74933496419163 + - 387.64681352354114 + - 533.9617151673435 + - 707.4062402827329 + - 909.9965782677073 + - 1142.7197798534328 + - 1407.4994184495558 + - 1707.1272243371227 + - 2047.3355806543098 + - 2430.5778091805637 + - 2858.3081150622215 + - 3329.100627354195 + - 3842.9755943182267 + - 4403.86140594055 + - 4999.993508066915 + - 4999.99850473839 + - 4999.997854617397 + - 5000.00304890274 + - 5000.002113339491 + - 4999.997282778227 + - 5000.002243172759 + - 5000.000360590384 + - 5000.009074693787 + - 4999.987262704901 + - 5000.007345811091 + - 5000.006875165497 + - 4999.994990648268 + - 4999.97705933755 + - 4999.983698972648 + - 4999.991318085188 + - 5000.024022703328 + - 5000.016589748782 + - 5000.025709581146 + - 4999.944891236294 + - 5000.035324880168 + - 4999.967955734346 + - 5000.013248451465 + - 5000.063199891701 + - 5000.068982245371 + - 4999.9325188896555 + - 5000.011035557985 + - 5000.012771123277 + - 4717.243379938609 + - 0.0 + - 0.0 + thrust_coefficient: + - 0.0 + - 0.0 + - 0.0 + - 0.99 + - 0.99 + - 0.97373036 + - 0.92826162 + - 0.89210543 + - 0.86100905 + - 0.835423 + - 0.81237673 + - 0.79225789 + - 0.77584769 + - 0.7629228 + - 0.76156073 + - 0.76261984 + - 0.76169723 + - 0.75232027 + - 0.74026851 + - 0.72987175 + - 0.70701647 + - 0.54054532 + - 0.45509459 + - 0.39343381 + - 0.34250785 + - 0.30487242 + - 0.27164979 + - 0.24361964 + - 0.21973831 + - 0.19918151 + - 0.18131868 + - 0.16537679 + - 0.15103727 + - 0.13998636 + - 0.1289037 + - 0.11970413 + - 0.11087113 + - 0.10339901 + - 0.09617888 + - 0.09009926 + - 0.08395078 + - 0.0791188 + - 0.07448356 + - 0.07050731 + - 0.06684119 + - 0.06345518 + - 0.06032267 + - 0.05741999 + - 0.05472609 + - 0.0 + - 0.0 ### # A boolean flag used when the user wants FLORIS to use the user-supplied multi-dimensional diff --git a/floris/turbine_library/nrel_5MW_v4converted.yaml b/floris/turbine_library/nrel_5MW_v4converted.yaml index 0dba7d187..0bd7fb08a 100644 --- a/floris/turbine_library/nrel_5MW_v4converted.yaml +++ b/floris/turbine_library/nrel_5MW_v4converted.yaml @@ -1,13 +1,14 @@ turbine_type: nrel_5MW generator_efficiency: 1.0 hub_height: 90.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 126.0 TSR: 8.0 -ref_air_density: 1.225 -ref_tilt: 5.0 +power_thrust_model: cosine-loss power_thrust_table: + ref_air_density: 1.225 + ref_tilt: 5.0 + pP: 1.88 + pT: 1.88 wind_speed: - 0.0 - 2.0 diff --git a/floris/turbine_library/nrel_5MW_v4updated.yaml b/floris/turbine_library/nrel_5MW_v4updated.yaml index a2946c690..d12fcf668 100644 --- a/floris/turbine_library/nrel_5MW_v4updated.yaml +++ b/floris/turbine_library/nrel_5MW_v4updated.yaml @@ -16,14 +16,6 @@ generator_efficiency: 1.0 # Hub height. hub_height: 90.0 -### -# Cosine exponent for power loss due to yaw misalignment. -pP: 1.88 - -### -# Cosine exponent for power loss due to tilt. -pT: 1.88 - ### # Rotor diameter. rotor_diameter: 126.0 @@ -32,18 +24,20 @@ rotor_diameter: 126.0 # Tip speed ratio defined as linear blade tip speed normalized by the incoming wind speed. TSR: 8.0 -### -# The air density at which the Cp and Ct curves are defined. -ref_air_density: 1.225 - -### -# The tilt angle at which the Cp and Ct curves are defined. This is used to capture -# the effects of a floating platform on a turbine's power and wake. -ref_tilt: 5.0 - ### # Cp and Ct as a function of wind speed for the turbine's full range of operating conditions. power_thrust_table: + ### Power thrust table parameters + # The air density at which the Cp and Ct curves are defined. + ref_air_density: 1.225 + # The tilt angle at which the Cp and Ct curves are defined. This is used to capture + # the effects of a floating platform on a turbine's power and wake. + ref_tilt: 5.0 + # Cosine exponent for power loss due to tilt. + pT: 1.88 + # Cosine exponent for power loss due to yaw misalignment. + pP: 1.88 + ### Power thrust table data power: - 0.0 - 0.0 diff --git a/floris/turbine_library/turbine_previewer.py b/floris/turbine_library/turbine_previewer.py index 2c624a559..f8f584448 100644 --- a/floris/turbine_library/turbine_previewer.py +++ b/floris/turbine_library/turbine_previewer.py @@ -21,18 +21,11 @@ import numpy as np from attrs import define, field -from floris.simulation.turbine import ( - Ct, +from floris.simulation.turbine.turbine import ( power, + thrust_coefficient, Turbine, ) -from floris.simulation.turbine_multi_dim import ( - Ct_multidim, - multidim_Ct_down_select, - multidim_power_down_select, - power_multidim, - TurbineMultiDimensional, -) from floris.type_dec import convert_to_path, NDArrayFloat from floris.utilities import ( load_yaml, @@ -47,9 +40,7 @@ @define(auto_attribs=True) class TurbineInterface: - turbine: Turbine | TurbineMultiDimensional = field( - validator=attrs.validators.instance_of((Turbine, TurbineMultiDimensional)) - ) + turbine: Turbine = field(validator=attrs.validators.instance_of(Turbine)) @classmethod def from_library(cls, library_path: str | Path, file_name: str): @@ -72,9 +63,6 @@ def from_library(cls, library_path: str | Path, file_name: str): # Add in the library specification if needed, and load from dict turb_dict = load_yaml(library_path / file_name) - if turb_dict.get("multi_dimensional_cp_ct", False): - turb_dict.setdefault("turbine_library_path", library_path) - return cls(turbine=TurbineMultiDimensional.from_dict(turb_dict)) return cls(turbine=Turbine.from_dict(turb_dict)) @classmethod @@ -92,9 +80,6 @@ def from_yaml(cls, file_path: str | Path): # Add in the library specification if needed, and load from dict turb_dict = load_yaml(file_path) - if turb_dict.get("multi_dimensional_cp_ct", False): - turb_dict.setdefault("turbine_library_path", file_path.parent) - return cls(turbine=TurbineMultiDimensional.from_dict(turb_dict)) return cls(turbine=Turbine.from_dict(turb_dict)) @classmethod @@ -108,8 +93,6 @@ def from_turbine_dict(cls, config_dict: dict): Returns: (`TurbineInterface`): Returns a ``TurbineInterface`` object. """ - if config_dict.get("multi_dimensional_cp_ct", False): - return cls(turbine=TurbineMultiDimensional.from_dict(config_dict)) return cls(turbine=Turbine.from_dict(config_dict)) def power_curve( @@ -130,30 +113,35 @@ def power_curve( """ shape = (wind_speeds.size, 1) if self.turbine.multi_dimensional_cp_ct: - power_interps = { - k: multidim_power_down_select( - np.full(shape, self.turbine.power_interp), - dict(zip(self.turbine.condition_keys, k)), - ) - for k in self.turbine.power_interp - } power_mw = { - k: power_multidim( - ref_air_density=np.full(shape, self.turbine.ref_air_density), - rotor_effective_velocities=wind_speeds.reshape(shape), - power_interp=power_interps[k], + k: power( + velocities=wind_speeds.reshape(shape), + air_density=np.full(shape, v["ref_air_density"]), + power_functions={self.turbine.turbine_type: self.turbine.power_function}, + yaw_angles=np.zeros(shape), + tilt_angles=np.full(shape, v["ref_tilt"]), + tilt_interps={self.turbine.turbine_type: self.turbine.tilt_interp}, + turbine_type_map=np.full(shape, self.turbine.turbine_type), + turbine_power_thrust_tables={self.turbine.turbine_type: v}, ).flatten() / 1e6 - for k in self.turbine.power_interp + for k,v in self.turbine.power_thrust_table.items() } else: power_mw = power( - rotor_effective_velocities=wind_speeds.reshape(shape), - power_interp={self.turbine.turbine_type: self.turbine.power_interp}, - turbine_type_map=np.full(shape, self.turbine.turbine_type) + velocities=wind_speeds.reshape(shape), + air_density=np.full(shape, self.turbine.power_thrust_table["ref_air_density"]), + power_functions={self.turbine.turbine_type: self.turbine.power_function}, + yaw_angles=np.zeros(shape), + tilt_angles=np.full(shape, self.turbine.power_thrust_table["ref_tilt"]), + tilt_interps={self.turbine.turbine_type: self.turbine.tilt_interp}, + turbine_type_map=np.full(shape, self.turbine.turbine_type), + turbine_power_thrust_tables={ + self.turbine.turbine_type: self.turbine.power_thrust_table + }, ).flatten() / 1e6 return wind_speeds, power_mw - def Ct_curve( + def thrust_coefficient_curve( self, wind_speeds: NDArrayFloat = DEFAULT_WIND_SPEEDS, ) -> tuple[NDArrayFloat, NDArrayFloat]: @@ -169,38 +157,36 @@ def Ct_curve( Returns the wind speed array and the thrust coefficient array. """ shape = (wind_speeds.size, 1) - shape_single = (1, 1) if self.turbine.multi_dimensional_cp_ct: - fCt_interps = { - k: multidim_Ct_down_select( - np.full(shape, self.turbine.fCt_interp), - dict(zip(self.turbine.condition_keys, k)), - ) - for k in self.turbine.fCt_interp - } ct_curve = { - k: Ct_multidim( + k: thrust_coefficient( velocities=wind_speeds.reshape(shape), - yaw_angle=np.zeros(shape), - tilt_angle=np.full(shape, self.turbine.ref_tilt), - ref_tilt=np.full(shape_single, self.turbine.ref_tilt), - fCt=fCt_interps[k], - tilt_interp={self.turbine.turbine_type: self.turbine.tilt_interp}, - correct_cp_ct_for_tilt=np.zeros(shape_single, dtype=bool), - turbine_type_map=np.full(shape_single, self.turbine.turbine_type) + yaw_angles=np.zeros(shape), + tilt_angles=np.full(shape, v["ref_tilt"]), + thrust_coefficient_functions={ + self.turbine.turbine_type: self.turbine.thrust_coefficient_function + }, + tilt_interps={self.turbine.turbine_type: self.turbine.tilt_interp}, + correct_cp_ct_for_tilt=np.zeros(shape, dtype=bool), + turbine_type_map=np.full(shape, self.turbine.turbine_type), + turbine_power_thrust_tables={self.turbine.turbine_type: v}, ).flatten() - for k in self.turbine.fCt_interp + for k,v in self.turbine.power_thrust_table.items() } else: - ct_curve = Ct( + ct_curve = thrust_coefficient( velocities=wind_speeds.reshape(shape), - yaw_angle=np.zeros(shape), - tilt_angle=np.full(shape, self.turbine.ref_tilt), - ref_tilt=np.full(shape, self.turbine.ref_tilt), - fCt={self.turbine.turbine_type: self.turbine.fCt_interp}, - tilt_interp={self.turbine.turbine_type: self.turbine.tilt_interp}, + yaw_angles=np.zeros(shape), + tilt_angles=np.full(shape, self.turbine.power_thrust_table["ref_tilt"]), + thrust_coefficient_functions={ + self.turbine.turbine_type: self.turbine.thrust_coefficient_function + }, + tilt_interps={self.turbine.turbine_type: self.turbine.tilt_interp}, correct_cp_ct_for_tilt=np.zeros(shape, dtype=bool), turbine_type_map=np.full(shape, self.turbine.turbine_type), + turbine_power_thrust_tables={ + self.turbine.turbine_type: self.turbine.power_thrust_table + }, ).flatten() return wind_speeds, ct_curve @@ -274,7 +260,7 @@ def plot_power_curve( fig.tight_layout() - def plot_Ct_curve( + def plot_thrust_coefficient_curve( self, wind_speeds: NDArrayFloat = DEFAULT_WIND_SPEEDS, fig_kwargs: dict | None = None, @@ -300,7 +286,7 @@ def plot_Ct_curve( None | tuple[plt.Figure, plt.Axes]: None, if :py:attr:`return_fig` is False, otherwise a tuple of the Figure and Axes objects are returned. """ - wind_speeds, thrust = self.Ct_curve(wind_speeds=wind_speeds) + wind_speeds, thrust = self.thrust_coefficient_curve(wind_speeds=wind_speeds) # Initialize kwargs if None fig_kwargs = {} if fig_kwargs is None else fig_kwargs @@ -347,8 +333,7 @@ def plot_Ct_curve( class TurbineLibrary: turbine_map: dict[str: TurbineInterface] = field(factory=dict) power_curves: dict[str, tuple[NDArrayFloat, NDArrayFloat]] = field(factory=dict) - Cp_curves: dict[str, tuple[NDArrayFloat, NDArrayFloat]] = field(factory=dict) - Ct_curves: dict[str, tuple[NDArrayFloat, NDArrayFloat]] = field(factory=dict) + thrust_coefficient_curves: dict[str, tuple[NDArrayFloat, NDArrayFloat]] = field(factory=dict) def load_internal_library(self, which: list[str] = [], exclude: list[str] = []) -> None: """Loads all of the turbine configurations from ``floris/floris/turbine_libary``, @@ -414,19 +399,19 @@ def compute_power_curves( name: t.power_curve(wind_speeds) for name, t in self.turbine_map.items() } - def compute_Ct_curves( + def compute_thrust_coefficient_curves( self, wind_speeds: NDArrayFloat = DEFAULT_WIND_SPEEDS, ) -> None: """Computes the thrust curves for each turbine in ``turbine_map`` and sets the - ``Ct_curves`` attribute. + ``thrust_coefficient_curves`` attribute. Args: wind_speeds (NDArrayFloat, optional): A 1-D array of wind speeds, in m/s. Defaults to 0 m/s -> 40 m/s, every 0.5 m/s. """ - self.Ct_curves = { - name: t.Ct_curve(wind_speeds) for name, t in self.turbine_map.items() + self.thrust_coefficient_curves = { + name: t.thrust_coefficient_curve(wind_speeds) for name, t in self.turbine_map.items() } def plot_power_curves( @@ -522,7 +507,7 @@ def plot_power_curves( if show: fig.tight_layout() - def plot_Ct_curves( + def plot_thrust_coefficient_curves( self, fig: plt.Figure | None = None, ax: plt.Axes | None = None, @@ -561,8 +546,8 @@ def plot_Ct_curves( None | tuple[plt.Figure, plt.Axes]: None, if :py:attr:`return_fig` is False, otherwise a tuple of the Figure and Axes objects are returned. """ - if self.Ct_curves == {} or wind_speeds is None: - self.compute_Ct_curves(wind_speeds=wind_speeds) + if self.thrust_coefficient_curves == {} or wind_speeds is None: + self.compute_thrust_coefficient_curves(wind_speeds=wind_speeds) which = [*self.turbine_map] if which == [] else which @@ -584,7 +569,7 @@ def plot_Ct_curves( min_windspeed = 0 max_windspeed = 0 max_thrust = 0 - for name, (ws, t) in self.Ct_curves.items(): + for name, (ws, t) in self.thrust_coefficient_curves.items(): if name in exclude or name not in which: continue if isinstance(t, dict): @@ -823,7 +808,7 @@ def plot_comparison( wind_speeds=wind_speeds, plot_kwargs=plot_kwargs, ) - self.plot_Ct_curves( + self.plot_thrust_coefficient_curves( fig, ax3, which=which, diff --git a/floris/tools/turbine_utilities.py b/floris/turbine_library/turbine_utilities.py similarity index 97% rename from floris/tools/turbine_utilities.py rename to floris/turbine_library/turbine_utilities.py index 65664b163..9de8dce6b 100644 --- a/floris/tools/turbine_utilities.py +++ b/floris/turbine_library/turbine_utilities.py @@ -12,13 +12,15 @@ # See https://floris.readthedocs.io for documentation -import os.path +from __future__ import annotations + +from collections.abc import Iterable import numpy as np import yaml -def build_turbine_dict( +def build_cosine_loss_turbine_dict( turbine_data_dict, turbine_name, file_name=None, @@ -142,6 +144,10 @@ def build_turbine_dict( # Build the turbine dict power_thrust_dict = { + "ref_air_density": ref_air_density, + "ref_tilt": ref_tilt, + "pP": pP, + "pT": pT, "wind_speed": u.tolist(), "power": p.tolist(), "thrust_coefficient": Ct.tolist() @@ -151,12 +157,9 @@ def build_turbine_dict( "turbine_type": turbine_name, "generator_efficiency": generator_efficiency, "hub_height": hub_height, - "pP": pP, - "pT": pT, "rotor_diameter": rotor_diameter, "TSR": TSR, - "ref_air_density": ref_air_density, - "ref_tilt": ref_tilt, + "power_thrust_model": "cosine-loss", "power_thrust_table": power_thrust_dict } diff --git a/setup.py b/setup.py index a31e1e0f3..c1a06a593 100644 --- a/setup.py +++ b/setup.py @@ -42,7 +42,6 @@ # utilities "coloredlogs~=10.0", - "flatten_dict~=0.0", ] # What packages are optional? diff --git a/tests/conftest.py b/tests/conftest.py index 5feafbee0..d1aefa535 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -203,12 +203,13 @@ def __init__(self): "turbine_type": "nrel_5mw", "rotor_diameter": 126.0, "hub_height": 90.0, - "pP": 1.88, - "pT": 1.88, "generator_efficiency": 1.0, - "ref_air_density": 1.225, - "ref_tilt": 5.0, + "power_thrust_model": "cosine-loss", "power_thrust_table": { + "pP": 1.88, + "pT": 1.88, + "ref_air_density": 1.225, + "ref_tilt": 5.0, "power": [ 0.0, 0.0, @@ -379,9 +380,11 @@ def __init__(self): self.turbine_floating["correct_cp_ct_for_tilt"] = True self.turbine_multi_dim = copy.deepcopy(self.turbine) - del self.turbine_multi_dim['power_thrust_table'] + del self.turbine_multi_dim['power_thrust_table']['power'] + del self.turbine_multi_dim['power_thrust_table']['thrust_coefficient'] + del self.turbine_multi_dim['power_thrust_table']['wind_speed'] self.turbine_multi_dim["multi_dimensional_cp_ct"] = True - self.turbine_multi_dim["power_thrust_data_file"] = "" + self.turbine_multi_dim['power_thrust_table']["power_thrust_data_file"] = "" self.farm = { "layout_x": X_COORDS, diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index ffdc8bdd9..f5e58caa2 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -17,10 +17,10 @@ from floris.simulation import ( average_velocity, axial_induction, - Ct, Floris, power, rotor_effective_velocity, + thrust_coefficient, ) from tests.conftest import ( assert_results_arrays, @@ -178,43 +178,35 @@ def test_regression_tandem(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -339,43 +331,35 @@ def test_regression_yaw(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -428,43 +412,35 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -516,43 +492,35 @@ def test_regression_secondary_steering(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -614,23 +582,15 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) # A "column" is oriented parallel to the wind direction diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 36bf4b248..6d798afa2 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -17,10 +17,10 @@ from floris.simulation import ( average_velocity, axial_induction, - Ct, Floris, power, rotor_effective_velocity, + thrust_coefficient, ) from tests.conftest import ( assert_results_arrays, @@ -151,43 +151,35 @@ def test_regression_tandem(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, - yaw_angles, - tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, + floris.farm.yaw_angles, + floris.farm.tilt_angles, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -315,43 +307,35 @@ def test_regression_yaw(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, - yaw_angles, - tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, + floris.farm.yaw_angles, + floris.farm.tilt_angles, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -405,43 +389,35 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, - yaw_angles, - tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, + floris.farm.yaw_angles, + floris.farm.tilt_angles, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -478,43 +454,35 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, - yaw_angles, - tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, + floris.farm.yaw_angles, + floris.farm.tilt_angles, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -575,26 +543,29 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # farm_avg_velocities = average_velocity(floris.flow_field.u) velocities = floris.flow_field.u - yaw_angles = floris.farm.yaw_angles - tilt_angles = floris.farm.tilt_angles - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + # farm_eff_velocities = rotor_effective_velocity( + # floris.flow_field.air_density, + # floris.farm.ref_air_densities, + # velocities, + # yaw_angles, + # tilt_angles, + # floris.farm.ref_tilts, + # floris.farm.pPs, + # floris.farm.pTs, + # floris.farm.turbine_tilt_interps, + # floris.farm.correct_cp_ct_for_tilt, + # floris.farm.turbine_type_map, + # ) + farm_powers = power( velocities, - yaw_angles, - tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, + floris.farm.yaw_angles, + floris.farm.tilt_angles, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) # A "column" is oriented parallel to the wind direction diff --git a/tests/reg_tests/floris_interface_regression_test.py b/tests/reg_tests/floris_interface_regression_test.py index e9164f3a5..8cda5f9e3 100644 --- a/tests/reg_tests/floris_interface_regression_test.py +++ b/tests/reg_tests/floris_interface_regression_test.py @@ -17,10 +17,10 @@ from floris.simulation import ( average_velocity, axial_induction, - Ct, power, + thrust_coefficient, ) -from floris.simulation.turbine import rotor_effective_velocity +from floris.simulation.rotor_velocity import rotor_effective_velocity from floris.tools import FlorisInterface from tests.conftest import ( assert_results_arrays, @@ -91,43 +91,35 @@ def test_calculate_no_wake(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - fi.floris.flow_field.air_density, - fi.floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - fi.floris.farm.ref_tilts, - fi.floris.farm.pPs, - fi.floris.farm.pTs, + fi.floris.farm.turbine_thrust_coefficient_functions, fi.floris.farm.turbine_tilt_interps, fi.floris.farm.correct_cp_ct_for_tilt, fi.floris.farm.turbine_type_map, + fi.floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, - yaw_angles, - tilt_angles, - fi.floris.farm.ref_tilts, - fi.floris.farm.turbine_fCts, + fi.floris.flow_field.air_density, + fi.floris.farm.turbine_power_functions, + fi.floris.farm.yaw_angles, + fi.floris.farm.tilt_angles, fi.floris.farm.turbine_tilt_interps, - fi.floris.farm.correct_cp_ct_for_tilt, - fi.floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - fi.floris.farm.turbine_power_interps, fi.floris.farm.turbine_type_map, + fi.floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - fi.floris.farm.ref_tilts, - fi.floris.farm.turbine_fCts, + fi.floris.farm.turbine_axial_induction_functions, fi.floris.farm.turbine_tilt_interps, fi.floris.farm.correct_cp_ct_for_tilt, fi.floris.farm.turbine_type_map, + fi.floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index 084684c33..679023d54 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -17,10 +17,10 @@ from floris.simulation import ( average_velocity, axial_induction, - Ct, Floris, power, rotor_effective_velocity, + thrust_coefficient, ) from tests.conftest import ( assert_results_arrays, @@ -269,43 +269,35 @@ def test_regression_tandem(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -430,43 +422,35 @@ def test_regression_yaw(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -516,43 +500,35 @@ def test_regression_gch(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -598,43 +574,35 @@ def test_regression_gch(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -687,43 +655,35 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -775,43 +735,35 @@ def test_regression_secondary_steering(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -873,23 +825,15 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) # A "column" is oriented parallel to the wind direction diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index 8c97185c6..1122b42f2 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -17,10 +17,10 @@ from floris.simulation import ( average_velocity, axial_induction, - Ct, Floris, power, rotor_effective_velocity, + thrust_coefficient, ) from tests.conftest import ( assert_results_arrays, @@ -120,43 +120,35 @@ def test_regression_tandem(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, - yaw_angles, - tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, + floris.farm.yaw_angles, + floris.farm.tilt_angles, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -281,43 +273,35 @@ def test_regression_yaw(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -379,23 +363,28 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + # farm_eff_velocities = rotor_effective_velocity( + # floris.flow_field.air_density, + # floris.farm.ref_air_densities, + # velocities, + # yaw_angles, + # tilt_angles, + # floris.farm.ref_tilts, + # floris.farm.pPs, + # floris.farm.pTs, + # floris.farm.turbine_tilt_interps, + # floris.farm.correct_cp_ct_for_tilt, + # floris.farm.turbine_type_map, + # ) + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) # A "column" is oriented parallel to the wind direction diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index c7281c082..6b4c23235 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -18,10 +18,10 @@ from floris.simulation import ( average_velocity, axial_induction, - Ct, Floris, power, rotor_effective_velocity, + thrust_coefficient, ) from tests.conftest import ( assert_results_arrays, @@ -121,43 +121,35 @@ def test_regression_tandem(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -315,23 +307,15 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) # A "column" is oriented parallel to the wind direction diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index fd64c4c1b..144bdd6f2 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -17,10 +17,10 @@ from floris.simulation import ( average_velocity, axial_induction, - Ct, Floris, power, rotor_effective_velocity, + thrust_coefficient, ) from tests.conftest import ( assert_results_arrays, @@ -122,43 +122,35 @@ def test_regression_tandem(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -284,43 +276,35 @@ def test_regression_yaw(sample_inputs_fixture): farm_avg_velocities = average_velocity( velocities, ) - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_cts = thrust_coefficient( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, + floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) - farm_cts = Ct( + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.turbine_fCts, + floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) for i in range(n_findex): for j in range(n_turbines): @@ -377,23 +361,15 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles - farm_eff_velocities = rotor_effective_velocity( - floris.flow_field.air_density, - floris.farm.ref_air_densities, + farm_powers = power( velocities, + floris.flow_field.air_density, + floris.farm.turbine_power_functions, yaw_angles, tilt_angles, - floris.farm.ref_tilts, - floris.farm.pPs, - floris.farm.pTs, floris.farm.turbine_tilt_interps, - floris.farm.correct_cp_ct_for_tilt, - floris.farm.turbine_type_map, - ) - farm_powers = power( - farm_eff_velocities, - floris.farm.turbine_power_interps, floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, ) # A "column" is oriented parallel to the wind direction diff --git a/tests/rotor_velocity_unit_test.py b/tests/rotor_velocity_unit_test.py new file mode 100644 index 000000000..c90892752 --- /dev/null +++ b/tests/rotor_velocity_unit_test.py @@ -0,0 +1,198 @@ +import numpy as np + +from floris.simulation import Turbine +from floris.simulation.rotor_velocity import ( + average_velocity, + compute_tilt_angles_for_floating_turbines, + compute_tilt_angles_for_floating_turbines_map, + cubic_cubature, + rotor_velocity_tilt_correction, + rotor_velocity_yaw_correction, + simple_cubature, +) +from tests.conftest import SampleInputs, WIND_SPEEDS + + +def test_rotor_velocity_yaw_correction(): + N_TURBINES = 4 + + wind_speed = average_velocity(10.0 * np.ones((1, 1, 3, 3))) + wind_speed_N_TURBINES = average_velocity(10.0 * np.ones((1, N_TURBINES, 3, 3))) + + # Test a single turbine for zero yaw + yaw_corrected_velocities = rotor_velocity_yaw_correction( + pP=3.0, + yaw_angles=0.0, + rotor_effective_velocities=wind_speed, + ) + np.testing.assert_allclose(yaw_corrected_velocities, wind_speed) + + # Test a single turbine for non-zero yaw + yaw_corrected_velocities = rotor_velocity_yaw_correction( + pP=3.0, + yaw_angles=60.0, + rotor_effective_velocities=wind_speed, + ) + np.testing.assert_allclose(yaw_corrected_velocities, 0.5 * wind_speed) + + # Test multiple turbines for zero yaw + yaw_corrected_velocities = rotor_velocity_yaw_correction( + pP=3.0, + yaw_angles=np.zeros((1, N_TURBINES)), + rotor_effective_velocities=wind_speed_N_TURBINES, + ) + np.testing.assert_allclose(yaw_corrected_velocities, wind_speed_N_TURBINES) + + # Test multiple turbines for non-zero yaw + yaw_corrected_velocities = rotor_velocity_yaw_correction( + pP=3.0, + yaw_angles=np.ones((1, N_TURBINES)) * 60.0, + rotor_effective_velocities=wind_speed_N_TURBINES, + ) + np.testing.assert_allclose(yaw_corrected_velocities, 0.5 * wind_speed_N_TURBINES) + + +def test_rotor_velocity_tilt_correction(): + N_TURBINES = 4 + + wind_speed = average_velocity(10.0 * np.ones((1, 1, 3, 3))) + wind_speed_N_TURBINES = average_velocity(10.0 * np.ones((1, N_TURBINES, 3, 3))) + + turbine_data = SampleInputs().turbine + turbine_floating_data = SampleInputs().turbine_floating + turbine = Turbine.from_dict(turbine_data) + turbine_floating = Turbine.from_dict(turbine_floating_data) + turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) + turbine_type_map = turbine_type_map[None, :] + + # Test single non-floating turbine + tilt_corrected_velocities = rotor_velocity_tilt_correction( + #turbine_type_map=np.array([turbine_type_map[:, 0]]), + tilt_angles=5.0*np.ones((1, 1)), + ref_tilt=np.array([turbine.power_thrust_table["ref_tilt"]]), + pT=np.array([turbine.power_thrust_table["pT"]]), + tilt_interp=turbine.tilt_interp, + correct_cp_ct_for_tilt=np.array([[False]]), + rotor_effective_velocities=wind_speed, + ) + + np.testing.assert_allclose(tilt_corrected_velocities, wind_speed) + + # Test multiple non-floating turbines + tilt_corrected_velocities = rotor_velocity_tilt_correction( + #turbine_type_map=turbine_type_map, + tilt_angles=5.0*np.ones((1, N_TURBINES)), + ref_tilt=np.array([turbine.power_thrust_table["ref_tilt"]] * N_TURBINES), + pT=np.array([turbine.power_thrust_table["pT"]] * N_TURBINES), + tilt_interp=turbine.tilt_interp, + correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), + rotor_effective_velocities=wind_speed_N_TURBINES, + ) + + np.testing.assert_allclose(tilt_corrected_velocities, wind_speed_N_TURBINES) + + # Test single floating turbine + tilt_corrected_velocities = rotor_velocity_tilt_correction( + #turbine_type_map=np.array([turbine_type_map[:, 0]]), + tilt_angles=5.0*np.ones((1, 1)), + ref_tilt=np.array([turbine_floating.power_thrust_table["ref_tilt"]]), + pT=np.array([turbine_floating.power_thrust_table["pT"]]), + tilt_interp=turbine_floating.tilt_interp, + correct_cp_ct_for_tilt=np.array([[True]]), + rotor_effective_velocities=wind_speed, + ) + + np.testing.assert_allclose(tilt_corrected_velocities, wind_speed) + + # Test multiple floating turbines + tilt_corrected_velocities = rotor_velocity_tilt_correction( + #turbine_type_map, + tilt_angles=5.0*np.ones((1, N_TURBINES)), + ref_tilt=np.array([turbine_floating.power_thrust_table["ref_tilt"]] * N_TURBINES), + pT=np.array([turbine_floating.power_thrust_table["pT"]] * N_TURBINES), + tilt_interp=turbine_floating.tilt_interp, + correct_cp_ct_for_tilt=np.array([[True] * N_TURBINES]), + rotor_effective_velocities=wind_speed_N_TURBINES, + ) + + np.testing.assert_allclose(tilt_corrected_velocities, wind_speed_N_TURBINES) + +def test_compute_tilt_angles_for_floating_turbines(): + N_TURBINES = 4 + + wind_speed = 25.0 + rotor_effective_velocities = average_velocity(wind_speed * np.ones((1, 1, 3, 3))) + rotor_effective_velocities_N_TURBINES = average_velocity( + wind_speed * np.ones((1, N_TURBINES, 3, 3)) + ) + + turbine_floating_data = SampleInputs().turbine_floating + turbine_floating = Turbine.from_dict(turbine_floating_data) + turbine_type_map = np.array(N_TURBINES * [turbine_floating.turbine_type]) + turbine_type_map = turbine_type_map[None, :] + + # Single turbine + tilt = compute_tilt_angles_for_floating_turbines( + #turbine_type_map=np.array([turbine_type_map[:, 0]]), + tilt_angles=5.0*np.ones((1, 1)), + tilt_interp=turbine_floating.tilt_interp, + rotor_effective_velocities=rotor_effective_velocities, + ) + + # calculate tilt again + truth_index = turbine_floating_data["floating_tilt_table"]["wind_speed"].index(wind_speed) + tilt_truth = turbine_floating_data["floating_tilt_table"]["tilt"][truth_index] + np.testing.assert_allclose(tilt, tilt_truth) + + # Multiple turbines + tilt_N_turbines = compute_tilt_angles_for_floating_turbines_map( + turbine_type_map=np.array(turbine_type_map), + tilt_angles=5.0*np.ones((1, N_TURBINES)), + tilt_interps={turbine_floating.turbine_type: turbine_floating.tilt_interp}, + rotor_effective_velocities=rotor_effective_velocities_N_TURBINES, + ) + + # calculate tilt again + truth_index = turbine_floating_data["floating_tilt_table"]["wind_speed"].index(wind_speed) + tilt_truth = turbine_floating_data["floating_tilt_table"]["tilt"][truth_index] + np.testing.assert_allclose(tilt_N_turbines, [[tilt_truth] * N_TURBINES]) + +def test_simple_cubature(): + + # Define a velocity array + velocities = np.ones((1, 1, 3, 3)) + + # Define sample cubature weights + cubature_weights = np.array([1., 1., 1.]) + + # Define the axis as last 2 dimensions + axis = (velocities.ndim-2, velocities.ndim-1) + + # Calculate expected output based on the given inputs + expected_output = 1.0 + + # Call the function with the given inputs + result = simple_cubature(velocities, cubature_weights, axis) + + # Check if the result matches the expected output + np.testing.assert_allclose(result, expected_output) + +def test_cubic_cubature(): + + # Define a velocity array + velocities = np.ones((1, 1, 3, 3)) + + # Define sample cubature weights + cubature_weights = np.array([1., 1., 1.]) + + # Define the axis as last 2 dimensions + axis = (velocities.ndim-2, velocities.ndim-1) + + # Calculate expected output based on the given inputs + expected_output = 1.0 + + # Call the function with the given inputs + result = cubic_cubature(velocities, cubature_weights, axis) + + # Check if the result matches the expected output + np.testing.assert_allclose(result, expected_output) diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index a4af63040..7cd7e176a 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -21,15 +21,11 @@ from floris.simulation import ( Turbine, - TurbineMultiDimensional, ) -from floris.simulation.turbine_multi_dim import ( - axial_induction_multidim, - Ct_multidim, - multidim_Ct_down_select, - multidim_power_down_select, - MultiDimensionalPowerThrustTable, - power_multidim, +from floris.simulation.turbine.turbine import ( + axial_induction, + power, + thrust_coefficient, ) from tests.conftest import SampleInputs, WIND_SPEEDS @@ -44,65 +40,44 @@ INDEX_FILTER = [0, 2] - -def test_multidim_Ct_down_select(): - CONDITIONS = {'Tp': 2, 'Hs': 1} - - turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_data_file"] = CSV_INPUT - turbine = TurbineMultiDimensional.from_dict(turbine_data) - - downselect_turbine_fCts = multidim_Ct_down_select([[turbine.fCt_interp]], CONDITIONS) - - assert downselect_turbine_fCts == turbine.fCt_interp[(2, 1)] - - -def test_multidim_power_down_select(): - CONDITIONS = {'Tp': 2, 'Hs': 1} - - turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_data_file"] = CSV_INPUT - turbine = TurbineMultiDimensional.from_dict(turbine_data) - - downselect_power_interps = multidim_power_down_select([[turbine.power_interp]], CONDITIONS) - - assert downselect_power_interps == turbine.power_interp[(2, 1)] - - -def test_multi_dimensional_power_thrust_table(): - turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_data_file"] = CSV_INPUT - df_data = pd.read_csv(turbine_data["power_thrust_data_file"]) - flattened_dict = MultiDimensionalPowerThrustTable.from_dataframe(df_data) - flattened_dict_base = { - ('Tp', '2', 'Hs', '1'): [], - ('Tp', '2', 'Hs', '5'): [], - ('Tp', '4', 'Hs', '1'): [], - ('Tp', '4', 'Hs', '5'): [], - } - assert flattened_dict == flattened_dict_base - - # Test for initialization errors - for el in ("ws", "Cp", "Ct"): - df_data = pd.read_csv(turbine_data["power_thrust_data_file"]) - df = df_data.drop(el, axis=1) - with pytest.raises(ValueError): - MultiDimensionalPowerThrustTable.from_dataframe(df) +# NOTE: MultiDimensionalPowerThrustTable not used anywhere, so I'm commenting +# this out. + +# def test_multi_dimensional_power_thrust_table(): +# turbine_data = SampleInputs().turbine_multi_dim +# turbine_data["power_thrust_data_file"] = CSV_INPUT +# df_data = pd.read_csv(turbine_data["power_thrust_data_file"]) +# flattened_dict = MultiDimensionalPowerThrustTable.from_dataframe(df_data) +# flattened_dict_base = { +# ('Tp', '2', 'Hs', '1'): [], +# ('Tp', '2', 'Hs', '5'): [], +# ('Tp', '4', 'Hs', '1'): [], +# ('Tp', '4', 'Hs', '5'): [], +# } +# assert flattened_dict == flattened_dict_base + +# # Test for initialization errors +# for el in ("ws", "Cp", "Ct"): +# df_data = pd.read_csv(turbine_data["power_thrust_data_file"]) +# df = df_data.drop(el, axis=1) +# with pytest.raises(ValueError): +# MultiDimensionalPowerThrustTable.from_dataframe(df) def test_turbine_init(): turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_data_file"] = CSV_INPUT - turbine = TurbineMultiDimensional.from_dict(turbine_data) + turbine_data["power_thrust_table"]["power_thrust_data_file"] = CSV_INPUT + turbine = Turbine.from_dict(turbine_data) + condition = (2, 1) assert turbine.rotor_diameter == turbine_data["rotor_diameter"] assert turbine.hub_height == turbine_data["hub_height"] - assert turbine.pP == turbine_data["pP"] - assert turbine.pT == turbine_data["pT"] + assert turbine.power_thrust_table[condition]["pP"] == turbine_data["power_thrust_table"]["pP"] + assert turbine.power_thrust_table[condition]["pT"] == turbine_data["power_thrust_table"]["pT"] assert turbine.generator_efficiency == turbine_data["generator_efficiency"] - assert isinstance(turbine.power_thrust_data, dict) - assert isinstance(turbine.fCt_interp, dict) - assert isinstance(turbine.power_interp, dict) + assert isinstance(turbine.power_thrust_table, dict) + assert callable(turbine.thrust_coefficient_function) + assert callable(turbine.power_function) assert turbine.rotor_radius == turbine_data["rotor_diameter"] / 2.0 @@ -110,45 +85,42 @@ def test_ct(): N_TURBINES = 4 turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_data_file"] = CSV_INPUT - turbine = TurbineMultiDimensional.from_dict(turbine_data) + turbine_data["power_thrust_table"]["power_thrust_data_file"] = CSV_INPUT + turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] + condition = (2, 1) # Single turbine # yaw angle / fCt are (n wind direction, n wind speed, n turbine) wind_speed = 10.0 - thrust = Ct_multidim( + thrust = thrust_coefficient( velocities=wind_speed * np.ones((1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1)), - tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt=np.ones((1, 1)) * 5.0, - fCt=np.array([[turbine.fCt_interp[(2, 1)]]]), - tilt_interp={turbine.turbine_type: None}, + yaw_angles=np.zeros((1, 1)), + tilt_angles=np.ones((1, 1)) * 5.0, + thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, + tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), - turbine_type_map=turbine_type_map[:,0] + turbine_type_map=turbine_type_map[:,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, + multidim_condition=condition ) np.testing.assert_allclose(thrust, np.array([[0.77853469]])) # Multiple turbines with index filter # 4 turbines with 3 x 3 grid arrays - thrusts = Ct_multidim( + thrusts = thrust_coefficient( velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 16 x 4 x 3 x 3 - yaw_angle=np.zeros((1, N_TURBINES)), - tilt_angle=np.ones((1, N_TURBINES)) * 5.0, - ref_tilt=np.ones((1, N_TURBINES)) * 5.0, - fCt=np.tile( - [turbine.fCt_interp[(2, 1)]], - ( - np.shape(WIND_CONDITION_BROADCAST)[0], - N_TURBINES, - ) - ), - tilt_interp={turbine.turbine_type: None}, + yaw_angles=np.zeros((1, N_TURBINES)), + tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, + tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), turbine_type_map=turbine_type_map, ix_filter=INDEX_FILTER, + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, + multidim_condition=condition ) assert len(thrusts[0]) == len(INDEX_FILTER) @@ -175,54 +147,59 @@ def test_ct(): ]) np.testing.assert_allclose(thrusts, thrusts_truth) - def test_power(): N_TURBINES = 4 AIR_DENSITY = 1.225 turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_data_file"] = CSV_INPUT - turbine = TurbineMultiDimensional.from_dict(turbine_data) + turbine_data["power_thrust_table"]["power_thrust_data_file"] = CSV_INPUT + turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] + condition = (2, 1) # Single turbine wind_speed = 10.0 - p = power_multidim( - ref_air_density=AIR_DENSITY, - rotor_effective_velocities=wind_speed * np.ones((1, 1, 3, 3)), - power_interp=np.array([[turbine.power_interp[(2, 1)]]]), + p = power( + velocities=wind_speed * np.ones((1, 1, 3, 3)), + air_density=AIR_DENSITY, + power_functions={turbine.turbine_type: turbine.power_function}, + yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine + tilt_angles=turbine.power_thrust_table[condition]["ref_tilt"] * np.ones((1, 1)), + tilt_interps={turbine.turbine_type: turbine.tilt_interp}, + turbine_type_map=turbine_type_map[:,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, + multidim_condition=condition ) - power_truth = [ - [ - [ - [3215682.686486, 3215682.686486, 3215682.686486], - [3215682.686486, 3215682.686486, 3215682.686486], - [3215682.686486, 3215682.686486, 3215682.686486], - ] - ] - ] + power_truth = 3215682.686486 - np.testing.assert_allclose(p, power_truth ) + np.testing.assert_allclose(p, power_truth) # Multiple turbines with ix filter - rotor_effective_velocities = np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST - p = power_multidim( - ref_air_density=AIR_DENSITY, - rotor_effective_velocities=rotor_effective_velocities, - power_interp=np.tile( - [turbine.power_interp[(2, 1)]], - ( - np.shape(WIND_CONDITION_BROADCAST)[0], - N_TURBINES, - ) - ), + velocities = np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST + p = power( + velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 16 x 4 x 3 x 3 + air_density=AIR_DENSITY, + power_functions={turbine.turbine_type: turbine.power_function}, + yaw_angles=np.zeros((1, N_TURBINES)), + tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + tilt_interps={turbine.turbine_type: turbine.tilt_interp}, + turbine_type_map=turbine_type_map, ix_filter=INDEX_FILTER, + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, + multidim_condition=condition ) assert len(p[0]) == len(INDEX_FILTER) - power_truth = turbine.power_interp[(2, 1)](rotor_effective_velocities) * AIR_DENSITY + power_truth = turbine.power_function( + power_thrust_table=turbine.power_thrust_table[condition], + velocities=velocities, + air_density=AIR_DENSITY, + yaw_angles=np.zeros((1, N_TURBINES)), + tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + tilt_interp=turbine.tilt_interp, + ) np.testing.assert_allclose(p, power_truth[:, INDEX_FILTER[0]:INDEX_FILTER[1]]) @@ -231,44 +208,41 @@ def test_axial_induction(): N_TURBINES = 4 turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_data_file"] = CSV_INPUT - turbine = TurbineMultiDimensional.from_dict(turbine_data) + turbine_data["power_thrust_table"]["power_thrust_data_file"] = CSV_INPUT + turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] + condition = (2, 1) baseline_ai = 0.2646995 # Single turbine wind_speed = 10.0 - ai = axial_induction_multidim( + ai = axial_induction( velocities=wind_speed * np.ones((1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1)), - tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt=np.ones((1, 1)) * 5.0, - fCt=np.array([[turbine.fCt_interp[(2, 1)]]]), - tilt_interp={turbine.turbine_type: None}, + yaw_angles=np.zeros((1, 1)), + tilt_angles=np.ones((1, 1)) * 5.0, + axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, + tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), turbine_type_map=turbine_type_map[0,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, + multidim_condition=condition ) np.testing.assert_allclose(ai, baseline_ai) # Multiple turbines with ix filter - ai = axial_induction_multidim( + ai = axial_induction( velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 16 x 4 x 3 x 3 - yaw_angle=np.zeros((1, N_TURBINES)), - tilt_angle=np.ones((1, N_TURBINES)) * 5.0, - ref_tilt=np.ones((1, N_TURBINES)) * 5.0, - fCt=np.tile( - [turbine.fCt_interp[(2, 1)]], - ( - np.shape(WIND_CONDITION_BROADCAST)[0], - N_TURBINES, - ) - ), - tilt_interp={turbine.turbine_type: None}, + yaw_angles=np.zeros((1, N_TURBINES)), + tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, + tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), turbine_type_map=turbine_type_map, ix_filter=INDEX_FILTER, + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, + multidim_condition=condition ) assert len(ai[0]) == len(INDEX_FILTER) diff --git a/tests/turbine_operation_models_test.py b/tests/turbine_operation_models_test.py new file mode 100644 index 000000000..517bb0be7 --- /dev/null +++ b/tests/turbine_operation_models_test.py @@ -0,0 +1,215 @@ +import numpy as np + +from floris.simulation.turbine.operation_models import ( + CosineLossTurbine, + rotor_velocity_air_density_correction, + SimpleTurbine, +) +from floris.utilities import cosd +from tests.conftest import SampleInputs, WIND_SPEEDS + + +def test_rotor_velocity_air_density_correction(): + + wind_speed = 10. + ref_air_density = 1.225 + test_density = 1.2 + + test_speed = rotor_velocity_air_density_correction(wind_speed, ref_air_density, ref_air_density) + assert test_speed == wind_speed + + test_speed = rotor_velocity_air_density_correction(wind_speed, test_density, test_density) + assert test_speed == wind_speed + + test_speed = rotor_velocity_air_density_correction(0., test_density, ref_air_density) + assert test_speed == 0. + + test_speed = rotor_velocity_air_density_correction(wind_speed, test_density, ref_air_density) + assert np.allclose((test_speed/wind_speed)**3, test_density/ref_air_density) + +def test_submodel_attributes(): + + assert hasattr(SimpleTurbine, "power") + assert hasattr(SimpleTurbine, "thrust_coefficient") + + assert hasattr(CosineLossTurbine, "power") + assert hasattr(CosineLossTurbine, "thrust_coefficient") + +def test_SimpleTurbine(): + + n_turbines = 1 + wind_speed = 10.0 + turbine_data = SampleInputs().turbine + + # Check that power works as expected + test_power = SimpleTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], # Matches ref_air_density + ) + truth_index = turbine_data["power_thrust_table"]["wind_speed"].index(wind_speed) + baseline_power = turbine_data["power_thrust_table"]["power"][truth_index] * 1000 + assert np.allclose(baseline_power, test_power) + + # Check that yaw and tilt angle have no effect + test_power = SimpleTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], # Matches ref_air_density + yaw_angles=20 * np.ones((1, n_turbines)), + tilt_angles=5 * np.ones((1, n_turbines)) + ) + assert np.allclose(baseline_power, test_power) + + # Check that a lower air density decreases power appropriately + test_power = SimpleTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, + ) + assert test_power < baseline_power + + + # Check that thrust coefficient works as expected + test_Ct = SimpleTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, # Unused + ) + baseline_Ct = turbine_data["power_thrust_table"]["thrust_coefficient"][truth_index] + assert np.allclose(baseline_Ct, test_Ct) + + # Check that yaw and tilt angle have no effect + test_Ct = SimpleTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, # Unused + yaw_angles=20 * np.ones((1, n_turbines)), + tilt_angles=5 * np.ones((1, n_turbines)) + ) + assert np.allclose(baseline_Ct, test_Ct) + + + # Check that axial induction works as expected + test_ai = SimpleTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, # Unused + ) + baseline_ai = ( + 1 - np.sqrt(1 - turbine_data["power_thrust_table"]["thrust_coefficient"][truth_index]) + )/2 + assert np.allclose(baseline_ai, test_ai) + + # Check that yaw and tilt angle have no effect + test_ai = SimpleTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, # Unused + yaw_angles=20 * np.ones((1, n_turbines)), + tilt_angles=5 * np.ones((1, n_turbines)) + ) + assert np.allclose(baseline_ai, test_ai) + +def test_CosineLossTurbine(): + + n_turbines = 1 + wind_speed = 10.0 + turbine_data = SampleInputs().turbine + + yaw_angles_nom = 0 * np.ones((1, n_turbines)) + tilt_angles_nom = turbine_data["power_thrust_table"]["ref_tilt"] * np.ones((1, n_turbines)) + yaw_angles_test = 20 * np.ones((1, n_turbines)) + tilt_angles_test = 0 * np.ones((1, n_turbines)) + + + # Check that power works as expected + test_power = CosineLossTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], # Matches ref_air_density + yaw_angles=yaw_angles_nom, + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + truth_index = turbine_data["power_thrust_table"]["wind_speed"].index(wind_speed) + baseline_power = turbine_data["power_thrust_table"]["power"][truth_index] * 1000 + assert np.allclose(baseline_power, test_power) + + # Check that yaw and tilt angle have an effect + test_power = CosineLossTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], # Matches ref_air_density + yaw_angles=yaw_angles_test, + tilt_angles=tilt_angles_test, + tilt_interp=None + ) + assert test_power < baseline_power + + # Check that a lower air density decreases power appropriately + test_power = CosineLossTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, + yaw_angles=yaw_angles_nom, + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + assert test_power < baseline_power + + + # Check that thrust coefficient works as expected + test_Ct = CosineLossTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, # Unused + yaw_angles=yaw_angles_nom, + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + baseline_Ct = turbine_data["power_thrust_table"]["thrust_coefficient"][truth_index] + assert np.allclose(baseline_Ct, test_Ct) + + # Check that yaw and tilt angle have the expected effect + test_Ct = CosineLossTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, # Unused + yaw_angles=yaw_angles_test, + tilt_angles=tilt_angles_test, + tilt_interp=None + ) + absolute_tilt = tilt_angles_test - turbine_data["power_thrust_table"]["ref_tilt"] + assert test_Ct == baseline_Ct * cosd(yaw_angles_test) * cosd(absolute_tilt) + + + # Check that thrust coefficient works as expected + test_ai = CosineLossTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, # Unused + yaw_angles=yaw_angles_nom, + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + baseline_misalignment_loss = ( + cosd(yaw_angles_nom) + * cosd(tilt_angles_nom - turbine_data["power_thrust_table"]["ref_tilt"]) + ) + baseline_ai = ( + 1 - np.sqrt(1 - turbine_data["power_thrust_table"]["thrust_coefficient"][truth_index]) + ) / 2 / baseline_misalignment_loss + assert np.allclose(baseline_ai, test_ai) + + # Check that yaw and tilt angle have the expected effect + test_ai = CosineLossTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=1.1, # Unused + yaw_angles=yaw_angles_test, + tilt_angles=tilt_angles_test, + tilt_interp=None + ) + absolute_tilt = tilt_angles_test - turbine_data["power_thrust_table"]["ref_tilt"] + assert test_Ct == baseline_Ct * cosd(yaw_angles_test) * cosd(absolute_tilt) diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index 67d92c90a..b23e10050 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -20,23 +20,14 @@ import numpy as np import pytest import yaml -from scipy.interpolate import interp1d from floris.simulation import ( average_velocity, axial_induction, - Ct, power, + thrust_coefficient, Turbine, ) -from floris.simulation.turbine import ( - _rotor_velocity_tilt_correction, - _rotor_velocity_yaw_correction, - compute_tilt_angles_for_floating_turbines, - cubic_cubature, - simple_cubature, -) -from floris.tools import build_turbine_dict from tests.conftest import SampleInputs, WIND_SPEEDS @@ -53,12 +44,15 @@ def test_turbine_init(): assert turbine.turbine_type == turbine_data["turbine_type"] assert turbine.rotor_diameter == turbine_data["rotor_diameter"] assert turbine.hub_height == turbine_data["hub_height"] - assert turbine.pP == turbine_data["pP"] - assert turbine.pT == turbine_data["pT"] + assert turbine.power_thrust_table["pP"] == turbine_data["power_thrust_table"]["pP"] + assert turbine.power_thrust_table["pT"] == turbine_data["power_thrust_table"]["pT"] assert turbine.TSR == turbine_data["TSR"] assert turbine.generator_efficiency == turbine_data["generator_efficiency"] - assert turbine.ref_air_density == turbine_data["ref_air_density"] - assert turbine.ref_tilt == turbine_data["ref_tilt"] + assert ( + turbine.power_thrust_table["ref_air_density"] + == turbine_data["power_thrust_table"]["ref_air_density"] + ) + assert turbine.power_thrust_table["ref_tilt"] == turbine_data["power_thrust_table"]["ref_tilt"] assert np.array_equal( turbine.power_thrust_table["wind_speed"], turbine_data["power_thrust_table"]["wind_speed"] @@ -77,11 +71,11 @@ def test_turbine_init(): # TODO: test these explicitly. # Test create a simpler interpolator and test that you get the values you expect # fCt_interp: interp1d = field(init=False) - # power_interp: interp1d = field(init=False) + # power_function: interp1d = field(init=False) # tilt_interp: interp1d = field(init=False, default=None) - assert isinstance(turbine.fCt_interp, interp1d) - assert isinstance(turbine.power_interp, interp1d) + assert callable(turbine.thrust_coefficient_function) + assert callable(turbine.power_function) def test_rotor_radius(): @@ -191,15 +185,15 @@ def test_ct(): # Single turbine # yaw angle / fCt are (n_findex, n turbine) wind_speed = 10.0 - thrust = Ct( + thrust = thrust_coefficient( velocities=wind_speed * np.ones((1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1)), - tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt=np.ones((1, 1)) * 5.0, - fCt={turbine.turbine_type: turbine.fCt_interp}, - tilt_interp={turbine.turbine_type: None}, + yaw_angles=np.zeros((1, 1)), + tilt_angles=np.ones((1, 1)) * 5.0, + thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, + tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), - turbine_type_map=turbine_type_map[:,0] + turbine_type_map=turbine_type_map[:,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ) truth_index = turbine_data["power_thrust_table"]["wind_speed"].index(wind_speed) @@ -210,15 +204,15 @@ def test_ct(): # Multiple turbines with index filter # 4 turbines with 3 x 3 grid arrays - thrusts = Ct( + thrusts = thrust_coefficient( velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 12 x 4 x 3 x 3 - yaw_angle=np.zeros((1, N_TURBINES)), - tilt_angle=np.ones((1, N_TURBINES)) * 5.0, - ref_tilt=np.ones((1, N_TURBINES)) * 5.0, - fCt={turbine.turbine_type: turbine.fCt_interp}, - tilt_interp={turbine.turbine_type: None}, + yaw_angles=np.zeros((1, N_TURBINES)), + tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, + tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), turbine_type_map=turbine_type_map, + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ix_filter=INDEX_FILTER, ) assert len(thrusts[0]) == len(INDEX_FILTER) @@ -231,15 +225,17 @@ def test_ct(): ) # Single floating turbine; note that 'tilt_interp' is not set to None - thrust = Ct( + thrust = thrust_coefficient( velocities=wind_speed * np.ones((1, 1, 3, 3)), # One findex, one turbine - yaw_angle=np.zeros((1, 1)), - tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt=np.ones((1, 1)) * 5.0, - fCt={turbine.turbine_type: turbine_floating.fCt_interp}, - tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, + yaw_angles=np.zeros((1, 1)), + tilt_angles=np.ones((1, 1)) * 5.0, + thrust_coefficient_functions={ + turbine.turbine_type: turbine_floating.thrust_coefficient_function + }, + tilt_interps={turbine_floating.turbine_type: turbine_floating.tilt_interp}, correct_cp_ct_for_tilt=np.array([[True]]), - turbine_type_map=turbine_type_map[:,0] + turbine_type_map=turbine_type_map[:,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ) truth_index = turbine_floating_data["power_thrust_table"]["wind_speed"].index(wind_speed) @@ -260,9 +256,14 @@ def test_power(): turbine_type_map = np.array(n_turbines * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] test_power = power( - rotor_effective_velocities=wind_speed * np.ones((1, 1)), # 1 findex, 1 turbine - power_interp={turbine.turbine_type: turbine.power_interp}, - turbine_type_map=turbine_type_map[:,0] + velocities=wind_speed * np.ones((1, 1, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine.power_thrust_table["ref_air_density"], + power_functions={turbine.turbine_type: turbine.power_function}, + yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine + tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, 1)), + tilt_interps={turbine.turbine_type: turbine.tilt_interp}, + turbine_type_map=turbine_type_map[:,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ) # Recompute using the provided power @@ -274,9 +275,14 @@ def test_power(): # At rated, the power calculated should be 5MW since the test data is the NREL 5MW turbine wind_speed = 18.0 rated_power = power( - rotor_effective_velocities=wind_speed * np.ones((1, 1, 1)), - power_interp={turbine.turbine_type: turbine.power_interp}, - turbine_type_map=turbine_type_map[:,0] + velocities=wind_speed * np.ones((1, 1, 3, 3)), + air_density=turbine.power_thrust_table["ref_air_density"], + power_functions={turbine.turbine_type: turbine.power_function}, + yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine + tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, 1)), + tilt_interps={turbine.turbine_type: turbine.tilt_interp}, + turbine_type_map=turbine_type_map[:,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ) assert np.allclose(rated_power, 5e6) @@ -284,9 +290,14 @@ def test_power(): # At wind speed = 0.0, the power should be 0 based on the provided Cp curve wind_speed = 0.0 zero_power = power( - rotor_effective_velocities=wind_speed * np.ones((1, 1, 1)), - power_interp={turbine.turbine_type: turbine.power_interp}, - turbine_type_map=turbine_type_map[:,0] + velocities=wind_speed * np.ones((1, 1, 3, 3)), + air_density=turbine.power_thrust_table["ref_air_density"], + power_functions={turbine.turbine_type: turbine.power_function}, + yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine + tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, 1)), + tilt_interps={turbine.turbine_type: turbine.tilt_interp}, + turbine_type_map=turbine_type_map[:,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ) assert np.allclose(zero_power, 0.0) @@ -299,26 +310,36 @@ def test_power(): turbine_type_map = np.array(n_turbines * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] test_4_power = power( - rotor_effective_velocities=wind_speed * np.ones((1, 1, n_turbines)), - power_interp={turbine.turbine_type: turbine.power_interp}, - turbine_type_map=turbine_type_map + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), + air_density=turbine.power_thrust_table["ref_air_density"], + power_functions={turbine.turbine_type: turbine.power_function}, + yaw_angles=np.zeros((1, n_turbines)), + tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, n_turbines)), + tilt_interps={turbine.turbine_type: turbine.tilt_interp}, + turbine_type_map=turbine_type_map, + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ) - baseline_4_power = baseline_power * np.ones((1, 1, n_turbines)) + baseline_4_power = baseline_power * np.ones((1, n_turbines)) assert np.allclose(baseline_4_power, test_4_power) assert np.shape(baseline_4_power) == np.shape(test_4_power) - # Same as above but with the grid expanded in the velocities array + # Same as above but with the grid collapsed in the velocities array turbine_data = SampleInputs().turbine turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(n_turbines * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] test_grid_power = power( - rotor_effective_velocities=wind_speed * np.ones((1, 1, n_turbines, 3, 3)), - power_interp={turbine.turbine_type: turbine.power_interp}, - turbine_type_map=turbine_type_map[:,0] + velocities=wind_speed * np.ones((1, n_turbines, 1)), + air_density=turbine.power_thrust_table["ref_air_density"], + power_functions={turbine.turbine_type: turbine.power_function}, + yaw_angles=np.zeros((1, n_turbines)), + tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, n_turbines)), + tilt_interps={turbine.turbine_type: turbine.tilt_interp}, + turbine_type_map=turbine_type_map, + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ) - baseline_grid_power = baseline_power * np.ones((1, 1, n_turbines, 3, 3)) + baseline_grid_power = baseline_power * np.ones((1, n_turbines)) assert np.allclose(baseline_grid_power, test_grid_power) assert np.shape(baseline_grid_power) == np.shape(test_grid_power) @@ -340,26 +361,26 @@ def test_axial_induction(): wind_speed = 10.0 ai = axial_induction( velocities=wind_speed * np.ones((1, 1, 3, 3)), # 1 findex, 1 Turbine - yaw_angle=np.zeros((1, 1)), - tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt=np.ones((1, 1)) * 5.0, - fCt={turbine.turbine_type: turbine.fCt_interp}, - tilt_interp={turbine.turbine_type: None}, + yaw_angles=np.zeros((1, 1)), + tilt_angles=np.ones((1, 1)) * 5.0, + axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, + tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), turbine_type_map=turbine_type_map[0,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ) np.testing.assert_allclose(ai, baseline_ai) # Multiple turbines with ix filter ai = axial_induction( velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 12 x 4 x 3 x 3 - yaw_angle=np.zeros((1, N_TURBINES)), - tilt_angle=np.ones((1, N_TURBINES)) * 5.0, - ref_tilt=np.ones((1, N_TURBINES)) * 5.0, - fCt={turbine.turbine_type: turbine.fCt_interp}, - tilt_interp={turbine.turbine_type: None}, + yaw_angles=np.zeros((1, N_TURBINES)), + tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, + tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), turbine_type_map=turbine_type_map, + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ix_filter=INDEX_FILTER, ) @@ -371,163 +392,17 @@ def test_axial_induction(): # Single floating turbine; note that 'tilt_interp' is not set to None ai = axial_induction( velocities=wind_speed * np.ones((1, 1, 3, 3)), - yaw_angle=np.zeros((1, 1)), - tilt_angle=np.ones((1, 1)) * 5.0, - ref_tilt=np.ones((1, 1)) * 5.0, - fCt={turbine.turbine_type: turbine_floating.fCt_interp}, - tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, + yaw_angles=np.zeros((1, 1)), + tilt_angles=np.ones((1, 1)) * 5.0, + axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, + tilt_interps={turbine_floating.turbine_type: turbine_floating.tilt_interp}, correct_cp_ct_for_tilt=np.array([[True]]), turbine_type_map=turbine_type_map[0,0], + turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, ) np.testing.assert_allclose(ai, baseline_ai) -def test_rotor_velocity_yaw_correction(): - N_TURBINES = 4 - - wind_speed = average_velocity(10.0 * np.ones((1, 1, 3, 3))) - wind_speed_N_TURBINES = average_velocity(10.0 * np.ones((1, N_TURBINES, 3, 3))) - - # Test a single turbine for zero yaw - yaw_corrected_velocities = _rotor_velocity_yaw_correction( - pP=3.0, - yaw_angle=0.0, - rotor_effective_velocities=wind_speed, - ) - np.testing.assert_allclose(yaw_corrected_velocities, wind_speed) - - # Test a single turbine for non-zero yaw - yaw_corrected_velocities = _rotor_velocity_yaw_correction( - pP=3.0, - yaw_angle=60.0, - rotor_effective_velocities=wind_speed, - ) - np.testing.assert_allclose(yaw_corrected_velocities, 0.5 * wind_speed) - - # Test multiple turbines for zero yaw - yaw_corrected_velocities = _rotor_velocity_yaw_correction( - pP=3.0, - yaw_angle=np.zeros((1, N_TURBINES)), - rotor_effective_velocities=wind_speed_N_TURBINES, - ) - np.testing.assert_allclose(yaw_corrected_velocities, wind_speed_N_TURBINES) - - # Test multiple turbines for non-zero yaw - yaw_corrected_velocities = _rotor_velocity_yaw_correction( - pP=3.0, - yaw_angle=np.ones((1, N_TURBINES)) * 60.0, - rotor_effective_velocities=wind_speed_N_TURBINES, - ) - np.testing.assert_allclose(yaw_corrected_velocities, 0.5 * wind_speed_N_TURBINES) - - -def test_rotor_velocity_tilt_correction(): - N_TURBINES = 4 - - wind_speed = average_velocity(10.0 * np.ones((1, 1, 3, 3))) - wind_speed_N_TURBINES = average_velocity(10.0 * np.ones((1, N_TURBINES, 3, 3))) - - turbine_data = SampleInputs().turbine - turbine_floating_data = SampleInputs().turbine_floating - turbine = Turbine.from_dict(turbine_data) - turbine_floating = Turbine.from_dict(turbine_floating_data) - turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) - turbine_type_map = turbine_type_map[None, :] - - # Test single non-floating turbine - tilt_corrected_velocities = _rotor_velocity_tilt_correction( - turbine_type_map=np.array([turbine_type_map[:, 0]]), - tilt_angle=5.0*np.ones((1, 1)), - ref_tilt=np.array([turbine.ref_tilt]), - pT=np.array([turbine.pT]), - tilt_interp={turbine.turbine_type: turbine.tilt_interp}, - correct_cp_ct_for_tilt=np.array([[False]]), - rotor_effective_velocities=wind_speed, - ) - - np.testing.assert_allclose(tilt_corrected_velocities, wind_speed) - - # Test multiple non-floating turbines - tilt_corrected_velocities = _rotor_velocity_tilt_correction( - turbine_type_map=turbine_type_map, - tilt_angle=5.0*np.ones((1, N_TURBINES)), - ref_tilt=np.array([turbine.ref_tilt] * N_TURBINES), - pT=np.array([turbine.pT] * N_TURBINES), - tilt_interp={turbine.turbine_type: turbine.tilt_interp}, - correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), - rotor_effective_velocities=wind_speed_N_TURBINES, - ) - - np.testing.assert_allclose(tilt_corrected_velocities, wind_speed_N_TURBINES) - - # Test single floating turbine - tilt_corrected_velocities = _rotor_velocity_tilt_correction( - turbine_type_map=np.array([turbine_type_map[:, 0]]), - tilt_angle=5.0*np.ones((1, 1)), - ref_tilt=np.array([turbine_floating.ref_tilt]), - pT=np.array([turbine_floating.pT]), - tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, - correct_cp_ct_for_tilt=np.array([[True]]), - rotor_effective_velocities=wind_speed, - ) - - np.testing.assert_allclose(tilt_corrected_velocities, wind_speed) - - # Test multiple floating turbines - tilt_corrected_velocities = _rotor_velocity_tilt_correction( - turbine_type_map, - tilt_angle=5.0*np.ones((1, N_TURBINES)), - ref_tilt=np.array([turbine_floating.ref_tilt] * N_TURBINES), - pT=np.array([turbine_floating.pT] * N_TURBINES), - tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, - correct_cp_ct_for_tilt=np.array([[True] * N_TURBINES]), - rotor_effective_velocities=wind_speed_N_TURBINES, - ) - - np.testing.assert_allclose(tilt_corrected_velocities, wind_speed_N_TURBINES) - - -def test_compute_tilt_angles_for_floating_turbines(): - N_TURBINES = 4 - - wind_speed = 25.0 - rotor_effective_velocities = average_velocity(wind_speed * np.ones((1, 1, 3, 3))) - rotor_effective_velocities_N_TURBINES = average_velocity( - wind_speed * np.ones((1, N_TURBINES, 3, 3)) - ) - - turbine_floating_data = SampleInputs().turbine_floating - turbine_floating = Turbine.from_dict(turbine_floating_data) - turbine_type_map = np.array(N_TURBINES * [turbine_floating.turbine_type]) - turbine_type_map = turbine_type_map[None, :] - - # Single turbine - tilt = compute_tilt_angles_for_floating_turbines( - turbine_type_map=np.array([turbine_type_map[:, 0]]), - tilt_angle=5.0*np.ones((1, 1)), - tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, - rotor_effective_velocities=rotor_effective_velocities, - ) - - # calculate tilt again - truth_index = turbine_floating_data["floating_tilt_table"]["wind_speed"].index(wind_speed) - tilt_truth = turbine_floating_data["floating_tilt_table"]["tilt"][truth_index] - np.testing.assert_allclose(tilt, tilt_truth) - - # Multiple turbines - tilt_N_turbines = compute_tilt_angles_for_floating_turbines( - turbine_type_map=np.array(turbine_type_map), - tilt_angle=5.0*np.ones((1, N_TURBINES)), - tilt_interp={turbine_floating.turbine_type: turbine_floating.tilt_interp}, - rotor_effective_velocities=rotor_effective_velocities_N_TURBINES, - ) - - # calculate tilt again - truth_index = turbine_floating_data["floating_tilt_table"]["wind_speed"].index(wind_speed) - tilt_truth = turbine_floating_data["floating_tilt_table"]["tilt"][truth_index] - np.testing.assert_allclose(tilt_N_turbines, [[tilt_truth] * N_TURBINES]) - - def test_asdict(sample_inputs_fixture: SampleInputs): turbine = Turbine.from_dict(sample_inputs_fixture.turbine) @@ -537,44 +412,3 @@ def test_asdict(sample_inputs_fixture: SampleInputs): dict2 = new_turb.as_dict() assert dict1 == dict2 - - -def test_simple_cubature(): - - # Define a velocity array - velocities = np.ones((1, 1, 3, 3)) - - # Define sample cubature weights - cubature_weights = np.array([1., 1., 1.]) - - # Define the axis as last 2 dimensions - axis = (velocities.ndim-2, velocities.ndim-1) - - # Calculate expected output based on the given inputs - expected_output = 1.0 - - # Call the function with the given inputs - result = simple_cubature(velocities, cubature_weights, axis) - - # Check if the result matches the expected output - np.testing.assert_allclose(result, expected_output) - -def test_cubic_cubature(): - - # Define a velocity array - velocities = np.ones((1, 1, 3, 3)) - - # Define sample cubature weights - cubature_weights = np.array([1., 1., 1.]) - - # Define the axis as last 2 dimensions - axis = (velocities.ndim-2, velocities.ndim-1) - - # Calculate expected output based on the given inputs - expected_output = 1.0 - - # Call the function with the given inputs - result = cubic_cubature(velocities, cubature_weights, axis) - - # Check if the result matches the expected output - np.testing.assert_allclose(result, expected_output) diff --git a/tests/turbine_utilities_unit_test.py b/tests/turbine_utilities_unit_test.py index fb0220b1e..e48b31f45 100644 --- a/tests/turbine_utilities_unit_test.py +++ b/tests/turbine_utilities_unit_test.py @@ -18,7 +18,7 @@ import numpy as np import yaml -from floris.tools import build_turbine_dict, check_smooth_power_curve +from floris.turbine_library import build_cosine_loss_turbine_dict, check_smooth_power_curve def test_build_turbine_dict(): @@ -26,7 +26,6 @@ def test_build_turbine_dict(): v3_file_path = Path(__file__).resolve().parent / "data" / "nrel_5MW_v3legacy.yaml" v4_file_path = Path(__file__).resolve().parent / "data" / "nrel_5MW.yaml" test_turb_name = "test_turbine_export" - test_file_path = "." in_dict_v3 = yaml.safe_load( open(v3_file_path, "r") ) @@ -37,10 +36,9 @@ def test_build_turbine_dict(): "thrust_coefficient":in_dict_v3["power_thrust_table"]["thrust"] } - test_dict = build_turbine_dict( + test_dict = build_cosine_loss_turbine_dict( turbine_data_dict, test_turb_name, - file_name=os.path.join(test_file_path, test_turb_name+".yaml"), generator_efficiency=in_dict_v3["generator_efficiency"], hub_height=in_dict_v3["hub_height"], pP=in_dict_v3["pP"], @@ -61,13 +59,16 @@ def test_build_turbine_dict(): T = 0.5 * in_dict_v3["ref_density_cp_ct"] * (np.pi * in_dict_v3["rotor_diameter"]**2/4) \ * Ct * ws**2 - # Compare direct computation to those generated by build_turbine_dict + # Compare direct computation to those generated by build_cosine_loss_turbine_dict assert np.allclose(Ct, test_dict["power_thrust_table"]["thrust_coefficient"]) assert np.allclose(P/1000, test_dict["power_thrust_table"]["power"]) # Check that dict keys match the v4 structure in_dict_v4 = yaml.safe_load( open(v4_file_path, "r") ) assert set(in_dict_v4.keys()) >= set(test_dict.keys()) + assert ( + set(in_dict_v4["power_thrust_table"].keys()) >= set(test_dict["power_thrust_table"].keys()) + ) # Check thrust conversion from absolute value turbine_data_dict = { @@ -76,18 +77,17 @@ def test_build_turbine_dict(): "thrust": T/1000 } - test_dict_2 = build_turbine_dict( + test_dict_2 = build_cosine_loss_turbine_dict( turbine_data_dict, test_turb_name, - file_name=os.path.join(test_file_path, test_turb_name+".yaml"), generator_efficiency=in_dict_v4["generator_efficiency"], hub_height=in_dict_v4["hub_height"], - pP=in_dict_v4["pP"], - pT=in_dict_v4["pT"], + pP=in_dict_v4["power_thrust_table"]["pP"], + pT=in_dict_v4["power_thrust_table"]["pT"], rotor_diameter=in_dict_v4["rotor_diameter"], TSR=in_dict_v4["TSR"], - ref_air_density=in_dict_v4["ref_air_density"], - ref_tilt=in_dict_v4["ref_tilt"] + ref_air_density=in_dict_v4["power_thrust_table"]["ref_air_density"], + ref_tilt=in_dict_v4["power_thrust_table"]["ref_tilt"] ) assert np.allclose(Ct, test_dict_2["power_thrust_table"]["thrust_coefficient"]) From e08f266380ffb35bc165442ecfa53c3afa04b6b8 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Tue, 16 Jan 2024 18:30:05 -0500 Subject: [PATCH 28/78] Update reference wind turbines in the default turbine library (#771) * add power to 5MW model, matches https://github.com/NREL/floris/blob/main/floris/turbine_library/nrel_5MW.yaml with extension for before cut in and after cut out. Rename thrust field. * Removing Cp interp and replacing with direct power interp; updating thrust_coefficient key name. * Convert to W for power_interp; remove ref air density from power calc (tests need updating yet). * Minor updates for plot axes---contains temporary limitation to NREL 5MW turbine only, will remove prior to merge into v4 branch. * Updating 15mw based on https://github.com/IEAWindTask37/IEA-15-240-RWT/blob/master/Documentation/IEA-15-240-RWT_tabular.xlsx * 10mw updated. * Updating turbine curve conversion utility and example. * Utility for converting from v3 turbine models to v4. * Ruff and isort. * Changing names to check out v3 versions. * Renaming again... * Converting old models over. * So that tests run, using v4 5MW. * Updates to test_build_turbine_dict. * Updating conftest, test_power() to reflect absolute power in turbine yaml. * air density removed from power() calls in reg tests. * Reinstating accidentally overwritten file. * Convert from `ref_density_cp_ct` to `ref_air_density`. * `ref_tilt` replaces `ref_tilt_cp_ct` * Ruff, isort; remove AIR_DENSITY from turbine_unit_test.test_power(). * Clearing empty lines. * Check for smoothness; not yet passing `smooth enough` test. * Tests passing for smoothness. * Converter prints warning if nonsmooth; added handling for no R4. * Update build_turbine_dict test for clarity and simplicity. Ruff, isort. * Bugfixes in example after semantic changes to build_turbine_dict. * Moving turbine into its own simulation directory; updating names of interp functions. * SimpleTurbine power module. * Turbine submodule pieces. * Added thrust coefficient to SimpleTurbine. * Adding extra arguments to Ct(), power(), and axial_induction(). * Updating turbine_unit_test for new layout. * Add handling for different model types. * cosine loss model option, but currently matches simple. * Moving velocities to own file (may need renaming). * Temp; runs, still todo items for power(). * Now passing all the way through the power calculation. * Updating thrust model to match power. * Update imports in tests. * Passing arguments as kwargs. * cosine loss model; move various turbine parameters inside power_thrust_table; call power() and thrust_coefficient() with kwargs. * Update tests calling power; turbine model structure. * emg reg tests failing.' * Jensen reg passes. * TB reg tests pass. * CC, gauss reg tests good. * Fix bug in how tilt_angles are passed through. * Turbine building utilities updated. * removing unnecessary attributes from Farm class.' * Updated axial_induction() keywords for consistency. * Note to return to axial_induction() model. * rename rotor_effective_velocity.py * Move rotor velocity tests to individual module. * tests for air density correction. * add base class for turbine models; add tests. * init test passes. * test_power, test_Ct now passing. * axial_induction passes. * Remove ref_tilt argument from Ct() * isort, ruff. * Remove multidim utilities and their imports. * working through example 30 to go through full multidim example. * example 30 now runs. Can likely remove commented out code, but will leave for the time being and clean up later. * 31 now runs. * isort. * End of file. * Moving multidim functionality onto turbine.py * Remove turbine_multi_dim.py * Missed a reference... * ruff, isort. * removing unneeded TODOs. * moving turbine utilities. * Move multidim selector to utilities, model map to top of turbine.py * Rename power_interp power_function throughout. * comments for turbine.py * Adding descriptions for the turbine submodels. * fix end of file. * Disclaimers and copyrights. * removing sorting of uneeded properties from full_flow solvers. * Inherit from correct base class. * Turbine library updates for examples 17 and 18. * Example 24. * ex. 33. * ruff. * Return nrel_5MW.yaml to converted (rather than updated) version. * Bugfix: include generator efficiency in power calculation. * updated defs based on FAST data. * Include correct efficiency, coning-corrected rotor diameter. * Moving into subdirs. * remove test for x_20; add symlinks for nrel_5mw legacy and converted. * Update conftests; many reg tests failing. * Updating power outputs in turbine unit tests. * wake model reg tests updated. * fi, none reg tests updated. * Remove temporary filter in 18; update rotor diameter in 32. * Rename to converted_from_v3 for clarity. * Remove unused code * Remove extra lines at end of file * Move rotor velocity module up to floris.simulation * Consolidate turbine models into one module * Move turbine preprocessing to floris.turbine_library * Fix line length linting and isort errors * Update API for turbine previewer * Prevent test file from being exported * Bug fix in example * Remove duplicate code * Rename Farm setup function to reflect the data * Move axial_induction functionality to submodels; propagate changes. * add axial induction model tests. * Rename Ct functions throughout. * Update fi method call. * Line length. * Missed the constructors. * Rename to . * Remove unused library in dependencies This was previously used for the multidimension turbine, but it has since been consolidated and flatten_dict isn't used * Remove unused import * Fix incorrect type hints * redeleting files that got mixed up on v4 merge. * Incorporating electrical efficiency. * Store legacy and converted v3 NREL 5MWs for testing. * Remove archived legacy v3 models; converted models; and copies of updated models. * Update floating turbine examples to new definition data. * Update tests to avoid need for extra data files; currently fails due to data disconnect; update defaults in build_cosine_loss_turbine_dict to match updated NREL 5MW. * Remove unneeded turbine models for testing; update v3 test data to match v4 NREL 5MW model and pass tests. * Update turbine previewer with new turbine paths * provide url to public data. --------- Co-authored-by: Rafael M Mudafort --- docs/turbine_interaction.ipynb | 59 +-- examples/18_check_turbine.py | 12 - examples/32_plot_velocity_deficit_profiles.py | 2 +- .../turbine_files/nrel_5MW_fixed.yaml | 247 +++++----- .../turbine_files/nrel_5MW_floating.yaml | 247 +++++----- .../nrel_5MW_floating_defined_floating.yaml | 247 +++++----- .../nrel_5MW_floating_fixedtilt15.yaml | 247 +++++----- .../nrel_5MW_floating_fixedtilt5.yaml | 247 +++++----- floris/turbine_library/iea_10MW.yaml | 245 ++++------ floris/turbine_library/iea_10MW_v3legacy.yaml | 178 ------- .../turbine_library/iea_10MW_v4converted.yaml | 179 -------- .../turbine_library/iea_10MW_v4updated.yaml | 87 ---- floris/turbine_library/iea_15MW.yaml | 328 ++++++------- ...5MW_floating_multi_dim_cp_ct_v3legacy.yaml | 29 -- floris/turbine_library/iea_15MW_v3legacy.yaml | 172 ------- .../turbine_library/iea_15MW_v4converted.yaml | 173 ------- .../turbine_library/iea_15MW_v4updated.yaml | 178 ------- floris/turbine_library/nrel_5MW.yaml | 262 ++++++----- floris/turbine_library/nrel_5MW_v3legacy.yaml | 212 --------- .../turbine_library/nrel_5MW_v4converted.yaml | 167 ------- .../turbine_library/nrel_5MW_v4updated.yaml | 191 -------- floris/turbine_library/turbine_utilities.py | 10 +- floris/turbine_library/x_20MW.yaml | 178 ------- tests/conftest.py | 433 +++++++++++++----- tests/data/nrel_5MW_v3legacy.yaml | 166 ------- tests/farm_unit_test.py | 2 +- .../cumulative_curl_regression_test.py | 100 ++-- .../empirical_gauss_regression_test.py | 72 +-- .../floris_interface_regression_test.py | 25 +- tests/reg_tests/gauss_regression_test.py | 125 ++--- .../jensen_jimenez_regression_test.py | 50 +- tests/reg_tests/none_regression_test.py | 25 +- tests/reg_tests/turbopark_regression_test.py | 50 +- tests/turbine_multi_dim_unit_test.py | 2 +- tests/turbine_unit_test.py | 2 +- tests/turbine_utilities_unit_test.py | 77 ++-- 36 files changed, 1650 insertions(+), 3376 deletions(-) delete mode 100644 floris/turbine_library/iea_10MW_v3legacy.yaml delete mode 100644 floris/turbine_library/iea_10MW_v4converted.yaml delete mode 100644 floris/turbine_library/iea_10MW_v4updated.yaml delete mode 100644 floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml delete mode 100644 floris/turbine_library/iea_15MW_v3legacy.yaml delete mode 100644 floris/turbine_library/iea_15MW_v4converted.yaml delete mode 100644 floris/turbine_library/iea_15MW_v4updated.yaml delete mode 100644 floris/turbine_library/nrel_5MW_v3legacy.yaml delete mode 100644 floris/turbine_library/nrel_5MW_v4converted.yaml delete mode 100644 floris/turbine_library/nrel_5MW_v4updated.yaml delete mode 100644 floris/turbine_library/x_20MW.yaml delete mode 100644 tests/data/nrel_5MW_v3legacy.yaml diff --git a/docs/turbine_interaction.ipynb b/docs/turbine_interaction.ipynb index bf02cb008..a9123df1d 100644 --- a/docs/turbine_interaction.ipynb +++ b/docs/turbine_interaction.ipynb @@ -65,7 +65,7 @@ }, "outputs": [], "source": [ - "ti = TurbineInterface.from_library(\"internal\", \"iea_15MW_v4updated.yaml\")" + "ti = TurbineInterface.from_library(\"internal\", \"iea_15MW.yaml\")" ] }, { @@ -126,7 +126,7 @@ } ], "source": [ - "ti.plot_Ct_curve()" + "ti.plot_thrust_coefficient_curve()" ] }, { @@ -211,7 +211,7 @@ } ], "source": [ - "ti_md.plot_Ct_curve(\n", + "ti_md.plot_thrust_coefficient_curve(\n", " legend_kwargs={\"fontsize\": 6}, # The labels are quite long, so let's shrink the font\n", ")" ] @@ -234,7 +234,7 @@ "\n", "### Loading the libraries\n", "\n", - "Loading a turbine library is either a 2 or more step process depending on how many turbine libraries\n", + "Loading a turbine library is a 2 or more step process depending on how many turbine libraries\n", "are going to be compared." ] }, @@ -250,11 +250,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "iea_15MW_floating\n", - "iea_15MW_multi_dim_cp_ct\n", - "iea_15MW\n", "nrel_5MW\n", - "iea_10MW\n" + "iea_10MW\n", + "iea_15MW_multi_dim_cp_ct\n", + "iea_15MW_floating\n" ] } ], @@ -262,14 +261,8 @@ "# Initialize the turbine library (no definitions required!)\n", "tl = TurbineLibrary()\n", "\n", - "# Load the internal library, except the 20 MW turbine\n", - "tl.load_internal_library(exclude=[\n", - " \"iea_10MW_v3legacy.yaml\",\n", - " \"iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml\",\n", - " \"iea_15MW_v3legacy.yaml\",\n", - " \"nrel_5MW_v3legacy.yaml\",\n", - " \"x_20MW.yaml\",\n", - "])\n", + "# Load the internal library, except the IEA 15MW turbine\n", + "tl.load_internal_library(exclude=[\"iea_15MW.yaml\"])\n", "for turbine in tl.turbine_map:\n", " print(turbine)" ] @@ -296,13 +289,23 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nrel_5MW\n", + "iea_10MW\n", + "iea_15MW_multi_dim_cp_ct\n", + "iea_15MW_floating\n", + "iea_15MW\n" + ] + } + ], "source": [ - "# tl.load_internal_library(which=[\"x_20MW.yaml\"])\n", - "# for turbine in tl.turbine_map:\n", - "# print(turbine)\n", - "\n", - "# TODO Removed until 20MW turbine is updated to v4" + "tl.load_internal_library(which=[\"iea_15MW.yaml\"])\n", + "for turbine in tl.turbine_map:\n", + " print(turbine)" ] }, { @@ -311,7 +314,7 @@ "id": "bac88742-33af-44f3-a35b-e178e60a49d3", "metadata": {}, "source": [ - "Notice that the \"x_20MW\" turbine is now loaded.\n", + "Notice that the \"iea_15MW\" turbine is now loaded.\n", "\n", "### Comparing turbines\n", "\n", @@ -333,7 +336,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXxU1f3/8dfJvkCEsAhhMaypC9BA2UECVlnc0FqVgrJEQf3qtwgouLSKAtYiCGhRWiWh2m8pReSrP6xakQFEUKRfRMQlhiWAIBDWQBaSOb8/ZjJksi+TTBLez8djHjNz7rnnfG7uTWDmc885xlqLiIiIiIiIiIiIiIiIPwX4OwARERERERERERERERElLERERERERERERERExO+UsBAREREREREREREREb9TwkJERERERERERERERPxOCQsREREREREREREREfE7JSxERERERERERERERMTvlLAQERERERERERERERG/U8JCRERERERERERERET8TgkLERERERERERERERHxOyUsRERERERERERERETE75SwEBERERERERERERERv1PCQkRERERERERERERE/E4JCxERERERERERERER8TslLERERERERERERERExO+UsBAREREREREREREREb9TwkJERERERERERERERPxOCQsREREREREREREREfE7JSxERERERERERERERMTvlLAQERERERERERERERG/U8JCRERERERERERERET8rl4mLIwxrYwxk40xHxpj0owxOcaYw8aYt4wxvUvYJ8oYM98Ys88Yk22M2WuMmWuMaVCJ/ocaY9YbY84YY04bY9YZY66p+pGJiIiIiIi/VPRzhjHmaWOMLeURW0I/+jwhIiIiIhelIH8HUE0eAqYDqcCHwFGgEzASGGmM+Y219h/5lY0xkcB64Ofu+n8H4oFpwCBjzNXW2qzydGyMGQO84e4z2V18B/BvY8zt1tqVVT04ERERERHxiwp9zihgGbC3mPKThQv0eUJERERELmbGWuvvGHzOGHMrkG6tXV+ofCCwFsgAWlprs93lM4HfA89ba2cUqP8HXB9IHrfWPleOfhsDu4FcIN5ae8Bd3hr4P3e19tbaM1U8RBERERERqWGV+JzxNPAUMNha6yhH+/o8ISIiIiIXtXo5JZS1dlXhDxHu8o3AOqAx0AXAGGOAe3B9uHi20C7PusvvKWfXvwYaAS/lf7hw93sAeBloCtxSkWMREREREZHaoSKfMypJnydERERE5KJWX6eEKs1593Ou+7kTEAN8YK09W7CitfasMWYTMNQY08Zau7+MthPczx8Ws+0D4GlgEPDX8gbrvpuqNCHAz4AjuIaN55W3bRERERG5qAUCzdyvv8ofFSCVVvhzRkFXu9e4cAIpwEfW2oxi6iW4n/V5QkRERERqu2r5PHFRJSyMMW2BXwKHgK/cxZ3czykl7JYCDHXXKythUVpbKYXqlFdZfYqIiIiIVFVP4At/B1FXlfA5o6CZhd6fNMb81lpbOPGgzxMiIiIiUhf57PNEvZwSqjjGmGBci9eFAtOttfl3Dl3ifj5Vwq6nC9UrTWltVaQdERERERGpA0r5nAHwJTABaA+EA+1wLdxtgWRjzE2FmtPnCRERERG5qF0UIyyMMQFAMnA18Bdr7Rv+jahC2pSxvRWwBeDf//43l112WfVHJFWWnZ3NZ599BkDv3r0JDQ31c0RSFp2zuknnrW7Seat7dM7qpn379nHttdfmvz3qz1jqqrI+Z1hr3y60y17gZWPMN8C/gVnAO9UcZrk/T2zYsIEWLVpUczgiIiIiUh8cPnyYq6++Ov+tzz5P1PuEhftDxFLgN8CbwH2FquTfvVTSnUpRheqVpmBb6VVox6PgYnvFca0Z7nLZZZfRqVNFR4iLP2RmZpKamgpAhw4dCA8P93NEUhads7pJ561u0nmre3TO6gWtW1BB5ficUSJr7VpjTCrQxRgTZa3NHz3h188T7dq1o3Xrspa8EBERERGh8Oc+n32eqNdTQrk/RCQBY4G/A+Ostc5C1cqaC7asNS7K21ZF2hERERERkVqqnJ8zynLM/RxRoEyfJ0RERETkolZvExYFPkTcDfwDuKvQfLL5UoAfgf7GmMhCbUQC/YE91tryLFa33v18XTHbhhaqIyIiIiIidUwFPmeU1kYkcCVwlguJC9DnCRERERG5yNXLhEWB4dl3A/8ExpT0IcJaa4HXgAbA7wpt/p27/C+F2o8wxvzMGNO2UP0VuIZoP2SMaV2gfmvgQVwfRgrPYysiIiIiInVART5nGGMaGmM6F1MejuvzRUNghbU2t8BmfZ4QERERkYtafV3D4ve4hmdnAN8DTxacm9VttbV2u/v1H4GbgenGmHjgP0B3XHc2bQUWFNq3F7AO191NCfmF1toTxpgHgTeA/xhj/uHedAfQBLjDWnum6odXMdZajh07xtmzZzl//nxNdy/FcDqdNGnSBIC0tDQCAupl7rBe8fU5Cw4OJjIykqZNm1LM3ycRERGpnSryOaMJ8K0xZivwDXAYuBT4JdAa+Ap4pOCOtfXzhIiIiIhITamvCYtY93MD4IkS6uwFtgNYa88aYwYBTwO/AgYDh4B5wExrbWZ5O7bWvmmMOQY8DowHLLANmGWt/aiCx1Fl1lp++uknTpw4UdNdSymstZ6FafLy8nA6KzrlsdQ0X5+z3NxcMjMzycvL49JLL1XSQkREpG6IdT+X53PGcWAxrpudRgCNgUxcyYtFwMvFfc6obZ8nRERERERqUr1MWFhrxwHjKrjPKeBh96Osug6gxG8XrbXvA+9XpP/qcuzYMa9kRWBgoL4YrSXyz0NQUL38NayXfHXOrLXk5blmjzhx4gSBgYE0a9asyvGJiIhI9arI5wxr7Wlc0zhVpp9a83lCRERERKQm6ZvSeu7s2bOe1y1btqRRo0b+C0Y8nE4np0+fBiAqKkpTQtUBvj5nJ0+e5NChQ4Dr91QJCxERERERERERudjpW9J6Ln/NisDAQCUrRGqRRo0aERgYCLimhxIREREREREREbnYKWFxkdA0UCK1T/7vpbXWz5GIiIiIiIiIiIj4n6aEEhERERERERERn4idscbfIUg57P3D9TXSj66H2q+mrgXQ9VAX1OT1UBKNsJBaKSEhgcmTJ/s7jDpp9erVdOzYkcDAQCZPnkxycnKNTQcWGxvLggULaqSv8khPT6d58+bs3bu3xvvu06cPb731Vo33KyIiIiIiIiIiUlcpYSG10qpVq3j22WdrrL8NGzZw4403EhMTgzGG1atXF6kzbtw4jDFej2HDhnnVyS/fsmWLV3l2djZNmjTBGIPD4QDg2muv5eGHH/aq9+qrr2KMITk5uUjfAwcOLNexTJo0idtuu439+/dX28+wpCTI1q1bmThxYrX0WRmzZ8/m5ptvJjY2FoAvv/ySUaNG0aZNG8LDw7n88stZuHBhhdstz/Xy5JNPMmPGDJxOZxWPQkRERERERERE5OKghIXUStHR0TRs2LDG+jt79izdunXjT3/6U6n1hg0bxqFDhzyPv//970XqtGnThqSkJK+yt99+mwYNGniVDRgwgE2bNnmVrVu3jjZt2niSGvkcDgdDhgwp8zgyMjI4cuQIQ4cOJSYmpkZ/hgDNmjUjIiKiRvssyblz53j99ddJTEz0lG3bto3mzZvz5ptv8vXXX/PEE0/w2GOP8fLLL1eo7fJcL8OHD+fMmTP861//qvQxiIiIiIiIiIiIXEyUsJBaqfCUUNnZ2UybNo1WrVoRGRlJ7969vb7UT09PZ9SoUbRq1YqIiAi6dOlSbDKhJMOHD2fWrFnccsstpdYLDQ2lRYsWnkfjxo2L1Bk7dizLly8nMzPTU7Z06VLGjh3rVW/gwIGkpKRw+PBhT9n69euZMWOG17Ht2bOHffv2MXjw4FJjczgcngTFkCFDvEZzFPbKK6/QoUMHQkJCiIuL44033vDaPn/+fLp06UJkZCRt2rThgQceICMjw9PP+PHjOXXqlGdEydNPPw0UnRLKGMNrr73GLbfcQkREBJ06deKdd97x6uudd96hU6dOhIWFMXjwYJYtW4YxhpMnT5Z6vGV57733CA0NpU+fPp6yCRMmsHDhQgYNGkT79u0ZM2YM48ePZ9WqVRVquzzXS2BgICNGjGD58uWVPgYREREREREREZGLiRIWUic8+OCDbN68meXLl7Njxw5+/etfM2zYMFJSUgDIysqiR48erFmzhp07dzJx4kTuuusuPv/8c5/G4XA4aN68OXFxcdx///2kp6cXqdOjRw9iY2M96xekpaWxYcMG7rrrLq96vXv3Jjg4mHXr1gGwa9cuMjMzSUxMJD09nT179gCuURdhYWH07du31Nj69evHd999B8Bbb73FoUOH6NevX5F6b7/9Nr/97W+ZOnUqO3fuZNKkSYwfP94TB0BAQACLFi3i66+/ZtmyZXz88cc8+uijnn4WLFhAVFSUZ6TJtGnTSoxr5syZ3H777ezYsYMRI0YwevRojh8/DriSMbfddhsjR47kyy+/ZNKkSTzxxBOlHmd5bdy4kR49epRZ79SpU0RHR/ukz8J69erFxo0bq6VtERERERERERGR+ibI3wGI/7y2cTevbdxTZr2rWkXx2tieXmX3LNvKzoOny9z3noHtuGdg+0rHCK4v/JOSkkhLSyMmJgaAadOm8f7775OUlMScOXNo1aqV15fmDz30EB988AErVqygV69eVeo/37Bhw7j11ltp164dqampPP744wwfPpzNmzcTGBjoVXfChAksXbqUMWPGkJyczIgRI2jWrJlXncjISLp378769esZPXo0DoeDAQMGEBoaSr9+/XA4HLRr1w6Hw0Hfvn0JDQ0tNb6QkBCaN28OuKbUatGiRbH1XnjhBcaNG8cDDzwAwJQpU9iyZQsvvPCCZxRHwdEtsbGxzJo1i/vuu4/FixcTEhLCJZdcgjGmxD4KGjduHKNGjQJgzpw5LFq0iM8//5xhw4axZMkS4uLimDt3LgBxcXHs3LmT2bNnl9luWfbt2+e5Xkry6aef8o9//IM1a9ZUub/ixMTEsH//fpxOJwEByg+LiIiIiIiIiIiURgmLi9iZrFwOn84qs17LRmFFytLP5pRr3zNZuZWKraCvvvqKvLw8Onfu7FWev5A1QF5eHnPmzGHFihUcPHiQnJwcsrOzfbqewp133ul53aVLF7p27UqHDh1wOBxcc801XnXHjBnDjBkz2L17N8nJySxatKjYNgcMGMC7774LuEZvJCQkADBo0CDP1EsOh4N7773XZ8fxzTffFFkYu3///l6LT3/00Uc899xzfPvtt5w+fZrc3FyysrI4d+5chX+mXbt29byOjIwkKiqKI0eOAPDdd9/Rs6d3MqysBNN9993Hm2++6XmfP1VVYZmZmYSFFb128+3cuZObb76Zp556iuuuu67M46iM8PBwnE4n2dnZhIeHV0sfIiIiIiIiIiIi9YUSFhexhmFBtIgq+QvdfE0iQ4otK8++DcOqfollZGQQGBjItm3bioxkyF/Ieu7cuSxcuJAFCxZ41l6YPHkyOTk5Ve6/JO3bt6dp06b88MMPRRIWTZo04YYbbiAxMZGsrCzPAsyFDRw4kHnz5nHw4EEcDodnlMigQYNYsmQJqamp7N+/v1wLbvvK3r17ueGGG7j//vuZPXs20dHRfPLJJyQmJpKTk1PhhEVwcLDXe2MMTqez0vE988wzpU5Bla9p06acOHGi2G27du3immuuYeLEiTz55JOVjqUsx48fJzIyUskKERERERERERGRclDC4iJ2z8D2lZ6uqfAUUdUpPj6evLw8jhw5wsCBA4uts2nTJm6++WbGjBkDgNPp5Pvvv+eKK66otrgOHDhAeno6LVu2LHb7hAkTGDFiBNOnTy+SaMnXq1cvQkJCWLx4sWcdDoCePXty9OhRli5dSmRkpM+mtQK4/PLL2bRpk9ci4Js2bfL8rLZt24bT6WTevHmeaYxWrFjh1UZISAh5eXlVjiUuLo733nvPq2zr1q2l7tO8eXPP1FeliY+P9xqJke/rr79myJAhjB071idTT5Vm586dxMfHV2sfIiIiIiIiIiIi9YUSFlLrde7cmdGjR3P33Xczb9484uPjOXr0KGvXrqVr165cf/31dOrUiZUrV/Lpp5/SuHFj5s+fz08//VTuhEVGRgY//PCD5/2ePXvYvn070dHRtG3bloyMDGbOnMmvfvUrWrRoQWpqKo8++igdO3Zk6NChxbY5bNgwjh49SlRUVIn9hoeH06dPH1566SX69+/vSWyEhIR4lRcepVAVjzzyCLfffjvx8fH88pe/5N1332XVqlV89NFHAHTs2JHz58/z0ksvceONN7Jp0yZeffVVrzZiY2PJyMhg7dq1dOvWjYiIiEpNvzVp0iTmz5/P9OnTSUxMZPv27SQnJwOukRhVMXToUB577DFOnDhB48aNAVcCYciQIQwdOpQpU6Zw+PBhAAIDA4usMVKajIwMdu/e7Xlf+HrJt3HjxmqbbkpERERERERERKS+0SqwUickJSVx9913M3XqVOLi4hg5ciRbt271fDn85JNP0r17d4YOHUpCQgItWrRg5MiR5W7/iy++ID4+3nM3/JQpU4iPj+f3v/894PpCe8eOHdx000107tyZxMREevTowcaNG0tcDNsYQ9OmTQkJKTqlVkEJCQmcOXPGs35FvkGDBnHmzBnPQti+MnLkSBYuXMgLL7zAlVdeyZIlS0hKSvL0361bN+bPn8/zzz/PVVddxd/+9jeee+45rzb69evHfffdxx133EGzZs344x//WKlY2rVrx8qVK1m1ahVdu3bllVde4YknngAoc5HxsnTp0oXu3bt7jQ5ZuXIlR48e5c0336Rly5aeR8F1NPbu3YsxBofDUWLbZV0vAAcPHuTTTz9l/PjxVToOERERERERERGRi4Wx1vo7BqkCY0xrYD/A999/T6dOnby2p6SkkJubS1BQUJFt4j9Op5PTp08DEBUV5Zl6SWD27Nm8+uqr7N+/v8ptrVmzhkceeYSdO3eW+2e8bt06br31Vnbv3u0ZmQEVP2fTp0/nxIkT/PnPfy6xjn4/q19mZiYffvghANddd53WE6kjdN7qHp2zuiklJYXOnTvnv21jrT3gz3jEPwp+nti/fz+tW7f2c0QiUtfFzljj7xCkHPb+4foa6UfXQ+1XU9cC6HqoCypyPRw4cIA2bdrkv/XZ5wlNCSUifrV48WJ69uxJkyZN2LRpE3PnzuXBBx/0SdvXX389KSkpHDx4sOAf0FK99957PP74417Jispo3rw5U6ZMqVIbIiIiIiIiIiIiFxMlLKTeS0tLK3Uti127dnmtO1CbDR8+nI0bNxa77fHHH+fxxx+v4YiqLiUlhVmzZnH8+HHatm3L1KlTeeyxx3zW/uTJkytUf+7cuT7pd+rUqT5pR0RERERERERE5GKhhIXUezExMWzfvr3U7XXFa6+9RmZmZrHboqOjazga33jxxRd58cUX/R2GiIiIiIiIiIiI+JkSFlLvBQUF0bFjR3+H4ROtWrXydwgiIiIiIiIiIiIi1UIr/YqIiIiIiIiIiIiIiN8pYSEiIiIiIiIiIiIiIn6nhIWIiIiIiIiIiIiIiPidEhYiIiIiIiIiIiIiIuJ3SliIiIiIiIiIiIiIiIjfKWEhtVJCQgKTJ0/2dxh10urVq+nYsSOBgYFMnjyZ5ORkGjVqVCN9x8bGsmDBghrpqzzS09Np3rw5e/furdF+c3JyiI2N5YsvvqjRfkVEREREREREROoyJSykVlq1ahXPPvtsjfW3YcMGbrzxRmJiYjDGsHr16iJ1xo0bhzHG6zFs2DCvOvnlW7Zs8SrPzs6mSZMmGGNwOBwAXHvttTz88MNe9V599VWMMSQnJxfpe+DAgeU6lkmTJnHbbbexf//+avsZlpQE2bp1KxMnTqyWPitj9uzZ3HzzzcTGxgLw5ZdfMmrUKNq0aUN4eDiXX345CxcurHC7M2fOLHIt/OxnP/NsDwkJYdq0aUyfPt1XhyIiIiIiIiIiIlLvKWEhtVJ0dDQNGzassf7Onj1Lt27d+NOf/lRqvWHDhnHo0CHP4+9//3uROm3atCEpKcmr7O2336ZBgwZeZQMGDGDTpk1eZevWraNNmzaepEY+h8PBkCFDyjyOjIwMjhw5wtChQ4mJianRnyFAs2bNiIiIqNE+S3Lu3Dlef/11EhMTPWXbtm2jefPmvPnmm3z99dc88cQTPPbYY7z88ssVbv/KK6/0uhY++eQTr+2jR4/mk08+4euvv67ysYiIiIiIiIiIiFwMlLCQWqnwlFDZ2dlMmzaNVq1aERkZSe/evb2+1E9PT2fUqFG0atWKiIgIunTpUmwyoSTDhw9n1qxZ3HLLLaXWCw0NpUWLFp5H48aNi9QZO3Ysy5cvJzMz01O2dOlSxo4d61Vv4MCBpKSkcPjwYU/Z+vXrmTFjhtex7dmzh3379jF48OBSY3M4HJ4ExZAhQ7xGcxT2yiuv0KFDB0JCQoiLi+ONN97w2j5//ny6dOlCZGQkbdq04YEHHiAjI8PTz/jx4zl16pRndMHTTz8NFJ0SyhjDa6+9xi233EJERASdOnXinXfe8errnXfeoVOnToSFhTF48GCWLVuGMYaTJ0+Werxlee+99wgNDaVPnz6esgkTJrBw4UIGDRpE+/btGTNmDOPHj2fVqlUVbj8oKMjrWmjatKnX9saNG9O/f3+WL19epeMQERERERERERG5WChhIXXCgw8+yObNm1m+fDk7duzg17/+NcOGDSMlJQWArKwsevTowZo1a9i5cycTJ07krrvu4vPPP/dpHA6Hg+bNmxMXF8f9999Penp6kTo9evQgNjaWt956C4C0tDQ2bNjAXXfd5VWvd+/eBAcHs27dOgB27dpFZmYmiYmJpKens2fPHsA16iIsLIy+ffuWGlu/fv347rvvAHjrrbc4dOgQ/fr1K1Lv7bff5re//S1Tp05l586dTJo0ifHjx3viAAgICGDRokV8/fXXLFu2jI8//phHH33U08+CBQuIioryjC6YNm1aiXHNnDmT22+/nR07djBixAhGjx7N8ePHAVcy5rbbbmPkyJF8+eWXTJo0iSeeeKLU4yyvjRs30qNHjzLrnTp1iujo6Aq3n5KSQkxMDO3bt2f06NGkpaUVqdOrVy82btxY4bZFREREREREREQuRkH+DkD86NOXYXPpUyAB0LIb/KbQXeL/cycc+rLsffv+F/R7sHLxuaWlpZGUlERaWhoxMTEATJs2jffff5+kpCTmzJlDq1atvL40f+ihh/jggw9YsWIFvXr1qlL/+YYNG8att95Ku3btSE1N5fHHH2f48OFs3ryZwMBAr7oTJkxg6dKljBkzhuTkZEaMGEGzZs286kRGRtK9e3fWr1/P6NGjcTgcDBgwgNDQUPr164fD4aBdu3Y4HA769u1LaGhoqfGFhITQvHlzwDWlVosWLYqt98ILLzBu3DgeeOABAKZMmcKWLVt44YUXPKM4Co5uiY2NZdasWdx3330sXryYkJAQLrnkEowxJfZR0Lhx4xg1ahQAc+bMYdGiRXz++ecMGzaMJUuWEBcXx9y5cwGIi4tj586dzJ49u8x2y7Jv3z7P9VKSTz/9lH/84x+sWbOmQm336tWL5ORk4uLiOHToEDNnzmTgwIHs3LnTaxqumJgY9u3bV6n4RURERERERERELjZKWFzMss/AmR/LrndJq6Jl546Vb9/sMxWPq5CvvvqKvLw8Onfu7N20eyFrgLy8PObMmcOKFSs4ePAgOTk5ZGdn+3Q9hTvvvNPzukuXLnTt2pUOHTrgcDi45pprvOqOGTOGGTNmsHv3bpKTk1m0aFGxbQ4YMIB3330XcI3eSEhIAGDQoEGeqZccDgf33nuvz47jm2++KbIwdv/+/b0Wn/7oo4947rnn+Pbbbzl9+jS5ublkZWVx7ty5Cv9Mu3bt6nkdGRlJVFQUR44cAeC7776jZ8+eXvXLSjDdd999vPnmm573+VNVFZaZmUlYWFiJ7ezcuZObb76Zp556iuuuu67M4yho+PDhBAS4Bqh17dqV3r17c9lll7FixQqvNTPCw8M5d+5chdoWERERERERERG5WNXLhIUxZgwwEOgBdAFCgPHW2uRi6tpyNNnWWru/HP3uBS4rYfN6a21COfqqOaENoWHpd6ADENG0+LLy7Bta9UWfMzIyCAwMZNu2bUVGMuQvZD137lwWLlzIggULPGsvTJ48mZycnCr3X5L27dvTtGlTfvjhhyIJiyZNmnDDDTeQmJhIVlYWw4cP58yZosmbgQMHMm/ePA4ePIjD4fCMEhk0aBBLliwhNTWV/fv3l2vBbV/Zu3cvN9xwA/fffz+zZ88mOjqaTz75hMTERHJyciqcsAgODvZ6b4zB6XRWOr5nnnmm1Cmo8jVt2pQTJ04Uu23Xrl1cc801TJw4kSeffLLSseRr1KgRnTt35ocffvAqP378eJGRNSIiIiIiIiIiIlK8epmwAGbhShwcAw5RchIBYGYJ5R2B0cCu8iQrCjgFLCimfG8F2qgZ/R6s/HRNhaeIqkbx8fHk5eVx5MgRBg4cWGydTZs2cfPNNzNmzBgAnE4n33//PVdccUW1xXXgwAHS09Np2bJlsdsnTJjAiBEjmD59epFES75evXoREhLC4sWLPetwAPTs2ZOjR4+ydOlSIiMjfTatFcDll1/Opk2bvBYB37Rpk+dntW3bNpxOJ/PmzfOMIlixYoVXGyEhIeTl5VU5lri4ON577z2vsq1bt5a6T/PmzT1TX5UmPj7eayRGvq+//pohQ4YwduxYn0w9Ba6kWmpqapF1Snbu3El8fLxP+hAREREREREREanv6mvC4h4gxVq7zxgzA3iupIrW2qeLKzfGvOR++XoF+z5ZUptSOZ07d2b06NHcfffdzJs3j/j4eI4ePcratWvp2rUr119/PZ06dWLlypV8+umnNG7cmPnz5/PTTz+VO2GRkZHhdXf8nj172L59O9HR0bRt25aMjAxmzpzJr371K1q0aEFqaiqPPvooHTt2ZOjQocW2OWzYMI4ePUpUVFSJ/YaHh9OnTx9eeukl+vfv70lshISEeJUXHqVQFY888gi333478fHx/PKXv+Tdd99l1apVfPTRRwB07NiR8+fP89JLL3HjjTeyadMmXn31Va82YmNjycjIYO3atXTr1o2IiIhKTb81adIk5s+fz/Tp00lMTGT79u0kJycDrpEYVTF06FAee+wxTpw4QePGjQFXAmHIkCEMHTqUKVOmcPjwYQACAwMrNBLikUce4aabbuKyyy7jxx9/5KmnniIwMNCzVke+jRs38uyzz1bpOERERERERERERC4WAf4OoDpYaz+y1lZ6pVtjTBiu0RU5wBs+C0wqLSkpibvvvpupU6cSFxfHyJEj2bp1K23btgXgySefpHv37gwdOpSEhARatGjByJEjy93+F198QXx8vOdu+ClTphAfH8/vf/97wPWF9o4dO7jpppvo3LkziYmJ9OjRg40bN5a4GLYxhqZNmxISElJq3wkJCZw5c8azfkW+QYMGcebMGc9C2L4ycuRIFi5cyAsvvMCVV17JkiVLSEpK8vTfrVs35s+fz/PPP89VV13F3/72N557zjvn169fP+677z7uuOMOmjVrxh//+MdKxdKuXTtWrlzJqlWr6Nq1K6+88gpPPPEEQJmLjJelS5cudO/e3Wt0yMqVKzl69ChvvvkmLVu29DwKrqOxd+9ejDE4HI4S2z5w4ACjRo0iLi6O22+/nSZNmrBlyxavpMfmzZs5deoUt912W5WOQ0RERERERERE5GJhrC3PEg51V4ERFsWuYVHCPr8B/gastNb+ugJ97QVCgceAGOA0sNVa+1kFwy7YZusyqrQAtoJrceoOHTp4bUxLSyMvL4/g4OAi28R/nE6nZ7HoBg0aeKZeEpgzZw5Llixh375K5xw91qxZw/Tp09mxY0e5f8br1q3jtttu44cffvCMzICKn7M777yTbt268dhjj5VYJzU1lfPnzxMYGOhJvolvZWVlsWHDBgCuvvrqUhdil9pD563u0Tmrm1JTU+nSpUv+2zbW2gP+jEf8w/15Yz/A/v37ad26rI8fIiKli52xxt8hSDns/cP1NdKProfar6auBdD1UBdU5Ho4cOAAbdq0yX/rs88T9XVKqKpKdD+/Vol9WwBJBQuMMVuBUdba1Eq0V+71Mz777DNSU727aNKkCeHh4RhjOH36dCW6l+qW/yX4xeq1116je/fuREdHs2XLFubOncu9997rk+t14MCB3HXXXXz77bfl/vC9evVqHn74YQIDA0uMoaxzlpOTQ+fOnZkwYUKpx5Gbm0tmZiaZmZl8++235YpPKi//y1SpW3Te6h6ds7rj2LFj/g5BRERERETEixIWhRhj2gGDgTTg3xXcPQnYCOwEMoDOwBTgLmCtMaaLtfaMD8OVcti/fz99+/YtcfvmzZsLZgNrtdtuu40tW7YUu+3hhx9m6tSpNRxR1e3evZt58+Zx4sQJWrduzYMPPsjDDz/ss/bvv//+CtX3xZoTISEhTJs2rcrtiIiIiIiIiIiIXEyUsChqAmCAJGutsyI7WmtnFiraDtztXjz4LuBeYH4F4ynrm3TPlFC9e/cucUqooKCgUhd/rs/i4uL4z3/+U+L22NhYgoJq9lehslNCJSUlkZmZWey26OjoOnmOX375ZV5++WV/h1Gm6pjG6+jRo4SHh9OgQQN69OhR5fakKE1TUzfpvNU9Omd1U+GRuSIiIiIiIv6mhEUBxpgAYBzgBJb6sOkluBIW/algwqKsub/cyRDAtUhxeHi41/aAgACcTqfn9cUoJCSEzp07+zuMEgUEBJT73NSVkSD1XUXOWVmMMQQEBBT53RXfCwsL08+5DtJ5q3t0zuqO0NBQf4cgIiIiIiLi5eL8Brtkw4DWwL+ttWk+bDd/guBIH7YpIiIiIiIiIiIiIlJvKGHhrSqLbZemt/t5r4/bFRERERERERERERGpF5SwcDPGNANuBI4C75RSL9gY8zNjTIdC5T8zxkQUU/9nwPPut//jw5BFREREREREREREROqNermGhTHmHmCA+20X9/M9xpgE9+tPrLWFR1HcDQQDb1hrc0ppvhXwDbAPiC1QficwxRizwb3tLNAZGOFu9zlr7YbKHI+IiIiIiIiIiIiISH1XLxMWuJIVYwuV9Xc/8hVOWFR1Oqh1wOVAPDAQiMC1dsV7wGJr7YeVbFdEREREREREREREpN6rl1NCWWvHWWtNKY9xxexzhXvbN2W0vdddL7ZQ+Xpr7R3W2s7W2kustcHW2pbW2pFKVlRcQkICkydP9ncYddLq1avp2LEjgYGBTJ48meTkZBo1alQjfcfGxrJgwYIa6as80tPTad68OXv37q3xvvv06cNbb71V4/2KiIiIiIiIiIjUVfUyYSF136pVq3j22WdrrL8NGzZw4403EhMTgzGG1atXF6kzbtw4jDFej2HDhnnVyS/fsmWLV3l2djZNmjTBGIPD4QDg2muv5eGHH/aq9+qrr2KMITk5uUjfAwcOLNexTJo0idtuu439+/dX28+wpCTI1q1bmThxYrX0WRmzZ8/m5ptvJjY2tsi29PR0WrdujTGGkydPVqjd8lwvTz75JDNmzMDpdFYueBERERERERERkYuMEhZSK0VHR9OwYcMa6+/s2bN069aNP/3pT6XWGzZsGIcOHfI8/v73vxep06ZNG5KSkrzK3n77bRo0aOBVNmDAADZt2uRVtm7dOtq0aeNJauRzOBwMGTKkzOPIyMjgyJEjDB06lJiYmBr9GQI0a9aMiIgia8/7xblz53j99ddJTEwsdntiYiJdu3atVNvluV6GDx/OmTNn+Ne//lWpPkRERERERERERC42SlhIrVR4Sqjs7GymTZtGq1atiIyMpHfv3l5f6qenpzNq1ChatWpFREQEXbp0KTaZUJLhw4cza9YsbrnlllLrhYaG0qJFC8+jcePGReqMHTuW5cuXk5mZ6SlbunQpY8d6L6sycOBAUlJSOHz4sKds/fr1zJgxw+vY9uzZw759+xg8eHCpsTkcDk+CYsiQIV6jOQp75ZVX6NChAyEhIcTFxfHGG294bZ8/fz5dunQhMjKSNm3a8MADD5CRkeHpZ/z48Zw6dcozouTpp58Gik4JZYzhtdde45ZbbiEiIoJOnTrxzjvvePX1zjvv0KlTJ8LCwhg8eDDLli2r1KiHwt577z1CQ0Pp06dPscd/8uRJpk2bVqm2y3O9BAYGMmLECJYvX16pPkRERERERERERC42SlhInfDggw+yefNmli9fzo4dO/j1r3/NsGHDSElJASArK4sePXqwZs0adu7cycSJE7nrrrv4/PPPfRqHw+GgefPmxMXFcf/995Oenl6kTo8ePYiNjfWsX5CWlsaGDRu46667vOr17t2b4OBg1q1bB8CuXbvIzMwkMTGR9PR09uzZA7hGXYSFhdG3b99SY+vXrx/fffcdAG+99RaHDh2iX79+Req9/fbb/Pa3v2Xq1Kns3LmTSZMmMX78eE8cAAEBASxatIivv/6aZcuW8fHHH/Poo496+lmwYAFRUVGekSalffE/c+ZMbr/9dnbs2MGIESMYPXo0x48fB1zJmNtuu42RI0fy5ZdfMmnSJJ544olSj7O8Nm7cSI8ePYqU79q1i2eeeYa//vWvBARU75/AXr16sXHjxmrtQ0REREREREREpL4I8ncA4j/Lvl7GX3f9tcx6V0RfwUvXvORV9tDah9h1fFeZ+959xd2MvXJsmfVKk5aWRlJSEmlpacTExAAwbdo03n//fZKSkpgzZw6tWrXy+tL8oYce4oMPPmDFihX06tWrSv3nGzZsGLfeeivt2rUjNTWVxx9/nOHDh7N582YCAwO96k6YMIGlS5cyZswYkpOTGTFiBM2aNfOqExkZSffu3Vm/fj2jR4/G4XAwYMAAQkND6devHw6Hg3bt2uFwOOjbty+hoaGlxhcSEkLz5s0B15RaLVq0KLbeCy+8wLhx43jggQcAmDJlClu2bOGFF17wjOIoOLolNjaWWbNmcd9997F48WJCQkK45JJLMMaU2EdB48aNY9SoUQDMmTOHRYsW8fnnnzNs2DCWLFlCXFwcc+fOBSAuLo6dO3cye/bsMtsty759+zzXS77s7GxGjRrF3Llzadu2Lbt3765yP6WJiYlh//79OJ3Oak+OiIiIiIiIiIiI1HVKWFzEzp4/y5FzR8qs1yKy6JfSx7OPl2vfs+fPViq2gr766ivy8vLo3LmzV3n+QtYAeXl5zJkzhxUrVnDw4EFycnLIzs726XoKd955p+d1ly5d6Nq1Kx06dMDhcHDNNdd41R0zZgwzZsxg9+7dJCcns2jRomLbHDBgAO+++y7gGr2RkJAAwKBBgzxTLzkcDu69916fHcc333xTZGHs/v37s3DhQs/7jz76iOeee45vv/2W06dPk5ubS1ZWFufOnavwz7TgOhGRkZFERUVx5Ijr2vnuu+/o2bOnV/2yEkz33Xcfb775pud9/lRVhWVmZhIWFuZV9thjj3H55ZczZsyYCh1DZYWHh+N0OsnOziY8PLxG+hQREREREREREamrlLC4iEUGR9I8onmZ9aJDo4stK8++kcGRlYqtoIyMDAIDA9m2bVuRkQz5C1nPnTuXhQsXsmDBAs/aC5MnTyYnJ6fK/Zekffv2NG3alB9++KFIwqJJkybccMMNJCYmkpWV5VmAubCBAwcyb948Dh48iMPh8IwSGTRoEEuWLCE1NZX9+/eXa8FtX9m7dy833HAD999/P7NnzyY6OppPPvmExMREcnJyKpywCA4O9npvjMHpdFY6vmeeeaZca080bdqUEydOeJV9/PHHfPXVV6xcuRIAa62n7hNPPMHMmTMrHVdxjh8/TmRkpJIVIiIiIiIiIiIi5aCExUVs7JVjKz1dU+EpoqpTfHw8eXl5HDlyhIEDBxZbZ9OmTdx8882eO+edTifff/89V1xxRbXFdeDAAdLT02nZsmWx2ydMmMCIESOYPn16kURLvl69ehESEsLixYs963AA9OzZk6NHj7J06VIiIyN9Nq0VwOWXX86mTZu8FgHftGmT52e1bds2nE4n8+bN80xjtGLFCq82QkJCyMvLq3IscXFxvPfee15lW7duLXWf5s2be6a+Kk18fLzXSAxwre1RcDH0rVu3MmHCBDZu3EiHDh0qEHn57Ny5k/j4eJ+3KyIiIiIiIiIiUh8pYSG1XufOnRk9ejR333038+bNIz4+nqNHj7J27Vq6du3K9ddfT6dOnVi5ciWffvopjRs3Zv78+fz000/lTlhkZGTwww8/eN7v2bOH7du3Ex0dTdu2bcnIyGDmzJn86le/okWLFqSmpvLoo4/SsWNHhg4dWmybw4YN4+jRo0RFRZXYb3h4OH369OGll16if//+nsRGSEiIV3nhUQpV8cgjj3D77bcTHx/PL3/5S959911WrVrFRx99BEDHjh05f/48L730EjfeeCObNm3i1Vdf9WojNjaWjIwM1q5dS7du3YiIiKjU9FuTJk1i/vz5TJ8+ncTERLZv305ycjLgGolRFUOHDuWxxx7jxIkTNG7cGKBIUuLYsWOAK4nTqFGjcredkZHhtf5F4esl38aNG7nuuuuqcBQiIiIiIiIiIiIXD60CK3VCUlISd999N1OnTiUuLo6RI0eydetWz5fDTz75JN27d2fo0KEkJCTQokULRo4cWe72v/jiC+Lj4z13w0+ZMoX4+Hh+//vfAxAYGMiOHTu46aab6Ny5M4mJifTo0YONGzeWuBi2MYamTZsSEhJSat8JCQmcOXPGs35FvkGDBnHmzBnPQti+MnLkSBYuXMgLL7zAlVdeyZIlS0hKSvL0361bN+bPn8/zzz/PVVddxd/+9jeee+45rzb69evHfffdxx133EGzZs344x//WKlY2rVrx8qVK1m1ahVdu3bllVde4YknngAoc5HxsnTp0oXu3bsXGR1Slr1792KMweFwlFinrOsF4ODBg3z66aeMHz++UvGLiIiIiIiIiIhcbEz+HO5SNxljWgP7Ab7//ns6derktT0lJYXc3FyCgoKKbBP/cTqdnD59GoCoqCjP1EsCs2fP5tVXX2X//v1VbmvNmjU88sgj7Ny5s9w/43Xr1nHrrbeye/duz8gMqPg5mz59OidOnODPf/5ziXX0+1n9MjMz+fDDDwG47rrrtJ5IHaHzVvfonNVNKSkpdO7cOf9tG2vtAX/GI/5R8PPE/v37ad26tZ8jEpG6LnbGGn+HIOWw9w/X10g/uh5qv5q6FkDXQ11QkevhwIEDtGnTJv+tzz5PaEooEfGrxYsX07NnT5o0acKmTZuYO3cuDz74oE/avv7660lJSeHgwYMF/4CW6r333uPxxx/3SlZURvPmzZkyZUqV2hAREREREREREbmYKGEh9V5aWlqpa1ns2rXLa92B2mz48OFs3Lix2G2PP/44jz/+eA1HVHUpKSnMmjWL48eP07ZtW6ZOncpjjz3ms/YnT55cofpz5871Sb9Tp071STsiIiJSexhjWgG/BkYAPwNaAMeBTcAfrbWfFbNPFPA08Ct3/UPAP4GZ1tqMYuoHAP8FTAQ6AhnAR8AT1trdheuLiIiIiNQnSlhIvRcTE8P27dtL3V5XvPbaa2RmZha7LTo6uoaj8Y0XX3yRF1980d9hiIiIiJTHQ8B0IBX4EDgKdAJGAiONMb+x1v4jv7IxJhJYD/zcXf/vQDwwDRhkjLnaWptVqI8lwD3A18AiIAa4HbjOGNPHWptSbUcnIiIiIuJnSlhIvRcUFETHjh39HYZPtGrVyt8hiIiIiFzMPgcSrLXrCxYaYwYCa4FXjDGrrbXZ7k2P4kpWPG+tnVGg/h9wJT4eBp4rUD4YV7JiA3CttTbHXf4/wHvAy8DQ6jk0ERERERH/00q/IiIiIiIi5WCtXVU4WeEu3wisAxoDXQCMMQZX8iEDeLbQLs+6y+8pVH6v+/l3+ckKd/v/Ahy4RlnUjblMRUREREQqQQkLERERERGRqjvvfs51P3fCNZ3TJmvt2YIV3e83Ae2NMW0KbEoA8rcV9oH7eZCvAhYRERERqW00JZSIiIiIiEgVuEc9/BLXgtpfuYs7uZ9LWnMiBdf0Tp2A/e71LloCO621eSXUL9hueWNrXUaVFvkvMjMzS1wvTURE6hf9vZd8uhakoIpcD9V17ShhISIiIiIiUknGmGDgDSAUmF4g2XCJ+/lUCbueLlSvovXLa395K27YsIGmTZtWsHkRkcL0VVNd8OGHH9ZQT7oearuauxZA10PtV5Hr4dixY9USg6aEEhERERERqQRjTACQDFwN/MVa+4Z/IxIRERERqduU1pJaKSEhgZ///OcsWLDA36HUOatXr2batGns2bOHhx56iJ///OdMnjyZkydPVnvfsbGxTJ48mcmTJ1d7X+WRnp7O5Zdfzueff05sbGyN9ZuTk0Pnzp1ZuXIlv/jFL2qsXxEREak57mTFUuA3wJvAfYWq5I+UKGlERFShehWtX15tytjeAtgKcPXVV9O6dVkzSImIlGHzx/6OQMrhuuuuq5mOdD3UejV2LYCuhzqgItfDgQMHqiUGJSykVlq1ahXBwcE11t+GDRuYO3cu27Zt49ChQ7z99tuMHDnSq864ceNYtmyZV9nQoUN5//33Pe+NMQBs3ryZPn36eMqzs7OJiYnh+PHjrFu3jquvvpprr72Wq666itdff91T79VXX+X+++8nKSmJcePGefWdmprKxo0byzyWSZMmMX78eP77v/+bhg0b8tZbb1XkR1EuycnJxSZBtm7dSmRkpM/7q6zZs2dz8803F5usSE9Pp1u3bhw8eJATJ07QqFGjcrc7c+ZMnnnmGa+yuLg4vv32WwBCQkKYNm0a06dPZ+3atVU5BBEREamF3MmKJOBu4O/AOGuts1C1stac8Frjwlp71hhzCGhnjAksZh2LstbEKJa1ttRPkvn/fwUIDw8nPDy8Is2LiEgdpb/3kk/XghRUkeuhuq4dJSykVoqOjq7R/s6ePUu3bt2YMGECt956a4n1hg0bRlJSkud9aGhokTpt2rQhKSnJK2Hx9ttv06BBA44fP+4pGzBgAGvWrPHad926dbRp0waHw+GVsHA4HIwdO7bM48jIyODIkSMMHTqUmJiYMuv7WrNmzWq8z5KcO3eO119/nQ8++KDY7YmJiXTt2pWDBw9Wqv0rr7ySjz76yPM+KMj7z+no0aOZOnUqX3/9NVdeeWWl+hAREZHap1Cy4h/AXaUskv0j0N8YE2mtPVugjUigP7DHWltwjYn1wJ3ubRsKtTfU/Vy4XKRWiJ2xpuxK4ld7/3C9v0MQEREpk9awkFopISHBa1qh7Oxspk2bRqtWrYiMjKR37944HA7P9vT0dEaNGkWrVq2IiIigS5cu/P3vfy93f8OHD2fWrFnccsstpdYLDQ2lRYsWnkfjxo2L1Bk7dizLly8nMzPTU7Z06dIiCYeBAweSkpLC4cOHPWXr169nxowZXse2Z88e9u3bx+DBg0uNzeFw0LBhQwCGDBmCMcarnYJeeeUVOnToQEhICHFxcbzxhvd0y/Pnz6dLly5ERkbSpk0bHnjgATIyMjz9jB8/nlOnTmGMwRjD008/DbimhCo4jZcxhtdee41bbrmFiIgIOnXqxDvvvOPV1zvvvEOnTp0ICwtj8ODBLFu2DGNMlaeweu+99wgNDfVKHBU8/pMnTzJt2rRKtx8UFOR1LRReoLJx48b079+f5cuXV7oPERERqV0KTAN1N/BPYEwJyQqstRZ4DWgA/K7Q5t+5y/9SqPzP7udnjTEhBfodDiQAH1pr91XxMEREREREai0lLKROePDBB9m8eTPLly9nx44d/PrXv2bYsGGkpLhGxGdlZdGjRw/WrFnDzp07mThxInfddReff/65T+NwOBw0b96cuLg47r//ftLT04vU6dGjB7GxsZ6pmNLS0tiwYQN33XWXV73evXsTHBzMunXrANi1axeZmZkkJiaSnp7Onj17ANeoi7CwMPr27VtqbP369eO7774D4K233uLQoUP069evSL23336b3/72t0ydOpWdO3d6ppDKjwMgICCARYsW8fXXX7Ns2TI+/vhjHn30UU8/CxYsICoqikOHDnHo0KFSv/ifOXMmt99+Ozt27GDEiBGMHj3aM9Jkz5493HbbbYwcOZIvv/ySSZMm8cQTT5R6nOW1ceNGevToUaR8165dPPPMM/z1r38lIKDyfwJTUlKIiYmhffv2jB49mrS0tCJ1evXqVa5pvERERKTO+D0wFsgAvgeeNMY8Xejx8wL1/wh8CUw3xnxgjHnOGPMBMB3XuhELCjZurV2HK8lxNfAfY8zzxpi/AquB48BD1Xp0IiIiIiJ+pimhLmLpSckcT04us17YFVfQ5pXFXmX773+ArF27ytw3etw4mowfV8kIXdLS0khKSiItLc0zzdG0adN4//33SUpKYs6cObRq1crrS/OHHnqIDz74gBUrVtCrV68q9Z9v2LBh3HrrrbRr147U1FQef/xxhg8fzubNmwkMDPSqO2HCBJYuXcqYMWNITk5mxIgRRaZLioyMpHv37qxfv57Ro0fjcDgYMGAAoaGh9OvXD4fDQbt27XA4HPTt27fY6acKCgkJoXnz5oBrSq0WLVoUW++FF15g3LhxPPDAAwBMmTKFLVu28MILL3hGcRQc3RIbG8usWbO47777WLx4MSEhIVxyySUYY0rso6Bx48YxatQoAObMmcOiRYv4/PPPGTZsGEuWLCEuLo65c+cCrnUgdu7cyezZs8tstyz79u0rMi1WdnY2o0aNYu7cubRt25bdu3dXqu1evXqRnJxMXFwchw4dYubMmQwcOJCdO3d6RrkAxMTEsG+fboIUERGpDsaYS4FrgO7ApUBj4ATwE7AN+Nha+5OPu411PzcASrrLYi+wHTzrUgwCngZ+BQwGDgHzgJnW2sxi9p8EfAVMBH6LKznyNvCEtTbVB8cgIiIiIlJrKWFxEXNmZJD7U9mf4fKK+VI67/jxcu3rdE8jVBVfffUVeXl5dO7c2as8OzubJk2auOLJy2POnDmsWLGCgwcPkpOTQ3Z2NhEREVXuP9+dd97ped2lSxe6du1Khw4dcDgcXHPNNV51x4wZw4wZM9i9ezfJycksWrSo2DYHDBjAu+++C7hGbyQkJAAwaNAgz9RLDoeDe++912fH8c033zBx4kSvsv79+7Nw4ULP+48++ojnnnuOb7/9ltOnT5Obm0tWVhbnzp2r8M+0a9eunteRkZFERUVx5MgRAL777jt69uzpVb+sBNN9993Hm2++6XmfUcI1lpmZSVhYmFfZY489xuWXX86YMWMqdAyFDR8+3DM6o2vXrvTu3ZvLLruMFStWkJiY6KkXHh7OuXPnqtSXiIiIXGCMCQbuAP4LyP9PgymmqnXX/wz4E7DCWnu+qv1ba8cB4yq4zyngYfejPPWdwCL3Q0RERETkoqKExUUsoEEDgi69tMx6gcUsgB0YHV2ufQMaNKhUbAVlZGQQGBjItm3bioxkaOBuf+7cuSxcuJAFCxZ41l6YPHkyOTk5Ve6/JO3bt6dp06b88MMPRRIWTZo04YYbbiAxMZGsrCyGDx/OmTNnirQxcOBA5s2bx8GDB3E4HJ5RIoMGDWLJkiWkpqayf/9+hgwZUm3HUdjevXu54YYbuP/++5k9ezbR0dF88sknJCYmkpOTU+GERXBwsNd7YwxOp7PS8T3zzDPlWnuiadOmnDhxwqvs448/5quvvmLlypUAuKaWdtV94oknmDlzZqViatSoEZ07d+aHH37wKj9+/HitWohcRESkLjPG3AU8B7TElaQ4CmwGvgbSgdPAJUAT4CqgL9AH6A38wRjzmLX2zWKaFhERERGRWkIJi4tYk/GVn66p8BRR1Sk+Pp68vDyOHDnCwIEDi62zadMmbr75Zs+d806nk++//54rrrii2uI6cOAA6enptGzZstjtEyZMYMSIEUyfPr1IoiVfr169CAkJYfHixZ51OAB69uzJ0aNHWbp0KZGRkT6b1grg8ssvZ9OmTV6LgG/atMnzs9q2bRtOp5N58+Z5RhGsWLHCq42QkBDy8opdX7JC4uLieO+997zKtm7dWuo+zZs390x9VZr4+HivkRjgWtuj4GLoW7duZcKECWzcuJEOHTpUIHJvGRkZpKamFlmnZOfOncTHx1e6XREREXExxmzGNaLiGK6RB8nW2i/Lsd/PgfHAKGCZMeYBa23RRb5ERERERKRW0KLbUut17tyZ0aNHc/fdd7Nq1Sr27NnD559/znPPPceaNWsA6NSpE//+97/59NNP+eabb5g0aRI/lWPKqnwZGRls376d7du3A67FoLdv3+5ZSDkjI4NHHnmELVu2sHfvXtauXcvNN99Mx44dGTp0aLFtDhs2jKNHj/LMM8+U2G94eDh9+vThpZdeon///p7ERkhIiFd54VEKVfHII4+QnJzMK6+8QkpKCvPnz2fVqlWeUQsdO3bk/PnzvPTSS+zevZs33niDV1991auN2NhYMjIyWLt2LceOHav0tEeTJk3i22+/Zfr06Xz//fesWLGCZPe6KsYUN7tD+Q0dOpSvv/7aa5RFhw4duOqqqzyPdu3aAa4kTnmSIPkeeeQR1q9fz969e/n000+55ZZbCAwM9KzVkW/jxo1cd911VToOERERAaAT8CjQ1lr7cHmSFQDW2u3W2t8CbYAZQOcydhERERERET9SwkLqhKSkJO6++26mTp1KXFwcI0eOZOvWrbRt2xaAJ598ku7duzN06FASEhJo0aIFI0eOLHf7X3zxBfHx8Z674adMmUJ8fDy///3vAQgMDGTHjh3cdNNNdO7cmcTERHr06MHGjRtLXAzbGEPTpk0JCQkpte+EhATOnDnjWb8i36BBgzhz5oxnIWxfGTlyJAsXLuSFF17gyiuvZMmSJSQlJXn679atG/Pnz+f555/nqquu4m9/+xvPPfecVxv9+vXjvvvu44477qBZs2b88Y9/rFQs7dq1Y+XKlaxatYquXbvyyiuv8MQTrvUry1pkvCxdunShe/fuRUaHlGXv3r0YY3A4HCXWOXDgAKNGjSIuLo7bb7+dJk2asGXLFq/pnzZv3sypU6e47bbbKnsIIiIickF7a+08a212ZXa21mZba+cC7X0cl4iIiIiI+JDJn8O9PjHGjAEGAj2ALkAIMN5am1xM3aeBp0pprp21dm8F+u4MzAKGAJHA98CrwKu2Gn7YxpjWwH6A77//nk6dOnltT0lJITc3l6CgoCLbxH+cTienT58GICoqyjP1ksDs2bN59dVX2b9/f5XbWrNmDY888gg7d+4s98943bp13HrrrezevZvGjRt7yit6zu644w66devG448/XmId/X5Wv8zMTD788EMArrvuOsLDw/0ckZSHzlvdo3NWN6WkpNC5s2fAQRtr7QF/xiP+UfDzxP79+2ndurWfI5K6KnbGGn+HIGXY+4fra6QfXQt1g64HyVdT1wLoeqgLKnI9HDhwgDZt2uS/9dnnifq6hsUs4DJcc9wecr8uyzJgbzHlJ8vbqTHmCuBTIBxYAfwIXA8sBq4AHipvWyIXi8WLF9OzZ0+aNGnCpk2bmDt3Lg8++KBP2r7++utJSUnh4MGDBf+Aluq9997j8ccf90pWVFROTg5dunTh4YcfLlf9rIzzrPvbt1jnhZzml/tPkpNb9uLksU0iaRZ1YTRKVk4eXx08Va5+u7VuREjwhcTL4VNZ7D9e9vReYcGBdGl9iVfZ94fPcCrzfJn7XhoVRtto74Xbt+49Xq54O13akEbhF6ZHO5V5nu9/KrqYfUFOp+XcuTDaN7R8cjyVwCDXtGv7j5/j8KmsMvuMCg8mrkVDr7KdB0+RmVP2Gi5toiNocUmY531OrpMv958scz+AK1tdQkTIhbVvjp3JZs+xs2XuFxwUwM/bNPIqSz2SwfGzOWXu27RBKO2aRXqV/WffCfKcZefa2zdrQJMGF0aTnc3KZdeh02XuB9C9bWMCAy9MAffjiUz2nzjHubOun92u7dsIKGaKuMjQIK6IifIq++bH02Rk55bZZ0yjcFo1vvCFep7T8p99J0rZ44LLW0bRIOzCf59OnM3hhyMZZe4XEGDocZn335U9x85y7EzZN4s3jgyhY/MGXmW17W+E01rXOQuxXNH1LJ3aKWEhIiIiIiIiFVdfExb3ACnW2n3GmBnAc2XtgGvhPkcV+30FuAQYYa39F4Ax5nfAR8CDxpj/sdZurmIfUkFpaWmlLr69a9cuz9RStd3w4cPZuHFjsdsef/zxUu/mr61SUlKYNWsWx48fp23btkydOpXHHnvMZ+1Pnjy5QvXnzp1b5T5DQkJ48skny1U3L8/JkX1n+Haj95eAIe5HWY79mM2xQmUNiq1ZVOqPRdd5Ke++3+wr+qVlefY9+2M23+D9ZWl5+zz0YzaHKtFnFMGcOw3fHzxS4X2dZPNNqveX0YHl3PfEj9kU/gq8vMe678cjRcrKfW7SMouUlWffLLL55nvvJEN5v3I+8mM2hSMub7zf/3i4SFkUrvMGwOmSki3ZfLOnaBKnPP2e/jGb04XuRyhvvPt/PFqpPgG+OVD4Ci7fvufJ5psU7+RcbfwbkX/O3nrzO2b8rmk5exGpOmNMINAECCupjrU2reYiEhERERGRyqqXCQtr7Uc13ad7KqirgXX5yQp3LDnupIUDuBdQwqKGxcTEeBbTLml7XfHaa6+RmVn0y0iA6OjoGo7GN1588UVefPFFf4fhN2fPnqcezswnIhex3NNlj7YS8QVjTD9cU7teTek5PEs9/dwjIiIiIlLf6D/uF1xtjOkNOIEU4CNrbdlzPFyQ4H7+sJhtnwBngUEVDco9p2xpWuS/yM7OLvJlttPpJH/pDKez7Kkj6qOAgADaty99fcWa/tkU7K8ifbds2bLc7YpvVfaclcZaiz3v/v3E0n9CHC2auu5pP3gqi9y8svtpEhlCg9ALf8rP5zn5sRxTHQHENAojuMBaHKezcjlxruypg4ICA2h1ifdNrEfOZJF5vpR43TP6NAwNIjrS+zulfcfPYSg65U9hzRqEEF5gmqTMnDyOlDGdzvmc83y962uahsIvevYgNMQ1Nc6Jczmczip76qDw4ACaN/Q+1h9PZXG+HOemcUQwUWEXprDKdTo5eLJ856blJaGEBF441ozsXNLLMa1TUIChVSPvcRFHM7I5V44prBqEBtGk0LnZfyITZzkyak0bhBJZ4Nxk5+Zx+HT51sVt3TicwAJTPp3MPM+xU+f4etfXAFx5xZUEhwQX2S80KIAWUd7n5vDpLLLLMU3SJeHBXtOL5VnLgRPFJ4MLaxEVSmjQhWM9dz6Po+WY1inAGNo09j436WdzyjWFVXhIIM0bhHqV1ba/EdnZOXz9xj4AWjcIKTG5LrVLdnal1q+uFYwxQ4B/Qf5wLI4Dpc8TKCIiIiIitZ4SFhfMLPT+pDHmt9bav5Zz//wVc1MKb7DW5hlj9gBXGGOCrLVlfztxQblXHv7ss89ITU31KmvSpAnh4eEYYzwLBkvtkpFRkbyY1Aa+Omc5OXnkfxV4NCKP/Ye2sb/ojDGlKjpxUAX2PVj5fX+sbJ9Aapm1ild0cpryiWnmet7x3dZK7b+vkv367dxUcr36I8DuSvZZHceaf95OHP2qxH0reah+OzeHq7D8WJ24DgMagNOQk3HWswC31G7HjhWeMKxOmYUrWbEAmGWtLd+CSCIiIiIiUqsFlF2l3vsSmAC0xzVddztci2NbINkYc1M528lfgbaklSxP4/p5Nyxhu4hcZAreuB51maZQEZG6zbgHnlhn2SOmRHzg58B2a+0UJStEREREROqPi36EhbX27UJFe4GXjTHfAP/GdffWOzUdVwFtytjeAtgK0Lt3bzp06OC1MS0tjby8PIKCgoiKiqqmEKWinE6n5y79Bg0aEBCg3GFt5+tzlpWVS4A7YZEXAPclJhAYqOvA17KystiwYQMAV199NWFhJa7HKrWIzlvdk5WVxT8+3kYehpCgUK67rr+/Q5JyKDwyt47JAL71dxAiIiIiIuJbF33CoiTW2rXGmFSgizEmylpb1nxK+SMrLilhexSuURsVmlvXWlvqBBKmwLzfoaGhhId7z48dEBDgmW9fX4rXTgEBATo3dYwvztnp0xfmgQ9qEEyDBpFVDUvKEBYWVuRvpNR+Om91R577z2JWVp7OWR0RGhpadqXaawvQ2d9BiIiIiIiIb+lb0tLlT+wbUY66+WtXdCq8wRgTiGuqqT0VXL9CROqhPKcTsl2JRAs0v7Q8f2JERGq3E+6Z7XKyy17kXcQHZuO6seg3/g5ERERERER8RyMsSmCMiQSuBM5yIXFRmvXu5+uAPxTaNgCILFBHyiEhIYGf//znLFiwwN+hiPjUyZPZnmyxDYSwUP0pFpG6z+me5y4IQ26uk6Ag3Rcj1cda+5kx5g7gNWPMjcC/gDTAWUL9DTUZn4iIiIiIVM5F/UnSGNPQGFNkKLkxJhz4C64FslcUHhVhjPmZMeZnBcustd8BG4DBxpjhBeqGAM+6377m40Oo11atWsWzzz5bdkUf2LBhAzfeeCMxMTEYY1i9enWROuPGjcMY4/UYNmyYV5388i1btniVZ2dn06RJE4wxOBwOAK699loefvhhr3qvvvoqxhiSk5OL9D1w4MAqH6fUDjlnL/xJCQ1TskJE6oeCa22fzTzvv0DkYhIInANuB5KAtcC6Yh4f+ytAERERERGpmHr5TZkx5h5coxoAurif7zHGJLhff2KtfQ1oAnxrjNkKfAMcBi4Ffgm0Br4CHimmi2/yuypU/gCwCVhtjPkHcAi4HtdIjZettZ9W7cguLtHR0TXW19mzZ+nWrRsTJkzg1ltvLbHesGHDSEpK8rwvbu7nNm3akJSURJ8+fTxlb7/9Ng0aNOD48eOesgEDBrBmzRqvfdetW0ebNm1wOByMGzfOU+5wOBg7dmxlDk1qmfM5eQQ6XXchWwOhoYF+jkhExDfyR1gAZJw9zyUN6/T6CFLLGWNuAv6B6was48AeXAtxi4iIiIhIHVZfR1gMAMa6H93dZf0LlOUnM44Di3ElHkYAU4FfAT8CjwK9rbXp5e3UWvs10Bt4B1ei4re4hqX/F/DfVTqii1BCQgKTJ08GXCMUpk2bRqtWrYiMjKR3796ekQoA6enpjBo1ilatWhEREUGXLl34+9//Xu6+hg8fzqxZs7jllltKrRcaGkqLFi08j8aNGxepM3bsWJYvX05mZqanbOnSpUUSDgMHDiQlJYXDhw97ytavX8+MGTO8jm3Pnj3s27ePwYMHl/t4pPbKyrhw13FgYADGFM57iojUTbbA/yrPntMIC6l2T+L6P/x/A5daa3taaweX9PBzrCIiIiIiUk71MmFhrR1nrTWlPMa565221j5ore1lrW1urQ221kZZa3tba+daazNLaN9Ya4v9ltFa+5219tfW2ibW2jBrbVdr7WJrrS2uvpTPgw8+yObNm1m+fDk7duzg17/+NcOGDSMlxbXWeVZWFj169GDNmjXs3LmTiRMnctddd/H555/7NA6Hw0Hz5s2Ji4vj/vvvJz29aD6rR48exMbG8tZbbwGQlpbGhg0buOuuu7zq9e7dm+DgYNatWwfArl27yMzMJDExkfT0dPbs2QO4Rl2EhYXRt29fnx6L1Dyn05J11v0lnjGa311E6pcCIyzOaUooqX5XAJuttS9ba7XSu4iIiIhIPVEvp4SSsq2Ys5Vzp3NqtM+IqBBuf7xnhfdLS0sjKSmJtLQ0YmJiAJg2bRrvv/8+SUlJzJkzh1atWjFt2jTPPg899BAffPABK1asoFevXj6Jf9iwYdx66620a9eO1NRUHn/8cYYPH87mzZsJDPSe1mfChAksXbqUMWPGkJyczIgRI2jWrJlXncjISLp378769esZPXo0DoeDAQMGEBoaSr9+/XA4HLRr1w6Hw0Hfvn2LnX5K6pbsc+ex7umgwiKCOJXt54BERHypwD+F587lllxPxDfOAvv8HYSIiIiIiPiWEhYXqXOnczh7sm58W/rVV1+Rl5dH587e66PnL2QNkJeXx5w5c1ixYgUHDx4kJyeH7OxsIiIifBbHnXfe6XndpUsXunbtSocOHXA4HFxzzTVedceMGcOMGTPYvXs3ycnJLFq0qNg2BwwYwLvvvgu4Rm8kJCQAMGjQIBwOB+PHj8fhcHDvvff67DjEfzJOXUgShjcMhhN+DEZExNcKjLDIzFLCQqqdA4j3dxAiIiIiIuJbSlhcpCKiQupMnxkZGQQGBrJt27YiIxkaNGgAwNy5c1m4cCELFiygS5cuREZGMnnyZHJyqm8USfv27WnatCk//PBDkYRFkyZNuOGGG0hMTCQrK4vhw4dz5syZIm0MHDiQefPmcfDgQRwOh2eUyKBBg1iyZAmpqans37+fIUOGVNtxSM3IOJuDzXW63gQagkK02LaI1C+mwJ+1zEwlLKTa/Q7YZoyZYa39g7+DERERERER31DC4iJVmamZ/CU+Pp68vDyOHDnCwIEDi62zadMmbr75ZsaMGQOA0+nk+++/54orrqi2uA4cOEB6ejotW7YsdvuECRMYMWIE06dPL5JoyderVy9CQkJYvHixZx0OgJ49e3L06FGWLl1KZGSkz6a1Ev85cyrHM1tKQFigFtsWkXrHBF4YYZGjERZS/foAS4HZxpibgPeBNMBZXGVr7V9rMDYREREREakkJSyk1uvcuTOjR4/m7rvvZt68ecTHx3P06FHWrl1L165duf766+nUqRMrV67k008/pXHjxsyfP5+ffvqp3AmLjIwMfvjhB8/7PXv2sH37dqKjo2nbti0ZGRnMnDmTX/3qV7Ro0YLU1FQeffRROnbsyNChQ4ttc9iwYRw9epSoqKgS+w0PD6dPnz689NJL9O/f35PYCAkJ8SoPDg6uwE9MapvcXCcB513fn1igUaMw/wYkIlINOjSynDnsen1Vi5L/7RPxkWRc/6waXMmL3mXUV8JCRERERKQOUMJC6oSkpCRmzZrF1KlTOXjwIE2bNqVPnz7ccMMNADz55JPs3r2boUOHEhERwcSJExk5ciSnTp0qV/tffPEFgwcP9ryfMmUKAGPHjiU5OZnAwEB27NjBsmXLOHnyJDExMVx33XU8++yzJS6GbYyhadOmZfadkJDAhg0bPOtX5Bs0aBDr1q3zikvqphMns8gfT2FDAggKCvBrPCIi1SGowP8qc3OKvcldxJf+iithISIiIiIi9YgSFlJrORwOz+vg4GBmzpzJzJkzi60bHR3N6tWrK91XQkIC1pb8mTc8PJwPPvigzHZKa6NRo0ae7U7nhS9ynnrqqWKP66mnnuKpp54qs0+p3ay15J7L9UwH1TCq+ASXiEhdV3BKqPM5eX6MRC4G1tpx/o5BRERERER8T7f5iohUo4yz58n/Di8vACIjNb2XiNRPBRfdzlXCQkRERERERCpBCQup99LS0mjQoEGJj7S0NH+HKPVYxulsz+uQCCUrRKT+Op13YYTF9wdP+zESERERERERqas0JZTUezExMWzfvr3U7SLV4fz5PALOu6cBA5o00nRQIlJ/nXVCiPv1j+nn/BqL1D/GmFustW/7oJ1brbWrfBGTiIiIiIj4nhIWUu8FBQXRsWNHf4chF6ETJ7M9i20TEkBgoAa1iUj9FRx0YYRF3nktui0+95Yx5jPgaWtt2QuLFWCMMcAI4PfAL4DA0vcQERERERF/0bdnIiLVwFpLQM6FL+yiNLpCROq54AK3wTjP25IrilTOw0Ac8J4xJs0YM8sYM9gYE1lcZWNMpDFmiDHmOSANeAfo5G5HRERERERqKY2wEBGpBuez83DmuhIWwaGBRIRr/QoRqd+Cgi257tf5f/9EfMVau9AY8zfgaWAs8DjwGOA0xhwA0oHTQBTQBGiN6+YsA5wFFgMzrbXHaj56EREREREpLyUsRESqQeaZ857X4Q1DSqkpIlI/hARBlvu1VcJCqoE72fCgMeYJYAIwEugNXOZ+FJQDbAJWA0nW2lM1F6mIiIiIiFSWEhYiIj7mzHOSfc6VsAgIMIRG6E+tiNR/ocEFpoHK1ZRQUn3cyYcXgReNMWHAlcClwCXASeAI8LW1NqvERkREREREpFbSt2giIj526nSO53VoZDCutT5FROq3oIL/q8xTwkJqhjspsc3fcYiIiIiIiG9o0W0RER/LOnthOihC9GdWRC4OgQFwHleiIsCphIWIiIiIiIhUnL5Jk4uOMYbVq1f7Owypp3LznAS47yx2Ag0itdi2iFw8ct0DyoyWsBAREREREZFKUMJCpBSxsbEYY7wef/jDHzzbHQ4HxhgaN25MVpb3NMlbt2717AOQkZFBcHAwy5cv96o3atQojDHs3bu3SN+/+93vqufApNqcPp2DZwKokABNByUiF5cAV8I2PEB/+0RERERERKTilLCQeuP8+fNlV6qEZ555hkOHDnkeDz30UJE6DRs25O233/Yqe/3112nbtq3nfYMGDfjFL36Bw+Hwqrd+/XratGnjVb5nzx727dvHkCFDfHosUv3yF9sGCNfoChG5yDQMcyUsIgMD/RyJiIiIiIiI1EVKWEitlZCQwH//93/z6KOPEh0dTYsWLXj66ac9240xvPLKK9x0001ERkYye/ZsAP73f/+X7t27ExYWRvv27Zk5cya5ubmVjqNhw4a0aNHC84iMjCxSZ+zYsSxdutTzPjMzk+XLlzN27FiveoMHD/ZKTHz33XdkZWVx//33e5U7HA5CQ0Pp27dvpeOWmpfndGJyL0wH1bBBiH8DEhGpYcadpzifk+ffQERERERERKROCqrOxo0xjYChwDVAd+BSoDFwAvgJ2AZ8DHxgrT1ZnbGItzcfm8zZkydqtM/IRo0Z89yCCu2zbNkypkyZwmeffcbmzZsZN24c/fv359prrwXg6aef5g9/+AMLFiwgKCiIjRs3cvfdd7No0SIGDhxIamoqEydOBOCpp56qVNx/+MMfePbZZ2nbti2/+c1vePjhhwkK8v7Vueuuu5g7dy5paWm0bduWt956i9jYWLp37+5Vb/DgwTz33HMcOnSIyMhINm7cSP/+/RkyZAhLlizx1Fu3bh19+/YlLCysUjGLf5w5k+PJAtsgQ4CmRBGRi4wJdCdtcy3OPCcBgbo3RkRERERERMqvWhIWxpguwG+BUUAYUPhbuwigFa4kxj1AljHmf4CXrLU7qiMm8Xb25Akyjqf7O4wyde3a1ZNo6NSpEy+//DJr1671JCx+85vfMH78eE/9CRMmMGPGDM/Ihvbt2/Pss8/y6KOPViph8d///d90796d6OhoPv30Ux577DEOHTrE/Pnzveo1b96c4cOHk5yczO9//3uWLl3KhAkTirTXv39/QkJCcDgcXH/99WzatIlBgwbRo0cPjh07xp49e2jXrh3r168nMTGxwvGKf2WezSV/EpQwTQclIhchUyA/kXveSYgSFiIiIiIiIlIBPk1YGGOaA88BY3FNN3UMWAN8CnwNpAOngUuAJsBVQD/gaiARGG+MSQYet9Ye8WVs4i2yUeM60WfXrl293rds2ZIjRy5cGr/4xS+8tn/55Zds2rTJMz0UQF5eHllZWZw7d46IiIgK9T9lyhSvWEJCQpg0aRLPPfccoaGhXnUnTJjAb3/7W8aMGcPmzZv55z//ycaNG73qRERE0LNnT9avX+9JWMyYMYOgoCD69euHw+HAWktaWhqDBw+uUKziX05rMeedAFggqqGmgxKRi8/hbNdQWoAjJzJp3bKhX+OR+ssY83vgjLX2RX/HIiIiIiIivuPrERYpQEPg/wGvA2ustaUtHvAhMN8YEwTcCExwP37Fhc+7Ug0qOjWTvwQHe9+lbozB6XR63hdeTyIjI4OZM2dy6623FmnLF9Mr9e7dm9zcXPbu3UtcXJzXtuHDhzNx4kQSExO58cYbadKkSbFtDB48mH/84x988803ZGVleaaNGjRoEOvWrcPpdBIREUHv3r2rHK/UnIyMC9NBOYMMgbqrWEQuQtkFXmecPe+3OOSi8HtcnzmUsBARERERqUd8nbD4HJhhrd1WkZ3cSY23gbeNMT2BOT6OSy4S3bt357vvvqNjx47V0v727dsJCAigefPmRbYFBQVx991388c//pF//etfJbYxePBgZs2axcqVK+nduzeBga5JhK6++mr+/Oc/Y631TB0ldYc5bz2vQyM0HZSIXJxswIW/hecyS7tnRaTKjgCZ/g5CRERERER8y6cJC2vttT5oYytQ5Xbk4vT73/+eG264gbZt23LbbbcREBDAl19+yc6dO5k1a1aF2tq8eTOfffYZgwcPpmHDhmzevJmHH36YMWPG0Lhx8QOAnn32WR555JESR1cA9OvXj9DQUP7yl794TTnVq1cvjhw5wv/+7//y2GOPVShW8S9rLdnnLnwx1+iS0FJqi4jUXwXXsDh3TiMspFptBHr5OwgREREREfEtzVki9crQoUP5f//v//Hhhx/Ss2dP+vTpw4svvshll11W4bZCQ0NZvnw5gwYN4sorr2T27Nk8/PDD/PnPfy5xn5CQEJo2bYoxhdeZvyAsLIw+ffpw5swZBgwY4NVffrnWr6hbcnOcOPNcU5WFhAUREFDy+RcRqdcCL4ywyNQIC6lezwAxxphZprT/eImIiIiISJ3i60W3xwPrrLV7fdmuXJwcDkeRstWrV3teW2uLbAdX0mLo0KEltlvSfoV1796dLVu2lFonISGh1PZGjhxZ7PaPP/6Y06dPFylft25duWKT2iW7wF3EoRG+nmlPRKTuMAUTFllKWEi16gH8FXgM+JUxZjWwlxKmibLW/rXGIhMRERERkUrz9TdrrwPWGJMGrMt/WGsP+LgfEZFawVrL2Yzz5N/aGaKEhYhcxApOCZWthIVUr2TAAgaIAx4to74SFiIiIiIidYCvv1nbBVwBXAaMA8YCGGN2453AOOzjfkUqbM6cOcyZU/z67gMHDix14WyRfJlZuRin647ivABDYKBm2hORi1dAgf9ZZmfl+S8QuRj8FVfCQkRERERE6hFfL7p9lTGmKZAADHY/Xw50cD8SAYwx33MhgeGw1h71ZRwi5XHfffdx++23F7stPDy8hqORuirjTI7ndVBYoB8jERHxv4ACU0LlZGuEhVQfa+04f8cgIiIiIiK+5/O5S6y1x4CV7gfGmOZ4JzDiCjwmuevsAj621v7WFzEYY8YAA3HNbdsFCAHGW2uTC9ULBm5yP3oBbXDdqbUL1zDzP1try317oDFmL67RJcVZb61NqMBhSDWLjo4mOjra32FIHZeXlUd+mqJhVIhfYxER8bfAAnnbnGyNsBAREREREZGKqfbJ1q21R4AV7gfGmEu5kLwYDHQCrsQ1lZRPEhbALFyJg2PAIUpOInTAlVjJANYC7wCXADcCi4ERxpibbHlXaXY5BSwopnxvBdoQkTogKyuX/JuJ8wyEhWr9ChG5uEVHOMlPU7S9RKMVpeYYYzoCzYB0a+33/o5HREREREQqp8a/XbPW/mSM+RTXqIcwoAng69vc7wFSrLX7jDEzgOdKqHcG+C9gmbX2bH6hMWYq4ABuAG4D/lmBvk9aa5+uTNAiUrecLjAdVKCmgxIRoXG4624RgOiwYL/GIvWfMSYQeAx4EFeyAmAZMMG9fTSu/+vfa6392i9BioiIiIhIhdRIwsIY05oLoyoSgNj8TUA6sBpY76v+rLUflbPeQVwjKQqXnzXGzAf+BxhExRIWInKRyMvK9UwH1aChpoMSETEF1rDIzXH6MRKp79zJiv8HXAfkAt/gGrFd0CbgDeBWQAkLEREREZE6oFoSFsaYGLynfWqXvwk4AryFK0Gx3lq7szpi8IHz7ueKrhgZaowZB8QAp4Gt1trPKhuEO9lTmhb5L7Kzs8nMzPTa6HQ6yZ/RyunUFwe1RcFzofNSNxQ+Zznn8wh0F7mmgwqs1Lm01uJ0Oov87opvZGVlFftaajedt7on/zyZAoPNss7l6G9bLZedne3vEKriPmAo8DFwt7X2R2OM1z/E1tq9xphUXEmNZ/0Qo4iIiIiIVJBPExbGmD/jSlJ0wJWcANcaEv/gQoLiW1/2WY0muJ8/rOB+LYCkggXGmK3AKGttaiXi2F/eip999hmpqd5dNGnShPDwcIwxnD59uhLdS3XLyMjwdwhSQRkZGZzLNAS5/8w5A22lfr9yc3PJzMwkMzOTb7+tK38a664NGzb4OwSpBJ23OibgwgiL1D0HOPvhD34MRspy7NixsivVXmOB48CvrbUnSqn3DdCtZkISEREREZGqCvBxe/fgSlb8B7gX6GytbWWt/Y21dkldSVYYYyYCw4GPrbXvVWDXJOAa4FIgEojHNQy9J7DWGNPQ17HWZzfccAOPPfaYv8MQKZY9f+F1cLAtuaKIyEUko8D97QfPmJIrilTdz4DPy0hWAJwCmtdAPCIiIiIi4gPVMSWUAboDswGHMSZ/ZMWuaujL54wxNwAvA/uAMRXZ11o7s1DRduBuYwzAXbiSOPMrGFKbMra3ALYC9O7dmw4dOnhtTEtLIy8vj6CgIKKioirYtX+tXr2a4OBgGjas/jzPhg0beOGFF/jPf/7DoUOHeOuttxg5cqRXHWstTz/9NK+99honT56kf//+/OlPf6JTp06eOoGBrrkwNm3aRJ8+fTzl2dnZtG7dmuPHj7N27Vquvvpq+vbty1VXXcVf/vIXAgJcucNXX32V//qv/+L1119n3Lhxnv3Hjx/P7t27Wb/eZ0u9SAU5nU7PaJjIiEhyTrmmOXEaaNakIe7f8wo5evQo4eHhNGjQgB49evg0XnHJysry3KF/9dVXExYW5ueIpDx03uqe/HMWEmw55y4LCQzhuusG+jUuKV3hkbl1TCBQnjmtWpaznoiIiIiI1AK+Tli0wXtx7dvdD2uMOQZsAByAw1pb6xa+M8aMAFYCPwFDrLWHfNT0ElwJi/5UMGFhrT1Q2vaCX5KGhoYSHh7utT0gIMAzr37+l+J1RdOmTWusr8zMTH7+85+TmJjIrbfeSkBAQJGf1/PPP89LL73EsmXLaNeuHb/73e8YPnw4u3bt8voyrU2bNixbtox+/fp5yv73f/+XBg0acPz4cU/bAwYMYM2aNV59rV+/njZt2rBhwwYmTJjg2X/9+vWMHTu2zp3D+io3+8ItxJENQjyJqsowxhAQEFDkd1d8LywsTD/nOkjnrW4JDb7w2jjRuavlQkND/R1CVewDupZWwRgTDFwFpNRIRCIiIiIiUmU+/fbTWnvQWvumtfYea21HoC1wN5AMZAC/Al4CdhhjjhhjVhpjHjTGdPFlHJVhjLkeWAUcAwZba3f7sPn8CYIjfdhmvZeQkMDkyZMB1wiFadOm0apVKyIjI+nduzcOh8NTNz09nVGjRtGqVSsiIiLo0qULf//738vd1/Dhw5k1axa33HJLsduttSxYsIAnn3ySm2++ma5du/LXv/6VH3/8kdWrV3vVHTt2LMuXL/daaHTp0qWMHTvWq97AgQNJSUnh8OHDnrL169czY8YMr2Pbs2cP+/btY/DgweU+Hqle2Zl5ntehEdUxUE1EpG4KDAAnrmnyTJ6my5Nq9T4Q657KtSQPAc2ANb7s2BgzxhizxBjzhTEm2xhjjTHjSqj7tHt7SY/YEvYbaoxZb4w5Y4w5bYxZZ4y5xpfHISIiIiJSG1XrN23u0QFvuh8YYwqOwBgE3Arc4t6Wbq31y/yy7mTFW7gW7htsrfX1CpG93c97fdxupf300v/hPJNTo30GNAzh0ofiK7Xvgw8+yK5du1i+fDkxMTG8/fbbDBs2jK+++opOnTqRlZVFjx49mD59OlFRUaxZs4a77rqLDh060KtXryrHvmfPHg4fPswvf/lLT9kll1xC79692bx5M3feeaenvEePHsTGxvLWW28xZswY0tLS2LBhA3/605949tlnPfV69+5NcHAw69atY/To0ezatYvMzEwSExOZPn06e/bsoV27dqxbt46wsDD69u1b5eOQqrMWzme5EhYBAYbg0MqPrhARqW8CAiDXQIhVwkKq3VxgHLDYGHMFsMJdHmmM6Y5rlPcUXDcOvezjvmcBl7nbPuR+XZZlFP9Z4GThAmPMGFzr4B3FdeMXwB3Av40xt1trV1Y4YhERERGROqJGbw221u4H/gr81RjTCtfoi6lANNCkJmPJZ4wZjitZcQJXsqLUIePuoeUdgPPW2tQC5T8D0qy15wrV/xnwvPvt//gy9qpwnskh73TNJiwqKy0tjaSkJNLS0oiJiQFg2rRpvP/++yQlJTFnzhxatWrFtGnTPPs89NBDfPDBB6xYscInCYv8URCXXnqpV/mll17qNUIi34QJE1i6dCljxowhOTmZESNG0KxZM686kZGRdO/enfXr1zN69GgcDgcDBgwgNDSUfv364XA4aNeuHQ6Hg759+9b1aRvqjewcCLCuL+FCIoIqtXaFiEh9lmcACwHOMquKVJq19pAxZiSuEdL/jWs0hQVucz8MrmTAr6y1x0poprLuAVKstfuMMTOA58qxT7K11lFWJWNMY1wj0o8B3fOnhzXGPA/8H/CKMeYDa+2ZSkcvIiIiIlKL1VjCwhhzKa6RFYPdj475m9zPPrsNzxhzDzDA/TZ/uql7jDEJ7tefWGtfcycT3gZCca2tMaqYLx/3WmuTC7xvBXyDa97c2ALldwJTjDEb3NvOAp2BEUAw8Jy1dkMVD81nAhqG1Jk+v/rqK/Ly8ujcubNXeXZ2Nk2auPJceXl5zJkzhxUrVnDw4EFycnLIzs4mIiKiynFXxpgxY5gxYwa7d+8mOTmZRYsWFVtvwIABvPvuuwA4HA4SEhIAGDRoEA6Hg/Hjx+NwOLj33ntrKnQpQ16O8cylZ4O1poiISGF57v9KBTg1wkKql7V2gzHmSuBhXP/nbo9rytv9wL+Audbag9XQ70e+brOAXwONgKcKrmVnrT1gjHkZeBrXCPW/VmMMIiIiIiJ+U20JC2NMU7wTFHH5mwpU+xZY5344fNj9AGBsobL+7ke+14AWuJIV4Eo4FGc9F4Zil2YdcDkQDwwEInDdGfUesNha+2F5Aq8plZ2ayR8yMjIIDAxk27ZtRRY3btCgAQBz585l4cKFLFiwgC5duhAZGcnkyZPJyfHNKJIWLVoA8NNPP9GyZUtP+U8//cTPf/7zIvWbNGnCDTfcQGJiIllZWQwfPpwzZ4reCDdw4EDmzZvHwYMHcTgcnlEigwYNYsmSJaSmprJ//36GDBnik+OQqnFaCHS6/oQ5gYYNaj7xJyJS2zkDDeRBkPIVUgOstT8BM9yP2uxqY0xvXP+FSAE+stZmFFMvwf1c3GeHD3AlLAZRgYSFMaZ1GVVa5L/IzMz0WodNROoX/X5LQboeJJ+uBSmoItdDdV07Pk1YGGNu5UKS4oqCm9zPP1AgQWGtLTqXjg9Ya8fhmtO2rHoOvBMo5Wl7b3H7WGvX40puiI/Fx8eTl5fHkSNHGDhwYLF1Nm3axM0338yYMWMAcDqdfP/991xxxRXF1q+odu3a0aJFC9auXetJUJw+fZrPPvuM+++/v9h9JkyYwIgRI5g+fXqRREu+Xr16ERISwuLFiz3rcAD07NmTo0ePsnTpUiIjI30yrZVUXU4OF0ZXBBkCAjQdlIhIYdb9hzLIuv49DgjQaDTxPWPM1cBha+33ZdTrBLSsBSOdZxZ6f9IY81trbeHEQyf3c3HT1KYUqlNe+8tbccOGDTRt2rSCzYvkq9EZp6USPvywpu6j1LVQF+h6kHw1dy2ArofaryLXw7Fjvp551cXXV8lKXFM75X+Lt5cLCYp11TEkW+q/zp07M3r0aO6++27mzZtHfHw8R48eZe3atXTt2pXrr7+eTp06sXLlSj799FMaN27M/Pnz+emnn8qdsMjIyOCHHy6stb5nzx62b99OdHQ0bdu2xRjD5MmTmTVrFp06daJdu3b87ne/IyYmhpEjRxbb5rBhwzh69ChRUVEl9hseHk6fPn146aWX6N+/vyexERIS4lUeHBxc/h+YVJu88xemgwqN0DkRESmODXQtYhGAITvHSXiYEhZSLRxAEpBYRr1HgQlA8XePVL8v3f07cC3Q3QK4AXgGSDbGnLTWvlOg/iXu51PFtHW6UB0RERERkXrH1wmLg8DHXEhQ7PNx+3KRSkpKYtasWUydOpWDBw/StGlT+vTpww033ADAk08+ye7duxk6dCgRERFMnDiRkSNHcupUcZ/1ivriiy8YPHiw5/2UKVMAGDt2LMnJyQA8+uijnD17lokTJ3Ly5EkGDBjA+++/T1hYWLFtGmPKdYdaQkICGzZs8KxfkW/QoEGsW7fOKy7xH2stge6J2S0QFaXpoEREitOhRQPSU93TIOZq5W2pVrV+qKO19u1CRXuBl40x3wD/BmYB7xTez8falLG9BbAV4Oqrr6Z167JmkBIpweaP/R2BlOG6666rmY50LdQJuh4kX41dC6DroQ6oyPVw4MCBsitVgk8TFtbasv4zLFJuDofD8zo4OJiZM2cyc2bh0fQu0dHRrF69utJ9JSQkYG3pk20bY3jmmWd45plnSqxTWhuNGjXybHc6L3yB89RTTxV7XE899RRPPfVUWaFLDTmTcd4zusIZaAgK1B3DIiLFaRARTLr7tTNXC1mI3zUGsvwdRGHW2rXGmFSgizEmylqbP3oi/26bS8Dzq5QvqlCd8vZV6idJYy7kfcLDwwkPD69I8yJSh+j3WwrS9SD5dC1IQRW5Hqrr2tHEYSIi5ZB59rxnLomQCP3pFBEpSVDIhYRu7vk8P0Yi9Y0xpm2hogbFlOULAq4ErgNSqzWwyjsGdAQiuDDdUwrwC1zrVBROWJS2voWIiIiISL3g60W3Y6qyv7X2R1/FIpIvLS2t1LUsdu3aRdu2JX3WFYG8PCfmvOsuYU0HJSJSusDgAgmLHE0JJT61F9c/xfl+5X6UxgBvVldAlWWMicSVUDmLK3GRbz0wCleiZUuh3YYWqCMiIiIiUi/5+jbhA3h/iKgIi0Z8SDWIiYlh+/btpW4XKc2pMzme6aByAyyBAbV+ymwREb85lZPref3T8UyatGrgx2iknknjwmeNtsA5vL/sLygH12eTt4BXqj+0oowxDYGW1trvC5WHA38BGgJJ1trcAptXAM8DDxljluZP52SMaQ08iOt4C6+LISIiIiJSb1RXgqAy3+bpG0CpFkFBQXTs2NHfYUgdFlDgDuHAEM3HLiJSmn2nswhzv95/7CxX0Myv8Uj9Ya2NzX9tjHEC/7TWTqjpOIwx9wAD3G+7uJ/vMcYkuF9/Yq19DWgCfGuM2Qp8AxwGLgV+CbQGvgIeKdi2tfaEMeZB4A3gP8aYf7g33eFu7w5r7ZnqOC4RERERkdqguhIWnwNLgb/rP9S1Q1kLSotI8Zx5TnKy3HOwGwj14WxQ+b+XBRe7FBGp64IKTAmVlZVbSk2RKhkP/OCnvgcAYwuV9Xc/8r0GHAcWA72AEbgWAM/ElbxYBLxsrc0s3Li19k1jzDHgcVzHaYFtwCxr7Ue+PRQRERERkdrF1wmLO4AJwLVAT2C+MeYt4HVr7QYf9yXlEBwcTG5uLnl5eZw8eZJGjRr5OySROiU7MxfciYWAYIuvcgsnT54kL8+VCAkK0mx4IlJ/BIcEeObsyc7UottSPay1y/zY9zhgXDnqncY1jVNl+ngfeL8y+4qIiIiI1GU+/ZbMWvtP4J/uOVbH4/qP/F3AGGPMbiAJWGatPejLfqVkkZGRZGa6btw6dOgQR44c0d3ctURuruuu06NHj/o5EilNbk4ezjz3SIhAMAFVP2fWWk+yAly/pyIi9UVQSCDn3a+zszXCQqqXMaYDMAnoBzQD/tda+6h7W2+gG/APa+0p/0UpIiIiIiLlVS239boXh3sWeNYYMwTXqItbgFnATGPMv3FNGfW/1trzJbckVdW0aVPy8vI4ceIEgNeXpOI/1lpPIik8PFxJpFoqN9dJ5qkcAEygISDE9fvjy3PWuHFjmjZt6pO2RERqg5DQCwmLnGz9v0OqjzFmHK4FtUPdRRYo+I9qhHt7DpBck7GJiIiIiEjlVPs8JNbaj4GPjTFRwGhcyYthwFBgN9CpumO4mBljuPTSSwkMDOTs2bPk5uZqPYtawOl0ehIWDRo0ICAgoIw9xB9+PHQae8r1tZttEEh4eDZQ9XNmjCEoKIjIyEiaNm2qhJWI1CuhoYGcdb8+r4SFVBNjTB/gL8A54HfAeuCzQtXWA6eAG1HCQkRERESkTqixidPdc7i+Yoz5AHgR1weHS2qq/4uZMYZmzZrRrFkzf4cibpmZmXz77bcA9OjRg/DwcD9HJMX555/WcUmWK8HX+77OHNy3DdA5ExEpTUhooOf1+RwlLKTaPAoY4Hpr7SdAkRsArLVOY8x24Ioaj05ERERERCqlRm7rNsaEGWPuMsasA77Hlaw4DfytJvoXEamoHbuOepIVp8IMV8Y18XNEIiJ1Q1jYhYRFbo7Tj5FIPdcf+Dw/WVGKw0DLGohHRERERER8oFpHWLgXupsA3AE0dBdvwLV+xUprbWZ19i8iUlmOf+8l/yu36Csa+TMUEZE6xSthcV4jLKTaNALSylEvHAip3lBERERERMRXfJ6wMMY0A+4GxgOX4xqqfQB4CUiy1u72dZ8iIr7kdDo598MZGgIWy7DhHfwdkohInREZEex5HWa0RpNUm3TgsnLU64hrlIWIiIiIiNQBPk1YGGPeBka42z0PvIVrNMUHVis9i0gd8enWQzR0rbXNqYaBxLaJ8iySLiIipWt3aQO2uV/HNW3g11ikXtsC3GiMudJa+3VxFYwx/YErgTdrNDIREREREak0X4+wuBmwwBe4PhikA9HAqMKL4BXHWvs/Po5HRKTCtqzbT/6S2q1/3tSvsYiI1DVBwRdGVeRq0W2pPn8CRgJvGWPutNZuL7jRGHM5rhunLLC4xqMTEREREZFKqa41LH7hflSUEhYi4lfnc53YtLOAIRfLCE0HJSJSIUEhBRIW57XotlQPa+1aY8x8YAqwzRiTiis5MdQYswO4AggA/mit3eLHUEVEREREpAJ8nbDYgOuDgohIneTYsJ8Ip2tE2NkmwTSLDi9jDxERKcgrYaERFlKNrLXTjDHfAU/jWqsCoKX7cQyYaa39k5/CExERERGRSvBpwsJam+DL9kREalrA/rOe11f1jfFjJCIidVNAYADWgLGw78jZsncQqQJr7V+MMa8B8UB7XKMq9gNbrbW5fg1OREREREQqrLqmhBIRqXNyc/JI/b+jAISEBTJiaDs/RyQiUjflYAnFkJWl74ul+llrLfAf90NEREREROqwgLKriIhcHPZ+lc75LNf0Je27NycoONDPEYmI1E15rpn1CNCMUCIiIiIiIlIBPh1hYYyJsdb+WFvaERGpiO8/P+x53bnXpTXWr7UW59nzWgGoGjizzhOU4/rm1JlxnrxcJaHqAp23uif/nDkDXX/InAEGnBBo9YdNqpcxpjWQAMQAYSVUs9baZ2ssKBERERERqTRfTwmVYox5CXjeWnuiojsbY6KBGcB/AZE+jk1EpERHjp0jdccxAoCwhsG06ty42vu01pL1zXFOvb+H3COZ1d7fxaobrnN5YtuXfo5EKkLnre7pRmOcAZbsy07gdI/hDXT6Nyapv4wxgcAiYCIXRo2bQtWsu8wCSliIiIiIiNQBvk5YfAg8CjxkjHkbWAZssNZml7SDMSYU111R44Cbcd0ZtdrHcYmIlOpf76cS4L4R+ETTYAICCn/n4Vs5BzM4tWY32btPVWs/IiI1KcBpyP6/o9hA13fEwYDT6SQgQLOQis89CdwP5AL/D0gBzvg1IhERERERqTKfJiystbcYY34JvAj8BhgFnDfGbAe+AdKB00AU0AS4AugGBOO6+2knMMVa+5Ev4xIRKcuB7ek0cr/uO7hNtfWTeyqb0x/s5dz/HfGaAiq4VQMCLwmttn4vVnnOPI78dASA5pc2JzBAUwvVBTpvdU+eM4/z354EwGbleRIWBsO5rDwaRChhIT43DsgEBlprtdi2iIiIiEg94esRFriTDV2MMdcCDwLXAb3cD7gwNDtfNvAu8LISFSLiD3vSTnFJRh5gOBMMfX/R0ud9OLNzObP+ABkbD2LPX5gjJbBJGJcMa0f4VU0wpnpHdVyMMjMz2fLhbgA6XteP8PBwP0ck5aHzVvdkZmZy5NmtBDoNNjsPgi78Pcs4m0ODiGA/Rif1VAvAoWSFiIiIiEj94vOERT5r7b+Bf7unfOoPxAOXApcAJ4EjwH+AT0ubMkpEpLp98K/dGHceNaJTlE+nLrF5lrPbDnP6w304M857yk14EFFD2tKgb0tMkO48FpG6Ly/QuhMWTkzghYTF2XPnS9lLpNJ+RFNAiYiIiIjUO9WWsMjnTkZ87H6IiNQ6x785wSXu10Oua+ezdrO+O87J9/aQ+9O5C4WBhgZ9Y4ga0oYA3XEsIvWIM9DCebDZeQQUSMSeU8JCqsfbwBhjTKhufhIRERERqT+qPWEhIlKbbf/6KJdkuV6fCjdc9bMmVW7TWsuJt1I498VPXuXhVzXhkmHtCGqq6W1EpP7JC3ItzGOz82h+aTiZP+UAEGo0ikyqxTPADcByY8y91tpj/g5IRERERESqrt4mLIwxY4CBQA+gCxACjLfWJpdQPwp4GvgVrjlxDwH/BGZaazMq2PdQ4HGgO641O7YBs6y1aytzLCJSfdb/e6/nD2GTKxr7pM3s3ae8khUhbRpyyfXtCI29pJS9RETqtrxA63kd17Ih2787DUDD4Hr7303xI2vtaWNMX8ABpBpjtgFpgLP46jaxJuMTEREREZHKqc+fIGcBlwHHcCUfLiupojEmElgP/Bz4EPg7rjU3pgGDjDFXW2uzytOpO1HyBnAUSHYX34FrPY/brbUrK3MwIuJ7TqeTzB/O0BBwYhk2vL1P2j3j2O95fcmIdjQY2EoLaotIvVcwYREccOFvXm5Onj/CkXrOvU5eMnAVYICEUqpbQAkLEREREZE6oD4nLO4BUqy1+4wxM4DnSqn7KK5kxfPW2hn5hcaYPwDTgYfL2D+/fmPgJVxJku7W2gPu8ueB/wNeMcZ8YK3VAoEitcC2Lw7TMNf1+nRUIJe1jqpymzkHzpCdchKAwOgwGvRXskJELg5KWEgNmwncCJzAdbNQClChUdEiIiIiIlL71NuEhbX2o/LUM65vEu/B9QHn2UKbnwX+y729zIQF8GugEfBUfrLCHcsBY8zLuKacugX4a3liE5HqdfLrE57XXQe28kmbZ9Z7fvVpOKg1JlDJChG5OBRMWIQUSFhkZ+X6Ixyp/0YBJ4GfW2v3l1FXRERERETqiHqbsKiATkAM8IG19mzBDdbas8aYTcBQY0ybcnwYSnA/f1jMtg9wJSwGUYGEhTGmdRlVWuS/yM7OJjMzs7xNix9lZWUV+1pqTva5XFL/cwSA0IggEgbFlPr7U55zlpeeReZXrjU/TYNgAq6I0u+kn+l3rW7Seat7srKycBZIWKQcOul5/em3R7isa6OaD0rKlJ2d7e8QqqI58KGSFSIiIiIi9YsSFq6EBbiGkRcnBRjqrlfWB6LS2kopVKe8yv0h7LPPPiM1NbWCzYu/bdiwwd8hXJQy9gWTdz4MgOBm5/h4XbkGZQEln7O2qRH/n737Do+jOvs+/j1btOqS5d67MZhiMGDAYGwMpvcWAiGQQAjpkOSBJ6SRSvKGJE8aaQQSSui9GgzYYMAFF4wB29i4V8lWX2097x+zWq2adyXtaiX797kuXdqZOWfmXma8aOeec2764+xzc1kVS15LfZ+Sefq31jvpvPUeAz258de1e/bQ+Gfm5k3bmDNnQ3aCkn0qLy/Pdghd0V6BbelGo259PtshSAo23HF2tkMQERERSZkrkzs3xkw3xkzL5DHSoCT2u6qd7dUt2nV2Xx3Zj4hkkLVQs9kbXy4YHuryPr0BQ9/dPgDC7ii7B+qpcBE5sCROCeVLmA0vqhIWkhkPAjOMMaXZDkRERERERNIn0yMs3oj9nJLh4+zPhifZPghYDDB16lTGjh2b+YikyxoaGuJPDU+fPp3c3NwkPSSdFi3bxdYaZzRS4eA8zr74+KR9kp2zujmbabA7ASg6fginzjo2zVFLZ+jfWu+k89b7NDQ0sPKJd+PLQ/v3Z9cWp05QaUkZs2cfnq3QZB96+cjcX+JMx/qCMeaL1tqPshyPiIiIiIikQaYTFnuBbRk+Rlc1joZob+RDcYt2qe6rogv7iUss3t0Wp2a4w+fzkZeX15HdSw+Qm5ur89bNFr6+lYLY6+iYwg7/9295zqL1Ifa8t9tZ8LgonTESd15OmqKVdNG/td5J5633SBxhked2x1/bCDqHPZTP58t2CF3xEuAFjgNWGmM20f40UdZaO6s7gxMRERERkc7JdMJiOR2v2dDdktWWSFbjouW+jo71aZmw6Mh+RCRDamqDeLb4AUPIWC44r+sfUbXvbMcGnfsjBccMxF2oZIWIHHgSExaJn4KRkMoMSEbMSHjtAkbFftpi21kvIiIiIiI9TKYTFn8AnjTGnG2t7akV2dbijAKZZowpsNbWNW4wxhQA04BPrbWpFL+eB1wBzAbebbHt9IQ2IpIlTz/7CT7rjEwKDM6lT0nXppqJBiPULtjqLLig6KRhXQ1RRKRXapawSLg9HAkqYSEZMTPbAYiIiIiISPplOmGxDPgTTtLiXuBxYAPgb6uxtXZThuNp65jWGPNP4IfAD4BbEzb/ACgEfpHYxxiTD4wA6lvE/AjwK+Drxph/NU7nZIwZBnwNKAeezNR7EZHkNi7ZRWns9dRZI7u8v7rFO4jWhwHIP2IAnjLNtS8iB6aopylL4bVNr21YCQtJP2utHgISEREREdkPZTph8WnstwG+GPtpj01nPMaY64ATY4uHxX5fZ4yZEXv9lrX2n7HXvwbOB24xxhwJLAWOwhkpsRj4fYvdHwu8jjNaonF/WGv3GmO+BtwHLDXGPBzbdDnQF7jcWluThrcnIp2w4sPdlNY5N86qc2D68UO6tD8bjlI7f2t8uehkja4QkQNX4ggLd6TpdTSs2XhEREREREQkNZlOWGwme3PGngh8vsW6abGfRv8EsNbWGWNOBn4MXIwzxHw7cCdwu7W2zREhbbHW3m+MKQe+B1yL8/7fA35mrX21c29FRNJh7vPraSwv2ufQPrhcri7tr375biJVAQByDy7DO6ggSQ8Rkf1Xs4RFYpJCIyxEREREREQkRRlNWFhrR2Vy/0mOfQ1wTQfaVwE3xX6StX0DZ9RIe9tfAl5K9dgiknn+hjDRT2sBQwTLRedP6NL+bNRSM6+ptE3RjOFdjFBEpJczEHFZ3FGDK6HQ9oiSvCwGJfs7Y8zRwCXAQUAxbf+Nbq21s7o1MBERERER6ZRMj7AQEekRnn95HXlR5x5Gbb8cBg/s2miIhg8rCO92Bl/ljC7GN7K4yzGKiPR2UbeTsLDBCC6PIRq25Jh2n/EQ6RJjzG9wHjZqvMgszRMWjcual0xEREREpJfo2nwoIiK9RPWqyvjrI6YP7dK+rLVUz9sSXy7W6AoREaBpWqhoQxhvjhuAcFBTQkn6GWMuBW4GtgI3AHNim04Hvga8g5OsuAM4JRsxioiIiIhIx3VLwsIYc5Ix5hFjzBZjTMAYc3fCttOMMb8wxgzqjlhE5MBTs6eBhs11AOQUeznjlFFd2l94Qw2hzTUAeAcX4JvQp6shiojsFxoTFjYQweN1HnQPByPZDEn2X18CIsAsa+0/cOrPYa19xVr7F2vtNODnOEmNquyFKSIiIiIiHZHxhIUx5vvAGzhzyw4BvDQfql0F3AJclOlYROTA9PE727GxySAmnzwMt6drH33+t3bEXxfNGI7RdCciIgBEPLEPWwvEPhvr/eHsBST7syOBhdbatfto8yOcRMb3uyckERERERHpqowmLIwxZwI/wRmqfRkwsGUba+0iYDdwTiZjEZEDk41aPlqw3VkwMPH4wV3aX36tm9D6agDcfXPJO7RfV0MUEdlvNI6wANjrDwIQbFDCQjKiCNiUsBwEMMYUNq6w1kaBhcC07g1NREREREQ6K9NFt78JBIAzrbWrgPaeRF4BjM9wLCJyAFr47jZq9jQAMOKQMorKcru0v0Fb8+Kvi6YPw7g1ukJEpFFiwsLjdmodezBEwtEuj24TaWE3UJqwXB77PQr4IGF9AVDcPSGJiIiIiEhXZfqb4zHAosZkxT7sBlTDQkTS7rUX18dfD5rctdEQPr+L0j1eAFxFXgqOajVoTETkgJaYsMhJSOjWNYSyEY7s3zYAIxOWl+FMO/vZxhWxGnknAxu7NTIREREREem0TCcsCoAdSVtBSTfEIiIHmO076yjc7UxJ4ndZDj2ma3nRQdtyMbESPEUnDsN49bElIpIo2k7CorZOCQtJu7nARGPMqNjyi8Ae4BZjzKPGmDtxpoMqAB7PTogiIiIiItJRmZ4SaicwLoV2BwGbMxyLiBxgnn56De5YgsE1upC83M5/5EWqApTt9gFgct0UTNWgMBGRlhJHWHjdLiACQG29EhaSdg8BQ4DhwAZrbZ0x5trY+osT2r0H/DIL8YmIiIiISCdkOmHxFvAZY8w0a+2CthoYY87BSWr8LcOxiMgBJBqNsveDvfFJq085a0yX9ud/awcu6yQ/co8ZgKsLyQ8Rkf1VxJMwwsLVNMKivl6FtyW9rLUfAde3WPesMWY8cC5QBnwEPGutjWQhRBERERER6YRM33G7E7gceMIYcwPwXOJGY8wZwD+BEPDHDMciIgeQN9/dRrEzGxSVBYbJk/p3el/hqgCBZU4tz4jLknucaleIiLQlcYSFLyFh4fcrYSHdw1q7DT0IJSIiIiLSa2V0AnZr7VLg20A/nLljKwELXGyMqQSeBwYA37bWfpjJWETkwPLuq031NUccPaBL+6qdtwUizk24XYMbcOVrdIWISFvaT1hoSigRERERERFJLuMVY621/wecBSwG8gADFAHFwErgPGvtnzIdh4gcOPZWNeDb3gBA0FjOOyeVUjpti1QHqF203Xntsuwc3JCWGEVE9keJCYuchL8yNcJCREREREREUtEtjwlba18GXjbG9AVG4yRKNltrt3fH8UXkwPL0M2vxxupNhIbmUVLk6/S+auZtgbBzA273oAYiXpukh4jIgSuamLAwTSMsQkGVEJCuMcZEcEZqH2KtXRNbTpW11mp4pIiIiIhIL9Ctf7hbayuAiu48pogceLYtLack9nra7JGd3k+kJkjtwh3OgsfFziEaXSEisi+JIywGFeSwAj8AhwwoylZIsv8wsZ/E5Y70FRERERGRXiCjCQtjzDXAq9baLZk8johIox2fVlHid26YVfng+KMHd3pfNfO3QDgKQO7R/Qmb8rTEKCKyv0pMWLijTevDwWgbrUVSZ6117WtZRERERET2D5n+Q/9fwEZjzMfGmD8ZYy4wxhRn+JgicgB7/7Wm/OhZF47H5ercx1ykNkjdu7FZ6zwu8qYNSkd4IiL7tcSEhSvalKTQlFAiIiIiIiKSikxPCXUvcAowIfZzIxA1xrwHvBr7WWCtDWU4DhE5ANTuDbDuvV0A5BZ4OfSEIZ3eV82bW7Eh52Zb4dRBuAq9aYlRRGS/5gK8LghFMeGm5EVYCQsRERERERFJQUYTFtbaLwAYY8YDpwKnATOAY2M//wv4jTFvAa9Ya+/MZDwisn/7YN4WolHnBtmk6UPw5Lg7tZ9IXYi6d7Y5Cx5D0cnDCKLpTEREUmF8bmwoik1IUqzeWs2ULMYk+x9jjAs4GpgE9MUpyL0HWAm8Z621++guIiIiIiI9VLcU3bbWrgXWAncZYwzOl4tTYz/TgNmx10pYiEin1NYFWfjqJjyAy2U47ORhnd/XW1uxsfnWC44ZhLvYB35/miIVEdm/GZ8LWwuEmhK92yvqsxeQ7FeMMV7gf4CbgD7tNKswxtwJ3GmtDXdbcCIiIiIi0mXdkrBowQsUxX6KE2IwWYhFRPYTjz2xGk9s+hH/IB8Fpb5O7SdaH6L27djoCrehaMbwdIUoInJAMD5ndJsr3JSwiIQ0Sk26zhhTADwPnETTd4cgzsgKF1AK5AD9gF8ApxljzrXW6qkDEREREZFeolsSFsaYyTjTQZ0KnAjk4nzJqMb50tFYz0JEpMOi0SjbF++mOLY89YyRnd5XzVtbsQFnGpOCowfiKelc4kNE5EDVmLAwgBuIANGQZueRtPgNMB1oAP4I3A980Dj9U2yaqEOBzwFfBWYC/w/4WlaiFRERERGRDnNlcufGmIeMMbuA94Bf4dSvWAL8GGcqqL7W2vOttX+01n6UyVhEZP/18tyNFAed15X5hmnHDu3UfqL1IWoXJIyumKnRFSIiHdWYsADwxp6Bj0Y0wkK6xhgzAvgSzgNP06y1t1hrVybWqrDWRq2171trv4vzkFQtcIMxpvPzRLYdy1XGmL8ZY5YYYwLGGGuMuWYf7YuNMb81xmyMtd9gjPl/xpjCdtq7jDFfN8asNMb4jTG7jTH/NcaMSef7EBERERHpiTKasAAuwymC9z5wEdDHWnuytfan1tp3rLWRfXcXEUlu6dxN8dcTThrS6f3Uvr2taXTFlIF4SnO7HJuIyIHGlZCw8DRO2qMpoaTrroz9vtVauyxZY2vtUuBWnIE+VyZp3lE/w0mejAS276thbBqreTg1Nz4GfgesBr4DvGaMaeuPjb8Bf8AZqPQH4CWc71KLjTHj0/QeRERERER6pEwnLGpw/tA+AngAeMIY821jzBEZPq6IHCBWfrSb0konyVDnhvPPHtup/UQbwtS8FRtd4VLtChGRzjLNEhZOxsJGNCWUdNnxOFNB3dOBPvfE+pyQ5liuA0ZZa/sDf03S9n+AycCvrLWnW2tvtdaejjP6/BicREacMWZmbP/zgaNiI0k+B1wAlAF/SucbERERERHpaTKdsCjDmfrpRzhTQTXOI7vUGLPTGPOgMebadA/TFpEDx0tPfhJ/XXRYKTk5nSvNU7tgG7YhDED+UQPwlGl0hYhIZ7Q1JRRKWEjXTQKWWWsDqXaw1jYAS3HqWqSNtfZVa+3GZO2MMQYn+VAL/LTF5p/G1l/XYv31sd8/sNYGE475IvAGMDs2PZaIiIiIyH4po0W3Y1M+vRP7+akxJh+njsWpwCzg8tgPxpg11tqDMxmPiOxfdpXX491UDxhCWD57ycRO7ScaCFPz1lZnwQXFql0hItJpxpfwPIxxEhVGCQvpujKc5ENHbcNJdmTDeGAI8LK1ti5xg7W2zhizADjdGDPcWrs5tmkGUAcsaGN/L8e2nwzcl2oQKTwcNqjxhd/vx+/3p7pr6SV0TqWRrgVJpOtBGulakEQduR4yde1kNGHRkrW2HngBeCE2LdSVwNeAXGBCd8YiIr3f449/jBfn8d3giHwG9Mvv1H5q396O9cdGV0wegKdvXtpiFBE50CSOsHC7DGBxqYSFdF0RznSzHVUHtFncuhs01ptY2872tcDpsXabY/UuBgMftFPrr3E/Ha1jsTl5E8f8+fPp169fB3bdrV8npZPmzJnTTUfS9dDT6VqQRLoepFH3XQug66Hn68j1UF5enpEYuu0qiT3ZcxpNoyv6N24CQjijMEREUhKNRAl+VB3/EDv9gnGd208gQu2bW5wFA0UaXSEi0iWJCQuf20lY5LsyPQupHAC6chFl6wIsif2uamd7dYt2HW0vIiIiIrLfyWjCwhhzAU6C4lSangRyvrnCB8CrsZ95sdEXIiIp+XRFOZ4G55Fd15A8jjikf5Iebat7dzvR+tjoiiP64+3fuVEaIiLiSExYlOR5oT5AvlsJC0mLwk7Ub8jW6IqeJNnTGIOAxQDTp09n2LAOlBd857XORyXdZvbs2d1zIF0PPZ6uBUmk60Eaddu1ALoeeoGOXA9btmzJSAyZHmHxRMLrzTQlKOZaa3dl+Ngish9b8VrT7AbnXHJQp/YRDUSomZ8wuuIU1bAUEemqxIRFjsuZti8UbGt2G5EOuzj201s0jpRob0REcYt2HW2fEmvtPr9JOrXBHXl5eeTlaWrM/Y3OqTTStSCJdD1II10Lkqgj10Omrp1MJyyeAl4BXrXWtjd3q4hIh+zaWM32T5zv6n0GFzDs4D6d2k/tgq1E60IA5B3eH+8Aja4QEemqxISFJ5awiIYt0UgUl0ZaSNeY5E3alK2q78lqTjSrcRErxL0dGG2McbdRxyJZTQwRERERkV4vowkLa+1Fmdx/uhhjrgHuSdLsNWvtrCT7mQG8vo8m11pr7+1IbCLS2vzn1sdfH3HKsGZPBqYqWh9qGl3hguJTNbpCRCQdEhMW3oSP53AoSo4SFtJ5o7MdQCesBbYB04wxBdbausYNsQLb04BPrbWJRbHnAZ+JbZvfYn+nx363XC8iIiIist9QaXbHcuD2drZdAkwCXu7A/uYBb7RzHBHpgo2bq9m2sgI3BuNzMWHqoE7tp2b+VmyD8+Bi/lEDVbtCRCRNEhMWgWA4/nrXXj/DBhdlIyTZD1hrN2Y7ho6y1lpjzD+BHwI/AG5N2PwDnPoav2jR7e84CYufGmNOs9YGAYwxZwIzgDm98b+FiIiIiEiquiVhYYw5GPgmMBMYGlu9FXgN+IO19qPuiKM91trltJFMMMbkAF8DwsC/O7DLN6y1P05HbCLS3FOPrcYTmxEiODIfb447SY/WIjVBahdsdRbcJvujK/ZugA0LwEZbbyscABNOb77u4+ehfk/y/Q4+AgYf3rQcaoCVj6YW00FnQUHfpuU9650Yk/H44PDLmq/b8JbTP5k+o2H0Sc3Xvf8IhBuS9x05DfqObVqu3wMfP4c7GGJExSoA3CvKIcfbuu9hl4I3Yd7FHSth27Lkx8zrAwef23zdmjlQuyN534GTYOiUpuVoFJbfn9BgH6OGxp0KxYOblis3w/o3kh/TGDjyqubrNi+C3auT9y0ZCmNPab5u1VMQqEned9gxMGBi03JDNXz49D67uENBRlSsYlvpMc037F7txJyMrxAmXdh83brXoSqFgmD9JsCIqc3XLX8QoinUYBhzMpQmfJ7U7IS1c5L3AzjiCnAn/Fm2bRns+CB5vx7yGWH2bmBExTwCnmKMZ0Z8vTthIp7a2BR8Ir2dMeY64MTY4mGx39fFRlsDvGWt/Wfs9a+B84FbjDFHAkuBo4DZOIWuf5+4b2vt67Ekx3XAUmPM88Bg4HJgD/D1DLwlEREREZEeI+MJi9h0S38FvDS/AzM+9nOtMeYGa21HEgLd5QKgL/CUtXZnlmMROeDV1ocIra3GgyGC5byLO1dsu+b1zdiQkxwonDoYT2luOsPsmN1r4J+nQqCd+pkjTmh9M3Ler2H78uT7PuX7zW9GBuvgma+lFtf1rzdPWGxZklrfvLLWCYul98H7DyXve9ilrRMWL38P6nYn73vBX5snLKq2wDNfJwc4snHdpnb6TjijecLik1fh1R8nP+bAw1onLN7+A2x4M3nfad9snrCwEXgmxXtQVz/TPGGxc1Vq58blaZ2weP8RWPyP5H3Hn946YTH39tQSUWf+v+YJi/qKpPE2nreKghb/xje8Cc9/O/kxS0e2Tlgs+gesfj5536O/0Dph8dxNqSXOLn+gecKi4pPU/80ddknzhMVHz8Kbdybv10M+I1zb3uPITXcDEFoIxnsaNhQlMUVY7w8jsp84Efh8i3XTYj+N/gnxuhQnAz/GKRg+E9gO3Ancbq31t7H/G4CVwJdwHvqqBZ4EbrPWrkvf2xARERER6XkymrAwxkwB/gG4geeAu4HGP7LHAF8EzgX+YYxZZa1dksl4OuG62O9/7rNVa+ONMd8C8oAtOPUvtnYmAGPMsCRN4vPhBAIB/P62vvNIT9PQ0NDma9m3Rx5dQ17UyXvW9vcyeEBOh6/5SGWA2oXbnQWvC+/x/VPaR0bOWUMVvv9+Bld7yQogEo0SbBGfz0ZJZRb4UChMOLFvg5+89ps3Dy0QwCb0dQeD5KTQzwINLeL1RsIp/c8mHIkQatE319qUKqwGQ0EiCX1NIECqaSh/QwO4m/p6QiHaGIfRStRGCbSINycaJZUxP6Fwi3MTCaV8bgLBINGEvq5gAF8K/bpybiLRSBvXoU3pOuzKuYHm/97coVBK12HU2jbOTSSlcxMOh1tfh6RW6bez5wZwPocS7ud7wuGUrsOe8hkR9dc2nZuNb0PO6dAiYVFZWa+/U3qYQCCQ7RB6JWvtNcA1HWhfBdwU+0mlfRT4Q+xHREREROSAkukRFt8FXMAXrbUti1p/ADwTG4HxL+DbwBUZjidlxpiRwCychMNLHez+2dhPo7Ax5o/Ad621Kcwp0czm5E0cCxcuZN06PXTV28yfr7qJqYhGYdviAvrEbsMVDqlizpwUp1pJMPKTAvpFnFuI2wfU8d7br3d4H2k5ZzbKcet/y8Bq599sde4w1vc/rVWzBm8pO1u8z8F5M8gZPqVV25Yqd+VTldDXFQ0yfPi1KYW3feknBL274ssFgXr6pdA3arxsbhFv38B4CoZ/IWnf+uAAylv0Hdb/YlzR5NPIVKxvoG5bU19vuIYhKb7XLW++S8TVdFu5uD6PPin0DXoK2d4i3oGeqeQOn5C0b/XefuxN7GujjEwx3p0rt9CwuqlvXrCcASn0tRg2tYi3rHYoRSn09dOXXS36Dik5E29h8pvPe7YYaiqa+noifoam+F4D3uJm/96K/JayFPqG3XlsbRFv/+hh5A8f3E6PJjV1Q9jTou+IIVdi2pqyrYVdq/fg39DU1xeqZFCK73XTa29gTVNKpbSuDyUp9O05nxEuTo299ldsxR8JkIsbj22aE2r58g+o2bMipf1L9ygvL892CCIiIiIiIs1kOmFxErC8jWRFnLX2XmPM14DpGY6lo67FSbbc24Ekw26cYnrPARuAAuB44A6cJ6osTmJGRDpo/RYPfcJOsqI8J8LkIclvHrbk87vou9t5BjjsjrJzSPZGt7hsmKC7AICgu4CFY26i3tc/pb7bS4/u1DGjrhw29pvZqb51voHU+QZ2qm9F0cFUFB3cqb5byqYlb9SGkKeo0++1On8E1fmdq2uys2Ryp/phXJ2O15/Tr9N99xROYE9h8gRLW7b1Oa5T/cLuvE7HW5M3lJq8ockbtmF38WHJG7VjU9+TO9Uv4C3t9HutLBhDZcGYTvXN1mdEvbeM/NAecsI1RGLFKxJHxETCqYxTERERERERkQNZphMW/YBUHl/+mKaCdVlnjHHhJCwszuiPlFhrVwGrElbVAU8bYxYC7wPfMMb8ylq7q80dtG14ku2DcAr2MXXqVMaOHZukufQEDQ0N8aeGp0+fTm5uFmso9BIf3L6QXJwkxbgTBzN7dsev9ZrH1hFkLwBFJw9n1knHptw3I+fMnk1o0V+wg47gxJEnJm8vHaZ/a72Tzlvv09DQQPDjIvJDe/BF6ygZ0IdwXQ0uDG4gAgwfPorZszuXhJHM0MhcERERERHpaTKdsKgEUnlMdQTQ/iTu3e9UnJjmWms/7erOrLU7jDFP49TEmAo824G+W/a13ZimpxV9Ph95eanOPi09RW5urs5bEouX76C00klW1Lkt110wEV9Oxz6+gttqCa5ykhWuQi99Th6Jy5fKjPatpfWczfhOevYjSenfWu+k89Z71HgKATDRMJ5cEy/J4TEQsRCOGJ3LHsbnS7XKioiIiIiISPdIpSZjVywGTjDGnNJeg9i2acDCDMfSEZ0ttr0vjZMEF6RxnyIHhFcfXxt/XXpk3w4nKwCq52yMvy6aMbzTyYouqd0Ne9Z3/3FFRLpB0F0Uf+1yN9We8caerQgGOlrGS6R9xpgfGmNSKmItIiIiIiK9R6YTFn+MHeNZY8yvjTGTjDH5sZ9DjTG/oWm0wR8zHEtKjDF9gfOBPcCTadz11NjvDWncp8h+b++OOorLnRtffpflis8c0uF9BDZW0/DxHgDcJTkUTk1eeDftwkF45Gr4+0xY91r3H19EJMOCsREWAMbVlLDwxEaDBgPhVn1EuuCHQOcKzIiIiIiISI+V0YSFtfZl4OdAHk6x6feBmtjPCpxC1HnAz6y1czIZSwd8DqdG5P3W2kBbDYwx/YwxE40x/Vqsn9JO+28CM4G1xOpNiEhq3ntxo1NNBph+7hiKCnP23aEFay3VL2+ILxfPGonxZjpX24YX/wc2vQ0NlfD01yGUvYLfIiKZEPQkjLAw/vhrT2yExaiS/O4OSfZvuwB/0lYiIiIiItKrZLqGBdbaHxhjFgDfAU4AGitnBoC3gDuttS9lOo4O+GLs976mg/oa8CPgduDHCesfN8aEgCXAFpzpn44DjsSp53GVtVbzIYikqGp3PWsW7wTAV+Bh8sxkNehbC3xSSWC9UyLH0y+P/CkD0hpjShbfDe/d47x2++Cy/4BXRYRFZP9SmT+aTWUnMXjcoZhoCVAPNE0JVerL+J+dcmB5Ezg220GIiIiIiEh6dcs3x1hC4iVjjBvoG1td0dNu3htjjgUOBRZZa1d2Yhd3AacD03HeZxTYCPweJzGzzwLaItLcey9uxEad4RWTZw0nJ7djH1nWWqoSalcUnzoC4+7m0RUbFjijKxqd+38wrM3BWCIivdrOksnsLJlM/5mzca2oBD4BmkZYhIPRrMUm+6WfAEuMMT8DfmCttdkOSEREREREui4jCQtjzDjgImAUzkiK5cAj1lo/zvDtHslauwgwKbT7Mc1HVjSu/xXwq7QHJnIAWruhklVvb8cFeHPdHDZjWIf30fDhHkKbawDwDson7/D+aY4yicpNTt2KaGze9uO/BpOv6N4YRESywJXrjr/2YgBLONijnlOR3m8K8B/gf4GLjTFP4dSKa3OaKGvtf7otMhERERER6bS0JyyMMd8Cfg24W2z6qTHmLGvtB+k+pojsf5588CMKYq+Dowvw5Xs71N9GLVVzNsSXi2ePwriS5iPTJ1gPD30W6sud5TEz4dTbu+/4IiJZZHxNfwY2jrCoqg1mKRrZT92LU+XKAAcB/7PP1k5yQ0REREREeri0JiyMMScCd+J8cagDVgPFwBhgGE6Nh4OttZoTQETatWFzNb5N9YAhaCxXXHFwh/fhf3834Z3O/Ok5w4vIPbgszVHug7XwzNdhR2xmuT6j4ZJ/gVvzt4vIASAaweUKxRcbExarNlVyfpZCkv3Sf3ASFiIiIiIish9J992zr+EkK/4NfM1aWwdgjDkceBwYB5wBvJDm44rIfuSxBz8kLzY7mx1byKABBUl6NGcjUapeSahdcfoojOnG0RWb3oUPHnNe5xTCFf+F/G5MmIiIZIGJhjn9g2+Qs6yO0MALgC8CTUW3bVj3liV9rLXXZDsGERERERFJv3RXnz0e2ALc0JisALDWvg98EyeZcVyajyki+5Et22vwfOp8fISwXHblIR3eR917O4lUNADgG1dK7rjSdIaY3Ijj4NJ/Q8EAp8j2gI6PEBER6W2sy4PbhjBYXMGd8fWexoRxRAkLERERERER2bd0j7AYCLxgrW1rkuK3Yr8HpPmYIrIfeeSBj/DFRleERxUwbHBRh/pHAxGqX90UXy6ePTKt8aXEGJh0AYyb5YywEBE5QAQ9RXiCAUzDtvi6ximhjBIWkkHGGUrZN7a4R1PQioiIiIj0TukeYZEDVLa1wVpbndBGRKSVHbvqMOtqAAhjueTKjo9MqHljM9FqJ2eae3AZvhHFaY2xQ3xFTvJCROQAEXQ7SVqXf3t8nRIWkknGmFnGmJeAWmBn7KfGGPOiMWZWdqMTEREREZGOSnfCQkSk0x5+8ENyrHNnKzA8j1HDSzrUP1zhp2b+FmfBbSg9e0y6Q2xfyA9r5nTf8UREeqCAxxkVZwjEMxXuWMLCpefdJc2MMT8E5gCzgTyc6WdN7PXpwBxjzPezF6GIiIiIiHRUuqeEAhhnjLm6M9uttf/JQDwi0guU7/UTWV2NB0MEywVXdHx0ReVz6+NzpBedNBRPv7x0h9m+eb+Gt34LB58LZ/0GigZ137FFRHqIoKdpGjxXjiEatnhjI81cUY2wkPQxxpwK/BgIAn8H7gbWxTaPwan6/iXgdmPM29ba17IRp4iIiIiIdEwmEhbTYj9tsfvYbgElLEQOUB/N34YvNrrCPySXCWP6dKh/w+o9NHy0BwBXcQ5FM0ekPcZ27VgJb//Beb36JZj5fSUsROSAFPQ01R1yeS1RwBsbYeFWvkLS6xs43x/Ot9a+3GLb+8A3jTHPAy8C3wSUsBARERER6QXSnbDYhPPFQUQkZcGGMGvmxwq0GrjkqkM61N+Go87oipjSM0fj8rnTGWL7ohF45usQDTvL078DAyZ2z7FFRHqYxBEWxhMG3Hhjyx4L1lqMavtIekwF3m4jWRFnrZ1jjHkbOL77whIRERERka5Ia8LCWjsqnfsTkQPDB/O30lAXAmDCsQMZ28HRFbVvbyO82w9Azshi8ib3T3uM7Vr4V9i2zHnd7yA48abuO7aISA8TdCeMsHCHADcuY3BSyIZAMEKuLxMDfOUAVApsTKHdRuDYzIYiIiIiIiLpoqLbIpJV4WCE5a9schYMTDljVIf6R2qCVM9t6l963tjue3p370Z47WfED37eH8Hj655ji4j0QIlTQhnTEH/tafxYjmggrqRNOZDKkMaJsbYiIiIiItILKGEhIln14H8/xF/jjK4Ye+QAygYXdKh/1UsbsIEIAAXHDCJnaGGSHmliLTx3E4TqneVjvggjpnbPsUVEeqg9heMJXHQvXPsSrgFNtYQaExaRUDQ7gcn+aAFwpDHms+01MMZcCRwFvNVtUYmIiIiISJcoYSEiWVPvD7Fj0a748sRThnWof2BTNfXv7QTA5Hoonj0yrfHt08pHYd1c53XREJj1o+47tohID9Xg7UN0/Bkw8nhMYVMC2hsb+RYORrIVmux//h9O7bz/GGMeMcacbYw5JPZzjjHmMeDfQAT4TVYjFRERERGRlGkSYRHJmv8+/BEFEecmVlWZh1HjSlPua6OWymfWxZdLThuBuzAn3SG2rb4cXrylafnsOyG3uHuOLSLSS7gSalU0jrAIBzXCQtLDWrvYGHMj8GfgEuDiFk0MEAa+aq1d3N3xiYiIiIhI52iEhYhkRW1dkIrFu+PLJ18wtkP969/bSWhLLQCegfkUHDckrfHtUzQKI45zXh9yAUw8q/uOLSLSS5hcd/y1N5aw2F5Rn6VoZH9krf0HzpRP/wLWA4HYz3rgbuCoWBsREREREeklNMJCRLLiP//5ID66orLUzbRjh6bcN+oPU/XShvhy6bljMe5uKrQNUDgAPvMgfPg0jDi++44rItILmK3vQagS1x4X4BThbvyDc2tFPYdmLTLZH1lrPwCuy3YcIiIiIiKSHkpYiEi3276zjob39+LDEMVyxhUTO9S/eu4monVOoe68w/qR24GppNLGGJh0QfcfV0Skh8t59kao2oTLdTZwIwAeYwBLQ0M4q7HJ/sMYMx3YYa1dk6TdeGCwtXZ+90QmIiIiIiJdoSmhRKTbPXDP+/isMyKifkguU44YmHLf0M46at/e5ix4XJScNToTIbbJRHWjTUQkqfwyAEyoadq/ximhAn4V3Za0eQO4JVkj4H+A1zMbioiIiIiIpIsSFiLSrT5cU0HOBmcO8xCWy69NfXIQay2Vz66HqAWgeMYwPH1yMxJnS65Nb3Pah99hcOWSbjmeiEhvZfOchIXLNNWraCy6HQgo8Stp1Y3zQYqIiIiISHdQwkJEutVT//kQd+z+gjmomFHDS1Lu2/BhBYFPKgFwl/ooOnlYJkJszV+J97mvkxfaw7Gf/gHXmhe657giIr1QY8LCUBdf15iwCAY0wkK6XR+gIdtBiIiIiIhIalTDQkS6zfZ1lZSUO7Un/C7LF79wWMp9bShC5XPr48slZ4/BeN1pj7FNL3wHV81WAMoLJ1Iw7vTuOa6ISG+U1xcAF00jLLzGyViElLCQLjDGjGixqrCNdY08wCRgNrAuo4GJiIiIiEjaKGEhIt3CWss7TzTdL5hwyjD6lKQ+nVPN/K1E9gYA8I0tIe/QvmmPsU3vPworHwUg5M5n6cgvcZKrmxIlIiK9kG2sYWH88XWNIyxCQSUspEs2ADZh+eLYz74Y4P5MBSQiIiIiIumlhIWIdItPl5ezfV0VAKUD8zn7wvEp9w1XBqh5Y7Oz4ILSc8diTDdMW125CZ6/Ob64Yvg1+HP6Zf64IiK9WLyGBa1rWISD0WyEJPuPTTQlLEYA9UB5O22DwBbgceCuzIcmIiIiIiLpoISFiGRcJBLl7Sc/iS8ff+FY3O7US+hUvbAeG3JuchUeNwTvoIK0x9hKNAJP3ACBagDCh1zMVt9xmT+uiEgvF69hYcLgikLUFZ8SKhzSCAvpPGvtqMbXxpgo8Ki19gvZi0hERERERNJNRbdFJOP+c98HVO1ypgYZPK6E0UekPkohsL4S//vOw5OuAg/Fp7Y3VXWaLfg9bHrbeV0ygtDsX3bPcUVEervYlFAALrdTt6jxCZk8l/70lLS5Frg720GIiIiIiEh6aYSFiGRUeaWfikW7ycN5uvbws0elPJ2TjVgqn2kqtF18+ihc+d6MxNnM1qXw+i+c18YFF/0NfMWZP66IyH7A5vYBDOT1wdUQIRoCb+xj/6B+hVmNTfYf1tp/ZzsGERERERFJPyUsRCSj7vvXSvKizp2q6v5exh2cerHsukXbCe2oA8A7tJCCowdlJMbWBy6HnAJoqIITb4KRJ4Dfn7yfiIhg+02AH1aAy4354zLYWqsaFpIxxhgPcAkwExgaW70VeB14zFobzlZsIiIiIiLScUpYiEjGrNtYiWtNDWCIYLnw85NS7hupC1E1Z2N8ufTcMRhXNxTaBpgwG258Bxb8H8z43+45pojI/sK4wOUGwOWL/TYGFxAOqoaFpI8xZjLwGDAaaPlHwnXAT40xl1prl3dzaCIiIiIi0klKWIhIxjx6zyqKYvcPQqMLmDiuLEmPJtWvbMT6nYci848cgG9USUZibFfJUDjr1917TBGR/YyJJSzAmRYqpISFpIkxZggwB+gH7AQeAtbFNo8BPgOMBV42xky21m7PSqAiIiIiItIhSliISEYsWrqDwh0NgCFgLFd94bCU+wa31VK30LmvYHJclJw5KjNBJgo1gDc388cRETmAuHKb/tT0GNiwszaL0ch+5hacZMU/gW9aa5vN3WiM+R7wB5yRFv8D3NTtEYqIiIiISIe5sh1AT2GM2WCMse38vNHBfV1pjFlkjKkzxuw1xjxnjDkqQ6GL9EivPLQaExtdkT+5jIH9C1LqZ62l8pl1YJ3lolNG4C72ZSrMxoPCw1fB49c7dStERKRrFv4dnvoKZtOr8VVeYwgENMJC0uZMYBNwY8tkBYC1tgH4SqzN2d0cm4iIiIiIdJJGWDRXBfy+jfUbUt2BMeY24GfARuCvQBHOkPS3jTGzrLULuh6mSM/2/Jz1lFY7N6VqPfC1qw9Nua9/xW6CG6oB8PTLo+jEoUl6pMGif8Anrziv934KX3wFTDfVyxAR2R+tmwtrXsIVuho4HHBGWLiUr5D0GQ48aa1t96qy1oaNMe8AF3RbVCIiIiIi0iVKWDRXaa39cWc7G2PGAz8G1gDHWmurYuv/ArwL/MMYc6i1NpqGWEV6pFA4yornN9BYcWLEyYMpyPOm1DcaiFD1wqfx5ZJzxmA8GR4ItutjeOUHTcsn36pkhYhIV+U5NYuMqY+v8hhwR222IpL9TwAoTqFdUaytiIiIiIj0ApoSKr2uxUkC/bwxWQFgrV0O/Bc4GDgxO6GJdI/V726nJHZboCrXcNmFB6Xct+aNzUSqgwDkTiwjb2LqRbo7JVgPj18H4QZn+dgbYPypmT2miMiBIN/5/HbRlLDwAh7lKyR9PgRmGmOGt9fAGDMCmAms6raoRERERESkSzTCojmfMeYaYAhQDSy21i7sQP8Zsd9z2tj2MnANcDIwP9UdGmOGJWkyqPFFIBDA7281ha/0QA0NDW2+7u0C/jCLnl4fX55+yWiCoQCEkveN7GmgZv4WZ8FlyD11SGavZ2vxvvBNPDtXAhDtO4HAibdCO8fsKecsGo2wd+sWbFQDtVIRCAYJ7K0AYOva1fhycrIckaRC5633aTxnbl8uDQ0NeHJK8NJyhIXBY6Gurg6XS8/M9ASBQK8eePAf4C/Aq8aYm6y1LyRuNMacA9wJ5MbaioiIiIhIL6CERXODgHsSVxhjFgNXWGvXpdB/PFBrrd3Rxra1CW06YnOqDRcuXMi6damEKT3J/Pkp5696vL2rfPhrnBuLuQNCVFSsYE5b6bs2jP24kNKI03fHoHreey+z/11Glr/G5M2PABB25TC//zXUvP5mSn2zdc5CtTVse+NFQtUqDN4Zm198ItshSCfovPU+z27bzGGlOziSFiMsDBgML7z4KjmpzRQoGVZeXp7tELriH8DFwCzgWWPMHqBxXsnRQBlggFdjbUVEREREpBfQ421N7sH5wjMQKACOBO4DjgHmGmOKUthHCU7h7rZUJ7QR2e/UVbio2+TcgTJuS+khqT+1WbzXS+leJ1kR9EbZPiyzI4X61K3j8C33xZeXj7iOmrxkg5myK1RXw9a5zylZISI9Xs2GTwh6nD+bXC1qWAAEUhh1J5JMrNj22cCvgTqgL3B07KdvbN2vgHNUP05EREREpPfQCIsYa+3tLVYtB642TvHdzwHXA7/t5rAA2p2XN2YQsBhg6tSpjB07NvMRSZc1NDTEn9KfPn06ubm5WY6oawLBMHf9YHG88uUx54zi0BlDUuprI1Eq7/qQKM40S2XnjOXUw/tmKFKgvhzfvbfishEAwkd/iUmzfsikJN2yec5qKnbz1C9/RLiuFoCSgYMZdsih3Xb83iwSibBt23YAhgwZjNvtznJEkgqdt94nEomwesF8bCSMJxpm8vEz4dP/w9A6YXHUlOMYPTyVWsmSab19ZK61Ngjcaoz5EU6iYmhs01ZgibW2V895JSIiIiJyIFLCIrm/4SQsppE8YVFF+yMoihPapMxau2Vf22MJFQB8Ph95eXkd2b30ALm5ub3+vN1z71KKnVrZ1OW7mDJ7NC53agO4auZvIVrhJCtyRhRRcuzQZtd12pkSGHoUfLwNRhyP58xf4HF3bG6S7jxn1eW7eebXP6GmfDcAfYYM4/If/ZKC0j7dcvzezu/3Myc2L9kps2f3+n9rBwqdt97H7/ez/v3lBCv3UL93D94Sp8SWi+Y1LAAiEZfOaQ/h8/myHUJaxBITC9raZowpBb5rrb2tW4MSEREREZFO0ZRQyTVO7luQQtu1QKExZlAb28YntBHZb3y0dg/BFXsBiGI58YoJKScrIjVBquduchYMlJ43NrPJCoDcYrj8fjjjDrj0XuhgsqI71ewp59GffI+qnU5ZnD6Dh3LZD3+hZIWI9EiegkIAopEI9SHnmZjEotve2Me7z+jPT8k8Y0yxMeZ2YANwa5bDERERERGRFGmERXJTY783pNB2HnA8MBv4T4ttpye0EdkvRKNRnvjnSkpx7kIFRhVwwjGpTQUFUPXCp9iAMzVTwTGDyBmWSqmYNDAGjruxe47VSbV7Knj0J9+jcqczLU7poMFc+sOfU9inLMuRiYi0zZtfGH9dXRei8KCzceX2g4XOusYpoYpz9OendJ4xZgpwLk7duZ3AM9bapQnbc4Gbge/gjHw2wIdZCFVERERERDpBj7gBxpiJxpj8ttbjFOsDeDBhfUmsz+AWXe4BwsBtxpiShPaTgSuAj4C30hy+SNY88sQaSquchEOd2/LFGyen3Ldu6U7ql+0CwOS6KZ49MhMhOvash6qtmdt/mtXu3cMjP72Nvdu3AVA6cDCX/fCXFJX1y3JkIiLtaxxhAVCzpwKueBBz4R/imQpvbARdKBjJSnzS+xljfgMsAn4AfCn2e7Ex5sex7cfgJCd+CpQCm4EvAIdnIVwREREREekEPeLm+AxwszFmPrARqAMmAGcBXuCX1tr5Ce0vxElO/Bu4pnGltXZN7AvTz4AVxpjHgaLY/gGut9ZGM/tWRLrHrvJ6Nr+2lfzY6IqxZ4ygT0lqhahDu+qpfPKT+HLpuWNxF+ZkJE6CdfDQlVC7Cy75F4w5OTPHSZO6yr08+pPvsXebU76mZMBALv3hLyjqq2SFiPRsiQmL6t274q9dPg/RcCj+R2c4qD+FpOOMMWfjjJwAqMaZZrUYGAP8wBizGrgrtm4Pzt/jf4kV5hYRERERkV5CCQvH68DBwJHASUA+Tu2KF3C+6MxJdUfW2p8bYzYA3wJuBILAm8APEoeri/R29/51OQVRJ1lRVebhq+eOT9LDEQ1GqHjgI2zIuWGVf/RACqYMzEyQ1sKz34RdsZkgXvpf+PKb4HJn5nhdVF9VyaM/vY09sWRFcf+BXPbDX1Lcr3+WIxMRSc6TOCVU+e74a5PrhrpQfEqoBn+4u0OT/cP1sd9/BP4nVmgbY8zBwOM4DxJ5cP6uv9xaW97mXkREREREpEdTwgKw1s6jA7UlrLX3AvfuY/sDwANdDkykh3r9rU0UbGkAIGgsl9+Q+kwLlc+sI7zTKcLqGZhP6XljMxIjAIv+DisfdV7nFDlFtntqsqK6ikd+8j0qtjhFyIv69eeyH/6C4v4DshyZiEhqvIlTQlU0JSxcOW4iNBXdXryunIOnDurm6GQ/MAWnptxNiSOWrbUfGWO+BbyEM/LiAmttTVYiFBERERGRLlMNCxHpkEg4yvInP40vF0zpy9iRpSn1rVu6k/olOwEwXhd9rzwYV06GEgibFsLL32tavuDP0H9CZo7VRfXVVTz609uakhV9+3PZD39JyYAMjTwREckAd24exOpUVJfvhld+BHeMxOx4FwCXMbiAYEA1LKRT+gPL2ple9d3Y7zeVrBARERER6d2UsBCRDln+6iZy6pybTbX5Lq69JrXRFa3qVlwwDu+AVrXu06NmJzz6eYjGph054RtwyPmZOVYX1VdV8thPb6N80wYACsv6ctkPf0HpQD19LCK9i3G58OQXAFBTvhtsFBoqcZn6eBuvgZASFtI5OUBVWxustdWxl7vb2i4iIiIiIr2HEhYikrKq3fUsfn4D4DxEe+23jsLrSf4x0q11K8IBePQaqNnuLI86CWb9KDPH6qKaPeU89ONb2d2YrOhT5iQrBg3ObmAiIp3UWHi7obaGoKcEABd1TdsNhFR0W0RERERERNqhGhYikhJrLfMeXE0klnQ4fNZwBowoTqlvt9WtiEbhqRth09vOctEQuORf4O55H3VVu3bw6E9vo2qXM0VWYd9+XPr9n9Nn8NAsRyYi0nne/EIaYq9rwrn0BUzCCAuPgXBQIyyk08YZY67uzHZr7X8yFJOIiIiIiKRRz7uLJyI90pNPrWH7R3sBKCzzcew5o1Pq1611Kza/Cx887rz25sNn7ofCnle0umLrZh772fep3VMBQOnAwVzy/Z+pZoWI9HqehMLb1QEPfQEX/vg6rzHxxLdIJ0yL/bTF7mO7BbKWsDDGbABGtrN5nrV2Rov2PuAW4HPAcGAP8BzwfWvtrsxFKiIiIiKSfUpYiEhSO3fXsf6VLeThFFOddtl4cnKTf3x0a90KgJEnwKX3wlNfcUZWDJ2SuWN10q4N63ns5z/AX+1Mw9132Aguue2nFJb1zXJkIiJdl5iwqPFboPUIi6gSFtI5m3ASD71VFfD7NtZvSFwwxriAp4HTcYqJPw6MB64DZhljjrPWqlaHiIiIiOy3lLAQkaTuvWs5hVEnWVHV18O4yclHLXRr3YpEky506lYU9Mv8sTpo25qPeeKOHxGoc+ZzHzBqLBff9hPyi0uyHJmISHp48hNGWNQFAXCRUHQbJSykc6y1o7IdQxdVWmt/nEK7z+MkK/4LXGmttQDGmC8DdwE/A27IVJAiIiIiItmmotsisk9PPreWwm0BAILGcsUNR6TUr9vqVgTrW6/rgcmKzave57GffT+erBgy4WAu/eHPlawQkf2KN3GERbXz+WxMYtFtQzTcmx+SF8m462O//7cxWRHzN2A9cKUxJq/7wxIRERER6R4aYSEi7dqyvYZ1L2yKTwXV54QBjB6R/AZ7t9Wt2LsR7jkTpn8Xjr42/ftPk/XLFvPsnb8kHHKeNh5x6OGc/90fkJOr+w0isn9pNsJibxUYV7MRFh4DhDXCQg5IPmPMNcAQoBpYbK1dmNjAGJMLTAVWW2s3Jm6z1lpjzCs4oyuOBt5M9cDGmGFJmgxqfOH3+/H7/ftqK72Qzqk00rUgiXQ9SCNdC5KoI9dDpq4dJSxEpE3RaJR//2EZpbGpoCr7eLjxyklJ+3Vb3Qr/XnjgUqjeCs99C4yBKdek/zhdtGbhAp7/v/9HNBIGYMxRx3DuTf+LJycny5GJiKSfy+vFV1BIoK6W6vLdMKIPpiax6DaMKs1gLSORnmsQcE/iCmPMYuAKa+262KqxOCPg17azj8b14+lAwgLYnGrD+fPn069fR0aq6utkbzBnzpxuOpKuh55O14Ik0vUgjbrvWgBdDz1fR66H8vLyjMSgKaFEpE33PfghpXudm+x+l+Xz3zgSl2vfHxndVrciHICHroLy1c5y33Fw8HnpP04XrZo3l+d+96t4smLC8Sdx3rdvU7JCRPZrRX2dm521e8qJnnUnrjN+EN/mMfqKIgeke4BZwECgADgSuA84BphrjCmKtWscxlrVzn6qW7QTEREREdnv6DujiLTy4ZoK9i7YiTc2FdTYs0YwbHBRkl7dVLciGoWnvgIb33KW8/vBlY9Bfln6j9UFy+e8wNy7/xJfnjTjVGbf8HVcrgxMjSUi0oMU9u1H+aYNRCMR6oacRN6gAnh2CeDUsAgHNSWUHFistbe3WLUcuNoYA/A5nLoVv81gCMOTbB8ELAaYPn06w4Ylm0EqwTuvdT4q6TazZ8/ungPpeujxdC1IIl0P0qjbrgXQ9dALdOR62LJlS0ZiUMJCRJqJRi3P/H0lRdZJVtQO9XHhOeOT9uu2uhWv/RQ+eMx57cmDzz4MZaPTf5xOstEobz18H4ueejS+7sgzzmXm56/HtDFCpT5Uz72r7mXh9oVEbITinGL+cupfmrW5a/ldLNi2IOmxpw2Zxo2Tb2y27sZXb6QmWJO075eP+DInDj0xvvxp1af8YMEP9tGjyZ9n/ZkSX9PDns+se4ZHVj+StN/I4pH8/MSfN1v3s3d/xsd7Pk7a99wx53L5xMvjy8FIkC+8/IVW7aLRKJU1lQA8PPdhXC4Xt029jYP7Hhxvs2THEn6/9PdJj+l1ebnnjGazeXDPB/cwd9PcpH2PGngUN0+5udm6m9+4mV31u5L2vWbSNZw68tT48o66HXxn3neS9gP4zcm/YVBBfGpyXtn4Cv9e9e+k/QbkD+C3M5rfO/vtkt+ydNfSpH1PHXEq1xx6TbN117x0DeFoOGnfm6bcxJSBU+LLW8Nb+eLcLyYd3QVwz+n34HV748sPffwQz61/Lmm/g8sO5rbjbmu27ra3bmNj9cZ2ejS5/KDLOXfsufHlqkAVX5371aT9AH427WeMKhkVX35r61v8dcVfk/brqZ8Rjf/WCk0hlxVNjq+vKd9N/pDi+LLXQDgYSXo8kQPE33ASFtNwEhaNIyvaG0HR+I+pvREYbbLW7vObZCxxAkBeXh55eaqxtb/ROZVGuhYkka4HaaRrQRJ15HrI1LWjhIWINLNszkaKap2nX2s98KVvTEnSoxvrViy5B95qvIlq4JK7YdjR6T9OJ4VDIV6+6/d8vGBefN2xF1zKiZ+5utnNgEZvbH6DXy78JdvqtsXXleW2HimysWYjK3avSHr84UWtH6BcVb6KvYG9SfvubWjexh/2p3RMgIhtfvNxV/2ulPoGI8FW6z6p/CSlvkcPbH7eLTZpv80VzhTetaHaZuurg9UpHTPH1Xoqr621W1Pq2ye3T6t1H1V8xJba5E8jlPubzwkZjARTPjehSKjVvjp7LX1a9WlKfSeWTWy17v3d7xOKhtpo3Vx1oLrZcsAGWFmxMmk/cK6BRNvrtqd2Xt2tz+uavWtSSpzNGD6j2XI4Gk753PjDzYuT7W3Ym1Lf3vAZsTyQS+MVX12+m8FjDopv8xio9ydPXokcIBo/4Ativ9cDUZwaFW1pXN9ejQsRERERkV5PCQsRidu9qYZFz3wKODWsz7xuEn1KcvfZp9vqVqyZA89/u2n5zF/DxLPTf5xO8tfW8Mxvfs6Wjz4AwBgXM6/9Ekeefk6rtttrt3PHojt4bbOGQorI/meLKadPrExazdZPMVvc4LIQNXgwBBqSJ69EDhBTY783AFhr/caYRcBxxpiR1tr4UC/jPPlwGlAHLOnuQEVEREREuoux1iZvJT2WMWYYsBlgzZo1jB+ffOoeyT6/38+cOXMAZ264njD8LhyM8Mgvl7B3ex0AU84YyXEXJK9BseexNfGpoDwD8xnw1cnpnwoqHIA/HAXVsafRj/8anP7zffdJs32ds8qdO3jijh+zd5sTn8fn45xv/g9jp0xtto9QNMQDHz7AX1b8pdnT1VMHT+W2qbcxsngkAC7TfPqbqE19vvfO9jWYZqNArLWtnljvSl9D6xEmQKuRJx35f1LLY7alvfPW2fe6P56b9mTzvTaeN2stp80+LaXPyJbvVecmvX2Txev3+7noiYvYFtnGgMpcznrbSVxPPnw4s0IPsq3hAaKUUBexvFoT5st/moHbk3yqL8mstWvXMmHChMbF4cmmDpKOM8ZMBDZZa+vbWP86Tv2Ik62182PrrwX+BfwXuNLG/gdnjPkycBfwd2vtDWmOMf59YvPmzR2qYTHq1ufTGYpkyIY7uuchH10PPZ+uBUmk60Eadde1ALoeeoOOXA9btmxh+PD4SP60fZ/QCAsRAeDBf75PTSxZ0W94Iceck7wuRLfVrfD44MpH4N/nwagT4bSfpv8YnbTjkzU8+eufUF9VCUB+SSkX3vIjBo1tnTz81uvfYv6W+fHlvrl9+e4x3+Ws0We1OWVUo5Y3GDuis32NMe0mGTLdN539jGm6yZr4ulWbTsZ7IJ2bbL1Xl3F1qr/OTWb7tozXZVz0c/VjW2QbNblNIyiq66PgBWPqwZbgiXWpbwhTVNh6Oi6R/dBngJuNMfOBjTgjJCYAZwFe4JeNyYqYfwOXA1cAo40x84BxwEXAp8D3uzF2EREREZFup4SFiPDS3E+ped+Zn9y4DaddOynpk6/dVrei0cBJcN2rUDwUUijA2x0+Wfwuz//h/xEOBgAoGzKMi/73dkoGtD0l1kXjL2L+lvkYDJcddBnfOOobFOcUt9lWRKS36e/uDyHw+yIYtwsbiVJTG4A+4KKeCE7RbYDaupASFnKgeB04GDgSOAnIx6ld8QLwF2vtnMTG1tqoMeZ84Facgtw3AXuAu4HvW2t3d2PsIiIiIiLdTgkLkQPcrvJ63n9iPQWxJ2U9R/ahbEjBPvt0S92KvRugZETz5ERZ8lEf3WXpi8/y+r//DrGpiIYdcijnf/v75BYWAs40K/WhegpzCuN9Thl+Ctceei2zR87m0H6HZiVuEZFMOchzEPl5+Zw59Uw+WvIvanbvpqaqFvqAwZkNx2UMLqDWrzoWcmCw1s4D5nWwTwC4PfYjIiIiInJAUcJC5AB39x/eozjiJCsqi1zces3hSftUPrOO8E7n5pNnYD6l5yWvddEhO1bCv8+Fg86G8/4ArgxMM9VJ1loW/PffrHj5ufi6idNO5vQbv4XH6wWgwl/BLW/eQo4rhz/P+nOzKYlunnJzVuIWEcm0IZ4hDPEM4egBR7Ot//PU7N5Ng7+BYMSNy9TTWPLCY6CuTgkLERERERERaU0JC5ED2H8f+5jiXc5No4CxfOZrk5NOBZXxuhW7PoL/nA/+vbD8fug7Fk7qGTf5o+EwO995g7rNn8bXTb3wMqZddhUmNhJkxe4V3PzGzeyq3wXA3E1zOXXkqVmJV0QkW4r7DYi/rg77nIRFjNeA3x/ORlgiIiIiIiLSwylhIXKAWrexku1zt+KLTQU1+JQhjB1Zus8+Ga9bUb7WKaxdX+EsDzsWjr0+ffvvgtq9FWyd+zyBCicRYVwuTr3uKxw+6wzAGXnxyOpHuGPxHYSjzo24/nn9VaNCRA5Ixf36x1/XhPIo9TUlLDwG/JoSSkRERERERNqghIXIASgQDPPQH5dTap1kRXV/L1+99OB99sl43YqKdc40UHVOQoAhR8JVj4GvKH3H6KStH3/IM7/9BYGqSgC8ubmce9P/MnryFAD8YT8/e/dnPLPumXifowYcxZ0z7qRfXr9shCwikhV10Tre2/Uea8Ib4+uqXWWUkTjCwmiEhYiIiIiIiLRJCQuRA9AffruY0lon8VDntnzhG0cl7ZPRuhV7NzojK2q2O8uDDoPPPQm5Jek7RidYa1nxyou8fu/fiEYiAHjyC7nwlh8yfOIhAGyu2cxNr9/E6r2r4/0+d8jnuGnKTXhd3qzELSKSLfMC83j7jbcZsjuX2ThJ7ZpoMSZhSigPEA5GsxShiIiIiIiI9GRKWIgcYF589hPyN/gBiGA59rMHMbB/wT771C3JYN2Kqi3w73OgeouzPGASfO5pyOuTnv13UjgUYu7dd/HB63Pi6/IGDmHQtFn0GzkagPlb5nPrm7dSE6xxtnvy+MkJP+GM0WdkJWYRkWzr53JGldXlNY2gqI7k4TIN8WWPgYMHFHZ7bCIiIiIiItLzKWEhcgDZtbGajS9viS8XnTCAGdOG7bNP/fu72fvEmvhyWutWVG+He8+Byk3Ocr+D4OqnoaBvevbfSTV7ynn2zl+y/ZOmURNHnH4OtX0GxotrW2t5ePXD8WTFqOJR/G7G7xjXZ1xWYhYR6Qn6u53aFXW5kfi6mqJDMOd/Gx5dCzhTQmmEhYiIiIiIiLTFle0ARKR71FcHefGvK4mEnZtEw48ewLVXH7bvPu/vZs9DH0PsvlLBcYPTW7fCuMDjc16XjYXPPwOF/ffdJ8O2fLyK+2/9VjxZ4cnxcdbXv8O0Kz4fT1YAGGP4xYm/YGjhUE4ZfgoPnv2gkhUicsBrHGER9lgiPuczs3pPBa7cpinyPAZCwUib/UVEREREROTAphEWIgeASCTKy//4gNq9AQAGjSnm7M8fss8+LZMV+UcPTG/dCoCigXDN8/DsN+HMX0PRoPTuvwOstayY8wKv//vv8XoVxf0HcN63b2Pg6LH4/X5CNoTXNN10K/GVcN+Z99Evrx/GmGyFLiLSYxSaQgq9hdSGaqnLi1AcMNRUlENO02ek10BYCQsRERERERFpg0ZYiBwA/vTbxWxbWwlAfnEOZ3zpMNze9v/5t5Ws6HPReIwrDTfloy2mASnoB595AEqGdn3fnRQOBpnztz8w9193xZMVIw49git/8TsGjh5L1EZ5YPUD/K76d9REa5r17Z/fX8kKEZEYYwyjikYBUOlz6iXZaJRAsC7exmPg4y3V2QhPREREREREejglLET2c/c/9CGedbEbRS4444bDKCj1tds+o8mKVU/Bv06Hhp5zo6qmopyHb7+VD15/Jb7u6HMv4uLv/YT84hJ21u3khldu4P9W/B/VtprH6x8najX3uohIe0YWjwSgNrep8Hbt23fFX3uMYcfe+m6PS0RERERERHo+TQklsh97Z8k2Kt7Yjgcn2ZB/XH8Gjy1pt31GkxWL74bnvw1YePhKuPKxpvoVWbLuvUW8dNfvaahxEiieHB+zv/wNDp52MgCvbHyF29+5napAVbzPIPcgJSxERPahcYRFXV7TtE91H75Ige9MwBlhEQnpc1RERERERERaU8JCZD+1dUctb97zMQWxZEXtUB9f3UeR7YwlK6yFN+6AeXc0rSsZAcbdtf12QTgYZP4D97DspWfj64r7D+T879zGgFFjqAvVcceiO3jqk6fi2wfkDeBs19mM9Y7F49JHp4hIe0YUjQCgLq9phEVVOEpBLEftNRAN2myEJiIiIiIiIj2cpoQCjDFDjTHfMsbMMcZsMsYEjTE7jDGPG2OmdmA/M4wxdh8/12TwbYjEBYJh7v3NEgpiD7dW5hu+/p1j222fsWRFNALP39w8WTHtW3D+n8CdnZv+FVs28+BtNzdLVow9+jiu+uXvGDBqDCt2r+DSZy9tlqw4beRpPDD7AcZ601x0XERkPzSqeBQe46G434D4uuqQG3ASGB4M0bBGWIiIiIiIiEhrekzY8XXgFmAdMAfYDYwHLgAuMMZ81lr7cAf2Nw94o431y7sUpUiK/vi7JZTWOjeD6l2WK286mvw8b5ttM5asCDXAE9fBR02JAU7/BRz/1a7tt5Ostax8bQ6v3/t3wsEAAG6vlxlXX88Rp52JMYZ/r/o3v3vvd0Ssk+nJ9+Tzv1P/l/PHnk9DQ0NW4hYR6W1GFo1k0VWLCFTV8LdXrgagJuTD4MdShNeAVcJCRERERERE2qCEhWMRMMNaOy9xpTHmJGAucJcx5ilrbSDF/b1hrf1xmmMUScn9D31I3qdOMdMIlmOunMCo4cVtts1YsqKhCh66Eja86Sy7PHDBXXD4ZV3bb2fDqavllb//iTXvvhVf13fYCM7+5v/Qf8So+LpBBYPiyYrD+x/OHSfewfDi4d0drohIr+YyLrwuL56SUlxuD9FImJpwLi7qiFCExwARTQklIiIiIiIirSlhAVhrn2hn/ZvGmNeB2cBhwJJuDUykg95e3LzIduHx/Zkxre0b7hlLVvj3wr3nws6VzrK3AC7/D4w7tWv77aStH3/I83/8f9SU746vO+K0Mzn5c1/E68tt1vb0UafzzrZ3GJg/kOsPv161KkREusC4XBT160fVzh1Uh3JxmToi1im6TVgJCxEREREREWlNd+OSC8V+h/fZqrnxxphvAXnAFuA1a+3WzhzcGDMsSZNBjS8CgQB+v78zh5Fulji9ULqmGqoub2Dlfz+JJytqhuTwhcvGt3lNBFbtofbx9RC7X+Q7sh+5Zw2jIZCGWKJeckpH4t65EptXRuCS+7FDjoJuvjaj0QhLn32SxU89grXOG/UVFDDzCzcyZspUNlRv5oUNL3D9pOsxpilJ8z+T/wdjDKFAiFD8n39mzplkns5b76Tz1vu0d84K+vSlaucOAhE34Px/wG0M7ojV3yw9QCCQ6uBhERERERGR7qGExT4YY0YApwLbgZUd6PrZ2E+jsDHmj8B3rY3NN5O6zak2XLhwIevWrevg7iXb5s+f3+V9RBoMu97NJ+J3AVDpi3DQpArmzJnTqm1phZcxawoxscRGef8AG31r4JU1XY6jkSv3Qo4oq2TtwHOo/aAcPmgdRyaF6mrZ+c7rNOzaEV+X238QA0+YyeryPdz7zA+Z2zCXECGqN1RzeM7hHdp/Os6ZdD+dt95J5633mT9/PtvC25gfmM/g2kqG4gYgkjCzZk4k2ub/o6R7lZeXZzsEERERERGRZpSwaIcxxgvcB/iAW1JMNOwGbgWeAzYABcDxwB3ATTjPs387E/HKgSsagvIlefFkhacwwiFT62lrNqM2kxVj66ALs0CZaJiiwDaq80Y0xeTysmzklzq/006y1lK97mMqli0kGoqNjjCGskOPos+kyWyP7uCp2v+wLbIt3mdBYAGHeQ9rNspCRES6JkyYD0If4MktYSilAISiAdzO/6oo1EeuiIiIiIiItEEJizYYY1zAvcB04B/W2vtS6WetXQWsSlhVBzxtjFkIvA98wxjzK2vtrg6Ek6zi7yBgMcDUqVMZO3ZsB3Yt2dLQ0BB/anj69Onk5uYm6dG2mrogj/1+JbYmCEBhHx9nf2MSBaW+Vm0Dq/ZQ++76+LJvcj8mnDeSg7pyo75uNzlPXYdr90cEPv8yts/ozu+ri6p2buf1e/7G7o+b/gkW9u3HaTd8gz5jRvOPVf/gwTUPxotqGwyXj7+cLx/6ZfK9+Un3n65zJt1L56130nnrfVqeswbTwN+f/jt1eU3PewR9heTFcsklXi+zZ8/ORqiSQCNzRURERESkp1HCooVYsuJfOFM63Q98uav7tNbuMMY8DVwHTAWe7UDfLfvanvhUuM/nIy8vr7NhSpbk5uZ26rwFgmH+8ZtFlFY6N4NyC72c/60jKR3Y+uZ7/fu7qX2iqWZFWgpsb1kCD38OapzRCrnPfhm+NA+6eaRCNBph6fNPs+CRBwgHm6YbmTTjVGZ87jpW1Kzia69cyeaaptnVxpWO4/YTbufw/h2bCqpRZ8+ZZJfOW++k89b75Obm0ievD2W5ZdTl1sfXB0pHkLfbeW0iVue1B/D5Wj/gICIiIiIikk1KWCSIJSvuAa4G/gtcY62Npmn3jZMEF6Rpf3IAi4Sj/O7n78aTFUFjOf6qCe0mK/Y89DHEruS0JCuW3gfP3wwRZ2QHRUPg7N91e7KifNMGXv7bH9jxSVP9jeL+AzntS19j2KGH8ZN3fsKTnzwZ3+Z1ebnh8Bv4wqFfwOv2dmusIiIHmlHFo1iX93582R+ooTQ2PZQ7YolGorga54gSERERERERQQmLuBbJioeBz3WiQPa+TI393pDGfcoBKBqN8tvfLKRop5MsCGOZdNk4jpo8sFXbtCcrwkF46VZYcnfTuhEnwGX/hsIBndtnJ0TCIRY++SgLn3yEaCTsrDSGI884hxM/czU5uc5Tu/6wP97nqAFH8aMTfsSYkjHdFqeIyIFsdMlo3s9dFl+ur6+icaZLj4FwKEqOEhYiIiIiIiKSQAkLmk0DdTXwKHDVvpIVxph+QD+g3FpbnrB+irX2vTbafxOYCawlVm9CpLP+/Oel5G9wbsRHsQw7ewSzZ45s1S7tyYqanfDI1bD53aZ1x34JZv8cPDmd22cn7PhkDS//9f8o37wxvq7PkGGcfsM3GDrxkGZtbzn2FlaWr+TaSddy6UGX4jK6MSYi0l1Gl4wm7LE0eCPkhtzU1uyB2CxQXmPYtdfPsMFF2Q1SREREREREehQlLBw/BD4P1AJrgO+b1lPbPGWtXR57/TXgR8DtwI8T2jxujAkBS4AtONM/HQccCVSSJBEikszd976Pa1V1fLlk+kAuPnd8q3ZpT1ZsXgyPfA5qtjvLbh+c8zs48srO7a8TQoEGFjzyAEuff5rGmdqMy8Wx51/C2DNn8aeVf+HINUdyyYRL4n365fXj2QufxevS9E8iIt1tdMloAGrzwuSG3NRU744nLDwG6upDWYxOREREREREeiIlLByjYr8LgdvaabMBWJ5kP3cBpwPTgb44t4s3Ar8H7kxWQFtkXx5+4mP87+7G4CQdXEeWcvVnD23VLiM1K8J+qNnhvC4eCpffD0OP6vz+OsBay5p332Le/f+ipnx3fH3/UWOYef2XebH+LW5+7kL8YT9vbX2L00edTlFO0xO7SlaIiGTH6GInYVGXF6FfNYSiwfg2J2ERzlZoIiIiIiIi0kMpYQFYa68BrulA+x/TfGRF4/pfAb9KU1gicS+9+ik752zFHUtWBMYVcvMNrRMGdUt2sPeJtelNVgCMng4n3gSbF8Gl90Jh/67tL0U7P13H6/f+na0fr4qvc3u9HH/xFew5rIAvLv8W2+u2x7eFo2HW7F3DlIFTuiU+ERFp35DCIXhdXurynMREKBqIb/MaqNcICxEREREREWlBCQuRHm7H+io2PL0xnqyoHeLjuzcf3ayNDUXY+/Q66pfsjK/rUrLi0/kw8kRwJdR8mPk9wIA78x8b9VWVvPXQf1j5+itgbXz9yMOPZPj5p/DnzfewbEFTIVe3cXPZQZfxlSO+QmluacbjS6doIED9woW4S0rIO+KIpvX19ex54IGU9lF64YV4+vWLLzesWUPtvHlJ+7ly8yj73FXN1tW89jqBdZ8k7esbN46imTObrdvzn/uIBhqS9i2aMQPf+KapzMK7d1P51FNJ+wGUXXUVrry8+HL9smXUL1nSbvtwKEyftWuIFBbC7NnNtlU9+xyhHdvb6dkk74gjKDj22PiyDYepuOeelOItOftsvEOGxJeDGzZQ/corSfsZl5u+X/xCs3W1by2g4aMPk/bNGTGS4tObv9e9Dz1MpKa6nR5NCk44gbxJk+LLkaoq9j7ySNJ+AH0uuwx3SUl82f/BKureeTtpP3dRMX0+c3mzdXWvvEqfN94AoGrrNuq8bX/u5B5yCIXTpjVbV3H33dhoNOlxi2fPJmdkU/2f0NatVL3wQtJ+AH2/8AWM290U78JF+N9fkbSfd/AQSs45u9m6ysefILynImnfgmOOIW/y5PhyT/uMiP9by88neuKJkJeH2+Xm+sOvxx3cSs2G5S1GWBhqGzTCQkRERERERJpTwkKkB9v84R5e+NtKIiHn5ltkSC433XosroREQrjcT8UDHxHaXhdfV3DcYErPG9vxZEWgFl66BZbdD6f/Ao7/atM2d+anVoqEQyx78Vneefwhgv76+PrSQYOZfNmlPBmdx+3vfaNZn2lDpvHdY77L2NKxGY8vXcJ791I7bx61r71O7VtvYevr6X/zzc0TFn4/u+/8bUr7K5w2rdnNyMBHH6XU111W1upmZPWLL1L97LNJ+xafd26rhEX5X/5CpLIyaV/vwIHNEhahnbtSfq+ll1zSPGGxcBG7f//7ffbpDzQMHdpqfeXDD+8z2dGo75e+1DxhEYmkHG/eEUc0S1gE1q1Lqa/JyWmVsKiZ+yqV/30oad/CU05plbCouPtuQps3J+3rKihonrCorEz5vRaffnrzhMXy5Sn19Y4Y0SphUfvcs/Sf/yYAe198qd2+fT772VYJi12//z8IJX9y3zd2XLOERXDzlpTfa9/Pfx4SExZvvUnFP/6ZtF/+sce2Sljsuf9+Ah99lPygN9/cPGHRAz8jGsfe7TUuCn72UwBuPOJGVte/xXNzljcbYeEx0KCEhYiIiIiIiLSghIVID7Vm8Q7m3vsR0YgzwmDYxD6c/dXD8XibbpL5Pyhnz6NrsAGnlrvxuii9cBwFRw3s+AG3LYPHr4OK2JOzr/wIDjoLykZ3+b0kY61l/dLFzLvvn+zdvi2+Picvn+Mu/gxHnXkuf1zxZ57+4Jn4tlHFo/juMd/lpKEnYUwXp7zqBsFNm6h57TVq575G/dKlEIlkOyQRkYyoe/ll7I9+iPE6ie7ifk4qI2ybRlh4DQSUsBAREREREZEWlLAQ6YHuuW8ldQt203gbfvQR/Zh93aR4ssJGolS9uIHat7bG+3j659H3qoPxDizo2MGiUXjnTzD3JxCNPZXsLYCzfwN9RnX9zSRRsWUzb/znH2xYsbRppTEcNvM0pl3+OQpK+wBwzaRreGj1Q7iMi68c8RUun3h5ryiovffhR9h7/30E1rY9zZK7Tx8KZ86k8MTmT4m7iooY9qc/pnQM77BhzZbzjzkmpb6NNxMTlV19daun89viGTS41bohv7oDm8KT7bkJT/AD5IwYnvJ7dRU0v76LZs/GN6790TWBYJDly5cTzc1lYott/b/1zZRGhOSMGtVs2Xg8KcebOJIEIPeww1LrmzgdW0yfyy9vNZqgLYlP0jca9KMfYRv8Sfv6Djqo1b5Sfa8tj1t48nS8g1K4DhNGzDQq+eIX+ST2333y5Mn4cnLa7Nvy2gcY9vvfNZtKrj25hza/Dn0Txqf8XvE0//Op5Lzzmo2Qao+7T59W6wbecgvR2pqkfXPGNr/Oe9pnRCAYZMNdf6Vg7VpsOExg/XpyY9dTcf8BAERsmKiN4DJuPBgCDUrcioiIiIiISHNKWIj0INZa/vLXZbCiMp6smHDcIGZ9biIut3MDM1wZYM+DHxHc1HSDK++I/vS5aBwuXwf/SVdvh6e+DOvfaFo35Ei4+G7om9kplmoqyln45CO8P/elZvPNDzpoIntOKGPbsOJ4sgKgNLeUO0++k0P6HkKf3NY3/XqqyJ6KVsmKnJEjKZw1i6JZp5A3eXKzufAbuXJyKDr11E4d0ztkSLNpiDoi77BD4bBDO9W38OSTO9XPXVzc6ffqGzMa35j2RwF5/H7q2kmi5B99dJvrkzFud+fPzYABeDvZN3fiRHIntky7pKZlQixVroKCTr/XnOHDyRk+vFN9cw8/nLodOwAomDmTvDaSGu0pmjWrU8f0lJV1/jocP75VcipVBcdN7VS/nvYZ4fH7qVi/nspp0zj+yzeQW1oa3xbMsRiPGxuOEI4GyHHn4zEQDChhISIiIiIiIs0pYSHSQ0SjUX5/52J865pqUQTGFjDr6onxmhUNa/ay56GPidbHptFwG0rPGUPBcYM7Ni2StfDhU/DczeDfE1tp4MRvwYzvgaftp5nToXbvHhY99Sjvv/oikXDTdCCFffsRmT6Kv0RfoXpnNYV7Crlw/IWU+JrmxJ82tHM3XTPNhkLUzptH5WOPM+iHP2h2I7DwlFPY/Yc/knfEERTOOoWiU04hZ8yYXjGNlYhIRzTEElQuny++rjZYy/RHT+ainCEUh72EokFy3Pl4lbAQERERERGRNihhIdIDBINhfnfHQgq3NRUk5fASvvXlI3G5XNiopXruJmpe2wSxmU7cpT76XnUwOcOKOn7AFf+Fp25sWi4aDBf+FcbM6NL72Je6yr0sfuYxVsx5kXAoYR7z3Fy8U8fy35J3qAi8F1/fEG5gyY4lzBrZuaelu0Nw40YqH3ucyqeeJLK7HIDKQw+l/9eaipX7Jkxg/Jvz25ymR0Rkf1eYU0j/vP7U5UUorvcSjAYowCm6Pbo09ZEzIiIiIiIicmBQwkIky+r9If5252JKKpzRBhZLwQkDuPbqwwCI1AbZ89BqAp9UxvvkTiyj7LIJuPI7WcNh0oUw71ewdwNMPAfO/QMU9O3iO2lbfXUVS559gmUvP0c40JSQ8eT48B49iqfLlrEtuhpigy1cxsW5Y87lhiNuYHhR56aTySQTClH7wgvsevoZ6hctarW97u23myUsjDFKVojIAclaizGG0SWjqctdB0AoVnjbbQzFntbT4YmIiIiIiMiBTQkLkSyqD8Bff7GU0lqnhkMEy8DZQ7n8Imee+sCGKioe/JhodWxEgoHi00dRNH0YxtWBKYVqd0Nh/6Zlbx6c90fw74WDz4MMTE/kr63hveeeZOmLzxJKKPbr8ebgmTKSR0sXUuFaA7HyFQbDGaPP4MYjbmR0Sfs1CbIl+MknDHjyKYpWrKDc36J4scdD0cyZlF56CQUpFEUWEdlvWUvtc89RMf9NwhUVjHrwAUaXjGZ13moAwtGmxHXUrymhREREREREpDklLESypK7e8MnbefQNOXfsQ1jGXTSac2aPwVpL7ZtbqXrp0/gNfVeRl75XTMQ3pjT1gzRUw2s/haX3wZffgn7jmraNnp6+N5N4yNpalr74NO89/zRBf318vdvr5YhTz+SY8y/hka1PUfHeq/Ftp444la9M/grj+3SuaG13CH6yjtJ33222LmfUKEovvYSS88/XKAoREQBjqH7oYYKrVgEQ3LKVUcWjWJrnJCdC0aYpAaMN4TZ3ISIiIiIiIgcuJSxEsqB2b4CaJXn0DTnTYTQYy5SrDmLGtGFE/WH2PLqGhg8r4u19Y0oou2Ii7qIUi2FbCx89Ay/eAjXbnXXP3wRXP5OR0RQAlTu2894LT/PBG680m/rJuF2Mmz6dmZddQ1GZc1P/koJLuPeDezllxClcPelqxpSMyUhMnRHato3qF14g74gjyD/mmPj6/JOnE83JAWspmj2bfp+5nLyjj1bxbBGRFvJnzognLGpfm8voWWOpzXWSE6GEERZ1NcG2uouIiIiIiMgBTAkLkW628YMKXrlnFeE6J1kRzjHM+OIkphwxkODWWioe+IjInoZ4+6KZwyk+bWTqU0BVboIXvgtrXmpa582HcaeBjYJJ75zhW1d/xHvPPckni9/F2mjTBpeLnWMM84dv5IKjwpxX1jQCoTinmDmXzCHXk5vWWDorvHcvNS/Pofq556hfsgSA4rPOapawcOXlseULXyAwZDCnnXsueXkqFisi0pb8GTOo/NOfAaiZ+xqjLzqVurzWCYstO2uyEp+IiIiIiIj0XEpYiHSTYDDMy4+sYdNbO+Lr3PlRLr15Cv2HllK7cDuVz66DsAXAle+hz2UHkTexLMUD1ME7f4G3fguhpqmYGD8bzvoN9BmZtvcSjUb4ZNE7LHnuSbavXd18o8fNxpEBFg/fSW2+c4PqibVPcOMRN1LiK4k3y3ayIrxnDzVz51LzyivUvfMuhELNtte8/jrRhgZcuU1xNowe1c1Rioj0Pt4xY/COHEFo4ybqlyxhXCiXSIHzJ2filFDeiM1WiCIiIiIiItJDKWEh0g02ba3mvt81FdcGyB0QouzwBgqLvOx9eDX1y3fHt+UML6Lsyol4SlO4qR+NwNL/wBt3QG1TMoTCQXDmr+CQ89M2DVSwwc8Hr7/C0heepmrXzmbbIvlu3h+2h49HVBPIaXqfh/U7jGsmXUOhtzAtMXSVf8UKdt35W2ckRTTaanvOmDGUnHsOxeec0yxZISIiqTHGUHTKLPbccw9EItTPf5NhZSNpyKkjbJtGWHhbfwSLiIiIiIjIAU4JC5EMm/P6RlY8+gmlUSdpEAWOPW8E24OryPO7qPrHR0TKm6aAKjxhCCVnjcZ4XCkewcDiu5uSFcYNR38BZv0Ackv23TVF1eW7WDHnBVa8+iKBurpm22qKLStGVrB+SB1Rd2NEhpOHncw1h17DUQOOymqdBxuJYNxN02CZ3DzqFy1q1sYzaBDFZ55Jybnn4Dv4YNWlEBHpoqJTYwkLoObVuYy+ZDS1eSsIRZpGWORENcJCREREREREmlPCQiRDIuEof/3bMqIrK8nHuQFe57YcfcV4Dp/Sn8ADaxm5voBI1ElWGJ+bPhePJ//w/h07kMsFp/0Y7r8YJp4Ds34E/SekIf4w699bxPuvvcyGFUudQt4JRh5+JEeedR43fnIb2+udJEb/vP5cMO4CLp5wMUMLh3Y5hs6w0SgNH35E7WuvUfPKKxSffRb9vvzl+HbfhPF4R47AYCiaPZui2aeRe+ihSlKIiKRR3uTJuMvKiOzZQ+2CBdz60+eYv/ifBFbtibfxKl8hIiIiIiIiLShhIZIBO3bVcfedSyitiuCKJSsqi118/uajGWgMex76hDGfNE2R5B2UT9mVB+Ptn7/vHe9eA3NvhxNvgmFHN60fOwtufBsGTupy7JU7trPytZf54I1Xqa+qbLbNugyHnnQKU86+gP4jRwNwifsSlu1axiUTLmH6sOl4Xd4ux9BRkcpKahcsoG7+m9S+9RaRior4tpo5rzRLWBhjGPXQQ7hLS5WkEBHJEON2UzhzBlWPP4Gtrydn2ceU9hvIluj2eBsfyliIiIiIiIhIc0pYiKTZGwu2sOjB1ZRGnJvhFkv0kBK+/dlJ1L+xmZ3v7STxHo1vcl/6XnQQrhx3O3sEanbAG7+EpfeBjYB/L1zzfFNtCmO6lKwIh0J8suhtVr72Mps+eL/V9tq8MGuG1bJ2eC2XX3EJ/YuHx7ddf9j1WbnxH9y0iarnnqNu/pv433+/zXoUACYnh6jfjysvL77O06dPd4UpInLAKpo1i6rHnwDAv3QZRQeNblZ0OydbgYmIiIiIiEiPpYSFSJpYa7n33pXULNxNQWxUhd9lOfzcURxrXZT/fimEm26qB71Rto6s5+jzj24/WVG1Bd69C5b8C0L1Tesr1kH1Nijp2rRLFVs3s3Luy6ya/xoNNdXNtkWNZdOAetaMqGV7vwascWpTLNm5hOEJCYvuSlZYa5sdq+HDjyj/wx9btTP5+RQcfzyFJ51E4cyZeAcO6Jb4RESkuYITTqD/t2+maNYsfGPGUPnuW4SiTUW3c9AoNxEREREREWlOCQuRNKjcWc8bD66mfvVe3LEbMDUFhiumj8CzcBe1DeF4W5PrJm/aIJbWrMS2N6hi54fw9h9g5aMQbepLThGc+E047iuQU9CpWKvLd7PmnTf5+O032bl+bevt+SHWDK/lk2G1NPicBMuo4lGcO/ZczhlzDkMKh3TquB0Vqa6mfskS6t59l/qFi+j7xS9Qct558e0FJxwPbjdEIuSMG0vhSdMpnH4SeVOm4MrRc7siItnmys2l3/XXx5ffqV1G2CaMsFC+QkRERERERFpQwkKkCyKhKO+9vJH3XtpANOzM82SAwcNymepyE31ne9PsTx5D4QlDKZ4xjIAJY+esbL3DUAM8cjWsfbn5ek8uTLkWpn8HCvp1OM66yr2sWbiA1W/PZ+vHH7ba7vZ4qBzpZUG/T9lRFgADZbllXDL6LM4Zew6HlB2S8ZEU0fp66t9bSv3Cd6l7dyENH37YbJqnunfebZawcBcXM/T3vyPvkEPwDs1OgW8REUndu3XLOShhhIUHQyAYxpejP0dFRERERETEoW+IIp308usbWPXMBnz+ppvqo8t8HFbkwVQFiRJxVhrIP2ogxaeNxFPqc9b5w23sEfDmQqTpZg55feDYLzk/HUxUNNTWsnbR23z89nw2f/A+1rau8TBg9FgOOekUDpk+k1d3zeOFd3/K2SPO5pwx53Dc4OPwuDL/EVH51FNUPvKoU4ci3M5/F2OItJiyCqD4tNMyHJ2IiKTLiIFjCZodRG0El3HjNQYbtipmISIiIiIiInFKWIh00NYdtdz31+UU7QgSSz/Qz2s4emAevtoQVDVNd5F7cBklZ4zCO7D19E2uaIjBlUvAntp8w7RvOTUqjv8aHHkV+ApTjq2hrpZPly7m47fns2HFMqKR1gmAysIg6wfX84VLbmHW5HPj62fnz2bWiFnke/NTPl6qrLWEtmzBv2wZxWeeifF649vCO3bgX7q0VR/fhAnkT51KwXFTyT/6aNwlJWmPS0REMi+w/lOqn3+e05+fw/MDfISiQXzuPDzGGakoIiIiIiIi0kgJC5EURcJR7n/oQ8oX7KTIOtMjFblgQqGHYS4DtaF425yRxZScOQrfqDZuslesw7Pk35y26l5yw1UE1h0Ph53ftH3MDPjGMnB7W/dtwVrLnq2bWffeIj5dtoStqz/ERlvf/KnOD/Hp4Ho+HVxHZVEIj8vDDl/zEQs+tw/aq6nRQdFAgIZVH+Jftgz/8mXUL1tOpLwcgJzRY8g77NB42/ypU531o0aRf9xUCqZOJf/YY/H07ZueYEREJKtq58+j/M9/Jg/w9h1CKBrA587DayzhYCTb4YmIiIiIiEgPooSFSAqWrdzFC/d+SGldlFwMeQbG57kYldNYYtvhGZBPyRmjyD24rHnNh0AtfPgULLsfNr2DF2hMR3je/VPzhIUx+0xWhINBNq96n/XLFrN+6RKqd+9ss11dbjiepKgoCZLvzefEoTM5ZcQpnDTsJIpzijv7n6MVay2Vjz5KwweraFi1isCaNdhQqM22/mXLmiUs8g47jHHz3sA7cGDa4hERkZ6jaNYsdt3xKwDKakOEo85IRI8xhIMaYSEiIiIiIiJNlLAQ2Ye9VQ38++73ca2poRSD18AEn4vRue5mgxHcJTkUnzaS/KMGYlyxRIW1sOkdJ0mx6ikI1TXbdxQXO0qnUHbKj5MObKipKGf90sWsX7aYTR+sIBwItNmuz+ChVAyBl73vsbNPgLK8MmYOP5dTRpzC1MFTnVEUXWCDQRrWrMX668k/5pj4emMMFX//B6EtW9rs5youJm/yEeQfeWR8REW8r8ejZIWIyH4sZ/hwfBMmEFizhoGVYULW+X+Y2xi27aql79DUpz4UERERERGR/ZsSFiJtCPrDLH9tM289/ym+KLgxjPG5GJfrIidh5ITJ81A8cziFxw/GeFukHd76Lcz9Seud9zuI0KGXMbe8PwFvKbOHHNWqSc2ecrZ8+AGbP1zJlg8/YO/2rW3GGTGWoQdPYuLR0xhz1NH0GTyU93a+h2vzG8waMYvD+h2G29W5eZ7Ce/cSWL2GwJrVNKxeTeCjj2lYuxZCIXyHHMyYJ55o1j530iQnYWEMOaNGkTd5MnlHTib/yCPJGTsW43J1Kg4REen9ik6dRWDNGvJCYULRpqT7zl11HJbFuERERERERKRnUcJCJEHAH+b91zazYu5mAvVh8oFhOS4OynWR50qY4snjomjaEIpOHoYr3ws1OyFgoHBAU5uJ5zYlLHzFcOhFcOTnYOgUwg0NBObMiTetqSiPJSdWsvnDlVTu2N5ujP6cCJsH+NkyoJ5t/Rq4fcYNTBl7Xnz7lIFTmDJwSqfef/3ixZT//R8EVq8mvGtXu+0Caz8hGgziysmJr+t73Rcpu+pKfAcfgruwdZFxERE5cBWeMovyv9xFXjBMKDYlFECoru3pA0VEREREROTApISFCLCrvJ6HH/wQ3/o6Ig0RBnoNQ/PdDPQaPIm1KAwUHD2IolNH4AlthqV/ho+fhy2LYfp34JTvN7XtPwGm3ghDj4KJ50BOPgA2GmXvtq1Ur1+Df9d27n/1Gap3tV2HApxRFOWlAbb3bWDzAD81feCoQUdx8ZDjOX7w8RxUdlBK7zHq9xPcsIHA+vUE139KYP06+l53HXmTJjW1CQSpe/PNtndgDDljxpA76RCnTygECQmLvMP0jKyIiLQtd9IheAYNIndPBXUJIyyiSliIiIiIiIhIAiUs5IC2c3cdD93/IXZNNcPcLobmuBhU4sGbmKSIyT2kjJLJdXh3PQD3PQ/la5o3+Pj55gkLwJ7xS6p27mDHkiXsXP8JO9atZcf6tYQbGtqNyeX2MHj8BJb7NrDU9yl7+oQZO2ACxww8hhuHnMCRA48kz5O3z/dVv3gxgXXr4smJ4Pr1hLZta9Wu4PjjmyUscic6yQ9XSQm5Bx2E76CDyD1oAr6DDsI3diyu/Px9HldERKQtxhiKTjmFwH//S2XCCAtTV5/FqERERERERKSnUcJCDkjbd9bx8P0f0H9DHUd73Awu8pLjap2kcOV7yBvjIt/1Er5tD8ITO9reYf+DsRPOpHrHVnZu3MDOdWvZsf4TdqxbQ7B+3zdjIi7L3j4Rzp5xFSMOOYzB4w/C68tlzPZFXECUw/sdTr63KVFgg0GCGzYQ3LyZ4ObNuHLzKL3owubv7/s/ILhxY9L/DsF165ste/r1Y9y8N/AMGIBpI2kjIiLSWUWnzmLvgw8SjTQlLFx+fxYjEhERERERkZ5GCYsExphjgNuBEwAvsBL4rbX2kQ7swwfcAnwOGA7sAZ4Dvm+tbb8ogGRcNBrl9Tc3s3HuZsbWhDnX68JX4G3VzuS6yZvUj/wj+uMbW4JZ/Rw88tv4dmuhKpRLRfFRVOQfTEW4hB2bdlP57jKiwRuSxlGbG6a8JEBFSZDdfQK4hvThiCFHMvm4CyjMKYy3mxwaRP3SpdRvX0bVtu0EN28mtHkzoe3bIRqNt/NNnNgqYZEzZkyzhIWrqAjfmDHkjBlDzpjRzuvRY8gZPqxVfN6BA5O+BxERkY7KP+YYXEVF2HBiwqL9EYciB7p0fDcREREREeltlLCIMcbMBF4GGoCHgBrgYuBhY8xwa+2dKezDBTwNnA68CzwOjAeuA2YZY46z1u7O0FuQdlRX+FnxzDoaVpYzyuPiIJcBn7t5I1eYvPxV5AefIffsqzDHnECgvp7dmzdQtbeQPRWj2BXMZ6ftS3WdwYZtrOOaVsdL5CsuZm3uDipKgpSXBMjpW8iheaM4KjwA80klg7Z6OKxuEPbtcnwT62FAU8KibsECdtz+k6TvL7RpE9baZiMiSi+9hMKTT44nJ9x9+2rEhIiIZJXxeul/07f49M218XUuv6aEEmlLOr6biIiIiIj0RkpYAMYYD/APIApMt9Yuj63/CbAI+IUx5jFrbbI5dj6Pk6z4L3CltdbG9vNl4C7gZ0DyR/Cly0LBMBvnbaVy4Q6KqgOMdhnIaZ6kiNoIhuVEoguo9K+maq9hdziP6rsfx//XF2morUloPTzhtaUli6UhJ0zJoIEcdcxsBo4Zz6Ax4/B63Cz//KUUfOjGszeCrd8BNJ9Wqjr2u+yaz+MdMCC+3jNoUKvjuIqKyBk+HO+IEbHfw8kZPtwZ9pGQkCg65ZRU/1OJiIh0m7LPfhbX+7+KL5uQRliItJTG7yYiIiIiIr2OEhaOU4CxwD2NXwgArLVVxphfAPfiJCOSPe5+fez3/zYmK2L+BnwXuNIY8y1rrSZszoBoNMriuRvZM38LoxoiFLndDAJIqE0RtRF2Btazqe4DttRsIGwbp6UYkbCnCM5DbG2wFk80RF4oSLE/RJ/aIKX1QQoCIdzWErz0EI647Kqm5pEIxau3QTTaRpqjudC27XBU03LuIYcw8HvfwztkMJ5Bg8kZNhR3aWnK/z1ERER6om3eWg4JxRbCoX22FTlApeu7iYiIiIhIr6OEhWNG7PecNra9HPt98r52YIzJBaYCq1s+7WSttcaYV3BGVxwNvJlqYMaY1kUGmhva+OK5P/6NviV9wEaJWrDWYqPOo1lYsFHoM3AERSX9nJvn1lJbVUn51nVYLNbG2tnYa4DG/hiGjjoUt9uNjbUp37kFf/UesCbhZnzsdbQpSeBy59B/yOjY/p2Ydu/YiI2EAOMck1h7a+L7wYLHl09RQTGucBh3NAzhMDbgx2tceIwbr3HhNR68xkOO20eBu5B+QG3sx3kLUXY3bGFb/Vp2+D8lFG2aO7tN1lJQ1pfCsn4UlfWloG8/yl9+iqGf7CQvGMLdIvNQH/sByN/lZ+3atc227y4oIBoI4C4rw9WnD54+fbAlJWypriZSUsyEqVPJHTqUXX37sqtFX44/LmFHu50fyYpAIEB5eTkA69atw+fzZTkiSYXOW++k89b7dOScVUUCbK92ynpVB6p46nd/oz4UJtpQh7ERAPJceXiMCzxuTEEBARuiIeLH43aRGzEk/glb4w/gCtUBYDAUuvOdDT4fJtdHXdhPmBC5HheegAG30zccieL3N+CKOqM8vMZNrivX6VuQj/F4qArXAJYCt8FEcuLHbAhFCDfUYWwYgFyXD6/xgAFTXEzYRqmL1OIyhnzrahZvXSAMAWe/AAWufFzGgNeNyS+gIRokEG0gx+MiJ2TAOH2jNkpdQxBXyPmrw21c5LvynJ3m5mF8XmrDdUSIkOc2uMMeMC4AQuEogQY/JhoAIMd48bly2Ll3T+KpaTFfpmTRjNjvTn83SdSR7xOffvopfn/qz1aFq8tTbivZ0/L7Saboeuj5dC1IIl0P0qi7rgXQ9dAbdOR62LGj2Swyafs+YZoPBDgwGWMeBS4BjrbWvtfG9hpgr7V2RKvOTW0mAR8Az1lrz21j+7eB3wBftNb+qwOx6QSJiIiISKYdY61dku0gJD3fTVq01/cJEREREcm0tH2fcKVjJ/uBktjvqna2Vye06co+EtuJiIiIiPQUA5I3kW6Sju8mIiIiIiK9kqaE6vmGJ9k+AlgQe30csDWz4UiaDAIWx14fQ8tK3NIT6Zz1TjpvvZPOW++jc9Y7DQXejb3+OJuBSEYl+z6RA0wEdgG7cQq6HYj0OSaNdC1IIl0PkkjXgzTSteBwA/1jr1ema6dKWDgan15q70mlYmBvGvaR2C4l1tot+9pujElc3JqsvfQMLc7bDp23nk/nrHfSeeuddN56H52z3qnFeUtS5Eu6UTq+m8Sl+O9xfar721/pc0wa6VqQRLoeJJGuB2mka6GZjcmbdIymhHI0VhMZ33KDMWYQUJjQpj3rcepTt9pHi313XyUbERERERHpbdLx3UREREREpFdSwsIxL/Z7dhvbTm/Rpk3WWj+wCDjIGDMycZtx0m6nAXWAihmKiIiIiEh7uvzdRERERESkt1LCwjEXZ4TEZ40xkxtXGmNKgO/hDJH/T8L6wcaYibHtif4e+/1L03xs0A3AGOCBWGJDRERERESkLR36biIiIiIisj9RDQvAWhs2xlwHvAzMN8Y8BNQAFwMjge9YazckdPkl8HngWuDehPX/Bi4HrgBGG2PmAeOAi4BPge9n9p2IiIiIiEhv1onvJiIiIiIi+w2NsIix1r4OnAgswEk63AjsBD5jrb0zxX1EgfOBH+NUSL8JmAbcDRxvrd2d/shFRERERGR/ko7vJiIiIiIivZFGWCSw1i4Czkyh3TXANe1sCwC3x35EREREREQ6LNXvJiIiIiIi+xONsBARERERERERERERkawz1tpsxyAiIiIiIiIiIiIiIgc4jbAQEREREREREREREZGsU8JCRERERERERERERESyTgkLERERERERERERERHJOiUsREREREREREREREQk65SwEBERERERERERERGRrFPCQkREREREREREREREsk4JCxERERERERERERERyTolLEREREREREREREREJOuUsBARERERERERERERkaxTwkJERERERET2S8YYk+0YpGfQtSAiIvui/0/0HEpY9GLGmGOMMS8YYyqNMXXGmHeNMZdlOy5pnzFmgzHGtvPzRrbjO5AZY64yxvzNGLPEGBOInZNr9tG+2BjzW2PMxlj7DcaY/2eMKezGsA94HTlvxpgf7+PfnzXGjOre6A9MxpihxphvGWPmGGM2GWOCxpgdxpjHjTFT2+mjf29Z1NFzpn9rPYMxJjf272a+MWabMaYhdt4WGGOuNcZ42+ijf2uyXzHGGGutzXYckn26FkREJJnG/08YY3KzHcuBzpPtAKRzjDEzgZeBBuAhoIb/z959h0dVbX0c/64kNEFsiIiiqBT12rtiARv23nvvXnvvir33clWw67Vefb12xe61YkXFgr0gotJLst4/1j7xMCSQQJKZwO/zPHkmOX1yzsyZ2WvvtWBb4D4z6+Lulxbz+GSq/gSuqGH60KY9DCnQD1gY+A34Kf1eIzNrC7wILAc8DdwDLA8cC6xjZmu7+7jGPmAB6nHecm6j5tfbHw12VDI1hwMnAF8Sr59hQHdgK2ArM9vF3e/LFtbrrSTU65zl6LVWXO2Ag4E3gceJ8zYXsDFwK7CTmW3s7lWg15rMnNzdzawXsC9woLtPLPYxSXGka6EMuBh42d0fMbOy7D1QRGYtWU96BTIlL10X5wKtzewkdx9f7GOaVSlg0QyZWQXwL6AKWNvdB6XpZxNfSs8zswfc/ZviHaVMxR/ufmaxD0KmsB8wxN2/MbMTgfOnsuzxRIPOhe5+YjbRzC4gGvWOmsb60nDqc94yA9x9YOMelkzFm0Bvd38xP9HM1gKeA643s0dyHw71eiu++p6zjF5rxfU7MIe7T8hPTJ8jnwE2JIIXj6dZeq3JTCdd7zcCSwI3AG+qp/0sbVfivWxh4BEFK2ZtCljN2vI96bMOGWbWQoHtWd6qxOfeT9z96GIfzKxMKaGap3WBxYC7s2AFgLv/CZwHtAT2LM6hiTRP7v5sXYJ8KeK+HzAKOKdg9jlp+n4Nf4RSk7qeNykd7v5QYcN3mv4y8ALRA3xp0OutVNTnnEnpcPeqwmBFmj4JeDj92Q30WpPmL+spWzCtPF3vt6dJG4F6084KCq+H3N+PEqPdlzCzbk1+YFJSFKwQMzudyFKyOIC7T7QwW5EPTRpZGnFXk7eAd4F/mNmaaVnVtSgCBSyap97p8eka+SolLAABAABJREFU5j2VHtdpmkOR6dDKzPYys5PN7LDacrZLyeoOdAZedffR+Rnp71eBRc2sSzEOTupkbTM7wcyOM7OtlJu9pGQ9mialR73eSl/hOcvTa60EpS9oG6U/P0qPeq1Js5V6SU+WczpNq0yLvAb8BfRIqc9kJpVP8WJmLbPp6W8j0ik/BXQi3vNkFpIaostyfy9jZreY2bLFPC4pDjNrA/QANgdWSNP2AiqBfxbvyKQx5e4TVYWfCVJHh0oi7T6kdlV1dCgOpYRqnrqnxyGFM9z9ZzMblVtGSk8noH9+gpm9Bezs7l8W55CkHmp9/eWm903LfdckRyT1dVbB33+Y2RHufnuNS0uTMLOFgPWJWiQfpsl6vZWwWs5Znl5rJSA12p0MGDAPsB6wONDf3Z9Li+m1Js1WanRYkUjh8I6ZXZSmZQ0PvwE/AH2I14EKMM+kcoGrs4BFzOwqd3/bzCrcfZKZTQAGAzsAywAv5a4TmYnlzrOn3vOtiVpcewOfm9mX7j6qmMcoTW4ccCqRAuiUNNqiB/A8MFgpw2ZOufvEScB+Znaiu9+fPhdk94J3iI4Oi5tZK9WxKA6NsGie5kiPf9Yy/6/cMlJa+hMNBfMBbYlilncAKwPPmdnsRTw2qZu6vP7yy0npeB/YB1gUaAMsQhQTdmCAmW1RxGObpZlZC+K9sBVwQu7Dol5vJWoq5wz0Wis1LYEzgNOBQ4GewCXAAbll9FqT5u5BYDviGj8mTasCcPdPgU+B+YFNi3J00mTMbA/gNKJexWVm1jYFK7Ig1atp0V0AFKyYNWTn2cxOA94g6jdtQLxPbEfqYS8zv4Ji26OJUcI9ic84RwG7u/t/FKyYeZnZOkRh7UWIWnyrM3n7+M/ppy/QIq2jtFBNTAELkSbk7me5+/Pu/qu7j3H3Qe6+B9HoszCwf5EPUWSm5e4Pu3t/d//a3ce5+1B3vwbYPi3Sr5jHN6tKQ/MHAGsD/3L3O4p7RDIt0zpneq2VFncf5e4GlANdiAbd/YCBZta+qAcnUg+11alIv96cHj8ALjCznYmAauau9LhOKqqq0RXN3FQaj54HfiFGUiwIPGBmC2bn3N2fJQJY3ZSad9ZhZgua2TPE6M93iNRgjxA1mlYEtjOzeYt3hNLYsvtFwfv/dkS76G9E8OoTd/8pLa8G6mautjoVqTbfp8DnxP3iTmCL3PxPibSpHYAtG/9IpSYKWDRPWe+32nq5taf2HnJSmm5Mj72KehRSF3V5/eWXkxKXUqJ8CSytxrumlT5E3kr0crwTOKhgEb3eSkwdzlmt9ForrlSE+3t3v54YXdELOCXN1mtNSlo+hVPW6FSQvuFjouHxDeJz9b+AvXKb+JRIZ9YT0IjmmUCqS1FTe8ZEomBqGXAEMbr9EjPrCdVp8v5LvK8t0ESHK8W3Tvq5nhgZeqa7XwpsC7wN7AasUcTjk0aS1S7JjbJZ28wON7PV0meiHYFjiSwYO5jZfMU8Xmk4KT1kdT2jdC1kHR0eAuYk3gOqgIvMbN3c6llHh9XMrKU6OjQ9BSyapyy/8BR1KsysE9CO2nMQS2n6LT2qEGDpq/X1VzBdr8HmJXsNzlbUo5iFpEaG/sCewD3AXjUMvdbrrYTU8ZxNi15rpeHp9Ng7Peq1JiUtNU4vYmb/BnZONQnczLKajF8T7y8LESmh3gfONLO90/zfga+IkWHtofael9I8mNkxwDW5QETWe/oXIjg+BxGoOoRI63F1mj8hTW8JrJlfV5q3afSI3yM93uDuv2av/9SZ4gIibeU+Zta1cY9SmpqHKjNbysyeBx4j0sadluoTDAIeJkbc7ACsm61XpEOW6VT4HmBmBwOv5dLR5js6vAfMS4w+3p7o9HCnmS2ftjMY+B5YgslHbEoT0Ye05unF9LhhDfP6FiwjzUM2HHloMQ9C6mQI8CPQy8wmCzClv3sBX7u7ipI2E+m8/YPIYfrbNBaXBpBr+N4DuI/IFVtTDmm93kpEPc7Z1Lah11rp6JweJ6ZHvdakpNQSTNiRSN9xAX+PnsjqVAwiGhZWACqJ0V/vAdea2ebu/jPwGpEabce0jvKTNwMFPWKzacsQPeIPAs42s/buXpkLYD1J1CxZwd1vBi4C1jSz29MIv2eJBuqtc+sq/UszVUuqn+p5qe7WaKJB8uc0y3Pn/BXimukLbJjvkS3NW3aOU5rA54hRVZcTgYmtsmLK7j46TXdgdzPrltarqGm7Ulpyo2g8N60j0I34XHCtmfUouO9/RrwfbJs+QxxKvEfcTgStvgK+Tb/Pm7apNvQmpH928/Qc8eLZxcyWyyaa2RzAycAE4kUmJcTMFjezKXqUmtniwIXpz7ub9qikvtJN8GZiJNNpBbNPS9P/1dTHJVNnZrObWY8aprchztfswL/dfVKTH9wsJpdSaA/gfmC32hq+9XorDfU5Z3qtlQ4zW7KWzx2zAZelP/8Leq1J6ckaFcxsFzPbIE2+CdiZCLhdb2brFDQ+3A4sC3R19w+BE4C3gFvMbBvifQxg5fS9SZqB1Du60sy6m9lRadoHxLXwHNEz9so06ia7t7xApADL0nvcRKR82Q24EhhOBN+7kEZZqDd185RPDWdmfczsJDPbMWtwdvdKd58IjCfSv2yUrZqra/IrUdeiJXE9LdXET0MaSRqJNztwNDAGOBzo5+4D03WR9w7xXrEhsLmZlWfvKWY2d1Met9RPbhTN4mb2rzTtV3c/hhhdtwAwwMzWzq3zEVHDYgUzm8fdXyM6NHQEriNShD2ZFt8praOODk3IdF9unsysD1EoahxwLzCSyL22MHBsyscoJcTMziRulC8B3xC9PHoAmwAtgPPd/eSiHeAszsz2I31hAZYmIvGvAl+kaa+kHlpZb9NXiS/FTxN5clcgPty8Bazj7mOb7uhnXXU9b2l491fE+RlM9KaYD1ifKMj4IdDH3Yc33dHPmtJ74RlED5YrgZoarh9JPV30eisB9Tlneq2VjtznjleIEZx/EV/YNgbmAV4G+mavH73WpJSkwOczRIPyU8DmuYaj44lRFl8CJ7r7g2n6WsD/AZe5+1lpWieiCPM8RM2WXdLvm2nEUPOQekhfSAQcxgM7uvujad5CwOPE6L3LgWvc/esUkLqauPcskvWiNrPziAbLp4jr61rgMHe/ITV8q3GkBFnkj5+QelBnwcyK3HvC/ETtms1yq30G7JsaITGzvsATxOiabdx9VBqZUebuEy1y1z+b1j0TuMTdxzTF85PGZWbbEwHKA3Lf52t8vVukmHuM6AR8MJFecHNgd+J+M6ipjlvqx8z6ER24AY5y9yvT9DmAc4j6be8DR7v7q2ne/kRdmyXcfUiatj0xKm8YcA0wgGhzPczdf2+yJyTg7vpppj/AKsRN908iWvw/4gNc0Y9NPzWer3WIG+Xn6ZxNBH4iciVuWOzjm9V/iBuRT+VnQMHycxBfjL4lPtB8A1wCzF7s5zIr/dT1vBH5qq8B3gR+Ta+/v9L75nFAm2I/l1nlpw7nzInaCPl19HprJudMr7XS+QFWInoKfgSMSOfiN6Lx9gCgooZ19FrTT0n8EKmfqtJ1OxzYOzevnGiU+J2oXbF9mt4FGET0iJw9t/w6RIBuHBHkqALWSvPKiv1c9TPNa6ED8Ho6b+OIAEWb3PzexEiLSUTqwqxT5knEd66tCq6dC4jvztm18EiaZ8V+rvqZ4tyXAZcSgaWa7lkV6fH89F5wJrAN0C+d28+Adrnln03TTynYjqVr5xWic+GXxEitov8P9NMg19Fl6bxvmb9ualnWiFptVUSnm1eJjqZjgFWK/Vz0M9XzfGM6byPSOWufm9c5vU9UER2q5k/TexHfU84uuAY2Tuf/B2As8T2mY7Gf46z2oxEWIiIiIiIi0qSm1qPdzDYjgqWvA5sSjQVbeRRUJtUh2JVoyPwT2MDd3zazm4jRyxu4++Dc9lYlgnGrpUk3uftBjfLEpEGlegJPEanp2gE9gYPc/abcMv8A7gKWAa5w96NTSqDPicDFxRDpPMxsPqJB8oLcbrq6+7dN8Xyk7sysNdFo2BJY093fzc1bjxglczawVvr9cv97NM0lxCjD8939lDRtWSLtTxlwFFFouS3ROHlA2tZ8RJBkJ3f/t0beNF/ZiBwzO5IIWhwGXF94PvMjd3LTziBGmM4O3ObKYFJ00/jMUEYELPcl3vfXId3n8+uZ2V1EOsFniLSRXxGfM74Bdnb3P3Pb3IBIhds+TVop/x4kjU81LERERERERKRJpOKYkzU81FDI8gWgDdHj+VZgVWC/bKa7/+Xu1xNpG+YAbk0pXe4gelIulLZbkZb/H7A/0fPydv5OGyFFZgUFtQvmlbn7BKKA+jxEAxPAwWa2YLa+u39M1Fn6CjgypQYZSaS365tvjHT3X9z9IiLA8Q2RHkjBihLk7uOIgOVeNTQUlhO9qI8jggwXuft4+7tg9r+A14CjzGyptL33gQOJERSXE6kPXyFGEn5OZEMYktZfOa2jYEUzlXvdf0tcK734u/G5uiB3Cmq0NLM1cuueRQQsVsmCFaYC3EWT3udrC1ZYOtffAK2AO4kaRgeY2VLu7in4CXA8cAuwHjEivJxIJbks0Klgm88QKXGfAXZVsKLpKWAhIiIiIiIiTcITM1vBzA5L0woLWbYh0rmsSTQYjAP2N7NloLrXPcC5RPqXbkTNgmWJxu090nazHPdlqVF7cXffy91/ryFIIkXgUVC7zMwOM7PFC+Zl18XnRK3Gb4mG5mWBg/LrexTi/icxGud4orf8q8CqZrZoapQsy533/d19EXd/pLGfo0xdFrTKGpDz3P3VNNJhwTSqIpv+NNHw2IIYZdUqNWpOSPM/A24DKoDTc+vdQtQ2uZoIaL1CpNXewqN4d9awmQUupJnKXU/vAm8QqQa3zBqvc73uuxCB8SvNrF22vruPdvdxZlaeGrBrquEmTSB3nzjPzDbIvWeU5QIZrwBzE2nXT0nTrkrrj0vn8AfgLOBmYA3gISKV5PxEWsns/Si7dq5z977ufk+aN8V7lDQefUgTERERERGRJmFmrVJahreBq8zsVDPrmuaVA7j7b0Qj5ALAH0QP6IWAQ9L8CalxciSRvuVcYAkiuNEO6G5mC2f7zBq+3X1YGuBRXkOQRIogFUMeQzQs3W1ma+bmZaMvfkmPPYmG5lHA3ma2cpqeLfckUSj3F2JEzU5EfvLNIK6D3HnPUgep13SRpUABpGBBrjc06e/5iFER15pZ99ys69P01YAuqVGzPBeUegj4D7CdmW2ctlXu7t+4+xHuvou7b+nu96f3hfWJ4rw/EHVRpBnLGrLdfSiRYvBX4l7xTzNrYWZzmNlGRHq4vsS1MkVQwt0rNdKmuMxsHaLjwolEvZkzYIrODhVEbasNiRF0rwO9zWyb3Hzc/Xvis8QTROqoM9P83dP8ytxnholp/9lnE10HTUgBCxEREREREWlwtfRGnJuUsoloGDwNuMXMOuUaLiF6xy9CFIC/mOhdv1vW8Jhx9z/d/Vyix2QZ0D39LFLTMaUBHpU1zZOmlRqWuxA1Cn4FlgIGmNk/YbKG7DeIAMP8qfHxIqJHbDZCZ2KWh97dBwF7AV8AixPpgrqb2Wz5fecaM9VrusjMbEUz+wu4EqpTQWFma5jZfB61a64BehBBKNJynwE3Eb2hz0qTq9JoGnP34cQoi1+AM8ysTU2vfTNbnUg3dhXxvnEpUcRbimxqKePquH52D3qYqGczJxGgGAK8BdwNbE2kFOuXXXtSPLV8bviOCDiMBCYSaQFvTsFMANIoyhFE8NKJjg4Q9Uuy+0S+w8KxxPtDFgRdKY22mYI+MxSHAhYiIiIiIiLSYFKjQD5VQ74R4mcijdM4In3T/URKpycKghE/EwVPe6eRFGcCswGHmVnr1Jvacg1aZxBBC4hgh/JNl4isx3thQ1RqNHqUaEwsI3pBfwVcbmanmNn8adE2RHBrrfT3pUSaqB3NbKvC/bn7c0RKkE/TpCfcfUwDPiVpWL8QPdu3MbP5zOwfZvYpcC/wj7TMBUSj5e6WqzVA9LZ+kbgWeqV0c/lRM08CjwGrEPUwqlnULXgQeIRIGzWKeL+5QiOwii8FnSrT771SYGvR/PxpbSMXmBzj7ncStQvOJgIWnxPvOYu5+8Vpm2ojLZL8KAYza5GbXuHuXxHvAbMT6SIvBvYB7jSzpXObeRtYLm3nYeLzxUJmdlKaX5ZdU+4+mPjc8Hiad6q7f9dIT0+mg2lEi4iIiIiIiDSE1Hsxa2RaCTgaONTdR+SWaQ9cAexAND4PJApltgSOc/cBZtYbeB7Y2d3vS41TzxMpHA5y95tSg1Y+KDIP0CH1vJYiq+H8VNQ0oiGl4vkP8BJwLbAucCTwX2B7dx9rZm8SqaO2cvc/zGx7okjy88DW7j4yNTZ6rtF6MeBzpfEoXdn7hZntRPR2/x5YEPiAqCtwj7sPS8vuR4youBE40t2ztF7bEdfCIHdfMbftsjTaYnmi1/WjuXmWrpMtiALbb2Xzs4ZwXTdNr/B/b2YrEGngViFSv00gesVf4O4zNAomjbgZm34vJ0bn6Jw3sRruExcSnRP6ufsvuddxOVGfogNR32oh4DoibeQB7v6smV1KBDI2cPe302v/RSLo3Tmlhaz+jJL21xoYr3NfehQ9FBERERERkRmS9UxNjY9zmNltwJtAH6LhuJq7/0U0TI8kCqF+A2xMaqQ0s3OIhonviNEXWQPWaWkTB5nZgqnBsTy33eHu/lnByAspklyj4/Zm9jTwtJn9x8w2LugF/wbRU74vsJy7H03UEtgAeMbM1iZGYSxO1DbB3e8nes+vC+yZ22V1qid3/6yGHvdSWrJGwiXTY2fgAWBzouDtsNyytxGjp3YkN1rC3R8A7gGWN7O9oDo4luWhf68wGJFb91F3Py03vyyljVPjZRFk/3uLAssLEIHstkTQoh9Rl2B/4PbcCKzp3VcWrChz1alocoUjMc1sZzP7HjgOqASy129Vej1XAsek1c9w93uBbYgUUfeb2T5E0Ls9MYITd3+PSCdXDlyY1i08z+N1nyhNCliIiIiIiIjIDMkaB83sBCLFy6ZEA8GWwDs1rPIhEbRYguhNP5hopLyPyC19F9HIsEouGPIKkfZpubRMjbmlU5uXck4XmZl1MLO7iXPaEZiDCDA8DlxtZq0A3H0U0XP+W6KY9irufgbRMN2TSOuxMdHrdq3cLk4jUgkdbWY9a2twrGlUhxRHFjDI9aTPUi/NQaRzKQMWdffv3H1SvhHRowDuGUQdgj0tl7+eaJT8maiHU+NInrQNzz8WHpcrFVTRmdlxRD2Tk4i6BYe5+9HufjpxX3kY6AWcnEbVzRCd8+JI9+kqM1vWzF4n7vmDgZ2Bc/PByuz17O53EB0hNjCzfd19ILAV8d5xM/BPoqbNyrldXZ62u5eZrVl4vvNB7kZ5ojLdFLAQERERERGRGWJmq5vZt8B5wEPA7sB57v5mTQ3J7j6BaKAYRDRMb+ZRZ2B/oiftEkRv6++IhurMBemxQ9bgLSVru/RzBbBDStezOtFL/kDgrFwv6c+JXtSLAPuaWXt3fwTYj2igWhP4i0gJk6UReYcIhnQlGrGlRKXe1BW1BQyIxum1iLoVK5jZUWl6YePi80Sv+82Iayub/gbRkP09sHBd6hsUbFe965tYGkVhBdPmJALX+xLp/25NgWrMrFW6R5xDpBHcnVSvQJofM6sws+uJWlZzA4cTwan7/O80cNUBzlzw8oj0eLyZzedRi2Ifoq5FHyJ1YLZeWdrWv9I6MxzgkqajGhYiIiIiIiIy3VIO6POJhoS7gZPd/ds0L8s/3cpTzvncemXAbkTh0weBI9z9xzRvU6LB6l53fzdNy/LOL+pRhFNKUGpkak+kbFoQWDhdA9n5W4kofLs2cJK7X53WW5hI7dODaLi6N21rtrT8e8AjaURGtq/ZgQmF15aUDpu8rk07YC9gLmA48Li7f5O7NpYGXibSxa3i7j9l7yG57fUA3gI+InLXf5xtO39tSOnKj4Ixs7mB1u7+Y7on9CJGVXUE9nf3W8ysRRphk61/GHAVcKW7H1V4jdSwv+o6CWbWkqhXMSk/XZqWmXUA7iBSAZ7s7hfUsMxcPnn9q+zzxO3EZ4cL3f2k3PwDgWHAC+4+ouC8T3YNSelTwEJERERERESmS0Ej9JXA/EBvYmTEssCqRMN0R6Kn/H/c/c3c+h2AW4ANiUK6N+bmTbWBwQqKZ0rpMLO2wMdEmp4+xMiILAWIEdfEfUStkoPc/X+pB+02RNDiceAQd/8+ba8FUFlbo+TU0gBJaTCzw4nA0+xEjvoWxDVyRBo5kS13HnAicK27H17T69zMTgfOBC529xMK5ulaKFEFDchtgVOJwLQBe3nUIGpHjLg5iahbsq//nXIwu990B94HfgCW8VSPYhr7KyPuR72BN939uUZ8qlIHZrYW8BjwAnAoEajcmBht1Sf9/Rpwj0cR7XKPOlkdgR+B0cBa7v5B2l6NgavcdaP3hmZEKaFERERERERkuuR6p75DpHPpQhTN3JkopHw90UC0BtEANdDM9sut/xvRU3YSsJuZLQHVDQ9T7Q2pYEVxWN0Kms9G1DKZ093HehS1zYqoOvA/4tpYFtjMzFqmhqTniKLLGwFbZxtz94lT60GtRqjSZWbzmdnNRIDhOSId2LJEcGoe4PzUcJm5CPgC2MfMVsuNzpjHzBZNy1xFjMy6kQK6FkpXLniwK1GzZj9gFPAKMD4tM4oYqfcFEWBYJa1TneYH+DL9/A5MqCG1VFaTJNtfd6JW0q3AucBCjfcsBep8n3ib+JywKXEtXEAEqXYkalh1BY4CHjGzVfm7EPevwOlE8PPEbGO13SNyqej03tCMKGAhIiIiIiIi0y3Xi/X/iJ7xhwK3E40LGxENTssRDRKtgavMrFtuE28QjRZrANuDCqGWolwjYKWZtTKz3c1s3jRvsraFlDf8F6CHmW2RlinPzR9HBCY+J66RhdL04UQti1HATma2bE3bl+YhnbeNgG2JAMMJ7n6Lu39KpHT6E1ga2MPMZgNw9z+AC4E2wAUpULERUQvlMjNbwt3/cPd93P2rwsZqKW1mti5wKVEIeT9gJ3c/zt2H5hb7jCikvjh/17TJVBE98Bcnetl7Pq1TwaiKjma2CxHYugT4FVjO3fs3+hOdRdXzPjEWuIkIXp1JpIu7mDi3axABi6uADml+19y656X1dqrpHiPNn276IiIiIiIiMt1yvRe/Bv4NfAhc7e4ruvvT7v6Duw9x91uJotytgWOgunFpNNFo8QtwTOpJKSUm1wi4A9Hw158aAky5RqPb0uOBuVQe+cblb4k6FysyeTHUd4giqasDu6drRAGsEpY1RBYGD9J5aw2c7+7HuPuXZtbSzK4jglUVxOt+G6LYcrbeLUQdg7WJhu1/A7sCr3kU2a3er2oQNB9m1go4nhiBdYK7/8fdf7ckWy71hH8AeJEowH1pGqkzp5ltApxFjMq7vvC9IaX+aWNm6xON3wOIujg7uvs6WfogaRx1vU/kfAFcTgSpNnb30939d+APj9pEFxPpAzcAlknbbpXWPTo9npHeCzTqciaigIWIyEzKzHqbmZvZmY24jzPTPno31j6aCzPrmv4XA+q53vJmVpl6/5QkM9svHePSxT4WEREpTbnGpqeJoMTlaXrWkFmR5l9D5K/f2Mw65BobPyd63V7i7v9rsgOXOjOz9mZ2NHAz0dA8EdjRoghy9bnOGo3c/UEi5cfGRGMzRK560vyRwCfpzw1z08cCdxJpYW5Rg3TpMrPyfECpoKd7FrgaQPRux8w2JEZW7E6kBNuNSCE3FxGcWjC3+VOIwObradl53P2i/P4VyGp25iWCUM+5+6tmVpaNiKjhdf4TMapmIhG0eIUIZt5IBDmPd/enC3eQvq+cRryH7Az0c/cF3f3+xnpS8re63icyKfXjw8TIzDcL03m5+w/Aq0T7dd+02oQ07yFiBMb+ei+Y+ShgISJSIsxstdTg/WQt869I8z+tZf6Raf45jXuk0y91ntnNzJ43s+FmNsHMfjGz98zsOjNbp9jHWASXAZ8Seb8blZmtlK6Rw+q56m3AN0QPFxERmYmZ2fZm9t8sSF3XVDy5xoXfgAfc/dv0d9aIUJmCFuOINB4/Ab/nGicmAJe5e8l+jhHWJhqRRwHbEaMg1iIaBQtHWWSBibPS4zFmNr9H0e1yM2uZpme9nX9L62VBjw/dfTd3H6yUP6Wh8DxkPZpTj/Y1zOwmM7vVzK42s1Vygavx6bx3AE4mghPHAKem4GRWPHlFYIds++7+hbtfDuzs7ie4+wgzq9D10Ky1JEbctDSzNu5eVVtAMk1/mQg8TCBGYx1H1Dno6u5Xw5TXJREcPZEYndHZ3c9ulGcitanzfSLj7j+6+/PuPq4g6JndJ37LP6b3nPL0+5Hu/m5dP6tI86ETKiJSOt4mbuy9cr0Q8/oADvQ0s061zAd4Pj2+CSxB9GQsFbcCdxB5rB8nelLeA/xB9JzZv1gHVgwWOVx7A5c2Ua+QLdPjf+qzUur5cjnQ18x6NfhRiYhIKVmFyDm/HUxfD+bCtAy5HrSTgDWJwtw/Ep9r8utlqSTUIFmaRhGf41Z39yeIhqifgF2yzwe5gEMWwHqcqGeyNNFJg9TIPSFtc5P0+E2aN9n1ppQ/xWVm82fntvA8pCDEXGZ2O9H7fXNgC6Kn9BtmVthQvB3RmHmhu9/k7iPS9DHAHMDcRC2LldK+s2DmmPR3mbtP0vXQrI0jRtgskH4mU8OIvBFET/2xwGLAIHe/1t2H50b3FN437gGWd/cdUwBdmlad7xOFsnOYu49k94mt0+Ob2bL5zxn5UV4y81DAQkSkRKQv8S8D7YCV8/PMbB7ii97DaVKfgvllRM+F8cSwadx9jLt/Wiof1MxsLaKQ1iCiV8we7n5S6hXRB5gPuK6Ih1gMBxMfwB9oov1tCbzr7t9Nx7r3ErliD2rYQxIRkRJzHpFLeo9s5OP09lzMp3awyFu/JZG+4WvgnFrSgEzRMCqlwd0HAme5+zdp0mDifHYn0vm0So3YWaNT1oB4BPAukRbkHjPrZWZLmNmhRIeVZ4DnatmnGqGKxMw6EyMfrjSzLmla4XvB2URB7YuJYMVSRL764cCpZnaQmbVLy7ZNj8MKtrE/Mdr4diJH/RxQc4CkAZ6WFNdIotF5GWBdM2sNf/ekz4JgQH8zWz5dA4OIlGB9gW1yPesr89dILkj6vru/34TPSXLqe58oWNfzwQcz62ZmFxEjr+5w9/+rZZ/6zDATUsBCRKS0vJAeexdMX4fI+XsV8DsFAQtgWWJ49evuPg5qr2FhZkPTTzszu9LMfjSz8Wb2gZltV9NBmVmX9AXzdzMbZWYvmtna9Xxuq6fH29z9r8KZ7v6Hu79WsN8B6TksambHm9kQMxtnZl+b2elm1qKW413bzB4zs9/ScxtiZv3MbLYZXT715jnBzL5Ix/KFmZ1EPe+p6cP4lsBThf8Py9XDSF/o/8/M/jCzEek8dEjLrW5mz5nZX2nezWbWtpb9LUIEvf6TmzaHmZ1tZp+k8/pXej63mdnC+fXdfRgwENgu98VTRERmMqnXcz9gYSJoMVttjQt12JabWQszWw84F7ia+LxyjrsPasjjlqaR6xWfdba5k8grvx2wWcGyblFs+0/gAOAWYEeig85bxPXwHXCMR3FVKQFmto+ZHUUEHW4ivmfUVFx9GeAQ4vPhGe7+lrv/7FG75FDgK+AoIogBcc5HEY3Oy6XP9/8k6lk84e77A/O6e43BK2neUkP0SKID3nfAScBW8HdPeovRNdcT333nSvPGEoWbhwC7UNCxT0pPfe4TNWhlZouZ2TFEZ8ZjgWeJ4KjMQhSwEBEpLVnAojAg0Yfoif8G8SWvpvn59aelBVEUc0PgQeJDxGLAvy2K4VUzs/mJURs7ET1isqDJM8BqddwfxJcegB71WCdzBXAC8WHlamIkyVnEkN/JmNnBxBenXkTaqauA74lcms/Y37kwp2t54ovbBcQ99FrgKeBo4Mp6Pqe1ifPwxlSWWQR4DWhFDId+nzgPj5jZmkRvxFHpmL4keileXcu2tkqP/4HqXo9PEUXpfk/buAl4j+gh172GbbxO5J1dow7PT0REmq97ic8U2xNpXurdg9GimGovojf1nUTD5vtEqo4BDXq0UjQeBVEvJdL57GlmnVKgorAA97upQXpHoqHyemAHd1/N3T+anoCYNKzUSPg08ZlzaaANEWgcAexlZsun5bJi2gsTHaoedfdxFqOosnmPEjXQugPrp2mDiQbIzYn6Aq8Tn/GHEmljyVL9NOLTlBmQ3tdn9LX6FJFqdg7gVjO72Mz2MrMLgBuINHG3EN+BMl8R7zPLEYH01jN4DNKEpnWfKHAp8AlwBtE+sZ+7b+ruXzbdEUspqClHuoiIFM97wJ/AGmbWwqN2AMSIizfcfbyZvQhsaWYLuvv3uflQ94BFZ6KXU+9cj5a7iYDA0UQwI3M+kWP0VHc/N5toZgcAN9bjuT0F/AUcZGZzEL1r3soNF52a1YBls+drZqcQAZNtzWzb1JMLM1uSCDh8AKzn7lmQBDM7MT2Xw4kPQtOzfG9gH6LBpZe7j07TzyOGK9dHVgvinaksszZwpLtfmfZjwP8RH+QfI4oQZgGIFkQdlN3N7CR3/6VgW1sCQ3NDpJcCVgUecfet8wuaWSsimFLo7dyxP13DfBERaWZSr9fC1CuVZnY60UliLzN7xd1/sMghX6e0LGlUxiCiY8QY4C53fyPtsxyotdiqNDtPAI8QDdHbAdcUXidmVuFRf+D+wpWzeU1ypFKj1EHnLGAl4HjgcXf/A/jDzC4kUj7tZmbv53LHd0mPPWCyXvKWAhgDiQ5XOwD90mjdE83sL2BxosH6fne/M38sXlADR0pDGi1VmX5v5+6j0u9T3ENqkkv3M8nMbiDSjV1EFGAHGE2kI9zM3V8qWLfSzB4nOlcNyDIKSLMyzftEcgdRZP094nNDds2V671h1qIRFiIiJSTdhF8icryuAmBm8wL/IEYBQPRIgjSqwv6uXzEW+F89dneU/13IijT8+htyw2zTl5cdgV9JjfY5NxNDc+skBRu2JYYA7wLcDww1s1/N7D6LAtS1uTIXnMm+EJ2S/twrt9yBRDD+8HzwIbmI6OW58wwsv0d6PDsLVqTj+YH6j7BYMD0WBhbyviQCKtl+nOj1CvBeFqxI8yYStTAqgCXzG7GogbImNRfbHls4wd3HZ19CCmTHumAN80REpBmxVNQ0a0QqmGfu/ipRLLMvNaSDqYt0rzzc3Q/PByu8IPe4NG8p5dPlxAjYPcxsMYiOIWa2U1qmOiCRXW+5URgKVhRfJ2IE7Tvufom7D87Nu4oolLwLMTo78wwwEVguSyWab7x295eJz7KdzGyh3Pk+z933ALbKghUaVVH6UtBgLjO7HnjBzP5jZquROkLX0lu+cBvZtTEuBS+XJtIG9wE2cfeV3P0lC2UF6/7o7ge5+5tTbllKXV3uE2m5N4Dj3f32dM1V1ywpxnFL8WiEhYhI6RlI9DzoA7xKjJ4w/g5YDCJGYfQheiAsB8wJPJsPQEzDH+7+dQ3Tv+fvWhMAPYkUQM8X9mRJPSdfpebUQTVy92fTh5PexOiBFYmG9B2AHczsfHc/uYZVX65h2utEEejlc9OyFFV9LfJlF5pI9Oia3uWXncrx1DRtauZJj39MZZkPamjQ+Sk9Dqph+Wxe54LpmwLlTB6wGEyMLNnZzBYkerwMBAZNpUHq9/TYYSrHLCIiJSxrUMwaic1sd6LB8S+iMPJTuc8T5xM9Ifcysxfc/f36jLIAcPcxaT9l7l6lRoeZ1jtEmqdjgEPN7FOiU8lqZva7u1ePzMw1WqqIcumoIHo1dwMwsy2JkdT93P0aMzuDGC21h5m9kY2+IFI/9QU2AG5OAdDy1NDYFmiZlvvBJ69/YWlZvS+UqMKRE2a2KpHma34i1e+KxGjtc4Grp+f1nDpITdbhLteTvsagdl1HdEhJqtN9wt0nZoFtvTfMuhSwEBEpPfnC2/3S4zjSh7kUKHiFv+tWZI/P12Mff9YyfRKTj76bIz3+WsvyUxsdUKPUQPJs+sl6eO5FfHg5ycwecPd3p7Wf9EVoeO4YIfJiwt+jL6alvsvPAVQBv9Uwr77/i2xkw9RysE5RnJw4R9OaV5jOaSsi2FAdVEnDsdcFziRGvmQjaIaZ2TXAuTV8QGyTHsdM5ZhFRKSEZQ09ZrYW0SDZg2hQbE90kLjXzE5192/cfWhKB3MBsKuZfZA+h9S7wUiN0zOnXABsjJndRoxMPZiovzUKODofrJDSk4IGX5nZ/cApZvYNke7pZeC7dI4fNrNHgW2IkRX9ic/DdxAFkk8ws5/c/fH0GX12YiRzd+C0ws+UClqVrtxImMJzsw3xnXRPouPY0sR1cIKZferuz9Q3oF2TaTVQK1jR/EzPfULnWZQSSkSk9LxPFLdbI6Vk6kOqX5FbZiDQ1cy6Uv/6FfWRBTY61jJ/vhndgUc+45uBu9OkwoLiNe4nDQ+dh8mDL1kjfnt3t9p+ZmD5P4l7Z00jDOr7vxiWHuee6lIzyKIo3YZELuLJUi64+3B3P5yoUbIkcBgR2DiLyF9cKDvWYTXMExGRZsLMViB6ylYB/yRSSy5BdB7YFbgkt/gNwMdp+vrUQT7FlEUh3jaF06U4Gjr1Ti4AtipwADHKsxVwLdDJ3a9I83XuS1SugXkJolf7AkTNiu3c/T+5hsOziKDmnmbWLU1/kehhvxgwwMzONLMjidSqpxE18x5ssicjMyQ1LFelwHQ3i2LYfcxsTqID1Dnu/oi7/+LuzxLfHToDR5pZmyygXcSnIA1A9wkpBQpYiIiUmPSl4UWiN/sWxJeHgQWLZXUs1icaGUbxd0HkhvQ50ZNmpdTwXS31vlmjAfdVU82EzFo1TFudGCn4Xm5aNqR4tSkXr1F9l88KVtd0PDVNm5oP02PPeq5XX+sTNVFqql8BxIdIdx/s7tcSQ/ohrr1C2bF+WMM8EREpMVNpdDgAWBg4yd2vS/eAL4FbgK+Abc1sGwB3/4sYjTc/0VDZPqVymaJhIZfCIWucWJEIgO+uNB7FlXLC54vmdjWzeVPanuluKErbXQO4i2i8fB5Y0qNuyRgzq9C5L31mthsxGuJ/RDvRwh5FsqvfR9z9PeAaIq3rjmnan+5+JXAG0enldCKV3C7AfcB67v5Z0z4bmRqrodaETV7TqIWZXQR8CtwKPAf8HxHMetvMynKjMP4DPAlsDOxej2NQw3QJ0n1CSokCFiIipSkbLXFGehxYMP9dYCRwBJGm6OXC3vMNIY3q+DcxwuKYgtn7EWkk6sTMNjKzLbMPxAXzupEKegKv1LD6ERZ1FrLlWxK9uQAG5Ja7jkiLdLWZLVTDfuY0s+VnYPk70uPp2Qe3tNwCxLmojyzotGo916uvLYniZk/lJ6YPoF1rWD4bKTKuhnnZsb5YwzwRESkxuUaHQ8zsQDNrZWbzAZsQta8eS/O7pV7RA4BFgXuJRqpsOw8CjxPB7C3TtHxu88JAxSJmdhjR2HU28TlC3z2LJJeOozKd6/uJ8/sm8KKZrc/fhXPr1SCVzvk4oif9Du6+vrt/mjVqppG0aoRqQvU5h7llHydqym1KOpdmtmm2WG6Vi4EfiSBk9WdYdz+H+Jy4KpFqdDl3P8DdRzd0b22Zfma2H/CgmS2an17wPXJTIvhwI3AkUSh5DeJ7X1XqXGe58/rP9HiImXVJQY8a3+9ruVf0rG15aTq6T0ipUQ0LEZHSlAUsliJu7m/kZ6YPEq8CGxUs3xhOBNYD+pnZmsSIhiWIxo6niXRDdbE48YH3NzN7CfiS+ALULW2rJXC9u/+vhnXfAN43s/uA0URR8p7AQ6kRBQB3/8jMDiFSWnxmZv9N+5mdaIBZh2iMOWg6l3/BzPoDewMfmtnDxHDWHdMxblbH/wVEweuv+HtEQ4NLH/43B57zKGqXtxzwkJm9CXwC/EykANiKSBFyecG2jLgOBrv75411zCIiMmMKekfODtxE3KceJgrkTiJSG35sZnMQ9+A9ifv5O8Cq7v5WWr+Fu09Mmz6DGM15tJk94+4/p2Us1/g0D7AusG/a3tvAau7+ZuM/c6lNrgHxWCJNzx/AR0RNqlWJnvBHA7dNZ6PRIHffOfsjfw1K08u9Hlu7e00dUKZY1t1HmNkf6Vq5gEjjdAoppaj9XRz7ZzPrR3T62dXM3vUokFvuUYj7rWzbuV74uhZKx8ZE0Pl+4nsIAGa2MPAS8T3vF6JOyenuPjzNb0H0jD8ZODh3jyl39y/M7Eqi89YBRM2SKepYFNwr5iXuFUcSI3MOBYY2wvOVOtJ9QkqNAhYiIqXpI6KQXQemrF+ReZEmCFi4+09pCOdFQF9iGPg7REP7utQ9YHEXkfapL1GkbQOi4PRvROBjQD74UOBIYgTGfsBCwE9Eeorzazjef5nZIOID1dpEg/2fwLdEI/xtM7I8sD+RKmt/4oP798BlxEiUOgcs0ofCG4ELzWyVRmrMWY0YMfFIDfPeBi4kaqBsCsxJBC2eBS529zcKll+b+N8f2QjHKSIiDSR1algAWIF4X1+DaHx4KN3TFyLucVsDsxHBipHAXu5+e8HmepnZm+4+xt3fNbNziMD1z7n9uZm1Iu45uxI9c2vbnhRBamzcn7iHPwzcCTyfGqIXIRopDzCzL939Fatn4dxs2Vyjthqhiih1MjkXaG1mJ9XyPWIKueDFw2b2CLCVmR3qkTI036O6P/E635UYGf3vwnOeGqdVULvIUhB5rLuPSZMOJ4IRDxUsOpFomN6MqFW3obsPN7OW7j6B+N61CTGy5lZ3fyuNsMgark8krofDzOxJd381dwxZz323qGe0BrAbsBNxr7jc3Yc2+JOXetF9QkqNadSNiIiUKjMbQDSkLDIzfpA1s7mJ3k33u/v+jbD9C4HjgM75xqXp3NadRK+sxVIPOhERKUGpEWk4MQLwK+B9d9+lYJl/A9sRjU1nAf0KGx7M7FRgD2BPd399KvtbLC23D1FI82J3P7HhnpHMKDPrSKTnqgT+6e7fpOkbEJ0u/pHm3Qwc6e7j872hpXkxs9WAV4FP3H3peq5bnoKeywIvE+8lq7r7rwWjtzYn6qP9092vaeCnIA3AzLYlRlLsBtyTfz2n+0Rf4MlcQ/I+wKVEKtk1ga88imhn18QBwA3A/7n7FrltVaRG7SOJ95PN3f3xwvcQM1uOSBe2PzAPcJ67Z+mPpch0n5BSozxxIiIiReLuvxOjRPZMQ7Eb2pbA/xogWNGD6AXVT8EKEZHSYLnCp7lpFalB8XQiYLEgMYoRi6KWWc7xG4CxxMjHc/PBCjNbLI2kOJRo9BxcsI/C3NW9gaOA94GFFKwoDquhRljG3X8FLnL3Ld39GzObL6XZfIponDwc+JgIYm1a23YK9me53yss6otJEyp8/ee8RdS7+0dK51rnnPOpYdrc/X0indzCwElpdlVuuceITiwKVpSuCcSo9AOJYDJQHax4hiikvVFu+TuIEfwdgV4pWFFBOu/ufhMRxNrMzLbPbasyzb8CmNvdH09/Z+mfFjazg4mROaekbSygYEXT031CmhMFLERERIrrSqAfkW6pQbn74u6+egNsakGiB+61DbAtERGZQbmUClUWBUv7mNmingqnuvtVwCCiJlP7tFp1CgZ3fx64Ks1/38yOM7PVzex4Ijf9cURtpnMKA9W5RqisIeIZYE1338zdf2jEpy01yNUJmJT+3sLM1jOzZcysbW7RV9L8fxBF1Tcm0n3um1L+XEv0et7VzDql9C1TtBdk5z13HSxLBKw2mUoDujSg3DmoKjjH+bzw96ZJ66Rl69MLOnttnw98TXSsWTFdE9UFtN3965oCp1Jcuffm54ge82sB22eN1en6yD7T72pmc6bpE4GriTRNZ6dp2ftKdt7PJuogHZ/SRVWn9UmBrj/yjeJmtjRwRdqfE/eK7VPjuDQR3SekOdKFIiIiUkTuPs7dz3b3l4t9LLVx9+fd/ZyUw1ZERIok1+hQZWZzmNmtwAfAf4EhZnaMmXVJix+dHvc2s/ZpnXzj4kVEao4ORE2jV4k85UsAh7v71u5eXZS1UNYQ4e7fuvsHDftMpZCZrWFRqHaynvW5dC47mdlQ4AEiiDQIeMTM5s8vRzRArQWcR4ycfD9Nb50eVyLStuTXqZZrgOqSUsTcRFw/SzF5nQNpJLlzcBLwQa63u+UakN8B/gIWt6gxU5/tZ2mAhgOXEHXOTk3zKguXrek6keJJjcgtPOpWPELUrTsS6Jlb5kEipde2RD2jbPpzwO1AFzM7JU0uywW7nyPSTK1IFNjO3wuyx0m5wxkNzAXs5+4ruPtrDf185W+6T8jMRDUsREREREREmpHUe7E/sCHwAjCCyEe+IBGIOC/ll36YSA94uLtfmxo0vWBbCwNLAhVAOZGfvLpXbWEDpTQ9MzuB6O1+mrufm5teRnRCPIFoUH6dCF69QzQm7UP0mD3e3QdZFFV9gxjV2TOlpsy2dRyR/nF5olf9ep7qh+WvGzObg0gDtjewBfARcIS7v9BYz1+mZGbrEK99gN+BzYE3/e8aE4sTjdVzA4u6+6iaXv9T2X7+nJ8F3KQRVKWv8D3bzFoTgemLiFSAp7n7qDRvOeB/xPvGvu7+ZZq+BPAYkQ6ss7sPy0ZYpJRh3YHtgfOndj3V53qTGaf7hMxsFLAQERERERFpBsxsfaJX62vAiUStirvcfbSZLUMEMRYEDnH3B82sK1F4+1NgM3f/KksnNY39KFBRQlID4pPAucDNPnnNkUWInPBfEIVSP0jT5wFOJtJwDABOSA2PtxMNSDu6+1MpfcvmwG3AMUBLYIK7/6vgGCqAVYCdgT2JvPYnufv1jfbEham9Xs3sE6IhspLo+Xysuz+cm/8AsA2wm7vfXd8G5MJ91+W9Q0pDGnVzNPAL0fA8H1HXaDt3H5hb7pK0XGEj93FEj/jb3X2v7NwXXkO6JkqH7hMys6m14IqIiIiIiIiUhjSqYk2i4GVn4HmPIqgAuPsHKYXHf4n80q+7+1Azu5ioSXEQ0YNyWsEKU7CitLj7YDNbyd2H1TB7V+J62CHXCLUUsAlxrQAMTo1QBjxKpIC5wsweIdK1rE8UU33W3b8u3IGZLUb0qD4A6ErkMT/aI+e9NKLUSNwyS8uZzmGWouchYD+iJ/NjwEVm9qdHjRqAu4iAxepm9oDXM7VnQYOnqWG6tKVrow2RxusgoobFEGAokeJnfuBAM/vI3X9Lq11C9Jjf3cyedff/pem3EO8he5jZLZ5S1xYEK3RNlBDdJ2RmoxoWIiIiIiIiJS41FN0APA+sAWRpPSpyyzxJFMrcgr/zkp8IDCMapNZM69T6PVApPEpTakjqY2avmNnGUF0IdyGiVsHXZjaXme0L3AhcAHwGdHf3i9M2HHic6FHbFTgC2B34BNippkaoZBOgHzFap4e7H65GqMaRGgvzfx8MvGZmW2STcgHF94B5gS5EQ+Eo4E4zWz5tZzDwPbA40bt+uo9D7wulL52jHkTj9NPAoe5+nLsfCWxFpADaEdjQ/q6H9DPx2u5B3CNapOm/E7Us/iTSitW2Pykhuk/IzEQBCxERERERkWYgNS7dADjQzcw6ufukggDEOcA4YDczWzo1PpxApAQ5Km1HvWKbp4WIYNV2FoXUK4EJQHvgcOA6orhpJ2Bzd98wl5e+g0Uh3rHufjWwDLAZsKa7b+Hu3xQGsnKN1o8Cfdx9fXf/oime6KzGQllBD/aOQDdgBeBaM+tR8Nr9DPiZSPMzCDiUCFrcDqxLNBx+A6xHBDamGqzMy+Wi72RmHWbw6UnT2RaYnag58jlAet0PBs4CviXuA11y6/QH3kzrbpxNdPf+wLzu/p8mOnZpGLpPyExBAQsREREREZHm40ngQWAlIhXMZAGI1DB1GbAqKdWDuw8AridqXkjzdTuR8mtHopg6wMPAJOBYYmTNMe6+mLs/nq2URuE8AByc/jZ3H+Luz7v7e2laeWEgK2u0dvdvspQw0jg8VJnZ4mb2rzTtV3c/BrgaWAAYYGZr59b5CPgcWN7M5nH314hroyPRKDkf8FRafKe0Tq3ByvyoCjNrZ2Z9idRAA1IvbSl97dLjj1D92p+Upj0H/B+wItGY3RrA3ccTxZjnA/5pZu2zjaWAuM5986L7hMwUFLAQERERERFpJtx9FHAFMcpi95Q3urDn9BVEg9WxZrZGWu9Qd/+4MNWLNB+pYegcIk/97mbWGXifaJyqAE5x9yvy65jZ8sCdRCPliNx2CretuiVFZmb9iLQr+5rZEblZpxP54FcALjazXrl5d6fpcwOkhsXDiKK4DxI96gGWMrO5atmvpXXdzMrMbKW0zzuJkRpv6vpoOmbWNj1OT83ZEelxU4iAQzqv5u5jiZSCAPsDS2QrufuzwOXAxe7+V36DOvfNi+4TMrNQwEJERERERKR5eRP4F9AX2DQrfpprePydqF1xbup1DURQQ3nHmzePorg3EAVQd/AonnsTkWv+JDM7NKXx6W5mhxHBq77AVcAjxTlqqaN50+OfwHlZT3d3/xM4n2hQXhm42czmT8t+AowBdstt5wHgECI1zPnAeGAxoEVNO82lf1oM+CfRQ/tYIo/9fO5+dgM9P6mF/e184B0za+Puk6a54t/rZ2179wBjgfXNrEeaVw5koyQ+IBqkewAHFYymOMbdn0KaPd0nZGZg+rwqIiIiIiLSvKTGxaeBP4AD3P2dFLjQF7yZnJktCLwL/Ars4u4fmNlORC/8uYhrwoj0MN8BR7r7o0U6XEmm9vpMDc5nAvsSaZ7WIeoQHJRfz8zuJtI7PUPUpvkKeJ2oVbFzCm5k29wAuJ/IXQ+wkru/W8O+5yXqXOxHjKh4Azgk1cWQJmRmzwF9gG3d/eHpWL81cCUxguIqj4Lb+fknE7VOhgBrA0u5+ye5+bqHzCR0n5DmTgELERERERGRZiaNpjiU6HV9NXB6Shc1xXJqgJr5mNlRwKVEz9jj3L3SzBYHNgG6AhOBD9z9ttw6ZVOrYSCNJ+V+rzGdSvYaNbN9gQuJQMTpRGHkZdz9IzNr7e7jUiPkGcDeRGBhc2I01W7Auu7+WcG2jyCuiQHufk8N++6R9rkB8BdwtLvf2zDPWuoquz7S+V3e3R/LzavX69bMehLpfxYBzibqkEwkzvHRwF3Ay8BfqeaRzKR0n5DmTAELERERERGRZsjMOhANT2OATd395yIfkjQRM2sDvAZ0AvZx9ycK5lc3OplZRX3Sy0jjSKMo+gEvAM+nxsP8eeoJDAY2I2pS3A4MdPd10/wssLEgcApwIPAikerlLmBDd382pQDKini3cPeJuWOYLICZrqOfgOvd/aRG/yfIVINXuWUWAjZx9xumcx/rENdEZ+B3YCRRuH0wsJ27D0nLqXF6Jqb7hDRnCliIiIiIiIg0U2bWs7BXtcwazGxz4D/Ao0Rj1O8FBZSrfy/iYQrVDcjPEEVvfwRudffTC5b5BxGAuBM4CngFWJ1oYH4oH3xIwY/HgI2J9D7dgTvcfc9a9j9FI3nWQJnqJYxtwKcrdWBmC7j7DzUElVoQRZIXB/q4+4t1CXLUsP0ewC5EUfY5gCfc/YIGfArSDOg+Ic2VAhYiIiIiIiLNnHpHzprM7CWiuHIfd/+62McjNadhM7NFgS+Inu6/E3nj/wOc4u6/5JYbQqRo2dbMtgYeBL51967ZtoGyNDpjCeB4IAtSDAY2cvfvGvUJynRL529h4HniOlgte982s22AIe7+oZntBdwKPOfuG2TrTm+jspm1cvfx6XfdK2Yxuk9Ic1RW7AMQERERERGRGaMGqFnW9u7eVY1QxZdSMWW9llvkple4+1fABcDswGfAxcA+wJ1mtnRuM28Dy6XtPEwUzV7IzLJ0TWVZT/tUf+AM4PE071QFK0qPma1oZqtBdS/2P4liyCsA66T57wP3Ab3TcgOAp4H1UvACZqD9zt3Hm1lZCnroXjHr0X1Cmh2NsBARERERERFpxtRrunhqqAtxITAb0M/df8nyxKeAxk9AB2BNosfzdcAfwAGp/sSlRCBjA3d/28yWJ9JEtQE6u/uwwvRAZtYaGK+ULqXHzJYBBgGvEud0XJr+DyIg0RZoD3wA/IsYdfNjul7WIEZiDAVWdveRqjkhM0L3CWlONMJCREREREREpBlTI1TTs1CWBQrMbGcz+x44DqgEqgBS43NFCjIck1Y/w93vBbYBJgL3m9k+wEtEA/a4tO57wDVAOXBhWrcwMDE+jeqoaKznKtPH3T8AngR6AXvkZvUF5ifO9UCi1sR17v59FpBw99eA/kAPIvUXTHnua5TVJRDJ031CmhMFLERERERERERE6sFDlZkta2avA3cRdSR2Bs5192G5ZSelxzuAN4ENzGxfdx8IbEWkgroZ+CdgwMq5XV2etruXma1Z2MM+C5ioMbK0ZCnCgCPS48FmtlD6vYpI5fUFkRpqRAo6lRWsey4xKudQM1s8LZPNq1UuiDZPFsjKti0i0hzoDUtEREREREREpB7MrMLMrgfeA+YGDgcOc/f7smBF1tM9jcbIRkBkDdjHm9l8qRbFPkRdiz7AGCJoQRrBMYxIFwQwTxM8NWkAqTB6ubsPAa4ClgUOSvOuAHYgglHticAEudEVlencf5+WmRM4LZtX0/7yoyrMbHYz2wy4DDgsv20RkeZANSxEREREREREROrBzDoAdxDpfU529wtqWGYudx+R+zurZ3E7sBtwobuflJt/IDAMeMHdR+TrY5hZC3ef2MhPS2ZQvsZI7ny3JkZKjAO2cPe30vzORDBqY6C3u79UuJ0U6HoDWArYyt2fLNhH/hopB1YigiH7AhXAge5+V9M8exGRhqGAhYiIiIiIiIhIPZnZWsBjwAvAocBIovF5LWK0xEjgNeCeVEQ7a4TuCPwIjAbWSrUOqhu4a9iPZXUqlPqpeTCzpYDPsiCTmR0A3ADc7u575ZbbjkgHNghYH6jMByDS9bItcD/wtruvUsv+egCbAwcC3YhAyFHuPqZxnqGISONRwEJEREREREREJCffi30qy7QBziOCFf2A+Yj0TiOB4UQqn/mI4MS2wJu5xuiT0zr3uvsujfQ0pImZ2ezA3cDywOapcHo2731gCWBHd384TWsDXAnsB+zr7v3T9I7Aou7+Rvr7TOJa+bRgf/MRgY79gbWBl4GD3f2TxnyeIiKNSQELERERERERERGmSLHTikiv86S7D6tpBISZLUGMslgUGAtcClwBOFGP4kKidsELwCHu/nVu3aHAQkSqn0frEiSR0pbSP/0TOAe4ALjE3UemeesQ18HzwNa56WsCtwAtgUOAFsDWwHpE8OHx3PazNFMGrAIcB2wG/Aoc6e4PNckTFRFpRCq6LSIiIiIiIiIC5IIVOxCNwP2B7dO8mgoXf0EURv4M2NjdT3f334E/3H08UUz7PmADYJm07VZp3aPT4xmpIVrBimbO3ccBDwIvEaMmVsrNexF4GFgX2Ds3/RXgaqKo+uPE9bIzcGNBsMJy12AFsBywCXCeuy+kYIWIzCw0wkJEREREREREBDCz9kRD85lAOdHR801gf3f/vJZRFp2BxYl6FeO9oKElV7/gBnc/pGAUxxVEXYN3G/eZSUMzs32BVsC/3H1irtaIEUGu/kTtiRPd/ee0ThfgG+BTImXUl2n6bMDqRADiD+CarGB7/nop2H9n4C93H9XIT1VEpElphIWIiIiIiIiISFgbOAUYBWxHFC9ei+jxXuMoC3f/0d2fd/dx+YZlM2uZfv0t/5gatcvT70e6+7tmpvaZZsTMegInA2cDPaD6vGbBhReBfxOBi7VTEAN3/46oe7I4cEBuk2Pd/TngBHc/x91HmFl5bcGKtK0fFawQkZmRbogiIiIiIiIiImEUcAewurs/QQQsfgJ2MbNeEHUEaloxa5TO5rv7hDRr6/T4ZrZsPv1TQaofKSFmVlHwd3ZuPwMuAWYDDkojJKq5+y/EdfQnMWKnW27eqcAPwKFmtl7BepOy/bh7ZW3BChGRmZkCFiIiIiIiIiIigLsPBM5y92/SpMHAVUB3YHcza5Urely4rueDD2bWzcwuIgp33+Hu/1fLPtUoXWJygYksgLCSmbUpWOwJ4GmiHsWqaXnPBbTeT/P7ABsVrH82EeyYM1svv2EFsERkVqaAhYiIiIiIiIhIktUOSL9PAu4E3iFSRG02jdVbmdliZnYMcB1wLPAs0UAtzUQu6LSTmQ0BniPO47G5ZYYS18Z44CgzmydbN42QGA78SNRC2QFYKrfuv4B53f3BpnlGIiLNhwIWIiIiIiIiIiK1cPcfgEuBuYE9zaxTQU/6vEuBT4AzgMWA/dx906y4spQmS7Lf0+NOxOia34GBwBLABamIeuYF4D4ikLWpmbWAyUZIVAFvA72A/cysXbaiuw/P6lQ05nMTEWluTCMPRURERERERERqZ2ZzAP2BzYGj3P2aWpZbDdgReA+4K6tVYWbl+boVUjrMrCKX+qnc3SvNrBXwEvAtcIq7f25mqwPXAAsDmwJvpsBVb+AGYCJwuLsPTIGLLYGbgX7A0sCT7n5PEz89EZFmRwELEREREREREZFpMLO1iLoFnwA7u/uXZrYksIy735tbroW7T0y/K1DRTJjZIUQtineB74E9gANSAe1smd2JoMWTwMHu/ruZtSQKa18M/EWMuGgPrE3UQNnZ3Uc15XMREWnOFLAQEREREREREZkGM5sNOAs4BrgC+BTYC1gN2Mjdn84ta6CC2qUq1ZjI6lQsAdwDLANMAiqAscAoYMmUuqmFu080s47A+cCewE7Aw2lERrs07SLAgNbA48Ch7v5t4T5FRKR2CliIiIiIiIiIiNTCzCwLPJjZUkTv+nmAVkSj9unufkXxjlCmh5ktCrQAtga2B24ialLsCewNVAK7ufuLBeutT6R6+gnY3t2/L9jmIsAf7v5OmqZAhYhIPajotoiIiIiIiIjMNMysvCG3lwtWrAocAHQmghXXAp2yYIWKJzcf6Vx+AZxLjJi5yd1vdPfPiVESVxHneQMzmz2tk11XrwJ3EOmjtjOzijTf3P0rd38uF6woV7BCRKR+NMJCRERERERERJq9FDAoyxW67gqMBsa4++j8SInp2O7qwO3AosDzwGHu/mmaXwFUKv1T82Fm8wEDgL7AEGCplPKpwt0nmVkPopB2d2B3dx+Y1itz9yozWy7NXxpYzd0/LMLTEBGZKWmEhYiIiIiIiIg0a1kwItUT6GZm9wPPAW8CL6Y0PtU94euz7RSIGAe8Bezg7uu7+6dmVpYasCcpWFEc0zuqJRXSvgT4kxhJ0TOblR6/IFJEzQ3skQIc+fUHAfcDLwG/Ts8xiIhIzRSwEBEREREREZFmzd09BRCOB94jCmF/DrwLdALuA3bJlp2OXQxy953d/QH4O9WP0v0UVy5dV+vpWP1NYtRMW2CDtL3KXM2JgcADwA7AWikoVpVLDXWdu2+cgh8iItJAFLAQERERERERkWbNzFoABwFHAg8D+wKbu/u2wFpAOXCAma2Zlq9Xe0gWmMjWy9JOSXFZOA84z8xa1Wdddx8J3AL8CGxvZssUzP8ZuA34HTgQ6JGmV6bHsekYGrRmiojIrE4BCxERERERERFp7uYCNiHSNp3m7k+nWgQbAI8C7YFVgF3NrFXqKV/vdEIaUVFyVgVOADZw9/HTsf5gosD2asA2Zta6YBTF28BDwHpAl5o2oOCViEjDUtFtERERERERESl5WUHkqcxf291fSr/PRzREb0+kheoP7A8sABzo7g9Nqwh3fn4qrF3m7hMa7hlJXeXSNBVOLwfeAFYE1nb3V+pbXN3MuhBBibmB/d39+YL53YEKdx88Q09CRETqRCMsRERERERERKRk5dIwTUp/b2Fm65nZMmbWNrfoK2n+P4B7gY2Bi4B93f1a4FpgHmKURaes7kUN+7O0vyxYsSxwFLBJfVNJyYzJnYuqgnOd1RGpJM41wDpp2fr2zP0euBRYGNjOzDqk7WfX3RB3H5xqpExXkW8REak73WhFREREREREpOjMbA0zmzf9Xt1ekasfsZOZDSUKIT8DDAIeMbP588sRgYq1gPOAfu7+fpqeFWZeCdi2YJ1quUBFFzM7ALgJuBBYClCDdRPKnYuTgA/MbPv0t+VSMb0D/AUsXt86Frl9PAX8h6iDsl6aXlWwXNV0FmwXEZF6UMBCRERERERERIrKzE4gRkgcAJMXuTazCjM7hUjr9BVwMtGofB3QC7jNzJZLy7cAdgZGADe5+6jcbloD7xG1CI42s665/Vvu9znMbEvgauAGoA2wnrv3U72Cpmdm6wDnAosA15vZ6kzenvVz+ukLtEjr1Cuw5O4jiBE4txPBMBERKZKKYh+AiIiIiIiIiMzyHgUOAYbl6xWkVEALAwcD/wOOdPcPAMzsA2A8ka7pn2Z2grsPM7OPgcWAlYGnUv2JzYHTgGOAlsAEdx+a7Tylh6ogCnPvDOwJVAGHuvv1jf/0pbY6Fe7+opl9SgQpKoE7gWOBh9P8T83sI2AbYAvg7uk8hBey+hX1rYMhIiINRwELERERERERESmqVCNgJXcfVsPsXYHOwA65YMVSwCbAdmmZwSlYYUTwY2vgCjN7BJgLWB/4GHjW3b8u3IGZLUYU6D4A6Er0tj/a3Sc23LOUqUnBqZZZYfN0LsvSqJaHgP2A3sBjwEVm9meuQPZdRMBidTN7YHqKo+fST9UYOBERkaahlFAiIiIiIiIiUnQp4NDHzF4xs40hCisDCxE1Cr42s7nMbF/gRuAC4DOgu7tfnLbhwONE2qiuwBHA7sAnwE41BSuSTYB+RMqpHu5+uIIVjaswbZOZHQy8ZmZbZJNyKbjeA+Yl0nltD4wC7jSz5dN2BhPFsxcH6lXHovA4FKwQESkuBSxEREREREREpFQsBKwBbGdm7VOD9QSgPXA4UbfiJqATsLm7b+juXwKYWQcza+HuY939amAZYDNgTXffwt2/yRfzTutkjdWPAn3cfX13/6IpnuisykJZPuWSmXUEugErANeaWY+CwMFnRJ2K7dx9EHAoEbS4HViXCDR9Q9Q2maJw+9TkRlZ0MrMOM/j0RERkBilgISIiIiIiIiKl4nbgv8COwJZp2sPAJKJuwRbAMe6+mLs/nq2U6k88QNS6yGoQDHH35939vTStvLD3fNZY7e7fuPvLjfvUBOJ/ntI/LW5m/0rTfnX3Y4hC5wsAA8xs7dw6HwGfA8ub2Tzu/hpxjXQkgljzAU+lxXdK69Q6UqKgyHo7M+sL3JL2W96AT1dEROpJAQsRERERERERKQkpgHAO0AbY3cw6A+8TQYwK4BR3vyK/jpktTxRiXhEYkdtO4bYrC6dJcZhZPyJN175mdkRu1ulE/ZAVgIvNrFdu3t1p+twAKRB1GFFE/UHg27TcUmY2Vy37tbSum1mZma2U9nknMVLjTV0nIiLFpYCFiIiIiIiIiJQMd/8fcANRKHsHd/+NSAP1J3CSmR2a0vd0N7PDgCuAvsBVwCPFOWqpp3nT45/AeWbWHsDd/wTOBy4HVgZuNrP507KfAGOA3XLbeQA4hEgldj4wHlgMaFHTTnPpnxYD/kmM6DmWqHsyn7uf3UDPT0REppPV0OlARERERERERKRozGxB4F3gV2AXd//AzHYiet/PBfwBGNAO+A440t0fLdLhSoGUkqvGBqdUW+JMYF8izdM6wE3uflB+PTO7m0jv9AxwAlGn4nWiVsXOKbiRbXMD4H6i1gnASu7+bg37npeoc7EfMaLiDeCQVBdDRERKgEZYiIiIiIiIiEhJcffviR7zSwJ7pfoT9wK9iB7xdwK3Avu5+6JZsKKuhZal8aRzVVuwwlJtiW+AVsR5/A44wMyWSqmaWqfFjyfqSqwHXAOUA/8HLEsUXa/m7s8AZxDBjV1rCVb0IEbq3ExcV7u4+xoKVoiIlBaNsBARERERERGRkmNmbYDXiMbpfdz9iYL5ZVlhZTOrcPdJRThMqUEKHPUDXgCed/fKgvPVExgMbEbUpLgdGOju66b5loIXCwKnAAcCLxIBh7uADd392VQgOyvi3cLdJ+aOYbJRHul6+gm43t1PavR/goiITBf1PBARERERERGRkuPuY4mCyPMBB5rZ3BAN0VlP/dzvClaUCDNbBxgHnAj0J0Y+kAUrkgrgd2BDIgDxOtDbzLbJzc9G2hwKPEGkjjozzd89za/MtpsFK1IQg4JgRUW6nuZXsEJEpLQpYCEiIiIiIiIiJcndHwNeAZYD5kjTPGuMzv8uTc/MrIbJ3xEBh5HAROBgM7vZzObLFnD3j4ERQJd0/i5Jsy5L8yemWFR5CkgcC9wGdE/LrWRmXWo6JnevrGHapPQ4djqepoiINCEFLERERERERESklG3v7l3d/etiH4iE/CgGM2uRm17h7l8BFwCzA58BFwP7AHea2dK5zbxNBKJw94eJotkLmVk2AqIsCz64+2BipMbjad6p7v5dIz09EREpItWwEBEREREREZGSpzoVxVdDXYgLgdmAfu7+S1anIgU0fgI6AGsCCwHXAX8AB6T6E5cSgYwN3P1tM1ueqFPRBujs7sPSCIvK3P5aA+M1qkZEZOalERYiIiIiIiIiUvIUrCielJ6pLAsUmNnOZvY9cBxQCWR1JKpSYKkSOCatfoa73wtsQ6SIut/M9gFeAtoT9S5w9/eAa4By4MK0bmFgYnwa1VHRWM9VRESKSyMsRERERERERERkmsxsWeAGYFXgOeBm4Hl3H1bL8m8AqwD7u/stZrYEcBWwHvAC0AfY1937p+XnBQYCSwBru/srjfuMRESk1GiEhYiIiIiIiIiI1MrMKszseuA9YG7gcOAwd78vC1ZkBbjTaIxsBMQR6fF4M5sv1aLYh6hr0QcYA2TrlaVt/SutM08TPDURESkxGmEhIiIiIiIiIiK1MrMOwB1AX+Bkd7+ghmXmcvcRub+zeha3A7sBF7r7Sbn5BwLDgBfcfUS+PoaZtXD3iY38tEREpAQpYCEiIiIiIiIiIlNlZmsBjxGpnA4FRgIbA2sRoyVGAq8B96Qi2uXuXmlmHYEfgdHAWu7+QdpembtX1bAfy+pUqG6JiMisRwELEREREREREZFZWBZcmMYybYDziGBFP2A+Ir3TSGA4MGea9iOwLfBmbsTEyWmde919l0Z6GiIiMhNQwEJEREREREREZBZUkIapFbAD8KS7D6tpBEQqmv0YsCgwFrgUuAJwoh7FhcBBxCiMQ9z969y6Q4GFgK3c/dG6BElERGTWo6LbIiIiIiIiIiKzoFywYgfgV6A/sH2aN0W6JuAL4HLgM2Bjdz/d3X8H/nD38UQx7fuADYBl0rZbpXWPTo9npGCIghUiIjIFBSxERERERERERGZBZtbezI4GbgYqgInAjmbWI82frN0oFcJ+mEgL9aaZWZru6fEH4FWivalvWm1CmvcQcBWwfy3BEBEREQUsRERERERERERmUWsDpwCjgO2AfxFFtHeGmkdZuPuP7v68u4/zXJ5xM2uZfv0t/5gKaJen349093cLAyEiIiIZ3SBERERERERERGZNo4A7gNXd/QkiYPETsIuZ9YIpR1lkstEV2Xx3n5BmbZ0e38yWzad/SnUzNMJCRERqpICFiIiIiIiIiMgsyN0HAme5+zdp0mAibVN3YHcza+XuVVlwomBdzwcfzKybmV1EFO6+w93/r5Z9ek3TRUREAEz3CRERERERERERATCzBYBHgEWAA939wRSYmKIBycxaAwsAWxE1K9YHngD+6e5fNtlBi4jITEMjLEREREREREREBKgunH0pMDewp5l1SqMpampDuhT4BDgDWAzYz903VbBCRESmV0WxD0BERERERERERErKE8Qoi82JYtzX1FJ34g5gAvAecFdWq8LMyvN1K0REROpKKaFERERERERERGQyZrYWEbj4BNjZ3b80syWBZdz93txyLdx9YvpdgQoREZkhGmEhIiIiIiIiIiKF3gGuB44BDjWzT4G9gNXM7Hd3fxrA3SdmRbkVrBARkRmlERYiIiIiIiIiIgJAvsC2mS0FPAnMA7QCRgGnu/sVxTtCERGZmWmEhYiIiIiIiIhIM9XQaZhywYpVgV2BzmnWtcAJ7j4mza8ObIiIiDQUBSxERERERERERJqZlIapLFfouiswGhjj7qOnN6CQtrs6cDuwKPA8cJi7f5rmVwCVClaIiEhjKCv2AYiIiIiIiIiISN1lwQh3rzSzbmZ2P/Ac8CbwopmtT+qkmtWXqKsUiBgHvAXs4O7ru/unZlZmZmXuPknBChERaSyqYSEiIiIiIiIi0syYWRlwLHAa8AfwETAGWBVoAxzt7rdN77bdvSr3d4OmnRIREamNUkKJiIiIiIiIiDQjZtYC2B84EngYuBN43t0nmdkiwHvAAWb2pbu/UhiAmJZs2Ww9BStERKSpKCWUiIiIiIiIiEjzMhewCZG26TR3fzoFKzYAHgXaA6sAu5pZK3evqm9qKPg7cCEiItJUFLAQERERERERESkxqbh1jdz9V+Aid9/S3b8xs/nM7D7gKWA8cDjwMbAdsGkd92e53yvMrOUMPQEREZHpoJRQIiIiIiIiIiIlIpeGaVL6ewtgNDAM+NLdR6dFX0nz/wFcA6wIXATc4+7vm9kE4EZilMVr7v5zTamhcgW8Pf29LLAhMMTMHtUoCxERaUoaYSEiIiIiIiIi0sTMbA0zmzf9Xt0+k6sfsZOZDQUeAJ4BBgGPmNn8+eWAjYG1gPOAfu7+fpreOj2uBGxbsE61XKCii5kdANwEXAgsBdQ7jZSIiMiMUMBCRERERERERKQJmdkJxAiJA2DyItcpHdMpQH/gK+BkYD3gOqAXcJuZLZeWbwHsDIwAbnL3UbndtCaKb3cBjjazrrn959M/zWFmWwJXAzcAbYD13L2fim2LiEhTU0ooEREREREREZGm9ShwCDAsn6YpFcdeGDgY+B9wpLt/AGBmHxD1KY4C/mlmJ7j7MDP7GFgMWBl4KtW+2Bw4DTgGaAlMcPeh2c7d3dNyqxABjz2BKuBQd7++8Z++iIhIzRSwEBERERERERFpQu4+2MxWcvdhNczeFegM7JALViwFbEIU0QYYnIIVRgQ/tgauMLNHgLmA9Ymi28+6+9eFOzCzxYDtiREeXYFrgaPdfWLDPUsREZH6U0ooEREREREREZEmlgIOfczsFTPbGMDMyoGFgL+Ar81sLjPblyiefQHwGdDd3S9O23DgcSJtVFfgCGB34BNgp5qCFckmQD8i5VQPdz9cwQoRESkFGmEhIiIiIiIiIlIcCwFrANuZ2avu/peZTQDaA4cDiwA7AEOBzd398WxFM+sA/OnuY4GrzexJol7FCHd/Ly1TnW4q/W0pyPEoMMjdX26SZykiIlJHFvcpERERERERERFpSiml02NAb+Bgd7/DzNYDnkiLTAROcfcrCtarAJ4FHnL3q3KBiPwy5SqaLSIizY1SQomIiIiIiIiIFEEKMpwDtAF2N7POwPvAf4msGDUFK5YH7gRWBEbktlO4bQUrRESk2VHAQkRERERERESkSNz9f8ANRKHsHdz9N+Am4E/gJDM71Mw6mVl3MzsMuALoC1wFPFKcoxYREWkcSgklIiIiIiIiIlJEZrYg8C7wK7CLu39gZjsB1wJzAX8ABrQDvgOOdPdHi3S4IiIijUYBCxERERERERGRIjOzo4BLiREUx7l7pZktDmwCdCXqWXzg7rfl1pmsqLaIiEhzp4CFiIiIiIiIiEiRmVkb4DWgE7CPuz9RML86OGFmFe4+qQiHKSIi0qhUw0JEREREREREpMjcfSxwOjAfcKCZzQ1gibtX5X5XsEJERGZKGmEhIiIiIiIiIlIizOwlYCGgj7t/XezjERERaUoKWIiIiIiIiIiIlAgzm8/dfyn2cYiIiBSDAhYiIiIiIiIiIiVGdSpERGRWpICFiIiIiIiIiIiIiIgUnYpui4iIiIiIiIiIiIhI0SlgISIiIiIiIiIiIiIiRaeAhYiIiIiIiIiIiIiIFJ0CFiIiIiIiIiIiIiIiUnQKWIiIiIiIiIiIiIiISNEpYCEiIiIiIiIiIiIiIkWngIWIiIiIiIiIiIiIiBSdAhYiIiIiIiIiIiIiIlJ0CliIiIiIiIiIiIiIiEjRKWAhIiIiIiIiIiIiIiJFp4CFiIiIiIiIiIiIiIgUnQIWIiIiIiIiIiIiIiJSdApYiIiIiIiIiIiIiIhI0SlgISIiIiIiIiIiIiIiRaeAhYiIiIiIiIiIiIiIFJ0CFiIiIiIiIiIiIiIiUnQKWIiIiIiIiIiIiIiISNEpYCEiIiIiIiIiIiIiIkWngIWIiIiIiIiIiIiIiBSdAhYiIiIiIiIiIiIiIlJ0CliIiIiIiIiIiIiIiEjRKWAhIiIiIiIiIiIiIiJFp4CFiIiIiIiIiIiIiIgUnQIWIiIiIiIiIiIiIiJSdApYiIiIiIiIiIiIiIhI0SlgISIiIiIiIiIiIiIiRaeAhYiIiIiIiIiIiIiIFJ0CFiIiIiIiIiIiIiIiUnQKWIiIiIiIiIiIiIiISNEpYCEiIiIiIiIiIiIiIkWngIWIiIiIiIiIiIiIiBSdAhYiIiIiIiIiIiIiIlJ0CliIiIiIiIiIiIiIiEjRKWCRmNluZnajmb1tZuPNzM1sr+nYTpmZHW5mH5rZWDMbZmb3mNmijXDYIiIiIiLSRMxsATM70syeNrNvzWyCmf1sZg+a2aq1rNPezC4zs2/S94yhZnaxmbWrZXl9nxARERGRWZa5e7GPoSSY2VBgYeA3YHT6fW93H1DP7fwL2A/4GHgc6AzsAIwCVnP3IQ131CIiIiIi0lTM7ALgBOBLYCAwDOgObAUYsIu735dbvi3wCrAc8DTwHrA8sCHwFrC2u48r2Ie+T4iIiIjILEsBi8TM1geGuPs3ZnYicD71DFiYWR/geeAlYAN3n5Cmbwz8F3ja3fs2+MGLiIiIiEijM7NtgOHu/mLB9LWA54igwvzuPj5NPws4HbjQ3U/MLZ8FPk529/Nz0/V9QkRERERmaUoJlbj7s+7+zQxuZv/0eFr25SJt+wmiB9aGZrbQDO5DRERERESKwN0fKgxWpOkvAy8AcwFLA5iZESMlRgHnFKxyTpq+X8F0fZ8QERERkVlaRbEPYCbTm0gn9WoN855K89cB7qjrBs1swWks0hJYHPiVGJJeWddti4iIiMgsrRyYN/3+YTYqQKbbxPQ4KT12J9I5PeXuo/MLuvtoM3sV6GtmXdz9uzSrN/o+ISIiIiLNQ6N8n1DAooGk/LTzAx+5e00f8rNcs93ruenvpr2IiIiIiMgMWRl4u9gH0VylUQ/rAz8BH6bJ2ef+2mpODAH6puW+0/cJEREREWnGGuz7hFJCNZw50uOftcz/q2A5ERERERFp5sysBTHioRVwQi7YUN/vB/o+ISIiIiKzPI2wKH1dpjF/AeANgGeeeYaFF1648Y9IZtj48eP53//+B8Cqq65Kq1atinxEMi06Z82TzlvzpPPW/OicNU/ffPMNG2ywQfbnsGIeS3NlZmXAAGBt4F/uXudUTU2ozt8nXnrpJTp16tT4RyQiIiIizd7PP//M2muvnf3ZYN8nFLBoOFlPqNp6PLUvWK5O3P37qc2PWn5h4YUXpnv3+o4Qnzm4Oz8N+Yw/fvmpTssb0HHRbsyzwLS+vzWOsWPH8uWXXwKw2GKL0aZNm6Ich9SdzlnzpPPWPOm8NT86ZzMF1S2opxSsuBXYBbgTOKhgkfp+Pyj694lFFlmEBRecVskLEREREREKv/c12PcJBSwaSCqc9xOwiJmV15B3dlo5bGUGDPnfqzx2+QX1W8mMJdfqQ68dd6d9h3mnvbyIiIiICNXBiv7AHsA9wF7uXlWw2LRqTkz2/UDfJ0REREREVMOiob0ItAV61TCvb3p8qekOZ9bxw6ef1H8ldz556Xn6H3kgL99zG+PHjG74AxMRERGRmUpBsOI+YPepFMn+EeiVCmrnt5F9Z/ja3fNFsfV9QkRERERmaRphMR3MrAPQAfjN3X/LzboJ2Ak4x8w2cPcJafmNgd7A0+7+TVMf76ygctLE6t9X2XI72s3TYarLj/nzTwY9+RjjRo9i0sQJvPnI/Xz43FOsvv0uLLPeRpRX6KUhIiIiIpPLpYHaA7gf2K2WYAXu7mZ2M3A6cBpwYm72aUA74LyC1fR9QkRERERmaWqVTcxsP2DN9OfS6XE/M+udfn/F3W9Ovx8GnAGcBZyZbcPdX0hfSvYD3jWzx4H5gR2B34HDG/EpzNImTfg7YLHk2usxz4LTrk2xwiZb8L+H7mPQU/9H5aRJjB35F8/fegPvPfEYa+2yJ91WXn2ynL4iIjJ17s5vv/3G6NGjmThx4rRXqEVVVRXzzDMPAN9++y1lZRoQWup0zkpXixYtaNu2LR06dNDnmoZxOrAnMAr4HDi1hv/rI+4+KP1+EbAlcIKZLQ+8C6wAbAi8BVyRX1HfJ0RERERkVqeAxd/WJL585PVi8uHYNzNtBwIfAgcARxBfZh4GTnH3LxvgOKUG+REW5S1a1GmdNu1mp/ce+7H8Rpvx8j2389lrMbp+xE8/8Oil57HA4kuyzm77Mn/3no1yzCIiMxN355dffmHEiBENsq2seFdlZSVVVYVp4aXU6JyVrkmTJjF27FgqKyuZb775FLSYcV3TYzvglFqWGQoMguq6FOsQnZy2BfoAPwGXAme5+9ga1tf3CRERERGZZSlgkbj7XsBedVz2THIjKwrmVQFXpR9pIpMmTKj+vaKOAYvMHB07sdkRx7Piplvy4h238sOnHwNRF+PuU4+hx+prsfYuezJHx04NeswiIjOT3377bbJgRXl5+Qw1jGbrVihFX7Ohc1Z63J3KyshWNGLECMrLy5l33nmLfFTNW32+M+TW+RM4Kv3UZXl9nxARERGRWZa+UcpMoXLi3wGLuo6wKDR/t57seOYFfPn2/3jp7gGM+PF7AD5//WW+/eh99rjwKmafRm0MEZFZ1ejRo6t/n3/++Zlzzjmne1tVVVX89ddfALRv317phZoBnbPS9ccff/DTTz8B8TpVwEJEREREREqZvk3KTCGfEqqiRcvp3o6Z0W3l1djz4mtYb99DaNN+DgDGjfyLZ2++Fnef4WMVEZkZZTUrysvLZyhYISINa84556S8vByI9FAiIiIiIiKlTAELmSnki25P7wiLvPKKCpbbcBP2vux62s41NwBfvfsWn6Y6FyIiUjPlxxcpPdnrUh0vRERERESk1ClgITOFSSkllJWVUZZ6ETaENrO3Z719D67++4X+NzLmrz8bbPsiIiIiIiIiIiIiEhSwkJlCZUpFMiPpoGrTfeXV6bHamgCMHfkXLwy4qcH3ISIixdG7d2+OPPLIYh9Gs/TII4/QrVs3ysvLOeqoo7j77rtZeOGFm2TfXbt25YorrmiSfdXF8OHD6dixI0OHDm3yfa+22mo8+OCDTb5fERERERGRxqCAhcwUsoBFecuGD1gArLv3gbRu2w6AT199kS/febNR9iMiIk3roYce4pxzzmmy/b300ktsvvnmdO7cGTPjkUcemWKZvfbaCzOb7GejjTaabJls+htvvDHZ9PHjxzPPPPNgZgwcOBCIBu2DDjposuVuuOEGzIwBAwZMse+11lqrTs/lwAMPZLvttuO7777j7LPPrtM69TVgwIAaa6K89dZbHHDAAY2yz+lx7rnnsuWWW9K1a1cA3n//fXbeeWe6dOlCmzZtWGKJJbjyyivrvd26XC+nnnoqJ554IlVVVTP4LERERERERIpPAQuZKUxKRbcrKioaZftt55yL3nvuX/33szdfy/gxYxplXyIi0nTmnntuZp999ibb3+jRo1l22WW59tprp7rcRhttxE8//VT9c88990yxTJcuXejfv/9k0x5++GHatWs32bQ+ffpUBy8yL7zwAl26dJli+sCBA1l33XWn+TxGjRrFr7/+St++fencuXOT/g8B5p13XmabbbYm3WdtxowZwy233MK+++5bPe2dd96hY8eO3HnnnXz88ceccsopnHTSSVxzzTX12nZdrpeNN96YkSNH8sQTT0z3cxARERERESkVCljITKFyQtSwaKwRFgBLrr0uXZddAYBRvw/n5bv7T2MNEREpdYUpocaPH8+xxx7LAgssQNu2bVl11VUna9QfPnw4O++8MwsssACzzTYbSy+9dI3BhNpsvPHG9OvXj6233nqqy7Vq1YpOnTpV/8w111xTLLPnnnty7733Mnbs2Oppt956K3vuuedky/Xp04fPPvuMn3/+uXraiy++yIknnjjZc/v666/55ptv6NOnz1SPbeDAgdUBinXXXXey0RyFrr/+ehZbbDFatmxJz549ueOOOyabf9lll7H00kvTtm1bunTpwiGHHMKoUaOq97P33nvz559/Vo8oOfPMM4EpU0KZGTfffDNbb701s802G927d+fRRx+dbF+PPvoo3bt3p3Xr1vTp04fbbrsNM+OPP/6Y6vOdlv/+97+0atWK1VZbrXraPvvsw5VXXsk666zDoosuym677cbee+/NQw89VK9t1+V6KS8vZ5NNNuHee++d7ucgIiIiIiJSKhSwkJnCpCwlVEWLRtuHmbHB/ofRolVrAN5/5gm+++TDRtufiIg0vcMOO4zXX3+de++9lw8++IDtt9+ejTbaiCFDhgAwbtw4VlxxRR5//HE++ugjDjjgAHbffXfefLNhUwUOHDiQjh070rNnTw4++GCGDx8+xTIrrrgiXbt2ra5f8O233/LSSy+x++67T7Zcr169aNGiBS+88AIAn3zyCWPHjmXfffdl+PDhfP3110CMumjdujWrr776VI9tjTXW4LPPPgPgwQcf5KeffmKNNdaYYrmHH36YI444gmOOOYaPPvqIAw88kL333rv6OADKysq46qqr+Pjjj7ntttt4/vnnOf7446v3c8UVV9C+ffvqkSbHHntsrcd11llnscMOO/DBBx+wySabsOuuu/L7778DEYzZbrvt2GqrrXj//fc58MADOeWUU6b6POvq5ZdfZsUVV5zmcn/++Sdzzz13g+yz0CqrrMLLL7/cKNsWERERERFpSo2TP0ekiTVm0e289vN2ZM2d9+SFATcC8PSNV7HHxdfQomWrRt2viEhzdfPLX3Hzy19Pc7mlFmjPzXuuPNm0Ix74hM9+HQPYVNfdb61F2G+tRWfkMIFo8O/fvz/ffvstnTt3BuDYY4/lySefpH///px33nkssMACkzWaH3744Tz11FP8+9//ZpVVVpnhY4BIB7XNNtuwyCKL8OWXX3LyySez8cYb8/rrr1NeXj7Zsvvssw+33noru+22GwMGDGCTTTZh3nnnnWyZtm3bssoqqzBw4EB23nlnBg4cyJprrkmrVq1YY401GDhwIIsssggDBw5k9dVXp1Wrqd/TWrZsSceOHYFIqdWpU6ca6ydccskl7LXXXhxyyCEAHH300bzxxhtccskl1aM48qNbunbtSr9+/TjooIO47rrraNmyJXPMMQdmRqdOnab5f9trr73YeeedATjvvPO46qqrePPNN9loo4248cYb6dmzJxdffDEAPXv25KOPPuLcc8+d5nan5Ztvvqm+Xmrz2muvcd999/H444/P8P5q0rlzZ7777juqqqooK1N/JBERERERab70jUaaPa+qoqpyEgDlLRtvhEVmub6b0LnHEgD88fNPvP5A3VOBiIjMakaOm8TPf42b5s/w0ROmWHfEmEn8/Nf4aa47ctykBjnWDz/8kMrKSnr06EG7du2qf1588UW+/PJLACorKznnnHNYeumlmXvuuWnXrh1PPfUU3377bYMcA8BOO+3EFltswdJLL81WW23F//3f//HWW2/VmHZpt9124/XXX+err75iwIAB7LPPPjVus3fv3tXrDxw4kN69ewOwzjrrTDZ9Wumg6mPw4MH06tVrsmm9evVi8ODB1X8/++yzrLfeeiywwALMPvvs7L777gwfPpwx01Enaplllqn+vW3btrRv355ff/0VgM8++4yVV548IDatANNBBx002XVQm7Fjx9K6deta53/00UdsueWWnHHGGWy44YZ1eSr11qZNG6qqqhg/fnyjbF9ERERERKSpaISFNHtZwW2AikZMCZUpKytnwwP/yR0nHE7lpEm8/dhD9FxtTeZbtFuj71tEpLmZvXUFndrX3pibmaftlCPk5pqtgk7tWzGtERazt26YjzOjRo2ivLycd955Z4qRDFmD9cUXX8yVV17JFVdcUV174cgjj2TChCkDLg1l0UUXpUOHDnzxxRest956k82bZ5552Gyzzdh3330ZN25cdQHmQn369OHcc8/lhx9+YODAgdWjRNZZZx1uvPFGvvzyS7777rs6FdxuKEOHDmWzzTbj4IMP5txzz2XuuefmlVdeYd9992XChAn1LqrdosXknwHMrMaRH3V19tlnTzUFVaZDhw6MGDGixnmffPIJ6623HgcccACnnnrqdB/LtPz++++0bduWNm3aNNo+REREREREmoICFtLsVU74O2DRmEW38+ZZsAurbbszr953B15VxVM3XMmu511OeYVeUiIiefutteh0p2u6crslad++fZOluFl++eWprKzk119/Za211qpxmVdffZUtt9yS3XbbDYCqqio+//xzllxyyUY7ru+//57hw4cz//zz1zh/n332YZNNNuGEE06YItCSWWONNWjZsiXXXXdddR0OgJVXXplhw4Zx6623VqeOaihLLLEEr7766mRFwF999dXq/9U777xDVVUVl156afU5/ve//z3ZNlq2bEllZeUMH0vPnj3573//O9m0t956a6rrdOzYsTr11dQsv/zy3HnnnVNM//jjj1l33XXZc889GyT11NR89NFHLL/88o26DxERERERkaaglFDS7E2a+Hev1ooWjT/CIrPyFtsy70JdARj2zde8/dhDTbZvERFpeD169GDXXXdljz324KGHHuLrr7/mzTff5Pzzz6+uPdC9e3eeeeYZXnvtNQYPHsyBBx7IL7/8Uud9jBo1ikGDBjFo0CAgikEPGjSoOqXUqFGjOO6443jjjTcYOnQozz33HFtuuSXdunWjb9++NW5zo402YtiwYZx99tm17rdNmzasttpqXH311fTq1as6sNGyZcvJpheOUpgRxx13HAMGDOD6669nyJAhXHbZZTz00EPVoxa6devGxIkTufrqq/nqq6+44447uOGGGybbRteuXRk1ahTPPfccv/3223SligI48MAD+fTTTznhhBP4/PPP+fe//82AAQOAGIkxI/r27cvHH3882SiLjz76iD59+rDhhhty9NFH8/PPP/Pzzz8zbNiwem17WtdL5uWXX260dFMiIiIiIiJNSQELafaygtsA5U2QEurvfVXQ9+AjMYuX0esP3M3wH75rsv2LiEjD69+/P3vssQfHHHMMPXv2ZKuttuKtt95ioYUWAuDUU09lhRVWoG/fvvTu3ZtOnTqx1VZb1Xn7b7/9Nssvv3x1b/ijjz6a5ZdfntNPPx2A8vJyPvjgA7bYYgt69OjBvvvuy4orrsjLL79cazFsM6NDhw60nMYowz59+jBy5Mjq+hWZddZZh5EjRzZo/QqArbbaiiuvvJJLLrmEf/zjH9x4443079+/ev/LLrssl112GRdeeCFLLbUUd911F+eff/5k21hjjTU46KCD2HHHHZl33nm56KKLputYFllkER544AEeeughlllmGa6//npOOeUUgGkWGZ+WpZdemhVWWGGy0SEPPPAAw4YN484772T++eev/snX0Rg6dChmVmNtksy0rheAH374gddee4299957hp6HiIiIiIhIKTB3L/YxyAwwswWB7wA+//xzunfvXuQjanrDf/iOAUcfDMA/1lmPjQ45qkn3/9Jd/Xnr0QcB6NxjCXY660JsGulLxo4dy9NPPw3AhhtuqJzTzYDOWfOk89Z0hgwZwqRJk6ioqJjhe1FVVRV//fUXQJOmhJLp1xzP2bnnnssNN9zAd9/NeGeDxx9/nOOOO46PPvqozs/9hRdeYJtttuGrr75irrnmmu59n3DCCYwYMYKbbrqp1mVqe30OGTKEHj16ZH92cffvp/tApNnKf5/47rvvWHDBBYt8RCIiIiLSHHz//fd06dIl+7PBvk+U/rdJkWko1giLzOrb78KcnSKv+I+fD2bQ0483+TGIiIjI1F133XW89dZb1emnLr744snqa8yITTfdlAMOOIAffvihzuv897//5eSTT56hYAVErY1zzjlnhrYhIiIiIiJSKlQhWJq9yQIWLRsmYOFVzqTfxzHxx1FM/GUMZlDWriXl7VpQ1q4FZW1bUN62BdamghYtW7Hhgf/k32edBMBLdw9gwSWXrq5vISIis4Zvv/12qsW3P/nkk+rUUqVu44035uWXX65x3sknn8zJJ5/cxEc044YMGUK/fv34/fffWWihhTjmmGM46aSTGmz7Rx55ZL2Wv/jiixtkv8ccc0yDbEdERERERKQUKGAhzd7kRbennr+7JlUTKpn482gm/pR+fhzFxJ9H4xOqpr1ymVHWtgUt27VgsyUP4bdh3zKucgwfXvEIy2+9Ja3naU9ZuwhulLVrgbUsn+HiniIiUpo6d+5cXRy5tvnNxc0338zYsWNrnDf33HM38dE0jMsvv5zLL7+82IchIiIiIiIiU6GAhTR7k42waDH1ERaVIycw8cdRTMgCEz+NZtJvY2F6S7lUOVUjJ1A1cgJtmZ227f5RPWv0498zunD5ijLK27WA2crpNqYdI9tPomrsJFBafRGRZq+iooJu3boV+zAaxAILLFDsQxAREREREZFZkAIW0uxNygUsshEWXuVM+m3sFMGJqlETa9vMZMrnbk2L+dvScv62tJi/LZQZVaMmUjl6IlWjJlI1Ovt9QvV0KusQ9ZhUReUf4+EPmIOWzPFHS0Zc/gETVpyPdr0602Le2abnXyAiIiIiIiIiIiLS7ClgIc1eZUoJtVDbJZhr6Jz8cs17TPx5DEyqQ0qncqNFp7Z/Byc6t6PF/G0pa12/l4a74+MrqRw5gV8+GcKrt99BS2tF6/LZ6L7sGsw1Z6e/Ax7pp3pUx8QqRr/xE6Pf+InWi89NuzU702qxOZU6SkRERERERERERGYpClhIs1c5cSKLtluGlefdGH6BiYyqcbmy2SqqAxLx044WHdtg5WUzfAxmhrWuoKx1BQuusyxLVv7C0zdeBcCnr7zFDmeczwI9l6lefszoMbz02HN0/Lk1HYfPBhMjuDLu098Z9+nvtOjUlnZrdma2ZTtiLWb8+ERERERERERERERKnQIW0uxNmjiBOVrOO9m0inla/x2cSI/l7Vs22aiFpdfdkF+HfsWgp/6PqspJPHrpuex2/hXMPk8HAKzMGN+miu8WGUPPPVaj6sM/GfXaj1T+OR6AiT+PZsQDQ/jzyaG0XXV+2q02P+Wz17+guIiIiIiIiIiIiEhzoYCFNHuTJkyk3P6+lDseuhwtu8xexCMKvffYj+Hff8t3H3/AmD//4D+X9GPHsy6kRctWky1X1qaCtussSLs1F2DsR78x6pUfmPDdSACqRk1k5HPfMnLgd8y2XEdmX2sBWnRqW4ynIyIiIiIiIiIiItKolGtGmr3KSRMps/Lqv611+VSWbjrlFRVsftSJzNFxPgB++eoLnr7hKtxrLs5t5cZsy85Lx0OXY95DlqXNMh3+foVWOmPe+YVfrniXYTd/yNhPf8er6lDkW0REpqp3794ceeSRxT6MZumRRx6hW7dulJeXc9RRR3H33Xez8MILN8m+u3btyhVXXNEk+6qL4cOH07FjR4YOHdqk+50wYQJdu3bl7bffbtL9ioiIiIiINBYFLKTZq5wwYbIRFlZROpd1m9nbs+Vxp9GiVWsAPn31Rd5+7KFprtdqofbMs8sSdDp+ZdqtvcBkQZjxX/zB8AEf88vl/8/efcdHVaWPH/+cmcmkB1IIIZCQ0CIoILB0EIJKsWJZlRWprqBfXVFQbKt0V7GArog/XcCyK4so6i5YVmQEERRRpEkPJECAFEJ6JjNzfn9MMmTSE1Im8Lxfr3nlzr3nnvtcchMy97nnPNvJ3noSh9Veb/ELIcTF7pNPPmHu3LkNdryNGzdy4403EhkZiVKKTz/9tEybCRMmOGsjlXiNHDnSrU3x+q1bt7qtLygoIDQ0FKUUFosFgH79+jF16lS3dkuXLkUpxYoVK8oce/DgwdU6lylTpnD77beTlJTEnDlzqrVPTa1YsYLmzZuXWb9t2zbuu+++ejlmbcyfP5+bb76ZmJgYAH777TfGjBlDVFQUvr6+dO7cmcWLF9e431mzZpW5Fi677DLXdrPZzIwZM5g5c2ZdnYoQQgghhBBCNCrPubMrRC3ZbYUem7AAaBEdw6gHH3W93/ivFRzb+Wu19jU196H5de1o9WQfmt/YDmOoj2ubLSWPjE8Pk/z8T5z7MsFV/0IIIUT1hYSEEBjYcNMI5uTk0L17d954441K240cOZLk5GTX68MPPyzTJioqiuXLl7utW7NmDQEBAW7r4uPjXcmLYhs2bCAqKqrMeovFwrBhw6o8j+zsbM6cOcOIESOIjIxs0H9DgBYtWuDn59egx6xIbm4u//jHP5g8ebJr3fbt2wkPD+eDDz5gz549PP300zz55JP8/e9/r3H/l19+udu18P3337ttv/vuu/n+++/Zs2fPBZ+LEEIIIYQQQjQ2z7qzK0Qt2AoLMRpKJCy8PO+y7thnAP1v/5Pzjdb8781FWDMzqr2/wdtEwMDWREz/A6H3dMEc28y1TefZyLIcJ/mFbaSt3If1eFYdRy+EEBev0lNCFRQUMGPGDFq3bo2/vz99+/Z1u6mflpbGmDFjaN26NX5+fnTt2rXcZEJFRo0axbx587jlllsqbeft7U1ERITrFRwcXKbN+PHjWblyJXl5ea51y5YtY/z48W7t4uPj2b9/P6dOnXKt++6773jiiSfczi0hIYFjx44RHx9faWwWi8WVoBg2bJjbaI7S3nzzTdq3b4/ZbCYuLo7333/fbfsrr7xC165d8ff3JyoqigceeIDs7GzXcSZOnMi5c+dcowtmzZoFlJ0SSinFO++8wy233IKfnx8dO3bk888/dzvW559/TseOHfHx8SE+Pp53330XpRQZGRmVnm9V1q1bh7e3N/369XOtmzRpEosXL2bIkCG0a9eOsWPHMnHiRD75pOpRlqWZTCa3ayEsLMxte3BwMAMHDmTlypUXdB5CCCGEEEII4Qk8786uEDVks1oxePAIi2L9b7uLDr37A2DNyyV549fYrdYa9aEMCt/LQwmf0o3wh3rg1zMcjMq50aHJ25HCmb/vIPn5H0lZtpuMtUfI+fk01qQsmTpKCCGq4cEHH2TLli2sXLmSnTt38sc//pGRI0dy8OBBAPLz8+nVqxdr165l9+7d3Hfffdxzzz389NNPdRqHxWIhPDycuLg47r//ftLS0sq06dWrFzExMXz88ccAJCYmsnHjRu655x63dgMHDsTLy4sNGzYAsHfvXvLy8pg8eTJpaWkkJCQAzlEXPj4+9O/fv9LYBgwYwP79+wH4+OOPSU5OZsCAAWXarVmzhocffpjp06eze/dupkyZwsSJE11xABgMBl577TX27NnDu+++y7fffsvjjz/uOs6iRYsICgpyjS6YMWNGhXHNnj2bO+64g507d3Lddddx9913k56eDjiTMbfffjujR4/mt99+Y8qUKTz99NOVnmd1bdq0iV69elXZ7ty5c4SEhNS4/4MHDxIZGUm7du24++67SUxMLNOmT58+bNq0qcZ9CyGEEEIIIYSnMVXdRAjP5pwSqkSh7eIb+B5GGQyMevBRPvzrY6QmHqUw8xynN6/HXmpe8uoytw4g5I44mo2MJXvrSXK2JuPItQFgP2fFfs5KwYGzbvsYQ3zwCvfDK8IPU0t/vFr64dXCzyNHpQghLhI//B22VD79EQCtusOf3J8Q9/98Miplb9X79v8/GPBgLQM8LzExkeXLl5OYmEhkZCQAM2bM4Msvv2T58uUsWLCA1q1bu900f+ihh/jqq69YtWoVffr0ueAYwDkd1K233kpsbCyHDx/mqaeeYtSoUWzZsgWj0ejWdtKkSSxbtoyxY8eyYsUKrrvuOlq0aOHWxt/fnz59+mCxWBgzZgwWi4VBgwbh7e3NgAEDsFgsxMbGYrFY6N+/P97e3pXGZzabCQ8PB5xTakVEROBwOMq0e+mll5gwYQIPPPAAAI8++ihbt27lpZdeco3iKDm6JSYmhnnz5jF16lSWLFmC2WymWbNmKKWIiIio8t9twoQJjBkzBoAFCxbw2muv8dNPPzFy5Ejeeust4uLiWLhwIQBxcXHs3r2b+fPnV9lvVY4dO+a6Xiryww8/8O9//5u1a9fWqO++ffuyYsUK4uLiSE5OZvbs2QwePJjdu3e7TcMVGRnJsWPHahW/EEIIIYQQQngSSViIJs9ZdNvL+cbknDLCU5l9fBn92DO8/8Q0CnKyyU0+zvq3/86N0x7HYDBW3UE5jEFmmg2PISg+ipxfz5D76xkKk3PR+bYybe3p+djT88nfl35+pQJTqC+mln7OBEZRIsMU5uuxo1WEEE1IQRZknay6XbPWZVap3DRUdfYtqJup8Hbt2oXdbqdTp07u3RcVsgaw2+0sWLCAVatWceLECaxWKwUFBXVaT+Guu+5yLXft2pVu3brRvn17LBYLV199tVvbsWPH8sQTT3DkyBFWrFjBa6+9Vm6fQ4cO5aOPPgKcozeGDh0KwJAhQ1xTL1ksFv785z/X2Xn8/vvvZQpjDxw40K349DfffMPzzz/Pvn37yMzMxGazkZ+fT25ubo3/Tbt16+Za9vf3JygoiDNnzgCwf/9+evfu7da+qgTT1KlT+eCDD1zvi6eqKi0vLw8fH59ytwHs3r2bm2++meeee47hw4dXeR4ljRo1yrXcrVs3+vbtS9u2bVm1apVbzQxfX19yc3Nr1LcQQgghhBBCeCJJWIgmz2azuUZYKJPnJiuKNQuPYORDM/j8xbloh51DP27mm7ff4Nr7HrqgZIvyMhLQpxUBfVqhtcaRaaXwdC6Fp3MoPJ2L7XQuhadz0aWnhtJgS83DlppH/p4SU44YFKYw36IkhnNEhrl1AMZgb49OCgkhPIx3IARW/vQ5AH5hZVZpv1B0YCRV/sbxrpuCz9nZ2RiNRrZv315mJENxIeuFCxeyePFiFi1a5Kq9MG3aNKw1nOKvJtq1a0dYWBiHDh0qk7AIDQ3lhhtuYPLkyeTn5zNq1CiyssomcOLj45k/fz4nTpzAYrG4RokMGTKEt956i8OHD5OUlFStgtt15ejRo9xwww3cf//9zJ8/n5CQEL7//nsmT56M1WqtccLCy8vL7b1SqtyRH9U1Z86cSqegKhYWFsbZs2fL3bZ3716uvvpq7rvvPp555plax1KsefPmdOrUiUOHDrmtT09PLzOyRtQfpdRYYDDQC+gKmIGJWusV5bTV1egyWmudVNQ+BkiopO1srfWsGoYshBBCCCFEkyEJC9Hk2QutGItrWDSREQGtL7uciMHXkLzxa9CaXd9+jZePL0PH3VsnyQClFMZm3hibeePT6XyhVu3Q2M8VFCUwcig8lUvhmVxsZ3LRhaVu6jg0tqJtebvOrzb4mfBqHYC5TSDm1gF4tQnE2MwsSQwhRPkGPFjr6ZpybvoHQUFBKEPD/G7v0aMHdrudM2fOMHjw4HLbbN68mZtvvpmxY8cC4HA4OHDgAF26dKm3uI4fP05aWhqtWrUqd/ukSZO47rrrmDlzZplES7EBAwZgNptZsmSJqw4HQO/evUlJSWHZsmWuqaPqSufOndm8ebNbEfDNmze7/q22b9+Ow+Hg5ZdfxlD0PV61apVbH2azGbv9wmswxcXFsW7dOrd127Ztq3Sf8PBw19RXlenRo4fbSIxie/bsYdiwYYwfP75Opp4CZ1Lt8OHDZeqU7N69mx49etTJMUS1zAPaAqlActFyRWZXsL4DcDewtzhZUcpvwKflrLdUO0ohhBBCCCGaIElYiCavZNHtplSLwb91NC0HxHPmhw1orfll3WeYff0YeMfd9XZMZVCYgn0wBfvAZecLf2qHxp6eX3ZERkou2N0fDHTk2ig4mEHBwQzXOkOAF+Y2gUWJDGcywxhorrfzEEKI+tCpUyfuvvtuxo0bx8svv0yPHj1ISUlh/fr1dOvWjeuvv56OHTuyevVqfvjhB4KDg3nllVc4ffp0tRMW2dnZbk/HJyQksGPHDkJCQoiOjiY7O5vZs2dz2223ERERweHDh3n88cfp0KEDI0aMKLfPkSNHkpKSQlBQUIXH9fX1pV+/frz++usMHDjQldgwm81u60uPUrgQjz32GHfccQc9evTgmmuu4T//+Q+ffPIJ33zzDQAdOnSgsLCQ119/nRtvvJHNmzezdOlStz5iYmLIzs5m/fr1dO/eHT8/v1pNvzVlyhReeeUVZs6cyeTJk9mxYwcrVqwAuOCE+4gRI3jyySc5e/YswcHOhwR2797NsGHDGDFiBI8++iinTp0CwGg01mgkxIwZM7jxxhtp27YtJ0+e5LnnnsNoNLpqdRTbtGkTc+fOvaDzEDVyL3BQa31MKfUE8HxFDSsaDaGUer1o8R8V7LpDRlIIIYQQQohLUdO5uytEBZxFt50JC4OpdnUgGktg2/YMnTjV9X7rxx+y7T+fNHgcqmj6J9/LQwkaFk3omMtoOa0nrecMpOWjvQi5+zICr47G57IQDAFlb2Y5sgvJ35dO1vpE0t7dS/L8H0le8COp7+0lc30i+QfOYs8pbPDzEkKImlq+fDnjxo1j+vTpxMXFMXr0aLZt20Z0dDQAzzzzDD179mTEiBEMHTqUiIgIRo8eXe3+f/75Z3r06OF6Gv7RRx+lR48ePPvss4DzhvbOnTu56aab6NSpE5MnT6ZXr15s2rSpwmLYSinCwsIwmytPFMfHx5OVleWqX1FsyJAhZGVluQph15XRo0ezePFiXnrpJS6//HLeeustli9f7jp+9+7deeWVV3jhhRe44oor+Oc//8nzz7vf9x0wYABTp07lzjvvpEWLFrz44ou1iiU2NpbVq1fzySef0K1bN958802efvppgCqLjFela9eu9OzZ0210yOrVq0lJSeGDDz6gVatWrlfJOhpHjx5FKYXFYqmw7+PHjzNmzBji4uK44447CA0NZevWrW5Jjy1btnDu3Dluv/32CzoPUX1a62+01rWucq6U8sE5usIKvF9ngQkhhBBCCHERUFpXZ1pV4amUUm2AJIADBw7QsWPHRo6o4f3r6ekMst2EQRnwah1Ay4c8f0qEvLw8vv76awCGDx/O7xu+ZsO7b7u2X3Pv/9H92lEV7d6otNbYz1kpPJ6F9UQ21uNZFJ7IxpFbtsh3acZg7xIjMZxTShl8m8ZAr9LfM19f30aOSFSHfN8azsGDB7HZbJhMpgv+v8jhcJCZmQlAUFCQa7og4bma4vds/vz5LF26lKSk8mbjqZm1a9fy2GOPsXv37mqf+4YNG7j11ls5cuSIa2RGbdx55510796dp556qsI2Ff18Hjx4sGSR+Sit9fFaB3KJKjHCotwaFhXs8yfgn8BqrfUfS22LwVnD4n/AZ0Az4DRg0VofrmWMbapoEgFsA+fniTZtqmouhBBCCCGE8wGr+vg80TTuFApRCXthoevmgGoiNSxK63ndzVjz8ti8yjkH9jf/WILZx4fOg+v2ade6oJTC1NwbU3NvfK9wFsnVWmM/W4D1eBbW49muZIYucJ933H62gLyzBeTtSnWtM4X5EnBVa/x7R0gdDCGEEPVmyZIl9O7dm9DQUDZv3szChQt58MHa1Vcp7frrr+fgwYOcOHGCqKioau2zbt06nnrqqQtKVlitVrp27cojjzxS6z5Eo5hc9PWdStpcW/QqppVS/wSmaq1zani8amflNm7cSFhYWA27F0IIIYQQl6LU1NSqG9WCJCxEk6cLHVA0m0NTqmFRWt9b78San8e2zz8GrfliyauYfHzo2Lt/Y4dWJaUUphAfTCE++HVzTlOhHRpbWh6FJ7KxHj8/EqN0cW9bah4ZnxzCmpBJ81s6YDA3rWm9hBCiWGJiYqW1LPbu3euaWsrTjRo1ik2bNpW77amnnqr0aX5PdfDgQebNm0d6ejrR0dFMnz6dJ598ss76nzZtWo3aL1y48IKPaTabeeaZZy64H9FwlFKxQDyQiHMURWm5wFycBbcP45zCtycwHxgL+AG3NUSsQgghhBBCNAZJWIgmzy1h0URHWIDzpv/gP03AmpfHb/9bh3Y4WLvoBUbPfI6Ybp4/zVVpyqDwauGHVws//K4MB4qSGCm5rgSG9Xg2hUlZAOT+eobC5BxC7+mMKVSm7RFCND2RkZHs2LGj0u1NxTvvvENeXl6520JCQho4mrrx6quv8uqrrzZ2GEJMAhSwXGvtKL1Ra30GeLbU6vVKqS3AL8CtSqmeWutfanDMqob9uKaEuuqqq2RKKCGEEEIIUS3Hj9fPjLKSsBBNnrafr8PSlEdYgDNpcfWkqRTm57F30wbsNhufLZzHbU/Poc1llzd2eBdMGRReLf3xaumPf6+WAOTuTOHs6gNoq4PCUzmcfv1XQu6Iw7dLaCNHK4QQNWMymejQoUNjh1EnWrdu3dghCHHRUUoZgAmAA1hWk3211rlKqfeBecBAnMmL6u5b6SfJklNy+vr6Sr0nIYQQQghRLfX1d2PTvrsrBIDt/MNpTXmERTFlMDDi/ml0KJoKymYtYM3fZnP6yKFGjqx++HVrQfj/XYmphfOXnM63k/beXs59fRTt0FXsLYQQQgjRZIwE2gD/01on1mL/4kmC/esuJCGEEEIIITxL07+7Ky552lZihMVFkLAAMBiNXP/w48R07wmANS+Xj+Y9TeLunY0cWf3waulP+P9die8V50dVZH2bROry3dhzChsxMiGEEEKIOlOdYtuV6Vv09eiFhyKEEEIIIYRnujju7opLltYaZS+xwqQqbNvUmLy8uGn6U7QumgqqICeHjxc8y95NGxo5svph8DERcndnml0X6/rNVHAwgzOv/4r1eFbjBieEEEIIcQGUUi2AG4EU4PNK2vVQJedoOr/+VmA8cBb4or7iFEIIIYQQorFJwkI0aQ67HYM6fxkrL2MjRlP3vLx9uPXJWcT2+AMADruNL/7+Mls+/hCtL77pkpRSBF7VhrDJXTEEeAFgzyjgzJu/kfPTqUaOTgghhBAClFL3KqVWKKVWAH8sWu1ap5S6t5zdxgFewPtaa2sl3b8KJCqlVimlXlFKLVZKbQI+BgqBCVrrc3V4OkIIIYQQQngUSViIJs1eaMWgzteOVxfRCItiZh9fRj/2V7pfO8q17odV/+SrpYux22yNGFn98WnfnJYP9cAcHehcYdec/eQg6asPoAsdle8shBBCCFG/BuEc7TAe6Fm0bmCJdYPK2ae600F9AOwG+gFTgSlAZNF+V2qtKxydIYQQQgghxMXAVHUTITyXrbAQY8mEhdfFmYMzGI1cPfkBmoVHsPGfywHYY/mGrLRUbnr0Sbz9Lr7ai8Zm3rS4rxvn1iWQ/cNJAHJ/Pk1hcg6hd3fGFOLTyBEKIYQQ4lKktZ4ATKjhPl2q2e4dal/jQgghhBBCiCbv4ry7Ky4Z9tIJi4uk6HZ5lFL0vuk2bpj2BEYv53RJibt28OFfHyMz9UwjR1c/lMlA85vaE3JnnCsZVXgimzN//5X8A2cbOTohxMVg6NChTJs2rbHDaJI+/fRTOnTogNFo5JFHHuFf//oXbdu2bZBjx8TEsGjRogY5VnWkpaURHh7O0aNHG/zY/fr14+OPP27w4wohhBBCCCFEfbh47+6KS0KZhMVFOsKipLj+g/jjXxfgExgEQNrxRP719HROHznUyJHVH78e4bR44EqMoc5RFY5cG6nLd5O5PhHtuPhqeQghGs4nn3zC3LlzG+x4Gzdu5MYbbyQyMhKlFJ9++mmZNhMmTEAp5fYaOXKkW5vi9Vu3bnVbX1BQQGhoKEopLBYL4LyhPXXqVLd2S5cuRSnFihUryhx78ODB1TqXKVOmcPvtt5OUlMScOXOqtU9NrVixgubNm5dZv23bNu677756OWZtzJ8/n5tvvpmYmJgy29LS0mjTpg1KKTIyMmrUb3Wul2eeeYYnnngCh0OmTBRCCCGEEEI0fRf/3V1xUbMVWjGq84W2L+YRFiW1juvMn+a9RPOIVgDkZJzl37Oe4PD2nxo5svpjbuVPywd74NM5xLlCQ+b/jpH23l4cuYWNG5wQoskKCQkhMDCwwY6Xk5ND9+7deeONNyptN3LkSJKTk12vDz/8sEybqKgoli9f7rZuzZo1BAQEuK2Lj493JS+KbdiwgaioqDLrLRYLw4YNq/I8srOzOXPmDCNGjCAyMrJB/w0BWrRogZ+fX4MesyK5ubn84x//YPLkyeVunzx5Mt26datV39W5XkaNGkVWVhZffPFFrY4hhBBCCCGEEJ7k0ri7Ky5a9sLCUkW3L51LOjgikjFzXyIyzjklcmFBPp8tnMeOr9Y2cmT1x+BrIvSeLgSNaAtF9dXz96Vz+u87sJ7MbtzghBBNUukpoQoKCpgxYwatW7fG39+fvn37ut3UT0tLY8yYMbRu3Ro/Pz+6du1abjKhIqNGjWLevHnccsstlbbz9vYmIiLC9QoODi7TZvz48axcuZK8vDzXumXLljF+/Hi3dvHx8ezfv59Tp0651n333Xc88cQTbueWkJDAsWPHiI+PrzQ2i8XiSlAMGzbMbTRHaW+++Sbt27fHbDYTFxfH+++/77b9lVdeoWvXrvj7+xMVFcUDDzxAdna26zgTJ07k3LlzrhEls2bNAspOCaWU4p133uGWW27Bz8+Pjh078vnn7rWJP//8czp27IiPjw/x8fG8++67tRr1UNq6devw9vamX79+5Z5/RkYGM2bMqFXf1blejEYj1113HStXrqzVMYQQQgghhBDCk1w6d3fFRalM0e1LKGEB4BfUjD8+M49O/QYBoLWD9cvexPLe2zjs9kaOrn4ogyIoPpqwiVdg8HN+7+3p+ZxZ8hs52083cnRCiNLe3fMuV390dZWvh9Y/VGbfJ358gms/vrbKfd/d826dxfvggw+yZcsWVq5cyc6dO/njH//IyJEjOXjwIAD5+fn06tWLtWvXsnv3bu677z7uuecefvqpbke4WSwWwsPDiYuL4/777yctLa1Mm169ehETE+OqX5CYmMjGjRu555573NoNHDgQLy8vNmzYAMDevXvJy8tj8uTJpKWlkZCQADhHXfj4+NC/f/9KYxswYAD79+8H4OOPPyY5OZkBAwaUabdmzRoefvhhpk+fzu7du5kyZQoTJ050xQFgMBh47bXX2LNnD++++y7ffvstjz/+uOs4ixYtIigoyDXSpLIb/7Nnz+aOO+5g586dXHfdddx9992kp6cDzmTM7bffzujRo/ntt9+YMmUKTz/9dKXnWV2bNm2iV69eZdbv3buXOXPm8N5772Ew1O/fJ3369GHTpk31egwhhBBCCCGEaAiX1t1dcdGxF1ovuRoWpZnMZm54+HF633Sba932tZ+xet4z5GRcvIWpfToFE/5QD7zaFE19YnNw9qMDnP30ENom83gL4SlyCnM4k3umyld6QXqZfTMKMqq1b05hTp3EmpiYyPLly/noo48YPHgw7du3Z8aMGQwaNMg19VLr1q2ZMWMGV155Je3ateOhhx5i5MiRrFq1qk5iAOd0UO+99x7r16/nhRde4LvvvmPUqFHYy0lET5o0iWXLlgHOeg/XXXcdLVq0cGvj7+9Pnz59XKMgLBYLgwYNwtvbmwEDBrit79+/P97e3pXGZzabCQ8PB5xTakVERGA2m8u0e+mll5gwYQIPPPAAnTp14tFHH+XWW2/lpZdecrWZNm0a8fHxxMTEMGzYMObNm+f6tzSbzTRr1gyllGukSenprkqaMGECY8aMoUOHDixYsIDs7GxXIumtt94iLi6OhQsXEhcXx1133cWECRMqPc/qOnbsGJGRkW7rCgoKGDNmDAsXLiQ6OrpOjlOZyMhIkpKSpI6FEEIIIYQQoskzVd1ECM9Vuug2l9gIi2LKYOCquyfSLDyCb5cvxWG3k7R3Fx88OY0bH3mSyE6XNXaI9cIU7EP4lO5k/OcwOT85pzrJ2ZpM4YlsQsZ2xtSs8ptuQoj65+/lT7hfeJXtQrxDyqxr7t28Wvv6e/nXKrbSdu3ahd1up1OnTm7riwtZA9jtdhYsWMCqVas4ceIEVquVgoKCOq2ncNddd7mWu3btSrdu3Wjfvj0Wi4Wrr77are3YsWN54oknOHLkCCtWrOC1114rt8+hQ4fy0UcfAc7ExNChQwEYMmSIa+oli8XCn//85zo7j99//71MYeyBAweyePFi1/tvvvmG559/nn379pGZmYnNZiM/P5/c3Nwa/5uWrBPh7+9PUFAQZ86cAWD//v307t3brX2fPn0q7W/q1Kl88MEHrvfFU1WVlpeXh4+Pj9u6J598ks6dOzN27NganUNt+fr64nA4KCgowNfXt0GOKYQQQgghhBD1QRIWokmzyQgLN92vHUVYdAz/efV5cs6mk52exr9nPUH8+D/Tffh1KKUaO8Q6p7wMBN/aEXNUIGc/OwQ2jTUpizOv/UroPZ3xjmnW2CEKcUkbf/l4xl8+vuqG5fhb378RFBRU79PpFMvOzsZoNLJ9+3aMRqPbtuIn+xcuXMjixYtZtGiRq/bCtGnTsFqt9RZXu3btCAsL49ChQ2USFqGhodxwww1MnjyZ/Px8VwHm0uLj45k/fz4nTpzAYrG4plYaMmQIb731FocPHyYpKalaBbfrytGjR7nhhhu4//77mT9/PiEhIXz//fdMnjwZq9Va44SFl5eX23ul1AWNOJgzZ061ak+EhYVx9qz7iMZvv/2WXbt2sXr1agC01q62Tz/9NLNnz651XOVJT0/H399fkhVCCCGEEEKIJk8SFqJJsxUWYlDnbypdajUsytM6rjP3/G0x/130Asd/343DbmP9sjdJPrSfa+59AC9vn6o7aYL8e0fgFRlA2gd7sZ8twJFTSNp7ewl/qAem4IvznIUQdatHjx7Y7XbOnDnD4MGDy22zefNmbr75ZteT8w6HgwMHDtClS5d6i+v48eOkpaXRqlWrcrdPmjSJ6667jpkzZ5ZJtBQbMGAAZrOZJUuWuOpwAPTu3ZuUlBSWLVvmmjqqrnTu3JnNmze7FQHfvHmz699q+/btOBwOXn75ZVdSqvTUWmazudypsGoqLi6OdevWua3btm1bpfuEh4e7pr6qTI8ePdxGYoCztkfJYujbtm1j0qRJbNq0ifbt29cg8urZvXs3PXr0qPN+hRBCCCGEEKKhyd1d0aSVnhLqUh9hUcy/eTC3PzOPXtePdq3bu/FbPvzrY2ScSm68wOqZuXUALR/qgXc756gKR66NtH/+ji6UOb2FEFXr1KkTd999N+PGjeOTTz4hISGBn376ieeff561a9cC0LFjR/73v//xww8/8PvvvzNlyhROnz5d7WNkZ2ezY8cOduzYATiLQe/YsYPExETX9scee4ytW7dy9OhR1q9fz80330yHDh0YMWJEuX2OHDmSlJQU5syZU+FxfX196devH6+//joDBw50JTbMZrPb+tKjFC7EY489xooVK3jzzTc5ePAgr7zyCp988olr1EKHDh0oLCzk9ddf58iRI7z//vssXbrUrY+YmBiys7NZv349qamp5Obm1iqWKVOmsG/fPmbOnMmBAwdYtWoVK1asALjg0YcjRoxgz549bqMs2rdvzxVXXOF6xcbGAs4kTnWSIMWqul6Kbdq0ieHDh1/QeQghhBBCCCGEJ5C7u6JJK110O1+KLbsYTSaGjruXG6bNdI2qSDmWwAdPTePIL5U/VdqUGfy8CL2nC8YQ5zkXHs8m4z+HGzkqIURTsXz5csaNG8f06dOJi4tj9OjRbNu2zVU4+ZlnnqFnz56MGDGCoUOHEhERwejRo6vd/88//0yPHj1cT8M/+uij9OjRg2effRYAo9HIzp07uemmm+jUqROTJ0+mV69ebNq0qcJi2EopwsLCyi18XVJ8fDxZWVmu+hXFhgwZQlZWFvHx8dU+j+oYPXo0ixcv5qWXXuLyyy/nrbfeYvny5a7jd+/enVdeeYUXXniBK664gn/+8588//zzbn0MGDCAqVOncuedd9KiRQtefPHFWsUSGxvL6tWr+eSTT+jWrRtvvvkmTz/9NECVRcar0rVrV3r27FnjwutHjx5FKeUqel6eqq4XgBMnTvDDDz8wceLEWsUvhBBCCCGEEJ5EFc+pK5ompVQbIAngwIEDdOzYsZEjaljb136G7cs0Wvs7z3tNlpV2N8dy/fB2jRxZ5fLy8vj6668BGD58eL3POZ12PJHPXprP2eQTrnX9bx9D/9vGoBpobviGZj2ZzZklv0FREiv49k74/6Flrftr6O+ZqBvyfWs4Bw8exGazYTKZLvj/IofDQWZmJkCD1rAQtdcUv2fz589n6dKlJCUlXXBfa9eu5bHHHmP37t3VPvcNGzZw6623cuTIEYKDg2t97JkzZ3L27Fn+3//7fxW2qejn8+DBgyWLzEdprY/XOhDRZJX8PJGUlESbNm0aOSIhhBBCCNEUHD9+nKioqOK3dfZ5wvM/TQpRCbutEEOJERZmuyLhkwT+/vft2GW0hUtom2juXvAqHXr3d63bsvpD1rwwm7zsssVZLwbmyACCb+ngen/200NYT2Y3YkRCCCEa05IlS9i2bZtr+qmFCxe61de4ENdffz333XcfJ06cqLpxkXXr1vHUU09dULICnLU25s6de0F9CCGEEEIIIYSnkIRFCUqp3kqpdUqpDKVUjlJqq1Lqjhr2EamUWqyU2lvUx2ml1PdKqXuUUuVXwhS1ZrNaMRrOJywcgEKhdp/jhWe/J/VsXsU7X2K8/fy4afpTDP7TBJRy/ugn7NjOe48/xLGdOxo3uHri36sl/n0inG9sDtI++B1Hnq1xgxJCXLQSExMJCAio8FW67oAnGzVqVIXnsWDBgsYOr1YOHjzIzTffTJcuXZg7dy7Tp09n1qxZddb/tGnTSj5dVKWFCxfy2GOPXfBxp0+fTsuWtR9BKIQQQgghhBCexFR1k0uDUioe+ArIB1YCWcBtwL+VUlFa65er0Uc74EcgtKiv/wBBwGjgPWAYIBMM1yG7rRCjctYq0FqTbwAvh0ahaJZu451nt3DtvZfTq7t8kAfnPOd9br6diPYd+e+iF8jLyiQ7LZXV85/hyhHXc9WfJuLl49PYYdap5je2x3oym8Lj2djT80lftZ/Qe7qgDBdWZFUIIUqLjIx0FUeuaHtT8c4775CXV37SPyQkpIGjqRuvvvoqr776amOHIYQQQgghhBCiEpKwAJRSJuBtnA/oX6W13lG0fg7wE7BAKbVaa32siq5mAGHANK314hL9Pwn8BkxQSs2qRj+impxFtwOcy2h6x0dxNsjAgU+P4qMVgYWw6c3dHLz2LHfddlkjR+s5oq/ozj0vvMaXS14lcfdvAOz4ai1Hf/uFkQ88Suu4zo0cYd1RXgZC7+7Mmdd/xZFrI//3dLK+O05QfPWfghVCiOowmUx06NCh6oZNQOvWrRs7BCGEEEIIIYQQlyCZEsppGNAe+FdxsgJAa30OWACYgepMclxc6XldyZVa6wzg+6K3YRcYqyjBZi3EWFTDwqGhZWwQN45oz/XTe3CuaKCAF4q0/53E8u/92O1S16JYYGgYtz89l2ETp2AyewOQcSqZfz83k43/WoGtsLCRI6w7pmAfQu6Mg6JBFZlfHyX/0NnGDUoIIYQQQgghhBBCCOFGRlg4DS36+nU5274q+jqkGv3sBkYA1wElR1g0BwYCp4C9NQlMKdWmiiYRxQsFBQUVTt9wsSrIz3MlLOxomrfyJi8vj7atffnzX//AO6/9RtBp5433PRtOkJaYSfz4TvgGmhszbPLz88tdbgyXDbmGiLgurH/775w+fBCtHWz7bDWHt//INX9+iLC2sY0aX52J9sX3qkjyvjsJGtL+tY9mU7pgDKreteBJ3zNRffJ9azgOhwOttWv5Qvsqb1l4LvmeeT6tNQ6Hw+1vxYKCgkaMSAghhBBCCCHKUsU3Fy5lSqmPgNuBP2itt5ezPQs4q7WOrqKflsBGoCPORMdOztewyAXu1lpvrWFs1f4GvfPOO4SFXVoDOJI3f8s1+jp8jH5k223sG5iJKlGawOGA00e8sB/yBu3cYPB2EHJlHj4hckOlJO1wkPH7TtJ2bXf+wwEoRUjXngR3uRJluAgGZGnosC+AZhnOJEV2gI0Dl2eiL4JTE6KxhYaG4uvri5+fH61atWrscIQQJSQnJ5Obm0teXh5paWmu9ampqdx7773Fb6O01scbJUDRqIoekEoCSEpKok2bqp6XEkIIIYQQAo4fP05UlGvK9Tr7PCG36ZyaFX09V8H2zBJtKqS1Pg30B74ERgKPA1OL9n0PZx0LUYfy8xwYlRGAQoVbsgLAYIBWHQpp0TcXg7fzJryjwMCZH/34+WdvjiUbsNkbOmrPpAwGgi+/kqgRozE3LyqoqjXpO7dz/H+fYz2X0ajx1QkFCR1yKPB2ftMDsk20OebXyEEJIYQQQgghhBBCCCFApoSqU0qpDsB/gGxgMLADaA6MBeYBI5RSg7XWNblFXlVl4AhgG0Dfvn1p3759DaNu2t7+ZqNrSijMRoYPH15h27zrrGx49yCnDmdiQBGRYoYUM4lKkxtoJCjan8uuCKV3jxZ4m+vnR8Nud3A2s4CTyVn8uG0nhYUGIiOjsRcqCvJtGB1wWZg/hVYHNqsdW4GDfSeyyMy2ggGU0YDBpDB4Ob8aTQZMZgMmLwPhzX3o2CoQk5cB30Av/JqZMQeY8PGp+bnYb7udnz9bzS//XYPWmoK0FE58/Sm9b/4j3YZfj8ncuFNqXShbjxzOLdsHdk34KR/a9e+Md7fQSvfJz89n48aNAFx11VX4+Pg0RKjiAsn3reEkJiZit9sxmUwEBQVdUF8Oh4Ps7GwAAgICMFwMI7wucvI982wpKSn4+voSEBBAr169XOsPHz7ciFEJIYQQQgghRFmSsHAqHllR0SiKIKA6FXpXAG2BdlrrU0XrsoG/FU0XNQ24C/hndQOraiiNKjGkwNvbG19f3+p2fVEozLVi8HeOsDD7mSs9f19fX25+pAeLX9mGz5Fc13qzVpgzHbA7iwO7s9izMoGcQCMt2gVxwzXtaBkThNHLeeOlwGoj41wBmTmFZGVZycq2kpNtJTfXRn6ujfz8QvKyC+kSGoC2OsjPKaQgp5CUtDyys6x4O8BQVPnZiD9GIH1Piluc20l3e2/AmfVyKj/X5QBOcY5TnC6zLV9prGaFw8eIyd+ETzMzQSE+hIb50aqVP507hhDgXzoB4cvQsZOI6zuQL954hbPJJ7AXFrJ19b/Y+903DBoznssGXOV2/TUp7X1RN7cn45NDAOT89xj+bYPxivCv1u4+Pj6X3M/axUC+b/XLYDC4ahfU5c1qg8FQrze/hw4dypVXXsmiRYvq7RgXq08//ZQZM2aQkJDAgw8+SFxcHE8++SRnz56t94RFTEwM06ZNY9q0afV6nOpKS0ujc+fO/PTTT8TExDTYca1WK506dWL16tX84Q9/qLStUgqDweD2e9Db27u+QxRCCCGEEEKIGpGEhdPBoq8dAbcaFkqpCCAA+KmyDpRSgTgLa/9SIllR0gacCYse1CBhISpnsJ6vQxHYvOoP3SaTkemP92P3vjR+3HqC04fP4ZVmxc9x/sa7F4rmWQ4Kf8tgzW+/YPQy4OVtxJpvw2GruqSIAdhHZpn1vjTOzX0frfApAArscM4OJwvIJYtcnJMVb0Xj1dyb2A7NCWsTQGjrAELbBODfzEyrjnHc88Jivv/wPX798r9o7SAz5QzrXlvIL+s+Y8g9k2lz2eWNcl4Xyr93BNZjWeRuP40udJD63l7C/+9KjP5ejR2aEKIBffLJJ3h5NdzP/caNG1m4cCHbt28nOTmZNWvWMHr0aLc2EyZM4N1333VbN2LECL788kvX++KE8ZYtW+jXr59rfUFBAZGRkaSnp7NhwwaGDh1Kv379uPLKK1m6dKmr3dKlS7n//vtZvnw5EyZMcDv24cOH2bRpU5XnMmXKFCZOnMhf/vIX/P39+ec/6/7PmxUrVjBt2jQyMjLc1m/btg1//+olmRvC/Pnzufnmm8tNVqSlpdG9e3dOnDjB2bNnad68ebX7nTVrFrNnz3ZbFxcXx759+wAwm83MmDGDmTNnsn79+gs5BSGEEEIIIYTwCJKwcPoOeBIYDqwstW1EiTaVKX5EvaKq1y2KvhbUODpRrqxsK14lisZ7+Vb/htMVl4VyxWXOKYAcDge796exfdspTh06hzGtAH/7+eSCvdCBvfDCCnQbzAYyHQ7sJoU2G1BmRZ4tD4yasPAQfPzMmH2M+Pma6N0hDC9vo+uVY3eAEQptDvLy7OTlF5Kfbyc/30Z+gY2CfDuFVjvBPl60DvShsMBObqaVjLQ8fjuQhsmq8bFpTBUkTAwo7BlWDv18hkM/n3Gtzzdo8v2N+IT5EB49kO4Te5D642cc37MDgFOHDvDv52bSsc8ABv9pPMGtWl/Qv1FDU0oRPLo9hcnZFJ7MwZ6eT9r7e2lxb1eUSaYyEeJSERIS0qDHy8nJoXv37kyaNIlbb721wnYjR45k+fLlrvflPQkfFRXF8uXL3RIWa9asISAggPT086P14uPjWbNmjdu+GzZsICoqCovF4pawsFgsjB8/vsrzyM7O5syZM4wYMYLIyEjX6JqG0qJFi6obNZDc3Fz+8Y9/8NVXX5W7ffLkyXTr1o0TJ07Uqv/LL7+cb775xvXeZHL/8/3uu+9m+vTp7Nmzh8svb5oPEQghhBBCCCFEMUlYOK0HjgB/Ukq9prXeAaCUagY8BVhxFs2maH0rnNNHJWutzwFordOUUvuBOKXUvVrrd0q0bw7MKHq7of5P59Kw7ddTGDmfsDB41e4ms8FgoFvnFnTr7Lz54XA42Hf4LDlJOWQmZnMqIROH3YGXt5HDZ3PBy4DyUhi8jBi9Da7EgrevCR8fLwICzXSOaU54mC/efl54+5swGt1jy8vL4+uvvwZg+PCulU5TU3llhcrdUPTVbneQnJLL8RNZnD6dQ1pqHlnp+eRmFKAzrAQXKhx299EjPg6FT5YDsnLJTMgtGjMyDEdgLORtwmBLBeDgTz9w6OcfuSJ+JIPu+hN+QVXWp/cYystI6LjLOfPGrziyCrEezeTsJwcJ/mOnGk13VWhzkJ6RT/rZfOeUYZnOl7e3iWvj2+JbizoiQoiGUXpKqIKCAp5++mk+/PBDMjIyuOKKK3jhhRcYOnQo4Hxa/sEHH2Tjxo2cPXuW9u3b89RTTzFmzJhqHW/UqFGMGjWqynbe3t5ERERU2mb8+PG89tprLFq0yPX/yLJlyxg/fjxz5851tYuPj+dvf/sbp06dcvX53Xff8eyzz/Liiy+62iUkJHDs2DHi4+MrPa7FYnG1GTZsGECFT/e/+eabvPTSSyQlJREbG8szzzzDPffc49r+yiuvsHz5co4cOUJISAg33ngjL774IgEBAVgsFiZOnAicH1Hy3HPPMWvWrDJTQimlePvtt1m7di1fffUVrVu35uWXX+amm25yHevzzz9n+vTpJCUl0b9/fyZMmMCECRNqPOqhtHXr1uHt7e2WOCp5/hkZGTz77LN88cUXterfZDJVei0EBwczcOBAVq5c6fZ9F0IIIYQQQoimSO6iAVprm1LqXuArYKNSaiWQBdyGsybFDK310RK7PA+MBybirFtR7BHgc+BtpdRdwK9AMHATzhEWH2utv0HUif17UzGWuKlcV0/FGwwGunQMhY4XkirwLEajgTYRAbSJCCh3u93uIONULqnHs0k7ns2O3WfIOZ3nNlVWMT9TLDqgLXbrHmx5P4DOQTvs7Fq/ll3ffoMhqD95wT3AVPmIlzbBfoQHnn9iuMDmYM/Jc5XscV6XVkH4eBld71OyC0hKz61kDyezycAVke4JlSOpORhzrIwATChyfznDpl9Ps6fU5RTi54XZ6oPWsO7AHqz5dpJO5WByaLx1xcmNJbtSmP542ZtYQlwq0pavIH3Fiirb+XTpQtSbS9zWpc94jJSDByvY47yQCRMInTihlhG6e/DBB9m7dy8rV64kMjKSNWvWMHLkSHbt2kXHjh3Jz8+nV69ezJw5k6CgINauXcs999xD+/bt6dOnT53EAM6kQHh4OMHBwQwbNox58+YRGur+/1KvXr2IiYnh448/ZuzYsSQmJrJx40beeOMNtxvXAwcOxMvLiw0bNjBmzBj27t1LXl4ekydPZubMmSQkJBAbG8uGDRvw8fGhf//+lcY2YMAA9u/fT1xcHB9//DEDBgygefPmrmmKiq1Zs4aHH36YRYsWcc011/Df//6XiRMn0qZNG1fCw2Aw8NprrxEbG8uRI0d44IEHePzxx1myZAkDBgxg0aJFPPvss+zfvx9wFvSuyOzZs3nxxRdZuHAhr7/+OnfffTfHjh0jJCSEhIQEbr/9dh5++GHuvfdefv31V2bMmFFhXzWxadMmt0LWxfbu3cucOXP48ccfOXLkSK37P3jwIJGRka7vzfPPP090dLRbmz59+lRrGi8hhBBCCCGE8HSSsCiitd6glBoEzAbuBLyAXcBMrfW/q9nHF0qpAcBjwCBgCJAP/A7MAd6sj9gvVWeTsgkvMc2RKnEDW9SM0Whw1q5oHQB9YcBtHQBIOpnFzt0pJB7J4FxyLvasQsz5DvwcBkzeXTGa47Dl/4w9/2fABroAxzkLPlm/YvTpi9F8GUqV/2smKy2TrFLrqjs240Raepl11d338OmUMutswK9eit7+zlh7OsCebSe58PyoE3uajTycSZhTZ5zjTZyzp1c+EkMl5JCbV4hfDaYsE+Ji4sjOxnb6dJXt7OU8Qe7IyKjWvo7s7FrFVlpiYiLLly8nMTGRyMhIAGbMmMGXX37J8uXLWbBgAa1bt3a70f3QQw/x1VdfsWrVqjpLWIwcOZJbb72V2NhYDh8+zFNPPcWoUaPYsmULRqP7/3WTJk1i2bJljB07lhUrVnDdddeVmS7J39+fPn36YLFYGDNmDBaLhUGDBuHt7c2AAQOwWCzExsZisVjo379/lYWYzWYz4eHhgHNKrYiIiHKnhHrppZeYMGECDzzwAACPPvooW7du5aWXXnIlLEoWzY6JiWHevHlMnTqVJUuWYDabadasGUqpKkebgLP+RvFIlwULFvDaa6/x008/MXLkSN566y3i4uJYuHAh4KwDsXv3bubPn19lv1U5duyY63opVlBQwJgxY1i4cCHR0dG1Tlj07duXFStWEBcXR3JyMrNnz2bw4MHs3r2bwMBAV7vIyEiOHTt2QechhBBCCCGEEJ5AEhYlaK1/Aqqcp0FrPQGYUMG2bcAddRqYKJfpbKHbCAtMjVPU+mIWFRlIVGRgmfXnsgo4dCSDvIwCAgq7kJo0nIRf/kvmmV8A0I5z2HK/xpb3PUbvbpi8u6MMnlMctTwnCzW/59np7GtEKUVPPyPfZ9s4Zy+/vcGkyNWaQgPYTQrMBgxmA0YfI14+JnJP5NA81zn64vdfz9BrQNOq8SFEXTEEBGBq2bLKdsZyakkYmjev1r6GSp66r4ldu3Zht9vp1KmT2/qCggLX6Aa73c6CBQtYtWoVJ06cwGq1UlBQgJ+fX53EAHDXXXe5lrt27Uq3bt1o3749FouFq6++2q3t2LFjeeKJJzhy5AgrVqzgtddeK7fPoUOH8tFHHwHO0RvFU1wNGTLENfWSxWLhz3/+c52dx++//859993ntm7gwIEsXrzY9f6bb77h+eefZ9++fWRmZmKz2cjPzyc3N7fG/6bdunVzLfv7+xMUFMSZM87aTPv376d3795u7atKME2dOpUPPvjA9T67gsRYXl4ePj4+buuefPJJOnfuzNixY2t0DqWVnD6sW7du9O3bl7Zt27Jq1SomT57s2ubr60tubtUjDYUQQgghhBDC00nCQjRJWen5+NsVBrcRFlIouaE0C/SmV/eSNxGjYWIfzhw9guX9f5C0+zfnap2LPX8ruvBn2vQYQIfBI2ke2RYAf28Tfubzv4LsDgfpOdZqHT/Y34zJcP77nVdoIzvfVuV+BgOE+rvfVDqXZ8VqK3oyWGsc3yRhOJiBSSmGRPhhu70D+HuBvZBff/oBgGtHDiOwWeU3SH/58SRbljunR0ndcxYkYSEuUaETaz9dU8hLCwkKCsJgaJjf79nZ2RiNRrZv315mJEPxVEQLFy5k8eLFLFq0iK5du+Lv78+0adOwWqv3+6s22rVrR1hYGIcOHSqTsAgNDeWGG25g8uTJ5OfnM2rUKLKySo9fc9axmD9/PidOnMBisbhGiQwZMoS33nqLw4cPk5SU5KpJ0RCOHj3KDTfcwP3338/8+fMJCQnh+++/Z/LkyVit1honLLy83EeyKaUuqBj4nDlzqjVtVFhYGGfPnnVb9+2337Jr1y5Wr14NgNba1fbpp59m9uzZtYqpefPmdOrUiUOHDrmtT09P96hC5EIIIYQQQghRW5KwEE1SyjHnzRijoe5rWIjaC49pxx1/nc/JA/v4Zd1nHPhxM9rhwGG3kfjzRhJ/3kjU5d3oed3NhPX8AwaD+w3BZqEVFx+vTADe1PY2TUCw+9QnelwQKW/vxJqYhcopxO+bJFpM6UaB3YrRx3nDyWSuevqx7n+I4NdVh8nPKeTozlSs+TbMUnxbCI/Wo0cP7HY7Z86cYfDgweW22bx5MzfffLPryXmHw8GBAwfo0qVLvcV1/Phx0tLSaNWqVbnbJ02axHXXXcfMmTPLJFqKDRgwALPZzJIlS1x1OAB69+5NSkoKy5Ytc00dVVc6d+7M5s2bGT9+vGvd5s2bXf9W27dvx+Fw8PLLL7uSUqtWrXLrw2w2Y7dXMNStBuLi4li3bp3bum3btlW6T3h4uGvqq8r06NHDbSQGwMcff0xeXp7bsSZNmsSmTZto3759DSJ3l52dzeHDh90KlwPs3r2bHj161LpfIYQQQgghhPAUcvdMNEmnEs6htcaozicpZISF54jsdBmRnS4jMzWFHV/9l53rv6QgJweApD07Sdqzk+YtW9Fj1I1cMfQazL51N5XKhVJeBkLv6cKZN3Zgzyig8EQ2Zz86gO8tbWvUj9FooH2vcPZsPIGt0EHCb6nE9a16DnYhROPp1KkTd999N+PGjePll1+mR48epKSksH79erp168b1119Px44dWb16NT/88APBwcG88sornD59utoJi+zsbLen4xMSEtixYwchISFER0eTnZ3N7Nmzue2224iIiODw4cM8/vjjdOjQgREjRpTb58iRI0lJSSEoKKjC4/r6+tKvXz9ef/11Bg4c6EpsmM1mt/WlRylciMcee4w77riDHj16cM011/Cf//yHTz75hG+++QaADh06UFhYyOuvv86NN97I5s2bWbp0qVsfMTExZGdns379erp3746fn1+tpt+aMmUKr7zyCjNnzmTy5Mns2LGDFUXF4JW6sCklR4wYwZNPPsnZs2cJDg4GKJOUSE1NBZxJnObNm1e77xkzZnDjjTfStm1bTp48yXPPPYfRaHTV6ii2adMmt0LrQgghhBBCCNFUScJCNEmnEzIBO8YSBZ1lhIXnCQprwVV3T6T/bWPY8916fvnic84mnwAg43QyG1b8P75f+T7Nwlvi5eOD2ccXL28fzD4+ePn44uXj4/beZDZjtxViKyig0GrFZrVisxaU+9VeWIjRywujlxmTlxcmsxmjlxcmLzNGs3Odc5sZs58v0Zd3o1m4M6FgDDQTNuFyziz5DW21k7crFZrX/CZep97OhAXA9k3HJWEhRBOwfPly5s2bx/Tp0zlx4gRhYWH069ePG264AYBnnnmGI0eOMGLECPz8/LjvvvsYPXo0586dq1b/P//8s6vgNDgLUQOMHz+eFStWYDQa2blzJ++++y4ZGRlERkYyfPhw5s6dW2ExbKUUYWFhVR47Pj6ejRs3uupXFBsyZAgbNmxwi6sujB49msWLF/PSSy/x8MMPExsby/Lly13H7969O6+88govvPACTz75JFdddRXPP/8848aNc/UxYMAApk6dyp133klaWhrPPfccs2bNqnEssbGxrF69munTp7N48WL69+/P008/zf33319lkfGqdO3alZ49e7Jq1SqmTJlS7f2OHj1KbGwsGzZsKPM9KXb8+HHGjBlDWloaLVq0YNCgQWzdutVt+qctW7Zw7tw5br/99gs6D1F9SqmxwGCgF9AVMAMTtdYrymk7C3iuku5itdZHy9lvBPAU0BPQwHZgntZ6/QWGL4QQQgghhEdTxXPqiqZJKdUGSAI4cOAAHTt2bOSI6p/VauMf07/HXpBLK/t39G3hvInU/Ob2BPSPbOToqicvL4+vv/4agOHDh+PrW7upkJoa7XCQ8Nt2tq/9jMRdOxo7nDLCY9rToU8/OvYZQGibaPL3nyXt3T3O2wRAQods0ltYq/090w7NG9M3ovLs2NHcMacfEeGeXXz8YnOp/qw1hoMHD2Kz2TCZTBf8f5HD4SAzMxOgQWtYiNprit+z+fPns3TpUpKSki64r7Vr1/LYY4+xe/fuap/7hg0buPXWWzly5IhrZEZt3HnnnXTv3p2nnnqqwjYV/XwePHiwZJH5KK318VoHcglRSh0F2gKpQE7RclUJi3eBo+V0t0hrnVFqn7HA+0AK8O+i1XcCYcAdWuvVF34WbsdzfZ5ISkqiTZs2ddm9EEIIIYS4SB0/fpyoqKjit3X2ecLjRlgopezACq315CravY3zg4HHnYOoXzt2p+IodCAjLJoeZTDQrkdv2vXoTWriUbav+5yEX7dRkJuLzVrQ2OFx5uhhzhw9zA+r/klwq0g69BlA+z7d0T9mA9D2sD8F3tUv4KoMCmukD96HczCi+OKLI0wc37W+whdCCFGJJUuW0Lt3b0JDQ9m8eTMLFy7kwQcfrJO+r7/+eg4ePMiJEydK/sFeqXXr1vHUU09dULLCarXStWtXHnnkkVr3IWrlXuCg1vqYUuoJ4Plq7LNCa22pqpFSKhh4HWcypGfxhz6l1AvAr8CbSqmvtNZZtY5eCCGEEEIID+aJN/tV0au6bcUlZvfuFOeCtmMombCQGhZNSlh0DCOm/sX13uGwU5hfQGF+Htb8fArz8yjMz6ewIP/8e2sBJi8zJnPxyxsvs7fbe5PZjMnbG6PJhN1mw15Y6JwqqtDqWrYXWrEVFjrXWa1knD7FoW1bOX3koCues8kn2fbZaraxmn6RN9HWuzMGrWi/PwD72QKo5pP6/eOj+eXw7wCc3JVWt/+IQgiPkpiYWGkti7179xIdHd2AEdXeqFGj2LRpU7nbnnrqqUqf5vdUBw8eZN68eaSnpxMdHc306dN58skn66z/adOm1aj9woULL/iYZrOZZ5555oL7ETWjtf6mHrv/I9AceK7kE2pa6+NKqb8Ds4BbgPfqMQYhhBBCCCEajScmLKrLDyhs7CBEwzuTkEkgoGWExUXFYDDi7eeHdy2KqVbEqwbTkve79U4yU89waNtWDv70Ayd+34vWztEUP578L94RvkT4xuBlM3D6zW3kj+9IWIeYKvvt27Ml33n9TmAhNMu2k5B4jtjoZrU8IyGEJ4uMjGTHjh2Vbm8q3nnnHfLy8srdFhIS0sDR1I1XX32VV199tbHDEJeuq5RSfQEHcBD4RmudXU67oUVfvy5n21c4ExZDqEHComjKp8q4imzl5eVV+LMvhBBCCCFESfX1d2OTTFgopZoDg4DkRg5FNAKd5pw6yKELMRpKXMIywkJcoKCwcHqOuomeo24iN/Mch3/+kUPbtnBs56/8cOZTrml1D0HmULwLfTj+9y1Ymr9N1xEj6dC7H0ZT+UW5DQYDfh0C4fcsFIqvvjzC1Pt6NPCZCSEagslkokOHDo0dRp1o3bp1Y4cgxMVmdqn3GUqph7XWpRMPxUVGDlLWwVJtqqvahVo2btxIWFhYDbsXQgghhBCXotTU1Hrp1yMSFkqpI6VW3a6UGlpBcxPOp4CMwFv1GJbwQKln8wi0akCRa3ZgdMgIC1E//IKa0XXYcLoOG05Bbi77f/qBn9d+Q3/7EHyNAYT5tCE/LZe1i17Et5mzbberRxLUIrxMX0OujeH733cBkP57RgOfiRBCCCEa0W/AJMCC82GrCOAGYA6wQimVobX+vET74mGY58rpK7NUGyGE8EgPb/GIW02iCov72xrkOHI9eL6GuhZAroemoCGvh4p4ylUSU2JZAwFFr4pYgU+BpjeBsrgg27afQhWVLjE1N2I8KzUsRP3z9vOjY9+BJJzL4fDZXLoc8MPgMNDGvxM9Q69le9rX/LhmFT99uprYHr3oPvw6Yrr3xGAwAtC9SwvW+kCzfGiWp9m9L40rLgtt5LMSQgghRH3TWq8pteoo8Hel1O/A/4B5wOel96tjVVWCjwC2AVx11VW0aVPVDFJCCFGFLd82dgSiGoYPH94wB5LrweM12LUAcj00ATW5Ho4fP151o1rwlIRFbNFXBRwBVgOPVdDWCqRorRs/3SMa3OF96a5K6yER3hgyjK5tMsJCNISCYBPN/hRH1r8OgUPTIagHeY5s9p79Aa0dHPllG0d+2UZQi5Z0u3oEXa4aRmBoGMGXNcexIwOADf9LkISFEEIIcQnTWq9XSh0GuiqlgrTWxaMnikdWNAPSSu0WVKpNdY9V6SdJpZRr2dfXF19f35p0L4QQoomS3/eimFwLoqSaXA/1de14RMJCa32seFkp9S6wqeQ6IYqdO5FN86Ll2Gh/jPtlSijR8MztmxH8x06c/fd+ALo2H0zrKy9ny841ZKc55+/LTDnN9yvf4/t/v0+bzpfT8bK+7HOYUQZfcg5m4nA4MBjkmhVCCCEuYalAB8CP89M9HQT+gLNORemERWX1LYQQQgghhLgoeETCoiSt9cTGjkF4JofDgfc5G6DIV5rIlj6kK0lYiMbh3yMcR2YB5744CkBIYgj3PPgSJ3MP89v/1nH0t19Aa9Ca43t3c3zvbjQGjF6x+Jkv4/ihK4juVLbehRBCCCEufkopf+ByIAdn4qLYd8AYYDiwtdRuI0q0EUIIIYQQ4qIkd3hFk3HyRDa+DueQ9fwgEw6bDaOSGhai8QRc1YaAAZHONw44++F+olt24bYnZzN58dsM+OPdBLdq7WqvcOAoPExhzlo+nn0/X/z9ZRJ2bMdhtzfSGQghhg4dyrRp0xo7DCHERUgpFaiU6lTOel/gbSAQWFVqqttVOKd8ekgp1abEPm2AB3EmN0rXxRBCCCGEEOKi4ZF3eIv+uJ+plPqfUmqvUupIBa/DjR2raDh5p/Jcy316RWAvLMQgCQvRiJRSNLuhHb5dwwDQhQ5SV+zBlppH85YR9L99DBNfXcrY5xfR6/rR+DULdu3rsBWwd9MGPnn+OZZOHce3y98iJ+NsY52KEJesTz75hLlz5zbIsTZu3MiNN95IZGQkSik+/fTTMm0mTJiAUsrtNXLkSLc2xeu3bnV/+LqgoIDQ0FCUUlgsFgD69evH1KlT3dotXboUpRQrVqwoc+zBgwdf8HkKcbFTSt2rlFqhlFoB/LFotWudUureonWhwD6l1I9F6/+mlFoOHMA5imIXper2aa3P4kxMhAG/KKVeV0q9DvxS1N8DWuusej9JIYQQQgghGonH3eFVSkUCvwELgKuBy4CYSl7iEnEq4Xx9wU6Xh2ErtGJUUnRbNC5lUITcEYc5thkAjpxCUpbtxp5ldW5XipbtOjB03L1MWbqCNldMxGi+ApS3q4+8zHP8+uV/eP+Jhzm+b0+jnIcQl6qQkBACAwMb5Fg5OTl0796dN954o9J2I0eOJDk52fX68MMPy7SJiopi+fLlbuvWrFlDQECA27r4+HhX8qLYhg0biIqKKrPeYrEwbNiw6p+QEJeuQcD4olfPonUDS6wbVLQuHVgCKOA6YDpwG3ASeBzoq7UuXacCrfUHwChgHzARmADsBYZrrT+qlzMSQgghhBDCQ3jiHd4FOBMRvwF3Ad2B2Ape7RonRNEYTidkupZbxgRht1oxGpwjLDSAUTVOYOKSp7wMhI3rgqmlHwD29HxS392Do8B9qieDwUj3awfg5T8c72ZTCL3iT3TqOxCjlxcAOWfTWTX7Sbav/RStdYOfhxCXopJTQhUUFDBjxgxat26Nv78/ffv2dbupn5aWxpgxY2jdujV+fn507dq13GRCRUaNGsW8efO45ZZbKm3n7e1NRESE6xUcHFymzfjx41m5ciV5eedHHy5btozx48e7tYuPj2f//v2cOnXKte67777jiSeecDu3hIQEjh07Rnx8fLXPR4hLldZ6gtZaVfKaUNQuU2v9oNa6j9Y6XGvtpbUO0lr31Vov1FrnVXKML7XWV2mtA7TWgVrroVrrbxrsJIUQQgghhGgkHld0G2cxudNAvNb6XFWNxaXBXuggJck5+r1ZuC8+/l7YbTZ8iqeEMjqfZBeisRh8TYRNuoKUJTuwn7NSeDybtH/+Ttj4Lijj+dxwbLcwHAoMmEhNbsmfFt1BYW4W615fSOLunWiHA8t773DywD5GTP0LZl+/RjwrIS7MqgXbyM201mJPjcPhTNoZDArnw8nV5xdk5o6netf4qA8++CB79+5l5cqVREZGsmbNGkaOHMmuXbvo2LEj+fn59OrVi5kzZxIUFMTatWu55557aN++PX369Knx8SpisVgIDw8nODiYYcOGMW/ePEJDQ93a9OrVi5iYGD7++GPGjh1LYmIiGzdu5I033nCb4mrgwIF4eXmxYcMGxowZw969e8nLy2Py5MnMnDmThIQEYmNj2bBhAz4+PvTv37/OzkMIIYQQQgghhKgpT0xYBAPrJFkhStr6SzIOW9HNqzDnVDrOKaGKpvEwVrSnEA3H1MybsElXcObNneh8GwUHzpL5bRLNrm3rauPt50VWqIlmqTZ8HYqvLYncMLwdtz09l83//oCfPnXO9HBg6/ekJh7lpulPEdomurFOSYgLkptpJSejoLHDqJbExESWL19OYmIikZGRAMyYMYMvv/yS5cuXs2DBAlq3bs2MGTNc+zz00EN89dVXrFq1qs4SFiNHjuTWW28lNjaWw4cP89RTTzFq1Ci2bNmC0ej+n92kSZNYtmwZY8eOZcWKFVx33XW0aNHCrY2/vz99+vTBYrEwZswYLBYLgwYNwtvbmwEDBmCxWIiNjcVisdC/f3+8vb0RoqlQShmBvjinZWqJ83PEWZwPP20HftJa2yvuQQghhBBCCOFpPDFhkYRnTlUlGtHe3Smu5dxA5w0bt6LbMh2U8BBeLf0JG9+FlLd3ggPydqW6JSwAOvVuyekvTgCw+4dkbhjeDoPByOAx42nVIY4vl7xKQW4O6SeP88+nHmX41L9w2YCrGuN0hLggfkHmWu554SMsamrXrl3Y7XY6derktr64kDWA3W5nwYIFrFq1ihMnTmC1WikoKMDPr+5GQt11112u5a5du9KtWzfat2+PxWLh6quvdms7duxYnnjiCY4cOcKKFSt47bXXyu1z6NChfPSRMxlqsVgYOnQoAEOGDMFisTBx4kQsFgt//vOf6+w8hKhPSqlBwP8B1wP+JTdRNFNokWyl1FrgDa315gYMUQghhBBCCFFLnpiwWA3cp5Ty11rnNHYwwjOkHssmqGi58xXOp0edIyycl7AyScJCeA7v2GZ4RQZQeDwb25lcHLmFGPy8XNtHXtuO//flcby1wnw6n+zcQgKKtnfo3Y+7n3+V/7y8gJTEoxQW5LN28YskH9jHVWMnYjR5VXRYITxObaZlAnA4HGRmOusWBQUFYTDU/3MM2dnZGI1Gtm/fXmYkQ3Eh64ULF7J48WIWLVpE165d8ff3Z9q0aVittZn2qnratWtHWFgYhw4dKpOwCA0N5YYbbmDy5Mnk5+czatQosrKyyvQRHx/P/PnzOXHiBBaLxTVKZMiQIbz11lscPnyYpKQkKbgtPJ5SajDwKtADZ3LCAewC9gBpQCbQDAgFrgC64KyJd6dS6hfgUa31pkYIXQghhBBCCFFNnjiSYS7OURarlFLhjR2M8Awq3XkzyIamVzfnZWG3FmJUzptKyuSJl7K4lHm3DXItFyS530AM8PPC2tLH2U4rvvzfEbftwRGRjJn3El2uOn/z8JcvPmfV7KfISk+tx6iFuHT16NEDu93OmTNn6NChg9srIiICgM2bN3PzzTczduxYunfvTrt27Thw4EC9xnX8+HHS0tJo1apVudsnTZqExWJh3LhxZRItxQYMGIDZbGbJkiWuOhwAvXv3JiUlhWXLlrmmjhLCUymlVgIWoCvwOXALEKy1vlJrfbfW+i9a62e01g9prf+kte4GhAC3Af8FugEWpdSHjXQKQgghhBBCiGrwxLu8fwcOA6OAQ0qpb5VSK5RSy8p5/aORYxUNIPl0DoE253K2nwEfb+eoCrut0DXCAklYCA9jLpGwsB7LLLP9igHnbz4e2Ha6zHYvbx9GPvAI19z7fxhNzuv85IHf+eCJaSTu3lkPEQtxaevUqRN3330348aN45NPPiEhIYGffvqJ559/nrVr1wLQsWNH/ve///HDDz/w+++/M2XKFE6fLvvzW5Hs7Gx27NjBjh07AEhISGDHjh0kJia6tj/22GNs3bqVo0ePsn79em6++WY6dOjAiBEjyu1z5MiRpKSkMGfOnAqP6+vrS79+/Xj99dcZOHCgK7FhNpvd1nt5yQgu4dFuAZYA0VrrW7TWn2mtyw4pKkFrnam1XqO1vhmIBpYW9SOEEEIIIYTwUJ54l3cCMLpoOQAYCowrWl/eS1zktv1yyrXsHeHrWrYVWDEUj7Dw8sRLWVzKqkpYDB8aTZ7BOc22f2ohaRl5Zdoopeh+7Sjumv0igWHOqdByz2Wwet4zHNu5o34CF+IStnz5csaNG8f06dOJi4tj9OjRbNu2jehoZ+H7Z555hp49ezJixAiGDh1KREQEo0ePrnb/P//8Mz169KBHjx4APProo/To0YNnn30WAKPRyM6dO7npppvo1KkTkydPplevXmzatKnCYthKKcLCwjCbK6/bER8fT1ZWlqt+RbEhQ4aQlZVFfHx8tc9DiEYSVzR6ovpZwhK01qe11v8HdK7juIQQQgghhBB1yBNrWExs7ACEZ0nYn+66UKM6NHetdxTaXcsGr/KnwRCisZiaeWNs5o39XAHWpCy0XaNKFIc3m0042vhBYh4mFF98mcDYu7qU21dEh06MfX4R615/iWM7f0VrB7988Rltu13ZQGcjxMXLYrG4lr28vJg9ezazZ88ut21ISAiffvpprY81dOhQtNYVbvf19eWrr76qsp/K+mjevHm522fNmsWsWbPKrH/uued47rnnqjymEI1Na320jvpJqIt+hBBCCCGEEPXD4xIWWut3GzsG4VmyT+bSvGi5x5UtXet1ocO1rCRhITyQuW0geTsL0FYHhadyMLcOcNve+6rW7P3gEADHfk1xlgWtgF9QM259chZ/n3gXhfl5pCYdq8/QhRBCCCGEEEIIIYRocDKPjvBodpsD3yxnAYtcg6ZDTDPXNl1yhIVZEhbC87hNC5VYdlqoq/q1Iacobdw8005elrXS/gwGI2HRbQHITDlDQW5u3QUrhLggiYmJBAQEVPgqrlMhhBBCCCGEEEKIinncCIuSlFJdgAFAC2CP1vrzovUGwKS1rvzunmjydu1Pw1s7p9EpbO6FwXA+x+awnR9hYTB79KUsLlHeJRIWBccyCegf6bbdaDLQb2gUu75JAg2HfznDFUPaVNpni6gYkg/sAyA16Rit42QqbiE8QWRkpKuYdkXbhRB1SynVDpgJXA1EAuUXewGttZY/FoUQQgghhGgCPPIPd6VUFLAcKFkB8l3g86LlPwNLlFLDtdbrGzo+0XAM6edzUrGdgt03FjqgqCSAMslgIeF5vFr5o7wM6EJHuYW3ATr3jXAmLICju9OqTFgUj7AASE1MkISFEB7CZDLRoUOHxg5DiEuGUqoHYAECcP1FWHHzeg9ICCGEEEIIUSc87i6vUioE+A4YBuwB3qTsh4xVgAO4qWGjEw0tPSnbtTy4v/uNXG0rWcPC4y5lIVBGA15tAgGwny3AnllQpk1YmwC8/Zy545TErCr7DIuOcS2nJEodCyGEEJesF4BA4BOgFxCktTZU9GrcUIUQQgghhBDV5Yl/vM8EYoCXgO5a6wdLN9BanwV2AYMaNjTR0E4nnHMuKAhvG+i+0a5di5KwEJ7KfVqosgkJpRRhbZzFuHPPWUlLrbwuRcmERWri0TqJUQghhGiC+gP7gTu01r9qrbOr2kEIIYQQQgjh+TzxLu/NwFHgCa21rqTdEZxz1YqLVKHVTtqJHABCI/0x+5SawcxWImEhU0IJD2UukWiraFqoU4bzo4W2bD9VaX++AYEEhIQCzoRF5b8mhRBCiItWIbCjis8LQgghhBBCiCbGE+/ytgV+0Vo7qmhnBUIaIB7RSHbsOI12OD+DhpV4Sr1YyStEEhbCU5mjz1+71sTyExaBrfxcy8cOn62yz+JRFgW5OWSlpV5YgEIIIUTT9AtQeeEnIYQQQgghRJPjiXd583HOR1uVaOBcPcciGtHPv55/0vy4spXZXnKVJCyEpzL6e2Fq4QuA9UQ2urBsLrZzlzDX8rmTlU8JBdCi5LRQSUcvOEYhhBCiCXoJ6K+UGtrIcQghhBBCCCHqkCfe5d0H9FRK+VfUQCkVBnQHdjZYVKLBnU08PxXxFd1alG1QcoSF1LAQHsw1ysKusZ4oW8fiirgQbDhHExnOFVbZn1vh7WNH6yJEIUQdU0rx6aefNnYYQly0tNZfAg8DnymlnldKXaWUilFKRZf3aux4hRBCCCGEENXjiXd5VwOhwCtKqYriWwj4Af9usKhEgzNlOG/cWpWm++XhbtscdjuGEpevjLAQnqxk4e3y6liYzSZyfJ3XcGAhpGXkVdpfWFRb17IU3hai6YuJiUEp5fb629/+5tpusVhQShEcHEx+fr7bvtu2bXPtA5CdnY2XlxcrV650a3fXXXehlOLo0aNljv3Xv/61fk5MiPr3C3ASeBzYABwGEsp5HWmsAIUQQgghhBA144l3ed8AdgP3Aj8ppZ4qWt9eKfWoUmoLMA7YAaxolAhFvUtIPIe/3XnzJdffiFephIS9sBCjOl+EW0ZYCE9WsvB2wbGyIywATKHeruUdO1Mq7S+kdRQGoxGA1KRjdRChEKK6CgurHgVVG3PmzCE5Odn1euihh8q0CQwMZM2aNW7r/vGPfxAdff7h8YCAAP7whz9gsVjc2lksFqKiotzWJyQkcOzYMYYNG1an5yJEQ1BKDQLWA3GAAtKBxApeSY0UphBCCCGEEKKGPO4ur9Y6HxgBbAF6AnOLNg3CObKiL/AzcIPWun7uGohGt71E/Qq/SL8y222FVveEhYywEB7M1MIP5eO8Xq3HMtFal2nTIup8UuPwgfTK+/PyIrhVawDSTxzHbpNfhULU1tChQ/nLX/7C448/TkhICBEREcyaNcu1XSnFm2++yU033YS/vz/z588H4LPPPqNnz574+PjQrl07Zs+ejc1Wtt5SdQUGBhIREeF6+fuXnRlz/PjxLFu2zPU+Ly+PlStXMn78eLd28fHxbomJ33//nfz8fO6//3639RaLBW9vb/r371/ruIVoRPMAH+AVIFRr3UJrHVvRq5FjFUIIIYQQQlSTqeomDU9rnQwMUkqNAK4H2uFMriQBXwCf6fLu+ImLRuLBDIqfN2/bMbjM9tIjLJARFsKDKYPCu20g+fvP4sgpxJ6WjynM161Nx7gQftviHFmRfiKnyj7DomNIO56Iw24j/eQJt0LcQniKD56cRk7G2Vrt63A4CxUZDDX//e7fPJixzy+qdvt3332XRx99lB9//JEtW7YwYcIEBg4cyLXXXgvArFmz+Nvf/saiRYswmUxs2rSJcePG8dprrzF48GAOHz7MfffdB8Bzzz1X43gB/va3vzF37lyio6P505/+xCOPPILJ5P5n2j333MPChQtJTEwkOjqajz/+mJiYGHr27OnWLj4+nueff57k5GRatWrFhg0bGDRoEMOGDeOtt95ytduwYQP9+/fHx8enVjEL0ch6Ar9qrWc0diBCCCGEEEKIuuORCYtiWuuvgK8aOw7R8PJO5bkSFn/o2bLMdlthIQZldL2XERbC05mjg8jf77xxW3Ass0zC4squLfiVfRhQ6PSCKvtrER3D/h82As46FpKwEJ4oJ+Ms2elpjR1Glbp16+ZKNHTs2JG///3vrF+/3pWw+NOf/sTEiRNd7SdNmsQTTzzhGtnQrl075s6dy+OPP16rhMVf/vIXevbsSUhICD/88ANPPvkkycnJvPLKK27twsPDGTVqFCtWrODZZ59l2bJlTJo0qUx/AwcOxGw2Y7FYGDNmDBaLhSFDhtCrVy9SU1NJSEggNjaW7777jsmTJ9c4XiE8hBXY39hBCCGEEEIIIeqWRycsxKXJarXhn20HFNlGiG4dVKZNmRoWkrAQHs5csvB2Yib+vdwTcQH+ZrLNiiArBBRoCvJtePtU/Cs6rESCQgpvC0/l37zsCLnqutARFjXRrVs3t/etWrXizJkzrvd/+MMf3Lb/9ttvbN682TU9FIDdbic/P5/c3Fz8/MpOZViZRx991C0Ws9nMlClTeP755/H29nZrO2nSJB5++GHGjh3Lli1b+Oijj9i0aZNbGz8/P3r37u1KWHz33Xc89thjmEwmBgwYgMViQWtNYmIi8fHxNYpVCA/yI9CpsYMQQgghhBBC1C1JWAiPs2N3Kl44C27bQ7zKbSM1LERTY44KdJYE1c46FuXpGBfC6V3pGFCcO51LeNuyybpiJUdUpEjCQniomkzLVJLD4SAz0/lzEhQUVKukRU14ebn/X6OUciVMgDL1JLKzs5k9eza33nprmb7qYnqlvn37YrPZOHr0KHFxcW7bRo0axX333cfkyZO58cYbCQ0NLbeP+Ph4/v3vf7Nnzx7y8vJc00YNGTKEDRs24HA48PPzo2/fvhccrxCNZC6wUSk1Rmv9YWMHI4QQQgghhKgbjZ6wUEodATRwjdY6oeh9dWmtdft6Ck00kswS8/eHRAWU28ZeOmEhNSyEhzN4G/Fq5U/hyRwKT+fiyLdhKDWCokNRwgIgNSm70oRFYFgLzL5+WPNySU08Vq+xCyHc9ezZk/3799OhQ4d66X/Hjh0YDAbCw8PLbDOZTIwbN44XX3yRL774osI+4uPjmTdvHv/6178YNGgQRqNzGsWrrrqK//f//h9aa9fUUUI0UWZgEfC+UuomnHXuEgFHeY211hsbLjQhhBBCCCFEbTV6wgKIwZmw8Crxvrqk8PZFSJ21upZvjI8tt41MCSWaInPbIApP5jhHWSRm4dPJfdqaFlGBruWUxKxK+1JKERYdw8n9e8lKSyE/Jxsf//ITfEKIuvXss89yww03EB0dze23347BYOC3335j9+7dzJs3r0Z9bdmyhR9//JH4+HgCAwPZsmULjzzyCGPHjiU4uPyprebOnctjjz1W4egKgAEDBuDt7c3rr7/O008/7Vrfp08fzpw5w2effcaTTz5Zo1iF8DAWnJ8FFHBH0asiGs/43COEEEIIIYSogif84V58R/pEqffiEnU6wTkNiMGgaNk2sNw2ZYpuywgL0QR4tw0iZ0sy4Cy8XTphEVZiRFFKUuUJC4AW0W05uX8v4Kxj0abzFXUYrRCiIiNGjOC///0vc+bM4YUXXsDLy4vLLruMe++9t8Z9eXt7s3LlSmbNmkVBQQGxsbE88sgjbnUtSjObzYSFhVXar4+PD/369eO7775j6NChbsfr168fFotF6leIpm4j8vCSEEIIIYQQF51GT1horY9V9l5cWgrybJw95ZwSKiwqAJPZWG47Zw2L83OOywgL0RSULrxdmrefF6YgL2yZhZw8lkmhzYFXJdd2WFSMazk18ZgkLISoBYvFUmbdp59+6lrWuvz7oSNGjGDEiBEV9lvRfqX17NmTrVu3Vtpm6NChlfY3evTocreXd24AGzZsqFZsQngyrfXQxo5BCCGEEEIIUffkLq/wKEcPpLuelWsZU/H8/c4poWSEhWhajM29MQQ554u3JmahHWVvMKZ5OdcZHbBnf2ql/YW1jXEtpyYdrbM4hRBCCCGEEEIIIYRoDB53l1cpFaWUGqeUiqukzWVFbdo0ZGyi/n29Kcm1XNCs4gFApWtYYFT1GZYQdUIphXfRKAtdYKfwdG6ZNkGt/F3Lv+9Nq7S/sKi2ruWUY0frJkghRJ1asGABAQEB5b5GjRrV2OEJIYQQQgghhBAepdGnhCrHQ8B04PJK2ihgBfA34KkGiEk0kKzj2TQrWm7VrnmF7UomLLRBo5QkLETTYI4OIm+Xc+SE9Vgm5hIJCoDo9s1J2n0OgOSjZaeNKsnHP4DA0BZkpaWQmnQMreVnQQhPM3XqVO64o/xawL6+vg0cjRBNl1Kqp9b6F0/pRwghhBBCCFE/PG6EBTAc+F1rva+iBlrr34G9wMgGi0rUO4fDgTnTBkC+0nQpVZC4JFuhFaOhKN9WfpkLITySuUQheeuxsgmJ7l1buJbzzuRV2V+LommhrHm5ZKWmXHiAQog6FRISQocOHcp9tW7durHDE6Ip2aaUWqmUuqw2OyulLldKrQK2XWggSqmxSqm3lFI/K6UKlFJaKTWhnHZeSqnblFLvKqV+V0plK6WylFI/KqXuV0qV+StWKRVT1F9Fr1kXGr8QQgghhBCezBNHWEQBm6rR7hAwsJ5jEQ1o/+EMfB3Op8Pzg0wYDBXn02xWKwZV9GSqTAclmhBzZACYFNg0BeUU3m7bJohcg8bPofDJtuNwOCr9WQiLasuRX5z3XlISEwhqEV5vsQshhBCN6DXg/4A/KqW24BxtvV5rnVDRDkqpdsC1wASgD2AHFtdBLPOAtkAqkFy0XJ72wGogG1gPfA40A24ElgDXKaVu0lqXLWoFvwGflrPeciGBCyGEEEII4ek8MWHhB1T9WLGzTWCVrUSTsWPHaddyYGv/SlqC3VaIUQU430jCQjQhymTA3CYQ69FM7Gn52LOsGAPNbm2sgSb8ztnx0YpDR8/RqV3Fo43ComNcy6mJx2jfq299hS6EEEI0Gq31I0qp/wcsBEYB/QGUUinA70AakAkEAaFAZ6BFiS7WAY8XjdS+UPcCB7XWx5RSTwDPV9AuC2eS5V2tdU7xSqXUdJyJhxuA24GPytl3h9Z6Vh3EKoQQQgghRJPiiVNCJQNXVqNdd+BM/YYiGtKJw+dcy7FxFd+ghVJFtyVhIZoYc1HhbQBrOaMs/Fqen9d+1+7Kp3lqUSJhkZJ49IJjE0IIITyV1vp3rfUNwGXA34EkIBwYAtyKcyTFrUXvw4u2vw5cprW+sY6SFWitv9FaH6tGuxNa6yUlkxVF63OAV4reDqmLmIQQQgghhLhYeOIIi03AWKXUbVrrj8troJS6FecHlX81aGSiXhWczqP4Nm2fnhGVtrWVSFgokyQsRNPiHR1EdtFywbEsfC8Pc9veOrYZKQecLY4nnKMywZFtMBhNOOw2UiVhIYQQ4hKgtT4IPAw8XDTtUw+gJc7pljJwPtT0S2XTRXmAwqKvtgq2Ryql/g/nOZ0GLFrrw7U5kFKqTRVNXH945+XlkZdXncHuQgghmjr5fS+KybUgSqrJ9VBf144nJiwWA3cD7xX9cb1Ma50FoJQKBCYB8wEHzrlsxUUgN6+QgDwHoMjygpYtqpgSymrFUFyn0MsTBwoJUbGqCm9fcXkYG746AUDOqdxK+zKaTIS0bkNq4lHSTx7HVliIycurbgMWQgghPJTW+ghwpLHjqIVJRV+/rmD7tUWvYlop9U9gaukRG9WQVN2GGzduJCwsrOqGQghRKU+81SRK+/rriv4LqmtyPXi6hrsWQK4Hz1eT6yE1NbVeYvC4O71a61+AJwFfnEOl05VSiUqpRCC9aJ0f8IzW+qfGi1TUpZ9/O42JopESIebKGwP2Artr2WDyuMtYiEoZA8yYQn0AsJ7IQtscbtvj2gVjL8rHhRZWPYKoeFoo7XCQfqLa9ySEEMDQoUOZNm1aY4chhLiEKKXuw1mH41ut9bpSm3OBuUAvoDkQAlwD/ASMBd5ruEiFEEIIIYRoeB6Z1tJaL1RK7Qdm46xVUXIY82/AbK31p40Rm6gfR/addS23iKm6lrouPJ+wUDLCQjRB5rZB2NLywaaxnszGO/p8XQujyUBUu+acPJiBLdtGXrYV34CKE3luhbeTjhEe064+QxfiovLJJ5/g1UCjkjZu3MjChQvZvn07ycnJrFmzhtGjR7u10Vrz3HPP8fbbb5ORkcHAgQN588036dixo6uNUs5E5pYtW+jXr59rfUFBAZGRkaSnp7NhwwaGDh1Kv379uPLKK1m6dKmr3dKlS7n//vtZvnw5EyZMcK2fMGEChw8fZtOmTfXzDyCEQCl1A876G8dwJiDcaK3PAM+WWr1eKbUF+AW4VSnVs+ghr+qKqmJ7BLAN4KqrrqJNm6pmkBJCiCps+baxIxDVMHz48IY5kFwPHq/BrgWQ66EJqMn1cPz48XqJwSMTFgBa68+Bz5VSLYHootWJWuvTjRiWqCeRdgMHi5b79Y6ssr22np/uV3kZ6ykqIeqPuW0Qub+cAZzTQpVMWACERQVw8mAGAKmJ2UR1Camwr7Dotq7llGMJMDi+7gMW4iIVElLxz1Zdy8nJoXv37kyaNIlbb7213DYvvvgir732Gu+++y6xsbH89a9/ZcSIEezduxcfHx9Xu6ioKJYvX+6WsFizZg0BAQGkp6e71sXHx7NmzRq3Y2zYsIGoqCgsFotbwsJisTB+/Pg6OlshRGlKqeuA1ThrUgzTWidXd1+tda5S6n1gHjAQZ/KiuvtW+kmyOAkK4Ovri6+vbyWthRBCXCzk970oJteCKKkm10N9XTse/2i61vq01npb0atekxVKqd5KqXVKqQylVI5SaqtS6o5a9BOulHpVKXVQKZWvlEpTSm1RSt1fH3FfDE4fdc7jb/QycFnn0CrbO0qMsDCYPTbvJkSFvNueT1CUV8eiRdT5kUYpSVmV9tUiOta1nJp0rA6iE+LSUXJKqIKCAmbMmEHr1q3x9/enb9++WCwWV9u0tDTGjBlD69at8fPzo2vXrnz44YfVPtaoUaOYN28et9xyS7nbtdYsWrSIZ555hptvvplu3brx3nvvcfLkST799FO3tuPHj2flypVuRc6WLVtWJuEQHx/P/v37OXXqlGvdd999xxNPPOF2bgkJCRw7doz4eEl4ClEflFLXA58AqUB8Ue2NmiqeJLjyYm9CCCGEEEI0YXKnt4hSKh74CsgHVgJZwG3Av5VSUVrrl6vZz5U4i+cFA2txPkUVAHQGbgTerPPgm7i8LCuZKc4bLuHRgRiNVefRtE27lg1mGWEhmh5TuB/K24gusFNwLBOttdsTji2izycsDuxLo+eItuV1A0BASCje/v4U5OSQmni0PsMWokZOv/4rjixrjffTgNbO2i65ykDVlVzcGQLNtHyoR42P++CDD7J3715WrlxJZGQka9asYeTIkezatYuOHTuSn59Pr169mDlzJkFBQaxdu5Z77rmH9u3b06dPnxofr7SEhAROnTrFNddc41rXrFkz+vbty5YtW7jrrrtc63v16kVMTAwff/wxY8eOJTExkY0bN/LGG28wd+5cV7uBAwfi5eXFhg0bGDNmDHv37iUvL4/Jkyczc+ZMEhISiI2NZcOGDfj4+NC/f/8LPg8hhLuiZMXHOOvxxWutD9Wyq75FX4/WRVxCCCGEEEJ4okZPWCilxhUtrtFaZ5V4Xy1a6wsuPKeUMgFvAw7gKq31jqL1c3AWuFuglFqtta700WWlVBDwWdHbXlrrneUcR5RSPLoCIDw2qJKW52kZYSGaOGVQmKMDKTiYgSOrEPvZAkwh56d7CQr3xYbGhOLooYzK+1KKsKgYTuzbQ3Z6GnnZWfgGVF0LRoj65siyYs+secKiJF11kzqRmJjI8uXLSUxMJDLSOTXhjBkz+PLLL1m+fDkLFiygdevWzJgxw7XPQw89xFdffcWqVavqJGFRPAqiZcuWbutbtmzpNkKi2KRJk1i2bBljx45lxYoVXHfddbRo0cKtjb+/P3369MFisTBmzBgsFguDBg3C29ubAQMGYLFYiI2NxWKx0L9/f7y9vS/4PIQQ5ymlRuFMVpzFmaw4WEX7HsAOrbUutf5WYHxRP1/UU7hCCCGEEEI0Ok+407sC5/2IrThHNRS/r64LTlgAw4D2wPLiZAWA1vqcUmpBUUzjgTlV9PMAznobk0snK4r6s5XdRXzzfZJrOSiymiPc7SVHWHjCZSxEzXm3DaKgqE6FNTHTLWHh5WUkx9dAszxNQKEmI7OA5kEV30gMi3YmLABSE48S1aVrvcYuRHUYAisuFl+ZkiMsVC1HWNTUrl27sNvtdOrUyW19QUEBoaHOqQrtdjsLFixg1apVnDhxAqvVSkFBAX5+fjU+Xl0YO3YsTzzxBEeOHGHFihW89tpr5bYbOnQoH330EeCsUzF06FAAhgwZgsViYeLEiVgsFv785z83VOhCNGlKqXuBQUVvi//DvVcpNbRo+Xut9TtKqcuANYA3YAHGlBxNWeSo1npFifevAu2LimwfB4xAz6LjFQATtNbn6vJ8hBBCCCGE8CSecKf3PZz3Js6Vet+QhhZ9/bqcbV8VfR1SjX7uxBn7x0qpOGA44AvsA77UWtf4MVOlVJsqmkQULxQUFLjNZd1UnDpyjuCiZRViqNY5OArtzo9vgB1Hkzvv/Pz8cpeF56qP75mOOJ+AyDmUjopzHxVhCPaCPCsKxY8/H+eq/hUXpG/eqrVrOfnwQcJiO9RJjE2d/Kw1HIfDQfEDwQ6HM9nQ4v+617qv7OxsAAICAjAYal5yqziG6tBak5mZidFoZNu2bRiN7lMNBgQE4HA4ePHFF1m8eDGvvPIKXbt2xd/fn0ceeYSCgoIaHa9kjCX3Cw8PByA5OdltlMXp06fp3r27W1uHw0FwcDDXX389kydPJj8/nxEjRpCVlVWm7yFDhjB//nySkpKwWCw8+uijOBwOBg8ezFtvvcXBgwdJSkpi6NChtTqP4uOVtyw8h9Yah8P9b6aCgoJGjKhJG4TzYaaSBha9ir2D8+/04v/s76J83+F8OKrYBzinpe0HhOGsOXiiqL+Xtdb7LiRwIYQQQgghPF2jJyy01hMqe99AOhZ9LTNEW2t9SimVXaJNuZRSZpxPWKUADwGzcS9qfkQpNVprvauGsSVV3cTpxx9/5PDhwzXsvnHZHeCXHQAocgyaQ7//yJH9Ve9XkJMPRbNHHTp6mFNf76nXOOvTxo0bGzsEUUN19T0z2OBKglEozu5N5gcv94vfavACnKMutm4+QH7W7gr7yks57Vr+bcsPJDuktktp8rNWv0JDQ/H19UUpRWZm2ULytVWcuKgvNpsNq9VKx44dsdvtJCQkMGDAgDLtMjMz+e677xg1ahQ33XQT4Lwxv3//fuLi4mp1znl5eW77hYaG0rJlS9atW0e7du1cx/3xxx8ZN26cW9vife+8807uuOMOHn74YXJyclwJi9zcXFf7K664ArPZzKJFi8jPz6djx45kZmYSFxdHSkoKS5cuxd/fn8suu6xOvnf1/T0TNWez2cjLyyMvL499+87f705NTa1kL8+mlLIDK7TWk6to9zYwUWtdZ597ij6vTKhGOwvUbJCY1vodnMkJIYQQQgghLkmNnrBQSi3DOWx6WdH7aCBba53egGE0K/pa0fDqzBJtKhKC85n/UOBZ4HHgfcALmAI8A/xHKXWZ1loe8y2Skm7AWzs/x2X72KnuQ7QGff6zn6PmD94K4REcJsjzs+OXa8I314jBDiXzDM1C7M7JIABbVuUXunfzYNdyQUZD/voU4uLQoUMH/vjHP3L//fczb948unXrRmpqKt999x2XX345I0aMoH379nz22Wf8+OOPNG/enCVLlnDmzBni4uKqdYzs7GwSEhJc748dO8auXbto3rw5UVFRKKWYOnUqL730Eu3ataNt27YsWLCAiIgIrr/++nL7vOaaazh06BCBgRXXrfH19eUPf/gDb7/9Nn369HGNIDGbza71ffv2xcvLqwb/YkI0OkX1kwE1nVlOCCGEEEII0UgaPWHB+aeTlhV9TcA5LLrSp6U8UPHdRCPwd631yyW2PVs0RdQdwO04h3pXV1QV2yOAbQB9+/alffv2Nei68a1cfQAbaQCExQYzfPjgau33v693uJYv63IZV/YJr4/w6k1+fr7rae+rrroKHx+fKvYQja2+vmfZ1mMUbE9BoRgS1w+vducLz2flWPn3zp8xoPAt8GL48Ksq7ev9DevISk3BkZPJtddcg6rFNDoXG/lZaziJiYnY7XZMJhNBQUFV71CJupgSqrpMJhNms5mgoCDef/995s+fz7PPPsuJEycICwujb9++3HbbbQQFBTF79myOHz/O7bffjp+fH3/+858ZPXo0586dq9Y5//LLL1x99dWu908//TQA48aNY/ny5QD89a9/xW638+ijj5KRkcGgQYP48ssvXdNFFfP19XUds1mz889UFE/H5Ofn5xbTNddcww8//MA111zjtn7YsGFs2rSpzPqaasjvmai5lJQUfH19CQgIoFevXq71TW1kbi35AYWNHYQQQgghhBCiejwhYWHHOQqhWE2elqorxSMrKhpFEQScrWYfAJ+Xs/1znAmLP1CDhIXW+nhl20sW7vP29sbX17e6XXuElMQcistsx13RotrxqxIjLMx+Te+8S/Lx8WnS8V+K6vJ75mgfTMH2FOebUwX4Xn6+X19fX7LNiiArBBRoUF74+lT8a7tF21iyUlMozM+nMCeLZuERFba9FMnPWv0yGAyum+V1ebPaYDDU681vi8XiWvb29mbOnDnMmTOn3LZhYWF89tlntT7WsGHDXHU+KjN37lzmzp1b4fbK+ggJCSl3++zZs5k9e3aZ9bNmzWLWrFlVxlQT9f09E7WjlMJgMLj9HvT29q5kj6ZPKdUcZ72J5EYORYhLQswTaxs7BFGFo38rf8SmEEII4Uk84dPkGeBKVfLOe8Mrrl1Rpk6FUioCCKCc+hYlaa1zcBbEA8gop0nxOrlbVoItxTk7lgNNn57Vv7mqStTzVF6ecBkLUTvebc8/0VxwOKNsg+ZmAIwoftuTUmlfLaJjXMspx47WQXRCCCGE51BKHSl+Fa26veS6Uq9EnJ8z2gBfNF7UQgghhBBCiJrwhBEW3wJ34yxKXTyx80il1LfV2Fdrra+uulmVvgOeBIYDK0ttG1GiTVW+Be4BugC/lNrWpejr0dqFePHJyrYSmK8BRbZZEdyselO1aK3dExYmSViIpssY4oMxxAd7ej4FxzJx5NswlBhFEdzaH/sZKwD796XRr1erCvsKK5GwSE08Sofe/eotbiGEu8TERLp06VLh9r179xIdHd2AEQlxUYopsaxxPlQUUEl7K/Ap8FT9hSSEEEIIIYSoS56QsJgJdAJ6A22L1kUUvapS9bwK1bMeOAL8SSn1mtZ6B4BSqhnODzhW4L3ixkqpVjinj0rWWpecCmopzoTFE0qp/2qtM4raRwAPAw7g4zqKucn76ZdTGIpm/zK0qP6UBA67DaMqMYuYJCxEE6aUwicumJwtyWDXFBzKwPeKMNf22I7BHPrVOSNd3pn8SvtyG2GRdKxe4hVClC8yMpIdO3ZUul0IccFii74qnH+7rwYeq6CtFUjRWtsaIjAhhBBCCCFE3Wj0hIXW+iTQVynVFmfCwgJ8CbzQgDHYlFL3Al8BG5VSK4Es4LaimGZorY+W2OV5YDwwEWeB8OJ+flBKvQI8CuxUSv0HZ32Om4Fw4Cmt9YH6P6Om4cDeVNdyy9iKyoeUZbMWYlBG13sZYSGaOp/LQpwJCyBvX7pbwqJfzwgOrXLOfBFuq3zmvOYRkRhNJuw2G6nHEiptK4SoWyaTiQ4dOjR2GEJc1LTWrmy8UupdYFPJdUIIIYQQQoimr9ETFsWKPmwcKyplcUprXZ0pmOry+BuUUoOA2cCdOBMNu4CZWut/16Cf6UqpXcD/ARNwjgL5FZiqtV5T54E3YSEFUJyy6N69RbX3sxdaMarzl67UsBBNnU+7ZigvA7rQQf7+dLRDowzO5ESz5j4EhviQlZ5PyvFst22lGU0mQtpEk3L0CGdPncRmtWIymxvyVISoVlFpIUTDKv65bNyScXVLaz2xsWMQQgghhBBC1L1Gv9OrlPpWKfV4iVUTgXcaIxat9U9a61Fa62Zaaz+tdd/ykhVa6wlaa6W1XlFBPyu01r211v5a6wCt9WBJVpSVl5wHgJe3ke6Xh1d7P1thoXvCQkZYiCZOeRnxbt8cAEdWIYXJOW7bw6Kc03PbCuxknMmttK8WUc6Z9bTDQdqJpLoPVogKeHk5p+qz2+1kZGQ0bjBCCJeMjAzsdjvgHAkkhBBCCCGEEJ7MEz61DMW9EPUynNMs/dAIsYgGkn22gJyMAgDCY4IwVPDEeHlkhIW4GPlcFkz+vnQA8velY259voZoi+hAEn5zjkdKTcomOMK/wn5KF95uGdu+fgIWohR/f3/y8pyJ6OTkZM6cOXNBT3PbbM5p51NSUuokPlH/5HvmebTWrmQFOH9OLyZKqUDgAeAaoDXgU0FTrbWW/xCFEEIIIYRoAjwhYVGI+4cLVfQSF7HTR8/XKm8ZG1Sjfe0ywkJchHziQoDDgDNhEXR1tGubV+j5ovRfb06kY++WFfbjVng78WhdhylEhcLCwrDb7Zw96ywSX/ImaU1prV3JD19f34tqGpuLlXzPPF9wcDBhYWFVN2wilFKRwPc4681VdcHJXHVCCCGEEEI0EZ6QsEjGWXTbX2udU2VrcVHY+dsZ13LLmJolLGyFpYpuywgLcREwBftgaumH7XQu1uNZ2LOtGAOc9SeaRZ5/IjbjZOW/JkuPsBCioSilaNmyJUajkZycHGw2W63rWTgcDtfN74CAAAwG+T3v6eR75pmUUphMJvz9/QkLC7vYEkkLgBhgB/A34HcgsxHjEUIIIYQQQtQBT0hYrAXuB84opU4XrbtdKTW0GvvK8O4mau/uVJoXLfu18qvRvrbSU0LJCAtxkfC5LITs07mgIf/AWfx7OkdStG0TSJ5B4+tQeGfbcTgcFd4M9A8OwScgkPzsLElYiAanlKJFixa0aNHigvrJy8tj3759APTq1QtfX9+6CE/UI/meiUYwAjgNxGutz1XVWAghhBBCCNE0eMKd3qeA1YAXzqekNBBQtFydl2hirFYb/tnOqUKyjRDRsmbzKcuUUOJi5RsX4lourmcBYDAYKAhwXvO+DkVCUsUPkCqlCIt2Ft7OyThLbqbcwxFCCHFRCga2SLJCCCGEEEKIi0uj3+nVWp/TWt8B+OFMQCicCYzYarzaNULI4gL9sjsFr6Kphu0hXjXev3TCAtNFNb2BuISZ2waifJzTneUfyEDbz0+n49fy/NPKu3alVtpPi+hY13Jq4rE6jlIIIYTwCEl4wGcZIYQQQgghRN3ymD/ytdY2rXVi0dtsrfWx6rwaNWhRK3t3pbiWQ6ICarx/ySmhtEFfbPMxi0uYMhrw6RQMgM63YU08P5IiskStl8QjGZX2UzzCAiA1MaFugxRCCCE8w2pgsFKqZkN1hRBCCCGEEB7NYxIWxbTWBq31pMaOQ9SfM0ezXMuXXR5W4/3tJYpua0PtCroK4al8KpgW6vLLz9cEyD6VW2kfYVExruUUGWEhhBDi4jQX5yiLVUqp8MYORgghhBBCCFE3PKHodoWUUs2A3kAL4JjW+odGDknUAZ1WAIAdzR+ubFnj/W2FVsyGokvX41JuQlwYn7hg58R4GvL3p9NslHN6p84dgvmf0pi1wnTOVmkfbiMsko7WY7RCCCFEw1BKLStn9RFgNHBIKfUzkAg4ymmntdaT6zE8IYQQQgghRB3xyISFUioQeBW4h/Mxvgv8ULT9XmAOcIvW+sdGCVLUSkp63v9n767j4zjOP45/5kDMkm2ZmZntOHHYYeY02CYpN2mTppw27a+YctM0SSFpsGFmtB0z2zEzWzJIFutofn/s6STZQlvSnazvO6993ezu7Oxzuj052mdnhjSfUy5JdJGSHNfsNoL+QPUcFm4NByUnFndKHN4eqfh3FuPfV0agsAJPRgJuj4uyJBdxpZbkIOzLLyW3c92jYMQlJJLeJZfDefs4sHM7NhTCuJTdExGRdu2WBvalAKc1sN8CSliIiIiIiLQDMZewMMYkAp8CY4F8YDFw/hHV3gQewXmiSgmLdmTRkr2RsrdTwjG1EfT7cJvw3BfulohKJLYkDs7Ev9MZOq1iXQEpU7oCEJeTAKXlACxflc+5Z/att42cnn04nLePQGUlhfn7yMzt1vqBi4iItJ5box2AiIiIiIi0vphLWADfwUlWPAvcYa0tNcbU6tptrd1njFkLnB6NAOXYbV53KDKKU9d+6cfURsDnw1XVw8KjHhZy4kkYkkXRhzsAZ1ioqoTFwMFZ7N6+G4CU8obnb+nUuw+bF88H4MCObUpYiIhIu2at/W+0YxARERERkdYXi2OEXAPsA75krS1toN4GoEfbhCQtxRzyRcpjjmH+CnAm3XaHJ9027li8hEWOj7dbCq4ULwCVmwqxfidnO21iddKhaGdJg23Umnh7+7YWj1FERERERERERKSlxeLd3v7AQmttRSP1yoCcNohHWoi1lsTiIADeRA/DBmUeUztBX40Jh9XDQk5AxmVIGJwFgPWHqNxSCEB29xQS05x5X3asPoSvov7Jtzv37Rcpb1+1vNViFRERERERERERaSmxOCRUEPA2oV4PoKEeGBJjig5UUFHiB5zhoFzHOAlwqLL6Jq3xahILOTElDMmibEkeAOXrDpEwOAuXy9B/bCc+n7mbYCDEtlUHGDQxt87jM7p0JbtHLw7u2sGe9WsoOpBPWk7ntnwLIiIircYY858mVvUBB3DmxXvbWutrpL6IiIiIiERRLCYsNgOjjTEea22djw8bY1KAUcCaNo1MjkvetsORcpe+acfcjvXXTFjEYichkeOXMDADXAZClor1BVhrMcYwYHxnPp/pzGPx/rtb601YGGMYctJ05jz/FADr585m4sVXtFX4IiIire2W8GvVpE5Hdrs9crsF8jAmtoMAAQAASURBVIwxN1trP2jl2ERERERE5BjF4t3e14GuwI8bqPNjIB14pU0ikhaxb0tRpHw8CYtQZTBSdqmHhZygXAke4vs435PgoQoC+8sByO2fTnn4sg/uLuNgYXm9bQw+6ZRIed3cWa0XrIiISNu7FXgQJyGxB/gL8G3gLuDPwK7wvr8D9wEzgVzgVWPMkLYPV0REREREmiIWExZ/AnYDPzHGvGqMuT68vYsx5nJjzP+A7wLbgIejFKMcgzkLdkfKnXqlHnM7NhCKlJWwkBNZwpCsSLli3SEA3G4XtnsiAB4M772/rd7jM7t2p0u/AQDkb93MoT27660rIiLSziwEvoiTnOhnrf22tfYv1tq/Wmu/AwzA+bviVuBla+0ZwM+BROA7UYpZREREREQaEXMJC2ttIXAusBW4GHgSpwv3ucALwNXADuAia63msGgnysr9JJU5iYZiLySlxh1zWyFfdQ8LE6eEhZy4aiUs1h+KlMed3D1S3rpsf4NtDD5peqS8fp56WYiIyAnjfmAvcLe11n/kzvC2e8J17g9v/mV4/Yy2ClJERERERJon5hIWANbaNcAI4GvAW8BaYD3wIc4TUcPDdaSdWLw8D0/VEMLZx56sALCBGkNCxcfiNCwiLcPTKRF3VgIAlVuLCFU487ecelIPylzO0NwpBX4OFDQwLNTUGsNCzZmFtbbeuiIiIu3IqcAi28A/bOF9i4Dp4XU/sAro1iYRioiIiIhIs8VkwgLAWlthrX3YWnuxtXaEtXaYtfYca+2frbVl0Y5Pmmfd6gORcqfexz4cFADB6r9L3XFKWMiJyxhDwuBMZyVkqdhYCIDH44KeSU4Zw7vvba23jbScTnQfMgyAQ7t3cmDHttYMWUREpK2kAZlNqJcB1PyfzwKqJ+QWEREREZEYE7MJCzmxHNxRHCkPG9npuNqy/uq/MV1KWMgJrr5hoSbUGBZq+4qmDwulybdFROQEsRk4zRgzoL4KxpiBwOnhulW6AgdbOTYRERERETlGMZ2wMMZMMcb8wBjzYHj5gTFmSrTjkuZzHXKGFg5gGTeq8/E1FlTCQjqOhH7pGK/zq7pi/SFsyLn+p0/tQZm7alioAPsPNTAs1JSTMcZpY/1cDQslIiInhMeAeOBTY8yXjDFJVTuMMYnGmC8CHwNxwOPh7V5gNLDyeE5sjLnBGPOIMWaxMabSGGONMbc0UD/NGPNHY8z2cP1txpgHjDEp9dR3GWO+aYxZZYwpN8bsN8Y8a4zpdzxxi4iIiIi0BzGZsDDG9DLGzAbmAP+HM5fF18LlOcaYWcaYXtGMUZpu974SUpyh9ylJchF/nEkGG6i+2Vp1I1fkRGW8buL7ZwAQKvbj31MCgNvjwvRMBpxhod5rYFiopPQMeo0cDcDh/Dz2bdrQukGLiIi0vj/jzHXXDXgUKDbG5Blj9gElwD+B7sA74boAw4DlwNPHee7/A+4AeuNM4l0vY0wyMBP4NrAO+BPO3Hz3AB8bYxLqOOwR4K+ACb++C1wOLAr3GhEREREROWHF3N1eY0wG8AkwDagEXgf+GF5eC287GfjIGJMepTClGRYv2RcpJ+QmHnd7Jlij7Im5S1ikxSUMqR6iu2J9QaQ84ZTqOUMbHxaqxuTbGhZKRETaOWttELgYuAvYinNzvxPQOVzeDnwHuDhcF2vtCmvt6dbaZ4/z9LcBfay1nYCHG6l7LzAG+G14Pr7vW2vPAX4LTMRJZEQYY04Ptz8LGGet/Z619kbgUiALePA4YxcRERERiWmxeLf3bqAv8DYwwFp7mbX2nvByOdAP52mqfuG6EuO2bai+wdpzQFPmRmxEjdFslLCQjqDWPBbrquexOGVyD3xxBoDM4hAVpf562xg48SRcbqd30/p5swmFgvXWFRERaQ+s46/W2gFAT2BqeOllre1nrf2ztTbUCuf90Fq7vbF6xhiDk3woAX5xxO5fhLffdsT228OvP7HW+mqc8x3gU2CGepqLiIiIyIksFicAuAzYD1xtrS07cqe1dp8x5hqcJ6kuB+5r4/ikmUr2lpIRLo8d1+W426vVw0JDQkkH4MlIwNMliUBeGb5dxQRLfLhT4nB7XEw8uQcrPt6JDVq2rjjA0JO61tlGQkoKfceOZ/PiBZQWHGL32tX0HD6qjd+JiIhI67DW7gZ2RzuOIwzEGbLqPWttac0d1tpSY8wc4BxjTE9r7c7wrtOAUpyhcY/0Xnj/qcCTTQ3CGNOjkSq5VYXy8nLKy+ufF0tE2jd9v6UmXQ9SRdeC1NSc66G1rp1YTFj0Bd6qK1lRxVpbZoyZCVzQdmHJsbAhS47PEABsgov+vdKOv9GQqS6rh4V0EAlDsijJKwMLFRsKSA4n/wZM6MyKj517HJuW5NebsAAYfNJ0Ni9eADjDQilhISIi0qqq5pvYWM/+jcA54Xo7w/NddAU+rxrGqo76Ndttqp2NV3HMmjWLnJycZjYvUiUWby9ITe+//34bnUnXQnug60GqtN21ALoeYl9zrocDBw60SgyxeJUEAW8T6nmAFu/iLS2rIK+MQIXz91a/wVm4XMefYDA1EhYaEko6isTBWZTM3AU4w0JVJSy69EkjJTOekoJKdq09REWpn4Tkun+F9h8/CU9cPAFfJRsWzOWMW7+C2xOL/wyIiIjUZoy5KVx8xVpbXGO9Say1T7RCWI2pmm/vcD37i46o19z6IiIiIiInnFi8U7UROM0Yk2GtLayrgjEmCzgd2NCWgUnz5W0tipS79D3+3hU2FMJVY+oVDQklHUVc7zRMggdbEaBiQyE2aDFug3EZ+o/rzIqPdhIKWV5/azNXXz2k7jYSEuk3fhIb5s2moriIHZ+voO+Y8W38TkRERI7J4zgzmc0HimusN1U0Ehaxomcj+3OBRQDTp0+nR4/GRpASqce8j6MdgTRixowZbXMiXQvtgq4HqdJm1wLoemgHmnM97Nq1q1ViiMWExQvAr4C3jDF3WGtX19xpjBkJPAKkAc9FIT5phryt1Q+I5fY9/ofBAgE/blN92aqHhXQUxm1IGJRB+coD2IoAvu1FxPdzvlOmZ1Kk3sYleVBPwgJgyLTpbJg3G4B1c2YqYSEiIu3FEzgJisNHrMeyqljr+5/gtCPqNbd+k1hrG/xL0pkb3JGYmEhiYmJzmheRdkTfb6lJ14NU0bUgNTXnemitaycWExZ/Aa4BpgIrjDHLcCbYBugHjAFcwHLgr1GIT5ph9ar9TsFAp96px91e0HdEwkI9LKQDSRicRflKZ3zA8nUHIwmLqZO6MufJ9SQHIfVwgH35peR2Tq6zjb6jxxOXmISvvIxNi+YR8PnwxMW12XsQERE5FtbaWxpaj1GNzTlRa46L8ETce4G+xhh3HfNYNDYnhoiIiIhIuxdzd3utteXAGcDz4U3jgSvDy7jwtueAs6y1FW0foTRVUbGPUKHPKcdBXMLx58cCfh8u446sq4eFdCQJgzPB5TwFWbY0HxtwpvFxuVy4ezu9LNwY3nt/a71teOLiGDhpKgC+8nK2Ll/cylGLiIh0WBuBPcC08ITaEeH1acBWa23NSbFnAlX7jnRO+HVWK8QqIiIiIhITYvJur7W2wFp7LdAXuBH4fni5Eehrrb3OWnsomjFK4xYt24cL5+aqKye+RdoM+jUklHRc7pQ4EodlARAq8VO+5mBk36Tp1cNT71p58Khjaxpy0vRIed3c2S0cpYiISNszxsQZY7qG57qLCdZaC/wLSAF+csTun4S3//OI7Y+GX39hjIl0gTTGnAecBrxvrd3eKgGLiIiIiMSAWBwSKiL8tNHT0Y5Djs2GNQci5ZaYvwKcHhYaEko6suQpXSn/3ElIlM7fS9KoTgBMm9SVuU+uJyUIaUUB9uaV0rVL3cNC9RwxmsTUNMqLi9iyZCG+inLiEjRmpYiItD/GmBuAbwFjcR7G+i/wxfC+y4CrgB9Za+vvftj8c94GnBxeHRl+vc0Yc1q4/Jm19l/h8u+AS4DvGWPGAktxeo3PwJno+s8127bWfmKM+RdwG7DUGPMW0BVnyNxDwDdb6n2IiIiIiMSimLjba4xJMMakGWMafQzfGBPf1LoSXQU7SyLlESM7tUib6mEhHV18/ww8OU5yoXLLYfz5ZYAzLJS3j5OgcGF47/0t9bbh9ngYNMUZaSLgq2Tz4gWtHLWIiEjLC9/Y/y8wASgHzBFVNgDXAle08KlPBm4OL1VD1k6rsa0qmYG1thQ4FScxMRS4GxgC/AE4Mzwc7pG+DNwZLt8JnA+8Akyy1m5o4fciIiIiIhJTon631xjjBdYCecCIJhwyPFx3lTE1JjOQmOMp9APgM5ZRw1snYYHnyL9LRU5sxhiSJ+dG1ksX7I2UJ5/aI1LevarhYaEG1xoWSkNhi4hI+2KM+QJOT4rPgYnAUd15rbWrgV3AeS15bmvtLdZa08ByyxH1D1trv22t7WWtjbPW9rbW3mOtLa6n/ZC19q/W2hHW2gRrbY619lpr7eaWfB8iIiIiIrEo6gkLnG7avYE/WGuXNFbZWrsU+D3QH7i8lWOTY7Rl+2GSg+HJgVPceFuoJ0TNIaFCJoQxSlhIx5M8vguEv1OlS/IJ+YIATJ3QlZJwPi+tKMjufSX1NUGPIcNJyXSG+d62fCnlJXXeMxEREYlVdwAlwIXW2iXh+SLqsgpnXjwREREREWkHYiFhcRkQAP7UjGP+CISAK1slIjluS5fti5STuia1WLtBvx9XuGONjYWrVyQKXElekkblAGArApSv2O9sd7nw9klxyhjef7/+4bqNy8Xgk04BIBQMsGnhvFaOWkREpEWNBhaE57xryCGgSxvEIyIiIiIiLSAWbvmOA5Zaaxsev6QGa20BsBgY32pRyXHZsbEwUu4zKLPF2g34/bhd4UfIXfU9SCdy4kue0jVSLqkxLNRJp1UPC5VxwN9gGxoWSkRE2rF44HAT6nUCgq0ci4iIiIiItJBYSFjkAtuO4bjtQNdGa0lUlOdVzx84YVxuAzWbJ1hjSCj1sJCOLK5nKt6uziTb/l0l+HY5QzpNHt+VtJwEAPZuLKSsyFdvG7n9B5Hexfl+7vx8JaWFBa0ctYiISIvZjTOJdb2MM3boMKD+LociIiIiIhJTYuGWr+HY4nCFj5UYEwqGyCh3ej+UeaFnt9QWa7vWpNuacl06MGNM7V4W8/dGtg8Y74x8YS1sWb6/wTaGhHtZWBtiw/zPWjFiERGRFvURMMQYc0kDdW4EegAftE1IIiIiIiJyvGIhYbEfZwLt5uoHHGjhWKQFHNxTCkEnYTFqVOcWbTvg9+GKJCyUr5KOLWlMZ0y8k7krX7GfUHkAgAHjq793m5bkNdhG7WGhZrdClCIiIq3i90Al8Iwx5i5jTLeqHcaYLGPMV4CHgFLgr1GKUUREREREmikWEhbLgNHGmF5NPcAY0wcYCyxtraDk2OVtLYqUu/RNa9G2gz4/7vCk20YJC+ngXPFuksY5yQnrD1G61ElO5PRMIbWTMyzUrvWF7NxTXG8bOT17k93D+fW7Z/0aig7kt3LUIiIix89auxG4GefvmT8AOwEb3rYf+DvgAW6x1u6IVpwiIiIiItI8sZCweA0njuY8+fSXGsdKjMnbWj3/YW6/9BZtO1BZYxJhjxIWIimTq4eFKl2wF2stxhgOZTo9kQzw/ntb6j2+5rBQAGtnf9pKkYqIiLQsa+0LwETgBaAY5589A1QAbwBTrbUvRS9CERERERFprlhIWDyJM+n2RcaYF40x9Y4hZIzpZIx5EbgIZ9LtJ9smRGmOXZsKAXC5DTk9U1q0bVsZqF7xxMLlKxJd3txk4vo4PZkC+eX4wgnDk06r7rSWv+wgoVCo3jaGTDsVjJMAXPbemwR89U/ULSIiEkustZ9ba68FMoHOQC6Qaq291Fq7LLrRiYiIiIhIc0X9jq+1NgBcCZQDlwHbjTGvGmN+ZIy5Pbz8yBjzKrAjXKcCuCp8rMSQ/YfKKdlfAUBlihuPt2Vnxg75qj9ylxIWIgCk1DH59qRxuRQmOUmINB+8+d7Weo/PyO3KwIlTASgtOMTqmR+2YrQiIiItzzoOWGvzrbX1Z+lFRERERCSmeaIdAIC1dqkxZjpOd+6+wMU4vShqqhr/ZxtwtbV2SdtFKE21aMneSNmf4W3x9oO+YKRsvEpYiAAkjsjBlbyFUKmf8tUHCRb7cKfGMeS07ux7excAqz7aycXn9a+3jcmXXc3GhXMBWPjaS4w84xxc7pZNOIqIiMiJpc/334p2CNIE235zQbRDEBEREWmymEhYQCRpMRi4HrgEmAB0Cu/eDyzBmbPiafWsiF2b1x2KdNvp1sLzVwBYvxIWIkcyHhfJE7pQPHMXBC2li/eRdnovLj1/AA98sItUP2SUhJizcDfTJnWvs40u/QbQZ/Q4tq1YStH+PNbNncWwU05v43ciIiJSN2PMfcdzvLX25y0Vi4iIiIiItJ6YSVhAZHioJ8KLtENFu0vJCJdHj+7S4u2H/NW5KhMXU5evSFQlT8qleNYusFC6YB+pp/bE7XHRZWInyubuB2Dm61vqTVgATL70aratWArAwldfYOi0UzEuJQZFRCQm/Aywx3G8EhYiIiIiIu2A7vhKiwmFQsQXBQBDhbEMG5TZ4uewNYaEcrXw/Bgi7ZknO5H4gZlUbiggWFhJxYYCEodkcdWVQ3h4fj6JIUPqAR9rNx5i6MCsOtvoMWwE3YcMY/e6NRzctYNNi+czcNJJbfxORERE6jSL+hMWpwJ5wLq2C0dERERERFqDHp2VFrN+cyGJIWeqkYo0D65WeDLbBqr/TnXFK2EhUlPNybdLw5NvpyR5SRjmDM/mwvDmC+sbbGPypVdHygteeQFrj+dhVhERkZZhrT3NWnt6XUu4yjv17a9RR0REREREYpwSFtJili/Pi5RTuye3yjlsIBQpu7zqICRSU8KQLNzp8QBUrD9E4FAFAFddMxR/+KHUhF3llBVX1ttGnzHj6dzHmZw7b8tGtq9c1spRi4iIiIiIiIiIOJSwkBaza3NhpNxvSN1Dzhwv669OWLjjva1yDpH2yrgMyZNynRULpYv2AdClUzKZI53vpCsEq2ftqb8NY5h82VWR9QWvPt96AYuIiIiIiIiIiNSghIW0GH9eRaQ8aVxu65wkWHNIKCUsRI6UPDEXXM7QbKWL9kV6JV12zRCMs5lVn+4iUGM+mCMNmDSVzG49ANi15nN2r1vTukGLiIiIiIiIiIighIW0EF9lkJRy58ZosRc65yS1zolqzGHhjteQUCJHcqfFkTg8G4BQiZ/y1QcBSMtJpP/4zgCUF/tZN39fvW24XG4mXXJlZF29LEREREREREREpC0oYSEt4tCeEtw4j2/3HZzZeieqHhEKl1eTbovUJXly9eTbJeHJtwHGnt0rUp771lb8NeaEOdLQk08jNacTAFuXLSZ/25ZWiFRERERERERERKRazCUsjDG9jDGNToBgjMk0xvRqrJ60jbwtRZHysBGdWu9ENUex8cTc5SsSE+L7p+PJSQTAt/Uw/vwyADr3TiOxRzIA/sM+XntrU71tuD0eJl58RWR9wasvtGLEIiIiIiIiIiIiEItj6mwFHge+1Ei93wG3EpvvocPJ21adsMjtl95q5zFBIp+48SphIVIXYwzJk7ty+C2nV0TxzF1kXTUIgE4TctixqxSADTN3Yy8eiKma3OIII04/m/kv/Y+yw4VsmP8Zh/bcQFa37m3zJkRERGowxtzUSJUBDdWx1j7RwiGJiIiIiEgriMU7via8NLVuy53YmInGmLeNMYXGmFJjzHxjzNXH0V6mMWa3McYaY95tyVhjTd7WwwC4vS6yuie33omqp7DAqIeFSL2Sx3fGxDvDppUtzcO3sxiAC2b0pSjeqZNeZvn0s531tuGNi2f8BZc6K9ay8DX1shARkah5HHisnsUC0xrY/5+2D1dERERERI5Fe77jmwr4WqoxY8zpwBzgZOB54GEgF3jOGHP3MTb7INB63Q1ixO59JRQdqAAgsUsibnfrXVYmVJ2jUg8Lkfq5kryknd3bWbFQ8PpmbMjicrnoOaVLpN68t7c12M7os88nPtlJQq6d/QlFB/JbK2QREZGG7DiOpf7svIiIiIiIxJR2d8fXGOMyxowEzsD5A6Ql2vQA/8SZ0nm6tfYOa+3dwGhgA/ArY0zvZrZ5BXA98L2WiDGWLV6yL1I+EGcbqHn8aiUsavaw2L0EftsHfj8IPrgPDm5u1ThE2oOUqV3xdE4CwL+zmLKleQBccdlgSt3OdzW9IMCKNfvrbSM+KYmx514EQCgYZPEbr7Ry1CIiIkez1vax1vY91iXa8YuIiIiISNPERMLCGBOsWsKbbq657Yj9fmA5kA283EIhnAH0B56x1i6v2mitPQz8CogDbm5qY8aYTsA/gCeBt1ooxpi1bUNBpNxzQGarncdai8tWX7LGU2NEsPfvg/ICKMmDOX+Bv42Dxy6Alc+Dv7zVYhKJZcbtIuPifpH1w+9uI1QRIDHBQ+rI6u/quy9taLCdceddjDc+AYBVH71HaWFBg/VFRERERERERESORUwkLKiet8LgjEFrGlgCwDbgD8BPW+j8p4Vf369j33vh11Ob0d7DQBC48zhiajdK9pRGyuPGdWmg5vEJBYO4jDuybrzh8t6VsP2zow/Y/hm8fDv8YQjsWNBqcYnEsoQBmSSOyAYgVOKn6IPtAFx9zVB8xullkbC7gh27i+ttIzE1jVFnnQtAwO9j6duvtXLUIiIiIiIiIiLSEXmiHQCAtdWPzRtjQsDj1tovtmEIA8OvG4/cYa3dZ4wpqVGnQcaYG4DLgUuttQXGmOOaw8IY06ORKrlVhcrKSsrL27Y3QTAYIrEkCBjKXJaunbytFoO/ohy3qb5kKwOV+Mst3rkPRS5k/8n3gicB98qncR1yhoWyQR8Vaf2gjX82DamoqKizLLGrPX9m8Wd2o3xdAQRClMzdg3tUJkmdEwn2SYKt5XgwvPjsar769dH1tjHirPNY9t6bhAIBlr33FiNnXBiZ2yKWtefPrSPT59b+6DNrnyorK6MdgoiIiIiISC0xkbA4wv3AsjY+Z1VS4XA9+4towuTZxphuwF+BZ621LfUIcpMnCVywYAGbN7ft3A1797uIt85Ny+KEIB9++GGrnStYUUHPGgmLT2bPJOix9ChKY0BCT5L8B3mvaABBdwL0uo+s7A30OfApfnciq2bOrdXWiF1PkVyZR1lcJ8riciiPy6EsvPg8qWDMkadvMcYGcYd8xIX8uGyAxR+8iMsGMTaAywbwu5Mpi+9c65jcwiUYQljjJoQba9xY4yJkapTxUB6Xjd8T+zeR27tZs2ZFO4Rm65qbQLddSWBh59PL2TismOyuhuKtybgx2M2lvPnm+8TF1d9GSp8BFG1ah7+inFce+RtZI8a13RtoAe3xcxN9bu2RPrP248CBA9EOQUREREREpJaYS1hYa++PdgzH4V84c2x8K9qBtJX9+91khcsmLdhg3eNlQ4FaPSxC4eFsdmVNY1fmSST5DjjJCgBjOJQymEMpg49qxxMsp/fBT/GEfHWeJ2DiKI/Lpiwuh/VdL6MgeUBkX3rZNroWLsZl/bhsEFc46RBZQgHc1o/fncjivt+s1e64bQ/TvWABLhr+Oe3IOoVlvW+vfeyOf+INljV4HMDSXnewM/vkyHpKxR6mr/8ZAXciAVcCAXci/hrlgDuRSk8qlZ50dmdOJuBOavQc0j7t61ZB9v544ivdpBV5yTjkhWw/29ICdC7ykmANlXu8xPXx19tG5rDRFG1eD9ZSuP5zMoaMxOXxtuG7EBERERERERGRE1nMJSyMMW4gGSiz1gZqbE8E7gXG4Mxh8YC1dk8LnbaqZ0V9vSjSgAZnmTXG3AycB1xlrW3Jx9V6NrI/F1gEMHnyZPr379+Cp27c2pVLAOfG/6RpAzjj5MZGsDp2h/P3kbdgYWT9rHPPxhxDTwjXznm418WDr+6Ehcf6SK3cS2rlXjIuvJ9Qr5Mi+9yfP0/cW683eg6blM2MGTNqbfO+8RqugsaTOt1yO9PpiGM96xOhrPGExYjRYxk6rPpYs2cp3rUVeEOND88x+OK7IKV6DhL38ifwLHoEm9QJm9wJkjthEzKwiZmQkI5NyHBekztjM/s22n57V1FREXlqePr06SQkJNSuEApAoBIC5ZhAJQQqsZ4ESOsWhWjr5utbQPFzTi+sgXnZZFw5nAkjKnj1gZUABPelc9aXxuJy1/+9+mD/HjbOm02ospIuBBg744I2if1YNfq5SUzS59b+6DNrn9q6Z66IiIiIiEhjYi5hAdwH/BhnIuzZAMa5K/0pMIHqibkvN8aMsdY2mEhooqq5KwYCS2ruMMbkAinAwiMPOsLY8OsL9dxEP8cYY4EV1toxTQ3MWrurof01zxUfH09iYmJTm24RoQPOTf8QlmmTe5GYGN9q5yp1uSKTbocIkZR0jL0BBp0B398BJXlweCcU7qheIus7IVBOfJeBUPNnmtC04ZZMoPLozyKnP+SOAm8iQVc8+QXFhFweunTtgScuEdxecMfh6T4Oz5HHnv4j8JVA0A+hoHNzPOQPvwbD2wPE5Q6uHW98AuQMhspiZ/GV4Hx9joqYxKwe4K7xK6FkDxza7CwN6TEJbvug9raXboO8NY39mGDanTD6mur1or3w1BWNHwdw3TOQ2ad6ffWrMPN3jR+X2gVufKX2tnd/CFs+bfCweBtisHsI67teRkJCQvXn++ue4CsFW08y6oyfwPR7Go+rDSSMScC39CCVGwsJHfbhX3CQ7mf3ptfwbHasPkhJQSW7VhcxeHJuvW2cdMW1bJz/GVjLkjdeYvSZ55CckdmG7+LY1frcpN3Q59b+6DNrP+LjW+//20RERERERI5FLCYszgT2WWtn19h2ETAR2AA8hNOTYQZwO9CEO5SNmgn8INzm/47Yd06NOg2Zh5PYOFIKcA2wC3gP2HHsYcaWw8WVpFZawFAcb8hIa90/eoN+f2RIKOuy8MmvYOA50GN88xtzuSCtq7P0nHT0fmuh9AAkZdfe3ucUuOk1cMfVXjw1ywngreNGzRk/chbAV17OwvffB2DGjBlHJyiONPFLzX+P4PxsvlEj1xYKgb8UKkvCSYwiKN0P5QW1kxUANgRxqeArbvgciXXcrN6zHA4eNYf90coP1V4P+SF/dePHAQSO6CFTXtC0YyuLjt52eEejx7qAhOwuR+8IBepPVgB88kvnuuk1ufHYWpkxhoyL+pP356UQshTP3Eny+C6MndGLHasPAjDv1c10H5FFSnLdk1nk9OzNqDPOYeVH7+IrL+ez/z3JOV/pMKPgiYiINIsx5hbgsUaqfWytPTNc/2fATxuo29dau61FghMRERERiUGxmLDoC6w7YtslOI+Ff8Fau8QY8xBOAuBKWiZh8RGwBbjeGPNXa+1yAGNMOvBDnDGPnqiqbIzpijN81F5r7WEAa+1zwHNHNmyM6YOTsFhtrb2tBWKNGYd2leDC6eGR0aOuXE3LCvj9uF3hhAVBmPlbZxnzBbj0oZY9mTGQ0uno7aldnKW9crkgPtVZ6Npw3Rm/cBZ/OZTkVyc2ygud14pCp5wz8Ohjgz7wNOHpWteRv4JM046DoydGd7mbdqynjsSaO67RYy0QMnX8yswdBcFKJ1Hlia9+LS+ErTOdxM8rd8DX5tedyGpj3s5JpEzrRsns3RCwFL65he43DqXHkEx2rSugtKCSx/6zkm9+c0K9bUy79kbWz5tNZVkpn3/6AWNmnE+XfgPqrS8iItKBLQfqm6PvSmA4zkNNR/ovzjC4RypsiaBERERERGJVLCYssoF9R2ybBuy21i4BsNYGjDHzgSktccJwe7fh/LEwyxjzP6AYuALoDdxzxJNMvwZuBm4FHm+JGNqjgh0lkfJpJ7Xe3BVVgn5fdQ+LmnMy9Iz+k+snNG8iZPZ2lqa6a+WxnSujJ/z4yK9/E427yVmOxZX/abRKRXk5q8K9Ymr5Ul33GIBgAB4/H/LXOcNCxUCyokramb0oW55PqNhPxRpniKg+Z/dgx7pDuDAEVx9m8/ZC+vfOqPP4pLR0pl55HZ8+8S+wlo8ff5Rr7//tMc0pIyIicryMMVNwhpPtgTN87C7gU2vtvGjGBRB+EGr5kduNMXHAN4AATnLiSI9baz9tzdhERERERGKRK9oB1CGAM+k2AMaYTJy5JeYcUa+Y+ifJbjZr7SfAyeHzXAN8FcgDrrXW/qGlznMiydtWPbROl75prX6+oN+Pq+oJ91B4AurELBh1daufW6TZ3B64/J/wtbkw8spoR1OLK8FD+rnVE6UXvrGZUYOzqejjzAvjxfD8vz9vsI0x51xAZjcnUbln/RrWz53VegGLiIjUwRjT3xgzB+f/338JfA3n/+H/D/jMGDPXGBOrXQAvxXlQ601rbV6UYxERERERiRmx2MNiCzDFGOOy1oaAC3GelPrsiHqdgf0teWJr7UKc+TEaq3cLcEsT29wGnJCPHedtdRIW3gQ3mblNm4z6eAT8PuLCk25jw/MXjL8lpp5cF6mlOb1S2ljS2M6ULtiLb0cxgf3llMzdw823jebJ++aREDKk5fv4dM4OTpvWq87j3R4vp990Gy//5mcAzHz6MfpPmIw3PqEN34WIiHRUxphuwGwgFygD3gW2hnf3Ac7F6Y09yxgz0Vq7OxpxNqBqqNh/1bN/ujFmMhACNgIfWmtL6qnbIGNMY12hc6sK5eXllJeXH8tpJIbpM5UquhakJl0PUkXXgtTUnOuhta6dWExYvI4zb8RrxpgPge8BQeCNqgrGGXdkLLA2KhEKu3cXU1pYCUDn3qm4XK2fkwn4/CRG5hDwg3HDxBNqWhDpCLbPg15Tjp6Do40ZlyHjkgHkP7gMLBR9tIPcMZ3JmNSJivkHAJj7wmZOmdwDt6fuznh9x06g79gJbF22mJKDB1j42ktMu/oLbfk2RESk4/o5zo32l4CvWWtrPchkjMkBHsKZJ+J+qhMEUWeM6Q2ciTN01bv1VDty3otCY8yd1ton6qzdsJ1NrThr1ixycnKa0XQs/jkpR3q/rmFNW4Wuh1ina0Fq0vUgVdruWgBdD7GvOdfDgQMHWiWGWBwS6nfAauAC4E84f4g8YK3dUaPOyUAOR/e6kDYyd9GeSHmXK9gm5wxW+mus+WDYJZDevU3OLXLcKg7DK1+Bx86FZU9GOxoA4rqnkDzReajSVgY5/O5WbvrCcIrC85KnV1iefn5Ng22cdtPtuNxOz6fFr79E0f78Vo1ZREQk7DxgD/CFI5MVANbaA8AN4Trnt3FsjbkV5++wx621R/6P9Argi0A/IBHoC3wTsMDjxpiL2zJQEREREZG2FnNpLWttkTFmEs7TUF2ARdbamUdUywb+AjzX1vGJY+fGQsL3NOneP6NNzhmq8EHkrH6Y/JU2Oa9Ii9i5EFY865Tf+T70ORmy+kU3JiBtRm/KVh7AVgQoW5pP8uSujLu0H5ue2wJA3md5HDy/P9kZdQ+9ltWtO2PPu5glb75CwO9j5tOPcdFd32vLtyAiIh1TFvCatVXjhB7NWuszxnwGXNJ2YTXMGOPCSVhY4D9H7rfWvnLEpm3Ag8aYtcAHOPNzvN7M0/ZsZH8usAhg+vTp9OjR2AhSNcz7uJmhSDTMmDGjbU6k6yHm6VqQmnQ9SJU2uxZA10M70JzrYdeuXa0SQ8wlLACsteVAvY8gW2tfBV5tq3jkaOX7yiOpgwnjchus21JC+7cCowAwcV7oOalNzivSIgaeDeNuhqX/BX8pvPxluPUdZ3LuKHKnxJE+ozeFr28GoPD1zcz4+hiWfLiD9IMBkkKG//5rJd+5Z3K9bUy94lrWzPqY8qLDbJg3m10zLqDHsBFt9RZERKRj2gU0ZRK1JCCW5q84C+gFfGSt3dpY5SrW2o+MMZuBkcaYNGttUTOObfAvSVNjmMrExEQSEzU/3IlGn6lU0bUgNel6kCq6FqSm5lwPrXXtxOKQUBLjfL4AyaVO7/USD/Tsltom5w3u3VS9ktYp6nMAiDTbOb+CzD5OeddCmPPnaEYTkTy5K95c556Pf3cJpYv2cfmtIwhgAfBsKmHfruJ6j49PSubka2+KrH/830cJhdpmqDgREemwXgBOM8bUOz5oeN8ZwIttFlXjGptsuyFVgwQntVAsIiIiIiIxJ+YSFsaY6c1Zoh1vR7R01X68OMmCYKa3zc4b6j41Unald2qz84q0mPgUuOxRMOFfvZ/+GvYsi25MgHEbMi6uHp6q6L1tDOqWihmSBoAbw5LXG34IdMTpZ9G5T38A9m/bwueffNB6AYuIiMAvgFXAx8aYC4/caYy5APgIWMnRE1hHhTEmG2d4qkPAkUM/NXZsMjAcKKU6cSEiIiIicsKJuYQF8CnwSRMXDXwWBatXVc9rmNUrpc3OG/JXP7Ft4touUSLSonpNhpO/45RDAXj5DvCXRzcmIL5fBomjnURgqCzA4Q+289WvjiM5wxn8bdvKA+xYfbDe410uN6ffcntk/bP/PUlFaUnrBi0iIh2GMebjmgvwFhACBgKvGWMOGmOWhJeDOPM8DAzXeTN6kddyIxAHPGWtrTxypzEm1RgzqI7ticA/gVTgeWttoNUjFRERERGJklhMWMyqZ/kM2Fmj3jxgdptHJ+zfXj00zJBhbdfTwdZMWHhj8dIVaaLTvg9dxzjlAxvgw59FM5qI9PP7Rr5bpfP3Yg9VMPWy/pH9n72wkWAwVO/xPYaOYPDUUwAoLzrM/Jeebd2ARUSkIzmtjuWk8D4DZAJjw0tmeJsJ1zmt7cJs0JfCr/UNB5UNrDPGLDDGPG6M+Y0x5jFgA3AdTo+S77ZBnCIiIiIiURNzk25ba09raL8xZhTwOE536PPbICQ50kHngbAglglju7T++coLITGDkK86YeHyulv/vCKtxe2Fyx+FR6ZDoAIWPAyDzoH+Z0Q1LE96PKln9KLovW1gofD1TQy8fSSfz9zFvi1FFOwr440XN3DpNUPqbWP6DbeyeclCAr5Klr37JiPPPJfs7j3b7k2IiMiJ6vRoB3A8jDGTgBHAQmvtqnqqHQIeAibh/J2TCZQDa4G/Ag9aa6PfLVNEREREpBXFXMKiMdbalcaYy4HVOE8Y/SbKIXUo+w+Vk+pzyiWJLlKSWnloJmvhP+dCQjq28EzAGWffFd/uLl2R2joNhrN/Du/cC/3PhE5Dox0RAKmndKd08T6CByvwbS2iYtUBTr56EC/+ZjEAWz7dze5Te9A9t+7h4NJyOjPx4iuY9+IzhIJBZj7xLy7/QUwMHS4iIu2YtXZmtGM4HtbahRCeBK7+OkXAN9omIhERERGR2NQux9Wx1m4DFgE3RTmUDmfbhoJI2ds5ofVPuOVT2L8Wds7HFu6NbHbFKWEhJ4CJt8M1T8ENL0Fa12hHA4DxuMi4sHoC7sNvbaVT12SKuzpzWcRbw1P/XtlgGxMvvpzUbGe4uK3Ll7Bl2aLWC1hERERERERERE4Y7TJhEbYf6BPtIDqcg9XzA559Sq/WP9+Ch6vLyd0iRfWwkBOCywVDLwLT4AOXbS5xaDYJgzMBCBb5KP5kJ9ffNhKfsQAk7SxnwdK99R7vjU9g+g23RtY//e+/CAb8rRu0iIiIiIiIiIi0e+0yYWGMiQMmAmXRjqWjydtWFCn3GZTZuic7uBk2vOeU03pgPemRXe64Vh6KSqSDS7+oP7idRErx7F10i/cSP8r5zrswfPjMekKh+ifgHjz1FLoPGQZAwd7dzHvxf60ftIiIdBjGmI+bsXwU7XhFRERERKRp2lXCwhiTbIyZALwE9AQ+iXJIHYq1lrytTsIiIdlLeqfE1j3hwkcB54luJt0GQRvZ5Y5XwkJOMAEfrH0DPoyN+R68OYmkntLdWQlaCt/cwi23jKQ4/NXLKAnx3Evr6z3eGMPpt3wZ43L+mVnwynNsXrKgtcMWEZGO47QmLKfWKIuIiIiISDsQcwkLY0ywvgUoAhYAFwCHgR9HNdgOpiC/nIoSZ1iXLn3TMK05jE1FESx72il7EmHczRCs3u1OiGu9c4tEwxOXwHM3wGd/dHoXxYDU03vhSnO+axXrDmG2FzPknOqh4PZ8vIfN2wvrPb5L3/6ccv0tkfV3HvwjBfv2tFa4IiLSsZxez3Im8EXgZZxJrn8NnBGlGEVEREREpJliLmGB84dFfUsA2A78Cxhnra3/8V5pce/N2h4p+zNauYfD8mfAV+yUR10NSVm1Ehaaw0JOOIPOqS4vfzp6cdTgineTcX7fyPrhNzZz0Yw+HO7kfP8TrOF/f1tOMFD/0FATLryMQZOnAVBZVsrrf/gV/oqK1g1cREROeNbamfUsn1hrH7fWXgncBdwNFEY1WBERERERabKYS1hYa10NLPHW2n7W2justduiHWtHs2tTYaTs7ZzQeicKhWDhI9Xrk78CgKlxT9R4YmuSYpHjNvo6MG6nvPwZCAUbrt9GEkd3Iq5PGgCBgxWUzt3LbXeOp9TtDNGWURLi0X8tr/d4YwznfPVOsrr1AODAjm28/+jfsNbWe4yIiEhLsNb+FdgJ/CzKoYiIiIiISBPFXMJCYpc/v/qp6EnjclvvRJs+gENbnHLf6dDFmbiXWgkLXbpygkntUt3LongvbP44uvGEGWPIuLi/08cNKP54B9leN2OuHIANzzFjVx5m/47ietuIS0zi4nt+hDfBmfdm3ZyZLHv3zVaPXUREBFgBnBztIEREREREpGli7q6vMSZkjFka7TiktrJyP8nlTsag2Audc5Ja72TJOTBwhlOe/NXIZhOq7lVhvO7WO79ItIy9obq87MnoxXGEuG4pJE/uCoD1hSh8eyszTu9N2phsZ1vI8sF/VuP31d8rJLt7T8792l2R9ZlP/ovd69a0atwiIiJAFpAS7SBERERERKRpYi5hAZQCuosVYxYtz8NT9Yh1dnzrnqz7ePjCC/DNpbXG9Te2RsJCQ0LJiWjgDEju7JTXvQ2lB6IbTw3pM3rjSnLmjilfsZ/KLYf5wm2j6NQrFYCCfWXMfWlTg20MmjyNCRddDkAoGOSNP/+G0sKC1g1cREQ6LGPMdOAUYHO0YxERERERkaaJxYTFRqBztIOQ2tavrr5x2qlPatucNLs/uKp7UphQ9eWqIaHkhOT2wuhrnXLIDyufj248NbiSvKSd0yeyXvj6ZlzGcPYXh+HxOt/Hz2fuZtHc3Q22c8p1N9Nz+CgASgsO8caffkMwEGi1uEVE5MRkjLmvgeUBY8ybwEc4f+/8K8rhioiIiIhIE8XiXd+ngFOMMf2jHYhUO1hjfPphIzpFJQZXzR4W3li8dEVaQK1hoZ6CGJqcOnliLt5uyQD495VS/MkOMnOTmXbVwEidmU+tY+ee+uezcLndXHjnvaRk5wCwe91qZj39WOsGLiIiJ6KfAT8Nvx653A2cjzMD01+stX9u8+hEREREROSYxOJd3z8D7wEfG2OuN8YkRDkeAVyH/AAEsIwb1UoJi9WvwNo3IHT0OPjWWlzU6G2hHhZyouo0GHpMcsr5q2H/uujGU4NxhSfgDiv6cAelS/IYfko3SnO8ACSGDE/8dSmhUKjedpLSM7j42z/A5XaGmFr69musmzOzdYMXEZETzf3Az8OvRy4/Am4B+lhrvxOtAEVEREREpPk80Q6gDptwnobqCTwJPGmMyQfK66hrrbXqidHKdu8rISU8YktJsov4uFa4bIIBeP8ncHgnZPSGr86F+Or5EYN+Py5TI2GhHhZyIpvyVdgzxelt0WlwtKOpJb5POunn9eHwO9sAKHhpI+60OK7/+hie/cVCkkKGjMIgj/13FV+6dXS97XQdOJgzbr2DD//1EADvPfJXcnr1Iadn77Z4GyIi0s5Za++PdgwiIiIiItLyYvGubx+g6o6VCS9dwtvrWqSVLV6yL1JO6JLYOidZ/7aTrADnBm2NZAVAMODHY7zVG9yxeOmKtJARl8OMX8RcsqJKyvQeJE/p6qyELAefWktnaxh8cZ9InZIFB1i2Kr/BdkaddR7DTz0LgEBlJa//4ZdUlpW2VtgiIiIiIiIiIhLjYvGub99mLP2iFGOH0tlfPXfEmLFdWuckCx6uLk/+8lG7Az5fpIdFiBDGZY6qIyJtwxhnaKiEoVkA2MogBx5fzflTelDW20lqejC886/PKSv3N9jOmbd9lc59nI5yBXv38M7f/4RtYDgpERERERERERE5ccXckFDW2u3RjkFqy99WFClPGt+15U+wdyVsn+OUcwZB/zOPqhL0+3Eb53INGd3MlA7GWjCxlaQzLkPWdUM48M9V+HYWEyryceCxz/nyHaP5+/3zSfNBeiU8/OBSvvPdyfW2442L5+K7f8BT37+LitISNi+ez5znn+bka29sw3cjIiKxzhhz3/Ecb639eUvFIiIiIiIirSfmEhYSW2zIRhIWSelxpGTGt/xJFjxSXZ785TpvzAZqJCyssS0fg0gsKtoLK56F5c/AF16ArL7RjqgWV5yb7JuHkf+PFQQPVhDIK6PypU2ceeNQ5v17DR4M8ZtLefejrZx7Zv2xp3fO5fxvfZeXf/MzsJYFrzxHanYOo88+r+3ejIiIxLqfAcfzP4FKWIiIiIiItAOxOCSUxJCCfWX4KoIA5PZNx7T0U96lB2DVC045Ph1GXVtntaDfh9sVTli4lLCQDmLFs/DR/XBwIyx/OtrR1MmdEkfOrSNwJTvfz8othxmwpYj4sZmROitf3kL+/rIG2+k7Zjxn3HJHZP2jf/+DTYsXtE7QIiLSHs1qYDFAfiN1RERERESkHYjJhIUxppcx5h/GmI3GmDJjTLCeJRDtWE90sxfsipQzeqY0UPMYLX4MgpVOedyNR022XSXg9+EK97BACQvpKMZcD+G5W1j+DISC0Y2nHt6cRLJvHg4e55+UsmX5XNMrk8JUZz05aPjsv2sJ+BuOf+y5FzHx4isAsDbEW3/5HXs2rGvd4EVEpF2w1p5mrT29riVc5Z369teoIyIiIiIiMS7mEhbGmCHAMuAOoD+QgPPUVF1LzMV/olm3+mCkXJLcwj/uoB8W/cspGxdMuqOBqn7c4Ru36mEhHUZqLgw82ykX7YYtn0Q3ngbE90oj+9rBzm9moHTmLm44oxckOL839m46zIePrcWGGv7+nnLdzQyZdioAAV8lr/7u5xzas7tVYxcRERERERERkdgQizf8fwlkAu8DU4B0a62rviW6oZ74gvsrAAhhmTgut2Ub3z4XSvY55cHnQ2bveqsGfL7IHBYxedWKtJaxN1SXlz0VvTiaIHFEDhkX9ousu2ft5orLBuCJc760m5fmM+elTQ22YVwuzvnqXfQcPgqA8uIiXv71fZQWFrRe4CIiIiIiIiIiEhNi8dbvqcAO4BJr7UJrbXG0A+qoCosqSa10noYuiTdkpLXwhNv9ToWvL4SJt8HUrzdYNVjhj5Stu4Xn0RCJZQPPgaQcp7zuLSg7FN14GpEyrTsp07s7KxaCH27nnMv7Y1zO93bFRzv5z39WNtiGx+vlknt+RE6vPgAczs/jld/ej6+ivDVDFxERERERERGRKIvFhEUSsNBa64t2IB3doqX7cIXHd3HlJLTOSToNhgv+AL1ParBasLL6cjBKWEhH4omD0eHJ6IM+WPl8dONpgvRz+5I4ykmyWH+IuM92c/ol1T0vyhbu5/mX1zfYRnxSMpd//2ekZDvt5G3ZxJt/+g3BgKYuEhERERERERE5UcViwmILkBztIAQ2rq2evyK3X1oUI4FgZY2blJ7oxSESFbWGhXoSbGzP42JchqyrBhPX1/m9ESrxk7lqP+7BKc5+DHvf38WHM7c32E5qdg5X/OB+4pOcfxK2Ll/Ch//6OzbG37+IiIiIiIiIiBybWExYPAlMN8Z0inYgHV3hrpJIeeSozi3XsK8MQsFmHRKqlbCIxctWpBV1HgrdJzjlvM9h74roxtMExusi58ZheDolAhA4UM7lCXGU5cYB4MGw8n+bWLYqv8F2cnr25pLv/hi3x8lUfv7JB8x78ZnWDV5ERERERERERKIiFu/8/gGYB7xjjBkR7WA6Mm+hM2+Ez1hGDc1puYY/+yP8bRzM+ztUNm2KkqCveg4Lo4SFdERVvSy8SbB/XXRjaSJXkpecW0fgSvUC4NtezM39MylMdwMQbw0fPPw523YWNdhOz2EjOffr34msz3vxWVZ+9F7rBS4iIjHHGHNTfUu4yoAm1BERERERkRgX9cF1jDEf17HZC4wDlhtjduBMwh2qo5611p7ZmvF1VJu3F5IUdOaKKEtx42mpJIG/AhY/BmUH4IP7YPhlEJ/a6GEhX3UPCyUspEMacQUYA8Mvh4ToDtHWHJ6sBHJuGcH+R1ZgfSF8qw9x2+Su/HvWLtIrIDkIz/x+MV++fyrZGYn1tjPkpOmUHDrIzCf/DcCH//o7KVlZ9Bs7sa3eioiIRNfjQH1jAlpgWnipb/8TrRCTiIiIiIi0sKgnLIDTGtjnAvqEl7poIPNWsnRZXqSc3DWp5Rr+/EUnWQEw7BJI69akw6yveggpE6eEhXRACWkw/pZoR3FM4rqnkP2FoRz472oIgX9hHjec3Ztn39lOSgDSK+HhXy7gO784mcSE+v9ZmnDhZRQfPMDSt1/DhkK88affcMX376fHMHXGExHpAHag//cXERERETnhxULC4vRoByBHqxoOCqDf4KyWadRaWPBw9frkrzT50FCNhIXL426ZeESkzSQMziLzsoEUvLQRANdne7j4gt68/fo2EqwhozjEX34zn3vvOwmXq/6k5Gk3fomSQwfZMP8zApWVvPTrn3LJ3T+kz5jxbfVWREQkCqy1faIdg4iIiIiItL6oJyystTOjHYMcLXSgMlI+65ReLdPo9rmwb5VT7jYOejR9KJeQv0bCIk4JCxEObIRNH8KUr0Y7kiZLnphLoKCC4o93goXUOXuZdn4vFry1Aw+G1H0+Fr6+lSmX9q+3DeNycd7Xv4Ovopxty5cQ8FXy6gO/4IK7vsfAiVPb8N2IiIiIiIiIiEhLi/rYOsaYj40x90Y7DqkWDIbYv92ZDDs1O4GktLiWaXjBP6rLU77qjMffRNZfc0goJSykg1v4T3j4ZHj3+7ClfeV8087uTdK4zs5KwNJr2QEGnN41sn/Ju9tZ+t72BtvwxMVxyT0/ZuCkkwAIBgK88cdfs3b2J60Wt4iIyLEyxmwzxth6lk/rqB9vjLnPGLPRGFNhjNljjHnUGNM5CuGLiIiIiLSpqCcscOawGBLtIKTaod2lBPzOHOe5fVtoct/CHbDuLaeckgvDLm3W4dZfPee6Ky7qHYNEostaCFQ45de+AZXF0Y2nGYwxZF4+kPiBGQCEygKM217K9Bq9Kua9spkFr2/B2vqHKvd4vVx41/cYdoozqqANhXj7739k5Yfvtmr8IiIix+gwcH8dy+M1KxljXMBr4X0HgD8D84DbgHnGmE5tFrGIiIiISBTEQsJCYsy6NQci5S5901um0YX/BBtOOkz8Enia2WsjWH3j0h3nbZmYRNqribdBn1Oc8uEd8P5PohtPMxmPi+wvDMXbNRmA4KEKOm86xNSL+0bqLH57G3/43QJCoVB9zeByuzn3a99m9NnnORus5YN/PsiSt15tzfBFRESORaG19md1LI8fUe9m4BzgWeAka+33rbVXAF8D+gH/17Zhi4iIiIi0LSUs5ChzFuyJlIOZLZAc8JXC0v86ZXccjL+l2U2oh4VIDS4XXPIgeJ0b/ix5DDZ9FN2YmsmV4CHnluG4053kpX9XCb3yyzjlqoGROolby3jgl/PwB+pPWhiXizO/9DUmXHR5ZNunT/yLeS8+22APDRERkRh1e/j1B7b2P2SPAFuALxhjEts+LBERERGRtqE7v3IUG55wO4hl0JDs42/QXw7DL4MVzzmvKccw/G7NHhYJ6mEhQmYfmPFzeOtuZ/31b8HX5kJCC/WKagPu9Hhybh1B/sMrsBVBKtYdomd6HKmndOLw7HxcGFJ2V/L7n8/lOz+eQnw9yUpjDNO/cCtxCYnMfeFpAOa+8DS+inImXn5tW74lERGR+sQbY24BugFFwCJr7YKaFYwxCcBkYL21ttaETtZaa4z5APgyMAGY3dQTG2N6NFIlt6pQXl5OeXl5U5uWdkKfqVTRtSA16XqQKroWpKbmXA+tde0oYSG17D9UTprfKZckukhJaoHkQHIOXPQXOPOn1ePuN5OtnnNbCQuRKuO/CGteh60zoWgXvP9juPhv0Y6qWby5yWTfOIwD//kcgpbSBfu4cEIXPjizG3kf7cGNIS3fxx9+Npe7fjKVpMS6v//GGKZeeR3e+HhmPvUfABa/8TLlJcXY3N4YY9rybYmIiBwpF3is5gZjzCLgOmvt5vCm/jg94DfW00bV9oE0I2EB7GxqxVmzZpGTk9OMpvXnZHvw/vvvt9GZdD3EOl0LUpOuB6nSdtcC6HqIfc25Hg4cONB4pWMQK0NC3WyMCR7DEoh24CeahYv3Rsrezgkt23hSFqR1O6ZDTY0eFq54JSxEgOqhoeJSnPWlT8DGD6Mb0zFI6J9B1lWDIutli/M4fX8l/Wb0IIDz3U8/FOBPP5tLcYmvwbYmXHQ5Z9/+DQgnKFZ/8gH58z7FNjAXhoiISCt7DDgT6AIkA2OBJ4GJwEfGmNRwvapukofraafoiHoiIiIiIiecWElr6dHXGLFl/aFIFqt7/4xohlJbjXuNnoRmTtgtciLL6AUz/g/evMtZf+NO+NZS8MRHNazmShrTGQwUvLgR6w/h21HM+MJKUs7uwfIPduHFkHE4yF9/Npev/Hgy2Rn1D9896qxz8cbH885Df8KGQhRv20QoGCBwxhmQqGG/RUSkbVlr7z9i03LgpnDvvxtx5q34YyuG0LOR/bnAIoDp06fTo0djI0jVMO/jY49K2syMGTPa5kS6HmKergWpSdeDVGmzawF0PbQDzbkedu3a1SoxxErC4l3gt9EOQqBodykZ4fLo0ccw10RNh7bAhvdhzPWQkHZcTZmgiaS1XF738cUlcqIZfwuseQ0KtsIlf293yYoqSaM748lJ4uATqwke9hEs8jFg2X5STu3KrFl7ibeGjJIQj9w/ny/9cBJdOiXX29bQU07HEx/Pm3/5HaFAgNKd23j1Nz/l0u/+mNSs5gx1ISIi0moewUlYTMNJWFT1rKivB0XV/1DX1wOjTtbaBv+SrDlsYmJiIolK7p9w9JlKFV0LUpOuB6mia0Fqas710FrXTqwMCbXPWjvzWJZoB34iCYVCJBQ5o2xVuCxDB2YeX4MLHoF3vwd/HAabPzmupoyt/kPKeGPlshWJEcbA5Y/CV+ZAn5OjHc1xieueQudvjCWud/ieTMCSu+Ig507oRKUJDw9Vbnn3byspK2p4eKiBk07i/Du/h3E7ufn8LZt4+gffZs+Gta36HkRERJqoatDfqgz8Fpx+xQPrqV+1vb45LkRERERE2j3d+ZWIdZsKSAg5iYGKNA8u13FcHhVFsOxppxwKQNfRxxdcjSGhjEeXrchRUjpDfEq0o2gR7tQ4Ot0+kuRJuZFtaRsPc8ngDALhDlYl+eW88oelFB0ob7CtXiPH0GPGxXiSnZ9NaWEBz9//A1Z93JaTiomIiNRpcvh1G4C1thxYCAw2xvSuWdE43SDOBkqBxW0Yo4iIiIhIm9KdX4lYsTw/Uk7tVv9QK02y/BnwFTvl0dc4E24fB1dIPSxEmiUUgk3tbwLuKsbjIuOyAWRc0h9czvc/fl8ZV/ZMoXOGM49NYV4ZL/x6Mbs3FDTYVnxmNj3PuZRuQ4YDEAwEeP+Rv/LRfx4mGAi07hsREZEOzRgzxBiTVNd2qofEfabGrkfDr782Ncdqgi8D/YCnw4kNEREREZETku78SkThrpJIud+Q40gwhEKw8JHq9clfOY6oHIbqeSvUw0KkEYe2wn8vgqeugHVvRzuaY2aMIWVqN3K+NAJXkjOsky2sZGqcoV9OAgAVpX5e+dMyHntiVYNtuRMSueieHzPmnAsj25a/9yYv/fInlBU1ayhwERGR5rgW2GeMedMY83djzO+MMa8CK3Emu/61tXZWjfr/Bd4DrgPmGmN+Y4x5EXgI2Ar8uG3DFxERERFpW7rzKxE5vuqHuE6a2O3YG9r4vjPhNkC/06Dz0OMLDHDVmMMCJSxEGrZjHmz/zCm/eReUHYpqOMcroX8Gnb8xFm9uuOeXL8TIQJCJPZ11Y6Fs7n4e+M08fL76e0y4PR7O/OJXmPHlb+EKz2uxc80qnv7ht8nftqXV34eIiHRInwDvAIOAG4Bv4wwF9TZwjrX2hzUrW2tDwCXAz4BO4frTgH8DU621+9sschERERGRKIj6nV9rrcta+8Vox9HRBfxBDux0hnDK6JJEVmbCsTe24OHqcgv0rgD1sBBpltHXwcBznHJJHjx/E/grohvTcfJkJdDpq6NJHJEd2dat2MfYTnGR3w5J28p54MefkX+grMG2Rp4xg2t+9muSMzIBKNqfz7P3fZf182a3VvgiItJBWWtnWmuvsdYOstamW2u91tqu1tpLrbV1Tqhkra201t5vrR1grY0P17/dWpvX1vGLiIiIiLQ13fkVAA7sLCEUtADk9k079oby18GWT5xyZt/qm6bHIRQM4g7fkgwRxLhMI0eIdHDGwEV/gcTw0G7bZsPLt0MoGN24jpMr3k3W9UNJO7t6HtJefsv03ATijPP7K6MoxH/un8+KNQ0/gNpt0FC+8Os/kdt/IACBykre/PNvmf3sfwm185+TiIiIiIiIiEh7pYSFAJC3tShS7nI8CYtavSu+DK7jv8SCfj9u4wzfEiJ03O2JdAhpXeH658Abnudz7evw1t1gbXTjOk7GZUg7sxfZNw7DxDmJzLSKIGd3SiDF69RJ9cNHf1vJW+83PMxTalYO1/zstww/9czItoWvvsCrv/uF5rUQEREREREREYkCJSwEgI/m7IiU03ukHFsjgUpY86pTjkuBMV84/sCAQKA6YWFN+77ZKtKmek6Cq58El/P9Yclj8MmvohtTC0kcnk3nr43GneUMX+fxhTgjxUuXJOeftXhr2PLyVh5/Yg2hBvKcnrg4zvnqXZx20+2YcIJ167LFPPHdb7B12eJWfx8iIiIiIiIiIlJNCQsBwJ9f6bxi6dLzGBMWnnj4xhI48z6YdhckHEdPjRqCPh8uEx4SyqiHhUizDDwLLq3R82nW72DBI9GLpwV5c5Pp8o0xxA/IAJzJt6fEuRmS4cEALgyhZYdZvzgB28CvDmMM4y+4hCt++HMSUp3fW6WFBbz8m5/x4b//gb+yfc//ISIiIiIiIiLSXihhUYMxZqIx5m1jTKExptQYM98Yc3UTjzXGmPOMMf8wxqw0xhw2xpQZY1YYY35ojDmOWaxb1669xaQEnHJpsou4OM+xN5acDafcDad+t2WCAwI1hoSyLvWwEGm2UVfBub+tXt/8CQ12O2hHXElecm4dQcq0bpFtgzFM7RRHXHi6m9SDXvYvTKTssK/BtnqPHMPNDzxI3zHjI9tWvP8WT37vTvZt2tAq8YuIiIiIiIiISDUlLMKMMacDc4CTgeeBh4Fc4DljzN1NaCIeeBu4FdgDPAr8G0gEfgnMMsYktULox23xkrxIOTE39kIM+v24XRoSSuS4TPkKnHIPjL4OrnmyReaXiRXGbci4qD+ZVw4Ct5Ol6OS3nN4pngyvs+4r8PDKAyvYuvJAg22lZGZx2fd/xplf+hqeuHgACvbu5pmf3MO8l54lFNSE3CIiIiIiIiIireXEuWN1HIwxHuCfQAiYbq29w1p7NzAa2AD8yhjTu5FmgsCPga7W2nOttd+11n4TGA68AUwEvt5qb+I4bNtYECn3DA+t0mz+8pYJpq6mfZWRHha6YkWOwxk/hkseArc32pG0iuQJXej05VG4Up33l+ALMT3dS49EZ39laYC3H1rJH349n5LS+ntbGGMYM+N8bvztX+jSbyAANhRi7vNP87+f3kvBvj2t/l5ERERERERERDoi3f51nAH0B56x1i6v2mitPQz8CogDbm6oAWut31r7S2ttwZHbgV+HV09tyaBbSume0kh57NguzW9g7wr4/WB470dQsL0FI3MEK6pvLFp303pYrNi/gve2vcfOop1Yq14ZIgAYc3TPisKdsP/EGe4ovlcaXb4xFm/PVABMwDI+3suILAiPEEXC9jL+9oPPWLoqv8G2srr14LpfPMCUK67FGOfntnfjep6891us/Ohd/W4REREREREREWlhxzFZwQnltPDr+3Xsey/8ejzJBn/4NdDcA40xPRqpkltVqKyspLy8eT0dgsEQiSVBwFDmtnTt5G12G945D+KpPAzzHsSX2oPg2FuadXxjyotKqZoAxBp7VHwhG8Jlat+EfX7t87y+9XUAUrwpDM4czJCMIQzOHMzQzKH0TO151DFtqaKios6yxK4T8TMzB9YT9/x1gMF3w+vYtO7RDqllxEHqTQMpeWM7vpUHAegf8tI118XC/ZUcDkKaD2b/fRWLJ2bxhWsH4WpgiKxxF11Bt6Ej+fDRv1KUn4e/soIPHn2QjQvncdqtXyEpPaON3ljHcSJ+3050+szap8rKymiHICIiIiIiUosSFo6B4deNR+6w1u4zxpTUqHMsvhh+rSsh0pidTa24YMECNm/e3KzG9+53EW+TASiOD/Lhhx826/g4fxEzVr8MgM+dxPv7sgm+fyxvs37+HXuZwnAASirKeL9G+8WhYh4veZxzE89loLf6I1pUvChSLvGXsCR/CUvyl1THTRwZrgxOij+JCfETqs9l/cyvnE+8iSfRJJJgEkgwCRgMFkuQIBZLyIbo5emF11QPrXMweJC9wb0ECRIiRNA6ryFChGyIYPi/RJPI5PjJkeNmzZrFwsqF5AfzI/Vt+L+QrS4DDPAMYFz8uFo/nzfL3sRiMVX/GYO76j/jxoMHj/EwyDOIbHd25LjyUDm7g7vxGi9xJo444og38cSZODx4oprQiXWzZs2KdggtYuqm39G52BneyP/YRcwe+CP8ntQoR9WCkqBz73h6bE/CYEiqCHFaqpeN/iCbykJgDf5FBfx29RwGTSgnNbnh5nJOPQ+Wzado0zoAti1fwhP3fpOcsZNJ7TsQY0zDDcgxOVG+bx2JPrP248CBhuf1ERERERERaWtKWDjSw6+H69lfVKNOsxhjzgO+DKzFmYQ7puzf7yYrXHalNX8y2T4HP8ZtnY4j27NPJeiOb8HoHCZUPexKzUm3fdbHk6VPkhfK48nSJ7km6RqGxzmJjbMSzmJXYBd7g3vZHdxNsS2u1aYPH/mhfHy29jj25bac9yreoym+k/odstxZkfUNgQ28Vf5Wo8dlu7JrJSwA1vvXsz6wvtFjE00i46idsFjkW0SQxj+79KT0WgmLfaF9PF76eL3144hzEhkmjq+nfp14U/3ZrvKtYr1/PR7jwYvXeTVePFS/GgxprjQGeQfVavdz3+dU2Mafvu3h6UGuO9KBCJ/1sdK3stHjAIZ7h5PoSoys7w/uZ3ug8eHKvMbL6LjRtbZt9m+mIFQ90pvF1kpEhXCSUV3dXRnsHVzr2JkVMxkTN4Z01zH9+mh1S3t/mZM3/h8plXmkVuxhyuY/MnfA9wi6Exo/uD0wkN+tkpLUAL22JpNc6vyTN9Drpme6i3VlQbb7LF3KPOz5LBnP0Er696q/I5zL66XzpFNI7taL/IWzCVaUE6qsIH/+TIo2r6PThGnEZ2bXe7yIiIiIiIiIiDRMCYtWZIyZCDyHkwi5ylp7LP3uezayPxdYBDB58mT69+/frMbXrlgCODftJ00byOknN2NImKCPhH/cA4A1Lnpe/nN6pDcWbvNt/mgu7HXKqZlpzJhxCsFQkHvn3suew87T4Z2TOnPjmTeSk5gDwAxm1GrjQPkBNhRuYF3BOtYXrGd94XoKKgsYP3I8M/pW1918eHP1IGCNOOnkk+iV2iuyXrSpiLeWNp6wiE+MZ/r06ZEnUKdPn857i99j/Z7GExa9e/Vmxrja7+2nL/wUmjCU/qTxkzip60mR9QX7FkADD8H68DkJHQvnnX0eHlf1r4t1K9axfP3yRs85uctkvnHqN2pt+/e7/2Zr0dZGj71z9J3MGFz9XvPK8vj5mz9v9DiAa6ZfQ//06u/Ca1te49XFrzZ6XOfEznx3xndrbfvB3B/w0a6PGj320n6XMmNC7c/mVy//ivnB+fxwwg85s+eZTYq9rZnCSdinLsKU5pNVtpnz8x+k8oonIeUY5rOJQRUVFcyaNYt1I4uYmjoc/6x8bGWQBAxjkjz0jAuxqjwIQRd2dQKbK5P54u3DiY9r+J/HsiuvZvZT/2bzwnnOefbnseu9Vxl51nlMuuxq4hKT2uLtnbCqPjdwfkcmJJwgSbQTmD6z9qm5PXNFRERERERamxIWjqqeFfU9Bp0GFNSzr07GmAk4Q0CFgHOstauPJTBr7a5GzhMpx8fHk5iY2EDto3ULuSnGud990uSeJCY2o4fEyjeg1Jm01gy5gITcQY0ccGzcoer36Ipzk5iYyG8W/obZe2YDzhwV/zjrH/TMrD9Z0jOxJz2zenImtW8aW2tr/Qx7uXvxp9P+RLGvmCJfEcW+Yop9xVgsbuPGZVy4Xc5QS53SOpGYUP3znth9Ive47sHj8jhDMdV49bq8uF1uPMZDkjep1o2chIQE7p10L1/zf81pP3yeqsVt3JEYk73Jtc4J8L8L/+cMHWWdIaSCNog/5Mcf9OMP+fGFfPiCPkbljqp1ffTN7svtI2+nIlhBeaCcMn8ZZYEyyv3lznqgjDJ/GQEbIDW59jBBgSZOx+J2u4+6Jps61JTX6611bEKo6Te/EuITah0bFxfXtAMNR8Xrdrubdqyr9rHWWtwuN8W+Yn4w7wdcfuByvjfxeyR5Y+xGduIQuPEVePx8qDiMa99KEp+6EK5/HroMi3Z0LcdA6kndiZvUi8NvbaFs+X4Asj0upqcYtvpCrCsPYTaV8dpfVnP+rcPp1LP+4bESExO59O4fsW3lMj7+zz8o2LsHGwqx8v232LxoHqfe+CWGnDRdw0S1gISEhGb/2ybRpc+s/YiPb/mesSIiIiIiIsdDCQtH1dwVA4ElNXcYY3KBFGBhUxsLJys+AFzADGvtokYOiQpfRYCSPGcC65weKWSkNfOP1gUPV5cnf7UFI6vN+gKAM1eE8bh4as1TPL32aQA8xsMfT/sjAzIHHFPbR95MTItL46zeZx1TW0OyhjAka0iT6h45cXif9D7HdM6q8x6L3mm9+da4bx3TsV8f83W+MPQLVAYrqQhW4Av6qAiEX8PrFkvnpM5HHzv26xT7iutotbYROSNqrafFpXH/Sfc3Kb5OSZ1qrY/tPLZJxybUMRTS1YOvZlr3afh8PlavdvKOo0eOJjE+EbfLjdc4yaiuyV1rHVceKOekbifx3jany87LG19mad5SfjP9NwzPHt6k99FmckfAF9+Dp6+Cwzud5T/nwNX/hf5nRDu6FuVOjSPr2iEkTcyl8NVNBPaX4zKG/vFuunldfF4eZM+eMl741SJGTO/OpIv7kZDsrbe9PqPGctMDf2fxGy+z4JXnCfgqKS04xNt/fYDPP36PM279Ktk9Wr7nmYiIiIiIiIjIiUgJC8dM4AfADOB/R+w7p0adRtVIVrhxelYsaKkgW9r+HcXY8FBCXfqmNe/gnYtgdzi302Uk9D6p4frHIeirfpr/YOAQv1v0u8j6fVPvY2q3qa12bqlbRkIGGQkZx3Ts2b3PPqbjkrxJXD7w8mM6tm96X/qm9z2mYyd3deYbKS8vJ3GT88TwjD4zGn16OMmbxAPTH+Dk7ifzqwW/ojxQzraibdzw9g3cOfZObhp+U2xNbN55KNz2ETx7DexZBpVF8PTV8K2lkNGr8ePbmYT+GXS5cxzFs3dT/PEOrD9EosswMdlDvj/EyvIgq2buZuOSfBLGZ3HtVUNxe+r+vDxeL1Muv4ahJ5/GJ/99lM2LnV/7Oz5fyRP3fpMJF17KlMuvxashckREREREREREGhRDd8ui6iNgC3C9MWZM1UZjTDrwQ5xJHp6osb2rMWZIeD81to/HSVZ4gPOstfPaIPZjlre1KFLu0qeZCYsF/6guT/kKtOKwJ9ZXPaH0skMrsOEJG+4YdQeXDbys1c4rcryMMVw64FJeuOiFSK+KQCjAH5b8gS9/8GXyy/KjHOERUrvALW/B4Auc9TN+fEImK6oYj4u003vS5dvjSRiaFdne2evi9FQPQxJc+Er8FM7M47ffncmchbsbbC+9cxcu/e5PuPTe+0jr5MwBEgoGWPjaizx291fZuGAu1jZhwhkRERERERERkQ5KCQvAWhsAbsP5ecwyxjxqjPkDsAIYBPzQWrutxiG/BtYCkbvlxpgsnGRFBvAZcLYx5mdHLHe1xftpqhUrqm+W5vatb/qOeuSOhJRcSMqBEVe2cGS1hfzVCYtyUwHA+X3P5xtjvlHfISIxpXdab54870m+NOJLGJzk3vy987ny9SsprCiMbnBHikuGa56Eqx6HaXdGO5o24clKIOfm4WTfNAx3hjM0ntsYBie4OSPVQ2ePIb3csuw/6/jtL+awN6+0wfb6j5/ELX98iClXXIvb43RkLD6wn9f/+Cv+99PvsXvdmlZ/TyIiIiIiIiIi7ZGGhAqz1n5ijDkZuB+4BmfShFXA96y1zzWhiTQgM1w+N7wcaTvw5+OP9viFQiEObCsiCUOlsaR3bubkmCd/G6Z8HQ5uBG/rDnNiayQsgm7LuM7j+MW0X2gyW2lXvG4vd42/iyndpvCj2T8ivzyf8/qed8xDa7UqlxuG19F7ae2b0GsqJGe3fUxtIHFYNvEDMij+eAfFs3ZDyJLsNkxN8bDHF2JVeRCzu5JnfjafjMmduOmGEXjrGSbKGxfPtKtvYNgpp/PRfx5m+8plAOxZv4b//fRe+k+YwinX3az5LUREREREREREalDCogZr7ULgvCbUuwW45Yht24B2cwd9y44ikkJOuOUp7nrHZm+QJw66tP7kwTYQipTPHjiD28+YRJw7rtXPK9IapnSdwksXv8Sjqx7lznHtqAfDpg/h+Zsgszd84UXI7h/tiFqFK85N+rl9SRrbmcLXNlO55TAA3eJcdPYa1lWE2FIZomL+AR5Y/iknXTWQ06bVn3TI7NqdK374czYvXsDsZx7n0J5dAGxePJ8tSxYy4oyzOenK60nJOjGTQCIiIiIiIiIizaEhoTqoZcvyIuXkbslRjKRx1l+dsOic3oX0+GYOXyUSYzISMrh34r3Eu+Nrbd9Xuo9Sf8PDDUVFKAjvfB9sEA5tgX+dCdtjeoqe4+btkkzO7SPJvGYwrhQvAB5jGJHo5rRUD1luQ3oFrH5yI7/7yWwO7impty1jDAMmTuHm3/+ds+/4JimZznwZ1oZY9dF7/PvOO/jsf09QWRaDn72IiIiIiIiISBtSwqKD2rGpIFLuMzCzgZo1WAtz/gqFO1opqtoeXfkoT6x+olYPC1ecOgXJiWnO7jlc9cZV/HTuT2NvYmaXG258BTqHe1SVF8ATF8OCR53fCycoYwzJYzuTe/cEkqd0jfShS3MbTkn1MDbRTZyB5P1+nvvFQj56fA1FB8rrbc/ldjPqzHP44l8e5eRrbyIuMQmAgK+SBa88z7++dTtL3nqNgN/fFm9PRERERERERCTmKGHRQVXsq76pNmF8l6YdtH0OfPAT+Mto+PiXrRSZ480tb/K3ZX/jgcUPkF9c3RvEFe9t1fOKREOxr5h7Z91LYWUh7217j2fWPRPtkI6W0RO++C70P8NZD/rgne/C01dCje/oiciV6CHz0gF0/voYvN1TItt7xbs4K83DqEQXqQbWzd/H0z+dz4dPrWXnnuJ62/PGJzD5sqv50l//ybjzL8HldhKxFcVFfPrEP3ns219m9cyPCAWD9bYhIiIiIiIiInIiUsKiA6r0BUgudXotlHigR9fUph244GHn1YYgZ1ArRQeL9i3ivjn3RdbjbPV8FZ54zV0hJ57UuFR+Pu3nkfXfL/49K/aviGJE9UhIg+ufh8lfrd626UP4x1RY91b04mojcT1S6fz1MWRc0h+T4AbAawx9492cnubllBQ33V2w8bO9vPSLhfzlT4s4UFB/j4uktHROv/l2vvjnhxl68mmR7UX783n3oT/x2He+wqpP3icYUI8LEREREREREekYlLDogJau3I83PLZJKLOJPRYKtlffkEzJhWGXtEpsWw9v5a5P7sIfcm7QXTXoKjK81XNWuBLUw0JOTGf2OpNbht8CQCAU4O5P7+ZQxaHoBlUXtxfO+w184SVICffOKjsI/7se5j4Y3djagHEZUqZ2c4aJmpyLiav+ZzTL42Jcsodz0jyMiXeTvrGY//5wLv94eCklpb5620zvnMv537yHG37zF3qPGhvZXrhvL+8//Ff+fecdLH//bQK++tsQERERERERETkRKGHRAa35fH+knN27ib0rFv3T6VkBMPFL4Gn5ng4Hyw/ytQ+/RpGvCIBp3afxw8k/hBqjoniUsJAT2J3j7mRc53EA5JXl8YPZPyAYitFhgQaeBV+dC4MvcNbjUmHohdGNqQ25U+PIvGwgXX84mYxL+uPpkhTZF+cyDEhwc1aalzOSPHRZfZiH753Nvx9fSVl5/b0luvTtz5U/+gVX//TX9BoxOrK9+MB+Pvr3Q/z7W7ex5K3X8FdWtOp7ExERERERERGJFs1g3AHlbysiLVwePDyn8QN8pbD0CafsjoPxt7Z4TBWBCr71ybfYVbLLiStzMH849Q94XB5Mjfu17gQNCSUnLo/Lw+9P/T1XvXEVBysOMnfPXB5Z+QhfG/O1aIdWt+QcuPZp5/eDNwky+0Q7ojbnSvCQMrUbyVO64ttRTOn8vZSt2g8BZzLyTl4XnbwuRoUs25cf4rFFs3CPyuLa64aRkRZfZ5s9h42k57CR7NmwlvkvP8fWZYsBKCk4xKdP/JMFrz7PhAsvY8yM8yMTd4uIiIiIiIiInAjUw6IDSg3PXxHEMmFMEybcXvEsVBx2yiOvgpROLRpPyIb44Wc/ZOX+lQB0TurMg2c+SLI32algTaSuW5NuywmuU1InHjj1AVzG+fX88IqHmbN7TpSjaoAxMP5mGHVV7e2VJfDyHVCwLSphtTVjDPG908i6ZjBdfzCZ9PP74slOiOxPcBkGJ7i5OMXLhA1FvPPjuSx8fTMVpfX3uOg2aCiXf/9n3PDrPzNg4pTI9vKiw8x+5nH++fUvMu/FZ6koKWnV9yYiIiIiIiIi0laUsOhgKkr9mOIAAF16p5Gc2EgCwFpY8Ej1+uQvt3hMDy1/iA+2fwBAkieJh858iNzk3Mh+E6pOWLji3C1+fpFYMzF3It8c+00ALJYfzP4Bxb7iKEfVTO9+H1Y+B/84GVb8z/ld0kG4k72kTu9Bl7snkPOlESSOyI7kXY0x5HpdnJLkIeOz3Xx231zmPbuO0sLKetvr0m8Al9zzY2564EEGnzTdSRIBFaUlzH3haR75yk289dcH2L5yOaFYHUJMRERERERERKQJNCRUB5O/vShS7tovvYGaYZs/hgMbnHKvk6Dr6IbrH4Pz+57Pm1veZF/pPn5/6u8ZnDW41n4TMhDOUxiPcmzSMXxxxBdZkb+CRXmL+MnUn5Aa18T5ZmJBeSFsneWUfcXwypdh2VNwzi9b5XdIrDIuQ8LATBIGZpJRVEnpojwK5uzGXeYkjZNchiEuQ2h5PqsX57Em1cPk64cwdFB2ne116tWHC++8l5Ouup6Fr77AmtmfYEMhAn4f6+bMZN2cmaRmd2LY9DMYfuoZZHbt3pZvV0RERERERETkuClh0cHkba1OWHTpk9ZAzbAVz1aXp3ylFSKCfhn9eOr8p1iWv4xTepxy1H6XrZGkUMJCOgiXcfF/J/8fhZWF9E7rHe1wmicxA77yGbxzb/XvkG2z4ZFTYcwX4IwfQ1rXqIbY1txp8aSd2YvU03tSse4Qh2fvxr/1MAZwGUM3r6FbRYjif67m1ThD9wv7MXFq3QmHrG49OPdr32bKFdex9O3XWPvZp1SUOD1wig/uZ8Erz7HglefoNmgow087k8FTTyE+KbkN362IiIiIiIiIyLFRwqKD2bP5cKSc268JCYtL/g4DzoI1r8HgC1otrpzEHM7ufXad+0yNkcvUw0I6kvT4dNLjm9ATKhYlpMFlD8PQi+C9H0HBVsDC8qdg9Stw8l0w9RsQ17EmjTYuQ+KwbBKHZRM4VEHhZ7soWZiHJ+DMLZTqNkwIQvDVzXz68iaKBmdw+rVDSE05eoLujC65nHHrl5l+wxfZsnQhqz/9kK3Ll2BDTlt7Nqxlz4a1fPLYowyYNJURp51NzxEjcbk0tJ6IiIiIiIiIxCYlLDqQUCjEpnUHScAQijOk5SQ2fpAnHkZf6ywtZF/pPp5a8xR3jrsTr7vxSbSreliEbBDjMo3UFjmxvbLxFUZ3Gk2/jH7RDqVphlwAA86GhY/CzN9B5WHwl8Inv4T1b8Ptn0TmZOhoPFkJ5Fw8gOzz+5G3cC9739tGp0on2eA2hgFuA5uK2Hb/fDaleuh3cX9Gj8k9uh2vl0GTpzFo8jRKCwtYO/sTPv/0Qw7u2gGgIaNEREREREREpN1QwqIDWbuxgITwBNZFSS5MFG4SlvpL+fpHX2dDwQbWHVrHH0//I2lxDff0cIV7WITQZLLScVUEKvjlgl/y6qZX6Zfej2cveJYkbzvpneCJg5O+AaOvg5m/gUX/BhuE8bd22GRFTcbjIvek7uSe1J1DWwtZ8/x6uh6qJD78s8l0u5hYFiLw7AYWvLSZrOk96HdaT9zeo3ucJWdkMuGiyxl/4WXkb93M559+yLo5M+seMmrwMEacdhaDppxMfFI7uZZERNoZY0x34CrgfGAIkAscAuYAv7PWLjii/s+AnzbQZF9r7bZWCVZEREREJAYoYdGBrFiRHymndW9kPPOAz7nJ2IL8IT93f3o3GwqcSbx3l+wmEAo0eIy1Fnf4Mg2ZUIvGI9KeWCyrD64GYMvhLdzy7i08cOoD7Wt+i+RsOP8BmHibk7QYe0Pt/cX7IFABmX2iEl4syOqbwcnfm0yw0s/yVzbhWnGATtbZ5zGG7v4QfLSDtR/uINgvndzz+9Cl59FJX2MMXfoNoEu/AZx645fqHjJq/Rr2rF/Dx489wsDJJzH81DPpNXwUxqWh90REWtA3ge8Bm4H3gf3AQOBS4FJjzPXW2ufqOO6/wLY6the2SpQiIiIiIjFCCYsOZPfmQqqeoe03OKv+iqEg/OMkyB0Bk78KvSYf97mttfxqwa+Ys2cOAGlxaTx01kNkJTQQBxAKBnAZZ7z1EEpYSMeV6Enkj6f+keveuo4SfwlrD63lmjev4adTf8p5fc+LdnjN02kwnP+7o7d/cJ8zv8Xo62DanZDdv+1jixHueC/jrx0K18K+z/ez+fVNdD8cwBPukJJhgK2HKf3bct7DUjwkg9MvH0R2xtFD/dUcMqqk4BBrP/uU1TWHjPJVsnb2J6yd/QmpOZ0YfuqZDJ9+Jhm5HWtidBGRVrIQOM1aO7PmRmPMKcBHwD+MMa9aayuPOO5xa+2nbRSjiIiIiEjMUMKiA/HnV0TKkyY0cCNq4/twcKOzlBfCTa8e97kfW/0YL254EQCvy8tfTv8LfdP7NnpcwOfHbZzL1Lrsccch0p71Se/Df8/7L3d/ejfbirZR6i/l3ln3snDfQr438XskeBKiHeKx270EVoYfMF36X1j2JAy/HE75DnQZHt3Yoix3RCdyR3QiWO5n7wc7qFicR4LPGSIvzmUYjoENRWz/xULeTXCRMjmXc87pS0L80f/Ep2RmMfGiy5lw4WXkbd7I5zM/Yt2cT6ksLQWg+MB+5r/0P+a/9D+6DhzMgIlTGTBxKlndNN+FiMixsNa+XM/22caYT4AZwEhgcZsGJiIiIiISo5Sw6CBKyvyklIcAQ5EXOmU1MOH2/H9Ulyd/5bjP/e62d/nTkj9F1n8x7RdMyJ3QpGODgRoJCw0JJcKgzEE8d+Fz/N/8/+ONLW8A8OKGF1mxfwW/P/X39EtvJ5NxHyl7IJxyjzM5d2UR2BB8/qKzDDoPTrkbek6MdpRR5U700uPi/tiL+lG09hBb39hM5qEK3OG5Ljp7XXQOQsVne5n1yW42Zscx/IxeTJ/SDdcRwzwZY8gdMIjcAYM47cYvsXnJQlZ/+gHbVizDWud37d6N69m7cT2zn3mcrO49GTBxCgMmTiG330ANGyUi0jL84de6xkidboyZDISAjcCH1tqSYzmJMaZHI1Vyqwrl5eWUl5cfy2kkhukzlSq6FqQmXQ9SRdeC1NSc66G1rh0lLDqIxcvycOPc1DI58fVXzFsDW8M91rP6wcAZx3Xe5fnL+dHsH0XWvzHmG1zQ74ImH++vrMTtquphcVyhiJwwkrxJ/PLkXzIxdyK/WvArKoIVbCzYyLVvXstj5zzG8Jx22CMhIQ3O/Amc9E1Y9C+Y/xCUHXT2bXjHWfqc4vS46Hd6h56s2xhD+rBsxgzLJlBSyepXNuFde4i0cE43wWUYFu9maHGAvJc288zzG+l/Wk+GTu1GRpejJ9f2xMUxeOrJDJ56MiWHDrImPDzUgZ3bI3UO7d7Jwt07WfjqC6RkZtF/gpO86Dl8JG6Pt63euojICcMY0ws4C9gLrKqjyv1HrBcaY+601j5xDKfb2dSKs2bNIicnpxlN68/J9uD9999vozPpeoh1uhakJl0PUqXtrgXQ9RD7mnM9HDhwoFVi0FXSQaxfU30BdeqdWn/FhY9Ulyd9GY7jKdqdRTv55sffxBfyAXDpgEu5Y9QdzWojWFE9nK81GhJKpIoxhssGXsbInJHcM/MeNh/ezMDMgQzKGhTt0I5PYgZMvwemfA2WPgFz/wpFu51922ZDeQF85bOohhhLPCnxjL5xONZaStYfYutbW8jYX4GLcC8KryHX66Js7h4WfbKLss5J9JzQhU7DMulZx2TdKVnZTLrkSiZdciUF+/awedF8Ni2ez+71a8E6v4NLCg6x4oO3WfHB28QlJtF37AQGTJhMnzHjSUhOaeOfgIhI+2OM8QJPAvHA96y1wRq7VwBfBD7FSWbkAhcCPwceN8YUWmtfb9uIRURERETajhIWHcTBHcWkh8vDR3aqu1LZIVgRHkM+LhXGXH9c50yLT6Nfej+W5i9lctfJ3Df1Pkwzn4oOlvurV9zHFY7ICWlA5gCeueAZ/rz0z9w8/Ga8rhPkafe4JJjyFZjwRWduizl/hoObnB4WNX+PWAu+EohvIBHbARhjSB2Szagh2QSLfeyfvZOSeftI8DvdLpJchqGJbiiupOTD7Wx7dyszDZT1TWHajL4MH5x9VJuZud2YcNHlTLjocsoOF7J5yUI2LZrH9lXLCfqd382+8jLWz53F+rmzMC4XPYYMp9/4SfQfP4nMrpr3QkTkSMYYF/A4MB34p7X2yZr7rbWvHHHINuBBY8xa4APg/4DmJix6NrI/F1gEMH36dHr0aGwEqRrmfdzMUCQaZsw4vl7zTabrIebpWpCadD1IlTa7FkDXQzvQnOth165drRKDEhYdhLvAubnkxzKuvoTF0v9CIDz22NgvOEO0HIf0+HT+OeOfPLziYW4Zccsx3UgNVPoiZQ0JJVK3JG8SP5z8w6O2rz+0njUH13DpgEubnSyMGZ44GHejk0Bd/w4MPq/2/m2z4dnrYNTVMPG2Dj9BN4A7NY7c8/tjz+1HxYYCDs/ejX9zIVVXQIrbkOJ20xewu8o4/M/VvGtDHO6axNAZvRk1qstRbSalZzDyjBmMPGMGvopytq1YyqZF89mydGFkwm4bCrFzzSp2rlnFzCf/TWa3HvQbN5H+4yfRffAwXG5lnUWkYwsnK/4DXA88BTR5sjhr7UfGmM3ASGNMmrW2qBnHNviXZM3/R0hMTCQxsYG57qRd0mcqVXQtSE26HqSKrgWpqTnXQ2tdO0pYdABlRT5SwlP5JecmERdXx8ceDMDCf4VXDExq3tBN9Ylzx/Gtcd865uODFdUJC/WwEGm6Un8pd8+8m+1F23lry1t8e8K3GZ7djm/mu9ww9MKjty/6t9PDYvF/nKXXVCdxMfQi8DQwX08HYFyGxCFZJA7JIlBQQdnSfErWHCSwu4Sq/K8xhgwPZOCGA5UEn17P4ifXcSgjjs6Tcxl1Wm9cntrZ4riERAZNnsagydMIBgLsXreazUsWsmXJQgrz9kbqFezZxZI9u1jy5iskJKfQZ8x4+o2fRJ9RY0lMPb6EuIhIexNOVjwG3AQ8C9xirQ01s5kDwAAgCWhywkJEREREpD1RwqIDyNt6OFKudziodW9CUfjhq4EzILv/MZ3rxQ0vcnrP08lOPHp4kWMRrPRX5yk87fQJcZEoeH/b+2wvciZNXrBvAde+eS3n9z2fb479Jj1SmzHUQyyzFlK6gDcZ/M5T/uyY5yzJnWDsjZgR10U3xhjhyUwg7cxepJ3Zi1BlkMpth9m7aB/l6wtI91ffL3MbQ67bkFscgA93seODXVSkxhE/IINOk3NJ7pNW60lct8dDrxGj6TViNKfddBuH9uxiy5KFbF6ykD3r11J1L66itIR1c2aybs5MMIZOvfrQc/goeg4fRY+hwzX3hYic0I5IVjwH3HjEvBVNaSMZGA6U4iQuREREREROSEpYdAB5W6sfwOrSt56nWuNSIHck7FvljBt/DF7Z+Ar3z7uff6/6Nw+d9RB90/seUzs1hSoDkYSFcSthIdJUlw28jLT4NP6w+A/sLN4JwNtb3+aD7R9w3ZDruGPUHaTHpzfSSowzBs7/HZzxY2eei0X/gv3rnH2l++GzPxI/589MSh3Nuq6XRzfWGOKKd5M4OIt+g7MACJb42DZvD/sW7iWryE9qjYSEx0BKiQ+W51O4PJ+91nIgyUPi0CyGndGbuJzq7p/GGLK79yS7e08mXnwF5cVFbFu+hM1LFrJtxVIqy8JJJWvZv30r+7dvZenbr2GMi859+9Fj2Eh6DR9F9yHDa89TIiLSjtUYBuom4AXghvqSFcaYVKCrtXbDEdsTgX8CqcBj1tpA60YtIiIiIhI9Slh0AHnbmpCwGHgWDDgTdi2CHhObfY55e+bx83k/B2BXyS4W7VvUYgmLCI8msRBpjjN7ncn07tN5fsPzPLLiEQoqC/CH/Dyx5gle2fQKt4+8neuHXk+8u50PnZSQBpNud4aC2j7XSVysfR1CAYwN0bVoGRtzL452lDHLnRJH/7P70P/sPgBsXpnPhg+30aUwQHplgPiaY5sbQ8/yICzdT/7S/RQBxdnxdJ2US/cJXXEnV89VlJiaxtBTTmfoKaeHh45aw5Zli9i5eiX527Y4PWQAa0PkbdlE3pZNLHnzFYzLRac+/fAlJJPYuSu+8jKNqSoi7dl9wM1ACbAB+HEd80q9aq1dDmQD64wxi4C1wD6gC3AW0ANYBXy3bcIWEREREYkOJSxOcP5AiB0bC3EBcaleUjIT6q9sDPSc1OxzbCzYyHc+/Q6B8MNeNwy9gasHX32MEdcW9PmpmrzC1JOwsH4/Bc8+y8HHHidUXIynU6fqpXPnSNnboztJY8e2SFwi7YXX7eULQ7/Axf0v5rHPH+OJNU9QGayk2FfMH5f8kX2l+/jB5B9EO8yWYQz0meYsxXmw9AlCi/9DUSCOgqR+teuueA4O73Qm687oFZ14Y1T/UZ3pP6ozAP7KAPsW51OwLJ/ArmKyrMVT40ZbGpB2sBLe2c6et7dR4DZUdEmi/yk9yByRgyvO+f3tDB01il4jRgFQUVLCrrWfs3P1SnauXsn+HdsibdpQiPwtmwAoXLOCf898j859B9Bj2Ah6DhtB98HDSUjREFIi0m70Cb+mAD+qp842YDlwCHgImAScD2QC5TjJi78CD1pry1svVBERERGR6FPC4gS3au0BXEHnKdb9cbbF288vy+drH32NEn8JAKf3PJ17JtzTYu0HfQEiCQtv3QmL3ffeS/E770bWfSUl+LZuPapewogR9H3xhVrbdnz5y/h37cbExeGKi8PEx4eX8Hqcs552wfkkT6pO5gQOHiT/939wnhC2Iay1ELLV68EQhEJYGyL3vvvwdu4cObb444858Pjj9DhwEKxl7/+ew2WMc2wohMVpy9O5Mz3//mCtePN++zvKFixwbswaAy4XGDCY6m3GkHrG6WTfdlvtn9Pd92D9fnC7MC638+r2YLzeGouHtAsvImHwoOr3euAAxZ984ux3ezAeN3g81WW3G+PxYjxuEkePxniqf6348/MJFhTU9/FGuBITietV+6axb9s2QpWVjR7rycnBk109Z4oNBKjcvLnR4wDievXCVePJ7eDhw/j37auzrq+igri9e8FafBs3kjhqVK39lVu2Ejx0EBsKha+FECYhgcQRIzBeb51ttqXUuFS+Ne5bXD34ah5a/hCvbnoVj8vDTcNvinZorSO1C5z6XSonfIWFbz9/9BBD8/7mDIH38S+g98lO4mLYJZCYEZVwY5U33kPPad3oOa0bABs3F7D0w23EbSumu9+S7TbO7y+cIaGyQsDeMsqf30Dp8xvwpXjx9ksne3wXkgdkRob2S0hJYcDEKQyYOAWAsqLD4QTGKnauXsnBXTsiMVhryduykbwtG1ny5iuROTB6DBtBz6Ej6T50OElp7Xx4MxE5YVlrbwFuaWLdIuAbrRmPiIiIiEisU8LiBLdqRX6knNGzjidS174JqbnQY0Kz2y7zl/GNj77BvlLnBu/w7OH85pTf4Ha5Gzmy6ayvejLY+hIWmdddF0lYeHv2JHDwILas7Kh6nhpJgyr+HTvrTG4cKX7AgFoJi1BZGYdfeaXR4wBCd99daz2Ql0fFwkUkhdfruyXv7d79qG2+HTuoWLOm8XgHDjxqW/GHH2KbkABIGDmyVsLCt307+35yX6PHAQxesrhWwqLgqac5+OijjR6XNGECvZ96sta23d+5u0nvtdNdd5HzlS9H1oPFxWy95NImxdvnxRdJHDE8sl4yaxZ7vntv/fXDr/ueeJL0eXNr7Tvwj39Q9MYbRx3jzsoi7bzzSL/4IhJGjaKOYSDaVG5yLj+f9nNuGHYDqw+spntK7evspQ0v4Xa5Oa/vee1/qCgAl4fyuJza2w5tdZIVVbZ/5ixvfxcGnwsjr4J+p0O8nuI/0sD+mQzsnwlApS/AnM92kbdwH5kHK+lhIaNGTzgXkFDih5UHKFx5gHxrORDvxvZOpf/0HmQPyIx8H5LS0hk0eRqDJk8D4GDePt557hkq8vfhLi/m0K6d1UHUmANj2TvOdy67Ry+6DhxCbv+B5PYfSE6vPrg9+l8cERERERERkfZGf82f4PZtPUzVLbdBQ7Nr7wz44K3vQEke9JwMt7wF7qY9CR4MBbl31r2sPbQWgG7J3XjwzAdJ8iY1cmTzWH/1HBauOA/B4mKChYXE9ewZ2Z48aRI5X/86KaedSuLIkU58/8/eXYfJVV4PHP+eWfdk454QxbW4u7bQQrEiLdACRUspUKGFYhUqtIXCr1jxIkUKFHeKOwQS4i6bdZ+d8/vjvLN7d3Y22YQkKzmf55lnZq/Nnb135s68533Pqaklvmwp8WXL7LZ0GVnDh3fYfiwvj1hhIdrYaKMPOt2RlNEpshr1NNZk3eToidTJsRhkZoaRHJFb6nIZHdfVRKLDtLRPnTIaYKX/l1Q9YCTBepHufx5LH4hoWbGC8rvuovyuu8gaM5oB3zuF/kevnZRpX8Wk/pOY1H9Su2mNLY1c9/51rGhYwR/f/SNHTjqSoycfzeD8jsG+Xq10HJz7IXx8v6WGKptu01sa4bNH7JaRA+N2g0P+AP3HdO/+9lA52ZnsvfdY2HssAOWVDfzvxbnkzKyiZEUThQ1xCjPa3hfZIgxvSsD0ShqmV/KlKkuyY8RHFrLR7iMZvXFbYCm/uISiMeMpGjOe/fffH21uYsHnnzL/s0+YP/VTls6Z2e59WDZ/LmXz5/LJC08DkJGVxaAx40IAYxJDx0+k//ARxNZiQN0555xzzjnnnHNrnwcs+riW5dajPoHytW2Gtp/52cMWrAAoHNLlYIWqcs1b1/DS/JcAKMoq4vp9r2dg3sBVrLn6Ek0trY+b585ixoGXkD1yJGPuvaddT/VBZ7cfPZ9RWEBG4Thyxq288Pe4hx5sfayJBNrUhDY2kmhsbH2sjY1kDhnSbr2sIYPZ6PH/WPBBQiAhpGOSWMyCDbEMJCZk9O/fbt1+3/om2fvvx3PPPw8i7LvffuTl54f0TrLSHvgj/3Jd2um6igAGwITnnoVEAlpaLHjR0oK2tKDxONrUjDbbLWdS+9EZ2eM2YtgVvybR1ARxW4eWOBoP67bEW6dLRvvGwNzNN6Pft1fdOJ89pmODcNH++5G72WarXDd3k43b/R3Lzu7ScwJk9u/Xfj9Gj+503XhLnPnz5gMwevLkDvMLdt+djIEDw7kQg5jQNGcONc+/0DqypXnOXFrKV3Rp37rDqwteZUWD7d+KhhXc9NFN3PLxLew/dn+O3/h4thi0xSq20Iv0Hwu7Xwi7/RgWvg8f/Qs+eQBql9n8lkaY9QoUpHyu1a2A3BLwhu8O+pfkcvA32oJgDbXNLHx/KcveXULTvGqGxYTcSGAvT4SxzQqzqmHWVD5LKLVFWZRMGUDRFv1QbcvklV9cwsTtd2bi9juHbdew4PPPmD/1E+ZP/YQlM79sF5RtaW5m8ZfTWPzlNOBxALJy8xgybjxDwiiMYRMmUTxoSLePenLOOeecc84551wbD1j0YRVVjRQ1KiBU5wglRZH0Lqrwxg1tf+9wepe3qygtaoGETMnkj3v9kfH9xq+lvU55rnhbA1Td66+SV1ZGfVkZVf/5DyWHHbZWn0tiMSQ3F3JzWVVTpGRlkTN+zV6zZGURy8tDw2gEycpql0ZpjbaZrF+xEllpUmJ1RdaQwfQ78sg1Wrd4v/0o3m+/NVp34OldPyejYgUFDLv8sjVaN2/LLcnbcsu08+rr63nvaeu9vdX++3eYX3LIIZQcckiH6S01NVQ//QyVjz1K3ZtvUXzooe3mN86cydLf/JaSb3ydov33/8rnwlex96i9ueOgO7h76t08M+cZ4honrnGemPUET8x6gi0GbsFxGx/H/mP2J6uLAc4eTwRGbGO3/a+AWS/C50/AtKdg8MaQXdB++Sd+DDNegIn7w6QDYPzeXveiE7kFWWy06wg22tXSjs2dX8l7z8+DGZUMroszJCZkRQt4x4Ti2ji8u4T4O4uZqP0ojyV46eP3KRhZxLgtBjFsUimxgixyCwoZv+32jN/WUvU1NzawdNZMFs+YzuIZ01gy80vKFy1otz/NDfWtAY6kvKJiho6fyJDxkxg2wUZi5Jf0W/f/HOecc84555xzzqXlAYs+7K13FxPDGoMyB+W2nzn/HVj4nj0eujmM2bnL241JjF/s+AtGFY2if25/dhi2w9ra5XaaFy6kYeo0KLSirMQtNVHRAQeQt/U26+Q5nVvbMgoL6ffNI+j3zSOIr1hBZmlpu/mVjz5KzUsvUfPSS+RuuinDrryC3ClTumVfRYStBm/FVoO3YkntEu774j4emPYA5Y1WOP2j5R/x0SsfcfMnN/PgYQ/2vZ7pGZkwYV+7qUJDZfv5Lc3w5bM2/aN77SYxGL4NbLQnbLSHpdfL7AO1P9aB0SNLGH1iW3Hspctq+fi5uTRPK2dgTZzBQrsC3iUilBCDmhb4vAI+r2AR0IxSlxWDkhz6jSqmZGQhGQPyGFw6luHjJyNZFnJuqK1hycwvWTxjOktmTGfxzOlUL1/Wbp/qq6uY9cG7zPrg3dZpRQMHMWz8pDASYxKDxowlr6h4nf9/nHPOOeecc8455wGLPm361OWtj4duVNJ+5pvR0RVnrLJ3fioR4bubffer7F6nEvX1lN18C2X/+Actmx1KsghH1oB+jL7s9nbFr53rTVKDFQB177zT+rjh00+ZdeRRDDjtVAaecQax7Oz1uXvtDCkYwjnbnMP3t/g+T856krum3sUX5V8AsPuI3TsEK6qaqijO7kONuiIdR040VFpg4svnoanapmkCFrxjt1d+D5l5MHpH2PeXMHzr9b3XvcrgQQXsc0xbSreG6kbK3llKzWdlyKJa8uPp6+5kIZQ0KyxvQJc3UPH+0nbzpTCLrIF5ZJbm0r+0PwNH7c5WW+1PZmku9S21LJ01g8UzLF3U4hnTqa+uard+9fJlVC9fxrQ3X2udll/SjwEjRlE6cjQDRo5iwAi7zy/p1/cCd84555xzzjnnXDfygEUfVjm/lmSYYostB7XNqFpoRWUB8gfCZt9a5bbmV8+ntrmWyaUdc/evTbWvv87Cn/2c+KJFAEisLe3MwO+fQsH2q65p4FxvMuaf/6TujTdYcvXVNE7/EuJxym74O9XPPMPwK64gb6utunX/cjNzOWLiERw+4XDeXfIud39+N8dMOabdMvOr53PYvw9jx+E7cvC4g9ln9D7kZ+V30x6vQwUD4dv/hHgTzH3d0kbNeAGWTW1bJl4PM1+AzGvar1u1EJpqYcCE1Q4Qbyhyi3IYsdco2GsU9fX1PPP409Qty6SfDCO+pJ7c2jglLVAUE/JjbaMxUmlNM001zTTNruo4MzNGfmkOk0q3YpNNdyRj1xwaMxpYUb2IRYums3i2pZNqbmxot1pdZQV1lRXM++zj9vtcWNQugFE6YhSlI0ZSVBrq2TjnnHPOOeecc261eMCij0okEmRVNANCoyibT44Ujn37ZkjE7fF234Ws3LTbSKpsrOSHz/2QxbWLuXbPa9l1xK7rbL9jRUWtwQoyM8kc0BZoycj1NCuu75FYjIKdd2bsgw9S9vcbWX7TTRCP0/TlDGYfexylJ57IoHPPIZbfvQEAEWG7odux3dDtOsx7ctaTxDXOqwte5dUFr5Kbkcteo/bi4I0OZpfhu/SdehdJmdkhBdSe9nf1Ypj1Msx80W6JFhiUEtx951Z4+bdQMMhGYIzeGcbsBEM2t1RUrgPNgrzhcfbYf2Py8vIAaIkn+GRaGe99vIyKmZVklzUwoMnqX+THhIIY5KcU924nniC+tJ740vp2k/OB8UxkYuEmZOyQQ0tugtqWSipqllBWMZ/FS2ewonwBirZbr6GmmgWff8aCzz9rNz0zJ4fS4SPtNmKkjc4YPpJ+w0aQmdXH3g/OOeecc84559xa5K0kfVRlWQP5CWuwaemXTUZm6OnZ3ADv3mqPY5mw3Skr3U5zSzM/evFHzKycCcC171zLjsN2JDO2dk4dVW2XTiNv880pOfxw4mVlDLnkYqbe+S7U2bzMXG/kcX1XLDubQeecTdEB+7Popz+j4dNPQZUVt99O7ZtvMu6hB3tsj+38rHyGFgxlce1iABpaGnhy9pM8OftJSnJK2Hf0vuw+cnd2GLYDBVkFq9haL1Q0FLb4tt1UoXZ5x1EUs16y+9plMPUxuwFkF8Ko7WH0TnYbuR1k5a3f/e9FMjJjbLnJILbcpC2Y3RxPULaolsqFtSyfV83MeTUsnV1FbnMLBTEhP6MtkFEQRmdkdDI6I1HTTKLG6iXlkUUeIxnGSDbrtyOUChQKTVlN1LVUU1m/lOUr5rG8Yh61zRU0a1PrduKNjSydNYOls2a0275IjJLBQygdMZJ+Q4ZRMmQY/YYMpWTIUEoGDSGzG9PAOeecc84555xzPYEHLPqosrk1rY9332lE24wvnoC6Mnu86RFQPKzTbagqv/rfr3hr8VsAlOaWct3e162VYIU2NbHijjupeeEFRt9+G5KR0Tpv6OWXteXub2krhJqR6w05ru/LnTyZsffdy4rbb2fZdX9BGxvpf/S3e2ywAuD4jY/n2CnH8v7S93li5hM8NecpKhutYHVlYyUPTn+QB6c/yEHjDuK3u/+2m/d2HROBwkEdp298GOQUw7w3oTGSqqipBmY8bzeA7X8AB0f+R6pt23VpZWXGGDqqiKGjipi8w1DARhnOmFPFx58sY/rMCqoX15NV1UxBi/0fc4TW4EVqUCOvs9EZCYUqJZtMsulPP/ozpmAyhBhcIktpymykrqWSitqlrKhcSHVzObXxCuriVSiKaoKKJYuoWLKo4/ZFKCwdQL/BFsCwgMZQC2gMGkJecYnXy3DOOeecc8451+d5wKKPWjyrsvXxkHGRQribHmF52N/4uxXbXom/f/R3Hp3xKAA5GTlct/d1jCoa9ZX2S1WpefFFll7zG5rmzAGg4oEH6X/0t1uXaVdoOFJz1QMWbkMhmZkMOOUUCvfem4r7/kW/o49uN1/jccjI6FGNlzGJse2Qbdl2yLZcvP3FvL7wdR6f9TgvznuR+ril30lNJ1fXXMdv3v4NOw/fmZ2G79S3inan2vlsuyVaYOlnMOd/Vgdjzv+gZnHbcqN3bL9e+Wy4cQ8YvqUV8R6+NQzbCvqP9SDGSsRiMSaO68fEcf3aTV+8tJYPPl7K3FmVzF1UR2ZNnOJGpamupW1dID9lREZBRlvKqcxO/u+xZiG3OZdccinNGsJGAzdvnacoTRmN1LZUUlm7lKrGMmrjldQ0V1Abr6Ap0QCq1JQtp6ZsOfOnftJh+5nZORQPGkzJoMEUDxpC8aDB4W977AXAnXPOOeecc871BR6w6KOWzmrrwTtkbKQRUATG7W63lXhsxmNc/8H1tgrC1btdzZaDtvxK+9Q4YwZLrr6G2ldfbbc/zfPndbqORAIWmXkesHAblpxx4xhy8UUdpi++4grq332PkiOOoOSwQ8kclKZHfzfKyshij1F7sMeoPahrruPtxW/z6oJX2Xn4zu2We3vx2zw0/SEemv4QGZLBFoO2YKfhO7HdkO3YfODm5GauvL5OrxTLgKGb222H79sIivJZMPcNmPM6jNml/fKLPoDGSquRMevltum5/UIAYysYtiUM2cwLenfB0MEFHLjPuHbTVJXaikbKFtayYmEtL729gPJlDeTXJ8ii4/8zO3V0RnhcmCHkCmmDBoKQ05JLDrmUFgxpHZWR1CJx6rSG6sYVVNUvoyZe0RrQqItXkiBBvKmRFQvmsWJB+mtmZlY2RYMGUzxwEEUDBlI0YBBFAwdSPGAwRQMHUjRgIFk5ffA95ZxzzjnnnHOuT/GARR/U2BRn8RwLWBQPyiOvaPUa+t9e/DaXvn5p698/2vZH7DdmvzXen5bKSpb97W+U33U3tLT1Ys3bbluG/vSn5G6ySafrSqKt4ccDFs5B7ZtvUXHvfQAs/e1vWXrttRTuuislRxxO4V57EcvpWcXp87PyW4MXqV5f+Hrr4xZt4f2l7/P+0vcByIxlsumATdlmyDZsP3T7DqMz+gwRKN3Iblsd13F+Ux0UDYPqlBRCDRUw8wW7AeSWwEVz2i+zYqYFNvJL18We9xkiQmH/XAr75zJm0wFsvd9owAp8T59dwfQZ5SycW03l0jqay5vIrmuhqQXKW4CUItxCmtEZMSEvjNLI7iSglKGZFNGPopx+DM/ZqN08RWmSBmpbqqiqX051U1kYmWEBjcaEFXqKNzdRvnA+5Qvnd/pac4uKKRowsDWoUdh/AIWlA+xxqT3OzvUaKs4555xzzjnnuo8HLPqgdz5cisatEWVFsu2yJQ4Zqz7cMytmcu4L5xJPxAE4evLRnLTpSWu0H9rSQsX9D7Dsz3+mpby8dXrmsGEMufDHFB100CrTV4i2zY9le9Ft57ShnryttqL+gw9sQksLNS+9RM1LLxErLqb4kIPpd/jh5G6xRY9PD/Oj7X7EHiP34NWFr/LqgleZVTmrdV48EefDZR/y4bIPeWfxOx0CFjVNNRRmF67vXV7/tj7eblWLbLTFwg9g4fuw8D0r4J00ZLOOoyv+cz7MfNECHkM2tdvgTWHQZBg4CbLz1+ML6X0yMmNMmVDKlAkdAz5lFfVUL22gsbyRiiV1lC+uZdH8aiqX1qMJoTahLEsJZgBkCe1GZrQWA88U8oBYZ6MzNI+cWF7a0RkJaaFB6qmNV1BRt5TqRgto1MQrqYtX0qLx1mUbqqtoqK5i2eyZnb7u7Lz8tgBGCGgUlg6goH9/CvuXUtCvlIJ+/cnI9K+QzjnnnHPOOefWPv+12QdN/aStEStvaOgp+ewvYf7bsMMPYOOvQ0b6xv9Pyz6ltrkWgN1G7MbF21+8xo2eTbNns/jyyyFheZ0kN5cBp53KgO99j1he13pwSkIsoTggmT236LBz60vhHntQuMceNM6aReUjj1D5yKPEF1nv+0RVFRX33EvFPfeSPWE84x58sMeNuIjKychh5xE7s/OInfnJ137CgpoFvLP4Hd5b+h7vLXmP2VWzAdhm8Dbt1lNVDn/kcDIkg00HbspmAzdjswGbscmATfpuEKN4mN0mH2R/q0LVQgteLPnU5qVa8qndVy+y25fPRmYK9BsNg6ZYaqoJ+67zl9CXDOiXx4B+Ha9jLfEEsxdU8eWMChbMq6J8SR0N5U3EauPkNymoUNkClS1KutEZeSGAkRrUyIsJuZ0UA49pBvlaSH6skEGFIyHlLRDPjNMQq6M2XklVw3JWVC2ipmkFNfFKGlpqOmyvqb6OsvlzKZs/d6X/g7yiYgr6l7YGMXKKiqhYtJiswmISkdGUzjnnnHPOOefc6vCARR+0fHY1ReHxlM0GQmMNvHeH5UFf+AGM28MKb6dx2PjDKMkp4eaPb+b3e/yezNianyI548fT7+hvU3HPvRQfcgiDf3wBWcPSNKqtRIwMABLagnTSWOPchihn3DgGn3ceg845h7o336Ty4YepevoZtN4KXGcNHtIhWNHw+edkb7RR+8L2PciIwhGMmDCCb0z4BgDL65fz/tL3GV00ut1yC2sXsqRuSevjZ+Y8A1hP9LElY9lswGatgYxxee3rFfQZIlAywm4bH9pxfrwJNvuWBS0Wf2wppNpRqJhjty2+3X7WilnwxIUwcGJIVzXO7ktGd2mk3oYsIzPG+DH9GD+mX4d5zfEEM2ZXMHdOFcMyMqkua6CqrIHqsnoWLaoho0mpS0BdIhnIaB/QyATyM9KMzggppzI66VyQGc+kkGIKKWZI9igYuHXrPI1BS24LjRkN1CWqqGkqp7xmCWUV86mqX0Zcmzt9rfXVVdRXV7F87uwO817PyWS/U85Y1b/LOeecc84555zrwFse+qIVTQDEUbbbcgh8eJsFKwC2OKrTYEXS7iN3Z7cRu63WyIpEbS3l995H6YknIFltozcGnXMOJYceSv622672ywCIqY2qaMF7azqXjsRiFOy0EwU77cSQX1xK9VNPUfnww5QccUS75bSpiTnHHY8mEuRv/zUKd9mFgl12IXv8+B6bOmpg3sC09XOqm6rZdsi2fFb2GfXx+tbpijKrchazKmfx2MzHALh7/7vbrVveUE5MYpTklKzbne9umdlw0G/scXI0xpJPYdnnkdsX0FRjKaKilnwKXz5jt6hYpo3KSNbcKN0Itv8BxHz0W1dkrSTFFEBldSMzZ1cyb341yxbXULm8gYbKJqiNk92YIC8hVLVAVZrRGQC5yWLgaYIanY3OkARk1mWQSQEFFDCIYYzL2QSGhAXyYiTyIZ7VREOsPozSKKOidjErKhdRW15GSzzeYbufPPdftj/sCEoGD13Tf5dzzjnnnHPOuQ2UByz6mCXLaikKHSJr8mLk52TAmze2LbDD6R3WmVY+jUn9J7Wb1tUGTE0kqPrPf1j6+2uJL12KZGZQelJbzYvM/v3JXMNgBYCEfFAJD1g4t0oZhQX0+9Y36fetb3aYV//hhyTqrDhv7cuvUPvyKwBkDhlCwS67ULDzzhTsvBOZpT2/QPOU0incduBtxBNxZlbO5NPln/LJ8k/4tOxTvij/orUGT15mHmOLxzKTtnz9d069k5s+uomhBUOZ3H8yk/pPar2NLh79lUaV9VjR0RiT9m+brgqV86EopVG5bHr67STiVsh7Rfh/5pXCjim96F/7swU8+o2B/mPa7otHQCxj7b2mPqikKIetNx/M1psPTju/praJ8mX1UN9C9YoGqlc0ULW8nrc+XUZmQ4KWuNLQAmVpioFnEKmdkdEWyEgGNTobnUF9glg9ZJNJNkUUU8QwRgJbQomQMSaHWEkWibwEdbF6Pvn4fyyZ/zHVzWX878F7OfCM89bif8g555xzzjnn3IagD7bMbNjeem9x6+OcIXkw4/m2xqcxu8LQzdstf8/n93D1m1dzwXYXcOImJ65WT+v6jz5iyZVXUf/hh63Tlt94E/2OOWat5c3PSKaEIrFWtufchipWVETJEUdQ+9prxJcubZ0eX7KEyoceovKhhwDIGjOajR5+uMt1ZrpTZiyzNdhwxEQbUdLU0sS08ml8svwTqpuqOwQgpq2YBsDi2sUsrl3MS/Nfap2Xk5HD+H7jmdBvAruN3I0Dxx64/l5MdxCBfqM6Tt/lPNji6LbgRLvbLBuVATbCItWXz8GslzpOj2VCyUgLYPQbBZMPhimHrNWX09cVFmRTWNAxnVtyDFJLPMG8RTXMX1jN4sW1lC+vp7q8kcaqJhJ1cbKzslhW00xLY8fraU5ydEYkqJF8nNdZOsYWpaWsgZayBtsGsC07wMgd+Lj8ZT576Xm2/8ZRlA4fsZb+A84555xzzjnnNgQesOhjZn5e3npQR4wvgTd/1zZzx/ajK16a9xLXvHUNivL7d37P5gM3Z5sh7YvbptO8ZCnL/vAHKh95pN30wr33ZshPLlyrRX5jYgELFQ9YOPdV5E6ZwvCrr0JVafryS2pee43a116n7u230YaGdsumBivKbr6Z5iVLyNtiS/K22pKsESN6bBqp7IxsK8I9cDMA6uvr283feMDGVDVVMa18GjXN7QsON7Y08lnZZ3xW9hklOSXtAhaqylnPn8WwgmGMKR7DmOIxjC0ey/DC4X1vVIYIFA+329hd289ThdplFrxIpBn5VjEn/TYTcSifbTeA4pHtAxbNDfDnLcNIkJFkFgxlo6W11Gf3J7agFAaOgcIhkNlzi8h3t4zMGGNHFTN2VHGny6gqjbVxaioamD23ik9mrKC6opEVVU0srY1DfQuZTS3kNkIG9h6PYaMzkvUyUkdqZKb5LNik3y7Mq/2C/z1wN4ecc+G6esnOOeecc8455/qgPtbK4moW1tIvPP7auHr4z7P2R7/R1qM1+KzsMy58+UISaoGA7232vVUGKxKNjay47XaW33gjGlLLAGSPH8+QSy6hcNdd1uZLQRMJMsIp6iMsnFs7RISciRPJmTiRASefTKKxkfr33qP2tdeoe+ddsieM77BO5aOP0fjFF5RzBwAZpaXkbr4ZuZMmkzNpEjmTJ5Ezbly7+jU91ZlbncmZW52JqrKwdiHTVkxjWvk0vij/gunl05lTNQdFGVs8tt16y+uX8/L8lztsL0MyGFYwjBFFIxhZOJKRRSM5fMLhDMxbea2gXksECgfbLZ0zXoeKuVAeCnon7yvmQPnctnpKqSM7qhZAzWK7LXiXLKB1POCsv7Qtlz8AvvtfGBRJY1g2A5ZOtdRWhUNs3zywkZaIkFuYRW5hFgNHFrHdzulHP7TEEyxeXsfCxTVUrmhgRG42dVVN1FU2UVfVxIezK6ivaiI7rhTRFsgYmhVjZHaMDMlgmwH78tLr97PD4UcxcPTY9ftCnXPOOeecc871Wh6w6ENUldyqOCDUx5SNFt3VNnP777fmD19cu5iznjurtVjtAWMP4Nxtzl35tpuamHXEN2ma2ZYLPlZczKCzz6b/MUevk4bK5uYmMkLPZY11LDDqnPvqYjk5rUW700nU19P45ZftprWsWEHtSy9T+1KkAT8ri2GXX06/Iw5vnaSJBIj0yNEYIsKIwhGMKBzBXqP3ap1eH69nbtVcBuQNaLf8nKr0IwdatIX5NfOZXzOfN3kTsM/UqBfmvsCjMx5leOFwhhUMY1jhMIYVDGN4wXBKckp65P9njWUXwOCN7ZZOfTlUzLPRG1ENFVA0DKoXk66gdKu6Msjr337aF0/A0z9vPy23XwhgDIbCcD9wEmx7UvvlVC0I49rJyIwxYmghI4YWpp0fPcOra5pYsLiGefMreOrZaRzblE9+TBiaN46ReZN4/f67+foFP10/O+6cc84555xzrtfzgEUfsnBhLblqDS/xYiH20T02Iysftv4OADVNNZz53Jksq18GwFaDtuLKXa8kJrGVbluysyncc09WzJwJsRj9jzmagWefTWb//itd76toqW9qfaziAQvnukMsL49Jr71K/ccfU//Bh9R/9BENH31ES2Vl+wWbm8ka0r7Xff0HHzLvBz8gZ8IEsseMIXvMaLJGjyZ7tD3OKO48dU13ycvMY3Lp5A7Ttx2yLS8f/TJzquYwu2q23VfOtmBF9fzW9FIxiTG0oH0R64+Xf8yzc5/t9PmGFVgAY8tBW3LGVu2LWDe2NJKT0YdGC+T17xhwABixLVzwOcSboGoBjctm8OlrT5HbXM6k4cVk1i2zYEbtMhtlEVW9uOP2Girstuzztmkjv9YxYHHrwbD8CygYZLf8AW2PCwbaLX8ADJgIRUO+6qvvk4oKs5kyoZQxI/KoKf+YV1/OYv8cq7Wx9YB9ePLt/2PJzC8ZstGEbt5T55xzzjnnnHO9gQcs+pDm5W0N/NtvXgSyG0x7CrY8FvL605xo5oKXLmB6uRXhHl00muv2vi5tY1i8vJxYXh6x3NzWaQPPOJ3mBQsYeOaZ5E6e1GGdtS3eEAlY+AgL57pNRr9+FO62G4W77QbYaK74woU0TJtG47TpNE6bRuO0L8iZ1P5zoXH6dBLV1dS//z7177+fdrtZY0aTM2ECw6+8cr28ljUlIvTP7U//3P5sNXirdvNUlaqmKuZXz2dZ/TKyYu1HnC2oWdDpduvj9cysnMnMyplp5x/zn2NYWLOQwfmDGZQ/iEF5g+xx3qDWvwfmDWRIwRDyMnt+ofRVysyG0nEk8oYy7/NaAMbtuz+ZKysCP+lAyOsHNUsteFGz1FJLVS+BeKSGSWGagEPNEhu1UVfWPriRar/LYZfISMTaMrj7KAtm5A+AvFLIL7VgTH5p+78Lh0LGhvF1KxaD+Ga1LJmayZDMGPmZRWzSb2dev/8ujrjol929e84555xzzjnneoEN4xf0BqJsQQ2EIpkTtx0PU+6z3N6ZOagqV75xJa8vfB2AkpwSrt/3evrntu/pqs3NlN97H8v++lcGfPdkBp7eVqg7o6iIkX/+0/p6OcTrGtv+WPkAEOfceiQiZI0YQdaIERTttVfnCyZayBw6lPjiND3ggZaKCloqKkhUVXeYN//882n49DOyhg0ja/jwcG+PM8O0WE7PGHkgIpTklFCSU5J2/pW7XsnZW5/NotpFLKpdxMKahSyuXczCmoUsql3E4trFNLQ0MKxwWId1l9Uvoy5ex+yq2cyumt3pPly606UcNemo1r+X1C7h+g+vZ0DuAAbkDWi9L80tpTS3lJKcklWOrOs1xu1mt1Sq0FjdFsDIyu+4TL9RVhC8djk013b+HHml7f+uXQYL3u3a/p39HgyI1Ib54kn44C7ILbHUVbklKbcwLb/U0lr1MkMGKi1fG0zLe8vIEGFyydf478e3snDaVIZP6iRVmHPOOeecc845F3jAog8pm18HFIDAkDEh1UpoJFlUs5Cn5zwNQFYsiz/v9WfGFI9pt37Na6+x5OqrafpyBgDLb7yJkiOOIGtI96TBiDe0BSw0o1t2wTn3FfQ/9lj6H3ssidpamubNo2nOXJrmzqF57tzweC7xxYvJHj26w7pNc2y55rlzO91+RmkpA0//AaUnntg6TeNxal59lawhQ8gcPBiNjBLrLpmxTEYWWUHudFSV8sZyEppoN70l0cLk/pNZWreUZfXLqF1Jg/qA3PZpkhbULOCh6Q91unxMYvTL6Uf/nP7ccfAdFGUXtc6bWjaVOdVz6J/T3wIx2RaMycvM6131NkQgt9huAztJR3TiI22Pm2otcFG73AISyVv9Chi2Rfv1GlJSoq1MagqsJZ/C1MdWvd7gTeDM/7Wf9p8fwbIvQmCjGHLC68staXucUwwDJkD/Mem3ux5scvBoPvxoBWNaEsQkg20H7Mdr993FUb+4otv2yTnnnHPOOedc7+ABiz6kYkk9/fIL6D+0gOy89od2eOFw7jzoTn743A85Z5tz2HbItq3zmubMYclvfkvN88+3W6d4//2RjO6LFCQam9v+8ICFc71WrKCA3ClTyJ0ypcO8REMDiZqaDtMzCgqJFRWRqO44+iKpZcUKSBklEF++nPmnR+pAZGYyrrCQeFERS554kpzBg8kYOIDMAQMpOexQMkrSj4pYn0SE0tzSDtMzYhncfMDNrX/XNteyrG4Zy+qXsbRuKcvrl7Okbgll9WUdAtBlDWUrfc6EJljRsILyhnLyM9uPPHhi1hPc9ultHdbJjGW2Bi9KckrYZvA2nLftee2WeXn+y6gqRdlFFGcXU5RdRFF2Ue8IdmQX2K0rDf2jd4BLV0B9RVtKqfoVULfC7uvL2x7nppxj9eVd25/U9QAWvg8L31v1untcBHtFCl031cLvJ0F2IeQUtd2yCyGn0O6zC2za1t9pXxS9bgVUzgvLhOWy8i3/UycyMmOMPWFjam7+mIKMGEPyxjBj1ofM++xjRm2yeddev3POOeecc865DZIHLPoQTVidh/zcZdAS75Aze6N+G/Hw4Q+31qxoqamh7O9/p+z2f0JzW3Agd4stGPqzn5K35Zbrb+fTaGmIBix6eEOXc26NxHJz29XKSRpzxz8BaKmupnnhIpoXLqB50SLiCxeGvxfSvHQJWcPbp1GKL13afkPxOFkVFWRVVFA/bx6RigYU7b1Xu4BF+X3/YvmNfyezdAAZ/fp1esscPIjcSeu+jk+qgqwCCkoKGFsydpXL7jJ8Fx447AHK6ssoayhjef1yyurLKG8sbw1UlDdYw3lGrH1EeEXDirTbjCfilDWUtQZD+ud0LJ599ZtXM79mfofpmbFMirOLKc4upjCrkFM3P5V9xuzTOr+ysZLHZjxGYXYhRVlFZGkWC+ILyJEcltcvZ0DmgJ4X9IhlQMEAu62OvX8BO54BDVU2UqPDrcLuS8d1XLe5rmvPkVPU/u/GamiqsVtN+hRtrSbu3z5gMf0Z+Pf3Oy6XVdAW5MkuJLtgEJSc3Dp7xJRS7i/OZqfaOABbl+7FG/fezcjLrupZx9E555xzzjnnXI/iAYs+aGLZbXDdxZQdcT2lY3Zr1zCQDFZUPvYYS37zW1qWL2+dlzloEIN/fAHFhx2GrKTn5PrS0thMcs8l0xs3nNsQZRQVkTG5iNzJXQsQZJQOYOAPf0h86VKaly6hefES6ubPJ7O2YzqljAHtG5qbFy0kvnAR8YWLVvocuZttxrgH7m83bcGFP6Fp7hwyikvIKC4mVlzU+jijpJhYcTEZxcVkjx1L1tB1X5cgPyufyaWT12jdw8YfxoR+E6hsrKSyqZKqxqq2+zCttrk2bc2OqqaqtNuMJ+KsaFjRGgypaW4/qmZx7WJ+8/Zv0q77p8f+BFgaq/zMfB45/BEG5w9unf/C3Bd4as5TFGQWkJ+VT35mvt0nH4e/++X0W+P/yVqVlQslI2FNBvec+QY010NjlQU8GqtCgKMqMq0aRm7ffr2WJhg0xeYlb2j650gNdjR1MsqpudZu4a0lRSM6vKY9f7gVM658k5FZGeRlFtF/2UDmfPQ+Y7fcZnVfuXPOOeecc865DYQHLPqgIVnTKGuq5jvvXMXW87bhsp0vIysjq90yTbPntAYrJDub0u9+l4HfP41YQUF37HJaicZ4WyYoH2HhnOuC7JEjGHT2Wa1/19fX8/TTT0NLC3tvtx1ZtbXEly+npaKiQ9Fuycgko7SUlooKSCToTLo0Uo2ff07j9Omr3L9B55/PwB+09VaPl5cz8+tfJ6OomFhRIRmFRcSKiogVFpBRUEAscis64AAy+7eNamipqSVRW0usIJ9YXt5aS+G347Ad2XHYjitdpjnRTHNLc4fpZ299NpWNlVQ1VVHdVN3xvrGKmuYaCrML261X3VmjeERCE9Q015Cb2X5Ezufln/P4zMdXuf4mAzbhvkPvazftlKdO4bOyz8jNzCUvM6/T216j9mKPUXu0rhdPxPnPzP/Yehl55GbmkpORQ15mHjkZOa1/Jx+vtQLnIpCdb7fVKcjdbzT88M22vxMJG63RVAONNRaUaKq1x0Upxd8HToZtvxuWrw0jNWrblk/+nd2xqPmgird4fZtShn1UTobEmFS8HW/e9W/GbLG1j7JwzjnnnHPOOZeWByz6mEypJz9rPqeN2oz5tQuYP3MB+Vn5/HzHn7dbbsCpp1Dx0EPkbbYZg39yIdmjRnXTHneupaktYCGZ3T/iwznXi2VkkDloELlpCnwnDTr7LAadfRaaSJCorqalooKW8nLiFRX2ONzSfV7qSgIcUbGi9g31iaoqWpYtp2XZ8k7WaJO//fbtAhZVTzzO4kt/2fq35OQQy8sjlp+P5OcRyy8glpdH1ogRDL/qynbbqnr6aZoXLiSWl08sLxfJyyOWm0csPw/JzbXpuTk2MqSw/T4DZMWyyIpldZh+zJRjVvk6EppAtX3v/rElY7lmt2uoaaqhurmairoKps6cSqM2UjKohIZEA7XNtdQ213aouVHXxTRJqeuBBUpqmms6jPhINaxgWLuARW1zLb947Rddet47D76TLQe1pVh8Zf4r/PG9P5ITyyE7I7s1sJF8nLwvyi7irK3Paretd5e8y6LaRWTHbJmsjCxbJ5ZNdkbbrTCrMO0ImFaxmNWuyCmEos4XA2DcbnZbhcbaGnj2ubYJ05+Fu47ksLG78aSez5YSIyYxxjdMYea7bzJ+u5UHxZxzzjnnnHPObZg8YBEhIl8DLgN2BrKAj4E/qOq/VmMbOcBFwAnAKGAF8B/g56q6dGXrrg2DM2fws8H9+ajZcpOPyBzI8f/LYtl71zPozDNbl4vl5THuoQfbNX71NImmeOtjyfKAhXNu/ZBYjIySEhtJMaYLBZiB8Y//B21psUBHVRUtlVW0VFVaQKKyipaqKhLV1eRttlm79bS5mcyhQ0lUV5NIk7YqKnUEXKK2fUO9NjbS0thoI0Qissd1rIVQ8cAD1L78yipfV//jj2foL9oHvKfvuReSkWGBjZwcu8/NQbLD45xsJDuH/id8p12tj+ZFi6h58UVbLicHyc6y9bOzyc/JYe+sMUhONrGibOLjB/PM4mcA2H/X/cnNze20R/5pW5zGkZOOpK65jrp4Xaf3wwqGdVh3ZNFIGloaqI/X0xC3+8aWxg7LpY7qaIg3rPJ/17puRvt1VzSsYHr5qkfjlOaWdghY/OuLf/HErCdWue6hGx3K1btd3W7a/g/sT01zTbvgRjLwlJVh99mxbE7d/FS2H9aWUmpRzSJu+eSW1mVS10netEVBIUuybDTGw6cDSmz2y+zUv4qlZZdSmJnN4LzRvHvHi2y0zfY9Iv2kcz3Z2vht4pxzzjnnXG/jAYtARPYCngIagHuBauBbwH0iMkpVr+3CNmLAI8ABwBvAg8BE4FRgHxHZUVWXraOXAMCc4jk8W5APquz1RTZnvB6nYcltNGZlUXLYYe16BvfkYAUkAxZ2ikrW2kl14pxz64pkZLQW5u6qnAkTmPjiCwAW8KitpaXKghept9TtZo8aSdF++5KorSNRV0eivt5udXVo+BtVYnl5HZ5X67vW4C657dNmaTxOfPEqijYHRQceAJGAReP06Sy+7PIurTvmvXfb/b3k6qspv/seJCsLyc4O91lIVhax7GzIyiIvK5vSbbdlyE8ubLfu0muvJV5ejmRVsDjrKls309b9aeZkJGszJCuT/O23J3fKFFoSLTS0NFBXXU7N66/TFEtQvLQftTVvIVmZSGYm2TRzxbDv00AzjRKnsiSLOppobGmkId5AY1Mdjc0N1NNEcXZxu/1JaIK8zDwa4g1oZ3UkaKs5FdXU0tSl/192RnaHaVVNVdQ2rzwoBvDNSd9s9/fS+qXc+8W9XXrenxX/zAIWWflw9J0k/nUisZollDZ+wAJ5DjgIgE2ytuSzF19h0733WPkGnduArY3fJs4555xzzvVGHrAARCQT+D8gAeyuqh+E6ZcDbwFXicgDqjpnFZs6CQtW3AMcryHnhYicDtwAXAH8YJ28iOC5AYsZv1A5+bkEk+fXA/UAqCp177zbI1M/dSbR3EJbwMJ7YTrn+jbJyLAi3cXFq14YKNp3X4r23bfT+aqKNjSgzR1rTQw69xziS5eGAEc9iYZ6tL6eRH0Difo6e9zQSO6UKe232dxM5vBhaEMj2tBAorERWlrSPn8st/3IgkRDF4MkOTkdRlNoczPE42g8jtbXd7puRmlph2lV/32K5nnzVvm8Q37+c3KnTCEjlkFBrICsmjKW/9hSblWEW1S0DPz4/z5J9tixrX+vuPtullz+a1s3Yz8qMzKQzEzIymLTjAzuysyDjEKyRo1k0M030NjSSFOLBTzq/vR39KOpkBljzn++a7VJMjOQjExObq7gqMQkWkQp22IU83abQFNLU+u6m937LgltYei0hSx980+2bkYMycjkuGl5NJJJMy28NymTRSUJq0WSaKagqpktZimJGBTFPqbqixiSEYNYBomqGWw5M0FCIBGDz0YLGjk+/auVonpICOQ1riAzu8BSfo3ekbv2Ppf/fnQz31q+mP35O9Oqvsbg7IHkZRYy79+fsvGeuxKLeYcE51Ktxd8mzjnnnHPO9ToesDB7A+OBW5M/CABUtVJErgJuw4IRq+oaelq4v0TbJ+i+EbgQOF5EzlPVzltbvqKD3pjJXh+1bzwq2GN3hlx0ETkbbbSunnad0Oa21xHzERbOObdaRATJy4M0Iyzyt9tujbYZy8tj4vPPt5umzc0kGpvQpka0sZFEQwPa1ET2yJHtlsvbdFOGXXUV2hSWbWoi0diINjWjjeHvpkYkTYHqrCFDyd1kE7S52dZvbibR3ARNzSTCNOJxJKtjXY10AZt0Utft6noAZKY8bzxyHW5pQVtabB9TxHJyKMgqoCCrLd3X3AUrqP3kCwBSq3NkhxvAxDHbcPjWZ7ebP/W0zUIAaRZlvNpu3n6Rx2cfdj1Fe+3V+nf1668z/y+n2B+P3sKCyLK5wM8if5c/dSPNMSWeiNOcaKb4Hw/T/8GXwty/2Gv461/J22QT6rOnU9y/kZuGlvLbUQmOXnIrR1ScT2Yskwn5G/PBv55lm2MO6PB/cc6ttd8mzjnnnHPO9ToesDB7hvun08x7KtyvNG+BiOQCOwBfpPZ2UlUVkWew0RXbAatOHN623ZGrWGRE8kFd+Ux2/nwZi8LfWaNHUXzKaWRsvx1z4nGYNq2rT9sjzF+4iH5VVg20rjwB01ed87u3aGxsZPlyK7I7Y8YMcnI6pv5wPYsfs97Jj1s3icVg4cKO0zffrOO0NMpmzGh/3PbZG/bZu90yyT7+0XB2fUsL01OuFfFfX24BkXgcmpst6NHSAvF4GLXRgsabWTx0CMsj6yYqKqk7/jgLOMTjYZ0WaIlDPDotzqwli4nVt4UX6uPNVE+ebNsPAQvicQsmJP9uaSEjO5tEyv4uKy+nsQvBkprKCqpT1l3cxVEs8UWLyY2s2zBvHsu7GKAZ2TgUIiMsKpqKWZy6bnk5vPYaE7G8mAAzh8DvjppG5rz/saNMBmDFs0v5dNNPiGWGoxj6eqQWZQdaR92IiM0P9yLSul66daOjdVa27qqeE2hN4LW66yafM7KTne7vWn2tXdjfuXPnRjfhvUN6jj3D/Rr/Noland8Ts2bNon4lI9lSxauWd3lZ131Sr43rip8PPZ+fCy7KzweXtL7OBfDzoTdYnfNhcfuU0Wvt94Sk+6G0oRGR+4Ejge1U9d0086uBclUdvZJtbAp8AvxHVQ9LM/8C4PfAKap6y2rsmx8g55xzzjm3rn1NVd/p7p1wa+e3Scry/nvCOeecc86ta2vt94QXBjAl4b6yk/lVkWW+yjaiyznnnHPOOddTDO7uHXCt1sZvE+ecc84553olTwnV862qSvZo4LXweEdol3ra9VxDgbfD468Bi1eyrOsZ/Jj1Tn7ceic/br2PH7PeaQTwRnj8eXfuiFunVvV7IhuYAiwFlgEtK1+8z/LPMZfk54KL8vPBRfn54JL8XDAZwKDw+OO1tVEPWJhk76XOeioVA+VrYRvR5bpEVeevbH40XzGwYFXLu54h5bgt9uPW8/kx6538uPVOftx6Hz9mvVPKcetYGd51l7Xx26RVF9+PM7u6vb7KP8dckp8LLsrPBxfl54NL8nOhnTmrXmT1eEook6wmMjF1hogMBQojy3RmJpBIt42UbfedytHOOeecc865tW1t/DZxzjnnnHOuV/KAhXkp3O+fZt4BKcukpar1wFvAZBEZE50nFnbbD6gFvJihc84555xzrjNf+beJc84555xzvZUHLMxz2AiJ40Rkq+REESkBfooNkf9nZPowEZkS5kfdFO6vlvZjg34AbATcFQIbzjnnnHPOOZfOav02cc4555xzri/xGhaAqsZF5FTgKeBlEbkXqAa+BYwBfqyqsyOrXA2cBHwXuC0y/XbgaOBYYJyIvARMAL4JzAJ+vm5fiXPOOeecc643W4PfJs4555xzzvUZPsIiUNUXgF2B17CgwxnAEuAYVb22i9tIAN8AfoVVSD8f2AW4GdhJVZet/T13zjnnnHPO9SVr47eJc84555xzvZGPsIhQ1beAg7qw3MnAyZ3MawQuCzfnnHPOOeecW21d/W3inHPOOedcX+IjLJxzzjnnnHPOOeecc8451+1EVbt7H5xzzjnnnHPOOeecc845t4HzERbOOeecc84555xzzjnnnOt2HrBwzjnnnHPOOeecc84551y384CFc84555xzzjnnnHPOOee6nQcsnHPOOeecc84555xzzjnX7Txg4ZxzzjnnnHPOOeecc865bucBC+ecc84555xzzjnnnHPOdTsPWDjnnHPOOeecc84555xzrtt5wMI555xzzjnnnHPOOeecc93OAxbOOeecc84555xzzjnnnOt2HrBwzjnnnHPOOeecc84551y384BFLyYiXxORJ0SkQkRqReQNEfl2d++X65yIzBYR7eT2Ynfv34ZMRL4jIjeKyDsi0hiOyckrWb5YRP4gInPC8rNF5HciUrged3uDtzrHTUR+tZL3n4rI2PW79xsmERkhIueJyNMiMldEmkRksYg8KCI7dLKOv9+60eoeM3+v9QwikhveNy+LyEIRaQjH7TUR+a6IZKVZx99rrs8REenufXA9g58LzjnnVsavEz1HZnfvgFszIrIX8BTQANwLVAPfAu4TkVGqem137p9bqUrgT2mmz16/u+FSXAGMAZYDi8LjtESkAHgJ2Ap4GrgH2Br4MbCHiOyuqg3reocdsBrHLeJ20r/fKtbaXrmVORu4CJiBvX+WAROBw4HDReQ4Vb0vubC/33qE1TpmEf5e616FwBnAW8Dj2HHrDxwE3AIcIyIHqWoC/L3m+iYREVXV7t4P1/38XHDORSUbpv1zwUUlzwcRyfXvvd3LAxa9kIhkAv8HJIDdVfWDMP1y7EfpVSLygKrO6b69dCtRoaq/6u6dcB2cCkxX1TkicjFw9UqW/QnWoPMbVb04OVFErsEa9c5fxfpu7Vmd45Z0m6q+uG53y63EW8CeqvpSdKKI7AY8B9wgIg+ramOY5e+37re6xyzJ32vdawVQoqpN0Ynhe+QzwP5Y8OLxMMvfa67PUVUVkV2AU4AfqGpzd++T6x7hXIgBvwNeUdWHRSSWDNo65zYs6RqmRSTLrxMbthDIuhLIFZFL0vy+ceuJp4TqnfYGxgN3J4MVAKpaCVwFZAMndc+uOdc7qeqzXQnyhQvYqUAN8OuU2b8O009d+3vo0unqcXM9h6o+lNrwHaa/AryA9QDfHPz91lOszjFzPYeqJlKDFWF6HPh3+HMC+HvN9V0hQHcjcDI2YsjTPWzYjseCr98B+5zs3t1x3SkEsNwGTEQuxbKUTAFQ1WYx+d28a6777IB11NnPgxXdyz+ge6c9w/3TaeY9Fe73WD+74tZAjoicLCI/FZGzOsvZ7nqsicBw4DVVrY3OCH+/BmwkIqO6Y+dcl+wuIheJyIUicrjnZu9Rkj2a4uHe3289X+oxi/L3Wg8UGmgODH9+Eu79veZ6tXRBCBHJCAG6f4ZJB4Kn/9gQpJ4Pkb8fxdLzbiwiE9b7jrkexQNWGzYRyQMmAYcB24RpJwMtwDndt2dufVhJwPJt4D1gUxHZNSzrHR26gaeE6p0mhvvpqTNUdbGI1ESWcT3PUODW6AQReRs4VlVndM8uudXQ6fsvMv2AsNy89bJHbnVdlvJ3hYicq6r/TLu0Wy9EZDSwL1aL5OMw2d9vPVgnxyzK32s9gIhkAz8FBBgA7ANMAW5V1efCYv5ec71WNK1PMrVHmNYSFnkdqAImiUhBalDO9R3JOhUh/VN2cpRZ+Fuw+o9PAfthQdovu3F33XoWzgGJfF5sAZwLXKeqH3brzrnu0AD8HOtR/7Mw2mIS8Dww1VPG9U2R60Qi9TtB6OjQIiL3AttiHcFf9Y4O3cNHWPROJeG+spP5VZFlXM9yK9ZQMAQowIam3wF8DXhORIq6cd9c13Tl/RddzvUcHwLfAzYC8oBxWDFhBW4Tka93475t0EQkC/sszAEuijQy+futh1rJMQN/r/U02cAvgUuBHwKTgd8D348s4+8112uFRodtReRfwLmhMSIhIhlhkeXAAmAvLHDnvSX7qEhO+suAf4jIduHvzDCvCZiKpTLcIszL6GRzrg8JDZHJRsp8ESkFDge+Cxzoo0A3HCnFtmuxUcKTse845wMnqOojHqzomyLXiUuAj0TkqPC3RH7PvIt9950iIjnds6fOR1g4tx6pampv0w+AE8M18wTgNOAP63m3nNsgqOq/UybNBv4qIlOxArRXYKkC3HoUhuPeBuwO/J+q3tG9e+RWZVXHzN9rPYuq1mC/w2JYj+LDsJpnO4nIwapatdINONc7PAiMBnbE0nn8HkgAqOrnIvI5cARwCHBfd+2kW/dE5ETgF1iQfKyIHKSqtcletSLyWlj0OOCvKQF310clj7OI/AI4iraG6gRwJPA/4OVu20G3ziV7z6f0lj8S68i9HDsXPlPVRWF58Z71fZOI7IEV1ga4QUTmA29h3x8AFofbAUAW0Ojnw/rnIyx6p2Tvt856uRXTeQ851zPdGO536da9cF3RlfdfdDnXw4WUKDOAzUWkeFXLu7UnNKDegjUa3AmcnrKIv996mC4cs075e617hSLc81X1Bmx0xS7Az8Jsf6+5Hq+zOhXh4T/C/UfANSJyLDYCLOmucL+HiGR5o0Pvt5JRMs8DS7CRFCOBB0RkZPKYq+qzwOfABK8luOEQkZEi8gyWrvJdLDXYw0ANlvrlSBEZ1H176NaVUEQ7Fgla7S4iZ4vIjuE70dHAj7EsGN8WkSHdub9u7emsToWqvoRdB6Zh14s7ga9H5n+O1XkbCHxj3e+pS8cDFr1TMr9whzoVIjIUKKTzHMSuZ1oe7gu6dS9cV3T6/kuZ7u/B3iX5Hszv1r3YgIQvkLcCJwH3ACenGXrt77cepIvHbFX8vdYzPB3u9wz3/l5zPVq0Z2MySJGSvuFTrOHxDawj0P8BJ0c28TlWf2Uy4ClY+4AwWiJde0YzVjA1htUn2Af4vYhMhta6Pk9ggdgR62l3XffbI9xuwFJZ/kpVrwW+BbwDfAfYuRv3z60jkVRgm4nI88Bj2CisX4hIjqp+APwbC2B9G9g7uV437bJbS8Jxz07+HYJXyY4ODwH9sM+ABPBbEdk7snqyo8OOoSaSnw/rmQcseqeXwv3+aeYdkLKM6x2SvXtmd+dOuC6ZDiwEdhGRdgGm8PcuwCxV9aKkvUQ4bptiQ8OXr2JxtxZEGr5PxFJznNBJSgZ/v/UQq3HMVrYNf6/1HMPDfXO49/ea69FC4/S4UKfi2GRNAhFJpjiehX2ujAYuwGrp/EpEvhvmrwBmYqnsiqHznpeudxCRC7B0g8lARAaAqi7BRvOVYIGqM7HfyH8J85vC9Gxg1+i6rndbRW2aE8P931V1afL9H0Z/XoOlEPueiIxdt3vp1qfkORFG3T2HBSn/iAUmDlfVRoBQePmP2HlwgohMCOt5Gv1eJPUzQETOAF6P1M+LdnR4HxgEjMLSxNUAd4rI1mE7U4H5wMa0H7Hp1hP/ktY7PYd94T5ORLZKThSREuCnWDGxf3bPrrnOiMgUEenQo1REpgC/CX/evX73yq2uEFn/BzaS6Rcps38Rpv/f+t4vt3IiUiQik9JMz8OOVxHwL1WNr/ed28BEUgqdCNwPfKezhm9/v/UMq3PM/L3Wc4jIJp1878inrV7WE+DvNdfzdBJMOBrLN34NbaMnknUqPsAaFrbBclCfjjVG/E1EDlPVxcDrQEbYDl5QtXdI6RGbnLYF1iP+dOByESlW1ZZI4+J/gWHANqr6D+C3wK4i8s+QkvBZrGHyiMi6Xoi9l4oEqzr0gBaRDBHJwjpL1GB56QE0csxfxc6ZA4D9oz2yXe8WAttFwI+AOuBs4ApVfVFVm1MWfxe4CesYfJhYzYs4gFiRdtdDRdJ+aWTaYGAC9r3gbyIyKeW6/wX2efCt8B3ih9hnxD+xUTYzgbnh8aCwTW9DX4/ER7X0TiKyF5Z3sQG4F6jGhjKNAX4chje6HkREfoVdKF8G5mBfmiYBB2OFfK5W1Z922w5u4ETkVEIvK2Bz7ML2GvBlmPZq+MGT7G36GrAlllbjvbD8/sDbwB6qWr/+9n7D1dXjFnpLzcSOz1Tsy8kQYF8sv/HHwF6qWrb+9n7DFD4Lf4l9IfwzVvAw1cPhi6O/33qA1Tlm/l7rOSLfO17FRnBWYT0LDwIGAK8AByTfP/5ecz2RiBwHLFPVZ0KD0X5YSroWYN+Qhzq57KlYupdNVHV6aNT+C9Y78nRs1MV0LA3EKarqNVl6ERGZCByqqn8Mf0/Bju8+wO3AaZHGxTxsFMV/VfUHIjIAC1T9NSx7DpY67NvA11X1ifX9etzakZIubi9gR+x7yLuq+mVkuXuwc+AkVb0jNG4mIvN/BPwe6xx6kaq+tz5fh1t3ROQobHTw9yO/59MWUA4jth7DOgGfgV03DgNOAC5O/j5xPVO4LlygqqdFpv0ZC1S9gR3DlyPzXsDSsh+kqmUisjUWvKzAfrucBFwO/FxVr1pvL8QZVfVbL70B2wNPYgUQ64A3gaO7e7/81unx2gO7UE4Lx6wZWITlSty/u/dvQ78Bt2E9rTq73ZayfAk2bHQu9oVmDvYlt6i7X8uGdOvqccPSP/wVeAtYGt5/VeFz80Igr7tfy4Zy68IxU6w2QnQdf7/1kmPm77WecwO2w3oKfgKUh2OxHCtI+30gM806/l7zW4+4YZ165mAjKJ6Mnq/AT8L06VjPyOT03cJ37F9Gpg0FPsOKap4azv8PgVHd/Rr91uVzQbAREgmgHgswJOeNxgLhCeBaYFyYXoL1kl0I5ESWvwrr6PcA8AMsAH968nm6+7X6rdNzIDvcxyLTop8Jw4BHw3mQvE0Fdo4sc0CY/jRQGKZlAFnh8d6RdS8F8rv7dfttrZ0/fwjH9Rup506aZQVrpE5gnW5ewzqa1gHbd/dr8dtKj/MVkffwuZHpJcB1WGfvN4FdIvNOC9eBiZFpR2FpJt/CRpcnsEwopd39Gje0m4+wcM4555xzzjnXY4jIkcC/sJEUVdgI8lvDvAzgIuDHWIDiJ6p6v4iMwnrGLgaOUtXqsPweWEPG14AFwDhsxNArqb2sXc8jIgOx47oDFkh9DjhS20aH7YmlrtsDuAP4nqqqiFwCXIz1qH84LJsBXImNsFiEnQuPqurhnfW4dt0npF/5HZCLNUDGU+ZnqmpcRK4GjsFGz3yEjQ78KRbU3FZVa8Lyz2KBiV+o6pWR7QiW+nIi1jg5AthHVWev21fo1qXk57uInIcFLc4Cbkh9n6e7DojIL7ERpkXA7eoZTHo8EbkRC0BUYjWKhqlqVZg3HBtlcRGWCmpvVV0kIrtgnSL+pKqXhmUFOBCr3dcClGKfK4ep6tL1+6o2bJ5/yznnnHPOOefcerWKmgENWKHs/wL9ge+LyBAAtRo6fwV+hqXDvUlEtlMrCv8WsBmWgo6w/EtYcOM9rIEa4Pgwz4MVPV8Vdj68i/V6PQhLzwKAqr6IBSA+wXpGJxsW78caGyeLSCw0SrZgo8h+Rdu58HURGe3Bih4pGzgF+C6wRXSGiOwDNIX0h9tjKb6uVtWHVPXnWAP1ROCSyGoXYAGJX4vIuSIyWkQ2Bs4HdgKuB/6NnRvbh+fx2ia9VOTzfS42SmIXbCQw0HZsQ1AjW0R2jqx7GRaw2D4ZrBAvwN2tVvZeDMHNJVgg+gMgDxuZl0z/tVBVL8FSSk4GbhOrB/wxMA/YTqwmMGqexK4zBVjB7a8R+V7h1g8PWDjnnHPOOeecWy9Cccx2vdnTFLJ8AWtweBXr+bwDltIJAFWtUtUbsAaJEuAWEdkb62E/HEsV1NrApKpvYj0vy7FUQV43rodILaidMi+mqk1YAfUBWO9YgDNEZGRyfVX9FEvdMRM4T0SuwFI/PY3V6mkNTKnqElX9LXAXlnbsm6o6dx28NPcVqWoDcAiWdjK1pkQG1gh9IVYr67eq2hgpmP1/wOvA+SKyWdjeh1gqsBlY4Oo97DPm91ja5vuwURlgDZR4IKv3ijRwv4fVLzgS+IaI5ELbsQ2j824B/iwihcn1VbVWVRtC4XZJHeHj1p/wOZ/2vRiOTQL7PM8B7sSCEN8Xkc3CiLvcsPhPgJux2kd/xT5H/oPVbxuass1nsBp+zwDHp/kMcuuYByycc84555xzzq0Xofeiisg2InJWmJY60iEPS9uwK9Zg0ACcFgppE2mUvBJL9zQBK8C8Jda4fWLYbrIIcyw0ak9R1ZNVdUWaIInrBqraEkZAnBUKpkbnJc+LadhomrlYQ/OWWCH11vVV9SNspMWbWKPU5Vj++R1EZKPQizoWOe6nqeq4ZLoo132SQat0PahV9TVV/ZeIjAyjKpLTn8YaHrOwFDA5oVGzKcz/AksRlYnVpEiudzNWTPcvWEDrVawO6NfDCJxkw2YycOF6qWQDd0jtdRtWW+1K4BwRyRKREhE5ELgGq3HyCFbPIHU7LR646l6R68RVIrJf5DMjFjk2r2LpmxZhIzDBalcQAk+iqguAy4B/ADsDD2EjMoYBo8I2M7BaJgDXq+oBqnpPmOcjrtYjr2HhnHPOOeecc269EJEcrDfrsWHSpcCdqjo7NDi2hOVewEZP7Ib1rP85cJOqnh7mZ4RGjBIsN/mvgTIslVQlVsdiTprnF6x4b8u6fJ2ua0Qk2VCYjTUcnaOqr4Z5yWN8BFYo+zgsIPERNoLicFV9W0SyVLU5BCO2wGpejMAKL5diqYKuS3leCYGzTO853TOISJ6q1otIbhhdkZw+BAtWzcLyyE8P0ycDDwOTgI1VdVpobNQQoBoA/B34FnCIqj4Z/YxJeW7Bel3/BSgE9lTVGev0BbtV6ux4rcb6yfd5PvBN4AYszc9crCbOQCxI9UtV/d3a2Ge39onVonoGC0AuBG5J1pyILLMp8BI2wuJ8LICxE1bz6KHkdSIsG8OuEwdhwcmJwB2qelInz/+VzkO3ZrxXiXPOOeecc865ta6T3oilhJRNWBHsXwA3i8jQlAaB17Bc8k1Y4d25wHdE5KDoxlS1Uq2A7j+w37cTw20caYQBHt7w0AOERqNRWLBiKVZ/5DYROQda65WApXNpxIqozsZSgQ3DAlUkgxWqmlDVD4CTgS+BKVi6oImhwbJVpPe1Byu6mYhsKyJVwJ+hNRUUIrKziAxR1SVY+pZJWHFtwnJfADdhvaEvC5MTIVghqlqGjbJYAvwyBETSBSt2woKi12GfG9diwRHXjcIxTAawdwnnyUbR+avaRuR9Xqeqd2JBqcuxRupp2MiL8clghY+8636dHNd5WLCiGmjG0gL+IwQzAQijKMuBUeG4/z7M+kOY3xwyUmaE0Xs/xj4fJobltgvpwTrw7wzdw9+MzjnnnHPOOefWmtAoEE3VEG2EWIylcWrA0jfdj6V0ejIlGLEYK5q8p6pWY4WS84GzQg/slmTjQ1j+l1jQAizY4fmme4hkI2BqQ1RoNHoUK3QcwxoPZwJ/FJGficiwsGgeFtzaLfx9LdbYeLSIHJ76fKr6HJYS5PMw6UlVrVuLL8mtXUuwVDzfFJEhIrKpiHwO3AtsGpa5Bmu0PEEixZGBW7Fe1UeLyC7JUTOR+f/FelJvj9XDaCVWaPlBbJTGpUAN9nnzpzRp6tx6ED7Tk8Wwk6kDXwNeBN4GPhORG0Vk3JqkaVLVt1T1V6q6HzYK70equkja6lT4ce8myWt5OO5ZkemZqjoT+wwowtJF/g74HnCniGwe2cw7wFZhO//Gvl+MFpFLwvzW0ZWqOhX73vB4mPdzVZ23jl6eWwMesHDOOeecc845t1aE3ovJlCzbicjdItI/0tNVgf9hjZF7YwVwTwYGA/8UkZPDpj7Bfq+Whr9vxxomDyLUqAjbSzY+LMJ63m+sqoeqatW6faVuVSINj8lGwA4FtlV1KW1pWkZhvdz/jKX4+r/QK34m1nN2gIj0U9V6bGRONhbAKtK2GhXJoMi/sRQwGar6xLp7le6rCJ8X84Ezsff628DHWEDz9+ExqroMOycmYEGLnDC9AvgboLTlq4+HRs9YGEFzA5Y+7IHI84pavYvbsVEax6jq9qr6RrTR3K1f4dqh4b08AkvvU4Cl6roCu3achl0rhq1kU115rnporYPgdSq6SeQ6kRxN8xvgD5HRE8nrxy+A5cD+WLqn44BtgUdEZN+wzEKgVES2C39fgwUiLxeRQaGjQ+t1SFXnAkdh14l/r6vX6NaMByycc84555xzzn0lyV70oUGgRERuB94C9gLGR5cNwYS/YekdjgTmYIGIj4BbROTXWOHMeVgDZTLQ8YuwidNFZGRo2Io2PpSp6hcpIy9cN0k2AIrIUSLyNPC0iDwiIgel9IJ/A+spfwCwlar+CGuc3g94RkR2xwIQU7D6JKjq/Vjv+b2BkyJP2ZrqSVW/SNPj3vUsyUbiTcL9cKxeyWFYwdtlkWVvx0ZPHU1ktEQIRNwDbJ0MeIZe2Ykw/31VfTRMTx3l86iq/iIyP5ZsNF+7L9N1lYhciAUtL8HSAJ0VRkJcih33fwO7AD8Vq1Pylfioiu6ROhJTRI4VkfnAhUALIVARgtGZIaBxQVj9l6p6LxaUbgbuF5HvAS8DxVjAE1V9H0snlwH8Jqyb+t5u9OtEz+QBC+ecc84555xzX0my0UdELsJSvByCNRB8A3g3zSofY0GLjYHzsALJhwH3Ybml78IaGbaPBENexdI+bRWWSZtbOrQ3es7pbiYiA0XkbuyYDsaKqO+NpeD4S6SXfA3Wy30u8F0R2V5Vf4k1TE/G0nochKUE2y3yFL/AUgn9SEQmd9bIrF6nosdIBgzSjL4pwdK5xICNVHWeqsajjYhqBXN/CfQDTor0wAZrlFyM1cPptJB6ykivDvvljdfrT8qIqOS0fth14BRgD6y48qthXo5aardfYymiTiCk/3G9T2Qk5pYi8j/smj8VOBa4MhqsTL6fVfUOrCPEfiJyiqq+CByOfXb8AzgHq2nztchT/TFs92QR2TX1PR4Ncq+TF+rWmAcsnHPOOeecc859JSKyk4jMBa4CHsIak65SyxneoSE5pGO5C/gAa5g+NDRGnYal/tgY6209D2uoTrom3A9MNni7HuvIcPsT8G1V3RbYCesl/wPgskhal2lY2pdxwCkiUqyqDwOnYg1UuwJVWBH2ZEqfd7FgyFisEdv1UKE3dWZnAQOsN/1uWKq4bUTk/DA9tXHxeSxN0KHYuZWc/gbW834+MGZ1Uzr5iIr1KzkCJvRsLxWR4WFWFVZ/pgqrX7IsLJ+lqo0AqvoBdo0pxs6DVRbLjp4PYrVLMlOnu/VLRDJF5AasllUpcDY2mua+ZLAiGuCMBC/PDfc/EZEharUovofVtdgLqMOCFskRU8uA/wvrfOUROW79Ef9cds4555xzzjm3pkQkF7gaa0i4G/hpyA2dbDBIhN6xjSnrxYDvYMWWHwTOVdWFYd4hWA/be1X1vTBNQgPXRmp1DVwPFBqZirGUTSOBMeEcSB6/7YDLgd2BS1T1L2G9MVhqn0lYw9W9YVv5Yfn3gYfDiIzkcxUBTannlus5xOpUJPPTF2I1a/oDZcDjqjoncm5sDryCpYvbXq0gcizaK1pEJmG1Lj4Bvq+qnya3HT03XM+TPM7hcQHwc+xzXoCT1VL6FWIBrEuwNGCnREbwJc+TicCHwAJgCw31KFbxfDFgB2BP4C1VfW4dvlS3CiIyELgDSwX4U1W9Js0y/VW1PPJ38vvEP7HvDr9R1Usi83+ABbleUNXylOOfFUZpuV7CAxbOOeecc84559ZISiP0n4FhWIPQPGBLrIFodywl0FvAI6r6VmT9gcDNWCHN81T1xsi8lTYwRBtCXc8SGiM/xdL07IWNjEimABHsnLgPq1Vyuqq+GXrQfhMLWjwOnKlWkBkRyQJaOkvZs7I0QK5nEJGzscBTEZajPgs7R84NIyeSy10FXAz8TVXPTvc+F5FLgV8Bv1PVi1Lm+bnQw4nI8ViR9AQWiPwQO96zw/xNsREzceB7GoqhJ1cP9x9ivel3BhLRUTLRhurw90Qs1dRpWJq5U1T11nX3Cl1XiMhuwGPAC8APsUDlQdhoq73C368D96jqO8nPAhEZjBXYrgV2U9WPwvZi6a4Rke8p/tnQi3hKKOecc84555xzayTSKPQuls5lFFY081iskPINWABjZ6zH7Isicmpk/eVYw1Uc+I6IbAytDQ8r7Q3pwYruIV0raJ6P1TLpp6r1qtoabAjnzJvYubElcKiIZIeGpOewossHAkckN6aqzZ0FK8J8b4TqoURkiIj8AwswPIelA9sSC04NAK4ODZdJvwW+BL4nIjtGRmcMEJGNwjLXYSOzbiSFnws9m4jsDVyL1RU4FThGVS9MBiuCL7C6JFNoSxGXlMAatKdgjdbaWbBCRAaLyHHYefJ7YCmwlQcr1r0uXifewb4nHIKdC9dgo2qOxmpYjQXOBx4WkR1oK8S9FLgUC35enNxYZ9eI5Pngnw29iwcsnHPOOeecc86tsUgD0X+wnvE/BP6JNS4cCGyPFUc9FcgFrhORCZFNvIE1WuwMHAVe/LYnSvZwDj1cc0TkBBEZFOa1a1sIecOXAJNE5OthmYzI/AYsMDENO0dGh+llWC2LGuAYEdky3fZd7xCO24HAt7AAw0WqerOqfo6ldKoENgdOFJF8AFWtAH4D5AHXhEDFgVgtlD+IyMaqWqGq31PVmV6HoPcQqzv0EyygeZGqPqKqK0KNgtbjGBqWHwBewgpwXxsCX/1E5GDgMizIfUPqtSL0pM8TkX2xuga3YWnmjlbVPZK98d26sZrXiXrgJmAuFtA8GTtmU7DvA2Ox4OTAMH9sZN2rwnrHpLvGuN7PL/rOOddHicieIqIi8qt1+By/Cs+x57p6jt5CRMaG/8Vtq7ne1iLSEnr/9EgicmrYx827e1+cc871PJHei7OAfwEfA39R1W1V9WlVXaCq01X1Fqwody5wAbQGO2qxRoslwAWhJ6XrYSK9lr+N9VS+lTQBpkij0e3h/geRVB7RxuW5WJ2LbWlfDPVdrEjqTsAJ4RzxAFYPlmyITA0ehOOWC1ytqheo6gyxosfXY8GqTOx9/00sZU9yvZuB+7HUYVOxz5XjgdfViuy2Pm+0d73r8QZhx/Q5VX1NRGLJgHea47gIC1I1Y0GLV7HPhhuxz4yfqOrTqU8Qfq/8AivOfixwhaqOVNX719WLcm26ep2I+BL4Izaq5iBVvVRVVwAVarWJfoelD9wP2CJsOyes+6Nw/8vwWeCjLvsQD1g451wPISI7hgbv/3Yy/09h/uedzD8vzP/1ut3TNRc6z3xHRJ4XkTIRaRKRJSLyvohcLyJ7dPc+doM/AJ9jaTTWKRHZLpwjZ63mqrcDc7AvjM4551wHkYbKp7GgxB/D9GRDZmaY/1csf/1BIjIw0kg1DUsT8ntVfXO97bjrMhEpFpEfAf/AGpqbgaPFiiC3Hutko5GqPoil/DgIa2yGtvzzqGo18Fn4c//I9HqssfFu4GZvkO65RCQjGlBKSc2TDFzdhqXjQUT2x0ZWnIClBPsOlkKuPxacGhnZ/M+wwOb/wrIDVPW30ef3QFavk40FsLJFJE9VE529v8P0V7DPgiYsuHkhljZorKr+BToGybDPmoux0RnDVfXydfJKXFpdvU4khdSP/8ZGZr4VGaGR7AixAHgNa78+IKzWFOY9hI3AOM0/C/oeD1g451zP8Q42/H2XyI/6qL0ABSaLyNBO5gMki9a9BWyMNQz0FLcAd2BpIR7HGibuASqwnjOnddeOdQexHK57Ateupy9Z3wj3j6zOSuGL5B+BA0Rkl7W+V84553oMETlKRJ5IjqrraiqeSOPCcuABVZ0b/k5e31rC95sGLO/4ImBFpHGiCfiDqvbYjheO3bFG5BrgSGwUxG5YL+bUURbJRsTLwv0FIjJMreh2hohkh+nJ9CzLw3rJoMfHqvodVZ3qKX96htTjkOzRHFLw7CwiN4nILSLyFxHZPhK4agzHfSDwUyw4cQHw8xCc/BBYgPWa/3Zy+6r6par+EThWVS9S1XIRyfTzoVdrwAJWI8KtnTQB7nKs4bseGA98oKp/U9WySLAs2aM/eV7cA2ytqkeH65Fbv7p8nUhS1YWq+ryqNqQEPZPXieXR+/CZkxEen6eq73X1u4rrPfyAOudcDxFydb4CFAJfi84TkQFYftd/h0l7pcyPYV8EGrFeSKhqnap+3lO+qIkV0zsZ+ADrFXOiql4SvmTsBQwBru/GXewOZ2BfwB9YT8/3DeA9VZ23Buvei+WKPX3t7pJzzrkeZnss5/yRsGY9mFPTMkRSfsSBXbHC3AuxjhjR9VIbnlzPUoN1PNlJVZ/EGqIWAcclOzREAg7JANbjWD2TzbFRpYRG7qawzYPD/Zwwr9355il/upeIDEse29TjEIIQ/UXkn1i6nsOAr2M9pd8QkdSe7UdijZm/UdWbVLU8TK8DSoBSrJbFduG5k8HMuvB3TFXjfj70atVYp7otgL1FJBfaGqaT5xRwq4hsHY71B9gImwOAb0Yaqlui50LkM+dDVf1wPb4m116XrxOpku/5yHUkeZ04Ity/lVw2+j0jOsrL9R0esHDOuZ7lhXC/Z8r0PbAh9NcBK0gJWABbYr2V/qdWxLDTGhYiMjvcCkXkzyKyUEQaReQjETky3U6JyCgRuUdEVohIjYi8JCK7r+Zr2ync366qVakz1YrnvZ7yvLeF17CRiPxERKaLSIOIzBKRS0Ukq5P93V1EHhOR5eG1TReRKyQU8/sqy4fePBeJyJdhX74UkUtYzWtq+DL+DeCp1P+HROphiMjGIvIfEakQkfJwHAaG5XYSkedEpCrM+4eIFHTyfOOwxoJHItNKRORyEfksHNeq8HpuF5Ex0fXVime+CBwpIoWr81qdc871KldhuaRPlJCqcU17LkYaHFUsb/03sO8ys4BfhyBGh8ZHb5DsmVT1ReAyVZ0TJk3FjudELJ1PTmhwTDY6JQNP5wLvYWlB7hGRXcL3mx9iI2yfAZ7r5Dm9EaqbiMhwbOTDn0VkVJiW+llwOVZQ+3dYsGIzLF99GfBzETk98r0x+R11Wco2TsPSo/4Ta8gugfQBkrXwslw3CY3K1VgHvHnAJcDh0NYwHYJVN2C/ffuHefVYHYTpwHGkdOxzPcvqXidS1tVo8EFEJojIb7GRV3eo6n86eU7/ztAHecDCOed6lmTAIjUgsRfWE/8NbBRGuvnR9VclC8sxvT/wIJYbdDzwL7Hcsq1EZBg2auMYrFdDMmjyDLBjF58P7IcLwKTVWCfpT8BFwLPAX7CRJJdhQ37bEZEzsIb1XbC0U9cB87Ghqc9I29DSNVoeKwp6DXYN/RvwFFbw68+r+Zp2x47DGytZZhzwOpCDDYf+EDsOD4vIrtiP+5qwTzOwH/1/6WRbh4f7R6C1EeEprCjdirCNm4D3sR+cE9Ns439Y3tmdu/D6nHPO9UKh1/MVwBgsaJHfWeNCF7alIpIlIvsAV2LXqP5YsOKDtbnfbv2I9IpPjg6+EyuEeyRwaMqyKlZsuxL4PnAzcDT2XfZt7HyYB1ygVlzV9QAi8j0ROR/77n4T1jEqXXH1LYAzse/Rv1TVt1V1sVrtkh8CM4HzsSAG2DGvwXrJbxU6JJ2D1bN4UlVPAwapatrglet+Eopkf8XNPIWlmi0BbhGR34nIySJyDfB3bNTVzdhvoKSZWCrhrbDrUu5X3Ae3Dq3OdSKNHBEZLyIXYNkXfoy1AXgtkg2NqvrNb37zm996yA3IwOo51ABZkekfA8+Hx+djKRRGRuY/GqbtFpm2Z5j2q5TnmB2mPwxkR6bvE6b/N2X528L0n6VM/36YrsCeXXhtI4FKIAHchX1hGbOKdZLPvTTl9WZjhdQU+FZk+iZYYa8PsMJ80W1dHJa/4Cssn/yffgAURKaPwHqLKXBbF4/1b8Py+6aZNzbyvz03Ml2woIpiOV2/EZmXhQU0moEhabb5IjAr8vfmYTv/TrNsDlCYZvrXwzqXdfd7xW9+85vf/Lbubtj3keeAKuDoNdxGDOsMUIGlg6gFHsPSQnb7a/TbWj1fjgnf7x4FhiaPfyfLHoV1QvkdcGRkunT369jQb1jnpafDsbwF6Ielb1uK1RrZOiyXEe4PC8v+IPydHZmXi3WKSWC1KgAGYZ1+EthvgiXh8XNEfhMkt+G3nnWLHpfo74TVee8mlw3nx1HYaLtEuFVjNR1372Td4VhAY/vu/l/4bY3Ony5dJ7AOgY3h+8cM4Hvdve9+656bj7BwzrkeRC0X48vYkOntAURkELAp1uAM1lAPYVSFtNWvqAfeXI2nO1/b8kKi1ptpDpFhtmF0wdHYD5VrU9b/BzY0t0tUdT42ZHweNpz3fmC2iCwVkfvEClB35s9h/eS2mrAREGB1MZJ+AGQCZ6tqGe39FgsqHPsVlj8x3F+uqrWR/VnA6o+wGBnul6xkmRnYiI/k8yhWSwLgfVV9JDKvGauFkYkFYlqJ1UDZlfTFtutTJ6gVR6xJs2xyX0emmeecc64X6iQtQwtwKVZX62QRGRGW7fLvR7We2B9gIzkfAPZR1cNUdXZIr+h1KvqOJ7GOMAfRSe0TCUV0VfV+Vf2Nql6oqg8k54XvOK6bhO/8lwHbAT8BfqeWrnUe8BtslMR3JBTaDquNCveTwL6fq2pLSOnSgP12qScU0lbVZap6MfBz7DvpG8CJqrqPtqWPQVNq4LieIRzb/iJyA/CCiDwiIjtivz26dH1Ivs/Viivfj3Wg2gn7XXuwqm6nqi+LiaWsu1BVT1fVtzpu2fUCq7xOBHdgIyvOAiap6i1gaZnXz266niKzu3fAOedcBy9iPZb2Al7DevULbQGLD7BeSXthF/StsB5Qz0YDEKtQoaqz0kyfT1utCYDJWA+Y58MPj1Zq6SFeI33qoLRU9VkRGY+9pt2BbbGG9G8D3xaRq1X1p2lWfSXNtP9hRaC3jkxLpqg6IKSfSNUMTPkKy2+5kv1JN21lBoT7ipUs81GaH/CLwv0HaZZPzhueMv0QrLdsNGAxFestd6yIjMS+QL4IfNDJl0ew1FEAA1eyz84553qB0EgcV23NGa2ReaKqr4nI/2H55Y8C/rSS60NaqlorImdrKJobtp3hDZJ9i6pWisgfsVSjJ4rIk6o6Q0Q2AbZQ1XvV0oIAbUXYQ+N3IjrPdZuhWMrPd1X19ynzrgNOwjocPQP8N0x/BvuuvJWIjFHVOdHPElV9RURmAENFZDQwPxzvq6DtPAiP/XOhh0lzXdgBuB0YhqUL2xbYgZDub3WvDwChg1S7DneRcyFtEDN1v1zv0JXrRFjuDRF5N3TGaz0f/PNhw+MBC+ec63mihbevCPcNhC9zIVDwKm11K5L3z6/Gc1R2Mj1O+/pGJeF+aSfLr2x0QFrhR+mz4ZbscXcyVmDtEhF5QFXfW9XzhF4+ZZF9BCgN9z9LXb4Tq7t8CTaUdXmaeav7v0iObFhZDtYOxcmxY7SqeanFyA/Hgg2tQRVVjYdRLb/CRr4kR9AsE5G/Alem+WKYF+7rcM451yslG3uSjcQicgLW4FiFFUZ+KtIB4mqsJ+TJIvKCqn6YbGTu6vMlgxWRxmlvdOib3sW+y10A/FBEPse+3+0oIitU9enkgpEGbS+i3HNkAk3ABAAR+QZwI3CFqv5VRH6JjZY6UUTeUNUKrNPNo8ABwH7AP0IgKiN8Ty/A0kRVAAu0ff2L1KCVfy70EMmRDWnen9/EfpOehHUc2xwrhn2RiHyuqs+s7vUhnVWdCx6s6NW6dJ1Q1ebkKEz/bNhweUoo55zreT7E6hPsHIZn7wW8oe2LEb4IjBWRsVhAA7pecHt1JAMbgzuZP+SrPkHo3fkP4O4wKbWgeNrnCcNCB9A++JJsxC9WVens9hWWr8SunelGGKzu/2JZuC9d6VJfUShKtz/weGoPRlUtU9WzsRocm2BDb1dgKQF+kmZzyX1dlmaec865XiDSo3k3EfkMa3A6CQvePwTcLCJjwrKzsXQwWwDHh0bGNS3A7Y3TfVCkUakO6329EDgDyzW/GfCjaLDC9TyhkXkmlq51jIjMAf4NfAHMC+/7f2PBiW8CR4RVl2OjvRuwRutDoLVTURF2HkzE6ru1a3T0oFXPlPyMD5/zE8SKYe8lIv2wDlC/VtWHVXWJqj6L/XYYDpwnInlren1wfduaXCdCxwoPTm3APGDhnHM9TPji/hLWm/3rwMa0pYNKStax2BerX1GDFSlb26ZhP0K2Cw3frULvm53X4nOlq5mQtFuaaTthvcHej0xLDinesePiaa3u8h+uZH/STVuZj8P95NVcb3Xti9VESVe/Amj9QjhVVf+G9ZADO/dSJff14zTznHPO9RIisg3WaJAAzsGuYRtjPR+PB6IpYf4OfBqm79vF7UvkcbaI5KVOd91jbecBjwTAdgC+jzVe5mCFU4eq6p/CfD/2PVQkaLAxloZnBG1F0R+JNBpehqWpPUlEJoTpL2EpgcYDt4nIr0TkPKwW3C+At7GRGa6HSFdrQtpqzKiIZInIb4HPseLrzwH/wc6Nd0QkFhmF8QiWIuwg4ITV2Af/POjB/DrhegIPWDjnXM+UHC3xy3D/Ysr894Bq4FwsTdErqb3n14YwquNf2AiLC1Jmn0oostcVInKgiHwj+YU4Zd4ELD82wKtpVj9XrM5Ccvls7McRwG2R5a7H0iL9JeTKTX2efiKy9VdY/o5wf2kY5p5cbgR2LFZHMui0w2qut7q+ATQCT0UnikhyhE6q5EiRhjTzkvv6Upp5zjnnepiVNDp8HxgDXKKq14eg9QzgZmAm8C0R+SaAqlZh6QOHYQ2VxaFRq0PDQqQXZbJxYltsxN4Jnne8e4lprRMQvgcMSn6fWdOGorDdnYG7sN7WzwObqOrZqlonIpl+7Hs+EfkONhriTaydaIyqLgvzMgBU9X3gr1gduqPDtEpV/TP2m2UFcCmWSu444D5gH1X9Yv2+GtcZETkVeFBENopOT/kdeQgWfLgROA/4I9ZJbRKQCAEuiVxfzgn3Z4rIqGSqr06eP/UaMU5EJne2vFu//DrhehKvYeGccz1TMmCxGdZw/EZ0Zhhq/RpwYMry68LFwD7AFSKyKzaiYWPgYOBpLN1QV0zBvvAuF5GXgRlYL60JYVvZwA2q+maadd8APhSR+4BarCj5ZOAhVW3ttaWqn4jImVgP0S9E5InwPEXARsAeWIDj9DVc/gURuRX4LvCxiPwb6x1ydNjHQ7v4vwAreD2TthENa1348n8Y8JxaUbuorYCHROQt4DNgMdaj7nCsx+0fU7Yl2HkwVVWnrat9ds45t/ZEGh3OBFqwa1o/7Lr7rKo+FuZPwK5hJ2HXv3uxXrXJ7TwoIo9jo++eAu6INiwkGxqijVBYo9dpWJ7zS7FGUM9F3Q0iDUEt4VhfDWyDHZMyEbkY64zQvLqNRqFxsgHrSX+xqj4QnjPZA9sLaq9nq3MMI8s+jh3DpViP+W+LyB2q+jj2fT3pd9j33hNE5Nnk93ZV/bWI/AULegzCvi/OCs/hBbV7joOwzkz3Y79DABBLA/gy9jtvCVZQ/VJVLQvzs7CG5p8CZ0SuLRmq+qWI/BnrvPV94BfpUn1Fz0sRGQTsjQVEVgA/BGavg9frusivE66n8Simc871TJ/QVtg5tX5FUrSX+zoLWKjqIqxXzX1Y6qRzsdoR+2EF17rqLqzh4kVgUywIcC7Wa/9pbNj5mZ2sex42tHw/rBdPLtbb89g0+/t/WLqoh8P+nocVDB2INcL/6assH17DJdiw6LOwL/5/COt1WfiSdyMwUUS2X511V8OO2IiJh9PMewfLS65Yo9IFWD2UZ4FdVPXRlOV3B0Zj++ycc66Hio6qEJEiEbkH6xW9P1aLKIFd4z4VkRIROTbM/wM26nAHVT1OVStDI1XSL4FC4EciMjTyHNFGqAEichTWEeA6bITfjqp6hTdYdp9kj2cR+QnWILkjlvbzPWAo9h3vuOSya/AUH6jqsZFGqAwNefDXzitwqyPyfszt6rKqWg5MC/fXhNk/C/PikYbFxcAVWG/745OfEeGYV6jq26r6hKrOCudczN/73Sd8JudHJp0NnInVK4pqBuqwwPXXgd+papnYqHaw310zsUDV18K2M7DfEWAd3JYDZ4nILin70DqqQkTyRGQf7HfdbVgqsdvV6iW5buTXCdfTiI+4cc4511OJyG1Yb89xffGLrIiUYl/+71fV09bB9n8DXAgMDz8wv8q27sSCM+NVtWIt7J5zzrl1RCxV4TbY6LkHgJuwUYlTxVIgPo2NEHwKu85WAz9W1X+mbGdP4C21QpmIyGVYz+l7U5bLwRo3jsdSiaTdnuseoVH5NODnWMeEO4HnQ0P0OKxx6lPgIlV9NTQyr3Yj0pqu59au0EB8JdbB55JOOj6tahsPYaNuz1bVv6WkicnBUrpMwXrb/yvdPnh6l+4lIt/CRlJ8B7gnZVRcBnAA8N/ke1ZEvgdciwWadwVmqhXRzgij+7+P1TT6j6p+PbKtzPBZch4W+D5MVR9PPQdEZCvgW9hn0QDgKlVNpj923cyvE66n8REWzjnnXDdR1RXYcNuTwlDste0bwJtrIVgxCTgGuMKDFc4517OFhqhPsRpUtwGvqeqVqjoVQFXnYmkJx2CNE1djRS9TgxU/xwIdWyanqeov0wQrxmNpQu4ETgH+rKqDPVjRo/TH0oC9jaVreTo0Qu0HPAoUA9tjPeZzQiPlaucq90aoHmMH4CJgv9UNVkRGaF0G1AA/FpHBocE6WcuiERuF0R+rc9eBByt6hCZgEfADrMgx0HqMn8EKaR8YWf4ObAT/YGy0dUKs9mACQFVvAl4BDg0j6ZLbagnz/wSUhjRi0ZE+Y0TkDOBWbNTOK8AID1b0OH6dcD2KByycc8657vVnbGh9h6LfX5WqTlHVndbCpkZiP1z/tha25Zxzbi1IpltJmZYZekFfio2gGImNpkCsqGWyMfLvQD3WIHlltAFBRMaLyK+xnOKvAVNTniO1gWJP4HzgQ2C0ql68dl6hWx2hYTEtVV0K/FZVv6Gqc0RkiFhdsKew3tRnY0GuI7E0kV15Pok8zoykjnHrSer7P+JtLI3LpmL157pcLDcEJkRVP8QClmOwVKgQGq7Dco9ho27/uqb779aNyLF+DrgF2A04KvkZEa4Rye/0x4tIvzC9GfgLNkLu8jAtHraZvHZcjqUO/ImIZEfTfYXzpiL6WSQim2Ppdf+GpY/aVVWPCp9Jbj3z64TrTTxg4ZxzznUjVW1Q1ctV9ZXu3pfOqOrzqvprVW3q7n1xzjnXllIh9HCcLCJ7ichGycYlVb0O+AAownpFAiSSjUuq+jxWY6II+FBELhSRnULu6uuxdIJvAL9OHVkX6TWbbIh4BmuEOlRVF6zDl+3SkJSipSLydRHZR0S2EJGCyKKvhvmbYkXVD8LyyJ+iqn/DGhQHYA2YQ5P5zNM8X2s++vD3lljA6uCVNKC7tShyDBIpxzha4Do5EmqPsOzqjHhIvrevBmZhI4G3DedEa40cjdSpWNPX4ta+cJyyQiq/h7G6decBkyPLPAg8gqVoOiIy/Tngn8AoEflZmByLXDuew9JMbYsV2I7WQUneRwso12I9909V1W1U9fW1/Xrdqvl1wvVGfqI455zrsVT1ZFUV7YP1K5xzzrnVFWl0SIgVzL4FS+/0BDBdRC4QkVFh8R+F+++KSHFYJ9q4+FssJdRA4DfYaIpfARtjeeuPUNWZne1LpHFqrqp+tHZfqUslIjuLyKDwuPV3vLblnz9GRGZjNUuewQJWD4vIsOhyWAPUbsBVWKrHD8P0ZIHm7bBGzLSpOyINUKPEctrfhJ0/m9HW0O3WocgxuAT4KJKeRyI93t8FqoApYjUnVmf7yboFZcDvgX5YXns0pYC2etHcHiWStqs5TPoUS/U0BDhVRAoji1+GvWdPEkvtl3Q9VmPvVyIyKJkOLBKs+hV2Pqx05HU4H2eq6p6qestXfW1u1fw64foSD1g455xzzjnnXC8QaXQQLKXggVjDw81YA9MVWKNUjqq+iPWg3RIrhB02ocl85OWqejOW7/4QrO7RccBGqvp/4Xlae1O77iMiF2E9X5M9mpPnQSyk2fgZlh9+JlZPZB+s0XEX4HaxYrfJoqrHAuXATapaE3maXKyo6ijgRyIyNvL80bQeJSLyDSx1zN+BPGAfVb0itTHbrTsisgdWWHsccIOI7ET79p3F4XYAkBXWWZ2GwuTnxA3Ar4Gz1sJuu3VM2wqjHyUi/8N6yX8XWIFdB7aLLPsB9j7eHatVl5w+FbgRyAB+1za5NV3YdFW9qrPe9ZHteB2T9civE66vEf8Mcc4555xzzrmeT0T2xRojXgcuxmpV3KWqtSKyBdYYMRI4U1UfDI0JM4HPgUNVdWYyndQqnifDGxV6DhHZGPgv1kD9D21fc2QcVsT2S+Cc5GgXERmANUqdjxVfv0hVl4nIP4GvA0er6lNiOc0PA24HLgCygaZk0CryPJlYwdVjgZOwBu1LQoO2W0dW9n4Vkc+wIEUL1pD4Y1X9d2T+A8A3ge+o6t2hsbnLDUCpz92Vzw7XfUKDcR42KuZ0rIbFB1jA6iBgInAfNoJueVhnKJYyqgY4SVXfDNNLgQexlGJ7aJrUtat7Prl1y68Trq/ptOCKc84555xzzrmeITRG7YoVvBwOPK+qNyXnq+pHoQflE1h+6f+p6mwR+R1Wk+J04CddCFaIByt6FlWdKiLbqeqyNLOPx86Hb0caoTYDDsbOFYCpoRFKgEexnPV/EpGHsfzy+2KpY55V1VmpTxDSxRyFBcvGYqlgfhRJO+PWkZCeKVtDHbFwDJM1BR4CTsUK3z8G/FZEKtVq1ADchQUsdhKRB3Q1a5GlNHiKByt6tjDiYRL2mfA01jA9DUBEbsRqUxwNPCYi94Z0XotF5Aqsp/0JIvKeqjar6orQaL0VUNrZ862Hl+W6yK8Trq/xlFDOOeecc84518OFxqG/A88DO2M9YpM9GpPL/BdLAfJ12gqpXgwswxqjdg3reBqPXiY0JO0lIq+KyEHQmrJrNFarYJaI9BeRU7B0LtcAXwATVfV3YRsKPI71qB0LnIulifkMOCZdI1RwMJZubCYwSVXP9kaodSM1bZOInAG8LiJfT06KBBTfBwZh6VmOwj4T7hSRrcN2pgLzgSnAatWxSN0P/1zoNb4FFGGpfJLBiqyQ5ukyYC7Wm35UZJ1bgbfCugclJ6rqrcAgVX1kPe27+4r8OuH6Eg9YOOecc84551wvoKqLsaCFAhNEZKiqxlMCEL8GGoDviMjmofHhIqzo6vlhO95TuncajQWrjhQrpN4CNAHFwNlYL+mbgKHAYaq6v6rOABCRgaHhsl5V/wJsARwK7KqqX1fVOamBrEij9aPAXqq6r6p+uT5e6IZGTCwaGBCRwcAEYBvgbyIyKeW9+wVWp+LIUI/gh1jQ4p/A3ljD4RwsV32HQrwrk9wPERkqIgO/4stz60+yqPZCaA1ox8O054D/ANtinyG5AKraiBXRHgKcIyLFyY2F64vXMupd/Drh+gQPWDjnnHPOOedc7/FfLLf4dlgqmHYBiNCT9g9YMe0jw7TbgBuwmheu9/onlvLraKxIOsC/sQbJH2Mjay5Q1fGq+nhypdBo+QBwRvg7WTj3eVV9P0zLSA1kJRutVXVOuhz2bu1RkxCRKSLyf2HaUlW9ACtcOwK4TUR2j6zzCTAN2FpEBqjq69i5MRhrlBwCPBUWPyas02mwMjqqQkQKReQA4ObwvN5ovZ6ISEG4X5MU7uXh/hCwgENIFSWqWo+N0AM4Ddg4uZKqPgv8EfidqlZFN+gpAnsdv064PsEDFs4555xzzjnXS6hqDfAnbJTFCSFvdGrP6T9hPWx/LCI7h/V+qKqfpqZ6cb1HaBj6NVZY9wQRGQ58iDVOZQI/U9U/RdcRka2BO7Fe1eWR7aRu2xslu1moJfAZcIqInBuZdSmWD34b4Hcisktk3t1heilAaFg8CyuK+yCWAghgMxHp38nzSlhXRSQmItuF57wTG6nxlp8f65a0uRp4V0TyVDW+yhXb1k9+/t8D1AP7hnoWyZRAyYDTR9jnwCTg9JTRFBeo6lO4Xs2vE66v8ICFc84555xzzvUubwH/BxwAHJIsiBtpeFyB1a64MvS6BqxRy3PR926q+iaWFmxfrIDqciy9RyVwiYj8MKTxmSgiZ2HBqwOA64CHu2evXRcNCveVwFXJxmRVrQSuxnrAfw34h4gMC8t+BtQB34ls5wHgTCw1zNVAIzAeyEr3pJH0T+OBc7Ae2j/G8tgPUdXL19Lrc50II2wU2B4LJhy4musne73Pwxqed8DOAVS1JRL8+DaWMvBlbJTFyOh2PKDdN/h1wvUF4t9XnXPOOeecc653CY2LTwMVwPdV9d0QuPAfeH2ciIwE3gOWAsep6kcicgzWC78/dk4Ils9+HnCeqj7aTbvrgpW9P0MP+V8Bp2BpnvbACiefHl1PRO7G0js9g9WmmQn8D6tVcWwIbiS3uR9wP5a7HmA7VX0vzXMPwupcnIqNqHgDODPUxXDrQUi10xLe21ur6mORebHVqTskIpOx3vTjgMuxtF7NwH7Aj4C7gFeAqpBC0PVBfp1wvZ0HLJxzzjnnnHOulwk9YX+I9br+C3BpSBfVYTkPYvQ9InI+cC3WM/bC0Ng5BTgYGIs1UH6kqrdH1lmthk+39iQbpDuZJyEd0ynAb7BAxKXAKGALVf1ERHJVtSE0Qv4S+C4WWDgMG031HWBvVf0iZdvnYufEbap6T5rnnhSecz+gCviRqt67dl61S2dl50JkmdHAwar69zV8jj2wwMRwYAVQjdVBmYoVaZ8elvPPhD7MrxOuN/OAhXPOOeecc871QiIyEOspWwccoqqLu3mX3HoiInnA68BQ4Huq+mTK/NZGJxHJXJ18+G7dCKMorgBeAJ4PjYfR4zQZa1A+FKtJ8U/gRVXdO8xPBjZGAj8DfgC8hKV6uQvYX1WfDTULkkW8s1S1ObIP7QKY4TxaBNygqpes83+CayUiI1R1QZpjlIXVHJgC7KWqL3UlyJFm+5OA47AaJyXAk6p6zVp8Ca6H8+uE6808YOGcc84555xzvZSITE7tVe02DCJyGPAI8CjWGLUipYBy6+Nu3E1Ha4/3Z7CitwuBW1T10pRlNsUCEHcC5wOvAjthPeIfijZsh+DHY8BBwHRgInCHqp7UyfN3aPBONlCGAs/1a/Hluk6E9+QY4Hls5MOOyUZiEfkmMF1VPxaRk4FbgOdUdb/kumv6XhaRHFVtDI+9YXoD4tcJ11t50W3nnHPOOeec66WSwQoRyezufXHrV8hz/yqwFdaDOlq8t91jt/50Urh4HhasqMbSsJwhIv8QkSHJBVT1U6AcGBWO2+/DrD+E+c1iMkKv6B8Dt2PBCoDtRGRUun1K1zs/2WjtwYp1S0S2FZEdobVRuBKrLbANsEeY/yFwH7BnWO42rEbRPiF4AV+h/U5VG0UkFoIeHqzYgPh1wvVWPsLCOeecc84555zrhURkiKou6e79cO1HMaSMhkiOZLgKqzfxNNbD/hrgOaxuxMdh2XuA7VV1fPj7PuAo4GeqenXqSIlQ6+BvwCHAt1T13+vr9bpVE5EtgA+A14D9VLUhTN8UOw8KsKLoHwH/h/WEXxjSee2MnSezga+parXXF3Brwq8TrjfyERbOOeecc84551wvlGyE8hE23SeSUiUZrPgN8IfI6IlkA/MvgOXA/liP5+OAbYFHRGTfsMxCoFREtgt/XwPUAJeLyKBQ9yIj+dyqOhcLaGR4sKLnUdWPgP8CuwAnRmYdAAzDghUvYufC9ao6PxmQUNXXgVuBScBPkpvsyvN2MsrHbaD8OuF6Iw9YOOecc84555xzvZineVn/QnqmWDKdiogcKyLzgQuBFkKgIvSWzwwBjQvC6r9U1XuBb2Ipou4Xke8BL2ON2A1h3feBvwIZwG/CuqmN1o0hF703RvYgkcDSueH+jDAiBuzceBz4EksNVR6OYSxl3Suxoug/FJEpYZnWgFVnIufkgOR5kdy223D5dcL1Jv6B5ZxzzjnnnHPOObcaQur3hIhsKSL/A+4CpgLHAleq6rLIssl6EXcAbwH7icgpqvoicDjwDvAP4BxAgK9FnuqPYbsni8iuqSmBIrnovTGyB0mOhlHV6cB1wJbA6WHen4BvY8e2GAtMEBld0RKCYfPDMv2wETpp65FA+1EVIlIkIodi9U/Oim7bOed6Aw9YOOecc84555xzzq0GEckUkRuA94FS4GzgLFW9LxmsSDYih9EYyREQyR73Pwm55acC3wN+B+wF1GFBC0Kj9TKsvgHAgPXw0txXkDICIjka5mKs2PZ3ReRr0Frs/BHgSSwYtXvqpsL9n7Ai3d8SkQNTnyOSkkxFJENEdgB+BdwJfAtYhnPO9TIesHDOOeecc84555xbPf2AseHxrar6N1X9Is0yydEY8RCAeBNrTJ4InBfmz1PVi4AzsFoHyXoUydETfwJyVPWRdfVi3NoRqWWyGZbKi1Bs+yJgCPDDyLILsToVVVidksxoTZQwQiMOXA1kA5dHnyM8TqZ/moSdT3cA5wP3AYNV9a51+Xqdc25dkPDZ5pxzzjnnnHPOOee6SER2Ax4DXsAaoquBg4DdsNES1cDrwD2q+k5ogG4RkcFYge1aYLdQnDk5oqJD6h4RkWSdCk/91LOJSBFwN7A1cFioQ5Kc9yGwMXB0ski6iOQBfwZOBU5R1VvD9MHARqr6Rvj7V8C9qvp5yvMNAfYFTgN2B14BzlDVz9bl63TOuXXJR1g455xzzjnnnHPORXSluDFWe+JW4BCswfka4HbgaKx3/Vist/vDIVVPskbBUuBSoAhLF0SYnrbOgNep6FWasaDBIODwEMBIOgfIxIpoF0Fraqh/AtOBS0XkIBH5OlZk/V8ickhY7leq+nmkMLeEc+pvwM3ARsCRqrqHByucc72dByycc84555xzzjnnaFcToEVEckTkBBEZFOa1a0MJjc03AXOxugEnY7UopgA7YwGL64CBYf7YyLpXhfWOCQ3UXQ2SuB4spH96EHgZC2JtF5n3Epbua2/gu5HprwJ/wWqUPI6lczoWuFFVH08uF0baJINamcBWwMHAVao6WlUfWnevzDnn1h9PCeWcc84555xzzjkXISLfxopdFwDnqOr1nSyXBXwfOAv4gaq+HKYn0ziNAK4Cjge+paqPiEiOqjaKyDeBB7DC3V/rbISF65lE5BQgB/g/VW2OHHMBjsJG39wPXKyqi8M6o4A5wOdYyqgZYXo+sBMWgKgA/qqq5WGeaJrGOxEZDlSpas06fqnOObde+QgL55xzzjnnnHPOOUBEikXkR8A/sF7szcDRoahxulEWzViv+R8Cb0VGaCTTOC0AXsPaXw4IqzWFeQ9hIzBO82BF7yIik4GfYoWwJ4Ed80hw4SXgX1jgYvfIeTEPC2BNwQJdSfWq+hxwkar+WlXLRSSjs2BF2NZCD1Y45/oiD1g455xzzjnnnHPOmd2BnwE1wJHYKIvdsBQ9aetMhIbj51W1Idq4LCLZ4eHy6H1o2M4Ij89T1fdSAyGuZxCRzJS/YwCq+gXweyAfOD2MkGilqkuAO4BKLDXUhMi8nwMLsFoW+6SsF08+j6q2dBascM65vswviM4555xzzjnnnHOmBmto3klVn8QCFouA40RkF+g4yiIp2Ys+0qjdFGYdEe7fSi6rqi3R9XyERc8SOYbJAMJ2IpKXstiTwNNYPYodwvIaOT8+DPP3Ag5MWf9yLNjRL7ledMN+PjjnNmQesHDOOeecc84555wDVPVF4DJVnRMmTcXSNk0ETgj1JxLJ4ETKuhoNPojIBBH5LfBt4A5V/U8nz+m96HuYyDE8RkSmA88BzwI/jiwzG7gTaATOF5EByXXDCIkyYCGQgZ0Dm0XW/T9gkKo+uH5ekXPO9R4esHDOOeecc84555wLksWOw+M41ij9LpYi6tBVrJ4jIuNF5ALgeqyB+1msR73roSRIPg73x2DBqhXAi8DGwDUiEq098QJwH3ZeHBKKsEdHSCSAd4BdgFNFpDC5oqqWJetUrMvX5pxzvY0HLJxzzjnnnHPOOec6EQpnXwuUAieJyNCU1D9R1wKfAb8ExgOnquohqjpj/e2xWx0ikqmBiGSE+xzgfKx49gmq+g3gEOB94CoR2SGMpinDimtPAy7EAhOISJaIHAmcFebfAbyYWiTb61Q451xH4p+LzjnnnHPOOeecc50TkRLgVuAw4HxV/Wsny+0IHI01bN+VrFURGsJb0q3jegYROROrRfEeMB84Efh+KKCdXOYE4K/A/7d358Ga1fWdx9/f7tvQHTMY1kYU0oggKoMbiqBoEJABBwkKBEQGRxREFtkMBQSsJERZxHQhm0hiWIxYIBAIIi4ghjCRqCwjNIwiIA4G2mFfhG76M3+c39M5XG4Lvd3nNv1+VXU9y9nruVVddT7n+/1+G9gvyYNtuPrHgZOAR+kqLlaiG+A+C9h9dFAhSVowAwtJkiRJkqQXUFVb0A1avo3uJvSdVfV6YOMkF/TWm5JkTntvUDEBtRkTgzkVrwO+DmwMzAVGgKfoBrC/vrVumpJkTlWtAXwe2AvYDbgkybOt1dNewIlAAVOBK4D9k/xq9DElSQtmYCFJkiRJkvQCquoPgL8EDgNmArcDHwXeAfy3JN/prVvgQO2JrKpeDUwBdgJ2Ac6im0mxF/A/gWeBjyS5dtR2WwOn6p5kAAAVEElEQVRnA78Bdkny61H7XBd4OMlP2ncGFZK0EAwsJEmSJEmSFqDNKkh7vxFdO6BVgRXpnsI/NsnM4Z2hFlZVbQr8L+Bi4D3AXyT5clv2cmA/4G/oqilOSPLYoFqmqqYBRwFHA4cCpyaZ2/876R3HChtJWkgO3ZYkSZIkSS8ZVTV5Se6vF1ZsCuwDrEUXVpwGrDkIKwZVFVom3A1cBXwQeBD4e5g/gPsRuiDjWrpqi7dCNyC7VUs8BXwTuIEu1HhdW/68J4INKyRp4RlYSJIkSZKkZV515j/RXlUzqmr1qnrZYPli7Hdz4GvAAcDVdLMNDkzyZFWNjPV0vZa+Rf1N2yDtLwCP0AVQrx0saq+/oGsRtQrwP6pq+qjtbwIuBH4IPLAo5yBJGpuBhSRJkiRJWqYNAoP2FPxrqupC4Pt0T8Ff2+YOjAzWXZh9tyDid8C/A7sm2TrJ7VU1qT1xP9ewYjh61S9TF2HzG4BzgZcB27T9Daoo5gE/AC4CdgW2aH9j83oVPKcn2a6FH5KkJcQZFpIkSZIkaZlXVZOAw4FjgIeBnwFPApsC04BDk5yzqPvuD052NsHE0MKnvwGmAkcmeXoht98Y+BbwK+CTSW7p/9ZV9V7gH4A7gAOS3DHGPvxbkKQlyAoLSZIkSZK0TKuqKcAngYOBS4C9gR2SfAjYApgM7FNV72rrL9T9kN4N7EntszeoJ4ZNgSOAbRY2rGhmAacA7wA+WFVTR1VR/JhunsVWwNpj7cC/BUlasqywkCRJkiRJy7SqWoNucPKzwEFJ7mnfbwN8EXhDW3Y2cHCSp507sewYXeHS+34y8G90g7HfneS6hf1dq2ptulBiFeATSa4etXx9YCTJrMW6CEnSi2KFhSRJkiRJmvCqamRBy5I8AJyYZMck91TV9Kr6BnAV8DRwIHArsDPw/hd5vOq9H6mqFRbrArTQBr9Bq3p42ahlg1ZMF7Sv3tPWXdgQ6tfAycAfAztX1Wpt/4Nqmp8nmdVmlizSkG9J0otnYCFJkiRJkias3o3jue3zB6pqq6raeNRN7Ova8jfQ3cTeDjgR2DvJacBpwKrAHlW1ZpKM1Rqqd5N8MND5jcAhwPYL20pKi6f3GxwJ3FJVu7TP1WvF9BPgUWDDqlpxEY9xFfBPdG3Ftmrfzxu13jwrciRp6fM/WkmSJEmSNHRVtXlVrd7ez79f0ZsfsVtV3Q1cBHwXuAm4tKpe0V+PLqjYAvgccFySm9v3U9vrJsCHRm0zX+8m+dpVtQ9wFnACsBHgE/bjrKreQzdYe13gjKrajOfez/qP9m9bYErbZqF+pyQP0QVa59L9bUmShsTAQpIkSZIkDVVVHUFXIbEPPHfIdWvHdDTwVeCXwFF0T8GfDrwTOKeq3tTWnwLsDjwEnJXk8d5hpgI30g1PPrSqZvSO32//9PKq2hH4EnAmMA3YKslxDlheehZUvZLkWuB24P8A9wPnAx/oLb8d+BmwWv/7RXBNko8medDWT5I0PAYWkiRJkiRp2C4D7gVmj1FdsTawH/AjuoHZX0hyDfBZ4Axga+Cgqlo9yRy6WRVTgLfB/PkTOwHH0AUQBwLHJ7m7d5y09TYHjgPOA/4E2D/Jxu14WoranIr5c0KqM7l9vBj4I7rKmHnAiVX13t7mX2uvm1XVCovSuqlXWTPJ1k+SNDwLHFglSZIkSZI0HtpQ402SzB5j8R7AWsCuSW4BqKqNgO3phmgDzEoyuz0ZfxmwEzCzqi4FVqYLNW4FvpfkrtEHqKr1gF3oKjxm0LUHOrQFIFoK2hyK9D7vB+xdVX+V5DKgP6fiRmB1uvBqF7pqm/Or6v10rcFm0Q3P3hBYEXhmUc9jrDZhkqTxY4WFJEmSJEkauhY4bFlV11XVdgDtCft16IYq31VVK1fV3sCXgeOBO4D1k5zU9hHgCrq2UTOATwN7ArcBu40VVjTb01VW/BLYIMmBhhVLR6ucmDQqrFgDeA3wFuC0qtpgVHBwB92cip2T3ATsDzxON3PivXS/2z10rcKeNwfl9+lVVqxZVast5uVJkhaTgYUkSZIkSZoo1gE2B3auqpXaE/bPACvRtXI6nW4I9prADknel+ROgKparaqmJHkqyZeAjYH/DrwryQeS3DP6JnZvVsFlwJZJtk7yi/G40OVVOvOqasOq+kr77oEkh9HNDXkl8A9V9e7eNj+jm2Hx5qpaNcn1wJ8Ba9D9TUwHrmqr79a2WWClxKiZJX9YVdsCf9eOO3lB20mSlj4DC0mSJEmSNFGcC3yL7mb0ju27S4C5wOF0Q5UPS7JekisGG1XVCHAR3ayLQZufnye5OsmN7bvJo29iD56uT3JPkn9Zupemgao6jq7qZe+q+nRv0bF07bjeApxUVe/sLfvH9v0qAO13PQBYAfgm8Ku23kZVtfICjltt27SB7pu0Y55PV6lxg4PVJWm4DCwkSZIkSdKE0AKEvwamAXtW1VrAzXQhxghwdJKZ/W2q6s10N5zfCjzU28/ofXsjeuJYvb0+AnyuqlYCSPII8Hngb+mGpp9dVa9o694GPAl8pLefi4BP0VXmfB54GliPbuj68/TaP60HHEQXkB1O10ZsepK/WkLXJ0laRAYWkiRJkiRpwkjyI+BMukHZuyb5LV0bqEeAI6tq/zZvYP2qOgCYCWwLnAJcOpyzVl+/5dIYyyYB9wO/oRuYPQ04cbBdkvuSHAlcALyWrk3Tm4D/DdwLvK2qXg7z20tdSTen5GV0A7ffBrxqAcdevap2o5uB8kXgYeAtST6a5NHFvGxJ0hJgYCFJkiRJkiaazwO/BT5eVRsn+RZdu6cRujkHtwE30D2JvzawV5Kjkzw2rBNWp7Xeel6FS1tWrS3XPXThwvl0IcQ+VbVRa9U0ta3+53RzJbYCTgUmA/8MvJFuhsl8Sb4LfBb4LrBHkp+OcewN6IKvs4HXAx9Osnkb4i1JmiBqAf+HSJIkSZIkDU1VHQKcTFdB8Zkkz1bVhsD2wAxgDnBLknN620z6fcOWNT5aFcVxwDXA1e23m//bVNVrgVl0Q9FXoWvN9IMk723Lq4UXrwKOBvYFrqULHL4GvC/J99qA7MEQ7ylJ5vTOofrBSVVNo6vqOKNVcEiSJiADC0mSJEmSNOG0G8zX0z1N/7HW+qe/vH8DfCTJ3CGcpkapqvfQVTqMAPcBf5/k2FHrvIEugDgfOAS4DtgM2DnJxf3woYUflwPbAT8H1gfOS7LXAo4/efS8ksHfR1VNS/LUErxcSdISZksoSZIkSZI04bQby8cC04F9q2oV6J6cH7QW6r03rBiCBcyquJcurHiMrgpmv6o6u6qmD1ZIcivdgPS1WxXEF9qiL7blc9pPO7mFUocD59CFFQCbVNXaY53TWMPVB38fhhWSNPEZWEiSJEmSpAkpyeV0T9+/CegPWs7o9xo/rRUTrW3TlN73I0l+CRwP/BfgDuAk4GPA+VX1X3u7+THd70qSS4ALgXWqatCuadIgfEgyi25GxRVt2V8kuXcpXZ4kaYhsCSVJkiRJkiasqpqe5P5hn4fGnAtxAvAHwHFJ7h+06WqBxm+A1YB3AesApwMPA/u0+RMn0wUZ2yT5cVW9ma5N1DRgrSSzR7d3agO5nzakkqSXLissJEmSJEnShDUIK6pqZNjnsrxq7ZkmDYKCqtq9qn4NfAZ4FpgH0MKKkRYyHNY2/2ySC4AP0rWIurCqPgb8EFgJ+F3b9kbgVGAycELbdnQw8XSr6vBvQZJeoqywkCRJkiRJ0guqqjcCZwKbAt8HzgauTjJ7Aev/G/B24BNJ/q6qXgecAmwFXANsCeyd5Ktt/dWBHwCvA96d5Lqle0WSpInGCgtJkiRJkiQtUFWNVNUZwI3AKsCBwAFJvjEIKwYDuFs1xqAC4tPt9c9ba69ZdG2gTqILK54EBttNavv6Sttm1XG4NEnSBGOFhSRJkiRJkhaoqlYDzgO2BY5KcvwY66yc5KHe58E8i3OBjwAnJDmyt3xfYDZwTZKH+vMxqmpKkjlL+bIkSROQgYUkSZIkSZJ+r6raAricrpXT/sBjwHbAFnTVEo8B1wNfb0O0Jyd5tqrWAO4DngC2SHJL29+kJPPGOE4N5lQkmTsuFydJmjAMLCRJkiRJkpZjg3DhBdaZBnyOLqw4DphO197pMeD/AX/UvrsP+BBwQ69i4qi2zQVJPryULkOS9BJgYCFJkiRJkrQcGtWGaUVgV+DbSWaPVQHRhmZfDrwaeAo4GZgJhG4exQnAJ+mqMD6V5K7etncD6wB/muSyFxOSSJKWPw7dliRJkiRJWg71wopdgQeArwK7tGXPa9cE/AL4W+AOYLskxyZ5EHg4ydN0w7S/AWwDbNz2vWLb9tD2+tkWhhhWSJKex8BCkiRJkiRpOVRVK1XVocDZwAgwB/izqtqgLX/OfaM2CPsSurZQN1RVte/TXv8v8K9095u2bZs905ZdDJwCfGIBYYgkSQYWkiRJkiRJy6l3A0cDjwM7A1+hG6K9O4xdZZHkviRXJ/lden3Gq2qF9va3/dc2QHtye39wkp+ODkIkSRrwPwhJkiRJkqTl0+PAecBmSa6kCyx+A3y4qt4Jz6+yGBhUVwyWJ3mmLdqpvd4wWLff/qnNzbDCQpI0JgMLSZIkSZKk5VCSHwB/meSe9tUsurZN6wN7VtWKSeYNwolR26YfPlTVa6rqRLrB3ecl+ecFHDNjfS9JEkD5/4QkSZIkSZIAquqVwKXAusC+Sb7Zgonn3UCqqqnAK4E/pZtZsTVwJXBQkjvH7aQlSS8ZVlhIkiRJkiQJmD84+2RgFWCvqlqzVVOMdQ/pZOA24LPAesDHk7zfsEKStKhGhn0CkiRJkiRJmlCupKuy2IFuGPepC5g7cR7wDHAj8LXBrIqqmtyfWyFJ0otlSyhJkiRJkiQ9R1VtQRdc3AbsnuTOqno9sHGSC3rrTUkyp703qJAkLRYrLCRJkiRJkjTaT4AzgMOA/avqduCjwDuq6sEk3wFIMmcwlNuwQpK0uKywkCRJkiRJEgD9AdtVtRHwbWBVYEXgceDYJDOHd4aSpJcyKywkSZIkSZKWUUu6DVMvrNgU2ANYqy06DTgiyZNt+fxgQ5KkJcXAQpIkSZIkaRnT2jBN6g26ngE8ATyZ5IlFDRTafjcDzgVeDVwNHJDk9rZ8BHjWsEKStDRMGvYJSJIkSZIk6cUbhBFJnq2q11TVhcD3gRuAa6tqa9pDqoP5Ei9WCyJ+B/w7sGuSrZPcXlWTqmpSkrmGFZKkpcUZFpIkSZIkScuYqpoEHA4cAzwM/Ax4EtgUmAYcmuScRd13knm9z0u07ZQkSQtiSyhJkiRJkqRlSFVNAT4BHAxcApwPXJ1kblWtC9wI7FNVdya5bnQA8UIG6w62M6yQJI0XW0JJkiRJkiQtW1YGtqdr23RMku+0sGIb4DJgJeDtwB5VtWKSeQvbGgr+M7iQJGm8GFhIkiRJkiRNMG249ZiSPACcmGTHJPdU1fSq+gZwFfA0cCBwK7Az8P4XebzqvR+pqhUW6wIkSVoEtoSSJEmSJEmaIHptmOa2zx8AngBmA3cmeaKtel1b/gbgVOCtwInA15PcXFXPAF+mq7K4Psl/jNUaqjfAO+3zG4H3AT+vqsusspAkjScrLCRJkiRJksZZVW1eVau39/Pvz/TmR+xWVXcDFwHfBW4CLq2qV/TXA7YDtgA+BxyX5Ob2/dT2ugnwoVHbzNcLKtauqn2As4ATgI2AhW4jJUnS4jCwkCRJkiRJGkdVdQRdhcQ+8Nwh160d09HAV4FfAkcBWwGnA+8EzqmqN7X1pwC7Aw8BZyV5vHeYqXTDt9cGDq2qGb3j99s/vbyqdgS+BJwJTAO2SnKcw7YlSePNllCSJEmSJEnj6zLgU8DsfpumNhz7j4H9gB8BBye5BaCqbqGbT3EIcFBVHZFkdlXdCqwHvA24qs2+2AE4BjgMWAF4Jsndg4MnSVvv7XSBx17APGD/JGcs/cuXJGlsBhaSJEmSJEnjKMmsqtokyewxFu8BrAXs2gsrNgK2pxuiDTCrhRVFF37sBMysqkuBlYGt6YZufy/JXaMPUFXrAbvQVXjMAE4DDk0yZ8ldpSRJC8+WUJIkSZIkSeOsBQ5bVtV1VbUdQFVNBtYBHgXuqqqVq2pvuuHZxwN3AOsnOantI8AVdG2jZgCfBvYEbgN2GyusaLYHjqNrObVBkgMNKyRJE4EVFpIkSZIkScOxDrA5sHNV/WuSR6vqGWAl4EBgXWBX4G5ghyRXDDasqtWAR5I8BXypqr5NN6/ioSQ3tnXmt5tqn6uFHJcBNyX5l3G5SkmSXqTq/p+SJEmSJEnSeGotnS4H/gTYL8l5VbUVcGVbZQ5wdJKZo7YbAb4HXJzklF4Q0V9nskOzJUnLGltCSZIkSZIkDUELGf4amAbsWVVrATcD36LrijFWWPFm4HzgrcBDvf2M3rdhhSRpmWNgIUmSJEmSNCRJfgScSTcoe9ckvwXOAh4Bjqyq/atqzapav6oOAGYC2wKnAJcO56wlSVo6bAklSZIkSZI0RFX1KuCnwAPAh5PcUlW7AacBKwMPAwX8IXAvcHCSy4Z0upIkLTUGFpIkSZIkSUNWVYcAJ9NVUHwmybNVtSGwPTCDbp7FLUnO6W3znKHakiQt6wwsJEmSJEmShqyqpgHXA2sCH0ty5ajl88OJqhpJMncIpylJ0lLlDAtJkiRJkqQhS/IUcCwwHdi3qlYBqCbJvN57wwpJ0kuSFRaSJEmSJEkTRFX9EFgH2DLJXcM+H0mSxpOBhSRJkiRJ0gRRVdOT3D/s85AkaRgMLCRJkiRJkiYY51RIkpZHBhaSJEmSJEmSJGnoHLotSZIkSZIkSZKGzsBCkiRJkiRJkiQNnYGFJEmSJEmSJEkaOgMLSZIkSZIkSZI0dAYWkiRJkiRJkiRp6AwsJEmSJEmSJEnS0BlYSJIkSZIkSZKkoTOwkCRJkiRJkiRJQ2dgIUmSJEmSJEmShs7AQpIkSZIkSZIkDZ2BhSRJkiRJkiRJGjoDC0mSJEmSJEmSNHQGFpIkSZIkSZIkaegMLCRJkiRJkiRJ0tAZWEiSJEmSJEmSpKEzsJAkSZIkSZIkSUNnYCFJkiRJkiRJkobOwEKSJEmSJEmSJA2dgYUkSZIkSZIkSRo6AwtJkiRJkiRJkjR0BhaSJEmSJEmSJGnoDCwkSZIkSZIkSdLQ/X8M5m5CgZsLEAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXxU1f3/8dfJvkCEBDCExSBbXQADZQcJqKxa0VotX5AtLahfrQgoiFZFAVsRBGxRWiVx6U9KEawWq1ZkgCIq0i8KohjZAhQkhDWQhWTO749Jhkz2ZZJJwvv5eMxjZs4995zPzb0J3PnMOcdYaxEREREREREREREREfElP18HICIiIiIiIiIiIiIiooSFiIiIiIiIiIiIiIj4nBIWIiIiIiIiIiIiIiLic0pYiIiIiIiIiIiIiIiIzylhISIiIiIiIiIiIiIiPqeEhYiIiIiIiIiIiIiI+JwSFiIiIiIiIiIiIiIi4nNKWIiIiIiIiIiIiIiIiM8pYSEiIiIiIiIiIiIiIj6nhIWIiIiIiIiIiIiIiPicEhYiIiIiIiIiIiIiIuJzSliIiIiIiIiIiIiIiIjPKWEhIiIiIiIiIiIiIiI+p4SFiIiIiIiIiIiIiIj4nBIWIiIiIiIiIiIiIiLic0pYiIiIiIiIiIiIiIiIzylhISIiIiIiIiIiIiIiPqeEhYiIiIiIiIiIiIiI+JwSFiIiIiIiIiIiIiIi4nNKWIiIiIiIiIiIiIiIiM/Vy4SFMaaFMWaKMeYjY0yKMSbbGHPUGPO2MaZnCftEGGMWGmMOGGOyjDH7jTHzjTENKtH/EGPMBmPMWWPMGWPMemPMDVU/MhERERER8ZWK3mcYY54yxthSHrEl9KP7CRERERG5JAX4OoBq8gAwA9gDfASkAu2BkcBIY8z/WGv/ml/ZGBMObACuy6v/FhAHTAcGGGOut9ZmlqdjY8wY4I28PpPyiu8C/mWMudNau6qqByciIiIiIj5RofuMAl4D9hdTfqpwge4nRERERORSZqy1vo7B64wxtwNp1toNhcr7A+uAdKC5tTYrr3w28ATwe2vtzAL1f4frhmSWtfbZcvTbGNgL5ABx1tpDeeUtgf/Lq3altfZsFQ9RRERERERqWCXuM54CngQGWmsd5Whf9xMiIiIickmrl1NCWWtXF76JyCvfBKwHGgOdAIwxBvgVrpuLZwrt8kxe+a/K2fUvgEbAi/k3F3n9HgL+ADQBbqvIsYiIiIiISO1QkfuMStL9hIiIiIhc0urrlFCluZD3nJP33B6IAT601p4rWNFae84YsxkYYoxpZa09WEbb8XnPHxWz7UPgKWAA8Hp5g837NlVpgoCfAMdwDRvPLW/bIiIiInJJ8wea5r3ekT8qQCqt8H1GQdfnrXHhBJKBj6216cXUi8971v2EiIiIiNR21XI/cUklLIwxrYEbgSPAjrzi9nnPySXslgwMyatXVsKitLaSC9Upr7L6FBERERGpqu7Al74Ooq4q4T6joNmF3p8yxjxorS2ceND9hIiIiIjURV67n6iXU0IVxxgTiGvxumBghrU2/5tDl+U9ny5h1zOF6pWmtLYq0o6IiIiIiNQBpdxnAHwFTASuBEKBNrgW7rZAkjHmZ4Wa0/2EiIiIiFzSLokRFsYYPyAJuB74s7X2Dd9GVCGtytjeAvgM4F//+hdXXHFF9UckVZaVlcXnn38OQM+ePQkODvZxRFIWnbO6SeetbtJ5q3t0zuqmAwcOcNNNN+W/TfVlLHVVWfcZ1to1hXbZD/zBGPMt8C9gDvBuNYdZ7vuJjRs3Eh0dXc3hiIiIiEh9cPToUa6//vr8t167n6j3CYu8m4jlwP8AbwL3FKqS/+2lkr6pFFGoXmkKtpVWhXbcCi62VxzXmuEuV1xxBe3bV3SEuPhCRkYGe/bsAaBt27aEhob6OCIpi85Z3aTzVjfpvNU9Omf1gtYtqKBy3GeUyFq7zhizB+hkjImw1uaPnvDp/USbNm1o2bKsJS9ERERERCh83+e1+4l6PSVU3k1EIjAOeAsYb611FqpW1lywZa1xUd62KtKOiIiIiIjUUuW8zyjL8bznsAJlup8QERERkUtavU1YFLiJGAv8Fbi70Hyy+ZKB/wJ9jTHhhdoIB/oC+6y15VmsbkPe8+Bitg0pVEdEREREROqYCtxnlNZGOHANcI6LiQvQ/YSIiIiIXOLqZcKiwPDsscDfgDEl3URYay3wCtAA+G2hzb/NK/9zofbDjDE/Mca0LlR/Ja4h2g8YY1oWqN8SuB/XzUjheWxFRERERKQOqMh9hjGmoTGmQzHlobjuLxoCK621OQU2635CRERERC5p9XUNiydwDc9OB74HHi84N2ued6y12/NePwfcCswwxsQB/wG64vpm01ZgUaF9ewDrcX27KT6/0Fp70hhzP/AG8B9jzF/zNt0FRAF3WWvPVv3wKsZay/Hjxzl37hwXLlyo6e6lGE6nk6ioKABSUlLw86uXucN6xdvnLDAwkPDwcJo0aUIxf59ERESkdqrIfUYU8J0xZivwLXAUuBy4EWgJ7AAeLrhjbb2fEBERERGpKfU1YRGb99wAeKyEOvuB7QDW2nPGmAHAU8DPgYHAEWABMNtam1Hejq21bxpjjgOzgAmABbYBc6y1H1fwOKrMWsuPP/7IyZMna7prKYW11r0wTW5uLk5nRac8lprm7XOWk5NDRkYGubm5XH755UpaiIiI1A2xec/luc84ASzF9WWn4UBjIANX8mIJ8Ifi7jNq2/2EiIiIiEhNqpcJC2vteGB8Bfc5DTyU9yirrgMo8dNFa+0HwAcV6b+6HD9+3CNZ4e/vrw9Ga4n88xAQUC9/Deslb50zay25ua7ZI06ePIm/vz9NmzatcnwiIiJSvSpyn2GtPYNrGqfK9FNr7idERERERGqSPimt586dO+d+3bx5cxo1auS7YMTN6XRy5swZACIiIjQlVB3g7XN26tQpjhw5Arh+T5WwEBERERERERGRS50+Ja3n8tes8Pf3V7JCpBZp1KgR/v7+gGt6KBERERERERERkUudEhaXCE0DJVL75P9eWmt9HImIiIiIiIiIiIjvaUooERERERERERHxitiZa30dgpTD/t+NqJF+dD3UfjV1LYCuh7qgJq+HkmiEhVxyjDG88847vg5DRERERERERERERApQwkKkFLGxsRhjPB6/+93v3NsdDgfGGBo3bkxmZqbHvlu3bnXvA5Cenk5gYCArVqzwqDdq1CiMMezfv79I37/97W+r58BEREREREREREREahklLKTeyF9g3Nuefvppjhw54n488MADReo0bNiQNWvWeJS9+uqrtG7d2v2+QYMG/PSnP8XhcHjU27BhA61atfIo37dvHwcOHGDQoEFePRYRERERERERERGR2koJC6m14uPj+c1vfsMjjzxCZGQk0dHRPPXUU+7txhheeuklfvaznxEeHs7cuXMB+Pvf/07Xrl0JCQnhyiuvZPbs2eTk5FQ6joYNGxIdHe1+hIeHF6kzbtw4li9f7n6fkZHBihUrGDdunEe9gQMHeiQmdu/eTWZmJvfee69HucPhIDg4mN69e1c6bhEREREREREREZG6RAkLqdVee+01wsPD+fzzz3nuued4+umn+de//uXe/tRTT3HbbbexY8cOJk6cyKZNmxg7diwPPvggu3btYtmyZSQlJbmTGZXxu9/9jqioKOLi4pg/f36xyY+7776bTZs2kZKSAsDbb79NbGwsXbt29ag3cOBAdu/ezZEjRwDYtGkTffv2ZdCgQR4Ji/Xr19O7d29CQkIqHbeIiIiIiIiIiIhIXRLg6wDEN2558d+kns2q0T6bNgzmvQf6VWifzp078+STTwLQvn17/vCHP7Bu3TpuuukmAP7nf/6HCRMmuOtPnDiRmTNnukc2XHnllTzzzDM88sgj7nYq4je/+Q1du3YlMjKSTz/9lEcffZQjR46wcOFCj3rNmjVj2LBhJCUl8cQTT7B8+XImTpxYpL2+ffsSFBSEw+FgxIgRbN68mQEDBtCtWzeOHz/Ovn37aNOmDRs2bCAhIaHC8YqIiIiIiIiIiIjUVUpYXKJSz2Zx9Exm2RV9rHPnzh7vmzdvzrFjx9zvf/rTn3ps/+qrr9i8ebPHiIrc3FwyMzM5f/48YWFhFep/6tSpHrEEBQUxefJknn32WYKDgz3qTpw4kQcffJAxY8awZcsW/va3v7Fp0yaPOmFhYXTv3p0NGza4ExYzZ84kICCAPn364HA4sNaSkpLCwIEDKxSriIiIiIiIiIiISF2mhMUlqmnD4LIr1YI+AwMDPd4bY3A6ne73hdeTSE9PZ/bs2dx+++1F2vLG9Eo9e/YkJyeH/fv307FjR49tw4YNY9KkSSQkJHDLLbcQFRVVbBsDBw7kr3/9K99++y2ZmZnuaaMGDBjA+vXrcTqdhIWF0bNnzyrHKyIiIiIiIiIiIlJXKGFxiaro1Ex1RdeuXdm9ezft2rWrlva3b9+On58fzZo1K7ItICCAsWPH8txzz/HPf/6zxDYGDhzInDlzWLVqFT179sTf3x+A66+/nj/96U9Ya91TR4mIiIiIiIiIiIhcKpSwkHrliSee4Oabb6Z169bccccd+Pn58dVXX7Fz507mzJlToba2bNnC559/zsCBA2nYsCFbtmzhoYceYsyYMTRu3LjYfZ555hkefvjhEkdXAPTp04fg4GD+/Oc/e0w51aNHD44dO8bf//53Hn300QrFKiIiIiIiIiIiIlLX+fk6ABFvGjJkCP/4xz/46KOP6N69O7169eKFF17giiuuqHBbwcHBrFixggEDBnDNNdcwd+5cHnroIf70pz+VuE9QUBBNmjTBGFNinZCQEHr16sXZs2fp1+/iSJfg4GB3udavEBERERERERERkUuNRlhIreVwOIqUvfPOO+7X1tpi9xsyZAhDhgwpsd2S9iusa9eufPbZZ6XWiY+PL7W9kSNHFrv9k08+4cyZM0XK169fX67YREREREREREREROobjbAQERERERERERERERGfU8JCLlnz5s2jQYMGxT6GDRvm6/BERERERERERERELimaEkouWffccw933nlnsdtCQ0NrOBoRERERERERERGRS5sSFnLJioyMJDIy0tdhiIiIiIiIiIiIiAiaEkpERERERERERERERGoBJSxERERERERERERERMTnlLAQERERERERERERERGfU8JCRERERERERERERER8TgkLERERERERERERERHxOSUspNaKj49nypQpvg5DRERERERERERERGqAEhZSa61evZpnnnmmRvrauHEjt9xyCzExMRhjeOedd4rUsdbyxBNP0Lx5c0JDQ7nxxhtJTk72qGOMwRjDZ5995lGelZVFVFQUxhgcDgcAN910Ew899JBHvZdffhljDElJSR7l48ePp3///lU+ThEREREREREREZHaSgkLqbUiIyNp2LBhjfR17tw5unTpwh//+McS6zz33HMsWbKEl19+mc8//5zw8HCGDBlCZmamR71WrVqRmJjoUbZmzRoaNGjgUdavXz82b97sUbZ+/XpatWrlTmrkczgcDBo0qBJHJiIiIiIiIiIiIlI3KGEhtVbBKaGysrKYPn06LVq0IDw8nJ49e3p8qJ+WlsaoUaNo0aIFYWFhdOrUibfeeqvcfQ0bNow5c+Zw2223FbvdWsuiRYt4/PHHufXWW+ncuTOvv/46//3vf4uMxhg3bhwrVqwgIyPDXbZ8+XLGjRvnUa9///4kJydz9OhRd9mGDRuYOXOmx7Ht27ePAwcOMHDgwHIfj4iIiIiIiIiIiEhdo4SF1An3338/W7ZsYcWKFXz99df84he/YOjQoe4pmTIzM+nWrRtr165l586dTJo0ibvvvpsvvvjCK/3v27ePo0ePcuONN7rLLrvsMnr27MmWLVs86nbr1o3Y2FjefvttAFJSUti4cSN33323R72ePXsSGBjI+vXrAdi1axcZGRkkJCSQlpbGvn37ANeoi5CQEHr37u2VYxERERERERERERGpjQJ8HYD4yLIBkH6sZvts0Awmb6jwbikpKSQmJpKSkkJMTAwA06dP54MPPiAxMZF58+bRokULpk+f7t7ngQce4MMPP2TlypX06NGjyqHnj4K4/PLLPcovv/xyjxES+SZOnMjy5csZM2YMSUlJDB8+nKZNm3rUCQ8Pp2vXrmzYsIHRo0fjcDjo168fwcHB9OnTB4fDQZs2bXA4HPTu3Zvg4OAqH4eIiIiIiIiIiIhIbaWExaUq/Ric/a+voyiXHTt2kJubS4cOHTzK8xeyBsjNzWXevHmsXLmSw4cPk52dTVZWFmFhYb4ImTFjxjBz5kz27t1LUlISS5YsKbZev379eO+99wDXOhXx8fEADBgwAIfDwYQJE3A4HPz617+uqdBFREREREREREREfKJeJiyMMWOA/kA3oBMQBEyw1iYVU9eWo8nW1tqD5eh3P3BFCZs3WGvjy9FXzWjQrM70mZ6ejr+/P9u2bcPf39+zybyFrOfPn8/ixYtZtGgRnTp1Ijw8nClTppCdnV3lsAGio6MB+PHHH2nevLm7/Mcff+S6664rUj8qKoqbb76ZhIQEMjMzGTZsGGfPni1Sr3///ixYsIDDhw/jcDjco0QGDBjAsmXL2LNnDwcPHtSC2yIiIiIiIiIiIlLv1cuEBTAHV+LgOHCEkpMIALNLKG8HjAZ2lSdZUcBpYFEx5fsr0Eb1q8TUTL4SFxdHbm4ux44do3///sXW2bx5M7feeitjxowBwOl08v3333P11Vd7JYY2bdoQHR3NunXr3AmKM2fO8Pnnn3PvvfcWu8/EiRMZPnw4M2bMKJJoydejRw+CgoJYunSpex0OgO7du5Oamsry5csJDw/3yrRWIiIiIiIiIiIiIrVZfU1Y/ApIttYeMMbMBJ4tqaK19qniyo0xL+a9fLWCfZ8qqU2pnA4dOjB69GjGjh3LggULiIuLIzU1lXXr1tG5c2dGjBhB+/btWbVqFZ9++imNGzdm4cKF/Pjjj+VOWKSnp/PDDz+43+/bt4/t27cTGRlJ69atMcYwZcoU5syZQ/v27WnTpg2//e1viYmJYeTIkcW2OXToUFJTU4mIiCix39DQUHr16sWLL75I37593YmNoKAgj/LAwMDy/8BERERERERERERE6iA/XwdQHay1H1trD1R2f2NMCK7RFdnAG14LTCotMTGRsWPHMm3aNDp27MjIkSPZunUrrVu3BuDxxx+na9euDBkyhPj4eKKjo0tMJBTnyy+/JC4ujri4OACmTp1KXFwcTzzxhLvOI488wgMPPMCkSZPo3r076enpfPDBB4SEhBTbpjGGJk2aEBQUVGrf8fHxnD171r1+Rb4BAwZw9uxZBg4cWO7jEBEREREREREREamr6usIi6q6HWgMrLLWplZw32BjzHggBjgDbLXWfl7ZQIwxLcuoEp3/Iisri4yMDI+NTqcTa637dV3yySefAK64/f39efLJJ3nyySeL1HM6nTRq1IjVq1cX2055jvv6668nNze3zP2feuopnnrqqRK357dRXJ8RERHFbv/tb3/rPq7C5b/97W/LfQxSvQqeA2+eD2stTqezyO+ueEdmZmaxr6V203mre3TO6qasrCxfhyAiIiIiIuJBCYviJeQ9v1KJfaOBxIIFxpitwChr7Z5KtFfu9TM+//xz9uzx7CIqKorQ0FCMMZw5c6YS3Ut1S09P93UIUkHeOmc5OTlkZGSQkZHBd99955U2pWQbN270dQhSCTpvdY/OWd1x/PhxX4cgIiIiIiLiQQmLQowxbYCBQArwrwrunghsAnYC6UAHYCpwN7DOGNPJWnvWi+FKORw8eJDevXuXuH3Lli20atWqBiMSERERERERERERkcKUsChqImCARGttheZ9sdbOLlS0HRhrjAFX0uLXwMIKxlPWJ+nRwFaAnj170rZtW4+NKSkp5ObmEhAQUOriz/VZx44d+c9//lPi9tjYWAICavZXwel0ur+l36BBA/z86uVyMvVKdZyz1NRUQkNDadCgAd26datye1JUZmam+9ve119/fYlrzkjtovNW9+ic1U2FR+aKiIiIiIj4mhIWBRhj/IDxgBNY7sWml+FKWPSlggkLa+2h0rbnJUMACA4OJjQ01GO7n5+fe779S/VD8aCgIDp06ODrMErk5+d3yZ6busqb58wYg5+fX5HfXfG+kJAQ/ZzrIJ23ukfnrO4IDg72dQgiIiIiIiIe9Cmpp6FAS+Bf1toUL7abP0FwuBfbFBERERERERERERGpN5Sw8FSVxbZL0zPveb+X2xURERERERERERERqReUsMhjjGkK3AKkAu+WUi/QGPMTY0zbQuU/McaEFVP/J8Dv897+Py+GLCIiIiIiIiIiIiJSb9TLNSyMMb8C+uW97ZT3/CtjTHze639bawuPohgLBAJvWGuzS2m+BfAtcACILVD+S2CqMWZj3rZzQAdgeF67z1prN1bmeERERERERERERERE6rt6mbDAlawYV6isb94jX+GERVWng1oPXAXEAf2BMFxrV7wPLLXWflTJdkVERERERERERERE6r16OSWUtXa8tdaU8hhfzD5X5237toy29+fViy1UvsFae5e1toO19jJrbaC1trm1dqSSFRUXHx/PlClTfB1GnfTOO+/Qrl07/P39mTJlCklJSTRq1KhG+o6NjWXRokU10ld5pKWl0axZM/bv31/jfffq1Yu33367xvsVERERERERERGpq+plwkLqvtWrV/PMM8/UWH8bN27klltuISYmBmMM77zzTpE648ePxxjj8Rg6dKhHnfzyzz77zKM8KyuLqKgojDE4HA4AbrrpJh566CGPei+//DLGGJKSkor03b9//3Idy+TJk7njjjs4ePBgtf0MS0qCbN26lUmTJlVLn5Uxd+5cbr31VmJjYwH46quvGDVqFK1atSI0NJSrrrqKxYsXV7jd8lwvjz/+ODNnzsTpdFbxKERERERERERERC4NSlhIrRQZGUnDhg1rrL9z587RpUsX/vjHP5Zab+jQoRw5csT9eOutt4rUadWqFYmJiR5la9asoUGDBh5l/fr1Y/PmzR5l69evp1WrVu6kRj6Hw8GgQYPKPI709HSOHTvGkCFDiImJqdGfIUDTpk0JCyuy9rxPnD9/nldffZWEhAR32bZt22jWrBlvvvkm33zzDY899hiPPvoof/jDHyrUdnmul2HDhnH27Fn++c9/VvoYRERERERERERELiVKWEitVHhKqKysLKZPn06LFi0IDw+nZ8+eHh/qp6WlMWrUKFq0aEFYWBidOnUqNplQkmHDhjFnzhxuu+22UusFBwcTHR3tfjRu3LhInXHjxrFixQoyMjLcZcuXL2fcOM9lVfr3709ycjJHjx51l23YsIGZM2d6HNu+ffs4cOAAAwcOLDU2h8PhTlAMGjTIYzRHYS+99BJt27YlKCiIjh078sYbb3hsX7hwIZ06dSI8PJxWrVpx3333kZ6e7u5nwoQJnD592j2i5KmnngKKTglljOGVV17htttuIywsjPbt2/Puu+969PXuu+/Svn17QkJCGDhwIK+99hrGGE6dOlXq8Zbl/fffJzg4mF69ernLJk6cyOLFixkwYABXXnklY8aMYcKECaxevbpCbZfnevH392f48OGsWLGi0scgIiIiIiIiIiJyKVHCQuqE+++/ny1btrBixQq+/vprfvGLXzB06FCSk5MByMzMpFu3bqxdu5adO3cyadIk7r77br744guvxuFwOGjWrBkdO3bk3nvvJS0trUidbt26ERsb616/ICUlhY0bN3L33Xd71OvZsyeBgYGsX78egF27dpGRkUFCQgJpaWns27cPcI26CAkJoXfv3qXG1qdPH3bv3g3A22+/zZEjR+jTp0+RemvWrOHBBx9k2rRp7Ny5k8mTJzNhwgR3HAB+fn4sWbKEb775htdee41PPvmERx55xN3PokWLiIiIcI80mT59eolxzZ49mzvvvJOvv/6a4cOHM3r0aE6cOAG4kjF33HEHI0eO5KuvvmLy5Mk89thjpR5neW3atIlu3bqVWe/06dNERkZ6pc/CevTowaZNm6qlbRERERERERERkfomwNcBiO+89s1rvL7r9TLrXR15NS/e8KJH2QPrHmDXiV1l7jv26rGMu2ZcmfVKk5KSQmJiIikpKcTExAAwffp0PvjgAxITE5k3bx4tWrTw+ND8gQce4MMPP2TlypX06NGjSv3nGzp0KLfffjtt2rRhz549zJo1i2HDhrFlyxb8/f096k6cOJHly5czZswYkpKSGD58OE2bNvWoEx4eTteuXdmwYQOjR4/G4XDQr18/goOD6dOnDw6HgzZt2uBwOOjduzfBwcGlxhcUFESzZs0A15Ra0dHRxdZ7/vnnGT9+PPfddx8AU6dO5bPPPuP55593j+IoOLolNjaWOXPmcM8997B06VKCgoK47LLLMMaU2EdB48ePZ9SoUQDMmzePJUuW8MUXXzB06FCWLVtGx44dmT9/PgAdO3Zk586dzJ07t8x2y3LgwAH39VKSTz/9lL/+9a+sXbu2yv0VJyYmhoMHD+J0OvHzU35YRERERERERESkNEpYXMLOXTjHsfPHyqwXHV70Q+kTWSfKte+5C+cqFVtBO3bsIDc3lw4dOniU5y9kDZCbm8u8efNYuXIlhw8fJjs7m6ysLK+up/DLX/7S/bpTp0507tyZtm3b4nA4uOGGGzzqjhkzhpkzZ7J3716SkpJYsmRJsW3269eP9957D3CN3oiPjwdgwIAB7qmXHA4Hv/71r712HN9++22RhbH79u3rsfj0xx9/zLPPPst3333HmTNnyMnJITMzk/Pnz1f4Z9q5c2f36/DwcCIiIjh2zHXt7N69m+7du3vULyvBdM899/Dmm2+63+dPVVVYRkYGISEhJbazc+dObr31Vp588kkGDx5c5nFURmhoKE6nk6ysLEJDQ6ulDxERERERERERkfpCCYtLWHhgOM3CmpVZLzK46HQ5kcGR5do3PDC8UrEVlJ6ejr+/P9u2bSsykiF/Iev58+ezePFiFi1a5F57YcqUKWRnZ1e5/5JceeWVNGnShB9++KFIwiIqKoqbb76ZhIQEMjMz3QswF9a/f38WLFjA4cOHcTgc7lEiAwYMYNmyZezZs4eDBw+Wa8Ftb9m/fz8333wz9957L3PnziUyMpJ///vfJCQkkJ2dXeGERWBgoMd7YwxOp7PS8T399NOlTkGVr0mTJpw8ebLYbbt27eKGG25g0qRJPP7445WOpSwnTpwgPDxcyQoREREREREREZFyUMLiEjbumnGVnq6p8BRR1SkuLo7c3FyOHTtG//79i62zefNmbr31VsaMGQOA0+nk+++/5+qrr662uA4dOkRaWhrNmzcvdvvEiRMZPnw4M2bMKJJoydejRw+CgoJYunSpex0OgO7du5Oamsry5csJDw/32rRWAFdddRWbN2/2WAR88+bN7p/Vtm3bcDqdLFiwwD2N0cqVKz3aCAoKIjc3t8qxdOzYkffff9+jbOvWraXu06xZM/fUV6WJi4vzGImR75tvvmHQoEGMGzfOK1NPlWbnzp3ExcVVax8iIiIiIiIiIiL1hRIWUut16NCB0aNHM3bsWBYsWEBcXBypqamsW7eOzp07M2LECNq3b8+qVav49NNPady4MQsXLuTHH38sd8IiPT2dH374wf1+3759bN++ncjISFq3bk16ejqzZ8/m5z//OdHR0ezZs4dHHnmEdu3aMWTIkGLbHDp0KKmpqURERJTYb2hoKL169eLFF1+kb9++7sRGUFCQR3nhUQpV8fDDD3PnnXcSFxfHjTfeyHvvvcfq1av5+OOPAWjXrh0XLlzgxRdf5JZbbmHz5s28/PLLHm3ExsaSnp7OunXr6NKlC2FhYZWafmvy5MksXLiQGTNmkJCQwPbt20lKSgJcIzGqYsiQITz66KOcPHmSxo0bA64EwqBBgxgyZAhTp07l6NGjAPj7+xdZY6Q06enp7N271/2+8PWSb9OmTdU23ZSIiIiIiIiIiEh9o1VgpU5ITExk7NixTJs2jY4dOzJy5Ei2bt3q/nD48ccfp2vXrgwZMoT4+Hiio6MZOXJkudv/8ssviYuLc38bfurUqcTFxfHEE08Arg+0v/76a372s5/RoUMHEhIS6NatG5s2bSpxMWxjDE2aNCEoKKjUvuPj4zl79qx7/Yp8AwYM4OzZs+6FsL1l5MiRLF68mOeff55rrrmGZcuWkZiY6O6/S5cuLFy4kN///vdce+21/OUvf+HZZ5/1aKNPnz7cc8893HXXXTRt2pTnnnuuUrG0adOGVatWsXr1ajp37sxLL73EY489BlDmIuNl6dSpE127dvUYHbJq1SpSU1N58803ad68uftRcB2N/fv3Y4zB4XCU2HZZ1wvA4cOH+fTTT5kwYUKVjkNERERERERERORSYay1vo5BqsAY0xI4CPD999/Tvn17j+3Jycnk5OQQEBBQZJv4jtPp5MyZMwBERES4p14SmDt3Li+//DIHDx6scltr167l4YcfZufOneX+Ga9fv57bb7+dvXv3ukdmQMXP2YwZMzh58iR/+tOfSqyj38/ql5GRwUcffQTA4MGDtZ5IHaHzVvfonNVNycnJdOjQIf9tK2vtIV/GI75R8H7i4MGDtGzZ0scRiUhdFztzra9DkHLY/7sRNdKProfar6auBdD1UBdU5Ho4dOgQrVq1yn/rtfsJTQklIj61dOlSunfvTlRUFJs3b2b+/Pncf//9Xml7xIgRJCcnc/jw4YJ/QEv1/vvvM2vWLI9kRWU0a9aMqVOnVqkNERERERERERGRS4kSFlLvpaSklLqWxa5duzzWHajNhg0bxqZNm4rdNmvWLGbNmlXDEVVdcnIyc+bM4cSJE7Ru3Zpp06bx6KOPeq39KVOmVKj+/PnzvdLvtGnTvNKOiIiI1B7GmBbAL4DhwE+AaOAEsBl4zlr7eTH7RABPAT/Pq38E+Bsw21qbXkx9P+B/gUlAOyAd+Bh4zFq7t3B9EREREZH6RAkLqfdiYmLYvn17qdvrildeeYWMjIxit0VGRtZwNN7xwgsv8MILL/g6DBEREZHyeACYAewBPgJSgfbASGCkMeZ/rLV/za9sjAkHNgDX5dV/C4gDpgMDjDHXW2szC/WxDPgV8A2wBIgB7gQGG2N6WWuTq+3oRERERER8TAkLqfcCAgJo166dr8PwihYtWvg6BBEREZFL2RdAvLV2Q8FCY0x/YB3wkjHmHWttVt6mR3AlK35vrZ1ZoP7vcCU+HgKeLVA+EFeyYiNwk7U2O6/8/wHvA38AhlTPoYmIiIiI+J5W+hURERERESkHa+3qwsmKvPJNwHqgMdAJwBhjcCUf0oFnCu3yTF75rwqV/zrv+bf5yYq89v8JOHCNsqgbc5mKiIiIiFSCEhYiIiIiIiJVdyHvOSfvuT2u6Zw2W2vPFayY934zcKUxplWBTfFA/rbCPsx7HuCtgEVEREREahtNCSUiIiIiIlIFeaMebsS1oPaOvOL2ec8lrTmRjGt6p/bAwbz1LpoDO621uSXUL9hueWNrWUaV6PwXGRkZJa6XJiIi9Yv+3ks+XQtSUEWuh+q6dpSwEBERERERqSRjTCDwBhAMzCiQbLgs7/l0CbueKVSvovXL62B5K27cuJEmTZpUsHkRkcL0UVNd8NFHH9VQT7oearuauxZA10PtV5Hr4fjx49USg6aEEhERERERqQRjjB+QBFwP/Nla+4ZvIxIRERERqduU1pJaKT4+nuuuu45Fixb5OpQ655133mH69Ons27ePBx54gOuuu44pU6Zw6tSpau87NjaWKVOmMGXKlGrvqzzS0tK46qqr+OKLL4iNja2xfrOzs+nQoQOrVq3ipz/9aY31KyIiIjUnL1mxHPgf4E3gnkJV8kdKlDQiIqJQvYrWL69WZWyPBrYCXH/99bRsWdYMUiIiZdjyia8jkHIYPHhwzXSk66HWq7FrAXQ91AEVuR4OHTpULTEoYSG10urVqwkMDKyx/jZu3Mj8+fPZtm0bR44cYc2aNYwcOdKjzvjx43nttdc8yoYMGcIHH3zgfm+MAWDLli306tXLXZ6VlUVMTAwnTpxg/fr1XH/99dx0001ce+21vPrqq+56L7/8Mvfeey+JiYmMHz/eo+89e/awadOmMo9l8uTJTJgwgd/85jc0bNiQt99+uyI/inJJSkoqNgmydetWwsPDvd5fZc2dO5dbb73Vnaz46quv+N3vfse///1vjh8/TmxsLPfccw8PPvhghdqdPXs2Tz/9tEdZx44d+e677wAICgpi+vTpzJgxg3Xr1nnlWERERKT2yEtWJAJjgbeA8dZaZ6FqZa054bHGhbX2nDHmCNDGGONfzDoWZa2JUSxrbal3kvn/fwUIDQ0lNDS0Is2LiEgdpb/3kk/XghRUkeuhuq4dJSykVoqMjKzR/s6dO0eXLl2YOHEit99+e4n1hg4dSmJiovt9cHBwkTqtWrUiMTHRI2GxZs0aGjRowIkTJ9xl/fr1Y+3atR77rl+/nlatWuFwODwSFg6Hg3HjxpV5HOnp6Rw7dowhQ4YQExNTZn1va9q0aY33WZLz58/z6quv8uGHH7rLtm3bRrNmzXjzzTdp1aoVn376KZMmTcLf35/777+/Qu1fc801fPzxx+73AQGef05Hjx7NtGnT+Oabb7jmmmuqdjAiIiJSaxRKVvwVuLuURbL/C/Q1xoRba88VaCMc6Avss9YWXGNiA/DLvG0bC7U3JO+5cLlIrRA7c23ZlcSn9v9uhK9DEBERKZPWsJBaKT4+3mNaoaysLKZPn06LFi0IDw+nZ8+eOBwO9/a0tDRGjRpFixYtCAsLo1OnTrz11lvl7m/YsGHMmTOH2267rdR6wcHBREdHux+NGzcuUmfcuHGsWLGCjIwMd9ny5cuLJBz69+9PcnIyR48edZdt2LCBmTNnehzbvn37OHDgAAMHDiw1NofDQcOGDQEYNGgQxhiPdgp66aWXaNu2LUFBQXTs2JE33vCcbnnhwoV06tSJ8PBwWrVqxX333Ud6erq7nwkTJnD69GmMMRhjeOqppwDXlFAFp/EyxvDKK69w2223ERYWRvv27Xn33Xc9+nr33Xdp3749ISEhDBw4kNdeew1jTJWnsHr//fcJDg72SBxNnDiRxYsXM2DAAK688krGjBnDhAkTWL16dYXbDwgI8LgWCi9Q2bhxY/r27cuKFSuqdBwiIiJSexSYBmos8DdgTAnJCqy1FngFaAD8ttDm3+aV/7lQ+Z/ynp8xxgQV6HcYEA98ZK09UMXDEBERERGptZSwkDrh/vvvZ8uWLaxYsYKvv/6aX/ziFwwdOpTkZNeI+MzMTLp168batWvZuXMnkyZN4u677+aLL77wahwOh4NmzZrRsWNH7r33XtLS0orU6datG7Gxse6pmFJSUti4cSN33323R72ePXsSGBjI+vXrAdi1axcZGRkkJCSQlpbGvn37ANeoi5CQEHr37l1qbH369GH37t0AvP322xw5coQ+ffoUqbdmzRoefPBBpk2bxs6dO91TSOXHAeDn58eSJUv45ptveO211/jkk0945JFH3P0sWrSIiIgIjhw5wpEjR5g+fXqJcc2ePZs777yTr7/+muHDhzN69Gj3SJN9+/Zxxx13MHLkSL766ismT57MY489VupxltemTZvo1q1bmfVOnz5dqRE9ycnJxMTEcOWVVzJ69GhSUlKK1OnRo0e5pvESERGROuMJYByQDnwPPG6MearQ47oC9Z8DvgJmGGM+NMY8a4z5EJiBa92IRQUbt9aux5XkuB74jzHm98aY14F3gBPAA9V6dCIiIiIiPqYpoS5haYlJnEhKKrNeyNVX0+qlpR5lB++9j8xdu8rcN3L8eKImjK9khC4pKSkkJiaSkpLinuZo+vTpfPDBByQmJjJv3jxatGjh8aH5Aw88wIcffsjKlSvp0aNHlfrPN3ToUG6//XbatGnDnj17mDVrFsOGDWPLli34+/t71J04cSLLly9nzJgxJCUlMXz48CLTJYWHh9O1a1c2bNjA6NGjcTgc9OvXj+DgYPr06YPD4aBNmzY4HA569+5d7PRTBQUFBdGsWTPANaVWdHR0sfWef/55xo8fz3333QfA1KlT+eyzz3j++efdozgKjm6JjY1lzpw53HPPPSxdupSgoCAuu+wyjDEl9lHQ+PHjGTVqFADz5s1jyZIlfPHFFwwdOpRly5bRsWNH5s+fD7jWgdi5cydz584ts92yHDhwoMxpsT799FP++te/Fpmaqyw9evQgKSmJjh07cuTIEWbPnk3//v3ZuXOne5QLQExMDAcO6EuQIiIi1cEYczlwA9AVuBxoDJwEfgS2AZ9Ya3/0crexec8NgJK+ZbEf2A7udSkGAE8BPwcGAkeABcBsa21GMftPBnYAk4AHcSVH1gCPWWv3eOEYRERERERqLSUsLmHO9HRyfiz7Hi63mA+lc0+cKNe+zrxphKpix44d5Obm0qFDB4/yrKwsoqKiXPHk5jJv3jxWrlzJ4cOHyc7OJisri7CwsCr3n++Xv/yl+3WnTp3o3Lkzbdu2xeFwcMMNN3jUHTNmDDNnzmTv3r0kJSWxZMmSYtvs168f7733HuAavREfHw/AgAED3FMvORwOfv3rX3vtOL799lsmTZrkUda3b18WL17sfv/xxx/z7LPP8t1333HmzBlycnLIzMzk/PnzFf6Zdu7c2f06PDyciIgIjh07BsDu3bvp3r27R/2yEkz33HMPb775pvt9egnXWEZGBiEhISW2s3PnTm699VaefPJJBg8eXOZxFDRs2DD8/FwD1Dp37kzPnj254oorWLlyJQkJCe56oaGhnD9/vkJti4iISMmMMYHAXcD/Avn/aTDFVLV59T8H/gistNZeqGr/1trxwPgK7nMaeCjvUZ76TmBJ3kNERERE5JKihMUlzK9BAwIuv7zMev7FTJfjHxlZrn39GjSoVGwFpaen4+/vz7Zt24qMZGiQ1/78+fNZvHgxixYtcq+9MGXKFLKzs6vcf0muvPJKmjRpwg8//FAkYREVFcXNN99MQkICmZmZDBs2jLNnzxZpo3///ixYsIDDhw/jcDjco0QGDBjAsmXL2LNnDwcPHmTQoEHVdhyF7d+/n5tvvpl7772XuXPnEhkZyb///W8SEhLIzs6ucMIiMDDQ470xBqfTWen4nn766VKnoMrXpEkTTp48Wey2Xbt2ccMNNzBp0iQef/zxSseSr1GjRnTo0IEffvjBo/zEiRO1aiFyERGRuswYczfwLNAcV5IiFdgCfAOkAWeAy4Ao4FqgN9AL6An8zhjzqLX2zWKaFhERERGRWkIJi0tY1ITKT9dUeIqo6hQXF0dubi7Hjh2jf//+xdbZvHkzt956K2PGjAHA6XTy/fffc/XVV1dbXIcOHSItLY3mzZsXu33ixIkMHz6cGTNmFEm05OvRowdBQUEsXbrUvQ4HQPfu3UlNTWX58uWEh4d7bVorgKuuuorNmzd7LAK+efNm989q27ZtOJ1OFixY4B5FsHLlSo82goKCyM0tdn3JCunYsSPvv/++R9nWrVtL3adZs2buqa9KExcX5zESI98333zDoEGDGDdunFemngJXUm3Pnj1F1inZuXMncXFxXulDRETkUmaM2YJrRMVxXCMPkqy1X5Vjv+uACcAo4DVjzH3W2qKLfImIiIiISK2gRbel1uvQoQOjR49m7NixrF69mn379vHFF1/w7LPPutceaN++Pf/617/49NNP+fbbb5k8eTI/lmPKqnzp6els376d7du3A67FoLdv3+5eSDk9PZ2HH36Yzz77jP3797Nu3TpuvfVW2rVrx5AhQ4ptc+jQoaSmpvL000+X2G9oaCi9evXixRdfpG/fvu7ERlBQkEd54VEKVfHwww+TlJTESy+9RHJyMgsXLmT16tXuUQvt2rXjwoULvPjii+zdu5c33niDl19+2aON2NhY0tPTWbduHcePH6/0tEeTJ0/mu+++Y8aMGXz//fesXLmSpLx1VYwpbnaH8hsyZAjffPONxyiLnTt3MnDgQAYPHszUqVM5evQoR48eJTU1tUJtP/zww2zYsIH9+/fz6aefctttt+Hv7+9eqyPfpk2bKjzdlIiIiBSrPfAI0Npa+1B5khUA1trt1toHgVbATKBDGbuIiIiIiIgPKWEhdUJiYiJjx45l2rRpdOzYkZEjR7J161Zat24NwOOPP07Xrl0ZMmQI8fHxREdHM3LkyHK3/+WXXxIXF+f+NvzUqVOJi4vjiSeeAMDf35+vv/6an/3sZ3To0IGEhAS6devGpk2bSlwM2xhDkyZNCAoKKrXv+Ph4zp49616/It+AAQM4e/aseyFsbxk5ciSLFy/m+eef55prrmHZsmUkJia6++/SpQsLFy7k97//Pddeey1/+ctfePbZZz3a6NOnD/fccw933XUXTZs25bnnnqtULG3atGHVqlWsXr2azp0789JLL/HYY671K8taZLwsnTp1omvXrh6jQ1atWkVqaipvvvkmzZs3dz8KrqOxf/9+jDE4HI4S2z506BCjRo2iY8eO3HnnnURFRfHZZ595TP+0ZcsWTp8+zR133FGl4xAREREArrTWLrDWZlVmZ2ttlrV2PnCll+MSEREREREvMtZaX8fgdcaYMUB/oBvQCQgCJlhrk4qp+xTwZCnNtbHW7q9A3x2AOcAgIBz4HngZeNlWww/bGNMSOAjw/fff0759e4/tycnJ5OTkEBAQUGSb+I7T6eTMmTMAREREuKdeEpg7dy4vv/wyBw8erHJba9eu5eGHH2bnzp3l/hmvX7+e22+/nb1799K4cWN3eUXP2V133UWXLl2YNWtWiXX0+1n9MjIy+OijjwAYPHgwoaGhPo5IykPnre7ROaubkpOT6dDBPeCglbX2kC/jEd8oeD9x8OBBWrZs6eOIpK6KnbnW1yFIGfb/bkSN9KNroW7Q9SD5aupaAF0PdUFFrodDhw7RqlWr/Ldeu5+or2tYzAGuwDXH7ZG812V5DdhfTPmp8nZqjLka+BQIBVYC/wVGAEuBq4EHytuWyKVi6dKldO/enaioKDZv3sz8+fO5//77vdL2iBEjSE5O5vDhwwX/gJbq/fffZ9asWR7JiorKzs6mU6dOPPTQQ5VuY+GXCzmdfbrMerdceQs/jf6p+33q+VT+sP0P5erjoa4P0Sikkfv9p//9lA/3f1jmflEhUfym6288yt7Y9QY/nPqhhD0u6tW8F8PaDPMoe/LTJylPPnfM1WPo0PjiTB4/nPyB13e9Xuo+Obk5HD5/mJGhIz3KP9j/AVv+u6XMPq+87ErGXTPOo+yP2//IsfPHytx38BWD6duir/v96azTLNy2sMz9AO7tci/R4dHu9//58T/8fc/fy9yvYWBDpnf3XJR+5e6VfJP2TZn7Xtf0Om5rf5tH2bzP55GVW/aXme9ofwedmnZyvz949iCv7HilzP0AZvaYSWjAxQ+3HQcd/Gvfvzh8/jAAX2z9goCAov9dadGgBZM6T/Ioe2XHKxw8W3ay8/qW13ND6xvc77Nys5j3+bxyxZtwbQKtI1q733+T9g0rd68sZQ+XQL9AHu/1uEfZ33/4O/859p8y970q8ip++ZNfepTVtr8ROTmu37UGpgHdMrvRMlQfeIqIiIiIiEjF1deExa+AZGvtAWPMTODZsnbAtXCfo4r9vgRcBgy31v4TwBjzW+Bj4H5jzP+z1pb9CZl4VUpKSqmLb+/atcs9tVRtN2zYMDZt2lTstlmzZpX6bf7aKjk5mTlz5nDixAlat27NtGnTePTRR73W/pQpUypUf/78+VXuMygoiMcff7zsioC1FkvRD+v/uf+fHD13tMz9OzXp5PFh5Nnss6xOXl2uvu/pfA+NaOR+v+fUnnLt2+ayNkUSFpv/u5nNhzeXuW9YQFiRhMWa5DXF/gwKu+mKmzwSFscyjrHmhzVl7gcUSVjsTN1ZrmPt1bxXkYTFxwc+Lldypk1EG4+ERWZOZrnPzeirRnskLA6cOVCufZuFNiuSsPji6BflSkQ5rbNIwuIfe/7B2Qtny9y3d/PeHgmLk5kny32s0346jVAuJiy+PfEt7+571/1+275txe7XqUmnIgmLDQc3sD11e5l9Ng1t6pGwyHXmljveke1GeiQs/pv+33LtGxoQWiRh8X/H/q9c+97Y+sYiCYva/Dci6psoZvebXa4+RLzBGOMPRAEhJdWx1qbUXEQiIiIiIlJZ9TJhYa39uKb7zJsK6npgfX6yIi+W7LykhQP4NaCERQ2LiYlxL6Zd0va64pVXXiEjI6PYbZGRkTUcjXe88MILvPDCC74Ow2fSL6TzQ9oPbMzcyC86/ILLgi/zdUgiIlVyKF2zCknNMMb0wTW16/W4poAtiaWe3veIiIiIiNQ39XINi4IKjLAoaw2LJ4EswAkkAx9ba9Mr0M8kYBnwqLX2d4W2+QOngR+ttW0rGH9ZcypEA1sBduzYQdu2ns2npKSQm5tLYGBgkW3iO06nk/R01+XVoEEDrWFRB1THOfvhhx/475n/cuDsAT767l3m9Z5H42DXVFRHzx8l1+aW2Uaj4EaEB4S7319wXuBYRtnTFQFcHno5AX4XP79Jv5BerilmAkwAl4dd7lGWlplGZm5mmfs2CGhQJClz+NxhDKbMfSODGxNSYOqgzJxM0rLSSt0n50IOu3fvppFfI67rch1BQa7Ps05nnSY9p+w/8cH+wTQJaeJRduz8MS7YC2Xue1nQZTQIbOB+n2tzOXq+7G/EAzQLbUqg38XP3s7lnONU1qky9/M3/kSHRXuUncg6QUZO8YnOgsICwtzXX74j54/gtM4y940MjvSY1ik7N5vUzNQy9wNoHhaNn/F3vz+TfYaT50+ye/duADp27EhAYNHPGYP8gmga2tSjLDUjlWxndpl9NgxsSERQhPu90+ZypJznpmloU4L8L56bjJwMTmSeKHM/P+NH87DmHmUns05yPud8mfuG+ocSGeKZlK5tfyOyL2Tz0TcfEhLcgO79+tAluku5+hDf2rNnD506uUdH1ak1LIwxg4B/AoF5RSeAEoeEWWvb1ERcdZHWsBBv0bzktZ/WLJCCdD1IPq1hIQVpDYvapfDcBaeMMQ9aa0ufIP2i/BVzkwtvsNbmGmP2AVcbYwKstTkViKvcKw9//vnn7Nmzx6MsKiqK0NBQjDHuBYOldsn/EFzqDm+ds+ycbHBarj3flhsOTIEDxziD64PEsHK2kUs6hX+zG5Zz3/MUPY7y7num0PI+gVz8xKh06ZzB84Ph8vaZzVkKfxRdnn175S1jlLlrH/kpFVPuftM5g2dSJIRS5hwpwFmFc5NBOoVTDOU/N54fKAeUe9909/WXL7yEmoVdIJ3CKZzyxptO0em1GnPxvPFdyYmwM3gmCoLzHuXp9QxHPErKG28m6RSOqPznxvOK8C/3vumcwTMBVBv/RoxiIAAp507xUfOPytmL+NLx48d9HUJVzMH1T88iYI61tuzMoYiIiIiI1Hr6Wjd8BUwErsS1WHYbXItjWyDJGPOzcraT/5Xhkr6efAbXz7u8nxOISD2Xa3O5LLchQba0WSxEROqWy06WL30pUkXXAduttVOVrBARERERqT8u+REW1trCK7buB/5gjPkW+Beub2+9W3i/GtSqjO3uKaF69uxZ4pRQAQEBREREFLe/+ICmhKp7vH3OsnOzCbIB5Fgn4MSvURBB19TNdUjKZKEcMz5Vi9ycHA4edA1Ua9WqFf4Bl/w/e3VCrTlvFZ0100fXeW2QeyGHC1+4vq3fuGEjBg/u4+OIpDwKj8ytY9KB73wdhIiIiIiIeJc+uSmBtXadMWYP0MkYE2GtLWs+pfyRFSWtmBuB66OPEufWLSGOUuf+MubipyPBwcGEhoZ6bPfz88PpdLpfS+3j5+enc1PHVPWcWWu5cDIDP+tqw+lnaZrQicCm5Z3kRcorIyODwx99D8A1g2OL/I2U2knnre45f/48x79IxQ/D+cx0YnTO6oTg4PJNolZLfQZ08HUQIiIiIiLiXfqUtHT5E/uW51PE/LUr2hfekLfodhtgXwXXrxCReij3bDbB2RfzxQExYUpWiEidZowhy8+1ykzq2fIt6i1SRXNxfbHof3wdiIiIiIiIeI8SFiUwxoQD1wDnuJi4KM2GvOfBxWzrh2vt0g3FbJNixMfHM2XKFF+HUSe98847tGvXDn9/f6ZMmUJSUhKNGjWqkb5jY2NZtGhRjfRVHmlpaTRr1oz9+/fXeN+9evXi7bffLlKee+4CzjMXl47OCMomKLw8SziLiNRu2X6updeDnIHkOnN9HI3Ud9baz4G7gCXGmLeMMWONMfHGmOuLe/g6XhERERERKZ9LOmFhjGlojCkylNwYEwr8GdcC2SsLj4owxvzEGPOTgmXW2t3ARmCgMWZYgbpBwDN5b1/x8iHUW6tXr+aZZ54pu6KXbNy4kVtuuYWYmBiMMbzzzjtF6owfPx5jjMdj6NChHnXyyz/77DOP8qysLKKiojDG4HA4ALjpppt46KGHPOq9/PLLGGNISkoq0nf//v3LdSyTJ0/mjjvu4ODBg9X2MywpCbJ161YmTZpULX1Wxty5c7n11luJjY0tsi0tLY2WLVtijOHUqVMVarc818vjjz/OzJkz3VOyATgzc8g9mel+f8HkEBRSp6fjEBFxu2Bc/10KdgaRlZvl42jkEuEPnAfuBBKBdcD6Yh6f+CpAERERERGpmHqZsDDG/MoYk2SMSQJ+kVfsLjPG/CqvLAr4zhjzeV7574wxicD3wChgB/BwMV18m/co7D5ca1m8Y4x53Rjze+A/QH/gD9baT712kPVcZGQkDRs2rLH+zp07R5cuXfjjH/9Yar2hQ4dy5MgR9+Ott94qUqdVq1YkJiZ6lK1Zs4YGDRp4lPXr14/Nmzd7lK1fv55WrVq5kxr5HA4HgwYNKvM40tPTOXbsGEOGDCEmJqZGf4YATZs2JSysdkxtdP78eV599VUSEhKK3Z6QkEDnzp0r1XZ5rpdhw4Zx9uxZ/vnPfwLgvJBLzomLyYrTAenk+jkJ9lfCQkTqhwt++QmLQDJzM8uoLVI1xpifAX8FWgIncf2fe2MJj00+ClNERERERCqoXiYscE3BNC7v0TWvrG+Bsn55ZSeApYABhgPTgJ8D/wUeAXpaa9PK26m19hugJ/AuMAJ4EHAC/wv8pkpHdIkpPCVUVlYW06dPp0WLFoSHh9OzZ0+PD/XT0tIYNWoULVq0ICwsjE6dOhWbTCjJsGHDmDNnDrfddlup9YKDg4mOjnY/GjduXKTOuHHjWLFiBRkZGe6y5cuXM27cOI96/fv3Jzk5maNHj7rLNmzYwMyZMz2Obd++fRw4cICBAweWGpvD4XAnKAYNGuQxmqOwl156ibZt2xIUFETHjh154403PLYvXLiQTp06ER4eTqtWrbjvvvtIT0939zNhwgROnz7tHlHy1FNPAUWnhDLG8Morr3DbbbcRFhZG+/bteffddz36evfdd2nfvj0hISEMHDiQ1157rVKjHgp7//33CQ4OplevXsUe/6lTp5g+fXql2i7P9eLv78/w4cNZsWIFNtdJzvFMcFoATEgAkc2aERKgqaBEpP644OeaBirYBpFxIaOM2iJV9jiu/8P/BrjcWtvdWjuwpIePYxURERERkXKqlwkLa+14a60p5TE+r94Za+391toe1tpm1tpAa22EtbantXa+tbbYu+38dkrYttta+wtrbZS1NsRa29lau9Raa6vxkOu9+++/ny1btrBixQq+/vprfvGLXzB06FCSk11rnWdmZtKtWzfWrl3Lzp07mTRpEnfffTdffPGFV+NwOBw0a9aMjh07cu+995KWVjSf1a1bN2JjY93rF6SkpLBx40buvvtuj3o9e/YkMDCQ9evXA7Br1y4yMjJISEggLS2Nffv2Aa5RFyEhIfTu3bvU2Pr06cPu3bsBePvttzly5Ah9+vQpUm/NmjU8+OCDTJs2jZ07dzJ58mQmTJjgjgPAz8+PJUuW8M033/Daa6/xySef8Mgjj7j7WbRoEREREe6RJqV98D979mzuvPNOvv76a4YPH87o0aM5ceIE4ErG3HHHHYwcOZKvvvqKyZMn89hjj5V6nOW1adMmunXrVqR8165dPP3007z++uv4+VXvn8AePXqwadMmco5nQK5raigT6E9AZAj+fv74mXr5J1hELlE5eQkLP/zIytIIC6l2VwNbrLV/sNZq0RQRERERkXoiwNcBiO9s/ziF7R8fLLNe09YNGXGf59Q5a5d+TWrK2TL3ve7GVlx3Y+tKxwiuD/wTExNJSUkhJiYGgOnTp/PBBx+QmJjIvHnzaNGihceH5g888AAffvghK1eupEePHlXqP9/QoUO5/fbbadOmDXv27GHWrFkMGzaMLVu24O/v71F34sSJLF++nDFjxpCUlMTw4cNp2rSpR53w8HC6du3Khg0bGD16NA6Hg379+hEcHEyfPn1wOBy0adMGh8NB7969CQ4ufeqgoKAgmjVrBrim1IqOji623vPPP8/48eO57777AJg6dSqfffYZzz//vHsUR8HRLbGxscyZM4d77rmHpUuXEhQUxGWXXYYxpsQ+Cho/fjyjRo0CYN68eSxZsoQvvviCoUOHsmzZMjp27Mj8+fMB6NixIzt37mTu3LlltluWAwcOuK+XfFlZWYwaNYr58+fTunVr9u7dW+V+StO8eXMOHjxIblaOKzni70dAkxCMX7H5ThGROi3H7+KaPZmZ530YiVwizgEHfB2EiIiIiIh4lxIWl7DsjBzOnSp7UcwGjYt+UJ5xNrtc+2Zn5JRZpyw7duwgNzeXDh0810fPX8gaIDc3l3nz5rFy5UoOHz5MdnY2WVlZXl1P4Ze//KX7dadOnejcuTNt27bF4XBwww03eNQdM2YMM2fOZO/evSQlJbFkyZJi2+zXrx/vvfce4Bq9ER8fD8CAAQPcUy85HA5+/etfe+04vv322yILY/ft25fFixe733/88cc8++yzfPfdd5w5c4acnBwyMzM5f/58hX+mBdeJCA8PJyIigmPHjgGwe/duunfv7lG/rATTPffcw5tvvul+nz9VVWEZGRmEhHhOufToo49y1VVXMWbMmAodQ2VYawnODcDpdJKVlUVoeBiZETn4G4t/2buLiNQ5uQUSFlmZGmEh1c4BxPk6CBERERER8S4lLC5hQaEBhDcqe8Hf0IZBxZaVZ9+g0KpfYunp6fj7+7Nt27YiIxnyF7KeP38+ixcvZtGiRe61F6ZMmUJ2dnaV+y/JlVdeSZMmTfjhhx+KJCyioqK4+eabSUhIIDMz070Ac2H9+/dnwYIFHD58GIfD4R4lMmDAAJYtW8aePXs4ePBguRbc9pb9+/dz8803c++99zJ37lwiIyP597//TUJCAtnZ2RVOWAQGBnq8N8bgdDpLqF22p59+ulxrTzRp0oSTJ096lH3yySfs2LGDVatWAa6kQn7dxx57jNmzZ1c6rsKc6RdIO5pKeFg4oWGhOBv5cfD8AUymoWloU5qGNS27ERGROqRgwiI7s+wvNYhU0W+BbcaYmdba3/k6GBERERER8Q4lLC5h193YutLTNRWeIqo6xcXFkZuby7Fjx+jfv3+xdTZv3sytt97q/ua80+nk+++/5+qrr662uA4dOkRaWhrNmzcvdvvEiRMZPnw4M2bMKJJoydejRw+CgoJYunSpex0OgO7du5Oamsry5csJDw/32rRWAFdddRWbN2/2WAR88+bN7p/Vtm3bcDqdLFiwwL3Gw8qVKz3aCAoKIje36tNFd+zYkffff9+jbOvWraXu06xZM/fUV6WJi4vzGIkBrrU9Ci6GvnXrViZOnMimTZto27ZtBSIvnc11knsmi2927+K6azrj3ziE485U1zZr8ffTGAsRqX9y/S8u15VTjV8YEMnTC1gOzDXG/Az4AEgBiv1WhLX29RqMTUREREREKkkJC6n1OnTowOjRoxk7diwLFiwgLi6O1NRU1q1bR+fOnRkxYgTt27dn1apVfPrppzRu3JiFCxfy448/ljthkZ6ezg8//OB+v2/fPrZv305kZCStW7cmPT2d2bNn8/Of/5zo6Gj27NnDI488Qrt27RgyZEixbQ4dOpTU1FQiIiJK7Dc0NJRevXrx4osv0rdvX3diIygoyKO88CiFqnj44Ye58847iYuL48Ybb+S9995j9erVfPzxxwC0a9eOCxcu8OKLL3LLLbewefNmXn75ZY82YmNjSU9PZ926dXTp0oWwsLBKTb81efJkFi5cyIwZM0hISGD79u0kJSUBrpEYVTFkyBAeffRRTp48SePGjQGKJCWOHz8OuJI4jRo1Knfb6enpHutfFL5enJm5YGHzF1u46cabIMSP0ydPA+Bn/Lgs6LIqHZuISG3ULPBy9+ufRv3Uh5HIJSIJsIDBlbzoWUZ9JSxEREREROoAP18HIFIeiYmJjB07lmnTptGxY0dGjhzJ1q1bad3aNULk8ccfp2vXrgwZMoT4+Hiio6MZOXJkudv/8ssviYuLIy7ONRXy1KlTiYuL44knngDA39+fr7/+mp/97Gd06NCBhIQEunXrxqZNm0pcDNsYQ5MmTQgKKjqlVkHx8fGcPXvWvX5FvgEDBnD27Fn3QtjeMnLkSBYvXszzzz/PNddcw7Jly0hMTHT336VLFxYuXMjvf/97rr32Wv7yl7/w7LPPerTRp08f7rnnHu666y6aNm3Kc889V6lY2rRpw6pVq1i9ejWdO3fmpZde4rHHHgMoc5HxsnTq1ImuXbsWGR1Slv3792OMweFwlFinrOvFmZHD4SP/Zcu2z5mQMJHTWadxWtcXPi8LvkwjLESkfvK7mGi22VUfhSdShtfzHq/lPV4v4yEiIiIiInWAyZ/DXeomY0xL4CDA999/T/v27T22Jycnk5OTQ0BAQJFt4jtOp5MzZ84AEBER4Z56SWDu3Lm8/PLLHDx4sMptrV27locffpidO3eW+2e8fv16br/9dvbu3esemQHlP2fWablw5Byz5v6Wk2dO8coby9lzeg9ZOa753Ns2aktIgGsxcP1+Vr+MjAw++ugjAAYPHkxoaKiPI5Ly0HmrezIyMvg6cSMtUlyj7aLuvprQa6J8HJWUJTk5mQ4dOuS/bWWtPeTLeMQ3Ct5PHDx4kJYtW/o4IqmrYmeu9XUIUob9vxtRI/3oWqgbdD1Ivpq6FkDXQ11Qkevh0KFDtGrVKv+t1+4nNCWUiPjU0qVL6d69O1FRUWzevJn58+dz//33e6XtESNGkJyczOHDhwv+AS3V+++/z6xZszySFRVhs3LBWppGNeWhB6eQkZPhTlaEBoa6kxUiIvWN0+/il2DsBY2wEBERERERkYpTwkLqvZSUlFLXsti1a5d7aqnabtiwYWzatKnYbbNmzWLWrFk1HFHVJScnM2fOHE6cOEHr1q2ZNm0ajz76qNfanzJlSoXqz58/v0r9OTNyAHho8gMERIVyJPNH97bI4MgqtS0iUpud5RwQDsCuo9/wU5r5NiARERERERGpc5SwkHovJiaG7du3l7q9rnjllVfIyMgodltkZN38MPyFF17ghRde8HUYXmGtxZnpSlhgDM4gOH3etdi2v/EnIrjkBdhFROq6dL9z7teHTx5Cy26LNxljbrPWrvFCO7dba1d7IyYREREREfE+JSyk3gsICKBdu3a+DsMrWrRo4esQpBQ2OxecrilR/EL8OZV9ivx1ghqFNMLPaK0SEam/TIG1fewFpw8jkXrqbWPM58BT1toPK7KjMcYAw4EngJ8C/tUQn4iIiIiIeIESFiIiXuLMuDhnuwkJoFFwIwBOZp6kcXDl1sQQEakrCiYsUMJCvO8h4EngfWPMYeB1YB3whbX2XOHKxphwoCdwEzAGiAFO57UjIiIiIiK1lBIWIiJe4DEdFK4RFsbPjyahTYgKicL15U4RkfrL+Bf40voFW3JFkUqw1i42xvwFeAoYB8wCHgWcxphDQBpwBogAooCWgB9ggHPAUmC2tfZ4zUcvIiIiIiLlpYSFiIgX2Bwn5Li+UWyC/TH+F79prGSFiFwKPP7u5ZRSUaSS8pIN9xtjHgMmAiNxjaK4Iu9RUDawGXgHSLTWnq65SEVEREREpLKUsBAR8QKbUXB0hf60isilx6/ACAs/JSykGuUlH14AXjDGhADXAJcDlwGngGPAN9baTJ8FKSIiIiIilaJP1UREvMCZeXH9ivMBWZw/d5KIoAhCAkI0wkJELgnGr2DCQn/3pGbkJSW2+ToOERERERHxDr+yq4iISGlsjhOb7UpYmEA/Tl44yfGM4+w9vZeMnAwfRyciUjOs/8UkhX+u/ospIiIiIiIiFae7SamV4uPjmTJliq/DqJPeeecd2rVrh7+/P1OmTCEpKYlGjRrVSN+xsbEsWrSoRvoqj7S0NJo1a8b+/furtZ+Ci20T4s+JcycY3HUw3371LaEBodXat4hIbeH0u7jQthIWIiIiIiIiUhm6m5RaafXq1TzzzDM11t/GjRu55ZZbiImJwRjDO++8U6TO+PHjMcZ4PIYOHepRJ7/8s88+8yjPysoiKioKYwwOhwOAm266iYceesij3ssvv4wxhqSkpCJ99+/fv1zHMnnyZO644w4OHjxYbT/DkpIgW7duZdKkSdXSZ2XMnTuXW2+9ldjY2CLb0tLSaNmyJcYYTp06VaF2Z8+e7XEdBDQMplN8NwAyA7IJDAxk/H3jWfTMIk0HJSKXDFvgf5WR/o18FoeIiIiIiIjUXUpYSK0UGRlJw4YNa6y/c+fO0aVLF/74xz+WWm/o0KEcOXLE/XjrrbeK1GnVqhWJiYkeZWvWrKFBgwYeZf369WPz5s0eZevXr6dVq1bupEY+h8PBoEGDyjyO9PR0jh07xpAhQ4iJianRnyFA06ZNCQsLq9E+S3L+/HleffVVEhISit2ekJBA586dK93+Nddcw5EjR/jv4f9y4D/JrF/9Efj7cdp5BoARd4xg65atfPPNN5XuQ0SkTjEXR1m0DG7h42BERERERESkLlLCQmqlwlNCZWVlMX36dFq0aEF4eDg9e/b0+FA/LS2NUaNG0aJFC8LCwujUqVOxyYSSDBs2jDlz5nDbbbeVWi84OJjo6Gj3o3HjxkXqjBs3jhUrVpCRcXHtguXLlzNu3DiPev379yc5OZmjR4+6yzZs2MDMmTM9jm3fvn0cOHCAgQMHlhqbw+FwJygGDRrkMZqjsJdeeom2bdsSFBREx44deeONNzy2L1y4kE6dOhEeHk6rVq247777SE9Pd/czYcIETp8+7R5h8NRTTwFFp4QyxvDKK69w2223ERYWRvv27Xn33Xc9+nr33Xdp3749ISEhDBw4kNdee61Sox4Ke//99wkODqZXr17FHv+pU6eYPn16pdsPCAggOjqaZo2aEN30cppERuEX6s/Z7LMANG7cmL59+7JixYpK9yEiUtfkJyzshVwfRyIiIiIiIiJ1UUB1Nm6MaQQMAW4AugKXA42Bk8CPwDbgE+BDa+2p6oxFivryH2vYtvadMus1a9OW2x55wqNszXNPc2zfnjL37TZiJD+9ufQkQHncf//97Nq1ixUrVhATE8OaNWsYOnQoO3bsoH379mRmZtKtWzdmzJhBREQEa9eu5e6776Zt27b06NGjyv3nczgcNGvWjMaNGzNo0CDmzJlDVFSUR51u3boRGxvL22+/zZgxY0hJSWHjxo388Y9/9JiiqWfPngQGBrJ+/XpGjx7Nrl27yMjIICEhgRkzZrBv3z7atGnD+vXrCQkJoXfv3qXG1qdPH3bv3k3Hjh15++236dOnD5GRkUXWb1izZg0PPvggixYt4sYbb+Qf//gHEyZMoGXLlu6kiJ+fH0uWLKFNmzbs3buX++67j0ceeYSlS5fSp08fFi1axBNPPMHu3bsBioweKWj27Nk899xzzJ8/nxdffJHRo0dz4MABIiMj2bdvH3fccQcPPvggv/rVr/i///u/KiURCtq0aRPdunUrUr5r1y6efvppPv/8c/bu3Vvp9pOTk4mJiSEkKJiecd15ZuZTNL+mFc4cJwANgxrSo0cPNm3aVOk+RETqmvyEhfOC08eRiIiIiIiISF1ULQkLY0wn4EFgFBACFJ7EPQxogSuJ8Ssg0xjz/4AXrbVfV0dMUlR2xnnST6SVWa9hVJMiZRlnTpdr3+yM85WKraCUlBQSExNJSUkhJiYGgOnTp/PBBx+QmJjIvHnzaNGihccH3Q888AAffvghK1eu9FrCYujQodx+++20adOGPXv2MGvWLIYNG8aWLVvw9/f3qDtx4kSWL1/OmDFjSEpKYvjw4TRt2tSjTnh4OF27dmXDhg2MHj0ah8NBv379CA4Opk+fPjgcDtq0aYPD4aB3794EBweXGl9QUBDNmjUDXFNqRUdHF1vv+eefZ/z48dx3330ATJ06lc8++4znn3/enbAoOLolNjaWOXPmcM8997B06VKCgoK47LLLMMaU2EdB48ePZ9SoUQDMmzePJUuW8MUXXzB06FCWLVtGx44dmT9/PgAdO3Zk586dzJ07t8x2y3LgwAH39ZIvKyuLUaNGMX/+fFq3bl3phEWPHj1ISkqiQ4cOHNy5j7kvPMsNPx/Kv774GIJcdSKCIoiJieHAgQNVPRQRkTrDmTd212YrYSEiIiIiIiIV59WEhTGmGfAsMA7XdFPHgbXAp8A3QBpwBrgMiAKuBfoA1wMJwARjTBIwy1p7zJuxSVFBoWE0iIwqs15oxGXFlpVn36DQqq9nsGPHDnJzc+nQoYNHef5C1gC5ubnMmzePlStXcvjwYbKzs8nKyvLqegq//OUv3a87depE586dadu2LQ6HgxtuuMGj7pgxY5g5cyZ79+4lKSmJJUuWFNtmv379eO+99wDX6I34+HgABgwY4J56yeFw8Otf/9prx/Htt98WWRi7b9++LF682P3+448/5tlnn+W7777jzJkz5OTkkJmZyfnz5yv8My24TkR4eDgREREcO+b69d69ezfdu3f3qF9Wgumee+7hzTffdL/Pn6qqsIyMDEJCQjzKHn30Ua666irGjBlToWMobNiwYfj5+eHMzOGqqCvpcV032ve+lpWrVnLb/9yGn/GjQVADQkNDOX++6kk7EZG64qQ5TXMiuZCVRVpGGlGhZf9fQaQyjDFPAGettS/4OhYREREREfEeb4+wSAYaAv8AXgXWWmtzSqn/EbDQGBMA3AJMzHv8HNfUUVKNfnrzbZWerqnwFFHVKT09HX9/f7Zt21ZkJEP+VETz589n8eLFLFq0yL32wpQpU8jOzq62uK688kqaNGnCDz/8UCRhERUVxc0330xCQgKZmZkMGzaMs2fPFmmjf//+LFiwgMOHD+NwONyjRAYMGMCyZcvYs2cPBw8eLNeC296yf/9+br75Zu69917mzp1LZGQk//73v0lISCA7O7vCCYvAwECP98YYnM7Kf/P26aefLte0UU2aNOHkyZMeZZ988gk7duxg1apVAFhr3XUfe+wxZs+eXaFYnBmuP2+NLmtEu3bt2L9nPwANghrgZ/w4ceJEkZE1IiL1WabJAiDA+pORdR6UsJDq8wSuew4lLERERERE6hFvJyy+AGZaa7dVZKe8pMYaYI0xpjswz8txSR0WFxdHbm4ux44do3///sXW2bx5M7feeqv7m/NOp5Pvv/+eq6++utriOnToEGlpaTRv3rzY7RMnTmT48OHMmDGjSKIlX48ePQgKCmLp0qXudTgAunfvTmpqKsuXLyc8PNyr63BcddVVbN682WMR8M2bN7t/Vtu2bcPpdLJgwQL8/Fxze6xcudKjjaCgIHJzq76gaseOHXn//fc9yrZu3VrqPs2aNXNPfVWauLg4j5EYAG+//bbHYuhbt25l4sSJbNq0ibZt21Ygcleyw5npSlikn09n3/593DXmLhoFN6JhkGvx8507dxIXF1ehdkVE6rIcv4v/NmRmZpRSU6TKjgG6yERERERE6hmvJiystTd5oY2tQJXbkfqjQ4cOjB49mrFjx7JgwQLi4uJITU1l3bp1dO7cmREjRtC+fXtWrVrFp59+SuPGjVm4cCE//vhjuRMW6enp/PDDD+73+/btY/v27URGRtK6dWvS09OZPXs2P//5z4mOjmbPnj088sgjtGvXjiFDhhTb5tChQ0lNTSUiIqLEfkNDQ+nVqxcvvvgiffv2dSc2goKCPMoLj1Koiocffpg777yTuLg4brzxRt577z1Wr17Nxx9/DEC7du24cOECL774IrfccgubN2/m5Zdf9mgjNjaW9PR01q1bR5cuXQgLC6vU9FuTJ09m4cKFzJgxg4SEBLZv305SUhLgGolRFUOGDOHRRx/l5MmTNG7sGrBVOClx/PhxwJXEadSoUbnbfvjhh7l52AhahDfjyI9HeWbRs/j7+zPh7gk0bXhxRMWmTZs8FloXEanvcv0ujqDLysr0YSRyCdgEeO8bHSIiIiIiUiv4+ToAkfJITExk7NixTJs2jY4dOzJy5Ei2bt1K69atAXj88cfp2rUrQ4YMIT4+nujoaEaOHFnu9r/88kvi4uLc34afOnUqcXFxPPGEa+orf39/vv76a372s5/RoUMHEhIS6NatG5s2bSpxMWxjDE2aNCEoKKjUvuPj4zl79qx7/Yp8AwYM4OzZs+6FsL1l5MiRLF68mOeff55rrrmGZcuWkZiY6O6/S5cuLFy4kN///vdce+21/OUvf+HZZ5/1aKNPnz7cc8893HXXXTRt2pTnnnuuUrG0adOGVatWsXr1ajp37sxLL73EY489BlDmIuNl6dSpE127di0yOqQs+/fvxxiDw+Eosc6hQ4cYffcYOsV3Y/S944hqEsVnn33mMf3Tli1bOH36NHfccUdlD0FEpM7xSFhohIVUr6eBGGPMHFPVbzmIiIiIiEitYfLncPdKY8ZMANZba/d7rVEplTGmJXAQ4Pvvv6d9+/Ye25OTk8nJySEgIKDINvEdp9PJmTNnAIiIiHBPvSQwd+5cXn75ZQ4ePFjlttauXcvDDz/Mzp07y/0zXr9+Pbfffjt79+51j8yAoucsNzUDe8H1wVxg83CMv2f7d911F126dGHWrFkl9qXfz+qXkZHBRx99BMDgwYMJDQ31cURSHjpvdU/+OQv8/jSd09oAcGgU9OpS/FSOUjskJyfToUOH/LetrLWHfBlPRRhjxgJ9gV8B3wPvAPspYZooa+3rNRVbXVPwfuLgwYO0bNnSxxFJXRU7c62vQ5Ay7P/diBrpR9dC3aDrQfLV1LUAuh7qgopcD4cOHaJVq1b5b712P+HtNSxeBawxJgVYn/+oSzc/IlKzli5dSvfu3YmKimLz5s3Mnz+f+++/3yttjxgxguTkZA4fPlzwD2ip3n//fWbNmuWRrCjM5jjdyQoT5M/RjB8JCwyjQWAD/P38yc7OplOnTjz00ENeOQ4Rkboi1+/iF2EuZGX5MBK5BCQBFjBAR+CRMuorYSEiIiIiUgd4O2GxC7gauAIYD4wDMMbsxTOBcdTL/YqUKCUlpdS1LHbt2uWeWqq2GzZsGJs2bSp226xZs0r9Nn9tlZyczJw5czhx4gStW7dm2rRpPProo15rf8qUKRWqP3/+/DLr2MyLi8o6g+FE5glOZJ4gPDCc2MtiCQoK4vHHH69oqCIidZ6zQMIiJ+uCDyORS8DruBIWIiIiIiJSj3h70e1rjTFNgHhgYN7zVUDbvEcCgDHmey4mMBzW2lRvxiFSUExMDNu3by91e13xyiuvkJFR/JzgkZGRNRyNd7zwwgu88MILvg6jQgomLNL9zrtfNwxq6ItwRERqDVtgdrwLWdm+C0TqPWvteF/HICIiIiIi3uftERZYa48Dq/IeGGOa4ZnA6FjgMTmvzi7gE2vtg96IwRgzBugPdAM6AUHABGttUqF6gcDP8h49gFa4vqm1C9cw8z9Za3MpJ2PMflyjS4qzwVobX4HDEC8JCAigXbt2vg7DK1q0aOHrEMQJNtv1Z8EE+HEq97R7kxIWInKps/4XX+dma4SFiIiIiIiIVIzXExaFWWuPASvzHhhjLudi8mIg0B64BtdUUl5JWABzcCUOjgNHKDmJ0BZXYiUdWAe8C1wG3AIsBYYbY35mK7Yy+WlgUTHl+yvQhojUUv65xv3ahhgyczIBCAkIIcg/yFdhiYjUCmH+DdyvOzSoH18WkLrBGNMOaAqkWWu/93U8IiIiIiJSOdWesCjMWvujMeZTXKMeQoAowNtz2fwKSLbWHjDGzASeLaHeWeB/gdestefyC40x0wAHcDNwB/C3CvR9ylr7VGWCFpHazz/nYsLivF+m+3VEUIQvwhERqVXCAsLdry8PutyHkcilwBjjDzwK3I8rWQHwGjAxb/toXP/X/7W19hufBCkiIiIiIhVSIwkLY0xLLo6qiAdi8zcBacA7wAZv9Wet/bic9Q7jGklRuPycMWYh8P+AAVQsYSEi9ZUtMMLCz3DSXpwOSgkLERFw+l8clGovlHtWTZEKy0tW/AMYDOQA3+IasV3QZuAN4HZACQsRERERkTqgWhIWxpgYPKd9apO/CTgGvI0rQbHBWruzOmLwgvyJl3MquF+wMWY8EAOcAbZaaz+vbBB5yZ7SROe/yMrKKrIgs9PpJH9GK6fTWdkwxMsKngudl7rB6XTin2twj68I9uP8BdeC20H+QQT6BVbqXFprcTqdJS6mLlWTmZlZ7Gup3XTe6p788+QssOh29vmi/y+R2iUrK8vXIVTFPcAQ4BNgrLX2v8YYj3+IrbX7jTF7cCU1nvFBjCIiIiIiUkFeTVgYY/6EK0nRFtyf6x0B/srFBMV33uyzGk3Me/6ogvtFA4kFC4wxW4FR1to9lYjjYHkrfv755+zZ49lFVFQUoaGhGGM4c+ZMJbqX6paenu7rEKScgnIufhJ32nnW/Vcu2AZX6vcrJyeHjIwMMjIy+O67uvKnse7auHGjr0OQStB5q1tyC3xe/O3uXaRl1tbvpQjA8ePHfR1CVYwDTgC/sNaeLKXet0CXmglJRERERESqyq/sKhXyK1zJiv8AvwY6WGtbWGv/x1q7rK4kK4wxk4BhwCfW2vcrsGsicANwORAOxOEaht4dWGeMaejtWOuzm2++mUcffdTXYYi4FJgOygJn/C4mmkJMiI+CEhGpXc75uZcEIyX7gA8jkUvAT4AvykhWAJwGmtVAPCIiIiIi4gXVMSWUAboCcwGHMSZ/ZMWuaujL64wxNwN/AA4AYyqyr7V2dqGi7cBYYwzA3biSOAsrGFKrMrZHA1sBevbsSdu2bT02pqSkkJubS0BAABERdWuO/XfeeYfAwEAaNqz+PM/GjRt5/vnn+c9//sORI0d4++23GTlypEedCRMm8Prrr3uUDR48mH/+85/u9/7+/gBs3ryZXr16ucuzsrJo2bIlJ06cYN26dVx//fX07t2ba6+9lj//+c/4+blyhy+//DL/+7//y6uvvsr48eM9+t67dy8bNnhtqRepoNzMHOw519QZJsSfmIgYzmafJSMng6gGUeT9nldIamoqoaGhNGjQgG7dunk7ZME1TU3+N/Svv/56QkKUXKoLdN7qnvxzZvz83WUNAsO4afBgH0YlZSk8MreO8QfKM6dV83LWExERERGRWsDbCYtWeC6ufWfewxpjjgMbAQfgsNbWuoXvjDHDgVXAj8Aga+0RLzW9DFfCoi8VTFhYaw+Vtr3gh6TBwcGEhoZ6bPfz83PPq5//oXhd0aRJkxrrKyMjg+uuu46EhARuv/12/Pz8ivy8jDEMHTqUxMSLM34FBwcXqdeqVStee+01+vTp4y77+9//ToMGDThx4oS77X79+rF27VqPvjZs2ECrVq3YuHEjEydOdO+/YcMGxo0bV+fOYX2Sm3lx8Vi/0ACCAoMIDQwtZY/yMcbg5+dX5HdXvC8kJEQ/5zpI561u8fO/+F9L/1z9bavtgoODfR1CVRwAOpdWwRgTCFwLJNdIRCIiIiIiUmVe/fTTWnvYWvumtfZX1tp2QGtgLJAEpAM/B14EvjbGHDPGrDLG3G+M6eTNOCrDGDMCWA0cBwZaa/d6sfn8CYLDvdhmvRcfH8+UKVMA1wiF6dOn06JFC8LDw+nZsycOh8NdNy0tjVGjRtGiRQvCwsLo1KkTb731Vrn7GjZsGHPmzOG2224rtV5wcDDR0dHuR+PGjYvUGTduHCtWrPBYaHT58uWMGzfOo17//v1JTk7m6NGj7rINGzYwc+ZMj2Pbt28fBw4cYODAgeU+HvEuay02L2FhARPsX/oOIiKXKON38YsU/jkVH3kmUgEfALF5U7mW5AGgKbDWmx0bY8YYY5YZY740xmQZY6wxZnwJdZ/K217SI7aE/YYYYzYYY84aY84YY9YbY27w5nGIiIiIiNRG1TEllFve6IA38x4YYwqOwBgA3A7clrctzVrrk/ll85IVb+NauG+gtfYHL3fRM+95v5fbrbQfX/w/nGeza7RPv4ZBXP5AXKX2vf/++9m1axcrVqwgJiaGNWvWMHToUHbs2EH79u3JzMykW7duzJgxg4iICNauXcvdd99N27Zt6dGjh9eOweFw0KxZMxo3bsygQYOYM2cOUVFRHnW6detGbGwsb7/9NmPGjCElJYWNGzfyxz/+kWeeecZdr2fPngQGBrJ+/XpGjx7Nrl27yMjIICEhgRkzZrBv3z7atGnD+vXrCQkJoXfv3l47DqkYm5ULTgtAboAl0E8fwomIFMfpXyBhkatRgVKt5gPjgaXGmKuBlXnl4caYrrhGeU/F9cWhP3i57znAFXltH8l7XZbXKP5e4FThAmPMGFzr4KXi+uIXwF3Av4wxd1prV1U4YhERERGROqJaExaFWWsPAq8DrxtjWuAafTENiASiStu3uhhjhuFKVpzElawodch43tDytsAFa+2eAuU/AVKstecL1f8J8Pu8t//Pm7FXhfNsNrlnajZhUVkpKSkkJiaSkpJCTEwMANOnT+eDDz4gMTGRefPm0aJFC6ZPn+7e54EHHuDDDz9k5cqVXktYDB06lNtvv502bdqwZ88eZs2axbBhw9iyZYt77Yp8EydOZPny5YwZM4akpCSGDx9O06ZNPeqEh4fTtWtXNmzYwOjRo3E4HPTr14/g4GD69OmDw+GgTZs2OBwOevfuXdenbajTnBk57teZ/tmkZxwnIjiCYP/gSq1dISJSXzn9rPu1EhZSnay1R4wxI3GNkP4NrtEUFrgj72FwJQN+bq09XkIzlfUrINlae8AYMxN4thz7JFlrHWVVMsY0xjUi/TjQNX96WGPM74H/A14yxnxorT1b6ehFRERERGqxGktYGGMuxzWyYmDeo13+prxnW8xule3rV0C/vLf50039yhgTn/f639baV/KSCWuAYFxra4wq5sPH/dbapALvWwDf4po3N7ZA+S+BqcaYjXnbzgEdgOFAIPCstXZjFQ/Na/waBtWZPnfs2EFubi4dOnTwKM/KynKPbsjNzWXevHmsXLmSw4cPk52dTVZWFmFhYVWOO98vf/lL9+tOnTrRuXNn2rZti8Ph4IYbPEfojxkzhpkzZ7J3716SkpJYsmRJsW3269eP9957D3CN3oiPjwdgwIABOBwOJkyYgMPh4Ne//rXXjkMqxlrrTlhY4LTfWc5nnCc1I5UrIq6gQVAD3wYoIlKb+EGOySXA+hOYq+nzpHpZazcaY64BHsL1f+4rcU15exD4JzDfWnu4Gvr92NttFvALoBHwZMG17Ky1h4wxfwCewjVC/fVqjEFERERExGeqLWFhjGmCZ4KiY/6mAtW+A9bnPRxe7L4fMK5QWd+8R75XgGhcyQpwJRyKs4GLQ7FLsx64CogD+gNhuL4Z9T6w1Fr7UXkCrymVnZrJF9LT0/H392fbtm1FRjI0aOD6sHj+/PksXryYRYsW0alTJ8LDw5kyZQrZ2dU3iuTKK6+kSZMm/PDDD0USFlFRUdx8880kJCSQmZnJsGHDOHu26Bfh+vfvz4IFCzh8+DAOh8M9SmTAgAEsW7aMPXv2cPDgQQYNGlRtxyGlKzwdVIZ1rU3iZ/wIC/ReQkxEpL644JdDQK4/gc4aHcgrlyhr7Y/AzLxHbXa9MaYn4MS1CPjH1tr0YurF5z0Xd+/wIa6ExQAqkLAwxrQso0p0/ouMjAyPddhEpH7R77cUpOtB8ulakIIqcj1U17Xj1TtJY8ztXExSXF1wU97zDxRIUFhrj1INrLXjcc1pW1Y9B54JlPK0vb+4fay1G3AlN8TL4uLiyM3N5dixY/Tv37/YOps3b+bWW29lzJgxADidTr7//nuuvvrqYut7w6FDh0hLS6N58+bFbp84cSLDhw9nxowZRRIt+Xr06EFQUBBLly51r8MB0L17d1JTU1m+fDnh4eFeXYdDKsZ5vuB0UFnYvMFgDYMa4mc03YmISGEX/HIIzQ0myBmItVZT50m1MMZcDxy11n5fRr32QPNaMNJ5dqH3p4wxD1prCyce2uc9FzdNbXKhOuV1sLwVN27cSJMmTSrYvEg+Japru48+qqnvUepaqAt0PUi+mrsWQNdD7VeR6+H4cW/PvOri7atkFa5ZU/LvTPdzMUGxvjqGZEv916FDB0aPHs3YsWNZsGABcXFxpKamsm7dOjp37syIESNo3749q1at4tNPP6Vx48YsXLiQH3/8sdwJi/T0dH744eJa6/v27WP79u1ERkbSunVr0tPTmT17Nj//+c+Jjo5mz549PPLII7Rr144hQ4YU2+bQoUNJTU0lIiKixH5DQ0Pp1asXL774In379nUnNoKCgjzKAwMDK/ATE2+x1uLMzEtYGMNZv3Puyesigko+ryIil7IL/rlwAYKdgeQ4cwj0179hUi0cQCKQUEa9R4CJgK/mKPsqr38HrgW6o4GbgaeBJGPMKWvtuwXqX5b3fLqYts4UqiMiIiIiUu94O2FxGPiEiwmKA15uXy5RiYmJzJkzh2nTpnH48GGaNGlCr169uPnmmwF4/PHH2bt3L0OGDCEsLIxJkyYxcuRITp8u7l6vqC+//JKBAwe630+dOhWAcePGkZSUhL+/P19//TWvvfYap06dIiYmhsGDB/PMM8+UuBi2MaZc31CLj49n48aN7vUr8g0YMID169d7xCU1q+B0UCbEn/N500EZYwgPDPdlaCIitVbjBpGQmcNlfhH4+2kdC6lWtX74jrV2TaGi/cAfjDHfAv8C5gDvFt7Py1qVsT0a2Apw/fXX07JlWTNIiZRgyye+jkDKMHjw4JrpSNdCnaDrQfLV2LUAuh7qgIpcD4cOHSq7UiV4NWFhrS3rP8Mi5eZwONyvAwMDmT17NrNnFx5N7xIZGck777xT6b7i4+OxtuR130NDQ/nwww/LbKe0Nho1auTe7nQ63eVPPvlkscf15JNP8uSTT5bZp1SfgtNBZQfm4Mx2nbcGgQ30IZyISAmCgoPJIQcuWEzt/zxZ6r/GQKavgyjMWrvOGLMH6GSMibDW5o+eyP+2zWVAWqHdIgrVKW9fpd5JFpy2LTQ0lNDQ0Io0LyJ1iH6/pSBdD5JP14IUVJHrobquHU0cJiJSjMLTQZ0q8NmApoMSESlFYIH1fXKcEKgEr3iHMaZ1oaIGxZTlCwCuAQYDe6o1sMo7DrQDwrg43VMy8FNc61QUTliUtr6FiIiIiEi94O1Ft2Oqsr+19r/eikUkX0pKSqlrWezatYvWrUu615VLlc30nA7qzAXX5wgGQ4PABr4MTUSkVjMFEhbObCf+SliI9+zHvZoUAD/Pe5TGAG9WV0CVZYwJx5VQOYcrcZFvAzAKV6Lls0K7DSlQR0RERESkXvL2CItDeN5EVIRFIz6kGsTExLB9+/ZSt4sU5sy4OB1UVtAFnFmu6aBCTSh+xq+k3URELnlnbTohea9TT/9IdLjmwxevSeHivUZr4DyeH/YXlI3r3uRt4KXqD60oY0xDoLm19vtC5aHAn4GGQKK1NqfA5pXA74EHjDHL86dzMsa0BO7HdbyF18UQEREREak3qitBUJkJizXJsVSLgIAA2rVr5+swpA4pPB1UWHgYLQJbkHYujVCjuR1FREpzJPsobWgKwOFTh4iOUcJCvMNaG5v/2hjjBP5mrZ1Y03EYY34F9Mt72ynv+VfGmPi81/+21r4CRAHfGWO2At8CR4HLgRuBlsAO4OGCbVtrTxpj7gfeAP5jjPlr3qa78tq7y1p7tjqOS0RERESkNqiuhMUXwHLgLf2HunYobTFoEfFUcDoov9AA/Pz8XetWeHnJzvzfy4KLXYqI1HU28OLftAtZ2T6MROq5CcAPPuq7HzCuUFnfvEe+V4ATwFKgBzAc1wLgGbiSF0uAP1hrMwo3bq190xhzHJiF6zgtsA2YY6392LuHIiIiIiJSu3g7YXEXMBG4CegOLDTGvA28aq3d6OW+pBwCAwPJyckhNzeXU6dO0ahRI1+HJFLrFZwOyi+0evK6p06dIjc3F3CNAhIRqS9MwMVp87Izs3wYidRn1trXfNj3eGB8OeqdwTWNU2X6+AD4oDL7ioiIiIjUZV79lMxa+zfgb3lzrE7A9R/5u4Exxpi9QCLwmrX2sDf7lZKFh4eTkeH64taRI0c4duyYvs1dS+TkuD4UT01N9XEkUpgzMxewYAx+GRcXi/XWObPWupMV4Po9FRGpLwouup2jERZSzYwxbYHJQB+gKfB3a+0jedt6Al2Av1prT/suShERERERKa9q+Vpv3uJwzwDPGGMG4Rp1cRswB5htjPkXrimj/m6tvVAdMYhLkyZNyM3N5eTJkwAeH5KK71hr3Ymk0NBQJZFqEXshl9x0158lE+THmQvnCA0IJcgviMxM15xQ3jxnjRs3pkmTJl5pS0SkNvALupjozc3KKaWmSNUYY8bjWlA7OK/IAgX/UQ3L254NJNVkbCIiIiIiUjnVPg+JtfYT4BNjTAQwGlfyYigwBNgLtK/uGC5lxhguv/xy/P39OXfuHDk5OVrPohZwOp3uhEWDBg3w8/MrYw+pKRdSs+CMK2FxJiqL79KTAWjdoDUhmSFA1c+ZMYaAgADCw8Np0qSJElYiUq/4BV7872XuBX0vRaqHMaYX8GfgPPBbYAPweaFqG4DTwC0oYSEiIiIiUifU2MTpeXO4vmSM+RB4AdeNw2U11f+lzBhD06ZNadq0qa9DkTwZGRl89913AHTr1o3Q0FAfRyTgGl3x3zc+x2bnYkIC+F3Xl/j65A4A/jb0b+z+bDegcyYiUhr/4AIJi2yNsJBq8whggBHW2n8DRb4AYK11GmO2A1fXeHQiIiIiIlIpNfK1bmNMiDHmbmPMeuB7XMmKM8BfaqJ/EZHyyPz+JDbbNW1abodgd7Li6qiruSLiCl+GJiJSZwQEBrpf5/9NFakGfYEv8pMVpTgKNK+BeERERERExAuqdYRF3kJ3E4G7gIZ5xRtxrV+xylqbUZ39i4hUxPmvj7tff954JxxzvR7eZriPIhIRqXv8gwMB11RQ9oLTt8FIfdYISClHvVAgqHpDERERERERb/F6wsIY0xQYC0wArsI1VPsQ8CKQaK3d6+0+RUSqypmdS+a3aQCY0ABeP/c312sMw9oM82VoIiJ1SnBICPkJi3DCfBuM1GdpQHmGP7bDNcpCRERERETqAK8mLIwxa4Dhee1eAN7GNZriQ6uVnkWkFsvcfRKb7fomcGY7P/af2w9Aj+geNAtr5l4kXUREStf8shjO4Frzp2tknI+jkXrsM+AWY8w11tpviqtgjOkLXAO8WaORiYiIiIhIpXl7hMWtgAW+xHVjkAZEAqMKL4JXHGvt//NyPCIi5ZKxI9X9+t8R/wcnXK9HXDnCRxGJiNRNJvDiEmmaEkqq0R+BkcDbxphfWmu3F9xojLkK1xenLLC0xqMTEREREZFKqa41LH6a96goJSxEpMa5poNyZShMWACvnVsJQKBfIDdccYMvQxMRqXM8EhZadFuqibV2nTFmITAV2GaM2YMrOTHEGPM1cDXgBzxnrf3Mh6GKiIiIiEgFeDthsRHXjYKISJ2R+d0J97eAz7WF1CzXaIsBLQcQERThy9BEROqeQH/3S42wkOpkrZ1ujNkNPIVrrQqA5nmP48Bsa+0ffRSeiIiIiIhUglcTFtbaeG+2JyJSEzJ2HHe/btXjJ6yKWsX7+96nR3QPH0YlIlI3FRxhsfvYd/ThKh9GI/WdtfbPxphXgDjgSlyjKg4CW621OT4NTkREREREKqy6poQSEakTnFm5ZH7nmg7KLzyQkCsb0dG/MR0jO/o4MhGRuqlgwiIj45wPI5FLhbXWAv/Je4iIiIiISB3mV3YVEZH6q+B0UKHXRmH8jY8jEhGp4wIu/h0NyPUvpaKIiIiIiIiIJ6+OsDDGxFhr/1tb2hERKUvG16nu16Gdm/owEhGR+sEYQ5ZfNsHOIAJzNZhXqpcxpiUQD8QAISVUs9baZ2osKBERERERqTRv30UmG2NeBH5vrT1Z0Z2NMZHATOB/gXAvxyYi4sGZmUPGbtefKhMewMRd93Fjxo0MbzOc6PBoH0cnIlJ3ZfvluBIWTiUspHoYY/yBJcAkLo4aLzxM0uaVWUAJCxERERGROsDbd5EfAY8ADxhj1gCvARuttVkl7WCMCcb1rajxwK24vhn1jpfjEhEp4vzXqZDjmg7qyBVn2HFiBztO7CD1fCozeszwcXQiInVXjn8u5ECQMwBrLcZouj3xuseBe4Ec4B9AMnDWpxGJiIiIiEiVeTVhYa29zRhzI/AC8D/AKOCCMWY78C2QBpwBIoAo4GqgCxCI69tPO4Gp1tqPvRmXiEhxzm875n79TtjHkLc27M1X3uyjiERE6occ/1wAQpzBZOVmERJQ0kw9IpU2HsgA+ltrtdi2iIiIiEg94fVx+nnJhk7GmJuA+4HBQI+8B1wcmp0vC3gP+IMSFSJSUy4czyD7wBnXm6ZBvJv+IRi4IuIKro662rfBiYjUcTn+rtFrwc4gMnMylbCQ6hANOJSsEBERERGpX6ptYmFr7b+Af+VN+dQXiAMuBy4DTgHHgP8An5Y2ZZSISHU4/58f3a+TWx3BZlgARrQZoalLRESqKDfAlbAIwJ+M7AwahTTybUBSH/0XTQElIiIiIlLvVPtKiHnJiE/yHiIiPmedlvP/yZsOyg/e9H/HvW34lcN9E5SISD3i9Lfu11kZGa7JQEW8aw0wxhgTrC8/iYiIiIjUH36+DkBEpKZl7T1N7inXZxvONsF8kb4NgGujruWKiCt8GZqISL0QEX6Z+3W4CfVhJFKPPY1r1PYKY0wTH8ciIiIiIiJeUu0jLHzFGDMG6A90AzoBQcAEa21SCfUjgKeAn+OaE/cI8DdgtrU2vYJ9DwFmAV1xrdmxDZhjrV1XmWMREe8qOB3Ul812uz7uQKMrRES8pXnjFmQcSAWgsX8j3wYj9ZK19owxpjfgAPYYY7YBKYCz+Oo2oSbjExERERGRyqm3CQtgDnAF8P/Zu+8wuar6j+PvM7OzvWR3k91N7yEhoYSEJJSE3kERVESkKWBDERuooCCKoj8QFUURBUF6VUILNaEmISGkkN43dXudPuf3x53M7GZ3s2225vN6nn323nPPOfc7ubOT3fu955xSnORDi49NG2MygPnAkcA84DGcNTd+CJxgjJljrfW15aTRRMnDQAnwYLT4Ipz1PL5orX26Iy9GRBIj4g/hXVEKgEl182DwSQBcxsWZo87sydBERPoNl8cd27bB5u4fi3ROdJ28B4EpgAFOPEB1CyhhISIiIiLSB/TnhMVVwHpr7VZjzI3Abw5Q98c4yYo7rLU37is0xvwWuAG4vpX2++rnAn/GSZIcZa0tjpbfAXwM3GuMedVaqwUCRXqId0VZ7OZZeFIqu/3OaIsZRTMYlD6oJ0MTEek3jCc+62gkEO7BSKQfuxU4D6jAeVhoPdCuUdEiIiIiItL79NuEhbX29bbUM8YYnORGLXDbfodvA74dPd5qwgL4AjAA+MW+ZEU0lmJjzD04U059DnioLbGJSOI1nA6q8JhxvFn0Ji9veZmhmUN7MCoRkf7FJMcTFiF/kJQejEX6rYtxJnU80lq7vYdjERERERGRBOm3CYt2GA8MAV611tY1PGCtrTPGvAecYYwZ3oY/hk6Mfp/XzLFXcRIWJ9COhIUxZlgrVYr2bfj9frxeb1u7lh7k8/ma3ZauFa7w499UBYArP5XwwCTcYcO5w88FOODPT5des0AdpmwdWJvYfoVgwE9u3UZne8sHmGTdNu0LdN36nn3XzJ+Ujc/nY3XlakaQBcB7m95h9rAzejhCaY7f7+/pEDqjAJinZIWIiIiISP+ihIWTsABnGHlz1gNnROu19gfRgfpav1+dtmrzH2ELFy5k48aN7exeetqCBQt6OoSDxuDtqQwhHYDtGeUsfu21DvWTqGvmjvgZXfI64/fMJTlc13oDabdUYM6+nXU9GIi0i65b39Pwmn1Ss4Jd3iNiCYttW7Yyz9fcsxzS00pLS3s6hM5oaYFt6Uajbnyxp0OQNtjy23N6OgQRERGRNuvShIUxZg4Qtta+15Xn6aSc6PeqFo5X71evo321px8RSTQL+SUp0U3L7vxaeipnayIhRpa9zSG7/0tqqKWPHhGRvmlw5UesTzsitm+0hIV0jUeB7xljBlhrK3s6GBERERERSYyuvlv3dvTr5C4+T382vJXjRcBigJkzZzJ27Niuj0g6zefzxZ7SnzNnDqmpqT0cUf8X3FpD9Ydrne3hSfw6dAen5p7KReMvYsKACa22T8g1i4Rxf/osSe/+HlfVtlixxRA55Bxs5uD29ykHFAqH2LFjBwBDhw4lya2BhX2BrlvfEwqHSFn2IAZLXrqbkaNHO8+/AwV5Azn19NN7NkBpVh8fmfsbnOlYXzLGfM1au7qH4xERERERkQTo6jsAFcDOLj5HZ+17vLmlkQ/Z+9Vra19lnegnpuHi3c1x1gx3pKSkkJaW1p7upRdITU3VdesG3pXx2dU+LFiJt97LC5tf4Kiiozhi8BEHaNlUu6+ZtbBmLrz5KyhZ0/jYpPMwJ/0Md8GkdsUgbRP0elk5z5mKZsjpp5Okn7U+Qdet7wl6vYSWP44n4sUVrCM1Ix0IAGAi6P+5XiolpU+vD/MK4AFmASuMMdtoeZooa609pTuDExERERGRjunqhMUy2r9mQ3drbW2J1ta42L+v6dE2+ycs2tOPiCRQJBDGu8KZp9ukuPi7/z8ApCWlcdbos7ruxNbCprfhjV/CzqWNj405CU65GYZO67rzi4h0o6A7DU/Ei/FX40lJZl/Cwga0zIB0iRMbbLuAUdGv5tgujkVERERERBKkqxMWfwKeM8acY63trSuyrccZBXKcMSbDWhtb+dYYkwEcB2y21rZl8ev5wMXA6cCH+x07o0EdEelGvlVlWL8ziXrJSC/l4QoAzhx1JhmejK456Z5V8PINsOWdxuXDZjiJitFzmm8nItJHhdzpECwHfw3JKckNDihhIV3ipJ4OQEREREREEq+rExYfA/fgJC0eBJ4BtgDe5ipba7c1V96VrLXWGHM/8HPgZuDGBodvBjKB2xu2McakAyOA+v1ifhK4A/iOMeZf+6ZzMsYMA64FSoHnuuq1iEjz6pbuiW0/mzZv30O/XDD+gi46YRk8eA54K+JlhVPg5JthwhnQYCo3EZH+Iuh2pn0yIS/JnvivmCbYUxFJf2at1UNAIiIiIiL9UFcnLDZHvxvga9GvlthExmOMuQo4Prp7WPT7VcaYE6Pb71pr749u/w74LHCDMWYqsBQ4CmekxGLg7v26nwG8hTNaYl9/WGsrjDHXAg8DS40xT0QPXQTkAxdZa2sS8PJEpI1ClX78GyoBsAPcPOd/GQyMzRnLEYPat3ZFm31wTzxZkTsaTr4JJl8ALlfXnE9EpBcIutNj28mu8L7cMCbUM/GIiIiIiIhI39PVCYvt9NycsccDl+9Xdlz0a5/7Aay1dcaYE4BbgAtxhpjvAu4EbrXWNjsipDnW2v8YY0qBnwJX4rz+JcCvrLWvd+yliEhH1X+8N/YptGrIttj2BeMvaLRofcLUlcGi+5xtlweumAs5wxJ/HhGRXqZhwiLVBGMJC1dIo8pERERERESkbbo0YWGtHdWV/bdy7iuAK9pRvwq4PvrVWt23cUaNtHT8FeCVtp5bRLqGtZb6BtNB3c/jACS5kjhv7Hldc9IP7oFArbN91GVKVojIQSMUnRIKIM0EqY5uT8o6pGcCkoOCMWY68HngECCb5n9Ht9baU7o1MBERERER6ZCuHmEhItJjAttrCJU4A6Tqh0RYazcCcPLwk8lNzU38CRuOrnAnw+zvJ/4cIiK9VMMRFu5IHeBMg5dh0ltoIdI5xpj/w3nYaF+SwtI4YbFvv6dGfIuIiIiISDtpQnUR6bfql8RHV1RMCDI8azgAF46/sGtO+MGfNbpCRA5aIVd8hIUJV8e2bSDSE+FIP2eM+QLwfWAH8HVgXvTQGcC1wAc4yYrfAif3RIwiIiIiItJ+3ZKwMMbMNsY8aYwpNsb4jTH/bHDsNGPM7caYou6IRUQODjYYof6TUgCMx8XRJ53I3M/N5YEzHmDWkFmJP2FdGSxsMLri+FZnlxMR6VcajrAwgWpwOw+622C4p0KS/u0aIAycYq39B876c1hrX7PW/tVaexzwa5ykRlXPhSkiIiIiIu3R5QkLY8xNwNs4c8sOATw0HqpdBdwAXNDVsYjIwcO7ugzrCwGQNmUgrpQkXMbF9KLpuEwXfPR98GcI1jnbGl0hIgehYIM1LPBXY6MTj9bV1/ZMQNLfTQUWWmvXH6DOL3ASGTd1T0giIiIiItJZXZqwMMacBfwSZ6j2F4HC/etYaxcBJcC5XRmLiBxcGk4HlT6toGtPptEVIiKEGoywwFdNdaQGgKq6yp4JSPq7LGBbg/0AgDEmc1+BtTYCLASO697QRERERESko7p6hMV1gB84y1r7tLW2pIV6nwDjuzgWETlIhKsD+NZXAGCz3ewaWNG1J9ToChGRJiMsgm5nKqjkiIeI1ToWknAlwIAG+6XR76P2q5cBZHdDPCIiIiIikgBdnbA4GlhkrV3VSr0SQGtYiEhC1C/bC9F7Y4sGfcpn/vtZLn/5cnbX7U78yZqMrvh+4s8hItIHBBuNsKgiHE1YpESS8YV8PRSV9GNbgJEN9j/GmXb2y/sKomvknQBs7dbIRERERESkw7o6YZEBtOUOYU43xCIiBwFrLXUNpoP6l3kSgC3VW8hPzU/8Cd//U4PRFZdDztDEn0NEpA8INRxh4asilORkjlNtMt6gt4eikn7sDWCiMWZUdP9loBy4wRjzlDHmTpzpoDKAZ3omRBERERERaa+kLu5/DzCuDfUOAbZ3cSwichAIbKkmtKcegMpBPrZ5dgHwmbGfweP2JPZkdaWw6B/OttauEJGDXKMRFv5qwkk2tuvzeyG9mUYiHfc4MAQYDmyx1tYZY66Mll/YoN4S4Dc9EJ+IiIiIiHRAVycs3gW+ZIw5zlr7XnMVjDHn4iQ1/t7FsYjIQaD2w12x7f/mvBXb/tz4zyX+ZO//WaMrRESiQq5ULAaDBV81EXc8YeH3aYSFJJa1djVw9X5lLxhjxgPnAXnAauAFa224B0IUEREREZEO6OqExZ3ARcCzxpivA3MbHjTGnAncDwSBP3dxLCLSz4VrAnhXOmtuRtIMz7hfBuCogqMYkzMmsSfT6AoRkcaMi5A7DU+4HvzV2AaD2vw+rWEh3cNauxM9CCUiIiIi0md16boR1tqlwA+AgThzx1YCFrjQGFMJvAgUAD+w1n7albGISP9Xt2g3hJ0nepcP3UTQFQLggvEXJP5kGl0hItJE0BVdx8JXDUkmVh7w+XsoIhEREREREelLunyha2vtH4GzgcVAGmCALCAbWAF8xlp7T1fHISL9mw1b6hZGp4MycK/7EQAyPBmcNvK0xJ6sfr/RFbO/n9j+RUT6qNg6Fv5q8ChhISIiIiIiIu3T1VNCAWCtfRV41RiTD4zGSZRst9buOnBLEZG28a0uI1wdAKBiuJ9trp0AnD36bNI9iV3pNWnRvfHRFdOugOwhCe1fRKSvCrmjIyxCvkYjLCKBUA9FJP2FMSaMM1L7UGvtuuh+W1lrbbf83SMiIiIiIp3Trb+4W2vLgLLuPKeIHBxqP9gZ234m+zWI3sa4cPyFCT1PcrCapJX/cna0doWISCPBfQkLYMrA8dRRDsARuYf3VEjSf5joV8P99rQVEREREZE+oEsTFsaYK4DXrbXFXXkeETm4BffW499YBYA7P5VTTjiXXWsqKfOWcWj+oQk917i9L2OCXmdHoytERBqJTQkFuF3B2LYNtOdheJGmrLWuA+2LiIiIiEj/0NUjLP4FWGPMeuD16Neb1trqLj6viBxE6j6Mzy6XOWsIs4cPZfbw2dQH6zEmcQ9VJgerGV36mrPjTtHoChGR/YQajLBwmfi6FTYY6YlwREREREREpI/p6oTFg8DJwITo1zeBiDFmCfEExnvW2mCLPYiIHEDEH6ZuyR4AjMdFxrSC2LFEr10xbu/LJEWcdTI0ukJEpKmGIyyM9eEsWwaRoEZYiIiIiIiISOu6NGFhrf0qgDFmPHAqcBpwIjAj+vUTwGuMeRd4zVp7Z1fGIyL9T/3He7F+50ZY2hGDcKV7uuZEtXtjoyusOwVz/Pe65jwiIn1YyBUfYVEeKMFQCMDaPWuYxuCeCkv6IWOMC5gOTAbycRbkLgdWAEustbYHwxMRERERkQ7qlkW3rbXrgfXAvcaZn2U6TgLjVOA44PTothIWItJm1tpGi23/zfMIx20/mdnDZuMyiZ3a2vPhH2OjK8JHfoUkja4QEWmi4QiL6lA5OdGExe7KXS01EWkXY4wH+DFwPZDbQrUyY8ydwJ3W2lC3BSciIiIiIp3WE4vVeYCs6Fc28aRJ4iaaF5GDQmBLNaE99QDUFAR5rPJZrn3zWn6/+PeJPVHFVtwfPwRAyJVM8JjvJbZ/EZF+IthgDYsk62twQGtYSOcZYzKA14BfAnk4fz8EgT1ASXTbAAOB24FXjDFpzfcmIiIiIiK9UbeMsDDGHIkzHdSpwPFAKs4fE9XAi8TXsxARabOGoyuezX4ttn3umHMTe6L5d2AizlI7mwadwfCMQYntX0Sknwi6M2LbycQTFjakhIUkxP8BcwAf8GfgP8DKfdM/RaeJmgJcCnwbOAn4PXBtj0QrIiIiIiLt1qUjLIwxjxtj9gJLgDtw1q/4CLgFZyqofGvtZ621f7bWru7KWESkfwlXB/CuLHO20+AZ9ysATC2YyuSBkxN3or1r4JPHAAi409lQcHbi+hYR6WdCDUZYpETqYtuuYE9EI/2JMWYEcA3OA0/HWWtvsNauaLhWhbU2Yq1dbq39Ec5DUrXA140xwxIcy1eMMX83xnxkjPEbY6wx5ooD1M82xtxljNkarb/FGPN7Y0xmC/VdxpjvGGNWGGO8xpgSY8xjxpgxiXwdIiIiIiK9UVdPCfVFnEXwlgMXALnW2hOstbdZaz+w1oa7+Pwi0k/VLdoFEecexcLCTwm6nCmqvzLpK4k90Vu/Bus8Gbyh4ByCSRmtNBAROXg1XMMiJRxPWBitIiCdd0n0+43W2o9bq2ytXQrcCLgbtE2UX+EkT0YCB1ygJTqN1XycNTfWAH8A1gI/BN40xqQ20+zvwJ9wRqT/CXgF52+pxcaY8Ql6DSIiIiIivVJXJyxqcH7RPgJ4BHjWGPMDY8wRXXxeEenHbDhC7aLdzraBvyU9AsDgjMGcPOLkxJ1ox1JY/T/nPBmD2DTo9MT1LSLSDzVcwyIlVB3bdoW0VJl02jE4U0E90I42D0TbHJvgWK4CRllrBwF/a6Xuj4EjgTustWdYa2+01p6BM/r8aJxERowx5qRo/wuAo6IjSS4FzsdZt+OeRL4QEREREZHepqsTFnk4Uz/9AmcqqH3zyC41xuwxxjxqjLky0cO0RaR/835aTqQ6AMD2wlJKPBUAXDzxYpJcCVya583bYpvBY68n7E5JXN8iIv1QqMEIi9RQZWzbFVbCQjptMvCxtdbf1gbWWh+wFGddi4Sx1r5urd3aWj1jjMFJPtQCt+13+LZo+VX7lV8d/X6ztTbQ4JwvA28Dp0enxxIRERER6Ze6dNHt6JRPH0S/bjPGpOOsY3EqcApwUfQLY8w6a+2kroxHRPqHugaLbT+Q+gwAaUlpXDD+gsSdZPM7sPFNZ3vACMJHfAXeeDtx/YuI9EMhVwoWg8HiDlTEypNCXf2MjBwE8nCSD+21EyfZ0RPGA0OAV621dQ0PWGvrjDHvAWcYY4Zba7dHD50I1AHvNdPfq9HjJwAPtzWINjwcVrRvw+v14vV629q19BG6prKP3gvSkN4Pso/eC9JQe94PXfXe6dKExf6stfXAS8BL0WmhLgGuBVKBCd0Zi4j0TcE9dfg3VQFQlxVgYepyAD4z9jPkpOQk5iTWwhu/jO+f+FNwJyembxGR/sy4ICUL/NUQKCdCBBcuksLuno5M+r4snOlm26sOaHZx626wb72J9S0cXw+cEa23PbrexWBgZQtr/e3rp73rWGxvvYpjwYIFDBw4sB1dd+ufk9JB8+bN66Yz6f3Q2+m9IA3p/SD7dN97AfR+6P3a834oLS3tkhi67V0SfbLnNOKjKwbtOwQEcUZhiIgcUO2H8bUtlw3fhLXOwtuXTErgeprrXoXiRc72oIlw+BfBHzhwGxERAcCmZGH81Rh/NSF3hOSwixxXdk+HJX1fZ4bp9NQQn31PUlS1cLx6v3rtrS8iIiIi0u90acLCGHM+ToLiVOJPAhnAAiuB16Nf86OjL0REWhTxh6hfuhcA43HxhS9cyVTfCSzatYjROaMTdJJIo7UrOPkmcOnJYBGRNkvJBnaAv5rU1DQidUEGedrzxLZIizI7sH5DT42u6E2Gt3K8CFgMMGfOHIYNa8fygh+82fGopNucfvrp3XMivR96Pb0XpCG9H2SfbnsvgN4PfUB73g/FxcVdEkNXj7B4tsH2duIJijestXu7+Nwi0s/Uf7wX63dmSEg/sgBXWhIT0iYwITeBM8qtehb2rHS2hxwFE89NXN8iIgcBmxIdTRHyYVKdxbZtsLnZbUTa7cLoV1+xb6RESyMisver1976bWKtPeBfks7a4I60tDTS0tLa0730Abqmso/eC9KQ3g+yj94L0lB73g9d9d7p6oTF88BrwOvW2pbmbhURaZW1ltoP4tNBZRwzOPEnCQfhzV/F90/5OTT4I15ERNogJSu2aaK/adpApIeCkX6mo/8p24RG0XatrTnRaI2L6ELcu4DRxhh3M+tYtLYmhoiIiIhIn9elCQtr7QVd2X+iGGOuAB5opdqb1tpTWunnROCtA1S50lr7YHtiExFHYHM1oT3OzHHhoUkkDU5P/Ek+/g9UbHa2R82GMScm/hwiIv1cbIQFYNzOfWIbDGOtbfQkt0g7JWjux261HtgJHGeMybDW1u07EF1g+zhgs7W24aLY84EvRY8t2K+/M6Lf9y8XEREREek3tDS7YxlwawvHPg9MBl5tR3/zgbdbOI+IdEDthztj23/gn2x4/tdcfdjVfHbcZxNzgqAX5t8R3z/lFxpdISLSEQ0SFjv8uyhgIESgrK6MgZlay0I6xlq7tadjaC9rrTXG3A/8HLgZuLHB4Ztx1te4fb9m9+EkLG4zxpxmrQ0AGGPOAk4E5vXFfwsRERERkbbqloSFMWYScB1wEjA0WrwDeBP4k7V2dXfE0RJr7TKaSSYYY5KBa4EQ8O92dPm2tfaWRMQmIhCq8OFdWQqAPyXIgswlBKtDbK1O4N/ri++HmuiUU4ecDcOPTlzfrQgUF1O/aDHYplOmuPPzyTrxxEZlNW+8QbiystV+Uw89lNRJk2L7Eb+f6rlz2xRT5sknk5SbG49x2zbqFy9utZ1JTibnvPMaldUtWkRw27ZW23qGjyBj5oxGZVUvvID1+1ttmz59OsmjRsX2QxUV1L7xBoFAkOxVqwCoqavHn+xp0jb73HNxpabG9n1r1uBbubLVc7pycsg+7bRGZbXz5xMqKWm1bcohh5B22GGxfRuJUPVsg2WfDpAsyzh+Np7Cgth+cOdO6j74oNVzgmHAhY0HPtZ//DGBTZtabZlUVETmccc1Kqt+5VUidbWttk074ghSxo2L7Ydra6l59cDPAAQCAbJXraJ2ymGNyv0bN+JdtqzVc7oyMsg+88xGZXXvv09w164WWsQljx5D+lFTG5VVPvc8RFpfgyFj1iw8Q4fG9kMlJdQuaNuD0Dmf/SwmKf5rmXflKvxr17Tarrd8RgS3byd78WLCmZlEDouvcew13ti2z1sHSlhIP2CMuQo4Prq774Pqquhoa4B3rbX3R7d/B3wWuMEYMxVYChwFnI6z0PXdDfu21r4VTXJcBSw1xrwIDAYuAsqB73TBSxIRERER6TW6PGERnW7pb4CHxvPOjo9+XWmM+bq1tj0Jge5yPpAPPG+t3dPDsYgctGrf3QHRe/lzBywg6AqRZJK46JCLEnMCXzW8c1d0x8DJNyWm3zbwb9rElou+RKSmptnjadOnNbkZWfrXe/FFb8IfyKDvXdf4ZmR9Pbt+1rbXNuqppxrdjPR+8kmb2roHDGiSsKh65hmq/vu/Vttmn3tuk4TFnt/eQbisrNW2g3/7m8YJi9272XXTzQAURcvKnnmm2baZJ57YKGFR+847lNx5V7N1G0qZOLFJwqLsXw9Qv3Bhq23zr/pao4QF4XAs3taMePCBRgkL39q1bbuuSUlNEhbVL8yl4tFHW22aecIJTRIWe/9wF8GtrSeiCm+6qXHCoqKiTfEWAZtHN54Bpn7RInbf+stW23qGDWuSsCh/5FFq33ij1bYDvnRRk4TF7ltuaVPibNg9f26UsAhs2dLmn7nsc85plLCoee01yv7+91bb9ZbPCP+KFRQ97fyMlZ99BEXRQRYRVzzR4/P62tS3SB9wPHD5fmXHRb/2uR9i61KcANyCs2D4ScAu4E7gVmutl6a+DqwArsF56KsWeA74mbV2Y+JehoiIiIhI79OlCQtjzDTgH4AbmAv8E9j3S/YY4GvAecA/jDGrrLUfdWU8HXBV9Pv9B6zV1HhjzPeANKAYZ/2LHR0JwBgzrJUq++7F4ff78Xqb+5tHehufz9fstjQV8YaoXbQbgLA7wlPZzpPZJw8/mWxXdkLe80nv3o3HWw5A6NALCGaPgf367YprFq6pYdc3v9VisgIgEo40eY2RSNsWrw0Gg43ahtvxb+X3+xv9GwQCgTa1s9Ak3lCo9SfTAcLhcJO21rZtndRgoPFr9bfh5vI+Pp8Pd4O2oWCoTe0ikeauTdteazAUatTWBoNtagfOa3N14NpAM9cm3LbXGo40c20ibbw2wUCjtsF2/vw0/HkLBNr272StbRJvONzG92Go6WttK38gQFIH34derxdXg/d7KNS219prPiNqY1PzU7+hxHl+HIiY+OuoranW7ym9THveoxJnrb0CuKId9auA66NfbakfAf4U/RIREREROah09QiLHwEu4GvW2v0XtV4J/C86AuNfwA+Ai7s4njYzxowETsFJOLzSzuZfjn7tEzLG/Bn4kbW2bXdM4ra3XsWxcOFCNm7UQ1d9zYI2ThdysCoqTmVo0Flg++3sJVQlOVPQjCkfw7x58zrdf3KohtNW/QWACG7eYhb1rfSbkGsWiTD0wX+TsdWZ1spfVEjlscc1qRbKymTFfvFkTp+Gu8FT0S3Z6nbjb9DWBINkX3DBAVrEbVy7hvCO4ti+p7KS9Da0jSS5WbNfvGlDh+C5sPW2wfx8Pt6vbdZpp2HacON2c001wQZtXXV1ZLXxta7/4ANscnJsP9lAWhvahtPTWLVfvBmTp5A0fESrbbdlZOBr2DYSIaeN8W7aupVQg+l+kioqyWhDW2tg3X7xpublkdKGtsEBOXyy//tw9vG4fa3f7NwSCBJoeG18vjZfm3BGZqOft2S/r03XJpKSwqf7xZs+dgyevLxW224bOLDxtQGyzzsX04YEzaY9ewg1aOuuriazja913Vtvgdsd209JSyO1DW17zWdEKBhbEdlbHk/C+oLxacM+XrqUrRvi6xFJzystLe3pEERERERERBrp6oTFbGBZM8mKGGvtg8aYa4E5XRxLe12Jk2x5sB1JhhKcxfTmAluADOAY4Lc4T1RZnMSMiLSBiUDBbmeqngiWR/JeAGC4ezjDklobfNQ243e/QFLEeYJ768ATqE8pTEi/rTHhMOG0NADC6ensuPxyQm24mQpQO2VKh85pPR6q9ptyqa2CAwdSNbBjc897x47FO3Zsh9rW7Dc1T1tFMjI6/FoDQ4YQGDKkQ23rJk3sUDtcrg7HG8od0OG2vlGj8DWYSqs9ao84okPtIqmpHb82hYUECjv2M1o/YUKH2gFUH92xNW3C2dkdfq3+4cPxDx/eobY99RkRzMnBU1UF3oZJxvgIIBtu28gPEREREREROXh1dcJiIPBWG+qtIb5gXY8zxrhwEhYWZ/RHm1hrVwENJ42uA/5rjFkILAe+a4y5w1q7tx3htHa3oghnwT5mzpzJ2A7eFJTu5fP5Yk8Nz5kzh9QG8+dLnG9JCXVBZwTC2kHb2ZXsPAn6jRnf4LThpx2oaZuYqm2kLHc+omxSKkVfvJOirMHNx9IF18yefTbVDz1E8qRJjJ3RsZuEcmD6WeubdN36Hp/Px5Y//glPVRUuXwBrnbXj09JcUOXUGTt6NDNmnNCzgUojGpkrIiIiIiK9TVcnLCqB1ufGcOpUdW0o7XIqTkxvWGs3d7Yza+1uY8x/cdbEmAm80I62xQc6bkx8HfOUlBTSok9sS9+Rmpqq69YMG7FULYzn9v6W8RgAhemFnDXuLDwuT+dP8tLvIexMaWNmfp20gjFtapbIa5b+jW8kpB9pnX7W+iZdt74jnJ4e3YgQCRrcyRaXabDGStjqWvYyKSkpPR2CiIiIiIhII64u7n8xcKwx5uSWKkSPHQcs7OJY2qOji20fyL5JgjMS2KdIv+VbXU6oxFmctTivlHVpzkiLKyZfkZhkxY4lsOIpZzstD47/fuf7bEWorIzAtm1dfh4RkZ4Qzoj/ihP2O79iumiwoH0bF00XaQtjzM+NMW1axFpERERERPqOrk5Y/Dl6jheMMb8zxkw2xqRHv6YYY/6P+GiDP3dxLG1ijMkHPguUA88lsOuZ0e9bEtinSL9VsyA+uGjwKRM5f9z5FKQXcOGECzvfubUw7+b4/ok3QtqAzvd7oFMGAhRfdx2bv/BFat97r0vPJSLSE8IZ6fHtgPMrptt6G5SFuj0m6dd+DmiOMRERERGRfqZLp4Sy1r5qjPk18DOcxaabW3DaALdZa+d1ZSztcCmQDPzHWutvroIxZiDO+hyl1trSBuXTrLVLmql/HXASsJ7oehMi0jL/1moCW6sBSCpIZ+jUidzmug1fyEdqUgLmsl/7EmyNJg3yxsL0r3a+z1bs/vXteD9yPh523XQzY195GZem4hCRfiSc3nCEhRsIMjgST1iMy2jbtHsibbQXGgzhERERERGRfqGrR1hgrb0ZOBtn8W0/ToLCAAHgTeBsa+0vujqOdvha9PuBpoO6Flgd/d7QM8aY9caYx4wxvzfG/NUYsxS4G2c9j69Ya8OJDlikv6mZHx9dkTVnGMblrNWSkGRFOAiv/Ty+f9ovwZ2AKaYOoOLxx6l84gkATHIyw/54t5IVItLv+IcNo2raNLIvu5SkAc7n9cBgbez4IM/AngpN+qd3gBk9HYSIiIiIiCRWVy+6DYC19hXgFWOMG8iPFpf1tpv3xpgZwBRgkbV2RQe6uBc4A5iD8zojwFachMWdrS2gLSIQLKnHt7oMAFd2MulHDkrsCT56AMo2ONsjjoWJ5yS2//3UL17M7l/9OrZf9MtbSTv88C49p4hIT6ibNJG6SRM54vTTSf3bY1BViQlVxo7bQK/6tU/6vl8CHxljfgXcbK21PR2QiIiIiIh0XpckLIwx44ALgFE4oyqWAU9aa704w7d7JWvtIpzRH63VuwW4pZnyO4A7Eh6YyEGk9p0dEL3l8FTOqxRu2Mznxn+OFHcCRiT4quDt38T3T/8VmFZ/5DssuGMHxdd9D0LOvO15V1zBgPPP77LziYj0GqnZUAWuYEWsyAYjPRiQ9EPTgIeAnwAXGmOex1krrtlpoqy1D3VbZCIiIiIi0mEJT1gYY74H/A5w73foNmPM2dbalYk+p4j0D+GaAHVL9wAQSArxaNoL1C/0UR2o5prDr+n8Cd65C7zlzvaUz8OwaZ3vswURr5ft136HcLlzvoxjj6Xgh80t4yMi0g+lZAMQicSnhKqpqyanp+KR/uhBnEccDHAI8ONW6ithISIiIiLSByQ0YWGMOR64E+cPhzpgLZANjAGG4azxMMlaq0fsRKSJ2vd3QsgZXvFizgLq3T7Sk9L54oQvdr7zym3w4b3OtjsFTvn5get3grWWXTfdjH/1agA8I0Yw9K47MUndMgufiEiPsuEwEVcGLqDSHYyVr9y1nGEc0XOBSX/zELExmSIiIiIi0l8k+u7ZtTjJin8D11pr6wCMMYcDzwDjgDOBlxJ8XhHp4yL+MLUf7nK2TYRnc18H4KKJFzEgdUDnT/DGLyHsd7ZnfQNyR3a+zxZ4ly6l+sUXAXClpzP8L/fgHjCgy84nItIrhEKM/fXtbL3xJ6SPzGLkLEi1fuqih02oR6OTfsZae0VPxyAiIiIiIonnSnB/xwDFwNf3JSsArLXLgetwkhmzEnxOEekH6j7ajfU6d7Pm5yyh1FNJqjuVyw+9vPOd71gCK55yttPy4Pjvd77PA0g76iiG3n037oEDKbrtl6SMH9+l5xMR6RWSkjChEFhLyOsMpk1tsJyAK9R1awaJiIiIiIhI/5DoERaFwEvW2kAzx96Nfi9I8DlFpI+zYessth31ZO6rAHx+wufJT8vvZOcW5t0c3z/xRkgb0Lk+W2GMIfvMM8g4/nhcGeldei4Rkd4knJGOKxAgXO9MBZVs/bFj7nCin5MRiTPGGGDfLw3lmoJWRERERKRvSvRfjslAZXMHrLXVDeqIiMR4V5QQrnRuai3NXMOW1J14XB6unHJl5ztf+xJsfc/ZzhsL0xLQZxu5MzNw7p+IiBwcwukZzve6ANaCi3jCIkkJC+kCxphTjDGvALXAnuhXjTHmZWPMKT0bnYiIiIiItJf+chSRHmWtpWZBcWz/ibxXALhg/AUUpHdyQFY4CK81WFz7tF9CUtfkTCM+H7Xz53dJ3yIifUU4w0lYELFEggZjIgSji1ckhd09GJn0R8aYnwPzgNOBNJzpZ010+wxgnjHmpp6LUERERERE2ivRU0IBjDPGXNaR49bah7ogHhHpxfwbKwnudJa82ZhWzPL0dSSZJL465aud7/yjB6Bsg7M94liYeE7n+2xB6V/vpey++8g67TQKb74JT4FmvxORg084PT4NXtjvwp0cJmACeGwSnnBX/NopBytjzKnALUAAuA/4J7AxengM8DXgGuBWY8z71to3eyJOERERERFpn674y/G46Fdz7AGOW0AJC5GDTM2C+NoV2ydX4/F6OG/seQzJHNK5jn1V8PZv4vun/wq6aHom35o1lP3rXwDUvP02g677LihhISIHoXCDdXtCfhfJWWGCriBEwBNRwkIS6rs4fz981lr76n7HlgPXGWNeBF4GrgOUsBARERER6QMS/ZfjNpw/HEREWhXYVYd/XQUA7twULvncNZzu/1xiOn/nLvCWO9tTPg/DpiWm3/3YcJhdN90MIWfKk4Ff/zop48Z1yblERHq7fWtYgDPCAnASFkByxIO1Vmv7SKLMBN5vJlkRY62dZ4x5Hzim+8ISEREREZHOSGjCwlo7KpH9iUj/Vttg7Yqs44di3Kbz61YAVG6DD+91tt0pcMrPD1y/E8offhjfypUAJI8dS/41V3fZuUREervYGhbEExahaMIiJeIhFAnhcXt6JDbpdwYAW9tQbyswo2tDERERERGRRNGi2yLSI4Il9dQv2wuAKz2J9KOLEtf5G7+EsN/ZnvUNyB2ZuL4bCBTvoOSPf3J2jGHwbbfhSu6aRb1FRPqChlNChQPOr5mDo79tpthk3GjhbUmYUmBiG+pNjNYVEREREZE+QAkLEekR1a9vi00gt27CXnzGn5iONy+AFU8522l5cPz3E9Pvfqy17L7lFqzXC0DuxV8i/aipXXIuEZG+wjtqFAV33cXIB+4jZ5Tz+ZhCIF4hrJlDJWHeA6YaY77cUgVjzCXAUcC73RaViIiIiIh0ihIWItLtArvq8H5SAkB1Uh0/8t7GWc+eRZW/qnMdh/ww9/r4/ik3Q9qAzvXZguq5c6l717n/kVRYyKDvd01iRESkLwlnZ5N+0omkzzqepDSnzOCNHbeBcM8EJv3R73EefXjIGPOkMeYcY8yh0a9zjTFPA/8GwsD/9WikIiIiIiLSZoledFtEpFXVr8WnnH4872V8Lj/HDDqWnJScznX87h+gbIOzPWwGHHVF5/prQbi8gj2/vj22X/SLn+POzOySc4mI9EnGQEoW+KowkfpYsQ1GejAo6U+stYuNMd8E/gJ8HrhwvyoGCAHfttYu7u74RERERESkYzTCQkS6VaC4Bt+nZQBUeKp5MfcdAL5++Nc713HpenjnTmfblQTn3Q2urvmIs5EwaUcdBUDWmWeSdfLJXXIeEZE+LZqErqAuVlRStbenopF+yFr7D5wpn/4FbAL80a9NwD+Bo6J1RERERESkj9AICxHpVlXz4qMrHsl/kYAryOyhs5k8cHLHO7XWmQoqHJ0n/ZhrobAT/bUiaeBAhv3lHmpenUf6tKO67DwiIn2Rb/lyQjU12G0pZOdAscvPuOix3ZU7GcyIHo1P+hdr7Urgqp6OQ0REREREEkMJCxHpNv4tVfjXVQCw11POqwPex2VcXD/t+lZatuKTx2GLM1KDASPghBs6GWnrjDFkn3lGl59HRKSvKf3pzwjt2IE7zUX2Z8GY+BoWQX/gAC1F2s4YMwfYba1d10q98cBga+2C7olMREREREQ6Q1NCiUi3sNZS9Wp8dMV/Bs4lZMKcP+58xueO73jH9eUw72fx/XPuguT0TkR6AKFQ1/QrItKPuAYMACDsjWAjYKw/dizo97fQSqTd3gba8oTCj4G3ujYUERERERFJFCUsRKRb+DdUEthcBcCO5L28kbOIVHcq3z7y253r+LWbod5ZE4NDz4fxp3Wuvxb4PlrC6N/9nsyVK7ukfxGR/sIdTVgAhIMuXCaepAj5gz0QkfRjpqcDEBERERGRxFLCQkS6nLWW6gZrVzw8cC4RE+GyyZdRkF7Q8Y63vAcf/8fZTsmGM3/byUibF66upuTmm/FUVTHk4f9Q9+abXXIeEZH+wNUwYeE3uIgnLMIBjVSTbpcL+Ho6CBERERERaRutYSEiXc63ppzA9hoAqnN8LM77lDxPHl+d8tWOdxryw9zvxfdP+TlkD+5coC3Y/cvbCO/eDUD9mNGkn3BCl5xHRKQ/aDTCwu/G3eBesRIW0hnGmP1XbM9spmyfJGAycDqwsUsDExERERGRhFHCQkS6lI00Hl0x+rypzB0zly3VW8jwZHS84/f+BKXRdTaHToPpnUh+HEDVC3OpnjsXgHBqKru/eBGHut1dci4Rkf7AlTsgth32u0hqMMIiooSFdM4WwDbYvzD6dSAG+E9XBSQiIiIiIomlhIWIdCnvqlKCu+oA8AzNJHVyPmnGMCh9UMc7LdsIC37vbBs3nHs3uBKfRAju2MHuW2+N7e/93OcINbgRJyIiTTUeYeEiqcEICxuM9EBE0o9sI56wGAHUA6Ut1A0AxcAzwL1dH5qIiIiIiCSCEhYi0mVsxFL9Wnx0Rc7pIzGmk+tjWgsvfh/C0Sd2Z30TBh/euT6bO004zI4bbiBSWwtAxtlnUXPkEQk/j4hIf9NwDYtQwIWnwQgLJSykM6y1o/ZtG2MiwFPW2q4ZYikiIiIiIj1Ci26LSJep/6SE0F4vAKX5NQRGJSBHuuJp2PS2s50zHE78Sef7bEbZ/f/E+9ESADxDhpB/441dch4Rkf5m/xEWadYb288kvQcikn7qSuCfPR2EiIiIiIgklhIWItIlbDjSaHTF7zLu59znzqXKX9XxTuvL4dUGCYqzfw8pmZ2IsnneFSsp+fOfnR2XiyG/uwNXVlbCzyMi0h+5BgwAY3BnZ2KMZWioPnZsyoDJPReY9CvW2n9ba9/r6ThERERERCSxNCWUiHSJuiV7CJc785Z/nL6GFRnrOWvwWeSk5HS809dvgboSZ3vSeXDIWZ0PtBnh8jJc6elEqqvJv/pq0qdPx+v1tt5QRETwjB7NxJUrMGXr4K+zCEbiCV8b0JRQkljGmCTg88BJwNBo8Q7gLeBpa61WehcRERER6UOUsBCRhLPBCDVvbIvtPzToBTwuD9896rsd73Tbh7D03852ciaceUcno2xZ5gknMOZ//6Xs/n8y6Npvd9l5RET6I+NyYdxuSMkGwGUarmER7qmwpB8yxhwJPA2MBvZfJOsq4DZjzBestcu6OTQREREREekgJSxEJOHqFu0iXBUAYGHmCtakb+ayiZcxLGtYxzoMBeCF78X3T74Zcoa2WD0RPEVFFN30sy49h4hIv5bqJCwMvliRFt2WRDHGDAHmAQOBPcDjwMbo4THAl4CxwKvGmCOttbt6JFAREREREWkXrWEhIgkVCYSpfmt7bP/hQS+QlZzFNYdf0/FOP7gHSlY724OPhBlXdy7IZkT8/tYriYhI2yVngnFhiH++birdeIAGIu1yA06y4n5gjLX2emvtPdGv7+MkLe4HBgE/7sE4RURERESkHZSwiDLGbDHG2Ba+3m5nX5cYYxYZY+qMMRXGmLnGmKO6KHSRXqXug11EaoMAvJO1lI2pxXz98K93fO2K8s0wPzr9k3HBeX8ElztB0TqstRR/5zvs+NGPCdfUJLRvEZGDUfl/HmHnT3/G9ncGYiMhwjgjKwI+JYclYc4CtgHftNY2WWjKWusDvhWtc043xyYiIiIiIh2kKaEaqwLubqZ8S1s7MMb8DPgVsBX4G5CFMyT9fWPMKdba9zofpkjvFK4NxEZXRIjwn0FzGZo5lIsnXtyxDq2FF38Aoeh0IjO/AUOOTEywDVQ88ih1C94BILhtGyMffwxj9p8KW0RE2qru3XepffttIIlI0EXABEizqXjCiU04y0FtOPCctbbFhVGstSFjzAfA+d0WlYiIiIiIdIoSFo1VWmtv6WhjY8x44BZgHTDDWlsVLf8r8CHwD2PMFGutJnCWfql63lasLwTA6zkL2Zaymzum3kGyO7ljHa56Fja+4WxnD4WTfpqgSOP8Gzaw9/e/j+0PvPbbSlaIiHSSe8CA2HbY7yKYHiAtnIonol89JWH8QHYb6mVF64qIiIiISB+gKaES60qcJNCv9yUrAKy1y4DHgEnA8T0TmkjXChTXULd4NwAhT4Snhr7OofmHcuboMzvWobcSXr4xvn/W7yAlq/OBNhDxetnxwx9ho+tX5H7lK2TOnp3Qc4iIHIzcubmx7bDfRdA4n7PJEU9PhST9z6fAScaY4S1VMMaMAE4CVnVbVCIiIiIi0il6zK2xFGPMFcAQoBpYbK1d2I72J0a/z2vm2KvAFcAJwIK2dmiMGdZKlaJ9G36/H6+3yRS+0gv5fL5mt/sqay3Vz68H6+xnnzSCB456iAp/Bf4Ozlfumfdzkur2AhAefyaBUadAAt/f1lpKf3EL/jVrnPONGUPWt7/V4s9Qb7lmwXCEjSV1RGzb2xzMA0YC/gDFdc72J1vLSE7p4Ggf6Va6bn3PvmuWmeR8RkYyM2PHQgEXQRMAnIRFfX29RrL1En5/nx548BDwV+B1Y8z11tqXGh40xpwL3AmkRuuKiIiIiEgfoIRFY0XAAw0LjDGLgYuttRvb0H48UGut3d3MsfUN6rTH9rZWXLhwIRs3tiVM6U0WLGhz/qrXyitJZnSxc3PKmxZmadVy7Hzn2DrWtbu/3LoNzF7n3FsIuVJ4I/kMfPOaywN2XM6HCyl84QUAIh4P6z/7WVa18Vr01DXbUAUPbXBTFdCNvvaJ/le3/JOeDUPaSdet73Gu2aeV73Dmzh2xJyrCfhehaMIiJZLMS6++hMelkRa9QWlpaU+H0Bn/AC4ETgFeMMaUA5ujx0YDeYABXo/WFRERERGRPkBTQsU9gPMHTyGQAUwFHgaOBt4wxrRlLpocnIW7m1PdoI5Iv+EKwbCt6bH97aPqsJ34ZDE2xBHbHsBEh2usHnwhvuT8zobZSOq2bRT873+x/T2f/zyBosKEniORIhZe2W6451MlK0Sk91tS6iKckRHbD/tdhKNTQrlxEYoEeyo06Ueii22fA/wOqAPygenRr/xo2R3AuVo/TkRERESk79AIiyhr7a37FS0DLotOWXApcDVwVzeHBdDivLxRRcBigJkzZzJ27Niuj0g6zefzxZ7SnzNnDqmpqT0cUcfVzduOL7gHgM2Fezj0s8eTk9LxvFzSwr/g8TkDiyKFhzHuy79jnCtxH1Xh8gp23vUHwuEwANmXfJlRP/xhq+166prtrfFzw3Of8mFxRaxs6vAcDinMPECrONuOqaP6o3A4xK5duwAYPHgwbrf+2+sLdN36nnA4xP+W7yYQMXhNKtPmnMDuhx52jvldRKIjLABmzZpJYd7gngpVGujrI3OttQHgRmPML3ASFUOjh3YAH1lr+/ScVyIiIiIiByPdAWjd33ESFsfResKiipZHUGQ3qNNm1triAx1vOAd0SkoKaWlp7eleeoHU1NQ+e92Ce+vxLXTWmQiYILdm3sO4j17nb6f+rWMdVmyFd/8vumNwfeaPpGUkdqHtcE6Y9MMPo+a1PaRNm8aQG2/EeNo3NUl3XbN31pdw/RPLKK11bvS5DFx/6gS+ddI43C6NtGgLr9fLvHk7ADj99Ml99mftYKPr1vd4vV4+WLebHfWwtyZASsGo2DEnYdHgvrGN6Jr2EikpKT0dQkJEExPvNXfMGDMA+JG19mfdGpSIiIiIiHSIEhat2ze5b8YBaznWA8cYY4qaWcdifIM6In2etZbKFzayb/Xnp/NfoySlgj9O/U5HO4SXfgih6KLXM66BodMSFG2cOzOToX/6ExUPP0zWmWe2O1nRHULhCH94fR1/fXtjbIREYXYKf/rSVGaOSez0WCIiiZKbYtlRbwhGLFXJ8akCQ34XuWFvbD+d9OaaiySUMSYb+AFwHZAFKGEhIiIiItIHKGHRupnR71vaUHc+cAxwOvDQfsfOaFBHpM/zfVqOf30lAHuTynky/1W+PPHLTM6f3LEOP/0vrI8urJ01GE6+KTGBNsMYQ95ll3VZ/52xs9LLdY9/zOIt8SmgTjxkEHd+4QjyM/vHk7Ai0j/lJse3d0WSGXTKKbhtJalVb5AVrqMuemyAK7vZ9iJtYYyZBpyHs+7cHuB/1tqlDY6nAt8Hfogz8tkAn/ZAqCIiIiIi0gFadBswxkw0xjR53M8YMxFnsT6ARxuU50Tb7D8B8wNACPiZMSanQf0jgYuB1cC7CQ5fpNvZYITKFzfF9v9R+Aw5mblcO/XajnXoq4KXb4jvn3UHpCbuhlZg2zaCu/cf9NT7vLF6D2f/6Z1YsiLJZfjJWRP51+VHK1khIr1ebkp80ZydNQGG/+Uehlx/OXnj6zHEp4SyQa1/LB1jjPk/YBFwM3BN9PtiY8wt0eNH4yQnbgMGANuBrwKH90C4IiIiIiLSARph4fgS8H1jzAJgK1AHTADOBjzAb6y1CxrU/xxOcuLfwBX7Cq2166J/MP0K+MQY8wzOEPQvRatcba3VX+nS59UsKCZc7gNgWfpa3s36mLtn3k2Gpy0zpzXjzV9BbTShMOFMmPSZBEUKkfp6ir99LaGyMobedScZs2YlrO9ECYQi/O6VNdz/7uZY2dABafzp4qlMG5nbg5GJiLRdboO86o6K6BRQKU7yuXHCItydYUk/YYw5B2fkBEA1zjSr2cAY4GZjzFrg3mhZOc7v43+NLswtIiIiIiJ9hBIWjreAScBUYDaQjrN2xUs4f+jMa2tH1tpfG2O2AN8DvgkEgHeAmxsOVxfpq0KVPmre3g5AmDB/K3ySk0eczCkjTulYh8VLYNE/nG1POpz9ezCJWVDaWsuun/8C/3pn6Zg9t/+G0c89i3G7E9J/IlR5g3ztwcV8tDU+BdTphxby+88fQU5671tfQ0SkJY1GWFRGExbR0XKmwaLbIV+wW+OSfuPq6Pc/Az+OLrSNMWYS8AzOg0RJOL/XX2StLW22FxERERER6dWUsACstfNpx9oS1toHgQcPcPwR4JFOBybSC1W9tDk2nccLuQsoyazi/pk/6Vhn4RDMvQ6I3uQ68ScwYERiAgUq/vMI1XPnAuDKyGDo3X/oVcmKyvoAl/1rEcuLqwBIdrv46dkTufzYUZgEJW1ERLpLwzUsdlQ6o/BIycZGYEWyZWTIKVqyYzEnTDmn+wOUvm4azppy1zccsWytXW2M+R7wCs7Ii/OttTU9EqGIiIiIiHSaEhYi0ma+jZV4lzsPLFa5a3hk0Fy+M/W7FGUUdazDhffC7hXOduFhMOubCYoU6pd+zJ477ojtD779dlLGjElY/51VURfgkvsX8umuagDyM5J54MqjOXzYgJ4NTESkg7KTwWUsEWvYWell7513UvHEk0Sqh+A5Pz4rTzgQ6sEopQ8bBLzYwvSqH0a/v6NkhYiIiIhI36aEhYi0iQ1bKv+3MbZfNstyWMqRXDzx4o51uH0xvPHL6I6B8+4Gd2KmQAqVlLDje9+DkHNTLO9rXyX7jNMT0ncilNX6ueT+hazZ7dxTGZiZwmNXz2R8YVYPRyYi0nEuAwOSodwPO6u82LQIkWonKZsUDDirggHhgNawkA5JBqqaO2CtrY6OTCzp1ohERERERCThlLAQkTap+3AnoT31AHiGZjL7nOOZbc7u2NRFNXvgyUshHH3idta3YNj0hMQZCQQovv56Qnv3ApA+YwYF11+fkL4ToaTGzyX3f8i6PbUAFGSl8OjVsxhXkNnDkYmIdF5uNGFRWR8kUpATK08K+GMJC6uEhYiIiIiIiLRACQsRaVW4NkDVa9ti+wM+Mxbj6uAaC6EAPHkZ1Oxy9kceB6fdmoAowUYi7LrxJ3g/WgJAUmEhQ++6E5PUOz7q9lb7uPgfH7KxpA6AwTmpPHr1LEYPzOjhyEREEiMvxbKxxvn/oTo5/tnmDgQguhsJKmEhHTbOGHNZR45bax/qophERERERCSBesddPBHp1ape2YL1OdMrpR9VQMrI7I539upPYHt0qunsofCFBxM2FZR36VKqX3oJAJOWxrB7/kzSwIEJ6buzdlV5+fI/FrK51ElWDB2QxmNXz2JEfnoPRyYikji5KfHt8qR0BkS33b5g/ECwuSUIRNrkuOhXc+wBjlugxxIWxpgtwMgWDs+31p64X/0U4AbgUmA4UA7MBW6y1u7tukhFRERERHqeEhYickC+dRXUf7QHgHqXl4fzn+SHkRvxuDqQZFj6MCy+39l2p8BFD0NmQcJiTZ8+naF3/4GdP/kpQ++8k7TDDktY352xo9LLxfd9yLZyZ0qt4XlpPHrVLIbnKVkhIv1LboqNbe91pcYTFv74otsmaBHpgG04iYe+qgq4u5nyLQ13jDEu4L/AGTiLiT8DjAeuAk4xxsyy1mqtDhERERHpt5SwEJEWRXwhKp5ZF9v/V8Hz+F0pHUtWFC+BF78f3z/3Lhg6LQFRNpZ95pmkz5hBUl5ewvvuiO3l9Vz8jw8prvACMDI/nceunsWQAWk9HJmISOLlJse3d9oUJkS3Xb54woIgIu1mrR3V0zF0UqW19pY21LscJ1nxGHCJtdYCGGO+AdwL/Ar4elcFKSIiIiLS01w9HYCI9F6VczcRrnJuMi3NWM3bg5Zy44wb299R7V544ivxRbaPvhqmfiUhMUa83iZlvSVZsbWsjov+/kEsWTFmYAZPXHOMkhUi0m81HGGxLdQge+ENxTZdWsJC5ECujn7/yb5kRdTfgU3AJcYY/SIhIiIiIv2WRliISLO8a8obTQX1x8GP8KOjf0RhRmH7OgoH4cnLoWansz/iGDjj9oTEGCjewdavfIWB3/wmuRd9MSF9Jsqmklq+/I+F7K72ATCuIJNHr5pJQXZqD0cmItJ1Gq5hsdlvwOWCSAQajLBwhUwPRCbS41KMMVcAQ4BqYLG1dmHDCsaYVGAmsNZau7XhMWutNca8hjO6YjrwTltPbIwZ1kqVon0bXq8XbzMPg0jfpmsq++i9IA3p/SD76L0gDbXn/dBV7x0lLESkiUh9kIpn18f27yt4hkPHHM4F4y9of2ev/gy2ve9sZw2GL/wbkpIP3KYNwlVVbP/61wnt3s3uX/wCDOR+sXckLVbtrOKKBxZTUuMH4JDCLP5z1UwGZaW00lJEpG9LcUNOWhJV3hDFVX7cOTmEKyqwDUZYjM8Y24MRivSYIuCBhgXGmMXAxdbajdGisTgj4NfTvH3l42lHwgLY3taKCxYsYODAge3oWn9O9gXz5s3rpjPp/dDb6b0gDen9IPt033sB9H7o/drzfigtLe2SGPQuEZEmKuduIlLtPA37UcYqFhet4dljnsWYdj4Vu+xRWPR3Z9udDBf9B7LaOUKjGZFAgOJrv0Ngo/P3ffKoUWSddlqn+02EDzaWcc1DH1Hjd27OTSzK4pGrZpKfqWSFiBwchuSkUuWtZXeVj4Jf/AL3hpdxr32U8ujxVKvPQznoPICTYFgJ1AITgO8DlwJvGGMOs9bWADnR+lUt9FMd/Z7TwnERERERkT5PCQsRacT7aRn1S/cCUOuq54+DH+GWY39Jflp++zra+TG88L34/jl3wrDpnY7PRiLs+slPqV+8GAB3Xh7D/3EfSbm5ne67s15ZuYvvPr6MQCgCwFEjBvCvK45mQHrnR5SIiPQVg3NSWb27llDE4jvmBIoG7oDSByj3BYBkbDDS0yGKdCtr7a37FS0DLos+CHIpzroVd3VhCMNbOV4ELAaYM2cOw4a1NoNUAx+82fGopNucfvrp3XMivR96Pb0XpCG9H2SfbnsvgN4PfUB73g/FxcVdEoMSFiISE64LUvFcfBaCvxc+zQmHnsJJI05qX0e1JfD4VyDsTInE9K/CUZclJMaSu/9I9YsvAmBSUxl+719JHt7a3+Fd79GF27jp+RVEostjnjyxgL98+SjSkt0HbBf0h/l43laK11ZgI5aUdA/nXntEozqL5m5m+6dlrcYw/NB8Zpw7ulHZC3/+hIA32Grb6eeMZuTkeFKqYncdbz60utV2AOd8+whSMzyx/TUf7mLVgh2tthtQkM4pVxzaqGz+o2spLa5pte0hM4uYckL8hko4GOH5PyxtUi8SiVBZmQ7A3NUrcLlczPnSIQwakRWrs3N9BR88t7FJ2/253C4+94OjGpUtnbeVzctKWm07eNwAjr1gXKOyV+5bQV2lv9W2R542grFTC2L7tRU+Xv3HylbbAZxx9RQyc+Prpmxcupdlr29rtV3GgBTOvOawRmXvP7OBXRsrW2075sgCpp4+olHZc3cuJRJu/Sb1MZ8bx5DxA2L7gSoXc//oXLfWnP/9o3AnxeuteLuYdYt2t9pu0PAs5lx8SKOy1x/8lKq99a22nTJnKIfMGhzb99UFefEvn7TaDuCUyw9lQGF6bH/rqjI+enFzq+1662fEvp81V3KE4WPjv17uqPRSlOo8DG7wY5WwEGno7zgJi+NwEhb7Rla0NIIiO/q9pREYzbLWHvAvyYYjaNPS0khL05re/Y2uqeyj94I0pPeD7KP3gjTUnvdDV713lLAQkZjKFzYSqXFuXK3J28aaocU8ffTd7eskHISnroDq6N/Gw2fCmXckJL6KJ56k7L77nB1jGHrn/5F2xBEHbtTFrLX8+c0N3PXauljZhUcN47cXHobHfeCbrJuXl/LO4+uoKffFytKyPE3qVe2tZ/em6ibl+8se1PQ/ir1bq/HVtn4zcv86oUCkTecEsPuyNFF1lf42tQ01c9OyfFddm9oOGd94RI3FHqCdkzTaW1kLQMAXanTUVxdq0zkb3gzfp6bU16a2qZlNR9mUbKuhutTXTO3G6qsCjfZDwbZfm3Co8b9xfXWgw++lij1tex8OHJ7VpGz35ioiIdtM7cb89Y3fh5GQoXRLbavtANiv+9qKtl2b5q5r2Y5aSre3ft5Rhzee5z0SPtD7sLGgP9xo31fTtmvTuz8j3ICbQZ54Im5npZdp6c6915AJ4Lbg9baeDBI5SOyb9Dcj+n0TEMFZo6I5+8pbWuNCRERERKTPU8JCRADwrizFG31S3KQmMeeaC5icdDIZnoxWWu7ntZ/D1ned7cwi+OJDCVlku3b+fHb/8pex/cKf/YysU07pdL+dEY5Ybn1hFQ99sDVW9vU5Y7jxrIkHXO+jptzHO0+sY/MnXbM4kYhIT0qqCTnLBgMlW3dS795JaHsqFUVBBobB5/P2bIAivcfM6PctANZarzFmETDLGDPSWhv7BcM4v1icBtQBH3V3oCIiIiIi3cVY2/oTj9J7GWOGAdsB1q1bx/jxLT2QJb2J1+tl3rx5gDM3XE8PvwvXBtjzh6VE6pwnaHMvOoSMBlPQtNknT8Bz1zjbLg9c+RIMn9Hp+CKBABvPOJPQrl0A5F15JYU3/LjT/bbH/tfM5Unm+09+wovLd8Xq/OzsSVw9Z0yLfYTDEZa/UcyiuZsIBeJPvg+bmMucL01gQIEzPYxxNU527D+C4UA63NY0nhLCWtvkifVOtW0hf7N/Yqc9/yc1OWcznOv2GgCnn35a7Geto6+1X16blpr24Gvd9/NmLZx+2mlt+4zc/7Xq2iS2bSvxer1e/nPrewSr3WDgrmwvYQO3B5cz9cWHAAh+5ibyXCMImCCjbj8Rl2l9qi/pWuvXr2fChAn7doe3NnWQtJ8xZiKwzVpb30z5WzjrR5xgrV0QLb8S+BfwGHCJjf4HZ4z5BnAvcJ+19usJjjH298T27dvbtYbFqBtfTGQo0kW2/PacbjmP3g+9n94L0pDeD7JPd70XQO+HvqA974fi4mKGx6dpT9jfExphISJU/m9jLFmRemg+6UcOan8nO5fBC9+N75/9u4QkKwBcyckM/9vf2HbllaTPmEHBj36YkH47qs4f4rpHPuG9Dc6c8W6X4XcXHs6F0w78B/7Lf1vB1hXxeebTspM5/vPjGH904QFHZOx/g7E9OtrWGNNikqHL2yawnTGGfYec7ab1OhXvwXRteuS1Om070l7Xpmvb7h+vcRmSMiJOwsLCgIihzG3ZTUqsjo34wQXJ1oMv6CM9Ob2ZnkX6nS8B3zfGLAC24oyQmACcDXiA3+xLVkT9G7gIuBgYbYyZD4wDLgA2Azd1Y+wiIiIiIt1OCQuRg1z98hK8y52piWrd9ZTNzmBge28a15XBE1+BUHQ+/qMudxbaTqDUQyYw6onH8RQWYtqwAG9XqQnC5f/+mFW7nIWhUz0u7r1kGidNbH1EyqHHDXESFsZZrHfWZ8eQkt50PnoRkb7Ikxlh32RPBdZFGWF2ROIJC8KB2G+ePm+9EhZysHgLmARMBWYD6ThrV7wE/NVaO69hZWttxBjzWeBGnAW5rwfKgX8CN1lrS7oxdhERERGRbqeEhchBLFwToOL5+LqN9xQ+xizvqRzBUe3oJARPXwFV2539YUfD2b/vdGyB4mI8Q4Y0Sk4kx4eZ9YgyH/x1tZtSn5OsyEnz8K8rjmbayNwmdW3EEvSHSU6Lf8yOPmIgU08fwdijCigcld1tcYuIdIfUQSFcHssxJx7FMy9+ClVetoTiSVkTCrBvwIXP54WcHgpUpBtZa+cD89vZxg/cGv0SERERETmoaPJgkYOUtZaK5zdg68MAvJu1FN8hSXx50pfb19Hrv4DN0ZkMMgvhiw9DUsqB27TCt2YNWy78PLtuuhkbDneqr0RZtKWCu1a4KfU5o08G56Ty9DeOaTZZUV8d4H9/Wsa8f65qtLaCMYZjLxinZIWI9EvJOREyRwYZPD6HQXnOuiM7bfz/A1coENvWwtsiIiIiIiLSHI2wEDlIeT8pwbfKWU+hyl3Dg8Pn8uDxD7dvEdTlT8EH9zjbriT44kOQPbhTcfnXr2fblV8lXFVF1bPPkjxqFAOvubpTfXaGtZZ/vruZ37y0hrB1khVjB6bz8FWzGDKg6ULAuzdV8cp9K6mr9AOwaVkJYzuygLmISB82NDcNNkN1ckaszBWMJywCPl9PhCUiIiIiIiK9nBIWIgehYEk95c82mAqq6HG+e/z1FGUUtb2TXcvhf9+J7591B4yY1am4/Js2s/XKrxKuqAAg7cgjyf1yO0d8JFB9IMSPn17O3OW7YmUTcyI88NVpDN4vWWGtZdWCHbzz5HoiYWdURXpOstaoEJGD0tDoZ2SdJxXrcmMiYVyBhgkLf0+FJiIiIiIiIr2YEhYiB5mIP0zpw59CIALAm9mLyDq8iLPHnN32TurL4YlLIBSd0mPqpTD9a52KK7B1K9uuuIJwqbMAeOqUKQz/x324MzNaadk1NpfW8Y2Hl7B2T02s7PShEc4aHmFAWuMkRDAQZv6ja1n74e5Y2eBxOZxx9RQycjo3PZaISF8SDhh2bagib3eA1Aj4XIZQVjaeqgpMg4RF0B84QC8iIiIiIiJysFLCQuQgYq2l4tn1hPc6iYYtKTt5bMxrPD7ribZ3Eg7B01dC5TZnf+g0OPv/wJgOxxUo3sHWK64ktHcvACmTJjHin/fjzsrqcJ+d8cbqPXzviWXU+EIAZKYk8dvzJxHe9nGTulUlXl7++wrKimtjZUecMpxjLhiL261lgkTk4FKzMZmX3/gUgEEZLra7InjTMvFUVeDyB2P1IsHesT6RiIiIiIiI9C5KWIgcRGrf34n3kxIA6l1efjP8n/zm5N+Rk5LT9k7euBU2ve1sZwxyFtn2pHY4puCuXWy7/HJCu5xpl1ImTGDEv/6JO6cdMSVIJGK5+431/OmN+HRZ4woy+ful0xiS6Wbetsb1t6wo5fUHPsVf7yQ2klLcnHzpRMZPL+zOsEVEeo2kjEhsOz9i2A7UpmaS7QK3ja9bMTn70B6ITkRERERERHo7JSxEDhL+LVVUvbg5tn/3kEe4cs41HFlwZNs7WfkMvP8nZ3vfIts5QzscU3DPXrZefgXBHTsASB47lhEP/Iuk3NwO99lRVfVBvvfEx7y1tiRWdvZhRfzu80eQmZKE1+ttVN9ay8oFO2LJigGF6Zz59SnkD8ns1rhFRHoTT4OERV7YBYT517nf5T+j5lL34U4qnY9MrEZYiIiIiIiISDOUsBA5CIRrApQ9ugYizmLQmXOGccPxv2Rk9si2d7J7Jfz32vj+mb+Fkcd2Ki7jMphkZz2I5JEjnWRFfn6n+uyI1buq+frDS9hWXg+Ay8ANZ07kmjljMC1MdWWM4dQrDuXJ2xczcFgmp1xxKClp+kgVkYNbUmY8YVFonGnxttRGMGk5GOJJcxuMNGkrIiIiIiIiortrIv2cDVvKH1tDpNpZ4DRlTA45Z4xigLsda07Ul8PjX4agc0OfIy+Bo6/qdGxJgwYx8qGH2PXzn1N00014Cgo63Wd7/XfZDm58ZgXe6NO+ueke7vnyURw3bmCTujYMxh3fT83wcOGPp5GendxiYkNE5GDiSrYkp7oJ+MLkRZyExe5qH5GUbIzxx+rZgBIWIiIiIiIi0pRWhBXp56pe3YJ/UxUAruxk8i6eiGlPssJXBY9dDJVbnf0hU+Gcuzq8yLaNNL5JlZSXx/B77sFTVNSh/joqGI7wyxc+5brHl8WSFYcNzeGF7xzfJFlhI5aVb+9k9/wMwr7GrzsjJ0XJChGRKGMgpzANgPQgJFkIRyzVNo0SdyhWb/3etT0VooiIiIiIiPRiSliI9GPelaXULigGIESY92etx52V3PYOakvgwXNh+4fOfvpAuOg/HV5ku/qVV9n65UsI19Z2qH2ilNT4ueT+hfzrvfj0JF+YNoynvnEMw3LTG9WtrfDzvz8tY9F/txL2uyhfkYqNTq0lIiJN5RSkxbbzwoaR1bvY+/i71H8aH6JWUr23J0ITERERERGRXk4JC5F+KlhST+mTa2L7/yh8Bjsspe0dVO2AB86C3cud/fR8uPRZyBnWoXgqHn+cHddfj3fZMoqv/Q6RQKBD/XTW0m0VnPvnd1i0uRwAj9vwq/On8LvPH06qx92o7sale3n8VwspXlMRK/NkRbBWCQsRkZY0SlhEXAzyVhJ+YzGu7Q0qhfQ5KiIiIiIiIk1pDQuRfigSCLP3oZWYgHND6K3sxXhm5POFCV9oWwdlG+Gh86Fqm7OfNQQu+y8MmtDuWKy1lN7zF0r/8pdYmWfIEIyre/Ol1loeXbSNW/63imDY+XcpzE7h3q9M46gRuY3qBnwh3nlyPWve3xUrS89JJv2QSlLzw7jcyvWKiLQkpyA+Ci8vYihNznB2wg0S1UElLERERERERKQpJSwAY8xQ4AvA2cBEoAgoB94DfmetXdjGfk4E3jpAlSuttQ92JlaR1lhrKX96LbbEWdx0a/JO3jpsOX+bdV/bOtizyklW1EWn68gbA5c+D7kj2x9LOMzu226j8vEnYmX5V1/FoO9/v1vXffAFw/z8vyt58qPiWNmM0Xnc8+WpFGQ1nt5q96YqXnvgU6pLvLGysUcNYtYFI5n/3oF+vEVEBGBAYRoulyElN5lAXZCqaMLCNkhYuEIttRYREREREZGDmRIWju8ANwAbgXlACTAeOB843xjzZWvtEy03b2I+8HYz5cs6FaVIG9S9vxPf8jIA6l1e7hn3FH885a8ku9uwdkXxR/CfC8FX6ewXHOokK7IK2x1HxO9n5w9/RM1rr8XKCm68gfwrrmh3X52xo9LLNx5ewoodVbGyrx43mp+cPRHPfiMllr2+jfef3Rhbo8KT4mb2RROYeEwRPp+vW+MWEemrcgalcc2fT6CsLsAvb3+DtOC+ERb+WB2jhIWIiIiIiIg0QwkLxyLgRGvt/IaFxpjZwBvAvcaY5621/mZbN/W2tfaWBMco0ir/1moq5m7E4Ixe+OPQR7nhzJsoSC9ovfGm+fDYxRCsc/aHToNLnob0vHbHEa6pofjb11K/aJFTkJTEkN/cTs5557W7r854b0Mp33nsY8rrnKd6Uz0u7rjwcD575NBm62fmxhfULhydzWlfPZScQenN1hURkeYZl8HtdjEwMwWP2+C1KYRcbpIajLBwh7pvlJ2IiIiIiIj0HUpYANbaZ1sof8cY8xZwOnAY8FG3BibSDsGSevY8uByXdW4CPZ33GiecejZHFhzZeuM1L8FTV8Sffh01Gy5+DFKy2h1HuKqKrZdfgX+Ns+C3SU9n2B//SObs49vdV0dZa/n7gk387pU1RPMPjMhL5++XTmPS4OwW242bVsD2TweTkZvK9LNGaq0KEZFOcLkMg3PS2FZeT3VKJnm+2tgxd1ifryIiIiIiItKUEhatC0a/t2fygvHGmO8BaUAx8Ka1dkdHTm6MGdZKlaJ9G36/H6/Xe6C60ks0nF4oEVMNRWqDVP1zNS6vc3d+WfoaymfC10ec1+p7wr3qGTwvfhdjwwCEx51O4LP3QSQJOvB+sm437mHDYM0aXAMGUPjnP+GeMqXb3pu7q33c+uJa3l5XFiubPS6f319wKDlpnlgc1aU+NnxUwtQzhjVaT2PmhSMxxuAPNB5QlehrJt1D161v0nXre1q6ZkXZyWwrr6fSk06etwobCWNcbtwhl35n6QX8/rYOHhYREREREekeSlgcgDFmBHAqsAtY0Y6mX45+7RMyxvwZ+JG10bvCbbe9rRUXLlzIxo0b29m99LQFCxZ0qr0rBIesyia93vlxrk7z8czodzm34jPMmzfvgG1HlbzB4cUPYXASHdtzj+HjzC9h3+xcTOakEymoKKf8xBNZs3Mn7NzZqf7aImLh3d2Gudtc+CPxBMQZwyKcOXAPC9/ZA4CNQO0WD9XrU7ARw7bd60kf0r7J1Dt7zaRn6Lr1Tbpufc+CBQsIVLmo2ZTMtHIXfreb6uTo9HrhALjScIdcrf4fJV2vtLS0p0MQERERERFpRAmLFhhjPMDDQApwQxsTDSXAjcBcYAuQARwD/Ba4HrDAD7oiXjk4mQiMXZsVS1b4U8JsOdTL+ckXtNp23J65TN75ZGx/88CTWT7sMjDtnKYjFCK5pITA4MGxIpuUxJ4vfrF9/XTCzjp4YpObLbXxREWWx/KlsRGm5NpYWaDKRcXKVILV7lhZzZZk0gaHMJpOXUQkYWwEvLs9ZAKDki3Vyc7C2zYcwHjSyLBpxAexioiIiIiIiDiUsGiGMcYFPAjMAf5hrX24Le2stauAVQ2K6oD/GmMWAsuB7xpj7rDW7m1HOMNbOV4ELAaYOXMmY8eObUfX0lN8Pl/sqeE5c+aQmpra7j6stVQ9vYFwdRUAJi2Jwq9OYcjAVvqylqQFt+NpkKwIzryWohN+RlE779qHy8rY+6MfEVi/gSGP/AfPiBHtfh2d4QuG+duCLfxz5TZCkXhi4gtHDeEHp44lJ80DQCgQ5uNXi1n54U5sJFrJwKGzi5h29gg8Ke5met/vXAm4ZtL9dN36Jl23vmf/a0bYzaMfOkt/5UUMq/NGcUrKOlzGmYIoL2kA406f2mPxikMjc0VEREREpLdRwmI/0WTFv3CmdPoP8I3O9mmt3W2M+S9wFTATeKEdbYsPdLzh3PspKSmkpaV1NEzpIampqe2+btZaKl7YQPhTJ1kRdIUpuHwyGcNzD9wwEoGXfggf/TNedsrP8cz+AZ52xu395BN2ffc6QnucqZbKfvJTRj3zdKP3ZFd6f0MpP31uBVvK6mNlYwZl8JvPHcbMMfmxsuI15bz1yFqqS+JzpecNyeCkSydSNDqnQ+fuyDWTnqfr1jfpuvU9+65ZWpYHb02QvLCLv42bw7cHryJpt5eQBYIRXddeICUlpadDEBERERERaUQJiwaiyYoHgMuAx4ArrI09j91Z+yYJzkhQf3IQq1mwnfr3dwMQJsz/jfg3P8i9mTHktdwoHITnvwUr4iMrOPv/YMbV7T5/5TPPsPuWW7FBZzqPpMJCim75RbckKyrqAtz+0mqeWhLP5Xnchm+eOI5vnTiWVI8zWiISjvD2I2tZ/f6uWD1XkuHos0cx9fSRuJPaOfWViIi0y4DCdLw1VWRZQ7KFynAa2TgjLGzQYq3ttiS3iIiIiIiI9A1KWETtl6x4Ari0AwtkH8jM6PctCexTDkJ1S/ZQ/fLW2P5fhjzJFed/izE5Y1puFPTB01fC2pecfeOG8++FIy5q17ltIMDu3/yGyscej5WlTZ/GsLvvJmngwHb11V7WWv73yU5++cKnlNUFYuXTR+bymwsOY3xhVqP6LreLYCD+Izx4XA4nfWUiuUXKGYqIdIfcwnR2bXBGAuaGDaWhVEZGExYAhCx4lLAQERERERGROCUsaDQN1GXAU8BXDpSsMMYMBAYCpdba0gbl06y1S5qpfx1wErCe6HoTIh3hW1dB2dNrceHc4Hlo0Auccf6FHF10dMuN/LXw+MWw2ZlbHHcyfOFBmHhOu84dKimh+Lrv4V26NFaWe8klFN7wY0xycntfSrtsL6/npudXMn9dSawsKyWJG86ayJdnjMDlav6G1+wvTmDP5mqOOn0Ek2cPxbRQT0REEm9AgwRxfsTFHn8ym5IjDIvmLMpqShmYV9BD0YmIiIiIiEhvpISF4+fA5UAtsA64qZkpCp631i6Lbl8L/AK4FbilQZ1njDFB4COgGGf6p1nAVKCSVhIhIgcSKK5hz0PLcVtnKqMXcucz6bxjOGXEKS03qi+HR74AO5yFT/FkwMWPwpgT23Vu77JlFH/3OkJ7nfXiTXIyRbfcwoALPteRl9JmoXCEB97bwl2vrcMbjP/onDm5iFs/O5nCbGch3rpKPx8+v5GisTlMnj00Vi89O5lLfjkLt1vTP4mIdLfcovTY9kivlynzl5I75TAY7JT5vPUttBQREREREZGDlRIWjlHR75nAz1qoswVY1ko/9wJnAHOAfCACbAXuBu5sbQFtkZaESr3svP9jkkLOjfd3sz4m7axhfG7CARIGNXvg4c/B3lXOfmoOXPIMDD/AaIwWRHx+QiXO6IakoiKG/fnPpB02pd39tMfKHVXc+OxyVu6ojpUVZady62cnc8bkIgBCgTDLXt/Okle3EvKH2bqqjHHTC0lJi3+0KVkhItIzGiYsMkkmo86HKxif0s/v8/VEWCIiIiIiItKLKWEBWGuvAK5oR/1baDyyYl/5HcAdCQpLBIBwTYDif3xEks8Z9bMifT17Totw3eFXtNyochs89Fko3+TsZxTApc9BUceSDBmzZpJ/9dV4P/6YoXf/gaT8/A710xb1gRB3v76ef767mXDEAmAMXDprJD864xCyUj1Ya9mwZC/vP7uB2vL4fOiRsKWsuJYh4wd0WXwiItI2WflpuJIMkZAl0zhTB9pwPGER8CthISIiIiIiIo0pYSHSi4Wr/JTcv4IkZ81SNqfsYOkJO/jp0Te13Kh0vZOsqN7h7OcMh8v+C/lj23zeug8Xkj7jaIwrPjph0HeuBWMwSV33sTF/XQk/e24FxRXeWNmEwkx+c8HhTBuZC8DerdW8++R6dm2sitUxLsOUOUOZce5oUjM9XRZfVwgFAmxftZzUzCwGjz8kVh70+fj41blt6mPyCaeQMSA3tl+6bQubPv6o1XZJySkcddZ5jco2LllIWfH2VtvmDxvB2GkzGpUtffl/hAKBFlrEjTnqaAYOHxnbr6usYNX8N1ptBzD1zHPxpKTG9neuW03x6lUt1g8Gg1SsX4c7NR04vdGx1e++TU1ZafMNGxg8/hCGH3pYbD8SDvPR3OfaFO/E4+aQPTA+R3/Frh2sX/RBq+2My8XR513QqGzLJ0vZu2VTq20HFA1mwszjGpV98trL+OvrWm078rAjKRwzLrbvq61l+RuvtNoO4PBTziQ1MzO2v2fTBrauWNZqu5T0DI447axGZRsXf0DFp07bpcF6PJ7mf64LRo9l1OFTG5Ut/t8zWGtbPe/4mceSWzQktl9dspc17y9otR3A9PM+h8vlju1vX7WcXRvWtdoua+AgJh13QqOylW+9Rn11VQst4oZNmsKQCRNj+73tM2Lfz5orOZXgnNmkpaXhchmmnzWKJTureGPNTj7ncpMSbjjCwt+kHxERERERETm4KWEh0kuFyryU/HMl4XLnCVST42HdCdXcMOsnNLPGiqN4CTz6RaiP3oTNH+ckK3KGtemckbo6dt9+O1XPPEvBjTeQf8UVsWOmhRuGiVBa6+dXcz/l+WU7Y2XJSS6+e/I4rpkzluQkF7UVfhb+byNrPtjdqO2IQ/M47vPjyRuSsX+3vZa3pppNSxezcclCtixbStDv4/iLL2+csPD7eOfRB9vU38jDpza6Gbl3y6Y2tU3LzmlyM3Lt+++w+t23W207afZJTRIWHzzzOL6a6hZaxGXm5TdKWNSWl7X5tU456bRGCYvtq1bw7uMPtdouJXdgk7Llr79C8eqVrbadcf4XmiQs2hrv4PGHNEpYlBVvb1Nbt8fTJGGxYfGHfPLaS622HTt9ZpOExeIXnqFqz+4WWsQlf/WbjRIW3trqNr/WCTOPa5Sw2LludZvaDigc3CRhsebd+ZR9sgSAsmWLW2x75BnnNElYvPv4w0TCoVbPmz9seKOEReWe3W1+rdPO+Sw0SFhs/mQpi//7dKvthh96WJOExdJXXqCkDYmo4y++vHHCohd/RryfkcqZ37gOgKPPGc3e5bvYtnEHdSmpZDRIWAT9rSc4RURERERE5OCihIVILxTcU0fJ/SuI1AQBcOelMuiqw/ha3qzmG0Qi8P4f4c1fQSR6o67oMPjKc5A5qE3n9K5cxc4f/pDAli0A7L3zLrJOOYXk4cM7+3JaZK3l6SXF/Pql1VTWB2Pls8bkcfvnDmPMoPjNzxVvFzdKVgwoTOe4z49j5JT8lhM4vUjl7l1sXLKQDR99yI41n2IjkZ4OSUSkS2xY+D7hq76NOzoib8gAJ8lYk5xOQYOERdgfbLa9iIiIiIiIHLyUsBDpZQI7atlx3xI8fmc6pqSCdAZdNQV3dkrzDap3wnNfh80NpjIZcQxc/DikDWj1fDYSofyBB9l7990QdG4emfR0im6+Gc+wto3M6IgPN5Xx+1fXsmRrRawsJ83Dz86exBemD2uShJh62ghWzC/G5TIcfc5oppw4tE8sqL389VdY+vL/KCve1uzxtKxsxkybwagjjmpUnpyewWd++LM2nSOnoLDR/rBDp7SprbuZ6b2OOvuzjJ91XDO1G8vOb5oIO+vb1xMOtf5ke+HocY32cwqL2vxak9PSG+2Pn3ksecNaTqoF/AGWLVuGKzm5ybHjLvoK3tqaVs+ZN3hoo31XkrvN8eYPG9Fov2jchDa1Nabpe/vwU89k5BFTm6ndWEZObpOyU7/2LYKB1qffGTRidOO+BuS2+bU2fIIfYPTUo/lMftORLftrOGJmn2nnXYA/Ow+AI488kuSUptcPIGdQYZOy866/EUvrU0IVjhnfaH/giJFtfq0Np4MCOHT2SY1GSLUkLSu7SdmJl16F39v6dF35Qxu/l3rbZ0TAH2D+U4/i3b2DcDhE+Y7tDBrpvJ+G5qYBUJ2cgQ3F34fBNkwhJyIiIiIiIgcXJSxEehHf5kp2/WsZnqBzM2xHZilHXHV6y8mK1XPhf9eCd99NfwPHXw8n/RTcrU/hFNyzl10/uZG69+Nz6qdOmcLQ//s9yaNGdfLVNG/ljip+9+paFqwraVT+mSOGcPO5h5Kd5GbR3M0kpyQx9fT4DbrUTA9nXj2FQSOzSMts/uZlb1RfVdkkWZE7eAhjp89i7PSZDJkwscnNT4Akj4fxRx/ToXNmDyxoNA1RexSNHU/R2PGtV2zGmKlHd6hdakZmh19r3pBh5A1pObHm9XrZUFbZ7LFhkzq2CL3L5e5wvJm5eR1uWzBqDAWjxnSo7f4JsbZKTk3rcLwDCosYUFjUobZF4yaQuWkLAGOmzSAtLa3Nbccd3cJItFakZ+d0+LUOHD6y0TRn7TFiyuEdatfbPiO8Xi8r164jfMgUzrvkMrJycmLHMq2LkRE3ZdnjIRRfoygcaD3BKSIiIiIiIgcXJSxEegnv2nL2PLQcT9i5eb0ybQPrTqliRlZ608qBenj1p7DkgXhZ1hC44D4YPbvVc1lrqXn1VXbfcivhykqn0Bjyr7qKQd+5FtPM0+idtbGklrvmrePFFbsalY8ryORn50ziuJF5LH+rmGWvbcNfHyI51c2k4waTmhFPvIyYnJ/wuBIhHAqx6ePFrHxzHqd87ZuNbgSOnT6T9556hMHjD2Hc9FmMnTaTvKFNR5CIiPR1qdHPvqQG/4cEvCEe+PG7fJFk/IOOxRa/HDsWUcJCRERERERE9qOEhUgvULtiD2WPrSEp4iQrPspYRfm5Hr5z5HVNb2zvWg7PfA1K18XLJn0GzvsjpOe16XxVz/+XXT/5SWw/qaCAIXf8loxjOva07oHsrPTyx9fX8/TSYsKR+DQtQwekcf1pEzh3chGr39nJw//4AF9tfD7zUCDCznWVjJnatjU4ekLF7p2sfHMeq+a/QV2lM8qlcMx4jv3Cl2N1Bo4YxTf+9lCT6XJERA4GyWlJpOckU18VAE8ONFjDYkz66AO0FBERERERkYOREhYiPaz24914X9iG2zpz1r+X9THuCwbz1UlfaFwxEoGF98Lrt8Rv+HjS4aw7YOql0I4n9rPPOpPSv/6V4PbtZJ56CoNvu42k3MTeUC+r9fOXtzbynw+3EgjHF5gemJnMtSeN48LDh7Bx4R4e+8WHzo2sKGPgkFlFTD97NDmD2j4NTHeJhEOse/8d1r77Fts/XdHk+NYVyxolLIwxSlaIyEHJWosxhtyidOqrArjdKdhx8cR1rntAzwUnIiIiIiIivZISFiI9aMAuN/4PinHhJCveyFlI4UVTOHPMmY0r1uyB578BG9+Mlw0+Ai78Jwxsfb2BUFkZSfnx6ZRcqakMvu02wlVVZJ1+WkKnJ6r2Bbn/nc38851N1AXCsfKs1CS+ccJYrjxuFGve3sHjN39IwBc/joHx0ws5+pxR5BZlJCyeRCkr3sbexe9Su3UTm/ZbvNjldjN22kwOO/n0Ni2KLCLSX1lrWfvefLZ9spS6qkou/uXvyC3MYMfaSgBq8nPZN9GhbfB/hIiIiIiIiAgoYSHSY/KLkxi1PTu2/1Leu0z+8myOG3Z844rrXoXnvwX1pfGyY78LJ98MSQdeayJcW0vJH+6m8plnGP3cs6SMjk+/kTFrZkJexz57qn38693NPLJwG7X++LzkqR4XVxw7mm+cMIYB6dF4LY2SFWOmDmLGuaPJH5qZ0JgSqbx4O9XrVzcqyx08lMNOPp1D55ysURQiIjijyla8/jJ7N28EoGrvHgYUxtdiqgznU+jMfoj1B5rrQkRERERERA5iSliIdDMbilD38rZGyYrnCt5i9iXncWRhg6fzg16YdzMs/ke8LLMIPvc3GHvSgc9hLTXzXmPPr39NaO9eAHbf+ktGPPCvhC/2vLGklvvmb+K5j3c0mvopyWX40tHDuGhEAaNGDyArPZ5cmTx7CB+/to0xRwzkyNNG9KoRFdWle1nz3gKGjJ/IsEOnxMpHTZ2OSUoCaxk/8zimnnY2QydN1uLZIiL7GX3UjFjCYuNHHzJwZDwRXx3Og2jCoramHKV6RUREREREpCElLES6UajKT/kjqwlsq4mVvT9hNWd+7mLG5zaY2mnPKnj6a1DS4In+Q86Gz9wDGfkcSHDHDnbf9itq3347VmbS0sicPdtZB8PtTshrWbqtgr/P38i8T/dg41OSk5zk4sIjh3Jebg7bPtjDglc/pfKkYcy+aEKsTkq6h8tvP5ak5MTE0lnemmrWffgea96bT/HqlQAccuycRgkLT0oKQ048i5TcPE4951zS0nrf+hoiIr3B6KOOZuEzjwGw4aOFjJt5euxYjT8bovnrdWUbGc6xPRGiiIiIiIiI9FJKWIh0k7r1ZZQ9thpXvXN3P2Is20bXc97Fl8ZvflsLi+5zRlaEo+skJKXCGbfD9K8ecGHtSH095f/+N6X3/QPr9cbKM06YQ9HNPyd52NBOvwZrLW+vLeHe+RtZtLm80bGs1CQuO2IYM0wKWxbu4eOK+BRWn76/i6PPHU1qhidW1tPJivrqKjYs/pANi95n64pPiIRDjY5vXLKQYMCPJzklVpZWUNTdYYqI9Dm5Q4YxoGgwlbt3Ubx6JUmeIG6Pi3AwgqsuC7Kceq5gz8YpIiIiIiIivY8SFiJdzEYse95YS+CNPbHFtV05yaweUUJ9ZoMFR2tL4L/fgvXz4mWFU5yFtQsmttx/OEzl089Qes89hEpKYuVJgwZR+LOfkXXG6Z2etigQivDiip38ff4m1uyuaXSsKCuFK8YWMbQ8zPbX9rIyYhsdLxiVzdTTRpCc1js+bnatX8s7jz5I8epVWBtpcjxvyDAmHX8iE48/sVGyQkRE2sYYw9jps1gy9zlsJMKWZR8xoDCTsuJaalPyYvVcYU2pJyIiIiIiIo31jjuIIv1UxBti08MLSd0UiSUrVg/YwqyrPkP9e7vjFde/Ds9/E+r2xstmfQtO+QV4Ug98EmOoeOyxeLLC7Sb3oosYdP33cGdldSr+NbureXJxMc8v20F5XePFUccMyuDqqSMIvL6L2rf3sq1RTDDqsIFMPW0Eg8fl9Og6D5FIGJcrPpojKSWF7Z+uaFQnM38ghxwzm0nHn0jBqDFal0JEpJPGHe0kLAA2LP6Q3KLPUFpcS5K/AhgMQFK4d0wLKCIiIiIiIr2HEhYiXcS/o5otDywmo9aZrDtChOcHz+f4i84hKcMpc0WCeN74OXx0X7xhxiA4/28w/tQ2nce4XBT84Adsv/pqsk47lUHXX0/KmDEdjruqPsj/PtnBU0uKWV5c1eT41BED+MYJYzltUiEAD7++K3YsPSeZSccO5tDjhpA9sGfWeLCRCHu3bGLDRwvZsOh9Djl2DrMuuCh2fODwkQwoGowxhvEzjmX8jGMpHDteSQoRkQQaMmEiadk5eKur2PLJUq78w3d4zuPlK/f+BDvodow7maSwfg0VERERERGRxvSXokgXKPlgM7UvbCEj4iQmqt21/G/Kh1x9/nfJT8vH6/WS5d3BtK33kuRtMDZh3Glw/l8hs6DZfv2bNrH3rrsYePXVpB1xRKw84/jjGP3f/5J6yIRm27UmErG8t7GUJz8q5tVVuwmEGk+VlG9cnJeTw6TMdL74zSMa3dyffPxQdm2sYvLsIYw8LB+329WhGDrDW1vD1k+WsnnZErZ8spT6qsrYMdei9xslLIwxXHzb/5GWla0khYhIF3G53IydNoOVb71G0O9j75bVDM7LoC45DcIBcCfj0QgLERERERER2Y8SFiIJZIMRNj65iNQVQTzRH691qVvZdpqPHx3zc9wuN3grSHrnj8xZ+xeSbHSaJXcKnH4bzLim2YW1g3v3UnrPX6h85hkIh4lUVjHi4YdiN9yNMR1KVmwrq+fpJdt5ZukOdlR6Gx1LicDJmZkcEfYQ3uODCh+l+Kgu9ZIzKD1Wb9pZI3vkxn/l7l2sfu9tNi9bwu7165pdjwLA7fEQ9PvwpMSn1krPzumuMEVEDlpjp89i5VuvAbBz7acMHT6HmpQ0bCiASYaUsKeHIxQREREREZHeRgkLkQQJlnrZ+MAHZJbFb8C8PnAhh3zxWK4YcSx4K+HDe+HDe/H441MtRfIn4PrCA1A0pWmfu3ZR/u+HqHjiCaw3nlAIbN1KaM8ePEVF7Y7TGwjz8spdPPVRMR9sKmt0zG3hMFcyc1LSSS0JYKvDhGmwMLiBHesqGyUsuitZYa1tdK69Wzby/pOPNKnnSUllxGFHMvrIaYydNoPMvPxuiU9ERBobefiRzP7yFYydPpP8ocOpWbGLXZ5MZ4QF4ImOQhQRERERERHZRwkLkU6yoQg1C4qpfnMbmSEnWeE3Af434X2+/MVrKHSnwfzfwQf3gK9BogI3mwedwpBL/05adl6jPn3r1lH+z39R9eKLEArFyl0ZGeRffRV5l12GKz2dtrLW8vH2Sp76aDsvfLKLWn+o0XEXcGlKNkWVYSL+CODHNjg+oDCdQ2YWMWFmIdn53bM2ha+uluLVq9i+8hO2r1rO9M9cyKGzT4odH3HYkRiXCxuJkD9sBKOOnMboI6cxdOJkkjx6aldEpKd5klOY8dnPx/bNhlpqB51JXXIOWUAy+qwWERERERGRxpSwEOkE/9ZqKp5dT2hPfaysLtPPu8es5zvHXkvS4n86iQpvRbyRcRM67Eu8GToKb8oghnjiCYCI38+O715H7fz5jc5jUlIYcNEXGfiNb5CU1zi5cSB7a3w8t9RZQHvD3tomx8cMzODz04dx4VHDWPTgGrbtKY8dS8vyMP7oQg6ZWcSgEVldPpIi6POxY80qtq1azraVy9m7eWOjaZ62rfikUcIiNSOT866/kcLR48ge1PyaHyIi0nvUbaohKW00AbezdkUSHgLBAMkejbQQERERERERhxIWIh0Q8YVY/+xC0peHMURv5Lsg8/hhDJmdxyHLlsOfjgJvPAGAccMRF8OcHxJMK8I7b16Tfl0pKdhgILbvzskh95JLyP3KJW1OVATDEd5cs5enPirmrbV7CUecsRLGwtCwi0PDSUxyJ3P8tyYzfXR+LBExYUYhOzdUMubIQUyYWcTwibm4umEB7VXz32D5G6+ye8NaIuFw85WMwV/fNOEyfsaxXRydiIgkSsHQDPasryTcYAifO2zQQAsRERERERHZRwkLkXba+/EWyp9fT6Y/FaLJCs/QTHI/M4zk4sfg3ruhvsHaEMYFh38J5vwQ8sc6ZV4vJhQic+VK7KmnNuo//6qr8G/ZQv4VVzLgwgtwZWS0GlNVfZB3NpQwf20Jb67ZS1mdk/RIsjAu5GJc0M3EcBKeWD4gTJHP1WjUxNhpBYw+chDJqYn/WLDWUrV3DzvXreaQY2bjToqfo6aslJ1rP23SZuCIUQyffBgjJh/BsElTSM3MTHhcIiLS9cp3FrPmvfmsWfAOkfAphGkwKi5oIbXnYhMREREREZHeRQkLkTYKVnpZ/dh75G1NITN6d8VrfCwYu5wrD0nG9eQfoa4k3sC44LAvwJwfw8BxseLAli1UPPUUo598iqSaGrwzZ5J+5pmx4+nHHMO4V1/FHGAdhkjEsnJnFfPXlvD2uhI+3lZBdCAFqRGYHHIzPuhmdMhFkm06lZPLZSjfXcfwQ+OjNpI87oQ95RoKBNizeSM7161m59rV7Fy3mvqqSgDyhgyjaOz4WN0RUw7nvScgd/BQRkw5nOGTD2f4oYeRnjMgMcGIiEiP2vzxR3zw9GMAJKVuJGzjCQsbjLTUTERERERERA5CSliItMJGLFveWkH4zRLywimx8qVZq7GTN3DlhudxvbGnQQsDUy6EE26AQRMAiNTVUf3Kq1Q++yzeJUuA+A9f1YP/Jr9BwsIYA80kK8pq/byzvpT560pYsK4kNopifxfXpTAw3HQqJ0+KmxGT8xlz5EBGTsknJT1xc3BYa1nx5qvs2biBPZs3ULptC+FQqNm6O9etbpSwKBo7gWvufZCsvIEJi0dERHqPsdNn8fZD9wMQDm4gbI+JHbPBFqYCFBERERERkYOSEhYiB1C1cQ9bnv2Y/LIMPDiLgpa7q1g4+l3Or3qeQct2NW4w+XNOoqJgEtZavB99ROUzz1L96qvY+vpGVa3LRe2hhzL4B99v9tzhiGXZ9krmryth/tq9LN9RhbWAhdyIYWrITV7YxRvpQcYVZHLChEGceMggwkvKWfX2DsBZOHv0EYMYfcRAhk3MdUZRdEI4FKR021aCPh/DDp0SKzfGsOj5p6jau6fZdikZGQwZP5EhEyYxfPLhjY653G4lK0RE+rEBhUUMHDGK0m1bsOHdhGyAffNAlVTsYUjhmJ4NUERERERERHoNJSxEmuHfWk3Va1sIbKgin/gaEu/kLWJUymNcXby+cYNJn4ETb4TCybGisvv+Qckf/tCk7+SxY8k471w+yswknJXFYVPiN/731vhYsK6Ut9fu5Z31pVR5g4AzzdOEkJuRIRejgi5ybHwExQ3Xz2DC6AGx/Z148HjcjDlyEIWjs3G5mk4J1RbemmpKtm6hdNtmSrZtYe+WTZRu20okHKJg1FguveOPjeoXjh7nJCyMIXfwUCdBcYiTpMgfOhzj6voFvEVEpHcad/QsSrdtASAUrgSKANhbWcwQlLAQERERERERhxIWIg34t1VT/fo2/OsqGpUXJ+9mc96jfK7qLVLrbfzAxHPhxBsJuYvAmEY/UFmnnRpLWLgyM8k++2wGXHgBqYcfjs/nIzxvHuEIfLS1kg+2bGX+uhJW7awGwG3hkKCbGSEPQ0MuBkVavtkf2eOFBgmLIeMHMGT8gBbrH0jxpytZ+N+nKN26mdqK8hbrlW7fSigYJKnB1FVHf+ZCpp55HgWjx5Cclt6h84uISP80bvosPnzmcQCCoRL2JSyCdbU9GJWIiIiIiIj0NkpYiADlG3exZe7HFOzKalRuUut5K+tpjq//L7Mq/fEDh5yNf+xl1C7fQc33bsf7ySfkf+PrFFx3XaxKypgx5F52KWmHHUbWqafiSkujtNbPovWlfLK1lNfXulhfZfB/uJRUC/UNchIWON3rwdPMgtnuJBeDx+UwfFIewyflMXBYZpteY9Dvo2LXTsp3bKd8ZzFlO4qZ8ZkLKRwTXxA8FAywZdmS5jswhrwhwygcM47C0eOIhEON1tooGjehTXGIiMjBp2D0WDLzB1JbVkooVBYrD9UrYSEiIiIiIiJxSljIQa180y42vbCEol05FBBPVrhdpWS7HiHdvslXapwFQa0FX8ZsaryHUvPwKgKbGq89Ufv6G7GEhbWW4govqz5zJat2VrPqiZWs2lnFnio/2RFDYdhQEE7mvLCLwSEX25IiPJcZYMrQbE6cUMAJhwyi+Jkt7FxfiXEZBg7LZOiEAQw/NI/B4wbgST7wWhTFn66kbMc2yncUU77T+aou2duk3sjDjmiUsBg0cjQAqRmZDBo5moEjRzFoxGgGjRhF/rAReFJTO/YPLSIiBzVjDOOmz2TZqy8StoFYeaRKCQsRERERERGJU8JCDkqlm3ay+YWlDN6VQxE5sfKSpFLG8CjZ7jcxJgSArzKZir3jqd1qCZVtBDY27XD0GHZMPprH/ruClXvq+HRXNVXeIJkRGBlyUxB2cWLYUBBOJbWZURPj3R4W/WQ2BTnxhMDgcw3WWgpHZZOcGv9RDYeCVOzaTeWe3VTt2U1SSgpTTjy1UX/z7vsTFbt2tvrvUL5je6P9jAG5XHPvg2Tm5mNMx9a+EBERac646cew7NUXCdlgvLC6vucCEhERERERkV5HCYsGjDFHA7cCxwIeYAVwl7X2yXb0kQLcAFwKDAfKgbnATdbapo+4S7f5f/buOz6O6mrj+O+R5AbYdGya6S2h9w6mORBa6B1CJ3QIEELoHUJCKIHQWxJ4CaEkhNBN7zWEGnrHgAsGV+m8f9w7YrxItmVL2pX9fP3RZ6VpO+OZ3dm9595zGkeO5Y3Hnmfks5/Td+jMzFkKVHzR8BVvzHA7a337L3o3jUb1DbDgBrDE5oz5eHqGHn38eNsKicHzLcYzcy/FP3svzJfdZ2WWsXUMfuwDRpZSO/UfV88m33Wf4H5NP3N35lp4ZmbqPv7LcYYZR/HxG6/y8X8HM/yrwQz7/FOGfv4533w5mIim5uVmn2+BHwQsZp5rnvECFj2mm55Z5p6HWeaaNz/Owyxzz8OMc/T7wf70nmW2Ce6vmZnZ5JjnR0vSY7rpaYxxzdNixOgJrGE2bWuP7yZmZmZmZl2NAxaZpAHA3cAo4EbgG2Br4CZJ80bEeZOwjTrgdmAg8CRwC7AIsDewvqRVI2JwBx2CtSAiGPPecD5/9DXGvvYtfZq604eZm+d/Wf81n4+5g4XffJBVP6vnmyGzMHTfzWnc5Qg+HtWDT4aO5JOeX7FKQzfG0cALc63Aa32XZvCM8zG9ejJzUx1bjBLdR6XRCLdPN5o3uzfRt08PfjzXjCw5Qy+47/s41XR9xIxzBL1mGM2ng98CDWfuOWdl5LAhjBm1P917zdK87Hsvv8D9V/5xosc49PPPiIjxRkQstd5AFlxupebgxHQzzuQRE2ZmVlX1DQ2sucNufPS3fzdPi2/HTmANs2lXe3w3MTMzMzPrihywACQ1AJcDTcDaEfFinn4K8DRwhqS/RcT7E9nU7qRgxV+BnSMi8nb2By4BTgP265CDsPE0Dh/Dt0++w3dPf8y4Ed2pA3rw/UiHoWM+pOnDQfT47+P0b2pkDD0IYGy33vz13uGc+/mz421v7zXOZEb1pA4xPzB/7hyaTvFYmppGQozk54vOzQY7r8rsvXsAMPKbEfz54ctprWRdQAABAABJREFUHDuC0d8O4+sho/i64ioa8p/0uMImWzLDzN8HLHrP+sORDj2mm54Z+/Zjpr5zMlPffsyYH4mAUkBi4RVXmbz/ODMzsw607MCf8tndDzT/rVEOpptVasfvJmZmZmZmXY4DFsl6wELA1cUXAoCIGCbpDOAaUjDilIlsZ5/8eGwRrMj+BBwF7CzpsIgY2V47bt9rGtfI6w8/xNdPf0T/of2pox5KQYrGxu8Y9fF/GP7Fm4wYM5JRPWdm1MLbMqrnrIzsPjOjes5Ao5oYM/arH2x73Li3aBw7mHE5MBExkmgaCTEKaGxebobRGzN773Wa/+4xfS+Gf/HueCmcWjP8q8HMXfp7jgUWZMAe+9J7ttnpM+vs9JmjL71m6N3q+mZmZl3Bd3U/bv5dY3xfM2tBe303MTMzMzPrchywSNbNj/e0MO/u/LhOC/OaSeoJrAK8UdnbKSJC0r2k0RUrAo9M6o5JmmciizS3cf/zokuZbcaZIZqIgCYCmoImmiAgoonZ5+/PzLP3bV552NeD+eT1/wFBRJD+AZH/jiBP4EerrUpD9++LQr/z6ksM+3QwaePFaIO8bnqACLpN14Nl1h4w3k4//8A9NI4cm1cN8pM0rxP5OfvMPTuL/Wg5xn7zHTFiFKNHfMewD4fTXd3pRg+61/Wgu3rQra4H3et60k3d6MH0fM73QYfuda8ypu45Hv9oVr6mDnqPI2iC+JSID2DUaBg5Bobl3a/rzUpL7snsvXvQr3d3Zu/dgyG3vMFXQ96c6Pn6atgnvPXWW+NNG1XfwLgxY+jVuw+9+sxIrz4z0n266Rg8ZCgNvaZnqRVWZKY5+lI340w/WLf3wksAMLwxGP7pZ8BnE90H6xijR4/myy+/BODtt9+mR48eVd4jmxQ+b12Tz1vX05ZzNrRxCJ9+l9IlDh3VxD8uvIZvx31H44gR0JQ6ATR0a0R1gerq6d6rB43j6mgcW0f3um7U1XeHhu8/wg4bMwyNyMW7Bd26p2GQ9d260dC9G+PG1NPUKHrV9aKpvgE1pGJTY2Mc340ajkamOhp1dUF9t/z8PXtQX1/PmJHpeabXdDT27Nb8nCMbRzPmu2FobFq+vqGJuvomEPSYbjqamsS40fXUq4Hu9T2Ibt/v7zfjviW++SZ/6Mn7K1BdA917dW8+1p51PaC+oflYm2jim1HfoO/SsUpBQ/e8vz26U9/QwNjRDUQT9FIvmnp0a04HOTrGMuq74Wj0mLS/dUFdt0YGDxlaPjX1rZ9h62Tr5sfJ/m5S1pbvE++++y4jR05636pxw7+c5GWteiq/Y3QUXw+1z9eClfl6sEJnXQvg66EraMv18Nln47VTttv3CY0/EGDaJOlmYBtgxYh4roX53wBDIqL/BLbxY+AV4J8RsVkL848EfgvsFRFXtWHffILMzMzMrKOtFBHPTnwx62jt8d2kYnl/nzAzMzOzjtZu3yfq2mMjU4EZ8+OwVuYPLy0zJdsoL2dmZmZmVivmqPYOWLP2+G5iZmZmZtYlOSVU7Zt3IvP7A4/l31cFPu7Y3bF20g94Jv++Es711BX4nHVNPm9dk89b1+Nz1jXNDTyZf3+9mjtiHWpi3ye6A4sDXwCDKRdom7b4fcwKvhaszNeDlfl6sIKvhaQemD3//p/22qgDFknRe6m1nkp9gCHtsI3ycpMkIj6a0PwiN3H28cSWt9pQcd4+83mrfT5nXZPPW9fk89b1+Jx1TRXnbUy19sN+oD2+mzSbxNfjO5O6vamV38es4GvBynw9WJmvByv4WhjP+xNfpG2cEiopqoksUjlDUj9ghtIyrXkHaGppGxXb7rxKNmZmZmZm1tW0x3cTMzMzM7MuyQGL5KH8uFEL8wZWLNOiiBgJPA0sJmm+8jylsNuGwLeAixmamZmZmVlrpvi7iZmZmZlZV+WARXI/aYTETpKWLSZKmhH4NWmI/HWl6XNKWjzPL7ssP56p8ccG7QcsCPw5BzbMzMzMzMxa0qbvJmZmZmZmUxPXsAAiYpykvYG7gYcl3Qh8A2wNzAf8MiLeK61yJrA78HPgmtL0a4HtgR2BBSQ9BCwMbAW8C/ymY4/EzMzMzMy6ssn4bmJmZmZmNtXwCIssIh4E1gQeIwUdDgA+B3aIiPMmcRtNwBbASaQK6YcDawBXAqtFxOD233MzMzMzM5uatMd3EzMzMzOzrsgjLEoi4mlg40lYbg9gj1bmjQZOzj9mZmZmZmZtNqnfTczMzMzMpiYeYWFmZmZmZmZmZmZmZlWniKj2PpiZmZmZmZmZmZmZ2TTOIyzMzMzMzMzMzMzMzKzqHLAwMzMzMzMzMzMzM7Oqc8DCzMzMzMzMzMzMzMyqzgELMzMzMzMzMzMzMzOrOgcszMzMzMzMzMzMzMys6hywMDMzMzMzMzMzMzOzqnPAwszMzMzMzMzMzMzMqs4BCzMzMzMzMzMzMzMzqzoHLMzMzMzMzMzMzMzMrOocsDAzMzMzM7OpkiRVex+sNvhaMDOzCfF9onY4YNGFSVpJ0r8kDZX0raQnJW1X7f2y1kl6T1K08jOo2vs3LZO0i6Q/SXpW0uh8TvaYwPJ9JP1O0vt5+fcknStphk7c7WleW86bpJMm8PoLSfN37t5PmyTNLekwSfdI+kDSGEmfSbpF0iqtrOPXWxW19Zz5tVYbJPXMr5uHJX0iaVQ+b49J+rmkbi2s49eaTVUkKSKi2vth1edrwczMJqa4T0jqWe19mdY1VHsHbPJIGgDcDYwCbgS+AbYGbpI0b0ScV839swkaBpzfwvT3Onc3rMJpwHzAl8Cn+fcWSZoeeAhYFrgH+CuwHPBLYB1Ja0fEqI7eYQPacN5KrqXl19vQdtsrm5CDgWOAt0mvn8HAIsCWwJaSdoqIm4qF/XqrCW06ZyV+rVXXDMABwNPAnaTzNjOwMXAVsIOkjSOiCfxas6lTRISkNYC9gP0iYmy198mqI18LdcC5wCMRcZukuuI90KZ+Rc9pB67MrDX5feJ0oKekYyNidLX3aVrlgEUXJKkBuBxoAtaOiBfz9FNIX0rPkPS3iHi/entpEzA0Ik6q9k7YD+wNvBUR70v6FXDmBJY9mtSgc3ZE/KqYKOksUqPe4RNZ39pPW85b4ZqIGNSxu2UT8DSwbkQ8VJ4oaS3gfuASSbeVPhz69VZ9bT1nBb/WqutrYMaIGFOemD9H3gtsRApe3Jln+bVmU518vf8J+BFwKfC0e9pP03YmvZfNB9zmYMW0pdxzugjAS+rmQKYBOIBp2Sqkz72vRsQR1d6ZaZlTQnVN6wELAX8pghUAETEMOAPoDuxenV0z65oi4r5JCfLliPvewAjg1IrZp+bpe7f/HlpLJvW8We2IiL9XNnzn6Y8AD5J6gC8Ffr3ViracM6sdEdFUGazI08cBt+Y/Fwa/1qzrK3pOV0yrz9f7dXnST8C9q6cFlddD6e87SKPdl5C0cKfvmFWdpBNIWSkWB4iIsUqmq/KuWZU5WDFtySPuWvIM8DzwY0lr5mVd16IKHLDomtbNj/e0MO/u/LhO5+yKTYYekvaQ9GtJB7WWs91q1iLAXMBjEfFteUb++zFgQUnzVmPnbJKsLekYSUdJ2tK52WtK0cNtXH706632VZ6zMr/WalD+gvaT/Ocr+dGvNeuycq/Y8XJO52mNeZHHgeHAojn1mU2lyil/JHUvpue/RUqnfDfQj/SeZ9MQSb2ARYHNgOXztD2ARuCQ6u2ZVUMOVNWV/l5a0pWSlqnmflnHKt0nmio/E+SODo2ktPuQ21Xd0aE6nBKqa1okP75VOSMiPpM0orSM1Z5+wNXlCZKeAXaMiLers0vWBq2+/krTB+blPuyUPbK2Orni76GSDo2I61pc2jqFpP7ABqRaJP/Jk/16q2GtnLMyv9ZqQG60+zUgYFZgfWBx4OqIuD8v5teadVm50WEFUgqH5ySdk6cVDQ9fAh8DA0ivAxdgnkqVAlcnAwtIuiAinpXUEBHjJI0BXgO2A5YGHi5dJzb1GwX8hpTy5bg82mJR4AHgNacEmnaUXveRR9f0JNVm+znwpqS3I2JENffROkbpPnEssLekX0XEzflzQXEveI7U0WFxST1cx6I6PMKia5oxPw5rZf7w0jJWW64mNRT0BaYnFbO8HlgJuF9S7yrum02aSXn9lZez2vESsCewINALWIBUTDiAayRtXsV9m6ZJ6kZ6L+wBHFP6sOjXW42awDkDv9ZqTXfgROAE4EBgMeC3wL6lZfxas67uFmAb0jV+ZJ7WBBARrwOvA3MCP63K3lmnkbQbcDypXsXvJE2fgxVFkOqxvOhOAA5WTP0qim1/SxoVuhjpnnY4sGtE3O5gxbSjeN1LOh54klTPa0PSfWMb8ggcmzpJWodUWHsBUi2+1Ri/ffyz/DMQ6JbXcVqoTuaAhVknioiTI+KBiPgiIr6LiBcjYjdSo898wD5V3kWzqVZE3BoRV0fEuxExKiLei4iLgG3zIqdVc/+mVXko9jXA2sDlEXF9dffIJmZi58yvtdoSESMiQkA9MC+pQXdvYJCkPlXdObM2aK1ORf71ivz4MnCWpB1JAdXCn/PjOrnIrkdXdHETaDx6APicNJJiHuBvkuYpznlE3EcKYC3s1LxTt+L9oeL1vg2pHexLUuP0qxHxaV7eDZLTCEnzSLqXNBr4OVKquNtINbtWALaRNHv19tDaQ2t1KnJtvteBN0n3ixuAzUvzXyelTZ0N2KLj99Ra4oBF11T0fmutl1sfWu8hZ7XpT/lxjaruhU2KSXn9lZezGpdTorwNLOXGu86VP0ReRerleAOwf8Uifr3VmEk4Z63ya626chHujyLiEtLoijWA4/Jsv9asppVTOBWNkBXpG/5Lamh6kvS5+nJgj9ImXielM1sM8IjmqUCuS9FSe8ZYUsHUOuBQ0uj230paDJrT5P2L9L42dyftrnWiojZBqRf92pIOlrRqvgduD/ySlPVgO0l9q7m/VhXr5J9LSCOFT4qI84CtgWeBXYDVq7h/1g5yesjmekb5vaHo6PB3YCbSOW8CzpG0Xmn1oqPDqpK6u6ND53PAomsq8gv/oE6FpH7ADLSeg9hq05f50YUAa1+rr7+K6X4Ndi3Fa3C6qu7FNCQ3MlwN7A78FdijhaH4fr3VkEk8ZxPj11ptuCc/rpsf/VqzmpYbpxeQ9H/AjrkmQUgqajK+S3p/6U9KCfUScJKkn+f5XwPvkEaG9YHWe15a1yDpSOCiUiCi6E3/OSk4PiMpUPULUlqPC/P8MXl6d2DN8ro2dYikSdKSkh4A/kFKE3Z8zkf/InArqUf9dsB6xXpV2mXrABMZMbNbfrw0Ir4o7ge5c81ZpDSme0qav2P30tpT5TmXdADweCkdbbmjwwvA7KTRx9uSOj3cIGm5vJ3XgI+AJRh/xKZ1En9I65oeyo8btTBvYMUy1jUUw5Hfq+ZO2CR5C/gEWEPSeAGm/PcawLsR4aKkXUQ+bz8m5bT9ciKLWzsoNXzvBtxEyh3cUg5pv95qRBvO2YS24dda7ZgrP47Nj36tWU1pJZiwPSmdy1l8P3qiqFPxIqlhYXmgkTT66wXgYkmbRcRnwOOk1Gjb53Wcr74LqOgRW0xbmtQDen/gFEl9IqKxFMD6N6lmyfIRcQVwDrCmpOvyCL/7SA2SPyut63RAU4HiPOa0cPeTRtH8nhSY2LIonhsR3+bpAewqaeG8XkNL27Wuo5VUYM3zch22b0kN1J/lWVF6D3iU9B4yENio3EPfalNpVFWUps0BLEz6XHCxpEUr7vtvkM7/1vkzxIGka+I6UhDzHeCD/PvseZtuQ+9E/s/umu4nvXh2krRsMVHSjMCvgTGkF5nVEEmLS/pBj1JJiwNn5z//0rl7ZW2Vb4JXkEYyHV8x+/g8/fLO3i+bMEm9JS3awvRepPPVG/i/iBjX6Ts3jSmlFNoNuBnYpbWGb7/eakNbzplfa7VD0o9a+dwxHfC7/Oe/wK81qz1Fo4KknSRtmCdfBuxICrhdImmdisaH64BlgPkj4j/AMcAzwJWStiK9jwGslL83WReQe8s3SlpE0uF52suka+F+Us/YP+RRN8W95UFSCrAivcdlpBRAuwB/AL4iBd/nJY+ycO/6qUMeedUbOAL4DjgYOC0iBkXE2IrFnyNdGxsBm0mqL64hSbN05n5b+yinCpQ0QNKxkrYvAlIR0Zivg9GkdEA/KVYt1bn5gnRtdCe9vyzZyYdhbVQaVbW4pMvztC8i4kjS6Lq5gWskrV1a5xVSDYvlJc0aEY+TOjTMAfyRlDLu33nxHfI67ujQieT7ctckaQCpMNAo4EbgG1LutfmAX+b8e1ZDJJ1E+uD0MPA+Kaq/KLAJ0A04MyJ+XbUdnMZJ2pv8hQVYihSJfwz4X572aO6hVfQ2fYz0pfgeUp7c5Ukfdp8B1omIkZ2399OuST1veTjvO6Tz8xqpN0VfYANSQcb/AAMi4qvO2/tpU34vPJHUg+UPQEsN17flni5+vdWAtpwzv9ZqR+lzx6OkEZzDSV/YNgZmBR4BBhavH7/WrJbkwOe9pAblu4HNSg2JR5NGWbwN/CoibsnT1wL+CfwuIk7O0/qRijDPSqrZslP+fVOPGOoacq/ns0kBh9HA9hFxR57XH7iTNHrv98BFEfFuDkhdSLr3LFD0qpd0BqkB+27S9XUxcFBEXJobOt04MhWQtC0pILVv6ftbi+c3pxT7B6nT5wGkdHKbAbuS3l9e7Kz9tkmjVE9gTO5RXwS3G0r3iDlJtYw2La32BrBXbpRG0kDgLtJoq60iYkQemVEXEWOVahncl9c9CfhtRHzXGcdnk0fSaaQO3ACHR8Qf8vQZgVNJ9dteAo6IiMfyvH1IdUyWiIi38rRtSaPyBgMXAdeQ2lwPioivO+2ADCLCP130B1iZ9CY7jNR74CnSB7iq75t/Wjxf65A+OL2Zz9lY4FNS7syNqr1/0/oP6UYUE/i5pmL5GUlfjD4gfcB9H/gt0LvaxzIt/UzqeSPlq74IeBr4Ir/+huf3zaOAXtU+lmnlZxLOWZBqI5TX8euti5wzv9Zq5wdYkdRz9BVgSD4XX5Iab/cFGlpYx681/9TEDyn1U1O+br8Cfl6aV09qlPiaVLti2zx9XuBFUo/I3qXl1yEF6EaRghxNwFp5Xl21j9U/E70WZgOeyOdtFClA0as0f13SSItxpNSFRafMY0nfubasuHbOIn13Lq6F2/I8VftY/dNu18zv8rndIv/9g/tdaVmRanM1kTpZPEbqWPgdsHK1j8U/452rOuA8UqCxpc8wDfnxzHxvOAnYCjgtn983gBlKy9+Xpx/XwjVxNanDx8P5vWL+ah+/fyZ6ffwpn88h+TXcpzRvrnxdNJE6VM2Zp69B+p5ySsX53zi/H3wMjCR9j5mj2sc4rf14hIWZmZmZmZl1qgn1aJe0KSlY+gTwU1JjwZaRCiqT6xDsTGq4GgZsGBHPSrqMNHp5w4h4rbS9VUjBuFXzpMsiYv8OOTBrVzl//N2k1HQzAIsB+0fEZaVlfgz8GVgaOD8ijsgpYN4kBS7OhZTOQ1JfUgP1WaWnmT8iPuiM47GOU/S4l3QYKWhxEHBJ5ftMuWd+adqJpBGFvYFrwxkrao6knqRG5O7AmhHxfGne+qRRU6cAa+Xffx/fj676LWnU6ZkRcVyetgwp9VMdcDipEPv0pMbqffO2+pKCJDtExP95JFb1TOQzQx0pQLUX6X1/HfJ9vryepD+T0gneS0ob+Q7pc8b7wI4RMay0zQ1JqXD75Ekrlq8563iuYWFmZmZmZmadIhfHHK/hoYVClg8CvUg9XK8CVgH2LmZGxPCIuISUtmFG4KqcwuN6Uk/K/nm7DXn5p4B9SD0vr+P7tBFWZaooqF0xry4ixpAKqM9KamACOEDSPMX6EfFfUp2ld4DDcmqQb0jp7QaWG6cj4vOIOIcU4HiflA7GwYqpQOk8f0DqYb0G3zc2NhfkzkGN7pJWL617MilgsXIRrJALcNeUiBhFCmDv0ULDcT3pnB9FCjKcExGj9X3B7MuBx4HDJS2Zt/cSsB9pBMXvSakwHyWNLH2TlB3jrbz+SnkdByuqIL/PtxasUH7tvw/0AG4g1TDaV9KSERE52AVwNHAlsD5pRHg9KZXkMkC/im3eS0qJey+ws4MVnc8BCzMzMzMzM+sUkUlaXtJBeVplIctepPQda5IaDEYB+0haGpp73QOcTkr3sTCpZsEypMbt3fJ2i5zmdblRe/GI2CMivm4hSGJVEKmgdp2kgyQtXjGvuC7eJNVq/IDUsLgMsH95/UiFuA8hjcY5mtQ7+jFgFUkL5kbqutJ53yciFoiI2zr6GK1zFAEJUsPzk6TUclsUjZWlXtbzkgKhf5A0Q7F+RHwbEaMk1ecGy5ZqdlkHK4KYpfPZLCIeyyMd5smjKorp95AaoruRRt31yI3cY/L8N4BrgQbghNJ6V5Jq3VxICnA+Skqzvnmk4t1FQ3cRuLAqKN0nzpC0YekaqSsFMh4FZiGlXT8uT7sgrz8qv6Y/Bk4GrgBWB/5OSiU5JymtZHH9FdfeHyNiYET8Nc/7wTVpHccf0szMzMzMzKxTSOqR0zI8C1wg6TeS5s/z6gEi4ktSo9PcwFBSj9f+wC/y/DG5MeobUrqO04ElSMGNGYBFJM1XPGfR8B0Rg/MAj/oWgiRWBbn47XekhqW/SFqzNK8YffF5flyM1LA4Avi5pJXy9GK5f5MKJ39OGlGzAyk/+aaQroPSeS9SxbgX/VSiaLiMiPdIKeW+IL03HCKpm6QZJf2ElA5sIHA7qfZJ5XYa3ZO+enKgAHKwoNQ7nvx3X9KoiIslLVKadUmeviowb27kri8FKf9OOufbSNo4b6s+It6PiEMjYqeI2CIibs73iQ1IxZo/JtXJsSqRtA6p48KvSPVFToQfdHZoINW22og0gu4JYF1JW5XmExEfkT5L3EVKHXVSnr9rnt9Y+swwNj9/8dnE7wudyAELMzMzMzMza3et9EachZyyidQQdDxwpaR+pYYqSL3jFyAVgD+X1Lt+l6KhqRARwyLidFKPyTpgkfyzQEv7lAd4NLY0zzpXbkicl5ST/gtgSeAaSYfAeA2XT5ICDHPmxuhzSD1iixE6Y4u6BBHxIrAH8D9gcVJ6mEUkTVd+7lLjtnvR15AJpQibxPWL95xbSfVLZiIFKN4CngH+AvyMlDLotJxmyGqIpBUkDQf+AM2poJC0uqS+kWoZXQQsSgpKkpd7A7iM1Dv+5Dy5KY+uUkR8RRpl8TlwoqReLd0LJK1GSj93Aek+ch6piLd1glY+N3xICjh8A4wlpQW8IgevAMijKIeQglVB6ugAqZ5NcZ8od1j4Jel6KIJeK+bRVz/gzwzV4YCFmZmZmZmZtZvcKFBO1VBuhPiMlMZpFCl9082klE53VQQjPiMVwF03j6Q4CZgOOEhSz9x7VqUGzhNJQQtIwQ7nm64RRQ/nyoao3Gh0B6lxuY7UK/4d4PeSjpM0Z160Fym4tVb++zxSmqjtJW1Z+XwRcT8pJcjredJdEfFdOx6SdYDcqNyYf18jN1wvWJ4/sW2UAlHfRcQNpFz1p5ACFm+SrrGFIuLcvE23idWez0kjX7aS1FfSjyW9DtwI/DgvcxapEXtXlWqRkHrfP0R6b1gjpx8sj6L6N/APYGVSPYxmSnVNbgFuI6WNGkG6/5zvEXkdrzyKQVK30vSGiHiHdM57k9JFngvsCdwgaanSZp4Fls3buZX0+aK/pGPz/LriPSYiXiN9brgzz/tNRHzYQYdnk0Ee0WJmZmZmZmbtIfdeLBodVwSOAA6MiCGlZfoA5wPbkRqfB5EKZXYHjoqIayStCzwA7BgRN+XGygdIKRz2j4jLcgNnOSgyKzBb7mlrVdbC+WloaURDTr1yO/AwcDGwHnAY8C9g24gYKelpUuqoLSNiqKRtSUVxHwB+FhHf5MbnKDVSLgS86TQetasIQpTqSyxPSvu1MinV1xhSL+izImKKernnHvUj8+/1pN73vjZqSHH/kLQDaTTMR8A8wMukuiN/jYjBedm9SSMq/gQcFhFFmrdtSO8NL0bECqVt1+XRFsuReuHfUZqn/L6xOanA9jPF/Mpr1NpXC/eJs0mdE06LiM9L562eVJ9iNlJ9q/7AH0lpI/eNiPsknUcKZGwYEc/mc/0QKeg9V04L2fwZJT9fT2C0z2/tcTTZzMzMzMzMpkjRUzk3Ns0o6VrgaWAAqeG4WUQMJzVMf0MqjPs+sDG5UUrSqaSGiQ9Joy+KxqLj8yb2lzRPbmCqL233q4h4o2LkhVVJqRF6W0n3APdIul3SxhW9np8k9YweCCwbEUeQcsdvCNwraW3SKIzFSbVNiIibSb2l1wN2Lz1lc6qniHijhR7WVkNyirZQKqg7NylwOT0paHEaKQ/9PsB1pRE3k/tcRbCiLlynolYV5+RH+XEu4G/AZqQCyINLy15LGk23PaXREhHxN+CvwHKS9oDmYGlRl+CFymBEad07IuL40vy64hpt38O0ypGYknaU9BFwFNAIFOerKZ+/RuDIvPqJEXEjsBUpRdTNkvYkBb37kEZwEhEvkNKH1QNn53Urz+Vo3ydqkwMWZmZmZmZmNkWKxiBJx5BSevyU1ECwBfBcC6v8hxS0WILUm/41UqPUTaTc0n8mNTKsXAqGPEpK+7RsXqbF3NK5fck5p6tM0myS/kI6p3MAM5ICDHcCF0rqARARI0g9pT8gFdNeOSJOJDVELkZK67ExqdftWqWnOJ6UOuYISYu11qjY0qgOqx2SjiLVKziWlKf+oIg4IiJOIL2P3AqsAfw6j6KaIk7vUzuKgEFpFENxbmYkpfepAxaMiA8jYly5UTlSQeQTSXVKdlepngGpkfozUn2kFkd25W1E+bFyv3ytdJx8n26StIykJ0j3/NeAHYHTy8Gp4vxFxPWkjhAbStorIgYBW5KulSuAQ0g1TFYqPdXv83b3kLRm5TktB7k75EBtsjlgYWZmZmZmZlNE0mqSPgDOAP4O7AqcERFPt9SQHBFjSA0UL5IapjeNVGdgH1LP6iVIvWs/JDVUF87Kj7MVDd5Ws7bJP+cD2+X0LKuRekXvB5xc6jX/JqlX/QLAXpL6RMRtwN6kBqo1geGkFEFFGpHnSMGQ+UmNllbD8igKVUybiRSo3IuU7u2qHJhEUo/8nnAqKW3cruT89Na15d71Da0FDEjBq7VIdSuWl3R4nl7Z2PwAaVTOpqT3mmL6k6RA10fAfJXX3cR4REXHk9Qg6RJSLatZgINJwcqb4vu0X80BrVKw6tD8eLRSEfbXSGmgziWN6PyOFLQoRsgMBi7P60xxwNM6j2tYmJmZmZmZ2WTLOaDPJDUk/AX4dUR8kOcV+ad7RM4xXlqvDtiFVAj3FuDQiPgkz/spqQHzxoh4Pk8r8owvGKkIp9Wg3MjUh5SyaR5gvnwNFOdvRVIh5LWBYyPiwrzefKRULouSGq5uzNuaLi//AnBbHpFRPFdvYEzltWW1pdzLXdIsQM+I+CS/B6xBGkUzB7BPRFwpqVvuQV+sfxBwAfCHiDi8eF+ZwPM158WX1J1Ur2JcebpVh8avczQDsAcwM/AVcGdEvF96r1gKeISUPnDliPi08txLWhR4BniFVMvgv8W2y+8VVlskzQZcT0oF+OuIOKuFZWaO8etfFZ8nriN9djg7Io4tzd8PGAw8GBFDKt4HxntPsdrngIWZmZmZmZlNlopG6D8AcwLrkkZGLAOsQmqYnoPUU/72iHi6tP5swJXARqTCqX8qzZtgA4Mqimda7ZA0PfBfUlqWAaSREUUKEJGuiZtItUr2j4incg/arUhBizuBX0TER3l73YDG1hqpJ5T2xaqnosFweuA3pECkgD0i1ZyZgdSj/lhSXYK9SinmiveXRYCXgI+BpSPXo5jI89WR3n/WBZ6OiPs78FCtjSQdTApE9ibVLOhGes84NI+cKJY7A/gVcHFEHNzS+76kE4CTgHMj4piKeX5vqFGS1gL+ATwIHEgKTG1MGl0zIP/9OKnY+rP6vij7HMAnwLfAWhHxct5ei4HM0vuIr4UuxCmhzMzMzMzMbLKUeis/R0rfMS+paOaOpELKl5AaDFcnNUgOkrR3af0vST2nxwG7SFoCmhseJtgb0sGK6tCkFTSfjlTLZKaIGBmpyHFRRDWAp0jXxjLAppK654ak+0lFdn8C/KzYWESMnVCPejdC1aZS8GBnUo2SvYERwKPA6LzMCNLIrP+RAgwr53Wa07oAb+efr4ExLaSWKmoOFM+3CKk2zlXA6UD/jjtKawtJfSVdQQow3E9KD7cMKVg5K3BmbsgunEO6NvaUtGppdMaskhbMy1xAGqn3Jyr4vaE6JvE+8Szpc8JPSe8NZ5GCltuTaljNDxwO3CZpFb4vxP0FcAIp2PWrYmOt3SNKqcd8LXQhDliYmZmZmZnZZCv1av4nqWf8gcB1pMaFn5AaIJclNUj0BC6QtHBpE0+SGi1WB7YFFzutRaVG4UZJPSTtKmn2PG+8toWcN/xzYFFJm+dl6kvzR5ECE2+SrpH+efpXpFoWI4AdJC3T0vat65C0HnAeqfDt3sAOEXFURLxXWuwNUqHkxfm+hkmhidTjenFSr+oop3WqGFUxh6SdSA3XvwW+AJaNiKs7/EBtovLr+CfA1qQAwzERcWVEvE5K6TQMWArYTdJ0ABExFDgb6AWclQMVPyHVxvmdpCUiYmhE7BkR71QGs6xztfE+MRK4jBTMPImUHuxc0mt9dVLA4gJgtjx//tK6Z+T1dmjpHmNdn2/6ZmZmZmZmNtlKvRffBf4P+A9wYUSsEBH3RMTHEfFWRFxFKsrdEzgSmhsbvyU1WnwOHJl7UlqNKTUKb0dqCL6aFgJMpUaja/PjfqVUHuXGxA9IdS5WYPxiqM+RiqSuBuyarxEHsLogST2Ao0kjbo6JiNsj4mtlxXK55/PfgIdIBbjPyz3xZ5K0CXAyaRTWJZXXQk710kvSBqTGzmtIdVC2j4h1inQx1nmKhunK4EE+dz2BMyPiyIh4W1J3SX8kBS8bSPeBrUjF2Iv1riTVOVmbFPj6P2Bn4PFIRZebn7cczLLON6n3iZL/Ab8nBS03jogTIuJrYGik2kTnktIHbggsnbfdI697RH48MZ97j7qcijhgYWY2lZK0rqSQdFIHPsdJ+TnW7ajn6CokzZ//L65p43rLSWrMvcFqkqS98z4uVe19MTOz2lRqmLqHFJT4fZ5eNFw15PkXkfKVbyxptlLj0pukXti/jYinOm3HbZJJ6iPpCOAKUsPiWGB7paK3zee6aDSKiFtIKT82JjUuQqpdQJ7/DfBq/nOj0vSRwA2kNEFXugGyS5ud1Mh8f0Q8JqmuGBHRwnn9lNRrfiwpaPEoKXj1J1JQ6+iIuKfyCfLn0+NJ18yOwGkRMU9E3NxRB2Utk1RfDjBWjIQpApnXkEa/IGkj0siKXUkp4nYhpRScmRSsnKe0+eNIge4n8rKzRsQ55ed3YLP6JvU+UcipH28ljcx8ujK9W0R8DDxGar8emFcbk+f9nTQCYx+f+6mPAxZmZjVC0qq5wfvfrcw/P89/vZX5h+X5p3bsnk6+3JlqF0kPSPpK0hhJn0t6QdIfJa1T7X2sgt8Br5PyfncoSSvma+SgNq56LfA+qYeLmZlNxSRtK+lfRZB6UlPxlBoXvgT+FhEf5L+LRoTGHLQYRUrr8inwdalxYgzwu4io2c8xxtqkRsMRwDakURBrkRqJK0dZFIGJk/PjkZLmjFR0u15S9zy96P3+ZV6vCHr8JyJ2iYjXnOKlS+tO6lHfXVKviGhqLQCVpz9CCjyMIY2+OYqU137+iLgQfthrnxQM+xVpdMZcEXFKhxyJjafyPBQ93POIl9UlXSbpKkkXSlq5FMgcnd8HZgN+TQpOHAn8Jgeri+LqKwDbFduPiP9FxO+BHSPimIgYIqnB7w81Z5LvE4WI+CQiHoiIURVBruI+8WX5MV9j9fn3wyLi+Un9rGJdh0+omVnteJZ0Y1+j1AuxbAAQwGKS+rUyH+CB/Pg0sASpJ2OtuAq4npTH+k5ST8q/AkNJPan2qdaOVYNSTt91gfM6qVfIFvnx9raslHu+/B4YKGmNdt8rMzOrJSuTcoxvA5PXY7UyLUOpR/U4YE1SYe5PSJ9ryusVqSTcAFWbRpA+x60WEXeRGqI+BXYqPh+UAg5FAOtOUj2TpUidNMiNmmPyNjfJj+/neeNdb07x0uWNIvWgnzv/jKeFEVhDSD2zRwILAS9GxMUR8VWp937l+8RfgeUiYvscMLUOImnO4rVe+brMQYiZJV1HGh2zGbA5qef8k5IqA0nbkBq3z46IyyJiSJ7+HTAjMAuplsWK+bmL4PZ3+e+6iBjn94eaM8n3iUrFOS7dR4r7xM/y49PFsuXPGeVRPTb1cMDCzKxG5C/xjwAzACuV50malfRF79Y8aUDF/DpSz4XRpGGyRMR3EfF6rXxwl7QWqZDWi6ReUrtFxLG5V8QAoC/wxyruYjUcQPpC9rdOer4tgOcj4sPJWPdGUu7g/dt3l8zMrMacQcolvVsx8nFyey6WUzso5SnfgpS+4V3g1FbSwvygIcxqQ0QMAk6OiPfzpNdI53MRUvqWHrnRsmh0KhqUDwWeJ6UF+aukNSQtIelAUoeVe4H7W3lON0J1bd+QGhmXBtaT1BO+7zldNHIDV0taLr/2XySl/BkIbFXqSd1Yfm8oBcVeioiXOvGYpkmS5iKNfPiDpHnztMp7wymkgtrnkoIVS5LqF3wF/EbS/pJmyMtOnx8HV2xjH9Lo8+tI182M0HKApB0Oy9pZW+8TFetGOfggaWFJ55BG2lwfEf9s5Tn9mWEq5ICFmVlteTA/rlsxfR1Szt8LgK+pCFgAy5CG0z4REaOg9RoWkt7LPzNI+oOkTySNlvSypG1a2ilJ8+YvmF9LGiHpIUlrt/HYVsuP10bE8MqZETE0Ih6veN5r8jEsKOloSW9JGiXpXUknSOrWyv6uLekfkr7Mx/aWpNMkTTely+feXcdI+l/el/9JOpY23lPzl7MtgLsr/z9UqoeRv9D/U9JQSUPyeZgtL7eapPslDc/zrpA0fSvPtwAp6HV7adqMkk6R9Go+r8Pz8Vwrab7y+hExGBgEbFP6omFmZlOZ3Mv1NGA+UtBiutYaFyZhWyGpm6T1gdOBC0mfV06NiBfbc7+tc5R6QRedbW4g1RnYBti0YtlQKrY9DNgXuBLYntRB5xnS9fAhcGSk4qo2FckNj9+QOlx9CBwLbAnf95xW6j1/Cem7zsx53khSod63gJ2o6MhlnUvSnpIOJwUdLiN97/xBEWVJSwO/IH1fODEinomIzyLVsjkQeAc4nBTEgPQeMIIUlFo2f987hFTP4q6I2AeYPSJaDGZa7WrLfaIFPSQtJOlIUmfGXwL3kYJhNg1xwMLMrLYUAYvKgMQAUk/8J0lf8lqaX15/YrqRimJuBNxC+hCxEPB/SsXPmkmakzRqYwdSD6kiaHIvsOokPh+kD7kAi7ZhncL5wDGkDysXkkaSnEwaAj4eSQeQPiivQUo7dQHwESmX5r36PhfmZC1P+qB+FukeejFwN3AE8Ic2HtPapPPw5ASWWQB4HOhBGh7/Euk83CZpTVJvxBF5n94m9VK8sJVtbZkfb4fmXo93k4oUfp23cRnwAqlH1CItbOMJUh7i1Sfh+MzMrOu6kfSZYltSWo8292BUKq67Bqn37A2khqyXSKlbrmnXvbWqiVQQ9TxS+pbdJfXLgYrKAtzP5wbI7UkN15cA20XEqhHxyuQExKzj5dfxlJ6bu0mpRWcErpJ0rqQ9JJ0FXEpKC3Yl6TNv4R3SdbUsKXDacwr3wdooNxrfQ/oOshTQixR4HgLsIWm5vFxRTHs+Uge7OyJilNKoumLeHaSaeIsAG+Rpr5EapDcj1R95gvSd7z1SGmGKVGAdeJjWCSZ2n6hwHvAqcCKpfWLviPhpRLzdeXtstaClHOlmZlY9LwDDgNUldYtUOwDSiIsnI2K0pIeALSTNExEflebDpAcs5iL1alm31MPpL6SAwBGkYEbhTFLO2d9ExOnFREn7An9qw7HdDQwH9pc0I6m31TOl4aITsiqwTHG8ko4jBUy2lrR17rmDpB+RAg4vA+tHRBEkQdKv8rEcTPogNDnLrwvsSWpwWSMivs3TzyANX2+LohbEcxNYZm3gsIj4Q34eAf8kfbH7B6noXBGA6Eaqg7KrpGMj4vOKbW0BvFcaMr8ksApwW0T8rLygpB6kYEqlZ0v7fk8L883MrIvJvaArU200SjqB1EliD0mPRsTHSjnDJykNRx6V8SKpY8R3wJ8j4sn8nPVAq8V3rcu5C7iN1PC4DXBR5XUiqSHnm7+5cuViXqfsqU2yPDqmMf8+Q0SMyL//4D2jJaX0LuMkXUpKJ3QOqcAywLek9HObRsTDFes2SrqT1JnmmmIEuXWO3GHrZGBF4GjgzogYCgyVdDYp5dMukl6K72sJzJsfF4XxRtEoBzAGkTrgbQeclkdv/0rScGBxUkDr5oi4obwvUVETybqsid4nsuuBMaR2kT+X3oPqfS1MWzzCwsyshuSb8MOknJ4rA0iaHfgxaRQApB4okEdV6Pv6FSOBp9rwdIfH94WsyMNt36c07Dp/WN0e+ILcaF9yBWmo9iTJwYatSUPCdwJuBt6T9IWkm5QKULfmD6XgTPEB+Lj85x6l5fYjBeMPLgcfsnNIvTx3nILld8uPpxTBirw/H9P2ERbz5MfKwELZ26SASvE8Qer1CvBCEazI88aSamE0AD8qb0SpBsqatFxse2TlhIgYXXwprVDs6zwtzDMzsy5Eucht0ahYMU8R8RipWOZAWkj/MSnyvfLgiDi4HKyIilz01rXllE+/J42A3U3SQpA6hkjaIS/THJAorrfSKAwHK2pQDhrMLOkS4EFJt0taldzxtZXe0ZXbKOpMjMrBqqVIaWIHAJtExIoR8bCSuop1P4mI/SPi6R9u2TpYP9KI6uci4rcR8Vpp3gWkQuo7kUbrF+4FxgLLFqlly8GtiHiE9N2mn6T+pdf/GRGxG7BlEazwqIqpz6TcJ/JyTwJHR8R1+T2ouYZNNfbbqscjLMzMas8gUs+DAcBjpNET4vuAxYukURgDSD0QlgVmAu4rByAmYmhEvNvC9I/4vtYEwGKkFEAPVPZsyj0nH6Pl1EEtioj78oeTdUmjB1YgNaRvB2wn6cyI+HULqz7SwrQnSEWglytNK1JUDVTKl11pLKkHz+Quv8wE9qelaRMya34cOoFlXm6hQefT/PhiC8sX8+aqmP5ToJ7xAxavkUaW7ChpHlKPl0HAixNokPo6P842gX02M7MaVjQgFY3EknYlNTANJxVGvrv0eeJMUk/IPSQ9GBEvtWWUBUBEfJefpy4imtzoMNV6jpTm6UjgQEmvkzqVrCrp64hoHplZasB00dwaUjlyQtIqpDQ+c5JSu65AGp17OnDh5Jy/3CFmvA5WpZ7TLQYxJ3VEh7WrBlIv94UBJG1BGll/WkRcJOlE0ui53SQ9WYy+IKV+GghsCFyRA+L1ueF5eqB7Xu7jGL/+hfKyvk9M3SbpPhERY4vAtq+FaZcDFmZmtadcePu0/DiK/OE+Bwoe5fu6FcXjA214jmGtTB/H+KPvZsyPX7Sy/IRGB7QoN5Dcl3+KHp57kD68HCvpbxHx/MSeJ3/w/aq0j5DyYsL3oy8mpq3Lzwg0AV+2MK+t/xfFyIYJ5eT9QXFy0jma2LzKdE5bkoINzUGVPDx/PeAk0siXYgTNYEkXAae38AGxV378bgL7bGZmNaxo+JO0FqkBalFSA1IfUgeJGyX9JiLej4j3cvqPs4CdJb2cP4e0uQHRjdNTp1IA7DtJ15JGph5Aqr81AjiiHKyw2lPq6V75Gt2K9B1kd1JHoaVIxbCPkfR6RNzb1gBmSybWIOlgRefK5/QdSTcDx0l6n5Tu6RHgw/yav1XSHaRr5F7SdfElqTPdOqRr5NOIuDN/Z+tNGtm+CHB85Tl3EHPqNjn3Cb/uzSmhzMxqz0ukYmar55RMA8j1K0rLDALmlzQ/ba9f0RZFYGOOVub3ndIniJTP+ArgL3lSZUHxFp8nDw+dlfGDL0Ujfp+IUGs/U7D8MNK9s6URBm39vxicH2eZ4FJTSKlI4Uak3LPjpVyIiK8i4mBSjZIfAQeRAhsnk/LVVir2dXAL88zMrIuQtDyp53QTcAgpteQSpM4DOwO/LS1+KfDfPH0DJkE5xZRS4dVeldOtOto71UopALYKsC9plGcP4GKgX0Scn+f73Neg3JDYlAORCysVwx4gaSZSh5dTI+K2iPg8Iu4jfVacCzhMUq8igFnFQ7B2VgoaLEEa9TI3qWbFNhFxe6kh+WRSkHt3SQvn6Q+RRuAsBFwj6SRJh5FS7R5PqqF4S6cdjE0W3yesFjhgYWZWY/KHxIdIvdk3J31YHFSxWFHHYgNSI8MIvi+I3J7eJPWsWjE3fDfLvbFWb8fnaqlmQmGtFqatRhop+EJpWjHEfNUfLt6iti5fFKxuaX9amjYh/8mPi7VxvbbagFQTpaX6FUD6EBkRr0XExaQh3JCuvUrFvv6nhXlmZlZjJtDosC8wH3BsRPwx3wPeBq4E3gG2lrQVQEQMJ43Gm5PUMNUnp+74QcNCKYVD0TixAikAvqvTulRXrhFQLqI8v6TZc5qWyW4oyttdHfgzqTH7AeBHkeqWfCepwee+utRCrQmNX8Omm6RzgNeBq4D7gX+SGquflVRXGoVxO/BvYGNg1zbsgxsiuxBJu5BGQzxFajecL1KR7Ob7SkS8AFxESvO7fZ42LCL+AJxI6gR1Aim14E7ATcD6EfFG5x6NTSrfJ6yWOGBhZlabitESJ+bHQRXznwe+AQ4lpSl6pLL3fHvIozr+jzTC4siK2XuT0khMEkk/kbRF8QWpYt7C5IKewKMtrH6oUp2FYvnupN47ANeUlvsjKS3ShZL6t/A8M0labgqWvz4/nlB8cMvLzU06F21RBJ1WaeN6bbUFqbjZ3eWJ+QPo/C0sX4wUGdXCvGJfH2phnpmZ1ZhSo8MvJO0nqYekvsAmpNpX/8jzF869YK8BFgRuJDVaFtu5BbiTFMzeIk8r57qvDFQsIOkgUuPnKaTPEf7uWSWldByN+VzfTDq/TwMPSdqA7wspt6lBKp/zUaSe09tFxAYR8XrRyJ1H0roRqkok7Q3cImnB8vSK7w0/JQUf/gQcRiqMuzrpc35T7kylUgD0kPz4C0nz5qBHi6/vVt4bFmtteWt/bXlNl5a9k1Rj8Kfk17aknxaLlVY5F/iEFJRu/k4TEaeSvjesQko9u2xE7BsR37Z3731rH75PWK1xDQszs9pUBCyWJN3cnyzPzB8kHgN+UrF8R/gVsD5wmqQ1SSMaliA1dtxDSjc0KRYnfQH6UtLDwNukD7wL5211By6JiKdaWPdJ4CVJNwHfkoqSLwb8PTeiABARr0j6BSmlxRuS/pWfpzepAWYdUmPM/pO5/IOSrgZ+DvxH0q2k4azb533cdBL/LyAVvH6H70c0tLv8ZXAz4P5IRQ7LlgX+Lulp4FXgM9KQ7y1JKUJ+X7Etka6D1yLizY7aZzMzmzIVvSN7A5eR7lO3kgqijiOlNvyvpBlJ9+DdSffz54BVIuKZvH63iBibN30iaTTnEZLujYjP8jIqNUbOCqwH7JW39yywakQ83fFHbq0pNSj/kpSWZSjwCqkm1Sqkns9HANdOZqPRixGxY/FH+Rq0qtuYFGS8mfS5EwBJ8wEPkz7Xf06qQ3BCRHyV53cj9YT+NXBA6T2lPiL+J+kPpM46+5JqEvyg9kDFe8PspPeGw0g97w8E3uuA47UKpXPQMyJa6pD0g2UjYoikofm94yxSGqfjyClm9X1x7M8knUbqBLazpOcjFUyuj1SI+5li26VROn5vqEG+T1itccDCzKw2vUIqXDYbP6xfUXiITghYRMSneQjnOcBA0rDf50gN7esx6QGLP5PSPg0kFe3bkFRw+ktS4OOacvChwmGkERh7A/2BT0npKc5sYX8vl/Qi6QPV2qQG+2HAB6RG+GunZHlgH1KqrH1IX+Q+An5HGokyyQGL/KHwT8DZklbuoMacVUkjJm5rYd6zwNmkGig/BWYiBS3uA86NiCcrll+b9H9/WAfsp5mZtZPcqWFuYHnS+/rqpMaHv+d7en/SPe5nwHSkYMU3wB4RcV3F5taQ9HREfBcRz0s6lRS4/qz0fCGpB+meszOpp3Zr27MqyI3P+5Du4bcCNwAP5IbHBUiN1vtKejsiHlUbCykXy5YaMd0IVSU5aDgyIr7Lkw4mBSP+XrHoWFJD5Kak2mQbRcRXkrpHxBjS5+xNSD3nr4qIZ3LP+KKh8lek1/tBkv4dEY+V9qHoqR1K9WtWB3YBdiC9N/w+It5r94O3FuVOR6cDPSUd28r3yh8oBS9ulXQbsKWkAyOlkC33sL+a9L6/M2mk/P9Vvgfka8IFtWuY7xNWa+RRN2ZmVqskXUNqSFlgavxiI2kWUm+3myNinw7Y/tnAUcBc5calydzWDaReegvlHlNmZlaDcqPiV6QRgO8AL0XEThXL/B+wDanx8WTgtMqGB0m/AXYDdo+IJybwfAvl5fYkFdI8NyJ+1X5HZFNK0hyk9FyNwCER8X6eviGp08WP87wrgMMiYnS5d7x1DZK2Jo2k2AX4a/n85feFgcC/Sw2HewLnkVKHrgm8E6mIdn0OfO4LXAr8MyI2L22rITdiHka6fjaLiDsrrxlJy5LSAe0DzAqcERFFulvrJJJWBR4DXo2Ipdq4bnEtLAM8Qrq3rBIRX1SM5tuMVC/vkIi4qJ0PwTqB7xNWa5w30MzMrEoi4mvSKJHd89D89rYF8FQ7BCsWJfWKO83BCjOz2qBSIdzStIbcgHQCKWAxD2kUI0pFLYvc4ZcCI0kjH08vByskLZRHUhxIauR6reI5KnNXrwscDrwE9HewojrUQo2wQkR8AZwTEVtExPuS+uY0m3eTGqsPBv5LCmL9tLXtVDyfSr83KNUXs+oaQxqFvB8peAg0ByvuJRXS/klp+etJI7bnANbIwYoGUmpQIuIyUiP1ppK2LW2rMc8/H5glIu7Mfxeph+aTdACp5/1xeRtzO1jRsSrvByXPkOof/lgpve8k1yDIwQpFxEuk9ILzAcfm2U2l5f5B6tTkYEUN833CuhIHLMzMzKrrD8BppHRL7SoiFo+I1dphU/OQeuBe3A7bMjOzKVRKqdCkVMB2gKQFIxfSjYgLgBdJNZn65NWaUzBExAPABXn+S5KOkrSapKNJuciPItVmOrUyUF1qlCwaIu4F1oyITSPi4w48bGtBKS/8uPz35pLWl7S0pOlLiz6a5/+YVFR9Y1K6z71yipeLSb3gd5bUL6fz+UF7QXHeS9fBMqSA1SYTaDC1DlR6Ld5P6iG9FrBt0TiZX/fFZ7idJc2Up48FLiSlaTolTyuuoyK4eQqp7s3ROV1UcxqX3JA9tNwIKmkp4Pz8fEF6b9g2N4ZaByi9JpsqXvPlOgE35knr5GXb0iu+uL7OBN4ldbRaIb9HNBfQjoh3WwqkW/X5PmFdkS8UMzOzKoqIURFxSkQ8Uu19aU1EPBARp+acxmZmViWlRocmSTNKugp4GfgX8JakIyXNmxc/Ij/+XFKfvE65MekcUqqW2Ug1jR4j5a1fAjg4In4WEc1FeiuV8pt/EBEvt++RWiVJqysVLh6vJ3Upvc8Okt4D/kYKIr0I3CZpzvJypAaotYAzSCMnX8rTe+bHFUlpfMrrNCs1QM2bUwZdRrp+lmT8vPbWSXKjYbdIdStuI9UpOwxYrLTMLaSUPVuT6tcU0+8HrgPmlXRcnlxXCm7eT0oztQKpwHb5tV88jivtzrfAzMDeEbF8RDze3sdr4yu9Jo8FXi6NhlEpwPQcMBxYXKnmUFu2X6QJ+wr4Lanu3W/yvMbKZVt637DO4fuETU1cw8LMzMzMzKwLyb0XrwY2Ah4EhpDy089DCkSckfNL30pKD3hwRFycG7CiYlvzAT8CGoB6Ur765l7WlQ1S1vkkHUPq3Xx8RJxeml5H6oR4DKkB8QlS8Oo5UmPSnqQes0dHxItKRVWfJI3qXCynpiy2dRQp/eNypF7U60euH1a+biTNSEoD9nNgc+AV4NCIeLCjjt9aV/kaldSTFIg8h5T67fiIGJHnLQs8RbpO9oqIt/P0JYB/kNL9zBURg4ue8zkl0CLAtsCZE+qZ39L7i3UOSeuQ7gUAXwObAU/H9zUmFicFs2YBFoyIEW05XxXvAScDl3lEXW3xfcKmNg5YmJmZmZmZdQGSNiD1cn4c+BWpVsWfI+JbSUuTghjzAL+IiFskzU8qvP06sGlEvFOkk5rI8zhQUUNyg/K/gdOBK2L8miMLkGoE/I9UKPXlPH1W4NekNBzXAMfkhujrSA1I20fE3Tmdz2bAtcCRQHdgTERcXrEPDcDKwI7A7qT89cdGxCUdduA2yXKv+iOAz0kNjX1JdWy2iYhBpeV+m5erbNQ8itQD+rqI2KN4n6hs1J6U9w/rOBP6/5f0KqlhupHUE/6XEXFraf7fgK2AXSLiL20NMFU+t6+F2uL7hE1tWi24YmZmZmZmZrUhj6pYk1Twci7ggUhFcQGIiJdzSpd/kfJLPxER70k6l1STYn9SD8qJBSvkYEVtiYjXJK0YEYNbmL0z6XrYrtQItSSwCelaAXgtN0IJuIOUEuh8SbeR0vdsQCqmel9EvFv5BJIWIvWw3xeYn5TH/IhINRCsSvL57EVK07M/qYbFW8B7pJQucwL7SXolIr7Mq/2W1EN6V0n3RcRTefqVpGtmN0lXRk5VWhGskBuoqysHkbpHTtOar4Eihdffgb1JPdv/AZwjaVikmkUAfyYFLFaT9LdoY6rXigZwXws1xvcJm9q4hoWZmZmZmVmNyw2HlwIPAKsDRZqXhtIy/yYVytyc7/PU/woYTGqgXDOv0+r3QKd0qU25IWmApEclbQzNhZH7k3LTvytpZkl7AX8CzgLeABaJiHPzNgK4k9Sjdn7gUGBX4FVgh5YaobJNgNNIo3UWjYiD3QhVffl8LkpqjLwHODAijoqIw4AtSSlftgc20vf1bz4jnctFSe8J3fL0r0m1LIaR0ga19nzWiXLjcfnvA4DHJW1eTCoFmF8AZgfmJTUcjwBukLRc3s5rwEfA4qTRN5O9H74WapPvEzY1ccDCzMzMzMysC8iNjZcCASwsqV9EjKsIQJwKjAJ2kbRUbnw4hpQi5vC8HfeM7Zr6k4JV2ygVUm8ExgB9gIOBP5KKm/YDNouIjUp1CmZTKsw8MiIuBJYGNgXWjIjNI+L9ykBWqZHyDmBARGwQEf/rjAO1SbY10JtUU+BNgHyeXwNOBj4gve7nLa1zNfB0XnfjYmJEXA3MHhG3d9K+WyuU1FWMcJkDWBhYHrhY0qIV7+VvAJ+R0oC9CBxIClpcB6xHakh+H1ifFNiYYPC6rFSboJ+k2abw8Kxj+T5hUwUHLMzMzMzMzLqOfwO3ACuSUn+MF4DIDZW/A1Yhp3qIiGuAS0g1L6zruo6U8mt7UjF1gFuBccAvSSNrjoyIhSLizmKlPArnb8AB+W9FxFsR8UBEvJCn1VcGsopGyoh4v0gRZDVnhvz4CTSf63F52v3AP4EVSI2XPQEiYjSp+G5f4BBJfYqN5QBofSftu7UikiZJi0u6PE/7IiKOBC4E5gaukbR2aZ1XgDeB5STNGhGPk94r5iA1UvcF7s6L75DXaTV4XR5VIWkGSQNJqcOu8TVS03yfsKmCAxZmZmZmZmZdRESMAM4njbLYNeeNruwpez6pAfOXklbP6x0YEf+tTO1hXUduGDqVVLdgV0lzAS+RGqcagOMi4vzyOpKWA24gNVoPKW2nctuuW1IlkqbPj5NTY3RIfvwppIBDRERubBxJSiEHsA+wRLFSRNwH/B44NyKGlzfoa6E2SDqNlIZnL0mHlmadQKoPsDxwrqQ1SvP+kqfPApAbmg8iFUm+hTTiBmBJSTO38rzK64akOkkr5ue8gTRS42lfI7XL9wmbWjhgYWZmZmZm1rU8DVwODAR+WhRALTU0fU2qXXF67mULpKCGc493bZGKJF9KKoC6XaRiypeRag8cK+nAnLZlEUkHkYJXA4ELgNuqs9dWSd87E3hOUq+IGDfRFb9fv2jL+SswEthA0qJ5Xj1Q9IB/mdQAuSiwf8VoiiMj4m6sVs2eH4cBZxTnLiKGAWeSAk4rAVdImjMv+yrwHbBLaTt/A35BShV0JjAaWAjo1tKTltI/LQQcQuqx/0tSXYO+EXFKOx2fdRDfJ2xqIH9eNTMzMzMz61pyY9I9wFBg34h4Lgcu/AVvKidpHuB54Atgp4h4WdIOpF7XM5OuCZHSBX0IHBYRd1Rpd20CJN0PDAC2johbJ2P9nsAfSCMoLohUcLs8/9ekWgZvAWsDS0bEq6X5fs+okgn93+eA1EnAXqQ0T+uQ6pTsX15P0l9I6Z3uJdUqegd4glSrYscc3Ci2uSFwM6mWAcCKEfF8C889O6nOxd6kERVPAr/IdTGsi/B9wro6ByzMzMzMzMy6mDya4kBSL9sLgRNyuqgfLOcGyamPpMOB80g9Y4+KiEZJiwObAPMDY4GXI+La0jp1E8pZb50n54JvzI2Ky0XEP0rz2nSeJC1GSveyAHAKqc7AWGBD4Ajgz8AjwPBc48aqrDj/rcxTTse0F3A2KRBxAqlw+tIR8YqknhExKl8/JwI/JwUWNiONrtsFWC8i3qjY9qGk94hrIuKvLTz3ovk5NwSGA0dExI3tc9TW2XyfsK7MAQszMzMzM7MuSNJspIbI74CfRsRnVd4l6ySSegGPA/2APSPiror5zY1Okhrakm7I2teEGqdLy/QHNomISyfzOdYhBSbmAr4GviEVZn4N2CYi3srLuTGyRuRRFKcBDwIP5Mbk8ut2MdL525RUk+I6YFBErJfnF4GNeYDjgP2Ah0ipf/4MbBQR9+UUYUUR724RMba0D+MFtPP7yqfAJRFxbIf/J1iH8n3CujIHLMzMzMzMzLooSYtV9qK1aYOkzYDbgTtIjVFfVxTMbf69irtpmaS5I+LjFhqNu5GK4i4ODIiIhyYlyNHC9hcFdiIVXZ4RuCsizmrHQ7B2kgNM95KKIH8CXBURJ1Qs82NSAOIG4HDgUWA1UgDq7+XrKAc//gFsTEr/tQhwfUTs3srz/+D6Khqscz2Vke14uFZFvk9YV+WAhZmZmZmZWRfn3pHTJkkPk4rpDoiId6u9Pza+3Bg4H/AAaeTDqsXrVNJWwFsR8R9JewBXAfdHxIbFupPbiCipR0SMzr/7vaGKWjqPkhYE/kcaCfM1qY7A7cBxEfF5abm3SCl7tpb0M+AW4IOImL/YNlCXR2csARwNFEGK14CfRMSHHXqAVvN8n7CuqK7aO2BmZmZmZmZTxg2S06xtI2J+N0LVDkkrSFoVmnstDyMVv10eWCfPfwm4CVg3L3cNcA+wfg5ewBS010TEaEl1ubHc7w1VkFMxFb3Yu5WmN0TEO8BZQG/gDeBcYE/gBklLlTbzLLBs3s6tpKLZ/SUV6ZrqipESuT7JicCded5vHKywzPcJ63I8wsLMzMzMzMysC3Mv+togaWngReAxYMOIGJWn/5gUkJge6AO8DFxO6lX/Sa4vsDppJMZ7wEoR8Y1rTnQ9LdSFOBuYDjgtIj4vzmkOaHwKzAasSeoB/0dgKLBvrj9xHimQsWFEPCtpOVKaqF7AXBExuDK9k6SewGin+LFKvk9YV+IRFmZmZmZmZmZdmBuhakNEvAz8G1gD2K00ayAwJylYMYhUa+KPEfFREZCIiMeBq4FFSal9ACap0bnIQ2/Vo6SuCBRI2lHSR8BRQCNQnOem3HDcCByZVz8xIm4EtgLGAjdL2hN4mHTNjMrrvgBcBNQDZ+d1K6+R0XlUR0NHHat1Tb5PWFfigIWZmZmZmZmZ2RQoUgABh+bHAyT1z783kVL1/I+UGmpIblSuq1j3dFKv+wMlLZ6XKea1qtRIPmvRUF1s2zpHJE2SlpH0BPBnUh2JHYHTI2Jwadlx+fF64GlgQ0l7RcQgYEtSKqgrgEMAASuVnur3ebt7SFqzcgROcS24cdrMujLfwMzMzMzMzMzMpkAufFwfEW8BFwDLAPvneecD25Eam/uQAhOURlc05t75H+VlZgKOL+a19HzlURWSekvaFPgdcFB529Y5JDVIugR4AZgFOBg4KCJuKoIVxTnLozGKERBFgOtoSX1zLYo9SXUtBgDfkYIW5GtkMCmdGMCsnXBoZmadzjUszMzMzMzMzMwmQ7mGQKk+QU/SSIlRwOYR8UyePxepsXljYN2IeLhyO7kh+0lgSWDLiPh3xXM010jIoy9WJAVD9gIagP0i4s+dc/RWkDQbcD0p/devI+KsFpaZOSKGlP4urpfrgF2AsyPi2NL8/YDBwIMRMaTi3HeLiLEdfFhmZlXhgIWZmZmZmZmZ2RSQtCTwRtGILGlf4FLguojYo7TcNqR0Py8CGwCN5QBEDlpsDdwMPBsRK7fyfIsCmwH7AQuTAiGHR8R3HXOENjGS1gL+ATwIHAh8QwpOrUUaLfEN8Djw11xEuzjfcwCfAN8Ca+VaKM0BjRaeR0WdCqd+MrOpkQMWZmZmZmZmZmaTQVJv4C/AcsBmuTByMe8lYAlg+4i4NU/rBfwB2BvYKyKuztPnABaMiCfz3ycBN0bE6xXP15cU6NgHWBt4BDggIl7tyOOc1pVHuUxgmV7AGaRgxWlAX1J6p2+Ar0ipvvqSghNbA0+XglW/zuvcGBE7ddBhmJl1CQ5YmJmZmZmZmZlNhpz+6RDgVOAs4LcR8U2etw6pt/0DwM9K09cErgS6A78AugE/A9YnBR/uLG2/SBskYGXgKGBT4AvgsIj4e6cc6DSqIg1TD1L6rX9HxOCWRkBIWoI0ymJBYCRwHnA+EKR6FGeTaps8CPwiIt4trfse0J+UCuyOSQmSmJlNjVx028zMzMzMzMxsMkTEKOAW4GHSqIkVS/MeAm4F1gN+Xpr+KHAhqWjyncBNwI7AnyqCFSo1iDcAywKbAGdERH8HKzpeKVixHSlIdDWwbZ7XUmHz/5EKp78BbBwRJ0TE18DQiBhNKqZ9E7AhsHTedo+87hH58cQcDHGwwsymSR5hYWZmZmZmZmY2EZL2AnoAl0fE2FItAZEasa8m1Z74VUR8lteZF3gfeJ2UMurtPH06YDVSAGIocFFRkLncq7/i+ecChkfEiA4+VMsk9SEFok4C6kkdf58G9omIN1sZZTEXsDipXsXoynNZqm9yaUT8omIUx/mkuifPd+yRmZnVLo+wMDMzMzMzMzObAEmLAb8GTgEWhdT7vtTY/BDwf6TAxdo5iEFEfEiqa7A4sG9pkyMj4n7gmIg4NSKGSKpvLViRt/WJgxWdbm3gOGAEsA2puPlapBExLY6yyOfpgYgYVT6XkrrnX78sP+brqD7/flhEPC/J7XVmNs3yG6CZmZmZmZmZGSCpoeLvOoCIeAP4LTAdsH8eIdEsIj4HrgeGkXrkL1ya9xvgY+BASetXrDeueJ6IaGwtWGFVM4J0XleLiLtIAYtPgZ0krQHfXyOViqBV6Roak2f9LD8+XSxbTv9UkQrMzGya44CFmZmZmZmZmU3TSo3KRQBhRUm9Kha7C7iHVI9ilbx8lBqsX8rzBwA/qVj/FFKwY6ZivfKG3UBdmyJiEHByRLyfJ70GXAAsAuwqqUepKHrlulEOPkhaWNI5pMLd10fEP1t5TgetzGya5oCFmZmZmZmZmU3TSo3KO0h6C7gfuA/4ZWmZ94AbgNHA4ZJmLdbNIyS+Aj4h1TrYDliytO7lwOwRcUvnHJG1l6K2SP59HOkaeI6UImrTiazeQ9JCko4E/ki6nu4jBbDMzKwFDliYmZmZmZmZ2TRFWfF7ftyB1Hv+a2AQsARwVi6SXHgQuInUUP1TSd1gvBESTcCzwBrA3pJmKFaMiK+KOhUdeWzWsSLiY+A8YBZgd0n9KkbalJ0HvAqcCCwE7B0RPy2Kr5uZ2Q/JI83MzMzMzMzMbFohqaGU+qk+Ihol9QAeBj4AjouINyWtBlwEzAf8FHg6N0yvC1wKjAUOjohBOXCxBXAFcBqwFPDviPhrJx+edQJJMwJXA5sBh0fERa0styqwPfAC8OeiVkVx3XXW/pqZdSUOWJiZmZmZmZnZNEfSL0i1KJ4HPgJ2A/bNBbSLZXYlBS3+DRwQEV9L6k4qrH0uMJw04qIPsDapxsGOETGiM4/FOp+ktUh1TV4lnfO3Jf0IWDoibiwt1y0ixubfHagwM5sIByzMzMzMzMzMbKqWa0wUdSqWAP4KLA2MAxqAkcAI4Ec5dVO3iBgraQ7gTGB3YAfg1jwiY4Y87RxAQE/gTuDAiPig8jlt6iNpOuBk4EjgfOB1YA9gVeAnEXFPaVmBC2qbmU0KByzMzMzMzMzMbKonaUGgG/AzYFvgMlJNit2BnwONwC4R8VDFehuQUj19CmwbER9VbHMBYGhEPJenOVAxFZOkIvAgaUnS6JtZgR6koNcJEXF+9fbQzKxrc9FtMzMzMzMzM5uqSVoF+B9wOqlH/GUR8aeIeJM0SuICYC5gQ0m98zr1efXHgOtJ6aO2kdSQ5ysi3omI+0vBinoHK2pL6Ty2i1KwYhVgX9J10wO4GOhXBCtcXN3MbPJ4hIWZmZmZmZmZTdUk9QWuAQYCbwFL5pRPDRExTtKipELaiwC7RsSgvF5dRDRJWjbPXwpYNSL+U4XDsDbIAYO6UqHr+YFvge8i4tvySInJ2O5qwHXAgsADwEER8Xqe3wA0Ov2Tmdnk8QgLMzMzMzMzM+sSJrfXei6k/VtgGKlH/GLFrPz4P1KKqFmA3XKAo7z+i8DNwMPAF5OzD9Z5imBErjeysKSbgfuBp4GHcpqv5pEybdl2DkSMAp4BtouIDSLidUl1OcA1zsEKM7PJ54CFmZmZmZmZmXUJpXQ8PSdj9adJveKnBzbM22ss1ZwYBPwN2A5YKzd6N5VSCv0xIjbOwQ+rYREROYBwNPACqRD2m8DzQD/gJmCnYtnJeIoXI2LHiPgbfJ8KzOnAzMymnAMWZmZmZmZmZtYlKDkDOENSj7asGxHfAFcCnwDbSlq6Yv5nwLXA18B+wKJ5emN+HJn3oV1rIlj7k9QN2B84DLgV2AvYLCK2BtYC6oF9Ja2Zl29T+1gRmCjWK64RMzObcg5YmJmZmZmZmVlXsQpwDLBhRIyejPVfIxXYXhXYSlLPilEUzwJ/B9YH5m1pA26c7hJmBjYhpW06PiLuybVKNgTuAPoAKwM7S+qRr4E2pxvziAozs/bnottmZmZmZmZmVlNKaZoqp9cDTwIrAGtHxKNtLZ4saV5SUGIWYJ+IeKBi/iJAQ0S8NkUHYR2qKJg+gflrR8TD+fe+pEDVtqS0UFcD+wBzA/tFxN8ndh2V5+fC2nURMab9jsjMzMAjLMzMzMzMzMysRhS93HOP9+kr5tXn0Q035knr5GXb2hPzI+A8YD5gG0mz5e0X6X3eiojXcg2EySrybR2ndJ7G5b83l7S+pKUrrplH8/wfk66ZjYFzgL0i4mLgYmBW0iiLfkXdixaer7gmi2DFMsDhwCZtTSVlZmYT5zdWMzMzMzMzM6sJpUbhY4GXJW2b/1YpFdNzwHBg8bbWsSg9x93A7aQ6B+vn6U0VyzVNZkFmaweSVpc0e/69uf2qVD9iB0nvkQql3wu8CNwmac7ycqRAxVrAGcBpEfFSnl4Ubl8R2LpinWala3JeSfsClwFnA0sCDmiZmbUzByzMzMzMzMzMrGZIWgc4HVgAuETSaozffvFZ/hkIdMvrtKnhOCKGkHrYX0dq7LYaIukY0giJfWH8IteSGiQdR0rr9A7wa1LQ6Y/AGsC1kpbNy3cDdgSGAJdFxIjS0/QEXiDVKjlC0vyl51fp9xklbQFcCFwK9ALWj4jTXM/EzKz9NVR7B8zMzMzMzMxs2tNanYqIeEjS66QgRSNwA/BL4NY8/3VJrwBbAZsDf5nMXXiwqF/R1joY1uHuAH4BDC5fJzlV2HzAAcBTwGER8TKApJeB0aR0TYdIOiYiBkv6L7AQsBJwd64/sRlwPHAk0B0YExHvFU+e00M1kApz7wjsDjQBB0bEJR1/+GZm0y4HLMzMzMzMzMys0+XG5+5F4eLcq70u91r/O7A3sC7wD+AcScNKBbL/TApYrCbpb5NT/LiU6qfFwIlVT64hsmJEDG5h9s7AXMB2pWDFksAmwDZ5mddysEKk4MfPgPMl3QbMDGwA/Be4LyLerXwCSQuRCnTvC8xPGo1zRESMbb+jNDOzljgllJmZmZmZmZl1uMq0TZIOAB6XtHkxqZRi5wVgdlK6nm2BEcANkpbL23mNVDx7caBNdSwq98PBitqUAw4DJD0qaWNIhdeB/qQaJu9KmlnSXsCfgLOAN4BFIuLcvI0A7iSljZofOBTYFXgV2KGlYEW2CXAaKeXUohFxsIMVZmadwwELMzMzMzMzM+swSurKKZckzQEsDCwPXCxp0YrAwRukOhXbRMSLwIGkoMV1wHqkhuT3SbULflCYeUJKIyv6SZptCg/POlZ/YHVgG0l9ckBrDNAHOJhUt+IyoB+wWURsFBFvA0iaTVK3iBgZERcCSwObAmtGxOYR8X7lNVMKZt0BDIiIDSLif51xoGZmljhgYWZmZmZmZmYdJpImSYtLujxP+yIijiQVMp4buEbS2qV1XgHeBJaTNGtEPA5sD8xBaqTuC9ydF98hr9PqSImKIsozSBoIXJmft74dD9fa13XAv0jnfos87VZgHKmuyebAkRGxUETcWayU60/8jVTroqhR8lZEPBARL+Rp9ZXXTBHMioj3I+KRjj00MzNriQMWZmZmZmZmZtahJJ1GSsOzl6RDS7NOINUHWB44V9IapXl/ydNnAcgNzQeRiiTfAnyQl1tS0sytPK/yuiGpTtKK+TlvII3UeLqUhspqTA4gnAr0AnaVNBfwEimI0QAcFxHnl9eRtBzp/K4ADCltp3LbPu9mZjXIAQszMzMzMzMz62iz58dhwBmS+gBExDDgTOD3wErAFZLmzMu+CnwH7FLazt+AX5BSBZ0JjAYWArq19KSl9E8LAYeQeuz/klTXoG9EnNJOx2cdJCKeAi4lFcreLiK+JKWBGgYcK+nAnN5rEUkHAecDA4ELgNuqs9dmZja51EKQ2czMzMzMzMxskuWUOy02MOQ6AScBe5HSPK0DXBYR+5fXk/QXUnqne4FjSHUqniDVqtgxBzeKbW4I3EyqZQCwYkQ838Jzz06qc7E3aUTFk8Avcl0M6yIkzQM8D3wB7BQRL0vagTQ6Z2ZgKCBgBuBD4LCIuKNKu2tmZlPAIyzMzMzMzMzMbLLlWgCtBSuU6wS8D/Qgper5ENhX0pI5VVPPvPjRpLoS6wMXAfXAP4FlSEWVm0XEvcCJpODGzq0EKxYl9cS/AvgRqaF7dQcrup6I+Ig0ouZHwB75mrsRWIM0YuYG4Cpg74hYsAhWTGohdjMzqx0eYWFmZmZmZmZmUyQ3DJ8GPAg8EBGNkuqKosaSFgNeAzYl1aS4DhgUEevl+crBi3mA44D9gIdIAYc/AxtFxH25QHZRxLtbRIwt7cN4ozwk9QI+BS6JiGM7/D/BOlQ+n4+Tgld7RsRdFfPL11tDRIyrwm6amdkUcqTZzMzMzMzMzCabpHWAUcCvgKtJIx8oGo+zBuBrYCNSAOIJYF1JW5XmFz3pDwTuIqWOOinP3zXPbyy2WwQrchCDimBFQ0SMBOZ0sGLqkM/nCUBfYD9Js0AKVBUjeUq/O1hhZtZFOWBhZmZmZmZmZpNEklqY/CEp4PANMBY4QNIVkvoWC0TEf4EhwLw5sPDbPOt3ef7Y3NZcnwMSvwSuBRbJy60oad6W9ikiGluYNi4/jpyMw7QaFRH/AB4FlgVmzNOiCFaVfzczs67JAQszMzMzMzMzm6DyKAZJ3UrTGyLiHeAsoDfwBnAusCdwg6SlSpt5ltTQTETcSiqa3V9SMQKirgg+RMRrpJEad+Z5v4mIDzvo8Kxr2TYi5o+Id6u9I2Zm1v5cw8LMzMzMzMzMWtRCXYizgemA0yLi86JuQA5ofArMBqwJ9Af+CAwF9s31J84jBTI2jIhnJS1HqlPRC5grIgbnERaNpefrCYx2r3mr5DoVZmZTJ4+wMDMzMzMzM7Px5PRMdUWgQNKOkj4CjgIagaKORFNuOG4EjsyrnxgRNwJbkVJE3SxpT+BhoA+p3gUR8QJwEVAPnJ3XrQxMjM6jOho66lita3Kwwsxs6uQRFmZmZmZmZmbWIknLAJcCqwD3A1cAD0TE4FaWfxJYGdgnIq6UtARwAbA+8CAwANgrIq7Oy88ODAKWANaOiEc79ojMzMyslnmEhZmZmZmZmZmNR1KDpEuAF4BZgIOBgyLipiJYURTgzqMxihEQh+bHoyX1zbUo9iTVtRgAfAcU69XlbV2e15m1Ew7NzMzMaphHWJiZmZmZmZnZeCTNBlwPDAR+HRFntbDMzBExpPR3Uc/iOmAX4OyIOLY0fz9gMPBgRAwp18eQ1C0ixnbwYZmZmVmNc8DCzMzMzMzMzH5A0lrAP0ipnA4EvgE2BtYijZb4Bngc+Gsuol0fEY2S5gA+Ab4F1oqIl/P26iKiqYXnUVGnwnUJzMzMpm0OWJiZmZmZmZlNY4rgwkSW6QWcQQpWnAb0JaV3+gb4CpgpT/sE2Bp4ujRi4td5nRsjYqcOOgwzMzObyjhgYWZmZmZmZjaNqEjD1APYDvh3RAxuaQRELpr9D2BBYCRwHnA+EKR6FGcD+5NGYfwiIt4trfse0B/YMiLumJQgiZmZmU3bXHTbzMzMzMzMbBpRClZsB3wBXA1sm+f9IF0T8D/g98AbwMYRcUJEfA0MjYjRpGLaNwEbAkvnbffI6x6RH0/MwRAHK8zMzGyCHLAwMzMzMzMzm0ZI6iPpCOAKoAEYC2wvadE8f7x2glwI+1ZSWqinJSlPj/z4MfAYqX1hYF5tTJ73d+ACYJ9WgiFmZmZm43HAwszMzMzMzGzasTZwHDAC2Aa4nFREe0doeZRFRHwSEQ9ExKgo5ZWW1D3/+mX5MRfQrs+/HxYRz1cGQszMzMxa4g8MZmZmZmZmZtOOEcD1wGoRcRcpYPEpsJOkNeCHoywKxeiKYn5EjMmzfpYfny6WLad/ynUzPMLCzMzMJsoBCzMzMzMzM7NpREQMAk6OiPfzpNdIaZsWAXaV1CMimorgRMW6UQ4+SFpY0jmkwt3XR8Q/W3nOaGm6mZmZWSX5c4OZmZmZmZnZtEvS3MBtwALAfhFxSw5M/KDBQFJPYG5gS1LNig2Au4BDIuLtTttpMzMzmyp5hIWZmZmZmZnZNCwXzj4PmAXYXVK/PJqipTaD84BXgROBhYC9I+KnDlaYmZlZe2io9g6YmZmZmZmZWdXdRRplsRmpGPdFrdSduB4YA7wA/LmoVSGpvly3wszMzGxyOCWUmZmZmZmZmSFpLVLg4lVgx4h4W9KPgKUj4sbSct0iYmz+3YEKMzMzazceYWFmZmZmZmZmAM8BlwBHAgdKeh3YA1hV0tcRcQ9ARIwtinI7WGFmZmbtySMszMzMzMzMzKZh5QLbkpYE/g3MCvQARgAnRMT51dtDMzMzm1Z4hIWZmZmZmZlZF9LeaZhKwYpVgJ2BufKsi4FjIuK7PL85sGFmZmbWERywMDMzMzMzM+sCchqmulKh6/mBb4HvIuLbyQ0o5O2uBlwHLAg8ABwUEa/n+Q1Ao4MVZmZm1tHqqr0DZmZmZmZmZjZhRTAiIholLSzpZuB+4GngIUkbkDslFvUlJlUORIwCngG2i4gNIuJ1SXWS6iJinIMVZmZm1hlcw8LMzMzMzMysC5BUB/wSOB4YCrwCfAesAvQCjoiIayd32xHRVPq7XdNOmZmZmU0Kp4QyMzMzMzMzq3GSugH7AIcBtwI3AA9ExDhJCwAvAPtKejsiHq0MQExMsWyxnoMVZmZmVg1OCWVmZmZmZmZW+2YGNiGlbTo+Iu7JwYoNgTuAPsDKwM6SekREU1tTQ8H3gQszMzOzanDAwszMzMzMzKwG5OLWLYqIL4BzImKLiHhfUl9JNwF3A6OBg4H/AtsAP53E51Pp9wZJ3afoAMzMzMymkFNCmZmZmZmZmVVRKQ3TuPz35sC3wGDg7Yj4Ni/6aJ7/Y+AiYAXgHOCvEfGSpDHAn0ijLB6PiM9aSg1VKuAd+e9lgI2AtyTd4VEWZmZmVi0eYWFmZmZmZmbWCSStLmn2/Hvz9/FS/YgdJL0H/A24F3gRuE3SnOXlgI2BtYAzgNMi4qU8vWd+XBHYumKdZqVAxbyS9gUuA84GlgTanEbKzMzMrL04YGFmZmZmZmbWwSQdQxohsS+MX+Q6p2M6DrgaeAf4NbA+8EdgDeBaScvm5bsBOwJDgMsiYkTpaXqSim/PCxwhaf7S85fTP80oaQvgQuBSoBewfkSc5mLbZmZmVk1OCWVmZmZmZmbW8e4AfgEMLqdpysWx5wMOAJ4CDouIlwEkvUyqT3E4cIikYyJisKT/AgsBKwF359oXmwHHA0cC3YExEfFe8eQREXm5lUkBj92BJuDAiLik4w/fzMzMbOIcsDAzMzMzMzPrYBHxmqQVI2JwC7N3BuYCtisFK5YENiEV0QZ4LQcrRAp+/Aw4X9JtwMzABqSi2/dFxLuVTyBpIWBb0giP+YGLgSMiYmz7HaWZmZnZlHFKKDMzMzMzM7NOkAMOAyQ9KmljAEn1QH9gOPCupJkl7UUqnn0W8AawSEScm7cRwJ2ktFHzA4cCuwKvAju0FKzINgFOI6WcWjQiDnawwszMzGqNR1iYmZmZmZmZdZ7+wOrANpIei4jhksYAfYCDgQWA7YD3gM0i4s5iRUmzAcMiYiRwoaR/k+pVDImIF/Iyzemm8t/KQY47gBcj4pFOOUozMzOzyaD0ucXMzMzMzMzMOlpO6fQPYF3ggIi4XtL6wF15kbHAcRFxfsV6DcB9wN8j4oJSIKK8TL2LZpuZmVlX5pRQZmZmZmZmZp0kBxlOBXoBu0qaC3gJ+BcpC0JLwYrlgBuAFYAhpe1UbtvBCjMzM+vSHLAwMzMzMzMz60QR8RRwKalQ9nYR8SVwGTAMOFbSgZL6SVpE0kHA+cBA4ALgturstZmZmVnHc0ooMzMzMzMzs04maR7geeALYKeIeFnSDsDFwMzAUEDADMCHwGERcUeVdtfMzMysUzhgYWZmZmZmZlYFkg4HziONoDgqIholLQ5sAsxPqmfxckRcW1pnvKLaZmZmZlMTByzMzMzMzMzMqkBSL+BxoB+wZ0TcVTG/OTghqSEixlVhN83MzMw6jWtYmJmZmZmZmVVBRIwETgD6AvtJmgVAWUQ0lX53sMLMzMymeh5hYWZmZmZmZlZFkh4G+gMDIuLdau+PmZmZWbU4YGFmZmZmZmZWRZL6RsTn1d4PMzMzs2pzwMLMzMzMzMysBrhOhZmZmU3rHLAwMzMzMzMzMzMzM7Oqc9FtMzMzMzMzMzMzMzOrOgcszMzMzMzMzMzMzMys6hywMDMzMzMzMzMzMzOzqnPAwszMzMzMzMzMzMzMqs4BCzMzMzMzMzMzMzMzqzoHLMzMzMzMzMzMzMzMrOocsDAzMzMzMzMzMzMzs6pzwMLMzMzMzMzMzMzMzKrOAQszMzMzMzMzMzMzM6s6ByzMzMzMzMzMzMzMzKzqHLAwMzMzMzMzMzMzM7Oqc8DCzMzMzMzMzMzMzMyqzgELMzMzMzMzMzMzMzOrOgcszMzMzMzMzMzMzMys6hywMDMzMzMzMzMzMzOzqnPAwszMzMzMzMzMzMzMqs4BCzMzMzMzMzMzMzMzqzoHLMzMzMzMzMzMzMzMrOocsDAzMzMzMzMzMzMzs6pzwMLMzMzMzMzMzMzMzKrOAQszMzMzMzMzMzMzM6s6ByzMzMzMzMzMzMzMzKzqHLAwMzMzMzMzMzMzM7Oqc8DCzMzMzMzMzMzMzMyqzgELMzMzMzMzMzMzMzOrOgcszMzMzMzMzMzMzMys6hywMDMzMzMzMzMzMzOzqnPAwszMzMzMzMzMzMzMqs4BCzMzMzMzMzMzMzMzqzoHLMzMzMzMzMzMzMzMrOocsDAzMzMzMzMzMzMzs6pzwMLMzMzMzMzMzMzMzKrOAQszMzMzMzMzMzMzM6s6ByzMzMzMzMwmgaS5JR0m6R5JH0gaI+kzSbdIWqWVdfpI+p2k9yWNlvSepHMlzdDK8nWSDpb0H0kjJQ2W9FdJC3bs0ZmZmZmZVZ8iotr7YGZmZmZmVvMknQUcA7wNDAIGA4sAWwICdoqIm0rLTw88CiwL3AO8ACwHbAQ8A6wdEaMqnuNyYG/gv8CdwFzAdsAIYNWIeKujjs/MzMzMrNocsDAzMzMzM5sEkrYCvoqIhyqmrwXcTwoqzBkRo/P0k4ETgLMj4lel5YvAx68j4szS9AHAA8DDwIYRMSZP3xj4F3BPRAzswEM0MzMzM6sqByzMzMzMzMymkKS7SSMnVoqIZyUJ+AjoA/SLiG9Ly04PfAZ8ERELlab/BdgRWCciHq7Y/oPAusB8EfFBRx+PmZmZmVk1NFR7B2zKSOoBLJX/HAw0VnF3zMzMzKzrqAdmz7//pxgVYJNtbH4clx8XIaVzurscrACIiG8lPQYMlDRvRHyYZ60LfAs81sL2787z1wGun9SdkjTPRBbpDiwOfIG/T5iZmZnZpOuQ7xMOWHR9S5Hy35qZmZmZTa6VgGervRNdlaT+wAbAp8B/8uRF8mNrNSfeAgbm5T7Moy7mBF6JiJaCBsV2Fmlh3oR8OPFFzMzMzMymSLt9n6hrj42YmZmZmZlNiyR1I4146AEcUwo2zJgfh7Wy6vCK5dq6vJmZmZnZVMcjLLq+wcUvDz/8MAsssEA198Um0ciRI3n44ZSWeO2116ZXr15V3iObGJ+zrsnnrWvyeet6fM66pnfffZe11167+HPwhJa1lkmqA64B1gYuj4hJTtXUieadyPy5gSchfZ/o169fx++RmZmZmXV5n332WYd8n3DAoutrHi7er18/5plnYilqrRaMHDmS2WabDYB55pnHDTtdgM9Z1+Tz1jX5vHU9Pmdd08iRI8t/um5BG+VgxVXATsANwP4VixQjJVobEdGnYrm2Lj9JIuKjCc1PtcGTBRZYwN8nzMzMzGySVHzva7fvE04JZWZmZmZm1gY5WHE1sDvwV2CPiGiqWGxiNSfGq3GRC3N/CiwgqX5iy5uZmZmZTY0csDAzMzMzM5tEpWDFbsBNwK4TKJL9CbBGLqhd3sb0wBrAuxFRLor9EFDMqzQwPz48ZUdgZmZmZla7HLAwMzMzMzObBKU0ULsBNwO7tBKsICICuAKYATi+YvbxefrlFdMvy4+nSupeet6NgXWBeyLi/Sk8DDMzMzOzmuUaFmZmZtYuIoIvv/ySb7/9lrFjx072dpqamph11lkB+OCDD6irc/+KWudzVru6devG9NNPz2yzzTZerQKbbCeQ0kCNAN4EftPC/+ttEfFi/v0cYAvgGEnLAc8DywMbAc8A55dXjIgHJV0B7A08L+lOYE5ge+Br4OD2PyQzMzMzs9rhgIWZmZlNsYjg888/Z8iQIe2yraJ4V2NjI01NlWnhrdb4nNWucePGMXLkSBobG+nbt6+DFlNu/vw4A3BcK8u8B7wIqS6FpHWAk4CtgQGkOhXnASdHxMgW1t8P+A+wL3AoKThyK3BcRLzdDsdgZmZmZlazHLAwMzOzKfbll1+OF6yor6+foobRYt2GBn9U6Sp8zmpPRNDYmLIVDRkyhPr6emafffYq71XXFhF7AHu0cZ1hwOH5Z1KWbwIuyD9mZmZmZtMUf6M0MzOzKfbtt982/z7nnHMy00wzTfa2mpqaGD58OAB9+vRxeqEuwOesdg0dOpRPP/0USK9TByzMzMzMzKyW+dukmZmZTbGiZkV9ff0UBSvMrH3NNNNM1NfXAyk9lJmZmZmZWS1zwMLMzMzajfPjm9We4nUZEVXeEzMzMzMzswlzwMLMzMzMzMzMzMzMzKrOAQszMzOzdiaJ2267rdq7YWZmZmZmZtalOGBhZmZmVkXzzz8/ksb7Oeuss5rnDxo0CEnMPPPMjBo1arx1n3nmmeZ1AEaMGEG3bt248cYbx1tuhx12QBLvvffeD577+OOP75gDMzMzMzMzM2sjByzMzMzMJlFRXLy9nXLKKXz66afNPwcffPAPlunduze33nrreNOuvPJK+vfv3/z3DDPMwIorrsigQYPGW27QoEHMO++8401/9913ef/991lvvfXa9VjMzMzMzMzMJpcDFmZmZjbNWnfddTnkkEM4+uijmWWWWejXrx8nnXRS83xJXHLJJWy++eZMP/30nH766QDcfvvtLL/88vTs2ZMFF1yQk08+mXHjxk32fvTu3Zt+/fo1/0w//fQ/WGb33Xfnqquuav575MiR3Hjjjey+++7jLTdgwIDxAhOvvfYao0aN4oADDhhv+qBBg+jRowerrbbaZO+3mZmZmZmZWXtywMLMzMymaddeey3TTz89Tz31FOeccw6nnHIK9957b/P8k046iZ/97Gf85z//Yc899+SRRx5ht91249BDD+XVV1/lT3/6E9dcc01zMGNynHXWWcw666wst9xynHvuuS0GP3bddVceeeQRPvjgAwBuueUW5p9/fpZffvnxlhswYABvvPEGn376KQAPPvgga665Juutt954AYsHH3yQ1VZbjZ49e072fpuZmZmZmZm1p4Zq74CZmZlNnTa78FEGfzN6MtYMmiIAqJMAtWnt2Xv34B8HrznJyy+99NKceOKJACyyyCJcdNFF3H///Wy44YYA7LTTTvz85z9vXn7PPffkV7/6VfPIhgUXXJBTTz2Vo48+unk7bXHIIYew/PLLM8sss/D4449z7LHH8umnn/K73/1uvOXmmGMONt54Y6655hpOOOEErrrqKvbcc88fbG+NNdage/fuDBo0iB133JFBgwaxzjrrsMIKK/Dll1/y7rvvssACC/DQQw+x1157tXl/zczMzMzMzDqKAxZmZmbWIQZ/M5rPho+a+IJVtvTSS4/395xzzskXX3zR/PeKK6443vyXXnqJxx57bLwRFY2NjYwaNYrvvvuO6aabrk3Pf8QRR4y3L927d2e//fbjzDPPpEePHuMtu+eee3LooYeyyy678MQTT3DzzTfzyCOPjLfMdNNNx0orrdQcsHjooYc46qijaGhoYPXVV2fQoEFEBB988AEDBgxo076amZmZmZmZdSQHLMzMzKxDzN67x8QXatGUj7Boi27duo33tySampqa/66sJzFixAhOPvlkttpqqx9sqz3SK62yyiqMGzeO9957j8UWW2y8eRtvvDH77rsve+21F5ttthmzzjpri9sYMGAAN910E//9738ZOXJkc9qoddZZhwcffJCmpiamm246VllllSneXzMzMzMzM7P24oCFmZmZdYi2pGUqa2pqYvjw4QD06dOHurraKrm1/PLL88Ybb7Dwwgt3yPZffPFF6urqmGOOOX4wr6Ghgd12241zzjmHu+66q9VtDBgwgNNOO42//OUvrLnmmtTX1wOw9tprc9lllxERzamjzMzMzMzMzGqFAxZmZmZmbXDCCSew6aab0r9/f7bZZhvq6up46aWXeOWVVzjttNPatK0nnniCp556igEDBtC7d2+eeOIJDj/8cHbZZRdmnnnmFtc59dRTOeqoo1odXQGw+uqr06NHDy688EKOO+645ukrr7wyX3zxBbfffjvHHntsm/bVzMzMzMzMrKPVVpdFMzMzsxo3cOBA/vnPf3LPPfew0korseqqq/L73/+e+eabr83b6tGjBzfeeCPrrLMOP/7xjzn99NM5/PDDueyyy1pdp3v37sw222xIrafK6tmzJ6uuuirffPMN66677njPV0x3/QozMzMzMzOrNR5hYWZmZtOsQYMG/WDabbfd1vx75FoalQYOHMjAgQNb3W5r61VafvnlefLJJye4zLrrrjvB7W255ZYtzm/p2AAefPDBSdo3MzMzMzMzs87mERZmZmZmZmZmZmZmZlZ1DliYmZmZdZAzzjiDGWaYocWfjTfeuNq7Z2ZmZmZmZlZTnBLKzMzMrIPsv//+bLfddi3O69WrVyfvjZmZmZmZmVltc8Aik7QLsBawArAU0B34eURc08bt1AEHAvsCCwMjgPuA4yLinfbcZzMzM6tts8wyC7PMMku1d8PMzMzMzMysS3BKqO+dRgoyzAd8OgXb+RNwAaD8+G9gK+AZSYtM6U6amZmZmZmZmZmZmU2NHLD43t7A/BExO3Dp5GxA0oC8nYeB5SPimIjYFdgSmAW4qJ321czMzMzMzMzMzMxsquKARRYR90XE+1O4mX3y4/ERMaa07buAQcBGkvpP4XOYmZmZmZmZmZmZmU11XMOifa0LfAs81sK8u/P8dYDrJ3WDkuaZyCL9il9Gjx7NyJEjJ3XTU53BI0bz8dBRk7y8gIY6UVcn6utEvdLvDXWiTqRpdaKhro6ZejUgqd32ddSoUS3+brXL56xr8nnrPE1NTURE8+9Tuq2Wfrfa5XNW+yKCpqam8T4rjh49uop7ZGZmZmZm9kMOWLQTSdMDcwKvRERjC4u8lR/bWsfiw0ld8KmnnuLtt99u4+anDm8OE5e8WkcT7RdUKJt3+uDAHzXSqwNeMQ8//HD7b9Q6lM9Z1+Tz1rFmnXVWevXqhSSGDx/ebtsdMWJEu23LOofPWe0ZN24cI0eOZOTIkbz++uvN07/88ssq7pWZmZmZmdkPOSVU+5kxPw5rZf7wiuWsHf13iDosWAHw4bfihv/V0RQd9hRmZlYFm266Kccee2y1d8PMzMzMzMzM8AiLrmDeiczvBzwDsMoqq7DQQgt1/B7VoMf/+QZ8+jEAmy3Vl5mn6z7RdSKCcU1BUwSNTUFjBI1NNP/e1JSmP/3eUL4ZPY5Xhvw/e3ceX9OdP3789bk3eyKyiQghQaS0QRg7lWiHUC1VXQy1pUVN+6taSlvfFrVMq1VqaplRSXejtukM003FrpZW7QSJRGyRWBKy3XvP74+bXLnZE1l5Px+P88i5n/M5n/M5956Qe97n83nrOOvQjPE9A+66vxkZGZanvR9++GEcHBzuuk1RueQzq53kc6s68fHxGI1GbGxscHV1vau2TCaT5Sl9FxcXdLrKe75iw4YN2NraUqdOnUo7Rq5t27bxwQcf8Ntvv3Hx4kXWrl3LwIEDrepomsaMGTNYsWIF169fp1u3bnzyyScEBt4ZoKnX6wHYuXMnnTt3tpRnZmbSqFEjUlJS2Lx5M6GhoXTt2pU2bdqwdOlSS71ly5bx17/+lU8//ZSRI0daykeNGsXZs2fZunVrmc+tKj8zUXZJSUk4Ojri4uJC+/btLeX368hcIYQQQgghRM0lAYuKkzuyoqgRFK756pWKpmnni9ueN6+Cvb09jo6OZWn+nmHMM7ri1T8H0dy74m48RZ+8wqiofWga/H1rLO38vQh7wLvC2ndwcLhvP7faSj6z2kk+t8ql0+ksuQsq8ma1Tqer1JvfXl5eldZ2funp6bRt25aIiAgGDRpU6Lm99957LF68mM8++4yAgAD+7//+j759+3Ls2DGrgJufnx+fffYZXbt2tZT9+9//xsXFhZSUFEvbYWFhrF+/3uo4W7duxc/Pj23btjF69Gir8hEjRtz1+13Zn5koH6UUOp3O6t9Be3v7auyREEIIIYQQQhQk3yYriKZpt4CLQIBSSl9IldxHI2MK2SbuUkb2nbQh9jaFvf3lFxrkzeTeQQBoGvy/Vb8Td/VWhR5DCCFE9QgNDWXChAmAeYTC5MmTadiwIc7OznTq1Ino6GhL3eTkZIYMGULDhg1xcnIiODiYb775ptTH6tu3L7Nnz+bJJ58sdLumaSxcuJDp06czYMAAWrduzeeff86FCxfYsGGDVd0RI0awatUqqwTKK1euZMSIEVb1wsLCOHnyJJcuXbKUbd26lWnTplmdW2xsLOfOnSMsLKzU5yOEEEIIIYQQQlQ0CVhUrK2AM9CtkG19cn5K1tdKkGkwWdbtbSv+sh4f2ow+D9YHIDXDwNgvDnAr01DhxxFCCFF9Xn75ZXbv3s2qVas4dOgQTz/9NOHh4cTEmJ81yMjIoH379mzcuJEjR44wZswYnn/+efbu3Vshx4+NjeXSpUs8+uijlrK6devSqVMndu/ebVW3ffv2+Pv7s3btWsA8Jde2bdt4/vnnrep169YNW1tbtmzZAsCxY8dIT08nIiKC5ORkYmNjAdiyZQsODg506dKlQs5FCCGEEEIIIYQoD5kSqhyUUl6AF3BV07SreTb9A3gOeFcp9WdN07Jy6vcFQoEfNU07V9X9vR9YBSwqeIQFmKdR+ODpNpy+spMzSbc4eTmV19ce4u9DQqym5RJCCJHH8p6QdqXMuynAVTP/u65UOYLQLt4wtmx5GOLj44mMjCQ+Ph5fX18AJk+ezPfff09kZCRz586lYcOGTJ482bLPK6+8wg8//MDq1avp2LFj2fuZT+4oiPr161uV169f32qERK7Ro0ezcuVKhg0bRlRUFP369aNevXpWdZydnenYsSPR0dEMGTKE6Ohounfvjr29PV27diU6OpqAgACio6Pp0qWLTBEkhBBCCCGEEKJaScAih1LqBaB7zsvgnJ8vKKVCc9Z3aJq2Imf9ZeAdYCYwI7cNTdO2KKVWAC8AvymlNgINgGeBFOCVSjyF+5r1lFCVM3CojoMt/xj+Jwb8fSdpmQY2HrpIm0Z1GfPw/ZnoXAghSpR2BVIvlHk3lbNUpcOHD2M0GmnRooVVeWZmJp6engAYjUbmzp3L6tWrSUxMJCsri8zMTJycnKq4t2bDhg1j2rRpnD17lqioKD7++ONC64WGhvLtt98CEB0dTWhoKAA9e/YkOjqaUaNGER0dzYsvvlhVXRdCCCGEEEIIIQolAYs7ugMj8pV1w3p6pxWUbCxwGBgDvAqkAeuBtzRNO1MB/RSFsB5hUXkznTWr58KCZ9ow5osDAPztfyd40Lcu3ZpXXdJWIYSoNVy8y7WbBmh5RliUOXhRjuOmpaWh1+s5cOAAer31SD0XFxcA5s+fz6JFi1i4cCHBwcE4OzszYcIEsrKyyny8wvj4+ABw+fJlGjRoYCm/fPkybdu2LVDf09OT/v37ExERQUZGBn379iU1NbVAvbCwMObMmUNiYiLR0dGWUSI9e/Zk+fLlnDlzhoSEBHr16lUh5yHEvU4pNQzoAbTH/KCTHTBK07SoQupqpWiysaZpCTn1/YHYYurO1DRtRhm7LIQQQgghRK0hAYscmqaNBEaWsu4M8oysyLfNBHycs4gqkpkzwsLeRlfpUzT1ftCHV3o1Z/EvpzFp8PLXv/GfV7rTyL16nrAVQogaq4zTMuXSTCZu3rwJgKurK0pX+Sm3QkJCMBqNXLlyhR49ehRaZ+fOnQwYMIBhw4YBYDKZOHXqFK1ataqQPgQEBODj48PmzZstAYqbN2/y66+/8tJLLxW6z+jRo+nXrx9Tp04tEGjJ1bVrV+zs7FiyZIklDwdAhw4dSEpKYuXKlZapo4QQpTIbaAJcBS7mrBdlZhHlzYGhwLHcYEU+fwAbCimPLnUvhRBCCCGEqIUkYCHuCVk5Iywqc3RFXhMebcHhxBtEn0zi2u1sxn15gDXjuuJgW/H5M4QQQlS+Fi1aMHToUIYPH86HH35ISEgISUlJbN68mdatW/PYY48RGBjImjVr2LVrF+7u7ixYsIDLly+XOmCRlpbG6dOnLa9jY2M5ePAgHh4eNG7cGKUUEyZMYPbs2QQGBhIQEMD//d//4evry8CBAwttMzw8nKSkJFxdXYs8rqOjI507d2bx4sV069bNEtiws7OzKre1tS39GybE/e0FIEbTtHNKqWnAvKIqFjUaQim1OGf10yJ2PSgjKYQQQgghxP2oau7uClHJcnNYVFXAQK9TLHo2hCae5lEVRxJv8tb6I2haaUb9CyGEqIkiIyMZPnw4kyZNIigoiIEDB7Jv3z4aN24MwPTp02nXrh19+vQhNDQUHx+fIgMJhdm/fz8hISGEhIQAMHHiREJCQnj77bctdV5//XVeeeUVxowZQ4cOHUhLS+P777/HwcGh0DaVUnh5eWFnZ1fsscPCwkhNTbXkr8jVs2dPUlNTCQsLK/V5CHG/0zTtZ03TzpV3f6WUA+bRFVnAFxXWMSGEEEIIIe4BMsJC3BNyc1jY21ZdDK6uky3Ln2/Pk5/sIj3byNrfztPGry7Du/hXWR+EEELcnejoaMu6ra0tM2fOZObMwmdw8fDwYMOGDeU+VmhoaImBbaUUs2bNYtasWUXWKa4NNze3QrfPmDGDGTNmFCh/5513eOedd4rtkxCiwg0C3IE1mqYlFVHHVyn1V6AucBmILm8+PKVUoxKq+OSupKenk56eXp7DCCGEEEKI+0xl/d0oAQtxT7AELGyqdkqmB3xceW9wa/7fN78DMOs/x2jZwJUO/h5V2g8hhBBCCFFrROT8XFFMnT/nLLk0pdRXwDhN026V8XiF5cgo1LZt2/Dy8ipj80IIIYQQ4n509erVSmlXpoQS94SMPEm3q9oTbXx5sUcAAAaTxvivfuPyzYwq74cQQojqEx8fj4uLS5FLfHx8dXdRCFEDKKUCgDAgHvipkCq3gXeB9oAb4AE8CuwFhgGfV0lHhRBCCCGEqCYywkLUegajCYPJPP1FdSW9nhr+AEcv3GTXmWSSUjN56csDrBrTBbtqCKAIIYSoer6+vhw8eLDY7UIIAYwGFBCpaZop/0ZN064Ab+cr3qyU2g38BgxSSrXTNO23MhzTr4TtPsA+gIcffphGjUqaQUoIIYQQQgg4f/58pbQrAQtR62UZ73zXq44RFgA2eh2Lh4TwxN93kng9nd/irzPzP0eZ82RwtfRHCCFE1bKxsaF58+bV3Q0hRA2mlNIBIwETsLIs+2qadlsp9QUwG+iGOXhR2n2L/SaplLKsOzo64ujoWJauCSGEEEKI+1Rl/d0oj3+LWi8ju/oDFgCeLvYsG9beMqriq1/jWb2v1FMGCyGEEEKIe1s40Aj4SdO08swTlztJsHPFdUkIIYQQQoiaRQIWotbLNBgt69U1JVSu4EZ1mTPwIcvr6RuO8EfC9errkBBCCCGEqClKk2y7OJ1yfsbdfVeEEEIIIYSomSRgIWq9zBoywiLX03/y4/nOTQDzdFXjvjzA1bTMau6VEEIIIYSoLkqpesDjQBLwXTH1QlTeOZrulA8CRgDXgP9VVj+FEEIIIYSobpLDQtR6mYa8AYvqHWGR6//6t+L4xZvsP3eNizcyePnr3/gyohM2+uoPqAghhBBCiPJTSr0AdM95mZuw7AWlVGjO+g5N0/KPohgO2AJfaJqWVUzzHwHNcpJsnwf0QLuc42UCIzVNu3HXJyGEEEIIIUQNJXdPRa2XkZ13SqiacUnb2ehYMrQd3nXsAdhzNoV5/ztRzb0SQgghhBAVoDvm0Q4jMAcTwJwIO7eseyH7lHY6qC+BI0BnYBwwFvDN2a+tpmlFjs4QQgghhBDiXlAz7u4KcResRlhUcw6LvLxdHVg6rB22evOo/k93xPLvg4nV3CshhBBCCHE3NE0bqWmaKmYZWcg+rXK2HS+h7RWapvXVNK2xpmlOmqY5aJrWTNO0FzVNk6dfhBBCCCHEPU8CFqLWy5t0uybksMirfRMP3n78QcvrqWsPcezCzWrskRBCiLxCQ0OZMGFCdXejVtqwYQPNmzdHr9fz2muv8fXXX9OkSZMqOba/vz8LFy6skmOVRnJyMt7e3sTFxVX5sTt37szatWur/LhCCCGEEEIIURlq1t1dIcohozKTbmenw6UjcOU4pF4GY3aZmxjWqTFPt28EmPs69sv9XE8veztCCCEq3rp163j33Xer7Hjbtm3j8ccfx9fXF6UUGzZsKFBn5MiRKKWslvDwcKs6ueV79uyxKs/MzMTT0xOlFNHR0YD5hva4ceOs6i1btgylFFFRUQWO3aNHj1Kdy9ixYxk8eDAJCQnMmjWrVPuUVVRUFG5ubgXK9+3bx5gxYyrlmOUxZ84cBgwYgL+/PwB//PEHQ4YMwc/PD0dHR1q2bMmiRYvK3G5prpfp06czbdo0TCZTwQaEEEIIIYQQopaRpNui1ss7wsKhvFNCGTLhagwknTAHJ64ch6TjkBILaNZ17euCkwc4eeb5mbPumO+1kyfK0Z13Bz7EycupHDp/g4SUdF5fd5RBXqBT5T9vIYQQd8/Dw6NKj3fr1i3atGnD6NGjGTRoUJH1wsPDiYyMtLy2t7cvUMfPz4/IyEg6d+5sKVu/fj0uLi6kpKRYysLCwli/fr3Vvlu2bMHPz4/o6GhGjhxpKY+OjmbEiBElnkdaWhpXrlyhT58++Pr6VvnN8nr16lXp8Ypz+/ZtPv30U3744QdL2YEDB/D29ubLL7/Ez8+PXbt2MWbMGPR6PS+//HKp2y7N9dK3b19eeOEF/ve///HYY4/d9fkIIYQQQgghRHWSERai1sssywgLYzYknYSj62HLPFg9HP7eAeY0gGXdYG0EbP8ATm6ElLMUCFYAZN6Aa7GQuB9ifoQ/voHdf4fNs+C/E2D18xDVD5Z0hg8C4V0vHD4MYF32X/mPwzt8ajufgefm4HziGxpc31euURtCCCEqRv4poTIzM5k8eTINGzbE2dmZTp06WUYqgHnqnyFDhtCwYUOcnJwIDg7mm2++KfXx+vbty+zZs3nyySeLrWdvb4+Pj49lcXd3L1BnxIgRrFq1ivT0dEvZypUrCwQcwsLCOHnyJJcuXbKUbd26lWnTplmdW2xsLOfOnSMsLKzYvkVHR1OnTh0AevXqZTWaI7+lS5fSrFkz7OzsCAoK4osvvrDavmDBAoKDg3F2dsbPz4/x48eTlpZmOc6oUaO4ceOGZUTJjBkzgIJTQimlWLFiBU8++SROTk4EBgby3XfWuYm/++47AgMDcXBwICwsjM8++wylFNevXy/2fEuyadMm7O3trQJHo0ePZtGiRfTs2ZOmTZsybNgwRo0axbp168rUdmmuF71eT79+/Vi1alW5z0EIIYQQQgghagoZYSFqvQyrHBY5IyxMRrgWd2ekxJXjcOUEXD0FplIGCGydoF4Q1HsAlB7SU+B28p0l/TqFBjQK7eQNbDJuEAyQOwgkA4gFbem/oN3z0G44uPuXrj0hhKglPjv6GZ8f+7zEeq08WrH4kcVWZdN+nUbMzZgS9x3eajgjHix5VEBpvPzyyxw7doxVq1bh6+vL+vXrCQ8P5/DhwwQGBpKRkUH79u2ZOnUqrq6ubNy4keeff55mzZrRsWPHCukDmG/We3t74+7uTq9evZg9ezaenp5Wddq3b4+/vz9r165l2LBhxMfHs23bNj755BOraa66deuGra0tW7ZsYciQIRw7doz09HQiIiKYOnUqsbGxBAQEsGXLFhwcHOjSpUuxfevatSsnT54kKCiItWvX0rVrV9zc3Dhxwjof8Pr163n11VdZuHAhjz76KP/9738ZNWoUjRo1sgRFdDodH3/8MQEBAZw9e5bx48fz+uuvs2TJErp27crChQt5++23OXnyJAAuLi5F9mvmzJm8//77zJ8/n8WLFzN06FDOnTuHh4cHsbGxDB48mFdffZUXXniB33//ncmTJ5fpMynK9u3bad++fYn1bty4UWkjejp27Mjf/va3SmlbCCGEEEIIIaqSBCxErZeZbcIGA0/pt9Pl0Co4EGcOTBgySteA3h68WoB3S/B+ALxbmYMUbk1AV8yIDZPRHLSwBDBS4NbVPIGNa9YBjtvJkHG9QDPq1hXY/iFsXwDNesGfRkGLcNDbluftEEKIGuVW9i2u3L5SYj0fZ58CZdczr5dq31vZt8rVt/zi4+OJjIwkPj4eX19fACZPnsz3339PZGQkc+fOpWHDhlY3ul955RV++OEHVq9eXWEBi/DwcAYNGkRAQABnzpzhzTffpG/fvuzevRu93nrqw9GjR7Ny5UqGDRtGVFQU/fr1KzBdkrOzMx07diQ6OpohQ4YQHR1N9+7dsbe3p2vXrkRHRxMQEEB0dDRdunQpdPqpvOzs7PD29gbMU2r5+PgUOiXUBx98wMiRIxk/fjwAEydOZM+ePXzwwQeWgEXe0S3+/v7Mnj2bcePGsWTJEuzs7Khbty5KKXx8Cl4f+Y0cOZIhQ4YAMHfuXD7++GP27t1LeHg4y5cvJygoiPnz5wMQFBTEkSNHmDNnTontluTcuXOW66Uou3bt4l//+hcbN2686+MVxtfXl4SEBEwmE7ri/nYRQgghhBBCiBpOAhai1ss0mHhWH80c25WQUExFnQ14BpqDEvXyBCfcA0Bfjl8FnR6cPc1LaRkNaOnXeHf1Ns6dPspg/Tb+rDuAjTIBGpzZbF5cfCBkGLQfAW6Ny943IYSoIZxtnfF28i6xnod9wSfP3ezdSrWvs61zufqW3+HDhzEajbRo0cKqPDeRNYDRaGTu3LmsXr2axMREsrKyyMzMxMnJqUL6APDcc89Z1oODg2ndujXNmjUjOjqaRx55xKrusGHDmDZtGmfPniUqKoqPP/640DZDQ0P59ttvAfPojdDQUAB69uxpmXopOjqaF198scLO4/jx4wUSY3fr1s0q+fTPP//MvHnzOHHiBDdv3sRgMJCRkcHt27fL/J62bt3asu7s7IyrqytXrpgDXidPnqRDhw5W9UsKMI0bN44vv/zS8jp3qqr80tPTcXBwKLKdI0eOMGDAAN555x169+5d4nmUh6OjIyaTiczMTBwdHSvlGEIIIYQQQghRFSRgIWq9TIOR5irxToHSgUdT8ygJ71Z3AhMezcDGrvo6CqC3QbnU49Wnwxm93I6XrranHtd4Wr+VMc7bccu6aK6XdsmcS2P7h9D8UWg/MmfUhfzKCiFqlxEPjij3dE1/6/Q3XF1dq+yJ8bS0NPR6PQcOHCgwkiF3KqL58+ezaNEiFi5caMm9MGHCBLKysiqtX02bNsXLy4vTp08XCFh4enrSv39/IiIiyMjIoG/fvqSmphZoIywsjDlz5pCYmEh0dLRllEjPnj1Zvnw5Z86cISEhgV69elXaeeQXFxdH//79eemll5gzZw4eHh7s2LGDiIgIsrKyyhywsLW1HpmolLqrZOCzZs0q1bRRXl5eXLt2rdBtx44d45FHHmHMmDFMnz693H0pSUpKCs7OzhKsEEIIIYQQQtR6cvdT1HoZ2Sbqk+dG0YtbwLdttfWnNOxsdDzf3ISHPfyU6M4S40CW3nyCyU0TGVdnO/pT/wPNCGhw+ifzUqcBhOTkunDzq+5TEEKIe05ISAhGo5ErV67Qo0ePQuvs3LmTAQMGMGzYMABMJhOnTp2iVatWldav8+fPk5ycTIMGDQrdPnr0aPr168fUqVMLBFpyde3aFTs7O5YsWWLJwwHQoUMHkpKSWLlypWXqqIrSsmVLdu7caZUEfOfOnZb36sCBA5hMJj788ENLUGr16tVWbdjZ2WE0GrlbQUFBbNq0yaps3759xe7j7e1tmfqqOCEhIVYjMXIdPXqUXr16MWLEiAqZeqo4R44cISQkpFKPIYQQQgghhBBVQSa5FbVepsGIg8oTsLCvU32dKQOloH9jEzP7B6HXKTR0zD/rx7PX/8r1cQchbDrUzROYSL0I296HhcHw1dNwYhMYDdXWfyGEuNe0aNGCoUOHMnz4cNatW0dsbCx79+5l3rx5ltwDgYGB/PTTT+zatYvjx48zduxYLl++XOpjpKWlcfDgQQ4ePAhAbGwsBw8eJD4+3rJ9ypQp7Nmzh7i4ODZv3syAAQNo3rw5ffr0KbTN8PBwkpKSmDVrVpHHdXR0pHPnzixevJhu3bpZAht2dnZW5flHKdyNKVOmEBUVxdKlS4mJiWHBggWsW7fOMmqhefPmZGdns3jxYs6ePcsXX3zBsmXLrNrw9/cnLS2NzZs3c/XqVW7fvl2uvowdO5YTJ04wdepUTp06xerVq4mKigLMIzHuRp8+fTh69KjVKIsjR44QFhZG7969mThxIpcuXeLSpUskJSWVqe2Srpdc27dvr7TppoQQQgghhBCiKknAQtR6mQYTDnlHWNgUPY90TfRM+4asGP4nnOzMN4/2n7vGoC/PEv/QX+HVP2DoGgh6DFTuU7MaxPwIq4aYgxdb5sKN89V3AkIIcQ+JjIxk+PDhTJo0iaCgIAYOHMi+ffto3NicT2j69Om0a9eOPn36EBoaio+PDwMHDix1+/v37yckJMTyNPzEiRMJCQnh7bffBkCv13Po0CGeeOIJWrRoQUREBO3bt2f79u1FJsNWSuHl5YWdXfHTHoaFhZGammrJX5GrZ8+epKamWhJhV5SBAweyaNEiPvjgAx588EGWL19OZGSk5fht2rRhwYIFvPfeezz00EN89dVXzJs3z6qNrl27Mm7cOJ599lnq1avH+++/X66+BAQEsGbNGtatW0fr1q1ZunQpb731FkCJScZLEhwcTLt27axGh6xZs4akpCS+/PJLGjRoYFny5tGIi4tDKUV0dHSRbZd0vQAkJiaya9cuRo0adVfnIYQQQgghhBA1gdI0rbr7IO6CUqoROammT506RWBgYDX3qOpNXH2Qxw//P8L0f5gLXo8Fp4LJW2uS9PR0fvzxRwB69+6No6Mjh8/fYFTUPq6mZQLg5WLHpyM60MbPzbzTzQvw+5fw2+dwI192caWDwN7mXBeBvc0JwUWFKuwzEzWffG5VJyYmBoPBgI2NzV3/X2Qymbh58yZAleawEOVXGz+zOXPmsGzZMhISEkquXIKNGzcyZcoUjhw5Uupz37JlC4MGDeLs2bO4u7uX+9hTp07l2rVr/OMf/yiyTlG/nzExMXmTzPtpmiZPQNyH8n6fSEhIoFGjRtXcIyGEEEIIURucP38ePz/L7DAV9n1CcliIWs88wiL7TkEtG2GRK7hRXdaP78rIyL2cSbrF1bQsnvvHHv7+lxAeaVkfXH2h5+vQYxKc3gwHIuHU96CZzMup782La0NoGgZezcGrBXgGgkcA6Ctumg8hhBCitlmyZAkdOnTA09OTnTt3Mn/+fF5++eUKafuxxx4jJiaGxMTEvH+wF2vTpk28+eabdxWsAHOujYkTJ95VG0IIIYQQQghRU0jAQtR6mdkm6xwWtTRgAeDn4cS6l7rx4hf72RubQnq2kRc/38+sAQ8xrHMTcyWdHlr0Ni83Eu+MuriZE8S8mQgH8yX/1NmAu785eOGVu+QEM5w9q/QchRDiXhUfH19s8u1jx45Zppaq6fr27cv27dsL3fbmm2/y5ptvVnGP7l5MTAyzZ88mJSWFxo0bM2nSJN54440Ka3/ChAllqj9//vwKOe6kSZMqpB0hhBBCCCGEqAkkYCFqvUyD0ZLDQtPbo2rBNBTFqetkyxcRHZn87SH+88cFTBpM33CE89fSeb1PEDpdnuSgdRtC6FR4eDLE/AQHoiDmB/OIi7xMBkg+bV5O/c96m6PHnSCGZ04gwyvQHOCQURlCCFFqvr6+luTIRW2vLVasWEF6enqh2zw8ava0i0X56KOP+Oijj6q7G0IIIYQQQgghiiEBC1HrZWabsM9Num1be0dX5GVvo2fRs21p6ObIsq1nAFi29QwXrqcz/+nW2Nvky1Gh00NQuHnJumUOTFyNyVlOQXIMXD0NhkJuPqWnQMKv5sWqTRtwD7AekeHdErxbga3kARBCiPxsbGxo3rx5dXejQjRs2LC6uyCEEEIIIYQQ4j4kAQtR62UajDjmTgllc+/cSNfpFNP6PkBDNwfe+e4oJg2+++MCl29m8I/n/0RdpyJGP9g5Q4M25iUvk8k8XdTVUzkBjVN3ghqpFwq2YzKYAx3JMXAyT7nSmUdi+ASDz0Pmn/WDoU79Cjt3IYQQQgghhBBCCCHE/UcCFqLWMyfdNgcs1D345P/zXfxpUNeRV775nfRsI7/GpvDUsl1EjepAI3en0jek04Gbn3lp/oj1tszUnCBGbiDj1J0ppAwZ1nU1E1w9aV6OrLlT7lwvJ3jxEPi0NgczPANBL//MCCGEEEIIIYQQQgghSiZ3EkWtl5F9J4fFvTpV0aOt6rNqTGdGR+0j+VYWp6+k8eSSXUSO7MBDDeve/QHs64BviHnJy2SCGwk5IzFOwqUjcPkwXDkBpmzrureS4Mwv5iWX3t48jZRPThCj/kPmdYcK6LMQQgghhBBCCCGEEOKeIgELUetlZuedEureyGFRmDZ+bqwf342RkXs5e/UWSamZPLN8N58MbUdYkHflHFSnA/cm5iXw0TvlhizzKIzLR+DSYfNy+QjcTrbe35gJFw+al7zcGt8JYDRoDc0euWfyjwghhBBCCCGEEEIIIcpHAhai1tMMmXde3KMjLHI19nRi7UtdeeHz/Rw4d43bWUZe+Gw/swc+xJCOjauuIzZ2OaMmHoI2z5nLNA1SL5pHYVw6lBPMOGKeVgrNev/r8eblxH/Nrz2awlMroGH7qjsHIYQQQgghhBBCCCFEjaKr7g4IcdcM6XfW7+ERFrncne346oVO9Av2AcBo0nhj3WE++OEkmqaVsHclUgpcfaFFb3h4MjwdBa/shzcT4YXN0H8h/CkC/DqBrbP1viln4dPesG0+mIzV0XshxH0qNDSUCRMmVHc3aqUNGzbQvHlz9Ho9r732Gl9//TVNmjSpkmP7+/uzcOHCKjlWaSQnJ+Pt7U1cXFyVHjcrKwt/f3/2799fpccVQgghhBBCiMoiAQtR66m8SaHv8REWuRxs9fx9SDte6B5gKfv7ltNMXP0HWQZTNfasEHbO0OhP8KdR0H8BRPwIb5yHV36Dpz8D33bmeiYD/DIbovqbR18IIUQVWLduHe+++26VHW/btm08/vjj+Pr6opRiw4YNBeqMHDkSpZTVEh4eblUnt3zPnj1W5ZmZmXh6eqKUIjo6GoDOnTszbtw4q3rLli1DKUVUVFSBY/fo0aNU5zJ27FgGDx5MQkICs2bNKtU+ZRUVFYWbm1uB8n379jFmzJhKOWZ5zJkzhwEDBuDv7w/AH3/8wZAhQ/Dz88PR0ZGWLVuyaNGiMrc7Y8aMAtfCAw88YNluZ2fH5MmTmTp1akWdihBCCCGEEEJUKwlYiFrNYDRhq2XdKbgPRljk0ukU0/u34p3HW6GUuWz974mMjNzLzYzs4neubjodeDaDBweaAxg9JoPK+ecofhcs7Q6H11RrF4UQ9wcPDw/q1KlTZce7desWbdq04ZNPPim2Xnh4OBcvXrQs33zzTYE6fn5+REZGWpWtX78eFxcXq7KwsDBL8CLXli1b8PPzK1AeHR1Nr169SjyPtLQ0rly5Qp8+ffD19a3S9xCgXr16ODk5Vekxi3L79m0+/fRTIiIiLGUHDhzA29ubL7/8kqNHj/LWW2/xxhtv8Pe//73M7T/44INW18KOHTustg8dOpQdO3Zw9OjRuz4XIYQQQgghhKhuErAQtVqGwYQDeQIW92Hi5lHdAlg6tD32NuZf511nkhn49538kXC9ejtWWnpbeOT/YORGqJuThyPzBqyNgLUvQsaN6u2fEOKeln9KqMzMTCZPnkzDhg1xdnamU6dOVjf1k5OTGTJkCA0bNsTJyYng4OBCgwlF6du3L7Nnz+bJJ58stp69vT0+Pj6Wxd3dvUCdESNGsGrVKtLT70yNuHLlSkaMGGFVLywsjJMnT3Lp0iVL2datW5k2bZrVucXGxnLu3DnCwsKK7Vt0dLQlQNGrVy+r0Rz5LV26lGbNmmFnZ0dQUBBffPGF1fYFCxYQHByMs7Mzfn5+jB8/nrS0NMtxRo0axY0bNyyjC2bMmAEUnBJKKcWKFSt48skncXJyIjAwkO+++87qWN999x2BgYE4ODgQFhbGZ599hlKK69evF3u+Jdm0aRP29vZ07tzZUjZ69GgWLVpEz549adq0KcOGDWPUqFGsW7euzO3b2NhYXQteXl5W293d3enWrRurVq26q/MQQgghhBBCiJpAAhaiVsvMNloHLGzujymh8gt/yIevX+yMu5MtAGev3uKppbtYvDkGg7GGTRFVlCZd4aUdEPzMnbLDq82jLc7trr5+CSHuSnJkFDE9Q0tcEl4aX2DflMlTOBPWq8R9kyOjKqy/L7/8Mrt372bVqlUcOnSIp59+mvDwcGJiYgDIyMigffv2bNy4kSNHjjBmzBief/559u7dW2F9APPNem9vb4KCgnjppZdITk4uUKd9+/b4+/uzdu1aAOLj49m2bRvPP/+8Vb1u3bpha2vLli1bADh27Bjp6elERESQnJxMbGwsYB514eDgQJcuXYrtW9euXTl58iQAa9eu5eLFi3Tt2rVAvfXr1/Pqq68yadIkjhw5wtixYxk1apSlHwA6nY6PP/6Yo0eP8tlnn/HLL7/w+uuvW46zcOFCXF1dLaMLJk+eXGS/Zs6cyTPPPMOhQ4fo168fQ4cOJSUlBTAHYwYPHszAgQP5448/GDt2LG+99Vax51la27dvp3379iXWu3HjBh4eHmVuPyYmBl9fX5o2bcrQoUOJjy84bWLHjh3Zvn17mdsWQgghhBBCiJpGAhaiVsuUERYW7Zu4s358N1o3qguAwaTx4U+nePYfe4hPvl3NvSslh7rw1D9h0AqwdzWX3YiHqH7m/BbGGj7VlRCiAFNaGobLl0tcjDk3lq32vX69VPuacp7Iv1vx8fFERkby7bff0qNHD5o1a8bkyZPp3r27Zeqlhg0bMnnyZNq2bUvTpk155ZVXCA8PZ/Xq1RXSBzBPB/X555+zefNm3nvvPbZu3Urfvn0xGo0F6o4ePZqVK1cC5nwP/fr1o169elZ1nJ2d6dixo2UURHR0NN27d8fe3p6uXbtalXfp0gV7e/ti+2dnZ4e3tzdgnlLLx8cHOzu7AvU++OADRo4cyfjx42nRogUTJ05k0KBBfPDBB5Y6EyZMICwsDH9/f3r16sXs2bMt76WdnR1169ZFKWUZXZB/uqu8Ro4cyZAhQ2jevDlz584lLS3NEkhavnw5QUFBzJ8/n6CgIJ577jlGjhxZ7HmW1rlz5/D19S22zq5du/jXv/5V5rwbnTp1Iioqiu+//56lS5cSGxtLjx49SE1Ntarn6+vLuXPnytx3IYQQQgghhKhpbKq7A0LcjUyDCQclIyxy+Xs5s/alrny8OYZPtpzGpMGBc9fou2gb7zzxIE+3b4TKTXhRk7V+Gvw6wvqxEL8bNBNsmw9nfoFB/zTnvxBC1Ao6Fxds6tcvsZ6+kCfPdW5updpXV8xN7LI4fPgwRqORFi1aWJXnJrIGMBqNzJ07l9WrV5OYmEhWVhaZmZkVmk/hueees6wHBwfTunVrmjVrRnR0NI888ohV3WHDhjFt2jTOnj1LVFQUH3/8caFthoaG8u233wLmwERoaCgAPXv2tEy9FB0dzYsvvlhh53H8+PECN+i7detmlXz6559/Zt68eZw4cYKbN29iMBjIyMjg9u3bZX5PW7dubVl3dnbG1dWVK1euAHDy5Ek6dOhgVb9jx47Ftjdu3Di+/PJLy+u0IgJj6enpODgU/cDEkSNHGDBgAO+88w69e/cu8Tzy6tu3r2W9devWdOrUiSZNmrB69WqrnBmOjo7cvl1LHk4QQgghhBBCiGJIwELUahn5p4S6j0dY5LLV65jUO4jQoHpM+NdBElLSuZVl5PU1h/jl+BXmDgrGw7ngk7A1jnsTc16LHQtgyzzQjJB4AJb1gL7vQcgwqA3BFyHuc56jRuI5amS59vX4YD6urq7odFUzIDQtLQ29Xs+BAwfQ6/VW23Kf7J8/fz6LFi1i4cKFltwLEyZMICsrq7AmK0TTpk3x8vLi9OnTBQIWnp6e9O/fn4iICDIyMujbt2+Bp+/BnMdizpw5JCYmEh0dbZlaqWfPnixfvpwzZ86QkJBQqoTbFSUuLo7+/fvz0ksvMWfOHDw8PNixYwcRERFkZWWVOWBha2tr9VophclU/mkRZ82aVewUVLm8vLy4du1aoduOHTvGI488wpgxY5g+fXq5+5LLzc2NFi1acPr0aavylJSUAiNrhBBCCCGEEKI2kimhRK1mnhIqzzRB9/kIi7zaN/Fg0//rwdPtG1nKvj96iT4Lt7H1VFI19qwMdHp4eApE/AQeTc1l2bfgu5dh9XC4XXAKGSGEKK+QkBCMRiNXrlyhefPmVouPjw8AO3fuZMCAAQwbNow2bdrQtGlTTp06Van9On/+PMnJyTRo0KDQ7aNHjyY6Oprhw4cXCLTk6tq1K3Z2dixZssSShwOgQ4cOJCUlsXLlSsvUURWlZcuW7Ny506ps586dtGrVCoADBw5gMpn48MMP6dy5My1atODChQtW9e3s7AqdCqusgoKC2L9/v1XZvn37it3H29vb6hooSkhICMeOHStQfvToUcLCwhgxYgRz5swpX8fzSUtL48yZMwWuhSNHjhASElIhxxBCCCGEEEKI6iQBC1GrZWYbsVcywqIodRxsmf90G5YNa4dbTkLupNRMRqzcyzv/PkJG9t3fBKoSjdrD2O3QbvidsuPfwdKucDa62rolhLi3tGjRgqFDhzJ8+HDWrVtHbGwse/fuZd68eWzcuBGAwMBAfvrpJ3bt2sXx48cZO3Ysly9fLvUx0tLSOHjwIAcPHgTMyaAPHjxoSaSclpbGlClT2LNnD3FxcWzevJkBAwbQvHlz+vTpU2ib4eHhJCUlMWvWrCKP6+joSOfOnVm8eDHdunWzBDbs7OysyvOPUrgbU6ZMISoqiqVLlxITE8OCBQtYt26dZdRC8+bNyc7OZvHixZw9e5YvvviCZcuWWbXh7+9PWloamzdv5urVq+We9mjs2LGcOHGCqVOncurUKVavXk1UVBTAXU+V2KdPH44ePWo1yuLIkSOEhYXRu3dvJk6cyKVLl7h06RJJSWV7YGDy5Mls3bqVuLg4du3axZNPPoler2fIkCFW9bZv317m6aaEEEIIIYQQoiaSgIWo1TIMJhzJvFNgW3FziN9Lwh9qwA8THubhFnemi/hs9zn6L97BkcQb1dizMrB3gScWwzNfgKO7uSz1Inw+AH6cDobM4vcXQohSiIyMZPjw4UyaNImgoCAGDhzIvn37aNy4MQDTp0+nXbt29OnTh9DQUHx8fBg4cGCp29+/fz8hISGWp+EnTpxISEgIb7/9NgB6vZ5Dhw7xxBNP0KJFCyIiImjfvj3bt28vMhm2UgovL69CE1/nFRYWRmpqqiV/Ra6ePXuSmppKWFhYqc+jNAYOHMiiRYv44IMPePDBB1m+fDmRkZGW47dp04YFCxbw3nvv8dBDD/HVV18xb948qza6du3KuHHjePbZZ6lXrx7vv/9+ufoSEBDAmjVrWLduHa1bt2bp0qW89dZbACUmGS9JcHAw7dq1s0q8vmbNGpKSkvjyyy9p0KCBZcmbRyMuLg6llCXpeWHOnz/PkCFDCAoK4plnnsHT05M9e/ZYTf+0e/dubty4weDBg+/qPETpKaWGKaWWK6X2K6UylVKaUmpkEXVn5GwvavEvYr8+SqmtSqlUpdRNpdQWpdQjhdUVQgghhBDiXqI0TavuPoi7oJRqBCQAnDp1isDAwGruUdX68egl9n89gzdtvzEXPP0ZPDiwWvtUGunp6fz4448A9O7dG0fHqpnKStM0Pt99jrmbjpNpMM/rbatXvPbnFox9uBl6XS3JCXHzAmx4yXp0hU8wPPUp1AuqlENW12cm7o58blUnJiYGg8GAjY3NXf9fZDKZuHnzJkCV5rAQ5VcbP7M5c+awbNkyEhIS7rqtjRs3MmXKFI4cOVLqc9+yZQuDBg3i7NmzuLu7l/vYzz77LG3atOHNN98ssk5Rv58xMTF5k8z7aZp2vtwduY8opeKAJsBV4FbO+ihN06IKqTsDeAf4DIgrpLmFmqZdz7fPMOALIAn4V07xs4AX8IymaWvu/iysjmf5PpGQkECjRo1K2EMIIYQQQgjzA1Z+fn65Lyvs+0SN+zaplDIqpT4tRb1/KqUMVdEnUXMVyGFhKzcji6OUYkRXf/77SndaNXAFINuo8f73Jxnyjz0kpJRvqo0q5+oLw9ZD7zmgz3mi+NJhWP4w7P0nSCBWCCFEPkuWLGHfvn2W6afmz5/PiBEjKqTtxx57jDFjxpCYmFjqfTZt2sSbb755V8GKrKwsgoODee2118rdhiiXFwB/TdPqActKqpwjStO0GYUs1/NWUkq5A4sxB0PaaZr2iqZprwDtgGRgqVKqTsWdihBCCCGEEDVLjQtYACpnKW1dcR/LyDbikDeHhY3ksCiNwPp12PDXbrwU2ozcqbv3xqXQd9F21v12nlox8kqng64vw4u/QL0HzGWGDNg0Gb5+FtJqSWJxIcQ9Iz4+HhcXlyKX3DwVtUHfvn2LPI+5c+dWd/fKJSYmhgEDBtCqVSveffddJk2axIwZMyqs/QkTJuR9uqhE8+fPZ8qUKXd1TDs7O6ZPny6jx6qYpmk/a5p2rpKafxpwAxbnfUItZ/3vmEdZPFlJxxZCCCGEEKLa2VR3B+6CE+R9tF7cj8wjLPIm3ZYv7KVlZ6NjavgDhLaox8TVf5B4PZ20TAMTV//B5hNXmDPwIdycip8PvUbwCYYx0fDT27D3H+aymB9gaRd4Ogr8u1dn74QQ9xFfX19LMu2ittcWK1asID09vdBtHh4eVdybivHRRx/x0UcfVXc3xP3rYaVUJ8AExAA/a5qWVki90JyfPxay7QdgBtAT+Ly0B86Z8qk4Prkr6enpRf7uCyGEEEIIkVdl/d1YKwMWSik3oDtwsZq7IqpZpsGEIzLC4m50aurJ/yb0YMa/j7Lud/NUFhsPXeRA3DU+eLoN3QO9qrmHpWDrCP3mQ/M/w7/Hw60k8/L1cxDxA9R/sLp7KIS4D9jY2NC8efPq7kaFaNiwYXV3QYh7zcx8r68rpV7VNC1/4CE3yUhMIW3E5KtTWqVO1LJt2za8vGrB335CCCGEEKLaXb16tVLarREBC6XU2XxFg5VSoUVUt8H8FJAeWF6J3RK1QKbBiJuSERZ3y9XBlgXPtqVXS2/eWn+EG+nZXLqZwbBPfyWiewBT+gThYKuv7m6WrEVveGk3rHvBnJA7K9U8PdQLm6FO/erunRBCCCHuP38Ao4FozA9b+QD9gVlAlFLquqZp3+WpXzfn541C2rqZr44QQtRIr+6uEbeaRAkWdamatLByPdR8VXUtgFwPtUFVXg9FqSlXiX+edQ1wyVmKkgVsAN6svC6J2iAj2zwlVDawvo4LPlcP0cOzOUpJepPy6N/alz818WDyt3+w47Q5Svrpjlh2xFzlo2fb0srXtZp7WAou9eC5byCqH1z4HW4kwDfPwciNYOdU3b0TQgghxH1E07T1+YrigL8rpY4DPwGzge/y71fBSkqu4gPsA3j44Ydp1KikGaSEEKIEu3+p7h6IUujdu3fVHEiuhxqvyq4FkOuhFijL9XD+/PmSK5VDTQlYBOT8VMBZYA1QVBbCLCBJ07TqD/eIapdpMOJANt+41mG+pzv8OoPel3bxdpe3qWsvD5+Vh09dBz4f3ZHIXXG89/0JsgwmTl5OZeAnO/lrWHNefDgAJ7ua8k9HEeycYMgq+OcjcPM8XPgN1o+Fpz8zJ+sWQgghhKhGmqZtVkqdAYKVUq6apuWOnsgdWVEXSM63m2u+OqU9VrHfJPM+6OPo6ChJ3IUQ4j4h/96LXHItiLzKcj1U1rVTI+7caZp2LmeJAz4Dvs9Tln+5WFnBCqVUB6XUJqXUdaXULaXUHqXUM2Vsw1cptUgpdSynjctKqR1KqeeVUrVgTp3aJTNnhMU2pzu/ID+e+5GnvnuKfZf2VWPPajedThHRPYD/vNydB3zqAJBlNPHRz6cInR/Nqr3xGIymau5lCer4wNDVYGfuP8e/g835p48WQgghhKg2uZP+5h0CWlyeiuLyWwghhBBCCHFPqBEBi7w0TRuladrKqj6uUioM2Ik5mfdqYBnm4dH/UkpNKmUbTTHPU/sKcA74O7AOaAZ8Dqyo+J7f3zINRmxUJofs7bA12ZgnFAMu375MxA8RLDywkGxjdvV2shYL8qnDv1/uxtiHm6LXmZ++u5KaybR1h+m7aDs/H7uMpmnV3Mti1H8Qno4ElfNP3c6F8Fv+3JZCCCGEEFVLKeUMPAjc4k7gAmBrzs/CxuL3yVdHCCGEEEKIe06NC1hUB6WUDfBPwAQ8rGnaGE3TJgFtgFPAXKVUk1I0NRnwAl7TNK2vpmlTNU17CWgJxAMjS9mOKKXMbBOX7LNonNmUb2Le45u493le/xQAGhrfnvqWlIyUau5l7WZvo+eNfi35YcLD9G51J3F1zJU0Xvh8P8/+Yw8HE65XXwdLEvhn6Pv+ndf/fQ3Oyvd8IYRZaGgoEyZMqO5u1EobNmygefPm6PV6XnvtNb7++muaNKmaP3P8/f1ZuHBhlRyrNJKTk/H29iYuLq7Kj925c2fWrl1b5ccVJVNK1VFKtSik3BHzd486wOp8o8dXY57y6RWlVKM8+zQCXsYc3MifF0MIIYQQQoh7Ro0MWOT8cT9VKfVTztRKZ4tYzlTQIXthHgXxtaZpB3MLNU27AcwF7IARpWinac7PTXkLNU27DuzIeel1l30VeWQaTJx1MNL9ZgjOJkfcMlz4y5FHiLz1HvWMHszoOoP6zvVLbkiUqLm3C/8Y/ifWjOtCu8ZulvK9sSnm/BZf/8a55FvV18HidHwROr1kXjcZYPXzkHSqevskhKgR1q1bx7vvvltlx9u2bRuPP/44vr6+KKXYsGFDgTojR45EKWW1hIeHW9XJLd+zZ49VeWZmJp6eniiliI6OBsw3tMeNG2dVb9myZSiliIqKKnDsHj16lOpcxo4dy+DBg0lISGDWrFml2qesoqKicHNzK1C+b98+xowZUynHLI85c+YwYMAA/P39C2xLTk6mUaNGKKW4fv16mdotzfUyffp0pk2bhslUw6dqvIcopV5QSkUppaKAp3OKLWVKqRdyyjyBE0qpX3PK/6aUisT8QNQQ4DD58vZpmnYNc2DCC/hNKbVYKbUY+C2nvfGapqVW+kkKIYQQQghRTWpc5lyllC/mm/tNMCfhLk5FzUUTmvPzx0K2/ZDzs2cp2jmCeah2P2BRbqFSyg3oBlwCjpWlY3mfrCqCT+5KZmYm6enpZWm+1ruVmcWgm5kY831J94mvw2f2c3A535jb9W5bkgmmZaVh1IzVnpA7IyOj0PXa4MH6jnw5MoSfTiSx4OcznEsxX3MbD13khyOXeO5PDXnpYX88nO2quaf5PDwdu6sx6M/8DBk3MH01mMznN4JT6WKItfkzu5/J51Z1TCaTZYq4u71xmnf/yr4Jm3szvKpu9qamptK6dWtGjhzJ4MGDMZlMBY6taRp9+vRh5co7M2Ta29sXqOfn58fKlSvp2LGjpWzt2rW4uLiQkpJiaTs0NJQNGzZY7f/LL7/g5+fHli1bGD58uKU8Ojqa4cOHl/h+pKWlceXKFf785z/j4+NTaZ9Zblv52/T09KzwY5XX7du3+fTTT/nf//5XaH9Gjx5NcHAwiYmJhX7exSnN9dKnTx9SU1PZuHEjjz32WJFtaZqGyWSy+lsxMzOz1H0RVrpT8GGmbjlLrhVACrAE6Ij5+4E7kA4cBz4G/q5pWoE/3jVN+1IpdRV4ExiF+TvPAWC2pmk/V+ypCCGEEEIIUbPUuIAF5hEN/sBB4G+Y/6C/WcnHLDKBnaZpl5RSaRSe+C6/+cDjwEdKqXDgEOAKDARuA08W9qWkBAmlrfjrr79y5kxFDTqpHS5c1uFMFjqjLbdzyow6Db1JoTI1bv3nHJe2nuZc01tkOBj59va3xBniGOw0mKa2TYttu6ps27aturtQbq8Gwq4riu/P60jLVhhMGl/uPc+3BxLoVE+jjYeJpq6gKyn0WEVsnJ+mu+Mp6qbHo7t+jtsrn2RX86mYdGULrtTmz+x+Jp9b5fL09MTR0RGlFDdvVtx/22lpaRXWVmH69+9PcHAw8+bNA8w3cGfPns3atWu5ceMGLVu2ZMaMGXTv3h2AlJQUpkyZwu7du7l+/Tr+/v5MnDiRwYMHl+p43bp1o1u3O/c009PTC7xf2dnZ6PV6nJycrMrz13v22WdZvnw5M2fOxNHREYAVK1bw7LPPMn/+fG7fvs3Nmzfp2LEj7733HjExMdSvbx51uHXrVqZMmcLHH39saffcuXOcO3eOjh07FvsZ7tixg8cffxyARx99FID//Oc/lu15P7NPP/2Uv//97yQmJtKkSRMmTZrEc889Z9n+ySef8NVXX3Hu3Dnc3NwIDw9n5syZuLi4sGPHDiIiIgDQ6/UATJ06lWnTptG6dWteeuklXnrJPHrO3d2dRYsW8eOPP/LLL7/QoEED3n33Xfr162c51qZNm/i///s/EhMT6dChA3/5y18YP348cXFx1K1b/gcZ/v3vf2NnZ0erVq0KvG+ffvopycnJvP7663z//fekpqai05V+gHNprhcwfw5ffvllkaNjDAYD6enppKenc+LECUv51atXC60viqdp2khgZCnq3cQ8WqI8x/ge+L48+wohhBBCCFGb1cSARR/gMhCWMyVTVcj9llrU8W7mqVMkTdMuK6W6AF8CfYHc+RvSMSfx/uMu+ynyMZgUjmSSgb2l7ORDN6l/0QHPJHNZnZu2tPqjLr81OMtR1yMYlYnIW5G0tW1LU9umNNY3xkPnYRmFIUpPr4MePhod6hn55YKOLRcUWSZFplGx7ZJi2yUdLrYarT002nhoBLpq6KtxIjqD3pE9TSfS8+QMHAzX8bwVQ0j8Cg40eQnk8xeiUhzffpnj26+UWM+joROhI5pZlUV/doaUxNtF7HFHyx7etOxRMdP/vf7665w4cYIVK1bQoEED/vvf/zJ48GB27txJs2bNyMjIoG3btkyYMIE6derw448/Mm7cOAICAmjfvn2F9AHMQYHAwEDc3Nzo0aMH06dPx8PDw6pO27Ztady4Md999x3PPvssCQkJ7Nq1i/nz5zN//nxLvU6dOmFra8v27dsZPHgwJ06cID09neeff56ZM2dy7tw5mjRpwvbt23FwcKBDhw7F9q1jx47s27ePDh068Pnnn9OxY0fc3d2Jj4+3qvff//6XN954g7lz5xIaGsoPP/zAyy+/TMOGDS031nU6He+99x5NmjQhLi6OyZMn88477/Dhhx/SsWNH5s2bx9y5c9m3bx8Azs7ORfbrvffeY+bMmcyaNYt//OMfjB07lkOHDuHu7s65c+cYOXIkY8eOZfjw4Rw6dIi33367TJ9JUXbv3k2bNm0KlJ84cYL58+fz008/ce7cuQo5VlHatWtXo3J6CCGEEEIIIUR51cSAhTuwqQqDFRVGKdUc+A+QBvTAPErEDRgGzAb6KKV6aJpmLEOzfiVs9wH2gfmGRLNmzUqofm/5Z9xeHFKyuJ0nYNEtvCc6Rxuyztzg1n/PYbqehU5T/OlCM1bcmMW8ev/klOM5fs/+nd+zfwfA3d6dYM9ggj2DaePVhrb12lZI/0yaibTsNFKzUrmZdZPU7FRSs1JJuZ3CoZOHyNKy8Gnkg52tHX9t/Vfrc/vjH+yP34s+S6HPVthii63OBltli63OvNjp7Gju2pzHAvpZTZC2M2k3WfpsXF3cqOvijqerFx7OntjoKu9X/gngSmomn0THsv6Pi2QbzR1Ky1bsuqzYdRnqOtrwSFA9/tyyHl2bemBnU03Riz+1RPt6ICo7nUbX9lC/ZVcMPV4vdpeMjAzLE/oPP/wwDg4OVdFTcZfkc6s68fHxGI1GbGxscHV1tZTrtGTSb2aXuL/BU7PsZzKZSEtLI/OWoVT76jTrY5aFjY0NdnZ2uLq6Eh8fz1dffUVcXBy+vr4AtGnThq1bt7JmzRrmzJmDq6srb731lmX/1q1bs3XrVjZt2kRYWFiZj+/o6Fig7/379+eZZ54hICCAM2fOMH36dJ577jl27txpGWmQu+8LL7zAv/71L1588UXWrVtH3759CQgIAMDJyQlXV1dcXV3p2LEje/fuZfTo0Rw4cIDu3btTr149unTpwv79+wkODubXX3+lS5cu1KtXr1TvG0DDhg0JDAy0mqbIxcUFnU7H0qVLGTFiBBMnTgTMN9UPHjzI0qVLLVMXTZ061bLfQw89REZGBuPHj+ef//wnAN7e3uh0OgIDrQe66nQ6HBwcrN67UaNGMXr0aADmz5/P8uXLOX78OOHh4Xz99dcEBQWxaJF5xs727dtz9uxZ5s6dS506dcp9/QBcvHiRxo0bW7WRmZnJ2LFjef/993nwwQdJSkoCuOtjFXa9ADRt2pTExETLe59fUlISjo6OuLi4WAXWavvIXKWUHugEtAPqY/4ecQ3zw08HgL1l/LtbCCGEEEIIUc1qYsAigapPBp4bHClqFIUr5i8/JYnCnHujqaZpl3LK0oC/KaXqAxOA54CvStsxTdPOF7c976gAe3t7y5QQ94vrtj/yqVsdHrnqaAlZOLk6o2x0OD7kSJ0W9bj50znSdiSCBj63PFh4+3X+47GNKM8NpOvNczdfy7zGtgvb2HZhGw94PMC3j39rOUa2KZs9F/Zw23CbdEM6t7NvW62nG9LNr7PTmfiniQTUDbDs+92Z73hr+1s4mRxwN7jiYaiLu9EVd4MrDQyuuBg9cDnrSF1THVL3n8SUYcCUbsCUYWCQoR2DaFeq9+HmNusE0sF45nmVDiRwVZ0lQ5dNlo0Bo40Jky24u3rgXq8eNu726N0c0LvbY+PugL6uHaocQyGaODry/jMhTH/iIbacuMKmwxfZeiqJjGzzjawb6QbWHbzIuoMXqWNvQ6+W3vR50If6rvbY6HTY6BW2eh02OvNPW31OWc623HXd3c4xFdAZnvoUVg0FNGx3LcDWuwW0HVKq3R0cHO6737V7gXxulUun01luWue9YWrvZIuzm31Ru1k41rErcKPV3tkGZzc7SkppZe9kW6ZpdvJTSqHT6Th69ChGo5EHHnjAantuImudTofRaGTu3LmsXr2axMREsrKyyMzMxNnZuVx90Ol0Bfb7y1/+Yllv06YNbdu2pVmzZmzbto1HHnnEat/nn3+eN954g7i4OD777DM+/vhjS3t52w4NDeXbb79Fp9OxdetWwsLC0Ol0hIaGsm3bNiIiIti6dSsvvvhiqc6jsGPkP6fjx48zZswYq+3du3dn0aJFlrKff/6ZefPmceLECW7evInBYCAjI4OMjAycnJysjpNf7ueW973KfZ0bGLh69So6nY5Tp07RoUMHq/qdOnUq8hwAxo0bx5dffml5XdT0ZBkZGTg6Olq18dZbb9GyZUtLfpDi3q+yKGp/Z2dnTCYT2dnZRf47l/t+5d1ub1/y72ZNpJTqDvwVeAzIO+xGYZ3jLk0ptRH4RNO0nVXYRSGEEEIIIUQ51cSAxRpgjFLKWdO0W1V0zNzcFYGYn8ayUEr5AC7A3uIaUErVwZxo77c8wYq8tmAOWIRQhoCFKF6awzYWO7sReMOZQCPmUJf+zo0tnZ0et8ea4tSmHtfWxpB98RZKUzyR3JPHk3uS7pzFZbsUzqhzxNkkctE2iWCf9piyjOjszE+xGkwGxm8eb31gDVxMjtQ11MHNWAc3Qx3cDK5k3LzINQwYU7MxpWYRfN2NDWkLsddKzpGQlZZage9MQbaaLbZGWzACuTk2r5u4HX+5QF0TGtnOJnRudjh71cXe0xkbdwdsfZyx9XFC2eoL7JOXq4MtA9o2ZEDbhtzOMhB9MolNhy+y5cQVbmWZH3RMzTTw74MX+PfBC2U+F50CG70Ou5yAho1Oh22egEZu4MPeRoe9jR572zzrNrqc1wF0a/L/6HXO/LSt6d9/ZVuCgWTfsJztOXVtdNjb6sGYzZV0cCj+1IUQ+bR9tDFtH21crn1DRzTD1dX1rm7wlkVaWhp6vZ4DBw5YjWQA86gBMD+5v2jRIhYuXEhwcDDOzs5MmDCBrKysSutX06ZN8fLy4vTp01YBCzDnDunfvz8RERFkZGTQt29fUlML/n8SFhbGnDlzSExMJDo6msmTJwPQs2dPli9fzpkzZ0hISKBXr16Vdh75xcXF0b9/f1566SXmzJmDh4eHJW9FVlZWgRweJbG1tbV6rZS6q6Tcs2bNsrxPxfHy8uLaNevnWn755RcOHz7MmjVrACwJ6b28vHjrrbeYOXNmuftVmJSUFJydne/5oKxSqgfwEea/pxVgAg4DR4Fk7kzj6gk8BLTC/LDQs0qp34CJmqZtr4auCyGEEEIIIUqpJgYs3sWc/2G1UmqUpmklT3x997YCbwC9gVX5tvXJU6c4uXekvYrYnju/QmYR20UZXbp1CaP+OgB1jeabFMpWX2guCrtGdfB+uS2p2xO5+XM8GEwowOmWHQG3fAjA507lRLiwZRc6VztsPB2w8XBg0oXh1DXUwT0nQFHXUAfbwn59Lhu5xZ14lS2KO5dGyZS9Hp2jDToHG5SjHp2DjeU1OmX1kLEJE0bNCEphp8+9SaPQ0EhIiSc7PYPsjGxMmQbIMqHLBhuDHjujDY5Gexy0op+q1KGwv6WHW0ayElPIIuXOcZVGlruGe5P62PnWwa6hM7a+LuY+FsLJzoZ+wQ3oF9yAjGwj22Ou8r/DF/np+GVSMwylfm/yMmmQZTCRZSj/jSiAT+nILJs/M9zmJ3Sakc77X2N41jT2ai2L2MN8jp/F/0q/4Ab0eciHVg1cJf+JEPeIkJAQjEYjV65cKTJ58c6dOxkwYADDhg0DzNNXnTp1ilatWlVav86fP09ycjINGjQodPvo0aPp168fU6dOLRBoydW1a1fs7OxYsmQJGRkZlmmBOnToQFJSEitXrsTZ2ZmOHTtWWL9btmzJzp07GTFihKVs586dlvfqwIEDmEwmPvzwQ0tQavXq1VZt2NnZYTTe/Yw+QUFBbNq0yaosNy9GUby9vfH29i6x7ZCQEKuRGABr164lPT3d6lijR49m+/btlTJ955EjRwgJCanwdmsSpdQq4GnAAHyHeWTzL5qmFfnEh1LKFXgEc4LscCBaKbVa07TSDakUQgghhBBCVLmaGLD4O3AGeBI4rZTaD8RjfoIqP03TtIgKOOZm4CzwF6XUx5qmHQRQStUF3gSygM9zKyulGmB+eutibq4NTdOSlVIngSCl1Auapq3IU98NyH1Eb0sF9FcABy7fGQzjYjQHBZRt0U/hKr0O11A/nB7yInXrebIu3cKYnI7pduE3zU03s8i6mUVW7E0epXO5+qhztkHnYoe+jnnR1bFF72KH0R5+O/EHBluNrqHdcXJzRjnYoO52qqMcbgQUuU3TNG5k3uDqrSTq23pjf8sG47UMjNcyOHLmD+ISYvDO9qR+tid1jS4Fz0lTOKQo0lOSSP89yVKeXsfApTopZNVT2Pg4ouwLv2nWxMmHeR38mdWuCUcu3ODExZskph/BqJkwaWA0aWga5tcmMGlaTrkJO2MjMDlh1DSyjRrZWhpZuvMYNXO+EEt90539cxnTrW8QKdur6Gxu8B2hZOmdaKEzz742xu4nPIyZJGlu5vfL6Igpy/dOO0Byxq/84+BVlh3OoI6TkQZu4F7HiF6fyS3DLVKzUknLTsNeb8+MLjPo0ajwG59CiJqlRYsWDB06lOHDh/Phhx8SEhJCUlISmzdvpnXr1jz22GMEBgayZs0adu3ahbu7OwsWLODy5culDlikpaVx+vRpy+vY2FgOHjyIh4cHjRs3Ji0tjZkzZ/LUU0/h4+PDmTNneP3112nevDl9+vQptM3w8HCSkpKKzY3g6OhI586dWbx4Md26dbMENuzs7KzK849SuBtTpkzhmWeeISQkhEcffZT//Oc/rFu3jp9//hmA5s2bk52dzeLFi3n88cfZuXMny5Yts2rD39+ftLQ0Nm/eTJs2bXBycirzyAuAsWPHsmDBAqZOnUpERAQHDx4kKioK4K6Dzn369OGNN97g2rVruLu7AxQISly9ehUwB3Hc3NxK3XZJ10uu7du307t377s4i1rhSWAJMFvTtILDQwuhadpNYD2wPmd61reBivjuIIQQQgghhKgkNTFgMZI7c8+6AKHF1NWogC8dmqYZlFIvAD8A23Ke4EoFnsKck2KypmlxeXaZB4wARmF+uivXa5if+PqnUuo54HfMyf+ewDzCYq2maT/fbX+F2W+Xf7Os5065pOxKnq/HxssR96fuJO803c7GkJyBITnd/PNqumXddCtfslcd6Jzt0LvYonMxBx90znnWXWxzghO26Jxti8wDkZ6eTuolc6BE726PzrHibhCVRCmFm4Mbbg5u5gJXoIF5+udOXX0JuN2eM9fP8NuNM5y7up+Uy1fITE7DPb0OTTMa0SyjEf5Zvug16/faMdWGgFRvuAD8UVwPbpDEYQAa5Swl55bPK/efBwXUAYoaDVGCbGewfLxtrDZNL2nf1K4YMJJkm8LlW8lcvp7CZdtkLtklk2GbTabtLTw8PBnU4klaepazf0KIahEZGcns2bOZNGkSiYmJeHl50blzZ/r37w/A9OnTOXv2LH369MHJyYkxY8YwcOBAbty4UULLZvv377dKzp2bkHrEiBFERUWh1+s5dOgQn332GdevX8fX15fevXvz7rvvFplvQCmFl1dRAzzvCAsLY9u2bYSGhlqV9+zZky1btpQraXhxBg4cyKJFi/jggw949dVXCQgIIDIy0nL8Nm3asGDBAt577z3eeOMNHn74YebNm2fJ+wDmkSHjxo3j2WefJTk5mXfeeYcZM2aUuS8BAQGsWbOGSZMmsWjRIrp06cJbb73FSy+9dNd5HIKDg2nXrh2rV69m7Nixpd4vLi6OgIAAtmzZUuAzyVXS9QKQmJjIrl27CozyuAcF5ft7vExyghx/VUp9UHFdEkIIIYQQQlQ0lTunbk2hlBpRcq07NE37rAKP3RGYCXQFbDHPibtA07R/5asXRU7AQtO0qHzbOgBTgO6YgxQZwHHMIzSWapp29/MaWB+vEeZE5Zw6dYrAwMAS9rh3DPz3QM5cP4Ne0/jviQWAIzb1nfB5rX2FHcOUYcCQkoGy0ZkDE44VMwoiPT2dH3/8EYDevXvX+DmnNU0jKT2JC2kXuJB2Ab1JR5hDN7Iv3CLrQhrZF9JIO5+CnanqAi81XTZGrjnocXmiOS3aFT6Ni6h8te13rTaLiYnBYDBgY2Nz1/8XmUwmbt68CVClOSxE+dXGz2zOnDksW7aMhISEu25r48aNTJkyhSNHjpT63Lds2cKgQYM4e/asZWRGeUydOpVr167xj3/8o8g6Rf1+xsTE0KJFi9yXfpqmnS93R0Stlff7REJCAo0aNarmHgkhajv/aRuruwuiFOL+9liVHEeuh5qvqq4FkOuhNijL9XD+/Hn8/CwPIVfY94kaN8KiIgMQ5Tj2Xsz5M0qqNxLzSJDCtu0DnqnQjokCrmdc58z1MwC0zMwCzE9HlmaERVnoHGyw8y04LdL9RimFt5M33k7etPVuaym3a1QH55x1m1spXE44z834JAxJ6WimwoOhXo6eNHC+cwNfA45cPVKqfvjX9aeO7Z3PIzUrlbib50q1b7DXQ1avL6RdJDkj2bqSKRsuHILsNPNrW2fqNO6Gv0cg2QYDcbGxKJPCycEW2zSF3U0duiLy7NqixzsDDq8+QWRcEq/9uQXedRxK1VchhBAVb8mSJXTo0AFPT0927tzJ/Pnzefnllyuk7ccee4yYmBgSExPz/sFerE2bNvHmm2/eVbACzLk2ckdeCCGEEEIIIURtV+MCFkKUxu9Xfresd8gwAeanGXXF5LAQlcvD2QOPBzzggbLv272YnBvFqQs0onU59y3imKldYWUfuBYHmcDt7TD436SbbEj88Rhg/aS+Kd2A4VoGxpQM0q/eJj72OtcuptHgpgEXFA+i54295/nu4AXGhzUnonsADrYVG1gTQtQM8fHxxeayOHbsmFXegZqsb9++bN++vdBtb775Jm+++WYV9+juxcTEMHv2bFJSUmjcuDGTJk3ijTfeqLD2J0yYUKb68+fPr5DjTpo0qULaEUIIIYQQQoiaoEYHLJRSrTBPz1QPOKpp2nc55TrARtO0Ip5tFve6367cyV8Rkn6nvKJHWIj7UB0feH4DrAyHtEuQeABWDYVBnxdaXedog52jC/i64Ah4hJpvRib/9wzpOy6gQ9GjzmH+h4n5Pxj5as85Xg9/gCfa+KKroCTrQoiawdfXl4MHDxa7vbZYsWIF6enphW7z8PCo4t5UjI8++oiPPvqourshKpBSqikwFXgE8CV3yG1BmqZpNfp7jxBCCCGEEMKsRv7hrpTyAyKBvNkfP8Oc0BrgRWCJUqq3pmmbq7p/ovrlTbgdnKHIyFlXMsJCVASPAHh+HUT2hYwbELsVu/+MB6enQZXuGnN5yIv0HRcA6IYDmz1+xpDamgs3Mpjwr4NE7oxlev9WdPCvnTf+hBAF2djY0Lx58+ruRoVo2LBhdXdBiGIppUKAaMAFKOkJAHlCQAghhBBCiFqixt3dVUp5AFuBXsBRYCkFv2SsBkzAE1XbO1FT/KXlX3i00eN4pdWjrsnOUi4BC1Fh6j8IQ9eArRMA+lMbaZsQCVrhuTnys2vsis7JHBNud6sVDg7n6RxktGz/4/wNnl62m/FfHSA++XbF918IIYS4t70H1AHWAe0BV03TdEUt1dtVIYQQQgghRGnVxD/epwL+wAdAG03TCmRD1DTtGnAY6F61XRM1xWNNH+PFltPodqE1Wp7R/zIllKhQfh3h2S9AZwtAk+SttLqwulS7Kp3CIcg8esLJ5EDw7UC6tInls9EdaVH/TuLwTYcv8eiCrczddJxMg7Go5oQQQghhrQtwEnhG07TfNU1Lq+4OCSGEEEIIIe5eTQxYDADigGmaVuyjzGcxz1Ur7lOZBiP2ZOULWNTES1rUas0fhUHL0XIGegVe2YjN7o9LtatDyzvTPXVKC+a709/Rrbk7m/5fD+Y+GYyXi3l0UJbRxD+2nWXephMV338hhBDi3pQNHCzh+4IQQgghhBCilqmJd3ebAL9pmmYqoV4WIJO/38cysk04koWmOVjKlK2MsBCV4KGnyO7znuWl7ba5sGtxibs5tHAHvTnQ0SktmCu3r7Drwi5s9Dr+0qkxWyaH8tewZtjpzf8Ur96fQFqmoXLOQQghhLi3/AY0qu5OCCGEEEIIISpWTQxYZGCej7YkjYEbldwXUcNkm7KJTojmRuYNMg1GHFS+ERaSw0JUEmPb4Rz1ffZOwY/TYc/SYvfROdhgH1AXgPrZnvhn+rLh9AbL9joOtkzp8wCD/2S+33I7y8h//7hQ4X0XQggh7kEfAF2UUqHV3A8hhBBCCCFEBaqJd3dPAO2UUs5FVVBKeQFtgENV1itRI5xIPsErv7xC91XdWRO7DId8U0LpJIeFqESn6z/G8QaD7xR8Pw32/rPYffJPC7UlYQspGSlWdZ7r4GdZX7UvoWI6K4QoldDQUCZMmFDd3aiVNmzYQPPmzdHr9bz22mt8/fXXNGnSpEqO7e/vz8KFC6vkWKWRnJyMt7c3cXFxVXrcrKws/P392b9/f5UetybQNO174FXg30qpeUqph5VS/kqpxoUt1d1fIYQQQgghROnUxIDFGsATWKCUKqp/8wEn4F9V1itRI/x25TfLuquNNw5kYdJkhIWoOqd8niC726Q7BZsmw/6VRdZ3bOlpWe+UFozBZGDj2Y1WdYIb1qVlA1cADiZc58SlmxXbaSFEkdatW8e7775bZcfbtm0bjz/+OL6+viil2LBhQ4E6I0eORClltYSHh1vVyS3fs2ePVXlmZiaenp4opYiOjgagc+fOjBs3zqresmXLUEoRFRVV4Ng9evQo1bmMHTuWwYMHk5CQwKxZs0q1T1lFRUXh5uZWoHzfvn2MGTOmUo5ZHnPmzGHAgAH4+/sX2JacnEyjRo1QSnH9+vUytTtjxowC18IDDzxg2W5nZ8fkyZOZOnXqXZ5BrfUbcAF4HdgCnAFiC1nOVlcHhRBCCCGEEGVTE+/ufgIcAV4A9iql3swpb6aUmqiU2g0MBw4CUdXSQ1Ftfrt8J2DRwKEVDipbkm6LKmfoNhl6TL5T8N/X4LfPC61r4+GATX0nAILS/alrcGHr+a1WdZRSVqMs/iWjLISoMh4eHtSpU5qZKCvGrVu3aNOmDZ988kmx9cLDw7l48aJl+eabbwrU8fPzIzIy0qps/fr1uLi4WJWFhYVZghe5tmzZgp+fX4Hy6OhoevXqVeJ5pKWlceXKFfr06YOvr2+VvocA9erVw8nJqUqPWZTbt2/z6aefEhERUej2iIgIWrduXe72H3zwQatrYceOHVbbhw4dyo4dOzh69Gi5j1EbKaW6A5uBIEABKUB8EYv8xyqEEEIIIUQtUePu7mqalgH0AXYD7YDcxx67Yx5Z0QnYD/TXNC27WjopqoWmafx+5XcAXO1cqav3KzAllCTdFlVCKeg1Hbq9eqfsu/8HB78utLpjzrRQOnQs8vsbyx5dVqDOwLYNsbMx/5O8/vdEMrKNFd9vIUQB+aeEyszMZPLkyTRs2BBnZ2c6depkdVM/OTmZIUOG0LBhQ5ycnAgODi40mFCUvn37Mnv2bJ588sli69nb2+Pj42NZ3N3dC9QZMWIEq1atIj093VK2cuVKRowYYVUvLCyMkydPcunSJUvZ1q1bmTZtmtW5xcbGcu7cOcLCwortW3R0tCVA0atXL6vRHPktXbqUZs2aYWdnR1BQEF988YXV9gULFhAcHIyzszN+fn6MHz+etLQ0y3FGjRrFjRs3LKMLZsyYARScEkopxYoVK3jyySdxcnIiMDCQ7777zupY3333HYGBgTg4OBAWFsZnn31WrlEP+W3atAl7e3s6d+5c6Plfv36dyZMnF7Jn6djY2FhdC15eXlbb3d3d6datG6tWrSr3MWqp2YADsADw1DStnqZpAUUt1dxXIYQQQgghRCnZVHcHCqNp2kWgu1KqD/AY0BRzcCUB+B/wb03TtGrsoqgGsTdiuZZ5DYAQ7xCyDBr2ZKFpMsJCVAOl4NGZYDTAnk8ADTaMB50NtH7GqqrDAx6kRp8HoMnletjoCv7TW9fJln4P+bDh4AWu387mx2OXeaKNb1WciRCVav9/13Ng44YS63kHNOPJ19+2Kvvpkw9JOR9f4r7tHxvIn/oXHwAorZdffpljx46xatUqfH19Wb9+PeHh4Rw+fJjAwEAyMjJo3749U6dOxdXVlY0bN/L888/TrFkzOnbsWCF9APPNem9vb9zd3enVqxezZ8/G09PTqk779u3x9/dn7dq1DBs2jPj4eLZt28Ynn3xiNc1Vt27dsLW1ZcuWLQwZMoRjx46Rnp5OREQEU6dOJTY2loCAALZs2YKDgwNdunQptm9du3bl5MmTBAUFsXbtWrp27YqbmxsnTpywqrd+/XpeffVVFi5cyKOPPsp///tfRo0aRaNGjSxBEZ1Ox8cff0xAQABnz55l/PjxvP766yxZsoSuXbuycOFC3n77bU6ePAlQYPRIXjNnzuT9999n/vz5LF68mKFDh3Lu3Dk8PDyIjY1l8ODBvPrqq7zwwgv8/vvvdxVEyGv79u20b9++QPmxY8eYNWsWv/76K2fPln9GopiYGHx9fS2fzbx582jc2DolQ8eOHdm+fXu5j1FLtQN+1zStYj5IIYQQQgghRI1Qo+/uapr2g6Zp/0/TtP6apvXTNG2spmkbJFhxfzpw5YBlvV39dmQaTDkjLBws5TLCQlQppaDPHOg4NqdAg/Vj4chaq2p2jV3ROZuDFJkx19AMpkKbe7bDnRtQ/9pX8k1aIWqDrPTbpKUkl7ik37xRYN/01NRS7ZuVfrtC+hofH09kZCTffvstPXr0oFmzZkyePJnu3btbpl5q2LAhkydPpm3btjRt2pRXXnmF8PBwVq9eXSF9APN0UJ9//jmbN2/mvffeY+vWrfTt2xejseDIq9GjR7NypTmPTlRUFP369aNevXpWdZydnenYsaNlFER0dDTdu3fH3t6erl27WpV36dIFe3t7imNnZ4e3tzdgnlLLx8cHOzu7AvU++OADRo4cyfjx42nRogUTJ05k0KBBfPDBB5Y6EyZMICwsDH9/f0tgJve9tLOzo27duiilLKMLigtYjBw5kiFDhtC8eXPmzp1LWloae/fuBWD58uUEBQUxf/58goKCeO655xg5cmSx51la586dw9fXOsCcmZnJkCFDmD9/foHgQll06tSJqKgovv/+e5YuXUpsbCw9evQgNTXVqp6vry/nzp0r93FqqSzgZHV3QgghhBBCCFGxauQICyEKkzd/RTvvdvxywYiDyj8lVI2OwYl7kVLQ9z0wGWD/p6CZYO2LoPTw4EBzFZ3CIciD279dQcsykXn2Bg4t3DGYDFajLTo39cDf04m45NvsPJ1MfPJtGnvWjDnahSgvO0cnXDw8S6zn6Fq3YFmdOqXa186xYn5PDh8+jNFopEWLFlbluYmsAYxGI3PnzmX16tUkJiaSlZVFZmZmheZTeO655yzrwcHBtG7dmmbNmhEdHc0jjzxiVXfYsGFMmzaNs2fPEhUVxccff1xom6GhoXz77beAOTARGhoKQM+ePS1TL0VHR/Piiy9W2HkcP368QGLsbt26sWjRIsvrn3/+mXnz5nHixAlu3ryJwWAgIyOD27dvl/k9zZsnwtnZGVdXV65cuQLAyZMn6dChg1X9kkbEjBs3ji+//NLyOneqqvzS09NxcHCwKnvjjTdo2bIlw4YNK9M55Ne3b1/LeuvWrenUqRNNmjRh9erVVjkzHB0duX27YgJ3tcivQIsSawkhhBBCCCFqFQlYiFojN2DhoHfgQc8H+Z/htHmERZ4poXR2MsJCVAOloN8H5qDFb5+BZoS1EebpoVr2B8ChpTlgAXBq70GWxX+LUTOy/M/L8zSjeKaDH+9/b35gdPX+BCb3Car68xGiAv2p/5Plnq7pz3+dhKurKzpd1QSj09LS0Ov1HDhwAL3e+v+T3Cf758+fz6JFi1i4cKEl98KECRPIysqqtH41bdoULy8vTp8+XSBg4enpSf/+/YmIiCAjI4O+ffsWePoezHks5syZQ2JiItHR0ZbpkHr27Mny5cs5c+YMCQkJpUq4XVHi4uLo378/L730EnPmzMHDw4MdO3YQERFBVlZWmQMWtra2Vq+VUphMhY9oK41Zs2aVatooLy8vrl27ZlX2yy+/cPjwYdasWQOY83Dl1n3rrbeYOXNmufrk5uZGixYtOH36tFV5SkpKgZE194F3gW1KqSGappU+kYwQQgghhBCiRqv2gIVS6iygAY9qmhab87q0NE3TmlVS10QNcunWJS7cugBAcL1gbPW2ZGQbcSDbeoSF5LAQ1UWng/4LwWSEg1+agxffjoTn10HAwzgEuoNegVFDO3WL7YbtoCAxLZGGLg0tzQxu14gPfzyF0aTx7YEEJjwaiI1ermshqkJISAhGo5ErV67Qo0ePQuvs3LmTAQMGWJ6cN5lMnDp1ilatWlVav86fP09ycjINGjQodPvo0aPp168fU6dOLRBoydW1a1fs7OxYsmSJJQ8HQIcOHUhKSmLlypWWqaMqSsuWLdm5c6dVEvCdO3da3qsDBw5gMpn48MMPLUGp/FNr2dnZFToVVlkFBQWxadMmq7J9+/YVu4+3t7dl6qvihISEWI3EAFi7dq1VMvR9+/YxevRotm/fTrNm5f/TNS0tjTNnzvD8889blR85coSQkJByt1tL2QELgS+UUk9gznMXDxQapdI0bVvVdU0IIYQQQghRXtUesAD8MQcsbPO8Li3JZXGfuJZxjQc9H+REygnaebcDsOSwMEkOC1FT6HTwxMfmYMWhVWDKhq3vQ8DD6BxssG9al8yY63hm1cU/syFxDon8+/S/Gd92vKUJb1cHej3gzU/HLnP5ZiZbTyXxSMv61XhSQtw/WrRowdChQxk+fDgffvghISEhJCUlsXnzZlq3bs1jjz1GYGAga9asYdeuXbi7u7NgwQIuX75c6oBFWlqa1dPxsbGxHDx4EA8PDxo3bkxaWhozZ87kqaeewsfHhzNnzvD666/TvHlz+vTpU2ib4eHhJCUl4erqWuRxHR0d6dy5M4sXL6Zbt26WwIadnZ1Vef5RCndjypQpPPPMM4SEhPDoo4/yn//8h3Xr1vHzzz8D0Lx5c7Kzs1m8eDGPP/44O3fuZNmyZVZt+Pv7k5aWxubNm2nTpg1OTk7lmn5r7NixLFiwgKlTpxIREcHBgweJiooCzCMx7kafPn144403uHbtGu7u7gAFghJXr14FzEEcNze3Urc9efJkHn/8cZo0acKFCxd455130Ov1DBkyxKre9u3brRKt3yeiMX8XUMAzOUtRNGrG9x4hhBBCCCFECWrCY7sBQFPgbJ7XpV2aVnVnRfVo6dmSVf1XsXPITp5vZX6qMNNgMuew0CSHhahBdHoYuATccpKsJuyF7AwAHB/wsFTrkmaea33D6Q2YNOuHQZ/r4GdZX7UvoZI7LITIKzIykuHDhzNp0iSCgoIYOHAg+/btsyROnj59Ou3ataNPnz6Ehobi4+PDwIEDS93+/v37CQkJsTwNP3HiREJCQnj77bcB0Ov1HDp0iCeeeIIWLVoQERFB+/bt2b59e5HJsJVSeHl5FZr4Oq+wsDBSU1Mt+Sty9ezZk9TUVMLCwkp9HqUxcOBAFi1axAcffMCDDz7I8uXLiYyMtBy/TZs2LFiwgPfee4+HHnqIr776innz5lm10bVrV8aNG8ezzz5LvXr1eP/998vVl4CAANasWcO6deto3bo1S5cu5a233gIoMcl4SYKDg2nXrl2ZE6/HxcWhlLIkPS/M+fPnGTJkCEFBQTzzzDN4enqyZ88eq+mfdu/ezY0bNxg8eHB5T6G22pazbM2zXtSyvZr6KIQQQgghhCgjlTunrqidlFKNgASAU6dOERgYWM09qjovfXmA92IeIz1rLtlaIOgUjeZ2r+5ulUp6ejo//vgjAL1798bR0bGaeyRKUubP7N9/hd9zpggZuRH8u2NIyeDS++YpSBJdr/JCQ/MNyuV/Xk5X366WXQ1GE13/9gtXUjPR6xS7p/XC29WhwCFEyeR3rerExMRgMBiwsbG56/+LTCYTN2/eBKjSHBai/GrjZzZnzhyWLVtGQsLdB4Y3btzIlClTOHLkSKnPfcuWLQwaNIizZ89aRmaUx7PPPkubNm148803i6xT1O9nTExM3iTzfpqmnS93R0Stlff7REJCAo0aNarmHgkhajv/aRuruwuiFOL+9liVHEeuh5qvqq4FkOuhNijL9XD+/Hn8/CwP3VbY94ma/21SiCLkTgmVm8NCRleIGsU/z/z3cTsAsPFwwKa+eSoT35ueuBnqALAhZoPVrjZ6HU//yXyzwGjSWPOb3D8SQoi7tWTJEvbt28fZs2f54osvmD9/vlV+jbvx2GOPMWbMGBITE0u9z6ZNm3jzzTfvKliRlZVFcHAwr732WrnbEEIIIYQQQoiapMbd4VVK+Smlhiulgoqp80BOHXn85z6QbcouvDw7CztlRNPMT55Lwm1RozTpdmc9J2AB4NjSEwCFIjSjEwCb4zdzI/OG1e7P/OnOtFCr9yUgo+GEqPni4+NxcXEpcomPj6/uLpZa3759izyPuXPnVnf3yiUmJoYBAwbQqlUr3n33XSZNmsSMGTMqrP0JEybkfbqoRPPnz2fKlCl3dUw7OzumT58uo8eEEEIIIYQQ94yamHzuFWAS8GAxdRQQBfwNKHr8u7gnLP5tMd/HfU+7+u14JeQVGro0BEDLSjf/zB1hYScJt0UN4uYHbk3g+rk7eSxsHXBo6UFqtHn6kX6GnmzgZ7JMWWyK3cSQB+4kUW3i6UzXZp7sOpNMXPJtfo1NoXNTz+o6GyFEKfj6+nLw4MFit9cWK1asID09vdBtHh4ehZbXdB999BEfffRRdXdDlJNSqp2mab/VlHaEEEIIIYQQlaMmPpLeGziuadqJoipomnYcOAaEV1mvRLU5cOUAF29dZOPZjTjo78zjrxmsAxY6mRJK1DS500IZMyFxPwB2fnXQOdsC0OiqJ7Ymc9x4fcz6Ars/myf59r8k+bYQNZ6NjQ3NmzcvcrGxqYnPiRSuYcOGRZ5HbQ1YiFpvn1JqlVLqgfLsrJR6UCm1Gth3tx1RSg1TSi1XSu1XSmUqpTSl1MhC6tkqpZ5SSn2mlDqulEpTSqUqpX5VSr2klCrwtI1Syj+nvaKWGXfbfyGEEEIIIWqymniH1w84XYp6p3PqintYuiGdY1ePAeDv6o+nY54nzLMz0DSFRs6UULYywkLUMP55ksDnTAuldAqHB8w3+1Q2PKH/MwD2envSstKsdu/zoA91Hc3BjU2HL3LjduHTowkhhBD3gY+BQcBRpdQOpdQLSqmA4nZQSjVVSo1VSu0GDgEDgUUV0JfZwBigCXCxmHrNgDU5/T4JfAJ8BTQClgAblFKqiH3/AGYWskTfffeFEEIIIYSouWrio35OQOFzEFhLB+pUcl9ENTty9QgGzQBAu/rtrLYpQwYadndeywgLUdP4F5XHwoPbBy4DMNR2EMP7jaNp3aYFdnew1fNkSEOidsWRaTDx7z8SGd7Fv7J7LYQQQtQ4mqa9ppT6BzAf6At0AVBKJQHHgWTgJuAKeAItgXp5mtgEvJ4zUvtuvQDEaJp2Tik1DZhXRL1U4K/AZ5qm3cotVEpNwhx46A8MBr4tZN+DmqbNqIC+CiGEEEIIUavUxDu8F4G2pajXBrhSuV0R1e3A5QOW9Xbe1gELDOmW6aBAcliIGsitsTmPBcD5feY8FoB9oDvozQ9UusTpCHAt+gHRvNNCfbNXkm8LIYS4f2madlzTtP7AA8DfgQTAG+iJeRTDyJyfPXPKE4DFwAOapj1eQcEKNE37WdO0c6Wol6hp2pK8wYqc8lvAgpyXPSuiT0IIIYQQQtwrauIIi+3AMKXUU5qmrS2sglJqEOYvKl9Xac9Elfvt8p2ciPlHWOgMmfkCFjUx/ibue/494OA5MGRA4gHw74bOXo99MzcyT13DeCOT7Iu3sPN1KXT3lg1caePnxh8J1zl+8SZHEm8S3KhuFZ+EEEIIUXNomhYDvAq8qpRqCoQA9YG6wHXMDzX9pmlabLV1smS58zwaitjuq5T6K+ZzugxEa5p2pjwHUko1KqGKT+5Keno66emlGewuhBCitpN/70UuuRZEXmW5Hirr2qmJAYtFwFDg85w/rldqmpYKoJSqA4wG5gAmzHPZinuUwWTgj6Q/APB29KaRi/V3LZ0xHU3lCVhIDgtRE/l3g4NfmtfjdlimiXJs6UHmqWsAZBxPKTJgAfBcBz/+SLgOwKp98QQ3Cq7ULgshhBC1haZpZ4Gz1d2Pchid8/PHIrb/OWfJpSmlvgLG5R+xUQoJpa24bds2vLy8yti8EELkVxNvNYn8fvyxqP+CKppcDzVd1V0LINdDzVeW6+Hq1auV0oca90i6pmm/AW8AjpiHSqcopeKVUvFASk6ZEzBd07S91ddTUdlOppzktuE2YB5dkTcnoaZp6Iz5RlhIDgtREzXJm8diu2U1N/E2wPUjF5i5eyZP/+dpvj5ecODY4218ccqZ8uy7gxe4nVXUw5hCiLIKDQ1lwoQJ1d0NIcR9RCk1BnMejl80TduUb/Nt4F2gPeAGeACPAnuBYcDnVddTIYQQQgghql6NDGtpmjZfKXUSmIk5V0XeR+v/AGZqmrahOvomqo5V/op800FlGU04kIWGg6VMcliIGsm9iTmXxfV4cx4LQybY2GPj7oCtjzPZl26hu5jN5qM/cs32JgeTDvKXln+xasLF3ob+rRuwev95UjMNbDp8icHtS5rdQQhRGuvWrcPW1rZKjrVt2zbmz5/PgQMHuHjxIuvXr2fgwIFWdUaOHMlnn31mVdanTx++//57y+vcAP7u3bvp3LmzpTwzMxNfX19SUlLYsmULoaGhdO7cmbZt27Js2TJLvWXLlvHSSy8RGRnJyJEjrY595swZtm+/E1wVQlQspVR/zPk3zmEOQFjRNO0K8Ha+4s1Kqd3Ab8AgpVS7nIe8SsuvhO0+wD6Ahx9+mEaN5G8MIcRd2v1LdfdAlELv3r2r5kByPdR4VXYtgFwPtUBZrofz589XSh9qZMACQNO074DvlFL1gcY5xfGapl2uxm6JKnTo6iHLev6E25mGnICFJiMsRC3g3wMOfnUnj0WTrgA4tPQg+5J5Vodut0P4b92tHLl6pNAmnu3QmNX7zf8R/GtfvAQshKggHh4eJVeqILdu3aJNmzaMHj2aQYMGFVkvPDycyMhIy2t7e/sCdfz8/IiMjLQKWKxfvx4XFxdSUlIsZWFhYaxfv95q3y1btuDn50d0dLRVwCI6OpoRI0aU59SEEKWglOoHrMGck6KXpmkXS7uvpmm3lVJfALOBbpiDF6Xdt9hvknlHMTs6OuLo6FjapoUQQtRi8u+9yCXXgsirLNdDZV07Nf4Or6ZplzVN25ezSLDiPjKvxzy+7vc1r3d4nUD3QKttmdkmHFS21ZRQOkm6LWoq/+531uN2WFYdWt65URqW2QmAhNQErmdcL9BEu8ZuBHqb81zsi7vG6StpldNXIe4zeaeEyszMZPLkyTRs2BBnZ2c6depEdHS0pW5ycjJDhgyhYcOGODk5ERwczDfffFPqY/Xt25fZs2fz5JNPFlvP3t4eHx8fy+Lu7l6gzogRI1i1apVVkrOVK1cWCDiEhYVx8uRJLl26ZCnbunUr06ZNszq32NhYzp07R1hYWKnPRwhRekqpx4B1wFUgLCf3RlnlThLsXGEdE0IIIYQQooapsSMshLDV2RJcL5jgegUTDGdkG3EgC1PeHBYyJZSoqfLnsej5OgB2jeqgc7HFlJZNi+t+2HnZkqXL5kjyEbo37G7VhFKKZzv4MXvjcQDWHDjPtL4PVNkpCFEelxf/jik1q8z7aYCmmQC4rXSo4qsXoKtjR/1XQsp83Jdffpljx46xatUqfH19Wb9+PeHh4Rw+fJjAwEAyMjJo3749U6dOxdXVlY0bN/L888/TrFkzOnbsWObjFSU6Ohpvb2/c3d3p1asXs2fPxtPT06pO+/bt8ff3Z+3atQwbNoz4+Hi2bdvGJ598wrvvvmup161bN2xtbdmyZQtDhgzh2LFjpKenExERwdSpU4mNjSUgIIAtW7bg4OBAly5dKuw8hBBmOcGKtZjz8YVpmna6nE11yvkZVxH9EkIIIYQQoiaq9oCFUmp4zup6TdNS87wuFU3TJPHcfUimhBK1insTqNsYbsRDwl5LHgulUzg84MHt/ZexMeppcyuIfXWOcPjq4QIBC4AnQxoyZ9NxNA22xyRJwELUeKbULIw3yx6wyEuroL6UJD4+nsjISOLj4/H19QVg8uTJfP/990RGRjJ37lwaNmzI5MmTLfu88sor/PDDD6xevbrCAhbh4eEMGjSIgIAAzpw5w5tvvknfvn3ZvXs3er11YH706NGsXLmSYcOGERUVRb9+/ahXr55VHWdnZzp27Eh0dDRDhgwhOjqa7t27Y29vT9euXYmOjiYgIIDo6Gi6dOlS6PRTQojyU0r1xRysuIY5WBFTQv0Q4KCmaVq+8kHAiJx2/ldJ3RVCCCGEEKLaVXvAAojCfD9iD5Ca53VpScDiPpRpMGKv8iXdtpURFqIG8+8Of3xdII+FY0tzwAKgY9pD7KtzpMg8Fp4u9rT0ceXYxZscu3iTG7ezqetUNcmChSgPXR27cu2Xd4SFKucIi7I6fPgwRqORFi1aWJVnZmZaRjcYjUbmzp3L6tWrSUxMJCsri8zMTJycnMp8vKI899xzlvXg4GBat25Ns2bNiI6O5pFHHrGqO2zYMKZNm8bZs2eJiori448/LrTN0NBQvv32W8A8eiM0NBSAnj17Eh0dzahRo4iOjubFF1+ssPMQ4l6mlHoByH2yIHco8AtKqdCc9R2apq1QSj0ArAfsgWhgSN58ETniNE2LyvP6I6BZTpLt84AeaJdzvExgpKZpNyryfIQQQgghhKhJakLA4nPM9yZu5Hst7mPv7HqHJq5N6FC/QxFTQplwJAstzxS+MsJC1Gi5AQsw57HICVjYN3cHBWjQKrMZAEeuHkHTNAq5qUHnpp4cu3gTTYO9cSn8uVX9qjoDIcqsPNMyAZhMJm7evAmAq6srOl3l//uelpaGXq/nwIEDBUYyuLiY88fMnz+fRYsWsXDhQoKDg3F2dmbChAlkZd3dKJLiNG3aFC8vL06fPl0gYOHp6Un//v2JiIggIyODvn37kpqaWqCNsLAw5syZQ2JiItHR0ZZRIj179mT58uWcOXOGhIQEevXqVWnnIcQ9pjvm0Q55dctZcq0AfMAyf+lzFG4r5ge2cn0JPAV0Brww5xxMzGnvQ03TTtxNx4UQQgghhKjpqj1goWnayOJei/vP5VuXWRezDoD29dsTFR5VoE6mwZgzJdSdpMWSw0LUaPkTb+fksdDZ67Gp54Thym2aZPhgo+lJyUghMS2RRnUaFWimc1MPVu6MBWDP2WQJWAhRQUJCQjAajVy5coUePXoUWmfnzp0MGDCAYcOGAebAyqlTp2jVqlWl9ev8+fMkJyfToEGDQrePHj2afv36MXXq1AKBllxdu3bFzs6OJUuWWPJwAHTo0IGkpCRWrlxpmTpKiNpCKWUEojRNiyih3j+BUZqmVdj3npzvKyNLUS8ayjZITNO0FZiDE0IIIYQQQtyXqv2RdKXUSqXU6DyvGyulPIrbR9zbfrvym2W9nXe7QutYclhYJd2u9stZiKLl5rGAO3ksctg1ND+9rdf0NMk035QsalqoTgGe5A682H0mufL6K8R9pkWLFgwdOpThw4ezbt06YmNj2bt3L/PmzWPjxo0ABAYG8tNPP7Fr1y6OHz/O2LFjuXz5cqmPkZaWxsGDBzl48CAAsbGxHDx4kPj4eMv2KVOmsGfPHuLi4ti8eTMDBgygefPm9OnTp9A2w8PDSUpKYtasWUUe19HRkc6dO7N48WK6detmCWzY2dlZldvayhRzolZRlD4YUNaZ5YQQQgghhBDVpCbc4R3JnTlgAWKB+dXTFVETHLh8wLLevn77QutkZhtxkBwWorbxz5kpwpAOiXcCc7a+Lpb1MfVGsvzPywtNug1Q18mWVg1cATh+6SbXb1feVDRC3G8iIyMZPnw4kyZNIigoiIEDB7Jv3z4aNzYHG6dPn067du3o06cPoaGh+Pj4MHDgwFK3v3//fkJCQggJMU+VNXHiREJCQnj77bcB0Ov1HDp0iCeeeIIWLVoQERFB+/bt2b59e5HJsJVSeHl5YWdXfN6OsLAwUlNTLfkrcvXs2ZPU1FTCwsJKfR5C1DJOQHZ1d0IIIYQQQghROtU+JRRgBPI+0leWp6XEPSh3hIVO6WhTr02hdTINOTkstDs3cHQywkLUdP7d4Y9vzOtxO6BJFwDsGt7JxdJF1x533+bFNtO5qSdHL+TksYhNofeDPpXWZSHuddHR0ZZ1W1tbZs6cycyZMwut6+HhwYYNG8p9rNDQUDSt6DRdjo6O/PDDDyW2U1wbbm5uhW6fMWMGM2bMKFD+zjvv8M4775R4TCFqI6WUG+YHoy5Wc1eEuC/4T9tY3V0QJYj722PV3QUhhBCiRDXhDu8VoK0qLLusuO/cyLzB6WunAQhyD8LFzqXQepnZ5imhTHmnhJIRFqKms8pjsd2ymneERXZiWonNdG7qaVnfczalYvomhBBC1HBKqbO5S07R4Lxl+ZZ4zN8zGgH/q75eCyGEEEIIIcqiJoyw+AUYCpxVSsXmlIUrpX4pxb6apmmPVF7XRFU7eOUgGuYnQ4uaDgrMSbftVbb1lFAywkLUdG5NoK4f3EjIyWORBTZ26BxssPF0wJCcQdbFW2hGDaUvOobb0d8DpUDTzIm3hRDVLz4+vtjk28eOHbNMLSWEKDf/POsa4JKzFCUL2AC8WXldEkIIIYQQQlSkmhCwmAq0ADoATXLKfHKWkhQ9J4KolQ5cuZO/ol39whNuA2TkjLDIOyWUspWAhajhlLozLZQhHS78Bo07A2Db0AVDcgYYTMScPsof6jgBrgH8yedPBZrJzWNx9MJNSx4LN6fi568XQlQuX19fSzLtorYLIe5aQM5PBZwF1gBTiqibBSRpmmaoio4JIYQQQgghKka1Byw0TbsAdFJKNcEcsIgGvgfeq85+ierx2+U7iYhDvEOKrJdpMJoDFrlTQukVSi8BC1ELNOmWJ4/FdkvAwq6hC+mHrgKw5PuFbHb7lacCnyo0YAHQJU8ei19jU+gjeSyEqFY2NjY0b158/hkhxN3RNO1c7rpS6jNge94yIYQQQgghRO1X7QGLXDlfNs7lpLK4pGna1mrukqhiGYYMjiYfBaCJaxO8HL2KrJtpMFkFLGR0hag1rPJY7ICHzQ+G5s1jEZjZmM38yuGrh4tspnNTT1bsMM+it+dssgQsRI1RXEJoIUT1yP29vJdSxmmaNqq6+yCEEEIIIYSoeNUesMjJVfG9pmnv5xSNAmKqsUuimmhoTO80nQOXD+DjXPzN14xsIw4qC5OWG7CQhNuilnD3B9dGcPM8xP9qyWORN2DxkKEFAKevn+Z29m2cbJ0KNNMhIG8eC0m8Laqfra0tBoMBo9HI9evXcXNzq+4uCSGA69evYzQaAfNIICGEEEIIIYSoyWrCt5ZQIC7P65VAFLCrGvoiqpGjjSNPtXiKp1o8VWLd3BEWt3JHWEjCbVFb5OaxOLTKKo+F3tkWvZs9xuuZ+N2qj9IUJkwcTzleaAL6uo62POjrypHEm5yQPBaiBnB2diY9PR2AixcvcuXKlbt6mttgME87n5SUVCH9E5VPPrOaR9M0S7ACzL+n9xKlVB1gPPAo0BBwKKKqpmlasyrrmBBCCCGEEKLcakLAIhvrLxcqZxGiSJnZJhzIJi0nYKGTERaiNskNWIB5Wqg8ibeN1zOxM9rgm1WPRPsrHLl6pNCABUDnAE+OJEoeC1EzeHl5YTQauXbtGoDVTdKy0jTNEvxwdHS8p6axuVfJZ1bzubu74+VV9HSbtY1SyhfYgTkHXkkXnMxVJ4QQQgghRC1REwIWFzEn3XbWNO1WdXdG1A6Z2dnYYUDLiXXJCAtRqxTIYzEZADtfFzKOJgPQPMOP/8/efcdJVZ1/HP+cadsrZeldBZQOUlTEBvbee2/pamJiEqPJL9EkaozGXmLvxm6CikqTJh0EpXd2WXbZvrNTzu+PmW2wFXZ2Zpfv+/Wa19xy7rnPMHdX9z73nGdbXE6DdSzG96+uYzFnnepYSHQZY8jKysLpdFJSUoLf79/vehbBYLDq5ndycjIOh37Hxzp9Z7HJGIPL5SIpKYmOHTu2t0TSX4A+wBLgfmAVUBjFeEREREREpAXEQsLiE+AWIMcYkx3edr4xZlITjtXw7nZiZ8lO1u5Zy/BOw0n2JDfaPlBRjqV6+hsV3ZY2JaMPpHaHwm2wpUYdi+7V1/5hFf2YzkKW76o/YTG6TyYOA0EbKrwtEm3GGDp16kSnTp0OqJ+ysjJWr14NwKhRo0hISGiJ8CSC9J1JFEwBsoHjrLUF0Q5GRERERERaRizc5b0LeAdwE3pKygLJ4eWmvKQd+HzT59zyxS0c9cZRfLr+08YP8JViw9NBARiPpoSSNqSyjgWArxS2LwbAUyNhMTRceHt7yXZyy3Lr7CZUxyINgNU7i8gvqYhg0CIiIjElA5ijZIWIiIiISPsS9YSFtbbAWnshkEgoAWEIJTD6NuHVryVjMcaMMcZ8aozZY4wpMcbMNcZcuB/9dDbG/MMYs8YYU26M2W2MmWOMuaUl421PFueEbtgGbZD+6Y0PmrG+stoJC42wkLam1rRQMwFwpnhwpIRGDvUoyaqacXtl7sp6uxnXL7Nqed6GvJaPU0REJDZtIQb+lhERERERkZYVM/+Tb631W2s3h1eLrbWbmvJqqfMbY44DZgNHA28BTwJdgDeNMbc3o5/hwArgx8BK4B/Aa0AJcEZLxdueWGtZmL0QgBR3CgPSBzR+jK8Ma6trtRsV3Za2Zu86FmGVoyzifC4GOQdwXM/jSHQn1tvNuH4dqpY1LZSIiBxE3gGOMcYkRTsQERERERFpObFQw6IWa22rJ1GMMS7gGSAITLTWLglv/yMwH/iLMeadxhIkxphU4IPw6ihr7bI6ziN72VS4ibzy0JPhwzsPx+loPPlg/OV7TQkVM7k3kabJ6Fu7jkXAB0437m5JlK8O/Ty8MPxpEoc0XAtgTF/VsRARkYPSn4BTgLeMMddYa3OiHZCIiIiIiBy4mL6BboxJA8YAnYBN1tpvInSq44H+wL8rkxUQmq7KGPMX4AXgKuCPjfRzK9ALuG7vZEW4P39LBdyeLMpZVLU8Mmtkk47ZN2GhERbSxlTWsVj2ZnUdi55H1qpj4dteAo0kLFLj3RzRPY1lWwtYvbOIvJIKMpM8DR4jIiLS1hhjnq9j83rgbGCtMeZbYDOhB5D2Zq2110UwPBERERERaSExmbAwxqQQmkrpCqpjfBH4Jrz/ekLJg3OstfNa4JSTwu+f1bFvavj92Cb0cxGhWeffNcYcBkwGEoDVwP+stc2uiGuM6dFIky6VC16vl7KysuaeIurmb59ftXxE+hFN+wy+MoI1poQKEGxTn728vLzOZYldkfjOnN2OxLPsTQB8a77C33EIgQ7u6vNsKcDThOt6dM9QwgJg5vc7mDyoc4vE1x7oZ61t0vfW9ug7a5u8Xm+0Q2iOqxvYl0z1/8/XxQJKWIiIiIiItAExl7AwxiQAXwMjgBzgW+DUvZp9DDxF6ImqlkhYHBJ+X7P3DmvtTmNMcY02dTLGeIAhwC7gJ8C91K4Rst4Yc7a1dnkzY9vS1Ibz5s1j3bp1zew++r4pDA2cceFi28JtZJvsRo8JlBfXGmGxZsNasitWRCzGSJoxY0a0Q5BmaqnvLMkb5MTwcv7iD5lTNBAsDHWl4/Y7KN24h7lTPyNAgApbQYIjoc5+XPkGCI0yenfGMthS18Olop+1tknfW9uj76ztyM3NjXYIzXFNtAMQEREREZHIi7mEBXAboWTF68CN1toSY0ytu2/hJMIq4LgWOmda+L2gnv2FNdrUJ5PQHcMOwN3Ar4CXATdwE/A74CNjzEBrrR49DCsMFpIfzAegh7MHriaW+XDZCqypTlgEnTYi8YlEUomnM2XuDBJ8+WSW/ICxfqxxUZoUIK3Agdvv4M38V1nlWMMYzxhOSzytzn76pVgMFothTaFp5U8hIiISedbaF6Mdg4iIiIiIRF4sJiwuAnYSqgPR0I39H4AjWyekJqkcTeEE/mWtfbDGvrvDU0RdCJwPvNKMfns2sr8LsABg7Nix9O/fvxldR9/nmz+HuaHl4w49jvqTF4UAAQAASURBVMlDJjfpuJkL5mFtdcJi0NDDGTG8YyRCjIjy8vKqJ1AnTpxIfHx8I0dItEXqO3NXHA/fvYsrWMGUIzoT7D6aEsdWymfvBCCxxIU/xU9xSjGTT6j/5+OVbQtYsb2IHaWG0UdNUh2LMP2stU363toefWdtU1scmSsiIiIiIu1bLCYs+gOfN2EUQinQUneoK0dW1DeKIhXIb2IfAB/Wsf9DQgmL0TQjYWGt3drQfmOqn6aOi4sjIaHuKWNiVVxcHIdlHMYP+T8wtvvYJsVvrcVlvVhTfTMkLim+zX32SvHxbTf2g1WLfmf9j4Xv3gUgbscCGHAMtnd6VcJilD2CeSzn+/zvccW5cDvcdXZz1IBOrNheBMCyHaWcMqSxQWEHH/2stU363toefWdtR1xcXOONREREREREWlEsJiwChKZRakwPoKSFzllZu+IQYGHNHcaYLoQK+c3f+6CawlNXbQO6A3vqaFK5TX/B1zClzxSm9JlCYUUh8c6mPY3p9QeJp6JWDQvjdjRwhEgM63N09fLaaXDMbXi6J1dtOtwXKp9TEaxgTf4aBncYXGc34/p14KkZ6wGYu343pwzpGrmYRUREoswY83wTm1YAuYTq4n1qra2IXFQiIiIiInKgYjFhsQ4YZoxxWWv9dTUwxiQDQ4HvWuic04HfAJOBN/baN6VGm8Z8CVwBDAYW7bWv8i7jxv0LsX1L9aQ2uW1VwqLGlFDG44xEWCKRl9kPOgyA3Wth8zdQkoszswMm3oktD9CtuGOoMg6wfNfyehMWo/tk4DAQtDB3fV4rfgAREZGouDr8XlnIbO8iTntvt0C2MeYqa+3nEY5NRERERET2Uyw+lv4h0JVQker6/I7Q9E3vtdA5pwHrgUuNMcMrNxpj0oC7CD2Z9VKN7V2NMQPD+2t6Mvz+a2NMeo32XYCfAUHg3RaK+aDl9QWINxphIe2EMTDojNCyDcLqTzDG4OkWGmURX+oizR9aXp67vN5uUuLdDOke+pX0fXYRu4u9kY1bREQkuq4B/kUoIbEd+CfwC+DnwMPA1vC+x4C7CT181AV43xgzsPXDFRERERGRpojFu7z/ALYBvzfGvG+MuTS8PcsYc64x5g3gl4RGKjxZTx/NEh7JcT2hf48ZxpinjTEPAkuBQ4G7rLUbaxxyH7AKOGevfr4BHgIOB5YZYx4zxjwd7qc78Dtr7Q8tEXN7UO5vrExJ3UIjLHxYqqeQcmiEhbRllQkLgFUfAeDuVj0t1GHevgCsyF3RYDfj+nWoWp63QaMsRESkXZsPXEsoOdHPWvsLa+0/rbWPWGtvAwYQ+rviGuA/1trjgT8Smp71tijFLCIiIiIijYi5hIW1dg9wMrABOBN4mdAQ7pOBtwkVrt4MnGGtbakaFlhrvwKOBmYDFwG3ANnAxdbaB5vRz+2E/jDKJjRU/VLgB+Bca+19LRVve3DDZzdw6n9O5Xezfocv6GvycV5/gDgqCFqNsJB2ottISO0eWl7/NZQX1KpjMTY88Gt9wXqKK4rr7WZc/+qExdz1uyMRqYiISKy4F9gB3G6t3ed/JMPb7gi3uTe8+c/h9eNbK0gREREREWmeWKxhgbX2O2PMEYRu+J8K9COUXNkC/Bd42lpbGoHzzgdOaUK7q6meN7eu/S8AL7RQWO1Sub+cFbtX4A/6cRgHbkdT6qyHj/UFScBbe0oojbCQtqxyWqh5T0LQBz98hrv7aVW7B/sGAGCxfLf7O47semSd3YzunYHTYQgErRIWIiLS3h0LTLPW2voaWGutMWYBcEJ43WeMWQ5MbKUYRURERESkmWL2sXRrbbm19klr7ZnW2iOstYOttVOstQ9HIlkhrWt57nL8wVBN9ZGdRzbrWK9fNSykHRp0ZvXyqg9xdUyouq67FmVW7VqzZ029XaTEuzkiXMfih+xiclXHQkRE2q9UIKMJ7dKBlBrr+VQX5BYRERERkRiju7wSFYuyF1Utj8xqZsLCF65hUWtKKI2wkDau1zhI7BhaXvsFxl9WVccirsjJo+P/ybQLpnHZoMsa7GZcv+rkxnzVsRARkfZrHTDJGDOgvgbGmEOA48JtK3UFNAxRRERERCRGxXTCwhgzzhjzG2PMv8Kv3xhjxkU7Ljlwi3MWVy03d4RFuT9APDVGWDgNxmlaMjyR1udwwsDwNFC+Ulg3rVYdi3GOkXRO7NxoNzULb89Zp/sxIiLSbv0biAO+NsZcZ4xJrNxhjEkwxlwLfAl4CE/VaoxxA8OAZQdyYmPM5caYp4wx3xpjvMYYa4y5uoH2qcaYh4wxm8LtNxpj/m6MSa6nvcMY8xNjzHJjTJkxZpcx5nVjTL8DiVtEREREpC2IyRoWxphewKvAhMpN4Xcb3j8buNxauzkK4ckBCgQDLNm1BICOCR3pmdKzWcd7fUEyakwJpemgpN0YdCYsejG0vOoj3L2qa1X4thcTPyC90S7G9MlUHQsRETkYPAxMAk4DngaeNsbkEvp7oVO4jQE+DbcFGAwsIfR3xoH4P6A3kEuoiHfv+hoaY5KA6cBw4DPgdWAEoYLgxxpjJlpry/c67CngemAl8AjQDbgQmGyMGWetrX9+SBERERGRNi7m7vQaY9KBr4CjAC/wIfBQ+PVBeNvRwDRjTFqUwpQD8H3+95T4SoDQ6Apjmjc6wusPhkZY2HhABbelHek7EeJSQ8vf/w93l+ppzyq2FTepi+Q4F0PCdSzW5KiOhYiItE/W2gBwJvBzYAOh5EQnoHN4eRNwG3BmuC3W2qXW2uOsta8f4OmvB/pYazsBTzbS9leEkhV/Ddfj+7W1dgrwV2AM8IuajY0xx4X7nwGMtNbeaa29AjgbyAT+dYCxi4iIiIjEtJhLWAC3A30JPQ01wFp7jrX2jvDrXKAf8En4/fYoxin76UDqV0Co6HZcjSmhHBphIe2FywOHnhxa9hbgLv0WXKGEnndbIR+t+4j75t3HW9+/1WA3NaeFmrdedSxERKR9siGPWGsHAD2B8eFXL2ttP2vtw9baYATO+4W1dlNj7UzoqZzrgWLgT3vt/lN4+/V7bb8h/P57a21FjXP+F/ia0CiLXvsZuoiIiIhIzIvFKaHOAXYBF1prS/feaa3daYy5iNCTVOcCd7dyfHKAFuVUJyxGZY1q9vHlvtAIi2DllFAaYSHtyeAzYXkoIWG+/wh3l6vxbS0mmOvlT9PvpczpZVzXcVx42IX1djGuXyZPTg/VF527fjenDe3aKqGLiIhEi7V2G7At2nHs5RBC0zlNtdaW1NxhrS0JT3M7xRjT01q7JbxrElACzK6jv6nh/ccCLzc1CGNMj0aadKlcKCsro6ysrKldi0gbo59vqUnXg1TStSA1Ned6iNS1E4sJi77AJ3UlKypZa0uNMdMJzVkrbczK3JUAJLuTOST9kGYfHxph4a9OWGiEhbQn/U8AVwL4y2D1J3j6/wjf1tB0UCM5gtksZGXuSoI2iMPUfe2PrlHHYo7qWIiIiERL5f/o1ldzYg0wJdxuS7jeRVdgReU0VnW0r9lvU21pvEnIjBkz6NixYzO7F6kUi7cXpKbPPvuslc6ka6Et0PUglVrvWgBdD7GvOddDbm5uRGKIxaskALib0M4FtPgQb4m8j875iJW7V5Jdko3T0fzREV5fkHigMqOlERbSrngS4ZATYdVHULILd3xO1a7xZiSzWUiRr4hNhZvom9a3zi4q61gs2bKHtTnF7Cry0iklrs62IiIibYEx5srw4nvW2qIa601irX0pAmE1prLeXkE9+wv3atfc9iIiIiIi7U4sJizWAJOMMenW2j11NTDGZALHAT+0ZmDSMjxODyM6j9jv48v9AeJwVCcsNMJC2ptBZ4YSFoCneCZwNAADK/pBqNY8K3JX1JuwABjfvwNLtuwBYN6G3Zw+tFskIxYREYm0FwALzAWKaqw3VTQSFrGiZyP7uwALACZOnEiPHo3NICVSjzlfRjsCacTkyZNb50S6FtoEXQ9SqdWuBdD10AY053rYunVrRGKIxYTF28BfgE+MMTdaa1fW3GmMGQI8BaQCb0YhPokyb0WAOEzVukZYSLtzyGRwuCHow73lDXAcA0FL58K0qoTFkpwlnNH/jHq7GNevA098HapjMW1VjhIWIiLS1r1EKEFRsNd6LKuMtb4REal7tWtu+yax1jb4l2SoNnhIQkICCQkJzeleRNoQ/XxLTboepJKuBampOddDpK6dWExY/BO4CBgPLDXGLCZUYBugHzAccABLgEeiEJ9EWcBXjq28a4tGWEg7lJAO/Y6FtV9gijbizjT4ci3uPEjunEQxJXyx+Qt+PfbXuB11z6B3ZJ9M0hLcFJT5+HjZdn59ykCyUuPrbCsiIhLrrLVXN7QeoxqrOVGrxkW4EPcOoK8xxllHHYvGamKIiIiIiLR5MXen11pbBhwPvBXeNAo4P/waGd72JnCitba89SOU/bWrdBc//+rnvLTyJdbvWb/f/QQqyrBUz8evhIW0S4POrFp0u8MPRlo4Lz00qiKvPI/Z22bXe3iCx8llY3sB4AtYXvhmY8RCFRERkTqtAbYDR4ULalcJrx8FbLDW1iyKPR2o3Le3KeH3GRGIVUREREQkJsTknV5rbb619mKgL3AF8Ovw6wqgr7X2EmttXjRjlOZbmLOQaZun8fdv/85H6z/a736CvtoJC4emhJL26LBTwYR+RXtKv6nafILnmKrlD9d92GAXV03og9sZmubh1bmbKPb6IxCoiIhI9BljPMaYruFadzHBWmuBZ4Fk4Pd77f59ePsze21/Ovz+J2OMp3KjMeYUYBLwmbV2U0QCFhERERGJATGZsKhkrd1irX3VWvu38OvVvZ5AkjZkUfaiquWRnUc20LIRvlKCVlNCSTuX3Al6TQDAXTa3anOvkiwy40P3Yr7e8jXFFcX1dpGVGs9Zw7sDUFju560F+vUpIiLtizHmcmPMfKAE2Ao8UGPfOcaY14wxfVv4nNcbY14wxrwAXBDeXLXNGHN9jeZ/A5YCdxpjphpj7jPGTAXuJFTo+uGafVtrvyKU5JgILDLG/NUY8xLwPpAH/KQlP4uIiIiISKyJiTu9xph4Y0yqMSauCW3jmtpWYktlwsJgGN55+P535CuvPSWURlhIezUoNP2T22ygsq6of0cpVwy+guuHXM87Z7xDsie5wS5uOKZf1fLzszfgDwQjFq6IiEhrMsY8C7wIjAbKALNXkx+Ai4HzWvjURwNXhV+VT+EcVWPb0ZUNrbUlwLGEEhODgNuBgcCDwAnh6XD3dhPws/Dyz4BTgfeAI621P7TwZxERERERiSlRT1gYY9zAKiAbOKIJhxwebrvcGKM71W1EYUUhP+SH/r46LPMwUjwp+92X9amGhRwkBp0OgMN4cblzAPDtLOG6Qdfys5E/o196v4aOBuCwLilMPLQTAFvzy/jfyp2Ri1dERKSVGGMuA64FVgBjgLS921hrVxIadXFKS57bWnu1tdY08Lp6r/YF1tpfWGt7WWs91tre1to7rLVF9fQftNY+Yq09wlobb63taK292Fq7riU/h4iIiIhILIqFO70XAL2BB621CxtrbK1dRGiod3/g3AjHJi1kSc4SbPgJ8QOaDgow/nKs1QgLOQik9YBuoZ8XT2BlaFvA4ssubVY3N9YYZfHMjPWEptQWERFp024EioHTrbULbf3/cVtOqC6eiIiIiIi0AbGQsDgH8AP/aMYxDwFB4PyIRCQtrlb9iqwWSFigGhZykBh8JgBuR/VDlb5t9detqMtRAzowqGsqAEu3FrBgY37LxSciIhIdw4B5TahvlwdktUI8IiIiIiLSAmLhTu9IYJG1dndTD7DW5gPfAqMiFpW0qEU5LVRwGzD+MtWwkIPHwFAdC0+NhEXF9lDCYnvxdp5e9jTXf3Y9QVt/bQpjDDccU/1w6TMz10coWBERkVYTBxQ0oV0nIBDhWEREREREpIXEQsKiC7BxP47bBHRt2VAkErwBLytyVwDQM6UnnRI7HVB/joC39pRQGmEh7VnHAdB5MG5TnWSoHGHxf3P/j0cXP8q8HfP4due3DXZz+tBudEkNjUz6YlU263Y1b5SGiIhIjNlGqIh1vYwxBhgMbGiViERERERE5IDFwp1ew/7F4QgfKzFuRe4KfEEfcOCjKwCcgfJaIywcGmEh7d2gM3CYUlxmOwAVO0qwAcuZ/c+savLhug8b7MLjcnD1UX0AsBaem6V7NyIi0qZNAwYaY85qoM0VQA/g89YJSUREREREDlQsJCx2ESqg3Vz9gNwWjkUioFdKL3479rec0vcUJvaYeMD9OQNegmiEhRxEBoWmhXKbtaF1fxD/rlIm9ZxEijsFgM83fU6pr+Fi3Jcc2YukcILv3YVb2V3sjVzMIiIikfUA4AVeM8b83BjTrXKHMSbTGHMz8DhQAjwSpRhFRERERKSZYuFO72JgmDGmV1MPMMb0AUYAixppKjGgU2InLh54MX+b+Dcm95l8wP05g5oSSg4yWUdARp9ahbcrthUT74qv+pkq9ZcybfO0BrtJS3Bz8ZGhX7Vef5CX526KXMwiIiIRZK1dA1xF6O+ZB4EtgA1v2wU8BriAq621m6MVp4iIiIiINE8s3On9gFAczXny6Z81jpWDSDBocQe9KrotBxdjYNCZeEyNhMWWIoBa00J9tO6jRru65qg+OB2h2fRenrOJcp/qkIqISNtkrX0bGAO8DRQRmi7WAOXAR8B4a+270YtQRERERESaKxYSFi8TKrp9hjHmHWNM5/oaGmM6GWPeAc4gVHT75dYJUWJFRSBIvKnAEl+1zXhi4TIWibBBZ+JxrAFC9WDKlu3C+gKM6DyCHsk9AJi7Yy7ZJdkNdtMjI5FTh3QFYHdJBf9ZtC2iYYuIiESStXaFtfZiIAPoDHQBUqy1Z1trF0c3OhERERERaa6o3+m11vqB84Ey4BxgkzHmfWPMb40xN4RfvzXGvA9sDrcpBy4IHysxbPmu5czbMa/RufWbqtwXIJ6K2lNCuTTCQg4C3UfhSE0l0TETgGCpn9KluRhjqkZZWCwfr/+40a5uOKZv1fKzs9YTDNrIxCwiItJKbEiutTbHWhuMdjwiIiIiIrJ/XNEOAMBau8gYM5HQcO6+wJmERlHUZMLvG4ELrbULWy9C2V8vrHyBzzZ9hsu4ePesd+mX1u+A+vP6g6GEReWUUE4wTtPwQSLtgcMBA08nad7HlFYcD0DxnO0kjurM6f1P5/GljwOhaaGuPeJajKn/52Joj3TG9s1k3oY81u8q4cvVOZw4OKtVPoaIiIi0H31+/Um0Q5Am2Hj/adEOQURERKTJYiJhAVVJi8OAS4GzgNFAp/DuXcBCQjUrXtXIirbBWsuinFBd9DhXHL1Teh9wn15fkDhTnbAwbiUr5CAy6Aw885/Bbdbgs4fg21ZMxZYievbqycjOI1mUs4jtJdvZUbKDbsndGuzqxon9mLchD4CnZ65XwkJERGKaMebuAzneWvvHlopFREREREQiJ2YSFlA1PdRL4Ze0cVuKtpBblgvA8E7DcToOfOqmcn+ABCqwNlTDwuGO+qxmIq2n91GY9J4k7/6EfP/PASiZs4O4XqlcP+R68srzOKn3SSS6Exvt6rjDOtOvUxLrd5Uwf0MeS7fsYVjP9MjGLyIisv/uAQ5kDkMlLERERERE2oCYSlhI+7Iwu3rWrpFZI1ukT68vNCVUsGqEhepXyEHE6YKxN5M49V4K/NcSJJXSZbtIO60vx/Q4plldORyGG47px2/+sxyAZ2au51+XtszPqYiISATMoP6ExbFANrC69cIREREREZFIUMJCIqZyOiiAkZ1bKGHhD9SqYWE8SljIQWbklZjpfyXR/znFgfMgYClZkE3qcT2b3dU5I7rzwNTv2V1SwX9X7GRLXik9MxsfnSEiItLarLWT6ttnjAkC/7XWXtt6EYmIiIiISCRoPh2JmEXZoYSF2+FmSKchLdJnuS9IPD7AA4DxKOcmB5n4VBh1FcnOT4EgACVzd2ADtR869QV8jXfldnLl+D4ABIKWf8/e2MLBioiIiIiIiIiINJ0SFhIRuWW5bC7aDMARHY8gzhnXIv2GRlhUF9rWCAs5KI29GZdrN/GObwEIFHgpX70bCCUK75p5F5PemsSe8j2NdnXF+N7EuUL/KXhzwWYKyhpPdIiIiIiIiIiIiESCEhYSEbXqV7TQdFAAXn9l9YoQo6LbcjBK6wGHn0Oy8+OqTcVzdgDw5eYv+Wj9RxRWFPK/jf9rtKvMJA/nj+oBQElFgNfmbY5MzCIiIiIiIiIiIo3Q3V6JiMrpoKDlCm5DaIRFnNEICxHG/5g4x2JcZjsA3rV78OWUcuaAM6uafLjuwyZ1dd3Rfan8sXrhmw1U+IMtHq6IiIiIiIiIiEhjlLCQiOiU2In+af1xGAfDOw9vsX7LfUHibPVlqxEWctDqNhzT92iSao2y2M6hGYcyMHMgAMtzl7O+YH2jXfXrlMyJg7IAyC708vGy7ZGJWUREREREREREpAExd7fXGNPLGJPZhHYZxpherRGTNN/1Q67n/bPfZ+bFM0n1pLZYv15fAE+Ny9ahERZyMJvwE5Kc0zCUA1C6KIeg18+Z/atHWXy07qMmdXXjxH5Vy0/PWI+1toHWIiIiIiIiIiIiLc8V7QDqsAF4AbiukXZ/A64hNj+DhLVksgJCCQs3GmEhAsCAk3B06k7ijq8pCZyM9QYoXZTDKcNP4cFvHyRgA3y07iN+MuInOEzDPyuje2cwvGc6S7bsYfXOImav3c3Rh3RspQ8iIiLSMGPMlY00GdBQG2vtSy0ckoiIiIiIREAs3uw34VdT28pBpKKiAlOj7LZqWMhBzeGA8T8m6YN/UBI4GQgV384aN5Kjuh/FjK0zyC7NZv7O+YzrOq7Browx3HBMP370Wqj+zNMz1ythISIiseQFoL7hfxY4Kvyqb78SFiIiIiIibUBbfjw9BaiIdhCyr+KK4oj1HagoxdZMWGiEhRzshl6EJ6UYj1kJgD+nFO/6glrTQr2+6vUmdTXl8Cx6ZiYAMOOHXXy/s6jl4xUREdk/mw/gtSUK8YqIiIiIyH5oc3d7jTEOY8wQ4HhCf4BIDKkIVDDprUmc+f6ZPL7k8RbvP+grq52w8LS5S1ikZbnjYcwNJLuqi2+XzNnOcT2Po1NCJwC+3PIlq/NWN9qVy+ng2qP6Vq0/M7Pxgt0iIiKtwVrbx1rbd39f0Y5fRERERESaJibu9hpjApWv8Karam7ba78PWAJ0AP4TrZilbityV+ANeNlQsIHtxdtbvP+gtxRra46w0JRQIoy5jgTPYhzkAVC2cjeOYst1Q0KlgAZmDsQb8DapqwtH9yQ1PjRb4AdLtpFdWB6ZmEVERERERERERPYSEwkLqutWGEJzzJoGXn5gI/Ag8IcoxCoNWJSzqGp5ZNbIFu/f+sqxxFeta4SFCJDUETP8ApKc/wutWyiZt4PzDz2fR457hLdOf4thnYY1ras4F5eN6w2AL2B58ZuNEQpaRERERERERESktpi422utdVS+CCUlXqi5ba9XnLW2v7X2V9Za1bCIMQuzF1Ytj+wcgYSFf+8aFhphIQLA+B+R7JpKKKcbSlh4rJvjeh2HMaZZXV09oQ9uZ+iYV+ZuosTrb+loRURERERERERE9hETCYu93Au8H+0gpPkCwQBLcpYAkBmfSe/U3i1/koqyvaaEisVLWCQKOh6Cc+BYEhzfABAs8VO2Ine/uspKjees4d0BKCz38/a3qlUqIiIiIiIiIiKRF3N3e62191prP4x2HNJ8a/espdhXDMCorFHNfqq7SfzlBGtMCeXwaISFSJXxPybZ9UnVavGc2nVkluQs4YmlTzSpq+uPqa5P+tzsDfgDwZaJUUREREREREREpB4xl7AwxjiNManGGNde2xOMMX8wxrxnjPmHMaZbtGKUukV6OigA4y+vPSWUaliIVOs9AU93Dy6zEYCKTUVUbAslEe+efTdX/PcKHl/yOCtzVzba1cAuqUw8tBMAW/LKmLoyO2Jhi4iIiIiIiIiIQAwmLIC7gXxgfOUGE3pU/+vwvrOAnwJzjDEZ0QhQ6laz4PaIrBEROYfxl+81JZRGWIhUMQZz1E9Idn5ctalylMXhHQ6v2vb40seb1N0NNUZZPD1zPdbaFgpURERERERERERkX7GYsDgB2GmtnVlj2xnAGGAN8HPgM6AHcEOrRyd1stayKDuUsEh0JXJYxmEROc8+IyxUw0KktkFnkZixDkMJAKWLswmW+jjnkHPoktQFgBlbZ7B81/JGuzp6QEcGdkkBYOmWPXy7KT9ycYuIiLRDxpirjTG2kde0Gu3vaaRtnyh+HBERERGRiIvFu719gdV7bTsLsMBl1tpHCCUwdgHnt3JsUo+c0hzyy0M3M4d3Ho7L4WrkiP3jDJZja9SwMKphIVKb04VjwjUkOb8IrQegeP5OPE4PNwypzvE2pZaFMYYbjulXtf7MjPUtHq6IiEg7twS4t55X5RyNU+s47sV6jtkT0WhFRERERKIsMneVD0wHYOde244CtllrFwJYa/3GmLnAuNYOTuqWlZTFN5d+w/Jdy3E6IpdEcAa8e00JFYs5N5EoG3EFSdNOoLj4DMBB0debST6yC+cMOIdnlz/LjpIdzNw2k2W7ljG009AGuzpjWDf+NnU12YVePl+VzYbcEvp2TGqdzyEiItIExphxwCRCI7ANsBX42lo7J5pxAVhrlxBKWtRijPEAPwb8hJITe3vBWvt1JGMTEREREYlFsXi31w9U3Q0L16k4BJi9V7siIK0V45JGJLgSOLLrkYzKGhWxczgDNaaEclqMw0TsXCJtVnwq7iNPJtHxFQC2PEjhV1twO93cMLR6lEVTall4XA6unhCqZWEtPDdLoyxERCQ2GGP6G2NmE/o74c/ArcAtwP8Bs4wx3xhjBkQzxgacTehBrY+ttdlRjkVEREREJGbE4giL9cA4Y4zDWhsETif0pNSsvdp1JjQtVIsxxowhNNR6AuAGlgMPWWvf2s/+MoAVQDdgqrX25JaK9WDlCnqrEhYRmnVKpH0YezOpc06ktOxoII7i2dtIHt+Ns/ufzbPLnmV7yXZmb5vNkpwlDO88vMGuLh3bi399uYaSigBvf7uVX5x4KB2S4xo8RkREJJKMMd2AmUAXoBT4H7AhvLsPcDKh0dgzjDFjrLXbohFnA64Pvz9bz/6JxpixQJBQHb8vrLXF+3MiY0yPRpp0qVwoKyujrKxsf04jMUzfqVTStSA16XqQSroWpKbmXA+RunZi8Zbvh8BdwAfGmC+AO4EA8FFlA2OMAUYAq1rqpMaY4wjNH1sOvEFoBMd5wJvGmJ7W2gf3o9t/oVEgLcoV9BK0oRoWxlV7dIVvxw6M242rY8dohCYSW9K64zruOlKmfkBR4EIIQsF/19PhssHcMPQG7p1zLxCqZfHUSU813FWCm4vG9OL52Rvw+oO8MnczPzvxkNb4FCIiIvX5I6Eb7e8Ct1praz3IZIzpCDxOqObdvVQnCKLOGNMbOIHQ1FX/q6fZvXut7zHG/Mxa+9J+nHJLUxvOmDGDjs36f+lY/HNS9vbZZ5+10pl0PcQ6XQtSk64HqdR61wLoeoh9zbkecnNzIxJDLE4J9TdCBehOA/5B6A+Rv1trN9doczTQkX1HXewXY4wLeIbQE0wTrbU3WmtvB4YBPwB/Cf9h0Zw+zwMuJZRwaddmbZvFHdPv4LVVr7GzZO/yIy0nELR4bPUIi5r1Kwo//5y1J5zImmMmsumqq9nzzjsECgsjFotIm3DUz0jp9h2OcH3OsuW7qdhSxFkDzqJ7cncASn2llPpKG+3qmqP6UDkD20tzNlLuC0QqahERkaY4BdgOXLZ3sgLAWpsLXB5uc2orx9aYawj9HfaCtXbv/6AuBa4F+gEJQF/gJ4AFXjDGnNmagYqIiIiItLaYS2tZawuNMUcSehoqC1hgrZ2+V7MOwD+BN1votMcD/YF/hwvjVcZSYIz5C/ACcBWhJ7kaZYzpBDwBvAx8QmikRbs1a9sspm6cytSNU+mR0oMuSV0aP2g/eP0B4o1vn4SFDQTIeeABCAYBKJ03j9J589j5xz/R88knSJowISLxiMQ8pxvHOQ+S+sQD7PHdBMCe91fS6cdjuWvsXbgcLsZ3HU9o0FrDemYmcuqQrny8bAe7Syp4b/E2LjmyV6Q/gYiISH0ygQ+stRX1NbDWVhhjZgFntV5YDTPGOAglLCzw/N77rbXv7bVpI/AvY8wq4HNC9Tk+bOZpezayvwuwAGDixIn06NHYDFI1zPmymaFINEyePLl1TqTrIebpWpCadD1IpVa7FkDXQxvQnOth69atEYkh5hIWANbaMkI3++vb/z7wfgueclL4va4xL1PD78c2o78nCU1j9TMOcEqo5sw56/V6ozLv3Lc7vgXAYBiYMjBiMewp9RFvfYTKi4B1G8rKyiiZOhXfpvAAHJcL/P7QfsAOGFArnmBxMSYxEeOI7uCi8vLyOpcldrXZ7yzjMDzj+uCatRW/7UHFNh+Fi7cxZtAYoHmf5coju/Pxsh0APDNjHWce0RFHE5Id0dRmv7eDnL63tkffWdvk9XqjHcKB2AokNaFdIhBL9StOBHoB06y1GxprXMlaO80Ysw4YYoxJtdY2eSixtbbBvyRrPriQkJBAQkJCU7uWNkLfqVTStSA16XqQSroWpKbmXA+RunZiMmERBZWTsa/Ze4e1dqcxprhGmwYZYy4HzgXOttbmG2MOtIZFk+ecnTdvHuvWrTvA0zVPuS3nh4IfAMhyZDHn6zkRO9ceL9TM3uQXFzJv6lR6/fMR4sPbtl59FYH4eFIXL8EE/Pwwp3Y8We+8Q+IPaygaPpzSAQPwpafhT0vDxkWvgPCMGTOidm7ZP23tO3MEh3FUwjv4S38MwJ73lrJkk3+/JgXsn+JkXZFhfW4pD77xBcM62BaONnLa2vcmIfre2h59Z21HpOacbSVvAz8xxnSvr6C2MaY7oZHUsTTaubFi2w3JBQYQSsJo7lMRERERaZdiLmFhjJnYnPbW2pb4q7gyqVBQz/5CmjBSwhjTDXgEeN1a+0ELxBXzNvs3YwndsOztalaZj2bzBSGRYNV60AFJ339P/I7QE99lPXtSOmAAGMOunvuOfDc+H8nLluP0esmcPp3M6dUzjQUS4vGnpeFPS8eXlkbBuLF4u3evPtbrxVVYiAkEQi9/ABPwQzBYtWwCAXA4KD7iiFrnTVmylLitW3H4fRifHxN+d/j9UNlfIEDpoYew+6STah3b+x//wFlUjAkGwRiswwEOBzb8qlzePfkkiocMqTrOWVRE5/fex8Z5CMbFEfTEEfSEl+M8WE9c1XJ5jx5Yj+fAvhyJaUGHh+/6jeTQlSupsIfj9KXSbXs223uERytZyzr/OhJNIt1c3Rrs6/huQdZ97wTgnQ0O+qUGSHFH/COIiIjs7U+ERkl/aYy53Vr7cc2dxpjTgAeBZexbwDoqjDEdCE1PlQfsPfVTY8cmAYcDJYQSFyIiIiIi7VLMJSyAr4GmPrJria3P8CzgA37agn02ec7ZsWPH0r9//xY8dePWLl8Lq0LLZ448k5N6ndTwAQfgh5xigisfr1rv1KMbiZ+9QuXEE71/8QsGHTep3uP92dnsPnIMZd/MgUDt+obOsnKcZeXE7cwG4NArriDx6KOq9hd/+im5DzzYaIyO9HR63XZbrW27ZsykZObMRo/tOGgQo/aaJ27z3/5OsKSk0WOHHHIIKTWOrVizhu3/9+dGjwPo/sH7uHtV1yIo+fxzCt94E2dmJs6MDByZGTgzQi9HaiqOlBQcyck4UlNxZmQ06RztQXl5edVTwxMnTiQ+Pr6RI2LNZCx/JW/F4QB0357M4EuPIs/u4TdzfsPSgqWM7jyaxyc93mAvJ1nLqleXMmtdHoU+w9Q9nXny0mExOzVU2//eDk763toefWdtU2uPzD0Qxpi6JjwOEhoF/YExZg+heg8AfYD08PIc4GPghIgG2DRXAB7gFWvtPvNxGWNSgK7W2h/22p4APAOkEKq552+NYEVEREREoiGWbvZXmkHdCQsH0JvqG/hzCCUHWkLlyIr6RlGkAvkNdWCMuQo4BbjAWttiTz01Z87ZuLi4Vp93bnne8qrlcT3HRfT8xuklzlbPYeNOiKPHAw+Q9+KLlH27kMyTpzRcm6JPH1KeeQZ/Xh7FX35JxabN+HbuxL9zZ9W79YUuqaRevYiv8Vl8SU2ZIhlsRcU+/wbuxMQmHetg37nfPN27E0hIwDidoZEs/gA2EIBA6N0GAuD3E5eUXOtY6w/QVEnduuGscWzJtm14Fy1q9Li4gQPp937thwN3/un/qNi0CUdKMsbhrPfY1NNOJeX446vWA0VF7LynaQ8/dvrFL/D0qB79Uvrtt+S//kajxzmSk+l67z21tuW9+iplixY3emzCqJEknHNO1Xp8fDy5v/wlwcIibEUFwQovtqIC660IvVdUYL1eTHw8Xf7wB1KntGIBq4acfxtla56lzDuGYCAJ/4fT6XrFyeR7Q7/evs35lhUFKxjTZUyD3fzj4pGc8s+Z5BZ7mbk2j9e+3ckNE/u1xic4IPHx8Zqbsw3S99b26DtrO+KiOCXmfpjUwD4DZIRfe5tA0x+GirTrwu/1TQfVAVhtjFlA6JGgnUAWoboXPYDlwC8jHaSIiIiISDTFXMLCWjupof3GmKHAC4SGQ5/aQqetrF1xCLBwr/N1AZKB+Y30MSL8/rap+0njKcYYCyy11g7f/1BjR0WgguW7QgmLHsk96JzYOaLnK/cF6UD1v61xO3B37kzWL3+JtZZ6/t334crMJP388/fZboNBAvn5+HbsxNO3T6197u49SDvrLIzHjXG7weXCuN3VL1f4PW7fqZUyr7mGtLPPwsTF44jzYOLi8Fr4+pvZWKeTE6dMISElpc5kS9+33mzSZ9pbwpAjGDB9OsHSEoIlpeH3EoKlpaFX5XJJCY7k5FrHBgqLmnQOZ0rKPtvKFi+m/LvvGj027rDDaiUsbEUFhZ980qTzdrjuWqA6YeHbtq1JxzozM/dJWJQtWdq08zodtRIWAKULviVYUN8scpWNSsl/+WVSJp/U5OszouJTSTvzCMreDhWvL1qVQNKOndw07CZ+O+u3ANw3/z7ePP1N3I7653nqlBLHQxcO48rnQ78W/zZ1NWP7ZTK0R3orfAgRETlIHRftAA6EMeZI4AhgvrV2eT3N8oDHgSMJ/Z2TAZQRSl48AvzLWlvWCuGKiIiIiERNzCUsGmOtXWaMORdYSegJo/tboNvpwG+AycDej2pPqdGmIXMIJTb2lgxcBGwFpgKb9z/M2LJy90oqghUAjMwaGfHzef0B4mrc9DWe6hv8LXEz2DgcuDp0wNWhwz77EoYcQcJf9+9Si+vXF+hba1ugrIxgeOSF8XgaHhmyH4zbjTtr/xJIWXf+ik4//QmBvDz8efkE8naH3/MIFBUSLCwiUFxEXN+++xwbKCk+0NDbDIfHU11RxeXC4fGEvsu4OIzHg2/LFtLOPZcu9/whNpIVYa5Rk0me8STF2YcDHgpf/R+n3nE1r3z3CqvyVrEmfw0vrnyR64dc32A/Ew/txE3H9uOp6evxBSw/eX0xH//kaFLiVdBCRERanrW2sf8Xj2nW2vlAg/9DYK0tBH7cOhGJiIiIiMSmNpewALDWbgwPlb6SlklYTAPWA5caYx6x1i4BMMakAXcBFcBLlY2NMV0JTR+1w1pbEI7pTWCfx+GNMX0IJSxWWmsbvgPYxizMrh6MMrJzKyQsfEFc1knlpL3GXf+UQ3JgHAkJOLp3x12j8HhT9P/0U4LFxQSKimlo9gVnamrt9fR0+n/xeZPO4epcOxGTcuKJTTq2rqRB1q/vpNPPGi8540hI2Gf+uX6fflI9wsa577Vog8EWT0S1lNQrzqXkwUVYm0Rp3iEkf/M//jDhD1z6yaUEbZAnljzBSb1Pondq7wb7uWPyYcxdn8fSLXvYtLuU37+/gn9cNDymEjQiIiIiIiIiItJ2tMmERdguQsOlD5i11m+MuZ7QCIgZxpg3gCLgPEJ1M+6w1m6scch9wFXANYSmpzoondjrROKd8SzKWdTonPctwesP4qY6YVGyYA5Jo1JxpqdH/NzSNMbpxJmWhjOtvnIw9R/n6dFjv87pSErC08QaI3urazRNfXxltWdgqGtKrJrqSlbEShLD0bEzqSOCFCwCcFAwdSuDR07gikFX8OJ3L1IRrODeOffy3OTnGkw+uJ0OHr14BKc9MpMir5/3l2zn6EM6cf6o/fsuRURERERERETk4Bb9O2f7wRjjAcYApS3Vp7X2K+BoYDahERG3ANnAxdbaB1vqPO1Jn7Q+XD74ch6a9BC9UntF/HzlvgBuqp9kL/n6S/a8+5+In1ekJXjXrmXDOedSurjxIt+tIfmcKTg9oRocXt/heN96jFuH30r35NComgU7F/De2vca6gKAXh0S+fO5Q6rW7/5gBet3HTxTg4mISHQYY75sxmtatOMVEREREZGmaVMJC2NMkjFmNPAu0BP4qiX7t9bOt9aeYq1Ns9YmWmvHhqd62rvd1dZaY619oQl9bgy3PbklYz0YVVRUYCviqtaNx0X6RRdFMSKRpilbuZINF1yI9/vv2faL2/Dn5UU7JIzbSdoph1St7/m+Dwkb53H3uLurtj3w7QPkluU22teZw7px4ejQqIrSigA/eX0xXn+g5YMWERGpNqkJr2NrLIuIiIiISBsQcwkLY0ygvhdQCMwDTgMKgN9FNVhpVf6KUkpyqmsfJB01Fmfy/k0FJNKa4g87jPjDBwPg37mT7b/8FTYQ/Rv6CeMOxZ1RDoDf9qH07TeY0GkYp/c7HYBjuh+D0zStVsw9Zx5O/06hn8eV2wv563+/j0zQIiIiIcfV8zoBuBb4D6Ei1/cBx0cpRhERERERaaaYS1gQ+sOivpcf2AQ8C4y01uqOWJRM2zSNb3d+izfgbbVzmtxsygqSq9ZTTpjUaucWORDG5aL7Qw/h7NgRgJLZs8l94skoRxUqRJ5+/uiq9YLCUwh+9hd+NeZXPHHiE/x14l/JiM9oUl+JHhePXjISjzP0n5XnZ2/gy9XZEYlbRETEWju9ntdX1toXrLXnAz8Hbgf2RDVYERERERFpsphLWFhrHQ284qy1/ay1N+5VBFtakbWWP8/7M9dMvYYT3z6RoA22ynmzpn0MxlO17spMbaC1SGxxd+5M9wcegHDR7dzHHqN41uwoRwVx/TOIHxAPQJAOFM0pJmPXWo7ufnSz+xrcLZW7Th1YtX7H28vILixvsVhFRESaw1r7CLAFuCfKoYiIiIiISBPFXMJCYt/W4q3sKtsFwKDMQThM5C+jQGEhXWZ/jXHVrGHRtKlqRGJF0rixdPrZz0Ir1rL9jjvw7dgR3aCAtLMOBxNKPBYFzsH79t/BX3v0VLm/aYmHqyb04cRBWQDklVTw8zeWEAjalg1YRESk6ZYCzc/Ci4iIiIhIVMRcwsIYEzTGLIp2HFK/RdnVX8/IrJGtcs78117H5S3HOKtHWBh3zF2+Io3qcMP1JB97LACBPXvY9ovbsBUVUY3J3SmR1JP6hNec5O06n+BX/wBCI6o+WvcRU96dwpKcJY32ZYzh7+cPpUtqaNTGnPW7eeLrtZEJXEREpHGZQHKjrUREREREJCbE4h3fEuC7aAch9VuUU52wGJU1KuLnC5aVkffii6EVp7tqu3FrhIW0PcbhoNtf78fdrRsAZUuWkPPgg1GOClIm9cLTNfQzFbBdKZheDDtXMHXjVO6adRd55XncO+defAFfo31lJHl4+OLhOExo/R9frGHhprxIhi8iIrIPY8xE4BhgXbRjERERERGRponFhMUaoHO0g5D6VY6wcDlcDOk4JOLns4EgGZdcjC8uDneyq2q78cTi5SvSOGd6Ot3/+U+M2w0OB86OHbE2utMmGYch8/IRGGcAgBL/FMreeIQTe0xiUOYgANbuWcvzK55vUn/j+nXgx8cfAkAgaPnp60soKGs82SEiItIUxpi7G3j93RjzMTCN0N87z0Y5XBERERERaSJX401a3SvAn40x/a21ehoqxuSW5bKxcCMAh3c4nHhXfMTP6UxOotNPf8r7xs9ZW51UTp6jGhbSliUMOYIuf/oj7q7dSBp7ZLTDAcDVIYG00/uz54ONAOTvPJ2sWc9zz4R7uPSTSwnYAE8te4rJfSbTN61vo/399PgBzF23m/kb89i2p4zf/GcZj106EmNMhD+JiIgcBO4BLNDQf1SCwD+ttQ+3RkAiIiIiInLgYvER9YeBqcCXxphLjTGRvyMuTbY4Z3HVcmvVr6gUcATBUaPotisWL1+Rpks/++yYSVZUShrXg/heoXs/QTLY80Uxg6yHKwZfAYAv6OPeOfcStMFG+3I5HTx88XDSEkJTuX26fCevz98SueBFRORgci/wx/D73q/fAlcDfay1t0UrQBERERERab5YHGGxltCTUj2Bl4GXjTE5QFkdba21tn9rBnewq1lwe1TnyNevqMkEyrCVs4U5ghiHntIWaWnGGDIuP5Lsv80k6PdQFhhP6atPc+ut9/DFpi/YWryVhdkL+c+a/3D+oec32l+39AT+dv5Qbnp5IQD3frSS0X0yODQrJdIfRURE2jFr7b3RjkFERERERFpeLD6i3gfoHV424VdWeHtdL2lFC7NDNx0NhuGdh0f0XEVffknOPx7Gv3s3AA6/lyChERbGFd35/kVaWqC4mLyXXmb3Cy9EOxScqR7Szz20an3PjuNwz/0Pvx//+6ptD337ELtKdzWpvymHd+GKcaFf615/kB+/tohyX6BlgxYRERERERERkTYvFhMWfZvx6helGA9K1loO73g4vVN7MyBjAGlxaRE9165H/8Xup55i7Qkn4t2wAUegDGtDCQtHLI4NEtlPQa+XdSeeRPZf/kLuE08SLKtrQFnrShzZk8QBoaSCJZn8/xUxPqk3Z/Y/E4AiXxG/nvlr/EF/k/r77WmDGNglNKrih+xi/vTxd5EJXERERERERERE2qyYu+1rrd0U7RikbsYY/jD+DwCU+kojeq6SmTPxrloFQFz//nj69MER8GKrRlhE9PQircoRF0fyscdS8MEHBAsKKPzkE9LPb3y6pUhLv+xovPd9QaAiCW/gCIpffIk7bridOdvnsKtsF5sKN7GzZCc9Uno02le828mjl4zgjH/NotwX5NV5mzl6QEdOGdK1FT6JiIi0dcaYuw/keGvtH1sqFhERERERiRzd9pX9kuhOjGj/uU8/XbXc4aYbMcbgrJmwcMfi4CCR/Zdx+WUUfPABAHmvvkbaeedhTHTrtDgSXGRcOJjcV0J55ILtY8haNJMHjn2AZ5Y/w5+P/jOZ8ZlN7u+QrBT+cMbh/OY/ywG4891lDO2ZTvf0hIjELyIi7co9wIHMCaqEhYiIiIhIG6C7vhJzSr/9lrJvQ7UyPP36kXLiiQC4A17ADYBxq+C2tC8JQ4YQP3QoAN5VqyhbvDjKEYXEH9GL5IHl4bU48j4tYERib5448YlmJSsqXTymJ6eFR1UUlvv52euL8QeCLRixiIi0UzMaeBkgp5E2IiIiIiLSBsRkwsIY08sY84QxZo0xptQYE6jn1bTJ0+WA+YN+CrwFrXKuWqMrbrwB4whdpp5g9U1N43G2SiwirSnz8suqlvNfeTWKkdSWdtnxuOLyAfAF+lL47zf2aRMIBij3l++zfW/GGP5y7pCqURXfbsrnkWlrWjZgERFpd6y1k6y1x9X1Cjf5b337a7QREREREZEYF3MJC2PMQGAxcCPQH4gn9NRUXa+Yi7+9WpG7gmPeOIZzPzyXD9d9GLHzlH/3HSUzZgLg7taNtNNOq9pXK2HhVsJC2p+Uk0/GmRkatVD42Wf4snOiHFGIcTvJvHQoEMoRF20/HO/sL6r255XncfMXN/OHb/6AtY3P1pGW4OaRS0bgdIRGSj361VrmrNsdkdhFRERERERERKTtiMUb/n8GMoDPgHFAmrXWUd8ruqEePBZmL8RiWZO/hopARcTOk/v0M1XLmdddi3G7q9ZrJSziVH5F2h+Hx0P6hReEVvx+9rz1VnQDqsFzWB9SjygOrznJ/zSfYFEBgWCA66Zex9wdc/l0w6e8tvq1JvU3qncGt510KADWws/fXExeSeR+t4iIiIiIiIiISOyLxRv+xwKbgbOstfOttUXRDkhgUc6iquWRWSMjcg7vhg0UTZ0KgLNDB9LPO69qnz8QJJ7quhUOj3uf40Xag4yLLgJnaARR/ltvYiti5yZ+ysWn4Y7fAYA/0IX8f72FI+Dj1uG3VrV5YMEDLMlZ0qT+bjm2P0cN6ABAdqGXX72ztEkjNEREREREREREpH2KxYRFIjDfWhs7d+kOckEbZHFOqABwRlwGfVP7RuQ8FRs34kxLAyDz6qtwxMdX7fP6g8TXuI9p4pSwkPbJ3bUrKSecAECwoJDyVauiHFE143KQefkIDKFaFWUFAyn61784qfuxXHP4NQD4rZ/bv76d3LLcRvtzOAz/uHA4mUkeAL5YlcOL32yMWPwiIiIiIiIiIhLbYjFhsR5IinYQUm3tnrUUVYQGuozoPAJjTCNH7J+U445jwJfTyLrrLjIuuaTWPq8/iMdUX64mzhORGERiQeY1V9P5jtsZMP1rEoYNi3Y4tbgHHELmyUlAaIq2wuyxlD73F3467FbGdBkDQE5ZDr+a8Sv8QX+j/XVOjefBC6o/418+Xc2CjXkRiV1ERERERERERGJbLCYsXgYmGmM6RTsQCVmUHfnpoCo5EhPJvPIKnMnJtbaX+wK1poQy8RphIe1X4ogRdLj+elwZGdEOpU4JkyaQOrb65zFvw9EEX7uHvx19P50TOgOwYOcCHln0SJP6O25gZ647OjRyqyIQ5Mrn5jN7beMjNEREREREREREpH2JxcrFDwInAP81xlxtrV0R7YAOdjUTFqOyRkUlBq8/iKdGjXXjdkYlDhEJSTn7GPx50yld4wTiyF01js6f/J0Hj32Aaz67Fn/Qz79X/pshnYZwUu+TGu3vzpMHsianmBk/7KLMF+CaFxbw+KUjOXFwVuQ/jIiIxDxjzJWNNBnQUBtr7UstHJKIiIiIiERA1BMWxpgv69jsBkYCS4wxmwkV4Q7W0c5aa0+IZHwHO2stC3MWApDgSmBg5sAWP0fxzJnEHXoY7qzO9bbx+gMk1hgQZDyxODhIJDKCJSUAOJJiZ7Y8YwwZV03E/+h0KrJdBOnA7sWDGRr/Or8c/Uvum38fAL+b9TsOzTiU3qm9G+zP43LwzJWj+PFri/n8u2wq/EFufmUhD188nNOHdmuNjyQiIrHtBcDWs88CR4Vf9e1XwkJEREREpA2IesICmNTAPgfQJ/yqS31/tEgL2Va8jZzSHACGdRqGy9Gyl0ygqIhtt92OLS8n/aKLyPrtXXXWyCj3BUkzTgLhdeNWwkLaP192NnnPP8+e/7xHx5tvosN110U7pFqMy0GHG48m5x+zCRQ78dkB5M3N4WLXcpb1PY1PNnzClD5T6JLUpUn9xbmcPH7ZSO54eykfLNmOP2j56euLKasIcMHonhH+NCIiEuM2o//3FxERERFp92IhYXFctAOQ+q3dsxaHcRC0wYjUr8h//Q2CRaGC3sHysnoLent9AVzWVZWwcHg0JZS0f7asjLwXQw+E5r/2OplXX41xxta170xy0/GGMeT861usz0F5cAJFs9/i7mPTOfaYv3JKv1Ob1Z/b6eChC4eT4HbyxoItBC388p1llPkCXDm+T2Q+hIiIxDxrbZ9oxyAiIiIiIpEX9YSFtXZ6tGOQ+k3qOYlvLvmGpbuW0jO5ZZ9wDpaXk/fii6EVh4OO119fb1uvP4izxuWqERZyMPD06UPSMcdQMnMmvm3bKJ4+g5TjYy/H685KosPlQ8h9YQVYQ1HgQjJmPsQpcSnQzIQFgNNhuO/cISR4nPx79kYA7v5gJaUVAW4+tn8LRy8iIiIiIiIiIrEi6nd9jTFfGmN+Fe04pH5J7iQmdJtAz9SWTVjsefddArt3A5AyZTKePn3qbeut8OHAXbWuottysMi47NKq5fxXX41iJA2LPyyT9NOrkwn5vp/gnfYezP5n1bblu5Zz54w7qQhUNNqfMYa7Tx/Mj46r7vP+/67moc++x1rNCCIiIm2HMWajMcbW8/q6jvZxxpi7jTFrjDHlxpjtxpinjTH1F3wTEREREWknoj7CglANi41RjkFamfX52P3cc1XrHW+8scH2Pm8plriqdRXdloNF8jHH4O7ZE9+WLZTMno13/Qbi+vWNdlh1SprQDd+uMkrm7gDc7K74LZ2n3obLFc+SvmO5+YubKfGVUOYv48FJD+J2uBvszxjDL6cMJNHj4u9TvwfgkS/XUlIR4HenDap3CjkREZEYVAA8XMf2jTVXjDEO4ANgCjAXeBc4BLgeOMEYM85auyuikYqIiIiIRJHu+kpUFHz8Cf7tOwBIOnYi8YMGNdje7y3bK2GhERZycDBOJxmXXFK1nv/661GMpmHGGNLP6EfcgHQAgqSR67ub4Kd/wL/qIwLBUBWar7Z8xa9n/Bp/0N+kfn903AD+cMbgqvXnZm3grvdWEAxqpIWIiLQZe6y199TxemGvdlcRSla8Dkyw1v7aWnsecCvQD/i/1g1bRERERKR1KWEh9Xp2+bP8ZuZvePuHtymuKG6xfm0gwO6nn65a73jTTY0eE6goxdoaCQvVsJCDSPq552Di4wEo+M9/CBSXRDmi+hmngw6XDcLVKQEAv+1Nnu9ORn35Dx7pfQ4ehweAzzZ9xm9n/bYqidGYa47qy1/PG0LloIrX52/m9reX4g8EI/I5REREouSG8PtvbO05EJ8C1gOXGWMSWj8sEREREZHWEQtTQkmM+mLTF6zcvZKP13/M5N6TW6zfoi+mUbFhAwCJo0eTOHJko8eERljEV60rYSEHE2d6OmlnnMGet98mWFJCwYcfkHnppY0fGCWOBBcdrzqcnMeWECzzUx4cTZ7vNsZNe4h/nnQHP13/Fr6gj083fIrb4eaPR/0Rh2n8Z/qiMb2Idzu57a2lBIKW9xZvo6wiwD8vGU6cS6OuREQkpsUZY64GugGFwAJr7byaDYwx8cBY4Htr7aaa+6y11hjzOXATMBqY2dQTG2N6NNKkS+VCWVkZZWVlTe1a2gh9p1JJ14LUpOtBKulakJqacz1E6tpRwkLqVOorZXXeagAGpA8gLS6txfre8+47VcsdmjC6AiDo27uGhW5OysEl47JL2fP22wDkv/oaGZdcEtM1HFwdE8i8fBC5z6+AgKUseCy7Kzwc9fkDPDT5Dn6x9nX81s8H6z7A4/Tw+3G/b9LnOWt4dxLcTn782mIqAkH+t3InN760kKeuGEW8W78XREQkZnUB/l1zgzFmAXCJtXZdeFN/QiPg19TTR+X2Q2hGwgLY0tSGM2bMoGPHjs3oWn9OtgWfffZZK51J10Os07UgNel6kEqtdy2ArofY15zrITc3NyIxxMpj6lcZYwL78WraBOjSbEt2LSFgQ1O1jMoa1aJ993j0Ubr84W5STjqRpKOPatIxwYqy2lNCuWLl0hVpHfEDB5IwehSuzp1JPe1UrM8X7ZAaFd8/nQ6XDwJXKBFRHhxPbsVdTPz8Yf52yGU4TSjB8PYPb3P//PupPfNF/SYf3oVnrxpNfHik1fQfdnH1v+dT7NV/EkREJCb9GzgByAKSgBHAy8AYYJoxJiXcrvIJoYJ6+incq52IiIiISLsTK2mt2H1M+CC1KHtR1fKIziNatG9HXBwZl1xSq5BwY4IVNYpumwDGoUtGDj7dH3gAV4cOGLc72qE0WcKgDnS8+nB2v/gd1hfEGxxFbvnvOOHz+/nL5J/ymx9eJmiDvLb6NU7pewrDOw9vUr8TD+3ES9eO5doXFlDs9TN3fR5XPDePF64+krTEtvPvIyIi7Z+19t69Ni0BrgyPLLyCUN2KhyIYQs9G9ncBFgBMnDiRHj0am0Gqhjlf7n9U0momT2656X0bpOsh5ulakJp0PUilVrsWQNdDG9Cc62Hr1q0RiSFWEhb/A/4a7SCk2qKc6oRFS4+w2C++MoKVD5M5m1akV6S9cXfp0nijGBQ/IIOO1x1B7r9XYr0BKuwQcst+z8mf34//pFu5+4eXuXv83U1OVlQ6sm8mr1w/lquen09BmY/Fm/dwyTNzefm6I+mQHNd4ByIiItH1FKGExVGEEhaVIyvqG0GRGn6vbwRGnay1Df4lWXNKxoSEBBISVNO7vdF3KpV0LUhNuh6kkq4Fqak510Okrp1YSVjstNZOj3YQEuIL+Fi2axkA3ZK60SWpZW6S+vPzcWVk7GdQZVjbObTsbNq0MSLtnbUW36ZNePr0iXYojYrrk0anG4aQ+9wKgmV+KuxAdpX+ntO+uJ8RFzxIz0NO269+h/dM540bx3HFc/PILa7gux2FXPT0XF69fixZqfEt/ClERERaVOWkv0nh9/VAkFCNirpUbq+vxoWIiIiISJunQgCyj5W7V+INeAEYmTWyRfosX72aNROPZftv7sK7fkPzO/BXTwllXEpYiPjz89l6y61suPAifNu2RTucJvH0SKHTTUNxJIVy5T7bn10lv6fbO7+B7Utqtf180+eU+kqb1O+grqm8ceN4uoQTFGtzirngyTlsyWva8SIiIlEyNvy+EcBaWwbMBw4zxvSu2dCEhkGcBJQA37ZijCIiIiIirUoJC9nH4pzFVcstlbDY/fQz4PNR8N57lMye3ezjjb+8uoaFs0VCEmnTch99lOKvvyZYWMi22+9oE0W4Adxdkuh08zCcqaE6E37bi5zi3+J/4TrIXgnAfzf8l9u+vo1rp15LblluQ91VGdA5mbdvHk/PzNBwxM15pVz01Bw27FbSQkREoscYM9AYk1jXdqqnxH2txq6nw+/3mZpzNcFNQD/g1XBiQ0RERESkXVLCQvZRs+D2yM4HnrCo2LiRwv/9DwBnZibp55/X7D4cPi+VM5g53Cq4LdLpF7/AHS6KWbZkCbseeTTKETWdu1MinW4ejjPDA0DAdmNX4V34nr+B0h3LuH/+/UBotNdln1zG2vy1Teq3Z2Yib980gf6dQjNrbC8o58p/L2J7SWQ+h4iISBNcDOw0xnxsjHnMGPM3Y8z7wDJCxa7vs9bOqNH+RWAqcAnwjTHmfmPMO8DjwAbgd60bvoiIiIhI61LCQvZxy/BbuH3U7ZzS9xT6pfU74P52P/ccBIMAZF51FY79KMji8vurlh0eJSxEnCkpdH/oQXCFEnm7n3mG4lnNH70ULa7MeDrdPBxXh9DIqQCd2VVwJ+4Xf8azI+6oqp2zvWQ7V/73SubtmNekfrukxfPmTeMZ2CUFgNySCh79zsnm4sh8DhERkUZ8BfwXOBS4HPgFoamgPgWmWGvvqtnYWhsEzgLuATqF2x8FPAeMt9buarXIRURERESiIOoJC2utw1p7bbTjkGqDOwzm6iOu5m8T/0btkejN59u5kz3vfwCAIzmZjEsv2a9+aiUs3JoTSgQgYehQOt92W9X69jvvxL+r7dzHcKXF0enm4bg7h2pPBMlk157b6fXaX3mt6ykMyhwEQJGviJs/v5kP1n7QpH47Jsfxxo3jGNYzHYBSv+Ff3zn5ZPnOiHwOERGR+lhrp1trL7LWHmqtTbPWuq21Xa21Z1trP6vnGK+19l5r7QBrbVy4/Q3W2uzWjl9EREREpLVFPWEh7Vvev1+A8Nz6GZdeijMlZb/6cQcCVcuOOCUsRCplXn0VSROPASCwezfbfvUrbI2fl1jnTPGEkhZdK5MWaewq/yMJ/53LC8UOju06AQC/9fO72b/jsSWPYa1ttN/0RA+vXj+W0b3TAfAGDHf85zt++vpiCkrbRr0PEREREREREZGDjRIWEjH+/Hzy33oLABMXR+ZVV+53X+5A9Q1Kh8d1wLGJtBfG4aDb/ffj6twZgNI5c9n9zDNRjqp5HIluOt00grh+qeEtbvb4f4J3RW8eXjGXi7sfX9X2yaVP8ttZv8UXaDzpkBzn4unLhjGyQ7Bq24dLtzPl4RnMWtO0Yt4iIiIiIiIiItJ6lLCQKtZaXlv1Gkt3LcUXPPAnkPNffhlbVgZA+gUX4OrQYb/7cgWrbzgaJSxEanFlZtLt738HR+hX+q5HHqV00eIoR9U8jngXHa8bSvJR3aq2lQROJ2/XTdw560N+2eFIDKEp6mZum0l2adNmxUhwO7nq0CBXHhIgNT70u2NnYTmXPzePez9aSbmv7YxGERERERERERFp75SwkCrbS7Zz3/z7uPzTy/nplz89oL4CxcXkvfJqaMXlosO11xxQf55g9QgLE6eEhcjeksYeScdbbgEg9dRTiTv00ChH1HzGaUg/oz8Z5x8K4ZnfKuwQdpU/wMXzF/OQ6UKqO4VHjn+EHik9mtX3qI6WD245kqMGVCdO/z17I6c/OosV2wpa8mOIiIiIiIiIiMh+UsJCqizKXlS1PLTj0APqy+HxkHXnnXj69CHtzDNxd+vW+EENcFUPsMDEeQ6oL5H2quOtt9Dj8cfo9ve/4UxOinY4+y1pdBadbhqGI8UNQIDO7Kr4KxPWxDF1Ry4jSopqtW/K9FAAXVLjefnasfzhjMHEuUL/+VubU8zZj83msa/WEgg2XhtDREREREREREQiRwkLqbIwe2HV8siskQfUl/F4SD/vXPp98jFZv/n1gYaGx5rqvuOVsBCpi3E6STn+eIwxjTeOcXG9Usn6yUg8vVIAsMST5/sV/rxTsC+cDV/9BYIBgjbIT7/6Kfd8cw/l/vJG+3U4DNcc1ZePf3I0h3cL1czwBy1/n/o9Fz41h827SyP5sUREREREREREpAFKWEiVRTmhERYu42JopwMbYVHJOJ04U1IOqA9rLa6aCYu4uAMNS+Sg4du2jfLvvot2GPvFmeqh041DSRydVbWtOHA+ub7fE/z6X/DimTz/7T+ZtW0W7655l0s/vZQNBRua1PchWSm8d+tR/Oi4/jjCv14WbsrnlH/O4M0Fm7FWoy1ERERERERERFqbEhYCQF55XtWNvsEdBpPgSohyRNX8QYunxqVq4pWwEGmKoi++YP0557Lp6msoW74i2uHsF+NykHHeIaSf1Z/KzII3OJqcin/g27CJTnOeIN4RmjpqTf4aLv74Yj5d/2mT+va4HPxyykDeumk8vTITASipCHDnu8u54aWF5BZ7I/OhRERERERERESkTkpYCACLsxdXLR/IdFAFH33MttvvoPz771siLAC8/iDuygq8gMPjbKC1iADYQIC8F18iWFhIsLCQzddeS9ny5dEOa78YY0ge342O1x2BI8kFgN92I6fiQU7cNZjXN22mnysZgFJ/KXfOvJN759zbpCmiAEb3yeTTnx3DxWN6Vm37YlU2U/4xg8+/y275DyQiIiIiIiIiInVSwkIAWJhTo35F5/1LWNhgkNwnn6Twk0/YcNbZlP/wQ4vEVu4L4LbVSQqjhIVIo4zTSc8nnyBx9GgAgkVFbL7mWsqWLYtyZPsvvn86nX88AnfXUEFxSyL5vtvJKP0Fr67ZwpmB+Kq27/zwDpd/ejmbijY1qe/kOBf3nzeUZ64cTYekUJ2c3SUV3PDSt/z63WUUe/0t/4FERERERERERKQWJSwEgEXZi6qWR3QesV99FH/5JRXr1gGQMGoU8Yce2iKxef1BnKZGwsKty1akKRxJSfR8+ikSx4wBIFhczOZrr6Ns6dIoR7b/XBnxdLplGIkjO1dtKwtOpKj8UX63IYE/5pdWTRH1ff73XPX5VSyvaPrIkpMGZzH1FxM5cVB13Yw3Fmzh1H/O5NuNeS33QUREREREREREZB+681uDMWaMMeZTY8weY0yJMWauMebCJh5rjDGnGGOeMMYsM8YUGGNKjTFLjTF3GWPiG+8lOkp9pazOWw3AgPQBpMenN7sPay25Tz1dtd7xphtbKjy8vgBO665aV8JCpOkciYn0fOpJEo88EggnLa67nrIlS6Ib2AFweJxkXngYmZcOxCSEpogK0JHdvj9z3K6zeG3TDvo6Q6MwSv2lfO9r3hR1HZPjeObKUfz1vCEkhkd0bc4r5cKn5vD3qaup8Adb9gOJiIiIiIiIiAighEUVY8xxwGzgaOAt4EmgC/CmMeb2JnQRB3wKXANsB54GngMSgD8DM4wxiREI/YAV+4o5pe8pdE/uvt/TQZXOmUN5eH78uEGDSDrmmBaLr9wXxImral1TQok0T1XSYuxYoDppUbp4cSNHxrbEoZ3o8vORxA1Ir9pWHDiH1JK/8sqaMk73u+mT2I0zEs9odt/GGC4a04v//uwYRvXOACBo4bGv1nHO47NZk13UUh9DRERERERERETClLAAjDEu4BkgCEy01t5orb0dGAb8APzFGNO7kW4CwO+Artbak621v7TW/gQ4HPgIGAP8KGIf4gB0TuzMfcfcx//O+x+/PvLX+9VHrdEVN96AMaalwsPr8+OgxggLT92Xra8igN8XaLHzirQnjoSEUE2LceMACJaUsOXGmwjs2RPdwA6QMy2OjtceQdrp/cAV+r3js30p9P6DuzYcwcs/rKB//sJax8zfMZ/iiuIm9d+7QxJv3TSeX045DJcj1P/K7YWc9ugsnp+1gWDQtuwHEhERERERERE5iClhEXI80B94zVq7pHKjtbYA+AvgAa5qqANrrc9a+2drbf7e24H7wqvHtmTQkeB2uhtvtJeyJUsonTcPAE/v3qRMntyiMVV4y7DEVa0b974jLNZ8m83zt8/k6Z/N4LV75jL12RUU53tbNA6Rts6RkEDPJx4nacJ4MIasu+7CmZ4e7bAOmHEYUo7uTtaPR+DuUjmQzU2B/wZ8Jb9m2Ma3GbHpGSjdzZaiLfz4yx9zzofnMGvbrCb173QYfnTcAN7/0VEM6JwMQIU/yB8//o5Ln53Lim0FEfpkIiIiIiIiIiIHF1fjTQ4Kk8Lvn9Wxb2r4/UCSDb7wu7+5BxpjejTSpEvlgtfrpaysrLmnOGDZTzxZtZxy1VWUV1S0aP+lRflYqkuAeANeTFn1P+XmFXlM+/cP2PCTzvk7S8nfWcq4c3tTVlY91/zGpbvZvqaAjK6JZHZNJCkjDne8E3ecE4ej5UaENEV5eXmdyxK72tN31uHBB0n6diFxRx8Vld8ZEZPmIOW6gZR+uY3yOdkAeIPDyfb+i467HiPuqXHcP2AIZf4yyvxl3PLFLZze53R+PvznpHpSG+2+f6aHt68fxUPT1vHyvK0AzF2fx+mPzuLkwZ35yXF96dcxKaIf8WDRnn7eDhb6ztomr1cPd4iIiIiISGxRwiLkkPD7mr13WGt3GmOKa7TZH9eG3+tKiDRmS1Mbzps3j3Xr1jWr83JbjsEQZ+Iab1wHz46d9Jk+HQBfWhpz4jzw2f58zPptyMlnsK2O7/Mvp0E4v1Ce6yT32wSwoQ3OhCCBcoMz3vL1zC9r9ZO3PI7SrZ46z2GcFuOyOFyWhK5+0g6pnXTZszoOLGDBht9Dy+FAwttT+lXgSa1OklQUOChYHRc+xlQda4OATQRrePPr0HQ1XY4toeZMWgU/eCje7Kk6VyjQ0Mtgq/4N4jICdBhZ++bQ7kXx+EocGAcYB+CwGFNj2QHGQEIXHwlZ1dNo2SCUbHVjnBaHM/zvUvUeXnaAcViMC1pw5q82ZcaMGdEOoWXs9bPqKCkhmNQ+brinDHbRZ20yngoHlhTyfL8mPjCX36x+lrIsJwviQyO1Pt74MdM3TefMxDMZ5B7UpL5HOyBlkOGN9Q7yvKEfgv99l8PU77I5spPl5J5BMvfvV6rUod38vB1E9J21Hbm5udEOQUREREREpBYlLELSwu/1zetRWKNNsxhjTgFuAlYRKsIdUxZ4F/BZ+Wd0dXbl9ITT6eXq1azjHeXleLOyiMvOJn/iMeBq+UvKBHxVIyyCVFTdqPfmO9m9qDpZkdDVR+awcrAQ8O57J91XVH+xbhsw2IAh6IVgxb51MIo3uKk6cQMSu/mgxoPaQZ/Bm9fEfxNb+xQ2aLC+us9pazQM+oP77PeXOvAXN16c3JUcrJWwCPoMe1bGN3BEtc4TSvCkVZ+7dIeLgu/jQsmMBiabc8RZOo2p/VT/ntVxeHMbjzchy0/qXsmknLkJWH/j303aQC/xHas/a0Whg/xlTfusncaV4qjxNRZtdFOy2V07CVWVyKreZlyWDiPKiMvY9zuKNakLF9Lpgw/ZeekllAwcGO1wDlhRmp/vhhXQa30imbtD2YPy4DhM6XAe3vI6X6R9zt86plPigCJbxKslrzLUPZTTEk4jydF40uawdMtvhwf4JtswdZuDYp/BYpi3y/BtruGoLMtJ3YOk1p0jFRERERERERGROihhEUHGmDHAm4QSIRdYa/dn3H3PRvZ3ARYAjB07lv79+zer86mzpmK3W7YHtnP8UcfTL61fswO0N1xP2YyZ9Bp7JI6EhGYf35gvZ87AbioEwDgCTJ48mdwtxfz38e+wgdAN6F5HZHD81YficNZ/p9x7jJ/8HaXkbw9NGVVe7MNXHqCiPFDrvf8hfRg9uXaN9Rc+m0sw0Hhx3RHDR9DriMyq9R1rC/jvgu+q1kOjHAzGYQjaABjweNw4HIYTTzwRp6s6/uWubXxfnIMxpmokg7VgrQ3fILdYC1l9OnLs5NoDgD5cuYw93jICfls1VVZdBg0+jMOP7Vq1XrS7nLe/XNzo5wQ4euIE0rMSq9a/n5PN7CXrGz0uyelh8uRjam37cvv3bNyQ1+ixfQd35ejJta/xl7+cj8/beLH1IYOH03d4h6r1nI1FfDx7RaPHARx//PEE8Vc9Ndyzax9WrNrZ6HGZXZM57fwJOJyxPRSlbO5cst9+B6yl+wsvkn7TjaTdcAPG0fbLHJWVlbHivXn02JiIx+fAEk+h/xom5B3PeyVP8qesncxMDP3eWuZbxhbHFu4YcQcn9jwR04QhRKcCd1UEeGXeFp77ZjOF5X4C1jBjp2HBbhdXjO3JtRN6kZbQ/PpAB7Py8vKqn7eJEycSH9+05KJEj76ztqm5I3NFREREREQiTQmLkMqRFfWNokgF8uvZVydjzGhCU0AFgSnW2pX7E5i1dmsj56lajouLI6EZCYOgDbI0dykA6XHpDM4a3KQbdHVJPOXk/TquKUzQhw1PCWUdAeLj45n77gp85aGb1D0HZ3LqTUNxuhu+uZqQAOmZKfQ9vOHzWWv3+Xc4+7aRoWSDMeEpkQwOh9lnPSHVg9tTPVKgz+A4bnykEw6nwWFCiQoI3UT9LDwdz+TJk+v83o48bQBHnjag4WDrcdFdY6s/T9ASDFgCgSABf5Cg34beA5b4JDfxNW6kOjq4Oe6KgfgrgvgrAvi8gdB7RRC/N0DAH8TvC/WTmp5MQkL1vDdx8XEkpHoIhPdTT57E6Xbu83ndHnetZE193B7XPsc63Y4mJZPi4jy1jo2Lq2jSOQES4hMIVJWigfhED54EV+gacBB6d4avifC1EAxYjr9iEEnJibX6skFbdR3EirgJEyg98USKPv8crGXPk0/hX7Wabn/7K860/RpcFlPyO1ZQkO5jvDmM8gU5YMFve0P5ffzf1s+Zm/YGf+7optDpIN+bz/Ornue0Q07D6Wh81A+Efrf8bPIgrj5mAM/MWM9zszZQ5gtQ5gvy9KxNvP7tNm4+tj9XT+hDUpz+s9tc8fHxzfpvm0SfvrO2Iy5O89eJiIiIiEhs0Z2TkMraFYcAC2vuMMZ0AZKB+U3tLJys+BxwAJOttQtaKM4WtW7POgorQiMXRnQesd/JikgLVpRiK3NJziDGGE65eQgfPLyEhBQ3p9w8pNFkRXPU9e/Qtf/+3bR1OB008Z5nxBiHwekwTfo3iktwMfiobvt1nkETujJoQtfGG9Zh8nWNZJEacN0DxzTeqA5d+qVx878mNbl9WVl1wmLoCd0Ze3rzk0nZGwv56uVVTLpsIF36xU4iwBEXR/d/PszuZ55l1z//CcEgxdOns+GCC+nx6CPEH3ZYtEM8YEGXJWlyL1KP7Eb++2vxbS0GoDRwEsPzxvJu8Yvcn7WIackJ/DyhH86Aj+b+8KYluLljymFcNaEPj321ltfmbaYiEKSo3M/fp37Pv2dv4EfHDeDSsb2Ic0X5F4OIiIiIiIiISAxq+/N9tIzp4ffJdeybslebBtVIVjiBk6218w48vMhYnFM99c/IziObdWzBBx9Qtrxp0+kcKFtRjiX8BKAz9CR9ckY859w+ktN+NKzWiAaRWBXwB/nq5VXs3lbCu39fyKy31jRpKqvWYhwOOt50Iz2feRpnejoAvs2b2XjRxRR89FF0g2tBnh4pdL51OOln9cfEhX53BEnFX/ET7tp6By9tjePYOc/Bv8bA8ncgGGTl7pXc8809ZJdkN+kcnVLiuOfMw/nql5O4aHRPKgfU5BZXcO9H33H8A9N5a8EW/IHYr20iIiIiIiIiItKalLAImQasBy41xgyv3GiMSQPuAiqAl2ps72qMGRjeT43towglK1zAKdbaOa0Q+35bmF09mGRkVtMTFv78fHbc+0c2XnABW37041BNhUjylhHK/1CVsABITPUQl6BBQtI2lBX5qqegsrD0yy288ad5bF3deO2O1pR81FH0ffcd4g8PjXqx5eVs/+Wv2Pnnv2B9vkaObhuMw5A8vhtd7hhNwvBOVdsr7OF0KnqAAt+1BPbkw7vXwbMn8PCse3h3zbuc/t7p/HPRP6tGpjWme3oCfz1/KJ/fdiynDa0efbRtTxm/encZk/8xg4+XbSfYQJ0ZEREREREREZGDiRIWgLXWD1xP6N9jhjHmaWPMg8BS4FDgLmvtxhqH3AesAs6p3GCMySSUrEgHZgEnGWPu2ev189b4PE21KGcRAAmuBAZ1GNTk4/JfeRVbWgqAOysr4lNJBUtqPIWuwRTSRiVnxHHer0Yx/tz+VdNzFeaW88HDS/jqldV4y/xRjrCau3t3er/2Kmnnn1e1rXjaNALFxVGMquU5Uzx0uHggHa87AlfHyvn2nRQHzmWn9zkKfJexfedaVuR9B0B5oJxnlz/Lqf85lRdXvkhFoKJJ5+nfKZnHLh3JJz89muMHdq7avj63hB+/tpjTH53FV6tzIp/8FRERERERERGJcUpYhFlrvwKOBmYDFwG3ANnAxdbaB5vQRSqQEV4+GfhDHa+ft2zU+2978XZ2luwEYGjHobgd7kaOCAkUl5D3yiuhFZeLDtddG6kQAago87Pn+55V6wXFKuIpbZfD6WDk5N5c/Lsj6TqgeoDWd7O28/q988je0LQn91uDIy6Obv/3f3T54704UlLo/ugjuDIyGj+wDYo/JIOsn48k9aTe4AolYC2JFAUuwZY+zQfrj+HafB/ucEKhwFvAA98+wBnvncGH6z7EH2xasunwbmk8f/UY3rl5PEf2zaza/t2OQq55YQEXPDmHeet3t/wHFBERERERERFpI5SwqMFaO99ae4q1Ns1am2itHWutfbOOdldba4219oUa2zaGtzX06tOan6ch+zsd1J433yRYUABA2mmn4e7evcVjq+SrCPDxY0uxZUlV21Iy2seUNHJwS89K5JzbRjLx4kNxh+solOzx8snjSynMLYtydLVlXHghA6Z9QcLhtQujB0tL29WIAONykHpCL7rcMYaksV3AWZm4SKbCdxkX7nyID9dP4JzCACb8ubeXbOe3s37LGe+dwds/vN3kf4/RfTJ588ZxvHTtkQzpXp24+nZTPhc9PZcrnpvH4s35Lf8hRURERERERERinBIWB6mtRVsxhG7INTVhEfR6yXvhhdCKMXS48YYIRQcBX5D/PrGMHWsLKu8bAuBJiuz0UyKtxTgMQyb14OK7j6RLv9BN6/JiHzvWFUQ5sn05U1NrrVu/ny0338KW62+gYuu2KEUVGa70ODLOOYQut48maUyXqv9KWlKg4gpu3vY33tswnknF1QWztxZv5ZP1nzRrejxjDBMP7cSHPz6KJy8fyYDOyVX7Zq7J5ZzHv+H0R2fy2rzNFHtjZ7owEREREREREZFIUsLiIHXL8FuYdcksHjvhMYZ1GtakYwreex//rl0ApJx4InH9+0cktkAgyNRnV7BlVegJY5ejuoaF8ajItrQvqR0SOO1HQ+ncO4VTbx3KYWO7RDukRuU89A9K58+nZPZs1p9xBnkvvogNBBo/sA1xZcaTcV4ocZE4KotwfpcgacR5r+Q3W+7nzQ1Hcky4xs6NJT7Y9A2ER1lYaymuaLzmhzGGk4/oytSfT+TBC4bRI6N62rsV2wq5673ljP3zF9z13nJWbIu9ZJaIiIiIiIiISEtSwuIglupJZWKPiSS4Gq8LYf1+dj/7bNV6hxtvjEhMwaBl2gur2LA0FwCXx0Gnjkur9jvjlLCQ9ic+yc35vx5NnyEdox1KkyQeOQZXl1BixZaVkX3f/Wy8+BLKv/8+ypG1PFeHBDIvOJSs20eTOKJzjcRFOqnlV/O7zffzwbqjOXLZDPj3KfDIcPj6fmb/8B8mvzOZRxY9Qn5549M7OR2G80b14MvbJ/HX84YwtEf1VFElFQFem7eZ0x+dxVmPzeatBVsordCoCxERERERERFpf5SwkCYp/O9/8W3dCkDShAkkDDmixc9hrWX6a9+zZkE2AE6Xg1NvHUqCq/qpYmd804qDi7Q1dU0nVJRXHoVIGpcyaRL9Pv6IjEsvrdpWvnw5G847n5yHHybo9UYxushwd0wg86LDyPrFKBKGdaqRuMjAU3Ep2d7nyffdim93BXx9H898/WuKfEU8s/wZprwzmb8t+BvZJdmNnsfjcnDRmF58+OOj+ejHR3PJkT1J9Dir9i/dsodfvbuMsX+ext0frGD1ztgp1C4iIiIiIiIicqCUsJAmKf56etVyh5tuisg5Ar4gBTmlADgchik3HkHPgZm4gtWFbF0JnoicWySWWGtZ8sVmXvn9HDat3B3tcOrkTE6my92/p/drr+Lp1y+00e9n95NPseHscyj99tvoBhgh7s6JdLhkIFk/HxlKXFTVuIinJHAq2RVPklPxW8YV96v63VUWKOfl717m5Hen8OsZd7J81/ImnWtIjzTuO3co8+46gf87+wgGda2uJVLk9fPSnE2c/PBMznviG95duJVyX/ualktEREREREREDj5KWByE7ph+B7+f/XveX/s+1trGDwC6PfB3ej7zNBmXXkrikWMiEpfL4+T0Hw+jz5AOnHjtYPoODU2P46pxD84ZHxeRc4vEkg1Lcpn9zlqCActnz6xg9/bGayFES+LIkfR9/z063noruEMjoCo2bGDT1dfg27EjytFFjjsriQ6XDKTLHWNIPqobpmoUhIOK4HjO2PU7PlrzC36zcxAJ4d9hfhvgkw2fcumnl3LZB+fy6fpP8QV9jZ4rJd7N5eN68+lPj+a9WydwwagexLur//O9cFM+t7+9lLF/mcYfP/qOtTmxe72IiIiIiIiIiDRECYuDTKmvlGmbpvH+2vf594p/1zkNTV2MMSQfcwxd7v59k4/ZHy6Pk1NvHcoho7OqtjmD1edzxGmEhbR/fYd1pN/wTgBUlAf45LFllBZWRDmq+jk8Hjr99Cf0ffcd4ocNBSDziitwd+0a5cgiz5UZT/oZ/en6myNJO6UvztQav6OChzIx/ye8t/Ze7t82ni6+6ho8y/as4c6Zd7J51gNQ0rRRNMYYRvTK4O8XDGPeXSdy75mHc2hWctX+gjIfz8/ewIkPTefCp+bwwZJteP0adSEiEk3GmO7GmJ8bYz4zxmw2xlQYY3YaY941xoyto/09xhjbwKtPFD6GiIiIiEirUQXjg8yy3GX4bahY68iskVGOBn5YsJPuh2aQlFY9cmLvhIjLVq+bhPhWi00kWozDcOI1g3nvwUXs2lxE0e5y/vvkcs76xXBcbmfjHURJ/KGH0ue119jzzruknXF6rX2BoiK8339P4ujRUYoushwJLlKO7UHyUd0oXZ5L8Yyt+HaUAGCDnRhWeAUvFF/Ezriv+XeH2UxP2cX4sjL6f3k/fP0gHDoFhl1CYe/xpCZ2aPR8aQlurprQhyvH92bhpnxem7eZj5fvoMIfBGD+hjzmb8gjM8nD+aN6cMmRvejbMSmi/wYiIlKnnwB3AuuAz4BdwCHA2cDZxphLrbVv1nHci8DGOrbviUiUIiIiIiIxQgmLg8yi7EVVyyM7N56wKP/+B+IPOzQisayes4NpL64irXMCZ/18BCmZdScjXLZ6IJCJV8JCDg7uOCen3jKUd+5fQElBBTvXF/DVy6s58ZrBER3ldKCM00nGRRfusz3vxZfI/de/SJowgU4/+ykJw4ZFIbrIMy4HSSM6kzi8E951eyieuY3y7/MBsEEPWWWT+fXWydwWvxEfH2DtdEywAlZ/TGD1x1zcswdZCR24eOClTBp6NXGuhn/nGWMY3SeT0X0y+f3pg3l30VZem7+Z9btCyZK8kgqenrGep2esZ0L/Dlw4uifHD+pMarw74v8WIiICwHxgkrV2es2NxphjgGnAE8aY96213r2Oe8Fa+3UrxSgiIiIiEjM0JdRBpmbCYlTWqAbbli1bxoazzmLT5VdQumBBi8axdmEOX760CoCCnDLWLMiut61TCQs5SCVnxHHaj4bh8oR+Bn6Yn823n26MblD7IbBnD3kvvABAyTffsPGii9ly8y2Uf/dddAOLIGMM8QMy6HjNEWT9YiRJY7pgatSd8JT3Ian8Z2wPvMkefoov2J2ZCQlscTn41pfPHcsf47hXxvDH9y5gyYbPm1RvKCPJw/XH9GPabcfyxo3jOHNYN9zO6uTWN+t28/M3lzDqT59z5fPzeXXeJnKKyiPy+UVEJMRa+5+9kxXh7TOBr4AMYEirByYiIiIiEqM0wuIg4gv6WJa7DIAuSV3oltytwfa5Tz8NQOm33+LdsIHEMS1TbHvj8lw+f24llfffhhzXgxGTe9Xb3mmrL1MTp0tWDi6deqVw0rWH89+nloOF+R9tID0rsVadl1jnSE4m67e/Jfexx/Bt3QpA8ddfU/z116RMnkynn/yYuEMOiXKUkePOSiLjvENIO60vpYtzKJ67A392KQDW76bYP5liJtPds5nz8/7H+xnL8ZsARQbeLlzN2zNuo+cMN2d0mcAZY35Oj8wBDZ7PGMO4fh0Y168Du4sH887Crbw+fzMbd4fO6QtYZvywixk/7OJ3769gZK8MphyexZTDu9C7g6aNEhFpRb7wu7+OfRPDNS6CwBrgC2tt8f6cxBjTo5EmXSoXysrKKCsr25/TSAzTdyqVdC1ITboepJKuBampOddDpK4d3f09iKzavYoyf+hCamw6KO+aNRR/MQ0AV1YWaWef3SIxbP0+n/89vYJgMJStGDihK8dccEi9U9xYa3FSPWe/8WhQkBx8+g3vxPiz+zPnvXUAzHxrDX2GdsTtid16FjUZl4v0c84m7fTT2POf98h94gn8O3cCUPTZZxR9/jmpp51Gxx/dSlzfvlGONnIc8S6Sx3cjaVxXKjYXUTJ3B6XLd4E/9PswobgX1xXfyNX5FSxLms0rqd/wXcI2MLAFH4/vnM7jH03nBHcHHp7wZ+g1HhwN/07skBzHTcf254Zj+jF/Yx7/W7GTz1buZHtBaGSFtbBwUz4LN+Xzl09XM7BLCpMP78KUw7MY3DU1pqcfExFpy4wxvYATgR3A8jqa3LvX+h5jzM+stS/tx+m2NLXhjBkz6NixYzO61p+TbcFnn33WSmfS9RDrdC1ITboepFLrXQug6yH2Ned6yM3NjUgMukoOIs2ZDir3mWeqljOvuRqHx3PA59+5voBPHl9GwBcqCjtgdGeOu3wgxlH/DTFfwOKscZmaGC44LBJJIyb3Yk92Kdt+yOe0W4e1mWRFTcbtJuOiC0k7+yz2vPU2uU89RSA3F6yl8OOPKZk5kwEzpuOIi4t2qBFljCGudypxvVNJO70fpYtyKJm3A39uKKHsrPAwouI4RuQfR3lCAXPjZ/Fa+gK2xOcA0Dl3I7xwKqT3hmEXw7CL8aX3xO2ovy6Fw1E96uIPZwxmxbZCpq7cydSVO1mTU/3A7uqdRazeWcQj09bQMzOBKYO7MOWILozslYGzgd/VIiLSdMYYN/AyEAfcaa0N1Ni9FLgW+JpQMqMLcDrwR+AFY8wea+2HrRuxiIiIiEjrUcLiILIwZ2HVckMjLCq2bKHwk08BcKank3HhvgV0m2vXliI+/tdS/N7Q32N9hnTgxGsG42jkBli5P4ADF8Hwes054EUOJsYYjr30MCrK/SQk104gVpT78cS3nV/njrg4Mq+4nPTzzyP/tdfZ/cwzBPbsIePKK/ZJVlhr2/VT/s4kNynHdCf56G541xdQMm8HZSt2Q3gUWnxZGpPKTmNS/mkUJuTwZeIsjvdOBfJhzyaY/ld2zfo7Z/XsyTHpA5l8xOVM6HMSCa6Ees9pjGFIjzSG9EjjjimHsX5XMVNXZjN15U6WbNlT1W5LXhnPztrAs7M20DHZw0mDs5h8eBcm9O9AnKvtJcxERGKBMcYBvABMBJ6x1r5cc7+19r29DtkI/MsYswr4HPg/oLkJi56N7O8CLACYOHEiPXo0NoNUDXO+bGYoEg2TJ09unRPpeoh5uhakJl0PUqnVrgXQ9dAGNOd62Bqe9rultZ07XHJAgjbIkpwlAKR6UumX3q/etrufew4CocRCxpVX4EhMPKBzF+WV89EjS/CWhqbn7TEwgyk3HoHT2XjywesL4rCeqoSFQ1NCyUHM6XLsm6wo8/PG/82n79COjDunf5saeeFISKDDddeSftFF5L/+GhmXXFJrv2/7djZfex0Zl1xM2nnn4UxOjlKkkWeMIb5/OvH90wmU+ChbkUvZ0l14NxRAuN5Pallnzi47FziXnITtJPg+JtE5k2mJPoqM5dOCVXw6+7ckzP49x3QYwkmDL2Viz0kkuhv+Hd6vUzK3TErmlkn92VlQzuff7eR/K3cyd30egXDiJLe4gtfnb+H1+VtIiXMxaWBnphyexaTDOpOs2kIiIk0STlY8D1wKvALc3NRjrbXTjDHrgCHGmFRrbWEzjm3wL8maDwYkJCSQkFB/0lvaJn2nUknXgtSk60Eq6VqQmppzPUTq2tFdhoPIw8c9zKLsRfitH4ep+8a/LyeHgv+EHuxyJCaSedllB3ze5PQ4+o/ozIoZ2+jSL41Tbh6Cq4lTO3l9ftyEbtBaguBSwkKkptnvrKFodznLvtrKppW7OeGqwXTtnxbtsJrFmZxExxtu2Gd7/uuvU7FxI9n33c+ufz5C2rnnknn5ZXj69Gn9IFuRM8lN8tiuJI/tSqDAS+nyUPKiYktRVZuKsm5UcCMF/hs4vGgdF7OY6anL2eHJpYwgn+1eymczlxKHg6OyRnHSoedybI9jSfGkNHjuLmnxXDG+D1eM78Oe0gqmrcph6sqdzFizi/LwdH5FXj8fLd3OR0u343E5OHpAR44b2Jnx/TrQv1NSux4RIyKyv8LJin8DVwKvA1dba4MNH7WPXGAAkAg0OWEhIiIiItKWKGFxkHAYB6OyRjVauyLvxRexFRUAZFx6Cc60A7/xaRyGiZccSnpWIgPHd2nW1DXl3nJcVE4R49ONMJEarLVkdkvG6XYQ8AUpyCnjvQcWMmJyL448vR/ONj6Fmm/b9qrlYGkp+a+8Qv6rr5I8cSIZV15B0oQJ7f53gjMtjpSju5NydHf8u8soXRZKXvh2loRbGDLKB3BV+QCu2nUB+e7tTE9Zytepy/khfhNeE+TL7AV8mb2AcYk9eGbK85DatUnnTk/0cN6oHpw3qgdlFQGm/7CLz1bu5ItV2RSWh0bMVfiDfLk6hy9Xh+trpMQxrl8HxvfvwPh+HejdIbHdf0ciIo3ZK1nxJnDFXnUrmtJHEnA4UEIocSEiIiIi0i4pYSFVAkVF7Hn9DQCMx0PmVVe1WN/GGIad0Nj0ufvylZdgKxMWxt9i8Yi0B5U/V70Oz2Tai6vI3lCItbBo6mY2Lt/NCVcNonPv1GiHud+6P/QgHW+9hbyXX6Hggw+w5eVgLcXTp1M8fTqefv1IP+9c0s46C1fHjtEON+JcHRJIPa4nqcf1xJddQunSXZQty60q1g2Q4evG2XndODvvFEode5ibvJzpqctZkvQ9x29eBg8NhIy+0Pso/L3G8ox3K0cPOJ3DOx5R78g7gASPk5OP6MLJR3TBFwgyd/1upq7cyWcrs8kp8la1yyny8uHS7Xy4NJRs6poWz/hwse/x/TvQM/PAphgUEWlrakwDdSXwNnB5fckKY0wK0NVa+8Ne2xOAZ4AU4N/WWv1PsYiIiIi0W0pYSBVHcjI9nniC3U89hbt3L1ydOu1XP+UlPqY+s4IJ5w6gU6+Gpx9pjM9bhrWhhIVVwkKkTv/P3lmHyVVeDfx3xtZ9N7txNyBCEiS4W5GWYqVYi9aFtpQ6LVUqX73QFm0LLV6gFIfiAUIIEiOum2RdR8/3x3tnd2Z2N9mEJCs5v+e5z5157b4z14+WVOVx5ldm8eYTa5j30EoScaV2Qwv3/vQNZp88mlknje51GLb+RtaECQy97nsM+dIXqb/3Xmr//ndiGzYCEFmxgs03/JzgiJEUnrgHk4T1A4KVeRSdkEfRCWOIbm6l7b0a2hfVElnT2JHzIjdRzDGNh3NM4+HEJEzQN58WmUd27Rv46/7GgsV384ehlfxh6Z2UEeCIokkcOfZE5k45h9ysnvOFBP0+Dp9YweETK/j+6fvx9voGXl5Rw8vLa3htVS2tkU453MaGdu57cz33vbkegOHFOR3eF3PHlzGs2GKlGoYx6PkOcDHQDCwFvtWN59kDqroAKAMWi8hrwCJgE1AJHAeMAN4Gvrpnpm0YhmEYhmEYfYMpLPYCtrRu4b+r/susyllMLplMwNf9bhcR8g46kLyDDkRjO6cciLTHePh3b1G9spEHfjmf0z4/k6pxOx9WKtbe2uFhoT5TWBhGT/j8PmafNIYx08p58tb32Lq2mURCee2RVaxdVMtHvzanr6f4gfAXF1N26aWUXnwxTU89Td0dd9D6+uv4i4rIP/qotLbtixej0RjZ++3bJ3Pd0wSH5BIckkvhUSOJN0VoX1zrFBjL6iHmwqMHNAuNz6WOuRCDoKykzv8O01uW817ucmokxv0N73H/gvcIvflLDvTlc1jpfhw47mQmTPwQEszudts+nzBjZDEzRhZz1ZHjicYTLFzXwCsranhlhVNgJHNfAKyvb+OeN9Zxzxsu/+voslwOHuuFkBpfRmVh99sxDMMYwIzx1vnAN3toswpYANQCfwAOBE4BSoA2nPLiN8DvVLWt+yEMwzAMwzAMY3BgCou9gFc3vcrPXvsZAJ+e8Wk+NfNT2+0jgR0/NGKROP/5w0KqV7ocgP6gj+y84A6Pk0o03JKisNihUL+GsVdSNjyfs66Zw+uPruKNR1ejCWXywb3LWTAQkECAwhNPoPDEE4isXk14xQp8oVBam62//z1NTzxJ1sSJ5J56Kv68XOIFH8zba6DgLwiRd0AVeQdUkYjECS+rd8qLxbUkWqId7aI6lqktY/lpC4SlnbfyljAv/z1ez3uP6lANL2gLL9S8CjWvsv8L3+D24AQYPRdGzYWRB0JW9/9n0O9j9ugSZo8u4TNHTyASS/DWunpeXu4UGG+sriMc61RgrK5pZXVNK/98fS0A48rzOHh8GbNGFNAWgcJQt5sxDMMYMKjqJcAlvWzbCHx2d87HMAzDMAzDMPo7prDYC5hfPb/j88whM7vUayIBIh8oMWo8luDRG99h/dJ6ALJyA5z+hf0prvxg8crjrW2As7hVX2LbjQ3DAMAf8HHQaeMYv/8Q3n5mLVMPSVdY1Fe3surtrex7xHCCoYEZKgogNHo0odGj08pitbU0PfMsAOFlywj/6leM8/lomTSR5vYwoZNOxF+0815fAwlfyE/OvmXk7FuGJpTI2ibal9TSvrSO6PrmjtBRWZrNgc0zOLB5BgAbgpuYl/8eb+Yt5r3c5UwKN8GGF2D1C66D+PnliPGMLZ3MgWNPYPjEUyCv+xwioYCPA8aUcsCYUj5/7ETao3EWrHUKjJdX1LBgTT2ReOe1fcXWFlZsbeEfrwIEKM9SHmt6h1mjy5gxsph9hxWSG7JHF8MwDMMwDMMwDMMYrNhb/15AUmHhFz8zKmZ0qa+/5x4a7r2PsiuvIP+ooxBfz4lXuyMRT/DEze+y5t0aAILZfk77/EzKR/QcA723aHunwgK/9tiurbmJRf97mnBbK3lFJeQWFZNbVExecTG5hcUEsy3MiLH3UT4in6MvnNql/PX/rGLJq5uY//ga9j9+FPsdMZxg1sBVXKTiy86m6rvfoeH+B2ib7659kkiQv3gJW7/7Xbb+4AfkzZ1L4YknUHDSSfjzP/h1aiAgPiFrdCFZowspOmEM8eYI4WX1tC+to31pXZr3xbBoFR+uq+LDdcegJIgEN1CXWECW7x2yfO9S52vglkA7NL4Fb73F8Nd/zByy2L9oAvuPOpqxk05FSkZ3O4/soJ+DvSTcXwLao3HeWF3HK14OjAVr64klOq/1W8PCf97ZzH/e2QyAT2BSZQEzRhQzfWQRM0YUM7mqgKB/x+5bhmEYhmEYhmEYhmH0T0xhMcipb69necNyAKaWTiU3mO7xoLEYNX/5K9E1a1j36c8w9r57yd5nn16Prwnl6TsWs3z+FgACQR+nfmY6lWMKd8n8tb298/M2FBbtTY08e8dfnbdINwSzssktdkqMWSedxpRDj+zs29zM208/hj8YxB8IunUwSMBb+wNBRARNKMOn7ksg2Bnmqn7TRmrWr0VVQRVFIaGoJlBVEokEJBKEcvMYP/vAtDm1rF9NrLWFd/xKIOBHFUDRhLq1N2bl+ImM3Gda5/+gyhuPPOB5xAhulf7Z5/MhPh9jZsymsLwzeXpLfR3rF7+L+Hz4/H5vHcDv9+MLBL11AH8gQOnwkWleN7FIBE0kEL8fn9+HiO8DeeUYfUNrY4Rlr1UD0NYY4aV73+fNx1cz8/hRTDtyxIBXXPhycyk5+2xKzj6byKpVbL3nHrbefQ/BhgbXIBaj5fnnaXn+eXIPOGCvUVhk4s8Pkbv/EHL3H4ImlOiG5g7lRWRNI3iXUsFHVnQELYygJX4qAOHAFr60YRlv577Pu7nvsz64lfUS58HWJbB4CSXv/p6ZcR/754/inLGnkTfuaKiY7F2n0skO+jl0QjmHTnAeGq2RGK+vquP5JdU8uXAV65ohqp39EgqLNzWxeFNTRxiprICPfYYVOiXGiCJmjCxmbFkePp9dnwzDMAzDMAzDMAxjoGEKi0HO/M2d4aBmVc7qUt/438eIrlkDQO7cg3dMWaHK/+5aypJXNgHg8wsnXzWNYRNLPuCsUwhHOrfn71n4VDJ0OPsdfTxvP/VYt/XRcDsN1ZtoqN5E++HHpNW11Nfxv7/f0qvpXPnH28gvLev4vmzeS73qWz5qTBeFRf3id2ir3sCW117cZt/Zp34kTWGBKs/d8ddezfej116XprDYvGoFD/3qJ73q++U7/50mYHzhrtt545EH0tr4/H58Pn+HEsPn8zNqvxmc+sVr0tr987qvU1+9abvbPOSs85l2zAkd35tqtvKPb3+lV/M95zs/oqRqWMf3Rc8/w//uvG27/QpKyjj/h79IK3v8xt+w8q35aWWqSri9HVW49T/3gCr7HHEMR17wybR2f7j848TCYVSVQCjEqGkzmXTQoYzbf06/8PTJLQxxzjcP4PX/rOL9+ZtBoa0pysv3LefNx9cwde5Qph46lJKqvL6e6gcmNGYMJZ/5DK+NH0/2mrXs19hI69NPE9u4kaypU7uEk6q/734Sba0UHHccwcrKPpr1nkd8QmhEAaERBRQeM4pEW4zw8nrCKxsIr2wgurGlI3wUQFasghMaKjih4RAAagL1vJuznMU5K1mUs5Ll2Wt5JhTjhfAazn/s665vTimMmsuGYfuRN+owikbNBX/XHEe5oQBHTKrggJH57JdYTjwBo2fMZcmWdhauq2fB2nqWbW4mnuKFEY4leHNNPW+uqe8oK8gKMM1TXswYUcT0EcUMLco2JathGIZhGIZhGIZh9HNMYTHISc1fkamwUFVqbrqp43v5lVfu0Ngb32/gnf+tB5zA68TL9mPUvmXb6bVjSIrCggAk4nHefe4p3nn2Sc7+9g/TvB0OOet8Ru07nUh7G60NDbQ21NPSUE9rQx2t9fW0NtTT3tJMXlFx2jbisSi9RUn38uit8Ktbz4/eCs40fZuZc9gW4ku3lu/JA6VrP1+X0GCJeNek54l43JWn/IWRttYu7Vrq62mu2brd7Ubb27rMtzf9uptfNBzuVd/u9mFbU9M2+7a2tQAQae36W6PhdmLhMACxSJilLz/P0pefJxDKYsyMWUw6+FDGzTqQrNwPlt/lg1A2PJ8TL9+PORuaneLiDae4aG+O8uYTa3jziTUMm1jMKZ+eTlbOILhN+Hy0jxlN6QknMOxb36T97bdJtLSkNVFVav78ZyIrV1L9g+vJmjiBvEMOJe/QQ8idMwdfH+6vPY0vJ0DOfuXk7Oe8HhLtMcKrG4msbCS8soHIuiaId16HymLFHNE0myOaZgMQI8b72WupCb1PPPYmMVmMv3UzsuQRfl73Kk+supMx0TjTgkVMK53K9NFHM2ni6QRzuuYW8ftgn6EFzB43hPMPGgVAWyTOuxsaWLC2noXrGli4rp5VNennYlM4xkvLa3hpeU1HWUVBVofyYp+hhUyuKmBESY4pMQzDMAzDMAzDMAyjHzEIJFHGtkjzsBiSrrBofvZZwkuXApA9Yzq5Bx20Q2MPm1jMUR+fzHN3LuXYi6cybv+K7XfaQSTSKQlvaWvj1qs/Td1GpyRZ+MR/mHXKGR31+aVlaaGeuqM75URhxRBO+/K1xKNRt8SixCJunfzuzYZQdk5a32GT9+HQcy/sFHglwzGJOKG/t87OL+iy3ZKp0ykYM4Fp06YRyspCvP4i0rEWEUqGDk//T8THqV+8JiUMFU6pkfI5kUigiQRlI0am9S0dNoIjLvgkiXgc9dok4jHi8TiJWIx4LEYiHuv2vyuuGsao/WaQSMRJxBNoPO599paEK8sr6aq0yisq7qKM6I5gxv8rPl+aR8u28PnTlTPBrKxe9c0r7uoRlFNQ0KWvqtLe7hQRObk5+Hw+srsJJ1Q2fBTxaAQRoam2hvbmJsApL95/7WXef+1l/IEAZ33rekZM3a9Xv213UTYsnxMv248DTmnh9UdXsXz+ZhKeIDrSHiOUPbDDQ3WHiJAzfXqX8siKFURWruz4Hl72PuFl71N7221IMEjO/vuTd+ih5B1yCNn7TEX8g++/6QlfdoCcyaXkTC4FQKNxImubnQfGqgYiq5vQSKfCMECAKe1joX0stRzvxpB6QrKIYS0bmc4a3s9ew0M081Dta1D7GqH5P2WqhphWMIrpww5mv7Gn9zifnJCfOWNKmTOmtKOsvjXSobx4a10Db62tZ3NTOK3flqYwTy7azJOLNneU5WcFmFSZz+SqAiZXFjC5qpApVQWU5IV2yX9nGIZhGIZhGIZhGMaOYQqLQUxrtJVFNYsAGFc0jpLsTsGsqlLzpxs7vpdfeeVOWZnue/hwRkwpoahiN1kfRzqF5xvXbqKufn3H982rVnbXY5v4A11DkGTn5TPpoEN3anrDJk1h2KQpO9U3d+gIACYfeiQ5OTnbad2JiDB57uE7tc3iqqEccNqZO9V31smnMevk03aq77nf610YqkwKysq58o/bD+vUHVMPP5qphx+9U31PuPLzXcra2tp4/PHHXf0JJ/S4zy748a86PsdjMda99w5LX32B9197hdaGesApnYaMHZ/Wr2FzNbnFxQRDWTs15w9C6bA8Trh0X9rOmciSVzfx3gsb2OfQYWnXBFXlqVsXMXRCERPnVBIaDJ4XKYTGjWPsgw/Q9NjjNL/wAu3vvAOeR5JGo7TOm0frvHls+dWvGHXrLeQdfHAfz7jvkKCfrHFFZI1zHhGaUKLVrUTWNBJZ00RkTSOxLekKyoQW065zOa8GzvOcHtaFqlmWvYZl2atZlrOGpVlreatlOSxbzrde/i0nRUtoyhlO4LnXaC0ZzsbsfEZX7k+gZAxkpSsLi3NDHDGpgiMmdSrONzW089a6ehauc54Yb62tp7E9XSHbHI4xf00981PCSQEMKchiclUBU6oKmFRZwJSqQiZW5pMd3HsUVYZhGIZhGIZhGIbRFwwuiZORxsKtC4mpE85khoNqnfcabW+9BUDWxInkH3VUr8ZsrmsnvyQ9Dv/uUlasW/wu1YvWMirfWUPH1Xk6DJ+yL4d97CJGTNl3t2zXMHYV/kCA0dNnMnr6TI699FOsX/wey159iUQ81sVb54W7bmfjssUcddHljJ9zUJ+EqckpCDHzuFHMOHakl/y9ky1rmljy6iaWvLqJF+5exoTZQ5gwu5IRk0vwB309jDhwEBGyJ08me/JkKj7/OeINDbS88iotL71Ey4svEl23zrXLziZnVvr1tP6++2l56SVy58wmd84cQuPH71VhhsQnhIbmERqaBwcNBSDRGiWyrtmFklrbRGRNE5qhLBgRqWREpJKjGw9wfUiwLrSZZdmrmR1+h2xdQkHbW/heeYWXc7L5TNUQshIJxkejTI4LkwNFTMqtYnLxBApLxkHxSCjylrxyqoqyqSqq4sR9qwCndFtV08rCdfUs2dTkluom1tV19f7a3BRmc1OY55d1hobzCYwpy3PeGJ4yY3JVIaNKc/Fbgm/DMAzDMAzDMAzD2CWYwmIQkxfI46QxJzG/en6XcFCpuSvKrriiS76C7lg6bxNP3b6I4y7Zh4lzdl9C2vpNG3n61htZ+ebrjMqbCp4hbTAvyJmfvo4xM2btVcJAY3Dg8/kZuc+09ATqHrFIhBXz5xFpa+PBn1/PmJmzOfriKygdNrybkXY/IoJkJLlf/U5nLoBYJMHilzex+OVNhLL9jJlezrj9Kxi1TxnBrMFhge4vKqLwxBMoPNElgY+sWUPLSy8Rr6vDF0oPF9T09FM0P/kUjQ8/7PoWF5MzZza5s+eQO2cO2VOnIIG963bryw2SPamE7EnOs08TSmxrm/PAWN9EdF0zkY3NEOtUjPnwMSpSxahIFXAQW7xyP9XkJ9ZzyeYtrM7awKqsDTycXc39vjaIrYStKxm6KcakSJR9w2E+Vd8IgRwoGtGpxCgeiRSNZGzRSMaOGQnTJoDf7ZOm9ihLq5s9JUYjiz1FRn1regjBhMKKrS2s2NrCo+9s6ijPDvqYVOlCSo2ryGdseR5jy/MYXZZrHhmGYRiGYRiGYRiGsYPsXRKUvYxpFdO44cgbUFUS2plsue3td2h58UUAgiNHUnjySdsda8WCLTx56yI0oTz+13cpLMuhcmzhbpm3PxhkzTvO+yMgnSGcJh8yi1EzZ++WbRpGXxINt1M1fiJr3lkIwKoFb3Db259h9qkf5uAzz+3ijdEXHPChsYyZVs57L2xg6bxNRNpdzoJIe5yl86pZOq+aQNDHxAMqOeaiqX08211PaNQoQqNGdSlXVcLvLUori9fX0/ykU2IA+HJzyZk5k5ILPk7BMcfskfn2N8QnBIfkEhySS56n8NZ4gmh1K9H1zUTWNRFZ30x0Y0taQm+AOJUMiVRybk1qWZz1oc2sytrgKTE28n7WBmpz1juFRawNapZBzTJuLiogKsKESJRJkSjDYzF84ofCYVA0goKikcwuHsnsopGwz0g4ZCRaOI3N4YBTXiSVGJuaWLa5mUgskTa/9mjCy5/RkP6bBYYV5TCmPJex5XmMKcvrUGaMLM0l6B/4nkmGYRiGYRiGYRiGsasxhcVegIjgl04rT8kKkX/kkTQ/9xxll166XcvfNe/V8Nhf3ukIEbPv4cMZMqZrEumdJRaNEgh2KiYKysqZecKHWPrKi1QUFYAnu/JnWRJUY3CSU1DIWd/6IctefZFnb/8rTTVbSMRjvPbgPSz639McceGlTDnkiD73LKoYVcCR50/mkLMmsPa9Wla8uYWVC7cSaXOhfmLRBImMUFIAkbbYoMt5kUREGP/Yf2lftIjW116n9Y03aH3jDRINncLrRGsrLS+9RMEJJ6T1jTc10fDQQ+TMmEH2pElIsGuOncGM+H2EhuUTGpZP3gFe2KZYguimFlpW1bFq3hJyWv0URLLQSLqSwI+fUZGhjIoMhaZORXZcYmwK1RP0rSMQX0ZQl/NCqJ0FubVEfe44zUkkGBONMSbaytjGdxlb8xZjolHGRGNkqzt+BajMKaWyeCRHFo2E4lEwciTxguFsoILF7cW8XetnSbVTZKyubUUzDn1VWF/fxvr6Nl58vyatzu8TRpTkpCkyxpTnMa48j2HFORZiyjAMwzAMwzAMw9hrGZwSJGObZE+axMgb/0T74sWExo7dZtsNy+p59I9vk/DCdkw+qIojz5u0SwSnrY0NzHvgXyx99SUu+cUf0qzIDzn7fA477yLe++lvoMWV+XP2fDJiw9hTiAiTDj6MsTPn8OoDd/P6Q/cSj8VorqvlP7+5gYVPPMoxn7iSitHbPmf3BMGQn3EzKxg3s4J4LMH6pXUsf3MLKxdsYfz+FWltw20xbvnqCxRX5jB8cgkjJpcwbGIxWbmDRzgvwSA506eTM306ZZd+Ek0kCL//Pq2vv07b62/Q+vrrxDZvJmfmjLR+bW8tpPr7P3BjZGWRve++bpyZM8jebz+Cw4f3uZJqTyMBH6ERBcTLAqypeROA448/mFDER3RTK9FNLcSq3Tq6pTUtpBSAXwPEwuXEKAdmAvD9tc4jY2NoK2tCG1mTtYn1oWpWhbbwYkE1jf4WELh+Sw1nNLd0jNUQrmNJXQujNr/DkHgcH+AHRnrL8cFcF25q6EiiE4dTE6hkPeWsCJfyXlsRb9Vns7ymnYa29NBSAPGEsrqmldU1rdAR/MoR8vsYWZrT4Y0xpjyPESW5DC/OZnhxLjkhCzNlGIZhGIZhGIZhDF5MYTFI2dSyiaKsInICPYeSyZ4yZZtjVK9q5OHfv0Us6ixbx+9fwTEXTUE+oOVnuLWV1x++nzceeYBou0t2Ov8//+bgM8/taBPKcYm8fSlGtYG89GTfhjEYCWZnc9h5F7LvUcfy7G1/ZsX81wBYt+gdVi54o18oLFLxB3yM2qeMUfuUceTHJpNpZr76na3EYwlq1rdQs76FhU+vQ8R5ayQVGEMnFA+a3BcA4vORPWkS2ZMmwfnno6pE160jOHRoWru2hW91fNZwmLb582mbP7+jzJefT9bkyeRMn07lNV/bY/Pvb4gIgeJsAsXZ5Ewp7SjXuBKraSNa3UJ0Uyuxza1EN7cS29rWJayUH39Hku9DmtPHb/K1siG0mTGluTQOaybAOgLRZbwde4dPFYcByEokGBGLMTIaY1Tquv59hm5dQhCo8pYOfw/xQ+FwosOH05g1lM2+CtYmyljaXszC5kJer8ujNtL1uI/EEyzf0sLyLS1d6gBK80IML85xS0nGujiH4tzgXqfoMgzDMAzDMAzDMAYPprAYpPzo1R/x/Lrn2ad8H357zG8pzS7dfqcUatY389BvFhD14tSP2reM4y/dF98HiLkdjYRZ8NgjzHvgbtqbmzrKA8FQFyFnEn+iU+gSzOn7OP6GsacoqRrGR675Livmv8Yzt92EiI/ZHzojrU1rYwM5BYX9Rjjp8wkumE4ngjBkdAGb1zR1hHdThc2rm9i8uok3H1+Dzy8MHV/E6V/c3xtjcCEihEaO7FJeeOKJ+PPzaXtrIW0LFxJduzatPtHcTNsbb6BtbV361tx8CxqJkDVlMtmTJhEYOrTfHAd7CvF35sUgJZe9xhPEatudJ8bmTkVGdHMbZOSfAChI5DK5fQxsgEaGAOOAIxgD3Lm5iY2hLWwK1rApuJVNoRoWBLfy39ytbA3UkRClKB7n+TXr0478JSHnQTS8cS35DWsoA8qAqUBHYDAfJErLac0ZRl2wko1UsCJawuK2Yt5sLGBlrJRG8sg8p2pbItS2RHh7fXrOjCR5IT/DelBmDC/JYUhBtoWcMgzDMAzDMAzDMPotprAYhCQ0wZub3ySmMVY3rqY4qxiAmltuJTh0KAXHH4f4e7Zmrq9u5cFfLyDc6uJ9D59UzMlX7oc/sHPKingsxjvPPMEr995Jc11tR7nP72faMSdy8Jnnkl9a1m1ff6Jzm6E8U1gYex/jZh3AqGkzaarZgj+QHkbp37/4EU01W5h08GFMnns4leMm9Duh9cQDKpl4QCXtLVE2LKtn/dI61i+po2Z9p/V4Iq7EY4kuyoqFz6wjEPRRObaQkqF5g06ZkTV+PFnjx3d8j9XW0vbWW7QtXEh40WLalywhtnEjWd14w9X94x9E163r+O7LzSXkjZc1YTyhcW4dHD58m9f7wYj4fQQrcglW5JJ619CEEq9rJ7qljdjW9CXeEO5QqKVSHC+guK2AqW3jutTFiLM5WENTbhv148fjDzUS8G3Bn1jLTS1P87hvEwgUx+OMiMUYEY0xPBZjRCzG8GiMYbE4VW1byW/dSj4uzNSBycEDbokF82nOqqQm4BQaq2KlLG0v5r3WItYmytlMMUr6vbklEmfZ5maWbc5wJfEI+oWqomyGFeVQVZRNVWE2QwqzqSzMorIwm8qCbIYUZpEd3LuOG8MwDMMwDMMwDKN/YAqLQcjKhpXUh+sB2H/I/vjER2zLFrb86ldoJEL2fvsx5l//RHzdKyCa6tqJekl0h4wp5JRPTyewkzGzNy1fxiO//hn11Rs7C0WYethRHHLW+RRXDe25M+DTzu0G8nJ3ag6GMdAJBIOUVA1LK2uq3cr6Je+BKq8/dB+vP3QfxZVDmTTXKS8qRo/tV8qL7LxgR94LgLamCOuX1rNuiVNgDJ9cktZeVXn9Pytpa3Lx/4PZfoaMLqRybCFVYwupHFtEbmFoj/+O3UmgtJSCo4+m4OijO8ri9fUkwuG0dvHm5jRlBbjE3u1vv03722+nlQ/94fUUf/Sj6X3XbyA0ehS+7L0rzJ74hEBZDoGyrspvjSaI1SYVGO3Eatzn6NY2Eo2RbscL4GdYdAg0QEtDDMgFRgOj+RKH8WmJsDlYS3WwhupgLZuDtbwfrOHF3Bo2B2upDzRyeVucz1avJ6ktiQB/KyqgKhZnaCxGVayNiublFLOc8cBhyY17h37CF6Qtu5K6YCWbpIK18TLej5TwbmsRq2KlbNQywqSfJ9G4sra2jbW1XT13UinKCXYoMYYUpCg0CrM8BUc2FflZhHbSmMEwDMMwDMMwDMMwusMUFoOQN6rf6Pg8a8gsAGpvvx2NOKFL7oEH9qisABg5pZTTPj+DVx5cwSmfmk4oe+cPk8KKIbQ01Hd8Hz/nYA479wLKR43pVf9UhYXkmsLCMJJEWlsZM2MWa95eQCLuQrfVV29k3gN3M++BuykZOpzJhxzOpIMPo3zk6H6lvADIKQgxYfYQJsweAkAikW7e3lTT3qGsAIi2x1nvKTeS5JdkUT6ygIPPGEfZ8Pw9M/E9jL+4mEx1sS8nh3EP/Zv2xUsIL1lM+P3lhJcvd0qMjPB6qR4cAG1vvMHaK68CEYJDhxIaM4bQ2LFp6+DQqr3PKyPoI1iZR7Ayr0udRhPE6tuJ1bYTr20nVtNOrM77XNuOhuPdjpmlIUZGqhgZqeq2PkaceB5srijCnxvHH2qlSTcyv/ZRtmbXszVQT22ggbhEKY/HqYzFqYzHGRKLUxmP8dGmFooSUfJa15HHOkYAc5KD+70FaM+uoDFUyRbfENZqOSsiLuzU0nAJG7TMCzvVlYa2KA1tUZZWd++pkaQsL8SQwmzK84LEGn2UZSsHt0fJsTCOhmEYhmEYhmEYxk5gCotByPzNnUlbZ1XOIt7QQN0/7gRAgkFKL7l4u2MMm1jCR66etcNCzubamrTwTrmFRcz+0BlsWPIeh513MUMnTt6h8fwpCgtfVnAbLQ1j76JsxCg+eu11tDU1smzeSyx56XnWvvs2qi5Gf93G9bxy71289u97+ezN/yQQ6t/eCJnhnvKKsvjI1bPYtLKBzSsbqV7VSHNduqdBc12Y5rowcz+cLpTf8H49y+dvpnxEAQVDgmgCZBAZgYvfT9bEiWRNnAinndpRnmhrI7JyJeHlToERWb6cUIbCIrJqlfugSnTDBqIbNtDy0kvp44dCZE+bxpi//y2tPFq9GV9eHv787gXcgxUJdoaYykRVSbTGOpQX8fp2YnVh4nWeUqMujEa75s0A56ERaIFIS1IhIAjD+DqXprVr8Dd1KC9qAg3UBhtYEmigvSKXnPAa/K2L8YXXcm9hDncVFFARj1MRj1Mej1MRi1MRb6Y83MCQ+CImxuKclBw4y61iwXxacoZRH6xks28I67ScVdESlrSX8E5LIetjBV3CTqVS0xKhpiXpheLatT6wiJs/cVAv/2HDMAzDMAzDMAzD6MQUFoOQ+dVOYZHtz2af0n2ou+kvJFpcvPiij55JcMiQtPbhthjL529mn0PTQ87siLKiesX7PH/nbWxavpTLfvNXsvM7rZ3nfvRj+HbSWle0U0khFk/bMLqQU1DI9GNPYvqxJ9FSX8eyeS+z5OX/sW7Ru6DK0AmTuygrnvjz72hvamLEvtMYOXU/ykaM2qbXVV/gD/oYNrGYYROLO8qa68JUr2qgemUj1Ssb2bK2iURcKa5Mt+Ret6iWhU+nhEySfIL5CZ7ZtJSKEYWUDs2jZGgeRUNy8Pv71+/+IPhycsjeZx+y99mnxzahsWMpOuN0witXEVm5kkRTU5c2GomQaGvtUr7xm9+k5YUX8BcXExwxguDw4QRHDCc0YgTBYcMIDB1KcNgw/PmD09ulO0QEf14Qf16Q0MiCLvWqSqIlSrwu7BQY9eEORUa8IUy8MUKiJdrNyJ0UxQsoihcwPpyeuD0KbO6YCExvbKe0qZq6QCO1gQbq/U28HWikLtRIXcBb/I3MCNfz5+otHeMEos28EFpHPLGesnicqfE4h8XjlMQTBAKgWSGiecNozRlKXaiKLb4hrNcyVsbKWBouZlFzAeub4sRSvKSeXrKVF9/fyqETynf2rzUMwzAMwzAMwzD2UkxhMcjY2LyRjS0uX8T0iun4w1Fqb7vdVfr9lF2abrkZDcd5+LdvsWlFAw1b2jj4jHE7pKioWbeWF/91B8te7bTQfe3f93D4+Zd0fN9ZZQWAj6TCIgGB/hXSxjD6G3nFJcw84RRmnnAKzbU1LH31RXIKCtPaqCrLXn2JtqZGlr76IuCUHiOm7seIqftSOW4iQ8aMI9gP8xvkl2SRXzKE8fs7pasmlJaGML4MpcPWdRkhbFSINvlZ+WYNK9+s6SgePrmED39p/7SmjVvbyCvKwh8cPIqMVPKPOIL8I44A3LEQr60lssopLyKrVjlFxqpVZI3tmmQ6mTcjXl9PvL6e9nfe6XYbFV/4POWf+lTHd41EaHzscYLDhhIcOpRARQUS3Ds85kQEf34If36oW4UGgMYSxBsjxBs9JUZDpEOZ0bFuikC8m6zgHYNAbjibSYze7pwivigbs+L4/U34qMcf38L6RD1rQi00hJqoDzRR72+m0d+ITxopTkQpi7dSGl/KmVvmc3B7p6dTFNgUCFBcXkEwdyjv1Yd4vnkYt8RO5PpHFvHw5w7D77N7t2EYhmEYhmEYhtF7TGExyHhjc0r+ispZ1N99N/H6egAKP3QKoZGdFpqxaJz//HEhm1Y0APDeCxuYfvQI8oqytrudhs3VvHzPnbz3v6c7QtAAFFZUUjF67C76NSAEO1KR9rcY/IbRn8kvLWPWyad3KW+q2dqR8yJJMqzUsnme4lGE0mEjOOGKzzF8Ss/W+n2N+IT8kq6KlaMvnMK0o5vZuraZ6lX1rF5STazFB5p+DSmp6hri556fvk5bc5T84iwKy3MoqsihsCKHovLOdVZeYFBcj0SEQFkZgbIycmfPTqtT7Soczz3wQALl5UTWrye2aVOXfBlJAhUVad+jmzax4atfTd0w/vIygpVVBCorCVZWunVVJfnHHrf3hZwK+AiUZhMo7VlJqAkl0RrtUF4kGiOdSo6OzxESzZFk/u4eCSWCxNuCxMkGKoCJnLKN/NtNvhbqA000+JvJi9dSF6/FRyM+aWBLoIXvlwRo8DfR5mvGX7aJ8pIVXLPlXb6x8dvc+8Y6zjlgZM+DG4ZhGIZhGIZhGEYGprAYZCTDQQHMKp5Gzc3f6fhefvnlHZ/j8QSP/fld1i12CWyzcgOc/oWZ21VWtNTX8er9/+KtJx4lEY91lOcVl3Dwmecx7dgT8Ad2jeWsqoK6UDZKZDutDcPoDYXlFXz6r/9gy6qVrH3vbda+9zbrF71LuLWls5EqtevXkp2fbhG++u0FLHzqMSrHjmfImHGUjRhFfmlZvxPe5+SHGDmllJFTSmlrq+Dxx1eiCThw5mG01sap29RC7caWtHBTAG1NkY5E38n8GBuW1XcZP5QT4JSrpjF8cklHWXtzlJaGMPml2WTlDPxba3f7dOj3r+v4rJEI0U2biK5bR2TdOqIbNxLbuInoxo2ExqV7Z0Q3bEwfSJX4lq3Et2yFDC+NiS88DykKi8LXXmfT3fcQGjIEf3kZgfIKp2SpKCdQXo6/rJxAWSkSGPj/+bYQX6enxrbQhBeCqilCojm5jhBvSv+caI6QaI1tc6wkBYk8CiJ5JNUOKVcKQjG4fm16+wZ/M7cNuZ1zwv/lhsdz+ND0oeRlDe79YxiGYRiGYRiGYew67A1ykLGlzcWl9oufca+spba6GoD84451CVqBREJ58pb3WLVwKwCBLD+nfnYGFT2Eq0iyeuECHvj5D4iFO8NBZOXlccDpZzHrpNN2eQiZcCyBEHLGorLtGN+GYfQen89P5bgJVI6bwJxTP0IiEWfLqpVsWr6U6hXvU71yOY2bqykZlp7XZt2id1j68vMsffn5jrJQTg6lw0ZQOnwkpcNHUjZ8JOWjxlBcWbWnf9Y2EZ/zqBg2NqfHNrFogokHVNKwpY3GLW2095BbINIWI7sgXTG7+t0anrzlPcApNApKsykoy6agJIv8smz3vTTbC2vV/8Jt7SgSChEaNYrQqFFszx8iOGIEQ665hujGDcQ2biRavZnYpk3Etm6FREpC6mAQf2lpWt9Q9SbaX3+d9m1ORsg74nBG3XhjWnH9vfeh8RiBsjL8paUd3iSSm9vvlGy7CvEJ/oIQ/oJtKzbAhaJKtEaJN0dJtESdgiO5bna5NRItrj7eEoFw98nDMymK53P5pk/yzyHfI2vzHG58bjlfPmHyB/1phmEYhmEYhmEYxl6CKSwGGb895rfUttfyft37cOvTHeXlV1wBOOvLZ/+2mPdfd6k6/UEfH/r0dKrGFW137KoJEwkEQ8TCYQJZWcw+5QzmnHYm2Xm7J8FqOBxGcR4fagoLw9htpCowkiQScXy+9PwzW1av6tI30tbGpuXL2LR8WUfZyH2nc853fpTWbtm8l8jKzaNoSCUFZRUfKLfN7qKgNJsTLt2343u4LUbjljanwNjaRsNWp8ho3NpGYXm64qOpplOkHmmLUbO+mZr1Gbk0gMLybC68/pC0svde3EBbU4T8kmzyi7PI85ZgVv/7j3aG0IjhlH3iki7lGosR27qVWHU10U3VJJoauyR/97duI1ZRx0CKL9RVQL/1T38iunZtl3LJzsZfUoK/pJhAcTElF11EwVFHddQn2tpoW7AAf3Gxa1dcjK8f5nT5oEjAh78wC3/h9sNAAmjUU3B4ioxES/rnaGOY2lXV5LeFyNFsDm34NEVFv+X3z1fysYNGMbSoZ2WhYRiGYRiGYRiGYSQxhcUgpDS7lAOHHgjXHkjxOWfT/Mwz5Eyfjqrywt3LWPSSC8/h8wsnXbEfI1LCmiSJx6JUr1jOsElTOsqycvOY+9HzqK/exEEfOYe84q79diXhtuYOhUVCehe6wjCMXUOmsgLg9C9fS+36tVSvXM7WtaupWbeG2vVradiyOS2fQdmIrjHrH/vjrzvCTonPR0FZBUVDKt1S4daFQ6qoGDWaUE7X3BJ9QVZOgIpRBVSM2rb3GUDZiHymzK2iqbadppp2muvCJLpJkpxX3FU4/N4LG6he2dilPJjlJ6cwRF5hiJzCEJMPrGLc/p35ITShNNW2k1MYIhgaeMoNCQQIVlURrKoiZ0b3barPOZtpv/k1wZYWp9zwlvjWGve5pobY1i2EJkzo0jdeU9PNiKDt7cQ2biS2cSNhoPD09FwvkTVrWfOJT6bPNSsLf2Eh/uIifEVF+IuK8RcVUfn1a/AXdia2j27YQKymBn9hIb7CQvyFhUg/VM7tDBL04S/Kwt9D6Mi2tjZefXQ5494KURTOZ2L7KJZmn8jJvoe54bFh/PKcmXt2woZhGIZhGIZhGMaAxBQWg5ys8ePJGj8egPmPrWbhM+sAEIHjP7kvY6aVp7VPJOIsev5ZXrr7H7Q21nPZb/6SppiYdcoZe2zukZYWwFnbqsS33dgwjN2Oz++nfNQYykeNSSuPhtup27iBmvVrqV2/lmGTpqbVtzc3p+XI0ESCxi3VNG6pZu276ds489rrGDuzMwH01rWrefupx8gvLSO/rJyC0jIKysrJKykjENw1+XJ2BWOnlzN2euf1VBNKa2OkQ4HRVNtOc32YwrKulvot9eEuZQDRcJyoF54KoGpsuidcW3OUO771MgCBkI+c/BA5BUGyvXVOfpDs/CA5BSHGzawgO6///F87gi83l1BZGaFRo3rdR1UZdsPPiNXUEK+tJVZTS7xmq1vX1hCrqydeXw+xGIGSdOV7vL6+63jhMLEtW4ht2ZJWXvmNa9O+1993P1t/97v0+efl4SsqxF9Y5JQeRYVk77MP5Z/6VFq7lnnz0GgUf34+voICfPn5+PPzkZycARPCKuGHdZNi5L0TJ6B+PlR/HJVFv+CG+QtYeMgYpo8o7uspGoZhGIZhGIZhGP0cU1jsRYzffwjvPLee5rowR184lQmzh3TUqSrvv/YyL/7zb9SsW9NR/sp9/+TYT17VF9Ml1tzScYAmfL2LnW0Yxp4nmJXNkDHjGDJmXLf14vNxzCevomFzNY2bq2nYXE3Dlk2EW1q6tC0oLUv7vmXVCuY/+u9ux80pKCSvuITc4hKKKoZwwpWfT6tvqa8jEo2iqntc4Cs+6QjttL2QeyddMY2m2nZa6sM014dprmuntSFCW1OE1sYIYS85cm5Retij1sZIx+dYJOGUI7XdZ3sYNrE4TWHx7vPreeXBFWTnBd3iKTfc90BHeW5RFkPHbz9kYH9DRCg49thttlFVEs3NSFa6x0BgSAVlV1xBvK6OeH0d8YZG4g0NHYu2eWGq/H58eekZPOKNDV22k2hpIdHSQiwl+Xi8qbmLwqL6Rz8mvHhx14n6/U55kZeHLz+f0k98guKPfLhz/NZWam6+BV9+Hr68PPx5eUhurmufl4cvN7djvSfyd7TnJwgdV0XiCafcObDhMn4W+APXPzyJf145d8AoXwzDMAzDMAzDMIy+wRQWg4jPPfc55m45mBM3lHPQh69CAum7t7gyl49cPYsN79cz5eChgBPYrH57AS/ceTvVK5altR8zYxb7HXXcHpt/JrGW1o4DVH3mYWEYA5Ws3Fz2P/HULuXtLc1OibHFU2JsrqagfEham6ba7sP6ALQ1NdLW1AhrV1NYUdml/umb/8TSV18En49Adg7/evFJ8oqKyS0sIqewyFsXMmTMeKrGT/zgP3QnqRxbSOXYwh7rY9E4bU1RsnLSr+n+gDB+VgVtTVHamqO0N0dob46mRufqIKegq7KjvTlKe/O28wOVDc/nvG8fmFb2nz8uZMvaJrJygmTlBsjKDRDKcUtWToBQdoBQjp8hYwqpGNkZTktViUUSBEK+fiG0FhH8BV3DfWWNHcuQL3+px36JcJh4QwOJpqYuvyN3zhyIxYk3NhJvbCDR0Oh9dgtR93/78rumKk80d815AkA8TqKhgURDQ7ftYrV1Xbw6emLcww+RlRI+q+nJJ6m59Van1MjJ9dY5+HJzkJSyQFkpBcelPw/Etm5FE4mOPqkUzx1F65p22pc0kaCISYkPMW7NfTz27jhO2q+qV3M1DMMwDMMwDMMw9k5MYTGIWNW0iqIn13LOPxIs/9ODDPnqVyk44fg0gUpheU5HstgNSxfzwl23s/bdhWnjDJ00hcM/djEj95m2R+efSay1M0xKwteNBM4wjAFNdl4+2WPzqRw7vsc2+x19PMMn70NT7Vaaa7bSVFtDc20NTTVbaKmvo6W+jng0Sl5xcZe+LQ117kMiQay1ha2rV7K1m23M/tAZaQqLRCLOn664kKy8PLLz8snKy3dzzS8gO9/7nu/KRkzdj5yCnpUNu4JA0E9Badc8CCVVeZx0Rfp1OpFQwq1R2pqcAiOpzAhlp/cPhPwUlGXT3hIl2t6zQjgrt+tjQnNdmObaMM10H8oqyQEfGpOmsIiG4/z5i/9DBEI5AYLZfqfc8NbBlM+TD61IG6ulPkztphaCWX63hPwEs91nf2DPKkB8WVn4hgyBIUO61BWecAKFJ5zQbT9VRdvanOKim/mWfuISYlu2kGhuIdHURLylmURTM4mmJhItLcRbWkg0N3fx6kh046nU49xz0/PDRNevp+31N7bbLzh6VBeFxcZvfZvmZ5/tLAiFGB8IECssoCUWo/Sc09n8y5eJtwjhxHSu9r/Hpx/5H8dMOYtQID25umEYhmEYhmEYhmEkMYXFIOMjLznBfnTdOlasjLP55vc49pKp+P3pwoGlr77IQ7/8cVpZxagxHHreRYybdUC/sH5NtLUBTrmigyNnqWEYO0iu5wnRE6pKuLWFaLhrKKRhk/fBFwhSvW4t8fY2NBohEe8qnM8pSB8/3Nra6b2xHc677mcMn7JPx/dl817i0d/9kqy8PLJyk0suWXn5hHJyCOXkkpWTS3ZBITNPOCVtrJb6OhKJOKHsXELZ2Yhvx4W6Pp+4XBb5IaCrFX+S/Y8fxf7Hu5wQ8ViC9pYo7S1Rwi1Jb40o4bYYed0kWM7OC5BTGCLcGiUR61mZHMrwCIm0udBWqhBujXmhrrpXeoyZlZ5XYu3iWp66dVG3bUVcgvJAlp+C0mzOumZOWv07/1vP1rVNBJKKjiw/gZCfQMhHMOTHH3Tr/NIsSqrS/7NYJO4UIr4Pfk8UEee1kNt9UvnSj3+8V+NohgtNcPgwRt50I4nmZuLNzSRaWkm0trh1SwuJ1taOsFS+DI+SRFv3IcQy8eV24xGSDI2VJBLBH4ngb21l6ze/ReSVVyn9xJepuX0J4KM9fg5HJ37P7S/N5rIjelZSGoZhGIZhGIZhGHs3prAYRIyuVmascoKMusnHsGBhFpqoJhqOc9IV++FPsWgcO3M2eSWltNTVUlw5lEPOvYApcw/fKQHZ7iIRDpNUWCT85mFhGEZXRMR5P+Tld6k74vxLaGtr4/HHHwfg+OOPx5dI0NrYQFtjA61Nbl01flJav1g4TFFlFeHmZtpbW+g2xpJHVoa1e7jFKU+i4XaatxHOKqewqIvC4rm/3cyi55/p+B7IyiKUnUMwK4tgdg7B7GxC2TmMmTGLOad+JK3v/EcfQsT1CWZluz5Z2QRCWQSzswl666y8/C7Jyv0BH3lFWd0qJ7rj9C/sDzjBeTyacMqHthgRb0l+zszdoQrDJxcTaYsTDcdd+/YYsUjXHEXBrHQt9ba8QFQh0h4n0h7vopwHWPteLSsWbOmmZzpTDx3KMRemJ4y/+WsvEG13SotAyIc/6CMQ9DmFR7Dz+5wPjWXYhOKOfo1b23j3hQ0pbdLb+5NLwEfVuCJ8KQqRaDhOIp5w9f6uypJMgwJ/fj75Rxyx3d/XHeVXXUnZJz/hlBptbW7dmly3oF6ZL7/r+ZU7eza+/Hy0zfWJtbTQunUrwTrn2dT40EO0vfkmJRd/j7Z3Ewg+5rZ8nL8//2vq5/yc4txQlzENwzAMwzAMwzAMwxQWKYjIAcB1wCFAEHgb+KWq/msHxsgCrgEuBEYCtcDDwLdUdfMun3QKJ76RAHzUlEzl7WFnop4MKBhqY9mrLzDl0E6BRjArmyMv+CSRtjb2O/p4/IH+dyhoe2dCWQJ97/FhGMbARkRcKKf8fBg2vMd2BWXlXPabvwCgiQTh1lbaW5ppb26ivaWZcEsz7c3ue35JepLwQChE6fCRRFpbCLe2duv5ARDKiPkPEMmwWI+Fw8TCXT0QCssrupS9cOdtPW4rlVO/+HUmzz2s43v1ivd56Fc/JhDKcsqNrCwCWVkEgiECIbf4gyECwSCHnXcRgVCnkHnzyuXUrF9LIBjEHwzhDwYJBIPkFwcJVIQQqadxSyvB7GxyCgopKM3mw1+a1WVOiXjCKTDak0qMOHnF6fekilEFzD5pNNFwnGjEKTyi4TixcOfnaDhOXnFXpUs00rscSIFQV1e+pDIlHksQj3VVrCSZdvTItO+NNe3M/+/qXm33yt8eic/Xue3X/7OK+Y919vX5BX/A5y2CP+jD5/dRNb6IYy9KV7C8eO/7tNS14wv48Hv9fF4/V+bDFxCGTyzpyJsioRAqftaujOLzF+ELFOMv9uEr9/r5BZ/fR/3mVnx+Ia8oC3/AR8XnPwfQkdQ+qRwseHMBwx5+GG1uJl5bS/5hw1m74U3K68qpiJVyVHwiNz3yDF87+8Re/T+GsTezK95NDMMwDMMwDGOg0f+k1H2EiBwNPAa0A3cBTcBHgX+KyEhV/UUvxvABDwInAq8A9wITgcuAY0XkYFXdvpnnTrL/CqWufAJvT7uShAqaaKOw5F3ee/YV3n06wdCJkyka0pmYduphR+2uqewSNNyZDFYt3rVhGH2A+HydSo7K7ScLnnLokUw59MiO7/FYjEhbK+GWFsJtrUTaWom0tXUbYmjYpCn4fD7Cba1E29uItjtPjUh7O9H2dmIRp7wIZqcrO1SVaGTb+SSSBLPSBfrh1hYaNlf3qu9hH7s47fvSV15g3oP3bLffiKn7ce73fpJWdtd3v0bNurX4g0H8gaBTdgQC7nswiPj81NbXUzjOeb9UjSuialwRkbZWXrjrDrKyAuTmBfAHAvgDQXx+P/5AAJ8/wMKnHsMfCDBu9oHk5Bdw9AVTaG+O0lhTQ/3GDSQSQiIhaFxIxIV4QkjEhIqRQmtjA/5AgKzcPBIJZdiEImLRBLFIglg0TjzlcyyaAM/5JhBMv0fFoz0rNzLJ9ArJVIwk4koi7hQyqeSXdFXOrHm3htoN289pMffM8WmJ3sMtMR698e1ezffcbx1I+YhOj4vFL2/kmTsW4/MLCc3HFzyU+KUnU/binYz96JFkjR3DlCsqWP3z58mL5zGzdSbV79/Dis2HMG5I16TnhmE4dsW7iWEYhmEYhmEMRExhAYhIAPgzkACOUNUFXvn3gXnAj0TkHlXdnrnkxThlxZ3Ax9ULNC0iVwF/BK4HrtwtPwJozh/BkmmfIi4JYm0vodH5bGno9FKY98DdHH/FZ3fX5nc90VjHRw1YEgvDMAYe/kCAnILCXiXmPvCMs7ZZn0jEu/W4QJXTv3StF4oqTCwSdsqOSJhouJ1YOEw07D7nl5ZldFVyi4pdv3AY1Z4F7ZmeeLFotIeWGf0yQlABHR4q2yOnclja90hbG2/+96Febfein/2WnPwCCkqzKSjNpnr5Kzx726+32y+vuISrbrwDn0/48JedR8ijv/sFy+a9jC/gx+fz4wsECPp8+AIBxOfjqb/cg8/vZ8IBcznk7POpHFPI6V+cSTya4OW7f0c8GgV8ID5QQfEBAvh46ubFiM/HfkcdR+W4CRRX5jJqn1LCLXXUV89HVdCEeGs8ZQu01BXwzjNbEZ+PKYcegT8Q7FCUJOJ1aKLObdPbjiBu+wgtdSGqV8YI5eRQUjUsTUmiiRbc45Ck9BcvUbgP1SjxWBSfz4/4fCTiiirEYwoI8biw9K1myD+Nd17PZpIsZ9JBVWSdWg4POi+ioxvP4N93/ZQvfv76Xu1Lw9jb2IXvJoZhGIZhGIYx4DCFheMYYDxwS/KFAEBVG0TkR8CtOGXE97czzuXe+lpNz4p5I/BV4OMi8kVVbeva9YPzzpSPkxt7m1jza6CdoUECwRAzTzqVA07/6O7Y7G5DUhQWhMzDwjCMvRufz08op2vCZvH5mHjQITs15uhpM/nUTX8DnPIiEY91KC9i0SjxaIRYJEIsGu2SO2HSQYdSXFlFLBIhHnVCbNcnSiwa8dZRKkaN6bLdwvIK4rEo8WjMW3v9YtG0nCGZeZXisVjmUD3iy1CwdJdwvdt+/q6PRkmFTw85wjuoGj8RgOz8ICOnlALw75+/S7S959v+5hVuPWLqflSOm8B+RwxnvyOGs37JIu76zjM99tvYCBsXu88TDpiLPxDkI1+ZRTya4LV/38WCxx7ose+8+9wydOJkzr/+F4RyAsz9yHgS8QRvPPxzmmt6loHe/hW3nnvW+Rxy9vlk5wUZMrqASHsrm5b8Cggi/lJ8/nLqwuW89nA5rz9azuj9hjGu7TmKcg4kpEEO3TyDZ197maMOmNvjtgxjL2ZXvZsYhmEYhmEYxoDDFBaOo7z1493UPeatj+ymrgMRyQYOApZkWjupqorIEzjvijnA872dmIiM2E6TjkDsm2r/SWF2p6DH5/cz4eDDmHHcyeQUFbO+ejNU79Y0GruUjdWbaW904SLqG+oILVvWxzPadYTDYbZu3QrA8uXLycrqXbJbo++wfTYwsf22i/AFWJZ5DfYHyR8/pVfdM/tOO+uCHtsm4nHaWlp4bd6rRPyBtP2WiMU45IovkEjEScRiJGJxEvEY8VgMTcSJx+OuLBFjU00dta2dyvtm9TH8wMOIx2MkEgk0Fnd9EgkS8Rgad8mus/Lyusy3Oa5QWEIiHkcTCbf95Oe4GycRT7C5rr5L39qmJs/DYtus27gRX0rf6lUrqW/tnX3DipUr0/KL1DRt7VXfYGNTx3wLxrmyNtp61Xfj5i2ubwHMPKuYpnpl8fyk10wt8H5a+9qtBays3cqMMdnk5lQBPtbf/giLC0q7TZZu7BlWr057ZDV31v7DUd56p99NUtmR94mVK1fS1tZ726pY49ZetzX6ji738N2EHQ/9HzsWjFTseDCS7KljAex4GAjsyPGwadOm1K+77H1C0h0B9k5E5G7gLGCOqr7RTX0TUKeqo7Yxxr7AO8DDqnpaN/VXAz8HLlXVm3dgbraDDMMwDMMwjN3NAar6el9Pwtg17yYZ7e19wjAMwzAMw9jd7LL3CTNpcxR564Ye6htT2nyQMVLbGYZhGIZhGEZ/YUhfT8DoYFe8mxiGYRiGYRjGgMRCQvV/Rm6nfhTwovf5YGD97p2OsYuoAl7zPh8AbNpGW6N/YPtsYGL7bWBi+23gYftsYDIceMX7vLgvJ2LsVrb3PhECpgCbgS1A75L+DD7sOmYksWPBSMWOByMVOx6MJHYsOPxAhff57V01qCksHEnrpZ4slQqBul0wRmq7XqGq67ZVn5EEdf322hv9g4z9tsn2W//H9tnAxPbbwMT228DD9tnAJGO/RfpqHkYXdsW7SQe9PB9X9Ha8wYpdx4wkdiwYqdjxYKRix4ORxI6FNFZvv8mOYSGhHMlsIhMzK0SkCshPadMTK4BEd2NkjD14MkcbhmEYhmEYhrGr2RXvJoZhGIZhGIYxIDGFheM5b31CN3UnZrTpFlVtA+YBk0VkdGqdOLXb8UALYMkMDcMwDMMwDMPoiQ/8bmIYhmEYhmEYAxVTWDiewnlInC8iM5OFIlIEfAPnIn97SvlQEZni1adyk7f+saT7Bl0JjAP+7ik2DMMwDMMwDMMwumOH3k0MwzAMwzAMYzBhOSwAVY2JyGXAY8D/ROQuoAn4KDAa+Iqqrkrp8mPgYuATwK0p5bcB5wIfA8aKyHPABOBMYCXwrd37SwzDMAzDMAzDGMjsxLuJYRiGYRiGYQwazMPCQ1WfAQ4DXsQpHT4FVAPnqeovejlGAjgD+B4uQ/qXgEOBvwJzVXXLrp+5YRiGYRiGYRiDiV3xbmIYhmEYhmEYAxHzsEhBVecBJ/ei3SXAJT3UhYHrvMUwDMMwDMMwDGOH6e27iWEYhmEYhmEMJszDwjAMwzAMwzAMwzAMwzAMwzCMPkdUta/nYBiGYRiGYRiGYRiGYRiGYRjGXo55WBiGYRiGYRiGYRiGYRiGYRiG0eeYwsIwDMMwDMMwDMMwDMMwDMMwjD7HFBaGYRiGYRiGYRiGYRiGYRiGYfQ5prAwDMMwDMMwDMMwDMMwDMMwDKPPMYWFYRiGYRiGYRiGYRiGYRiGYRh9jiksDMMwDMMwDMMwDMMwDMMwDMPoc0xhYRiGYRiGYRiGYRiGYRiGYRhGn2MKC8MwDMMwDMMwDMMwDMMwDMMw+hxTWBiGYRiGYRiGYRiGYRiGYRiG0eeYwsIwDMMwDMMwDMMwDMMwDMMwjD7HFBYDGBE5QET+IyL1ItIiIq+IyDl9PS+jZ0RklYhoD8uzfT2/vRkRuUBEbhSR10Uk7O2TS7bRvlBEfikiq732q0TkBhHJ34PT3uvZkf0mIt/bxvmnIjJmz85+70REhovIF0XkcRFZIyIREdkkIveKyEE99LHzrQ/Z0X1m51r/QESyvfPmfyKyQUTavf32ooh8QkSC3fSxc80YdIiI9PUcjP6BHQuGYRjGtrD7RP8h0NcTMHYOETkaeAxoB+4CmoCPAv8UkZGq+ou+nJ+xTRqA/+umfNWenYaRwfXAaGArsNH73C0ikgc8B8wEHgfuBPYHvgIcKSJHqGr77p6wAezAfkvhNro/3+p32ayMbfE54BpgOe782QJMBD4MfFhEzlfVfyYb2/nWL9ihfZaCnWt9Sz7wKWAe8Ahuv5UAJwM3A+eJyMmqmgA714zBiYiIqmpfz8Poe+xYMJKCSDsODMPoieT1QUSy7bm3bzGFxQBERALAn4EEcISqLvDKv497Kf2RiNyjqqv7bpbGNqhX1e/19SSMLlwGLFPV1SLydeDH22j7NZxA56eq+vVkoYj8BCfU+9J2+hu7jh3Zb0luVdVnd++0jG0wDzhKVZ9LLRSRw4GngD+KyAOqGvaq7Hzre3Z0nyWxc61vqQWKVDWSWug9Rz4BnIBTXjziVdm5Zgw6VFVF5FDgUuBKVY329ZyMvsE7FnzADcDzqvqAiPiSSltj8NOdIFJEgnZdMAwjiafY/CGQLSLXdvN+Y+whLCTUwOQYYDzwj6SyAkBVG4AfASHg4r6ZmmEMTFT1yd4o+bwb2GVAM/CDjOofeOWX7foZGt3R2/1m9B9U9b5MwbdX/jzwDM4CfBrY+dZf2JF9ZvQfVDWRqazwymPA/d7XCWDnmjF48RR0NwKX4DyGLNzD3s3HccrXC8BdJ/t2OsaeRkS+g4tKMQVAVaPiyO3jqRl9jKfQNIyDcIY6x5uyom+xE3JgcpS3frybuse89ZF7ZirGTpAlIpeIyDdE5LM9xWw3+i0TgWHAi6raklrhfX8RGCciI/tickavOEJErhGRr4rIhy02e78iaeEW89Z2vvV/MvdZKnau9UO8F/KTvK/veGs714wBTXdKCBHxewq6272ik8DCwewNZB4PKd//jQvPO1VEJuzxiRl9iojkAJOA04BZXtklQBz4fN/NzOgPmAJz72IbCqrXgPnAviJymNfWDB36AAsJNTCZ6K2XZVao6iYRaU5pY/Q/qoBbUgtE5DXgY6q6vG+mZOwAPZ5/KeUneu3W7pEZGTvKdRnf60XkC6p6e7etjT2CiIwCjsPlInnbK7bzrR/Twz5Lxc61foCIhIBvAAKUAccCU4BbVPUpr5mda8aAJTWsTzLUi1cW95q8BDQCk0QkL1MpZwweknkqvPBPoaSXmfddcPkfHwOOxylp3+/D6Rp7nnbgWzgL6m963haTgKeBRRYibO/CuyZIyv1jOvAF4Deq+lafTs7YbaTcJxKZzwSeoUNcRO4CZuMMwV8wQ4e+wTwsBiZF3rqhh/rGlDZG/+IWnKCgEsjDuabfARwAPCUiBX04N6N39Ob8S21n9B/eAj4JjANygLG4ZMIK3Coip/fh3PZqRCSIuxZmAdekCJnsfOunbGOfgZ1r/Y0Q8F3gO8BngMnAz4ErUtrYuWYMWDyhw2wR+RfwBU8YkRARv9dkK7AeOBqnuDNryUFKSo6C64C/iMgc73vAq4sAi3ChDKd7df4ehjMGCRnJtltwXqGTcfe0LwEXquqDpqzYe/AE00mhda6IlAIfBj4BnGRewYOXlPvEtcBCETnb+y4p7zNv4J59p4hIVt/M1DAPC8PYg6hqprXpAuAi7xnqQuBy4Jd7eFqGsVegqvdnFK0Cficii3AJaK/HhQow9iCeO+6twBHAn1X1jr6dkbE9trfP7FzrX6hqM+49zIezKD4Nl/NsroicoqqN2xzAMAYG9wKjgINx4V1+DiQAVHWxiCwGPgJ8CPhnX03S2P2IyEXAt3FK8jEicrKqtiStakXkRa/p+cDvMhTuxiAiaS2dYR19Fs5wdyvuGvGeqm702otZUu8dJM97Efk2cDadiqwE7hh5Gfhfn03Q2K2IyJG4xNoAfxSRdcA83PMDwCZvOREIAmG7Pux5zMNiYJK0fuvJyq2Qni3kjP7Jjd760D6dhdEbenP+pbYz+jleSJTlwDQRKdxee2PX4QlQb8YJDf4GXJXRxM63fkYv9lmP2LnWt3hJuNep6h9x3hWHAt/0qu1cM/o9PeWp8D7+xVsvBH4iIh/DeYAl+bu3PlJEgiZ0GPhsw0vmaaAa50kxArhHREYk97mqPgksBiZYLsHBiZdE25cilD5CRD4nIgd798Bzga/goh6cIyKVfTlfY88jIiNE5Alc+NI3cKHiHgCacaGAzhKRir6bobEr6ClPhao+h7sPLMXdL/4GnJ5SvxiX560cOGP3z9ToDlNYDEyS8YW75KkQkSogn55jEBv9k63eOq9PZ2H0hh7Pv4xyOwcHFslzMLdPZ7EX4T1A3gJcDNwJXNKNK76db/2IXu6z7WHnWv/gcW99lLe2c83o16RaNiaVFBnhG97FCZpewRkC/Rm4JGWIxbj8K5MBC8E6CPC8JbqTZ0RxCVN9uHj0xwI/F5HJ0JHX5z84RezwPTRdYw+SEupnPxF5GngI53XzbRHJUtUFwP04AfU5wDHJfn00ZWPPc6S3/BEX2vR7qvoL4KPA68AFwCF9OD9jF+BdB0LJ754yM2nocB9QjNvnCeBnInJMSvekocPBXk4kuz7sYUxhMTB5zluf0E3diRltjIFB0rpnVV9OwugVy4ANwKEikqZg8r4fCqxUVUtKOkDw9tu+OFfgrdtpbuwCUgTfF+FCc1zYQ0gGO9/6CTuwz7Y1hp1r/Ydh3jrqre1cM/o1nnB6rJen4mPJnAQikgxxvBJ3XRkFXI3LpfM9EfmEV18LrMCFsiuEni0vjYGBiFyNCzeYVET4AVS1GufNV4RTVH0a9478W68+4pWHgMNS+xoDn6Tnjedl9RROKfUrnGLiw6oaBvAS7f4KFzrsQhGZ4PWzsOmDhO3kKrrIW/9JVTcn7weeN/BPcMfFJ0VkzO6dpbErydznIvIp4KWU/Hmphg5vAhXASFxYsGbgbyKyvzfOImAdMJV0j01jD2EPaQOTp3AP3OeLyMxkoYgUAd/AJRO7vW+mZvSEiEwRkS4WpSIyBfip9/Ufe3ZWxo7iadb/gvNk+nZG9be98j/v6XkZ20ZECkRkUjflObj9VQD8S1Vje3xyexkpIYUuAu4GLuhJ8G3nW/9gR/aZnWv9BxHZp4fnjlw682X9B+xcM/ofPSgTzsXFFv8Jnd4TyTwVC3CChVm4GNRX4YQRvxeR01R1E/AS4PfGwRLsDgwyLGKTZdNxFtBXAd8XkUJVjacIm/8LDAVmqepfgJ8Bh4nI7V5IwidxAsmPpPS1ROyDAE+RWQB8GWgFPgdcr6rPqmo0o/kbwE04Q9DTvJwXMQBxSZiNAUiK8rKLRbyI+EUkiDOeacblKQDQlGvAC7hryInACakW+kb/JCUMnKaUDQEm4J4Lfi8ikzLu+0tw+/+j3jPEZ3DHxO04r6sVwBrvc4U3psnQ9yBiXi0DExE5Ghdnrx24C2jCuTKNBr7iubMZ/QgR+R7uwel/wGrcTXIScAoukc+PVfUbfTbBvRwRuQzPygqYhruxvQi875W94L3wJK1NXwRm4MJqzPfanwC8Bhypqm17bvZ7L73db551zArc/lmEezipBI7DxTd+GzhaVWv23Oz3Trxr4XdxD4S/xiW4y+QB78HRzrd+wI7sMzvX+g8pzx0v4Dw4G3GWpicDZcDzwInJ88fONaM/IiLnA1tU9QlPgHg8LiRdHDjOi0OdbHsZLrzHPqq6zBNq/xZnHXkVzutiGS4MxKWqajlZBhAiMhE4VVV/5X2fgtu/xwK3AZenCJtzcF4U/1XVK0WkDKeo+p3X9vO40GHnAKer6n/29O8xdh8icjbOG/SKlPe3bhPmeh46D+GMPj+Fu06cBlwIfD35PGoMDFL3syczOxj3XPqGqr6f0u5O3DXhYlW9wxN2J1Lqvwz8HGcsfI2qzt+Tv8PYObz7wtWqenlK2a9xistXcOf0/1LqnsGFZT9ZVWtEZH+csqoe9+5yMfB94Fuq+qM99kMMh6raMkAX4EDgUVwCxFbgVeDcvp6XLT3uryNxD05LvX0WBTbiYmee0Nfz29sX4FacpVVPy60Z7YtwbsRrcA+4q3EPNQV9/Vv2pqW3+w0X/uF3wDxgs3f+NXrXza8COX39W/aWpRf7THG5EVL72Pk2QPaZnWv9ZwHm4CxH3wHqvH2xFZeQ9gog0E0fO9ds6RcLzqhnNc6D4tHU4xX4mle+DGcZmSw/3HvG/m5KWRXwHi6p5mXe8f8WMLKvf6MtvT4WBOchkQDacAqGZN0onCI8AfwCGOuVF+GsZDcAWSntf4Qz9LsHuBKngL8quZ2+/q227LJj5pfeMXGG973L/S7j+LrYa78Jp7hvwclXDuzr32JLt/ss5K19KWWp94ihwL+9fZpcFgGHpLQ50St/HMj3yvxA0Pt8TErf7wC5ff27bdnucXF9yj77Qkp5EfAbnLH3q8ChKXWXe/eBiSllZ+PCTM7DeZcncJFQSvv6N+5ti3lYGIZhGIZhGIZhGP0GETkL+BfOk6IR50F+i1fnB64BvoJTUHxNVe8WkZE4S+lNwNmq2uS1PxInyDgAWA+MxXkMPZ9pVWv0P0SkHLdfD8IpUp8CztJO77CjcKHrjgTuAD6pqioi1wJfx1lQP+C19QM/xHlYbMQdC/9W1Q/3ZIFvDByS57OIfBGntPgs8MfM/drdeS8i38V5FBYAt6lFrOh3eOF4bgCycQLpWEZ9QFVjIvJj4DycN9VCnLfoN3BK7tmq2uy1fxKnmPi2qv4wZRzBhUKdiBNWDweOVdVVu/cXGh8EEbkRp4BowOUoGqqqjV7dMJyXxTW4UFDHqOpGETkUZxTxf6r6Ha+tACfhcvfFgVLccXSaqm7es79q78bibxmGYRiGYRiGYRh7lO3kDGjHJcr+L1ACXCEilQDqcuj8DvgmLhzuTSIyR11S+HnAfrgQdHjtn8MpN+bjBNQAH/fqTFnR/2nEHQ9v4KxeT8aF6wFAVZ/FKSDewVnKJwXNd+OEz5NFxOcJqeM4L7Lv0XksnC4io0xZMfBJOZ/X4LwkDsV5fgKd1xxPqRESkUNS+l6HU1gcmFRWiCXg7m+EgEuBTwDTUytE5Fgg4oXDPBAX8u3Hqnqfqn4Lp8CaCFyb0u1qnELiByLyBREZJSJTgS8Bc4E/APfjrhUHetuxXDd9xLb+e0+ZVY1TRC8AcnCeeckwYRtU9VpcSMnJwK3i8gG/DawF5ojLCYw6HsXdZ/JwCbcPIOW5wtgzmMLCMAzDMAzDMAzD2CN4yTHTrNm7SWT5DE7g8ALO0vUgXEgnAFS1UVX/iBNIFAE3i8gxOAv7YbhQQR0CR1V9FWd5WYcLFWR54/oJmQm1M+p8qhrBJVAvw1nHAnxKREYk+6vqu7jQHSuAL4rI9bjQT4/jcvV0KKZUtVpVfwb8HRd27ExVXbMbfpqxh0kRaM7Hxas/CzhDRLKhMwmz5411M/BrEclP9lfVFlVt9xIzS6YFv9G3qGo78CFcGNLMnBJ+nJLqq7jcaT9T1XBKwuw/Ay8BXxKR/bzx3sKFhluOU2TOx91zfo4L4/1PnFcGOIE1qfctY8/hXee7/e+9czWBu55nAX/DKSGuEJH9PI+7bK/514C/4nIf/Q533DyMy99WlTHmE7gcfk8AH+/mmDN2M6awMAzDMAzDMAzDMPYInvWiisgsEfmsV5bp6ZCDC9twGE5g0A5c7iXSJkUI9UNcuKcJuATMM3DC7Yu8cZNJmH2eUHuKql6iqrXdKEmMPkBV454HxGe9hKmpdcnjYinOm2YNTrA4A5dIvaO/qi7EeVq8ihNKfR+Xj+AgERnnWdX7Uvb75ao6Nhkuyhj4JAWaXuieW3G5tH4IfF5EgiJSJCInAT/B5TB4EBe/PnOcuAmm+46kErM7i3pVfVFV/yUiIzyvimT54zhBdBAXEijLE3JHvPoluBBRAVxOimS/v+KSK/8Wp+B8AZcX9nTPIysp6E4qLow+IOU+8SMROT7lGPGlnKsv4MI3bcR5YILLXYGniBRVXQ9cB/wFOAS4D+eRMRQY6Y3px+W2AfiDqp6oqnd6deZhswexHBaGYRiGYRiGYRjGHkFEsnDWzR/zir4D/E1VV3kCprjX7hmc98ThOMv6bwE3qepVXr3fE2IU4WLV/wCowYWSasDlsVjdzfYFl6w1vjt/p9E7RCQpOA7hBEefV9UXvLrkPv4ILlH2+TiFxEKcB8WHVfU1EQmqatRTRkzH5bwYjku0W4oLDfObjO2KpzgLmCV9/yH1GrCT/ZP7NRc4E/gjLqzLGlwOlHKcEPq7qnrDrpizsXsQkRxVbRORbM+7IlleidufK3F5BZZ55ZOBB4BJwFRVXeoJn9VTWJYBfwI+CnxIVR/t6Xjz7hPH4hQZ+cBRqrp8t/5go0fE5aJ6Aqdw2gDcnMw5kdJmX+A5nIfFl3AKjLm4nEf3Je8TXlsf7j5xMk4ZNRG4Q1Uv7mH7H+i6ZOwcZlViGIZhGIZhGIZh7HJ6sEYsxQvZhEuC/W3gryJSlSEQeBEXOzyCS7S6BrhARE5OHUxVG9QlTP0L7v12oreMpRs8Bw8TPPQDPKHRSJyyYjMu/8itIvJ56MhXAi68TxiXRHUVLhTYUJyiiqSyQlUTqroAuAR4H5iCCw8z0RNgd5BijW/Kin6Cp2xIKiwPFZHZIjIutX57Y6Ts11ZV/RtO6Px9nFByKc7zYnxSWWGeVv0Pb783Ar+GjlBQiMghIlKpqtW4cD6TcMm18dotAW7CWcdf5xUnPGWFqGoNzsuiGviupxDpTlkxF6ck/w3uPvILnHLE2AP0cJ6vxSkrmoAoLizgXzzlFQCeF2UdMNK7Dvzcq/qlVx/1IlL6Pe+9r+COh4leuzleuLgu2DND32AXZ8MwDMMwDMMwDGOX4QkFUkM1pAohNuHCOLXjwjfdjQvp9GiGMmITLmnyUarahEuUnAt81rO4jSeFD1777+KUFuCUHRZvup+QFApnCqI8odG/cYltfThh8grgVyLyTREZ6jXNwSm3Dve+/wInfD5XRD6cuT1VfQoXEmSxV/Soqrbuwp9k7CK8cziZDDsZKu5F4FngNeA9EblRRMbuTJgmVZ2nqt9T1eNxXldfVtWN0pmnIjMcndH3VONCdZ0pIpUisq+ILAbuAvb12vwEJ8S+UFKSpwO34KzszxWRQ5NeVCn1/8VZ1h+Iy4fRgbhE7PfivDS+AzTj7j//Z8fJ7id5L/f2WTClPKCqK3D7vAAXLvIG4JPA30RkWsowrwMzvXHuxz1fjBKRZLL1Du9KVV2Ee254xKv7lqqu3U0/z9gJTGFhGIZhGIZhGIZh7BI868VkCI45IvIPESlJsXxW4GWc8OkYXMLTS4AhwO0icok31Du499VS7/ttOEHUyXg5KrzxksKHjTjL+6mqeqqqNu7eX2psjxRBdFLY1yXBtqpupjNsz0icVfOvcSG+/uxZQa/AWc6WiUixqrbhPHNCOAVWgXbmqEgqRe7HhQTyq+p/dt+vND4I3rVCvX03HBfOJQ8Xiud63LXicty1Yeg2hurNttqgI+695anoh3j3j3XAp3HX/teAt3EK7p97n1HVLbhrxASc0iLLK68Hfg8onfkLYsljzPOo+iMunNw9KdsVdfkubsN5aZynqgeq6iupSjVj15Nyn0h6V/0U+GWK90Ty/vFtYCtwAi7c0/nAbOBBETnOa7MBKBWROd73n+AUT98XkQrP0KHjPqSqa4CzcfeJ+3fXbzR2DlNYGIZhGIZhGIZhGB+IpBW9JxAoEpHbgHnA0cD41LaeMuH3uPAOZwGrcYqIhcDNIvIDXOLMtTiBVFLR8W1viKtEZIQnhEoVPtSo6pIMzwujj0gKhEXkbBF5HHhcRB4UkZMzrJ5fwVlGnwjMVNUv44SRxwNPiMgROAXEFFx+ElT1bpy19DHAxSmb7Aj1pKpLurGwNvoZIvJVnJLqWlzYl896nhDfwVnB3w8cCnxDXB6CD4RZy/drkkqkfbz1MFz+mtNwCZC3pLS9DedNdy4p3hKeIuJOYP+kAtyz0k949W+q6r+98kyvr3+r6rdT6n1Jpdqu/ZlGpiemiHxMRNYBXwXieIoKTxkd8BQaV3vdv6uqd+GU0lHgbhH5JPA/oBCn4EJV38SFD/MDP/X6Zu7LsN0n+iemsDAMwzAMwzAMwzA+EElhkIhcgwvp8SGcgOAM4I1uuryNU1pMBb6IS5B8GvBPXGzpv+OEDAemKENewIV9mum16Ta2tCdfspjTfYyIlIvIP3D7dAguifoxuBAcv02xim7GWTWvAT4hIgeq6ndxgsjJuLAeJ+NCgh2esolv40LHfFlEJvckVFTLU9EvyPCASZYV4877S4Ejccl0k0nXs7xQXj/AhYi6EC/cizE4SB4P3XhjFeHC+/iAcaq6VlVjqUJldQmUvwsUAxenWOSDE1JvwuVHCvR0Dcjw/OsyL1Nu7T5SPDFniMjLuHv+IuBjwA9TlVPJ/aeqd+AMIY4XkUtV9Vngw7hj5S/A53E5TA5I2dSvvHEvEZHDMvdpqpJ7t/xQY6cxhYVhGIZhGIZhGIbxgRCRuSKyBvgRcB9OuPgjdTHkuwiSvfAbfwcW4ATTp3rCyctxoWCm4qxr1+IE1Ul+4q3LkwJvo99ylrf8H3COqs4G5uKsoq8ErksJ87MUFwZoLHCpiBSq6gPAZTgB1WFAIy4JezKEyxs4ZcgYnNDS6KckLdw9S+ZSERnmVTXi8o004vITbPHaB1U1DKAukfp9OMvpU736bcqyUhUjXm6CQGa50Xd41vWBnhQGOG+bw3GhA2eJyJe88kxh89O4MGKn4q41yfJXcJ4564DRO7rfzaNi9yMiARH5Iy6XVSnwOZx31T+TyopUhVaKsuoL3vpr4pKwL8Lls7gB59HZilNaJD1ktgB/9vp8YA8tY88hdh4ahmEYhmEYhmEYO4uIZAM/xgkS/gF8w4sNnRQYJDxr6XBGPx9wAS7Z8r3AF1R1g1f3IZzF9V2qOt8rE0/gOU5dXgOjH+IJmQpxIZtGAKO9YyC5/+YA3weOAK5V1d96/UbjQrlMwgmu7vLGyvXavwk84HlkJLdVAEQyjy2jf5Dc597nPOBbuPNagEu8EG75OAH1tbgwP5emeGwlj5mJwFu45OvT1ctHsZ3t+YCDgKOAeeqSsRt9jLg8Fcl8Bfm4HEYlQA3wiKquTtnv04DnceEDD1SXMN2XaiUvIpNwuS7eAa5Q1XeTY6deK4z+hYiUA3fgQgF+Q1V/0k2bElWtS/mefJ64Hffs8FNVvTal/kqc0vMZVa3LuB4EPa8cY4BgCgvDMAzDMAzDMAxjp8gQQv8aGIoTEK4FZuAEhkfgQgLNAx5U1Xkp/cuBv+ISaX5RVW9MqdumgCFV8GX0Lzzh9Lu4sCxH4zwjkiFABHdM/BOXq+QqVX3Vs6A9E6e0eAT4tLoEvIhIEIj3FKJlW2FfjL5HRD6OS4KcwCme3gJ+r6qrvPp9cRbxMeCT6iU7Tnb31m/hrKcPARKpVvCpgknv+0RcqKnLcWHFLlXVW3bfLzR2FBH5HE4RWYDLWRDEXTO+4HlOJNv9CPg67nj5XHfXfRH5DvA94AZVvSajzq4N/RQRORx4CHgG+AxOMXUyzrvmaO/7S8Cdqvp6ct+LyBBcgu0W4HBVXeiN5+vuHpHynGLHwgDCQkIZhmEYhmEYhmEYO0WKkPANXPiOkbikmR/DJVL+I06BcQjOgvpZEbkspf9WnCAzBlwgIlOhQ/CwTWtIU1b0DdK7hOa5uFwmxarapqodygbvmHkVd2zMAE4VkZAnSHoKl2T3JOAjycFUNdqTssKrNyFUP0VEjgF+gYsjfxlwnqp+Nams8FiCyzswhc6QYEkSOAHmFJyQUntSVojIEBE5H7gR+DmwGZfI3ZQV/QQRqRSRv+AUDE/hwsPNwCkry4Afe4LsJD8D3gc+KSIHp3hnlInIOK/Nb3CeejeSgV0b+oZe3idexz0nfAh3bfgJzsvqXFwOqzHAl4AHROQgOhNxbwa+g1N2fT05WE/3iJTQY3YsDCBMYWEYhmEYhmEYhmHsNCkCw4dxlvGfAW7HCRdOAg7EJcu9DMgGfiMiE1KGeAUntDgEOBss2Wl/JGnx7lm4ZonIhSJS4dWlyRa8uOHVwCQROd1r40+pb8cpJpbijpFRXnkNLpdFM3CeiMzobnxjYCAuz8zXcAqsa1T1QVWt9WLSd+QV8ASJ9wDP4RJw/8ITbBeLyCnAdTil5h8zrw2e5XSOiByHi2N/Ky6s2LmqemTS+troe7zz+CTgo7j9dI2q/lVVF+NCOjUA04CLRCQXQFXrgZ8COcBPPEXFSbjcOL8UkamqWq+qn1TVFanHlbHn2cH7RBtwE7AGp8C6BHcOT8E9D4zBKaPKvfoxKX1/5PU7r7t7jDHwsZu+YRjGIEVEjhIRFZHv7cZtfM/bxlG7axsDBREZ4/0Xt+5gv/1FJO5Zg/VLROQyb47T+nouhmEYRv8jxXpxJfAv4G3gt6o6W1UfV9X1qrpMVW/GJeXOBq6GDmVHC05oUQ1c7VlSGv2MFCv2c3CW67fQjYIpRWh0m7e+MiWUR6owcQ0uz8Vs0pOhvoFLkjoXuNA7RkyBNTCpwIX/ekpVXxQRX1LBmeol4bERJ4SO4pQWL+COhRtxx8jXVPXxzA14z6ffxiVf/hhwvaqOUNW7d9ePMrZNUjCdqTzwzuNs4MeqerWqLheXFP0POOVlAHcfOBMX0ivZ76/A3bhjaRHuPvNx4CV1SZc7ttvNcWXsQXp7n0jhfeBXOC+rk1X1O6paC9Sry010Ay584PHAdG/sLK/vl731d719b16XgwhTWBiGYfQTRORgT+D93x7q/8+rX9xD/Re9+h/s3pnuPJ4x1QUi8rSI1IhIRESqReRNEfmDiBzZ13PsA34JLMaF0ditiMgc7xj57A52vQ1YjXtgNAzDMIwupAimHscpJX7llScFVwGv/ne4eOUni0h5inBpKS5szM9V9dU9NnGj14hIoYh8GfgLTrAYBc4Vl/S2Y18nhUaqei8u5MfJOOEidOYjQFWbgPe8ryeklLfhhM//AP5qAsgBTQgnoA6JSI6qJnran17587h9H8Eps76KCxMzRjuTs2da0H8cFxbmOWCYqn5/t/wSY7uIiD9VwZgRuiupyLwVF64LETkB51lxIS5E3AW4fV6CU1aOSBn+mzhF98te2zJV/Vnq9k2x2ff09j6RxAv9eD/OM3NeiodG0hBiPfAiTn59otct4tXdh/PAuNz2/eDDFBaGYRj9h9dx7u+HprzUp3I0oMBkEanqoR4gmaRsHjAVJxjoL9wM3IELC/EITjBxJ1CPs6S6vK8m1heIi+l7FPCLPfSQdYa3fnBHOnkPkr8CThSRQ3f5rAzDMIx+g4icLSL/SXrV9TYUT4pwYStwj6qu8b4n729x7/mmHReHfiNQmyKciAC/VNV+a3hhcAROaNgMnIXzgjgcZ9We6WWRFCpf562vFpGh6pJu+0Uk5JUnw/Vs9follR5vq+oFqrrIQrwMaNpxAunh3pJGNwrNOpygsw0YDyxQ1d+rak2KMDxpwZ08Lu4E9lfVc73rj7EHyDwvkxbuXoiuQ0TkJhG5WUR+KyIHpigyw951oBz4Bk45cTXwLU9Z/RawHudVc05yfFV9X1V/BXxMVa9R1ToRCdj1od/R6/tEElXdoKpPq2p7hpIreZ/Ymrr2jjG/9/mLqjq/t88qxsDBdqhhGEY/wYvd+jyQDxyQWiciZbh4nvd7RUdn1PtwDwJhnNUJqtqqqov7y4O7uORplwALcFZSF6nqtd5DxtFAJfCHPpxiX/Ap3AvZPXtoe2cA81V17U70vQsXO/iqXTslwzAMo59xIC7G+FmwcxarmWEZUkLAxIDDcIm5N+AMMVL7ZQoijf5FM87wZK6qPooTRG0Ezk8aNKQoHJIKrEdw+Uym4bxK8YSaEW/MU7z1aq8u7XizEC8DniacEdV04BgRyYZOQaQnuC4BbhGR/b19vQBnQX8icGaKYDKeeiykHGNvqepbe/A37bWIyNDkuZ55Xib3pYjcjgvndRpwOs5y/hURyfR8OQsn3P6pqt6kqnVeeStQBJTiclnM8badVG63et99qhqz60O/o9f3iUyS+zjlPpK8T3zEW89Ltk19zkj16jEGD6awMAzD6F88462Pyig/EudC/xuglgyFBTADZ53ysrokhj3msBCRVd6SLyK/FpENIhIWkYUiclZ3kxKRkSJyp4jUikiziDwnIkfs4G+b661vU9XGzEp1ydJeytjurd5vGCciXxORZSLSLiIrReQ7IhLsYb5HiMhDIrLV+23LROR68ZK3fZD2nnXXNSLyvjeX90XkWnbwnuq9nJ0BPJb5f0hKPgwRmSoiD4tIvYjUefuh3Gs3V0SeEpFGr+4vIpLXw/bG4oQFD6aUFYnI90XkPW+/Nnq/5zYRGZ3aX13yzGeBs0Qkf0d+q2EYhjGg+BEulvRF4oVq3FnLxRQBk4qLU34G7llmJfADT4nRRdhkAqj+iao+C1ynqqu9okW4/TkRF74lyxNaJoVOScXTF4D5uLAgd4rIod7zzWdwHrZPAE/1sE0TQg1QPCFiE87gai1wLfBh6BREesLoP+LedUq8ujZc3PtlwPlkGHIZfYOIDMN5PvxaREZ6ZZn3hu/jEmrfgFNW7IfLX1ADfEtErkp5j0i+s2zJGONyXLjc23GKriLoXkGyC36WsYvZ0ftERl9NVT6IyAQR+RnO0+YOVX24h23aM8MgxBQWhmEY/YukwiJTIXE0zhL/FZwXRnf1qf23RxAXY/oE4F5crNjxwL/ExRLtQESG4rw2zsNZNSSVJk8AB/dye+AeVAEm7UCfJP8HXAM8CfwW50lyHc4FPA0R+RROsH4oLuzUb4B1ONfUJ6TTtXSn2uOSgv4Edw/9PfAYLuHXr3fwNx2B2w+vbKPNWOAlIAvnHv8Wbj88ICKH4V7um705Lce99P+2h7E+7K0fhA4hwmO4JIW13hg3AW/iXjAmdjPGy7g4xIf04vcZhmEYAxDPyvV6YDROaZHbk3ChF2OpiARF5Fjgh7h7VAlOWbFgV87b2DOkWEEnvYP/hkuMfBZwakZbFZdsuwG4AvgrcC7uWfY13PGwFrhaXXJVo58hXpLsDzjMY7jQokXAzSJyg4hcIiI/Af6E87L5K+6ZN8kKXOjYmbjrUPYHnIOxk4jIJ0XkS7h3uZtwhnJdkiiLyHTg07j3qu+q6muqukldLpvP4Pbpl3BKDHDXgGacF81Mz0Dt87h8Fo+q6uVAhap2q8w0+i87cp/ohiwRGS8iV+OiL3wFJwOw3DR7G6pqiy222GJLP1kAPy6fQzMQTCl/G3ja+/wlXAiFESn1//bKDk8pO8or+17GNlZ55Q8AoZTyY73y/2a0v9Ur/2ZG+RVeuQJH9eK3jQAagATwd9wDy+jt9Elue3PG7w3hEusp8NGU8n1wib0W4BKxpY71da/91R+gffI/XQDkpZQPx1kHKXBrL/f1z7z2x3VTNyblv/1CSrnglCqKi/F7RkpdEKfQiAKV3Yz5LLAy5fs0b5z7u2mbBeR3U3661+e6vj5XbLHFFlts2X0L7nnkKaAROHcnx/DhjAHqceEgWoCHcGEh+/w32rJLj5fzvOe7fwNVyf3fQ9uzcUYoNwBnpZRLX/8OW7rsK3/K5/yUz73eV8m2OIOXs3HeVQlvacLl8Duih77DcAqNA/v6v9gbF5wx2+PevroZKMaF89uMyz2zf+pxggsBlQCu9L6HUuqycUZSCVyuCoAKnBFYAveOWO19foqUd8TU49CWgbv09j6BMwgMe88fy4FP9vXcbembxTwsDMMw+hHqYjH+D+cieyCAiFQA++IEzuAE9eB5VUhn/oo24NUd2NyXtDMuJOqsV1aT4nbteReci3sw/UVG/7/gXLV7haquw7kIr8W5d98NrBKRzSLyT3EJqHvi117/5FgRnAcEuLwYSa4EAsDnVLWGdH6GUyp87AO0v8hbf19VW1Lms54d97AY4a2rt9FmOc7jI7kdxeWSAHhTVR9MqYvicmEEcIqYDsTlQDmM7pNtt2UWqEuG19xN2+RcR3RTZxiGYQxAegjLEAe+g8urdYmIDPfa9vr9UZ3l7QKcJ+c9wLGqepqqrvLCK1qeisHDozhDmJPpIfeJeEmVVfVuVf2pqn5VVe9J1nnPOEY/QlXj4nIS/BF4RkQeFJGDcc+avboeJPerumS6d+MMZubi3mNOUdU5qvo/cfgy+m5Q1atUdV7XkY3difcOeB0wB/gacIO68L1rgZ/ivCQuEC/RttdtpLeeBO59zTuGRF3I4mdx7x3nePVbVPXrwLdw7yivABep6rHaGU4IzciJZAxYtnuf8LgD51nxWWCSqt4MLizznpmm0V8I9PUEDMMwjC48i7NQORp4EWfVL3QqLBbgrFCOxt3QZ+IsXp5MVUBsh3pVXdlN+To6c00ATMZZxDztPWh2oC48xIt0HzqoW1T1SREZj/tNRwCzcYL0c4BzROTHqvqNbro+303Zy7gk0PunlCVDVJ3ohZ/IJApM+QDtZ2xjPt2VbYsyb12/jTYLu3mB3+itF3TTPlk3LKP8Qzhr2VSFxSKcddTHRGQE7gHyWWBBDw+P4EJHAZRvY86GYRjGAMATEsdUO2JGa0qdqOqLIvJnXDzxs4H/28b9oVtUtUVEPqdeklRvbL8JoAYXqtogIr/ChRq9SEQeVdXlIrIPMF1V71IXFgToTMLuCTsTqXVG39HNdeAg4DZgKC4c0GzgILzwbjt6PQDwDGLSDKxSrgndKq0y52XsEapwIWDfUNWfZ9T9BrgYZ4D2BPBfr/wJ3LvTTBEZraqrU/edqj4vIsuBKhEZBazzzv8fQfp+tvvE4KM39wmv3Ssi8oZnjNdxLNjxsPdhCgvDMIz+R2ri7eu9dTvew72nKHiBzrwVyfXTO7CNhh7KY6TnNyry1pt7aL8t74Bu8V5Kn/SWpMXdJbiEe9eKyD2qOn972/EsdmpS5ghQ6q2/mdm+B3a0fRHOlXVrN3U7+l8kPRu2FZO3S3Jy3D7aXl1mMvIP45QNHUoVVY15Xi3fw3m+JD1otojI74AfdvNgmOOtWzEMwzAGJEmhUFJILCIX4gRMjbjEyI+lGED8GGcJeYmIPKOqbyWFzL3dXlJZkSKcNqHD4OQN3LPc1cBnRGQx7vnuYBGpVdXHkw1TBJiWNLcfkPRs6GZ/nIl7B7kYZyg0DZcM+xoRWayqT+zo9aA7tndNMGVFnxAAIsAEABE5A7gRuF5Vfyci38V5z10kIq+oaj3OCOvfwInA8cBfPMWk33tvy8OFiaoH1mt6/otMJabdJwYnvbpPqGo06YVpx8Lei4WEMgzD6H+8hctPcIjnjns08IqmJyN8FhgjImNwCg3ofcLtHSGp2BjSQ33lB92AZ935F+AfXlFmQvFut+O5hZaRrnxJCvELVVV6Wj5A+wbcvbM7D4Md/S+2eOvSbbb6gHhJCk8AHsm0YFTVGlX9HC4Hxz4419tanAv417oZLjnXLd3UGYZhGAOAFAvWw0XkPZwA8mKc8v4+4K8iMtpruwoX/mM68HFPqLSzCbhNOD0ISREqteKs8TcAn8LlHtgP+HKqssLoXyTPae+8niAuGfbRIlKMM3j5gao+oKrVqvok7llxGPBFEcnZ2euB0X/xlAYrcOF7R4vIauB+YAmw1jtm7scpJ84EPuJ13Yrz/m/HKbU+BB1GZgW468JEXL6/NCG0KTEHNztzn/AMK0xZuRdjCgvDMIx+hveg9hzOmv10YCqd4aCSJPNYHIfLX9GMS1q3q1mKe+ic4wm+O/CssQ7ZhdvqLmdCksO7KZuLs/55M6Us6WJ+cNfm3bKj7d/axny6K9sWb3vryTvYb0c5DpcTpbv8FUDHA+EiVf09ziIK3LGXSXKub3dTZxiGYQwQRGQWTmiQAD6Pu4dNxVk+fhxIDQHyJ+Bdr/y4Xo4vKZ9DIpKTWW70Dbs6DniKAuwg4AqcMDsLlzi1SlX/z6u3fd9HdJdrQjpziqiIBEXkZ8BiXHLlp4CHcSGaXhcRX4oXxoO4EEAnAxfuwBxs/w8QUpQGU3HHwHDgBuAsVX0wRYh8HS5s8cUiMsErfw4XMmw8cKuIfE9EvojLDfht4DWcZ4bRj7H7hNEfMIWFYRhG/yTpLfFdb/1sRv18oAn4Ai5M0fOZ1vO7As+r4184D4urM6ovw0uq1htE5CQROSP5gpRRNwEXHxvghW66f0FcnoVk+xDuYRjg1pR2f8CFRfqtFxs1czvFIrL/B2h/h7f+jufWnGw3HLcvdoSk0umgHey3o5wBhIHHUgtFJOmhk0nSU6S9m7rkXJ/rps4wDMPoZ2xD6HAFMBq4VlX/4CmtlwN/BVYAHxWRMwFUtREXPnAoTjBV6Ak5uwgWUqwok8KJ2TiPvQtT45Mbex5xdMSF954DKpLPMzsrKPLGPQT4O876/mlgH1X9nKq2ikjA9n3fISKXAfeKyLjU8oz3hg/hlA83Al8EfoUzSpoEJDwBtqRcTz7vrT8tIiOToXx62H7mNWGsiEzuqb3RPxCRC3DeEK/i5IajVXWLV+cHUNU3gd/h8hKe65U1qOqvce+wtcB3cKEFzwf+CRyrqkv27K8xeovdJ4z+hOWwMAzD6J8kFRb74QTHr6RWeq61LwInZbTfHXwdOBa4XkQOw3k0TAVOAR7HhRvqDVNwL0BbReR/wHKcVc4Eb6wQ8EdVfbWbvq8Ab4nIP4EWXFLyycB9qtphpaOq74jIp3EWoktE5D/edgqAccCROAXHVTvZ/hkRuQX4BPC2iNyPsw4515vjqb38L8AlvF5Bp0fDLsd7GTwNeEpdksNUZgL3icg84D1gE86C6sM4i9tfZYwluONgkaou3V1zNgzDMHYdKUKHTwNx3D2tGHfffVJVH/LqJ+DuYRfj7n934aysk+PcKyKP4LzvHgPuSBUsJAUNqUJJnBD0clzc++/ghF4Wi7oPSBEExb19/WNgFm6f1IjI13HGCNEdFRp5wup2nOX011X1Hm+bSYt8S6jdt5yMM165G/fcCYC4sG//wz3XV+MSJn9HVWu8+iBOsPgN4FMp1xK/qr4vIr/GGetcAXy7u1A+qceSiFQAx+AUIrXAZ4BVu+H3GhnsyDmd0vYR3Dm9GedRc46I3KGqj+De35LcgHsPulBEnky+x6nqD0TktzilRwXu/WGltw1LqN0PsfuE0d8wrbZhGEb/5B06Eztn5q9IkmrlvtsUFqq6EWdl9U9c6KQv4HJHHI9LwNdb/o4TXDwL7ItTAnwBZ7X/OM7N+NM99P0izpX4eJxVVzbO2vNj3cz3z7hwUQ948/0iLmFoOU4I/38fpL33G67FuUh/Fvci+EuvX6/xHvJuBCaKyIE70ncHOBjnMfFAN3Wv4+KSK06odDUuH8qTwKGq+u+M9kcAo3BzNgzDMPopqV4VIlIgInfirGBPwOUiSuDuce+KSJGIfMyr/yXO6/AgVT1fVRs8oWWS7wL5wJdFpCplG6lCyTIRORtnCPAbnIffwap6vQmo+o6kBbyIfA0noD4YF/ZzPlCFe8Y7P9l2JzaxQFU/liKE8quXF2HX/AKjt3jnYG5K0eeAT+Py06QSBVpxisrTgRtUtUacFzO45+wVOEH0Ad7YftxzIziDpq3AZ0Xk0Iw5dHhViEiOiByLe46/FRcq6DZ1+XGMPUDK9Tm7t21VtQ5Y6q1/4lV/06uLpQiaNwHX47xxPp68Z3jXgHpVfU1V/6OqK71rkM/uBf0Tu08Y/Q0xjxvDMAyjvyIit+KsPccOxhcbESnFvQzeraqX74bxfwp8FRjmvVB8kLH+hlPOjFfV+l0wPcMwDGM3IS5U4Syc99w9wE04r8RF4kIgPo7zEHwMd59tAr6iqrdnjHMUME9dokxE5DqcpexdGe2ycMKNj+NCy3Q7ntE3eELEy4Fv4QwT/gY87Qkex+KEU+8C16jqC55QcYeFSDvbz9g1iMhHcZ4UFwB3ZnhB+YETgf8m95GIfBL4BU6xeBiwQl0Sbb/nzX0FLofNw6p6espYAe/Y+SJO0Xmaqj6SaXUtIjOBj+KOvTLgR6qaDHdr7CE8BdIPcQZf1/ZgCLe9Me7DeWF/TlV/nxE2KAsX4mcKzhvnX93NwcL99G/sPmH0N8zDwjAMwzD6CFWtxbnbXuy55u9qzgBe3QXKiknAecD1pqwwDMPo33iCyXdxOahuBV5U1R+q6iIAVV2DC0s4Giec+DEu6WWmsuJbOEXHjGSZqn63G2XFeFzYmL8BlwK/VtUhpqzoV5TgwoC9hgvf87gnhDoe+DdQCByIs5DO8oTWOxyr3IRQfU4E2AhciUtqC3RcE57AJdI+KaX9HTiP7SE479qEuFxzCQBVvQl4HjjV85xKjhX36v8PKPXCBKVa8o8WkU8Bt+Cs8p8Hhpuyos84CLgGOH5HlRUpHnvXAc3AV0RkiKfQSuayCOO8MEpwx1IXTFkxILD7hNGvMIWFYRiGYfQtv8a5UndJ+v1BUdUpqjp3Fww1Avei8vtdMJZhGIaxC0iG18goC3hWr9/BeVCMwHlTIC6pZVL49CegDSeA+mGqAEFExovID3Ax5l8EFmVsI1NAcRTwJeAtYJSqfn3X/EJjR/AEzd2iqpuBn6nqGaq6WkQqxeUFewxnXf85nJLrLFyYyN5sT1I+B1JCCRl7mJR98RRwM3A4cHbymPCuCclnuI+LSLFXHgV+i/OI+r5XFvPGTF4rvo8LFfc1EQmlhvPxrObrU489EZmGC6f6e1z4qMNU9WzvGDR2I5n3gxRew4X12VdcPsJeJ0/2FBOiqm/hFNijcaFxwVNsee0ewnlh/25n52/sfuw+YQwkTGFhGIZhGH2Iqrar6vdV9fm+nktPqOrTqvoDVY309VwMwzCMzpAKnoXjZBE5WkTGJYWNqvobYAFQgLOKBEgkhY2q+jQux0QB8JaIfFVE5nqxq/+ACyf4CvCDTM+6FCvqpCDiCZxQ8lRVXb8bf7bRDZKRtFRETheRY0VkuojkpTR9wavfF5dU/WRcXoFLVfX3OAFzGU6gXZWMZ97N9jryE3jfZ+AUVqdsQ2Bq7Ea8fRX0Qrc9gMtT9kVgckqbe4EHcSGaPpJS/hRwOzBSRL7pFftSrhVP4cJMzcYl2E7Nc5BcpybMbcFZal+mqrNU9aVd/XuNdFLOyUTGOZ+a4DrpGXek13ZHPB6S1/ofAytxnuGzveOuI2eSpuSp2NnfYuwe7D5hDETsQDEMwzD6Lap6iaqKDsL8FYZhGIaxo6QIHRLiEmbfjAvv9B9gmYhcLSIjveZf9tafEJFCr0+qMOlnuJBQ5cBPcd4U3wOm4uKUf0RVV/Q0lxRh5RpVXbhrf6mRiYgcIiIV3ueO93jtzEdwnoiswuUseQKnsHpARIamtsMJoA4HfoQL9fiWV55MyDsHJ9TuNnRHigBqpLgcBzfhjp/96BRsGnuIlLA8Ua/oXVyop0rgMhHJT2l+HW4fXeyFckvyB1xOte+JSEUy3E+KMPp7uLj22/S09SzxV6jqUap68wf9bUbvSDknrwUWpoTvkhSPmDeARmCKuJwTOzJ+Mq9JDfBzoBh3PKAZCbTVkij3KXafMAYTprAwDMMwDMMwDMMYAKQIHQQXUvAknODhrziB4/U4IWWWqj6Ls6iegUuE7Q2hyfj0dar6V1x88w/h8h6dD4xT1T972+mwnjX6DhG5Bmf5mrRwTx4HPi/Mxjdx+QJW4PKJHIsTQh8K3CYu+XEyqerHgDrgJlVtTtlMNi6p6kjgyyIyJmX7qWE9ikTkDFwooT8BOcCxqnp9pvDS2P1oZ+Ljs0XkZZxV9CeAWtx5Pyel7QLcfjsCl5ssWb4IuBHwAzd0FneEA1qmqj/qyZo6ZRzLU9BHiMiRuMTaY4E/ishc0uV9m7zlRCDo9dkRwXHyvvFH4AfAZ3fBtI1diN0njMGG2D3FMAzDMAzDMAyj/yMix+GEES8BX8flqvi7qraIyHScMGIE8GlVvdcTJqwAFgOnquqKZDip7WzHb0KF/oOITAX+ixNI/kXTc46MxSU1fh/4fNLbRUTKcEKpL+GSr1+jqltE5HbgdOBcVX1MXEzz04DbgKuBEBBJKq1SthPAJVz9GHAxToB5rSfANPoAT0CYg7N6vwqXw2IBTiB9MjAR+CfOY2qr16cKFzKqGbhYVV/1ykuBe3Ehg47sLlSpp7wwAVIfsq3rt4i8h1NSxHGC5a+o6v0p9fcAZwIXqOo/dnR/Zm67N/cSY89h9wljsNFjwhXDMAzDMAzDMAyjf+AJJw/DJbwcBjytqjcl61V1oWdB+R9cfOmXVXWViNyAy0lxFfC1XigrxJQV/QtVXSQic1R1SzfVH8cdD+ekCKH2A07BHSsAizwhlAD/xuUw+D8ReQCXb+A4XCihJ1V1ZeYGvPBBZ+OUZWNwoYG+nBKGyOgDPI+HSbhj4HGcIHIpgIjciMtNcS7wkIjc5YXr2SQi1+Msqy8UkfmqGlXVWk9IORMo7Wl7e+BnGdvAC88UUi+vnHdOJ3OO3AdcBhwFPAT8TEQa1OUsAvg7TmExV0Tu0R3MTZchABdTVvQv7D5hDDYsJJRhGIZhGIZhGEY/xxMW/gl4GjgEZyGdtGhMtvkvLiTM6XQm1v06sAUnnDzM62NhXQYYniDpaBF5QUROho6QXaNwselXikiJiFyKC+/zE2AJMFFVb/DGUOARnEXtGOALuLBB7wHndSeE8jgFF25sBTBJVT9nQqh+w0eBAlzolqSyIuiFeboOWIOznh6Z0ucWYJ7X9+RkoareAlSo6oN7aO7GdsgM2yQinwJeEpHTk0UpCuY3gQrcvj4bd4/4m4js742zCFgHTAF2KI9F5jzsPtE/sfuEMZgwhYVhGIZhGIZhGMYAQFU34ZQWCkwQkSpVjWUoIH4AtAMXiMg0T/hwDS4J75e8ccwydmAyCqesOktcIvU4EAEKgc/hrOZvAqqA01T1BFVdDiAi5Z4gu01VfwtMB04FDlPV01V1daYiK0VI+W/gaFU9TlXf3xM/1Og1yaTaG6BDgRnzyp4CHgZm446ZbABVDeOSJlcCnxeRwuRg3vXEctf0MeLwpSoGRGQIMAGYBfxeRCZlXMuX4PJUnOXlK/kMTmlxO3AMTpC8Gpe7oEti5m2RnIf8f3v3Hq/pXO9//PWZWWNMSjmMkaIpOZWfKBLCdkpIJ4xTNjlrnClbdrQlx9T85FAoOYVNiC0p52SXXWR2DFuKSDEyTmHM4bP/+H6v2dfc1mDGrHWvNfN6Ph497nvd1/W9rvvqvltr+r6v7+cTsWRELP4GL099y78TmicYWEiSJEnS4PFTSq351SmlP2YKIOqd1d+kNNPeur72A+AMSs8LDV7nUUp+bUtpkg5wBWWC+lDKyppDMnPZzLymGVQnsS8D9qk/N42Ub8zMu+prQzuDrGaSMjMf7q2ngeaOiFioPs5Jye5J9XELKIFDLRUVmfkiZUUWwB7ASs2gzLwe+BZwUmY+2z6gJeG6L4vpEbFiRJxVX3siMw+hNDJ+B/CDiFivNeb3wP8Aq0XEYpl5O+V3xRKUSepRwHV19+3qmFmG1+1VFRHx5ojYFPhePa+h1sDl3wnNEwwsJEmSJGmQyMzngXGUVRY71brRnXfKjqPccX1oRKxdx43NzHs6S3to8KgTQ1+jNFreKSKWAu6mTE71AEdk5rj2mIhYDbiAcpf9pNZxOo/tJHU/iv9zHPDbiBiRmVNfc+D/jW/+934R8CKwce1n0ZSAaSaUx1M+9+WBvTtWUxySmdehAan2GrkX2C0iDmhtOpLSH+CDwEkRsU5r2w/r64sC1InmfSlNkn9EKREGsHJELDKL80YdmxExJCJWr+e8gLJS4w5/Xwxc/p3QvMLAQpIkSZIGlzuAs4BNgS2aBqitiaanKL0rvl7vsgXKJKe1xwe3zPw1pSzYxpQGqk9Syns8AxweEWNr2ZblImJfSni1KXAKcGV33rU61TvoE/gwJUz4+GyOb+5yfoQy0bgm8IW6bVor/BhDKRF3K2WVxTvbxzHAHNBG1sdngGObsCkznwGOo6yQWQM4OyLeXve9F3gB+FzrOJdRvhvL1HGTgWWBYb2dtFX+aVlgf8od+4dS+hqMysyj59L1qY/4d0LzgvDfq5IkSZI0uNTJpJ8BTwN7ZuZva3Dh/8Gbx0XEO4E7gSeAHTJzfERsR7nrehHKdyIo/Q0eAQ7MzKu69HbVi1paZVr9LFfLzKtb24bMTp+ZiFiBcvf0u4GjKWV7pgCbAAcDFwK/AJ6tJeM0ALza7+u6guarwG6UMk/rUxqr790eFxE/pJR3+jmlV9Efgf+k9KrYvoYbzTE3AS6l9DIAWD0z7+zl3CMpfS52p6yo+BXwhdoXQ4OEfyc02BlYSJIkSdIgU++MHku5y/bbwJG1XNQr9jPEmPdExEHAyZQ7Y79YJ79XBDYHRlMmrMdn5rmtMbM1Ea65owknXmOfZYDNM/M7c3iO9SnBxFLAU8BzlD4HEyhNmB+o+/kdGABe7TvR/M6OiN2AEyhBxJHA0sAqmfn7iFgwM1+qk9JHAZ+nBAtbUlbXfQ7YMDPv7zj2AZTfET/IzIt6Offy9ZybAM8CB2fmxXPnqtXf/DuhwczAQpIkSZIGoYhYnHLn9AvAFpn5ty6/JfWTiBgB3A4sCeyamdd2bJ8x6RQRPbPTH0F9IyLekZl/iYhhmTml9fowSo35FYENMvOW1xNy9HL85YEdKD0M3gpcm5nHz8VL0FxUV1EcA9wE3Fgnk9v/u133JFfTAAAfc0lEQVSBEjh9gtKT4jzg5szcsG5vgo13AkcAewG3UEr/XAh8LDOvrz1Nmibend+9mQLt+nvlr8AZmXl4n/+XoD7l3wkNZgYWkiRJkjRIRcQKnXfRav4QEVsCPwauokxGPdXRMHfG8y6+zfla/QzeBdxIWfnwkWZSMCI+CzyQmf8dEbsA3wduyMxNmrFz+tlFxPDMnFyfOxE5wNQVMT+nNEF+DPh+Zh7Zsc/7KQHEBcBBwG3AWpQVM5e3w4caflwNbAY8ACwHnJ+ZO8/i/K8IxJrvSW0A/+JcvFx1kX8nNFjZdFuSJEmSBqkmrIiInm6/F/Wv2vfgNmBVyh317WbOMz1X/4mID0XER2DGJOAzlFryHwTWr9vvBi4B/qnu9wNKT5qNangBb2C+JjMnR8SQGnoYVnTRLBqbP0IJK56jlOXZJyLOjohRzQ6ZeQ8wCVi6fo++UTd9s26fEsXQepf8ocC5lLACYPWIWLq399Tb6p3me2JYMW/x74QGK1dYSJIkSZI0CEXEqMx8vNvvQ0VErAL8DvglsElmvlRffz8lkFiI0vR4PHAW5c7nx2q5nrUpKzEeAtbIzOesJz94tVcxdKyGaFYyHEvpN/Ezyud+PHADpW/Ef9d9LwI+nJnL1p8vAbYBjsjM4zpXStReKKcBWwBbZeYV/XW9Grj8O6HByBUWkiRJkiQNQs0klCtsBobMHA/8FFgH+OfWpk2Bt1PCipspvSZOz8xHm0AiM28HzgGWB77UHPL1nHcWd/GrC1oldpqw4gTgm63VE00A9RXgSeBjlDvgdwA+BPw4Ijau+zwGLBoRq9efjweeB46OiJG178XQ5tyZ+WdKoDHUsEIN/05oMDKwkCRJkiRpELPsT/e1Jo4PqI/71DveoUxSXwP8gVIaalKtHz+kY+zXKU2Px0bEinWfGRPSs9KUdImIxZpJyebY6h+1PNOQ1mexfUQ8CnwRmEYNKupqmp4aaBxShx+VmRcDn6WUiLo0InYFbqWEXC/VsXcBpwJDgRPq2M5Qa3L93jg5rZn4d0KDiX/AJEmSJEmS3oDmbvfMfAA4BfgAsHfdNg4YA3yLMgH99fr69NbYIZn5aN3nbZQ78HvtNwAzr6qIiLdExCco/Q32bR9b/aO2ApgeER+IiP8ELgQmANsDX8/Mia19m34R5wN3AJtExG6ZeTPwaeA3wNnA/kAAa7RO9a163F0i4qOdn3OrN4GT05IGLQMLSZIkSZKkOdCxAqK52/1fKM22Px8Ra8CMZsY/Bq6lTDav13mo+jiO0qR7q4j4eOc5WiWHMiKGRsSawFeBC4CtgImo30VET0ScAdwFLArsB+ybmZc0YUXz2dXVGM0KiGZFzpdqr4EJwK7AScAGwAvU70YNtSZS+p8ALNYPlyZJ/c7AQpIkSZIkaQ60ehWsTCnVQ222fRgwChjb2vcxSp+KZyl9CHraPQ/qCo2pwHHAAsDR7XPU503JoeWBA4HzgYOAS4AlMvPCvrxezdLbgNH1+TmZeVpm3t/LPs1qjKk1gPg1JWxajvJ5kpmPZOZhwD6UXihNP4pm9cQ4YHhm/rivLkaSuinq3zpJkiRJkiTNhoh4C/BDYDVgy9pnoNl2N7ASsG3TBDkiRgD/H9gd2C0zz6mvLwG8JzN/VX/+KnBxZt7Xcb5RwMbAHsB6wC+AfTLz3r68Tr22iFgXuBq4iRJUPQdsBqxLWS3xHHA7cFFm/qYGVNPqZ/8Y8A9g3dq8vVlR8YrSXhERTZ8KSz9Jmhe5wkKSJEmSJGnOTKGEBiOBT9cAo7E/0ENpov0WmFEa6jzgAeDIiNgsIj5JaaL87xGxRd3vq5l5X6sxd9TyT6cB3wPeA2ydmesbVvS919P8nNJ74hxgC0ogdTxwLrAtZfXNaMpqmCvrZ9n0MHkCOBJ4C6WcGPX1XvuQ2KdC0rzOwEKSJEmSJGkO1PJPPwJupUxSr97adgulnM+GwOdbr98GfJvSg+AaSjmn7YHvZuY1zX71Tvpm0roHWBXYHDg2M5fJzMv77soEM/UMmRYRwyNip4gYWbfNNKdWw6gzgT9T+orsQulFsSKwNiWwOAVYvG4f3Rp7bB23XQ2wXm9IIknzHEtCSZIkSZIkvYaI2A0YDpyVmVNapXkC2IZyd/2lwL9k5t/qmKWBh4H7KCWjHqyvvwlYixJAPA2cmpmT6rbIXiZrImIp4NnMfL6PL1UdImIMpdn1QsD+mXn6LPYbBuwJ7AvslZm31teb78o7gGOBHYGtMvPHETE8MydHxGeByyiNu9eY1QoLSZrXucJCkiRJkiTpVUTECsCXKY2wl4dSmqcVLtwC/DsluFivdWf+I5QJ6hUpE9mNFzPzBuCwzPxaZk6KiKGzCivqsR4zrOhfEbFwRBwMnE1Z5TIF2LY2Pe9tlcUUyqqascAdre9BU8bpL8AvKfNxm9ZhL9dtl1NWYOxhWCFpfmZgIUmSJEmSBERET8fPQwAy837gG8CbgL3rCokZMvNx4HzgGUppqPe2tv0r8BdKL4uNOsZNbc6TmdNmFVaoa9YDjgCeB7amrLJYl1LCq9c+EzVYujEzX2p/nhGxQH36ZPuxBl9D6/MDM/POziBEkuYn/gKUJEmSJEnztVYw0QQIq0fEiI7drgV+RulHsWbdP1uTy3fX7RsAH+8YfzQl7HhbM659YO+oH7CepwRRa2XmtZTA4q/ADhGxDrxylUWjWV3R+m69XDd9pj7e0eybmdPa4/w+SJqfGVhIkiRJkqT5WjNBHBHbRcQDwA3A9cChrX0eAi4AJgMHRcRizdi6QuLvwGPAUGAMsHJr7FnAyMz8Uf9ckeaGzLwZ+LfMfLi+NIFStmk5YKfaf2J6E050jM12+BAR742IEynfjfMz8z9mcU5X2UiarxlYSJIkSZKk+UpUzfP6uB1lMvop4GZgJeD4iGj3nrgJuAT4BLBFbbLcXiExHfgNsA6we0S8uRmYmX9v+lT05bVp7mqaodfnUymh1W8pJaI+8RrDh0fEshFxCHA6JQC7nrLiRpLUCwMLSZIkSZI034iInqwiYmh9HA4cRGmevVNmfgrYArgLODYi1qx3y/+d0lz7f4AvUoIJImJYRGwN7Fu3nw/c3Nkk2z4Vg19tnH0ysCiwc0Qs2VEarO1k4F7gKGBZYPfM3CIzH+y/dyxJg0v4d1KSJEmSJM1vIuILlF4UdwKPAv8M7FkbaDf77AScCvwU2Cczn6rNk3cHTgKepay4WJjSoHkCsH1nUKF5S0S8FTgH2BI4KDNPncV+HwG2pQRfFza9KmpQNq23MZI0vzOwkCRJkiRJ87TaY6LpJbAScBGwCjAV6AFepDRYfl8t3TQsM6dExBLAccDOwHbAFZk5rZZ62hk4EQhgQeAaYGxm/rnznJr3RMS6lEbs91JCqgcj4n3AKpl5cWu/YZk5pT43qJCk12BgIUmSJEmS5nkR8R5gGPAZYBvgTEpPip2BzwPTgM9l5i0d4zYGzgb+CmyTmY92HPPdwNOZ+dv6mkHFfCAi3gT8G3AIMA64D9gF+Ajw8cz8WWvfABtqS9LrYWAhSZIkSZLmaRGxJvCfwOXA+sC/ZuZ367a3AvsAX6espjghM59r7oaPiBHAl4EjgIOBUzNzau1pkR3n8Q76eVz7c4+IlSnlwhYDhlNW6RyZmeO69w4laXCz6bYkSZIkSZrXPQRcB3wWeAr4PsxowP0MJci4hbLa4kNQGmTX1RIvAj8C7qCEGivV7a+4A9SwYuCJiKFz83itsGJNYE9gKUpYcRqwZBNWNKsqJEmzx8BCkiRJkiQNCnM6CVwbaX8DeIYywbxCs6k+/oFSImpR4J8jYlTH+N8BlwK3Ak/MyXtQ/4pixoqXiBgdESMjYqFm+xs47trAhcC+wI2U3if7ZeYLEdHT2+obSdLrY2AhSZIkSZIGhdbd7QvOwfA7gPOAhYBN6vGaVRTTgZuBy4AxwLp10nl66w790zNzsxp+aABrAoP6+b43Ii4FbqB8B26pfUl6mn1n59j1O/gS8F/AmMzcODPvi4gh9bs01bBCkuacPSwkSZIkSdKgUCeXvw4sCByemZNnc/wqwE+APwN7Z+b4dpPsiNgQ+AFwP7BvZt7fyzHsUzEIRMQQ4FDgK8DTwO+BF4A1gRHAwZl57pweu91Y3e+EJM09rrCQJEmSJEmDxZrAYcAmsxtWVBOAU4CPAJ+NiAU7VlH8htLPYiNg6d4O4MT0wBcRw4C9gQOBK4DdgC0zcytgXWAosGdEfLTuP1vzY62Aa0j92e+EJM0lrrCQJEmSJEkDSucd7K3XhwK/ojTGXi8zb5vdfgERsTQllFgU2CMzb+zYvhzQk5kT3tBFqGsiYglKY/VpwP6Z+XB9fRPgm8D767azgQMzc7J9JyRpYHCFhSRJkiRJGhCafgJ11cNCHduasjsX15fWr/vO7iTzo8DJwLuArSNi8Xr85m75BzJzQu1JMEeNmdX3IqJnVtsy8wngxMz8VGY+HBGjIuIS4DpgMrAfcA+wNbDF6zxftJ73RMQCb+gCJEm9MrCQJEmSJEkDQqup9uHA+IjYpv4crbI7vwWeBVaMiOFzeI7rgB9TygZtVF+f3rHfdO+4H3hawdLU+vMnI2KjiFilI+S6rW5/PyXk2gw4EdgtM08DTgMWA3aMiCUzM3srDdUK0Zrv5geAg4DNZ7eUlCTptfmLVZIkSZIkDRgRsT6lsfa7gTMiYi1mnr/4W/3PpsCwOma2VkJk5iTKhPV5wM/nwtvWXBYRa0fEyPp8xuff6h+xXUQ8BFxG+Qx/B1wZEW9v70cJKtYFjgWOycy76+sL1sfVga06xszQCiqWjog9gTOBE4CVAVfgSNJcZmAhSZIkSZL63azuTs/MW4D7gP8BHgcuAD7Z2n4f8Htg8fbrc+CmzNwlM5+y9NPAEhGHUVZI7AkzN7mu5ZiOAM4B/gh8mbJK5nRgHeDciFi17j8M2B6YBJyZmc+3TrMgcBelufrBETG6df52+ae3RsSngG8D3wFGABtl5jE225akuc/AQpIkSZIk9bvap2JGH4AohtYfLwfeRrnzfTpwYkRs2Bp+YX1cKyIWmJPSTa0754dY+mnAuQp4BJjYy+qKpYF9gF9TGmZ/IzNvAo4CzgA2BvaPiJGZOYXSq2IYsAbM6D/xGeArlABiP+D4zHyodZ6s+60NHAOcD/wTMDYzV6nnkyT1gVk2KJIkSZIkSZpbah+KbP28D7BbRBydmVcB7T4VdwEjKZPT21Dupr8gIraglP6ZQGmevSIwHHh5Tt9Hb2WA1F216fnqmTmxl807AksBYzJzPEBErAxsTmmiDTAhMyfWlRJXAZ8BxkXElcAilFDjHuD6zPxT5wkiYlnK925PYDSlfNjBNQCRJPUhV1hIkiRJkqQ+U1dODOkIK5YA3gt8EDgtIpbvCA7up/Sp2DozfweMBZ6n9JzYkFIK6GFKKaBX9Dl4Na2VFUtGxOJv8PLUR2rgsEFE3BYRmwHUFTjLUJqu/ykiFomI3YDvAsdTvjfLZeZJ9RgJXEMpGzUaOADYCbgX2K63sKLanLKy4o/A8pm5n2GFJPUPAwtJkiRJktRnspgeEStGxFn1tScy8xBKX4B3AD+IiPVaY35P6WGxWkQslpm3A9sCS1B6FYwCrqu7b1fHzHKlREdPgjdHxKbA9+p5h85qnLpuGWBtYOuIWLiuwHkZWJhSyul0ShPsJYEtM/NjmfkgQEQsHhHDMvPFzPw2sArwCeCjmfnJzHy4M+RqfU+uAjbIzI0z8w/9caGSpMLAQpIkSZIk9amIOIZyV/tuEXFAa9ORlHI7HwROioh1Wtt+WF9fFCAz7wL2BRYAfgT8ue63ckQsMovzRh2btWHz6vWcF1BWatxh4+QB7TzgJ5Sw6lP1tSuAqcChlKbrh2Tmspl5TTMoInqAyyi9LpoyYA9k5o31e0REDO0MuZrVN5n5cGb+om8vTZLUGwMLSZIkSZLU10bWx2eAYyNiYYDMfAY4DvgWpSny2RHx9rrvvcALwOdax7kM+ALlzvvjgMnAspSmyq/QKv+0LLA/ZQL8UEqZoFGZefRcuj71gfr5fQ0YAewUEUsBd1NCjB7giMwc1x4TEatRAqkPAZNax+k8tkGVJA1ABhaSJEmSJOkNaZdc6mXbEOBx4K+UhtkjgBObcZn5WGYeDlwMrEAp07Qq8N/AI8AaEfFWmFFe6lpKH4KFKA231wDeOYtzj4yI7Sg9Dr4JPA18MDN3ycxn3+Blqx9k5q+B71AaZY/JzCcpZaCeAQ6PiLG1H8lyEbEvMA7YFDgFuLI771qSNKcMLCRJkiRJ0hyrpXVecQd73Ra17M7DlHDhAkoIsWdErFxLNS1Yd/8Spa/ERsCpwFDgP4APUHoUzJCZPweOAn4O7JiZd/Zy7uUpE9tnA+8DdsjMtWsTbw0uxwFPArtHxCqZ+RNKuaceSh+Ue4E7KCt1lgZ2zswjMvO5br1hSdKciVn8m0KSJEmSJOl1qasojgFuAm7MzGkRMaTpERARKwATKE2PF6WUZro5Mzes26OGF+8EjgD2Am6hBA4XAh/LzOtrg+ymifewzJzSeg/RDk4iYgRlVccZdQWHBrGIOAg4mbKC4ov1O7YisDkwGpgCjM/Mc1tjZnwHJUmDg4GFJEmSJEmaYxGxPmWlQw/wGPD9zDyyY5/3UwKIC4CDgNuAtYCtM/PydvhQw4+rgc2AB4DlgPMzc+dZnH9oZz+CiOjJzKkRMSIzX5yLl6suqQHU7ZTVNrvW0mDt7e2ArCczp3bhbUqS3iBLQkmSJEmSpNdlFr0qHqGEFc9R7nLfJyLOjohRzQ6ZeQ+lAfLSdRXEN+qmb9btU6IYWiedDwXOpYQVAKtHxNK9vafemic3k9WGFfOO+lkeCYwC9oqIRaF8J5vSY63nhhWSNEgZWEiSJEmSpFdVSzFRyzYNa73ek5l/BI4H3gLcD5wE7ApcEBH/r3WY3wCr1uNcAVwKLBMRTbmmIU34kJkTKD0qrqnb/jUzH+mjy9MgkZlXU1bnrAq0G7Fn53NJ0uBkSShJkiRJktSrXvpCnAC8CTgmMx9vyvDUQOOvwOLAR4FlgNOBp4E9a/+JkylBxiaZ+ZuIWI1SJmoEsFRmTuws71Qbck92ElqNiBiVmY93+31IkvqGKywkSZIkSdJMamWdIU1QEBHbR8SjwBeBacB0gBpW9NSQ4ZA6/KjMvBj4LKVE1KURsStwK7Aw8FIdexdwKjAUOKGO7QwmJtdVHT19da0aXJqwwu+EJM2bXGEhSZIkSZJ6FREfAL4DrAncAJwN3JiZE2ex/6+ADwN7ZOb3ImIl4BRgI+AmYANgt8w8p+4/ErgZWAlYLzNv69srkiRJA5krLCRJkiRJ0kwioicizgDuAhYF9gP2zcxLmrCiacBdV2M0d7sfUB+/VEv3TKCUgTqJEla8ADTjhtRjnVXHLNYPlyZJkgYwV1hIkiRJkqSZRMTiwPnApsCXM/P4XvZZJDMntX5u+lmcB3wOOCEzD29t3wuYCNyUmZPa/TEiYlhmTunjy5IkSQOcgYUkSZIkSXqFiFgXuJpSymks8BywGbAuZbXEc8DtwEW1ifbQzJwWEUsAjwH/ANbNzPH1eEMyc3ov54mmT0VmTu2Xi5MkSQOSgYUkSZIkSfOZJlx4jX1GAMdSwopjgFGU8k7PAX8H3lZfewzYCrijtWLiy3XMxZm5Qx9dhiRJmscYWEiSJEmSNJ/oKMM0HBgD/DQzJ/a2AqI2zb4aeA/wInAyMA5ISj+KE4C9KaswvpCZf2qNfQhYBvh0Zl71ekISSZI0f7PptiRJkiRJ84lWWDEGeAI4B9imbntFuSbgD8C3gPuBzTLzyMx8Cng6MydTmmlfAmwCrFKPPbyOPbg+HlXDEMMKSZL0qgwsJEmSJEmaT0TEwhFxMHA20ANMAbaNiOXr9pnmCWoj7CsoZaHuiIior2d9/AvwS8r8wqZ12Mt12+XAKcAeswhDJEmSZmJgIUmSJEnS/GM94AjgeWBr4CxKE+3tofdVFpn5WGbemJkvZauudEQsUJ8+2X6sDbSH1ucHZuadnUGIJElSb/wHgyRJkiRJ84/ngfOBtTLzWkpg8Vdgh4hYB165yqLRrK5otmfmy3XTZ+rjHc2+7fJPtW+GKywkSdJrMrCQJEmSJGk+kZk3A/+WmQ/XlyZQyjYtB+wUEcMzc3oTTnSMzXb4EBHvjYgTKY27z8/M/5jFObO31yVJkjqF/26QJEmSJGn+FRHvAK4E3g3slZk/qsHEKyYMImJB4B3Apyk9KzYGrgX2z8wH++1NS5KkeZIrLCRJkiRJmo/VxtknA4sCO0fEknU1RW9zBicD9wJHAcsCu2fmFoYVkiRpbujp9huQJEmSJElddy1llcWWlGbcp86i78T5wMvAXcCFTa+KiBja7lshSZI0JywJJUmSJEmSiIh1KcHFvcD2mflgRLwPWCUzL27tNywzp9TnBhWSJGmucYWFJEmSJEkC+C1wBnAIMDYi7gN2AT4SEU9l5s8AMnNK05TbsEKSJM1NrrCQJEmSJGk+1m6wHRErAz8FFgOGA88DR2bmuO69Q0mSNL9whYUkSZIkSYPI3C7D1Aor1gR2BJaqm04DDsvMF+r2GcGGJElSXzCwkCRJkiRpEKhlmIa0Gl2PBv4BvJCZ/5jTQKEedy3gPOA9wI3Avpl5X93eA0wzrJAkSX1tSLffgCRJkiRJenVNGJGZ0yLivRFxKXADcAdwS0RsTL0psekv8XrVIOIl4L+AMZm5cWbeFxFDImJIZk41rJAkSf3BHhaSJEmSJA0CETEEOBT4CvA08HvgBWBNYARwcGaeO6fHzszprZ/natkpSZKk18OSUJIkSZIkDXARMQzYAzgQuAK4ALgxM6dGxLuBu4A9I+LBzLytM4B4Lc2+zTjDCkmS1A2WhJIkSZIkaeBbBNicUrbpK5n5sxpWbAJcBSwMfBjYMSKGZ+b02S0NBf8XXEiSJHWDgYUkSZIkSQNAbW7dq8x8AjgxMz+VmQ9HxKiIuAS4DpgM7AfcA2wNbPE6zxet5z0RscAbugBJkqQ3yJJQkiRJkiR1UasM09T68yeBfwATgQcz8x9119vq9vcDpwIfAk4ELsrMuyPiZeC7lFUWt2fm33orDdVq4J315w8AHwMeiIirXGUhSZK6xRUWkiRJkiT1g4hYOyJG1ucz/v94q3/EdhHxEHAZ8HPgd8CVEfH29n7AZsC6wLHAMZl5d319wfq4OrBVx5gZWkHF0hGxJ3AmcAKwMjDbZaQkSZLmFgMLSZIkSZL6WEQcRlkhsSfM3OS6lmM6AjgH+CPwZWAj4HRgHeDciFi17j8M2B6YBJyZmc+3TrMgpfn20sDBETG6df52+ae3RsSngG8D3wFGABtl5jE225YkSd1kSShJkiRJkvreVcAXgIntMk21Ofa7gH2AXwMHZuZ4gIgYT+lPcRCwf0QclpkTI+IeYFlgDeC62vtiS+ArwCHAAsDLmflQc/LMzLrfhymBx87AdGBsZp7R95cvSZL02gwsJEmSJEnqY5k5ISJWz8yJvWzeEVgKGNMKK1YGNqc00QaYUMOKoIQfnwHGRcSVwCLAxpSm29dn5p86TxARywLbUFZ4jAZOAw7OzClz7yolSZLeGEtCSZIkSZLUD2rgsEFE3BYRmwFExFBgGeBZ4E8RsUhE7EZpnn08cD+wXGaeVI+RwDWUslGjgQOAnYB7ge16CyuqzYFjKCWnls/M/QwrJEnSQOMKC0mSJEmS+s8ywNrA1hHxy8x8NiJeBhYG9gPeDYwBHgK2zMxrmoERsTjwTGa+CHw7In5K6VcxKTPvqvvMKDdVf44aclwF/C4zf9EvVylJkjQHovy7RZIkSZIk9bVa0ulq4J+AfTLz/IjYCLi27jIFOCIzx3WM6wGuBy7PzFNaQUR7n6E2zZYkSYOZJaEkSZIkSeonNWT4GjAC2CkilgLuBn5CqYLQW1ixGnAB8CFgUus4ncc2rJAkSYOagYUkSZIkSf0oM38NfIfSKHtMZj4JnAk8AxweEWMjYsmIWC4i9gXGAZsCpwBXduddS5Ik9T1LQkmSJEmS1M8i4p3AncATwA6ZOT4itgNOAxYBngYCeDPwCHBgZl7VpbcrSZLULwwsJEmSJEnqgog4CDiZsoLii5k5LSJWBDYHRlP6WYzPzHNbY2Zqqi1JkjQvMbCQJEmSJKkLImIEcDuwJLBrZl7bsX1GOBERPZk5tQtvU5Ikqd/Yw0KSJEmSpC7IzBeBI4FRwF4RsShAVJk5vfXcsEKSJM3zXGEhSZIkSVIXRcStwDLABpn5p26/H0mSpG4xsJAkSZIkqYsiYlRmPt7t9yFJktRtBhaSJEmSJA0A9qmQJEnzOwMLSZIkSZIkSZLUdTbdliRJkiRJkiRJXWdgIUmSJEmSJEmSus7AQpIkSZIkSZIkdZ2BhSRJkiRJkiRJ6joDC0mSJEmSJEmS1HUGFpIkSZIkSZIkqesMLCRJkiRJkiRJUtcZWEiSJEmSJEmSpK4zsJAkSZIkSZIkSV1nYCFJkiRJkiRJkrrOwEKSJEmSJEmSJHWdgYUkSZIkSZIkSeo6AwtJkiRJkiRJktR1BhaSJEmSJEmSJKnrDCwkSZIkSZIkSVLXGVhIkiRJkiRJkqSuM7CQJEmSJEmSJEldZ2AhSZIkSZIkSZK6zsBCkiRJkiRJkiR1nYGFJEmSJEmSJEnqOgMLSZIkSZIkSZLUdQYWkiRJkiRJkiSp6/4XFPGhaN76vlYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -386,11 +389,11 @@ "text": [ " Turbine | Efficiency | Rotor Diameter (m) | Hub Height (m) | TSR | Air Density (ρ) | Tilt (º)\n", "------------------------------------------------------------------------------------------------------------------\n", - " iea_15MW_floating | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", + " nrel_5MW | 0.94 | 125.88 | 90.0 | 8.0 | 1.225 | 5.000\n", + " iea_10MW | 0.94 | 198.00 | 119.0 | 8.0 | 1.225 | 6.000\n", " iea_15MW_multi_dim_cp_ct | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", - " iea_15MW | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", - " nrel_5MW | 1.00 | 126.00 | 90.0 | 8.0 | 1.225 | 5.000\n", - " iea_10MW | 1.00 | 198.00 | 119.0 | 8.0 | 1.225 | 6.000\n" + " iea_15MW_floating | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", + " iea_15MW | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n" ] } ], diff --git a/examples/18_check_turbine.py b/examples/18_check_turbine.py index 738cfa8c1..d35594ae4 100644 --- a/examples/18_check_turbine.py +++ b/examples/18_check_turbine.py @@ -47,18 +47,6 @@ if t.suffix == ".yaml" and ("multi_dim" not in t.stem) ] -# TEMPORARY -print(turbines) -turbines = [ - t for t in turbines - if "converted" not in t - if "updated" not in t - if "legacy" not in t - if t != "x_20MW" -] -print(turbines) -# END TEMPORARY - # Declare a set of figures for comparing cp and ct across models fig_pow_ct, axarr_pow_ct = plt.subplots(2,1,sharex=True,figsize=(10,10)) diff --git a/examples/32_plot_velocity_deficit_profiles.py b/examples/32_plot_velocity_deficit_profiles.py index 9b12dcc4e..a99dff965 100644 --- a/examples/32_plot_velocity_deficit_profiles.py +++ b/examples/32_plot_velocity_deficit_profiles.py @@ -64,7 +64,7 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): plt.text(x[1], y[1], '$x_2$', bbox={'facecolor': 'white'}) if __name__ == '__main__': - D = 126.0 # Turbine diameter + D = 125.88 # Turbine diameter hub_height = 90.0 homogeneous_wind_speed = 8.0 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml index af36a9bfa..917696d90 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml @@ -1,7 +1,7 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 1.0 +generator_efficiency: 0.944 hub_height: 90.0 -rotor_diameter: 126.0 +rotor_diameter: 125.88 TSR: 8.0 correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: @@ -12,158 +12,167 @@ power_thrust_table: power: - 0.0 - 0.0 - - 0.0 - - 36.722155848902254 - - 94.65678115354163 - - 170.596391826316 - - 267.74933496419163 - - 387.64681352354114 - - 533.9617151673435 - - 707.4062402827329 - - 909.9965782677073 - - 1142.7197798534328 - - 1407.4994184495558 - - 1707.1272243371227 - - 2047.3355806543098 - - 2430.5778091805637 - - 2858.3081150622215 - - 3329.100627354195 - - 3842.9755943182267 - - 4403.86140594055 - - 4999.993508066915 - - 4999.99850473839 - - 4999.997854617397 - - 5000.00304890274 - - 5000.002113339491 - - 4999.997282778227 - - 5000.002243172759 - - 5000.000360590384 - - 5000.009074693787 - - 4999.987262704901 - - 5000.007345811091 - - 5000.006875165497 - - 4999.994990648268 - - 4999.97705933755 - - 4999.983698972648 - - 4999.991318085188 - - 5000.024022703328 - - 5000.016589748782 - - 5000.025709581146 - - 4999.944891236294 - - 5000.035324880168 - - 4999.967955734346 - - 5000.013248451465 - - 5000.063199891701 - - 5000.068982245371 - - 4999.9325188896555 - - 5000.011035557985 - - 5000.012771123277 - - 4717.243379938609 + - 40.518011517569214 + - 177.67162506419703 + - 403.900880943964 + - 737.5889584824021 + - 1187.1774030611875 + - 1239.245945375778 + - 1292.5184293723503 + - 1347.3213147477102 + - 1403.2573725578948 + - 1460.7011898730707 + - 1519.6419125979983 + - 1580.174365096404 + - 1642.1103166918167 + - 1705.758292831 + - 1771.1659528893977 + - 2518.553107505315 + - 3448.381605840943 + - 3552.140809000129 + - 3657.9545431794127 + - 3765.121299313842 + - 3873.928844315059 + - 3984.4800226955504 + - 4096.582833096852 + - 4210.721306623712 + - 4326.154305853405 + - 4443.395565353604 + - 4562.497934188341 + - 4683.419890251577 + - 4806.164748311019 + - 4929.931918769215 + - 5000.920541636473 + - 5000.155331018289 + - 4999.981249947396 + - 4999.95577837709 + - 4999.977954833183 + - 4999.99729673573 + - 5000.00107322333 + - 5000.006250888532 + - 5000.005783964932 + - 5000.0180481355455 + - 5000.00295266134 + - 5000.015689533812 + - 5000.027006739212 + - 5000.015694513332 + - 5000.037874470919 + - 5000.021829556129 + - 5000.047786595209 + - 5000.006722827633 + - 5000.003398457957 + - 5000.044012521576 - 0.0 - 0.0 thrust_coefficient: - 0.0 - 0.0 - - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 + - 1.132034888 + - 0.999470963 + - 0.917697381 + - 0.860849503 + - 0.815371198 + - 0.811614904 + - 0.807939328 + - 0.80443352 + - 0.800993851 + - 0.79768116 + - 0.794529244 + - 0.791495834 + - 0.788560434 + - 0.787217182 + - 0.787127977 + - 0.785839257 + - 0.783812219 + - 0.783568108 + - 0.783328285 + - 0.781194418 + - 0.777292539 + - 0.773464375 + - 0.769690236 + - 0.766001924 + - 0.762348072 + - 0.758760824 + - 0.755242872 + - 0.751792927 + - 0.748434131 + - 0.745113997 + - 0.717806682 + - 0.672204789 + - 0.63831272 + - 0.610176496 + - 0.585456847 + - 0.563222111 + - 0.542912273 + - 0.399312061 + - 0.310517829 + - 0.248633226 + - 0.203543725 + - 0.169616419 + - 0.143478955 + - 0.122938861 + - 0.106515296 + - 0.093026095 + - 0.081648606 + - 0.072197368 + - 0.064388275 + - 0.057782745 - 0.0 - 0.0 wind_speed: - 0.0 - - 2.0 - - 2.5 + - 2.9 - 3.0 - - 3.5 - 4.0 - - 4.5 - 5.0 - - 5.5 - 6.0 - - 6.5 - 7.0 + - 7.1 + - 7.2 + - 7.3 + - 7.4 - 7.5 + - 7.6 + - 7.7 + - 7.8 + - 7.9 - 8.0 - - 8.5 - 9.0 - - 9.5 - 10.0 + - 10.1 + - 10.2 + - 10.3 + - 10.4 - 10.5 + - 10.6 + - 10.7 + - 10.8 + - 10.9 - 11.0 + - 11.1 + - 11.2 + - 11.3 + - 11.4 - 11.5 + - 11.6 + - 11.7 + - 11.8 + - 11.9 - 12.0 - - 12.5 - 13.0 - - 13.5 - 14.0 - - 14.5 - 15.0 - - 15.5 - 16.0 - - 16.5 - 17.0 - - 17.5 - 18.0 - - 18.5 - 19.0 - - 19.5 - 20.0 - - 20.5 - 21.0 - - 21.5 - 22.0 - - 22.5 - 23.0 - - 23.5 - 24.0 - - 24.5 - 25.0 - - 25.01 - - 25.02 + - 25.1 - 50.0 floating_tilt_table: tilt: diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml index c2b9675de..1ebee827a 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml @@ -1,7 +1,7 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 1.0 +generator_efficiency: 0.944 hub_height: 90.0 -rotor_diameter: 126.0 +rotor_diameter: 125.88 TSR: 8.0 correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: @@ -12,158 +12,167 @@ power_thrust_table: power: - 0.0 - 0.0 - - 0.0 - - 36.722155848902254 - - 94.65678115354163 - - 170.596391826316 - - 267.74933496419163 - - 387.64681352354114 - - 533.9617151673435 - - 707.4062402827329 - - 909.9965782677073 - - 1142.7197798534328 - - 1407.4994184495558 - - 1707.1272243371227 - - 2047.3355806543098 - - 2430.5778091805637 - - 2858.3081150622215 - - 3329.100627354195 - - 3842.9755943182267 - - 4403.86140594055 - - 4999.993508066915 - - 4999.99850473839 - - 4999.997854617397 - - 5000.00304890274 - - 5000.002113339491 - - 4999.997282778227 - - 5000.002243172759 - - 5000.000360590384 - - 5000.009074693787 - - 4999.987262704901 - - 5000.007345811091 - - 5000.006875165497 - - 4999.994990648268 - - 4999.97705933755 - - 4999.983698972648 - - 4999.991318085188 - - 5000.024022703328 - - 5000.016589748782 - - 5000.025709581146 - - 4999.944891236294 - - 5000.035324880168 - - 4999.967955734346 - - 5000.013248451465 - - 5000.063199891701 - - 5000.068982245371 - - 4999.9325188896555 - - 5000.011035557985 - - 5000.012771123277 - - 4717.243379938609 + - 40.518011517569214 + - 177.67162506419703 + - 403.900880943964 + - 737.5889584824021 + - 1187.1774030611875 + - 1239.245945375778 + - 1292.5184293723503 + - 1347.3213147477102 + - 1403.2573725578948 + - 1460.7011898730707 + - 1519.6419125979983 + - 1580.174365096404 + - 1642.1103166918167 + - 1705.758292831 + - 1771.1659528893977 + - 2518.553107505315 + - 3448.381605840943 + - 3552.140809000129 + - 3657.9545431794127 + - 3765.121299313842 + - 3873.928844315059 + - 3984.4800226955504 + - 4096.582833096852 + - 4210.721306623712 + - 4326.154305853405 + - 4443.395565353604 + - 4562.497934188341 + - 4683.419890251577 + - 4806.164748311019 + - 4929.931918769215 + - 5000.920541636473 + - 5000.155331018289 + - 4999.981249947396 + - 4999.95577837709 + - 4999.977954833183 + - 4999.99729673573 + - 5000.00107322333 + - 5000.006250888532 + - 5000.005783964932 + - 5000.0180481355455 + - 5000.00295266134 + - 5000.015689533812 + - 5000.027006739212 + - 5000.015694513332 + - 5000.037874470919 + - 5000.021829556129 + - 5000.047786595209 + - 5000.006722827633 + - 5000.003398457957 + - 5000.044012521576 - 0.0 - 0.0 thrust_coefficient: - 0.0 - 0.0 - - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 + - 1.132034888 + - 0.999470963 + - 0.917697381 + - 0.860849503 + - 0.815371198 + - 0.811614904 + - 0.807939328 + - 0.80443352 + - 0.800993851 + - 0.79768116 + - 0.794529244 + - 0.791495834 + - 0.788560434 + - 0.787217182 + - 0.787127977 + - 0.785839257 + - 0.783812219 + - 0.783568108 + - 0.783328285 + - 0.781194418 + - 0.777292539 + - 0.773464375 + - 0.769690236 + - 0.766001924 + - 0.762348072 + - 0.758760824 + - 0.755242872 + - 0.751792927 + - 0.748434131 + - 0.745113997 + - 0.717806682 + - 0.672204789 + - 0.63831272 + - 0.610176496 + - 0.585456847 + - 0.563222111 + - 0.542912273 + - 0.399312061 + - 0.310517829 + - 0.248633226 + - 0.203543725 + - 0.169616419 + - 0.143478955 + - 0.122938861 + - 0.106515296 + - 0.093026095 + - 0.081648606 + - 0.072197368 + - 0.064388275 + - 0.057782745 - 0.0 - 0.0 wind_speed: - 0.0 - - 2.0 - - 2.5 + - 2.9 - 3.0 - - 3.5 - 4.0 - - 4.5 - 5.0 - - 5.5 - 6.0 - - 6.5 - 7.0 + - 7.1 + - 7.2 + - 7.3 + - 7.4 - 7.5 + - 7.6 + - 7.7 + - 7.8 + - 7.9 - 8.0 - - 8.5 - 9.0 - - 9.5 - 10.0 + - 10.1 + - 10.2 + - 10.3 + - 10.4 - 10.5 + - 10.6 + - 10.7 + - 10.8 + - 10.9 - 11.0 + - 11.1 + - 11.2 + - 11.3 + - 11.4 - 11.5 + - 11.6 + - 11.7 + - 11.8 + - 11.9 - 12.0 - - 12.5 - 13.0 - - 13.5 - 14.0 - - 14.5 - 15.0 - - 15.5 - 16.0 - - 16.5 - 17.0 - - 17.5 - 18.0 - - 18.5 - 19.0 - - 19.5 - 20.0 - - 20.5 - 21.0 - - 21.5 - 22.0 - - 22.5 - 23.0 - - 23.5 - 24.0 - - 24.5 - 25.0 - - 25.01 - - 25.02 + - 25.1 - 50.0 floating_tilt_table: tilt: diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml index ee8232b2c..8b40f916b 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml @@ -1,7 +1,7 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 1.0 +generator_efficiency: 0.944 hub_height: 90.0 -rotor_diameter: 126.0 +rotor_diameter: 125.88 TSR: 8.0 correct_cp_ct_for_tilt: False # Do not apply tilt correction to cp/ct power_thrust_table: @@ -12,158 +12,167 @@ power_thrust_table: power: - 0.0 - 0.0 - - 0.0 - - 36.722155848902254 - - 94.65678115354163 - - 170.596391826316 - - 267.74933496419163 - - 387.64681352354114 - - 533.9617151673435 - - 707.4062402827329 - - 909.9965782677073 - - 1142.7197798534328 - - 1407.4994184495558 - - 1707.1272243371227 - - 2047.3355806543098 - - 2430.5778091805637 - - 2858.3081150622215 - - 3329.100627354195 - - 3842.9755943182267 - - 4403.86140594055 - - 4999.993508066915 - - 4999.99850473839 - - 4999.997854617397 - - 5000.00304890274 - - 5000.002113339491 - - 4999.997282778227 - - 5000.002243172759 - - 5000.000360590384 - - 5000.009074693787 - - 4999.987262704901 - - 5000.007345811091 - - 5000.006875165497 - - 4999.994990648268 - - 4999.97705933755 - - 4999.983698972648 - - 4999.991318085188 - - 5000.024022703328 - - 5000.016589748782 - - 5000.025709581146 - - 4999.944891236294 - - 5000.035324880168 - - 4999.967955734346 - - 5000.013248451465 - - 5000.063199891701 - - 5000.068982245371 - - 4999.9325188896555 - - 5000.011035557985 - - 5000.012771123277 - - 4717.243379938609 + - 40.518011517569214 + - 177.67162506419703 + - 403.900880943964 + - 737.5889584824021 + - 1187.1774030611875 + - 1239.245945375778 + - 1292.5184293723503 + - 1347.3213147477102 + - 1403.2573725578948 + - 1460.7011898730707 + - 1519.6419125979983 + - 1580.174365096404 + - 1642.1103166918167 + - 1705.758292831 + - 1771.1659528893977 + - 2518.553107505315 + - 3448.381605840943 + - 3552.140809000129 + - 3657.9545431794127 + - 3765.121299313842 + - 3873.928844315059 + - 3984.4800226955504 + - 4096.582833096852 + - 4210.721306623712 + - 4326.154305853405 + - 4443.395565353604 + - 4562.497934188341 + - 4683.419890251577 + - 4806.164748311019 + - 4929.931918769215 + - 5000.920541636473 + - 5000.155331018289 + - 4999.981249947396 + - 4999.95577837709 + - 4999.977954833183 + - 4999.99729673573 + - 5000.00107322333 + - 5000.006250888532 + - 5000.005783964932 + - 5000.0180481355455 + - 5000.00295266134 + - 5000.015689533812 + - 5000.027006739212 + - 5000.015694513332 + - 5000.037874470919 + - 5000.021829556129 + - 5000.047786595209 + - 5000.006722827633 + - 5000.003398457957 + - 5000.044012521576 - 0.0 - 0.0 thrust_coefficient: - 0.0 - 0.0 - - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 + - 1.132034888 + - 0.999470963 + - 0.917697381 + - 0.860849503 + - 0.815371198 + - 0.811614904 + - 0.807939328 + - 0.80443352 + - 0.800993851 + - 0.79768116 + - 0.794529244 + - 0.791495834 + - 0.788560434 + - 0.787217182 + - 0.787127977 + - 0.785839257 + - 0.783812219 + - 0.783568108 + - 0.783328285 + - 0.781194418 + - 0.777292539 + - 0.773464375 + - 0.769690236 + - 0.766001924 + - 0.762348072 + - 0.758760824 + - 0.755242872 + - 0.751792927 + - 0.748434131 + - 0.745113997 + - 0.717806682 + - 0.672204789 + - 0.63831272 + - 0.610176496 + - 0.585456847 + - 0.563222111 + - 0.542912273 + - 0.399312061 + - 0.310517829 + - 0.248633226 + - 0.203543725 + - 0.169616419 + - 0.143478955 + - 0.122938861 + - 0.106515296 + - 0.093026095 + - 0.081648606 + - 0.072197368 + - 0.064388275 + - 0.057782745 - 0.0 - 0.0 wind_speed: - 0.0 - - 2.0 - - 2.5 + - 2.9 - 3.0 - - 3.5 - 4.0 - - 4.5 - 5.0 - - 5.5 - 6.0 - - 6.5 - 7.0 + - 7.1 + - 7.2 + - 7.3 + - 7.4 - 7.5 + - 7.6 + - 7.7 + - 7.8 + - 7.9 - 8.0 - - 8.5 - 9.0 - - 9.5 - 10.0 + - 10.1 + - 10.2 + - 10.3 + - 10.4 - 10.5 + - 10.6 + - 10.7 + - 10.8 + - 10.9 - 11.0 + - 11.1 + - 11.2 + - 11.3 + - 11.4 - 11.5 + - 11.6 + - 11.7 + - 11.8 + - 11.9 - 12.0 - - 12.5 - 13.0 - - 13.5 - 14.0 - - 14.5 - 15.0 - - 15.5 - 16.0 - - 16.5 - 17.0 - - 17.5 - 18.0 - - 18.5 - 19.0 - - 19.5 - 20.0 - - 20.5 - 21.0 - - 21.5 - 22.0 - - 22.5 - 23.0 - - 23.5 - 24.0 - - 24.5 - 25.0 - - 25.01 - - 25.02 + - 25.1 - 50.0 floating_tilt_table: tilt: diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml index 60460f641..fa5e1f824 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml @@ -1,7 +1,7 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 1.0 +generator_efficiency: 0.944 hub_height: 90.0 -rotor_diameter: 126.0 +rotor_diameter: 125.88 TSR: 8.0 correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: @@ -12,158 +12,167 @@ power_thrust_table: power: - 0.0 - 0.0 - - 0.0 - - 36.722155848902254 - - 94.65678115354163 - - 170.596391826316 - - 267.74933496419163 - - 387.64681352354114 - - 533.9617151673435 - - 707.4062402827329 - - 909.9965782677073 - - 1142.7197798534328 - - 1407.4994184495558 - - 1707.1272243371227 - - 2047.3355806543098 - - 2430.5778091805637 - - 2858.3081150622215 - - 3329.100627354195 - - 3842.9755943182267 - - 4403.86140594055 - - 4999.993508066915 - - 4999.99850473839 - - 4999.997854617397 - - 5000.00304890274 - - 5000.002113339491 - - 4999.997282778227 - - 5000.002243172759 - - 5000.000360590384 - - 5000.009074693787 - - 4999.987262704901 - - 5000.007345811091 - - 5000.006875165497 - - 4999.994990648268 - - 4999.97705933755 - - 4999.983698972648 - - 4999.991318085188 - - 5000.024022703328 - - 5000.016589748782 - - 5000.025709581146 - - 4999.944891236294 - - 5000.035324880168 - - 4999.967955734346 - - 5000.013248451465 - - 5000.063199891701 - - 5000.068982245371 - - 4999.9325188896555 - - 5000.011035557985 - - 5000.012771123277 - - 4717.243379938609 + - 40.518011517569214 + - 177.67162506419703 + - 403.900880943964 + - 737.5889584824021 + - 1187.1774030611875 + - 1239.245945375778 + - 1292.5184293723503 + - 1347.3213147477102 + - 1403.2573725578948 + - 1460.7011898730707 + - 1519.6419125979983 + - 1580.174365096404 + - 1642.1103166918167 + - 1705.758292831 + - 1771.1659528893977 + - 2518.553107505315 + - 3448.381605840943 + - 3552.140809000129 + - 3657.9545431794127 + - 3765.121299313842 + - 3873.928844315059 + - 3984.4800226955504 + - 4096.582833096852 + - 4210.721306623712 + - 4326.154305853405 + - 4443.395565353604 + - 4562.497934188341 + - 4683.419890251577 + - 4806.164748311019 + - 4929.931918769215 + - 5000.920541636473 + - 5000.155331018289 + - 4999.981249947396 + - 4999.95577837709 + - 4999.977954833183 + - 4999.99729673573 + - 5000.00107322333 + - 5000.006250888532 + - 5000.005783964932 + - 5000.0180481355455 + - 5000.00295266134 + - 5000.015689533812 + - 5000.027006739212 + - 5000.015694513332 + - 5000.037874470919 + - 5000.021829556129 + - 5000.047786595209 + - 5000.006722827633 + - 5000.003398457957 + - 5000.044012521576 - 0.0 - 0.0 thrust_coefficient: - 0.0 - 0.0 - - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 + - 1.132034888 + - 0.999470963 + - 0.917697381 + - 0.860849503 + - 0.815371198 + - 0.811614904 + - 0.807939328 + - 0.80443352 + - 0.800993851 + - 0.79768116 + - 0.794529244 + - 0.791495834 + - 0.788560434 + - 0.787217182 + - 0.787127977 + - 0.785839257 + - 0.783812219 + - 0.783568108 + - 0.783328285 + - 0.781194418 + - 0.777292539 + - 0.773464375 + - 0.769690236 + - 0.766001924 + - 0.762348072 + - 0.758760824 + - 0.755242872 + - 0.751792927 + - 0.748434131 + - 0.745113997 + - 0.717806682 + - 0.672204789 + - 0.63831272 + - 0.610176496 + - 0.585456847 + - 0.563222111 + - 0.542912273 + - 0.399312061 + - 0.310517829 + - 0.248633226 + - 0.203543725 + - 0.169616419 + - 0.143478955 + - 0.122938861 + - 0.106515296 + - 0.093026095 + - 0.081648606 + - 0.072197368 + - 0.064388275 + - 0.057782745 - 0.0 - 0.0 wind_speed: - 0.0 - - 2.0 - - 2.5 + - 2.9 - 3.0 - - 3.5 - 4.0 - - 4.5 - 5.0 - - 5.5 - 6.0 - - 6.5 - 7.0 + - 7.1 + - 7.2 + - 7.3 + - 7.4 - 7.5 + - 7.6 + - 7.7 + - 7.8 + - 7.9 - 8.0 - - 8.5 - 9.0 - - 9.5 - 10.0 + - 10.1 + - 10.2 + - 10.3 + - 10.4 - 10.5 + - 10.6 + - 10.7 + - 10.8 + - 10.9 - 11.0 + - 11.1 + - 11.2 + - 11.3 + - 11.4 - 11.5 + - 11.6 + - 11.7 + - 11.8 + - 11.9 - 12.0 - - 12.5 - 13.0 - - 13.5 - 14.0 - - 14.5 - 15.0 - - 15.5 - 16.0 - - 16.5 - 17.0 - - 17.5 - 18.0 - - 18.5 - 19.0 - - 19.5 - 20.0 - - 20.5 - 21.0 - - 21.5 - 22.0 - - 22.5 - 23.0 - - 23.5 - 24.0 - - 24.5 - 25.0 - - 25.01 - - 25.02 + - 25.1 - 50.0 floating_tilt_table: tilt: diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml index af36a9bfa..917696d90 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml @@ -1,7 +1,7 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 1.0 +generator_efficiency: 0.944 hub_height: 90.0 -rotor_diameter: 126.0 +rotor_diameter: 125.88 TSR: 8.0 correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: @@ -12,158 +12,167 @@ power_thrust_table: power: - 0.0 - 0.0 - - 0.0 - - 36.722155848902254 - - 94.65678115354163 - - 170.596391826316 - - 267.74933496419163 - - 387.64681352354114 - - 533.9617151673435 - - 707.4062402827329 - - 909.9965782677073 - - 1142.7197798534328 - - 1407.4994184495558 - - 1707.1272243371227 - - 2047.3355806543098 - - 2430.5778091805637 - - 2858.3081150622215 - - 3329.100627354195 - - 3842.9755943182267 - - 4403.86140594055 - - 4999.993508066915 - - 4999.99850473839 - - 4999.997854617397 - - 5000.00304890274 - - 5000.002113339491 - - 4999.997282778227 - - 5000.002243172759 - - 5000.000360590384 - - 5000.009074693787 - - 4999.987262704901 - - 5000.007345811091 - - 5000.006875165497 - - 4999.994990648268 - - 4999.97705933755 - - 4999.983698972648 - - 4999.991318085188 - - 5000.024022703328 - - 5000.016589748782 - - 5000.025709581146 - - 4999.944891236294 - - 5000.035324880168 - - 4999.967955734346 - - 5000.013248451465 - - 5000.063199891701 - - 5000.068982245371 - - 4999.9325188896555 - - 5000.011035557985 - - 5000.012771123277 - - 4717.243379938609 + - 40.518011517569214 + - 177.67162506419703 + - 403.900880943964 + - 737.5889584824021 + - 1187.1774030611875 + - 1239.245945375778 + - 1292.5184293723503 + - 1347.3213147477102 + - 1403.2573725578948 + - 1460.7011898730707 + - 1519.6419125979983 + - 1580.174365096404 + - 1642.1103166918167 + - 1705.758292831 + - 1771.1659528893977 + - 2518.553107505315 + - 3448.381605840943 + - 3552.140809000129 + - 3657.9545431794127 + - 3765.121299313842 + - 3873.928844315059 + - 3984.4800226955504 + - 4096.582833096852 + - 4210.721306623712 + - 4326.154305853405 + - 4443.395565353604 + - 4562.497934188341 + - 4683.419890251577 + - 4806.164748311019 + - 4929.931918769215 + - 5000.920541636473 + - 5000.155331018289 + - 4999.981249947396 + - 4999.95577837709 + - 4999.977954833183 + - 4999.99729673573 + - 5000.00107322333 + - 5000.006250888532 + - 5000.005783964932 + - 5000.0180481355455 + - 5000.00295266134 + - 5000.015689533812 + - 5000.027006739212 + - 5000.015694513332 + - 5000.037874470919 + - 5000.021829556129 + - 5000.047786595209 + - 5000.006722827633 + - 5000.003398457957 + - 5000.044012521576 - 0.0 - 0.0 thrust_coefficient: - 0.0 - 0.0 - - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 + - 1.132034888 + - 0.999470963 + - 0.917697381 + - 0.860849503 + - 0.815371198 + - 0.811614904 + - 0.807939328 + - 0.80443352 + - 0.800993851 + - 0.79768116 + - 0.794529244 + - 0.791495834 + - 0.788560434 + - 0.787217182 + - 0.787127977 + - 0.785839257 + - 0.783812219 + - 0.783568108 + - 0.783328285 + - 0.781194418 + - 0.777292539 + - 0.773464375 + - 0.769690236 + - 0.766001924 + - 0.762348072 + - 0.758760824 + - 0.755242872 + - 0.751792927 + - 0.748434131 + - 0.745113997 + - 0.717806682 + - 0.672204789 + - 0.63831272 + - 0.610176496 + - 0.585456847 + - 0.563222111 + - 0.542912273 + - 0.399312061 + - 0.310517829 + - 0.248633226 + - 0.203543725 + - 0.169616419 + - 0.143478955 + - 0.122938861 + - 0.106515296 + - 0.093026095 + - 0.081648606 + - 0.072197368 + - 0.064388275 + - 0.057782745 - 0.0 - 0.0 wind_speed: - 0.0 - - 2.0 - - 2.5 + - 2.9 - 3.0 - - 3.5 - 4.0 - - 4.5 - 5.0 - - 5.5 - 6.0 - - 6.5 - 7.0 + - 7.1 + - 7.2 + - 7.3 + - 7.4 - 7.5 + - 7.6 + - 7.7 + - 7.8 + - 7.9 - 8.0 - - 8.5 - 9.0 - - 9.5 - 10.0 + - 10.1 + - 10.2 + - 10.3 + - 10.4 - 10.5 + - 10.6 + - 10.7 + - 10.8 + - 10.9 - 11.0 + - 11.1 + - 11.2 + - 11.3 + - 11.4 - 11.5 + - 11.6 + - 11.7 + - 11.8 + - 11.9 - 12.0 - - 12.5 - 13.0 - - 13.5 - 14.0 - - 14.5 - 15.0 - - 15.5 - 16.0 - - 16.5 - 17.0 - - 17.5 - 18.0 - - 18.5 - 19.0 - - 19.5 - 20.0 - - 20.5 - 21.0 - - 21.5 - 22.0 - - 22.5 - 23.0 - - 23.5 - 24.0 - - 24.5 - 25.0 - - 25.01 - - 25.02 + - 25.1 - 50.0 floating_tilt_table: tilt: diff --git a/floris/turbine_library/iea_10MW.yaml b/floris/turbine_library/iea_10MW.yaml index daa58256d..90d5eb64d 100644 --- a/floris/turbine_library/iea_10MW.yaml +++ b/floris/turbine_library/iea_10MW.yaml @@ -1,5 +1,7 @@ -turbine_type: iea_10MW -generator_efficiency: 1.0 +# Data based on: +# https://github.com/NREL/turbine-models/blob/master/Offshore/IEA_10MW_198_RWT.csv +turbine_type: 'iea_10MW' +generator_efficiency: 0.94 hub_height: 119.0 rotor_diameter: 198.0 TSR: 8.0 @@ -9,171 +11,78 @@ power_thrust_table: ref_tilt: 6.0 pP: 1.88 pT: 1.88 - wind_speed: - - 0.0 - - 2.9 - - 3.0 - - 4.0 - - 4.5147 - - 5.0008 - - 5.4574 - - 5.8833 - - 6.2777 - - 6.6397 - - 6.9684 - - 7.2632 - - 7.5234 - - 7.7484 - - 7.9377 - - 8.0909 - - 8.2077 - - 8.2877 - - 8.3308 - - 8.337 - - 8.3678 - - 8.4356 - - 8.5401 - - 8.6812 - - 8.8585 - - 9.0717 - - 9.3202 - - 9.6035 - - 9.921 - - 10.272 - - 10.6557 - - 10.7577 - - 11.5177 - - 11.9941 - - 12.4994 - - 13.0324 - - 13.592 - - 14.1769 - - 14.7859 - - 15.4175 - - 16.0704 - - 16.7432 - - 17.4342 - - 18.1421 - - 18.8652 - - 19.6019 - - 20.3506 - - 21.1096 - - 21.8773 - - 22.6519 - - 23.4317 - - 24.215 - - 25.01 - - 25.02 - - 50.0 power: - - 0.0 - - 0.0 - - 37.68094958908877 - - 392.3948496148231 - - 652.8777029978363 - - 949.7874838458624 - - 1273.9701534366477 - - 1624.53736790407 - - 1994.1716868646631 - - 2369.9141552410333 - - 2742.7863681556505 - - 3105.823526184341 - - 3451.7173408365657 - - 3770.7597566998656 - - 4053.935262364495 - - 4293.221213633668 - - 4481.848670501228 - - 4614.183183672742 - - 4686.546075837561 - - 4697.017416780224 - - 4749.267597733971 - - 4865.648149450861 - - 5048.724054152798 - - 5303.127287084259 - - 5634.732904516438 - - 6051.44102592321 - - 6562.487084906048 - - 7179.28820897481 - - 7915.149369234113 - - 8799.632659018345 - - 10000.004148840422 - - 10000.010118342427 - - 9999.986697903953 - - 10000.00900096281 - - 10000.010994188466 - - 9999.985254153351 - - 10000.01026748458 - - 10000.005066662203 - - 10000.02018584477 - - 10000.017032649757 - - 10000.030351494535 - - 10000.023814906699 - - 10000.036965698706 - - 10000.045823704839 - - 10000.005313131529 - - 9999.992881648563 - - 9999.96325689038 - - 9999.976811614484 - - 10000.028061758208 - - 9999.89737385537 - - 10000.082694480527 - - 10000.014032855759 - - 10011.87188590296 - - 0.0 - - 0.0 + - 0.0 + - 0.0 + - 35.60156 + - 414.0606 + - 1009.90686 + - 1855.02326 + - 2963.01442 + - 4440.26484 + - 6330.82856 + - 7392.13274 + - 8514.32824 + - 9691.10578 + - 10000.002 + - 10000.002 + - 10000.002 + - 10000.002 + - 10000.002 + - 10000.002 + - 10000.002 + - 10000.002 + - 10000.002 + - 10000.003 + - 0.0 + - 0.0 thrust_coefficient: - - 0.0 - - 0.0 - - 0.7701 - - 0.7701 - - 0.7763 - - 0.7824 - - 0.782 - - 0.7802 - - 0.7772 - - 0.7719 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7675 - - 0.7651 - - 0.7587 - - 0.5056 - - 0.431 - - 0.3708 - - 0.3209 - - 0.2788 - - 0.2432 - - 0.2128 - - 0.1868 - - 0.1645 - - 0.1454 - - 0.1289 - - 0.1147 - - 0.1024 - - 0.0918 - - 0.0825 - - 0.0745 - - 0.0675 - - 0.0613 - - 0.0559 - - 0.0512 - - 0.047 - - 0.0 - - 0.0 + - 0.0 + - 0.0 + - 0.915 + - 0.926 + - 0.921 + - 0.895 + - 0.885 + - 0.873 + - 0.827 + - 0.789 + - 0.754 + - 0.721 + - 0.591 + - 0.49 + - 0.418 + - 0.318 + - 0.251 + - 0.203 + - 0.167 + - 0.119 + - 0.088 + - 0.049 + - 0.0 + - 0.0 + wind_speed: + - 0.0000 + - 2.9 + - 3.0 + - 4.0 + - 5.0 + - 6.0 + - 7.0 + - 8.0 + - 9.0 + - 9.5 + - 10.0 + - 10.5 + - 11.0 + - 11.5 + - 12.0 + - 13.0 + - 14.0 + - 15.0 + - 16.0 + - 18.0 + - 20.0 + - 25.0 + - 25.01 + - 50.0 diff --git a/floris/turbine_library/iea_10MW_v3legacy.yaml b/floris/turbine_library/iea_10MW_v3legacy.yaml deleted file mode 100644 index eaa04d81b..000000000 --- a/floris/turbine_library/iea_10MW_v3legacy.yaml +++ /dev/null @@ -1,178 +0,0 @@ -turbine_type: 'iea_10MW' -generator_efficiency: 1.0 -hub_height: 119.0 -pP: 1.88 -pT: 1.88 -rotor_diameter: 198.0 -TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 6.0 -power_thrust_table: - power: - - 0.000000 - - 0.000000 - - 0.074 - - 0.325100 - - 0.376200 - - 0.402700 - - 0.415600 - - 0.423000 - - 0.427400 - - 0.429300 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.430500 - - 0.438256 - - 0.425908 - - 0.347037 - - 0.307306 - - 0.271523 - - 0.239552 - - 0.211166 - - 0.186093 - - 0.164033 - - 0.144688 - - 0.127760 - - 0.112969 - - 0.100062 - - 0.088800 - - 0.078975 - - 0.070401 - - 0.062913 - - 0.056368 - - 0.050640 - - 0.045620 - - 0.041216 - - 0.037344 - - 0.033935 - - 0.0 - - 0.0 - thrust: - - 0.0 - - 0.0 - - 0.7701 - - 0.7701 - - 0.7763 - - 0.7824 - - 0.7820 - - 0.7802 - - 0.7772 - - 0.7719 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7675 - - 0.7651 - - 0.7587 - - 0.5056 - - 0.4310 - - 0.3708 - - 0.3209 - - 0.2788 - - 0.2432 - - 0.2128 - - 0.1868 - - 0.1645 - - 0.1454 - - 0.1289 - - 0.1147 - - 0.1024 - - 0.0918 - - 0.0825 - - 0.0745 - - 0.0675 - - 0.0613 - - 0.0559 - - 0.0512 - - 0.0470 - - 0.0 - - 0.0 - wind_speed: - - 0.0000 - - 2.9 - - 3.0 - - 4.0000 - - 4.5147 - - 5.0008 - - 5.4574 - - 5.8833 - - 6.2777 - - 6.6397 - - 6.9684 - - 7.2632 - - 7.5234 - - 7.7484 - - 7.9377 - - 8.0909 - - 8.2077 - - 8.2877 - - 8.3308 - - 8.3370 - - 8.3678 - - 8.4356 - - 8.5401 - - 8.6812 - - 8.8585 - - 9.0717 - - 9.3202 - - 9.6035 - - 9.9210 - - 10.2720 - - 10.6557 - - 10.7577 - - 11.5177 - - 11.9941 - - 12.4994 - - 13.0324 - - 13.5920 - - 14.1769 - - 14.7859 - - 15.4175 - - 16.0704 - - 16.7432 - - 17.4342 - - 18.1421 - - 18.8652 - - 19.6019 - - 20.3506 - - 21.1096 - - 21.8773 - - 22.6519 - - 23.4317 - - 24.2150 - - 25.010 - - 25.020 - - 50.0 diff --git a/floris/turbine_library/iea_10MW_v4converted.yaml b/floris/turbine_library/iea_10MW_v4converted.yaml deleted file mode 100644 index daa58256d..000000000 --- a/floris/turbine_library/iea_10MW_v4converted.yaml +++ /dev/null @@ -1,179 +0,0 @@ -turbine_type: iea_10MW -generator_efficiency: 1.0 -hub_height: 119.0 -rotor_diameter: 198.0 -TSR: 8.0 -power_thrust_model: cosine-loss -power_thrust_table: - ref_air_density: 1.225 - ref_tilt: 6.0 - pP: 1.88 - pT: 1.88 - wind_speed: - - 0.0 - - 2.9 - - 3.0 - - 4.0 - - 4.5147 - - 5.0008 - - 5.4574 - - 5.8833 - - 6.2777 - - 6.6397 - - 6.9684 - - 7.2632 - - 7.5234 - - 7.7484 - - 7.9377 - - 8.0909 - - 8.2077 - - 8.2877 - - 8.3308 - - 8.337 - - 8.3678 - - 8.4356 - - 8.5401 - - 8.6812 - - 8.8585 - - 9.0717 - - 9.3202 - - 9.6035 - - 9.921 - - 10.272 - - 10.6557 - - 10.7577 - - 11.5177 - - 11.9941 - - 12.4994 - - 13.0324 - - 13.592 - - 14.1769 - - 14.7859 - - 15.4175 - - 16.0704 - - 16.7432 - - 17.4342 - - 18.1421 - - 18.8652 - - 19.6019 - - 20.3506 - - 21.1096 - - 21.8773 - - 22.6519 - - 23.4317 - - 24.215 - - 25.01 - - 25.02 - - 50.0 - power: - - 0.0 - - 0.0 - - 37.68094958908877 - - 392.3948496148231 - - 652.8777029978363 - - 949.7874838458624 - - 1273.9701534366477 - - 1624.53736790407 - - 1994.1716868646631 - - 2369.9141552410333 - - 2742.7863681556505 - - 3105.823526184341 - - 3451.7173408365657 - - 3770.7597566998656 - - 4053.935262364495 - - 4293.221213633668 - - 4481.848670501228 - - 4614.183183672742 - - 4686.546075837561 - - 4697.017416780224 - - 4749.267597733971 - - 4865.648149450861 - - 5048.724054152798 - - 5303.127287084259 - - 5634.732904516438 - - 6051.44102592321 - - 6562.487084906048 - - 7179.28820897481 - - 7915.149369234113 - - 8799.632659018345 - - 10000.004148840422 - - 10000.010118342427 - - 9999.986697903953 - - 10000.00900096281 - - 10000.010994188466 - - 9999.985254153351 - - 10000.01026748458 - - 10000.005066662203 - - 10000.02018584477 - - 10000.017032649757 - - 10000.030351494535 - - 10000.023814906699 - - 10000.036965698706 - - 10000.045823704839 - - 10000.005313131529 - - 9999.992881648563 - - 9999.96325689038 - - 9999.976811614484 - - 10000.028061758208 - - 9999.89737385537 - - 10000.082694480527 - - 10000.014032855759 - - 10011.87188590296 - - 0.0 - - 0.0 - thrust_coefficient: - - 0.0 - - 0.0 - - 0.7701 - - 0.7701 - - 0.7763 - - 0.7824 - - 0.782 - - 0.7802 - - 0.7772 - - 0.7719 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7768 - - 0.7675 - - 0.7651 - - 0.7587 - - 0.5056 - - 0.431 - - 0.3708 - - 0.3209 - - 0.2788 - - 0.2432 - - 0.2128 - - 0.1868 - - 0.1645 - - 0.1454 - - 0.1289 - - 0.1147 - - 0.1024 - - 0.0918 - - 0.0825 - - 0.0745 - - 0.0675 - - 0.0613 - - 0.0559 - - 0.0512 - - 0.047 - - 0.0 - - 0.0 diff --git a/floris/turbine_library/iea_10MW_v4updated.yaml b/floris/turbine_library/iea_10MW_v4updated.yaml deleted file mode 100644 index ae745b46b..000000000 --- a/floris/turbine_library/iea_10MW_v4updated.yaml +++ /dev/null @@ -1,87 +0,0 @@ -# Data based on: -# https://github.com/NREL/turbine-models/blob/master/Offshore/IEA_10MW_198_RWT.csv -turbine_type: 'iea_10MW' -generator_efficiency: 1.0 -hub_height: 119.0 -rotor_diameter: 198.0 -TSR: 8.0 -power_thrust_table: - ref_air_density: 1.225 - ref_tilt: 6.0 - pP: 1.88 - pT: 1.88 - power: - - 0.000000 - - 0.000000 - - 37.874 - - 440.49 - - 1074.369 - - 1973.429 - - 3152.143 - - 4723.686 - - 6734.924 - - 7863.971 - - 9057.796 - - 10309.687 - - 10638.3 - - 10638.3 - - 10638.3 - - 10638.3 - - 10638.3 - - 10638.3 - - 10638.3 - - 10638.3 - - 10638.3 - - 10638.301 - - 0.0 - - 0.0 - thrust_coefficient: - - 0.0 - - 0.0 - - 0.915 - - 0.926 - - 0.921 - - 0.895 - - 0.885 - - 0.873 - - 0.827 - - 0.789 - - 0.754 - - 0.721 - - 0.591 - - 0.49 - - 0.418 - - 0.318 - - 0.251 - - 0.203 - - 0.167 - - 0.119 - - 0.088 - - 0.049 - - 0.0 - - 0.0 - wind_speed: - - 0.0000 - - 2.9 - - 3.0 - - 4.0 - - 5.0 - - 6.0 - - 7.0 - - 8.0 - - 9.0 - - 9.5 - - 10.0 - - 10.5 - - 11.0 - - 11.5 - - 12.0 - - 13.0 - - 14.0 - - 15.0 - - 16.0 - - 18.0 - - 20.0 - - 25.0 - - 25.01 - - 50.0 diff --git a/floris/turbine_library/iea_15MW.yaml b/floris/turbine_library/iea_15MW.yaml index d1f93dc4b..847145bcd 100644 --- a/floris/turbine_library/iea_15MW.yaml +++ b/floris/turbine_library/iea_15MW.yaml @@ -1,4 +1,7 @@ -turbine_type: iea_15MW +# Data based on: +# https://github.com/IEAWindTask37/IEA-15-240-RWT/blob/master/Documentation/ +# IEA-15-240-RWT_tabular.xlsx +turbine_type: 'iea_15MW' generator_efficiency: 1.0 hub_height: 150.0 rotor_diameter: 242.24 @@ -9,165 +12,168 @@ power_thrust_table: ref_tilt: 6.0 pP: 1.88 pT: 1.88 - wind_speed: - - 0.0 - - 3.0 - - 3.54953237 - - 4.067900771 - - 4.553906848 - - 5.006427063 - - 5.424415288 - - 5.806905228 - - 6.153012649 - - 6.461937428 - - 6.732965398 - - 6.965470002 - - 7.158913742 - - 7.312849418 - - 7.426921164 - - 7.500865272 - - 7.534510799 - - 7.541241633 - - 7.58833327 - - 7.675676842 - - 7.803070431 - - 7.970219531 - - 8.176737731 - - 8.422147605 - - 8.70588182 - - 9.027284445 - - 9.385612468 - - 9.780037514 - - 10.20964776 - - 10.67345004 - - 10.86770694 - - 11.17037214 - - 11.6992653 - - 12.25890683 - - 12.84800295 - - 13.46519181 - - 14.10904661 - - 14.77807889 - - 15.470742 - - 16.18543466 - - 16.92050464 - - 17.67425264 - - 18.44493615 - - 19.23077353 - - 20.02994808 - - 20.8406123 - - 21.66089211 - - 22.4888912 - - 23.32269542 - - 24.1603772 - - 25.0 - - 25.02 - - 50.0 power: - - 0.0 - - 37.62161892251866 - - 283.1896270728138 - - 593.2728560522313 - - 959.9819840653767 - - 1372.9939673445779 - - 1820.2824213031413 - - 2288.234638675552 - - 2762.402356940621 - - 3227.9317849259483 - - 3670.23524006855 - - 4075.3355492549404 - - 4424.289670276729 - - 4712.31145096999 - - 4933.478791318434 - - 5080.411002639729 - - 5148.20416793432 - - 5161.8373266616445 - - 5257.877358155053 - - 5439.0905873988 - - 5710.644642926693 - - 6080.1808123220335 - - 6557.896472825747 - - 7156.656114121487 - - 7892.096068144686 - - 8782.7485712001 - - 9850.132658272489 - - 11118.833728910668 - - 12616.55466282621 - - 14395.650060011094 - - 15180.873696159935 - - 15180.878025972781 - - 15180.846427684693 - - 15180.874525641515 - - 15180.873081482694 - - 15180.868180147516 - - 15180.964634095619 - - 15180.928211309449 - - 15180.909227363609 - - 15180.898248776428 - - 15180.890850809097 - - 15180.885382324133 - - 15180.881159484874 - - 15180.877937975014 - - 15180.875500759283 - - 15180.873891022644 - - 15180.894816053498 - - 15180.873173416821 - - 15180.873965755092 - - 15180.875620174738 - - 15180.87762584068 - - 0.0 - - 0.0 + - 0.000000 + - 0.000000 + - 42.733312 + - 292.585981 + - 607.966543 + - 981.097693 + - 1401.98084 + - 1858.67086 + - 2337.575997 + - 2824.097302 + - 3303.06456 + - 3759.432328 + - 4178.637714 + - 4547.19121 + - 4855.342682 + - 5091.537139 + - 5248.453137 + - 5320.793207 + - 5335.345498 + - 5437.90563 + - 5631.253025 + - 5920.980626 + - 6315.115602 + - 6824.470067 + - 7462.846389 + - 8238.359448 + - 9167.96703 + - 10285.211 + - 11617.23699 + - 13194.41511 + - 15000.0 + - 15000.00129 + - 14999.97096 + - 15000.00934 + - 15000.00063 + - 15000.00011 + - 14999.94712 + - 15000.08082 + - 15000.05209 + - 15000.03592 + - 15000.02562 + - 15000.01835 + - 15000.01281 + - 15000.00835 + - 15000.00488 + - 15000.00233 + - 15000.00066 + - 14999.87148 + - 15000.00047 + - 15000.00194 + - 15000.00417 + - 15000.00688 + - 0.0 + - 0.0 thrust_coefficient: - - 0.0 - - 0.817533319 - - 0.792115292 - - 0.786401899 - - 0.788898744 - - 0.790774576 - - 0.79208669 - - 0.79185809 - - 0.7903853 - - 0.788253035 - - 0.785845184 - - 0.783367164 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.781531069 - - 0.758935311 - - 0.614478855 - - 0.498687801 - - 0.416354609 - - 0.351944846 - - 0.299832337 - - 0.256956606 - - 0.221322169 - - 0.19150758 - - 0.166435523 - - 0.145263684 - - 0.127319849 - - 0.11206048 - - 0.099042189 - - 0.087901155 - - 0.078337446 - - 0.07010295 - - 0.062991402 - - 0.056831647 - - 0.05148062 - - 0.046818787 - - 0.0 - - 0.0 + - 0.000000 + - 0.000000 + - 0.80742173 + - 0.784655297 + - 0.781771245 + - 0.785377072 + - 0.788045584 + - 0.789922119 + - 0.790464625 + - 0.789868339 + - 0.788727582 + - 0.787359348 + - 0.785895402 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.778275899 + - 0.77176172 + - 0.747149663 + - 0.562338457 + - 0.463477777 + - 0.389083718 + - 0.329822385 + - 0.281465071 + - 0.241494345 + - 0.208180574 + - 0.180257568 + - 0.156747535 + - 0.136877529 + - 0.120026379 + - 0.105689427 + - 0.093453742 + - 0.082979637 + - 0.073986457 + - 0.066241166 + - 0.059552107 + - 0.053756866 + - 0.048721662 + - 0.044334197 + - 0.0 + - 0.0 + wind_speed: + - 0.000 + - 2.9 + - 3.0 + - 3.54953237 + - 4.067900771 + - 4.553906848 + - 5.006427063 + - 5.424415288 + - 5.806905228 + - 6.153012649 + - 6.461937428 + - 6.732965398 + - 6.965470002 + - 7.158913742 + - 7.312849418 + - 7.426921164 + - 7.500865272 + - 7.534510799 + - 7.541241633 + - 7.58833327 + - 7.675676842 + - 7.803070431 + - 7.970219531 + - 8.176737731 + - 8.422147605 + - 8.70588182 + - 9.027284445 + - 9.385612468 + - 9.780037514 + - 10.20964776 + - 10.67345004 + - 10.86770694 + - 11.17037214 + - 11.6992653 + - 12.25890683 + - 12.84800295 + - 13.46519181 + - 14.10904661 + - 14.77807889 + - 15.470742 + - 16.18543466 + - 16.92050464 + - 17.67425264 + - 18.44493615 + - 19.23077353 + - 20.02994808 + - 20.8406123 + - 21.66089211 + - 22.4888912 + - 23.32269542 + - 24.1603772 + - 25 + - 25.020 + - 50.0 diff --git a/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml b/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml deleted file mode 100644 index 58b2b3a1f..000000000 --- a/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct_v3legacy.yaml +++ /dev/null @@ -1,29 +0,0 @@ -turbine_type: 'iea_15MW_floating' -generator_efficiency: 1.0 -hub_height: 150.0 -pP: 1.88 -pT: 1.88 -rotor_diameter: 242.24 -TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 6.0 -multi_dimensional_cp_ct: True -power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' -floating_tilt_table: - tilt: - - 5.747296314800103 - - 7.2342400188651068 - - 9.0468701999352397 - - 9.762182013267733 - - 8.795649572299896 - - 8.089078308325314 - - 7.7229584934943614 - wind_speed: - - 4.0 - - 6.0 - - 8.0 - - 10.0 - - 12.0 - - 14.0 - - 16.0 -correct_cp_ct_for_tilt: True diff --git a/floris/turbine_library/iea_15MW_v3legacy.yaml b/floris/turbine_library/iea_15MW_v3legacy.yaml deleted file mode 100644 index 0350cd9c4..000000000 --- a/floris/turbine_library/iea_15MW_v3legacy.yaml +++ /dev/null @@ -1,172 +0,0 @@ -turbine_type: 'iea_15MW' -generator_efficiency: 1.0 -hub_height: 150.0 -pP: 1.88 -pT: 1.88 -rotor_diameter: 242.24 -TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 6.0 -power_thrust_table: - power: - - 0.000000 - - 0.049361236 - - 0.224324252 - - 0.312216418 - - 0.36009987 - - 0.38761204 - - 0.404010164 - - 0.413979324 - - 0.420083692 - - 0.423787764 - - 0.425977895 - - 0.427193272 - - 0.427183505 - - 0.426860928 - - 0.426617959 - - 0.426458783 - - 0.426385957 - - 0.426371389 - - 0.426268826 - - 0.426077456 - - 0.425795302 - - 0.425420049 - - 0.424948854 - - 0.424379028 - - 0.423707714 - - 0.422932811 - - 0.422052556 - - 0.421065815 - - 0.419972455 - - 0.419400676 - - 0.418981957 - - 0.385839135 - - 0.335840083 - - 0.29191329 - - 0.253572514 - - 0.220278082 - - 0.191477908 - - 0.166631343 - - 0.145236797 - - 0.126834289 - - 0.111011925 - - 0.097406118 - - 0.085699408 - - 0.075616912 - - 0.066922115 - - 0.059412477 - - 0.052915227 - - 0.04728299 - - 0.042390922 - - 0.038132739 - - 0.03441828 - - 0.0 - - 0.0 - thrust: - - 0.000000 - - 0.817533319 - - 0.792115292 - - 0.786401899 - - 0.788898744 - - 0.790774576 - - 0.79208669 - - 0.79185809 - - 0.7903853 - - 0.788253035 - - 0.785845184 - - 0.783367164 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.781531069 - - 0.758935311 - - 0.614478855 - - 0.498687801 - - 0.416354609 - - 0.351944846 - - 0.299832337 - - 0.256956606 - - 0.221322169 - - 0.19150758 - - 0.166435523 - - 0.145263684 - - 0.127319849 - - 0.11206048 - - 0.099042189 - - 0.087901155 - - 0.078337446 - - 0.07010295 - - 0.062991402 - - 0.056831647 - - 0.05148062 - - 0.046818787 - - 0.0 - - 0.0 - wind_speed: - - 0.000 - - 3 - - 3.54953237 - - 4.067900771 - - 4.553906848 - - 5.006427063 - - 5.424415288 - - 5.806905228 - - 6.153012649 - - 6.461937428 - - 6.732965398 - - 6.965470002 - - 7.158913742 - - 7.312849418 - - 7.426921164 - - 7.500865272 - - 7.534510799 - - 7.541241633 - - 7.58833327 - - 7.675676842 - - 7.803070431 - - 7.970219531 - - 8.176737731 - - 8.422147605 - - 8.70588182 - - 9.027284445 - - 9.385612468 - - 9.780037514 - - 10.20964776 - - 10.67345004 - - 10.86770694 - - 11.17037214 - - 11.6992653 - - 12.25890683 - - 12.84800295 - - 13.46519181 - - 14.10904661 - - 14.77807889 - - 15.470742 - - 16.18543466 - - 16.92050464 - - 17.67425264 - - 18.44493615 - - 19.23077353 - - 20.02994808 - - 20.8406123 - - 21.66089211 - - 22.4888912 - - 23.32269542 - - 24.1603772 - - 25 - - 25.020 - - 50.0 diff --git a/floris/turbine_library/iea_15MW_v4converted.yaml b/floris/turbine_library/iea_15MW_v4converted.yaml deleted file mode 100644 index d1f93dc4b..000000000 --- a/floris/turbine_library/iea_15MW_v4converted.yaml +++ /dev/null @@ -1,173 +0,0 @@ -turbine_type: iea_15MW -generator_efficiency: 1.0 -hub_height: 150.0 -rotor_diameter: 242.24 -TSR: 8.0 -power_thrust_model: cosine-loss -power_thrust_table: - ref_air_density: 1.225 - ref_tilt: 6.0 - pP: 1.88 - pT: 1.88 - wind_speed: - - 0.0 - - 3.0 - - 3.54953237 - - 4.067900771 - - 4.553906848 - - 5.006427063 - - 5.424415288 - - 5.806905228 - - 6.153012649 - - 6.461937428 - - 6.732965398 - - 6.965470002 - - 7.158913742 - - 7.312849418 - - 7.426921164 - - 7.500865272 - - 7.534510799 - - 7.541241633 - - 7.58833327 - - 7.675676842 - - 7.803070431 - - 7.970219531 - - 8.176737731 - - 8.422147605 - - 8.70588182 - - 9.027284445 - - 9.385612468 - - 9.780037514 - - 10.20964776 - - 10.67345004 - - 10.86770694 - - 11.17037214 - - 11.6992653 - - 12.25890683 - - 12.84800295 - - 13.46519181 - - 14.10904661 - - 14.77807889 - - 15.470742 - - 16.18543466 - - 16.92050464 - - 17.67425264 - - 18.44493615 - - 19.23077353 - - 20.02994808 - - 20.8406123 - - 21.66089211 - - 22.4888912 - - 23.32269542 - - 24.1603772 - - 25.0 - - 25.02 - - 50.0 - power: - - 0.0 - - 37.62161892251866 - - 283.1896270728138 - - 593.2728560522313 - - 959.9819840653767 - - 1372.9939673445779 - - 1820.2824213031413 - - 2288.234638675552 - - 2762.402356940621 - - 3227.9317849259483 - - 3670.23524006855 - - 4075.3355492549404 - - 4424.289670276729 - - 4712.31145096999 - - 4933.478791318434 - - 5080.411002639729 - - 5148.20416793432 - - 5161.8373266616445 - - 5257.877358155053 - - 5439.0905873988 - - 5710.644642926693 - - 6080.1808123220335 - - 6557.896472825747 - - 7156.656114121487 - - 7892.096068144686 - - 8782.7485712001 - - 9850.132658272489 - - 11118.833728910668 - - 12616.55466282621 - - 14395.650060011094 - - 15180.873696159935 - - 15180.878025972781 - - 15180.846427684693 - - 15180.874525641515 - - 15180.873081482694 - - 15180.868180147516 - - 15180.964634095619 - - 15180.928211309449 - - 15180.909227363609 - - 15180.898248776428 - - 15180.890850809097 - - 15180.885382324133 - - 15180.881159484874 - - 15180.877937975014 - - 15180.875500759283 - - 15180.873891022644 - - 15180.894816053498 - - 15180.873173416821 - - 15180.873965755092 - - 15180.875620174738 - - 15180.87762584068 - - 0.0 - - 0.0 - thrust_coefficient: - - 0.0 - - 0.817533319 - - 0.792115292 - - 0.786401899 - - 0.788898744 - - 0.790774576 - - 0.79208669 - - 0.79185809 - - 0.7903853 - - 0.788253035 - - 0.785845184 - - 0.783367164 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.77853469 - - 0.781531069 - - 0.758935311 - - 0.614478855 - - 0.498687801 - - 0.416354609 - - 0.351944846 - - 0.299832337 - - 0.256956606 - - 0.221322169 - - 0.19150758 - - 0.166435523 - - 0.145263684 - - 0.127319849 - - 0.11206048 - - 0.099042189 - - 0.087901155 - - 0.078337446 - - 0.07010295 - - 0.062991402 - - 0.056831647 - - 0.05148062 - - 0.046818787 - - 0.0 - - 0.0 diff --git a/floris/turbine_library/iea_15MW_v4updated.yaml b/floris/turbine_library/iea_15MW_v4updated.yaml deleted file mode 100644 index 163a3da74..000000000 --- a/floris/turbine_library/iea_15MW_v4updated.yaml +++ /dev/null @@ -1,178 +0,0 @@ -# Data based on: -# https://github.com/IEAWindTask37/IEA-15-240-RWT/blob/master/Documentation/ -# IEA-15-240-RWT_tabular.xlsx -turbine_type: 'iea_15MW' -generator_efficiency: 1.0 -hub_height: 150.0 -rotor_diameter: 242.24 -TSR: 8.0 -power_thrust_table: - ref_air_density: 1.225 - ref_tilt: 6.0 - pP: 1.88 - pT: 1.88 - power: - - 0.000000 - - 0.000000 - - 42.733312 - - 292.585981 - - 607.966543 - - 981.097693 - - 1401.98084 - - 1858.67086 - - 2337.575997 - - 2824.097302 - - 3303.06456 - - 3759.432328 - - 4178.637714 - - 4547.19121 - - 4855.342682 - - 5091.537139 - - 5248.453137 - - 5320.793207 - - 5335.345498 - - 5437.90563 - - 5631.253025 - - 5920.980626 - - 6315.115602 - - 6824.470067 - - 7462.846389 - - 8238.359448 - - 9167.96703 - - 10285.211 - - 11617.23699 - - 13194.41511 - - 15000.0 - - 15000.00129 - - 14999.97096 - - 15000.00934 - - 15000.00063 - - 15000.00011 - - 14999.94712 - - 15000.08082 - - 15000.05209 - - 15000.03592 - - 15000.02562 - - 15000.01835 - - 15000.01281 - - 15000.00835 - - 15000.00488 - - 15000.00233 - - 15000.00066 - - 14999.87148 - - 15000.00047 - - 15000.00194 - - 15000.00417 - - 15000.00688 - - 0.0 - - 0.0 - thrust_coefficient: - - 0.000000 - - 0.000000 - - 0.80742173 - - 0.784655297 - - 0.781771245 - - 0.785377072 - - 0.788045584 - - 0.789922119 - - 0.790464625 - - 0.789868339 - - 0.788727582 - - 0.787359348 - - 0.785895402 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.778275899 - - 0.77176172 - - 0.747149663 - - 0.562338457 - - 0.463477777 - - 0.389083718 - - 0.329822385 - - 0.281465071 - - 0.241494345 - - 0.208180574 - - 0.180257568 - - 0.156747535 - - 0.136877529 - - 0.120026379 - - 0.105689427 - - 0.093453742 - - 0.082979637 - - 0.073986457 - - 0.066241166 - - 0.059552107 - - 0.053756866 - - 0.048721662 - - 0.044334197 - - 0.0 - - 0.0 - wind_speed: - - 0.000 - - 2.9 - - 3.0 - - 3.54953237 - - 4.067900771 - - 4.553906848 - - 5.006427063 - - 5.424415288 - - 5.806905228 - - 6.153012649 - - 6.461937428 - - 6.732965398 - - 6.965470002 - - 7.158913742 - - 7.312849418 - - 7.426921164 - - 7.500865272 - - 7.534510799 - - 7.541241633 - - 7.58833327 - - 7.675676842 - - 7.803070431 - - 7.970219531 - - 8.176737731 - - 8.422147605 - - 8.70588182 - - 9.027284445 - - 9.385612468 - - 9.780037514 - - 10.20964776 - - 10.67345004 - - 10.86770694 - - 11.17037214 - - 11.6992653 - - 12.25890683 - - 12.84800295 - - 13.46519181 - - 14.10904661 - - 14.77807889 - - 15.470742 - - 16.18543466 - - 16.92050464 - - 17.67425264 - - 18.44493615 - - 19.23077353 - - 20.02994808 - - 20.8406123 - - 21.66089211 - - 22.4888912 - - 23.32269542 - - 24.1603772 - - 25 - - 25.020 - - 50.0 diff --git a/floris/turbine_library/nrel_5MW.yaml b/floris/turbine_library/nrel_5MW.yaml index 4337ac8f7..066eb9b79 100644 --- a/floris/turbine_library/nrel_5MW.yaml +++ b/floris/turbine_library/nrel_5MW.yaml @@ -1,17 +1,16 @@ - +# NREL 5MW reference wind turbine. +# Data based on: +# https://github.com/NREL/turbine-models/blob/master/Offshore/NREL_5MW_126_RWT_corrected.csv ### # An ID for this type of turbine definition. # This is not currently used, but it will be enabled in the future. This should typically # match the root name of the file. - -# Data based on: -# https://github.com/NREL/turbine-models/blob/master/Offshore/NREL_5MW_126_RWT.csv turbine_type: 'nrel_5MW' ### # Setting for generator losses to power. -generator_efficiency: 1.0 +generator_efficiency: 0.944 ### # Hub height. @@ -19,7 +18,7 @@ hub_height: 90.0 ### # Rotor diameter. -rotor_diameter: 126.0 +rotor_diameter: 125.88 ### # Tip speed ratio defined as linear blade tip speed normalized by the incoming wind speed. @@ -45,160 +44,169 @@ power_thrust_table: ### Power thrust table data wind_speed: - 0.0 - - 2.0 - - 2.5 + - 2.9 - 3.0 - - 3.5 - 4.0 - - 4.5 - 5.0 - - 5.5 - 6.0 - - 6.5 - 7.0 + - 7.1 + - 7.2 + - 7.3 + - 7.4 - 7.5 + - 7.6 + - 7.7 + - 7.8 + - 7.9 - 8.0 - - 8.5 - 9.0 - - 9.5 - 10.0 + - 10.1 + - 10.2 + - 10.3 + - 10.4 - 10.5 + - 10.6 + - 10.7 + - 10.8 + - 10.9 - 11.0 + - 11.1 + - 11.2 + - 11.3 + - 11.4 - 11.5 + - 11.6 + - 11.7 + - 11.8 + - 11.9 - 12.0 - - 12.5 - 13.0 - - 13.5 - 14.0 - - 14.5 - 15.0 - - 15.5 - 16.0 - - 16.5 - 17.0 - - 17.5 - 18.0 - - 18.5 - 19.0 - - 19.5 - 20.0 - - 20.5 - 21.0 - - 21.5 - 22.0 - - 22.5 - 23.0 - - 23.5 - 24.0 - - 24.5 - 25.0 - - 25.01 - - 25.02 + - 25.1 - 50.0 power: - 0.0 - 0.0 - - 0.0 - - 36.722155848902254 - - 94.65678115354163 - - 170.596391826316 - - 267.74933496419163 - - 387.64681352354114 - - 533.9617151673435 - - 707.4062402827329 - - 909.9965782677073 - - 1142.7197798534328 - - 1407.4994184495558 - - 1707.1272243371227 - - 2047.3355806543098 - - 2430.5778091805637 - - 2858.3081150622215 - - 3329.100627354195 - - 3842.9755943182267 - - 4403.86140594055 - - 4999.993508066915 - - 4999.99850473839 - - 4999.997854617397 - - 5000.00304890274 - - 5000.002113339491 - - 4999.997282778227 - - 5000.002243172759 - - 5000.000360590384 - - 5000.009074693787 - - 4999.987262704901 - - 5000.007345811091 - - 5000.006875165497 - - 4999.994990648268 - - 4999.97705933755 - - 4999.983698972648 - - 4999.991318085188 - - 5000.024022703328 - - 5000.016589748782 - - 5000.025709581146 - - 4999.944891236294 - - 5000.035324880168 - - 4999.967955734346 - - 5000.013248451465 - - 5000.063199891701 - - 5000.068982245371 - - 4999.9325188896555 - - 5000.011035557985 - - 5000.012771123277 - - 4717.243379938609 + - 40.518011517569214 + - 177.67162506419703 + - 403.900880943964 + - 737.5889584824021 + - 1187.1774030611875 + - 1239.245945375778 + - 1292.5184293723503 + - 1347.3213147477102 + - 1403.2573725578948 + - 1460.7011898730707 + - 1519.6419125979983 + - 1580.174365096404 + - 1642.1103166918167 + - 1705.758292831 + - 1771.1659528893977 + - 2518.553107505315 + - 3448.381605840943 + - 3552.140809000129 + - 3657.9545431794127 + - 3765.121299313842 + - 3873.928844315059 + - 3984.4800226955504 + - 4096.582833096852 + - 4210.721306623712 + - 4326.154305853405 + - 4443.395565353604 + - 4562.497934188341 + - 4683.419890251577 + - 4806.164748311019 + - 4929.931918769215 + - 5000.920541636473 + - 5000.155331018289 + - 4999.981249947396 + - 4999.95577837709 + - 4999.977954833183 + - 4999.99729673573 + - 5000.00107322333 + - 5000.006250888532 + - 5000.005783964932 + - 5000.0180481355455 + - 5000.00295266134 + - 5000.015689533812 + - 5000.027006739212 + - 5000.015694513332 + - 5000.037874470919 + - 5000.021829556129 + - 5000.047786595209 + - 5000.006722827633 + - 5000.003398457957 + - 5000.044012521576 - 0.0 - 0.0 thrust_coefficient: - - 0.0 - - 0.0 - - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 - - 0.0 - - 0.0 + - 0.0 + - 0.0 + - 1.132034888 + - 0.999470963 + - 0.917697381 + - 0.860849503 + - 0.815371198 + - 0.811614904 + - 0.807939328 + - 0.80443352 + - 0.800993851 + - 0.79768116 + - 0.794529244 + - 0.791495834 + - 0.788560434 + - 0.787217182 + - 0.787127977 + - 0.785839257 + - 0.783812219 + - 0.783568108 + - 0.783328285 + - 0.781194418 + - 0.777292539 + - 0.773464375 + - 0.769690236 + - 0.766001924 + - 0.762348072 + - 0.758760824 + - 0.755242872 + - 0.751792927 + - 0.748434131 + - 0.745113997 + - 0.717806682 + - 0.672204789 + - 0.63831272 + - 0.610176496 + - 0.585456847 + - 0.563222111 + - 0.542912273 + - 0.399312061 + - 0.310517829 + - 0.248633226 + - 0.203543725 + - 0.169616419 + - 0.143478955 + - 0.122938861 + - 0.106515296 + - 0.093026095 + - 0.081648606 + - 0.072197368 + - 0.064388275 + - 0.057782745 + - 0.0 + - 0.0 ### # A boolean flag used when the user wants FLORIS to use the user-supplied multi-dimensional diff --git a/floris/turbine_library/nrel_5MW_v3legacy.yaml b/floris/turbine_library/nrel_5MW_v3legacy.yaml deleted file mode 100644 index 653ef14c7..000000000 --- a/floris/turbine_library/nrel_5MW_v3legacy.yaml +++ /dev/null @@ -1,212 +0,0 @@ - -### -# An ID for this type of turbine definition. -# This is not currently used, but it will be enabled in the future. This should typically -# match the root name of the file. -turbine_type: 'nrel_5MW' - -### -# Setting for generator losses to power. -generator_efficiency: 1.0 - -### -# Hub height. -hub_height: 90.0 - -### -# Cosine exponent for power loss due to yaw misalignment. -pP: 1.88 - -### -# Cosine exponent for power loss due to tilt. -pT: 1.88 - -### -# Rotor diameter. -rotor_diameter: 126.0 - -### -# Tip speed ratio defined as linear blade tip speed normalized by the incoming wind speed. -TSR: 8.0 - -### -# The air density at which the Cp and Ct curves are defined. -ref_density_cp_ct: 1.225 - -### -# The tilt angle at which the Cp and Ct curves are defined. This is used to capture -# the effects of a floating platform on a turbine's power and wake. -ref_tilt_cp_ct: 5.0 - -### -# Cp and Ct as a function of wind speed for the turbine's full range of operating conditions. -power_thrust_table: - power: - - 0.0 - - 0.000000 - - 0.000000 - - 0.178085 - - 0.289075 - - 0.349022 - - 0.384728 - - 0.406059 - - 0.420228 - - 0.428823 - - 0.433873 - - 0.436223 - - 0.436845 - - 0.436575 - - 0.436511 - - 0.436561 - - 0.436517 - - 0.435903 - - 0.434673 - - 0.433230 - - 0.430466 - - 0.378869 - - 0.335199 - - 0.297991 - - 0.266092 - - 0.238588 - - 0.214748 - - 0.193981 - - 0.175808 - - 0.159835 - - 0.145741 - - 0.133256 - - 0.122157 - - 0.112257 - - 0.103399 - - 0.095449 - - 0.088294 - - 0.081836 - - 0.075993 - - 0.070692 - - 0.065875 - - 0.061484 - - 0.057476 - - 0.053809 - - 0.050447 - - 0.047358 - - 0.044518 - - 0.041900 - - 0.039483 - - 0.0 - - 0.0 - thrust: - - 0.0 - - 0.0 - - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 - - 0.0 - - 0.0 - wind_speed: - - 0.0 - - 2.0 - - 2.5 - - 3.0 - - 3.5 - - 4.0 - - 4.5 - - 5.0 - - 5.5 - - 6.0 - - 6.5 - - 7.0 - - 7.5 - - 8.0 - - 8.5 - - 9.0 - - 9.5 - - 10.0 - - 10.5 - - 11.0 - - 11.5 - - 12.0 - - 12.5 - - 13.0 - - 13.5 - - 14.0 - - 14.5 - - 15.0 - - 15.5 - - 16.0 - - 16.5 - - 17.0 - - 17.5 - - 18.0 - - 18.5 - - 19.0 - - 19.5 - - 20.0 - - 20.5 - - 21.0 - - 21.5 - - 22.0 - - 22.5 - - 23.0 - - 23.5 - - 24.0 - - 24.5 - - 25.0 - - 25.01 - - 25.02 - - 50.0 - -### -# A boolean flag used when the user wants FLORIS to use the user-supplied multi-dimensional -# Cp/Ct information. -multi_dimensional_cp_ct: False - -### -# The path to the .csv file that contains the multi-dimensional Cp/Ct data. The format of this -# file is such that any external conditions, such as wave height or wave period, that the -# Cp/Ct data is dependent on come first, in column format. The last three columns of the .csv -# file must be ``ws``, ``Cp``, and ``Ct``, in that order. An example of fictional data is given -# in ``floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv``. -power_thrust_data_file: '../floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv' diff --git a/floris/turbine_library/nrel_5MW_v4converted.yaml b/floris/turbine_library/nrel_5MW_v4converted.yaml deleted file mode 100644 index 0bd7fb08a..000000000 --- a/floris/turbine_library/nrel_5MW_v4converted.yaml +++ /dev/null @@ -1,167 +0,0 @@ -turbine_type: nrel_5MW -generator_efficiency: 1.0 -hub_height: 90.0 -rotor_diameter: 126.0 -TSR: 8.0 -power_thrust_model: cosine-loss -power_thrust_table: - ref_air_density: 1.225 - ref_tilt: 5.0 - pP: 1.88 - pT: 1.88 - wind_speed: - - 0.0 - - 2.0 - - 2.5 - - 3.0 - - 3.5 - - 4.0 - - 4.5 - - 5.0 - - 5.5 - - 6.0 - - 6.5 - - 7.0 - - 7.5 - - 8.0 - - 8.5 - - 9.0 - - 9.5 - - 10.0 - - 10.5 - - 11.0 - - 11.5 - - 12.0 - - 12.5 - - 13.0 - - 13.5 - - 14.0 - - 14.5 - - 15.0 - - 15.5 - - 16.0 - - 16.5 - - 17.0 - - 17.5 - - 18.0 - - 18.5 - - 19.0 - - 19.5 - - 20.0 - - 20.5 - - 21.0 - - 21.5 - - 22.0 - - 22.5 - - 23.0 - - 23.5 - - 24.0 - - 24.5 - - 25.0 - - 25.01 - - 25.02 - - 50.0 - power: - - 0.0 - - 0.0 - - 0.0 - - 36.722155848902254 - - 94.65678115354163 - - 170.596391826316 - - 267.74933496419163 - - 387.64681352354114 - - 533.9617151673435 - - 707.4062402827329 - - 909.9965782677073 - - 1142.7197798534328 - - 1407.4994184495558 - - 1707.1272243371227 - - 2047.3355806543098 - - 2430.5778091805637 - - 2858.3081150622215 - - 3329.100627354195 - - 3842.9755943182267 - - 4403.86140594055 - - 4999.993508066915 - - 4999.99850473839 - - 4999.997854617397 - - 5000.00304890274 - - 5000.002113339491 - - 4999.997282778227 - - 5000.002243172759 - - 5000.000360590384 - - 5000.009074693787 - - 4999.987262704901 - - 5000.007345811091 - - 5000.006875165497 - - 4999.994990648268 - - 4999.97705933755 - - 4999.983698972648 - - 4999.991318085188 - - 5000.024022703328 - - 5000.016589748782 - - 5000.025709581146 - - 4999.944891236294 - - 5000.035324880168 - - 4999.967955734346 - - 5000.013248451465 - - 5000.063199891701 - - 5000.068982245371 - - 4999.9325188896555 - - 5000.011035557985 - - 5000.012771123277 - - 4717.243379938609 - - 0.0 - - 0.0 - thrust_coefficient: - - 0.0 - - 0.0 - - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 - - 0.0 - - 0.0 diff --git a/floris/turbine_library/nrel_5MW_v4updated.yaml b/floris/turbine_library/nrel_5MW_v4updated.yaml deleted file mode 100644 index d12fcf668..000000000 --- a/floris/turbine_library/nrel_5MW_v4updated.yaml +++ /dev/null @@ -1,191 +0,0 @@ - -### -# An ID for this type of turbine definition. -# This is not currently used, but it will be enabled in the future. This should typically -# match the root name of the file. - -# Data based on: -# https://github.com/NREL/turbine-models/blob/master/Offshore/NREL_5MW_126_RWT.csv -turbine_type: 'nrel_5MW' - -### -# Setting for generator losses to power. -generator_efficiency: 1.0 - -### -# Hub height. -hub_height: 90.0 - -### -# Rotor diameter. -rotor_diameter: 126.0 - -### -# Tip speed ratio defined as linear blade tip speed normalized by the incoming wind speed. -TSR: 8.0 - -### -# Cp and Ct as a function of wind speed for the turbine's full range of operating conditions. -power_thrust_table: - ### Power thrust table parameters - # The air density at which the Cp and Ct curves are defined. - ref_air_density: 1.225 - # The tilt angle at which the Cp and Ct curves are defined. This is used to capture - # the effects of a floating platform on a turbine's power and wake. - ref_tilt: 5.0 - # Cosine exponent for power loss due to tilt. - pT: 1.88 - # Cosine exponent for power loss due to yaw misalignment. - pP: 1.88 - ### Power thrust table data - power: - - 0.0 - - 0.0 - - 40.5 - - 177.7 - - 403.9 - - 737.6 - - 1187.2 - - 1771.1 - - 2518.6 - - 3448.41 - - 3552.15 - - 3657.95 - - 3765.16 - - 3873.95 - - 3984.49 - - 4096.56 - - 4210.69 - - 4326.15 - - 4443.41 - - 4562.51 - - 4683.43 - - 4806.18 - - 4929.92 - - 5000.37 - - 5000.02 - - 5000.0 - - 4999.99 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 5000.0 - - 0.0 - - 0.0 - thrust_coefficient: - - 0.0 - - 0.0 - - 2.497990147 - - 1.766833378 - - 1.408360153 - - 1.201348494 - - 1.065133759 - - 0.977936955 - - 0.936281559 - - 0.905425262 - - 0.902755344 - - 0.90016155 - - 0.895745235 - - 0.889630636 - - 0.883651878 - - 0.877788261 - - 0.872068513 - - 0.866439424 - - 0.860930874 - - 0.855544522 - - 0.850276473 - - 0.845148048 - - 0.840105118 - - 0.811165614 - - 0.764009698 - - 0.728584172 - - 0.698944675 - - 0.672754103 - - 0.649082557 - - 0.627368152 - - 0.471373796 - - 0.372703289 - - 0.30290131 - - 0.251235686 - - 0.211900735 - - 0.181210571 - - 0.156798163 - - 0.137091212 - - 0.120753164 - - 0.106941036 - - 0.095319286 - - 0.085631997 - - 0.077368152 - - 0.0 - - 0.0 - wind_speed: - - 0.0 - - 2.9 - - 3.0 - - 4.0 - - 5.0 - - 6.0 - - 7.0 - - 8.0 - - 9.0 - - 10.0 - - 10.1 - - 10.2 - - 10.3 - - 10.4 - - 10.5 - - 10.6 - - 10.7 - - 10.8 - - 10.9 - - 11.0 - - 11.1 - - 11.2 - - 11.3 - - 11.4 - - 11.5 - - 11.6 - - 11.7 - - 11.8 - - 11.9 - - 12.0 - - 13.0 - - 14.0 - - 15.0 - - 16.0 - - 17.0 - - 18.0 - - 19.0 - - 20.0 - - 21.0 - - 22.0 - - 23.0 - - 24.0 - - 25.0 - - 25.01 - - 50.0 - -### -# A boolean flag used when the user wants FLORIS to use the user-supplied multi-dimensional -# Cp/Ct information. -multi_dimensional_cp_ct: False - -### -# The path to the .csv file that contains the multi-dimensional Cp/Ct data. The format of this -# file is such that any external conditions, such as wave height or wave period, that the -# Cp/Ct data is dependent on come first, in column format. The last three columns of the .csv -# file must be ``ws``, ``Cp``, and ``Ct``, in that order. An example of fictional data is given -# in ``floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv``. -power_thrust_data_file: '../floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv' diff --git a/floris/turbine_library/turbine_utilities.py b/floris/turbine_library/turbine_utilities.py index 9de8dce6b..bf553d2df 100644 --- a/floris/turbine_library/turbine_utilities.py +++ b/floris/turbine_library/turbine_utilities.py @@ -24,11 +24,11 @@ def build_cosine_loss_turbine_dict( turbine_data_dict, turbine_name, file_name=None, - generator_efficiency=1.0, + generator_efficiency=0.944, hub_height=90.0, pP=1.88, pT=1.88, - rotor_diameter=126.0, + rotor_diameter=125.88, TSR=8.0, ref_air_density=1.225, ref_tilt=5.0 @@ -106,7 +106,11 @@ def build_cosine_loss_turbine_dict( validity_mask = (Cp != 0) | (u != 0) p = np.zeros_like(Cp, dtype=float) - p[validity_mask] = Cp[validity_mask]*0.5*ref_air_density*A*u[validity_mask]**3 / 1000 + p[validity_mask] = ( + Cp[validity_mask] + * 0.5 * ref_air_density * A * generator_efficiency + * u[validity_mask]**3 / 1000 + ) else: raise KeyError( diff --git a/floris/turbine_library/x_20MW.yaml b/floris/turbine_library/x_20MW.yaml deleted file mode 100644 index 9d515db89..000000000 --- a/floris/turbine_library/x_20MW.yaml +++ /dev/null @@ -1,178 +0,0 @@ -turbine_type: 'x_20MW' -generator_efficiency: 1.0 -hub_height: 165.0 -pP: 1.88 -pT: 1.88 -rotor_diameter: 252.0 -TSR: 8.0 -ref_air_density: 1.225 -ref_tilt: 5.0 -power_thrust_table: - power: - - 0.000000 - - 0.000000 - - 0.074000 - - 0.325100 - - 0.376200 - - 0.402700 - - 0.415600 - - 0.423000 - - 0.427400 - - 0.429300 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429800 - - 0.429603 - - 0.354604 - - 0.316305 - - 0.281478 - - 0.250068 - - 0.221924 - - 0.196845 - - 0.174592 - - 0.154919 - - 0.137570 - - 0.122300 - - 0.108881 - - 0.097094 - - 0.086747 - - 0.077664 - - 0.069686 - - 0.062677 - - 0.056511 - - 0.051083 - - 0.046299 - - 0.043182 - - 0.033935 - - 0.000000 - - 0.000000 - thrust_coefficient: - - 0.000000 - - 0.000000 - - 0.770100 - - 0.770100 - - 0.776300 - - 0.782400 - - 0.782000 - - 0.780200 - - 0.777200 - - 0.771900 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.776800 - - 0.767500 - - 0.765100 - - 0.758700 - - 0.505600 - - 0.431000 - - 0.370800 - - 0.320900 - - 0.278800 - - 0.243200 - - 0.212800 - - 0.186800 - - 0.164500 - - 0.145400 - - 0.128900 - - 0.114700 - - 0.102400 - - 0.091800 - - 0.082500 - - 0.074500 - - 0.067500 - - 0.061300 - - 0.055900 - - 0.051200 - - 0.047000 - - 0.000000 - - 0.000000 - wind_speed: - - 0.000000 - - 2.900000 - - 3.000000 - - 4.000000 - - 4.514700 - - 5.000800 - - 5.457400 - - 5.883300 - - 6.277700 - - 6.639700 - - 6.968400 - - 7.263200 - - 7.523400 - - 7.748400 - - 7.937700 - - 8.090900 - - 8.207700 - - 8.287700 - - 8.330800 - - 8.337000 - - 8.367800 - - 8.435600 - - 8.540100 - - 8.681200 - - 8.858500 - - 9.071700 - - 9.320200 - - 9.603500 - - 9.921000 - - 10.272000 - - 10.655700 - - 11.507700 - - 12.267700 - - 12.744100 - - 13.249400 - - 13.782400 - - 14.342000 - - 14.926900 - - 15.535900 - - 16.167500 - - 16.820400 - - 17.493200 - - 18.184200 - - 18.892100 - - 19.615200 - - 20.351900 - - 21.100600 - - 21.859600 - - 22.627300 - - 23.401900 - - 24.181700 - - 24.750000 - - 25.010000 - - 25.020000 - - 50.000000 diff --git a/tests/conftest.py b/tests/conftest.py index d1aefa535..65a0144a4 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -201,9 +201,9 @@ class SampleInputs: def __init__(self): self.turbine = { "turbine_type": "nrel_5mw", - "rotor_diameter": 126.0, + "rotor_diameter": 125.88, "hub_height": 90.0, - "generator_efficiency": 1.0, + "generator_efficiency": 0.944, "power_thrust_model": "cosine-loss", "power_thrust_table": { "pP": 1.88, @@ -213,152 +213,170 @@ def __init__(self): "power": [ 0.0, 0.0, - 36.722155848902254, - 94.65678115354163, - 170.596391826316, - 267.74933496419163, - 387.64681352354114, - 533.9617151673435, - 707.4062402827329, - 909.9965782677073, - 1142.7197798534328, - 1407.4994184495558, - 1707.1272243371227, - 2047.3355806543098, - 2430.5778091805637, - 2858.3081150622215, - 3329.100627354195, - 3842.9755943182267, - 4403.86140594055, - 4999.993508066915, - 4999.99850473839, - 4999.997854617397, - 5000.00304890274, - 5000.002113339491, - 4999.997282778227, - 5000.002243172759, - 5000.000360590384, - 5000.009074693787, - 4999.987262704901, - 5000.007345811091, - 5000.006875165497, - 4999.994990648268, - 4999.97705933755, - 4999.983698972648, - 4999.991318085188, - 5000.024022703328, - 5000.016589748782, - 5000.025709581146, - 4999.944891236294, - 5000.035324880168, - 4999.967955734346, - 5000.013248451465, - 5000.063199891701, - 5000.068982245371, - 4999.9325188896555, - 5000.011035557985, - 5000.012771123277, - 5000.0 + 40.51801151756921, + 177.6716250641970, + 403.900880943964, + 737.5889584824021, + 1187.177403061187, + 1239.245945375778, + 1292.518429372350, + 1347.321314747710, + 1403.257372557894, + 1460.701189873070, + 1519.641912597998, + 1580.174365096404, + 1642.110316691816, + 1705.758292831, + 1771.165952889397, + 2518.553107505315, + 3448.381605840943, + 3552.140809000129, + 3657.954543179412, + 3765.121299313842, + 3873.928844315059, + 3984.480022695550, + 4096.582833096852, + 4210.721306623712, + 4326.154305853405, + 4443.395565353604, + 4562.497934188341, + 4683.419890251577, + 4806.164748311019, + 4929.931918769215, + 5000.920541636473, + 5000.155331018289, + 4999.981249947396, + 4999.95577837709, + 4999.977954833183, + 4999.99729673573, + 5000.00107322333, + 5000.006250888532, + 5000.005783964932, + 5000.018048135545, + 5000.00295266134, + 5000.015689533812, + 5000.027006739212, + 5000.015694513332, + 5000.037874470919, + 5000.021829556129, + 5000.047786595209, + 5000.006722827633, + 5000.003398457957, + 5000.044012521576, + 0.0, + 0.0, ], "thrust_coefficient": [ 0.0, 0.0, - 0.99, - 0.99, - 0.97373036, - 0.92826162, - 0.89210543, - 0.86100905, - 0.835423, - 0.81237673, - 0.79225789, - 0.77584769, - 0.7629228, - 0.76156073, - 0.76261984, - 0.76169723, - 0.75232027, - 0.74026851, - 0.72987175, - 0.70701647, - 0.54054532, - 0.45509459, - 0.39343381, - 0.34250785, - 0.30487242, - 0.27164979, - 0.24361964, - 0.21973831, - 0.19918151, - 0.18131868, - 0.16537679, - 0.15103727, - 0.13998636, - 0.1289037, - 0.11970413, - 0.11087113, - 0.10339901, - 0.09617888, - 0.09009926, - 0.08395078, - 0.0791188, - 0.07448356, - 0.07050731, - 0.06684119, - 0.06345518, - 0.06032267, - 0.05741999, - 0.05472609, + 1.132034888, + 0.999470963, + 0.917697381, + 0.860849503, + 0.815371198, + 0.811614904, + 0.807939328, + 0.80443352, + 0.800993851, + 0.79768116, + 0.794529244, + 0.791495834, + 0.788560434, + 0.787217182, + 0.787127977, + 0.785839257, + 0.783812219, + 0.783568108, + 0.783328285, + 0.781194418, + 0.777292539, + 0.773464375, + 0.769690236, + 0.766001924, + 0.762348072, + 0.758760824, + 0.755242872, + 0.751792927, + 0.748434131, + 0.745113997, + 0.717806682, + 0.672204789, + 0.63831272, + 0.610176496, + 0.585456847, + 0.563222111, + 0.542912273, + 0.399312061, + 0.310517829, + 0.248633226, + 0.203543725, + 0.169616419, + 0.143478955, + 0.122938861, + 0.106515296, + 0.093026095, + 0.081648606, + 0.072197368, + 0.064388275, + 0.057782745, + 0.0, + 0.0, ], "wind_speed": [ - 2.0, - 2.5, + 0.0, + 2.9, 3.0, - 3.5, 4.0, - 4.5, 5.0, - 5.5, 6.0, - 6.5, 7.0, + 7.1, + 7.2, + 7.3, + 7.4, 7.5, + 7.6, + 7.7, + 7.8, + 7.9, 8.0, - 8.5, 9.0, - 9.5, 10.0, + 10.1, + 10.2, + 10.3, + 10.4, 10.5, + 10.6, + 10.7, + 10.8, + 10.9, 11.0, + 11.1, + 11.2, + 11.3, + 11.4, 11.5, + 11.6, + 11.7, + 11.8, + 11.9, 12.0, - 12.5, 13.0, - 13.5, 14.0, - 14.5, 15.0, - 15.5, 16.0, - 16.5, 17.0, - 17.5, 18.0, - 18.5, 19.0, - 19.5, 20.0, - 20.5, 21.0, - 21.5, 22.0, - 22.5, 23.0, - 23.5, 24.0, - 24.5, 25.0, - 25.5, + 25.1, + 50.0, ], }, "TSR": 8.0 @@ -496,3 +514,186 @@ def __init__(self): "description": "Inputs used for testing", "floris_version": "v3.0.0", } + + self.v3type_turbine = { + "turbine_type": "nrel_5mw_v3type", + "rotor_diameter": 125.88, + "hub_height": 90.0, + "generator_efficiency": 0.944, + "power_thrust_model": "cosine-loss", + "pP": 1.88, + "pT": 1.88, + "ref_density_cp_ct": 1.225, + "ref_tilt_cp_ct": 5.0, + "TSR": 8.0, + "power_thrust_table": { + "power": [ + 0.0, + 0.0, + 0.208546508, + 0.385795061, + 0.449038264, + 0.474546985, + 0.480994449, + 0.481172749, + 0.481235678, + 0.481305875, + 0.481238912, + 0.481167356, + 0.481081935, + 0.481007003, + 0.480880409, + 0.480789285, + 0.480737341, + 0.480111543, + 0.479218839, + 0.479120347, + 0.479022984, + 0.478834971, + 0.478597234, + 0.478324162, + 0.477994289, + 0.477665338, + 0.477253698, + 0.476819542, + 0.476368667, + 0.475896732, + 0.475404347, + 0.474814698, + 0.469087611, + 0.456886723, + 0.445156758, + 0.433837552, + 0.422902868, + 0.412332387, + 0.402110045, + 0.316270768, + 0.253224057, + 0.205881042, + 0.169640239, + 0.141430529, + 0.119144335, + 0.101304591, + 0.086856409, + 0.075029591, + 0.065256635, + 0.057109143, + 0.050263779, + 0.044470536, + 0.0, + 0.0, + ], + "thrust": [ + 0.0, + 0.0, + 1.132034888, + 0.999470963, + 0.917697381, + 0.860849503, + 0.815371198, + 0.811614904, + 0.807939328, + 0.80443352, + 0.800993851, + 0.79768116, + 0.794529244, + 0.791495834, + 0.788560434, + 0.787217182, + 0.787127977, + 0.785839257, + 0.783812219, + 0.783568108, + 0.783328285, + 0.781194418, + 0.777292539, + 0.773464375, + 0.769690236, + 0.766001924, + 0.762348072, + 0.758760824, + 0.755242872, + 0.751792927, + 0.748434131, + 0.745113997, + 0.717806682, + 0.672204789, + 0.63831272, + 0.610176496, + 0.585456847, + 0.563222111, + 0.542912273, + 0.399312061, + 0.310517829, + 0.248633226, + 0.203543725, + 0.169616419, + 0.143478955, + 0.122938861, + 0.106515296, + 0.093026095, + 0.081648606, + 0.072197368, + 0.064388275, + 0.057782745, + 0.0, + 0.0, + ], + "wind_speed": [ + 0.0, + 2.9, + 3.0, + 4.0, + 5.0, + 6.0, + 7.0, + 7.1, + 7.2, + 7.3, + 7.4, + 7.5, + 7.6, + 7.7, + 7.8, + 7.9, + 8.0, + 9.0, + 10.0, + 10.1, + 10.2, + 10.3, + 10.4, + 10.5, + 10.6, + 10.7, + 10.8, + 10.9, + 11.0, + 11.1, + 11.2, + 11.3, + 11.4, + 11.5, + 11.6, + 11.7, + 11.8, + 11.9, + 12.0, + 13.0, + 14.0, + 15.0, + 16.0, + 17.0, + 18.0, + 19.0, + 20.0, + 21.0, + 22.0, + 23.0, + 24.0, + 25.0, + 25.1, + 50.0, + ], + }, + } diff --git a/tests/data/nrel_5MW_v3legacy.yaml b/tests/data/nrel_5MW_v3legacy.yaml deleted file mode 100644 index 5fdef28ad..000000000 --- a/tests/data/nrel_5MW_v3legacy.yaml +++ /dev/null @@ -1,166 +0,0 @@ -turbine_type: 'nrel_5MW_FLORISv3' -generator_efficiency: 1.0 -hub_height: 90.0 -pP: 1.88 -pT: 1.88 -rotor_diameter: 126.0 -TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 5.0 -power_thrust_table: - power: - - 0.0 - - 0.000000 - - 0.000000 - - 0.178085 - - 0.289075 - - 0.349022 - - 0.384728 - - 0.406059 - - 0.420228 - - 0.428823 - - 0.433873 - - 0.436223 - - 0.436845 - - 0.436575 - - 0.436511 - - 0.436561 - - 0.436517 - - 0.435903 - - 0.434673 - - 0.433230 - - 0.430466 - - 0.378869 - - 0.335199 - - 0.297991 - - 0.266092 - - 0.238588 - - 0.214748 - - 0.193981 - - 0.175808 - - 0.159835 - - 0.145741 - - 0.133256 - - 0.122157 - - 0.112257 - - 0.103399 - - 0.095449 - - 0.088294 - - 0.081836 - - 0.075993 - - 0.070692 - - 0.065875 - - 0.061484 - - 0.057476 - - 0.053809 - - 0.050447 - - 0.047358 - - 0.044518 - - 0.041900 - - 0.039483 - - 0.0 - - 0.0 - thrust: - - 0.0 - - 0.0 - - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 - - 0.0 - - 0.0 - wind_speed: - - 0.0 - - 2.0 - - 2.5 - - 3.0 - - 3.5 - - 4.0 - - 4.5 - - 5.0 - - 5.5 - - 6.0 - - 6.5 - - 7.0 - - 7.5 - - 8.0 - - 8.5 - - 9.0 - - 9.5 - - 10.0 - - 10.5 - - 11.0 - - 11.5 - - 12.0 - - 12.5 - - 13.0 - - 13.5 - - 14.0 - - 14.5 - - 15.0 - - 15.5 - - 16.0 - - 16.5 - - 17.0 - - 17.5 - - 18.0 - - 18.5 - - 19.0 - - 19.5 - - 20.0 - - 20.5 - - 21.0 - - 21.5 - - 22.0 - - 22.5 - - 23.0 - - 23.5 - - 24.0 - - 24.5 - - 25.0 - - 25.01 - - 25.02 - - 50.0 diff --git a/tests/farm_unit_test.py b/tests/farm_unit_test.py index b38d91191..8fa9b28b5 100644 --- a/tests/farm_unit_test.py +++ b/tests/farm_unit_test.py @@ -94,7 +94,7 @@ def test_check_turbine_type(sample_inputs_fixture: SampleInputs): # All list of strings from internal library farm_data = deepcopy(sample_inputs_fixture.farm) - farm_data["turbine_type"] = ["nrel_5MW", "iea_10MW", "iea_15MW", "x_20MW", "nrel_5MW"] + farm_data["turbine_type"] = ["nrel_5MW", "iea_10MW", "iea_15MW", "nrel_5MW", "nrel_5MW"] farm_data["layout_x"] = np.arange(0, 500, 100) farm_data["layout_y"] = np.zeros(5) farm = Farm.from_dict(farm_data) diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index f5e58caa2..531224656 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -38,27 +38,27 @@ [ # 8 m/s [ - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], - [5.4838164, 0.8620156, 529225.9172271, 0.3142687], - [5.0221433, 0.8907283, 394126.6156555, 0.3347186], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [5.4510872, 0.8920540, 554423.2959292, 0.3357243], + [5.0438692, 0.9152035, 418539.5184876, 0.3544008], ], # 9 m/s [ - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], - [6.1712539, 0.8275295, 776795.0248898, 0.2923521], - [5.6500663, 0.8533298, 586018.0719934, 0.3085123], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [6.1342847, 0.8547425, 797961.8242685, 0.3094367], + [5.6482366, 0.8808465, 620209.7062129, 0.3274069], ], # 10 m/s [ - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], - [6.8779113, 0.7971705, 1085894.0434488, 0.2748170], - [6.2985764, 0.8216609, 828383.6208269, 0.2888489], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [6.8191059, 0.8235980, 1105849.4970759, 0.2899988], + [6.2802136, 0.8481059, 863569.7643645, 0.3051320], ], # 11 m/s [ - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], - [7.6258784, 0.7725938, 1482932.7552807, 0.2615643], - [6.9611771, 0.7938200, 1124649.7898263, 0.2729648], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [7.5591728, 0.7958161, 1495578.0671426, 0.2740664], + [6.9317813, 0.8184737, 1156507.0595179, 0.2869705], ], ] ) @@ -67,27 +67,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [5.5274362, 0.8596051, 543479.0426304, 0.3126534], - [5.0310723, 0.8901730, 396739.4832795, 0.3342992], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [5.4955257, 0.8895278, 569251.8849842, 0.3338132], + [5.0512690, 0.9147828, 421008.7273674, 0.3540401], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.2202711, 0.8252701, 796655.8471824, 0.2909965], - [5.6617378, 0.8527326, 590066.7909898, 0.3081228], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.1842430, 0.8524704, 820422.5044532, 0.3079521], + [5.6590417, 0.8802323, 623815.2315242, 0.3269626], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [6.9317633, 0.7950036, 1110959.2451850, 0.2736173], - [6.3125748, 0.8210156, 834055.5094286, 0.2884673], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [6.8745497, 0.8210765, 1130776.3831297, 0.2885032], + [6.2938285, 0.8474867, 869690.8728188, 0.3047352], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [7.6832308, 0.7711112, 1517301.5142304, 0.2607884], - [6.9761726, 0.7932167, 1131629.3899797, 0.2726328], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [7.6186441, 0.7939637, 1530927.6220300, 0.2730439], + [6.9469619, 0.8177833, 1163332.0650645, 0.2865657], ], ] ) @@ -96,27 +96,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [5.5431146, 0.8588028, 548917.6953551, 0.3121189], - [5.0453462, 0.8892852, 400916.4566323, 0.3336309], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [5.5123171, 0.8885732, 574854.9880625, 0.3330968], + [5.0653039, 0.9139850, 425692.0104596, 0.3533584], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.2378520, 0.8244598, 803779.2831349, 0.2905124], - [5.6785118, 0.8518742, 595885.4921489, 0.3075644], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.2030677, 0.8516143, 828885.8701797, 0.3073957], + [5.6761588, 0.8792592, 629527.0166369, 0.3262611], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [6.9507085, 0.7942413, 1119777.2268361, 0.2731968], - [6.3312183, 0.8201563, 841609.4907163, 0.2879601], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [6.8953509, 0.8201305, 1140128.3768208, 0.2879449], + [6.3135442, 0.8465900, 878554.8061141, 0.3041621], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [7.7025449, 0.7706119, 1528875.6023356, 0.2605276], - [6.9954994, 0.7924390, 1140624.9700319, 0.2722057], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [7.6397253, 0.7933242, 1543688.6272448, 0.2726920], + [6.9675202, 0.8168483, 1172574.8397092, 0.2860189], ], ] ) @@ -125,27 +125,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [5.5274367, 0.8596051, 543479.2092235, 0.3126534], - [5.0364358, 0.8898394, 398309.0269631, 0.3340477], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [5.4955262, 0.8895278, 569252.0553799, 0.3338132], + [5.0564287, 0.9144895, 422730.4667041, 0.3537891], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.2202717, 0.8252701, 796656.0654567, 0.2909965], - [5.6680298, 0.8524106, 592249.4291781, 0.3079132], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.1842436, 0.8524704, 820422.7619472, 0.3079521], + [5.6652985, 0.8798766, 625903.0435126, 0.3267059], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [6.9317639, 0.7950036, 1110959.5162103, 0.2736173], - [6.3196140, 0.8206912, 836907.6633514, 0.2882756], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [6.8745503, 0.8210764, 1130776.6678583, 0.2885032], + [6.3010138, 0.8471599, 872921.3000764, 0.3045262], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [7.6832314, 0.7711112, 1517301.8723625, 0.2607884], - [6.9837299, 0.7929126, 1135146.9152189, 0.2724657], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [7.6186447, 0.7939637, 1530928.0140962, 0.2730439], + [6.9547367, 0.8174297, 1166827.5280695, 0.2863588], ], ] ) @@ -221,6 +221,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4 ) assert_results_arrays(test_results[0:4], baseline) @@ -374,6 +375,7 @@ def test_regression_yaw(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4 ) assert_results_arrays(test_results[0:4], yawed_baseline) @@ -455,6 +457,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4 ) assert_results_arrays(test_results[0:4], yaw_added_recovery_baseline) @@ -535,6 +538,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4 ) assert_results_arrays(test_results[0:4], secondary_steering_baseline) diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 6d798afa2..d91dc956d 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -40,27 +40,27 @@ [ # 8 m/s [ - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], - [5.8890878, 0.8410986, 668931.9953790, 0.3006878], - [5.9448342, 0.8382459, 688269.8273350, 0.2989067], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [5.8181628, 0.8711866, 676912.0380737, 0.3205471], + [5.8941747, 0.8668654, 702276.3178047, 0.3175620], ], # 9m/s [ - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], - [6.6288143, 0.8071935, 969952.7378773, 0.2804513], - [6.7440713, 0.8025559, 1023598.6805729, 0.2778266], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [6.5498312, 0.8358441, 984786.7218587, 0.2974192], + [6.6883370, 0.8295451, 1047057.3206209, 0.2935691], ], # 10 m/s [ - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], - [7.4019251, 0.7790665, 1355562.9527211, 0.2649822], - [7.5493339, 0.7745724, 1437063.0620195, 0.2626039], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [7.2852518, 0.8049506, 1339238.8882972, 0.2791780], + [7.4865891, 0.7981254, 1452997.4778680, 0.2753477], ], # 11 m/s [ - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], - [8.2349756, 0.7622827, 1867008.5657835, 0.2562187], - [8.3523516, 0.7619629, 1946873.1634864, 0.2560548], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [8.1286243, 0.7869622, 1867298.1260108, 0.2692199], + [8.2872457, 0.7867578, 1985849.6635654, 0.2691092], ], ] ) @@ -69,27 +69,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [5.9257102, 0.8392246, 681635.9273649, 0.2995159], - [5.9615388, 0.8373911, 694064.4542077, 0.2983761], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [5.8572213, 0.8689662, 689945.4020673, 0.3190070], + [5.9122259, 0.8658393, 708299.7846078, 0.3168602], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.6698959, 0.8055405, 989074.0018995, 0.2795122], - [6.7631531, 0.8017881, 1032480.2286024, 0.2773950], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.5936194, 0.8338527, 1004473.3935880, 0.2961941], + [6.7089679, 0.8286068, 1056332.7378826, 0.2930017], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [7.4463751, 0.7776077, 1379101.8806016, 0.2642075], - [7.5701211, 0.7740351, 1449519.8581580, 0.2623212], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [7.3336404, 0.8032764, 1366138.4198352, 0.2782323], + [7.5095680, 0.7973796, 1466340.6394405, 0.2749331], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [8.2809317, 0.7621575, 1898277.8462234, 0.2561545], - [8.3710828, 0.7619119, 1959618.1795131, 0.2560286], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [8.1779964, 0.7868986, 1904198.1536702, 0.2691855], + [8.3074034, 0.7867318, 2000915.2988301, 0.2690952], ], ] ) @@ -98,27 +98,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [5.9343009, 0.8387850, 684615.9328740, 0.2992420], - [5.9680241, 0.8370593, 696314.1525222, 0.2981704], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [5.8665710, 0.8684347, 693065.2795916, 0.3186403], + [5.9193499, 0.8654343, 710676.9807602, 0.3165840], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.6795240, 0.8051531, 993555.3595338, 0.2792927], - [6.7704684, 0.8014937, 1035885.1172753, 0.2772298], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.6040901, 0.8333765, 1009180.8710828, 0.2959023], + [6.7169991, 0.8282416, 1059943.4814040, 0.2927813], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [7.4567077, 0.7772686, 1384573.5845651, 0.2640278], - [7.5779862, 0.7738318, 1454233.0717541, 0.2622143], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [7.3451916, 0.8028791, 1372599.7339512, 0.2780085], + [7.5184292, 0.7971003, 1471563.4898254, 0.2747780], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [8.2914104, 0.7621290, 1905407.7287412, 0.2561399], - [8.3784336, 0.7618919, 1964619.7950752, 0.2560184], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [8.1895130, 0.7868837, 1912805.5199083, 0.2691774], + [8.3154794, 0.7867214, 2006951.2349727, 0.2690895], ], ] ) diff --git a/tests/reg_tests/floris_interface_regression_test.py b/tests/reg_tests/floris_interface_regression_test.py index 8cda5f9e3..7c9a0d2ff 100644 --- a/tests/reg_tests/floris_interface_regression_test.py +++ b/tests/reg_tests/floris_interface_regression_test.py @@ -38,27 +38,27 @@ [ # 8 m/s [ - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], ], # 9 m/s [ - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], ], # 10 m/s [ - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], ], # 11 m/s [ - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], ], ] ) @@ -134,6 +134,7 @@ def test_calculate_no_wake(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4, ) assert_results_arrays(test_results[0:4], baseline) diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index 679023d54..3a3fa4777 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -38,27 +38,27 @@ [ # 8 m/s [ - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], - [5.9535039, 0.8378023, 691277.2666766, 0.2986311], - [6.0197522, 0.8345126, 715409.4436445, 0.2965993], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [5.9186455, 0.8654743, 710441.9192938, 0.3166113], + [6.0090150, 0.8604395, 741642.0177873, 0.3132110], ], # 9 m/s [ - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], - [6.6995977, 0.8043454, 1002898.6210841, 0.2788357], - [6.8102318, 0.7998937, 1054392.8363310, 0.2763338], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [6.6606465, 0.8308044, 1034608.0101396, 0.2943330], + [6.7947466, 0.8247058, 1094897.8563374, 0.2906592], ], # 10 m/s [ - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], - [7.4637061, 0.7770389, 1388279.6564701, 0.2639062], - [7.5999706, 0.7732635, 1467407.3821931, 0.2619157], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [7.4045198, 0.8008441, 1405853.7207176, 0.2768656], + [7.5868432, 0.7949439, 1511887.2179035, 0.2735844], ], # 11 m/s [ - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], - [8.2622911, 0.7622083, 1885594.4958198, 0.2561805], - [8.3719551, 0.7619095, 1960211.6949745, 0.2560274], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [8.2046271, 0.7868643, 1924101.6501936, 0.2691669], + [8.3491997, 0.7866780, 2032153.3223547, 0.2690660], ], ] ) @@ -67,27 +67,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [5.9856445, 0.8361576, 702426.4817361, 0.2976127], - [6.0238963, 0.8343216, 717088.5782753, 0.2964819], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [5.9521551, 0.8635694, 721623.6989382, 0.3153174], + [6.0131307, 0.8602523, 743492.3616581, 0.3130858], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.7356851, 0.8028933, 1019695.3621240, 0.2780165], - [6.8150684, 0.7996991, 1056644.0444495, 0.2762251], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.6982609, 0.8290938, 1051519.0079315, 0.2932960], + [6.7996516, 0.8244827, 1097103.0727816, 0.2905261], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [7.5030787, 0.7757681, 1409344.3206494, 0.2632343], - [7.6053686, 0.7731239, 1470642.1508821, 0.2618425], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [7.4461669, 0.7994645, 1429777.3846192, 0.2760940], + [7.5922658, 0.7947730, 1515083.3259879, 0.2734901], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [8.3037405, 0.7620954, 1913797.3425937, 0.2561227], - [8.3759415, 0.7618987, 1962924.0966747, 0.2560219], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [8.2481957, 0.7868081, 1956664.2629680, 0.2691365], + [8.3531097, 0.7866729, 2035075.5955678, 0.2690633], ], ] ) @@ -158,27 +158,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [6.0012497, 0.8353654, 707912.6031236, 0.2971241], - [6.0458168, 0.8333112, 725970.3069204, 0.2958623], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [5.9689340, 0.8626155, 727222.6050018, 0.3146730], + [6.0360908, 0.8592082, 753814.9629960, 0.3123888], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.7531826, 0.8021893, 1027839.4859975, 0.2776204], - [6.8391301, 0.7987309, 1067843.4584263, 0.2756849], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.7170645, 0.8282386, 1059972.8615898, 0.2927795], + [6.8249569, 0.8233319, 1108480.0451319, 0.2898405], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [7.5219279, 0.7752809, 1420639.8615893, 0.2629772], - [7.6309661, 0.7724622, 1485981.5768983, 0.2614954], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [7.4669332, 0.7987766, 1441706.3550352, 0.2757103], + [7.6196359, 0.7939336, 1531527.9847411, 0.2730273], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [8.3229930, 0.7620429, 1926897.0262401, 0.2560958], - [8.4021717, 0.7618272, 1980771.5704442, 0.2559853], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [8.2691610, 0.7867811, 1972333.4291742, 0.2691218], + [8.3808845, 0.7866371, 2055834.1618762, 0.2690439], ], ] ) @@ -187,27 +187,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [6.0012490, 0.8353654, 707912.3201655, 0.2971241], - [6.0404040, 0.8335607, 723777.1688957, 0.2960151], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [5.9689332, 0.8626156, 727222.3540334, 0.3146730], + [6.0305406, 0.8594606, 751319.6495844, 0.3125571], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.7531818, 0.8021893, 1027839.1215598, 0.2776204], - [6.8331381, 0.7989720, 1065054.4872236, 0.2758193], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.7170636, 0.8282387, 1059972.4826657, 0.2927795], + [6.8187909, 0.8236123, 1105707.8700965, 0.2900073], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [7.5219271, 0.7752809, 1420639.3564230, 0.2629773], - [7.6244680, 0.7726302, 1482087.5389477, 0.2615835], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [7.4669323, 0.7987766, 1441705.8203841, 0.2757103], + [7.6128912, 0.7941382, 1527445.2805280, 0.2731400], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [8.3229921, 0.7620429, 1926896.4413586, 0.2560958], - [8.3952439, 0.7618461, 1976057.7564083, 0.2559949], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [8.2691601, 0.7867811, 1972332.7278100, 0.2691218], + [8.3736743, 0.7866464, 2050445.3384596, 0.2690489], ], ] ) @@ -216,27 +216,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [5.9856452, 0.8361576, 702426.7279908, 0.2976127], - [6.0294010, 0.8340678, 719318.9574833, 0.2963261], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [5.9521559, 0.8635693, 721623.9542957, 0.3153174], + [6.0187788, 0.8599955, 746031.6889128, 0.3129141], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.7356859, 0.8028933, 1019695.7325708, 0.2780165], - [6.8211610, 0.7994540, 1059479.8255425, 0.2760882], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.6982618, 0.8290937, 1051519.3934629, 0.2932959], + [6.8059255, 0.8241974, 1099923.7444659, 0.2903559], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [7.5030795, 0.7757681, 1409344.8339510, 0.2632343], - [7.6119726, 0.7729532, 1474599.5989813, 0.2617529], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [7.4461678, 0.7994645, 1429777.9285494, 0.2760940], + [7.5991268, 0.7945568, 1519127.2504621, 0.2733708], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [8.3037414, 0.7620954, 1913797.9363787, 0.2561227], - [8.3829757, 0.7618795, 1967710.2678086, 0.2560120], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [8.2481967, 0.7868081, 1956664.9757307, 0.2691365], + [8.3604363, 0.7866635, 2040551.4040835, 0.2690582], ], ] ) @@ -312,6 +312,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4, ) assert_results_arrays(test_results[0:4], baseline) @@ -465,6 +466,7 @@ def test_regression_yaw(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4, ) assert_results_arrays(test_results[0:4], yawed_baseline) @@ -617,6 +619,7 @@ def test_regression_gch(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4, ) assert_results_arrays(test_results[0:4], gch_baseline) @@ -698,6 +701,7 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4, ) assert_results_arrays(test_results[0:4], yaw_added_recovery_baseline) @@ -778,6 +782,7 @@ def test_regression_secondary_steering(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4, ) assert_results_arrays(test_results[0:4], secondary_steering_baseline) diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index 1122b42f2..f54ddda6a 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -39,27 +39,27 @@ [ # 8 m/s [ - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], - [6.1528670, 0.8283770, 769344.9989547, 0.2928630], - [5.6590323, 0.8528710, 589128.2717851, 0.3082130], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [6.0660565, 0.8578454, 767287.2198744, 0.3114830], + [5.5204712, 0.8881097, 577575.9208353, 0.3327500], ], # 9 m/s [ - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], - [6.9262647, 0.7952248, 1108399.9545223, 0.2737395], - [6.5033542, 0.8122418, 911557.7945732, 0.2833446], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [6.8298067, 0.8231113, 1110660.4518964, 0.2897093], + [6.3668912, 0.8441639, 902538.9934586, 0.3026196], ], # 10 m/s [ - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], - [7.7391355, 0.7696661, 1550802.6855981, 0.2600344], - [7.3444882, 0.7809516, 1325146.7113373, 0.2659870], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [7.5982117, 0.7945856, 1518587.8467982, 0.2733867], + [7.2042504, 0.8077903, 1294847.7809883, 0.2807914], ], # 11 m/s [ - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], - [8.6200527, 0.7618150, 2139354.1087623, 0.2559790], - [8.1422116, 0.7625354, 1803890.3447532, 0.2563483], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [8.4970746, 0.7864874, 2142673.1558338, 0.2689629], + [7.9997342, 0.7871282, 1770992.0756703, 0.2693098], ], ] ) @@ -68,27 +68,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [6.1670027, 0.8277254, 775072.5021192, 0.2924701], - [5.6650398, 0.8525636, 591212.2253601, 0.3080128], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [6.0816475, 0.8571363, 774296.7271893, 0.3110134], + [5.5272875, 0.8877222, 579850.4298177, 0.3324606], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.9420997, 0.7945877, 1115770.2903095, 0.2733878], - [6.5099782, 0.8119752, 914640.8879238, 0.2831909], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.8472506, 0.8223180, 1118503.0309148, 0.2892383], + [6.3747452, 0.8438067, 906070.0511419, 0.3023935], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [7.7560617, 0.7692286, 1560945.8383104, 0.2598066], - [7.3508004, 0.7807445, 1328489.3723384, 0.2658764], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [7.6174285, 0.7940006, 1530191.8035935, 0.2730642], + [7.2119500, 0.8075204, 1299067.3876318, 0.2806375], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [8.6371187, 0.7618512, 2152434.8973815, 0.2559975], - [8.1465243, 0.7625236, 1806824.8092631, 0.2563423], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [8.5159500, 0.7864631, 2156780.3499849, 0.2689497], + [8.0047998, 0.7871218, 1774753.2988553, 0.2693064], ], ] ) @@ -163,6 +163,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4 ) assert_results_arrays(test_results[0:4], baseline) @@ -316,6 +317,7 @@ def test_regression_yaw(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4 ) assert_results_arrays(test_results[0:4], yawed_baseline) diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index 6b4c23235..5fd2c99ac 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -40,27 +40,27 @@ [ # 8 m/s [ - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], ], # 9 m/s [ - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], ], # 10 m/s [ - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], ], # 11 m/s [ - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], ], ] ) @@ -164,6 +164,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4, ) assert_results_arrays(test_results[0:4], baseline) diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index 144bdd6f2..39dffcd78 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -39,27 +39,27 @@ [ # 8 m/s [ - [7.9736330, 0.7636044, 1691326.6483808, 0.2568973], - [6.0583922, 0.8327316, 731065.6226282, 0.2955077], - [5.4067009, 0.8668116, 506659.6232808, 0.3175251], + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [6.0332948, 0.8593353, 752557.9240063, 0.3124735], + [5.4029800, 0.8947888, 538370.5108659, 0.3378186], ], # 9 m/s [ - [8.9703371, 0.7625570, 2407841.6718785, 0.2563594], - [6.8171892, 0.7996138, 1057631.1392858, 0.2761774], - [6.0917181, 0.8311955, 744568.6379292, 0.2945709], + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [6.7887441, 0.8249788, 1092199.1775234, 0.2908223], + [6.0678594, 0.8577634, 768097.7785191, 0.3114286], ], # 10 m/s [ - [9.9670412, 0.7529384, 3298067.1555604, 0.2514735], - [7.5908545, 0.7734991, 1461944.4626519, 0.2620395], - [6.7995666, 0.8003229, 1049428.7626183, 0.2765738], + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [7.5453629, 0.7962514, 1487438.4031455, 0.2743074], + [6.7548552, 0.8265200, 1076963.1412833, 0.2917453], ], # 11 m/s [ - [10.9637454, 0.7306256, 4363191.9880631, 0.2404936], - [8.3975139, 0.7618399, 1977602.3128807, 0.2559918], - [7.5196816, 0.7753389, 1419293.7479312, 0.2630079], + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [8.3436376, 0.7866851, 2027996.3027579, 0.2690699], + [7.4626804, 0.7989174, 1439263.3915910, 0.2757889], ], ] ) @@ -69,27 +69,27 @@ [ # 8 m/s [ - [7.9736330, 0.7606986, 1679924.0721706, 0.2549029], - [6.0772917, 0.8318604, 738723.3410291, 0.2949759], - [5.4215054, 0.8658908, 510991.8557577, 0.3168954], + [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], + [6.0523119, 0.8584704, 761107.7639542, 0.3118979], + [5.4177841, 0.8939472, 543310.4550423, 0.3371713], ], # 9 m/s [ - [8.9703371, 0.7596552, 2391434.0080674, 0.2543734], - [6.8384389, 0.7987587, 1067521.7514783, 0.2757004], - [6.1089600, 0.8304008, 751554.7217137, 0.2940879], + [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], + [6.8101438, 0.8240055, 1101820.2623232, 0.2902415], + [6.0851644, 0.8569764, 775877.8906008, 0.3109077], ], # 10 m/s [ - [9.9670412, 0.7500732, 3275671.6727516, 0.2495630], - [7.6142906, 0.7728933, 1475988.7044752, 0.2617214], - [6.8186733, 0.7995541, 1058321.9413265, 0.2761440], + [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], + [7.5691494, 0.7955016, 1501458.3309846, 0.2738925], + [6.7745474, 0.8256244, 1085816.5021615, 0.2912085], ], # 11 m/s [ - [10.9637454, 0.7278454, 4333842.6695283, 0.2387424], - [8.4226213, 0.7617715, 1994685.7970084, 0.2559567], - [7.5392355, 0.7748335, 1431011.5054545, 0.2627414], + [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], + [8.3695194, 0.7866518, 2047340.0279521, 0.2690518], + [7.4830530, 0.7982426, 1450966.1620998, 0.2754129], ], ] ) @@ -165,6 +165,7 @@ def test_regression_tandem(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4, ) assert_results_arrays(test_results[0:4], baseline) @@ -319,6 +320,7 @@ def test_regression_yaw(sample_inputs_fixture): farm_cts, farm_powers, farm_axial_inductions, + max_findex_print=4, ) assert_results_arrays(test_results[0:4], yawed_baseline) diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index 7cd7e176a..2d8635539 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -172,7 +172,7 @@ def test_power(): multidim_condition=condition ) - power_truth = 3215682.686486 + power_truth = 3029825.10569982 np.testing.assert_allclose(p, power_truth) diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index b23e10050..8941d3163 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -355,7 +355,7 @@ def test_axial_induction(): turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] - baseline_ai = 0.25116283939089806 + baseline_ai = 0.26752001107622186415 # Single turbine wind_speed = 10.0 diff --git a/tests/turbine_utilities_unit_test.py b/tests/turbine_utilities_unit_test.py index e48b31f45..c5f73ef64 100644 --- a/tests/turbine_utilities_unit_test.py +++ b/tests/turbine_utilities_unit_test.py @@ -19,75 +19,80 @@ import yaml from floris.turbine_library import build_cosine_loss_turbine_dict, check_smooth_power_curve +from tests.conftest import SampleInputs def test_build_turbine_dict(): - v3_file_path = Path(__file__).resolve().parent / "data" / "nrel_5MW_v3legacy.yaml" - v4_file_path = Path(__file__).resolve().parent / "data" / "nrel_5MW.yaml" - test_turb_name = "test_turbine_export" - - in_dict_v3 = yaml.safe_load( open(v3_file_path, "r") ) + turbine_data_v3 = SampleInputs().v3type_turbine # Mocked up turbine data turbine_data_dict = { - "wind_speed":in_dict_v3["power_thrust_table"]["wind_speed"], - "power_coefficient":in_dict_v3["power_thrust_table"]["power"], - "thrust_coefficient":in_dict_v3["power_thrust_table"]["thrust"] + "wind_speed":turbine_data_v3["power_thrust_table"]["wind_speed"], + "power_coefficient":turbine_data_v3["power_thrust_table"]["power"], + "thrust_coefficient":turbine_data_v3["power_thrust_table"]["thrust"] } test_dict = build_cosine_loss_turbine_dict( turbine_data_dict, - test_turb_name, - generator_efficiency=in_dict_v3["generator_efficiency"], - hub_height=in_dict_v3["hub_height"], - pP=in_dict_v3["pP"], - pT=in_dict_v3["pT"], - rotor_diameter=in_dict_v3["rotor_diameter"], - TSR=in_dict_v3["TSR"], - ref_air_density=in_dict_v3["ref_density_cp_ct"], - ref_tilt=in_dict_v3["ref_tilt_cp_ct"] + "test_turbine", + generator_efficiency=turbine_data_v3["generator_efficiency"], + hub_height=turbine_data_v3["hub_height"], + pP=turbine_data_v3["pP"], + pT=turbine_data_v3["pT"], + rotor_diameter=turbine_data_v3["rotor_diameter"], + TSR=turbine_data_v3["TSR"], + ref_air_density=turbine_data_v3["ref_density_cp_ct"], + ref_tilt=turbine_data_v3["ref_tilt_cp_ct"] ) # Directly compute power, thrust values - Cp = np.array(in_dict_v3["power_thrust_table"]["power"]) - Ct = np.array(in_dict_v3["power_thrust_table"]["thrust"]) - ws = np.array(in_dict_v3["power_thrust_table"]["wind_speed"]) - - P = 0.5 * in_dict_v3["ref_density_cp_ct"] * (np.pi * in_dict_v3["rotor_diameter"]**2/4) \ + Cp = np.array(turbine_data_v3["power_thrust_table"]["power"]) + Ct = np.array(turbine_data_v3["power_thrust_table"]["thrust"]) + ws = np.array(turbine_data_v3["power_thrust_table"]["wind_speed"]) + + P = ( + 0.5 * turbine_data_v3["ref_density_cp_ct"] + * turbine_data_v3["generator_efficiency"] + * (np.pi * turbine_data_v3["rotor_diameter"]**2/4) * Cp * ws**3 - T = 0.5 * in_dict_v3["ref_density_cp_ct"] * (np.pi * in_dict_v3["rotor_diameter"]**2/4) \ + ) + T = ( + 0.5 * turbine_data_v3["ref_density_cp_ct"] + * (np.pi * turbine_data_v3["rotor_diameter"]**2/4) * Ct * ws**2 + ) # Compare direct computation to those generated by build_cosine_loss_turbine_dict assert np.allclose(Ct, test_dict["power_thrust_table"]["thrust_coefficient"]) assert np.allclose(P/1000, test_dict["power_thrust_table"]["power"]) # Check that dict keys match the v4 structure - in_dict_v4 = yaml.safe_load( open(v4_file_path, "r") ) - assert set(in_dict_v4.keys()) >= set(test_dict.keys()) + turbine_data_v4 = SampleInputs().turbine + assert set(turbine_data_v4.keys()) >= set(test_dict.keys()) assert ( - set(in_dict_v4["power_thrust_table"].keys()) >= set(test_dict["power_thrust_table"].keys()) + set(turbine_data_v4["power_thrust_table"].keys()) + >= set(test_dict["power_thrust_table"].keys()) ) # Check thrust conversion from absolute value turbine_data_dict = { - "wind_speed":in_dict_v3["power_thrust_table"]["wind_speed"], + "wind_speed":turbine_data_v3["power_thrust_table"]["wind_speed"], "power": P/1000, "thrust": T/1000 } test_dict_2 = build_cosine_loss_turbine_dict( turbine_data_dict, - test_turb_name, - generator_efficiency=in_dict_v4["generator_efficiency"], - hub_height=in_dict_v4["hub_height"], - pP=in_dict_v4["power_thrust_table"]["pP"], - pT=in_dict_v4["power_thrust_table"]["pT"], - rotor_diameter=in_dict_v4["rotor_diameter"], - TSR=in_dict_v4["TSR"], - ref_air_density=in_dict_v4["power_thrust_table"]["ref_air_density"], - ref_tilt=in_dict_v4["power_thrust_table"]["ref_tilt"] + "test_turbine", + generator_efficiency=turbine_data_v4["generator_efficiency"], + hub_height=turbine_data_v4["hub_height"], + pP=turbine_data_v4["power_thrust_table"]["pP"], + pT=turbine_data_v4["power_thrust_table"]["pT"], + rotor_diameter=turbine_data_v4["rotor_diameter"], + TSR=turbine_data_v4["TSR"], + ref_air_density=turbine_data_v4["power_thrust_table"]["ref_air_density"], + ref_tilt=turbine_data_v4["power_thrust_table"]["ref_tilt"] ) assert np.allclose(Ct, test_dict_2["power_thrust_table"]["thrust_coefficient"]) From 420fb0f22123475745fd6d7f8694f559e5dd45fd Mon Sep 17 00:00:00 2001 From: paulf81 Date: Thu, 25 Jan 2024 09:35:26 -0800 Subject: [PATCH 29/78] Adds classes to structure wind energy data for FLORIS model (#775) * move files around to get started * move files around to get started * ignore unused in __init__ files * Consolidate wind rose and time series into one module * Update init * Update tests * Add unpack functions * Add grid and unpack tests * Small refactor * Add resample function * Test resample * Add plot wind rose function * Add new wind rose usage example * Delete old code * add super class to import * Add a super class and inheritance * Add wind_data to reinitialize (also ruffing) * Show example of reinit off wind_data objects * Update how compute 0 freq works * Test computing all cases * add n_findex calculation and test * Add unpack_freq function * Get aep using wind data * Move unpack_for functions to super class * simplify get_farm_AEP_with_wind_data * Add docstrings * bugfix * Finalize example * Rename module file and base class * Add description to example explaining plan for updates. * providing unpack() on base class; renaming example. * Inheritance clarified; some cleanup. * Remove copy()s (can point to same memory). * Small fixes throughout. * Python back compatibility type-hinting issue. * Maintain consistent formatting This preserves the style defined in v3 style guide (https://github.com/NREL/floris/discussions/292) * Spell check * Remove outdated comments * Expand docs for wind data unit tests * Add dimensions to doc string * Add context to to_wind_rose test comments * Add error to reinitialize * Explain what happens in default cases for WindRose * Rename price to value * Add check on ti and value * Fix bin minimum * remove wind data import * Import WindDataBase correctly * Spell check and formatting --------- Co-authored-by: misi9170 Co-authored-by: Rafael M Mudafort --- examples/34_wind_data.py | 84 ++ floris/tools/__init__.py | 25 +- floris/tools/floris_interface.py | 147 ++- floris/tools/power_rose.py | 500 --------- floris/tools/wind_data.py | 553 ++++++++++ floris/tools/wind_rose.py | 1626 ------------------------------ pyproject.toml | 2 + tests/wind_data_test.py | 262 +++++ 8 files changed, 1031 insertions(+), 2168 deletions(-) create mode 100644 examples/34_wind_data.py delete mode 100644 floris/tools/power_rose.py create mode 100644 floris/tools/wind_data.py delete mode 100644 floris/tools/wind_rose.py create mode 100644 tests/wind_data_test.py diff --git a/examples/34_wind_data.py b/examples/34_wind_data.py new file mode 100644 index 000000000..f3e87686d --- /dev/null +++ b/examples/34_wind_data.py @@ -0,0 +1,84 @@ +# Copyright 2024 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +import matplotlib.pyplot as plt +import numpy as np + +from floris.tools import ( + FlorisInterface, + TimeSeries, + WindRose, +) +from floris.utilities import wrap_360 + + +""" +This example is meant to be temporary and may be updated by a later pull request. Before we +release v4, we intend to propagate the TimeSeries and WindRose objects through the other relevant +examples, and change this example to demonstrate more advanced (as yet, not implemented) +functionality of the WindData objects (such as electricity pricing etc). +""" + + +# Generate a random time series of wind speeds, wind directions and turbulence intensities +N = 500 +wd_array = wrap_360(270 * np.ones(N) + np.random.randn(N) * 20) +ws_array = np.clip(8 * np.ones(N) + np.random.randn(N) * 8, 3, 50) +ti_array = np.clip(0.1 * np.ones(N) + np.random.randn(N) * 0.05, 0, 0.25) + +fig, axarr = plt.subplots(3, 1, sharex=True, figsize=(7, 4)) +ax = axarr[0] +ax.plot(wd_array, marker=".", ls="None") +ax.set_ylabel("Wind Direction") +ax = axarr[1] +ax.plot(ws_array, marker=".", ls="None") +ax.set_ylabel("Wind Speed") +ax = axarr[2] +ax.plot(ti_array, marker=".", ls="None") +ax.set_ylabel("Turbulence Intensity") + + +# Build the time series +time_series = TimeSeries(wd_array, ws_array) # , turbulence_intensity=ti_array) + +# Now build the wind rose +wind_rose = time_series.to_wind_rose() + +# Plot the wind rose +fig, ax = plt.subplots(subplot_kw={"polar": True}) +wind_rose.plot_wind_rose(ax=ax) + +# Now set up a FLORIS model and initialize it using the time series and wind rose +fi = FlorisInterface("inputs/gch.yaml") +fi.reinitialize(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) + +fi_time_series = fi.copy() +fi_wind_rose = fi.copy() + +fi_time_series.reinitialize(wind_data=time_series) +fi_wind_rose.reinitialize(wind_data=wind_rose) + +fi_time_series.calculate_wake() +fi_wind_rose.calculate_wake() + +time_series_power = fi_time_series.get_farm_power() +wind_rose_power = fi_wind_rose.get_farm_power() + +time_series_aep = fi_time_series.get_farm_AEP_with_wind_data(time_series) +wind_rose_aep = fi_wind_rose.get_farm_AEP_with_wind_data(wind_rose) + +print(f"AEP from TimeSeries {time_series_aep / 1e9:.2f} GWh") +print(f"AEP from WindRose {wind_rose_aep / 1e9:.2f} GWh") + +plt.show() diff --git a/floris/tools/__init__.py b/floris/tools/__init__.py index 6a2cca91b..5859fedc5 100644 --- a/floris/tools/__init__.py +++ b/floris/tools/__init__.py @@ -46,18 +46,21 @@ visualize_cut_plane, visualize_quiver, ) -from .wind_rose import WindRose +from .wind_data import ( + TimeSeries, + WindRose, +) # from floris.tools import ( - # cut_plane, - # floris_interface, - # interface_utilities, - # layout_functions, - # optimization, - # plotting, - # power_rose, - # rews, - # visualization, - # wind_rose, +# cut_plane, +# floris_interface, +# interface_utilities, +# layout_functions, +# optimization, +# plotting, +# power_rose, +# rews, +# visualization, +# wind_rose, # ) diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index ef5b992b0..5721dfa51 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -29,6 +29,7 @@ thrust_coefficient, ) from floris.tools.cut_plane import CutPlane +from floris.tools.wind_data import WindDataBase from floris.type_dec import NDArrayFloat @@ -133,7 +134,7 @@ def calculate_wake( yaw_angles = np.zeros( ( self.floris.flow_field.n_findex, - self.floris.farm.n_turbines + self.floris.farm.n_turbines, ) ) self.floris.farm.yaw_angles = yaw_angles @@ -172,7 +173,7 @@ def calculate_no_wake( yaw_angles = np.zeros( ( self.floris.flow_field.n_findex, - self.floris.farm.n_turbines + self.floris.farm.n_turbines, ) ) self.floris.farm.yaw_angles = yaw_angles @@ -200,6 +201,7 @@ def reinitialize( turbine_library_path: str | Path | None = None, solver_settings: dict | None = None, heterogenous_inflow_config=None, + wind_data: type[WindDataBase] | None = None, ): # Export the floris object recursively as a dictionary floris_dict = self.floris.as_dict() @@ -208,6 +210,22 @@ def reinitialize( # Make the given changes + # First check if wind data is not None, + # if not, get wind speeds, wind direction and + # turbulence intensity using the unpack_for_reinitialize + # method + if wind_data is not None: + if ( + (wind_directions is not None) + or (wind_speeds is not None) + or (turbulence_intensity is not None) + ): + raise ValueError( + "If wind_data is passed to reinitialize, then do not pass wind_directions, " + "wind_speeds or turbulence_intensity as this is redundant." + ) + wind_directions, wind_speeds, turbulence_intensity = wind_data.unpack_for_reinitialize() + ## FlowField if wind_speeds is not None: flow_field_dict["wind_speeds"] = wind_speeds @@ -271,7 +289,7 @@ def get_plane_of_points( :py:class:`pandas.DataFrame`: containing values of x1, x2, x3, u, v, w """ # Get results vectors - if (normal_vector == "z"): + if normal_vector == "z": x_flat = self.floris.grid.x_sorted_inertial_frame[0].flatten() y_flat = self.floris.grid.y_sorted_inertial_frame[0].flatten() z_flat = self.floris.grid.z_sorted_inertial_frame[0].flatten() @@ -404,7 +422,7 @@ def calculate_horizontal_plane( df, self.floris.grid.grid_resolution[0], self.floris.grid.grid_resolution[1], - "z" + "z", ) # Reset the fi object back to the turbine grid configuration @@ -599,7 +617,7 @@ def get_turbine_powers(self) -> NDArrayFloat: ) # Check for negative velocities, which could indicate bad model # parameters or turbines very closely spaced. - if (self.floris.flow_field.u < 0.).any(): + if (self.floris.flow_field.u < 0.0).any(): self.logger.warning("Some velocities at the rotor are negative.") turbine_powers = power( @@ -612,7 +630,7 @@ def get_turbine_powers(self) -> NDArrayFloat: turbine_type_map=self.floris.farm.turbine_type_map, turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, - multidim_condition=self.floris.flow_field.multidim_conditions + multidim_condition=self.floris.flow_field.multidim_conditions, ) return turbine_powers @@ -628,7 +646,7 @@ def get_turbine_thrust_coefficients(self) -> NDArrayFloat: turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, average_method=self.floris.grid.average_method, cubature_weights=self.floris.grid.cubature_weights, - multidim_condition=self.floris.flow_field.multidim_conditions + multidim_condition=self.floris.flow_field.multidim_conditions, ) return turbine_thrust_coefficients @@ -644,7 +662,7 @@ def get_turbine_ais(self) -> NDArrayFloat: turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, average_method=self.floris.grid.average_method, cubature_weights=self.floris.grid.cubature_weights, - multidim_condition=self.floris.flow_field.multidim_conditions + multidim_condition=self.floris.flow_field.multidim_conditions, ) return turbine_ais @@ -653,7 +671,7 @@ def turbine_average_velocities(self) -> NDArrayFloat: return average_velocity( velocities=self.floris.flow_field.u, method=self.floris.grid.average_method, - cubature_weights=self.floris.grid.cubature_weights + cubature_weights=self.floris.grid.cubature_weights, ) def get_turbine_TIs(self) -> NDArrayFloat: @@ -711,17 +729,14 @@ def get_farm_power( turbine_weights = np.ones( ( self.floris.flow_field.n_findex, - self.floris.farm.n_turbines + self.floris.farm.n_turbines, ) ) elif len(np.shape(turbine_weights)) == 1: # Deal with situation when 1D array is provided turbine_weights = np.tile( turbine_weights, - ( - self.floris.flow_field.n_findex, - 1 - ) + (self.floris.flow_field.n_findex, 1), ) # Calculate all turbine powers and apply weights @@ -780,6 +795,7 @@ def get_farm_AEP( the flow field. This can be useful when quantifying the loss in AEP due to wakes. Defaults to *False*. + Returns: float: The Annual Energy Production (AEP) for the wind farm in @@ -796,8 +812,7 @@ def get_farm_AEP( # Check if frequency vector sums to 1.0. If not, raise a warning if np.abs(np.sum(freq) - 1.0) > 0.001: self.logger.warning( - "WARNING: The frequency array provided to get_farm_AEP() " - "does not sum to 1.0." + "WARNING: The frequency array provided to get_farm_AEP() does not sum to 1.0." ) # Copy the full wind speed array from the floris object and initialize @@ -820,14 +835,14 @@ def get_farm_AEP( yaw_angles_subset = yaw_angles[conditions_to_evaluate] self.reinitialize( wind_speeds=wind_speeds_subset, - wind_directions=wind_directions_subset + wind_directions=wind_directions_subset, ) if no_wake: self.calculate_no_wake(yaw_angles=yaw_angles_subset) else: self.calculate_wake(yaw_angles=yaw_angles_subset) - farm_power[conditions_to_evaluate] = ( - self.get_farm_power(turbine_weights=turbine_weights) + farm_power[conditions_to_evaluate] = self.get_farm_power( + turbine_weights=turbine_weights ) # Finally, calculate AEP in GWh @@ -838,6 +853,76 @@ def get_farm_AEP( return aep + def get_farm_AEP_with_wind_data( + self, + wind_data, + cut_in_wind_speed=0.001, + cut_out_wind_speed=None, + yaw_angles=None, + turbine_weights=None, + no_wake=False, + ) -> float: + """ + Estimate annual energy production (AEP) for distributions of wind speed, wind + direction, frequency of occurrence, and yaw offset. + + Args: + wind_data: (type(WindDataBase)): TimeSeries or WindRose object containing + the wind conditions over which to calculate the AEP. Should match the wind_data + object passed to reinitialize(). + cut_in_wind_speed (float, optional): Wind speed in m/s below which + any calculations are ignored and the wind farm is known to + produce 0.0 W of power. Note that to prevent problems with the + wake models at negative / zero wind speeds, this variable must + always have a positive value. Defaults to 0.001 [m/s]. + cut_out_wind_speed (float, optional): Wind speed above which the + wind farm is known to produce 0.0 W of power. If None is + specified, will assume that the wind farm does not cut out + at high wind speeds. Defaults to None. + yaw_angles (NDArrayFloat | list[float] | None, optional): + The relative turbine yaw angles in degrees. If None is + specified, will assume that the turbine yaw angles are all + zero degrees for all conditions. Defaults to None. + turbine_weights (NDArrayFloat | list[float] | None, optional): + weighing terms that allow the user to emphasize power at + particular turbines and/or completely ignore the power + from other turbines. This is useful when, for example, you are + modeling multiple wind farms in a single floris object. If you + only want to calculate the power production for one of those + farms and include the wake effects of the neighboring farms, + you can set the turbine_weights for the neighboring farms' + turbines to 0.0. The array of turbine powers from floris + is multiplied with this array in the calculation of the + objective function. If None, this is an array with all values + 1.0 and with shape equal to (n_findex, + n_turbines). Defaults to None. + no_wake: (bool, optional): When *True* updates the turbine + quantities without calculating the wake or adding the wake to + the flow field. This can be useful when quantifying the loss + in AEP due to wakes. Defaults to *False*. + + Returns: + float: + The Annual Energy Production (AEP) for the wind farm in + watt-hours. + """ + + # Verify the wind_data object matches FLORIS' initialization + if wind_data.n_findex != self.floris.flow_field.n_findex: + raise ValueError("WindData object and floris do not have same findex") + + # Get freq directly from wind_data + freq = wind_data.unpack_freq() + + return self.get_farm_AEP( + freq, + cut_in_wind_speed=cut_in_wind_speed, + cut_out_wind_speed=cut_out_wind_speed, + yaw_angles=yaw_angles, + turbine_weights=turbine_weights, + no_wake=no_wake, + ) + def sample_flow_at_points(self, x: NDArrayFloat, y: NDArrayFloat, z: NDArrayFloat): """ Extract the wind speed at points in the flow. @@ -859,17 +944,17 @@ def sample_flow_at_points(self, x: NDArrayFloat, y: NDArrayFloat, z: NDArrayFloa return self.floris.solve_for_points(x, y, z) def sample_velocity_deficit_profiles( - self, - direction: str = 'cross-stream', - downstream_dists: NDArrayFloat | list = None, - profile_range: NDArrayFloat | list = None, - resolution: int = 100, - wind_direction: float = None, - homogeneous_wind_speed: float = None, - ref_rotor_diameter: float = None, - x_start: float = 0.0, - y_start: float = 0.0, - reference_height: float = None, + self, + direction: str = "cross-stream", + downstream_dists: NDArrayFloat | list = None, + profile_range: NDArrayFloat | list = None, + resolution: int = 100, + wind_direction: float = None, + homogeneous_wind_speed: float = None, + ref_rotor_diameter: float = None, + x_start: float = 0.0, + y_start: float = 0.0, + reference_height: float = None, ) -> list[pd.DataFrame]: """ Extract velocity deficit profiles at a set of downstream distances from a starting point @@ -903,7 +988,7 @@ def sample_velocity_deficit_profiles( profile. """ - if direction not in ['cross-stream', 'vertical']: + if direction not in ["cross-stream", "vertical"]: raise ValueError("`direction` must be either `cross-stream` or `vertical`.") if ref_rotor_diameter is None: diff --git a/floris/tools/power_rose.py b/floris/tools/power_rose.py deleted file mode 100644 index 579d5e783..000000000 --- a/floris/tools/power_rose.py +++ /dev/null @@ -1,500 +0,0 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - -import os -import pickle - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd - -from floris.utilities import wrap_180 - - -# TODO: organize by private and public methods - - -class PowerRose: - """ - The PowerRose class is used to organize information about wind farm power - production for different wind conditions (e.g., wind speed, wind direction) - along with their frequencies of occurance to calculate the resulting annual - energy production (AEP). Power production and AEP are considered for - baseline operation, ideal operation without wake losses, and optionally - optimal operation with wake steering. The primary purpose of the PowerRose - class is for visualizing and reporting energy production and energy gains - from wake steering. A PowerRose object can be populated with user-specified - wind rose and power data (for example, using a :py:class:`~.tools - WindRose` object) or data from a previously saved PowerRose object can be - loaded. - """ - - def __init__(self,): - """ - Instantiate a PowerRose object. No explicit arguments required, and an - additional method will need to be called to populate the PowerRose - object with data. - """ - - def load(self, filename): - """ - This method loads data from a previously saved PowerRose pickle file - into a PowerRose object. - - Args: - filename (str): Path and filename of pickle file to load. - """ - - ( - self.name, - self.df_windrose, - self.power_no_wake, - self.power_baseline, - self.power_opt, - self.use_opt, - ) = pickle.load(open(filename, "rb")) - - # Compute energies - self.df_power = pd.DataFrame( - {"wd": self.df_windrose["wd"], "ws": self.df_windrose["ws"]} - ) - self._compute_energy() - - # Compute totals - self._compute_totals() - - def save(self, filename): - """ - This method saves PowerRose data as a pickle file so that it can be - imported into a PowerRose object later. - - Args: - filename (str): Path and filename of pickle file to save. - """ - pickle.dump( - [ - self.name, - self.df_windrose, - self.power_no_wake, - self.power_baseline, - self.power_opt, - self.use_opt, - ], - open(filename, "wb"), - ) - - # def _all_combine(self): - # df_power = self.df_power.copy(deep=True) - # df_yaw = self.df_yaw.copy(deep=True) - # df_turbine_power_no_wake = self.df_turbine_power_no_wake.copy( - # deep=True) - # df_turbine_power_baseline = self.df_turbine_power_baseline.copy( - # deep=True) - # df_turbine_power_opt = self.df_turbine_power_opt.copy(deep=True) - - # # Adjust the column names for uniqunes - # df_yaw.columns = [ - # 'yaw_%d' % c if type(c) is int else c for c in df_yaw.columns - # ] - # df_turbine_power_no_wake.columns = [ - # 'tnw_%d' % c if type(c) is int else c - # for c in df_turbine_power_no_wake.columns - # ] - # df_turbine_power_baseline.columns = [ - # 'tb_%d' % c if type(c) is int else c - # for c in df_turbine_power_baseline.columns - # ] - # df_turbine_power_opt.columns = [ - # 'topt_%d' % c if type(c) is int else c - # for c in df_turbine_power_opt.columns - # ] - - # # Merge - # df_combine = df_power.merge(df_yaw, on=['ws', 'wd']) - # df_combine = df_combine.merge(df_turbine_power_no_wake, - # on=['ws', 'wd']) - # df_combine = df_combine.merge(df_turbine_power_baseline, - # on=['ws', 'wd']) - # df_combine = df_combine.merge(df_turbine_power_opt, on=['ws', 'wd']) - - # return df_combine - - def _norm_frequency(self, df): - print("Norming frequency total of %.2f to 1.0" % df.freq_val.sum()) - df["freq_val"] = df.freq_val / df.freq_val.sum() - return df - - def _compute_energy(self): - self.df_power["energy_no_wake"] = self.df_windrose.freq_val * self.power_no_wake - self.df_power["energy_baseline"] = ( - self.df_windrose.freq_val * self.power_baseline - ) - if self.use_opt: - self.df_power["energy_opt"] = self.df_windrose.freq_val * self.power_opt - - def _compute_totals(self): - df = self.df_power.copy(deep=True) - df = df.sum() - - # Get total annual energy amounts - self.total_no_wake = (8760 / 1e9) * df.energy_no_wake - self.total_baseline = (8760 / 1e9) * df.energy_baseline - if self.use_opt: - self.total_opt = (8760 / 1e9) * df.energy_opt - - # Get wake loss amounts - self.baseline_percent = self.total_baseline / self.total_no_wake - self.baseline_wake_loss = 1 - self.baseline_percent - - if self.use_opt: - self.opt_percent = self.total_opt / self.total_no_wake - self.opt_wake_loss = 1 - self.opt_percent - - # Percent gain - if self.use_opt: - self.percent_gain = ( - self.total_opt - self.total_baseline - ) / self.total_baseline - self.reduction_in_wake_loss = ( - -1 - * (self.opt_wake_loss - self.baseline_wake_loss) - / self.baseline_wake_loss - ) - - def make_power_rose_from_user_data( - self, name, df_windrose, power_no_wake, power_baseline, power_opt=None - ): - """ - This method populates the PowerRose object with a user-specified wind - rose containing wind direction, wind speed, and additional optional - variables, as well as baseline wind farm power, ideal wind farm power - without wake losses, and optionally optimal wind farm power with wake - steering corresponding to each wind condition. - - TODO: Add inputs for turbine-level power and optimal yaw offsets. - - Args: - name (str): The name of the PowerRose object. - df_windrose (pandas.DataFrame): A DataFrame with wind rose - information containing at least - the following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - - power_no_wake (iterable): A list of wind farm power without wake - losses corresponding to the wind conditions in df_windrose (W). - power_baseline (iterable): A list of baseline wind farm power with - wake losses corresponding to the wind conditions in df_windrose - (W). - power_opt (iterable, optional): A list of optimal wind farm power - with wake steering corresponding to the wind conditions in - df_windrose (W). Defaults to None. - """ - self.name = name - if df_windrose is not None: - self.df_windrose = self._norm_frequency(df_windrose) - self.power_no_wake = power_no_wake - self.power_baseline = power_baseline - self.power_opt = power_opt - - # Only use_opt data if provided - if power_opt is None: - self.use_opt = False - else: - self.use_opt = True - - # # Make a single combined frame in case it's useful (Set aside for now) - # self.df_combine = self._all_combine() - - # Compute energies - self.df_power = pd.DataFrame({"wd": df_windrose["wd"], "ws": df_windrose["ws"]}) - self._compute_energy() - - # Compute totals - self._compute_totals() - - def report(self): - """ - This method prints information about annual energy production (AEP) - using the PowerRose object data. The AEP in GWh is listed for ideal - operation without wake losses, baseline operation, and optimal - operation with wake steering, if optimal power data are stored. The - wind farm efficiency (% of ideal energy production) and wake loss - percentages are listed for baseline and optimal operation (if optimal - power is stored), along with the AEP gain from wake steering (again, if - optimal power is stored). The AEP gain from wake steering is also - listed as a percentage of wake losses recovered, if applicable. - """ - if self.use_opt: - print("=============================================") - print("Case %s has results:" % self.name) - print("=============================================") - print("-\tNo-Wake\t\tBaseline\tOpt ") - print("---------------------------------------------") - print( - "AEP (GWh)\t%.1E\t\t%.1E\t\t%.1E" - % (self.total_no_wake, self.total_baseline, self.total_opt) - ) - print( - "%%\t--\t\t%.1f%%\t\t%.1f%%" - % (100.0 * self.baseline_percent, 100.0 * self.opt_percent) - ) - print( - "Wk Loss\t--\t\t%.1f%%\t\t%.1f%%" - % (100.0 * self.baseline_wake_loss, 100.0 * self.opt_wake_loss) - ) - print("AEP Gain --\t\t--\t\t%.1f%%" % (100.0 * self.percent_gain)) - print("Loss Red --\t\t--\t\t%.1f%%" % (100.0 * self.reduction_in_wake_loss)) - else: - print("=============================================") - print("Case %s has results:" % self.name) - print("=============================================") - print("-\tNo-Wake\t\tBaseline ") - print("---------------------------------------------") - print("AEP (GWh)\t%.1E\t\t%.1E" % (self.total_no_wake, self.total_baseline)) - print("%%\t--\t\t%.1f%%" % (100.0 * self.baseline_percent)) - print("Wk Loss\t--\t\t%.1f%%" % (100.0 * self.baseline_wake_loss)) - - def plot_by_direction(self, axarr=None): - """ - This method plots energy production, wind farm efficiency, and energy - gains from wake steering (if applicable) as a function of wind - direction. If axes are not provided, new ones are created. The plots - include: - - 1) The energy production as a function of wind direction for the - baseline and, if applicable, optimal wake steering cases normalized by - the maximum energy production. - 2) The wind farm efficiency (energy production relative to energy - production without wake losses) as a function of wind direction for the - baseline and, if applicable, optimal wake steering cases. - 3) Percent gain in energy production with optimal wake steering as a - function of wind direction. This third plot is only created if optimal - power data are stored in the PowerRose object. - - Args: - axarr (numpy.ndarray, optional): An array of 2 or 3 - :py:class:`matplotlib.axes._subplots.AxesSubplot` axes objects - on which data are plotted. Three axes are rquired if the - PowerRose object contains optimal power data. Default is None. - - Returns: - numpy.ndarray: An array of 2 or 3 - :py:class:`matplotlib.axes._subplots.AxesSubplot` axes objects on - which the data are plotted. - """ - - df = self.df_power.copy(deep=True) - df = df.groupby("wd").sum().reset_index() - - if self.use_opt: - - if axarr is None: - fig, axarr = plt.subplots(3, 1, sharex=True) - - ax = axarr[0] - ax.plot( - df.wd, - df.energy_baseline / np.max(df.energy_opt), - label="Baseline", - color="k", - ) - ax.axhline( - np.mean(df.energy_baseline / np.max(df.energy_opt)), color="r", ls="--" - ) - ax.plot( - df.wd, - df.energy_opt / np.max(df.energy_opt), - label="Optimized", - color="r", - ) - ax.axhline( - np.mean(df.energy_opt / np.max(df.energy_opt)), color="r", ls="--" - ) - ax.set_ylabel("Normalized Energy") - ax.grid(True) - ax.legend() - ax.set_title(self.name) - - ax = axarr[1] - ax.plot( - df.wd, - df.energy_baseline / df.energy_no_wake, - label="Baseline", - color="k", - ) - ax.axhline( - np.mean(df.energy_baseline) / np.mean(df.energy_no_wake), - color="k", - ls="--", - ) - ax.plot( - df.wd, df.energy_opt / df.energy_no_wake, label="Optimized", color="r" - ) - ax.axhline( - np.mean(df.energy_opt) / np.mean(df.energy_no_wake), color="r", ls="--" - ) - ax.set_ylabel("Wind Farm Efficiency") - ax.grid(True) - ax.legend() - - ax = axarr[2] - ax.plot( - df.wd, - 100.0 * (df.energy_opt - df.energy_baseline) / df.energy_baseline, - "r", - ) - ax.axhline( - 100.0 - * (df.energy_opt.mean() - df.energy_baseline.mean()) - / df.energy_baseline.mean(), - df.energy_baseline.mean(), - color="r", - ls="--", - ) - ax.set_ylabel("Percent Gain") - ax.set_xlabel("Wind Direction (deg)") - - return axarr - - else: - - if axarr is None: - fig, axarr = plt.subplots(2, 1, sharex=True) - - ax = axarr[0] - ax.plot( - df.wd, - df.energy_baseline / np.max(df.energy_baseline), - label="Baseline", - color="k", - ) - ax.axhline( - np.mean(df.energy_baseline / np.max(df.energy_baseline)), - color="r", - ls="--", - ) - ax.set_ylabel("Normalized Energy") - ax.grid(True) - ax.legend() - ax.set_title(self.name) - - ax = axarr[1] - ax.plot( - df.wd, - df.energy_baseline / df.energy_no_wake, - label="Baseline", - color="k", - ) - ax.axhline( - np.mean(df.energy_baseline) / np.mean(df.energy_no_wake), - color="k", - ls="--", - ) - ax.set_ylabel("Wind Farm Efficiency") - ax.grid(True) - ax.legend() - - ax.set_xlabel("Wind Direction (deg)") - - return axarr - - # def wake_loss_at_direction(self, wd): - # """ - # Calculate wake losses for a given direction. Plot rose figures - # for Power, Energy, Baseline power, Optimal gain, Total Gain, - # Percent Gain, etc. - - # Args: - # wd (float): Wind direction of interest. - - # Returns: - # tuple: tuple containing: - - # - **fig** (*plt.figure*): Figure handle. - # - **axarr** (*list*): list of axis handles. - # """ - - # df = self.df_power.copy(deep=True) - - # # Choose the nearest direction - # # Find nearest wind direction - # df['dist'] = np.abs(wrap_180(df.wd - wd)) - # wd_select = df[df.dist == df.dist.min()]['wd'].unique()[0] - # print('Nearest wd to %.1f is %.1f' % (wd, wd_select)) - # df = df[df.wd == wd_select] - - # df = df.groupby('ws').sum().reset_index() - - # fig, axarr = plt.subplots(4, 2, sharex=True, figsize=(14, 12)) - - # ax = axarr[0, 0] - # ax.set_title('Power') - # ax.plot(df.ws, df.power_no_wake, 'k', label='No Wake') - # ax.plot(df.ws, df.power_baseline, 'b', label='Baseline') - # ax.plot(df.ws, df.power_opt, 'r', label='Opt') - # ax.set_ylabel('Total') - # ax.grid() - - # ax = axarr[0, 1] - # ax.set_title('Energy') - # ax.plot(df.ws, df.energy_no_wake, 'k', label='No Wake') - # ax.plot(df.ws, df.energy_baseline, 'b', label='Baseline') - # ax.plot(df.ws, df.energy_opt, 'r', label='Opt') - # ax.legend() - # ax.grid() - - # ax = axarr[1, 0] - # ax.plot(df.ws, - # df.power_baseline / df.power_no_wake, - # 'b', - # label='Baseline') - # ax.plot(df.ws, df.power_opt / df.power_no_wake, 'r', label='Opt') - # ax.set_ylabel('Percent') - # ax.grid() - - # ax = axarr[1, 1] - # ax.plot(df.ws, - # df.energy_baseline / df.energy_no_wake, - # 'b', - # label='Baseline') - # ax.plot(df.ws, df.energy_opt / df.energy_no_wake, 'r', label='Opt') - # ax.grid() - - # ax = axarr[2, 0] - # ax.plot(df.ws, (df.power_opt - df.power_baseline), 'r') - # ax.set_ylabel('Total Gain') - # ax.grid() - - # ax = axarr[2, 1] - # ax.plot(df.ws, (df.energy_opt - df.energy_baseline), 'r') - # ax.grid() - - # ax = axarr[3, 0] - # ax.plot(df.ws, (df.power_opt - df.power_baseline) / df.power_baseline, - # 'r') - # ax.set_ylabel('Percent Gain') - # ax.grid() - # ax.set_xlabel('Wind Speed (m/s)') - - # ax = axarr[3, 1] - # ax.plot(df.ws, - # (df.energy_opt - df.energy_baseline) / df.energy_baseline, 'r') - # ax.grid() - # ax.set_xlabel('Wind Speed (m/s)') - - # return fig, axarr diff --git a/floris/tools/wind_data.py b/floris/tools/wind_data.py new file mode 100644 index 000000000..9331ddb6b --- /dev/null +++ b/floris/tools/wind_data.py @@ -0,0 +1,553 @@ +# Copyright 2024 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +from __future__ import annotations + +from abc import abstractmethod + +import matplotlib.cm as cm +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +from pandas.api.types import CategoricalDtype + +from floris.type_dec import NDArrayFloat + + +class WindDataBase: + """ + Super class that WindRose and TimeSeries inherit from, enforcing the implementation of + unpack() on the child classes and providing the general functions unpack_for_reinitialize() and + unpack_freq(). + """ + + @abstractmethod + def unpack(self): + """ + Placeholder for child classes of WindDataBase, which each need to implement the unpack() + method. + """ + raise NotImplementedError("unpack() not implemented on {0}".format(self.__class__.__name__)) + + def unpack_for_reinitialize(self): + """ + Return only the variables need for FlorisInterface.reinitialize + """ + ( + wind_directions_unpack, + wind_speeds_unpack, + _, + ti_table_unpack, + _, + ) = self.unpack() + + return wind_directions_unpack, wind_speeds_unpack, ti_table_unpack + + def unpack_freq(self): + """Unpack frequency weighting""" + + ( + _, + _, + freq_table_unpack, + _, + _, + ) = self.unpack() + + return freq_table_unpack + + +class WindRose(WindDataBase): + """ + In FLORIS v4, the WindRose class is used to drive FLORIS and optimization + operations in which the inflow is characterized by the frequency of + binned wind speed, wind direction and turbulence intensity values + + Args: + wind_directions: NumPy array of wind directions (NDArrayFloat). + wind_speeds: NumPy array of wind speeds (NDArrayFloat). + freq_table: Frequency table for binned wind direction, wind speed + values (NDArrayFloat, optional). Must have dimension + (n_wind_directions, n_wind_speeds). Defaults to None in which case + uniform frequency of all bins is assumed. + ti_table: Turbulence intensity table for binned wind direction, wind + speed values (NDArrayFloat, optional). Must have dimension + (n_wind_directions, n_wind_speeds). Defaults to None (no change to + turbulence intensity) + value_table: Value table for binned wind direction, wind + speed values (NDArrayFloat, optional). Must have dimension + (n_wind_directions, n_wind_speeds). Defaults to None in which case + uniform values are assumed. Value can be used to weight power in + each bin to compute the total value of the energy produced + compute_zero_freq_occurrence: Flag indicating whether to compute zero + frequency occurrences (bool, optional). Defaults to False. + + """ + + def __init__( + self, + wind_directions: NDArrayFloat, + wind_speeds: NDArrayFloat, + freq_table: NDArrayFloat | None = None, + ti_table: NDArrayFloat | None = None, + value_table: NDArrayFloat | None = None, + compute_zero_freq_occurrence: bool = False, + ): + if not isinstance(wind_directions, np.ndarray): + raise TypeError("wind_directions must be a NumPy array") + + if not isinstance(wind_speeds, np.ndarray): + raise TypeError("wind_speeds must be a NumPy array") + + # Save the wind speeds and directions + self.wind_directions = wind_directions + self.wind_speeds = wind_speeds + + # If freq_table is not None, confirm it has correct dimension, + # otherwise initialize to uniform probability + if freq_table is not None: + if not freq_table.shape[0] == len(wind_directions): + raise ValueError("freq_table first dimension must equal len(wind_directions)") + if not freq_table.shape[1] == len(wind_speeds): + raise ValueError("freq_table second dimension must equal len(wind_speeds)") + self.freq_table = freq_table + else: + self.freq_table = np.ones((len(wind_directions), len(wind_speeds))) + + # Normalize freq table + self.freq_table = self.freq_table / np.sum(self.freq_table) + + # If TI table is not None, confirm dimension + # otherwise leave it None + if ti_table is not None: + if not ti_table.shape[0] == len(wind_directions): + raise ValueError("ti_table first dimension must equal len(wind_directions)") + if not ti_table.shape[1] == len(wind_speeds): + raise ValueError("ti_table second dimension must equal len(wind_speeds)") + self.ti_table = ti_table + + # If value_table is not None, confirm it has correct dimension, + # otherwise initialize to all ones + if value_table is not None: + if not value_table.shape[0] == len(wind_directions): + raise ValueError("value_table first dimension must equal len(wind_directions)") + if not value_table.shape[1] == len(wind_speeds): + raise ValueError("value_table second dimension must equal len(wind_speeds)") + self.value_table = value_table + + # Save whether zero occurrence cases should be computed + self.compute_zero_freq_occurrence = compute_zero_freq_occurrence + + # Build the gridded and flatten versions + self._build_gridded_and_flattened_version() + + def _build_gridded_and_flattened_version(self): + """ + Given the wind direction and speed array, build the gridded versions + covering all combinations, and then flatten versions which put all + combinations into 1D array + """ + # Gridded wind speed and direction + self.wd_grid, self.ws_grid = np.meshgrid( + self.wind_directions, self.wind_speeds, indexing="ij" + ) + + # Flat wind speed and direction + self.wd_flat = self.wd_grid.flatten() + self.ws_flat = self.ws_grid.flatten() + + # Flat frequency table + self.freq_table_flat = self.freq_table.flatten() + + # TI table + if self.ti_table is not None: + self.ti_table_flat = self.ti_table.flatten() + else: + self.ti_table_flat = None + + # value table + if self.value_table is not None: + self.value_table_flat = self.value_table.flatten() + else: + self.value_table_flat = None + + # Set mask to non-zero frequency cases depending on compute_zero_freq_occurrence + if self.compute_zero_freq_occurrence: + # If computing zero freq occurrences, then this is all True + self.non_zero_freq_mask = [True for i in range(len(self.freq_table_flat))] + else: + self.non_zero_freq_mask = self.freq_table_flat > 0.0 + + # N_findex should only be the calculated cases + self.n_findex = np.sum(self.non_zero_freq_mask) + + def unpack(self): + """ + Unpack the flattened versions of the matrices and return the values + accounting for the non_zero_freq_mask + """ + + # The unpacked versions start as the flat version of each + wind_directions_unpack = self.wd_flat.copy() + wind_speeds_unpack = self.ws_flat.copy() + freq_table_unpack = self.freq_table_flat.copy() + + # Now mask thes values according to self.non_zero_freq_mask + wind_directions_unpack = wind_directions_unpack[self.non_zero_freq_mask] + wind_speeds_unpack = wind_speeds_unpack[self.non_zero_freq_mask] + freq_table_unpack = freq_table_unpack[self.non_zero_freq_mask] + + # Repeat for turbulence intensity if not none + if self.ti_table_flat is not None: + ti_table_unpack = self.ti_table_flat[self.non_zero_freq_mask].copy() + else: + ti_table_unpack = None + + # Now get unpacked value table + if self.value_table_flat is not None: + value_table_unpack = self.value_table_flat[self.non_zero_freq_mask].copy() + else: + value_table_unpack = None + + return ( + wind_directions_unpack, + wind_speeds_unpack, + freq_table_unpack, + ti_table_unpack, + value_table_unpack, + ) + + def resample_wind_rose(self, wd_step=None, ws_step=None): + """ + Resamples the wind rose by by wd_step and/or ws_step + + Args: + wd_step: Step size for wind direction resampling (float, optional). + ws_step: Step size for wind speed resampling (float, optional). + + Returns: + WindRose: Resampled wind rose based on the provided or default step sizes. + + Notes: + - Returns a resampled version of the wind rose using new `ws_step` and `wd_step`. + - Uses the bin weights feature in TimeSeries to resample the wind rose. + - If `ws_step` or `wd_step` is not specified, it uses the current values. + """ + if ws_step is None: + if len(self.wind_speeds) >= 2: + ws_step = self.wind_speeds[1] - self.wind_speeds[0] + else: # wind rose will have only a single wind speed, and we assume a ws_step of 1 + ws_step = 1.0 + if wd_step is None: + if len(self.wind_directions) >= 2: + wd_step = self.wind_directions[1] - self.wind_directions[0] + else: # wind rose will have only a single wind direction, and we assume a wd_step of 1 + wd_step = 1.0 + + # Pass the flat versions of each quantity to build a TimeSeries model + time_series = TimeSeries( + self.wd_flat, self.ws_flat, self.ti_table_flat, self.value_table_flat + ) + + # Now build a new wind rose using the new steps + return time_series.to_wind_rose( + wd_step=wd_step, ws_step=ws_step, bin_weights=self.freq_table_flat + ) + + def plot_wind_rose( + self, + ax=None, + color_map="viridis_r", + wd_step=15.0, + ws_step=5.0, + legend_kwargs={}, + ): + """ + This method creates a wind rose plot showing the frequency of occurrence + of the specified wind direction and wind speed bins. If no axis is + provided, a new one is created. + + **Note**: Based on code provided by Patrick Murphy from the University + of Colorado Boulder. + + Args: + ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes + on which the wind rose is plotted. Defaults to None. + color_map (str, optional): Colormap to use. Defaults to 'viridis_r'. + wd_step: Step size for wind direction (float, optional). + ws_step: Step size for wind speed (float, optional). + legend_kwargs (dict, optional): Keyword arguments to be passed to + ax.legend(). + + Returns: + :py:class:`matplotlib.pyplot.axes`: A figure axes object containing + the plotted wind rose. + """ + + # Get a resampled wind_rose + wind_rose_resample = self.resample_wind_rose(wd_step, ws_step) + wd_bins = wind_rose_resample.wind_directions + ws_bins = wind_rose_resample.wind_speeds + freq_table = wind_rose_resample.freq_table + + # Set up figure + if ax is None: + _, ax = plt.subplots(subplot_kw={"polar": True}) + + # Get a color array + color_array = cm.get_cmap(color_map, len(ws_bins)) + + for wd_idx, wd in enumerate(wd_bins): + rects = [] + freq_table_sub = freq_table[wd_idx, :].flatten() + for ws_idx, ws in reversed(list(enumerate(ws_bins))): + plot_val = freq_table_sub[:ws_idx].sum() + rects.append( + ax.bar( + np.radians(wd), + plot_val, + width=0.9 * np.radians(wd_step), + color=color_array(ws_idx), + edgecolor="k", + ) + ) + + # Configure the plot + ax.legend(reversed(rects), ws_bins, **legend_kwargs) + ax.set_theta_direction(-1) + ax.set_theta_offset(np.pi / 2.0) + ax.set_theta_zero_location("N") + ax.set_xticks(np.arange(0, 2 * np.pi, np.pi / 4)) + ax.set_xticklabels(["N", "NE", "E", "SE", "S", "SW", "W", "NW"]) + + return ax + + +class TimeSeries(WindDataBase): + """ + In FLORIS v4, the TimeSeries class is used to drive FLORIS and optimization + operations in which the inflow is by a sequence of wind direction, wind speed + and turbulence intensity values + + Args: + wind_directions: NumPy array of wind directions (NDArrayFloat). + wind_speeds: NumPy array of wind speeds (NDArrayFloat). + turbulence_intensity: NumPy array of wind speeds (NDArrayFloat, optional). + Defaults to None + values: NumPy array of electricity values (NDArrayFloat, optional). + Defaults to None + + """ + + def __init__( + self, + wind_directions: NDArrayFloat, + wind_speeds: NDArrayFloat, + turbulence_intensity: NDArrayFloat | None = None, + values: NDArrayFloat | None = None, + ): + # Wind speeds and wind directions must be the same length + if len(wind_directions) != len(wind_speeds): + raise ValueError("wind_directions and wind_speeds must be the same length") + + # If turbulence_intensity is not None, must be same length as wind_directions + if turbulence_intensity is not None: + if len(wind_directions) != len(turbulence_intensity): + raise ValueError("wind_directions and turbulence_intensity must be the same length") + + # If turbulence_intensity is not None, must be same length as wind_directions + if values is not None: + if len(wind_directions) != len(values): + raise ValueError("wind_directions and values must be the same length") + + self.wind_directions = wind_directions + self.wind_speeds = wind_speeds + self.turbulence_intensity = turbulence_intensity + self.values = values + + # Record findex + self.n_findex = len(self.wind_directions) + + def unpack(self): + """ + Unpack the time series data in a manner consistent with wind rose unpack + """ + + # to match wind_rose, make a uniform frequency + uniform_frequency = np.ones_like(self.wind_directions) + uniform_frequency = uniform_frequency / uniform_frequency.sum() + + return ( + self.wind_directions, + self.wind_speeds, + uniform_frequency, + self.turbulence_intensity, + self.values, + ) + + def _wrap_wind_directions_near_360(self, wind_directions, wd_step): + """ + Wraps the wind directions using `wd_step` to produce a wrapped version + where values between [360 - wd_step/2.0, 360] get mapped to negative numbers + for binning. + + Args: + wind_directions (NDArrayFloat): NumPy array of wind directions. + wd_step (float): Step size for wind direction. + + Returns: + NDArrayFloat: Wrapped version of wind directions. + + """ + wind_directions_wrapped = wind_directions.copy() + mask = wind_directions_wrapped >= 360 - wd_step / 2.0 + wind_directions_wrapped[mask] = wind_directions_wrapped[mask] - 360.0 + return wind_directions_wrapped + + def to_wind_rose( + self, wd_step=2.0, ws_step=1.0, wd_edges=None, ws_edges=None, bin_weights=None + ): + """ + Converts the TimeSeries data to a WindRose. + + Args: + wd_step (float, optional): Step size for wind direction (default is 2.0). + ws_step (float, optional): Step size for wind speed (default is 1.0). + wd_edges (NDArrayFloat, optional): Custom wind direction edges. Defaults to None. + ws_edges (NDArrayFloat, optional): Custom wind speed edges. Defaults to None. + bin_weights (NDArrayFloat, optional): Bin weights for resampling. Note these + are primarily used by the resample resample_wind_rose function. + Defaults to None. + + Returns: + WindRose: A WindRose object based on the TimeSeries data. + + Notes: + - If `wd_edges` is defined, it uses it to produce the bin centers. + - If `wd_edges` is not defined, it determines `wd_edges` from the step and data. + - If `ws_edges` is defined, it uses it for wind speed edges. + - If `ws_edges` is not defined, it determines `ws_edges` from the step and data. + """ + + # If wd_edges is defined, then use it to produce the bin centers + if wd_edges is not None: + wd_step = wd_edges[1] - wd_edges[0] + + # use wd_step to produce a wrapped version of wind_directions + wind_directions_wrapped = self._wrap_wind_directions_near_360( + self.wind_directions, wd_step + ) + + # Else, determine wd_edges from the step and data + else: + wd_edges = np.arange(0.0 - wd_step / 2.0, 360.0, wd_step) + + # use wd_step to produce a wrapped version of wind_directions + wind_directions_wrapped = self._wrap_wind_directions_near_360( + self.wind_directions, wd_step + ) + + # Only keep the range with values in it + wd_edges = wd_edges[wd_edges + wd_step > wind_directions_wrapped.min()] + wd_edges = wd_edges[wd_edges - wd_step <= wind_directions_wrapped.max()] + + # Define the centers from the edges + wd_centers = wd_edges[:-1] + wd_step / 2.0 + + # Repeat for wind speeds + if ws_edges is not None: + ws_step = ws_edges[1] - ws_edges[0] + + else: + ws_edges = np.arange(0.0 - ws_step / 2.0, 50.0, ws_step) + + # Only keep the range with values in it + ws_edges = ws_edges[ws_edges + ws_step > self.wind_speeds.min()] + ws_edges = ws_edges[ws_edges - ws_step <= self.wind_speeds.max()] + + # Define the centers from the edges + ws_centers = ws_edges[:-1] + ws_step / 2.0 + + # Now use pandas to get the tables need for wind rose + df = pd.DataFrame( + { + "wd": wind_directions_wrapped, + "ws": self.wind_speeds, + "freq_val": np.ones(len(wind_directions_wrapped)), + } + ) + + # If bin_weights are passed in, apply these to the frequency + # this is mostly used when resampling the wind rose + if bin_weights is not None: + df = df.assign(freq_val=df["freq_val"] * bin_weights) + + # If turbulence_intensity is not none, add to dataframe + if self.turbulence_intensity is not None: + df = df.assign(turbulence_intensity=self.turbulence_intensity) + + # If values is not none, add to dataframe + if self.values is not None: + df = df.assign(values=self.values) + + # Bin wind speed and wind direction and then group things up + df = ( + df.assign( + wd_bin=pd.cut( + df.wd, bins=wd_edges, labels=wd_centers, right=False, include_lowest=True + ) + ) + .assign( + ws_bin=pd.cut( + df.ws, bins=ws_edges, labels=ws_centers, right=False, include_lowest=True + ) + ) + .drop(["wd", "ws"], axis=1) + ) + + # Convert wd_bin and ws_bin to categoricals to ensure all combinations + # are considered and then group + wd_cat = CategoricalDtype(categories=wd_centers, ordered=True) + ws_cat = CategoricalDtype(categories=ws_centers, ordered=True) + + df = ( + df.assign(wd_bin=df["wd_bin"].astype(wd_cat)) + .assign(ws_bin=df["ws_bin"].astype(ws_cat)) + .groupby(["wd_bin", "ws_bin"], observed=False) + .agg(["sum", "mean"]) + ) + # Flatten and combine levels using an underscore + df.columns = ["_".join(col) for col in df.columns] + + # Collect the frequency table and reshape + freq_table = df["freq_val_sum"].values.copy() + freq_table = freq_table / freq_table.sum() + freq_table = freq_table.reshape((len(wd_centers), len(ws_centers))) + + # If turbulence intensity is not none, compute the table + if self.turbulence_intensity is not None: + ti_table = df["turbulence_intensity_mean"].values.copy() + ti_table = ti_table.reshape((len(wd_centers), len(ws_centers))) + else: + ti_table = None + + # If values is not none, compute the table + if self.values is not None: + value_table = df["values_mean"].values.copy() + value_table = value_table.reshape((len(wd_centers), len(ws_centers))) + else: + value_table = None + + # Return a WindRose + return WindRose(wd_centers, ws_centers, freq_table, ti_table, value_table) diff --git a/floris/tools/wind_rose.py b/floris/tools/wind_rose.py deleted file mode 100644 index 6725af485..000000000 --- a/floris/tools/wind_rose.py +++ /dev/null @@ -1,1626 +0,0 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - -# TODO -# 1: reorganize into private and public methods -# 2: Include smoothing? - -import os -import pickle - -import dateutil -import matplotlib.cm as cm -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -from scipy.interpolate import LinearNDInterpolator, NearestNDInterpolator - -import floris.utilities as geo - - -# from pyproj import Proj - - - -class WindRose: - """ - The WindRose class is used to organize information about the frequency of - occurance of different combinations of wind speed and wind direction (and - other optimal wind variables). A WindRose object can be used to help - calculate annual energy production (AEP) when combined with Floris power - calculations for different wind conditions. Several methods exist for - populating a WindRose object with wind data. WindRose also contains methods - for visualizing wind roses. - - References: - .. bibliography:: /references.bib - :style: unsrt - :filter: docname in docnames - :keyprefix: wr- - """ - - def __init__(self,): - """ - Instantiate a WindRose object and set some initial parameter values. - No explicit arguments required, and an additional method will need to - be called to populate the WindRose object with data. - """ - # Initialize some varibles - self.num_wd = 0 - self.num_ws = 0 - self.wd_step = 1.0 - self.ws_step = 5.0 - self.wd = np.array([]) - self.ws = np.array([]) - self.df = pd.DataFrame() - - def save(self, filename): - """ - This method saves the WindRose data as a pickle file so that it can be - imported into a WindRose object later. - - Args: - filename (str): Path and filename of pickle file to save. - """ - pickle.dump( - [ - self.num_wd, - self.num_ws, - self.wd_step, - self.ws_step, - self.wd, - self.ws, - self.df, - ], - open(filename, "wb"), - ) - - def load(self, filename): - """ - This method loads data from a previously saved WindRose pickle file - into a WindRose object. - - Args: - filename (str): Path and filename of pickle file to load. - - Returns: - int, int, float, float, np.array, np.array, pandas.DataFrame: - - - Number of wind direction bins. - - Number of wind speed bins. - - Wind direction bin size (deg). - - Wind speed bin size (m/s). - - List of wind direction bin center values (deg). - - List of wind speed bin center values (m/s). - - DataFrame containing at least the following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of - the wind conditions in the other columns. - """ - ( - self.num_wd, - self.num_ws, - self.wd_step, - self.ws_step, - self.wd, - self.ws, - self.df, - ) = pickle.load(open(filename, "rb")) - - return self.df - - def resample_wind_speed(self, df, ws=np.arange(0, 26, 1.0)): - """ - This method resamples the wind speed bins using the specified wind - speed bin center values. The frequency values are adjusted accordingly. - - Args: - df (pandas.DataFrame): Wind rose DataFrame containing at least the - following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - - ws (np.array, optional): List of new wind speed center bins (m/s). - Defaults to np.arange(0, 26, 1.). - - Returns: - pandas.DataFrame: Wind rose DataFrame with the resampled wind speed - bins and frequencies containing at least the following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - New wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - new wind conditions in the other columns. - """ - # Make a copy of incoming dataframe - df = df.copy(deep=True) - - # Get the wind step - ws_step = ws[1] - ws[0] - - # Ws - ws_edges = ws - ws_step / 2.0 - ws_edges = np.append(ws_edges, np.array(ws[-1] + ws_step / 2.0)) - - # Cut wind speed onto bins - df["ws"] = pd.cut(df.ws, ws_edges, labels=ws) - - # Regroup - df = df.groupby([c for c in df.columns if c != "freq_val"], observed=False).sum() - - # Fill nans - df = df.fillna(0) - - # Reset the index - df = df.reset_index() - - # Set to float - for c in [c for c in df.columns if c != "freq_val"]: - df[c] = df[c].astype(float) - df[c] = df[c].astype(float) - - return df - - def internal_resample_wind_speed(self, ws=np.arange(0, 26, 1.0)): - """ - Internal method for resampling wind speed into desired bins. The - frequency values are adjusted accordingly. Modifies data within - WindRose object without explicit return. - - TODO: make a private method - - Args: - ws (np.array, optional): Vector of wind speed bin centers for - the wind rose (m/s). Defaults to np.arange(0, 26, 1.). - """ - # Update ws and wd binning - self.ws = ws - self.num_ws = len(ws) - self.ws_step = ws[1] - ws[0] - - # Update internal data frame - self.df = self.resample_wind_speed(self.df, ws) - - def resample_wind_direction(self, df, wd=np.arange(0, 360, 5.0)): - """ - This method resamples the wind direction bins using the specified wind - direction bin center values. The frequency values are adjusted - accordingly. - - Args: - df (pandas.DataFrame): Wind rose DataFrame containing at least the - following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - - wd (np.array, optional): List of new wind direction center bins - (deg). Defaults to np.arange(0, 360, 5.). - - Returns: - pandas.DataFrame: Wind rose DataFrame with the resampled wind - direction bins and frequencies containing at least the following - columns: - - - **wd** (*float*) - New wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - new wind conditions in the other columns. - """ - # Make a copy of incoming dataframe - df = df.copy(deep=True) - - # Get the wind step - wd_step = wd[1] - wd[0] - - # Get bin edges - wd_edges = wd - wd_step / 2.0 - wd_edges = np.append(wd_edges, np.array(wd[-1] + wd_step / 2.0)) - - # Get the overhangs - negative_overhang = wd_edges[0] - positive_overhang = wd_edges[-1] - 360.0 - - # Need potentially to wrap high angle direction to negative for correct - # binning - df["wd"] = geo.wrap_360(df.wd) - if negative_overhang < 0: - print("Correcting negative Overhang:%.1f" % negative_overhang) - df["wd"] = np.where( - df.wd.values >= 360.0 + negative_overhang, - df.wd.values - 360.0, - df.wd.values, - ) - - # Check on other side - if positive_overhang > 0: - print("Correcting positive Overhang:%.1f" % positive_overhang) - df["wd"] = np.where( - df.wd.values <= positive_overhang, df.wd.values + 360.0, df.wd.values - ) - - # Cut into bins - df["wd"] = pd.cut(df.wd, wd_edges, labels=wd) - - # Regroup - df = df.groupby([c for c in df.columns if c != "freq_val"], observed=False).sum() - - # Fill nans - df = df.fillna(0) - - # Reset the index - df = df.reset_index() - - # Set to float Re-wrap - for c in [c for c in df.columns if c != "freq_val"]: - df[c] = df[c].astype(float) - df[c] = df[c].astype(float) - df["wd"] = geo.wrap_360(df.wd) - - return df - - def internal_resample_wind_direction(self, wd=np.arange(0, 360, 5.0)): - """ - Internal method for resampling wind direction into desired bins. The - frequency values are adjusted accordingly. Modifies data within - WindRose object without explicit return. - - TODO: make a private method - - Args: - wd (np.array, optional): Vector of wind direction bin centers for - the wind rose (deg). Defaults to np.arange(0, 360, 5.). - """ - # Update ws and wd binning - self.wd = wd - self.num_wd = len(wd) - self.wd_step = wd[1] - wd[0] - - # Update internal data frame - self.df = self.resample_wind_direction(self.df, wd) - - def resample_column(self, df, col, bins): - """ - This method resamples the specified wind parameter column using the - specified bin center values. The frequency values are adjusted - accordingly. - - Args: - df (pandas.DataFrame): Wind rose DataFrame containing at least the - following columns as well as *col*: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - - col (str): The name of the column to resample. - bins (np.array): List of new bin center values for the specified - column. - - Returns: - pandas.DataFrame: Wind rose DataFrame with the resampled wind - parameter bins and frequencies containing at least the following - columns as well as *col*: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - new wind conditions in the other columns. - """ - # Make a copy of incoming dataframe - df = df.copy(deep=True) - - # Cut into bins, make first and last bins extend to -/+ infinity - var_edges = np.append(0.5 * (bins[1:] + bins[:-1]), np.inf) - var_edges = np.append(-np.inf, var_edges) - df[col] = pd.cut(df[col], var_edges, labels=bins) - - # Regroup - df = df.groupby([c for c in df.columns if c != "freq_val"], observed=False).sum() - - # Fill nans - df = df.fillna(0) - - # Reset the index - df = df.reset_index() - - # Set to float - for c in [c for c in df.columns if c != "freq_val"]: - df[c] = df[c].astype(float) - - return df - - def internal_resample_column(self, col, bins): - """ - Internal method for resampling column into desired bins. The frequency - values are adjusted accordingly. Modifies data within WindRose object - without explicit return. - - TODO: make a private method - - Args: - col (str): Name of column to resample. - bins (np.array): Vector of bins for the WindRose column. - """ - # Update internal data frame - self.df = self.resample_column(self.df, col, bins) - - def resample_average_ws_by_wd(self, df): - """ - This method calculates the mean wind speed for each wind direction bin - and resamples the wind rose, resulting in a single mean wind speed per - wind direction bin. The frequency values are adjusted accordingly. - - Args: - df (pandas.DataFrame): Wind rose DataFrame containing at least the - following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - - Returns: - pandas.DataFrame: Wind rose DataFrame with the resampled wind speed - bins and frequencies containing at least the following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - The average wind speed for each wind - direction bin (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - new wind conditions in the other columns. - """ - # Make a copy of incoming dataframe - df = df.copy(deep=True) - - ws_avg = [] - - for val in df.wd.unique(): - ws_avg.append( - np.array( - df.loc[df["wd"] == val]["ws"] * df.loc[df["wd"] == val]["freq_val"] - ).sum() - / df.loc[df["wd"] == val]["freq_val"].sum() - ) - - # Regroup - df = df.groupby("wd").sum() - - df["ws"] = ws_avg - - # Reset the index - df = df.reset_index() - - # Set to float - df["ws"] = df.ws.astype(float) - df["wd"] = df.wd.astype(float) - - return df - - def internal_resample_average_ws_by_wd(self, wd=np.arange(0, 360, 5.0)): - """ - This internal method calculates the mean wind speed for each specified - wind direction bin and resamples the wind rose, resulting in a single - mean wind speed per wind direction bin. The frequency values are - adjusted accordingly. - - TODO: make an internal method - - Args: - wd (np.arange, optional): Wind direction bin centers (deg). - Defaults to np.arange(0, 360, 5.). - - Returns: - pandas.DataFrame: Wind rose DataFrame with the resampled wind speed - bins and frequencies containing at least the following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - The average wind speed for each wind - direction bin (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - new wind conditions in the other columns. - """ - # Update ws and wd binning - self.wd = wd - self.num_wd = len(wd) - self.wd_step = wd[1] - wd[0] - - # Update internal data frame - self.df = self.resample_average_ws_by_wd(self.df) - - def interpolate( - self, - wind_directions: np.ndarray, - wind_speeds: np.ndarray, - mirror_0_to_360=True, - fill_value=0.0, - method="linear" - ): - """ - This method returns a linear interpolant that will return the occurrence - frequency for any given wind direction and wind speed combination(s). - This can be particularly useful when evaluating the wind rose at a - higher frequency than the input data is provided. - - Args: - wind_directions (np.ndarray): One or multi-dimensional array containing - the wind direction values at which the wind rose frequency of occurrence - should be evaluated. - wind_speeds (np.ndarray): One or multi-dimensional array containing - the wind speed values at which the wind rose frequency of occurrence - should be evaluated. - mirror_0_to_360 (bool, optional): This function copies the wind rose - frequency values from 0 deg to 360 deg. This can be useful when, for example, - the wind rose is only calculated until 357 deg but then interpolant is - requesting values at 359 deg. Defaults to True. - fill_value (float, optional): Fill value for the interpolant when - interpolating values outside of the data region. Defaults to 0.0. - method (str, optional): The interpolation method. Options are 'linear' and - 'nearest'. Recommended usage is 'linear'. Defaults to 'linear'. - - Returns: - scipy.interpolate.LinearNDInterpolant: Linear interpolant for the - wind rose currently available in the class (self.df). - - Example: - wr = wind_rose.WindRose() - wr.make_wind_rose_from_user_data(...) - freq_floris = wr.interpolate(floris_wind_direction_grid, floris_wind_speed_grid) - """ - if method == "linear": - interpolator = LinearNDInterpolator - elif method == "nearest": - interpolator = NearestNDInterpolator - else: - UserWarning("Unknown interpolation method: '{:s}'".format(method)) - - # Load windrose information from self - df = self.df.copy() - - if mirror_0_to_360: - # Copy values from 0 deg over to 360 deg - df_copy = df[df["wd"] == 0.0].copy() - df_copy["wd"] = 360.0 - df = pd.concat([df, df_copy], axis=0) - - interp = interpolator( - points=df[["wd", "ws"]], - values=df["freq_val"], - fill_value=fill_value - ) - return interp(wind_directions, wind_speeds) - - def weibull(self, x, k=2.5, lam=8.0): - """ - This method returns a Weibull distribution corresponding to the input - data array (typically wind speed) using the specified Weibull - parameters. - - Args: - x (np.array): List of input data (typically binned wind speed - observations). - k (float, optional): Weibull shape parameter. Defaults to 2.5. - lam (float, optional): Weibull scale parameter. Defaults to 8.0. - - Returns: - np.array: Weibull distribution probabilities corresponding to - values in the input array. - """ - return (k / lam) * (x / lam) ** (k - 1) * np.exp(-((x / lam) ** k)) - - def make_wind_rose_from_weibull( - self, wd=np.arange(0, 360, 5.0), ws=np.arange(0, 26, 1.0) - ): - """ - Populate WindRose object with an example wind rose with wind speed - frequencies given by a Weibull distribution. The wind direction - frequencies are initialized according to an example distribution. - - Args: - wd (np.array, optional): Wind direciton bin centers (deg). Defaults - to np.arange(0, 360, 5.). - ws (np.array, optional): Wind speed bin centers (m/s). Defaults to - np.arange(0, 26, 1.). - - Returns: - pandas.DataFrame: Wind rose DataFrame containing at least the - following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - """ - # Use an assumed wind-direction for dir frequency - wind_dir = [ - 0, - 22.5, - 45, - 67.5, - 90, - 112.5, - 135, - 157.5, - 180, - 202.5, - 225, - 247.5, - 270, - 292.5, - 315, - 337.5, - ] - freq_dir = [ - 0.064, - 0.04, - 0.038, - 0.036, - 0.045, - 0.05, - 0.07, - 0.08, - 0.11, - 0.08, - 0.05, - 0.036, - 0.048, - 0.058, - 0.095, - 0.10, - ] - - freq_wd = np.interp(wd, wind_dir, freq_dir) - freq_ws = self.weibull(ws) - - freq_tot = np.zeros(len(wd) * len(ws)) - wd_tot = np.zeros(len(wd) * len(ws)) - ws_tot = np.zeros(len(wd) * len(ws)) - - count = 0 - for i in range(len(wd)): - for j in range(len(ws)): - wd_tot[count] = wd[i] - ws_tot[count] = ws[j] - - freq_tot[count] = freq_wd[i] * freq_ws[j] - count = count + 1 - - # renormalize - freq_tot = freq_tot / np.sum(freq_tot) - - # Load the wind toolkit data into a dataframe - df = pd.DataFrame() - - # Start by simply round and wrapping the wind direction and wind speed - # columns - df["wd"] = wd_tot - df["ws"] = ws_tot - - # Now group up - df["freq_val"] = freq_tot - - # Save the df at this point - self.df = df - # TODO is there a reason self.df is updated AND returned? - return self.df - - def make_wind_rose_from_user_data( - self, wd_raw, ws_raw, *args, wd=np.arange(0, 360, 5.0), ws=np.arange(0, 26, 1.0) - ): - """ - This method populates the WindRose object given user-specified - observations of wind direction, wind speed, and additional optional - variables. The wind parameters are binned and the frequencies of - occurance of each binned wind condition combination are calculated. - - Args: - wd_raw (array-like): An array-like list of all wind direction - observations used to calculate the normalized frequencies (deg). - ws_raw (array-like): An array-like list of all wind speed - observations used to calculate the normalized frequencies (m/s). - *args: Variable length argument list consisting of a sequence of - the following alternating arguments: - - - string - Name of additional wind parameters to include in - wind rose. - - array-like - Values of the additional wind parameters used - to calculate the frequencies of occurance - - np.array - Bin center values for binning the additional - wind parameters. - - wd (np.array, optional): Wind direction bin centers (deg). Defaults - to np.arange(0, 360, 5.). - ws (np.array, optional): Wind speed bin limits (m/s). Defaults to - np.arange(0, 26, 1.). - - Returns: - pandas.DataFrame: Wind rose DataFrame containing at least the - following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - """ - df = pd.DataFrame() - - # convert inputs to np.array - wd_raw = np.array(wd_raw) - ws_raw = np.array(ws_raw) - - # Start by simply round and wrapping the wind direction and wind speed - # columns - df["wd"] = geo.wrap_360(wd_raw.round()) - df["ws"] = ws_raw.round() - - # Loop through *args and assign new dataframe columns after cutting - # into possibly irregularly-spaced bins - for in_var in range(0, len(args), 3): - df[args[in_var]] = np.array(args[in_var + 1]) - - # Cut into bins, make first and last bins extend to -/+ infinity - var_edges = np.append( - 0.5 * (args[in_var + 2][1:] + args[in_var + 2][:-1]), np.inf - ) - var_edges = np.append(-np.inf, var_edges) - df[args[in_var]] = pd.cut( - df[args[in_var]], var_edges, labels=args[in_var + 2] - ) - - # Now group up - df["freq_val"] = 1.0 - df = df.groupby([c for c in df.columns if c != "freq_val"], observed=False).sum() - df["freq_val"] = df.freq_val.astype(float) / df.freq_val.sum() - df = df.reset_index() - - # Save the df at this point - self.df = df - - # Resample onto the provided wind speed and wind direction binnings - self.internal_resample_wind_speed(ws=ws) - self.internal_resample_wind_direction(wd=wd) - - return self.df - - def read_wind_rose_csv( - self, - filename - ): - - #Read in the csv - self.df = pd.read_csv(filename) - - # Renormalize the frequency column - self.df["freq_val"] = self.df["freq_val"] / self.df["freq_val"].sum() - - # Call the resample function in order to set all the internal variables - self.internal_resample_wind_speed(ws=self.df.ws.unique()) - self.internal_resample_wind_direction(wd=self.df.wd.unique()) - - - def make_wind_rose_from_user_dist( - self, - wd_raw, - ws_raw, - freq_val, - *args, - wd=np.arange(0, 360, 5.0), - ws=np.arange(0, 26, 1.0), - ): - """ - This method populates the WindRose object given user-specified - combinations of wind direction, wind speed, additional optional - variables, and the corresponding frequencies of occurance. The wind - parameters are binned using the specified wind parameter bin center - values and the corresponding frequencies of occrance are calculated. - - Args: - wd_raw (array-like): An array-like list of wind directions - corresponding to the specified frequencies of occurance (deg). - wd_raw (array-like): An array-like list of wind speeds - corresponding to the specified frequencies of occurance (m/s). - freq_val (array-like): An array-like list of normalized frequencies - corresponding to the provided wind parameter combinations. - *args: Variable length argument list consisting of a sequence of - the following alternating arguments: - - - string - Name of additional wind parameters to include in - wind rose. - - array-like - Values of the additional wind parameters - corresponding to the specified frequencies of occurance. - - np.array - Bin center values for binning the additional - wind parameters. - - wd (np.array, optional): Wind direction bin centers (deg). Defaults - to np.arange(0, 360, 5.). - ws (np.array, optional): Wind speed bin centers (m/s). Defaults to - np.arange(0, 26, 1.). - - Returns: - pandas.DataFrame: Wind rose DataFrame containing at least the - following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - """ - df = pd.DataFrame() - - # convert inputs to np.array - wd_raw = np.array(wd_raw) - ws_raw = np.array(ws_raw) - - # Start by simply wrapping the wind direction column - df["wd"] = geo.wrap_360(wd_raw) - df["ws"] = ws_raw - - # Loop through *args and assign new dataframe columns - for in_var in range(0, len(args), 3): - df[args[in_var]] = np.array(args[in_var + 1]) - - # Assign frequency column - df["freq_val"] = np.array(freq_val) - df["freq_val"] = df["freq_val"] / df["freq_val"].sum() - - # Save the df at this point - self.df = df - - # Resample onto the provided wind variable binnings - self.internal_resample_wind_speed(ws=ws) - self.internal_resample_wind_direction(wd=wd) - - # Loop through *args and resample using provided binnings - for in_var in range(0, len(args), 3): - self.internal_resample_column(args[in_var], args[in_var + 2]) - - return self.df - - def parse_wind_toolkit_folder( - self, - folder_name, - wd=np.arange(0, 360, 5.0), - ws=np.arange(0, 26, 1.0), - limit_month=None, - ): - """ - This method populates the WindRose object given raw wind direction and - wind speed data saved in csv files downloaded from the WIND Toolkit - application (see https://www.nrel.gov/grid/wind-toolkit.html for more - information). The wind parameters are binned using the specified wind - parameter bin center values and the corresponding frequencies of - occurance are calculated. - - Args: - folder_name (str): Path to the folder containing the WIND Toolkit - data files. - wd (np.array, optional): Wind direction bin centers (deg). Defaults - to np.arange(0, 360, 5.). - ws (np.array, optional): Wind speed bin centers (m/s). Defaults to - np.arange(0, 26, 1.). - limit_month (list, optional): List of ints of month(s) (e.g., 1, 2 - 3...) to consider when calculating the wind condition - frequencies. If none are specified, all months will be used. - Defaults to None. - - Returns: - pandas.DataFrame: Wind rose DataFrame containing the following - columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - """ - # Load the wind toolkit data into a dataframe - df = self.load_wind_toolkit_folder(folder_name, limit_month=limit_month) - - # Start by simply round and wrapping the wind direction and wind speed - # columns - df["wd"] = geo.wrap_360(df.wd.round()) - df["ws"] = geo.wrap_360(df.ws.round()) - - # Now group up - df["freq_val"] = 1.0 - df = df.groupby(["ws", "wd"]).sum() - df["freq_val"] = df.freq_val.astype(float) / df.freq_val.sum() - df = df.reset_index() - - # Save the df at this point - self.df = df - - # Resample onto the provided wind speed and wind direction binnings - self.internal_resample_wind_speed(ws=ws) - self.internal_resample_wind_direction(wd=wd) - - return self.df - - def load_wind_toolkit_folder(self, folder_name, limit_month=None): - """ - This method imports raw wind direction and wind speed data saved in csv - files in the specified folder downloaded from the WIND Toolkit - application (see https://www.nrel.gov/grid/wind-toolkit.html for more - information). - - TODO: make private method? - - Args: - folder_name (str): Path to the folder containing the WIND Toolkit - csv data files. - limit_month (list, optional): List of ints of month(s) (e.g., 1, 2, - 3...) to consider when calculating the wind condition - frequencies. If none are specified, all months will be used. - Defaults to None. - - Returns: - pandas.DataFrame: DataFrame containing the following columns: - - - **wd** (*float*) - Raw wind direction data (deg). - - **ws** (*float*) - Raw wind speed data (m/s). - """ - file_list = os.listdir(folder_name) - file_list = [os.path.join(folder_name, f) for f in file_list if ".csv" in f] - - df = pd.DataFrame() - for f_idx, f in enumerate(file_list): - print("%d of %d: %s" % (f_idx, len(file_list), f)) - df_temp = self.load_wind_toolkit_file(f, limit_month=limit_month) - df = df.append(df_temp) - - return df - - def load_wind_toolkit_file(self, filename, limit_month=None): - """ - This method imports raw wind direction and wind speed data saved in the - specified csv file downloaded from the WIND Toolkit application (see - https://www.nrel.gov/grid/wind-toolkit.html for more information). - - TODO: make private method? - - Args: - filename (str): Path to the WIND Toolkit csv file. - limit_month (list, optional): List of ints of month(s) (e.g., 1, 2, - 3...) to consider when calculating the wind condition - frequencies. If none are specified, all months will be used. - Defaults to None. - - Returns: - pandas.DataFrame: DataFrame containing the following columns with - data from the WIND Toolkit file: - - - **wd** (*float*) - Raw wind direction data (deg). - - **ws** (*float*) - Raw wind speed data (m/s). - """ - df = pd.read_csv(filename, header=3, sep=",") - - # If asked to limit to particular months - if limit_month is not None: - df = df[df.Month.isin(limit_month)] - - # Save just what I want - speed_column = [c for c in df.columns if "speed" in c][0] - direction_column = [c for c in df.columns if "direction" in c][0] - df = df.rename(index=str, columns={speed_column: "ws", direction_column: "wd"})[ - ["wd", "ws"] - ] - - return df - - def import_from_wind_toolkit_hsds( - self, - lat, - lon, - ht=100, - wd=np.arange(0, 360, 5.0), - ws=np.arange(0, 26, 1.0), - include_ti=False, - limit_month=None, - limit_hour=None, - st_date=None, - en_date=None, - ): - """ - This method populates the WindRose object using wind data from the WIND - Toolkit dataset (https://www.nrel.gov/grid/wind-toolkit.html) for the - specified lat/long coordinate in the continental US. The wind data - are obtained from the WIND Toolkit dataset using the HSDS service (see - https://github.com/NREL/hsds-examples). The wind data returned is - obtained from the nearest 2km x 2km grid point to the input - coordinate and is limited to the years 2007-2013. The wind parameters - are binned using the specified wind parameter bin center values and the - corresponding frequencies of occrance are calculated. - - Requires h5pyd package, which can be installed using: - pip install --user git+http://github.com/HDFGroup/h5pyd.git - - Then, make a configuration file at ~/.hscfg containing: - - hs_endpoint = https://developer.nrel.gov/api/hsds - - hs_username = None - - hs_password = None - - hs_api_key = 3K3JQbjZmWctY0xmIfSYvYgtIcM3CN0cb1Y2w9bf - - The example API key above is for demonstation and is - rate-limited per IP. To get your own API key, visit - https://developer.nrel.gov/signup/. - - More information can be found at: https://github.com/NREL/hsds-examples. - - Args: - lat (float): Latitude in degrees. - lon (float): Longitude in degrees. - ht (int, optional): The height above ground where wind - information is obtained (m). Defaults to 100. - wd (np.array, optional): Wind direction bin centers (deg). Defaults - to np.arange(0, 360, 5.). - ws (np.array, optional): Wind speed bin centers (m/s). Defaults to - np.arange(0, 26, 1.). - include_ti (bool, optional): Determines whether turbulence - intensity is included as an additional parameter. If True, TI - is added as an additional wind rose variable, estimated based - on the Obukhov length from WIND Toolkit. Defaults to False. - limit_month (list, optional): List of ints of month(s) (e.g., 1, 2, - 3...) to consider when calculating the wind condition - frequencies. If none are specified, all months will be used. - Defaults to None. - limit_hour (list, optional): List of ints of hour(s) (e.g., 0, 1, - ... 23) to consider when calculating the wind condition - frequencies. If none are specified, all hours will be used. - Defaults to None. - st_date (str, optional): The start date to consider when creating - the wind rose, formatted as 'MM-DD-YYYY'. If not specified data - beginning in 2007 will be used. Defaults to None. - en_date (str, optional): The end date to consider when creating - the wind rose, formatted as 'MM-DD-YYYY'. If not specified data - through 2013 will be used. Defaults to None. - - Returns: - pandas.DataFrame: Wind rose DataFrame containing at least the - following columns: - - - **wd** (*float*) - Wind direction bin center values (deg). - - **ws** (*float*) - Wind speed bin center values (m/s). - - **freq_val** (*float*) - The frequency of occurance of the - wind conditions in the other columns. - """ - # Check inputs - - # Array of hub height data avaliable on Toolkit - h_range = [10, 40, 60, 80, 100, 120, 140, 160, 200] - - if st_date is not None: - if dateutil.parser.parse(st_date) > dateutil.parser.parse( - "12-13-2013 23:00" - ): - print( - "Error, invalid date range. Valid range: 01-01-2007 - " - + "12/31/2013" - ) - return None - - if en_date is not None: - if dateutil.parser.parse(en_date) < dateutil.parser.parse( - "01-01-2007 00:00" - ): - print( - "Error, invalid date range. Valid range: 01-01-2007 - " - + "12/31/2013" - ) - return None - - if h_range[0] > ht: - print( - "Error, height is not in the range of avaliable " - + "WindToolKit data. Minimum height = 10m" - ) - return None - - if h_range[-1] < ht: - print( - "Error, height is not in the range of avaliable " - + "WindToolKit data. Maxiumum height = 200m" - ) - return None - - # Load wind speeds and directions from WimdToolkit - - # Case for turbine height (ht) matching discrete avaliable height - # (h_range) - if ht in h_range: - - d = self.load_wind_toolkit_hsds( - lat, - lon, - ht, - include_ti=include_ti, - limit_month=limit_month, - limit_hour=limit_hour, - st_date=st_date, - en_date=en_date, - ) - - ws_new = d["ws"] - wd_new = d["wd"] - if include_ti: - ti_new = d["ti"] - - # Case for ht not matching discete height - else: - h_range_up = next(x[0] for x in enumerate(h_range) if x[1] > ht) - h_range_low = h_range_up - 1 - h_up = h_range[h_range_up] - h_low = h_range[h_range_low] - - # Load data for boundary cases of ht - d_low = self.load_wind_toolkit_hsds( - lat, - lon, - h_low, - include_ti=include_ti, - limit_month=limit_month, - limit_hour=limit_hour, - st_date=st_date, - en_date=en_date, - ) - - d_up = self.load_wind_toolkit_hsds( - lat, - lon, - h_up, - include_ti=include_ti, - limit_month=limit_month, - limit_hour=limit_hour, - st_date=st_date, - en_date=en_date, - ) - - # Wind Speed interpolation - ws_low = d_low["ws"] - ws_high = d_up["ws"] - - ws_new = np.array(ws_low) * ( - 1 - ((ht - h_low) / (h_up - h_low)) - ) + np.array(ws_high) * ((ht - h_low) / (h_up - h_low)) - - # Wind Direction interpolation using Circular Mean method - wd_low = d_low["wd"] - wd_high = d_up["wd"] - - sin0 = np.sin(np.array(wd_low) * (np.pi / 180)) - cos0 = np.cos(np.array(wd_low) * (np.pi / 180)) - sin1 = np.sin(np.array(wd_high) * (np.pi / 180)) - cos1 = np.cos(np.array(wd_high) * (np.pi / 180)) - - sin_wd = sin0 * (1 - ((ht - h_low) / (h_up - h_low))) + sin1 * ( - (ht - h_low) / (h_up - h_low) - ) - cos_wd = cos0 * (1 - ((ht - h_low) / (h_up - h_low))) + cos1 * ( - (ht - h_low) / (h_up - h_low) - ) - - # Interpolated wind direction - wd_new = 180 / np.pi * np.arctan2(sin_wd, cos_wd) - - # TI is independent of height - if include_ti: - ti_new = d_up["ti"] - - # Create a dataframe named df - if include_ti: - df = pd.DataFrame({"ws": ws_new, "wd": wd_new, "ti": ti_new}) - else: - df = pd.DataFrame({"ws": ws_new, "wd": wd_new}) - - # Start by simply round and wrapping the wind direction and wind speed - # columns - df["wd"] = geo.wrap_360(df.wd.round()) - df["ws"] = df.ws.round() - - # Now group up - df["freq_val"] = 1.0 - df = df.groupby([c for c in df.columns if c != "freq_val"], observed=False).sum() - df["freq_val"] = df.freq_val.astype(float) / df.freq_val.sum() - df = df.reset_index() - - # Save the df at this point - self.df = df - - # Resample onto the provided wind speed and wind direction binnings - self.internal_resample_wind_speed(ws=ws) - self.internal_resample_wind_direction(wd=wd) - - return self.df - - def load_wind_toolkit_hsds( - self, - lat, - lon, - ht=100, - include_ti=False, - limit_month=None, - limit_hour=None, - st_date=None, - en_date=None, - ): - """ - This method returns a pandas DataFrame containing hourly wind speed, - wind direction, and optionally estimated turbulence intensity data - using wind data from the WIND Toolkit dataset - (https://www.nrel.gov/grid/wind-toolkit.html) for the specified - lat/long coordinate in the continental US. The wind data are obtained - from the WIND Toolkit dataset using the HSDS service - (see https://github.com/NREL/hsds-examples). The wind data returned is - obtained from the nearest 2km x 2km grid point to the input coordinate - and is limited to the years 2007-2013. - - TODO: make private method? - - Args: - lat (float): Latitude in degrees. - lon (float): Longitude in degrees - ht (int, optional): The height above ground where wind - information is obtained (m). Defaults to 100. - include_ti (bool, optional): Determines whether turbulence - intensity is included as an additional parameter. If True, TI - is added as an additional wind rose variable, estimated based - on the Obukhov length from WIND Toolkit. Defaults to False. - limit_month (list, optional): List of ints of month(s) (e.g., 1, 2, - 3...) to consider when calculating the wind condition - frequencies. If none are specified, all months will be used. - Defaults to None. - limit_hour (list, optional): List of ints of hour(s) (e.g., 0, 1, - ... 23) to consider when calculating the wind condition - frequencies. If none are specified, all hours will be used. - Defaults to None. - st_date (str, optional): The start date to consider, formatted as - 'MM-DD-YYYY'. If not specified data beginning in 2007 will be - used. Defaults to None. - en_date (str, optional): The end date to consider, formatted as - 'MM-DD-YYYY'. If not specified data through 2013 will be used. - Defaults to None. - - Returns: - pandas.DataFrame: DataFrame containing the following columns(abd - optionally turbulence intensity) with hourly data from WIND Toolkit: - - - **wd** (*float*) - Raw wind direction data (deg). - - **ws** (*float*) - Raw wind speed data (m/s). - """ - import h5pyd - - # Open the wind data "file" - # server endpoint, username, password is found via a config file - f = h5pyd.File("/nrel/wtk-us.h5", "r") - - # assign wind direction, wind speed, optional ti, and time datasets for - # the desired height - wd_dset = f["winddirection_" + str(ht) + "m"] - ws_dset = f["windspeed_" + str(ht) + "m"] - if include_ti: - obkv_dset = f["inversemoninobukhovlength_2m"] - dt = f["datetime"] - dt = pd.DataFrame({"datetime": dt[:]}, index=range(0, dt.shape[0])) - dt["datetime"] = dt["datetime"].apply(dateutil.parser.parse) - - # find dataset indices from lat/long - Location_idx = self.indices_for_coord(f, lat, lon) - - # check if in bounds - if ( - (Location_idx[0] < 0) - | (Location_idx[0] >= wd_dset.shape[1]) - | (Location_idx[1] < 0) - | (Location_idx[1] >= wd_dset.shape[2]) - ): - print( - "Error, coordinates out of bounds. WIND Toolkit database " - + "covers the continental United States." - ) - return None - - # create dataframe with wind direction and wind speed - df = pd.DataFrame() - df["wd"] = wd_dset[:, Location_idx[0], Location_idx[1]] - df["ws"] = ws_dset[:, Location_idx[0], Location_idx[1]] - if include_ti: - L = self.obkv_dset_to_L(obkv_dset, Location_idx) - ti = self.ti_calculator_IU2(L) - df["ti"] = ti - df["datetime"] = dt["datetime"] - - # limit dates if start and end dates are provided - if st_date is not None: - df = df[df.datetime >= st_date] - - if en_date is not None: - df = df[df.datetime < en_date] - - # limit to certain months if specified - if limit_month is not None: - df["month"] = df["datetime"].map(lambda x: x.month) - df = df[df.month.isin(limit_month)] - if limit_hour is not None: - df["hour"] = df["datetime"].map(lambda x: x.hour) - df = df[df.hour.isin(limit_hour)] - if include_ti: - df = df[["wd", "ws", "ti"]] - else: - df = df[["wd", "ws"]] - - return df - - def obkv_dset_to_L(self, obkv_dset, Location_idx): - """ - This function returns an array containing hourly Obukhov lengths from - the WIND Toolkit dataset for the specified Lat/Lon coordinate indices. - - Args: - obkv_dset (np.ndarray): Dataset for Obukhov lengths from WIND - Toolkit. - Location_idx (tuple): A tuple containing the Lat/Lon coordinate - indices of interest in the Obukhov length dataset. - - Returns: - np.array: An array containing Obukhov lengths for each time index - in the Wind Toolkit dataset (m). - """ - linv = obkv_dset[:, Location_idx[0], Location_idx[1]] - # avoid divide by zero - linv[linv == 0.0] = 0.0003 - L = 1 / linv - return L - - def ti_calculator_IU2(self, L): - """ - This function estimates the turbulence intensity corresponding to each - Obukhov length value in the input list using the relationship between - Obukhov length bins and TI given in the I_U2SODAR column in Table 2 of - :cite:`wr-wharton2010assessing`. - - Args: - L (iterable): A list of Obukhov Length values (m). - - Returns: - list: A list of turbulence intensity values expressed as fractions. - """ - ti_set = [] - for i in L: - # Strongly Stable - if 0 < i < 100: - TI = 0.04 # paper says < 8%, so using 4% - # Stable - elif 100 < i < 600: - TI = 0.09 - # Neutral - elif abs(i) > 600: - TI = 0.115 - # Convective - elif -600 < i < -50: - TI = 0.165 - # Strongly Convective - elif -50 < i < 0: - # no upper bound given, so using the lowest - # value from the paper for this stability bin - TI = 0.2 - ti_set.append(TI) - return ti_set - - def indices_for_coord(self, f, lat_index, lon_index): - """ - This method finds the nearest x/y indices of the WIND Toolkit dataset - for a given lat/lon coordinate in the continental US. Rather than - fetching the entire coordinates database, which is 500+ MB, this uses - the Proj4 library to find a nearby point and then converts to x/y - indices. - - **Note**: This method is obtained directly from: - https://github.com/NREL/hsds-examples/blob/master/notebooks/01_WTK_introduction.ipynb, - where it is called "indicesForCoord." - - Args: - f (h5pyd.File): A HDF5 "file" used to access the WIND Toolkit data. - lat_index (float): Latitude coordinate for which dataset indices - are to be found (degrees). - lon_index (float): Longitude coordinate for which dataset indices - are to be found (degrees). - - Returns: - tuple: A tuple containing the Lat/Lon coordinate indices of - interest in the WIND Toolkit dataset. - """ - dset_coords = f["coordinates"] - projstring = """+proj=lcc +lat_1=30 +lat_2=60 - +lat_0=38.47240422490422 +lon_0=-96.0 - +x_0=0 +y_0=0 +ellps=sphere - +units=m +no_defs """ - projectLcc = Proj(projstring) - origin_ll = reversed(dset_coords[0][0]) # Grab origin directly from database - origin = projectLcc(*origin_ll) - - coords = (lon_index, lat_index) - coords = projectLcc(*coords) - delta = np.subtract(coords, origin) - ij = [int(round(x / 2000)) for x in delta] - return tuple(reversed(ij)) - - def plot_wind_speed_all(self, ax=None, label=None): - """ - This method plots the wind speed frequency distribution of the WindRose - object averaged across all wind directions. If no axis is provided, a - new one is created. - - Args: - ax (:py:class:`matplotlib.pyplot.axes`, optional): Figure axes on - which data should be plotted. Defaults to None. - """ - if ax is None: - _, ax = plt.subplots() - - df_plot = self.df.groupby("ws").sum() - ax.plot(self.ws, df_plot.freq_val, label=label) - - def plot_wind_speed_by_direction(self, dirs, ax=None): - """ - This method plots the wind speed frequency distribution of the WindRose - object for each specified wind direction bin center. The wind - directions are resampled using the specified bin centers and the - frequencies of occurance of the wind conditions are modified - accordingly. If no axis is provided, a new one is created. - - Args: - dirs (np.array): A list of wind direction bin centers for which - wind speed distributions are plotted (deg). - ax (:py:class:`matplotlib.pyplot.axes`, optional): Figure axes on - which data should be plotted. Defaults to None. - """ - # Get a downsampled frame - df_plot = self.resample_wind_direction(self.df, wd=dirs) - - if ax is None: - _, ax = plt.subplots() - - for wd in dirs: - df_plot_sub = df_plot[df_plot.wd == wd] - ax.plot(df_plot_sub.ws, df_plot_sub["freq_val"], label=wd) - ax.legend() - - def plot_wind_rose( - self, - ax=None, - color_map="viridis_r", - ws_right_edges=np.array([5, 10, 15, 20, 25]), - wd_bins=np.arange(0, 360, 15.0), - legend_kwargs={}, - ): - """ - This method creates a wind rose plot showing the frequency of occurance - of the specified wind direction and wind speed bins. If no axis is - provided, a new one is created. - - **Note**: Based on code provided by Patrick Murphy from the University - of Colorado Boulder. - - Args: - ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes - on which the wind rose is plotted. Defaults to None. - color_map (str, optional): Colormap to use. Defaults to 'viridis_r'. - ws_right_edges (np.array, optional): The upper bounds of the wind - speed bins (m/s). The first bin begins at 0. Defaults to - np.array([5, 10, 15, 20, 25]). - wd_bins (np.array, optional): The wind direction bin centers used - for plotting (deg). Defaults to np.arange(0, 360, 15.). - legend_kwargs (dict, optional): Keyword arguments to be passed to - ax.legend(). - - Returns: - :py:class:`matplotlib.pyplot.axes`: A figure axes object containing - the plotted wind rose. - """ - # Resample data onto bins - df_plot = self.resample_wind_direction(self.df, wd=wd_bins) - - # Make labels for wind speed based on edges - ws_step = ws_right_edges[1] - ws_right_edges[0] - ws_labels = ["%d-%d m/s" % (w - ws_step, w) for w in ws_right_edges] - - # Grab the wd_step - wd_step = wd_bins[1] - wd_bins[0] - - # Set up figure - if ax is None: - _, ax = plt.subplots(subplot_kw={"polar": True}) - - # Get a color array - color_array = cm.get_cmap(color_map, len(ws_right_edges)) - - for wd in wd_bins: - rects = [] - df_plot_sub = df_plot[df_plot.wd == wd] - for ws_idx, ws in enumerate(ws_right_edges[::-1]): - plot_val = df_plot_sub[ - df_plot_sub.ws <= ws - ].freq_val.sum() # Get the sum of frequency up to this wind speed - rects.append( - ax.bar( - np.radians(wd), - plot_val, - width=0.9 * np.radians(wd_step), - color=color_array(ws_idx), - edgecolor="k", - ) - ) - # break - - # Configure the plot - ax.legend(reversed(rects), ws_labels, **legend_kwargs) - ax.set_theta_direction(-1) - ax.set_theta_offset(np.pi / 2.0) - ax.set_theta_zero_location("N") - ax.set_xticks(np.arange(0, 2*np.pi, np.pi/4)) - ax.set_xticklabels(["N", "NE", "E", "SE", "S", "SW", "W", "NW"]) - - return ax - - def plot_wind_rose_ti( - self, - ax=None, - color_map="viridis_r", - ti_right_edges=np.array([0.06, 0.1, 0.14, 0.18, 0.22]), - wd_bins=np.arange(0, 360, 15.0), - ): - """ - This method creates a wind rose plot showing the frequency of occurance - of the specified wind direction and turbulence intensity bins. This - requires turbulence intensity to already be included as a parameter in - the wind rose. If no axis is provided,a new one is created. - - **Note**: Based on code provided by Patrick Murphy from the University - of Colorado Boulder. - - Args: - ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes - on which the wind rose is plotted. Defaults to None. - color_map (str, optional): Colormap to use. Defaults to 'viridis_r'. - ti_right_edges (np.array, optional): The upper bounds of the - turbulence intensity bins. The first bin begins at 0. Defaults - to np.array([0.06, 0.1, 0.14, 0.18,0.22]). - wd_bins (np.array, optional): The wind direction bin centers used - for plotting (deg). Defaults to np.arange(0, 360, 15.). - - Returns: - :py:class:`matplotlib.pyplot.axes`: A figure axes object containing - the plotted wind rose. - """ - - # Resample data onto bins - df_plot = self.resample_wind_direction(self.df, wd=wd_bins) - - # Make labels for TI based on edges - ti_step = ti_right_edges[1] - ti_right_edges[0] - ti_labels = ["%.2f-%.2f " % (w - ti_step, w) for w in ti_right_edges] - - # Grab the wd_step - wd_step = wd_bins[1] - wd_bins[0] - - # Set up figure - if ax is None: - _, ax = plt.subplots(subplot_kw={"polar": True}) - - # Get a color array - color_array = cm.get_cmap(color_map, len(ti_right_edges)) - - for wd in wd_bins: - rects = [] - df_plot_sub = df_plot[df_plot.wd == wd] - for ti_idx, ti in enumerate(ti_right_edges[::-1]): - plot_val = df_plot_sub[ - df_plot_sub.ti <= ti - ].freq_val.sum() # Get the sum of frequency up to this wind speed - rects.append( - ax.bar( - np.radians(wd), - plot_val, - width=0.9 * np.radians(wd_step), - color=color_array(ti_idx), - edgecolor="k", - ) - ) - - # Configure the plot - ax.legend(reversed(rects), ti_labels, loc="lower right", title="TI") - ax.set_theta_direction(-1) - ax.set_theta_offset(np.pi / 2.0) - ax.set_theta_zero_location("N") - ax.set_xticks(np.arange(0, 2*np.pi, np.pi/4)) - ax.set_xticklabels(["N", "NE", "E", "SE", "S", "SW", "W", "NW"]) - - return ax - - def plot_ti_ws(self, ax=None, ws_bins=np.arange(0, 26, 1.0)): - """ - This method plots the wind speed frequency distribution of the WindRose - object for each turbulence intensity bin. The wind speeds are resampled - using the specified bin centers and the frequencies of occurance of the - wind conditions are modified accordingly. This method assumes there are - five TI bins. If no axis is provided, a new one is created. - - Args: - ax (:py:class:`matplotlib.pyplot.axes`, optional): Figure axes on - which data should be plotted. Defaults to None. - ws_bins (np.array, optional): A list of wind speed bin centers on - which the wind speeds are resampled before plotting (m/s). - Defaults to np.arange(0, 26, 1.). - - Returns: - :py:class:`matplotlib.pyplot.axes`: A figure axes object containing - the plotted wind speed distributions. - """ - - # Resample data onto bins - df_plot = self.resample_wind_speed(self.df, ws=ws_bins) - - df_plot = df_plot.groupby(["ws", "ti"]).sum() - df_plot = df_plot.reset_index() - - if ax is None: - _, ax = plt.subplots(figsize=(10, 7)) - - tis = df_plot["ti"].drop_duplicates() - margin_bottom = np.zeros(len(df_plot["ws"].drop_duplicates())) - colors = ["#1e5631", "#a4de02", "#76ba1b", "#4c9a2a", "#acdf87"] - - for num, ti in enumerate(tis): - values = list(df_plot[df_plot["ti"] == ti].loc[:, "freq_val"]) - - df_plot[df_plot["ti"] == ti].plot.bar( - x="ws", - y="freq_val", - ax=ax, - bottom=margin_bottom, - color=colors[num], - label=ti, - ) - - margin_bottom += values - - plt.title("Turbulence Intensity Frequencies as Function of Wind Speed") - plt.xlabel("Wind Speed (m/s)") - plt.ylabel("Frequency") - - return ax - - def export_for_floris_opt(self): - """ - This method returns a list of tuples of at least wind speed, wind - direction, and frequency of occurance, which can be used to help loop - through different wind conditions for Floris power calculations. - - Returns: - list: A list of tuples containing all combinations of wind - parameters and frequencies of occurance in the WindRose object's - wind rose DataFrame values. - """ - # Return a list of tuples, where each tuple is (ws,wd,freq) - return [tuple(x) for x in self.df.values] diff --git a/pyproject.toml b/pyproject.toml index 2bb5fdcf5..27ea791e0 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -122,6 +122,8 @@ dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$" "floris/simulation/wake_velocity/jensen.py" = ["F841"] "floris/simulation/wake_velocity/gauss.py" = ["F841"] "floris/simulation/wake_velocity/empirical_gauss.py" = ["F841"] +# Ignore `F401` (import violations) in all `__init__.py` files, and in `path/to/file.py`. +"__init__.py" = ["F401"] # I001 unsorted-imports: ignore because the import order is meaningful to navigate # import dependencies diff --git a/tests/wind_data_test.py b/tests/wind_data_test.py new file mode 100644 index 000000000..bc793d4fe --- /dev/null +++ b/tests/wind_data_test.py @@ -0,0 +1,262 @@ +# Copyright 2024 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +import numpy as np +import pytest + +from floris.tools import ( + TimeSeries, + WindRose, +) +from floris.tools.wind_data import WindDataBase + + +class ChildClassTest(WindDataBase): + def __init__(self): + pass + + +def test_bad_inheritance(): + """ + Verifies that a child class of WindDataBase must implement the unpack method. + """ + test_class = ChildClassTest() + with pytest.raises(NotImplementedError): + test_class.unpack() + + +def test_time_series_instantiation(): + wind_directions = np.array([270, 280, 290]) + wind_speeds = np.array([5, 5, 5]) + TimeSeries(wind_directions, wind_speeds) + + +def test_time_series_wrong_dimensions(): + """ + Verifies that the TimeSeries class errors when the input wind directions and wind speeds + have different lengths. + """ + wind_directions = np.array([270, 280, 290]) + wind_speeds = np.array([5, 5]) + with pytest.raises(ValueError): + TimeSeries(wind_directions, wind_speeds) + + +def test_wind_rose_init(): + """ + The wind directions and wind speeds can have any length, but the frequency + array must have shape (n wind directions, n wind speeds) + """ + wind_directions = np.array([270, 280, 290]) + wind_speeds = np.array([6, 7]) + + # This should be ok + _ = WindRose(wind_directions, wind_speeds) + + # This should be ok since the frequency array shape matches the wind directions + # and wind speeds + _ = WindRose(wind_directions, wind_speeds, np.ones((3, 2))) + + # This should raise an error since the frequency array shape does not + # match the wind directions and wind speeds + with pytest.raises(ValueError): + WindRose(wind_directions, wind_speeds, np.ones((3, 3))) + + +def test_wind_rose_grid(): + wind_directions = np.array([270, 280, 290]) + wind_speeds = np.array([6, 7]) + + wind_rose = WindRose(wind_directions, wind_speeds) + + # Wind direction grid has the same dimensions as the frequency table + assert wind_rose.wd_grid.shape == wind_rose.freq_table.shape + + # Flattening process occurs wd first + # This is each wind direction for each wind speed: + np.testing.assert_allclose(wind_rose.wd_flat, [270, 270, 280, 280, 290, 290]) + + +def test_wind_rose_unpack(): + wind_directions = np.array([270, 280, 290]) + wind_speeds = np.array([6, 7]) + freq_table = np.array([[1.0, 0.0], [0, 1.0], [0, 0]]) + + # First test using default assumption only non-zero frequency cases computed + wind_rose = WindRose(wind_directions, wind_speeds, freq_table) + + ( + wind_directions_unpack, + wind_speeds_unpack, + freq_table_unpack, + ti_table_unpack, + value_table_unpack, + ) = wind_rose.unpack() + + # Given the above frequency table with zeros for a few elements, + # we expect only the (270 deg, 6 m/s) and (280 deg, 7 m/s) rows + np.testing.assert_allclose(wind_directions_unpack, [270, 280]) + np.testing.assert_allclose(wind_speeds_unpack, [6, 7]) + np.testing.assert_allclose(freq_table_unpack, [0.5, 0.5]) + + # In this case n_findex is the length of the wind combinations that are + # non-zero frequency + assert wind_rose.n_findex == 2 + + # Now test computing 0-freq cases too + wind_rose = WindRose( + wind_directions, wind_speeds, freq_table, compute_zero_freq_occurrence=True + ) + + ( + wind_directions_unpack, + wind_speeds_unpack, + freq_table_unpack, + ti_table_unpack, + value_table_unpack, + ) = wind_rose.unpack() + + # Expect now to compute all combinations + np.testing.assert_allclose(wind_directions_unpack, [270, 270, 280, 280, 290, 290]) + + # In this case n_findex is the total number of wind combinations + assert wind_rose.n_findex == 6 + + +def test_unpack_for_reinitialize(): + wind_directions = np.array([270, 280, 290]) + wind_speeds = np.array([6, 7]) + freq_table = np.array([[1.0, 0.0], [0, 1.0], [0, 0]]) + + # First test using default assumption only non-zero frequency cases computed + wind_rose = WindRose(wind_directions, wind_speeds, freq_table) + + ( + wind_directions_unpack, + wind_speeds_unpack, + ti_table_unpack, + ) = wind_rose.unpack_for_reinitialize() + + # Given the above frequency table, would only expect the + # (270 deg, 6 m/s) and (280 deg, 7 m/s) rows + np.testing.assert_allclose(wind_directions_unpack, [270, 280]) + np.testing.assert_allclose(wind_speeds_unpack, [6, 7]) + + +def test_wind_rose_resample(): + wind_directions = np.array([0, 2, 4, 6, 8, 10]) + wind_speeds = np.array([8]) + freq_table = np.array([[1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]) + + wind_rose = WindRose(wind_directions, wind_speeds, freq_table) + + # Test that resampling with a new step size returns the same + wind_rose_resample = wind_rose.resample_wind_rose() + + np.testing.assert_allclose(wind_rose.wind_directions, wind_rose_resample.wind_directions) + np.testing.assert_allclose(wind_rose.wind_speeds, wind_rose_resample.wind_speeds) + np.testing.assert_allclose(wind_rose.freq_table_flat, wind_rose_resample.freq_table_flat) + + # Now test resampling the wind direction to 5 deg bins + wind_rose_resample = wind_rose.resample_wind_rose(wd_step=5.0) + np.testing.assert_allclose(wind_rose_resample.wind_directions, [0, 5, 10]) + np.testing.assert_allclose(wind_rose_resample.freq_table_flat, [2 / 6, 2 / 6, 2 / 6]) + + +def test_wrap_wind_directions_near_360(): + wd_step = 5.0 + wd_values = np.array([0, 180, 357, 357.5, 358]) + time_series = TimeSeries(np.array([0]), np.array([0])) + + wd_wrapped = time_series._wrap_wind_directions_near_360(wd_values, wd_step) + + expected_result = np.array([0, 180, 357, -wd_step / 2.0, -2.0]) + assert np.allclose(wd_wrapped, expected_result) + + +def test_time_series_to_wind_rose(): + # Test just 1 wind speed + wind_directions = np.array([259.8, 260.2, 264.3]) + wind_speeds = np.array([5.0, 5.0, 5.1]) + time_series = TimeSeries(wind_directions, wind_speeds) + wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) + + # The wind directions should be 260, 262 and 264 because they're binned + # to the nearest 2 deg increment + assert np.allclose(wind_rose.wind_directions, [260, 262, 264]) + + # Freq table should have dimension of 3 wd x 1 ws because the wind speeds + # are all binned to the same value given the `ws_step` size + freq_table = wind_rose.freq_table + assert freq_table.shape[0] == 3 + assert freq_table.shape[1] == 1 + + # The frequencies should [2/3, 0, 1/3] given that 2 of the data points + # fall in the 260 deg bin, 0 in the 262 deg bin and 1 in the 264 deg bin + assert np.allclose(freq_table.squeeze(), [2 / 3, 0, 1 / 3]) + + # Test just 2 wind speeds + wind_directions = np.array([259.8, 260.2, 264.3]) + wind_speeds = np.array([5.0, 5.0, 6.1]) + time_series = TimeSeries(wind_directions, wind_speeds) + wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) + + # The wind directions should be 260, 262 and 264 + assert np.allclose(wind_rose.wind_directions, [260, 262, 264]) + + # The wind speeds should be 5 and 6 + assert np.allclose(wind_rose.wind_speeds, [5, 6]) + + # Freq table should have dimension of 3 wd x 2 ws + freq_table = wind_rose.freq_table + assert freq_table.shape[0] == 3 + assert freq_table.shape[1] == 2 + + # The frequencies should [2/3, 0, 1/3] + assert freq_table[0, 0] == 2 / 3 + assert freq_table[2, 1] == 1 / 3 + + +def test_time_series_to_wind_rose_wrapping(): + wind_directions = np.arange(0.0, 360.0, 0.25) + wind_speeds = 8.0 * np.ones_like(wind_directions) + time_series = TimeSeries(wind_directions, wind_speeds) + wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) + + # Expert for the first bin in this case to be 0, and the final to be 358 + # and both to have equal numbers of points + np.testing.assert_almost_equal(wind_rose.wind_directions[0], 0) + np.testing.assert_almost_equal(wind_rose.wind_directions[-1], 358) + np.testing.assert_almost_equal(wind_rose.freq_table[0, 0], wind_rose.freq_table[-1, 0]) + + +def test_time_series_to_wind_rose_with_ti(): + wind_directions = np.array([259.8, 260.2, 260.3, 260.1]) + wind_speeds = np.array([5.0, 5.0, 5.1, 7.2]) + turbulence_intensity = np.array([0.5, 1.0, 1.5, 2.0]) + time_series = TimeSeries( + wind_directions, + wind_speeds, + turbulence_intensity=turbulence_intensity, + ) + wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) + + # Turbulence intensity should average to 1 in the 5 m/s bin and 2 in the 7 m/s bin + ti_table = wind_rose.ti_table + np.testing.assert_almost_equal(ti_table[0, 0], 1) + np.testing.assert_almost_equal(ti_table[0, 2], 2) + + # The 6 m/s bin should be empty + freq_table = wind_rose.freq_table + np.testing.assert_almost_equal(freq_table[0, 1], 0) From 1eb76b1129587d18c1a6aa6807d9a4a8306c0d71 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Mon, 29 Jan 2024 14:10:25 -0700 Subject: [PATCH 30/78] Remove small variations in above rated power (#784) * Remove small variations in above rated power * Make matching change in conftest * Updating floating turbine examples to match 5MW in turbine_library. * Update descriptions for clarity. --------- Co-authored-by: misi9170 --- .../turbine_files/nrel_5MW_fixed.yaml | 40 ++++++++--------- .../turbine_files/nrel_5MW_floating.yaml | 40 ++++++++--------- .../nrel_5MW_floating_defined_floating.yaml | 40 ++++++++--------- .../nrel_5MW_floating_fixedtilt15.yaml | 40 ++++++++--------- .../nrel_5MW_floating_fixedtilt5.yaml | 40 ++++++++--------- floris/turbine_library/iea_10MW.yaml | 21 ++++----- floris/turbine_library/iea_15MW.yaml | 45 ++++++++++--------- floris/turbine_library/nrel_5MW.yaml | 41 ++++++++--------- tests/conftest.py | 40 ++++++++--------- 9 files changed, 175 insertions(+), 172 deletions(-) diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml index 917696d90..1a0fb784b 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml @@ -42,26 +42,26 @@ power_thrust_table: - 4683.419890251577 - 4806.164748311019 - 4929.931918769215 - - 5000.920541636473 - - 5000.155331018289 - - 4999.981249947396 - - 4999.95577837709 - - 4999.977954833183 - - 4999.99729673573 - - 5000.00107322333 - - 5000.006250888532 - - 5000.005783964932 - - 5000.0180481355455 - - 5000.00295266134 - - 5000.015689533812 - - 5000.027006739212 - - 5000.015694513332 - - 5000.037874470919 - - 5000.021829556129 - - 5000.047786595209 - - 5000.006722827633 - - 5000.003398457957 - - 5000.044012521576 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 - 0.0 - 0.0 thrust_coefficient: diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml index 1ebee827a..668ff65fa 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml @@ -42,26 +42,26 @@ power_thrust_table: - 4683.419890251577 - 4806.164748311019 - 4929.931918769215 - - 5000.920541636473 - - 5000.155331018289 - - 4999.981249947396 - - 4999.95577837709 - - 4999.977954833183 - - 4999.99729673573 - - 5000.00107322333 - - 5000.006250888532 - - 5000.005783964932 - - 5000.0180481355455 - - 5000.00295266134 - - 5000.015689533812 - - 5000.027006739212 - - 5000.015694513332 - - 5000.037874470919 - - 5000.021829556129 - - 5000.047786595209 - - 5000.006722827633 - - 5000.003398457957 - - 5000.044012521576 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 - 0.0 - 0.0 thrust_coefficient: diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml index 8b40f916b..7ba75de17 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml @@ -42,26 +42,26 @@ power_thrust_table: - 4683.419890251577 - 4806.164748311019 - 4929.931918769215 - - 5000.920541636473 - - 5000.155331018289 - - 4999.981249947396 - - 4999.95577837709 - - 4999.977954833183 - - 4999.99729673573 - - 5000.00107322333 - - 5000.006250888532 - - 5000.005783964932 - - 5000.0180481355455 - - 5000.00295266134 - - 5000.015689533812 - - 5000.027006739212 - - 5000.015694513332 - - 5000.037874470919 - - 5000.021829556129 - - 5000.047786595209 - - 5000.006722827633 - - 5000.003398457957 - - 5000.044012521576 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 - 0.0 - 0.0 thrust_coefficient: diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml index fa5e1f824..4923d4e55 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml @@ -42,26 +42,26 @@ power_thrust_table: - 4683.419890251577 - 4806.164748311019 - 4929.931918769215 - - 5000.920541636473 - - 5000.155331018289 - - 4999.981249947396 - - 4999.95577837709 - - 4999.977954833183 - - 4999.99729673573 - - 5000.00107322333 - - 5000.006250888532 - - 5000.005783964932 - - 5000.0180481355455 - - 5000.00295266134 - - 5000.015689533812 - - 5000.027006739212 - - 5000.015694513332 - - 5000.037874470919 - - 5000.021829556129 - - 5000.047786595209 - - 5000.006722827633 - - 5000.003398457957 - - 5000.044012521576 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 - 0.0 - 0.0 thrust_coefficient: diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml index 917696d90..1a0fb784b 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml @@ -42,26 +42,26 @@ power_thrust_table: - 4683.419890251577 - 4806.164748311019 - 4929.931918769215 - - 5000.920541636473 - - 5000.155331018289 - - 4999.981249947396 - - 4999.95577837709 - - 4999.977954833183 - - 4999.99729673573 - - 5000.00107322333 - - 5000.006250888532 - - 5000.005783964932 - - 5000.0180481355455 - - 5000.00295266134 - - 5000.015689533812 - - 5000.027006739212 - - 5000.015694513332 - - 5000.037874470919 - - 5000.021829556129 - - 5000.047786595209 - - 5000.006722827633 - - 5000.003398457957 - - 5000.044012521576 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 - 0.0 - 0.0 thrust_coefficient: diff --git a/floris/turbine_library/iea_10MW.yaml b/floris/turbine_library/iea_10MW.yaml index 90d5eb64d..33ffdc037 100644 --- a/floris/turbine_library/iea_10MW.yaml +++ b/floris/turbine_library/iea_10MW.yaml @@ -1,5 +1,6 @@ # Data based on: # https://github.com/NREL/turbine-models/blob/master/Offshore/IEA_10MW_198_RWT.csv +# Note: Generator efficiency of 94% used. Small power variations above rated removed. turbine_type: 'iea_10MW' generator_efficiency: 0.94 hub_height: 119.0 @@ -24,16 +25,16 @@ power_thrust_table: - 7392.13274 - 8514.32824 - 9691.10578 - - 10000.002 - - 10000.002 - - 10000.002 - - 10000.002 - - 10000.002 - - 10000.002 - - 10000.002 - - 10000.002 - - 10000.002 - - 10000.003 + - 10000.00 + - 10000.00 + - 10000.00 + - 10000.00 + - 10000.00 + - 10000.00 + - 10000.00 + - 10000.00 + - 10000.00 + - 10000.00 - 0.0 - 0.0 thrust_coefficient: diff --git a/floris/turbine_library/iea_15MW.yaml b/floris/turbine_library/iea_15MW.yaml index 847145bcd..3da19c654 100644 --- a/floris/turbine_library/iea_15MW.yaml +++ b/floris/turbine_library/iea_15MW.yaml @@ -1,6 +1,7 @@ # Data based on: # https://github.com/IEAWindTask37/IEA-15-240-RWT/blob/master/Documentation/ # IEA-15-240-RWT_tabular.xlsx +# Note: Small power variations above rated removed. turbine_type: 'iea_15MW' generator_efficiency: 1.0 hub_height: 150.0 @@ -43,28 +44,28 @@ power_thrust_table: - 10285.211 - 11617.23699 - 13194.41511 - - 15000.0 - - 15000.00129 - - 14999.97096 - - 15000.00934 - - 15000.00063 - - 15000.00011 - - 14999.94712 - - 15000.08082 - - 15000.05209 - - 15000.03592 - - 15000.02562 - - 15000.01835 - - 15000.01281 - - 15000.00835 - - 15000.00488 - - 15000.00233 - - 15000.00066 - - 14999.87148 - - 15000.00047 - - 15000.00194 - - 15000.00417 - - 15000.00688 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 + - 15000.00 - 0.0 - 0.0 thrust_coefficient: diff --git a/floris/turbine_library/nrel_5MW.yaml b/floris/turbine_library/nrel_5MW.yaml index 066eb9b79..2b44977e7 100644 --- a/floris/turbine_library/nrel_5MW.yaml +++ b/floris/turbine_library/nrel_5MW.yaml @@ -1,6 +1,7 @@ # NREL 5MW reference wind turbine. # Data based on: # https://github.com/NREL/turbine-models/blob/master/Offshore/NREL_5MW_126_RWT_corrected.csv +# Note: Small power variations above rated removed. Rotor diameter includes coning angle. ### # An ID for this type of turbine definition. @@ -130,26 +131,26 @@ power_thrust_table: - 4683.419890251577 - 4806.164748311019 - 4929.931918769215 - - 5000.920541636473 - - 5000.155331018289 - - 4999.981249947396 - - 4999.95577837709 - - 4999.977954833183 - - 4999.99729673573 - - 5000.00107322333 - - 5000.006250888532 - - 5000.005783964932 - - 5000.0180481355455 - - 5000.00295266134 - - 5000.015689533812 - - 5000.027006739212 - - 5000.015694513332 - - 5000.037874470919 - - 5000.021829556129 - - 5000.047786595209 - - 5000.006722827633 - - 5000.003398457957 - - 5000.044012521576 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 - 0.0 - 0.0 thrust_coefficient: diff --git a/tests/conftest.py b/tests/conftest.py index 65a0144a4..ecd9ab9a9 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -243,26 +243,26 @@ def __init__(self): 4683.419890251577, 4806.164748311019, 4929.931918769215, - 5000.920541636473, - 5000.155331018289, - 4999.981249947396, - 4999.95577837709, - 4999.977954833183, - 4999.99729673573, - 5000.00107322333, - 5000.006250888532, - 5000.005783964932, - 5000.018048135545, - 5000.00295266134, - 5000.015689533812, - 5000.027006739212, - 5000.015694513332, - 5000.037874470919, - 5000.021829556129, - 5000.047786595209, - 5000.006722827633, - 5000.003398457957, - 5000.044012521576, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, + 5000.00, 0.0, 0.0, ], From 61e1f13e9b5956fd103451ce549359fda54d0cb9 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Fri, 2 Feb 2024 22:04:54 -0700 Subject: [PATCH 31/78] Convert turbulence intensity from single value to n_findex length array (#782) * Convert turbulence_intensity to tubulence_intensities throughout the code and refactor all code to expect turbulence_intensities to be an array and not a float * Add additional tests of turbulence intensity to confirm correct behavior of new features * Complete WindRose and TimeSeries handling of turbulence intensities * Add helper functions to WindRose and TimeSeries which allow turbulence intensities to be generated, rather than provided, as a function of wind directions and wind speeds * Add additional examples of usage --------- Co-authored-by: misi9170 Co-authored-by: Rafael M Mudafort Co-authored-by: Eric Simley --- examples/12_optimize_yaw_in_parallel.py | 4 +- examples/19_streamlit_demo.py | 4 +- examples/34_wind_data.py | 2 +- examples/35_sweep_ti.py | 62 ++++++++ examples/36_generate_ti.py | 82 +++++++++++ examples/inputs/cc.yaml | 3 +- examples/inputs/emgauss.yaml | 3 +- examples/inputs/gch.yaml | 3 +- examples/inputs/gch_heterogeneous_inflow.yaml | 3 +- examples/inputs/gch_multi_dim_cp_ct.yaml | 3 +- .../inputs/gch_multiple_turbine_types.yaml | 3 +- examples/inputs/jensen.yaml | 3 +- examples/inputs/turbopark.yaml | 3 +- examples/inputs_floating/emgauss_fixed.yaml | 3 +- .../inputs_floating/emgauss_floating.yaml | 3 +- .../emgauss_floating_fixedtilt15.yaml | 3 +- .../emgauss_floating_fixedtilt5.yaml | 3 +- examples/inputs_floating/gch_fixed.yaml | 3 +- examples/inputs_floating/gch_floating.yaml | 3 +- .../gch_floating_defined_floating.yaml | 3 +- floris/simulation/flow_field.py | 30 ++-- floris/simulation/solver.py | 61 ++++---- floris/simulation/wake_velocity/turbopark.py | 4 +- floris/tools/floris_interface.py | 37 ++++- .../yaw_optimization/yaw_optimization_base.py | 28 ++-- floris/tools/parallel_computing_interface.py | 6 +- floris/tools/uncertainty_interface.py | 4 +- floris/tools/wind_data.py | 135 ++++++++++++++++-- floris/type_dec.py | 49 ++++++- tests/conftest.py | 2 +- .../{input_full_v3.yaml => input_full.yaml} | 3 +- tests/floris_interface_test.py | 60 +++++++- tests/floris_unit_test.py | 2 +- tests/flow_field_unit_test.py | 17 +++ tests/type_dec_unit_test.py | 48 ++++++- tests/wind_data_test.py | 4 +- 36 files changed, 584 insertions(+), 105 deletions(-) create mode 100644 examples/35_sweep_ti.py create mode 100644 examples/36_generate_ti.py rename tests/data/{input_full_v3.yaml => input_full.yaml} (97%) diff --git a/examples/12_optimize_yaw_in_parallel.py b/examples/12_optimize_yaw_in_parallel.py index 33c996dc1..c4233f5ef 100644 --- a/examples/12_optimize_yaw_in_parallel.py +++ b/examples/12_optimize_yaw_in_parallel.py @@ -63,7 +63,7 @@ def load_windrose(): fi_aep.reinitialize( wind_directions=wind_directions, wind_speeds=wind_speeds, - turbulence_intensity=0.08 # Assume 8% turbulence intensity + turbulence_intensities=[0.08], # Assume 8% turbulence intensity ) # Pour this into a parallel computing interface @@ -105,7 +105,7 @@ def load_windrose(): fi_opt.reinitialize( wind_directions=wind_directions, wind_speeds=wind_speeds, - turbulence_intensity=0.08 # Assume 8% turbulence intensity + turbulence_intensities=[0.08], # Assume 8% turbulence intensity ) # Pour this into a parallel computing interface diff --git a/examples/19_streamlit_demo.py b/examples/19_streamlit_demo.py index d40296c19..91b4f466d 100644 --- a/examples/19_streamlit_demo.py +++ b/examples/19_streamlit_demo.py @@ -124,7 +124,7 @@ layout_y=Y, wind_speeds=[wind_speed], wind_directions=[wind_direction], - turbulence_intensity=turbulence_intensity + turbulence_intensities=[turbulence_intensity], ) fi.calculate_wake(yaw_angles=yaw_angles_base) @@ -168,7 +168,7 @@ layout_y=Y, wind_speeds=[wind_speed], wind_directions=[wind_direction], - turbulence_intensity=turbulence_intensity + turbulence_intensities=[turbulence_intensity], ) fi.calculate_wake(yaw_angles=yaw_angles_yaw) diff --git a/examples/34_wind_data.py b/examples/34_wind_data.py index f3e87686d..5da902880 100644 --- a/examples/34_wind_data.py +++ b/examples/34_wind_data.py @@ -50,7 +50,7 @@ # Build the time series -time_series = TimeSeries(wd_array, ws_array) # , turbulence_intensity=ti_array) +time_series = TimeSeries(wd_array, ws_array, turbulence_intensities=ti_array) # Now build the wind rose wind_rose = time_series.to_wind_rose() diff --git a/examples/35_sweep_ti.py b/examples/35_sweep_ti.py new file mode 100644 index 000000000..6e235a9aa --- /dev/null +++ b/examples/35_sweep_ti.py @@ -0,0 +1,62 @@ +# Copyright 2024 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +import matplotlib.pyplot as plt +import numpy as np + +from floris.tools import ( + FlorisInterface, + TimeSeries, + WindRose, +) +from floris.utilities import wrap_360 + + +""" +Demonstrate the new behavior in V4 where TI is an array rather than a float. +Set up an array of two turbines and sweep TI while holding wd/ws constant. +Use the TimeSeries object to drive the FLORIS calculations. +""" + + +# Generate a random time series of wind speeds, wind directions and turbulence intensities +N = 50 +wd_array = 270.0 * np.ones(N) +ws_array = 8.0 * np.ones(N) +ti_array = np.linspace(0.03, 0.2, N) + + +# Build the time series +time_series = TimeSeries(wd_array, ws_array, turbulence_intensities=ti_array) + + +# Now set up a FLORIS model and initialize it using the time +fi = FlorisInterface("inputs/gch.yaml") +fi.reinitialize(layout_x=[0, 500.0], layout_y=[0.0, 0.0], wind_data=time_series) +fi.calculate_wake() +turbine_power = fi.get_turbine_powers() + +fig, axarr = plt.subplots(2, 1, sharex=True, figsize=(6, 6)) +ax = axarr[0] +ax.plot(ti_array*100, turbine_power[:, 0]/1000, color="k") +ax.set_ylabel("Front turbine power [kW]") +ax = axarr[1] +ax.plot(ti_array*100, turbine_power[:, 1]/1000, color="k") +ax.set_ylabel("Rear turbine power [kW]") +ax.set_xlabel("Turbulence intensity [%]") + +for ax in axarr: + ax.grid(True) + +plt.show() diff --git a/examples/36_generate_ti.py b/examples/36_generate_ti.py new file mode 100644 index 000000000..a42e1bf95 --- /dev/null +++ b/examples/36_generate_ti.py @@ -0,0 +1,82 @@ +# Copyright 2024 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +import matplotlib.pyplot as plt +import numpy as np + +from floris.tools import ( + FlorisInterface, + TimeSeries, + WindRose, +) +from floris.utilities import wrap_360 + + +""" +Demonstrate usage of TI generating and plotting functionality in the WindRose +and TimeSeries classes +""" + + +# Generate a random time series of wind speeds, wind directions and turbulence intensities +wind_directions = np.array([250, 260, 270]) +wind_speeds = np.array([5, 6, 7, 8, 9, 10]) + +# Declare a WindRose object +wind_rose = WindRose(wind_directions=wind_directions, wind_speeds=wind_speeds) + + +# Define a custom function where TI = 1 / wind_speed +def custom_ti_func(wind_directions, wind_speeds): + return 1 / wind_speeds + + +wind_rose.assign_ti_using_wd_ws_function(custom_ti_func) + +fig, ax = plt.subplots() +wind_rose.plot_ti_over_ws(ax) +ax.set_title("Turbulence Intensity defined by custom function") + +# Now use the normal turbulence model approach from the IEC 61400-1 standard, +# wherein TI is defined as a function of wind speed: +# Iref is defined as the TI value at 15 m/s. Note that Iref = 0.07 is lower +# than the values of Iref used in the IEC standard, but produces TI values more +# in line with those typically used in FLORIS (TI=8.6% at 8 m/s). +Iref = 0.07 +wind_rose.assign_ti_using_IEC_method(Iref) +fig, ax = plt.subplots() +wind_rose.plot_ti_over_ws(ax) +ax.set_title(f"Turbulence Intensity defined by Iref = {Iref:0.2}") + + +# Demonstrate equivalent usage in time series +N = 100 +wind_directions = 270 * np.ones(N) +wind_speeds = np.linspace(5, 15, N) +time_series = TimeSeries(wind_directions=wind_directions, wind_speeds=wind_speeds) +time_series.assign_ti_using_IEC_method(Iref=Iref) + +fig, axarr = plt.subplots(2, 1, sharex=True, figsize=(7, 8)) +ax = axarr[0] +ax.plot(wind_speeds) +ax.set_ylabel("Wind Speeds (m/s)") +ax.grid(True) +ax = axarr[1] +ax.plot(time_series.turbulence_intensities) +ax.set_ylabel("Turbulence Intensity (-)") +ax.grid(True) +fig.suptitle("Generating TI in TimeSeries") + + +plt.show() diff --git a/examples/inputs/cc.yaml b/examples/inputs/cc.yaml index 922fadd05..af62b0021 100644 --- a/examples/inputs/cc.yaml +++ b/examples/inputs/cc.yaml @@ -30,7 +30,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 # -1 is code for use the hub height - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs/emgauss.yaml b/examples/inputs/emgauss.yaml index f984f421d..73344d5ea 100644 --- a/examples/inputs/emgauss.yaml +++ b/examples/inputs/emgauss.yaml @@ -30,7 +30,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 # -1 is code for use the hub height - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs/gch.yaml b/examples/inputs/gch.yaml index 220fafeac..2cd76c7f5 100644 --- a/examples/inputs/gch.yaml +++ b/examples/inputs/gch.yaml @@ -112,7 +112,8 @@ flow_field: ### # The level of turbulence intensity level in the wind. - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 ### # The wind directions to include in the simulation. diff --git a/examples/inputs/gch_heterogeneous_inflow.yaml b/examples/inputs/gch_heterogeneous_inflow.yaml index d7cffa0d5..86507e287 100644 --- a/examples/inputs/gch_heterogeneous_inflow.yaml +++ b/examples/inputs/gch_heterogeneous_inflow.yaml @@ -44,7 +44,8 @@ flow_field: - -300. - 300. reference_wind_height: -1 - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs/gch_multi_dim_cp_ct.yaml b/examples/inputs/gch_multi_dim_cp_ct.yaml index 8709fbcc7..e14976050 100644 --- a/examples/inputs/gch_multi_dim_cp_ct.yaml +++ b/examples/inputs/gch_multi_dim_cp_ct.yaml @@ -33,7 +33,8 @@ flow_field: Hs: 3.01 air_density: 1.225 reference_wind_height: -1 # -1 is code for use the hub height - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs/gch_multiple_turbine_types.yaml b/examples/inputs/gch_multiple_turbine_types.yaml index ca2d86ea5..0ead479a1 100644 --- a/examples/inputs/gch_multiple_turbine_types.yaml +++ b/examples/inputs/gch_multiple_turbine_types.yaml @@ -29,7 +29,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: 90.0 # Since multiple defined turbines, must specify explicitly the reference wind height - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs/jensen.yaml b/examples/inputs/jensen.yaml index abb889e0a..6b4ac0dd6 100644 --- a/examples/inputs/jensen.yaml +++ b/examples/inputs/jensen.yaml @@ -30,7 +30,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 # -1 is code for use the hub height - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs/turbopark.yaml b/examples/inputs/turbopark.yaml index 85bda5fef..682b1e801 100644 --- a/examples/inputs/turbopark.yaml +++ b/examples/inputs/turbopark.yaml @@ -30,7 +30,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: 90.0 - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs_floating/emgauss_fixed.yaml b/examples/inputs_floating/emgauss_fixed.yaml index 9d0b23960..76c3c4513 100644 --- a/examples/inputs_floating/emgauss_fixed.yaml +++ b/examples/inputs_floating/emgauss_fixed.yaml @@ -30,7 +30,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 # -1 is code for use the hub height - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs_floating/emgauss_floating.yaml b/examples/inputs_floating/emgauss_floating.yaml index 1fd66d217..965ef7549 100644 --- a/examples/inputs_floating/emgauss_floating.yaml +++ b/examples/inputs_floating/emgauss_floating.yaml @@ -30,7 +30,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 # -1 is code for use the hub height - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml b/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml index dfb4e3155..e8a452325 100644 --- a/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml +++ b/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml @@ -26,7 +26,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 # -1 is code for use the hub height - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml b/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml index 67be5dfd3..7732b6213 100644 --- a/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml +++ b/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml @@ -26,7 +26,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 # -1 is code for use the hub height - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs_floating/gch_fixed.yaml b/examples/inputs_floating/gch_fixed.yaml index 497cecc95..be03460e1 100644 --- a/examples/inputs_floating/gch_fixed.yaml +++ b/examples/inputs_floating/gch_fixed.yaml @@ -26,7 +26,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs_floating/gch_floating.yaml b/examples/inputs_floating/gch_floating.yaml index 31ff7c606..09aaa5604 100644 --- a/examples/inputs_floating/gch_floating.yaml +++ b/examples/inputs_floating/gch_floating.yaml @@ -27,7 +27,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/examples/inputs_floating/gch_floating_defined_floating.yaml b/examples/inputs_floating/gch_floating_defined_floating.yaml index 3096e4c2a..d540c8d47 100644 --- a/examples/inputs_floating/gch_floating_defined_floating.yaml +++ b/examples/inputs_floating/gch_floating_defined_floating.yaml @@ -26,7 +26,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: -1 - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/floris/simulation/flow_field.py b/floris/simulation/flow_field.py index a53db1fa9..bd26addc9 100644 --- a/floris/simulation/flow_field.py +++ b/floris/simulation/flow_field.py @@ -39,7 +39,7 @@ class FlowField(BaseClass): wind_veer: float = field(converter=float) wind_shear: float = field(converter=float) air_density: float = field(converter=float) - turbulence_intensity: float = field(converter=float) + turbulence_intensities: NDArrayFloat = field(converter=floris_array_converter) reference_wind_height: float = field(converter=float) time_series: bool = field(default=False) heterogenous_inflow_config: dict = field(default=None) @@ -66,6 +66,17 @@ class FlowField(BaseClass): init=False, factory=lambda: np.array([]) ) + @turbulence_intensities.validator + def turbulence_intensities_validator( + self, instance: attrs.Attribute, value: NDArrayFloat + ) -> None: + + # Check the turbulence intensity is either length 1 or n_findex + if len(value) != 1 and len(value) != self.n_findex: + raise ValueError("turbulence_intensities should either be length 1 or n_findex") + + + @wind_directions.validator def wind_directions_validator(self, instance: attrs.Attribute, value: NDArrayFloat) -> None: """Using the validator method to keep the `n_findex` attribute up to date.""" @@ -108,6 +119,10 @@ def __attrs_post_init__(self) -> None: if self.heterogenous_inflow_config is not None: self.generate_heterogeneous_wind_map() + # If turbulence_intensity is length 1, then convert it to a uniform array of + # length n_findex + if len(self.turbulence_intensities) == 1: + self.turbulence_intensities = self.turbulence_intensities[0] * np.ones(self.n_findex) def initialize_velocity_field(self, grid: Grid) -> None: @@ -197,14 +212,13 @@ def initialize_velocity_field(self, grid: Grid) -> None: self.v_sorted = self.v_initial_sorted.copy() self.w_sorted = self.w_initial_sorted.copy() - self.turbulence_intensity_field = self.turbulence_intensity * np.ones( - ( - self.n_findex, - grid.n_turbines, - 1, - 1, - ) + self.turbulence_intensity_field = self.turbulence_intensities[:, None, None, None] + self.turbulence_intensity_field = np.repeat( + self.turbulence_intensity_field, + grid.n_turbines, + axis=1 ) + self.turbulence_intensity_field_sorted = self.turbulence_intensity_field.copy() def finalize(self, unsorted_indices): diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index d32ef9d15..c80f355cc 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -76,11 +76,14 @@ def sequential_solver( v_wake = np.zeros_like(flow_field.v_initial_sorted) w_wake = np.zeros_like(flow_field.w_initial_sorted) - turbine_turbulence_intensity = ( - flow_field.turbulence_intensity - * np.ones((flow_field.n_findex, farm.n_turbines, 1, 1)) - ) - ambient_turbulence_intensity = flow_field.turbulence_intensity + # Expand input turbulence intensity to 4d for (n_turbines, grid, grid) + turbine_turbulence_intensity = flow_field.turbulence_intensities[:, None, None, None] + turbine_turbulence_intensity = np.repeat(turbine_turbulence_intensity, farm.n_turbines, axis=1) + + # Ambient turbulent intensity should be a copy of n_findex-long turbulence_intensity + # with dimensions expanded for (n_turbines, grid, grid) + ambient_turbulence_intensities = flow_field.turbulence_intensities.copy() + ambient_turbulence_intensities = ambient_turbulence_intensities[:, None, None, None] # Calculate the velocity deficit sequentially from upstream to downstream turbines for i in range(grid.n_turbines): @@ -217,7 +220,7 @@ def sequential_solver( ) wake_added_turbulence_intensity = model_manager.turbulence_model.function( - ambient_turbulence_intensity, + ambient_turbulence_intensities, grid.x_sorted, x_i, rotor_diameter_i, @@ -243,8 +246,7 @@ def sequential_solver( # Combine turbine TIs with WAT turbine_turbulence_intensity = np.maximum( - np.sqrt( ti_added ** 2 + ambient_turbulence_intensity ** 2 ), - turbine_turbulence_intensity + np.sqrt(ti_added**2 + ambient_turbulence_intensities**2), turbine_turbulence_intensity ) flow_field.u_sorted = flow_field.u_initial_sorted - wake_field @@ -450,10 +452,14 @@ def cc_solver( turb_u_wake = np.zeros_like(flow_field.u_initial_sorted) turb_inflow_field = copy.deepcopy(flow_field.u_initial_sorted) - turbine_turbulence_intensity = ( - flow_field.turbulence_intensity * np.ones((flow_field.n_findex, farm.n_turbines, 1, 1)) - ) - ambient_turbulence_intensity = flow_field.turbulence_intensity + # Set up turbulence arrays + turbine_turbulence_intensity = flow_field.turbulence_intensities[:, None, None, None] + turbine_turbulence_intensity = np.repeat(turbine_turbulence_intensity, farm.n_turbines, axis=1) + + # Ambient turbulent intensity should be a copy of n_findex-long turbulence_intensities + # with extra dimension to reach 4d + ambient_turbulence_intensities = flow_field.turbulence_intensities.copy() + ambient_turbulence_intensities = ambient_turbulence_intensities[:, None, None, None] shape = (farm.n_turbines,) + np.shape(flow_field.u_initial_sorted) Ctmp = np.zeros((shape)) @@ -618,7 +624,7 @@ def cc_solver( ) wake_added_turbulence_intensity = model_manager.turbulence_model.function( - ambient_turbulence_intensity, + ambient_turbulence_intensities, grid.x_sorted, x_i, rotor_diameter_i, @@ -644,8 +650,7 @@ def cc_solver( # Combine turbine TIs with WAT turbine_turbulence_intensity = np.maximum( - np.sqrt(ti_added ** 2 + ambient_turbulence_intensity ** 2), - turbine_turbulence_intensity + np.sqrt(ti_added**2 + ambient_turbulence_intensities**2), turbine_turbulence_intensity ) flow_field.v_sorted += v_wake @@ -862,11 +867,14 @@ def turbopark_solver( velocity_deficit = np.zeros(shape) deflection_field = np.zeros_like(flow_field.u_initial_sorted) - turbine_turbulence_intensity = ( - flow_field.turbulence_intensity - * np.ones((flow_field.n_findex, farm.n_turbines, 1, 1)) - ) - ambient_turbulence_intensity = flow_field.turbulence_intensity + # Set up turbulence arrays + turbine_turbulence_intensity = flow_field.turbulence_intensities[:, None, None, None] + turbine_turbulence_intensity = np.repeat(turbine_turbulence_intensity, farm.n_turbines, axis=1) + + # Ambient turbulent intensity should be a copy of n_findex-long turbulence_intensities + # with extra dimension to reach 4d + ambient_turbulence_intensities = flow_field.turbulence_intensities.copy() + ambient_turbulence_intensities = ambient_turbulence_intensities[:, None, None, None] # Calculate the velocity deficit sequentially from upstream to downstream turbines for i in range(grid.n_turbines): @@ -1045,7 +1053,7 @@ def turbopark_solver( ) wake_added_turbulence_intensity = model_manager.turbulence_model.function( - ambient_turbulence_intensity, + ambient_turbulence_intensities, grid.x_sorted, x_i, rotor_diameter_i, @@ -1074,8 +1082,7 @@ def turbopark_solver( # Combine turbine TIs with WAT turbine_turbulence_intensity = np.maximum( - np.sqrt( ti_added ** 2 + ambient_turbulence_intensity ** 2 ), - turbine_turbulence_intensity + np.sqrt(ti_added**2 + ambient_turbulence_intensities**2), turbine_turbulence_intensity ) flow_field.u_sorted = flow_field.u_initial_sorted - wake_field @@ -1141,13 +1148,15 @@ def empirical_gauss_solver( np.repeat(farm.rotor_diameters_sorted[:,:,None], grid.n_turbines, axis=-1) downstream_distance_D = np.maximum(downstream_distance_D, 0.1) # For ease # Initialize the mixing factor model using TI if specified - initial_mixing_factor = model_manager.turbulence_model.atmospheric_ti_gain*\ - flow_field.turbulence_intensity*np.eye(grid.n_turbines) + initial_mixing_factor = model_manager.turbulence_model.atmospheric_ti_gain * np.eye( + grid.n_turbines + ) mixing_factor = np.repeat( - initial_mixing_factor[None,:,:], + initial_mixing_factor[None, :, :], flow_field.n_findex, axis=0 ) + mixing_factor = mixing_factor * flow_field.turbulence_intensities[:, None, None] # Calculate the velocity deficit sequentially from upstream to downstream turbines for i in range(grid.n_turbines): diff --git a/floris/simulation/wake_velocity/turbopark.py b/floris/simulation/wake_velocity/turbopark.py index 0b52c0476..637c30d34 100644 --- a/floris/simulation/wake_velocity/turbopark.py +++ b/floris/simulation/wake_velocity/turbopark.py @@ -80,7 +80,7 @@ def function( x_i: np.ndarray, y_i: np.ndarray, z_i: np.ndarray, - ambient_turbulence_intensity: np.ndarray, + ambient_turbulence_intensities: np.ndarray, Cts: np.ndarray, rotor_diameter_i: np.ndarray, rotor_diameters: np.ndarray, @@ -112,7 +112,7 @@ def function( Cts[:, i:, :, :] = 0.00001 # Characteristic wake widths from all turbines relative to turbine i - dw = characteristic_wake_width(x_dist, ambient_turbulence_intensity, Cts, self.A) + dw = characteristic_wake_width(x_dist, ambient_turbulence_intensities, Cts, self.A) epsilon = 0.25 * np.sqrt( np.min( 0.5 * (1 + np.sqrt(1 - Cts)) / np.sqrt(1 - Cts), 3, keepdims=True ) ) diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index 5721dfa51..f94bd13bb 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -191,7 +191,7 @@ def reinitialize( wind_shear: float | None = None, wind_veer: float | None = None, reference_wind_height: float | None = None, - turbulence_intensity: float | None = None, + turbulence_intensities: list[float] | NDArrayFloat | None = None, # turbulence_kinetic_energy=None, air_density: float | None = None, # wake: WakeModelManager = None, @@ -218,13 +218,17 @@ def reinitialize( if ( (wind_directions is not None) or (wind_speeds is not None) - or (turbulence_intensity is not None) + or (turbulence_intensities is not None) ): raise ValueError( "If wind_data is passed to reinitialize, then do not pass wind_directions, " - "wind_speeds or turbulence_intensity as this is redundant." + "wind_speeds or turbulence_intensities as this is redundant" ) - wind_directions, wind_speeds, turbulence_intensity = wind_data.unpack_for_reinitialize() + ( + wind_directions, + wind_speeds, + turbulence_intensities, + ) = wind_data.unpack_for_reinitialize() ## FlowField if wind_speeds is not None: @@ -237,13 +241,34 @@ def reinitialize( flow_field_dict["wind_veer"] = wind_veer if reference_wind_height is not None: flow_field_dict["reference_wind_height"] = reference_wind_height - if turbulence_intensity is not None: - flow_field_dict["turbulence_intensity"] = turbulence_intensity + if turbulence_intensities is not None: + flow_field_dict["turbulence_intensities"] = turbulence_intensities if air_density is not None: flow_field_dict["air_density"] = air_density if heterogenous_inflow_config is not None: flow_field_dict["heterogenous_inflow_config"] = heterogenous_inflow_config + # Handle a special case where: + # wind_speeds | wind_directions are not None + # turbulence_intensities is None + # len(turbulence intensity) != len(wind_directions) + # turbulence_intensities is uniform + # In this case, automatically resize turbulence intensity + # This is the case where user is assuming same TI across all findex + if ( + (wind_speeds is not None or wind_directions is not None) + and turbulence_intensities is None + and ( + len(flow_field_dict["turbulence_intensities"]) + != len(flow_field_dict["wind_directions"]) + ) + and len(np.unique(flow_field_dict["turbulence_intensities"])) == 1 + ): + flow_field_dict["turbulence_intensities"] = ( + flow_field_dict["turbulence_intensities"][0] + * np.ones_like(flow_field_dict["wind_directions"]) + ) + ## Farm if layout_x is not None: farm_dict["layout_x"] = layout_x diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py b/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py index baffb9822..c8bccea37 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py @@ -530,20 +530,26 @@ def _finalize(self, farm_power_opt_subset=None, yaw_angles_opt_subset=None): self.yaw_angles_opt = self._unreduce_variable(yaw_angles_opt_subset) # Produce output table - ti = np.min(self.fi.floris.flow_field.turbulence_intensity) + ti = np.min(self.fi.floris.flow_field.turbulence_intensities) df_list = [] num_wind_directions = len(self.fi.floris.flow_field.wind_directions) for ii, wind_speed in enumerate(self.fi.floris.flow_field.wind_speeds): - df_list.append(pd.DataFrame({ - "wind_direction": self.fi.floris.flow_field.wind_directions, - "wind_speed": wind_speed * np.ones(num_wind_directions), - "turbulence_intensity": ti * np.ones(num_wind_directions), - "yaw_angles_opt": list(self.yaw_angles_opt[:, ii, :]), - "farm_power_opt": None if self.farm_power_opt is None \ - else self.farm_power_opt[:, ii], - "farm_power_baseline": None if self.farm_power_baseline is None \ - else self.farm_power_baseline[:, ii], - })) + df_list.append( + pd.DataFrame( + { + "wind_direction": self.fi.floris.flow_field.wind_directions, + "wind_speed": wind_speed * np.ones(num_wind_directions), + "turbulence_intensities": ti * np.ones(num_wind_directions), + "yaw_angles_opt": list(self.yaw_angles_opt[:, ii, :]), + "farm_power_opt": None + if self.farm_power_opt is None + else self.farm_power_opt[:, ii], + "farm_power_baseline": None + if self.farm_power_baseline is None + else self.farm_power_baseline[:, ii], + } + ) + ) df_opt = pd.concat(df_list, axis=0) return df_opt diff --git a/floris/tools/parallel_computing_interface.py b/floris/tools/parallel_computing_interface.py index 1192fcfdb..235cedb97 100644 --- a/floris/tools/parallel_computing_interface.py +++ b/floris/tools/parallel_computing_interface.py @@ -166,7 +166,7 @@ def reinitialize( wind_shear=None, wind_veer=None, reference_wind_height=None, - turbulence_intensity=None, + turbulence_intensities=None, air_density=None, layout=None, layout_x=None, @@ -193,7 +193,7 @@ def reinitialize( wind_shear=wind_shear, wind_veer=wind_veer, reference_wind_height=reference_wind_height, - turbulence_intensity=turbulence_intensity, + turbulence_intensities=turbulence_intensities, air_density=air_density, layout_x=layout_x, layout_y=layout_y, @@ -550,7 +550,7 @@ def optimize_yaw_angles( [j[7] for j in multiargs], [j[8] for j in multiargs], [j[9] for j in multiargs], - [j[10] for j in multiargs] + [j[10] for j in multiargs], ) t2 = timerpc() diff --git a/floris/tools/uncertainty_interface.py b/floris/tools/uncertainty_interface.py index 7f2b833ef..aead4c887 100644 --- a/floris/tools/uncertainty_interface.py +++ b/floris/tools/uncertainty_interface.py @@ -332,7 +332,7 @@ def reinitialize( wind_shear=None, wind_veer=None, reference_wind_height=None, - turbulence_intensity=None, + turbulence_intensities=None, air_density=None, layout_x=None, layout_y=None, @@ -350,7 +350,7 @@ def reinitialize( wind_shear=wind_shear, wind_veer=wind_veer, reference_wind_height=reference_wind_height, - turbulence_intensity=turbulence_intensity, + turbulence_intensities=turbulence_intensities, air_density=air_density, layout_x=layout_x, layout_y=layout_y, diff --git a/floris/tools/wind_data.py b/floris/tools/wind_data.py index 9331ddb6b..ebf1c989c 100644 --- a/floris/tools/wind_data.py +++ b/floris/tools/wind_data.py @@ -333,6 +333,74 @@ def plot_wind_rose( return ax + def assign_ti_using_wd_ws_function(self, func): + """ + Use the passed in function to assign new values to turbulence_intensities + + Args: + func (function): Function which accepts wind_directions as its + first argument and wind_speeds as second argument and returns + turbulence_intensities + """ + self.ti_table = func(self.wd_grid, self.ws_grid) + self._build_gridded_and_flattened_version() + + def assign_ti_using_IEC_method(self, Iref=0.07, offset=3.8): + """ + Define TI as a function of wind speed by specifying an Iref and offset + value as in the normal turbulence model in the IEC 61400-1 standard + + Args: + Iref (float): Reference turbulence level, defined as the expected + value of TI at 15 m/s. Default = 0.07. Note this value is + lower than the values of Iref for turbulence classes A, B, and + C in the IEC standard (0.16, 0.14, and 0.12, respectively), but + produces TI values more in line with those typically used in + FLORIS. When the default Iref and offset are used, the TI at + 8 m/s is 8.6%. + offset (float): Offset value to equation. Default = 3.8, as defined + in the IEC standard to give the expected value of TI for + each wind speed. + """ + if (Iref < 0) or (Iref > 1): + raise ValueError("Iref must be >= 0 and <=1") + + def iref_func(wind_directions, wind_speeds): + sigma_1 = Iref * (0.75 * wind_speeds + offset) + return sigma_1 / wind_speeds + + self.assign_ti_using_wd_ws_function(iref_func) + + def plot_ti_over_ws( + self, + ax=None, + marker=".", + ls="None", + color="k", + ): + """ + Scatter plot the turbulence_intensities against wind_speeds + + Args: + ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes + on which the wind rose is plotted. Defaults to None. + plot_kwargs (dict, optional): Keyword arguments to be passed to + ax.plot(). + + Returns: + :py:class:`matplotlib.pyplot.axes`: A figure axes object containing + the plotted wind rose. + """ + + # Set up figure + if ax is None: + _, ax = plt.subplots() + + ax.plot(self.ws_flat, self.ti_table_flat*100, marker=marker, ls=ls, color=color) + ax.set_xlabel("Wind Speed (m/s)") + ax.set_ylabel("Turbulence Intensity (%)") + ax.grid(True) + class TimeSeries(WindDataBase): """ @@ -343,7 +411,7 @@ class TimeSeries(WindDataBase): Args: wind_directions: NumPy array of wind directions (NDArrayFloat). wind_speeds: NumPy array of wind speeds (NDArrayFloat). - turbulence_intensity: NumPy array of wind speeds (NDArrayFloat, optional). + turbulence_intensities: NumPy array of wind speeds (NDArrayFloat, optional). Defaults to None values: NumPy array of electricity values (NDArrayFloat, optional). Defaults to None @@ -354,26 +422,28 @@ def __init__( self, wind_directions: NDArrayFloat, wind_speeds: NDArrayFloat, - turbulence_intensity: NDArrayFloat | None = None, + turbulence_intensities: NDArrayFloat | None = None, values: NDArrayFloat | None = None, ): # Wind speeds and wind directions must be the same length if len(wind_directions) != len(wind_speeds): raise ValueError("wind_directions and wind_speeds must be the same length") - # If turbulence_intensity is not None, must be same length as wind_directions - if turbulence_intensity is not None: - if len(wind_directions) != len(turbulence_intensity): - raise ValueError("wind_directions and turbulence_intensity must be the same length") + # If turbulence_intensities is not None, must be same length as wind_directions + if turbulence_intensities is not None: + if len(wind_directions) != len(turbulence_intensities): + raise ValueError( + "wind_directions and turbulence_intensities must be the same length" + ) - # If turbulence_intensity is not None, must be same length as wind_directions + # If values is not None, must be same length as wind_directions if values is not None: if len(wind_directions) != len(values): raise ValueError("wind_directions and values must be the same length") self.wind_directions = wind_directions self.wind_speeds = wind_speeds - self.turbulence_intensity = turbulence_intensity + self.turbulence_intensities = turbulence_intensities self.values = values # Record findex @@ -392,7 +462,7 @@ def unpack(self): self.wind_directions, self.wind_speeds, uniform_frequency, - self.turbulence_intensity, + self.turbulence_intensities, self.values, ) @@ -415,6 +485,43 @@ def _wrap_wind_directions_near_360(self, wind_directions, wd_step): wind_directions_wrapped[mask] = wind_directions_wrapped[mask] - 360.0 return wind_directions_wrapped + def assign_ti_using_wd_ws_function(self, func): + """ + Use the passed in function to new assign values to turbulence_intensities + + Args: + func (function): Function which accepts wind_directions as its + first argument and wind_speeds as second argument and returns + turbulence_intensities + """ + self.turbulence_intensities = func(self.wind_directions, self.wind_speeds) + + def assign_ti_using_IEC_method(self, Iref=0.07, offset=3.8): + """ + Define TI as a function of wind speed by specifying an Iref and offset + value as in the normal turbulence model in the IEC 61400-1 standard + + Args: + Iref (float): Reference turbulence level, defined as the expected + value of TI at 15 m/s. Default = 0.07. Note this value is + lower than the values of Iref for turbulence classes A, B, and + C in the IEC standard (0.16, 0.14, and 0.12, respectively), but + produces TI values more in line with those typically used in + FLORIS. When the default Iref and offset are used, the TI at + 8 m/s is 8.6%. + offset (float): Offset value to equation. Default = 3.8, as defined + in the IEC standard to give the expected value of TI for + each wind speed. + """ + if (Iref < 0) or (Iref > 1): + raise ValueError("Iref must be >= 0 and <=1") + + def iref_func(wind_directions, wind_speeds): + sigma_1 = Iref * (0.75 * wind_speeds + offset) + return sigma_1 / wind_speeds + + self.assign_ti_using_wd_ws_function(iref_func) + def to_wind_rose( self, wd_step=2.0, ws_step=1.0, wd_edges=None, ws_edges=None, bin_weights=None ): @@ -493,9 +600,9 @@ def to_wind_rose( if bin_weights is not None: df = df.assign(freq_val=df["freq_val"] * bin_weights) - # If turbulence_intensity is not none, add to dataframe - if self.turbulence_intensity is not None: - df = df.assign(turbulence_intensity=self.turbulence_intensity) + # If turbulence_intensities is not none, add to dataframe + if self.turbulence_intensities is not None: + df = df.assign(turbulence_intensities=self.turbulence_intensities) # If values is not none, add to dataframe if self.values is not None: @@ -536,8 +643,8 @@ def to_wind_rose( freq_table = freq_table.reshape((len(wd_centers), len(ws_centers))) # If turbulence intensity is not none, compute the table - if self.turbulence_intensity is not None: - ti_table = df["turbulence_intensity_mean"].values.copy() + if self.turbulence_intensities is not None: + ti_table = df["turbulence_intensities_mean"].values.copy() ti_table = ti_table.reshape((len(wd_centers), len(ws_centers))) else: ti_table = None diff --git a/floris/type_dec.py b/floris/type_dec.py index ebbb3178a..a346a689e 100644 --- a/floris/type_dec.py +++ b/floris/type_dec.py @@ -45,17 +45,56 @@ ### Custom callables for attrs objects and functions def floris_array_converter(data: Iterable) -> np.ndarray: + """ + For a given iterable, convert the data to a numpy array and cast to `floris_float_type`. + If the input is a scalar, np.array() creates a 0-dimensional array, and this is not supported + in FLORIS so this function raises an error. + + Args: + data (Iterable): The input data to be converted to a Numpy array. + + Raises: + TypeError: Raises if the input data is not iterable. + TypeError: Raises if the input data cannot be converted to a Numpy array. + + Returns: + np.ndarray: data converted to a Numpy array and cast to `floris_float_type`. + """ try: - a = np.array(data, dtype=floris_float_type) + iter(data) except TypeError as e: raise TypeError(e.args[0] + f". Data given: {data}") - return a -def floris_numeric_dict_converter(data: dict) -> dict: try: - return {k: floris_array_converter(v) for k, v in data.items()} - except TypeError as e: + a = np.array(data, dtype=floris_float_type) + except (TypeError, ValueError) as e: raise TypeError(e.args[0] + f". Data given: {data}") + return a + +def floris_numeric_dict_converter(data: dict) -> dict: + """ + For the given dictionary, convert all the values to a numeric type. If a value is a scalar, it + will be converted to a float. If a value is an iterable, it will be converted to a Numpy + array and cast to `floris_float_type`. If a value is not a numeric type, a TypeError will be + raised. + + Args: + data (dict): Dictionary of data to be converted to a numeric type. + + Returns: + dict: Dictionary with the same keys and all values converted to a numeric type. + """ + converted_dict = copy.deepcopy(data) # deepcopy -> data is a container and passed by reference + for k, v in data.items(): + try: + iter(v) + except TypeError: + # Not iterable so try to cast to float + converted_dict[k] = float(v) + else: + # Iterable so convert to Numpy array + converted_dict[k] = floris_array_converter(v) + return converted_dict # def array_field(**kwargs) -> Callable: # """ diff --git a/tests/conftest.py b/tests/conftest.py index ecd9ab9a9..124d52805 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -413,7 +413,7 @@ def __init__(self): self.flow_field = { "wind_speeds": WIND_SPEEDS, "wind_directions": WIND_DIRECTIONS, - "turbulence_intensity": 0.1, + "turbulence_intensities": [0.1], "wind_shear": 0.12, "wind_veer": 0.0, "air_density": 1.225, diff --git a/tests/data/input_full_v3.yaml b/tests/data/input_full.yaml similarity index 97% rename from tests/data/input_full_v3.yaml rename to tests/data/input_full.yaml index 5cace12df..36a150bdd 100644 --- a/tests/data/input_full_v3.yaml +++ b/tests/data/input_full.yaml @@ -26,7 +26,8 @@ farm: flow_field: air_density: 1.225 reference_wind_height: 90.0 - turbulence_intensity: 0.06 + turbulence_intensities: + - 0.06 wind_directions: - 270.0 wind_shear: 0.12 diff --git a/tests/floris_interface_test.py b/tests/floris_interface_test.py index 0196af5fc..17d612a38 100644 --- a/tests/floris_interface_test.py +++ b/tests/floris_interface_test.py @@ -1,12 +1,13 @@ from pathlib import Path import numpy as np +import pytest from floris.tools.floris_interface import FlorisInterface TEST_DATA = Path(__file__).resolve().parent / "data" -YAML_INPUT = TEST_DATA / "input_full_v3.yaml" +YAML_INPUT = TEST_DATA / "input_full.yaml" def test_read_yaml(): @@ -200,3 +201,60 @@ def test_get_farm_aep_with_conditions(): #Confirm n_findex reset after the operation assert n_findex == fi.floris.flow_field.n_findex + + +def test_reinitailize_ti(): + fi = FlorisInterface(configuration=YAML_INPUT) + + # Set wind directions and wind speeds and turbulence intensitities + # with n_findex = 3 + fi.reinitialize( + wind_speeds=[8.0, 8.0, 8.0], + wind_directions=[240.0, 250.0, 260.0], + turbulence_intensities=[0.1, 0.1, 0.1], + ) + + # Now confirm can change wind speeds and directions shape without changing + # turbulence intensity since this is allowed when the turbulence + # intensities are uniform + # raises n_findex to 4 + fi.reinitialize( + wind_speeds=[8.0, 8.0, 8.0, 8.0], + wind_directions=[ + 240.0, + 250.0, + 260.0, + 270.0, + ], + ) + + # Confirm turbulence_intensities now length 4 with single unique value + np.testing.assert_allclose(fi.floris.flow_field.turbulence_intensities, [0.1, 0.1, 0.1, 0.1]) + + # Now should be able to change turbulence intensity to changing, so long as length 4 + fi.reinitialize(turbulence_intensities=[0.08, 0.09, 0.1, 0.11]) + + # However the wrong length should raise an error + with pytest.raises(ValueError): + fi.reinitialize(turbulence_intensities=[0.08, 0.09, 0.1]) + + # Also, now that TI is not a single unique value, it can not be left default when changing + # shape of wind speeds and directions + with pytest.raises(ValueError): + fi.reinitialize( + wind_speeds=[8.0, 8.0, 8.0, 8.0, 8.0], + wind_directions=[ + 240.0, + 250.0, + 260.0, + 270.0, + 280.0, + ], + ) + + # Test that applying a 1D array of length 1 is allowed for ti + fi.reinitialize(turbulence_intensities=[0.12]) + + # Test that applying a float however raises an error + with pytest.raises(TypeError): + fi.reinitialize(turbulence_intensities=0.12) diff --git a/tests/floris_unit_test.py b/tests/floris_unit_test.py index 05c01f022..8fc75ca1f 100644 --- a/tests/floris_unit_test.py +++ b/tests/floris_unit_test.py @@ -26,7 +26,7 @@ TEST_DATA = Path(__file__).resolve().parent / "data" -YAML_INPUT = TEST_DATA / "input_full_v3.yaml" +YAML_INPUT = TEST_DATA / "input_full.yaml" DICT_INPUT = yaml.load(open(YAML_INPUT, "r"), Loader=yaml.SafeLoader) diff --git a/tests/flow_field_unit_test.py b/tests/flow_field_unit_test.py index 9b0c9a724..978911700 100644 --- a/tests/flow_field_unit_test.py +++ b/tests/flow_field_unit_test.py @@ -58,3 +58,20 @@ def test_asdict(flow_field_fixture: FlowField, turbine_grid_fixture: TurbineGrid dict2 = new_ff.as_dict() assert dict1 == dict2 + + +def test_turbulence_intensities_to_n_findex(flow_field_fixture, turbine_grid_fixture): + # Assert tubulence intensity has same length as n_findex + assert len(flow_field_fixture.turbulence_intensities) == flow_field_fixture.n_findex + + # Assert turbulence_intensity_field is the correct shape + flow_field_fixture.initialize_velocity_field(turbine_grid_fixture) + assert flow_field_fixture.turbulence_intensity_field.shape == (N_FINDEX, N_TURBINES, 1, 1) + + # Assert that turbulence_intensity_field has values matched to turbulence_intensity + for findex in range(N_FINDEX): + for t in range(N_TURBINES): + assert ( + flow_field_fixture.turbulence_intensities[findex] + == flow_field_fixture.turbulence_intensity_field[findex, t, 0, 0] + ) diff --git a/tests/type_dec_unit_test.py b/tests/type_dec_unit_test.py index 641f207dc..3c5b87ded 100644 --- a/tests/type_dec_unit_test.py +++ b/tests/type_dec_unit_test.py @@ -22,6 +22,7 @@ from floris.type_dec import ( convert_to_path, floris_array_converter, + floris_numeric_dict_converter, FromDictMixin, iter_validator, ) @@ -116,7 +117,7 @@ def test_iter_validator(): AttrsDemoClass(w=0, x=1, liststr=("a", "b")) -def test_attrs_array_converter(): +def test_array_converter(): array_input = [[1, 2, 3], [4.5, 6.3, 2.2]] test_array = np.array(array_input) @@ -124,10 +125,53 @@ def test_attrs_array_converter(): cls = AttrsDemoClass(w=0, x=1, array=array_input) np.testing.assert_allclose(test_array, cls.array) - # Test converstion on reset + # Test conversion on reset cls.array = array_input np.testing.assert_allclose(test_array, cls.array) + # Test that a non-iterable item like a scalar number fails + with pytest.raises(TypeError): + cls.array = 1 + + +def test_numeric_dict_converter(): + """ + This function converts data in a dictionary to a numeric type. + If it can't convert the data, it will raise a TypeError. + It should support scalar, list, and numpy array types + for values in the dictionary. + """ + test_dict = { + "scalar_string": "1", + "scalar_int": 1, + "scalar_float": 1.0, + "list_string": ["1", "2", "3"], + "list_int": [1, 2, 3], + "list_float": [1.0, 2.0, 3.0], + "array_string": np.array(["1", "2", "3"]), + "array_int": np.array([1, 2, 3]), + "array_float": np.array([1.0, 2.0, 3.0]), + } + numeric_dict = floris_numeric_dict_converter(test_dict) + assert numeric_dict["scalar_string"] == 1 + assert numeric_dict["scalar_int"] == 1 + assert numeric_dict["scalar_float"] == 1.0 + np.testing.assert_allclose(numeric_dict["list_string"], [1, 2, 3]) + np.testing.assert_allclose(numeric_dict["list_int"], [1, 2, 3]) + np.testing.assert_allclose(numeric_dict["list_float"], [1.0, 2.0, 3.0]) + np.testing.assert_allclose(numeric_dict["array_string"], [1, 2, 3]) + np.testing.assert_allclose(numeric_dict["array_int"], [1, 2, 3]) + np.testing.assert_allclose(numeric_dict["array_float"], [1.0, 2.0, 3.0]) + + test_dict = {"scalar_fail": "a"} + with pytest.raises(TypeError): + floris_numeric_dict_converter(test_dict) + test_dict = {"list_fail": ["a", "2", "3"]} + with pytest.raises(TypeError): + floris_numeric_dict_converter(test_dict) + test_dict = {"array_fail": np.array(["a", "2", "3"])} + with pytest.raises(TypeError): + floris_numeric_dict_converter(test_dict) def test_convert_to_path(): str_input = "../tests" diff --git a/tests/wind_data_test.py b/tests/wind_data_test.py index bc793d4fe..565d38ae1 100644 --- a/tests/wind_data_test.py +++ b/tests/wind_data_test.py @@ -244,11 +244,11 @@ def test_time_series_to_wind_rose_wrapping(): def test_time_series_to_wind_rose_with_ti(): wind_directions = np.array([259.8, 260.2, 260.3, 260.1]) wind_speeds = np.array([5.0, 5.0, 5.1, 7.2]) - turbulence_intensity = np.array([0.5, 1.0, 1.5, 2.0]) + turbulence_intensities = np.array([0.5, 1.0, 1.5, 2.0]) time_series = TimeSeries( wind_directions, wind_speeds, - turbulence_intensity=turbulence_intensity, + turbulence_intensities=turbulence_intensities, ) wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) From 2edfb8e60d781d87c2ceb9b5bc0dba031d54bb3d Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Wed, 7 Feb 2024 16:01:49 -0500 Subject: [PATCH 32/78] [BUGFIX] Bad import in convert_turbine_v3_to_v4.py (#795) --- floris/tools/convert_turbine_v3_to_v4.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/floris/tools/convert_turbine_v3_to_v4.py b/floris/tools/convert_turbine_v3_to_v4.py index 382074a47..7203e3379 100644 --- a/floris/tools/convert_turbine_v3_to_v4.py +++ b/floris/tools/convert_turbine_v3_to_v4.py @@ -26,7 +26,7 @@ import sys from pathlib import Path -from floris.simulation.turbine import build_cosine_loss_turbine_dict, check_smooth_power_curve +from floris.turbine_library import build_cosine_loss_turbine_dict, check_smooth_power_curve from floris.utilities import load_yaml From cd55d8b2df85dd52eb3f64302a0776d0cd7cb0c2 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Wed, 7 Feb 2024 14:05:15 -0700 Subject: [PATCH 33/78] Add de-rating op model (#783) * Establishing op model framework. * First tests written; currently failing. * Default behavior working. * Rough model and tests. * Slight improvement of docstring (still needs work). * ruff. * Add SimpleDeratingTurbine to TURBINE_MODEL_MAP * start derating example * Add derated inputs * Add power_setpoints to calculate wake * Remove pure formatting changes * Remove pure formatting changes * correct ti to array * Add power_setpoints attribute and functions * Call set_power_setpoints function * Initialize power_setpoints to a very large number * Passes tests, new example still not running. * power_setpoints, air_density propagated through turbine function calls. * Reg tests updated to new arguments. * Update calls to thrust_coefficient() and axial_induction(). * Test example a bit more built out. * Mixed model; single location for max power setpoint. * Ruff, isort. * Test mixed model. * Mixed model in example." * Allow mixed None and float values to be passed for power_setpoints. * Remove temp code * Propagating single default value. * Minor cleanup. * Example improvements. --------- Co-authored-by: misi9170 --- examples/40_test_derating.py | 116 +++++++ floris/simulation/farm.py | 13 + floris/simulation/floris.py | 1 + floris/simulation/solver.py | 34 +++ floris/simulation/turbine/__init__.py | 2 + floris/simulation/turbine/operation_models.py | 180 +++++++++++ floris/simulation/turbine/turbine.py | 26 +- floris/tools/floris_interface.py | 30 +- tests/farm_unit_test.py | 2 + tests/floris_interface_test.py | 17 ++ .../cumulative_curl_regression_test.py | 41 ++- .../empirical_gauss_regression_test.py | 53 +++- .../floris_interface_regression_test.py | 9 +- tests/reg_tests/gauss_regression_test.py | 56 +++- .../jensen_jimenez_regression_test.py | 27 +- tests/reg_tests/none_regression_test.py | 14 +- tests/reg_tests/turbopark_regression_test.py | 20 +- tests/turbine_multi_dim_unit_test.py | 11 + tests/turbine_operation_models_test.py | 285 ++++++++++++++++++ tests/turbine_unit_test.py | 18 ++ 20 files changed, 920 insertions(+), 35 deletions(-) create mode 100644 examples/40_test_derating.py diff --git a/examples/40_test_derating.py b/examples/40_test_derating.py new file mode 100644 index 000000000..59a587259 --- /dev/null +++ b/examples/40_test_derating.py @@ -0,0 +1,116 @@ +# Copyright 2024 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +import matplotlib.pyplot as plt +import numpy as np +import yaml + +from floris.tools import FlorisInterface + + +""" +Example to test out derating of turbines and mixed derating and yawing. Will be refined before +release. TODO: Demonstrate shutting off turbines also, once developed. +""" + +# Grab model of FLORIS and update to deratable turbines +fi = FlorisInterface("inputs/gch.yaml") + +with open(str( + fi.floris.as_dict()["farm"]["turbine_library_path"] / + (fi.floris.as_dict()["farm"]["turbine_type"][0] + ".yaml") +)) as t: + turbine_type = yaml.safe_load(t) +turbine_type["power_thrust_model"] = "simple-derating" + +# Convert to a simple two turbine layout with derating turbines +fi.reinitialize(layout_x=[0, 1000.0], layout_y=[0.0, 0.0], turbine_type=[turbine_type]) + +# Set the wind directions and speeds to be constant over n_findex = N time steps +N = 50 +fi.reinitialize(wind_directions=270 * np.ones(N), wind_speeds=10.0 * np.ones(N)) +fi.calculate_wake() +turbine_powers_orig = fi.get_turbine_powers() + +# Add derating +power_setpoints = np.tile(np.linspace(1, 6e6, N), 2).reshape(2, N).T +fi.calculate_wake(power_setpoints=power_setpoints) +turbine_powers_derated = fi.get_turbine_powers() + +# Compute available power at downstream turbine +power_setpoints_2 = np.array([np.linspace(1, 6e6, N), np.full(N, None)]).T +fi.calculate_wake(power_setpoints=power_setpoints_2) +turbine_powers_avail_ds = fi.get_turbine_powers()[:,1] + +# Plot the results +fig, ax = plt.subplots(1, 1) +ax.plot(power_setpoints[:, 0]/1000, turbine_powers_derated[:, 0]/1000, color="C0", label="Upstream") +ax.plot( + power_setpoints[:, 1]/1000, + turbine_powers_derated[:, 1]/1000, + color="C1", + label="Downstream" +) +ax.plot( + power_setpoints[:, 0]/1000, + turbine_powers_orig[:, 0]/1000, + color="C0", + linestyle="dotted", + label="Upstream available" +) +ax.plot( + power_setpoints[:, 1]/1000, + turbine_powers_avail_ds/1000, + color="C1", + linestyle="dotted", label="Downstream available" +) +ax.plot( + power_setpoints[:, 1]/1000, + np.ones(N)*np.max(turbine_type["power_thrust_table"]["power"]), + color="k", + linestyle="dashed", + label="Rated power" +) +ax.grid() +ax.legend() +ax.set_xlim([0, 6e3]) +ax.set_xlabel("Power setpoint (kW)") +ax.set_ylabel("Power produced (kW)") + +# Second example showing mixed model use. +turbine_type["power_thrust_model"] = "mixed" +yaw_angles = np.array([ + [0.0, 0.0], + [0.0, 0.0], + [20.0, 10.0], + [0.0, 10.0], + [20.0, 0.0] +]) +power_setpoints = np.array([ + [None, None], + [2e6, 1e6], + [None, None], + [2e6, None,], + [None, 1e6] +]) +fi.reinitialize( + wind_directions=270 * np.ones(len(yaw_angles)), + wind_speeds=10.0 * np.ones(len(yaw_angles)), + turbine_type=[turbine_type]*2 +) +fi.calculate_wake(yaw_angles=yaw_angles, power_setpoints=power_setpoints) +turbine_powers = fi.get_turbine_powers() +print(turbine_powers) + +plt.show() diff --git a/floris/simulation/farm.py b/floris/simulation/farm.py index 7544231fe..56e20d819 100644 --- a/floris/simulation/farm.py +++ b/floris/simulation/farm.py @@ -32,6 +32,7 @@ Turbine, ) from floris.simulation.rotor_velocity import compute_tilt_angles_for_floating_turbines_map +from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT from floris.type_dec import ( convert_to_path, floris_array_converter, @@ -92,6 +93,9 @@ class Farm(BaseClass): tilt_angles: NDArrayFloat = field(init=False) tilt_angles_sorted: NDArrayFloat = field(init=False) + power_setpoints: NDArrayFloat = field(init=False) + power_setpoints_sorted: NDArrayFloat = field(init=False) + hub_heights: NDArrayFloat = field(init=False) hub_heights_sorted: NDArrayFloat = field(init=False, factory=list) @@ -233,6 +237,11 @@ def initialize(self, sorted_indices): sorted_indices[:, :, 0, 0], axis=1, ) + self.power_setpoints_sorted = np.take_along_axis( + self.power_setpoints, + sorted_indices[:, :, 0, 0], + axis=1, + ) self.state = State.INITIALIZED def construct_hub_heights(self): @@ -341,6 +350,10 @@ def set_tilt_to_ref_tilt(self, n_findex: int): * self.ref_tilts ) + def set_power_setpoints(self, n_findex: int): + self.power_setpoints = POWER_SETPOINT_DEFAULT * np.ones((n_findex, self.n_turbines)) + self.power_setpoints_sorted = POWER_SETPOINT_DEFAULT * np.ones((n_findex, self.n_turbines)) + def calculate_tilt_for_eff_velocities(self, rotor_effective_velocities): tilt_angles = compute_tilt_angles_for_floating_turbines_map( self.turbine_type_map_sorted, diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index e2e475e0e..f0a492f6a 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -98,6 +98,7 @@ def __attrs_post_init__(self) -> None: self.farm.construct_turbine_correct_cp_ct_for_tilt() self.farm.set_yaw_angles(self.flow_field.n_findex) self.farm.set_tilt_to_ref_tilt(self.flow_field.n_findex) + self.farm.set_power_setpoints(self.flow_field.n_findex) if self.solver["type"] == "turbine_grid": self.grid = TurbineGrid( diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index c80f355cc..92da51959 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -101,8 +101,10 @@ def sequential_solver( ct_i = thrust_coefficient( velocities=flow_field.u_sorted, + air_density=flow_field.air_density, yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, + power_setpoints=farm.power_setpoints_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -118,8 +120,10 @@ def sequential_solver( ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, + air_density=flow_field.air_density, yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, + power_setpoints=farm.power_setpoints_sorted, axial_induction_functions=farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -330,8 +334,10 @@ def full_flow_sequential_solver( ct_i = thrust_coefficient( velocities=turbine_grid_flow_field.u_sorted, + air_density=turbine_grid_flow_field.air_density, yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, + power_setpoints=turbine_grid_farm.power_setpoints_sorted, thrust_coefficient_functions=turbine_grid_farm.turbine_thrust_coefficient_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -344,8 +350,10 @@ def full_flow_sequential_solver( ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=turbine_grid_flow_field.u_sorted, + air_density=turbine_grid_flow_field.air_density, yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, + power_setpoints=turbine_grid_farm.power_setpoints_sorted, axial_induction_functions=turbine_grid_farm.turbine_axial_induction_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -495,8 +503,10 @@ def cc_solver( turb_avg_vels = average_velocity(turb_inflow_field) turb_Cts = thrust_coefficient( turb_avg_vels, + flow_field.air_density, farm.yaw_angles_sorted, farm.tilt_angles_sorted, + farm.power_setpoints_sorted, farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -508,8 +518,10 @@ def cc_solver( turb_Cts = turb_Cts[:, :, None, None] turb_aIs = axial_induction( turb_avg_vels, + flow_field.air_density, farm.yaw_angles_sorted, farm.tilt_angles_sorted, + farm.power_setpoints_sorted, farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -526,8 +538,10 @@ def cc_solver( axial_induction_i = axial_induction( velocities=flow_field.u_sorted, + air_density=flow_field.air_density, yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, + power_setpoints=farm.power_setpoints_sorted, axial_induction_functions=farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -737,8 +751,10 @@ def full_flow_cc_solver( turb_avg_vels = average_velocity(turbine_grid_flow_field.u_sorted) turb_Cts = thrust_coefficient( velocities=turb_avg_vels, + air_density=flow_field_grid.air_density, yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, + power_setpoints=turbine_grid_farm.power_setpoints_sorted, thrust_coefficient_functions=turbine_grid_farm.turbine_thrust_coefficient_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -751,8 +767,10 @@ def full_flow_cc_solver( axial_induction_i = axial_induction( velocities=turbine_grid_flow_field.u_sorted, + air_density=turbine_grid_flow_field.air_density, yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, + power_setpoints=turbine_grid_farm.power_setpoints_sorted, axial_induction_functions=turbine_grid_farm.turbine_axial_induction_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -891,8 +909,10 @@ def turbopark_solver( Cts = thrust_coefficient( velocities=flow_field.u_sorted, + air_density=flow_field.air_density, yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, + power_setpoints=farm.power_setpoints_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -904,8 +924,10 @@ def turbopark_solver( ct_i = thrust_coefficient( velocities=flow_field.u_sorted, + air_density=flow_field.air_density, yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, + power_setpoints=farm.power_setpoints_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -920,8 +942,10 @@ def turbopark_solver( ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, + air_density=flow_field.air_density, yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, + power_setpoints=farm.power_setpoints_sorted, axial_induction_functions=farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -978,8 +1002,10 @@ def turbopark_solver( turbulence_intensity_ii = turbine_turbulence_intensity[:, ii:ii+1] ct_ii = thrust_coefficient( velocities=flow_field.u_sorted, + air_density=flow_field.air_density, yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, + power_setpoints=farm.power_setpoints_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1174,8 +1200,10 @@ def empirical_gauss_solver( ct_i = thrust_coefficient( velocities=flow_field.u_sorted, + air_density=flow_field.air_density, yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, + power_setpoints=farm.power_setpoints_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1190,8 +1218,10 @@ def empirical_gauss_solver( ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=flow_field.u_sorted, + air_density=flow_field.air_density, yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, + power_setpoints=farm.power_setpoints_sorted, axial_induction_functions=farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1375,8 +1405,10 @@ def full_flow_empirical_gauss_solver( ct_i = thrust_coefficient( velocities=turbine_grid_flow_field.u_sorted, + air_density=turbine_grid_flow_field.air_density, yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, + power_setpoints=turbine_grid_farm.power_setpoints_sorted, thrust_coefficient_functions=turbine_grid_farm.turbine_thrust_coefficient_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -1389,8 +1421,10 @@ def full_flow_empirical_gauss_solver( ct_i = ct_i[:, 0:1, None, None] axial_induction_i = axial_induction( velocities=turbine_grid_flow_field.u_sorted, + air_density=turbine_grid_flow_field.air_density, yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, + power_setpoints=turbine_grid_farm.power_setpoints_sorted, axial_induction_functions=turbine_grid_farm.turbine_axial_induction_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, diff --git a/floris/simulation/turbine/__init__.py b/floris/simulation/turbine/__init__.py index f1ccca6d0..355f5c2df 100644 --- a/floris/simulation/turbine/__init__.py +++ b/floris/simulation/turbine/__init__.py @@ -14,5 +14,7 @@ from floris.simulation.turbine.operation_models import ( CosineLossTurbine, + MixedOperationTurbine, + SimpleDeratingTurbine, SimpleTurbine, ) diff --git a/floris/simulation/turbine/operation_models.py b/floris/simulation/turbine/operation_models.py index 93173f364..82c11ee70 100644 --- a/floris/simulation/turbine/operation_models.py +++ b/floris/simulation/turbine/operation_models.py @@ -40,6 +40,8 @@ from floris.utilities import cosd +POWER_SETPOINT_DEFAULT = 1e12 + def rotor_velocity_air_density_correction( velocities: NDArrayFloat, air_density: float, @@ -315,3 +317,181 @@ def axial_induction( misalignment_loss = cosd(yaw_angles) * cosd(tilt_angles - power_thrust_table["ref_tilt"]) return 0.5 / misalignment_loss * (1 - np.sqrt(1 - thrust_coefficient * misalignment_loss)) + +@define +class SimpleDeratingTurbine(BaseOperationModel): + """ + power_thrust_table is a dictionary (normally defined on the turbine input yaml) + that contains the parameters necessary to evaluate power(), thrust(), and axial_induction(). + Any specific parameters for derating can be placed here. (they can be added to the turbine + yaml). For this operation model to receive those arguements, they'll need to be + added to the kwargs dictionaries in the respective functions on turbine.py. They won't affect + the other operation models. + """ + def power( + power_thrust_table: dict, + velocities: NDArrayFloat, + air_density: float, + power_setpoints: NDArrayFloat | None, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + **_ # <- Allows other models to accept other keyword arguments + ): + base_powers = SimpleTurbine.power( + power_thrust_table=power_thrust_table, + velocities=velocities, + air_density=air_density, + average_method=average_method, + cubature_weights=cubature_weights + ) + if power_setpoints is None: + return base_powers + else: + return np.minimum(base_powers, power_setpoints) + + # TODO: would we like special handling of zero power setpoints + # (mixed with non-zero values) to speed up computation in that case? + + def thrust_coefficient( + power_thrust_table: dict, + velocities: NDArrayFloat, + air_density: float, + power_setpoints: NDArrayFloat, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + **_ # <- Allows other models to accept other keyword arguments + ): + base_thrust_coefficients = SimpleTurbine.thrust_coefficient( + power_thrust_table=power_thrust_table, + velocities=velocities, + average_method=average_method, + cubature_weights=cubature_weights + ) + if power_setpoints is None: + return base_thrust_coefficients + else: + # Assume thrust coefficient scales directly with power + base_powers = SimpleTurbine.power( + power_thrust_table=power_thrust_table, + velocities=velocities, + air_density=air_density + ) + power_fractions = power_setpoints / base_powers + thrust_coefficients = power_fractions * base_thrust_coefficients + return np.minimum(base_thrust_coefficients, thrust_coefficients) + + def axial_induction( + power_thrust_table: dict, + velocities: NDArrayFloat, + air_density: float, + power_setpoints: NDArrayFloat, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + **_ # <- Allows other models to accept other keyword arguments + ): + thrust_coefficient = SimpleDeratingTurbine.thrust_coefficient( + power_thrust_table=power_thrust_table, + velocities=velocities, + air_density=air_density, + power_setpoints=power_setpoints, + average_method=average_method, + cubature_weights=cubature_weights, + ) + + return (1 - np.sqrt(1 - thrust_coefficient))/2 + +@define +class MixedOperationTurbine(BaseOperationModel): + + def power( + yaw_angles: NDArrayFloat, + power_setpoints: NDArrayFloat, + **kwargs + ): + yaw_angles_mask = yaw_angles > 0 + power_setpoints_mask = power_setpoints < POWER_SETPOINT_DEFAULT + neither_mask = np.logical_not(yaw_angles_mask) & np.logical_not(power_setpoints_mask) + + if (power_setpoints_mask & yaw_angles_mask).any(): + raise ValueError(( + "Power setpoints and yaw angles are incompatible." + "If yaw_angles entry is nonzero, power_setpoints must be greater than" + " or equal to {0}.".format(POWER_SETPOINT_DEFAULT) + )) + + powers = np.zeros_like(power_setpoints) + powers[yaw_angles_mask] += CosineLossTurbine.power( + yaw_angles=yaw_angles, + **kwargs + )[yaw_angles_mask] + powers[power_setpoints_mask] += SimpleDeratingTurbine.power( + power_setpoints=power_setpoints, + **kwargs + )[power_setpoints_mask] + powers[neither_mask] += SimpleTurbine.power( + **kwargs + )[neither_mask] + + return powers + + def thrust_coefficient( + yaw_angles: NDArrayFloat, + power_setpoints: NDArrayFloat, + **kwargs + ): + yaw_angles_mask = yaw_angles > 0 + power_setpoints_mask = power_setpoints < POWER_SETPOINT_DEFAULT + neither_mask = np.logical_not(yaw_angles_mask) & np.logical_not(power_setpoints_mask) + + if (power_setpoints_mask & yaw_angles_mask).any(): + raise ValueError(( + "Power setpoints and yaw angles are incompatible." + "If yaw_angles entry is nonzero, power_setpoints must be greater than" + " or equal to {0}.".format(POWER_SETPOINT_DEFAULT) + )) + + thrust_coefficients = np.zeros_like(power_setpoints) + thrust_coefficients[yaw_angles_mask] += CosineLossTurbine.thrust_coefficient( + yaw_angles=yaw_angles, + **kwargs + )[yaw_angles_mask] + thrust_coefficients[power_setpoints_mask] += SimpleDeratingTurbine.thrust_coefficient( + power_setpoints=power_setpoints, + **kwargs + )[power_setpoints_mask] + thrust_coefficients[neither_mask] += SimpleTurbine.thrust_coefficient( + **kwargs + )[neither_mask] + + return thrust_coefficients + + def axial_induction( + yaw_angles: NDArrayFloat, + power_setpoints: NDArrayFloat, + **kwargs + ): + yaw_angles_mask = yaw_angles > 0 + power_setpoints_mask = power_setpoints < POWER_SETPOINT_DEFAULT + neither_mask = np.logical_not(yaw_angles_mask) & np.logical_not(power_setpoints_mask) + + if (power_setpoints_mask & yaw_angles_mask).any(): + raise ValueError(( + "Power setpoints and yaw angles are incompatible." + "If yaw_angles entry is nonzero, power_setpoints must be greater than" + " or equal to {0}.".format(POWER_SETPOINT_DEFAULT) + )) + + axial_inductions = np.zeros_like(power_setpoints) + axial_inductions[yaw_angles_mask] += CosineLossTurbine.axial_induction( + yaw_angles=yaw_angles, + **kwargs + )[yaw_angles_mask] + axial_inductions[power_setpoints_mask] += SimpleDeratingTurbine.axial_induction( + power_setpoints=power_setpoints, + **kwargs + )[power_setpoints_mask] + axial_inductions[neither_mask] += SimpleTurbine.axial_induction( + **kwargs + )[neither_mask] + + return axial_inductions diff --git a/floris/simulation/turbine/turbine.py b/floris/simulation/turbine/turbine.py index d9aa76999..f9435facb 100644 --- a/floris/simulation/turbine/turbine.py +++ b/floris/simulation/turbine/turbine.py @@ -27,6 +27,8 @@ from floris.simulation import BaseClass from floris.simulation.turbine import ( CosineLossTurbine, + MixedOperationTurbine, + SimpleDeratingTurbine, SimpleTurbine, ) from floris.type_dec import ( @@ -44,7 +46,9 @@ TURBINE_MODEL_MAP = { "power_thrust_model": { "simple": SimpleTurbine, - "cosine-loss": CosineLossTurbine + "cosine-loss": CosineLossTurbine, + "simple-derating": SimpleDeratingTurbine, + "mixed": MixedOperationTurbine, }, } @@ -83,6 +87,7 @@ def power( power_functions: dict[str, Callable], yaw_angles: NDArrayFloat, tilt_angles: NDArrayFloat, + power_setpoints: NDArrayFloat, tilt_interps: dict[str, interp1d], turbine_type_map: NDArrayObject, turbine_power_thrust_tables: dict, @@ -103,6 +108,8 @@ def power( each turbine type. Keys are the turbine type and values are the callable functions. yaw_angles (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. tilt_angles (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. + power_setpoints: (NDArrayFloat[findex, turbines]): Maximum power setpoint for each + turbine [W]. tilt_interps (Iterable[tuple]): The tilt interpolation functions for each turbine. turbine_type_map: (NDArrayObject[wd, ws, turbines]): The Turbine type definition for @@ -136,6 +143,7 @@ def power( velocities = velocities[:, ix_filter] yaw_angles = yaw_angles[:, ix_filter] tilt_angles = tilt_angles[:, ix_filter] + power_setpoints = power_setpoints[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] if type(correct_cp_ct_for_tilt) is bool: pass @@ -165,6 +173,7 @@ def power( "air_density": air_density, "yaw_angles": yaw_angles, "tilt_angles": tilt_angles, + "power_setpoints": power_setpoints, "tilt_interp": tilt_interps[turb_type], "average_method": average_method, "cubature_weights": cubature_weights, @@ -180,8 +189,10 @@ def power( def thrust_coefficient( velocities: NDArrayFloat, + air_density: float, yaw_angles: NDArrayFloat, tilt_angles: NDArrayFloat, + power_setpoints: NDArrayFloat, thrust_coefficient_functions: dict[str, Callable], tilt_interps: dict[str, interp1d], correct_cp_ct_for_tilt: NDArrayBool, @@ -200,8 +211,11 @@ def thrust_coefficient( Args: velocities (NDArrayFloat[findex, turbines, grid1, grid2]): The velocity field at a turbine. + air_density (float): air density for simulation [kg/m^3] yaw_angles (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. tilt_angles (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. + power_setpoints: (NDArrayFloat[findex, turbines]): Maximum power setpoint for each + turbine [W]. thrust_coefficient_functions (dict): The thrust coefficient functions for each turbine. Keys are the turbine type string and values are the callable functions. tilt_interps (Iterable[tuple]): The tilt interpolation functions for each @@ -230,6 +244,7 @@ def thrust_coefficient( velocities = velocities[:, ix_filter] yaw_angles = yaw_angles[:, ix_filter] tilt_angles = tilt_angles[:, ix_filter] + power_setpoints = power_setpoints[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] if type(correct_cp_ct_for_tilt) is bool: pass @@ -256,8 +271,10 @@ def thrust_coefficient( thrust_model_kwargs = { "power_thrust_table": power_thrust_table, "velocities": velocities, + "air_density": air_density, "yaw_angles": yaw_angles, "tilt_angles": tilt_angles, + "power_setpoints": power_setpoints, "tilt_interp": tilt_interps[turb_type], "average_method": average_method, "cubature_weights": cubature_weights, @@ -276,8 +293,10 @@ def thrust_coefficient( def axial_induction( velocities: NDArrayFloat, + air_density: float, yaw_angles: NDArrayFloat, tilt_angles: NDArrayFloat, + power_setpoints: NDArrayFloat, axial_induction_functions: dict, tilt_interps: NDArrayObject, correct_cp_ct_for_tilt: NDArrayBool, @@ -296,6 +315,8 @@ def axial_induction( (number of turbines, ngrid, ngrid), or (ngrid, ngrid) for a single turbine. yaw_angles (NDArrayFloat[findex, turbines]): The yaw angle for each turbine. tilt_angles (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. + power_setpoints: (NDArrayFloat[findex, turbines]): Maximum power setpoint for each + turbine [W]. axial_induction_functions (dict): The axial induction functions for each turbine. Keys are the turbine type string and values are the callable functions. tilt_interps (Iterable[tuple]): The tilt interpolation functions for each @@ -324,6 +345,7 @@ def axial_induction( velocities = velocities[:, ix_filter] yaw_angles = yaw_angles[:, ix_filter] tilt_angles = tilt_angles[:, ix_filter] + power_setpoints = power_setpoints[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] if type(correct_cp_ct_for_tilt) is bool: pass @@ -350,8 +372,10 @@ def axial_induction( axial_induction_model_kwargs = { "power_thrust_table": power_thrust_table, "velocities": velocities, + "air_density": air_density, "yaw_angles": yaw_angles, "tilt_angles": tilt_angles, + "power_setpoints": power_setpoints, "tilt_interp": tilt_interps[turb_type], "average_method": average_method, "cubature_weights": cubature_weights, diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index f94bd13bb..1134c7842 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -23,6 +23,7 @@ from floris.logging_manager import LoggingManager from floris.simulation import Floris, State from floris.simulation.rotor_velocity import average_velocity +from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT from floris.simulation.turbine.turbine import ( axial_induction, power, @@ -30,7 +31,7 @@ ) from floris.tools.cut_plane import CutPlane from floris.tools.wind_data import WindDataBase -from floris.type_dec import NDArrayFloat +from floris.type_dec import floris_array_converter, NDArrayFloat class FlorisInterface(LoggingManager): @@ -120,6 +121,7 @@ def calculate_wake( self, yaw_angles: NDArrayFloat | list[float] | None = None, # tilt_angles: NDArrayFloat | list[float] | None = None, + power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, ) -> None: """ Wrapper to the :py:meth:`~.Farm.set_yaw_angles` and @@ -128,6 +130,9 @@ def calculate_wake( Args: yaw_angles (NDArrayFloat | list[float] | None, optional): Turbine yaw angles. Defaults to None. + power_setpoints (NDArrayFloat | list[float] | None, optional): Turbine power setpoints. + May be specified with some float values and some None values; power maximization + will be assumed for any None value. Defaults to None. """ if yaw_angles is None: @@ -139,6 +144,24 @@ def calculate_wake( ) self.floris.farm.yaw_angles = yaw_angles + if power_setpoints is None: + power_setpoints = POWER_SETPOINT_DEFAULT * np.ones( + ( + self.floris.flow_field.n_findex, + self.floris.farm.n_turbines, + ) + ) + else: + power_setpoints = np.array(power_setpoints) + + # Convert any None values to the default power setpoint + power_setpoints[ + power_setpoints == np.full(power_setpoints.shape, None) + ] = POWER_SETPOINT_DEFAULT + power_setpoints = floris_array_converter(power_setpoints) + + self.floris.farm.power_setpoints = power_setpoints + # # TODO is this required? # if tilt_angles is not None: # self.floris.farm.tilt_angles = tilt_angles @@ -651,6 +674,7 @@ def get_turbine_powers(self) -> NDArrayFloat: power_functions=self.floris.farm.turbine_power_functions, yaw_angles=self.floris.farm.yaw_angles, tilt_angles=self.floris.farm.tilt_angles, + power_setpoints=self.floris.farm.power_setpoints, tilt_interps=self.floris.farm.turbine_tilt_interps, turbine_type_map=self.floris.farm.turbine_type_map, turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, @@ -662,8 +686,10 @@ def get_turbine_powers(self) -> NDArrayFloat: def get_turbine_thrust_coefficients(self) -> NDArrayFloat: turbine_thrust_coefficients = thrust_coefficient( velocities=self.floris.flow_field.u, + air_density=self.floris.flow_field.air_density, yaw_angles=self.floris.farm.yaw_angles, tilt_angles=self.floris.farm.tilt_angles, + power_setpoints=self.floris.farm.power_setpoints, thrust_coefficient_functions=self.floris.farm.turbine_thrust_coefficient_functions, tilt_interps=self.floris.farm.turbine_tilt_interps, correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, @@ -678,8 +704,10 @@ def get_turbine_thrust_coefficients(self) -> NDArrayFloat: def get_turbine_ais(self) -> NDArrayFloat: turbine_ais = axial_induction( velocities=self.floris.flow_field.u, + air_density=self.floris.flow_field.air_density, yaw_angles=self.floris.farm.yaw_angles, tilt_angles=self.floris.farm.tilt_angles, + power_setpoints=self.floris.farm.power_setpoints, axial_induction_functions=self.floris.farm.turbine_axial_induction_functions, tilt_interps=self.floris.farm.turbine_tilt_interps, correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, diff --git a/tests/farm_unit_test.py b/tests/farm_unit_test.py index 8fa9b28b5..72394c76b 100644 --- a/tests/farm_unit_test.py +++ b/tests/farm_unit_test.py @@ -62,6 +62,7 @@ def test_asdict(sample_inputs_fixture: SampleInputs): farm.construct_turbine_ref_tilts() farm.set_yaw_angles(N_FINDEX) farm.set_tilt_to_ref_tilt(N_FINDEX) + farm.set_power_setpoints(N_FINDEX) dict1 = farm.as_dict() new_farm = farm.from_dict(dict1) @@ -69,6 +70,7 @@ def test_asdict(sample_inputs_fixture: SampleInputs): new_farm.construct_turbine_ref_tilts() new_farm.set_yaw_angles(N_FINDEX) new_farm.set_tilt_to_ref_tilt(N_FINDEX) + new_farm.set_power_setpoints(N_FINDEX) dict2 = new_farm.as_dict() assert dict1 == dict2 diff --git a/tests/floris_interface_test.py b/tests/floris_interface_test.py index 17d612a38..d95e3b081 100644 --- a/tests/floris_interface_test.py +++ b/tests/floris_interface_test.py @@ -3,6 +3,7 @@ import numpy as np import pytest +from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT from floris.tools.floris_interface import FlorisInterface @@ -30,6 +31,22 @@ def test_calculate_wake(): fi.calculate_wake(yaw_angles=yaw_angles) assert fi.floris.farm.yaw_angles == yaw_angles + power_setpoints = 1e6*np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) + fi.calculate_wake(power_setpoints=power_setpoints) + assert fi.floris.farm.power_setpoints == power_setpoints + + fi.calculate_wake(power_setpoints=None) + assert fi.floris.farm.power_setpoints == ( + POWER_SETPOINT_DEFAULT * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) + ) + + fi.reinitialize(layout_x=[0, 0], layout_y=[0, 1000]) + power_setpoints = np.array([[1e6, None]]) + fi.calculate_wake(power_setpoints=power_setpoints) + assert np.allclose( + fi.floris.farm.power_setpoints, + np.array([[power_setpoints[0, 0], POWER_SETPOINT_DEFAULT]]) + ) def test_calculate_no_wake(): """ diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index 531224656..bb28909b9 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -171,8 +171,10 @@ def test_regression_tandem(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -180,8 +182,10 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -190,18 +194,21 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -325,8 +332,10 @@ def test_regression_yaw(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -334,8 +343,10 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -344,18 +355,21 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -407,8 +421,10 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -416,8 +432,10 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -426,18 +444,21 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -488,8 +509,10 @@ def test_regression_secondary_steering(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -497,8 +520,10 @@ def test_regression_secondary_steering(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -507,18 +532,21 @@ def test_regression_secondary_steering(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -583,15 +611,18 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # farm_avg_velocities = average_velocity(floris.flow_field.u) velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index d91dc956d..941d36063 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -144,8 +144,10 @@ def test_regression_tandem(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -153,8 +155,10 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -163,18 +167,21 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, - floris.farm.yaw_angles, - floris.farm.tilt_angles, + yaw_angles, + tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -300,8 +307,10 @@ def test_regression_yaw(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -309,8 +318,10 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -319,18 +330,21 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, - floris.farm.yaw_angles, - floris.farm.tilt_angles, + yaw_angles, + tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -382,8 +396,10 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -391,8 +407,10 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -401,18 +419,21 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, - floris.farm.yaw_angles, - floris.farm.tilt_angles, + yaw_angles, + tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -447,8 +468,10 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -456,8 +479,10 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -466,18 +491,21 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, - floris.farm.yaw_angles, - floris.farm.tilt_angles, + yaw_angles, + tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -563,6 +591,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.turbine_power_functions, floris.farm.yaw_angles, floris.farm.tilt_angles, + floris.farm.power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/floris_interface_regression_test.py b/tests/reg_tests/floris_interface_regression_test.py index 7c9a0d2ff..9110ade8b 100644 --- a/tests/reg_tests/floris_interface_regression_test.py +++ b/tests/reg_tests/floris_interface_regression_test.py @@ -84,8 +84,10 @@ def test_calculate_no_wake(sample_inputs_fixture): n_findex = fi.floris.flow_field.n_findex velocities = fi.floris.flow_field.u + air_density = fi.floris.flow_field.air_density yaw_angles = fi.floris.farm.yaw_angles tilt_angles = fi.floris.farm.tilt_angles + power_setpoints = fi.floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -93,8 +95,10 @@ def test_calculate_no_wake(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, fi.floris.farm.turbine_thrust_coefficient_functions, fi.floris.farm.turbine_tilt_interps, fi.floris.farm.correct_cp_ct_for_tilt, @@ -103,18 +107,21 @@ def test_calculate_no_wake(sample_inputs_fixture): ) farm_powers = power( velocities, - fi.floris.flow_field.air_density, + air_density, fi.floris.farm.turbine_power_functions, fi.floris.farm.yaw_angles, fi.floris.farm.tilt_angles, + fi.floris.farm.power_setpoints, fi.floris.farm.turbine_tilt_interps, fi.floris.farm.turbine_type_map, fi.floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, fi.floris.farm.turbine_axial_induction_functions, fi.floris.farm.turbine_tilt_interps, fi.floris.farm.correct_cp_ct_for_tilt, diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index 3a3fa4777..f04ce106e 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -262,8 +262,10 @@ def test_regression_tandem(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -271,8 +273,10 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -281,18 +285,21 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -416,8 +423,10 @@ def test_regression_yaw(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -425,8 +434,10 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -435,18 +446,21 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -495,8 +509,10 @@ def test_regression_gch(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -504,8 +520,10 @@ def test_regression_gch(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -514,18 +532,21 @@ def test_regression_gch(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -569,8 +590,10 @@ def test_regression_gch(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -578,8 +601,10 @@ def test_regression_gch(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -588,18 +613,21 @@ def test_regression_gch(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -651,8 +679,10 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -660,8 +690,10 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -670,18 +702,21 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -732,8 +767,10 @@ def test_regression_secondary_steering(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -741,8 +778,10 @@ def test_regression_secondary_steering(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -751,18 +790,21 @@ def test_regression_secondary_steering(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -829,6 +871,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints farm_powers = power( velocities, @@ -836,6 +879,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index f54ddda6a..ad1862570 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -113,8 +113,10 @@ def test_regression_tandem(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -122,8 +124,10 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -132,18 +136,21 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, - floris.farm.yaw_angles, - floris.farm.tilt_angles, + yaw_angles, + tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -267,8 +274,10 @@ def test_regression_yaw(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -276,8 +285,10 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -286,18 +297,21 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -362,8 +376,10 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # farm_avg_velocities = average_velocity(floris.flow_field.u) velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints # farm_eff_velocities = rotor_effective_velocity( # floris.flow_field.air_density, @@ -380,10 +396,11 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index 5fd2c99ac..e8f42c8cc 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -114,8 +114,10 @@ def test_regression_tandem(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -123,8 +125,10 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -133,18 +137,21 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -305,15 +312,18 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): # farm_avg_velocities = average_velocity(floris.flow_field.u) velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index 39dffcd78..eaba6fadc 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -115,8 +115,10 @@ def test_regression_tandem(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -124,8 +126,10 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -134,18 +138,21 @@ def test_regression_tandem(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -270,8 +277,10 @@ def test_regression_yaw(sample_inputs_fixture): n_findex = floris.flow_field.n_findex velocities = floris.flow_field.u + air_density = floris.flow_field.air_density yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -279,8 +288,10 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_cts = thrust_coefficient( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -289,18 +300,21 @@ def test_regression_yaw(sample_inputs_fixture): ) farm_powers = power( velocities, - floris.flow_field.air_density, + air_density, floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, ) farm_axial_inductions = axial_induction( velocities, + air_density, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -362,6 +376,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): velocities = floris.flow_field.u yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints farm_powers = power( velocities, @@ -369,6 +384,7 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.turbine_power_functions, yaw_angles, tilt_angles, + power_setpoints, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index 2d8635539..cc4b9f7ed 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -22,6 +22,7 @@ from floris.simulation import ( Turbine, ) +from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT from floris.simulation.turbine.turbine import ( axial_induction, power, @@ -96,8 +97,10 @@ def test_ct(): wind_speed = 10.0 thrust = thrust_coefficient( velocities=wind_speed * np.ones((1, 1, 3, 3)), + air_density=None, yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -112,8 +115,10 @@ def test_ct(): # 4 turbines with 3 x 3 grid arrays thrusts = thrust_coefficient( velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 16 x 4 x 3 x 3 + air_density=None, yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), @@ -166,6 +171,7 @@ def test_power(): power_functions={turbine.turbine_type: turbine.power_function}, yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine tilt_angles=turbine.power_thrust_table[condition]["ref_tilt"] * np.ones((1, 1)), + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map[:,0], turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -184,6 +190,7 @@ def test_power(): power_functions={turbine.turbine_type: turbine.power_function}, yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map, ix_filter=INDEX_FILTER, @@ -220,8 +227,10 @@ def test_axial_induction(): wind_speed = 10.0 ai = axial_induction( velocities=wind_speed * np.ones((1, 1, 3, 3)), + air_density=None, yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, + power_setpoints = np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -234,8 +243,10 @@ def test_axial_induction(): # Multiple turbines with ix filter ai = axial_induction( velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 16 x 4 x 3 x 3 + air_density=None, yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), diff --git a/tests/turbine_operation_models_test.py b/tests/turbine_operation_models_test.py index 517bb0be7..446695855 100644 --- a/tests/turbine_operation_models_test.py +++ b/tests/turbine_operation_models_test.py @@ -1,8 +1,12 @@ import numpy as np +import pytest from floris.simulation.turbine.operation_models import ( CosineLossTurbine, + MixedOperationTurbine, + POWER_SETPOINT_DEFAULT, rotor_velocity_air_density_correction, + SimpleDeratingTurbine, SimpleTurbine, ) from floris.utilities import cosd @@ -31,9 +35,19 @@ def test_submodel_attributes(): assert hasattr(SimpleTurbine, "power") assert hasattr(SimpleTurbine, "thrust_coefficient") + assert hasattr(SimpleTurbine, "axial_induction") assert hasattr(CosineLossTurbine, "power") assert hasattr(CosineLossTurbine, "thrust_coefficient") + assert hasattr(CosineLossTurbine, "axial_induction") + + assert hasattr(SimpleDeratingTurbine, "power") + assert hasattr(SimpleDeratingTurbine, "thrust_coefficient") + assert hasattr(SimpleDeratingTurbine, "axial_induction") + + assert hasattr(MixedOperationTurbine, "power") + assert hasattr(MixedOperationTurbine, "thrust_coefficient") + assert hasattr(MixedOperationTurbine, "axial_induction") def test_SimpleTurbine(): @@ -213,3 +227,274 @@ def test_CosineLossTurbine(): ) absolute_tilt = tilt_angles_test - turbine_data["power_thrust_table"]["ref_tilt"] assert test_Ct == baseline_Ct * cosd(yaw_angles_test) * cosd(absolute_tilt) + +def test_SimpleDeratingTurbine(): + + n_turbines = 1 + wind_speed = 10.0 + turbine_data = SampleInputs().turbine + + # Check that for no specified derating, matches SimpleTurbine + test_Ct = SimpleDeratingTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=None, + ) + base_Ct = SimpleTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + ) + assert np.allclose(test_Ct, base_Ct) + + test_power = SimpleDeratingTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=None, + ) + base_power = SimpleTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + ) + assert np.allclose(test_power, base_power) + + test_ai = SimpleDeratingTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=None, + ) + base_ai = SimpleTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + ) + assert np.allclose(test_ai, base_ai) + + # When power_setpoints are 0, turbine is shut down. + test_Ct = SimpleDeratingTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.zeros((1, n_turbines)), + ) + assert np.allclose(test_Ct, 0) + + test_power = SimpleDeratingTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.zeros((1, n_turbines)), + ) + assert np.allclose(test_power, 0) + + test_ai = SimpleDeratingTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.zeros((1, n_turbines)), + ) + assert np.allclose(test_ai, 0) + + # When power setpoints are less than available, results should be less than when no setpoint + wind_speed = 20 # High, so that turbine is above rated nominally + derated_power = 4.0e6 + rated_power = 5.0e6 + test_power = SimpleDeratingTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=derated_power * np.ones((1, n_turbines)), + ) + + rated_power = 5.0e6 + test_Ct = SimpleDeratingTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=derated_power * np.ones((1, n_turbines)), + ) + base_Ct = SimpleTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=derated_power * np.ones((1, n_turbines)), + ) + assert np.allclose(test_Ct, derated_power/rated_power * base_Ct) # Is this correct? + + # Mixed below and above rated + n_turbines = 2 + wind_speeds_test = np.ones((1, n_turbines, 3, 3)) + wind_speeds_test[0,0,:,:] = 20.0 # Above rated + wind_speeds_test[0,1,:,:] = 5.0 # Well below eated + test_power = SimpleDeratingTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speeds_test, # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=derated_power * np.ones((1, n_turbines)), + ) + base_power = SimpleTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speeds_test, # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=derated_power * np.ones((1, n_turbines)), + ) + + assert test_power[0,0] < base_power[0,0] + assert test_power[0,0] == derated_power + + assert test_power[0,1] == base_power[0,1] + assert test_power[0,1] < derated_power + +def test_MixedOperationTurbine(): + + n_turbines = 1 + wind_speed = 10.0 + turbine_data = SampleInputs().turbine + tilt_angles_nom = turbine_data["power_thrust_table"]["ref_tilt"] * np.ones((1, n_turbines)) + + # Check that for no specified derating or yaw angle, matches SimpleTurbine + test_Ct = MixedOperationTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=POWER_SETPOINT_DEFAULT * np.ones((1, n_turbines)), + yaw_angles=np.zeros((1, n_turbines)), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + base_Ct = SimpleTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + ) + + assert np.allclose(test_Ct, base_Ct) + + test_power = MixedOperationTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=POWER_SETPOINT_DEFAULT * np.ones((1, n_turbines)), + yaw_angles=np.zeros((1, n_turbines)), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + base_power = SimpleTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + ) + assert np.allclose(test_power, base_power) + + test_ai = MixedOperationTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=POWER_SETPOINT_DEFAULT * np.ones((1, n_turbines)), + yaw_angles=np.zeros((1, n_turbines)), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + base_ai = SimpleTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + ) + assert np.allclose(test_ai, base_ai) + + # Check that when power_setpoints are set, matches SimpleDeratingTurbine, + # while when yaw angles are set, matches CosineLossTurbine + n_turbines = 2 + derated_power = 2.0e6 + + test_Ct = MixedOperationTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.array([[POWER_SETPOINT_DEFAULT, derated_power]]), + yaw_angles=np.array([[20.0, 0.0]]), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + base_Ct_dr = SimpleDeratingTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.array([[POWER_SETPOINT_DEFAULT, derated_power]]), + ) + base_Ct_yaw = CosineLossTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + yaw_angles=np.array([[20.0, 0.0]]), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + base_Ct = np.array([[base_Ct_yaw[0,0], base_Ct_dr[0,1]]]) + assert np.allclose(test_Ct, base_Ct) + + # Do the same as above for power() + test_power = MixedOperationTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.array([[POWER_SETPOINT_DEFAULT, derated_power]]), + yaw_angles=np.array([[20.0, 0.0]]), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + base_power_dr = SimpleDeratingTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.array([[POWER_SETPOINT_DEFAULT, derated_power]]), + ) + base_power_yaw = CosineLossTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + yaw_angles=np.array([[20.0, 0.0]]), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + base_power = np.array([[base_power_yaw[0,0], base_power_dr[0,1]]]) + assert np.allclose(test_power, base_power) + + # Finally, check axial induction + test_ai = MixedOperationTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.array([[POWER_SETPOINT_DEFAULT, derated_power]]), + yaw_angles=np.array([[20.0, 0.0]]), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + base_ai_dr = SimpleDeratingTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.array([[POWER_SETPOINT_DEFAULT, derated_power]]), + ) + base_ai_yaw = CosineLossTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + yaw_angles=np.array([[20.0, 0.0]]), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) + base_ai = np.array([[base_ai_yaw[0,0], base_ai_dr[0,1]]]) + assert np.allclose(test_ai, base_ai) + + # Check error raised when both yaw and power setpoints are set + with pytest.raises(ValueError): + # Second turbine has both a power setpoint and a yaw angle + MixedOperationTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + power_setpoints=np.array([[POWER_SETPOINT_DEFAULT, derated_power]]), + yaw_angles=np.array([[0.0, 20.0]]), + tilt_angles=tilt_angles_nom, + tilt_interp=None + ) diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index 8941d3163..5b95d9dde 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -28,6 +28,7 @@ thrust_coefficient, Turbine, ) +from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT from tests.conftest import SampleInputs, WIND_SPEEDS @@ -187,8 +188,10 @@ def test_ct(): wind_speed = 10.0 thrust = thrust_coefficient( velocities=wind_speed * np.ones((1, 1, 3, 3)), + air_density=None, yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -206,8 +209,10 @@ def test_ct(): # 4 turbines with 3 x 3 grid arrays thrusts = thrust_coefficient( velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 12 x 4 x 3 x 3 + air_density=None, yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), @@ -227,8 +232,10 @@ def test_ct(): # Single floating turbine; note that 'tilt_interp' is not set to None thrust = thrust_coefficient( velocities=wind_speed * np.ones((1, 1, 3, 3)), # One findex, one turbine + air_density=None, yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, thrust_coefficient_functions={ turbine.turbine_type: turbine_floating.thrust_coefficient_function }, @@ -260,6 +267,7 @@ def test_power(): air_density=turbine.power_thrust_table["ref_air_density"], power_functions={turbine.turbine_type: turbine.power_function}, yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, 1)), tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map[:,0], @@ -280,6 +288,7 @@ def test_power(): power_functions={turbine.turbine_type: turbine.power_function}, yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, 1)), + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map[:,0], turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -295,6 +304,7 @@ def test_power(): power_functions={turbine.turbine_type: turbine.power_function}, yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, 1)), + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map[:,0], turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -315,6 +325,7 @@ def test_power(): power_functions={turbine.turbine_type: turbine.power_function}, yaw_angles=np.zeros((1, n_turbines)), tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, n_turbines)), + power_setpoints=np.ones((1, n_turbines)) * POWER_SETPOINT_DEFAULT, tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map, turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -335,6 +346,7 @@ def test_power(): power_functions={turbine.turbine_type: turbine.power_function}, yaw_angles=np.zeros((1, n_turbines)), tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, n_turbines)), + power_setpoints=np.ones((1, n_turbines)) * POWER_SETPOINT_DEFAULT, tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map, turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -361,8 +373,10 @@ def test_axial_induction(): wind_speed = 10.0 ai = axial_induction( velocities=wind_speed * np.ones((1, 1, 3, 3)), # 1 findex, 1 Turbine + air_density=None, yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -374,8 +388,10 @@ def test_axial_induction(): # Multiple turbines with ix filter ai = axial_induction( velocities=np.ones((N_TURBINES, 3, 3)) * WIND_CONDITION_BROADCAST, # 12 x 4 x 3 x 3 + air_density=None, yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, + power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), @@ -392,8 +408,10 @@ def test_axial_induction(): # Single floating turbine; note that 'tilt_interp' is not set to None ai = axial_induction( velocities=wind_speed * np.ones((1, 1, 3, 3)), + air_density=None, yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine_floating.turbine_type: turbine_floating.tilt_interp}, correct_cp_ct_for_tilt=np.array([[True]]), From f14930925728f5129f5955ca69403a9608ba4ad4 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Wed, 7 Feb 2024 14:28:11 -0700 Subject: [PATCH 34/78] Validate and test wind direction and wind speed (#793) * Adding to the wind_direction validator a test that it is 1D * Add a wind_speed validator to test that it is 1D and the same length as wind_direction * Adds test to confirm that making these errors in reinitialize raises value errors. * Fixing regression test that didn't conform to this standard --- floris/simulation/flow_field.py | 28 +++++++++ tests/floris_interface_test.py | 1 + tests/flow_field_unit_test.py | 58 ++++++++++++++++++- .../cumulative_curl_regression_test.py | 2 +- .../empirical_gauss_regression_test.py | 2 +- tests/reg_tests/gauss_regression_test.py | 2 +- .../jensen_jimenez_regression_test.py | 2 +- tests/reg_tests/none_regression_test.py | 2 +- tests/reg_tests/turbopark_regression_test.py | 2 +- 9 files changed, 92 insertions(+), 7 deletions(-) diff --git a/floris/simulation/flow_field.py b/floris/simulation/flow_field.py index bd26addc9..7417f8ffe 100644 --- a/floris/simulation/flow_field.py +++ b/floris/simulation/flow_field.py @@ -71,6 +71,12 @@ def turbulence_intensities_validator( self, instance: attrs.Attribute, value: NDArrayFloat ) -> None: + # Check that the array is 1-dimensional + if value.ndim != 1: + raise ValueError( + "wind_directions must have 1-dimension" + ) + # Check the turbulence intensity is either length 1 or n_findex if len(value) != 1 and len(value) != self.n_findex: raise ValueError("turbulence_intensities should either be length 1 or n_findex") @@ -79,9 +85,31 @@ def turbulence_intensities_validator( @wind_directions.validator def wind_directions_validator(self, instance: attrs.Attribute, value: NDArrayFloat) -> None: + # Check that the array is 1-dimensional + if self.wind_directions.ndim != 1: + raise ValueError( + "wind_directions must have 1-dimension" + ) + """Using the validator method to keep the `n_findex` attribute up to date.""" self.n_findex = value.size + @wind_speeds.validator + def wind_speeds_validator(self, instance: attrs.Attribute, value: NDArrayFloat) -> None: + + # Check that the array is 1-dimensional + if self.wind_speeds.ndim != 1: + raise ValueError( + "wind_speeds must have 1-dimension" + ) + + """Confirm wind speeds and wind directions have the same lenght""" + if len(self.wind_directions) != len(self.wind_speeds): + raise ValueError( + f"wind_directions (length = {len(self.wind_directions)}) and " + f"wind_speeds (length = {len(self.wind_speeds)}) must have the same length" + ) + @heterogenous_inflow_config.validator def heterogenous_config_validator(self, instance: attrs.Attribute, value: dict | None) -> None: """Using the validator method to check that the heterogenous_inflow_config dictionary has diff --git a/tests/floris_interface_test.py b/tests/floris_interface_test.py index d95e3b081..7e41fc90d 100644 --- a/tests/floris_interface_test.py +++ b/tests/floris_interface_test.py @@ -16,6 +16,7 @@ def test_read_yaml(): assert isinstance(fi, FlorisInterface) + def test_calculate_wake(): """ In FLORIS v3.2, running calculate_wake twice incorrectly set the yaw angles when the first time diff --git a/tests/flow_field_unit_test.py b/tests/flow_field_unit_test.py index 978911700..365088a31 100644 --- a/tests/flow_field_unit_test.py +++ b/tests/flow_field_unit_test.py @@ -12,8 +12,8 @@ # See https://floris.readthedocs.io for documentation - import numpy as np +import pytest from floris.simulation import FlowField, TurbineGrid from tests.conftest import N_FINDEX, N_TURBINES @@ -59,6 +59,62 @@ def test_asdict(flow_field_fixture: FlowField, turbine_grid_fixture: TurbineGrid assert dict1 == dict2 +def test_len_ws_equals_len_wd(flow_field_fixture: FlowField, turbine_grid_fixture: TurbineGrid): + + flow_field_fixture.initialize_velocity_field(turbine_grid_fixture) + dict1 = flow_field_fixture.as_dict() + + # Test that having the 3 equal in lenght raises no error + dict1['wind_directions'] = np.array([180, 180]) + dict1['wind_speeds'] = np.array([5., 6.]) + dict1['turbulence_intensities'] = np.array([175., 175.]) + + FlowField.from_dict(dict1) + + # Set the wind speeds as a different length of wind directions and turbulence_intensities + # And confirm error raised + dict1['wind_directions'] = np.array([180, 180]) + dict1['wind_speeds'] = np.array([5., 6., 7.]) + dict1['turbulence_intensities'] = np.array([175., 175.]) + + with pytest.raises(ValueError): + FlowField.from_dict(dict1) + + # Set the wind directions as a different length of wind speeds and turbulence_intensities + dict1['wind_directions'] = np.array([180, 180, 180.]) + # And confirm error raised + dict1['wind_speeds'] = np.array([5., 6.]) + dict1['turbulence_intensities'] = np.array([175., 175.]) + + with pytest.raises(ValueError): + FlowField.from_dict(dict1) + +def test_dim_ws_wd_ti(flow_field_fixture: FlowField, turbine_grid_fixture: TurbineGrid): + + flow_field_fixture.initialize_velocity_field(turbine_grid_fixture) + dict1 = flow_field_fixture.as_dict() + + # Test that having an extra dimension in wind_directions raises an error + with pytest.raises(ValueError): + dict1['wind_directions'] = np.array([[180, 180]]) + dict1['wind_speeds'] = np.array([5., 6.]) + dict1['turbulence_intensities'] = np.array([175., 175.]) + FlowField.from_dict(dict1) + + # Test that having an extra dimension in wind_speeds raises an error + with pytest.raises(ValueError): + dict1['wind_directions'] = np.array([180, 180]) + dict1['wind_speeds'] = np.array([[5., 6.]]) + dict1['turbulence_intensities'] = np.array([175., 175.]) + FlowField.from_dict(dict1) + + # Test that having an extra dimension in turbulence_intensities raises an error + with pytest.raises(ValueError): + dict1['wind_directions'] = np.array([180, 180]) + dict1['wind_speeds'] = np.array([5., 6.]) + dict1['turbulence_intensities'] = np.array([[175., 175.]]) + FlowField.from_dict(dict1) + def test_turbulence_intensities_to_n_findex(flow_field_fixture, turbine_grid_fixture): # Assert tubulence intensity has same length as n_findex diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index bb28909b9..7a508bb66 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -288,7 +288,7 @@ def test_regression_rotation(sample_inputs_fixture): 5 * TURBINE_DIAMETER ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 941d36063..5a3334015 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -262,7 +262,7 @@ def test_regression_rotation(sample_inputs_fixture): 5 * TURBINE_DIAMETER ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index f04ce106e..15cc8db3e 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -379,7 +379,7 @@ def test_regression_rotation(sample_inputs_fixture): 5 * TURBINE_DIAMETER ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index ad1862570..d265ceeeb 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -230,7 +230,7 @@ def test_regression_rotation(sample_inputs_fixture): 5 * TURBINE_DIAMETER ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index e8f42c8cc..b108165d5 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -231,7 +231,7 @@ def test_regression_rotation(sample_inputs_fixture): 5 * TURBINE_DIAMETER ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index eaba6fadc..211d75024 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -233,7 +233,7 @@ def test_regression_rotation(sample_inputs_fixture): 5 * TURBINE_DIAMETER ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() From bd3a6f81a6231aa880dcb2c4ec891998a6f8c4b8 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Tue, 20 Feb 2024 10:19:08 -0700 Subject: [PATCH 35/78] Add support to shut off turbines (#799) * Add disable turbine to floris_interface * Add to calculate no wake * Add example case * Add testing * Add an additional test * fix comment * uncomment line * Add test for yaw_angles passed. --------- Co-authored-by: misi9170 --- examples/41_test_disable_turbines.py | 97 ++++++++++++++++++++++++++++ floris/tools/floris_interface.py | 84 +++++++++++++++++++++++- tests/floris_interface_test.py | 76 +++++++++++++++++++++- 3 files changed, 254 insertions(+), 3 deletions(-) create mode 100644 examples/41_test_disable_turbines.py diff --git a/examples/41_test_disable_turbines.py b/examples/41_test_disable_turbines.py new file mode 100644 index 000000000..517845bad --- /dev/null +++ b/examples/41_test_disable_turbines.py @@ -0,0 +1,97 @@ +# Copyright 2023 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +# Example adapted from https://github.com/NREL/floris/pull/693 contributed by Elie Kadoche + + +import matplotlib.pyplot as plt +import numpy as np +import yaml + +from floris.tools import FlorisInterface + + +""" +This example demonstrates the ability of FLORIS to shut down some turbines +during a simulation. +""" + +# Initialize the FLORIS interface +fi = FlorisInterface("inputs/gch.yaml") + +# Change to the mixed model turbine +with open( + str( + fi.floris.as_dict()["farm"]["turbine_library_path"] + / (fi.floris.as_dict()["farm"]["turbine_type"][0] + ".yaml") + ) +) as t: + turbine_type = yaml.safe_load(t) +turbine_type["power_thrust_model"] = "mixed" +fi.reinitialize(turbine_type=[turbine_type]) + +# Consider a wind farm of 3 aligned wind turbines +layout = np.array([[0.0, 0.0], [500.0, 0.0], [1000.0, 0.0]]) + +# Run the computations for 2 identical wind data +# (n_findex = 2) +wind_directions = np.array([270.0, 270.0]) +wind_speeds = np.array([8.0, 8.0]) + +# Shut down the first 2 turbines for the second findex +# 2 findex x 3 turbines +disable_turbines = np.array([[False, False, False], [True, True, False]]) + +# Simulation +# ------------------------------------------ + +# Reinitialize flow field +fi.reinitialize( + layout_x=layout[:, 0], + layout_y=layout[:, 1], + wind_directions=wind_directions, + wind_speeds=wind_speeds, +) + +# # Compute wakes +fi.calculate_wake(disable_turbines=disable_turbines) + +# Results +# ------------------------------------------ + +# Get powers and effective wind speeds +turbine_powers = fi.get_turbine_powers() +turbine_powers = np.round(turbine_powers * 1e-3, decimals=2) +effective_wind_speeds = fi.turbine_average_velocities + + +# Plot the results +fig, axarr = plt.subplots(2, 1, sharex=True) + +# Plot the power +ax = axarr[0] +ax.plot(["T0", "T1", "T2"], turbine_powers[0, :], "ks-", label="All on") +ax.plot(["T0", "T1", "T2"], turbine_powers[1, :], "ro-", label="T0 & T1 disabled") +ax.set_ylabel("Power (kW)") +ax.grid(True) +ax.legend() + +ax = axarr[1] +ax.plot(["T0", "T1", "T2"], effective_wind_speeds[0, :], "ks-", label="All on") +ax.plot(["T0", "T1", "T2"], effective_wind_speeds[1, :], "ro-", label="T0 & T1 disabled") +ax.set_ylabel("Effective wind speeds (m/s)") +ax.grid(True) +ax.legend() + +plt.show() diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index 1134c7842..2a2a24812 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -31,7 +31,11 @@ ) from floris.tools.cut_plane import CutPlane from floris.tools.wind_data import WindDataBase -from floris.type_dec import floris_array_converter, NDArrayFloat +from floris.type_dec import ( + floris_array_converter, + NDArrayBool, + NDArrayFloat, +) class FlorisInterface(LoggingManager): @@ -122,6 +126,7 @@ def calculate_wake( yaw_angles: NDArrayFloat | list[float] | None = None, # tilt_angles: NDArrayFloat | list[float] | None = None, power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, + disable_turbines: NDArrayBool | list[bool] | None = None, ) -> None: """ Wrapper to the :py:meth:`~.Farm.set_yaw_angles` and @@ -133,6 +138,9 @@ def calculate_wake( power_setpoints (NDArrayFloat | list[float] | None, optional): Turbine power setpoints. May be specified with some float values and some None values; power maximization will be assumed for any None value. Defaults to None. + disable_turbines (NDArrayBool | list[bool] | None, optional): NDArray with dimensions + n_findex x n_turbines. True values indicate the turbine is disabled at that findex + and the power setpoint at that position is set to 0. Defaults to None """ if yaw_angles is None: @@ -160,6 +168,33 @@ def calculate_wake( ] = POWER_SETPOINT_DEFAULT power_setpoints = floris_array_converter(power_setpoints) + # Check for turbines to disable + if disable_turbines is not None: + + # Force to numpy array + disable_turbines = np.array(disable_turbines) + + # Must have first dimension = n_findex + if disable_turbines.shape[0] != self.floris.flow_field.n_findex: + raise ValueError( + f"disable_turbines has a size of {disable_turbines.shape[0]} " + f"in the 0th dimension, must be equal to " + f"n_findex={self.floris.flow_field.n_findex}" + ) + + # Must have first dimension = n_turbines + if disable_turbines.shape[1] != self.floris.farm.n_turbines: + raise ValueError( + f"disable_turbines has a size of {disable_turbines.shape[1]} " + f"in the 1th dimension, must be equal to " + f"n_turbines={self.floris.farm.n_turbines}" + ) + + # Set power_setpoints and yaw_angles to 0 in all locations where + # disable_turbines is True + yaw_angles[disable_turbines] = 0.0 + power_setpoints[disable_turbines] = 0.001 # Not zero to avoid numerical problems + self.floris.farm.power_setpoints = power_setpoints # # TODO is this required? @@ -179,6 +214,8 @@ def calculate_wake( def calculate_no_wake( self, yaw_angles: NDArrayFloat | list[float] | None = None, + power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, + disable_turbines: NDArrayBool | list[bool] | None = None, ) -> None: """ This function is similar to `calculate_wake()` except @@ -201,6 +238,51 @@ def calculate_no_wake( ) self.floris.farm.yaw_angles = yaw_angles + if power_setpoints is None: + power_setpoints = POWER_SETPOINT_DEFAULT * np.ones( + ( + self.floris.flow_field.n_findex, + self.floris.farm.n_turbines, + ) + ) + else: + power_setpoints = np.array(power_setpoints) + + # Convert any None values to the default power setpoint + power_setpoints[ + power_setpoints == np.full(power_setpoints.shape, None) + ] = POWER_SETPOINT_DEFAULT + power_setpoints = floris_array_converter(power_setpoints) + + # Check for turbines to disable + if disable_turbines is not None: + + # Force to numpy array + # disable_turbines = np.array(disable_turbines) + + # Must have first dimension = n_findex + if disable_turbines.shape[0] != self.floris.flow_field.n_findex: + raise ValueError( + f"disable_turbines has a size of {disable_turbines.shape[0]} " + f"in the 0th dimension, must be equal to " + f"n_findex={self.floris.flow_field.n_findex}" + ) + + # Must have first dimension = n_turbines + if disable_turbines.shape[1] != self.floris.farm.n_turbines: + raise ValueError( + f"disable_turbines has a size of {disable_turbines.shape[1]} " + f"in the 1th dimension, must be equal to " + f"n_turbines={self.floris.farm.n_turbines}" + ) + + # Set power_setpoints and yaw_angles to 0 in all locations where + # disable_turbines is True + yaw_angles[disable_turbines] = 0.0 + power_setpoints[disable_turbines] = 0.001 # Not zero to avoid numerical problems + + self.floris.farm.power_setpoints = power_setpoints + # Initialize solution space self.floris.initialize_domain() diff --git a/tests/floris_interface_test.py b/tests/floris_interface_test.py index 7e41fc90d..694322c7f 100644 --- a/tests/floris_interface_test.py +++ b/tests/floris_interface_test.py @@ -2,6 +2,7 @@ import numpy as np import pytest +import yaml from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT from floris.tools.floris_interface import FlorisInterface @@ -15,8 +16,6 @@ def test_read_yaml(): fi = FlorisInterface(configuration=YAML_INPUT) assert isinstance(fi, FlorisInterface) - - def test_calculate_wake(): """ In FLORIS v3.2, running calculate_wake twice incorrectly set the yaw angles when the first time @@ -143,6 +142,79 @@ def test_get_farm_power(): farm_power_from_turbine = turbine_powers.sum(axis=1) np.testing.assert_almost_equal(farm_power_from_turbine, farm_powers) +def test_disable_turbines(): + + fi = FlorisInterface(configuration=YAML_INPUT) + + # Set to mixed turbine model + with open( + str( + fi.floris.as_dict()["farm"]["turbine_library_path"] + / (fi.floris.as_dict()["farm"]["turbine_type"][0] + ".yaml") + ) + ) as t: + turbine_type = yaml.safe_load(t) + turbine_type["power_thrust_model"] = "mixed" + fi.reinitialize(turbine_type=[turbine_type]) + + # Init to n-findex = 2, n_turbines = 3 + fi.reinitialize( + wind_speeds=np.array([8.,8.,]), + wind_directions=np.array([270.,270.]), + layout_x = [0,1000,2000], + layout_y=[0,0,0] + ) + + # Confirm that passing in a disable value with wrong n_findex raises error + with pytest.raises(ValueError): + fi.calculate_wake(disable_turbines=np.zeros((10, 3), dtype=bool)) + + # Confirm that passing in a disable value with wrong n_turbines raises error + with pytest.raises(ValueError): + fi.calculate_wake(disable_turbines=np.zeros((2, 10), dtype=bool)) + + # Confirm that if all turbines are disabled, power is near 0 for all turbines + fi.calculate_wake(disable_turbines=np.ones((2, 3), dtype=bool)) + turbines_powers = fi.get_turbine_powers() + np.testing.assert_allclose(turbines_powers,0,atol=0.1) + + # Confirm the same for calculate_no_wake + fi.calculate_no_wake(disable_turbines=np.ones((2, 3), dtype=bool)) + turbines_powers = fi.get_turbine_powers() + np.testing.assert_allclose(turbines_powers,0,atol=0.1) + + # Confirm that if all disabled values set to false, equivalent to running normally + fi.calculate_wake() + turbines_powers_normal = fi.get_turbine_powers() + fi.calculate_wake(disable_turbines=np.zeros((2, 3), dtype=bool)) + turbines_powers_false_disable = fi.get_turbine_powers() + np.testing.assert_allclose(turbines_powers_normal,turbines_powers_false_disable,atol=0.1) + + # Confirm the same for calculate_no_wake + fi.calculate_no_wake() + turbines_powers_normal = fi.get_turbine_powers() + fi.calculate_no_wake(disable_turbines=np.zeros((2, 3), dtype=bool)) + turbines_powers_false_disable = fi.get_turbine_powers() + np.testing.assert_allclose(turbines_powers_normal,turbines_powers_false_disable,atol=0.1) + + # Confirm the shutting off the middle turbine is like removing from the layout + # In terms of impact on third turbine + disable_turbines = np.zeros((2, 3), dtype=bool) + disable_turbines[:,1] = [True, True] + fi.calculate_wake(disable_turbines=disable_turbines) + power_with_middle_disabled = fi.get_turbine_powers() + + fi.reinitialize(layout_x = [0,2000],layout_y = [0, 0]) + fi.calculate_wake() + power_with_middle_removed = fi.get_turbine_powers() + + np.testing.assert_almost_equal(power_with_middle_disabled[0,2], power_with_middle_removed[0,1]) + np.testing.assert_almost_equal(power_with_middle_disabled[1,2], power_with_middle_removed[1,1]) + + # Check that yaw angles are correctly set when turbines are disabled + fi.reinitialize(layout_x = [0,1000,2000],layout_y = [0,0,0]) + fi.calculate_wake(disable_turbines=disable_turbines, yaw_angles=np.ones((2, 3))) + assert (fi.floris.farm.yaw_angles == np.array([[1.0, 0.0, 1.0], [1.0, 0.0, 1.0]])).all() def test_get_farm_aep(): fi = FlorisInterface(configuration=YAML_INPUT) From 12e3166cc1bbdf288f5f6d34d5d4406f8b056414 Mon Sep 17 00:00:00 2001 From: Chris Bay <12664940+bayc@users.noreply.github.com> Date: Tue, 20 Feb 2024 10:46:01 -0700 Subject: [PATCH 36/78] Update yaw and layout optimization tools for 4D (#790) * update yaw opt base to 4D, introducing ws_array where necessary * update yaw opt SR to 4D, introducing ws_array where necessary * update yaw opt scipy to 4D * update yaw opt geometric to 4D * update yaw opt tools to 4D * update layout opt to 4D * update yaw optimization examples * update layout optimization examples * update git workflow to re-include optimization examples * adding example 12 back to the workflow exclusion list until parallel interface is updated * simplifying enumerate output * update parallel computing interface to 4d * update parallel yaw optimization example for 4d * remove layout symmetry code for optimization * add ti_array to optimization where needed * remove unneeded code in example * Formatting fix * updated findex labeling and added missing turbulence_intensities to reinit functions --------- Co-authored-by: Rafael M Mudafort --- .github/workflows/check-working-examples.yaml | 21 -- examples/10_opt_yaw_single_ws.py | 8 +- examples/11_opt_yaw_multiple_ws.py | 26 +- examples/12_optimize_yaw.py | 27 +- examples/12_optimize_yaw_in_parallel.py | 64 ++-- .../13_optimize_yaw_with_neighboring_farm.py | 48 ++- examples/14_compare_yaw_optimizers.py | 9 +- examples/15_optimize_layout.py | 11 +- .../16c_optimize_layout_with_heterogeneity.py | 4 +- .../layout_optimization_base.py | 10 +- .../layout_optimization_pyoptsparse.py | 2 +- .../yaw_optimization/yaw_optimization_base.py | 276 +++++------------- .../yaw_optimization_tools.py | 65 +---- .../yaw_optimizer_geometric.py | 18 +- .../yaw_optimization/yaw_optimizer_scipy.py | 125 ++++---- .../yaw_optimization/yaw_optimizer_sr.py | 57 ++-- floris/tools/parallel_computing_interface.py | 149 ++++------ 17 files changed, 358 insertions(+), 562 deletions(-) diff --git a/.github/workflows/check-working-examples.yaml b/.github/workflows/check-working-examples.yaml index fb96e747b..6fc0d7e73 100644 --- a/.github/workflows/check-working-examples.yaml +++ b/.github/workflows/check-working-examples.yaml @@ -52,27 +52,6 @@ jobs: if [[ $i == *08* ]]; then continue fi - if [[ $i == *10* ]]; then - continue - fi - if [[ $i == *11* ]]; then - continue - fi - if [[ $i == *12* ]]; then - continue - fi - if [[ $i == *13* ]]; then - continue - fi - if [[ $i == *14* ]]; then - continue - fi - if [[ $i == *15* ]]; then - continue - fi - if [[ $i == *16* ]]; then - continue - fi if [[ $i == *20* ]]; then continue fi diff --git a/examples/10_opt_yaw_single_ws.py b/examples/10_opt_yaw_single_ws.py index fd874be31..7d88aab55 100644 --- a/examples/10_opt_yaw_single_ws.py +++ b/examples/10_opt_yaw_single_ws.py @@ -33,17 +33,19 @@ # fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model # Reinitialize as a 3-turbine farm with range of WDs and 1 WS +wd_array = np.arange(0.0, 360.0, 3.0) +ws_array = 8.0 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW fi.reinitialize( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], - wind_directions=np.arange(0.0, 360.0, 3.0), - wind_speeds=[8.0], + wind_directions=wd_array, + wind_speeds=ws_array, ) print(fi.floris.farm.rotor_diameters) # Initialize optimizer object and run optimization using the Serial-Refine method -yaw_opt = YawOptimizationSR(fi)#, exploit_layout_symmetry=False) +yaw_opt = YawOptimizationSR(fi) df_opt = yaw_opt.optimize() print("Optimization results:") diff --git a/examples/11_opt_yaw_multiple_ws.py b/examples/11_opt_yaw_multiple_ws.py index fb7cc8448..4fcbfa15b 100644 --- a/examples/11_opt_yaw_multiple_ws.py +++ b/examples/11_opt_yaw_multiple_ws.py @@ -32,13 +32,27 @@ fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 # fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model -# Reinitialize as a 3-turbine farm with range of WDs and 1 WS +# Define arrays of ws/wd +wind_speeds_to_expand = np.arange(2.0, 18.0, 1.0) +wind_directions_to_expand = np.arange(0.0, 360.0, 3.0) + +# Create grids to make combinations of ws/wd +wind_speeds_grid, wind_directions_grid = np.meshgrid( + wind_speeds_to_expand, + wind_directions_to_expand +) + +# Flatten the grids back to 1D arrays +wd_array = wind_directions_grid.flatten() +ws_array = wind_speeds_grid.flatten() + +# Reinitialize as a 3-turbine farm with range of WDs and WSs D = 126.0 # Rotor diameter for the NREL 5 MW fi.reinitialize( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], - wind_directions=np.arange(0.0, 360.0, 3.0), - wind_speeds=np.arange(2.0, 18.0, 1.0), + wind_directions=wd_array, + wind_speeds=ws_array, ) # Initialize optimizer object and run optimization using the Serial-Refine method @@ -52,7 +66,7 @@ # but has no effect on the predicted power uplift from wake steering. # Hence, it should mostly be used when actually synthesizing a practicable # wind farm controller. -yaw_opt = YawOptimizationSR(fi, verify_convergence=True) +yaw_opt = YawOptimizationSR(fi) df_opt = yaw_opt.optimize() print("Optimization results:") @@ -71,7 +85,7 @@ figsize=(10, 8) ) jj = 0 -for ii, ws in enumerate(fi.floris.flow_field.wind_speeds): +for ii, ws in enumerate(np.unique(fi.floris.flow_field.wind_speeds)): xi = np.remainder(ii, 4) if ((ii > 0) & (xi == 0)): jj += 1 @@ -101,7 +115,7 @@ figsize=(10, 8) ) jj = 0 -for ii, ws in enumerate(fi.floris.flow_field.wind_speeds): +for ii, ws in enumerate(np.unique(fi.floris.flow_field.wind_speeds)): xi = np.remainder(ii, 4) if ((ii > 0) & (xi == 0)): jj += 1 diff --git a/examples/12_optimize_yaw.py b/examples/12_optimize_yaw.py index 42932c6c6..b3941cf0e 100644 --- a/examples/12_optimize_yaw.py +++ b/examples/12_optimize_yaw.py @@ -46,8 +46,8 @@ def load_floris(): # Specify wind farm layout and update in the floris object N = 5 # number of turbines per row and per column X, Y = np.meshgrid( - 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0][0] * np.arange(0, N, 1), - 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0][0] * np.arange(0, N, 1), + 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), + 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), ) fi.reinitialize(layout_x=X.flatten(), layout_y=Y.flatten()) @@ -74,23 +74,18 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): df_windrose[yaw_cols] = 0.0 # Add zeros # Derive the wind directions and speeds we need to evaluate in FLORIS - wd_array = np.array(df_windrose["wd"].unique(), dtype=float) - ws_array = np.array(df_windrose["ws"].unique(), dtype=float) + wd_array = np.array(df_windrose["wd"], dtype=float) + ws_array = np.array(df_windrose["ws"], dtype=float) yaw_angles = np.array(df_windrose[yaw_cols], dtype=float) fi.reinitialize(wind_directions=wd_array, wind_speeds=ws_array) - # Map angles from dataframe onto floris wind direction/speed grid - X, Y = np.meshgrid(wd_array, ws_array, indexing='ij') - interpolant = NearestNDInterpolator(df_windrose[["wd", "ws"]], yaw_angles) - yaw_angles_floris = interpolant(X, Y) - # Calculate FLORIS for every WD and WS combination and get the farm power - fi.calculate_wake(yaw_angles_floris) + fi.calculate_wake(yaw_angles) farm_power_array = fi.get_farm_power() # Now map FLORIS solutions to dataframe interpolant = NearestNDInterpolator( - np.vstack([X.flatten(), Y.flatten()]).T, + np.vstack([wd_array, ws_array]).T, farm_power_array.flatten() ) df_windrose[column_name] = interpolant(df_windrose[["wd", "ws"]]) # Save to dataframe @@ -108,7 +103,8 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): # Load FLORIS fi = load_floris() - fi.reinitialize(wind_speeds=8.0) + ws_array = 8.0 * np.ones_like(fi.floris.flow_field.wind_directions) + fi.reinitialize(wind_speeds=ws_array) nturbs = len(fi.layout_x) # First, get baseline AEP, without wake steering @@ -125,9 +121,11 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): # Now optimize the yaw angles using the Serial Refine method print("Now starting yaw optimization for the entire wind rose...") start_time = timerpc() + wd_array = np.arange(0.0, 360.0, 5.0) + ws_array = 8.0 * np.ones_like(wd_array) fi.reinitialize( - wind_directions=np.arange(0.0, 360.0, 5.0), - wind_speeds=[8.0] + wind_directions=wd_array, + wind_speeds=ws_array, ) yaw_opt = YawOptimizationSR( fi=fi, @@ -135,7 +133,6 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): maximum_yaw_angle=20.0, # Allowable yaw angles upper bound Ny_passes=[5, 4], exclude_downstream_turbines=True, - exploit_layout_symmetry=True, ) df_opt = yaw_opt.optimize() diff --git a/examples/12_optimize_yaw_in_parallel.py b/examples/12_optimize_yaw_in_parallel.py index c4233f5ef..2ea8c5f5b 100644 --- a/examples/12_optimize_yaw_in_parallel.py +++ b/examples/12_optimize_yaw_in_parallel.py @@ -34,8 +34,8 @@ def load_floris(): # Specify wind farm layout and update in the floris object N = 4 # number of turbines per row and per column X, Y = np.meshgrid( - 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0][0] * np.arange(0, N, 1), - 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0][0] * np.arange(0, N, 1), + 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), + 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), ) fi.reinitialize(layout_x=X.flatten(), layout_y=Y.flatten()) @@ -58,11 +58,24 @@ def load_windrose(): # Load a FLORIS object for AEP calculations fi_aep = load_floris() - wind_directions = np.arange(0.0, 360.0, 1.0) - wind_speeds = np.arange(1.0, 25.0, 1.0) + + # Define arrays of wd/ws + wind_directions_to_expand = np.arange(0.0, 360.0, 1.0) + wind_speeds_to_expand = np.arange(1.0, 25.0, 1.0) + + # Create grids to make combinations of ws/wd + wind_directions_grid, wind_speeds_grid = np.meshgrid( + wind_directions_to_expand, + wind_speeds_to_expand, + ) + + # Flatten the grids back to 1D arrays + wd_array = wind_directions_grid.flatten() + ws_array = wind_speeds_grid.flatten() + fi_aep.reinitialize( - wind_directions=wind_directions, - wind_speeds=wind_speeds, + wind_directions=wd_array, + wind_speeds=ws_array, turbulence_intensities=[0.08], # Assume 8% turbulence intensity ) @@ -71,15 +84,13 @@ def load_windrose(): fi_aep_parallel = ParallelComputingInterface( fi=fi_aep, max_workers=max_workers, - n_wind_direction_splits=max_workers, - n_wind_speed_splits=1, + n_wind_condition_splits=max_workers, interface=parallel_interface, print_timings=True, ) # Calculate frequency of occurrence for each bin and normalize sum to 1.0 - wd_grid, ws_grid = np.meshgrid(wind_directions, wind_speeds, indexing="ij") - freq_grid = windrose_interpolant(wd_grid, ws_grid) + freq_grid = windrose_interpolant(wd_array, ws_array) freq_grid = freq_grid / np.sum(freq_grid) # Normalize to 1.0 # Calculate farm power baseline @@ -100,11 +111,24 @@ def load_windrose(): # Load a FLORIS object for yaw optimization fi_opt = load_floris() - wind_directions = np.arange(0.0, 360.0, 3.0) - wind_speeds = np.arange(6.0, 14.0, 2.0) + + # Define arrays of wd/ws + wind_directions_to_expand = np.arange(0.0, 360.0, 3.0) + wind_speeds_to_expand = np.arange(6.0, 14.0, 2.0) + + # Create grids to make combinations of ws/wd + wind_directions_grid, wind_speeds_grid = np.meshgrid( + wind_directions_to_expand, + wind_speeds_to_expand, + ) + + # Flatten the grids back to 1D arrays + wd_array_opt = wind_directions_grid.flatten() + ws_array_opt = wind_speeds_grid.flatten() + fi_opt.reinitialize( - wind_directions=wind_directions, - wind_speeds=wind_speeds, + wind_directions=wd_array_opt, + wind_speeds=ws_array_opt, turbulence_intensities=[0.08], # Assume 8% turbulence intensity ) @@ -112,8 +136,7 @@ def load_windrose(): fi_opt_parallel = ParallelComputingInterface( fi=fi_opt, max_workers=max_workers, - n_wind_direction_splits=max_workers, - n_wind_speed_splits=1, + n_wind_condition_splits=max_workers, interface=parallel_interface, print_timings=True, ) @@ -123,8 +146,7 @@ def load_windrose(): minimum_yaw_angle=-25.0, maximum_yaw_angle=25.0, Ny_passes=[5, 4], - exclude_downstream_turbines=True, - exploit_layout_symmetry=False, + exclude_downstream_turbines=False, ) @@ -152,7 +174,7 @@ def load_windrose(): ) # Get optimized AEP, with wake steering - yaw_grid = yaw_angles_interpolant(wd_grid, ws_grid) + yaw_grid = yaw_angles_interpolant(wd_array, ws_array) farm_power_opt = fi_aep_parallel.get_farm_power(yaw_angles=yaw_grid) aep_opt = np.sum(24 * 365 * np.multiply(farm_power_opt, freq_grid)) aep_uplift = 100.0 * (aep_opt / aep_bl - 1) @@ -173,8 +195,8 @@ def load_windrose(): farm_energy_bl = np.multiply(freq_grid, farm_power_bl) farm_energy_opt = np.multiply(freq_grid, farm_power_opt) df = pd.DataFrame({ - "wd": wd_grid.flatten(), - "ws": ws_grid.flatten(), + "wd": wd_array.flatten(), + "ws": ws_array.flatten(), "freq_val": freq_grid.flatten(), "farm_power_baseline": farm_power_bl.flatten(), "farm_power_opt": farm_power_opt.flatten(), diff --git a/examples/13_optimize_yaw_with_neighboring_farm.py b/examples/13_optimize_yaw_with_neighboring_farm.py index 8945dcdfc..89200e6fc 100644 --- a/examples/13_optimize_yaw_with_neighboring_farm.py +++ b/examples/13_optimize_yaw_with_neighboring_farm.py @@ -88,16 +88,18 @@ def load_windrose(): # Now put the wind rose information in FLORIS format ws_windrose = df["ws"].unique() wd_windrose = df["wd"].unique() - wd_grid, ws_grid = np.meshgrid(wd_windrose, ws_windrose, indexing="ij") # Use an interpolant to shape the 'freq_val' vector appropriately. You can # also use np.reshape(), but NearestNDInterpolator is more fool-proof. freq_interpolant = NearestNDInterpolator( df[["ws", "wd"]], df["freq_val"] ) - freq = freq_interpolant(wd_grid, ws_grid) + freq = freq_interpolant(df["wd"], df["ws"]) freq_windrose = freq / freq.sum() # Normalize to sum to 1.0 + ws_windrose = df["ws"] + wd_windrose = df["wd"] + return ws_windrose, wd_windrose, freq_windrose @@ -113,19 +115,17 @@ def optimize_yaw_angles(fi_opt): # Specify minimum and maximum allowable yaw angle limits minimum_yaw_angle = np.zeros( ( - fi_opt.floris.flow_field.n_wind_directions, - fi_opt.floris.flow_field.n_wind_speeds, - fi_opt.floris.farm.n_turbines + fi_opt.floris.flow_field.n_findex, + fi_opt.floris.farm.n_turbines, ) ) maximum_yaw_angle = np.zeros( ( - fi_opt.floris.flow_field.n_wind_directions, - fi_opt.floris.flow_field.n_wind_speeds, - fi_opt.floris.farm.n_turbines + fi_opt.floris.flow_field.n_findex, + fi_opt.floris.farm.n_turbines, ) ) - maximum_yaw_angle[:, :, turbs_to_opt] = 30.0 + maximum_yaw_angle[:, turbs_to_opt] = 30.0 yaw_opt = YawOptimizationSR( fi=fi_opt, @@ -153,7 +153,7 @@ def yaw_opt_interpolant(wd, ws): x = yaw_opt.fi.floris.flow_field.wind_directions nturbs = fi_opt.floris.farm.n_turbines y = np.stack( - [np.interp(wd, x, yaw_angles_opt[:, 0, ti]) for ti in range(nturbs)], + [np.interp(wd, x, yaw_angles_opt[:, ti]) for ti in range(nturbs)], axis=np.ndim(wd) ) @@ -198,9 +198,11 @@ def yaw_opt_interpolant(wd, ws): # And create a separate FLORIS object for optimization fi_opt = fi.copy() + wd_array = np.arange(0.0, 360.0, 3.0) + ws_array = 8.0 * np.ones_like(wd_array) fi_opt.reinitialize( - wind_directions=np.arange(0.0, 360.0, 3.0), - wind_speeds=[8.0] + wind_directions=wd_array, + wind_speeds=ws_array, ) # First, get baseline AEP, without wake steering @@ -241,14 +243,11 @@ def yaw_opt_interpolant(wd, ws): yaw_opt_interpolant_nonb = optimize_yaw_angles(fi_opt=fi_opt_subset) # Use interpolant to get optimal yaw angles for fi_AEP object - X, Y = np.meshgrid( - fi_AEP.floris.flow_field.wind_directions, - fi_AEP.floris.flow_field.wind_speeds, - indexing="ij" - ) - yaw_angles_opt_AEP = yaw_opt_interpolant(X, Y) + wd = fi_AEP.floris.flow_field.wind_directions + ws = fi_AEP.floris.flow_field.wind_speeds + yaw_angles_opt_AEP = yaw_opt_interpolant(wd, ws) yaw_angles_opt_nonb_AEP = np.zeros_like(yaw_angles_opt_AEP) # nonb = no neighbor - yaw_angles_opt_nonb_AEP[:, :, turbs_to_opt] = yaw_opt_interpolant_nonb(X, Y) + yaw_angles_opt_nonb_AEP[:, turbs_to_opt] = yaw_opt_interpolant_nonb(wd, ws) # Now get AEP with optimized yaw angles print(" ") @@ -278,15 +277,12 @@ def yaw_opt_interpolant(wd, ws): print(" ") # Plot power and AEP uplift across wind direction at wind_speed of 8 m/s - X, Y = np.meshgrid( - fi_opt.floris.flow_field.wind_directions, - fi_opt.floris.flow_field.wind_speeds, - indexing="ij", - ) - yaw_angles_opt = yaw_opt_interpolant(X, Y) + wd = fi_opt.floris.flow_field.wind_directions + ws = fi_opt.floris.flow_field.wind_speeds + yaw_angles_opt = yaw_opt_interpolant(wd, ws) yaw_angles_opt_nonb = np.zeros_like(yaw_angles_opt) # nonb = no neighbor - yaw_angles_opt_nonb[:, :, turbs_to_opt] = yaw_opt_interpolant_nonb(X, Y) + yaw_angles_opt_nonb[:, turbs_to_opt] = yaw_opt_interpolant_nonb(wd, ws) fi_opt = fi_opt.copy() fi_opt.calculate_wake(yaw_angles=np.zeros_like(yaw_angles_opt)) diff --git a/examples/14_compare_yaw_optimizers.py b/examples/14_compare_yaw_optimizers.py index 1c4e29c31..3344dad9a 100644 --- a/examples/14_compare_yaw_optimizers.py +++ b/examples/14_compare_yaw_optimizers.py @@ -49,11 +49,13 @@ # Reinitialize as a 3-turbine farm with range of WDs and 1 WS D = 126.0 # Rotor diameter for the NREL 5 MW +wd_array = np.arange(0.0, 360.0, 3.0) +ws_array = 8.0 * np.ones_like(wd_array) fi.reinitialize( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], - wind_directions=np.arange(0.0, 360.0, 3.0), - wind_speeds=[8.0], + wind_directions=wd_array, + wind_speeds=ws_array, ) print("Performing optimizations with SciPy...") @@ -103,8 +105,7 @@ # Before plotting results, need to compute values for GEOOPT since it doesn't compute # power within the optimization -yaw_angles_opt_geo_3d = np.expand_dims(yaw_angles_opt_geo, axis=1) -fi.calculate_wake(yaw_angles=yaw_angles_opt_geo_3d) +fi.calculate_wake(yaw_angles=yaw_angles_opt_geo) geo_farm_power = fi.get_farm_power().squeeze() diff --git a/examples/15_optimize_layout.py b/examples/15_optimize_layout.py index 68ff4a895..400dab114 100644 --- a/examples/15_optimize_layout.py +++ b/examples/15_optimize_layout.py @@ -41,16 +41,9 @@ # Setup 72 wind directions with a random wind speed and frequency distribution wind_directions = np.arange(0, 360.0, 5.0) np.random.seed(1) -wind_speeds = 8.0 + np.random.randn(1) * 0.5 +wind_speeds = 8.0 + np.random.randn(1) * 0.5 * np.ones_like(wind_directions) # Shape frequency distribution to match number of wind directions and wind speeds -freq = ( - np.abs( - np.sort( - np.random.randn(len(wind_directions)) - ) - ) - .reshape( ( len(wind_directions), len(wind_speeds) ) ) -) +freq = (np.abs(np.sort(np.random.randn(len(wind_directions))))) freq = freq / freq.sum() fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) diff --git a/examples/16c_optimize_layout_with_heterogeneity.py b/examples/16c_optimize_layout_with_heterogeneity.py index ca27e3d7f..ec0275222 100644 --- a/examples/16c_optimize_layout_with_heterogeneity.py +++ b/examples/16c_optimize_layout_with_heterogeneity.py @@ -44,7 +44,7 @@ # and 1 wind speed with uniform probability wind_directions = [270., 90.] n_wds = len(wind_directions) -wind_speeds = [8.0] +wind_speeds = [8.0] * np.ones_like(wind_directions) # Shape frequency distribution to match number of wind directions and wind speeds freq = np.ones((len(wind_directions), len(wind_speeds))) freq = freq / freq.sum() @@ -165,7 +165,7 @@ print( 'Turbine geometric yaw angles for wind direction {0:.2f}'.format(wind_directions[1])\ +' and wind speed {0:.2f} m/s:'.format(wind_speeds[0]), - f'{layout_opt.yaw_angles[1,0,:]}' + f'{layout_opt.yaw_angles[1, :]}' ) plt.show() diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_base.py b/floris/tools/optimization/layout_optimization/layout_optimization_base.py index fc67ac021..b2e4938be 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_base.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_base.py @@ -45,10 +45,7 @@ def __init__(self, fi, boundaries, min_dist=None, freq=None, enable_geometric_ya # If freq is not provided, give equal weight to all wind conditions if freq is None: - self.freq = np.ones(( - self.fi.floris.flow_field.n_wind_directions, - self.fi.floris.flow_field.n_wind_speeds - )) + self.freq = np.ones((self.fi.floris.flow_field.n_findex,)) self.freq = self.freq / self.freq.sum() else: self.freq = freq @@ -59,7 +56,6 @@ def __init__(self, fi, boundaries, min_dist=None, freq=None, enable_geometric_ya fi, minimum_yaw_angle=-30.0, maximum_yaw_angle=30.0, - exploit_layout_symmetry=False ) self.initial_AEP = fi.get_farm_AEP(self.freq) @@ -79,7 +75,7 @@ def _get_geoyaw_angles(self): if self.enable_geometric_yaw: self.yaw_opt.fi_subset.reinitialize(layout_x=self.x, layout_y=self.y) df_opt = self.yaw_opt.optimize() - self.yaw_angles = np.vstack(df_opt['yaw_angles_opt'])[:, None, :] + self.yaw_angles = np.vstack(df_opt['yaw_angles_opt'])[:, :] else: self.yaw_angles = None @@ -140,4 +136,4 @@ def nturbs(self): @property def rotor_diameter(self): - return self.fi.floris.farm.rotor_diameters_sorted[0][0][0] + return self.fi.floris.farm.rotor_diameters_sorted[0][0] diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py index 5539b84a0..58f30e08c 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py @@ -106,7 +106,7 @@ def _obj_func(self, varDict): self.parse_opt_vars(varDict) # Update turbine map with turbince locations - self.fi.reinitialize(layout_x = self.x, layout_y = self.y) + self.fi.reinitialize(layout_x=self.x, layout_y=self.y) # Compute turbine yaw angles using PJ's geometric code (if enabled) yaw_angles = self._get_geoyaw_angles() diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py b/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py index c8bccea37..b8a0e04c1 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py @@ -21,7 +21,7 @@ from floris.logging_manager import LoggingManager -from .yaw_optimization_tools import derive_downstream_turbines, find_layout_symmetry +from .yaw_optimization_tools import derive_downstream_turbines class YawOptimization(LoggingManager): @@ -42,7 +42,6 @@ def __init__( normalize_control_variables=False, calc_baseline_power=True, exclude_downstream_turbines=True, - exploit_layout_symmetry=True, verify_convergence=False, ): """ @@ -153,10 +152,10 @@ def __init__( else: self.x0 = self._unpack_variable(0.0) for ti in range(self.nturbs): - yaw_lb = self.minimum_yaw_angle[:, 0, ti] - yaw_ub = self.maximum_yaw_angle[:, 0, ti] + yaw_lb = self.minimum_yaw_angle[:, ti] + yaw_ub = self.maximum_yaw_angle[:, ti] idx = (yaw_lb > 0.0) | (yaw_ub < 0.0) - self.x0[idx, 0, ti] = (yaw_lb[idx] + yaw_ub[idx]) / 2.0 + self.x0[idx, ti] = (yaw_lb[idx] + yaw_ub[idx]) / 2.0 # Check inputs for consistency if np.any(self.yaw_angles_baseline < self.minimum_yaw_angle): @@ -179,16 +178,6 @@ def __init__( self.calc_baseline_power = calc_baseline_power self.exclude_downstream_turbines = exclude_downstream_turbines - # Check if exploit_layout_symmetry is being used with heterogeneous inflow - if exploit_layout_symmetry and fi.floris.flow_field.heterogenous_inflow_config is not None: - err_msg = ( - "Layout symmetry cannot be exploited with heterogeneous inflows. " - "Setting exploit_layout_symmetry to False." - ) - self.logger.warning(err_msg, stack_info=True) - self.exploit_layout_symmetry = False - else: - self.exploit_layout_symmetry = exploit_layout_symmetry # Prepare for optimization and calculate baseline powers (if applic.) self._initialize() @@ -203,9 +192,6 @@ def __init__( # Private methods def _initialize(self): - # Derive layout symmetry, if applicable - self._derive_layout_symmetry() - # Reduce optimization problem as much as possible self._reduce_control_problem() @@ -222,7 +208,7 @@ def _unpack_variable(self, variable, subset=False): # Deal with full vs. subset dimensions nturbs = self.nturbs if subset: - nturbs = np.shape(self._x0_subset.shape[2]) + nturbs = np.shape(self._x0_subset.shape[1]) # Then process maximum yaw angle if isinstance(variable, (int, float)): @@ -234,17 +220,9 @@ def _unpack_variable(self, variable, subset=False): # If one-dimensional array, copy over to all atmos. conditions variable = np.tile( variable, - ( - self.fi.floris.flow_field.n_wind_directions, - self.fi.floris.flow_field.n_wind_speeds, - 1 - ) + (self.fi.floris.flow_field.n_findex, 1) ) - if len(np.shape(variable)) == 2: - raise UserWarning( - "Variable input must have shape (n_wind_directions, n_wind_speeds, nturbs)" - ) return variable @@ -255,16 +233,14 @@ def _reduce_control_problem(self): user-specified set of bounds (where bounds[i][0] == bounds[i][1]), or alternatively turbines that are far downstream in the wind farm and of which the wake does not impinge other turbines, if - exclude_downstream_turbines == True. This function also reduces - the optimization problem by exploiting layout symmetry, if - exploit_layout_symmetry == True. + exclude_downstream_turbines == True. """ # Initialize which turbines to optimize for self.turbs_to_opt = (self.maximum_yaw_angle - self.minimum_yaw_angle >= 0.001) # Initialize subset variables as full set self.fi_subset = self.fi.copy() - nwinddirections_subset = copy.deepcopy(self.fi.floris.flow_field.n_wind_directions) + n_findex_subset = copy.deepcopy(self.fi.floris.flow_field.n_findex) minimum_yaw_angle_subset = copy.deepcopy(self.minimum_yaw_angle) maximum_yaw_angle_subset = copy.deepcopy(self.maximum_yaw_angle) x0_subset = copy.deepcopy(self.x0) @@ -279,27 +255,9 @@ def _reduce_control_problem(self): # Remove turbines from turbs_to_opt that are downstream downstream_turbines = derive_downstream_turbines(self.fi, wd) downstream_turbines = np.array(downstream_turbines, dtype=int) - self.turbs_to_opt[iw, 0, downstream_turbines] = False + self.turbs_to_opt[iw, downstream_turbines] = False turbs_to_opt_subset = copy.deepcopy(self.turbs_to_opt) # Update - # Reduce optimization problem through layout symmetry - if (self.exploit_layout_symmetry) & (self._sym_df is not None): - # Reinitialize floris with subset of wind directions - wd_array = self.fi.floris.flow_field.wind_directions - wind_direction_subset = wd_array[self._sym_mapping_reduce] - self.fi_subset.reinitialize(wind_directions=wind_direction_subset) - - # Reduce control variables - red_map = self._sym_mapping_reduce - nwinddirections_subset = len(wind_direction_subset) - minimum_yaw_angle_subset = minimum_yaw_angle_subset[red_map, :, :] - maximum_yaw_angle_subset = maximum_yaw_angle_subset[red_map, :, :] - x0_subset = x0_subset[red_map, :, :] - turbs_to_opt_subset = turbs_to_opt_subset[red_map, :, :] - turbine_weights_subset = turbine_weights_subset[red_map, :, :] - yaw_angles_template_subset = yaw_angles_template_subset[red_map, :, :] - yaw_angles_baseline_subset = yaw_angles_baseline_subset[red_map, :, :] - # Set up a template yaw angles array with default solutions. The default # solutions are either 0.0 or the allowable yaw angle closest to 0.0 deg. # This solution addresses both downstream turbines, minimizing their abs. @@ -321,7 +279,7 @@ def _reduce_control_problem(self): yaw_angles_template_subset[idx] = yaw_mb[idx] # Save all subset variables to self - self._nwinddirections_subset = nwinddirections_subset + self._n_findex_subset = n_findex_subset self._minimum_yaw_angle_subset = minimum_yaw_angle_subset self._maximum_yaw_angle_subset = maximum_yaw_angle_subset self._x0_subset = x0_subset @@ -350,8 +308,14 @@ def _normalize_control_problem(self): / self._normalization_length ) - def _calculate_farm_power(self, yaw_angles=None, wd_array=None, turbine_weights=None, - heterogeneous_speed_multipliers=None + def _calculate_farm_power( + self, + yaw_angles=None, + wd_array=None, + ws_array=None, + ti_array=None, + turbine_weights=None, + heterogeneous_speed_multipliers=None, ): """ Calculate the wind farm power production assuming the predefined @@ -359,7 +323,18 @@ def _calculate_farm_power(self, yaw_angles=None, wd_array=None, turbine_weights= appropriate weighing terms, and for a specific set of yaw angles. Args: - yaw_angles ([iteratible]): Array or list of yaw angles in degrees. + yaw_angles (iterable, optional): Array or list of yaw angles in degrees. + Defaults to None. + wd_array (iterable, optional): Array or list of wind directions in degrees. + Defaults to None. + ws_array (iterable, optional): Array or list of wind speeds in m/s. Defaults to None. + ti_array (iterable, optional): Array or list of turbulence intensities. + Defaults to None. + turbine_weights (iterable, optional): Array or list of weights to apply to the turbine + powers. Defaults to None. + heterogeneous_speed_multipliers (iterable, optional): Array or list of speed up factors + for heterogenous inflow. Defaults to None. + Returns: farm_power (float): Weighted wind farm power. @@ -368,6 +343,10 @@ def _calculate_farm_power(self, yaw_angles=None, wd_array=None, turbine_weights= fi_subset = copy.deepcopy(self.fi_subset) if wd_array is None: wd_array = fi_subset.floris.flow_field.wind_directions + if ws_array is None: + ws_array = fi_subset.floris.flow_field.wind_speeds + if ti_array is None: + ti_array = fi_subset.floris.flow_field.turbulence_intensities if yaw_angles is None: yaw_angles = self._yaw_angles_baseline_subset if turbine_weights is None: @@ -383,14 +362,18 @@ def _calculate_farm_power(self, yaw_angles=None, wd_array=None, turbine_weights= # wd_array = wrap_360(wd_array) # Calculate solutions - turbine_power = np.zeros_like(self._minimum_yaw_angle_subset[:, 0, :]) - fi_subset.reinitialize(wind_directions=wd_array) + turbine_power = np.zeros_like(self._minimum_yaw_angle_subset[:, :]) + fi_subset.reinitialize( + wind_directions=wd_array, + wind_speeds=ws_array, + turbulence_intensities=ti_array + ) fi_subset.calculate_wake(yaw_angles=yaw_angles) turbine_power = fi_subset.get_turbine_powers() # Multiply with turbine weighing terms turbine_power_weighted = np.multiply(turbine_weights, turbine_power) - farm_power_weighted = np.sum(turbine_power_weighted, axis=2) + farm_power_weighted = np.sum(turbine_power_weighted, axis=1) return farm_power_weighted def _calculate_baseline_farm_power(self): @@ -401,114 +384,11 @@ def _calculate_baseline_farm_power(self): if self.calc_baseline_power: P = self._calculate_farm_power(self._yaw_angles_baseline_subset) self._farm_power_baseline_subset = P - self.farm_power_baseline = self._unreduce_variable(P) + self.farm_power_baseline = P else: self._farm_power_baseline_subset = None self.farm_power_baseline = None - def _derive_layout_symmetry(self): - """Derive symmetry lines in the wind farm layout and use that - to reduce the optimization problem by 50 %. - """ - self._sym_df = None # Default option - if self.exploit_layout_symmetry: - # Check symmetry of bounds & turbine_weights - if np.unique(self.minimum_yaw_angle, axis=0).shape[0] > 1: - print("minimum_yaw_angle is not equal over wind directions.") - print("Exploiting of symmetry has been disabled.") - return - - if np.unique(self.maximum_yaw_angle, axis=0).shape[0] > 1: - print("maximum_yaw_angle is not equal over wind directions.") - print("Exploiting of symmetry has been disabled.") - return - - if np.unique(self.maximum_yaw_angle, axis=0).shape[0] > 1: - print("maximum_yaw_angle is not equal over wind directions.") - print("Exploiting of symmetry has been disabled.") - return - - if np.unique(self.turbine_weights, axis=0).shape[0] > 1: - print("turbine_weights is not equal over wind directions.") - print("Exploiting of symmetry has been disabled.") - return - - # Check if turbine_weights are consistently 1.0 everywhere - if np.any(np.abs(self.turbine_weights - 1.0) > 0.001): - print("turbine_weights are not uniformly 1.0.") - print("Exploiting of symmetry has been disabled.") - return - - x = self.fi.layout_x - y = self.fi.layout_y - df = find_layout_symmetry(x=x, y=y) - - # If no axes of symmetry, exit function - if df.shape[0] <= 0: - print("Wind farm layout in floris is not symmetrical.") - print("Exploitation of symmetry has been disabled.") - return - - wd_array = self.fi.floris.flow_field.wind_directions - sym_step = df.iloc[0]["wd_range"][1] - if ((0.0 not in wd_array) or(sym_step not in wd_array)): - print("Floris wind direction array does not " + - "intersect {:.1f} and {:.1f}.".format(0.0, sym_step)) - print("Exploitation of symmetry has been disabled.") - return - - ids_minimal = (wd_array >= 0.0) & (wd_array < sym_step) - wd_array_min = wd_array[ids_minimal] - wd_array_remn = np.remainder(wd_array, sym_step) - - if not np.all([(x in wd_array_min) for x in wd_array_remn]): - print("Wind direction array appears irregular.") - print("Exploitation of symmetry has been disabled.") - - self._sym_mapping_extrap = np.array( - [np.where(np.abs(x - wd_array_min) < 0.0001)[0][0] - for x in wd_array_remn], dtype=int) - - self._sym_mapping_reduce = copy.deepcopy(ids_minimal) - self._sym_df = df - - return - - def _unreduce_variable(self, variable): - # Check if needed to un-reduce at all, if not, return directly - if variable is None: - return variable - - if not self.exploit_layout_symmetry: - return variable - - if self._sym_df is None: - return variable - - # Apply operation on right dimension - ndims = len(np.shape(variable)) - if ndims == 1: - full_array = variable[self._sym_mapping_extrap] - elif ndims == 2: - full_array = variable[self._sym_mapping_extrap, :] - elif ndims == 3: - # First upsample to full wind rose - full_array = variable[self._sym_mapping_extrap, :, :] - - # Now process turbine mapping - wd_array = self.fi.floris.flow_field.wind_directions - for ii, dfrow in self._sym_df.iloc[1::].iterrows(): - ids = ( - (wd_array >= dfrow["wd_range"][0]) & - (wd_array < dfrow["wd_range"][1]) - ) - tmap = np.argsort(dfrow["turbine_mapping"]) - full_array[ids, :, :] = full_array[ids, :, :][:, :, tmap] - else: - raise UserWarning("Unknown data shape.") - - return full_array - def _finalize(self, farm_power_opt_subset=None, yaw_angles_opt_subset=None): # Process final solutions if farm_power_opt_subset is None: @@ -526,30 +406,27 @@ def _finalize(self, farm_power_opt_subset=None, yaw_angles_opt_subset=None): ) # Finalization step for optimization: undo reduction step - self.farm_power_opt = self._unreduce_variable(farm_power_opt_subset) - self.yaw_angles_opt = self._unreduce_variable(yaw_angles_opt_subset) + self.farm_power_opt = farm_power_opt_subset + self.yaw_angles_opt = yaw_angles_opt_subset # Produce output table - ti = np.min(self.fi.floris.flow_field.turbulence_intensities) df_list = [] - num_wind_directions = len(self.fi.floris.flow_field.wind_directions) - for ii, wind_speed in enumerate(self.fi.floris.flow_field.wind_speeds): - df_list.append( - pd.DataFrame( - { - "wind_direction": self.fi.floris.flow_field.wind_directions, - "wind_speed": wind_speed * np.ones(num_wind_directions), - "turbulence_intensities": ti * np.ones(num_wind_directions), - "yaw_angles_opt": list(self.yaw_angles_opt[:, ii, :]), - "farm_power_opt": None - if self.farm_power_opt is None - else self.farm_power_opt[:, ii], - "farm_power_baseline": None - if self.farm_power_baseline is None - else self.farm_power_baseline[:, ii], - } - ) + df_list.append( + pd.DataFrame( + { + "wind_direction": self.fi.floris.flow_field.wind_directions, + "wind_speed": self.fi.floris.flow_field.wind_speeds, + "turbulence_intensity": self.fi.floris.flow_field.turbulence_intensities, + "yaw_angles_opt": list(self.yaw_angles_opt[:, :]), + "farm_power_opt": None + if self.farm_power_opt is None + else self.farm_power_opt[:], + "farm_power_baseline": None + if self.farm_power_baseline is None + else self.farm_power_baseline[:], + } ) + ) df_opt = pd.concat(df_list, axis=0) return df_opt @@ -565,14 +442,14 @@ def _verify_solutions_for_convergence( """ This function verifies whether the found solutions (yaw_angles_opt) have any nonzero yaw angles that are actually a result of incorrect - converge. By evaluating the power production by setting each turbine's + convergence. By evaluating the power production by setting each turbine's yaw angle to 0.0 deg, one by one, we verify that the found optimal values do in fact lead to a nonzero power production gain. Args: - farm_power_opt_subset (iteratible): Array with the optimal wind + farm_power_opt_subset (iterable): Array with the optimal wind farm power values (i.e., farm powers with yaw_angles_opt_subset). - yaw_angles_opt_subset (iteratible): Array with the optimal yaw angles + yaw_angles_opt_subset (iterable): Array with the optimal yaw angles for all turbines in the farm (or for all the to-be-optimized turbines in the farm). The yaw angles in this array will be verified. @@ -580,14 +457,14 @@ def _verify_solutions_for_convergence( this amount compared to the baseline value will be assumed to be too small to make any notable difference. Therefore, for practical reasons, the value is overwritten by its baseline value (which - typically is 0.0 deg). Defaults to 0.10. + typically is 0.0 deg). Defaults to 0.01. min_power_gain_for_yaw (float, optional): The minimum percentage uplift a turbine must create in the farm power production for its yaw offset to be considered non negligible. Set to 0.0 to ignore this criteria. Defaults to 0.02 (implying 0.02%). - verbose (bool, optional): Print to console. Defaults to False. + verbose (bool, optional): Print to console. Defaults to True. Returns: - x_opt (iteratible): Array with the optimal yaw angles, possibly + x_opt (iterable): Array with the optimal yaw angles, possibly with certain values being set to 0.0 deg as they were found to be a result of incorrect convergence. If the optimization has perfectly converged, x_opt will be identical to the user- @@ -630,28 +507,32 @@ def _verify_solutions_for_convergence( # copy of atmospheric conditions, we reset that turbine's yaw angle # to its baseline value for all conditions. n_turbs = len(self.fi.layout_x) - sp = (n_turbs, 1, 1) # Tile shape for matrix expansion + sp = (n_turbs, 1) # Tile shape for matrix expansion wd_array_nominal = self.fi_subset.floris.flow_field.wind_directions + ws_array_nominal = self.fi_subset.floris.flow_field.wind_speeds + ti_array_nominal = self.fi_subset.floris.flow_field.turbulence_intensities n_wind_directions = len(wd_array_nominal) yaw_angles_verify = np.tile(yaw_angles_opt_subset, sp) yaw_angles_bl_verify = np.tile(yaw_angles_baseline_subset, sp) turbine_id_array = np.zeros(np.shape(yaw_angles_verify)[0], dtype=int) for ti in range(n_turbs): ids = ti * n_wind_directions + np.arange(n_wind_directions) - yaw_angles_verify[ids, :, ti] = yaw_angles_bl_verify[ids, :, ti] + yaw_angles_verify[ids, ti] = yaw_angles_bl_verify[ids, ti] turbine_id_array[ids] = ti # Now evaluate all situations - farm_power_baseline_verify = np.tile(farm_power_baseline_subset, (n_turbs, 1)) + farm_power_baseline_verify = np.tile(farm_power_baseline_subset, (n_turbs)) farm_power = self._calculate_farm_power( yaw_angles=yaw_angles_verify, wd_array=np.tile(wd_array_nominal, n_turbs), + ws_array=np.tile(ws_array_nominal, n_turbs), + ti_array=np.tile(ti_array_nominal, n_turbs), turbine_weights=np.tile(self._turbs_to_opt_subset, sp) ) # Calculate power uplift for optimal solutions uplift_o = 100 * ( - np.tile(farm_power_opt_subset, (n_turbs, 1)) / + np.tile(farm_power_opt_subset, (n_turbs)) / farm_power_baseline_verify - 1.0 ) @@ -665,7 +546,6 @@ def _verify_solutions_for_convergence( ids_to_simplify = np.where(dp < min_power_gain_for_yaw) ids_to_simplify = ( np.remainder(ids_to_simplify[0], n_wind_directions), # Wind direction identifier - ids_to_simplify[1], # Wind speed identifier turbine_id_array[ids_to_simplify[0]], # Turbine identifier ) @@ -702,12 +582,12 @@ def _verify_solutions_for_convergence( print( "Nullified the optimal yaw offset for {:d}".format(n) + " conditions and turbines." - ) + ) print( - "Simplifying the yaw angles for these conditions lead " + - "to a maximum change in wake-steering power uplift from " - + "{:.5f}% to {:.5f}% at ".format(dP_old[jj], dP_new[jj]) - + " WD = {:.1f} deg and WS = {:.1f} m/s.".format( + "Simplifying the yaw angles for these conditions lead " + + "to a maximum change in wake-steering power uplift from " + + "{:.5f}% to {:.5f}% at ".format(dP_old[jj], dP_new[jj]) + + " WD = {:.1f} deg and WS = {:.1f} m/s.".format( wd_array_nominal[jj[0]], ws_array_nominal[jj[1]], ) ) diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py b/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py index 325637a81..373ea5217 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py @@ -53,7 +53,7 @@ def derive_downstream_turbines(fi, wind_direction, wake_slope=0.30, plot_lines=F # Get farm layout x = fi.layout_x y = fi.layout_y - D = np.ones_like(x) * fi.floris.farm.rotor_diameters_sorted[0][0][0] + D = np.ones_like(x) * fi.floris.farm.rotor_diameters_sorted[0][0] n_turbs = len(x) # Rotate farm and determine freestream/waked turbines @@ -142,66 +142,3 @@ def determine_if_in_wake(xt, yt): ) return turbs_downstream - - -def find_layout_symmetry(x, y, step_sizes = [15.0], eps=0.00001): - # Place center of farm at (0, 0) - x = x - np.mean(x) - y = y - np.mean(y) - nturbs = len(x) - - # Evaluate at continuously refined step size - for ss in step_sizes: - wd_array = np.arange(ss, 180.001, ss) - for wd in wd_array: - is_faulty = False - x_rot = ( - np.cos(wd * np.pi / 180.0) * x - - np.sin(wd * np.pi / 180.0) * y - ) - y_rot = ( - np.sin(wd * np.pi / 180.0) * x - + np.cos(wd * np.pi / 180.0) * y - ) - - # compare differences: force turbine 0 to (0, 0) - for ti in range(nturbs): - if np.all(np.abs(x_rot[ti] - x) > eps): - is_faulty = True - break - - if is_faulty: - continue - - for ti in range(nturbs): - if np.all(np.abs(y_rot[ti] - y) > eps): - is_faulty = True - break - - if is_faulty: - continue - - # Found a valid solution. Now find mappings - wd_eval_array = [(0.0, wd)] - mapping_array = [list(range(nturbs))] - for wd_eval in np.arange(wd, 360.0, wd): - ang = wd_eval * -1.0 # Opposite rotation - x_rot = ( - np.cos(ang * np.pi / 180.0) * x - - np.sin(ang * np.pi / 180.0) * y - ) - y_rot = ( - np.sin(ang * np.pi / 180.0) * x - + np.cos(ang * np.pi / 180.0) * y - ) - wd_eval_array.append((wd_eval, wd_eval + wd)) - id_mapping = ([ - np.where((np.abs(xr - x) < eps) &(np.abs(yr - y) < eps))[0][0] - for xr, yr in zip(x_rot, y_rot) - ]) - mapping_array.append(id_mapping) - - df = pd.DataFrame({"wd_range": wd_eval_array, "turbine_mapping": mapping_array}) - return df - - return pd.DataFrame() # Return empty dataframe if completes without finding solution diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py b/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py index 6c63b52fd..9101af7dc 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py @@ -33,7 +33,6 @@ def __init__( fi, minimum_yaw_angle=0.0, maximum_yaw_angle=25.0, - exploit_layout_symmetry=True, ): """ Instantiate YawOptimizationGeometric object with a FlorisInterface @@ -44,7 +43,6 @@ def __init__( fi=fi, minimum_yaw_angle=minimum_yaw_angle, maximum_yaw_angle=maximum_yaw_angle, - exploit_layout_symmetry=exploit_layout_symmetry, calc_baseline_power=False ) @@ -61,15 +59,15 @@ def optimize(self): wd_array = self.fi_subset.floris.flow_field.wind_directions for nwdi, wd in enumerate(wd_array): - self._yaw_angles_opt_subset[nwdi, :, :] = geometric_yaw( + self._yaw_angles_opt_subset[nwdi, :] = geometric_yaw( self.fi_subset.layout_x, self.fi_subset.layout_y, wd, self.fi.floris.farm.turbine_definitions[0]["rotor_diameter"], - top_left_yaw_upper=self.maximum_yaw_angle[0,0,0], - bottom_left_yaw_upper=self.maximum_yaw_angle[0,0,0], - top_left_yaw_lower=self.minimum_yaw_angle[0,0,0], - bottom_left_yaw_lower=self.minimum_yaw_angle[0,0,0] + top_left_yaw_upper=self.maximum_yaw_angle[0, 0], + bottom_left_yaw_upper=self.maximum_yaw_angle[0, 0], + top_left_yaw_lower=self.minimum_yaw_angle[0, 0], + bottom_left_yaw_lower=self.minimum_yaw_angle[0, 0], ) # Finalize optimization, i.e., retrieve full solutions @@ -94,7 +92,7 @@ def geometric_yaw( top_left_yaw_lower=-30.0, top_right_yaw_lower=0.0, bottom_left_yaw_lower=-30.0, - bottom_right_yaw_lower=0.0 + bottom_right_yaw_lower=0.0, ): """ turbine_x: unrotated x turbine coords @@ -125,7 +123,7 @@ def geometric_yaw( np.array([wind_direction]), turbine_coordinates_array ) - processed_x, processed_y = _process_layout(rotated_x[0][0],rotated_y[0][0],rotor_diameter) + processed_x, processed_y = _process_layout(rotated_x[0], rotated_y[0], rotor_diameter) yaw_array = np.zeros(nturbs) for i in range(nturbs): # TODO: fix shape of top left yaw etc? @@ -143,7 +141,7 @@ def geometric_yaw( top_left_yaw_lower, top_right_yaw_lower, bottom_left_yaw_lower, - bottom_right_yaw_lower + bottom_right_yaw_lower, ) return yaw_array diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py b/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py index 66339e426..7fdfc637d 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py @@ -38,7 +38,6 @@ def __init__( opt_options=None, turbine_weights=None, exclude_downstream_turbines=True, - exploit_layout_symmetry=True, verify_convergence=False, ): """ @@ -65,7 +64,6 @@ def __init__( normalize_control_variables=True, calc_baseline_power=True, exclude_downstream_turbines=exclude_downstream_turbines, - exploit_layout_symmetry=exploit_layout_symmetry, verify_convergence=verify_convergence, ) @@ -83,69 +81,76 @@ def optimize(self): opt_yaw_angles (np.array): Optimal yaw angles in degrees. This array is equal in length to the number of turbines in the farm. """ - # Loop through every WD and WS individually + # Loop through every wind condition individually wd_array = self.fi_subset.floris.flow_field.wind_directions ws_array = self.fi_subset.floris.flow_field.wind_speeds - for nwsi, ws in enumerate(ws_array): - - self.fi_subset.reinitialize(wind_speeds=[ws]) - - for nwdi, wd in enumerate(wd_array): - # Find turbines to optimize - turbs_to_opt = self._turbs_to_opt_subset[nwdi, nwsi, :] - if not any(turbs_to_opt): - continue # Nothing to do here: no turbines to optimize - - # Extract current optimization problem variables (normalized) - yaw_lb = self._minimum_yaw_angle_subset_norm[nwdi, nwsi, turbs_to_opt] - yaw_ub = self._maximum_yaw_angle_subset_norm[nwdi, nwsi, turbs_to_opt] - bnds = [(a, b) for a, b in zip(yaw_lb, yaw_ub)] - x0 = self._x0_subset_norm[nwdi, nwsi, turbs_to_opt] - - J0 = self._farm_power_baseline_subset[nwdi, nwsi] - yaw_template = self._yaw_angles_template_subset[nwdi, nwsi, :] - turbine_weights = self._turbine_weights_subset[nwdi, nwsi, :] - yaw_template = np.tile(yaw_template, (1, 1, 1)) - turbine_weights = np.tile(turbine_weights, (1, 1, 1)) - - # Handle heterogeneous inflow, if there is one - if (hasattr(self.fi.floris.flow_field, 'heterogenous_inflow_config') and - self.fi.floris.flow_field.heterogenous_inflow_config is not None): - het_sm_orig = np.array( - self.fi.floris.flow_field.heterogenous_inflow_config['speed_multipliers'] - ) - het_sm = het_sm_orig[nwdi,:].reshape(1,-1) - else: - het_sm = None - - # Define cost function - def cost(x): - x_full = np.array(yaw_template, copy=True) - x_full[0, 0, turbs_to_opt] = x * self._normalization_length - return ( - - 1.0 * self._calculate_farm_power( - yaw_angles=x_full, - wd_array=[wd], - turbine_weights=turbine_weights, - heterogeneous_speed_multipliers=het_sm - )[0, 0] / J0 - ) - - # Perform optimization - residual_plant = minimize( - fun=cost, - x0=x0, - bounds=bnds, - method=self.opt_method, - options=self.opt_options, + ti_array = self.fi_subset.floris.flow_field.turbulence_intensities + for i, (wd, ws, ti) in enumerate(zip(wd_array, ws_array, ti_array)): + + self.fi_subset.reinitialize( + wind_directions=[wd], + wind_speeds=[ws], + turbulence_intensities=[ti] + ) + + + # Find turbines to optimize + turbs_to_opt = self._turbs_to_opt_subset[i, :] + if not any(turbs_to_opt): + continue # Nothing to do here: no turbines to optimize + + # Extract current optimization problem variables (normalized) + yaw_lb = self._minimum_yaw_angle_subset_norm[i, turbs_to_opt] + yaw_ub = self._maximum_yaw_angle_subset_norm[i, turbs_to_opt] + bnds = [(a, b) for a, b in zip(yaw_lb, yaw_ub)] + x0 = self._x0_subset_norm[i, turbs_to_opt] + + J0 = self._farm_power_baseline_subset[i] + yaw_template = self._yaw_angles_template_subset[i, :] + turbine_weights = self._turbine_weights_subset[i, :] + yaw_template = np.tile(yaw_template, (1, 1)) + turbine_weights = np.tile(turbine_weights, (1, 1)) + + # Handle heterogeneous inflow, if there is one + if (hasattr(self.fi.floris.flow_field, 'heterogenous_inflow_config') and + self.fi.floris.flow_field.heterogenous_inflow_config is not None): + het_sm_orig = np.array( + self.fi.floris.flow_field.heterogenous_inflow_config['speed_multipliers'] ) - - # Undo normalization/masks and save results to self - self._farm_power_opt_subset[nwdi, nwsi] = -residual_plant.fun * J0 - self._yaw_angles_opt_subset[nwdi, nwsi, turbs_to_opt] = ( - residual_plant.x * self._normalization_length + het_sm = het_sm_orig[i, :].reshape(1, -1) + else: + het_sm = None + + # Define cost function + def cost(x): + x_full = np.array(yaw_template, copy=True) + x_full[0, turbs_to_opt] = x * self._normalization_length + return ( + - 1.0 * self._calculate_farm_power( + yaw_angles=x_full, + wd_array=[wd], + ws_array=[ws], + ti_array=[ti], + turbine_weights=turbine_weights, + heterogeneous_speed_multipliers=het_sm + )[0] / J0 ) + # Perform optimization + residual_plant = minimize( + fun=cost, + x0=x0, + bounds=bnds, + method=self.opt_method, + options=self.opt_options, + ) + + # Undo normalization/masks and save results to self + self._farm_power_opt_subset[i] = -residual_plant.fun * J0 + self._yaw_angles_opt_subset[i, turbs_to_opt] = ( + residual_plant.x * self._normalization_length + ) + # Finalize optimization, i.e., retrieve full solutions df_opt = self._finalize() return df_opt diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py b/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py index 6b0dbc4cf..19bfc71bc 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py @@ -37,7 +37,6 @@ def __init__( Ny_passes=[5, 4], # Optimization options turbine_weights=None, exclude_downstream_turbines=True, - exploit_layout_symmetry=True, verify_convergence=False, ): """ @@ -55,7 +54,6 @@ def __init__( turbine_weights=turbine_weights, calc_baseline_power=True, exclude_downstream_turbines=exclude_downstream_turbines, - exploit_layout_symmetry=exploit_layout_symmetry, verify_convergence=verify_convergence, ) @@ -107,29 +105,33 @@ def _calc_powers_with_memory(self, yaw_angles_subset, use_memory=True): yaw_angles_opt_subset = self._yaw_angles_opt_subset farm_power_opt_subset = self._farm_power_opt_subset wd_array_subset = self.fi_subset.floris.flow_field.wind_directions + ws_array_subset = self.fi_subset.floris.flow_field.wind_speeds + ti_array_subset = self.fi_subset.floris.flow_field.turbulence_intensities turbine_weights_subset = self._turbine_weights_subset # Reformat yaw_angles_subset, if necessary - eval_multiple_passes = (len(np.shape(yaw_angles_subset)) == 4) + eval_multiple_passes = (len(np.shape(yaw_angles_subset)) == 3) if eval_multiple_passes: # Four-dimensional; format everything into three-dimensional Ny = yaw_angles_subset.shape[0] # Number of passes yaw_angles_subset = np.vstack( - [yaw_angles_subset[iii, :, :, :] for iii in range(Ny)] + [yaw_angles_subset[iii, :, :] for iii in range(Ny)] ) - yaw_angles_opt_subset = np.tile(yaw_angles_opt_subset, (Ny, 1, 1)) - farm_power_opt_subset = np.tile(farm_power_opt_subset, (Ny, 1)) + yaw_angles_opt_subset = np.tile(yaw_angles_opt_subset, (Ny, 1)) + farm_power_opt_subset = np.tile(farm_power_opt_subset, (Ny)) wd_array_subset = np.tile(wd_array_subset, Ny) - turbine_weights_subset = np.tile(turbine_weights_subset, (Ny, 1, 1)) + ws_array_subset = np.tile(ws_array_subset, Ny) + ti_array_subset = np.tile(ti_array_subset, Ny) + turbine_weights_subset = np.tile(turbine_weights_subset, (Ny, 1)) # Initialize empty matrix for floris farm power outputs - farm_powers = np.zeros((yaw_angles_subset.shape[0], yaw_angles_subset.shape[1])) + farm_powers = np.zeros((yaw_angles_subset.shape[0])) # Find indices of yaw angles that we previously already evaluated, and # prevent redoing the same calculations if use_memory: - idx = (np.abs(yaw_angles_opt_subset - yaw_angles_subset) < 0.01).all(axis=2).all(axis=1) - farm_powers[idx, :] = farm_power_opt_subset[idx, :] + idx = (np.abs(yaw_angles_opt_subset - yaw_angles_subset) < 0.01).all(axis=1) + farm_powers[idx] = farm_power_opt_subset[idx] if self.print_progress: self.logger.info( "Skipping {:d}/{:d} calculations: already in memory.".format( @@ -149,10 +151,12 @@ def _calc_powers_with_memory(self, yaw_angles_subset, use_memory=True): het_sm = np.tile(het_sm_orig, (Ny, 1))[~idx, :] else: het_sm = None - farm_powers[~idx, :] = self._calculate_farm_power( + farm_powers[~idx] = self._calculate_farm_power( wd_array=wd_array_subset[~idx], - turbine_weights=turbine_weights_subset[~idx, :, :], - yaw_angles=yaw_angles_subset[~idx, :, :], + ws_array=ws_array_subset[~idx], + ti_array=ti_array_subset[~idx], + turbine_weights=turbine_weights_subset[~idx, :], + yaw_angles=yaw_angles_subset[~idx, :], heterogeneous_speed_multipliers=het_sm ) self.time_spent_in_floris += (timerpc() - start_time) @@ -163,8 +167,7 @@ def _calc_powers_with_memory(self, yaw_angles_subset, use_memory=True): farm_powers, ( Ny, - self.fi_subset.floris.flow_field.n_wind_directions, - self.fi_subset.floris.flow_field.n_wind_speeds + self.fi_subset.floris.flow_field.n_findex ) ) @@ -180,10 +183,10 @@ def _generate_evaluation_grid(self, pass_depth, turbine_depth): # Initialize yaw angles to evaluate, 'Ny' times the wind rose Ny = self.Ny_passes[pass_depth] - evaluation_grid = np.tile(self._yaw_angles_opt_subset, (Ny, 1, 1, 1)) + evaluation_grid = np.tile(self._yaw_angles_opt_subset, (Ny, 1, 1)) # Get a list of the turbines in order of x and sort front to back - for iw in range(self._nwinddirections_subset): + for iw in range(self._n_findex_subset): turbid = self.turbines_ordered_array_subset[iw, turbine_depth] # Turbine to manipulate # # Check if this turbine needs to be optimized. If not, continue @@ -194,19 +197,19 @@ def _generate_evaluation_grid(self, pass_depth, turbine_depth): # turbines_ordered = [ti for ti in turbines_ordered if ti in self.turbs_to_opt] # Grab yaw bounds from self - yaw_lb = self._yaw_lbs[iw, :, turbid] - yaw_ub = self._yaw_ubs[iw, :, turbid] + yaw_lb = self._yaw_lbs[iw, turbid] + yaw_ub = self._yaw_ubs[iw, turbid] # Saturate to allowable yaw limits yaw_lb = np.clip( yaw_lb, - self.minimum_yaw_angle[iw, :, turbid], - self.maximum_yaw_angle[iw, :, turbid] + self.minimum_yaw_angle[iw, turbid], + self.maximum_yaw_angle[iw, turbid] ) yaw_ub = np.clip( yaw_ub, - self.minimum_yaw_angle[iw, :, turbid], - self.maximum_yaw_angle[iw, :, turbid] + self.minimum_yaw_angle[iw, turbid], + self.maximum_yaw_angle[iw, turbid] ) if pass_depth == 0: @@ -218,7 +221,7 @@ def _generate_evaluation_grid(self, pass_depth, turbine_depth): ids = [*list(range(0, c)), *list(range(c + 1, Ny + 1))] yaw_angles_subset = np.linspace(yaw_lb, yaw_ub, Ny + 1)[ids] - evaluation_grid[:, iw, :, turbid] = yaw_angles_subset + evaluation_grid[:, iw, turbid] = yaw_angles_subset self._yaw_evaluation_grid = evaluation_grid return evaluation_grid @@ -276,7 +279,7 @@ def optimize(self, print_progress=True): yaw_angles_opt_new = np.squeeze( np.take_along_axis( evaluation_grid, - np.expand_dims(args_opt, axis=3), + np.expand_dims(args_opt, axis=2), axis=0 ), axis=0 @@ -299,8 +302,8 @@ def optimize(self, print_progress=True): # Update bounds for next iteration to close proximity of optimal solution dx = ( - evaluation_grid[1, :, :, :] - - evaluation_grid[0, :, :, :] + evaluation_grid[1, :, :] - + evaluation_grid[0, :, :] )[ids] self._yaw_lbs[ids] = np.clip( yaw_angles_opt[ids] - 0.50 * dx, diff --git a/floris/tools/parallel_computing_interface.py b/floris/tools/parallel_computing_interface.py index 235cedb97..407ab7d1c 100644 --- a/floris/tools/parallel_computing_interface.py +++ b/floris/tools/parallel_computing_interface.py @@ -43,7 +43,6 @@ def _optimize_yaw_angles_serial( Ny_passes, turbine_weights, exclude_downstream_turbines, - exploit_layout_symmetry, verify_convergence, print_progress, ): @@ -57,7 +56,6 @@ def _optimize_yaw_angles_serial( Ny_passes=Ny_passes, turbine_weights=turbine_weights, exclude_downstream_turbines=exclude_downstream_turbines, - exploit_layout_symmetry=exploit_layout_symmetry, verify_convergence=verify_convergence, ) @@ -71,8 +69,7 @@ def __init__( self, fi, max_workers, - n_wind_direction_splits, - n_wind_speed_splits=1, + n_wind_condition_splits, interface="multiprocessing", # Options are 'multiprocessing', 'mpi4py' or 'concurrent' use_mpi4py=None, propagate_flowfield_from_workers=False, @@ -87,10 +84,8 @@ def __init__( object or can be an UncertaintyInterface object. max_workers (int): Number of parallel workers, typically equal to the number of cores you have on your system or HPC. - n_wind_direction_splits (int): Number of sectors to split the wind direction array over. + n_wind_condition_splits (int): Number of sectors to split the wind findex array over. This is typically equal to max_workers, or a multiple of it. - n_wind_speed_splits (int): Number of sectors to split the wind speed array over. This is - typically 1 or 2. Defaults to 1. interface (str): Parallel computing interface to leverage. Recommended is 'concurrent' or 'multiprocessing' for local (single-system) use, and 'mpi4py' for high performance computing on multiple nodes. Defaults to 'multiprocessing'. @@ -136,18 +131,14 @@ def __init__( self.floris = self.fi.floris # Static copy as a placeholder # Save to self - self._n_wind_direction_splits = n_wind_direction_splits # Save initial user input - self._n_wind_speed_splits = n_wind_speed_splits # Save initial user input + self._n_wind_condition_splits = n_wind_condition_splits # Save initial user input self._max_workers = max_workers # Save initial user input - self.n_wind_direction_splits = int( - np.min([n_wind_direction_splits, self.fi.floris.flow_field.n_wind_directions]) - ) - self.n_wind_speed_splits = int( - np.min([n_wind_speed_splits, self.fi.floris.flow_field.n_wind_speeds]) + self.n_wind_condition_splits = int( + np.min([n_wind_condition_splits, self.fi.floris.flow_field.n_findex]) ) self.max_workers = int( - np.min([max_workers, self.n_wind_direction_splits * self.n_wind_speed_splits]) + np.min([max_workers, self.n_wind_condition_splits]) ) self.propagate_flowfield_from_workers = propagate_flowfield_from_workers self.interface = interface @@ -205,8 +196,7 @@ def reinitialize( self.__init__( fi=fi, max_workers=self._max_workers, - n_wind_direction_splits=self._n_wind_direction_splits, - n_wind_speed_splits=self._n_wind_speed_splits, + n_wind_condition_splits=self._n_wind_condition_splits, interface=self.interface, propagate_flowfield_from_workers=self.propagate_flowfield_from_workers, print_timings=self.print_timings, @@ -216,72 +206,53 @@ def _preprocessing(self, yaw_angles=None): # Format yaw angles if yaw_angles is None: yaw_angles = np.zeros(( - self.fi.floris.flow_field.n_wind_directions, - self.fi.floris.flow_field.n_wind_speeds, + self.fi.floris.flow_field.n_findex, self.fi.floris.farm.n_turbines )) # Prepare settings - n_wind_direction_splits = self.n_wind_direction_splits - n_wind_direction_splits = np.min( - [n_wind_direction_splits, self.fi.floris.flow_field.n_wind_directions] + n_wind_condition_splits = self.n_wind_condition_splits + n_wind_condition_splits = np.min( + [n_wind_condition_splits, self.fi.floris.flow_field.n_findex] ) - n_wind_speed_splits = self.n_wind_speed_splits - n_wind_speed_splits = np.min([n_wind_speed_splits, self.fi.floris.flow_field.n_wind_speeds]) # Prepare the input arguments for parallel execution fi_dict = self.fi.floris.as_dict() - wind_direction_id_splits = np.array_split( - np.arange(self.fi.floris.flow_field.n_wind_directions), - n_wind_direction_splits - ) - wind_speed_id_splits = np.array_split( - np.arange(self.fi.floris.flow_field.n_wind_speeds), - n_wind_speed_splits + wind_condition_id_splits = np.array_split( + np.arange(self.fi.floris.flow_field.n_findex), + n_wind_condition_splits, ) multiargs = [] - for wd_id_split in wind_direction_id_splits: - for ws_id_split in wind_speed_id_splits: - fi_dict_split = copy.deepcopy(fi_dict) - wind_directions = self.fi.floris.flow_field.wind_directions[wd_id_split] - wind_speeds = self.fi.floris.flow_field.wind_speeds[ws_id_split] - yaw_angles_subset = yaw_angles[wd_id_split[0]:wd_id_split[-1]+1, ws_id_split, :] - fi_dict_split["flow_field"]["wind_directions"] = wind_directions - fi_dict_split["flow_field"]["wind_speeds"] = wind_speeds - - # Prepare lightweight data to pass along - if isinstance(self.fi, FlorisInterface): - fi_information = (fi_dict_split, None, None) - else: - fi_information = ( - fi_dict_split, - self.fi.fi.het_map, - self.fi.unc_pmfs, - self.fi.fix_yaw_in_relative_frame - ) - multiargs.append((fi_information, yaw_angles_subset)) + for wc_id_split in wind_condition_id_splits: + # for ws_id_split in wind_speed_id_splits: + fi_dict_split = copy.deepcopy(fi_dict) + wind_directions = self.fi.floris.flow_field.wind_directions[wc_id_split] + wind_speeds = self.fi.floris.flow_field.wind_speeds[wc_id_split] + turbulence_intensities = self.fi.floris.flow_field.turbulence_intensities[wc_id_split] + yaw_angles_subset = yaw_angles[wc_id_split[0]:wc_id_split[-1]+1, :] + fi_dict_split["flow_field"]["wind_directions"] = wind_directions + fi_dict_split["flow_field"]["wind_speeds"] = wind_speeds + fi_dict_split["flow_field"]["turbulence_intensities"] = turbulence_intensities + + # Prepare lightweight data to pass along + if isinstance(self.fi, FlorisInterface): + fi_information = (fi_dict_split, None, None) + else: + fi_information = ( + fi_dict_split, + self.fi.fi.het_map, + self.fi.unc_pmfs, + self.fi.fix_yaw_in_relative_frame + ) + multiargs.append((fi_information, yaw_angles_subset)) return multiargs # Function to merge subsets in dictionaries def _merge_subsets(self, field, subset): - return np.concatenate( # Merges wind speeds - [ - np.concatenate( # Merges wind directions - [ - eval("f.{:s}".format(field)) - for f in subset[ - wii - * self.n_wind_direction_splits:(wii+1) - * self.n_wind_direction_splits - ] - ], - axis=0 - ) - for wii in range(self.n_wind_speed_splits) - ], - axis=1 - ) + i, j, k = np.shape(subset) + subset_reshape = np.reshape(subset, (i*j, k)) + return [eval("f.{:s}".format(field) for f in subset_reshape)] def _postprocessing(self, output): # Split results @@ -289,16 +260,8 @@ def _postprocessing(self, output): flowfield_subsets = [p[1] for p in output] # Retrieve and merge turbine power productions - turbine_powers = np.concatenate( - [ - np.concatenate( - power_subsets[self.n_wind_speed_splits*(ii):self.n_wind_speed_splits*(ii+1)], - axis=1 - ) - for ii in range(self.n_wind_direction_splits) - ], - axis=0 - ) + i, j, k = np.shape(power_subsets) + turbine_powers = np.reshape(power_subsets, (i*j, k)) # Optionally, also merge flow field dictionaries from individual floris solutions if self.propagate_flowfield_from_workers: @@ -364,8 +327,7 @@ def get_farm_power(self, yaw_angles=None, turbine_weights=None): # Default to equal weighing of all turbines when turbine_weights is None turbine_weights = np.ones( ( - self.fi.floris.flow_field.n_wind_directions, - self.fi.floris.flow_field.n_wind_speeds, + self.fi.floris.flow_field.n_findex, self.fi.floris.farm.n_turbines ) ) @@ -374,8 +336,7 @@ def get_farm_power(self, yaw_angles=None, turbine_weights=None): turbine_weights = np.tile( turbine_weights, ( - self.fi.floris.flow_field.n_wind_directions, - self.fi.floris.flow_field.n_wind_speeds, + self.fi.floris.flow_field.n_findex, 1 ) ) @@ -384,7 +345,7 @@ def get_farm_power(self, yaw_angles=None, turbine_weights=None): turbine_powers = self.get_turbine_powers(yaw_angles=yaw_angles) turbine_powers = np.multiply(turbine_weights, turbine_powers) - return np.sum(turbine_powers, axis=2) + return np.sum(turbine_powers, axis=1) def get_farm_AEP( self, @@ -473,6 +434,11 @@ def get_farm_AEP( # Copy the full wind speed array from the floris object and initialize # the the farm_power variable as an empty array. wind_speeds = np.array(self.fi.floris.flow_field.wind_speeds, copy=True) + wind_directions = np.array(self.fi.floris.flow_field.wind_directions, copy=True) + turbulence_intensities = np.array( + self.fi.floris.flow_field.turbulence_intensities, + copy=True, + ) farm_power = np.zeros((self.fi.floris.flow_field.n_wind_directions, len(wind_speeds))) # Determine which wind speeds we must evaluate in floris @@ -483,10 +449,16 @@ def get_farm_AEP( # Evaluate the conditions in floris if np.any(conditions_to_evaluate): wind_speeds_subset = wind_speeds[conditions_to_evaluate] + wind_direction_subset = wind_directions[conditions_to_evaluate] + turbulence_intensities_subset = turbulence_intensities[conditions_to_evaluate] yaw_angles_subset = None if yaw_angles is not None: yaw_angles_subset = yaw_angles[:, conditions_to_evaluate] - self.fi.reinitialize(wind_speeds=wind_speeds_subset) + self.fi.reinitialize( + wind_directions=wind_direction_subset, + wind_speeds=wind_speeds_subset, + turbulence_intensities=turbulence_intensities_subset, + ) farm_power[:, conditions_to_evaluate] = ( self.get_farm_power(yaw_angles=yaw_angles_subset, turbine_weights=turbine_weights) ) @@ -495,7 +467,11 @@ def get_farm_AEP( aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) # Reset the FLORIS object to the full wind speed array - self.fi.reinitialize(wind_speeds=wind_speeds) + self.fi.reinitialize( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities_subset, + ) return aep @@ -508,7 +484,6 @@ def optimize_yaw_angles( Ny_passes=[5,4], turbine_weights=None, exclude_downstream_turbines=True, - exploit_layout_symmetry=True, verify_convergence=False, print_worker_progress=False, # Recommended disabled to avoid clutter. Useful for debugging ): @@ -526,7 +501,6 @@ def optimize_yaw_angles( Ny_passes, turbine_weights, exclude_downstream_turbines, - exploit_layout_symmetry, verify_convergence, print_worker_progress, ) @@ -550,7 +524,6 @@ def optimize_yaw_angles( [j[7] for j in multiargs], [j[8] for j in multiargs], [j[9] for j in multiargs], - [j[10] for j in multiargs], ) t2 = timerpc() From 69a2f42edbf22cf3298c5164367c30742e8f6ed8 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Tue, 20 Feb 2024 13:01:43 -0500 Subject: [PATCH 37/78] [BUGFIX] Error when yaw angles are used with TurbOPark (#808) Co-authored-by: misha --- floris/simulation/solver.py | 8 +------- 1 file changed, 1 insertion(+), 7 deletions(-) diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index 92da51959..87e6b500f 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -986,7 +986,7 @@ def turbopark_solver( # Model calculations # NOTE: exponential - if not np.all(farm.yaw_angles_sorted): + if np.any(farm.yaw_angles_sorted): model_manager.deflection_model.logger.warning( "WARNING: Deflection with the TurbOPark model has not been fully validated. " "This is an initial implementation, and we advise you use at your own risk " @@ -1195,9 +1195,6 @@ def empirical_gauss_solver( z_i = np.mean(grid.z_sorted[:, i:i+1], axis=(2, 3)) z_i = z_i[:, :, None, None] - flow_field.u_sorted[:, i:i+1] - flow_field.v_sorted[:, i:i+1] - ct_i = thrust_coefficient( velocities=flow_field.u_sorted, air_density=flow_field.air_density, @@ -1400,9 +1397,6 @@ def full_flow_empirical_gauss_solver( z_i = np.mean(turbine_grid.z_sorted[:, i:i+1], axis=(2,3)) z_i = z_i[:, :, None, None] - turbine_grid_flow_field.u_sorted[:, i:i+1] - turbine_grid_flow_field.v_sorted[:, i:i+1] - ct_i = thrust_coefficient( velocities=turbine_grid_flow_field.u_sorted, air_density=turbine_grid_flow_field.air_density, From 37f336e2352a6e39171805bd3ad0883fa49cc452 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Tue, 20 Feb 2024 18:19:20 -0700 Subject: [PATCH 38/78] Change from Apache to BSD 3-clause license (#810) * Update license file to bsd * Update setup file to bsd * Update README.md * Remove header block everywhere * Fix end of file * Use a consistent format for beginning files https://github.com/NREL/floris/pull/810#issuecomment-1955186596 * Wrap lines in license statements --------- Co-authored-by: Rafael M Mudafort --- LICENSE.txt | 215 ++---------------- README.md | 33 ++- examples/01_opening_floris_computing_power.py | 14 -- examples/02_visualizations.py | 14 -- examples/03_making_adjustments.py | 14 -- examples/04_sweep_wind_directions.py | 14 -- examples/05_sweep_wind_speeds.py | 14 -- examples/06_sweep_wind_conditions.py | 14 -- examples/07_calc_aep_from_rose.py | 14 -- examples/08_calc_aep_from_rose_use_class.py | 13 -- .../09_compare_farm_power_with_neighbor.py | 14 -- examples/10_opt_yaw_single_ws.py | 13 -- examples/11_opt_yaw_multiple_ws.py | 13 -- examples/12_optimize_yaw.py | 14 -- examples/12_optimize_yaw_in_parallel.py | 14 -- .../13_optimize_yaw_with_neighboring_farm.py | 14 -- examples/14_compare_yaw_optimizers.py | 13 -- examples/15_optimize_layout.py | 14 -- examples/16_heterogeneous_inflow.py | 14 -- examples/16b_heterogeneity_multiple_ws_wd.py | 14 -- .../16c_optimize_layout_with_heterogeneity.py | 14 -- examples/17_multiple_turbine_types.py | 14 -- examples/18_check_turbine.py | 14 -- examples/19_streamlit_demo.py | 14 -- ...0_calculate_farm_power_with_uncertainty.py | 14 -- examples/21_demo_time_series.py | 14 -- examples/22_get_wind_speed_at_turbines.py | 14 -- examples/23_visualize_layout.py | 14 -- examples/24_floating_turbine_models.py | 13 -- ...25_tilt_driven_vertical_wake_deflection.py | 14 -- ...rical_gauss_velocity_deficit_parameters.py | 14 -- ...7_empirical_gauss_deflection_parameters.py | 14 -- examples/28_extract_wind_speed_at_points.py | 14 -- examples/29_floating_vs_fixedbottom_farm.py | 13 -- examples/30_multi_dimensional_cp_ct.py | 14 -- examples/31_multi_dimensional_cp_ct_2Hs.py | 14 -- examples/32_plot_velocity_deficit_profiles.py | 14 -- examples/33_specify_turbine_power_curve.py | 14 -- examples/34_wind_data.py | 13 -- examples/35_sweep_ti.py | 13 -- examples/36_generate_ti.py | 13 -- examples/40_test_derating.py | 13 -- examples/41_test_disable_turbines.py | 17 +- floris/__init__.py | 13 -- floris/logging_manager.py | 13 -- floris/simulation/__init__.py | 14 -- floris/simulation/base.py | 23 +- floris/simulation/farm.py | 11 - floris/simulation/floris.py | 13 -- floris/simulation/flow_field.py | 13 -- floris/simulation/grid.py | 14 -- floris/simulation/rotor_velocity.py | 13 -- floris/simulation/solver.py | 11 - floris/simulation/turbine/__init__.py | 13 -- floris/simulation/turbine/operation_models.py | 13 -- floris/simulation/turbine/turbine.py | 13 -- floris/simulation/wake.py | 13 -- .../simulation/wake_combination/__init__.py | 14 -- floris/simulation/wake_combination/fls.py | 11 - floris/simulation/wake_combination/max.py | 11 - floris/simulation/wake_combination/sosfs.py | 11 - floris/simulation/wake_deflection/__init__.py | 14 -- .../wake_deflection/empirical_gauss.py | 11 - floris/simulation/wake_deflection/gauss.py | 11 - floris/simulation/wake_deflection/jimenez.py | 11 - floris/simulation/wake_deflection/none.py | 11 - floris/simulation/wake_turbulence/__init__.py | 14 -- .../wake_turbulence/crespo_hernandez.py | 11 - floris/simulation/wake_turbulence/none.py | 11 - .../wake_turbulence/wake_induced_mixing.py | 11 - floris/simulation/wake_velocity/__init__.py | 14 -- .../wake_velocity/cumulative_gauss_curl.py | 11 - .../wake_velocity/empirical_gauss.py | 11 - floris/simulation/wake_velocity/gauss.py | 11 - floris/simulation/wake_velocity/jensen.py | 11 - floris/simulation/wake_velocity/none.py | 11 - floris/simulation/wake_velocity/turbopark.py | 10 - floris/tools/__init__.py | 14 -- floris/tools/convert_turbine_v3_to_v4.py | 20 +- floris/tools/cut_plane.py | 14 -- floris/tools/floris_interface.py | 13 -- .../tools/floris_interface_legacy_reader.py | 13 -- floris/tools/interface_utilities.py | 11 - floris/tools/layout_functions.py | 21 +- .../layout_optimization_base.py | 13 -- .../layout_optimization_boundary_grid.py | 14 -- .../layout_optimization_pyoptsparse.py | 14 -- .../layout_optimization_pyoptsparse_spread.py | 14 -- .../layout_optimization_scipy.py | 13 -- .../optimization/legacy/pyoptsparse/layout.py | 14 -- .../legacy/pyoptsparse/optimization.py | 13 -- .../legacy/pyoptsparse/power_density.py | 14 -- .../optimization/legacy/pyoptsparse/yaw.py | 14 -- .../optimization/legacy/scipy/base_COE.py | 13 -- .../legacy/scipy/cluster_turbines.py | 14 -- .../scipy/derive_downstream_turbines.py | 14 -- .../tools/optimization/legacy/scipy/layout.py | 13 -- .../legacy/scipy/layout_height.py | 13 -- .../optimization/legacy/scipy/optimization.py | 13 -- .../legacy/scipy/power_density.py | 13 -- .../legacy/scipy/power_density_1D.py | 13 -- floris/tools/optimization/legacy/scipy/yaw.py | 13 -- .../legacy/scipy/yaw_clustered.py | 13 -- .../legacy/scipy/yaw_wind_rose.py | 13 -- .../legacy/scipy/yaw_wind_rose_clustered.py | 13 -- .../legacy/scipy/yaw_wind_rose_parallel.py | 13 -- .../scipy/yaw_wind_rose_parallel_clustered.py | 13 -- .../tools/optimization/other/boundary_grid.py | 14 -- .../yaw_optimization/yaw_optimization_base.py | 14 -- .../yaw_optimization_tools.py | 14 -- .../yaw_optimizer_geometric.py | 14 -- .../yaw_optimization/yaw_optimizer_scipy.py | 14 -- .../yaw_optimization/yaw_optimizer_sr.py | 14 -- floris/tools/rews.py | 14 -- floris/tools/uncertainty_interface.py | 13 -- floris/tools/visualization.py | 12 - floris/tools/wind_data.py | 13 -- floris/turbine_library/turbine_previewer.py | 13 -- floris/turbine_library/turbine_utilities.py | 13 -- floris/type_dec.py | 13 -- floris/utilities.py | 13 -- profiling/linux_perf.py | 13 -- profiling/profiling.py | 13 -- profiling/quality_metrics.py | 14 -- setup.py | 18 +- tests/__init__.py | 13 -- tests/base_test.py | 14 -- tests/conftest.py | 13 -- tests/farm_unit_test.py | 13 -- tests/floris_unit_test.py | 13 -- tests/flow_field_unit_test.py | 13 -- .../cumulative_curl_regression_test.py | 13 -- .../empirical_gauss_regression_test.py | 13 -- .../floris_interface_regression_test.py | 13 -- tests/reg_tests/gauss_regression_test.py | 13 -- .../jensen_jimenez_regression_test.py | 13 -- tests/reg_tests/none_regression_test.py | 13 -- tests/reg_tests/turbopark_regression_test.py | 13 -- tests/turbine_grid_unit_test.py | 14 -- tests/turbine_multi_dim_unit_test.py | 14 -- tests/turbine_unit_test.py | 14 -- tests/turbine_utilities_unit_test.py | 13 -- tests/type_dec_unit_test.py | 13 -- tests/utilities_unit_test.py | 14 -- tests/wake_unit_tests.py | 13 -- tests/wind_data_test.py | 13 -- 146 files changed, 59 insertions(+), 2114 deletions(-) diff --git a/LICENSE.txt b/LICENSE.txt index 980a15ac2..833a19186 100644 --- a/LICENSE.txt +++ b/LICENSE.txt @@ -1,201 +1,26 @@ - Apache License - Version 2.0, January 2004 - http://www.apache.org/licenses/ +BSD 3-Clause License - TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION +Copyright (c) 2024, Alliance for Sustainable Energy LLC, All rights reserved. - 1. Definitions. +Redistribution and use in source and binary forms, with or without modification, are permitted +provided that the following conditions are met: - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. +* Redistributions of source code must retain the above copyright notice, this list of conditions +and the following disclaimer. - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. +* Redistributions in binary form must reproduce the above copyright notice, this list of +conditions and the following disclaimer in the documentation and/or other materials provided +with the distribution. - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. +* Neither the name of the copyright holder nor the names of its contributors may be used to +endorse or promote products derived from this software without specific prior written permission. - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - - 2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - - 3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - - 4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - - 5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - - 6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - - 7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - - 8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - - 9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - - END OF TERMS AND CONDITIONS - - APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "{}" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - - Copyright {yyyy} {name of copyright owner} - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR +IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY +AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER +OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. diff --git a/README.md b/README.md index 3e410e0cc..013209c7f 100644 --- a/README.md +++ b/README.md @@ -132,16 +132,29 @@ space to show off the things you are doing with FLORIS. # License -Copyright 2022 NREL +BSD 3-Clause License -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at +Copyright (c) 2024, Alliance for Sustainable Energy LLC, All rights reserved. - http://www.apache.org/licenses/LICENSE-2.0 +Redistribution and use in source and binary forms, with or without modification, are permitted +provided that the following conditions are met: -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. +* Redistributions of source code must retain the above copyright notice, this list of conditions +and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this list of +conditions and the following disclaimer in the documentation and/or other materials provided +with the distribution. + +* Neither the name of the copyright holder nor the names of its contributors may be used to +endorse or promote products derived from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR +IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY +AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER +OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. diff --git a/examples/01_opening_floris_computing_power.py b/examples/01_opening_floris_computing_power.py index 8d3808e51..4e7818df6 100644 --- a/examples/01_opening_floris_computing_power.py +++ b/examples/01_opening_floris_computing_power.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import numpy as np diff --git a/examples/02_visualizations.py b/examples/02_visualizations.py index 4b9b0398c..a82f84ee8 100644 --- a/examples/02_visualizations.py +++ b/examples/02_visualizations.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/03_making_adjustments.py b/examples/03_making_adjustments.py index 5e0cb4520..e405aea65 100644 --- a/examples/03_making_adjustments.py +++ b/examples/03_making_adjustments.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/04_sweep_wind_directions.py b/examples/04_sweep_wind_directions.py index 314050e47..a76ff6bb3 100644 --- a/examples/04_sweep_wind_directions.py +++ b/examples/04_sweep_wind_directions.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/05_sweep_wind_speeds.py b/examples/05_sweep_wind_speeds.py index 676d2a63d..b5b93e488 100644 --- a/examples/05_sweep_wind_speeds.py +++ b/examples/05_sweep_wind_speeds.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/06_sweep_wind_conditions.py b/examples/06_sweep_wind_conditions.py index b80c88550..9b6e28902 100644 --- a/examples/06_sweep_wind_conditions.py +++ b/examples/06_sweep_wind_conditions.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/07_calc_aep_from_rose.py b/examples/07_calc_aep_from_rose.py index 754003e37..ea1d8c9b9 100644 --- a/examples/07_calc_aep_from_rose.py +++ b/examples/07_calc_aep_from_rose.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import numpy as np import pandas as pd diff --git a/examples/08_calc_aep_from_rose_use_class.py b/examples/08_calc_aep_from_rose_use_class.py index 064803324..0d3243d63 100644 --- a/examples/08_calc_aep_from_rose_use_class.py +++ b/examples/08_calc_aep_from_rose_use_class.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np diff --git a/examples/09_compare_farm_power_with_neighbor.py b/examples/09_compare_farm_power_with_neighbor.py index d7612a2c3..b20359c83 100644 --- a/examples/09_compare_farm_power_with_neighbor.py +++ b/examples/09_compare_farm_power_with_neighbor.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/10_opt_yaw_single_ws.py b/examples/10_opt_yaw_single_ws.py index 7d88aab55..15d1c31bc 100644 --- a/examples/10_opt_yaw_single_ws.py +++ b/examples/10_opt_yaw_single_ws.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/examples/11_opt_yaw_multiple_ws.py b/examples/11_opt_yaw_multiple_ws.py index 4fcbfa15b..a3d38d307 100644 --- a/examples/11_opt_yaw_multiple_ws.py +++ b/examples/11_opt_yaw_multiple_ws.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/examples/12_optimize_yaw.py b/examples/12_optimize_yaw.py index b3941cf0e..a1d676f23 100644 --- a/examples/12_optimize_yaw.py +++ b/examples/12_optimize_yaw.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from time import perf_counter as timerpc diff --git a/examples/12_optimize_yaw_in_parallel.py b/examples/12_optimize_yaw_in_parallel.py index 2ea8c5f5b..d46c94e0c 100644 --- a/examples/12_optimize_yaw_in_parallel.py +++ b/examples/12_optimize_yaw_in_parallel.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/13_optimize_yaw_with_neighboring_farm.py b/examples/13_optimize_yaw_with_neighboring_farm.py index 89200e6fc..bd201717b 100644 --- a/examples/13_optimize_yaw_with_neighboring_farm.py +++ b/examples/13_optimize_yaw_with_neighboring_farm.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/14_compare_yaw_optimizers.py b/examples/14_compare_yaw_optimizers.py index 3344dad9a..16d6d9767 100644 --- a/examples/14_compare_yaw_optimizers.py +++ b/examples/14_compare_yaw_optimizers.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from time import perf_counter as timerpc diff --git a/examples/15_optimize_layout.py b/examples/15_optimize_layout.py index 400dab114..ee477ade5 100644 --- a/examples/15_optimize_layout.py +++ b/examples/15_optimize_layout.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import os diff --git a/examples/16_heterogeneous_inflow.py b/examples/16_heterogeneous_inflow.py index 3dedf05e7..2ac09ebf0 100644 --- a/examples/16_heterogeneous_inflow.py +++ b/examples/16_heterogeneous_inflow.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt diff --git a/examples/16b_heterogeneity_multiple_ws_wd.py b/examples/16b_heterogeneity_multiple_ws_wd.py index a5b8abdb0..46cd553a7 100644 --- a/examples/16b_heterogeneity_multiple_ws_wd.py +++ b/examples/16b_heterogeneity_multiple_ws_wd.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/16c_optimize_layout_with_heterogeneity.py b/examples/16c_optimize_layout_with_heterogeneity.py index ec0275222..1d30bd5e6 100644 --- a/examples/16c_optimize_layout_with_heterogeneity.py +++ b/examples/16c_optimize_layout_with_heterogeneity.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import os diff --git a/examples/17_multiple_turbine_types.py b/examples/17_multiple_turbine_types.py index 87a2b032d..6776fafa9 100644 --- a/examples/17_multiple_turbine_types.py +++ b/examples/17_multiple_turbine_types.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt diff --git a/examples/18_check_turbine.py b/examples/18_check_turbine.py index d35594ae4..423c67e42 100644 --- a/examples/18_check_turbine.py +++ b/examples/18_check_turbine.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from pathlib import Path diff --git a/examples/19_streamlit_demo.py b/examples/19_streamlit_demo.py index 91b4f466d..88c770242 100644 --- a/examples/19_streamlit_demo.py +++ b/examples/19_streamlit_demo.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/20_calculate_farm_power_with_uncertainty.py b/examples/20_calculate_farm_power_with_uncertainty.py index 16ea3789d..0be306235 100644 --- a/examples/20_calculate_farm_power_with_uncertainty.py +++ b/examples/20_calculate_farm_power_with_uncertainty.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/21_demo_time_series.py b/examples/21_demo_time_series.py index 1b796bcec..7dfbf78a2 100644 --- a/examples/21_demo_time_series.py +++ b/examples/21_demo_time_series.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/22_get_wind_speed_at_turbines.py b/examples/22_get_wind_speed_at_turbines.py index 2dc757137..6eea39179 100644 --- a/examples/22_get_wind_speed_at_turbines.py +++ b/examples/22_get_wind_speed_at_turbines.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import numpy as np diff --git a/examples/23_visualize_layout.py b/examples/23_visualize_layout.py index e880e0a70..9628ad7f9 100644 --- a/examples/23_visualize_layout.py +++ b/examples/23_visualize_layout.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt diff --git a/examples/24_floating_turbine_models.py b/examples/24_floating_turbine_models.py index c94fbf538..12f731816 100644 --- a/examples/24_floating_turbine_models.py +++ b/examples/24_floating_turbine_models.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/examples/25_tilt_driven_vertical_wake_deflection.py b/examples/25_tilt_driven_vertical_wake_deflection.py index 1725e4134..69a05ac91 100644 --- a/examples/25_tilt_driven_vertical_wake_deflection.py +++ b/examples/25_tilt_driven_vertical_wake_deflection.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/26_empirical_gauss_velocity_deficit_parameters.py b/examples/26_empirical_gauss_velocity_deficit_parameters.py index 952207e34..1b48f8543 100644 --- a/examples/26_empirical_gauss_velocity_deficit_parameters.py +++ b/examples/26_empirical_gauss_velocity_deficit_parameters.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://nrel.github.io/floris for documentation - import copy diff --git a/examples/27_empirical_gauss_deflection_parameters.py b/examples/27_empirical_gauss_deflection_parameters.py index bfe862d7b..1b0095a23 100644 --- a/examples/27_empirical_gauss_deflection_parameters.py +++ b/examples/27_empirical_gauss_deflection_parameters.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://nrel.github.io/floris for documentation - import copy diff --git a/examples/28_extract_wind_speed_at_points.py b/examples/28_extract_wind_speed_at_points.py index fc9ef9d47..04ef2daa5 100644 --- a/examples/28_extract_wind_speed_at_points.py +++ b/examples/28_extract_wind_speed_at_points.py @@ -1,17 +1,3 @@ -# Copyright 2023 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/29_floating_vs_fixedbottom_farm.py b/examples/29_floating_vs_fixedbottom_farm.py index e525f8c96..a6fc380a1 100644 --- a/examples/29_floating_vs_fixedbottom_farm.py +++ b/examples/29_floating_vs_fixedbottom_farm.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/examples/30_multi_dimensional_cp_ct.py b/examples/30_multi_dimensional_cp_ct.py index 05df42c0f..d1cd15b54 100644 --- a/examples/30_multi_dimensional_cp_ct.py +++ b/examples/30_multi_dimensional_cp_ct.py @@ -1,17 +1,3 @@ -# Copyright 2023 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import numpy as np diff --git a/examples/31_multi_dimensional_cp_ct_2Hs.py b/examples/31_multi_dimensional_cp_ct_2Hs.py index 57be38fc0..032df5fa9 100644 --- a/examples/31_multi_dimensional_cp_ct_2Hs.py +++ b/examples/31_multi_dimensional_cp_ct_2Hs.py @@ -1,17 +1,3 @@ -# Copyright 2023 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/32_plot_velocity_deficit_profiles.py b/examples/32_plot_velocity_deficit_profiles.py index a99dff965..a556a666c 100644 --- a/examples/32_plot_velocity_deficit_profiles.py +++ b/examples/32_plot_velocity_deficit_profiles.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/33_specify_turbine_power_curve.py b/examples/33_specify_turbine_power_curve.py index 870bbde1b..cf1c5f5bc 100644 --- a/examples/33_specify_turbine_power_curve.py +++ b/examples/33_specify_turbine_power_curve.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/examples/34_wind_data.py b/examples/34_wind_data.py index 5da902880..aba1d0d8c 100644 --- a/examples/34_wind_data.py +++ b/examples/34_wind_data.py @@ -1,16 +1,3 @@ -# Copyright 2024 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/examples/35_sweep_ti.py b/examples/35_sweep_ti.py index 6e235a9aa..471a9cb67 100644 --- a/examples/35_sweep_ti.py +++ b/examples/35_sweep_ti.py @@ -1,16 +1,3 @@ -# Copyright 2024 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/examples/36_generate_ti.py b/examples/36_generate_ti.py index a42e1bf95..7264d912c 100644 --- a/examples/36_generate_ti.py +++ b/examples/36_generate_ti.py @@ -1,16 +1,3 @@ -# Copyright 2024 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/examples/40_test_derating.py b/examples/40_test_derating.py index 59a587259..542e7963e 100644 --- a/examples/40_test_derating.py +++ b/examples/40_test_derating.py @@ -1,16 +1,3 @@ -# Copyright 2024 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/examples/41_test_disable_turbines.py b/examples/41_test_disable_turbines.py index 517845bad..d276d8ce1 100644 --- a/examples/41_test_disable_turbines.py +++ b/examples/41_test_disable_turbines.py @@ -1,19 +1,3 @@ -# Copyright 2023 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - -# Example adapted from https://github.com/NREL/floris/pull/693 contributed by Elie Kadoche - import matplotlib.pyplot as plt import numpy as np @@ -23,6 +7,7 @@ """ +Adapted from https://github.com/NREL/floris/pull/693 contributed by Elie Kadoche This example demonstrates the ability of FLORIS to shut down some turbines during a simulation. """ diff --git a/floris/__init__.py b/floris/__init__.py index 0a5387707..64c9e8c9a 100644 --- a/floris/__init__.py +++ b/floris/__init__.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from pathlib import Path diff --git a/floris/logging_manager.py b/floris/logging_manager.py index abdeff0e9..3636f2df7 100644 --- a/floris/logging_manager.py +++ b/floris/logging_manager.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import logging from datetime import datetime diff --git a/floris/simulation/__init__.py b/floris/simulation/__init__.py index 2182951ca..68da31838 100644 --- a/floris/simulation/__init__.py +++ b/floris/simulation/__init__.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - """ The :py:obj:`floris` package contains :py:obj:`floris.utilities` module diff --git a/floris/simulation/base.py b/floris/simulation/base.py index 4edd11d6f..76c131597 100644 --- a/floris/simulation/base.py +++ b/floris/simulation/base.py @@ -1,21 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - - -""" -Defines the BaseClass parent class for all models to be based upon. -""" from abc import abstractmethod from enum import Enum @@ -37,6 +19,11 @@ from floris.type_dec import FromDictMixin +""" +Defines the BaseClass parent class for all models to be based upon. +""" + + class State(Enum): UNINITIALIZED = 0 INITIALIZED = 1 diff --git a/floris/simulation/farm.py b/floris/simulation/farm.py index 56e20d819..8bab263f1 100644 --- a/floris/simulation/farm.py +++ b/floris/simulation/farm.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from __future__ import annotations diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index f0a492f6a..2f04b4a13 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/floris/simulation/flow_field.py b/floris/simulation/flow_field.py index 7417f8ffe..7de465da5 100644 --- a/floris/simulation/flow_field.py +++ b/floris/simulation/flow_field.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/floris/simulation/grid.py b/floris/simulation/grid.py index 28f7df9df..926896821 100644 --- a/floris/simulation/grid.py +++ b/floris/simulation/grid.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from __future__ import annotations diff --git a/floris/simulation/rotor_velocity.py b/floris/simulation/rotor_velocity.py index 25f94d55d..c70bb2570 100644 --- a/floris/simulation/rotor_velocity.py +++ b/floris/simulation/rotor_velocity.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index 87e6b500f..acf4568bb 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from __future__ import annotations diff --git a/floris/simulation/turbine/__init__.py b/floris/simulation/turbine/__init__.py index 355f5c2df..8f447dbee 100644 --- a/floris/simulation/turbine/__init__.py +++ b/floris/simulation/turbine/__init__.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from floris.simulation.turbine.operation_models import ( CosineLossTurbine, diff --git a/floris/simulation/turbine/operation_models.py b/floris/simulation/turbine/operation_models.py index 82c11ee70..63c4bc38f 100644 --- a/floris/simulation/turbine/operation_models.py +++ b/floris/simulation/turbine/operation_models.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/floris/simulation/turbine/turbine.py b/floris/simulation/turbine/turbine.py index f9435facb..22a22e0fb 100644 --- a/floris/simulation/turbine/turbine.py +++ b/floris/simulation/turbine/turbine.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/floris/simulation/wake.py b/floris/simulation/wake.py index 877ca45fa..63944bf6b 100644 --- a/floris/simulation/wake.py +++ b/floris/simulation/wake.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import attrs from attrs import define, field diff --git a/floris/simulation/wake_combination/__init__.py b/floris/simulation/wake_combination/__init__.py index 59976c375..9d8c70ea8 100644 --- a/floris/simulation/wake_combination/__init__.py +++ b/floris/simulation/wake_combination/__init__.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from floris.simulation.wake_combination.fls import FLS from floris.simulation.wake_combination.max import MAX diff --git a/floris/simulation/wake_combination/fls.py b/floris/simulation/wake_combination/fls.py index f64c23dc1..fa2d88326 100644 --- a/floris/simulation/wake_combination/fls.py +++ b/floris/simulation/wake_combination/fls.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. import numpy as np from attrs import define diff --git a/floris/simulation/wake_combination/max.py b/floris/simulation/wake_combination/max.py index f9d5ae5b2..f4beda1c8 100644 --- a/floris/simulation/wake_combination/max.py +++ b/floris/simulation/wake_combination/max.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. import numpy as np from attrs import define diff --git a/floris/simulation/wake_combination/sosfs.py b/floris/simulation/wake_combination/sosfs.py index 0f6d280f9..6598faf2b 100644 --- a/floris/simulation/wake_combination/sosfs.py +++ b/floris/simulation/wake_combination/sosfs.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. import numpy as np from attrs import define diff --git a/floris/simulation/wake_deflection/__init__.py b/floris/simulation/wake_deflection/__init__.py index 62fba9ca5..9c5937913 100644 --- a/floris/simulation/wake_deflection/__init__.py +++ b/floris/simulation/wake_deflection/__init__.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from floris.simulation.wake_deflection.empirical_gauss import EmpiricalGaussVelocityDeflection from floris.simulation.wake_deflection.gauss import GaussVelocityDeflection diff --git a/floris/simulation/wake_deflection/empirical_gauss.py b/floris/simulation/wake_deflection/empirical_gauss.py index 2d1ec14c3..85681544c 100644 --- a/floris/simulation/wake_deflection/empirical_gauss.py +++ b/floris/simulation/wake_deflection/empirical_gauss.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_deflection/gauss.py b/floris/simulation/wake_deflection/gauss.py index 2f6216dd6..fc1cedfc4 100644 --- a/floris/simulation/wake_deflection/gauss.py +++ b/floris/simulation/wake_deflection/gauss.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from __future__ import annotations diff --git a/floris/simulation/wake_deflection/jimenez.py b/floris/simulation/wake_deflection/jimenez.py index ceb6a3e8f..6f0a8ccf6 100644 --- a/floris/simulation/wake_deflection/jimenez.py +++ b/floris/simulation/wake_deflection/jimenez.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_deflection/none.py b/floris/simulation/wake_deflection/none.py index df80e30d1..44e466651 100644 --- a/floris/simulation/wake_deflection/none.py +++ b/floris/simulation/wake_deflection/none.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_turbulence/__init__.py b/floris/simulation/wake_turbulence/__init__.py index 346bc15cb..51bee5f74 100644 --- a/floris/simulation/wake_turbulence/__init__.py +++ b/floris/simulation/wake_turbulence/__init__.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from floris.simulation.wake_turbulence.crespo_hernandez import CrespoHernandez from floris.simulation.wake_turbulence.none import NoneWakeTurbulence diff --git a/floris/simulation/wake_turbulence/crespo_hernandez.py b/floris/simulation/wake_turbulence/crespo_hernandez.py index 923b62c6a..09d045986 100644 --- a/floris/simulation/wake_turbulence/crespo_hernandez.py +++ b/floris/simulation/wake_turbulence/crespo_hernandez.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_turbulence/none.py b/floris/simulation/wake_turbulence/none.py index 6b8bf947d..3975c2581 100644 --- a/floris/simulation/wake_turbulence/none.py +++ b/floris/simulation/wake_turbulence/none.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_turbulence/wake_induced_mixing.py b/floris/simulation/wake_turbulence/wake_induced_mixing.py index 96dac7e45..f39e6a8a6 100644 --- a/floris/simulation/wake_turbulence/wake_induced_mixing.py +++ b/floris/simulation/wake_turbulence/wake_induced_mixing.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_velocity/__init__.py b/floris/simulation/wake_velocity/__init__.py index f551f5be8..f0d3b4c99 100644 --- a/floris/simulation/wake_velocity/__init__.py +++ b/floris/simulation/wake_velocity/__init__.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from floris.simulation.wake_velocity.cumulative_gauss_curl import CumulativeGaussCurlVelocityDeficit from floris.simulation.wake_velocity.empirical_gauss import EmpiricalGaussVelocityDeficit diff --git a/floris/simulation/wake_velocity/cumulative_gauss_curl.py b/floris/simulation/wake_velocity/cumulative_gauss_curl.py index 5c201462c..902b085b5 100644 --- a/floris/simulation/wake_velocity/cumulative_gauss_curl.py +++ b/floris/simulation/wake_velocity/cumulative_gauss_curl.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_velocity/empirical_gauss.py b/floris/simulation/wake_velocity/empirical_gauss.py index eae427d8d..cfeb261fb 100644 --- a/floris/simulation/wake_velocity/empirical_gauss.py +++ b/floris/simulation/wake_velocity/empirical_gauss.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_velocity/gauss.py b/floris/simulation/wake_velocity/gauss.py index e98672a68..4cf5cbdf9 100644 --- a/floris/simulation/wake_velocity/gauss.py +++ b/floris/simulation/wake_velocity/gauss.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_velocity/jensen.py b/floris/simulation/wake_velocity/jensen.py index b5efce92e..f84461502 100644 --- a/floris/simulation/wake_velocity/jensen.py +++ b/floris/simulation/wake_velocity/jensen.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_velocity/none.py b/floris/simulation/wake_velocity/none.py index 58c00779b..37b4e09bc 100644 --- a/floris/simulation/wake_velocity/none.py +++ b/floris/simulation/wake_velocity/none.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from typing import Any, Dict diff --git a/floris/simulation/wake_velocity/turbopark.py b/floris/simulation/wake_velocity/turbopark.py index 637c30d34..33071f9a1 100644 --- a/floris/simulation/wake_velocity/turbopark.py +++ b/floris/simulation/wake_velocity/turbopark.py @@ -1,14 +1,4 @@ -# Copyright 2022 NREL -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. from pathlib import Path from typing import Any, Dict diff --git a/floris/tools/__init__.py b/floris/tools/__init__.py index 5859fedc5..677c569c0 100644 --- a/floris/tools/__init__.py +++ b/floris/tools/__init__.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - """ The :py:obj:`floris.tools` package contains the modules used to drive diff --git a/floris/tools/convert_turbine_v3_to_v4.py b/floris/tools/convert_turbine_v3_to_v4.py index 7203e3379..c2e22d036 100644 --- a/floris/tools/convert_turbine_v3_to_v4.py +++ b/floris/tools/convert_turbine_v3_to_v4.py @@ -1,16 +1,10 @@ -# Copyright 2021 NREL -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 +import sys +from pathlib import Path -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. +from floris.turbine_library import build_cosine_loss_turbine_dict, check_smooth_power_curve +from floris.utilities import load_yaml -# See https://floris.readthedocs.io for documentation """ This script is intended to be called with an argument and converts a turbine @@ -23,12 +17,6 @@ and is appended _v4. """ -import sys -from pathlib import Path - -from floris.turbine_library import build_cosine_loss_turbine_dict, check_smooth_power_curve -from floris.utilities import load_yaml - if __name__ == "__main__": if len(sys.argv) != 2: diff --git a/floris/tools/cut_plane.py b/floris/tools/cut_plane.py index ade17b7d7..64c24458b 100644 --- a/floris/tools/cut_plane.py +++ b/floris/tools/cut_plane.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import copy diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index 2a2a24812..e9c5aa2f5 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from __future__ import annotations diff --git a/floris/tools/floris_interface_legacy_reader.py b/floris/tools/floris_interface_legacy_reader.py index 300b3566c..d28c7152c 100644 --- a/floris/tools/floris_interface_legacy_reader.py +++ b/floris/tools/floris_interface_legacy_reader.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from __future__ import annotations diff --git a/floris/tools/interface_utilities.py b/floris/tools/interface_utilities.py index 3a02b6960..a797bfc6c 100644 --- a/floris/tools/interface_utilities.py +++ b/floris/tools/interface_utilities.py @@ -1,14 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. import inspect diff --git a/floris/tools/layout_functions.py b/floris/tools/layout_functions.py index 5ca950555..a14f9e8f6 100644 --- a/floris/tools/layout_functions.py +++ b/floris/tools/layout_functions.py @@ -1,20 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - - -# Defines a bunch of tools for plotting and manipulating -# layouts for quick visualizations import math @@ -24,6 +7,10 @@ from scipy.spatial.distance import pdist, squareform +# Defines a bunch of tools for plotting and manipulating +# layouts for quick visualizations + + def visualize_layout( fi, ax=None, diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_base.py b/floris/tools/optimization/layout_optimization/layout_optimization_base.py index b2e4938be..47b8f2ccb 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_base.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_base.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py b/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py index 714387ffc..07386b1d4 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py index 58f30e08c..75bbf9c84 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py index d4ff29c35..fc394dc10 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py b/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py index d8f3fa2d5..e960576f4 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/legacy/pyoptsparse/layout.py b/floris/tools/optimization/legacy/pyoptsparse/layout.py index e006ed6ea..defc229dd 100644 --- a/floris/tools/optimization/legacy/pyoptsparse/layout.py +++ b/floris/tools/optimization/legacy/pyoptsparse/layout.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/legacy/pyoptsparse/optimization.py b/floris/tools/optimization/legacy/pyoptsparse/optimization.py index d0240c138..e4f761f7c 100644 --- a/floris/tools/optimization/legacy/pyoptsparse/optimization.py +++ b/floris/tools/optimization/legacy/pyoptsparse/optimization.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from floris.logging_manager import LoggingManager diff --git a/floris/tools/optimization/legacy/pyoptsparse/power_density.py b/floris/tools/optimization/legacy/pyoptsparse/power_density.py index 8236e77ec..f1586312b 100644 --- a/floris/tools/optimization/legacy/pyoptsparse/power_density.py +++ b/floris/tools/optimization/legacy/pyoptsparse/power_density.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import sys diff --git a/floris/tools/optimization/legacy/pyoptsparse/yaw.py b/floris/tools/optimization/legacy/pyoptsparse/yaw.py index 1e90573b0..b4bcd7109 100644 --- a/floris/tools/optimization/legacy/pyoptsparse/yaw.py +++ b/floris/tools/optimization/legacy/pyoptsparse/yaw.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/legacy/scipy/base_COE.py b/floris/tools/optimization/legacy/scipy/base_COE.py index 7f7a40232..4935559fc 100644 --- a/floris/tools/optimization/legacy/scipy/base_COE.py +++ b/floris/tools/optimization/legacy/scipy/base_COE.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np diff --git a/floris/tools/optimization/legacy/scipy/cluster_turbines.py b/floris/tools/optimization/legacy/scipy/cluster_turbines.py index b402cd3b8..aae573c5e 100644 --- a/floris/tools/optimization/legacy/scipy/cluster_turbines.py +++ b/floris/tools/optimization/legacy/scipy/cluster_turbines.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/legacy/scipy/derive_downstream_turbines.py b/floris/tools/optimization/legacy/scipy/derive_downstream_turbines.py index e5e42da70..7f094b623 100644 --- a/floris/tools/optimization/legacy/scipy/derive_downstream_turbines.py +++ b/floris/tools/optimization/legacy/scipy/derive_downstream_turbines.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/legacy/scipy/layout.py b/floris/tools/optimization/legacy/scipy/layout.py index ebdcc50d1..a7a37b9af 100644 --- a/floris/tools/optimization/legacy/scipy/layout.py +++ b/floris/tools/optimization/legacy/scipy/layout.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/legacy/scipy/layout_height.py b/floris/tools/optimization/legacy/scipy/layout_height.py index dc4b23f54..f97113541 100644 --- a/floris/tools/optimization/legacy/scipy/layout_height.py +++ b/floris/tools/optimization/legacy/scipy/layout_height.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/legacy/scipy/optimization.py b/floris/tools/optimization/legacy/scipy/optimization.py index 621b1133f..a8ea25857 100644 --- a/floris/tools/optimization/legacy/scipy/optimization.py +++ b/floris/tools/optimization/legacy/scipy/optimization.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np diff --git a/floris/tools/optimization/legacy/scipy/power_density.py b/floris/tools/optimization/legacy/scipy/power_density.py index acfb91568..520cc24de 100644 --- a/floris/tools/optimization/legacy/scipy/power_density.py +++ b/floris/tools/optimization/legacy/scipy/power_density.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/legacy/scipy/power_density_1D.py b/floris/tools/optimization/legacy/scipy/power_density_1D.py index e8a7d47ea..3fb3287d7 100644 --- a/floris/tools/optimization/legacy/scipy/power_density_1D.py +++ b/floris/tools/optimization/legacy/scipy/power_density_1D.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/legacy/scipy/yaw.py b/floris/tools/optimization/legacy/scipy/yaw.py index 8ecdbae0b..13905919f 100644 --- a/floris/tools/optimization/legacy/scipy/yaw.py +++ b/floris/tools/optimization/legacy/scipy/yaw.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np from scipy.optimize import minimize diff --git a/floris/tools/optimization/legacy/scipy/yaw_clustered.py b/floris/tools/optimization/legacy/scipy/yaw_clustered.py index c880bd262..0d804c1a9 100644 --- a/floris/tools/optimization/legacy/scipy/yaw_clustered.py +++ b/floris/tools/optimization/legacy/scipy/yaw_clustered.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import copy diff --git a/floris/tools/optimization/legacy/scipy/yaw_wind_rose.py b/floris/tools/optimization/legacy/scipy/yaw_wind_rose.py index c6b2219a3..30a5a6de4 100644 --- a/floris/tools/optimization/legacy/scipy/yaw_wind_rose.py +++ b/floris/tools/optimization/legacy/scipy/yaw_wind_rose.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np import pandas as pd diff --git a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_clustered.py b/floris/tools/optimization/legacy/scipy/yaw_wind_rose_clustered.py index 0c5d5a8e3..c4951cb6c 100644 --- a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_clustered.py +++ b/floris/tools/optimization/legacy/scipy/yaw_wind_rose_clustered.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import copy diff --git a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel.py b/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel.py index ec46763a5..207da0436 100644 --- a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel.py +++ b/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from itertools import repeat diff --git a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel_clustered.py b/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel_clustered.py index caacc0429..a4600a8e1 100644 --- a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel_clustered.py +++ b/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel_clustered.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import copy from itertools import repeat diff --git a/floris/tools/optimization/other/boundary_grid.py b/floris/tools/optimization/other/boundary_grid.py index 299251385..38b9816e5 100644 --- a/floris/tools/optimization/other/boundary_grid.py +++ b/floris/tools/optimization/other/boundary_grid.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import numpy as np from shapely.geometry import Point, Polygon diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py b/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py index b8a0e04c1..21643bdc5 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import copy from time import perf_counter as timerpc diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py b/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py index 373ea5217..7b13ece91 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import matplotlib.pyplot as plt import numpy as np diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py b/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py index 9101af7dc..8607ee596 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import numpy as np diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py b/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py index 7fdfc637d..204a58ade 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import numpy as np from scipy.optimize import minimize diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py b/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py index 19bfc71bc..2175a6fe2 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py @@ -1,17 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import copy import warnings diff --git a/floris/tools/rews.py b/floris/tools/rews.py index 175aabb3b..57efb024a 100644 --- a/floris/tools/rews.py +++ b/floris/tools/rews.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import numpy as np diff --git a/floris/tools/uncertainty_interface.py b/floris/tools/uncertainty_interface.py index aead4c887..7426f899d 100644 --- a/floris/tools/uncertainty_interface.py +++ b/floris/tools/uncertainty_interface.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import copy diff --git a/floris/tools/visualization.py b/floris/tools/visualization.py index d8689384c..d1237c338 100644 --- a/floris/tools/visualization.py +++ b/floris/tools/visualization.py @@ -1,16 +1,4 @@ -# Copyright 2021 NREL -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations import copy diff --git a/floris/tools/wind_data.py b/floris/tools/wind_data.py index ebf1c989c..3d22e8854 100644 --- a/floris/tools/wind_data.py +++ b/floris/tools/wind_data.py @@ -1,16 +1,3 @@ -# Copyright 2024 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/floris/turbine_library/turbine_previewer.py b/floris/turbine_library/turbine_previewer.py index f8f584448..2324b51e2 100644 --- a/floris/turbine_library/turbine_previewer.py +++ b/floris/turbine_library/turbine_previewer.py @@ -1,16 +1,3 @@ -# Copyright 2023 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/floris/turbine_library/turbine_utilities.py b/floris/turbine_library/turbine_utilities.py index bf553d2df..ae6c04537 100644 --- a/floris/turbine_library/turbine_utilities.py +++ b/floris/turbine_library/turbine_utilities.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/floris/type_dec.py b/floris/type_dec.py index a346a689e..2afbf7c9c 100644 --- a/floris/type_dec.py +++ b/floris/type_dec.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/floris/utilities.py b/floris/utilities.py index 4c498acb7..117726362 100644 --- a/floris/utilities.py +++ b/floris/utilities.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/profiling/linux_perf.py b/profiling/linux_perf.py index 150eeadf4..c6da03e2d 100644 --- a/profiling/linux_perf.py +++ b/profiling/linux_perf.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from contextlib import contextmanager from os import getpid diff --git a/profiling/profiling.py b/profiling/profiling.py index 334866362..272f75730 100644 --- a/profiling/profiling.py +++ b/profiling/profiling.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation # import re # import sys diff --git a/profiling/quality_metrics.py b/profiling/quality_metrics.py index 9a8a52097..ae2814f55 100644 --- a/profiling/quality_metrics.py +++ b/profiling/quality_metrics.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import copy import time diff --git a/setup.py b/setup.py index c1a06a593..a50eb738e 100644 --- a/setup.py +++ b/setup.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from pathlib import Path @@ -86,11 +72,11 @@ install_requires=REQUIRED, extras_require=EXTRAS, include_package_data=True, - license="Apache-2.0", + license_files = ('LICENSE.txt',), classifiers=[ # Trove classifiers # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers - "License :: OSI Approved :: Apache Software License", + "License :: OSI Approved :: BSD License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", diff --git a/tests/__init__.py b/tests/__init__.py index 109cd1192..e69de29bb 100644 --- a/tests/__init__.py +++ b/tests/__init__.py @@ -1,13 +0,0 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation diff --git a/tests/base_test.py b/tests/base_test.py index 3be2e8710..89a608041 100644 --- a/tests/base_test.py +++ b/tests/base_test.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import pytest from attr import define, field diff --git a/tests/conftest.py b/tests/conftest.py index 124d52805..be440646f 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from __future__ import annotations diff --git a/tests/farm_unit_test.py b/tests/farm_unit_test.py index 72394c76b..b6597f68b 100644 --- a/tests/farm_unit_test.py +++ b/tests/farm_unit_test.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from copy import deepcopy from pathlib import Path diff --git a/tests/floris_unit_test.py b/tests/floris_unit_test.py index 8fc75ca1f..ef7d140e5 100644 --- a/tests/floris_unit_test.py +++ b/tests/floris_unit_test.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from pathlib import Path diff --git a/tests/flow_field_unit_test.py b/tests/flow_field_unit_test.py index 365088a31..3c5001506 100644 --- a/tests/flow_field_unit_test.py +++ b/tests/flow_field_unit_test.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np import pytest diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index 7a508bb66..43db0567c 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 5a3334015..a9958bad9 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np diff --git a/tests/reg_tests/floris_interface_regression_test.py b/tests/reg_tests/floris_interface_regression_test.py index 9110ade8b..c5833ed8c 100644 --- a/tests/reg_tests/floris_interface_regression_test.py +++ b/tests/reg_tests/floris_interface_regression_test.py @@ -1,16 +1,3 @@ -# Copyright 2023 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index 15cc8db3e..f5471701b 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index d265ceeeb..0c4869582 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index b108165d5..146e731c2 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np import pytest diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index 211d75024..be5935f90 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -1,16 +1,3 @@ -# Copyright 2022 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np diff --git a/tests/turbine_grid_unit_test.py b/tests/turbine_grid_unit_test.py index 7496bb21c..c65a90a29 100644 --- a/tests/turbine_grid_unit_test.py +++ b/tests/turbine_grid_unit_test.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import numpy as np diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index cc4b9f7ed..99a06993b 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -1,17 +1,3 @@ -# Copyright 2023 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - from pathlib import Path diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index 5b95d9dde..87c397328 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import os from pathlib import Path diff --git a/tests/turbine_utilities_unit_test.py b/tests/turbine_utilities_unit_test.py index c5f73ef64..3aa839a2f 100644 --- a/tests/turbine_utilities_unit_test.py +++ b/tests/turbine_utilities_unit_test.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import os from pathlib import Path diff --git a/tests/type_dec_unit_test.py b/tests/type_dec_unit_test.py index 3c5b87ded..5cc385d9d 100644 --- a/tests/type_dec_unit_test.py +++ b/tests/type_dec_unit_test.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from pathlib import Path from typing import List diff --git a/tests/utilities_unit_test.py b/tests/utilities_unit_test.py index 8f24a8aad..3048e7fb0 100644 --- a/tests/utilities_unit_test.py +++ b/tests/utilities_unit_test.py @@ -1,17 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation - import attr import numpy as np diff --git a/tests/wake_unit_tests.py b/tests/wake_unit_tests.py index 69bbcf2f5..09e66787c 100644 --- a/tests/wake_unit_tests.py +++ b/tests/wake_unit_tests.py @@ -1,16 +1,3 @@ -# Copyright 2021 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation from floris.simulation import WakeModelManager from tests.conftest import SampleInputs diff --git a/tests/wind_data_test.py b/tests/wind_data_test.py index 565d38ae1..c071abd54 100644 --- a/tests/wind_data_test.py +++ b/tests/wind_data_test.py @@ -1,16 +1,3 @@ -# Copyright 2024 NREL - -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation import numpy as np import pytest From d4c6a1fb6929225097bd80996284b1d76d80ee9b Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Tue, 20 Feb 2024 20:20:38 -0500 Subject: [PATCH 39/78] [BUGFIX] Disable wake steering secondary effects for TurbOPark (#813) * Raise NotImplementedErrors instead of running unvalidated secondary effects. * remove variables that are no longer used. --- floris/simulation/solver.py | 51 +++++-------------------------------- 1 file changed, 6 insertions(+), 45 deletions(-) diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index acf4568bb..ce0fa0e13 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -893,9 +893,6 @@ def turbopark_solver( z_i = np.mean(grid.z_sorted[:, i:i+1], axis=(2, 3)) z_i = z_i[:, :, None, None] - u_i = flow_field.u_sorted[:, :, i:i+1] - v_i = flow_field.v_sorted[:, :, i:i+1] - Cts = thrust_coefficient( velocities=flow_field.u_sorted, air_density=flow_field.air_density, @@ -947,31 +944,16 @@ def turbopark_solver( # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) axial_induction_i = axial_induction_i[:, 0:1, None, None] - turbulence_intensity_i = turbine_turbulence_intensity[:, i:i+1] yaw_angle_i = farm.yaw_angles_sorted[:, i:i+1, None, None] - hub_height_i = farm.hub_heights_sorted[:, i:i+1, None, None] rotor_diameter_i = farm.rotor_diameters_sorted[:, i:i+1, None, None] - TSR_i = farm.TSRs_sorted[:, i:i+1, None, None] effective_yaw_i = np.zeros_like(yaw_angle_i) effective_yaw_i += yaw_angle_i if model_manager.enable_secondary_steering: - added_yaw = wake_added_yaw( - u_i, - v_i, - flow_field.u_initial_sorted, - grid.y_sorted[:, i:i+1] - y_i, - grid.z_sorted[:, i:i+1], - rotor_diameter_i, - hub_height_i, - ct_i, - TSR_i, - axial_induction_i, - flow_field.wind_shear, - ) - effective_yaw_i += added_yaw + raise NotImplementedError( + "Secondary steering not available for this model.") # Model calculations # NOTE: exponential @@ -1020,33 +1002,12 @@ def turbopark_solver( deflection_field[:, ii:ii+1, :, :] = deflection_field_ii[:, i:i+1, :, :] if model_manager.enable_transverse_velocities: - v_wake, w_wake = calculate_transverse_velocity( - u_i, - flow_field.u_initial_sorted, - flow_field.dudz_initial_sorted, - grid.x_sorted - x_i, - grid.y_sorted - y_i, - grid.z_sorted, - rotor_diameter_i, - hub_height_i, - yaw_angle_i, - ct_i, - TSR_i, - axial_induction_i, - flow_field.wind_shear, - ) + raise NotImplementedError( + "Transverse velocities not used in this model.") if model_manager.enable_yaw_added_recovery: - I_mixing = yaw_added_turbulence_mixing( - u_i, - turbulence_intensity_i, - v_i, - flow_field.w_sorted[:, :, i:i+1], - v_wake[:, :, i:i+1], - w_wake[:, :, i:i+1], - ) - gch_gain = 2 - turbine_turbulence_intensity[:, :, i:i+1] = turbulence_intensity_i + gch_gain * I_mixing + raise NotImplementedError( + "Yaw added recovery not used in this model.") # NOTE: exponential velocity_deficit = model_manager.velocity_model.function( From 93cb7b8f32935e155cfc5c132e3d3b17d0f6b051 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Thu, 22 Feb 2024 10:41:10 -0500 Subject: [PATCH 40/78] Clarify turbine definition terms (#815) * pP -> cosine_loss_exponent_yaw throughout. * pT -> cosine_loss_exponent_tilt throughout. * Remove unused generator_efficiency key on turbine definitions. * Comments updated to better explain the role of the cosine_loss_exponent_yaw. * ruff. --- examples/33_specify_turbine_power_curve.py | 4 +- .../turbine_files/nrel_5MW_fixed.yaml | 5 +-- .../turbine_files/nrel_5MW_floating.yaml | 5 +-- .../nrel_5MW_floating_defined_floating.yaml | 5 +-- .../nrel_5MW_floating_fixedtilt15.yaml | 5 +-- .../nrel_5MW_floating_fixedtilt5.yaml | 5 +-- floris/simulation/rotor_velocity.py | 23 ++++++----- floris/simulation/turbine/operation_models.py | 8 ++-- floris/simulation/turbine/turbine.py | 27 ++++++------- floris/tools/convert_turbine_v3_to_v4.py | 7 +++- floris/turbine_library/iea_10MW.yaml | 5 +-- floris/turbine_library/iea_15MW.yaml | 6 +-- .../iea_15MW_floating_multi_dim_cp_ct.yaml | 5 +-- .../iea_15MW_multi_dim_cp_ct.yaml | 5 +-- floris/turbine_library/nrel_5MW.yaml | 9 ++--- floris/turbine_library/turbine_utilities.py | 38 +++++++++++-------- tests/conftest.py | 5 +-- tests/rotor_velocity_unit_test.py | 24 ++++++++---- tests/turbine_multi_dim_unit_test.py | 11 ++++-- tests/turbine_unit_test.py | 11 ++++-- tests/turbine_utilities_unit_test.py | 26 ++++++++++--- 21 files changed, 138 insertions(+), 101 deletions(-) diff --git a/examples/33_specify_turbine_power_curve.py b/examples/33_specify_turbine_power_curve.py index cf1c5f5bc..2359cebb8 100644 --- a/examples/33_specify_turbine_power_curve.py +++ b/examples/33_specify_turbine_power_curve.py @@ -31,8 +31,8 @@ file_name=None, generator_efficiency=1, hub_height=90, - pP=1.88, - pT=1.88, + cosine_loss_exponent_yaw=1.88, + cosine_loss_exponent_tilt=1.88, rotor_diameter=126, TSR=8, ref_air_density=1.225, diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml index 1a0fb784b..a39a94357 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_fixed.yaml @@ -1,5 +1,4 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 0.944 hub_height: 90.0 rotor_diameter: 125.88 TSR: 8.0 @@ -7,8 +6,8 @@ correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: ref_air_density: 1.225 ref_tilt: 5.0 - pP: 1.88 - pT: 1.88 + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 power: - 0.0 - 0.0 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml index 668ff65fa..165da6a33 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating.yaml @@ -1,5 +1,4 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 0.944 hub_height: 90.0 rotor_diameter: 125.88 TSR: 8.0 @@ -7,8 +6,8 @@ correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: ref_air_density: 1.225 ref_tilt: 5.0 - pP: 1.88 - pT: 1.88 + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 power: - 0.0 - 0.0 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml index 7ba75de17..dbfd9c1a5 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_defined_floating.yaml @@ -1,5 +1,4 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 0.944 hub_height: 90.0 rotor_diameter: 125.88 TSR: 8.0 @@ -7,8 +6,8 @@ correct_cp_ct_for_tilt: False # Do not apply tilt correction to cp/ct power_thrust_table: ref_air_density: 1.225 ref_tilt: 5.0 - pP: 1.88 - pT: 1.88 + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 power: - 0.0 - 0.0 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml index 4923d4e55..e7186ca9f 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt15.yaml @@ -1,5 +1,4 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 0.944 hub_height: 90.0 rotor_diameter: 125.88 TSR: 8.0 @@ -7,8 +6,8 @@ correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: ref_air_density: 1.225 ref_tilt: 5.0 - pP: 1.88 - pT: 1.88 + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 power: - 0.0 - 0.0 diff --git a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml index 1a0fb784b..a39a94357 100644 --- a/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml +++ b/examples/inputs_floating/turbine_files/nrel_5MW_floating_fixedtilt5.yaml @@ -1,5 +1,4 @@ turbine_type: 'nrel_5MW_floating' -generator_efficiency: 0.944 hub_height: 90.0 rotor_diameter: 125.88 TSR: 8.0 @@ -7,8 +6,8 @@ correct_cp_ct_for_tilt: True # Apply tilt correction to cp/ct power_thrust_table: ref_air_density: 1.225 ref_tilt: 5.0 - pP: 1.88 - pT: 1.88 + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 power: - 0.0 - 0.0 diff --git a/floris/simulation/rotor_velocity.py b/floris/simulation/rotor_velocity.py index c70bb2570..1dbbeb1ed 100644 --- a/floris/simulation/rotor_velocity.py +++ b/floris/simulation/rotor_velocity.py @@ -18,12 +18,12 @@ def rotor_velocity_yaw_correction( - pP: float, + cosine_loss_exponent_yaw: float, yaw_angles: NDArrayFloat, rotor_effective_velocities: NDArrayFloat, ) -> NDArrayFloat: # Compute the rotor effective velocity adjusting for yaw settings - pW = pP / 3.0 # Convert from pP to w + pW = cosine_loss_exponent_yaw / 3.0 # Convert from cosine_loss_exponent_yaw to w # TODO: cosine loss hard coded rotor_effective_velocities = rotor_effective_velocities * cosd(yaw_angles) ** pW @@ -32,7 +32,7 @@ def rotor_velocity_yaw_correction( def rotor_velocity_tilt_correction( tilt_angles: NDArrayFloat, ref_tilt: NDArrayFloat, - pT: float, + cosine_loss_exponent_tilt: float, tilt_interp: NDArrayObject, correct_cp_ct_for_tilt: NDArrayBool, rotor_effective_velocities: NDArrayFloat, @@ -50,7 +50,10 @@ def rotor_velocity_tilt_correction( # Compute the rotor effective velocity adjusting for tilt # TODO: cosine loss hard coded relative_tilt = tilt_angles - ref_tilt - rotor_effective_velocities = rotor_effective_velocities * cosd(relative_tilt) ** (pT / 3.0) + rotor_effective_velocities = ( + rotor_effective_velocities + * cosd(relative_tilt) ** (cosine_loss_exponent_tilt / 3.0) + ) return rotor_effective_velocities def simple_mean(array, axis=0): @@ -177,8 +180,8 @@ def rotor_effective_velocity( yaw_angle: NDArrayFloat, tilt_angle: NDArrayFloat, ref_tilt: NDArrayFloat, - pP: float, - pT: float, + cosine_loss_exponent_yaw: float, + cosine_loss_exponent_tilt: float, tilt_interp: NDArrayObject, correct_cp_ct_for_tilt: NDArrayBool, turbine_type_map: NDArrayObject, @@ -198,8 +201,8 @@ def rotor_effective_velocity( yaw_angle = yaw_angle[:, ix_filter] tilt_angle = tilt_angle[:, ix_filter] ref_tilt = ref_tilt[:, ix_filter] - pP = pP[:, ix_filter] - pT = pT[:, ix_filter] + cosine_loss_exponent_yaw = cosine_loss_exponent_yaw[:, ix_filter] + cosine_loss_exponent_tilt = cosine_loss_exponent_tilt[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] # Compute the rotor effective velocity adjusting for air density @@ -212,7 +215,7 @@ def rotor_effective_velocity( # Compute the rotor effective velocity adjusting for yaw settings rotor_effective_velocities = rotor_velocity_yaw_correction( - pP, + cosine_loss_exponent_yaw, yaw_angle, rotor_effective_velocities ) @@ -222,7 +225,7 @@ def rotor_effective_velocity( turbine_type_map, tilt_angle, ref_tilt, - pT, + cosine_loss_exponent_tilt, tilt_interp, correct_cp_ct_for_tilt, rotor_effective_velocities, diff --git a/floris/simulation/turbine/operation_models.py b/floris/simulation/turbine/operation_models.py index 63c4bc38f..dc12865fb 100644 --- a/floris/simulation/turbine/operation_models.py +++ b/floris/simulation/turbine/operation_models.py @@ -167,8 +167,8 @@ class CosineLossTurbine(BaseOperationModel): """ Static class defining an actuator disk turbine model that may be misaligned with the flow. Nonzero tilt and yaw angles are handled via cosine relationships, with the power lost to yawing - defined by the pP exponent. This turbine submodel is the default, and matches the turbine - model in FLORIS v3. + defined by the cosine of the yaw misalignment raised to the power of cosine_loss_exponent_yaw. + This turbine submodel is the default, and matches the turbine model in FLORIS v3. As with all turbine submodules, implements only static power() and thrust_coefficient() methods, which are called by power() and thrust_coefficient() on turbine.py, respectively. This class is @@ -211,7 +211,7 @@ def power( ) rotor_effective_velocities = rotor_velocity_yaw_correction( - pP=power_thrust_table["pP"], + cosine_loss_exponent_yaw=power_thrust_table["cosine_loss_exponent_yaw"], yaw_angles=yaw_angles, rotor_effective_velocities=rotor_effective_velocities, ) @@ -219,7 +219,7 @@ def power( rotor_effective_velocities = rotor_velocity_tilt_correction( tilt_angles=tilt_angles, ref_tilt=power_thrust_table["ref_tilt"], - pT=power_thrust_table["pT"], + cosine_loss_exponent_tilt=power_thrust_table["cosine_loss_exponent_tilt"], tilt_interp=tilt_interp, correct_cp_ct_for_tilt=correct_cp_ct_for_tilt, rotor_effective_velocities=rotor_effective_velocities, diff --git a/floris/simulation/turbine/turbine.py b/floris/simulation/turbine/turbine.py index 22a22e0fb..6389bf9b0 100644 --- a/floris/simulation/turbine/turbine.py +++ b/floris/simulation/turbine/turbine.py @@ -117,12 +117,12 @@ def power( """ # TODO: Change the order of input arguments to be consistent with the other # utility functions - velocities first... - # Update to power calculation which replaces the fixed pP exponent with - # an exponent pW, that changes the effective wind speed input to the power - # calculation, rather than scaling the power. This better handles power - # loss to yaw in above rated conditions + # Update to power calculation which replaces the fixed cosine_loss_exponent_yaw exponent + # (which applies to the cosine of the yaw misalignment) with an exponent pW, that changes the + # effective wind speed input to the power calculation, rather than scaling the power. This + # better handles power loss to yaw in above rated conditions # - # based on the paper "Optimising yaw control at wind farm level" by + # Based on the paper "Optimising yaw control at wind farm level" by # Ervin Bossanyi # Down-select inputs if ix_filter is given @@ -390,8 +390,6 @@ class Turbine(BaseClass): rotor_diameter (float): The rotor diameter in meters. hub_height (float): The hub height in meters. TSR (float): The Tip Speed Ratio of the turbine. - generator_efficiency (float): The efficiency of the generator used to scale - power production. power_thrust_table (dict[str, float]): Contains power coefficient and thrust coefficient values at a series of wind speeds to define the turbine performance. The dictionary must have the following three keys with equal length values: @@ -403,10 +401,10 @@ class Turbine(BaseClass): or, contain a key "power_thrust_data_file" pointing to the power/thrust data. Optionally, power_thrust_table may include parameters for use in the turbine submodel, for example: - pP (float): The cosine exponent relating the yaw misalignment angle to turbine - power. - pT (float): The cosine exponent relating the rotor tilt angle to turbine - power. + cosine_loss_exponent_yaw (float): The cosine exponent relating the yaw misalignment + angle to turbine power. + cosine_loss_exponent_tilt (float): The cosine exponent relating the rotor tilt angle + to turbine power. ref_air_density (float): The density at which the provided Cp and Ct curves are defined. ref_tilt (float): The implicit tilt of the turbine for which the Cp and Ct @@ -428,7 +426,6 @@ class Turbine(BaseClass): rotor_diameter: float = field() hub_height: float = field() TSR: float = field() - generator_efficiency: float = field() power_thrust_table: dict = field(default={}) # conversion to numpy in __post_init__ power_thrust_model: str = field(default="cosine-loss") @@ -527,7 +524,11 @@ def _initialize_multidim_power_thrust_table(self): key: { "wind_speed": data['ws'].values, "power": ( - 0.5 * self.rotor_area * data['Cp'].values * self.generator_efficiency + # NOTE: generator_efficiency hardcoded to 0.944 here (NREL 5MW default). + # This code will be + # removed in a separate PR when power is specified as an absolute value for + # mutlidimensional turbines + 0.5 * self.rotor_area * data['Cp'].values * 0.944 * data['ws'].values ** 3 * power_thrust_table_ref["ref_air_density"] / 1000 ), # TODO: convert this to 'power' or 'P' in data tables, as per PR #765 "thrust_coefficient": data['Ct'].values, diff --git a/floris/tools/convert_turbine_v3_to_v4.py b/floris/tools/convert_turbine_v3_to_v4.py index c2e22d036..7e5b9e123 100644 --- a/floris/tools/convert_turbine_v3_to_v4.py +++ b/floris/tools/convert_turbine_v3_to_v4.py @@ -45,8 +45,8 @@ valid_properties = [ "generator_efficiency", "hub_height", - "pP", - "pT", + "cosine_loss_exponent_yaw", + "cosine_loss_exponent_tilt", "rotor_diameter", "TSR", "ref_air_density", @@ -55,8 +55,11 @@ turbine_properties = {k:v for k,v in v3_turbine_dict.items() if k in valid_properties} turbine_properties["ref_air_density"] = v3_turbine_dict["ref_density_cp_ct"] + turbine_properties["cosine_loss_exponent_yaw"] = v3_turbine_dict["pP"] if "ref_tilt_cp_ct" in v3_turbine_dict: turbine_properties["ref_tilt"] = v3_turbine_dict["ref_tilt_cp_ct"] + if "pT" in v3_turbine_dict: + turbine_properties["cosine_loss_exponent_tilt"] = v3_turbine_dict["pT"] # Convert to v4 and print new yaml v4_turbine_dict = build_cosine_loss_turbine_dict( diff --git a/floris/turbine_library/iea_10MW.yaml b/floris/turbine_library/iea_10MW.yaml index 33ffdc037..82aa899fa 100644 --- a/floris/turbine_library/iea_10MW.yaml +++ b/floris/turbine_library/iea_10MW.yaml @@ -2,7 +2,6 @@ # https://github.com/NREL/turbine-models/blob/master/Offshore/IEA_10MW_198_RWT.csv # Note: Generator efficiency of 94% used. Small power variations above rated removed. turbine_type: 'iea_10MW' -generator_efficiency: 0.94 hub_height: 119.0 rotor_diameter: 198.0 TSR: 8.0 @@ -10,8 +9,8 @@ power_thrust_model: cosine-loss power_thrust_table: ref_air_density: 1.225 ref_tilt: 6.0 - pP: 1.88 - pT: 1.88 + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 power: - 0.0 - 0.0 diff --git a/floris/turbine_library/iea_15MW.yaml b/floris/turbine_library/iea_15MW.yaml index 3da19c654..456b40398 100644 --- a/floris/turbine_library/iea_15MW.yaml +++ b/floris/turbine_library/iea_15MW.yaml @@ -2,8 +2,8 @@ # https://github.com/IEAWindTask37/IEA-15-240-RWT/blob/master/Documentation/ # IEA-15-240-RWT_tabular.xlsx # Note: Small power variations above rated removed. +# Generator efficiency of 100% used. turbine_type: 'iea_15MW' -generator_efficiency: 1.0 hub_height: 150.0 rotor_diameter: 242.24 TSR: 8.0 @@ -11,8 +11,8 @@ power_thrust_model: cosine-loss power_thrust_table: ref_air_density: 1.225 ref_tilt: 6.0 - pP: 1.88 - pT: 1.88 + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 power: - 0.000000 - 0.000000 diff --git a/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml b/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml index 127923ae4..646a4e86a 100644 --- a/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml +++ b/floris/turbine_library/iea_15MW_floating_multi_dim_cp_ct.yaml @@ -1,5 +1,4 @@ turbine_type: 'iea_15MW_floating' -generator_efficiency: 1.0 hub_height: 150.0 rotor_diameter: 242.24 TSR: 8.0 @@ -7,8 +6,8 @@ multi_dimensional_cp_ct: True power_thrust_table: ref_air_density: 1.225 ref_tilt: 6.0 - pP: 1.88 - pT: 1.88 + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' floating_tilt_table: tilt: diff --git a/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml b/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml index 756f3dc1d..b08b348de 100644 --- a/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml +++ b/floris/turbine_library/iea_15MW_multi_dim_cp_ct.yaml @@ -1,5 +1,4 @@ turbine_type: 'iea_15MW_multi_dim_cp_ct' -generator_efficiency: 1.0 hub_height: 150.0 rotor_diameter: 242.24 TSR: 8.0 @@ -7,6 +6,6 @@ multi_dimensional_cp_ct: True power_thrust_table: ref_air_density: 1.225 ref_tilt: 6.0 - pP: 1.88 - pT: 1.88 + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 power_thrust_data_file: 'iea_15MW_multi_dim_Tp_Hs.csv' diff --git a/floris/turbine_library/nrel_5MW.yaml b/floris/turbine_library/nrel_5MW.yaml index 2b44977e7..9a93245eb 100644 --- a/floris/turbine_library/nrel_5MW.yaml +++ b/floris/turbine_library/nrel_5MW.yaml @@ -2,6 +2,7 @@ # Data based on: # https://github.com/NREL/turbine-models/blob/master/Offshore/NREL_5MW_126_RWT_corrected.csv # Note: Small power variations above rated removed. Rotor diameter includes coning angle. +# Note: generator efficiency of 94.4% is assumed for the NREL 5MW turbine. ### # An ID for this type of turbine definition. @@ -9,10 +10,6 @@ # match the root name of the file. turbine_type: 'nrel_5MW' -### -# Setting for generator losses to power. -generator_efficiency: 0.944 - ### # Hub height. hub_height: 90.0 @@ -39,9 +36,9 @@ power_thrust_table: # the effects of a floating platform on a turbine's power and wake. ref_tilt: 5.0 # Cosine exponent for power loss due to tilt. - pT: 1.88 + cosine_loss_exponent_tilt: 1.88 # Cosine exponent for power loss due to yaw misalignment. - pP: 1.88 + cosine_loss_exponent_yaw: 1.88 ### Power thrust table data wind_speed: - 0.0 diff --git a/floris/turbine_library/turbine_utilities.py b/floris/turbine_library/turbine_utilities.py index ae6c04537..eff9df63e 100644 --- a/floris/turbine_library/turbine_utilities.py +++ b/floris/turbine_library/turbine_utilities.py @@ -11,10 +11,10 @@ def build_cosine_loss_turbine_dict( turbine_data_dict, turbine_name, file_name=None, - generator_efficiency=0.944, + generator_efficiency=None, hub_height=90.0, - pP=1.88, - pT=1.88, + cosine_loss_exponent_yaw=1.88, + cosine_loss_exponent_tilt=1.88, rotor_diameter=125.88, TSR=8.0, ref_air_density=1.225, @@ -34,14 +34,15 @@ def build_cosine_loss_turbine_dict( turbine power and thrust as a function of wind speed. The following keys are possible: - wind_speed [m/s] - - power_absolute [kW] + - power [kW] - power_coefficient [-] - - thrust_absolute [kN] + - thrust [kN] - thrust_coefficient [-] - Of these, wind_speed is required. One of power_absolute and power_coefficient - must be specified; and one of thrust_absolute and thrust_coefficient must be - specified. If both _absolute and _coefficient versions are specified, the - _coefficient entry will be used and the _absolute entry ignored. + Of these, wind_speed is required. One of power and power_coefficient + must be specified; and one of thrust and thrust_coefficient must be + specified. If both (absolute) and _coefficient versions are specified, the + (absolute) power will be used along with the thrust_coefficient, with the + other entries ignored. Args: turbine_data_dict (dict): Dictionary containing performance of the wind @@ -50,10 +51,14 @@ def build_cosine_loss_turbine_dict( turbine_type field as well as the filename. file_name (): Name for the produced yaml, including possibly path. Defaults to None, in which case no yaml is written. - generator_efficiency (float): Generator efficiency [-]. Defaults to 1.0. + generator_efficiency (float): Generator efficiency [-]. Unused if power is specified + in absolute terms in the turbine_data_dict. Must be specified if + power not specified and power_coefficient specified instead. Defaults to None. hub_height (float): Hub height [m]. Defaults to 90.0. - pP (float): Cosine exponent for power loss to yaw [-]. Defaults to 1.88. - pT (float): Cosine exponent for thrust loss to yaw [-]. Defaults to 1.88. + cosine_loss_exponent_yaw (float): Cosine exponent for power loss to yaw [-]. + Defaults to 1.88. + cosine_loss_exponent_tilt (float): Cosine exponent for thrust loss to yaw [-]. + Defaults to 1.88. rotor_diameter (float). Rotor diameter [m]. Defaults to 126.0. TSR (float). Turbine optimal tip-speed ratio [-]. Defaults to 8.0. ref_air_density (float). Air density used to specify power and thrust @@ -82,6 +87,10 @@ def build_cosine_loss_turbine_dict( p = np.array(turbine_data_dict["power"]) elif "power_coefficient" in turbine_data_dict: + if generator_efficiency is None: + raise KeyError( + "generator_efficiency must be specified to convert power_coefficient to power." + ) Cp = np.array(turbine_data_dict["power_coefficient"]) if _find_nearest_value_for_wind_speed(Cp, u, 10) > 16.0/27.0 or \ _find_nearest_value_for_wind_speed(Cp, u, 10) < 0.0: @@ -137,8 +146,8 @@ def build_cosine_loss_turbine_dict( power_thrust_dict = { "ref_air_density": ref_air_density, "ref_tilt": ref_tilt, - "pP": pP, - "pT": pT, + "cosine_loss_exponent_yaw": cosine_loss_exponent_yaw, + "cosine_loss_exponent_tilt": cosine_loss_exponent_tilt, "wind_speed": u.tolist(), "power": p.tolist(), "thrust_coefficient": Ct.tolist() @@ -146,7 +155,6 @@ def build_cosine_loss_turbine_dict( turbine_dict = { "turbine_type": turbine_name, - "generator_efficiency": generator_efficiency, "hub_height": hub_height, "rotor_diameter": rotor_diameter, "TSR": TSR, diff --git a/tests/conftest.py b/tests/conftest.py index be440646f..84c71fd45 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -190,11 +190,10 @@ def __init__(self): "turbine_type": "nrel_5mw", "rotor_diameter": 125.88, "hub_height": 90.0, - "generator_efficiency": 0.944, "power_thrust_model": "cosine-loss", "power_thrust_table": { - "pP": 1.88, - "pT": 1.88, + "cosine_loss_exponent_yaw": 1.88, + "cosine_loss_exponent_tilt": 1.88, "ref_air_density": 1.225, "ref_tilt": 5.0, "power": [ diff --git a/tests/rotor_velocity_unit_test.py b/tests/rotor_velocity_unit_test.py index c90892752..30b19f346 100644 --- a/tests/rotor_velocity_unit_test.py +++ b/tests/rotor_velocity_unit_test.py @@ -21,7 +21,7 @@ def test_rotor_velocity_yaw_correction(): # Test a single turbine for zero yaw yaw_corrected_velocities = rotor_velocity_yaw_correction( - pP=3.0, + cosine_loss_exponent_yaw=3.0, yaw_angles=0.0, rotor_effective_velocities=wind_speed, ) @@ -29,7 +29,7 @@ def test_rotor_velocity_yaw_correction(): # Test a single turbine for non-zero yaw yaw_corrected_velocities = rotor_velocity_yaw_correction( - pP=3.0, + cosine_loss_exponent_yaw=3.0, yaw_angles=60.0, rotor_effective_velocities=wind_speed, ) @@ -37,7 +37,7 @@ def test_rotor_velocity_yaw_correction(): # Test multiple turbines for zero yaw yaw_corrected_velocities = rotor_velocity_yaw_correction( - pP=3.0, + cosine_loss_exponent_yaw=3.0, yaw_angles=np.zeros((1, N_TURBINES)), rotor_effective_velocities=wind_speed_N_TURBINES, ) @@ -45,7 +45,7 @@ def test_rotor_velocity_yaw_correction(): # Test multiple turbines for non-zero yaw yaw_corrected_velocities = rotor_velocity_yaw_correction( - pP=3.0, + cosine_loss_exponent_yaw=3.0, yaw_angles=np.ones((1, N_TURBINES)) * 60.0, rotor_effective_velocities=wind_speed_N_TURBINES, ) @@ -70,7 +70,9 @@ def test_rotor_velocity_tilt_correction(): #turbine_type_map=np.array([turbine_type_map[:, 0]]), tilt_angles=5.0*np.ones((1, 1)), ref_tilt=np.array([turbine.power_thrust_table["ref_tilt"]]), - pT=np.array([turbine.power_thrust_table["pT"]]), + cosine_loss_exponent_tilt=np.array( + [turbine.power_thrust_table["cosine_loss_exponent_tilt"]] + ), tilt_interp=turbine.tilt_interp, correct_cp_ct_for_tilt=np.array([[False]]), rotor_effective_velocities=wind_speed, @@ -83,7 +85,9 @@ def test_rotor_velocity_tilt_correction(): #turbine_type_map=turbine_type_map, tilt_angles=5.0*np.ones((1, N_TURBINES)), ref_tilt=np.array([turbine.power_thrust_table["ref_tilt"]] * N_TURBINES), - pT=np.array([turbine.power_thrust_table["pT"]] * N_TURBINES), + cosine_loss_exponent_tilt=np.array( + [turbine.power_thrust_table["cosine_loss_exponent_tilt"]] * N_TURBINES + ), tilt_interp=turbine.tilt_interp, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), rotor_effective_velocities=wind_speed_N_TURBINES, @@ -96,7 +100,9 @@ def test_rotor_velocity_tilt_correction(): #turbine_type_map=np.array([turbine_type_map[:, 0]]), tilt_angles=5.0*np.ones((1, 1)), ref_tilt=np.array([turbine_floating.power_thrust_table["ref_tilt"]]), - pT=np.array([turbine_floating.power_thrust_table["pT"]]), + cosine_loss_exponent_tilt=np.array( + [turbine_floating.power_thrust_table["cosine_loss_exponent_tilt"]] + ), tilt_interp=turbine_floating.tilt_interp, correct_cp_ct_for_tilt=np.array([[True]]), rotor_effective_velocities=wind_speed, @@ -109,7 +115,9 @@ def test_rotor_velocity_tilt_correction(): #turbine_type_map, tilt_angles=5.0*np.ones((1, N_TURBINES)), ref_tilt=np.array([turbine_floating.power_thrust_table["ref_tilt"]] * N_TURBINES), - pT=np.array([turbine_floating.power_thrust_table["pT"]] * N_TURBINES), + cosine_loss_exponent_tilt=np.array( + [turbine_floating.power_thrust_table["cosine_loss_exponent_tilt"]] * N_TURBINES + ), tilt_interp=turbine_floating.tilt_interp, correct_cp_ct_for_tilt=np.array([[True] * N_TURBINES]), rotor_effective_velocities=wind_speed_N_TURBINES, diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index 99a06993b..7c0091d49 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -58,9 +58,14 @@ def test_turbine_init(): condition = (2, 1) assert turbine.rotor_diameter == turbine_data["rotor_diameter"] assert turbine.hub_height == turbine_data["hub_height"] - assert turbine.power_thrust_table[condition]["pP"] == turbine_data["power_thrust_table"]["pP"] - assert turbine.power_thrust_table[condition]["pT"] == turbine_data["power_thrust_table"]["pT"] - assert turbine.generator_efficiency == turbine_data["generator_efficiency"] + assert ( + turbine.power_thrust_table[condition]["cosine_loss_exponent_yaw"] + == turbine_data["power_thrust_table"]["cosine_loss_exponent_yaw"] + ) + assert ( + turbine.power_thrust_table[condition]["cosine_loss_exponent_tilt"] + == turbine_data["power_thrust_table"]["cosine_loss_exponent_tilt"] + ) assert isinstance(turbine.power_thrust_table, dict) assert callable(turbine.thrust_coefficient_function) diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index 87c397328..e366aeb11 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -31,10 +31,15 @@ def test_turbine_init(): assert turbine.turbine_type == turbine_data["turbine_type"] assert turbine.rotor_diameter == turbine_data["rotor_diameter"] assert turbine.hub_height == turbine_data["hub_height"] - assert turbine.power_thrust_table["pP"] == turbine_data["power_thrust_table"]["pP"] - assert turbine.power_thrust_table["pT"] == turbine_data["power_thrust_table"]["pT"] + assert ( + turbine.power_thrust_table["cosine_loss_exponent_yaw"] + == turbine_data["power_thrust_table"]["cosine_loss_exponent_yaw"] + ) + assert ( + turbine.power_thrust_table["cosine_loss_exponent_tilt"] + == turbine_data["power_thrust_table"]["cosine_loss_exponent_tilt"] + ) assert turbine.TSR == turbine_data["TSR"] - assert turbine.generator_efficiency == turbine_data["generator_efficiency"] assert ( turbine.power_thrust_table["ref_air_density"] == turbine_data["power_thrust_table"]["ref_air_density"] diff --git a/tests/turbine_utilities_unit_test.py b/tests/turbine_utilities_unit_test.py index 3aa839a2f..44a8297b9 100644 --- a/tests/turbine_utilities_unit_test.py +++ b/tests/turbine_utilities_unit_test.py @@ -3,6 +3,7 @@ from pathlib import Path import numpy as np +import pytest import yaml from floris.turbine_library import build_cosine_loss_turbine_dict, check_smooth_power_curve @@ -25,14 +26,30 @@ def test_build_turbine_dict(): "test_turbine", generator_efficiency=turbine_data_v3["generator_efficiency"], hub_height=turbine_data_v3["hub_height"], - pP=turbine_data_v3["pP"], - pT=turbine_data_v3["pT"], + cosine_loss_exponent_yaw=turbine_data_v3["pP"], + cosine_loss_exponent_tilt=turbine_data_v3["pT"], rotor_diameter=turbine_data_v3["rotor_diameter"], TSR=turbine_data_v3["TSR"], ref_air_density=turbine_data_v3["ref_density_cp_ct"], ref_tilt=turbine_data_v3["ref_tilt_cp_ct"] ) + # Test correct error raised if power_coefficient version passed and generator efficiency + # not specified + with pytest.raises(KeyError): + build_cosine_loss_turbine_dict( + turbine_data_dict, + "test_turbine", + #generator_efficiency=turbine_data_v3["generator_efficiency"], + hub_height=turbine_data_v3["hub_height"], + cosine_loss_exponent_yaw=turbine_data_v3["pP"], + cosine_loss_exponent_tilt=turbine_data_v3["pT"], + rotor_diameter=turbine_data_v3["rotor_diameter"], + TSR=turbine_data_v3["TSR"], + ref_air_density=turbine_data_v3["ref_density_cp_ct"], + ref_tilt=turbine_data_v3["ref_tilt_cp_ct"] + ) + # Directly compute power, thrust values Cp = np.array(turbine_data_v3["power_thrust_table"]["power"]) Ct = np.array(turbine_data_v3["power_thrust_table"]["thrust"]) @@ -72,10 +89,9 @@ def test_build_turbine_dict(): test_dict_2 = build_cosine_loss_turbine_dict( turbine_data_dict, "test_turbine", - generator_efficiency=turbine_data_v4["generator_efficiency"], hub_height=turbine_data_v4["hub_height"], - pP=turbine_data_v4["power_thrust_table"]["pP"], - pT=turbine_data_v4["power_thrust_table"]["pT"], + cosine_loss_exponent_yaw=turbine_data_v4["power_thrust_table"]["cosine_loss_exponent_yaw"], + cosine_loss_exponent_tilt=turbine_data_v4["power_thrust_table"]["cosine_loss_exponent_tilt"], rotor_diameter=turbine_data_v4["rotor_diameter"], TSR=turbine_data_v4["TSR"], ref_air_density=turbine_data_v4["power_thrust_table"]["ref_air_density"], From 8171bff107083373c6232b1be2cf4111449bb7fe Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Thu, 22 Feb 2024 17:10:29 -0500 Subject: [PATCH 41/78] Support multidimensional turbine definitions in all wake models (#812) * Allow cc solver to accept multidim conditions. * Emgauss runs with mutlidim conditions. * Remove multidim_cp_ct option. * Remove references to multidim_cp_ct wake model. * Add multidim capabilities to full_flow solvers. * Turbopark solver compatibility. * add parameters for other models to multidim input yaml for exposition. * Add regression tests for full flow solvers * CC full flow solver bug fix --------- Co-authored-by: Rafael M Mudafort --- examples/30_multi_dimensional_cp_ct.py | 3 +- examples/inputs/gch.yaml | 2 +- examples/inputs/gch_multi_dim_cp_ct.yaml | 24 +++- floris/simulation/solver.py | 49 +++++-- floris/simulation/wake.py | 1 - .../cumulative_curl_regression_test.py | 71 ++++++++++ .../empirical_gauss_regression_test.py | 73 ++++++++++ .../floris_interface_regression_test.py | 134 ------------------ tests/reg_tests/gauss_regression_test.py | 72 ++++++++++ .../jensen_jimenez_regression_test.py | 71 ++++++++++ tests/reg_tests/none_regression_test.py | 71 ++++++++++ tests/reg_tests/turbopark_regression_test.py | 31 ++++ 12 files changed, 449 insertions(+), 153 deletions(-) delete mode 100644 tests/reg_tests/floris_interface_regression_test.py diff --git a/examples/30_multi_dimensional_cp_ct.py b/examples/30_multi_dimensional_cp_ct.py index d1cd15b54..429159a0b 100644 --- a/examples/30_multi_dimensional_cp_ct.py +++ b/examples/30_multi_dimensional_cp_ct.py @@ -19,8 +19,7 @@ height. For every combination of Tp and Hs defined, a Cp/Ct/Wind speed table of values is also defined. It is required for this .csv file to have the last 3 columns be ws, Cp, and Ct. In order for this table to be used, the flag 'multi_dimensional_cp_ct' must be present and set to true in -the turbine definition. Also of note is the 'velocity_model' must be set to 'multidim_cp_ct' in -the main input file. With both of these values provided, the solver will downselect to use the +the turbine definition. With this flag enabled, the solver will downselect to use the interpolant defined at the closest conditions. The user must supply these conditions in the main input file under the 'flow_field' section, e.g.: diff --git a/examples/inputs/gch.yaml b/examples/inputs/gch.yaml index 2cd76c7f5..3397839da 100644 --- a/examples/inputs/gch.yaml +++ b/examples/inputs/gch.yaml @@ -139,7 +139,7 @@ flow_field: # The conditions that are specified for use with the multi-dimensional Cp/Ct capbility. # These conditions are external to FLORIS and specified by the user. They are used internally # through a nearest-neighbor selection process to choose the correct Cp/Ct interpolants - # to use. These conditions are only used with the ``multidim_cp_ct`` velocity deficit model. + # to use. multidim_conditions: Tp: 2.5 Hs: 3.01 diff --git a/examples/inputs/gch_multi_dim_cp_ct.yaml b/examples/inputs/gch_multi_dim_cp_ct.yaml index e14976050..581dd1f37 100644 --- a/examples/inputs/gch_multi_dim_cp_ct.yaml +++ b/examples/inputs/gch_multi_dim_cp_ct.yaml @@ -47,7 +47,7 @@ wake: combination_model: sosfs deflection_model: gauss turbulence_model: crespo_hernandez - velocity_model: multidim_cp_ct + velocity_model: gauss enable_secondary_steering: true enable_yaw_added_recovery: true @@ -66,6 +66,12 @@ wake: ad: 0.0 bd: 0.0 kd: 0.05 + empirical_gauss: + horizontal_deflection_gain_D: 3.0 + vertical_deflection_gain_D: -1 + deflection_rate: 30 + mixing_gain_deflection: 0.0 + yaw_added_mixing_gain: 0.0 wake_velocity_parameters: cc: @@ -77,13 +83,25 @@ wake: b_f: -0.68 c_f: 2.41 alpha_mod: 1.0 - multidim_cp_ct: + gauss: alpha: 0.58 beta: 0.077 ka: 0.38 kb: 0.004 jensen: we: 0.05 + turbopark: + A: 0.04 + sigma_max_rel: 4.0 + empirical_gauss: + wake_expansion_rates: + - 0.023 + - 0.008 + breakpoints_D: + - 10 + sigma_0_D: 0.28 + smoothing_length_D: 2.0 + mixing_gain_velocity: 2.0 wake_turbulence_parameters: crespo_hernandez: @@ -91,3 +109,5 @@ wake: constant: 0.9 ai: 0.83 downstream: -0.25 + wake_induced_mixing: + atmospheric_ti_gain: 0.0 diff --git a/floris/simulation/solver.py b/floris/simulation/solver.py index ce0fa0e13..011f41985 100644 --- a/floris/simulation/solver.py +++ b/floris/simulation/solver.py @@ -333,6 +333,9 @@ def full_flow_sequential_solver( turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], + average_method=turbine_grid.average_method, + cubature_weights=turbine_grid.cubature_weights, + multidim_condition=turbine_grid_flow_field.multidim_conditions, ) # Since we are filtering for the i'th turbine in the thrust_coefficient function, # get the first index here (0:1) @@ -349,6 +352,9 @@ def full_flow_sequential_solver( turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], + average_method=turbine_grid.average_method, + cubature_weights=turbine_grid.cubature_weights, + multidim_condition=turbine_grid_flow_field.multidim_conditions, ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) @@ -502,7 +508,8 @@ def cc_solver( turbine_type_map=farm.turbine_type_map_sorted, turbine_power_thrust_tables=farm.turbine_power_thrust_tables, average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions, ) turb_Cts = turb_Cts[:, :, None, None] turb_aIs = axial_induction( @@ -518,7 +525,8 @@ def cc_solver( turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions, ) turb_aIs = turb_aIs[:, :, None, None] @@ -538,7 +546,8 @@ def cc_solver( turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions, ) axial_induction_i = axial_induction_i[:, :, None, None] @@ -670,7 +679,7 @@ def cc_solver( def full_flow_cc_solver( farm: Farm, flow_field: FlowField, - flow_field_grid: FlowFieldGrid, + flow_field_grid: FlowFieldGrid | FlowFieldPlanarGrid | PointsGrid, model_manager: WakeModelManager, ) -> None: # Get the flow quantities and turbine performance @@ -740,7 +749,7 @@ def full_flow_cc_solver( turb_avg_vels = average_velocity(turbine_grid_flow_field.u_sorted) turb_Cts = thrust_coefficient( velocities=turb_avg_vels, - air_density=flow_field_grid.air_density, + air_density=turbine_grid_flow_field.air_density, yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, power_setpoints=turbine_grid_farm.power_setpoints_sorted, @@ -750,7 +759,8 @@ def full_flow_cc_solver( turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, average_method=turbine_grid.average_method, - cubature_weights=turbine_grid.cubature_weights + cubature_weights=turbine_grid.cubature_weights, + multidim_condition=turbine_grid_flow_field.multidim_conditions, ) turb_Cts = turb_Cts[:, :, None, None] @@ -767,7 +777,8 @@ def full_flow_cc_solver( turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], average_method=turbine_grid.average_method, - cubature_weights=turbine_grid.cubature_weights + cubature_weights=turbine_grid.cubature_weights, + multidim_condition=turbine_grid_flow_field.multidim_conditions, ) axial_induction_i = axial_induction_i[:, :, None, None] @@ -905,7 +916,8 @@ def turbopark_solver( turbine_type_map=farm.turbine_type_map_sorted, turbine_power_thrust_tables=farm.turbine_power_thrust_tables, average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions, ) ct_i = thrust_coefficient( @@ -921,7 +933,8 @@ def turbopark_solver( turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions, ) # Since we are filtering for the i'th turbine in the thrust coefficient function, # get the first index here (0:1) @@ -939,7 +952,8 @@ def turbopark_solver( turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions, ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) @@ -984,7 +998,8 @@ def turbopark_solver( turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[ii], average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions, ) ct_ii = ct_ii[:, 0:1, None, None] rotor_diameter_ii = farm.rotor_diameters_sorted[:, ii:ii+1, None, None] @@ -1158,7 +1173,8 @@ def empirical_gauss_solver( turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions, ) # Since we are filtering for the i'th turbine in the thrust coefficient function, # get the first index here (0:1) @@ -1176,7 +1192,8 @@ def empirical_gauss_solver( turbine_power_thrust_tables=farm.turbine_power_thrust_tables, ix_filter=[i], average_method=grid.average_method, - cubature_weights=grid.cubature_weights + cubature_weights=grid.cubature_weights, + multidim_condition=flow_field.multidim_conditions, ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) @@ -1359,6 +1376,9 @@ def full_flow_empirical_gauss_solver( turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], + average_method=turbine_grid.average_method, + cubature_weights=turbine_grid.cubature_weights, + multidim_condition=turbine_grid_flow_field.multidim_conditions, ) # Since we are filtering for the i'th turbine in the thrust coefficient function, # get the first index here (0:1) @@ -1375,6 +1395,9 @@ def full_flow_empirical_gauss_solver( turbine_type_map=turbine_grid_farm.turbine_type_map_sorted, turbine_power_thrust_tables=turbine_grid_farm.turbine_power_thrust_tables, ix_filter=[i], + average_method=turbine_grid.average_method, + cubature_weights=turbine_grid.cubature_weights, + multidim_condition=turbine_grid_flow_field.multidim_conditions, ) # Since we are filtering for the i'th turbine in the axial induction function, # get the first index here (0:1) diff --git a/floris/simulation/wake.py b/floris/simulation/wake.py index 63944bf6b..28560151a 100644 --- a/floris/simulation/wake.py +++ b/floris/simulation/wake.py @@ -53,7 +53,6 @@ "jensen": JensenVelocityDeficit, "turbopark": TurbOParkVelocityDeficit, "empirical_gauss": EmpiricalGaussVelocityDeficit, - "multidim_cp_ct": GaussVelocityDeficit }, } diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index 43db0567c..b346e2ece 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -137,6 +137,48 @@ ] ) +full_flow_baseline = np.array( + [ + [ + [ + [7.88772361, 8.00000000, 8.10178821], + [7.88772361, 8.00000000, 8.10178821], + [7.88772361, 8.00000000, 8.10178821], + [7.88772361, 8.00000000, 8.10178821], + [7.88772361, 8.00000000, 8.10178821], + ], + [ + [7.88772361, 8. , 8.10178821], + [7.85396979, 7.96487892, 8.06803439], + [4.19559099, 4.28925565, 4.40965558], + [7.85396979, 7.96487892, 8.06803439], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88769642, 7.99997223, 8.10176102], + [7.58415314, 7.69072103, 7.79821773], + [4.16725762, 4.26342392, 4.38132221], + [7.58415314, 7.69072103, 7.79821773], + [7.88769642, 7.99997223, 8.10176102], + ], + [ + [7.88513176, 7.99737618, 8.09919636], + [7.21888868, 7.32333558, 7.43301511], + [4.30201226, 4.40270245, 4.51689213], + [7.21888868, 7.32333558, 7.43301511], + [7.88513176, 7.99737618, 8.09919636], + ], + [ + [7.86539121, 7.97748824, 8.0794561 ], + [7.0723371 , 7.1790733 , 7.28645574], + [5.8436738 , 5.95178931, 6.05791862], + [7.0723371 , 7.1790733 , 7.28645574], + [7.86539121, 7.97748824, 8.0794561 ], + ] + ] + ] +) + # Note: compare the yawed vs non-yawed results. The upstream turbine # power should be lower in the yawed case. The following turbine @@ -624,3 +666,32 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) assert np.allclose(farm_powers[8,20], farm_powers[8,0]) assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) + + +def test_full_flow_solver(sample_inputs_fixture): + """ + Full flow solver test with the flow field planar grid. + This requires one wind condition, and the grid is deliberately coarse to allow for + visually comparing results, as needed. + The u-component of velocity is compared, and the array has the shape + (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). + """ + + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.floris["solver"] = { + "type": "flow_field_planar_grid", + "normal_vector": "z", + "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "flow_field_grid_points": [5, 5], + "flow_field_bounds": [None, None], + } + sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + + floris = Floris.from_dict(sample_inputs_fixture.floris) + floris.solve_for_viz() + + velocities = floris.flow_field.u_sorted + + assert_results_arrays(velocities, full_flow_baseline) diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index a9958bad9..60b9a43cd 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -110,6 +110,49 @@ ] ) +full_flow_baseline = np.array( + [ + [ + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772293, 7.99999928, 8.10178747], + [7.81808498, 7.92586259, 8.02673494], + [4.62773192, 4.52940667, 4.58832122], + [7.81808498, 7.92586259, 8.02673494], + [7.88772293, 7.99999928, 8.10178747], + ], + [ + [7.88732914, 7.99958427, 8.10136238], + [7.6048457 , 7.7024654 , 7.79800687], + [5.17186918, 5.14573321, 5.19139623], + [7.6048457 , 7.7024654 , 7.79800687], + [7.88732914, 7.99958427, 8.10136238], + ], + [ + [7.87212701, 7.9839635 , 8.08549222], + [7.407898 , 7.50191936, 7.59393585], + [5.63364686, 5.64936831, 5.70257783], + [7.407898 , 7.50191936, 7.59393585], + [7.87212701, 7.9839635 , 8.08549222], + ], + [ + [7.83291702, 7.94434682, 8.04564378], + [7.37290675, 7.47263397, 7.56667866], + [6.4654506 , 6.52687795, 6.59629865], + [7.37290675, 7.47263397, 7.56667866], + [7.83291702, 7.94434682, 8.04564378], + ], + ] + ] +) + + # Note: compare the yawed vs non-yawed results. The upstream turbine # power should be lower in the yawed case. The following turbine # powers should higher in the yawed case. @@ -592,3 +635,33 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) assert np.allclose(farm_powers[8,20], farm_powers[8,0]) assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) + + +def test_full_flow_solver(sample_inputs_fixture): + """ + Full flow solver test with the flow field planar grid. + This requires one wind condition, and the grid is deliberately coarse to allow for + visually comparing results, as needed. + The u-component of velocity is compared, and the array has the shape + (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). + """ + + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL + sample_inputs_fixture.floris["solver"] = { + "type": "flow_field_planar_grid", + "normal_vector": "z", + "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "flow_field_grid_points": [5, 5], + "flow_field_bounds": [None, None], + } + sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + + floris = Floris.from_dict(sample_inputs_fixture.floris) + floris.solve_for_viz() + + velocities = floris.flow_field.u_sorted + + assert_results_arrays(velocities, full_flow_baseline) diff --git a/tests/reg_tests/floris_interface_regression_test.py b/tests/reg_tests/floris_interface_regression_test.py deleted file mode 100644 index c5833ed8c..000000000 --- a/tests/reg_tests/floris_interface_regression_test.py +++ /dev/null @@ -1,134 +0,0 @@ - -import numpy as np - -from floris.simulation import ( - average_velocity, - axial_induction, - power, - thrust_coefficient, -) -from floris.simulation.rotor_velocity import rotor_effective_velocity -from floris.tools import FlorisInterface -from tests.conftest import ( - assert_results_arrays, - N_FINDEX, - N_TURBINES, - print_test_values, -) - - -DEBUG = False -VELOCITY_MODEL = "gauss" -DEFLECTION_MODEL = "gauss" - -baseline = np.array( - [ - # 8 m/s - [ - [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], - [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], - [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], - ], - # 9 m/s - [ - [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], - [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], - [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], - ], - # 10 m/s - [ - [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], - [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], - [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], - ], - # 11 m/s - [ - [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], - [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], - [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], - ], - ] -) - - -def test_calculate_no_wake(sample_inputs_fixture): - """ - The calculate_no_wake function calculates the power production of a wind farm - assuming no wake losses. It does this by initializing and finalizing the - floris simulation while skipping the wake calculation. The power for all wind - turbines should be the same for a uniform wind condition. The chosen wake model - is not important since it will not actually be used. However, it is left enabled - instead of using "None" so that additional tests can be constructed here such - as one with yaw activated. - """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - - fi = FlorisInterface(sample_inputs_fixture.floris) - fi.calculate_no_wake() - - n_turbines = fi.floris.farm.n_turbines - n_findex = fi.floris.flow_field.n_findex - - velocities = fi.floris.flow_field.u - air_density = fi.floris.flow_field.air_density - yaw_angles = fi.floris.farm.yaw_angles - tilt_angles = fi.floris.farm.tilt_angles - power_setpoints = fi.floris.farm.power_setpoints - test_results = np.zeros((n_findex, n_turbines, 4)) - - farm_avg_velocities = average_velocity( - velocities, - ) - farm_cts = thrust_coefficient( - velocities, - air_density, - yaw_angles, - tilt_angles, - power_setpoints, - fi.floris.farm.turbine_thrust_coefficient_functions, - fi.floris.farm.turbine_tilt_interps, - fi.floris.farm.correct_cp_ct_for_tilt, - fi.floris.farm.turbine_type_map, - fi.floris.farm.turbine_power_thrust_tables, - ) - farm_powers = power( - velocities, - air_density, - fi.floris.farm.turbine_power_functions, - fi.floris.farm.yaw_angles, - fi.floris.farm.tilt_angles, - fi.floris.farm.power_setpoints, - fi.floris.farm.turbine_tilt_interps, - fi.floris.farm.turbine_type_map, - fi.floris.farm.turbine_power_thrust_tables, - ) - farm_axial_inductions = axial_induction( - velocities, - air_density, - yaw_angles, - tilt_angles, - power_setpoints, - fi.floris.farm.turbine_axial_induction_functions, - fi.floris.farm.turbine_tilt_interps, - fi.floris.farm.correct_cp_ct_for_tilt, - fi.floris.farm.turbine_type_map, - fi.floris.farm.turbine_power_thrust_tables, - ) - for i in range(n_findex): - for j in range(n_turbines): - test_results[i, j, 0] = farm_avg_velocities[i, j] - test_results[i, j, 1] = farm_cts[i, j] - test_results[i, j, 2] = farm_powers[i, j] - test_results[i, j, 3] = farm_axial_inductions[i, j] - - if DEBUG: - print_test_values( - farm_avg_velocities, - farm_cts, - farm_powers, - farm_axial_inductions, - max_findex_print=4, - ) - - assert_results_arrays(test_results[0:4], baseline) diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index f5471701b..159868715 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -79,6 +79,49 @@ ] ) +full_flow_baseline = np.array( + [ + [ + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772264, 7.99999899, 8.10178721], + [7.80183828, 7.91077933, 8.01357204], + [4.05787708, 4.02142188, 4.16800363], + [7.80183828, 7.91077933, 8.01357204], + [7.88772264, 7.99999899, 8.10178721], + ], + [ + [7.88365433, 7.9958357 , 8.09760849], + [7.54214774, 7.64551046, 7.74683377], + [4.99852407, 5.0247459 , 5.13417881], + [7.54214774, 7.64551046, 7.74683377], + [7.88365433, 7.9958357 , 8.09760849], + ], + [ + [7.85066049, 7.96222083, 8.06371923], + [7.39444624, 7.49602334, 7.5951238 ], + [5.50716692, 5.55540288, 5.65662569], + [7.39444624, 7.49602334, 7.5951238 ], + [7.85066049, 7.96222083, 8.06371923], + ], + [ + [7.79761973, 7.90832696, 8.009239 ], + [7.41896092, 7.52268669, 7.62030379], + [6.98565022, 7.0811275 , 7.17523349], + [7.41896092, 7.52268669, 7.62030379], + [7.79761973, 7.90832696, 8.009239 ], + ] + ] + ] +) + + """ # These are the results from v2.4 develop branch gch_baseline = np.array( @@ -881,3 +924,32 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) assert np.allclose(farm_powers[8,20], farm_powers[8,0]) assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) + + +def test_full_flow_solver(sample_inputs_fixture): + """ + Full flow solver test with the flow field planar grid. + This requires one wind condition, and the grid is deliberately coarse to allow for + visually comparing results, as needed. + The u-component of velocity is compared, and the array has the shape + (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). + """ + + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.floris["solver"] = { + "type": "flow_field_planar_grid", + "normal_vector": "z", + "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "flow_field_grid_points": [5, 5], + "flow_field_bounds": [None, None], + } + sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + + floris = Floris.from_dict(sample_inputs_fixture.floris) + floris.solve_for_viz() + + velocities = floris.flow_field.u_sorted + + assert_results_arrays(velocities, full_flow_baseline) diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index 0c4869582..ed127f3c4 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -80,6 +80,48 @@ ] ) +full_flow_baseline = np.array( + [ + [ + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [5.55736296, 5.63646825, 5.708184 ], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [5.11849406, 5.19135235, 5.25740466], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772361, 8. , 8.10178821], + [7.18032699, 7.28253407, 7.37519358], + [4.98829055, 5.05929547, 5.12366755], + [7.18032699, 7.28253407, 7.37519358], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772361, 8. , 8.10178821], + [6.97109947, 6.37648724, 7.16028784], + [6.28699612, 6.37648724, 6.45761864], + [6.97109947, 6.37648724, 7.16028784], + [7.88772361, 8. , 8.10178821], + ] + ] + ] +) + # Note: compare the yawed vs non-yawed results. The upstream turbine # power should be lower in the yawed case. The following turbine # powers should higher in the yawed case. @@ -400,3 +442,32 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): assert np.allclose(farm_powers[8,0:5], farm_powers[8,10:15]) assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) assert np.allclose(farm_powers[8,20], farm_powers[8,20:25]) + + +def test_full_flow_solver(sample_inputs_fixture): + """ + Full flow solver test with the flow field planar grid. + This requires one wind condition, and the grid is deliberately coarse to allow for + visually comparing results, as needed. + The u-component of velocity is compared, and the array has the shape + (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). + """ + + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.floris["solver"] = { + "type": "flow_field_planar_grid", + "normal_vector": "z", + "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "flow_field_grid_points": [5, 5], + "flow_field_bounds": [None, None], + } + sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + + floris = Floris.from_dict(sample_inputs_fixture.floris) + floris.solve_for_viz() + + velocities = floris.flow_field.u_sorted + + assert_results_arrays(velocities, full_flow_baseline) diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index 146e731c2..d2c3a197c 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -81,6 +81,48 @@ ] ) +full_flow_baseline = np.array( + [ + [ + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + [ + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + [7.88772361, 8. , 8.10178821], + ], + ] + ] +) + # Note: compare the yawed vs non-yawed results. The upstream turbine # power should be lower in the yawed case. The following turbine # powers should higher in the yawed case. @@ -325,3 +367,32 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) assert np.allclose(farm_powers[8,20], farm_powers[8,0]) assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) + + +def test_full_flow_solver(sample_inputs_fixture): + """ + Full flow solver test with the flow field planar grid. + This requires one wind condition, and the grid is deliberately coarse to allow for + visually comparing results, as needed. + The u-component of velocity is compared, and the array has the shape + (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). + """ + + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.floris["solver"] = { + "type": "flow_field_planar_grid", + "normal_vector": "z", + "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "flow_field_grid_points": [5, 5], + "flow_field_bounds": [None, None], + } + sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + + floris = Floris.from_dict(sample_inputs_fixture.floris) + floris.solve_for_viz() + + velocities = floris.flow_field.u_sorted + + assert_results_arrays(velocities, full_flow_baseline) diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index be5935f90..32d246b9d 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -386,3 +386,34 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): assert np.allclose(farm_powers[8,0:5], farm_powers[8,15:20]) assert np.allclose(farm_powers[8,20], farm_powers[8,0]) assert np.allclose(farm_powers[8,21], farm_powers[8,21:25]) + +''' +## Not implemented in TurbOPark +def test_full_flow_solver(sample_inputs_fixture): + """ + Full flow solver test with the flow field planar grid. + This requires one wind condition, and the grid is deliberately coarse to allow for + visually comparing results, as needed. + The u-component of velocity is compared, and the array has the shape + (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). + """ + + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.floris["solver"] = { + "type": "flow_field_planar_grid", + "normal_vector": "z", + "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "flow_field_grid_points": [5, 5], + "flow_field_bounds": [None, None], + } + sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + + floris = Floris.from_dict(sample_inputs_fixture.floris) + floris.solve_for_viz() + + velocities = floris.flow_field.u_sorted + print(velocities) + assert_results_arrays(velocities, full_flow_baseline) +''' From 308f1765112867d37b1e81f23aff28f67e7f0fa3 Mon Sep 17 00:00:00 2001 From: Chris Bay <12664940+bayc@users.noreply.github.com> Date: Thu, 22 Feb 2024 15:16:51 -0700 Subject: [PATCH 42/78] Update multidimensional turbine model to use absolute power (#818) --- floris/simulation/turbine/turbine.py | 25 +- .../iea_15MW_multi_dim_Tp_Hs.csv | 406 +++++++++--------- tests/conftest.py | 20 +- tests/turbine_multi_dim_unit_test.py | 54 +-- 4 files changed, 252 insertions(+), 253 deletions(-) diff --git a/floris/simulation/turbine/turbine.py b/floris/simulation/turbine/turbine.py index 6389bf9b0..191072ce6 100644 --- a/floris/simulation/turbine/turbine.py +++ b/floris/simulation/turbine/turbine.py @@ -520,21 +520,16 @@ def _initialize_multidim_power_thrust_table(self): data = df2.loc[key] # Build the interpolants - power_thrust_table_.update({ - key: { - "wind_speed": data['ws'].values, - "power": ( - # NOTE: generator_efficiency hardcoded to 0.944 here (NREL 5MW default). - # This code will be - # removed in a separate PR when power is specified as an absolute value for - # mutlidimensional turbines - 0.5 * self.rotor_area * data['Cp'].values * 0.944 - * data['ws'].values ** 3 * power_thrust_table_ref["ref_air_density"] / 1000 - ), # TODO: convert this to 'power' or 'P' in data tables, as per PR #765 - "thrust_coefficient": data['Ct'].values, - **power_thrust_table_ref - }, - }) + power_thrust_table_.update( + { + key: { + "wind_speed": data['ws'].values, + "power": data['power'].values, + "thrust_coefficient": data['thrust_coefficient'].values, + **power_thrust_table_ref + }, + } + ) # Add reference information at the lower level # Set on-object version diff --git a/floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv b/floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv index b30eac5a3..70fcef234 100644 --- a/floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv +++ b/floris/turbine_library/iea_15MW_multi_dim_Tp_Hs.csv @@ -1,213 +1,217 @@ -Tp,Hs,ws,Cp,Ct +Tp,Hs,ws,power,thrust_coefficient 2,1,0,0,0 -2,1,3,0.049361236,0.817533319 -2,1,3.54953237,0.224324252,0.792115292 -2,1,4.067900771,0.312216418,0.786401899 -2,1,4.553906848,0.36009987,0.788898744 -2,1,5.006427063,0.38761204,0.790774576 -2,1,5.424415288,0.404010164,0.79208669 -2,1,5.806905228,0.413979324,0.79185809 -2,1,6.153012649,0.420083692,0.7903853 -2,1,6.461937428,0.423787764,0.788253035 -2,1,6.732965398,0.425977895,0.785845184 -2,1,6.965470002,0.427193272,0.783367164 -2,1,7.158913742,0.427183505,0.77853469 -2,1,7.312849418,0.426860928,0.77853469 -2,1,7.426921164,0.426617959,0.77853469 -2,1,7.500865272,0.426458783,0.77853469 -2,1,7.534510799,0.426385957,0.77853469 -2,1,7.541241633,0.426371389,0.77853469 -2,1,7.58833327,0.426268826,0.77853469 -2,1,7.675676842,0.426077456,0.77853469 -2,1,7.803070431,0.425795302,0.77853469 -2,1,7.970219531,0.425420049,0.77853469 -2,1,8.176737731,0.424948854,0.77853469 -2,1,8.422147605,0.424379028,0.77853469 -2,1,8.70588182,0.423707714,0.77853469 -2,1,9.027284445,0.422932811,0.77853469 -2,1,9.385612468,0.422052556,0.77853469 -2,1,9.780037514,0.421065815,0.77853469 -2,1,10.20964776,0.419972455,0.77853469 -2,1,10.67345004,0.419400676,0.781531069 -2,1,10.86770694,0.418981957,0.758935311 -2,1,11.17037214,0.385839135,0.614478855 -2,1,11.6992653,0.335840083,0.498687801 -2,1,12.25890683,0.29191329,0.416354609 -2,1,12.84800295,0.253572514,0.351944846 -2,1,13.46519181,0.220278082,0.299832337 -2,1,14.10904661,0.191477908,0.256956606 -2,1,14.77807889,0.166631343,0.221322169 -2,1,15.470742,0.145236797,0.19150758 -2,1,16.18543466,0.126834289,0.166435523 -2,1,16.92050464,0.111011925,0.145263684 -2,1,17.67425264,0.097406118,0.127319849 -2,1,18.44493615,0.085699408,0.11206048 -2,1,19.23077353,0.075616912,0.099042189 -2,1,20.02994808,0.066922115,0.087901155 -2,1,20.8406123,0.059412477,0.078337446 -2,1,21.66089211,0.052915227,0.07010295 -2,1,22.4888912,0.04728299,0.062991402 -2,1,23.32269542,0.042390922,0.056831647 -2,1,24.1603772,0.038132739,0.05148062 -2,1,25,0.03441828,0.046818787 +2,1,2.9,0,0 +2,1,3,42.733312,0.80742173 +2,1,3.54953237,292.585981,0.784655297 +2,1,4.067900771,607.966543,0.781771245 +2,1,4.553906848,981.097693,0.785377072 +2,1,5.006427063,1401.98084,0.788045584 +2,1,5.424415288,1858.67086,0.789922119 +2,1,5.806905228,2337.575997,0.790464625 +2,1,6.153012649,2824.097302,0.789868339 +2,1,6.461937428,3303.06456,0.788727582 +2,1,6.732965398,3759.432328,0.787359348 +2,1,6.965470002,4178.637714,0.785895402 +2,1,7.158913742,4547.19121,0.778275899 +2,1,7.312849418,4855.342682,0.778275899 +2,1,7.426921164,5091.537139,0.778275899 +2,1,7.500865272,5248.453137,0.778275899 +2,1,7.534510799,5320.793207,0.778275899 +2,1,7.541241633,5335.345498,0.778275899 +2,1,7.58833327,5437.90563,0.778275899 +2,1,7.675676842,5631.253025,0.778275899 +2,1,7.803070431,5920.980626,0.778275899 +2,1,7.970219531,6315.115602,0.778275899 +2,1,8.176737731,6824.470067,0.778275899 +2,1,8.422147605,7462.846389,0.778275899 +2,1,8.70588182,8238.359448,0.778275899 +2,1,9.027284445,9167.96703,0.778275899 +2,1,9.385612468,10285.211,0.778275899 +2,1,9.780037514,11617.23699,0.778275899 +2,1,10.20964776,13194.41511,0.778275899 +2,1,10.67345004,15000,0.77176172 +2,1,10.86770694,15000,0.747149663 +2,1,11.17037214,15000,0.562338457 +2,1,11.6992653,15000,0.463477777 +2,1,12.25890683,15000,0.389083718 +2,1,12.84800295,15000,0.329822385 +2,1,13.46519181,15000,0.281465071 +2,1,14.10904661,15000,0.241494345 +2,1,14.77807889,15000,0.208180574 +2,1,15.470742,15000,0.180257568 +2,1,16.18543466,15000,0.156747535 +2,1,16.92050464,15000,0.136877529 +2,1,17.67425264,15000,0.120026379 +2,1,18.44493615,15000,0.105689427 +2,1,19.23077353,15000,0.093453742 +2,1,20.02994808,15000,0.082979637 +2,1,20.8406123,15000,0.073986457 +2,1,21.66089211,15000,0.066241166 +2,1,22.4888912,15000,0.059552107 +2,1,23.32269542,15000,0.053756866 +2,1,24.1603772,15000,0.048721662 +2,1,25,15000,0.044334197 2,1,25.02,0,0 2,1,50,0,0 2,5,0,0,0 -2,5,3,0.024680618,0.40876666 -2,5,3.54953237,0.112162126,0.396057646 -2,5,4.067900771,0.156108209,0.39320095 -2,5,4.553906848,0.180049935,0.394449372 -2,5,5.006427063,0.19380602,0.395387288 -2,5,5.424415288,0.202005082,0.396043345 -2,5,5.806905228,0.206989662,0.395929045 -2,5,6.153012649,0.210041846,0.39519265 -2,5,6.461937428,0.211893882,0.394126518 -2,5,6.732965398,0.212988948,0.392922592 -2,5,6.965470002,0.213596636,0.391683582 -2,5,7.158913742,0.213591753,0.389267345 -2,5,7.312849418,0.213430464,0.389267345 -2,5,7.426921164,0.21330898,0.389267345 -2,5,7.500865272,0.213229392,0.389267345 -2,5,7.534510799,0.213192979,0.389267345 -2,5,7.541241633,0.213185695,0.389267345 -2,5,7.58833327,0.213134413,0.389267345 -2,5,7.675676842,0.213038728,0.389267345 -2,5,7.803070431,0.212897651,0.389267345 -2,5,7.970219531,0.212710025,0.389267345 -2,5,8.176737731,0.212474427,0.389267345 -2,5,8.422147605,0.212189514,0.389267345 -2,5,8.70588182,0.211853857,0.389267345 -2,5,9.027284445,0.211466406,0.389267345 -2,5,9.385612468,0.211026278,0.389267345 -2,5,9.780037514,0.210532908,0.389267345 -2,5,10.20964776,0.209986228,0.389267345 -2,5,10.67345004,0.209700338,0.390765535 -2,5,10.86770694,0.209490979,0.379467656 -2,5,11.17037214,0.192919568,0.307239428 -2,5,11.6992653,0.167920042,0.249343901 -2,5,12.25890683,0.145956645,0.208177305 -2,5,12.84800295,0.126786257,0.175972423 -2,5,13.46519181,0.110139041,0.149916169 -2,5,14.10904661,0.095738954,0.128478303 -2,5,14.77807889,0.083315672,0.110661085 -2,5,15.470742,0.072618399,0.09575379 -2,5,16.18543466,0.063417145,0.083217762 -2,5,16.92050464,0.055505963,0.072631842 -2,5,17.67425264,0.048703059,0.063659925 -2,5,18.44493615,0.042849704,0.05603024 -2,5,19.23077353,0.037808456,0.049521095 -2,5,20.02994808,0.033461058,0.043950578 -2,5,20.8406123,0.029706239,0.039168723 -2,5,21.66089211,0.026457614,0.035051475 -2,5,22.4888912,0.023641495,0.031495701 -2,5,23.32269542,0.021195461,0.028415824 -2,5,24.1603772,0.01906637,0.02574031 -2,5,25,0.01720914,0.023409394 +2,5,2.9,0,0 +2,5,3,21.366656,0.403710865 +2,5,3.54953237,146.2929905,0.392327649 +2,5,4.067900771,303.9832715,0.390885623 +2,5,4.553906848,490.5488465,0.392688536 +2,5,5.006427063,700.99042,0.394022792 +2,5,5.424415288,929.33543,0.39496106 +2,5,5.806905228,1168.787999,0.395232313 +2,5,6.153012649,1412.048651,0.39493417 +2,5,6.461937428,1651.53228,0.394363791 +2,5,6.732965398,1879.716164,0.393679674 +2,5,6.965470002,2089.318857,0.392947701 +2,5,7.158913742,2273.595605,0.38913795 +2,5,7.312849418,2427.671341,0.38913795 +2,5,7.426921164,2545.76857,0.38913795 +2,5,7.500865272,2624.226569,0.38913795 +2,5,7.534510799,2660.396604,0.38913795 +2,5,7.541241633,2667.672749,0.38913795 +2,5,7.58833327,2718.952815,0.38913795 +2,5,7.675676842,2815.626513,0.38913795 +2,5,7.803070431,2960.490313,0.38913795 +2,5,7.970219531,3157.557801,0.38913795 +2,5,8.176737731,3412.235034,0.38913795 +2,5,8.422147605,3731.423195,0.38913795 +2,5,8.70588182,4119.179724,0.38913795 +2,5,9.027284445,4583.983515,0.38913795 +2,5,9.385612468,5142.6055,0.38913795 +2,5,9.780037514,5808.618495,0.38913795 +2,5,10.20964776,6597.207555,0.38913795 +2,5,10.67345004,7500,0.38588086 +2,5,10.86770694,7500,0.373574832 +2,5,11.17037214,7500,0.281169229 +2,5,11.6992653,7500,0.231738889 +2,5,12.25890683,7500,0.194541859 +2,5,12.84800295,7500,0.164911193 +2,5,13.46519181,7500,0.140732536 +2,5,14.10904661,7500,0.120747173 +2,5,14.77807889,7500,0.104090287 +2,5,15.470742,7500,0.090128784 +2,5,16.18543466,7500,0.078373768 +2,5,16.92050464,7500,0.068438765 +2,5,17.67425264,7500,0.06001319 +2,5,18.44493615,7500,0.052844714 +2,5,19.23077353,7500,0.046726871 +2,5,20.02994808,7500,0.041489819 +2,5,20.8406123,7500,0.036993229 +2,5,21.66089211,7500,0.033120583 +2,5,22.4888912,7500,0.029776054 +2,5,23.32269542,7500,0.026878433 +2,5,24.1603772,7500,0.024360831 +2,5,25,7500,0.022167099 2,5,25.02,0,0 2,5,50,0,0 4,1,0,0,0 -4,1,3,0.012340309,0.20438333 -4,1,3.54953237,0.056081063,0.198028823 -4,1,4.067900771,0.078054105,0.196600475 -4,1,4.553906848,0.090024968,0.197224686 -4,1,5.006427063,0.09690301,0.197693644 -4,1,5.424415288,0.101002541,0.198021673 -4,1,5.806905228,0.103494831,0.197964523 -4,1,6.153012649,0.105020923,0.197596325 -4,1,6.461937428,0.105946941,0.197063259 -4,1,6.732965398,0.106494474,0.196461296 -4,1,6.965470002,0.106798318,0.195841791 -4,1,7.158913742,0.106795876,0.194633673 -4,1,7.312849418,0.106715232,0.194633673 -4,1,7.426921164,0.10665449,0.194633673 -4,1,7.500865272,0.106614696,0.194633673 -4,1,7.534510799,0.106596489,0.194633673 -4,1,7.541241633,0.106592847,0.194633673 -4,1,7.58833327,0.106567207,0.194633673 -4,1,7.675676842,0.106519364,0.194633673 -4,1,7.803070431,0.106448826,0.194633673 -4,1,7.970219531,0.106355012,0.194633673 -4,1,8.176737731,0.106237214,0.194633673 -4,1,8.422147605,0.106094757,0.194633673 -4,1,8.70588182,0.105926929,0.194633673 -4,1,9.027284445,0.105733203,0.194633673 -4,1,9.385612468,0.105513139,0.194633673 -4,1,9.780037514,0.105266454,0.194633673 -4,1,10.20964776,0.104993114,0.194633673 -4,1,10.67345004,0.104850169,0.195382767 -4,1,10.86770694,0.104745489,0.189733828 -4,1,11.17037214,0.096459784,0.153619714 -4,1,11.6992653,0.083960021,0.12467195 -4,1,12.25890683,0.072978323,0.104088652 -4,1,12.84800295,0.063393129,0.087986212 -4,1,13.46519181,0.055069521,0.074958084 -4,1,14.10904661,0.047869477,0.064239152 -4,1,14.77807889,0.041657836,0.055330542 -4,1,15.470742,0.036309199,0.047876895 -4,1,16.18543466,0.031708572,0.041608881 -4,1,16.92050464,0.027752981,0.036315921 -4,1,17.67425264,0.02435153,0.031829962 -4,1,18.44493615,0.021424852,0.02801512 -4,1,19.23077353,0.018904228,0.024760547 -4,1,20.02994808,0.016730529,0.021975289 -4,1,20.8406123,0.014853119,0.019584362 -4,1,21.66089211,0.013228807,0.017525738 -4,1,22.4888912,0.011820748,0.015747851 -4,1,23.32269542,0.010597731,0.014207912 -4,1,24.1603772,0.009533185,0.012870155 -4,1,25,0.00860457,0.011704697 +4,1,2.9,0,0 +4,1,3,10.683328,0.201855433 +4,1,3.54953237,73.14649525,0.196163824 +4,1,4.067900771,151.9916358,0.195442811 +4,1,4.553906848,245.2744233,0.196344268 +4,1,5.006427063,350.49521,0.197011396 +4,1,5.424415288,464.667715,0.19748053 +4,1,5.806905228,584.3939993,0.197616156 +4,1,6.153012649,706.0243255,0.197467085 +4,1,6.461937428,825.76614,0.197181896 +4,1,6.732965398,939.858082,0.196839837 +4,1,6.965470002,1044.659429,0.196473851 +4,1,7.158913742,1136.797803,0.194568975 +4,1,7.312849418,1213.835671,0.194568975 +4,1,7.426921164,1272.884285,0.194568975 +4,1,7.500865272,1312.113284,0.194568975 +4,1,7.534510799,1330.198302,0.194568975 +4,1,7.541241633,1333.836375,0.194568975 +4,1,7.58833327,1359.476408,0.194568975 +4,1,7.675676842,1407.813256,0.194568975 +4,1,7.803070431,1480.245157,0.194568975 +4,1,7.970219531,1578.778901,0.194568975 +4,1,8.176737731,1706.117517,0.194568975 +4,1,8.422147605,1865.711597,0.194568975 +4,1,8.70588182,2059.589862,0.194568975 +4,1,9.027284445,2291.991758,0.194568975 +4,1,9.385612468,2571.30275,0.194568975 +4,1,9.780037514,2904.309248,0.194568975 +4,1,10.20964776,3298.603778,0.194568975 +4,1,10.67345004,3750,0.19294043 +4,1,10.86770694,3750,0.186787416 +4,1,11.17037214,3750,0.140584614 +4,1,11.6992653,3750,0.115869444 +4,1,12.25890683,3750,0.09727093 +4,1,12.84800295,3750,0.082455596 +4,1,13.46519181,3750,0.070366268 +4,1,14.10904661,3750,0.060373586 +4,1,14.77807889,3750,0.052045144 +4,1,15.470742,3750,0.045064392 +4,1,16.18543466,3750,0.039186884 +4,1,16.92050464,3750,0.034219382 +4,1,17.67425264,3750,0.030006595 +4,1,18.44493615,3750,0.026422357 +4,1,19.23077353,3750,0.023363436 +4,1,20.02994808,3750,0.020744909 +4,1,20.8406123,3750,0.018496614 +4,1,21.66089211,3750,0.016560292 +4,1,22.4888912,3750,0.014888027 +4,1,23.32269542,3750,0.013439217 +4,1,24.1603772,3750,0.012180416 +4,1,25,3750,0.011083549 4,1,25.02,0,0 4,1,50,0,0 4,5,0,0,0 -4,5,3,0.006170155,0.102191665 -4,5,3.54953237,0.028040532,0.099014412 -4,5,4.067900771,0.039027052,0.098300238 -4,5,4.553906848,0.045012484,0.098612343 -4,5,5.006427063,0.048451505,0.098846822 -4,5,5.424415288,0.050501271,0.099010836 -4,5,5.806905228,0.051747416,0.098982261 -4,5,6.153012649,0.052510462,0.098798163 -4,5,6.461937428,0.052973471,0.09853163 -4,5,6.732965398,0.053247237,0.098230648 -4,5,6.965470002,0.053399159,0.097920896 -4,5,7.158913742,0.053397938,0.097316836 -4,5,7.312849418,0.053357616,0.097316836 -4,5,7.426921164,0.053327245,0.097316836 -4,5,7.500865272,0.053307348,0.097316836 -4,5,7.534510799,0.053298245,0.097316836 -4,5,7.541241633,0.053296424,0.097316836 -4,5,7.58833327,0.053283603,0.097316836 -4,5,7.675676842,0.053259682,0.097316836 -4,5,7.803070431,0.053224413,0.097316836 -4,5,7.970219531,0.053177506,0.097316836 -4,5,8.176737731,0.053118607,0.097316836 -4,5,8.422147605,0.053047379,0.097316836 -4,5,8.70588182,0.052963464,0.097316836 -4,5,9.027284445,0.052866602,0.097316836 -4,5,9.385612468,0.05275657,0.097316836 -4,5,9.780037514,0.052633227,0.097316836 -4,5,10.20964776,0.052496557,0.097316836 -4,5,10.67345004,0.052425085,0.097691384 -4,5,10.86770694,0.052372745,0.094866914 -4,5,11.17037214,0.048229892,0.076809857 -4,5,11.6992653,0.041980011,0.062335975 -4,5,12.25890683,0.036489161,0.052044326 -4,5,12.84800295,0.031696564,0.043993106 -4,5,13.46519181,0.02753476,0.037479042 -4,5,14.10904661,0.023934739,0.032119576 -4,5,14.77807889,0.020828918,0.027665271 -4,5,15.470742,0.0181546,0.023938448 -4,5,16.18543466,0.015854286,0.020804441 -4,5,16.92050464,0.013876491,0.018157961 -4,5,17.67425264,0.012175765,0.015914981 -4,5,18.44493615,0.010712426,0.01400756 -4,5,19.23077353,0.009452114,0.012380274 -4,5,20.02994808,0.008365265,0.010987645 -4,5,20.8406123,0.00742656,0.009792181 -4,5,21.66089211,0.006614404,0.008762869 -4,5,22.4888912,0.005910374,0.007873925 -4,5,23.32269542,0.005298865,0.007103956 -4,5,24.1603772,0.004766593,0.006435078 -4,5,25,0.004302285,0.005852349 +4,5,2.9,0,0 +4,5,3,5.341664,0.100927716 +4,5,3.54953237,36.57324763,0.098081912 +4,5,4.067900771,75.99581788,0.097721406 +4,5,4.553906848,122.6372116,0.098172134 +4,5,5.006427063,175.247605,0.098505698 +4,5,5.424415288,232.3338575,0.098740265 +4,5,5.806905228,292.1969996,0.098808078 +4,5,6.153012649,353.0121628,0.098733542 +4,5,6.461937428,412.88307,0.098590948 +4,5,6.732965398,469.929041,0.098419919 +4,5,6.965470002,522.3297143,0.098236925 +4,5,7.158913742,568.3989013,0.097284487 +4,5,7.312849418,606.9178353,0.097284487 +4,5,7.426921164,636.4421424,0.097284487 +4,5,7.500865272,656.0566421,0.097284487 +4,5,7.534510799,665.0991509,0.097284487 +4,5,7.541241633,666.9181873,0.097284487 +4,5,7.58833327,679.7382038,0.097284487 +4,5,7.675676842,703.9066281,0.097284487 +4,5,7.803070431,740.1225783,0.097284487 +4,5,7.970219531,789.3894503,0.097284487 +4,5,8.176737731,853.0587584,0.097284487 +4,5,8.422147605,932.8557986,0.097284487 +4,5,8.70588182,1029.794931,0.097284487 +4,5,9.027284445,1145.995879,0.097284487 +4,5,9.385612468,1285.651375,0.097284487 +4,5,9.780037514,1452.154624,0.097284487 +4,5,10.20964776,1649.301889,0.097284487 +4,5,10.67345004,1875,0.096470215 +4,5,10.86770694,1875,0.093393708 +4,5,11.17037214,1875,0.070292307 +4,5,11.6992653,1875,0.057934722 +4,5,12.25890683,1875,0.048635465 +4,5,12.84800295,1875,0.041227798 +4,5,13.46519181,1875,0.035183134 +4,5,14.10904661,1875,0.030186793 +4,5,14.77807889,1875,0.026022572 +4,5,15.470742,1875,0.022532196 +4,5,16.18543466,1875,0.019593442 +4,5,16.92050464,1875,0.017109691 +4,5,17.67425264,1875,0.015003297 +4,5,18.44493615,1875,0.013211178 +4,5,19.23077353,1875,0.011681718 +4,5,20.02994808,1875,0.010372455 +4,5,20.8406123,1875,0.009248307 +4,5,21.66089211,1875,0.008280146 +4,5,22.4888912,1875,0.007444013 +4,5,23.32269542,1875,0.006719608 +4,5,24.1603772,1875,0.006090208 +4,5,25,1875,0.005541775 4,5,25.02,0,0 4,5,50,0,0 diff --git a/tests/conftest.py b/tests/conftest.py index 84c71fd45..65bc4f486 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -383,12 +383,20 @@ def __init__(self): } self.turbine_floating["correct_cp_ct_for_tilt"] = True - self.turbine_multi_dim = copy.deepcopy(self.turbine) - del self.turbine_multi_dim['power_thrust_table']['power'] - del self.turbine_multi_dim['power_thrust_table']['thrust_coefficient'] - del self.turbine_multi_dim['power_thrust_table']['wind_speed'] - self.turbine_multi_dim["multi_dimensional_cp_ct"] = True - self.turbine_multi_dim['power_thrust_table']["power_thrust_data_file"] = "" + self.turbine_multi_dim = { + "turbine_type": 'iea_15MW_multi_dim_cp_ct', + "hub_height": 150.0, + "rotor_diameter": 242.24, + "TSR": 8.0, + "multi_dimensional_cp_ct": True, + "power_thrust_table": { + "ref_air_density": 1.225, + "ref_tilt": 6.0, + "cosine_loss_exponent_yaw": 1.88, + "cosine_loss_exponent_tilt": 1.88, + "power_thrust_data_file": 'iea_15MW_multi_dim_Tp_Hs.csv', + } + } self.farm = { "layout_x": X_COORDS, diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index 7c0091d49..39f1b1f1a 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -17,10 +17,6 @@ from tests.conftest import SampleInputs, WIND_SPEEDS -TEST_DATA = Path(__file__).resolve().parent.parent / "floris" / "turbine_library" -CSV_INPUT = TEST_DATA / "iea_15MW_multi_dim_Tp_Hs.csv" - - # size 16 x 1 x 1 x 1 # 16 wind speed and wind direction combinations from conftest WIND_CONDITION_BROADCAST = np.reshape(np.array(WIND_SPEEDS), (-1, 1, 1, 1)) @@ -53,7 +49,6 @@ def test_turbine_init(): turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_table"]["power_thrust_data_file"] = CSV_INPUT turbine = Turbine.from_dict(turbine_data) condition = (2, 1) assert turbine.rotor_diameter == turbine_data["rotor_diameter"] @@ -77,7 +72,6 @@ def test_ct(): N_TURBINES = 4 turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_table"]["power_thrust_data_file"] = CSV_INPUT turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] @@ -100,7 +94,7 @@ def test_ct(): multidim_condition=condition ) - np.testing.assert_allclose(thrust, np.array([[0.77853469]])) + np.testing.assert_allclose(thrust, np.array([[0.77815736]])) # Multiple turbines with index filter # 4 turbines with 3 x 3 grid arrays @@ -121,25 +115,25 @@ def test_ct(): assert len(thrusts[0]) == len(INDEX_FILTER) thrusts_truth = np.array([ - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.6957943, 0.6957943 ], - - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.6957943, 0.6957943 ], - - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.6957943, 0.6957943 ], - - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.77853469, 0.77853469], - [0.6957943, 0.6957943 ], + [0.77815736, 0.77815736], + [0.77815736, 0.77815736], + [0.77815736, 0.77815736], + [0.66626835, 0.66626835 ], + + [0.77815736, 0.77815736], + [0.77815736, 0.77815736], + [0.77815736, 0.77815736], + [0.66626835, 0.66626835 ], + + [0.77815736, 0.77815736], + [0.77815736, 0.77815736], + [0.77815736, 0.77815736], + [0.66626835, 0.66626835 ], + + [0.77815736, 0.77815736], + [0.77815736, 0.77815736], + [0.77815736, 0.77815736], + [0.66626835, 0.66626835 ], ]) np.testing.assert_allclose(thrusts, thrusts_truth) @@ -148,7 +142,6 @@ def test_power(): AIR_DENSITY = 1.225 turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_table"]["power_thrust_data_file"] = CSV_INPUT turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] @@ -169,7 +162,7 @@ def test_power(): multidim_condition=condition ) - power_truth = 3029825.10569982 + power_truth = 12424759.67683091 np.testing.assert_allclose(p, power_truth) @@ -206,13 +199,12 @@ def test_axial_induction(): N_TURBINES = 4 turbine_data = SampleInputs().turbine_multi_dim - turbine_data["power_thrust_table"]["power_thrust_data_file"] = CSV_INPUT turbine = Turbine.from_dict(turbine_data) turbine_type_map = np.array(N_TURBINES * [turbine.turbine_type]) turbine_type_map = turbine_type_map[None, :] condition = (2, 1) - baseline_ai = 0.2646995 + baseline_ai = np.array([[0.26447651]]) # Single turbine wind_speed = 10.0 @@ -250,7 +242,7 @@ def test_axial_induction(): assert len(ai[0]) == len(INDEX_FILTER) # Test the 10 m/s wind speed to use the same baseline as above - np.testing.assert_allclose(ai[2], baseline_ai) + np.testing.assert_allclose(ai[2][0], baseline_ai) def test_asdict(sample_inputs_fixture: SampleInputs): From af04d66d4ab53e1634f41f66b3fb69fce49f461f Mon Sep 17 00:00:00 2001 From: Chris Bay <12664940+bayc@users.noreply.github.com> Date: Fri, 23 Feb 2024 10:32:35 -0700 Subject: [PATCH 43/78] Remove unused code from floris.tools, add optimization reg tests (#819) * remove legacy optimization code * remove v2 legacy reader * remove interface_utilities - show_params, get_params, etc. * remove rews code * remove example exceptions from CI * remove outdated example 08 * add serial refine regression test * add geometric yaw regression test * add scipy yaw opt regression test * add scipy layout opt regression test * add parallel computing interface regression test * updating testing names to correct test types * remove streamlit example * combine yaw reg tests into one test file * Remove references to deleted files * Use common settings for similar tests --------- Co-authored-by: Rafael M Mudafort --- .github/workflows/check-working-examples.yaml | 11 - docs/examples.md | 7 - examples/08_calc_aep_from_rose_use_class.py | 69 -- examples/19_streamlit_demo.py | 194 ---- floris/tools/__init__.py | 5 +- .../tools/floris_interface_legacy_reader.py | 223 ---- floris/tools/interface_utilities.py | 258 ----- floris/tools/optimization/__init__.py | 1 - floris/tools/optimization/legacy/__init__.py | 0 .../legacy/pyoptsparse/__init__.py | 6 - .../optimization/legacy/pyoptsparse/layout.py | 199 ---- .../legacy/pyoptsparse/optimization.py | 101 -- .../legacy/pyoptsparse/power_density.py | 340 ------ .../optimization/legacy/pyoptsparse/yaw.py | 330 ------ .../optimization/legacy/scipy/__init__.py | 12 - .../optimization/legacy/scipy/base_COE.py | 130 --- .../legacy/scipy/cluster_turbines.py | 170 --- .../scipy/derive_downstream_turbines.py | 126 --- .../tools/optimization/legacy/scipy/layout.py | 428 -------- .../legacy/scipy/layout_height.py | 290 ------ .../optimization/legacy/scipy/optimization.py | 46 - .../legacy/scipy/power_density.py | 489 --------- .../legacy/scipy/power_density_1D.py | 367 ------- floris/tools/optimization/legacy/scipy/yaw.py | 647 ------------ .../legacy/scipy/yaw_clustered.py | 276 ----- .../legacy/scipy/yaw_wind_rose.py | 984 ------------------ .../legacy/scipy/yaw_wind_rose_clustered.py | 439 -------- .../legacy/scipy/yaw_wind_rose_parallel.py | 582 ----------- .../scipy/yaw_wind_rose_parallel_clustered.py | 645 ------------ floris/tools/rews.py | 110 -- pyproject.toml | 4 - tests/{base_test.py => base_unit_test.py} | 0 ...y => floris_interface_integration_test.py} | 0 ...el_computing_interface_integration_test.py | 48 + .../reg_tests/scipy_layout_opt_regression.py | 64 ++ .../yaw_optimization_regression_test.py | 178 ++++ ...bine_operation_models_integration_test.py} | 0 ..._test.py => wind_data_integration_test.py} | 0 38 files changed, 291 insertions(+), 7488 deletions(-) delete mode 100644 examples/08_calc_aep_from_rose_use_class.py delete mode 100644 examples/19_streamlit_demo.py delete mode 100644 floris/tools/floris_interface_legacy_reader.py delete mode 100644 floris/tools/interface_utilities.py delete mode 100644 floris/tools/optimization/legacy/__init__.py delete mode 100644 floris/tools/optimization/legacy/pyoptsparse/__init__.py delete mode 100644 floris/tools/optimization/legacy/pyoptsparse/layout.py delete mode 100644 floris/tools/optimization/legacy/pyoptsparse/optimization.py delete mode 100644 floris/tools/optimization/legacy/pyoptsparse/power_density.py delete mode 100644 floris/tools/optimization/legacy/pyoptsparse/yaw.py delete mode 100644 floris/tools/optimization/legacy/scipy/__init__.py delete mode 100644 floris/tools/optimization/legacy/scipy/base_COE.py delete mode 100644 floris/tools/optimization/legacy/scipy/cluster_turbines.py delete mode 100644 floris/tools/optimization/legacy/scipy/derive_downstream_turbines.py delete mode 100644 floris/tools/optimization/legacy/scipy/layout.py delete mode 100644 floris/tools/optimization/legacy/scipy/layout_height.py delete mode 100644 floris/tools/optimization/legacy/scipy/optimization.py delete mode 100644 floris/tools/optimization/legacy/scipy/power_density.py delete mode 100644 floris/tools/optimization/legacy/scipy/power_density_1D.py delete mode 100644 floris/tools/optimization/legacy/scipy/yaw.py delete mode 100644 floris/tools/optimization/legacy/scipy/yaw_clustered.py delete mode 100644 floris/tools/optimization/legacy/scipy/yaw_wind_rose.py delete mode 100644 floris/tools/optimization/legacy/scipy/yaw_wind_rose_clustered.py delete mode 100644 floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel.py delete mode 100644 floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel_clustered.py delete mode 100644 floris/tools/rews.py rename tests/{base_test.py => base_unit_test.py} (100%) rename tests/{floris_interface_test.py => floris_interface_integration_test.py} (100%) create mode 100644 tests/parallel_computing_interface_integration_test.py create mode 100644 tests/reg_tests/scipy_layout_opt_regression.py create mode 100644 tests/reg_tests/yaw_optimization_regression_test.py rename tests/{turbine_operation_models_test.py => turbine_operation_models_integration_test.py} (100%) rename tests/{wind_data_test.py => wind_data_integration_test.py} (100%) diff --git a/.github/workflows/check-working-examples.yaml b/.github/workflows/check-working-examples.yaml index 6fc0d7e73..26483a4d6 100644 --- a/.github/workflows/check-working-examples.yaml +++ b/.github/workflows/check-working-examples.yaml @@ -39,19 +39,8 @@ jobs: # Run each Python script example for i in *.py; do - # Skip these examples since they have additional dependencies - if [[ $i == *15* ]]; then - continue - fi - if [[ $i == *19* ]]; then - continue - fi - # Skip these examples until the wind rose, optimization package, and # uncertainty interface are update to v4 - if [[ $i == *08* ]]; then - continue - fi if [[ $i == *20* ]]; then continue fi diff --git a/docs/examples.md b/docs/examples.md index 22c6daaa6..73fcbda00 100644 --- a/docs/examples.md +++ b/docs/examples.md @@ -61,9 +61,6 @@ a wind farm. - Arrange the wind rose data into arrays - Create the frequency information from the wind condition data -### 08_calc_aep_from_rose_use_class.py -Do the above but use the included WindRose class. - ### 09_compare_farm_power_with_neighbor.py Consider the affects of one wind farm on another wind farm's AEP. @@ -235,7 +232,3 @@ listed here! ### 18_check_turbine.py Plot power and thrust curves for each turbine type included in the turbine library. Additionally, plot the losses due to yaw. - -### 19_streamlit_demo.py -Creates a Streamlit dashboard to quickly modify the layout and -atmospheric conditions of a wind farm. diff --git a/examples/08_calc_aep_from_rose_use_class.py b/examples/08_calc_aep_from_rose_use_class.py deleted file mode 100644 index 0d3243d63..000000000 --- a/examples/08_calc_aep_from_rose_use_class.py +++ /dev/null @@ -1,69 +0,0 @@ - -import numpy as np - -import floris.tools.visualization as wakeviz -from floris.tools import FlorisInterface, WindRose - - -""" -This example demonstrates how to calculate the Annual Energy Production (AEP) -of a wind farm using wind rose information stored in a .csv file. - -The wind rose information is first loaded, after which we initialize our Floris -Interface. A 3 turbine farm is generated, and then the turbine wakes and powers -are calculated across all the wind directions. Finally, the farm power is -converted to AEP and reported out. -""" - -# Read in the wind rose using the class -wind_rose = WindRose() -wind_rose.read_wind_rose_csv("inputs/wind_rose.csv") - -# Show the wind rose -wind_rose.plot_wind_rose() - -# Load the FLORIS object -fi = FlorisInterface("inputs/gch.yaml") # GCH model -# fi = FlorisInterface("inputs/cc.yaml") # CumulativeCurl model - -# Assume a three-turbine wind farm with 5D spacing. We reinitialize the -# floris object and assign the layout, wind speed and wind direction arrays. -D = 126.0 # Rotor diameter for the NREL 5 MW -fi.reinitialize( - layout_x=[0.0, 5* D, 10 * D], - layout_y=[0.0, 0.0, 0.0], -) - -# Compute the AEP using the default settings -aep = fi.get_farm_AEP_wind_rose_class(wind_rose=wind_rose) -print("Farm AEP (default options): {:.3f} GWh".format(aep / 1.0e9)) - -# Compute the AEP again while specifying a cut-in and cut-out wind speed. -# The wake calculations are skipped for any wind speed below respectively -# above the cut-in and cut-out wind speed. This can speed up computation and -# prevent unexpected behavior for zero/negative and very high wind speeds. -# In this example, the results should not change between this and the default -# call to 'get_farm_AEP()'. -aep = fi.get_farm_AEP_wind_rose_class( - wind_rose=wind_rose, - cut_in_wind_speed=3.0, # Wakes are not evaluated below this wind speed - cut_out_wind_speed=25.0, # Wakes are not evaluated above this wind speed -) -print("Farm AEP (with cut_in/out specified): {:.3f} GWh".format(aep / 1.0e9)) - -# Compute the AEP a final time, this time marking one of the turbines as -# belonging to another farm by setting its weight to 0 -turbine_weights = np.array([1.0, 1.0, 0.0]) -aep = fi.get_farm_AEP_wind_rose_class( - wind_rose=wind_rose, - turbine_weights= turbine_weights -) -print("Farm AEP (one turbine removed from power calculation): {:.3f} GWh".format(aep / 1.0e9)) - -# Finally, we can also compute the AEP while ignoring all wake calculations. -# This can be useful to quantity the annual wake losses in the farm. Such -# calculations can be facilitated by enabling the 'no_wake' handle. -aep_no_wake = fi.get_farm_AEP_wind_rose_class(wind_rose=wind_rose, no_wake=True) -print("Farm AEP (no_wake=True): {:.3f} GWh".format(aep_no_wake / 1.0e9)) - -wakeviz.show_plots() diff --git a/examples/19_streamlit_demo.py b/examples/19_streamlit_demo.py deleted file mode 100644 index 88c770242..000000000 --- a/examples/19_streamlit_demo.py +++ /dev/null @@ -1,194 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -import streamlit as st - -from floris.tools import FlorisInterface -from floris.tools.visualization import visualize_cut_plane - - -# import seaborn as sns - - - -# """ -# This example demonstrates an interactive visual comparison of FLORIS -# wake models using streamlit - -# To run this example: -# (with your FLORIS environment enabled) -# pip install streamlit - -# streamlit run 16_streamlit_demo.py -# """ - - -# Parameters -wind_speed = 8.0 -# ti = 0.06 - -# Set to wide -st.set_page_config(layout="wide") - -# Parameters -D = 126. # Assume for convenience -floris_model_list = ['jensen','gch','cc','turbopark'] -color_dict = { - 'jensen':'k', - 'gch':'b', - 'cc':'r', - 'turbopark':'c' -} - -# Streamlit inputs -n_turbine_per_row = st.sidebar.slider("Turbines per row", 1, 8, 2, step=1) -n_row = st.sidebar.slider("Number of rows", 1, 8,1, step=1) -spacing = st.sidebar.slider("Turbine spacing (D)", 3., 10., 6., step=0.5) -wind_direction = st.sidebar.slider("Wind Direction", 240., 300., 270., step=1.) -wind_speed = st.sidebar.slider("Wind Speed", 4., 15., 8., step=0.25) -turbulence_intensity = st.sidebar.slider("Turbulence Intensity", 0.01, 0.25, 0.06, step=0.01) -floris_models = st.sidebar.multiselect("FLORIS Models", floris_model_list, floris_model_list) -# floris_models_viz = st.sidebar.multiselect( -# "FLORIS Models for Visualization", -# floris_model_list, -# floris_model_list -# ) -desc_yaw = st.sidebar.checkbox("Descending yaw pattern?",value=False) -front_turbine_yaw = st.sidebar.slider("Upstream yaw angle", -30., 30., 0., step=0.5) - -# Define the layout -X = [] -Y = [] - -for x_idx in range(n_turbine_per_row): - for y_idx in range(n_row): - X.append(D * spacing * x_idx) - Y.append(D * spacing * y_idx) - -turbine_labels = ['T%02d' % i for i in range(len(X))] - -# Set up the yaw angle values -yaw_angles_base = np.zeros([1,1,len(X)]) - -yaw_angles_yaw = np.zeros([1,1,len(X)]) -if not desc_yaw: - yaw_angles_yaw[:,:,:n_row] = front_turbine_yaw -else: - decreasing_pattern = np.linspace(front_turbine_yaw,0,n_turbine_per_row) - for i in range(n_turbine_per_row): - yaw_angles_yaw[:,:,i*n_row:(i+1)*n_row] = decreasing_pattern[i] - - - -# Get a few quanitities -num_models = len(floris_models) - -# Determine which models to plot given cant plot cc right now -floris_models_viz = [m for m in floris_models if "cc" not in m] -floris_models_viz = [m for m in floris_models_viz if "turbo" not in m] -num_models_to_viz = len(floris_models_viz) - -# Set up the visualization plot -fig_viz, axarr_viz = plt.subplots(num_models_to_viz,2) - -# Set up the turbine power plot -fig_turb_pow, ax_turb_pow = plt.subplots() - -# Set up a list to save the farm power results -farm_power_results = [] - -# Now complete all these plots in a loop -for fm in floris_models: - - # Analyze the base case================================================== - print('Loading: ',fm) - fi = FlorisInterface("inputs/%s.yaml" % fm) - - # Set the layout, wind direction and wind speed - fi.reinitialize( - layout_x=X, - layout_y=Y, - wind_speeds=[wind_speed], - wind_directions=[wind_direction], - turbulence_intensities=[turbulence_intensity], - ) - - fi.calculate_wake(yaw_angles=yaw_angles_base) - turbine_powers = fi.get_turbine_powers() / 1000. - ax_turb_pow.plot( - turbine_labels, - turbine_powers.flatten(), - color=color_dict[fm], - ls='-', - marker='s', - label='%s - baseline' % fm - ) - ax_turb_pow.grid(True) - ax_turb_pow.legend() - ax_turb_pow.set_xlabel('Turbine') - ax_turb_pow.set_ylabel('Power (kW)') - - # Save the farm power - farm_power_results.append((fm,'base',np.sum(turbine_powers))) - - # If in viz list also visualize - if fm in floris_models_viz: - ax_idx = floris_models_viz.index(fm) - ax = axarr_viz[ax_idx, 0] - - horizontal_plane_gch = fi.calculate_horizontal_plane( - x_resolution=100, - y_resolution=100, - yaw_angles=yaw_angles_base, - height=90.0 - ) - visualize_cut_plane(horizontal_plane_gch, ax=ax, title='%s - baseline' % fm) - - # Analyze the yawed case================================================== - print('Loading: ',fm) - fi = FlorisInterface("inputs/%s.yaml" % fm) - - # Set the layout, wind direction and wind speed - fi.reinitialize( - layout_x=X, - layout_y=Y, - wind_speeds=[wind_speed], - wind_directions=[wind_direction], - turbulence_intensities=[turbulence_intensity], - ) - - fi.calculate_wake(yaw_angles=yaw_angles_yaw) - turbine_powers = fi.get_turbine_powers() / 1000. - ax_turb_pow.plot( - turbine_labels, - turbine_powers.flatten(), - color=color_dict[fm], - ls='--', - marker='o', - label='%s - yawed' % fm - ) - ax_turb_pow.grid(True) - ax_turb_pow.legend() - ax_turb_pow.set_xlabel('Turbine') - ax_turb_pow.set_ylabel('Power (kW)') - - # Save the farm power - farm_power_results.append((fm,'yawed',np.sum(turbine_powers))) - - # If in viz list also visualize - if fm in floris_models_viz: - ax_idx = floris_models_viz.index(fm) - ax = axarr_viz[ax_idx, 1] - - horizontal_plane_gch = fi.calculate_horizontal_plane( - x_resolution=100, - y_resolution=100, - yaw_angles=yaw_angles_yaw, - height=90.0 - ) - visualize_cut_plane(horizontal_plane_gch, ax=ax, title='%s - yawed' % fm) - -st.header("Visualizations") -st.write(fig_viz) -st.header("Power Comparison") -st.write(fig_turb_pow) diff --git a/floris/tools/__init__.py b/floris/tools/__init__.py index 677c569c0..f30c0ab22 100644 --- a/floris/tools/__init__.py +++ b/floris/tools/__init__.py @@ -19,11 +19,10 @@ '__name__', '__package__', '__path__', '__spec__', 'cut_plane', 'floris_interface', 'layout_functions', 'optimization', 'plotting', 'power_rose', - 'rews', 'visualization', 'wind_rose'] + 'visualization'] """ from .floris_interface import FlorisInterface -from .floris_interface_legacy_reader import FlorisInterfaceLegacyV2 from .parallel_computing_interface import ParallelComputingInterface from .uncertainty_interface import UncertaintyInterface from .visualization import ( @@ -46,7 +45,5 @@ # optimization, # plotting, # power_rose, -# rews, # visualization, -# wind_rose, # ) diff --git a/floris/tools/floris_interface_legacy_reader.py b/floris/tools/floris_interface_legacy_reader.py deleted file mode 100644 index d28c7152c..000000000 --- a/floris/tools/floris_interface_legacy_reader.py +++ /dev/null @@ -1,223 +0,0 @@ - -from __future__ import annotations - -import copy -import json -import os -from pathlib import Path - -from floris.tools import FlorisInterface - - -class FlorisInterfaceLegacyV2(FlorisInterface): - """ - FlorisInterface_legacy_v24 provides a wrapper around FlorisInterface - which enables compatibility of the class with legacy floris v2.4 input - files. The user can simply pass this class the path to a legacy v2.4 - floris input file to this class and it'll convert it to a v3.0-compatible - input dictionary and load the floris v3.0 object. - - After successfully loading the v3.0 Floris object, you can export the - input file using: fi.floris.to_file("converted_input_file_v3.yaml"). - An example of such a use case is demonstrated at the end of this file. - - If you would like to manually convert the input dictionary without first - loading it in FLORIS, or if somehow the code fails to automatically - convert the input file to v3, you should follow the following steps: - 1. Load the legacy v2.4 input floris JSON file as a dictionary - 2. Pass the v2.4 dictionary to `_convert_v24_dictionary_to_v3(...)`. - That will return a v3.0-compatible input dictionary and a turbine - dictionary. - 3. Save the converted configuration file to a YAML or JSON file. - - For example: - - import json, yaml - from floris.tools.floris_interface_legacy_reader import ( - _convert_v24_dictionary_to_v3 - ) - - with open() as legacy_dict_file: - configuration_v2 = json.load(legacy_dict_file) - fi_dict, turb_dict = _convert_v24_dictionary_to_v3(configuration_v2) - with open(r'fi_input_file_v3.yaml', 'w') as file: - yaml.dump(fi_dict, file) - with open(r'turbine_input_file_v3.yaml', 'w') as file: - yaml.dump(turb_dict, file) - - Args: - configuration (:py:obj:`dict`): The legacy v2.4 Floris configuration - dictionary or the file path to the JSON file. - """ - - def __init__(self, configuration: dict | str | Path, het_map=None): - - if not isinstance(configuration, (str, Path, dict)): - raise TypeError("The Floris `configuration` must of type 'dict', 'str', or 'Path'.") - - print("Importing and converting legacy floris v2.4 input file...") - if isinstance(configuration, (str, Path)): - with open(configuration) as legacy_dict_file: - configuration = json.load(legacy_dict_file) - - dict_fi, dict_turbine = _convert_v24_dictionary_to_v3(configuration) - super().__init__(dict_fi, het_map=het_map) # Initialize full class - - # Now overwrite turbine types - n_turbs = len(self.layout_x) - self.reinitialize(turbine_type=[dict_turbine] * n_turbs) - - -def _convert_v24_dictionary_to_v3(dict_legacy): - """ - Converts a v2.4 floris input dictionary file to a v3.0-compatible - dictionary. See detailed instructions in the class - FlorisInterface_legacy_v24. - - Args: - dict_legacy (dict): Input dictionary in legacy floris v2.4 format. - - Returns: - dict_floris (dict): Converted dictionary containing the floris input - settings in v3.0-compatible format. - dict_turbine (dict): A converted dictionary containing the turbine - settings in v3.0-compatible format. - """ - # Simple entries that can just be copied over - dict_floris = {} # Output dictionary - dict_floris["name"] = dict_legacy["name"] + " (auto-converted to v3)" - dict_floris["description"] = dict_legacy["description"] - dict_floris["floris_version"] = "v3.0 (converted from legacy format v2)" - dict_floris["logging"] = dict_legacy["logging"] - - dict_floris["solver"] = { - "type": "turbine_grid", - "turbine_grid_points": dict_legacy["turbine"]["properties"]["ngrid"], - } - - fp = dict_legacy["farm"]["properties"] - tp = dict_legacy["turbine"]["properties"] - dict_floris["farm"] = { - "layout_x": fp["layout_x"], - "layout_y": fp["layout_y"], - "turbine_type": ["nrel_5MW"] # Placeholder - } - - ref_height = fp["specified_wind_height"] - if ref_height < 0: - ref_height = tp["hub_height"] - - dict_floris["flow_field"] = { - "air_density": fp["air_density"], - "reference_wind_height": ref_height, - "turbulence_intensity": fp["turbulence_intensity"][0], - "wind_directions": [fp["wind_direction"]], - "wind_shear": fp["wind_shear"], - "wind_speeds": [fp["wind_speed"]], - "wind_veer": fp["wind_veer"], - } - - wp = dict_legacy["wake"]["properties"] - velocity_model = wp["velocity_model"] - velocity_model_str = velocity_model - if velocity_model == "gauss_legacy": - velocity_model_str = "gauss" - deflection_model = wp["deflection_model"] - turbulence_model = wp["turbulence_model"] - wdp = wp["parameters"]["wake_deflection_parameters"][deflection_model] - wvp = wp["parameters"]["wake_velocity_parameters"][velocity_model] - wtp = wp["parameters"]["wake_turbulence_parameters"][turbulence_model] - dict_floris["wake"] = { - "model_strings": { - "combination_model": wp["combination_model"], - "deflection_model": deflection_model, - "turbulence_model": turbulence_model, - "velocity_model": velocity_model_str, - }, - "enable_secondary_steering": wdp["use_secondary_steering"], - "enable_yaw_added_recovery": wvp["use_yaw_added_recovery"], - "enable_transverse_velocities": wvp["calculate_VW_velocities"], - } - - # Copy over wake velocity parameters and remove unnecessary parameters - velocity_subdict = copy.deepcopy(wvp) - c = ["calculate_VW_velocities", "use_yaw_added_recovery", "eps_gain"] - for ci in [ci for ci in c if ci in velocity_subdict.keys()]: - velocity_subdict.pop(ci) - - # Copy over wake deflection parameters and remove unnecessary parameters - deflection_subdict = copy.deepcopy(wdp) - c = ["use_secondary_steering"] - for ci in [ci for ci in c if ci in deflection_subdict.keys()]: - deflection_subdict.pop(ci) - - # Copy over wake turbulence parameters and remove unnecessary parameters - turbulence_subdict = copy.deepcopy(wtp) - - # Save parameter settings to wake dictionary - dict_floris["wake"]["wake_velocity_parameters"] = { - velocity_model_str: velocity_subdict - } - dict_floris["wake"]["wake_deflection_parameters"] = { - deflection_model: deflection_subdict - } - dict_floris["wake"]["wake_turbulence_parameters"] = { - turbulence_model: turbulence_subdict - } - - # Finally add turbine information - dict_turbine = { - "turbine_type": dict_legacy["turbine"]["name"], - "generator_efficiency": tp["generator_efficiency"], - "hub_height": tp["hub_height"], - "pP": tp["pP"], - "pT": tp["pT"], - "rotor_diameter": tp["rotor_diameter"], - "TSR": tp["TSR"], - "power_thrust_table": tp["power_thrust_table"], - "ref_air_density": 1.225 # This was implicit in the former input file - } - - return dict_floris, dict_turbine - - -if __name__ == "__main__": - """ - When this file is ran as a script, it'll convert a legacy FLORIS v2.4 - legacy input file (.json) to a v3.0-compatible input file (.yaml). - Please specify your input and output paths accordingly, and it will - produce the necessary file. - """ - import argparse - - # Parse the input arguments - description = "Converts a FLORIS v2.4 input file to a FLORIS v3 compatible input file.\ - The file format is changed from JSON to YAML and all inputs are mapped, as needed." - - parser = argparse.ArgumentParser(description=description) - parser.add_argument("-i", - "--input-file", - nargs=1, - required=True, - help="Path to the legacy input file") - parser.add_argument("-o", - "--output-file", - nargs="?", - default=None, - help="Path to write the output file") - args = parser.parse_args() - - # Specify paths - legacy_json_path = Path(args.input_file[0]) - if args.output_file: - floris_yaml_output_path = args.output_file - else: - floris_yaml_output_path = legacy_json_path.stem + ".yaml" - - # Load legacy input .json file into V3 object - fi = FlorisInterfaceLegacyV2(legacy_json_path) - - # Create output directory and save converted input file - fi.floris.to_file(floris_yaml_output_path) - - print(f"Converted file saved to: {floris_yaml_output_path}") diff --git a/floris/tools/interface_utilities.py b/floris/tools/interface_utilities.py deleted file mode 100644 index a797bfc6c..000000000 --- a/floris/tools/interface_utilities.py +++ /dev/null @@ -1,258 +0,0 @@ - -import inspect - - -def show_params( - fi, - params=None, - verbose=False, - wake_velocity_model=True, - wake_deflection_model=True, - turbulence_model=True, -): - - if wake_velocity_model: - obj = "fi.floris.wake.velocity_model" - # props = get_props(obj, fi) - props = fi.floris.wake._asdict() - # props = props["wake_velocity_parameters"][fi.floris.wake.velocity_model.model_string] - # NOTE: _get_model_dict is remove and model.as_dict() should be used instead - props = fi.floris.wake.velocity_model._get_model_dict() - - if verbose: - print("=".join(["="] * 39)) - else: - print("=".join(["="] * 19)) - print( - "Wake Velocity Model Parameters:", - fi.floris.wake.velocity_model.model_string, - "model", - ) - - if params is not None: - props_subset = get_props_subset(params, props) - if not verbose: - print_props(obj, fi, props_subset) - else: - print_prop_docs(obj, fi, props_subset) - - else: - if not verbose: - print_props(obj, fi, props) - else: - print_prop_docs(obj, fi, props) - - if wake_deflection_model: - obj = "fi.floris.wake.deflection_model" - props = get_props(obj, fi) - - if verbose: - print("=".join(["="] * 39)) - else: - print("=".join(["="] * 19)) - print( - "Wake Deflection Model Parameters:", - fi.floris.wake.deflection_model.model_string, - "model", - ) - - if params is not None: - props_subset = get_props_subset(params, props) - if props_subset: # true if the subset is not empty - if not verbose: - print_props(obj, fi, props_subset) - else: - print_prop_docs(obj, fi, props_subset) - - else: - if not verbose: - print_props(obj, fi, props) - else: - print_prop_docs(obj, fi, props) - - if turbulence_model: - obj = "fi.floris.wake.turbulence_model" - props = get_props(obj, fi) - - if verbose: - print("=".join(["="] * 39)) - else: - print("=".join(["="] * 19)) - print( - "Wake Turbulence Model Parameters:", - fi.floris.wake.turbulence_model.model_string, - "model", - ) - - if params is not None: - props_subset = get_props_subset(params, props) - if props_subset: # true if the subset is not empty - if not verbose: - print_props(obj, fi, props_subset) - else: - print_prop_docs(obj, fi, props_subset) - - else: - if not verbose: - print_props(obj, fi, props) - else: - print_prop_docs(obj, fi, props) - - -def get_params( - fi, - params=None, - wake_velocity_model=True, - wake_deflection_model=True, - turbulence_model=True, -): - model_params = {} - - if wake_velocity_model: - wake_vel_vals = {} - obj = "fi.floris.farm.wake.velocity_model" - props = get_props(obj, fi) - if params is not None: - props_subset = get_props_subset(params, props) - wake_vel_vals = get_prop_values(obj, fi, props_subset) - else: - wake_vel_vals = get_prop_values(obj, fi, props) - model_params["Wake Velocity Parameters"] = wake_vel_vals - del model_params["Wake Velocity Parameters"]["logger"] - - if wake_deflection_model: - wake_defl_vals = {} - obj = "fi.floris.farm.wake.deflection_model" - props = get_props(obj, fi) - if params is not None: - props_subset = get_props_subset(params, props) - wake_defl_vals = get_prop_values(obj, fi, props_subset) - else: - wake_defl_vals = get_prop_values(obj, fi, props) - model_params["Wake Deflection Parameters"] = wake_defl_vals - del model_params["Wake Deflection Parameters"]["logger"] - - if turbulence_model: - wake_turb_vals = {} - obj = "fi.floris.farm.wake.turbulence_model" - props = get_props(obj, fi) - if params is not None: - props_subset = get_props_subset(params, props) - wake_turb_vals = get_prop_values(obj, fi, props_subset) - else: - wake_turb_vals = get_prop_values(obj, fi, props) - model_params["Wake Turbulence Parameters"] = wake_turb_vals - del model_params["Wake Turbulence Parameters"]["logger"] - - return model_params - - -def set_params(fi, params, verbose=True): - for param_dict in params: - if param_dict == "Wake Velocity Parameters": - obj = "fi.floris.farm.wake.velocity_model" - props = get_props(obj, fi) - for prop in params[param_dict]: - if prop in [val[0] for val in props]: - exec(obj + "." + prop + " = " + str(params[param_dict][prop])) - if verbose: - print( - "Wake velocity parameter " - + prop - + " set to " - + str(params[param_dict][prop]) - ) - else: - raise Exception( - ( - "Wake deflection parameter '{}' " - + "not part of current model. Value '{}' was not " - + "used." - ).format(prop, params[param_dict][prop]) - ) - - if param_dict == "Wake Deflection Parameters": - obj = "fi.floris.farm.wake.deflection_model" - props = get_props(obj, fi) - for prop in params[param_dict]: - if prop in [val[0] for val in props]: - exec(obj + "." + prop + " = " + str(params[param_dict][prop])) - if verbose: - print( - "Wake deflection parameter " - + prop - + " set to " - + str(params[param_dict][prop]) - ) - else: - raise Exception( - ( - "Wake deflection parameter '{}' " - + "not part of current model. Value '{}' was not " - + "used." - ).format(prop, params[param_dict][prop]) - ) - - if param_dict == "Wake Turbulence Parameters": - obj = "fi.floris.farm.wake.turbulence_model" - props = get_props(obj, fi) - for prop in params[param_dict]: - if prop in [val[0] for val in props]: - exec(obj + "." + prop + " = " + str(params[param_dict][prop])) - if verbose: - print( - "Wake turbulence parameter " - + prop - + " set to " - + str(params[param_dict][prop]) - ) - else: - raise Exception( - ( - "Wake turbulence parameter '{}' " - + "not part of current model. Value '{}' was not " - + "used." - ).format(prop, params[param_dict][prop]) - ) - - -def get_props_subset(params, props): - prop_names = [prop[0] for prop in props] - try: - props_subset_inds = [prop_names.index(param) for param in params] - except Exception: - props_subset_inds = [] - print("Parameter(s)", ", ".join(params), "does(do) not exist.") - props_subset = [props[i] for i in props_subset_inds] - return props_subset - - -# def get_props(obj, fi): -# return inspect.getmembers( -# eval(obj + ".__class__"), lambda obj: isinstance(obj, property) -# ) - - -def get_prop_values(obj, fi, props): - prop_val_dict = {} - for val in props: - prop_val_dict[val[0]] = eval(obj + "." + val[0]) - return prop_val_dict - - -def print_props(obj, fi, props): - print("-".join(["-"] * 19)) - for val in props: - print(val[0] + " = " + str(eval(obj + "." + val[0]))) - print("-".join(["-"] * 19)) - - -def print_prop_docs(obj, fi, props): - for val in props: - print( - "-".join(["-"] * 39) + "\n", - val[0] + " = " + str(eval(obj + "." + val[0])), - "\n", - eval(obj + ".__class__." + val[0] + ".__doc__"), - ) - print("-".join(["-"] * 39)) diff --git a/floris/tools/optimization/__init__.py b/floris/tools/optimization/__init__.py index 8aaab3393..28021fd92 100644 --- a/floris/tools/optimization/__init__.py +++ b/floris/tools/optimization/__init__.py @@ -1,6 +1,5 @@ from . import ( layout_optimization, - legacy, other, yaw_optimization, ) diff --git a/floris/tools/optimization/legacy/__init__.py b/floris/tools/optimization/legacy/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/floris/tools/optimization/legacy/pyoptsparse/__init__.py b/floris/tools/optimization/legacy/pyoptsparse/__init__.py deleted file mode 100644 index 3fe7863a8..000000000 --- a/floris/tools/optimization/legacy/pyoptsparse/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -from . import ( - layout, - optimization, - power_density, - yaw, -) diff --git a/floris/tools/optimization/legacy/pyoptsparse/layout.py b/floris/tools/optimization/legacy/pyoptsparse/layout.py deleted file mode 100644 index defc229dd..000000000 --- a/floris/tools/optimization/legacy/pyoptsparse/layout.py +++ /dev/null @@ -1,199 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -from scipy.spatial.distance import cdist -from shapely.geometry import ( - LineString, - Point, - Polygon, -) - - -def _norm(val, x1, x2): - return (val - x1) / (x2 - x1) - -def _unnorm(val, x1, x2): - return np.array(val) * (x2 - x1) + x1 - -class Layout: - def __init__(self, fi, boundaries, freq): - self.fi = fi - self.boundaries = boundaries - self.freq = freq - - self.boundary_polygon = Polygon(self.boundaries) - self.boundary_line = LineString(self.boundaries) - - self.xmin = np.min([tup[0] for tup in boundaries]) - self.xmax = np.max([tup[0] for tup in boundaries]) - self.ymin = np.min([tup[1] for tup in boundaries]) - self.ymax = np.max([tup[1] for tup in boundaries]) - self.x0 = _norm(self.fi.layout_x, self.xmin, self.xmax) - self.y0 = _norm(self.fi.layout_y, self.ymin, self.ymax) - - self.min_dist = 2 * self.rotor_diameter - - self.wdir = self.fi.floris.flow_field.wind_directions - self.wspd = self.fi.floris.flow_field.wind_speeds - self.initial_AEP = np.sum(self.fi.get_farm_power() * self.freq) - - def __str__(self): - return "layout" - - ########################################################################### - # Required private optimization methods - ########################################################################### - - def reinitialize(self): - pass - - def obj_func(self, varDict): - # Parse the variable dictionary - self.parse_opt_vars(varDict) - - # Update turbine map with turbince locations - self.fi.reinitialize(layout_x=self.x, layout_y=self.y) - self.fi.calculate_wake() - - # Compute the objective function - funcs = {} - funcs["obj"] = ( - -1 * np.sum(self.fi.get_farm_power() * self.freq) / self.initial_AEP - ) - - # Compute constraints, if any are defined for the optimization - funcs = self.compute_cons(funcs) - - fail = False - return funcs, fail - - # Optionally, the user can supply the optimization with gradients - # def _sens(self, varDict, funcs): - # funcsSens = {} - # fail = False - # return funcsSens, fail - - def parse_opt_vars(self, varDict): - self.x = _unnorm(varDict["x"], self.xmin, self.xmax) - self.y = _unnorm(varDict["y"], self.ymin, self.ymax) - - def parse_sol_vars(self, sol): - self.x = list(_unnorm(sol.getDVs()["x"], self.xmin, self.xmax))[0] - self.y = list(_unnorm(sol.getDVs()["y"], self.ymin, self.ymax))[1] - - def add_var_group(self, optProb): - optProb.addVarGroup( - "x", self.nturbs, type="c", lower=0.0, upper=1.0, value=self.x0 - ) - optProb.addVarGroup( - "y", self.nturbs, type="c", lower=0.0, upper=1.0, value=self.y0 - ) - - return optProb - - def add_con_group(self, optProb): - optProb.addConGroup("boundary_con", self.nturbs, upper=0.0) - optProb.addConGroup("spacing_con", 1, upper=0.0) - - return optProb - - def compute_cons(self, funcs): - funcs["boundary_con"] = self.distance_from_boundaries() - funcs["spacing_con"] = self.space_constraint() - - return funcs - - ########################################################################### - # User-defined methods - ########################################################################### - - def space_constraint(self, rho=500): - x = self.x - y = self.y - - # Sped up distance calc here using vectorization - locs = np.vstack((x, y)).T - distances = cdist(locs, locs) - arange = np.arange(distances.shape[0]) - distances[arange, arange] = 1e10 - dist = np.min(distances, axis=0) - - g = 1 - np.array(dist) / self.min_dist - - # Following code copied from OpenMDAO KSComp(). - # Constraint is satisfied when KS_constraint <= 0 - g_max = np.max(np.atleast_2d(g), axis=-1)[:, np.newaxis] - g_diff = g - g_max - exponents = np.exp(rho * g_diff) - summation = np.sum(exponents, axis=-1)[:, np.newaxis] - KS_constraint = g_max + 1.0 / rho * np.log(summation) - - return KS_constraint[0][0] - - def distance_from_boundaries(self): - boundary_con = np.zeros(self.nturbs) - for i in range(self.nturbs): - loc = Point(self.x[i], self.y[i]) - boundary_con[i] = loc.distance(self.boundary_line) - if self.boundary_polygon.contains(loc) is True: - boundary_con[i] *= -1.0 - - return boundary_con - - def plot_layout_opt_results(self, sol): - """ - Method to plot the old and new locations of the layout opitimization. - """ - locsx = _unnorm(sol.getDVs()["x"], self.xmin, self.xmax) - locsy = _unnorm(sol.getDVs()["y"], self.ymin, self.ymax) - x0 = _unnorm(self.x0, self.xmin, self.xmax) - y0 = _unnorm(self.y0, self.ymin, self.ymax) - - plt.figure(figsize=(9, 6)) - fontsize = 16 - plt.plot(x0, y0, "ob") - plt.plot(locsx, locsy, "or") - # plt.title('Layout Optimization Results', fontsize=fontsize) - plt.xlabel("x (m)", fontsize=fontsize) - plt.ylabel("y (m)", fontsize=fontsize) - plt.axis("equal") - plt.grid() - plt.tick_params(which="both", labelsize=fontsize) - plt.legend( - ["Old locations", "New locations"], - loc="lower center", - bbox_to_anchor=(0.5, 1.01), - ncol=2, - fontsize=fontsize, - ) - - verts = self.boundaries - for i in range(len(verts)): - if i == len(verts) - 1: - plt.plot([verts[i][0], verts[0][0]], [verts[i][1], verts[0][1]], "b") - else: - plt.plot( - [verts[i][0], verts[i + 1][0]], [verts[i][1], verts[i + 1][1]], "b" - ) - - plt.show() - - ########################################################################### - # Properties - ########################################################################### - - @property - def nturbs(self): - """ - This property returns the number of turbines in the FLORIS - object. - - Returns: - nturbs (int): The number of turbines in the FLORIS object. - """ - self._nturbs = self.fi.floris.farm.n_turbines - return self._nturbs - - @property - def rotor_diameter(self): - return self.fi.floris.farm.rotor_diameters[0][0][0] diff --git a/floris/tools/optimization/legacy/pyoptsparse/optimization.py b/floris/tools/optimization/legacy/pyoptsparse/optimization.py deleted file mode 100644 index e4f761f7c..000000000 --- a/floris/tools/optimization/legacy/pyoptsparse/optimization.py +++ /dev/null @@ -1,101 +0,0 @@ - -from floris.logging_manager import LoggingManager - - -class Optimization(LoggingManager): - """ - Base optimization class. - - Args: - fi (:py:class:`floris.tools.floris_utilities.FlorisInterface`): - Interface from FLORIS to the tools package. - - Returns: - Optimization: An instantiated Optimization object. - """ - - def __init__(self, model, solver=None): - """ - Instantiate Optimization object and its parameters. - """ - self.model = model - self.solver_choices = [ - "SNOPT", - "IPOPT", - "SLSQP", - "NLPQLP", - "FSQP", - "NSGA2", - "PSQP", - "ParOpt", - "CONMIN", - "ALPSO", - ] - - if solver not in self.solver_choices: - raise ValueError( - "Solver must be one supported by pyOptSparse: " - + str(self.solver_choices) - ) - - self.reinitialize(solver=solver) - - # Private methods - - def _reinitialize(self, solver=None, optOptions=None): - try: - import pyoptsparse - except ImportError: - err_msg = ( - "It appears you do not have pyOptSparse installed. " - + "Please refer to https://pyoptsparse.readthedocs.io/ for " - + "guidance on how to properly install the module." - ) - self.logger.error(err_msg, stack_info=True) - raise ImportError(err_msg) - - self.optProb = pyoptsparse.Optimization(self.model, self.objective_func) - - self.optProb = self.model.add_var_group(self.optProb) - self.optProb = self.model.add_con_group(self.optProb) - self.optProb.addObj("obj") - - if solver is not None: - self.solver = solver - print("Setting up optimization with user's choice of solver: ", self.solver) - else: - self.solver = "SLSQP" - print("Setting up optimization with default solver: SLSQP.") - if optOptions is not None: - self.optOptions = optOptions - else: - if self.solver == "SNOPT": - self.optOptions = {"Major optimality tolerance": 1e-7} - else: - self.optOptions = {} - - exec("self.opt = pyoptsparse." + self.solver + "(options=self.optOptions)") - - def _optimize(self): - if hasattr(self.model, "_sens"): - self.sol = self.opt(self.optProb, sens=self.model._sens) - else: - self.sol = self.opt(self.optProb, sens="CDR", storeHistory='hist.hist') - - # Public methods - - def reinitialize(self, solver=None): - self._reinitialize(solver=solver) - - def optimize(self): - self._optimize() - - return self.sol - - def objective_func(self, varDict): - return self.model.obj_func(varDict) - - def sensitivity_func(self): - pass - - # Properties diff --git a/floris/tools/optimization/legacy/pyoptsparse/power_density.py b/floris/tools/optimization/legacy/pyoptsparse/power_density.py deleted file mode 100644 index f1586312b..000000000 --- a/floris/tools/optimization/legacy/pyoptsparse/power_density.py +++ /dev/null @@ -1,340 +0,0 @@ - -import sys - -import matplotlib.pyplot as plt -import numpy as np - - -class PowerDensity: - def __init__( - self, fi, boundaries, wdir=None, wspd=None, wfreq=None, AEP_initial=None - ): - - self.fi = fi - self.boundaries = boundaries - - self.xmin = np.min([tup[0] for tup in boundaries]) - self.xmax = np.max([tup[0] for tup in boundaries]) - self.ymin = np.min([tup[1] for tup in boundaries]) - self.ymax = np.max([tup[1] for tup in boundaries]) - self.x0 = self.fi.layout_x - self.y0 = self.fi.layout_y - - self.yawmin = 0.0 - self.yawmax = 20.0 - self.yaw0 = 1.0 - - self.min_dist = 2 * self.rotor_diameter - - if wdir is not None: - self.wdir = wdir - else: - self.wdir = self.fi.floris.farm.flow_field.wind_direction - if wspd is not None: - self.wspd = wspd - else: - self.wspd = self.fi.floris.farm.flow_field.wind_speed - if wfreq is not None: - self.wfreq = wfreq - else: - self.wfreq = 1.0 - - if AEP_initial is not None: - self.AEP_initial = AEP_initial - else: - self.AEP_initial = self.fi.get_farm_AEP(self.wdir, self.wspd, self.wfreq) - - self.initial_area = self.find_layout_area(self.x0, self.y0) - - def __str__(self): - return "power_density" - - ########################################################################### - # Required private optimziation methods - ########################################################################### - - def reinitialize(self): - pass - - def obj_func(self, varDict): - # Parse the variable dictionary - self.parse_opt_vars(varDict) - - # Calculate new wind farm foorprint area - opt_area = self.find_layout_area(self.x, self.y) - - # Update turbine map with turbince locations - self.fi.reinitialize_flow_field(layout_array=[self.x, self.y]) - - # Compute the objective function - AEP_sum = self.fi.get_farm_AEP(self.wdir, self.wspd, self.wfreq, self.yaw) - - # for i in range(len(self.wdir)): - # AEP_sum = AEP_sum + self.fi.get_farm_AEP( - # self.wdir[i], - # self.wspd[i], - # self.wfreq[i], - # self.yaw[i] - # ) - - funcs = {} - funcs["obj"] = -1e1 * AEP_sum / self.AEP_initial * self.initial_area / opt_area - # print('obj: ', funcs['obj']) - - # Compute constraints, if any are defined for the optimization - funcs = self.compute_cons(funcs, AEP_sum) - - fail = False - return funcs, fail - - # Optionally, the user can supply the optimization with gradients - # def _sens(self, varDict, funcs): - # funcsSens = {} - # fail = False - # return funcsSens, fail - - def parse_opt_vars(self, varDict): - self.x = varDict["x"] - self.y = varDict["y"] - self.yaw = [ - varDict["yaw"][i * self.nturbs : i * self.nturbs + self.nturbs] - for i in range(len(self.wdir)) - ] - - def parse_sol_vars(self, sol): - self.x = list(sol.getDVs().values())[0] - self.y = list(sol.getDVs().values())[1] - self.yaw = list(sol.getDVs().values())[2] - - def add_var_group(self, optProb): - optProb.addVarGroup( - "x", - self.nturbs, - type="c", - lower=self.xmin, - upper=self.xmax, - value=self.x0, - scale=1e-4, - ) - optProb.addVarGroup( - "y", - self.nturbs, - type="c", - lower=self.ymin, - upper=self.ymax, - value=self.y0, - scale=1e-4, - ) - optProb.addVarGroup( - "yaw", - self.nturbs * len(self.wdir), - type="c", - lower=self.yawmin, - upper=self.yawmax, - value=self.yaw0, - ) - - return optProb - - def add_con_group(self, optProb): - optProb.addConGroup("boundary_con", self.nturbs, lower=0.0) - optProb.addConGroup("spacing_con", self.nturbs, lower=self.min_dist) - optProb.addConGroup("aep_con", 1, lower=1.0) - - return optProb - - def compute_cons(self, funcs, AEP_sum): - funcs["boundary_con"] = self.distance_from_boundaries() - funcs["spacing_con"] = self.space_constraint() - funcs["aep_con"] = self.aep_constraint(AEP_sum) - # print('boundary_con: ', funcs['boundary_con']) - # print('spacing_con: ', funcs['spacing_con']) - # print('aep_con: ', funcs['aep_con']) - - return funcs - - ########################################################################### - # User-defined methods - ########################################################################### - - def find_layout_area(self, x, y): - points = zip(x, y) - points = np.array(list(points)) - - hull = self.convex_hull(points) - - area = self.polygon_area( - np.array([val[0] for val in hull]), np.array([val[1] for val in hull]) - ) - - return area - - def convex_hull(self, points): - # find two hull points, U, V, and split to left and right search - u = min(points, key=lambda p: p[0]) - v = max(points, key=lambda p: p[0]) - left, right = self.split(u, v, points), self.split(v, u, points) - - # find convex hull on each side - return [v] + self.extend(u, v, left) + [u] + self.extend(v, u, right) + [v] - - def polygon_area(self, x, y): - # coordinate shift - x_ = x - x.mean() - y_ = y - y.mean() - - correction = x_[-1] * y_[0] - y_[-1] * x_[0] - main_area = np.dot(x_[:-1], y_[1:]) - np.dot(y_[:-1], x_[1:]) - return 0.5 * np.abs(main_area + correction) - - def split(self, u, v, points): - # return points on left side of UV - return [p for p in points if np.cross(p - u, v - u) < 0] - - def extend(self, u, v, points): - if not points: - return [] - - # find furthest point W, and split search to WV, UW - w = min(points, key=lambda p: np.cross(p - u, v - u)) - p1, p2 = self.split(w, v, points), self.split(u, w, points) - return self.extend(w, v, p1) + [w] + self.extend(u, w, p2) - - def aep_constraint(self, AEP_sum): - return AEP_sum / self.AEP_initial - - def space_constraint(self): - dist = [ - np.min( - [ - np.sqrt((self.x[i] - self.x[j]) ** 2 + (self.y[i] - self.y[j]) ** 2) - for j in range(self.nturbs) - if i != j - ] - ) - for i in range(self.nturbs) - ] - - return dist - - def distance_from_boundaries(self): - dist_out = [] - - for k in range(self.nturbs): - dist = [] - in_poly = self.point_inside_polygon(self.x[k], self.y[k], self.boundaries) - - for i in range(len(self.boundaries)): - self.boundaries = np.array(self.boundaries) - p1 = self.boundaries[i] - if i == len(self.boundaries) - 1: - p2 = self.boundaries[0] - else: - p2 = self.boundaries[i + 1] - - px = p2[0] - p1[0] - py = p2[1] - p1[1] - norm = px * px + py * py - - u = ( - (self.x[k] - self.boundaries[i][0]) * px - + (self.y[k] - self.boundaries[i][1]) * py - ) / float(norm) - - if u <= 0: - xx = p1[0] - yy = p1[1] - elif u >= 1: - xx = p2[0] - yy = p2[1] - else: - xx = p1[0] + u * px - yy = p1[1] + u * py - - dx = self.x[k] - xx - dy = self.y[k] - yy - dist.append(np.sqrt(dx * dx + dy * dy)) - - dist = np.array(dist) - if in_poly: - dist_out.append(np.min(dist)) - else: - dist_out.append(-np.min(dist)) - - dist_out = np.array(dist_out) - - return dist_out - - def point_inside_polygon(self, x, y, poly): - n = len(poly) - inside = False - - p1x, p1y = poly[0] - for i in range(n + 1): - p2x, p2y = poly[i % n] - if y > min(p1y, p2y): - if y <= max(p1y, p2y): - if x <= max(p1x, p2x): - if p1y != p2y: - xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x - if p1x == p2x or x <= xinters: - inside = not inside - p1x, p1y = p2x, p2y - - return inside - - def plot_layout_opt_results(self, sol): - """ - Method to plot the old and new locations of the layout opitimization. - """ - locsx = sol.getDVs()["x"] - locsy = sol.getDVs()["y"] - - plt.figure(figsize=(9, 6)) - fontsize = 16 - plt.plot(self.x0, self.y0, "ob") - plt.plot(locsx, locsy, "or") - # plt.title('Layout Optimization Results', fontsize=fontsize) - plt.xlabel("x (m)", fontsize=fontsize) - plt.ylabel("y (m)", fontsize=fontsize) - plt.axis("equal") - plt.grid() - plt.tick_params(which="both", labelsize=fontsize) - plt.legend( - ["Old locations", "New locations"], - loc="lower center", - bbox_to_anchor=(0.5, 1.01), - ncol=2, - fontsize=fontsize, - ) - - verts = self.boundaries - for i in range(len(verts)): - if i == len(verts) - 1: - plt.plot([verts[i][0], verts[0][0]], [verts[i][1], verts[0][1]], "b") - else: - plt.plot( - [verts[i][0], verts[i + 1][0]], [verts[i][1], verts[i + 1][1]], "b" - ) - - plt.show() - - ########################################################################### - # Properties - ########################################################################### - - @property - def nturbs(self): - """ - This property returns the number of turbines in the FLORIS - object. - - Returns: - nturbs (int): The number of turbines in the FLORIS object. - """ - self._nturbs = len(self.fi.floris.farm.turbines) - return self._nturbs - - @property - def rotor_diameter(self): - return self.fi.floris.farm.turbine_map.turbines[0].rotor_diameter diff --git a/floris/tools/optimization/legacy/pyoptsparse/yaw.py b/floris/tools/optimization/legacy/pyoptsparse/yaw.py deleted file mode 100644 index b4bcd7109..000000000 --- a/floris/tools/optimization/legacy/pyoptsparse/yaw.py +++ /dev/null @@ -1,330 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -from scipy.stats import norm - -from floris.tools.visualization import visualize_cut_plane - - -class Yaw: - """ - Class that performs yaw optimization for a single set of - inflow conditions. Intended to be used together with an object of the - :py:class`floris.tools.optimization.optimization.Optimization` class. - - Args: - fi (:py:class:`floris.tools.floris_interface.FlorisInterface`): - Interface from FLORIS to the tools package. - minimum_yaw_angle (float, optional): Minimum constraint on - yaw. Defaults to None. - maximum_yaw_angle (float, optional): Maximum constraint on - yaw. Defaults to None. - x0 (iterable, optional): The initial yaw conditions. - Defaults to None. Initializes to the current turbine - yaw settings. - include_unc (bool): If True, uncertainty in wind direction - and/or yaw position is included when determining wind farm power. - Uncertainty is included by computing the mean wind farm power for - a distribution of wind direction and yaw position deviations from - the original wind direction and yaw angles. Defaults to False. - unc_pmfs (dictionary, optional): A dictionary containing optional - probability mass functions describing the distribution of wind - direction and yaw position deviations when wind direction and/or - yaw position uncertainty is included in the power calculations. - Contains the following key-value pairs: - - - **wd_unc**: A numpy array containing wind direction deviations - from the original wind direction. - - **wd_unc_pmf**: A numpy array containing the probability of - each wind direction deviation in **wd_unc** occuring. - - **yaw_unc**: A numpy array containing yaw angle deviations - from the original yaw angles. - - **yaw_unc_pmf**: A numpy array containing the probability of - each yaw angle deviation in **yaw_unc** occuring. - - Defaults to None, in which case default PMFs are calculated using - values provided in **unc_options**. - unc_options (disctionary, optional): A dictionary containing values used - to create normally-distributed, zero-mean probability mass functions - describing the distribution of wind direction and yaw position - deviations when wind direction and/or yaw position uncertainty is - included. This argument is only used when **unc_pmfs** is None and - contains the following key-value pairs: - - - **std_wd**: A float containing the standard deviation of the wind - direction deviations from the original wind direction. - - **std_yaw**: A float containing the standard deviation of the yaw - angle deviations from the original yaw angles. - - **pmf_res**: A float containing the resolution in degrees of the - wind direction and yaw angle PMFs. - - **pdf_cutoff**: A float containing the cumulative distribution - function value at which the tails of the PMFs are truncated. - - Defaults to None. Initializes to {'std_wd': 4.95, 'std_yaw': 1.75, - 'pmf_res': 1.0, 'pdf_cutoff': 0.995}. - wdir (float, optional): Wind direction to use for optimization. Defaults - to None. Initializes to current wind direction in floris. - wspd (float, optional): Wind speed to use for optimization. Defaults - to None. Initializes to current wind direction in floris. - - Returns: - Yaw: An instantiated Yaw object. - """ - - def __init__( - self, - fi, - minimum_yaw_angle=0.0, - maximum_yaw_angle=25.0, - x0=None, - include_unc=False, - unc_pmfs=None, - unc_options=None, - wdir=None, - wspd=None, - ): - """ - Instantiate Yaw object and parameter values. - """ - self.fi = fi - self.minimum_yaw_angle = minimum_yaw_angle - self.maximum_yaw_angle = maximum_yaw_angle - - if x0 is not None: - self.x0 = x0 - else: - self.x0 = [ - turbine.yaw_angle - for turbine in self.fi.floris.farm.turbine_map.turbines - ] - - self.include_unc = include_unc - self.unc_pmfs = unc_pmfs - if self.include_unc & (self.unc_pmfs is None): - self.unc_pmfs = calc_unc_pmfs(self.unc_pmfs) - - if wdir is not None: - self.wdir = wdir - else: - self.wdir = self.fi.floris.farm.flow_field.wind_direction - if wspd is not None: - self.wspd = wspd - else: - self.wspd = self.fi.floris.farm.flow_field.wind_speed - - self.fi.reinitialize_flow_field(wind_speed=self.wspd, wind_direction=self.wdir) - - def __str__(self): - return "yaw" - - ########################################################################### - # Required private optimization methods - ########################################################################### - - def reinitialize(self): - pass - - def obj_func(self, varDict): - # Parse the variable dictionary - self.parse_opt_vars(varDict) - - # Reinitialize with wind speed and direction - self.fi.reinitialize_flow_field(wind_speed=self.wspd, wind_direction=self.wdir) - - # Compute the objective function - funcs = {} - funcs["obj"] = -1 * self.fi.get_farm_power_for_yaw_angle(self.yaw) / 1e0 - - # Compute constraints, if any are defined for the optimization - funcs = self.compute_cons(funcs) - - fail = False - return funcs, fail - - def parse_opt_vars(self, varDict): - self.yaw = varDict["yaw"] - - def parse_sol_vars(self, sol): - self.yaw = list(sol.getDVs().values())[0] - - def add_var_group(self, optProb): - optProb.addVarGroup( - "yaw", - self.nturbs, - type="c", - lower=self.minimum_yaw_angle, - upper=self.maximum_yaw_angle, - value=self.x0, - ) - - return optProb - - def add_con_group(self, optProb): - # no constraints defined - return optProb - - def compute_cons(self, funcs): - # no constraints defined - return funcs - - ########################################################################### - # User-defined methods - ########################################################################### - - def plot_yaw_opt_results(self, sol): - """ - Method to plot the wind farm with optimal yaw offsets - """ - yaw = sol.getDVs()["yaw"] - - # Assign yaw angles to turbines and calculate wake - self.fi.calculate_wake(yaw_angles=yaw) - - # Initialize the horizontal cut - horizontal_plane = self.fi.calculate_horizontal_plane(x_resolution=400, y_resolution=100) - - # Plot and show - fig, ax = plt.subplots() - visualize_cut_plane(horizontal_plane, ax=ax) - ax.set_title( - "Optimal Yaw Offsets for U = " - + str(self.wspd[0]) - + " m/s, Wind Direction = " - + str(self.wdir[0]) - + "$^\\circ$" - ) - - plt.show() - - def print_power_gain(self, sol): - """ - Method to print the power gain from wake steering with optimal yaw offsets - """ - yaw = sol.getDVs()["yaw"] - - self.fi.calculate_wake(yaw_angles=0.0) - power_baseline = self.fi.get_farm_power() - - self.fi.calculate_wake(yaw_angles=yaw) - power_opt = self.fi.get_farm_power() - - pct_gain = 100.0 * (power_opt - power_baseline) / power_baseline - - print("==========================================") - print("Baseline Power = %.1f kW" % (power_baseline / 1e3)) - print("Optimal Power = %.1f kW" % (power_opt / 1e3)) - print("Total Power Gain = %.1f%%" % pct_gain) - print("==========================================") - - ########################################################################### - # Properties - ########################################################################### - - @property - def nturbs(self): - """ - This property returns the number of turbines in the FLORIS - object. - - Returns: - nturbs (int): The number of turbines in the FLORIS object. - """ - self._nturbs = len(self.fi.floris.farm.turbines) - return self._nturbs - - -def calc_unc_pmfs(unc_options=None): - """ - Calculates normally-distributed probability mass functions describing the - distribution of wind direction and yaw position deviations when wind direction - and/or yaw position uncertainty are included in power calculations. - - Args: - unc_options (dictionary, optional): A dictionary containing values used - to create normally-distributed, zero-mean probability mass functions - describing the distribution of wind direction and yaw position - deviations when wind direction and/or yaw position uncertainty is - included. This argument is only used when **unc_pmfs** is None and - contains the following key-value pairs: - - - **std_wd**: A float containing the standard deviation of the wind - direction deviations from the original wind direction. - - **std_yaw**: A float containing the standard deviation of the yaw - angle deviations from the original yaw angles. - - **pmf_res**: A float containing the resolution in degrees of the - wind direction and yaw angle PMFs. - - **pdf_cutoff**: A float containing the cumulative distribution - function value at which the tails of the PMFs are truncated. - - Defaults to None. Initializes to {'std_wd': 4.95, 'std_yaw': 1.75, - 'pmf_res': 1.0, 'pdf_cutoff': 0.995}. - - Returns: - [dictionary]: A dictionary containing - probability mass functions describing the distribution of wind - direction and yaw position deviations when wind direction and/or - yaw position uncertainty is included in the power calculations. - Contains the following key-value pairs: - - - **wd_unc**: A numpy array containing wind direction deviations - from the original wind direction. - - **wd_unc_pmf**: A numpy array containing the probability of - each wind direction deviation in **wd_unc** occuring. - - **yaw_unc**: A numpy array containing yaw angle deviations - from the original yaw angles. - - **yaw_unc_pmf**: A numpy array containing the probability of - each yaw angle deviation in **yaw_unc** occuring. - - """ - - if unc_options is None: - unc_options = { - "std_wd": 4.95, - "std_yaw": 1.75, - "pmf_res": 1.0, - "pdf_cutoff": 0.995, - } - - # create normally distributed wd and yaw uncertainty pmfs - if unc_options["std_wd"] > 0: - wd_bnd = int( - np.ceil( - norm.ppf(unc_options["pdf_cutoff"], scale=unc_options["std_wd"]) - / unc_options["pmf_res"] - ) - ) - wd_unc = np.linspace( - -1 * wd_bnd * unc_options["pmf_res"], - wd_bnd * unc_options["pmf_res"], - 2 * wd_bnd + 1, - ) - wd_unc_pmf = norm.pdf(wd_unc, scale=unc_options["std_wd"]) - wd_unc_pmf = wd_unc_pmf / np.sum(wd_unc_pmf) # normalize so sum = 1.0 - else: - wd_unc = np.zeros(1) - wd_unc_pmf = np.ones(1) - - if unc_options["std_yaw"] > 0: - yaw_bnd = int( - np.ceil( - norm.ppf(unc_options["pdf_cutoff"], scale=unc_options["std_yaw"]) - / unc_options["pmf_res"] - ) - ) - yaw_unc = np.linspace( - -1 * yaw_bnd * unc_options["pmf_res"], - yaw_bnd * unc_options["pmf_res"], - 2 * yaw_bnd + 1, - ) - yaw_unc_pmf = norm.pdf(yaw_unc, scale=unc_options["std_yaw"]) - yaw_unc_pmf = yaw_unc_pmf / np.sum(yaw_unc_pmf) # normalize so sum = 1.0 - else: - yaw_unc = np.zeros(1) - yaw_unc_pmf = np.ones(1) - - return { - "wd_unc": wd_unc, - "wd_unc_pmf": wd_unc_pmf, - "yaw_unc": yaw_unc, - "yaw_unc_pmf": yaw_unc_pmf, - } diff --git a/floris/tools/optimization/legacy/scipy/__init__.py b/floris/tools/optimization/legacy/scipy/__init__.py deleted file mode 100644 index 5e93e05a5..000000000 --- a/floris/tools/optimization/legacy/scipy/__init__.py +++ /dev/null @@ -1,12 +0,0 @@ -from . import ( - base_COE, - derive_downstream_turbines, - layout, - layout_height, - optimization, - power_density, - power_density_1D, - yaw, - yaw_wind_rose, - yaw_wind_rose_parallel, -) diff --git a/floris/tools/optimization/legacy/scipy/base_COE.py b/floris/tools/optimization/legacy/scipy/base_COE.py deleted file mode 100644 index 4935559fc..000000000 --- a/floris/tools/optimization/legacy/scipy/base_COE.py +++ /dev/null @@ -1,130 +0,0 @@ - -import numpy as np - - -class BaseCOE: - """ - BaseCOE is the base cost of energy (COE) class that is used to determine - the cost of energy associated with a - :py:class:`~.optimization.scipy.layout_height.LayoutHeightOptimization` - object. - - TODO: 1) Add references to NREL 2016 Cost of Wind Energy Review throughout? - """ - - def __init__(self, opt_obj): - """ - Instantiate a COE model object with a LayoutHeightOptimization object. - - Args: - opt_obj (:py:class:`~.layout_height.LayoutHeightOptimization`): - The optimization object. - """ - self.opt_obj = opt_obj - - # Public methods - - def FCR(self): - """ - This method returns the fixed charge rate used in the COE calculation. - - Returns: - float: The fixed charge rate. - """ - return 0.079 # % - Taken from 2016 Cost of Wind Energy Review - - def TCC(self, height): - """ - This method dertermines the turbine capital costs (TCC), - calculating the effect of varying turbine height and rotor - diameter on the cost of the tower. The relationship estiamted - the mass of steel needed for the tower from the NREL Cost and - Scaling Model (CSM), and then adds that to the tower cost - portion of the TCC. The proportion is determined from the NREL - 2016 Cost of Wind Energy Review. A price of 3.08 $/kg is - assumed for the needed steel. Tower height is passed directly - while the turbine rotor diameter is pulled directly from the - turbine object within the - :py:class:`~.tools.floris_interface.FlorisInterface`:. - - TODO: Turbine capital cost or tower capital cost? - - Args: - height (float): Turbine hub height in meters. - - Returns: - float: The turbine capital cost of a wind plant in units of $/kWh. - """ - # From CSM with a fudge factor - tower_mass = ( - 0.2694 - * height - * ( - np.pi - * (self.opt_obj.fi.floris.farm.turbines[0].rotor_diameter / 2) ** 2 - ) - + 1779.3 - ) / (1.341638) - - # Combo of 2016 Cost of Wind Energy Review and CSM - TCC = 831 + tower_mass * 3.08 * self.opt_obj.nturbs / self.opt_obj.plant_kw - - return TCC - - def BOS(self): - """ - This method returns the balance of station cost of a wind plant as - determined by a constant factor. As the rating of a wind plant grows, - the cost of the wind plant grows as well. - - Returns: - float: The balance of station cost of a wind plant in units of - $/kWh. - """ - return 364.0 # $/kW - Taken from 2016 Cost of Wind Energy Review - - def FC(self): - """ - This method returns the finance charge cost of a wind plant as - determined by a constant factor. As the rating of a wind plant grows, - the cost of the wind plant grows as well. - - Returns: - float: The finance charge cost of a wind plant in units of $/kWh. - """ - return 155.0 # $/kW - Taken from 2016 Cost of Wind Energy Review - - def O_M(self): - """ - This method returns the operational cost of a wind plant as determined - by a constant factor. As the rating of a wind plant grows, the cost of - the wind plant grows as well. - - Returns: - float: The operational cost of a wind plant in units of $/kWh. - """ - return 52.0 # $/kW - Taken from 2016 Cost of Wind Energy Review - - def COE(self, height, AEP_sum): - """ - This method calculates and returns the cost of energy of a wind plant. - This cost of energy (COE) formulation for a wind plant varies based on - turbine height, rotor diameter, and total annualized energy production - (AEP). The components of the COE equation are defined throughout the - BaseCOE class. - - Args: - height (float): The hub height of the turbines in meters - (all turbines are set to the same height). - AEP_sum (float): The annualized energy production (AEP) - for the wind plant as calculated across the wind rose - in kWh. - - Returns: - float: The cost of energy for a wind plant in units of - $/kWh. - """ - # Comptue Cost of Energy (COE) as $/kWh for a plant - return ( - self.FCR() * (self.TCC(height) + self.BOS() + self.FC()) + self.O_M() - ) / (AEP_sum / 1000 / self.opt_obj.plant_kw) diff --git a/floris/tools/optimization/legacy/scipy/cluster_turbines.py b/floris/tools/optimization/legacy/scipy/cluster_turbines.py deleted file mode 100644 index aae573c5e..000000000 --- a/floris/tools/optimization/legacy/scipy/cluster_turbines.py +++ /dev/null @@ -1,170 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - - -def cluster_turbines(fi, wind_direction=None, wake_slope=0.30, plot_lines=False): - """Separate a wind farm into separate clusters in which the turbines in - each subcluster only affects the turbines in its cluster and has zero - interaction with turbines from other clusters, both ways (being waked, - generating wake), This allows the user to separate the control setpoint - optimization in several lower-dimensional optimization problems, for - example. This function assumes a very simplified wake function where the - wakes are assumed to have a linearly diverging profile. In comparisons - with the FLORIS GCH model, the wake_slope matches well with the FLORIS' - wake profiles for a value of wake_slope = 0.5 * turbulence_intensity, where - turbulence_intensity is an input to the FLORIS model at the default - GCH parameterization. Note that does not include wind direction variability. - To be conservative, the user is recommended to use the rule of thumb: - `wake_slope = turbulence_intensity`. Hence, the default value for - `wake_slope=0.30` should be conservative for turbulence intensities up to - 0.30 and is likely to provide valid estimates of which turbines are - downstream until a turbulence intensity of 0.50. This simple model saves - time compared to FLORIS. - - Args: - fi ([floris object]): FLORIS object of the farm of interest. - wind_direction (float): The wind direction in the FLORIS frame - of reference for which the downstream turbines are to be determined. - wake_slope (float, optional): linear slope of the wake (dy/dx) - plot_lines (bool, optional): Enable plotting wakes/turbines. - Defaults to False. - - Returns: - clusters (iterable): A list in which each entry contains a list - of turbine numbers that together form a cluster which - exclusively interact with one another and have zero - interaction with turbines outside of this cluster. - """ - - if wind_direction is None: - wind_direction = np.mean(fi.floris.farm.wind_direction) - - # Get farm layout - x = fi.layout_x - y = fi.layout_y - D = np.array([t.rotor_diameter for t in fi.floris.farm.turbines]) - n_turbs = len(x) - - # Rotate farm and determine freestream/waked turbines - is_downstream = [False for _ in range(n_turbs)] - x_rot = ( - np.cos((wind_direction - 270.0) * np.pi / 180.0) * x - - np.sin((wind_direction - 270.0) * np.pi / 180.0) * y - ) - y_rot = ( - np.sin((wind_direction - 270.0) * np.pi / 180.0) * x - + np.cos((wind_direction - 270.0) * np.pi / 180.0) * y - ) - - if plot_lines: - fig, ax = plt.subplots() - for ii in range(n_turbs): - ax.plot( - x_rot[ii] * np.ones(2), - [y_rot[ii] - D[ii] / 2, y_rot[ii] + D[ii] / 2], - "k", - ) - for ii in range(n_turbs): - ax.text(x_rot[ii], y_rot[ii], "T%03d" % ii) - ax.axis("equal") - - srt = np.argsort(x_rot) - usrt = np.argsort(srt) - x_rot_srt = x_rot[srt] - y_rot_srt = y_rot[srt] - affected_by_turbs = np.tile(False, (n_turbs, n_turbs)) - for ii in range(n_turbs): - x0 = x_rot_srt[ii] - y0 = y_rot_srt[ii] - - def wake_profile_ub_turbii(x): - y = (y0 + D[ii]) + (x - x0) * wake_slope - if isinstance(y, (float, np.float64, np.float32)): - if x < (x0 + 0.01): - y = -np.Inf - else: - y[x < x0 + 0.01] = -np.Inf - return y - - def wake_profile_lb_turbii(x): - y = (y0 - D[ii]) - (x - x0) * wake_slope - if isinstance(y, (float, np.float64, np.float32)): - if x < (x0 + 0.01): - y = -np.Inf - else: - y[x < x0 + 0.01] = -np.Inf - return y - - def determine_if_in_wake(xt, yt): - return (yt < wake_profile_ub_turbii(xt)) & (yt > wake_profile_lb_turbii(xt)) - - # Get most downstream turbine - is_downstream[ii] = not any( - determine_if_in_wake(x_rot_srt[iii], y_rot_srt[iii]) for iii in range(n_turbs) - ) - # Determine which turbines are affected by this turbine ('ii') - affecting_following_turbs = [ - determine_if_in_wake(x_rot_srt[iii], y_rot_srt[iii]) - for iii in range(n_turbs) - ] - - # Determine by which turbines this turbine ('ii') is affected - for aft in np.where(affecting_following_turbs)[0]: - affected_by_turbs[aft, ii] = True - - if plot_lines: - x1 = np.max(x_rot_srt) + 500.0 - ax.fill_between( - [x0, x1, x1, x0], - [ - wake_profile_ub_turbii(x0 + 0.02), - wake_profile_ub_turbii(x1), - wake_profile_lb_turbii(x1), - wake_profile_lb_turbii(x0 + 0.02), - ], - alpha=0.1, - color="k", - edgecolor=None, - ) - - # Rearrange into initial frame of reference - affected_by_turbs = affected_by_turbs[:, usrt][usrt, :] - for ii in range(n_turbs): - affected_by_turbs[ii, ii] = True # Add self to turb_list_affected - affected_by_turbs = [np.where(c)[0] for c in affected_by_turbs] - - # List of downstream turbines - turbs_downstream = [is_downstream[i] for i in usrt] - turbs_downstream = list(np.where(turbs_downstream)[0]) - - # Initialize one cluster for each turbine and all the turbines its affected by - clusters = affected_by_turbs - - # Iteratively merge clusters if any overlap between turbines - ci = 0 - while ci < len(clusters): - # Compare current row to the ones to the right of it - cj = ci + 1 - merged_column = False - while cj < len(clusters): - if any(y in clusters[ci] for y in clusters[cj]): - # Merge - clusters[ci] = np.hstack([clusters[ci], clusters[cj]]) - clusters[ci] = np.array(np.unique(clusters[ci]), dtype=int) - clusters.pop(cj) - merged_column = True - else: - cj = cj + 1 - if not merged_column: - ci = ci + 1 - - if plot_lines: - ax.set_title("wind_direction = %.1f deg" % wind_direction) - ax.set_xlim([np.min(x_rot) - 500.0, x1]) - ax.set_ylim([np.min(y_rot) - 500.0, np.max(y_rot) + 500.0]) - for ci, cl in enumerate(clusters): - ax.plot(x_rot[cl], y_rot[cl], 'o', label='cluster %d' % ci) - ax.legend() - - return clusters diff --git a/floris/tools/optimization/legacy/scipy/derive_downstream_turbines.py b/floris/tools/optimization/legacy/scipy/derive_downstream_turbines.py deleted file mode 100644 index 7f094b623..000000000 --- a/floris/tools/optimization/legacy/scipy/derive_downstream_turbines.py +++ /dev/null @@ -1,126 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - - -def derive_downstream_turbines(fi, wind_direction, wake_slope=0.30, plot_lines=False): - """Determine which turbines have no effect on other turbines in the - farm, i.e., which turbines have wakes that do not impact the other - turbines in the farm. This allows the user to exclude these turbines - from a control setpoint optimization, for example. This function - assumes a very simplified wake function where the wakes are assumed - to have a linearly diverging profile. In comparisons with the FLORIS - GCH model, the wake_slope matches well with the FLORIS' wake profiles - for a value of wake_slope = 0.5 * turbulence_intensity, where - turbulence_intensity is an input to the FLORIS model at the default - GCH parameterization. Note that does not include wind direction variability. - To be conservative, the user is recommended to use the rule of thumb: - `wake_slope = turbulence_intensity`. Hence, the default value for - `wake_slope=0.30` should be conservative for turbulence intensities up to - 0.30 and is likely to provide valid estimates of which turbines are - downstream until a turbulence intensity of 0.50. This simple model saves - time compared to FLORIS. - - Args: - fi ([floris object]): FLORIS object of the farm of interest. - wind_direction (float): The wind direction in the FLORIS frame - of reference for which the downstream turbines are to be determined. - wake_slope (float, optional): linear slope of the wake (dy/dx) - plot_lines (bool, optional): Enable plotting wakes/turbines. - Defaults to False. - - Returns: - turbs_downstream (iterable): A list containing the turbine - numbers that have a wake that does not affect any other - turbine inside the farm. - """ - - # Get farm layout - x = fi.layout_x - y = fi.layout_y - D = np.array([t.rotor_diameter for t in fi.floris.farm.turbines]) - n_turbs = len(x) - - # Rotate farm and determine freestream/waked turbines - is_downstream = [False for _ in range(n_turbs)] - x_rot = ( - np.cos((wind_direction - 270.0) * np.pi / 180.0) * x - - np.sin((wind_direction - 270.0) * np.pi / 180.0) * y - ) - y_rot = ( - np.sin((wind_direction - 270.0) * np.pi / 180.0) * x - + np.cos((wind_direction - 270.0) * np.pi / 180.0) * y - ) - - if plot_lines: - fig, ax = plt.subplots() - for ii in range(n_turbs): - ax.plot( - x_rot[ii] * np.ones(2), - [y_rot[ii] - D[ii] / 2, y_rot[ii] + D[ii] / 2], - "k", - ) - for ii in range(n_turbs): - ax.text(x_rot[ii], y_rot[ii], "T%03d" % ii) - ax.axis("equal") - - srt = np.argsort(x_rot) - x_rot_srt = x_rot[srt] - y_rot_srt = y_rot[srt] - for ii in range(n_turbs): - x0 = x_rot_srt[ii] - y0 = y_rot_srt[ii] - - def wake_profile_ub_turbii(x): - y = (y0 + D[ii]) + (x - x0) * wake_slope - if isinstance(y, (float, np.float64, np.float32)): - if x < (x0 + 0.01): - y = -np.Inf - else: - y[x < x0 + 0.01] = -np.Inf - return y - - def wake_profile_lb_turbii(x): - y = (y0 - D[ii]) - (x - x0) * wake_slope - if isinstance(y, (float, np.float64, np.float32)): - if x < (x0 + 0.01): - y = -np.Inf - else: - y[x < x0 + 0.01] = -np.Inf - return y - - def determine_if_in_wake(xt, yt): - return (yt < wake_profile_ub_turbii(xt)) & (yt > wake_profile_lb_turbii(xt)) - - is_downstream[ii] = not any( - determine_if_in_wake(x_rot_srt[iii], y_rot_srt[iii]) for iii in range(n_turbs) - ) - - if plot_lines: - x1 = np.max(x_rot_srt) + 500.0 - ax.fill_between( - [x0, x1, x1, x0], - [ - wake_profile_ub_turbii(x0 + 0.02), - wake_profile_ub_turbii(x1), - wake_profile_lb_turbii(x1), - wake_profile_lb_turbii(x0 + 0.02), - ], - alpha=0.1, - color="k", - edgecolor=None, - ) - - usrt = np.argsort(srt) - is_downstream = [is_downstream[i] for i in usrt] - turbs_downstream = list(np.where(is_downstream)[0]) - - if plot_lines: - ax.set_title("wind_direction = %03d" % wind_direction) - ax.set_xlim([np.min(x_rot) - 500.0, x1]) - ax.set_ylim([np.min(y_rot) - 500.0, np.max(y_rot) + 500.0]) - ax.plot( - x_rot[turbs_downstream], y_rot[turbs_downstream], "o", color="green", - ) - - return turbs_downstream diff --git a/floris/tools/optimization/legacy/scipy/layout.py b/floris/tools/optimization/legacy/scipy/layout.py deleted file mode 100644 index a7a37b9af..000000000 --- a/floris/tools/optimization/legacy/scipy/layout.py +++ /dev/null @@ -1,428 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -from scipy.optimize import minimize - -from .optimization import Optimization - - -class LayoutOptimization(Optimization): - """ - Layout is a subclass of the - :py:class:`~.tools.optimization.scipy.optimization.Optimization` class - that is used to perform layout optimization. - """ - - def __init__( - self, - fi, - boundaries, - wd, - ws, - freq, - AEP_initial, - x0=None, - bnds=None, - min_dist=None, - opt_method="SLSQP", - opt_options=None, - ): - """ - Instantiate LayoutOptimization object with a FlorisInterface object and - assign parameter values. - - Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - boundaries (iterable(float, float)): Pairs of x- and y-coordinates - that represent the boundary's vertices (m). - wd (np.array): An array of wind directions (deg). - ws (np.array): An array of wind speeds (m/s). - freq (np.array): An array of the frequencies of occurance - correponding to each pair of wind direction and wind speed - values. - AEP_initial (float): The initial Annual Energy - Production used for normalization in the optimization (Wh) - (TODO: Is Watt-hours the correct unit?). - x0 (iterable, optional): The initial turbine locations, - ordered by x-coordinate and then y-coordiante - (ie. [x1, x2, ..., xn, y1, y2, ..., yn]) (m). If none are - provided, x0 initializes to the current turbine locations. - Defaults to None. - bnds (iterable, optional): Bounds for the optimization - variables (pairs of min/max values for each variable (m)). If - none are specified, they are set to the min. and max. of the - boundaries iterable. Defaults to None. - min_dist (float, optional): The minimum distance to be - maintained between turbines during the optimization (m). If not - specified, initializes to 2 rotor diameters. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dict, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': True, 'iprint': 2, 'ftol': 1e-9}. - Defaults to None. - """ - super().__init__(fi) - self.epsilon = np.finfo(float).eps - - if opt_options is None: - self.opt_options = {"maxiter": 100, "disp": True, "iprint": 2, "ftol": 1e-9} - - self.reinitialize_opt( - boundaries=boundaries, - wd=wd, - ws=ws, - freq=freq, - AEP_initial=AEP_initial, - x0=x0, - bnds=bnds, - min_dist=min_dist, - opt_method=opt_method, - opt_options=opt_options, - ) - - # Private methods - - def _AEP_layout_opt(self, locs): - locs_unnorm = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in locs[0 : self.nturbs] - ] + [ - self._unnorm(valy, self.bndy_min, self.bndy_max) - for valy in locs[self.nturbs : 2 * self.nturbs] - ] - self._change_coordinates(locs_unnorm) - AEP_sum = self._AEP_loop_wd() - return -1 * AEP_sum / self.AEP_initial - - def _AEP_single_wd(self, wd, ws, freq): - self.fi.reinitialize_flow_field(wind_direction=[wd], wind_speed=[ws]) - self.fi.calculate_wake() - - turb_powers = [turbine.power for turbine in self.fi.floris.farm.turbines] - return np.sum(turb_powers) * freq * 8760 - - def _AEP_loop_wd(self): - AEP_sum = 0 - - for i in range(len(self.wd)): - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], wind_speed=[self.ws[i]] - ) - self.fi.calculate_wake() - - AEP_sum = AEP_sum + self.fi.get_farm_power() * self.freq[i] * 8760 - return AEP_sum - - def _change_coordinates(self, locs): - # Parse the layout coordinates - layout_x = locs[0 : self.nturbs] - layout_y = locs[self.nturbs : 2 * self.nturbs] - layout_array = [layout_x, layout_y] - - # Update the turbine map in floris - self.fi.reinitialize_flow_field(layout_array=layout_array) - - def _space_constraint(self, x_in, min_dist): - x = np.nan_to_num(x_in[0 : self.nturbs]) - y = np.nan_to_num(x_in[self.nturbs :]) - - dist = [ - np.sqrt((x[i] - x[j]) ** 2 + (y[i] - y[j]) ** 2) - for i in range(self.nturbs) - for j in range(self.nturbs) - if i != j - ] - - # dist = [] - # for i in range(self.nturbs): - # for j in range(self.nturbs): - # if i != j: - # dist.append(np.sqrt( (x[i]-x[j])**2 + (y[i]-y[j])**2)) - - return np.min(dist) - self._norm(min_dist, self.bndx_min, self.bndx_max) - - def _distance_from_boundaries(self, x_in, boundaries): - # x = self._unnorm(x_in[0:self.nturbs], self.bndx_min, self.bndx_max) - # y = self._unnorm(x_in[self.nturbs:2*self.nturbs], \ - # self.bndy_min, self.bndy_max) - x = x_in[0 : self.nturbs] - y = x_in[self.nturbs : 2 * self.nturbs] - - dist_out = [] - - for k in range(self.nturbs): - dist = [] - in_poly = self._point_inside_polygon(x[k], y[k], boundaries) - - for i in range(len(boundaries)): - boundaries = np.array(boundaries) - p1 = boundaries[i] - if i == len(boundaries) - 1: - p2 = boundaries[0] - else: - p2 = boundaries[i + 1] - - px = p2[0] - p1[0] - py = p2[1] - p1[1] - norm = px * px + py * py - - u = ( - (x[k] - boundaries[i][0]) * px + (y[k] - boundaries[i][1]) * py - ) / float(norm) - - if u <= 0: - xx = p1[0] - yy = p1[1] - elif u >= 1: - xx = p2[0] - yy = p2[1] - else: - xx = p1[0] + u * px - yy = p1[1] + u * py - - dx = x[k] - xx - dy = y[k] - yy - dist.append(np.sqrt(dx * dx + dy * dy)) - - dist = np.array(dist) - if in_poly: - dist_out.append(np.min(dist)) - else: - dist_out.append(-np.min(dist)) - - dist_out = np.array(dist_out) - - return np.min(dist_out) - - def _point_inside_polygon(self, x, y, poly): - n = len(poly) - inside = False - - p1x, p1y = poly[0] - for i in range(n + 1): - p2x, p2y = poly[i % n] - if y > min(p1y, p2y): - if y <= max(p1y, p2y): - if x <= max(p1x, p2x): - if p1y != p2y: - xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x - if p1x == p2x or x <= xinters: - inside = not inside - p1x, p1y = p2x, p2y - - return inside - - def _generate_constraints(self): - # grad_constraint1 = grad(self._space_constraint) - # grad_constraint2 = grad(self._distance_from_boundaries) - - tmp1 = { - "type": "ineq", - "fun": lambda x, *args: self._space_constraint(x, self.min_dist), - "args": (self.min_dist,), - } - tmp2 = { - "type": "ineq", - "fun": lambda x, *args: self._distance_from_boundaries( - x, self.boundaries_norm - ), - "args": (self.boundaries_norm,), - } - - self.cons = [tmp1, tmp2] - - def _optimize(self): - self.residual_plant = minimize( - self._AEP_layout_opt, - self.x0, - method=self.opt_method, - bounds=self.bnds, - constraints=self.cons, - options=self.opt_options, - ) - - opt_results = self.residual_plant.x - - return opt_results - - def _set_opt_bounds(self): - self.bnds = [(0.0, 1.0) for _ in range(2 * self.nturbs)] - - # Public methods - - def optimize(self): - """ - This method finds the optimized layout of wind turbines for power - production given the provided frequencies of occurance of wind - conditions (wind speed, direction). - - Returns: - opt_locs (iterable): A list of the optimized locations of each - turbine (m). - """ - print("=====================================================") - print("Optimizing turbine layout...") - print("Number of parameters to optimize = ", len(self.x0)) - print("=====================================================") - - opt_locs_norm = self._optimize() - - print("Optimization complete.") - - opt_locs = [ - [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in opt_locs_norm[0 : self.nturbs] - ], - [ - self._unnorm(valy, self.bndy_min, self.bndy_max) - for valy in opt_locs_norm[self.nturbs : 2 * self.nturbs] - ], - ] - - return opt_locs - - def reinitialize_opt( - self, - boundaries=None, - wd=None, - ws=None, - freq=None, - AEP_initial=None, - x0=None, - bnds=None, - min_dist=None, - opt_method=None, - opt_options=None, - ): - """ - This method reinitializes any optimization parameters that are - specified. Otherwise, the current parameter values are kept. - - Args: - boundaries (iterable(float, float)): Pairs of x- and y-coordinates - that represent the boundary's vertices (m). - wd (np.array): An array of wind directions (deg). Defaults to None. - ws (np.array): An array of wind speeds (m/s). Defaults to None. - freq (np.array): An array of the frequencies of occurance - correponding to each pair of wind direction and wind speed - values. Defaults to None. - AEP_initial (float): The initial Annual Energy - Production used for normalization in the optimization (Wh). If - not specified, initializes to the AEP of the current Floris - object. Defaults to None. - x0 (iterable, optional): The initial turbine locations, - ordered by x-coordinate and then y-coordiante (ie. [x1, x2, ... - , xn, y1, y2, ..., yn] (m)). If none are provided, x0 - initializes to the current turbine locations. Defaults to None. - bnds (iterable, optional): Bounds for the optimization - variables (pairs of min/max values for each variable (m)). If - none are specified, they are set to the min. and max. of the - boundaries iterable. Defaults to None. - min_dist (float, optional): The minimum distance to be maintained - between turbines during the optimization (m). If not specified, - initializes to 2 rotor diameters. Defaults to None. - opt_method (str, optional): The optimization method for - scipy.optimize.minize to use. If none is specified, initializes - to 'SLSQP'. Defaults to None. - opt_options (dict, optional): Dicitonary for setting the - optimization options. Defaults to None. - """ - if boundaries is not None: - self.boundaries = boundaries - self.bndx_min = np.min([val[0] for val in boundaries]) - self.bndy_min = np.min([val[1] for val in boundaries]) - self.bndx_max = np.max([val[0] for val in boundaries]) - self.bndy_max = np.max([val[1] for val in boundaries]) - self.boundaries_norm = [ - [ - self._norm(val[0], self.bndx_min, self.bndx_max), - self._norm(val[1], self.bndy_min, self.bndy_max), - ] - for val in self.boundaries - ] - if wd is not None: - self.wd = wd - if ws is not None: - self.ws = ws - if freq is not None: - self.freq = freq - if AEP_initial is not None: - self.AEP_initial = AEP_initial - else: - self.AEP_initial = self.fi.get_farm_AEP(self.wd, self.ws, self.freq) - if x0 is not None: - self.x0 = x0 - else: - self.x0 = [ - self._norm(coord.x1, self.bndx_min, self.bndx_max) - for coord in self.fi.floris.farm.turbine_map.coords - ] + [ - self._norm(coord.x2, self.bndy_min, self.bndy_max) - for coord in self.fi.floris.farm.turbine_map.coords - ] - if bnds is not None: - self.bnds = bnds - else: - self._set_opt_bounds() - if min_dist is not None: - self.min_dist = min_dist - else: - self.min_dist = 2 * self.fi.floris.farm.turbines[0].rotor_diameter - if opt_method is not None: - self.opt_method = opt_method - if opt_options is not None: - self.opt_options = opt_options - - self._generate_constraints() - - def plot_layout_opt_results(self): - """ - This method plots the original and new locations of the turbines in a - wind farm after layout optimization. - """ - locsx_old = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in self.x0[0 : self.nturbs] - ] - locsy_old = [ - self._unnorm(valy, self.bndy_min, self.bndy_max) - for valy in self.x0[self.nturbs : 2 * self.nturbs] - ] - locsx = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in self.residual_plant.x[0 : self.nturbs] - ] - locsy = [ - self._unnorm(valy, self.bndy_min, self.bndy_max) - for valy in self.residual_plant.x[self.nturbs : 2 * self.nturbs] - ] - - plt.figure(figsize=(9, 6)) - fontsize = 16 - plt.plot(locsx_old, locsy_old, "ob") - plt.plot(locsx, locsy, "or") - # plt.title('Layout Optimization Results', fontsize=fontsize) - plt.xlabel("x (m)", fontsize=fontsize) - plt.ylabel("y (m)", fontsize=fontsize) - plt.axis("equal") - plt.grid() - plt.tick_params(which="both", labelsize=fontsize) - plt.legend( - ["Old locations", "New locations"], - loc="lower center", - bbox_to_anchor=(0.5, 1.01), - ncol=2, - fontsize=fontsize, - ) - - verts = self.boundaries - for i in range(len(verts)): - if i == len(verts) - 1: - plt.plot([verts[i][0], verts[0][0]], [verts[i][1], verts[0][1]], "b") - else: - plt.plot( - [verts[i][0], verts[i + 1][0]], [verts[i][1], verts[i + 1][1]], "b" - ) diff --git a/floris/tools/optimization/legacy/scipy/layout_height.py b/floris/tools/optimization/legacy/scipy/layout_height.py deleted file mode 100644 index f97113541..000000000 --- a/floris/tools/optimization/legacy/scipy/layout_height.py +++ /dev/null @@ -1,290 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -from scipy.optimize import minimize - -from .base_COE import BaseCOE -from .layout import LayoutOptimization - - -class LayoutHeightOptimization(LayoutOptimization): - """ - LayoutHeightOptimization is a subclass of - :py:class:`~.tools.optimization.scipy.layout.LayoutOptimization` that - performs layout and turbine height optimization. This optimization method - aims to minimize Cost of Energy (COE) by changing individual turbine - locations and all turbine heights across the wind farm. Note that the - changing turbine height applies to all turbines, i.e. although the turbine - height is changing, all turbines will be assigned the same turbine height. - """ - - def __init__( - self, - fi, - boundaries, - height_lims, - wd, - ws, - freq, - AEP_initial, - COE_initial, - plant_kw, - x0=None, - bnds=None, - min_dist=None, - opt_method="SLSQP", - opt_options=None, - ): - """ - Instantiate LayoutHeightOptimization object with a FlorisInterface - object and assign parameter values. - - Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - boundaries (iterable(float, float)): Pairs of x- and y-coordinates - that represent the boundary's vertices (m). - height_lims (iterable): A list of the minimum and maximum - height limits for the optimization (m). Each value only - needs to be defined once since all the turbine heights - are the same (ie. [h_min, h_max]). - wd (np.array): An array of wind directions (deg). - ws (np.array): An array of wind speeds (m/s). - freq (np.array): An array of the frequencies of occurance - correponding to each pair of wind direction and wind speed - values. - AEP_initial (float): The initial Annual Energy - Production used for normalization in the optimization (Wh) - (TODO: Is Watt-hours the correct unit?). - COE_initial (float): Initial Cost of Energy used for - normalization in the optimization ($/kWh). - plant_kw (float): The rating of the entire wind plant (kW). - x0 (iterable, optional): The initial turbine locations, - ordered by x-coordinate and then y-coordiante - (ie. [x1, x2, ..., xn, y1, y2, ..., yn]), and the - initial turbine hub height (m). If none are provided, x0 - initializes to the current turbine locations and hub height. - Defaults to None. - bnds (iterable, optional): Bounds for the optimization - variables (TODO: just coordinates, or height too?) (pairs of - min/max values for each variable (m)). If none are specified, - they are set to the min. and max. of the boundaries iterable. - Defaults to None. - min_dist (float, optional): The minimum distance to be - maintained between turbines during the optimization (m). If not - specified, initializes to 2 rotor diameters. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dict, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': True, 'iprint': 2, 'ftol': 1e-9}. - Defaults to None. - """ - super().__init__(fi, boundaries, wd, ws, freq, AEP_initial) - self.epsilon = np.finfo(float).eps - - self.COE_model = BaseCOE(self) - - self.reinitialize_opt_height( - boundaries=boundaries, - height_lims=height_lims, - wd=wd, - ws=ws, - freq=freq, - AEP_initial=AEP_initial, - COE_initial=COE_initial, - plant_kw=plant_kw, - x0=x0, - bnds=bnds, - min_dist=min_dist, - opt_method=opt_method, - opt_options=opt_options, - ) - - # Private methods - - def _fCp_outside(self): - pass # for future use - - def _fCt_outside(self): - pass # for future use - - def _set_initial_conditions(self): - self.x0.append( - self._norm( - self.fi.floris.farm.turbines[0].hub_height, self.bndh_min, self.bndh_max - ) - ) - - def _set_opt_bounds_height(self): - self.bnds.append((0.0, 1.0)) - - def _optimize(self): - self.residual_plant = minimize( - self._COE_layout_height_opt, - self.x0, - method=self.opt_method, - bounds=self.bnds, - constraints=self.cons, - options=self.opt_options, - ) - - opt_results = self.residual_plant.x - - return opt_results - - def _COE_layout_height_opt(self, opt_vars): - locs = self._unnorm(opt_vars[0 : 2 * self.nturbs], self.bndx_min, self.bndx_max) - height = self._unnorm(opt_vars[-1], self.bndh_min, self.bndh_max) - - self._change_height(height) - self._change_coordinates(locs) - AEP_sum = self._AEP_loop_wd() - COE = self.COE_model.COE(height, AEP_sum) - - return COE / self.COE_initial - - def _change_height(self, height): - if isinstance(height, float) or isinstance(height, int): - for turb in self.fi.floris.farm.turbines: - turb.hub_height = height - else: - for k, turb in enumerate(self.fi.floris.farm.turbines): - turb.hub_height = height[k] - - self.fi.reinitialize_flow_field( - layout_array=((self.fi.layout_x, self.fi.layout_y)) - ) - - # Public methods - - def reinitialize_opt_height( - self, - boundaries=None, - height_lims=None, - wd=None, - ws=None, - freq=None, - AEP_initial=None, - COE_initial=None, - plant_kw=None, - x0=None, - bnds=None, - min_dist=None, - opt_method=None, - opt_options=None, - ): - """ - This method reinitializes any optimization parameters that are - specified. Otherwise, the current parameter values are kept. - - Args: - boundaries (iterable(float, float)): Pairs of x- and y-coordinates - that represent the boundary's vertices (m). - height_lims (iterable): A list of the minimum and maximum - height limits for the optimization (m). Each value only - needs to be defined once since all the turbine heights - are the same (ie. [h_min, h_max]). Defaults to None. - wd (np.array): An array of wind directions (deg). Defaults to None. - ws (np.array): An array of wind speeds (m/s). Defaults to None. - freq (np.array): An array of the frequencies of occurance - correponding to each pair of wind direction and wind speed - values. Defaults to None. - AEP_initial (float): The initial Annual Energy - Production used for normalization in the optimization (Wh). - Defaults to None. - COE_initial (float): Initial Cost of Energy used for - normalization in the optimization ($/kWh). Defaults to None. - plant_kw (float): The rating of the entire wind plant (kW). - Defaults to None. - x0 (iterable, optional): The initial turbine locations, - ordered by x-coordinate and then y-coordiante - (ie. [x1, x2, ..., xn, y1, y2, ..., yn]), and the - initial turbine hub height (m). If none are provided, x0 - initializes to the current turbine locations and hub height. - Defaults to None. - bnds (iterable, optional): Bounds for the optimization - variables (TODO: just coordinates, or height too?) (pairs of - min/max values for each variable (m)). If none are specified, - they are set to the min. and max. of the boundaries iterable. - Defaults to None. - min_dist (float, optional): The minimum distance to be - maintained between turbines during the optimization (m). If not - specified, initializes to 2 rotor diameters. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dict, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': True, 'iprint': 2, 'ftol': 1e-9}. - Defaults to None. - """ - LayoutOptimization.reinitialize_opt( - self, - boundaries=boundaries, - wd=wd, - ws=ws, - freq=freq, - AEP_initial=AEP_initial, - x0=x0, - bnds=bnds, - min_dist=min_dist, - opt_method=opt_method, - opt_options=opt_options, - ) - - if height_lims is not None: - self.bndh_min = height_lims[0] - self.bndh_max = height_lims[1] - if COE_initial is not None: - self.COE_initial = COE_initial - if plant_kw is not None: - self.plant_kw = plant_kw - - self._set_initial_conditions() - self._set_opt_bounds_height() - - def optimize(self): - """ - This method finds the optimized layout of wind turbines and wind - turbine height for power production and cost of energy given the - provided frequencies of occurance of wind conditions (wind speed, - direction). - - Returns: - (iterable): A list containing the optimized (x, y) locations of - each turbine followed by the optimized height for all turbines (m). - """ - print("=====================================================") - print("Optimizing turbine layout and height...") - print("Number of parameters to optimize = ", len(self.x0)) - print("=====================================================") - - opt_results_norm = self._optimize() - - print("Optimization complete.") - - opt_locs = [ - [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in opt_results_norm[0 : self.nturbs] - ], - [ - self._unnorm(valy, self.bndy_min, self.bndy_max) - for valy in opt_results_norm[self.nturbs : 2 * self.nturbs] - ], - ] - - opt_height = [self._unnorm(opt_results_norm[-1], self.bndh_min, self.bndh_max)] - - return [opt_locs, opt_height] - - def get_farm_COE(self): - """ - This method returns the cost of energy (COE) for the wind farm. - - Returns: - float: The cost of energy for a wind plant in units of $/kWh. - """ - AEP_sum = self._AEP_loop_wd() - height = self.fi.floris.farm.turbines[0].hub_height - return self.COE_model.COE(height, AEP_sum) diff --git a/floris/tools/optimization/legacy/scipy/optimization.py b/floris/tools/optimization/legacy/scipy/optimization.py deleted file mode 100644 index a8ea25857..000000000 --- a/floris/tools/optimization/legacy/scipy/optimization.py +++ /dev/null @@ -1,46 +0,0 @@ - -import numpy as np - - -class Optimization: - """ - Optimization is the base optimization class for - `~.tools.optimization.scipy` subclasses. Contains some common - methods and properties that can be used by the individual optimization - classes. - """ - - def __init__(self, fi): - """ - Initializes an Optimization object by assigning a - FlorisInterface object. - - Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - """ - self.fi = fi - - # Private methods - - def _reinitialize(self): - pass - - def _norm(self, val, x1, x2): - return (val - x1) / (x2 - x1) - - def _unnorm(self, val, x1, x2): - return np.array(val) * (x2 - x1) + x1 - - # Properties - - @property - def nturbs(self): - """ - Number of turbines in the :py:class:`~.farm.Farm` object. - - Returns: - int - """ - self._nturbs = len(self.fi.floris.farm.turbine_map.turbines) - return self._nturbs diff --git a/floris/tools/optimization/legacy/scipy/power_density.py b/floris/tools/optimization/legacy/scipy/power_density.py deleted file mode 100644 index 520cc24de..000000000 --- a/floris/tools/optimization/legacy/scipy/power_density.py +++ /dev/null @@ -1,489 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -from scipy.optimize import minimize - -from .layout import LayoutOptimization - - -class PowerDensityOptimization(LayoutOptimization): - """ - PowerDensityOptimization is a subclass of the - :py:class:`~.tools.optimization.scipy.layout.LayoutOptimization` class - that performs power density optimization. - """ - - def __init__( - self, - fi, - boundaries, - wd, - ws, - freq, - AEP_initial, - yawbnds=None, - x0=None, - bnds=None, - min_dist=None, - opt_method="SLSQP", - opt_options=None, - ): - """ - Instantiate PowerDensityOptimization object with a FlorisInterface - object and assigns parameter values. - - Args: - fi (:py:class:`floris.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - boundaries (iterable(float, float)): Pairs of x- and y-coordinates - that represent the boundary's vertices (m). - wd (np.array): An array of wind directions (deg). - ws (np.array): An array of wind speeds (m/s). - freq (np.array): An array of the frequencies of occurance - correponding to each pair of wind direction and wind speed - values. - AEP_initial (float): The initial Annual Energy - Production used for normalization in the optimization (Wh) - (TODO: Is Watt-hours the correct unit?). - yawbnds: TODO: This parameter isn't used. Remove it? - x0 (iterable, optional): The initial turbine locations, - ordered by x-coordinate and then y-coordiante - (ie. [x1, x2, ..., xn, y1, y2, ..., yn]) (m). If none are - provided, x0 initializes to the current turbine locations. - Defaults to None. - bnds (iterable, optional): Bounds for the optimization - variables (pairs of min/max values for each variable (m)). If - none are specified, they are set to (0, 1) for each turbine. - Defaults to None. TODO: Explain significance of (0, 1). - min_dist (float, optional): The minimum distance to be - maintained between turbines during the optimization (m). If not - specified, initializes to 4 rotor diameters. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dict, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set t - {'maxiter': 100, 'disp': True, 'iprint': 2, 'ftol': 1e-9}. - Defaults to None. - """ - super().__init__( - fi, - boundaries, - wd, - ws, - freq, - AEP_initial, - x0=x0, - bnds=bnds, - min_dist=min_dist, - opt_method=opt_method, - opt_options=opt_options, - ) - self.epsilon = np.finfo(float).eps - self.counter = 0 - - if opt_options is None: - self.opt_options = {"maxiter": 100, "disp": True, "iprint": 2, "ftol": 1e-9} - - def _generate_constraints(self): - # grad_constraint1 = grad(self._space_constraint) - # grad_constraint2 = grad(self._distance_from_boundaries) - - tmp1 = { - "type": "ineq", - "fun": lambda x, *args: self._space_constraint(x, self.min_dist), - "args": (self.min_dist,), - } - tmp2 = { - "type": "ineq", - "fun": lambda x, *args: self._distance_from_boundaries( - x, self.boundaries_norm - ), - "args": (self.boundaries_norm,), - } - tmp3 = {"type": "ineq", "fun": lambda x, *args: self._AEP_constraint(x)} - - self.cons = [tmp1, tmp2, tmp3] - - def _set_opt_bounds(self): - self.bnds = [ - (0.0, 1.0) for _ in range(2 * self.nturbs + self.nturbs * len(self.wd)) - ] - - def _change_coordinates(self, locsx, locsy): - # Parse the layout coordinates - layout_array = [locsx, locsy] - - # Update the turbine map in floris - self.fi.reinitialize_flow_field(layout_array=layout_array) - - def _powDens_opt(self, optVars): - locsx = optVars[0 : self.nturbs] - locsy = optVars[self.nturbs : 2 * self.nturbs] - - locsx_unnorm = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) for valx in locsx - ] - locsy_unnorm = [ - self._unnorm(valy, self.bndy_min, self.bndy_max) for valy in locsy - ] - - turb_controls = [ - optVars[ - 2 * self.nturbs + i * self.nturbs : 3 * self.nturbs + i * self.nturbs - ] - for i in range(len(self.wd)) - ] - - turb_controls_unnorm = [ - self._unnorm(yaw, self.yaw_min, self.yaw_max) for yaw in turb_controls - ] - - self._change_coordinates(locsx_unnorm, locsy_unnorm) - opt_area = self.find_layout_area(locsx_unnorm + locsy_unnorm) - - AEP_sum = 0.0 - - for i in range(len(self.wd)): - for j, turbine in enumerate(self.fi.floris.farm.turbine_map.turbines): - turbine.yaw_angle = turb_controls_unnorm[i][j] - - AEP_sum = AEP_sum + self._AEP_single_wd( - self.wd[i], self.ws[i], self.freq[i] - ) - - # print('AEP ratio: ', AEP_sum/self.AEP_initial) - - return -1 * AEP_sum / self.AEP_initial * self.initial_area / opt_area - - def _AEP_constraint(self, optVars): - locsx = optVars[0 : self.nturbs] - locsy = optVars[self.nturbs : 2 * self.nturbs] - - locsx_unnorm = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) for valx in locsx - ] - locsy_unnorm = [ - self._unnorm(valy, self.bndy_min, self.bndy_max) for valy in locsy - ] - - turb_controls = [ - optVars[ - 2 * self.nturbs + i * self.nturbs : 3 * self.nturbs + i * self.nturbs - ] - for i in range(len(self.wd)) - ] - - turb_controls_unnorm = [ - self._unnorm(yaw, self.yaw_min, self.yaw_max) for yaw in turb_controls - ] - - self._change_coordinates(locsx_unnorm, locsy_unnorm) - - AEP_sum = 0.0 - - for i in range(len(self.wd)): - for j, turbine in enumerate(self.fi.floris.farm.turbine_map.turbines): - turbine.yaw_angle = turb_controls_unnorm[i][j] - - AEP_sum = AEP_sum + self._AEP_single_wd( - self.wd[i], self.ws[i], self.freq[i] - ) - - return AEP_sum / self.AEP_initial - 1.0 - - def _optimize(self): - self.residual_plant = minimize( - self._powDens_opt, - self.x0, - method=self.opt_method, - bounds=self.bnds, - constraints=self.cons, - options=self.opt_options, - ) - - opt_results = self.residual_plant.x - - return opt_results - - def optimize(self): - """ - This method finds the optimized layout of wind turbines for power - production given the provided frequencies of occurance of wind - conditions (wind speed, direction). - - TODO: update the doc - - Returns: - iterable: A list of the optimized x, y locations of each - turbine (m). - """ - print("=====================================================") - print("Optimizing turbine layout...") - print("Number of parameters to optimize = ", len(self.x0)) - print("=====================================================") - - opt_locs_norm = self._optimize() - - print("Optimization complete.") - - opt_locs = [ - [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in opt_locs_norm[0 : self.nturbs] - ], - [ - self._unnorm(valy, self.bndy_min, self.bndy_max) - for valy in opt_locs_norm[self.nturbs : 2 * self.nturbs] - ], - ] - - return opt_locs - - def reinitialize_opt( - self, - boundaries=None, - yawbnds=None, - wd=None, - ws=None, - freq=None, - AEP_initial=None, - x0=None, - bnds=None, - min_dist=None, - opt_method=None, - opt_options=None, - ): - """ - This method reinitializes any optimization parameters that are - specified. Otherwise, the current parameter values are kept. - - Args: - boundaries (iterable(float, float)): Pairs of x- and y-coordinates - that represent the boundary's vertices (m). - yawbnds (iterable): A list of the min. and max. yaw offset that is - allowed during the optimization (deg). If none are specified, - initialized to (0, 25.0). Defaults to None. - wd (np.array): An array of wind directions (deg). Defaults to None. - ws (np.array): An array of wind speeds (m/s). Defaults to None. - freq (np.array): An array of the frequencies of occurance - correponding to each pair of wind direction and wind speed - values. Defaults to None. - AEP_initial (float): The initial Annual Energy - Production used for normalization in the optimization (Wh) - (TODO: Is Watt-hours the correct unit?). If not specified, - initializes to the AEP of the current Floris object. Defaults - to None. - x0 (iterable, optional): The initial turbine locations, - ordered by x-coordinate and then y-coordiante - (ie. [x1, x2, ..., xn, y1, y2, ..., yn]) (m). If none are - provided, x0 initializes to the current turbine locations. - Defaults to None. - bnds (iterable, optional): Bounds for the optimization - variables (pairs of min/max values for each variable (m)). If - none are specified, they are set to (0, 1) for each turbine. - Defaults to None. - min_dist (float, optional): The minimum distance to be - maintained between turbines during the optimization (m). If not - specified, initializes to 4 rotor diameters. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to None. - opt_options (dict, optional): Optimization options used by - scipy.optimize.minize. Defaults to None. - """ - if boundaries is not None: - self.boundaries = boundaries - self.bndx_min = np.min([val[0] for val in boundaries]) - self.bndy_min = np.min([val[1] for val in boundaries]) - self.bndx_max = np.max([val[0] for val in boundaries]) - self.bndy_max = np.max([val[1] for val in boundaries]) - self.boundaries_norm = [ - [ - self._norm(val[0], self.bndx_min, self.bndx_max), - self._norm(val[1], self.bndy_min, self.bndy_max), - ] - for val in self.boundaries - ] - if yawbnds is not None: - self.yaw_min = yawbnds[0] - self.yaw_max = yawbnds[1] - else: - self.yaw_min = 0.0 - self.yaw_max = 25.0 - if wd is not None: - self.wd = wd - if ws is not None: - self.ws = ws - if freq is not None: - self.freq = freq - if AEP_initial is not None: - self.AEP_initial = AEP_initial - else: - self.AEP_initial = self.fi.get_farm_AEP(self.wd, self.ws, self.freq) - if x0 is not None: - self.x0 = x0 - else: - self.x0 = ( - [ - self._norm(coord.x1, self.bndx_min, self.bndx_max) - for coord in self.fi.floris.farm.turbine_map.coords - ] - + [ - self._norm(coord.x2, self.bndy_min, self.bndy_max) - for coord in self.fi.floris.farm.turbine_map.coords - ] - + [self._norm(5.0, self.yaw_min, self.yaw_max)] - * len(self.wd) - * self.nturbs - ) - if bnds is not None: - self.bnds = bnds - else: - self._set_opt_bounds() - if min_dist is not None: - self.min_dist = min_dist - else: - self.min_dist = 4 * self.fi.floris.farm.turbines[0].rotor_diameter - if opt_method is not None: - self.opt_method = opt_method - if opt_options is not None: - self.opt_options = opt_options - - self.layout_x_orig = [ - coord.x1 for coord in self.fi.floris.farm.turbine_map.coords - ] - self.layout_y_orig = [ - coord.x2 for coord in self.fi.floris.farm.turbine_map.coords - ] - - self._generate_constraints() - - self.initial_area = self.find_layout_area( - self.layout_x_orig + self.layout_y_orig - ) - - def find_layout_area(self, locs): - """ - This method returns the area occupied by the wind farm. - - Args: - locs (iterable): A list of the turbine coordinates, organized as - [x1, x2, ..., xn, y1, y2, ..., yn] (m). - - Returns: - float: The area occupied by the wind farm (m^2). - """ - locsx = locs[0 : self.nturbs] - locsy = locs[self.nturbs :] - - points = zip(locsx, locsy) - points = np.array(list(points)) - - hull = self.convex_hull(points) - - area = self.polygon_area( - np.array([val[0] for val in hull]), np.array([val[1] for val in hull]) - ) - - return area - - def convex_hull(self, points): - """ - Finds the vertices that describe the convex hull shape given the input - coordinates. - - Args: - points (iterable((float, float))): Coordinates of interest. - - Returns: - list: Vertices describing convex hull shape. - """ - # find two hull points, U, V, and split to left and right search - u = min(points, key=lambda p: p[0]) - v = max(points, key=lambda p: p[0]) - left, right = self.split(u, v, points), self.split(v, u, points) - - # find convex hull on each side - return [v] + self.extend(u, v, left) + [u] + self.extend(v, u, right) + [v] - - def polygon_area(self, x, y): - """ - Calculates the area of a polygon defined by its (x, y) vertices. - - Args: - x (iterable(float)): X-coordinates of polygon vertices. - y (iterable(float)): Y-coordinates of polygon vertices. - - Returns: - float: Area of polygon. - """ - # coordinate shift - x_ = x - x.mean() - y_ = y - y.mean() - - correction = x_[-1] * y_[0] - y_[-1] * x_[0] - main_area = np.dot(x_[:-1], y_[1:]) - np.dot(y_[:-1], x_[1:]) - return 0.5 * np.abs(main_area + correction) - - def split(self, u, v, points): - # TODO: Provide description of this method. - # return points on left side of UV - return [p for p in points if np.cross(p - u, v - u) < 0] - - def extend(self, u, v, points): - # TODO: Provide description of this method. - if not points: - return [] - - # find furthest point W, and split search to WV, UW - w = min(points, key=lambda p: np.cross(p - u, v - u)) - p1, p2 = self.split(w, v, points), self.split(u, w, points) - return self.extend(w, v, p1) + [w] + self.extend(u, w, p2) - - def plot_opt_results(self): - """ - This method plots the original and new locations of the turbines in a - wind farm after layout optimization. - """ - locsx_old = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in self.x0[0 : self.nturbs] - ] - locsy_old = [ - self._unnorm(valy, self.bndy_min, self.bndy_max) - for valy in self.x0[self.nturbs : 2 * self.nturbs] - ] - locsx = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in self.residual_plant.x[0 : self.nturbs] - ] - locsy = [ - self._unnorm(valy, self.bndy_min, self.bndy_max) - for valy in self.residual_plant.x[self.nturbs : 2 * self.nturbs] - ] - - plt.figure(figsize=(9, 6)) - fontsize = 16 - plt.plot(locsx_old, locsy_old, "ob") - plt.plot(locsx, locsy, "or") - # plt.title('Layout Optimization Results', fontsize=fontsize) - plt.xlabel("x (m)", fontsize=fontsize) - plt.ylabel("y (m)", fontsize=fontsize) - plt.axis("equal") - plt.grid() - plt.tick_params(which="both", labelsize=fontsize) - plt.legend( - ["Old locations", "New locations"], - loc="lower center", - bbox_to_anchor=(0.5, 1.01), - ncol=2, - fontsize=fontsize, - ) - - verts = self.boundaries - for i in range(len(verts)): - if i == len(verts) - 1: - plt.plot([verts[i][0], verts[0][0]], [verts[i][1], verts[0][1]], "b") - else: - plt.plot( - [verts[i][0], verts[i + 1][0]], [verts[i][1], verts[i + 1][1]], "b" - ) diff --git a/floris/tools/optimization/legacy/scipy/power_density_1D.py b/floris/tools/optimization/legacy/scipy/power_density_1D.py deleted file mode 100644 index 3fb3287d7..000000000 --- a/floris/tools/optimization/legacy/scipy/power_density_1D.py +++ /dev/null @@ -1,367 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -from scipy.optimize import minimize - -from .optimization import Optimization - - -class PowerDensityOptimization1D(Optimization): - """ - PowerDensityOptimization1D is a subclass of the - :py:class:`~.tools.optimization.scipy.optimization.Optimization` class - that performs layout optimization in 1 dimension. TODO: What is this single - dimension? - """ - - def __init__( - self, - fi, - wd, - ws, - freq, - AEP_initial, - x0=None, - bnds=None, - min_dist=None, - opt_method="SLSQP", - opt_options=None, - ): - """ - Instantiate PowerDensityOptimization1D object with a FlorisInterface - object and assigns parameter values. - - Args: - fi (:py:class:`floris.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - wd (np.array): An array of wind directions (deg). - ws (np.array): An array of wind speeds (m/s). - freq (np.array): An array of the frequencies of occurance - correponding to each pair of wind direction and wind speed - values. - AEP_initial (float): The initial Annual Energy - Production used for normalization in the optimization (Wh) - (TODO: Is Watt-hours the correct unit?). - x0 (iterable, optional): The initial turbine locations, - ordered by x-coordinate and then y-coordiante - (ie. [x1, x2, ..., xn, y1, y2, ..., yn]) (m). If none are - provided, x0 initializes to the current turbine locations. - Defaults to None. - bnds (iterable, optional): Bounds for the optimization - variables (pairs of min/max values for each variable (m)). If - none are specified, they are set to some example values (TODO: - what is the significance of these example values?). Defaults to - None. - min_dist (float, optional): The minimum distance to be - maintained between turbines during the optimization (m). If not - specified, initializes to 2 rotor diameters. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dict, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': True, 'iprint': 2, 'ftol': 1e-9}. - Defaults to None. - """ - super().__init__(fi) - self.epsilon = np.finfo(float).eps - self.counter = 0 - - if opt_options is None: - self.opt_options = {"maxiter": 100, "disp": True, "iprint": 2, "ftol": 1e-9} - - self.reinitialize_opt( - wd=wd, - ws=ws, - freq=freq, - AEP_initial=AEP_initial, - x0=x0, - bnds=bnds, - min_dist=min_dist, - opt_method=opt_method, - opt_options=opt_options, - ) - - def _PowDens_opt(self, optVars): - locs = optVars[0 : self.nturbs] - locs_unnorm = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) for valx in locs - ] - turb_controls = [ - optVars[self.nturbs + i * self.nturbs : 2 * self.nturbs + i * self.nturbs] - for i in range(len(self.wd)) - ] - turb_controls_unnorm = [ - self._unnorm(yaw, self.yaw_min, self.yaw_max) for yaw in turb_controls - ] - - self._change_coordinates(locs_unnorm) - - for i, turbine in enumerate(self.fi.floris.farm.turbine_map.turbines): - turbine.yaw_angle = turb_controls_unnorm[0][i] - - layout_dist = self._avg_dist(locs) - # AEP_sum = self._AEP_single_wd(self.wd[0], self.ws[0]) - # print('AEP ratio: ', AEP_sum/self.AEP_initial) - - return layout_dist / self.layout_dist_initial - - def _avg_dist(self, locs): - dist = [] - for i in range(len(locs) - 1): - dist.append(locs[i + 1] - locs[i]) - - return np.mean(dist) - - def _change_coordinates(self, locs): - # Parse the layout coordinates - layout_x = locs - layout_y = [coord.x2 for coord in self.fi.floris.farm.turbine_map.coords] - layout_array = [layout_x, layout_y] - - # Update the turbine map in floris - self.fi.reinitialize_flow_field(layout_array=layout_array) - - def _set_opt_bounds(self): - # self.bnds = [(0.0, 1.0) for _ in range(2*self.nturbs)] - self.bnds = [ - (0.0, 0.0), - (0.083333, 0.25), - (0.166667, 0.5), - (0.25, 0.75), - (0.33333, 1.0), - (0.0, 1.0), - (0.0, 1.0), - (0.0, 1.0), - (0.0, 1.0), - (0.0, 1.0), - ] - - def _AEP_single_wd(self, wd, ws): - self.fi.reinitialize_flow_field(wind_direction=wd, wind_speed=ws) - self.fi.calculate_wake() - - turb_powers = [turbine.power for turbine in self.fi.floris.farm.turbines] - return np.sum(turb_powers) * self.freq[0] * 8760 - - def _AEP_constraint(self, optVars): - locs = optVars[0 : self.nturbs] - locs_unnorm = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) for valx in locs - ] - turb_controls = [ - optVars[self.nturbs + i * self.nturbs : 2 * self.nturbs + i * self.nturbs] - for i in range(len(self.wd)) - ] - turb_controls_unnorm = [ - self._unnorm(yaw, self.yaw_min, self.yaw_max) for yaw in turb_controls - ] - - for i, turbine in enumerate(self.fi.floris.farm.turbine_map.turbines): - turbine.yaw_angle = turb_controls_unnorm[0][i] - - self._change_coordinates(locs_unnorm) - - return ( - self._AEP_single_wd(self.wd[0], self.ws[0]) / self.AEP_initial - 1 - ) * 1000000.0 - - def _space_constraint(self, x_in, min_dist): - x = np.nan_to_num(x_in[0 : self.nturbs]) - y = np.nan_to_num(x_in[self.nturbs :]) - - dist = [ - np.sqrt((x[i] - x[j]) ** 2 + (y[i] - y[j]) ** 2) - for i in range(self.nturbs) - for j in range(self.nturbs) - if i != j - ] - - return np.min(dist) - self._norm(min_dist, self.bndx_min, self.bndx_max) - - def _generate_constraints(self): - tmp1 = { - "type": "ineq", - "fun": lambda x, *args: self._space_constraint(x, self.min_dist), - "args": (self.min_dist,), - } - tmp2 = {"type": "ineq", "fun": lambda x, *args: self._AEP_constraint(x)} - - self.cons = [tmp1, tmp2] - - def _optimize(self): - self.residual_plant = minimize( - self._PowDens_opt, - self.x0, - method=self.opt_method, - bounds=self.bnds, - constraints=self.cons, - options=self.opt_options, - ) - - opt_results = self.residual_plant.x - - return opt_results - - def optimize(self): - """ - This method finds the optimized layout of wind turbines for power - production given the provided frequencies of occurance of wind - conditions (wind speed, direction). - - Returns: - opt_locs (iterable): A list of the optimized x, y locations of each - turbine (m). - """ - print("=====================================================") - print("Optimizing turbine layout...") - print("Number of parameters to optimize = ", len(self.x0)) - print("=====================================================") - - opt_vars_norm = self._optimize() - - print("Optimization complete.") - - opt_locs = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in opt_vars_norm[0 : self.nturbs] - ] - - opt_yaw = [ - self._unnorm(yaw, self.yaw_min, self.yaw_max) - for yaw in opt_vars_norm[self.nturbs :] - ] - - return [opt_locs, opt_yaw] - - def reinitialize_opt( - self, - wd=None, - ws=None, - freq=None, - AEP_initial=None, - x0=None, - bnds=None, - min_dist=None, - yaw_lims=None, - opt_method=None, - opt_options=None, - ): - """ - This method reinitializes any optimization parameters that are - specified. Otherwise, the current parameter values are kept. - - Args: - wd (np.array): An array of wind directions (deg). Defaults to None. - ws (np.array): An array of wind speeds (m/s). Defaults to None. - freq (np.array): An array of the frequencies of occurance - correponding to each pair of wind direction and wind speed - values. Defaults to None. - AEP_initial (float): The initial Annual Energy - Production used for normalization in the optimization (Wh) - (TODO: Is Watt-hours the correct unit?). Defaults to None. - x0 (iterable, optional): The initial turbine locations, - ordered by x-coordinate and then y-coordiante - (ie. [x1, x2, ..., xn, y1, y2, ..., yn]) (m). If none are - provided, x0 initializes to the current turbine locations. - Defaults to None. - bnds (iterable, optional): Bounds for the optimization - variables (pairs of min/max values for each variable (m)). If - none are specified, they are set to some example values (TODO: - what is the significance of these example values?). Defaults to - None. - min_dist (float, optional): The minimum distance to be - maintained between turbines during the optimization (m). If not - specified, initializes to 2 rotor diameters. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to None. - opt_options (dict, optional): Optimization options used by - scipy.optimize.minize. Defaults to None. - """ - # if boundaries is not None: - # self.boundaries = boundaries - # self.bndx_min = np.min([val[0] for val in boundaries]) - # self.bndy_min = np.min([val[1] for val in boundaries]) - # self.boundaries_norm = [[self._norm(val[0], self.bndx_min, \ - # self.bndx_max)] for val in self.boundaries] - self.bndx_min = np.min( - [coord.x1 for coord in self.fi.floris.farm.turbine_map.coords] - ) - self.bndx_max = np.max( - [coord.x1 for coord in self.fi.floris.farm.turbine_map.coords] - ) - if yaw_lims is not None: - self.yaw_min = yaw_lims[0] - self.yaw_max = yaw_lims[1] - else: - self.yaw_min = 0.0 - self.yaw_max = 20.0 - if wd is not None: - self.wd = wd - if ws is not None: - self.ws = ws - if freq is not None: - self.freq = freq - if AEP_initial is not None: - self.AEP_initial = AEP_initial - else: - self.AEP_initial = self.fi.get_farm_AEP(self.wd, self.ws, self.freq) - if x0 is not None: - self.x0 = x0 - else: - self.x0 = [ - self._norm(coord.x1, self.bndx_min, self.bndx_max) - for coord in self.fi.floris.farm.turbine_map.coords - ] + [0.0] * self.nturbs - - if bnds is not None: - self.bnds = bnds - else: - self._set_opt_bounds() - if min_dist is not None: - self.min_dist = min_dist - else: - self.min_dist = 2 * self.fi.floris.farm.turbines[0].rotor_diameter - if opt_method is not None: - self.opt_method = opt_method - if opt_options is not None: - self.opt_options = opt_options - - self._generate_constraints() - # self.layout_dist_initial = np.max(self.x0[0:self.nturbs]) \ - # - np.min(self.x0[0:self.nturbs]) - self.layout_dist_initial = self._avg_dist(self.x0[0 : self.nturbs]) - # print('initial dist: ', self.layout_dist_initial) - - def plot_layout_opt_results(self): - """ - This method plots the original and new locations of the turbines in a - wind farm after layout optimization. - """ - locsx_old = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in self.x0[0 : self.nturbs] - ] - locsy_old = self.fi.layout_y - locsx = [ - self._unnorm(valx, self.bndx_min, self.bndx_max) - for valx in self.residual_plant.x[0 : self.nturbs] - ] - locsy = self.fi.layout_y - - plt.figure(figsize=(9, 6)) - fontsize = 16 - plt.plot(locsx_old, locsy_old, "ob") - plt.plot(locsx, locsy, "or") - # plt.title('Layout Optimization Results', fontsize=fontsize) - plt.xlabel("x (m)", fontsize=fontsize) - plt.ylabel("y (m)", fontsize=fontsize) - plt.axis("equal") - plt.grid() - plt.tick_params(which="both", labelsize=fontsize) - plt.legend( - ["Old locations", "New locations"], - loc="lower center", - bbox_to_anchor=(0.5, 1.01), - ncol=2, - fontsize=fontsize, - ) diff --git a/floris/tools/optimization/legacy/scipy/yaw.py b/floris/tools/optimization/legacy/scipy/yaw.py deleted file mode 100644 index 13905919f..000000000 --- a/floris/tools/optimization/legacy/scipy/yaw.py +++ /dev/null @@ -1,647 +0,0 @@ - -import numpy as np -from scipy.optimize import minimize -from scipy.stats import norm - -from .derive_downstream_turbines import derive_downstream_turbines -from .optimization import Optimization - - -class YawOptimization(Optimization): - """ - YawOptimization is a subclass of :py:class:`floris.tools.optimization.scipy. - Optimization` that is used to optimize the yaw angles of all turbines in a Floris - Farm for a single set of inflow conditions using the SciPy optimize package. - """ - - def __init__( - self, - fi, - minimum_yaw_angle=0.0, - maximum_yaw_angle=25.0, - yaw_angles_baseline=None, - x0=None, - bnds=None, - opt_method="SLSQP", - opt_options=None, - include_unc=False, - unc_pmfs=None, - unc_options=None, - turbine_weights=None, - calc_init_power=True, - exclude_downstream_turbines=False, - ): - """ - Instantiate YawOptimization object with a FlorisInterface object - and assign parameter values. - - Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - minimum_yaw_angle (float, optional): Minimum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 0.0. - maximum_yaw_angle (float, optional): Maximum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 25.0. - yaw_angles_baseline (iterable, optional): The baseline yaw - angles used to calculate the initial and baseline power - production in the wind farm and used to normalize the cost - function. If none are specified, this variable is set equal - to the current yaw angles in floris. Note that this variable - need not meet the yaw constraints specified in self.bnds, - yet a warning is raised if it does to inform the user. - Defaults to None. - x0 (iterable, optional): The initial guess for the optimization - problem. These values must meet the constraints specified - in self.bnds. Note that, if exclude_downstream_turbines=True, - the initial guess for any downstream turbines are ignored - since they are not part of the optimization. Instead, the yaw - angles for those turbines are 0.0 if that meets the lower and - upper bound, or otherwise as close to 0.0 as feasible. If no - values for x0 are specified, x0 is set to be equal to zeros - wherever feasible (w.r.t. the bounds), and equal to the - average of its lower and upper bound for all non-downstream - turbines otherwise. Defaults to None. - bnds (iterable, optional): Bounds for the yaw angles, as tuples of - min, max values for each turbine (deg). One can fix the yaw - angle of certain turbines to a predefined value by setting that - turbine's lower bound equal to its upper bound (i.e., an - equality constraint), as: bnds[ti] = (x, x), where x is the - fixed yaw angle assigned to the turbine. This works for both - zero and nonzero yaw angles. Moreover, if - exclude_downstream_turbines=True, the yaw angles for all - downstream turbines will be 0.0 or a feasible value closest to - 0.0. If none are specified, the bounds are set to - (minimum_yaw_angle, maximum_yaw_angle) for each turbine. Note - that, if bnds is not none, its values overwrite any value given - in minimum_yaw_angle and maximum_yaw_angle. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dictionary, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': False, 'iprint': 1, 'ftol': 1e-7, - 'eps': 0.01}. Defaults to None. - include_unc (bool, optional): Determines whether wind direction or - yaw uncertainty are included. If True, uncertainty in wind - direction and/or yaw position is included when determining - wind farm power. Uncertainty is included by computing the - mean wind farm power for a distribution of wind direction - and yaw position deviations from the intended wind direction - and yaw angles. Defaults to False. - unc_pmfs (dictionary, optional): A dictionary containing - probability mass functions describing the distribution of - wind direction and yaw position deviations when wind direction - and/or yaw position uncertainty is included in the power - calculations. Contains the following key-value pairs: - - - **wd_unc** (*np.array*): The wind direction - deviations from the intended wind direction (deg). - - **wd_unc_pmf** (*np.array*): The probability - of each wind direction deviation in **wd_unc** occuring. - - **yaw_unc** (*np.array*): The yaw angle deviations - from the intended yaw angles (deg). - - **yaw_unc_pmf** (*np.array*): The probability - of each yaw angle deviation in **yaw_unc** occuring. - - If none are specified, default PMFs are calculated using - values provided in **unc_options**. Defaults to None. - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction and yaw - position deviations when wind direction and/or yaw position - uncertainty is included. This argument is only used when - **unc_pmfs** is None and contains the following key-value pairs: - - - **std_wd** (*float*): The standard deviation of - the wind direction deviations from the original wind - direction (deg). - - **std_yaw** (*float*): The standard deviation of - the yaw angle deviations from the original yaw angles (deg). - - **pmf_res** (*float*): The resolution in degrees - of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): The cumulative - distribution function value at which the tails of the - PMFs are truncated. - - If none are specified, default values of - {'std_wd': 4.95, 'std_yaw': 1.75, 'pmf_res': 1.0, - 'pdf_cutoff': 0.995} are used. Defaults to None. - turbine_weights (iterable, optional): weighing terms that allow - the user to emphasize power gains at particular turbines or - completely ignore power gains from other turbines. The array - of turbine powers from floris is multiplied with this array - in the calculation of the objective function. If None, this - is an array with all values 1.0 and length equal to the - number of turbines. Defaults to None. - calc_init_power (bool, optional): If True, calculates initial - wind farm power for each set of wind conditions. Defaults to - True. - exclude_downstream_turbines (bool, optional): If True, - automatically finds and excludes turbines that are most - downstream from the optimization problem. This significantly - reduces computation time at no loss in performance. The yaw - angles of these downstream turbines are fixed to 0.0 deg if - the yaw bounds specified in self.bnds allow that, or otherwise - are fixed to the lower or upper yaw bound, whichever is closer - to 0.0. Defaults to False. - """ - super().__init__(fi) - - if opt_options is None: - self.opt_options = { - "maxiter": 50, - "disp": True, - "iprint": 2, - "ftol": 1e-12, - "eps": 0.1, - } - - self.unc_pmfs = unc_pmfs - - if unc_options is None: - self.unc_options = { - "std_wd": 4.95, - "std_yaw": 1.75, - "pmf_res": 1.0, - "pdf_cutoff": 0.995, - } - - self.reinitialize_opt( - minimum_yaw_angle=minimum_yaw_angle, - maximum_yaw_angle=maximum_yaw_angle, - yaw_angles_baseline=yaw_angles_baseline, - x0=x0, - bnds=bnds, - opt_method=opt_method, - opt_options=opt_options, - include_unc=include_unc, - unc_pmfs=unc_pmfs, - unc_options=unc_options, - turbine_weights=turbine_weights, - calc_init_power=calc_init_power, - exclude_downstream_turbines=exclude_downstream_turbines, - ) - - # Private methods - - def _yaw_power_opt(self, yaw_angles_subset_norm): - # Unnorm subset - yaw_angles_subset = self._unnorm( - np.array(yaw_angles_subset_norm), - self.minimum_yaw_angle, - self.maximum_yaw_angle, - ) - # Create a full yaw angle array - yaw_angles = np.array(self.yaw_angles_template, copy=True) - yaw_angles[self.turbs_to_opt] = yaw_angles_subset - - self.fi.calculate_wake(yaw_angles=yaw_angles) - turbine_powers = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - - return ( - -1.0 - * np.dot(self.turbine_weights, turbine_powers) - / self.initial_farm_power - ) - - def _optimize(self): - """ - Find optimum setting of turbine yaw angles for power production - given fixed atmospheric conditins (wind speed, direction, etc.). - - Returns: - opt_yaw_angles (np.array): optimal yaw angles of each turbine. - """ - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - self._reduce_control_variables() - if len(self.turbs_to_opt) > 0: - self.residual_plant = minimize( - self._yaw_power_opt, - self.x0_norm, - method=self.opt_method, - bounds=self.bnds_norm, - options=self.opt_options, - ) - - opt_yaw_angles_subset = self._unnorm( - self.residual_plant.x, self.minimum_yaw_angle, self.maximum_yaw_angle - ) - opt_yaw_angles[self.turbs_to_opt] = opt_yaw_angles_subset - - return opt_yaw_angles - - def _set_opt_bounds(self, minimum_yaw_angle, maximum_yaw_angle): - self.bnds = [(minimum_yaw_angle, maximum_yaw_angle) for _ in range(self.nturbs)] - - def _reduce_control_variables(self): - """This function reduces the control problem by eliminating turbines - of which the yaw angles need not be optimized, either because of a - user-specified set of bounds (where bounds[i][0] == bounds[i][1]), - or alternatively turbines that are far downstream in the wind farm - and of which the wake does not impinge other turbines, if the - boolean exclude_downstream_turbines == True. The normalized initial - conditions and bounds are then calculated for the subset of turbines, - to be used in the optimization. - """ - if self.bnds is not None: - self.turbs_to_opt, _ = np.where(np.abs(np.diff(self.bnds)) >= 0.001) - else: - self.turbs_to_opt = np.array(range(self.nturbs), dtype=int) - - if self.exclude_downstream_turbines: - # Remove turbines from turbs_to_opt that are downstream - downstream_turbines = derive_downstream_turbines( - fi=self.fi, wind_direction=self.fi.floris.farm.wind_direction[0] - ) - downstream_turbines = np.array(downstream_turbines, dtype=int) - self.turbs_to_opt = [ - i for i in self.turbs_to_opt if i not in downstream_turbines - ] - - # Set up a template yaw angles array with default solutions. The default - # solutions are either 0.0 or the allowable yaw angle closest to 0.0 deg. - # This solution addresses both downstream turbines, minimizing their abs. - # yaw offset, and additionally fixing equality-constrained turbines to - # their appropriate yaw angle. - yaw_angles_template = np.zeros(self.nturbs, dtype=float) - for ti in range(self.nturbs): - if (self.bnds[ti][0] > 0.0) | (self.bnds[ti][1] < 0.0): - yaw_angles_template[ti] = self.bnds[ti][ - np.argmin(np.abs(self.bnds[ti])) - ] - self.yaw_angles_template = yaw_angles_template - - # Derive normalized initial condition and bounds - x0_subset = [self.x0[i] for i in self.turbs_to_opt] - self.x0_norm = self._norm( - np.array(x0_subset), self.minimum_yaw_angle, self.maximum_yaw_angle - ) - self.bnds_norm = [ - ( - self._norm( - self.bnds[i][0], self.minimum_yaw_angle, self.maximum_yaw_angle - ), - self._norm( - self.bnds[i][1], self.minimum_yaw_angle, self.maximum_yaw_angle - ), - ) - for i in self.turbs_to_opt - ] - - # Public methods - - def optimize(self, verbose=True): - """ - This method solves for the optimum turbine yaw angles for power - production given a fixed set of atmospheric conditions - (wind speed, direction, etc.). - - Returns: - np.array: Optimal yaw angles for each turbine (deg). - """ - if verbose: - print("=====================================================") - print("Optimizing wake redirection control...") - print("Number of parameters to optimize = ", len(self.turbs_to_opt)) - print("=====================================================") - - opt_yaw_angles = self._optimize() - - if verbose and np.sum(opt_yaw_angles) == 0: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - - return opt_yaw_angles - - def reinitialize_opt( - self, - minimum_yaw_angle=None, - maximum_yaw_angle=None, - yaw_angles_baseline=None, - x0=None, - bnds=None, - opt_method=None, - opt_options=None, - include_unc=None, - unc_pmfs=None, - unc_options=None, - turbine_weights=None, - calc_init_power=True, - exclude_downstream_turbines=None, - ): - """ - This method reinitializes any optimization parameters that are - specified. Otherwise, the current parameter values are kept. - - Args: - minimum_yaw_angle (float, optional): Minimum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to None. - maximum_yaw_angle (float, optional): Maximum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to None. - yaw_angles_baseline (iterable, optional): The baseline yaw - angles used to calculate the initial and baseline power - production in the wind farm and used to normalize the cost - function. If none are specified, this variable is set equal - to the current yaw angles in floris. Note that this variable - need not meet the yaw constraints specified in self.bnds, - yet a warning is raised if it does to inform the user. - Defaults to None. - x0 (iterable, optional): The initial guess for the optimization - problem. These values must meet the constraints specified - in self.bnds. Note that, if exclude_downstream_turbines=True, - the initial guess for any downstream turbines are ignored - since they are not part of the optimization. Instead, the yaw - angles for those turbines are 0.0 if that meets the lower and - upper bound, or otherwise as close to 0.0 as feasible. If no - values for x0 are specified, x0 is set to be equal to zeros - wherever feasible (w.r.t. the bounds), and equal to the - average of its lower and upper bound for all non-downstream - turbines otherwise. Defaults to None. - bnds (iterable, optional): Bounds for the yaw angles, as tuples of - min, max values for each turbine (deg). One can fix the yaw - angle of certain turbines to a predefined value by setting that - turbine's lower bound equal to its upper bound (i.e., an - equality constraint), as: bnds[ti] = (x, x), where x is the - fixed yaw angle assigned to the turbine. This works for both - zero and nonzero yaw angles. Moreover, if - exclude_downstream_turbines=True, the yaw angles for all - downstream turbines will be 0.0 or a feasible value closest to - 0.0. If none are specified, the bounds are set to - (minimum_yaw_angle, maximum_yaw_angle) for each turbine. Note - that, if bnds is not none, its values overwrite any value given - in minimum_yaw_angle and maximum_yaw_angle. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to None. - opt_options (dictionary, optional): Optimization options used by - scipy.optimize.minize. Defaults to None. - include_unc (bool, optional): Determines whether wind direction or - yaw uncertainty are included. If True, uncertainty in wind - direction and/or yaw position is included when determining - wind farm power. Uncertainty is included by computing the - mean wind farm power for a distribution of wind direction - and yaw position deviations from the intended wind direction - and yaw angles. Defaults to None. - unc_pmfs (dictionary, optional): A dictionary containing - probability mass functions describing the distribution of - wind direction and yaw position deviations when wind direction - and/or yaw position uncertainty is included in the power - calculations. Contains the following key-value pairs: - - - **wd_unc** (*np.array*): The wind direction - deviations from the intended wind direction (deg). - - **wd_unc_pmf** (*np.array*): The probability - of each wind direction deviation in **wd_unc** occuring. - - **yaw_unc** (*np.array*): The yaw angle deviations - from the intended yaw angles (deg). - - **yaw_unc_pmf** (*np.array*): The probability - of each yaw angle deviation in **yaw_unc** occuring. - - If none are specified, default PMFs are calculated using - values provided in **unc_options**. Defaults to None. - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction and yaw - position deviations when wind direction and/or yaw position - uncertainty is included. This argument is only used when - **unc_pmfs** is None and contains the following key-value pairs: - - - **std_wd** (*float*): The standard deviation of - the wind direction deviations from the original wind - direction (deg). - - **std_yaw** (*float*): The standard deviation of - the yaw angle deviations from the original yaw angles (deg). - - **pmf_res** (*float*): The resolution in degrees - of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): The cumulative - distribution function value at which the tails of the - PMFs are truncated. - - If none are specified, default values of - {'std_wd': 4.95, 'std_yaw': 1.75, 'pmf_res': 1.0, - 'pdf_cutoff': 0.995} are used. Defaults to None. - turbine_weights (iterable, optional): weighing terms that allow - the user to emphasize power gains at particular turbines or - completely ignore power gains from other turbines. The array - of turbine powers from floris is multiplied with this array - in the calculation of the objective function. If None, this - is an array with all values 1.0 and length equal to the - number of turbines. Defaults to None. - calc_init_power (bool, optional): If True, calculates initial - wind farm power for each set of wind conditions. Defaults to - None. - exclude_downstream_turbines (bool, optional): If True, - automatically finds and excludes turbines that are most - downstream from the optimization problem. This significantly - reduces computation time at no loss in performance. The yaw - angles of these downstream turbines are fixed to 0.0 deg if - the yaw bounds specified in self.bnds allow that, or otherwise - are fixed to the lower or upper yaw bound, whichever is closer - to 0.0. Defaults to None. - """ - if minimum_yaw_angle is not None: - self.minimum_yaw_angle = minimum_yaw_angle - if maximum_yaw_angle is not None: - self.maximum_yaw_angle = maximum_yaw_angle - if yaw_angles_baseline is not None: - self.yaw_angles_baseline = yaw_angles_baseline - else: - self.yaw_angles_baseline = [ - turbine.yaw_angle - for turbine in self.fi.floris.farm.turbine_map.turbines - ] - if any(np.abs(self.yaw_angles_baseline) > 0.0): - print( - "INFO: Baseline yaw angles were not specified and were derived " - "from the floris object." - ) - print( - "INFO: The inherent yaw angles in the floris object are not all 0.0 degrees." - ) - - self.bnds = bnds - if bnds is not None: - self.minimum_yaw_angle = np.min([bnds[i][0] for i in range(self.nturbs)]) - self.maximum_yaw_angle = np.max([bnds[i][1] for i in range(self.nturbs)]) - else: - self._set_opt_bounds(self.minimum_yaw_angle, self.maximum_yaw_angle) - - if x0 is not None: - self.x0 = x0 - else: - self.x0 = np.zeros(self.nturbs, dtype=float) - for ti in range(self.nturbs): - if (self.bnds[ti][0] > 0.0) | (self.bnds[ti][1] < 0.0): - self.x0[ti] = np.mean(self.bnds[ti]) - - if any( - np.array(self.yaw_angles_baseline) < np.array([b[0] for b in self.bnds]) - ): - print("INFO: yaw_angles_baseline exceed lower bound constraints.") - if any( - np.array(self.yaw_angles_baseline) > np.array([b[1] for b in self.bnds]) - ): - print("INFO: yaw_angles_baseline in FLORIS exceed upper bound constraints.") - if any(np.array(self.x0) < np.array([b[0] for b in self.bnds])): - raise ValueError("Initial guess x0 exceeds lower bound constraints.") - if any(np.array(self.x0) > np.array([b[1] for b in self.bnds])): - raise ValueError("Initial guess x0 exceeds upper bound constraints.") - - if opt_method is not None: - self.opt_method = opt_method - if opt_options is not None: - self.opt_options = opt_options - if include_unc is not None: - self.include_unc = include_unc - if unc_pmfs is not None: - self.unc_pmfs = unc_pmfs - if unc_options is not None: - self.unc_options = unc_options - - if self.include_unc & (self.unc_pmfs is None): - if self.unc_options is None: - self.unc_options = { - "std_wd": 4.95, - "std_yaw": 1.75, - "pmf_res": 1.0, - "pdf_cutoff": 0.995, - } - - # create normally distributed wd and yaw uncertainty pmfs - if self.unc_options["std_wd"] > 0: - wd_bnd = int( - np.ceil( - norm.ppf( - self.unc_options["pdf_cutoff"], - scale=self.unc_options["std_wd"], - ) - / self.unc_options["pmf_res"] - ) - ) - wd_unc = np.linspace( - -1 * wd_bnd * self.unc_options["pmf_res"], - wd_bnd * self.unc_options["pmf_res"], - 2 * wd_bnd + 1, - ) - wd_unc_pmf = norm.pdf(wd_unc, scale=self.unc_options["std_wd"]) - # normalize so sum = 1.0 - wd_unc_pmf = wd_unc_pmf / np.sum(wd_unc_pmf) - else: - wd_unc = np.zeros(1) - wd_unc_pmf = np.ones(1) - - if self.unc_options["std_yaw"] > 0: - yaw_bnd = int( - np.ceil( - norm.ppf( - self.unc_options["pdf_cutoff"], - scale=self.unc_options["std_yaw"], - ) - / self.unc_options["pmf_res"] - ) - ) - yaw_unc = np.linspace( - -1 * yaw_bnd * self.unc_options["pmf_res"], - yaw_bnd * self.unc_options["pmf_res"], - 2 * yaw_bnd + 1, - ) - yaw_unc_pmf = norm.pdf(yaw_unc, scale=self.unc_options["std_yaw"]) - # normalize so sum = 1.0 - yaw_unc_pmf = yaw_unc_pmf / np.sum(yaw_unc_pmf) - else: - yaw_unc = np.zeros(1) - yaw_unc_pmf = np.ones(1) - - self.unc_pmfs = { - "wd_unc": wd_unc, - "wd_unc_pmf": wd_unc_pmf, - "yaw_unc": yaw_unc, - "yaw_unc_pmf": yaw_unc_pmf, - } - - if turbine_weights is None: - self.turbine_weights = np.ones(self.nturbs) - else: - self.turbine_weights = np.array(turbine_weights, dtype=float) - - if calc_init_power: - self.fi.calculate_wake(yaw_angles=self.yaw_angles_baseline) - turbine_powers = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - self.initial_farm_power = np.dot(self.turbine_weights, turbine_powers) - - if exclude_downstream_turbines is not None: - self.exclude_downstream_turbines = exclude_downstream_turbines - self._reduce_control_variables() - - # Properties - - @property - def minimum_yaw_angle(self): - """ - The minimum yaw angle for the optimization. The setting-method - updates the optimization bounds accordingly. - - **Note**: This is a virtual property used to "get" or "set" a value. - - Args: - value (float): The minimum yaw angle to set (deg). - - Returns: - float: The minimum yaw angle currently set (deg). - """ - return self._minimum_yaw_angle - - @minimum_yaw_angle.setter - def minimum_yaw_angle(self, value): - self._minimum_yaw_angle = value - - @property - def maximum_yaw_angle(self): - """ - The maximum yaw angle for the optimization. The setting-method - updates the optimization bounds accordingly. - - **Note**: This is a virtual property used to "get" or "set" a value. - - Args: - value (float): The maximum yaw angle to set (deg). - - Returns: - float: The maximum yaw angle currently set (deg). - """ - return self._maximum_yaw_angle - - @maximum_yaw_angle.setter - def maximum_yaw_angle(self, value): - self._maximum_yaw_angle = value - - @property - def x0(self): - """ - The initial yaw angles used for the optimization. - - **Note**: This is a virtual property used to "get" or "set" a value. - - Args: - value (iterable): The yaw angle initial conditions to set (deg). - - Returns: - list: The yaw angle initial conditions currently set (deg). - """ - return self._x0 - - @x0.setter - def x0(self, value): - self._x0 = value diff --git a/floris/tools/optimization/legacy/scipy/yaw_clustered.py b/floris/tools/optimization/legacy/scipy/yaw_clustered.py deleted file mode 100644 index 0d804c1a9..000000000 --- a/floris/tools/optimization/legacy/scipy/yaw_clustered.py +++ /dev/null @@ -1,276 +0,0 @@ - -import copy - -import numpy as np -import pandas as pd - -from floris.logging_manager import LoggingManager - -from .cluster_turbines import cluster_turbines -from .yaw import YawOptimization - - -class YawOptimizationClustered(YawOptimization, LoggingManager): - """ - YawOptimization is a subclass of - :py:class:`~.tools.optimizationscipy.YawOptimization` that is used to - perform optimizations of the yaw angles of all or a subset of wind turbines - in a Floris Farm for a single set of inflow conditions using the scipy - optimization package. This class facilitates the clusterization of the - turbines inside seperate subsets in which the turbines witin each subset - exclusively interact with one another and have no impact on turbines - in other clusters. This may significantly reduce the computational - burden at no loss in performance (assuming the turbine clusters are truly - independent). - """ - - def __init__( - self, - fi, - minimum_yaw_angle=0.0, - maximum_yaw_angle=25.0, - yaw_angles_baseline=None, - x0=None, - bnds=None, - opt_method="SLSQP", - opt_options=None, - include_unc=False, - unc_pmfs=None, - unc_options=None, - turbine_weights=None, - calc_init_power=True, - exclude_downstream_turbines=False, - clustering_wake_slope=0.30, - ): - """ - Instantiate YawOptimization object with a FlorisInterface object - and assign parameter values. - - Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - minimum_yaw_angle (float, optional): Minimum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 0.0. - maximum_yaw_angle (float, optional): Maximum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 25.0. - yaw_angles_baseline (iterable, optional): The baseline yaw - angles used to calculate the initial and baseline power - production in the wind farm and used to normalize the cost - function. If none are specified, this variable is set equal - to the current yaw angles in floris. Note that this variable - need not meet the yaw constraints specified in self.bnds, - yet a warning is raised if it does to inform the user. - Defaults to None. - x0 (iterable, optional): The initial guess for the optimization - problem. These values must meet the constraints specified - in self.bnds. Note that, if exclude_downstream_turbines=True, - the initial guess for any downstream turbines are ignored - since they are not part of the optimization. Instead, the yaw - angles for those turbines are 0.0 if that meets the lower and - upper bound, or otherwise as close to 0.0 as feasible. If no - values for x0 are specified, x0 is set to be equal to zeros - wherever feasible (w.r.t. the bounds), and equal to the - average of its lower and upper bound for all non-downstream - turbines otherwise. Defaults to None. - bnds (iterable, optional): Bounds for the yaw angles, as tuples of - min, max values for each turbine (deg). One can fix the yaw - angle of certain turbines to a predefined value by setting that - turbine's lower bound equal to its upper bound (i.e., an - equality constraint), as: bnds[ti] = (x, x), where x is the - fixed yaw angle assigned to the turbine. This works for both - zero and nonzero yaw angles. Moreover, if - exclude_downstream_turbines=True, the yaw angles for all - downstream turbines will be 0.0 or a feasible value closest to - 0.0. If none are specified, the bounds are set to - (minimum_yaw_angle, maximum_yaw_angle) for each turbine. Note - that, if bnds is not none, its values overwrite any value given - in minimum_yaw_angle and maximum_yaw_angle. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dictionary, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': False, 'iprint': 1, 'ftol': 1e-7, - 'eps': 0.01}. Defaults to None. - include_unc (bool, optional): Determines whether wind direction or - yaw uncertainty are included. If True, uncertainty in wind - direction and/or yaw position is included when determining - wind farm power. Uncertainty is included by computing the - mean wind farm power for a distribution of wind direction - and yaw position deviations from the intended wind direction - and yaw angles. Defaults to False. - unc_pmfs (dictionary, optional): A dictionary containing - probability mass functions describing the distribution of - wind direction and yaw position deviations when wind direction - and/or yaw position uncertainty is included in the power - calculations. Contains the following key-value pairs: - - - **wd_unc** (*np.array*): The wind direction - deviations from the intended wind direction (deg). - - **wd_unc_pmf** (*np.array*): The probability - of each wind direction deviation in **wd_unc** occuring. - - **yaw_unc** (*np.array*): The yaw angle deviations - from the intended yaw angles (deg). - - **yaw_unc_pmf** (*np.array*): The probability - of each yaw angle deviation in **yaw_unc** occuring. - - If none are specified, default PMFs are calculated using - values provided in **unc_options**. Defaults to None. - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction and yaw - position deviations when wind direction and/or yaw position - uncertainty is included. This argument is only used when - **unc_pmfs** is None and contains the following key-value pairs: - - - **std_wd** (*float*): The standard deviation of - the wind direction deviations from the original wind - direction (deg). - - **std_yaw** (*float*): The standard deviation of - the yaw angle deviations from the original yaw angles (deg). - - **pmf_res** (*float*): The resolution in degrees - of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): The cumulative - distribution function value at which the tails of the - PMFs are truncated. - - If none are specified, default values of - {'std_wd': 4.95, 'std_yaw': 1.75, 'pmf_res': 1.0, - 'pdf_cutoff': 0.995} are used. Defaults to None. - turbine_weights (iterable, optional): weighing terms that allow - the user to emphasize power gains at particular turbines or - completely ignore power gains from other turbines. The array - of turbine powers from floris is multiplied with this array - in the calculation of the objective function. If None, this - is an array with all values 1.0 and length equal to the - number of turbines. Defaults to None. - calc_init_power (bool, optional): If True, calculates initial - wind farm power for each set of wind conditions. Defaults to - True. - exclude_downstream_turbines (bool, optional): If True, - automatically finds and excludes turbines that are most - downstream from the optimization problem. This significantly - reduces computation time at no loss in performance. The yaw - angles of these downstream turbines are fixed to 0.0 deg if - the yaw bounds specified in self.bnds allow that, or otherwise - are fixed to the lower or upper yaw bound, whichever is closer - to 0.0. Defaults to False. - clustering_wake_slope (float, optional): linear slope of the wake - in the simplified linear expansion wake model (dy/dx). This - model is used to derive wake interactions between turbines and - to identify the turbine clusters. A good value is about equal - to the turbulence intensity in FLORIS. Though, since yaw - optimizations may shift the wake laterally, a safer option - is twice the turbulence intensity. The default value is 0.30 - which should be valid for yaw optimizations at wd_std = 0.0 deg - and turbulence intensities up to 15%. Defaults to 0.30. - """ - super().__init__( - fi=fi, - minimum_yaw_angle=minimum_yaw_angle, - maximum_yaw_angle=maximum_yaw_angle, - yaw_angles_baseline=yaw_angles_baseline, - x0=x0, - bnds=bnds, - opt_method=opt_method, - opt_options=opt_options, - include_unc=include_unc, - unc_pmfs=unc_pmfs, - unc_options=unc_options, - turbine_weights=turbine_weights, - calc_init_power=calc_init_power, - exclude_downstream_turbines=exclude_downstream_turbines, - ) - self.clustering_wake_slope = clustering_wake_slope - - - def _cluster_turbines(self): - wind_directions = self.fi.floris.farm.wind_direction - if (np.std(wind_directions) > 0.001): - raise ValueError("Wind directions must be uniform for clustering algorithm.") - self.clusters = cluster_turbines( - fi=self.fi, - wind_direction=self.fi.floris.farm.wind_direction[0], - wake_slope=self.clustering_wake_slope - ) - - def plot_clusters(self): - cluster_turbines( - fi=self.fi, - wind_direction=self.fi.floris.farm.wind_direction[0], - wake_slope=self.clustering_wake_slope, - plot_lines=True - ) - - def optimize(self, verbose=True): - """ - This method solves for the optimum turbine yaw angles for power - production given a fixed set of atmospheric conditions - (wind speed, direction, etc.). - - Returns: - np.array: Optimal yaw angles for each turbine (deg). - """ - if verbose: - print("=====================================================") - print("Optimizing wake redirection control...") - print("Number of parameters to optimize = ", len(self.turbs_to_opt)) - print("=====================================================") - - # Cluster turbines first - self._cluster_turbines() - if verbose: - print("Clustered turbines into %d separate clusters." % len(self.clusters)) - - # Save parameters to a full list - yaw_angles_template_full = copy.copy(self.yaw_angles_template) - yaw_angles_baseline_full = copy.copy(self.yaw_angles_baseline) - turbine_weights_full = copy.copy(self.turbine_weights) - bnds_full = copy.copy(self.bnds) - # nturbs_full = copy.copy(self.nturbs) - x0_full = copy.copy(self.x0) - fi_full = copy.deepcopy(self.fi) - - # Overwrite parameters for each cluster and optimize - opt_yaw_angles = np.zeros_like(x0_full) - for ci, cl in enumerate(self.clusters): - if verbose: - print("=====================================================") - print("Optimizing %d parameters in cluster %d." % (len(cl), ci)) - print("=====================================================") - self.yaw_angles_template = np.array(yaw_angles_template_full)[cl] - self.yaw_angles_baseline = np.array(yaw_angles_baseline_full)[cl] - self.turbine_weights = np.array(turbine_weights_full)[cl] - self.bnds = np.array(bnds_full)[cl] - self.x0 = np.array(x0_full)[cl] - self.fi = copy.deepcopy(fi_full) - self.fi.reinitialize_flow_field( - layout_array=[ - np.array(fi_full.layout_x)[cl], - np.array(fi_full.layout_y)[cl] - ] - ) - opt_yaw_angles[cl] = self._optimize() - - # Restore parameters - self.yaw_angles_template = yaw_angles_template_full - self.yaw_angles_baseline = yaw_angles_baseline_full - self.turbine_weights = turbine_weights_full - self.bnds = bnds_full - self.x0 = x0_full - self.fi = fi_full - self.fi.reinitialize_flow_field( - layout_array=[ - np.array(fi_full.layout_x), - np.array(fi_full.layout_y) - ] - ) - - if verbose and np.sum(np.abs(opt_yaw_angles)) == 0: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - - return opt_yaw_angles diff --git a/floris/tools/optimization/legacy/scipy/yaw_wind_rose.py b/floris/tools/optimization/legacy/scipy/yaw_wind_rose.py deleted file mode 100644 index 30a5a6de4..000000000 --- a/floris/tools/optimization/legacy/scipy/yaw_wind_rose.py +++ /dev/null @@ -1,984 +0,0 @@ - -import numpy as np -import pandas as pd -from scipy.optimize import minimize -from scipy.stats import norm - -from .derive_downstream_turbines import derive_downstream_turbines -from .optimization import Optimization - - -class YawOptimizationWindRose(Optimization): - """ - YawOptimizationWindRose is a subclass of - :py:class:`~.tools.optimization.scipy.Optimization` that is used to - optimize the yaw angles of all turbines in a Floris Farm for multiple sets - of inflow conditions (combinations of wind speed, wind direction, and - optionally turbulence intensity) using the scipy optimize package. - """ - - def __init__( - self, - fi, - wd, - ws, - ti=None, - minimum_yaw_angle=0.0, - maximum_yaw_angle=25.0, - minimum_ws=3.0, - maximum_ws=25.0, - yaw_angles_baseline=None, - x0=None, - bnds=None, - opt_method="SLSQP", - opt_options=None, - include_unc=False, - unc_pmfs=None, - unc_options=None, - turbine_weights=None, - verbose=False, - calc_init_power=True, - exclude_downstream_turbines=False, - ): - """ - Instantiate YawOptimizationWindRose object with a FlorisInterface - object and assign parameter values. - - Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - wd (iterable) : The wind directions for which the yaw angles are - optimized (deg). - ws (iterable): The wind speeds for which the yaw angles are - optimized (m/s). - ti (iterable, optional): An optional list of turbulence intensity - values for which the yaw angles are optimized. If not - specified, the current TI value in the Floris object will be - used for all optimizations. Defaults to None. - minimum_yaw_angle (float, optional): Minimum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 0.0. - maximum_yaw_angle (float, optional): Maximum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 25.0. - minimum_ws (float, optional): Minimum wind speed at which - optimization is performed (m/s). Assumes zero power generated - below this value. Defaults to 3. - maximum_ws (float, optional): Maximum wind speed at which - optimization is performed (m/s). Assumes optimal yaw offsets - are zero above this wind speed. Defaults to 25. - yaw_angles_baseline (iterable, optional): The baseline yaw - angles used to calculate the initial and baseline power - production in the wind farm and used to normalize the cost - function. If none are specified, this variable is set equal - to the current yaw angles in floris. Note that this variable - need not meet the yaw constraints specified in self.bnds, - yet a warning is raised if it does to inform the user. - Defaults to None. - x0 (iterable, optional): The initial guess for the optimization - problem. These values must meet the constraints specified - in self.bnds. Note that, if exclude_downstream_turbines=True, - the initial guess for any downstream turbines are ignored - since they are not part of the optimization. Instead, the yaw - angles for those turbines are 0.0 if that meets the lower and - upper bound, or otherwise as close to 0.0 as feasible. If no - values for x0 are specified, x0 is set to be equal to zeros - wherever feasible (w.r.t. the bounds), and equal to the - average of its lower and upper bound for all non-downstream - turbines otherwise. Defaults to None. - bnds (iterable, optional): Bounds for the yaw angles, as tuples of - min, max values for each turbine (deg). One can fix the yaw - angle of certain turbines to a predefined value by setting that - turbine's lower bound equal to its upper bound (i.e., an - equality constraint), as: bnds[ti] = (x, x), where x is the - fixed yaw angle assigned to the turbine. This works for both - zero and nonzero yaw angles. Moreover, if - exclude_downstream_turbines=True, the yaw angles for all - downstream turbines will be 0.0 or a feasible value closest to - 0.0. If none are specified, the bounds are set to - (minimum_yaw_angle, maximum_yaw_angle) for each turbine. Note - that, if bnds is not none, its values overwrite any value given - in minimum_yaw_angle and maximum_yaw_angle. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dictionary, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': False, 'iprint': 1, 'ftol': 1e-7, - 'eps': 0.01}. Defaults to None. - include_unc (bool, optional): Determines whether wind direction or - yaw uncertainty are included. If True, uncertainty in wind - direction and/or yaw position is included when determining - wind farm power. Uncertainty is included by computing the - mean wind farm power for a distribution of wind direction - and yaw position deviations from the intended wind direction - and yaw angles. Defaults to False. - unc_pmfs (dictionary, optional): A dictionary containing - probability mass functions describing the distribution of - wind direction and yaw position deviations when wind direction - and/or yaw position uncertainty is included in the power - calculations. Contains the following key-value pairs: - - - **wd_unc** (*np.array*): The wind direction - deviations from the intended wind direction (deg). - - **wd_unc_pmf** (*np.array*): The probability - of each wind direction deviation in **wd_unc** occuring. - - **yaw_unc** (*np.array*): The yaw angle deviations - from the intended yaw angles (deg). - - **yaw_unc_pmf** (*np.array*): The probability - of each yaw angle deviation in **yaw_unc** occuring. - - If none are specified, default PMFs are calculated using - values provided in **unc_options**. Defaults to None. - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction and yaw - position deviations when wind direction and/or yaw position - uncertainty is included. This argument is only used when - **unc_pmfs** is None and contains the following key-value pairs: - - - **std_wd** (*float*): The standard deviation of - the wind direction deviations from the original wind - direction (deg). - - **std_yaw** (*float*): The standard deviation of - the yaw angle deviations from the original yaw angles (deg). - - **pmf_res** (*float*): The resolution in degrees - of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): The cumulative - distribution function value at which the tails of the - PMFs are truncated. - - If none are specified, default values of - {'std_wd': 4.95, 'std_yaw': 1.75, 'pmf_res': 1.0, - 'pdf_cutoff': 0.995} are used. Defaults to None. - turbine_weights (iterable, optional): weighing terms that allow - the user to emphasize power gains at particular turbines or - completely ignore power gains from other turbines. The array - of turbine powers from floris is multiplied with this array - in the calculation of the objective function. If None, this - is an array with all values 1.0 and length equal to the - number of turbines. Defaults to None. - calc_init_power (bool, optional): If True, calculates initial - wind farm power for each set of wind conditions. Defaults to - True. - exclude_downstream_turbines (bool, optional): If True, - automatically finds and excludes turbines that are most - downstream from the optimization problem. This significantly - reduces computation time at no loss in performance. The yaw - angles of these downstream turbines are fixed to 0.0 deg if - the yaw bounds specified in self.bnds allow that, or otherwise - are fixed to the lower or upper yaw bound, whichever is closer - to 0.0. Defaults to False. - """ - super().__init__(fi) - - if opt_options is None: - self.opt_options = { - "maxiter": 100, - "disp": False, - "iprint": 1, - "ftol": 1e-7, - "eps": 0.01, - } - - self.unc_pmfs = unc_pmfs - - if unc_options is None: - self.unc_options = { - "std_wd": 4.95, - "std_yaw": 1.75, - "pmf_res": 1.0, - "pdf_cutoff": 0.995, - } - - self.ti = ti - - self.reinitialize_opt_wind_rose( - wd=wd, - ws=ws, - ti=ti, - minimum_yaw_angle=minimum_yaw_angle, - maximum_yaw_angle=maximum_yaw_angle, - minimum_ws=minimum_ws, - maximum_ws=maximum_ws, - yaw_angles_baseline=yaw_angles_baseline, - x0=x0, - bnds=bnds, - opt_method=opt_method, - opt_options=opt_options, - include_unc=include_unc, - unc_pmfs=unc_pmfs, - unc_options=unc_options, - turbine_weights=turbine_weights, - calc_init_power=calc_init_power, - exclude_downstream_turbines=exclude_downstream_turbines, - ) - - self.verbose = verbose - - # Private methods - - def _get_initial_farm_power(self): - self.initial_farm_powers = [] - - for i in range(len(self.wd)): - if (self.ws[i] >= self.minimum_ws) & (self.ws[i] <= self.maximum_ws): - if self.ti is None: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], wind_speed=[self.ws[i]] - ) - else: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], - wind_speed=[self.ws[i]], - turbulence_intensity=self.ti[i], - ) - - # initial power - self.fi.calculate_wake(yaw_angles=self.yaw_angles_baseline) - power_init = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - elif self.ws[i] >= self.maximum_ws: - if self.ti is None: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], wind_speed=[self.ws[i]] - ) - else: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], - wind_speed=[self.ws[i]], - turbulence_intensity=self.ti[i], - ) - self.fi.calculate_wake(yaw_angles=self.yaw_angles_baseline) - power_init = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - else: - power_init = self.nturbs * [0.0] - - self.initial_farm_powers.append(np.dot(self.turbine_weights, power_init)) - - def _get_power_for_yaw_angle_opt(self, yaw_angles_subset_norm): - """ - Assign yaw angles to turbines, calculate wake, report power - - Args: - yaw_angles_subset_norm (np.array): Yaw to apply to subset - of controlled turbines, normalized. - - Returns: - power (float): Wind plant power. #TODO negative? in kW? - """ - yaw_angles_subset = self._unnorm( - np.array(yaw_angles_subset_norm), - self.minimum_yaw_angle, - self.maximum_yaw_angle, - ) - - # Create a full yaw angle array - yaw_angles = np.array(self.yaw_angles_template, copy=True) - yaw_angles[self.turbs_to_opt] = yaw_angles_subset - - self.fi.calculate_wake(yaw_angles=yaw_angles) - turbine_powers = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - - return ( - -1.0 - * np.dot(self.turbine_weights, turbine_powers) - / self.initial_farm_power - ) - - def _set_opt_bounds(self, minimum_yaw_angle, maximum_yaw_angle): - """ - Sets minimum and maximum yaw angle bounds for optimization. - """ - - self.bnds = [(minimum_yaw_angle, maximum_yaw_angle) for _ in range(self.nturbs)] - - def _optimize(self): - """ - Find optimum setting of turbine yaw angles for power production - given fixed atmospheric conditions (wind speed, direction, etc.). - - Returns: - opt_yaw_angles (np.array): Optimal yaw angles of each turbine. - """ - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - wind_map = self.fi.floris.farm.wind_map - self._reduce_control_variables() - - if len(self.turbs_to_opt) > 0: - self.residual_plant = minimize( - self._get_power_for_yaw_angle_opt, - self.x0_norm, - method=self.opt_method, - bounds=self.bnds_norm, - options=self.opt_options, - ) - opt_yaw_angles_subset = self._unnorm( - self.residual_plant.x, self.minimum_yaw_angle, self.maximum_yaw_angle - ) - opt_yaw_angles[self.turbs_to_opt] = opt_yaw_angles_subset - - self.fi.reinitialize_flow_field( - wind_speed=wind_map.input_speed, - wind_direction=wind_map.input_direction, - turbulence_intensity=wind_map.input_ti, - ) - return opt_yaw_angles - - def _reduce_control_variables(self): - """This function reduces the control problem by eliminating turbines - of which the yaw angles need not be optimized, either because of a - user-specified set of bounds (where bounds[i][0] == bounds[i][1]), - or alternatively turbines that are far downstream in the wind farm - and of which the wake does not impinge other turbines, if the - boolean exclude_downstream_turbines == True. The normalized initial - conditions and bounds are then calculated for the subset of turbines, - to be used in the optimization. - """ - if self.bnds is not None: - self.turbs_to_opt, _ = np.where(np.abs(np.diff(self.bnds)) >= 0.001) - else: - self.turbs_to_opt = np.array(range(self.nturbs), dtype=int) - - if self.exclude_downstream_turbines: - # Remove turbines from turbs_to_opt that are downstream - downstream_turbines = derive_downstream_turbines( - fi=self.fi, wind_direction=self.fi.floris.farm.wind_direction[0] - ) - downstream_turbines = np.array(downstream_turbines, dtype=int) - self.turbs_to_opt = [ - i for i in self.turbs_to_opt if i not in downstream_turbines - ] - - # Set up a template yaw angles array with default solutions. The default - # solutions are either 0.0 or the allowable yaw angle closest to 0.0 deg. - # This solution addresses both downstream turbines, minimizing their abs. - # yaw offset, and additionally fixing equality-constrained turbines to - # their appropriate yaw angle. - yaw_angles_template = np.zeros(self.nturbs, dtype=float) - for ti in range(self.nturbs): - if (self.bnds[ti][0] > 0.0) | (self.bnds[ti][1] < 0.0): - yaw_angles_template[ti] = self.bnds[ti][ - np.argmin(np.abs(self.bnds[ti])) - ] - self.yaw_angles_template = yaw_angles_template - - # Derive normalized initial condition and bounds - x0_subset = [self.x0[i] for i in self.turbs_to_opt] - self.x0_norm = self._norm( - np.array(x0_subset), self.minimum_yaw_angle, self.maximum_yaw_angle - ) - self.bnds_norm = [ - ( - self._norm( - self.bnds[i][0], self.minimum_yaw_angle, self.maximum_yaw_angle - ), - self._norm( - self.bnds[i][1], self.minimum_yaw_angle, self.maximum_yaw_angle - ), - ) - for i in self.turbs_to_opt - ] - - # Public methods - - def reinitialize_opt_wind_rose( - self, - wd=None, - ws=None, - ti=None, - minimum_yaw_angle=None, - maximum_yaw_angle=None, - minimum_ws=None, - maximum_ws=None, - yaw_angles_baseline=None, - x0=None, - bnds=None, - opt_method=None, - opt_options=None, - include_unc=None, - unc_pmfs=None, - unc_options=None, - turbine_weights=None, - calc_init_power=True, - exclude_downstream_turbines=None, - ): - """ - This method reinitializes any optimization parameters that are - specified. Otherwise, the current parameter values are kept. - - Args: - wd (iterable, optional) : The wind directions for which the yaw - angles are optimized (deg). Defaults to None. - ws (iterable, optional): The wind speeds for which the yaw angles - are optimized (m/s). Defaults to None. - ti (iterable, optional): An optional list of turbulence intensity - values for which the yaw angles are optimized. Defaults to None. - minimum_yaw_angle (float, optional): Minimum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to None. - maximum_yaw_angle (float, optional): Maximum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to None. - minimum_ws (float, optional): Minimum wind speed at which - optimization is performed (m/s). Assumes zero power generated - below this value. Defaults to None. - maximum_ws (float, optional): Maximum wind speed at which - optimization is performed (m/s). Assumes optimal yaw offsets - are zero above this wind speed. Defaults to None. - yaw_angles_baseline (iterable, optional): The baseline yaw - angles used to calculate the initial and baseline power - production in the wind farm and used to normalize the cost - function. If none are specified, this variable is set equal - to the current yaw angles in floris. Note that this variable - need not meet the yaw constraints specified in self.bnds, - yet a warning is raised if it does to inform the user. - Defaults to None. - x0 (iterable, optional): The initial guess for the optimization - problem. These values must meet the constraints specified - in self.bnds. Note that, if exclude_downstream_turbines=True, - the initial guess for any downstream turbines are ignored - since they are not part of the optimization. Instead, the yaw - angles for those turbines are 0.0 if that meets the lower and - upper bound, or otherwise as close to 0.0 as feasible. If no - values for x0 are specified, x0 is set to be equal to zeros - wherever feasible (w.r.t. the bounds), and equal to the - average of its lower and upper bound for all non-downstream - turbines otherwise. Defaults to None. - bnds (iterable, optional): Bounds for the yaw angles, as tuples of - min, max values for each turbine (deg). One can fix the yaw - angle of certain turbines to a predefined value by setting that - turbine's lower bound equal to its upper bound (i.e., an - equality constraint), as: bnds[ti] = (x, x), where x is the - fixed yaw angle assigned to the turbine. This works for both - zero and nonzero yaw angles. Moreover, if - exclude_downstream_turbines=True, the yaw angles for all - downstream turbines will be 0.0 or a feasible value closest to - 0.0. If none are specified, the bounds are set to - (minimum_yaw_angle, maximum_yaw_angle) for each turbine. Note - that, if bnds is not none, its values overwrite any value given - in minimum_yaw_angle and maximum_yaw_angle. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to None. - opt_options (dictionary, optional): Optimization options used by - scipy.optimize.minize. Defaults to None. - include_unc (bool, optional): Determines whether wind direction or - yaw uncertainty are included. If True, uncertainty in wind - direction and/or yaw position is included when determining - wind farm power. Uncertainty is included by computing the - mean wind farm power for a distribution of wind direction - and yaw position deviations from the intended wind direction - and yaw angles. Defaults to None. - unc_pmfs (dictionary, optional): A dictionary containing - probability mass functions describing the distribution of - wind direction and yaw position deviations when wind direction - and/or yaw position uncertainty is included in the power - calculations. Contains the following key-value pairs: - - - **wd_unc** (*np.array*): The wind direction - deviations from the intended wind direction (deg). - - **wd_unc_pmf** (*np.array*): The probability - of each wind direction deviation in **wd_unc** occuring. - - **yaw_unc** (*np.array*): The yaw angle deviations - from the intended yaw angles (deg). - - **yaw_unc_pmf** (*np.array*): The probability - of each yaw angle deviation in **yaw_unc** occuring. - - If none are specified, default PMFs are calculated using - values provided in **unc_options**. Defaults to None. - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction and yaw - position deviations when wind direction and/or yaw position - uncertainty is included. This argument is only used when - **unc_pmfs** is None and contains the following key-value pairs: - - - **std_wd** (*float*): The standard deviation of - the wind direction deviations from the original wind - direction (deg). - - **std_yaw** (*float*): The standard deviation of - the yaw angle deviations from the original yaw angles (deg). - - **pmf_res** (*float*): The resolution in degrees - of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): The cumulative - distribution function value at which the tails of the - PMFs are truncated. - - If none are specified, default values of - {'std_wd': 4.95, 'std_yaw': 1.75, 'pmf_res': 1.0, - 'pdf_cutoff': 0.995} are used. Defaults to None. - turbine_weights (iterable, optional): weighing terms that allow - the user to emphasize power gains at particular turbines or - completely ignore power gains from other turbines. The array - of turbine powers from floris is multiplied with this array - in the calculation of the objective function. If None, this - is an array with all values 1.0 and length equal to the - number of turbines. Defaults to None. - calc_init_power (bool, optional): If True, calculates initial - wind farm power for each set of wind conditions. Defaults to - None. - exclude_downstream_turbines (bool, optional): If True, - automatically finds and excludes turbines that are most - downstream from the optimization problem. This significantly - reduces computation time at no loss in performance. The yaw - angles of these downstream turbines are fixed to 0.0 deg if - the yaw bounds specified in self.bnds allow that, or otherwise - are fixed to the lower or upper yaw bound, whichever is closer - to 0.0. Defaults to None. - """ - - if wd is not None: - self.wd = wd - if ws is not None: - self.ws = ws - if ti is not None: - self.ti = ti - if minimum_ws is not None: - self.minimum_ws = minimum_ws - if maximum_ws is not None: - self.maximum_ws = maximum_ws - if minimum_yaw_angle is not None: - self.minimum_yaw_angle = minimum_yaw_angle - if maximum_yaw_angle is not None: - self.maximum_yaw_angle = maximum_yaw_angle - if opt_method is not None: - self.opt_method = opt_method - if opt_options is not None: - self.opt_options = opt_options - if yaw_angles_baseline is not None: - self.yaw_angles_baseline = yaw_angles_baseline - else: - self.yaw_angles_baseline = [ - turbine.yaw_angle - for turbine in self.fi.floris.farm.turbine_map.turbines - ] - if any(np.abs(self.yaw_angles_baseline) > 0.0): - print( - "INFO: Baseline yaw angles were not specified and were derived " - "from the floris object." - ) - print( - "INFO: The inherent yaw angles in the floris object are not all 0.0 degrees." - ) - - self.bnds = bnds - if bnds is not None: - self.minimum_yaw_angle = np.min([bnds[i][0] for i in range(self.nturbs)]) - self.maximum_yaw_angle = np.max([bnds[i][1] for i in range(self.nturbs)]) - else: - self._set_opt_bounds(self.minimum_yaw_angle, self.maximum_yaw_angle) - - if x0 is not None: - self.x0 = x0 - else: - self.x0 = np.zeros(self.nturbs, dtype=float) - for ti in range(self.nturbs): - if (self.bnds[ti][0] > 0.0) | (self.bnds[ti][1] < 0.0): - self.x0[ti] = np.mean(self.bnds[ti]) - - if any( - np.array(self.yaw_angles_baseline) < np.array([b[0] for b in self.bnds]) - ): - print("INFO: yaw_angles_baseline exceed lower bound constraints.") - if any( - np.array(self.yaw_angles_baseline) > np.array([b[1] for b in self.bnds]) - ): - print("INFO: yaw_angles_baseline in FLORIS exceed upper bound constraints.") - if any(np.array(self.x0) < np.array([b[0] for b in self.bnds])): - raise ValueError("Initial guess x0 exceeds lower bound constraints.") - if any(np.array(self.x0) > np.array([b[1] for b in self.bnds])): - raise ValueError("Initial guess x0 exceeds upper bound constraints.") - - if include_unc is not None: - self.include_unc = include_unc - if unc_pmfs is not None: - self.unc_pmfs = unc_pmfs - if unc_options is not None: - self.unc_options = unc_options - - if self.include_unc & (self.unc_pmfs is None): - if self.unc_options is None: - self.unc_options = { - "std_wd": 4.95, - "std_yaw": 1.75, - "pmf_res": 1.0, - "pdf_cutoff": 0.995, - } - - # create normally distributed wd and yaw uncertaitny pmfs - if self.unc_options["std_wd"] > 0: - wd_bnd = int( - np.ceil( - norm.ppf( - self.unc_options["pdf_cutoff"], - scale=self.unc_options["std_wd"], - ) - / self.unc_options["pmf_res"] - ) - ) - wd_unc = np.linspace( - -1 * wd_bnd * self.unc_options["pmf_res"], - wd_bnd * self.unc_options["pmf_res"], - 2 * wd_bnd + 1, - ) - wd_unc_pmf = norm.pdf(wd_unc, scale=self.unc_options["std_wd"]) - # normalize so sum = 1.0 - wd_unc_pmf = wd_unc_pmf / np.sum(wd_unc_pmf) - else: - wd_unc = np.zeros(1) - wd_unc_pmf = np.ones(1) - - if self.unc_options["std_yaw"] > 0: - yaw_bnd = int( - np.ceil( - norm.ppf( - self.unc_options["pdf_cutoff"], - scale=self.unc_options["std_yaw"], - ) - / self.unc_options["pmf_res"] - ) - ) - yaw_unc = np.linspace( - -1 * yaw_bnd * self.unc_options["pmf_res"], - yaw_bnd * self.unc_options["pmf_res"], - 2 * yaw_bnd + 1, - ) - yaw_unc_pmf = norm.pdf(yaw_unc, scale=self.unc_options["std_yaw"]) - # normalize so sum = 1.0 - yaw_unc_pmf = yaw_unc_pmf / np.sum(yaw_unc_pmf) - else: - yaw_unc = np.zeros(1) - yaw_unc_pmf = np.ones(1) - - self.unc_pmfs = { - "wd_unc": wd_unc, - "wd_unc_pmf": wd_unc_pmf, - "yaw_unc": yaw_unc, - "yaw_unc_pmf": yaw_unc_pmf, - } - - if turbine_weights is None: - self.turbine_weights = np.ones(self.nturbs) - else: - self.turbine_weights = np.array(turbine_weights, dtype=float) - - if calc_init_power: - self._get_initial_farm_power() - - if exclude_downstream_turbines is not None: - self.exclude_downstream_turbines = exclude_downstream_turbines - self._reduce_control_variables() - - def calc_baseline_power(self): - """ - This method computes the baseline power produced by the wind farm and - the ideal power without wake losses for a series of wind speed, wind - direction, and optionally TI combinations. - - Returns: - pandas.DataFrame: A pandas DataFrame with the same number of rows - as the length of the wd and ws arrays, containing the following - columns: - - - **ws** (*float*) - The wind speed values for which power is - computed (m/s). - - **wd** (*float*) - The wind direction value for which power - is calculated (deg). - - **ti** (*float*) - The turbulence intensity value for which - power is calculated. Only included if self.ti is not None. - - **power_baseline** (*float*) - The total power produced by - the wind farm with baseline yaw control (W). - - **power_no_wake** (*float*) - The ideal total power produced - by the wind farm without wake losses (W). - - **turbine_power_baseline** (*list* (*float*)) - A - list containing the baseline power without wake steering for - each wind turbine in the wind farm (W). - - **turbine_power_no_wake** (*list* (*float*)) - A list - containing the ideal power without wake losses for each wind - turbine in the wind farm (W). - """ - print("=====================================================") - print("Calculating baseline power...") - print("Number of wind conditions to calculate = ", len(self.wd)) - print("=====================================================") - - # Put results in dict for speed, instead of previously - # appending to frame. - result_dict = {} - - for i in range(len(self.wd)): - if self.verbose: - if self.ti is None: - print( - "Computing wind speed, wind direction pair " - + str(i) - + " out of " - + str(len(self.wd)) - + ": wind speed = " - + str(self.ws[i]) - + " m/s, wind direction = " - + str(self.wd[i]) - + " deg." - ) - else: - print( - "Computing wind speed, wind direction, turbulence " - + "intensity set " - + str(i) - + " out of " - + str(len(self.wd)) - + ": wind speed = " - + str(self.ws[i]) - + " m/s, wind direction = " - + str(self.wd[i]) - + " deg, turbulence intensity = " - + str(self.ti[i]) - + "." - ) - - # Find baseline power in FLORIS - - if self.ws[i] >= self.minimum_ws: - if self.ti is None: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], wind_speed=[self.ws[i]] - ) - else: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], - wind_speed=[self.ws[i]], - turbulence_intensity=self.ti[i], - ) - - # calculate baseline power - self.fi.calculate_wake( - yaw_angles=self.yaw_angles_baseline, no_wake=False - ) - power_base = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - - # calculate power for no wake case - self.fi.calculate_wake( - yaw_angles=self.yaw_angles_baseline, no_wake=True - ) - power_no_wake = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - no_wake=True, - ) - else: - power_base = self.nturbs * [0.0] - power_no_wake = self.nturbs * [0.0] - - # Include turbine weighing terms - power_base = np.multiply(self.turbine_weights, power_base) - power_no_wake = np.multiply(self.turbine_weights, power_no_wake) - - # add variables to dataframe - if self.ti is None: - result_dict[i] = { - "ws": self.ws[i], - "wd": self.wd[i], - "power_baseline": np.sum(power_base), - "turbine_power_baseline": power_base, - "power_no_wake": np.sum(power_no_wake), - "turbine_power_no_wake": power_no_wake, - } - # df_base = df_base.append(pd.DataFrame( - # {'ws':[self.ws[i]],'wd':[self.wd[i]], - # 'power_baseline':[np.sum(power_base)], - # 'turbine_power_baseline':[power_base], - # 'power_no_wake':[np.sum(power_no_wake)], - # 'turbine_power_no_wake':[power_no_wake]})) - else: - result_dict[i] = { - "ws": self.ws[i], - "wd": self.wd[i], - "ti": self.ti[i], - "power_baseline": np.sum(power_base), - "turbine_power_baseline": power_base, - "power_no_wake": np.sum(power_no_wake), - "turbine_power_no_wake": power_no_wake, - } - # df_base = df_base.append(pd.DataFrame( - # {'ws':[self.ws[i]],'wd':[self.wd[i]], - # 'ti':[self.ti[i]],'power_baseline':[np.sum(power_base)], - # 'turbine_power_baseline':[power_base], - # 'power_no_wake':[np.sum(power_no_wake)], - # 'turbine_power_no_wake':[power_no_wake]})) - df_base = pd.DataFrame.from_dict(result_dict, "index") - df_base.reset_index(drop=True, inplace=True) - - return df_base - - def optimize(self): - """ - This method solves for the optimum turbine yaw angles for power - production and the resulting power produced by the wind farm for a - series of wind speed, wind direction, and optionally TI combinations. - - Returns: - pandas.DataFrame: A pandas DataFrame with the same number of rows - as the length of the wd and ws arrays, containing the following - columns: - - - **ws** (*float*) - The wind speed values for which the yaw - angles are optimized and power is computed (m/s). - - **wd** (*float*) - The wind direction values for which the - yaw angles are optimized and power is computed (deg). - - **ti** (*float*) - The turbulence intensity values for which - the yaw angles are optimized and power is computed. Only - included if self.ti is not None. - - **power_opt** (*float*) - The total power produced by the - wind farm with optimal yaw offsets (W). - - **turbine_power_opt** (*list* (*float*)) - A list - containing the power produced by each wind turbine with optimal - yaw offsets (W). - - **yaw_angles** (*list* (*float*)) - A list containing - the optimal yaw offsets for maximizing total wind farm power - for each wind turbine (deg). - """ - print("=====================================================") - print("Optimizing wake redirection control...") - print("Number of wind conditions to optimize = ", len(self.wd)) - print("Number of yaw angles to optimize = ", len(self.turbs_to_opt)) - print("=====================================================") - - df_opt = pd.DataFrame() - - for i in range(len(self.wd)): - if self.verbose: - if self.ti is None: - print( - "Computing wind speed, wind direction pair " - + str(i) - + " out of " - + str(len(self.wd)) - + ": wind speed = " - + str(self.ws[i]) - + " m/s, wind direction = " - + str(self.wd[i]) - + " deg." - ) - else: - print( - "Computing wind speed, wind direction, turbulence " - + "intensity set " - + str(i) - + " out of " - + str(len(self.wd)) - + ": wind speed = " - + str(self.ws[i]) - + " m/s, wind direction = " - + str(self.wd[i]) - + " deg, turbulence intensity = " - + str(self.ti[i]) - + "." - ) - - # Optimizing wake redirection control - if (self.ws[i] >= self.minimum_ws) & (self.ws[i] <= self.maximum_ws): - if self.ti is None: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], wind_speed=[self.ws[i]] - ) - else: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], - wind_speed=[self.ws[i]], - turbulence_intensity=self.ti[i], - ) - - self.initial_farm_power = self.initial_farm_powers[i] - opt_yaw_angles = self._optimize() - - if np.sum(opt_yaw_angles) == 0: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - - # optimized power - self.fi.calculate_wake(yaw_angles=opt_yaw_angles) - power_opt = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - elif self.ws[i] >= self.maximum_ws: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - if self.ti is None: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], wind_speed=[self.ws[i]] - ) - else: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], - wind_speed=[self.ws[i]], - turbulence_intensity=self.ti[i], - ) - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - self.fi.calculate_wake(yaw_angles=opt_yaw_angles) - power_opt = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - else: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - power_opt = self.nturbs * [0.0] - - # Include turbine weighing terms - power_opt = np.multiply(self.turbine_weights, power_opt) - - # add variables to dataframe - if self.ti is None: - df_opt = df_opt.append( - pd.DataFrame( - { - "ws": [self.ws[i]], - "wd": [self.wd[i]], - "power_opt": [np.sum(power_opt)], - "turbine_power_opt": [power_opt], - "yaw_angles": [opt_yaw_angles], - } - ) - ) - else: - df_opt = df_opt.append( - pd.DataFrame( - { - "ws": [self.ws[i]], - "wd": [self.wd[i]], - "ti": [self.ti[i]], - "power_opt": [np.sum(power_opt)], - "turbine_power_opt": [power_opt], - "yaw_angles": [opt_yaw_angles], - } - ) - ) - - df_opt.reset_index(drop=True, inplace=True) - - return df_opt diff --git a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_clustered.py b/floris/tools/optimization/legacy/scipy/yaw_wind_rose_clustered.py deleted file mode 100644 index c4951cb6c..000000000 --- a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_clustered.py +++ /dev/null @@ -1,439 +0,0 @@ - -import copy - -import numpy as np -import pandas as pd - -from floris.logging_manager import LoggingManager - -from .cluster_turbines import cluster_turbines -from .yaw_wind_rose import YawOptimizationWindRose - - -class YawOptimizationWindRoseClustered(YawOptimizationWindRose, LoggingManager): - """ - YawOptimizationWindRose is a subclass of - :py:class:`~.tools.optimizationscipy.YawOptimizationWindRose` that is used - to perform optimizations of the yaw angles of all or a subset of wind - turbines in a Floris Farm for multiple sets of inflow conditions using the - scipy optimization package. This class facilitates the clusterization of the - turbines inside seperate subsets in which the turbines witin each subset - exclusively interact with one another and have no impact on turbines - in other clusters. This may significantly reduce the computational - burden at no loss in performance (assuming the turbine clusters are truly - independent). - """ - - def __init__( - self, - fi, - wd, - ws, - ti=None, - minimum_yaw_angle=0.0, - maximum_yaw_angle=25.0, - minimum_ws=3.0, - maximum_ws=25.0, - yaw_angles_baseline=None, - x0=None, - bnds=None, - opt_method="SLSQP", - opt_options=None, - include_unc=False, - unc_pmfs=None, - unc_options=None, - turbine_weights=None, - verbose=False, - calc_init_power=True, - exclude_downstream_turbines=False, - clustering_wake_slope=0.30, - ): - """ - Instantiate YawOptimizationWindRose object with a FlorisInterface object - and assign parameter values. - - Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - wd (iterable) : The wind directions for which the yaw angles are - optimized (deg). - ws (iterable): The wind speeds for which the yaw angles are - optimized (m/s). - ti (iterable, optional): An optional list of turbulence intensity - values for which the yaw angles are optimized. If not - specified, the current TI value in the Floris object will be - used for all optimizations. Defaults to None. - minimum_yaw_angle (float, optional): Minimum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 0.0. - maximum_yaw_angle (float, optional): Maximum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 25.0. - minimum_ws (float, optional): Minimum wind speed at which - optimization is performed (m/s). Assumes zero power generated - below this value. Defaults to 3. - maximum_ws (float, optional): Maximum wind speed at which - optimization is performed (m/s). Assumes optimal yaw offsets - are zero above this wind speed. Defaults to 25. - yaw_angles_baseline (iterable, optional): The baseline yaw - angles used to calculate the initial and baseline power - production in the wind farm and used to normalize the cost - function. If none are specified, this variable is set equal - to the current yaw angles in floris. Note that this variable - need not meet the yaw constraints specified in self.bnds, - yet a warning is raised if it does to inform the user. - Defaults to None. - x0 (iterable, optional): The initial guess for the optimization - problem. These values must meet the constraints specified - in self.bnds. Note that, if exclude_downstream_turbines=True, - the initial guess for any downstream turbines are ignored - since they are not part of the optimization. Instead, the yaw - angles for those turbines are 0.0 if that meets the lower and - upper bound, or otherwise as close to 0.0 as feasible. If no - values for x0 are specified, x0 is set to be equal to zeros - wherever feasible (w.r.t. the bounds), and equal to the - average of its lower and upper bound for all non-downstream - turbines otherwise. Defaults to None. - bnds (iterable, optional): Bounds for the yaw angles, as tuples of - min, max values for each turbine (deg). One can fix the yaw - angle of certain turbines to a predefined value by setting that - turbine's lower bound equal to its upper bound (i.e., an - equality constraint), as: bnds[ti] = (x, x), where x is the - fixed yaw angle assigned to the turbine. This works for both - zero and nonzero yaw angles. Moreover, if - exclude_downstream_turbines=True, the yaw angles for all - downstream turbines will be 0.0 or a feasible value closest to - 0.0. If none are specified, the bounds are set to - (minimum_yaw_angle, maximum_yaw_angle) for each turbine. Note - that, if bnds is not none, its values overwrite any value given - in minimum_yaw_angle and maximum_yaw_angle. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dictionary, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': False, 'iprint': 1, 'ftol': 1e-7, - 'eps': 0.01}. Defaults to None. - include_unc (bool, optional): Determines whether wind direction or - yaw uncertainty are included. If True, uncertainty in wind - direction and/or yaw position is included when determining - wind farm power. Uncertainty is included by computing the - mean wind farm power for a distribution of wind direction - and yaw position deviations from the intended wind direction - and yaw angles. Defaults to False. - unc_pmfs (dictionary, optional): A dictionary containing - probability mass functions describing the distribution of - wind direction and yaw position deviations when wind direction - and/or yaw position uncertainty is included in the power - calculations. Contains the following key-value pairs: - - - **wd_unc** (*np.array*): The wind direction - deviations from the intended wind direction (deg). - - **wd_unc_pmf** (*np.array*): The probability - of each wind direction deviation in **wd_unc** occuring. - - **yaw_unc** (*np.array*): The yaw angle deviations - from the intended yaw angles (deg). - - **yaw_unc_pmf** (*np.array*): The probability - of each yaw angle deviation in **yaw_unc** occuring. - - If none are specified, default PMFs are calculated using - values provided in **unc_options**. Defaults to None. - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction and yaw - position deviations when wind direction and/or yaw position - uncertainty is included. This argument is only used when - **unc_pmfs** is None and contains the following key-value pairs: - - - **std_wd** (*float*): The standard deviation of - the wind direction deviations from the original wind - direction (deg). - - **std_yaw** (*float*): The standard deviation of - the yaw angle deviations from the original yaw angles (deg). - - **pmf_res** (*float*): The resolution in degrees - of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): The cumulative - distribution function value at which the tails of the - PMFs are truncated. - - If none are specified, default values of - {'std_wd': 4.95, 'std_yaw': 1.75, 'pmf_res': 1.0, - 'pdf_cutoff': 0.995} are used. Defaults to None. - turbine_weights (iterable, optional): weighing terms that allow - the user to emphasize power gains at particular turbines or - completely ignore power gains from other turbines. The array - of turbine powers from floris is multiplied with this array - in the calculation of the objective function. If None, this - is an array with all values 1.0 and length equal to the - number of turbines. Defaults to None. - calc_init_power (bool, optional): If True, calculates initial - wind farm power for each set of wind conditions. Defaults to - True. - exclude_downstream_turbines (bool, optional): If True, - automatically finds and excludes turbines that are most - downstream from the optimization problem. This significantly - reduces computation time at no loss in performance. The yaw - angles of these downstream turbines are fixed to 0.0 deg if - the yaw bounds specified in self.bnds allow that, or otherwise - are fixed to the lower or upper yaw bound, whichever is closer - to 0.0. Defaults to False. - clustering_wake_slope (float, optional): linear slope of the wake - in the simplified linear expansion wake model (dy/dx). This - model is used to derive wake interactions between turbines and - to identify the turbine clusters. A good value is about equal - to the turbulence intensity in FLORIS. Though, since yaw - optimizations may shift the wake laterally, a safer option - is twice the turbulence intensity. The default value is 0.30 - which should be valid for yaw optimizations at wd_std = 0.0 deg - and turbulence intensities up to 15%. Defaults to 0.30. - """ - super().__init__( - fi=fi, - wd=wd, - ws=ws, - ti=ti, - minimum_yaw_angle=minimum_yaw_angle, - maximum_yaw_angle=maximum_yaw_angle, - minimum_ws=minimum_ws, - maximum_ws=maximum_ws, - yaw_angles_baseline=yaw_angles_baseline, - x0=x0, - bnds=bnds, - opt_method=opt_method, - opt_options=opt_options, - include_unc=include_unc, - unc_pmfs=unc_pmfs, - unc_options=unc_options, - turbine_weights=turbine_weights, - verbose=verbose, - calc_init_power=calc_init_power, - exclude_downstream_turbines=exclude_downstream_turbines, - ) - self.clustering_wake_slope = clustering_wake_slope - - - def _cluster_turbines(self): - wind_directions = self.fi.floris.farm.wind_direction - if (np.std(wind_directions) > 0.001): - raise ValueError("Wind directions must be uniform for clustering algorithm.") - self.clusters = cluster_turbines( - fi=self.fi, - wind_direction=self.fi.floris.farm.wind_direction[0], - wake_slope=self.clustering_wake_slope - ) - - def plot_clusters(self): - for wd in self.wd: - cluster_turbines( - fi=self.fi, - wind_direction=wd, - wake_slope=self.clustering_wake_slope, - plot_lines=True - ) - - - def optimize(self): - """ - This method solves for the optimum turbine yaw angles for power - production and the resulting power produced by the wind farm for a - series of wind speed, wind direction, and optionally TI combinations. - - Returns: - pandas.DataFrame: A pandas DataFrame with the same number of rows - as the length of the wd and ws arrays, containing the following - columns: - - - **ws** (*float*) - The wind speed values for which the yaw - angles are optimized and power is computed (m/s). - - **wd** (*float*) - The wind direction values for which the - yaw angles are optimized and power is computed (deg). - - **ti** (*float*) - The turbulence intensity values for which - the yaw angles are optimized and power is computed. Only - included if self.ti is not None. - - **power_opt** (*float*) - The total power produced by the - wind farm with optimal yaw offsets (W). - - **turbine_power_opt** (*list* (*float*)) - A list - containing the power produced by each wind turbine with optimal - yaw offsets (W). - - **yaw_angles** (*list* (*float*)) - A list containing - the optimal yaw offsets for maximizing total wind farm power - for each wind turbine (deg). - """ - print("=====================================================") - print("Optimizing wake redirection control...") - print("Number of wind conditions to optimize = ", len(self.wd)) - print("Number of yaw angles to optimize = ", len(self.turbs_to_opt)) - print("=====================================================") - - df_opt = pd.DataFrame() - - for i in range(len(self.wd)): - if self.verbose: - if self.ti is None: - print( - "Computing wind speed, wind direction pair " - + str(i) - + " out of " - + str(len(self.wd)) - + ": wind speed = " - + str(self.ws[i]) - + " m/s, wind direction = " - + str(self.wd[i]) - + " deg." - ) - else: - print( - "Computing wind speed, wind direction, turbulence " - + "intensity set " - + str(i) - + " out of " - + str(len(self.wd)) - + ": wind speed = " - + str(self.ws[i]) - + " m/s, wind direction = " - + str(self.wd[i]) - + " deg, turbulence intensity = " - + str(self.ti[i]) - + "." - ) - - # Optimizing wake redirection control - if (self.ws[i] >= self.minimum_ws) & (self.ws[i] <= self.maximum_ws): - if self.ti is None: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], wind_speed=[self.ws[i]] - ) - else: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], - wind_speed=[self.ws[i]], - turbulence_intensity=self.ti[i], - ) - - # Set initial farm power - self.initial_farm_power = self.initial_farm_powers[i] - - # Determine clusters and then optimize by cluster - self._cluster_turbines() - if self.verbose: - print("Clustered turbines into %d separate clusters." % len(self.clusters)) - - # Save parameters to a full list - yaw_angles_template_full = copy.copy(self.yaw_angles_template) - yaw_angles_baseline_full = copy.copy(self.yaw_angles_baseline) - turbine_weights_full = copy.copy(self.turbine_weights) - bnds_full = copy.copy(self.bnds) - # nturbs_full = copy.copy(self.nturbs) - x0_full = copy.copy(self.x0) - fi_full = copy.deepcopy(self.fi) - - # Overwrite parameters for each cluster and optimize - opt_yaw_angles = np.zeros_like(x0_full) - for ci, cl in enumerate(self.clusters): - if self.verbose: - print("=====================================================") - print("Optimizing %d parameters in cluster %d." % (len(cl), ci)) - print("=====================================================") - self.yaw_angles_template = np.array(yaw_angles_template_full)[cl] - self.yaw_angles_baseline = np.array(yaw_angles_baseline_full)[cl] - self.turbine_weights = np.array(turbine_weights_full)[cl] - self.bnds = np.array(bnds_full)[cl] - self.x0 = np.array(x0_full)[cl] - self.fi = copy.deepcopy(fi_full) - self.fi.reinitialize_flow_field( - layout_array=[ - np.array(fi_full.layout_x)[cl], - np.array(fi_full.layout_y)[cl] - ] - ) - opt_yaw_angles[cl] = self._optimize() - - # Restore parameters - self.yaw_angles_template = yaw_angles_template_full - self.yaw_angles_baseline = yaw_angles_baseline_full - self.turbine_weights = turbine_weights_full - self.bnds = bnds_full - self.x0 = x0_full - self.fi = fi_full - self.fi.reinitialize_flow_field( - layout_array=[ - np.array(fi_full.layout_x), - np.array(fi_full.layout_y) - ] - ) - - if np.sum(np.abs(opt_yaw_angles)) == 0: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - - # optimized power - self.fi.calculate_wake(yaw_angles=opt_yaw_angles) - power_opt = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - elif self.ws[i] >= self.maximum_ws: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - if self.ti is None: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], wind_speed=[self.ws[i]] - ) - else: - self.fi.reinitialize_flow_field( - wind_direction=[self.wd[i]], - wind_speed=[self.ws[i]], - turbulence_intensity=self.ti[i], - ) - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - self.fi.calculate_wake(yaw_angles=opt_yaw_angles) - power_opt = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - else: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - power_opt = self.nturbs * [0.0] - - # Include turbine weighing terms - power_opt = np.multiply(self.turbine_weights, power_opt) - - # add variables to dataframe - if self.ti is None: - df_opt = df_opt.append( - pd.DataFrame( - { - "ws": [self.ws[i]], - "wd": [self.wd[i]], - "power_opt": [np.sum(power_opt)], - "turbine_power_opt": [power_opt], - "yaw_angles": [opt_yaw_angles], - } - ) - ) - else: - df_opt = df_opt.append( - pd.DataFrame( - { - "ws": [self.ws[i]], - "wd": [self.wd[i]], - "ti": [self.ti[i]], - "power_opt": [np.sum(power_opt)], - "turbine_power_opt": [power_opt], - "yaw_angles": [opt_yaw_angles], - } - ) - ) - - df_opt.reset_index(drop=True, inplace=True) - - return df_opt diff --git a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel.py b/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel.py deleted file mode 100644 index 207da0436..000000000 --- a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel.py +++ /dev/null @@ -1,582 +0,0 @@ - -from itertools import repeat - -import numpy as np -import pandas as pd -from scipy.optimize import minimize - -from floris.logging_manager import LoggingManager - -from .yaw_wind_rose import YawOptimizationWindRose - - -class YawOptimizationWindRoseParallel(YawOptimizationWindRose, LoggingManager): - """ - YawOptimizationWindRose is a subclass of - :py:class:`~.tools.optimizationscipy.YawOptimizationWindRose` that is used - to perform parallel computing to optimize the yaw angles of all turbines in - a Floris Farm for multiple sets of inflow conditions (combinations of wind - speed, wind direction, and optionally turbulence intensity) using the scipy - optimize package. Parallel optimization is performed using the - MPIPoolExecutor method of the mpi4py.futures module. - """ - - def __init__( - self, - fi, - wd, - ws, - ti=None, - minimum_yaw_angle=0.0, - maximum_yaw_angle=25.0, - minimum_ws=3.0, - maximum_ws=25.0, - yaw_angles_baseline=None, - x0=None, - bnds=None, - opt_method="SLSQP", - opt_options=None, - include_unc=False, - unc_pmfs=None, - unc_options=None, - turbine_weights=None, - exclude_downstream_turbines=False, - ): - """ - Instantiate YawOptimizationWindRoseParallel object with a - FlorisInterface object and assign parameter values. - - Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - wd (iterable) : The wind directions for which the yaw angles are - optimized (deg). - ws (iterable): The wind speeds for which the yaw angles are - optimized (m/s). - ti (iterable, optional): An optional list of turbulence intensity - values for which the yaw angles are optimized. If not - specified, the current TI value in the Floris object will be - used for all optimizations. Defaults to None. - minimum_yaw_angle (float, optional): Minimum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 0.0. - maximum_yaw_angle (float, optional): Maximum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 25.0. - minimum_ws (float, optional): Minimum wind speed at which - optimization is performed (m/s). Assumes zero power generated - below this value. Defaults to 3. - maximum_ws (float, optional): Maximum wind speed at which - optimization is performed (m/s). Assumes optimal yaw offsets - are zero above this wind speed. Defaults to 25. - yaw_angles_baseline (iterable, optional): The baseline yaw - angles used to calculate the initial and baseline power - production in the wind farm and used to normalize the cost - function. If none are specified, this variable is set equal - to the current yaw angles in floris. Note that this variable - need not meet the yaw constraints specified in self.bnds, - yet a warning is raised if it does to inform the user. - Defaults to None. - x0 (iterable, optional): The initial guess for the optimization - problem. These values must meet the constraints specified - in self.bnds. Note that, if exclude_downstream_turbines=True, - the initial guess for any downstream turbines are ignored - since they are not part of the optimization. Instead, the yaw - angles for those turbines are 0.0 if that meets the lower and - upper bound, or otherwise as close to 0.0 as feasible. If no - values for x0 are specified, x0 is set to be equal to zeros - wherever feasible (w.r.t. the bounds), and equal to the - average of its lower and upper bound for all non-downstream - turbines otherwise. Defaults to None. - bnds (iterable, optional): Bounds for the yaw angles, as tuples of - min, max values for each turbine (deg). One can fix the yaw - angle of certain turbines to a predefined value by setting that - turbine's lower bound equal to its upper bound (i.e., an - equality constraint), as: bnds[ti] = (x, x), where x is the - fixed yaw angle assigned to the turbine. This works for both - zero and nonzero yaw angles. Moreover, if - exclude_downstream_turbines=True, the yaw angles for all - downstream turbines will be 0.0 or a feasible value closest to - 0.0. If none are specified, the bounds are set to - (minimum_yaw_angle, maximum_yaw_angle) for each turbine. Note - that, if bnds is not none, its values overwrite any value given - in minimum_yaw_angle and maximum_yaw_angle. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dictionary, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': False, 'iprint': 1, 'ftol': 1e-7, - 'eps': 0.01}. Defaults to None. - include_unc (bool, optional): Determines whether wind direction or - yaw uncertainty are included. If True, uncertainty in wind - direction and/or yaw position is included when determining - wind farm power. Uncertainty is included by computing the - mean wind farm power for a distribution of wind direction - and yaw position deviations from the intended wind direction - and yaw angles. Defaults to False. - unc_pmfs (dictionary, optional): A dictionary containing - probability mass functions describing the distribution of - wind direction and yaw position deviations when wind direction - and/or yaw position uncertainty is included in the power - calculations. Contains the following key-value pairs: - - - **wd_unc** (*np.array*): The wind direction - deviations from the intended wind direction (deg). - - **wd_unc_pmf** (*np.array*): The probability - of each wind direction deviation in **wd_unc** occuring. - - **yaw_unc** (*np.array*): The yaw angle deviations - from the intended yaw angles (deg). - - **yaw_unc_pmf** (*np.array*): The probability - of each yaw angle deviation in **yaw_unc** occuring. - - If none are specified, default PMFs are calculated using - values provided in **unc_options**. Defaults to None. - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction and yaw - position deviations when wind direction and/or yaw position - uncertainty is included. This argument is only used when - **unc_pmfs** is None and contains the following key-value pairs: - - - **std_wd** (*float*): The standard deviation of - the wind direction deviations from the original wind - direction (deg). - - **std_yaw** (*float*): The standard deviation of - the yaw angle deviations from the original yaw angles (deg). - - **pmf_res** (*float*): The resolution in degrees - of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): The cumulative - distribution function value at which the tails of the - PMFs are truncated. - - If none are specified, default values of - {'std_wd': 4.95, 'std_yaw': 1.75, 'pmf_res': 1.0, - 'pdf_cutoff': 0.995} are used. Defaults to None. - turbine_weights (iterable, optional): weighing terms that allow - the user to emphasize power gains at particular turbines or - completely ignore power gains from other turbines. The array - of turbine powers from floris is multiplied with this array - in the calculation of the objective function. If None, this - is an array with all values 1.0 and length equal to the - number of turbines. Defaults to None. - exclude_downstream_turbines (bool, optional): If True, - automatically finds and excludes turbines that are most - downstream from the optimization problem. This significantly - reduces computation time at no loss in performance. The yaw - angles of these downstream turbines are fixed to 0.0 deg if - the yaw bounds specified in self.bnds allow that, or otherwise - are fixed to the lower or upper yaw bound, whichever is closer - to 0.0. Defaults to False. - """ - super().__init__( - fi, - wd, - ws, - ti=ti, - minimum_yaw_angle=minimum_yaw_angle, - maximum_yaw_angle=maximum_yaw_angle, - minimum_ws=minimum_ws, - maximum_ws=maximum_ws, - yaw_angles_baseline=yaw_angles_baseline, - x0=x0, - bnds=bnds, - opt_method=opt_method, - opt_options=opt_options, - include_unc=include_unc, - unc_pmfs=unc_pmfs, - unc_options=unc_options, - turbine_weights=turbine_weights, - calc_init_power=False, - exclude_downstream_turbines=exclude_downstream_turbines, - ) - - # Private methods - - def _calc_baseline_power_one_case(self, ws, wd, ti=None): - """ - For a single (wind speed, direction, ti (optional)) combination, finds - the baseline power produced by the wind farm and the ideal power - without wake losses. - - Args: - ws (float): The wind speed used in floris for the yaw optimization. - wd (float): The wind direction used in floris for the yaw - optimization. - ti (float, optional): An optional turbulence intensity value for - the yaw optimization. Defaults to None, meaning TI will not be - included in the AEP calculations. - - Returns: - - **df_base** (*Pandas DataFrame*) - DataFrame with a single row, - containing the following columns: - - - **ws** (*float*) - The wind speed value for the row. - - **wd** (*float*) - The wind direction value for the row. - - **ti** (*float*) - The turbulence intensity value for the - row. Only included if self.ti is not None. - - **power_baseline** (*float*) - The total power produced by - the wind farm with baseline yaw control (W). - - **power_no_wake** (*float*) - The ideal total power produced - by the wind farm without wake losses (W). - - **turbine_power_baseline** (*list* (*float*)) - A - list containing the baseline power without wake steering - for each wind turbine (W). - - **turbine_power_no_wake** (*list* (*float*)) - A list - containing the ideal power without wake losses for each - wind turbine (W). - """ - if ti is None: - print( - "Computing wind speed = " - + str(ws) - + " m/s, wind direction = " - + str(wd) - + " deg." - ) - else: - print( - "Computing wind speed = " - + str(ws) - + " m/s, wind direction = " - + str(wd) - + " deg, turbulence intensity = " - + str(ti) - + "." - ) - - # Find baseline power in FLORIS - - if ws >= self.minimum_ws: - if ti is None: - self.fi.reinitialize_flow_field(wind_direction=wd, wind_speed=ws) - else: - self.fi.reinitialize_flow_field( - wind_direction=wd, wind_speed=ws, turbulence_intensity=ti - ) - # calculate baseline power - self.fi.calculate_wake(yaw_angles=self.yaw_angles_baseline) - power_base = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - # calculate power for no wake case - self.fi.calculate_wake(yaw_angles=self.yaw_angles_baseline, no_wake=True) - power_no_wake = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - no_wake=True, - ) - else: - power_base = self.nturbs * [0.0] - power_no_wake = self.nturbs * [0.0] - - # Add turbine weighing terms - power_base = np.multiply(self.turbine_weights, power_base) - power_no_wake = np.multiply(self.turbine_weights, power_no_wake) - - # add variables to dataframe - if ti is None: - df_base = pd.DataFrame( - { - "ws": [ws], - "wd": [wd], - "power_baseline": [np.sum(power_base)], - "turbine_power_baseline": [power_base], - "power_no_wake": [np.sum(power_no_wake)], - "turbine_power_no_wake": [power_no_wake], - } - ) - else: - df_base = pd.DataFrame( - { - "ws": [ws], - "wd": [wd], - "ti": [ti], - "power_baseline": [np.sum(power_base)], - "turbine_power_baseline": [power_base], - "power_no_wake": [np.sum(power_no_wake)], - "turbine_power_no_wake": [power_no_wake], - } - ) - - return df_base - - def _optimize_one_case(self, ws, wd, initial_farm_power, ti=None): - """ - For a single (wind speed, direction, ti (optional)) combination, finds - the power resulting from optimal wake steering. - - Args: - ws (float): The wind speed used in floris for the yaw optimization. - wd (float): The wind direction used in floris for the yaw - optimization. - ti (float, optional): An optional turbulence intensity value for - the yaw optimization. Defaults to None, meaning TI will not be - included in the AEP calculations. - - Returns: - - **df_opt** (*Pandas DataFrame*) - DataFrame with a single row, - containing the following columns: - - - **ws** (*float*) - The wind speed value for the row. - - **wd** (*float*) - The wind direction value for the row. - - **ti** (*float*) - The turbulence intensity value for the - row. Only included if self.ti is not None. - - **power_opt** (*float*) - The total power produced by the - wind farm with optimal yaw offsets (W). - - **turbine_power_opt** (*list* (*float*)) - A list - containing the power produced by each wind turbine with - optimal yaw offsets (W). - - **yaw_angles** (*list* (*float*)) - A list containing - the optimal yaw offsets for maximizing total wind farm - power for each wind turbine (deg). - """ - if ti is None: - print( - "Computing wind speed = " - + str(ws) - + " m/s, wind direction = " - + str(wd) - + " deg." - ) - else: - print( - "Computing wind speed = " - + str(ws) - + " m/s, wind direction = " - + str(wd) - + " deg, turbulence intensity = " - + str(ti) - + "." - ) - - # Optimizing wake redirection control - - if (ws >= self.minimum_ws) & (ws <= self.maximum_ws): - if ti is None: - self.fi.reinitialize_flow_field(wind_direction=wd, wind_speed=ws) - else: - self.fi.reinitialize_flow_field( - wind_direction=wd, wind_speed=ws, turbulence_intensity=ti - ) - - self.initial_farm_power = initial_farm_power - opt_yaw_angles = self._optimize() - - if np.sum(opt_yaw_angles) == 0: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - - # optimized power - self.fi.calculate_wake(yaw_angles=opt_yaw_angles) - power_opt = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - elif ws >= self.minimum_ws: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - if ti is None: - self.fi.reinitialize_flow_field(wind_direction=wd, wind_speed=ws) - else: - self.fi.reinitialize_flow_field( - wind_direction=wd, wind_speed=ws, turbulence_intensity=ti - ) - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - self.fi.calculate_wake(yaw_angles=opt_yaw_angles) - power_opt = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - else: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - power_opt = self.nturbs * [0.0] - - # Add turbine weighing terms - power_opt = np.multiply(self.turbine_weights, power_opt) - - # add variables to dataframe - if ti is None: - df_opt = pd.DataFrame( - { - "ws": [ws], - "wd": [wd], - "power_opt": [np.sum(power_opt)], - "turbine_power_opt": [power_opt], - "yaw_angles": [opt_yaw_angles], - } - ) - else: - df_opt = pd.DataFrame( - { - "ws": [ws], - "wd": [wd], - "ti": [ti], - "power_opt": [np.sum(power_opt)], - "turbine_power_opt": [power_opt], - "yaw_angles": [opt_yaw_angles], - } - ) - - return df_opt - - # Public methods - - def calc_baseline_power(self): - """ - This method computes the baseline power produced by the wind farm and - the ideal power without wake losses for a series of wind speed, wind - direction, and optionally TI combinations. The optimization for - different wind condition combinations is parallelized using the mpi4py - futures module. - - Returns: - pandas.DataFrame: A pandas DataFrame with the same number of rows - as the length of the wd and ws arrays, containing the following - columns: - - - **ws** (*float*) - The wind speed values for which power is - computed (m/s). - - **wd** (*float*) - The wind direction value for which power - is calculated (deg). - - **ti** (*float*) - The turbulence intensity value for which - power is calculated. Only included if self.ti is not None. - - **power_baseline** (*float*) - The total power produced by - he wind farm with baseline yaw control (W). - - **power_no_wake** (*float*) - The ideal total power produced - by the wind farm without wake losses (W). - - **turbine_power_baseline** (*list* (*float*)) - A list - containing the baseline power without wake steering for each - wind turbine in the wind farm (W). - - **turbine_power_no_wake** (*list* (*float*)) - A list - containing the ideal power without wake losses for each wind - turbine in the wind farm (W). - """ - try: - from mpi4py.futures import MPIPoolExecutor - except ImportError: - err_msg = ( - "It appears you do not have mpi4py installed. " - + "Please refer to https://mpi4py.readthedocs.io/ for " - + "guidance on how to properly install the module." - ) - self.logger.error(err_msg, stack_info=True) - raise ImportError(err_msg) - - print("=====================================================") - print("Calculating baseline power in parallel...") - print("Number of wind conditions to calculate = ", len(self.wd)) - print("=====================================================") - - df_base = pd.DataFrame() - - with MPIPoolExecutor() as executor: - if self.ti is None: - for df_base_one in executor.map( - self._calc_baseline_power_one_case, self.ws.values, self.wd.values - ): - - # add variables to dataframe - df_base = df_base.append(df_base_one) - else: - for df_base_one in executor.map( - self._calc_baseline_power_one_case, - self.ws.values, - self.wd.values, - self.ti.values, - ): - - # add variables to dataframe - df_base = df_base.append(df_base_one) - - df_base.reset_index(drop=True, inplace=True) - - self.df_base = df_base - return df_base - - def optimize(self): - """ - This method solves for the optimum turbine yaw angles for power - production and the resulting power produced by the wind farm for a - series of wind speed, wind direction, and optionally TI combinations. - The optimization for different wind condition combinations is - parallelized using the mpi4py.futures module. - - Returns: - pandas.DataFrame: A pandas DataFrame with the same number of rows - as the length of the wd and ws arrays, containing the following - columns: - - - **ws** (*float*) - The wind speed values for which the yaw - angles are optimized and power is computed (m/s). - - **wd** (*float*) - The wind direction values for which the - yaw angles are optimized and power is computed (deg). - - **ti** (*float*) - The turbulence intensity values for which - the yaw angles are optimized and power is computed. Only - included if self.ti is not None. - - **power_opt** (*float*) - The total power produced by the - wind farm with optimal yaw offsets (W). - - **turbine_power_opt** (*list* (*float*)) - A list containing - the power produced by each wind turbine with optimal yaw - offsets (W). - - **yaw_angles** (*list* (*float*)) - A list containing the - optimal yaw offsets for maximizing total wind farm power for - each wind turbine (deg). - """ - try: - from mpi4py.futures import MPIPoolExecutor - except ImportError: - err_msg = ( - "It appears you do not have mpi4py installed. " - + "Please refer to https://mpi4py.readthedocs.io/ for " - + "guidance on how to properly install the module." - ) - self.logger.error(err_msg, stack_info=True) - raise ImportError(err_msg) - - print("=====================================================") - print("Optimizing wake redirection control in parallel...") - print("Number of wind conditions to optimize = ", len(self.wd)) - print("Number of yaw angles to optimize = ", len(self.turbs_to_opt)) - print("=====================================================") - - df_opt = pd.DataFrame() - - with MPIPoolExecutor() as executor: - if self.ti is None: - for df_opt_one in executor.map( - self._optimize_one_case, - self.ws.values, - self.wd.values, - self.df_base.power_baseline.values, - ): - - # add variables to dataframe - df_opt = df_opt.append(df_opt_one) - else: - for df_opt_one in executor.map( - self._optimize_one_case, - self.ws.values, - self.wd.values, - self.df_base.power_baseline.values, - self.ti.values, - ): - - # add variables to dataframe - df_opt = df_opt.append(df_opt_one) - - df_opt.reset_index(drop=True, inplace=True) - - return df_opt diff --git a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel_clustered.py b/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel_clustered.py deleted file mode 100644 index a4600a8e1..000000000 --- a/floris/tools/optimization/legacy/scipy/yaw_wind_rose_parallel_clustered.py +++ /dev/null @@ -1,645 +0,0 @@ - -import copy -from itertools import repeat - -import numpy as np -import pandas as pd -from scipy.optimize import minimize - -from floris.logging_manager import LoggingManager - -from .yaw_wind_rose_clustered import YawOptimizationWindRoseClustered - - -class YawOptimizationWindRoseParallelClustered(YawOptimizationWindRoseClustered, LoggingManager): - """ - YawOptimizationWindRoseClustered is a subclass of - :py:class:`~.tools.optimizationscipy.YawOptimizationWindRoseClustered` that - is used to perform optimizations of the yaw angles of all turbines in a - Floris Farm for multiple sets of inflow conditions (combinations of wind - speed, wind direction, and optionally turbulence intensity) using the scipy - optimize package. This class additionally facilitates the clusterization of - the turbines into seperate subsets (clusters) in which the turbines witin - each subset exclusively interact with one another and have no impact on turbines - in other clusters. This may significantly reduce the computational - burden at no loss in performance (assuming the turbine clusters are truly - independent). This class additionally facilitates parallel optimization - using the MPIPoolExecutor method of the mpi4py.futures module. - """ - - def __init__( - self, - fi, - wd, - ws, - ti=None, - minimum_yaw_angle=0.0, - maximum_yaw_angle=25.0, - minimum_ws=3.0, - maximum_ws=25.0, - yaw_angles_baseline=None, - x0=None, - bnds=None, - opt_method="SLSQP", - opt_options=None, - include_unc=False, - unc_pmfs=None, - unc_options=None, - turbine_weights=None, - exclude_downstream_turbines=False, - clustering_wake_slope=0.30 - ): - """ - Instantiate YawOptimizationWindRoseParallel object with a - FlorisInterface object and assign parameter values. - - Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. - wd (iterable) : The wind directions for which the yaw angles are - optimized (deg). - ws (iterable): The wind speeds for which the yaw angles are - optimized (m/s). - ti (iterable, optional): An optional list of turbulence intensity - values for which the yaw angles are optimized. If not - specified, the current TI value in the Floris object will be - used for all optimizations. Defaults to None. - minimum_yaw_angle (float, optional): Minimum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 0.0. - maximum_yaw_angle (float, optional): Maximum constraint on yaw - angle (deg). This value will be ignored if bnds is also - specified. Defaults to 25.0. - minimum_ws (float, optional): Minimum wind speed at which - optimization is performed (m/s). Assumes zero power generated - below this value. Defaults to 3. - maximum_ws (float, optional): Maximum wind speed at which - optimization is performed (m/s). Assumes optimal yaw offsets - are zero above this wind speed. Defaults to 25. - yaw_angles_baseline (iterable, optional): The baseline yaw - angles used to calculate the initial and baseline power - production in the wind farm and used to normalize the cost - function. If none are specified, this variable is set equal - to the current yaw angles in floris. Note that this variable - need not meet the yaw constraints specified in self.bnds, - yet a warning is raised if it does to inform the user. - Defaults to None. - x0 (iterable, optional): The initial guess for the optimization - problem. These values must meet the constraints specified - in self.bnds. Note that, if exclude_downstream_turbines=True, - the initial guess for any downstream turbines are ignored - since they are not part of the optimization. Instead, the yaw - angles for those turbines are 0.0 if that meets the lower and - upper bound, or otherwise as close to 0.0 as feasible. If no - values for x0 are specified, x0 is set to be equal to zeros - wherever feasible (w.r.t. the bounds), and equal to the - average of its lower and upper bound for all non-downstream - turbines otherwise. Defaults to None. - bnds (iterable, optional): Bounds for the yaw angles, as tuples of - min, max values for each turbine (deg). One can fix the yaw - angle of certain turbines to a predefined value by setting that - turbine's lower bound equal to its upper bound (i.e., an - equality constraint), as: bnds[ti] = (x, x), where x is the - fixed yaw angle assigned to the turbine. This works for both - zero and nonzero yaw angles. Moreover, if - exclude_downstream_turbines=True, the yaw angles for all - downstream turbines will be 0.0 or a feasible value closest to - 0.0. If none are specified, the bounds are set to - (minimum_yaw_angle, maximum_yaw_angle) for each turbine. Note - that, if bnds is not none, its values overwrite any value given - in minimum_yaw_angle and maximum_yaw_angle. Defaults to None. - opt_method (str, optional): The optimization method used by - scipy.optimize.minize. Defaults to 'SLSQP'. - opt_options (dictionary, optional): Optimization options used by - scipy.optimize.minize. If none are specified, they are set to - {'maxiter': 100, 'disp': False, 'iprint': 1, 'ftol': 1e-7, - 'eps': 0.01}. Defaults to None. - include_unc (bool, optional): Determines whether wind direction or - yaw uncertainty are included. If True, uncertainty in wind - direction and/or yaw position is included when determining - wind farm power. Uncertainty is included by computing the - mean wind farm power for a distribution of wind direction - and yaw position deviations from the intended wind direction - and yaw angles. Defaults to False. - unc_pmfs (dictionary, optional): A dictionary containing - probability mass functions describing the distribution of - wind direction and yaw position deviations when wind direction - and/or yaw position uncertainty is included in the power - calculations. Contains the following key-value pairs: - - - **wd_unc** (*np.array*): The wind direction - deviations from the intended wind direction (deg). - - **wd_unc_pmf** (*np.array*): The probability - of each wind direction deviation in **wd_unc** occuring. - - **yaw_unc** (*np.array*): The yaw angle deviations - from the intended yaw angles (deg). - - **yaw_unc_pmf** (*np.array*): The probability - of each yaw angle deviation in **yaw_unc** occuring. - - If none are specified, default PMFs are calculated using - values provided in **unc_options**. Defaults to None. - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction and yaw - position deviations when wind direction and/or yaw position - uncertainty is included. This argument is only used when - **unc_pmfs** is None and contains the following key-value pairs: - - - **std_wd** (*float*): The standard deviation of - the wind direction deviations from the original wind - direction (deg). - - **std_yaw** (*float*): The standard deviation of - the yaw angle deviations from the original yaw angles (deg). - - **pmf_res** (*float*): The resolution in degrees - of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): The cumulative - distribution function value at which the tails of the - PMFs are truncated. - - If none are specified, default values of - {'std_wd': 4.95, 'std_yaw': 1.75, 'pmf_res': 1.0, - 'pdf_cutoff': 0.995} are used. Defaults to None. - turbine_weights (iterable, optional): weighing terms that allow - the user to emphasize power gains at particular turbines or - completely ignore power gains from other turbines. The array - of turbine powers from floris is multiplied with this array - in the calculation of the objective function. If None, this - is an array with all values 1.0 and length equal to the - number of turbines. Defaults to None. - exclude_downstream_turbines (bool, optional): If True, - automatically finds and excludes turbines that are most - downstream from the optimization problem. This significantly - reduces computation time at no loss in performance. The yaw - angles of these downstream turbines are fixed to 0.0 deg if - the yaw bounds specified in self.bnds allow that, or otherwise - are fixed to the lower or upper yaw bound, whichever is closer - to 0.0. Defaults to False. - clustering_wake_slope (float, optional): linear slope of the wake - in the simplified linear expansion wake model (dy/dx). This - model is used to derive wake interactions between turbines and - to identify the turbine clusters. A good value is about equal - to the turbulence intensity in FLORIS. Though, since yaw - optimizations may shift the wake laterally, a safer option - is twice the turbulence intensity. The default value is 0.30 - which should be valid for yaw optimizations at wd_std = 0.0 deg - and turbulence intensities up to 15%. Defaults to 0.30. - """ - super().__init__( - fi, - wd, - ws, - ti=ti, - minimum_yaw_angle=minimum_yaw_angle, - maximum_yaw_angle=maximum_yaw_angle, - minimum_ws=minimum_ws, - maximum_ws=maximum_ws, - yaw_angles_baseline=yaw_angles_baseline, - x0=x0, - bnds=bnds, - opt_method=opt_method, - opt_options=opt_options, - include_unc=include_unc, - unc_pmfs=unc_pmfs, - unc_options=unc_options, - turbine_weights=turbine_weights, - calc_init_power=False, - exclude_downstream_turbines=exclude_downstream_turbines, - clustering_wake_slope=clustering_wake_slope - ) - self.clustering_wake_slope = clustering_wake_slope - - # Private methods - - def _calc_baseline_power_one_case(self, ws, wd, ti=None): - """ - For a single (wind speed, direction, ti (optional)) combination, finds - the baseline power produced by the wind farm and the ideal power - without wake losses. - - Args: - ws (float): The wind speed used in floris for the yaw optimization. - wd (float): The wind direction used in floris for the yaw - optimization. - ti (float, optional): An optional turbulence intensity value for - the yaw optimization. Defaults to None, meaning TI will not be - included in the AEP calculations. - - Returns: - - **df_base** (*Pandas DataFrame*) - DataFrame with a single row, - containing the following columns: - - - **ws** (*float*) - The wind speed value for the row. - - **wd** (*float*) - The wind direction value for the row. - - **ti** (*float*) - The turbulence intensity value for the - row. Only included if self.ti is not None. - - **power_baseline** (*float*) - The total power produced by - the wind farm with baseline yaw control (W). - - **power_no_wake** (*float*) - The ideal total power produced - by the wind farm without wake losses (W). - - **turbine_power_baseline** (*list* (*float*)) - A - list containing the baseline power without wake steering - for each wind turbine (W). - - **turbine_power_no_wake** (*list* (*float*)) - A list - containing the ideal power without wake losses for each - wind turbine (W). - """ - if ti is None: - print( - "Computing wind speed = " - + str(ws) - + " m/s, wind direction = " - + str(wd) - + " deg." - ) - else: - print( - "Computing wind speed = " - + str(ws) - + " m/s, wind direction = " - + str(wd) - + " deg, turbulence intensity = " - + str(ti) - + "." - ) - - # Find baseline power in FLORIS - - if ws >= self.minimum_ws: - if ti is None: - self.fi.reinitialize_flow_field(wind_direction=wd, wind_speed=ws) - else: - self.fi.reinitialize_flow_field( - wind_direction=wd, wind_speed=ws, turbulence_intensity=ti - ) - # calculate baseline power - self.fi.calculate_wake(yaw_angles=self.yaw_angles_baseline) - power_base = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - # calculate power for no wake case - self.fi.calculate_wake(yaw_angles=self.yaw_angles_baseline, no_wake=True) - power_no_wake = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - no_wake=True, - ) - else: - power_base = self.nturbs * [0.0] - power_no_wake = self.nturbs * [0.0] - - # Add turbine weighing terms - power_base = np.multiply(self.turbine_weights, power_base) - power_no_wake = np.multiply(self.turbine_weights, power_no_wake) - - # add variables to dataframe - if ti is None: - df_base = pd.DataFrame( - { - "ws": [ws], - "wd": [wd], - "power_baseline": [np.sum(power_base)], - "turbine_power_baseline": [power_base], - "power_no_wake": [np.sum(power_no_wake)], - "turbine_power_no_wake": [power_no_wake], - } - ) - else: - df_base = pd.DataFrame( - { - "ws": [ws], - "wd": [wd], - "ti": [ti], - "power_baseline": [np.sum(power_base)], - "turbine_power_baseline": [power_base], - "power_no_wake": [np.sum(power_no_wake)], - "turbine_power_no_wake": [power_no_wake], - } - ) - - return df_base - - def _optimize_one_case(self, ws, wd, initial_farm_power, ti=None): - """ - For a single (wind speed, direction, ti (optional)) combination, finds - the power resulting from optimal wake steering. - - Args: - ws (float): The wind speed used in floris for the yaw optimization. - wd (float): The wind direction used in floris for the yaw - optimization. - ti (float, optional): An optional turbulence intensity value for - the yaw optimization. Defaults to None, meaning TI will not be - included in the AEP calculations. - - Returns: - - **df_opt** (*Pandas DataFrame*) - DataFrame with a single row, - containing the following columns: - - - **ws** (*float*) - The wind speed value for the row. - - **wd** (*float*) - The wind direction value for the row. - - **ti** (*float*) - The turbulence intensity value for the - row. Only included if self.ti is not None. - - **power_opt** (*float*) - The total power produced by the - wind farm with optimal yaw offsets (W). - - **turbine_power_opt** (*list* (*float*)) - A list - containing the power produced by each wind turbine with - optimal yaw offsets (W). - - **yaw_angles** (*list* (*float*)) - A list containing - the optimal yaw offsets for maximizing total wind farm - power for each wind turbine (deg). - """ - if ti is None: - print( - "Computing wind speed = " - + str(ws) - + " m/s, wind direction = " - + str(wd) - + " deg." - ) - else: - print( - "Computing wind speed = " - + str(ws) - + " m/s, wind direction = " - + str(wd) - + " deg, turbulence intensity = " - + str(ti) - + "." - ) - - # Optimizing wake redirection control - - if (ws >= self.minimum_ws) & (ws <= self.maximum_ws): - if ti is None: - self.fi.reinitialize_flow_field(wind_direction=wd, wind_speed=ws) - else: - self.fi.reinitialize_flow_field( - wind_direction=wd, wind_speed=ws, turbulence_intensity=ti - ) - - self.initial_farm_power = initial_farm_power - - # Determine clusters and then optimize by cluster - self._cluster_turbines() - - # Save parameters to a full list - yaw_angles_template_full = copy.copy(self.yaw_angles_template) - yaw_angles_baseline_full = copy.copy(self.yaw_angles_baseline) - turbine_weights_full = copy.copy(self.turbine_weights) - bnds_full = copy.copy(self.bnds) - x0_full = copy.copy(self.x0) - fi_full = copy.deepcopy(self.fi) - - # Overwrite parameters for each cluster and optimize - opt_yaw_angles = np.zeros_like(x0_full) - for ci, cl in enumerate(self.clusters): - if self.verbose: - print("=====================================================") - print("Optimizing %d parameters in cluster %d." % (len(cl), ci)) - print("=====================================================") - self.yaw_angles_template = np.array(yaw_angles_template_full)[cl] - self.yaw_angles_baseline = np.array(yaw_angles_baseline_full)[cl] - self.turbine_weights = np.array(turbine_weights_full)[cl] - self.bnds = np.array(bnds_full)[cl] - self.x0 = np.array(x0_full)[cl] - self.fi = copy.deepcopy(fi_full) - self.fi.reinitialize_flow_field( - layout_array=[ - np.array(fi_full.layout_x)[cl], - np.array(fi_full.layout_y)[cl] - ] - ) - opt_yaw_angles[cl] = self._optimize() - - # Restore parameters - self.yaw_angles_template = yaw_angles_template_full - self.yaw_angles_baseline = yaw_angles_baseline_full - self.turbine_weights = turbine_weights_full - self.bnds = bnds_full - self.x0 = x0_full - self.fi = fi_full - self.fi.reinitialize_flow_field( - layout_array=[ - np.array(fi_full.layout_x), - np.array(fi_full.layout_y) - ] - ) - - if np.sum(np.abs(opt_yaw_angles)) == 0: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - - # optimized power - self.fi.calculate_wake(yaw_angles=opt_yaw_angles) - power_opt = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - elif ws >= self.minimum_ws: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - if ti is None: - self.fi.reinitialize_flow_field(wind_direction=wd, wind_speed=ws) - else: - self.fi.reinitialize_flow_field( - wind_direction=wd, wind_speed=ws, turbulence_intensity=ti - ) - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - self.fi.calculate_wake(yaw_angles=opt_yaw_angles) - power_opt = self.fi.get_turbine_power( - include_unc=self.include_unc, - unc_pmfs=self.unc_pmfs, - unc_options=self.unc_options, - ) - else: - print( - "No change in controls suggested for this inflow \ - condition..." - ) - opt_yaw_angles = np.array(self.yaw_angles_template, copy=True) - power_opt = self.nturbs * [0.0] - - # Add turbine weighing terms - power_opt = np.multiply(self.turbine_weights, power_opt) - - # add variables to dataframe - if ti is None: - df_opt = pd.DataFrame( - { - "ws": [ws], - "wd": [wd], - "power_opt": [np.sum(power_opt)], - "turbine_power_opt": [power_opt], - "yaw_angles": [opt_yaw_angles], - } - ) - else: - df_opt = pd.DataFrame( - { - "ws": [ws], - "wd": [wd], - "ti": [ti], - "power_opt": [np.sum(power_opt)], - "turbine_power_opt": [power_opt], - "yaw_angles": [opt_yaw_angles], - } - ) - - return df_opt - - # Public methods - - def calc_baseline_power(self): - """ - This method computes the baseline power produced by the wind farm and - the ideal power without wake losses for a series of wind speed, wind - direction, and optionally TI combinations. The optimization for - different wind condition combinations is parallelized using the mpi4py - futures module. - - Returns: - pandas.DataFrame: A pandas DataFrame with the same number of rows - as the length of the wd and ws arrays, containing the following - columns: - - - **ws** (*float*) - The wind speed values for which power is - computed (m/s). - - **wd** (*float*) - The wind direction value for which power - is calculated (deg). - - **ti** (*float*) - The turbulence intensity value for which - power is calculated. Only included if self.ti is not None. - - **power_baseline** (*float*) - The total power produced by - he wind farm with baseline yaw control (W). - - **power_no_wake** (*float*) - The ideal total power produced - by the wind farm without wake losses (W). - - **turbine_power_baseline** (*list* (*float*)) - A list - containing the baseline power without wake steering for each - wind turbine in the wind farm (W). - - **turbine_power_no_wake** (*list* (*float*)) - A list - containing the ideal power without wake losses for each wind - turbine in the wind farm (W). - """ - try: - from mpi4py.futures import MPIPoolExecutor - except ImportError: - err_msg = ( - "It appears you do not have mpi4py installed. " - + "Please refer to https://mpi4py.readthedocs.io/ for " - + "guidance on how to properly install the module." - ) - self.logger.error(err_msg, stack_info=True) - raise ImportError(err_msg) - - print("=====================================================") - print("Calculating baseline power in parallel...") - print("Number of wind conditions to calculate = ", len(self.wd)) - print("=====================================================") - - df_base = pd.DataFrame() - - with MPIPoolExecutor() as executor: - if self.ti is None: - for df_base_one in executor.map( - self._calc_baseline_power_one_case, self.ws.values, self.wd.values - ): - - # add variables to dataframe - df_base = df_base.append(df_base_one) - else: - for df_base_one in executor.map( - self._calc_baseline_power_one_case, - self.ws.values, - self.wd.values, - self.ti.values, - ): - - # add variables to dataframe - df_base = df_base.append(df_base_one) - - df_base.reset_index(drop=True, inplace=True) - - self.df_base = df_base - return df_base - - def optimize(self): - """ - This method solves for the optimum turbine yaw angles for power - production and the resulting power produced by the wind farm for a - series of wind speed, wind direction, and optionally TI combinations. - The optimization for different wind condition combinations is - parallelized using the mpi4py.futures module. - - Returns: - pandas.DataFrame: A pandas DataFrame with the same number of rows - as the length of the wd and ws arrays, containing the following - columns: - - - **ws** (*float*) - The wind speed values for which the yaw - angles are optimized and power is computed (m/s). - - **wd** (*float*) - The wind direction values for which the - yaw angles are optimized and power is computed (deg). - - **ti** (*float*) - The turbulence intensity values for which - the yaw angles are optimized and power is computed. Only - included if self.ti is not None. - - **power_opt** (*float*) - The total power produced by the - wind farm with optimal yaw offsets (W). - - **turbine_power_opt** (*list* (*float*)) - A list containing - the power produced by each wind turbine with optimal yaw - offsets (W). - - **yaw_angles** (*list* (*float*)) - A list containing the - optimal yaw offsets for maximizing total wind farm power for - each wind turbine (deg). - """ - try: - from mpi4py.futures import MPIPoolExecutor - except ImportError: - err_msg = ( - "It appears you do not have mpi4py installed. " - + "Please refer to https://mpi4py.readthedocs.io/ for " - + "guidance on how to properly install the module." - ) - self.logger.error(err_msg, stack_info=True) - raise ImportError(err_msg) - - print("=====================================================") - print("Optimizing wake redirection control in parallel...") - print("Number of wind conditions to optimize = ", len(self.wd)) - print("Number of yaw angles to optimize = ", len(self.turbs_to_opt)) - print("=====================================================") - - df_opt = pd.DataFrame() - - with MPIPoolExecutor() as executor: - if self.ti is None: - for df_opt_one in executor.map( - self._optimize_one_case, - self.ws.values, - self.wd.values, - self.df_base.power_baseline.values, - ): - - # add variables to dataframe - df_opt = df_opt.append(df_opt_one) - else: - for df_opt_one in executor.map( - self._optimize_one_case, - self.ws.values, - self.wd.values, - self.df_base.power_baseline.values, - self.ti.values, - ): - - # add variables to dataframe - df_opt = df_opt.append(df_opt_one) - - df_opt.reset_index(drop=True, inplace=True) - - return df_opt diff --git a/floris/tools/rews.py b/floris/tools/rews.py deleted file mode 100644 index 57efb024a..000000000 --- a/floris/tools/rews.py +++ /dev/null @@ -1,110 +0,0 @@ - -import numpy as np - -from ..utilities import wrap_180, wrap_360 - - -def log_law_interpolate(z_test, z_ref, v_ref, roughness=0.03): - """ - Interpolate wind speed assuming a log-law profile. - - Args: - z_test (float): height of interest for wind speed estimate. - z_ref (float): reference height. - v_ref (float): reference velocity. - roughness (float, optional): Effective roughness length. - Defaults to 0.03. - - Returns: - v_test (np.float): interpolated wind speed at z_test. - """ - return v_ref * np.log(z_test / roughness) / np.log(z_ref / roughness) - - -def determine_rews_weights(R, HH, heights_in): - """ - Weighting for rotor-equivalent wind speed (REWS). - - Args: - R (float): rotor diameter. - HH (float): hub height. - heights_in (iterable): heights of interest. - - Returns: - weights_return (list): list of weighting values for REWS. - """ - # Remove any heights not in range of the rotor - heights = [h for h in heights_in if ((h >= HH - R) and (h <= HH + R))] - num_heights = len(heights) - - # Determine the zone interfaces - zone_boundaries = np.zeros(num_heights + 1) - zone_boundaries[0] = HH - R - zone_boundaries[-1] = HH + R - for i in range(1, num_heights): - zone_boundaries[i] = (heights[i] - heights[i - 1]) / 2.0 + heights[i - 1] - zone_interfaces = zone_boundaries[1:-1] - - # Next find the central angles for each interace - h = zone_interfaces - HH - alpha = np.arcsin(h / R) - C = np.pi - 2 * alpha - A = ((R ** 2) / 2) * (C - np.sin(C)) - A = [np.pi * R ** 2] + list(A) - for i in range(num_heights - 1): - A[i] = A[i] - A[i + 1] - weights = A - - # normalize - weights = weights / np.sum(weights) - - # Now re-pad weights to include heights that were initally cropped - weight_dict = dict(zip(heights, weights)) - weights_return = [weight_dict.get(h, 0.0) for h in heights_in] - - return weights_return - - -def rews_from_df(df, columns_in, weights, rews_name, circular=False): - """ - Estimate the rotor-equivalent wind speed (REWS) from wind speed. - - Args: - df (pd.DataFrame): DataFrame containing flow information - columns_in (list): columns to include estimate of REWS. - weights (iterable): weighting values for REWS. - rews_name (str): column name for REWS output. - circular (bool, optional): flag to consider REWS azimuthally. - Defaults to False. - - Returns: - df (pd.DataFrame): updated dataframe with REWS column. - """ - # Ensure numpy array - weights = np.array(weights) - - # Get the data - data_matrix = df[columns_in].values - - if not circular: - df[rews_name] = compute_rews(data_matrix, weights) - else: - cos_vals = compute_rews(np.cos(np.deg2rad(data_matrix)), weights) - sin_vals = compute_rews(np.sin(np.deg2rad(data_matrix)), weights) - df[rews_name] = wrap_360(np.rad2deg(np.arctan2(sin_vals, cos_vals))) - - return df - - -def compute_rews(data_matrix, weights): - """ - Calculation method for REWS from wind speed and weighting values. - - Args: - data_matrix (np.array): wind speed data - weights (np.array): weighting values for REWS. - - Returns: - REWS (float): rotor-equivalent wind speed. - """ - return np.sum(data_matrix * weights, axis=1) diff --git a/pyproject.toml b/pyproject.toml index 27ea791e0..5610ba9f3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -129,10 +129,6 @@ dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$" # import dependencies "floris/simulation/__init__.py" = ["I001"] -# FIXME -"floris/tools/interface_utilities.py" = ["F821"] -"floris/tools/wind_rose.py" = ["F821"] - [tool.ruff.isort] combine-as-imports = true known-first-party = ["floris"] diff --git a/tests/base_test.py b/tests/base_unit_test.py similarity index 100% rename from tests/base_test.py rename to tests/base_unit_test.py diff --git a/tests/floris_interface_test.py b/tests/floris_interface_integration_test.py similarity index 100% rename from tests/floris_interface_test.py rename to tests/floris_interface_integration_test.py diff --git a/tests/parallel_computing_interface_integration_test.py b/tests/parallel_computing_interface_integration_test.py new file mode 100644 index 000000000..f55fe631c --- /dev/null +++ b/tests/parallel_computing_interface_integration_test.py @@ -0,0 +1,48 @@ + +import copy + +import numpy as np + +from floris.tools import FlorisInterface, ParallelComputingInterface +from tests.conftest import ( + assert_results_arrays, +) + + +DEBUG = True +VELOCITY_MODEL = "gauss" +DEFLECTION_MODEL = "gauss" + + +def test_parallel_turbine_powers(sample_inputs_fixture): + """ + The parallel computing interface behaves like the floris interface, but distributes + calculations among available cores to speep up the necessary computations. This test compares + the individual turbine powers computed with the parallel interface to those computed with + the serial floris interface. The expected result is that the turbine powers should be + exactly the same. + """ + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + fi_serial = FlorisInterface(sample_inputs_fixture.floris) + fi_parallel_input = copy.deepcopy(fi_serial) + fi_serial.calculate_wake() + + serial_turbine_powers = fi_serial.get_turbine_powers() + + fi_parallel = ParallelComputingInterface( + fi=fi_parallel_input, + max_workers=2, + n_wind_condition_splits=2, + interface="concurrent", + print_timings=False, + ) + + parallel_turbine_powers = fi_parallel.get_turbine_powers() + + if DEBUG: + print(serial_turbine_powers) + print(parallel_turbine_powers) + + assert_results_arrays(parallel_turbine_powers, serial_turbine_powers) diff --git a/tests/reg_tests/scipy_layout_opt_regression.py b/tests/reg_tests/scipy_layout_opt_regression.py new file mode 100644 index 000000000..570cb964c --- /dev/null +++ b/tests/reg_tests/scipy_layout_opt_regression.py @@ -0,0 +1,64 @@ + +import numpy as np +import pandas as pd + +from floris.tools import FlorisInterface +from floris.tools.optimization.layout_optimization.layout_optimization_scipy import ( + LayoutOptimizationScipy, +) +from tests.conftest import ( + assert_results_arrays, +) + + +DEBUG = False +VELOCITY_MODEL = "gauss" +DEFLECTION_MODEL = "gauss" + +baseline = np.array( + [ + [0.00000000e+00, 4.96470529e+02, 1.00000000e+03], + [4.58108861e-15, 1.09603647e+01, 2.47721427e+01], + ] +) + + +def test_scipy_layout_opt(sample_inputs_fixture): + """ + The SciPy optimization method optimizes turbine layout using SciPy's minimize method. This test + compares the optimization results from the SciPy layout optimizaiton for a simple farm with a + simple wind rose to stored baseline results. + """ + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + opt_options = { + "maxiter": 5, + "disp": True, + "iprint": 2, + "ftol": 1e-12, + "eps": 0.01, + } + + boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] + + fi = FlorisInterface(sample_inputs_fixture.floris) + wd_array = np.arange(0, 360.0, 5.0) + ws_array = 8.0 * np.ones_like(wd_array) + D = 126.0 # Rotor diameter for the NREL 5 MW + fi.reinitialize( + layout_x=[0.0, 5 * D, 10 * D], + layout_y=[0.0, 0.0, 0.0], + wind_directions=wd_array, + wind_speeds=ws_array, + ) + + layout_opt = LayoutOptimizationScipy(fi, boundaries, optOptions=opt_options) + sol = layout_opt.optimize() + locations_opt = np.array([sol[0], sol[1]]) + + if DEBUG: + print(baseline) + print(locations_opt) + + assert_results_arrays(locations_opt, baseline) diff --git a/tests/reg_tests/yaw_optimization_regression_test.py b/tests/reg_tests/yaw_optimization_regression_test.py new file mode 100644 index 000000000..c9e79ff23 --- /dev/null +++ b/tests/reg_tests/yaw_optimization_regression_test.py @@ -0,0 +1,178 @@ + +import numpy as np +import pandas as pd + +from floris.tools import FlorisInterface +from floris.tools.optimization.yaw_optimization.yaw_optimizer_geometric import ( + YawOptimizationGeometric, +) +from floris.tools.optimization.yaw_optimization.yaw_optimizer_scipy import YawOptimizationScipy +from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR + + +DEBUG = False +VELOCITY_MODEL = "gauss" +DEFLECTION_MODEL = "gauss" + +# These inputs and baseline power are common for all optimization methods +WIND_DIRECTIONS = [0.0, 90.0, 180.0, 270.0] +WIND_SPEEDS = [8.0] * 4 +TURBULENCE_INTENSITIES = [0.1] * 4 +FARM_POWER_BASELINE = [5.261863e+06, 3.206038e+06, 5.261863e+06, 3.206038e+06] + +# These are the input data structures for each optimization method along with the output +# optimized yaw angles +baseline_serial_refine = pd.DataFrame( + { + "wind_direction": WIND_DIRECTIONS, + "wind_speed": WIND_SPEEDS, + "turbulence_intensity": TURBULENCE_INTENSITIES, + "yaw_angles_opt": [ + [0.0, 0.0, 0.0], + [0.0, 25.0, 15.625], + [0.0, 0.0, 0.0], + [15.625, 25.0, 0.0], + ], + "farm_power_opt": [5.261863e+06, 3.262218e+06, 5.261863e+06, 3.262218e+06], + "farm_power_baseline": FARM_POWER_BASELINE, + } +) + +baseline_geometric_yaw = pd.DataFrame( + { + "wind_direction": WIND_DIRECTIONS, + "wind_speed": WIND_SPEEDS, + "turbulence_intensity": TURBULENCE_INTENSITIES, + "yaw_angles_opt": [ + [0.0, 0.0, 0.0], + [0.0, 19.9952335557674, 19.9952335557674], + [0.0, 0.0, 0.0], + [19.9952335557674, 19.9952335557674, 0.0], + ], + "farm_power_opt": [5.261863e+06, 3.252509e+06, 5.261863e+06, 3.252509e+06], + "farm_power_baseline": FARM_POWER_BASELINE, + } +) + +baseline_scipy = pd.DataFrame( + { + "wind_direction": WIND_DIRECTIONS, + "wind_speed": WIND_SPEEDS, + "turbulence_intensity": TURBULENCE_INTENSITIES, + "yaw_angles_opt": [ + [0.0, 0.0, 0.0], + [0.0, 24.999999999999982, 12.165643400939755], + [0.0, 0.0, 0.0], + [12.165643399558299, 25.0, 0.0], + ], + "farm_power_opt": [5.261863e+06, 3.264975e+06, 5.261863e+06, 3.264975e+06], + "farm_power_baseline": FARM_POWER_BASELINE, + } +) + + +def test_serial_refine(sample_inputs_fixture): + """ + The Serial Refine (SR) method optimizes yaw angles based on a sequential, iterative yaw + optimization scheme. This test compares the optimization results from the SR method for + a simple farm with a simple wind rose to stored baseline results. + """ + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + fi = FlorisInterface(sample_inputs_fixture.floris) + wd_array = np.arange(0.0, 360.0, 90.0) + ws_array = 8.0 * np.ones_like(wd_array) + D = 126.0 # Rotor diameter for the NREL 5 MW + fi.reinitialize( + layout_x=[0.0, 5 * D, 10 * D], + layout_y=[0.0, 0.0, 0.0], + wind_directions=wd_array, + wind_speeds=ws_array, + ) + + yaw_opt = YawOptimizationSR(fi) + df_opt = yaw_opt.optimize() + + if DEBUG: + print(baseline_serial_refine.to_string()) + print(df_opt.to_string()) + + pd.testing.assert_frame_equal(df_opt, baseline_serial_refine) + + +def test_geometric_yaw(sample_inputs_fixture): + """ + The Geometric Yaw optimization method optimizes yaw angles using geometric data and derived + optimal yaw relationships. This test compares the optimization results from the Geometric Yaw + optimization for a simple farm with a simple wind rose to stored baseline results. + """ + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + fi = FlorisInterface(sample_inputs_fixture.floris) + wd_array = np.arange(0.0, 360.0, 90.0) + ws_array = 8.0 * np.ones_like(wd_array) + D = 126.0 # Rotor diameter for the NREL 5 MW + fi.reinitialize( + layout_x=[0.0, 5 * D, 10 * D], + layout_y=[0.0, 0.0, 0.0], + wind_directions=wd_array, + wind_speeds=ws_array, + ) + fi.calculate_wake() + baseline_farm_power = fi.get_farm_power().squeeze() + + yaw_opt = YawOptimizationGeometric(fi) + df_opt = yaw_opt.optimize() + + yaw_angles_opt_geo = np.vstack(yaw_opt.yaw_angles_opt) + fi.calculate_wake(yaw_angles=yaw_angles_opt_geo) + geo_farm_power = fi.get_farm_power().squeeze() + + df_opt['farm_power_baseline'] = baseline_farm_power + df_opt['farm_power_opt'] = geo_farm_power + + if DEBUG: + print(baseline_geometric_yaw.to_string()) + print(df_opt.to_string()) + + pd.testing.assert_frame_equal(df_opt, baseline_geometric_yaw) + + +def test_scipy_yaw_opt(sample_inputs_fixture): + """ + The SciPy optimization method optimizes yaw angles using SciPy's minimize method. This test + compares the optimization results from the SciPy yaw optimization for a simple farm with a + simple wind rose to stored baseline results. + """ + sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + opt_options = { + "maxiter": 5, + "disp": True, + "iprint": 2, + "ftol": 1e-12, + "eps": 0.5, + } + + fi = FlorisInterface(sample_inputs_fixture.floris) + wd_array = np.arange(0.0, 360.0, 90.0) + ws_array = 8.0 * np.ones_like(wd_array) + D = 126.0 # Rotor diameter for the NREL 5 MW + fi.reinitialize( + layout_x=[0.0, 5 * D, 10 * D], + layout_y=[0.0, 0.0, 0.0], + wind_directions=wd_array, + wind_speeds=ws_array, + ) + + yaw_opt = YawOptimizationScipy(fi, opt_options=opt_options) + df_opt = yaw_opt.optimize() + + if DEBUG: + print(baseline_scipy.to_string()) + print(df_opt.to_string()) + + pd.testing.assert_frame_equal(df_opt, baseline_scipy) diff --git a/tests/turbine_operation_models_test.py b/tests/turbine_operation_models_integration_test.py similarity index 100% rename from tests/turbine_operation_models_test.py rename to tests/turbine_operation_models_integration_test.py diff --git a/tests/wind_data_test.py b/tests/wind_data_integration_test.py similarity index 100% rename from tests/wind_data_test.py rename to tests/wind_data_integration_test.py From d3631fa5bb729984f0f71d639791c728b75b3f26 Mon Sep 17 00:00:00 2001 From: Eric Simley Date: Thu, 22 Feb 2024 16:32:25 -0700 Subject: [PATCH 44/78] Add WindTIRose class with TI as a wind rose dimension (#824) --- examples/34_wind_data.py | 22 +- floris/tools/__init__.py | 1 + floris/tools/wind_data.py | 517 +++++++++++++++++++++++++++- tests/wind_data_integration_test.py | 178 +++++++++- 4 files changed, 705 insertions(+), 13 deletions(-) diff --git a/examples/34_wind_data.py b/examples/34_wind_data.py index aba1d0d8c..44a40a99d 100644 --- a/examples/34_wind_data.py +++ b/examples/34_wind_data.py @@ -1,4 +1,3 @@ - import matplotlib.pyplot as plt import numpy as np @@ -44,7 +43,20 @@ # Plot the wind rose fig, ax = plt.subplots(subplot_kw={"polar": True}) -wind_rose.plot_wind_rose(ax=ax) +wind_rose.plot_wind_rose(ax=ax,legend_kwargs={"title": "WS"}) +fig.suptitle("WindRose Plot") + +# Now build a wind rose with turbulence intensity +wind_ti_rose = time_series.to_wind_ti_rose() + +# Plot the wind rose with TI +fig, axs = plt.subplots(2, 1, figsize=(6,8), subplot_kw={"polar": True}) +wind_ti_rose.plot_wind_rose(ax=axs[0], wind_rose_var="ws",legend_kwargs={"title": "WS"}) +axs[0].set_title("Wind Direction and Wind Speed Frequencies") +wind_ti_rose.plot_wind_rose(ax=axs[1], wind_rose_var="ti",legend_kwargs={"title": "TI"}) +axs[1].set_title("Wind Direction and Turbulence Intensity Frequencies") +fig.suptitle("WindTIRose Plots") +plt.tight_layout() # Now set up a FLORIS model and initialize it using the time series and wind rose fi = FlorisInterface("inputs/gch.yaml") @@ -52,20 +64,26 @@ fi_time_series = fi.copy() fi_wind_rose = fi.copy() +fi_wind_ti_rose = fi.copy() fi_time_series.reinitialize(wind_data=time_series) fi_wind_rose.reinitialize(wind_data=wind_rose) +fi_wind_ti_rose.reinitialize(wind_data=wind_ti_rose) fi_time_series.calculate_wake() fi_wind_rose.calculate_wake() +fi_wind_ti_rose.calculate_wake() time_series_power = fi_time_series.get_farm_power() wind_rose_power = fi_wind_rose.get_farm_power() +wind_ti_rose_power = fi_wind_ti_rose.get_farm_power() time_series_aep = fi_time_series.get_farm_AEP_with_wind_data(time_series) wind_rose_aep = fi_wind_rose.get_farm_AEP_with_wind_data(wind_rose) +wind_ti_rose_aep = fi_wind_ti_rose.get_farm_AEP_with_wind_data(wind_ti_rose) print(f"AEP from TimeSeries {time_series_aep / 1e9:.2f} GWh") print(f"AEP from WindRose {wind_rose_aep / 1e9:.2f} GWh") +print(f"AEP from WindTIRose {wind_ti_rose_aep / 1e9:.2f} GWh") plt.show() diff --git a/floris/tools/__init__.py b/floris/tools/__init__.py index f30c0ab22..980ba6947 100644 --- a/floris/tools/__init__.py +++ b/floris/tools/__init__.py @@ -34,6 +34,7 @@ from .wind_data import ( TimeSeries, WindRose, + WindTIRose, ) diff --git a/floris/tools/wind_data.py b/floris/tools/wind_data.py index 3d22e8854..09e4e0c93 100644 --- a/floris/tools/wind_data.py +++ b/floris/tools/wind_data.py @@ -1,4 +1,3 @@ - from __future__ import annotations from abc import abstractmethod @@ -57,9 +56,9 @@ def unpack_freq(self): class WindRose(WindDataBase): """ - In FLORIS v4, the WindRose class is used to drive FLORIS and optimization - operations in which the inflow is characterized by the frequency of - binned wind speed, wind direction and turbulence intensity values + The WindRose class is used to drive FLORIS and optimization operations in + which the inflow is characterized by the frequency of binned wind speed and + wind direction values. Args: wind_directions: NumPy array of wind directions (NDArrayFloat). @@ -383,23 +382,355 @@ def plot_ti_over_ws( if ax is None: _, ax = plt.subplots() - ax.plot(self.ws_flat, self.ti_table_flat*100, marker=marker, ls=ls, color=color) + ax.plot(self.ws_flat, self.ti_table_flat * 100, marker=marker, ls=ls, color=color) ax.set_xlabel("Wind Speed (m/s)") ax.set_ylabel("Turbulence Intensity (%)") ax.grid(True) +class WindTIRose(WindDataBase): + """ + WindTIRose is similar to the WindRose class, but contains turbulence + intensity as an additional wind rose dimension instead of being defined + as a function of wind direction and wind speed. The class is used to drive + FLORIS and optimization operations in which the inflow is characterized by + the frequency of binned wind speed, wind direction, and turbulence intensity + values. + + Args: + wind_directions: NumPy array of wind directions (NDArrayFloat). + wind_speeds: NumPy array of wind speeds (NDArrayFloat). + turbulence_intensities: NumPy array of turbulence intensities (NDArrayFloat). + freq_table: Frequency table for binned wind direction, wind speed, and + turbulence intensity values (NDArrayFloat, optional). Must have + dimension (n_wind_directions, n_wind_speeds, n_turbulence_intensities). + Defaults to None in which case uniform frequency of all bins is + assumed. + value_table: Value table for binned wind direction, wind + speed, and turbulence intensity values (NDArrayFloat, optional). + Must have dimension (n_wind_directions, n_wind_speeds, + n_turbulence_intensities). Defaults to None in which case uniform + values are assumed. Value can be used to weight power in each bin + to compute the total value of the energy produced. + compute_zero_freq_occurrence: Flag indicating whether to compute zero + frequency occurrences (bool, optional). Defaults to False. + + """ + + def __init__( + self, + wind_directions: NDArrayFloat, + wind_speeds: NDArrayFloat, + turbulence_intensities: NDArrayFloat, + freq_table: NDArrayFloat | None = None, + value_table: NDArrayFloat | None = None, + compute_zero_freq_occurrence: bool = False, + ): + if not isinstance(wind_directions, np.ndarray): + raise TypeError("wind_directions must be a NumPy array") + + if not isinstance(wind_speeds, np.ndarray): + raise TypeError("wind_speeds must be a NumPy array") + + if not isinstance(turbulence_intensities, np.ndarray): + raise TypeError("turbulence_intensities must be a NumPy array") + + # Save the wind speeds and directions + self.wind_directions = wind_directions + self.wind_speeds = wind_speeds + self.turbulence_intensities = turbulence_intensities + + # If freq_table is not None, confirm it has correct dimension, + # otherwise initialize to uniform probability + if freq_table is not None: + if not freq_table.shape[0] == len(wind_directions): + raise ValueError("freq_table first dimension must equal len(wind_directions)") + if not freq_table.shape[1] == len(wind_speeds): + raise ValueError("freq_table second dimension must equal len(wind_speeds)") + if not freq_table.shape[2] == len(turbulence_intensities): + raise ValueError( + "freq_table third dimension must equal len(turbulence_intensities)" + ) + self.freq_table = freq_table + else: + self.freq_table = np.ones( + (len(wind_directions), len(wind_speeds), len(turbulence_intensities)) + ) + + # Normalize freq table + self.freq_table = self.freq_table / np.sum(self.freq_table) + + # If value_table is not None, confirm it has correct dimension, + # otherwise initialize to all ones + if value_table is not None: + if not value_table.shape[0] == len(wind_directions): + raise ValueError("value_table first dimension must equal len(wind_directions)") + if not value_table.shape[1] == len(wind_speeds): + raise ValueError("value_table second dimension must equal len(wind_speeds)") + if not value_table.shape[2] == len(turbulence_intensities): + raise ValueError( + "value_table third dimension must equal len(turbulence_intensities)" + ) + self.value_table = value_table + + # Save whether zero occurrence cases should be computed + self.compute_zero_freq_occurrence = compute_zero_freq_occurrence + + # Build the gridded and flatten versions + self._build_gridded_and_flattened_version() + + def _build_gridded_and_flattened_version(self): + """ + Given the wind direction, wind speed, and turbulence intensity array, + build the gridded versions covering all combinations, and then flatten + versions which put all combinations into 1D array + """ + # Gridded wind speed and direction + self.wd_grid, self.ws_grid, self.ti_grid = np.meshgrid( + self.wind_directions, self.wind_speeds, self.turbulence_intensities, indexing="ij" + ) + + # Flat wind direction, wind speed, and turbulence intensity + self.wd_flat = self.wd_grid.flatten() + self.ws_flat = self.ws_grid.flatten() + self.ti_flat = self.ti_grid.flatten() + + # Flat frequency table + self.freq_table_flat = self.freq_table.flatten() + + # value table + if self.value_table is not None: + self.value_table_flat = self.value_table.flatten() + else: + self.value_table_flat = None + + # Set mask to non-zero frequency cases depending on compute_zero_freq_occurrence + if self.compute_zero_freq_occurrence: + # If computing zero freq occurrences, then this is all True + self.non_zero_freq_mask = [True for i in range(len(self.freq_table_flat))] + else: + self.non_zero_freq_mask = self.freq_table_flat > 0.0 + + # N_findex should only be the calculated cases + self.n_findex = np.sum(self.non_zero_freq_mask) + + def unpack(self): + """ + Unpack the flattened versions of the matrices and return the values + accounting for the non_zero_freq_mask + """ + + # The unpacked versions start as the flat version of each + wind_directions_unpack = self.wd_flat.copy() + wind_speeds_unpack = self.ws_flat.copy() + turbulence_intensities_unpack = self.ti_flat.copy() + freq_table_unpack = self.freq_table_flat.copy() + + # Now mask thes values according to self.non_zero_freq_mask + wind_directions_unpack = wind_directions_unpack[self.non_zero_freq_mask] + wind_speeds_unpack = wind_speeds_unpack[self.non_zero_freq_mask] + turbulence_intensities_unpack = turbulence_intensities_unpack[self.non_zero_freq_mask] + freq_table_unpack = freq_table_unpack[self.non_zero_freq_mask] + + # Now get unpacked value table + if self.value_table_flat is not None: + value_table_unpack = self.value_table_flat[self.non_zero_freq_mask].copy() + else: + value_table_unpack = None + + return ( + wind_directions_unpack, + wind_speeds_unpack, + freq_table_unpack, + turbulence_intensities_unpack, + value_table_unpack, + ) + + def resample_wind_rose(self, wd_step=None, ws_step=None, ti_step=None): + """ + Resamples the wind rose by by wd_step, ws_step, and/or ti_step + + Args: + wd_step: Step size for wind direction resampling (float, optional). + ws_step: Step size for wind speed resampling (float, optional). + ti_step: Step size for turbulence intensity resampling (float, optional). + + Returns: + WindRose: Resampled wind rose based on the provided or default step sizes. + + Notes: + - Returns a resampled version of the wind rose using new `ws_step`, + `wd_step`, and `ti_step`. + - Uses the bin weights feature in TimeSeries to resample the wind rose. + - If `ws_step`, `wd_step`, or `ti_step` are not specified, it uses + the current values. + """ + if ws_step is None: + if len(self.wind_speeds) >= 2: + ws_step = self.wind_speeds[1] - self.wind_speeds[0] + else: # wind rose will have only a single wind speed, and we assume a ws_step of 1 + ws_step = 1.0 + if wd_step is None: + if len(self.wind_directions) >= 2: + wd_step = self.wind_directions[1] - self.wind_directions[0] + else: # wind rose will have only a single wind direction, and we assume a wd_step of 1 + wd_step = 1.0 + if ti_step is None: + if len(self.turbulence_intensities) >= 2: + ti_step = self.turbulence_intensities[1] - self.turbulence_intensities[0] + else: # wind rose will have only a single TI, and we assume a ti_step of 1 + ti_step = 1.0 + + # Pass the flat versions of each quantity to build a TimeSeries model + time_series = TimeSeries(self.wd_flat, self.ws_flat, self.ti_flat, self.value_table_flat) + + # Now build a new wind rose using the new steps + return time_series.to_wind_ti_rose( + wd_step=wd_step, ws_step=ws_step, ti_step=ti_step, bin_weights=self.freq_table_flat + ) + + def plot_wind_rose( + self, + ax=None, + wind_rose_var="ws", + color_map="viridis_r", + wd_step=15.0, + wind_rose_var_step=None, + legend_kwargs={}, + ): + """ + This method creates a wind rose plot showing the frequency of occurrence + of either the specified wind direction and wind speed bins or wind + direction and turbulence intensity bins. If no axis is provided, a new + one is created. + + **Note**: Based on code provided by Patrick Murphy from the University + of Colorado Boulder. + + Args: + ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes + on which the wind rose is plotted. Defaults to None. + wind_rose_var (str, optional): The variable to display in the wind + rose plot in addition to wind direction. If + wind_rose_var = "ws", wind speed frequencies will be plotted. + If wind_rose_var = "ti", turbulence intensity frequencies will + be plotted. Defaults to "ws". + color_map (str, optional): Colormap to use. Defaults to 'viridis_r'. + wd_step (float, optional): Step size for wind direction. Defaults + to 15 degrees. + wind_rose_var_step (float, optional): Step size for other wind rose + variable. Defaults to None. If unspecified, a value of 5 m/s + will beused if wind_rose_var = "ws", and a value of 4% will be + used if wind_rose_var = "ti". + legend_kwargs (dict, optional): Keyword arguments to be passed to + ax.legend(). + + Returns: + :py:class:`matplotlib.pyplot.axes`: A figure axes object containing + the plotted wind rose. + """ + + if wind_rose_var not in {"ws", "ti"}: + raise ValueError( + 'wind_rose_var must be either "ws" or "ti" for wind speed or turbulence intensity.' + ) + + # Get a resampled wind_rose + if wind_rose_var == "ws": + if wind_rose_var_step is None: + wind_rose_var_step = 5.0 + wind_rose_resample = self.resample_wind_rose(wd_step, ws_step=wind_rose_var_step) + var_bins = wind_rose_resample.wind_speeds + freq_table = wind_rose_resample.freq_table.sum(2) # sum along TI dimension + else: # wind_rose_var == "ti" + if wind_rose_var_step is None: + wind_rose_var_step = 0.04 + wind_rose_resample = self.resample_wind_rose(wd_step, ti_step=wind_rose_var_step) + var_bins = wind_rose_resample.turbulence_intensities + freq_table = wind_rose_resample.freq_table.sum(1) # sum along wind speed dimension + + wd_bins = wind_rose_resample.wind_directions + + # Set up figure + if ax is None: + _, ax = plt.subplots(subplot_kw={"polar": True}) + + # Get a color array + color_array = cm.get_cmap(color_map, len(var_bins)) + + for wd_idx, wd in enumerate(wd_bins): + rects = [] + freq_table_sub = freq_table[wd_idx, :].flatten() + for var_idx, ws in reversed(list(enumerate(var_bins))): + plot_val = freq_table_sub[:var_idx].sum() + rects.append( + ax.bar( + np.radians(wd), + plot_val, + width=0.9 * np.radians(wd_step), + color=color_array(var_idx), + edgecolor="k", + ) + ) + + # Configure the plot + ax.legend(reversed(rects), var_bins, **legend_kwargs) + ax.set_theta_direction(-1) + ax.set_theta_offset(np.pi / 2.0) + ax.set_theta_zero_location("N") + ax.set_xticks(np.arange(0, 2 * np.pi, np.pi / 4)) + ax.set_xticklabels(["N", "NE", "E", "SE", "S", "SW", "W", "NW"]) + + return ax + + def plot_ti_over_ws( + self, + ax=None, + marker=".", + ls="-", + color="k", + ): + """ + Plot the mean turbulence intensity against wind speed. + + Args: + ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes + on which the wind rose is plotted. Defaults to None. + plot_kwargs (dict, optional): Keyword arguments to be passed to + ax.plot(). + + Returns: + :py:class:`matplotlib.pyplot.axes`: A figure axes object containing + the plotted wind rose. + """ + + # TODO: Plot std. devs. of TI in addition to mean values + + # Set up figure + if ax is None: + _, ax = plt.subplots() + + # get mean TI for each wind speed by averaging along wind direction and + # TI dimensions + mean_ti_values = (self.ti_grid * self.freq_table).sum((0, 2)) / self.freq_table.sum((0, 2)) + + ax.plot(self.wind_speeds, mean_ti_values * 100, marker=marker, ls=ls, color=color) + ax.set_xlabel("Wind Speed (m/s)") + ax.set_ylabel("Mean Turbulence Intensity (%)") + ax.grid(True) + + class TimeSeries(WindDataBase): """ - In FLORIS v4, the TimeSeries class is used to drive FLORIS and optimization - operations in which the inflow is by a sequence of wind direction, wind speed - and turbulence intensity values + The TimeSeries class is used to drive FLORIS and optimization operations in + which the inflow is by a sequence of wind direction, wind speed and + turbulence intensity values Args: wind_directions: NumPy array of wind directions (NDArrayFloat). wind_speeds: NumPy array of wind speeds (NDArrayFloat). - turbulence_intensities: NumPy array of wind speeds (NDArrayFloat, optional). - Defaults to None + turbulence_intensities: NumPy array of turbulence intensities + (NDArrayFloat, optional). Defaults to None values: NumPy array of electricity values (NDArrayFloat, optional). Defaults to None @@ -645,3 +976,169 @@ def to_wind_rose( # Return a WindRose return WindRose(wd_centers, ws_centers, freq_table, ti_table, value_table) + + def to_wind_ti_rose( + self, + wd_step=2.0, + ws_step=1.0, + ti_step=0.02, + wd_edges=None, + ws_edges=None, + ti_edges=None, + bin_weights=None, + ): + """ + Converts the TimeSeries data to a WindRose. + + Args: + wd_step (float, optional): Step size for wind direction (default is 2.0). + ws_step (float, optional): Step size for wind speed (default is 1.0). + ti_step (float, optional): Step size for turbulence intensity (default is 0.02). + wd_edges (NDArrayFloat, optional): Custom wind direction edges. Defaults to None. + ws_edges (NDArrayFloat, optional): Custom wind speed edges. Defaults to None. + ti_edges (NDArrayFloat, optional): Custom turbulence intensity + edges. Defaults to None. + bin_weights (NDArrayFloat, optional): Bin weights for resampling. Note these + are primarily used by the resample resample_wind_rose function. + Defaults to None. + + Returns: + WindRose: A WindTIRose object based on the TimeSeries data. + + Notes: + - If `wd_edges` is defined, it uses it to produce the wind direction bin edges. + - If `wd_edges` is not defined, it determines `wd_edges` from the step and data. + - If `ws_edges` is defined, it uses it for wind speed edges. + - If `ws_edges` is not defined, it determines `ws_edges` from the step and data. + - If `ti_edges` is defined, it uses it for turbulence intensity edges. + - If `ti_edges` is not defined, it determines `ti_edges` from the step and data. + """ + + # If turbulence_intensities is None, a WindTIRose object cannot be created. + if self.turbulence_intensities is None: + raise ValueError( + "turbulence_intensities must be defined to export to a WindTIRose object." + ) + + # If wd_edges is defined, then use it to produce the bin centers + if wd_edges is not None: + wd_step = wd_edges[1] - wd_edges[0] + + # use wd_step to produce a wrapped version of wind_directions + wind_directions_wrapped = self._wrap_wind_directions_near_360( + self.wind_directions, wd_step + ) + + # Else, determine wd_edges from the step and data + else: + wd_edges = np.arange(0.0 - wd_step / 2.0, 360.0, wd_step) + + # use wd_step to produce a wrapped version of wind_directions + wind_directions_wrapped = self._wrap_wind_directions_near_360( + self.wind_directions, wd_step + ) + + # Only keep the range with values in it + wd_edges = wd_edges[wd_edges + wd_step > wind_directions_wrapped.min()] + wd_edges = wd_edges[wd_edges - wd_step <= wind_directions_wrapped.max()] + + # Define the centers from the edges + wd_centers = wd_edges[:-1] + wd_step / 2.0 + + # Repeat for wind speeds + if ws_edges is not None: + ws_step = ws_edges[1] - ws_edges[0] + + else: + ws_edges = np.arange(0.0 - ws_step / 2.0, 50.0, ws_step) + + # Only keep the range with values in it + ws_edges = ws_edges[ws_edges + ws_step > self.wind_speeds.min()] + ws_edges = ws_edges[ws_edges - ws_step <= self.wind_speeds.max()] + + # Define the centers from the edges + ws_centers = ws_edges[:-1] + ws_step / 2.0 + + # Repeat for turbulence intensities + if ti_edges is not None: + ti_step = ti_edges[1] - ti_edges[0] + + else: + ti_edges = np.arange(0.0 - ti_step / 2.0, 1.0, ti_step) + + # Only keep the range with values in it + ti_edges = ti_edges[ti_edges + ti_step > self.turbulence_intensities.min()] + ti_edges = ti_edges[ti_edges - ti_step <= self.turbulence_intensities.max()] + + # Define the centers from the edges + ti_centers = ti_edges[:-1] + ti_step / 2.0 + + # Now use pandas to get the tables need for wind rose + df = pd.DataFrame( + { + "wd": wind_directions_wrapped, + "ws": self.wind_speeds, + "ti": self.turbulence_intensities, + "freq_val": np.ones(len(wind_directions_wrapped)), + } + ) + + # If bin_weights are passed in, apply these to the frequency + # this is mostly used when resampling the wind rose + if bin_weights is not None: + df = df.assign(freq_val=df["freq_val"] * bin_weights) + + # If values is not none, add to dataframe + if self.values is not None: + df = df.assign(values=self.values) + + # Bin wind speed, wind direction, and turbulence intensity and then group things up + df = ( + df.assign( + wd_bin=pd.cut( + df.wd, bins=wd_edges, labels=wd_centers, right=False, include_lowest=True + ) + ) + .assign( + ws_bin=pd.cut( + df.ws, bins=ws_edges, labels=ws_centers, right=False, include_lowest=True + ) + ) + .assign( + ti_bin=pd.cut( + df.ti, bins=ti_edges, labels=ti_centers, right=False, include_lowest=True + ) + ) + .drop(["wd", "ws", "ti"], axis=1) + ) + + # Convert wd_bin, ws_bin, and ti_bin to categoricals to ensure all + # combinations are considered and then group + wd_cat = CategoricalDtype(categories=wd_centers, ordered=True) + ws_cat = CategoricalDtype(categories=ws_centers, ordered=True) + ti_cat = CategoricalDtype(categories=ti_centers, ordered=True) + + df = ( + df.assign(wd_bin=df["wd_bin"].astype(wd_cat)) + .assign(ws_bin=df["ws_bin"].astype(ws_cat)) + .assign(ti_bin=df["ti_bin"].astype(ti_cat)) + .groupby(["wd_bin", "ws_bin", "ti_bin"], observed=False) + .agg(["sum", "mean"]) + ) + # Flatten and combine levels using an underscore + df.columns = ["_".join(col) for col in df.columns] + + # Collect the frequency table and reshape + freq_table = df["freq_val_sum"].values.copy() + freq_table = freq_table / freq_table.sum() + freq_table = freq_table.reshape((len(wd_centers), len(ws_centers), len(ti_centers))) + + # If values is not none, compute the table + if self.values is not None: + value_table = df["values_mean"].values.copy() + value_table = value_table.reshape((len(wd_centers), len(ws_centers), len(ti_centers))) + else: + value_table = None + + # Return a WindTIRose + return WindTIRose(wd_centers, ws_centers, ti_centers, freq_table, value_table) diff --git a/tests/wind_data_integration_test.py b/tests/wind_data_integration_test.py index c071abd54..3a64e8e91 100644 --- a/tests/wind_data_integration_test.py +++ b/tests/wind_data_integration_test.py @@ -1,10 +1,10 @@ - import numpy as np import pytest from floris.tools import ( TimeSeries, WindRose, + WindTIRose, ) from floris.tools.wind_data import WindDataBase @@ -247,3 +247,179 @@ def test_time_series_to_wind_rose_with_ti(): # The 6 m/s bin should be empty freq_table = wind_rose.freq_table np.testing.assert_almost_equal(freq_table[0, 1], 0) + + +def test_wind_ti_rose_init(): + """ + The wind directions, wind speeds, and turbulence intensities can have any + length, but the frequency array must have shape (n wind directions, + n wind speeds, n turbulence intensities) + """ + wind_directions = np.array([270, 280, 290, 300]) + wind_speeds = np.array([6, 7, 8]) + turbulence_intensities = np.array([0.05, 0.1]) + + # This should be ok + _ = WindTIRose(wind_directions, wind_speeds, turbulence_intensities) + + # This should be ok since the frequency array shape matches the wind directions + # and wind speeds + _ = WindTIRose(wind_directions, wind_speeds, turbulence_intensities, np.ones((4, 3, 2))) + + # This should raise an error since the frequency array shape does not + # match the wind directions and wind speeds + with pytest.raises(ValueError): + WindTIRose(wind_directions, wind_speeds, turbulence_intensities, np.ones((3, 3, 3))) + + +def test_wind_ti_rose_grid(): + wind_directions = np.array([270, 280, 290, 300]) + wind_speeds = np.array([6, 7, 8]) + turbulence_intensities = np.array([0.05, 0.1]) + + wind_rose = WindTIRose(wind_directions, wind_speeds, turbulence_intensities) + + # Wind direction grid has the same dimensions as the frequency table + assert wind_rose.wd_grid.shape == wind_rose.freq_table.shape + + # Flattening process occurs wd first + # This is each wind direction for each wind speed: + np.testing.assert_allclose(wind_rose.wd_flat, 6 * [270] + 6 * [280] + 6 * [290] + 6 * [300]) + + +def test_wind_ti_rose_unpack(): + wind_directions = np.array([270, 280, 290, 300]) + wind_speeds = np.array([6, 7, 8]) + turbulence_intensities = np.array([0.05, 0.1]) + freq_table = np.array( + [ + [[1.0, 0.0], [1.0, 0.0], [0.0, 0.0]], + [[1.0, 0.0], [1.0, 0.0], [0.0, 0.0]], + [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], + [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], + ] + ) + + # First test using default assumption only non-zero frequency cases computed + wind_rose = WindTIRose(wind_directions, wind_speeds, turbulence_intensities, freq_table) + + ( + wind_directions_unpack, + wind_speeds_unpack, + freq_table_unpack, + turbulence_intensities_unpack, + value_table_unpack, + ) = wind_rose.unpack() + + # Given the above frequency table with zeros for a few elements, + # we expect only combinations of wind directions of 270 and 280 deg, + # wind speeds of 6 and 7 m/s, and a TI of 5% + np.testing.assert_allclose(wind_directions_unpack, [270, 270, 280, 280]) + np.testing.assert_allclose(wind_speeds_unpack, [6, 7, 6, 7]) + np.testing.assert_allclose(turbulence_intensities_unpack, [0.05, 0.05, 0.05, 0.05]) + np.testing.assert_allclose(freq_table_unpack, [0.25, 0.25, 0.25, 0.25]) + + # In this case n_findex is the length of the wind combinations that are + # non-zero frequency + assert wind_rose.n_findex == 4 + + # Now test computing 0-freq cases too + wind_rose = WindTIRose( + wind_directions, + wind_speeds, + turbulence_intensities, + freq_table, + compute_zero_freq_occurrence=True, + ) + + ( + wind_directions_unpack, + wind_speeds_unpack, + freq_table_unpack, + turbulence_intensities_unpack, + value_table_unpack, + ) = wind_rose.unpack() + + # Expect now to compute all combinations + np.testing.assert_allclose( + wind_directions_unpack, 6 * [270] + 6 * [280] + 6 * [290] + 6 * [300] + ) + + # In this case n_findex is the total number of wind combinations + assert wind_rose.n_findex == 24 + + +def test_wind_ti_rose_unpack_for_reinitialize(): + wind_directions = np.array([270, 280, 290, 300]) + wind_speeds = np.array([6, 7, 8]) + turbulence_intensities = np.array([0.05, 0.1]) + freq_table = np.array( + [ + [[1.0, 0.0], [1.0, 0.0], [0.0, 0.0]], + [[1.0, 0.0], [1.0, 0.0], [0.0, 0.0]], + [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], + [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], + ] + ) + + # First test using default assumption only non-zero frequency cases computed + wind_rose = WindTIRose(wind_directions, wind_speeds, turbulence_intensities, freq_table) + + ( + wind_directions_unpack, + wind_speeds_unpack, + turbulence_intensities_unpack, + ) = wind_rose.unpack_for_reinitialize() + + # Given the above frequency table with zeros for a few elements, + # we expect only combinations of wind directions of 270 and 280 deg, + # wind speeds of 6 and 7 m/s, and a TI of 5% + np.testing.assert_allclose(wind_directions_unpack, [270, 270, 280, 280]) + np.testing.assert_allclose(wind_speeds_unpack, [6, 7, 6, 7]) + np.testing.assert_allclose(turbulence_intensities_unpack, [0.05, 0.05, 0.05, 0.05]) + + +def test_wind_ti_rose_resample(): + wind_directions = np.array([0, 2, 4, 6, 8, 10]) + wind_speeds = np.array([7, 8]) + turbulence_intensities = np.array([0.02, 0.04, 0.06, 0.08, 0.1]) + freq_table = np.ones((6, 2, 5)) + + wind_rose = WindTIRose(wind_directions, wind_speeds, turbulence_intensities, freq_table) + + # Test that resampling with a new step size returns the same + wind_rose_resample = wind_rose.resample_wind_rose() + + np.testing.assert_allclose(wind_rose.wind_directions, wind_rose_resample.wind_directions) + np.testing.assert_allclose(wind_rose.wind_speeds, wind_rose_resample.wind_speeds) + np.testing.assert_allclose( + wind_rose.turbulence_intensities, wind_rose_resample.turbulence_intensities + ) + np.testing.assert_allclose(wind_rose.freq_table_flat, wind_rose_resample.freq_table_flat) + + # Now test resampling the turbulence intensities to 4% bins + wind_rose_resample = wind_rose.resample_wind_rose(ti_step=0.04) + np.testing.assert_allclose(wind_rose_resample.turbulence_intensities, [0.04, 0.08, 0.12]) + np.testing.assert_allclose( + wind_rose_resample.freq_table_flat, (1 / 60) * np.array(12 * [2, 2, 1]) + ) + + +def test_time_series_to_wind_ti_rose(): + wind_directions = np.array([259.8, 260.2, 260.3, 260.1]) + wind_speeds = np.array([5.0, 5.0, 5.1, 7.2]) + turbulence_intensities = np.array([0.05, 0.1, 0.15, 0.2]) + time_series = TimeSeries( + wind_directions, + wind_speeds, + turbulence_intensities=turbulence_intensities, + ) + wind_rose = time_series.to_wind_ti_rose(wd_step=2.0, ws_step=1.0, ti_step=0.1) + + # The binning should result in turbulence intensity bins of 0.1 and 0.2 + tis_windrose = wind_rose.turbulence_intensities + np.testing.assert_almost_equal(tis_windrose, [0.1, 0.2]) + + # The 6 m/s bin should be empty + freq_table = wind_rose.freq_table + np.testing.assert_almost_equal(freq_table[0, 1, :], [0, 0]) From dc1b5708de51e8fed03146f3c23cb0a8c4e1a82c Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Mon, 26 Feb 2024 17:06:40 -0700 Subject: [PATCH 45/78] Move FlorisInterface .reinitialize() / .calculate_wake() to .set() / .run() (#823) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Main infrastrcuture for set() -> run() paradigm on FlorisInterface. * calculate plane methods updated; 02 example runs. * Ruff. * Updating examples that called reinitialize() and calculate_wake() directly. * Update AEP methods * yaw optimizer updates, and simpler yaw opt examples. * Examples running with get_farm_AEP. * Layout optimizers. * update reinitialize calls in sample_velocity_deficit_profiles. * Initial working implementation; update to follow. * minimize unnecessary set() calls. * tests for FlorisInterfacee updated; added reset_operation() method to FlorisInterface. * Simple docstrings added. * isort. * adding WindTIRose class, which includes wd, ws, and ti as wind rose dimensions * Fix a missed calculate_no_wake() call. * adding tests for WindTIRose * formatting wind data * Test set / run sequences * Update other test api’s * Fix line length * Small edits to comments * fixing wind rose example plots * Remove unused input args * Refactor and clean up * Bug fix in tests * Error if calculate_wake or reinitialize are used * Fix the bug in test_disable_turbines * Fix whitespace * Fix typo and docstrings * Update docstring * Fix formatting * Raise error if run() called on ParallelComputingInterface. --------- Co-authored-by: misi9170 Co-authored-by: Eric Simley Co-authored-by: Paul Co-authored-by: ejsimley <40040961+ejsimley@users.noreply.github.com> --- examples/01_opening_floris_computing_power.py | 20 +- examples/02_visualizations.py | 6 +- examples/03_making_adjustments.py | 4 +- examples/04_sweep_wind_directions.py | 7 +- examples/05_sweep_wind_speeds.py | 7 +- examples/06_sweep_wind_conditions.py | 7 +- examples/07_calc_aep_from_rose.py | 2 +- .../09_compare_farm_power_with_neighbor.py | 10 +- examples/10_opt_yaw_single_ws.py | 2 +- examples/11_opt_yaw_multiple_ws.py | 2 +- examples/12_optimize_yaw.py | 10 +- examples/12_optimize_yaw_in_parallel.py | 6 +- .../13_optimize_yaw_with_neighboring_farm.py | 21 +- examples/14_compare_yaw_optimizers.py | 5 +- examples/15_optimize_layout.py | 10 +- examples/16_heterogeneous_inflow.py | 6 +- examples/16b_heterogeneity_multiple_ws_wd.py | 12 +- .../16c_optimize_layout_with_heterogeneity.py | 17 +- examples/18_check_turbine.py | 21 +- examples/21_demo_time_series.py | 6 +- examples/22_get_wind_speed_at_turbines.py | 4 +- examples/23_visualize_layout.py | 2 +- examples/24_floating_turbine_models.py | 12 +- ...25_tilt_driven_vertical_wake_deflection.py | 4 +- ...rical_gauss_velocity_deficit_parameters.py | 16 +- ...7_empirical_gauss_deflection_parameters.py | 28 +- examples/28_extract_wind_speed_at_points.py | 4 +- examples/29_floating_vs_fixedbottom_farm.py | 8 +- examples/30_multi_dimensional_cp_ct.py | 17 +- examples/31_multi_dimensional_cp_ct_2Hs.py | 12 +- examples/32_plot_velocity_deficit_profiles.py | 4 +- examples/33_specify_turbine_power_curve.py | 4 +- examples/34_wind_data.py | 14 +- examples/35_sweep_ti.py | 4 +- examples/40_test_derating.py | 20 +- examples/41_test_disable_turbines.py | 7 +- floris/simulation/flow_field.py | 4 +- floris/simulation/turbine/operation_models.py | 1 + floris/tools/floris_interface.py | 474 ++++++++++-------- .../layout_optimization_base.py | 2 +- .../layout_optimization_boundary_grid.py | 2 +- .../layout_optimization_pyoptsparse.py | 7 +- .../layout_optimization_scipy.py | 6 +- .../yaw_optimization/yaw_optimization_base.py | 7 +- .../yaw_optimization/yaw_optimizer_scipy.py | 2 +- floris/tools/parallel_computing_interface.py | 22 +- floris/tools/visualization.py | 36 +- tests/floris_interface_integration_test.py | 221 +++++--- ...el_computing_interface_integration_test.py | 2 +- .../yaw_optimization_regression_test.py | 11 +- 50 files changed, 659 insertions(+), 479 deletions(-) diff --git a/examples/01_opening_floris_computing_power.py b/examples/01_opening_floris_computing_power.py index 4e7818df6..52935a956 100644 --- a/examples/01_opening_floris_computing_power.py +++ b/examples/01_opening_floris_computing_power.py @@ -19,17 +19,16 @@ fi = FlorisInterface("inputs/gch.yaml") # Convert to a simple two turbine layout -fi.reinitialize(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) +fi.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) # Single wind speed and wind direction print("\n========================= Single Wind Direction and Wind Speed =========================") # Get the turbine powers assuming 1 wind direction and speed -fi.reinitialize(wind_directions=[270.0], wind_speeds=[8.0]) +# Set the yaw angles to 0 with 1 wind direction and speed +fi.set(wind_directions=[270.0], wind_speeds=[8.0], yaw_angles=np.zeros([1, 2])) -# Set the yaw angles to 0 -yaw_angles = np.zeros([1, 2]) # 1 wind direction and speed, 2 turbines -fi.calculate_wake(yaw_angles=yaw_angles) +fi.run() # Get the turbine powers turbine_powers = fi.get_turbine_powers() / 1000.0 @@ -44,9 +43,9 @@ wind_speeds = np.array([8.0, 9.0, 10.0]) wind_directions = np.array([270.0, 270.0, 270.0]) -fi.reinitialize(wind_speeds=wind_speeds, wind_directions=wind_directions) -yaw_angles = np.zeros([3, 2]) # 3 wind directions/ speeds, 2 turbines -fi.calculate_wake(yaw_angles=yaw_angles) +# 3 wind directions/ speeds +fi.set(wind_speeds=wind_speeds, wind_directions=wind_directions, yaw_angles=np.zeros([3, 2])) +fi.run() turbine_powers = fi.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") print(turbine_powers) @@ -60,9 +59,8 @@ wind_speeds = np.tile([8.0, 9.0, 10.0], 3) wind_directions = np.repeat([260.0, 270.0, 280.0], 3) -fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) -yaw_angles = np.zeros([9, 2]) # 9 wind directions/ speeds, 2 turbines -fi.calculate_wake(yaw_angles=yaw_angles) +fi.set(wind_directions=wind_directions, wind_speeds=wind_speeds, yaw_angles=np.zeros([9, 2])) +fi.run() turbine_powers = fi.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") print(turbine_powers) diff --git a/examples/02_visualizations.py b/examples/02_visualizations.py index a82f84ee8..496f2d41b 100644 --- a/examples/02_visualizations.py +++ b/examples/02_visualizations.py @@ -101,7 +101,7 @@ # Run the wake calculation to get the turbine-turbine interfactions # on the turbine grids -fi.calculate_wake() +fi.run() # Plot the values at each rotor fig, axes, _ , _ = wakeviz.plot_rotor_values( @@ -125,11 +125,11 @@ "type": "turbine_grid", "turbine_grid_points": 10 } -fi.reinitialize(solver_settings=solver_settings) +fi.set(solver_settings=solver_settings) # Run the wake calculation to get the turbine-turbine interfactions # on the turbine grids -fi.calculate_wake() +fi.run() # Plot the values at each rotor fig, axes, _ , _ = wakeviz.plot_rotor_values( diff --git a/examples/03_making_adjustments.py b/examples/03_making_adjustments.py index e405aea65..5c71bba2d 100644 --- a/examples/03_making_adjustments.py +++ b/examples/03_making_adjustments.py @@ -45,7 +45,7 @@ # Change the wind shear, reset the wind speed, and plot a vertical slice -fi.reinitialize( wind_shear=0.2, wind_speeds=[8.0] ) +fi.set(wind_shear=0.2, wind_speeds=[8.0]) y_plane = fi.calculate_y_plane(crossstream_dist=0.0) wakeviz.visualize_cut_plane( y_plane, @@ -61,7 +61,7 @@ 5.0 * fi.floris.farm.rotor_diameters[0,0] * np.arange(0, N, 1), 5.0 * fi.floris.farm.rotor_diameters[0,0] * np.arange(0, N, 1), ) -fi.reinitialize(layout_x=X.flatten(), layout_y=Y.flatten(), wind_directions=[270.0]) +fi.set(layout_x=X.flatten(), layout_y=Y.flatten(), wind_directions=[270.0]) horizontal_plane = fi.calculate_horizontal_plane(height=90.0) wakeviz.visualize_cut_plane( horizontal_plane, diff --git a/examples/04_sweep_wind_directions.py b/examples/04_sweep_wind_directions.py index a76ff6bb3..6cfa73612 100644 --- a/examples/04_sweep_wind_directions.py +++ b/examples/04_sweep_wind_directions.py @@ -22,12 +22,12 @@ D = 126. layout_x = np.array([0, D*6]) layout_y = [0, 0] -fi.reinitialize(layout_x=layout_x, layout_y=layout_y) +fi.set(layout_x=layout_x, layout_y=layout_y) # Sweep wind speeds but keep wind direction fixed wd_array = np.arange(250,291,1.) ws_array = 8.0 * np.ones_like(wd_array) -fi.reinitialize(wind_directions=wd_array, wind_speeds=ws_array) +fi.set(wind_directions=wd_array, wind_speeds=ws_array) # Define a matrix of yaw angles to be all 0 # Note that yaw angles is now specified as a matrix whose dimensions are @@ -37,9 +37,10 @@ n_findex = num_wd # Could be either num_wd or num_ws num_turbine = len(layout_x) # Number of turbines yaw_angles = np.zeros((n_findex, num_turbine)) +fi.set(yaw_angles=yaw_angles) # Calculate -fi.calculate_wake(yaw_angles=yaw_angles) +fi.run() # Collect the turbine powers turbine_powers = fi.get_turbine_powers() / 1E3 # In kW diff --git a/examples/05_sweep_wind_speeds.py b/examples/05_sweep_wind_speeds.py index b5b93e488..b9ce3c317 100644 --- a/examples/05_sweep_wind_speeds.py +++ b/examples/05_sweep_wind_speeds.py @@ -22,12 +22,12 @@ D = 126. layout_x = np.array([0, D*6]) layout_y = [0, 0] -fi.reinitialize(layout_x=layout_x, layout_y=layout_y) +fi.set(layout_x=layout_x, layout_y=layout_y) # Sweep wind speeds but keep wind direction fixed ws_array = np.arange(5,25,0.5) wd_array = 270.0 * np.ones_like(ws_array) -fi.reinitialize(wind_directions=wd_array,wind_speeds=ws_array) +fi.set(wind_directions=wd_array,wind_speeds=ws_array) # Define a matrix of yaw angles to be all 0 # Note that yaw angles is now specified as a matrix whose dimensions are @@ -37,9 +37,10 @@ n_findex = num_wd # Could be either num_wd or num_ws num_turbine = len(layout_x) yaw_angles = np.zeros((n_findex, num_turbine)) +fi.set(yaw_angles=yaw_angles) # Calculate -fi.calculate_wake(yaw_angles=yaw_angles) +fi.run() # Collect the turbine powers turbine_powers = fi.get_turbine_powers() / 1E3 # In kW diff --git a/examples/06_sweep_wind_conditions.py b/examples/06_sweep_wind_conditions.py index 9b6e28902..9debf07ca 100644 --- a/examples/06_sweep_wind_conditions.py +++ b/examples/06_sweep_wind_conditions.py @@ -27,7 +27,7 @@ D = 126.0 layout_x = np.array([0, D*6, D*12, D*18, D*24]) layout_y = [0, 0, 0, 0, 0] -fi.reinitialize(layout_x=layout_x, layout_y=layout_y) +fi.set(layout_x=layout_x, layout_y=layout_y) # In this case we want to check a grid of wind speed and direction combinations wind_speeds_to_expand = np.arange(6, 9, 1.0) @@ -46,7 +46,7 @@ wd_array = wind_directions_grid.flatten() # Now reinitialize FLORIS -fi.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) +fi.set(wind_speeds=ws_array, wind_directions=wd_array) # Define a matrix of yaw angles to be all 0 # Note that yaw angles is now specified as a matrix whose dimensions are @@ -56,9 +56,10 @@ n_findex = num_wd # Could be either num_wd or num_ws num_turbine = len(layout_x) yaw_angles = np.zeros((n_findex, num_turbine)) +fi.set(yaw_angles=yaw_angles) # Calculate -fi.calculate_wake(yaw_angles=yaw_angles) +fi.run() # Collect the turbine powers turbine_powers = fi.get_turbine_powers() / 1e3 # In kW diff --git a/examples/07_calc_aep_from_rose.py b/examples/07_calc_aep_from_rose.py index ea1d8c9b9..18db25a71 100644 --- a/examples/07_calc_aep_from_rose.py +++ b/examples/07_calc_aep_from_rose.py @@ -47,7 +47,7 @@ # Assume a three-turbine wind farm with 5D spacing. We reinitialize the # floris object and assign the layout, wind speed and wind direction arrays. D = fi.floris.farm.rotor_diameters[0] # Rotor diameter for the NREL 5 MW -fi.reinitialize( +fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wind_directions, diff --git a/examples/09_compare_farm_power_with_neighbor.py b/examples/09_compare_farm_power_with_neighbor.py index b20359c83..c326eee71 100644 --- a/examples/09_compare_farm_power_with_neighbor.py +++ b/examples/09_compare_farm_power_with_neighbor.py @@ -24,16 +24,16 @@ D = 126. layout_x = np.array([0, D*6, 0, D*6]) layout_y = [0, 0, D*3, D*3] -fi.reinitialize(layout_x = layout_x, layout_y = layout_y) +fi.set(layout_x=layout_x, layout_y=layout_y) # Define a simple wind rose with just 1 wind speed wd_array = np.arange(0,360,4.) ws_array = 8.0 * np.ones_like(wd_array) -fi.reinitialize(wind_directions=wd_array, wind_speeds=ws_array) +fi.set(wind_directions=wd_array, wind_speeds=ws_array) # Calculate -fi.calculate_wake() +fi.run() # Collect the farm power farm_power_base = fi.get_farm_power() / 1E3 # In kW @@ -41,14 +41,14 @@ # Add a neighbor to the east layout_x = np.array([0, D*6, 0, D*6, D*12, D*15, D*12, D*15]) layout_y = np.array([0, 0, D*3, D*3, 0, 0, D*3, D*3]) -fi.reinitialize(layout_x = layout_x, layout_y = layout_y) +fi.set(layout_x=layout_x, layout_y=layout_y) # Define the weights to exclude the neighboring farm from calcuations of power turbine_weights = np.zeros(len(layout_x), dtype=int) turbine_weights[0:4] = 1.0 # Calculate -fi.calculate_wake() +fi.run() # Collect the farm power with the neightbor farm_power_neighbor = fi.get_farm_power(turbine_weights=turbine_weights) / 1E3 # In kW diff --git a/examples/10_opt_yaw_single_ws.py b/examples/10_opt_yaw_single_ws.py index 15d1c31bc..ac39b5b4e 100644 --- a/examples/10_opt_yaw_single_ws.py +++ b/examples/10_opt_yaw_single_ws.py @@ -23,7 +23,7 @@ wd_array = np.arange(0.0, 360.0, 3.0) ws_array = 8.0 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW -fi.reinitialize( +fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, diff --git a/examples/11_opt_yaw_multiple_ws.py b/examples/11_opt_yaw_multiple_ws.py index a3d38d307..798750e0b 100644 --- a/examples/11_opt_yaw_multiple_ws.py +++ b/examples/11_opt_yaw_multiple_ws.py @@ -35,7 +35,7 @@ # Reinitialize as a 3-turbine farm with range of WDs and WSs D = 126.0 # Rotor diameter for the NREL 5 MW -fi.reinitialize( +fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, diff --git a/examples/12_optimize_yaw.py b/examples/12_optimize_yaw.py index a1d676f23..55f1547c8 100644 --- a/examples/12_optimize_yaw.py +++ b/examples/12_optimize_yaw.py @@ -35,7 +35,7 @@ def load_floris(): 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), ) - fi.reinitialize(layout_x=X.flatten(), layout_y=Y.flatten()) + fi.set(layout_x=X.flatten(), layout_y=Y.flatten()) return fi @@ -63,10 +63,10 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): wd_array = np.array(df_windrose["wd"], dtype=float) ws_array = np.array(df_windrose["ws"], dtype=float) yaw_angles = np.array(df_windrose[yaw_cols], dtype=float) - fi.reinitialize(wind_directions=wd_array, wind_speeds=ws_array) + fi.set(wind_directions=wd_array, wind_speeds=ws_array, yaw_angles=yaw_angles) # Calculate FLORIS for every WD and WS combination and get the farm power - fi.calculate_wake(yaw_angles) + fi.run() farm_power_array = fi.get_farm_power() # Now map FLORIS solutions to dataframe @@ -90,7 +90,7 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): # Load FLORIS fi = load_floris() ws_array = 8.0 * np.ones_like(fi.floris.flow_field.wind_directions) - fi.reinitialize(wind_speeds=ws_array) + fi.set(wind_speeds=ws_array) nturbs = len(fi.layout_x) # First, get baseline AEP, without wake steering @@ -109,7 +109,7 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): start_time = timerpc() wd_array = np.arange(0.0, 360.0, 5.0) ws_array = 8.0 * np.ones_like(wd_array) - fi.reinitialize( + fi.set( wind_directions=wd_array, wind_speeds=ws_array, ) diff --git a/examples/12_optimize_yaw_in_parallel.py b/examples/12_optimize_yaw_in_parallel.py index d46c94e0c..955c32e06 100644 --- a/examples/12_optimize_yaw_in_parallel.py +++ b/examples/12_optimize_yaw_in_parallel.py @@ -23,7 +23,7 @@ def load_floris(): 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), ) - fi.reinitialize(layout_x=X.flatten(), layout_y=Y.flatten()) + fi.set(layout_x=X.flatten(), layout_y=Y.flatten()) return fi @@ -59,7 +59,7 @@ def load_windrose(): wd_array = wind_directions_grid.flatten() ws_array = wind_speeds_grid.flatten() - fi_aep.reinitialize( + fi_aep.set( wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=[0.08], # Assume 8% turbulence intensity @@ -112,7 +112,7 @@ def load_windrose(): wd_array_opt = wind_directions_grid.flatten() ws_array_opt = wind_speeds_grid.flatten() - fi_opt.reinitialize( + fi_opt.set( wind_directions=wd_array_opt, wind_speeds=ws_array_opt, turbulence_intensities=[0.08], # Assume 8% turbulence intensity diff --git a/examples/13_optimize_yaw_with_neighboring_farm.py b/examples/13_optimize_yaw_with_neighboring_farm.py index bd201717b..e388909c2 100644 --- a/examples/13_optimize_yaw_with_neighboring_farm.py +++ b/examples/13_optimize_yaw_with_neighboring_farm.py @@ -51,7 +51,7 @@ def load_floris(): turbine_weights[0:10] = 1.0 # Now reinitialize FLORIS layout - fi.reinitialize(layout_x = X, layout_y = Y) + fi.set(layout_x = X, layout_y = Y) # And visualize the floris layout fig, ax = plt.subplots() @@ -180,13 +180,13 @@ def yaw_opt_interpolant(wd, ws): # Create a FLORIS object for AEP calculations fi_AEP = fi.copy() - fi_AEP.reinitialize(wind_speeds=ws_windrose, wind_directions=wd_windrose) + fi_AEP.set(wind_speeds=ws_windrose, wind_directions=wd_windrose) # And create a separate FLORIS object for optimization fi_opt = fi.copy() wd_array = np.arange(0.0, 360.0, 3.0) ws_array = 8.0 * np.ones_like(wd_array) - fi_opt.reinitialize( + fi_opt.set( wind_directions=wd_array, wind_speeds=ws_array, ) @@ -222,7 +222,7 @@ def yaw_opt_interpolant(wd, ws): # Optimize yaw angles while ignoring neighboring farm fi_opt_subset = fi_opt.copy() - fi_opt_subset.reinitialize( + fi_opt_subset.set( layout_x = fi.layout_x[turbs_to_opt], layout_y = fi.layout_y[turbs_to_opt] ) @@ -239,15 +239,15 @@ def yaw_opt_interpolant(wd, ws): print(" ") print("===========================================================") print("Calculating annual energy production with wake steering (AEP)...") + fi_AEP.set(yaw_angles=yaw_angles_opt_nonb_AEP) aep_opt_subset_nonb = 1.0e-9 * fi_AEP.get_farm_AEP( freq=freq_windrose, turbine_weights=turbine_weights, - yaw_angles=yaw_angles_opt_nonb_AEP, ) + fi_AEP.set(yaw_angles=yaw_angles_opt_AEP) aep_opt_subset = 1.0e-9 * fi_AEP.get_farm_AEP( freq=freq_windrose, turbine_weights=turbine_weights, - yaw_angles=yaw_angles_opt_AEP, ) uplift_subset_nonb = 100.0 * (aep_opt_subset_nonb - aep_bl_subset) / aep_bl_subset uplift_subset = 100.0 * (aep_opt_subset - aep_bl_subset) / aep_bl_subset @@ -271,15 +271,18 @@ def yaw_opt_interpolant(wd, ws): yaw_angles_opt_nonb[:, turbs_to_opt] = yaw_opt_interpolant_nonb(wd, ws) fi_opt = fi_opt.copy() - fi_opt.calculate_wake(yaw_angles=np.zeros_like(yaw_angles_opt)) + fi_opt.set(yaw_angles=np.zeros_like(yaw_angles_opt)) + fi_opt.run() farm_power_bl_subset = fi_opt.get_farm_power(turbine_weights).flatten() fi_opt = fi_opt.copy() - fi_opt.calculate_wake(yaw_angles=yaw_angles_opt) + fi_opt.set(yaw_angles=yaw_angles_opt) + fi_opt.run() farm_power_opt_subset = fi_opt.get_farm_power(turbine_weights).flatten() fi_opt = fi_opt.copy() - fi_opt.calculate_wake(yaw_angles=yaw_angles_opt_nonb) + fi_opt.set(yaw_angles=yaw_angles_opt_nonb) + fi_opt.run() farm_power_opt_subset_nonb = fi_opt.get_farm_power(turbine_weights).flatten() fig, ax = plt.subplots() diff --git a/examples/14_compare_yaw_optimizers.py b/examples/14_compare_yaw_optimizers.py index 16d6d9767..98a3937b2 100644 --- a/examples/14_compare_yaw_optimizers.py +++ b/examples/14_compare_yaw_optimizers.py @@ -38,7 +38,7 @@ D = 126.0 # Rotor diameter for the NREL 5 MW wd_array = np.arange(0.0, 360.0, 3.0) ws_array = 8.0 * np.ones_like(wd_array) -fi.reinitialize( +fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, @@ -92,7 +92,8 @@ # Before plotting results, need to compute values for GEOOPT since it doesn't compute # power within the optimization -fi.calculate_wake(yaw_angles=yaw_angles_opt_geo) +fi.set(yaw_angles=yaw_angles_opt_geo) +fi.run() geo_farm_power = fi.get_farm_power().squeeze() diff --git a/examples/15_optimize_layout.py b/examples/15_optimize_layout.py index ee477ade5..f35a08a35 100644 --- a/examples/15_optimize_layout.py +++ b/examples/15_optimize_layout.py @@ -32,7 +32,7 @@ freq = (np.abs(np.sort(np.random.randn(len(wind_directions))))) freq = freq / freq.sum() -fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) +fi.set(wind_directions=wind_directions, wind_speeds=wind_speeds) # The boundaries for the turbines, specified as vertices boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] @@ -41,7 +41,7 @@ D = 126.0 # rotor diameter for the NREL 5MW layout_x = [0, 0, 6 * D, 6 * D] layout_y = [0, 4 * D, 0, 4 * D] -fi.reinitialize(layout_x=layout_x, layout_y=layout_y) +fi.set(layout_x=layout_x, layout_y=layout_y) # Setup the optimization problem layout_opt = LayoutOptimizationScipy(fi, boundaries, freq=freq) @@ -51,10 +51,10 @@ # Get the resulting improvement in AEP print('... calcuating improvement in AEP') -fi.calculate_wake() +fi.run() base_aep = fi.get_farm_AEP(freq=freq) / 1e6 -fi.reinitialize(layout_x=sol[0], layout_y=sol[1]) -fi.calculate_wake() +fi.set(layout_x=sol[0], layout_y=sol[1]) +fi.run() opt_aep = fi.get_farm_AEP(freq=freq) / 1e6 percent_gain = 100 * (opt_aep - base_aep) / base_aep diff --git a/examples/16_heterogeneous_inflow.py b/examples/16_heterogeneous_inflow.py index 2ac09ebf0..cc71b80c4 100644 --- a/examples/16_heterogeneous_inflow.py +++ b/examples/16_heterogeneous_inflow.py @@ -37,7 +37,7 @@ fi_2d = FlorisInterface("inputs/gch_heterogeneous_inflow.yaml") # Set shear to 0.0 to highlight the heterogeneous inflow -fi_2d.reinitialize(wind_shear=0.0) +fi_2d.set(wind_shear=0.0) # Using the FlorisInterface functions for generating plots, run FLORIS # and extract 2D planes of data. @@ -105,10 +105,10 @@ # Note that we initialize FLORIS with a homogenous flow input file, but # then configure the heterogeneous inflow via the reinitialize method. fi_3d = FlorisInterface("inputs/gch.yaml") -fi_3d.reinitialize(heterogenous_inflow_config=heterogenous_inflow_config) +fi_3d.set(heterogenous_inflow_config=heterogenous_inflow_config) # Set shear to 0.0 to highlight the heterogeneous inflow -fi_3d.reinitialize(wind_shear=0.0) +fi_3d.set(wind_shear=0.0) # Using the FlorisInterface functions for generating plots, run FLORIS # and extract 2D planes of data. diff --git a/examples/16b_heterogeneity_multiple_ws_wd.py b/examples/16b_heterogeneity_multiple_ws_wd.py index 46cd553a7..9fc662314 100644 --- a/examples/16b_heterogeneity_multiple_ws_wd.py +++ b/examples/16b_heterogeneity_multiple_ws_wd.py @@ -24,14 +24,14 @@ fi = FlorisInterface("inputs/gch_heterogeneous_inflow.yaml") # Set shear to 0.0 to highlight the heterogeneous inflow -fi.reinitialize( +fi.set( wind_shear=0.0, wind_speeds=[8.0], wind_directions=[270.], layout_x=[0, 0], layout_y=[-299., 299.], ) -fi.calculate_wake() +fi.run() turbine_powers = fi.get_turbine_powers().flatten() / 1000. # Show the initial results @@ -52,12 +52,12 @@ 'x': x_locs, 'y': y_locs, } -fi.reinitialize( +fi.set( wind_directions=[270.0, 275.0], wind_speeds=[8.0, 8.0], heterogenous_inflow_config=heterogenous_inflow_config ) -fi.calculate_wake() +fi.run() turbine_powers = np.round(fi.get_turbine_powers() / 1000.) print('With wind directions now set to 270 and 275 deg') print(f'T0: {turbine_powers[:, 0].flatten()} kW') @@ -69,6 +69,6 @@ # print() # print('~~ Now forcing an error by not matching wd and het_map') -# fi.reinitialize(wind_directions=[270, 275, 280], wind_speeds=3*[8.0]) -# fi.calculate_wake() +# fi.set(wind_directions=[270, 275, 280], wind_speeds=3*[8.0]) +# fi.run() # turbine_powers = np.round(fi.get_turbine_powers() / 1000.) diff --git a/examples/16c_optimize_layout_with_heterogeneity.py b/examples/16c_optimize_layout_with_heterogeneity.py index 1d30bd5e6..a618aaa1d 100644 --- a/examples/16c_optimize_layout_with_heterogeneity.py +++ b/examples/16c_optimize_layout_with_heterogeneity.py @@ -63,7 +63,7 @@ 'y': y_locs, } -fi.reinitialize( +fi.set( layout_x=layout_x, layout_y=layout_y, wind_directions=wind_directions, @@ -87,10 +87,10 @@ # Get the resulting improvement in AEP print('... calcuating improvement in AEP') -fi.calculate_wake() +fi.run() base_aep = fi.get_farm_AEP(freq=freq) / 1e6 -fi.reinitialize(layout_x=sol[0], layout_y=sol[1]) -fi.calculate_wake() +fi.set(layout_x=sol[0], layout_y=sol[1]) +fi.run() opt_aep = fi.get_farm_AEP(freq=freq) / 1e6 percent_gain = 100 * (opt_aep - base_aep) / base_aep @@ -111,7 +111,7 @@ # Rerun the layout optimization with geometric yaw enabled print("\nReoptimizing with geometric yaw enabled.") -fi.reinitialize(layout_x=layout_x, layout_y=layout_y) +fi.set(layout_x=layout_x, layout_y=layout_y) layout_opt = LayoutOptimizationScipy( fi, boundaries, @@ -127,11 +127,10 @@ # Get the resulting improvement in AEP print('... calcuating improvement in AEP') -fi.calculate_wake() +fi.set(yaw_angles=np.zeros_like(layout_opt.yaw_angles)) base_aep = fi.get_farm_AEP(freq=freq) / 1e6 -fi.reinitialize(layout_x=sol[0], layout_y=sol[1]) -fi.calculate_wake() -opt_aep = fi.get_farm_AEP(freq=freq, yaw_angles=layout_opt.yaw_angles) / 1e6 +fi.set(layout_x=sol[0], layout_y=sol[1], yaw_angles=layout_opt.yaw_angles) +opt_aep = fi.get_farm_AEP(freq=freq) / 1e6 percent_gain = 100 * (opt_aep - base_aep) / base_aep # Print and plot the results diff --git a/examples/18_check_turbine.py b/examples/18_check_turbine.py index 423c67e42..a19a99306 100644 --- a/examples/18_check_turbine.py +++ b/examples/18_check_turbine.py @@ -19,11 +19,11 @@ # Grab the gch model fi = FlorisInterface("inputs/gch.yaml") -# Make one turbine sim -fi.reinitialize(layout_x=[0], layout_y=[0]) +# Make one turbine simulation +fi.set(layout_x=[0], layout_y=[0]) -# Apply wind speeds -fi.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) +# Apply wind directions and wind speeds +fi.set(wind_speeds=ws_array, wind_directions=wd_array) # Get a list of available turbine models provided through FLORIS, and remove # multi-dimensional Cp/Ct turbine definitions as they require different handling @@ -40,7 +40,7 @@ for t in turbines: # Set t as the turbine - fi.reinitialize(turbine_type=[t]) + fi.set(turbine_type=[t]) # Since we are changing the turbine type, make a matching change to the reference wind height fi.assign_hub_height_to_ref_height() @@ -68,12 +68,12 @@ # Try a few density for density in [1.15,1.225,1.3]: - fi.reinitialize(air_density=density) + fi.set(air_density=density) # POWER CURVE ax = axarr[0] - fi.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) - fi.calculate_wake() + fi.set(wind_speeds=ws_array, wind_directions=wd_array) + fi.run() turbine_powers = fi.get_turbine_powers().flatten() / 1e3 if density == 1.225: ax.plot(ws_array,turbine_powers,label='Air Density = %.3f' % density, lw=2, color='k') @@ -87,10 +87,11 @@ # Power loss to yaw, try a range of yaw angles ax = axarr[1] - fi.reinitialize(wind_speeds=[wind_speed_to_test_yaw], wind_directions=[270.0]) + fi.set(wind_speeds=[wind_speed_to_test_yaw], wind_directions=[270.0]) yaw_result = [] for yaw in yaw_angles: - fi.calculate_wake(yaw_angles=np.array([[yaw]])) + fi.set(yaw_angles=np.array([[yaw]])) + fi.run() turbine_powers = fi.get_turbine_powers().flatten() / 1e3 yaw_result.append(turbine_powers[0]) if density == 1.225: diff --git a/examples/21_demo_time_series.py b/examples/21_demo_time_series.py index 7dfbf78a2..3c489ff45 100644 --- a/examples/21_demo_time_series.py +++ b/examples/21_demo_time_series.py @@ -14,7 +14,7 @@ fi = FlorisInterface("inputs/gch.yaml") # Convert to a simple two turbine layout -fi.reinitialize(layout_x=[0, 500.], layout_y=[0., 0.]) +fi.set(layout_x=[0, 500.], layout_y=[0., 0.]) # Create a fake time history where wind speed steps in the middle while wind direction # Walks randomly @@ -28,10 +28,10 @@ # Now intiialize FLORIS object to this history using time_series flag -fi.reinitialize(wind_directions=wd, wind_speeds=ws) +fi.set(wind_directions=wd, wind_speeds=ws) # Collect the powers -fi.calculate_wake() +fi.run() turbine_powers = fi.get_turbine_powers() / 1000. # Show the dimensions diff --git a/examples/22_get_wind_speed_at_turbines.py b/examples/22_get_wind_speed_at_turbines.py index 6eea39179..b5dfeb7d4 100644 --- a/examples/22_get_wind_speed_at_turbines.py +++ b/examples/22_get_wind_speed_at_turbines.py @@ -10,10 +10,10 @@ fi = FlorisInterface("inputs/gch.yaml") # Create a 4-turbine layouts -fi.reinitialize(layout_x=[0, 0., 500., 500.], layout_y=[0., 300., 0., 300.]) +fi.set(layout_x=[0, 0., 500., 500.], layout_y=[0., 300., 0., 300.]) # Calculate wake -fi.calculate_wake() +fi.run() # Collect the wind speed at all the turbine points u_points = fi.floris.flow_field.u diff --git a/examples/23_visualize_layout.py b/examples/23_visualize_layout.py index 9628ad7f9..b3cc39538 100644 --- a/examples/23_visualize_layout.py +++ b/examples/23_visualize_layout.py @@ -14,7 +14,7 @@ fi = FlorisInterface("inputs/gch.yaml") # Assign a 6-turbine layout -fi.reinitialize(layout_x=[0, 100, 500, 1000, 1200,500], layout_y=[0, 800, 150, 500, 0,500]) +fi.set(layout_x=[0, 100, 500, 1000, 1200,500], layout_y=[0, 800, 150, 500, 0,500]) # Give turbines specific names turbine_names = ['T01', 'T02','T03','S01','X01', 'X02'] diff --git a/examples/24_floating_turbine_models.py b/examples/24_floating_turbine_models.py index 12f731816..db586608f 100644 --- a/examples/24_floating_turbine_models.py +++ b/examples/24_floating_turbine_models.py @@ -40,13 +40,13 @@ # Calculate across wind speeds ws_array = np.arange(3., 25., 1.) wd_array = 270.0 * np.ones_like(ws_array) -fi_fixed.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) -fi_floating.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) -fi_floating_defined_floating.reinitialize(wind_speeds=ws_array, wind_directions=wd_array) +fi_fixed.set(wind_speeds=ws_array, wind_directions=wd_array) +fi_floating.set(wind_speeds=ws_array, wind_directions=wd_array) +fi_floating_defined_floating.set(wind_speeds=ws_array, wind_directions=wd_array) -fi_fixed.calculate_wake() -fi_floating.calculate_wake() -fi_floating_defined_floating.calculate_wake() +fi_fixed.run() +fi_floating.run() +fi_floating_defined_floating.run() # Grab power power_fixed = fi_fixed.get_turbine_powers().flatten()/1000. diff --git a/examples/25_tilt_driven_vertical_wake_deflection.py b/examples/25_tilt_driven_vertical_wake_deflection.py index 69a05ac91..05575a40f 100644 --- a/examples/25_tilt_driven_vertical_wake_deflection.py +++ b/examples/25_tilt_driven_vertical_wake_deflection.py @@ -49,7 +49,7 @@ for i, (fi, tilt) in enumerate(zip([fi_5, fi_15], [5, 15])): # Farm layout and wind conditions - fi.reinitialize( + fi.set( layout_x=[x * 5.0 * D for x in range(num_in_row)], layout_y=[0.0]*num_in_row, wind_speeds=[8.0], @@ -57,7 +57,7 @@ ) # Flow solve and power computation - fi.calculate_wake() + fi.run() powers[i,:] = fi.get_turbine_powers().flatten() # Compute flow slices diff --git a/examples/26_empirical_gauss_velocity_deficit_parameters.py b/examples/26_empirical_gauss_velocity_deficit_parameters.py index 1b48f8543..2dc5bb43e 100644 --- a/examples/26_empirical_gauss_velocity_deficit_parameters.py +++ b/examples/26_empirical_gauss_velocity_deficit_parameters.py @@ -103,7 +103,7 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): # Load input yaml and define farm layout fi = FlorisInterface("inputs/emgauss.yaml") D = fi.floris.farm.rotor_diameters[0] -fi.reinitialize( +fi.set( layout_x=[x*5.0*D for x in range(num_in_row)], layout_y=[0.0]*num_in_row, wind_speeds=[8.0], @@ -114,7 +114,7 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): fi_dict = fi.floris.as_dict() # Run wake calculation -fi.calculate_wake() +fi.run() # Look at the powers of each turbine turbine_powers = fi.get_turbine_powers().flatten()/1e6 @@ -138,12 +138,12 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): fi_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ ['wake_expansion_rates'] = [0.03, 0.015] fi = FlorisInterface(fi_dict_mod) -fi.reinitialize( +fi.set( wind_speeds=[8.0], wind_directions=[270.0] ) -fi.calculate_wake() +fi.run() turbine_powers = fi.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw @@ -165,12 +165,12 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): ['breakpoints_D'] = [5, 10] fi = FlorisInterface(fi_dict_mod) -fi.reinitialize( +fi.set( wind_speeds=[8.0], wind_directions=[270.0] ) -fi.calculate_wake() +fi.run() turbine_powers = fi.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw @@ -187,12 +187,12 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): fi_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ ['mixing_gain_velocity'] = 3.0 fi = FlorisInterface(fi_dict_mod) -fi.reinitialize( +fi.set( wind_speeds=[8.0], wind_directions=[270.0] ) -fi.calculate_wake() +fi.run() turbine_powers = fi.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw diff --git a/examples/27_empirical_gauss_deflection_parameters.py b/examples/27_empirical_gauss_deflection_parameters.py index 1b0095a23..5a24aaec7 100644 --- a/examples/27_empirical_gauss_deflection_parameters.py +++ b/examples/27_empirical_gauss_deflection_parameters.py @@ -107,18 +107,19 @@ def generate_wake_visualization(fi, title=None): # Load input yaml and define farm layout fi = FlorisInterface("inputs/emgauss.yaml") D = fi.floris.farm.rotor_diameters[0] -fi.reinitialize( +fi.set( layout_x=[x*5.0*D for x in range(num_in_row)], layout_y=[0.0]*num_in_row, wind_speeds=[8.0], - wind_directions=[270.0] + wind_directions=[270.0], + yaw_angles=yaw_angles, ) # Save dictionary to modify later fi_dict = fi.floris.as_dict() # Run wake calculation -fi.calculate_wake(yaw_angles=yaw_angles) +fi.run() # Look at the powers of each turbine turbine_powers = fi.get_turbine_powers().flatten()/1e6 @@ -144,12 +145,13 @@ def generate_wake_visualization(fi, title=None): ['horizontal_deflection_gain_D'] = 5.0 fi = FlorisInterface(fi_dict_mod) -fi.reinitialize( +fi.set( wind_speeds=[8.0], - wind_directions=[270.0] + wind_directions=[270.0], + yaw_angles=yaw_angles, ) -fi.calculate_wake(yaw_angles=yaw_angles) +fi.run() turbine_powers = fi.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw @@ -167,12 +169,13 @@ def generate_wake_visualization(fi, title=None): ['mixing_gain_deflection'] = 100.0 fi = FlorisInterface(fi_dict_mod) -fi.reinitialize( +fi.set( wind_speeds=[8.0], - wind_directions=[270.0] + wind_directions=[270.0], + yaw_angles=yaw_angles, ) -fi.calculate_wake(yaw_angles=yaw_angles) +fi.run() turbine_powers = fi.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw @@ -193,12 +196,13 @@ def generate_wake_visualization(fi, title=None): fi_dict_mod['wake']['wake_deflection_parameters']['empirical_gauss']\ ['yaw_added_mixing_gain'] = 1.0 fi = FlorisInterface(fi_dict_mod) -fi.reinitialize( +fi.set( wind_speeds=[8.0], - wind_directions=[270.0] + wind_directions=[270.0], + yaw_angles=yaw_angles, ) -fi.calculate_wake(yaw_angles=yaw_angles) +fi.run() turbine_powers = fi.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw diff --git a/examples/28_extract_wind_speed_at_points.py b/examples/28_extract_wind_speed_at_points.py index 04ef2daa5..6e68b988b 100644 --- a/examples/28_extract_wind_speed_at_points.py +++ b/examples/28_extract_wind_speed_at_points.py @@ -30,7 +30,7 @@ # Set up a two-turbine farm D = 126 -fi.reinitialize(layout_x=[0, 3 * D], layout_y=[0, 3 * D]) +fi.set(layout_x=[0, 3 * D], layout_y=[0, 3 * D]) fig, ax = plt.subplots(1,2) fig.set_size_inches(10,4) @@ -39,7 +39,7 @@ # Set the wind direction to run 360 degrees wd_array = np.arange(0, 360, 1) ws_array = 8.0 * np.ones_like(wd_array) -fi.reinitialize(wind_directions=wd_array, wind_speeds=ws_array) +fi.set(wind_directions=wd_array, wind_speeds=ws_array) # Simulate a met mast in between the turbines if met_mast_option == 0: diff --git a/examples/29_floating_vs_fixedbottom_farm.py b/examples/29_floating_vs_fixedbottom_farm.py index a6fc380a1..e141144aa 100644 --- a/examples/29_floating_vs_fixedbottom_farm.py +++ b/examples/29_floating_vs_fixedbottom_farm.py @@ -38,17 +38,17 @@ x = x.flatten() y = y.flatten() for fi in [fi_fixed, fi_floating]: - fi.reinitialize(layout_x=x, layout_y=y) + fi.set(layout_x=x, layout_y=y) # Compute a single wind speed and direction, power and wakes for fi in [fi_fixed, fi_floating]: - fi.reinitialize( + fi.set( layout_x=x, layout_y=y, wind_speeds=[10], wind_directions=[270] ) - fi.calculate_wake() + fi.run() powers_fixed = fi_fixed.get_turbine_powers() powers_floating = fi_floating.get_turbine_powers() @@ -118,7 +118,7 @@ freq = freq / np.sum(freq) for fi in [fi_fixed, fi_floating]: - fi.reinitialize( + fi.set( wind_directions=wd_grid.flatten(), wind_speeds= ws_grid.flatten(), ) diff --git a/examples/30_multi_dimensional_cp_ct.py b/examples/30_multi_dimensional_cp_ct.py index 429159a0b..af28d6500 100644 --- a/examples/30_multi_dimensional_cp_ct.py +++ b/examples/30_multi_dimensional_cp_ct.py @@ -44,17 +44,20 @@ fi = FlorisInterface("inputs/gch_multi_dim_cp_ct.yaml") # Convert to a simple two turbine layout -fi.reinitialize(layout_x=[0., 500.], layout_y=[0., 0.]) +fi.set(layout_x=[0., 500.], layout_y=[0., 0.]) # Single wind speed and wind direction print('\n========================= Single Wind Direction and Wind Speed =========================') # Get the turbine powers assuming 1 wind speed and 1 wind direction -fi.reinitialize(wind_directions=[270.0], wind_speeds=[8.0]) +fi.set(wind_directions=[270.0], wind_speeds=[8.0]) # Set the yaw angles to 0 yaw_angles = np.zeros([1, 2]) # 1 wind direction and wind speed, 2 turbines -fi.calculate_wake(yaw_angles=yaw_angles) +fi.set(yaw_angles=yaw_angles) + +# Calculate +fi.run() # Get the turbine powers turbine_powers = fi.get_turbine_powers() / 1000.0 @@ -68,9 +71,9 @@ wind_speeds = np.array([8.0, 9.0, 10.0]) wind_directions = np.array([270.0, 270.0, 270.0]) -fi.reinitialize(wind_speeds=wind_speeds, wind_directions=wind_directions) yaw_angles = np.zeros([3, 2]) # 3 wind directions/ speeds, 2 turbines -fi.calculate_wake(yaw_angles=yaw_angles) +fi.set(wind_speeds=wind_speeds, wind_directions=wind_directions, yaw_angles=yaw_angles) +fi.run() turbine_powers = fi.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") print(turbine_powers) @@ -82,9 +85,9 @@ wind_speeds = np.tile([8.0, 9.0, 10.0], 3) wind_directions = np.repeat([260.0, 270.0, 280.0], 3) -fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) yaw_angles = np.zeros([9, 2]) # 9 wind directions/ speeds, 2 turbines -fi.calculate_wake(yaw_angles=yaw_angles) +fi.set(wind_directions=wind_directions, wind_speeds=wind_speeds, yaw_angles=yaw_angles) +fi.run() turbine_powers = fi.get_turbine_powers()/1000. print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") print(turbine_powers) diff --git a/examples/31_multi_dimensional_cp_ct_2Hs.py b/examples/31_multi_dimensional_cp_ct_2Hs.py index 032df5fa9..b61fcb0f0 100644 --- a/examples/31_multi_dimensional_cp_ct_2Hs.py +++ b/examples/31_multi_dimensional_cp_ct_2Hs.py @@ -28,18 +28,18 @@ fi_hs_1 = FlorisInterface(fi_dict_mod) # Set both cases to 3 turbine layout -fi.reinitialize(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) -fi_hs_1.reinitialize(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) +fi.set(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) +fi_hs_1.set(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) # Use a sweep of wind speeds wind_speeds = np.arange(5, 20, 1.0) wind_directions = 270.0 * np.ones_like(wind_speeds) -fi.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) -fi_hs_1.reinitialize(wind_directions=wind_directions, wind_speeds=wind_speeds) +fi.set(wind_directions=wind_directions, wind_speeds=wind_speeds) +fi_hs_1.set(wind_directions=wind_directions, wind_speeds=wind_speeds) # Calculate wakes with baseline yaw -fi.calculate_wake() -fi_hs_1.calculate_wake() +fi.run() +fi_hs_1.run() # Collect the turbine powers in kW turbine_powers = fi.get_turbine_powers()/1000. diff --git a/examples/32_plot_velocity_deficit_profiles.py b/examples/32_plot_velocity_deficit_profiles.py index a556a666c..9f28ce40c 100644 --- a/examples/32_plot_velocity_deficit_profiles.py +++ b/examples/32_plot_velocity_deficit_profiles.py @@ -55,7 +55,7 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): homogeneous_wind_speed = 8.0 fi = FlorisInterface("inputs/gch.yaml") - fi.reinitialize(layout_x=[0.0], layout_y=[0.0]) + fi.set(layout_x=[0.0], layout_y=[0.0]) # ------------------------------ Single-turbine layout ------------------------------ # We first show how to sample and plot velocity deficit profiles on a single-turbine layout. @@ -131,7 +131,7 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): # Let (x_t1, y_t1) be the location of the second turbine x_t1 = 2 * D y_t1 = -2 * D - fi.reinitialize(wind_directions=[wind_direction], layout_x=[0.0, x_t1], layout_y=[0.0, y_t1]) + fi.set(wind_directions=[wind_direction], layout_x=[0.0, x_t1], layout_y=[0.0, y_t1]) # Extract profiles at a set of downstream distances from the starting point (x_start, y_start) cross_profiles = fi.sample_velocity_deficit_profiles( diff --git a/examples/33_specify_turbine_power_curve.py b/examples/33_specify_turbine_power_curve.py index 2359cebb8..6b2c2f4b2 100644 --- a/examples/33_specify_turbine_power_curve.py +++ b/examples/33_specify_turbine_power_curve.py @@ -43,14 +43,14 @@ wind_speeds = np.linspace(1, 15, 100) wind_directions = 270 * np.ones_like(wind_speeds) # Replace the turbine(s) in the FLORIS model with the created one -fi.reinitialize( +fi.set( layout_x=[0], layout_y=[0], wind_directions=wind_directions, wind_speeds=wind_speeds, turbine_type=[turbine_dict] ) -fi.calculate_wake() +fi.run() powers = fi.get_farm_power() diff --git a/examples/34_wind_data.py b/examples/34_wind_data.py index 44a40a99d..79469c988 100644 --- a/examples/34_wind_data.py +++ b/examples/34_wind_data.py @@ -60,19 +60,19 @@ # Now set up a FLORIS model and initialize it using the time series and wind rose fi = FlorisInterface("inputs/gch.yaml") -fi.reinitialize(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) +fi.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) fi_time_series = fi.copy() fi_wind_rose = fi.copy() fi_wind_ti_rose = fi.copy() -fi_time_series.reinitialize(wind_data=time_series) -fi_wind_rose.reinitialize(wind_data=wind_rose) -fi_wind_ti_rose.reinitialize(wind_data=wind_ti_rose) +fi_time_series.set(wind_data=time_series) +fi_wind_rose.set(wind_data=wind_rose) +fi_wind_ti_rose.set(wind_data=wind_ti_rose) -fi_time_series.calculate_wake() -fi_wind_rose.calculate_wake() -fi_wind_ti_rose.calculate_wake() +fi_time_series.run() +fi_wind_rose.run() +fi_wind_ti_rose.run() time_series_power = fi_time_series.get_farm_power() wind_rose_power = fi_wind_rose.get_farm_power() diff --git a/examples/35_sweep_ti.py b/examples/35_sweep_ti.py index 471a9cb67..23942150e 100644 --- a/examples/35_sweep_ti.py +++ b/examples/35_sweep_ti.py @@ -30,8 +30,8 @@ # Now set up a FLORIS model and initialize it using the time fi = FlorisInterface("inputs/gch.yaml") -fi.reinitialize(layout_x=[0, 500.0], layout_y=[0.0, 0.0], wind_data=time_series) -fi.calculate_wake() +fi.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0], wind_data=time_series) +fi.run() turbine_power = fi.get_turbine_powers() fig, axarr = plt.subplots(2, 1, sharex=True, figsize=(6, 6)) diff --git a/examples/40_test_derating.py b/examples/40_test_derating.py index 542e7963e..7f7f091f3 100644 --- a/examples/40_test_derating.py +++ b/examples/40_test_derating.py @@ -22,22 +22,24 @@ turbine_type["power_thrust_model"] = "simple-derating" # Convert to a simple two turbine layout with derating turbines -fi.reinitialize(layout_x=[0, 1000.0], layout_y=[0.0, 0.0], turbine_type=[turbine_type]) +fi.set(layout_x=[0, 1000.0], layout_y=[0.0, 0.0], turbine_type=[turbine_type]) # Set the wind directions and speeds to be constant over n_findex = N time steps N = 50 -fi.reinitialize(wind_directions=270 * np.ones(N), wind_speeds=10.0 * np.ones(N)) -fi.calculate_wake() +fi.set(wind_directions=270 * np.ones(N), wind_speeds=10.0 * np.ones(N)) +fi.run() turbine_powers_orig = fi.get_turbine_powers() # Add derating power_setpoints = np.tile(np.linspace(1, 6e6, N), 2).reshape(2, N).T -fi.calculate_wake(power_setpoints=power_setpoints) +fi.set(power_setpoints=power_setpoints) +fi.run() turbine_powers_derated = fi.get_turbine_powers() # Compute available power at downstream turbine power_setpoints_2 = np.array([np.linspace(1, 6e6, N), np.full(N, None)]).T -fi.calculate_wake(power_setpoints=power_setpoints_2) +fi.set(power_setpoints=power_setpoints_2) +fi.run() turbine_powers_avail_ds = fi.get_turbine_powers()[:,1] # Plot the results @@ -91,12 +93,14 @@ [2e6, None,], [None, 1e6] ]) -fi.reinitialize( +fi.set( wind_directions=270 * np.ones(len(yaw_angles)), wind_speeds=10.0 * np.ones(len(yaw_angles)), - turbine_type=[turbine_type]*2 + turbine_type=[turbine_type]*2, + yaw_angles=yaw_angles, + power_setpoints=power_setpoints, ) -fi.calculate_wake(yaw_angles=yaw_angles, power_setpoints=power_setpoints) +fi.run() turbine_powers = fi.get_turbine_powers() print(turbine_powers) diff --git a/examples/41_test_disable_turbines.py b/examples/41_test_disable_turbines.py index d276d8ce1..da514e224 100644 --- a/examples/41_test_disable_turbines.py +++ b/examples/41_test_disable_turbines.py @@ -24,7 +24,7 @@ ) as t: turbine_type = yaml.safe_load(t) turbine_type["power_thrust_model"] = "mixed" -fi.reinitialize(turbine_type=[turbine_type]) +fi.set(turbine_type=[turbine_type]) # Consider a wind farm of 3 aligned wind turbines layout = np.array([[0.0, 0.0], [500.0, 0.0], [1000.0, 0.0]]) @@ -42,15 +42,16 @@ # ------------------------------------------ # Reinitialize flow field -fi.reinitialize( +fi.set( layout_x=layout[:, 0], layout_y=layout[:, 1], wind_directions=wind_directions, wind_speeds=wind_speeds, + disable_turbines=disable_turbines, ) # # Compute wakes -fi.calculate_wake(disable_turbines=disable_turbines) +fi.run() # Results # ------------------------------------------ diff --git a/floris/simulation/flow_field.py b/floris/simulation/flow_field.py index 7de465da5..364462119 100644 --- a/floris/simulation/flow_field.py +++ b/floris/simulation/flow_field.py @@ -61,7 +61,7 @@ def turbulence_intensities_validator( # Check that the array is 1-dimensional if value.ndim != 1: raise ValueError( - "wind_directions must have 1-dimension" + "turbulence_intensities must have 1-dimension" ) # Check the turbulence intensity is either length 1 or n_findex @@ -90,7 +90,7 @@ def wind_speeds_validator(self, instance: attrs.Attribute, value: NDArrayFloat) "wind_speeds must have 1-dimension" ) - """Confirm wind speeds and wind directions have the same lenght""" + """Confirm wind speeds and wind directions have the same length""" if len(self.wind_directions) != len(self.wind_speeds): raise ValueError( f"wind_directions (length = {len(self.wind_directions)}) and " diff --git a/floris/simulation/turbine/operation_models.py b/floris/simulation/turbine/operation_models.py index dc12865fb..3d7a2b8e6 100644 --- a/floris/simulation/turbine/operation_models.py +++ b/floris/simulation/turbine/operation_models.py @@ -28,6 +28,7 @@ POWER_SETPOINT_DEFAULT = 1e12 +POWER_SETPOINT_DISABLED = 0.001 def rotor_velocity_air_density_correction( velocities: NDArrayFloat, diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index e9c5aa2f5..97d8cae4b 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -10,7 +10,10 @@ from floris.logging_manager import LoggingManager from floris.simulation import Floris, State from floris.simulation.rotor_velocity import average_velocity -from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT +from floris.simulation.turbine.operation_models import ( + POWER_SETPOINT_DEFAULT, + POWER_SETPOINT_DISABLED, +) from floris.simulation.turbine.turbine import ( axial_induction, power, @@ -108,175 +111,103 @@ def copy(self): """Create an independent copy of the current FlorisInterface object""" return FlorisInterface(self.floris.as_dict()) - def calculate_wake( + def set( self, + wind_speeds: list[float] | NDArrayFloat | None = None, + wind_directions: list[float] | NDArrayFloat | None = None, + wind_shear: float | None = None, + wind_veer: float | None = None, + reference_wind_height: float | None = None, + turbulence_intensities: list[float] | NDArrayFloat | None = None, + air_density: float | None = None, + layout_x: list[float] | NDArrayFloat | None = None, + layout_y: list[float] | NDArrayFloat | None = None, + turbine_type: list | None = None, + turbine_library_path: str | Path | None = None, + solver_settings: dict | None = None, + heterogenous_inflow_config=None, + wind_data: type[WindDataBase] | None = None, yaw_angles: NDArrayFloat | list[float] | None = None, - # tilt_angles: NDArrayFloat | list[float] | None = None, power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, disable_turbines: NDArrayBool | list[bool] | None = None, - ) -> None: + ): """ - Wrapper to the :py:meth:`~.Farm.set_yaw_angles` and - :py:meth:`~.FlowField.calculate_wake` methods. + Set the wind conditions and operation setpoints for the wind farm. Args: + wind_speeds (NDArrayFloat | list[float] | None, optional): Wind speeds at each findex. + Defaults to None. + wind_directions (NDArrayFloat | list[float] | None, optional): Wind directions at each + findex. Defaults to None. + wind_shear (float | None, optional): Wind shear exponent. Defaults to None. + wind_veer (float | None, optional): Wind veer. Defaults to None. + reference_wind_height (float | None, optional): Reference wind height. Defaults to None. + turbulence_intensities (NDArrayFloat | list[float] | None, optional): Turbulence + intensities at each findex. Defaults to None. + air_density (float | None, optional): Air density. Defaults to None. + layout_x (NDArrayFloat | list[float] | None, optional): X-coordinates of the turbines. + Defaults to None. + layout_y (NDArrayFloat | list[float] | None, optional): Y-coordinates of the turbines. + Defaults to None. + turbine_type (list | None, optional): Turbine type. Defaults to None. + turbine_library_path (str | Path | None, optional): Path to the turbine library. + Defaults to None. + solver_settings (dict | None, optional): Solver settings. Defaults to None. + heterogenous_inflow_config (None, optional): Heterogenous inflow configuration. Defaults + to None. + wind_data (type[WindDataBase] | None, optional): Wind data. Defaults to None. yaw_angles (NDArrayFloat | list[float] | None, optional): Turbine yaw angles. Defaults to None. - power_setpoints (NDArrayFloat | list[float] | None, optional): Turbine power setpoints. - May be specified with some float values and some None values; power maximization - will be assumed for any None value. Defaults to None. + power_setpoints (NDArrayFloat | list[float] | list[float, None] | None, optional): + Turbine power setpoints. disable_turbines (NDArrayBool | list[bool] | None, optional): NDArray with dimensions - n_findex x n_turbines. True values indicate the turbine is disabled at that findex - and the power setpoint at that position is set to 0. Defaults to None + n_findex x n_turbines. True values indicate the turbine is disabled at that findex + and the power setpoint at that position is set to 0. Defaults to None. """ + # Initialize a new Floris object after saving the setpoints + _yaw_angles = self.floris.farm.yaw_angles + _power_setpoints = self.floris.farm.power_setpoints + self._reinitialize( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + wind_shear=wind_shear, + wind_veer=wind_veer, + reference_wind_height=reference_wind_height, + turbulence_intensities=turbulence_intensities, + air_density=air_density, + layout_x=layout_x, + layout_y=layout_y, + turbine_type=turbine_type, + turbine_library_path=turbine_library_path, + solver_settings=solver_settings, + heterogenous_inflow_config=heterogenous_inflow_config, + wind_data=wind_data, + ) - if yaw_angles is None: - yaw_angles = np.zeros( - ( - self.floris.flow_field.n_findex, - self.floris.farm.n_turbines, - ) - ) - self.floris.farm.yaw_angles = yaw_angles - - if power_setpoints is None: - power_setpoints = POWER_SETPOINT_DEFAULT * np.ones( - ( - self.floris.flow_field.n_findex, - self.floris.farm.n_turbines, - ) - ) - else: - power_setpoints = np.array(power_setpoints) - - # Convert any None values to the default power setpoint - power_setpoints[ - power_setpoints == np.full(power_setpoints.shape, None) - ] = POWER_SETPOINT_DEFAULT - power_setpoints = floris_array_converter(power_setpoints) - - # Check for turbines to disable - if disable_turbines is not None: - - # Force to numpy array - disable_turbines = np.array(disable_turbines) - - # Must have first dimension = n_findex - if disable_turbines.shape[0] != self.floris.flow_field.n_findex: - raise ValueError( - f"disable_turbines has a size of {disable_turbines.shape[0]} " - f"in the 0th dimension, must be equal to " - f"n_findex={self.floris.flow_field.n_findex}" - ) - - # Must have first dimension = n_turbines - if disable_turbines.shape[1] != self.floris.farm.n_turbines: - raise ValueError( - f"disable_turbines has a size of {disable_turbines.shape[1]} " - f"in the 1th dimension, must be equal to " - f"n_turbines={self.floris.farm.n_turbines}" - ) - - # Set power_setpoints and yaw_angles to 0 in all locations where - # disable_turbines is True - yaw_angles[disable_turbines] = 0.0 - power_setpoints[disable_turbines] = 0.001 # Not zero to avoid numerical problems - - self.floris.farm.power_setpoints = power_setpoints - - # # TODO is this required? - # if tilt_angles is not None: - # self.floris.farm.tilt_angles = tilt_angles - # else: - # self.floris.farm.set_tilt_to_ref_tilt( - # self.floris.flow_field.n_findex, - # ) - - # Initialize solution space - self.floris.initialize_domain() - - # Perform the wake calculations - self.floris.steady_state_atmospheric_condition() + # If the yaw angles or power setpoints are not the default, set them back to the + # previous setting + if not (_yaw_angles == 0).all(): + self.floris.farm.yaw_angles = _yaw_angles + if not ( + (_power_setpoints == POWER_SETPOINT_DEFAULT) + | (_power_setpoints == POWER_SETPOINT_DISABLED) + ).all(): + self.floris.farm.power_setpoints = _power_setpoints + + # Set the operation + self._set_operation( + yaw_angles=yaw_angles, + power_setpoints=power_setpoints, + disable_turbines=disable_turbines, + ) - def calculate_no_wake( - self, - yaw_angles: NDArrayFloat | list[float] | None = None, - power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, - disable_turbines: NDArrayBool | list[bool] | None = None, - ) -> None: + def reset_operation(self): """ - This function is similar to `calculate_wake()` except - that it does not apply a wake model. That is, the wind - farm is modeled as if there is no wake in the flow. - Yaw angles are used to reduce the power and thrust of - the turbine that is yawed. - - Args: - yaw_angles (NDArrayFloat | list[float] | None, optional): Turbine yaw angles. - Defaults to None. + Instantiate a new Floris object to set all operation setpoints to their default values. """ + self._reinitialize() - if yaw_angles is None: - yaw_angles = np.zeros( - ( - self.floris.flow_field.n_findex, - self.floris.farm.n_turbines, - ) - ) - self.floris.farm.yaw_angles = yaw_angles - - if power_setpoints is None: - power_setpoints = POWER_SETPOINT_DEFAULT * np.ones( - ( - self.floris.flow_field.n_findex, - self.floris.farm.n_turbines, - ) - ) - else: - power_setpoints = np.array(power_setpoints) - - # Convert any None values to the default power setpoint - power_setpoints[ - power_setpoints == np.full(power_setpoints.shape, None) - ] = POWER_SETPOINT_DEFAULT - power_setpoints = floris_array_converter(power_setpoints) - - # Check for turbines to disable - if disable_turbines is not None: - - # Force to numpy array - # disable_turbines = np.array(disable_turbines) - - # Must have first dimension = n_findex - if disable_turbines.shape[0] != self.floris.flow_field.n_findex: - raise ValueError( - f"disable_turbines has a size of {disable_turbines.shape[0]} " - f"in the 0th dimension, must be equal to " - f"n_findex={self.floris.flow_field.n_findex}" - ) - - # Must have first dimension = n_turbines - if disable_turbines.shape[1] != self.floris.farm.n_turbines: - raise ValueError( - f"disable_turbines has a size of {disable_turbines.shape[1]} " - f"in the 1th dimension, must be equal to " - f"n_turbines={self.floris.farm.n_turbines}" - ) - - # Set power_setpoints and yaw_angles to 0 in all locations where - # disable_turbines is True - yaw_angles[disable_turbines] = 0.0 - power_setpoints[disable_turbines] = 0.001 # Not zero to avoid numerical problems - - self.floris.farm.power_setpoints = power_setpoints - - # Initialize solution space - self.floris.initialize_domain() - - # Finalize values to user-supplied order - self.floris.finalize() - - def reinitialize( + def _reinitialize( self, wind_speeds: list[float] | NDArrayFloat | None = None, wind_directions: list[float] | NDArrayFloat | None = None, @@ -284,9 +215,7 @@ def reinitialize( wind_veer: float | None = None, reference_wind_height: float | None = None, turbulence_intensities: list[float] | NDArrayFloat | None = None, - # turbulence_kinetic_energy=None, air_density: float | None = None, - # wake: WakeModelManager = None, layout_x: list[float] | NDArrayFloat | None = None, layout_y: list[float] | NDArrayFloat | None = None, turbine_type: list | None = None, @@ -295,6 +224,33 @@ def reinitialize( heterogenous_inflow_config=None, wind_data: type[WindDataBase] | None = None, ): + """ + Instantiate a new Floris object with updated conditions set by arguments. Any parameters + in Floris that aren't changed by arguments to this function retain their values. + + Args: + wind_speeds (NDArrayFloat | list[float] | None, optional): Wind speeds at each findex. + Defaults to None. + wind_directions (NDArrayFloat | list[float] | None, optional): Wind directions at each + findex. Defaults to None. + wind_shear (float | None, optional): Wind shear exponent. Defaults to None. + wind_veer (float | None, optional): Wind veer. Defaults to None. + reference_wind_height (float | None, optional): Reference wind height. Defaults to None. + turbulence_intensities (NDArrayFloat | list[float] | None, optional): Turbulence + intensities at each findex. Defaults to None. + air_density (float | None, optional): Air density. Defaults to None. + layout_x (NDArrayFloat | list[float] | None, optional): X-coordinates of the turbines. + Defaults to None. + layout_y (NDArrayFloat | list[float] | None, optional): Y-coordinates of the turbines. + Defaults to None. + turbine_type (list | None, optional): Turbine type. Defaults to None. + turbine_library_path (str | Path | None, optional): Path to the turbine library. + Defaults to None. + solver_settings (dict | None, optional): Solver settings. Defaults to None. + heterogenous_inflow_config (None, optional): Heterogenous inflow configuration. Defaults + to None. + wind_data (type[WindDataBase] | None, optional): Wind data. Defaults to None. + """ # Export the floris object recursively as a dictionary floris_dict = self.floris.as_dict() flow_field_dict = floris_dict["flow_field"] @@ -371,12 +327,6 @@ def reinitialize( if turbine_library_path is not None: farm_dict["turbine_library_path"] = turbine_library_path - ## Wake - # if wake is not None: - # self.floris.wake = wake - # if turbulence_kinetic_energy is not None: - # pass # TODO: not needed until GCH - if solver_settings is not None: floris_dict["solver"] = solver_settings @@ -386,6 +336,89 @@ def reinitialize( # Create a new instance of floris and attach to self self.floris = Floris.from_dict(floris_dict) + def _set_operation( + self, + yaw_angles: NDArrayFloat | list[float] | None = None, + power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, + disable_turbines: NDArrayBool | list[bool] | None = None, + ): + """ + Apply operating setpoints to the floris object. + + Args: + yaw_angles (NDArrayFloat | list[float] | None, optional): Turbine yaw angles. Defaults + to None. + power_setpoints (NDArrayFloat | list[float] | list[float, None] | None, optional): + Turbine power setpoints. Defaults to None. + disable_turbines (NDArrayBool | list[bool] | None, optional): Boolean array on whether + to disable turbines. Defaults to None. + """ + # Add operating conditions to the floris object + if yaw_angles is not None: + self.floris.farm.yaw_angles = yaw_angles + + if power_setpoints is not None: + power_setpoints = np.array(power_setpoints) + + # Convert any None values to the default power setpoint + power_setpoints[ + power_setpoints == np.full(power_setpoints.shape, None) + ] = POWER_SETPOINT_DEFAULT + power_setpoints = floris_array_converter(power_setpoints) + + self.floris.farm.power_setpoints = power_setpoints + + # Check for turbines to disable + if disable_turbines is not None: + + # Force to numpy array + disable_turbines = np.array(disable_turbines) + + # Must have first dimension = n_findex + if disable_turbines.shape[0] != self.floris.flow_field.n_findex: + raise ValueError( + f"disable_turbines has a size of {disable_turbines.shape[0]} " + f"in the 0th dimension, must be equal to " + f"n_findex={self.floris.flow_field.n_findex}" + ) + + # Must have first dimension = n_turbines + if disable_turbines.shape[1] != self.floris.farm.n_turbines: + raise ValueError( + f"disable_turbines has a size of {disable_turbines.shape[1]} " + f"in the 1th dimension, must be equal to " + f"n_turbines={self.floris.farm.n_turbines}" + ) + + # Set power setpoints to small value (non zero to avoid numerical issues) and + # yaw_angles to 0 in all locations where disable_turbines is True + self.floris.farm.yaw_angles[disable_turbines] = 0.0 + self.floris.farm.power_setpoints[disable_turbines] = POWER_SETPOINT_DISABLED + + def run(self) -> None: + """ + Run the FLORIS solve to compute the velocity field and wake effects. + """ + + # Initialize solution space + self.floris.initialize_domain() + + # Perform the wake calculations + self.floris.steady_state_atmospheric_condition() + + def run_no_wake(self) -> None: + """ + This function is similar to `run()` except that it does not apply a wake model. That is, + the wind farm is modeled as if there is no wake in the flow. Operation settings may + reduce the power and thrust of the turbine to where they're applied. + """ + + # Initialize solution space + self.floris.initialize_domain() + + # Finalize values to user-supplied order + self.floris.finalize() + def get_plane_of_points( self, normal_vector="z", @@ -477,6 +510,8 @@ def calculate_horizontal_plane( wd=None, ws=None, yaw_angles=None, + power_setpoints=None, + disable_turbines=None, ): """ Shortcut method to instantiate a :py:class:`~.tools.cut_plane.CutPlane` @@ -493,6 +528,14 @@ def calculate_horizontal_plane( Defaults to None. y_bounds (tuple, optional): Limits of output array (in m). Defaults to None. + wd (float, optional): Wind direction. Defaults to None. + ws (float, optional): Wind speed. Defaults to None. + yaw_angles (NDArrayFloat, optional): Turbine yaw angles. Defaults + to None. + power_setpoints (NDArrayFloat, optional): + Turbine power setpoints. Defaults to None. + disable_turbines (NDArrayBool, optional): Boolean array on whether + to disable turbines. Defaults to None. Returns: :py:class:`~.tools.cut_plane.CutPlane`: containing values @@ -507,8 +550,6 @@ def calculate_horizontal_plane( # Store the current state for reinitialization floris_dict = self.floris.as_dict() - current_yaw_angles = self.floris.farm.yaw_angles - # Set the solver to a flow field planar grid solver_settings = { "type": "flow_field_planar_grid", @@ -517,11 +558,14 @@ def calculate_horizontal_plane( "flow_field_grid_points": [x_resolution, y_resolution], "flow_field_bounds": [x_bounds, y_bounds], } - self.reinitialize(wind_directions=wd, wind_speeds=ws, solver_settings=solver_settings) - - # TODO this has to be done here as it seems to be lost with reinitialize - if yaw_angles is not None: - self.floris.farm.yaw_angles = yaw_angles + self.set( + wind_directions=wd, + wind_speeds=ws, + solver_settings=solver_settings, + yaw_angles=yaw_angles, + power_setpoints=power_setpoints, + disable_turbines=disable_turbines, + ) # Calculate wake self.floris.solve_for_viz() @@ -546,7 +590,7 @@ def calculate_horizontal_plane( self.floris = Floris.from_dict(floris_dict) # Run the simulation again for futher postprocessing (i.e. now we can get farm power) - self.calculate_wake(yaw_angles=current_yaw_angles) + self.run() return horizontal_plane @@ -560,6 +604,8 @@ def calculate_cross_plane( wd=None, ws=None, yaw_angles=None, + power_setpoints=None, + disable_turbines=None, ): """ Shortcut method to instantiate a :py:class:`~.tools.cut_plane.CutPlane` @@ -590,7 +636,6 @@ def calculate_cross_plane( # Store the current state for reinitialization floris_dict = self.floris.as_dict() - current_yaw_angles = self.floris.farm.yaw_angles # Set the solver to a flow field planar grid solver_settings = { @@ -600,11 +645,14 @@ def calculate_cross_plane( "flow_field_grid_points": [y_resolution, z_resolution], "flow_field_bounds": [y_bounds, z_bounds], } - self.reinitialize(wind_directions=wd, wind_speeds=ws, solver_settings=solver_settings) - - # TODO this has to be done here as it seems to be lost with reinitialize - if yaw_angles is not None: - self.floris.farm.yaw_angles = yaw_angles + self.set( + wind_directions=wd, + wind_speeds=ws, + solver_settings=solver_settings, + yaw_angles=yaw_angles, + power_setpoints=power_setpoints, + disable_turbines=disable_turbines, + ) # Calculate wake self.floris.solve_for_viz() @@ -624,7 +672,7 @@ def calculate_cross_plane( self.floris = Floris.from_dict(floris_dict) # Run the simulation again for futher postprocessing (i.e. now we can get farm power) - self.calculate_wake(yaw_angles=current_yaw_angles) + self.run() return cross_plane @@ -638,6 +686,8 @@ def calculate_y_plane( wd=None, ws=None, yaw_angles=None, + power_setpoints=None, + disable_turbines=None, ): """ Shortcut method to instantiate a :py:class:`~.tools.cut_plane.CutPlane` @@ -654,6 +704,18 @@ def calculate_y_plane( Defaults to None. y_bounds (tuple, optional): Limits of output array (in m). Defaults to None. + z_bounds (tuple, optional): Limits of output array (in m). + Defaults to None. + wd (float, optional): Wind direction. Defaults to None. + ws (float, optional): Wind speed. Defaults to None. + yaw_angles (NDArrayFloat, optional): Turbine yaw angles. Defaults + to None. + power_setpoints (NDArrayFloat, optional): + Turbine power setpoints. Defaults to None. + disable_turbines (NDArrayBool, optional): Boolean array on whether + to disable turbines. Defaults to None. + + Returns: :py:class:`~.tools.cut_plane.CutPlane`: containing values @@ -668,7 +730,6 @@ def calculate_y_plane( # Store the current state for reinitialization floris_dict = self.floris.as_dict() - current_yaw_angles = self.floris.farm.yaw_angles # Set the solver to a flow field planar grid solver_settings = { @@ -678,11 +739,14 @@ def calculate_y_plane( "flow_field_grid_points": [x_resolution, z_resolution], "flow_field_bounds": [x_bounds, z_bounds], } - self.reinitialize(wind_directions=wd, wind_speeds=ws, solver_settings=solver_settings) - - # TODO this has to be done here as it seems to be lost with reinitialize - if yaw_angles is not None: - self.floris.farm.yaw_angles = yaw_angles + self.set( + wind_directions=wd, + wind_speeds=ws, + solver_settings=solver_settings, + yaw_angles=yaw_angles, + power_setpoints=power_setpoints, + disable_turbines=disable_turbines, + ) # Calculate wake self.floris.solve_for_viz() @@ -702,7 +766,7 @@ def calculate_y_plane( self.floris = Floris.from_dict(floris_dict) # Run the simulation again for futher postprocessing (i.e. now we can get farm power) - self.calculate_wake(yaw_angles=current_yaw_angles) + self.run() return y_plane @@ -730,7 +794,7 @@ def get_turbine_powers(self) -> NDArrayFloat: if self.floris.state is not State.USED: raise RuntimeError( "Can't run function `FlorisInterface.get_turbine_powers` without " - "first running `FlorisInterface.calculate_wake`." + "first running `FlorisInterface.run`." ) # Check for negative velocities, which could indicate bad model # parameters or turbines very closely spaced. @@ -872,7 +936,6 @@ def get_farm_AEP( freq, cut_in_wind_speed=0.001, cut_out_wind_speed=None, - yaw_angles=None, turbine_weights=None, no_wake=False, ) -> float: @@ -895,10 +958,6 @@ def get_farm_AEP( wind farm is known to produce 0.0 W of power. If None is specified, will assume that the wind farm does not cut out at high wind speeds. Defaults to None. - yaw_angles (NDArrayFloat | list[float] | None, optional): - The relative turbine yaw angles in degrees. If None is - specified, will assume that the turbine yaw angles are all - zero degrees for all conditions. Defaults to None. turbine_weights (NDArrayFloat | list[float] | None, optional): weighing terms that allow the user to emphasize power at particular turbines and/or completely ignore the power @@ -952,17 +1011,14 @@ def get_farm_AEP( if np.any(conditions_to_evaluate): wind_speeds_subset = wind_speeds[conditions_to_evaluate] wind_directions_subset = wind_directions[conditions_to_evaluate] - yaw_angles_subset = None - if yaw_angles is not None: - yaw_angles_subset = yaw_angles[conditions_to_evaluate] - self.reinitialize( + self.set( wind_speeds=wind_speeds_subset, wind_directions=wind_directions_subset, ) if no_wake: - self.calculate_no_wake(yaw_angles=yaw_angles_subset) + self.run_no_wake() else: - self.calculate_wake(yaw_angles=yaw_angles_subset) + self.run() farm_power[conditions_to_evaluate] = self.get_farm_power( turbine_weights=turbine_weights ) @@ -971,7 +1027,7 @@ def get_farm_AEP( aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) # Reset the FLORIS object to the full wind speed array - self.reinitialize(wind_speeds=wind_speeds, wind_directions=wind_directions) + self.set(wind_speeds=wind_speeds, wind_directions=wind_directions) return aep @@ -980,7 +1036,6 @@ def get_farm_AEP_with_wind_data( wind_data, cut_in_wind_speed=0.001, cut_out_wind_speed=None, - yaw_angles=None, turbine_weights=None, no_wake=False, ) -> float: @@ -1001,10 +1056,6 @@ def get_farm_AEP_with_wind_data( wind farm is known to produce 0.0 W of power. If None is specified, will assume that the wind farm does not cut out at high wind speeds. Defaults to None. - yaw_angles (NDArrayFloat | list[float] | None, optional): - The relative turbine yaw angles in degrees. If None is - specified, will assume that the turbine yaw angles are all - zero degrees for all conditions. Defaults to None. turbine_weights (NDArrayFloat | list[float] | None, optional): weighing terms that allow the user to emphasize power at particular turbines and/or completely ignore the power @@ -1040,7 +1091,6 @@ def get_farm_AEP_with_wind_data( freq, cut_in_wind_speed=cut_in_wind_speed, cut_out_wind_speed=cut_out_wind_speed, - yaw_angles=yaw_angles, turbine_weights=turbine_weights, no_wake=no_wake, ) @@ -1163,7 +1213,7 @@ def sample_velocity_deficit_profiles( if reference_height is None: reference_height = self.floris.flow_field.reference_wind_height - self.reinitialize( + self.set( wind_directions=[wind_direction], wind_speeds=[homogeneous_wind_speed], wind_shear=0.0, @@ -1181,7 +1231,7 @@ def sample_velocity_deficit_profiles( reference_height, ) - self.reinitialize( + self.set( wind_directions=wind_directions_copy, wind_speeds=wind_speeds_copy, wind_shear=wind_shear_copy, @@ -1226,3 +1276,17 @@ def get_turbine_layout(self, z=False): return xcoords, ycoords, zcoords else: return xcoords, ycoords + + ### v3 functions that are removed - raise an error if used + + def calculate_wake(self): + raise NotImplementedError( + "The calculate_wake method has been removed. Please use the run method. " + "See https://nrel.github.io/floris/upgrade_guides/v3_to_v4.html for more information." + ) + + def reinitialize(self): + raise NotImplementedError( + "The reinitialize method has been removed. Please use the set method. " + "See https://nrel.github.io/floris/upgrade_guides/v3_to_v4.html for more information." + ) diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_base.py b/floris/tools/optimization/layout_optimization/layout_optimization_base.py index 47b8f2ccb..2396d1690 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_base.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_base.py @@ -60,7 +60,7 @@ def _get_geoyaw_angles(self): # NOTE: requires that child class saves x and y locations # as self.x and self.y and updates them during optimization. if self.enable_geometric_yaw: - self.yaw_opt.fi_subset.reinitialize(layout_x=self.x, layout_y=self.y) + self.yaw_opt.fi_subset.set(layout_x=self.x, layout_y=self.y) df_opt = self.yaw_opt.optimize() self.yaw_angles = np.vstack(df_opt['yaw_angles_opt'])[:, :] else: diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py b/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py index 07386b1d4..a17b3e220 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py @@ -612,7 +612,7 @@ def reinitialize_xy(self): self.boundary_spacing, ) - self.fi.reinitialize(layout=(layout_x, layout_y)) + self.fi.set(layout=(layout_x, layout_y)) def plot_layout(self): plt.figure(figsize=(9, 6)) diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py index 75bbf9c84..555ab21cb 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py @@ -91,16 +91,15 @@ def _obj_func(self, varDict): # Parse the variable dictionary self.parse_opt_vars(varDict) - # Update turbine map with turbince locations - self.fi.reinitialize(layout_x=self.x, layout_y=self.y) - # Compute turbine yaw angles using PJ's geometric code (if enabled) yaw_angles = self._get_geoyaw_angles() + # Update turbine map with turbine locations and yaw angles + self.fi.set(layout_x=self.x, layout_y=self.y, yaw_angles=yaw_angles) # Compute the objective function funcs = {} funcs["obj"] = ( - -1 * self.fi.get_farm_AEP(self.freq, yaw_angles=yaw_angles) / self.initial_AEP + -1 * self.fi.get_farm_AEP(self.freq) / self.initial_AEP ) # Compute constraints, if any are defined for the optimization diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py b/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py index e960576f4..2c66f1b67 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py @@ -99,8 +99,8 @@ def _obj_func(self, locs): self._change_coordinates(locs_unnorm) # Compute turbine yaw angles using PJ's geometric code (if enabled) yaw_angles = self._get_geoyaw_angles() - return (-1 * self.fi.get_farm_AEP(self.freq, yaw_angles=yaw_angles) / - self.initial_AEP) + self.fi.set(yaw_angles=yaw_angles) + return -1 * self.fi.get_farm_AEP(self.freq) /self.initial_AEP def _change_coordinates(self, locs): # Parse the layout coordinates @@ -112,7 +112,7 @@ def _change_coordinates(self, locs): self.y = layout_y # Update the turbine map in floris - self.fi.reinitialize(layout_x=layout_x, layout_y=layout_y) + self.fi.set(layout_x=layout_x, layout_y=layout_y) def _generate_constraints(self): tmp1 = { diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py b/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py index 21643bdc5..5964c2ae1 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py @@ -349,12 +349,13 @@ def _calculate_farm_power( # Calculate solutions turbine_power = np.zeros_like(self._minimum_yaw_angle_subset[:, :]) - fi_subset.reinitialize( + fi_subset.set( wind_directions=wd_array, wind_speeds=ws_array, - turbulence_intensities=ti_array + turbulence_intensities=ti_array, + yaw_angles=yaw_angles, ) - fi_subset.calculate_wake(yaw_angles=yaw_angles) + fi_subset.run() turbine_power = fi_subset.get_turbine_powers() # Multiply with turbine weighing terms diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py b/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py index 204a58ade..735296b58 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py +++ b/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py @@ -73,7 +73,7 @@ def optimize(self): ti_array = self.fi_subset.floris.flow_field.turbulence_intensities for i, (wd, ws, ti) in enumerate(zip(wd_array, ws_array, ti_array)): - self.fi_subset.reinitialize( + self.fi_subset.set( wind_directions=[wd], wind_speeds=[ws], turbulence_intensities=[ti] diff --git a/floris/tools/parallel_computing_interface.py b/floris/tools/parallel_computing_interface.py index 407ab7d1c..7260b0305 100644 --- a/floris/tools/parallel_computing_interface.py +++ b/floris/tools/parallel_computing_interface.py @@ -30,7 +30,8 @@ def _load_local_floris_object( def _get_turbine_powers_serial(fi_information, yaw_angles=None): fi = _load_local_floris_object(*fi_information) - fi.calculate_wake(yaw_angles=yaw_angles) + fi.set(yaw_angles=yaw_angles) + fi.run() return (fi.get_turbine_powers(), fi.floris.flow_field) @@ -150,7 +151,7 @@ def copy(self): self_copy.fi = self.fi.copy() return self_copy - def reinitialize( + def set( self, wind_speeds=None, wind_directions=None, @@ -165,7 +166,7 @@ def reinitialize( turbine_type=None, solver_settings=None, ): - """Pass to the FlorisInterface reinitialize function. To allow users + """Pass to the FlorisInterface set function. To allow users to directly replace a FlorisInterface object with this UncertaintyInterface object, this function is required.""" @@ -178,7 +179,7 @@ def reinitialize( # Just passes arguments to the floris object fi = self.fi.copy() - fi.reinitialize( + fi.set( wind_speeds=wind_speeds, wind_directions=wind_directions, wind_shear=wind_shear, @@ -279,10 +280,11 @@ def _postprocessing(self, output): return turbine_powers - def calculate_wake(self): - # raise UserWarning("'calculate_wake' not supported. Please use - # 'get_turbine_powers' or 'get_farm_power' directly.") - return None # Do nothing + def run(self): # TODO: Remove or update this function? + raise UserWarning( + "'run' not supported on ParallelComputingInterface. Please use " + "'get_turbine_powers' or 'get_farm_power' directly." + ) def get_turbine_powers(self, yaw_angles=None): # Retrieve multiargs: preprocessing @@ -454,7 +456,7 @@ def get_farm_AEP( yaw_angles_subset = None if yaw_angles is not None: yaw_angles_subset = yaw_angles[:, conditions_to_evaluate] - self.fi.reinitialize( + self.fi.set( wind_directions=wind_direction_subset, wind_speeds=wind_speeds_subset, turbulence_intensities=turbulence_intensities_subset, @@ -467,7 +469,7 @@ def get_farm_AEP( aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) # Reset the FLORIS object to the full wind speed array - self.fi.reinitialize( + self.fi.set( wind_directions=wind_directions, wind_speeds=wind_speeds, turbulence_intensities=turbulence_intensities_subset, diff --git a/floris/tools/visualization.py b/floris/tools/visualization.py index 59a2a7465..eb54650ae 100644 --- a/floris/tools/visualization.py +++ b/floris/tools/visualization.py @@ -16,6 +16,7 @@ from scipy.spatial import ConvexHull from floris.simulation import Floris +from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT from floris.tools.cut_plane import CutPlane from floris.tools.floris_interface import FlorisInterface from floris.type_dec import ( @@ -590,6 +591,8 @@ def calculate_horizontal_plane_with_turbines( wd=None, ws=None, yaw_angles=None, + power_setpoints=None, + disable_turbines=None, ) -> CutPlane: """ This function creates a :py:class:`~.tools.cut_plane.CutPlane` by @@ -614,6 +617,8 @@ def calculate_horizontal_plane_with_turbines( wd (float, optional): Wind direction setting. Defaults to None. ws (float, optional): Wind speed setting. Defaults to None. yaw_angles (np.ndarray, optional): Yaw angles settings. Defaults to None. + power_setpoints (np.ndarray, optional): Power setpoints settings. Defaults to None. + disable_turbines (np.ndarray, optional): Disable turbines settings. Defaults to None. Returns: :py:class:`~.tools.cut_plane.CutPlane`: containing values of x, y, u, v, w @@ -630,15 +635,15 @@ def calculate_horizontal_plane_with_turbines( fi.check_wind_condition_for_viz(wd=wd, ws=ws) # Set the ws and wd - fi.reinitialize(wind_directions=wd, wind_speeds=ws) - - # Re-set yaw angles - if yaw_angles is not None: - fi.floris.farm.yaw_angles = yaw_angles - - # Now place the yaw_angles back into yaw_angles - # to be sure not None + fi.set( + wind_directions=wd, + wind_speeds=ws, + yaw_angles=yaw_angles, + power_setpoints=power_setpoints, + disable_turbines=disable_turbines + ) yaw_angles = fi.floris.farm.yaw_angles + power_setpoints = fi.floris.farm.power_setpoints # Grab the turbine layout layout_x = copy.deepcopy(fi.layout_x) @@ -650,14 +655,18 @@ def calculate_horizontal_plane_with_turbines( layout_x_test = np.append(layout_x,[0]) layout_y_test = np.append(layout_y,[0]) - # Declare turbine types with an extra turbine in - # case of special one type useage + # Declare turbine types with an extra turbine in case of special one-type usage if len(layout_x) > 1 and len(turbine_types) == 1: # Convert to list length len(layout_x) + 1 turbine_types_test = [turbine_types[0] for i in range(len(layout_x))] + ['nrel_5MW'] else: turbine_types_test = np.append(turbine_types, 'nrel_5MW').tolist() yaw_angles = np.append(yaw_angles, np.zeros([fi.floris.flow_field.n_findex, 1]), axis=1) + power_setpoints = np.append( + power_setpoints, + POWER_SETPOINT_DEFAULT * np.ones([fi.floris.flow_field.n_findex, 1]), + axis=1 + ) # Get a grid of points test test if x_bounds is None: @@ -689,12 +698,15 @@ def calculate_horizontal_plane_with_turbines( # Place the test turbine at this location and calculate wake layout_x_test[-1] = x layout_y_test[-1] = y - fi.reinitialize( + fi.set( layout_x=layout_x_test, layout_y=layout_y_test, + yaw_angles=yaw_angles, + power_setpoints=power_setpoints, + disable_turbines=disable_turbines, turbine_type=turbine_types_test ) - fi.calculate_wake(yaw_angles=yaw_angles) + fi.run() # Get the velocity of that test turbines central point center_point = int(np.floor(fi.floris.flow_field.u[0,-1].shape[0] / 2.0)) diff --git a/tests/floris_interface_integration_test.py b/tests/floris_interface_integration_test.py index 694322c7f..93243950f 100644 --- a/tests/floris_interface_integration_test.py +++ b/tests/floris_interface_integration_test.py @@ -16,53 +16,127 @@ def test_read_yaml(): fi = FlorisInterface(configuration=YAML_INPUT) assert isinstance(fi, FlorisInterface) -def test_calculate_wake(): +def test_set_run(): """ - In FLORIS v3.2, running calculate_wake twice incorrectly set the yaw angles when the first time - has non-zero yaw settings but the second run had all-zero yaw settings. The test below asserts - that the yaw angles are correctly set in subsequent calls to calculate_wake. + These tests are designed to test the set / run sequence to ensure that inputs are + set when they should be, not set when they shouldn't be, and that the run sequence + retains or resets information as intended. """ + + # In FLORIS v3.2, running calculate_wake twice incorrectly set the yaw angles when the + # first time has non-zero yaw settings but the second run had all-zero yaw settings. + # The test below asserts that the yaw angles are correctly set in subsequent calls to run. fi = FlorisInterface(configuration=YAML_INPUT) yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.calculate_wake(yaw_angles=yaw_angles) + fi.set(yaw_angles=yaw_angles) + fi.run() assert fi.floris.farm.yaw_angles == yaw_angles yaw_angles = np.zeros((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.calculate_wake(yaw_angles=yaw_angles) + fi.set(yaw_angles=yaw_angles) + fi.run() assert fi.floris.farm.yaw_angles == yaw_angles - power_setpoints = 1e6*np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.calculate_wake(power_setpoints=power_setpoints) - assert fi.floris.farm.power_setpoints == power_setpoints + # Verify making changes to the layout, wind speed, and wind direction both before and after + # running the calculation + fi.reset_operation() + fi.set(layout_x=[0, 0], layout_y=[0, 1000], wind_speeds=[8, 8], wind_directions=[270, 270]) + assert np.array_equal(fi.floris.farm.layout_x, np.array([0, 0])) + assert np.array_equal(fi.floris.farm.layout_y, np.array([0, 1000])) + assert np.array_equal(fi.floris.flow_field.wind_speeds, np.array([8, 8])) + assert np.array_equal(fi.floris.flow_field.wind_directions, np.array([270, 270])) + + # Double check that nothing has changed after running the calculation + fi.run() + assert np.array_equal(fi.floris.farm.layout_x, np.array([0, 0])) + assert np.array_equal(fi.floris.farm.layout_y, np.array([0, 1000])) + assert np.array_equal(fi.floris.flow_field.wind_speeds, np.array([8, 8])) + assert np.array_equal(fi.floris.flow_field.wind_directions, np.array([270, 270])) + + # Verify that changing wind shear doesn't change the other settings above + fi.set(wind_shear=0.1) + assert fi.floris.flow_field.wind_shear == 0.1 + assert np.array_equal(fi.floris.farm.layout_x, np.array([0, 0])) + assert np.array_equal(fi.floris.farm.layout_y, np.array([0, 1000])) + assert np.array_equal(fi.floris.flow_field.wind_speeds, np.array([8, 8])) + assert np.array_equal(fi.floris.flow_field.wind_directions, np.array([270, 270])) + + # Verify that operation set-points are retained after changing other settings + yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) + fi.set(yaw_angles=yaw_angles) + assert np.array_equal(fi.floris.farm.yaw_angles, yaw_angles) + fi.set() + assert np.array_equal(fi.floris.farm.yaw_angles, yaw_angles) + fi.set(wind_speeds=[10, 10]) + assert np.array_equal(fi.floris.farm.yaw_angles, yaw_angles) + power_setpoints = 1e6 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) + fi.set(power_setpoints=power_setpoints) + assert np.array_equal(fi.floris.farm.yaw_angles, yaw_angles) + assert np.array_equal(fi.floris.farm.power_setpoints, power_setpoints) + + # Test that setting power setpoints through the .set() function actually sets the + # power setpoints in the floris object + fi.reset_operation() + power_setpoints = 1e6 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) + fi.set(power_setpoints=power_setpoints) + fi.run() + assert np.array_equal(fi.floris.farm.power_setpoints, power_setpoints) + + # Similar to above, any "None" set-points should be set to the default value + power_setpoints = np.array([[1e6, None]]) + fi.set(layout_x=[0, 0], layout_y=[0, 1000], power_setpoints=power_setpoints) + fi.run() + assert np.array_equal( + fi.floris.farm.power_setpoints, + np.array([[power_setpoints[0, 0], POWER_SETPOINT_DEFAULT]]) + ) - fi.calculate_wake(power_setpoints=None) +def test_reset_operation(): + # Calling the reset function should reset the power setpoints to the default values + fi = FlorisInterface(configuration=YAML_INPUT) + yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) + power_setpoints = 1e6 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) + fi.set(power_setpoints=power_setpoints, yaw_angles=yaw_angles) + fi.run() + fi.reset_operation() + assert fi.floris.farm.yaw_angles == np.zeros( + (fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines) + ) assert fi.floris.farm.power_setpoints == ( POWER_SETPOINT_DEFAULT * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) ) - fi.reinitialize(layout_x=[0, 0], layout_y=[0, 1000]) - power_setpoints = np.array([[1e6, None]]) - fi.calculate_wake(power_setpoints=power_setpoints) - assert np.allclose( - fi.floris.farm.power_setpoints, - np.array([[power_setpoints[0, 0], POWER_SETPOINT_DEFAULT]]) + # Double check that running the calculate also doesn't change the operating set points + fi.run() + assert fi.floris.farm.yaw_angles == np.zeros( + (fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines) + ) + assert fi.floris.farm.power_setpoints == ( + POWER_SETPOINT_DEFAULT * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) ) -def test_calculate_no_wake(): - """ - In FLORIS v3.2, running calculate_no_wake twice incorrectly set the yaw angles when the first - time has non-zero yaw settings but the second run had all-zero yaw settings. The test below - asserts that the yaw angles are correctly set in subsequent calls to calculate_no_wake. - """ +def test_run_no_wake(): + # In FLORIS v3.2, running calculate_no_wake twice incorrectly set the yaw angles when the first + # time has non-zero yaw settings but the second run had all-zero yaw settings. The test below + # asserts that the yaw angles are correctly set in subsequent calls to run_no_wake. fi = FlorisInterface(configuration=YAML_INPUT) yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.calculate_no_wake(yaw_angles=yaw_angles) + fi.set(yaw_angles=yaw_angles) + fi.run_no_wake() assert fi.floris.farm.yaw_angles == yaw_angles yaw_angles = np.zeros((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.calculate_no_wake(yaw_angles=yaw_angles) + fi.set(yaw_angles=yaw_angles) + fi.run_no_wake() assert fi.floris.farm.yaw_angles == yaw_angles + # With no wake and three turbines in a line, the power for all turbines with zero yaw + # should be the same + fi.reset_operation() + fi.set(layout_x=[0, 200, 4000], layout_y=[0, 0, 0]) + fi.run_no_wake() + power_no_wake = fi.get_turbine_powers() + assert len(np.unique(power_no_wake)) == 1 def test_get_turbine_powers(): # Get turbine powers should return n_findex x n_turbine powers @@ -78,14 +152,14 @@ def test_get_turbine_powers(): layout_y = np.array([0, 1000]) n_turbines = len(layout_x) - fi.reinitialize( + fi.set( wind_speeds=wind_speeds, wind_directions=wind_directions, layout_x=layout_x, layout_y=layout_y, ) - fi.calculate_wake() + fi.run() turbine_powers = fi.get_turbine_powers() @@ -93,7 +167,6 @@ def test_get_turbine_powers(): assert turbine_powers.shape[1] == n_turbines assert turbine_powers[0, 0] == turbine_powers[1, 0] - def test_get_farm_power(): fi = FlorisInterface(configuration=YAML_INPUT) @@ -105,14 +178,14 @@ def test_get_farm_power(): layout_y = np.array([0, 1000]) # n_turbines = len(layout_x) - fi.reinitialize( + fi.set( wind_speeds=wind_speeds, wind_directions=wind_directions, layout_x=layout_x, layout_y=layout_y, ) - fi.calculate_wake() + fi.run() turbine_powers = fi.get_turbine_powers() farm_powers = fi.get_farm_power() @@ -155,45 +228,51 @@ def test_disable_turbines(): ) as t: turbine_type = yaml.safe_load(t) turbine_type["power_thrust_model"] = "mixed" - fi.reinitialize(turbine_type=[turbine_type]) + fi.set(turbine_type=[turbine_type]) # Init to n-findex = 2, n_turbines = 3 - fi.reinitialize( + fi.set( wind_speeds=np.array([8.,8.,]), wind_directions=np.array([270.,270.]), layout_x = [0,1000,2000], layout_y=[0,0,0] ) - # Confirm that passing in a disable value with wrong n_findex raises error + # Confirm that using a disable value with wrong n_findex raises error with pytest.raises(ValueError): - fi.calculate_wake(disable_turbines=np.zeros((10, 3), dtype=bool)) + fi.set(disable_turbines=np.zeros((10, 3), dtype=bool)) + fi.run() - # Confirm that passing in a disable value with wrong n_turbines raises error + # Confirm that using a disable value with wrong n_turbines raises error with pytest.raises(ValueError): - fi.calculate_wake(disable_turbines=np.zeros((2, 10), dtype=bool)) + fi.set(disable_turbines=np.zeros((2, 10), dtype=bool)) + fi.run() # Confirm that if all turbines are disabled, power is near 0 for all turbines - fi.calculate_wake(disable_turbines=np.ones((2, 3), dtype=bool)) + fi.set(disable_turbines=np.ones((2, 3), dtype=bool)) + fi.run() turbines_powers = fi.get_turbine_powers() - np.testing.assert_allclose(turbines_powers,0,atol=0.1) + np.testing.assert_allclose(turbines_powers, 0, atol=0.1) - # Confirm the same for calculate_no_wake - fi.calculate_no_wake(disable_turbines=np.ones((2, 3), dtype=bool)) + # Confirm the same for run_no_wake + fi.run_no_wake() turbines_powers = fi.get_turbine_powers() - np.testing.assert_allclose(turbines_powers,0,atol=0.1) + np.testing.assert_allclose(turbines_powers, 0, atol=0.1) # Confirm that if all disabled values set to false, equivalent to running normally - fi.calculate_wake() + fi.reset_operation() + fi.run() turbines_powers_normal = fi.get_turbine_powers() - fi.calculate_wake(disable_turbines=np.zeros((2, 3), dtype=bool)) + fi.set(disable_turbines=np.zeros((2, 3), dtype=bool)) + fi.run() turbines_powers_false_disable = fi.get_turbine_powers() np.testing.assert_allclose(turbines_powers_normal,turbines_powers_false_disable,atol=0.1) - # Confirm the same for calculate_no_wake - fi.calculate_no_wake() + # Confirm the same for run_no_wake + fi.run_no_wake() turbines_powers_normal = fi.get_turbine_powers() - fi.calculate_no_wake(disable_turbines=np.zeros((2, 3), dtype=bool)) + fi.set(disable_turbines=np.zeros((2, 3), dtype=bool)) + fi.run_no_wake() turbines_powers_false_disable = fi.get_turbine_powers() np.testing.assert_allclose(turbines_powers_normal,turbines_powers_false_disable,atol=0.1) @@ -201,19 +280,27 @@ def test_disable_turbines(): # In terms of impact on third turbine disable_turbines = np.zeros((2, 3), dtype=bool) disable_turbines[:,1] = [True, True] - fi.calculate_wake(disable_turbines=disable_turbines) + fi.set(disable_turbines=disable_turbines) + fi.run() power_with_middle_disabled = fi.get_turbine_powers() - fi.reinitialize(layout_x = [0,2000],layout_y = [0, 0]) - fi.calculate_wake() - power_with_middle_removed = fi.get_turbine_powers() + # Two turbine case to compare against above + fi_remove_middle = fi.copy() + fi_remove_middle.set(layout_x=[0,2000], layout_y=[0, 0]) + fi_remove_middle.run() + power_with_middle_removed = fi_remove_middle.get_turbine_powers() np.testing.assert_almost_equal(power_with_middle_disabled[0,2], power_with_middle_removed[0,1]) np.testing.assert_almost_equal(power_with_middle_disabled[1,2], power_with_middle_removed[1,1]) # Check that yaw angles are correctly set when turbines are disabled - fi.reinitialize(layout_x = [0,1000,2000],layout_y = [0,0,0]) - fi.calculate_wake(disable_turbines=disable_turbines, yaw_angles=np.ones((2, 3))) + fi.set( + layout_x=[0, 1000, 2000], + layout_y=[0, 0, 0], + disable_turbines=disable_turbines, + yaw_angles=np.ones((2, 3)) + ) + fi.run() assert (fi.floris.farm.yaw_angles == np.array([[1.0, 0.0, 1.0], [1.0, 0.0, 1.0]])).all() def test_get_farm_aep(): @@ -227,14 +314,14 @@ def test_get_farm_aep(): layout_y = np.array([0, 1000]) # n_turbines = len(layout_x) - fi.reinitialize( + fi.set( wind_speeds=wind_speeds, wind_directions=wind_directions, layout_x=layout_x, layout_y=layout_y, ) - fi.calculate_wake() + fi.run() farm_powers = fi.get_farm_power() @@ -249,7 +336,6 @@ def test_get_farm_aep(): # In this case farm_aep should match farm powers np.testing.assert_allclose(farm_aep, aep) - def test_get_farm_aep_with_conditions(): fi = FlorisInterface(configuration=YAML_INPUT) @@ -261,14 +347,14 @@ def test_get_farm_aep_with_conditions(): layout_y = np.array([0, 1000]) # n_turbines = len(layout_x) - fi.reinitialize( + fi.set( wind_speeds=wind_speeds, wind_directions=wind_directions, layout_x=layout_x, layout_y=layout_y, ) - fi.calculate_wake() + fi.run() farm_powers = fi.get_farm_power() @@ -292,23 +378,20 @@ def test_get_farm_aep_with_conditions(): #Confirm n_findex reset after the operation assert n_findex == fi.floris.flow_field.n_findex - -def test_reinitailize_ti(): +def test_set_ti(): fi = FlorisInterface(configuration=YAML_INPUT) - # Set wind directions and wind speeds and turbulence intensitities - # with n_findex = 3 - fi.reinitialize( + # Set wind directions, wind speeds and turbulence intensities with n_findex = 3 + fi.set( wind_speeds=[8.0, 8.0, 8.0], wind_directions=[240.0, 250.0, 260.0], turbulence_intensities=[0.1, 0.1, 0.1], ) # Now confirm can change wind speeds and directions shape without changing - # turbulence intensity since this is allowed when the turbulence - # intensities are uniform + # turbulence intensity since this is allowed when the turbulence intensities are uniform # raises n_findex to 4 - fi.reinitialize( + fi.set( wind_speeds=[8.0, 8.0, 8.0, 8.0], wind_directions=[ 240.0, @@ -322,16 +405,16 @@ def test_reinitailize_ti(): np.testing.assert_allclose(fi.floris.flow_field.turbulence_intensities, [0.1, 0.1, 0.1, 0.1]) # Now should be able to change turbulence intensity to changing, so long as length 4 - fi.reinitialize(turbulence_intensities=[0.08, 0.09, 0.1, 0.11]) + fi.set(turbulence_intensities=[0.08, 0.09, 0.1, 0.11]) # However the wrong length should raise an error with pytest.raises(ValueError): - fi.reinitialize(turbulence_intensities=[0.08, 0.09, 0.1]) + fi.set(turbulence_intensities=[0.08, 0.09, 0.1]) # Also, now that TI is not a single unique value, it can not be left default when changing # shape of wind speeds and directions with pytest.raises(ValueError): - fi.reinitialize( + fi.set( wind_speeds=[8.0, 8.0, 8.0, 8.0, 8.0], wind_directions=[ 240.0, @@ -343,8 +426,8 @@ def test_reinitailize_ti(): ) # Test that applying a 1D array of length 1 is allowed for ti - fi.reinitialize(turbulence_intensities=[0.12]) + fi.set(turbulence_intensities=[0.12]) # Test that applying a float however raises an error with pytest.raises(TypeError): - fi.reinitialize(turbulence_intensities=0.12) + fi.set(turbulence_intensities=0.12) diff --git a/tests/parallel_computing_interface_integration_test.py b/tests/parallel_computing_interface_integration_test.py index f55fe631c..6b31297d5 100644 --- a/tests/parallel_computing_interface_integration_test.py +++ b/tests/parallel_computing_interface_integration_test.py @@ -27,7 +27,7 @@ def test_parallel_turbine_powers(sample_inputs_fixture): fi_serial = FlorisInterface(sample_inputs_fixture.floris) fi_parallel_input = copy.deepcopy(fi_serial) - fi_serial.calculate_wake() + fi_serial.run() serial_turbine_powers = fi_serial.get_turbine_powers() diff --git a/tests/reg_tests/yaw_optimization_regression_test.py b/tests/reg_tests/yaw_optimization_regression_test.py index c9e79ff23..049aee508 100644 --- a/tests/reg_tests/yaw_optimization_regression_test.py +++ b/tests/reg_tests/yaw_optimization_regression_test.py @@ -84,7 +84,7 @@ def test_serial_refine(sample_inputs_fixture): wd_array = np.arange(0.0, 360.0, 90.0) ws_array = 8.0 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW - fi.reinitialize( + fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, @@ -114,20 +114,21 @@ def test_geometric_yaw(sample_inputs_fixture): wd_array = np.arange(0.0, 360.0, 90.0) ws_array = 8.0 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW - fi.reinitialize( + fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, ) - fi.calculate_wake() + fi.run() baseline_farm_power = fi.get_farm_power().squeeze() yaw_opt = YawOptimizationGeometric(fi) df_opt = yaw_opt.optimize() yaw_angles_opt_geo = np.vstack(yaw_opt.yaw_angles_opt) - fi.calculate_wake(yaw_angles=yaw_angles_opt_geo) + fi.set(yaw_angles=yaw_angles_opt_geo) + fi.run() geo_farm_power = fi.get_farm_power().squeeze() df_opt['farm_power_baseline'] = baseline_farm_power @@ -161,7 +162,7 @@ def test_scipy_yaw_opt(sample_inputs_fixture): wd_array = np.arange(0.0, 360.0, 90.0) ws_array = 8.0 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW - fi.reinitialize( + fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, From 57ec83c6c54b4b1464ab68584edd1cb8d9a05bb5 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Mon, 4 Mar 2024 15:51:29 -0500 Subject: [PATCH 46/78] Raise informative errors if v3 input files passed in (#829) * Check floris input file for v3 fields. * turbine checks for v3. * convert to v4 compatibility to avoid v3 deprecation errors. * Add utility for converting floris input files from v3 to v4. * Ruff and isort. * absolute power copied in from nrel_5MW. * Explain user needs to update their multidim csv file. * Errors/printouts for attempting to convert multidimensional turbines. --- floris/simulation/farm.py | 39 +++ floris/simulation/floris.py | 34 +++ floris/tools/convert_floris_input_v3_to_v4.py | 70 +++++ floris/tools/convert_turbine_v3_to_v4.py | 11 +- tests/data/nrel_5MW_custom.yaml | 254 +++++++++--------- 5 files changed, 283 insertions(+), 125 deletions(-) create mode 100644 floris/tools/convert_floris_input_v3_to_v4.py diff --git a/floris/simulation/farm.py b/floris/simulation/farm.py index 8bab263f1..1524e75e5 100644 --- a/floris/simulation/farm.py +++ b/floris/simulation/farm.py @@ -184,6 +184,10 @@ def __attrs_post_init__(self) -> None: if len(_turbine_types) == 1: _turbine_types *= self.n_turbines + # Check that turbine definitions contain any v3 keys + for t in _turbine_types: + check_turbine_definition_for_v3_keys(turbine_definition_cache[t]) + # Map each turbine definition to its index in this list self.turbine_definitions = [ copy.deepcopy(turbine_definition_cache[t]) for t in _turbine_types @@ -404,3 +408,38 @@ def coordinates(self): @property def n_turbines(self): return len(self.layout_x) + +def check_turbine_definition_for_v3_keys(turbine_definition: dict): + """Check that the turbine definition does not contain any v3 keys.""" + v3_deprecation_msg = ( + "Consider using the convert_turbine_v3_to_v4.py utility in floris/tools " + + "to convert from a FLORIS v3 turbine definition to FLORIS v4. " + + "See https://nrel.github.io/floris/upgrade_guides/v3_to_v4.html for more information." + ) + if "generator_efficiency" in turbine_definition: + raise ValueError( + "generator_efficiency is no longer supported as power is specified in absolute terms " + + "in FLORIS v4. " + + v3_deprecation_msg + ) + + v3_renamed_keys = ["pP", "pT", "ref_density_cp_ct", "ref_tilt_cp_ct"] + if any(k in turbine_definition for k in v3_renamed_keys): + v3_list_keys = ", ".join(map(str,v3_renamed_keys[:-1]))+", and "+v3_renamed_keys[-1] + v4_versions = ( + "cosine_loss_exponent_yaw, cosine_loss_exponent_tilt, ref_air_density, and ref_tilt" + ) + raise ValueError( + v3_list_keys + + " have been renamed to " + + v4_versions + + ", respectively, and placed under the power_thrust_table field in FLORIS v4. " + + v3_deprecation_msg + ) + + if "thrust" in turbine_definition["power_thrust_table"]: + raise ValueError( + "thrust has been renamed thrust_coefficient in FLORIS v4 (and power is now specified " + "in absolute terms with units kW, rather than as a coefficient). " + + v3_deprecation_msg + ) diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index 2f04b4a13..a71377a60 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -347,6 +347,7 @@ def from_file(cls, input_file_path: str | Path) -> Floris: Floris: The class object instance. """ input_dict = load_yaml(Path(input_file_path).resolve()) + check_input_file_for_v3_keys(input_dict) return Floris.from_dict(input_dict) def to_file(self, output_file_path: str) -> None: @@ -362,3 +363,36 @@ def to_file(self, output_file_path: str) -> None: sort_keys=False, default_flow_style=False ) + +def check_input_file_for_v3_keys(input_dict) -> None: + """ + Checks if any FLORIS v3 keys are present in the input file and raises special errors if + the extra keys belong to a v3 definition of the input_dct. + and raises special errors if the extra arguments belong to a v3 definition of the class. + + Args: + input_dict (dict): The input dictionary to be checked for v3 keys. + """ + v3_deprecation_msg = ( + "Consider using the convert_floris_input_v3_to_v4.py utility in floris/tools " + + "to convert from a FLORIS v3 input file to FLORIS v4. " + "See https://nrel.github.io/floris/upgrade_guides/v3_to_v4.html for more information." + ) + if "turbulence_intensity" in input_dict["flow_field"]: + raise AttributeError( + "turbulence_intensity has been updated to turbulence_intensities in FLORIS v4. " + + v3_deprecation_msg + ) + elif not hasattr(input_dict["flow_field"]["turbulence_intensities"], "__len__"): + raise AttributeError( + "turbulence_intensities must be a list of floats in FLORIS v4. " + + v3_deprecation_msg + ) + + if input_dict["wake"]["model_strings"]["velocity_model"] == "multidim_cp_ct": + raise AttributeError( + "Dedicated 'multidim_cp_ct' velocity model has been removed in FLORIS v4 in favor of " + + "supporting all available wake models. To recover previous operation, set " + + "velocity_model to gauss. " + + v3_deprecation_msg + ) diff --git a/floris/tools/convert_floris_input_v3_to_v4.py b/floris/tools/convert_floris_input_v3_to_v4.py new file mode 100644 index 000000000..36415e1d2 --- /dev/null +++ b/floris/tools/convert_floris_input_v3_to_v4.py @@ -0,0 +1,70 @@ + +import sys +from pathlib import Path + +import yaml + +from floris.utilities import load_yaml + + +""" +This script is intended to be called with an argument and converts a floris input +yaml file specified for FLORIS v3 to one specified for FLORIS v4. + +Usage: +python convert_floris_input_v3_to_v4.py .yaml + +The resulting floris input file is placed in the same directory as the original yaml, +and is appended _v4. +""" + + +if __name__ == "__main__": + if len(sys.argv) != 2: + raise Exception( + "Usage: python convert_floris_input_v3_to_v4.py .yaml" + ) + + input_yaml = sys.argv[1] + + # Handling the path and new filename + input_path = Path(input_yaml) + split_input = input_path.parts + [filename_v3, extension] = split_input[-1].split(".") + filename_v4 = filename_v3 + "_v4" + split_output = list(split_input[:-1]) + [filename_v4+"."+extension] + output_path = Path(*split_output) + + # Load existing v3 model + v3_floris_input_dict = load_yaml(input_yaml) + v4_floris_input_dict = v3_floris_input_dict.copy() + + # Change turbulence_intensity field to turbulence_intensities as list + if "turbulence_intensities" in v3_floris_input_dict["flow_field"]: + if "turbulence_intensity" in v3_floris_input_dict["flow_field"]: + del v4_floris_input_dict["flow_field"]["turbulence_intensity"] + elif "turbulence_intensity" in v3_floris_input_dict["flow_field"]: + v4_floris_input_dict["flow_field"]["turbulence_intensities"] = ( + [v3_floris_input_dict["flow_field"]["turbulence_intensity"]] + ) + del v4_floris_input_dict["flow_field"]["turbulence_intensity"] + + # Change multidim_cp_ct velocity model to gauss + if v3_floris_input_dict["wake"]["model_strings"]["velocity_model"] == "multidim_cp_ct": + print( + "multidim_cp_ct velocity model specified. Changing to gauss, " + + "but note that other velocity models are also compatible with multidimensional " + + "turbines in FLORIS v4. " + + "You will also need to convert your multidimensional turbine yaml files and their " + + "corresponding power/thrust csv files to be compatible with FLORIS v4 and to reflect " + + " the absolute power curve, rather than the power coefficient curve." + ) + v4_floris_input_dict["wake"]["model_strings"]["velocity_model"] = "gauss" + + yaml.dump( + v4_floris_input_dict, + open(output_path, "w"), + sort_keys=False + ) + + print(output_path, "created.") diff --git a/floris/tools/convert_turbine_v3_to_v4.py b/floris/tools/convert_turbine_v3_to_v4.py index 7e5b9e123..5cf55f3d5 100644 --- a/floris/tools/convert_turbine_v3_to_v4.py +++ b/floris/tools/convert_turbine_v3_to_v4.py @@ -11,7 +11,7 @@ yaml file specified for FLORIS v3 to one specified for FLORIS v4. Usage: -python convert_turbine_yaml_v3_to_v4.py .yaml +python convert_turbine_v3_to_v4.py .yaml The resulting turbine is placed in the same directory as the original yaml, and is appended _v4. @@ -20,7 +20,7 @@ if __name__ == "__main__": if len(sys.argv) != 2: - raise Exception("Usage: python convert_turbine_yaml_v3_to_v4.py .yaml") + raise Exception("Usage: python convert_turbine_v3_to_v4.py .yaml") input_yaml = sys.argv[1] @@ -37,6 +37,13 @@ # Split into components expected by build_turbine_dict power_thrust_table = v3_turbine_dict["power_thrust_table"] + if "power_thrust_data_file" in power_thrust_table: + raise ValueError( + "Cannot convert multidimensional turbine model. Please manually update your " + + "turbine yaml. Note that the power_thrust_data_file csv needs to be updated to " + + "reflect the absolute power curve, rather than the power coefficient curve," + + "and that `thrust` has been replaced by `thrust_coefficient`." + ) power_thrust_table["power_coefficient"] = power_thrust_table["power"] power_thrust_table["thrust_coefficient"] = power_thrust_table["thrust"] power_thrust_table.pop("power") diff --git a/tests/data/nrel_5MW_custom.yaml b/tests/data/nrel_5MW_custom.yaml index 9e3ef6735..b7d3d8e5b 100644 --- a/tests/data/nrel_5MW_custom.yaml +++ b/tests/data/nrel_5MW_custom.yaml @@ -1,166 +1,174 @@ turbine_type: 'nrel_5MW_custom' -generator_efficiency: 1.0 hub_height: 90.0 -pP: 1.88 -pT: 1.88 rotor_diameter: 126.0 TSR: 8.0 -ref_density_cp_ct: 1.225 -ref_tilt_cp_ct: 5.0 power_thrust_table: + cosine_loss_exponent_yaw: 1.88 + cosine_loss_exponent_tilt: 1.88 + ref_air_density: 1.225 + ref_tilt: 5.0 power: - 0.0 - - 0.000000 - - 0.000000 - - 0.178085 - - 0.289075 - - 0.349022 - - 0.384728 - - 0.406059 - - 0.420228 - - 0.428823 - - 0.433873 - - 0.436223 - - 0.436845 - - 0.436575 - - 0.436511 - - 0.436561 - - 0.436517 - - 0.435903 - - 0.434673 - - 0.433230 - - 0.430466 - - 0.378869 - - 0.335199 - - 0.297991 - - 0.266092 - - 0.238588 - - 0.214748 - - 0.193981 - - 0.175808 - - 0.159835 - - 0.145741 - - 0.133256 - - 0.122157 - - 0.112257 - - 0.103399 - - 0.095449 - - 0.088294 - - 0.081836 - - 0.075993 - - 0.070692 - - 0.065875 - - 0.061484 - - 0.057476 - - 0.053809 - - 0.050447 - - 0.047358 - - 0.044518 - - 0.041900 - - 0.039483 - 0.0 + - 40.518011517569214 + - 177.67162506419703 + - 403.900880943964 + - 737.5889584824021 + - 1187.1774030611875 + - 1239.245945375778 + - 1292.5184293723503 + - 1347.3213147477102 + - 1403.2573725578948 + - 1460.7011898730707 + - 1519.6419125979983 + - 1580.174365096404 + - 1642.1103166918167 + - 1705.758292831 + - 1771.1659528893977 + - 2518.553107505315 + - 3448.381605840943 + - 3552.140809000129 + - 3657.9545431794127 + - 3765.121299313842 + - 3873.928844315059 + - 3984.4800226955504 + - 4096.582833096852 + - 4210.721306623712 + - 4326.154305853405 + - 4443.395565353604 + - 4562.497934188341 + - 4683.419890251577 + - 4806.164748311019 + - 4929.931918769215 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 + - 5000.00 - 0.0 - thrust: - 0.0 + thrust_coefficient: - 0.0 - 0.0 - - 0.99 - - 0.99 - - 0.97373036 - - 0.92826162 - - 0.89210543 - - 0.86100905 - - 0.835423 - - 0.81237673 - - 0.79225789 - - 0.77584769 - - 0.7629228 - - 0.76156073 - - 0.76261984 - - 0.76169723 - - 0.75232027 - - 0.74026851 - - 0.72987175 - - 0.70701647 - - 0.54054532 - - 0.45509459 - - 0.39343381 - - 0.34250785 - - 0.30487242 - - 0.27164979 - - 0.24361964 - - 0.21973831 - - 0.19918151 - - 0.18131868 - - 0.16537679 - - 0.15103727 - - 0.13998636 - - 0.1289037 - - 0.11970413 - - 0.11087113 - - 0.10339901 - - 0.09617888 - - 0.09009926 - - 0.08395078 - - 0.0791188 - - 0.07448356 - - 0.07050731 - - 0.06684119 - - 0.06345518 - - 0.06032267 - - 0.05741999 - - 0.05472609 + - 1.132034888 + - 0.999470963 + - 0.917697381 + - 0.860849503 + - 0.815371198 + - 0.811614904 + - 0.807939328 + - 0.80443352 + - 0.800993851 + - 0.79768116 + - 0.794529244 + - 0.791495834 + - 0.788560434 + - 0.787217182 + - 0.787127977 + - 0.785839257 + - 0.783812219 + - 0.783568108 + - 0.783328285 + - 0.781194418 + - 0.777292539 + - 0.773464375 + - 0.769690236 + - 0.766001924 + - 0.762348072 + - 0.758760824 + - 0.755242872 + - 0.751792927 + - 0.748434131 + - 0.745113997 + - 0.717806682 + - 0.672204789 + - 0.63831272 + - 0.610176496 + - 0.585456847 + - 0.563222111 + - 0.542912273 + - 0.399312061 + - 0.310517829 + - 0.248633226 + - 0.203543725 + - 0.169616419 + - 0.143478955 + - 0.122938861 + - 0.106515296 + - 0.093026095 + - 0.081648606 + - 0.072197368 + - 0.064388275 + - 0.057782745 - 0.0 - 0.0 wind_speed: - 0.0 - - 2.0 - - 2.5 + - 2.9 - 3.0 - - 3.5 - 4.0 - - 4.5 - 5.0 - - 5.5 - 6.0 - - 6.5 - 7.0 + - 7.1 + - 7.2 + - 7.3 + - 7.4 - 7.5 + - 7.6 + - 7.7 + - 7.8 + - 7.9 - 8.0 - - 8.5 - 9.0 - - 9.5 - 10.0 + - 10.1 + - 10.2 + - 10.3 + - 10.4 - 10.5 + - 10.6 + - 10.7 + - 10.8 + - 10.9 - 11.0 + - 11.1 + - 11.2 + - 11.3 + - 11.4 - 11.5 + - 11.6 + - 11.7 + - 11.8 + - 11.9 - 12.0 - - 12.5 - 13.0 - - 13.5 - 14.0 - - 14.5 - 15.0 - - 15.5 - 16.0 - - 16.5 - 17.0 - - 17.5 - 18.0 - - 18.5 - 19.0 - - 19.5 - 20.0 - - 20.5 - 21.0 - - 21.5 - 22.0 - - 22.5 - 23.0 - - 23.5 - 24.0 - - 24.5 - 25.0 - - 25.01 - - 25.02 + - 25.1 - 50.0 From 8ac93bfd437f36c71a78bd9d2649f9153177f8f9 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Tue, 5 Mar 2024 20:52:54 -0700 Subject: [PATCH 47/78] Collect all layout visualization tools in FLORIS (#805) --- examples/02_visualizations.py | 23 +- examples/03_making_adjustments.py | 23 +- examples/16_heterogeneous_inflow.py | 2 +- examples/16b_heterogeneity_multiple_ws_wd.py | 2 +- examples/17_multiple_turbine_types.py | 10 +- examples/23_layout_visualizations.py | 93 +++ examples/23_visualize_layout.py | 62 -- examples/24_floating_turbine_models.py | 1 - ...25_tilt_driven_vertical_wake_deflection.py | 2 +- ...rical_gauss_velocity_deficit_parameters.py | 2 +- ...7_empirical_gauss_deflection_parameters.py | 2 +- examples/29_floating_vs_fixedbottom_farm.py | 10 +- examples/32_plot_velocity_deficit_profiles.py | 8 +- floris/tools/__init__.py | 11 +- floris/tools/floris_interface.py | 4 +- ...visualization.py => flow_visualization.py} | 119 +--- floris/tools/layout_functions.py | 414 ------------- floris/tools/layout_visualization.py | 585 ++++++++++++++++++ tests/layout_visualization_test.py | 47 ++ 19 files changed, 781 insertions(+), 639 deletions(-) create mode 100644 examples/23_layout_visualizations.py delete mode 100644 examples/23_visualize_layout.py rename floris/tools/{visualization.py => flow_visualization.py} (87%) delete mode 100644 floris/tools/layout_functions.py create mode 100644 floris/tools/layout_visualization.py create mode 100644 tests/layout_visualization_test.py diff --git a/examples/02_visualizations.py b/examples/02_visualizations.py index 496f2d41b..f7e8c8ea6 100644 --- a/examples/02_visualizations.py +++ b/examples/02_visualizations.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt import numpy as np -import floris.tools.visualization as wakeviz +import floris.tools.flow_visualization as flowviz from floris.tools import FlorisInterface @@ -60,19 +60,19 @@ # Create the plots fig, ax_list = plt.subplots(3, 1, figsize=(10, 8)) ax_list = ax_list.flatten() -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( horizontal_plane, ax=ax_list[0], label_contours=True, title="Horizontal" ) -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( y_plane, ax=ax_list[1], label_contours=True, title="Streamwise profile" ) -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( cross_plane, ax=ax_list[2], label_contours=True, @@ -81,7 +81,7 @@ # Some wake models may not yet have a visualization method included, for these cases can use # a slower version which scans a turbine model to produce the horizontal flow -horizontal_plane_scan_turbine = wakeviz.calculate_horizontal_plane_with_turbines( +horizontal_plane_scan_turbine = flowviz.calculate_horizontal_plane_with_turbines( fi, x_resolution=20, y_resolution=10, @@ -89,7 +89,7 @@ ) fig, ax = plt.subplots() -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( horizontal_plane_scan_turbine, ax=ax, label_contours=True, @@ -104,7 +104,7 @@ fi.run() # Plot the values at each rotor -fig, axes, _ , _ = wakeviz.plot_rotor_values( +fig, axes, _ , _ = flowviz.plot_rotor_values( fi.floris.flow_field.u, findex=0, n_rows=1, @@ -132,7 +132,7 @@ fi.run() # Plot the values at each rotor -fig, axes, _ , _ = wakeviz.plot_rotor_values( +fig, axes, _ , _ = flowviz.plot_rotor_values( fi.floris.flow_field.u, findex=0, n_rows=1, @@ -141,4 +141,9 @@ ) fig.suptitle("Rotor Plane Visualization, 10x10 Resolution") -wakeviz.show_plots() +# Show plots +plt.show() + +# Note if the user doesn't import matplotlib.pyplot as plt, the user can +# use the following to show the plots: +# flowviz.show() diff --git a/examples/03_making_adjustments.py b/examples/03_making_adjustments.py index 5c71bba2d..a17eb3396 100644 --- a/examples/03_making_adjustments.py +++ b/examples/03_making_adjustments.py @@ -2,7 +2,8 @@ import matplotlib.pyplot as plt import numpy as np -import floris.tools.visualization as wakeviz +import floris.tools.flow_visualization as flowviz +import floris.tools.layout_visualization as layoutviz from floris.tools import FlorisInterface @@ -25,7 +26,7 @@ # Plot a horizatonal slice of the initial configuration horizontal_plane = fi.calculate_horizontal_plane(height=90.0) -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( horizontal_plane, ax=axarr[0], title="Initial setup", @@ -35,7 +36,7 @@ # Change the wind speed horizontal_plane = fi.calculate_horizontal_plane(ws=[7.0], height=90.0) -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( horizontal_plane, ax=axarr[1], title="Wind speed at 7 m/s", @@ -47,7 +48,7 @@ # Change the wind shear, reset the wind speed, and plot a vertical slice fi.set(wind_shear=0.2, wind_speeds=[8.0]) y_plane = fi.calculate_y_plane(crossstream_dist=0.0) -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( y_plane, ax=axarr[2], title="Wind shear at 0.2", @@ -63,15 +64,15 @@ ) fi.set(layout_x=X.flatten(), layout_y=Y.flatten(), wind_directions=[270.0]) horizontal_plane = fi.calculate_horizontal_plane(height=90.0) -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( horizontal_plane, ax=axarr[3], title="3x3 Farm", min_speed=MIN_WS, max_speed=MAX_WS ) -wakeviz.add_turbine_id_labels(fi, axarr[3], color="w", backgroundcolor="k") -wakeviz.plot_turbines_with_fi(fi, axarr[3]) +layoutviz.plot_turbine_labels(fi, axarr[3],plotting_dict={'color':"w"})#, backgroundcolor="k") +layoutviz.plot_turbine_rotors(fi, axarr[3]) # Change the yaw angles and configure the plot differently yaw_angles = np.zeros((1, N * N)) @@ -87,7 +88,7 @@ yaw_angles[:,7] = -30.0 horizontal_plane = fi.calculate_horizontal_plane(yaw_angles=yaw_angles, height=90.0) -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( horizontal_plane, ax=axarr[4], title="Yawesome art", @@ -95,12 +96,12 @@ min_speed=MIN_WS, max_speed=MAX_WS ) -wakeviz.plot_turbines_with_fi(fi, axarr[4], yaw_angles=yaw_angles, color="c") +layoutviz.plot_turbine_rotors(fi, axarr[4], yaw_angles=yaw_angles, color="c") # Plot the cross-plane of the 3x3 configuration cross_plane = fi.calculate_cross_plane(yaw_angles=yaw_angles, downstream_dist=610.0) -wakeviz.visualize_cut_plane( +flowviz.visualize_cut_plane( cross_plane, ax=axarr[5], title="Cross section at 610 m", @@ -110,4 +111,4 @@ axarr[5].invert_xaxis() -wakeviz.show_plots() +plt.show() diff --git a/examples/16_heterogeneous_inflow.py b/examples/16_heterogeneous_inflow.py index cc71b80c4..335a8043a 100644 --- a/examples/16_heterogeneous_inflow.py +++ b/examples/16_heterogeneous_inflow.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt from floris.tools import FlorisInterface -from floris.tools.visualization import visualize_cut_plane +from floris.tools.flow_visualization import visualize_cut_plane """ diff --git a/examples/16b_heterogeneity_multiple_ws_wd.py b/examples/16b_heterogeneity_multiple_ws_wd.py index 9fc662314..9c7bc6b31 100644 --- a/examples/16b_heterogeneity_multiple_ws_wd.py +++ b/examples/16b_heterogeneity_multiple_ws_wd.py @@ -3,7 +3,7 @@ import numpy as np from floris.tools import FlorisInterface -from floris.tools.visualization import visualize_cut_plane +from floris.tools.flow_visualization import visualize_cut_plane """ diff --git a/examples/17_multiple_turbine_types.py b/examples/17_multiple_turbine_types.py index 6776fafa9..cd913b832 100644 --- a/examples/17_multiple_turbine_types.py +++ b/examples/17_multiple_turbine_types.py @@ -1,7 +1,7 @@ import matplotlib.pyplot as plt -import floris.tools.visualization as wakeviz +import floris.tools.flow_visualization as flowviz from floris.tools import FlorisInterface @@ -24,8 +24,8 @@ # Create the plots fig, ax_list = plt.subplots(3, 1, figsize=(10, 8)) ax_list = ax_list.flatten() -wakeviz.visualize_cut_plane(horizontal_plane, ax=ax_list[0], title="Horizontal") -wakeviz.visualize_cut_plane(y_plane, ax=ax_list[1], title="Streamwise profile") -wakeviz.visualize_cut_plane(cross_plane, ax=ax_list[2], title="Spanwise profile") +flowviz.visualize_cut_plane(horizontal_plane, ax=ax_list[0], title="Horizontal") +flowviz.visualize_cut_plane(y_plane, ax=ax_list[1], title="Streamwise profile") +flowviz.visualize_cut_plane(cross_plane, ax=ax_list[2], title="Spanwise profile") -wakeviz.show_plots() +plt.show() diff --git a/examples/23_layout_visualizations.py b/examples/23_layout_visualizations.py new file mode 100644 index 000000000..1b84f602a --- /dev/null +++ b/examples/23_layout_visualizations.py @@ -0,0 +1,93 @@ + +import matplotlib.pyplot as plt +import numpy as np + +import floris.tools.layout_visualization as layoutviz +from floris.tools import FlorisInterface +from floris.tools.flow_visualization import visualize_cut_plane + + +""" +This example shows a number of different ways to visualize a farm layout using FLORIS +""" + +# Create the plotting objects using matplotlib +fig, axarr = plt.subplots(3, 3, figsize=(16, 10), sharex=False) +axarr = axarr.flatten() + +MIN_WS = 1.0 +MAX_WS = 8.0 + +# Initialize FLORIS with the given input file via FlorisInterface +fi = FlorisInterface("inputs/gch.yaml") + +# Change to 5-turbine layout with a wind direction from northwest +fi.set( + layout_x=[0, 0, 1000, 1000, 1000], layout_y=[0, 500, 0, 500, 1000], wind_directions=[300] +) + +# Plot 1: Visualize the flow +ax = axarr[0] +# Plot a horizatonal slice of the initial configuration +horizontal_plane = fi.calculate_horizontal_plane(height=90.0) +visualize_cut_plane( + horizontal_plane, + ax=ax, + min_speed=MIN_WS, + max_speed=MAX_WS, +) +# Plot the turbine points, setting the color to white +layoutviz.plot_turbine_points(fi, ax=ax, plotting_dict={"color": "w"}) +ax.set_title('Flow visualization and turbine points') + +# Plot 2: Show a particular flow case +ax = axarr[1] +turbine_names = [f"T{i}" for i in [10, 11, 12, 13, 22]] +layoutviz.plot_turbine_points(fi, ax=ax) +layoutviz.plot_turbine_labels(fi, + ax=ax, + turbine_names=turbine_names, + show_bbox=True, + bbox_dict={'facecolor':'r'}) +ax.set_title("Show turbine names with a red bounding box") + + +# Plot 2: Show turbine rotors on flow +ax = axarr[2] +horizontal_plane = fi.calculate_horizontal_plane(height=90.0, + yaw_angles=np.array([[0., 30., 0., 0., 0.]])) +visualize_cut_plane( + horizontal_plane, + ax=ax, + min_speed=MIN_WS, + max_speed=MAX_WS +) +layoutviz.plot_turbine_rotors(fi,ax=ax,yaw_angles=np.array([[0., 30., 0., 0., 0.]])) +ax.set_title("Flow visualization with yawed turbine") + +# Plot 3: Show the layout, including wake directions +ax = axarr[3] +layoutviz.plot_turbine_points(fi, ax=ax) +layoutviz.plot_turbine_labels(fi, ax=ax, turbine_names=turbine_names) +layoutviz.plot_waking_directions(fi, ax=ax) +ax.set_title("Show turbine names and wake direction") + +# Plot 4: Plot a subset of the layout, and limit directions less than 7D +ax = axarr[4] +layoutviz.plot_turbine_points(fi, ax=ax, turbine_indices=[0,1,2,3]) +layoutviz.plot_turbine_labels(fi, ax=ax, turbine_names=turbine_names, turbine_indices=[0,1,2,3]) +layoutviz.plot_waking_directions(fi, ax=ax, turbine_indices=[0,1,2,3], limit_dist_D=7) +ax.set_title("Plot a subset and limit wake line distance") + +# Plot with a shaded region +ax = axarr[5] +layoutviz.plot_turbine_points(fi, ax=ax) +layoutviz.shade_region(np.array([[0,0],[300,0],[300,1000],[0,700]]),ax=ax) +ax.set_title("Plot with a shaded region") + +# Change hub heights and plot as a proxy for terrain +ax = axarr[6] +fi.floris.farm.hub_heights = np.array([110, 90, 100, 100, 95]) +layoutviz.plot_farm_terrain(fi, ax=ax) + +plt.show() diff --git a/examples/23_visualize_layout.py b/examples/23_visualize_layout.py deleted file mode 100644 index b3cc39538..000000000 --- a/examples/23_visualize_layout.py +++ /dev/null @@ -1,62 +0,0 @@ - -import matplotlib.pyplot as plt - -from floris.tools import FlorisInterface -from floris.tools.layout_functions import visualize_layout - - -""" -This example visualizes a wind turbine layout -using the visualize_layout function -""" - -# Declare a FLORIS interface -fi = FlorisInterface("inputs/gch.yaml") - -# Assign a 6-turbine layout -fi.set(layout_x=[0, 100, 500, 1000, 1200,500], layout_y=[0, 800, 150, 500, 0,500]) - -# Give turbines specific names -turbine_names = ['T01', 'T02','T03','S01','X01', 'X02'] - -# Declare a 4-pane plot -fig, axarr = plt.subplots(2,2, sharex=True, sharey=True, figsize=(14,10)) - -# Show the layout with all defaults - -# Default visualization -ax = axarr[0,0] -visualize_layout(fi, ax=ax) -ax.set_title('Default visualization') - -# With wake lines -ax = axarr[0,1] -visualize_layout(fi, ax=ax, show_wake_lines=True) -ax.set_title('Show wake lines') - -# Limit wake lines and use provided -ax = axarr[1,0] -visualize_layout( - fi, - ax=ax, - show_wake_lines=True, - lim_lines_per_turbine=2, - turbine_names=turbine_names -) -ax.set_title('Show only nearest 2, use provided names') - -# Show rotors and use black and white -ax = axarr[1,1] -visualize_layout( - fi, - ax=ax, - show_wake_lines=True, - lim_lines_per_turbine=2, - plot_rotor=True, - black_and_white=True -) -ax.set_title('Plot rotors and use black and white option') - - - -plt.show() diff --git a/examples/24_floating_turbine_models.py b/examples/24_floating_turbine_models.py index db586608f..5bf81d2e9 100644 --- a/examples/24_floating_turbine_models.py +++ b/examples/24_floating_turbine_models.py @@ -3,7 +3,6 @@ import numpy as np from floris.tools import FlorisInterface -from floris.tools.layout_functions import visualize_layout """ diff --git a/examples/25_tilt_driven_vertical_wake_deflection.py b/examples/25_tilt_driven_vertical_wake_deflection.py index 05575a40f..1efd5aa8a 100644 --- a/examples/25_tilt_driven_vertical_wake_deflection.py +++ b/examples/25_tilt_driven_vertical_wake_deflection.py @@ -3,7 +3,7 @@ import numpy as np from floris.tools import FlorisInterface -from floris.tools.visualization import visualize_cut_plane +from floris.tools.flow_visualization import visualize_cut_plane """ diff --git a/examples/26_empirical_gauss_velocity_deficit_parameters.py b/examples/26_empirical_gauss_velocity_deficit_parameters.py index 2dc5bb43e..8d7d73857 100644 --- a/examples/26_empirical_gauss_velocity_deficit_parameters.py +++ b/examples/26_empirical_gauss_velocity_deficit_parameters.py @@ -5,7 +5,7 @@ import numpy as np from floris.tools import FlorisInterface -from floris.tools.visualization import plot_rotor_values, visualize_cut_plane +from floris.tools.flow_visualization import plot_rotor_values, visualize_cut_plane """ diff --git a/examples/27_empirical_gauss_deflection_parameters.py b/examples/27_empirical_gauss_deflection_parameters.py index 5a24aaec7..cb59ee821 100644 --- a/examples/27_empirical_gauss_deflection_parameters.py +++ b/examples/27_empirical_gauss_deflection_parameters.py @@ -5,7 +5,7 @@ import numpy as np from floris.tools import FlorisInterface -from floris.tools.visualization import plot_rotor_values, visualize_cut_plane +from floris.tools.flow_visualization import plot_rotor_values, visualize_cut_plane """ diff --git a/examples/29_floating_vs_fixedbottom_farm.py b/examples/29_floating_vs_fixedbottom_farm.py index e141144aa..54f19795a 100644 --- a/examples/29_floating_vs_fixedbottom_farm.py +++ b/examples/29_floating_vs_fixedbottom_farm.py @@ -4,7 +4,7 @@ import pandas as pd from scipy.interpolate import NearestNDInterpolator -import floris.tools.visualization as wakeviz +import floris.tools.flow_visualization as flowviz from floris.tools import FlorisInterface @@ -96,14 +96,14 @@ # Create the plots fig, ax_list = plt.subplots(2, 1, figsize=(10, 8)) ax_list = ax_list.flatten() -wakeviz.visualize_cut_plane(horizontal_planes[0], ax=ax_list[0], title="Horizontal") -wakeviz.visualize_cut_plane(y_planes[0], ax=ax_list[1], title="Streamwise profile") +flowviz.visualize_cut_plane(horizontal_planes[0], ax=ax_list[0], title="Horizontal") +flowviz.visualize_cut_plane(y_planes[0], ax=ax_list[1], title="Streamwise profile") fig.suptitle("Fixed-bottom farm") fig, ax_list = plt.subplots(2, 1, figsize=(10, 8)) ax_list = ax_list.flatten() -wakeviz.visualize_cut_plane(horizontal_planes[1], ax=ax_list[0], title="Horizontal") -wakeviz.visualize_cut_plane(y_planes[1], ax=ax_list[1], title="Streamwise profile") +flowviz.visualize_cut_plane(horizontal_planes[1], ax=ax_list[0], title="Horizontal") +flowviz.visualize_cut_plane(y_planes[1], ax=ax_list[1], title="Streamwise profile") fig.suptitle("Floating farm") # Compute AEP (see 07_calc_aep_from_rose.py for details) diff --git a/examples/32_plot_velocity_deficit_profiles.py b/examples/32_plot_velocity_deficit_profiles.py index 9f28ce40c..490809571 100644 --- a/examples/32_plot_velocity_deficit_profiles.py +++ b/examples/32_plot_velocity_deficit_profiles.py @@ -3,9 +3,9 @@ import numpy as np from matplotlib import ticker -import floris.tools.visualization as wakeviz +import floris.tools.flow_visualization as flowviz from floris.tools import cut_plane, FlorisInterface -from floris.tools.visualization import VelocityProfilesFigure +from floris.tools.flow_visualization import VelocityProfilesFigure from floris.utilities import reverse_rotate_coordinates_rel_west @@ -71,7 +71,7 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): horizontal_plane = fi.calculate_horizontal_plane(height=hub_height) fig, ax = plt.subplots(figsize=(6.4, 3)) - wakeviz.visualize_cut_plane(horizontal_plane, ax) + flowviz.visualize_cut_plane(horizontal_plane, ax) colors = ['b', 'g', 'c'] for i, profile in enumerate(profiles): # Plot profile coordinates on the horizontal plane @@ -143,7 +143,7 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): ) horizontal_plane = fi.calculate_horizontal_plane(height=hub_height, x_bounds=[-2 * D, 9 * D]) - ax = wakeviz.visualize_cut_plane(horizontal_plane) + ax = flowviz.visualize_cut_plane(horizontal_plane) colors = ['b', 'g', 'c'] for i, profile in enumerate(cross_profiles): ax.plot( diff --git a/floris/tools/__init__.py b/floris/tools/__init__.py index 980ba6947..f837786b0 100644 --- a/floris/tools/__init__.py +++ b/floris/tools/__init__.py @@ -18,19 +18,18 @@ ['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'cut_plane', 'floris_interface', - 'layout_functions', 'optimization', 'plotting', 'power_rose', + 'layout_visualization', 'optimization', 'plotting', 'power_rose', 'visualization'] """ from .floris_interface import FlorisInterface -from .parallel_computing_interface import ParallelComputingInterface -from .uncertainty_interface import UncertaintyInterface -from .visualization import ( +from .flow_visualization import ( plot_rotor_values, - plot_turbines_with_fi, visualize_cut_plane, visualize_quiver, ) +from .parallel_computing_interface import ParallelComputingInterface +from .uncertainty_interface import UncertaintyInterface from .wind_data import ( TimeSeries, WindRose, @@ -42,7 +41,7 @@ # cut_plane, # floris_interface, # interface_utilities, -# layout_functions, +# layout_visualization, # optimization, # plotting, # power_rose, diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index 97d8cae4b..d7311b023 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -1279,13 +1279,13 @@ def get_turbine_layout(self, z=False): ### v3 functions that are removed - raise an error if used - def calculate_wake(self): + def calculate_wake(self, **_): raise NotImplementedError( "The calculate_wake method has been removed. Please use the run method. " "See https://nrel.github.io/floris/upgrade_guides/v3_to_v4.html for more information." ) - def reinitialize(self): + def reinitialize(self, **_): raise NotImplementedError( "The reinitialize method has been removed. Please use the set method. " "See https://nrel.github.io/floris/upgrade_guides/v3_to_v4.html for more information." diff --git a/floris/tools/visualization.py b/floris/tools/flow_visualization.py similarity index 87% rename from floris/tools/visualization.py rename to floris/tools/flow_visualization.py index eb54650ae..b55ed6f9c 100644 --- a/floris/tools/visualization.py +++ b/floris/tools/flow_visualization.py @@ -26,125 +26,14 @@ from floris.utilities import rotate_coordinates_rel_west, wind_delta -def show_plots(): - plt.show() - -def plot_turbines( - ax, - layout_x, - layout_y, - yaw_angles, - rotor_diameters, - color: str | None = None, -): - """ - This function is deprecated and will be removed in v3.5, use `plot_turbines_with_fi` instead. - - Plot wind plant layout from turbine locations. - - Args: - ax (:py:class:`matplotlib.pyplot.axes`): Figure axes. - layout_x (np.array): Wind turbine locations (east-west). - layout_y (np.array): Wind turbine locations (north-south). - yaw_angles (np.array): Yaw angles of each wind turbine. - rotor_diameters (np.array): Wind turbine rotor diameter. - color (str): pyplot color option to plot the turbines. - """ - warnings.warn( - "The `plot_turbines` function is deprecated and will be removed in v3.5, " - "use `plot_turbines_with_fi` instead.", - DeprecationWarning, - stacklevel=2 # This prints the calling function and this function in the warning - ) - - if color is None: - color = "k" - - for x, y, yaw, d in zip(layout_x, layout_y, yaw_angles, rotor_diameters): - R = d / 2.0 - x_0 = x + np.sin(np.deg2rad(yaw)) * R - x_1 = x - np.sin(np.deg2rad(yaw)) * R - y_0 = y - np.cos(np.deg2rad(yaw)) * R - y_1 = y + np.cos(np.deg2rad(yaw)) * R - ax.plot([x_0, x_1], [y_0, y_1], color=color) - - -def plot_turbines_with_fi( - fi: FlorisInterface, - ax: plt.Axes = None, - color: str = None, - wd: np.ndarray = None, - yaw_angles: np.ndarray = None, -): - """ - Plot the wind plant layout from turbine locations gotten from a FlorisInterface object. - Note that this function automatically uses the first wind direction and first wind speed. - Generally, it is most explicit to create a new FlorisInterface with only the single - wind condition that should be plotted. - - Args: - fi (:py:class:`floris.tools.floris_interface.FlorisInterface`): FlorisInterface object. - ax (:py:class:`matplotlib.pyplot.axes`): Figure axes. Defaults to None. - color (str, optional): Color to plot turbines. Defaults to None. - wd (list, optional): The wind direction to plot the turbines relative to. Defaults to None. - yaw_angles (NDArray, optional): The yaw angles for the turbines. Defaults to None. +def show(): """ - if not ax: - fig, ax = plt.subplots() - if yaw_angles is None: - yaw_angles = fi.floris.farm.yaw_angles - if wd is None: - wd = fi.floris.flow_field.wind_directions[0] - - # Rotate yaw angles to inertial frame for plotting turbines relative to wind direction - yaw_angles = yaw_angles - wind_delta(np.array(wd)) - - if color is None: - color = "k" - - rotor_diameters = fi.floris.farm.rotor_diameters.flatten() - for x, y, yaw, d in zip(fi.layout_x, fi.layout_y, yaw_angles[0], rotor_diameters): - R = d / 2.0 - x_0 = x + np.sin(np.deg2rad(yaw)) * R - x_1 = x - np.sin(np.deg2rad(yaw)) * R - y_0 = y - np.cos(np.deg2rad(yaw)) * R - y_1 = y + np.cos(np.deg2rad(yaw)) * R - ax.plot([x_0, x_1], [y_0, y_1], color=color) - - -def add_turbine_id_labels(fi: FlorisInterface, ax: plt.Axes, **kwargs): - """ - Adds index labels to a plot based on the given FlorisInterface. - See the pyplot.annotate docs for more info: - https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.annotate.html. - kwargs are passed to Text - (https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text). - - Args: - fi (FlorisInterface): Simulation object to get the layout and index information. - ax (plt.Axes): Axes object to add the labels. + Display all open figures. This is a wrapper for `plt.show()`. + This function is useful if the user doesn't wish to import `matplotlib.pyplot` """ - - # Rotate layout to inertial frame for plotting turbines relative to wind direction - coordinates_array = np.array([ - [x, y, 0.0] - for x, y in list(zip(fi.layout_x, fi.layout_y)) - ]) - wind_direction = fi.floris.flow_field.wind_directions[0] - layout_x, layout_y, _, _, _ = rotate_coordinates_rel_west( - np.array([wind_direction]), - coordinates_array + plt.show( ) - for i in range(fi.floris.farm.n_turbines): - ax.annotate( - i, - (layout_x[0,i], layout_y[0,i]), - xytext=(0,10), - textcoords="offset points", - **kwargs - ) - def line_contour_cut_plane( cut_plane, diff --git a/floris/tools/layout_functions.py b/floris/tools/layout_functions.py deleted file mode 100644 index a14f9e8f6..000000000 --- a/floris/tools/layout_functions.py +++ /dev/null @@ -1,414 +0,0 @@ - -import math - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -from scipy.spatial.distance import pdist, squareform - - -# Defines a bunch of tools for plotting and manipulating -# layouts for quick visualizations - - -def visualize_layout( - fi, - ax=None, - show_wake_lines=False, - limit_dist_m=None, - lim_lines_per_turbine=None, - turbine_face_north=False, - one_index_turbine=False, - black_and_white=False, - plot_rotor=False, - turbine_names=None -): - """ - Make a plot which shows the turbine locations, and important wakes. - - Args: - fi object - ax (:py:class:`matplotlib.pyplot.axes` optional): - figure axes. Defaults to None. - show_wake_lines (bool, optional): flag to control plotting of - wake boundaries. Defaults to False. - limit_dist_m (float, optional): Only plot distances less than this ammount (m) - Defaults to None. - lim_lines_per_turbine (int, optional): Limit number of lines eminating from a turbine - turbine_face_north (bool, optional): Force orientation of wind - turbines. Defaults to False. - one_index_turbine (bool, optional): if true, 1st turbine is - turbine 1 (ignored if turbine names provided) - black_and_white (bool, optional): if true print in black and white - plot_rotor (bool, optional): if true plot the turbine rotors and offset the labels - turbines_names (list, optional): optional list of turbine names - - """ - - # Build a dataframe of locations and names - df_turbine = pd.DataFrame({ - 'x':fi.layout_x, - 'y':fi.layout_y - }) - - # Get some info - D = fi.floris.farm.rotor_diameters[0] - N_turbine = df_turbine.shape[0] - turbines = df_turbine.index - - # Set some color information - if black_and_white: - ec_color = 'k' - else: - ec_color = 'r' - - # If we're plotting the rotor, offset the label - if plot_rotor: - label_offset = D/2 - else: - label_offset = 0. - - # If turbine names passed in apply them - if turbine_names is not None: - - if len(turbine_names) != N_turbine: - raise ValueError( - "Length of turbine names array must equal number of turbines within fi" - ) - - df_turbine['turbine_names'] = turbine_names - - elif one_index_turbine: - df_turbine['turbine_names'] = list(range(1,N_turbine+1)) # 1-indexed list - df_turbine['turbine_names'] = df_turbine['turbine_names'].astype(int) - - else: - - df_turbine['turbine_names'] = list(range(N_turbine)) # 0-indexed list - df_turbine['turbine_names'] = df_turbine['turbine_names'].astype(int) - - - # if no axes provided, make one - if not ax: - fig, ax = plt.subplots(figsize=(7, 7)) - - - # Make ordered list of pairs sorted by distance if the distance - # and angle matrices are provided - if show_wake_lines: - - # Make a dataframe of distances - dist = pd.DataFrame( - squareform(pdist(df_turbine[['x','y']])), - index=df_turbine.index, - columns=df_turbine.index, - ) - - # Make a DF of turbine angles - angle = pd.DataFrame() - - for t1 in turbines: - for t2 in turbines: - angle.loc[t1, t2] = wakeAngle(df_turbine, [t1, t2]) - angle.index.name = "Turbine" - - # Now limit the matrix to only show waking from (row) to (column) - for t1 in turbines: - for t2 in turbines: - if dist.loc[t1, t2] == 0.0: - dist.loc[t1, t2] = np.nan - angle.loc[t1, t2] = np.nan - - ordList = pd.DataFrame() - for t1 in turbines: - for t2 in turbines: - temp = pd.DataFrame( - { - "T1": [t1], - "T2": [t2], - "Dist": [dist.loc[t1, t2]], - "angle": angle.loc[t1, t2], - } - ) - ordList = pd.concat([ordList, temp]) - - ordList.dropna(how="any", inplace=True) - ordList.sort_values("Dist", inplace=True, ascending=False) - - # If selected to limit the number of lines per turbine - if lim_lines_per_turbine is not None: - # Limit list to smallest lim_lines_per_turbine - ordList = ordList.groupby(['T1']) - ordList = ordList.apply(lambda x: x.nsmallest(n=lim_lines_per_turbine, columns='Dist')) - ordList = ordList.reset_index(drop=True) - - # Add in the reflected version of each case (only postive directions will be - # plotted to help test show face up) - df_reflect = ordList.copy() - df_reflect.columns = ['T2','T1','Dist','angle'] # Reflect T2 and T1 - ordList = pd.concat([ordList,df_reflect]).drop_duplicates().reset_index(drop=True) - - # If limiting to less than a certain distance - if limit_dist_m is not None: - ordList = ordList[ordList.Dist < limit_dist_m] - - # Plot wake lines and details - for t1, t2 in zip(ordList.T1, ordList.T2): - x = [df_turbine.loc[t1, "x"], df_turbine.loc[t2, "x"]] - y = [df_turbine.loc[t1, "y"], df_turbine.loc[t2, "y"]] - - - # Only plot positive x way - if x[1] >= x[0]: - continue - - if black_and_white: - (line,) = ax.plot(x, y, color="k") - else: - (line,) = ax.plot(x, y) - - linetext = "%.2f D --- %.1f/%.1f" % ( - dist.loc[t1, t2] / D, - np.min([angle.loc[t2, t1], angle.loc[t1, t2]]), - np.max([angle.loc[t2, t1], angle.loc[t1, t2]]), - ) - - label_line( - line, linetext, ax, near_i=1, near_x=None, near_y=None, rotation_offset=180 - ) - - - # If plotting rotors, mark the location of the nacelle - if plot_rotor: - ax.plot(df_turbine.x, df_turbine.y,'o',ls='None', color='k') - - # Also mark the place of each label to make sure figure is correct scale - ax.plot( - df_turbine.x + label_offset, - df_turbine.y + label_offset, - '.', - ls='None', - color='w', - alpha=0 - - ) - - # Plot turbines - for t1 in turbines: - - if plot_rotor: # If plotting the rotors, draw these fist - - if not turbine_face_north: # Plot turbines facing west - ax.plot( - [df_turbine.loc[t1].x, df_turbine.loc[t1].x], - [ - df_turbine.loc[t1].y - 0.5 * D / 2.0, - df_turbine.loc[t1].y + 0.5 * D / 2.0, - ], - color="k", - ) - else: # Plot facing north - ax.plot( - [ - df_turbine.loc[t1].x - 0.5 * D / 2.0, - df_turbine.loc[t1].x + 0.5 * D / 2.0, - ], - [df_turbine.loc[t1].y, df_turbine.loc[t1].y], - color="k", - ) - - # Draw a line from label to rotor - ax.plot( - [ - df_turbine.loc[t1].x, - df_turbine.loc[t1].x + D/2, - ], - [df_turbine.loc[t1].y, df_turbine.loc[t1].y + D/2], - color="k", - ls='--' - ) - - - # Now add the label - ax.text( - - df_turbine.loc[t1].x + label_offset, - df_turbine.loc[t1].y + label_offset, - df_turbine.turbine_names.values[t1], - ha="center", - bbox={"boxstyle": "round", "ec": ec_color, "fc": "white"} - ) - - ax.set_aspect("equal") - - -# Set wind direction -def set_direction(df_turbine, rotation_angle): - """ - Rotate wind farm CCW by the given angle provided in degrees - - #TODO add center of rotation? Default = center of farm? - - Args: - df_turbine (pd.DataFrame): turbine location data - rotation_angle (float): rotation angle in degrees - - Returns: - df_return (pd.DataFrame): rotated farm layout. - """ - theta = np.deg2rad(rotation_angle) - R = np.matrix([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) - - xy = np.array([df_turbine.x, df_turbine.y]) - - xy_rot = R * xy - - df_return = df_turbine.copy(deep=True) - df_return["x"] = np.squeeze(np.asarray(xy_rot[0, :])) - df_return["y"] = np.squeeze(np.asarray(xy_rot[1, :])) - return df_return - - -def turbineDist(df, turbList): - """ - Derive distance between any two turbines. - - Args: - df (pd.DataFrame): DataFrame with layout data. - turbList (list): list of 2 turbines for which spacing distance - is of interest. - - Returns: - float: distance between turbines. - """ - x1 = df.loc[turbList[0], "x"] - x2 = df.loc[turbList[1], "x"] - y1 = df.loc[turbList[0], "y"] - y2 = df.loc[turbList[1], "y"] - - dist = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) - - return dist - - -def wakeAngle(df, turbList): - """ - Get angles between turbines in wake direction - - Args: - df (pd.DataFrame): DataFrame with layout data. - turbList (list): list of 2 turbines for which spacing distance - is of interest. - - Returns: - wakeAngle (float): angle between turbines relative to compass - """ - x1 = df.loc[turbList[0], "x"] - x2 = df.loc[turbList[1], "x"] - y1 = df.loc[turbList[0], "y"] - y2 = df.loc[turbList[1], "y"] - wakeAngle = ( - np.arctan2(y2 - y1, x2 - x1) * 180.0 / np.pi - ) # Angle in normal cartesian coordinates - - # Convert angle to compass angle - wakeAngle = 270.0 - wakeAngle - if wakeAngle < 0: - wakeAngle = wakeAngle + 360.0 - if wakeAngle > 360: - wakeAngle = wakeAngle - 360.0 - - return wakeAngle - - -def label_line( - line, - label_text, - ax, - near_i=None, - near_x=None, - near_y=None, - rotation_offset=0.0, - offset=(0, 0), -): - """ - [summary] - - Args: - line (matplotlib.lines.Line2D): line to label. - label_text (str): label to add to line. - ax (:py:class:`matplotlib.pyplot.axes` optional): figure axes. - near_i (int, optional): Catch line near index i. - Defaults to None. - near_x (float, optional): Catch line near coordinate x. - Defaults to None. - near_y (float, optional): Catch line near coordinate y. - Defaults to None. - rotation_offset (float, optional): label rotation in degrees. - Defaults to 0. - offset (tuple, optional): label offset from turbine location. - Defaults to (0, 0). - - Raises: - ValueError: ("Need one of near_i, near_x, near_y") raised if - insufficient information is passed in. - """ - - def put_label(i, ax): - """ - Add a label to index. - - Args: - i (int): index to label. - """ - i = min(i, len(x) - 2) - dx = sx[i + 1] - sx[i] - dy = sy[i + 1] - sy[i] - rotation = np.rad2deg(math.atan2(dy, dx)) + rotation_offset - pos = [(x[i] + x[i + 1]) / 2.0 + offset[0], (y[i] + y[i + 1]) / 2 + offset[1]] - ax.text( - pos[0], - pos[1], - label_text, - size=9, - rotation=rotation, - color=line.get_color(), - ha="center", - va="center", - bbox={"ec": "1", "fc": "1", "alpha": 0.8}, - ) - - # extract line data - x = line.get_xdata() - y = line.get_ydata() - - # define screen spacing - if ax.get_xscale() == "log": - sx = np.log10(x) - else: - sx = x - if ax.get_yscale() == "log": - sy = np.log10(y) - else: - sy = y - - # find index - if near_i is not None: - i = near_i - if i < 0: # sanitize negative i - i = len(x) + i - put_label(i, ax) - elif near_x is not None: - for i in range(len(x) - 2): - if (x[i] < near_x and x[i + 1] >= near_x) or ( - x[i + 1] < near_x and x[i] >= near_x - ): - put_label(i, ax) - elif near_y is not None: - for i in range(len(y) - 2): - if (y[i] < near_y and y[i + 1] >= near_y) or ( - y[i + 1] < near_y and y[i] >= near_y - ): - put_label(i, ax) - else: - raise ValueError("Need one of near_i, near_x, near_y") diff --git a/floris/tools/layout_visualization.py b/floris/tools/layout_visualization.py new file mode 100644 index 000000000..756fb35c9 --- /dev/null +++ b/floris/tools/layout_visualization.py @@ -0,0 +1,585 @@ + +import math +from typing import ( + Any, + Dict, + List, + Tuple, +) + +import matplotlib.lines +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +from scipy.spatial.distance import pdist, squareform + +from floris.tools import FlorisInterface +from floris.utilities import rotate_coordinates_rel_west, wind_delta + + +def plot_turbine_points( + fi: FlorisInterface, + ax: plt.Axes = None, + turbine_indices: List[int] = None, + plotting_dict: Dict[str, Any] = {}, +) -> plt.Axes: + """ + Plots turbine layout from a FlorisInterface object. + + Args: + fi (FlorisInterface): The FlorisInterface object containing layout data. + ax (plt.Axes, optional): An existing axes object to plot on. If None, + a new figure and axes will be created. Defaults to None. + turbine_indices (List[int], optional): A list of turbine indices to plot. + If None, all turbines will be plotted. Defaults to None. + plotting_dict (Dict[str, Any], optional): A dictionary to customize plot + appearance. Valid keys include: + * 'color' (str): Turbine marker color. Defaults to 'black'. + * 'marker' (str): Turbine marker style. Defaults to '.'. + * 'markersize' (int): Turbine marker size. Defaults to 10. + * 'label' (str): Label for the legend. Defaults to None. + + Returns: + plt.Axes: The axes object used for the plot. + + Raises: + IndexError: If any value in `turbine_indices` is an invalid turbine index. + """ + + # Generate axis, if needed + if ax is None: + _, ax = plt.subplots() + + # If turbine_indices is not none, make sure all elements correspond to real indices + if turbine_indices is not None: + try: + fi.layout_x[turbine_indices] + except IndexError: + raise IndexError("turbine_indices does not correspond to turbine indices in fi") + else: + turbine_indices = list(range(len(fi.layout_x))) + + # Generate plotting dictionary + default_plotting_dict = { + "color": "black", + "marker": ".", + "markersize": 10, + "label": None, + } + plotting_dict = {**default_plotting_dict, **plotting_dict} + + # Plot + ax.plot( + fi.layout_x[turbine_indices], + fi.layout_y[turbine_indices], + linestyle="None", + **plotting_dict, + ) + + # Make sure axis set to equal + ax.axis("equal") + + return ax + + +def plot_turbine_labels( + fi: FlorisInterface, + ax: plt.Axes = None, + turbine_names: List[str] = None, + turbine_indices: List[int] = None, + label_offset: float = None, + show_bbox: bool = False, + bbox_dict: Dict[str, Any] = {}, + plotting_dict: Dict[str, Any] = {}, +) -> plt.Axes: + """ + Adds turbine labels to a turbine layout plot. + + Args: + fi (FlorisInterface): The FlorisInterface object containing layout data. + ax (plt.Axes, optional): An existing axes object to plot on. If None, + a new figure and axes will be created. Defaults to None. + turbine_names (List[str], optional): Custom turbine labels. If None, + defaults to turbine indices (e.g., '000', '001'). Defaults to None. + turbine_indices (List[int], optional): Indices of turbines to label. + If None, all turbines will be labeled. Defaults to None. + label_offset (float, optional): Distance to offset labels from turbine + points (in meters). If None, defaults to rotor_diameter/8. + Defaults to None. + show_bbox (bool, optional): If True, adds a bounding box around each label. + Defaults to False. + bbox_dict (Dict[str, Any], optional): Dictionary to customize the appearance + of bounding boxes (if show_bbox is True). Valid keys include: + * 'facecolor' (str): Box background color. Defaults to 'gray'. + * 'alpha' (float): Opacity of box. Defaults to 0.5. + * 'pad' (float): Padding around text. Defaults to 0.1. + * 'boxstyle' (str): Box style (e.g., 'round'). Defaults to 'round'. + plotting_dict (Dict[str, Any], optional): Dictionary to control text + appearance. Valid keys include: + * 'color' (str): Text color. Defaults to 'black'. + + Returns: + plt.Axes: The axes object used for the plot. + + Raises: + IndexError: If any value in `turbine_indices` is an invalid turbine index. + ValueError: If the length of `turbine_names` does not match the number of turbines. + """ + + # Generate axis, if needed + if ax is None: + _, ax = plt.subplots() + + # If turbine names not none, confirm has correct number of turbines + if turbine_names is not None: + if len(turbine_names) != len(fi.layout_x): + raise ValueError("Length of turbine_names not equal to number turbines in fi object") + else: + # Assign simple default numbering + turbine_names = [f"{i:03d}" for i in range(len(fi.layout_x))] + + # If label_offset is None, use default value of r/8 + if label_offset is None: + rotor_diameters = fi.floris.farm.rotor_diameters.flatten() + r = rotor_diameters[0] / 2.0 + label_offset = r / 8.0 + + # If turbine_indices is not none, make sure all elements correspond to real indices + if turbine_indices is not None: + try: + fi.layout_x[turbine_indices] + except IndexError: + raise IndexError("turbine_indices does not correspond to turbine indices in fi") + else: + turbine_indices = list(range(len(fi.layout_x))) + + # Generate plotting dictionary + default_plotting_dict = { + "color": "black", + "label": None, + } + plotting_dict = {**default_plotting_dict, **plotting_dict} + + # If showing bbox is true, if bbox_dict is None, use a default + default_bbox_dict = {"facecolor": "gray", "alpha": 0.5, "pad": 0.1, "boxstyle": "round"} + bbox_dict = {**default_bbox_dict, **bbox_dict} + + for ti in turbine_indices: + if not show_bbox: + ax.text( + fi.layout_x[ti] + label_offset, + fi.layout_y[ti] + label_offset, + turbine_names[ti], + **plotting_dict, + ) + else: + ax.text( + fi.layout_x[ti] + label_offset, + fi.layout_y[ti] + label_offset, + turbine_names[ti], + bbox=bbox_dict, + **plotting_dict, + ) + + # Plot labels and aesthetics + ax.axis("equal") + + return ax + + +def plot_turbine_rotors( + fi: FlorisInterface, + ax: plt.Axes = None, + color: str = "k", + wd: float = None, + yaw_angles: np.ndarray = None, +) -> plt.Axes: + """ + Plots wind turbine rotors on an existing axes, visually representing their yaw angles. + + Args: + fi (FlorisInterface): The FlorisInterface object containing layout and turbine data. + ax (plt.Axes, optional): An existing axes object to plot on. If None, + a new figure and axes will be created. Defaults to None. + color (str, optional): Color of the turbine rotor lines. Defaults to 'k' (black). + wd (float, optional): Wind direction (in degrees) relative to global reference. + If None, the first wind direction in `fi.floris.flow_field.wind_directions` is used. + Defaults to None. + yaw_angles (np.ndarray, optional): Array of turbine yaw angles (in degrees). If None, + the values from `fi.floris.farm.yaw_angles` are used. Defaults to None. + + Returns: + plt.Axes: The axes object used for the plot. + """ + if not ax: + _, ax = plt.subplots() + if yaw_angles is None: + yaw_angles = fi.floris.farm.yaw_angles + if wd is None: + wd = fi.floris.flow_field.wind_directions[0] + + # Rotate yaw angles to inertial frame for plotting turbines relative to wind direction + yaw_angles = yaw_angles - wind_delta(np.array(wd)) + + if color is None: + color = "k" + + # If yaw angles is not 1D, assume we want first findex + yaw_angles = np.array(yaw_angles) + if yaw_angles.ndim == 2: + yaw_angles = yaw_angles[0, :] + + rotor_diameters = fi.floris.farm.rotor_diameters.flatten() + for x, y, yaw, d in zip(fi.layout_x, fi.layout_y, yaw_angles, rotor_diameters): + R = d / 2.0 + x_0 = x + np.sin(np.deg2rad(yaw)) * R + x_1 = x - np.sin(np.deg2rad(yaw)) * R + y_0 = y - np.cos(np.deg2rad(yaw)) * R + y_1 = y + np.cos(np.deg2rad(yaw)) * R + ax.plot([x_0, x_1], [y_0, y_1], color=color) + + return ax + + +def get_wake_direction(x_i: float, y_i: float, x_j: float, y_j: float) -> float: + """ + Calculates the wind direction at which the wake of turbine i would impact turbine j. + + Args: + x_i (float): X-coordinate of turbine i (the upstream turbine). + y_i (float): Y-coordinate of turbine i. + x_j (float): X-coordinate of turbine j (the downstream turbine). + y_j (float): Y-coordinate of turbine j. + + Returns: + float: Wind direction in degrees (0-360) where 0 degrees represents wind + blowing from the north, and the angle increases clockwise. + """ + + dx = x_j - x_i + dy = y_j - y_i + + angle_rad = np.arctan2(dy, dx) + + + # Adjust for "from" direction (add 180 degrees) and wrap within 0-360 + angle_deg = 270 - np.rad2deg(angle_rad) + wind_direction = angle_deg % 360 + + return wind_direction + + +def label_line( + line: matplotlib.lines.Line2D, + label_text: str, + ax: plt.Axes, + near_i: int = None, + near_x: float = None, + near_y: float = None, + rotation_offset: float = 0.0, + offset: Tuple[float, float] = (0, 0), + size: int = 7, +) -> None: + """ + Adds a text label to a matplotlib line, with options to specify label placement. + + Args: + line (matplotlib.lines.Line2D): The line object to label. + label_text (str): The text of the label. + ax (plt.Axes): The axes object where the line is plotted. + near_i (int, optional): Index near which to place the label. Defaults to None. + near_x (float, optional): X-coordinate near which to place the label. Defaults to None. + near_y (float, optional): Y-coordinate near which to place the label. Defaults to None. + rotation_offset (float, optional): Additional rotation for the label (in degrees). + Defaults to 0.0. + offset (Tuple[float, float], optional): X and Y offset from the label position. + Defaults to (0, 0). + size (int, optional): Font size of the label. Defaults to 7. + + Raises: + ValueError: If none of `near_i`, `near_x`, or `near_y` + are provided to determine label placement. + """ + + def put_label(i: int) -> None: + """ + Adds a label to a line segment within a plot (used internally by the 'label_line' function). + + Args: + i (int): The index of the line segment where the label should be placed. + The label will be positioned between points i and i+1. + """ + i = min(i, len(x) - 2) + dx = sx[i + 1] - sx[i] + dy = sy[i + 1] - sy[i] + rotation = np.rad2deg(np.arctan2(dy, dx)) + rotation_offset + pos = [(x[i] + x[i + 1]) / 2.0 + offset[0], (y[i] + y[i + 1]) / 2 + offset[1]] + ax.text( + pos[0], + pos[1], + label_text, + size=size, + rotation=rotation, + color=line.get_color(), + ha="center", + va="center", + bbox={"ec": "1", "fc": "1", "alpha": 0.8}, + ) + + # extract line data + x = line.get_xdata() + y = line.get_ydata() + + # define screen spacing + if ax.get_xscale() == "log": + sx = np.log10(x) + else: + sx = x + if ax.get_yscale() == "log": + sy = np.log10(y) + else: + sy = y + + # find index + if near_i is not None: + i = near_i + if i < 0: # sanitize negative i + i = len(x) + i + put_label(i) + elif near_x is not None: + for i in range(len(x) - 2): + if (x[i] < near_x and x[i + 1] >= near_x) or (x[i + 1] < near_x and x[i] >= near_x): + put_label(i) + elif near_y is not None: + for i in range(len(y) - 2): + if (y[i] < near_y and y[i + 1] >= near_y) or (y[i + 1] < near_y and y[i] >= near_y): + put_label(i) + else: + raise ValueError("Need one of near_i, near_x, near_y") + + +def plot_waking_directions( + fi: FlorisInterface, + ax: plt.Axes = None, + turbine_indices: List[int] = None, + wake_plotting_dict: Dict[str, Any] = {}, + D: float = None, + limit_dist_D: float = None, + limit_dist_m: float = None, + limit_num: int = None, + wake_label_size: int = 7, +) -> plt.Axes: + """ + Plots lines representing potential waking directions between wind turbines in a layout. + + Args: + fi (FlorisInterface): Instantiated FlorisInterface object containing layout data. + ax (plt.Axes, optional): An existing axes object to plot on. If None, a new + figure and axes will be created. Defaults to None. + turbine_indices (List[int], optional): Indices of turbines to include in the plot. + If None, all turbines are plotted. Defaults to None. + wake_plotting_dict (Dict[str, Any], optional): Dictionary to customize the appearance + of waking direction lines. Valid keys include: + * 'color' (str): Line color. Defaults to 'black'. + * 'linestyle' (str): Line style (e.g., 'solid', 'dashed'). Defaults to 'solid'. + * 'linewidth' (float): Line width. Defaults to 0.5. + D (float, optional): Rotor diameter. Used for distance calculations if `limit_dist_D` + is provided. If None, defaults to the first turbine's rotor diameter. + limit_dist_D (float, optional): Maximum distance between turbines (in rotor diameters) + to plot waking lines. Defaults to None (no limit). + limit_dist_m (float, optional): Maximum distance (in meters) between turbines to plot + waking lines. Overrides `limit_dist_D` if provided. Defaults to None (no limit). + limit_num (int, optional): Limits the number of waking lines plotted from each turbine + to the `limit_num` closest neighbors. Defaults to None (no limit). + wake_label_size (int, optional): Font size for labels showing wake distance and direction. + Defaults to 7. + + Returns: + plt.Axes: The axes object used for the plot. + + Raises: + IndexError: If any value in `turbine_indices` is an invalid turbine index. + + """ + + if not ax: + _, ax = plt.subplots() + + # If turbine_indices is not none, make sure all elements correspond to real indices + if turbine_indices is not None: + try: + fi.layout_x[turbine_indices] + except IndexError: + raise IndexError("turbine_indices does not correspond to turbine indices in fi") + else: + turbine_indices = list(range(len(fi.layout_x))) + + layout_x = fi.layout_x[turbine_indices] + layout_y = fi.layout_y[turbine_indices] + N_turbs = len(layout_x) + + # Combine default plotting options + def_wake_plotting_dict = { + "color": "black", + "linestyle": "solid", + "linewidth": 0.5, + } + wake_plotting_dict = {**def_wake_plotting_dict, **wake_plotting_dict} + + # N_turbs = len(fi.floris.farm.turbine_definitions) + + if D is None: + D = fi.floris.farm.turbine_definitions[0]["rotor_diameter"] + # TODO: build out capability to use multiple diameters, if of interest. + # D = np.array([turb['rotor_diameter'] for turb in + # fi.floris.farm.turbine_definitions]) + # else: + # D = D*np.ones(N_turbs) + + dists_m = np.zeros((N_turbs, N_turbs)) + angles_d = np.zeros((N_turbs, N_turbs)) + + for i in range(N_turbs): + for j in range(N_turbs): + dists_m[i, j] = np.linalg.norm([layout_x[i] - layout_x[j], layout_y[i] - layout_y[j]]) + angles_d[i, j] = get_wake_direction(layout_x[i], layout_y[i], layout_x[j], layout_y[j]) + + # Mask based on the limit distance (assumed to be in measurement D) + if limit_dist_D is not None and limit_dist_m is None: + limit_dist_m = limit_dist_D * D + if limit_dist_m is not None: + mask = dists_m > limit_dist_m + dists_m[mask] = np.nan + angles_d[mask] = np.nan + + # Handle default limit number case + if limit_num is None: + limit_num = -1 + + # Loop over pairs, plot + label_exists = np.full((N_turbs, N_turbs), False) + for i in range(N_turbs): + for j in range(N_turbs): + # import ipdb; ipdb.set_trace() + if ( + ~np.isnan(dists_m[i, j]) + and dists_m[i, j] != 0.0 + and ~(dists_m[i, j] > np.sort(dists_m[i, :])[limit_num]) + # and i in layout_plotting_dict["turbine_indices"] + # and j in layout_plotting_dict["turbine_indices"] + ): + (h,) = ax.plot(fi.layout_x[[i, j]], fi.layout_y[[i, j]], **wake_plotting_dict) + + # Only label in one direction + if ~label_exists[i, j]: + linetext = "{0:.1f} D --- {1:.0f}/{2:.0f}".format( + dists_m[i, j] / D, + angles_d[i, j], + angles_d[j, i], + ) + + label_line( + h, + linetext, + ax, + near_i=1, + near_x=None, + near_y=None, + rotation_offset=0, + size=wake_label_size, + ) + + label_exists[i, j] = True + label_exists[j, i] = True + + return ax + + +def plot_farm_terrain(fi: FlorisInterface, ax: plt.Axes = None) -> None: + """ + Creates a filled contour plot visualizing terrain-corrected wind turbine hub heights. + + Args: + fi (FlorisInterface): The FlorisInterface object containing layout data. + ax (plt.Axes, optional): An existing axes object to plot on. If None, a new + figure and axes will be created. Defaults to None. + """ + if not ax: + _, ax = plt.subplots() + + hub_heights = fi.floris.farm.hub_heights.flatten() + cntr = ax.tricontourf(fi.layout_x, fi.layout_y, hub_heights, levels=14, cmap="RdBu_r") + + ax.get_figure().colorbar( + cntr, + ax=ax, + label="Terrain-corrected hub height (m)", + ticks=np.linspace( + np.min(hub_heights) - 10.0, + np.max(hub_heights) + 10.0, + 15, + ), + ) + + return ax + + +def shade_region( + points: np.ndarray, + show_points: bool = False, + plotting_dict_region: Dict[str, Any] = {}, + plotting_dict_points: Dict[str, Any] = {}, + ax: plt.Axes = None, +) -> plt.Axes: + """ + Shades a region defined by a set of vertices and optionally plots the vertices. + + Args: + points (np.ndarray): A 2D array where each row represents (x, y) coordinates of a vertex. + show_points (bool, optional): If True, plots markers at the specified vertices. + Defaults to False. + plotting_dict_region (Dict[str, Any], optional): Customization options for shaded region. + Valid keys include: + * 'color' (str): Fill color. Defaults to 'black'. + * 'edgecolor' (str): Edge color. Defaults to None (no edge). + * 'alpha' (float): Opacity (transparency) of the fill. Defaults to 0.3. + * 'label' (str): Optional label for legend. + plotting_dict_points (Dict[str, Any], optional): Customization options for vertex markers. + Valid keys include: + * 'color' (str): Marker color. Defaults to 'black'. + * 'marker' (str): Marker style (e.g., '.', 'o', 'x'). Defaults to None (no marker). + * 's' (float): Marker size. Defaults to 10. + * 'label' (str): Optional label for legend. + ax (plt.Axes, optional): An existing axes object for plotting. If None, creates a new figure + and axes. Defaults to None. + + Returns: + plt.Axes: The axes object used for the plot. + """ + + # Generate axis, if needed + if ax is None: + fig = plt.figure(figsize=(8, 8)) + ax = fig.add_subplot(111) + + # Generate plotting dictionary + default_plotting_dict_region = { + "color": "black", + "edgecolor": None, + "alpha": 0.3, + "label": None, + } + plotting_dict_region = {**default_plotting_dict_region, **plotting_dict_region} + + ax.fill(points[:, 0], points[:, 1], **plotting_dict_region) + + if show_points: + default_plotting_dict_points = {"color": "black", "marker": ".", "s": 10, "label": None} + plotting_dict_points = {**default_plotting_dict_points, **plotting_dict_points} + + ax.scatter(points[:, 0], points[:, 1], **plotting_dict_points) + + # Plot labels and aesthetics + ax.axis("equal") + + return ax diff --git a/tests/layout_visualization_test.py b/tests/layout_visualization_test.py new file mode 100644 index 000000000..f23340c56 --- /dev/null +++ b/tests/layout_visualization_test.py @@ -0,0 +1,47 @@ + +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np + +import floris.tools.layout_visualization as layoutviz +from floris.tools.floris_interface import FlorisInterface + + +TEST_DATA = Path(__file__).resolve().parent / "data" +YAML_INPUT = TEST_DATA / "input_full.yaml" + + +def test_get_wake_direction(): + # Turbine 0 wakes Turbine 1 at 270 degrees + assert np.isclose(layoutviz.get_wake_direction(0, 0, 1, 0), 270.0) + + # Turbine 0 wakes Turbine 1 at 0 degrees + assert np.isclose(layoutviz.get_wake_direction(0, 1, 0, 0), 0.0) + + # Winds from the south + assert np.isclose(layoutviz.get_wake_direction(0, -1, 0, 0), 180.0) + +def test_plotting_functions(): + + fi = FlorisInterface(configuration=YAML_INPUT) + + ax = layoutviz.plot_turbine_points(fi=fi) + assert isinstance(ax, plt.Axes) + + ax = layoutviz.plot_turbine_labels(fi=fi) + assert isinstance(ax, plt.Axes) + + ax = layoutviz.plot_turbine_rotors(fi=fi) + assert isinstance(ax, plt.Axes) + + ax = layoutviz.plot_waking_directions(fi=fi) + assert isinstance(ax, plt.Axes) + + # Add additional turbines to test plot farm terrain + fi.set( + layout_x=[0, 1000, 0, 1000, 3000], + layout_y=[0, 0, 2000, 2000, 3000], + ) + ax = layoutviz.plot_farm_terrain(fi=fi) + assert isinstance(ax, plt.Axes) From a60060c345892e170094fca47438e2d1de7282aa Mon Sep 17 00:00:00 2001 From: paulf81 Date: Wed, 6 Mar 2024 11:56:01 -0700 Subject: [PATCH 48/78] [Bugfix] Cast yaw angles to np.ndarray on set (#828) * Add tests of setting yaw * Move to the correct file * fix dimensions * numpy conversion on passed yaw_angles. * Tests for power setpoints, disabling turbines, combinations. * Switch to setter methods for yaw angles and power setpoints. --------- Co-authored-by: misi9170 --- floris/simulation/farm.py | 16 ++++++++++---- floris/simulation/floris.py | 4 ++-- floris/tools/floris_interface.py | 8 +++---- floris/tools/uncertainty_interface.py | 2 +- tests/farm_unit_test.py | 10 ++++----- tests/floris_interface_integration_test.py | 25 ++++++++++++++++++++++ 6 files changed, 49 insertions(+), 16 deletions(-) diff --git a/floris/simulation/farm.py b/floris/simulation/farm.py index 1524e75e5..678b47e3e 100644 --- a/floris/simulation/farm.py +++ b/floris/simulation/farm.py @@ -329,8 +329,12 @@ def expand_farm_properties(self, n_findex: int, sorted_coord_indices): axis=1 ) - def set_yaw_angles(self, n_findex: int): - self.yaw_angles = np.zeros((n_findex, self.n_turbines)) + def set_yaw_angles(self, yaw_angles: NDArrayFloat | list[float]): + self.yaw_angles = np.array(yaw_angles) + + def set_yaw_angles_to_ref_yaw(self, n_findex: int): + yaw_angles = np.zeros((n_findex, self.n_turbines)) + self.set_yaw_angles(yaw_angles) self.yaw_angles_sorted = np.zeros((n_findex, self.n_turbines)) def set_tilt_to_ref_tilt(self, n_findex: int): @@ -343,8 +347,12 @@ def set_tilt_to_ref_tilt(self, n_findex: int): * self.ref_tilts ) - def set_power_setpoints(self, n_findex: int): - self.power_setpoints = POWER_SETPOINT_DEFAULT * np.ones((n_findex, self.n_turbines)) + def set_power_setpoints(self, power_setpoints: NDArrayFloat): + self.power_setpoints = np.array(power_setpoints) + + def set_power_setpoints_to_ref_power(self, n_findex: int): + power_setpoints = POWER_SETPOINT_DEFAULT * np.ones((n_findex, self.n_turbines)) + self.set_power_setpoints(power_setpoints) self.power_setpoints_sorted = POWER_SETPOINT_DEFAULT * np.ones((n_findex, self.n_turbines)) def calculate_tilt_for_eff_velocities(self, rotor_effective_velocities): diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index a71377a60..5e1379dcd 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -83,9 +83,9 @@ def __attrs_post_init__(self) -> None: self.farm.construct_turbine_ref_tilts() self.farm.construct_turbine_tilt_interps() self.farm.construct_turbine_correct_cp_ct_for_tilt() - self.farm.set_yaw_angles(self.flow_field.n_findex) + self.farm.set_yaw_angles_to_ref_yaw(self.flow_field.n_findex) self.farm.set_tilt_to_ref_tilt(self.flow_field.n_findex) - self.farm.set_power_setpoints(self.flow_field.n_findex) + self.farm.set_power_setpoints_to_ref_power(self.flow_field.n_findex) if self.solver["type"] == "turbine_grid": self.grid = TurbineGrid( diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index d7311b023..34f3f56d4 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -187,12 +187,12 @@ def set( # If the yaw angles or power setpoints are not the default, set them back to the # previous setting if not (_yaw_angles == 0).all(): - self.floris.farm.yaw_angles = _yaw_angles + self.floris.farm.set_yaw_angles(_yaw_angles) if not ( (_power_setpoints == POWER_SETPOINT_DEFAULT) | (_power_setpoints == POWER_SETPOINT_DISABLED) ).all(): - self.floris.farm.power_setpoints = _power_setpoints + self.floris.farm.set_power_setpoints(_power_setpoints) # Set the operation self._set_operation( @@ -355,7 +355,7 @@ def _set_operation( """ # Add operating conditions to the floris object if yaw_angles is not None: - self.floris.farm.yaw_angles = yaw_angles + self.floris.farm.set_yaw_angles(yaw_angles) if power_setpoints is not None: power_setpoints = np.array(power_setpoints) @@ -366,7 +366,7 @@ def _set_operation( ] = POWER_SETPOINT_DEFAULT power_setpoints = floris_array_converter(power_setpoints) - self.floris.farm.power_setpoints = power_setpoints + self.floris.farm.set_power_setpoints(power_setpoints) # Check for turbines to disable if disable_turbines is not None: diff --git a/floris/tools/uncertainty_interface.py b/floris/tools/uncertainty_interface.py index 7426f899d..c9f744001 100644 --- a/floris/tools/uncertainty_interface.py +++ b/floris/tools/uncertainty_interface.py @@ -206,7 +206,7 @@ def _expand_wind_directions_and_yaw_angles(self): def _reassign_yaw_angles(self, yaw_angles=None): # Overwrite the yaw angles in the FlorisInterface object if yaw_angles is not None: - self.fi.floris.farm.yaw_angles = yaw_angles + self.fi.floris.farm.set_yaw_angles(yaw_angles) # Public methods diff --git a/tests/farm_unit_test.py b/tests/farm_unit_test.py index b6597f68b..767ba3c0b 100644 --- a/tests/farm_unit_test.py +++ b/tests/farm_unit_test.py @@ -35,7 +35,7 @@ def test_farm_init_homogenous_turbines(): # turbine_type=[turbine_data["turbine_type"]] farm.construct_hub_heights() - farm.set_yaw_angles(N_FINDEX) + farm.set_yaw_angles_to_ref_yaw(N_FINDEX) # Check initial values np.testing.assert_array_equal(farm.coordinates, coordinates) @@ -47,17 +47,17 @@ def test_asdict(sample_inputs_fixture: SampleInputs): farm = Farm.from_dict(sample_inputs_fixture.farm) farm.construct_hub_heights() farm.construct_turbine_ref_tilts() - farm.set_yaw_angles(N_FINDEX) + farm.set_yaw_angles_to_ref_yaw(N_FINDEX) farm.set_tilt_to_ref_tilt(N_FINDEX) - farm.set_power_setpoints(N_FINDEX) + farm.set_power_setpoints_to_ref_power(N_FINDEX) dict1 = farm.as_dict() new_farm = farm.from_dict(dict1) new_farm.construct_hub_heights() new_farm.construct_turbine_ref_tilts() - new_farm.set_yaw_angles(N_FINDEX) + new_farm.set_yaw_angles_to_ref_yaw(N_FINDEX) new_farm.set_tilt_to_ref_tilt(N_FINDEX) - new_farm.set_power_setpoints(N_FINDEX) + new_farm.set_power_setpoints_to_ref_power(N_FINDEX) dict2 = new_farm.as_dict() assert dict1 == dict2 diff --git a/tests/floris_interface_integration_test.py b/tests/floris_interface_integration_test.py index 93243950f..e9d7b3a2a 100644 --- a/tests/floris_interface_integration_test.py +++ b/tests/floris_interface_integration_test.py @@ -16,6 +16,31 @@ def test_read_yaml(): fi = FlorisInterface(configuration=YAML_INPUT) assert isinstance(fi, FlorisInterface) +def test_assign_setpoints(): + + fi = FlorisInterface(configuration=YAML_INPUT) + fi.set(layout_x=[0, 0], layout_y=[0, 1000]) + + # Test setting yaw angles via a list, integers, numpy array + fi.set(yaw_angles=[[20.0, 30.0]]) + fi.set(yaw_angles=[[20, 30]]) + fi.set(yaw_angles=np.array([[20.0, 30.0]])) + + # Test setting power setpoints in various ways + fi.set(power_setpoints=[[1e6, 2e6]]) + fi.set(power_setpoints=np.array([[1e6, 2e6]])) + + # Disable turbines + fi.set(disable_turbines=[[True, False]]) + fi.set(disable_turbines=np.array([[True, False]])) + + # Combination + fi.set(yaw_angles=[[0, 30]], power_setpoints=np.array([[1e6, None]])) + + # power_setpoints and disable_turbines (disable_turbines overrides power_setpoints) + fi.set(power_setpoints=[[1e6, 2e6]], disable_turbines=[[True, False]]) + assert np.allclose(fi.floris.farm.power_setpoints, np.array([[0.001, 2e6]])) + def test_set_run(): """ These tests are designed to test the set / run sequence to ensure that inputs are From ef87def0d34aee8b6657a381f7e3b2e7886e18b8 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Thu, 7 Mar 2024 11:09:34 -0700 Subject: [PATCH 49/78] Update uncertainty interface to 4d, new API (#821) --- ...0_calculate_farm_power_with_uncertainty.py | 124 ++- floris/tools/uncertainty_interface.py | 932 +++++++++--------- .../uncertainty_interface_integration_test.py | 184 ++++ 3 files changed, 750 insertions(+), 490 deletions(-) create mode 100644 tests/uncertainty_interface_integration_test.py diff --git a/examples/20_calculate_farm_power_with_uncertainty.py b/examples/20_calculate_farm_power_with_uncertainty.py index 0be306235..21aa18286 100644 --- a/examples/20_calculate_farm_power_with_uncertainty.py +++ b/examples/20_calculate_farm_power_with_uncertainty.py @@ -1,4 +1,3 @@ - import matplotlib.pyplot as plt import numpy as np @@ -16,41 +15,106 @@ """ # Instantiate FLORIS using either the GCH or CC model -fi = FlorisInterface("inputs/gch.yaml") # GCH model -fi_unc = UncertaintyInterface("inputs/gch.yaml") # Add uncertainty with default settings +fi = FlorisInterface("inputs/gch.yaml") # GCH model +fi_unc_3 = UncertaintyInterface( + "inputs/gch.yaml", verbose=True, wd_std=3 +) +fi_unc_5 = UncertaintyInterface( + "inputs/gch.yaml", verbose=True, wd_std=5 +) # Define a two turbine farm D = 126.0 -layout_x = np.array([0, D*6, D*12]) -layout_y = [0, 0, 0] -wd_array = np.arange(0.0, 360.0, 1.0) -fi.reinitialize(layout_x=layout_x, layout_y=layout_y, wind_directions=wd_array) -fi_unc.reinitialize(layout_x=layout_x, layout_y=layout_y, wind_directions=wd_array) - -# Define a matrix of yaw angles to be all 0 -# Note that yaw angles is now specified as a matrix whose dimesions are -# wd/ws/turbine -num_wd = len(wd_array) # Number of wind directions -num_ws = 1 # Number of wind speeds -num_turbine = len(layout_x) # Number of turbines -yaw_angles = np.zeros((num_wd, num_ws, num_turbine)) - -# Calculate the nominal wake solution -fi.calculate_wake(yaw_angles=yaw_angles) - -# Calculate the nominal wind farm power production -farm_powers_nom = fi.get_farm_power() / 1e3 +layout_x = np.array([0, D * 6]) +layout_y = [0, 0] +wd_array = np.arange(240.0, 300.0, 1.0) +wind_speeds = 8.0 * np.ones_like(wd_array) +fi.set(layout_x=layout_x, layout_y=layout_y, wind_directions=wd_array, wind_speeds=wind_speeds) +fi_unc_3.set( + layout_x=layout_x, layout_y=layout_y, wind_directions=wd_array, wind_speeds=wind_speeds +) +fi_unc_5.set( + layout_x=layout_x, layout_y=layout_y, wind_directions=wd_array, wind_speeds=wind_speeds +) + + +# Run both models +fi.run() +fi_unc_3.run() +fi_unc_5.run() -# Calculate the wind farm power with uncertainty on the wind direction -fi_unc.calculate_wake(yaw_angles=yaw_angles) -farm_powers_unc = fi_unc.get_farm_power() / 1e3 +# Collect the nominal and uncertain farm power +turbine_powers_nom = fi.get_turbine_powers() / 1e3 +turbine_powers_unc_3 = fi_unc_3.get_turbine_powers() / 1e3 +turbine_powers_unc_5 = fi_unc_5.get_turbine_powers() / 1e3 +farm_powers_nom = fi.get_farm_power() / 1e3 +farm_powers_unc_3 = fi_unc_3.get_farm_power() / 1e3 +farm_powers_unc_5 = fi_unc_5.get_farm_power() / 1e3 # Plot results -fig, ax = plt.subplots() -ax.plot(wd_array, farm_powers_nom.flatten(), color='k',label='Nominal farm power') -ax.plot(wd_array, farm_powers_unc.flatten(), color='r',label='Farm power with uncertainty') +fig, axarr = plt.subplots(1, 3, figsize=(15, 5)) +ax = axarr[0] +ax.plot(wd_array, turbine_powers_nom[:, 0].flatten(), color="k", label="Nominal power") +ax.plot( + wd_array, + turbine_powers_unc_3[:, 0].flatten(), + color="r", + label="Power with uncertainty = 3 deg", +) +ax.plot( + wd_array, turbine_powers_unc_5[:, 0].flatten(), color="m", label="Power with uncertainty = 5deg" +) +ax.grid(True) +ax.legend() +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") +ax.set_title("Upstream Turbine") + +ax = axarr[1] +ax.plot(wd_array, turbine_powers_nom[:, 1].flatten(), color="k", label="Nominal power") +ax.plot( + wd_array, + turbine_powers_unc_3[:, 1].flatten(), + color="r", + label="Power with uncertainty = 3 deg", +) +ax.plot( + wd_array, + turbine_powers_unc_5[:, 1].flatten(), + color="m", + label="Power with uncertainty = 5 deg", +) +ax.set_title("Downstream Turbine") ax.grid(True) ax.legend() -ax.set_xlabel('Wind Direction (deg)') -ax.set_ylabel('Power (kW)') +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") + +ax = axarr[2] +ax.plot(wd_array, farm_powers_nom.flatten(), color="k", label="Nominal farm power") +ax.plot( + wd_array, farm_powers_unc_3.flatten(), color="r", label="Farm power with uncertainty = 3 deg" +) +ax.plot( + wd_array, farm_powers_unc_5.flatten(), color="m", label="Farm power with uncertainty = 5 deg" +) +ax.set_title("Farm Power") +ax.grid(True) +ax.legend() +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") + +# Compare the AEP calculation +freq = np.ones_like(wd_array) +freq = freq / freq.sum() + +aep_nom = fi.get_farm_AEP(freq=freq) +aep_unc_3 = fi_unc_3.get_farm_AEP(freq=freq) +aep_unc_5 = fi_unc_5.get_farm_AEP(freq=freq) + +print(f"AEP without uncertainty {aep_nom}") +print(f"AEP without uncertainty (3 deg) {aep_unc_3} ({100*aep_unc_3/aep_nom:.2f}%)") +print(f"AEP without uncertainty (5 deg) {aep_unc_5} ({100*aep_unc_5/aep_nom:.2f}%)") + + plt.show() diff --git a/floris/tools/uncertainty_interface.py b/floris/tools/uncertainty_interface.py index c9f744001..f2be5c02c 100644 --- a/floris/tools/uncertainty_interface.py +++ b/floris/tools/uncertainty_interface.py @@ -1,460 +1,272 @@ +from __future__ import annotations -import copy +from pathlib import Path import numpy as np -from scipy.stats import norm from floris.logging_manager import LoggingManager from floris.tools import FlorisInterface -from floris.utilities import wrap_360 +from floris.tools.wind_data import WindDataBase +from floris.type_dec import ( + floris_array_converter, + NDArrayBool, + NDArrayFloat, +) class UncertaintyInterface(LoggingManager): - def __init__( - self, - configuration, - unc_options=None, - unc_pmfs=None, - fix_yaw_in_relative_frame=False, - ): - """A wrapper around the nominal floris_interface class that adds - uncertainty to the floris evaluations. One can specify a probability - distribution function (pdf) for the ambient wind direction. Unless - the exact pdf is specified manually using the option 'unc_pmfs', a - Gaussian probability distribution function will be assumed. + """ + An interface for handling uncertainty in wind farm simulations. - Args: - configuration (:py:obj:`dict` or FlorisInterface object): The Floris - object, configuration dictarionary, or YAML file. The - configuration should have the following inputs specified. + This class contains a FlorisInterface object and adds functionality to handle + uncertainty in wind direction. + + Args: + configuration (:py:obj:`dict`): The Floris configuration dictionary or YAML file. + The configuration should have the following inputs specified. - **flow_field**: See `floris.simulation.flow_field.FlowField` for more details. - **farm**: See `floris.simulation.farm.Farm` for more details. - **turbine**: See `floris.simulation.turbine.Turbine` for more details. - **wake**: See `floris.simulation.wake.WakeManager` for more details. - **logging**: See `floris.simulation.floris.Floris` for more details. - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction deviations. - This argument is only used when **unc_pmfs** is None and contain - the following key-value pairs: - - **std_wd** (*float*): A float containing the standard - deviation of the wind direction deviations from the - original wind direction. - - **pmf_res** (*float*): A float containing the resolution in - degrees of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): A float containing the cumulative - distribution function value at which the tails of the - PMFs are truncated. - Defaults to None. Initializes to {'std_wd': 4.95, 'pmf_res': 1.0, - 'pdf_cutoff': 0.995}. - unc_pmfs (dictionary, optional): A dictionary containing optional - probability mass functions describing the distribution of wind - direction deviations. Contains the following key-value pairs: - - **wd_unc** (*np.array*): Wind direction deviations from the - original wind direction. - - **wd_unc_pmf** (*np.array*): Probability of each wind - direction deviation in **wd_unc** occuring. - Defaults to None, in which case default PMFs are calculated - using values provided in **unc_options**. - fix_yaw_in_relative_frame (bool, optional): When set to True, the - relative yaw angle of all turbines is fixed and always has the - nominal value (e.g., 0 deg) when evaluating uncertainty in the - wind direction. Evaluating wind direction uncertainty like this - will essentially come down to a Gaussian smoothing of FLORIS - solutions over the wind directions. This calculation can therefore - be really fast, since it does not require additional calculations - compared to a non-uncertainty FLORIS evaluation. - When fix_yaw_in_relative_frame=False, the yaw angles are fixed in - the absolute (compass) reference frame, meaning that for each - probablistic wind direction evaluation, our probablistic (relative) - yaw angle evaluated goes into the opposite direction. For example, - a probablistic wind direction 3 deg above the nominal value means - that we evaluate it with a relative yaw angle that is 3 deg below - its nominal value. This requires additional computations compared - to a non- uncertainty evaluation. - Typically, fix_yaw_in_relative_frame=True is used when comparing - FLORIS to historical data, in which a single measurement usually - represents a 10-minute average, and thus is often a mix of various - true wind directions. The inherent assumption then is that the turbine - perfectly tracks the wind direction changes within those 10 minutes. - Then, fix_yaw_in_relative_frame=False is typically used for robust - yaw angle optimization, in which we take into account that the turbine - often does not perfectly know the true wind direction, and that a - turbine often does not perfectly achieve its desired yaw angle offset. - Defaults to fix_yaw_in_relative_frame=False. + wd_resolution (float, optional): The resolution of wind direction, in degrees. + Defaults to 1.0. + ws_resolution (float, optional): The resolution of wind speed, in m/s. Defaults to 1.0. + ti_resolution (float, optional): The resolution of turbulence intensity. Defaults to 0.01. + yaw_resolution (float, optional): The resolution of yaw angle, in degrees. Defaults to 1.0. + power_setpoint_resolution (int, optional): The resolution of power setpoints, in kW. + Defaults to 100. + wd_std (float, optional): The standard deviation of wind direction. Defaults to 3.0. + wd_sample_points (list[float], optional): The sample points for wind direction. + If not provided, defaults to [-2 * wd_std, -1 * wd_std, 0, wd_std, 2 * wd_std]. + verbose (bool, optional): Verbosity flag for printing messages. Defaults to False. + + """ + def __init__( + self, + configuration: dict | str | Path, + wd_resolution=1.0, # Degree + ws_resolution=1.0, # m/s + ti_resolution=0.01, + yaw_resolution=1.0, # Degree + power_setpoint_resolution=100, # kW + wd_std=3.0, + wd_sample_points=None, + verbose=False, + ): """ + Instantiate the UncertaintyInterface. - if (unc_options is None) & (unc_pmfs is None): - # Default options: - unc_options = { - "std_wd": 3.0, # Standard deviation for inflow wind direction (deg) - "pmf_res": 1.0, # Resolution over which to calculate angles (deg) - "pdf_cutoff": 0.995, # Probability density function cut-off (-) - } - - # Initialize floris object and uncertainty pdfs - if isinstance(configuration, FlorisInterface): - self.fi = configuration - else: - self.fi = FlorisInterface(configuration) - - self.reinitialize_uncertainty( - unc_options=unc_options, - unc_pmfs=unc_pmfs, - fix_yaw_in_relative_frame=fix_yaw_in_relative_frame, - ) + Args: + configuration (:py:obj:`dict`): The Floris configuration dictionary or YAML file. + The configuration should have the following inputs specified. + - **flow_field**: See `floris.simulation.flow_field.FlowField` for more details. + - **farm**: See `floris.simulation.farm.Farm` for more details. + - **turbine**: See `floris.simulation.turbine.Turbine` for more details. + - **wake**: See `floris.simulation.wake.WakeManager` for more details. + - **logging**: See `floris.simulation.floris.Floris` for more details. + wd_resolution (float, optional): The resolution of wind direction for generating + gaussian blends, in degrees. Defaults to 1.0. + ws_resolution (float, optional): The resolution of wind speed, in m/s. Defaults to 1.0. + ti_resolution (float, optional): The resolution of turbulence intensity. + efaults to 0.01. + yaw_resolution (float, optional): The resolution of yaw angle, in degrees. + Defaults to 1.0. + power_setpoint_resolution (int, optional): The resolution of power setpoints, in kW. + Defaults to 100. + wd_std (float, optional): The standard deviation of wind direction. Defaults to 3.0. + wd_sample_points (list[float], optional): The sample points for wind direction. + If not provided, defaults to [-2 * wd_std, -1 * wd_std, 0, wd_std, 2 * wd_std]. + verbose (bool, optional): Verbosity flag for printing messages. Defaults to False. + """ + # Save these inputs + self.wd_resolution = wd_resolution + self.ws_resolution = ws_resolution + self.ti_resolution = ti_resolution + self.yaw_resolution = yaw_resolution + self.power_setpoint_resolution = power_setpoint_resolution + self.wd_std = wd_std + self.verbose = verbose - # Add a _no_wake switch to keep track of calculate_wake/calculate_no_wake - self._no_wake = False + # If wd_sample_points, default to 1 and 2 std + if wd_sample_points is None: + wd_sample_points = [-2 * wd_std, -1 * wd_std, 0, wd_std, 2 * wd_std] - # Private methods + self.wd_sample_points = wd_sample_points + self.n_sample_points = len(self.wd_sample_points) - def _generate_pdfs_from_dict(self): - """Generates the uncertainty probability distributions from a - dictionary only describing the wd_std and yaw_std, and discretization - resolution. - """ + # Get the weights + self.weights = self._get_weights(self.wd_std, self.wd_sample_points) - wd_unc = np.zeros(1) - wd_unc_pmf = np.ones(1) + # Instantiate the un-expanded FlorisInterface + self.fi_unexpanded = FlorisInterface(configuration) - # create normally distributed wd and yaw uncertaitny pmfs if appropriate - unc_options = self.unc_options - if unc_options["std_wd"] > 0: - wd_bnd = int( - np.ceil( - norm.ppf(unc_options["pdf_cutoff"], scale=unc_options["std_wd"]) - / unc_options["pmf_res"] - ) - ) - bound = wd_bnd * unc_options["pmf_res"] - wd_unc = np.linspace(-1 * bound, bound, 2 * wd_bnd + 1) - wd_unc_pmf = norm.pdf(wd_unc, scale=unc_options["std_wd"]) - wd_unc_pmf /= np.sum(wd_unc_pmf) # normalize so sum = 1.0 - - unc_pmfs = { - "wd_unc": wd_unc, - "wd_unc_pmf": wd_unc_pmf, - } - - # Save to self - self.unc_pmfs = unc_pmfs - - def _expand_wind_directions_and_yaw_angles(self): - """Expands the nominal wind directions and yaw angles to the full set - of conditions that need to be evaluated for the probablistic - calculation of the floris solutions. This produces the np.NDArrays - "wd_array_probablistic" and "yaw_angles_probablistic", with shapes: - ( - num_wind_direction_pdf_points_to_evaluate, - num_nominal_wind_directions, - ) - and - ( - num_wind_direction_pdf_points_to_evaluate, - num_nominal_wind_directions, - num_nominal_wind_speeds, - num_turbines - ), - respectively. - """ + # Call set at this point with no arguments so ready to run + self.set() + + # Instantiate the expanded FlorisInterface + # self.floris_interface = FlorisInterface(configuration) - # First initialize unc_pmfs from self - unc_pmfs = self.unc_pmfs - - # We first save the nominal settings, since we will be overwriting - # the floris wind conditions and yaw angles to include all - # probablistic conditions. - wd_array_nominal = self.fi.floris.flow_field.wind_directions - yaw_angles_nominal = self.fi.floris.farm.yaw_angles - - # Expand wind direction and yaw angle array into the direction - # of uncertainty over the ambient wind direction. - wd_array_probablistic = np.vstack([ - np.expand_dims(wd_array_nominal, axis=0) + dy - for dy in unc_pmfs["wd_unc"] - ]) - - if self.fix_yaw_in_relative_frame: - # The relative yaw angle is fixed and always has the nominal - # value (e.g., 0 deg) when evaluating uncertainty. Evaluating - # wind direction uncertainty like this would essentially come - # down to a Gaussian smoothing of FLORIS solutions over the - # wind directions. This can also be really fast, since it would - # not require any additional calculations compared to the - # non-uncertainty FLORIS evaluation. - yaw_angles_probablistic = np.vstack([ - np.expand_dims(yaw_angles_nominal, axis=0) - for _ in unc_pmfs["wd_unc"] - ]) - else: - # Fix yaw angles in the absolute (compass) reference frame, - # meaning that for each probablistic wind direction evaluation, - # our probablistic (relative) yaw angle evaluated goes into - # the opposite direction. For example, a probablistic wind - # direction 3 deg above the nominal value means that we evaluate - # it with a relative yaw angle that is 3 deg below its nominal - # value. - yaw_angles_probablistic = np.vstack([ - np.expand_dims(yaw_angles_nominal, axis=0) - dy - for dy in unc_pmfs["wd_unc"] - ]) - - self.wd_array_probablistic = wd_array_probablistic - self.yaw_angles_probablistic = yaw_angles_probablistic - - def _reassign_yaw_angles(self, yaw_angles=None): - # Overwrite the yaw angles in the FlorisInterface object - if yaw_angles is not None: - self.fi.floris.farm.set_yaw_angles(yaw_angles) - - # Public methods - - def copy(self): - """Create an independent copy of the current UncertaintyInterface - object""" - fi_unc_copy = copy.deepcopy(self) - fi_unc_copy.fi = self.fi.copy() - return fi_unc_copy - - def reinitialize_uncertainty( + + def set( self, - unc_options=None, - unc_pmfs=None, - fix_yaw_in_relative_frame=None + **kwargs, ): - """Reinitialize the wind direction and yaw angle probability - distributions used in evaluating FLORIS. Must either specify - 'unc_options', in which case distributions are calculated assuming - a Gaussian distribution, or `unc_pmfs` must be specified directly - assigning the probability distribution functions. - - Args: - unc_options (dictionary, optional): A dictionary containing values - used to create normally-distributed, zero-mean probability mass - functions describing the distribution of wind direction and yaw - position deviations when wind direction and/or yaw position - uncertainty is included. This argument is only used when - **unc_pmfs** is None and contains the following key-value pairs: - - - **std_wd** (*float*): A float containing the standard - deviation of the wind direction deviations from the - original wind direction. - - **std_yaw** (*float*): A float containing the standard - deviation of the yaw angle deviations from the original yaw - angles. - - **pmf_res** (*float*): A float containing the resolution in - degrees of the wind direction and yaw angle PMFs. - - **pdf_cutoff** (*float*): A float containing the cumulative - distribution function value at which the tails of the - PMFs are truncated. + """ + Set the wind farm conditions in the UncertaintyInterface. - Defaults to None. + See FlorisInterace.set() for details of the contents of kwargs. - unc_pmfs (dictionary, optional): A dictionary containing optional - probability mass functions describing the distribution of wind - direction and yaw position deviations when wind direction and/or - yaw position uncertainty is included in the power calculations. - Contains the following key-value pairs: - - - **wd_unc** (*np.array*): Wind direction deviations from the - original wind direction. - - **wd_unc_pmf** (*np.array*): Probability of each wind - direction deviation in **wd_unc** occuring. - - **yaw_unc** (*np.array*): Yaw angle deviations from the - original yaw angles. - - **yaw_unc_pmf** (*np.array*): Probability of each yaw angle - deviation in **yaw_unc** occuring. + Args: + **kwargs: The wind farm conditions to set. + """ + # Call the nominal set function + self.fi_unexpanded.set( + **kwargs + ) - Defaults to None. + self._set_uncertain() - fix_yaw_in_relative_frame (bool, optional): When set to True, the - relative yaw angle of all turbines is fixed and always has the - nominal value (e.g., 0 deg) when evaluating uncertainty in the - wind direction. Evaluating wind direction uncertainty like this - will essentially come down to a Gaussian smoothing of FLORIS - solutions over the wind directions. This calculation can therefore - be really fast, since it does not require additional calculations - compared to a non-uncertainty FLORIS evaluation. - When fix_yaw_in_relative_frame=False, the yaw angles are fixed in - the absolute (compass) reference frame, meaning that for each - probablistic wind direction evaluation, our probablistic (relative) - yaw angle evaluated goes into the opposite direction. For example, - a probablistic wind direction 3 deg above the nominal value means - that we evaluate it with a relative yaw angle that is 3 deg below - its nominal value. This requires additional computations compared - to a non- uncertainty evaluation. - Typically, fix_yaw_in_relative_frame=True is used when comparing - FLORIS to historical data, in which a single measurement usually - represents a 10-minute average, and thus is often a mix of various - true wind directions. The inherent assumption then is that the turbine - perfectly tracks the wind direction changes within those 10 minutes. - Then, fix_yaw_in_relative_frame=False is typically used for robust - yaw angle optimization, in which we take into account that the turbine - often does not perfectly know the true wind direction, and that a - turbine often does not perfectly achieve its desired yaw angle offset. - Defaults to fix_yaw_in_relative_frame=False. + def _set_uncertain( + self, + ): + """ + Sets the underlying wind direction (wd), wind speed (ws), turbulence intensity (ti), + yaw angle, and power setpoint for unique conditions, accounting for uncertainties. """ - # Check inputs - if (unc_options is not None) and (unc_pmfs is not None): - self.logger.error("Must specify either 'unc_options' or 'unc_pmfs', not both.") + # Grab the unexpanded values of all arrays + # These original dimensions are what is returned + self.wind_directions_unexpanded = self.fi_unexpanded.floris.flow_field.wind_directions + self.wind_speeds_unexpanded = self.fi_unexpanded.floris.flow_field.wind_speeds + self.turbulence_intensities_unexpanded = ( + self.fi_unexpanded.floris.flow_field.turbulence_intensities + ) + self.yaw_angles_unexpanded = self.fi_unexpanded.floris.farm.yaw_angles + self.power_setpoints_unexpanded = self.fi_unexpanded.floris.farm.power_setpoints + self.n_unexpanded = len(self.wind_directions_unexpanded) - # Assign uncertainty probability distributions - if unc_options is not None: - self.unc_options = unc_options - self._generate_pdfs_from_dict() + # Combine into the complete unexpanded_inputs + self.unexpanded_inputs = np.hstack( + ( + self.wind_directions_unexpanded[:, np.newaxis], + self.wind_speeds_unexpanded[:, np.newaxis], + self.turbulence_intensities_unexpanded[:, np.newaxis], + self.yaw_angles_unexpanded, + self.power_setpoints_unexpanded, + ) + ) - if unc_pmfs is not None: - self.unc_pmfs = unc_pmfs + # Get the rounded inputs + self.rounded_inputs = self._get_rounded_inputs( + self.unexpanded_inputs, + self.wd_resolution, + self.ws_resolution, + self.ti_resolution, + self.yaw_resolution, + self.power_setpoint_resolution, + ) - if fix_yaw_in_relative_frame is not None: - self.fix_yaw_in_relative_frame = bool(fix_yaw_in_relative_frame) + # Get the expanded inputs + self._expanded_wind_directions = self._expand_wind_directions( + self.rounded_inputs, self.wd_sample_points + ) + self.n_expanded = self._expanded_wind_directions.shape[0] - def reinitialize( - self, - wind_speeds=None, - wind_directions=None, - wind_shear=None, - wind_veer=None, - reference_wind_height=None, - turbulence_intensities=None, - air_density=None, - layout_x=None, - layout_y=None, - turbine_type=None, - solver_settings=None, - ): - """Pass to the FlorisInterface reinitialize function. To allow users - to directly replace a FlorisInterface object with this - UncertaintyInterface object, this function is required.""" - - # Just passes arguments to the floris object - self.fi.reinitialize( - wind_speeds=wind_speeds, - wind_directions=wind_directions, - wind_shear=wind_shear, - wind_veer=wind_veer, - reference_wind_height=reference_wind_height, - turbulence_intensities=turbulence_intensities, - air_density=air_density, - layout_x=layout_x, - layout_y=layout_y, - turbine_type=turbine_type, - solver_settings=solver_settings, + # Get the unique inputs + self.unique_inputs, self.map_to_expanded_inputs = self._get_unique_inputs( + self._expanded_wind_directions + ) + self.n_unique = self.unique_inputs.shape[0] + + # Display info on sizes + if self.verbose: + print(f"Original num rows: {self.n_unexpanded}") + print(f"Expanded num rows: {self.n_expanded}") + print(f"Unique num rows: {self.n_unique}") + + # Initiate the expanded FlorisInterface + self.fi_expanded = self.fi_unexpanded.copy() + + # Now set the underlying wd/ws/ti/yaw/setpoint to check only the unique conditions + self.fi_expanded.set( + wind_directions=self.unique_inputs[:, 0], + wind_speeds=self.unique_inputs[:, 1], + turbulence_intensities=self.unique_inputs[:, 2], + yaw_angles=self.unique_inputs[:, 3 : 3 + self.fi_unexpanded.floris.farm.n_turbines], + power_setpoints=self.unique_inputs[:, 3 + self.fi_unexpanded.floris.farm.n_turbines:] ) - def calculate_wake(self, yaw_angles=None): - """Replaces the 'calculate_wake' function in the FlorisInterface - object. Fundamentally, this function only overwrites the nominal - yaw angles in the FlorisInterface object. The actual wake calculations - are performed once 'get_turbine_powers' or 'get_farm_powers' is - called. However, to allow users to directly replace a FlorisInterface - object with this UncertaintyInterface object, this function is - required. + def run(self): + """ + Run the simulation in the underlying FlorisInterface object. + """ - Args: - yaw_angles: NDArrayFloat | list[float] | None = None, + self.fi_expanded.run() + + def run_no_wake(self): + """ + Run the simulation in the underlying FlorisInterface object without wakes. """ - self._reassign_yaw_angles(yaw_angles) - self._no_wake = False - - def calculate_no_wake(self, yaw_angles=None): - """Replaces the 'calculate_no_wake' function in the FlorisInterface - object. Fundamentally, this function only overwrites the nominal - yaw angles in the FlorisInterface object. The actual wake calculations - are performed once 'get_turbine_powers' or 'get_farm_powers' is - called. However, to allow users to directly replace a FlorisInterface - object with this UncertaintyInterface object, this function is - required. - Args: - yaw_angles: NDArrayFloat | list[float] | None = None, + self.fi_expanded.run_no_wake() + + def reset_operation(self): + """ + Reset the operation of the underlying FlorisInterface object. """ - self._reassign_yaw_angles(yaw_angles) - self._no_wake = True + self.fi_unexpanded.set( + wind_directions=self.wind_directions_unexpanded, + wind_speeds=self.wind_speeds_unexpanded, + turbulence_intensities=self.turbulence_intensities_unexpanded, + ) + self.fi_unexpanded.reset_operation() + + # Calling set_uncertain again to reset the expanded FlorisInterface + self._set_uncertain() def get_turbine_powers(self): - """Calculates the probability-weighted power production of each - turbine in the wind farm. + """Calculates the power at each turbine in the wind farm. + + This method calculates the power at each turbine in the wind farm, considering + the underlying turbine powers and applying a weighted sum to handle uncertainty. Returns: - NDArrayFloat: Power production of all turbines in the wind farm. - This array has the shape (num_wind_directions, num_wind_speeds, - num_turbines). + NDArrayFloat: An array containing the powers at each turbine for each finde. + """ - # To include uncertainty, we expand the dimensionality - # of the problem along the wind direction pdf and/or yaw angle - # pdf. We make use of the vectorization of FLORIS to - # evaluate all conditions in a single call, rather than in - # loops. Therefore, the effective number of wind conditions and - # yaw angle combinations we evaluate expands. - unc_pmfs = self.unc_pmfs - self._expand_wind_directions_and_yaw_angles() - - # Get dimensions of nominal conditions - wd_array_nominal = self.fi.floris.flow_field.wind_directions - num_wd = self.fi.floris.flow_field.n_wind_directions - num_ws = self.fi.floris.flow_field.n_wind_speeds - num_wd_unc = len(unc_pmfs["wd_unc"]) - num_turbines = self.fi.floris.farm.n_turbines - - # Format into conventional floris format by reshaping - wd_array_probablistic = np.reshape(self.wd_array_probablistic, -1) - yaw_angles_probablistic = np.reshape( - self.yaw_angles_probablistic, - (-1, num_ws, num_turbines) - ) + # First call the underlying function + unique_turbine_powers = self.fi_expanded.get_turbine_powers() - # Wrap wind direction array around 360 deg - wd_array_probablistic = wrap_360(wd_array_probablistic) + # Expand back to the expanded value + expanded_turbine_powers = unique_turbine_powers[self.map_to_expanded_inputs] - # Find minimal set of solutions to evaluate - wd_exp = np.tile(wd_array_probablistic, (1, num_ws, 1)).T - _, id_unq, id_unq_rev = np.unique( - np.append(yaw_angles_probablistic, wd_exp, axis=2), - axis=0, - return_index=True, - return_inverse=True - ) - wd_array_probablistic_min = wd_array_probablistic[id_unq] - yaw_angles_probablistic_min = yaw_angles_probablistic[id_unq, :, :] - - # Evaluate floris for minimal probablistic set - self.fi.reinitialize(wind_directions=wd_array_probablistic_min) - if self._no_wake: - self.fi.calculate_no_wake(yaw_angles=yaw_angles_probablistic_min) - else: - self.fi.calculate_wake(yaw_angles=yaw_angles_probablistic_min) - - # Retrieve all power productions using the nominal call - turbine_powers = self.fi.get_turbine_powers() - self.fi.reinitialize(wind_directions=wd_array_nominal) - - # Reshape solutions back to full set - power_probablistic = turbine_powers[id_unq_rev, :] - power_probablistic = np.reshape( - power_probablistic, - (num_wd_unc, num_wd, num_ws, num_turbines) - ) + # Reshape the weights array to make it compatible with broadcasting + weights_reshaped = self.weights[:, np.newaxis] - # Calculate probability weighing terms - wd_weighing = ( - (np.expand_dims(unc_pmfs["wd_unc_pmf"], axis=(1, 2, 3))) - .repeat(num_wd, 1) - .repeat(num_ws, 2) - .repeat(num_turbines, 3) + # Reshape expanded_turbine_powers into blocks + blocks = np.reshape( + expanded_turbine_powers, + (self.n_unexpanded, self.n_sample_points, self.fi_unexpanded.floris.farm.n_turbines), + order="F", ) - # Now apply probability distribution weighing to get turbine powers - return np.sum(wd_weighing * power_probablistic, axis=0) + # Multiply each block by the corresponding weight + weighted_blocks = blocks * weights_reshaped + + # Sum the blocks along the second axis + result = np.sum(weighted_blocks, axis=1) - def get_farm_power(self, turbine_weights=None): - """Calculates the probability-weighted power production of the - collective of all turbines in the farm, for each wind direction - and wind speed specified. + return result + + def get_farm_power( + self, + turbine_weights=None, + ): + """ + Report wind plant power from instance of floris with uncertainty. Args: turbine_weights (NDArrayFloat | list[float] | None, optional): @@ -468,46 +280,39 @@ def get_farm_power(self, turbine_weights=None): turbines to 0.0. The array of turbine powers from floris is multiplied with this array in the calculation of the objective function. If None, this is an array with all values - 1.0 and with shape equal to (n_wind_directions, n_wind_speeds, - n_turbines). Defaults to None. + 1.0 and with shape equal to (n_findex, n_turbines). + Defaults to None. Returns: - NDArrayFloat: Expectation of power production of the wind farm. - This array has the shape (num_wind_directions, num_wind_speeds). + float: Sum of wind turbine powers in W. """ if turbine_weights is None: # Default to equal weighing of all turbines when turbine_weights is None turbine_weights = np.ones( ( - self.floris.flow_field.n_wind_directions, - self.floris.flow_field.n_wind_speeds, - self.floris.farm.n_turbines + self.n_unexpanded, + self.fi_unexpanded.floris.farm.n_turbines, ) ) elif len(np.shape(turbine_weights)) == 1: # Deal with situation when 1D array is provided turbine_weights = np.tile( turbine_weights, - ( - self.floris.flow_field.n_wind_directions, - self.floris.flow_field.n_wind_speeds, - 1 - ) + (self.n_unexpanded, 1), ) # Calculate all turbine powers and apply weights turbine_powers = self.get_turbine_powers() turbine_powers = np.multiply(turbine_weights, turbine_powers) - return np.sum(turbine_powers, axis=2) + return np.sum(turbine_powers, axis=1) def get_farm_AEP( self, freq, cut_in_wind_speed=0.001, cut_out_wind_speed=None, - yaw_angles=None, turbine_weights=None, no_wake=False, ) -> float: @@ -516,8 +321,8 @@ def get_farm_AEP( direction, frequency of occurrence, and yaw offset. Args: - freq (NDArrayFloat): NumPy array with shape (n_wind_directions, - n_wind_speeds) with the frequencies of each wind direction and + freq (NDArrayFloat): NumPy array with shape (n_findex) + with the frequencies of each wind direction and wind speed combination. These frequencies should typically sum up to 1.0 and are used to weigh the wind farm power for every condition in calculating the wind farm's AEP. @@ -530,10 +335,6 @@ def get_farm_AEP( wind farm is known to produce 0.0 W of power. If None is specified, will assume that the wind farm does not cut out at high wind speeds. Defaults to None. - yaw_angles (NDArrayFloat | list[float] | None, optional): - The relative turbine yaw angles in degrees. If None is - specified, will assume that the turbine yaw angles are all - zero degrees for all conditions. Defaults to None. turbine_weights (NDArrayFloat | list[float] | None, optional): weighing terms that allow the user to emphasize power at particular turbines and/or completely ignore the power @@ -545,13 +346,14 @@ def get_farm_AEP( turbines to 0.0. The array of turbine powers from floris is multiplied with this array in the calculation of the objective function. If None, this is an array with all values - 1.0 and with shape equal to (n_wind_directions, n_wind_speeds, + 1.0 and with shape equal to (n_findex, n_turbines). Defaults to None. no_wake: (bool, optional): When *True* updates the turbine quantities without calculating the wake or adding the wake to the flow field. This can be useful when quantifying the loss in AEP due to wakes. Defaults to *False*. + Returns: float: The Annual Energy Production (AEP) for the wind farm in @@ -559,28 +361,25 @@ def get_farm_AEP( """ # Verify dimensions of the variable "freq" - if not ( - (np.shape(freq)[0] == self.floris.flow_field.n_wind_directions) - & (np.shape(freq)[1] == self.floris.flow_field.n_wind_speeds) - & (len(np.shape(freq)) == 2) - ): + if np.shape(freq)[0] != self.n_unexpanded: raise UserWarning( - "'freq' should be a two-dimensional array with dimensions " - "(n_wind_directions, n_wind_speeds)." + "'freq' should be a one-dimensional array with dimensions (self.n_unexpanded). " + f"Given shape is {np.shape(freq)}" ) # Check if frequency vector sums to 1.0. If not, raise a warning if np.abs(np.sum(freq) - 1.0) > 0.001: self.logger.warning( - "WARNING: The frequency array provided to get_farm_AEP() does not sum to 1.0. " + "WARNING: The frequency array provided to get_farm_AEP() does not sum to 1.0." ) # Copy the full wind speed array from the floris object and initialize # the the farm_power variable as an empty array. - wind_speeds = np.array(self.fi.floris.flow_field.wind_speeds, copy=True) - farm_power = np.zeros((self.fi.floris.flow_field.n_wind_directions, len(wind_speeds))) + wind_directions = np.array(self.wind_directions_unexpanded, copy=True) + wind_speeds = np.array(self.wind_speeds_unexpanded, copy=True) + farm_power = np.zeros_like(wind_directions) - # Determine which wind speeds we must evaluate in floris + # Determine which wind speeds we must evaluate conditions_to_evaluate = wind_speeds >= cut_in_wind_speed if cut_out_wind_speed is not None: conditions_to_evaluate = conditions_to_evaluate & (wind_speeds < cut_out_wind_speed) @@ -588,50 +387,263 @@ def get_farm_AEP( # Evaluate the conditions in floris if np.any(conditions_to_evaluate): wind_speeds_subset = wind_speeds[conditions_to_evaluate] - yaw_angles_subset = None - if yaw_angles is not None: - yaw_angles_subset = yaw_angles[:, conditions_to_evaluate] - self.reinitialize(wind_speeds=wind_speeds_subset) + wind_directions_subset = wind_directions[conditions_to_evaluate] + self.set( + wind_speeds=wind_speeds_subset, + wind_directions=wind_directions_subset, + ) + if no_wake: - self.calculate_no_wake(yaw_angles=yaw_angles_subset) + self.run_no_wake() else: - self.calculate_wake(yaw_angles=yaw_angles_subset) - farm_power[:, conditions_to_evaluate] = ( - self.get_farm_power(turbine_weights=turbine_weights) + self.run() + farm_power[conditions_to_evaluate] = self.get_farm_power( + turbine_weights=turbine_weights ) # Finally, calculate AEP in GWh aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) # Reset the FLORIS object to the full wind speed array - self.reinitialize(wind_speeds=wind_speeds) + self.set(wind_speeds=wind_speeds, wind_directions=wind_directions) return aep - def assign_hub_height_to_ref_height(self): - return self.fi.assign_hub_height_to_ref_height() + def get_farm_AEP_with_wind_data( + self, + wind_data, + cut_in_wind_speed=0.001, + cut_out_wind_speed=None, + turbine_weights=None, + no_wake=False, + ) -> float: + """ + Estimate annual energy production (AEP) for distributions of wind speed, wind + direction, frequency of occurrence, and yaw offset. - def get_turbine_layout(self, z=False): - return self.fi.get_turbine_layout(z=z) + Args: + wind_data: (type(WindDataBase)): TimeSeries or WindRose object containing + the wind conditions over which to calculate the AEP. Should match the wind_data + object passed to reinitialize(). + cut_in_wind_speed (float, optional): Wind speed in m/s below which + any calculations are ignored and the wind farm is known to + produce 0.0 W of power. Note that to prevent problems with the + wake models at negative / zero wind speeds, this variable must + always have a positive value. Defaults to 0.001 [m/s]. + cut_out_wind_speed (float, optional): Wind speed above which the + wind farm is known to produce 0.0 W of power. If None is + specified, will assume that the wind farm does not cut out + at high wind speeds. Defaults to None. + turbine_weights (NDArrayFloat | list[float] | None, optional): + weighing terms that allow the user to emphasize power at + particular turbines and/or completely ignore the power + from other turbines. This is useful when, for example, you are + modeling multiple wind farms in a single floris object. If you + only want to calculate the power production for one of those + farms and include the wake effects of the neighboring farms, + you can set the turbine_weights for the neighboring farms' + turbines to 0.0. The array of turbine powers from floris + is multiplied with this array in the calculation of the + objective function. If None, this is an array with all values + 1.0 and with shape equal to (n_findex, + n_turbines). Defaults to None. + no_wake: (bool, optional): When *True* updates the turbine + quantities without calculating the wake or adding the wake to + the flow field. This can be useful when quantifying the loss + in AEP due to wakes. Defaults to *False*. - def get_turbine_thrust_coefficients(self): - return self.fi.get_turbine_thrust_coefficients() + Returns: + float: + The Annual Energy Production (AEP) for the wind farm in + watt-hours. + """ - def get_turbine_ais(self): - return self.fi.get_turbine_ais() + # Verify the wind_data object matches FLORIS' initialization + if wind_data.n_findex != self.n_unexpanded: + raise ValueError("WindData object findex not length n_unexpanded") - def get_turbine_average_velocities(self): - return self.fi.get_turbine_average_velocities() + # Get freq directly from wind_data + freq = wind_data.unpack_freq() - # Define getter functions that just pass information from FlorisInterface - @property - def floris(self): - return self.fi.floris + return self.get_farm_AEP( + freq, + cut_in_wind_speed=cut_in_wind_speed, + cut_out_wind_speed=cut_out_wind_speed, + turbine_weights=turbine_weights, + no_wake=no_wake, + ) + + def _get_rounded_inputs( + self, + input_array, + wd_resolution=1.0, # Degree + ws_resolution=1.0, # m/s + ti_resolution=0.025, + yaw_resolution=1.0, # Degree + power_setpoint_resolution=100, # kW + ): + """ + Round the input array specified resolutions. + + Parameters: + input_array (numpy.ndarray): An array of shape (n, 5) with columns + for wind direction (wd), wind speed (ws), + turbulence intensity (tu), + yaw angle (yaw), and power setpoint. + wd_resolution (float): Resolution for rounding wind direction in degrees. + Default is 1.0 degree. + ws_resolution (float): Resolution for rounding wind speed in m/s. Default is 1.0 m/s. + ti_resolution (float): Resolution for rounding turbulence intensity. Default is 0.1. + yaw_resolution (float): Resolution for rounding yaw angle in degrees. + Default is 1.0 degree. + power_setpoint_resolution (int): Resolution for rounding power setpoint in kW. + Default is 100 kW. + + Returns: + numpy.ndarray: A rounded array of wind turbine parameters with + the same shape as input_array, + where each parameter is rounded to the specified resolution. + """ + + # input_array is a nx5 numpy array whose columns are wd, ws, tu, yaw, power_setpoint + # round each column by the respective resolution + rounded_input_array = np.copy(input_array) + rounded_input_array[:, 0] = ( + np.round(rounded_input_array[:, 0] / wd_resolution) * wd_resolution + ) + rounded_input_array[:, 1] = ( + np.round(rounded_input_array[:, 1] / ws_resolution) * ws_resolution + ) + rounded_input_array[:, 2] = ( + np.round(rounded_input_array[:, 2] / ti_resolution) * ti_resolution + ) + rounded_input_array[:, 3] = ( + np.round(rounded_input_array[:, 3] / yaw_resolution) * yaw_resolution + ) + rounded_input_array[:, 4] = ( + np.round(rounded_input_array[:, 4] / power_setpoint_resolution) + * power_setpoint_resolution + ) + + return rounded_input_array + + def _expand_wind_directions(self, input_array, wd_sample_points): + """ + Expand wind direction data. + + Args: + input_array (numpy.ndarray): 2D numpy array of shape (m, n) + representing wind direction data, + where m is the number of data points and n is the number of features. + The first column + represents wind direction. + wd_sample_points (list): List of integers representing + wind direction sample points. + + Returns: + numpy.ndarray: Expanded wind direction data as a 2D numpy array + of shape (m * p, n), where + p is the number of sample points. + + Raises: + ValueError: If wd_sample_points does not have an odd length or + if the middle element is not 0. + + This function takes wind direction data and expands it + by perturbing the wind direction column + based on a list of sample points. It vertically stacks + copies of the input array with the wind + direction column perturbed by each sample point, ensuring + the resultant values are within the range + of 0 to 360. + """ + + # Check if wd_sample_points is odd-length and the middle element is 0 + if len(wd_sample_points) % 2 != 1: + raise ValueError("wd_sample_points must have an odd length.") + if wd_sample_points[len(wd_sample_points) // 2] != 0: + raise ValueError("The middle element of wd_sample_points must be 0.") + + num_samples = len(wd_sample_points) + num_rows = input_array.shape[0] + + # Create an array to hold the expanded data + output_array = np.zeros((num_rows * num_samples, input_array.shape[1])) + + # Repeat each row of input_array for each sample point + for i in range(num_samples): + start_idx = i * num_rows + end_idx = start_idx + num_rows + output_array[start_idx:end_idx, :] = input_array.copy() + + # Perturb the wd column by the current sample point + output_array[start_idx:end_idx, 0] = ( + output_array[start_idx:end_idx, 0] + wd_sample_points[i] + ) % 360 + + return output_array + + def _get_unique_inputs(self, input_array): + """ + Finds unique rows in the input numpy array and constructs a mapping array + to reconstruct the input array from the unique rows. + + Args: + input_array (numpy.ndarray): Input array of shape (m, n). + + Returns: + tuple: A tuple containing: + numpy.ndarray: An array of unique rows found in the input_array, of shape (r, n), + where r <= m. + numpy.ndarray: A 1D array of indices mapping each row of the input_array + to the corresponding row in the unique_inputs array. + It represents how to reconstruct the input_array from the unique rows. + """ + + unique_inputs, indices, map_to_expanded_inputs = np.unique( + input_array, axis=0, return_index=True, return_inverse=True + ) + + return unique_inputs, map_to_expanded_inputs + + def _get_weights(self, wd_std, wd_sample_points): + """Generates weights based on a Gaussian distribution sampled at specific x-locations. + + Args: + wd_std (float): The standard deviation of the Gaussian distribution. + wd_sample_points (array-like): The x-locations where the Gaussian function is sampled. + + Returns: + numpy.ndarray: An array of weights, generated using a Gaussian distribution with mean 0 + and standard deviation wd_std, sampled at the specified x-locations. + The weights are normalized so that they sum to 1. + + """ + + # Calculate the Gaussian function values at sample points + gaussian_values = np.exp(-(np.array(wd_sample_points) ** 2) / (2 * wd_std**2)) + + # Normalize the Gaussian values to get the weights + weights = gaussian_values / np.sum(gaussian_values) + + return weights @property def layout_x(self): - return self.fi.layout_x + """ + Wind turbine coordinate information. + + Returns: + np.array: Wind turbine x-coordinate. + """ + return self.floris_interface.floris.farm.layout_x @property def layout_y(self): - return self.fi.layout_y + """ + Wind turbine coordinate information. + + Returns: + np.array: Wind turbine y-coordinate. + """ + return self.floris_interface.floris.farm.layout_y diff --git a/tests/uncertainty_interface_integration_test.py b/tests/uncertainty_interface_integration_test.py new file mode 100644 index 000000000..74bf956b0 --- /dev/null +++ b/tests/uncertainty_interface_integration_test.py @@ -0,0 +1,184 @@ +from pathlib import Path + +import numpy as np +import pytest +import yaml + +from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT +from floris.tools.floris_interface import FlorisInterface +from floris.tools.uncertainty_interface import UncertaintyInterface + + +TEST_DATA = Path(__file__).resolve().parent / "data" +YAML_INPUT = TEST_DATA / "input_full.yaml" + + +def test_read_yaml(): + fi = UncertaintyInterface(configuration=YAML_INPUT) + assert isinstance(fi, UncertaintyInterface) + + +def test_rounded_inputs(): + fi = UncertaintyInterface(configuration=YAML_INPUT) + + # Using defaults + # Example input array + input_array = np.array([[45.3, 7.6, 0.24, 90.7, 749], [60.1, 8.2, 0.3, 95.3, 751]]) + + # Expected output array after rounding + expected_output = np.array([[45.0, 8.0, 0.25, 91.0, 700.0], [60.0, 8.0, 0.3, 95.0, 800.0]]) + + # Call the function + rounded_inputs = fi._get_rounded_inputs(input_array) + + np.testing.assert_almost_equal(rounded_inputs, expected_output) + + +def test_expand_wind_directions(): + fi = UncertaintyInterface(configuration=YAML_INPUT) + + input_array = np.array( + [[1, 20, 30], [40, 50, 60], [70, 80, 90], [100, 110, 120], [359, 140, 150]] + ) + + # Test even length + with pytest.raises(ValueError): + wd_sample_points = [-15, -10, -5, 5, 10, 15] # Even lenght + fi._expand_wind_directions(input_array, wd_sample_points) + + # Test middle element not 0 + with pytest.raises(ValueError): + wd_sample_points = [-15, -10, -5, 1, 5, 10, 15] # Odd length, not 0 at the middle + fi._expand_wind_directions(input_array, wd_sample_points) + + # Test correction operations + wd_sample_points = [-15, -10, -5, 0, 5, 10, 15] # Odd length, 0 at the middle + output_array = fi._expand_wind_directions(input_array, wd_sample_points) + + # Check if output shape is correct + assert output_array.shape[0] == 35 + + # Check 360 wrapping + # 1 - 15 = -14 -> 346 + np.testing.assert_almost_equal(output_array[0, 0], 346.0) + + # Check 360 wrapping + # 359 + 15 = 374 -> 14 + np.testing.assert_almost_equal(output_array[-1, 0], 14.0) + + +def test_get_unique_inputs(): + fi = UncertaintyInterface(configuration=YAML_INPUT) + + input_array = np.array( + [ + [0, 1], + [0, 2], + [0, 1], + [1, 1], + [0, 1], + ] + ) + + expected_unique_inputs = np.array([[0, 1], [0, 2], [1, 1]]) + + unique_inputs, map_to_expanded_inputs = fi._get_unique_inputs(input_array) + + # test expected result + assert np.array_equal(unique_inputs, expected_unique_inputs) + + # Test gets back to original + assert np.array_equal(unique_inputs[map_to_expanded_inputs], input_array) + + +def test_get_weights(): + fi = UncertaintyInterface(configuration=YAML_INPUT) + weights = fi._get_weights(3.0, [-6, -3, 0, 3, 6]) + np.testing.assert_allclose( + weights, np.array([0.05448868, 0.24420134, 0.40261995, 0.24420134, 0.05448868]) + ) + + +def test_uncertainty_interface(): + # Recompute uncertain result using certain result with 1 deg + + fi_nom = FlorisInterface(configuration=YAML_INPUT) + fi_unc = UncertaintyInterface(configuration=YAML_INPUT, wd_sample_points=[-3, 0, 3], wd_std=3) + + fi_nom.set( + layout_x=[0, 300], + layout_y=[0, 0], + wind_speeds=[8.0, 8.0, 8.0], + wind_directions=[267.0, 270.0, 273], + turbulence_intensities=[0.06, 0.06, 0.06], + ) + + fi_unc.set( + layout_x=[0, 300], + layout_y=[0, 0], + wind_speeds=[8.0], + wind_directions=[270.0], + turbulence_intensities=[0.06], + ) + + fi_nom.run() + fi_unc.run() + + nom_powers = fi_nom.get_turbine_powers()[:, 1].flatten() + unc_powers = fi_unc.get_turbine_powers()[:, 1].flatten() + + weights = fi_unc.weights + + np.testing.assert_allclose(np.sum(nom_powers * weights), unc_powers) + +def test_uncertainty_interface_setpoints(): + + fi_nom = FlorisInterface(configuration=YAML_INPUT) + fi_unc = UncertaintyInterface(configuration=YAML_INPUT, wd_sample_points=[-3, 0, 3], wd_std=3) + + fi_nom.set( + layout_x=[0, 300], + layout_y=[0, 0], + wind_speeds=[8.0, 8.0, 8.0], + wind_directions=[267.0, 270.0, 273], + turbulence_intensities=[0.06, 0.06, 0.06], + ) + + fi_unc.set( + layout_x=[0, 300], + layout_y=[0, 0], + wind_speeds=[8.0], + wind_directions=[270.0], + turbulence_intensities=[0.06], + ) + weights = fi_unc.weights + + # Check setpoints dimensions are respected and reset_operation works + # Note that fi_nom.set() does NOT raise ValueError---an AttributeError is raised only at + # fi_nom.run()---whereas fi_unc.set raises ValueError immediately. + # fi_nom.set(yaw_angles=np.array([[0.0, 0.0]])) + # with pytest.raises(AttributeError): + # fi_nom.run() + # with pytest.raises(ValueError): + # fi_unc.set(yaw_angles=np.array([[0.0, 0.0]])) + + fi_nom.set(yaw_angles=np.array([[20.0, 0.0], [20.0, 0.0], [20.0, 0.0]])) + fi_nom.run() + nom_powers = fi_nom.get_turbine_powers()[:, 1].flatten() + + fi_unc.set(yaw_angles=np.array([[20.0, 0.0]])) + fi_unc.run() + unc_powers = fi_unc.get_turbine_powers()[:, 1].flatten() + + np.testing.assert_allclose(np.sum(nom_powers * weights), unc_powers) + + # Drop yaw setpoints and rerun + fi_nom.reset_operation() + fi_nom.run() + nom_powers = fi_nom.get_turbine_powers()[:, 1].flatten() + + fi_unc.reset_operation() + fi_unc.run() + unc_powers = fi_unc.get_turbine_powers()[:, 1].flatten() + + np.testing.assert_allclose(np.sum(nom_powers * weights), unc_powers) From 3517d2c75d16ae04596ce142070d07b52070ec2a Mon Sep 17 00:00:00 2001 From: paulf81 Date: Thu, 7 Mar 2024 11:46:56 -0700 Subject: [PATCH 50/78] Drive layout optimizations using WindData objects (#822) --- examples/15_optimize_layout.py | 28 ++++++---- .../16c_optimize_layout_with_heterogeneity.py | 37 ++++++++----- floris/tools/__init__.py | 1 - .../layout_optimization_base.py | 35 +++++++++--- .../layout_optimization_pyoptsparse.py | 9 ++- .../layout_optimization_pyoptsparse_spread.py | 5 +- .../layout_optimization_scipy.py | 13 +++-- tests/layout_optimization_integration_test.py | 55 +++++++++++++++++++ 8 files changed, 139 insertions(+), 44 deletions(-) create mode 100644 tests/layout_optimization_integration_test.py diff --git a/examples/15_optimize_layout.py b/examples/15_optimize_layout.py index f35a08a35..031388097 100644 --- a/examples/15_optimize_layout.py +++ b/examples/15_optimize_layout.py @@ -4,7 +4,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris.tools import FlorisInterface, WindRose from floris.tools.optimization.layout_optimization.layout_optimization_scipy import ( LayoutOptimizationScipy, ) @@ -24,15 +24,22 @@ file_dir = os.path.dirname(os.path.abspath(__file__)) fi = FlorisInterface('inputs/gch.yaml') -# Setup 72 wind directions with a random wind speed and frequency distribution +# Setup 72 wind directions with a 1 wind speed and frequency distribution wind_directions = np.arange(0, 360.0, 5.0) -np.random.seed(1) -wind_speeds = 8.0 + np.random.randn(1) * 0.5 * np.ones_like(wind_directions) +wind_speeds = np.array([8.0]) + # Shape frequency distribution to match number of wind directions and wind speeds -freq = (np.abs(np.sort(np.random.randn(len(wind_directions))))) -freq = freq / freq.sum() +freq_table = np.zeros((len(wind_directions), len(wind_speeds))) +np.random.seed(1) +freq_table[:,0] = (np.abs(np.sort(np.random.randn(len(wind_directions))))) +freq_table = freq_table / freq_table.sum() -fi.set(wind_directions=wind_directions, wind_speeds=wind_speeds) +# Establish a TimeSeries object +wind_rose = WindRose(wind_directions=wind_directions, + wind_speeds=wind_speeds, + freq_table=freq_table) + +fi.set(wind_data=wind_rose) # The boundaries for the turbines, specified as vertices boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] @@ -44,7 +51,7 @@ fi.set(layout_x=layout_x, layout_y=layout_y) # Setup the optimization problem -layout_opt = LayoutOptimizationScipy(fi, boundaries, freq=freq) +layout_opt = LayoutOptimizationScipy(fi, boundaries, wind_data=wind_rose) # Run the optimization sol = layout_opt.optimize() @@ -52,10 +59,11 @@ # Get the resulting improvement in AEP print('... calcuating improvement in AEP') fi.run() -base_aep = fi.get_farm_AEP(freq=freq) / 1e6 +base_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 fi.set(layout_x=sol[0], layout_y=sol[1]) fi.run() -opt_aep = fi.get_farm_AEP(freq=freq) / 1e6 +opt_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 + percent_gain = 100 * (opt_aep - base_aep) / base_aep # Print and plot the results diff --git a/examples/16c_optimize_layout_with_heterogeneity.py b/examples/16c_optimize_layout_with_heterogeneity.py index a618aaa1d..014f22967 100644 --- a/examples/16c_optimize_layout_with_heterogeneity.py +++ b/examples/16c_optimize_layout_with_heterogeneity.py @@ -4,7 +4,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris.tools import FlorisInterface, WindRose from floris.tools.optimization.layout_optimization.layout_optimization_scipy import ( LayoutOptimizationScipy, ) @@ -28,12 +28,17 @@ # Setup 2 wind directions (due east and due west) # and 1 wind speed with uniform probability -wind_directions = [270., 90.] +wind_directions = np.array([270., 90.]) n_wds = len(wind_directions) -wind_speeds = [8.0] * np.ones_like(wind_directions) +wind_speeds = np.array([8.0]) # Shape frequency distribution to match number of wind directions and wind speeds -freq = np.ones((len(wind_directions), len(wind_speeds))) -freq = freq / freq.sum() +freq_table = np.ones((len(wind_directions), len(wind_speeds))) +freq_table = freq_table / freq_table.sum() + +# Establish a TimeSeries object +wind_rose = WindRose(wind_directions=wind_directions, + wind_speeds=wind_speeds, + freq_table=freq_table) # The boundaries for the turbines, specified as vertices D = 126.0 # rotor diameter for the NREL 5MW @@ -66,8 +71,7 @@ fi.set( layout_x=layout_x, layout_y=layout_y, - wind_directions=wind_directions, - wind_speeds=wind_speeds, + wind_data=wind_rose, heterogenous_inflow_config=heterogenous_inflow_config ) @@ -76,7 +80,7 @@ layout_opt = LayoutOptimizationScipy( fi, boundaries, - freq=freq, + wind_data=wind_rose, min_dist=2*D, optOptions={"maxiter":maxiter} ) @@ -87,11 +91,13 @@ # Get the resulting improvement in AEP print('... calcuating improvement in AEP') + fi.run() -base_aep = fi.get_farm_AEP(freq=freq) / 1e6 +base_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 fi.set(layout_x=sol[0], layout_y=sol[1]) fi.run() -opt_aep = fi.get_farm_AEP(freq=freq) / 1e6 +opt_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 + percent_gain = 100 * (opt_aep - base_aep) / base_aep # Print and plot the results @@ -115,7 +121,7 @@ layout_opt = LayoutOptimizationScipy( fi, boundaries, - freq=freq, + wind_data=wind_rose, min_dist=2*D, enable_geometric_yaw=True, optOptions={"maxiter":maxiter} @@ -127,10 +133,15 @@ # Get the resulting improvement in AEP print('... calcuating improvement in AEP') + fi.set(yaw_angles=np.zeros_like(layout_opt.yaw_angles)) -base_aep = fi.get_farm_AEP(freq=freq) / 1e6 +base_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 fi.set(layout_x=sol[0], layout_y=sol[1], yaw_angles=layout_opt.yaw_angles) -opt_aep = fi.get_farm_AEP(freq=freq) / 1e6 +fi.run() +opt_aep = fi.get_farm_AEP_with_wind_data( + wind_data=wind_rose +) / 1e6 + percent_gain = 100 * (opt_aep - base_aep) / base_aep # Print and plot the results diff --git a/floris/tools/__init__.py b/floris/tools/__init__.py index f837786b0..94160d697 100644 --- a/floris/tools/__init__.py +++ b/floris/tools/__init__.py @@ -40,7 +40,6 @@ # from floris.tools import ( # cut_plane, # floris_interface, -# interface_utilities, # layout_visualization, # optimization, # plotting, diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_base.py b/floris/tools/optimization/layout_optimization/layout_optimization_base.py index 2396d1690..ba5a86751 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_base.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_base.py @@ -3,15 +3,33 @@ import numpy as np from shapely.geometry import LineString, Polygon +from floris.tools import TimeSeries from floris.tools.optimization.yaw_optimization.yaw_optimizer_geometric import ( YawOptimizationGeometric, ) +from floris.tools.wind_data import WindDataBase from ....logging_manager import LoggingManager class LayoutOptimization(LoggingManager): - def __init__(self, fi, boundaries, min_dist=None, freq=None, enable_geometric_yaw=False): + """ + Base class for layout optimization. This class should not be used directly + but should be subclassed by a specific optimization method. + + Args: + fi (FlorisInterface): A FlorisInterface object. + boundaries (iterable(float, float)): Pairs of x- and y-coordinates + that represent the boundary's vertices (m). + wind_data (TimeSeries | WindRose): A TimeSeries or WindRose object + values. + min_dist (float, optional): The minimum distance to be maintained + between turbines during the optimization (m). If not specified, + initializes to 2 rotor diameters. Defaults to None. + enable_geometric_yaw (bool, optional): If True, enables geometric yaw + optimization. Defaults to False. + """ + def __init__(self, fi, boundaries, wind_data, min_dist=None, enable_geometric_yaw=False): self.fi = fi.copy() self.boundaries = boundaries self.enable_geometric_yaw = enable_geometric_yaw @@ -30,12 +48,13 @@ def __init__(self, fi, boundaries, min_dist=None, freq=None, enable_geometric_ya else: self.min_dist = min_dist - # If freq is not provided, give equal weight to all wind conditions - if freq is None: - self.freq = np.ones((self.fi.floris.flow_field.n_findex,)) - self.freq = self.freq / self.freq.sum() - else: - self.freq = freq + # Check that wind_data is a WindDataBase object + if (not isinstance(wind_data, WindDataBase)): + raise ValueError( + "wind_data entry is not an object of WindDataBase" + " (eg TimeSeries, WindRose, WindTIRose)" + ) + self.wind_data = wind_data # Establish geometric yaw class if self.enable_geometric_yaw: @@ -45,7 +64,7 @@ def __init__(self, fi, boundaries, min_dist=None, freq=None, enable_geometric_ya maximum_yaw_angle=30.0, ) - self.initial_AEP = fi.get_farm_AEP(self.freq) + self.initial_AEP = fi.get_farm_AEP_with_wind_data(self.wind_data) def __str__(self): return "layout" diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py index 555ab21cb..f0b519254 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py @@ -12,8 +12,8 @@ def __init__( self, fi, boundaries, + wind_data, min_dist=None, - freq=None, solver=None, optOptions=None, timeLimit=None, @@ -21,7 +21,7 @@ def __init__( hotStart=None, enable_geometric_yaw=False, ): - super().__init__(fi, boundaries, min_dist=min_dist, freq=freq, + super().__init__(fi, boundaries, wind_data=wind_data, min_dist=min_dist, enable_geometric_yaw=enable_geometric_yaw) self.x0 = self._norm(self.fi.layout_x, self.xmin, self.xmax) @@ -99,7 +99,10 @@ def _obj_func(self, varDict): # Compute the objective function funcs = {} funcs["obj"] = ( - -1 * self.fi.get_farm_AEP(self.freq) / self.initial_AEP + + -1 * self.fi.get_farm_AEP_with_wind_data(self.wind_data) + / self.initial_AEP + ) # Compute constraints, if any are defined for the optimization diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py index fc394dc10..7b0ccbe03 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py @@ -12,15 +12,15 @@ def __init__( self, fi, boundaries, + wind_data, min_dist=None, - freq=None, solver=None, optOptions=None, timeLimit=None, storeHistory='hist.hist', hotStart=None ): - super().__init__(fi, boundaries, min_dist=min_dist, freq=freq) + super().__init__(fi, boundaries, wind_data=wind_data, min_dist=min_dist) self._reinitialize(solver=solver, optOptions=optOptions) self.storeHistory = storeHistory @@ -95,7 +95,6 @@ def _obj_func(self, varDict): funcs = {} funcs["obj"] = ( -1 * self.mean_distance(self.x, self.y) - # -1 * np.sum(self.fi.get_farm_power() * self.freq * 8760) / self.initial_AEP ) # Compute constraints, if any are defined for the optimization diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py b/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py index 2c66f1b67..a2a8bef6f 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py +++ b/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py @@ -13,7 +13,7 @@ def __init__( self, fi, boundaries, - freq=None, + wind_data, bnds=None, min_dist=None, solver='SLSQP', @@ -27,10 +27,8 @@ def __init__( fi (_type_): _description_ boundaries (iterable(float, float)): Pairs of x- and y-coordinates that represent the boundary's vertices (m). - freq (np.array): An array of the frequencies of occurance - correponding to each pair of wind direction and wind speed + wind_data (TimeSeries | WindRose): A TimeSeries or WindRose object values. If None, equal weight is given to each pair of wind conditions - Defaults to None. bnds (iterable, optional): Bounds for the optimization variables (pairs of min/max values for each variable (m)). If none are specified, they are set to 0 and 1. Defaults to None. @@ -41,7 +39,7 @@ def __init__( optOptions (dict, optional): Dicitonary for setting the optimization options. Defaults to None. """ - super().__init__(fi, boundaries, min_dist=min_dist, freq=freq, + super().__init__(fi, boundaries, min_dist=min_dist, wind_data=wind_data, enable_geometric_yaw=enable_geometric_yaw) self.boundaries_norm = [ @@ -100,7 +98,10 @@ def _obj_func(self, locs): # Compute turbine yaw angles using PJ's geometric code (if enabled) yaw_angles = self._get_geoyaw_angles() self.fi.set(yaw_angles=yaw_angles) - return -1 * self.fi.get_farm_AEP(self.freq) /self.initial_AEP + + return (-1 * self.fi.get_farm_AEP_with_wind_data(self.wind_data) / + self.initial_AEP) + def _change_coordinates(self, locs): # Parse the layout coordinates diff --git a/tests/layout_optimization_integration_test.py b/tests/layout_optimization_integration_test.py new file mode 100644 index 000000000..7e61311a4 --- /dev/null +++ b/tests/layout_optimization_integration_test.py @@ -0,0 +1,55 @@ +from pathlib import Path + +import numpy as np +import pytest + +from floris.tools import ( + TimeSeries, + WindRose, +) +from floris.tools.floris_interface import FlorisInterface +from floris.tools.optimization.layout_optimization.layout_optimization_base import ( + LayoutOptimization, +) +from floris.tools.optimization.layout_optimization.layout_optimization_scipy import ( + LayoutOptimizationScipy, +) +from floris.tools.wind_data import WindDataBase + + +TEST_DATA = Path(__file__).resolve().parent / "data" +YAML_INPUT = TEST_DATA / "input_full.yaml" + + +def test_base_class(): + # Get a test fi + fi = FlorisInterface(configuration=YAML_INPUT) + + # Set up a sample boundary + boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] + + # Now initiate layout optimization with a frequency matrix passed in the 3rd position + # (this should fail) + freq = np.ones((5, 5)) + freq = freq / freq.sum() + with pytest.raises(ValueError): + LayoutOptimization(fi, boundaries, freq, 5) + + # Passing as a keyword freq to wind_data should also fail + with pytest.raises(ValueError): + LayoutOptimization(fi=fi, boundaries=boundaries, wind_data=freq, min_dist=5,) + + time_series = TimeSeries( + wind_directions=fi.floris.flow_field.wind_directions, + wind_speeds=fi.floris.flow_field.wind_speeds, + turbulence_intensities=fi.floris.flow_field.turbulence_intensities, + ) + wind_rose = time_series.to_wind_rose() + + # Passing wind_data objects in the 3rd position should not fail + LayoutOptimization(fi, boundaries, time_series, 5) + LayoutOptimization(fi, boundaries, wind_rose, 5) + + # Passing wind_data objects by keyword should not fail + LayoutOptimization(fi=fi, boundaries=boundaries, wind_data=time_series, min_dist=5) + LayoutOptimization(fi=fi, boundaries=boundaries, wind_data=wind_rose, min_dist=5) From f17fd585e166c2a0f1a590a89548cd17e54acee5 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Fri, 8 Mar 2024 14:12:25 -0700 Subject: [PATCH 51/78] Require TI must be length n_findex in core code (#831) --- examples/01_opening_floris_computing_power.py | 18 +- examples/04_sweep_wind_directions.py | 3 +- examples/05_sweep_wind_speeds.py | 3 +- examples/06_sweep_wind_conditions.py | 7 +- examples/07_calc_aep_from_rose.py | 2 + .../09_compare_farm_power_with_neighbor.py | 7 +- examples/10_opt_yaw_single_ws.py | 2 + examples/11_opt_yaw_multiple_ws.py | 2 + examples/12_optimize_yaw.py | 10 +- examples/12_optimize_yaw_in_parallel.py | 6 +- .../13_optimize_yaw_with_neighboring_farm.py | 9 +- examples/14_compare_yaw_optimizers.py | 2 + examples/15_optimize_layout.py | 9 +- examples/16b_heterogeneity_multiple_ws_wd.py | 2 + .../16c_optimize_layout_with_heterogeneity.py | 21 +- examples/18_check_turbine.py | 19 +- examples/21_demo_time_series.py | 3 +- examples/24_floating_turbine_models.py | 11 +- examples/28_extract_wind_speed_at_points.py | 3 +- examples/29_floating_vs_fixedbottom_farm.py | 4 +- examples/30_multi_dimensional_cp_ct.py | 18 +- examples/31_multi_dimensional_cp_ct_2Hs.py | 13 +- examples/33_specify_turbine_power_curve.py | 2 + examples/36_generate_ti.py | 10 +- examples/40_test_derating.py | 7 +- examples/41_test_disable_turbines.py | 2 + floris/simulation/flow_field.py | 10 +- floris/tools/floris_interface.py | 37 +- floris/tools/wind_data.py | 426 +++++++++++++++--- profiling/quality_metrics.py | 2 + tests/conftest.py | 20 +- tests/floris_interface_integration_test.py | 65 ++- .../cumulative_curl_regression_test.py | 2 + .../empirical_gauss_regression_test.py | 2 + tests/reg_tests/gauss_regression_test.py | 3 + .../jensen_jimenez_regression_test.py | 2 + tests/reg_tests/none_regression_test.py | 2 + tests/reg_tests/turbopark_regression_test.py | 1 + .../yaw_optimization_regression_test.py | 7 + tests/wind_data_integration_test.py | 189 +++++++- 40 files changed, 764 insertions(+), 199 deletions(-) diff --git a/examples/01_opening_floris_computing_power.py b/examples/01_opening_floris_computing_power.py index 52935a956..59372a866 100644 --- a/examples/01_opening_floris_computing_power.py +++ b/examples/01_opening_floris_computing_power.py @@ -42,9 +42,15 @@ wind_speeds = np.array([8.0, 9.0, 10.0]) wind_directions = np.array([270.0, 270.0, 270.0]) +turbulence_intensities = np.array([0.06, 0.06, 0.06]) # 3 wind directions/ speeds -fi.set(wind_speeds=wind_speeds, wind_directions=wind_directions, yaw_angles=np.zeros([3, 2])) +fi.set( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, + yaw_angles=np.zeros([3, 2]) +) fi.run() turbine_powers = fi.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") @@ -58,8 +64,14 @@ wind_speeds = np.tile([8.0, 9.0, 10.0], 3) wind_directions = np.repeat([260.0, 270.0, 280.0], 3) - -fi.set(wind_directions=wind_directions, wind_speeds=wind_speeds, yaw_angles=np.zeros([9, 2])) +turbulence_intensities = np.tile([0.06, 0.06, 0.06], 3) + +fi.set( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities, + yaw_angles=np.zeros([9, 2]) +) fi.run() turbine_powers = fi.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") diff --git a/examples/04_sweep_wind_directions.py b/examples/04_sweep_wind_directions.py index 6cfa73612..a06892e16 100644 --- a/examples/04_sweep_wind_directions.py +++ b/examples/04_sweep_wind_directions.py @@ -27,7 +27,8 @@ # Sweep wind speeds but keep wind direction fixed wd_array = np.arange(250,291,1.) ws_array = 8.0 * np.ones_like(wd_array) -fi.set(wind_directions=wd_array, wind_speeds=ws_array) +ti_array = 0.06 * np.ones_like(wd_array) +fi.set(wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=ti_array) # Define a matrix of yaw angles to be all 0 # Note that yaw angles is now specified as a matrix whose dimensions are diff --git a/examples/05_sweep_wind_speeds.py b/examples/05_sweep_wind_speeds.py index b9ce3c317..a9dbc979c 100644 --- a/examples/05_sweep_wind_speeds.py +++ b/examples/05_sweep_wind_speeds.py @@ -27,7 +27,8 @@ # Sweep wind speeds but keep wind direction fixed ws_array = np.arange(5,25,0.5) wd_array = 270.0 * np.ones_like(ws_array) -fi.set(wind_directions=wd_array,wind_speeds=ws_array) +ti_array = 0.06 * np.ones_like(ws_array) +fi.set(wind_directions=wd_array,wind_speeds=ws_array, turbulence_intensities=ti_array) # Define a matrix of yaw angles to be all 0 # Note that yaw angles is now specified as a matrix whose dimensions are diff --git a/examples/06_sweep_wind_conditions.py b/examples/06_sweep_wind_conditions.py index 9debf07ca..dd1756685 100644 --- a/examples/06_sweep_wind_conditions.py +++ b/examples/06_sweep_wind_conditions.py @@ -44,9 +44,14 @@ # Flatten the grids back to 1D arrays ws_array = wind_speeds_grid.flatten() wd_array = wind_directions_grid.flatten() +turbulence_intensities = 0.06 * np.ones_like(wd_array) # Now reinitialize FLORIS -fi.set(wind_speeds=ws_array, wind_directions=wd_array) +fi.set( + wind_speeds=ws_array, + wind_directions=wd_array, + turbulence_intensities=turbulence_intensities +) # Define a matrix of yaw angles to be all 0 # Note that yaw angles is now specified as a matrix whose dimensions are diff --git a/examples/07_calc_aep_from_rose.py b/examples/07_calc_aep_from_rose.py index 18db25a71..116f6f1cd 100644 --- a/examples/07_calc_aep_from_rose.py +++ b/examples/07_calc_aep_from_rose.py @@ -28,6 +28,7 @@ ) wind_directions = wd_grid.flatten() wind_speeds = ws_grid.flatten() +turbulence_intensities = np.ones_like(wind_directions) * 0.06 # Format the frequency array into the conventional FLORIS v3 format, which is # an np.array with shape (n_wind_directions, n_wind_speeds). To avoid having @@ -52,6 +53,7 @@ layout_y=[0.0, 0.0, 0.0], wind_directions=wind_directions, wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities, ) # Compute the AEP using the default settings diff --git a/examples/09_compare_farm_power_with_neighbor.py b/examples/09_compare_farm_power_with_neighbor.py index c326eee71..48c02ff8d 100644 --- a/examples/09_compare_farm_power_with_neighbor.py +++ b/examples/09_compare_farm_power_with_neighbor.py @@ -29,7 +29,12 @@ # Define a simple wind rose with just 1 wind speed wd_array = np.arange(0,360,4.) ws_array = 8.0 * np.ones_like(wd_array) -fi.set(wind_directions=wd_array, wind_speeds=ws_array) +turbulence_intensities = 0.06 * np.ones_like(wd_array) +fi.set( + wind_directions=wd_array, + wind_speeds=ws_array, + turbulence_intensities=turbulence_intensities +) # Calculate diff --git a/examples/10_opt_yaw_single_ws.py b/examples/10_opt_yaw_single_ws.py index ac39b5b4e..fb3b534b0 100644 --- a/examples/10_opt_yaw_single_ws.py +++ b/examples/10_opt_yaw_single_ws.py @@ -22,12 +22,14 @@ # Reinitialize as a 3-turbine farm with range of WDs and 1 WS wd_array = np.arange(0.0, 360.0, 3.0) ws_array = 8.0 * np.ones_like(wd_array) +turbulence_intensities = 0.06 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, + turbulence_intensities=turbulence_intensities, ) print(fi.floris.farm.rotor_diameters) diff --git a/examples/11_opt_yaw_multiple_ws.py b/examples/11_opt_yaw_multiple_ws.py index 798750e0b..f0ee51e14 100644 --- a/examples/11_opt_yaw_multiple_ws.py +++ b/examples/11_opt_yaw_multiple_ws.py @@ -32,6 +32,7 @@ # Flatten the grids back to 1D arrays wd_array = wind_directions_grid.flatten() ws_array = wind_speeds_grid.flatten() +turbulence_intensities = 0.06 * np.ones_like(wd_array) # Reinitialize as a 3-turbine farm with range of WDs and WSs D = 126.0 # Rotor diameter for the NREL 5 MW @@ -40,6 +41,7 @@ layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, + turbulence_intensities=turbulence_intensities, ) # Initialize optimizer object and run optimization using the Serial-Refine method diff --git a/examples/12_optimize_yaw.py b/examples/12_optimize_yaw.py index 55f1547c8..41d7f23e2 100644 --- a/examples/12_optimize_yaw.py +++ b/examples/12_optimize_yaw.py @@ -62,8 +62,14 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): # Derive the wind directions and speeds we need to evaluate in FLORIS wd_array = np.array(df_windrose["wd"], dtype=float) ws_array = np.array(df_windrose["ws"], dtype=float) + turbulence_intensities = 0.06 * np.ones_like(wd_array) yaw_angles = np.array(df_windrose[yaw_cols], dtype=float) - fi.set(wind_directions=wd_array, wind_speeds=ws_array, yaw_angles=yaw_angles) + fi.set( + wind_directions=wd_array, + wind_speeds=ws_array, + turbulence_intensities=turbulence_intensities, + yaw_angles=yaw_angles + ) # Calculate FLORIS for every WD and WS combination and get the farm power fi.run() @@ -109,9 +115,11 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): start_time = timerpc() wd_array = np.arange(0.0, 360.0, 5.0) ws_array = 8.0 * np.ones_like(wd_array) + turbulence_intensities = 0.06 * np.ones_like(wd_array) fi.set( wind_directions=wd_array, wind_speeds=ws_array, + turbulence_intensities=turbulence_intensities, ) yaw_opt = YawOptimizationSR( fi=fi, diff --git a/examples/12_optimize_yaw_in_parallel.py b/examples/12_optimize_yaw_in_parallel.py index 955c32e06..74461ce94 100644 --- a/examples/12_optimize_yaw_in_parallel.py +++ b/examples/12_optimize_yaw_in_parallel.py @@ -58,11 +58,12 @@ def load_windrose(): # Flatten the grids back to 1D arrays wd_array = wind_directions_grid.flatten() ws_array = wind_speeds_grid.flatten() + turbulence_intensities = 0.08 * np.ones_like(wd_array) fi_aep.set( wind_directions=wd_array, wind_speeds=ws_array, - turbulence_intensities=[0.08], # Assume 8% turbulence intensity + turbulence_intensities=turbulence_intensities, ) # Pour this into a parallel computing interface @@ -111,11 +112,12 @@ def load_windrose(): # Flatten the grids back to 1D arrays wd_array_opt = wind_directions_grid.flatten() ws_array_opt = wind_speeds_grid.flatten() + turbulence_intensities = 0.08 * np.ones_like(wd_array_opt) fi_opt.set( wind_directions=wd_array_opt, wind_speeds=ws_array_opt, - turbulence_intensities=[0.08], # Assume 8% turbulence intensity + turbulence_intensities=turbulence_intensities, ) # Pour this into a parallel computing interface diff --git a/examples/13_optimize_yaw_with_neighboring_farm.py b/examples/13_optimize_yaw_with_neighboring_farm.py index e388909c2..bab42aaf3 100644 --- a/examples/13_optimize_yaw_with_neighboring_farm.py +++ b/examples/13_optimize_yaw_with_neighboring_farm.py @@ -177,18 +177,25 @@ def yaw_opt_interpolant(wd, ws): # Load a dataframe containing the wind rose information ws_windrose, wd_windrose, freq_windrose = load_windrose() ws_windrose = ws_windrose + 0.001 # Deal with 0.0 m/s discrepancy + turbulence_intensities_windrose = 0.06 * np.ones_like(wd_windrose) # Create a FLORIS object for AEP calculations fi_AEP = fi.copy() - fi_AEP.set(wind_speeds=ws_windrose, wind_directions=wd_windrose) + fi_AEP.set( + wind_speeds=ws_windrose, + wind_directions=wd_windrose, + turbulence_intensities=turbulence_intensities_windrose + ) # And create a separate FLORIS object for optimization fi_opt = fi.copy() wd_array = np.arange(0.0, 360.0, 3.0) ws_array = 8.0 * np.ones_like(wd_array) + turbulence_intensities = 0.06 * np.ones_like(wd_array) fi_opt.set( wind_directions=wd_array, wind_speeds=ws_array, + turbulence_intensities=turbulence_intensities, ) # First, get baseline AEP, without wake steering diff --git a/examples/14_compare_yaw_optimizers.py b/examples/14_compare_yaw_optimizers.py index 98a3937b2..ea4e100ee 100644 --- a/examples/14_compare_yaw_optimizers.py +++ b/examples/14_compare_yaw_optimizers.py @@ -38,11 +38,13 @@ D = 126.0 # Rotor diameter for the NREL 5 MW wd_array = np.arange(0.0, 360.0, 3.0) ws_array = 8.0 * np.ones_like(wd_array) +turbulence_intensities = 0.06 * np.ones_like(wd_array) fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, + turbulence_intensities=turbulence_intensities, ) print("Performing optimizations with SciPy...") diff --git a/examples/15_optimize_layout.py b/examples/15_optimize_layout.py index 031388097..8049b0e6c 100644 --- a/examples/15_optimize_layout.py +++ b/examples/15_optimize_layout.py @@ -35,9 +35,12 @@ freq_table = freq_table / freq_table.sum() # Establish a TimeSeries object -wind_rose = WindRose(wind_directions=wind_directions, - wind_speeds=wind_speeds, - freq_table=freq_table) +wind_rose = WindRose( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + freq_table=freq_table, + ti_table=0.06 +) fi.set(wind_data=wind_rose) diff --git a/examples/16b_heterogeneity_multiple_ws_wd.py b/examples/16b_heterogeneity_multiple_ws_wd.py index 9c7bc6b31..56dbd3e9b 100644 --- a/examples/16b_heterogeneity_multiple_ws_wd.py +++ b/examples/16b_heterogeneity_multiple_ws_wd.py @@ -28,6 +28,7 @@ wind_shear=0.0, wind_speeds=[8.0], wind_directions=[270.], + turbulence_intensities=[0.06], layout_x=[0, 0], layout_y=[-299., 299.], ) @@ -55,6 +56,7 @@ fi.set( wind_directions=[270.0, 275.0], wind_speeds=[8.0, 8.0], + turbulence_intensities=[0.06, 0.06], heterogenous_inflow_config=heterogenous_inflow_config ) fi.run() diff --git a/examples/16c_optimize_layout_with_heterogeneity.py b/examples/16c_optimize_layout_with_heterogeneity.py index 014f22967..d41ac70a0 100644 --- a/examples/16c_optimize_layout_with_heterogeneity.py +++ b/examples/16c_optimize_layout_with_heterogeneity.py @@ -30,15 +30,12 @@ # and 1 wind speed with uniform probability wind_directions = np.array([270., 90.]) n_wds = len(wind_directions) -wind_speeds = np.array([8.0]) +wind_speeds = [8.0] * np.ones_like(wind_directions) +turbulence_intensities = 0.06 * np.ones_like(wind_directions) # Shape frequency distribution to match number of wind directions and wind speeds freq_table = np.ones((len(wind_directions), len(wind_speeds))) freq_table = freq_table / freq_table.sum() -# Establish a TimeSeries object -wind_rose = WindRose(wind_directions=wind_directions, - wind_speeds=wind_speeds, - freq_table=freq_table) # The boundaries for the turbines, specified as vertices D = 126.0 # rotor diameter for the NREL 5MW @@ -62,17 +59,27 @@ y_locs = [-D, -D, D, D] # Create the configuration dictionary to be used for the heterogeneous inflow. -heterogenous_inflow_config = { +heterogenous_inflow_config_by_wd = { 'speed_multipliers': speed_multipliers, + 'wind_directions': wind_directions, 'x': x_locs, 'y': y_locs, } +# Establish a WindRose object +wind_rose = WindRose( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + freq_table=freq_table, + ti_table=0.06, + heterogenous_inflow_config_by_wd=heterogenous_inflow_config_by_wd +) + + fi.set( layout_x=layout_x, layout_y=layout_y, wind_data=wind_rose, - heterogenous_inflow_config=heterogenous_inflow_config ) # Setup and solve the layout optimization problem without heterogeneity diff --git a/examples/18_check_turbine.py b/examples/18_check_turbine.py index a19a99306..da526e7da 100644 --- a/examples/18_check_turbine.py +++ b/examples/18_check_turbine.py @@ -13,6 +13,7 @@ """ ws_array = np.arange(0.1,30,0.2) wd_array = 270.0 * np.ones_like(ws_array) +turbulence_intensities = 0.06 * np.ones_like(ws_array) yaw_angles = np.linspace(-30,30,60) wind_speed_to_test_yaw = 11 @@ -23,7 +24,11 @@ fi.set(layout_x=[0], layout_y=[0]) # Apply wind directions and wind speeds -fi.set(wind_speeds=ws_array, wind_directions=wd_array) +fi.set( + wind_speeds=ws_array, + wind_directions=wd_array, + turbulence_intensities=turbulence_intensities +) # Get a list of available turbine models provided through FLORIS, and remove # multi-dimensional Cp/Ct turbine definitions as they require different handling @@ -72,7 +77,11 @@ # POWER CURVE ax = axarr[0] - fi.set(wind_speeds=ws_array, wind_directions=wd_array) + fi.set( + wind_speeds=ws_array, + wind_directions=wd_array, + turbulence_intensities=turbulence_intensities + ) fi.run() turbine_powers = fi.get_turbine_powers().flatten() / 1e3 if density == 1.225: @@ -87,7 +96,11 @@ # Power loss to yaw, try a range of yaw angles ax = axarr[1] - fi.set(wind_speeds=[wind_speed_to_test_yaw], wind_directions=[270.0]) + fi.set( + wind_speeds=[wind_speed_to_test_yaw], + wind_directions=[270.0], + turbulence_intensities=[0.06] + ) yaw_result = [] for yaw in yaw_angles: fi.set(yaw_angles=np.array([[yaw]])) diff --git a/examples/21_demo_time_series.py b/examples/21_demo_time_series.py index 3c489ff45..61f9b7995 100644 --- a/examples/21_demo_time_series.py +++ b/examples/21_demo_time_series.py @@ -22,13 +22,14 @@ ws = np.ones_like(time) * 8. ws[int(len(ws) / 2):] = 9. wd = np.ones_like(time) * 270. +turbulence_intensities = np.ones_like(time) * 0.06 for idx in range(1, len(time)): wd[idx] = wd[idx - 1] + np.random.randn() * 2. # Now intiialize FLORIS object to this history using time_series flag -fi.set(wind_directions=wd, wind_speeds=ws) +fi.set(wind_directions=wd, wind_speeds=ws, turbulence_intensities=turbulence_intensities) # Collect the powers fi.run() diff --git a/examples/24_floating_turbine_models.py b/examples/24_floating_turbine_models.py index 5bf81d2e9..63aecc4c0 100644 --- a/examples/24_floating_turbine_models.py +++ b/examples/24_floating_turbine_models.py @@ -39,9 +39,14 @@ # Calculate across wind speeds ws_array = np.arange(3., 25., 1.) wd_array = 270.0 * np.ones_like(ws_array) -fi_fixed.set(wind_speeds=ws_array, wind_directions=wd_array) -fi_floating.set(wind_speeds=ws_array, wind_directions=wd_array) -fi_floating_defined_floating.set(wind_speeds=ws_array, wind_directions=wd_array) +ti_array = 0.06 * np.ones_like(ws_array) +fi_fixed.set(wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=ti_array) +fi_floating.set(wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=ti_array) +fi_floating_defined_floating.set( + wind_speeds=ws_array, + wind_directions=wd_array, + turbulence_intensities=ti_array +) fi_fixed.run() fi_floating.run() diff --git a/examples/28_extract_wind_speed_at_points.py b/examples/28_extract_wind_speed_at_points.py index 6e68b988b..52c28c9ca 100644 --- a/examples/28_extract_wind_speed_at_points.py +++ b/examples/28_extract_wind_speed_at_points.py @@ -39,7 +39,8 @@ # Set the wind direction to run 360 degrees wd_array = np.arange(0, 360, 1) ws_array = 8.0 * np.ones_like(wd_array) -fi.set(wind_directions=wd_array, wind_speeds=ws_array) +ti_array = 0.06 * np.ones_like(wd_array) +fi.set(wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=ti_array) # Simulate a met mast in between the turbines if met_mast_option == 0: diff --git a/examples/29_floating_vs_fixedbottom_farm.py b/examples/29_floating_vs_fixedbottom_farm.py index 54f19795a..044d24342 100644 --- a/examples/29_floating_vs_fixedbottom_farm.py +++ b/examples/29_floating_vs_fixedbottom_farm.py @@ -46,7 +46,8 @@ layout_x=x, layout_y=y, wind_speeds=[10], - wind_directions=[270] + wind_directions=[270], + turbulence_intensities=[0.06], ) fi.run() @@ -121,6 +122,7 @@ fi.set( wind_directions=wd_grid.flatten(), wind_speeds= ws_grid.flatten(), + turbulence_intensities=0.06 * np.ones_like(wd_grid.flatten()) ) # Compute the AEP diff --git a/examples/30_multi_dimensional_cp_ct.py b/examples/30_multi_dimensional_cp_ct.py index af28d6500..3eebf0854 100644 --- a/examples/30_multi_dimensional_cp_ct.py +++ b/examples/30_multi_dimensional_cp_ct.py @@ -50,7 +50,7 @@ print('\n========================= Single Wind Direction and Wind Speed =========================') # Get the turbine powers assuming 1 wind speed and 1 wind direction -fi.set(wind_directions=[270.0], wind_speeds=[8.0]) +fi.set(wind_directions=[270.0], wind_speeds=[8.0], turbulence_intensities=[0.06]) # Set the yaw angles to 0 yaw_angles = np.zeros([1, 2]) # 1 wind direction and wind speed, 2 turbines @@ -70,9 +70,15 @@ wind_speeds = np.array([8.0, 9.0, 10.0]) wind_directions = np.array([270.0, 270.0, 270.0]) +turbulence_intensities = np.array([0.06, 0.06, 0.06]) yaw_angles = np.zeros([3, 2]) # 3 wind directions/ speeds, 2 turbines -fi.set(wind_speeds=wind_speeds, wind_directions=wind_directions, yaw_angles=yaw_angles) +fi.set( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, + yaw_angles=yaw_angles +) fi.run() turbine_powers = fi.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") @@ -84,9 +90,15 @@ wind_speeds = np.tile([8.0, 9.0, 10.0], 3) wind_directions = np.repeat([260.0, 270.0, 280.0], 3) +turbulence_intensities = 0.06 * np.ones_like(wind_speeds) yaw_angles = np.zeros([9, 2]) # 9 wind directions/ speeds, 2 turbines -fi.set(wind_directions=wind_directions, wind_speeds=wind_speeds, yaw_angles=yaw_angles) +fi.set( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities, + yaw_angles=yaw_angles +) fi.run() turbine_powers = fi.get_turbine_powers()/1000. print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") diff --git a/examples/31_multi_dimensional_cp_ct_2Hs.py b/examples/31_multi_dimensional_cp_ct_2Hs.py index b61fcb0f0..df5d4d171 100644 --- a/examples/31_multi_dimensional_cp_ct_2Hs.py +++ b/examples/31_multi_dimensional_cp_ct_2Hs.py @@ -34,8 +34,17 @@ # Use a sweep of wind speeds wind_speeds = np.arange(5, 20, 1.0) wind_directions = 270.0 * np.ones_like(wind_speeds) -fi.set(wind_directions=wind_directions, wind_speeds=wind_speeds) -fi_hs_1.set(wind_directions=wind_directions, wind_speeds=wind_speeds) +turbulence_intensities = 0.06 * np.ones_like(wind_speeds) +fi.set( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities +) +fi_hs_1.set( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities +) # Calculate wakes with baseline yaw fi.run() diff --git a/examples/33_specify_turbine_power_curve.py b/examples/33_specify_turbine_power_curve.py index 6b2c2f4b2..f10e4f7cd 100644 --- a/examples/33_specify_turbine_power_curve.py +++ b/examples/33_specify_turbine_power_curve.py @@ -42,12 +42,14 @@ fi = FlorisInterface("inputs/gch.yaml") wind_speeds = np.linspace(1, 15, 100) wind_directions = 270 * np.ones_like(wind_speeds) +turbulence_intensities = 0.06 * np.ones_like(wind_speeds) # Replace the turbine(s) in the FLORIS model with the created one fi.set( layout_x=[0], layout_y=[0], wind_directions=wind_directions, wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities, turbine_type=[turbine_dict] ) fi.run() diff --git a/examples/36_generate_ti.py b/examples/36_generate_ti.py index 7264d912c..3c6d8a9bf 100644 --- a/examples/36_generate_ti.py +++ b/examples/36_generate_ti.py @@ -19,9 +19,10 @@ # Generate a random time series of wind speeds, wind directions and turbulence intensities wind_directions = np.array([250, 260, 270]) wind_speeds = np.array([5, 6, 7, 8, 9, 10]) +ti_table = 0.06 # Declare a WindRose object -wind_rose = WindRose(wind_directions=wind_directions, wind_speeds=wind_speeds) +wind_rose = WindRose(wind_directions=wind_directions, wind_speeds=wind_speeds, ti_table=ti_table) # Define a custom function where TI = 1 / wind_speed @@ -51,7 +52,12 @@ def custom_ti_func(wind_directions, wind_speeds): N = 100 wind_directions = 270 * np.ones(N) wind_speeds = np.linspace(5, 15, N) -time_series = TimeSeries(wind_directions=wind_directions, wind_speeds=wind_speeds) +turbulence_intensities = 0.06 * np.ones(N) +time_series = TimeSeries( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities +) time_series.assign_ti_using_IEC_method(Iref=Iref) fig, axarr = plt.subplots(2, 1, sharex=True, figsize=(7, 8)) diff --git a/examples/40_test_derating.py b/examples/40_test_derating.py index 7f7f091f3..4385ff4a0 100644 --- a/examples/40_test_derating.py +++ b/examples/40_test_derating.py @@ -26,7 +26,11 @@ # Set the wind directions and speeds to be constant over n_findex = N time steps N = 50 -fi.set(wind_directions=270 * np.ones(N), wind_speeds=10.0 * np.ones(N)) +fi.set( + wind_directions=270 * np.ones(N), + wind_speeds=10.0 * np.ones(N), + turbulence_intensities=0.06 * np.ones(N) +) fi.run() turbine_powers_orig = fi.get_turbine_powers() @@ -96,6 +100,7 @@ fi.set( wind_directions=270 * np.ones(len(yaw_angles)), wind_speeds=10.0 * np.ones(len(yaw_angles)), + turbulence_intensities=0.06 * np.ones(len(yaw_angles)), turbine_type=[turbine_type]*2, yaw_angles=yaw_angles, power_setpoints=power_setpoints, diff --git a/examples/41_test_disable_turbines.py b/examples/41_test_disable_turbines.py index da514e224..717bb02e5 100644 --- a/examples/41_test_disable_turbines.py +++ b/examples/41_test_disable_turbines.py @@ -33,6 +33,7 @@ # (n_findex = 2) wind_directions = np.array([270.0, 270.0]) wind_speeds = np.array([8.0, 8.0]) +turbulence_intensities = np.array([0.06, 0.06]) # Shut down the first 2 turbines for the second findex # 2 findex x 3 turbines @@ -47,6 +48,7 @@ layout_y=layout[:, 1], wind_directions=wind_directions, wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities, disable_turbines=disable_turbines, ) diff --git a/floris/simulation/flow_field.py b/floris/simulation/flow_field.py index 364462119..ad9c54693 100644 --- a/floris/simulation/flow_field.py +++ b/floris/simulation/flow_field.py @@ -64,9 +64,9 @@ def turbulence_intensities_validator( "turbulence_intensities must have 1-dimension" ) - # Check the turbulence intensity is either length 1 or n_findex - if len(value) != 1 and len(value) != self.n_findex: - raise ValueError("turbulence_intensities should either be length 1 or n_findex") + # Check the turbulence intensity is length n_findex + if len(value) != self.n_findex: + raise ValueError("turbulence_intensities must be length n_findex") @@ -134,10 +134,6 @@ def __attrs_post_init__(self) -> None: if self.heterogenous_inflow_config is not None: self.generate_heterogeneous_wind_map() - # If turbulence_intensity is length 1, then convert it to a uniform array of - # length n_findex - if len(self.turbulence_intensities) == 1: - self.turbulence_intensities = self.turbulence_intensities[0] * np.ones(self.n_findex) def initialize_velocity_field(self, grid: Grid) -> None: diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index 34f3f56d4..5c67219ee 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -267,15 +267,18 @@ def _reinitialize( (wind_directions is not None) or (wind_speeds is not None) or (turbulence_intensities is not None) + or (heterogenous_inflow_config is not None) ): raise ValueError( "If wind_data is passed to reinitialize, then do not pass wind_directions, " - "wind_speeds or turbulence_intensities as this is redundant" + "wind_speeds, turbulence_intensities or " + "heterogenous_inflow_config as this is redundant" ) ( wind_directions, wind_speeds, turbulence_intensities, + heterogenous_inflow_config, ) = wind_data.unpack_for_reinitialize() ## FlowField @@ -296,27 +299,6 @@ def _reinitialize( if heterogenous_inflow_config is not None: flow_field_dict["heterogenous_inflow_config"] = heterogenous_inflow_config - # Handle a special case where: - # wind_speeds | wind_directions are not None - # turbulence_intensities is None - # len(turbulence intensity) != len(wind_directions) - # turbulence_intensities is uniform - # In this case, automatically resize turbulence intensity - # This is the case where user is assuming same TI across all findex - if ( - (wind_speeds is not None or wind_directions is not None) - and turbulence_intensities is None - and ( - len(flow_field_dict["turbulence_intensities"]) - != len(flow_field_dict["wind_directions"]) - ) - and len(np.unique(flow_field_dict["turbulence_intensities"])) == 1 - ): - flow_field_dict["turbulence_intensities"] = ( - flow_field_dict["turbulence_intensities"][0] - * np.ones_like(flow_field_dict["wind_directions"]) - ) - ## Farm if layout_x is not None: farm_dict["layout_x"] = layout_x @@ -1000,6 +982,9 @@ def get_farm_AEP( # the the farm_power variable as an empty array. wind_speeds = np.array(self.floris.flow_field.wind_speeds, copy=True) wind_directions = np.array(self.floris.flow_field.wind_directions, copy=True) + turbulence_intensities = np.array( + self.floris.flow_field.turbulence_intensities, copy=True + ) farm_power = np.zeros(self.floris.flow_field.n_findex) # Determine which wind speeds we must evaluate @@ -1011,9 +996,11 @@ def get_farm_AEP( if np.any(conditions_to_evaluate): wind_speeds_subset = wind_speeds[conditions_to_evaluate] wind_directions_subset = wind_directions[conditions_to_evaluate] + turbulence_intensities_subset = turbulence_intensities[conditions_to_evaluate] self.set( wind_speeds=wind_speeds_subset, wind_directions=wind_directions_subset, + turbulence_intensities=turbulence_intensities_subset, ) if no_wake: self.run_no_wake() @@ -1027,7 +1014,11 @@ def get_farm_AEP( aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) # Reset the FLORIS object to the full wind speed array - self.set(wind_speeds=wind_speeds, wind_directions=wind_directions) + self.set( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities + ) return aep diff --git a/floris/tools/wind_data.py b/floris/tools/wind_data.py index 09e4e0c93..8f2dd78df 100644 --- a/floris/tools/wind_data.py +++ b/floris/tools/wind_data.py @@ -33,17 +33,24 @@ def unpack_for_reinitialize(self): ( wind_directions_unpack, wind_speeds_unpack, - _, ti_table_unpack, _, + _, + heterogenous_inflow_config, ) = self.unpack() - return wind_directions_unpack, wind_speeds_unpack, ti_table_unpack + return ( + wind_directions_unpack, + wind_speeds_unpack, + ti_table_unpack, + heterogenous_inflow_config, + ) def unpack_freq(self): """Unpack frequency weighting""" ( + _, _, _, freq_table_unpack, @@ -53,24 +60,133 @@ def unpack_freq(self): return freq_table_unpack + def check_heterogenous_inflow_config_by_wd(self, heterogenous_inflow_config_by_wd): + """ + Check that the heterogenous_inflow_config_by_wd dictionary is properly formatted + + Args: + heterogenous_inflow_config_by_wd (dict): A dictionary containing the following keys: + * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) + of speed multipliers. + * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). + * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). + * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). + """ + if heterogenous_inflow_config_by_wd is not None: + if not isinstance(heterogenous_inflow_config_by_wd, dict): + raise TypeError("heterogenous_inflow_config_by_wd must be a dictionary") + if "speed_multipliers" not in heterogenous_inflow_config_by_wd: + raise ValueError( + "heterogenous_inflow_config_by_wd must contain a key 'speed_multipliers'" + ) + if "wind_directions" not in heterogenous_inflow_config_by_wd: + raise ValueError( + "heterogenous_inflow_config_by_wd must contain a key 'wind_directions'" + ) + if "x" not in heterogenous_inflow_config_by_wd: + raise ValueError("heterogenous_inflow_config_by_wd must contain a key 'x'") + if "y" not in heterogenous_inflow_config_by_wd: + raise ValueError("heterogenous_inflow_config_by_wd must contain a key 'y'") + + def check_heterogenous_inflow_config(self, heterogenous_inflow_config): + """ + Check that the heterogenous_inflow_config dictionary is properly formatted + + Args: + heterogenous_inflow_config (dict): A dictionary containing the following keys: + * 'speed_multipliers': A 2D NumPy array (size n_findex x num_points) + of speed multipliers. + * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). + * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). + """ + if heterogenous_inflow_config is not None: + if not isinstance(heterogenous_inflow_config, dict): + raise TypeError("heterogenous_inflow_config_by_wd must be a dictionary") + if "speed_multipliers" not in heterogenous_inflow_config: + raise ValueError( + "heterogenous_inflow_config must contain a key 'speed_multipliers'" + ) + if "x" not in heterogenous_inflow_config: + raise ValueError("heterogenous_inflow_config must contain a key 'x'") + if "y" not in heterogenous_inflow_config: + raise ValueError("heterogenous_inflow_config must contain a key 'y'") + + def get_speed_multipliers_by_wd(self, heterogenous_inflow_config_by_wd, wind_directions): + """ + Processes heterogenous inflow configuration data to generate a speed multiplier array + aligned with the wind directions. Accounts for the cyclical nature of wind directions. + Args: + heterogenous_inflow_config_by_wd (dict): A dictionary containing the following keys: + * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) + of speed multipliers. + * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). + * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). + * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). + + wind_directions (np.array): Wind directions to map onto + Returns: + numpy.ndarray: A 2D NumPy array (size n_findex x n) of speed multipliers + Each row corresponds to a wind direction, + with speed multipliers selected + based on the closest matching wind direction in 'het_wd'. + """ + + # Extract data from the configuration dictionary + speed_multipliers = np.array(heterogenous_inflow_config_by_wd["speed_multipliers"]) + het_wd = np.array(heterogenous_inflow_config_by_wd["wind_directions"]) + + # Confirm 0th dimension of speed_multipliers == len(het_wd) + if len(het_wd) != speed_multipliers.shape[0]: + raise ValueError( + "The legnth of het_wd must equal the number of rows speed_multipliers" + "Within the heterogenous_inflow_config_by_wd dictionary" + ) + + # Calculate closest wind direction indices (accounting for angles) + angle_diffs = np.abs(wind_directions[:, None] - het_wd) + min_angle_diffs = np.minimum(angle_diffs, 360 - angle_diffs) + closest_wd_indices = np.argmin(min_angle_diffs, axis=1) + + # Construct the output array using the calculated indices + return speed_multipliers[closest_wd_indices] + + def get_heterogenous_inflow_config(self, heterogenous_inflow_config_by_wd, wind_directions): + # If heterogenous_inflow_config_by_wd is None, return None + if heterogenous_inflow_config_by_wd is None: + return None + + # If heterogenous_inflow_config_by_wd is not None, then process it + # Build the n-findex version of the het map + speed_multipliers = self.get_speed_multipliers_by_wd( + heterogenous_inflow_config_by_wd, wind_directions + ) + # Return heterogenous_inflow_config + return { + "speed_multipliers": speed_multipliers, + "x": heterogenous_inflow_config_by_wd["x"], + "y": heterogenous_inflow_config_by_wd["y"], + } + class WindRose(WindDataBase): """ The WindRose class is used to drive FLORIS and optimization operations in which the inflow is characterized by the frequency of binned wind speed and - wind direction values. + wind direction values. Turbulence intensities are defined as a function of + wind direction and wind speed. Args: wind_directions: NumPy array of wind directions (NDArrayFloat). wind_speeds: NumPy array of wind speeds (NDArrayFloat). + ti_table: Turbulence intensity table for binned wind direction, wind + speed values (float, NDArrayFloat). Can be an array with dimensions + (n_wind_directions, n_wind_speeds) or a single float value. If a + single float value is provided, the turbulence intensity is assumed + to be constant across all wind directions and wind speeds. freq_table: Frequency table for binned wind direction, wind speed values (NDArrayFloat, optional). Must have dimension (n_wind_directions, n_wind_speeds). Defaults to None in which case uniform frequency of all bins is assumed. - ti_table: Turbulence intensity table for binned wind direction, wind - speed values (NDArrayFloat, optional). Must have dimension - (n_wind_directions, n_wind_speeds). Defaults to None (no change to - turbulence intensity) value_table: Value table for binned wind direction, wind speed values (NDArrayFloat, optional). Must have dimension (n_wind_directions, n_wind_speeds). Defaults to None in which case @@ -78,6 +194,13 @@ class WindRose(WindDataBase): each bin to compute the total value of the energy produced compute_zero_freq_occurrence: Flag indicating whether to compute zero frequency occurrences (bool, optional). Defaults to False. + heterogenous_inflow_config_by_wd (dict, optional): A dictionary containing the following + keys. Defaults to None. + * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) + of speed multipliers. + * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). + * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). + * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). """ @@ -85,10 +208,11 @@ def __init__( self, wind_directions: NDArrayFloat, wind_speeds: NDArrayFloat, + ti_table: float | NDArrayFloat, freq_table: NDArrayFloat | None = None, - ti_table: NDArrayFloat | None = None, value_table: NDArrayFloat | None = None, compute_zero_freq_occurrence: bool = False, + heterogenous_inflow_config_by_wd: dict | None = None, ): if not isinstance(wind_directions, np.ndarray): raise TypeError("wind_directions must be a NumPy array") @@ -100,6 +224,18 @@ def __init__( self.wind_directions = wind_directions self.wind_speeds = wind_speeds + # Check if ti_table is a single float value + if isinstance(ti_table, float): + self.ti_table = np.full((len(wind_directions), len(wind_speeds)), ti_table) + + # Otherwise confirm the dimensions and then save it + else: + if not ti_table.shape[0] == len(wind_directions): + raise ValueError("ti_table first dimension must equal len(wind_directions)") + if not ti_table.shape[1] == len(wind_speeds): + raise ValueError("ti_table second dimension must equal len(wind_speeds)") + self.ti_table = ti_table + # If freq_table is not None, confirm it has correct dimension, # otherwise initialize to uniform probability if freq_table is not None: @@ -114,15 +250,6 @@ def __init__( # Normalize freq table self.freq_table = self.freq_table / np.sum(self.freq_table) - # If TI table is not None, confirm dimension - # otherwise leave it None - if ti_table is not None: - if not ti_table.shape[0] == len(wind_directions): - raise ValueError("ti_table first dimension must equal len(wind_directions)") - if not ti_table.shape[1] == len(wind_speeds): - raise ValueError("ti_table second dimension must equal len(wind_speeds)") - self.ti_table = ti_table - # If value_table is not None, confirm it has correct dimension, # otherwise initialize to all ones if value_table is not None: @@ -133,8 +260,25 @@ def __init__( self.value_table = value_table # Save whether zero occurrence cases should be computed + # First check if the ti_table contains any nan values (which would occur for example + # if generated by the TimeSeries to WindRose conversion for wind speeds and directions + # that were not present in the original time series) In this case, raise an error + if compute_zero_freq_occurrence: + if np.isnan(self.ti_table).any(): + raise ValueError( + "ti_table contains nan values. (This is likely the result of " + " unsed wind speeds and directions in the original time series.)" + " Cannot compute zero frequency occurrences." + ) self.compute_zero_freq_occurrence = compute_zero_freq_occurrence + # Check that heterogenous_inflow_config_by_wd is a dictionary with keys: + # speed_multipliers, wind_directions, x and y + self.check_heterogenous_inflow_config_by_wd(heterogenous_inflow_config_by_wd) + + # Then save + self.heterogenous_inflow_config_by_wd = heterogenous_inflow_config_by_wd + # Build the gridded and flatten versions self._build_gridded_and_flattened_version() @@ -156,11 +300,8 @@ def _build_gridded_and_flattened_version(self): # Flat frequency table self.freq_table_flat = self.freq_table.flatten() - # TI table - if self.ti_table is not None: - self.ti_table_flat = self.ti_table.flatten() - else: - self.ti_table_flat = None + # Flat TI table + self.ti_table_flat = self.ti_table.flatten() # value table if self.value_table is not None: @@ -188,17 +329,13 @@ def unpack(self): wind_directions_unpack = self.wd_flat.copy() wind_speeds_unpack = self.ws_flat.copy() freq_table_unpack = self.freq_table_flat.copy() + ti_table_unpack = self.ti_table_flat.copy() # Now mask thes values according to self.non_zero_freq_mask wind_directions_unpack = wind_directions_unpack[self.non_zero_freq_mask] wind_speeds_unpack = wind_speeds_unpack[self.non_zero_freq_mask] freq_table_unpack = freq_table_unpack[self.non_zero_freq_mask] - - # Repeat for turbulence intensity if not none - if self.ti_table_flat is not None: - ti_table_unpack = self.ti_table_flat[self.non_zero_freq_mask].copy() - else: - ti_table_unpack = None + ti_table_unpack = ti_table_unpack[self.non_zero_freq_mask] # Now get unpacked value table if self.value_table_flat is not None: @@ -206,12 +343,22 @@ def unpack(self): else: value_table_unpack = None + # If heterogenous_inflow_config_by_wd is not None, then update + # heterogenous_inflow_config to match wind_directions_unpack + if self.heterogenous_inflow_config_by_wd is not None: + heterogenous_inflow_config = self.get_heterogenous_inflow_config( + self.heterogenous_inflow_config_by_wd, wind_directions_unpack + ) + else: + heterogenous_inflow_config = None + return ( wind_directions_unpack, wind_speeds_unpack, - freq_table_unpack, ti_table_unpack, + freq_table_unpack, value_table_unpack, + heterogenous_inflow_config, ) def resample_wind_rose(self, wd_step=None, ws_step=None): @@ -243,7 +390,11 @@ def resample_wind_rose(self, wd_step=None, ws_step=None): # Pass the flat versions of each quantity to build a TimeSeries model time_series = TimeSeries( - self.wd_flat, self.ws_flat, self.ti_table_flat, self.value_table_flat + self.wd_flat, + self.ws_flat, + self.ti_table_flat, + self.value_table_flat, + self.heterogenous_inflow_config_by_wd, ) # Now build a new wind rose using the new steps @@ -414,6 +565,13 @@ class WindTIRose(WindDataBase): to compute the total value of the energy produced. compute_zero_freq_occurrence: Flag indicating whether to compute zero frequency occurrences (bool, optional). Defaults to False. + heterogenous_inflow_config_by_wd (dict, optional): A dictionary containing the following + keys. Defaults to None. + * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) + of speed multipliers. + * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). + * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). + * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). """ @@ -425,6 +583,7 @@ def __init__( freq_table: NDArrayFloat | None = None, value_table: NDArrayFloat | None = None, compute_zero_freq_occurrence: bool = False, + heterogenous_inflow_config_by_wd: dict | None = None, ): if not isinstance(wind_directions, np.ndarray): raise TypeError("wind_directions must be a NumPy array") @@ -473,6 +632,13 @@ def __init__( ) self.value_table = value_table + # Check that heterogenous_inflow_config_by_wd is a dictionary with keys: + # speed_multipliers, wind_directions, x and y + self.check_heterogenous_inflow_config_by_wd(heterogenous_inflow_config_by_wd) + + # Then save + self.heterogenous_inflow_config_by_wd = heterogenous_inflow_config_by_wd + # Save whether zero occurrence cases should be computed self.compute_zero_freq_occurrence = compute_zero_freq_occurrence @@ -538,12 +704,22 @@ def unpack(self): else: value_table_unpack = None + # If heterogenous_inflow_config_by_wd is not None, then update + # heterogenous_inflow_config to match wind_directions_unpack + if self.heterogenous_inflow_config_by_wd is not None: + heterogenous_inflow_config = self.get_heterogenous_inflow_config( + self.heterogenous_inflow_config_by_wd, wind_directions_unpack + ) + else: + heterogenous_inflow_config = None + return ( wind_directions_unpack, wind_speeds_unpack, - freq_table_unpack, turbulence_intensities_unpack, + freq_table_unpack, value_table_unpack, + heterogenous_inflow_config, ) def resample_wind_rose(self, wd_step=None, ws_step=None, ti_step=None): @@ -582,7 +758,13 @@ def resample_wind_rose(self, wd_step=None, ws_step=None, ti_step=None): ti_step = 1.0 # Pass the flat versions of each quantity to build a TimeSeries model - time_series = TimeSeries(self.wd_flat, self.ws_flat, self.ti_flat, self.value_table_flat) + time_series = TimeSeries( + self.wd_flat, + self.ws_flat, + self.ti_flat, + self.value_table_flat, + self.heterogenous_inflow_config_by_wd, + ) # Now build a new wind rose using the new steps return time_series.to_wind_ti_rose( @@ -724,37 +906,105 @@ class TimeSeries(WindDataBase): """ The TimeSeries class is used to drive FLORIS and optimization operations in which the inflow is by a sequence of wind direction, wind speed and - turbulence intensity values + turbulence intensity values. Each input of wind direction, wind speed, and + turbulence intensity can be assigned as an array of values or a single value. + At least one of wind_directions, wind_speeds, or turbulence_intensities must + be an array. If arrays are provided, they must be the same length as the + other arrays or the single values. If single values are provided, then an + array of the same length as the other arrays will be created with the single + value. Args: - wind_directions: NumPy array of wind directions (NDArrayFloat). - wind_speeds: NumPy array of wind speeds (NDArrayFloat). - turbulence_intensities: NumPy array of turbulence intensities - (NDArrayFloat, optional). Defaults to None - values: NumPy array of electricity values (NDArrayFloat, optional). - Defaults to None - + wind_directions (float, NDArrayFloat): Wind direction. Can be a single + value or an array of values. + wind_speeds (float, NDArrayFloat): Wind speed. Can be a single value or + an array of values. + turbulence_intensities (float, NDArrayFloat): Turbulence intensity. Can be + a single value or an array of values. + values (NDArrayFloat, optional): Values associated with each wind + direction, wind speed, and turbulence intensity. Defaults to None. + heterogenous_inflow_config_by_wd (dict, optional): A dictionary containing the following + keys. Defaults to None. + * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) + of speed multipliers. + * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). + * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). + * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). + heterogenous_inflow_config (dict, optional): A dictionary containing the following keys. + Defaults to None. + * 'speed_multipliers': A 2D NumPy array (size n_findex x num_points) + of speed multipliers. + * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). + * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). """ def __init__( self, - wind_directions: NDArrayFloat, - wind_speeds: NDArrayFloat, - turbulence_intensities: NDArrayFloat | None = None, + wind_directions: float | NDArrayFloat, + wind_speeds: float | NDArrayFloat, + turbulence_intensities: float | NDArrayFloat, values: NDArrayFloat | None = None, + heterogenous_inflow_config_by_wd: dict | None = None, + heterogenous_inflow_config: dict | None = None, ): - # Wind speeds and wind directions must be the same length - if len(wind_directions) != len(wind_speeds): - raise ValueError("wind_directions and wind_speeds must be the same length") + # At least one of wind_directions, wind_speeds, or turbulence_intensities must be an array + if ( + not isinstance(wind_directions, np.ndarray) + and not isinstance(wind_speeds, np.ndarray) + and not isinstance(turbulence_intensities, np.ndarray) + ): + raise TypeError( + "At least one of wind_directions, wind_speeds, or " + " turbulence_intensities must be a NumPy array" + ) + + # For each of wind_directions, wind_speeds, and turbulence_intensities provided as + # an array, confirm they are the same length + if isinstance(wind_directions, np.ndarray) and isinstance(wind_speeds, np.ndarray): + if len(wind_directions) != len(wind_speeds): + raise ValueError( + "wind_directions and wind_speeds must be the same length if provided as arrays" + ) - # If turbulence_intensities is not None, must be same length as wind_directions - if turbulence_intensities is not None: + if ( + isinstance(wind_directions, np.ndarray) + and isinstance(turbulence_intensities, np.ndarray) + ): if len(wind_directions) != len(turbulence_intensities): raise ValueError( - "wind_directions and turbulence_intensities must be the same length" + "wind_directions and turbulence_intensities must be " + "the same length if provided as arrays" + ) + + if isinstance(wind_speeds, np.ndarray) and isinstance(turbulence_intensities, np.ndarray): + if len(wind_speeds) != len(turbulence_intensities): + raise ValueError( + "wind_speeds and turbulence_intensities must be the " + "same length if provided as arrays" ) - # If values is not None, must be same length as wind_directions + # For each of wind_directions, wind_speeds, and turbulence_intensities + # provided as a single value, set them + # to be the same length as those passed in as arrays + if isinstance(wind_directions, float): + if isinstance(wind_speeds, np.ndarray): + wind_directions = np.full(len(wind_speeds), wind_directions) + elif isinstance(turbulence_intensities, np.ndarray): + wind_directions = np.full(len(turbulence_intensities), wind_directions) + + if isinstance(wind_speeds, float): + if isinstance(wind_directions, np.ndarray): + wind_speeds = np.full(len(wind_directions), wind_speeds) + elif isinstance(turbulence_intensities, np.ndarray): + wind_speeds = np.full(len(turbulence_intensities), wind_speeds) + + if isinstance(turbulence_intensities, float): + if isinstance(wind_directions, np.ndarray): + turbulence_intensities = np.full(len(wind_directions), turbulence_intensities) + elif isinstance(wind_speeds, np.ndarray): + turbulence_intensities = np.full(len(wind_speeds), turbulence_intensities) + + # If values is not None, must be same length as wind_directions/wind_speeds/ if values is not None: if len(wind_directions) != len(values): raise ValueError("wind_directions and values must be the same length") @@ -764,6 +1014,30 @@ def __init__( self.turbulence_intensities = turbulence_intensities self.values = values + # Only one of heterogenous_inflow_config_by_wd and + # heterogenous_inflow_config can be not None + if heterogenous_inflow_config_by_wd is not None and heterogenous_inflow_config is not None: + raise ValueError( + "Only one of heterogenous_inflow_config_by_wd and heterogenous_inflow_config " + "can be not None" + ) + + # if heterogenous_inflow_config is not None, then the speed_multipliers + # must be the same length as wind_directions + # in the 0th dimension + if heterogenous_inflow_config is not None: + if len(heterogenous_inflow_config["speed_multipliers"]) != len(wind_directions): + raise ValueError("speed_multipliers must be the same length as wind_directions") + + # Check that heterogenous_inflow_config_by_wd is a dictionary with keys: + # speed_multipliers, wind_directions, x and y + self.check_heterogenous_inflow_config_by_wd(heterogenous_inflow_config_by_wd) + self.check_heterogenous_inflow_config(heterogenous_inflow_config) + + # Then save + self.heterogenous_inflow_config_by_wd = heterogenous_inflow_config_by_wd + self.heterogenous_inflow_config = heterogenous_inflow_config + # Record findex self.n_findex = len(self.wind_directions) @@ -776,12 +1050,22 @@ def unpack(self): uniform_frequency = np.ones_like(self.wind_directions) uniform_frequency = uniform_frequency / uniform_frequency.sum() + # If heterogenous_inflow_config_by_wd is not None, then update + # heterogenous_inflow_config to match wind_directions_unpack + if self.heterogenous_inflow_config_by_wd is not None: + heterogenous_inflow_config = self.get_heterogenous_inflow_config( + self.heterogenous_inflow_config_by_wd, self.wind_directions + ) + else: + heterogenous_inflow_config = self.heterogenous_inflow_config + return ( self.wind_directions, self.wind_speeds, - uniform_frequency, self.turbulence_intensities, + uniform_frequency, self.values, + heterogenous_inflow_config, ) def _wrap_wind_directions_near_360(self, wind_directions, wd_step): @@ -918,9 +1202,8 @@ def to_wind_rose( if bin_weights is not None: df = df.assign(freq_val=df["freq_val"] * bin_weights) - # If turbulence_intensities is not none, add to dataframe - if self.turbulence_intensities is not None: - df = df.assign(turbulence_intensities=self.turbulence_intensities) + # Add turbulence intensities to dataframe + df = df.assign(turbulence_intensities=self.turbulence_intensities) # If values is not none, add to dataframe if self.values is not None: @@ -960,12 +1243,9 @@ def to_wind_rose( freq_table = freq_table / freq_table.sum() freq_table = freq_table.reshape((len(wd_centers), len(ws_centers))) - # If turbulence intensity is not none, compute the table - if self.turbulence_intensities is not None: - ti_table = df["turbulence_intensities_mean"].values.copy() - ti_table = ti_table.reshape((len(wd_centers), len(ws_centers))) - else: - ti_table = None + # Compute the TI table + ti_table = df["turbulence_intensities_mean"].values.copy() + ti_table = ti_table.reshape((len(wd_centers), len(ws_centers))) # If values is not none, compute the table if self.values is not None: @@ -975,7 +1255,14 @@ def to_wind_rose( value_table = None # Return a WindRose - return WindRose(wd_centers, ws_centers, freq_table, ti_table, value_table) + return WindRose( + wd_centers, + ws_centers, + ti_table, + freq_table, + value_table, + self.heterogenous_inflow_config_by_wd, + ) def to_wind_ti_rose( self, @@ -988,7 +1275,7 @@ def to_wind_ti_rose( bin_weights=None, ): """ - Converts the TimeSeries data to a WindRose. + Converts the TimeSeries data to a WindTIRose. Args: wd_step (float, optional): Step size for wind direction (default is 2.0). @@ -1014,12 +1301,6 @@ def to_wind_ti_rose( - If `ti_edges` is not defined, it determines `ti_edges` from the step and data. """ - # If turbulence_intensities is None, a WindTIRose object cannot be created. - if self.turbulence_intensities is None: - raise ValueError( - "turbulence_intensities must be defined to export to a WindTIRose object." - ) - # If wd_edges is defined, then use it to produce the bin centers if wd_edges is not None: wd_step = wd_edges[1] - wd_edges[0] @@ -1141,4 +1422,11 @@ def to_wind_ti_rose( value_table = None # Return a WindTIRose - return WindTIRose(wd_centers, ws_centers, ti_centers, freq_table, value_table) + return WindTIRose( + wd_centers, + ws_centers, + ti_centers, + freq_table, + value_table, + self.heterogenous_inflow_config_by_wd, + ) diff --git a/profiling/quality_metrics.py b/profiling/quality_metrics.py index ae2814f55..27d7c5aca 100644 --- a/profiling/quality_metrics.py +++ b/profiling/quality_metrics.py @@ -16,6 +16,7 @@ ) WIND_DIRECTIONS = wd_grid.flatten() WIND_SPEEDS = ws_grid.flatten() +TURBULENCE_INTENSITIES = np.ones_like(WIND_DIRECTIONS) * 0.1 N_FINDEX = len(WIND_DIRECTIONS) N_TURBINES = 3 @@ -116,6 +117,7 @@ def test_mem_jensen_jimenez(sample_inputs_fixture): sample_inputs.floris["farm"]["layout_y"] = Y_COORDS sample_inputs.floris["flow_field"]["wind_directions"] = WIND_DIRECTIONS sample_inputs.floris["flow_field"]["wind_speeds"] = WIND_SPEEDS + sample_inputs.floris["flow_field"]["turbulence_intensities"] = TURBULENCE_INTENSITIES print() print("### Memory profiling") diff --git a/tests/conftest.py b/tests/conftest.py index 65bc4f486..a8dd8fabb 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -96,6 +96,24 @@ def print_test_values( 10.0, 11.0, ] +TURBULENCE_INTENSITIES = [ + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, + 0.1, +] # FINDEX is the length of the number of conditions, so it can be # len(WIND_DIRECTIONS) or len(WIND_SPEEDS @@ -407,7 +425,7 @@ def __init__(self): self.flow_field = { "wind_speeds": WIND_SPEEDS, "wind_directions": WIND_DIRECTIONS, - "turbulence_intensities": [0.1], + "turbulence_intensities": TURBULENCE_INTENSITIES, "wind_shear": 0.12, "wind_veer": 0.0, "air_density": 1.225, diff --git a/tests/floris_interface_integration_test.py b/tests/floris_interface_integration_test.py index e9d7b3a2a..18e973857 100644 --- a/tests/floris_interface_integration_test.py +++ b/tests/floris_interface_integration_test.py @@ -62,10 +62,16 @@ def test_set_run(): fi.run() assert fi.floris.farm.yaw_angles == yaw_angles - # Verify making changes to the layout, wind speed, and wind direction both before and after - # running the calculation + # Verify making changes to the layout, wind speed, wind direction and + # turbulence intensity both before and after running the calculation fi.reset_operation() - fi.set(layout_x=[0, 0], layout_y=[0, 1000], wind_speeds=[8, 8], wind_directions=[270, 270]) + fi.set( + layout_x=[0, 0], + layout_y=[0, 1000], + wind_speeds=[8, 8], + wind_directions=[270, 270], + turbulence_intensities=[0.06, 0.06] + ) assert np.array_equal(fi.floris.farm.layout_x, np.array([0, 0])) assert np.array_equal(fi.floris.farm.layout_y, np.array([0, 1000])) assert np.array_equal(fi.floris.flow_field.wind_speeds, np.array([8, 8])) @@ -171,6 +177,7 @@ def test_get_turbine_powers(): wind_speeds = np.array([8.0, 8.0, 8.0]) wind_directions = np.array([270.0, 270.0, 270.0]) + turbulence_intensities = np.array([0.06, 0.06, 0.06]) n_findex = len(wind_directions) layout_x = np.array([0, 0]) @@ -180,6 +187,7 @@ def test_get_turbine_powers(): fi.set( wind_speeds=wind_speeds, wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, layout_x=layout_x, layout_y=layout_y, ) @@ -197,6 +205,7 @@ def test_get_farm_power(): wind_speeds = np.array([8.0, 8.0, 8.0]) wind_directions = np.array([270.0, 270.0, 270.0]) + turbulence_intensities = np.array([0.06, 0.06, 0.06]) n_findex = len(wind_directions) layout_x = np.array([0, 0]) @@ -206,6 +215,7 @@ def test_get_farm_power(): fi.set( wind_speeds=wind_speeds, wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, layout_x=layout_x, layout_y=layout_y, ) @@ -259,6 +269,7 @@ def test_disable_turbines(): fi.set( wind_speeds=np.array([8.,8.,]), wind_directions=np.array([270.,270.]), + turbulence_intensities=np.array([0.06,0.06]), layout_x = [0,1000,2000], layout_y=[0,0,0] ) @@ -333,6 +344,7 @@ def test_get_farm_aep(): wind_speeds = np.array([8.0, 8.0, 8.0]) wind_directions = np.array([270.0, 270.0, 270.0]) + turbulence_intensities = np.array([0.06, 0.06, 0.06]) n_findex = len(wind_directions) layout_x = np.array([0, 0]) @@ -342,6 +354,7 @@ def test_get_farm_aep(): fi.set( wind_speeds=wind_speeds, wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, layout_x=layout_x, layout_y=layout_y, ) @@ -366,6 +379,7 @@ def test_get_farm_aep_with_conditions(): wind_speeds = np.array([5.0, 8.0, 8.0, 8.0, 20.0]) wind_directions = np.array([270.0, 270.0, 270.0, 270.0, 270.0]) + turbulence_intensities = np.array([0.06, 0.06, 0.06, 0.06, 0.06]) n_findex = len(wind_directions) layout_x = np.array([0, 0]) @@ -375,6 +389,7 @@ def test_get_farm_aep_with_conditions(): fi.set( wind_speeds=wind_speeds, wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, layout_x=layout_x, layout_y=layout_y, ) @@ -413,45 +428,21 @@ def test_set_ti(): turbulence_intensities=[0.1, 0.1, 0.1], ) - # Now confirm can change wind speeds and directions shape without changing - # turbulence intensity since this is allowed when the turbulence intensities are uniform - # raises n_findex to 4 - fi.set( - wind_speeds=[8.0, 8.0, 8.0, 8.0], - wind_directions=[ - 240.0, - 250.0, - 260.0, - 270.0, - ], - ) - - # Confirm turbulence_intensities now length 4 with single unique value - np.testing.assert_allclose(fi.floris.flow_field.turbulence_intensities, [0.1, 0.1, 0.1, 0.1]) + # Confirm can change turbulence intensities if not changing the length of the array + fi.set(turbulence_intensities=[0.12, 0.12, 0.12]) - # Now should be able to change turbulence intensity to changing, so long as length 4 - fi.set(turbulence_intensities=[0.08, 0.09, 0.1, 0.11]) - - # However the wrong length should raise an error - with pytest.raises(ValueError): - fi.set(turbulence_intensities=[0.08, 0.09, 0.1]) - - # Also, now that TI is not a single unique value, it can not be left default when changing - # shape of wind speeds and directions + # Confirm that changes to wind speeds and directions without changing turbulence intensities + # raises an error with pytest.raises(ValueError): fi.set( - wind_speeds=[8.0, 8.0, 8.0, 8.0, 8.0], - wind_directions=[ - 240.0, - 250.0, - 260.0, - 270.0, - 280.0, - ], + wind_speeds=[8.0, 8.0, 8.0, 8.0], + wind_directions=[240.0, 250.0, 260.0, 270.0], ) - # Test that applying a 1D array of length 1 is allowed for ti - fi.set(turbulence_intensities=[0.12]) + + # Changing the length of TI alone is not allowed + with pytest.raises(ValueError): + fi.set(turbulence_intensities=[0.12]) # Test that applying a float however raises an error with pytest.raises(TypeError): diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index b346e2ece..8eba6eac7 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -318,6 +318,7 @@ def test_regression_rotation(sample_inputs_fixture): ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() @@ -688,6 +689,7 @@ def test_full_flow_solver(sample_inputs_fixture): } sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.solve_for_viz() diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 60b9a43cd..fce5e96be 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -293,6 +293,7 @@ def test_regression_rotation(sample_inputs_fixture): ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() @@ -658,6 +659,7 @@ def test_full_flow_solver(sample_inputs_fixture): } sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.solve_for_viz() diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index 159868715..561323f72 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -410,6 +410,8 @@ def test_regression_rotation(sample_inputs_fixture): ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] + floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() @@ -946,6 +948,7 @@ def test_full_flow_solver(sample_inputs_fixture): } sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.solve_for_viz() diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index ed127f3c4..ecb915fbc 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -260,6 +260,7 @@ def test_regression_rotation(sample_inputs_fixture): ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() @@ -464,6 +465,7 @@ def test_full_flow_solver(sample_inputs_fixture): } sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.solve_for_viz() diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index d2c3a197c..5b98fa1a4 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -261,6 +261,7 @@ def test_regression_rotation(sample_inputs_fixture): ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() @@ -389,6 +390,7 @@ def test_full_flow_solver(sample_inputs_fixture): } sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.solve_for_viz() diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index 32d246b9d..16be779e4 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -221,6 +221,7 @@ def test_regression_rotation(sample_inputs_fixture): ] sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] floris = Floris.from_dict(sample_inputs_fixture.floris) floris.initialize_domain() diff --git a/tests/reg_tests/yaw_optimization_regression_test.py b/tests/reg_tests/yaw_optimization_regression_test.py index 049aee508..ea353eadc 100644 --- a/tests/reg_tests/yaw_optimization_regression_test.py +++ b/tests/reg_tests/yaw_optimization_regression_test.py @@ -83,12 +83,15 @@ def test_serial_refine(sample_inputs_fixture): fi = FlorisInterface(sample_inputs_fixture.floris) wd_array = np.arange(0.0, 360.0, 90.0) ws_array = 8.0 * np.ones_like(wd_array) + ti_array = 0.1 * np.ones_like(wd_array) + D = 126.0 # Rotor diameter for the NREL 5 MW fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, + turbulence_intensities=ti_array, ) yaw_opt = YawOptimizationSR(fi) @@ -113,12 +116,14 @@ def test_geometric_yaw(sample_inputs_fixture): fi = FlorisInterface(sample_inputs_fixture.floris) wd_array = np.arange(0.0, 360.0, 90.0) ws_array = 8.0 * np.ones_like(wd_array) + ti_array = 0.1 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, + turbulence_intensities=ti_array, ) fi.run() baseline_farm_power = fi.get_farm_power().squeeze() @@ -161,12 +166,14 @@ def test_scipy_yaw_opt(sample_inputs_fixture): fi = FlorisInterface(sample_inputs_fixture.floris) wd_array = np.arange(0.0, 360.0, 90.0) ws_array = 8.0 * np.ones_like(wd_array) + ti_array = 0.1 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW fi.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, + turbulence_intensities=ti_array, ) yaw_opt = YawOptimizationScipy(fi, opt_options=opt_options) diff --git a/tests/wind_data_integration_test.py b/tests/wind_data_integration_test.py index 3a64e8e91..66782733a 100644 --- a/tests/wind_data_integration_test.py +++ b/tests/wind_data_integration_test.py @@ -26,18 +26,38 @@ def test_bad_inheritance(): def test_time_series_instantiation(): wind_directions = np.array([270, 280, 290]) wind_speeds = np.array([5, 5, 5]) - TimeSeries(wind_directions, wind_speeds) + # Test that TI require + with pytest.raises(TypeError): + TimeSeries(wind_directions, wind_speeds) -def test_time_series_wrong_dimensions(): - """ - Verifies that the TimeSeries class errors when the input wind directions and wind speeds - have different lengths. - """ - wind_directions = np.array([270, 280, 290]) - wind_speeds = np.array([5, 5]) + # Test that passing a float TI returns a list of length matched to wind directions + time_series = TimeSeries(wind_directions, wind_speeds, turbulence_intensities=0.06) + np.testing.assert_allclose(time_series.turbulence_intensities, [0.06, 0.06, 0.06]) + + # Test that passing floats to wind directions and wind speeds returns a list of + # length turbulence intensities + time_series = TimeSeries(270., 8.0, turbulence_intensities=np.array([0.06, 0.07, 0.08])) + np.testing.assert_allclose(time_series.wind_directions, [270, 270, 270]) + np.testing.assert_allclose(time_series.wind_speeds, [8, 8, 8]) + + # Test that passing in all floats raises a type error + with pytest.raises(TypeError): + TimeSeries(270., 8.0, 0.06) + + # Test casting of both wind speeds and TI + time_series = TimeSeries(wind_directions, 8.0, 0.06) + np.testing.assert_allclose(time_series.wind_speeds, [8, 8, 8]) + np.testing.assert_allclose(time_series.turbulence_intensities, [0.06, 0.06, 0.06]) + + # Test the passing in a 1D array of turbulence intensities which is longer than the + # wind directions and wind speeds raises an error with pytest.raises(ValueError): - TimeSeries(wind_directions, wind_speeds) + TimeSeries( + wind_directions, + wind_speeds, + turbulence_intensities=np.array([0.06, 0.07, 0.08, 0.09]) + ) def test_wind_rose_init(): @@ -48,24 +68,45 @@ def test_wind_rose_init(): wind_directions = np.array([270, 280, 290]) wind_speeds = np.array([6, 7]) - # This should be ok - _ = WindRose(wind_directions, wind_speeds) + # Pass ti_table in as a single float and confirm it is broadcast to the correct shape + wind_rose = WindRose(wind_directions, wind_speeds, ti_table=0.06) + np.testing.assert_allclose( + wind_rose.ti_table, + np.array([[0.06, 0.06], [0.06, 0.06], [0.06, 0.06]]) + ) + + # Pass ti_table in as a 2D array and confirm it is used as is + ti_table = np.array([[0.06, 0.06], [0.06, 0.06], [0.06, 0.06]]) + wind_rose = WindRose(wind_directions, wind_speeds, ti_table=ti_table) + np.testing.assert_allclose(wind_rose.ti_table, ti_table) + + # Confirm passing in a ti_table that is 1D raises an error + with pytest.raises(ValueError): + WindRose( + wind_directions, + wind_speeds, + ti_table=np.array([0.06, 0.06, 0.06, 0.06, 0.06, 0.06]) + ) + + # Confirm passing in a ti_table that is wrong dimensions raises an error + with pytest.raises(ValueError): + WindRose(wind_directions, wind_speeds, ti_table=np.ones((3, 3))) # This should be ok since the frequency array shape matches the wind directions # and wind speeds - _ = WindRose(wind_directions, wind_speeds, np.ones((3, 2))) + _ = WindRose(wind_directions, wind_speeds, ti_table= .06 ,freq_table=np.ones((3, 2))) # This should raise an error since the frequency array shape does not # match the wind directions and wind speeds with pytest.raises(ValueError): - WindRose(wind_directions, wind_speeds, np.ones((3, 3))) + WindRose(wind_directions, wind_speeds, 0.06, np.ones((3, 3))) def test_wind_rose_grid(): wind_directions = np.array([270, 280, 290]) wind_speeds = np.array([6, 7]) - wind_rose = WindRose(wind_directions, wind_speeds) + wind_rose = WindRose(wind_directions, wind_speeds, 0.06) # Wind direction grid has the same dimensions as the frequency table assert wind_rose.wd_grid.shape == wind_rose.freq_table.shape @@ -81,20 +122,22 @@ def test_wind_rose_unpack(): freq_table = np.array([[1.0, 0.0], [0, 1.0], [0, 0]]) # First test using default assumption only non-zero frequency cases computed - wind_rose = WindRose(wind_directions, wind_speeds, freq_table) + wind_rose = WindRose(wind_directions, wind_speeds, 0.06, freq_table) ( wind_directions_unpack, wind_speeds_unpack, - freq_table_unpack, ti_table_unpack, + freq_table_unpack, value_table_unpack, + heterogenous_inflow_config, ) = wind_rose.unpack() # Given the above frequency table with zeros for a few elements, # we expect only the (270 deg, 6 m/s) and (280 deg, 7 m/s) rows np.testing.assert_allclose(wind_directions_unpack, [270, 280]) np.testing.assert_allclose(wind_speeds_unpack, [6, 7]) + np.testing.assert_allclose(ti_table_unpack, [0.06, 0.06]) np.testing.assert_allclose(freq_table_unpack, [0.5, 0.5]) # In this case n_findex is the length of the wind combinations that are @@ -109,9 +152,10 @@ def test_wind_rose_unpack(): ( wind_directions_unpack, wind_speeds_unpack, - freq_table_unpack, ti_table_unpack, + freq_table_unpack, value_table_unpack, + heterogenous_inflow_config, ) = wind_rose.unpack() # Expect now to compute all combinations @@ -127,18 +171,20 @@ def test_unpack_for_reinitialize(): freq_table = np.array([[1.0, 0.0], [0, 1.0], [0, 0]]) # First test using default assumption only non-zero frequency cases computed - wind_rose = WindRose(wind_directions, wind_speeds, freq_table) + wind_rose = WindRose(wind_directions, wind_speeds, 0.06, freq_table) ( wind_directions_unpack, wind_speeds_unpack, ti_table_unpack, + heterogenous_inflow_config, ) = wind_rose.unpack_for_reinitialize() # Given the above frequency table, would only expect the # (270 deg, 6 m/s) and (280 deg, 7 m/s) rows np.testing.assert_allclose(wind_directions_unpack, [270, 280]) np.testing.assert_allclose(wind_speeds_unpack, [6, 7]) + np.testing.assert_allclose(ti_table_unpack, [0.06, 0.06]) def test_wind_rose_resample(): @@ -164,7 +210,7 @@ def test_wind_rose_resample(): def test_wrap_wind_directions_near_360(): wd_step = 5.0 wd_values = np.array([0, 180, 357, 357.5, 358]) - time_series = TimeSeries(np.array([0]), np.array([0])) + time_series = TimeSeries(np.array([0]), np.array([0]), 0.06) wd_wrapped = time_series._wrap_wind_directions_near_360(wd_values, wd_step) @@ -176,7 +222,7 @@ def test_time_series_to_wind_rose(): # Test just 1 wind speed wind_directions = np.array([259.8, 260.2, 264.3]) wind_speeds = np.array([5.0, 5.0, 5.1]) - time_series = TimeSeries(wind_directions, wind_speeds) + time_series = TimeSeries(wind_directions, wind_speeds, 0.06) wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) # The wind directions should be 260, 262 and 264 because they're binned @@ -196,7 +242,7 @@ def test_time_series_to_wind_rose(): # Test just 2 wind speeds wind_directions = np.array([259.8, 260.2, 264.3]) wind_speeds = np.array([5.0, 5.0, 6.1]) - time_series = TimeSeries(wind_directions, wind_speeds) + time_series = TimeSeries(wind_directions, wind_speeds, 0.06) wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) # The wind directions should be 260, 262 and 264 @@ -214,11 +260,17 @@ def test_time_series_to_wind_rose(): assert freq_table[0, 0] == 2 / 3 assert freq_table[2, 1] == 1 / 3 + # The turbulence intensity table should be 0.06 for all bins + ti_table = wind_rose.ti_table + + # Assert that table entires which are not nan are equal to 0.06 + assert np.allclose(ti_table[~np.isnan(ti_table)], 0.06) + def test_time_series_to_wind_rose_wrapping(): wind_directions = np.arange(0.0, 360.0, 0.25) wind_speeds = 8.0 * np.ones_like(wind_directions) - time_series = TimeSeries(wind_directions, wind_speeds) + time_series = TimeSeries(wind_directions, wind_speeds, 0.06) wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) # Expert for the first bin in this case to be 0, and the final to be 358 @@ -306,9 +358,10 @@ def test_wind_ti_rose_unpack(): ( wind_directions_unpack, wind_speeds_unpack, - freq_table_unpack, turbulence_intensities_unpack, + freq_table_unpack, value_table_unpack, + heterogenous_inflow_config, ) = wind_rose.unpack() # Given the above frequency table with zeros for a few elements, @@ -335,9 +388,10 @@ def test_wind_ti_rose_unpack(): ( wind_directions_unpack, wind_speeds_unpack, - freq_table_unpack, turbulence_intensities_unpack, + freq_table_unpack, value_table_unpack, + heterogenous_inflow_config, ) = wind_rose.unpack() # Expect now to compute all combinations @@ -369,6 +423,7 @@ def test_wind_ti_rose_unpack_for_reinitialize(): wind_directions_unpack, wind_speeds_unpack, turbulence_intensities_unpack, + heterogenous_inflow_config, ) = wind_rose.unpack_for_reinitialize() # Given the above frequency table with zeros for a few elements, @@ -423,3 +478,89 @@ def test_time_series_to_wind_ti_rose(): # The 6 m/s bin should be empty freq_table = wind_rose.freq_table np.testing.assert_almost_equal(freq_table[0, 1, :], [0, 0]) + +def test_get_speed_multipliers_by_wd(): + + heterogenous_inflow_config_by_wd = { + 'speed_multipliers': np.array( + [ + [1.0, 1.1, 1.2], + [1.1, 1.1, 1.1], + [1.3, 1.4, 1.5], + ] + ), + 'wind_directions': np.array([0, 90, 270]) + } + + # Check for correctness + wind_directions = np.array([240, 80,15]) + expected_output = np.array( + [ + [1.3, 1.4, 1.5], + [1.1, 1.1, 1.1], + [1.0, 1.1, 1.2] + ] + ) + wind_data = WindDataBase() + result = wind_data.get_speed_multipliers_by_wd( + heterogenous_inflow_config_by_wd, + wind_directions + ) + assert np.allclose(result, expected_output) + + # Confirm wrapping behavior + wind_directions = np.array([350, 10]) + expected_output = np.array([[1.0, 1.1, 1.2], + [1.0, 1.1, 1.2]]) + result = wind_data.get_speed_multipliers_by_wd( + heterogenous_inflow_config_by_wd, + wind_directions + ) + assert np.allclose(result, expected_output) + + # Confirm can expand the result to match wind directions + wind_directions = np.arange(0.0,360.0,10.0) + num_wd = len(wind_directions) + result = wind_data.get_speed_multipliers_by_wd(heterogenous_inflow_config_by_wd, + wind_directions) + assert result.shape[0] == num_wd + +def test_gen_heterogenous_inflow_config(): + + wind_directions = np.array([259.8, 260.2, 260.3, 260.1, 270.0]) + wind_speeds = 8 + turbulence_intensities = 0.06 + + heterogenous_inflow_config_by_wd = { + 'speed_multipliers': np.array( + [ + [0.9, 0.9], + [1.0, 1.0], + [1.1, 1.2], + ] + ), + 'wind_directions' : np.array([250, 260, 270]), + 'x' : np.array([0, 1000]), + 'y' : np.array([0, 0]), + } + + time_series = TimeSeries( + wind_directions, + wind_speeds, + turbulence_intensities=turbulence_intensities, + heterogenous_inflow_config_by_wd=heterogenous_inflow_config_by_wd + ) + + (_, _, _, _, _, heterogenous_inflow_config) = time_series.unpack() + + expected_result = np.array( + [ + [1.0, 1.0], + [1.0, 1.0], + [1.0, 1.0], + [1.0, 1.0], + [1.1, 1.2] + ] + ) + np.testing.assert_allclose(heterogenous_inflow_config['speed_multipliers'], expected_result) + np.testing.assert_allclose(heterogenous_inflow_config['x'],heterogenous_inflow_config_by_wd['x']) From 96384d02c87a62c92a1581d156cb3396501e5928 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Mon, 11 Mar 2024 18:04:23 -0500 Subject: [PATCH 52/78] Add TI as input for calculate plane functions (#837) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Add TI as input for calculate plane functions * Add to “with turbines” function * Add tests --- floris/tools/floris_interface.py | 28 ++++++++++++-- floris/tools/flow_visualization.py | 6 ++- tests/floris_interface_integration_test.py | 45 ++++++++++++++++++++++ 3 files changed, 74 insertions(+), 5 deletions(-) diff --git a/floris/tools/floris_interface.py b/floris/tools/floris_interface.py index 5c67219ee..4cd8dc888 100644 --- a/floris/tools/floris_interface.py +++ b/floris/tools/floris_interface.py @@ -491,6 +491,7 @@ def calculate_horizontal_plane( y_bounds=None, wd=None, ws=None, + ti=None, yaw_angles=None, power_setpoints=None, disable_turbines=None, @@ -512,6 +513,7 @@ def calculate_horizontal_plane( Defaults to None. wd (float, optional): Wind direction. Defaults to None. ws (float, optional): Wind speed. Defaults to None. + ti (float, optional): Turbulence intensity. Defaults to None. yaw_angles (NDArrayFloat, optional): Turbine yaw angles. Defaults to None. power_setpoints (NDArrayFloat, optional): @@ -528,7 +530,9 @@ def calculate_horizontal_plane( wd = self.floris.flow_field.wind_directions if ws is None: ws = self.floris.flow_field.wind_speeds - self.check_wind_condition_for_viz(wd=wd, ws=ws) + if ti is None: + ti = self.floris.flow_field.turbulence_intensities + self.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) # Store the current state for reinitialization floris_dict = self.floris.as_dict() @@ -543,6 +547,7 @@ def calculate_horizontal_plane( self.set( wind_directions=wd, wind_speeds=ws, + turbulence_intensities=ti, solver_settings=solver_settings, yaw_angles=yaw_angles, power_setpoints=power_setpoints, @@ -585,6 +590,7 @@ def calculate_cross_plane( z_bounds=None, wd=None, ws=None, + ti=None, yaw_angles=None, power_setpoints=None, disable_turbines=None, @@ -614,7 +620,9 @@ def calculate_cross_plane( wd = self.floris.flow_field.wind_directions if ws is None: ws = self.floris.flow_field.wind_speeds - self.check_wind_condition_for_viz(wd=wd, ws=ws) + if ti is None: + ti = self.floris.flow_field.turbulence_intensities + self.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) # Store the current state for reinitialization floris_dict = self.floris.as_dict() @@ -630,6 +638,7 @@ def calculate_cross_plane( self.set( wind_directions=wd, wind_speeds=ws, + turbulence_intensities=ti, solver_settings=solver_settings, yaw_angles=yaw_angles, power_setpoints=power_setpoints, @@ -667,6 +676,7 @@ def calculate_y_plane( z_bounds=None, wd=None, ws=None, + ti=None, yaw_angles=None, power_setpoints=None, disable_turbines=None, @@ -690,6 +700,7 @@ def calculate_y_plane( Defaults to None. wd (float, optional): Wind direction. Defaults to None. ws (float, optional): Wind speed. Defaults to None. + ti (float, optional): Turbulence intensity. Defaults to None. yaw_angles (NDArrayFloat, optional): Turbine yaw angles. Defaults to None. power_setpoints (NDArrayFloat, optional): @@ -708,7 +719,9 @@ def calculate_y_plane( wd = self.floris.flow_field.wind_directions if ws is None: ws = self.floris.flow_field.wind_speeds - self.check_wind_condition_for_viz(wd=wd, ws=ws) + if ti is None: + ti = self.floris.flow_field.turbulence_intensities + self.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) # Store the current state for reinitialization floris_dict = self.floris.as_dict() @@ -724,6 +737,7 @@ def calculate_y_plane( self.set( wind_directions=wd, wind_speeds=ws, + turbulence_intensities=ti, solver_settings=solver_settings, yaw_angles=yaw_angles, power_setpoints=power_setpoints, @@ -752,7 +766,7 @@ def calculate_y_plane( return y_plane - def check_wind_condition_for_viz(self, wd=None, ws=None): + def check_wind_condition_for_viz(self, wd=None, ws=None, ti=None): if len(wd) > 1 or len(wd) < 1: raise ValueError( "Wind direction input must be of length 1 for visualization. " @@ -765,6 +779,12 @@ def check_wind_condition_for_viz(self, wd=None, ws=None): f"Current length is {len(ws)}." ) + if len(ti) != 1: + raise ValueError( + "Turbulence intensity input must be of length 1 for visualization. " + f"Current length is {len(ti)}." + ) + def get_turbine_powers(self) -> NDArrayFloat: """Calculates the power at each turbine in the wind farm. diff --git a/floris/tools/flow_visualization.py b/floris/tools/flow_visualization.py index b55ed6f9c..003c770c5 100644 --- a/floris/tools/flow_visualization.py +++ b/floris/tools/flow_visualization.py @@ -479,6 +479,7 @@ def calculate_horizontal_plane_with_turbines( y_bounds=None, wd=None, ws=None, + ti=None, yaw_angles=None, power_setpoints=None, disable_turbines=None, @@ -505,6 +506,7 @@ def calculate_horizontal_plane_with_turbines( y_bounds (tuple, optional): Limits of output array (in m). Defaults to None. wd (float, optional): Wind direction setting. Defaults to None. ws (float, optional): Wind speed setting. Defaults to None. + ti (float, optional): Turbulence intensity. Defaults to None. yaw_angles (np.ndarray, optional): Yaw angles settings. Defaults to None. power_setpoints (np.ndarray, optional): Power setpoints settings. Defaults to None. disable_turbines (np.ndarray, optional): Disable turbines settings. Defaults to None. @@ -521,7 +523,9 @@ def calculate_horizontal_plane_with_turbines( wd = fi.floris.flow_field.wind_directions if ws is None: ws = fi.floris.flow_field.wind_speeds - fi.check_wind_condition_for_viz(wd=wd, ws=ws) + if ti is None: + ti = fi.floris.flow_field.turbulence_intensities + fi.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) # Set the ws and wd fi.set( diff --git a/tests/floris_interface_integration_test.py b/tests/floris_interface_integration_test.py index 18e973857..0696bea3c 100644 --- a/tests/floris_interface_integration_test.py +++ b/tests/floris_interface_integration_test.py @@ -447,3 +447,48 @@ def test_set_ti(): # Test that applying a float however raises an error with pytest.raises(TypeError): fi.set(turbulence_intensities=0.12) + +def test_calculate_planes(): + fi = FlorisInterface(configuration=YAML_INPUT) + + # The calculate_plane functions should run directly with the inputs as given + fi.calculate_horizontal_plane(90.0) + fi.calculate_y_plane(0.0) + fi.calculate_cross_plane(500.0) + + # They should also support setting new wind conditions, but they all have to set at once + wind_speeds = [8.0, 8.0, 8.0] + wind_directions = [270.0, 270.0, 270.0] + turbulence_intensities = [0.1, 0.1, 0.1] + fi.calculate_horizontal_plane( + 90.0, + ws=[wind_speeds[0]], + wd=[wind_directions[0]], + ti=[turbulence_intensities[0]] + ) + fi.calculate_y_plane( + 0.0, + ws=[wind_speeds[0]], + wd=[wind_directions[0]], + ti=[turbulence_intensities[0]] + ) + fi.calculate_cross_plane( + 500.0, + ws=[wind_speeds[0]], + wd=[wind_directions[0]], + ti=[turbulence_intensities[0]] + ) + + # If Floris is configured with multiple wind conditions prior to this, then all of the + # components must be changed together. + fi.set( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities + ) + with pytest.raises(ValueError): + fi.calculate_horizontal_plane(90.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) + with pytest.raises(ValueError): + fi.calculate_y_plane(0.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) + with pytest.raises(ValueError): + fi.calculate_cross_plane(500.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) From e31a4e9a9da2c6c19a4a6fdd627f1f35d9a3e325 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Tue, 12 Mar 2024 16:26:08 -0500 Subject: [PATCH 53/78] Rename floris.simulation, floris.tools to floris.core, floris (#830) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Rename floris.simulation to floris.core * Move floris.tools to top level * Propogate name change in floris/ * Rename FlorisInterface to Floris, Floris to Core # Conflicts: # floris/core/core.py * Rename core object on Floris * Update tests * Update a subset of examples * Rename floris.floris module to floris.floris_model * Update after mergre from v4 branch * Clean up * .floris -> .core * Update test nomenclature * Update profiling nomenclature * Update nomenclature * Update example 01 * Update example nomenclature * fi_subset -> fmodel_subset * fix fi_ instances * fix line length * isort * Update profiling * Update F841 locations * Update quality metrics * Old refs to simulation/ * Remove bad links to old tools folder * Examples FlorisInterface to FlorisModel updates * Update syntax and docstrings * Update documentation notebooks * Add TI as input for calculate plane functions * Add to “with turbines” function * Update getting started notebook * Update turbine previewer and notebook * Update API docs file references * Update README * isort * File and class name changes. * Rename instantiated XFlorisModel objects. * Added tests for unc+parallel model; currently failing. * Reconfigure get_turbine_powers on UncertaintyFlorisModel for external use; access from ParallelFlorisModel. * get_farm_AEP method updated and tested; remove cut_in and cut_out ws options. * Ruff. * Remove _load_local_floris_object function. * Conform to requirement to pass turbulence_intensities. --------- Co-authored-by: Paul Co-authored-by: misi9170 --- README.md | 30 +- docs/api_docs.rst | 17 +- docs/architecture.md | 2 +- docs/examples.md | 2 +- docs/floris_101.ipynb | 369 ++++++++++-------- docs/turbine_interaction.ipynb | 66 ++-- docs/wake_models.ipynb | 151 ++++--- examples/01_opening_floris_computing_power.py | 103 ++--- examples/02_visualizations.py | 34 +- examples/03_making_adjustments.py | 36 +- examples/04_sweep_wind_directions.py | 14 +- examples/05_sweep_wind_speeds.py | 14 +- examples/06_sweep_wind_conditions.py | 16 +- examples/07_calc_aep_from_rose.py | 20 +- .../09_compare_farm_power_with_neighbor.py | 18 +- examples/10_opt_yaw_single_ws.py | 14 +- examples/11_opt_yaw_multiple_ws.py | 16 +- examples/12_optimize_yaw.py | 44 +-- examples/12_optimize_yaw_in_parallel.py | 48 +-- .../13_optimize_yaw_with_neighboring_farm.py | 104 ++--- examples/14_compare_yaw_optimizers.py | 30 +- examples/15_optimize_layout.py | 22 +- examples/16_heterogeneous_inflow.py | 34 +- examples/16b_heterogeneity_multiple_ws_wd.py | 26 +- .../16c_optimize_layout_with_heterogeneity.py | 36 +- examples/17_multiple_turbine_types.py | 22 +- examples/18_check_turbine.py | 38 +- ...0_calculate_farm_power_with_uncertainty.py | 67 ++-- examples/21_demo_time_series.py | 14 +- examples/22_get_wind_speed_at_turbines.py | 18 +- examples/23_layout_visualizations.py | 42 +- examples/24_floating_turbine_models.py | 54 +-- ...25_tilt_driven_vertical_wake_deflection.py | 20 +- ...rical_gauss_velocity_deficit_parameters.py | 78 ++-- ...7_empirical_gauss_deflection_parameters.py | 76 ++-- examples/28_extract_wind_speed_at_points.py | 14 +- examples/29_floating_vs_fixedbottom_farm.py | 40 +- examples/30_multi_dimensional_cp_ct.py | 30 +- examples/31_multi_dimensional_cp_ct_2Hs.py | 30 +- examples/32_plot_velocity_deficit_profiles.py | 37 +- examples/33_specify_turbine_power_curve.py | 10 +- examples/34_wind_data.py | 38 +- examples/35_sweep_ti.py | 12 +- examples/36_generate_ti.py | 4 +- examples/40_test_derating.py | 34 +- examples/41_test_disable_turbines.py | 20 +- floris/__init__.py | 15 + .../convert_floris_input_v3_to_v4.py | 0 .../{tools => }/convert_turbine_v3_to_v4.py | 0 floris/{simulation => core}/__init__.py | 2 +- floris/{simulation => core}/base.py | 0 floris/{simulation/floris.py => core/core.py} | 10 +- floris/{simulation => core}/farm.py | 6 +- floris/{simulation => core}/flow_field.py | 2 +- floris/{simulation => core}/grid.py | 2 +- floris/{simulation => core}/rotor_velocity.py | 0 floris/{simulation => core}/solver.py | 10 +- .../{simulation => core}/turbine/__init__.py | 2 +- .../turbine/operation_models.py | 4 +- .../{simulation => core}/turbine/turbine.py | 4 +- floris/{simulation => core}/wake.py | 10 +- floris/core/wake_combination/__init__.py | 4 + .../wake_combination/fls.py | 2 +- .../wake_combination/max.py | 2 +- .../wake_combination/sosfs.py | 2 +- floris/core/wake_deflection/__init__.py | 5 + .../wake_deflection/empirical_gauss.py | 2 +- .../wake_deflection/gauss.py | 2 +- .../wake_deflection/jimenez.py | 8 +- .../wake_deflection/none.py | 2 +- floris/core/wake_turbulence/__init__.py | 4 + .../wake_turbulence/crespo_hernandez.py | 2 +- .../wake_turbulence/none.py | 2 +- .../wake_turbulence/wake_induced_mixing.py | 2 +- floris/core/wake_velocity/__init__.py | 7 + .../wake_velocity/cumulative_gauss_curl.py | 2 +- .../wake_velocity/empirical_gauss.py | 4 +- .../wake_velocity/gauss.py | 2 +- .../wake_velocity/jensen.py | 2 +- .../wake_velocity/none.py | 2 +- .../wake_velocity/turbopark.py | 2 +- .../wake_velocity/turbopark_lookup_table.mat | Bin floris/{tools => }/cut_plane.py | 4 +- .../floris_interface.py => floris_model.py} | 288 +++++++------- floris/{tools => }/flow_visualization.py | 66 ++-- floris/{tools => }/layout_visualization.py | 90 +++-- floris/{tools => }/optimization/__init__.py | 0 .../layout_optimization/__init__.py | 0 .../layout_optimization_base.py | 24 +- .../layout_optimization_boundary_grid.py | 8 +- .../layout_optimization_pyoptsparse.py | 12 +- .../layout_optimization_pyoptsparse_spread.py | 8 +- .../layout_optimization_scipy.py | 16 +- .../optimization/other/__init__.py | 0 .../optimization/other/boundary_grid.py | 9 +- .../optimization/yaw_optimization/__init__.py | 0 .../yaw_optimization/yaw_optimization_base.py | 59 ++- .../yaw_optimization_tools.py | 10 +- .../yaw_optimizer_geometric.py | 16 +- .../yaw_optimization/yaw_optimizer_scipy.py | 22 +- .../yaw_optimization/yaw_optimizer_sr.py | 30 +- ..._interface.py => parallel_floris_model.py} | 225 +++++------ .../simulation/wake_combination/__init__.py | 4 - floris/simulation/wake_deflection/__init__.py | 5 - floris/simulation/wake_turbulence/__init__.py | 4 - floris/simulation/wake_velocity/__init__.py | 7 - floris/tools/__init__.py | 48 --- floris/turbine_library/turbine_previewer.py | 9 +- ...interface.py => uncertain_floris_model.py} | 167 +++++--- floris/{tools => }/wind_data.py | 2 +- profiling/profiling.py | 33 +- profiling/quality_metrics.py | 56 +-- profiling/serial_vectorize.py | 26 +- profiling/timing.py | 60 +-- pyproject.toml | 14 +- setup.py | 2 +- tests/base_unit_test.py | 2 +- tests/conftest.py | 8 +- ...{floris_unit_test.py => core_unit_test.py} | 24 +- tests/farm_unit_test.py | 2 +- ...st.py => floris_model_integration_test.py} | 329 ++++++++-------- tests/flow_field_unit_test.py | 2 +- tests/layout_optimization_integration_test.py | 30 +- tests/layout_visualization_test.py | 18 +- ...el_computing_interface_integration_test.py | 48 --- .../parallel_floris_model_integration_test.py | 137 +++++++ .../cumulative_curl_regression_test.py | 82 ++-- .../empirical_gauss_regression_test.py | 82 ++-- tests/reg_tests/gauss_regression_test.py | 96 ++--- .../jensen_jimenez_regression_test.py | 58 +-- tests/reg_tests/none_regression_test.py | 58 +-- .../reg_tests/scipy_layout_opt_regression.py | 14 +- tests/reg_tests/turbopark_regression_test.py | 62 +-- .../yaw_optimization_regression_test.py | 48 +-- tests/rotor_velocity_unit_test.py | 4 +- tests/turbine_grid_unit_test.py | 2 +- tests/turbine_multi_dim_unit_test.py | 6 +- ...rbine_operation_models_integration_test.py | 2 +- tests/turbine_unit_test.py | 4 +- ...ncertain_floris_model_integration_test.py} | 96 ++--- tests/wake_unit_tests.py | 2 +- tests/wind_data_integration_test.py | 4 +- 142 files changed, 2393 insertions(+), 2242 deletions(-) rename floris/{tools => }/convert_floris_input_v3_to_v4.py (100%) rename floris/{tools => }/convert_turbine_v3_to_v4.py (100%) rename floris/{simulation => core}/__init__.py (98%) rename floris/{simulation => core}/base.py (100%) rename floris/{simulation/floris.py => core/core.py} (98%) rename floris/{simulation => core}/farm.py (98%) rename floris/{simulation => core}/flow_field.py (99%) rename floris/{simulation => core}/grid.py (99%) rename floris/{simulation => core}/rotor_velocity.py (100%) rename floris/{simulation => core}/solver.py (99%) rename floris/{simulation => core}/turbine/__init__.py (63%) rename floris/{simulation => core}/turbine/operation_models.py (99%) rename floris/{simulation => core}/turbine/turbine.py (99%) rename floris/{simulation => core}/wake.py (95%) create mode 100644 floris/core/wake_combination/__init__.py rename floris/{simulation => core}/wake_combination/fls.py (95%) rename floris/{simulation => core}/wake_combination/max.py (96%) rename floris/{simulation => core}/wake_combination/sosfs.py (95%) create mode 100644 floris/core/wake_deflection/__init__.py rename floris/{simulation => core}/wake_deflection/empirical_gauss.py (99%) rename floris/{simulation => core}/wake_deflection/gauss.py (99%) rename floris/{simulation => core}/wake_deflection/jimenez.py (93%) rename floris/{simulation => core}/wake_deflection/none.py (97%) create mode 100644 floris/core/wake_turbulence/__init__.py rename floris/{simulation => core}/wake_turbulence/crespo_hernandez.py (98%) rename floris/{simulation => core}/wake_turbulence/none.py (95%) rename floris/{simulation => core}/wake_turbulence/wake_induced_mixing.py (98%) create mode 100644 floris/core/wake_velocity/__init__.py rename floris/{simulation => core}/wake_velocity/cumulative_gauss_curl.py (99%) rename floris/{simulation => core}/wake_velocity/empirical_gauss.py (99%) rename floris/{simulation => core}/wake_velocity/gauss.py (99%) rename floris/{simulation => core}/wake_velocity/jensen.py (99%) rename floris/{simulation => core}/wake_velocity/none.py (97%) rename floris/{simulation => core}/wake_velocity/turbopark.py (99%) rename floris/{simulation => core}/wake_velocity/turbopark_lookup_table.mat (100%) rename floris/{tools => }/cut_plane.py (99%) rename floris/{tools/floris_interface.py => floris_model.py} (84%) rename floris/{tools => }/flow_visualization.py (93%) rename floris/{tools => }/layout_visualization.py (87%) rename floris/{tools => }/optimization/__init__.py (100%) rename floris/{tools => }/optimization/layout_optimization/__init__.py (100%) rename floris/{tools => }/optimization/layout_optimization/layout_optimization_base.py (86%) rename floris/{tools => }/optimization/layout_optimization/layout_optimization_boundary_grid.py (99%) rename floris/{tools => }/optimization/layout_optimization/layout_optimization_pyoptsparse.py (93%) rename floris/{tools => }/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py (97%) rename floris/{tools => }/optimization/layout_optimization/layout_optimization_scipy.py (94%) rename floris/{tools => }/optimization/other/__init__.py (100%) rename floris/{tools => }/optimization/other/boundary_grid.py (97%) rename floris/{tools => }/optimization/yaw_optimization/__init__.py (100%) rename floris/{tools => }/optimization/yaw_optimization/yaw_optimization_base.py (93%) rename floris/{tools => }/optimization/yaw_optimization/yaw_optimization_tools.py (94%) rename floris/{tools => }/optimization/yaw_optimization/yaw_optimizer_geometric.py (96%) rename floris/{tools => }/optimization/yaw_optimization/yaw_optimizer_scipy.py (86%) rename floris/{tools => }/optimization/yaw_optimization/yaw_optimizer_sr.py (92%) rename floris/{tools/parallel_computing_interface.py => parallel_floris_model.py} (71%) delete mode 100644 floris/simulation/wake_combination/__init__.py delete mode 100644 floris/simulation/wake_deflection/__init__.py delete mode 100644 floris/simulation/wake_turbulence/__init__.py delete mode 100644 floris/simulation/wake_velocity/__init__.py delete mode 100644 floris/tools/__init__.py rename floris/{tools/uncertainty_interface.py => uncertain_floris_model.py} (83%) rename floris/{tools => }/wind_data.py (99%) rename tests/{floris_unit_test.py => core_unit_test.py} (58%) rename tests/{floris_interface_integration_test.py => floris_model_integration_test.py} (55%) delete mode 100644 tests/parallel_computing_interface_integration_test.py create mode 100644 tests/parallel_floris_model_integration_test.py rename tests/{uncertainty_interface_integration_test.py => uncertain_floris_model_integration_test.py} (58%) diff --git a/README.md b/README.md index 013209c7f..d2b851194 100644 --- a/README.md +++ b/README.md @@ -86,32 +86,36 @@ FLORIS is a Python package run on the command line typically by providing an input file with an initial configuration. It can be installed with ```pip install floris``` (see [installation](https://github.nrel.io/floris/installation)). The typical entry point is -[FlorisInterface](https://nrel.github.io/floris/_autosummary/floris.tools.floris_interface.FlorisInterface.html#floris.tools.floris_interface.FlorisInterface) +[FlorisModel](https://nrel.github.io/floris/_autosummary/floris.floris_model.FlorisModel.html#floris.floris_model.FlorisModel) which accepts the path to the input file as an argument. From there, changes can be made to the initial configuration through the -[FlorisInterface.reinitialize](https://nrel.github.io/floris/_autosummary/floris.tools.floris_interface.FlorisInterface.html#floris.tools.floris_interface.FlorisInterface.reinitialize) +[FlorisModel.set](https://nrel.github.io/floris/_autosummary/floris.floris_model.FlorisModel.html#floris.floris_model.FlorisModel.set) routine, and the simulation is executed with -[FlorisInterface.calculate_wake](https://nrel.github.io/floris/_autosummary/floris.tools.floris_interface.FlorisInterface.html#floris.tools.floris_interface.FlorisInterface.calculate_wake). +[FlorisModel.run](https://nrel.github.io/floris/_autosummary/floris.floris_model.FlorisModel.html#floris.floris_model.FlorisModel.run). ```python -from floris.tools import FlorisInterface -fi = FlorisInterface("path/to/input.yaml") -fi.reinitialize(wind_directions=[i for i in range(10)]) -fi.calculate_wake() +from floris import FlorisModel +fmodel = FlorisModel("path/to/input.yaml") +fmodel.set( + wind_directions=[i for i in range(10)], + wind_speeds=[i for i in range(10)], + turbulence_intensities=[0.1 for i in range(10)], +) +fmodel.run() ``` Finally, results can be analyzed via post-processing functions available within -[FlorisInterface](https://nrel.github.io/floris/_autosummary/floris.tools.floris_interface.FlorisInterface.html#floris.tools.floris_interface.FlorisInterface) +[FlorisModel](https://nrel.github.io/floris/_autosummary/floris.floris_model.FlorisModel.html#floris.floris_model.FlorisModel) such as -- [FlorisInterface.get_turbine_layout](https://nrel.github.io/floris/_autosummary/floris.tools.floris_interface.FlorisInterface.html#floris.tools.floris_interface.FlorisInterface.get_turbine_layout) -- [FlorisInterface.get_turbine_powers](https://nrel.github.io/floris/_autosummary/floris.tools.floris_interface.FlorisInterface.html#floris.tools.floris_interface.FlorisInterface.get_turbine_powers) -- [FlorisInterface.get_farm_AEP](https://nrel.github.io/floris/_autosummary/floris.tools.floris_interface.FlorisInterface.html#floris.tools.floris_interface.FlorisInterface.get_farm_AEP) +- [FlorisModel.get_turbine_layout](https://nrel.github.io/floris/_autosummary/floris.floris_model.FlorisModel.html#floris.floris_model.FlorisModel.get_turbine_layout) +- [FlorisModel.get_turbine_powers](https://nrel.github.io/floris/_autosummary/floris.floris_model.FlorisModel.html#floris.floris_model.FlorisModel.get_turbine_powers) +- [FlorisModel.get_farm_AEP](https://nrel.github.io/floris/_autosummary/floris.floris_model.FlorisModel.html#floris.floris_model.FlorisModel.get_farm_AEP) -and in a visualization package at [floris.tools.visualization](https://nrel.github.io/floris/_autosummary/floris.tools.floris_interface.FlorisInterface.html#floris.tools.visualization). +and in two visualization packages: [layoutviz](https://nrel.github.io/floris/_autosummary/floris.layout_visualization.html) and [flowviz](https://nrel.github.io/floris/_autosummary/floris.flow_visualization.html). A collection of examples describing the creation of simulations as well as analysis and post processing are included in the [repository](https://github.com/NREL/floris/tree/main/examples) -and described in detail in [Examples Index](https://github.nrel.io/floris/examples). +and described in [Examples Index](https://github.nrel.io/floris/examples). ## Engaging on GitHub diff --git a/docs/api_docs.rst b/docs/api_docs.rst index add2940c1..c677b8f04 100644 --- a/docs/api_docs.rst +++ b/docs/api_docs.rst @@ -13,9 +13,18 @@ more users will interface with the software. :template: custom-module-template.rst :recursive: - floris.logging_manager - floris.simulation - floris.tools - floris.type_dec + floris.flow_visualization + floris.floris_model + floris.wind_data + floris.uncertain_floris_model floris.turbine_library + floris.parallel_floris_model + floris.optimization + floris.layout_visualization + floris.cut_plane + floris.core + floris.convert_turbine_v3_to_v4 + floris.convert_floris_input_v3_to_v4 floris.utilities + floris.type_dec + floris.logging_manager diff --git a/docs/architecture.md b/docs/architecture.md index 682aa5c8b..4b6b9bfe6 100644 --- a/docs/architecture.md +++ b/docs/architecture.md @@ -60,7 +60,7 @@ This package contains a wide variety of functionality including but not limited - Initializing and driving a simulation with `tools.floris_interface` - Wake field visualization through `tools.visualization` - Yaw and layout optimization in `tools.optimization` -- Parallelizing work load with `tools.parallel_computing_interface` +- Parallelizing work load with `tools.parallel_floris_model` ## floris.simulation diff --git a/docs/examples.md b/docs/examples.md index 73fcbda00..74108924e 100644 --- a/docs/examples.md +++ b/docs/examples.md @@ -186,7 +186,7 @@ and thrust coefficients or as absolute values. ## Optimization These examples demonstrate use of the optimization routines -included in FLORIS through {py:mod}`floris.tools.optimization`. These +included in FLORIS through {py:mod}`floris.optimization`. These focus on yaw settings and wind farm layout, but the concepts are general and can be used for other optimizations. diff --git a/docs/floris_101.ipynb b/docs/floris_101.ipynb index 5b73de57f..5e6553ec8 100644 --- a/docs/floris_101.ipynb +++ b/docs/floris_101.ipynb @@ -10,9 +10,13 @@ "\n", "FLORIS is a Python-based software library for calculating wind farm performance considering\n", "the effect of turbine-turbine interactions through their wakes.\n", - "There are two primary packages that make up the software:\n", - "- `floris.simulation`: simulation framework including wake model definitions\n", - "- `floris.tools`: utilities for pre and post processing as well as driving the simulation\n", + "There are two primary packages to understand when using FLORIS:\n", + "- `floris.core`: This package contains the core functionality for calculating the wind farm wake\n", + " and turbine-turbine interactions. This package is the computational engine of FLORIS.\n", + " All of the mathematical models and algorithms are implemented here.\n", + "- `floris`: This is the top-level package that provides most of the functionality that the\n", + " majority of users will need. The main entry point is `FlorisModel` which is a high-level\n", + " interface to the computational engine.\n", "\n", "\n", "\n", @@ -22,9 +26,9 @@ "2. Run the wind farm wake calculation\n", "3. Extract data and postprocess results\n", "\n", - "Generally, users will only interact with `floris.tools` and most often through\n", - "the `FlorisInterface` class. Additionally, `floris.tools` contains functionality\n", - "for comparing results, creating visualizations, and developing optimization cases. \n", + "Generally, users will only interact with `floris` and most often through the `FlorisModel` class.\n", + "Additionally, `floris` contains functionality for comparing results, creating visualizations,\n", + "and developing optimization cases. \n", "\n", "This notebook steps through the basic ideas and operations of FLORIS while showing\n", "realistic uses and expected behavior." @@ -35,9 +39,9 @@ "id": "699c51dd", "metadata": {}, "source": [ - "## Initialize FlorisInterface\n", + "## Initialize Floris\n", "\n", - "The `FlorisInterface` provides functionality to build a wind farm representation and drive\n", + "The `FlorisModel` class provides functionality to build a wind farm representation and drive\n", "the simulation. This object is created (instantiated) by passing the path to a FLORIS input\n", "file as the only argument. After this object is created, it can immediately be used to\n", "inspect the data." @@ -64,10 +68,10 @@ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", - "from floris.tools import FlorisInterface\n", + "from floris import FlorisModel\n", "\n", - "fi = FlorisInterface(\"gch.yaml\")\n", - "x, y = fi.get_turbine_layout()\n", + "fmodel = FlorisModel(\"gch.yaml\")\n", + "x, y = fmodel.get_turbine_layout()\n", "\n", "print(\" x y\")\n", "for _x, _y in zip(x, y):\n", @@ -85,7 +89,7 @@ "However, it is often simplest to define a basic configuration in the input file as\n", "a starting point and then make modifications in the Python script. This allows for\n", "generating data algorithmically or loading data from a data file. Modifications to\n", - "the wind farm representation are handled through the `FlorisInterface.reinitialize()`\n", + "the wind farm representation are handled through the `FlorisModel.set()`\n", "function with keyword arguments. Another way to think of this function is that it\n", "changes the value of inputs specified in the input file.\n", "\n", @@ -114,9 +118,9 @@ "source": [ "x_2x2 = [0, 0, 800, 800]\n", "y_2x2 = [0, 400, 0, 400]\n", - "fi.reinitialize(layout_x=x_2x2, layout_y=y_2x2)\n", + "fmodel.set(layout_x=x_2x2, layout_y=y_2x2)\n", "\n", - "x, y = fi.get_turbine_layout()\n", + "x, y = fmodel.get_turbine_layout()\n", "\n", "print(\" x y\")\n", "for _x, _y in zip(x, y):\n", @@ -128,14 +132,13 @@ "id": "63f45e11", "metadata": {}, "source": [ - "Additionally, we can change the wind speeds and wind directions.\n", - "The set of wind conditions is given as arrays of wind speeds and\n", - "wind directions that combined describe the atmospheric conditions\n", - "to compute. This requires that the wind speed and wind direction\n", - "arrays be the same length.\n", + "Additionally, we can change the wind speeds, wind directions, and turbulence intensity.\n", + "The set of wind conditions is given as arrays of wind speeds, wind directions, and turbulence\n", + "intensity combinations that describe the atmospheric conditions to compute.\n", + "This requires that all arrays be the same length.\n", "\n", - "Notice that we can give `FlorisInterface.reinitialize()` multiple keyword arguments at once.\n", - "Note that there is no expected output from the `FlorisInterface.reinitialize()` function." + "Notice that we can give `FlorisModel.set()` multiple keyword arguments at once.\n", + "There is no expected output from the `FlorisModel.set()` function." ] }, { @@ -145,17 +148,19 @@ "metadata": {}, "outputs": [], "source": [ - "# One wind direction and one speed\n", - "# -> one atmospheric condition (270 degrees at 8 m/s)\n", - "fi.reinitialize(wind_directions=[270.0], wind_speeds=[8.0])\n", + "fmodel.set(wind_directions=[270.0], wind_speeds=[8.0], turbulence_intensities=[0.1])\n", "\n", - "# Two wind directions and one speed (repeated)\n", - "# -> two atmospheric conditions (270 degrees at 8 m/s and 280 degrees at 8 m/s)\n", - "fi.reinitialize(wind_directions=[270.0, 280.0], wind_speeds=[8.0, 8.0])\n", + "fmodel.set(\n", + " wind_directions=[270.0, 280.0],\n", + " wind_speeds=[8.0, 8.0],\n", + " turbulence_intensities=[0.1, 0.1],\n", + ")\n", "\n", - "# Two wind directions and two speeds combined\n", - "# -> four atmospheric conditions (270 degrees at 8 m/s and 9 m/s, 280 degrees at 8 m/s and 9 m/s)\n", - "fi.reinitialize(wind_directions=[270.0, 280.0, 270.0, 280.0], wind_speeds=[8.0, 8.0, 9.0, 9.0])" + "fmodel.set(\n", + " wind_directions=[270.0, 280.0, 270.0, 280.0],\n", + " wind_speeds=[8.0, 8.0, 9.0, 9.0],\n", + " turbulence_intensities=[0.1, 0.1, 0.1, 0.1],\n", + ")" ] }, { @@ -163,7 +168,7 @@ "id": "da4f3309", "metadata": {}, "source": [ - "`FlorisInterface.reinitialize()` creates all of the basic data structures required\n", + "`FlorisModel.set()` creates all of the basic data structures required\n", "for the simulation but it does not do any aerodynamic calculations. The low level\n", "data structures have a complex shape that enables faster computations. Specifically,\n", "most data is structured as a 4-dimensional Numpy array with the following dimensions:\n", @@ -210,28 +215,26 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAADyCAYAAABkv9hQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABnaUlEQVR4nO29d3hc5Zk2fp/pGo2k0Yx6r7Ylq7tRjNkYCCTgQrNN8gNC2SQkLKSwgSRsQnaXhLAsCbubj2S/EELyJaHYtNiGhSUQCBgwtmz13seSZjRFml7f3x/Sezgzmt4kWXNfFxfWSDrnjObc532e572f+2EIIUghhRTOb/BW+gJSSCGFxCNF9BRSWAdIET2FFNYBUkRPIYV1gBTRU0hhHSBF9BRSWAcQhPh+au8thRQSDybRJ0it6CmksA6QInoKKawDpIieQgrrACmip5DCOkCK6CmksA6QInoKKawDpIieQgrrACmip5DCOkCK6CmksA6QInoKKawDpIieQgrrACmip5DCOkCK6CmksA6QInoKKawDpIieQgrrACmirwAIIXA4HHC5XEjZbaeQDIQynkghzvB4PHA4HLDZbOxrfD4fQqEQAoEAfD4fDJNwH4IU1hmYECtKarmJEwghcLlccLlcsNlsGBkZgUwmg1wuh1gsBiGEJbjdbkdGRgZEIlGK+OsDCf+AU0RPAmio7vF4oFarMTw8jPLyctjtduj1ethsNshkMmRnZ0Mul2NoaAgVFRWQSqUAUiv+OkCK6GsdLpcLTqcTbrcbAwMDcDgc2Lx5s9cKTgiB0WiEwWCAXq/H/Pw8srOzkZubC7lcDpFIBI/Hw/68QCBg/0sR/7xAiuhrFdxQ3Ww2o6urC8XFxSgtLQUAOByOgATt7OxEXl4erFYr9Ho9nE4nMjMz2RVfKBR6FfEEAgG74vN4vBTx1x4S/oGlinEJgMfjYVfxc+fOYXJyEo2NjcjIyACAkJV2Ho8HmUyG/Px8VFRUwOPxYGFhAXq9HufOnYPL5UJWVhbkcjnkcjkYhoHL5QIAMAzjteKniJ8CkCJ6XEEIgdvtxvDwMKRSKc6dOweBQIDt27dDIFj+p+aG78HA4/FYUgOA2+1miT81NQW3281+PysrCwDgdDoBpIifwiJSRI8TCCHsKr6wsIDx8XFs2LABhYWFy36WYRgwDBNwZQ/2PWCxOJednY3s7GwAi8Sfn5+HXq/HxMQECCEp4qfghRTR4wC6N+7xeDA2NgadTofq6mq/JE8E+Hw+FAoFFAoFgMUCICX+2NgYGIaBXC5HdnY2MjMz4XQ6odVqYTKZUFxczOb4fD4/RfzzFCmixwBuwc3hcKCrqwsZGRkoKSmBUCiM+rihVvRQEAgEUCqVUCqVABZX8/n5eWi1WoyMjIDH40EsFgMACgsL4XQ6vVZ8WtgTCARs9JHC2kaK6FGCuzeu1WoxMDCAjRs3IicnByMjIzFLW+MpjRUKhcjJyUFOTg6AReJPTExAp9Ohvb3dKxXIyMiAw+GA3W4HsFgfEAqF7IqfIv7aRIroUcDtdrP5+NDQEEwmE7Zu3cqukrGuyIkmklAoRFZWFhiGQVVVFRwOB/R6PWZnZzE4OAiBQMASXyaTscRnGAY8Hm9ZqJ/C6keK6BGAG6pbrVZ0dXUhNzcXW7Zs8SJnPIiezGYXkUiE/Px85OfnAwCr2Dt37hyMRiPEYjFb3KMrvsPhAIAU8dcIUkQPE3Rv3OPxYGZmBqOjo9i8eTO75cVFsokab4jFYhQUFKCgoAAAYLPZoNfroVKpYDKZIJFI2OJeenp6ivhrACmihwDdG6ehel9fH9xuN7Zv3x6w4LYWVvRIji+RSFBYWIjCwkIQQljiT0xMwGw2Iy0tjVXtpaWleRHf7XaDz+cjPT09RfwVRIroQcDdGzeZTOjq6kJZWRmKi4uD5tE8Hg8ejyfosU0mE4RCIZvXrwSiqQUwDIO0tDSkpaWhqKgIhBBWqjs2Ngaz2Yz09HSW+AsLC7DZbCgrKwPwaXGP6vRTxE8OUkQPALo3/sEHH6CkpATnzp1DU1MTZDJZyN9lGCYg0T0eD/r7+7GwsACPxwNCCLKyslhi0C2ttRL6MwwDqVQKqVSK4uJiEEJgNpthMBgwMjKChYUF9oFGW3LtdjvsdjsIIV5hPn3vKcQfKaL7gBuq06KbyWTC9u3bwefzwzpGIKJaLBa2YaWqqgrAIvFp1xoVtxBCIBaLkZWVteZWPIZhIJPJIJPJ2AekxWJhdyh8W3J5PF7KhCMJSBGdA+7euMFgQG9vL4RCITZv3hzRcfwRfXZ2FkNDQ2wBjxb2+Hz+MnFLb28vDAYDZmZmIBQKoVAo2D3ueN34yYwYJBIJSkpKUFpa6tWSOzAwwJpsUOIzDJMifgKQIvoSuDLW0dFRaLVatLW1ob29PeJjcYlOQ3Wr1Ypt27ZBJBIF/V2hUAipVMpKWu12O3Q6HaampmA0GtnCl0KhgFQqjenGTwZpfBt3GIZBZmYmMjMzUVZWBo/HA6PRCL1ej97e3mUtuQzDwGq1ssdIET86rHuic/fG7XY7urq6IJfLsW3btqjDZkp0bqi+adOmsG9K7oNCLBZ7Vbxp4Wt0dBRms5kNg7Ozs5GWlhbV9SYShJCgf0cej4esrCxkZWWF3ZKbIn7kWNdE5+6Nz83NYXBwEJs2bWLD6GjBMAxMJhPa29sD7rVTON0eaM1OKKRCiATBHyz+Cl8mkwl6vZ4Ng+lqmJ2dHTJ6SAbCbcWliLQll0v8mZkZFBcXp4jvB+uS6NyCm8fjweDgICwWS1ihdSh4PB5MTU3BZDLhggsuCHo8QgiOdamhMtiQlyHCdS2F4POCt7BywTAMMjIykJGR4RUG63Q6qFQqlhTcij733MlApET3RbgtudnZ2ZiamkJhYaHXip9y31nEuiM6N1S3WCzo6upCQUFBRKF1INBQXSaTQSqVhnxouDwE5+ZtyE4XQm1ywO7yQCoKr7LvD9wwuLKykiWFTqdb1q7K9aBLJDweT1x3DoK15FqtVrS3t3u15LrdbtY/n/bir0firyuic0P16elpjI+PY/Pmzaw5QyzgVtWp26s/uD0EJrsLEj6BkM/DrhoF2icXcGFFNkvyeO2j+5LC6XTCYDBgbm4Oc3Nz7HloRT8RW3mxruihwG3J1ev1aGpqWtaSS4mfkZHBEh9YXyYc64LovjLW3t5eAAho8eTv9wPdAP6q6nq93i9R3R6CF9tVGNdZsSFXiivrctBQlImGokyvn0uUYEYoFCI3Nxe5ubnIzMyE2WyGRCJhm1ckEgkbJqenp8flpk800X3P5a8lV6/XQ6PRYGhoaFlLLnXpBc5v4p/3RKcy1tOnT6Oqqgrd3d0oLy9HcXFxWL9P5az+xDKBquoBBTMON8Z1VhRkiNE/a8JlG5UQ8lfuRhIKhWzzCtWw0zCfK2VVKBRRV/STSXR/EAqFyMvLQ15eHgCEbMn1NeE4X9x3zmuic/fGDQYDenp60NzcjPT09LCPEYi0vgIY39/hSmA9HgIej4FMzEdTcRY6VQvYUSGHgOf/plkJCSzVsBcXF3tJWfV6PQYHB2Gz2VhhS3Z2dtga/WQSPZzzhNuSG4j4vjr9tUL885Lo3IKb0+lEd3c3CCHYsWNHxHmob4NKOAIYSlSn24OX2qcxqjXjyvo8tJTK8dn6PFy+KRdutytk48tKgitlLS0t9RK29PT0sPvbXK95f0gW0aN9MAZqyaU7J/5acu12O86dO4f8/HxIpdI1Ybt13hGdK2PV6/Xo6+tDbW0tbDZbVMUmLtHDFcBQomuMDgxpTFCmi/D+sA4tpfKlYzJwuUhAEqy2NlVgubDF3zYXXe2zsrLYVCdZRI/XLkK4LblqtRp5eXle7jt0xV+NvfjnFdHpCk5lrHq9Hlu2bIFEIsHQ0FBUNx0lXbBQPdDvKNKFyMsQQ2Ny4OJqBfv9ubk5tiAolUq98uBkrgix7m/7bnPRiv7w8DBb9OLq1hOJUAq8aBCsJddqteLs2bNeLbncXvy7774bDz74IDZt2hTOeX4D4BoAakJIw9JrDwH4ewCapR/7HiHk+NL3vgvgDgBuAPcQQv4n1DnOC6L7Tirt6uqCQqHAtm3b2Js5WFEtGBiGwdDQEJxOZ9iCGkp0iZCPWy8sg8XhRlba4hilkZERVkfP5/PZG4d2dmVkZIAQwk51WSsQCARe1W5u0au3t5d9oNHcN94PtHjv1/sDV5l47tw5bNmyBRaLhW3JtVgskMlkGB4ehk6ng0QiCffQvwXwXwB+5/P6zwghj/lcQz2AQwA2AygC8L8Mw2wghLiDnWDNE527N063UOrq6tiVhiIaolssFuh0OpSUlKChoSEqrbqQz0NWGg8Oh4MV02zduhUejwdutxvp6elIT09HSUkJmwePjY1BpVJhdnbWS9kW6UNqJUGLXvTvJxAI2BDYZDKxKyHV6MdK/GQQ3Rd0dBZtyaWS5HfeeQf9/f3Ys2cPtmzZgp///OdBo0BCyLsMw1SEedp9AJ4lhNgBjDIMMwRgO4ATwX5pzRLdd2+cVoYDrbrhuL5wQUN1uVyOwsLCiPXa3Bx4fn4eXV1dqK2tZbd5qOkE97g0D1YqleDxeMjLy2OVbSMjI17hcqwtq8mWwPqGwPQh6tujrlAoonLdSTbR/f39qCT561//Oo4cOYK//vWv6O3tjSU6u5thmFsAfALg24QQPYBiAB9yfmZq6bWgWJNE51o80UmlRUVFqKurC3jzh0t036r64OBgxKSgKzohBJOTk1CpVGhtbWXnnYcL30EMdCtIpVJhYWEh5vx+JdpU6XlpJMPtUdfpdGxFn9ucE84wjJVY0YPB6XQiLS0NW7ZsifYQTwL4FyxONP4XAP8O4PZoD7bmiM7dG5+ensbExAQaGhqQmZkZ9PfCIbq/qnowW6hAYBgGbrcbHR0d4PP5EbnT0N/393DhbgXRwhB3VaT73AqFYlV0rgHhVd25Peq0VZVW9CcnJ70aVwKlMMkmeqIfkoSQWc65/i+Ao0tfqgCUcn60ZOm1oFgzRKf5j91uh0QiQU9PD3g8Xtgy1lBED1RVjzTkBxYfGPPz86ivrw9bgRcpuIUhbn6v1+vR1dXFdq4pFIoVze+j2eng8XheHWu0os9NYej3MzMz2c8oWUQPFeHFY0uRYZhCQsj00pfXAuha+verAP7IMMzjWCzG1QL4ONTx1gTR6d64Xq+HWq2G0WhERUUFioqKwj5GIMKGEsBEuqc9PT2NkZERtmc8GkQTRfjb5/YlB9eSKpk5eqwE9FfRp1ZbAwMDEIlEkEgkfuseiQC1sA6GSK6DYZg/Afg7ADkMw0wB+CGAv2MYpgWLofsYgK8sHbebYZjnAfQAcAH4eqiKO7AGiM7tG9doNJibm8OOHTsiznf9ET0cAUwkuX1fXx/sdju2bt0alQUVRTxuVF8vOofDAZ1Ox0o9AbCWVYncv08E8UQikZd+3WazYWJiAvPz8/j444+9tvJitdvyh1BEd7lcEUVQhJCb/Lz8VJCffxjAw2GfAKuY6Ny9cYfDge7ubggEAuTl5UVMcmA5YcMVwPhW0P3BarWio6MD+fn5qKurYwtxwUBvPqfbg1mjHRliAbLSPi06xXvFFYlEXvk9bVwZHh6G1WpNWH6fjL53KlMVCoWoqKiAxWKBXq9n97a5Gv0I9rYDwu12B41SaEPQasKqJDp3b1yn06G/vx8bNmyAWCzG+Ph4VMfk8/nweDwRmzWGCqM1Gg0GBgZQX1/P5pRA+ET9aMyA/lkzxAIe9jXlI0OSeF93hmEgEokgEolQXFwMj8cDk8kEnU4X9/w+mRJY2mTC1SbQ2o5Op0NfXx8cDoeXRj+ah1ooPQb18ltNWFVE97V4GhkZwfz8PCtjNZvNcLtDpiN+wePxYLFYMDw8jPz8/LAdZQKt6IQQDA0NwWAweE1SBSILvfVmJ9KEPNhdHticbmRIkvORcAnI4/G8qt40v6cmlLQ4RvfvI8m5k9nU4u+6uHZb5eXlrPkkddb1eDzLBmiEQqjQPbWiBwF3b9xms6GzsxM5OTnYunXrMhlrNDCbzdDpdGhpaQmpVefC34rucDjQ0dGBrKwsr+sLB4QQGKxOSAQMGAAXVmWjfXIeeRli5MhE7DmTUSwLdN3+8ntuK6dEImELe6Fy4GSv6KHgz3zSd4AGtznH3zFDEd1kMqVWdH+ge+O0eWRkZGRZKAws3oCRrujcEUgVFRURkRxY/nChbZobNmxAbm5uRMcCgA9GdOiYWkCmmMHn6pTIkYlxRV3kx0kmuD3c3P17bg5MFXu+oXAyiR7OauwLfwM06O7O4OCg3wEaoXJ0KvFdTVhRovuG6v39/XA4HAEnldI8O1xYLBa2SEaH/EUKuqITQjA+Po6ZmRm0tbVF7bgypDYjje9Gx8AUsi1TUKYLWZLQZo+VMJ4IF77791xVW3d3N1wuF5vfUy++1bSih4KvIw13gAbtT6euM4EeYrS5ZTVhxYjO7RunMtaSkhKUlJQElbGGu6L7VtVVKhXrFBIJ6Gyws2fPQiQSYfv27RHfUNwbolrmwhsdKuxsqMClm/Lhcbug0+nYZg+ZTMY6mCQS8XqQ+KrafPN7i8WC0dHRqPL7SJAowYy/ARq0Bfrjjz/2O0Ajkhz99ttvx9NPP62Gd4vqvwHYA8ABYBjAbYQQw1LjSy+A/qVf/5AQ8tVwzrMiROfKWFUqFVQqFRoaGkKK/8NZGQJV1aPN7+12OyYnJ7Fx48aIBDoUH4/q8NGYHvUFMhQSLdJddvzg4MVgGAZOpxNCgfeNZDKZMDk5Ca1WC71en1B1WyJWWt9Q+KOPPmLbOiPN7yNBMttUMzMzoVAoUFBQsGyAxvT0NE6cOBG2WOpLX/oSnn766avg3aL6JoDvEkJcDMP8FMB3Ady/9L1hQkhLpNeeVKJTHzKDwYCsrCz09PRAIBBErAUPBG6o7ltVj4boKpUKExMTyM/Pj4rkHg/Bh6N6KNJ4+J9P+nHztiK0tNSxeZ4vaIU4NzcXaWlpKCsr81K3CQSCZWH+agePx1uW39M9bqvVCplMxhI/llnxyZTAut1uiMVir4o+HaDR0dGBw4cP469//SteffVVPPLII7j88ssDHmvXrl0AoOO+Rgh5g/PlhwBuiPWak0Z0ujdusVgwPj4Ou92O6upq1qsrVoQSwERCdLfbjb6+PrhcLmzcuBELCwtRXROPx6BExuCD3jE0VhWjfkN1WOSkObrv6kjzRW6YT4kfC0mSBW5+Tw0ofbvWAk2WCYVkE93fuXg8HlpaWtDc3IyDBw9i3759UaWLPrgdwHOcrysZhmkHsADgQULIe+EcJOFE5xbcCCGYnp7G/Pw8LrzwwqgUbr4IVwATLtFpVFBYWIiysjJotdqo8llavCtwz+If925FTpYM/ACur+HCN1+kQhAuScIN81dDsS9Yfj82NhbR/n2iiL5gc+HZTxabww5tLUamRBC2YCbW+5thmO9jUc/+h6WXpgGUEUK0DMNsAfAywzCbCSEhV6KEEt1XxtrZ2Yn09HRkZmbGheTBQnVfhEN0uqXCjQqiCfmpFsBoNGJHgLQk2LWGU3X3FYL4NrGEE+avttA/nP37QCOjEyW1fXdQi1MT8wCAoiwJrmnMD0swE2vVnWGYL2HRR+4ysnQzLLnK2Jf+fYphmGEAG7BoTBEUCSM6V8aq1WoxMDCAjRs3Qi6X49SpU1Efl5JArVaHbdYIBCcsHbRoNBqXRQXhaN25sFgsOHv2LPh8PhoaGsL+PS6iuWHPtzAf8L9/Hyi/T4Q5JADkyETgLX0eVNAUiuixbq8xDHMVgO8AuJQQYuG8ngtARwhxMwxThcUW1ZFwjhl3ovuG6kNDQzAajaxMlH4/WjAMg56eHtjt9oimnwYiut1uR0dHB7Kzs7Flyxa/bijhruhU997Q0IDu7u6wficQYg2tfcN8qgzs7e2F0+lkZa+5ublrwosuVH5vNBrB5/ORm5sbcX7vC5XBhlmjHZsLM7CjQo5s6aKmY0Pe4pZZPAUzN910E7Do98ZtUf0uADGAN5fuR7qNtgvAPzMM4wTgAfBVQojO74F9EFeic2WsVqsVnZ2dyM/P9yJQLOGVxWKByWRCTk4O6uvrIzqWP7ENvfE3btzI9jr7IpzQnRCC4eFh6PV6r4dPtKqweAtmGM4whrKyMrjdbgwMDMBiseD06dPsWCKlUrlmqvm++X17ezsUCgUMBkPE+T0XaqMdP/6fIdicbmwrl+Orl5RjY7736hxOjh6uT9yf/vQn/OlPfyr0edlviyoh5AiAI2Ed2AdxIzohBHa7HYQQzMzMYGxsDPX19RFLTgOBVtUzMjJQXFwclWsJJSxt01Sr1WzDTCCEIp3T6URHRwcyMjK8dO/091Yjafh8PtuLnp+fz3rRTU5Owmg0Ij09nQ3z49HWmQwQQqBUKtlRSzS/n56eRn9/f9D8ngu9xQmHywOxgIdz8/496cMJ3VebXXfciE73hnt7e+HxeMK2eAoF36p6b29vVKE/VdU5nU50dXVBIpFg27ZtIZ/0wVZ0o9GIzs5OVFdXszcYRSyrcrIlsL5edDTM7+vrg9PpRFZWFpsLr9Yw37fq7jtjzZ8+35/rbG1eOq6sz8Wwxowb2/xrJ0JV+M/77rWuri7k5OREteL6A62qFxQUsFX1aBVuPN6it/rJkydRVVUV9v59oGLcuXPnMDY2hqamJr+Fl9WsVwcC1wD8hfnUcpqGxOFaTifz/YequvsOkOTOkXtrzIazWgaX1ihw68WVuKHVN5L2RqhIze12x2WRiyfiejWtra1hfbi0wBXsqRhIABNNBxuwSEyLxYKLLroo4mmqvkMWqYFBsKglVLXebrfDYDBAJM3AGZURaUI+mksyIeTzVrxNlQvf0UvUkmpqaipkmJ/s1CUCjzY2v88tLMETnZ3IkhH874AOteJ5yEQ8NoKh5pPhnme1PtzjSvRwb1BKVn9EDyWAibSDze12o6enB4QQSKXSiEMqLmFpc0teXl5QD3kg+N/CYDCgu7sbMpkMpyYGMGvjQ5wmRYawCBsKs/3+zmqBryVVoDBfLpeznXjJQLTnkQh5qM1Lx5DGgk3FCuzcUQu3y+llPikWi9mHWTj6j2S+73ARd6KHA0p031ZUf6G6LyLpYDObzejo6GC74k6cCDq1xi/oik7DvE2bNrF71eH8ni/oQIeWlpbFcbs5FnwwqIHVYsbs1ATmp4aQlpbGCo1WWwjIRagwn2EY2O12LCwsxDxZJlHgMQy+c0U1VAYbCrMk4PMY8H3MJ2l+Pzo6CrPZzDavBNIkRLKqB+heU2BR9lqBRQfYA4QQPbP4B3wCwOcBWAB8iRByOpzzrMhd5C/8DtesMdzQnR6voaGB7YuOBgzDwGq1YmBgIGSF3vf3uB+4x+NBb28vbE4XMsvqMGvxoCiDoCZHCrmkEAI+D9lSITuYQqVS4cyZMxHlxJEgESGmb5hvNpvR2dkZVpi/khDyeahQBl6pufm92+3GyZMn4XA4vObE0yjG3wIWDAG61x4A8BYh5BGGYR5Y+vp+AJ/DokimFsAOLE5z2RHOeVac6JGaNYYqxnk8HnaPOJCBRbhwuVzo7u6G2+0Oq0LPBZfodrudDfmtyMSHowZ4iAeXbVCgWJ6G3IxPVwUqZFlYWEBdXR2bE09OTnop3JRKZcxurYleYYVCISQSCerr60OG+bFGLsn0qReJRCgvL2elx3SqTFdXF77//e/D7Xbjb3/7G3bs2BHy/vPXvYbFQYp/t/TvZwC8g0Wi7wPwuyVJ7IcMw8gZ70EPAbGioXs4oXqg3/UHm82Gjo4O5OTkYOPGjTHdyDTsLy0thdlsjlheSYlO83Ea8mvG9ABDAAKEc2/65sQmkwlarRZdXV3weDzsFlEgf7OVBLcYF89q/krCdw+dG8VUV1fjF7/4Bb797W/j97//PV544QU88cQT0Zwmn0PeGQB077YYwCTn5+iAxeQSPVzw+XzMzc1BrVaHpVU32VzQmh0oU6SBz+fD4XAs+xmtVou+vr6wc+hgoM0tNOyfmJiI+BgMw2BmZgazs7Mo27AZ4vTFLbjmkixIhDyI+AwKM/0/7QMV8riNLBUVFXC5XF7+ZtTUIdyiUaIRrOoeSzU/kvPEG6HEMhKJBJWVlfjVr34Vl/MRQgjDMDGHK0knOi1sEULCCtUNFie+fbgTBqsTV23Ox54aideKTgjByMgItFptRDm0P1Bt/vz8fEQ6el/QIYFOpxNpxZvwWp8eIsEC9jcXQi4VorE4i236iQUCgQC5ubnIzc31Mm0cHByE3W5nRzD7C42TQY5IzhGomt/f3w+73e7Vguv7XlZDLzpFnMQyszQkZximEIB66fWoBiwCSQ7daahOVUvhEGlSb4XB6oJUxMdHo3rs31jC5ui09VUmk2Hr1q1hfdiBbj56rIyMDL/NLeGC5uNCoRC1tbX4UGWDRMiH1enGgs0J+VKDRKxtqv5+x3foIm1bHR0dZbvbaNtqMhCL1p8b5nPfi78wP5lET9LwhlcB3ArgkaX/v8J5/W6GYZ7FYhFuPpz8HEjiis6tqhuNxrC3yDbkpaOxOBN9M0bcdmEJu702Pz+Prq4u1NTULJOfBgIt5Pl+UAsLC+jq6vIrZY0E9Jo2btyI2dnFqbdbyuR4d1CL0uw0FGSGX7GPFVwyAMvbVoHF1SkzMzNhI5bjFTX4vhffMF8ikcDhcMBqtUbtzhsuwvF0j2RFD9C99giA5xmGuQPAOIADSz9+HItba0NY3F67LdzzJJzo/qrqFosFdrvd788Pqk34c8cMtpbLsas2B2IhHw9ds4n9vl6vZ6ucra2tEeWiVGzD/aCoL1xzc3NMIRc9Dr0mtVoNj8eDnCwxrmuN3G8u3lVk37ZVqu7jFvWUSqVfJVi0SFR64Bvm0xnx1KAxWJgfKTRGO3QWJ6pypBDyeXE3nQjQvQYAl/m+sFRt/3rYB+cgoUQPVFUPVjn/52N9WLC68O7gHGrzZCjM+nQVdLlcGBkZgd1ux8UXXxxxgwV3a44rZd22bVvUNwR9kNH+eHqc1dzUwjCLs9fkcjmUSiVcrkXLaaoEk0gkbJgfywqZLGdWiUQCmUyGzZs3s/URbphPH2KRVvPnTA78+19GYXO6cUFFNg5tLUqKu0wikLAcPZgAJhjR04R86MxOSIQ8CDgeayaTie1v5/P5UXVR0bCfSlnp9NNoVx2Hw4GzZ89CqVQu2x5c7U0tXNAptXl5eSCEwGKxQKfTLVshI+1eS+aUFnoeSmw65Ye2q6pUKiwsLLDtueE8xAxWJ+xON6QiPlQGK4DwinFUUbeaEPcVPRwBDJfoDpcHPAYQ8Bf/eP+8pw7vDc2hvjCTFZJMT09jdHQUDQ0NEIlEMBgMUV0bj8djjQfr6urYnC8c+N60NB8PNJppNa/ooc5Np5GWlpay9RCtVovR0VHWi06pVCI9PT1kg0eyiB7oAeRrR+X7EOO24PpGdZVKKS6pUWJcZ8H+5gL2XMGiv9XYogrEmehOpxMff/xxSAEMJfonY3r88/F+pIv4eOyGBhTL01CQJcGNW0oAfPrQsNls2LZtG4RCIRwOR1Tda/RDHh8fj3gbztdE4ty5cxgfH0dLS0vADzUUWbVaLSYmJtjwOdFFpGjhu99ts9nYsJg6qdAw31cFthIrejD4PsS4Yf74+Dh4PB5GrRJ8ovbgoppcXNOQh+tavNuZqad7IKyL0F0oFKKhoSHkG6VE/3PnzGIxxeLEyXEDiuWf3uxWqxUdHR3Iy8sLO78PBJfLxc79rq+vj3ivnZvbDwwMsNFKsCd7IKJTG+jZ2VlUVVVhYWEBAwMDcDgcbIgslUoTvqJHS0KJRIKioiIUFRWBEOI1ghgAq9TLzMxc8ZHJoeAb5lttdvzqhW6IGBeePzGIbPsMKgtzvML8RBtDJgpxz9HDeZOUrJdvysWpCQNkYj6aizPZ78/NzaG/v9/vRNVIjSeolLWsrCxq91Mejwe73Y6enh4oFIqw5LX++tE9Hg96enoAAFu3bmUbImiIbDAYoNVqMTQ0BIfDgampqVWjcvMHhmGQlZWFrKwsVFZWspNIqX0TnSFns9kS2sQSr6KfRCxCfUk2hjRm1Cjk2FxbCNOCwSvMt9lsQZuk1kXoDoSXXwoEArhcLlxSm4PG4iyIBDxIRXwvk0XqGuvv+OGCSkMbGxuRmZkJk8kUlTuN2+1Ge3s7Nm7cGPaoZN+/g91ux5kzZ1BQUOB3sivXrpmKdwCwKjca4idiBlu8wJ1ESgiBSqWCRqNhm1gSNUcuFqK7PAR9MyZkSgQoU6Thq5eUY0JnRVGWGOliAbKzMrzC/IGBAQwPD2NiYsKv+WS0oTvDMBvhPZGlCsAPAMgB/D0AzdLr3yOEHI/0+CumdaeEo0oxh8OBjo4OZGVleZksRoNAUtZobKimp6dhMpnQ1tYWUfGO249OC3dcHX6ohyGfz2f76LkFsZGREQiFQvahsJpXe7FYDLlcjsrKymUDJujccYVCEbKoFwqxEP3PHTN4vWcOAj6D+y6vQqVSitq85SsyDfNlMhkqKiogFAq9hkukpaVheHg4amNIQkg/gBYAYBiGj0Vp60tYFMX8jBDyWFRvcAkrQnTf1Y52eAWqYEcC7gPDV8oaCdFpu6vVakV2dnbEoSd9j3THIBJxj+/fx7cgRjXtQ0NDbCipVCoj2v5Kttbdd8AELerR0cqZmZnse4i0tTgWok8v2CHgMXC6PdCaHagM0pcOfJqj+6vmv/fee+jv78fnPvc5XHLJJXjssceiLbJehsWpqePx+oxWJHSnIIRgYmIC09PTEavc/GFhYQGdnZ2ora31u5cZLtHpw0Iul6OlpQUdHR1RhfwzMzNgGCZujrgUXCMEX027QCDwWu1Xst0z2MOEW9TzeDwwGo3QarWYnFzswqQPtszMzJDvIRaiX9tcALvrHHLSRWgqygz58/6KcbSa/7WvfQ3PPfcc/va3v+H06dOx1CUOAfgT5+u7GYa5BYujl75NCNFHesAV8ykihLDNH9u3b4+5mEIlqMG2vMIhutFoREdHh9fDItJ9bZfLBZVKBbFYjLa2tojJFsn5fHXgNpuNDfGtVmvQfeJEI9yogcfjsUU9YHGbVqfT4dy5c+jr62NbVpVKpd+6Tai97WAozJLgm7urwv75UIIZj8eDtLQ07Ny5M6rrYRhGBGAvFqe1AIsuMv8CgCz9/9+xOGE1IqwI0Y1GI8xmMyorK6OaO851kaUWTS6XK+SWVyii0zC7ubnZq6ASSchPZ69lZWWFtRr5QyyrsEQi8VrtaW4/NjbGrvYKhSIpgpxo0wOhUOgVFtOWVe7UWKVSiaysLLbek8zutUDnitPf9HMAThNCZpeOOUu/wTDM/wVwNJqDJiR0Dwbqhy6VSlFYGNw/OxAo8agENT8/H+Xl5SHPHci0ghCCgYEBmM1mVpjje75wPkRqftHQ0BBRh54/xOOm8d0nttvtrMLNYDDAZrPB5XIlbLWPRx3AnzONXq/H3NwchoaG2EKrQCBISt0hlMNrHBxgbwInbPexiroWQFc0B03aik5XXqfTie3bt+PUqVNRG91Th5rh4eGIpKz+Vman08muwK2trX4/pECOrhS01jAzM8NuC5rNZrhcrsjeGOd8iYBYLGbz4v7+fqSnp2NhYYFVhdHcPtYqOEUiVlo+n4+cnBx2Vp7VakVfXx9mZ2dx7tw5ZGZmsqnMSqQqsTygGYZJB3AFgK9wXn6UYZgWLIbuYz7fCxtJ+UvQLrbCwkKUlZWBYRgIBIKwie72EHw4qgMDYHtFNmw2G0ZHRyOWsvpaRQcbqeT7e8FGLlPfeK6BZKx69USH1nSlLClZlBvTfnUqbaVV8FgIk4wVNi0tDTKZDDk5OcjKysLCwgIrL2YYhs3t4+VDF+xzcTgcMY2kJoSYASh9Xrs56gNykPDQnYpWYpm48kavGk+/Pw4AuLyEYJPMg6amppikrDMzMxgZGQk4UomLQKTlurv6pg5roamFe73cfnVuFXxiYoIt+EU6bTWZWncejwcejwe5XM7eZ/586OjDKxEz4lerKg5I4IpOCMHg4CAWFhYCTlwJexCDzQW3xwOLxQxBWgEUivSoiEBX9IGBARiNRr/5eKDf813R6VZeoJHLochKHWIzMjJWZEhDsGvjVsGrqqrgcDhY0ptMpqCNLL7nSCbRfeHPQZdb1KPKNrlcHlaKESoVidRdJplIyB1mt9vR0dGB7OzsgP5rfD4/7Bx2Sz6DjgwbijeW4tDF1Rgb6o9qX9vj8UCtVqO4uDiibS9f0tJoIFT3WqBrdLlc6OjoACEENpttmdJttVkdi0QiL3caGh7TRpZA4fFKE50LroNueXk5XC4XDAYDNBoNhoaG2LFLtJOQYRZFNBqTAznpIogE8XeXSSbiTvSFhQVWF+5vpaMItKITQvDbExM4NWHAoa3FyPPoYDQa8U8HLmZXj2g62EwmE3p7eyGVSlFbWxvR79IVnUpraZQSbDULtKJbrVacOXMGZWVlbIhJ942p0k0ul8PlcoW8sVYC3EYWAMsGTGRkZLCEWU1E94VAIFhW1KMNRTabDZmZmXhjkmDaDJQppPj7nWVhGUOumxVdIpGgra0tpPQvEFnHtBa81j0LiYDBvx/vxKOfK1m2+kaqWZ+dncXw8DA2bNiAmZmZ8N8M53xOpxNnzpyBVCoNKxrwR3Qq9a2rq2PdSz0eD9sMQguC8/PzmJ2dxalTp1hbJ6VSGfcOsHiQ0Dc8prl9R0cH+9ASi8UJHcoQj+p+Wloa21vg8Xig0ekxdGoEaXDgrF6PvgI38rODv4d1taKLxeKw/uiBiK5MF0HCBzS6BbSWK/yuvuGu6L4rsNPpxLlz58J7Ixw4nU6oVCrU1taGLfDxJfr09DTGxsbQ3NwMsVjM7jwAYKMFSvy0tDSIRCK0tbXBZrNBr9ezHWDU/yzWySyJKPYxzKfjiCsrKzEwMAAej8cWw2QyGZvbx9N5Nt7beDweD/k5Sly/HXh3SIddxTIoM8DaUXV3d/sdixVLjs4wzBgAIwA3ABchZCsTYNhiNMdPumCGgpKVEIIpgw3KdBGkIj4WtLP4YrUL8uIGtJT7D/3DmajqdDrR0dGBjIwMdgV2u90R5/a0altQUBCRio+KbLgPm7a2NvB4vGWiCnqT8vl8mEwm9PT0oLq6GsDig5O7YhoMBnYnQyqVJrSKHCu48lx/46QoWaJVEFLEi+jzVife6NUgQyLA5ZtycWmtEpfWfrrblZaWhtnZWRQVFS0biyWRSDA/Px/riv4ZQsgc5+tAwxYjxopp3fl8PpxOJ3713hje6FEjWyrElxsEkPAJLt+5I2guFGpGuslkQkdHB6qqqlBQ8KkVUKQhP224qaysjGqggtvtxtmzZyGRSNDc3MzmrIFuaq1Wy46CojcMd7V3u93ejihWK/R6Pbq7u+NKnHiBm6Nzi2EVFRWsSQVXz05TlEhX+3CtpELh9R4NTo4Z4AZQkClBS4l3kwvVffgbi/X666/j0UcfRUZGBrKysnDdddd53XtRItCwxYixokS32Wz4YMSANCGDSY0BJhRje9OGsKSsgXzh1Wo1hoaG0NjYuKwvOFyiUxWf2+3G1q1boVarYbVaw39zWCxSqdVq1NbWstXqYCSfnJzEzMwM2travG507movFApZwhNCkJaWBolEwh6fup329fWxIpJAW2ArPZLJ16TC3/DISHzm47GiZ0oEcIOAzzBIEy4/nr/IgY7Fuvnmm2EwGNhFiEaBEYAAeINZnLP2K0LIfyPwsMWIsaJEd7lcuGZTFp56fxytZUpc0lQbdreTL2GpO43BYMDWrVv9rgrhEJ3q53NyclBRUQGGYcLWulPMz8+jr68PmZmZbMgdrBGCesa1tbWFrLJTYQjw6WpPUxJuvzd1O6VbYPR7kQheYkW4DxPf1Z76zFNLqlDda7HUG+wuDxwuz1K4noOCTDGkIj42+DGfCMcvrrm5GTfeeGM0l7KTEKJiGCYPwJsMw/Rxv0lIbMMWVzRH1+v1qODx8PLXLoqoQd+3GEf3pdPT04POTQtFWNqi6muAEUrrzgXdY6+vr0d3dzcmJyeRm5vrt9fe5XKhs7MTmZmZ2LAhdCTj7/0AYG8+utp7PB6vOWw0vKSCl8zMTNhstpiabsJBtKaNvj7zZrMZWq0WPT09bPoSj6kyWrMD//HOGIw2F27aWoRt5XK0lgb2gwtnHFO0OTohRLX0fzXDMC8B2I7AwxYjRkJW9FCqMJfLheHhYTidTlx88cURf1jcYpzZbMbZs2dRWVkZdTcc8OkWnG+LKj1fKKKTpamuer2eXZnb2tqg1WrZSS4KhQI5OTmQy+WsuUVpaWlM1+17nf5We+7UVYZhYDQaMTAwgP7+fohEooSJdeKRO3O716jQRa/Xs1Nl0tLS4HQ6YbfbIy5IjuusMFicSBfzcXLcgG3l8qA/73a7g2ononWAXWpm4RFCjEv//iyAf0bgYYsRI+mhOy2UFRYWYn5+PqonMs2DfM0fowE35A8kggn14HK73ejq6oJIJEJLSwsbstJVlbq86nQ6zM7OoqenB06nE6WlpTHPcg+EYKu9TCaDRCJBeXk5xGLxMqMK+jCKRaxzYlSP/3jPgMs3S3DHzvjtLfuOirZYLGhvb/eStYa7/VidI0Vehgh6ixO7akJ3QLrd7qBahhgEM/kAXlp6KAoA/JEQ8jrDMCfhf9hixEgq0WlY29jYCKFQCJ1OF9VxeDweDAYDLBZLTHPMqd+7RCIJGfIHWtGpu2thYSHrde6v6Mbn85Gbm8uaQWzatAlGoxFnz54FAFallagcmq72tAdBIBBAJpOBEMKaPABgfdqHh4chFovZ1T5S77PvvNQLi92FsRPT+MymAlTlxN/Eklo4iUQitLa2srJWugCEEhtlpQnx3Str4PYQCPnhad1DKeOiNIYcAdDs53Ut/AxbjAZJCd09Hg8GBwdhMpnYVdPpdEaVI7pcLvT398PtdmPLli1R52hcKWpxcXHQnw2U23MbW7KyskIW3cbGxqDX67FlyxYIhULk5OSgsrKSbRoZHR2F2WxGVlYWcnNzoVAo4m6L3N3dDYlEgsbGRrb2wBXrcAUvdrsder3ea8AEtZwO9XeXpwlhdbjA4wEyceJkvNzPhStrpau9Tqfzspv2vX4ew4DHD+/BmsgcPdFI+IpOq9jZ2dle0tFo9Op0GENRURHm5uaiJrler0dPT4/fAZD+4K8YR3P6xsZGtgki0EpMt+t4PB5aWlqWXTe3aYSu+NRYQyQSITc3Fzk5OTGNbaICory8PJSWlrKvBwvxfZ1O5+fn2SaQtLQ0drX0lxv/+otNeOYvHbiitQp5GYkT8wR6uNLVnjtDjutMI5FIvJpYwkE4VfdoVvRkIKFEDzaIMNItK41Gg4GBATQ2NkIikUCtjq4A6XA40N/fH5FpBTd0J4RgdHQUWq2WLboFIzkdxpCbm4vS0tKQYTnX/qm2thZWqxUajYZ156EFvUgksHR6bGVlZchJn8G277i93lSa29PTA4fTiSOjPPRo3fjG7ipcvikX+ZliXFkpwqaCxK5w4arifJ1pLBYLtFrtsnFYwWoToYwhrVbrqp2hlzCiT05OYmpqKmYbZy6xNjW2QpouAQMScTRA56HTkD8S73Caing8HnR1dUEgEHgV3QKR12w2sw420frVp6WloaysjPVL02q1mJ6e9hLF5OTkBHw/RqMRXV1dqKurCyt64SLQak8IYYU6BQUFOKtawF/f6YPd5cGDr/ai0K2GUqmE2+1O+J59tJV930IpHYfFrU34jsMKlaNHu52YDCSE6ENDQzCZTNi+fXtMOSYtlonFYkwKivDky30oU6Th/s/WRiRl5c4xj8YPjcfjweVy4eTJkygoKEBxcTH7oQY6lk6nQ39/PxoaGuIWzvH5/GVqMo1GgzNnzgBYLOjl5uay75GOB25qaopL+2Sg1b4gUwIej4FYyEOVcnHvXq/XszssNMRPRAdbKPKFA9/hErRl1XcclsvlCniuZLXkRouEEL28vDwoCcIBtU2mxbJfPt8BhVSICZ0V5+b9y1/9gfrC1dTUIC8vD1qtNuLGFrPZDIPBgJaWFsjl8pAruUqlwrlz59DW1pawZhOumoy6wMzNzWFkZARmsxkikQg2my0ugzH8gbvaV+SJ8IfbWtFzbgEXV8khFfEhlUoxNzfH7i7QfvV4eNFxES+dOxfcllXuOCzauRZoHFY0ZJ+cnERZWdnbWNxiIwD+mxDyBMMwDyEOM9coEkJ0kUgUdmjt749D8/GGhgbW4ODyTbl46cw0KpVSFMslmPV3MB9Q3TvXFy7Sxha6VZOens5eS7DK+tDQECwWS1hy1nhCJBKhqKgIhYWFGB0dhUajgVKpREdHB8RiMbvax6OnfUpvxd3PdcJDgP882IByhRS1eRmozVuMXKjWm44uoukFFetQlV48nGcT7enOHYdlMBiwYcMG6PX6ZeOwov27Lj3svk0IOc0wTAaAUwzDvLn07Z+RGGeuseeJx0F8EWmrKn2y03xco9FAVroJw/MEzRkEfB6DPU2FuGxTHiQCHni84MfnqtR8RTDhEp1uh83NzaG1tRWnT59GV1cXWwH3zYmpaCY9PR1NTU0rEsYRQtDX17fMkdZisWBubo4V6igUCuTm5iIrKyuq63zqgwkMqs0AgP9+bxwP76vzuoaxsTEYjUYv+2yuWEcmk6G0tJTd96bz12iIHOkMuWTmxTS3547Dmp2dxa233or5+Xn87Gc/w9VXX40NGzaEdbylhqTTALCkjOsFEHy/NwqsWFML4E10mo+LRCKICjfgsbeG4fEAB7YWY1/zokRUKgr94bvdbnR2drLjkHxvgnCITvebGYZBS0sLAGDHjh0wm83QaDRob28Hj8djV0k+n4+Ojg6UlJRENXkmHqDvm+6BcwkslUrZgh5tGFGpVOjt7UVGRgZycnKgVCrDLlBuLsyAWMgDA6Ch6NP6A23QcblcaGxs9Prbc3N7WtTztXMyGo3sDLlwJ8Ymc0qLL7j99seOHcMtt9wCmUyG48ePh010LhiGqQDQCuAjABcjDjPXKFYF0Wk+XlpaipKSEvylTwOnm0DAYzC7EH4+brVacfbsWTa/8odQRHc4HDhz5gzy8vJYIQ3Nx7k5sd1ux9zcHHp7ezE/P8+GxStx49FiY3FxccgHjW/DiNFohEajYUNpSrxgofQNbUUoV6TBQ4DtFXIAn/rbi8Vi1NfXB1UZ8ng8CASCZb323A42h8PhFSJTaauvWGclic6FyWSCUqnE3//930f1+wzDyAAcAfANQsgCwzBxmblGseKhO7UR5ubjF1YpMKQxw2hz4doW/w0fVMRCP2S6p1tfX88aMwQ6ZyCi0ypxTU0N64oSqOgmFoshEonYmW92ux2zs7Po7++HTCZDbm5uRKtktKDDMWpqaoKacfoD1/qpurqaHdlE53xnZ2cjJyfHbyi9reLTvzGNJuRyOSoqKsI+f7Bee9qvThtxqIiIil3oap8soofSfMRiDMkwjBCLJP8DIeTFpfPFZeYaxYpOUzWbzTCZTODl1+K3n2hweR2DzUWZSBPx8eVLKoL+Pl2ZqSfZ1NRUWKaUgVpONRoNO2iChorBim4TExOYm5vz2pOnjRbcVZIKNQK1qsaC+fl5VuEXbVMPF9yRTTT/pEo4iUTCrvbcwhNV3NFtx1gQTKxDnWcZhmHFOr29vbDZbBCJRDAYDDG3rQZDqOp+tMaQSw+QpwD0EkIep68zcZq5RrEiRKeFK4/Hg6Lyajz4xgR4YHBqYh5P3dIaVoMBtaKie53btm0Lq4DjG7oTQjA+Pg61Wo3W1lYIBIKQclZa8GptbV12Y/mukjabDXNzc16tqrQQFstNqdFoWG/5RKixuPknsHgjz83Nobu7Gy6Xi+0QGxkZCUtxF835Af9iHeqjl5+fD41GA4PBgJmZGdakIlpLqmAIp6ElGqK///77AHAzgE6GYc4svfw9ADcxcZi5RpH00J02k5SWlkIqlYLHAGIBDyabC9npIvAiGKrQ0dGBnJwcbNq0KaJ0gRKdOzettbWVPW6gYzmdTnR2dkKhUIQ1vRVYtL/m7slS55S+vr6oCmEAMDU1xdpOJTo1oKC6cdoTPj09ja6uLgiFQqjVahBCQk5uiQX+Vntatc/KykJeXh4YhmF99LgGlDk5OTGLdcIZ3hBN6L5z504QQvxdWNR75v6Q1BWdjhWmzSSjo6MQMh788OpN6JleQHOJHPwQW2fAYi6t1+tRW1uL8vLyiK7Bd+RyTk4OW7gLRnKLxYLOzs6YVi/aqkpD/IWFBczNzbEhPv1eoBWa9s6bzWa0trau2HAHm83GpkqZmZns+6BTWbmpSqJabunfgj5IuVbZaWlpbPqh1+tZu+lwR0n5w1ruXAOSRHQaHs/OzrJjhYFPq+7lSinKleHlr1QEQyuwkYLH48FisWBkZATV1dVeE0UC3ZQGgwG9vb1xy4UB74knNMTXaDTo6+uDw+FYttdNow+hULhi+/TAp38LrqyW+z7obsTQ0BCsVivkcjlyc3ORnZ0dt/yZ/i0kEgmqq6vBMIxXiE//Az4dF8UwDLtATE5OsqlJqB0GilANLat5eAOQBKK73W50d3eDz+d7iTiAT/PscMBtbtm6dSuGhoaimr9msVigVqvZwl0owcX09DQmJyfR2toa90kpXEgkEpSWlrJNFlqtlt3rlslkMJlMKCgoQGVlZcKuIRQogYP9LcRiMYqLi1lBCW0NpUYQVHAUrTSYNhZlZGT4/Vv4C/Ep8dPT01kfPdq2SsdEU4Vbdna2X2luqBzdYrGw9YzViITm6HRfu7i42KsHmoJaPocCLd4JhULWbCKafvbx8XHMzc2hpKQkZA85DQ1NJhPa2tqSOvGU27xis9lw+vRppKenQ61WQ6/Xs6FxMlsiZ2ZmMDExscyOOhD6Z00YVJvxdxuU2LgUNVGFXldXF9xuN5RKJXJycsL2ofd4POzwznBSNn8FPVrU47atMgyDhYUFlvgCgWCZj16icvRkIWF3r06nQ29vb9B97XDIarPZcObMmWUPi0g067RS7nK5UFtbi5GREdZ7zN/KRKMQOnhhpcJkk8nEtphyhzZQoY7T6WTJEq2cNRxMTk6yUVA4D7wJnRVf/sNZuNwEf+6cwa++0OxlBFFeXs4OlpycnITRaERmZiZbmPR3DjoMg/b1R4NwxDrl5eWsWGd4eJidH0d9BwKBDphcrUgI0QkhUKlUIc0dQhGdDiX097AId0WnwxGVSiXKyspACIFMJmO3itxuN7tCymQy1p21sLAwoLouGdDr9WybKzf3S0tLY0N8l8vlFeJnZmayFlTxiEBoukR16+Hm2HMmOzyEgIBApfcfsQmFQi/3moWFBWg0GoyPj3uttunp6XC5XDh79mxc9uopIhHrLCwsYHJyEmazGUaj0a+PXrQOsFwwDHMVgCcA8AH8mhDySEwH5CBhoXtTU1NINVEwsqpUKjZU9BeihjN/jVpBV1VVsT5i1J2Var+dTifm5ubYG9rpdKKiomLFNOvAok3V+Pg4Wlpagj4oBQKBX6snqhWnVfxoagtc3Xqkxb+W0ixc31qI9skF/MPfha4pcAuTAFjtweDgIKxWK5xOJ2u1lSgEE+tkZmayElyFQsE+hOnQS6fTGdOARQBgGIYP4BcArgAwBeAkwzCvEkJ64vH+mBBkjHoyhNPpDBlam0wm1kudPSEh6O/vh81mQ0NDQ8CVaXJyEoQQlJWV+f0+3cpraGgIqXQDwN5YpaWlMBqNMBgMrJQ1JycnaTn6+Pg4tFotmpqaYjontaCam5uDy+Viq/jh5MNc3XpNTU3InyeE4N1BLawuDy7flANBnKrrTqcT7e3tUCgUrJ+7VCplV/tkDZZcWFhAV1cX6uvrvR6a9OH6y1/+Er///e/R3NyMAwcO4Atf+EKkD1eGYZgLATxECLly6YXvLp3jJ/F4Dyva1CIQCLxWZafTyRpJbty4MegNFmz+Gh2O2NraCqFQGLToBiw+NGZnZ7Flyxa20ESlrGq1GuPj4zGvkKFAV1Cn0+nXQDJScC2oaIhP82Hq3a5UKpcVmNxuN1vwCle3/lq3Gv/y2gBAgJE5C762K7zfCwbaXFRZWcnacFHZ9NzcHDo7O9kxVLm5uQmbv242m9Hd3c16Gvjz0bv//vvx/vvv43vf+x5OnjwZrb6hGMAk5+spADvi8iawSrrXgE8bSqqrq1mP8WDwV4zzeDzo7++Hw+Fge6FDyVlpeOrb0sqVstbU1LArpL+8PtYbjBb/pFJpVKOZQsE3xDcYDKwbjVgsZqMWPp+Ps2fPorCwMKJc+Ny8DS73Uk5uiGwYpT9Qr/yamhqvARcMZ2oLnchKm6JoQS+eNQrqOtzY2OhlXAJ4V/I/+OADjIyMoK6uDrt27Yr5vIlAwogezs1KBy1SR5mmpqawK5e++T2NBuRyOWpra0OKYOjcs6ysrJDRA+C9QnLzerPZjOzsbOTl5YXld+4Let0FBQVJKf4xDOPlMmuxWKDRaNDZ2Qmj0cjKRSOxRTqwpQj9syZYHG7cfWls+/x0l2Xjxo1BuxCBxYIed3Y87XCjNQoa4kfTTERJ7lsM9cXp06fxne98Bx9++GHUBqBLUAHgbieULL0WFyQsR3e5XCGLZYQQvPPOO5DJZGhubo6oCUGr1UKtVqOurg4Wi8UrzAtFcqvVio6ODpSXl8c8w5qKQtRqdcR5Pb2OqqqqWG+SmED1DlVVVfB4PNBoNDCZTAEHSdicbrzZp0FZdhqaSwIPJYwUtOV206ZNUakeuaAFPY1Gs2zuXaiHMfVHCGXseebMGdx111148cUXUV1dHcvlMgzDCAAMYHEyiwrASQBfIIR0x3Jg9gQrRXQarmo0GnzmM5+JeCU0GAxQqVQoLCxEb29v2EU32tpZX1/PVnnjBW6L6tzcXNC8nhoNJuI6IoHJZEJnZ+cyeS8dJKHRaKDT6dgQPzc3F9/98yD+NqwDAwZP3dyMhqLYZcF0BY2nzJiCquBop1t6ejq72vsuLvRhs3nz5qAk7+rqwp133onDhw9H5SbjAwYAGIb5PICfY3F77TeEkIdjPTB7gpUgOh0oUFhYiKmpKVx00UURH5/6lTMMg8bGRohEopBFt5mZGYyPj6OpqSkpqjKa12s0GlYJlpeXB7vdzppWJsKhNVwYDAb09fWhsbEx5NYQLYLNzc3h+++aMG3xQMzn45/3bMRVm0PXVIKBPmy4uXCiQAt69GEMgBUdCQQCdHR0oL6+PujDpre3F7fddhueffZZ1NfXx+OyEq7IShjR3W43XC7Xstfp9Ja6ujooFAp88MEHEROdEIKuri7Mzc3h4osvDll0o8KP+fl5NDY2JlXOSkHzejqjvLCwEPn5+XFt9ogEVLceaq/eH06P6/Cvx/tRkEZwUy2Qo8hmG1cirTjTyCZe3vORgn4us7Oz0Gq1UCqVKCoq8rsjAQADAwO45ZZb8Ic//AGNjY3xuoyEEz2pd/y5c+cwPj6+zGs8ksIPVUlJpVLWo42aRfgD3RMWCARobm5eMX8xgUAAq9XKmlYuLCxArVZjYGAg6fv1MzMzmJycDFu37ou2cgVevOtCAPDrRBNu48r8/Dx6e3vR3Ny8YpGNUChEdnY2xsfHsWXLFhBClhX0aF/B6OgobrnlFjzzzDPxJHlSkJQVne4RWyyWZSvqhx9+GLY7DC2SlJeXIycnB8PDw9BqtUhPT/drw0zlrHl5eQGFNckA1dozDLPMJCOSvD4eoLr15ubmuD9UaOMKfS+EEHaf23cbkqrLmpubV3ReGa3y+ysA0r6C4eFh3HvvvXC5XHjggQdw++23x9tgY+2G7h6PB06nk/UUo/vRvivvyZMnw6q4cyeg0rne1IDAZDJBrVZ7EUUmk6G/vz8q08R4ggpQqHFiqMglUF4f6349V7fua8WcKNBx0BqNht2GpFLkkZERNDc3J7T1NxSCkZwLlUqFgwcP4tChQxgdHUVRURH+6Z/+KZ6XsraJbjAY2G2bQNtY7e3t2LhxY9DQTaVSYXJyMqyim9VqxdjYGKanpyGVSlFQUMDOI0s27HY76/cejU6b5o9cokRj4kAjKrfbjbq6uhXpxqPbkBMTE9DpdFAoFMjPz/db+U4G7HY7e+8F26+fmZnBDTfcgJ/97Ge49NJLE3U5azdHNxqNOHPmDBobG4NWMIM1tnBDfjpbPVRlXavVwmQysUU6Ksax2+1svhVu/3MsoJNUa2trvdRdkUAoFHrNTaf79ZHk9VzdeiJUd+GCNiE5nU5ccsklcDgc0Gg0OHv2LIDlAyITiXBJrlarceONN+Lf/u3fEknypCChKzod9hcM3d3dKC4uXhY6uVwudHR0QCaTsUKOYIMbCSEYHByEzWbD5s2bl+X8VO+tVqthMpliUrOFArVbiuckVS7Czeuj0a0nCtPT05iamkJLS8uy/JYOiNRoNKyffLztp7jnam9vR21tbVBHmLm5OVx//fX4l3/5F1x11VVxvQY/WLuhOyEEDocj5M/19fWxww4oqFNsWVkZq88OtpLTAQIymYz1EAsGXzVbRkYG8vLyAm6pRAK1Wo3R0dGk5p/+8vrs7GwMDw+jqKgobj3c0eLcuXOYnp4OqwBIPxuNRgO9Xh9U3BIpKMl9NfS+0Ov1uO666/Dggw9iz549MZ0zTJz/RB8cHGTtegFvswmu5joQeW02W0xzz6jpgVqthlarhUQiQV5eXlQ3Fq1oNzU1Jc2G2RdOpxMzMzMYHh72cpZN5n6920Pw9sCiGKUmzQqddg7Nzc0RP0RpoZUKdQCw6UqkIX64JJ+fn8f111+P++67D9ddd11E1xsD1i7RAQRsI+ViZGQEaWlpKCwsZPfZGxsbIRaLQ+bjVGyxadOmkA0Q4cJsNkOtVkOj0YRlwQx8Oi6Zpg0rOQuM6tY3bNgAuVzutToma1TUc6dUePLdMbhcblxbK8I3926Py9+E5vVzc3OwWq1siB8q/aItr9SAJBCMRiNuuOEG3H333Th48GDM1xsBzn+iUy9wm80Go9HIEiUUydVqNUZGRhIqI6UWzGq1mm1NzcvL81pN6ORViUQSlklDIkFlwf704sncr//FX0fxh48mQDwEN19Yjq/F2NHmD/706/60FNS8IhTJzWYzDhw4gNtvvx0333xz3K83BNY20R0OR0g7qYmJCUxOTiInJwfV1dUhQ3XqEa/T6dDY2Ji0EJludanValitVnZc0djY2IoLcoDIdOtAYvfrz/QM4OnTOiiys/GNy6ohT0vsZ0RDfPoQo0MksrOz0d/f72Ve4Q9WqxUHDx7ETTfdhDvuuCOh1xoA5zfRbTYbPv74Y2RkZKCxsTEkyT0eD3p7e1mF2UqFyG63GzMzMxgcHASfz2dJolAoVky3Ti25olmdY92vt7vceGdAi4JMMdIss3C5XCu2Xw+AnWw7PDzMGj0GalG12Wz4whe+gP379+MrX/nKSl3z+Ut02txSWFiIhYUFbNy4kbV98geqsMvJyUFZWdmKhsjUhnnTpk3IzMzE/Pw81Go1dDod0tPT2RsrGbp1um0VaT9/IPhWvcPJ6x862oe3+ufgcbvx3Z3ZuPrCxhX9fFwuF9rb21FeXg6lUgmdTgeNRoP5+Xn2/VDS33zzzbjiiivwD//wDyt5zWtXMAMsupn4I/r09DTGxsbQ0tICPp/PVkRFIhHy8/ORm5vrdVPRHuGqqqq4T+2MFDqdDgMDA14hMnVs4cpxqc8ctQ1OhJHh5OQkNBoNOwU2HuDxeKydMTevD+abN6G3wuF0gc9jIMkuWBUkLysrY+8V7rw7+n6++c1vsvWMz33ucyt6zclAQld0XydYOv1kfn4eDQ0Ny4puvhXvvLw8iMViDA8PJ8SQIFLQ8UzNzc1hEZc2eGg0GhBCkJubi7y8vJiLh1QrbjKZkqZbB/zn9Tk5OXi3YxjP9tlRV6zEd66sgSiMsdeJgMvlYif1BvMddLlcuPPOO1FZWYmqqiq8/vrr+OMf/xhVc43b7cbWrVtRXFyMo0ePYnR0FIcOHYJWq8WWLVvw+9//HiKRCHa7HbfccgtOnToFpVKJ5557jitiWtuhO5foVNRCq9Ph2D0NDQ1Bo9EgPT0dBQUFyMvLW5FOJ1oA1Ov1Ufez060htVoNh8PB5vWRupdSO2yPx7NiebDJ7sInYzrkCWyYU42BEMJGYivVX09JXlJSEtQezO1246677kJ1dTUeeuihmP9+jz/+OD755BMsLCzg6NGjOHDgAK677jocOnQIX/3qV9Hc3Iy77roL/+f//B90dHTgl7/8JZ599lm89NJLeO655+hh1jbRqcsMd6wSHWcbztwzs9mMhoYG1kBSrVbD5XKxK2MyGlW4xIpXATBaOe5q2MrzEIJDvz6Fc/M2iBg3fnltOWoqylZkv57C7XbjzJkzKCoqCto85Ha7cc899yA/Px8/+clPYv77TU1N4dZbb8X3v/99PP744/jzn/+M3NxczMzMQCAQ4MSJE3jooYfwP//zP7jyyivx0EMP4cILL4TL5UJBQQE0Gg29hrWdowOfFt02bdqErKyskCSnXnJpaWnshBA+n4+SkhKUlJTA6XRCo9Gwuna6t50IX2863JHq7eN1fK79Mi1+zc7Oor+/P6Acd7Xo1p1uD8b1VjBuF1w8HmTKgoB5fbhz32NBuCT3eDz49re/jezsbPz4xz+Oy2f5jW98A48++iiMRiOAxYYquVzORnwlJSVQqRaNXFUqFTszTiAQICsrC1qtNmkt1Akl+uzsLAYGBtDS0gKRSBRyRDFt6wymzxYKhSgqKkJRURG7MtLRtzQcjsfAQYfDgbNnzyZcK+5LEmrISBWDtELc09PDvu+VBB8E+6r4eHuKwdVNhSjM9K5VcP3wq6ur2by+p6eHzevjNXCBDl4MNa7J4/HggQcegEgkwmOPPRaXqOzo0aPIy8vDli1b8M4778R8vEQjoUSXSCRoa2tjJ1EG+2CNRiO6u7uxYcOGsOdMc1dGt9sNnU7HDhyUy+XIz8+PqjuNVvmTbVrBMAzkcjnkcjlqampgNpsxPT2Nvr4+pKWlweVywWazrZhZAx1YefvOKnwvTJtsXz987oM5li41SvL8/PygDz+Px4Mf/vCHcDgc+OUvfxm3+sH777+PV199FcePH4fNZsPCwgLuvfdeGAwGuFwuCAQCTE1NsYtEcXExJicnUVJSApfLhfn5+ajbl6NBQnP0Z555BlVVVew2WiBoNBoMDw+HreoKBd/utMzMTDYcDvVBUzvo1VDlpw+cDRs2QCqVeslxaTicjP5t4FO9eEVFRVy2OP11qdHPKFRezyV5sGiLEIJ//dd/xfT0NJ566qmYOxMD4Z133sFjjz2Go0eP4sYbb8T111/PFuOamprwta99Db/4xS/Q2dnJFuNefPFFPP/88/QQa7sY99JLL+GPf/wj+vv7sXv3buzbtw/btm1jyUYIYfeCqXtMvEHDYdqdlp6ejvz8fL9zuGnInCw76GAIplundQqNRgOr1cqGw4makU51DtXV1QmJcLj6A61WGzSv93g87Jz0YJNtCCF49NFHMTQ0hGeeeSah4iUu0UdGRnDo0CHodDq0trbi//2//wexWAybzYabb76ZHRr57LPPoqqqih5ibROdwmq14vXXX8fhw4dx9uxZXHrppbj66qtx9OhRHDp0aNncs0SBOzhxbm6ObUnNzc3F7OwsZmZm0NzcvGItphSR6Nbdbjfry7awsAC5XM5OV4nH35R68IcyaognqCmjRqOB0+n0cp+h6kha2PIHQgieeOIJtLe3449//OOKf55h4PwgOhd2ux0vv/wy7rvvPuTl5aG1tRXXXXcdLr744qR/IGazGbOzs5iamgIhBJWVlcjPz0/aOF5/iEW3zrVe1ul0kMlkbDgczYpGW17DmYOWKNC8nj6cMzIyUFVVFTCvJ4TgySefxN/+9jc8//zzK+JHFwXOP6IDwA9+8AM0Nzdjz549ePvtt3HkyBG8//772L59O/bv349LL700KR8QbZIRCAQoLS1lc2CGYdiVPpkhfDx169zoRavVQiQSsfqDcI5N6wN1dXUrOjIKWPycOjs7IZfLIZPJvPJ6bmsqIQRPPfUU3njjDRw5cmRFH9gR4vwkuj+4XC689957eOGFF/DXv/4Vra2t2L9/P3bv3p2QKjP1pFMqlSgvL/f6nt1uh1qt9ip8JVqgQ2sVTU1NCcknLRYLKy8GwD7I/MlxEzkHLVJwSc79nHzz+t/97new2+2YnJzEG2+8saI20lFg/RCdC7fbjQ8++ACHDx/GX/7yF9TX12P//v244oor4mIyYbfbcfbsWZSVlYWcpkoLX7Ozs3A4HKxAJx5z0YFPdetUBZiMWoXdbmeLeb7viXbmJWMOWih4PB50dXUhMzMzpEjoF7/4BZ577jnI5XKYTCa89dZbET+YbTYbdu3aBbvdDpfLhRtuuAE/+tGPotWvR4L1SXQuPB4PTp48iRdeeAFvvvkmampqsHfvXlx11VVROazSGzmavNPlcrHmExaLBQqFIiaBzmrQrXPfk9FohNPpxIYNG1BYWLiiHV2U5BkZGaisDO5Q88ILL+A3v/kNjh07xj6sonlI0QGMMpkMTqcTO3fuxBNPPIHHH388Gv16JEgRnQuPx4MzZ87g8OHDeO2111BaWoq9e/fi85//fFjztOkYoFDD7cMBFejMzs7CaDRGbB9NdetpaWlhOdcmGtSiury8HAaDAfPz86z+wHc+eqJBh2jKZLKQJH/55Zfx5JNP4ujRo3GtJVgsFuzcuRNPPvkkrr766mj065Fg7Wvd4wkej4e2tja0tbXh4YcfRldXFw4fPoy9e/ciJycH+/fvx9VXX+1XcTQ7O4vx8fGopof6A3ev11evnpmZifz8/IBbXFS3rlAoltUHVgL0Adja2gqJRIKioiIv/cHw8DDS0tJYQ41E7o4QQtDd3Y309PSQJD927Bj+67/+C8eOHYsbyd1uN7Zs2YKhoSF8/etfR3V19arVr0eCNUV0Luhc9MbGRjz00EPo7+/H4cOHccMNNyAzMxN79+7Fnj17kJubi48++ggikQhtbW0JKXT506vPzs5icHCQ3eLKyckBn8+H0+lkNfQrrVsHFhsxhoaG0Nra6lWl5spxaUirVqvR3t7OegXE21iSEIKenh6kpaVxxSR+8cYbb+Cxxx7D8ePH47r1x+fzcebMGRgMBlx77bXo6+uL27FXEmuW6FxQD7kHH3wQ3//+9zE8PIwjR47gpptuwvz8PIqKivDkk08mJfz0JQjd4hodHYVIJILFYkF1dXVUs9jiDY1Gg9HRUbS2tgbdcmMYBjKZjO3io40q3d3dcduVoCQXi8UhSf7222/j4YcfxrFjxxKmF5fL5fjMZz6DEydOrFr9eiRYUzl6JCCE4Itf/CIUCgUqKyvxyiuvwOPxYM+ePdi/fz9KSkqSmhdbLBa0t7dDLpfDbDZDIBAgLy8v7H3teGN2dhYTExN+RyRFAjpOSa1Ww2azsR2Ekcy3I4Sgt7cXQqEwZJ/9e++9h+9973s4duxYyB2TSKHRaCAUCiGXy2G1WvHZz34W999/P5555plo9OuRIFWMiwVdXV1oaGgAsHgzTU9P48iRI3jppZdgtVpx9dVXY9++fXHtNfcHf7p17r42Fejk5eUlZf93enoaKpUKLS0tcU1lqByXVvDlcjny8vKCdqcRQtDX1weBQBCS5CdOnMB9992Ho0ePJqR1uKOjA7feeivcbjc8Hg8OHDiAH/zgB9Hq1yNBiuiJglqtxksvvYQXX3wROp0On//857F///64Txyl1eympqaAoS13UITH44mbt5w/qFQqVtOfyEYPKsdVq9Ws64yvHJeSnM/no7a2Nujf/ZNPPsE999yDV199dcU99BOAFNGTAa1Wi1deeQVHjhzBzMwMrrzySlx77bWoq6uLScBCu+Ei0a37esvFU6AzOTmJubk5NDU1JX27jNtMJBaLkZubi/n5eQgEgpAP1zNnzuCuu+7CSy+9FO2KudqRInqyYTAY8Oc//xkvvvgiRkdHccUVV2D//v1obm6OiPTx0K37CnSiyX8pxsbGYDAY0NTUtKKz4YBFiW1PTw+sViukUikbwfjrK+jq6sKdd96Jw4cPY8OGDStwtUlBiugrCaPRiGPHjuHIkSPo7+/HZZddhn379mHr1q1ByTIxMcGunPEKj33zXyrQyc7ODkl6ag2dLIltMNA59h6PBxs3bvSKYLgtqTKZDP39/bjtttvw7LPPor6+fkWvO8FIEX21gNtT39HRgUsvvRT79u3DBRdcwIbBydKtcwU68/Pz7NhpX4EOddOlU15XWn1Hp866XC5s2rRp2fXQCObMmTO477774Ha78aMf/Qg333xzUlONFcDaJfrrr7+Oe++9F263G3feeSceeOCBaA+16mCz2fDmm2/i8OHDOHXqFC666CLs3bsXx44dw8GDB7Ft27akkYoQwha9dDod6yKrUCgwPDwMt9u9onPQuNc5NDQEp9MZ8npGR0fxxS9+Ebfffju6urqgUCjwyCOPRHzOyclJ3HLLLZidnQXDMPjyl7+Me++9FzqdDgcPHsTY2BgqKirw/PPPs5N27r33Xhw/fhxSqRS//e1v0dbWFsvbDhdrk+hutxsbNmzAm2++iZKSEmzbtg1/+tOfzsvwy+Fw4M0338Q3vvENSKVStLW14dprr8WuXbuSvj9OCMHCwgLUajVUKhUEAgGqq6uRm5ublDlwwa5reHgYdrsd9fX1QUk+MTGBgwcP4te//jW2bdsW03mnp6cxPT2NtrY2GI1GbNmyBS+//DJ++9vfQqFQ4IEHHsAjjzwCvV6Pn/70pzh+/Dj+8z//E8ePH8dHH32Ee++9Fx999FFM1xAmEk70hMSWH3/8MWpqalBVVQWRSIRDhw7hlVdeScSpVhwikYjVRZ86dQo333wzXnvtNezcuRNf+cpX8Nprr8FmsyXlWqjVssPhQFFREZqbm2GxWHDq1Cm0t7dDpVLB4XAk5Vq4GBkZCYvkKpUKN910E5588smYSQ4AhYWF7IqckZGBuro6qFQqvPLKK7j11lsBALfeeitefvllAMArr7yCW265BQzD4IILLoDBYMD09HTM17EakJDHPFfsDyw2AiTpybgiuOeee9gbePfu3di9ezfcbjfef/99HDlyBA899BA2b96M/fv34/LLL0/I/jjwaUecVCplRUAZGRmorq5mBTpnz54Fj8dLiFbdH0ZGRmC1WkPWCGZmZnDw4EE88cQTuOiii+J+HWNjY2hvb8eOHTswOzvLSpALCgowOzsLwP99q1KpVoVcOVacF1r3lYa/G5jP52PXrl3YtWsXPB4PPv74Yxw+fBg/+clPUFNTg/379+PKK6+Mm7kDdWLJysrya34glUpRUVGBiooK2Gw2qNVqdHd3J1SgMzo6yhYmg5FcrVbjxhtvxL/9279h165dcb0GYNGD4Prrr8fPf/7zZY45oeYNnC9ICNGp2J+C2wiwHsHj8XDBBRfgggsuYHvqX3jhBTz++OMoKytje+qjbbWkba9KpTIs1ZhEImGHKtDtrf7+fjgcDq8GlVgIMDo6CqPRGJLkc3NzuPHGG/Hwww/jsssui/p8geB0OnH99dfji1/8Iq677joAQH5+Pqanp1FYWIjp6WnWp/58vm8TUoxzuVzYsGED3nrrLRQXF2Pbtm344x//iM2bN0d3lecpqMHCCy+8gOPHjyM3Nxf79u3DNddcE7a1Mh1mkJeXF9TnPBw4nU5WoEP94qMR6IyNjWFhYSHkFqNer8d1112HBx98EHv27Inp2v2BEIJbb70VCoUCP//5z9nX//Ef/xFKpZItxul0Ojz66KNsfzstxt1zzz34+OOP435dfrA2q+4AcPz4cXzjG9+A2+3G7bffju9///vRHmpdgOq+Dx8+zLql7N27F9dccw1yc3P9Eo2OCk5Eb7uvQIfaZsnl8qCkHx8fh8FgCDm3fX5+Htdffz3uu+8+dqWNN/72t7/hkksu8bqWH//4x9ixYwcOHDiAiYkJlJeX4/nnn4dCoQAhBHfffTdef/11SKVSPP3009i6dWtCrs0Ha5foKUQPuh115MgRvPLKKxCLxdizZw/27duHgoICMAzDzkErLS2Ne7umLzweD3Q6HdRqNSvQyc/PX9aVNjExwc6QD0Zyo9GIG264AXfffTcOHjyY0GtfI0gRHVhTwoe4gxCCiYkJtr0WAC677DK88cYb+M1vfpP0Ti7frjQq0LFYLGFp6c1mMw4cOIDbb78dN998cxKvfFUjRXRgTQkfEgpCCDo6OrB3716Ul5fD6XTimmuuwb59+1BZWZn06jEV6AwNDbHuKvn5+cjJyfEr0LFarThw4ACrekuBxdoUzMQbKeHDIhiGwYkTJ/D000/jr3/9K15++WUolUp861vfwmc+8xk8+uij6O/vR4iHd1yvx2g0gsfj4dJLL0VVVRXMZrNfgY7NZsMXv/hF3HjjjbjtttuScn0pfIo1saJzMTY2hl27dqGrqwtlZWUwGAwAFleX7OxsGAwGXHPNNXjggQewc+dOAIuh7k9/+tNkFVZWBFqtFi+//DJefPFFzM7OevXUJ2qln5qaglqtRnNz87KmE2omqVKp8MMf/hAMw+Bzn/scHnzwwXWxbx0hUis6FynhQ2AolUrccccdOHbsGP73f/8XGzduxL/+679i586deOihh3DmzBl4PJ64nU+lUgUkOQDWrnnHjh3Iz89Hfn4+3n77bdx0000xnff2229HXl4eaxEGADqdDldccQVqa2txxRVXQK/XA1h8+N9zzz2oqalBU1MTTp8+HdO51zLWDNGDCR8ArBvhQziQy+W45ZZb8PLLL+Pdd99FW1sbfvazn+Hiiy/Ggw8+iJMnT8ZE+nPnzmF2djYgySlcLhfuvPNObN++HS+++CL+8pe/4Omnn476vADwpS99Ca+//rrXa4888gguu+wyDA4O4rLLLmM73V577TUMDg5icHAQ//3f/4277rorpnOvZawJohNCcMcdd6Curg7f+ta32Nf37t2LZ555BgDwzDPPYN++fezrv/vd70AIwYcffoisrKzzQq8cDTIyMnDo0CG88MILOHHiBC6++GL86le/wkUXXYT7778fH3zwAdxud9jHo4XRUCR3u9246667UF9fj+9+97tstBXrdNpdu3YtExOtt1pNVCCEBPtvVeC9994jAEhjYyNpbm4mzc3N5NixY2Rubo7s3r2b1NTUkMsuu4xotVpCCCEej4d87WtfI1VVVaShoYGcPHlyhd/B6oPVaiWvvvoqueWWW0hDQwP58pe/TF577TUyPz9PzGaz3/+GhobIu+++SxYWFgL+jNlsJgsLC+RLX/oSeeCBB4jH44n7tY+OjpLNmzezX2dlZbH/9ng87NdXX301ee+999jv7d69e7XeC6F4GPN/a6KpZefOnQEryW+99day1xiGwS9+8YtEX9aahkQiwZ49e7Bnzx44HA785S9/wZEjR3Dfffdhx44d2L9/Py655BK2p35mZoa1iA62kns8Hnz7299GdnY2Hn744aTXTdZ7rSYQ1gTRkw23242tW7eiuLgYR48eTcbY3BWFSCTCVVddhauuugoulwvvvvsuXnjhBXz3u99FW1sb8vPzYTQa8eijjwY1sPB4PHjggQcgEonw2GOPJc2fbj02qUSKNZGjJxtPPPEE6urq2K/vv/9+fPOb38TQ0BCys7Px1FNPAQCeeuopZGdnY2hoCN/85jdx//33r9Qlxw0CgQC7d+/Gk08+ibNnz2LDhg149tln8dFHH+ErX/kKXn31VVgslmW/5/F48IMf/AAOhwP/8R//kVQTylStJgyEiO3XHSYnJ8nu3bvJW2+9Ra6++mri8XiIUqkkTqeTEELIBx98QD772c8SQgj57Gc/Sz744ANCCCFOp5MolcqE5KQrBafTSW677TZiMBiI2+0mJ06cIN/61rdIU1MTuf7668nvf/97Mjs7S0wmE7n//vvJrbfeSlwuV0Kv6dChQ6SgoIAIBAJSXFxMfv3rX58PtZqE5+gpovvg+uuvJ5988gl5++23ydVXX000Gg2prq5mvz8xMcEWgjZv3kwmJyfZ71VVVRGNRpP0a0423G43+eSTT8j9999PWlpaSH19Pdm/f3/CSX4eI1WMSyaOHj2KvLw8bNmyBe+8885KX86qBY/Hw5YtW7Blyxb8+Mc/xtGjR7F79+7z3ZJ5TSNFdA7ef/99vPrqqzh+/DhsNhsWFhZw7733nhdjcxMFHo+HvXv3rvRlpBACqWIcBz/5yU8wNTWFsbExPPvss9i9ezf+8Ic/4DOf+QwOHz4MYHmxhxaBDh8+jN27d6e2dlJYlUgRPQz89Kc/xeOPP46amhpotVrccccdAIA77rgDWq0WNTU1ePzxx6MaMpBCCsnAmuteS2F94Hye9OMHqe618xkGgwE33HADNm3ahLq6Opw4cSLViYVFwdLXv/51vPbaa+jp6cGf/vQn9PT0rPRlrWmkiL6CuPfee3HVVVehr68PZ8+eRV1dXaoTC+tr0k+ykCL6CmF+fh7vvvsum++LRCLI5fJUJxYCT0xJIXqkiL5CGB0dRW5uLm677Ta0trbizjvvhNlsjnhcUAophIMU0VcILpcLp0+fxl133YX29nakp6cvq9qv106sVDNK/JEi+gqhpKQEJSUl2LFjBwDghhtuwOnTp1OuOQC2bduGwcFBjI6OwuFw4Nlnn02JcmJEiugrhIKCApSWlqK/vx/AYl99fX19qhMLix10//Vf/4Urr7wSdXV1OHDgQGqcV4xI7aOvIM6cOYM777wTDocDVVVVePrpp+HxeFbbuKAUEo/UAIcUUlgHSDjRQzW1rL9K0HkKhmG+CeBOLD68OwHcBqAQwLMAlABOAbiZEOJgGEYM4HcAtgDQAjhICBlbietOIT5I5ejrAAzDFAO4B8BWQkgDAD6AQwB+CuBnhJAaAHoAdyz9yh0A9Euv/2zp51JYw0gRff1AACCNYRgBACmAaQC7ARxe+v4zAPYv/Xvf0tdY+v5lzHrc5zuPkCL6OgAhRAXgMQATWCT4PBZDdQMhxLX0Y1MA6H5dMYDJpd91Lf38+mq0P8+QIvo6AMMw2VhcpSsBFAFIB3DVil5UCklFiujrA5cDGCWEaAghTgAvArgYgHwplAeAEgBUU6sCUAoAS9/PwmJRLoU1ihTR1wcmAFzAMIx0Kde+DEAPgLcB3LD0M7cCoC1iry59jaXv/4WE2IdNYXUj1D56CucJGIb5EYCDAFwA2rG41VaMxe01xdJr/x8hxM4wjATA7wG0AtABOEQIGVmRC08hLkgRPYUU1gFSoXsKKawDpIieQgrrACmip5DCOkCK6CmksA6QInoKKawDpIieQgrrACmip5DCOkCK6CmksA7w/wPWhJu78Lh/JAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGOCAYAAABBg67QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADMSElEQVR4nOy9eXgkdZ0//uozd7rTue9kMrkmmZkcM5PJDKsoyDCAguj6xXVxFndFUfDAr+eDx491vZ8V0RWV3VX8rqyuB4gXiDCCwjAMk+7Ofd9n393pu7uqfn/MforqTnfSVV2ddId6PQ8Pz+SoqlRXfV6f9/V6yRiGYSBBggQJEiSkEPK9vgAJEiRIkLD/IZGNBAkSJEhIOSSykSBBggQJKYdENhIkSJAgIeWQyEaCBAkSJKQcEtlIkCBBgoSUQyIbCRIkSJCQckhkI0GCBAkSUg6JbCRIkCBBQsohkY0ECRIkSEg5JLKRIEGCBAkph0Q2EiRIkCAh5ZDIRoIECRIkpBwS2UiQIEGChJRDIhsJEiRIkJBySGQjQYIECRJSDolsJEiQIEFCyiGRjQQJEiRISDkkspEgQYIECSmHRDYSJEiQICHlkMhGggQJEiSkHBLZSJAgQYKElEMiGwkSJEiQkHJIZCNBggQJElIOiWwkSJAgQULKIZGNBAkSJEhIOSSykSBBggQJKYdENhIkSJAgIeWQyEaCBAkSJKQcEtlIkCBBgoSUQyIbCRIkSJCQckhkI0GCBAkSUg6JbCRIkCBBQsohkY0ECRIkSEg5JLKRIEGCBAkph0Q2EiRIkCAh5VDu9QVIeG2BYRhQFIVAIACFQsH+J5dL+x4JEvYzJLKRsGtgGAahUAjhcBiBQID9ulwuh1KphFKplMhHgoR9ChnDMMxeX4SE/Q+KohAKhUDTNGQyGYLBIORyORiGAcMwoGkaDMNAJpNBJpNJ5CNBwj6DRDYSUgqGYRAOhxEOhwEAMpmMjXBkMlnMnyfEQ0B+Tq1WQ6VSQalUxvxdCRIkpC+kNJqElIGmaTaaAcBGLYRISCTDhUwmg0KhYP9NyOell15Ca2srtFot5HI5FApFRPQjkY8ECekNiWwkiA5CEKFQKCI1Fv0ziRAEIR/yf4VCwR47GAxCJpOx5KNSqdifkchHgoT0gkQ2EkQFSZFRFAUAMYlGCMgx4kU+0eQTXfORyEeChL2FRDYSRANZ9CmKglwuF3WB56bfor9OyId8n6ZpBINBBAIBiXwkSEgTSGQjIWmQ2ZlwOAyapkUnmkRBzimRjwQJ6QeJbCQkhei0WaqIJl5ks9PvAJHkQ/4LBAIIBoMAYs/5SOQjQYK4kMhGgmCQiIFvNLNXCzm3fqRQKLaQDzfyIS3WZMZHIh8JEpKDRDYSeIOkzcbHx1FaWgqNRsN7MRby82KPhG1HPn6/n/0ZiXwkSEgeEtlI4AWaphEOh0FRFEwmEwoLC/fNwpso+UTP+EjkI0HCzpDIRkJCSGR2JlGsrq5idnYW+fn50Ol00Gq1yMnJ2fZ3UhHZ7IR45EPTNEs+crl8S81HIh8JErZCIhsJOyKW5Ey0GkAiCIfDGBsbg8lkQmNjIwKBAFZWVjA+Po6srCwUFRWx/2VlZaXqzxGM7cgnEAjA7/dDLpcjHA5DrVYjOztbIh8JEv4XEtlI2Bbc2RlSvyDgQzabm5swGAxQq9U4deoUexyZTIZwOAyHwwGHw4GlpSWMjo4iNzc3gnz2IrLZCdHRHSGf0dFRlJSUoLKyMqLmQ9JvYg26SpCQSZDIRkJMJDI7kwgBMAyD5eVljI+Po6GhAU1NTazqM4FSqURJSQlKSkoAAKFQCA6HA3a7HXNzcxgeHoZcLsfa2hrkcjm0Wi2UyvR7dLkRH2mh5t5H7veidd0k8pGw35F+b6yEPUeiszNyuZwV2YyFUCiEkZER2O129PT0oLi4mD3+dlCpVCgtLUVpaSkAIBgM4vLly6BpGlNTU/D7/SgoKGCjHo1GEyFhs9cgfx8hERLFkcgnHA6zqteEfLi6bpKdgoT9CIlsJESAz+zMdpGN0+mEwWBAbm4uTp06lVQNRq1WQ61Wo7KyEhUVFfD7/bDb7bDb7RgbG0MwGIRGo4FWq2XJJx0XbIl8JLyWIZGNBACvps1It1kiRe1YZMMwDBYWFjA5OYmDBw+isbFRVCFOAMjOzkZlZSUqKyvBMAx8Ph9LPisrK6AoChqNho18CgoK0nLB3ol8AMnFVML+gUQ2EgRLzkSTTTAYxNDQEDY3N3H8+HEUFRWJfp2xriE3Nxe5ubmorq4GwzDwer0s+SwuLoJhGDbqKSoqQn5+fsprJEKOH498uIrWkouphEyFRDavcXDtmvm26HLJxmazwWg0QqPR4NSpU1Cr1aJeJx8pnLy8POTl5aGmpgYMw8DtdrPkMzc3B5lMFtHplpubKyr5iNU1F4t8SHcgiXyiyUdyMZWQrpDI5jWK6NkZIbMgMpkMNE1jZmYGs7OzaGlpQV1dnaCoKNFr5guZTIaCggIUFBSgrq4ONE1jc3MTdrsdZrMZ09PTUCqVEeSTnZ2dlgt2Il4+XPKRXEwlpBMksnkNItquWWgahqZpLC0tQSaToa+vD4WFhWJeZgTEWjDlcjk0Gg00Gg0aGhpA0zScTifsdjvW1tYwMTEBtVq9hXzSEYkayUkuphLSARLZvIbAXYyS9Z0xm82wWCzIy8tDX19fyudeUjXUKZfLWVIBrqQVyYDpysoKxsbGkJOTE0E+iaQI98rPR3IxlZCukMjmNQKxfGfIrMvi4iLb8ZWOA5ZCoVAoUFxczM4EEXUDu92OhYUFjIyMIC8vjyUerVYLlUoVcYx0UTqQXEwlpBP2zyohIS7Esmv2+XwwGo0Ih8Po7+/HwsKCyFcaH3slVxOtbhAMBlnymZmZgdfr3TJgmo7YzsV0dHQUarUadXV1EvlISBkkstnHENOueWNjA8PDwygvL0d7ezu7CKXLLn63oFarUVZWhrKyMgBAIBBgO90mJiYQCAQgl8thMpmgVqvTTt2AgEs+NE2zURARFZVcTCWIDYls9ilI2sxgMKCkpARVVVWCFgmKojAxMYHV1VV0dHSgsrKS/d5ukk26EltWVhYqKipQUVEB4Er0ZzAYEAqFMDo6inA4jMLCQjbyKSwsTLu5GK5lBFfTbTsXU9JmLSlaS0gUEtnsQ3BnZ4jRmZAFwePxwGg0AgBOnTqF3NzciO+nKwHsJXJycqBSqVBTU4OysrIIdYPl5WXQNL1F3WCvF2uiGMGF5GIqQWxIZLOPwJ2dIQvITmKZ8bC6uoqRkRHU1NSgtbU15m6czNnsBjKR2GKpG3g8HpZ8SM2Lq26Ql5e364s1iWy2g+RiKiFZSGSzTxBrdiZZg7OjR4+ytYlYSJYAElnkon8+UxDr75LJZMjPz0d+fj5qa2vBMAw7YGq1WjEzMwOFQhHRZp2Tk5PyxZrv5wAk5mIqkY8ELiSyyXDsZNfMJ7LhGpydPn16x2FGoWTDMAw2NjagUqmg1WoTqmHsxwVKJpOhsLAQhYWFqK+vB03TcLlcsNvt2NjYwNTUFHuPuOQjNoSQTTS2Ix+ui6lkof3ahUQ2GYzo2ZlYJlyJkE0sg7NECEBIii4QCGBwcBButxs0TYOiKHYx1el024pkZkpkI/Q6iTGcVqtFY2MjKIraom6QCvts0o0mJqKfRUI+FEWBoqi4DQeSkdz+hUQ2GYpEZ2d2ij7iGZwlCj4LKxHr1Gq16Ovrg0wmiyigz8/PxxXJfC0uQAqFAjqdDjqdDsCVFCchn3j22dEDpolAjMhmJ8RTtJZcTF87kMgmw8B3dma76CNZgzO5XJ4Q2TAMg9nZWczOzqK1tRU1NTXs9XNrGFyRTJPJhOnpaahUKhQVFcHn8wlaSPcKqVgglUplhLpBLPvs/Pz8CHWDRNQddoNsorGTl0888km3tnEJiUMimwyCEMmZWJENMTibmppCU1OTYIOzRGo2wWAQg4OD8Hg8OHHiBDQaTdzfiRbJ5KaRrFYrnE4nrFZr0jv5/YJY9tkkSuRjn70XZBMNPuQjuZhmJiSyyRDwsWvmQi6Xs94nQKTB2bFjx5IyONuJbOx2OwwGA7RaLU6dOsWbGLhppGAwCKVSCa1WG7GT5y6mWq02Lab196q2pFarUV5ejvLycgCIaZ/NHTAl9tnpQDbR2Il87HY7GIZBRUWFZCSXIZDIJs0hxK6ZCy4h2Gw2DA4OorCwUBSDs3hkwzAM5ubmMDMzg+bmZtTX1297zQzDYMbihdkdhDZHhdbyPMijfp7sark7ea5UzPj4OILBIDswqdPp0tYOercQbZ/NJZ/V1VWEw2FoNBoEAgH4fD52I5OOiCYfl8sFiqJQXFy8rbROuv49r0VIZJPG4CoAAMKUmuVyOSiKEmRwthNikQ2JnNxuN44fPw6tVhvz97jnn7V48YcRE/whGiqFDDRdio6qgh3PxZWKYRgm5rQ+t9NtNwcm0zFSyMnJQU5ODqqqqiLss10uF+bn5zE/P7/r9tlCQYiR1KQkF9P0h0Q2aYidZmf4gKZptt4htsFZNAHY7XYYjUY2cko0bWb1hOAL0Wguy8OsxYv1zQA6ULDzL0ZdS/S0frQdNNe7RqfTpWRmJVMgk71qn728vIyDBw8iKytrV+2zkwFN0xHPF9dOAdiZfCQX092HRDZphmi75mSIxmKxYH5+HiqVCqdOnRLdd4bI1TAMg/n5eUxNTaGlpWXHtFk0inJVyFbJMWP2QC6ToSx/a3qP7wCpTLbVDpoMTK6vr2NycjJiZkWn0yWdViTIlHkgApKeTdQ+m0Q/u6FuEA87pfy2Ix/JxXRvIJFNGoE7O8PNTws5DjE4Ky8vZ4vrYkMmk4GiKOj1erhcLpw4cSJm2mwnHCzNxZn2Uqy7AijJU6OtIl/0a401MEnahhcXFzE6Osqaoul0uoTbhvcDYjUIbGefvbGxgcnJyT21z+ZbX0qUfCQ7hdThtfE2pTnE9J2JNjgjO/lUwOfzYXNzE1lZWQk1HLh8IZg2A9DkqFCU8+qLL5PJ0Fqej9by+CQjthBntCMn6XCK1Tas0+lQWFjIq9MtkxapWKrP0Yhln03IZ2VlBePj48jOzuZtn53Ka94OXPKRXEx3BxLZ7DHEsmsGYhucOZ1O0dM6ZE5nenoaarUaPT09O16zxR3Arw1rWHH6UZSjwnXtJagvSl5qRSyoVKoIUzTSuWWz2TAyMsJ2bnE73fbLwiOk9TmWugFf++xkIGbnHFfTDZDIJ1WQyGYPQdM0NjY2YLfbceDAgaSaAMbHx+ManIlpAxAKhTA8PAyHw4Hm5masra0ldN1zFi+WHH40l+ZhzuLB6NomL7IR++/YCdFtw6Rzy2azYXFxEQAiOt24xfNMrNkku2gKsc9OJk2Zyjbt7chHcjEVDols9gDc2RmPxwOLxYKmpiZBx9rJ4CxRSZlEQORt8vLycPr0aTidTqyurib0u1lKOZRywOoJIswwyFXzH77cq0Wc27lVU1PDWgPYbDZYLBbMzMywxfOioqJdJUUxkIqhzkTssxNRN4iH3ZwJ4pJPLBdTLvlILqbxIZHNLiM6baZUKgUvTokYnAk1T4u+5sXFRUxOTkbI2/Cpo7RVFGDd5ceM2YMjVYXordPwuoZ0emm51gBEVsflcsFms2F1dRV+vx9jY2MoKSlhmw1SWb9IFruhIBDLPptEPmNjYwiFQrzss/dyADWenYLkYro9JLLZRXDtmsmDJ4QMdtPgjKsK3dvby+botzt2MHxlOJP7YqmVclx3qBxhioZSIY8g3ESRrukpruEZAFy4cAEVFRUIh8OYm5uDx+NhBTJ1Ol3SKSSxsRdyNWTAlKQpowdyudYTseyz00ntQCKfxJA+T/w+RvTsDPch40s2fA3OkolsXC4XDAYDcnJyYqpCR5ONP0Thj6MmzFg8qCjIxtnOcmhzI4vCSoWwBSLTXkqNRsMSMxHItNlsbAqJ7OJJp9teLpx7rY0WayB3J/tsMh6QjtiOfBYXF7G5uYmDBw++5lxMJbJJMaLtmqOHNBMlA6EGZ0IK6wzDYGlpCRMTEzhw4EDc5oVoshle3cTLC3boclQYWnWhOF+F6w6V8zr3TteViYgWyCS7eJvNhpWVFdA0zZLTbsvEkEUwnRY5mWx7++zZ2VlQFIX5+Xn4fD5otdq0UjeIBvedJyMO5L1/LbmYSmSTInCHxrabnUmEbMLhMIaHhwUZnPFtEOBzruhjB8MUaJqBLk8Nuy8MXyj+30XSaIl66GTaS7fd9UZrlJFdvM1mY2V1tFotSz6pnNQnn186319ujYzYZ//lL39Bbm4uTCYTpqamIho0UmWfLQYoitoiELqdi+l+Ih+JbFIAPrMzCoViW7IRw+As0chmc3MTer0+btosGtFRU3NZPmqLcjFn9UKXq8Lh6tg6bOvr6xgaGgJFUSgoKGAX1Z06kjIlsuErqxPLQM5ms22Z1Cf3SQwr6OhrzaRFjCzUNTU1yM/PZxs0Um2fLQYI2XARz06BSz7vfOc7ce7cObzzne/ci8sWBRLZiIxE7ZoJ4pHBbhqccVN0jY2NaGpqSuhc0ccuLcjCu07UsFYBxVEaZzRNY3JyEsvLyzh06BDy8/PhdDphs9nYjiSSTtLpdBHppExaDJMBVyaGyOqQe8S1gibEk+ywZCaSDRCpIBDdoLGTffZedgfGIptoxCKf9fX1tGoqEYLMvvo0glDJmVhkI6bB2U6RTTgcxujoKCwWC+8UXSwiK8xRoTBn6+Ln9/thNBoRCoXQ39+P7OxshEKhCIsA7uDk/Px8hEQKUcB+rSF6Up9YQdtstohhyUSjw2hkItmQFHW8muVO9tnc7kA+9tligKIo3kQnk8ng9Xq3zNBlGiSyEQHJSM6Qugcp0u6WwRnwamcb0TbjK6SYaFu11WqF0WhESUkJjh07BoVCsaXtOXpwMjqd5HA4oFAoMD4+zi6s6WwJnarFO9oKOhAIwGazbZlXIfdoJwO5TCUbAAk1yACx7bMJ+UxPT8Pn86GgoIDtdkul4ytN07yPTep6BQX8bDfSDRLZJIlYszN8QF4YiqKwsLAgusFZNJkRLC8vY2xsjFdnWzR2IhuGYTA7O4vZ2Vm0tbWhpqaGFwlz00nz8/OwWq1QKBRbLKHJ7Eo6WEIDu1tbysrKipDV8fl8LPksLi6CYZiI2kW0gVwmkg2J1IW2i2+nbkAcX2PZZ4sBkl7nC4/Hg7y8PFGuYa8gkY1AcGdnhNg1E5AH7/LlywgEAjhx4gQ0Gn7T9Ykcn5ANSZuZzWZ0d3ezWlZCQMgmVuss17Eznmkbn0VZLpcjKysLzc3NAF5dIBKp97xWwJ1XIbI6brcbNpsNVqt1i6xOUVFRRtbEkiWbaEQ7vsazz+YOmAo9dyI1m1gg6dJMhkQ2AiCGXTOBzWYDcCXU7+3tTYnBGXDlmr1eLwwGA1QqVUIDoYkeOxpOpxN6vX5bx06+u//oKCp6gdiu3rMXrpzpsHjLZK8ayJGWYVI4J11bJE1rMplSbgsgFrgza2JDJotvn00aDrh243znooSQTTAYRCgUQn6++D5PuwmJbHhAbLtmYnAGAK2trSkpUpId2MrKCiYnJ1FXV4fm5mZRdoXRURN3GDSZDrp4iEdQO9V7iCsniXrSvd6TKkR70oTDYWxsbGBiYiLCFoDb6ZaOHVDJej7xQSwR1mi7cZkscftsITUbt9sNABLZvFYQ3QSQDNFEG5y9+OKLKcvzk13g9PQ0urq62CKpGOBGTTRNY2RkBDabbYuGmpjnSgTR9R7SCkuGJlNd78mUrjmlUskWw0+cOMEWzm02W4SBHLfTLR30yGia3rPIkRstEvtskqrk2mdzIx/uUK6Qmo3b7WZTpJkMiWwSAN/Zme0Qy+BMDGXmWHC73TAYDACAnp6epFqoY4HcB7fbjeHhYahUKratORUQuohHt8JyC8LR9Z5Yoo/7Gdx6W3ThnCuOya1d7PV9SicRTrlcHqEATtM0O2Aayz47HA7z3tiQtud0+ZuFQiKbbSCmXfN2BmepIBtiP1BXVwe3252SXDy5F5cuXRI1PbfducRAdL2HdHDZbDZW9JFEPULrPZlCVtvposWqXZBON+59SiR9JCbSiWyiQaSGtFptxFAusc8Oh8MYGhpCcXFxwvbZbrd7SxdhJkIimzggaTO9Xo+GhgZoNBrBH3YiBmdikQ1FURgbG8PGxgZrP0BaYMUETdOYmJgAABw6dAjV1dWiHj8WUpGeiu7gIvUe7s6U1HsSXRwyCYmKcHJrF0RWJ1b6iHufUhXhpjPZRIM7lMswDM6fP4/GxkZ4PJ6E7bP3Q9szIJFNTBDvcfJChUIhwUSzWwZnwJWH0mAwQC6X49SpU+yOXOzIyefzwWAwsMfkozogFLu1q+PWe4gxGqljkMVhp3pPptRsAOH2AtHpo+gd/Pj4OHJyciIiH7GaMjKJbLgg70tpaSmqqqoAXFE3sNvtcDgcmJ2dZYc3ubI6yUY2zz//PL7+9a/j8uXLWFtbw2OPPYZbbrkl5s++//3vx/e//31885vfxEc+8hH26zabDffccw9+85vfQC6X421vexu+9a1v8WpakMiGA65dM5mdiTXtngj4GJyJQQZra2ssqbW0tES8jMkaqHFhNpsxODjI1pyefvppQccW8uLsxSKuUCgi6j3BYHDLxD6ZwdDpdBk3CyFWsT1aViccDkd0bHGbMpKd0ufqomUSuKMSBCqVasuAKVE3uHTpEv7u7/4OlZWVoCgKzzzzTMQmMlF4PB4cPXoU73nPe3DrrbfG/bnHHnsML730EkuEXLzrXe/C2toann76aYRCIdxxxx2488478eijjyZ8HRLZ/C/izc4IIYLNzU0YjUaoVKqEHo6dlJ+3A0VRmJiYwOrqKg4fPsx6pnAhljX09PQ05ufnI9JmYhLZdkiXfLVarY5Z7yET+8CVz8RsNkOpVKbUHkAMpMrLRqlUbpHVIeRDDOS4g5J8DOQyNbKJRTbRyMrKYr2P2tracOnSJfzzP/8zLly4gH/4h3+AyWTCqVOn8O///u9oampK6Lxnz57F2bNnt/2ZlZUV3HPPPXjqqadw4403RnxvbGwMTz75JC5duoRjx44BAL797W/jhhtuwDe+8Y2Y5BQLr3my2Wl2hk9kI9TgTCgZkCFNIHYtiECIgRoXwWAQRqMRPp8PJ0+ejNi9p6qTLhbSLT0Vq97jdrsxMDAAm82GxcVFVuqe1DLSrd6zW8ZpsZoyuDbQfAYlM5lsFAoFr/t98OBBHDt2DBRF4fHHH8f09DTOnz+/baaEL2iaxu23346Pf/zj6Ojo2PL9CxcuQKvVskQDANdeey3kcjkuXryIt771rQmd5zVNNtF2zbFmZ+RyeUJkQ0zHbDabIIMzvgv2+vo6hoeHUV1dHbcWxD2+0IXa4XDAYDBAo9Hg1KlTW4b8hEY20feZohlYPUEo5TLo8rYuyOkcHRCQOoZcLkdbWxtyc3O31Hvy8/Mjhib3Ws9tL1w6uSRNbKCjByW5A6jRsyqZSjZCBjqBK5tKQr7Nzc2sZJNY+OpXvwqlUokPfehDMb+/vr6+hdxIM8j6+nrC53nNkg13dobrHRGNRFJcXIOz06dPp9TgjHSBraysoLOzExUVFaIen4D4pU9OTqK5uRn19fUxF6Vk0mjkeGGawQszNkybPFAp5ThWp8Ghyq21j3SLbHZCrHoPkdQZHx+PWe/Z7YU/HSyhYw1KxppVISQdDAYzkmzSUYTz8uXL+Na3voWBgYGUPwevObLhOzuzXRpNLIOzRMnA6/XCaDSCYZht02bR4EsIXGvonfx0hJIN6fjLzs6GxR3ApMkDXa4K7gCFodVNNJflQaWIbHLIJMS6XrVazebj49V7uCm33aj3pAPZRCPWrAopmi8tLWFzcxMKhQKTk5Ns5JOOsjrRECrC6Xa7U9Z48pe//AUmkwl1dXXs1yiKwsc+9jE88MADmJ+fR0VFBUwmU8TvhcNh2Gy2hDa7BOn/CYkIIb4z8YhgNw3OgCvKA0NDQ6iqqkJrayuvh5avNbTBYEB2dnbC1tB8ycbtdkOv17MmVsjRIOgHPAoZAmEG+dkKyKM+l91qRNgtxFJojqXnlup6TzqSTTSiI8Tp6Wm4XC4wDIOZmRnWj4ZrCbDX6clYEEo2Ho8nYghcTNx+++249tprI7525swZ3H777bjjjjsAAP39/XA4HLh8+TJ6e3sBAM8++yxomkZfX1/C53rNkA13doaPEkCsyMZut8NoNIpmcLZdXYibNotWHkgUiS7UZCaooaEBBw8eFGQNvRPW19cxNDSEuro6VFZWwul0wmq1oiBgxdwGhYK8HBzVFsPrcWesTYDQGlb03ArZzaey3pMJZBMNQtStra0AEGEJEN2OnqwlgJhIpmaTjC6a2+3G9PQ0+++5uTkYDAbodDrU1dVtqS+rVCpUVFSw97e9vR3XX3893vve9+J73/seQqEQ7r77btx2220Jd6IBrwGyiTU7w1fUMRQKscciZmBiG5zFijy4w5P9/f2C87Y7RTYURWF8fBzr6+u8xToTJRuicr20tIQjR46gtLQUwWCQTSu1tzOwu9xwOR1wOewYGBiAXC6PmL7eT5HNTtip3hMMBiP8e4TWezKRbKIbBLKzsyMM5LiWAIkYyO0WkolsklF8fuWVV/CGN7yB/fe9994LADh37hx+9KMfJXSMn/zkJ7j77rtxzTXXsEOdDz74IK/r2Ndkk4xdMwGJbAKBAAYHB+Hz+VJicBZNBiaTCUNDQ6ioqEBbW1tSu9jtyIa0T8tkMkEDY4mQTSAQgNFoxIrDj5C2CS9v0OhW+1GSE1mT0WkKoNMUAHW1bJHYZrNhZWUFLpcLcrkck5OT7O4+HVMlBGIvZrHqPYR8uPUern9PIteQiQOS20UIsSwBiPxQPAO53fI6SqZBIBmyufrqq3lt1Obn57d8TafT8RrgjIV9SzbJ2jUTyOVy+Hw+vPDCCyguLkZ3d7foxUi5XM62X3N9bjo6OniFqfEQjxAIoVVWVqKtrU3Qi7BT1ORwOKDX65FToIUzrww2VxhwueHwhvCWzhLkqGOfk1skPnDgANbX1zE7OwuapjE5OckOBSa7s89ExGodJvUes9mMqamphOs9mRrZJCp9w01PxjOQy87OjiCfVM1CJePSmeleNsA+JJvo2ZlklZotFgscDgc6OztRXV2dkheTLNjRPjdiPWDRhMAwDKamprCwsJA0ocUjMq6RWnNzM/KKKzAwsIqKwixQNANPIIxAiEZOgu+1UqmEQqFAW1sbAEQ4c5KdPdccbbedObnY7XRfMvWeTCSbZKKxWAZyse4VV1ZHrM2lkJoNwzCSEGc6gszOcG1jkzU48/v9KCwsRE1NjZiXGgG5XA6v14sXX3wxwudGLHAJgaS0AoGAKIQWi2woisLIyAisVitrpBamaDTocjG+4YYMwKHKfORnJ/43Rn+O3J0915mT7FaJCCRZYDOhNVYsbFfv4UrF6HQ6th6ZSRBzqFOpVKKkpAQlJSUAXr1XdrudjaALCwsjOt2EnpuiKEHPYSpbn3cT++IN5ErOiGEZyzU4q6urY707UgGapmG1WiOiJ7FBIhu73Q6DwYCioiL09PSIsgBHk43X64Ver4dCoYgwUlMq5LimrRQHy66QW50uG6DCvM4VL2KI5cxJFlfSGltYWBiRckt1nSKdooXt6j1WqxUMw2BoaIh3vWevkEoFAe69AmIbyBFZHZ1Ox6tjkqIoQSm6ZGs26YKMJxsxmgAIYhmcmc1mQarPicDv98NoNMLj8UCr1abUE4ZYIovZRQdEko3JZILeMAhZYRkaGhshV0a+WFkqBVrKr7w0NE0jyOO28rneaBFI7uK6tLQEIHJ4MtPtdvkgut4zNzcHp9OJgoIC1pdGpVKx90an06WdnttuytVEG8h5PB6WfObn5yGTyRJuzBBSsyHddVIabY8hpl1zPIOzVAlNWiwWDA4OoqSkBJWVldjY2BD9HMAVvwybzYZgMIjjx49Dq9WKenwi8jk1NYXZuXnYcmuw5FTCYFhDZ1UhznSUQyEXh9iE1kKiF4xYw5Pcek+yviuZ1qKtVqvR0NAQ4UtDamGjo6NsDUOn06WFnptYtgh8IZPJkJ+fj/z8fNZAjnS6mUwmlqi55MMdihZSs/H7/aAoSkqj7RUYhkEgEIDFYoFOp0uaaLYzOBPqZxMPXKn+9vZ21NTUYHV1NSWE5nK5YDAYwDAMKisrRSca4MrfMzc3B5qmcairF4+P2FGcr4BMBkyZPejzhlCcn/zOWMxIjFtM5xaI5+bmWHM0Qj58pO8zEdENAtG+NNwaRnS9Z68GJoUOR4qNWEZ7XAO5sbEx5ObmsuQTCoV4X7fH4wEAKY22FyBps83NTej1erzpTW8SvBDFslCOhphk4/f7MTg4iEAgECHVn4roaXl5GWNjY2wNIxVk5nQ64XK5kJeXh/7+foQZOXLVm7C6A5DJAE2uGlkq8RaiVEQM0QXiQCAAm80Gm82GoaEh0DS9JeWWqLJCJmCnbrRYNQxyf5KZ70kGexXZ7IRoog6FQhEbGY/Hg9nZWbjd7oRVIDweD+Ry+Z52V4qFjCIb7uyMUqlMagFN1OBMLCKwWq0wGo0oKSnZUpwXk2y4BNrd3Y2SkhJMTU2xreBigZBZTk4OampqoFKpoAJwTVspLsxawTDAyQM65GeJ84jt1uKSlZUVMY3udrvZ+RVuPYP8J5bV8V6Bb+tzTk4OqqurI+Z77Hb7rtZ7MsViQKVSRdQOL1y4gNLSUoRCoQgVCK7qd/TfRdqe05Fc+SIjyIY7O0N67MlizbedkK/BGbEYEDqPQMQC5+bm0NbWhpqampieOWKQDbcT7PTp02wnWLLmaVzQNI3R0VGWzMjulqChOBcNxeIX3PdCiJMrfV9fXx9zfoWbciNtsZlUs0lmziZ6YJJb71laWkpZvSdTyCYaNE2jpKQEWq12RwM5nU6HvLw8uN1uiWx2C/HsmoWQDdfgjOz6dwJ5qIXkibkSN9EOl9HnSJYMiCp0LDM1sRZAotUGgI0Gl5aWMmpxTQbR8yvE6thms2FkZAThcJgdFvR6vcjOzk77RULMoc5Y9R5iHhdtBZ1MC3q6ks2kyYNf6tfgDVI4c6gUVzXpIr7PXUN2MpCbmprCBz7wAVRUVCAUCmF2djZhG2gunn/+eXz961/H5cuXsba2hsceewy33HILgCtpvvvuuw+///3vMTs7C41Gg2uvvRZf+cpXIga9bTYb7rnnHvzmN79hddG+9a1v8a4jpS3Z7GTXTP6daD3F6XTCaDQiJyeHl8EZeTj4ti1arVYMDg6iqKhoR4mbZMiGyLcsLS3h8OHDMf0lxIhsrFYrDAbDlqHT3Yo40tFiINrq2OPxsLMrQ0NDrJsh+S/dWoiB1GqjqdVqlJWVsbVQrn8PaUHXarW862HpqOcWomj8+OIyluw+qBVy/OzyGhqKc1CjfTU9v502WrSBXCgUwre//W08/PDDmJiYQHt7O6qrq3HNNdfg05/+dMLE4/F4cPToUbznPe/BrbfeGvE9r9eLgYEBfPazn8XRo0dht9vx4Q9/GG95y1vwyiuvsD/3rne9C2tra3j66acRCoVwxx134M477+StlZaWZBM9OxNLCUAmkyVUvE/W4Iw8HImSGlcZurW1FbW1tYI9c3YCmdMJhULbqgEkE9mQbrOZmRm2e46LdCSBvQC3LXZ6ehonTpxgpe+5KSVuyi0dOqp2U65GrHpPOkY2/hANdyCMolwV8tUKrG8Gsel/dc0gm+dEP3OVSoXrrrsONpsNLpcLTz/9NP7617/imWee4VUnPHv2LM6ePRvzexqNBk8//XTE177zne/gxIkTWFxcRF1dHcbGxvDkk0/i0qVLOHbsGADg29/+Nm644QZ84xvfyGyLAT6zMzuRTTAYxPDwMFwul2CDM2IZnQgZBINBGI1G+Hw+9PX1obCwMKFzbOdnEw/choPe3t6URE6hUIg1iIundP1ajmxigVwj1x6hqakpQjKG67lCfmavvHv2KkpIpN6Tl5cXQc7kGU9HssnPUqC3ToM/T1rh8IXRXp6Hel1kVAOA9waD1Gzy8vJw5swZnDlzRtTrjobT6YRMJmPHJC5cuACtVssSDQBce+21kMvluHjxIt761rcmfOy0IRu+ds3A9mQjpsFZIhGUzWaD0WhMKG0WDT5kwI004jUcREPIQk1ay3Nzc9Hf3x/3/gklAWIry0foMBPIhiD6M4mWjPF6vWwL8fz8fAQ5RQ8DphLpIsQZq204lp5bUVFR2lwzFzKZDLf1VqGjsgDBMI3OqgLkql8lFvJ+C5mz2a0ZG7/fj09+8pN45zvfyW6U19fXt4yEkPTw+vo6r+OnBdkIlZyJRQKpMDjbjgzEOB+3CWG7HVsoFMLg4CDcbjcvTx2+kQ0fx04hZOPxeDAwMIBgMIhwOByhW1ZYWBjzfOm2uCQDrucKmUSPHgbk7upTObWfjgs3cCWNFKveY7PZAAAXL14UNP8kBmiGgWkziFy1AoXZry6hKoUcPbWx30mKogQJA++WVE0oFMI73vEOMAyDhx56KCXn2HOyEWrXDGwlm1QZnMWLbILBIAYHB+HxeJI6XyJk43Q6YTAYkJ+fj1OnTvHK2yZKNlwL6nhDrkKPTWAymTA4OIiamhrU19dHpJdI0Zi7wyft20BmRDZCrpEre3/gwIG4u/pUePekK9lEg9R7ysrKYDabcfToUTidzoh6D5d8UhUZhiga//HiEgaWnMhWKXD7iWocr9fu+HtCJbXcbnfKIxtCNAsLC3j22Wcj0v8VFRUwmUwRP0+yErGakbbDnpFNsnbNQCQJEK2xVBicxVpQSZpOo9HwXvxjHR9AzEWbOxckpMEBSCz6IM0G4XA4QhtOjGMDkfNGnZ2dKC8vRzAYRHZ2NqqqqljdMuLOSawCcnNzodPpkJubmxFkIwa4u3oyj0F29QsLCyw5xSJkvsgUsiEg70hhYSG0Wm1EvYfbjEEiQ7E9aUbWNvHirB3aHCUc3iB+oV/DsTrNjvcwGUtoIbXmREGIZmpqCufPn2fb+gn6+/vhcDhw+fJl9Pb2AgCeffZZ0DSNvr4+XufaE7IRS6lZoVAgFAphcnISCwsLbHug2C8Pl9QYhsH8/Dymp6fR3NyM+vp6UdJ0wFayCYfDGB0dhcViQU9Pz5YHgc/xt4s+SL2puLgYHR0dvF6KRMiG22hA5o1iXY9MJouwCuDu8Ofn50HTNPR6PYqLi9mht3RdKMXUciPzGDU1NXG9e7gpNz4La7pKv8QDeW6i9Qu5zRjc52Zqagp+v1+U+R4AoGiAAQOF/EpKjGYABsBOd1Ao2fh8PtTW1gq6VuBKZDQ9Pc3+e25uDgaDATqdDpWVlXj729+OgYEB/Pa3vwVFUWwdhnQDtre34/rrr8d73/tefO9730MoFMLdd9+N2267jbfp4p6QDXm4kzE3I1hYWIBSqdx2aDJZkG6xYDDILppiKigTsuUuwG63GwaDgZXTSWb3up2bJmkLT7RNO9axtyMyt9uNgYGBHRsNYoG7w/d4PHj55ZdRWloKq9WKubm5iEUmXedYxMZ23j1kYU2kBkaQiZHNTkQRq95D7hGZ1Bda7+msKsDxOi2Mqy7kZynx1qPlkCfwu0LFQ91ud1IWGK+88gre8IY3sP++9957AQDnzp3DF77wBTzxxBMAgK6urojfO3/+PK6++moAwE9+8hPcfffduOaaa9ihzgcffJD3texZGi3ZqfaNjQ2YzWbk5+fj5MmTKZ1ZUCgUcLvdmJqaQmFhIU6fPi26JhY3+lhfX8fw8DBqa2vR3NycdJtnrMiGqCnY7XbBbeHA9pHN+vo6hoaGUF9fj+bm5qQWNfK7NTU17A4/Wgo/lnTMbmO3U32xvHtIyi3au4cIZUZf734jm2hEW0zE0rtLtN6TpZTjA69vwIrDjzy1AiUJKppvN9C5HZLtRrv66qu3fSYTeV51Oh3vAc5Y2PMGAb7gFrGLi4uRl5eXUqJhGAZ+vx9WqxUtLS1oaGhIycspl8sRDocxNjaGlZUVHD58mFXaTRbRhODxeKDX66FWq3Hq1KmkiqmxyIZhGExNTWFhYSGuqoGQ83DBLaqTORayyI6MjICiqC2LbCYtqkIRa3CS692TnZ0dkXLLNLJJdi4olt5dvHpPSJUPL7LQVFaAotxXN5dKuSxihiYRJFOz2Q/2AkCGkQ3X4Ky/vx+rq6sIBAIpOx+pNXi9XtTU1KCxsTFl55LJZBgeHoZMJuNVoE8E3MiGaKiJFTVFk00oFILRaITX691W1UCoqGk8qNXqCOkY7u51amoKWVlZbK2nqKhI1AaSWEiHBTyedw/XLpuI2ubk5GSEd4/QCCEe4tV7Lk5v4CfGdWwGaJTlK/G+vjK015UJrvcIJZv94tIJ7CHZ8H0ZV1dXMTo6GiE0KbaxGRfcVuPy8vKU1gMsFgsrN97V1SV6pEZqThMTE1hcXBQt2gAiyYYMghJ/m51SjdxngMwuhCgaZQVZyFLK4/5sItcUvXslOXuyyJK6RnFxsaitxOmMaO8ev9/PzjtFe/ekazSYasUDUu+ZGXaDVgfRUqLGnMWDS4suhBzr7D0i9ynReo+Qmg3R29sPLp1ABkQ2XH+WI0eORMx+pIJsGIbB4uIiJicn2VbjsbGxlJAatx1YrVajrq4uJSlBopptMpm2jTaEgDQIrK2tYXh4GI2NjWhqauK9SI2ubcK47EKIZlBXlIOrmnRQcwiHHE9I2kehUGxZZIlg5k6zPXyRSe3Z2dnZUKlUqKurQ2lpacxosKioCMXFxaLYZYuB3ZKqyVErwDCAN3wlaj5QX4OrOkpZZWar1YqZmZmE6z17VbNJJ6Q12exkcCY22YRCIQwPD8PhcEQUzVNBamQg1Ov1oq+vD0NDQylZqBwOB2sL0N/fn5L0kcvlgsViSXgQNBphmsG02YsspQJlOUosO/yweYOoKBS+6G+HeLM9q6urEbM9qZ7eTwdwFdVjeffYbDbMzc1heHg4LRowdots3nK4HCuOANZdfvQ1aPH6Zt0WZWaKothnh1vv4fr3cK1QpJrNHmGndsxEDM4UCoVoDpQkbZaXl4fTp09HpM3kcjmCwaAo5wFeJQCNRsOmm8S2hubew/r6eszOzoq+aAaDQSwvLyMQCODUqVOCc8sKGZCXpcCK3Y8QTSNbKYdaETuNJnZBe7vZnomJCTa9yXe2J93ST/EQLy0Vy7uH2AOQBgxiD8AnnZQsdmsuqFKTjc/f0AxfiEKeWhHznAqFIqJJhTw7xI+G24bu8/l412FJGk2q2aQIfAzOxIg4GIbB0tISJiYmcODAARw4cGDLg0XcOpMFN0V38ODBiM42IcrP8UBRFEZHR2E2m9Hb24u8vDzMzs6KulC7XC4MDAxApVJBq9Um9ULIZDL01mqglMvhC1Joq8iHLi92jSzVaaro6X2uYObs7GxGeNTwQaLPRLRdNte7JzqdlMr7spuKzwq5jJet+XbzPeReeb3ehOs9Xq8XDMNINZtUgK/BWbJkw5016e3tZRVnoyEGEew01yKmNbTBYIBcLmeHQUlUJtaLSoQ6Dxw4AJVKtUU7SQh0eWq8oSW+QsJeRArxBDOtVmvc2Z5MqtkAwiJFrncPSSdFzzylyrsnHe0F4oE73zM4OIjc3Fyo1WqWoMnGhZBP9Hrn8XgAQEqjJQvuA86dZI8XXcSCUqkUTAIulwsGgwE5OTk7zpokG9m43W7o9XpkZWXFPZcYZGM2mzE4OIjKykq0tbWxLyX5f7ILIZlxWl1dRVdXF0pLS7G8vJzwcT2BMAYWHbB5QmgsyUFzSXZC09dc7OVizp3tAcDO9litVgwPD4OmaVaM1efzZcSOVIxoN5YdNEm5Ee8ebsotGZmhTCIbLmiaZmeg6urqIoaSuUrfhHjy8vLg8XigUCgEz8FtZwkNXPnsP//5z+Phhx+Gw+HA6dOn8dBDD6G5uZn9GbEsoYE0iGySMTgTEtlw02aJdk4lE0GRKGCnKfpkyIbb1dbR0bFFs2g7oc9EEQgEYDAYWFdQkn/mYzFgXHZiaMWF/GwlLs4FkKPQoi7B4bh0rIHEmu0xm82w2Wx45ZVXdn22RwhSMdQZfV+4qUgiM8RNufFZTDOVbKIbBKI3LqFQiG3ImJycxLvf/W4UFBRAoVDgxRdfxMmTJ3l3A25nCQ0AX/va1/Dggw/ikUceQWNjIz772c/izJkzGB0dZTsyxbKEBvaYbJI1OCMkkOgLEw6HMTIyAqvVykvYUkgajaZpjI+PY21tLaEurWTcNInNQTx9OG5xXQicTif0ej20Wu0WV1A+ZOP2h5GlUqCsIAuzFg/8Yf5/b7qmqUinUnZ2Nubn53H69Gm2U4k720PIJ11me1JdcI+XiiQ6ZXy9ezKVbHaas1GpVBGyQ7///e/xgx/8AD/+8Y/xtre9DT6fD69//etx//33o6enJ6FzbmcJzTAMHnjgAdx33324+eabAQA//vGPUV5ejscffxy33XabqJbQwB6STSAQwOXLl3Hw4EHBysnkw0tkYGpzcxMGgwFZWVkJ1YOiz8OHCHw+HwwGAxiGiYgCxDwHcCUVqNfrkZ+fv+0QJWltFUJmZEGIbmjgHjvR4x4ozcOaK4BZiwflBVmoKEh8c5EOC3MiIGQYPdvD1SxbXFyETCZjd/fFxcW75swZ63p3895GywzF8u7RarXsfE+0XXamkg3f1ueWlhZcf/31OH/+PMbGxjA8PIw//elPCVvN74S5uTmsr6/j2muvZb+m0WjQ19eHCxcu4LbbbhPVEhrYQ7LJzs7G6173uqTtmoHtP0iGYdicaCLOk7HAJ7IhdZOKigq0t7cn/GLwjWxWVlYwOjqacI2LL9nQNI2xsTGsr69vGwXyiWwOluUjP0sJT5BCriyE5bkp5OXlxVxU4iFdI5udwNUsIzYBVqt1z2d79lobja93T6oVBFIFIUOdXq8Xubm5UCgUOHr0KI4ePSra9RArgWj9xfLycvZ7YlpCA3ucRsvKykpq8SAfXjwi4PrB7NRGzf4ORWNjM4CiXDXrIZ5I1MEwDKanpzE/Px+zbrITEiUDLgmQIn0i4KOy7ff7YTAYQNN0zGHanY7r8Ibg8oegy1UjPzvyEavQZMNsNsNoMKKkpAQulwsLCwtskZmkmaKjtEyJbAi2u16uTUC0M+f4+LioBfWdsNdkw0Us757ogVuFQoGcnBxYLBZRTdFSDSFDnbvh0rmbyIxPKg5kMlnc4j1JmxFl40QkSFy+EL785CQmTW5oc9X4+JsOoq2iYMcGAWJH7ff7BfvqECO47eD3+6HX63ml5wgSjZzsdjsMBkPCRmrRkc2qw48/jZvg9IVQmp+F6w6VsTMzXOO5Q4cOobS0FAzDgGEYtqV4YWEBIyMjEdpl3NRBpkY222Gn2R6VShUx2yOmbEw6kU005HI5tFottFotS8rDw8MIh8NbTNHSXeNOiDZaKgc6iTbixsYGKisr2a9vbGyw3jZiWkIDGU42QOxOMZJiqq+vx8GDBxMOX5+dMEO/5ERxvhrLdh/++9Iy/r83t2+bRiOLc1FRUVJ21DuRgdVqhdFoRFlZGdrb23k/uDulu7hdei0tLairq0t4Up573GmzG3ZvEI3FeZgxe7Bg80KXpwZFUeyc0YkTJ1BYWMiSa3RnDplWt1qtWF5eBgC2rTYQCOxZfSMRJEuGsQrqpEuJEDGZ7SFEnExaKZ3JJhoqlQpqtRpFRUVoaGjg7d2zV2AYRjDZpCqyaWxsREVFBZ555hmWXFwuFy5evIi77roLgLiW0MAekw2ffH88cCVryOS8yWTilWIiCNMMGFzxq5D977/JOcgOnNvZRWaD+CzO8RCPbLjRQFtbm2CL2O3IjIidmkymbYdbYyH6M8xWykEzgN0bhEwug1ohh8/ng16vh1wuR39//47p0+hpdZfLBavVCuCK8yCp85D6Ribm8BOFXC6PmGEhRGyz2bYoNRcXF/NaYMlnkClkA0RGCNHePSTltr6+vsW7Zy9bz8lGle9zmmxks50ldF1dHT7ykY/gi1/8Ipqbm9nW56qqKnYWR0xLaGAfRTZcG+XTp08LUu69uqUEz09ZsWD1oiRfjVu7r9xQbm1IqVQiHA5jaGgITqdTNHvoeG6a5DwnTpxgBwaFIB6xk9QcAEH209HHPVRVCLs3BLM7iK7qQhQrg7hw4RWUlZXh0KFDvF84rnbZ/Pw8jh8/zqaZRkdHt5ikiekDlAxStYBHE7Hb7YbVaoXJZMLU1BSvBTZTySbW9UZr3MXy7iksLIxIue3WJoWQzW5HNttZQv/oRz/CJz7xCXg8Htx5551wOBy46qqr8OSTT0asAWJZQgP7hGwsFgtWVlZQV1eXlCFYSX4WvvLWDizarpBNSX4Wew4AbBeRXq9nlQfE0oCKJhuiOpCdnS3KeWKRmc1mg8FgEJyaA7aSTX6WEmc6yhEKU1hbXcGQcQKtra2oq6tL6vrJuZRKJcrLy1FeXs5qdEUvttxByv2s2MxVIY5njqbRaFjyia5pkM8tkyLDRFufY3n3kIhwZWVlV717KIqCTCbjfZ/dbndCTU3xsJMltEwmw/3334/7778/7s+IZQkNpEEaLRlQFAW/3w+3251w2oxhGNg8IeRlKZCt2roQ5aoVaKuILPCTh2RlZQXT09OCPVu2A5cMiDfMTqoDQo/PFQRtbW1FbW2t4HPEiphomsbEuLC0HN9zE42u+vp6drG1Wq2YnJxkZzb4KjYng71sYIheYGPN9nAbDQgRZ1pkI4Qco20liF022aRkZWVFRIRiNmEIqdcAV1qfpW60NIDH44HBYABFUWhsbEyIaPwhCl99agr6JQc0OSr83zc143D1zkNSZJGemZkRVAtKBHK5HOFwGOPj41heXhbsDRMPhBQoimJVFPjKA8U7LjdiCgQC0Ov1oGka/f39ohZpd6rxcRdbMrNhtVq3dHXthhlYOizg8WZ7yNwZSTna7fYI8klniDHUGW2XHcu7h6TcEvXuWXX6YVh2IUshx8lGLfI4atFCjdP2kyU0kKFkQ3b+tbW18Pv9CX+Qf5604IUZKwqzlVi2+/AfL8zjgXcc2fZ3iIqyTCbD0aNHU0I0ANi6E0VR6O/vF/0hk8vl8Pv9uHjxIluoT8aRkntcQgBOpxMDAwPQ6XTo7OxMyeKVaOTAndmora1llYmtVivm5ua2tFenc9usGIg122M2mzE+Po7JycmI2Z7i4uJd86fhi1QMdcbz7rHZbAl59zi8Ifz7C4tYsvshkwHzNi/e0/9qtkCocZo0Z7OHoCgK4+PjWF9fZ3f+w8PDCU/3BykaNANkqxRQyMMI7KDNZTKZMDg4iOrqavj9/pR1s9jtdkxOTkImk+HkyZMpOQ+ZTaiqquKlbLATSLRB2s3jydrEA5/W22QWv2hl4mhraG6Kqbi4WHCNLFPmgFQqFbu49vf3R6TcUj3bkwx2Q64mEe8ebsptxRnAuiuAg6W5cPjCmDZ74QvR7FC4ULKR0mgigs/i4fF4YDQaIZPJIqba+bh1XtVUjKdGTJgxe5CfpcTf9lbH/DmapjE1NYXFxUV0dnaisrISZrNZVCdNILJ2UlVVBYvFIjrRkNbpzc1NVFVVoaOjQ9TjA69uAlKVYuRCrMWcm8PnTqoTLTgxZ1nSFeR5jp7t4frTRA/Z6nS6Pb0fu62Ntp13D7k3YVUelJQcE2tBKJRKHKkuRLbq1WtMxhJaSqPtMtbX1zE8PIzq6mq0trZGPGwKhSJhy2ZdnhpfvbUDUyY3SvLUqNVtbZP1+/0wGo2slD7ZWYjppAm8qkBts9lw7NgxMAwDs9ks2vHJOYaHh+FwOKDVapNqnY4FYg8BACdPnkz5i5GqtE70pDrXp4bMsnB3+TvVodIx/RQLJKqM5UybyGwPabzYzeHJvRbijOfdQytNeHnBAQVoHMmhsLykYJtShFwziagywRMpUaQ12RCZ/tXVVRw+fHiLaBwQW0GAohnIZbFf+vwsJbprtTHPR1qBi4uLt0jpi2UNDVzZsej1eqhUKtZMzel0iho5eb1e1ra5v78fo6OjoqZ4Njc3MTAwwBaZd2u+ZTfSVLF8aqxWKzssmJOTEzFUmgmF9VgQaglN7sfGxkbE8GRxcXHK9cr2mmyiQZ6V6ysqcOZkbBtxMsTMV/0ilQoCe4G0TaORwjxwZdgw3mLGJZtgmMa3z8/gL9NWVGmy8YkzLWgo3nkRZBgGc3NzmJmZidsKLFZkQ+pANTU1aGlpiXDTFItsiPJ0VVUVGwkKtRiIhfX1dQwNDaGxsRHV1dV47rnnRDnuTtgra+joWRaymHBFMwn5ZBKEWkLHm+3h6pXFm+1JFntJNgzD4IVZOyZNHlRrsvCGlhKola9eSzzvnrm5Objdbrzwwgu8vHukbrRdwMbGBoaGhlBVVRVhbxwLXLJ5ZsKM3w9vIFslx8jaJh56bg5fvXX7GkUoFMLQ0BBcLte2U/rJuHUCVx7UqakpLCwssHUgLsQgA4ZhMDs7i9nZ2S3K03xUn7c7PlG2PnLkCMrLyxEIBNjv7QYZ7HUBXqlUbhHNtFqtEcVjkhJNV3dOAjE+s+1me4hFADcFmYyuHdEY26s05eUlJx69tMI2FoVpBjd2bs22EBDNP5vNhtzcXDQ1NW3ZqHCJmWuzQdO0FNmkEsTjfmVlBZ2dnQkpiyqVSpYEXL4QKAbQ5qgQCNOwebev5TidThgMBuTn5+84pZ9MGi0YDMJoNMLv90fUgWIdX+gCsJO0TbKRUzgchtFo3OIIyn05Ur3jTLdaCHcnS4rH6+vrmJiY2DLBz8ezZ7eQig1C9GwPabwgsz35+fns4qrRaHilILnGdHuBNWcAvhCNlrI8zFm9WLD5Evo9MtSpUqki1C+4xDw/P88S89zcHKu4IVbNhqIofOELX8B//dd/YX19HVVVVfiHf/gH3HfffRF6j5///Ofx8MMPw+Fw4PTp03jooYfQ3NwsyjWkTRrN6/XCaDSy8vmJho/ciONUUzEeN6xhxelHjkqBmw7HJiuGYbC8vIzx8fGEzceEptGIpbJGo0F/f3/cnS5ZqIUsAKQGlJWVFZc0k4mcPB4PBgYGkJ2djZMnT0Ycn3vdu4G9jmy2g0KhQFFREeRyOU6ePMkuJsQ6YSfPnt1GqqPRWBYBZHEdGxvbkoLcabaH2z23F6jT5SA/S4FJkwcqhQzNpYmtURRFxfRniufd84Mf/ADPP/88AOALX/gCzp49i9e//vVJRTlf/epX8dBDD+GRRx5BR0cHXnnlFdxxxx3QaDT40Ic+BAD42te+hgcffBCPPPIIK8x55swZjI6OijKTlxaRjclkwtDQECoqKtDW1sZr58Ilm9qiHDzwjsMYXHGhvDALR6q3psTIBL3FYtnWgTLWefgu1ktLSxgfH09o9oQs2nwjBFIDqq2t3VYXTmgazWw2w2g0bqkxEXB3RXwgk8ng9Xohk8kS7mZKp6ggHrj3IXqXv5Nnz27/fbttLxC9s4+VgtxO4YG8f3tVszlSVYD39NdizupFaX4WTh1ITH2DoqgdF2suMT/xxBO4dOkSrrvuOoTDYXz4wx/G4uIi/t//+3/4P//n/wi69hdffBE333wzbrzxRgBAQ0MD/vu//xsvv/wygCvPwgMPPID77rsPN998MwDgxz/+McrLy/H444/jtttuE3ReLvaUbEi32fLyMjo6OrbUMRJBdC2lvDAbbyqM/cFGd4HxYWs+kQ1Xsj9RQuOSTSJgGAYzMzOYm5uLWQOKdXw+kRm3aWI751EhZENmf6ampkDTNPLz89kJ7p1mONI5stkOiXr2kMV2Nzx79tLLJlYKksyvEIUHMutEZnv2WjhUJpOhu1aD7lp+IwRC5mzUajUKCgrw0EMPQSaTYXZ2NqmU2qlTp/CDH/wAk5OTaGlpgdFoxF//+lf867/+K4Ar9gPr6+u49tpr2d/RaDTo6+vDhQsXMp9swuEw3G53UvIsiRbuyaxOvB26WOch3i1k+DRRQuNDNqSpYXNzM2FnUD7eQRRFYWhoCA6HY0drA75kw9Vm6+3thUqlYsUzh4aGwDAMO8MRvehmQmQDJHadsTx7iP3x+Pj4rnj2pEL6RSi48ysHDx7cMtvDMAzr2Or3+1M62+P0hfDbYRPs3hCO12vQ15CcfqAQIU632x2xJh44cCCpa/jUpz4Fl8vFZo4oisK//Mu/4F3veheAK+sjgC3jJeXl5ez3ksWekk1WVhaOHTuW1DHIjYu3SxPSdBDvPDsNj1osFhiNRlRWVu7YRRcNMly3E9m43W52vqW/vz9hWZVEGwQIWSoUCtbobKfrBhIjG653Tn9/P/vZcWdaiFgkWXS5UQ8xsNtviPZi4dY2UunZk84undFkvLm5ifX1ddhsNrz00kvIycmJaCEWs+vv0VdW8cKMDQq5DGPrbhTlqtFSJrwFWYgQJ5GqEevz+Z//+R/85Cc/waOPPoqOjg4YDAZ85CMfQVVVFc6dOyfKOXbCntdsknXrjOWiSeD3+1ll6GTFLbdLQ3Fbjg8dOoTq6tgyOMmcA3h1vkWI9UAi99lms0Gv16OiooKXfloixyYincXFxejo6IgpM8RV4yWLLlFtHhoaQigUwtzcHHw+366lmvhCDDKMrm2kyrMnncmGC/JcyGQybGxsoL+/H3a7PeZsjxhdf/NWLwqylKgozMK0xQvTZiBpshFinCbmoPTHP/5xfOpTn2LTYYcPH8bCwgK+/OUv49y5c+wmfGNjIyIlv7GxwdpGJ4s9J5tkQT7EcDgcscu3WCwYHBxEaWkpDh06lHS7ZLwGgVAohMHBQbjdbvT19bGhvhBsZw1NZnQOHz4sKDrbLrLharQJsZ7eiWyISjdfkU6VShUR9bz44ovIzs7G6uoqJiYmIlJNicjAZyJS6dmTKWRDQJpnlEolSktLWR0+rpWEGLM9R6oL8ccxM6bMHpQXZKExgcHw7SCEbMRWfPZ6vVveD+6a1tjYiIqKCjzzzDMsubhcLly8eBF33XWXKNewb8iGRATcKKO9vR01NTWinCdW1EFcO/Py8nDq1KmkW1ljEUIoFILRaITX6407o5MI4hECTdMYHR2FyWQS7G8T79iEJBcXF2OKdPKJAmQyGRQKBcrLy1FcXMymmqxWK4aHh1n9sli1nt1GKhdwMT17MpVsopGTk4OampotLcREVJU725NI/etvuytRpcmGyx/C4apCVGuTa/sVUrMRW4TzzW9+M/7lX/4FdXV16OjogF6vx7/+67/iPe95D4Arz+xHPvIRfPGLX0RzczPb+lxVVYVbbrlFlGvYc7JJNo1GFiGKohAMBjE4OAiv15t0lBGN6MhmdXUVIyMjorp2RpMN0R/Lz89Hf39/UmQWi8hImpGmad7dedHHjv4Mw+EwG/GdPHlSlF0a9x5Hp5q4tR4S9ZBFdz9HPcl49uzlNL4QJDIWsN1sz+joKMLh8Jb6V/Q9UCvleENLYiMRiUBoGk1Msvn2t7+Nz372s/jABz4Ak8mEqqoqvO9978PnPvc59mc+8YlPwOPx4M4774TD4cBVV12FJ598UpQZGyANyEYMKBQKOBwOTE9Po7CwMOmFORZIZEPatdfW1kSX1I9lDS0WmUWTjcPhgF6vj6ihCEV0YwMRAc3KytoyBJosYm1MYtV69irq2csGBr6ePfslstkOsepfsbxpUuneKqRBQGypmoKCAjzwwAN44IEH4v6MTCbD/fffj/vvv1+083KR8WRDmgNGR0fR3NzMqybAB6Sg/fLLL7OWx2IrHZMIbWJiAktLS6JaQ3MjSKFGZ4kc22q1wmAwRIiAigU+tZ5YUc/a2homJiaQm5vLEs9+jXqAnT17srKyIJPJ4HA4MsKzJ9lILJY3DdcOmjvbQyLBZO8JkaDa68gmHbDnZJPMw0M8YcLhMJtnTBU8Hg+8Xi+KiopEaTiIBSJ0yVeyJxGQyGxsbAyrq6vo7u5mxROTBSGbxcVFTExMCGoySBRClAriRT3E8pcrISNGyiAdo4VYnj0zMzMxPXuKi4tFS52ICbH19+LZQVutVqysrLAzX4n6GMW7ZnIuPvB6vaJtNNMFe042QuF2u1k9sPz8/JT5qXCn3ZVKJTo7O1OymLhcLjZ0PnHihOhqwRRFwe12s23gYt+vubk5OBwO9Pb2pkxqX4z7Hh31EG+W11rUQybUg8Egjhw5khGePakWe40122Oz2SLuCdcOOpF7QpqK+F632+1OepAz3ZCRZEPqGfX19Th48CBeeeWVhK2h+YDrdNnZ2YnR0dGUEA1Ja2VnZ6OmpkZ0otnc3MTk5CRkMhlOnjwp6vGDwSCCwSA2NzfR39/Pa/cn5F6KWROJ9maJF/Xw2e1n0tAp16lzJ8+enYrqu4Hd9LLhRsTknsSa7SGEHG+2h6IoyGQyQUOdUhpNZPB5aLnOndx6RrJeM7FAIqfs7GycOnUKoVBI9HMQdYPV1VV0dXVhaWlJ9MWKDIKWl5fD4XCISjSkW04mk6GtrS3l9sCpXuDiRT1kZ7vfop54DQI7efao1eqIodLd8uzZS3md6NkeriPn/Pw8q/hN7gtpihHSiQaIP2eTDthzskkUPp8PBoMBDMNsce4Um2zIAl1XV8cqKZNCn1gdPIFAAAaDAaFQiE1rraysiOamyR0EPXLkCJRKJRwOhyjHBq6oTRuNRjQ0NGB9fX3XFoHdihwSiXq4Gm7cqCcdazaxkMizHEswkwyV7rZnj5CurlQh2h6AiIguLS1hdHSUne3JysoSdM1ErmY/ISPIhtgcx7MgEItsaJrG1NQUpuaXoC5rAl1Yyr443OHRZHdyxONGq9Wit7eXPZ5Y1tBE1cDj8bCDoHa7XZRjc9WgiZqB2WwWRAJCLIn3ColGPdnZ2RmTShOycYouqu+mZ086CYdywVX0bmpqQjAYhN1uZ2uBZDCbTxpS6kZLAba76Vwb4u00x8Qgm0AgAKPRCJc3gL+6yzAxZ0aW0oq3d1fh7b3VvC0A4oG0ncZqOxaDbEj6LycnJ2LeKNnhWeAK0Q4PD8Nut0cMzYphaZ0o0mEhjxX1kMVldXWVHWiNFfWkE8SI0nfTs2c3azbJQK1WsxsTk8mEmZkZFBUVRaQhuY0G0YRM5oHEculMF+w52cQDsVL2+Xw7yujHEnXkAzLgWFRUhFxdIybGZlGlzYLNE8LvRzZwc1cllP/7kAslNZqmMTY2hvX19bgeN0LdQAmI0VltbS1aWlpEJTK/34+BgQHI5fItatBiEFkiSNf0lEqlYmsclZWVGBwcRGFh4ZaoJ5V2AUIg9lBnqj17MoVsuKBpGmq1GnV1ddvO9pDng6g8SGm0XYLdbofBYIBWq8WpU6d2TFsplUoEAgHe52EYBktLS5iYmEBzczPq6+sxvLoJlVIGhzcMb4hCaUEWFP/bsSOUDKJlYeIV0oUSAlcPLp7RWTLRByHjkpISdHR0xHTrFEI2DMPwXkDSIbLZDkQ+qaGhYUvUw7ULSIeoJ9Vpqe08e7iSQomSME3Tu9aMIBaiGwSi05BE5YHUex5++GG4XC44HA64XC7RrmNlZQWf/OQn8Yc//AFerxcHDx7ED3/4Q9bihWEYfP7zn8fDDz8Mh8OB06dP46GHHkJzc7No15BWnxzDMFhYWMDU1BS7+Cey8xKSRos28SKzIZ1VBbjlaCWeHjejNi8H/3S6HnL5q3Ubvgs2Ic5EZGHkcjnvCI3bnr2d0ZlQW2iiAbfd5yGEbHw+HwYGBuD3+1FcXIySkpId5UJ2K4ISE9yoJ16th+z0dzvq2U25Gj6ePcXFxTE3ZJmm5QbsLMLJVXlgGAYqlQq//vWvcf78eVx//fVobm7Gddddh3e/+93o7e0VdA12ux2nT5/GG97wBvzhD39AaWkppqamIkR3v/a1r+HBBx/EI488wopwnjlzhh3JEAN7Tjbk4QmHw6w7JF/1Yb5k4/V6odfroVQq0d/fv6WT6O9O1OJt3VVQKuRQyCNTUYmehxs1tbS0oK6ubscXhW9kE/13bJeW4HtshmEwOTmJpaWlHTXg+JKA3W6HXq9HWVkZDhw4ALvdzqYUyOxCcXExL7n8dMF292G7Wk901CN0Yp3vte7V/RXi2ZOJaTQ+HXQymQz9/f1ob2/Hd7/7XUxPT8NgMOCpp57C3NycYLL56le/itraWvzwhz9kv8ZVW2EYBg888ADuu+8+3HzzzQCAH//4xygvL8fjjz8uiiU0kAZkA7wq1Z+Tk4PTp0/zFm7kQzZXWnYHoS4qR0NTU9wFOku1dTeSaGRDZGFMJhOviXo+hEA0yBJ1BeU6au60wITDYRiNRng8noQUm/mQDYmUWlpaUF1djUAggKKiIhw8eBB+v5+d55ibm4NKpYqIejIxstkO8aKejY2NiCn+VEU96dLdlahnTyAQYLv90mUTQtEM/jJtxeiaG5WabLypvQT5Wa8uq0LmbLxeLwCgqqoKDQ0NSUv8P/HEEzhz5gz+9m//Fs899xyqq6vxgQ98AO9973sBXFH/WF9fx7XXXsv+jkajQV9fHy5cuLB/yMbn8+Gll15CQ0MDDh48KOghSoRsSGfb3Nw8RqhyXND7ITeM4JajlbjteGKeN4mch2t9zFe2PxGyEWp0xu2m2+7h93g8GBgY2NLNth0SIQGut013dzd0Oh1CoRAYhmFTh0qlEpWVlaiuro6Y5yAT20qlEkql8kojR4rkicSAkGc43hR/KqOedFq0uYjn2TM/P4+lpSVsbGykXKk5UQytuvC7ETMUcmDc5IFCDrzlyKvmhkLtBbKyskSrT83OzuKhhx7Cvffei8985jO4dOkSPvShD0GtVuPcuXNYX18HAJSXl0f8Xnl5Ofs9MbDnZJObm5uUKRiwczca1+emuq0LDz85B7kcoGjg14NruKatFKUFO3fG7EQGNpsNBoMBZWVlaG9v5/2Q7XR8mqYxMjICs9nMO9VIyGY7UiDRUnV1NVpaWhLe9e503SRFurm5ib6+PuTl5bGkrVarWesG8h85plarRVFREVpaWuD1ell/nIsXL7JpFrLrTwftLkC8BoboKX6PxwOLxSJq1JMJNRCuZ4/ZbEZ5eTlycnIS9uxJNZy+MIJhGi1luZi3+WBxByO+T1EU7647t9stagqZpmkcO3YMX/rSlwAA3d3dGB4exve+9z2cO3dOlHMkgj0nGwBJt/htF3E4nU4YDAYUFBSgv78fK64QAEAGGQAG4LE2xDsPt7GhtbUVtbW1gh6U7RbtZCIm4NXddjzbaRItCXE33S6y8fl8bF2pr68v4h4qFAq2e4tcGyEe0qlGjp+VlcUusBUVFWytg2h3cf1q0nWuRSi4aaboqGdsbCzCECxecT0W0jWyiQeGYaBUKnl59ojppRQLB0pyUZqvxqTJixyVHB1VkSMaQupMhGzEQmVlJQ4dOhTxtfb2dvzyl78EANZmfmNjA5WVlezPbGxssBbRYiAtyCbZXLxSqYxJAmSAsqmpCY2NjZDJZKjXKXHmUBn+OGaCQi7DW45WJBTVALEbBLhdbUJtlQni1YTEMDqLN5SaSltoct2lpaVob29nCSSeMKFcLo+4ToZhWPIJhUIIBAJsBEuIRSaTscVlsuvfbxpm0YgV9XCL64lGPZlGNrEW7p08e7j+NKnw7KktysE/9Ndg0eZDUa4abeWRJCG0ZiNmZHP69GlMTExEfG1ychL19fUArjQLVFRU4JlnnmHJxeVy4eLFi7jrrrtEuQYgTcgmWURHHGQB3djY2OLbIpPJ8I+n63GmoxwKmQyVmsRD3GgyILt2MuiY7I46VmRDXho+reCxwG0QIAgGg9Dr9QiHw7wVm6OPHU02RJm7ubkZdXV1bIpMLpcn9DeQRUGhUCAUCmFoaAgA2AWWkI5MJkNOTg5qa2tRX1/PdnhZLBYMDw+DYZiIqCfVO11yTbuFWMV1btRDFJvJ38/9jPcD2XARy7OH3ItUevbUaHNQo4397qSDJfRHP/pRnDp1Cl/60pfwjne8Ay+//DJ+8IMf4Ac/+AGAK8/QRz7yEXzxi19kfcE++9nPoqqqKunmBC72DdmQXTMRuCQGZLEKyTKZDLVF/BdWLqmR+kZFRQXa29tF2TFxyYZrPx1PcSCZ4xPFZo1GE6HPJgRcsiGNGAsLC+jq6kJJSQkbnSRKNFx4PB4YDAbk5eWhp6eHJXzuf9yNhlwuR0lJCUtKxKVzZWWF3emShTdZ+ZRY2OtuOT5RTybUbLjgm5JSq9WoqKhARUVFzBknPp49nkAYfxg1Y9nuw6HKAryxtQRK+c73TgjZiK34fPz4cTz22GP49Kc/jfvvvx+NjY144IEH8K53vYv9mU984hPweDy488474XA4cNVVV+HJJ58UNSWdFmSTbBqNfJhmsxnDw8NYRxHOrwLM9DhuP1mHq1vEcaQkabS5uTlMT08Lqm/sdHyaphEMBmEwGBAMBkU1OiP3eWNjA4ODg2hsbERTU5NottAURWFoaAhOp5NtBCARiBCisdlsGBwcRHV1dUSnYnS6DUBErYcb9eTl5SE/Px+NjY0IBoNsa/Xy8jJkMhm78IotGpkOiBX1kFrX2NgYAoEAfD4f5HI5r1rPXiGZOZtkPXuembDimQkLclQKzFq90OaocKJBm9A1C02jiYmbbroJN910U9zvy2Qy3H///bj//vtFPS8XaUE2yYI8gEajEdUHWvHwn01weEOQyYCHnpvDocoClCVYl9kOMpkMGxsboCgKx48fh1arTfqYXBAFgRdffBEajQY9PT2iynPIZDIsLCxgdXWVVWwW67ihUAgXL16EQqFgDdpIxEEMuvhgZWUF4+PjaGtriyvACrz62XPJZ7uop7y8HJWVlWx+n4hGjo6OorCwkCWfZKTy0zVa4HqyMAyDgYEBqFSqLVFPOrlzciHmUCdfzx6zOwiVQo7aomxMmjxw+EIJnUeILcJ+VHwG9gHZcPP5R44cQVBdCH9oDUW5KshkgCdAweULJU02Xq+X9W05deoU73bGRGCz2RAMBtHc3IwDBw6IumiRnf/GxkaEYrMYCIVCMJvNqKiowKFDhyI6yfi+aCQNt7y8zM7j8EG8JgPiRcSNegoKClBYWIimpqaIgdKFhQW264kMlGaaJtdOIF2AxcXFqK6ujoh6uDv9WLWevUKq0n6JePZkhfMQ8sswthpCWWE2DpYmRgbpkEZLF6TFGyT0ASLKA7m5uVAqlcjJyUFpQQ66a7V4ac4GhgGO1WtRX5xcGor46eTm5iIvL090ouEancnlcjQ1NYl6fNLIwDAMOjs7RSWa9fV1bGxsQKPRoKOjg3cjABfEwmBzcxMnTpxIenfHbTIAXm2tJmTIjXq4A6U0TW9ZbLRaLbvwbudHstc1Gz7gNghERz2xaj1cDbe9iHp2S64mlmeP1WpFQZYJK1YnKrI34TfR2KB2Tr+mQ4NAuiAtyEYIiOwJUR547rnnrnywchk+eaYZF+ftYBjgREMRVAphD2i0mnIgEIDT6RT17+AanXV1dWFgYEDU43N1yEKhkGiLBPfelJaWIjs7OymiIY0dcrkcJ06cSEnX2Hat1dEDpRqNBlqtFs3NzawFsNVqxezsLNRqNUpKStJuoJQv4nWjbVfriY56SH1jN651r+R1cnJyUFNTE+HKmahnj9CaDXfeZb8g48iGpmlMTExgZWUFR48eRVlZGYDITrFslQKvb06uKYBMvTudTlZNeWFhQVSTMLfbjYGBAVZFIRwOi2o9vbKygtHRUVYI9K9//aso1x9tora2tgan08mG/3yvnUSoOp0Ohw4d2pUFJV7UE2+gtKqqCjU1NaAoil14JyYmEAwGI9JN5HcyAYk+Z7GiHpvNBrPZHCGamUryFZqW5Yt1VwBPj5vhD9E4faAIhyojhzT5ePYUFRWBYRhBkY2URksREn05/X4/jEYjwuEwTp06FbGjEssaGrjyYev1emRlZeHUqVPsLlvMc5hMJgwODkYYnXHbnpN5YRmGYQmZO2ck1GaAi0AggIGBAchkMpw8eZIVy3Q6nbh48SJycnJYXauioqIdFwez2YyhoSE0NjZucS7dTWwX9UQ3GZDFhMjocNNNarUaNE3Dbren/UCpkEiBG/XU1dXtWtRDnttU3k+KZvBfLy9jfN0NuVyGWYsX976xcduh7+08e8bHxwEA8/PzKCkpSVhWSCKbPYbNZoPRaIw7RS8WEXBJoLm5OeLhEMO2mZt+6uzsjAiXExXL3A7E75w4nHJzv8naN7tcLgwMDLARCLlWMqtD2knJQCVFUaxqc0lJSUSti0jkzMzMoKOjY4sI4F5ip6iH22SQnZ2NmpoaduFdWFjAysoKRkZGQFFUxEBpKppKkoEYEXR01EPIV+yoZzciG1+IgskdREmBGgVZSiw7/LB6QgkrjER79rjdbrz88ssIh8MJe/YAEtnsGRLVHYsnWcPnPDMzM5ibm9tCAgTJEho3NRerI4y7uAkBUWzOzc1low4ukolsyGxOU1MTGhoaYtZnottJNzc3YbFY2HReYWEhW+tYWVmBxWJBb29vXMO3dEF01LNda3VhYSEsFgtOnDjBDhFynSkJ+aZioJQvxFYQiO7qihf1kMWWT9TDTWumCnlqBVpK8/DyggMWdwgHinNQrRU+1EieG9KhmYhnDyCRTUoR7wEiLpR2u33HuZZkiIAU6d1uN06ePImCgoKYP5dMZMM1OuOm5rjYTixzJ1gsFhgMhoi0XKzj8z02wzCYm5vDzMwMjhw5grKysoQGNWUyGQoLC1FYWMhKh1gsFphMJszNzQG4Ij1D9M4ypbU4VrqNEA+RwweuPLuke7GhoSFCOmVwcBAMw0QMlO6GjA4BRTP4hX4Nfx4J4nTIgXf9r8ac2IgX9VgsFkxPT/OKeoQ2nvCBTCbD3x2vRnNZHoIUja7qQhRkC38uuTM2iXj2jIyMsM9IKpouvvKVr+DTn/40PvzhD+OBBx4AcKU08bGPfQw//elPEQgEcObMGXz3u99NSaYhbd9wUjdRq9UJzbUIJZvoIv12L73QcyRqdEaGH/k6apLI79ChQzsOQPKJbGiaxvDwMGw2G06cOIGCggK2dZjvi69Wq6HVajE/Pw+dTofa2lrYbDZMTU3B5/OhqKgIpaWlKCkpSWuvGi6i020rKyuYnZ1Fa2srAGyJesrKyljpFDJQurS0FCGjU1JSktRAaSJ45OIy/u25edA0g5c31pCTm4e3dae2+yle1GOz2dhGi+j2ci52q+05V63A65uTl4YCtm97juXZs7y8jCeeeAILCwv4p3/6J7zlLW/B9ddfj2uvvTbpAfJLly7h+9//Po4cORLx9Y9+9KP43e9+h5///OfQaDS4++67ceutt+KFF15I6nyxkJZks7GxgaGhoZh1k3gQQgTr6+sYGhpCfX09mpubd3zB+Z6DSwSJStsk6gYKvCo4ajabE1I04BOZBQIBdjaHpOTI3y5kh+lwOFjCJZFXaWkpWltb4fV6YbFYYDabWc2qkpISlJaWpsShUmwwDIP5+XnMz8+jq6uL1R3bbqA0Pz8fBQUFOHDgAAKBADtQuri4GDHnodPpRI/6LszaQTOASgGEaAaXFp0pJ5to8I16MtUSOpEaFfHsuf322/H3f//3aGhowOc+9znMz8/jC1/4Al544QV885vfFHwdbrcb73rXu/Dwww/ji1/8Ivt1p9OJ//iP/8Cjjz6KN77xjQCAH/7wh2hvb8dLL72EkydPCj5nLKQF2XDTR1NTU1haWkJnZycvORU+RMAdouQj28JnsRZqPZDoOQgZ0DSdsOJ0olHT5uYmLl++jKKiInR0dABIrkC7trbGKlfHchbNzc1FXV0du+Mliw5R6uU2GexmuikRkFZ8YmhHUrB8BkoVCgUqKipYmXwyx0HMwTQaDXsPthsoTRSHKvMxsOREkAIUchmaE5yGTxViRT0kxUSinvz8fFAUBa/XmzGRr9BGH6/Xi2uuuQbt7e34xje+sa0xZCL44Ac/iBtvvBHXXnttBNlcvnwZoVAowg66ra0NdXV1uHDhwv4kG+CK3L3RaITf70/I9z4aCoUCgUBgx58j3Vper5e3Q2iihMY1OuNrPZAI2ZCuMK1Wi8OHDyf8QCeSRjOZTDAajThw4AAaGxvZ3bmQaIZ03i0uLuLIkSMRVg/xoFQqUV5ejvLycjbdZLFYsLS0xC68hHh225UxGhRFYXBwED6fD8ePH99W0oXPQGlhYSE0Gg0OHjzITq8T8iGaXcQSWchidtff1CNEMXhhfAVXNZfi3X3xU697gegUk9frxdLS0haX1ujCerpBiC4a8W3irkvJRLY//elPMTAwgEuXLm353vr6Opve5kJsO2iCtCAbr9eLF198EVqtFt3d3YJubiJEQGT18/Pz0d/fz1vllyzW23Xx2O12GAwGlJSU4NChQ6JbQ5PU34EDB3jrp213bJIKmp6exuHDh1FeXp6UNQCJ7JxOJ44fPy6ou4bbStrU1IRAIACLxQKLxYL5+fmIRam4uHhXFx3iBaRQKHD8+HFezxKfgVK1Wh0xUMotKu9U54iHbJUCn3hTE/6SvYqjR6sEK2zsBkjUU1JSAqfTid7e3m3vQU5Ozp53+REI1UUDELdJiQ+Wlpbw4Q9/GE8//XRauNemBdlkZ2ejtbUVFRUVgh+UnciGmHklI6tPHhyKomISohhGZ/EIgQhUzs/P48iRI4K6ReJZOdA0jZGREbZllzQCJCM9YzQaAQB9fX2ipb6ysrJQXV3N6pcRkzTSzVNUVMSSTypTLV6vFwMDAygsLERnZ2fStQQ+A6VkYLK5uRk+n48l3+np6S0OnTKZDDRzJVUWC5lknkaexVhRD7fWk5WVlXTkJxaEunQCEEUb7fLlyzCZTOjp6Ym4pueffx7f+c538NRTTyEYDMLhcERENxsbG6IpwnORFmSjUCiS1gKKN2dD0zQmJyexvLwcIW8jBPHmYMQ0OotFNmQ+x+VybduaLeTYZIdOURROnjyJrKyspBoB3G439Ho9tFqtoMguURAPluLiYrS2tsLj8UQ0GeTm5rKLkphNBk6nE3q9HlVVVQk1lfAFn4HSrKysiIFSrlfNiCWM/5qWwxMCbj1ahk9f3wJ51LVmItlwEUutmdyD6KgnlkdNqiFUhDMnJ0eU9+aaa65hFfEJ7rjjDrS1teGTn/wkamtroVKp8Mwzz+Btb3sbAGBiYgKLi4vo7+9P+vzRSAuyAcQxUIsmG24dqL+/P+ndAnlQueeJtlZOdkdNDNoIfD4fBgYGoFQqd2zN3gnR95jr1tnZ2QkAEUTDF6SoX1dXJ7pFwk4giw6xhiZKBtyZlmSbDEwmE4aHh3Hw4EHU1dWJ/BfEBp+B0uLiYpSWloKmaXzmWy/BGbhCTP8zsI5S2oZr2spYsUiSEs5ksomGQqHYEvWQuRWuR81uRT1CGgTcbjfy8vJE+VwKCgrY95qADBaTr//jP/4j7r33Xuh0OhQWFuKee+5Bf3+/6M0BQBqRTbKIJhtSRNdoNOjv7xdUByIGbJqcK/l44gFCzsMt1CdrrUzAjT6IYnN5ebko1tPcY5vNZhiNRtTX16OpqSmpRgDgSn54cnIShw4d2nPFWpVKtaXJwGw2Y3FxkVUyIDM9ic60LC0tYWpqak+ldXYaKCVRT5hmsBmgrjyvMiBMA8p8HQKBAIaGhsAwDHQ6HWiaTrrTabfAV8eNG/XU1tbGjHpIl99OthFCkQnGad/85jchl8vxtre9LWKoMxXYl2RD5FGEFNGBKw/2b4fW8duhDcgA3Hy0Amc7r+QwyYJNakBCzxEP5Pik/tPa2iraLlomkyEcDmN+fh5TU1Nse3ky9Rki+rm+vo7e3l7R3UuTBbfJ4ODBg/D7/WydY25ujq0BlJaWQqfTbdmJEhmj5eVl9PT0pM3ft11rtUxG46aOUjwxZEKYAXS5KtzYXY/ywuwIGSHgSl6/oKCAbbLY6w6/eEh2ziY66uF2+RHbCLGjHoqieOvhEbJJ1Wfw5z//OeLf2dnZ+Ld/+zf827/9W0rOx0XakI0YabRwOIyxsTGsrq6iq6sLpaWlgo614QrgicF1hCkGDBg8ZljD8YYilORnQS6XY25uDmazOekaUCzIZDKsra3B7XYnXf+JdWy73c4OgRYWFiZFNKSW5PP50NfXlxZujjuBCGcSbxJyPyYmJtgmAxL1ZGVlYXR0lJVLSmdDq+io5/M3tuLUgSLYPEG8/mARirLlCAaDkMvl7I5/fn4ex48fZzXclpaWIJPJIgZK+XZspgpiDnWSIcrc3NyYUU8gEEjYLG87SMZpkUgbskkWFEWxA4HJ1k7CNAOKZqBWykAzVzp6KJpBKBRCKBSC3W4XNAu0E0KhEGvOJkb9h4tgMIi1tTWEQiGcOnUK2dnZSTUC+Hw+GAwGZGVl8W79TRdwmwxIjt9sNmNjYwMTExOQy+VQKBRob2/PCCIlkMvlUMvluPFIFYDYrdXks1coFCgvL0dlZSVommbnmubn57eIp6Zyx70TUqkgkKqoR2jNZj+KcAL7hGwcDgc7RCmGy2O1Nhuvby7BnyfNgEyGa1tLkSsL4cKFlyGTydDa2ir6A0E02mQyGaqrq0UlGnJshUKBgoICqNVqdrEhemx84HQ6YTAYUFZWhtbW1oyTEYkFbo6/oqKC/Szy8vIwOjoKhmHYBamkpCQtyDUYpvHKogOabBU6quJ3KEZHPSQDkJeXB7lcHiGsWlBQgMLCQjblSBZdMtfEXXR3Uzx1t+Rq4kU9RMfP7/cnHPUIqdlkkkICX2Q82ZDaRmNjI6anp0XZeclkMtzeV4vXNV9Rw80Jb+LixYuoq6tjc91ighTra2trEQwGRT02UYOuq6uDUqmE3W5PSkF3Y2MDIyMjaGpqQl1dXVrm95MBad3W6XRsUwbDMHA6nbBYLKwVMFfJINXCmbHgC1F41w8HML5+ZQjwn07V4d5rm3b8PYqiYDQawTAMjh8/ztY6Yw2UqlQqVFZWsnNNZJhyZmYGPp8PWq2WjXpSvUDulTYaN+oBwM71REc9RM2AS8BC02hSZJNi8H1ZaZrG2NgY1tfX0dPTg6KiIkxPT4OiKFF2nXK5DA3FuZidncXg7CyroeZwOESzhuZO7Xd0dKCqqgpjY2OiHX9hYQGTk5Po6OhAZWUl1tbWYLFY8PLLL7MiiIn6qpBrnZubw+HDhwXXw9IZxKAvunVbJpNBq9VCq9VGNBmYzWZ2wSELUqwmg1Tgz5NWlmgA4D9eXMT7XlePPHX8V5ro6anVahw9epS9zkQHSrVaLXQ6HZqbmyMW3ZmZmYhhylRYQyfrXisWoqMeQsDT09Nbop5wOCyRDQdpQzZ84Pf7YTAYQNM0Tp06xebTZTJZwmKcqw4/fvrKMhzeEN7YVoqrWyJ1u+IZnYnlCMoV6jxx4gRrIBY9ZyMEZMh0fX0dx44dg0ajAUVRKCkpwete9zrWSXFgYAByuZwtiMeTfCHq0jabDcePHxdFSiPdsL6+jtHRUbS2tm5r0wBENhmQNIvFYsH4+DiCwSB0Oh3b4ZYqmRCVInKDIJfLoNhm0+Dz+XD58mVoNBp0dHTEjBK4HW5kw7PdQGl1dfWWAjvXJI2Qrxj1Lpqm0yJ1yQVXnRvYGvXQNI3V1VUwDJNw2lEimzQC0R6LZQ+dqFsnwzD4wV/mYFh2Qq2UY8HmRZUmGy3lVz5kIkdCvHS4NSAxrKEDgQAGBgYAbBXqlMvlCIVCgo8dCoVgMBgQCARw8uTJLY0ARK2BFIQdDgc7dR8IBKDT6Vjyyc7OZgdjaZpGX19f2lkbJwtiAzE7O5uwWCgX3DQLV8lgfX2ddeckxKPRaERLt13dUozXNxfjuSkrZDLg02cOIlsVexdNanakxpbINRDiSXSglBBsS0sL60i5sbHBqjmQRVmj0QhKh2WCxUB01PPCCy9ALpfHjHri1Xo8Hg90Ot0eXH3qkTZks9MLwDAMlpaWMDExgZaWlpj1gkSjDpoBVp1+aHNUKM5XY87ihcUdQEt5PiwWC4xGI6qqqmIWv5ONbIjcSVFRETo7O7dEEsmQmcfjweXLl5GXl4e+vr6IKClWIwBZJHQ6HbtIWCwWrK2tYXx8HLm5uQgEAigoKBBtaDWdQGaENjY2cOzYsS023XzBdWNsaGhAKBRiZ3oMBgMARAiHJrNTV8rl+O5th7Fo9yE/S4nivNhNMaR5JllVh3j6bbG8enJyclBbW8s6UpIp/pGREVAUxdpCFxcXJ7x5yQSy4UKhUIBhGDQ0NCA/P5+Nemw2G2ZnZ6FSqWI2W0iRzR6DoijWJKy3tzcu8ydKBAq5DH2NRXhyxASXxYuaohwcLM1jhx23MzpLJs1FBkGbmprQ2NgY88UXSjbEDbSmpgbNzc3s7lMmkyX0kkYvlCaTCUNDQ8jOzobL5cKLL7647fBjpoGiKAwPD8PtduPEiRMpaW0mBfbKykq2ycBsNmNubg7Dw8PQaDRsFCmkrVgmk6FeF78wb7VaYTQaRZfX4ePVI5fLUVJSgrKyMnag1Gq1YnV1FRMTE8jPz2cX3e3qh3wVBPYahIzJPdqp1rO+vo7JyUmsrq6KRjZf/vKX8atf/Qrj4+PIycnBqVOn8NWvfpV1kgUkW+gIcL1hyHxIPPCJOm7vq8PB0ny4A2EcqS7A+vwkrFbrjo6XfJw0CYhi88LCwo6DoELIZnFxERMTE2hvb0d1dXVSg5rAlQ4/cjxi6BU9/Ei0xkpLSzMutUZSg6QjazcM2bhNBtGKzUS3ixCPGBPs6+vrGBkZ2RX5ID5ePXl5ecjPz0djYyOCwSAb9RiNRshksoiohxv5ZVpkQ/7mWJ9jrFrPH//4R7zwwgt4+eWXMTU1hZGREZw9exbXXHON4Brpc889hw9+8IM4fvw4wuEwPvOZz+C6667D6OgoOzi6m7bQMiaZsX0RQdP0llqFzWZj5zna29t3fAEvXryI2tpaVFVVJXxeLpl1d3fvWNCdmJhAOBxmHSx3QjgcxuDgIKsIsNOuZWlpCevr6zh+/PiOxyYukaurq6yUSrLSM1NTU1hdXcWRI0diRpAMw8Dj8cBsNsNsNsPlcqGgoIDtbtuLNmA+IMKm+fn5MdOYewGKoljhUIvFgmAwGCEcyrfJgOi4pUPXYPRAKVluSMRN/k/TNCujY7Va4fF4UFhYyC7Kk5OTqK6uTon0fSoQCoXwl7/8Ba9//et5PWNXXXUVbrzxRng8HvzhD39AZ2cnfvWrX4lyTWazGWVlZXjuuefwute9Dk6nE6WlpXj00Ufx9re/HQAwPj6O9vb2/e3UyQUp2k5NTaG1tRW1tbUJLWBEsgYAaJrBxXk7zO4AOioL0RTD+pYIXZaWlsbt0Il1jkRnYbiNBidPnkxoB51oZEMcR4mzaU5OTtJmZ0NDQ/B4PNtKs3DTbWR3StqA5+fnoVKp2Ihnr/1EouFyuVhh00QL5bsBhULBkjXDMHC73RG1s/z8fJZ4tmsyYBgGc3NzWFhYSBsdNz5ePQUFBSgoKGCN8khn18LCAvtcKxSKXR8oFQKh6uk+nw+nT5/GjTfeiG9961usv40YIOokZBP5mrWFJuC2BB87dgxFRUUJ/y43jfbE4Br+38UlBCkGJXlq3HdDawThLC0tYXx8PG6zQSLn2A42mw16vR6VlZVoa2tL+KFLhGy8Xi8uX76M3NzcLY0AQoiGtJIrlUqcOHGCV+GaOEmSdBvZoY+NjSEUCkV0t+1luo3YDRw4cECwsd1uQCaTsYsuIXNiDqbX6yGTyWI2GTAMg8nJSbbdPR3b0/l49SiVSlRUVLDP1UsvvQSFQhExUJpKxeZkIURBnWQNuJ+dWMOyNE3jIx/5CE6fPs3aC7wmbaGBKw+Y1+uFwWCAXC7f0hKcCLhE8MKMDTLIcKA4B7MWD4ZWXWgqzUva6CwRMiBE1tbWhtraWlGPT0iMdMtF58T5wuVysa3kydoYkGIwaQN2u90wm81YWVnB2NgYq7O12+m2lZUVjI+Po6OjI2PSMARqtTqiVZ0oGczOzmJ4eJhddJ1OJzY3N3H8+PGMkTvh49Ujl8tRU1MDnU63K4rNyULoEGqq5Go++MEPYnh4GH/9619FP3aiSBuy2dzcxIULF1BRUSF40ePO2VRrszG2volVpx9qpRwleWoEAgEYDIakjM62i2y4RLZd19x22I5siDRPW1sbO1BIDLCELNzEDCwVu33uDv3AgQMIBAJsum1ubo4tiJN0WyqKvwzDYHZ2FouLi+ju7s74+QViC11UVMQ2GZhMJszNzSEUCiE7OxuLi4spvaepwnZePX6/H4FAgK3rkmiaO1TL9akh1tnFxcV7JqAqRKoGwJbIRgzcfffd+O1vf4vnn38+osu2oqLitWcLDVxxkDt8+HDSts2ECN59sg4MAyw7fOg/oENHiQIXLlyAVqvFsWPHBO9+4rU+B4NBGAwGBIPBpBSbY5ENmQdZWVlBT08PdDpdUkTDHWTs7OwU3SYhFsjEOemWI91tIyMjCIfDrMtkMk6aXBA5I9JhuB9nF5RKJUwmE/vubG5uRtzTdElh8gU33ebz+TA4OIiysjJotVq25sP9WTJQSpS7iULG1NQUcnJyImR0douAhYhwBoNBhEIh0ciGYRjcc889eOyxx/DnP/8ZjY2NEd/v7e19bdpCKxSKpBc9bvFel6fGR689CABYXV3FK5cubTvfwucc0WRAJrTz8/PR09OTVPEymmzC4TCMRiO8Xi/6+vqQm5ubVCMAib7IzBKRydlNcKfu29ra2HTb0tJShJNmaWmpoPkT0gEYCARw4sSJlEnG7CVi6ZxlZ2dHNBmQFObo6CjbMVhSUpKwHt5egwwpc5UPdhooJVJCdXV1CIfDrJTQ6Oio4IFSIRAqwglAtI3RBz/4QTz66KP49a9/jYKCArYOo9FokJOTA41GI9lCC0V0iosUTZeWlpIyU+MiOrIxmUwYHBxEfX09Dh48mPRLzCUb0s2WlZWFvr6+iL9PCNGEQiEMDg4iFAqhr68vLRbhWOk2s9nM1iWysrIiutt22i2SRVilUuHYsWNpp6clBnbSOYu+p6Rj0GKxYHFxMaK2VlxcnJadXW63G5cvX0ZlZSWam5vZZ53vQCmJmAkBW61WrK2tsVJC3IFSMaMeIWTjdl8RVhWrZvPQQw8BAK6++uqIr//whz/EP/zDPwDYXVvotJmzAa6EkclczuLiIrtjJ63BPp8PPT09ornf2Ww2DA0N4XWvex3m5uYwMzODzs5O0Qbn3G43Lly4gGPHjmFgYACVlZVobW2NmFEQ8lJ4vV7o9Xrk5ubi8OHDabnARIPMnxDyoSgqYv4kOt3m8XgwMDAArVabcCt7pkGIzhkXRA+PkI/X62VFM4mSwV5jc3MTly9fRm1tLS+JnejWau5aQjZnZK4nFAqxTQY2mw0Mw0Q4lCabyl1ZWYHFYsHRo0cT/p2xsTG88Y1vhMvl2pfPbvqvODxA5mzIC5mXl4eTJ0+Kursl5xgaGoLNZotQbBYDJHJ65ZVX2BmjZBUB7HY7jEYjKisr0dLSkhEpFGDr/AmpSSwuLmJ0dJSVeyktLWVVAaqrq0WJMNMRYuicRevheb1elnhIjYMQz140GTidTgwMDKChoWFLjWEn7NRazfXqkcvlKCsrQ0VFBRiGgcvlYq2xSSqXkE9BQYGguTW+987tdu+pG2qqse/Ixu/346WXXhItrRUNYg3t8XjQ398vat6XDOUBV9QMiouLkyaa1dVVjI2NobW1Na7eWyZAJpOhsLAQhYWFaGpqivCUmZ6eZmXcicXzfnthyZyQ2Dpnubm5qKurY2scZE5qeHh4SySZ6iYDQqakOzJZ8B0o1Wg0bCqX3IfFxUUoFAq2CUGn0yWUFRCSRtvPLp1AmpGNTCYTnEZjGAYbGxvw+Xzo6upKSeue0+nE4OAggCv202L285Oi9ubmJgCwHjTJSM/MzMyw9Sq+80TpDlIIJoOk9fX1CIVCGBoaAk3TEd1tmV632S2dM6VSibKysgjRTIvFwrbcFxQUsPUzIbv97UCkqVpaWlKyKeI7UFpeXh4x22S1WjE3N8e6tJKoJ14kIrRmI0U2aQ6S1nI4HFCr1SkhmtXVVYyMjKChoQEzMzOiPhBEr0utVuP48eN4/vnnEQwGoVarBUvPjIyMwOVy7du2X66OW29vLzsnQFIiZrOZtXAm9sWkuy2TQHTOjh49yttrJx6em7TgPy8sQa2U4e7XN+JozdY0MDeSJLt90lLMbTIgKuDJ1ABJ1NbW1sZL1zAZ8Bko1Wg0KCoqwsGDB+Hz+Vjx0Lm5OVaeKXqgVMhQ5362FwD2Adlw9ccOHz4Mo9Eo6vGjO9q0Wi1mZmZEU6El+mzl5eVoa2sDTdPIzc3Fiy++iOLiYpSVlfHanZPBVblcjhMnTuyKovFug6ZpDA8Ps2TKJRCZTAaNRgONRsNaOBPR0OnpaeTk5LARz27OXfBFqnTOVhw+3PebcXiDVxbUj/9qFI+9//i2dtLAlTkpriwRMd2bmpqCz+dDUVERe1/5pIKIlcVeqjtsN1AaHfUQRQcyL0asAqamphAIBFhFh0AgwHtj4/F4Mm4zxAdpRTZ8d/DRRmder1cUy2YCMuPi8Xhw8uRJ5OfnR9jlJtvRRaKllpYW1NbWsh1n/f397JwEd3deWlqKsrKyuFPRm5ubMBgMKCoqwqFDh9J2IU0GpMuQoqiEyDQ7Oxu1tbWora1laxJms5lNt5HdebJmZmIilTpny3Y//CEaeVlKUDQDlz8MqzuEPF3izzK3yYC8d6R+Njk5mTChk/RgssPcYoJvazWpEwKv2kJbLBbY7XY4HA6Ew+GENzYS2aQhGIbB/Pw8pqencejQIdYzXqlUsruRZNNc3BmX/v5+diEix03GGpqkgBYXF9HV1YWSkpIt9RluMdzn87G786mpKeTl5bFdWGRAjyygpItnP+Z9/X4/BgYGkJOTg+7ubt5piuiaBNEZI2ZmhNBLS0v3rFBL0zRGR0fhcDhSonPWWpGPsoIsbLgCgAxoLc9DlTa5wn90kwFZcLn1s+h29dXVVYyPj4uaHkwFtnMo5eoSymQyViWjtrYWBoMB2dnZrJJFOByOkNGJNeMmpdHSDFxV6GijM7L4JBt1ENfLWNbQMpksKWtoUl9yuVw4efJkQooAOTk57MtM5gNMJhMGBgbYyfHNzU3W7Gw/YnNzE3q9nlUdSDZq45qZkVw8meeZmppCbm5uxO58N8iboigMDg7C7/fj+PHjKen+0uao8P2/O4LHjetQKWR4R28VlCJGwKS4Xl5eztbPLBZLREuxWq2G1WrNuMaVRKMemUwGiqJQUFCA6upqVs3ZarViY2MDk5OTyM3NZYlHo9FALpfD7Xbva7JJq6HOcDi87SLu8/mg1+shl8vR1dW1ZXdA0zT++Mc/4g1veIPgF5XrehmvK+aZZ57BsWPHeM/XkJ25QqFAV1cXVCpVxAMqRJZleHgYVquVFSEVUudJd1itVgwODqKhoQENDQ0pX/jJ7pyQD4CIdFsqBmJDoRAMBgMAsM/GfkMgEMDk5CQ2NjYgk8nY4jopsKeDWrNQcKMej8cDg8GA1tZWdlYpeqCUNBkQv55f/OIX8Hq96OzsxMMPP5yy6/y3f/s3fP3rX8f6+jqOHj2Kb3/72zhx4kTKzsdFWkU22y0ipJBeVlYWtx5BPlQhUQcJdzc2Nnb00RFiDU1mCEpLS9He3h4hKCiEaEibr9/vZ+2yydAjnzpPumNtbQ2jo6O7GrVF786dTifMZjNmZmYwNDTEFsNLS0tFua+BQAADAwPIzs7GkSNHRFl0GeZKPSZHrYBakR61u9XVVVgsFhw/fhwFBQWsbtnk5CQCgQCrZCDWfd1NkPUoEAhgaGgIVVVVrDhorIHS0tJS9vkqKyvD0NAQHn30UVy8eBEGgwE33HADbrrppoQcexPFz372M9x777343ve+h76+PjzwwAM4c+YMJiYmdqVmllaRDUVRbOcHFyTaSMS1809/+hP6+vp4FVWDwSD0ej3C4TB6enp2fNCff/55HDp0KOFc89raGoaHh9Hc3Iy6ujqWaIQOapIIjyxOsXbaxOPeZDLBbrfHrPOkM0hdbn5+HkeOHEmbdAu3GG6329l0W2lp6bYumvGwk86ZEATDND71+Cj+OmNDfpYSX72lHccbEjchFBvE6mFpaQk9PT0oLCzc8jMej4dVMiD3lUQ96dw1yAUxNSwrK4tQ6thJRof8d/vtt6OzsxOtra34/e9/D6/Xi1//+teiXV9fXx+OHz+O73znO+x11dbW4p577sGnPvUp0c4TD2lNNtxoo6urKyE/kvPnz6Orqythh8/NzU0MDAygsLAwYc2wF154Ac3NzTvuBhiGwfT0NBYWFnDkyBGUlpYmrQjgcDhgNBpRXl6OlpaWhF5CUuchaSGiulxWVgadTpd2LzLDMBgfH4fJZEJPT09auk4CYNMhQtNtRGxSbJvqx41ruP93k1DIZQjTDGqLsvHEXX2iHJsvyDtA5qESqUmQ+0pIneiWkfuaju38Pp8Pr7zyyhaiiQa3m5UQD1mCz549i7/927/Fxz/+cdGvLxgMIjc3F7/4xS9wyy23sF8/d+4cHA6HqKQWD2mbRiPzIhRFob+/P+Gwmk/xfmNjA4ODg2hsbERTU5Oo1tAURWFoaAhOpxN9fX3Iy8tLmmjW19cxOjrKW7JEpVKhoqICFRUVoGma9ZIh1s3kRS4tLd3zWgG5b16vFydOnEjrdIpKpWLTbWTSnJtuIxInsdJCJK1aX18vevegO0CBAaCSy0DRDNwB8cYB+ID4MJlMJhw7dizhtl7ufY01pEssKEpKSnbV8TUeCNGUlpbuqD1INnbRA6V/+ctfoNfr8cY3vjEl10iEbMvLyyO+Xl5ejvHx8ZScMxppRTYETqcTer0eRUVF6Ozs5JXD5rp1xgMJ62dnZ3H48GHew2TxDNQIuI0ARAg0GWsAruPk4cOHk7JKILLrxcXFrHWzyWRixS33sv2XGNDJZDIcP358z4mPD7gumkTg0mw2w2QyYXJyMiKNGQwGMTQ0hObmZt624YngTW2l+MnLy1h3BaCQy/Duvt3XxGMYJsK8TuimIdaQLkm3zc3NQalURigZ7HaTgd/vx+XLl1krdL7vtlwux8WLF/HOd74TDz74IN7//ven6Er3HmlHNmTQ8eDBg4I6j3aKOsjO2eFwoK+vL2b+OJFzxGsQIKq1xcXF6OjoSLoRgKIodu5C7AE/ru8JEbckC2S8eZ5Ugcw1FRYWoqOjI6M7k4Arsyf19fWsZhtJY16+fBkURUGr1SIrK0uwffB2KC/MwqPv6cGlBQfKC7JiytGkEmRWyOl04vjx46L6JhFNPKKLR6L0iYkJBAIBNposKSlJeVTs9/vxyiuvQKfToa2tTdD7cenSJbztbW/DF7/4Rbz//e9P2TtWUlIChUKBjY2NiK+nygI6FtKKbBwOB0ZHR5MyOtuObEjEIZfLk1JsjhfZrK+vY2hoCE1NTWhoaGBDZNKBwhdENp9hGJw4cSLlqrvcaXvuAknuGels42pAiQESyWaaBUKiIGnMUCgEk8mEgwcPIhQKYWpqakt3m1gLc1GuGte17/5UPpEScrvdOHbsWEqfWW6UTmZZLBYLNjY2WHM0QjxklkUskIhGp9Ohvb1d0DOr1+txyy234L777sM999yT0uderVajt7cXzzzzDFuzoWkazzzzDO6+++6UnZeLtGoQIEqzyTygJP3W0NAQ8XWSIy8pKUm662dwcBB5eXloampir5uk5Y4ePSpKI4Db7YbBYEiLnT53B2k2m0Wt8xDlg6amJlFk5dMRXJ2z7u7uiEFkj8fDNhg4HA7k5+ezaaGdokmrJ4gFqxdNpXnQ5Ox9ypGmaXYotaenZ08L+WSzRFJuDMOwxJPsDFogEMArr7wCrVaLQ4cOCXq/h4aGcMMNN+Dee+/FZz7zmV3ZYP3sZz/DuXPn8P3vfx8nTpzAAw88gP/5n//B+Pj4llpOKpB2ZBMMBpM6RjQRAGB92Jubm1FfX5/0Bzs8PAy1Wo2WlhZQFIXh4WHY7Xa22yZZoiFDjLW1tbwaF3YDxF7XZDLBbDbD7XYLrvMsLy9jcnISHR0du/Kw7wVIkXxjY2PHzrpQKMR2YFmtVjaajDX0aFhy4gM/HYQnSEGbo8K//30Xmsv2TleLoigYjUaEQiH09PSkVb2NK01ksVjgdruh0WgilMATfccCgQAuX77MbgKFvJujo6O44YYbcNddd+ELX/jCrr7f3/nOd9ihzq6uLjz44IPo69udTsW0IhvgyoeZDEZGRqBUKlkrZa5is1gaTGNjY5DJZGhsbMTAwABkMhm6urqgVquTqs8AVyTlJycnM0Z6hquqbLPZkJubi7Kysm135tFeO4m2qWcauDpnPT09vIiYq6xsNpvZegQhn3sfm8RfZ2xQymWgGAa3HK3A/3dTWwr/mvgIh8MwGAxgGAbd3d1pbznONd6z2WxQq9VsxLNdk0EwGMQrr7ySFNFMTk7i7NmzOHfuHL785S+n1UYy1dh3ZDM+Pg6aptHc3IzBwUF4vV709PSIqqY6OTkJj8cDp9OJoqIi9sHjTgkL6TibnJzE2toajh49mpELcPQ8D9mZczuFyAJst9vR3d29b7WguDpnPT09SaWGufUIs9kMp9OJ/5xSYdhKQyGXgWaAt3ZV4gs3tor4FyQGIrMjl8tx9OjRtCeaaFAUxSoZmM1mBIPBiJZ1UkMjRFNQUIDOzk5BJDEzM4OzZ8/iHe94B77xjW+k3XxbqpF2ZBMMBgW7dQLA1NQU3G433G43cnJycPToUdFDeoPBgI2NDRw8eBCNjY1JNwIQcU7iMrofrGFj1Xl0Oh28Xi9kMlnSC3A6I9U6Z8FgEC+OL+PTf1iEJ0ijUC3DF64uxtEDlbva/hsKhTAwMACVSoWjR49mfAchIXWyWXI6ncjLy4NOp4PZbEZBQQEOHz4s6B2fn5/H2bNn8eY3vxkPPvjga45ogH1INkNDQ1hdXUV9fb2oU9nAq4XeqakpaDQa9PX1JV2f8fv90Ov1UKvVOHLkSFrlusUCwzCwWq0YGRlh71c6yPmnAqnQOYuHTX8YizYPCmUBeJxXJu4DgQAr6V9aWpoyQg8Gg7h8+TJycnJw5MiRfbl4hkIhbGxsYGpqilWS5wqHJvqurqys4LrrrsN1112Hhx56aF/eq0Swb8iGYRgsLCxgYmIC+fn5OH36tKjXRVo6rVYrKisr4fF4cPTo0aSIxul0wmAwoLS0VBTZ/HSF2+2GXq9n20SDwSDvOk8mgOickS6l3f48uTtzs9kMl8uFgoICltTFmrYnRfL8/Hx0dnbu2+c2FAqxhNrZ2ckK3VosFng8Hmg0GraGFq/JYG1tDddffz2uuuoq/Pu//3vGR3/JIO3IJhQK8VZUJnUAk8mEmpoaOBwOUWWzA4EA9Ho9WwA1m82YnZ1Fc3OzYMn5jY0NjIyM4MCBA6J0yKUr7HY7DAYD6urqcODAgS1/ZyJ1nkwA0dgTW+csGQSDwYjuNiLpX1paKnhWigwyarVawUXyTAAhGhKhRhMqEbq1WCyw2WzIysqKmOlRqVTY2NjADTfcgJ6eHjzyyCMZV88SGxlPNkSxmaIodHd3w+l0Ym5uDv39/aJcz+bmJrtbJYXBYDCI2dnZiJmTRD1kiJrx3NwcOjs708YONxUgtr+tra1xvYG42G6eh+vymG5Ipc6ZWKBpOkLcktTQyL1NJN1GNMCKi4sFDzJmAkgtSq1W4+jRoztGbhRFsffWZDLhPe95D+rr67GwsIDe3l489thj+zI9zhcZTTYulwsDAwPQarU4fPgwFAoFK11x1VVXJX0tJpMJRqMRjY2NOHDgQIQ8uFwuj5g5MZlM8Hg87AscaxqcqFgTl0IhUjmZgoWFBczMzAjWcos1z6PRaNh0W7rUeSwWCwYHB1Omc5YKkHtLokmXy4XCwkI26omVbvN4PKxC9X5UeSAIhULQ6/Vs0wPfFCFN0zh//jz+8R//EeFwGC6XC4cPH8ZNN92ED33oQ0npGmY60o5sdnLrJCDSMAcOHIhIz9hsNgwNDeH1r3+94Gsg0cf09DQ6OztRUVGRUCMAV3zR6XSy6rRlZWVQq9UwGo0Ih8MxXUb3C0gLNxka4+tmGg9C5nlSDWLs1tHRsWv6UqlAIBCISLep1Wp2w1RUVMT6tFRVVeHgwYP7lmjC4TAGBgagVCoFd9c5nU68+c1vRnl5OX71q1/B7XbjySefxO9+9zt8+9vfThtfpr1AxpENGQicm5vDkSNHtkyeO51OXL58WbBUN03TGBkZgcViYY2eiMcOn/kZUgQ3mUywWq0AgJycHBw6dGjXPO13G0RNwe12o7u7O2XRRzgcZhfHvarzLC0tYWpqCkeOHBFtWDgdQOZOuKlMIvXS3t6+b9vVxSCazc1N3HzzzSgsLMQTTzyxbzeUQpFRZBMOhzE8PAyHw4He3t6Y0h9utxsXLlzAm970Jt7njq7/ZGVlsTM0QjvObDYbjEYjW5Al5mVkV048yjMdZLaEYRhWTWE3QCbtSbot1XUert1DtM7ZfoPD4cDAwAA0Gg3C4TA2NzfZaJ2vzEs6IxwOQ6/XQy6Xo6urSxDReDwe3HrrrVAqlfjtb38r6hD5fkHakU08a2hihaxQKNDd3R13EfH5fHjuuedw5swZXi8CcU0kjp3JKgIAV/rrx8fH0dbWhurqagCvFsFJnYemafblJTLgmQby2eTm5rK1s70AtxZhMplEr/Nwdc4SdZ3MVJAuwqamJtaoLxAIsNGk1WplO7AyedNEURSrai6UaHw+H97+9rcjHA7j97//fdo6y+41MoJs7HY79Ho9ysrKdpxfCAaDePbZZ3Httdcm3GpoNpthNBpRX1+PpqamLY0AfEGscJeXl3H06NG4dtbEhZAQj9/vj+hsS9fuKy5cLhf0en1atfwSxKrzkBoa3zoPSa86nU709vamtYNosrBarTAajWhpaYnbRUg6sAj5UBTFDpNmyrNLURT0ej0AoLu7W3Ar+G233QaXy4WnnnpKtBrlfkTak83y8jLGxsbQ0tKCurq6HRcImqbxxz/+EW94wxt2zC+TQdCpqSl0dHSgsrISNE2DoijBaTNSt9jc3ER3dzevcJq7K9/c3IRWq2V35em4uJFOrEyYFUqmziOmzlm6g1g+tLW1JSwES6xBCLGTiJKrEJFuzwZFUTAYDKBpGj09PYKIJhAI4O///u+xsbGBp59+OiP1DHcTaUc2NE2z7c8TExNYXV1FV1dXwl0cDMPgj3/8I/7mb/5m27QJdxC0p6cHGo1GFOkZg8EAhUKBo0ePJrW747pm2u125Ofns8STDr7rJEV46NAhVFZW7um18AWfOk+qdc7SCSaTCUNDQ+js7EzK8iFaVTkrK4slHq1Wu+fpNi7RCFWpDoVCePe73435+Xk8++yzr+kus0SRlmTj9XphNBrh8/kEKTb/6U9/Ql9fX9zcKfG6J94bYjQCbG5uspIsYkuVhEIhdtdosViQlZWFsrIylJWVQaPR7CrxcAvk26UIMwXx6jxkYRwbG9sVnbO9BhnAPXz4sKiDxhRFsSZmZrMZNE1HEPtukzfx3QmHw+jp6RFENOFwGO95z3swPj6OZ599dl8PZouJtCMbl8uFixcvIi8vT7Bk+fnz5+N2CrndbgwMDCA/P58tZifrQUNSD42NjWhoaEjp4k9eXkI+MpmM3TUWFxendNdI0zTGx8dhsVjQ3d29LwuhJKJcX1+Hw+GAUqlEdXX1nhD7bmF1dRXj4+Mpb+MmNUqyaSLGe1wTs1SCpukIgzchawtFUXjf+94HvV6P8+fPZ/R81W4j7chmc3MTCwsLSQ2PPf/88+jo6NgS2losFhgMBtTW1qK5uVmURoDFxUXMzMzsidsk12DLZDIhFAqhpKQEZWVlvFRpEwGxQfD7/eju7t7XMwRE56ysrAxFRUUZr9vGRZim8YuBNcxbveip06Atz4/p6Wl0dXXtepQa3cCRk5PDRjxip9sI0QSDQcFOohRF4Z577sELL7yAP//5z2yHqYTEkHZkI4Y19AsvvIDm5uaI8HZhYQGTk5M4dOgQqqqqkm4EILt8s9ks6qS8UJAiLalDEOkcUudJpqhNhEjJwNt+rlvE0zmLJvZgMMjuyDOl+woAHv7rAn54YREUAyjB4O2NFO54097PC4XD4YjuNpqm2fub7MaJpmkMDg4iEAgIJhqapvHRj34UzzzzDM6fP4/6+nrB1/Naxb4km5deegl1dXUsqYyPj2N9fZ1NrSXbCBAKhTA4OIhgMIiurq607BTzer0s8RDpHEI8fNIVHo8Her0eGo0GHR0de17cTSUS1Tnj1nnMZjM2NzfZOk9ZWVna6LbFwvt+YsTgqgsFKhls3hBuPVqOz9x4aK8vKwIMw8DpdLJ1Ho/HI9j/iKZp1piwt7dXMNF88pOfxG9+8xv8+c9/xoEDB3gfQ8I+JZtLly6hoqICFRUVMBgM7I4mOzs76UYAr9cLg8GAnJwcHD58OCNkw8kwHtG+IrpiZWVlKCgoiHsfHA4HDAYDqqur97UmFpCczlm8eZ7S0tK0q/N885kZ/PelJdAUA7VaiU9e14ybj6Z33cHn87ERD7m/JOrRaDRxN0BiEc1nP/tZ/M///A/Onz+PlpaWZP+c1yzSjmyAK4tjMiANAOvr68jLy2M7iZJtBCCLb2VlZcYq35J5E5PJBIvFApVKxe7IuXlyk8mE4eHhjFIzFgoxdc7C4TCsVit7f9OpzsMwDIbHJvDIpTX41FqcairFbceqoZBnznNM7i8hHwAR6Tay+SNmhx6PB729vYLSnAzD4J//+Z/xox/9COfPn0d7e7uof8trDfuSbF5++WU4HA7U1dWhpaUlohFAKNGQnW9LS8u+WXyJxwlJtxHBRblcjrW1NdHbYNMNqdY5S6c6D5HaMZvNgsYJ0hEk3UaiSq/Xi6KiIpSUlMBms8Hv9ydFNF/96lfx0EMP4dlnn8Xhw4dT8Be8tpCWZCPUGhoAFhcXMTY2huLiYvT29iZdn+EuSIcPH95XCr9cMAwDh8OByclJuFwuyOXyjJPO4YPd1jnbrs6T6rZfhmEwNjYGm822r6V2iMXH/Pw8gsFghA0Fn3QmwzD45je/iX/913/FM888g+7u7hRf+WsD+4ZsuIoDOp0OWVlZbFSTjPQM0cPq7u7e18KLXO2vrq4uAGA128g8RDpL5/BBOuicpbLOY/UE8dDz81h1+PGm9hI0K23s37qfW9YZhsHIyAhcLheOHj0aYRAHxE63xTrGd77zHXzlK1/BU089Jaq9/Gsd+4JsQqEQjEYjq121vLwMl8uFQ4cOQa1WC3pxA4EAjEYjAOyqZP5egNw/Yq0Q/beSAq3ZbI6QzikrK8s4mXkyQR4MBlkbib0Gtw5hNpuTrvN89OfD+OuMDQAgB41/6lDi3dcdT4u/NVVgGAajo6NwOBw4duxYxN9K0zSbbrNYLPB6vdDpdCz5kM0GwzD4wQ9+gC984Qv4wx/+gFOnTu3Vn7MvkZZkw8camrgI5uTk4MiRI1AqlbDb7RgbG4uYNSFumYnA7XZDr9dDq9Xi0KFDGTm8lyj8fj/0en3CkizBYJBtMCAy83slncMXmaBzxq3zmM1mBAIB3unM67/9Epz+EFSg4A4yuOfqRtxxuiH1F79H4BJNItEbSbeZzWY4HA78+te/hlwuR05ODn74wx/id7/7HV73utftyrV/5Stfwac//Wl8+MMfxgMPPADgyjv5sY99DD/96U8RCARw5swZfPe7340YGl9cXMRdd92F8+fPIz8/H+fOncOXv/zltO6OTd8rSwA2mw16vR5VVVVsSyJFUSgsLMTJkyfh8/lgMplYOQ6SCiorK4v7QFosFgwNDaGuri7Cbno/gui5lZSUoK2tLaEZGrVajaqqKlRVVbHSOSaTCQaDgZXOKSsrg06nS6uZnEAggIGBgbTXOZPL5dDpdNDpdGhpaWFTQUtLSxgdHU2oznO8XoPfD68jwAC5WSr01O9fNWJSj7Lb7Th27FhCacLc3FzU19ejvr4eoVAIGxsbePDBBzE8PIyioiI88sgjsNlseNOb3pTSWtqlS5fw/e9/H0eOHIn4+kc/+lH87ne/w89//nNoNBrcfffduPXWW/HCCy8AuLLG3XjjjaioqMCLL76ItbU1vPvd74ZKpcKXvvSllF1vssjYyIZYD7S2tqK2tpZtBJDJZDEXOb/fz9YgHA4HO+TIHcJbWlpiVQYyTcmYL4iDaPSkvFBEKymHw+GIHfle7ri8Xi8GBgbYSDWdSJAPEqnzhMNhXLysx9PzQSgLSnBNWyn6D2S2WGo8MAyD8fFxWK3WhIkm1jF+/vOf4+6778bPfvYz5Ofn4ze/+Q1+85vf4M4778THPvaxFFz5lexJT08Pvvvd7+KLX/wiurq68MADD8DpdKK0tBSPPvoo3v72twMAxsfH0d7ejgsXLuDkyZP4wx/+gJtuugmrq6tstPO9730Pn/zkJ2E2m9M25Z+WZLOdNTTpIlpZWWH1nPh2nAWDQbYd1Wq1Ii8vD3K5HF6vF11dXfvel4K0cbe3tyfsWcIHXOkck8nE5sjFkM7hC6JzVlFRkbGzUbEQq85TXFwMp9OJrKwswWZgmQIu0STT5PHYY4/hzjvvxM9+9jPcdNNNEd8Lh8Mp2ySdO3cOOp0O3/zmN3H11VezZPPss8/immuugd1uj2jFr6+vx0c+8hF89KMfxec+9zk88cQTbEoYAObm5nDgwAEMDAykbfdcRqXRwuEwjEYjvF4vTp48idzcXEGtzWq1GtXV1aiurmZrFh6Ph839koiHr5tjuoNhGMzPz2N+fp6XRxBfyGQyFBYWorCwEAcPHoTH44HZbGbTmbsl7RJP52w/QKlUory8HOXl5aBpGhaLBaOjo6AoCn6/H0NDQ/u+bd1iseDYsWOCiea3v/0t7rzzTvzXf/3XFqIBkDKi+elPf4qBgQFcunRpy/fW19ehVqu3zHyVl5djfX2d/Zlo0V/yb/Iz6YiMIRuSCsnKykJfXx+USiUoigLDMIJbm30+HwwGA9RqNY4dOwa5XM7WIAYGBqBUKlni0Wq1Gb1YkZ2gyWTCsWPHdtUeIC8vD3l5eWhoaGClc0wmE6anp5GXl8cSz3bSOXxBbB/2qwLC8KoL3/nzPIIUjduPVyLbPouioiJ0dnayBXA+dZ5MAcMwmJychNlsToponnzySdxxxx34z//8T7z1rW8V+SrjY2lpCR/+8Ifx9NNP7+s29FhIS7KJXnDsdjsGBgZQWVmJ1tZWAEhaesbpdMJgMKCsrAytra1sHp+QC3e63mg0pnXxeydQFIWhoSF4vV6cOHFiT+dksrKyUFNTg5qaGoRCIZbcX3nlFahUKjbVlozEfDI6Z5kAb5DCvb8YgcUTBBhgZNmOL7+xCH2HD0Mul6OgoAAFBQU4cOAA65pJyD2dddt2AsMwmJqawsbGRlJE8+yzz+Ld7343vv/97+Md73iHyFe5PS5fvsy6AxNQFIXnn38e3/nOd/DUU08hGAzC4XBERDcbGxvss1xRUYGXX3454rgbGxvs99IVaUk2XKysrLAyMXV1dWw0AwjzoAGufDAjIyNoampCXV1dzBdOLpejpKQEJSUlaG9vh91uh8lkYlMVhHiKi4vTOjdOXEllMhmOHz+eVu2+KpWKFUylaZqtQQwNDYFhmAhTuETv8eLiIuvPsl+tei3uIJy+ELIUMtAUhRAjQ05pXcz3ITs7myV3bp1Hr9ezzzjZQKXzc8wwDKanp7G+vo5jx44JTr8+//zzeOc734kHH3wQ73rXu3adbK+55hoMDQ1FfO2OO+5AW1sbPvnJT6K2thYqlQrPPPMM3va2twEAJiYmsLi4iP7+fgBAf38//uVf/gUmk4mVk3r66adRWFiIQ4fSS8Gbi7RsEKAoCqFQCJOTk1haWmIXDkI0QqMZhmEwNzeH+fl5HD58GKWlpYKO4XK5YDKZsLGxgUAgwL6wpaWladXn7vV6odfrUVBQgI6OjrReTLggmlekwYDcY0I+sQiTyAqR52Wv/VlSiTBN453//gqmTR5ABpQX5uCn/9gLbW7iG4l48zzkHqdTnYcQzerqKo4dOyY4Ffjiiy/i1ltvxde+9jW8733vS5uojtsgAAB33XUXfv/73+NHP/oRCgsLcc899wC4cv3AlfWxq6sLVVVV+NrXvob19XXcfvvt+Kd/+iep9ZkvgsEgLl++zLYH5uXlJU00NE1jdHQUNptNNEtjondFFkWPx8O2++71C0vShJnehcXVFCPSOUVFRew9zs7OZgvGJD2xn2WFgCseQ+cvvILLzlwUanW4tbsS9TrhjRYMw8Dj8bBt67up25bItc3MzGBlZSUporl06RJuvvlm/PM//zPuvvvutHofosmGDHX+93//d8RQJzdFtrCwgLvuugt//vOfkZeXh3PnzuErX/lKWm12o5GWZLOysoLZ2VnWFTJZD5pgMAij0QiaptHV1ZWy1lvywppMJmxubm5ZFHcLJBXV1NS07xwFiXQOmZcqKCgATdMIhUJJpVcyBaSVu7q6Gk1NTSlZNLl1nr3255mZmcHy8nJSYql6vR433XQT7rvvPtx7771pRTSvJaQl2dA0jUAgAIZh2OFOoRENcZosKChAZ2fnrqWSEhkiTQWWl5cxOTmJjo6OLe2R+w0+nw96vR6BQAA0TSM7O1uQym+mwOVyYWBggFW32A1E+8fIZLJdq/MQtfVjx44JJpqhoSHccMMN+L//9//iU5/61L57JjIJaUk24XAYfr+f/bfQRgAyJV9TU7OnTpPBYJAlHpvNlhIhS5JuIDWL/T6YGgqFoNfrIZPJ0NXVBblcztoIkyFHco+LiooyqnswFsjMUGNjIxoaGvbkGnazzjM3N4eFhYWkiGZ0dBRnz57FBz/4QXz+85+XiGaPkZZkc+7cOczMzOCWW27BW97yFlRXV/N+UJaXlzExMYG2tjZUV1en6Er5IxQKRThlZmdno7y8PKk5E1KPstvt+94KAXhV54xYc0fvrmmaht1uZ9NtFEWxu/Ht5OXTFXa7HXq9Pq1mhkidh9xjMes8hGh6e3sF11YnJiZw9uxZ3HHHHfjSl74kEU0aIC3JZnl5Gb/4xS/wq1/9Ci+++CKOHTuGm2++GTfffDPq6+u3fXBIL/7q6iqOHDkCnS59daEoimKJx2w2s3MmfIZIiapCKBRKG8n8VIKvzhnpHiSLos/ni5DOSaeuq1iwWq0wGo1obW1Nq01TNEidh+i25eTkCKrzEIWLZIhmZmYG119/PW677TZ8/etfz/iodr8gLcmGgGEYrK2t4bHHHsOvfvUrPP/88zhy5AhLPNGpMTK86PF40NXVlVHT0mTOhBCPTCbbMQ0UCASg1+uhVqtZe4X9DDF0zrhdVy6XCxqNhr3P6WYKRxo92tvbM0oYNl6dZ6eZqYWFBczOzqK3txeFhYWCzj0/P4+zZ8/izW9+Mx588EGJaNIIaU02XDAMA4vFwhLPs88+i7a2NpZ4srOz8f73vx8f//jHcfXVV6fV8CJfcBWUSRooeoiUeO7odDq0t7fv+5fKbrfDYDCgoaEBDQ0NoqRFolWU8/LyWOLJz8/f09TLxsYGhoeH0dnZmdGNHonWeRYXFzEzM5MU0SwvL+PMmTO47rrr8NBDD+37dyLTkDFkwwXDMLDb7XjiiSfwy1/+Ek899RRomkZTUxN+8IMfoLe3d988aNEDjsFgEIWFhXA6naitrUVzc/O+z0eTHX5LSwtqampScg5uLc1qtQpKaYoFIrdz5MgRQYPH6Yp4dR6VSgWbzYbe3l5oNBpBx15bW8P111+Pv/mbv8HDDz+cMQPMryVkJNlw8fjjj+P222/HjTfeiEAggD/+8Y+orKzEzTffjFtuuQXd3d37ingWFhYwPT0NtVqNUCgEnU6H8vLyfanuC7y68O7mDp+iKFYXz2w2A0CELl4qF7KVlRVMTEzg6NGj+1Zuh8Dv97NaZwCQk5MjqHV9Y2MDZ8+exbFjx/DII49IRJOmyGiyMRqNuOqqq/DjH/+YVW51u934/e9/j1/+8pf4wx/+AJ1Oh7e85S245ZZbcPz48Yx+EBcWFjAzM8NK7cQbIi0rK9sXjQJE52wvF16GYSJM4YLBYIQpnJjp2qWlJUxNTbE+TfsdZCaMqD4IqfNYLBbccMMNOHToEB599NF9X7fMZGQ02QBXXtB47aBerxdPPfUUfvnLX+J3v/sd8vLy8OY3vxm33HIL+vv7M+bBJLLqa2tr6O7ujplqIBbYJpMJTqczrQvfO4Grcxbv790LcOWJzGZzTOkcoSDF8e7u7n2t60ZAiKa7u3vLTFiidR6bzYYbb7wRBw4cwM9+9rN9GdnvJ2Q82SQKv9+PP/3pT/jVr36FX//611AqlXjzm9+Mt771rbjqqqvStqGAoiiMjIxgc3MT3d3dCakPcD1juEOk5eXlad+hl0k6Z9EEX1hYyKbb+NxnMinf09MjuDieSSCpwlhEEw1unYcY8H31q1/F3/zN3+DZZ59FY2MjfvWrX6Uskn/ooYfw0EMPYX5+HgDQ0dGBz33uczh79iyAV3XMfvrTn0bomHFTvouLi7jrrrtw/vx55Ofn49y5c/jyl7+cMZtdsfCaIRsuQqEQzp8/j1/+8pd4/PHHQVEUbrzxRtxyyy24+uqr0yYFFQqFYDAYwDAMurq6BO3cQqFQhAU2yYuLbVYmBmiaxsjICFwuF3p6ejIqIuNajXPnTLZzfCWqD0T7azcN7fYKxK1VaKrQYrHg+9//Ph588EF4vV4cPHiQ7Ug9efKk6Gny3/zmN1AoFGhubgbDMHjkkUfw9a9/HXq9Hh0dHbjrrrvwu9/9Dj/60Y+g0Whw9913Qy6X44UXXgDwqkJzRUUFvv71r2NtbQ3vfve78d73vjetFZpTgdck2XARDofx17/+FT//+f/f3p2HRVXvfwB/MyAkIqswSIYioiyCIBCiXi1BBFGHlFSyJCszUwoqlxa0W5miT2pqgbZhV9ESJNFEUxZxuyoDKMji1VREmBn2fVjmfH9/+DsnRnFjmAX4vp7H56mZEb4H9XzO+Z7PcgB//PEHGhsbERgYCIFAAB8fH7Wd8Ni+X/r6+p1WyXcFW/8gFotRUVHBZVzx+Xy19xKTyWS4fPkyWltbMXbs2B69JcL+nNkuEdra2lzgYWum2K1RsVgMd3d3jb/j7A5lZWUoKChQ6JlUQ0MDZs+eDV1dXezfvx9nzpzBoUOHkJycjKtXr6oke8/U1BSbNm1CcHAwzM3NERcXh+DgYABAYWEhHBwccP78eYwbNw7JycmYMWMGSktLubudmJgYrFq1CuXl5T367/nT6vPBpiOZTIbz588jPj4eiYmJqK6uhr+/PwQCAfz8/FR2Qqirq0N2djYsLCxgb2+vlCBwf8bVkxSRKgvb54zH43GdvnsLtnUO+3NmW+e0traisbGxT3SqBv4JNIokezQ1NSE4OBgMw+Do0aNyW6xsV3hlkslkOHDgAEJDQ5GdnQ2RSAQfHx9UV1fLPWcbOnQowsPDERERgTVr1iApKQk5OTnc+zdv3sTw4cORlZUFNzc3pa5Zk/StTcPH0NbWxsSJEzFx4kRs3rwZly5dQnx8PNauXYu3334bfn5+EAgECAgIUNqWB9uehG24qKy7DfZq29zcXO6EmJeXx03JVEWqr1QqRXZ29kP7nPV0PB4PZmZmMDMzg729PWpra1FQUIDGxkZoaWmhqKiox7TO6SqRSKRwoJFKpQgJCUFLSwuOHz/+wLM8ZQaa3NxceHt7QyqVwsDAAImJiXB0dEROTg50dXUfSOjg8/kQiUQA7h37/Sn77P+zn+kraLB5CB6PBy8vL3h5eSEqKgo5OTmIj49HVFQUli5dCh8fHwgEAgQGBnbbFlRpaSkKCgrg6Oio0vYknZ0QxWIxCgsL0dbWhkGDBoHP53d7E8un7XPW0xFCcOfOHRBCMHHiRMhkMkgkEpSUlKCgoADGxsZckO9Jz6sehR3BrkigaWlpwauvvoqamhr89ddfKk+iGDVqFHJyclBbW4v4+HiEhobi1KlTKl1Db0C30Z4SIQRXr17lGoUWFhbixRdfRFBQEAIDA2FmZvbUgYcdV3379m2MGTNGY2osCCGor6/nMq6am5vlJpEqst3VHX3OehKGYZCbm4umpiaMHTv2gSQUtnWORCJBdXU1DAwMuMCj7tY5XcW23FGkE0JbWxsWLlyI27dvIyUlRSMKXX19fWFra4t58+bRbbSnQIONAtiHvAkJCUhISMCVK1fwr3/9CwKBALNmzYKFhcVjTxIMw6CwsBAVFRXdNq5aWTqOwG5oaJDrnvw0GXzK6HOmyWQyGa5cuYKWlpYnSn64fwyFnp4eF3hU3TqnqyQSCXJzcxUKNO3t7XjjjTdQWFiItLQ0jWndM2XKFFhbW+Pbb7+Fubk59u3bhzlz5gAAN9bk/gSBsrIyWFhYAAB27dqFFStWQCKRaEzmqyrQYNNN2ELEhIQEHDx4EJmZmRg/fjxmzZoFgUAAKyurB04S7ElIKpXCzc1NpaOjFdXVIlJV9DnTJDKZDDk5OZDJZHBzc3vqu8HOEjnYZ23Kfp7WVeXl5bhy5QqcnZ25E+zTkslkWLJkCbKzs5GWlgZLS8tuXuWT+fjjjxEQEABra2vU19cjLi4OUVFROH78OKZOnYqlS5fi6NGjiI2NhaGhIcLCwgAA586d447D1dUVVlZW2LhxI0QiEV577TW89dZbNPWZUhy7N88GnvPnz8PT05Nrm2NtbY2SkhLs3r0b/v7+PT4Dq6WlhQs81dXVGDhwoNwkUpY6+pypU3t7O7KzswEAbm5uCj/v6lhZL5FIuOdp5ubm3d46p6vYQKPIn7FMJkNYWBjOnj2L9PR0tc7xefPNN5GSkoKysjIYGRnBxcUFq1atwtSpUwH8U9S5b98+uaLOjsHx9u3bWLp0KdLT0zFgwACEhoZiw4YNtKiT6l6EEJSWlnKjEU6fPo2RI0dy45uPHDnSq/7Stba2oqKiAmKxmCtutLCwAMMw3DFrwr67srHp3Nra2nB1de32O5COrXMkEgkaGxthamrKbbepY3umoqICly9fVijQMAyD8PBwpKamIi0tDUOHDu3mVVLqQoONChFCkJycjLlz58LMzAylpaVwcHBAUFAQBAKB0mpq1KW9vR3l5eW4efMmGhsboaenB0tLS1hYWKi9iFSZWltbkZWVBT09Pbi4uKhkq6upqYm742Fb57DP01RRH1ZRUYErV67A0dGxy1teDMNg5cqVOHLkCNLT0zF8+PBuXiWlTjTYqNDx48cxZ84cREVF4d1330V1dTUOHTqEhIQEnDx5EsOHD+dGIzg5OfX4VGBCCAoLC1FeXo4xY8Zw223l5eXQ1taWmxfT04+V1dLSgqysLK7zgzqOq7W1lfs5V1ZWQl9fnws8D2udowi2NkzRQPPZZ5/hwIEDSE9Ph52dXbeukVI/GmxU6MaNG8jLy4NAIHjgvdraWhw+fJgbBvfss89ygcfV1bXHnYwZhkFeXh7q6+sf6HPGFpGKxWKUl5fLFZGamZn1uGNlSaVSCIVCGBoaaszFQmetc7ozyFdVVSEnJ0eh0dWEEHzxxRfYvXs30tPTYW9vr9CaKM1Eg40Gqq+vl5vJM2jQIK5Dtaenp0acxB7lafqcdZwXI5FI0N7ejkGDBnHzYjQx26ozzc3NEAqFMDExgaOjo0ZuETIMg6qqKm67jWGYB8aNPw020Njb28PKyqpLayKEYMOGDYiJiUFaWhpGjx7dpa9DaT4abDRcU1MTjh07xs3kMTAw4LLavL29Ne5k3LHPmaur61MlP7BFpGKxGBKJBFKpVC7waEK2VWeampogFAphbm6OUaNGaWSguR87bpwNPFKpVG4o3ONqgaqrq5Gdna1woNmyZQu2bNmClJQUuLq6dunrUD0DDTY9iFQqxYkTJ7iZPLq6utwdz4QJE9R+Mu7OPmfsHJPOikgtLCw0po9YQ0MDhEIhBg8eDDs7ux4RaO7XcWYMO/XV2NiYe85zf90UG2hGjRrV5bRkQgh27NjB1ax4enp2x6FQGowGmx6qtbVVbiYPwzCYMWMGN5NH1Sdj9ure1NQUDg4O3b7V19TUxAWeuro67mRoYWGhtmLY+vp6CIVCDBkyBLa2tj0y0HRGKpVyCQZs6xz2Z83euSpSlEsIwa5du/Dvf/8bycnJ8Pb27uYjoDQRDTa9QHt7O06fPs3N5GlubpabyaPskzHb50xVV/f39xFji0j5fL7K2vXX1tYiKysLw4YNg42NjUq+pzqww/fKy8tRUVEBhmFgamoKW1vbLqWvE0IQGxuLjz/+GEeOHMGkSZOUtHJK09Bg08vIZDKcO3cO8fHx+OOPP1BTU4Np06YhKCgIfn5+3X4yVnefs44TMisrKzFgwADuKlxZDSxramqQnZ2N4cOH95miw9raWgiFQlhaWoJhGFRUVHCtc9hRFI+7myWEYM+ePfjoo4+QlJSEF198UUWrpzSBRgeb7777Dps2bYJIJMKYMWOwfft2PP/88+peVo/BMAwuXrzIDYMTi8WYOnUqgoKC4O/vr3DTT03rc9ZZA0s+n//I0cxPi83AsrOzw3PPPdcNq9Z87F2cra0trK2tAfzTOofdbmNb57AJBvcnhhBC8PvvvyMsLAwJCQmYNm2aOg6FUiONDTa//fYbFi5ciJiYGHh5eWHr1q04cOAAN2yKejoMwyA7O5sbjVBcXAxfX18IBAJMnz79qbdE2Nk7mtrnTCaTcfUl9xeRmpiYdCnwsMWLijwY72nq6uogFAofeRfXcRRFeXk51zrH2NgYOjo6sLa2xsGDB7FkyRL89ttvmDFjhtLWu379em70R//+/TF+/HhERUVh1KhR3GfYfmb79++X62fW8e9xcXExli5dirS0NBgYGCA0NBTr16/vVa2lVE1jg42Xlxc8PT2xY8cOAPdOls899xzCwsKwevVqNa+uZyOEIC8vjws8165dk5vJY2pq+siTcXFxMa5fv67QQCxVYutL2AQDAFzgeZLtH+CfuzhFihd7GjbQsFNjnxSbzJGSkoLw8HAMGTIEZWVl2Lp1K959913lLRiAv78/5s+fD09PT7S3t+OTTz5BXl4e8vPzubY9S5cuxZ9//onY2FgYGRlh+fLl4PF4OHv2LIB/OjVbWlpi06ZNKCsrw8KFC7F48eI+16m5O2lksGltbYW+vj7i4+MRFBTEvR4aGoqamhocOnRIfYvrZQghKCoq4mby5ObmYtKkSRAIBJg5c6bcTB6GYXDjxg3cvXsXbm5uMDIyUvPqnx5bRMrW8shksscWNrJDwDT1Lk4Z2Ew79llcV/3nP/9BWFgYnJyckJ+fj5EjRyIoKAirV69WSc+28vJyWFhY4NSpU5g0aRJqa2thbm6OuLg4BAcHAwAKCwvh4ODwwAya0tJS7s87JiYGq1atQnl5ucak3fc0GlmKXlFRAZlM1uns7r42t1vZtLS0YG9vj08//RRCoRAFBQXw8/PD3r17YWdnh4CAAERHR+P27dtYtGgRvvnmG3h4ePTIQAPcO14TExPY29vjX//6Fzc189q1a0hPT8fly5dRVlaGtrY2APfGIly9ehUuLi59LtAMHTpUoUCTkpKCDz/8EL/88guysrJQXl6Ozz77DCKRSGVjr2trawGAm34rFArR1tYGX19f7jP29vawtrbG+fPnAQDnz5+Hs7Oz3J/3tGnTUFdXh6tXr6pk3b0R3YCkOFpaWhgxYgRWrVqFlStXori4GAkJCYiPj8eKFSvQr18/hIWFcVlfPb2uREtLC0ZGRjAyMsKIESPQ2NgIsViMW7du4erVq9DX10dTUxOcnZ01ZkqksrFFqtbW1gqldGdkZOCVV17B9u3b8corr0BLSwuGhoaYN28e5s2b140rfjh2XMGECRO4NjgikQi6urpyY5wB+QtZkUjU6YUu+x7VNRp5Z8P2xBKLxXKvi8VitU3s62u0tLQwdOhQLFmyBAMHDoSzszPWrl0LoVAIFxcXTJ48GZs3b8aNGzeggTuxT01LSwsGBgawtbWFt7c3hg0bhubmZujr6yM3NxeZmZkoLi6GVCpV91KVhg00zz33nELt/c+dO4e5c+fim2++weuvv662i5Jly5YhLy8P+/fvV8v3p+RpZLDR1dWFu7s7UlJSuNcYhkFKSgqtNlaxDz74AG1tbTh9+jQ++eQTpKam4s6dO3jrrbeQkZEBd3d3LuOnsLCwVwSeW7du4c6dO9yxTZw4ERYWFpBIJDhz5gwuXryIW7duoampSd1L7TaNjY0QCoV49tlnYWtr2+Wvc/HiRQQHB+Prr7/G4sWL1RZoli9fjiNHjiAtLU0uLd/S0hKtra2oqamR+3zHC1lLS8tOL3TZ96iu0cgEAeBe6nNoaCh27tyJ559/Hlu3bsXvv/+OwsLCPrN3rgnYLbPOuhAQQlBVVSU3k2fEiBHcaARHR0eN71DdESEEN2/eRHFxMcaOHQtDQ8MHPsPOipFIJKiqquKKSPl8fo/dWmxsbERmZiYXaLp6DFlZWZg5cyYiIyMRERGhlp8FIQRhYWFITEzsdC4OmyCwb98+zJkzBwBQVFQEe3v7BxIEysrKuDKLXbt2YcWKFZBIJGqZgtobaGywAYAdO3ZwRZ2urq7Ytm0bvLy81L0sqhNsF2F2Js9ff/2FIUOGcIFnzJgxGh14CCG4fv06SktL4e7uDgMDg8f+nvuLSJ955hkupVoZQ8qUgb2jGTx4MEaMGNHlNV+5cgWBgYFYsWIFVq1apbZjf/fddxEXF4dDhw7J1dYYGRlxSQlLly7F0aNHERsbC0NDQ4SFhQG4t/0H/JP6bGVlhY0bN0IkEuG1117DW2+9RVOfFaDRwYbquerr6/Hnn38iISEBx44dw6BBgzBr1iy89NJL8PDw0KjAQwjBtWvXIBaL4e7u3qWUXJlMJhd4dHR05IaUaWLgaWpqQmZmJiwtLRXqaZefn4+AgAAsX74ca9asUeuxPux7//LLL3j99dcB/FPUuW/fPrmizo5bZLdv38bSpUuRnp6OAQMGIDQ0FBs2bKBFnQqgwYZSusbGRhw7dgwHDx7EkSNHYGhoyM3kGTdunFpn8hBCUFBQgMrKSri7u3dL7zi2iJSdRMr2EOPz+TAxMdGIQMt26bawsMDIkSO7HCCKiooQEBCAN998E1999ZVGBlVKM9BgQ6lUc3MzN5MnKSkJenp6mDlzJoKCglQ+k4cQgvz8fFRXV8Pd3V0ptR8de4g9aRGpsjU3NyMzM1PhQHP9+nUEBAQgJCQEGzdu1IggSmkuGmwotWltbUVqaio3kwcAN5Nn8uTJSq3UZhgGeXl5aGhogLu7u0oe+hJCUFdXx3UvaG1tfWTzSmVgA42iU0Vv3boFf39/BAUFYevWrTTQUI9Fgw2lEdrb25GRkcHN5JFKpZgxYwYEAgGmTJnSrTN5GIZBbm4umpqa4O7urpb2I4QQNDQ0cHc8jY2N3Fhmc3NzpaxJKpUiMzMTZmZmsLe373KguXPnDqZNmwZ/f398//33NNBQT4T+LXmM9evXw9PTkxvQFRQUhKKiIrnPSKVSLFu2DGZmZjAwMMCcOXMeyNMvLi5GYGAg9PX1YWFhgRUrVqC9vV2Vh6LRdHR0MGXKFERHR6OkpASHDh2CiYkJPvjgA9jY2GDRokU4dOiQwrUtMpkMly9fhlQqhYeHh9r6XGlpaWHgwIFcEam3tzeMjY1RUlKCjIwMCIVC3LlzBy0tLd3y/dhAY2pqqlCgKSsrQ2BgIKZMmYLvvvuOBhrqidE7m8egXWTVi2EYXLhwgZvJI5FI4Ofnh6CgIEybNu2pZvLIZDLk5ORAJpPBzc1Npc+HnkZzczPKy8shFotRW1sLQ0NDrpanK8+VpFIphEIhTExM4ODg0OVAIxaLERAQAE9PT8TGxqo1sYPqeWiweUq0i6z6MAyDrKwsbjTCnTt34Ovri6CgIEyfPv2RtS3t7e3Izs6GlpYWXF1de0wKa0tLCzeJtKqqCgYGBnKTSJ/k92dmZsLY2BiOjo5dDjTl5eUIDAyEk5MT9u7d22N+fpTmoPfAT4l2kVUfHo8HDw8PbNiwAYWFhbhw4QLc3NywZcsWDBs2DMHBwfj1119RWVkp1zaHTfPV1taGm5tbjzpR6unpYciQIRg7diwmT54Ma2tr1NXV4cKFCzh37hyuX7+Ourq6TtsEtbS0QCgUwsjISKFAU1VVhZkzZ8LOzg579uzpUT8/SnPQYPMUaBdZzcHj8eDi4oIvvvgCubm5yMnJwfjx47Fz504MHz4cAoEAP/30E3Jzc+Ht7Y2srCy4urr26K2ffv36wcrKCq6urpg8eTJsbW25wswzZ86gqKgINTU1IISgtbUVQqEQhoaGcHJy6nKgqampgUAggLW1NX777TeN3XqkNB+9RHkKbBfZM2fOqHspVAdaWlpwcHBAZGQkPvvsM9y4cQPx8fH4+eef8d5778HExAQymQwikQiDBw/uFYWHOjo64PP54PP5kMlk3CTSnJwcaGlpgWEYDBw4UKFnNHV1dZg9ezYGDRqE+Ph4ut1LKYTe2Twh2kW2Z2Bn8rz66qtoamrCSy+9hNWrVyMpKQn29vaYOnUqtm/fjuLi4l7RoRoAtLW1YW5uDicnJ3h7e4PH46Ffv35obGxERkYG8vLyUF5eDplM9sRfs6GhAcHBwdDX18cff/zRrannVN9Eg81jEEKwfPlyJCYmIjU19YGBUu7u7ujXr5/cOISioiIUFxdz4xC8vb2Rm5sLiUTCfebEiRMwNDSEo6Ojag6kDyGEICQkBJMnT0Z8fDxWrlyJ06dP49atW5g/fz6Sk5Ph7OyMF154AVu2bMHff//dKwJPa2srsrKyYGhoiPHjx2PSpElwc3ODrq4uCgsLcerUKVy5cgUikeiRafdNTU2YO3cutLW1kZSUpLKpmlTvRrPRHoN2ke2ZSktLH7plRgiBWCxGYmIiDh48iPT0dDg5OXEdqhVp4aIubW1tEAqF6N+/P5ydnR+ofyGEoL6+nisibW5uhqmpKfh8PszNzblnMVKpFPPmzeP62XU2ZqE7ZWRkYNOmTRAKhSgrK0NiYiKCgoLk1r127Vr88MMPqKmpwYQJExAdHS03OqCqqgphYWE4fPgweDwe5syZg2+//faJsvUo1aHB5jFoF9nejRCCyspKbiZPSkoK7OzsuA7VDg4OGl+4yAaaZ555Bi4uLk+03sbGRkgkEq51ztatWzF16lScOXMGjY2N+Ouvvx5IelGG5ORknD17Fu7u7pg9e/YDwSYqKgrr16/H7t27YWNjg8jISOTm5iI/P5/b2gsICEBZWRl27tyJtrY2LFq0CJ6enoiLi1P6+qknR4MNRf0/diZPUlISN5PH2tqaCzxPeiJXpba2NmRlZUFXV7fLM4MkEgl27NiBH374AXV1dRg3bhzmzp2L2bNnY+jQoUpYdee0tLTkgg0hBFZWVvjwww/x0UcfAbhXesDn8xEbG4v58+ejoKAAjo6OuHTpEjw8PAAAx44dw/Tp01FSUgIrKyuVrZ96NM36l0NRaqSlpQVjY2MsXLgQhw4dglgsxueff46bN2/Cz88PLi4u+OSTT3Dp0iUwDKPu5XKFqooEGgAwMTHBrVu3YG1tjdzcXISGhiI5ORkjRozAhQsXunnVT+7mzZsQiURyNWxGRkbw8vKSq2EzNjbmAg0A+Pr6gsfjqXXt1IPoHg5FPYShoSFCQkIQEhKCxsZGJCcn4+DBg5g1axaMjIy4mTxeXl4qr99pb29HVlYWdHR0FLrjam9vxzvvvIP8/HykpaWBz+dj9OjReOedd1BVVaX0ZzaPwtagdVaj1rGGjR3dzNLR0YGpqSmtYdMw9M6Gop7AgAEDEBwcjLi4OIhEImzfvh319fWYO3cuRo0ahYiICJw6dUolzVXZOxodHR2MGTOmy4FOJpMhLCwMQqEQJ0+efOCkbmpqSp8pUt2GBhuKekr9+/eHQCDA7t27IRKJ8OOPP0Imk2HhwoUYMWIEli1bhpMnT6K1tbXbvzcbaHg8nkKBhmEYRERE4MyZMzh58qRGPttgE2w6q1HrWMPWsaQAuPczqqqqojVsGoYGm15uw4YN0NLSQnh4OPcaHYnQfXR1dTF9+nT8+OOPKC0txb59+6Cnp4clS5Zg+PDhWLJkCZKTkyGVShX+XmzXah6Pp1DrHYZhsHLlSpw4cQInT56EtbW1wmtTBhsbG1haWsrVsLF94TrWsNXU1EAoFHKfSU1NBcMw8PLyUvmaqYejwaYXu3TpEnbu3AkXFxe51yMiInD48GEcOHAAp06dQmlpKWbPns29L5PJEBgYiNbWVpw7dw67d+9GbGws1qxZo+pD6FH69esHHx8fxMTEoKSkBImJiTA2NkZ4eDhsbGzwxhtvICkpqUszeWQyGbKzswFA4UDz6aefIikpCSdPnnygSFnVGhoakJOTg5ycHAD3kgJycnJQXFzMXSR99dVXSEpKQm5uLhYuXAgrKysuY83BwQH+/v5YvHgxLl68iLNnz2L58uWYP3++Rt6t9WmE6pXq6+uJnZ0dOXHiBJk8eTJ5//33CSGE1NTUkH79+pEDBw5wny0oKCAAyPnz5wkhhBw9epTweDwiEom4z0RHRxNDQ0PS0tKi0uPoDWQyGTl79iyJiIggNjY2xMDAgMyePZv8+uuvRCwWk8bGxkf+qqurIxkZGSQ9PZ3U1dU99vMP+9XQ0EBWrFhBLC0tSUFBgbp/LIQQQtLS0giAB36FhoYSQghhGIZERkYSPp9P9PT0iI+PDykqKpL7GpWVlSQkJIQYGBgQQ0NDsmjRIlJfX6+Go6EehdbZ9FKhoaEwNTXFli1b8MILL8DV1RVbt25FamoqfHx8UF1dLVe0N3ToUISHhyMiIgJr1qxBUlISd7UJ3LviHD58OLKysuDm5qb6A+olGIaBUChEQkICDh48iJKSEvj6+kIgEHQ6k4edLMoOfOvqA3tCCNavX49du3YhNTWV61pOUapCt9F6of379yMrKwvr169/4D06EkG9eDwePD09uZk8586dw5gxY7B582YMGzYML7/8Mn799VdUVVWhoaEBr732GsrKyhQONJs3b0Z0dDROnDhBAw2lFjTY9DJ37tzB+++/j71799JOvRqOfdD/5ZdfIi8vD9nZ2Rg3bhxiYmJgY2ODUaNG4eLFixg5cmSXn9EQQrB9+3Zs2bIFx48fx5gxY7r5KCjqydBg08sIhUJIJBKMHTsWOjo60NHRwalTp7Bt2zZuBgodiaB5tLS04OjoiDVr1uDChQuYNGkSBgwYAD6fDw8PD0yfPh07d+5EWVnZE3eoJoRg586d2LBhA44ePSpXZU9RqkaDTS/j4+PDTa5kf3l4eGDBggXcf9ORCJpLJpNh3rx5qK2tRV5eHrKysnDt2jXMnDkT8fHxGDVqFPz8/LBjxw7cuXPnoYGHEIJffvkFn3/+OQ4fPoxx48ap+Ego6j5qS02gVKZjNhohhLzzzjvE2tqapKamkszMTOLt7U28vb2599vb28no0aOJn58fycnJIceOHSPm5ubk448/VsPq+54ff/yRVFZWPvA6wzCkuLiYbN26lUyaNIloa2sTT09Psm7dOpKXl0caGhq4rLPo6GhiYGBA0tLSVH8AFNUJmo3WB3TMRgPoSITegBACkUjEzeQ5deoURo8eDYFAAD09Paxbtw4HDx6En5+fupdKUQDoiAGK6vFIh5k8cXFxSE1NxZ49e7BgwQJ1L42iODTYUFQvQgjB3bt3MWTIEHUvhaLk0GBDURRFKR3NRqMoiqKUjgYbiqIoSulosKE0xt27d/Hqq6/CzMwM/fv3h7OzMzIzM7n3CSFYs2YNBg8ejP79+8PX1xf/+9//5L5GVVUVFixYAENDQxgbG+PNN99EQ0ODqg+Foqj70GBDaYTq6mpMmDAB/fr1Q3JyMvLz8/HNN9/AxMSE+8zGjRuxbds2xMTE4MKFCxgwYACmTZsmNytmwYIFuHr1Kk6cOIEjR44gIyMDb7/9tjoOqU/67rvvMGzYMDzzzDPw8vLCxYsX1b0kSlOop7yHouStWrWKTJw48aHvMwxDLC0tyaZNm7jXampqiJ6eHtm3bx8hhJD8/HwCgFy6dIn7THJyMtHS0iJ3795V3uIpQggh+/fvJ7q6uuTnn38mV69eJYsXLybGxsZELBare2mUBqB3NpRGSEpKgoeHB15++WVYWFjAzc0NP/zwA/f+zZs3IRKJ4Ovry71mZGQELy8vnD9/HgBw/vx5GBsby/UA8/X1BY/Hw4ULF1R3MH3U5s2bsXjxYixatAiOjo6IiYmBvr4+fv75Z3UvjdIANNhQGuHvv/9GdHQ07OzscPz4cSxduhTvvfcedu/eDeCf0QadjT7oOBrBwsJC7n0dHR2YmprS0QhK1traCqFQKHcxwOPx4Ovry10MUH0b7T1CaQSGYeDh4YGvv/4aAODm5oa8vDzExMQgNDRUzaujHqeiogIymazTi4HCwkI1rYrSJPTOhtIIgwcPfqCjtIODA4qLiwH8M9qgs9EHHUcjdOxUDQDt7e2oqqqioxEoSs1osKE0woQJE1BUVCT32rVr1zB06FAAgI2NDSwtLeVGI9TV1eHChQtyoxFqamogFAq5z6SmpoJhGHh5eangKPquQYMGQVtb+5EXA1TfRoMNpREiIiLw3//+F19//TWuX7+OuLg47Nq1C8uWLQNwb7hYeHg4vvrqKyQlJSE3NxcLFy6ElZUVgoKCANy7E/L398fixYtx8eJFnD17FsuXL8f8+fNhZWWlxqPr/XR1deHu7i53McAwDFJSUriLAaqPU3c6HEWxDh8+TEaPHk309PSIvb092bVrl9z7DMOQyMhIwufziZ6eHvHx8SFFRUVyn6msrCQhISHEwMCAGBoakkWLFpH6+npVHkaftX//fqKnp0diY2NJfn4+efvtt4mxsTERiUTqXhqlAWgjToqius2OHTuwadMmiEQiuLq6Ytu2bXQLkwJAuz5TFEVRKkCf2VAURVFKR4MNRVEUpXQ02FAURVFKR4MNRVEUpXQ02FCUgmQyGSIjI2FjY4P+/fvD1tYWX375JTrm3hA6i4fq42iwoSgFRUVFITo6Gjt27EBBQQGioqKwceNGbN++nfsMncVD9XU09ZmiFDRjxgzw+Xz89NNP3Gtz5sxB//79sWfPHhBCYGVlhQ8//BAfffQRAKC2thZ8Ph+xsbGYP38+CgoK4OjoiEuXLnEjEo4dO4bp06ejpKSEdkCgejx6Z0NRCho/fjxSUlJw7do1AMDly5dx5swZBAQEAKCzeCgKoCMGKEphq1evRl1dHezt7aGtrQ2ZTIZ169ZhwYIFAOgsHooCaLChKIX9/vvv2Lt3L+Li4uDk5IScnByEh4fDysqKzuKhqP9Hgw1FKWjFihVYvXo15s+fDwBwdnbG7du3sX79eoSGhsrN4hk8eDD3+8RiMVxdXQHQWTxU70ef2VCUgpqamsDjyf9T0tbWBsMwAOgsHooC6J0NRSls5syZWLduHaytreHk5ITs7Gxs3rwZb7zxBgD5WTx2dnawsbFBZGTkQ2fxxMTEoK2tjc7ioXoVmvpMUQqqr69HZGQkEhMTIZFIYGVlhZCQEKxZswa6uroA7hV1rl27Frt27UJNTQ0mTpyI77//HiNHjuS+TlVVFZYvX47Dhw+Dx+Nhzpw52LZtGwwMDNR1aBTVbWiwoSiKopSOPrOhKIqilI4GG4qiKErpaLChKIqilI4GG4qiKErpaLChKIqilI4GG4qiKErpaLChKIqilI4GG4qiKErpaLChKIqilI4GG4qiKErpaLChKIqilO7/AOoB5sYaf6YoAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "print(\"Dimensions of grid x-components\")\n", - "print(np.shape(fi.floris.grid.x_sorted))\n", + "print(np.shape(fmodel.core.grid.x_sorted))\n", "\n", "print()\n", "print(\"3rd turbine x-components for first wind condition (at findex=0)\")\n", - "print(fi.floris.grid.x_sorted[0, 2, :, :])\n", + "print(fmodel.core.grid.x_sorted[0, 2, :, :])\n", "\n", - "x = fi.floris.grid.x_sorted[0, :, :, :]\n", - "y = fi.floris.grid.y_sorted[0, :, :, :]\n", - "z = fi.floris.grid.z_sorted[0, :, :, :]\n", + "x = fmodel.core.grid.x_sorted[0, :, :, :]\n", + "y = fmodel.core.grid.y_sorted[0, :, :, :]\n", + "z = fmodel.core.grid.z_sorted[0, :, :, :]\n", "\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111, projection=\"3d\")\n", @@ -245,12 +248,12 @@ "id": "ebfdc746", "metadata": {}, "source": [ - "## Execute wake calculation\n", + "## Run the Floris wake calculation\n", "\n", "Running the wake calculation is a one-liner. This will calculate the velocities\n", "at each turbine given the wake of other turbines for every wind speed and wind\n", - "direction combination. Since we have not explicitly specified yaw control settings,\n", - "all turbines are aligned with the inflow." + "direction combination. Since we have not explicitly specified yaw control settings\n", + "when creating the `FlorisModel` settings, all turbines are aligned with the inflow." ] }, { @@ -260,7 +263,7 @@ "metadata": {}, "outputs": [], "source": [ - "fi.calculate_wake()" + "fmodel.run()" ] }, { @@ -270,10 +273,9 @@ "source": [ "## Get turbine power\n", "\n", - "At this point, the simulation has completed and we can use the `FlorisInterface` to\n", + "At this point, the simulation has completed and we can use `FlorisModel` to\n", "extract useful information such as the power produced at each turbine. Remember that\n", - "we have configured the simulation with two wind directions, two wind speeds, and four\n", - "turbines." + "we have configured the simulation with four wind conditions and four turbines." ] }, { @@ -291,32 +293,32 @@ "\n", "Turbine powers for 8 m/s\n", "Wind condition 0\n", - " Turbine 0 - 1,691.33 kW\n", - " Turbine 1 - 1,691.33 kW\n", - " Turbine 2 - 592.65 kW\n", - " Turbine 3 - 592.98 kW\n", + " Turbine 0 - 1,753.95 kW\n", + " Turbine 1 - 1,753.95 kW\n", + " Turbine 2 - 904.68 kW\n", + " Turbine 3 - 904.85 kW\n", "\n", "Wind condition 1\n", - " Turbine 0 - 1,691.33 kW\n", - " Turbine 1 - 1,691.33 kW\n", - " Turbine 2 - 1,631.07 kW\n", - " Turbine 3 - 1,629.76 kW\n", + " Turbine 0 - 1,753.95 kW\n", + " Turbine 1 - 1,753.95 kW\n", + " Turbine 2 - 1,644.86 kW\n", + " Turbine 3 - 1,643.39 kW\n", "\n", "Turbine powers for all turbines at all wind conditions\n", - "[[1691.32664838 1691.32664838 592.6531181 592.97842923]\n", - " [1691.32664838 1691.32664838 1631.06554071 1629.75543674]\n", - " [2407.84167188 2407.84167188 861.30649817 861.73255027]\n", - " [2407.84167188 2407.84167188 2321.40975418 2319.53218301]]\n" + "[[1753.95445918 1753.95445918 904.68478734 904.84672946]\n", + " [1753.95445918 1753.95445918 1644.85720431 1643.39012544]\n", + " [2496.42786184 2496.42786184 1276.4580679 1276.67310219]\n", + " [2496.42786184 2496.42786184 2354.40522998 2352.47398836]]\n" ] } ], "source": [ - "powers = fi.get_turbine_powers() / 1000.0 # calculated in Watts, so convert to kW\n", + "powers = fmodel.get_turbine_powers() / 1000.0 # calculated in Watts, so convert to kW\n", "\n", "print(\"Dimensions of `powers`\")\n", "print( np.shape(powers) )\n", "\n", - "N_TURBINES = fi.floris.farm.n_turbines\n", + "N_TURBINES = fmodel.core.farm.n_turbines\n", "\n", "print()\n", "print(\"Turbine powers for 8 m/s\")\n", @@ -337,16 +339,12 @@ "source": [ "## Applying yaw angles\n", "\n", - "Yaw angles are applied to turbines through the `FlorisInterface.calculate_wake` function.\n", + "Yaw angles are another configuration option through `FlorisModel.set`.\n", "In order to fit into the vectorized framework, the yaw settings must be represented as\n", "a `Numpy.array` with dimensions equal to:\n", "- 0: findex\n", "- 1: number of turbines\n", "\n", - "**Unlike the data configured in `FlorisInterface.reinitialize()`, yaw angles are not retained**\n", - "**in memory and must be provided each time `FlorisInterface.calculate_wake` is used.**\n", - "**If no yaw angles are given, all turbines will be aligned with the inflow.**\n", - "\n", "It is typically easiest to start with an array of 0's and modify individual\n", "turbine yaw settings, as shown below." ] @@ -375,7 +373,7 @@ } ], "source": [ - "# Recall that the previous `fi.reinitialize()` command set up four atmospheric conditions\n", + "# Recall that the previous `fmodel.set()` command set up four atmospheric conditions\n", "# and there are 4 turbines in the farm. So, the yaw angles array must be 4x4.\n", "yaw_angles = np.zeros((4, 4))\n", "print(\"Yaw angle array initialized with 0's\")\n", @@ -385,7 +383,7 @@ "yaw_angles[:, 0] = 25\n", "print(yaw_angles)\n", "\n", - "fi.calculate_wake(yaw_angles=yaw_angles)" + "fmodel.set(yaw_angles=yaw_angles)" ] }, { @@ -417,16 +415,14 @@ "output_type": "stream", "text": [ "Power % difference with yaw\n", - " 270 degrees: 6.43%\n", - " 280 degrees: 0.05%\n" + " 270 degrees: 0.16%\n", + " 280 degrees: 0.17%\n" ] } ], "source": [ "# 1. Load an input file\n", - "fi = FlorisInterface(\"gch.yaml\")\n", - "\n", - "fi.floris.solver\n", + "fmodel = FlorisModel(\"gch.yaml\")\n", "\n", "# 2. Modify the inputs with a more complex wind turbine layout\n", "D = 126.0 # Design the layout based on turbine diameter\n", @@ -434,21 +430,23 @@ "y = [0, 3 * D, 0, 3 * D]\n", "wind_directions = [270.0, 280.0]\n", "wind_speeds = [8.0, 8.0]\n", + "turbulence_intensities = [0.1, 0.1]\n", "\n", "# Pass the new data to FlorisInterface\n", - "fi.reinitialize(\n", + "fmodel.set(\n", " layout_x=x,\n", " layout_y=y,\n", " wind_directions=wind_directions,\n", - " wind_speeds=wind_speeds\n", + " wind_speeds=wind_speeds,\n", + " turbulence_intensities=turbulence_intensities,\n", ")\n", "\n", "# 3. Calculate the velocities at each turbine for all atmospheric conditions\n", "# All turbines have 0 degrees yaw\n", - "fi.calculate_wake()\n", + "fmodel.run()\n", "\n", "# 4. Get the total farm power\n", - "turbine_powers = fi.get_turbine_powers() / 1000.0 # Given in W, so convert to kW\n", + "turbine_powers = fmodel.get_turbine_powers() / 1000.0 # Given in W, so convert to kW\n", "farm_power_baseline = np.sum(turbine_powers, 1) # Sum over the second dimension\n", "\n", "# 5. Develop the yaw control settings\n", @@ -457,12 +455,13 @@ "yaw_angles[0, 1] = 15 # At 270 degrees, yaw the second turbine 15 degrees\n", "yaw_angles[1, 0] = 10 # At 280 degrees, yaw the first turbine 10 degrees\n", "yaw_angles[1, 1] = 0 # At 280 degrees, yaw the second turbine 0 degrees\n", + "fmodel.set(yaw_angles=yaw_angles)\n", "\n", "# 6. Calculate the velocities at each turbine for all atmospheric conditions with the new yaw settings\n", - "fi.calculate_wake(yaw_angles=yaw_angles)\n", + "fmodel.run()\n", "\n", "# 7. Get the total farm power\n", - "turbine_powers = fi.get_turbine_powers() / 1000.0\n", + "turbine_powers = fmodel.get_turbine_powers() / 1000.0\n", "farm_power_yaw = np.sum(turbine_powers, 1)\n", "\n", "# 8. Compare farm power with and without wake steering\n", @@ -480,7 +479,7 @@ "## Visualization\n", "\n", "While comparing turbine and farm powers is meaningful, a picture is worth at least\n", - "1000 Watts, and the `FlorisInterface` provides powerful routines for visualization.\n", + "1000 Watts, and `FlorisModel` provides powerful routines for visualization.\n", "\n", "The visualization functions require that the user select a single atmospheric condition\n", "to plot. The internal data structures still have the same shape but the wind speed and\n", @@ -489,9 +488,7 @@ "be selected.\n", "\n", "Let's create a horizontal slice of each atmospheric condition from above with and without\n", - "yaw settings included. Notice that although we are plotting the conditions for two\n", - "different wind directions, the farm is rotated so that the wind is coming from the\n", - "left (West) in both cases." + "yaw settings included." ] }, { @@ -502,45 +499,50 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAAHJCAYAAAA1u4DOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebgc13nfiX/e2nq5K3aAAAhwkygukriIlCUvimxLsqxE8kziKHIs2XFGmWfsTOzYmZ+dzPxizS8zEyeWKfuxJ4ltKZYceRzFisdKbNlaYkukJJLgIpEAwZ0AQZAACGK7S3fXdn5/nFPV1X37Anfpi3sv7vt5nnqq6tTS1dXV9Z7ved/zHjHGoCiKoiiKoiiKolzZeKt9AYqiKIqiKIqiKMrKo+JPURRFURRFURRlA6DiT1EURVEURVEUZQOg4k9RFEVRFEVRFGUDoOJPURRFURRFURRlA6DiT1EURVEURVEUZQOg4k9R1hEi8lci8vfd8o+JyJdW4Rr2i4gRkeByf7aiKIqirCVE5B0i8tJqX4eiLBQVf8qGRkRqIvJJETkqIlMi8m0R+aHK9h8TkenKNOuEzx1uu4jIr4jIa276FRGRZV6TiMjzIvLExfYzxnzWGPOu5XyWoiiKoiyEtWIv3Xm+LiL/vK/8wyLynIg0l/9tFeXKRcWfstEJgGPA9wETwP8KfE5E9kMpsEaLCfifgOeBR9zxHwU+ALwJeCPw14F/sMxr+l5gO3CtiLxlmedSFEVRlGGwJuylMcYAfx/4ORG5GUBEtgEfB/6+MWZ2qV9QUTYCKv6UDY0xZsYY88vGmCPGmNwY81+BF4A75jnkI8BnnPEp1j9ujHnJGHMca3x+YpmX9RHgT4A/c8sDEZGfEJH7KuvvEpGnROS8iPzfIvK1SojoT4jIfSLyqyJyVkRe6GuxnXAtuq+IyHER+Rci4rttvjvutIg8D/zwMr+foiiKss5YS/bSGPM08H8AnxQRD/gN4PPAt0Xkv4rIq87W/VcR2QMgIn9NRB4vziEiXxaRA5X1e0XkA275KhH5vDvPCyLyP1f2a4jI77nzPwFoI62yrlDxpygVRGQH8Drg0IBt+7Beuc9Uim8GvlNZ/44rW+rnN4G/CXzWTR8UkWgBx20F/gj4JWAL8BTwtr7d7nblW4F/hTWaRcjN7wEpcD1wG/AubMsqwP8AvM+V3+muT1EURdnArLa9BH4NEKztezvwT7D12n8P7AOuBlrAb7r97wduEJGtIhJivY9XiciYiDSw9u1eJyb/i7u+3cD3Az8rIu925/nnwHVuejcXaaRVlLWIij9FcThj8Fng08aYJwfs8mHgXmPMC5WyUeB8Zf08MLqMfn//HdABvgT8KRCyME/be4FDxpj/bIxJsa2gJ/r2OWqM+R1jTAZ8GtgF7HAG/L3Az7qW3VPAPcAH3XE/CnzCGHPMGHMG+L+W+N0URVGUK4C1YC+dLft7wI8A/9AYM2WMec0Y83ljzKwxZgrrHfw+t38LOIAVpXdgxd03sMLxrcAzxpjXsJ68bcaY/90YExtjngd+h16b+H8YY84YY45h7a2irBs0W5+iAK6l7/eBGPiZeXb7MPB/9pVNA+OV9XFguhLmUv2MLwLf41b/gTHmswM+4yPA55yAS0Xk867sjy/xFa7C9sUAbJ8ImZt97ERl+6yzt6PAZqzIfKVig73K+XrODRy9xLUoiqIoVyhryF5ijDnk7NYhd1wT23j5HmCT221MRHwnFr8GvAN4yS2fxYrDjlsH6zW8SkTOVT7KB+51y2oTlXWNij9lw+NaHT8J7ADea4xJBuzzduwL/4/6Nh3Cdl5/0K2/iQEhMADGmB8aVF75jD3AO4G7ROS/d8VNoC4iW40xpy9y+CvAnr7vtGf+3Xs4hjV8W53oHHTuvZX1qxd4XkVRFOUKYq3Yy4vw88DrgbuNMSdE5M3Ao9jwULAC7+PAi8C/xIq/38HawN9y+xwDXjDG3DDPZxQ2sbh2tYnKukLDPhUF/g3wBuCvu7CQQXwE+LwLI6nyGeAfi8huEbkKa3h+b4nX8ePA01jD9WY3vQ7bQvl3LnHsnwK3isgHxI6/99PAzoV8qDHmFWyY6cdFZFxEPBG5TkS+z+3yOeB/FpE9IrIJ+MXFfS1FURTlCmGt2Mv5GMP28zsnIpux/fOqfBNrY+8CHjTGHMJ6+u4Gvu72eRCYEpH/j0vu4ovILZXs258DfklENrlG23845O+gKCuKij9lQ+M6pf8DrNA6Id3xiX6ssk8dG+P/6QGn+HfYjuGPAwexIuzfLfFyPgL838aYE9UJ+LdcokO58wr+LWwil9eAm4CHsK2ZC+HDQAQ8gW0J/SNsn0CwraJ/ge0f8QjwnxfzpRRFUZT1zxqzl/PxCaABnMYmePnz6kZjzAzWjh0yxsSu+FvYPvGn3D4ZNsnZm7HZTE8Dv4sd3gLgY9hQzxewDae/P+TvoCgrigwItVYUZZ3j+mS8BPyYMeYvV/t6FEVRFEVRlNVHPX+KcoUgIu8WkUkRqQH/FNvH4f5VvixFURRFURRljaDiT1GuHL4LeA4bovLXgQ9cpE+GoiiKoiiKssHQsE9FURRFURRFUZQNgHr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYA62KQ9wnxzXbC1b4MRVEU5TLwLJ3Txphtq30d6wW1kYqiKBuDYdjHoYg/EZnEjoFyC2CAvwc8BfxHYD9wBPhRY8xZERHg14H3ArPATxhjHrnY+bcT8olg3zAuVVEURVnjvC99+uhqX8MwURupKIqiDINh2MdhhX3+OvDnxpgbgTcBh4FfBL5qjLkB+KpbB/gh4AY3fRT4N0O6BkVRFEVZi6iNVBRFUdYEyxZ/IjIBfC/wSQBjTGyMOQe8H/i02+3TwAfc8vuBzxjL/cCkiOxa7nUoiqIoylpDbaSiKIqylhiG5+8a4FXg34vIoyLyuyIyAuwwxrzi9jkB7HDLu4FjleNfcmWKoiiKcqWhNlJRFEVZMwxD/AXA7cC/McbcBszQDV8BwNjBBBc1oKCIfFREHhKRh86TDeEyFUVRFOWyozZSURRFWTMMQ/y9BLxkjHnArf8R1tCdLEJV3PyU234c2Fs5fo8r68EY89vGmDuNMXdO4A/hMhVFURTlsqM2UlEURVkzLFv8GWNOAMdE5PWu6PuBJ4AvAB9xZR8B/sQtfwH4sFjeCpyvhL4oiqIoyhWD2khFURRlLTGscf7+IfBZEYmA54GfxArLz4nITwFHgR91+/4ZNoX1s9g01j85pGtQFEVRlLWI2khFURRlTTAU8WeM+TZw54BN3z9gXwP89DA+V1EURVHWOmojFUVRlLXCsMb5UxRFURRFURRFUdYwKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAwWpfwHrn76bPcY5s0cdN4vMfgutW4IqUy4X+9oqiKPOz1Hck6HtyvaP2UVHWLur5WyZLNWxLPU5ZO+hvryiKMj/Ledfpe3J9o/ZRUdYu6vlTFEVZZYwBg7jJtskZpJzneFBZN3OWZU55/77MOY6yfNC+c8sq1zvgc3qRgfvP+/0r231S4OmL7q8oiqIoytJQ8acoyrrBGEohlOP1CKZi2Zb3rnf3p7Jt8D5AX5lUthX79wqu7rmgX/gs8Jv1nLEqBXu35e4T5m6j5wr65V13/+p6dR/K88DNP/4GRPrlId3jB2zrLes9r90++Jv37+uJgd8ZvK+iKIqiKMtDxd8K8MlPfpL3ve99nDp1iltvvXW1L0e5TNRqNb7+9a9Tq9UIgoA/+qM/4pd/+ZcH7jtlJuaUmZ4q9vwCYvB+c8vMnCp7d7/BHpuLe3Mu7u3p9TzlPQKrEFxeKZwGCbCF0SvZutIrd9vynm2eE0u2vHf/Wz58o10XgyfunOL2FRCxEs+rzoXymO682NY9x3AQliYkh8HpVfpc5UpH7ePGZTE2UlGUlUPF3wrwe7/3e/zmb/4mn/nMZ1b7UpTLSKfT4Z3vfCczMzMEQcB9993HF7/4RR544IE5+77G9p71gZ4SLu5JmX+fuWX980Hbb/rxmxbk7emRfNLnYZpHPHk9AssJMDGlaPJk8Pe7OFVx5C/h+NeWcIyiKMtB7ePGZTE2UlGUlUPF3wpw7733sm/fvkvud9rsoBuGhZsPqqTPLZtPDMy3/VL7L3a/XpZyzGJYnvdjUP+nal+p6np/UFy/R6v32Ln9kmZmZgAIw5AwDDFm8L35wE+PLOs7rQzq7VEUZWVZqH1UrkwWaiMVRVk5VPytIikhMFeUWC6VUKHLfOF5l9pvLksXWQZBMIsI31sYSxOj/Qzu59Tb58nMu/2WD9/o1t1+LtSPT31lzid5nsfDDz/M9ddfz2/91m/x4IMPDuH6FUVRFGX9ozZSUVYfFX+ryHt+eutqX4KyIBYeHpjnObfddhsTExP88R//MTfffDOHDh1awWtTFEVRlPXBQmzkCbMHjwyPDJ/cLQ+a2+Xh9bNWlI2Bij9FWQHOnz/PX/7lX/Ke97xHxZ+iKIqiVLiYjbzr5+7mwD33kxDQKeWf7+Se76ZiWcAMVn82uVdWJgIbtFwkA+sRky4pWHd57r5l+ZL6qyvK6qLiT1GGxNatW0mShPPnz1Ov1/nBH/xBfuVXfmXgvvcff0O53JtNspsYpTrnIuX9ZYMzUXbDWLvHdT+7+rn923qzXK78fVQURQF4yryRgISQmJC4XA5I3HKCLzoo+HphoTZyz+RZ9nzs9cv+vDwXMiPkxiM3QpbbebFeLctyj4fu+RYpYSksTSn1/HIIoUIiltmrjXfRaxgoGC8hQKVc714BgE/Wl8naVI5x+6oYVRaAir8V4A/+4A94xzvewdatWzl27Bj//J//cz71qU/N2e+5s7tspRvTmxGxLztitWy+in6xXE1Zr1xedu3axac//Wl838fzPD73uc/xp3/6pwP3/eF/sB9wg3sbyI3YeS7lsjFCXm4T8tyNP5cX26T3WDc/+9WvlccYwBg33EJxTGEmjG0xLbdRHCPl8QB55fiF9ukMvAxPcvxi8jI3z7vlleWgZ9keG3gZvqeGTFGuJBZqHwE+9L/tpJMGJJlPJwu4/+MHaNMkJSynzBSZfg2hE4c+aUU0Jr2iUdLL92WVHhZqI799/Gr3/re2oVgu1ot5YSeKsn574XnFYEP5gq5vz8duHMbXLCnscj5AgBojZH1lWe5hjHDgE/eXsq93cCO/MlRSIUILCWjFamG3L3JVPaKy6uXsF5PziVK/MnRSIUi9clvFW6pCdM2i4m8F+NCHPrSg/fa97622ZcpV+M9+5a9Ic4/cBN2KePHiwCsr63mlol5W5iuV9ku1RPXTLySh19vTk6K/Ii7n21b84ftT+w/yRFW9TeX+LGRMtbXniXr88ce5/fbbF3WMHRIB9wqHYWRO3fehO5d9juVgDGS5kGVCmnnkBtLMs2VuSjOP1778NRITkBmPLPdIjU+ee3bdeGS5TzbgWfalavRdBUEy/KISIFlZIQi8tGeuxkhRVpeF2keAyE+pBV2x9t997HXz7msMxFlQisUk9/nWrx5gllESQlIiEqKKWMSJxLTHmxg4wVh4G31SfW8MiYXayDe++ypSZz+KeZYLM98+RCvxbD3J2Yo090hznyxzdaQ+PCcKiwbHsqHR6zY8+l5u9xNTNjpWGyCLYxdb3xABXwz+IgQowN6LPOfLpSpI+z2hZX2zKlZd+YFfu5+MAIOUobhdb2ghCQtvqfOUXjQc92J9OTP8cjnt6ffpk/bMtc/n0lDxt4rs2NTuWb/6Q29ZlesY5H2ygrJYpuKJkjn795RDj5fq7Ff+yrZmFWKVrrcpN547ptcT1fVOMUfgwtI8UYXQLD1QYl/2VjR0PVGFlyqQzBmD3hZGXxZvAAZx32M7utfmFddm8H03r0xeZVl6tuV4Hs5QdY8vlj1vdcSxCAS+IfANtYsYvKt/bGki1YrKboWgrCQ4UXn6y1+nldZshSD3SY1HkgWulbUrJgVr6EM/JfAyIi8t10MvJaxu87UCqCiXm28duR6D4IkhdEKwFiTU/JQosOtWICaEfu62d8Xij1widDDJPOIsIKmIxvvvOcAM46VnMSEs+5QJphSHg0JQSwGp3sVl8fSxCcIgt5OfEwQ5gW/YeteNBL4ttzbGzi9GlvU2OvY3Qma5MPvtx0mS0NoMI+S5FZVFw2RmrNgcNCpFv7gs5+WyKesbvhOYvvNmhr61LZczwqUqSEN/4YJ09xC9otVw3CyX8v5277cVpgd+7X4SapV+n8HAeX+beSEO/TJpkBWKAYkrs9t8MgISd6YUn3TDCEkVf6vIQ09tIahU9gM/71bs/XygEOgKhNxV8Jd/HSvhfSpYLUHbT783qmoAqkbg9Je/TjsL7cvfeaLS8oXkl0J2uVz1/jeVy3kOWVbMBZNDlkOS2WvOc8jd8p4j95Km3evPK9+h6kUujpu3I3whLKUrOPsFpFcRn8V+nlA+e71CE0L3zK40vm8/ez5hefWP3bGg8+Q5JKlHmnnEqUeSeiSZx6tf+jrTcZMk90mywM7zoBSOgquI+gmhZyufkZ9Q85NyOfI3jhFRlJXi+//WJOC8eolHJ/FpJz6dxOfCI09wrtUsvX1pZj16npg5wjAK0q5g9FMCV+kN/ZzQj4G4/My/+bHr572ePBfizCfOAjf53P/xA3Ro9IjFzHSrVr4rDXqmuKcsJNbGpQpb33Y9SSqkKbRSYfSFx5lNfNJMynd2mtvlPO+tBHmeE4euTlUVir5vbCSIb4VPs5babe+8zjauLuGdnedzI1vKOoUTnrPfPkiSBbQT6Ua65D5J5hNnfs93CPyMyInCYjn0U0I/o+anhH5K5GflM7weWWg47lIFZ5YLae5bAe/udeoE/YMff4CEGm0CUgIXqGqXM/yeOlNXRKalOLQC0v6nPbKyAcgnxZf185sMTfyJiA88BBw3xrxPRK4B/hDYAjwM/LgxJhaRGvAZ4A5sDv2/bYw5MqzrWE80vu9O8gzSDOJMyHLI0m4lP06k74Xi9bRiZblg8sFvK29Ahd72saIrLr3eCv4goen1La/XCu3CvVELEw4AfH7p13PiFQ8/gDAwBAEEocH3IYr673FvhSC/6m0A+G5aKoXgtEJTyDPIDXQyyDPX19AJ0t1H77UCKamIy6xXaGaZ2FCczF685xsaUUqjltGIMuq1lGYtpVnLLotAXAieB7Uop0bOSKV89yXCZvMc4tQnTqxo7CQ+J/78PmaShq2IZiFJFpRjX9aChMhPqAcxdT+mHrjlQCt8Gwm1kYvnvsd3ArZC34gy6m6qRRm73nYD9dCuVxtB8xw6TiB2Eo8LDx9iplPjTDZKJ7WiLcvsAVWhGPop9YsIRXsdhrqXUg8XFooKXe9inNqGpDgNeOCeB2n1haPmxiviXeaIxbDPy1hM69UeX4rHn2ggYm1jLcq5sOXNhKEhDAxhaKiHdh6GhsjZzoIsgyQVslTs3K23MmHs6GN04nCOiLRCra8lXcxAARn4Vlj6fq/3sZjXo2yuN/IHr13Q9zYG0kx67EuSekw9+gQzcY3ENThUn2EA389tQ0chEoPEzVPXUGnLr9TnpR9bZ02pDdj2gUUIyiwXksx34tF34eQe93/8ALPUnGC0/9CMsCeyqPAqVht4BkUNrFYdYJiev38EHAbG3fqvAPcYY/5QRP4t8FPAv3Hzs8aY60Xkg26/vz3E61g3+L6hXsf9IedW8gX7Ay32R7Lhmq5yb6w3Kc8gyW3FPst7K/a29Wyu0MydMMhyzwmEi3uRqp7JUnT2Cc2upzOviNJe7+cwvJlrnSQRWi3IMo8kgdS1cmZp7z32A2vYwsDgBxAEtiwM7PMThBA4AVns4y9AFXoelfvc//LpXc92vR2gfB4XQppCpy1MdYTms/dybqrGy6ebtOKALBM8z5RicKSRMFJPGW0khMHaF0OeR1kJLdj9dwf3Yykqou3YTq/8+X1MzzZoZxHtNCLLPQIvpx7ENIIOzbBDI2zTDDo94WvKFYHayEVy7buuphYZsgw6HY92R5iJPfLnH+fMhZr9XyU+JhdEIHJisB5agViPUrZ/143Uw4wonBuyP69QTEfpZHOFYugEYRF+WhWKkZ8ODKMrvIsjUde7uOdjN8z7nYu+i3Hml5X9+3/1wUrfxWIKBoSj2spl4aEovBXdJDjpusiOOnbzLnzf1mHSBNqJne81R2m1PS5MCXEipKmQJLbxscD3rSgMAisMq/PkdbcQhoZGUOwz/zUUdag0E2efrZDspMJsJowefZxWxwrHxHn55vNGItbTWBWJtTCjUTaKptQi+3yGgX3ORuqV49+1/6L3K0l7BeOFhw8xG0elZzzOApK0WzEIg8xGqgQp9SAlChI7dw0g69mrOEwKEQm9tvhSDT7QG1IeZ3MbfRIiUqKy+5LvvIi9U4eQmMjNhynehyL+RGQP8MPA/wH8YxER4J1A0bP708AvYw3b+90ywB8BvykiYsygaOorm8OHQtJUyjhy8ShbtsII17JF2cIVBBBGtuxiAknECoCuCKje2otX7JfyQPSHLeYZpLkVm4VXKctg95H76MSVBCDZXMGZZvN4M6UrHIvw2P71oiWuKCuWa4Na4laZI6nr83cJF16WuZDPFLK2Xc9SuHP3SdodIZ22BilNhTSxhiqv2HYRKxaDwIrEMOydF17H6vZhvGCCAIJRw8ioId3ydkJgwk3F92q3hPNtIXr6Pl56dYSZdkCSevi+YbSeMN5MGBtJGG/G60IUDsLzsN7Pmv1Rdg3wLGeZMNvxme0EHP+zb3B+ejOzSZ04C/C9nJGwzWjUYjRsMVabJfLXfuVN6UVt5NI4/FSdTsf2tQpDQ72e06jnmGtupVHP2VTPqdVs2Lkx0ImFOBbabQ+ef5xz01YgdhKfOLEvWhFb8a6XnsSUWpjTrGVsfsf1875rLuZRjNOAzjxCsceT2NdHcRAiVPoudoBLeyuyXFxF0y+F4wMff5CWy4yaubQ2GUFPwptCNPqVPk9lCFvFc1Fdvxzeo2cOe6SJu0YPohCimqFV208YQTRmiGoQRtDss1m2EdXOW4ld3pN3RWPiBGO/aPS8rlDsEY9hVzzWom5dTK5auAcpzynFYyEm41jwnj3ImQs1ZjtdcVaLUkZqKSP1lGY9ZaSe0Khd3GvXLxh3/MB18+5rjO3uUDRKdhKPC488wXknFNtpWD7HgZ/ZSJUwoREk1MKEepDQCONF9RfciAwKKb9Yo0+WC+00JHbRCd/8Vdv3OHaRAQmRa+wxwNPLvr5hef4+AfwvwJhb3wKcM8YUcvklYLdb3g0cAzDGpCJy3u1/unpCEfko8FGAbWu4a+IkPudYfGVsfNMOLkxs6ynLXdhnmkA2bV9ed1x1ktlZIUk8kth6jJLU9gsD+9KzYtEJRTeP3EuqVjNE0cXF4nJZqBcp22VDFj0gWuRnVAVmmtr+bG0XIpul9oW658i9dBIhKzKEOTHZSfzS21R4mIr5aGPpfbN2bBrn5NkLiz5uZHwHr74CUQRR3U7zeesKER/23bDnOk48em4Kgcbc441xwjGDLIGsZZfvuOokrbaQJtbjWIrHamOEe7YC9zwV4rAwflFk7HMWLV4w+j6MOHFotr6NEShDL9MUZmYE78n7OPFag6ePjZNmHqONhE2jMZNjMRMjw20FW0183zDWTBlrpuzoE4dZJky3A178wjc43ZrgyPmdxFlAM+wwUZthoj7NRG1Ww0fXPp9gA9rIpdpHgMnN26m/bjej7qulCXQ68GobdiUv8urpgHbbegPzXAgCQ73WFYje9bfQqBk2N/Ke92ueQ6cjtDsenY7gP3+Qqdmo9CIWFV/fz8uw0nqUETlPTS3MGWskF61gF0KxCAu/WB9FEcpkNkV206ia1GYBIXu+Z2h4CY0wKcsulezGXqftw5i45FhFWNsDH3+QNhG581JkhC5tRtfbaJCeJBqFcCySZ4zzAhdILnEFcxmd3EE2USt71uc5TCeQxpBMw/Xb21w4L8QxxB3pikRxNrXWFYZRZKg34EJtn23YxNY9BtU/8hwSJxbbibVDaSLs6Rxletp5Gl39K017RWPRQF803pcex6g3PDWK7J0r2X4jk5VrMAbaHaHV8uDpg5w+X+foyVHasf0T1KOUsWbCSN3WXcYayaK7UVgPeU4U5ow13c179/6B+yap0OoEtBOfcwfs89tJQ1qJ7dogGCsMw5hmGNOI7LwZxng6TNOi8D3DSNSNEJjv/2sM/OL/tvzPk+U2JorI+4D3GmP+JxF5B/ALwE8A9xtjrnf77AW+aIy5RUQOAu8xxrzktj0H3G2MOT3o/AA3SN18Iti3rOu8HDyQv4Ps7u/m5e/+ca7aD+1Z6wFpjMLIGIyMLywkbzFUBWPqXli37zpJkkDsWkHjuCsWw7BbYa/XDfWGM5iNi4dAXAlkGbRmhVZL2PzUN5maDZltB3i+YbwZMzkas3Wi0xPOtxCePjbOn772DmbHNvPs8y/Ou58VYrYvQpoId961m7gDnbb17nk+1JwYrDeg0bTLq0XxbBWtqFkKt19ln60klsrcCkbPh9HRnO07MiYnh/viNwZmZ4SJQ/dxdqrGhZmQkXrK9k0tdm5urTnP7koz3Qp44f/9Jufao5zvNGmEMVsb59kxcpbwCvAM7vmNzz1sjFndMUuGhNpIizHwR9lPseODP8DYe29jfFNvo1GeQxJDpwXXbm0zO2Pf11kGYQiNpq3IN0cMjRGo9XXosaGh9vir0qO0Ox6tlhWHaWob/0px2Mip1wyNhhWKg2xfmtpQ005shWLj+cdpx0HpLSlC+8Kg4kUsw01d38Tw0v2sjKH0JlaFYtE/sRqydzGhWPTxupzJpqqJNVInIpPMJkZ74J4HS4/jg9n3UPvJj/ByUGPzzoyo1n1f55m1I9dft9naw1mIY9cnu2GnetPawyCc/1ryvFsPSmIrEuPYnituW3sFtk5WCMQoglrDUKtZ2xte5PwX+9yk+NyKp7EIS42Trqcxd1FNIoZG3TA5mbJ5MmN09NJeNGOg1RJmZn3Cpw8y3Q6Zmg3Jc6FRS5kYiRkfiZkYSRZdh1kqxkA7tlErZx58gtkkopVEtOKIzHhEQcpI1GE0ajNas/MoWP/2abXZ/L/+22Xbx2FU998O/A0ReS9Qx/Zn+HVgUkQC17K5Bzju9j8O7AVeEpEAGwn22hCuY9XJ8YjzgPFJeP6IFQFZBknb441v3sOp44DA5BY7XexFtlA8D7yo1zP0QuK8Qn1NXIUXKIkhnYI3j5xk6oLwasuj1fbIUnu+ZjNndMwwNmbnV4oo9H0YHTOMjhnY/lYmgUmskZ+eFjoHv8l3nttMnHhsm2yzZ9sMo41L97tKMw+TQziod3EFERdiGRpqDTj8ZK9QzHPIEiFNPG67YzdnX4W440TVGIxOQnN0Zb24VQY9W8+1+8JVK+I0y+DkDKTHX+WF5+GGG1J7r4eAiPUUpne/nTGs+2RmWmg9+i2+dWg7EyMxr9t74bIZvdVmtJFy69+5q1yfaQU8+fkHeeTEDTTCDtdOvsJo1L7IGZTLiNpIrH1MiHgt2s30ETh13L5bJjbbd1sY2gp4rQ6ns7q9U3Ub2NBJ4EIbrh1rc/aM8PJLUr4bm03DyCg0RgyNJmzaAi2sEHansJ+f24a2Cx0YTY9yYcrn1KsBrbZHmto+g4XXsCoOx0YzNm/KYOfcMD+bhbQbairPP8aFmYhT52xIXZz4GGP7xVe9iDUnFBu1tBJ+mkHhKXv3YCFfzXpahp8+8gQX2g0Xehr29O0qwvZqQdoN3wvjUjguVyReLLFGNcTtwjf280zikRk4/6pPnsHY5ozGqLGNng3DsZd7H/E8gXRKuP76zUyfh9MvW1sdhLYxvTFq7WHRoO55WEHnLubV1D08lecIbBbtVsWLODstnDltBWLqzH0QFo3j2Abyhn0uB9WFPM82RFQbI4rnT4Cam3q+Ww7tFnjTR3n+SI2ZWY+x0YxtW1O2bE4Hfo6IfdabzRS2dj2GhSicmvY599QTHDkxRpz4NGopW8Y7bBrrrFikjEi3W8OWAZ7wTuwx0wk4ff+TnJiaYLqznSQLiIKUsVqLiXqL8Xqrpz+scnlYdrXeGPNLwC8BFK2axpgfE5H/BPxNbDazjwB/4g75glv/ltv+366cvgx2HDu/Iup8H/yRnKef6YrByS1X89whuPoGaIzMc6qVuDqxL7VCdJYV+QZlyGCew2stuCU4yalTPs895xFFhv3XpIwNqSK/1ggCrKfqu7+Lbdh7MPLIvRw6solGlHLLNWcvKriy3P7uccu+iJf6kvU88GqGsJbx5FNdYZhn0Gl53PrGPRx/AXbugYktS/uMlcT3YXQcXmMbbQPZ4dPc8PqEiYmVeW5GRg18z1vZDTQfvpcDT27lpv3n2DLeWZHPW8uMNFLucElnzlyIOPAfQ7Y0znPN5MlVvjJFbWSXHA9BODd7hsaoITkPI2NbePFpW2nfdpX18vRT2K2TnbqttYzbynyewekWjPltzp0RXj5mRWEYweio9RCOjllR6HnWe9RowqyrnFcr5sbYxrapNowmveIwy6T01hTewno9p9nIqddtX7Cx0Ry23sTooO89INT09GxYhpqmqecyUudlP8TCc1iPbOW68CLWopxalNMVivvnvd9x4pWfcf6hQ1xoN3h1eqzsWwQ2k2opDp1AtILRJgEZRvheJ/URckYmck489zh5JoT1W5k6K2y9KsWfR1RFdcOLL/WKwrQNJ14V9l+9mVMv2f3GN8HkVgaepx/fB995FE90XNOAE4iF6e4kMNWBzpT1Qp85bfuoZ5nrZzhiaI64hoexxTfIeh40R6A1so/GDqgbmJ6CqXPHeOFojWYj56pdMVu3XLoxs0cUbn8dRWei2VkhP3iIoydHuTAT0XSRMjsmW0Th5emvZ5/VmM192U47scf52YhT9z/FKxcmaSUR9TBmU2OWTY0ZJhuzV0y3jrXKSvp0/j/AH4rIvwAeBT7pyj8J/L6IPAucAT64gtew5vA8ePjAS1yzbw9x+/KKv4XgefaanmvvIPehFcDW9mlePu7z+hs3RvZBz4PWnd/DNuDcXzzMq+fr7Ng0vxelEHznz6zQ9fjQGM156pkXueXmqzn18toUf1XqTTgVb2X8xCkmJlb+uZm943vYcjM89ZVv87abT634561lNo/HvOvvX8eXfvc5tjfPMRJtPDG8TtiANlJATFnLDiN4+ZSt3M+eEabOb+amRYy24/nW+3OyU7eRCE4UthM4NwX7wzYvHRVmZ4QwtEJwfNIwPjm3C4ZI1/M4SBwWnsNzbWgkRzl7LuDlVzxabRvOF4ZdYdhs5DSbdh4Ezq42DI2Gq8zvuLFMflUlSaDd8VwykMeZboWcPl+3YxvGgQ2v94pMkV2RWA07rfYBK/p2jZOwfZ4+ilkmtBOfVsd6K88/cpizsyO005BOGpb2rVYRhvUwph6kbsiaiwvEIjTU94QXHnuGxogdCujUC4+xff8baU17jE4uXIzYhgDDqbP2uUkTGNu0pWxQH9R4sFiKxobmKJylXjaQF8/W+Rm4pt7m5CvCzDOC78PYhGH7TtvQsFhEYGwczPhetlxtheCpUy/x/JEaN1zXYdPk4iNamk0Dd3UbI6anPZLHnuDAU9uohRn7d06xdWJ1bEMtytketdn+nq6He7bt88o3n+T4+U08cXI3zajD9tEL7Bi9oNlHV4Chij9jzF8Bf+WWnwfuGrBPG/hbw/zctYMduDLp+5+msXD7nXuZnYLZGSuuNm+zfQDXAklsWzzjDrxpu00w02p55BnsHM/ZtCtn2/aN9eebmRH8Bx+gnURsHrv4C1IEPGPYsQdOLz7/y0CMsf0g7nzLXtqz0Jqx3cRF4No3DOczVpJOG3bkp9m27fI8N2kK6X0H2Dq+McI+L0U7tln/Ak/vx1pio9tIISfPhLhl1d/rbthMpw1xC0YC2LJjOJ8ThhBOwmt5HZrgNa0359wUXGXaHDtiK+zbdhq2bDMLHh6n8BwWYX2VoBk7JEHbeg63t17k9JmAVsuGlPq+6RGEVWE457oLr8xdl/YitjuCPHeQ89MRrTjo6YsY+HmZGGS0kTDWHNwXzPcNI77NLgmwZ0DIaZHAphX7tDoB5x+22SHbaUgnCcmNC5sN4x4PYjO04XwGYcqf4Jo33cCJZx8niQN2XX8TaSJMbB3eO0ouQ5eIMIRwwoWV1kHqECcwOtbiuac8Nm0x7L56ed7S0TFgbA+NFjz7zMtcvSdmx/blNaKOjubwNhsuOjXtcexbz/Lcy+O86boza6K7RLOecd07b6BoopiaDTny9TYPvngto7U2+zefZryuXRmGxRXSm2tt4GEIvZTz03Dj665mdsYahKhmwz0374CrmivfZ8sYlzHUZXhMU7ht50nX+XluEpjx0CV+mTQ0G4bNW3IajcFx51cqnQ5cuOAx+vj9nJ2qUYsy9m7v8IZ95y4ZfuB7tt9CexGJzYwphnCwCWDueMueUoCniWtpbdjfcHwT7NizsJCW1STPoDUL+6NTzMx6XH/DyoV8FsxMC+HD9/PquTr7dsZcvX1mRT9vrdOJPb7zHx/h1Mwkb9j6oo4VqKwZ7LACKRPtVxjf9Uaa42ByGJ2A2o5uX62VIghhbBKmqMMWaMfQmm3z6IMet9+9/PFlgxBGQ1txz7i6x2toh7aBk7PCjtbRHmEYRYaRZsZI04rCkRHb33A+BnkRBxHHwmzLI3j6cU6fr/PCiTE6sU8Q5HYYnabNmjzWSC753XuGrBmL2T0g1DTPbaNTKw5odXzOPXyYM7OjTHVq1IKYIITTr/pM7HgTYc0wNplTay7cPuSZzb6ZxMJ112yi3bL2MmzY67v2puHkUVgsSWKT1Ez7UvZJHBb1Bsjrr+LFp15etvirMjaaM/aD12Iee4yHnt7K228+uebCLMeaCbe+52oAXrtQ49BXQxpBzI3bX1FP4BBY49XJ9YWQE3gZb3/Dq5z0t7Fl59wU/YuhGB+vFHKVjItFev4kEZvApS9FfxC4sQKbNs2weDbkpVbLXYr+y5c4ZC3R6dgMclufvo+ZVsCF2Yg48aiFGZtGYzZv7nDj1ecXlT45DHLCyNCu6I4ieUuWCm956x6Sjs06lnTsb2nH37PZxsK6TRYzMu46la+CAatSZPmsZvssxhu8bddJ99zZYUeKdNhgQ7B2NHO2b8/ZvGVlREe7DRfOe4wesiK9WU/ZsiXmdXvOb8jnGWzmz2f+8/28OjuJQdg1GnP37id1+AdlTSEYfEntu/YalhQet1CKxrXcgCnsaGrLrt/RJk2glcKZc8LkppX/n9ihbWw/5X5hGMcwPQtj8VFeOxNw9JhHp+MRhoaRpk04MzFhxeFi3nHWzmfwlpsYAQqnahwL0zMe2ZOHOHJijKmWNTjjzYSJkZhNox3Gmosfz8/zrPemWbeidE8lpO+1r22hE79Gq1lnYnM+0ENnbY0duuF1N2y29jKGpG1/R7/WTehSb8KmbSubDbscJqlIkpfYZyeJrR3qtO2QU/UINjUNo+PW4zfMRvM0AV58ia1bVkjs3PpGOHqMNJM1PZbulvEO3/sjW3jmK8/x2Ct7uX3P0dW+pHWPir8hEhJj/JRG0zBR6ctXpMpPk+6wDDZlfu8Ya9Xx+8BWpoPAjh0T1LqDcoehzT4Vhjlh0B2L7Uqr/BrTHd/PmO4A8lluW4yrA8jnxo7z1ztovB04Pk48OrGN6wnDnNF6Ql4Xtk60uXbXlOs8v3SiIGf/+Ud5Nv8B9uy8mjx3Y/O5VNIAzTGYiKzhWgkPXnGvyvuR9S7fsfskaeFpdBWhNLX3L816nzvxIPDtM+WHhqDRHdsvCOzYfNUx/5aSHnsh36fVEmamhU1PfpMLsyGtTkAtzNgyFrN5S4eb9p274p75S5FmwvmZiCNf+BYX4iYzcZ1m2GFzA27adoRGsPhxtRTlciACDWbxPIN3tgP9EVwD6p7LSXMT+taGep6znS5bo+dBc9SwZZsdPmK1PR5RZKdZ9iFQZjNOEpidhZHWUY6+GDE94yNimBi32UcnJjJq0eJvUBQZNkcZfFe332GWwdS0jzl8kOdeHme6FRKFGVvGO2webzM5Ei/7XVuv57zh6k08+9xZrr9uU9kgWkS6+HXXGFqzNmh0gnK8vqV+djfCxtYb8mLM2wxu2NGu2EKXadttL6gVNm7EXkcQ2mQv2+tQq5sVsz+zM9A8fYxzrwVcvTdj967hv9dnZ4UT9z7PtslkTQu/Kjf8wHUc+dz5ZSXWUywq/oaIT0Y9anPsxYDt20+XhitwFeSwbspKdBgaGk1XiQ7cEADB8McBXAqlkHAiK3fCq1i25VIuly2subDnqBVgubGd4HPjRJoTY8ZIud2WUw4aOwjPNzasUuzc9w1BsewZfD/HkyL00no1i22eGALfEIX5gsZbWiqjzYQwyPjhO07yYr5jQQahvG9VsVYRb3fsPukMk7iB7e1vkKVd0duPH9i+K0EAflQs27l40AiN28cQ+FaEFttXQ0SVfVdawrZn7mW2HTDTDmi17WupUU/Z3EwYG0nYs22mbFHeCCSpMNMOOfZf7mUmaTAd12mnEYGXM1abZTxKuG7yZZphR42gsm6o0WbTaIcbb80ZqXRom+8Z3sjPdtG3rDOxj9pO6ynMc7hwHoKpYxw9FuF5sGtnwq4di/fUVfF9mJzI4K1voEhF0ImF/LGDHH91hEMvbKZZT9mxaXZJ46oGQc5oI+f4NFx/3SZqDRuCWwiqfkqvW+bGwa1En9ywq112aSmEXNGoWTQUF4hA5LsMn6EhaFLayCCwQ0wUy0FgnE1c8m1cMp0OTF+AiQsvcf6CT72eM74j47prOkO1zXEspN85yPHTIxgjXHfVNNsm10c/ujyHx//iGJONYEO/F4aFir8hUqOFLxnfP/aX+Hd+16IeUOvZsi1hVnhJKaqsMBAnsJw3LBf2Hr3XCTCZI7jyisAyBrLcs+c1gskvcWFiW7Q8sQLKK8SUB74YQlfmCW7u1j2D51uh61fLxQoOez66y+686/2PPDESE/qGV0753LDX9q0sQiPT1LUmpr1fsvCu+YEbKymiR6z5gR141vO7Ys3zK8esgUaCSxHHVtx1OsKOZ++l3QlcwgCfNPMQMdSjjGYtw9SFLeNt9m7LaNYv3yDFq0Waie0f0/F55Yv30kpqtNIarTQiyz0iP6URdmgGIZvqU+wZP6VePWXdU5dZePkI7Wd2EF+yn5m1DZ5X2Axnb3xnmzw3PI5nyvmLZn95TFnu2+SinmsE8z1A7FzcOdbL+8bzYHITmE17Gd0FZ04LB584wcRYxsjIcEMDa5GBO29mN7Abmy2y/Z3DfOvQDiZGbaj9QhOF1MOMsdGcN+5rc/RsnWu3tstB0dP2XI+bCNRcA6Uf9Io2z7PC2B9xDeaBfT58t//l/C2LRnJMNyKpWk8zptKI7up1Jod93hHaHY+paY922w6ntXU8Y/P2lNff0B6a4Gu1hPMXfDh8mLPTNTzPsG0i4NZrzqybxtQ48Xj+L5/jpfOb2TWec8PO45c+SLkkKv6GSCApjTDm5dMj7L7vfpLUI82ENLPzIhRxoKdLKgLLy0tD53uGyDM9Ist3wku8XiHme3lXtHldsdV/rMj6MXbrgcA3RFHOVVelgDAyYghDm8ktCLveuMtxz43p89yW69boGDPXe2sqxsqudxsWjOk2JlSXcyPuXFUPr33O81wQbIhtPcqYjFKIYNNYh12RHdh4vYSZLJY0EzqxHXy5k/ic+PN7ibOQOAtpu7kxEHi5S5MeUw88Juoz7AzO0Ag6+EMYV0tR1iIjTDEStdmzOy77sNnGLSvqbDSHreDnlYbObgVabPieKyvnBvJM2JcfsY2ecfHO6nYLKN55abUiXrwLLxJ9Al0hKlIRpVIIRzt0RVEm0t23eOdX3/3i+uIO+szCa1V+N/e97H1w0R+ZPc73DZtHcq65KaPRWPkEGKOjObz99WwykH77cQ48uY2brznD5rFLD9BdCzNGRzM6wHXb24SR7f8YuLDKxXjcyggZNzfGJV3pdLcVNi/PYZ+4ZyIr7KFd7m1Qr0QyLfG58H27bBsVKg3oAxopAMbHMnZfFdOoL+99n+fQbtvkPuHTh5huBUy1QrLMo1FLmRyNmZiMed3e84v22K4GxthMn8e/8QyvzoyR5cLOMeGuq58j1EQvQ0PF3xDxyBmN2uzfNUU9ygn8nDDICYpwRT+/Ijxd65nCKJShpxVR3r+e5cJrX/k6mbHpszPjzVnOcp8097j5A6O0nrsf7213WQHkjFMy65VGqjAse47eaysjBrLMK0VW13tbFVXd9Ut6bB1Sin1rfKSvEcAXCKUwVG67Z2zreKVhIcDMaUywFRxTVnqqDQy+Z5/xK6UfXpIKSeqRZB5J6hGnHqf+4l6S3CfJApIsoJOFpLmPcQOX+ZIT+XaA5MhPqPk5E+EMNT+m5idE/pXv1VSU+RhhipEwZuTIQbJciHPPvmszIc2FLPPK7gE9SPf9YueGwMvxfUPkyqb2vZEoMgRBXvbz8z0nLPyFDecwiGqDWtHgVTSYlQ1rVJZNV8RVQxAL4VFNzNbzFcX0iMVCKPjuXVtEiax2Fm4RCG+7lU27Qo4/0VmQ+At8w9hoTjhmG0TTxEaEbGsfJXUhm3FmE6SlmevfP4/4KkRU4Q32fUPgUTaeV4WWX5nXItMnwrr2zvNM6QWuCrbVfldbYSt0Ynu/as8epB37LmokIEk9xDM0oozRRkJQz9mzbYaxZrIuhB5Aq+NzYTbk5P3PcL7doJOGjNbabGlm3LLzJRqhRrysBCr+hkhAwng0y5mvfp3bf2zuSLWFUcjKliXB0H3JGboGojQwRUtgxWjk7oVYGBJD9yVZHFNURs9+5a8wdI+1y1L2rS/2o1pmpCyvnmtQWeHFHHhspaz/+Oq19NyjvjIz4PjlIBSCJceTHN/L8SW3xlXssufKfMkJvZx6Zb3YL/AyPDd/8cJ2Lvy3/4a56z3EX33EVTQMoZd3+x9W5p5vCCuiyu8Ta9486+qxvTTG4LzsXlmhLDzvaeZx+ktfI819OxmfNLPzLPd6RBxA4GUEXkbkpQReSuBnRJ5hJGwT1VJCPyX0UhV0irJARmSKRhTTevwQW97y+p4G0sDPragb0IBU2M3UicPi/5xV/t9jRx8ry+JsbtRNMf5dSUVQlg20XvcafM8wtf+N5fvcL8Purfj0yyRr66OSPQySBM6cDWh/52lasc+brpta0HH1Wsq2XTGnTh8jCk03kV1kGGk6ARd0PcCFWF/L79WyrtUzdetxQJlIrSr8i6elzNaeCs0XHidOfDqJT+waGou6VRhk1CM7EcLkaIfGOougyTJhtmP79J85cJiZuMZ0XCPLfRphzGitzUS9xd7J16iHOjzR5UDF3xDxSZmoz3D0/A5e+XdHBu5jRYdBsB4XO7flApVybN87FyJiJZUTAH37FLJNoDwnuLAT95m4ZarH0g1BqZ67WC/OUa5L93OKY6VPkvV/fvVcc45319J/zvk+f60agp0jZ3ns1LW859ozV4zXa5h0Q7d6+6ZWPZ1Z4QHIhTNf+Zrto1p4Wo3M9b4aK9b6EUxFmDvR7kScFe1QC2JGvNwKOskJfDf3Vi4pkKIoNtvnK//hK7z+527l3MOHSV2ji218ccuZVzZwFvh+Tuj+x1asZW49Z/T2W6hHGaETj2GQl0LyYlQFZa+Y7C6PvPB4ud7uE5zzeSiDHg+lvY6q13KgoCyWg5XLILlQjLHJXtptj1ZbCJ5+gumWzbbseTlbxzvs39li0wI8fgWbRmPyJw9zy/e8bsHHlInOiqzezkOcV8J2ixDg8Rcfm5PvoD9yZr7uClaULeHF7+pRZZhvdbmnjtVd73p2XTK6IKMe5ISRHXuxFmbUwowozNeNLcpziFO/7MN+/uEnaKUh7SSinYRkxsP3MhphQjOMGaklbG7OMBJ1dLy+VUTF3xBpMs1jn32O9//0ydW+FOUy0ghjto2c41u/f5DXvf+OOYam8JSe+crXej2pRSshUnpeB3lJq57Xqtd0oV7Xqjy/lNe1OKb/HNXti8WreE095zn1BnhbPYzr75oTBKnN1iqZ8352va+9HtslXZKiKKvABGc4LvvZPXG27Pt0KYyhFIZJZoVi4sLt08zn7EOHy+XUbUsyv8fTZ0PcrVgM/Qzfs2Iy9DNG3nxzj3DsCsnFh7AXDV1WUHbFZFUwVgVlJ+/1TqaZN0+oY1dE+n3issiCPbXvjeVyEbZY3L+86C+Yw+gLj5PmLqTdhbXHiU3CZW+WoRZmNKKMZi1lZNRlW64tPcLhuqsu8I2DO8m//jR5Lu736n73OV5ZCoGUl9Ex/Vm/fenmQ0Csh2xu9IwL6xzYdcGUfTRXW3CvJQoxZ58NIU58ph45SCcNiLPulKS28VUEoiChHqTUgoR6kLN1ZJpGGFMPEu3DvkZR8TdERpjiZfYD2pqx0bhm4gRHz+/guS8cKIWNV/HuFplTrfEsvJqVlsMeb+3cdbvS67GtenyLMrtuWIjXtXoN/ccXnz1oXVEUZSn4krHZvMrvfMyOi+uT4ZMQkOKTEpJw98/fTeg7z56bh74VZEvt/3MxAdn6zuNcyHy7ntmQ8GSAB9IOHdQVkGVYuJ8xctsthEHeIyKbtRR/SP2usqwrIrO811NZTCMvPF4ux5mU126FrxWJNd8gvqERWk9T4OdEob3uMFi5xjQRuPsNJzkzVSvDaoNKmO2w7tNGZr6Gh0Jgz3z7oOvyYBtKiue/v6GkeM5DN0V+SuQLI7UOm/xZQj+l5qeEvkbKrGdU/A2RgIQMn07qUQs0bnkjIQL7J9XjqyiKcjF2yxGuMkdICcnwyQhICd16wDc+/jAZAQkhGSEpARk+VCIPCqHokxK4+Vt/7i19YrEQkFbUhH6+LAGZ59LjcUwqQvL8w0+U4nG+SnXhfSyuy3ciMvSceHQCrPA62vBVU2aS7Aqk9ZGiv58wMOzYtD7GlLsUZTbRSo6GPMflcOiGlhZ9/Ips2f15HYqQ1NlvH3RJ4KTs6pDn3S4PWe71lJsBWrmIkAk8Gxlj57axwk6GRhhXvN/d0GkNv9x4qPgbIiKw3bzMn/+7Bu/8+9u6IX30Zq2ar42rvxGl3xNT3Wc+L01ZtkhPz3roW6coiqKsf0QgJCFk8ULMGCqCsTs/cM/95XpVUOZUvBrkBCSlYAyc1/Hun7+LyHk5Cm9ef4XY8ww1L6W2xO9ceB+TwrtYmU8/eqjcluUecRaQ5jabdLWi71UEY7XvY+hnjNx2qxWNfm/SmiLR2JVg16uiqzp2cZ73Zu2u9imf/fbjtv94LuSFgDK9y1leLR8chlrF9uPLK2GkRS4Hl79BusnlqOZ0qET7FNFAtl+6TRBXLbMhrpXuEV4x1+4OyvJR8TdktvEyR3kdX/rdc4gL/+wXYJZ+CTi4/9XcPfv6hFXOPqjczLutd9kMlJgrRSVBTU+CGTNnfb79iuXB+5meb1QmyyG3L2T3u9zy4zf2hGX2LJcv7t71MjGOe5kXL/3A05YzRVGUlUYEAifzFktmfOdJDEiInEgM+GbF25i6cutttHjkZXhqUJm/9efvKkPjqqJsvusuvI8sQfQCNoSvCFktQ1Q9sgF9H9Pcd14jwZjB3qLLhUEI/Iyan1pPmJHS+2WwwxgZ7HpvPamXqugqxFFVLMmAMiuAU+ph97hiu/Sdx6ucWwWWciWj4m/IeGK4hqdW+zLWNHOHj5hPuFYSnSxoP69n//7jXS88JwM9nvj9J8pW4bzc5vUc312nsty7T0LEBOf5of9xktBfnyE5iqIoVzq+2EBT6AAzCz4uM16PN7HwNn7j4w9XPJCDRWPhaSy8jUW/xkIwzudpHETgQkLrSxC+q02SWY9mt7G16xErG19VcCnKvBgDcTYc2abiT7ns9CQxuUgr33rBGDjFbv7jv4XF/6V65aX0LOO8lHPLCy/mIA8npUTNy/Kbf/wNlZCTagjKXI8m0C2jG6JShBOXvmKZu12Nt6IoVxq+5PjERCx8eAOworEIQ+16GkPu+/gjpdcxJZoTnmoT4aQExD3JcN76C3eVYZ42EUe24Kypq431ei7u/inKlUiR8bbaTzjOfB74+IOVUPZuo1I3ws8sKVR+ECr+FGWZiMAOjrOD44s+tgh7qQanAqV3clB5Ie2AssJQ9Y4WAa7VY5/4/Sf6PJq9ns3+c1clZfczest79/cqwbcXozhLjlcJw/XIyiv3K8vFPrd++PWlUO0NzXHLdMulfx8VpYqirAJWNHZYvKfR76sEWgF5768+epGKYVU0Fn0arXC8+x/fNSfRTOCSfei7UVEujXH9TDPjuf64nhuf1C/XH7zngbJRJ8MnL5eDnv8pmLLpp/f/mtNgtidaICApx/seJir+FGUVsX/q9dFyOwzKPh49EtAvlwsp2F22+x78zJNz9qmu927rCtK8Im4vhpRHFhM968UndK/eemS9StktH76xx7PaTQIwt59oT2KAvnL1pCrKxqYIT63RWdRx1T6NXY9jyAO/9mApGLOeyTYwFggGn7QUkZ7Lx1qU3fWP7+5mkizGW3XLRZZJfWcpl4tiPOX+TKmmksSnKLMJgjwOfOJ+MvxKXcMv55kL1O7/XxTYvVK3Zzbn/xGQUqPt1tPKtnRFBNxyUPGnKMployt211aCHCtKe0UlFdnXKzCr693lQqD2Hw9URGjXK9v7Gf19ShfqSR1Ery95UNgwC9zen4SpNy3U3CRM/fvNl7yhuv2mH7/JLjvj6MnaejYUZb3Q26dx8eRGKsLQdxViv1x/4Nce7CnPy+VLV5o9t5dXVpxNGfFRbBMMd/3c3b3ZML1uI5rvdbsl9EaAFA1mrJsw2MtNMcSEHW6iOpcyGVDZOFvZDvQm53E5GwqRZarb3f4H7rl/ji2sRhzlFRvX21Dbv76wSCL7HNmnsdtg252k7ykNiSvPY+4aOvqe0TUm1oaNij9FUTY89kVfVJzWN4Vxni+cuLqtWta7PGj/ymcM2K93XmW+DMWWJ37/iZ5y7wr4DRRlPWJD6Jc2BMfFyEyvhyUvq+xF1IdfNqQVwuFikSDd+Iu568vPVt59cxb0NmLNFQXV7XMFi8zZdrH35MrR+70KGdZd7u3ssZA8A9WcBF7PuarRMt39in26ETPVDOzVXzTvfp56klcEFX+KoihXEN2ESld2y6WiKOsD2/dx7Xv0Cw/Y3IaqwQ1XC6UrDgeN3Tx3rGZFWWlU/CmKoiiKoigbmkKA9Ys1RbnS8C69i6IoiqIoiqIoirLeUfGnKIqiKIqiKIqyAVi2+BORvSLylyLyhIgcEpF/5Mo3i8iXReQZN9/kykVEfkNEnhWRx0Tk9uVeg6IoiqKsRdRGKoqiKGuJYXj+UuDnjTE3AW8FflpEbgJ+EfiqMeYG4KtuHeCHgBvc9FHg3wzhGhRFURRlLaI2UlEURVkzLFv8GWNeMcY84pangMPAbuD9wKfdbp8GPuCW3w98xljuByZFZNdyr0NRFEVR1hpqIxVFUZS1xFD7/InIfuA24AFghzHmFbfpBLDDLe8GjlUOe8mVKYqiKMoVi9pIRVEUZbUZmvgTkVHg88DPGmMuVLcZYxY96JSIfFREHhKRh87roL+KoijKOkZtpKIoirIWGIr4E5EQa9Q+a4z5z674ZBGq4uanXPlxYG/l8D2urAdjzG8bY+40xtw5gT+My1QURVGUy47aSEVRFGWtMIxsnwJ8EjhsjPm1yqYvAB9xyx8B/qRS/mGX0eytwPlK6IuiKIqiXDGojVQURVHWEsEQzvF24MeBx0Xk267snwL/EviciPwUcBT4Ubftz4D3As8Cs8BPDuEaFEVRFGUtojZSURRFWTMsW/wZY+4DZJ7N3z9gfwP89HI/V1EURVHWOmojFUVRlLXEULN9KoqiKIqiKIqiKGsTFX+KoiiKoiiKoigbABV/iqIoiqIoiqIoGwAVf4qiKIqiKIqiKBsAFX+KoiiKoiiKoigbABV/iqIoiqIoiqIoG4BhjPO3ofm76XOcI1v0cZP4/IfguhW4IuVyob+9oijK/Cz1HQn6nlzvqH1UlLWLev6WyVIN21KPU9YO+tsriqLMz3LedfqeXN+ofVSUtYt6/hRFUZSBGFNZduOUm3K88v51Bq7POecltiuKoiiKsnKo+FMUZcOSG8EgGDw3X+j6fGUCCLkLqhi0f3+53d/Oq2XdfRi4DSiPW1mKK6C8GvqWmae8d5+55xxEQAocXMJ1KoqiKIpyKVT8KYrSQ+HtqXpo+r091bL+/fpFUFX4zF2viqjB+xRlDNg/7/mcorz3Oi/xbXuupJBhHrnblpffsPvpufsEM7Ds5h9/A54Ye5y4Y8VdsZuLOGFU2e4VVy7d/crtA84lUrnja8qZJvMsLxSff/Qbw7oWRVEURVGqqPhbAd797nfz67/+6/i+z+/+7u/yK7/yK6t9ScplYM+ePXzmM59hx44dGGP47d/+bX7jNwbXYg+aOy/z1S2WXgl1MY9P1TdVzLtTXvFr5U6uVSVdd/2WD99YihyvmMitUBInyiQvhZEnpldUicGTfBliSADfLfsX2/ESnF7GsYpy5aM2cmOyGBupKMrKoeJvyHiex2/91m/xgz/4g7z00kscOHCAL3zhCxw+fHi1L01ZBsb0e7rmqos0Tfn5n/95Hn30UUZHR3n44Yf58pe/PPC3/7s/na70JV9G5noFl8Zry70QRVHWOGojNy6LsZGKoqwcKv6GzF133cWzzz7LCy+8AMAf/uEf8v73v3/gy23te3+UXnp7Y0Hvb3rixAlOnDgBwPT0NIcPH2b37t1q2BRFURyLsZHKlYXaSEVZG6j4GzK7d+/m2LFj5fpLL73E3XffPXDfK8v7s/H4JxeJVtm3bx+33XYbDzzwwOW7IEVRlDXOYmykcuWiNlJRVg8Vf4oyZEZGRvj85z/Pz/7szzI1NbXal6MoiqIoa4ZL2cgnzZvwyPFJe+YeGT5Zz/p8+9mkW4qiDELF35A5fvw4e/fuLdf37NnD8ePHV/GKlMtJEAR8/vOf57Of/Sx//Md/PO9+R89vd0lN8jlJTroJTLpJTsq5VDM/9iY9EUENnqIoaxq1kRubhdjIv/u/bSfNPTLjkeU+WS6kuU9mhDz3ePCeB8jwyZ0UtKnDglIKZvhg5vZBt5mZMyciu+Jx8Ly7j+/WPZfArBSikq/07VKUFUHF35A5cOAAN9xwA/v37+f48eN88IMf5EMf+tDAfTtpUAoAW4m/zBerDJ1PfvKTHD58mHvuueei+21/1/eQG+HMV75GbqQ73pyxU7GeG8EYOwhAXp27BDSmclxxzGKoCs8yW2e/CO0ZZiCfM1yBJ3ZIAg/7LPtebufF5HXnnlSXVagqykZjMTYyMz6+ZJf5CpWVZCE2MvQzomD+333Px163pM/OcyEzQlYKS4/ceGS5lOuZE5cpIXkpLLvzzA0rlOOTG2/g53RF4sJEpleK0uq2vv3UXipDRMXfkMmyjJ/5mZ/hL/7iL/B9n0996lM88cQTA/c9dHq/q7R7C66493qB+tLcF5X0AWOKFcdR2a+3Yt+t4BcepjLNvhtvrNy/sk/hnVIvFLz97W/nwx/+MI899hiPPvooAP/0n/5TvvjFL87Zd8+2WQCu/tDqJv0xxk5WZNIVkcYaSlPuI5V9uvvnphCsdjnP4bWvfJ0kC8iNV7be5qbX2Ka5P/B598UKxMCzraqelxNIRlAIRy/Hl4zAs2W+lxFIVgrMwMu0EUVR1jCLsZFP8aaygh3SISImok1Ehxrtcnmj2Zr1ykJt5LeOXN+z7vs5oefe+35evv8Dz777Ay8n9LPedS/D83qfC8+z9Z/Qv7jHbqnisuBiIjPNfXK37cA995MQzBGYeY8ctB5OM8CTaTF94rHXO1kMpzR4u92nf3vVy6nezSsTMWbtvzRvkLr5RLBvtS9jIO9Ln17ysa0v/ftF7V9UvG1FvKic2wp3UdZTeZ9TWe/uU91+5itf63qPEDAyx8NUitOql4rheqGAOSIUmCNUvco+Ug2F7BGgvWPDVb1OQZ8Hyq+Ih8UIhz2/8blFf7+Cxz71eXzP4HsGz8vxfVOuVyevb/lKFjaF4EwzsS2xuZBmXs88y4XTX/46We6T5h6p8cvlzPhkudfz3AnGVRS6U+hl+G4eeGmlUlEsq7Fbbfb8xuceNkbTIS+UtWojl2MfAc78i/8RsO+GThrQTiPaacA3f/UhOtSJqdOhhsFDyEtxWKNNSIe6m4fEKhAvM8uqG/3575bLxkCaWRuQZh5JZXnm0cdJMp+0sAG5R5Lb9SyzjepVPC/H90zFDuSlWLQ2IMMXU2lczHuW16L9NQYnLsU1tFphafrWiwijPPc48In7S6HZHXF3rug0TgrO88mlV7MaTtv1jw72dFZDaOeE1K7B+7sWeV/69LLto3r+VpFXz9Xsi8hV/AO/KwIG/Qmspw3sn87Oh8G+H1s7daxLeZx6BCxu30Kg5t3yHjFc8UaVoR2m64EqPVN9wgEoRaLnRGPV07Qcztz4NvIMslzYc+ReOonY1sJy8sgy+x1sKIqQZ/O/GT3fCt+qYCzWi2eqWJc+QTnffuV55nv3DxkR7DX4F3+ur/6xOxZ8TmMgSb2y8pBkXrn+6pe+TjttlpWFJA/KZ6TAl5zQTwk9N/kpkZtCL6XmJ4R+qoJRUVaAV6fHaIQxjTCmHqbUQ5sh+78b4JnJc6GTBbSTkFYa8s2PP8wUm0icJMQIgunxGNrJLofEWvlcI9z3+M5y2fNyoiAnDLrz0M8Jw5zJO2+260VZcHEBkbmGxSTzKoKy27g48+1DpLlHkvll5IqdfPLcNnRX8f1ug3LV61gIRm/AeljZbxjPmwgEpSdzYSHSe5fp2YSu6MwqYbOmz9tZ7aOZ4JEN8HIWfTdzvDlVWsHMSebjk1aS/nQTABUisme7NvjMi4q/VeS1C3Xn5bAV/arHY2BnZa8rEr2iouxasnq8Rf7FK//FccU51hIy55qGc317lxhemeeUYqzfWPD7v77k69m2rSsW8qvehgd4LO0PaQVzd8oyweSQ5ZDmkGdCllOW7Tl6L0nq0c67grMqPHMjTni6aT7RKVYY2ucuJ/BtOE0tymjUMupRRiNKqUfZZROQcy5RIApzohD6DeOeBTR6ZJkQp1YwxqlHJ/E59Rdf50LaJM4C4iwkzsJSMHqSO3GYUPcTIj+hFiTU/ZhaEBP52n9JURbK2VaTly9M0kpCstzHl5x6mFAPYxpBQiOywrARJAR+TsNLaIQJm4C/+bHr55wvy4V2GtJKItpJyLfueZjzbCYmIqGGMUJA6kJMO2V4aVjMJbn8N2EDsucd+4giQxQajIE4EdJUSBI7RUceo9XxuZCGJGm3US/JvJ66U+DnBH5OFHbFYVFWiMZmLScMEkI/x3/X/gVfoxU/1eiU3vrBzKMHSbKAVuK6P1S8k8V6VUx6Xk7kZ9Z+BCk1PyUM0m6Zb5f7Q1lXi0J0Bly64XM5fTSLriOD7uGDv/YAHcJSVGYEbvLJCPpCZY0ThRlBKUVTJxZTwrIswSctt12pDUIq/laR6PvuJlrE/nkOaepeOpmQZ5Dk0HGVe+tJgj1H7iMuhGQlXK5aybehAPNX7Pu9Q3NCEv3cCUouGrZYFairJQCWg+fZfgLhAlvUFspDD3Z/efEgDAxBCEFg8H0IQkMYOIEf2PIwAD8wBAEElX+uFcx2svQbh971bNfb7Xdj6YITuqIzy9w8FTopTHWE7c9+g/PTEbMdn3Zs+ysEfk6jltGspTRqKc16xkg9pRau3X56vm9o+FbMFuy+iGjMc+gk9jt3Ep8Tf34v59sjnMomaacRSR5gDER+Sj2IaQSxm3dohB1qfrJm74WiXG6u/2vX0IjS0nbkObTigFbH5+yBJzjXanLiwgSzSUSW+3hiqAWJ8xYmpdewEca2cu8ZRqKYkSgG4G997No5n5lmHu00pJ2G3PevDjDLKB22EFMnNSGGrkCslR7EItQ0VoE4BI4dj4hjIY6lrMD7vqEWGcLQML3tzUShIYoMjdAw6crDsBs1ZYytL6WpkKRd8djKhNEjjzPTDm00SGpDSZPUI88rlRQxpWAMK2Ix8E1ZVojIKMhpRHlvHecH5z5bFyPLhE5iBWwnsfZj6pFDXGg3SLKAOPOJ07AUjJ6XUytEohOItTAh8jNqQWKjUy7Rt3Gt43mGyMuYz6P5Ix97/YLPZQylFzfJ/DJEOMl8Hvi1B5mlRuqEY0pUysRu9ckQlsIwISjnMSGJW7bTeugnqeJvFTn4eOheWK5yH9nloiwMbUW/eJl5HkSlZpjfO5btepvd303hEq6tp1LvhGZmIHGhinlWbBd2H72XOJEekVl4M6tlJh8Uy9orFIMB3szAt/3iBoXHFvsH/vrqD9faurVctsLJ3s+sTXlv79h9kk5HSGeELIM0cX0fUiu0qpSi0Lci0vftMxWETlgGVlAGTkhWn6ulMr/oNLDju6gD9cr+aQrtlnC2LYTP3MeJ1yJm2gFxYk/QqKeM1lNGGgljzYTRerrmPNOXwvOgUeuKxZ3zeJyTVJjtBLQ6AS9/8T6mZieZTWp0MvsHrwcxzaDNaNSmGbYZjVoaWqpsOJ46NsFsJ8DkYr009ZSRekKjlrH9u26kWUsJg+47Is+hHfu04oAzDz7BhXaDU9PjtJKQJAts2GdovYONIKYeJjRDO68FNqQ08HNG/Q6jtQ4f+NgbBl5X4gRixwnEGcY5yzZiaj0CsT+8VAXiwjg7spfaZkOjDlHN2pg0hSSG2QTOJ7A3P8rMrEccC0ni0YmtwDPGeaUC6zkMQ0MU5eVyo57j33oTE1GvWOwnz+17OkspxWMnEYIjj/d4HdPMRoWkmdfjafI8JxY90xOaGvSJySjIqYUZvm9o+oXQcc/Hu/fPe4/STIgTKxTj1OPCw4eY6dQ4k4UkmU87Dckyq0ZFoBbYZ7wWJNScUKz5aVm+nupPS0EEe9/9nEbY+/8bFEbeT54LSe4TZz5p5hNngRWO9zxIi1ESQlIimyW27DpiBWNITODmtg9ysWzLV+Peq/hbJpP4nFuCV2hscgcn/W2kMaSzkCVw266TtGZt5d6GN0CaVJJXeJStW1HklgcIxnApaq8P6/Eq1i7uSTK734ZgH6bFPlDWi1lMc72ZWWrF5m7XLy5zYRX94RYDQ2XFisNamNGsZU5cJNbbFC2/Ir1j0zgnz15Y9HFjkzvIM/CcaPI88KK5Iv259g67cImbW3rgUiccZ7v39I6rTjI7a1s8i+fKCsnee1UIw/7GiLLMzYOQJXtwgwBGxwyjYwaz7W00gEblO7RawvlZIXzqGxw5UWe6ZSt9zXrK5GjMxGjMxEhMsM4E4SDCwDARJEyMJOzs68NoDLQ6PjPtgGN/+k1entrKTFInzT0aYcx4bYaJaIbx2iyhhpEqa5il2keArZu3sPed15aNS0kCsy2P2ZaHefYQp8/XmWkHpKmH5xkatZSRelrO93zP66hHvVEFxljP/GzHp9UJOPvQYc7MjjKbRCSp/aAoSGmEifXIRy68NIx7Ksi2Etlh7BICsZVEtNOQb/7rA0wzMUAgJhVx2HF9D61HcbUqhcNiqb/96MQO8hzOnRU6beh0bDcGEQgjqNUNtRq8WN9PbcwQ1aBWg3rfvUoT98xUxOJsy+P8BSGOPWIXQlqIxapnsRCLkVuvRVY0hqFBdgz+vfvJMicaEykbbVupMPrC48wk3XDVjhNwJheCIGfENXDYuV0eZHMD3xD4Gc26vcc7fuC6ea+liEgpolIuPHyI862mS6IUuuzcUnrO665xpBYmNNx6PVjfz+Ny8TxDzUvLRqKCPR+7Yd5j8lysxzYLiLOAThpw/68dYJYxEiISJxZtldoQErseyr19kSM6BJLO+zlLYdWyfYrIe4BfB3zgd40x/3K+fddqJrN+HsjfQXr325n87/86r3qbaI5CcxRGxuxLa7nkuX2hZanzAqVw+66TJAllLHwcd71CIrbCHtWsWIwi+zKLaoa6e4FeyX/mIuwj7gittrD96fuYaQdMt0PixCPwc8abCWMjCZMjMWPNpb3cnjs+xn8989c4F27myLEX515DImSp8Ja795B0IO5AHFMKwKhmp5pr5aw3wb+MzTLG2GuxHsXuvHi2inCZ1D1nRfId3wnC4rmqNwxjo1bcDfPaZmeEyUP3cmEm4vxshDGweazD1ok2W8Y76zKceKnMtALOzUS8+Kf3cyEeIc19JuvTbK5fYEvjAv4a6Q+yXDZ6ts/F2EdYPzbyi9mPsven3svrf/xNTGzqbUjKc2i3oTUD2zsvWqE3ayNIarWckWZOs5EzMmKnWtTr8Wu1PFptIXrmILPtgNlOQDu2L9IotCHmRch5sdwfWWD7l3nWKx8HnHvoCVpJRCsN6SRWsIV+WoaU1oOEZmRDt+tBuuj+WHHqlx7Eb/zrA8TUyv6HSdkpxJRegqicd5zXwIacreWxEI2B/5j9A8b++g/w2uv3MDqRk8TC9ddtpj0D7VlrcwrbV29CY8Su958nid3UgWu3t4mdOExi+wwEgRWHUQ3qDajVDLW6ta2XshOFZzFxonFvfpROXNSrumKxwIrCvMcG1qK8W88KF9/VJUmg1faYmfUIn36CmXbAjPN812s2Mma0mTDWsNOwI2MKz3k7sY0j5x4+XCZQKp7/wM9oVsKpm2FMM4rniCJlcRQJq+I0sAmrfvUhl6yqZkPOsZELAQm/kP2nZdvHVRF/IuIDTwM/CLwEHAD+jjFm4GA/68Ww3Z+/k/iu72b2h3+MU2dfJO543HbHHmYuWLFWb8LYBIxvrobKrRyFN6hoAUtjePOuk8Qdod0W4o6tyHs+TgwamiM5IyOGkRFzWa5xNUkSmJkWNh/+BmenI6ZbIVGYs3W8za4ts2WL2qV48sUJ/uzM95Fs2syTT7946QMqFH3l0li48+49xG1rDLMMgtAasMYojI4PpwFhmORZtxEiTeCN204yNeXRmhV270nZsXNlUjenKZw/79H8zv2cmaoxPpKwf+cUEyMbL5Qqy4Sz0xHP/cmDnG5N0Ag67B47zdbm4j3Sa4mNLP4Wax9h/djI/5J9iM1/531s/4Gby+iSkVFj7eKkbZAcRKcDrVnYFdtQv+kZnzgWgsDQaOSMjuSMjmSMNHPq9bmhfO2O0Gp5RM88TqsdMOPEYZ4Lvp+XYrDp5iP1lCgcHB1SDdk++9BhWolNINNJQ3Ij+F5WisMipLTuvIdLaZypeg+sF/HBUhwWUzcdvyn7HxUhZXY5KRNZXO5Qs8x4/D/ZTxP+7R/lmKmz4+qUkYm5tiGNbUPttddspjVjhVgUWfs3MmbnlxJTWWobVpMOXOfEYaslxJ2KOGwY6nVnW5uGeqO3D/1CKBqWk9h9XizsMUeIYxt+2t9fMQis9zCKcitIa7bxohYZ6vV8QXWtdkeYmfEInjrEVCtkajbEGKFZTxhvJoyPxEyOxPM+t8OieP5n28XzHzGT1IjTAE8MzajDiJtGa21GwnjNJKlZ7xgDcRaw65d/c90O9XAX8Kwx5nkAEflD4P3AvMZtPWCw6W6D0AmqZs7hw1YM2FYr4U1v2svzT0CjCVft74b+rQRlOGHUDa97Mdthf/VRN2Er8a/FEF+AN0Ynefm4x8yMR57B6FjO9h05mzblV5yHJQxhcpMhf9vbmAAmsJWM8Nvf4PEXNpPn8Pq959k8Hl/0PKnLrrmU+2N/IxtieehQr3DMUkhjjzffsYdjz1mBNb4Jtu60wnC18XyIfMr26SPpDmhAGsDE9ClOfNvn5luSoYQhVwkC2LIlh3fexVUGzp8TnnngIUTgjdee6ekDdKXj+4atEx22fvhNAFyYCfnO577D8+d28YYtLzJWa63yFSpL4Iq0jwAZAZ5Au15jZBzSDE7OQFRr8+yTHklsxeDk5l4xWHOhfS324QHj7ny2HzEcnxF2nH+Rl172aLc9RAzNhmHECcLRkZyJ8QzvLTcxAmytXFOaWm/L7KxH+9mDnLlQY7Zj+yKLZ2hEGSP1pBSGzVrKeNOFbA/IDplmQqsTMNvxOffQE5yeGaXtsotmxiszlnaHsEh6Mpb243mGumeHuRinPW+YKXQrh53U9keKs4D7P/4gs2WfpGIKym4ShTehO6VOKCZ9iSzSJXkYc5ciI8iFsc0ZaSycPBqwdXfaY8eCCILIcOL0a2XZhQvQOemx/+pNnHgRxIeJzdYODmoM9QNoBLZ+9WpSt35zV9fxgCSFmRjiM3DN1jbnzwqtWdsVwvehOWJojkBz1NBoVnMs9GKjquzUHAEwdLCNLxHMSeSXJFYoXnBC8arOUS5cEDodj3bHJuIbG8vYvjVl86Z0oBis1wz1WgbfdSMTrqzoLnFhyue1Jw/z/MvjJKnHaCNh81iHzeMdxprDbRStdlnY1dcnMc9hthMw3Qo5/eCTnJoeZzauYQyM1DqM1dqM11uM11pEwdr1Vq9VbN/N4XhYV0v87QaOVdZfAu6u7iAiHwU+CrBtHXVNNMZDBogAEYhqhsNP2gr+vj1Xc+ZVW5FfbTzftoLVG64CXwNq9sXy2hTMPn+aC1syrrn2yv+z1mqQ3v12tgGzs8Lhrz7KG64+d1EBmLv+hi88Rdl/YBj4AfhBbwPCxJarOfI0XH/zcD5jJQhCeIXtXLfjJC8eDbju+pULBxGxAp733EH9oXv5znObufP1r136wCuU8ZGE7/nJm5iaDfjaZzxu2/ks9WDjeUTXOZe0j7A+baRBMJjSRvo+jIzDGVOHCRADr81Ao23FoMlh0xbD9l2D+7LbfsS2L7FhLyPACC58rQUnZ4TtM0c5eSpktjVXFI6NZjQahrHRnLHRHLbfyKbK+W0oqth+hs8c5NTZxrzhpE3XT6tZSxlr2qRVOwZkfMwyoZ34zLYDzj10qMxY2kqjMkFHFKTUK32tyvk8ArGgqBxWK4iXyohYeBZt5sOgTGhx/z0HehJZZARkpqtK7JhrSZk6v5r9MKikys8IMAjislifeP5x9t1yC+de9dl61cXrFEEIQZjz6jn7Tk9bMLFpCy8+DWObYNtVi7O3VXF4Jq9TZCXzsA0Rr7bgGr/NmdPC7LTNu9AcMYyNw8RmQ7O58M+q0i8UE67Gg7LfuzEwdQHOnj3Gs8/XmJjI2Ls7ts/kRRCBZtPQbKaw4wZ2uHNNz3hw8BDPHB9nphUyPhKzfbLF9sn2iiZR8zwYbaSMNlJ2vqcbiWAMTLdCTt1vG0Oef20bSRYwVmuxqTHLpuYMo7XOil2XMpc1azGMMb8N/DbYkJZVvpwFI5KTD/i/GgNJR3jzbXs5f8a+hDZtu/zXdynSBDoteOP2k8zOCOcTjzA0bNm68TINLioiWuC6m+HgweFfQ5oId75lLzMX4PxrsH33cD9jpUiSyzuO5KnXfS/JiUcu2+etZcaaKWNRi9mkruLvCmW92kiY/90qYvvJF2IwicEP2jz0TY/X3ZyzZevg4/rxPFvRbo4Ycq4uK9n9ovDEyZBW2yaMaTZzJwIzxkYzQpfcylauM9jyBsb6PqfdEWZnPYJnH+fcdI3jp0cGZictQkmb9ZTAN4z4dn3bgCQdRVKaduzT6vicf9hWmDtu+Ik0swIs9K1ArFWEYnVYi4VSehZJgW4FfNA4iVXsYOlWNFazHz54zwO0GHWjqAXE1AmIbWSMgTTxuXDGZ2R88XWKIISXTrxGZ1ZotzazddcQG1t9++yd7NRtzXjSNkacbcGE3+bocx5JAruvXvhzuFBEYHwCmNjLln1w/iw889xxfA9ufH27p3/rQs41NprDW+3zagycv+Bz4bHDPHt8gonRmGt3XWC0cfn66IlgG0Te2U2OYgxcmN3KK994mqdf3UkriZioz7Jj7AJbmtMaKrrCrJb4Ow7srazvcWXrGsEQSE7HJWWJ2x5vvn0PrRkrqpojNlThmhsvf9ieMZX+f67T9Jt32qEEOh0bn55nEEaGZtOQpbB5c87+a9JFx8OvZ2ZnhdFvf4NT5+rkRnj93guXDPssxkKMl1HHznPIEpsZ7I63uL5/btiHWsP+bpu2we5r136SntYMXMWrzHger79x5YVHuw1y/wPMTNV483VnV/zz1jpx4vHgZx8jMyGb6lOrfTnK4rki7SOAT4YgtGbse6wUgQZyAya30/U72mQZxMC514RaHRqNi515YfSLwibQxPaxbs1C0D7KqVcDnnuhRpraRDPjY11B2Gj09icsQ/FcOGm1Pbc/O+nJs01mOz5Z5pX9DAtBaMVhQhjY89ejjHqUMTkKu951zcDvkqRCOw5oxz7nHrLjwb06PcZsEpFmfpnev3/Mw2YYX9R7uFDsUEyFaOwyaEDv/JvbeMbLOftqje37b2Fia0atsbDKfZ7ZvoDXXWv7ArZnYfN22LJz6ZmnF4qI9RKe7NQxo3BVs81TB33e+r3Zin22CExuBjbvZvOFF3jk203ecvvMkuthIjA5kcH3vI6tBs6c9Tl4//OMNhJu2nd21brziMDESMKEe76NgbPT23jh60d4+tWdbB2ZYt+m09RDTSSzEqxWtf4AcIOIXIM1ah8EPrRK1zI0hAxfMq6qnaW57+qyk/LWncNN1lGMA5ellfHhUjtURJHxs8j+mVeiKoqsVOGYy4JVM0xM5q4/xfochH2pFLHys7PCpsPf5Nx0RDv2adRSxibglmvOLjjhS+Db5Dhxe/7PyjOb2CVLXWKXju2UnsSUSXeKjJ9hDcYmIapfnsRAi2HQc3f7VSft+EuzwuyMx0Rk2LMvZXJyZVruigygo499gxNnbI1w386YG68+v+aF8UqRZcLpCzUO//G3mUnq7J+YZueoCuF1yhVpHwECYqIw46rxNp5PGf4p0p38oHgfGiYmbYNkrb6yjV6+b8NHZ8f24W+DSVfeacPpaZCZFzlx0oaOFoJwfCxj02Q6b5/mMISJMGdiPIcdr2dzZVuaUmYzxQ1bMdsOSFIP8UzZt7BRy0phWI96BUcYGMLAhpcO8iAWmRtnOwFnD9gxD09OjTObRGS5jyeGepGtMXTDWri+h8P2uohnaI4adowmjPbZhW5iOuF1N2y22bA7kLRtg0BQg/pW+xtt3bWwzJ1LpRwY3iXIu3Zrm9kZa2/yDM6PwW13rZzw6+fM+DVsmjzG2XMB27YuXwSJwJbNGVveu4+z33ySwy9u4ub9a8NOiMDmsZjNP3wVxsDzf3mKR4/vZ+fYOa7Zcnq1L++KY1XEnzEmFZGfAf4C2yX3U8aYQ6txLcMkIMMPMm66OeHEJe5sObB3Jb1+nlkBl6a2MlcM4ZCmvSLO863gCEND0OwO2h2GhuaIKcdqi6IrP2NnlerA9HkuboxAew93PHMfrdiOndZq2x+nUU+ZqKeMjiTs2TZTDsy9WMIgp94wvPgavPGNVxO3bQawuGNbscF6esPICrsg6KayDqPL48mbMxZgZufF8u1XnbTj/6VSPn+pG+ahGqLl+W68v8AQ1u2zZ3JoNAybt+Q0m4M7qy+HuANT0x6bDn+Dc9MRrU7ASD3FmzDcfsNrQxmzcb2RZsK56YgX/sv9nG2NkeQBm+sXuHriLBO12dW+PGUZXKn2EaBGm0aYs3ufcf2f1jbFMAFVL2GnY/vCM3WMo8cisswm69i2xSbrWIiHJghwAnKuMKwOW8EzBzl9vs6Lp0Zpxd2x4BqRFYWNSnbSetRrvzwPmnU7DtzWecRhK3ZZGw/Y0NJWEtFOInLTTenfDDs0o5iRqLPokNICwVALc3bv3ExzzHYtSWJre7wQQpfN2hib2XPTVmsrlyqy8rzXvpUN5hnc4LzKhciLY2vrChqRbXCIxq29277T0Giayx6tlefQOHWUE1Mh1187/P5w3i03Mfut54Z+3mEgAte98wauyeGhP23z0rlN7JlcGyL1SmHVAvqMMX8G/Nlqff5K4JERBh1efdXjumtOuvHcpGfA9iIhSDlge2AIR2zfqCCwHaLrDSsogoByoO31IuKs8LKTFRxWuOameCFLZdn2G9h79F5yY5fzXMiNkLmB23Njy4pluw9zB3QHEONCUQy+b+eBZxgJM4gMW8bb7N2W0aynQxVc9VrKvuMPc3Lzu8hzaI7BZM0ar6X+boW3sBS0VUOWw527i0YCJ9RSe6+LsjyTOf1q/MA2BgQB+DX3vJVlLuW1b/CD7rYgWPnQmuL7djowO+Ox7en7mG51x2OMwpyJkZhGM2PX5vOMXMa+CmuBduwzNRvw4n/9FtNxg5mkjohhvDbLRK3DVdte0359VxhXon0ECCVBXnme84e2047y8t0TBMYOWh04W+gbXmS/fT85++f79CyvFkXmUcNeJq+27+OZKbhw/hhHXozwPLh6T8y2rUuzM56HG8uQgf0MkwTaHY9WyyN99iAnZprMtAM6sU8UZmwe6zA5GrNprENwkT7XnkcZerptQGKaIqX/TDvkzIHDvDYzykxSI818fMlpRl1ROBJ15g0nzXIh9DPGJzKmIzvk1fgm2/hZzXZu6wOQOxuWTHXt3+t2tctIk7Lh3Nm+oqz/u4XuOQkCg1+jtH3FcA+2wbxbx1oLUSPGwPQFGD17jDNnArZvE25/0+xQu96kKUw/+CTHT49w2w3nhnfiFcDz4Nrv3ccLXz+i4m/IbKDeXCtPjTZRGHPd2QdIrr6TkRHD5KacKCq8JcN9wRTenNz1k8id2CqWswxM3hVbphBmpiu48h5RJT1lc9bNRYRXgRNgngee2L5wnisLnTDzxHYy99028Q2hGOpe7/6eB76X44mtEHTL547jtJpMNBNC33Db7lc5Xd9WenLbs13Bdsfuk6RJr1hL08I72evZhSL8yd6DIADfeXF9v+vNrdVM6QX2KyKuOGYt3aNC3HU6QqctbHvmG84TawWeALUoY7SRIA3Dzi0tRusXNoRXr0jwMNu2IVov//k3mU3qNvtf7lELEkbDFqNRwr6JC4xEbTzRzvDK+qNOi9Fai7fcPkMtMt1og8xGuBTrWSbsTo+SujT8aWb7Q7czcYKg9+Um0n0/Bj54TkCW4tI3HDX7rR3xrOjwPCsIROy679lG2cUKS8+z4/emo3tpbIOpC8K3Hz/B2++eYWRk+O8vmznSZSfd1k37DzYBzblzPq8ePszTL00gYtg81mHrRJvNY51FNeRVU/pfVcncCPb+z7jxEs889CSnZ8aYiW04aeinjNY6jEZtRmsdux516ARw7bYOYWRIYiE53yvafA+iokEyBL/RFfqeh0vA098YYHp+x9WmaPQu6mA9yz2N4t3yvflRWm2PC1MenY7H2FjGpm0Z11+7uN/rYrQ7Qv7YQU6cadKOA3ZvhbfdfPKyJmRbLMbA0b96mmdP7+BNV2nY57BR8TdEQmIiyRhrJgTbM2fQbNja7KxXVvT3HLmXzHmzCtGVVb1bWUVsZRd/o0lFRHkVYeWJoebNLSvWxbOCq1j3PTvoqiemFFqDjltrwmstMNKwGdw6HWjOnLZCP4Sg1vXmmtyKNT+AwLdeXc/vet7Wome36sHtGjPpa2zAJmvIhcy1yO58/hs2U13s00n88hmuRZntUxll1GsZm8Y6jNTTK1rgVTP3dRKPE1+8l3Ya0clC2mlEnAV2GBg/oRF0aAQxY1GbHSNnaYYdFXnKFUWTKaIg45k/P0bgG0QMUZgR+oYoyIjCnJEgZ2b/rTQaeRliHoUX78JQ9NXKctuvOi28QpldzjNhT36UrOPeVVm30S3PhSSHtouW6BeWC8Xz7KDdk5Fh3xuyFRF+l6JeM+zcYdP+78R6Cc+dDzjx+JMcPrqJZj3lqi0z7NjUWpaw8H3D+EjC+EjCrnf3CsM48Zhqhbz2wGFOTE1wvtVkstGCzRljm3NGxmyXlCCca/eqDdpFdFC/WDI5xCkYXOO2s1H7vSO9NsrZpep5TbG9FGbiyuz57D5SitJifaEU9aOy/6pvEKx4lZ5GcVcmhiyE8bGM3VfFNIaQtLcTC9PTHv6Thzg/EzHdConCjC3jATdefe6yZvlcCrNtn6Nff45XLkwyXh/jzr0vDG1sO6WLir8h4kvKSK3FuemQ8KuPEvo5gZ8TFSGIfm4Nnm+IoqwUbdUwxap3y6+8SJTVIc9dhSL3ylDUYkozj8wZly3jba7L/pLOXd99yXMa0w3fNMaGBhfGLcu7RuliHtvCgPV7aU3FQztnHyPluReCuOfPNgR0Pa6F8fLFNiBIxZMb+DlRlDMxGlMPbca6tdy6uFiMsV6IOPGJU89OicfJL93nxsgK6WQhSd59tUZ+Qt1PqAUxNR8m6jPU/Zh6EBP6V/7YmYpSMCoXaIYJ333rCQLfkOcQpz5xYv9LSeoRpz7Rs4dIUo+ZtFue51214vs5UZCXgjH0c2auuZXIicValNOo2/7vG9l+hiE2Uchfu56rgOlpj/OPPMmzxyfYuXmW/TunCIPhvp+jMGdL2GFLJZT02KsjPPvSE8SvpQRThk4qzKRzhZVUhFHZMO0bAo9uY7RXiKvKvq6RzC9ElnTrTv2CrKeMynJx3sp12H2HenuWTZ7bCJpW26P27OPMtgNaHeuFzXMhCjPGmwmNZsb1uy/YaJo1/B9oxz5npmq88q1nOd9uEvgZu8Yy7tjzgg4Ev4Ko+BsiASljYYstT/wJb/jbb1vty+mhaN2yy4LpKe+2jtl2quq+lziG7vY5n8OAsspx1WMWc66zX/1a33FSHtfNHO7edoXoQciM54SRR44VdLmxU2YGv+E9yfElt3OvslxZPzmzidv++5t4+qUJRs88XIrCeb22hXjq8aq6cE0pRP9cz6sA4hsCesNqCwNWtihK7/HS59nd6A0KaWaFe5oJSeqV60nm8eqX7iXN3dhVeeDmPnnl+Qi9lNBPCbyMmp8Qein1IGWiNkvkJ0R+QuhlG/oeK8ogmkxz5A++yVfDtxD6GYHv/kN+RuTbwcnH77iZ8WZOLcyohfmcxqOyASb1nVi04tA7+hhx4tNKPc67siTzym4KIoYw6IrGYnnmmltdkjRT9sO/Uoc3Gh3NGf3e17E1h5kHD/PA4R3cdeMponBlvZRjjYTxkZhN13WIwrzsU77WhNVqUHglk1TKLO1xLDRfeJxO4peRI3HqYXKxHuYwo1HL8Gsek6Mddm2eZaSerumG1tSFCk+3Ql598GmmOnU6aUgtSJhszLJzfIbXb38FX8f3uyxcoa+41SGiw8t//AjmR+6k9dmHrdjIneDALhtwgsMKEmMoK5Z2XUphVAqYIVDIIpHuWe1y949WXS8qrgOPG1CGa3kTzNxjK+esHmu39R5blEl/WeWcRStft3I94JyV7yMCHjmel1uBhHF9CbtirhBFS2GiNsPTX2jz1r97M1kuNnGBn6thWyJFuM6g0Og0c15Yt/7al79GZjyy3O+Zp07Yp7k/538UeHZIlsDL8b2M0MvKeS1IGfFyK/A8K/BCP9PwS0UZApO8xmuyk++97ikb9ZAFxJlPnAblIOEn73+GJPPpZAGdNCg9fiJ2YPNakJZCcey2m6iFOWONhCi0om6+927hZawKxjj1qD130IrGzHrxk8wjy7on8TwnGJ2HMQqtcJzZ/8Y5onEthu8PwvOgcecb8L90lNlOQBRefCzb5TIxEtPqhOyq5/ieIUmEdscr+3cWobmjRx93+Qq8viRv3SgWG54plfBNV0tYRHjmmsJF1hSNEaGfU4sy/NAwWetQj2wjyMWe7bVAdWiRduxz7uHDtJKomyTIyxhxCYI2N9s6ht8qo+JviATE1ETYN3GS3Aj10lNkEOkKD09y533JrdfGzatipSqilLXNpsY0z57dzYt/8nVu+FsXD/ss+xeUIr8ol9LzuiAvLb3HwWAv6SCPa3W93K+v/GLnhMHe1+53so0bhafVOM9qd73YNtiSFQK/39va73EttkeSOkFnBX4gWbmP7wS/oiirTyQxxgivTo/RjDrUg8T256ldOpV9nosVipkVip004MIjT5TrVkSG5TvJ83JqQUrNT4mcYBy//WZqUUYtzBhvxgsKeSwiBGyIt0+SeSSJR/jMIeLEYyYbHJpaiMayUu8q9tMuPLXrZbw82SaLsW3liYOcuVDj7FSNfTtnmRxdWeEHLnX/Ved57ksvEvjuXgQ5gWe7wjR8Kwq9oMjYnfR0f6lGwXQjWFz+Ao1mWTGqYdkd19Vh6pFDdLKAOA1opyFxGmAQfMmphQn1IKERJozUYraNTi15eBBlZVHxN0SazHCc7Tq48gbkjduf45ETN/D0vztyyX37xX5BVfxD0QDQ63Ht924u1uNafE55joowqnpee/ebe+5SUEmxf/faigYPX3JnoPNSmInbrqJMUTYmV/MMX/7X0yREJERk+AgGn4yQmICY0E1v/yd3UQtshTL0M+phumBvQZp5dLKAxAnFJPN57cCTPeIxzayrToQyBNUKxYzx229yoadZ6V30RhY+pEohGquexiTzqD93kCT1aDkvZJJ6pLn0eK48J4qKvAGBywkQBjmeZ5jefyu+R5m9VKSbJCVJhZEXHidOfNqJT6vjEyc+IlCPUjaN+ezeNsMt15y9rIJp15YWu7a0Lt8HbnDynLILStHNoZznHtOPHiLNPZLMJ8s9ktwnyfzyPwHWzgcuJLv4X0R+zqZollqQlB54Fd7rDxV/Q6TBDC3TBFa+JU1ZW9SClO/ac3i1L0NRFGVNMypTjDI1pzw1QSkIU0Jiavy3f/04CRExNVK6o2zbPTulSHzbL9xZevjqQVJJsBazEHtchKAWIrGTBUw/eogzLiS1kwUkaUDuBJrn5UR+VglBTRi//WaiMC8FYxjYinOjtvikFVkmJP0VdjfPMo/GcwfL0Pc49zCmm6m74ed4gWFitMOOKKMeZld0RuVhUI5JPCBBWhFq2o3OqSwPiOChsg6V/AMDPrO6bLDhra3vPN7N9l7kKagsZ3lvZE3ufv9+7PPQjYAJvJzAy9xk1xthXHZt6M5zFXMbABV/Q0QEarQ41x5nsj6z2pejKIqiKOuCQFICUhrMXnQ/YyAlLEVhTI17f/VRJxxrJETkeBiEgJSwIhLf+nNvoR5aj0XhTSxCBmtBuuCU8lkudFKX3fcSXkWAMBjsVYyCvJxXk3XY8Vw10+EgjKH0ohYJu6z31GPm0YOkue3rneVed9m4PoT5PF0NXDecMrN1GVZqym4IZQSN9EblVCNp+nMVFOe+GNWuPt0xkXuvpRpJU0TNlBE2KtaUJaDib8js4QX+39+9lUis8akG1S2ewUf3ntX07Cs9n9oXxtcTDth7jmpZ7/79yVj6v9Xcc1b36d/35h9/Q1/oopnz8qy+DMvzlS/eufsOXK/sL3RfrNUXur4wFUVR1hciEJIQktDk4o2smfGJnSBMiHjwngfK5V5vorHj9FZCTt/2C29xfRITIj/Dq2Qh9D1DM0pocukwUGMovYmFF3Hm0YOccetFf8X+xDaRnxL6WZkJdfS2W7p9B13/wTBYuxV/G4Jqh+4wBhq1lDAwZThiWno3uyGxM48e7IYfunmS+z0JeIoQ3cAl6Qr8ricr8Gy/s2LZk7z0dPlerpkkFcWh4m/IjMg0t/IAMFe8LJb5QgeqvcDm31ZJ0tEz793eH5LQLZt77Pz79l7LXHnY3e+J339izrlM3z79x/R/VlfOzf851fXiV8jxynlfz7kFYOjK+eLMLmEPGT/0P4wxEl06aYGiKIpyefAlo8HsJb2JuZEy1LTwIH7tV7/jRKIVi4W98EmJ6JRhp9/181YkRi65TNCX3EIEOx5hkC04sU2S+8SZT+IyoCaZzZ5YFUVxX/+sAk9MOdadV/Fm9WfKrnqx5sMgUE1EhlTCEG0oYpbbpF79oYdFf7HQzxAMrTQiyzw8J8KCMtNyXoYbBl5OPUx6whCtwNOwVWXjkGQenTQsowi+9fEDPY1Ww0DF3wrgy3BeVFXB2PuC1tary40xlOLR9E0xdf7f37neBSC1gao0dQlSyMvyYv3mD7+hx/s5MONrsdyfERa6WWPL43vPox5ORVGUS+OJcTLv4v0DqyGnRUXsvo8/4vopdhPYdENOY0InFN/6j99S9hG0YnFwWKfnGWpeEYK6+AbFap+1su8aUmZaLvqlFf0XLzakVG/28W6yr6qoLMIQ1c4oSi/GQJp7xJkNA4+zgCT3uP/jB0gJ3RS490ZXjvnlu6OYUhrMlOvDQMWfoiwAEfAZLOprdLiZh5k2Y2UYUa93stdDaUUkHPzMk3M8q/3HFdt6hWf1PL2ezO55PDfZ8qUxyNtZLPcKXCtui/Icj9xdRd6zfuuHb+ztWzFg/EWR3A2J0q1kaMVCUZTVphpyygJCTm1amjoJIQ/82oM9/RSLyp64kNPq9F2/8BZqLuyzFiSLSpXved03v6IoS6MQbmnuk+Z2DOFqdtQH7nmQjIAMn8w19RTrlbO4LMYJvpN5dkqp0S7XQ2J8Lm/WVBV/ijIkRmVuBrv1Sjnm4DxitBCYvevd8ryUjd3lHI/HPvNUuVxsqy7bbf6cfS4lYKtCU3o+MS9DdOcTpLd8+MYyJKrwpnrkZR9RGTA+p0e3/6h6WBVF6ceXDJ8WdS4+vEFmvB5vYkJUJrCx3sSwzyuQlRXGovL41p9/C5ELkbT9BTVUUrmyKTzcZTKfSjZUW+aRuWyoD97zADkeGYGz/D4Zfs98rgfcuK0ZPmk590qpl1Bntvw/VvdZD3UBFX+Kosyhm3BnfbQg29CmXqFp+pbnE6SFB7ZXbFJZ7/ozu77QfqELC/ewdq9sbhBxt6zYj8on2U/p9bhW+xYXCZUWHE7M4CRK8yZQgjKJUnktfWNP9me8GxS+vh6Mo6JcDnzJ8elQW2CIZ2qCMmTMCsSAb338IbcekroQsqoHwlZ3rcfBVlRthfWun7u7p3+d7+W2j52X9yS4URRw3V8GDkNhw4n7y8op9zhwz/0D7XG1Abi/QTi7SMNv1/pmbjlzk5V0xbZiPSR34s2W+27/Yr7Rxh1W8acoyrrHvrjti3ytU/TBmSskuyIT5u9jWt2vP9y3P6GSqZxvfg9u17try+fuy5zjbFmxXp1TOWfvdsrtFyNYQAZFRdmoFENicAmPYpXMdP0V1fC0B+95oFxOCcgIy+X+/2lvZTntqWD7ZNz1c3e7jJrF2HI2WqK7nuOLUVG5QOYTWlnuOaHVN/5fOeafcOAT9w8UWXMbRLtdRIr9LnFVc6JqFhNx47vuIX55TL+A60bllMsbTJRdLlT8KYqiXEasMTMwTx9SRVGUYWK9i5dOaDMfNuFZb6hcEUJXzIvQOlvF74bWFT6ZfN7wup5PGigu6Jn3R0hQbqtGQfT2tDfc+bPfZZcXKCaMER76xLfcVc2fndxURFO1f35XWAm9oqsreS5xBQPvRSGUesuzOSIrcPOqyLpkVwgVWhsGFX+KoiiKoijKQGzCs5WPrCiyag8K2YfutmIZ6BFXcyVfV6Q9/IlvlvtfjP4z2Png8ZD7w/WBHnHVv70q1rSfuLKaqPhTFEVRFEVRVpVuVm2NilCUleRSfmdFURRFURRFURTlCkDFn6IoiqIoiqIoygZAxZ+iKIqiKIqiKMoGQMWfoiiKoiiKoijKBkDFn6IoiqIoiqIoygZgWeJPRP61iDwpIo+JyB+LyGRl2y+JyLMi8pSIvLtS/h5X9qyI/OJyPl9RFEVR1ipqIxVFUZS1xnI9f18GbjHGvBF4GvglABG5CfggcDPwHuD/FhFfRHzgt4AfAm4C/o7bV1EURVGuNNRGKoqiKGuKZYk/Y8yXjDGpW70f2OOW3w/8oTGmY4x5AXgWuMtNzxpjnjfGxMAfun0VRVEU5YpCbaSiKIqy1hhmn7+/B3zRLe8GjlW2veTK5itXFEVRlCsZtZGKoijKqhNcagcR+Qqwc8Cmf2aM+RO3zz8DUuCzw7owEfko8FGAbZe+TEVRFEW57KiNVBRFUdYTl7QYxpgfuNh2EfkJ4H3A9xtjjCs+Duyt7LbHlXGR8v7P/W3gtwFukLoZtI+iKIqirCZqIxVFUZT1xHKzfb4H+F+Av2GMma1s+gLwQRGpicg1wA3Ag8AB4AYRuUZEImyH9y8s5xoURVEUZS2iNlJRFEVZayw3VuQ3gRrwZREBuN8Y8z8aYw6JyOeAJ7ChLj9tjMkARORngL8AfOBTxphDy7wGRVEURVmLqI1UFEVR1hTSjUJZu9wgdfOJYN9qX4aiKIpyGXhf+vTDxpg7V/s61gtqIxVFUTYGw7CPw8z2qSiKoiiKoiiKoqxRVPwpiqIoiqIoiqJsAFT8KYqiKIqiKIqibABU/CmKoiiKoiiKomwA1kXCFxF5FTi62texQLYCp1f7Iq4g9H4OD72Xw0Xv53Cp3s99xphtq3kx64l1ZCP1PzNc9H4OF72fw0Xv53Ap7uey7eO6EH/rCRF5SLPUDQ+9n8ND7+Vw0fs5XPR+Xvnobzxc9H4OF72fw0Xv53AZ5v3UsE9FURRFURRFUZQNgIo/RVEURVEURVGUDYCKv+Hz26t9AVcYej+Hh97L4aL3c7jo/bzy0d94uOj9HC56P4eL3s/hMrT7qX3+FEVRFEVRFEVRNgDq+VMURVEURVEURdkAqPgbEiLyHhF5SkSeFZFfXO3rWS+IyBEReVxEvi0iD7myzSLyZRF5xs03uXIRkd9w9/gxEbl9da9+9RGRT4nIKRE5WClb9P0TkY+4/Z8RkY+sxndZC8xzP39ZRI67Z/TbIvLeyrZfcvfzKRF5d6V8w78PRGSviPyliDwhIodE5B+5cn0+NyD6n1gaaiOXh9rI4aH2cbisqo00xui0zAnwgeeAa4EI+A5w02pf13qYgCPA1r6yfwX8olv+ReBX3PJ7gS8CArwVeGC1r3+1J+B7gduBg0u9f8Bm4Hk33+SWN632d1tD9/OXgV8YsO9N7r9eA65x7wBf3wfl/dkF3O6Wx4Cn3T3T53ODTfqfWNa9Uxu5vPunNnJl76Xax6Xfz1Wzker5Gw53Ac8aY543xsTAHwLvX+VrWs+8H/i0W/408IFK+WeM5X5gUkR2rcL1rRmMMV8HzvQVL/b+vRv4sjHmjDHmLPBl4D0rfvFrkHnu53y8H/hDY0zHGPMC8Cz2XaDvA8AY84ox5hG3PAUcBnajz+dGRP8Tw0Vt5AJRGzk81D4Ol9W0kSr+hsNu4Fhl/SVXplwaA3xJRB4WkY+6sh3GmFfc8glgh1vW+7wwFnv/9L5emp9xYRafKkIw0Pu5YERkP3Ab8AD6fG5E9DdcOmojh4++g4aL2sdlcrltpIo/ZbX5bmPM7cAPAT8tIt9b3WisT1tT0i4RvX9D4d8A1wFvBl4BPr6qV7POEJFR4PPAzxpjLlS36fOpKJdEbeQKovdv2ah9XCarYSNV/A2H48DeyvoeV6ZcAmPMcTc/BfwxNiTgZBGq4uan3O56nxfGYu+f3teLYIw5aYzJjDE58DvYZxT0fl4SEQmxRu2zxpj/7Ir1+dx46G+4RNRGrgj6DhoSah+Xx2rZSBV/w+EAcIOIXCMiEfBB4AurfE1rHhEZEZGxYhl4F3AQe++KbEUfAf7ELX8B+LDLePRW4HzFNa50Wez9+wvgXSKyyYVsvMuVKZQv34IfwT6jYO/nB0WkJiLXADcAD6LvA8BmJgM+CRw2xvxaZZM+nxsP/U8sAbWRK4a+g4aE2sels6o2cjmZanTqydrzXmymnueAf7ba17MeJmy2p++46VBx34AtwFeBZ4CvAJtduQC/5e7x48Cdq/0dVnsC/h9sqEWCjfP+qaXcP+DvYTtkPwv85Gp/rzV2P3/f3a/H3Mt3V2X/f+bu51PAD1XKN/z7APhubLjKY8C33fRefT435qT/iSXdM7WRy7+HaiNX9l6qfVz6/Vw1GynuIEVRFEVRFEVRFOUKRsM+FUVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FEVRFEVRFEVRNgAq/hRFURRFURRFUTYAKv4URVEURVEURVE2ACr+FGUdISK/JyL/wi1/j4g8tUrXYUTk+tX4bEVRFEVZK4jIfmcTg9W+FkVZCCr+lA2NiNRE5JMiclREpkTk2yLyQ337/KiIHHbbnxCRD/Rt/zkROSEiF0TkUyJSG8J1/ZWInL3YuYwx9xpjXr/cz1IURVGUS7GW7KWI/AcR+fd9Zd8nIq+JyK6lnFNRNgoq/pSNTgAcA74PmAD+V+BzIrIfQER2A/8B+MfAOPBPgD8Qke1u+7uBXwS+H9gHXAt8bDkX5D77ewAD/I3lnEtRFEVRhsRaspf/CPghEflBd+468DvAzxtjXlniORVlQ6DiT9nQGGNmjDG/bIw5YozJjTH/FXgBuMPtsgc4Z4z5orH8KTADXOe2fwT4pDHmkDHmLPD/A35imZf1YeB+4Pfc+QciIu8QkZcq67eLyKOuxfU/ich/rISIvkNEXhKRnxeRUyLyioj8ZOXYmoj8qoi8KCInReTfikijsv2fuGNeFpG/t8zvpyiKoqwz1pK9NMa8BvxD4LdFZAT458Bzxpjfc/bvhIicF5Gvi8jNACJyjYicExHPrf+OiJwqzikivy8iP+uWJ5yX8xUROS4i/0JEfLfNd/bytIg8D/zwUr6DoqwWKv4UpYKI7ABeBxxyRQ8Bh0Xkb7gX/geADvCY234z8J3KKb4D7BCRLcu4jA8Dn3XTu901Xeq6I+CPsYJxM/D/AD/St9tObGvtbuCngN8SkU1u27/Efu83A9e7ff6/7tzvAX4B+EHgBuAHlvzNFEVRlCuC1baXxpj/BDyCtXcfdRPAF7G2arvb/lm3/wvABeA2t9/3AtMi8ga3/n3A19zy7wEp1h7eBrwL+Ptu2/8AvM+V3wn8zaVcv6KsFir+FMUhIiHWSHzaGPMkgDEmAz4D/AHWiP0B8A+MMTPusFHgfOU0xfLYEq/hu7HhMJ8zxjwMPAd8aAGHvhUbkvMbxpjEGPOfgQf79kmA/91t/zNgGni9iAjWaP6cMeaMMWYK+D+BD7rjfhT498aYg+57//JSvpuiKIpyZbAW7KXjfwLeibVtx9x1fMoYM2WM6WDt1ZtEZMLt/zXg+0Rkp1v/I7d+DTZU9TtO1L4X+Fnn7TwF3EOvTfyEMeaYMeYM8H8t4/oV5bKj4k9RABcG8vtADPxMpfwHgH8FvAOIsC2Dvysib3a7TGMNRkGxPDXgM/6tiEy76Z/OcykfAf7/7P13mCXnfZ4J35WrTj4dJmAGM8gZJAEMmJMoU5QlehUsUVxZsmRblu21bMsWs/f7LDGBIOVPli97bXktWaKTrJVWa68sKpAEwASARCLCDLIwmDyYmT65cr3fH2/VCd2ne7ondZj3vq6+err79OnTXcD71POLfyaEOJV//F9YofRzjCuAI0IIMfa5Q4sec1oIkYx9PECK8TxQAh7NS2JawJ/kny+ee/y5Dq7i9SgUCoViC7KB9BIhxAngFHn2Mc84fk7TtJc0TesAr+QPncvfP5C/vncCXwPuz1/nu4CvCyEyZADWAo6NaeJvIDOJoDRRsclRY2kVlz155us3ge3ADwgh4rEvvwH4mhDikfzj72ia9jCy9PEJpOC8Hvi9/OuvB07k/QgTCCH+LvB3V3gdHjKiaGiadjz/tAM0NE17vRDiu8t9L3AM2KVpmjZmAK9EZg7PxinAB24VQhxZ5rmvHPt4zyqeU6FQKBRbjI2ilyvwk8AP5T/zFWSrwwKg5V9/APgCcDj/9zeAfwsEjEo+DyEzl3OLAqYFShMVmxqV+VMo4N8ANwN/RQjhL/rad4B3FJFLTdPuQE7iLHoYvgj8LU3TbtE0rYGcfvbb5/g6fhhIgVuQIvqG/HV9HdkHuBIP5t/7C5qmmZqm/RDwxtX80DzS+X8CvzY2lW1XPpkNpFD/bP47lpCN9QqFQqG4/NgoerkcVaRxO42saPns+BeFEC8gg50/BTwghOgAJ4C/Sm7+8mmhfwb8c03Tapqm6ZqmXatp2rvyp/k94B9qmrY775v/2AX+HRSKi4oyf4rLGk3T9gJ/B2m0jo+Vmfw1ACHEA8iegd/XNK0L/AHwWSHEn+Vf/xNkmct9wKvI8o9zNUc/g+yte1UIcbx4A/4V8Ne0FRbICiEi4EeRg1xaSGH7I6QIroaPAi8CD+WlMl8Gbsyf+0vAvwC+mj/mq2v/1RQKhUKxmdlgerkcX8yf9wiwHzk5ezEPINsgDo19rCGHwxT8dWTp6n5k5vD3gWJ/4P8J/ClyYM1jwP99YX8FheLiok22CCkUiq1CXm7zb4UQ/+GsD1YoFAqFQqFQbHlU5k+h2CJomvYuTdN25GWfPwO8Djm4RaFQKBQKhUKhUANfFIotxI3IXoQy8DLwY3nvgkKhUCgUCoVCoco+FQqFQqFQKBQKheJyQJV9KhQKhUKhUCgUCsVlwGVR9jk3Nyeuuuqqi/b87Uefnvr5+l23XbSfqVAoFBuVRx999JQQYn69X4didSiNVCgUikvHemvkZWH+rrrqKh555JGzP/Ac+Z/WjdO/8N3u1E//YPzcRXstCoVCsd5omnZwvV+DYvUojVQoFIpLx3pr5GVh/jYaywmhEjyFQqFQXO5M00iljwqFQnFhUOZvA6EET6FQKBRbiWWzfhfoeZRGKhQKxdpQ5m+DowRPoVAoFIrpKI1UKBSKtaHM3yZFCZ5CoVAoFNNRlTQKhUIxHWX+zpMLVdJyoVCCp1AoFArFUlTQVKFQKJT5uyxQgqdQKBQKxXSURioUissJZf4uY5TgKRQKhUIxHVVJo1AotiLK/CmWoARPoVAoFOfLRmuLuBCooKlCodjsKPOnWBVK8BQKhUKhmI7SSIVCsVlQ5k9xXijBUygUCoViOqqSRqFQbDSU+TsPtmJJy4VCCZ5CoVAoFEtRQVOFQrGeKPOnuGQowVMoFAqFYjpKIxUKxaVAmT/FuqMET6FQKBSK6ahKGoVCcSFR5k+xYVGCp1AoFJsT1RZxcVFBU4VCca4o86fYVCjBUygUCoViOkojFQrF2VDm7xxRUc2NhRI8hUKhUCimoyppFApFgTJ/ii2NEjyFQqFQKJaigqYKxeWJMn+Kyw4leAqFQqFQTEdppEKxtVHmT6HIUYKnUCgU549qi9iaqEoahWJroMyfQnEWlOApFAqFQrEUFTRVKDYfyvwpFOeAEjyFQqFQKKajNFKh2Lgo83cOqJIWxXIowVMoFAqFYjqqkkahWH+U+VMoLgFK8BQKhUKhWIoKmioUl5YNYf40TWsA/x64DRDA3wSeA/4bcBXwCvABIcSCpmka8OvADwAD4GeFEI9d+letUJwfSvAUCsVqUBqpuBxRGqlQXBw2hPlDCtWfCCF+TNM0GygBnwC+IoT4nKZpHwM+BnwU+MvA9fnbm4B/k79XKLYESvAUCsUiNo1GqrYIxcVGVdIoFOfHups/TdPqwDuBnwUQQkRApGnaDwHvzh/2O8D9SGH7IeCLQggBPKRpWkPTtJ1CiGOX+KUrFJcUJXgKxeWH0kiF4uyooKlCsXrW3fwBVwOvAf9B07TXA48C/wjYPiZWx4Ht+b93AYfGvv9w/rkJYdM07eeBnwfYs2fPRXvxCsV6ogRPodjyKI1UKM4RpZEKxVI2gvkzgTuBfyCEeFjTtF9Hlq8MEUIITdPEWp5UCPHvgH8HsG/fvjV970qokhbFZkAJnkKxZdhUGqlQbAZUJY3icmYjmL/DwGEhxMP5x7+PFLYTRamKpmk7gZP5148AV459/+78cwqF4iwowVMoNh1KIxWKS4AKmiouF9bd/AkhjmuadkjTtBuFEM8B3wvsz99+Bvhc/v6/59/yP4Bf0DTtd5FN7G3Vy6BQnDtK8BSKjYvSSIVifVEaqdhqrLv5y/kHwH/Op5i9DPwNQAd+T9O0vwUcBD6QP/aPkSOsX0SOsf4bl/7lKhRbHyV4CsWGYVNopGqLUFxOqEoaxWZlQ5g/IcQTwL4pX/reKY8VwN+/2K9JoVBMR5lCheLSojRSodgcKH1UbAY2hPnbLKiopkKxPCoKqlAoFArFUpQpVGwklPlTKBQXDSV4CoVCoVBMRwVNFeuBMn8KheKSo0yhQqFQKBRLUfqouNgo86dQKDYMKgqqUCgUCsVSlClUXCiU+dvg/FTyEi3SNX9fA4P/ZF57EV6RYjnUtbo4KMFTKDY+69ETf65nLqhz91KjrtXFQwVNFWtFmb8Nzrkeluf6fYpzR12rS4syhQrF5c35nJ3q3L20qGt1aVH6qFgJZf5WiZr0qVBsDlQUVKFQKBSKpShTqABl/hQKxWWAEjyFQqFQKKajgqaXF8r8bUJ+8zd/k/e///2cPHmS22+/fb1fjmIFHMfha1/7Go7jYJomv//7v88v//Ivr/fLUuQoU6hQbC2UPm4elD5ubJQ+bl2U+duE/PZv/zb/6l/9K774xS+u90tRnIUwDHnPe95Dv9/HNE2+8Y1v8KUvfYmHH354vV+aYgVUFFShWD0bqS1C6ePmQenj5kSZws2PMn+bkK9//evs3bt3vV+GYpX0+30ALMvCsiyEEOv8ihTnghI8hWLjo/Rxc6H0ceuggqabB2X+FIqLjK7rPProo1x33XX863/9r/n2t7+93i9JcQFRplChUCjODaWPWxuljxsTZf5WwUYqaVFsPrIs44477qBer/OHf/iH3HrrrTzzzDPr/bIUFxkVBVUoFIqVUfp4eaJM4fqizJ9CcYlot9vcd999fP/3f78St8sUJXgKhUKxFKWPClBB00uFMn8KxUVkbm6OOI5pt9u4rst73/te7r333vV+WYoNhjKFCoXickPpo2I1KH288Cjztwn5L//lv/Dud7+bubk5Dh06xD/7Z/+M3/qt31rvl6WYws6dO/md3/kdDMNA13V+7/d+j//5P//ner8sxSZBRUEVG52N1hah9HHzoPRRcT4oU3juKPO3CfnJn/zJVT3uoLiOMl1K9HAZoGtqital5qmnnuLOO+886+NeEddToUOJHh59NO0SvDjFpkQJnkKxPKvVR4AjYi9lupTpYmnxRXxVimmsVh8Bjoo9w/sZda0UK6GCpmdHmb+zsNGimmvh+z52C/d/7nGOspeAEpoQePQo06NMF48+hpau98tUAO/72M1LrlUpv07SEPYwtGy9X6ZiA6NMoUKxNt72obv42q9+l+NcSSxsbMKJc9fBV4G4DcJbP7SPr/3qdznKXhJhYRMM72VKdHG0cL1fomIDo/RxEmX+tjj/yy/fhGVI05BmGr1wJ/d99jFeYyc+ZTKh4+LnplAKnq1F6/yqLz80DX74V27E0GV2Ns00uuFO7vvs45xkJz4VhNBwGQyvk4qAKlaDioIqFNOpugE/8cmrhgYviE06gccDn3+CU+wgxMUQKaWxM7dET1XRrAN1z+eDn7pq+PEgmqUbymt1kp1EwsUkntBHVUWjOBuXqyncMOZP0zQDeAQ4IoR4v6ZpVwO/C8wCjwI/LYSINE1zgC8CdwGngZ8QQryyTi97Q3OyV+OFU9tJU4OKE1D3BtTcgPf/8q2YuSEUAvrRNjqBy9d/9QlOsJtIOFhE+QHapURfHaIXmeOdGs+f3EEmNKr5taq7Pj/0Kzej54YwyzT68Tbu+/SjtJidiICW6KtotWLVXK6Ct5lRGnnhefnUNnqhi2Gk1F2fuis18sc+ee3wDI1TnW64m/vveYyT7GJAGVQg7pLz3Mmd+JGNbcbyWnnyen3gU9cMHxMlBp1gL/ff+zgtZieqaMbfVMWT4mxs9aDphjF/wD8CDgC1/ON7gV8TQvyupmn/FvhbwL/J3y8IIa7TNO2D+eN+Yj1e8EbHueU2ri9HNCoRQsDxB5+VJiPcTpbplO2QmutTc33mK11+4lNXD783TEy6gZsfonMElGB4iPaHh6ipJev4G24dyrffyq5KRK0UESUGJx86wKHWDN3ABWSEup5fq/f/yu1DQwjgx7N0Ao+vff5xTrOdAC+PVveGBl6W+KqyUcXKKFO4oVEaeYGZu+sGrquElJyYQWhx4uHnOHmqRj90MY10qI811+dHPnnj0BBmmUYv2s79n3mENjNjgbhwWKZfznvtVSDuwrDrTdfQqETYZkrXl9fqUGuGMLZwrYia6w818sc+df3w+4oqmvs/+xin2IFPmVQYuPgTGV1VNqo4G1tJHzUh1r98QdO03cDvAJ8B/gnwV4DXgB1CiETTtLcAvyyEeJ+maX+a//tBTdNM4DgwL1b4Rfbt2yceeeSRc3pt693z9/7k+XP+3ke+fgD3hadp9W0GgYltZTQrIfVKRL0UEac6Jx46QNv36IQeaWpQdgJqbkDNkYeobY4iZGmm0Y8cvvqZxxhQwadCgolDMBFVu1wzT+d3rfZjPbefhZ5DFOuUvYRmJaRRiai4Mf3Q4sRDB+gE3lRDWHWCCUOYpDrd0OX+ex6jn18rgaZKfBUXjJUET9O0R4UQ+y7hy9nSbFSN3Mz6CPDCf/pdOn2bVt8myzSqpZhGOaJRDXGthK5vc/LhZ+kE3jBDKLUxoOb6VOxw4twNYlOeu/c+gU+FAA8N2WtfVGd49C/LoOn5Xqvn/uN/o9W16QxsdF0Mr1OzIjWs3bc58fBzdEJvqiF0rdHfXAgYxLYMmn7hCQaUiZBlo8V9TJmuGpSnOC82skZulMzfvwA+AlTzj2eBlhCi+L/1MLAr//cu4BBALnrt/PGnLtmrvYQ0MGix9hKFZmOOQ4ctEvtOarMZ9VqK52YkqUbrwH5eOV6VJuPKN9MoReytRNTLEWFscOLB/ZzqV3j5zDxxYuLZ8hAtDOEPf+qWiZ9V1N4vzjx5YxnCy6HU4nyu1SuvOuilO2hckTJbS7Asgfn80xx+rUy7b6Npgvq1+9hZCbm5EuFaMvp58uGlGcKJaPWnbhr+nOVKfAvBU5NhFWthK0VBNwH/AqWRSzjXMxfkufu4uBu7LqhfmdKopRiGgOef4ZXjVboDC10X1G+4g915BY1jpXQGNicfPsArZ+bohS66Jqg6o3N3ttTnxz913fDnjHrtH+U02xlQIRUGDgHeZVSufz7XqlGf47vso7Ijo1FPKZdT2QZxYD+HXysTRgaek9J8naygaVQi4kQfGsKDC7NEycgQ1tyAujtgZ609UfEUJQbdcA8PfO4xjrEHnxII8PIS3+KeRpX4KlbDRi4dXffMn6Zp7wd+QAjxv2ma9m7gQ8DPAg8JIa7LH3Ml8CUhxG2apj0NfL8Q4nD+tZeANwkhTi163p8Hfh5gz549dx08eHDNr229o5qL+WLyD/G+7z0Er5/lxpvmaZ+GJIZqA8p1yFK4shHRackb/VoDqjWBYcL26CDttkF/oOO6gkYtpVZNMU2B8/xTtPs27UXRz3pehhhEBu2+zclvj6JqjhUPzWDN9SnZk4dhkur0Iof7P/sYfaqy1AJjmCWUB2kPh2BLCt7T6Z08dNsvctfffgOhZ9M+DQKoN6Fcg2u3hbTOaPS64LjQaEK5KkhimPUP0WoZZAJqlZRGM6VaSYkjHePAMyz0RpncIvrZKEdYZiZvTB46QHssQ1hxZHlv3RtQdYLhUJkC2Sfh8cC9RUa3BCjBU5w770+eV5m/C4TSyNVxKLua/5r9Pe76Z9/PiajNlbvn6bbAdqDWlOfsVXMhnZbGoA+uB/UGlMqCJJHnbrttkGZQq+YmoyRNhnHgGVp9m75vYpkZjTxYKssQMzoDGYgrKjMEsne7mmeeqk4w7LMvGETWMGg6yLOEOtll0Z8mBPx2+o+Z+cF30r5pnr175+i1oVSF+gzoBlxZj2gvQJpAtQ61hsC0YEd0kFbboNfXcR1Bo57SaKRYZob17NO0e6NMbq0k72OalYhqKR7ey4xnCIt7mbon72U8a1LnZImvw32feZQBFQZUSBiV+BZvqsRXsRbWWyM3gvm7B/hpIAFcZD/DHwLv4zIvaRknEC6/kX6cxo/8JdpVnZkdCY4nyFK4+uptdBYgCqFSl4en5cCgC7trEd22PEyrdag3BJYNO+JXaLcNOh0DAdSqKY26NBmZ0DD2y0O0M5BZp1oppl6JaJTlIRrGBu2+JQ1h4OFHNpaZjBnCgLIdThyGRalFN3DzUouKnKZGOnGIboUVFH+W/Agv3/JjLFx/HXtvibBsQZrAniu30T4DpgX1WXlN4hj21CNaCxAGUKnK61RtyI/n/FdptQ2CQKNcykZiZwm6XQPjwH4WejZxIstFC+NeL0fomhgawk7g0Q3d4VCZ2ljJ6OIbEyV4ivNhvYVtK6E0cnV8O30n37nx72G/7Q6EdYbGtgRNgyjU2HPlPL0WmLY0gtWGDJzuaUS0WxD4UCpJg1GpQZbBfHCQVstg4I8CpvVaiutmDHwd48B+Wj2bIDJw7ZRGJaJWjoaBuK5vDc/dTugO++yry7RVwGTQtDh3x4OmW6W1whclfiP9OHM//h78eajPyb9D6GvsvmIevw+VhtRI24Z+V5rBTgsMUwa2602BZcG28BVaLYNO10DXoF6X9zK1akoYaRj7n6HVs+n51kS5aKMcUXJTgsig1bM5+e1naQelVRlCGJ8M+/hEie/lYN4V5896a+S6m79xiqhmPsns/wL+YKyZ/UkhxP+hadrfB24XQvzdvJn9R4UQH1jpebeCsJ3MdvCb2UfY+7ffy8uHH6ax41ZqMyleZXTTnmW5ETwDUZAbwTkZ4UxiGPSkGex1pBms1aHWFJTK4A+kyWi3DfxAw3OFPERrssSiPzAwDzxNq+fQD8zhIVrPSyxKTpKXWRSG0GUQOeh6Rm3MaCzukYDJ/jSZeZJZQtmQXRjCHq4WXOo/+znzH5NfIH77D/CSfoYdV1/L/JUxhjH6ehxp7N4lb0i8MjTnwatIg+z3R1HPLJNC12jKm5IwgHlfRj67PR3HlpHPei52UaSjP/N0nsm1EEJGPxvVkXEXgskbk8AjExplOxxOhK05/hJDCGfvaVGDgBSw/sK2VVEauTz/I/kpjr75pxCvq+F6GYOOwdzuGF0fPSaONPbkGUHDkoHSahN0HUJ/VDkTBrkZbArqDbmKp9uR2cFhwLQig3D1WoqmQ6djYDwrDWGc6JTcyUCcaQh6vjnq3Q7dqW0V471pkGtCvDRLaLB5WyuOZlfyO9k/5pq/9146WgdNGxlAkL/z1VfJQGkcyvuYxqw0fkkMexshrQWNfk/e3zSagnoTTFNepyJgmqTaMIvbqMt2ik4eMG31bPzQwLFTmpWIRt5jb5kizxDKoTKdwCOI5ZTRolx0WrUTFMNl3CXmfTPfyyguDuutkRvZ/F2DHGM9AzwO/JQQItQ0zQX+I3AHcAb4oBDi5ZWedysI27Pp6/jyjZ+g8j1v4MjBr7P96ltIE42ZHdNvsrMMrrl6G628NLQ+K4XOtOTXk1hmBnflZtC0ZElirSGoVKX4bQteodWWETUNqNXSoSE0zSLr9MxwoExRDlNEP0tuSpJqdPoWJx5+lm7g0QsdYNSbVmSgFpcibuYsYSwsfiP9OJUf+X4O9p5j5oqbmNmRYLvT/18LBhpX7JgnCqC5DRpzDKO6aZpfp6rM4Fq2vE6NGWnao3B0U9JuS3dZq6XD7KBtCTpdHfPAMyx0pXE3dCFLlsain1kGPb8YKuMuGQBUCJ41xRDKnhaX+z5bZAmrWzJarVg96y1sW5WNpJEbSR8Bfiv5J0R/+cc5kRyQvXrbb2FuV4xlT398HMGe3bJqxilJc1GuybNXiJEZbJ+BKBpVZNQa0oT0e8sHTKvVlCgaVdAUZYhlN6FRCamXI+rlGMMQDIKlbRXFOoOa61N1A8r20sFcmzlL+GR6N9+46Z9Qec8dZPYpei2D7XumtxWkqbxOrdPS6M1dIUt4CwI/D5bm16lak/pYb4Cmj65TqzW6To2GNIO1akYYaXQ6BvqB/bR6DkmqUfGSoRmslyMZHIh0WsV1mlLtVPd8Sla05G+93L2MSZIHTdX+yMuR9dbIDWX+LhZbwfx9PX0fT930M5y+5lpmtmU45YxqM52Iai5Hmspyw9YpKFdhdgdLBDGOZDSt08770PI+iUaeGUwT6HVhPniVVkeWIBaHaD3vH0xTjU53shzGsVPqeclosxLi2BlZxtRSxPHVE8sZjdVmCdezl7CVNfmt7MPU/te/QlTqUWkmeOWz/3+WpnDF9m30OrBzj+x/WEwcwpWNkPaChj+QNyTNWSl0himfo9eR12mhZRBGGtVKEflMKZczkoQl0c+ibKko7bWtTA6ICUxOPLifdlCiE3gkqUFp4joFOOb0AMR4T0uf6jLmvadWUGxB1lvYFGtjs5u/SNj8RvoJaj/8fSyUddxSRrme4q7i3AVZbrjrinmCPszulNo3rh9ZBsFgVHqYxFCpydLDekMGTwN/VILY7Y61UzSkIXRdQb+vS0M4VpmxuMde1xlmnsaNxuLVE5VFbRWwebKEX0n/Cgff+vc41pxl/sqE+myKbpz9+4KBxvzMPI4HO/ey5PfPMvB7sDuvnDEMaMyMgqUgq5y2BQfzwLaOaQiajVEW1zCgl1+nYrqopgnq5Zh6OaJZDSm7eUlxrE9kCAeRs6rrBMX+SC+/lymPTeQeTEwcVb32W48fjJ9b92mfyvytwEYStz9KPkj3e/8a4esalGvnds2EgKuu2saJQ3D1TbIvcDmiEPaMmYxSGZozglpT1uCDPES3h5PZwXpdHqCNRorrCIJQRtWMA/tp9W2iWMdzcqNRHpVZCMFESUxhNM5WElP8XhspS/hKdj1/kP0N3viZ93MsbAFLRWo5shT8vk6jPMfNZzkWhJBCt6smo56GKYWuOSvwSqPHDPowN5BiVwz8aY5FPnUd/GDl6GetJKPUQsAgNPMbk+dpBx5xYuJakeyPWOE6wVLzPlArKLYkyvxtLja7+WtnDX47+yWu+sc/TFRbOOfnSRPYMb+NNIXd1y7/uMJkXFmXPYMgh8fUZ2TljK7ngbg8YLokO5iX6WvayGis1GOvaRAnmswQ5qsn+pGzZNLo4pU/BRstS/h7yc+hv+/9DG6bxS2LVf9MIaRGVpxtzO2U7RIrEUdwZV0OVwt8mRVszsoS0SJwHsfQbcPMYLJ6ptmQlU6uI0hTGTA1DzzNQs8ZDv5pVkatL64t7y2mXic9m1gRUnWmB6eFgF7k0M0ncvepEmNjEQ2H5Kn9kZsfZf4uEZtd2AD+W/LzlH/ofYg7b8WYsqBDAzQDDF1+oOvScGj5AZdlIDJIEkgi2H2N7DFbDUJA0JfRtE5LCmStIaNp1froEC2yg3P+q7Q7BkE4GlBSr6dUK9JoDAaazDw9OzIaiweVmGNGo1NEQMdKYmpjKw2mlVrA8llCh2BoMi5GlvDJ7G6evetvs/2H3sJAt1jL/2K6Ic31zLbVX5+CQugWTmnEkTSCM/OC8qLnCXxZ0rvQMoeRz6JMtFFPMc18LURfR89vSobrJqZEP4GppUuraZqHYgWFQzeU5n1c8Iol9SX6ePSV4G0CNoKwKdbGZtfII9ke/iD7m1z/sb+KqFpTH6NpMhOkFdo4ppNCSI3MMlldYTmw5/qpTzOVNIG9zaUTnBszAtcbPW4YMG0ZdHpyQElRpj/NaIz32MtSUWk0irM3TbWpk0YrQ0MYUHWmV9HA9ImjFztLmAqD/5r+PWp/8wMYV29D1+Uk7NWgIXs1SxWY2c5EH/3ZKAz7rqocruaVYGZO0Jxh4p6qqJ4p+gbDaLxvUFbPAHm5qJ4PXJP7eYs+z0Z1dB8DkKSFITxA2y9NGHfZZz99HkJB0Wv/wL2PM6C6ZLhMYQxVFc3mYCNopDJ/y7CRhC0WFv9X+rfZ+Q9/guve2sS0wLLAsgXPH3MwLdnorBmAkEImstF7kF/TdXlYTjOPa6HoQ7uiEtHtyMb45qygMdZTCHlmaqzEotsbGY0i+mlZeXZqoGPsn1w5UfHiYc19UXcPo5KY1/LpXOMlMUUUdKXI2uqyhOd+kD6Q/gDh29/Hjv/1Pcxtk+OpTQtePGZjmAw/NszVZwTXSprCnlrImdMyczs7D9t2imHWdpwi8ln0DWYCGvU0zw6m2LYYPmena8jpaWNjz6dFP4GJKWqLm+bl8t3B1Kb5gjAx6QYu9y8SvCL6uRHKlxRL2QjCplgbm10jn8tu57k3/j22/9g72L1XDDXyhWO2PG/t3PiNGb1xnSyMoK5Lc7GadoqVCAM5wXmh6LmfgZlZQbk6eeaniezZng9GRqNSngyYapoM2soKmqU99oU+llx5Di7Xv73acv2zZQnPd01TV9T57+lPc82Hfow9b5zBzDXRsgXPH3Xkx7a8p1lNKei5EgzgirK8Ro4H23fKjOC0UlrZN3iQhQUTf2zqdrOZUilnoyDoQBsbuDZ93UTx2GIewsmHn6UdePRDB02DihOM+j2XyeTC5HCZPlVVRbOJ2AgaqczfMmwkYfNFif+ZfpC7f/GtlN5zNzCKWGapRhTJRuc4hEyArsmePtuRby+dsDFtKYaFCF5IggHsqkQsnJHPPbtNMDc/3WQWRmMuOES7rQ+ncdVrKc1GQqkk/3vMMlkOYx4Y1d0DUugWlcPA6kpiKlN23BWMZwn7VAgok6EPD9JhWYwWnvXv8efpj3DFz/8wzffegeMJ9DzKnGUacSxLauNI3hQI8uvlyIyfbY9MvVWYxPO8GclSuKIS8tpxDcuGPVePykKnUdyQzA5GE9PqeRlMs5ni2KO/4Vqin/LxOu2B3LPU9qUhLNkhzVKfhjegtoLYwVLBK7K5HoOh4Kk+ifVlIwibYm1sdo18OtvHqXd+kLf/3Vs44+2SWT4dhKaRFPo4duaaZn7euvL9iyfsoT6a1oUNyqWp7Kc/c0ruF6zWYNsOOb15MUWZfhEw7fV1LFPI87cpWyrMXFejaHqPfWNMIx07Gz5vPzBp921e+46cxr146XnVmT7Bsvj+opfwgc9PC5p2x1orVg6anhRX8ED6l3njr/0Eleu3jyqUhEaa5Ncq18kieF2YeduRWvliYerHAqnnQzCAeVsGs+d3wM5dK5eiDvpy6vZCS14jzxU0mwnNxsiwg7yP6fZ0jP2TA9eKdopGJcJzRsHL8Uxu2y/RDV0MPaPhDWh6UiMXrwcZp6ii6SxTNlqY9404BOhyYiNopDJ/y7CRhK0lZvha9pf50c/tw3vDtaSpThBohKFGnGhoGriOwPMyPDfjsLZXmkNdil0UacQhhKE8ULP87DDzw9RxwHYELxx38gjcuWel4gh2eBGnX5PDSHbsWlp2OE6WyRUUc2M7lUpeNixBLEpFQYpotycnVy7e21OUi46XIi4uienlg2VWWxKzuBxxQJkon9JViF0heMWUrkB4fEe8ixs/9CNc971XEMXyOoWhTpr/GNcRuG6G52Uc0fZi2zLCmWXy7xdHcjdVccMSRwxLR4vrUxjD8WipYUnzrRvLm8VBDzgTc9udGdUpNx/TKHpX5gZyiEycaNSrcvn8zCIzKAT4/ij62erZE+smmpWQipdM/LfVD0yOfvNZWr4cKmPoGU2vPzSEy12fxddpseCN7yRUgnfp2AjCplgba9XIjaSPAI9k76DyV76HfX/3bjRNBqXCUCeMNLIMLFPgugLPzThq7MEykTWEFIHTPIgajs5bTc8DqLYs43zx+CiLaFrnFkQVAvod2OZEBD7MbpcZp5WeK4pkGeLMQK6ZyASyr74+6q0vWK7HvlkJhxppmaPH+2FRrj+qzjjbvt5x4lSXk57veXw4tCRDnwjGLc4+vSxuJHv/j/P6dzfhxhuIYl1qZKQhBJgGw3sZ1xUc0fcOy3ULPYxjbXitokgGLAXymhT6WGjkC8dsjLw6yjBHGjmNNIWGkCbw9ftWf2/sD0ZmsNsb9dXPNJMJMwjS2Ha6Bvp+uZ83jIyJa9SoTAZM40TjTNfh+EPPs+CXSTOdmutLQ1jqT50Eu5jxFU1FFc24cZfZ3L6aNnqJ2AgaqczfMmwkcVsQszyRvZkf/OfvQaCRZfIkKbkJJUe+tfa+Dh2ZGQkCjYGvEwQ6STo6TEtexlF9D47HsA+hOEDDYCR+UShNI0gDaNmjN9uG54/Zw/LR4jBdHHkTQi5mtXox19yQMbdt9b9vUSq60JLTuGxr1JM2HvmEs5fDLI6sLVcSU3ECGt6AhjdYsdQCIEoMWX//uaIsRo4R8xgQYzMQZV7/yQ9SclM0TeDaaX6dUvzrb0PTBBpS7HxfJwh1BgNp5HUdXCfD8+SNyhF9L64nbz40TQpHEsv3MpKt5QY/7+eMpYCJFfySV4a9104vAV0NWTYyg2cWpBls1KURbDYSLGvp4ztdPV+269DLy0Xn6iHzDZ/aWAYX5AS1hZ7N0QdfoBWUEJlGzQ1olno0S4NlewcXM76EtxC8Yrx2kSF0GSjBu8BsBGFTrI3Nbv6eyN7CVX/tjVy570qi2EAIsMyMkpNQdhP619w2PGOiWJ67fiBNB4Bj58FTL+OYsRfHlXpXnK0yeJobjngyiKobeUYqD8y9eDwv7zdBH9PHxQG5JIZtdsTxoxp3vjlbtZmc1pNWrWRyQEktpVKZPPwHg8mVE+nYMK/xlRMFxQTLYl9vP3QxjZS6Oxhq5HIDvWBpMG5AhQgHk5gSPc6Iea75a3czc9u1GHqGbWV4dkLJTfGvuxXHyiDvZyyuk++PjLxtiaE+HtX3SH305N8/TfP7l2R07QqNLDQzTUfXbhqaBtuuEGzfubrrMY3Al2bwzII0g54rmJ1JmGmOeganXaNWbxQwbVQi5uoBc/VgwgxmGbT7NscefI4Fv4wfjapnZkr9ZVteFlNUO0njPrqPKfb1FsZdtVVcWH4wfg5g3TVSmb8pbDRhWxCzvCBu4+1/5zoa3oCZu27GtRIMQxAlBoPAZBCY9AKTMDLQNPCchIqbUHITBtfeDrogTXQGvo7va8PDtMgalkrSHC42G0KMomvF++IwTRL5liYjsziOQB7IV1wp+wHPlSia7EkDOVW02ZhuNsZLEVt9GVmbtspg+DoFdAfSEC4MynRDF13PaKxS7ECWdPYih37kcKpXYe/br2F7M5BN5pHJIDAYhCZ+aNIP5HshwLFTyq68QQmuvw3XkZnOIMivVSCvVxDIzKFlSuEbN/KOyzkbuQtBcTMy03+VhZb8vZpNGfVsNqavIwkjDZ58mtdaLt2BRa0cs63hs60RTNyIyOfXaPctjj30PGcGZcLYouIEzJRkdrDinL0UtyBOdWkIPzcqGx3vI1SN8+ePMn+bj82ukU9nd3LVT72NK5sLlKyI5r5bsE25rsaP5Hnb800GoUmaapiGoOzGVDx57hqmAAFhHogrDMeSM9fYg+vK4GnR316UKo4qNcb0MQ/GxfH0gJymyWDc1deJcy5dLHrS5v3RROflyhCLx09OGLUmqjMWt1SAzD61ejbHH36ell8ijK2h4ai7PnXXXzFgCjJo2glk3/YzJ3bxvg/U5edjHT8ypC4GUh/7gUWSaui6oOSkVLyY4PpbKXkZlpkRJ/rQGAa+vF5hJIOnji3vZxYHT8+3j/N88Acw25dmcODrVCsZM82UmZlkInNbkGXI/vunDvBa28UyM7Y1fLY3/WFv5zg93+TYt57lzKBMN/CwzZiZ3Ayu5tqMfq68j/nqZx5jkPcRFu0vRYawRE+1VZwHyvxdQja7sPVEjeNiFz/8v1+DH9sMIptB5NCLHJLUwDBSKnZI2Q6ZvftmSo4sqxuEJn1fHqT9wCSKdXRdUPGk2Qjzw1TXRZ59kofpYKAThLIEY1hOmkdEN8JBurgnLc1kT9pymSeQqwzabTlhtN23iRN9GP2cqYVLsk/TxK48lh1cqTfteKfGwYU55spdHDOhdudtuHaKZ6cTphPkUJR+LniDwKTnWwSRNLiunVJ2Y8peQnjD7ZRKGbomhjcmfqDjD0bCt7j89+g6Xa8klten0TtEq23gOIK5mYS52QTPW/o3EwLaHZ30u8/yWtvFsVK2z/jsaPpL/l7F47sDi6Pfeo4zgzKDyKFkh0MzuNrIZ0HRR3jfZx+nnw84AA2P/jBDqCKgq2OjCJtibWx2jXxB3Mb7P3aN1L0o18jYxo9sBBqOGVO2QypOyOzdt+DaCVGSG40xjSwCchU3oezFhNffjm1nZEIb6qPvjyo1DH1UVeN5giP5mbuewTgYVc8UmaeVyhBhVJ0xraWiWQ2ZqYbD/kEY9RAe+9aztP0SncBF06CWB0zPVqHx0MFraHoDHDOmdofUR6mRyYRWpakmtTEs9HFkDA1DUBkz8OVShutmRJGWB7lHwVM/0Iflv6XSKGtYVEFNu2e4WBRmfXbwKmfOyMqZmWbK3ExCvT49WBqEGukTz3BiwSOKDebrATtmB9TL0//GQWRw5BsHaPllWn4JQ8+YKfVo5qWiy80+WO719iKH+z79CAOq9KmSYA2nppfpqD77NbBRNFKZvylsNGETAr4r3sI27Qhv//BdlJ2QshUNzUeS6nKCZejSD2X2yY+l+pRyUzh3901U3ATPTvAjmSXs+xY932IQGmSZNiF60Q23UyrnkVN/JHjjEdFh+YU3Kr9w3cmJn5eCNM0zgwOZeRqfVrmcGRxfZXCm49AdWJTchLl6wHw9WBJdGxe7ojdtueygEEjDmJhEqUkQW4SJRZCYxKkM77qWvBmRhv0WKl6yJBsZRMZQ7Pq5MSwMfNlNpOhddyvlcpabeAgCbYnoFdfLNJC9hm5+o6LL8qYiy3ux8Acw0zvI6TMmYaTRbKTs3BFTqy4zfnygkTxxgOMLHrom2Dnjs2NmMHHzsZieb3L0m9IM9kIXz46YLfXOyQzCShHQwdAQlukqQ7iIjSJsirWx2TXypLiCM8wzw2u842P7KNvhxHkcJNZQG4s+7iQ1MPPAacUJmL37Zqol+T3y3M01Mq+oKbJQ1VI8PHc9N5PZQl8ajsFAtlsE4fJVNbZz6YOni8sQz2YGYbI37XTHIUl1ZqqyVH+mGi2p0EjSPGD6kCxHHM8OLg6YFj1oUWoSJhZhMtLJNNOHAe2SHTG772YqXkzJmTSGSarR862hge8FFoMpBj664Xa8UobrCOKYYYC70MYg0JYET113VP7ruBd+SN44aQLtFjS6h2h1DEpextys1Mhp/50kCYjvPs3xMyV6vslsLeSKuQGNyvK9f1Gsc7rjcPShF+gEJdAEM15/GDBdixks6Ec2ncCbWM9kEwwraMp01KTRKWwUjVTmbwobTdhADhLpUSWkhE+JAA+BjkOAR593fOgNVJxwYldMsdagF7r0cuEbRA6Z0Ibmo+IEzL/pFipuIpu3/ZHgTTMb0Q23Ui7JTGCaIgXP1wn8UUnpeER03GgUwnexh24sNoNCwEwzYXZW9kQsJ7z9vk725DOcarsEkUGzGjHf8JmrhUuEDkbZwWMPyexglMjddnFioOmC2VKP2XKfhjuYyBIWk9MG0ehmpB/ZRImFYaSUrYiyEy4rekU0tCiPKW5UskzDtjIqXkzFTQhuuI1yORuWlaRpbuSD6b0URXlTERW1XWnmLfvC3axkGbQXwDpxhEol4/prwxWfOwg14sf2c+xMCUMXXDE7YOfsYKIHYhrFEJnT/Qq90KVkh8yWe8yssUx0nCIC+tVPF6O1q0NDWKEz7JO4nA3hRhE2xdrY7BqZCY0uDYJcGwNKRDjoZHj08Bjwzo/eSdUJJkr441SnHzlDjexFLmFsYejZUB/n3ngzFTfGsVIGoZkbjslzd1rg1LbEsP/ez/VxMBidt44tz1qvJGQWygXPO//JlathsRkslzJmZ2QZoucus1oghYWWQfbUs5zpOsNSxLl6MDTNiynKEccDpqaeEcQWVSfIz+TekimjRUC7N2bY/cgmEzquFQ2zuHNvvIWKF08MsYGxwGluDscNfHEvE15/69CYG0YeJAg1ginB0ySV02Pd/H7GdSbN/IU0h/4Aaq1Xee20yc03BssGSUHq6ekzBsHjL9DzTbY1Aq6Y6y97PQriRON0x+XoQy/QGpTQdcFsucdsqbemMtElrz226AQe93/+uxOGsEKXEl0qdC77DOFG0Uhl/qaw0YRtOYSAEBefMgElfMp50642MoUfvoOKE0xkCotIaC+UoleIX5rpOFZMxQ6oOKE0hV6MhryZ7vrWsDSxH0iFcixZj1+UJpZLGbYtZK9bbjSG5aS+bLBfXE56tMhAORcna5jEMrLW7MnIWtF8vVwZIshDtdUySJ86wOmOi22lbGsEbGtMr7kfXo/YwDQyskzj8Dee5Uy/QjvwsIyE2XKf2VKPmrv81Mk00/LrMRK9QeQATBj2uTfeSsWLl5igMNLpBWPRUN8ijKUySdGTvROV8kj0CoqoqBxCkw+jCUY3K4X4ue5I/MbHpa8FIcA4cgjTEFx91eqig76vET72LMfPeFRLMXu29WhWV/e9Pd/k8Dee5/Sggh/Z1FyfmXKPuXJv2X1Xq/09VjKE5Vz0Lpcewo0ibIq1sRaN3Cz6CJAKfZE+yuEjxSJzjz7v+tidVJxw4hwozuGimqYXufiRjaFnlArjcfdNVL0Yz0kJY2PZwGnRZjEeONV18oFfucEYa7kojMbi4OnFrNIY9KHZk2WIUSyrM2ZnZM/gcsYmCDWy7z7Day2XQWDSrEZsa/rMVqcHS0Fm65JUx7FSugOLI996jtP9CkFsU/cGzOQB0+XO5PEsbi/Xxl7kECfmMItbdgLm7r6ZipdMDHuDlQOny2ULC7Isr6wZyxj6wWiwXtFv6DhSI49qMoDqOOcWQPUH4D9/jH139ldVlpqmkD7xNEdeKxOnOrvn+1yxikApyMzg+P2KbSZ58Lp3TpUzE79HbNH2PR74wsgQXq4lo4U+wvprpDJ/U9hM4jYNaQq9oRksxA/AZSAF7yN3UHWDJXX5QWzKKGgRDY0c0tSYagoNXUyUJvZ8eZjGiT5Rjx8ORW+0O2dkLibLFIuJl8Ppa3nvmu3ILNSFiIoWZYinTptoGlxzdUi9tvLNuR9oZE/s50TLHdbcb5/xVyy1GCeIjOHh2gk8PDtiptRb9XSuIltYGPV+LnppamDn/SxVJ2T2jbfIKPWiEsksYyh4RYlMP5DDDywzo+JJYxjecBulXPQWv6Y0lRPvCsELQ40glNcwiuWDDR1sWwYAHFtg24JD7B2tpzDlyO7AB+fkYTw345qr114asrBg0HvkBQahwdU7u+ycWf0aByHktLTD35RmME11mqU+c3lm8FyjnuPP3w1dvvqZx+hTy5fvQokelVzwtupYbWX+Nidb1fwtRyoMfEoMqODnGhljYxLj5dMO3/2Ju6jYIebYqpmiHLwInPYilyC20BCUnZEprHhyCneWacPA6XhvIUz2dEc3yp614ia/CJ4O/LVVaVyIypqicqbZP8TpMwbb5xP27olWzG4tDpY6VsqOGTmgZFrf9rTvb/dtjnxLnslJasjhdvmE59UE6BZncfuRQxCPDLtsf7mZaikezkUYZ3Qvs3y57+Js4TjDzGFe9hsExUqu0XUr7m2kPmZL9LFYT5Em0GlDevAYb9y3OvM38buEGsEjz3LstMdcPeDqnT1ce/UVKX5ocPgb0ph3Q5eqEzBX6Z53sLRgEFm0g9LQECZYuPhUaG/plgpl/i4xl5uwLUcmNAJKw308PuXhotYiCvruj99JxQ6WLBJdiyk0DTGsxx+PhvqhFL1iEml0wy2UShnlUjaxviHLcpNRTPMKJssvxs2h4wiOaHuG+wrXGmHr9yD5i6Nce03I7MzqDps0heyJpzmx4NEdWMzUQnbM+MxUl9+HtOTn5mWJxXQu14qGZYlrjbSFiTnMFhaiV5SQVs8SCQUZ9esVhtAfDZ3RNLlOpOLGhDfI4UCLr9W0v00USVMYRZrcMZnvOoxijSTRSFMNz8uYn0vYvm2pCK+FINToPPg8Z7oON17ZYr6x9pLONNU43XU4/K0XWRiUsc2EbZUOc+XuskuP10qWD5X56mcfzzOEFXnDSGeYIXQZbPo9hMr8bU6URkpiYQ0zhIUpTDGwCSjl7RVVd7KSBpaawqLvftwUzu4bGQ+QN9hFL3fxloxNIq2WZDBODjKZDMbFMQShPqyuCcYqNuSaCzEsT3QcwWFt71Aj11Jdk2VQPnWQEyct7rpjsGptHQw04scPcKI16tvePuOv2oCkqUarb3P0QTnhedwMzpT6Ky46X/o7jK7N4mqaxTMRKt7SPrsicCorn5bJFrqJDJyWs6nTO8efK8x1MQx1ua8w0oafiyJNDrPRoVpN2bM7olQ693t0ISB69Bn+4liVmWrIDVe2V5UJXPwcnYHF4W++wKl+hSzTmSn1mK90aXgXRrOK9SBf/fSj9KgNK2hKY/2DJXqbPmCqzN8lRgnbysgoqMwSStGrkGBiEQ2XZL/7n+6b6CcsWKspFIK8b6IYOCNNx1oyUIU5nIiwhaMImxAy+jkswXAEh7U9mGa+GD2Prum6LAm1TxzCMOD6a9duHLJM9kGEjz9Hu28zVw/YNTegtswUruUY71Hrhq4UpHKPmXJvVUtcp5Gk+ui6LIqElu2Q8qIo9bS/8yAci4SOXSvTELLc152e2b3UBKHGiQdewrEybrt64byeaxAYvPp1KXRhYjFT6rG92rlgQleQpDqd0OO+ex6nRz3fQxhTyQ1hhfamKofZSMKmWBtKI1cmFE6+C60yVkkj8hH4Pd710TuW9BPC6jOFRfmopsl+rNEgE4vu2AToswVOCwpzGOTGsKjSCENZXQNgGgLHEbiuzEIdEnvlEvsxjURAvw/RS8e4687BisZmOYJQI3l8P8dOy96ynbODVZcjjv6OsNBzOPKt5zkzqJBlGo3SgLlyl6Y3mMjOrpbCcPTHrs8gnw7r5vcvs/tuolqSPfTTSlmLad3jQe5i3dZ4m0U5v1YXc3DMSggB/nf2c/B4hTuuP03FO/fsXZJqvNZyOfzgS7T9EhUnYFtVBkutc7gOyzEauvY4vWHAFMp0qdCmQgdX8y/Yz7sUbCSNVOZvEZejsC1HLKwJwSv6CV18PHq88yN3UnV8PCteWkKxSlNY9UYLZqdloIp+tfEM1GoO0iLCVghfkYGKYvm+yECZlpx6duWulctaVkOWyYzgkVMl/NBkz/Yeu2YHy/Y/rER3YHLkm6MetarrM1PqM1funnXn4NkY7ytcHKUu2XLYzFwuemV3emZu8Q3KeGZ32ooKx74058zhL7/EjhmfHTMXRhTSVONUx+HVb75Myy9Rd322V9vMlnvnNCHtbISJSdv3uO/zTw77I4pyGDlUZuP2D24kYVOsDaWRa2dxJc1omXkyLB1918fvouoES8zJcqZQ18TUnsJi5+75Bk7HiWOGAdPifaGNhV5qmlyNsHN7TLN5/mV4fqARPir7titezNU7u8uuK1iJolrjyLdeoOWXh9MrZ8tyncH5lO4XLRbj8xD6kUOaTQ6bGQ9qL+ZsbRaFMVwus3ux6PV0Dt/3Cm+//cQFe8523+Lg11/kdL+Koadsr3bYVumc933KNKYFTC2iYbB0o/cPbiSNVOZvEUrYVkYIcsEbmcLx0tESPVk66gRTo0BLTGE+aMa1IjmtdGz6aGGaigxUz196kNrW5EG6GtG7FESRxuA7suZ+e9Pn2iu652QCYVR2ceSbz3OqXyFOTRreqEftXKKe08gyjX5sDwcc9MLJ8pjKmClcPIF0/LWutKKi5KSUnATbSuldfTuWJTBNgWWCaQkMXaxYVjqNOJZTZ7Wn93PkVInXX3tmzZnX1SAELHRtDn7jJU73q1ScgB21NvPl7nn3Ca70M/uRw1c+/Rg96vQ3cPRzIwmbYm2sViOVPp6dRJjD0tFCI1OM4RC2d374DVSdgLK9tE1gmiksBs2MTx8tTGFBETgdP3OLbOHiwGnJW7l0/1KxsGDQ/vaLxInO9bvbzNXPbQozjKZXHnlQmkHLSJgry4ElNTe4YK/Zj0fDZsaD2rYZU3FC2Rv3xluolqabQlj5WhWBU9eW+miaAssS2JbAMGW29lyC1FGk0enqRE88R5rp3HH96fP5MyyLHxoc/NoLnOjVEEJje7XNjmr7ohjBgiA2aQcl7v/8d+lRJ8HM++ulIdxI/fUbSSOV+VuEErdzY1Q6WhlGQhNMbEJK9JbtlSiQkbaRISwibZ4dTZRfVBfV5IeRno9yPnu2cD1EL8vA//YBXj1Z5parWszWzl3gxp/zzFiPmqbJMc3z5e6Kk0TPlcKA9M5iCosy0OX6QopoqB/J0pgk1YhigyjRSVKdOJ8El2Vr+wVMI6PkJDSr0aoHDFwI2n2Llx94mdP9KnVvwK76As3S4KL/3DTTaAclvnrPE/SoE+Lm47Q7w7f1aJbfSMKmWBvK/F18AuGO9RNWCPAAQamYOvrRO6m6wdSBGuPTR4sy/vES/uVM4XjgtFiSvjhbWHYvfQZqnMFA4+TXX8bQBa+75sw5B0nHGR9Y0gtd+fe5gANLFjMe1O6HLt1zMIVCjPpAw9ggTvShPsapTpzopJm2rD4u7kEdxzIzql7MXCNgW+PCmeGVCCOdV772Asc6DTRNcEWtxc5a66JUzIwzGrj2OF3q+JQxSIfB0vVqpxjXR1h/jVTmbxFK3C4skbCHEdDBUPDAY0CJ3tTdS+NMM4XFnsKKHQxLYxY3ai/OFhYGcbzsouQkDK67DceS07dsW0bZLob4hZHGC398iLfddnzJTqLzJYp1Dn39WU71q3QDbyh08+Xumhrj18q0nol+bgo9K5KvI78+K5nCzY4Q0oy/+MAr9EKXnbUWu+oLF/Vvvxg/tvjzTxbZwRoChkIns4MXX/CV+du8KPO3PoxKR0caWUwdLfrtv+ef3kXZDqfeNC9rCseW18/ly+sXD1tZKQPlOXKIiWen9K+9HduWg2Ns69wyT6uh/c1nCWODW65qXdDnLSpnDn3jBU71qwihXfCBJcsRJibdYFQ+ei6mcDUIIQ2fADSkEVzv6qdx/NDgpftf4ninQcMbcGXz9AXNyJ6NKDFoBx5fvfcpetRIsCjRo0p7mB282H8vZf7WASVsG4uVeyVywfvEXVScYKrgjdfkF5mofugg0FZlOop+tUFoEoQGYSzfokRG1wpMI8O2MiwjwzYzLDPDMDK6V70O05QiaBgCXcsP2/xbRSYP4jSTPRWll57idMchig3efMvJi37IdPoWr37jBV7rVwGYL3eZr3Qv2WErBPmCXndJI71nRbKv0A5p7ruVkpMMe1q2AnGi8fL9L3K4NUPD63P17Kkl61QuBUV28Cv3fJceNSJcPAa5GZS9ERfyb77RhE2xNpRGbiyKfvvxyaMZOl6+qumdH7lj2X57kL1RI1M4trw+nwA9XF7vLTWFRW9hPzDxQ4MwmtTI8aySbaXY5kgfLTOjs1fqo2kI9LxMUddA03KNzI1KJiCJNYJQw3nhGU4seFy9s8vu+YtbPZGkGqfaLoe+NRpYMl/pMF+5sANLViJMzImg9rgpLNshZTti5u5bKDnJsi0WmxEh4FTb4YUHXiXODK6eeY35Sm9dXkc3dPnyZ6Q++pSxiIZm8GJUz2w0jVx386dp2pXAF4HtgAD+nRDi1zVNmwH+G3AV8ArwASHEgqZpGvDrwA8AA+BnhRCPrfQzlLBtDsbHbBfGUC7MlhPV3vkRubC+ZEVTBe9spqPiBMzfffbyxOHrSTSixCCKR2UXSaIPF9UmmRwak4n8LRdFXRfomnxz7RTXSWmUo4vSh3Y2oljn1a8/x2u9Kv3QpZlPrpwpXfxI12KK6+NHthy3Hdv4sU0Ym2RCxzITSlaEZ0U077oFz04ouSmOtfnMoRBw8IHn+IvT8zRLfa6bO3HRy13O9nr6kcOXP/14nh2sYhJTpU2V1nmL3UYTtq2E0kgFTPbbFzq5ln57mJwAXRjD8bVA4+Wji3fFLibLWKKP8bg+phppNipVFEjTp2mjgKllZLh2iuckzDeC88p+nSvtvsWr33iRU70qup6xrdJhe7WzLkG7MDEZFPoY2QximyC2STMdw0hH+njnLZTcBM/evMHTfmCy/8uv0o8cbt5+9JJmAqcRxCYLfpn7v/AkPeoAVGgPNfJ8S0U3mkZuBPO3E9gphHhM07Qq8Cjww8DPAmeEEJ/TNO1jQFMI8VFN034A+AdIYXsT8OtCiDet9DOUsG1eioX1k2O2PQxSXPqU8t2EVcdfVvBWMoWOGQ8zUTP7bpGlLpv0MD0bWQan88mVZwZlGt6AHdX2BVlsfiGIU51B5ODHFn5uDAexTZSYCKFhmzGeFeNaMc07b8ZzUjxbRq43amRUCHj+Ky9xpNXkjt0HL2rj+1oJE5OFQYn7vvDUUOyqtIbRz7WI3UYTtq2E0kjFSkz228u3absJK1MGzBTEqT4s258whfmC9JIdMXPXzZRd2SN4oVsXNgpBZPDq157neLdGKnS2Vzpsr7Yv2L7X8yFJ9WHAdFwjx4OnnhnjWhGeFdPcdyuek+Ja6QXpo7xYdPoWj/7pcXbVWlzZPLPeL2dIkuq0A4+vfO4putRJMSnRpUaLCu01t1JsNI1cd/O3GE3T/jvwr/K3dwshjuXid78Q4kZN034j//d/zR//XPG45Z5TCdvWY7ndhGdbxjuOEKMF6YM8E9WPnOFh6lgxJSuiNGYMt0oJRtGn9srXX+LMoMJMqc+u+gJ1b2NMjpxGlBhD4QsSi0FkEyYWQWyRCR1dy3CsBNeMcK2E+h23SPGzZfZwPaLKBa8+cICj7Sav33Vo3V7D2UhSnZZf4iv3SjOYYlChQ5UWNRZWNIMbTdi2MuulkUofNxeTuwknB8zIfvu7lh0wU1D0FMoslCOrNmKbODEx9Awvz0SV7IjZu2+h5KarXuS+0YlinYNfe55jnTqp0IcDSy5VaehaiVN9aAiD2MqzhhZhYpFm4/ooA6j1O26RlUn523rqY5bBA394htuvOHTOe40vNlmm0QldvvzZJ+lSz1sp+tRoUaWFp61crrzRNHJDmT9N064CvgbcBrwqhGjkn9eABSFEQ9O0PwI+J4T4Rv61rwAfFUIsq1zK/F0+LB0wI5fxFgNm3vVRWRazmgxMEJv48agEozhY00zHzEswSnY4LFEsu8lZS2U2IkLAa22Xl7/2Cv3I4Yr6ArvqCxtW5JYjyzSCxCRMLPzYIkrl9QvzzyWpIUuO9AzHSHDMBCt/X73jtmHvStHneSGipUmq0erZPHvfIRregGvnXrsAv+mlYdQ3+CQdGqSYlOlSZYH6IjO40YRtq7KeGqn0cfOTCQ2f8kSmMMbGIhqWjn7PP72Lih2etRokzTRZnZGXJxYB1CjJ971asTSGVkRzX9G/trGzUMsRRno+sKSOZ0fsaZ5hptRf75e1JrJMI0xNgjx4GiYjfQwSiyyTUW1dz3DNGNtIsc0Ex0io3XkblpnhWCmWIXs7L1QQvDDZr5yZY9+Vf7GhqmNWYrxvsEuDAA+PATUWlpjBxfoI66+RG8b8aZpWAR4APiOE+L81TWsVwpZ/fUEI0VytsGma9vPAzwPs2bPnroMHD67485WwbV1Wmqg2FLwVBsxMo4iyFaZQCp9FlFhomsAx42FEtHHnrZTyrOFGL5eJE40X73uJI60ZZso9rp55bdMcxqslzTTCxCRKpSmMEpMoNYhTgyg1iVODODOGYlhg6BmGnqFrAkOT77V8f5AQeU+L0IhTgyQ1yITs06g5Pjtr7UuyBuJikmUa7cDjy/c8NTSDFTrs5Xnenyjzd7FRGqm4WCweMDOgDGi4+KsaMLMYIRhWZ4zrpD/Wv+aNaWRRoujZG7+ypt23eParrzKIHPY0T7Gz1t5SbSJJqhOmZq6L8n2Y62KhlUlqIBj90romMPQUs9BHfaSPGgKBhhAghE4mtFxvTdJMlqvOlnrsqi9s6nsNIaAXOfz5p5+kQ5MwzwzOc4yfTB5a8vj11sgNYf40TbOAPwL+VAjx/8s/NyxVUSUtiovB4gEzwdgy3hI93vHhO5ZdxrsSRTlp0bM2XoYRJ+aYOZTlF407bxk2bjvWxuhfEwJeuf85Xj69jSvqC+xtnt5SArdWhEAOL8jFK83k+3G0fMiPpadYxtbsGx2nKIO5+pP/fMnX1lvYthpKIxWXmmLAzHiWMMRFJ8uncvd518fkqqa1rrVJM204/KvQySAelfAX5rDIHjbuuhUvHwyzUQKoQWTwzJ8fpBt63LLjCFXn/Hf4blbSTGpikmukKIbgCR0hQNNAQwwNoW0k2Ea6IWYNXCyKzKCmCfb88q8t+fp6a+QlXnm9lLxc5TeBA4Wo5fwP4GeAz+Xv//vY539B07TfRTazt1cSNYViOSwtxqJFjdbwc3LAjItPhW984dGJXonV7ibUNHCtBNdKaLI021OYwyCRTdvtx57heN7LFiWy39DQM5xc/Fwzpn7nrcPa/EvRv6ZpcPX33MjeDB7/0oAXT23j+vmTF/VnbmQ0Ta7+MNlcpbAXE10XNDZwj+hWQWmkYj3QNPLVEgNmGJWrp0IfGsI/+9x+BlRIsCZKR9/9iX0rVtIYuqDqhMsapqKktChRPP7Q80O9LMr3LSPBNZNhILV2520TGnmxg2+unXLXD+6m07f49h8b3HnlK+syIXQjYOgy82ezNfo9LwSaxrpPMF2JdTd/wNuAnwae0jTtifxzn0AK2u9pmva3gIPAB/Kv/TFyitmLyDHWf+OSvlrFlkbTwCXAJaDJqeHnx3cTfvXep4a7CQ1SSvTw6POuj9+14tTRiZ+Rm8Plbp7TTMvr8i2C2KT92DOcyOv0i/p8ITQMI53oX7ONlNqdt8rdhNZo/9K5mEUhZHTTMhJ6obvm71coFBcEpZGKDYOhZVToUqE78fnx0tH/97Mv4FNBoGETrrmSxtAFFSekskI2LUoMgnzgV5hYnPz2s1IvE4s4kWX3hUl0zERmm8yU6htuzfu702F/97n2sCWpRpzq+esxL1vzp9h8bIiyz4uNKmlRXCwSYY410JeHU0ctoqEpPFsU9HwoTGKcGoT5+2HfWv7vKF3av6Yh0PJ9hLJbTZrSNNPznUxSnV0rZrbUY3fjzLruqVNsXJof/z+WfG69S1oUa+NsGqn0UXEujFfSFPpYVNKM9vfKIWwXY52CEOS93WaukSZxOurxLv6dZsaSMv6iRFHXJoO5qdAngq8VO2R344yqglBMZZo+wvpr5EbI/CkUmxZTS/IloO2Jz0+LgmboOAR4+SqKihOuaqraShi6GBuNvHrxKXrYBHJYCYBAw9DkUJOt3q+mUCgUiovLaipp7vv8k/iUl/QTvvOjd616MvdKP98xkxXXWSxHlsm+tUIjBRoaQg41UYFQxSZHmT82dlTzp5KXaJ1DHXUDg/9kXnsRXpFiOdZ0re79k+E/K7h82vjLuAx454elKSytsJ/wQlD0sCkUCsVm5Vz1EZRGXmrWfK0++9XhPyu43GO8V1bSfPxOynZ4ToZuLei6QEeZPMXWRJm/Dc65Ctu5fp/i3DnXv3mPgN28jE+Zr3/hcXxK+X5ChqO23/HhO6g44ZonjyoUF5PlSloUikvB+eic0shLy/n8vXsEzHEcnxJ/es9+fMr5uqYEj/6w575ir33yqEJxOaLMn0KxAXA1Hxd/SWlMiDdmCst5v8SkKSw7IeWLnClUKBQKhWK9qGpL2yvGe+7/5J4D+JRJsCZM4Ts/dhcV5+JnChWKzYQyfwrFBkXXxHDUNmOjtpeawlJuCrVRT+GH76Bsn39PoUKhuLzZyG0Risub5Xrux03hn31ulCk0SEem8AL0FCoUmxVl/hSKTcZyplBOVpOm8BtfeDRf0FtCoGMTUKKPy4B3f2IfZTtUPX8KhUKh2HKsZAqLQTNfvvdpfMpEOPmgGWkK3/GRuyjnffeqxUJxPmzktghl/jYh73vf+/j1X/91DMPg3//7f8+999673i9JsQy7d+/mi1/8Itu3b0cIwb/7d/+Of/kv/+VF+VlystrS8lEhIMLJy0ZL/L+ffYGAMikGFhFubiTf+bG7KNuhioQqFIpNjdLIzcGl1EeQprBChwqdic+nQh8GS+/7/JMElAiRu22lpg54+4dGffdq7ZFis3PZm7/NVtKi6zr/+l//a9773vdy+PBhvvOd7/A//sf/4MCBA+v90hRTSJKEX/qlX+Lxxx+nUqnw6KOP8ud//ueX9HppGjiEOITAmYmvxcIamsI/+9x+AkrDSKjLQE4g/YicrnaxJ5AqNhcbOaqpuHxRGrl52Aj6CHJxfZkeZXrAyeHnixaLgBLf+tVHhlqZoWMTjgKnH993SSaQKhQXisve/G023vjGN/Liiy/yF3/xFwD87u/+Lj/0Qz+khG2Dcvz4cY4fPw5Ar9fjwIED7Nq1a8NcL0uLsWhRozXx+VTowxLSr31+1FdYlJB6uTF8Vy56asKaQqHYCCiN3DxsdH0cb7FoLvpaJOyhGfyTew4QUCLGngicvuPDd6qBbIoNiTJ/m4xdu3Zx6NCh4ceHDx/mTW960zq+IsVq2bt3L3fccQcPP/zwer+Us2JoGSX6lOhPfL4oIZUlMmW+dM+zU0Xv7R+WJaSqREahUFxKlEZuTjaTPgLYWoRNRJ2Fic+PB07HB7KJsWyhi887P3YXJTvCNWPVW6i45Cjzp1BcAsrlMn/wB3/AL/7iL9Ltdtf75Zwz4yWkK4leMXCmKJExiYfZwnd8VIqeZ8YqGqpQbGA2W1uEYnOyVfQRlg+cgswWFroo2yw8YhxA4BLg5P2F7/rEPkpWpCpqFBcNZf42GUeOHOHKK68cfrx7926OHDmyjq9IcTZM0+QP/uAP+M//+T/zh3/4h+v9ci4aK4leLKzcGJb46r1P5Q31DqBh5eNoXHze+dG78OxITVpTKBTnhNLIzcXloo8wyhYubrPIhEaEi0+JEI8//uzz+JRIsNDJhvr49g/dQcmOKNshlprWvaHZ6D3xl7X524xRze985ztcf/31XHXVVRw5coQPfvCD/ORP/uR6vyzFCvzmb/4mBw4c4Nd+7dfW+6WsG7K3MF4yZQ3Go6EeX1nBGL79I/so5cZQZQwVCsU0lEZuLpQ+yt7CYlL3YjKh5Zro8eCvfmeolYuNoYPPOz9+N54VqYndirNyWZu/zUiapvzCL/wCf/qnf4phGPzWb/0W+/fvn/rYTGjomrpJXk/e9ra38df/+l/nySef5PHHHwfgE5/4BF/60pcmHnc5X6vloqEgM4aF2N33+ScJcQnx8lLSBIcBDgFv+9BdlO0IT5XKXBI2elRTcfmyFo1UrC+r1cfLGV0Ty1bUjKaReoR4fOmeZwnxiLEBsAlHwdOP7sOzYhU8VQDK/G1KvvSlL63qcNzPnSCgRI8Sfcp0KdHD0NTN8aXim9/8Jtoq6hdH16pPiZ66VjkyY7h0WS/Ihb0h7nAMdyGACRYaGXa+w9Am5O0f2TcsJ1UDaBSKrc1qNXIgynj0VYn5OrFafQR4StyNQ5BrY5cyXWwtusivcGMzPo10MUIwDJaGuHz13qdyo+gihsFTH4eAt37oLkqWDJ46ZqL+f7gMUOZvC/Pzn2qQZRrdcCf3ffZRTrOdQ1xLKoz8wBiZjMv9EF1vlrtWmdDzToDu8FpZWrzeL3dDYGoJ5nA30ySLha/IGka4pBh5uUyATSAzhx+5Gy8fQmOqXgoAklSnFzk88NlHiHCIsUmwaHKKv/7x9X51CsX5c5Sr8Clhi4AaLaq0KdG9bKswNjJ/51M1BtEs7aDE177wBCfYTSxsbEJK9KjQoUQXRwvX+6VuCDQNXAJcgqlfL4KnIR4P/eq3c610iHEQectFoY9v/ZAcQONasZpOuogoMehHDmFi8uAXvk2CxY9/6tr1fllnRZm/Lcwjh66i7g6ouQHf//993bAOXAgYxHN0Am94iEbCwSLKs4RdSvRVRPQS8tjhvdTdAXXX5wd/+bZhM7cQ0I+28dVPP0KbGY6xJxe8YCKb6+CrazXG2YSvaLAP87f7Pv8kEQ4RLgkmGgIrn2pqEfK2D92FayW4ZoRrJlu2bMaPLf7ok8/SYhaQVQMeJh4DarQwibFQgaLLgc3YE79W/vqndgAwiGb58qdOcpKd9LkRU8TUaFGhTYU2hqYCQuvN/uNXUPekRn7gk1cP9S6ITdpBiQc+/wQn2UkkXEzisQxhD5eB0sdFrBQ8hWJImwyYSnMo/x1hI9AxSIfm0CbkrR95o+w3NOMt3XoRJQZ//CtP02aGAG84ydwixCKjRI/GxzZ+W4Qyf1uYO9+3k65vceLh53h1YYYosXCtiLrnU3N8Zkp9fuJTVw8fHyYm3cDl/nsfp8UcASUQYlg2Kt/3MDXVTHyhef17d9LxbU48/Dwvnd5GkhpUnIC6J837D/zy6ycyUn48SzdweeDzT3CKHYS4GCLNjbvM6Hr0VQR7GVZqsAdpumNsQjwiHB781e8MxS/GJkNHI8ujozJCahHxto++EcdMcMwE29gc5TNCwOl+hT+692VSDObxuZHvqv/PFVueb/3FdTS8ATOlHt//z14/vGkNE5Mzg2u47wtPcYhr0IWgOjSDHVV9sQ5c9Y5rOPHQs7zw2nYGkYNlJtRdXwZNPZ8PfOqa4WOjxKAT7M3vZebxKeX62BtW0Sh9XJliSBtMX72RCoMw18MQeS8iA6gOCRYCDZMEixA7f3vLhwt9lBnEzdKCIQS81qvyx59/iRibGQx28zKetrTcFtgUun/Zmr/LIar5xEszCKFRv/H1XF2JaFTkwu123+bkt5/j4MLs0BDWXJ+aG1B3B/zYp64fPkeaafTyUsQzzHOEq0mEma/5LkxGD1ebnmFRrI4nXprD0AXN225jZyWiUQ6JU53jDz7L8U6N58PtZJkuDaHrU3N9Zsu9ifKCONXphru5/57HOMFuBpRBaHhjxl2Vja4OTSM3dctnuTKhEWMT54IX4fDVe58ixh4KoERg5Rmz4u1NH3oTtpFgGym2mWDp6SUtNw0Tk5Zf4iuff5ouDSocZjeHKWlLhwooFFuVt75/lkG0gyPfep6DC3OkmU7D6zNT6jNb6vGTn9oDyLO15V/JV+99iuPsIRUGZbpDQ6j07+Kz/5UGlav3cUU1pFGRvWkdX97LHGk3CWIbx4qHFTR1z5+4l0lSnW64i/vueXxMH8FjMKygUcHt1WNoaT6EZnnNSIUx1MYYm29+4ZFcH0dBVACdDJtwWFliEvOWD78R20yxCp28hMFUIWQVzJc/9RgdmvSpUeVVdnN0y2ikJsTmcN7nw759+8Qjjzwy8bnNYv5+KnmJFmtPoTfqc/zhf/0mlUqKYYD7wtMs9Bz6vollZjQq0fBNCGj3bU48/Byd0COMLRwrpubIA7Tm+njWpGEYRBbd0OOBzz/BgIrMPJGOlY328OhfVuUy53Ot/ugPvkG5lJJlGsaBA7T6NlGsU/YSmhUpdlUvYhBanHjoAG2/RDd0yYRG1QmouT51b0DVCSaiaVmm0Ysc7vvMowyoMKBCgqXKRi8hRRax6Jkbfx9jkeQfF0IIoCEwSDCJMUjRSdHJMEjQyXjjL70ZTRNoCHRNTFy7TGgIAZnQ+fY/f4gUM38mKcIpBhYRZbrUWKBKa00R8B+MnzvrYzRNe1QIsW9NfyjFurFZNfJcz1yA2Vqd3/+V/0SS6sxUQ2ZqIc1KQNe3Ofrg85wZVMgyjbrn0yxJQ+iY0hhkmUY78PjKPd+lS50IF48+VdpUaamWiSmcz7VqNub4k//+dSxLUH7pKRa6Dt2Bha4LGuWIRjWkWZGBulbP5sS3n6cTuESJhWdHefuLT931J0oSx/WxT5UBVVKMYZ99EeBWMxEuLqkwlmik1MaRXiaYwOh/KoN0qJE6aa6TI43c90tvRdcyNE1W+mhIjRMU+qhNaGQRtC3KWm0CqrSp0aJMZ03/P28Gjdy05k/TtO8Hfh0wgH8vhPjcco/drMK2mIEo8x/Sf8JVf/v7YM88pQpUGvJrV9Yjum3QDag3wKsIRAbbokO0WgZpBrVqRqOeUvJS4kTDOLCfVt8mjAw8J6VRiaiXpdFIM51Wz+bkt5+lE3gEsY1txtTc3Gi4A0r2pCGMU51e6HLfPY8zoIxPBYGGi4+XR9Uup4P0T5O/ymt3vB/ze9/CjiuhWocbd4e0FzR6XXA9aDQFjgu7xUFabYNOV8exBY16Sr2WYloC+9mnafVs2n0bTRPUyzGN3BB6dkIvsDjxoLxOiw1h8ba4vMKPrWHZ6IAKAd6YeZcG/nIz7xuJTGi5abNIMchyqcswyHKJE2hk6Ag0pF3U0JDXS0MMhdAkwSDBzvsXz/eabgZhu9xZiz7C1tHIR9K389KdP8u+X7ybNg67axHtM2DZ0JiVZ+326FVOnzbIMo2ZZkKjkSIEaPsPcLrjoGkwWw2ZrQc0yiHtgZObwTJJatDwBkvMoBDQixy+/Onv0qUhh8gQUKFDlTZlOuosXUQ3q/HF7BfZ+3PvxbhmnvoMuCW4ei6idQbiCCo1qDUEhg7b41dptQ2CUKNSzmg2UsqllDTL72V6NkF+L9OshNTz4HYYG7T7Ficefp5O6BEnJiU7HJrB2iJDKGci2MOZCAMqRDjDgJmX98mpPsL1QwiG6pbmb4UujutkoZGFPpL/i1wfC400SPOMY4RNeN7lwJtBIzel+dM0zQCeB94LHAa+A/yvQoipy3y2irAdyq7mv2R/n33/7Ps4LVpEgcbuXfMMuuCVodoEx4OrZ0M6LY1eB0wLag2o1mV2YD54lXZbZ+DruK40GY1aimVl9PoG+oEDtPs2SapR8RIalZB6OaJejklSjfYgzxAGHn5kYxrphMmo2OHEgSgHljh0Q3fiIDWJJ0oRt1r9vRDw2+k/YeYH30H/dbMkscaunfOEgbwetRkQSNPePgNRBNUaNGYEngf9Psz6h2h3DDSgXk9pNlKqlZQg0DEOPMNCz2YQmNhWNhS7ZiXCNDK6vsXJRRnCSpEhdH2qTrCkzFCWxbjcf89j9KlMmPfSWFnM5WLeFdPZDMJ2ObNWfYSlGrkZ9RHg/0l+mvC9P07p7TdgGFCpQ2Nefm13NWLhtPx3cxZqdUEUQaN7iFbHwHMFc7MJtWpCEBqIZw6w0HUwjYy5eshsLaBWimj1HY49+BynBxWS1KDu+jRLPWZK/Ynl2n5s8eeffIweDXpU0RFU8sxglfZlX174SnYd/y37O7zj8+/j1U6LvXu20T4jv1ZvQrkOSQS76xGdltTUelNeN8OE7aEMmPb6Oq6T38s0ZPm8/dwoYJplGrVSRKMa0ShHVLwYPzLz4PZztIMSSWpMGMK6NxgOXSsIYlPq471P4OcBU50Mb6yCxqOnTL5iU2jkZjV/bwF+WQjxvvzjjwMIIe6Z9vitYv4eTd/Ggzf+As5b7yA1zzCzQ9ZACwFRoHHl7nn6HWkA67NQrkGawN5GSKcts02OA7XiADVge/QKrZZBt2sAUKul1Osp9aosQdT3P027Z9MZWAghD9Eiolb1YpJUp923OPnt5+gELv3QxTBSamOZp4odLpmOGCUG3dDlgc89lpcjlgENd1H9/WbtT/NFid9IP87MX30P4XZozMvIYpbB1Vdto30a0hTqM/JaaTr4PSl07QXZc1ZvQL0wgz2Y82XkM4q1YRa3UU8xTEGnY6Dn0c840ZcYd00T9HxZMtoJPDqBRyY0ynY4HCpTc/wlhrCIaHcDl6//6hP0qRJjq8mwlzGbQdguZ9aqj7A1zF8mNH4r/SWaP/3DxHsydAOuumobrdfkOdaclwHSLIXdtZCF0xpRAI1ZaM5KPZztH+T0GZMw0mjUU2ZnEkqlDHP/05xuO7T7Nq6dMlcPmK2FlN2Ydt8eZgajxKI+lhkcb5eQfYMlvnrvU3RpkKHnfYMLVGlfdisKHkrfzWM3/Tz22+7Erp/Cq0jtSRPYs2cbnQVZ5FeflfcsAP0u7KpGw8B2vQn1psA0YVso72U6XQNdkwHTRj2lWk2JIg1j/zMsdB36gYmhi2H1TKMS4dop/cCU7S/ffp5O4A0NYTEgb5ohXD5gOpjY17tZ72MUa2c1+gjrr5GbdeDLLuDQ2MeHgTeNP0DTtJ8Hfh5gz549l+6VXUSOij1YzQaxfgbHFrReM2huS9E0cDzBydMnAVjoapjWPCcPy4xg6DuUa6DNQDeEphFy7LDGoA8H3aupN6B2tcBxoNMHx3+V4ycsgkDDc++isSNlWy2lUk4Z+Drsf4ZXjlfpDqxhGWL9DbeypxJS8RLSTKPTtzj58LMcPDNHL3QAqLrBRDnibLnPj35qdJMh6++3c/9nJtcajIyGfHMZbPgsYUvMEFDCmqvRDXpEQYbtCnQdDr4qr1OaQK25jYPPgeXAzDZYEDY05NdKlZBTJzS6HWnag5m91K8SNFwY9CAJDvLiyzYDX8dzBY2rbmOunlCtZPi+jrH/aY6cKrP/oA1AvRzRuP317MivkxAMDeH4UJlyHgEt3qpOSNUJzzoZVhMiL+9Vk2EVinXkrPoIW08jZRdzjetnEk6asn/24EF51iYxeOVtnDomDSA4mCXIHKhUQ04c1ej34Fj1KmbmBdU6dLqgtw7x8isGprGPmetSds8mmIZAPPUMLx2t0fNNyl7C7Btu5ep6iGcntPvbOPrg8zxzfBdhbFFzi57BHvOV3vAclX2DO/nyPU9ymh1EwsGjT4UONRa2fEDtuLgSs9kk4gyD1wwcTxp2w4QjR0fXrVKXGmna0JiDjmGjzcAggnl7dC/zins1jSbUrxVYFix0wei+yqHDFnGiUa3fQWNPypX1FNvOaHcMegf2c+i18kTry563XUujEmHogn5gcuLB/bzWrw6ncBeGsOgjbJYG/Minbhr+XjJguo37lqxnCoe6WKar+uwV68pmzfz9GPD9Qoifyz/+aeBNQohfmPb4rRDVBPid5B+RveP76F4zgwZUZ1LKteVLDIqM4K4r5vF7MoLWmJMRs4IwyDODLY3BAEolqDUF9YbsSfMHsL2IqPVkRK1Wk/1ossRC0O0amM8+Tavn0PNNTENG1eoVmXUquwlZBp2Bzck881SUIi42GosjazAyGg/c+xh9qgR4AEOTUUyz3EjRtafTO/nmTR8i23cnibHAtt0xurH846NAY8e2eaIQ5q+AamPy62EAe+qyFyIMRyWi9YYUS38A24JR36BliuE1atRlgKDTNTAPLD/4x7XT3BCa+VAZj07okaYGZScYToNd7jrJybAu931WDpfxqZAwmgxbvCnR27xslqjm5cxa9RG2hkYeza7kP2W/wJs++Zc5mbamPibLYO+ebZw5KfvJZneM9FAIWX2xsxzRbkktbM4JmjOySkNmBWWZYbWSMTubMNuUWSWefoZTbRc/NKiVY2aqIXP1ANdOZWbwW89xZlAmiG0qTsBMqU+z1KfijLJ9RZXFVz79BF3qDKhgEQ2HyGylvkEh4D+kv0T0Az9G0NSwHMH87pWXh8ehvJfpd2QmsLlt0b2Mn7dRLIw0sp7fy+iGDJjOBQdptYxhwLTIDtZrKUGgYeSVTq28XLRaiocDZaqefH2FIWwHpWGGcDX6GMQmncDjgc8/ziC/j1F99luPzaKRmzXzdwS4cuzj3fnntiyxsBhQYdtVNbSZFK+crWgmgGFG8NTCSbIMmrqMoDXmYGZ7/nUXjgcOuIALZwZQTiP+4oVRH1q/cRX13dCwZEaq3QVr8CrHjlsEoUa5lNHY/Trq9ZRdlYw0lUZjcGA/R0+V8UMD28polCPqd97GnilG42Svxountk/U3tfy3jTXSnAqPf7qp24Y/m4yS7iD+z7zKC1mOcpeEmENo2tFBmq9oqevsRPbitl1O7R6K4sagO0KznROkiZgndpGrw07946+7rhwIrShDJkHx3tgmBFHXgXDgMYMMLsXbwaaQBzDa23IFg7xF684ZAJq1ZTGNbezrZHiOoIo0mh3dDoH9nPwRIUo1ofN8o27buOqSiSj3GIkeOPXqRC8mjNqmq97Pj/8qVsmfrdBNEs39Pja5x9ftJNwvOdT9UooFBeIy04fAdpihm2v28HpwEaY03dt6TocOnwSIWDWk3q4+1rZKqFpUKpCGxtm4HQf3H7EsUPSZLS27WVmLzRNWYYf9F7lySOWHBwz/3pmb0y5spbS6+tET+3nyZdniGKdRiVi9q5buK4WYpkZ3YHF0W89N9xXVx4zg1Un5Ic/dfPw9QaxyZ9/8hhnmOdVrkUTDHsGK7Q3VMBzLYR5YeRVOxNas/I+5WxYjqxuyjKYseW1a26TFTMgr+HJaKSRJ/pgWRHHDo/6BbOZvVSvB1eDwAc3eIVjxy2ee8HB0KHRvJPGVQlX1TJMU9Dr6/DMqNKpmC5af90b2FkJKbnpWfWxMISuleBaXX78U9cNf6di/cT99zzGSa6QZaNi67S/KDYumzXzZyIb2r8XKWrfAX5SCPHMtMdvhahmV9T57fQfM/93f4w9d5howHMHTqHpoOsCTZfipWmg6WL473GEgDjSqDrzXHm9bIZfiSyDoJ9H01qyV6I+IzNO1RrDfsPxrFO3p2Magno9k5mneoptC4JQo9vVMQ7sZ6HnDI1GoxJRK8tGbNvK5KSt0Mz7CEfjmovVE4UpXDxptKBoyn7g3sfzKZYlNMSSXXcXuxzx/0l+ivj7fpz6X7qRclV+TtPzawbDicXFNRIZ3HjzHGkqo88C2HvDlCeeQhzBlfVRD0u9KSfb1eqj509T6HVh3n+VhZZBGGlUK3JiWrORUCrJc2AwkNHP8Wb5aklOF21WIqqleHjdp0VAx4374rHa46heic3JZolqXs6sVR9ha2jkN9O/xKE7fwL7fe/ALY8+r2lgmrJCQjfkOSwyeYZ1F2DHHlkVsxJhALsqEWdOyWDbzBzMzAtsOw+ItiYHx8zOJMzNJjiOoN0x4On9nGq7pJk2XCsxWwuwTEF3YA4zg/3QpWSHw57BqhNM6Hic6rT9El+59yl61EkxKNHNS0VbuJp/Uf62F5pW1uQ/Zv+I7f/bj7H79Saalmujtvz9DBog5HWTVU06NW+Om+/irIHwNJH9gldUInpd8EryPqYxA7bsiiCJodsZ9dYnqeytbzYSGvUUzxPEMXS7o/56PzRw7JRmJcoHroVY5ihgevzBUY/94oDptB5CkIHtfmxz36dlBU2far6eSZWNbgY2i0ZuSvMHoGnaDwD/AjnK+reEEJ9Z7rFbQdiOZlfy/2Q/w+vv+QD6jI2mS3OWpfJNiPzj/HMig0yMb0WRomfb4JRG0bK1kKbQ78iG624nX1UwI8tibGf0uDiGXn6ItjtyQEm1MhpQUi7L3Su+r9HuGBjP7qfVc0hSjbKXyMhaJaJelpkngCAyhqsnuqGcNGqZyZghDCgvmjQ6fN2ZRj9y+OpnHpsoRyx23Y33El6IwzQVBv9X+nNc8cHvwXrPGzBMIL8+IpPGblzEpMDJqLRuyHHXjntuPztLRyLX7cjM7dz2kVkvEKIYInOQhQUTP9AoebkZbKZU8muUZUhDv19OF+35S3creU46fM7CuI+P1fbsSF6jfG9kMR59MUXZ032ffoQBVQZUhsNl1IjtjcFmEbbLnbXoI0xq5GbUR4A/Tf8qxo/+BDf++E0cH9jYbq5LGqSx1K80keevnpsJy5ZvayEOpQaefk2e2bPbBLNj7RT+QJaInjpjEgQazUbK3GxCsyHPyVbbQDx9gDNdKZozVWkEZ6oRhiHo+SbHvvUsZwZluoGHa0XM5Gaw5k7e8GeZRid0+epnn6BLgwAPh2CYHSzR3ZD98a9m1/BH2U9y1xc+gGjYUgvH7l8KrczE6P6GXCvJTaHtQrl69iD2NIIBcg3IgvzvotGU17E0FjTIMhkwLcxgEORVTvVJjfQDbWzgmjOclN6sFgPXInT97AHT5aaMFqy8nqmba+TWmpq+GdksGrlpzd9a2Arm74XsVl5+699h+wffTbkiD0aQZsF2pKmzbHjphI1pyeZoyzp7ROx8CHy4sib70NJURkNn5wWuN/m4wmjM+wdlk/X4aOZ6Sq0mF9ELAYOBjrH/Kdr9Ueap4sX5DsLRQQoQxctNGvWH+winTRotGB2mjw9HN2uIiQxhiR6GtrbFtF1R54/SD3LbL/8E3tVzZPm3a5qMPtuOvFa2DS8ct7EsMKwLf72EkGZ9uxfR78nx5jt3y2b4afgDeY0WWjKD6zqCRp4ZrFWz4d89jmVZr75/creS7B2UE9QK0w4wCIyxKWqjxbs116fhDmh4gyVTRscZH7E93isxGrGteiUuFZtF2BRrYyuYvz9KP8jen/tBrvzR15EkGv5AalSWybPVK8m3l16zcdy1m75pRCFcUZYZQdOEbTsFzVmGZ2WWQacFzf4hFloGpiGYnZVTRKuVjDguzOCznOk6GLrIJ4kGNCpS6waBwZFvPsfCoEwn8HCsmKYnzWDd9ZfoWz+y+fKnHs/7BqsYJMO+wQqdNevZxeBAdgevvu1n2P4T76FUGn3etPL7GQccR/DCcQfLlp83l9Gt8yVNYU895PRrGqEvq5tm5wSV2uTjiiqnQiNXuo/p9eXAtVbXpjOQ+3mLe5hmNaLsjvZDDkKT499a3hAu3kM4zuRu5WJqOhNBbTV47dKxWn2E9dfIy878bVZh25+9gc73fpAbPnAH9VqK4whcJ8OyBH+R7JXZIyBJNKJQ9utFoTzYNKTQOa40HC+esIcRT9OWZSznSxLL8dlnXtNIEmkEt+8Uyx7YYQDzwSu028bELrtiV49jy/8us2x0kMqVE6PJlfWKLBctShEBuYuwb3PyYVlu0QtdNARVN5joI1y89LwgzTRpND5brKCokGLgEEzs8nG1YNm/xUlxBd9K38NbP/JO5u7ejWtnOI7gsLYH3cijzshrE4UacSQNVRQyNIqmlRvE3Ci+eMzGyAWwKGFaS/Yry2BXJeT4YY3GLOy5+uz/34cBzPuvsNAyaXfk8vlmU5rBei2b+Pm+r6E/M6VZflG5aEFhCI89/AJtvyR7MjyfRn5TM74vaxorlY2qXomLhzJ/W5PNrpGZ0PjT7MfZ95H30LxjD1GsYVuCSiWjWsl4lb2y7SEEfyCNYRRJk+Z60hS+nJtC2zm3IFzoy0Bb64ysuNixazKTBPKMn+0f5NRpg/5Ap17LmJ1JmJ1JME3k8JinnuJ026XVs7GtjLlawGxdZpE0TVbBHPnGAc4MKnQCD9NIh5nBujtYom1hYsoVE5+XpaICqNDJdw6uz4qJJ7I3E/+l/4Xrf+JOGvUU1xU4TsbBdG9e+im1MAw1wkC2NiSxzNqaeQDVcScNomVLXTwfshT2NqUR9PswvwPmt5/9PqZYMWHoYpgZrNdSzPz1JEleLrr/GRZ6zrBcVFbQjNpeYNIQdgJv1XsIh79DpskKms88Sp8qA6qL7mFkllDt673wKPO3wdjswgbwZHY3lR/6Pt78fTXC627G0OVBKDIIQp0g0AhCXUY5TYHnCUpexlF9D7YrDZ7I5BSsKMwNYm4S0/w+28yzT3YeFX3puI1pjwzHagUxiWF3NeT4UY1GE3bvFWc9lNNkVG/f7kz2pBWlosPHpqPJla3eaG/P0BBWRpE1+XhtuPR8fNJoZbh2YvqOuwIhYBDbdIPRovoQF5MkHywzWlRvaBkvZLfg/uj/wq1vn8O763o0BEJohJFGGOr4vnyfZmAa4HkZrpNRKgkO63txXSl+hSGU5lAb+7f8G8Mom1hco5E5FDx3xBkaruL9tdsiDr2icfudGV5p6q+7LFEIc4ORGRzPDC42g0W5qLH/GVp5uej4bqWZaohjj19TjVbf5tiDzw33ZRVT8RqlPpVlSnrHGe+V6OdlownWhHEv0b3s9mldKDaTsCnWxmbXyEjYfCt7L3d8/P3s3dmjXo4ZXHMrugZhrNHryUyNEFDypCE8Ye/BK0k9CfyRKRzPFrqeLMN/+aQtA3HOKKu3HEXFxYwhb6537pa9ZdMe1+1As/sqZxZMdF0wO5MyNyezgiBLCnnyGU53HLoDC89Jh5nBaklqXBjpnO46HHvoRVp+CUPPhpnBZqm/xAymmUY7KPGVe75LjzoRcsVEkR28FEPSvp29mx0/+mbe+r4a/atvG/bBx7GGH0iNjBMNQwfXzSh5GZ4nOGLsxTJlOWicB7ijUMvva0YG0RiriLIdePH4qCLKtFYX8E4T2FGKeO047LhCsP2Ks39PEkOnDTODQ7TbhtzXW0+HfYPjVTdBqNFuy7aXhe7y5aKwvCEsOwENT1bP1Jxg2Sqn8XuYB77wXQZUiHAm9vWqlorzZzNppDJ/m4Rnsju55qffwr7v34YfGvihST8wCWN5ijlWStlNKLsJ3atvk5GzTB6kgS/fh5EmI5250Sh5GUf0vbiePCDTZJQxlO9HWcQkHmWlNF0KY5GdMgxpDJ8/YqPr8usA122POPKqxtXXZ8zOr+33He9JK0YzFz1pjUZKtTJpNopSRGOsEbuYMNqohjTK0YTZyDLGlp67dAKZfaq5AfX8MB0fwz2NONXphh733zO5qD4SNrf9zOu56V27GIQmfmgSRAZCgG1l+XWK8a+7HdvO5A1KpOH7On6gM/B1wlD+crYl8NwMryQ4ZuzBccF1RxFOIeTvniYyupgM/y0zsEVvYYHtCNknUV3b9ZhGkRk8s2DS6crR2TPNhNmZSbNeEEUana6Ovl8O/YkTnZlqyHzDZ7YWTtxUCQHdgcWxB59lYVCmF7q4VkSzNKDpTS93Wo5BZMkR21/4LgPKRLjDPsIL3e+5ldlMwqZYG5tdIwPh8ph4G+//Bzu45l3X0A9MOnnrQBTrOHZKvRST3HQLpiGIktwQ9nSCUGYJq9WMaiXlmHXV0BQWZjDwNQJfZvcyIQNsriezTy+fHFXSGNakOQx9qCNv4q+7Sax4xkQRzPVf4dRpk15fZgXnZhNmmskwgzQYaIin5FqJvm9RLcXM1gPmagElVwp0FOuc6TocfegFWoMSmi5oegNmSj2aU0rshYBu6PKVz8gVEz5lbMJhZvBirJh4JHsH+/7mTdzwrj34oUE/sBiEBlmmYRqCshtT8RIG1942POeDXBv9YKSPriPwPGkOjxp7h9ckS0f3MnEktWe8Iiobq6I0rcngqa4zETQNAzh+ROOut2bD4TCrJU2kGZz1D9FqGWQC6rWUmbyCdTd4GQAAPa1JREFUZtwMrlQu2siHyRTXuHh8P5D9oS1flozqekbDHdAsyXuY5frrC8LEpBPIlgqfCj6liT7CQh9VH+Hq2EwaqczfJuFFcSs3/dxbiFMTXcvw7IiSFTG77ybKboJlZgSRQT8wGQQm/cAiiKQx9JyEiptQchOC6+VhmqQ6g4E8TMfNhuNIUzhuDB13UtCyTJqMwhQmSdGorQ0btgEsW2A7cvrk2aKlq2G1PWkFQSgbsY0D+2nlNwEldzRQZnFvWpZBq2dz/KHnaPklBpGDbcbyIHUHK5ZajJ5DIxMajxy6mjf94PzEYQ0yStvPr08hev3AXGIMwxtuo1zK0HQIgjwaml8v39dJUjB0hsLneTJr6HnyJmQ9jEwx6OD0GTlAplbNmJmRu7Bse+k5k2Ww0DJInnyWMx2HspewreGzveljmUsfPwgMjn7rWVqDMu283KmIcDe8peVOKzEuekUfoUkyLIkpMrnKEI7YTMKmWBubXSNTofO0uJt3/cL1dEKPLNMp2yF1b8D2N92EbWb0AotO36Ldl33KhSFMb74F18mIE41ubgh7fR1Ng0o5o1JJOWHvpVwe9Z0lcW4KAxkkDXyph3E06scvEEj9u+X1YtUtFouzgkbeKzg/mwwDa4VZ4KlneK3tEkYG9XLEbD1krhYMg51xokkz+OALtHxZh1r3BnmpaG+qpvmxxZ9/8jF6NOhRRQPKdIYrJs63euJpsY/X/9zrSTMTx4wp2yEVJ2T27ltwrJQ4lfcyfd+kF1gMco107ZSKF1P2EsLrb0c3BWmsDe9jBgNp5mHyXmbcGC4efFYETYv3WTYaMEM+KbZavzDtMWkqh+HNDuR1FQIajZSZpswMmosqpJKE/B5mVC7q2inNakS9HNKsTt7DxInGQs/h+EPPseCXiROTquvLkmBvsKoKmqKlQvYRlhlQAcBb1FKh+giXspk0Upm/TcJBcR3f+5Hb2FbtkmUag9hmENn0I4d+5NCLHNLUwDRSqo6cfDl7981UvIRMaKOD1Lfo+RZJqmEYgkoeYQtvuJWSJ81GGIxMoZ9nDbMMHHtKFsq7MIfiuTDek9bp6tiWoNlImZmRZnDaITdtlUGtFDHXCJirhcO6+4IgMjjTtTn+8Au0A3lTUXP9YanFctnBI+0Gh1ozpKmBrmU4VkLJCinZETP7bqHsJnhOOvEax41hP5DXapqBD2+UxlDXwS+uUzDKHA6NvC1wXWkMp2UNLyZCyElpM71XObMgI7pzswlzc/LaTKPb00m/e4ATCy6mIdjR9NkxM5jI2I4TRqMId9uXEe6ZFcqdzkac6nQCj/s/9zh9qgSU0MmGUdAKHVwGl20UdDMJm2JtFBq5WfUR4MnsTfzcr9QwjWyYzeoEHm2/RDd0EQKqriyT2/7mm7HMjHbfXmIIG+WI5KZbqVRSkkSj25XBxl5PJ040PFdQraScdPZQKi81FOMUE53PN/gZRTDTPchrp0yCcHKC6MRwma4OTx/gVNshSXWa1ZDZmlw4X5iEJNVY6NocffAFzvhlRKaNmcH+1OEiSarTDjy++rnxUtEBldwMrjU79N3szfydT1bQNEGQWPRDJ7+XselFLnFiYhgpFTuk4gTM3X0z1VIyzHYV9zE93yRO9OG9TLUkA6clLwMNAl8/Z2N4KSgygzMDmRnUNGg2EppN2e4y7d7KD2S5qH7gAAs9G12DuXrAfCMY9oUWCAGdgcWxbz3Hgl+if44VNMv1Ebr4w4Bpme5l3WO/Fn2E9ddIZf42CQNR5kVxK6aW4NLHY8A7P3onFSfENUfDNIrpT/3IoZcfqEFsY+gZZTuk7ITM3X0TFS/BNlP6gTxA+75FL5AliiAjbFUvpuzFBDfcTrmUIYTGwJ+ehTINKJUyPDfjmLFH9kp4F29C1zSKnrTxMsRmM2GmmQ57KBaTZQz3ML3WljcIczVZilhMW1vy+L7N8YdkOeIgcnCtiIYnSy2Khvs004bmI8s0gsRkEDn4sU0/shnEDkEs/ziuFVOyZORz5u5bqbjxhOEp6v1XY+DLJWn2NE1mPn1f9oMOBnreSzHKGhbG0HNlltdxl2Z5LxRJDDP9Vzh1SpY0bZtL2LsnWhLpLPADjeTx/Rw/IxsTr5gdsHN2sMScjzOt3Gm21JNm0Busukx04nWPRUH7VPEpDyfClulcVuO1lfnbumwF8/ea2MEJdgFQpkeFNt/7v985XAFUrEVo+yXa+TAwXc+ouz7b33gDzYosPW/1bNo9m/bAIoxkpqVRiUhuuoVaLSNLodsz6HZ1uj0DP9CwzNFwmePWXkqVi3OOwmiCaL0rJ4h6rmD7tpjZmckKizQdrZU43ZH937PVkNl6wEx1VGafphoLPZujDz7PmUGFNNNpeH1my31mS72pvfDFWp6vfPpxetQZUMEgzc1g56wL6F8WN/GeD93Czlp7WcMVp3p+H+PSCx16kUsYW1NNoWlkQzPY9y26Y4HTsptQ8WLC62+lUs7wvIwo1kb3MIFOvy+NoRDLl5JerOs5TtEz2OwfotU2cGzBzEzC3DKtFCBLWsWTT/Nay6U7sKiVY7Y1fOYbwURWsMAPDY5+8wAtv0zb94ZlwU1PBk3PVt1UUPQRdgKPr33hCfpUibGH+wiL4TIrDcfbSijztwHZCsJWkAiTAI+AEj5lfMqEuOhkePTx6A9NoWeNDt9i110vdIbm0I9teSNrR2MHaYxnJwSRQS+wlpgN0xBUvFgepnlpousK2R8RjEpJ/TxrGMWyz9C7hEajoCgTPX3GoN83KJdT5mZTZmeT4TTRxcQxnFkwyZ5+llbPpuQmzDcCtjUCXHv6uOXxw7QTeGRCQ5Pb/GiUVi6vEUKW2AyiUeSzHzlEiYWhZ5TskLIdMnf3zVS8mJKTTPzNklSbEL1xA+85ybAPtMgWFj0GWUaeKRxlDINAIwjkIJqipNR15TU7rOXXzDn/zGGaQr11kMNHLV5/u4/rrHwGBaFG/Nh+jp4uYZsZu+b77Gj6Z/1vJ4p1TndGmUHDyJgt9Zgt96i7574gN800OoG3rCHcqhlCZf62LltJI1OhM6BKnyo96viUsIio0OF7Pvo66mOj84ul6e18iIYf2ThWTMMbsONNN0jTl+q0ejadvj1sHyhW26Q335L3nwt6PZkh7PYM+n2dTEC5lFEpy+Ey5crkPtwLxaAPjc6rnDptommCubnJ8tCCOIaFlol45gALXQfTyJiry6zgeMaoMIOHv/UiC4MyaIK5co/ZUm/FTFGUGLT8Evd9/kl61Egxh4NkKrQnyui7os4x9hDhINCwCXEZyKD2x/dRtsNl+9WS3BR2p5jCamEK33gzVS/GMjMGoUl3YNEPrPz9KMBd8WLKbkJ0k9RH08yDpnmwdDDQhgYxy2QPfsmT1U9H9TzIfRGracJgNB124C+dDrsYIaDd0Um/+yynOnJ1yPambKVY3IJSUJSKHn3wBRb8ElmmU3d9mnng9GyTtxcTxKbssf+8NIRyOF48NIOVLbqgXpm/DchWErblSIVOmBdi+JSHgy2KfWgefd71sTupOsFEWUcxIbGIrvUjh0HkTJjC2X3SFJbdZMxsjEoT/VCWK5TchIobE91wK+WyjJwZhjQaQaCNTGE+zauYTmpbYmgMj+p7cLzRWooLSb8Hzd6rnD5tIITG7EzCtvmEyjJZQYBeT0c89QwnFjzSTGO+HrB9xqe2aHXBNKaV1zRKA2ZLvVVF2ArDPnwLHQaRLVcaWDEVO2Du7ptkhtZNMMaifEJIU7oaA1/0DI7/PmkqG+z93BCOm8MklabdseV4bjdfY1FMVrPt1WV8vZMHSRKNa65e/cjpfl8nePRZTrZc5hsBe7b1lhW1xYSRzuFvPMuZQYW2X8KzI+bKXWbLPcr2+Y29nmYIZcmoLBct093UQ2U2m7Ap1sZW18hI2PSp0aNGjzoJJiV6VGnznn96B1UnGP6/6ccWLb9EKzeFWaZTyacq7niLPG/9yKTdt+Rqm3yxd9mT/eTpzbdSrcqSvX5fp9vXlwyXKbKEx6y9lMoXLgi6uDx0fjZh27ZkauVLEGrw5NOc7rh0+nKS6Hw9YL4xaRSiWJ6bp/vy3HStSJrBcm/FoWjTBsmYxDj4CHRcBtRoUaZDgpUHsmVnWUCJGHvJ/UvFWdkU9vJMYWEMo8TCMhMqdkDVCaUpLMWYhiCIDLq+1MfuwKIXWKSphm1lQ32MbridUjkbBoujaPnqpyJgWgS6x4PcF+LcL5bON7uvcnrBxHUyrrsmWjYjCPIap0/I+5coNtiet1IUk2KX+zmtYSZYTt6uuT7NvJ3iXLQySgzZUnHv4/SpDXf1FtUzW6HHfrNppDJ/W5xUGEMz6OfNuwkWFtHwUP2eT9xFZdHuu3FT2I8cuoG7bKaw5CTD0sRecZjm5jDLNBw7peImlKccpiAjkkXWcPF0Uk1juNPQdWW0rchAnc9gk6IM8dgxi3I544brzt4IHccgnnyakwse3YFFoxKxY2bAXP3s3wsyonqma3PkwRdZ8EsgNJolWVpztkXn4xTZwl7o0ovcYb9Emul4dpQ3zwfMv+kWKotMIchIX2Hep2ULi2sV3ng7JS+buhReCCksYSjXVgT5+zDUiCI5phukINq2fA7LEpimNJlhqHHmjMltt/rLluSuRJZB8vjTHDxexbFTbtjdpuKtLULZ802OfPM5TvWr+JFNwxswV+kuW+q0VpJUpxMWhrCGT2kYAZWGsLNp1k5sNmFTrI3LTSOFgAEVetSHxqTIDr7no6+bGO5V9Du1/NKwf7CYqrj9TTfQrES4dko/MIe95EU/ecWLqZcjkptvo5YbwijS6PXGTOGiFRTHLbmCwvXOzzSkCcz0XuHkayb9gc5MM2XH9ph6bfrZNhhoZE/u52TLJYoNdsz47JwdTKxNAtlzd+Qbz3GqX2EQOdRcn9lyl9lyf1XTJcPERAiNBz77bbo06VNFJxtOFx0vGZWVTqXh/YtPmRgbkxgvX2T+7k/cteLu3igx6EXusOqpG7okqYGTB1Cr7qRWhpFOL2+HKYKmUby0r7BcloHPUcZ0aTWN74/KSceD3Ec0GeR23XO/j+m0Qbx6lL17IrZvO7v2JQmkTzzD8TMefmgyXw+4Yq6/ohGEPJvYtzn6LTlExo9smRQo987ZDMJKPfajHsLNZAg3m0Yq83eZEgtrIktYLMl2CGTp6IffQNUNKFmTDcSLM4W9cKkpnH+j7CksOclwKW0/MOkNpNEoDlNdF1Q8mS0sSkg9b3JqpxCjNQhBKDNPga8RRNJoCCH3GrruyCAe1vYOl6Nb1ioO1lcP4bkZe65cfbOyENBqGYRPPMeZjkOjErJzdvVGEGRm8HTH4ciDL9L2S6CtPJJ7Na8pSKzhdSmMe5rpuFZExSlKYm6l6sVLTOHIwMuJsYuzheVc+ILrb5voLVzxd0zyHYWxRpJoxLEsiC2G81yIiPdCy+DUN1+mWoq5eU9rye+1GrIMFnoOh775Imf6ZUwjZb7SZb7SPe+s4DhRYtAOPO6/97v0qBLhYhNQoTssGd2IU9Q2m7Ap1sa+ffvEr3y3u94vY12JhE2P+jA7mKENs4N/6f9zx8Q5UJSLtoISbd8jiG08O6LuDtjx5htpVCIMXdAdWLT6soewM7AQQg4Yq5djkltupVqReicEDAY63Z7sPyt6CQ0dKpWMcjnluCmzhOdSOppl0F6A8sJh+gOd+dmE7duWr3qJY2kUjp0uEeZGcMfMYEmArTAGh7/5PKcHFdJUp1nqM5cbg9UO3YpTXS6iv1cuok8xKNHNdw+2cTV/8vFT7l8ydBwCSvSWvX8ZJ4jNPIDq0A08+pFDJjQ8qwhu30Qtr3jStFGLRVE62lvUV1gtTfYVLta2Isg93mYxPqCt6MO380Fth9k7satwmlYGPvQOHONtb+mv6u9ckKaQPvE0R0+VCWOdK2YHXDG7/HC1cYo1TEe+9RxnBhX8yB5OFJ0p9SjZ5z70pQiY3n/PY/SoTQxdG++x34iGcLNppDJ/iiFCQIg3zBD6lAnw0BDDKNtypReFKewG7jAjFcQWuiYo5WOci8PUc2RJSZpqQzO4eKSz54zq8Rf3qy0mjhlmn4L8UA1zcxjF8pTQNGk4bLt4yziY7mVneohTpw2uvzZkbnZ15YPT/m6FEVzo2szVA67c1l9zJmp8JPfCoIyuC2ZKPWbLfRruuQ0sKZCZQmfUQJ9Ph3WtaDhme/5Nt1Dx4qlN4kW2sOfLa7R4ONBqr9XFpP/wfo6cKvPmm0+et6kMIoNXv/Y8r/WrBLFFs9RnR7VNw7vwpZt+bNH2Pe7/wpP0qZHkvTLF4ISNsGdpswmbYm0o87eUTGgMqNKjRpcGAV4eqOnwno+9nrrrTwTo+pFN2/fkzrVwcjL0jrfIgKicvmgPS0aLXW61Uky9EpHechuVcjaRTer1dfp9mSHs9WRFjGlAuXxupjBNoNl7hRMnLKJIY9cVMTu2x8tO7U4SSB6XRjBKdHbmGcFCxyeeO9U43XWG/YKmkTJX7jFX7k6U1p71b58P5/nKZ79LlwYhLi4+VVrLnomL718GVAhx8/uXHiX6vPvjd1J1/GVbLoohJkVwuxu6wzaYsjP9PqbYGdwLRsNmBsFkJU10wy2UStmwr3C5v3NRPRNGsi0mCGRFTRRpZPmva+hgmoIkkZ+7em/EtvlzDxhGkeypP3yqRMlJuWpHl2Z19QHPYqLo0W89x+l+hf9/e3ceHOd9Hnb8+3uvvXGJh6iDluTIsqjLIqkjiazDTmzHbuokk+mk7UycY8btTNI2M7FOpoljWlZkJ2mSaZuZpPVM0knt/uF2pDRRbF2WLDtKTcvUZeogaZmURIkngMVe7/XrH++BBbALYIEF9no+MzsAF8cuXgLvs8/vfZ7nV/eceHrs3KquBq+keejawoSwf64QdhofofcxUpI/saJAG3HpRTFNCj0cbNy0VvuOfXsoOo0lCUpSMpNejXKz1Nz56aPNzdnJyXSlfrXCopHOq7kCpTW4XlSSmNx8X5HNhoyPhS33oVuLMITw4EscP1nADwwu3VFm++TampuTgSVv/eMRZuo5HMtPB5Z0EkiX07z62ZwUJiUxKyWFrf6vKvWF47cLWT/9v8rnl66IdovW8KNv/JDLdswyNda9q3VhCKdnsxx75ijTtXy0d1hphvPylXUl5O0kvTJP3B+tflYppvtsRdP0yktWwjeaJH/DTZK/1WnoDGXGmWOcCmNA9Hd5x53XMJlbOBwjSWCSctG5Rhbb8pnIVjn/5qhc1LFDgkBFyWAl6h+s1C0MQzNecOOS0WsoFBZuXeT7UVJYrUZJYaUaJQpJ31khH3LCistHlxlI4rpQPHOMd05abN/qr9h/7XngPvcDTpzJo7Xiwq0VdkxVW+7LCtEi2pvPvMLpuRJzjWxaLrilUO54kMhcI8Njn/9+fE5sXyq6WKCNBQlhjSI+Fg518nGV01i2tuxVwsWvY8qNbDRFvWnIzNabotcxyUTq5kqaSjyUrbmvMJmm3qoVZjlBEC3G2tbq941crXPTJnPffZ2aa3LFxTOcN9Z5W4LWUc/gW99Z39Xg5SxsqZgvGU2uDm52j70kf31KAtvGWFh6UaRKAVBkqZFjjtvuup5Str5g6mgiGWZSjssT5xqZ9GS6eIxz85TNxVegmkc6d7LKthlqdcXMP77O9JzD+y6eYdvE+kYe1xombz4Tra7NNbIUMvW08b7VMV6P9SaFEJXJJOUxSRlptRHt+acU2FaIbYVYRohjh9hmiGWFzF5yLaYBpqkxFBimXlIKHIbRKrPrKYpHX2S2Gu3XNTXWYNd7pjfspK81nCs7/PBbRzlXLTKeq3LB+DSTuY1deWzeZ6vCGA2yZKinpaJFZjDV+vsUWxnEwCY6IzFybQJtLCgVjfa/i67a/9S+65Ys0jV8a8EwGc+30mEy229+P+OFaHshP1BR7+BcNGG0UrOwzCghDK68kvFS0HLRM+k7q9ai8tFkf7tkO6ZkIEk2qzmm34NpRa0RhgH1w2+zfZvPJTtXt3BWbygaBw5x4myeQtbnoq1zy7Y9JOWCx7/9Oqcr80nB1mJ5TVvxJKWiTz4YTRf1cBZMF80zt+w5uaEzaUJYjadSJlOb88zFVwnry7ZfLB4yU25EexQ6lkcx06AU994vbrNI+woXtcIst3XTZqpWFaeeOYKh4Lr3nlnXgm3z1eDpajR1O7kaPJbt3jYQSQ/hk39wkCqlBT32hbitYqO2nRjEGCnJn+gqrVlwlbB56mhyUr3t3j1tT6rNY5zLcc9auzHOrfbCa7XKtprplhup3lC8882jlHIeV+yc6dr3na1Edfen5kp4gRWvrpU37IoUdCcphOj/y/MNvMCI3voqfT8IDIJQEYSKMHmro/5OpUCh55NHM0ocxwoupZy3KXsxNf8MZ8sZjj79Q2ZqebYUy1w0cbarPYLLqbo2j+1/Lr0KoYEi5XTj5W4FukEMbKIzEiO7Q2uoUUiTweb97+6461omctUF07abN6OfruWZrefSvQfHs1V2/MSV6eRNz1fxQJkMM5VoQc22wmg7iit2MT4WJYTtBAHpdMrmwVx+fLNtzXsva6y49U4rM7MG1QOvMVNxuOC8KhdtrSy7J2v0fBSnZ+OkoFbAsXy2FspsWWOf9XzFxPcpx8c+GeITlYvOYqrlWzuiq4TFptcvRQLMtJfwtrs+QClTW7GvreFbadloc5zMOS5Fp87WG69Ip3Qv3rqpUo+3plg0jC2Zpt5431XkcyGZjCbjbOzrmPI/HqJSt7n60nNd+5511+T4t6KBQZVGlvFclS2FMlsK3Rm01qx1j30jTQaLzHZlY/pBjJGS/IlN4WtrUelFIT2ppgNmMvV0Q94lX99mjLNlBpQy9Tgp3LWg7CKxXL+aaWgyTkDWDsjYAXOXXhNPp9Q4to4nVK5/VHPDVbz80Fv89N63NuRknUwSPf6dI5yrRoF0W3GWLYXyuhqwV6tbSeGgCkP40VOvcnx6CoCdk2fZVpzd1BXbIFTM1PM88cBB5hhP+2SS0qg85TX1Dg5iYBOdkRi5cTxtL7g62DzMZPEgGZi/yp9cIWw1TCY5h7qekQ6Umak41Bomjh0yUUg2pQ/IZTfvfOv70DhwiOOnCowXXN57weyqt+Kp1k2OP/Map+ZK1D2HyfwcW4tlptZRKtjwLc5V8zz5pWiQjAYKzKXnxNWWz9d1dCatUEp7CecXtMstJ6Yv1jylO0kKK27UqJlO6L4x2kpk8TFLFrejpNCi2rCouSauN1/3aZkhGTvEsQOcuKqmfOk1OLbGNDWWCaal06qaViWjSUmp6yqsQy9x4kyeqVKDyy+aXdVx6lRSSXP824c5UylimQHbimW2lWa7Xs2UqHvR1fenvvQ8c4zhY8cbjMymSWGnVTSDGCMl+RM9lZxUk4ld8wNmogbtVnsTNvMCI51sWY43fPV8q+XePq36Ejxf4fomddek4Rm4nknDNfECg4YXXYnyg/mlOaU0lqkxDY1lhhjxv1v1OnqBgesZNDwT09BcuqPM+VOb06tVrZsc+9brnKqUcH2L8wpzbC/NrGtz87VolxSaZkDO8sg7DXK2x9QNV1HI+mTsoC8neXWiUrd45fE3mK4VuGTqFDvGZnr2M1Vch8f2JyvhpfQqRPLiZzWTRQcxsInOXK6y+k+s9/T6aYyEVoNkMtQpMsOH772u5UbqVXd+78HZeh6toZStLxgmk5xjGu7ChLDuzieEwZW7KJU2PiHUGsKDL3Lk7TGKWY/375xZ8UpgszCMqiqOf/swZ6vF9Krg1uLsuhYzw1BF5fMPHEwHySRDfErMdPTCP1nQjhLC+YnpSdvL7XdHC9or9Ta2GpZXc+dbYEpxtdNYfunCdkLr6KphwzNxPQPXN3F9A983oreBgR8o/Liqxg8UWi8NSoah56tp8i5TYw3GCxu/eJyouyY/evo13i2PEYQmW4pltpdmKC2zn+R6aQ0VN8MTn/9eXEVTQgN55uKWitkVB8oMYoyU5E/0neYG7ea9CR0a8YCZOW7fd0PLATOJdnv7NNfin3fDrijhWMV440QYEp88o5NpqKP3w0XfwjBIT6KO1Z0tDdYqCBSnZrIc+/ZRZuu5DR9YsqrnFCqqnkPVzVDzbKquQ81zaPjROPSM7aXJ4eSeXeQyAfmM39ELiF5ruAYvP3aM2XqOq3e8uWnloMvxAoNz1QJPfvEFykwQYlCgTIlzlJhpue/gIAY20RlJ/nqrrrPxnoMTVChioNNBMhO56pIEonmYzHQtT6WRxbE8xrO1BcNk0u/vmumE0SQhzDgB43lvwxNC73svcfitMd6/c5qtE2t7EZ9cFTw5N4bnm0wVKmwrznZl+vJ8+fwEc5RQsGCQjKM6m3wZjZEppuWjLhksvHi7gjK379u77GuXRLt+wmhhu0HBaTB1wy6K2WhY3qAvmi7m+YpjT7/Ku+Vxap7DttIsO8amNyWOJn9fT3zhYDphNNmUPumxT34v1hIfofcxciSSPwlsw8HVzoJa/Do5AHJUo3r8u3dTXGGlLanFj0ouHCpuVD5qqJCs7ZGPN0lPrkQ1D5sZBkmZxRvPHOVsJRpYcn5phvMKyzfHbyato/+nuj+fFEY3Gy+IynVt0ydne2Rtj4nrd5HL+OQyATnH72mi3cr0nMOBR05y3YXHKG7gCuZaJCvhjz3wQjqwItrbbJoxpsmqmiR/I0BiZH8JtJmWiZYZXzDM5MP7PtBy2nMyTGamlmO6nm87TCZRd02m56JBWUlCqFQ0OK2Q9ck5AdUfuzrdQ3c92/e4ruLwI8e4edfJdS/g+YHi9EyW4985wkwtTylbY3spanHo1iTJaJDM8+mxT64ClZhe07YCyXC8+baXPEBcblhescKpmeubVNxMektipNaKrO3Ov4bZGy1uD0Ni6AeKN556jROzE/ihwQVj01wwNt31HsHlJP2DzQOGtvE2v+Y/sabv1+sYKcmfGGihVvGAmUJak+/hpCtteea4Y98eCk5j2cAQhopanGxU3QyVpitRAFnbI2fPn1Tz2f5MNDqRDCx541tHOVstcF5hjosmzm5oiUW3NHyLumdT82zqvh3/X1nUPYcwLmdxLJ+s5ZGxPLKWz9juq8k6AVkn2PSrsT96t8D0c4d437Z3N+9B1yAZmvDY/c9TpcC/8x9e0/fpdWATnZEY2d+SQTJlJigzTo0CNi4lZvjQPdcu2XMw+Zp2w2TOv+lyJgrukt6yMISaa1Gtm9Rci1rdou6Z1BomfmCgddQvlon7ytLeskuuwbKi3rLmRCMIFLnD0TTmctXm5l0nu9rznWwrcOyZw5yulMjaHtuKs2wrzq4qkVrtY5QbWR6//2B67C28eAP61Q2SaSV57ZL0ES6ucFppDkKr59nwLapehkojeg1T9TLUveg1jGP55G03rqa5ikLWI58JFkwhHQQN1+DIN4/w9swk47kqOyfPdHVqaCf8wGDr7/znNX1tr2NkT5M/pdSXgJ8FXOAI8Kta6+n4Y/cCvw4EwL/XWn89vv9jwJ8CJvDftNZ/sNLjSGAbPYu3oahRWFCPf+tdu1c1tQviUo6mq1DJalvdswm1gR2fVHO2y+SeaLVt0EoUwxCOPf0qb05P4ocmF0+c6Wmv2nolgbDhR8mh61vU4383fAvXt9BEP5xhhGRMH8cMsMwAx/QpfuBqbDOc344i7vM0jRDT0G0TxzCMAoIXGFTrJmcP/IDTcd/ltRcc25ThO900ee9/XdPX9TqwDQuJkaIdVzuUmUivEM5P+53mp/7j7pbnmuWGyWy/6QrG8t6KbRB+oNJe9rSfLJ7cHAQKDelkZtPQZJ2AYs5joth+H71uqdQt3nj6MCfnSpgqZMfYTFcTwUSrQTLJsW9XPr9arnbShHDxHITCKregaKXuWdQ8J263cNL3g8DENEJy8WuYvOMyufcq8pmo8qlfF7i1htMzGQ49+SaWEfJjW9/tycL1oMbIXid/HwGe0Fr7SqkHAbTWdyuldgFfAW4ELgAeA94Xf9lrwE8DbwLfBf6l1voHyz2OBDYBS7ehqFFIp3blqDRtQ1HD7uDE6gUGVTdDNSlPdB2qTSWKGcuLT6zeQPSv1Romrzz+BmcqJd4zdZqLJro35rkf+YGBG5h4gRW/NfHD6G3yfhAa+KGBH5pordKri4spNJYZYJsBOdsjb7tM5it9V+65WoMa2IaFxEixWoE2qDAWb0I/hhtP+y0xzYfvi64iteozq7o2M/WoXLTcyOL6No7lMZaNpmhvi6c092sS0E61bvLG04d5d24sTQTPL81sSKlgMmn58QeeX7DfY3J1cC2logu+/zJbUBQoc+td1696Mbvd86/Gr13qvk3FzUTVNJ5FqI10QFvyOmZi71XknKiktB+md5+ddXj+0Xc4f2yaS6bObOpjD2qM7JuyT6XUzwO/qLX+1/GKJlrrB+KPfR34bPypn9VafzS+f8HntSOBTSwn0OaCjeprFPGxcGikSeFqm7QXS65AJT1ri/vXtFY4lpf2r2Utj4k9V5HLROWJvTyxup7Bi984RtXLcO2O411fPRX9b1AD2zCSGCk6VdP5OBlM9hz0KTLLh+6OBsm0W+Rs+Bbl+vygkUojg0ZRcBqUsnW23NB6S4J+Va2bHH3qCO+Wxyk4DS4YP8eWDexzb1UqGpXpTqcDQzrdTqDVYzTILUgIG4v2VL79vugq4Xp7If3AoObbcatF9Bqm7tnUfJsgMFFKp334SZvF+J6ryDoBGTvclCneYQjPPHSK9245xVS+srEPFltrfITex0irVw/cwq8B/yt+/0Lg2aaPvRnfB3B80f03rfSNx/dczScOHODv7Cu68TzFkDFVkI70beZqJ00KH7r/aNyknZSOVrj1ruspZurk7fblLEpB1vbJ2j6TbR7f9c20b63u2bz5ncM0/OjEGobRcqsVr7wlfWzju68iYwdknOjEuhFJomOH7PnERbzy6FGOnNnGldtPdP0xhBCrtqExEpmIPXRyqkqOKtuIzt3JnoNPPPhiOu032XPww7+zO+0vy1g+meIcW4pz6fcKQxVPn8zwzrOvcTjZksAIKSZ77d5wJaV8/w1Ky2cDrv7oJVxN1CN45Cmf107uYPvYDBeNn11xO4ZOKQVj2To/v//96X11z+LRz53gHFs4zmUYWi+YKtrpZuNKQZYaWWpMcSq9P9Bmmgz+3Rdep0qREIMstaiXcA1XCS0zpGQ22pZVag1uYKW9+A3f5p1nX8MNosFtnm+mbRaWGZAxfWzTJ2P52GZA6fqkzSLaQss241aLFV7XaA0Nz6RaNznx7GvUvUlss7v/l8Nqw5M/pdRjwPktPrRPa/1Q/Dn7AB/4my4+7qeBTwPs3LkTaD+SVZJC0YqjXBxcxpkve0xKR2sUeOqLB9PVNoMwvUp46917KGXrZKzVnYQcKxpAslzTcpIgJn1sZw4cinrXgujfQZwkKjS2FfWt2WaAZUQliMXrrol716KTqqGiE6uhogZ9hSaMyxnDMDqh1l2TU999ldOVKS7f2t+DSoQYVP0SIz/h/ajl50l8HB628pjkNJOcBhbuOfi1zx+jTg6HBkVmuePu6xhvujpoGJqxbD2OUzPp9wxClW5H8OZ3DlNxM9S9KCnMOw2KmQbn7b2SYs4jn+n9kLSJosueT1xEECiOfvM0B9/eSc7yuGzLyQ3tGcvaPj+7/5r0315gMF27mCcefJF3uJhAmytuu7MapgrictP5/6Pmq4Tf/OLzC1pemq8SFp3Gmspi0wUDy1/2dYzW4IcGDd/GC0wavoUfmpw9cAg/NPEDEy9ur/BDI138Xk7SVjOW9bn5ksMdteyMsp6XfSqlfgX4N8CHtdbV+L6ulrTs3btXHzhwoKPnJQFPdCLQxpJ+wmjqqL+gn7CYqW/oySlZgUt62Ob71uITamAQhCahVgRaEepogptGYSiNoaKN66OeNZe87XJeYa4rI7TFYBnkkpZhIjFSbCZXO8zFfYNzjKdXB4vM8qF9u1tuM9FKECoq8ZXCZFuCmuugUWQsj0KcGPbDtkpnZjO8/Pib2GbA+7ed6PqVwNVote1OjgpjcTKYU9WuP2ayUX3z65aklzBHpeOJo6NmkGNkrwe+fAz4Y+A2rfWppvuvAv4n883sjwOXA4qomf3DwFtEzez/Smv98nKPs5bA1o4EPNGJ5OTaPHXUx8LGne8nvG8vxS7U5QvRTYMc2IbFoMVIiY/DJ7o6WEwTwmSrgyKz3H7XdYxnl25Cv5xkenalEQ1JSxJD148K0bK2R95uLJg6uVlXDI8/dYhXT+7gfdtOsLWp5LUXmrfdKTNBnVw6wGeMc+seIrPc4zbIxgNmCunEUdAd7ak8CgY5RvY6+TsMZIBkPM+zWut/G39sH1GPgw/8ltb6kfj+jwN/QjTG+sta6/tXepxuJn/tSNATnVi4FUWBerzi5sQ7/+SocPu+vSvuTyjERhnkwDYshiVGSnwcLp62qVBKE0IPhwx1isxwxz0fYCzb2cTshNZQ82yqbqZp6qRN3XMIQgPTCMnaLtl4SNpEPFQkGizSnaEinq94/Gsz3PreV/vuatdcI8Njnz/ILBPUKOBQZ4xpSkyTZw5Dbdxrhfk9lee30HLJpNVNOSprmpY+yAY5Rva87HMzbEby14oEPNGphs6kVwqTW4iRlmHc8pnr0zIMSQrFRhrkwCY6IzFSrFdd55iLE8IqJUIMclQoUOZD8VYT641ZYaio+Xa6JUE9nkC5eKiIHe/b6lh+2v9euO4aTCMaKGIYYCidtjyEYdRXf/Z7hzhXzWObAR+48PgKz6b3qq7No/ujiaIVxtKJomNMU2B2Q5PBxMLqpvlp6Ul1U44Kt9+3Z839hP1qPfEReh8jJfnrAQl4ohNJGUYyaKY5KWy+UnjbfTdI+ajoGkn+Rkc/xUiJj8MhuVIU9Q6OUaUIQJ45ipT50L7r17R90kq0Bi8w4953C9c30wEiQdz7Hg02M1BKo5RO+9zzdrSVRcFxu/qcNkvds/jG575PmUkqlLDwNj0ZTDRXNyW3qLqp0ZQURtVNg5gUSvI3APopsC1Hgp7o1OIrhXXyC06wWarcft8eCk5jZEoxRHdI8jc6BiFGSnwcfMlm5XOMUaFEjQIKTYEyecp8aN/uDUkIR1WSDM4ymV4ZHOMcY5yjQLknZa3JFlpLW14Wvmbp9yuFkvwNgEEIbO1IwBNr0XyCTZJCHwsLjxzVaJLXPVFSOOpN22KpQQ9sojMSI0WvJPvSVShJQrjBomTwYJwMlnCoMx4ng3m1ORujt7P4NUtypXC+fLTKbfdGr1kcq/f7SA56jOynTd5FC7I3oViLVnsUQlSKEZWP5vnGH/wg3ZIi2acwS5UP3rVnxc3rhRCiH7SKkRIfB0erfemaE8KH7z8Sl4xq8sxRYI477ru+Kz2EoyZr+/zz/Ven/664W3h0/2ne5hJqOp9uLTHO2TXvM7hWy71mqVKkTp5HHnglnphuYxKQpUKeCh+8O0oKc7Ynr1lWSa78DRkJemItkn0Ka+Spx1cKo/HOkKFONr5aeNt9Nwxsjb5YvUFf1RSdGZUYKfFxcEUlo4V4U/oSNYpoFFmqFChz+z1RQtgPV4UGUfPWEjNM4ZKhxAzjnKXENJbqrwqhQJvx65X5WQguGQCy1MhS5ZbPXE8x0yBvu11/zTLoMVKSvxEgAU+sVTRsJtd0ks2nNfoWfpoU3nLXXgrxSVZW3gbfoAc20RmJkRIjB1Hz9gMVSlQp4mPjUKfAHLfeGW07IVeEOheGiul6nkcfeIlZJlFoxjnLOGcpMNu3xzPUiga5dAG7eRaChUeW2rpfs6w3PkLvY6QkfyNMAp5YD19bS06wDbIAODTIUiVLldvu3UvecclY/bVyKNqT5G+0SIxcSuLj4GroDNU4GaxQokEWk4A8c+SZ4/b7dkvZaIdc3+Trv3+QGaaoUCJHlXHOMM5ZHDUY01E9bS9YzE5es2gUDnVyVMlS44P3RFNIM5bfMjGU5G9ASGDrjAQ9sR7J1hSNNCmMVuE8HBRhXJJR4yc/EzXy52USaV8ZhsAmOiMxcvUkPg6mpI8wSgiL1CgSYpClRp45br3rekoZuUq4WrP1LI/e/wLTnEeIyRjnmOR0X18VbEdrcMmkCWH0miWHSxaFTltfMtT42O9ey47f/bN1P2avY6Qkf2JVJOCJbkjKdBrxybVGnkY8idQgjK8WRolh3nFli4oekORv9EiMXD+JkYMnaWtIksIqRRpk4wFoc+SpcPu9uyk60ku4HD8w+IfPHmSa86hQIs8cE5xhgjOYarCPW6gVLtl0EXucs/yi//11f99ex0iZ9ilWRaaOim4wlCYfT+haLNAGDXI0yPGdPzyQJog+NgYhGWrpCtyt995AznZlmwohRF+QqaODRynSSpQpTqX3R8NEon3o/uGBQ+mEyWTbgah0dHA3KO82ywz5Z/uvBaKEera+na9/oc4JLsbSPpOcZpJTA1Me2sxQOv0dgbO9fjpdI8mfWBdJCkW3mCpME8PJRR+bb+KOksNHHniFBjk8HABsGmTj5PCWu/aSc1zytis9HUKInpH4OJhMFVBkliKzC+5Pth2oUeBvv/B60wbldfJUyFHh9n1RUjiqsUcpGM/V+Bf7LwOg6tr8w/4zHGEXWhtMcJopTpJV9R4/07Vp9zc9aCT5ExtCVkFFNxlKx5vTV5d8LKnXT5LDJ7/4QtpzGGIsuGqYocYtd99IznHJWZ5sHCyE2HSSFA4mW3mMc27JXnQNnUm3G3j4/iPUKBBipENEclRG9kph3vH4hf3R77Xrm/z975/gDa4g0BZTnGSKk5u+p6CQ5E9sIgl4YiMoBRkaZGgwxvSSj8+Xk2ZxyfLYgy/F/86gMTAJcKjHyWGdn7z7BrK2R87yRi5QCyF6RxZNB1NGRfFnYlFZYENn0n3omq8UWnjkqJCjyq33RBuUj0ILg2MF/Nz+XUCSCL7ND3k/WhucxztMcarv9hMcVjLwRfQtCXpiMyTJoUsGl2x81TBKFEMMAGxcHBo41Pnx3476DTOWT3aIEkStYeq+9Q97gd43s4vOSIwcPBIfB5en7XR7pGTbAZdM09CzKh+8czeFTIOC7Q59hUrds/i/nzvEWbaRpcpWTjCuzq38hT3QrbLPXsdISf7EQJGAJzab1uDhpMlh9Da6eWQIMNEoLLymJLHBj995IxnLxzF9MpbXl1NLw1BxplrgkQcPY+Lzm/7DXfm+vQ5sojMSI4eHxMjBlSxENieGSfuCjZtOw/7g3XvIx33tg7atwkpmajn+9guHqVJkC++wlbcxVf/ETkn+BogEtuEnAU/0mq+tOCF00rfNtyCtstdY+Ni4WHjxzefmO2/CNgIcy8cyAmwzwDLCrgX3IFTUPIeKm+HpLz7HHGO4ZCkxzRbeoajKQxPYRGckRg43iY+Dz9P2goQw2jIpA6gFA8+SxHDQe9q9wODhz77Cac5nipOcz5t9sW3EsMRISf7EUJOgJ/qN1uBj4+HgY8e3KB0M4uuHQXxfgAkszv40BhqDAEW45KMAIQYhZlq2CmAQ4lAnS40cFYrMLGm0H5bAJjojMXI0SXwcDq520s3Jk+2S6mTRGFh46cCzn/zMHgqOS852B2bfwiBUPPR7r3CKHVzIG0ypUyt/0Qbp5qTPXsdIGfgihpo00It+oxTYeNh4a/r6UCs0BiEGGpXeFPMLedFHAwy6d+VQCDFcZAjbcHCUi4PbcuCZr600KUz2z22QxccGom2SooFpNX7iznj/XMsjY/l9ETtMQ/ML+6/A9U2+8vs1qrrIReqHvX5aA0+SPzFyJOCJQWYoDQSYDMbKrRBisEiMHB6W8ilSpkh5yceSfvZk+vUzX/pe2tfu4aBR6TTspJf9J+6MpmFnLJ+M6W9aaaljBfzy57bzl787zVb9tmwPsU59kfwppX4b+ENgq9b6tFJKAX8KfByoAr+itX4u/txPAb8Tf+nntdZ/1YvnLIaPBDwxyoZl89phJDFS9AOppBkuSoFDdNWw1OZzAm0uGHL2rS89h0s27WXXceOB2dTHbuNi40V97GYwfzMCzDX0sTd8i3I9y6MPvoxiHGuNVTNiXs+TP6XUxcBHgGNNd/8McHl8uwn4c+AmpdQU8HvAXkAD31NKPay17s+ZsGIoSMATQvSKxEjRz2TRdLiZKog3qq8u+3m+ttI+9uTtt770HEHcz570tEd97K0kVxCXZoYWHnnmGGOanRzui3LUQdfz5A/4T8BdwENN930S+GsdTaN5Vik1oZTaAdwOPKq1PguglHoU+Bjwlc19ymLUScATQmwSiZFi4EiMHC2WisaWrcXiuZOS3G28niZ/SqlPAm9prZ9XC/+3LwSON/37zfi+dvcL0Rck4AkhukVipBg2UkkjFhuEZG/Y2iI2PPlTSj0GnN/iQ/uA+4jKWTbicT8NfBpg586dG/EQQqyaBDwhRCsSI8Wok0VTITbXhid/WuufanW/Uuoa4FIgWdG8CHhOKXUj8BZwcdOnXxTf9xZRWUvz/d9s87h/AfwFRHsYrednEGIjSMAT/WLYVjUHicRIIVqTGCnExuhZ2afW+kVgW/JvpdQbwN54ktnDwG8qpb5K1Mw+o7U+oZT6OvAFpdRk/GUfAe7d5KcuxIaSgCeEkBgpRGtSSSPE+vTDwJdW/p5ohPVhojHWvwqgtT6rlNoPfDf+vM8lje1CDDsJeEKImMRIIZrIoqkQq9c3yZ/W+pKm9zXwG20+78vAlzfpaQnR1yTgCTEaJEYK0TmJkWK9hrEtom+SPyFE90jAE0IIIVqTShoxyiT5E2KESMATQgghlpJFUzEqJPkTYsRJwBttw1jSIoQQ3SIxUgwbSf6EEC1JwBNCCCFak0oaMagk+RNCdEQCnhBCCLGULJqKQSDJnxBi3STgCSGEEK1JjBxMw9oWIcmfEGLDSMATQgghWpNKGtELkvwJITadBDwhhBBiKVk0FRtNkj8hRF+QgLf5hrWkRQghho3ESNEtkvwJIfqaBDwhhBCiNamkEZ2S5E8IMZAk4AkhhBBLyaKpWI4kf0KIoSEBTwghhGhNYuTqDXNbhCR/QoihJwFPCCGEaE0qaUaLJH9CiJE1ygFvmFc1hRBCrI8smg4vSf6EEKKJBDwhhBCiNYmRg0+SPyGEWAUJeEIIIURro1xJM2gk+RNCiHWQgCeEEEIsNaiLpsPeFiHJnxBCdNmgBjwhhBBio0mM7C1J/oQQYpNIwBNCCCFak0qazSHJnxBC9NhmB7xhL2kRQggxHGTRtPsk+RNCiD4kAU8IIYRoTWLk2knyJ4QQA0QCnhBCCNGalI6uTJI/IYQYAhLwhBBCiKU6WTQdhbYIpbXu9XPYcEqpU8CPev08umQLcLrXT6JPybFpTY5Le3Js2lvPsXmP1nprN5+M2DhDFCPl77k9OTbtybFpT45NewMbI0ci+RsmSqkDWuu9vX4e/UiOTWtyXNqTY9OeHBsxaOR3tj05Nu3JsWlPjk17g3xsjF4/ASGEEEIIIYQQG0+SPyGEEEIIIYQYAZL8DZ6/6PUT6GNybFqT49KeHJv25NiIQSO/s+3JsWlPjk17cmzaG9hjIz1/QgghhBBCCDEC5MqfEEIIIYQQQowASf4GhFLqY0qpV5VSh5VS9/T6+fSCUuoNpdSLSqmDSqkD8X1TSqlHlVKvx28n4/uVUurP4uP1glJqd2+ffXcppb6slDqplHqp6b6Oj4VS6lPx57+ulPpUL36WbmtzbD6rlHor/t05qJT6eNPH7o2PzatKqY823T9Uf3NKqYuVUk8qpX6glHpZKfUf4vvl90YMvGH7e10LiZHzJEa2JvGxvZGKkVprufX5DTCBI8BlgAM8D+zq9fPqwXF4A9iy6L4vAvfE798DPBi//3HgEUABNwP/1Ovn3+VjcSuwG3hprccCmAKOxm8n4/cne/2zbdCx+SzwmRafuyv+e8oAl8Z/Z+Yw/s0BO4Dd8fsl4LX455ffG7kN9G0Y/17XeBwkRs7/3BIjV39cRj4+xj/vyMRIufI3GG4EDmutj2qtXeCrwCd7/Jz6xSeBv4rf/yvg55ru/2sdeRaYUErt6MHz2xBa66eBs4vu7vRYfBR4VGt9Vmt9DngU+NiGP/kN1ubYtPNJ4Kta64bW+ofAYaK/t6H7m9Nan9BaPxe/XwYOARcivzdi8A3d32sXSYycN/LnOomP7Y1SjJTkbzBcCBxv+veb8X2jRgPfUEp9Tyn16fi+7VrrE/H77wDb4/dH8Zh1eixG7Rj9Zlya8eWkbIMRPTZKqUuA64F/Qn5vxOCT38mIxMjlybmuPYmPTYY9RkryJwbJLVrr3cDPAL+hlLq1+YM6ut4u42uRY9HCnwPvBT4AnAD+qKfPpoeUUkXga8Bvaa1nmz8mvzdCDDSJkaskx2IBiY9NRiFGSvI3GN4CLm7690XxfSNFa/1W/PYk8H+ISg/eTUpV4rcn408fxWPW6bEYmWOktX5Xax1orUPgL4l+d2DEjo1SyiYKan+jtf7f8d3yeyMGnfxOIjFyFeRc14LEx3mjEiMl+RsM3wUuV0pdqpRygF8CHu7xc9pUSqmCUqqUvA98BHiJ6Dgkk5Q+BTwUv/8w8MvxNKabgZmmy/bDqtNj8XXgI0qpybjM4yPxfUNnUS/LzxP97kB0bH5JKZVRSl0KXA78P4bwb04ppYD/DhzSWv9x04fk90YMuqH7e+2UxMhVkXNdCxIfIyMVIzdrsozc1ncjmir0GtGEpX29fj49+PkvI5oo9TzwcnIMgPOAx4HXgceAqfh+BfyX+Hi9COzt9c/Q5ePxFaLyDI+onvzX13IsgF8jauI+DPxqr3+uDTw2/yP+2V8gOmHvaPr8ffGxeRX4mab7h+pvDriFqFzlBeBgfPu4/N7IbRhuw/b3uoafX2LkwuMhMXL1x2Xk42P8M41MjFTxkxRCCCGEEEIIMcSk7FMIIYQQQgghRoAkf0IIIYQQQggxAiT5E0IIIYQQQogRIMmfEEIIIYQQQowASf6EEEIIIYQQYgRI8ieEEEIIIYQQI0CSPyGEEEIIIYQYAZL8CSGEEEIIIcQI+P9h9DIejkweQgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNwAAAKqCAYAAADhZ0P2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd7wcV33//9e07Xdv173qzbLlinHBNsZUgxMbCL3E4WeTBALY+dJCgCSATTOQEJptCCHfwDcYHBJ6MWCMAeMqWa5qlm1Zxeq6ddvslPP748zM7t6ieq+kK3+ej8c+dndmtlxpd+fMez7nHEMppRBCCCGEEEIIIYQQQkwJ82i/ASGEEEIIIYQQQgghjicSuAkhhBBCCCGEEEIIMYUkcBNCCCGEEEIIIYQQYgpJ4CaEEEIIIYQQQgghxBSSwE0IIYQQQgghhBBCiCkkgZsQQgghhBBCCCGEEFNIAjchhBBCCCGEEEIIIaaQBG5CCCGEEEIIIYQQQkwhCdyEEEIIIYQQQgghhJhCErgJIcQkDMPgmmuuSe5/85vfxDAMnnrqqaP2ng7ElVdeyaJFi4722xBCCCGEEIdB2nRCzGwSuAkhDtiKFSu4+uqrOfXUU8nn8yxYsIA3vOENPPbYY+O2NQxj0stLX/rSlm3DMORzn/scixcvJpPJcMYZZ/Dd7353Wv+WG2+8EcMwOO+886b1dYQQQgghZqqZ3Pb70z/9Uzo7O9m5c+e4dcPDw8yePZvzzjuPMAyn9HWFECJmH+03IISYOT772c9y55138vrXv54zzjiDHTt2cP3113PWWWdxzz33cNpppyXb/td//de4x69cuZIvfelLvOxlL2tZ/o//+I985jOf4W1vexvnnnsuP/7xj/nzP/9zDMPgTW9607T8LTfddBOLFi3ivvvu4/HHH+eEE07Y72Pe8pa38KY3vYl0Oj0t70kIIYQQ4lgyk9t+N954I6eddhrvfe97+c53vtOy7h/+4R/Ys2cPv/zlLzFNqUERQkwTJYQQB+jOO+9Uruu2LHvsscdUOp1Wl19++X4f/1d/9VfKMAy1ZcuWZNnWrVuV4zjqqquuSpaFYaguuugiNW/ePOX7/tT9AZEnn3xSAeoHP/iB6u3tVddcc82E2wHqYx/72JS//nS74oor1MKFC4/22xBCCCHEDDfT236f/exnFaB+9atfJcvuu+8+ZZqm+vu///spe53pIm06IWY2ifOFEAfsuc99LqlUqmXZsmXLOPXUU1m7du0+H+u6Lt///vd5wQtewLx585LlP/7xj/E8j3e9613JMsMweOc738nWrVu5++67p/aPQFe3dXZ2ctlll/G6172Om2666YAeN9EYbmEYcs011zBnzhxyuRwvetGLWLNmDYsWLeLKK68c99g777yT973vffT29pLP53n1q1/N7t27x73WLbfcwkUXXUQ+n6etrY3LLruM1atXj9vuRz/6EaeddhqZTIbTTjuNH/7whwf97yGEEEIIMZGZ3vZ73/vexxlnnMG73vUuarUaQRDwjne8g4ULF/Kxj32Mhx9+mCuvvJIlS5aQyWTo7+/nL//yL9m7d2/yHA8//DCGYfCTn/wkWXb//fdjGAZnnXVWy+v96Z/+6bjhSqRNJ8QzlwRuQojDopRi586d9PT07HO7X/ziFwwNDXH55Ze3LH/ggQfI5/OcfPLJLcuf85znJOun2k033cRrXvMaUqkUb37zm9mwYQMrVqw4pOf68Ic/zLXXXss555zDP//zP7Ns2TIuueQSyuXyhNv/7d/+LQ899BAf+9jHeOc738lPf/pTrr766pZt/uu//ovLLruMQqHAZz/7WT7ykY+wZs0anve857WEfb/+9a957Wtfi2EYXHfddbzqVa/irW99KytXrjykv0UIIYQQYn9mUtvPtm2+/vWvs3HjRj7xiU9w/fXXs2rVKr761a+Sy+W49dZbefLJJ3nrW9/KV77yFd70pjdx8803c+mll6KUAuC0006jo6ODP/zhD8nz3nHHHZimyUMPPcTIyAigT8LeddddPP/5z0+2kzadEM9wR7nCTggxw/3Xf/2XAtR//Md/7HO71772tSqdTqvBwcGW5ZdddplasmTJuO3L5bIC1Ic+9KGpfLtq5cqVClC33nqrUkp3YZg3b55697vfPW5bxnQp/c///E8FqI0bNyqllNqxY4eybVu96lWvanncNddcowB1xRVXjHvsxRdfrMIwTJa/973vVZZlqaGhIaWUUqOjo6qjo0O97W1va3nOHTt2qPb29pblZ555ppo9e3byWKWU+vWvf60A6X4ghBBCiGkx09p+Sil19dVXK8dxVKFQUG9+85uT5ZVKZdy23/3udxWg/vCHP7S85+c85znJ/de85jXqNa95jbIsS91yyy1KKaVWrVqlAPXjH/9YKSVtOiGEdCkVQhyGdevWcdVVV3HBBRdwxRVXTLrdyMgIP//5z7n00kvp6OhoWVetViechCCTySTrp9JNN91EX18fL3rRiwDdheGNb3wjN998M0EQHNRz3Xbbbfi+39IlAnQV22Te/va3YxhGcv+iiy4iCAI2bdoEwK233srQ0BBvfvOb2bNnT3KxLIvzzjuP22+/HYDt27fz4IMPcsUVV9De3p4830tf+lJOOeWUg/o7hBBCCCEOxExs+wF86lOforu7G9M0+cIXvpAsz2azye1arcaePXs4//zzAVi1alWy7qKLLmLVqlVJD4Y//vGPXHrppZx55pnccccdgK56MwyD5z3veYC06YQQMkupEOIQ7dixg8suu4z29nb+93//F8uyJt32+9//PrVabVyXAtANHdd1xy2v1WrJ+slUq1WGh4dblvX390+6fRAE3HzzzbzoRS9i48aNyfLzzjuPz3/+89x2223jZtHalzgkGzvDaVdXF52dnRM+ZsGCBS334+0GBwcB2LBhAwAvfvGLJ3x8sVhsee1ly5aN2+akk05qaSQKIYQQQhyumdj2ixWLRU466ST27NlDX19fsnxgYIBrr72Wm2++mV27drU8pvl1LrroInzf5+6772b+/Pns2rWLiy66iNWrV7cEbqeccgpdXV2AtOmEEBK4CSEOwfDwMH/6p3/K0NAQd9xxB3PmzNnn9jfddBPt7e28/OUvH7du9uzZ3H777SilWiq/tm/fDrDP5/7v//5v3vrWt7YsU9F4GxP57W9/y/bt27n55pu5+eabJ3yfBxO4HYrJGqfx+w7DENBjfkzUgLRt+dkWQgghxJE1U9t++/OGN7yBu+66iw984AOceeaZFAoFwjDkT/7kT5I2GcA555xDJpPhD3/4AwsWLGDWrFmceOKJXHTRRdx44424rssdd9zBq1/96uQx0qYTQsi3XAhxUGq1Gq94xSt47LHH+M1vfrPfUvft27dz++23c+WVV07YfeDMM8/kG9/4BmvXrm15rnvvvTdZP5lLLrmEW2+99YDf+0033cSsWbO44YYbxq37wQ9+wA9/+EO+9rWv7fPMarOFCxcC8Pjjj7N48eJk+d69e5OKtYO1dOlSAGbNmsXFF1+839eOz542W79+/SG9thBCCCHEWDO57bcvg4OD3HbbbVx77bV89KMfTZZP1LZKpVI85znP4Y477mDBggVcdNFFgK58c12Xm266iZ07d7ZMmCBtOiGEjOEmhDhgQRDwxje+kbvvvpv/+Z//4YILLtjvY26++WbCMJywSwHAn/3Zn+E4DjfeeGOyTCnF1772NebOnctzn/vcSZ979uzZXHzxxS2XyVSrVX7wgx/w8pe/nNe97nXjLldffTWjo6MtU77vz0te8hJs2+arX/1qy/Lrr7/+gJ9jrEsuuYRiscinP/1pPM8bt3737t2A/tvPPPNMvvWtb7V0ebj11ltZs2bNIb++EEIIIURsJrf99ifudTC2Qu6LX/zihNtfdNFF3Hvvvdx+++1J4NbT08PJJ5/MZz/72WSbmLTphBBS4SaEOGDvf//7+clPfsIrXvEKBgYG+Pa3v92y/i/+4i/GPeamm25izpw5vPCFL5zwOefNm8d73vMe/vmf/xnP8zj33HP50Y9+xB133MFNN920z/FBDsZPfvITRkdHeeUrXznh+vPPP5/e3l5uuukm3vjGNx7Qc/b19fHud7+bz3/+87zyla/kT/7kT3jooYe45ZZb6OnpaekmcaCKxSJf/epXectb3sJZZ53Fm970Jnp7e9m8eTM///nPufDCC5NA77rrruOyyy7jec97Hn/5l3/JwMAAX/nKVzj11FMplUoH/dpCCCGEEM1mcttvf4rFIs9//vP53Oc+h+d5zJ07l1//+tct4/w2u+iii/jUpz7Fli1bWoK15z//+fzbv/0bixYtYt68eS3PL206IZ7hjt4EqUKImeYFL3iBAia9jLVu3ToFqPe97337fN4gCNSnP/1ptXDhQpVKpdSpp56qvv3tb0/pe3/FK16hMpmMKpfLk25z5ZVXKsdx1J49e5RSSgHqYx/7WLL+P//zPxWgNm7cmCzzfV995CMfUf39/SqbzaoXv/jFau3ataq7u1u94x3vGPfYFStWtLzm7bffrgB1++23j1t+ySWXqPb2dpXJZNTSpUvVlVdeqVauXNmy3fe//3118sknq3Q6rU455RT1gx/8QF1xxRUyhbwQQgghDttMbvuN9YIXvECdeuqpLcu2bt2qXv3qV6uOjg7V3t6uXv/616tt27aNawMqpdTIyIiyLEu1tbUp3/eT5d/+9rcVoN7ylrdM+LrSphPimctQ6jBGmRRCCDHO0NAQnZ2dfPKTn+Qf//Efj/bbEUIIIYQQQghxhMkYbkIIcRiq1eq4ZfHYH5N1pRBCCCGEEEIIcXyTMdyEEOIw/Pd//zff/OY3ufTSSykUCvzxj3/ku9/9Li972cu48MILj/bbE0IIIYQQQghxFEjgJoQQh+GMM87Atm0+97nPMTIykkyk8MlPfvJovzUhhBBCCCGEEEeJjOEmhBBCCCGEEEIIIcQUkjHchBBCCCGEEEIIIYSYQhK4CSGEEEIIIYQQQggxhZ4RY7iFYci2bdtoa2vDMIyj/XaEEEIIMQMopRgdHWXOnDmYppyjPFZJO08IIYQQB+tItPOeEYHbtm3bmD9//tF+G0IIIYSYgbZs2cK8efOO9tsQk5B2nhBCCCEO1XS2854RgVtbWxug/yGLxeJRfjdCCCGEmAlGRkaYP39+0o4QxyZp5wkhhBDiYB2Jdt4zInCLuxcUi0VpiAkhhBDioEg3xWObtPOEEEIIcaims50nA5IIIYQQQgghhBBCCDGFJHATQgghhBBCCCGEEGIKSeAmhBBCCCGEEEIIIcQUksBNCCGEEEIIIYQQQogpJIGbEEIIIYQQQgghhBBTSAI3IYQQQgghhBBCCCGmkARuQgghhBBCCCGEEEJMIQnchBBCCCGEEEIIIYSYQhK4CSGEEEIIIYQQQggxhSRwE0IIIYQQQgghhBBiCkngJoQQQgghhBBCCCHEFJLATQghhBBCCCGEEEKIKSSBmxBCCCGEEEIIIYQQU0gCNyGEEEIIIYQQQgghppAEbkIIIYQQQgghhBBCTCEJ3IQQQgghhBBCCCGEmEISuAkhhBBCCCGEEEIIMYUkcBNCCCGEEEIIIYQQYgpJ4CaEEEIIIYQQQgghxBSSwE0IIYQQQgghhBBCiCkkgZsQQgghhBBCCCGEEFNIAjchhBBCCCGEEEIIIaaQBG5CCCGEEEIIIYQQQkwhCdyEEEIIIYQQQgghhJhCErgJIYQQQgghhBBCCDGFJHATQgghhBBCCCGEEGIKSeAmhBBCCCGEEEIIIcQUksBNCCGEEEIIIYQQQogpJIGbEEIIIYQQQgghhBBTSAI3IYQQQgghhBBCCCGmkARuQgghhBBCCCGEEEJMIQnchBBCCCGEEEIIIYSYQhK4CSGEEEIIIYQQQggxhSRwE0IIIYQQQgghhBBiCtlH+w0cSb/qOoucYR3ttyGEEEKIGaCigqP9FsRBkHaeEEIIIQ7UkWjnSYWbEEIIIYQQQgghhBBTSAI3IYQQQgghhBBCCCGm0LQHbk8//TR/8Rd/QXd3N9lsltNPP52VK1cm65VSfPSjH2X27Nlks1kuvvhiNmzY0PIcAwMDXH755RSLRTo6Ovirv/orSqXSdL91IYQQQgixD9LOE0IIIYSY2LQGboODg1x44YU4jsMtt9zCmjVr+PznP09nZ2eyzec+9zm+/OUv87WvfY17772XfD7PJZdcQq1WS7a5/PLLWb16Nbfeeis/+9nP+MMf/sDb3/726XzrQgghhBBiH6SdJ4QQQggxOUMppabryT/0oQ9x5513cscdd0y4XinFnDlzeP/738/f/d3fATA8PExfXx/f/OY3edOb3sTatWs55ZRTWLFiBeeccw4Av/zlL7n00kvZunUrc+bM2e/7GBkZob29ne9ZS2UwXSGEEEIckIoKeEPwBMPDwxSLxaP9do450s4TQgghxEx1JNp501rh9pOf/IRzzjmH17/+9cyaNYtnP/vZ/Pu//3uyfuPGjezYsYOLL744Wdbe3s55553H3XffDcDdd99NR0dH0ggDuPjiizFNk3vvvXfC13Vdl5GRkZaLEEIIIYSYOtLOE0IIIYSY3LQGbk8++SRf/epXWbZsGb/61a945zvfyf/5P/+Hb33rWwDs2LEDgL6+vpbH9fX1Jet27NjBrFmzWtbbtk1XV1eyzVjXXXcd7e3tyWX+/PlT/acJIYQQQjyjSTtPCCGEEGJy0xq4hWHIWWedxac//Wme/exn8/a3v523ve1tfO1rX5vOl+XDH/4ww8PDyWXLli3T+npCCCGEEM800s4TQgghhJjctAZus2fP5pRTTmlZdvLJJ7N582YA+vv7Adi5c2fLNjt37kzW9ff3s2vXrpb1vu8zMDCQbDNWOp2mWCy2XIQQQgghxNSRdp4QQgghxOSmNXC78MILWb9+fcuyxx57jIULFwKwePFi+vv7ue2225L1IyMj3HvvvVxwwQUAXHDBBQwNDXH//fcn2/z2t78lDEPOO++86Xz7QgghhBBiEtLOE0IIIYSYnD2dT/7e976X5z73uXz605/mDW94A/fddx9f//rX+frXvw6AYRi85z3v4ZOf/CTLli1j8eLFfOQjH2HOnDm86lWvAvSZ0j/5kz9Juih4nsfVV1/Nm970pgOauUoIIYQQQkw9aecJIYQQQkxuWgO3c889lx/+8Id8+MMf5uMf/ziLFy/mi1/8Ipdffnmyzd///d9TLpd5+9vfztDQEM973vP45S9/SSaTSba56aabuPrqq3nJS16CaZq89rWv5ctf/vJ0vnUhhBBCCLEP0s4TQgghhJicoZRSR/tNTLeRkRHa29v5nrWUnGEd7bcjhBBCiBmgogLeEDzB8PCwjBN2DJN2nhBCCCEO1pFo503rGG5CCCGEEEIIIYQQQjzTSOAmhBBCCCGEEEIIIcQUksBNCCGEEEIIIYQQQogpJIGbEEIIIYQQQgghhBBTSAI3IYQQQgghhBBCCCGmkARuQgghhBBCCCGEEEJMIQnchBBCCCGEEEIIIYSYQhK4CSGEEEIIIYQQQggxhSRwE0IIIYQQQgghhBBiCkngJoQQQgghhBBCCCHEFJLATQghhBBCCCGEEEKIKSSBmxBCCCGEEEIIIYQQU0gCNyGEEEIIIYQQQgghppAEbkIIIYQQQgghhBBCTCEJ3IQQQgghhBBCCCGEmEISuAkhhBBCCCGEEEIIMYUkcBNCCCGEEEIIIYQQYgpJ4CaEEEIIIYQQQgghxBSSwE0IIYQQQgghhBBCiCkkgZsQQgghhBBCCCGEEFNIAjchhBBCCCGEEEIIIaaQBG5CCCGEEEIIIYQQQkwhCdyEEEIIIYQQQgghhJhCErgJIYQQQgghhBBCCDGF7KP9BoQQIhYqg+0spEIBgxCTEAM15ra+gEqWAcl2ACYhJMsb6xqPpekxjedrXt+6rRqzLWO2GfM4Yxr/kYQQQgghhBBCHPMkcBNCHDOeZjGDqpeXvXs+oTIJQx1jhcrkgRtXQhSbNaIuc1wEByTrGrf1OqX0Y5uXt8ZujfUhY7c9iBRNjQ3j2Ed413jm5L4x8bqxz8GY5yV5x7Ssaw4JQR3Q+rHveez2kwWPzfcnCkNb/7fGB6Fmst3YkDVM1unloYSbQgghxAxTVylG6cDGw8bDwsciwMLHNNT+n0AIIWYQCdyOU5vUCbhkMQmiy9gqoTCKJFrvtx4It1b9tB5AhxMcUE9Q6bOPaqFkuRwwC2BQdbNDzeOKD+Vpz+4Zt375NXOPwrtqplCKKLTT0ZJSRtN1tFxFn/DkurFN8kzR9s3b6uc0xjzn+Oem5TZN6xrvq/l+87LW7ZrfT+v6sc+hMJInefCrKwgxmTx2a0SEYRJ6Nn5VmkPM+FcoDkLH/9qYSfAZTjICgqHi3zaFSdB4pBEky/V1MO52vL1JgEWQBHlmso2+beG3XJsE8rslhBBCHKRQGaznWSil9+keDgF20nYwVRjtk30sI943B0375SDaHwdj9tV6n2+NWRbv11v28RLqCSGOIAncjkNDqos9qp9XvKePIDQJQpNQGTxw40oC7MZBbkvk1jgYjg+EkwNgZTI+OjNath+77qBE+73xVTITVwUxbjnjlxkTbzd5VdC+q4UO5nHjqpUmDB0PJqScqEqoUQkUd60c//jWLpiNMLV12yT2OMoNkG0s4pXvnjVh2HasMAySz5b2zGu0Lb9m3lF6ZdVU8WgQKhOlGrdbr5svcaWkoX8Po/tBVDWpvxHppJneuDYJVWNZgNXy29Y4KIgOAKIDg/h+fLY+OWs/wbLm2xLgCSEOxi41hyo5HOotlxQuNp78pohj0gC9hMrib67JY5qNNlQQGvihhR+a+IFFoEx9OzQJo2OZQMXXBqtuWInXEr1Z0f68se8Oov154xhHa5yoawrijPEn2xon4PZ9uznoaxxZNdZbTSf3pNBAiGceCdyOQ9tYxGxjMws7W/97TzpiB8p6BxpXAzVX65Dcbq0Gar49toKIpsfp5WMrghq3G8/PhLfHPuZAqoUmqhSa+Lkm+TvVwVUFjY0Wk9eJdtfN90F3t5ws+IxjxtZumJPs6VUj1GuOXlu69RlxI2KCdU334wYL0HSGUSWNmbG3AyxKqkh/2xC7Sm0MVXNYpsIxAywzxDRCbDPENgNMQ2Ga+gylZYRYZohlqJaGmzg+xf/Hlo7dDvv5DrZqMgwhUHFw5yQnNPzQipbrg4UgOki4/4ZV+NHZex232QQquo6WxWzlY+FhGQF2FMbFXW0a9+vY0XK7ab003oV4ZimrApvUMnqNbVQo4JHGUw4eaXxsDBS28nAMHcA51LHxxoVzcZe+o33CTTxzDNBHp7Eb08y1LLdMhWX6pA/weZZfe3DHNPpEmz4JF0Qn3ZQyWoK8MLrffAIvvr/qhvvwcZpau1ZyuzXoi1u4VhK3jaVP2I0J7ozG7bHBXWvAp8a1qxvbKCYKBoFxz5uMgyztByGmnQRuxxlf2Yyqdl73oVnUPB/HCrCOUhDRWg30zG7MHb2qoIk0ukaGKq4Y0g0KXTFkJkHj2Cqi1uqiRhWRUnHjJVofmjzw1fuj5kA6aYyopvOACiNpnAQ4dBh7CVQ/Dz69kP62YRTghxZhFF7EZzvDuFGkzJYwFMA0QixTYRo6kBt734hCOr1OJdvE68wouDPHbGNE2xnQ8pjmxxkTPKdefuT/h8X0ME19ntyxDizsO3E/gZ5SKjqDb+EF6eTsvhdY0TKLldevwiUTdbtx8JWdhHghJgYKSwX6YNqID6DrONGBdPNBdnxbDq6FmNl2MZduYwd/fu38cevC0KDm29SDAq5vU/dt3MDmvq/cT5kiddJ4KoWPgx8dBtjKw8HDMdxxvxfOmN8RywiO9J8rjhO+shlUPbz+fV08tK1AyvKjS4Bj+zhmgGMF2GZAygqwD3BfeyDi/fehnqw76doFh/zaYWgk7da43RyEjXZ0MCbcC8PGds3rV92wImo/p8cEfkZrO1u1hoHN2437d1FjhxqKht9oOsEed9edaHiiuHpvfNDXGLpjfGVgY5kM0SGeCSRwO864ZADFPZtOSKqhjKZKINvUAZxlhJhm2FIhZJlhEiw0hxSWEbaECfFta2xQMUEIIYHDsSkOQ80kCJ26Rk1s+TVzDvIRXTy8rY9ZhRHOf2X/AT0iDHXAFwRNDZPAIIgbN6GRNHTibcPmZdH9yiOPEoQm3gRdEhXjGz+6QWMkoWRz8DhWPAHC+O9GmHw/xoV+zetpXW8YKqr2a3ynGw1UX6+bwkaqmD6GAY4V4lghWcebcJsT9hHW+4FBPbDxwwz1wKYe2HiBRd23WXnDA9TI4ePgqRQeDj4OoKvpHOo4Rlzp4iZd0Vq6pRn+tPzdQojDU6LIy983Hxgat840FbmUR47W35QTJgjnlEKHckEW13dwfRvX1+FclTyjdOCRwlf69yPExFShDuSM5mo5b1wVnVTPibGq5DEJeHxPH7POXgyPPUipnsELLLzAph40upQqDH1CKWrvOFaAHbV1HDNoaQPFt+Nt7ah3ROu6o/c5jMM++zDb2ssn+A4fjMYJdGNc2Nd8kj0Y2xYeU/XXHBo+cOOKpJKveZiipMJPNbr1NiK51qo/Q8WP8JvG2QtodAweO47f+LF1m8fYbRnKw5D2sDj6JHA7zpQpEmKRTXm87HVF/MDEDwx9HZpJGOEHcThhNsKJwKDy6Gq80KbmNZ2FaalmGhM8HEbgMGG4MGk40VhOS0DBuMqjOEya8DVRLcFF6zJaQw7ponhEVT2H7aMdnHxRH/euTZFyQlJ2iGNHDSg7xLZ0dZFlqSRYsi2FY4eYE4+pf2AWTF0FYkuw1xT06e8KTcvj74weuyRuCKkxj9WBn35s5ZHVhMqkqvRYJ0FSHWUlVVGgP/9xd1zHCnCs1jPHjhWFc1aQLI+XHc1GqTg4+vMfAuPDumUTBN5hCPXAoh6kcf0O6kF8cP0AFdoYogdPpaiTIsTCUoEO4QyXFPqSpkaKWnJbql2EOLI85VBVeZ4a6GH9rtnkUi5ZxyNte2RsP7pu3N9XW8YwIOP4ZBwfqCXLl05SzeMFJq6fwQvaqPlOUj234vpVYwL+VFI9Z6lgTMBfb6m+bb6WgO74NkKnrogyFGcu3Yt14sQBklL6hJLnm8lxjBeYeL5JEJh40bLyQ6txfTupDg9Cq2UsuCBsVHXF4V0jlAuxWoK7xvAlcVhnGioK+RoFCqahWoK8mVRUYBjoAosp7HV08kF27Y01TozrY0g/tFDK0D1ZlNkYvmPM+H3337AiCv9zUfSmh+dojNtnJ8EeAIrW8XMNPwnnbLwkoNNDdASYyTAeQTK0h/wuicMlgdtxpho1eILQ5PFt7ThWSMoJdGhhKTKp+LY+2zNuR7Hw8GaCVFGgoGDCyiIFURn15NupKIRIQr4xj688shpfOUn3xkbXSH3NBF0lm7eD1i6UzePGjRUHeHEwZ0wSAjZ3O4x35LbVCDjinfPYwEPCjYbhWhbLCNi4o0jvufPBVJQ8k+zmtXi+0wiOo5A4boTF/3eGobBMhW1FZ0Qt3T00vq3X6c+9Fd23zDDapuliqeRsqK70bGx/IA0r00RXDlrT8H+7n+9ncyM1bpz6gUndN/GjZSMPrdUHSoGNH1h4oT6z7AU6rDONMAngdBjnk7Z9nLjbR3S/uSuIhNMzg2kqMub4g+slE1TReYFBzc9S89pxfZua73Dv9Q9Rpo26SuOSIcTCVh5po5YEcRmqpKmSoUqKmjRShZhiFQqEmIy6WZ778k78wKTmWgw9sJbBao6al9JdSn0986Nj+WOCOF9fOx5pSy9P2wc2FqSuyHXHLT/x2vH7JqWIQv1sEu7XfV2Ju+KG+ylTwI+q5zxSyZiWYytw7THdWseGdTMp8Him83BwSTNUyfHLFfNJ2QGZVEA6FZB2QtJOQDo6Zkk5YXQME5JN+9jWBG2wAzhZ2lxoELcbG23IaDy3aF3p4UaA1wh8WsdmjY8fYmZL2z/qRdRcWWc0qu+spkDPjEO/aFmj15FKnud4Zpk6+GsM0TFxlf9YJx1glV8YGsmkG4FqTMThBY2T1fH6lTfcj0s2itgcAmUncVtcjRdPlGXjYxte0xi7jTF142XNQ3rIOLsCJHA77pQp0nfZ2ZT751GuDRMEBt/7/S/53u9+yMDoIIv6lvCXf/ouls1dDkAQ1PjWrV/njof/gBd4nHvSs3n/G/6G3vZiEl78y/f+g4eeWMfj27awdPZcfvqpT0cVRvsOJ+zpCBzgsEPBieiArynYaym7pqU6SVccNQWC8fpQh4nxDr308BrKbrppjCYr+oG3knAjrkSykwAuTEIMO6k88qOALohCD91t8Hj7Ad852k4QWnSkPTLpkHRKkUoF3HznCr7x/77F7j17OWX5iXzqH/+es844DYCa63LNZ/6VH9/ya+r1Os87/7l85O/+kY6OHsIA9g4O86FPfojHn3iM4ZEhOjq6eeGpZ/KOV1xONp1PGmJBGM1c2XwJ9PJmreFcFFqPDezGfC9Mo7HMbL7ftJ1p0PgeHUS4N5ZhgGMrHDsAJqk8mj9xV1+laAnq6r5J3TPxfIu6r4O6cj2TVDQ0h3T686kP2tK2PohLNR3gpaIDvAMd+0wcffGBdVu6cXB9wjWzW7ap+yY1v0DF66Lmpbj7yw8xRDeuykaBnElaVckYOoDLUEkuaWrH3W+YEEfCCJ0EWHRmS+TSbWTTAd/4+W/4wv/+kp0Dw5y+ZD7/+q7LOeekJbiexVAp4CP/97v89K67qfs+585dwrsufA35VH/UndTmWyu+x4Y9T7B5cDsLOmfxrTe/a9zvd3yi5UC/t4ZBtE8Y3zX9pAkCujA0ogpcHdDVPAcvsLj3y/dTI4tPUXeNVw5+FNDFk0PEY1hONPacBHTHjgptzHv1uRiLl3DCS2eRSilqNZOb/vs73PTf/5eBgd0snbuIq1/1Dk6YezJ136RU8fnmr/6NOx/9HX7gcfaJZ/Ge172TWZ3tOJai4g7x0f/7BTY8vYmh0ig9xSIvO/dsPvKW19PZlsaJekqkHJi0XRQ7wN4O8clN3eZvtBnjnkRjg7zyw49S9+2mWVaj9UlPhcYM6s0VeWY0eVjctkrFbavoOhWdAE1L+2oc01SkzIDU/v7PgeUT/B7FwtDAa5o914uP5wKLenR/5Q33U6EQx3F4KtUyzq7+jWoEda2VvY0u+fIbdfwylFLHd4QOjIyM0N7ezvespeSM8bPFHE/uC19A+pIXc8oF7Zzwknn85ne38MFr/onPfOwfOOtZp/Pv/+8mfvar33D7j39IZ2c3//iJT3P7H+/gk//4cXLZIp/+wqcxDJN/+9dvRzsKgxs//3fM753Lo09t4Imnn+Lr7/9S0hX1YMMJsylQaA4imkO7eLvmx8dBnt1UkXSwlUfHkuZwI65IqvtWdNui7pmMPrw2Gs9C/7jH4zOFykyCulRLpZEO5uJqpLhxnLG9GTGm150blzE069lUZy2hq9PHNOF3d/6Cr/7fD3DFmz/BiYufxa9+903uXXkLX/v8LfT0dHHDN67hvvt/zz+9/1O0txf4l+s/hWWZfOfr38JxFOXKMD//9S8561mn0t3ZwVObt/DhT3yWM05Zzo3/8ukDel9hCEGgG1dhoANW/XmHML6OvgN6W70sv2WNbliNGVNObzd+2UTfn7HhXDypQ3xWOJsOyKZ9cmmffMbDsY/sz7lSUPdMXM+i5lm4nkXdsxh+YA1uYFPzUriBjevrqlvLDJODuIztkXHqZB2PrFMnY+vr4/2s7jOFUlDzHSr1FBUvzV1ffIgqOVyVo0YWg5CsUSFLmQwVcpTIUSJtjK+eOZoqKuANwRMMDw9TLBaP9tsRk3gmtfOeUCeTftUrSS9dSkdbnT88/Hu+8oPP8e7XXsWzlp7AD+/4MbetuovffP7zzJ9V4B+/8R/8euVD/Pvf/RXFfJb33nATpmFw+xf+AdD7uPfe8F0W9s1h5fonWbt5M9/9yL8y/MBa3MDB9XSFqx/qgCtuZ2ScelQh5yfBnL5dPyKVz0Gox7CMq+bi8PDeL98fTQjhJOPPeTiEcUDXNMGMk0wyMz6gk65kU+/+8EIyl76UruVz6DlrHtlsyN33/oxPf/6D/OMHPsY5zz6db//3/+OWX/+a3//yJ/R0d/Phj32C2353B5/5+CfJZtv4xGc/DZj825e+g+cbDA6OcOeP/oMT5y8jn+lk864dfOUHX2XJ7BN492v/IRkLLh5+pHkoEsfWVXS2pW9b0bAl+r5qWX9Yw5YchDCkZTggLzBxPZO6Z+HWLUYe1O0rLzr56foOoTIwDaXb/lEYl3wnx9zXxwrH/jHB8cAPTB3KBTZeqAO6uu9QDyzuu36VrvBt6oYfjPmNmmhsXX3flQmwptCRaOdJhdtxxseBwOKpHUVqa7Nc/+/f4aLnvpGerrewfafiVZeexi2/uZOv/Psv+LNL38T3fvxDrvng5zjj1AtwbMWn/unjvPLPX8XT2+/nOWedjm3Dl776SQD+5fqvsfW2bZx86eTlvHE4EYRGEkb4vg4VVAhBFEjogev1bS8KJ+q+tc9wQpd2NyrJmrWEcEk10fgKI2tMCGiaHFC3wuYgcCrCPcNAj1Hm7GOnt3D2hIv9wNCVR4EZBRx6R1z3LYYfWsuIm21pgIbKjMby8lu6j6RtLxn3JQ5BjuZOeKSWpVS1dfeBZXPI5uE3//JtXvH6t3L5+67G8+CUl17IFa8+iV+u/A0XX/o2brntB/zT+z7HScuei+8bvOOtn+GqD1zK93+ynsWLziIICsyb81fs3g0DgwrbOokXPPdpfnzLN3jg4ZwOcW2FZenKMH1b4dgKy1bYFro7qq1IOQorcxA7tyVLD/rfYOz3Jwn3gjjU0+s8z8B6ci3DZYftA1mqrk3ds3DskGzKJ5v2yWd88lmPXNqnkPXJpKZ+rC3DgHQqJJ0KKTZ3B5gz/iyxHxjU6hZV16bmWdRci8EH1jNcy1H1UtQ8h1CZpG2PnFMnG11yqTo5xyWfcknZMl7YTGEYRGGqRzdl3nhNY78RhgZlL0u53kHJzXD39avZq/qokcNSATmjRI5R8oySo0SW8ow7qSLEdFGYlOppclbI2a/r55rv/Zg3vOZ1XP5/3k61ZvDhBf3c8cj9/NtP7+bis1/J//v1HbzndR8CLsTzfd73+lm86eNX85O7nuaCU5aQTQf867v+HMtSfPK/Bnli21MsXzAMC1qrocMQfXKlrk+uuHV9e/jBtQzVcrr6OWp7AElX1kaFXNSF1fFaQoBDPclimYqs6Y2bcGbJJOPPNQK6PG5TUKcr6HKUojoTP5rBNe7iqmeBrmMbOqCbqBtZfN9qvshg7eNUaMMJdeX8LmsuWRtu/v43eemL38jJJ72ZvYMmL33R5/jlb/7IZ//1F1x6yZ/z3f/5ER96/+dZOP95pNOKj334U7z28pezZev9nHv2GSxZlOHsZ1/V8jq1nhG+9h/f5Lw39eN5uv3h+wa+Z0QntsH3DOq+gbNpDbW6xWjVaRozrnEyPO4+ahqNAM5qCu+cpgDPHnPbaRp7+EBDO9OElLmPirwF46uxPN+gHp2sj7+brmcy/MBaRt0M9WhClHpgEyoDywibeiE0dTePvpsZxzus76bQ9jXO7kTd8IPQiP6fWmeYvvcrD1Ahj0cKT6XxSOnhAlSdlKEDOD36bjy8h5uMtSuh3LHhiAVun/nMZ/jwhz/Mu9/9br74xS8CUKvVeP/738/NN9+M67pccskl3HjjjfT19SWP27x5M+985zu5/fbbKRQKXHHFFVx33XXYtmSFE6mRI+U7MG8uHae389SWR7nyPR9i9nP68erg+3D6ORfzyJPr6X9qN77vs/zEC9m5y8HzDXz/FHq65vCDn66nXLkQIAkjtjydolIxeeDhHHYUTth2FE5YCsfRAYVlReGErUindZixX1MQTjTCvNZwovl+PQrx8lvW4Hp2U3dCDqtboRmND5aKxqDIphqVR7mMP6Xda21LD+Kqd8RjfsQXjA/pPN/QO2DPatoRWww9uI7BSoGq77RUIGXsOOzwop1uPQlADnScl4OlFFS8NEFoMjxks+dBC9+vs371A1zw/L9j3WqTdAYcx+C0M1/EY2vv45RnnU3ge5zz8teT7erAMOCM0+fR96/z2Rk8yQufd6mekMDXn/sggF3bt3Pf6t9x6lkvoNQ5nyBaPifcRLmiq9H094CkwjPw9WcLwIBGEBd/B6zx4Vz8ndDbRP9nzdtbTPjvaJr6okco3M9nZn7rd8b3oVI1qdVMqjWT4PF1bN+bo1JzqNYtLFMlIVwh45HP+hRzdfKZIzO+hG0pClkd/iXmtX5e3bpJxW2j4tpUXZu9q9YzWM1TrqdxfQfHCsinauRTOoArpGu0pWuTzvApjk2mqWhLR91V20Y44ZpeQP9Ol+p5Rmo93PHFR9nFXMqqgAHkGaHACAWGaWNYZlA9Bkk778ioqSw1N0OhZnHPCptHVq/lDa95B0pBV2dA9vkn8sIXXciWkU2YSwfwA583vutSUql2ajWT2bVl9Hf18vsHn6KYO4eqaxEqA8cK2bSzQMW1eXRjJ9mUTyYdVVOn/Kaq6jEhwATBXN2PgzmTWj2ufG49+HejMebsqMtcUoVjjR1jbmq6zB1sQBd3JasHGbygXVeq+I1KlZU3rEq6kXnKSbqTNcZ8CpIQzjb8ZDyneIyn+HayTRLm+cftZDQeKcIQtqeXMDuAwK+z4YnVvP6v/4HuZ83GNHWb7eznXszj29fw2OB2/MBj9hmvp+aOMjxqoNRyerrn8MOfraNcuVC3mRx9DJJKhYyO7uAHP76d0055DlufdkilonWOIp8PcZwxJ84Xn7DP9xz3cNBhnS4iSC4B1DyDwuY1VFw7Cuwa48N5vr59KKFdyglwrDD53u2rnaar8XzymTEr5k8czsWhea2ujwmGH1jDUC2HW7Kj2Yp11ZxtBtGxQJ1MVL2aiU6kxT0T5GTY1LEmnWG69f8xnl3a9XPUfIea5+hxdm94kBG6cFWGOmkUBinlkjJc0lRJU0uuM1RI4cr/3xFyRFozK1as4N/+7d8444wzWpa/973v5ec//zn/8z//Q3t7O1dffTWvec1ruPPOOwEIgoDLLruM/v5+7rrrLrZv387/9//9fziOw6c/fWDdwZ5pXDIEdYfde2123zpIEATs2dnPE4+ZpFKQzijaO2exbetjhOFOHCdF3zmntjxH75zZqPYqC57br3c0vt4Bmne0oRyHUud8fB98D+Z6m6hUTQJfBxVBoKtv/AlCCieuJHKaQrqkkigK75xGQBGvix831kGFE2OdsOSgNp+sci9UtNz3PAO1cR0Do2kqu/NUXBs/MEk5gQ47Mh75jA7hCtFta7rGuovEO+KWoANgQX/LXb0TtqnGVUh1i4EH1rOn1EbFS+H6DqYRJlVHecfV11EAogdiPzT1wKbqORAqdob9zJmbpjQyQBgGZGYtYCDM4g/B4p4KmWwfm558jLWP7MayU6x+uBsjbnClIJObxePrd7HxcQPHAceBL113Bffd+XNct8pzX3ApH/3cDaTTzf/uC3D28f7CkCScC4LmEM+gHjTWzQ03UauZlAJavhO6YaZDX2h8J6zofVtW9B1wGsFdc6gdr4ur8LKZ8ZWWtg3FtpBiW/TFm7+k5f2XKyblikmlYlF+fD07B3OUqvqAp5DxKOQ8ijmPYq5Oe76+7+rLaaKr5ep0ttUBOGFuI5DzA4NyzaZU7aFcc9h9/waeHu6k4qWxzZBCqkZbukoxoy9taRkjbKYxTUUxU6OYqfHma3QDU4dwaYZrPfzhi2vYok6gSo4cJdoYop1BigwetweoM4W0846cKjnC0KRad3jaT+v9ZLqXjZv0SdEgMKjWZrNx02ZWPTSC4zgoOrCskJ4en3RK0Te3D9Ubcvqr9PesXjeouQa5JzownkxjmSHDlRQ7h3Q1cq1uoTDIOHqA+2zaJ5vSYVwmup1N6wHvTRO9fGxV9bzxB41JRY5nUqvbuF7rwX8czgXKxDTUBGGcl4wTF49xNVUnBk1TkTbjMejGd3Vffu3E46HGg7XroC4aFiQ0k7BuxVdW4pKJquh0SBcoiyCqqlMYGEo1ZlY0JgnlkvtBS5gXP+5Y2/8FyqROmqqXIvAMVm9MM69jG2Goj1PuvUOfWM1kFLY9i7271zM0sBPbSbH0pHbsVDtO9Dd1z56NKlSYd14f9Tp4HvzzR69gxV0/o+5WueA5L+Jv/+bT7Nxt43m6bV6v65PrhqFPmKZSOoRLwjpH4aR0IJdOtS5Pp/RlUksOPLTz4hO6Y0K7/JjQzvPj3iv6pH8hq0+UtmU9CtEln/EPuqtrfEzQRlObfW5rz6V42Jta3aISHQ/U6hZDD6xjT6WNaj1FzXcwUEn38nyq0TMhH/VMkF4J06N5dul2qsnyk65tHNfFw3rUvDxV36FaT3H3Vx6kRDEK5DIYKFLKJWNUksmuspSTUO5Y+w2ZyaY9cCuVSlx++eX8+7//O5/85CeT5cPDw/zHf/wH3/nOd3jxi18MwH/+539y8sknc88993D++efz61//mjVr1vCb3/yGvr4+zjzzTD7xiU/wwQ9+kGuuuYZUKjXdb39G8ZRDReUpdM/DzffSOX+vXp5Js8fL4pVhUVeVasWg7sKWp3RgdNfvLb3jSYGTgloNRodhz24dWKQzinQWMll9UD97bmtQMdn/QnNIEVcY+Z6BF0A1ua9Du2rV1IFVtAPy/NbKItNohHZxVV0STkT3dVjXuk28wzzcH42DCvcWtoZ59bpBtRaFHVWT0SfWs2MwS7nqEIRG1OXPoy2nd6DF6PpI/9DpnbB+H4n5jR/vMIRq3aZcs6nUbAbuX8euUhvlei9VL4VtBhTStZbKo2K6ekA7XD2ugU2tmqZagXUPgor+7+uuDs0KbVBK5QjTNoZj4nSmdOXLogy+pz9Lrgd+aDLq6p+2ctnAq8Mlr/wcF7zgn9ixbQO//PFH+ch7/oE3XPFFHAdsB1IO2I7+DtgO+oxo9H1wnOj/P8UEodzYz8IC9lXQGVfcNQfZOsQz9HciCvLmhpuo1syoQUYjzI66RBgG5PMBxbaQjnafrk6f7D66u5omtBVC2goh4MOiRcn7qVZNSmWTUtli6LHH2BxVOGTTPh0Fl458nY62Oh1594iNYTIR21K05z3a8/rzeeK8WYD+XI5WHUYrPey67zG2jXSybtccFAbFdJX2bIXObJnObFkafzNQcwh3+TX698j1LQars7n980NsUUupkaWNYdrZSxe7yRjV/TyrmErSzjuyyhSxAgtv9jy6O/TJidT8WXSdMYcudPiQuiOPsh2GzS5Q8PTTKSpVk3rdwLIUpbLJrt02jz2eJpsJyeVCctmQfE4HDrNesKzlNZUCt25QqxnUaiZu3YAn1jJYSlHdm9PdSz09/pAO4RqVcdnodnw/5ehJn5qHJNCiUGvuxEMSxBU5umLOZGjVGkr1DHsrdstkPkASzDWPXZVpCudSlu5KNx3jzCWDtU+yvzlhkoo6iAbjb5poKwhNPaN404DtEwd2dnI7Ziu/KbBrDeb2HeBNT3fYABtX6cAtjaLYCWU7DUC6z8HpT1FzYdSFoYpFGMDwkJ64bOXdpu5qmYJUGmpVGB6C3TsNUhlFOg1/+6HPUqv9A1ue2sA3vvwxvvH9L/Oef/pS63uI2lheFNK5HpR8A9+DOd4WSmUd0NWjkM7zoso0S39WW8K5MbfjAC+VCrHt1l4MVtT751BCO6WgEp0wLVdMyhvWsXMwS6nqEIZExw4+bTmPYr5OW9YbX4V6kJqHvSnmm44JmnrRhCF6mJC6TdW1qNRsBletY0+5QKWeph7YWGZI3nHJp11yTp1cyqUQ9VCYCWNLz2TNw3p0RsuWNlXKhaGhgzivnUo9xZ1ffJBhOtmp5uFGYVyGCln0WLvxJUNFgrhDMO2B21VXXcVll13GxRdf3NIQu//++/E8j4svvjhZtnz5chYsWMDdd9/N+eefz913383pp5/e0vXgkksu4Z3vfCerV6/m2c9+9oSv6bourts4GzUyMjINf9mxKUTPnFIbAn9bD4ZpMTKwkxNOg3QWqkaWkepe2mfNoXfZAgK/TlCs4ac6qNbBr8DAwG7yhX727jao16HumvgebNlkUikbPLjSxEnpkCKVVqTSOphIpxSpjN4hGsZkIcVEO5v9h3Z+0yXwDWpN9+dG3QFbArtoRxlGL9ccxKWc1mqhlNO4jneeE+0wD1Uqmm2zvRjtABcvStbVXINS2aJcNnE3rGfPcIbRiv4Xa8t5dBTqtOXqdLW54yvUjjDTJKrS0+9j0WWNRnEQVR+NVnsoVR32rNrAlqFuKvU0GaceBR9V2jMVOjKVcTvaIDoDPJKbj2kqRmojKBwM02Lvjp3ki1CvAQY8/eRObKcfr96P79fZu2OIzt4O8m36uarlnfQv6KeUyhF/sLq6FtMFLFTPonNxP1/60EW85M+vIZeeTeCCX9LVc6VR/Zn3PYN6XTfCQAfNThTC6WBaJWGc0/w9iMK5yRiGDvRsB9Ita8YHd5P9OCsF1QpUygZO+Sm2bkuxZl2WfD6ku9Onp8ejsz04oHDMMNAHWrmQWb0+LFoI6IboSMlieNhmYP1jPLG9iB+YdBRceoo1etprdBTqx8RO1zRJgrh50WdSKShVHYbKPey4dwMb9vRTcjO0pat050v05EfpypanfVBvMT3Stk9/20hSBVepO+wpL+G3X/J5Wi0mQ4UudtHDjmNuEobjkbTzjqy4nbdrt03lqQ5M02LFXbsxMMjmIZeHoYFd9Pb3ccLyPjzfw1qQY3axg8DXJ1WHS4Oke08gCGD3XpvqFpOaa/LkU2nKZZP7H8ySzSiyWR3E5XIh2UxIR7uC9riKujUgCENwXYOaa1JzdTAXblzDnuFMNH6nHmvWNFQSwGWaquWaK+fGVljroTQa7Q8ALhsfXMXjzDV3l6tFA82Puhlcz0nGb2vuzto8tm1jlm3/iI9vaxjxDNHhpEMl7C+wC0IzmkkxmwR2XtMEXCuuXxnN+moT4OBHYZ2+xN1hw6RaLp5ZsbmizqHeMpZd4/bkk0yEWHikUX3z2TzSQ+ZpUEofp2xcu5NCO2Ry0NYBYbCLQvccCnPnEfh1jK4KdroD14VSHQYHd9NW7GNwL7iuiVuDIJiDZc0hlz+Z17y5iy988mJecumHmTV7Num0Ip2h5dL0rxZdzxvX7lKqEdDF1yVPtw3nsplKxWSwbkxYRdccwjnO+Mq5+Hbc5XWy9pQ+wRqSz0efweikvlJQqxmMlixKZZORDet5eneOcs3GsXVQ1pGv05av01moH3YIN5ZpQi4TkMs0Pe/8RtWnHxhUao2T9HvvX8/eih4ixAtsMrZHIV3Tl5RLMVOlkHKlXXaEmKYin9LViORhQdPvShgaVLwU5XonJTfNXV95mEF6qKo8AFnKyURX8UWG+di3aQ3cbr75ZlatWsWKFSvGrduxYwepVIqOjo6W5X19fezYsSPZprkRFq+P103muuuu49prrz3Mdz/zBFjUSeP4eoKCnQM1Zi84m0dX3kax61UApDMha+6/jfMuvpqu/rOxbIeNa2/j2c97LQA7t65neGAzC571fMLOLDb6QxKGYLfZYBmU7Cx+FFIs6qpSLpEEc14dMKKQKU3SjVVfo3d62UYotz9JaNeSyB14OBFXEvlefG1Q8xph3Ww/qiRKzmjpM8Ch0t3+7JadYjgulEs5iky6EdAdrExakUn79HQB8xfrv07p7n8joxasX8fW3QVWP9WFY4V0trl0R4HH0Q7gmlmWopj3kjNhJ83X1UeebzBcLjJSTrFz5Qa2DnVR8x3a0jW6siW68yW6cyVCZRAqE9+HpwcytM2pkc469M49kw3rfkHf8heiMuDVQzZt+A3LznobffPPxrQc7vvtbSxY9lpME0qj6xnYtZn2rgsY2K0/c5ksWNH/jQ6CdaMlnXHp6G78DRVyEDXCmj/3QfT5qXlQ8sAf1eFctWIwUteffa8effbRn9VUWn/mU6nWMC6dUWQyOnA7VIahD6hyeQUspBto92BoyMAf3Mwja3KEIczq8ZndX6e78+AbWY4D3Z2BfmwUwpXLJgNDFqNrNrBxRxHTUMzqrDKrQ1+OZvXbWIahA+u2nMf8l+sGYN0z2TPSyda7nuCR7fMJQpPewgh9bcPMyo9KI28Gy6U8FqT2cuU13XiBya7SXG79Qo1tahFFBpnF03Qae4/22zwuSTvvyKupDIbvUEiH5BcUmLf0bB574vcsPOt1LMy67NyuuP+e33H+Re+gWjkby3L49c9+xwte+ipyedi7+zH27NrCc19wHtai+RSAArrtkV+Rx1hvU26fRzHczOioyc5ddtJV1XEUuWyYBHHZbBTK5ULSKRXdb9rnLGwN5YIgCuVqJrW6vvaeXMtoxUkm1fECE8uMQ7moQs6Juq6mG+PJTTQrt2kyyThzE3dnrTWFc/Xm7qx+a3dWywyTsWwzTuvEPlmnfszM+mgYjYHaJwvsll07+cRncYVdPUgnFXVeoAPeenR/5Q16kgk9E6yNH41f1zrJhJd0hY2DOC+akTEMDUwLyu4AmXxIV9+zWP3AL1j2rFcxuBvcmj5OOfN5V5HO6c/v2lW3cc4LX0sqrY9TRgY2M+fUi/CKaUwgi26reXWo1GGgHvVyKNXZs8vAremePWEYFQiko2OTdNOxSYZx7TMdnOlL079SdD2fFIwrGAh8fdLS96DuQdUzGInuz6ltYXhUn9D1PAO3bhIGYwK6+Ngio8ik9Xers2P8SVTDIPq++czqBRbpY4gggNGSyeiohbt+HbueLjJacUg5Ie15PWRHZ5tLZ2F6ey3YY44Lls5thHFu3WS06lCuOuxZsY6nRzpZt2s2oTLJp9xoeJAa7ZkKxUxVJm84wkxTUUi7FNIufW2w9Fpd2agUlOtpRt0u/vD5hximkx1qPi4ZMqpK3ojH2h0hx6hM2NBk2gK3LVu28O53v5tbb72VTGbsKI7T68Mf/jDve9/7kvsjIyPMnz/5Dub4YaDQZ7ZyaXB6Q0557t9w+/feRcfcU+jqO4uH//g1vHqZk571VvZub+ekZ/0VN9/wPkojXRQ7ivzy5r9l8fILWHzy+cmz7tr2OG61RHl0B75fZWTwQQBmLziFqpOFHFjoHV461DsVrw4jUcXcomyFcslgYC/UXb3jM0y9g8tkGyFEJgvZnCKb23eV0MHQZdx656qND+smqq6LQ7pkp1k3qET3Z7ubGR3VAV29buC6JqHSVXQdxYCuTp/ebr9xNuogGQYU8iGFfAj9S5mDbiQMj1gMDtnsXLuBtZs7yTgB/V0V+rsqyZhXxxrHVvS0u/S0uyx5pe4OVnUtBka72HbP46zZOZd6YGOgqNTT+KFBeQRKrk06qzjh2Vdx7y/eSe+8ZzNr/lk8/Mev4vtlnvX8P6ccKJaf+xf84Rfv4YWvT2Fabdz9sw/SM+c59M8/n8HdsP7BX1Aa3smcRedSKBYYHlzNb3/4ARaddCGdvYv2+/4nDnyhRFQ9l2+Ec+konPPcKJhzwRuFxd1VRkd119h6TYeKlq0//6lovJJ01OjLZPTn/2ADOduBnl4FvfOZq6A0As6ezTy8OkfKUcyfW2dOf/2QQuFYcoZ17iIWKxgcsnAffow1mzp5dGMXc3vKLOgrtVYgHENSTsic7gpzXqEbDkOlFE/dsYfHds9mzY55zG0fYH7HXnIpmYBhJnOskLntQ1x5TTc1z+Znnxpho1rOVurM40kJ3qaQtPOOjgCLILAYtnrpScELX/VevvPFK1ly8jl4Jz6H3//ki3hemfP/7K8h1cuzLvxLvvONDxIGXRhGkZ/+z/tYdML5pLPnsX0r5AqK4YEnqNdLjA7vxPdqlEYeZAOwcOnJdDmppKuqW4VqFUo1gz53C4NDeqgM19UhSi4btnRRjYO5TDTuqGVBLqfI5ZoCsUXjJwBym6rkXNfAeHItQ+WcHk/Os/ADU4dK0RhyGSdIuq5mm4K5ydqSrd1Zm37zJ+jO6vkGVddOxrIaWLmWgUqeqtdJ1XPwQwvbDMin6mTi2bWjiafiQG6mBAaNCrvJ25TLJ5hdEVonmWgO67zAph5YrLh+FW0MJJOZeR5kTTj9ee/gjh/+Lff94Qx6553Fo3f+G3W3ROfcV2FZ7Zx89l/yo/94P0N7uih0FLnjp/+HeUsvYPYifZyyZuUvGB3ayYJl55LKFNixeTW//O7fs/jkC8ktOJEAsNvBUo3jk2EXvBFY3OMyMgRuTVfJ+b7u0aCr4BpVcZmMPl7JZPd/fGLZ0UnebLyk+f9+Hg6Qb1oSB3Re9N4qnsFwHWb7m9ldsiltsvB96On26enxmdXj77MtZ1nQ0R7S0R7CvKXMRYdwI6MWI6MmI+se46kdBTzfpKNQp6e9RndR91o4UidO9XdPHxssfEXjO1epWYxUuhkpO+xauYEn9/biBRZt6RodOT08SFeuHI2rKI40wyAJ4t547aJkuevbjNSKDNcWccdXVvO0WkSIRZ5R2hiiwDBFhp7RY+0aSqlp2Qv86Ec/4tWvfjVW02j3QRBgGAamafKrX/2Kiy++mMHBwZaznwsXLuQ973kP733ve/noRz/KT37yEx588MFk/caNG1myZAmrVq2atKvBWCMjI7S3t/M9ayk540CmzJyZqirH94K3Y7/4xdQWnUTXkiGcFDx659d58PdfoTK6i545p3Phn32GvgXnAOBWa9z104+w8dH/RYV1FpxwCc+79EZ6+vvJFyHfBt/49AvZ8Mjvx73eJ765ke6+RQf9PsNQ71TqNR1CLOqq4NYMajWoVvTA8tms0lU8BX3d1qbGlIAfW7w6uC6MDBm0DW9h74BNd5fPogUunR1T/wMTBLB3wKb68AZ2DubIpnwW9o8yr6d8TFUaHYiRssPGPzzBHzeeyMa+l/BUbTY7tt2DYcD8k09l/Yqvs3H1l3CrO+meczrPa/r8+l6Nu3/2Tzz+4PcJ/DrzT3oxF736X8i16QqJpx+/g3t/+QkGd64nDOq0d83nhNNewxnnfwgn3UEuD9kC5ApQKB5e5dmBCgIdytVd/bmJP/9uDapV3VUhldbBWyaryOUgm1e0tR38+wtD2LPLwNy2lZprsnRRjXlzpnZ8QKVg76DN6KrH2TGQY25PmRPnDY8fMPsYpRTsGc7w2O83s7vUxoKOvSzp3iXjvR1HgtDgJx/fwNNqEUVjiEWsxzEOLFitqIA3BE8wPDxMsVic5nc6s0g778hTCn4UXol56Z9R7j+BwjyHrlnw6H3Xc+cv/oWRwR3MXXImr3nbl1h00nkAePUaP/6/72fVH27G91yWnXEJf3L5DZy6sJNqWY91euM/v5SnHr9j3Ot955a19M9duN/3FQTg1vTYWrWaQZ+/Wc+aXdWzZhsGZJqDuJZQ7uDH2fU8dNfVKJCr1UzSG9cmEz7V6nrm1ZQ9JohrCuhyGT3Jw+HuDz3foOLqrnM112Zw1Voq9RRVT19CZZC2PXKpOllbB3G5lNtUMffMCQ9+svpM7i09j+2FExkJK6SyivbugKfW/juP3nkD1dIuuvpP4/xLP8Ws+WcDup133y8/xpOP/JDAr7PklEu46OU3YFn9WDbs2XE79/zqn9izYw2B79LRM58zLng1L3nth8gVOg7q/cVVcvWojba4x8WtgVszqFYhDHQAl81GAVyucaI0k52aYWgmUhqF9pHN7NrjUKmazOrxmN3v0d116J/fctlkcMgiXPMYe0fShKFBb0eNWZ1V+jqr2NM8oduB0ifp0+y45zGGKjlG3Qz5lEtXvkxPfpTuXGnGBNrPJCU3zVA1x+++8CijqhOXDAVjhCKDtDNAgeFjYlgaODLtvGkL3EZHR9m0aVPLsre+9a0sX76cD37wg8yfP5/e3l6++93v8trX6u6M69evZ/ny5cnYHrfccgsvf/nL2b59O7Nm6S5qX//61/nABz7Arl27SKfT4153Is+UhlhF5fnv4G9wXvhidrQvI9NZomdOQKHj4P6LvTrUygYL5rRTioZF6ZqlL2MrfaZD3YVaRTfc5rfrLquVskE2q+joUnR0Kjq6pq4Kbjq4LqS2b2Lz1jTzZtdZtrQ2be83CGD7Toe9KzZhGHD64r3HbMXbvvzgjkX8cftpbA362bnjTpyUboSGgYFbSzP3xFNRIXT2BeSLh/+z5dXBrRgsnNdOpaQ/c4UitHdDe1ejG+qR5nv6wMWtwoKOCrWqQaUMtapBNqcodijmLzz4AHrvbgP3iW10tPucdvL0dAGtVEx23Pkke4azPPuEPfR21Kb+RabRSNnhgV9vp+RmOGvuU7RnZfD940ndt7j5kzspqwLLjQfJGPv/fErgNjlp5x15oTL4YXgl1qWvpNJ/AtVMiaUndDI6pPdZnb36crAnZ3wPqmW9H5zf4VIuGVQrOlwotCkKbZAv6OtDOfGThHFVg/5Qh3GVig7MoDWMi8eMy+VCMulDm/RKdxltTPJQcw0yT6ylGoVxNddOJnnIpqPx41IBubTurhqPJ5fP+IcdPNTqFpWaRbmmu80OrlpHOQrkXN/BimZ/z6Z0ZVw+pWeAzzkuWefIT6A1nf73oXO4r3IBA+3L2LhtFZal6Jm3HNOCzj6fdPbA/61VCPWagVs1WLCgi0pJLyu063Hg2jqmvh3XUizQ7Saf6WpFr8/m9HAf8bAf+YKe5GEqlUuQH9zCjp0OlqlYuKDOnNneYbXplILhERP/ofXsGspQrjn0dVaZ11uip909pj6Dnm+wZzjDtrs2sLvcRt236SmMJsODyGQMx6aq57C3XOC3X1jLsOoCoNPYQyd7aGfvUe1+OqMDt4m88IUv5Mwzz+SLX/wiAO985zv5xS9+wTe/+U2KxSJ/+7d/C8Bdd90F6DOlZ555JnPmzOFzn/scO3bs4C1veQt//dd/fVDTxT9TGmIVlefm4J3YL3wBA90nMjhwL7MWncqcJT7OIf7gKwXVkkFfVzu1Cpxw2pEJ3cYKfN1NbnauwuBeAycFy5aH5PL7f+zRVK3A6JptdHb4nHzi9IYPYQgDd2/g8aeLXHjaztbZRmeA//39Iu7ccRrbVD87d/wR22mtMFIK6rU0sxaeRu+8gGxhan+6fA8qIyZ93UXCABYtHzuw7tHle1AehV6nSqUMzzonPOgGVr0Ow488TVdHwEnLpu/z+PR2hy13bJ2Rn0OAR3/1FBsHZnHhovXPqOqDZwKl4LvXbqdMG6eycr8HEhK4HRxp502vUBn8IHwr1p+8Enf+UugZIZVRqBCqJZO+WV3UytC/QAdvhyPwdRumWoJ57S7lUQPX1WOIFtsVhaKiragrew6VUnEQp4OLvkCHcdVKVBlnEs2eGpDLKnL5oGk21cP7+5JJHmom1eg68+TapEIuHk8u4wQUcnoA+vZCnY5CfcoquIPAoOJaVNxo9veV66h4KSr1NFXPiWYajEO4xgyPuVR9Rnar+8795/OA+xyecJYzOnovmZyLUjB76emMDFj0L6wf1vFKvWawYH43pSEd8nbOgp7+6T9u0a/dKBZY0OlSKRvUqnpIm/i70tauQ+upEIawdxcYO7YThnDSMpfenqn5TIyWTKr3r+fpPXkcK2TxnGO3B81I2eGp3z/OztEiVT/FnOIQ8zv2UszMrBO+zyRKwVA1xy8/u45B1UOAQ5ehJ7pqM4aP+Ps5Eu28o1TDoX3hC1/ANE1e+9rX4roul1xyCTfeeGOy3rIsfvazn/HOd76TCy64gHw+zxVXXMHHP/7xo/iuZwYF2Cl9xqPuGjjpQwsnDANybYrByhB2vYORQeju2//jpppl66qjCjmcfig9VWPTkyYnn35sn8nI5sA/cQ5bH9jB8mW1aT1LZJrQc+Eyyrdt5KmdbZy+eGD6XmwaKPb9j2MYkM662ClFtWRMeeBmO1DsDqmoITJGB7u3wbwlU/oSh8V29HegFmapD9YYHoLOroN7jlQK0kvnsvXRHdMauM2d7RH0VNi0s8Bpiwen7XWmy2mXLGLwR7vZMtTNst6dR/vtiClkGPCmj87ha9e6jBidtDPzPp8zibTzpsmYagDDhFwxZLS2h0rFQG3uJpUhmb37UFi2rvouFMEljZ0HVYeRUSjisn2ryRNlfWIq7n1Q7NBjSB3wn2HodlI2B7rl2pjEIa6Mq1Zgb8XA9rYw+HSKSlVPbpVOK/K5kFwuIJ/TY4zq2VQPrG1gmiSTPHTGC8eMJ1evG5QrJuWySW3denZuaadUtcmkAjrb6nQUXDrb6hRzhzb+lWUp2nI+bTkdlCxuGs8qDKFa111Vy1Udxm0b6aBcT+P6DrYZJDM85lN6XKV8qnZMV8X5ygD0rGTxezQM2PHkI3TOPoPyiEVH76GFmbqNqNi5Zw8ArmeQr3WzcS2ccPr09orRr60v7ejvi5WHjK8rR/cOwFzPZfNGEycFPbMUvX0q+twfGtOE3n5QfbPZud3g0TXbmTvHY9nSw69IayuEtL1gGT0h7Njp8OS9T7FpR4Ezlg7Qnj+2TqIW8x5nXKq7vQ+XHTb8doh7Ny2lM1fmxN4dErwdgwwDOnMV3hzNjDpUzfHzz+ziMXUGaar0s5kudh9Xky4c0cDtd7/7Xcv9TCbDDTfcwA033DDpYxYuXMgvfvGLaX5nxxP94QxD6J57JpajyLUd2gdWhVAtG8zpbWekCu29ulvp0RBXuPWlqwwOGGSyiiUnHtthW6xtcBOVnHNEGkBhCKNVh1kzrCsfgGEoDBNUAKjx/1ie6zD7hNPxPYP2nqkfX6teg7l9HQzv1d+ivvFjJx8TahXdjfhQxyiv1YwJZ3ebakFoYB2B15kuKcsnCI/B07nisJmmIm3UqDPFfX2EtPOOFENfxvZR8VyYP6+bwd3T87JOSg+7MEoauiHdAeURKAYuGzfoSYG6ozCh2H54r2WaY8O4ebSjAw3fg0oFKhWDNn8zewdttmzVVXGmqWgrhNFEPwGFgwzimulZIwM9Fu/cJcxDD6w/MmIxNGKxe91jbNjaTqiMaBZ5d8pmgDRNyGd0t1Y6WsM4PzAoVR1KVZty1WHvqvVsHe6iUk9hGnqGwbZ0lbZ0jbZMjUKqdkyMSxoGFlb07xJ/dpUCt5rGrZq0d09dmJPOKrbtGKAt04VbhexR6BFj2bqLa6EdfNKk22B0CHJll4dW6qKB9s79Ps0+GQb0z1FUO/rZtW47qZRi0YKpGVbGNGHObI/+V85l8M7HuHt1H2efuJveDndKnn+qtec9znnFXOqeyepf7+XeTUtZ2LWHE7p3yUz0x7CObIXLr52LH5hsG+nj51+weZolLOBxOo09R/vtTYmjWuEmpp6ep9TAsSHfHtLZFx5w0BP44FajMa1GoVKFjiykMroraeYwzsQcqDAeeLeix68qlw2qZT1gaS6nsAuKk04NKbZP3+CkU8WtgffkFgaHUpxzZnnaX29g0OLpOzZjmrB09si0v95UM6MzngrdbQbA9ywWnX4G5WGTMIRsIaTYFWAeZo+hwNddDxbN1+O3VUqQUfpgZc4i3Tg6Fkrnvbr+LlQrMK9YpVICv2KweGl4SGdG9+42qD6+nVOXT+/YZHvu3MCuwSIXnb59Wl9nuuwayrBjtIPzFjx+tN+KmAYjtQxlpVhiDB3ttyLEQTOICtxCqIyazJvbiRvtJyxTnyxddrqutplulgXFTiiTxu6HegkMXNY+bNLTp1h8gpqWfantQLFdd22F+eTRMz+Gof53qJSgw9/C4KDN1iiIs20dxBUKOoSLrw+mIg/0LJZdXQFdXQEsWoRSUCqbDA1ZjKzVM0D6gUlXsUZve42e9lpSwTZlf7+l6Ii6twKwQM8CH4ZQrtmMVFLsvncdeyoFNg70UvMdMrZHMVNNLu2Z6hHvlhooE8vUxyUqNHGraXrmL0cp6Or3SOcOLxQJQ30cs2B+N6OD4ORh7pKjE7ZNxDSj3jpeGqiz6UmTM86emuKBbA6qC2azZdP2KQvcYqYJ3RediLvd4YE/Ki4+++ljoo08mZQT8uzLFnBCxeaen9apeimeNWfL0X5bYj9sK2RB5wDvuDbH1qEufvQFm3YGWcR6bGPmdaFvJoHbccQkxDICLCtg+VKXetfEP+IqChbqNYPFC9qTMQeoQ1dBhxGds2Bu4fDG5pjI2BmAFnVVqLt6hlK3ZuDVdWOmI6/wPYPOLsW8BXqmxqMxdtzB8n0YGjTI7N7Mnj0O/X3w3OeUSKem58yK7+sJE4Yf2Ei56rBsbplF/aPH9I5wMo4dYpoKFcCshWdgmvostl9XdPUHZPO6Au5AqXgKeNfAqxssml/UY2xUAV+HyfWaHli3b54OlI/kv1vy/qLvg+fCwq4KtZqBW9Vjy4SBnqm0q6AH4O2dpci36TFBDkalDOGmLZQGHE5bXqFv1vTsuAaHLLbfuYlavcD5p+wklzn6Z9QPhh8YPPzLLWwZ7ua0/i3SFeE4NOqmuem6YWYbOw5o0gQhjiX6pKpPsGcn9qITWLCgExQUu2DWPN1mO9wTUocjV4ASaVQn7NxWJ5+H/rlHrrLENCFf0BfFfHJADh3EVEpQKhnkvc1s3+EwWkoTBAb5fEh7MaC9GBxSCGcYURe8QgjzFrMQKJVM9g5a7F69gfVbOsikAvo6K/R1Vulsq0/bCWPTJOmiOveyBclyzzcYLqcYKafYteIxtkddUzO2R2euTEemQke2Qlu6Nq2VQArd1utp8zHSJ5HOKopdAbm28KDadxC3nwy8msGiRV3UqnqyqWxOn7zvX6C7Qx/N70PMq+vP3/x2l9FhA3dUd8Nesmxq/60DX5+8ni5zZntsB4ZKKbqKx/7kbG05n+e/uptb/3eY3aU2egujR/stiQNgGDC/c4C3fzTHTZ8YZY06i1NYNaNDNwncjisKi4C0E1KtghHqnU69ZkTVPEW9Q6pBBj3+UxhGDbVoSutDndHH9xrhge/pKduX9OgwzXWjUKGuAwTLhlxa0ZnRr19oU3T3QjoTks7ocaaOJUkwEv+NnoHvQd2DOf4m6p6B5xnUXD3ORy4Xku8NOfE5JXK5qe/2WqmY7BmwqT36OHtHMrRlPebPKjOnu3xEugpOpSAw2D2c4Yk7NrFpaxZnvj5zbecUubaQbEHts7EUBODXDfw6+J7B4kU6VKvX9GcuZUBbQY8x46SgrV1XbKazBzfOzMEIg9bPS/y9WNxdpV7Xy+uu/j6g9PsqZhSZNt1Y7upWZDJ6FtJ05tDfZxjCwB4DZ8cWBods5s5RXHjeKJlDHM9xMr4PO3Y5DK3Soe+S2VUWzx49ZqaUPxC1usX62zayZaibQjrL+Qs30JY+NrtMiEMThgY/+vjjPK0WM9vYzlzjqaP9loQ4aIYBNj6BEZIpwqKTjm61fxhEM35HM2sv7NIznKqyHqdq1uxjYz9gmvF4dLoirggU0e97dARsd0tLCNdeDOjq9Onv88nnD74dVyiEFAohzF/EogAGBm3chx5j5fpebCtkXm+Zeb3lI3ZSyrEVPe0uPe0uS/5sNqBDuKFSiqHSPHbc9zgb9vShlEFHrkJPbpTufIm29NSNPawUmIYiZSuK7Qoz5e13xnndhjLw6wZLlnQlJ+vrLpgKCgXIzNLtumKXPnE61bOCHoi4mMBz9eRUi7pd/Z2o6YkTwhDacrrN2jdHsaxdTXlBw/Ag1Dft4KQTp6/tsmu3TRAaM2oyrHQqpDtXZriWlcBthknbPm+9pptvXrObjSxnGY8e7bd0yCRwO44YKAxCUnZItQbZageW0dghZXJ67I14h7SvnWgY6h1IEhhE14EHi3qqescSBQmeZ6BCHaSlHUUhBelooN58QdHZDam0IpXSYdrBTik/FXxf7+iSv8kH3zeia5gbbMIPDDxf79w938D3G9egu2o4jsJxQjKOos1RkCKaLSsknVK0tQWHNE7IZMIQhkcsRkYtgnWPMTiaoe6bdLXprgqnLBykkJ05iX8QGAyWUjx91wYGq3mGqjkyzjCWkaJUT2FZikWzXUrZACc9vkptSRyoRSEuPqQdSHXoBpdtQ65bf75TaXD28znfn+bvQRB9huLvxJLeShK+NoexYQAYeuyXTCp6L23gpBS5aIr4lKP0+0tNbfDn+zA0YFAY3MyuPTYpRzGrP+DUk6tTGrRVawZ79trUHn2CPcMzM/T1fIOdg1k23rmJveUCXbksZ8zZTE++dLTfmphCYWiwbaSDn31hOwazOdF4mKJ0JRUzmI2PbQd0hHvw6rNbAgalGhei6zBsWhc2LWvaNgwb68NA3w4CfX9pv6v3f77eh8ftJt/X2+qqKpjVofdrnd0h+WnoITEd4hNbzSFcrQojwwbl0S3csyJPb4/HicvcQ96HWhZ69siXLGFOCHv22oysepzfP1Skr6vKsrnDU97l9EA4tqK3w6W3w2XZvFkoBaMVh4HRPrbe/QSP7+3DNEJmFUaZVRihJz+KdRjVb0oZGIbCdnQFoRGNQRjEJ7KjUM2t6eDKq+tQLZ+DdFQgkCvo45h0Rrelpqt6LQyiz3jc9os+74EPS3pdffK0bujjIE9vb9tQyEAqp3TVaQdkokKCzDSe5K1WwN6xlZFdDsuXuczpn/rPklIwcvd6Nm1t58wT9s6Ydh5A1bXYUy4wv2Pv0X4r4hAYBrz5n2bztU/UqZMiZRz7lZUTkcDtOGIS4lDHskJ6Zilmnxp1k4t+5Ju7sI1UGkHCou4KXt2gHlen1XWDCvQOJJtWtDmN0CAeO8NxogAqpYMDe4o/TXHYEQSNsEzfNhrhR3Q9J9yMH0DgG/iBEYVpRrIs3jVYlh77QgdnipytsCyFsiGdDinkFbatcOzo2tHXKUdN284yVnMNSiWL0ZKJseExRisOo1WHlB3SUXDpKHgsmFWis1DHmgHVQ35gMFpxGKmk2HnfBoZrWUr1DClrlK5citnFIU7pe5pC2mWwkmPD7n5qpqIeQt7qwFT67LOpIJ+FVCeg9FlqJ90I1Q6kKjP5LDU1mprvL+mpJgcQnhcv158z0J9tx1HkHLDTkCpEM/jmFSknqspzVPSd0PeP1CQZpREoDm9icMhmeNgilwtxuhRnnVGho31qzp5XawaDQzb+mscYHE1Trtl0trn0ddQ4ecHMCH2VgpGKw57hLFvv2chgNUc+NUh/scLJs54ml5o5Z2zF/o26aX5x3ePsUf3YbGOOsYludh5Xs16JZybb8DEsH9+H+vY6vtkUsk3CMBoX09QnEM1o4gXTbLrYuqrcNHV7yTT1PjaT0deWFWLZ8T5R7+uco3ASdTplsnooB/rn0bcAws1buX9VjgsvOPyxeE0TZvX6cMkiZrsGg3c9zh8f6WdhX4nlC4aO6nAghqFnfCzmPRa9ug+lYGA0zaY/DLFu12zq/nz6i8PMax+gM1c56OdX6Aq3QsZjr4JCuhszBDsqDEhlAEMP85GcNE0dWqimlA7BWo4dooA4vn9Cn5u0+4LoBHzc/gvDqJrUgbSt34eTVcnnPZcHJxXiRIUEqdSh9xA6FGEIg3shM/A0AwM2/X1wwbklcoc5Bt5YQQDbtjsMrXwKgzzPWb5rRnQlje0ZTrPiF7uZUxyhOz/9Y2mL6ZG2fQwUPg4pZs7nr5kEbscRk5AUNdi9jYLbSZfZQ1AG1x3fhS2f0hVnTl43AIrt0Y4kFYUGKb1TOZid//hgLN5xNQVkgd7hzVWbojOlRrTc0EFafNs3CKP9hgFYtkoqzCxLkbEUlq2wowDNSinyUXhm23qZHYVmlhUHaEd/ogXPg2rNpFyxqFRMrCfW6ynfaw5+YJDP+BSyHm05n76uCu25+jE/DlbdMynVHMo1mz0r1lGqZyi5GapeirQ9SiFdo5j2Wdqzk/ZMlawzPtjQg+gqemqb2dXdTa5Xh8WZaOy+5s9hXGUWeFAebQ3OFnfvOzizbH1WNxsHY1kdlNm2HvfDdvSBRByeWfbBfw8ORVxNEAeDSUAYQhgY+n7Td6untplSWX+GbEdhdZj0z6pz6nKfXPbwGlxx8Ds8YhE+toGRcgrXM2nP1+lqCzlp/hDdxdoxf4bTD+LuMmm2r3iCoWpeD8yce5pZbSVO6d9KPjUzd9xiYqNuml9dt45BeqkqRaeRZqmxhiKDR/23X4ipkqKGZXl0dwUsPyfENJsCtfg2jfszcUzXY0UqDcHieVTu3Um1apA9zP1rs0xaMftFS2mvGGy6bTP3revlvJN3HzO/VYYB3UWX7pfPB2C47PD4bwe5f+siso7HCT076Ws78Am6QmVgGopc2iOXVxQXQr5NB20TfUaTk+q11sDM93Qbaekst3ECNaq8TNqHQeNvsG1wopDYTinsvA6TjWgWXNsGyw6jth8t18fK/wXorqrDA9A2upW9A7oHQ3t/wPJltSn9XAYB7B2wqT/8GDsGsuQzPifMHWVOd2XG/JYMlVKs+c1m9pTaOLF3Nws6pbptJnt6uBOHbWSZuaGpBG7HEcsIyBg1Mqk6mYzCtBS5PPRkdPe2eByrceGFT0vFWK1m6CAjCsgCXwdkvm8QhlF3gigg86OKsqApE4oDMsfWVWGWpUibOtSwrEYIlnIat+0oUItv2xZRoDb9lWVTJQxpjOdWM6m5Jvbja6nWLSquTdW1qXsWjh2Sy3gUMj75jEdvR5VCVt8/FivXwhCqdZuq2/g7Bh5YT6WepuqlqAc2aXuEfMol59h050os7NxDIVUj4xxY5ZNtBlhmSDpTp9/cyYC3kFoF+rMV6iNG0n25Xtfdl40ofM1FDSMn3wjJmoMzx1FR9Zm+f6iNhbjLTRiHYkEjIAsDCKJQObkfXeahg+Ug1GdQg9CIHheFzVGgFjQNEdMcMNu2wjT1dyAdhcyWCdlcSF+vR1shPORxAt26wWhJh3bmhnWUag6jFQfPN8lnfIr5Ol3FOktmj9Cerx/TY7LV6pauCK047Fy5gVE3S8nNkLZH6chW6M6VWdq9i/ZM5ZhqQIvD4wUmA5UCv/38OoZVF3UU7UaRPrbSaeyZ0QPsCjGZPKMoJ8DZsYUd23rJ5hrVao1KNtUaxDWFbwatQZxpNoI6U0K6hO/BwF6D7MDT5PMGmSkcLqRZLqdY9qfzeeTH29g5mKW/a3pnET9U7XmPs18xj2eHsHlXgdW/tXlqsIcz52w+4NlOLTPEthXz87vYXppHGOguml5NdyuNh6vxPd3umjQws6NhbKJxbuPATFdhRtvaR7bq7EAk7ci4+/aYS7ws7s3jezBbbWZo2KZcNmlrC8h3hSxcUKG9ODVjRMdD1wwOWah1jzEwkiGTCpjVEXLeybsbM+Ee4+qeyfa9OZ68YxOjboZ5HR7PW/LYhCf5xcyxY7TI9/91Nyca62Z0+/0Y+ykSh8vCI+vUSadUMlNP56ge2N/1DEq+DoQ8v7WKzDKbQzJF2lK68ieuIHMU2UyYBGi2pXS3gqYArREQHJm/tbGT0n+H3lnFt3VVkN6pRRVCodEITuL1TY8tbF1DEJrR44xonZHcD0Ijev7GuiBsrFdK/xI4dkgmFZBN+2RTBu15j/6uKrm0DtiOpcqgIDCoeRa1ur7UPYvBVWup+ilc36bqpXB9B9OoknE8srb+fBXSdWYVRsg5dfIpF9s6vB1/2vbJOS6+ochkQuYWqzogdqJum+l4/Lx9jwPY3A05vl2vQ7VitARkcZDcHIiFQSM83l8gZkbfAysKw0xTf2csC0wrCoxNHXqnoqpMK1rf/Jg4aDatRrg8Vd8fpXSoVq2aVKom1VpUUVnV1Yh+YJJL+xRyHoWMYk53meJ8j7asd0wHv+WaTbnqsOf+9ZTraUpuhnpgk0u5FFI1ihmX2cUhiunqAQe+YmaoeTaD1Ty/+9c1lChSUW1k2EnRUCwwNlBkEMuY+olqhDiWWPhgBPQUq3QZW1CVRjsGdJtHKRptoXjsNvT9pB2kdK+HcJKvjGmiu5w2hXemqZq6pqpGSGeA0XS/ebux22/yFiTLoDUQjO9Do0oPmHAGS13Jp1A0jsKau9WqqA0YL4/Hr4sryhc6m3UPjGjMurh3hR9VS7muSaEQ0NnrM2e2N60He2FoRH/vsbfvHcs0YVF/iflvLLLyZ09z11Mn8LzFj+Hspx1oAFmnjm+HZFKKBZ110hkFhp5VVg9Zo9t5cZdl6zCrzCYKuOLupuOWRYGXbutH35egsX6BvTm6HR8/NH+/4uOM6DsW0nosEl1P9G9pmirqwq2SLt+Oqcg6uv1oOrBooUtXZ0A6dXifjzCEcsVktGRirVvHUDnFcCmFY4d0trl0tbucvGDoqIwpeLCSYUKGMmy5ZyPD1RzFzC7mtA8xuzi038+jOLbVfYvvfWIzA8rnBGMN7cbg0X5Lh0UCt+NMjjK2GdIx9ATZvS7pVNgysL8TdZ9LOaEO06JulwdykB/vkIIgatwFjUae55nJTicI4gAqGnRXNXY48c6osHVNS5jVHG4FYeO5WtYljUe9bCzDUEnDUF+33jealllmfBvsaBkmpOwgajA2tml+Xit5zsa11fScjh0e1TPDcaPR9SzqvkXdM3E9C883GX5wLTXfoe7buIFN3bfxQwvTCEnbPhnbI2X7ZG3oyJbJ2B6ZKGBL2/60NjYtU1HM1KhlAlxLMXtRiGE0ZoStVqDkG8wJN+H6BmXPGFNl2TpWXxyK2VYj7IrD4yQQs/T/acoJG2HYmBCtORCLKzCPlYrLMNTdP+NqylrNxH5yHVXXouraVOs2YWiQSQXkMp4OfLM+/V0V8mmf/DFYUenWTV1NWbeo1mwGVq2j7OlKyqqXwkCRjULefCpgbvsghVSNQrp2WIM5i2OPF5gM13KM1LLc+ZU1lFSROpA1ttGGQT9bKBpDM3YAXSEOVZYypOqEymT5iS6pwzwIh9bQIW6/hXH7rWVShShgUE3hnWqEfElwQWM9zcFfFFzobXWjojn0gKbl8X3iSR4MaA6kovfZ0jZpWp9U801Q8Wc6+r5jh0lFn908VImtT/5N5SRYE1EKdu+x2X3XU3S0efS216b19aaSZSnO+7M5/O77e9g82M3Snt373N4wFBnbg5xHOaWYuzwkk20e/iM6SepGJ0nj4TWi0GueuWXcMUgQ9TBoCcD2E3DFnwXLUk0VnQo7Hs8wXh6FxLr7qf4c2DaYRuMzkxxjmHobKw7Qmp43PnaIH2OZjcdMlyCAatWkXNEXe8N6SlWbUtXBNBVtOY9izmB+b5kzlgzMiHF4g8BgqJxiaDTFjvseZ7CaI1Qm3bkSs9tGOWP2FqlmOw64vs2PP7GBnWoebUaK04wVZIxjs+r3YEjgdpzpZA+h7ZFNB5xyYlXPshlNMuD5Bq5rUqkY+IFFfstavS40CEIz6u5mRMGYkQRfeufWqOCKTRQ6NYddhqHGBFQ63LKidSkrnPQxY0Ov5udI7o9ZNpNLTccKQ/B8Ez808fzoEjRujzy4Bi+0qAc2fmBRDyy8wMYLLZQyMI0QxwpI2z6O5ZO2fFK2oiNbJmX5pG2flBWHbMfGGHFp24NUgJULGX50B46jSKVCck7TBBaOIpcNk6A4Ds6SrsnW1IdizQcRQTST7UTVlPrAw2h0E1CN5ROdEQ1DXV2QT8JnIzlIaQ6j4wOe5gC67pv4gakbsKkgqahMpwPa83VyaZ9cxieb8o+JrkFhCG5USel6VnJ76MF11LwUVd+h5jmEytSfS0cHvVlH0d82TNapk3Ncss70VhmIIy8MDcpeKuoGnObuG9ZQUQVcMqTZQ94okaNEr7GNAiNYxrHxeyXE0ZI3Sjz58/vpOXUuq36wA6DlxJ8+cRQmbbN4mW3qk0uj80+NKrCjiuuWIQxIeizo5eGUVl4LbbRk4j24jm17cniByZLZZRb1j864f+c4hD3QyWgMAzKpAHIBex7amYRipkXSw8a2Famkt0B0AjRq75nNn1urKdCy4hBrfMBlGlPbe+BYEIZ6+J9azaRW19epJ9ZRqdlUajY1z8IyFfmMRyGrx4bu76pQzOuTr8d6O8qtm4xUHEpVh90rHmOkptsHKXuYjmyFjmyVxV27ac9UMeVk64ynFOytFPjF5x5nUPVSNNpYZjxyXM0oL4HbcSZt1MhkK9TqNg//fAcpO8S2Qiwr1N0/TX2ds3RjLJcOksZYc+NM76CiRptB1HgjuX+8BVxTIT7jGzRdvCgY8UNDX/um7q4QmJQeWYMXWPihiR9a0W2LILoP+kya/j8LSFk+lhmSsnxSlkHWqVPMVHGsAMfU6x3LJ2UFh93F82goZqoMbF5DR8Hj9FfMafl8KUUydmDcxTOIwmLPM6i5ZstZzfgMaBA0qimTs6It3YHjQGviasuJgmYYX00ZB8RxGGzEZzgnqLq0x1ZdWmCaIQbjw+dGV54oWI7WpeyQlB2QcsKj8j2MKymbqyjrvkndsxh5cE1UQekklZT1wI5Cdj8KfD0ytk/WqdOZLScBW8b2pFLtOOUFJpV6mlI9Tbme5p4bVlNVOVyyQJWssYccZYqU6DO2kmdUxmATYgJpaji49O5eyYWv6m3ZnwVjL4Gph0iITpz6gUFh8xqCaJkXGlSDxgnX+HF+YOoup5EkzDNV1KaMgzzdpoyXx2FeXCkWV4ePrS63puHk2LGqXjcolUxGShasW8/gaBo/MOntcDhh3gizu2bOYPTNRis2D/xyO4GymdcxsN/t41CuPV+nv/YInRecoE+sOkduKJpmjROirdWViub7ugIzWddUddn6uEZlJs3LGb++9THjt9M3Gl2//cAgt3GNrvx3bdy6heuZSXiZTgVkUwHZjE9Xm0s+45HP+LqH0zEsDEkmjStXbQbu1z0aSm4aL7DJOXUK6RptaY/enpFJJ10TM1MYGgxU8/z6c2sZVL0oXLqNOqcaK8kZM3dyhMlI4HacSVNl0w8e4AVv281FL551yM+TjFMQV+dEP/6eb6KIg4qmbgMYTTuuxvZ6p9S0LtmuseNJ1jPxdvHz1B59tLEco2nH2HzdvENsbEvTNnrdvrdXY7anafvkfY/ZfizLDJPJAGwzxDEDbCvANgN93wrIOnUcS2/jmEF0Ow7QgmfUmZvZxSEGygWCAFb9cAeWGeIFOrBs7kLcCH+jhn9cBdlSaalINd22rRArpZrCrMbzTNT9eNIuycdR2JyMWROa1L2mCsooGPYCk9JDq6kHNvUoDI4rKsdWUqYsn5QdVVJaUEi7ZPKlJFyLqyqPh383MTGloBZVKla8FJV6mntueASXLDWVxcfBZpSssZMMZQpU6DG2k6VCmqp8NoQ4QFnK2HgMuzl2DmXJpnx9QtUKyaTCpv3i4b2OUiThWxzINfeKSG4HjduFzWuS261BXvP2jbYUkLxf24or6saEe6aitOCUpCrPbgnsGtV4OtTTY8gdyfGEm8dLdV2Das0k/cTaZLzRmmeRTfkU8x4dBY9F/SU6C+6MDNnCEHYPZ3ji90+xu1RkXofLmXM2HdB4WYahx3Cb11tm9VNd5Fw9JMjoqJFMEpB0EY2GpmnbsrplKJkgbDouabo99tgj7jGQHEdA0o5MjgsOkEFjPEL9d6hkvL3W8QZV8ne2XCePb13PRI9pWp709LEUyoHOQp3Z3RUyTkA2rXs2HMv7Tc83qNUtPUxIzda9Gh5YSyUaIsT1HSwjJJfSw4TkUj4d2Qpt6dqUjA0tjj0lN81AJc/tX9QTXVnsocMwWWKsPe5nk5fA7Tjj4JHCZXepnZU/e5pQ6W6JgTIJQ33GMlBmNCaa0dRlzWzsqNTkrQC9o1FJVY/ekegdRhxKJDuXZLvGrs00FIzZpvl5kp1Ysn2YrI9fv/k5W3d4KjmD1vpczQHJ+NebaHu9bPz7Y5Lt4+e3jDCqAjw+QpkjqTtXQmGwbO6wnsDDCnHs1rPn1nESdh2Iyc66KtWoQghDI+l2HFdOBoFeVnpoNV6ogzI/NJPKSS9oraIEPUusY+lLctsMsE3Ip106zADH8pNwzY4CYWkQPXP4gUnVd3CjUK3qpbjvhodwyeCqDHUygEeKEinDJUOFLFU62EPGqJKhKhVrQkwBhzoGMLd9Lxt+VyWI2nlxhXxMV6XpE3y2GSa39e98SOFZp2Bbel8bV6o5dohj6dCuEeJNfTfu1mq6RqiXhHtNQV0QGBS3rk72bV7QCPPCMc/RXJVnoJL2gzVBmKcv+u8cnX+qrsazGuO2tlTZh0YyC33uqTXU/WiIhKjaSGGQcXS1US7jk0qHtPdUKGQ82nLH1mRZB0MpGK04DIym2XbP4+wpt+GYI8wu1nne4vXkUgdXcZRL1VEYLOof5anfbo0+a62VkqapcMzG7Xi29uREaNOwM6ap2+LJJB1RT4HkuqmtnszK2xRyxccT8f3m44pnSlvzYASBgeuZuneDb+LWdS+H4QfW4Ea9GlzPwfVtAmViGWFLD4ZcyqM7XyLn1I/I+NDi6AlDgxE3y1A1xx++tJoR1UFAQMHYTpFR5hhPkaP0jPn/l8DtONPFLjZyEku6dxKGJo7lkbcCLEM3LAxDYRnR2GnJdaP7WnJN630JkMR0s0xFb2GEJ+6s8vxX9WAYjW66odIH/K7XOHsZRJWVjWrMRpfRZDy1qPHdqMhsXteo4qw+unpcdWPccE/OmjZXTNJcpTm+wnKi6kc17jEHXi058b9X2HJA5ZhBcltXTELG9nCsWlJp6VgBlhFGlZZhUm0p3+1nLi8wdRWjb1OLAjXXt1lx40PUSeOpNHXSBBiYVEkzRMqokcIlhUuBYdJGjTRVUrgHPJaPEOLQZIwqeUYppl1On72tZZ2uSmucaA1CszFchdLj98YnXsrJSRkzOhHTfNtM9lHxicQkrItPzET7lbYzT00COicaxiQ+WRafOBu7j4mr06ZaXJUXB3rNAV7z7TBsnKAKQoPcpjXJOjdsDC0RMw39t+XtkHQqoJj3SDkBGSdIxlGdiRVrzfzAoFyzGSmn2LNiLSO1LMO1HAAd2Qpd2SpLu3dRzBz6xA5Zu872ex7n/D+bzckLh6fqrYuDEFeq+lHVadzDIR72xvNNRh/SQ954oRUNC2LhBxaBMqMgW590jXs2pG09LEw6mmwtFU3EJjOFPjOEoUGpnmakluUPX3iEMm1UVAGTYQrGJgqUmGU8TYHhZ2wbUQK344xt+OQZIed0MK9j8Gi/HSEOSFzqf/Ksbdy1aRk/u7kSjUvT2oJtDoB19WNTIMzY0BiMpgrJ5srI5mrMeNt43LSWM5xjqibj19H3YaKKyeZrGFsluf9qyfi5J6r+jLeXcc7EZPzAbJlExfVtvKhb8IobHsQjhUcKX+nrEIWJi8MojlHHoU4Klwx12hgiZbhJuCYVakIcG7rYxa1fgr++tqNluWEQhV+Hf6AbhEbL2LJxONcc2vmhyeCqdY3xaKOD9Ph2c2gXn+hxzADLiobZMAMKzzoFJ6pqt+PArjm0i64PhP77VdP2MslKTCk9eVHVtajWLWquzeD9ayl7acpumprvYJsBbZkabSmT2W3DLJ+1nbZ0bcpOyi3p3sUfN57EcNmhPX/sjMc1UY+CeHljmzFjsDV1S1WTfDwnW35Q7y06sdxS/TlmfMY4UK48slrfDnU4FgRmUwVs63cyDs6cMUF6KrrOOW7S8yHV1MPBsY7trqxi+igFFS9Fyc1QctPc+ZVHqKgCNXJYjJIztpMjpI8tFIzR42J20akigdtxqMgQv/mix5XXdAGN2RPjs3WhMsdV1ejtxo9bFmtU6Rhjlk/jHzKJff3QN3aTYx+z/zc6dpuxLzPRc4x9vbHvbey/z4GMG9EybhwT/3/E2zVXSTU/f+u4dGPHrRs7ft3k4+Iln5Wm+yh44KsrUZh6W/SZ8Ma1QYgJ0bVCd1lu3l4vN5u2hSwV/ubaLBcs3EDVS2EaCtsMoiou6aYrnjmaD3TjA1svtJKDWS+wuP/GVfikCLDxlEOAjY9DiMLAw6KKg4dteDjUsfFIUSdHGYd6Eq451CVIE2KG6WQ3W9QS/t/HdmLhc+7VZyXjwNrRkADxwbIeP/bgAzjd5dIHDv33YaLfsniIg/h3rfLw+Eq7elPQB7qtZTV1h7WTYQ/031Y441QdzNnjw7q4i+xMr0CbSBDoWcs939QTF/kmnqe7uY4+uIaa7yTVy/XAJlQGadsja3ukHY+sE9JfGCbf7VJI1aZ91vpcymNR127u+onPcy7r1ZNcNY3vF0bjA+rlBpVHGmO46bZkfDGTYxvG9ELQ7c2x7d2mNvMExz/TYbLjkYN+nmj8N9ts9FayjBDDbCyzTT3ms22GZGw9GV7csyGuTrXNxhjSdjSLsRBjKQWub1P1UpTrae78wgPUyLVMcpUx9pKlTJYy3cYuspTIGIde+fpMIIHbcWg2m3lYnc+XPxYmoYY2/oxftItK1huM3Umolm0Zt55JlzUeO/b1GbP8wOxvxzjZ+tblkz/HuDBx3BYTBJHjHmMk/xbNtw1Uy/19a/43P/D/j6hJMcljVVMFVTTmXvK4sOk5wuRxBmHyvI3lYVO0FjSt0zGaft4wWRYvN4wx95seYxKgMHhYnc+ecoGefAnHkh9uMXOEoUEQVWTGB4lxd67m8fPicZZW3biKAIsAixCbAAtf2QToi/42BpjUsfH1loaPTR1LR2yk8MlFg6dbhq/DtfgiAZoQx7W04XISD1OiSIDNiutXRb8MOnwPlA7g/aiZb6Cw8PXvieFhx7fHhHUp2x8X1h3OgfnhhnZKkQRxY0M7P7r2Qj07th82nZgILLzQJAit5GTzgVTZ2WPGr7OaxhIbe8KvuW0Wr2s9ia2XxQP4tw53MXZW9OZJAXSX2PLDjyb7kkZQ2Rpaxq8VVyalLB8n6ubnWCFduTKpKGBL2T5Z2zvqQcuJvTup1NPc+/PdTWFR9G8ddV9Ohr4xQz2G29jeDcTjsjXdHtNbYKKxpvfXowDGbB+957H3m5fFzyHETOH6th6L13eoeSnu+tID0Xi8OVwyhChSlMgYFTI4FBiWSa4OkwRuxyHH8DiDe/BxovqhRtjRHITIF0YcS+awie9/ro8r/qmNjCOBgdi/lpnJoOWsd2MimNaz40HYmDQmnjAmiK9Dff3AjfdHsbCVxMIhFgEmobKS+/oSR9eKOCTTa319bQSN21F4ZuOTohZFbvrA1zT04XK8zMJ/xo51IYTYv6IxRJGhiVc2BUBBFK/FVbA+TvQr4yRhXRzO+Tj4yomqZXVJWBzy69Dfi4I6j3OvOjvpYtbc3Sy+PRVtTMNAV6xZIXBoXRDjLnaN0K4xTl1SZffIavzATCYaCgIzGfcuCM2WHgXxv2uz5m56zRN96b+hdaiL8eMjhy2V/Dp00rOip20/mfHejsZjjic3ap7xfqa158+cu/lovwUhjjtxdZrrO9GYvLq69d7rH6ROmrrKUI+GErGpROPv1kihaGeQjPE0afSYvNL+nFoSuB2nHMPDOcTGiRBHw2w2UTXy/OcnTTqMvU21l424mKb7MGYMjZZnG195OJmD71Iw9S3bse8hrojc97sYuzMc+y8wvhpy4u0OTHPl5kQmetbW/x9j3PJx/8eqUV859v8+fnyj1rK5f1Br9W6jY3PzSYbovhEmEVp8QqL5thFFazYKU0dsSSVmXK3ZiN+ClnDNZOYd+Aghjl+GQVLNduAP0lehMpoCukbFXFxje/8NK9G1tU5TUGcTomfA1r+just6I6jTFXUpS898nYor6axGZd1U/4bGVXZpW07kCSFmliA0komt6oEdjctrce+X70/G5K2rdNTvwQE8bCrR+Ls1HOpkcGljiHQy4VUNy5AJLY4kCdyEEMcE01AsVavZa/RRJQ80Ry9qXAwz1oEGTPt63KGsPzhT+VxjwywmuT/5uqkcv2Tif//WZWOXt8ZrCgySrsmt/9/NVboTVOuOXSahlxBCHBbTUKSok6J+YA/YR1DnNd1uVNTpgM5TeizK+CRKHM7ZhhdV/erA7jl/e/a4wdvj2zKRkBDiWBaPZxl3e68HdlJ1Ww8sVl5/f1JlrCe2apzAMHCxkvF343F5TTJUaGOoZUxeh7pUpx2DJHATQhwzDAN62Hm034YQQgghDsGhBnWBMpuCuEZgF1fQ3fOVB6PbqaTbazxGnUkYjV/pjev2OtEsizLbohBif4LQSMbi9UOLUJktk74k4/Qqk5XXr0zG4Q2i+l49lqadDD8CIRa1li76cSWwEw01on/xmn/L9EV+q2Y2CdyEEEIIIYQQR41lhFi4pHH3v3HTGHUThXP77vbqNFXT+S1BXVxNd+7V5yRjpcUBXfPsr1JRJ8T0mmiM3sYstY0xeJXSYX3zujAZq7cxNm+gDFbdsCIZg3d/4/MGWOjeGI1J3uJxeE0jiB4VTWoVTYHlUGkahzdoCdVkbN5nNgnchBBCCCGEEDOKYRDFaQc4ZvGYarrGnM+NwC7A5t7rVxE0TSQRz/oaROPTxbO+WvjYht9yQG0RcPZV5ySTGlhmY3bUeBbO5nUS3h0fkhlnWy6tkzc1L2sOjsZO7qQnf9ITMikVj3nbEC978MZ7o3Vjy5/2PY7xxJ+48cONTDQ8SfOYymMHDWk8pnE/bLo/dpxeFY202/yY1nF7m9+pHqO3MRFg66SAphEkY/WaNG4byRi8KqqE9ZOxepOxd1FYht8yXm/z2Lwy3pk4XBK4CSGEEEIIIZ4R4mo6cIHy/h+wj1lfwyRuc6I6F4v7b1jZ6FYW178oO1kfYLWEGeMO8g29ZWNin8YkPWdddW4ym6nZMttpY6ZTfQmj5WBGgUG8PJ5JNV5nEM2mGv+5xrE1FmoYGkn4NHZG8kZI1RpsKaIZZiGpelKTBGKhMnjgxhVJLVOj+qlxW7+OmYREQVQlFUc6E01c1Rr6NAVFRqNqiuh6/Pi0jahKm2yc4sbYt5Otn8yBjH08duzkiR7T/B5bxuWFJFLTG46N1Fr/5sbfMvbfJP53k3BazEwSuAkhhBBCCCHEPhzSrK/Jg1vvhspIJosIk05pzd3aGtdxuBNiJt3i4mAoaLo9PhgiWd6Yfsg8qAmTxgYoE/05aswyNWar5tdrri5qnbF8/CzljdnIxwYtzTOSt4Y2LUGNEYeWraFXPCN58zqLEHuC7eIKqHiW8gmXjw3UCI+pwFIIcXRJ4CaEEEIIIYQQR4hpKMwD7Qp7sA4g7FEqDrqau/VF61q69TWecF+znBuoZNnEM8rr2/EYWQpjksqo5iAt3PdyCbWEEDOABG5CCCGEEEII8QwRdyuNq8WEEEJMD3P/mwghhBBCCCGEEEIIIQ6UBG5CCCGEEEIIIYQQQkwhCdyEEEIIIYQQQgghhJhCErgJIYQQQgghhBBCCDGFJHATQgghhBBCCCGEEGIKSeAmhBBCCCGEEEIIIcQUksBNCCGEEEIIIYQQQogpJIGbEEIIIYQQQgghhBBTaFoDt+uuu45zzz2XtrY2Zs2axate9SrWr1/fsk2tVuOqq66iu7ubQqHAa1/7Wnbu3NmyzebNm7nsssvI5XLMmjWLD3zgA/i+P51vXQghhBBC7IO084QQQgghJjetgdvvf/97rrrqKu655x5uvfVWPM/jZS97GeVyOdnmve99Lz/96U/5n//5H37/+9+zbds2XvOa1yTrgyDgsssuo16vc9ddd/Gtb32Lb37zm3z0ox+dzrcuhBBCCCH2Qdp5QgghhBCTM5RS6ki92O7du5k1axa///3vef7zn8/w8DC9vb185zvf4XWvex0A69at4+STT+buu+/m/PPP55ZbbuHlL38527Zto6+vD4Cvfe1rfPCDH2T37t2kUqn9vu7IyAjt7e18z1pKzrCm9W8UQgghxPGhogLeEDzB8PAwxWLxaL+dY56084QQQggxUxyJdt4RHcNteHgYgK6uLgDuv/9+PM/j4osvTrZZvnw5CxYs4O677wbg7rvv5vTTT08aYQCXXHIJIyMjrF69+gi+eyGEEEIIMRlp5wkhhBBCNNhH6oXCMOQ973kPF154IaeddhoAO3bsIJVK0dHR0bJtX18fO3bsSLZpboTF6+N1E3FdF9d1k/sjIyNT9WcIIYQQQogxpJ0nhBBCCNHqiFW4XXXVVTz66KPcfPPN0/5a1113He3t7cll/vz50/6aQgghhBDPVNLOE0IIIYRodUQCt6uvvpqf/exn3H777cybNy9Z3t/fT71eZ2hoqGX7nTt30t/fn2wzdjar+H68zVgf/vCHGR4eTi5btmyZwr9GCCGEEELEpJ0nhBBCCDHetAZuSimuvvpqfvjDH/Lb3/6WxYsXt6w/++yzcRyH2267LVm2fv16Nm/ezAUXXADABRdcwCOPPMKuXbuSbW699VaKxSKnnHLKhK+bTqcpFostl/+fvfuOj+yq7///un2aelltb173buy16cWxIU6IScEBvmAnBBJikxCT0AN2GmBDAhjbwLdAyC/UACYhNGOwHWDd1rtu27z2eru2qk677fz+OPdOkbTV0q4kf56Phx4zc+dqNNLMaM687+d8jhBCCCGEmDwyzhNCCCGEOLQp7eF2/fXX87WvfY3vf//7tLS01HpxtLW1kc1maWtr4+1vfzs33ngjnZ2dtLa28u53v5vLLruMSy+9FIArrriCM888k7e+9a3ccsst9Pf385GPfITrr78ez/Om8u4LIYQQQohDkHGeEEIIIcShGUopNWU3bhgTbv/yl7/MddddB0ClUuG9730vX//616lWq1x55ZXccccdTdMItm7dyrve9S7uvfde8vk81157LZ/4xCew7aPLC2W5eCGEEEIcqxOxXPxMJuM8IYQQQsxUJ2KcN6WB23QhAzEhhBBCHCsJ3GYGGecJIYQQ4lidiHHeCVulVAghhBBCCCGEEEKIFwIJ3IQQQgghhBBCCCGEmEQSuAkhhBBCCCGEEEIIMYkkcBNCCCGEEEIIIYQQYhJJ4CaEEEIIIYQQQgghxCSSwE0IIYQQQgghhBBCiEkkgZsQQgghhBBCCCGEEJNIAjchhBBCCCGEEEIIISaRBG5CCCGEEEIIIYQQQkwiCdyEEEIIIYQQQgghhJhEErgJIYQQQgghhBBCCDGJJHATQgghhBBCCCGEEGISSeAmhBBCCCGEEEIIIcQkksBNCCGEEEIIIYQQQohJJIGbEEIIIYQQQgghhBCTSAI3IYQQQgghhBBCCCEmkQRuQgghhBBCCCGEEEJMIgnchBBCCCGEEEIIIYSYRBK4CSGEEEIIIYQQQggxieyTfQeEEKLRAdXLKK2YxJjEgMIkxkhOaTg1AAOFkVxvoKC2TTVd17idhuubtzPuesM40X8BIYQQQgghhBAznQRuQohpY7/q5Tl1Oj3GLkKchthLx2+Nl1VTfGaiVD1+G/s1PlJLtx8F/U1jwrr6Nsbd6sT7GMbYQK/5Xo0NAcfvMz40pPYzGHc7jYymfZuva9zefN34UPLQ+4//3Y8UbhrEAEl4yrhwNd1WC1Ml+BRCCCGEEELMIBK4zVK71CJ8PCyiJJ6Iah9kjaRyaGzF0KGqgurVRIeqCpJqIPH8DakOtqjT+cO/aaO3cCJmuyuUAqUaYqPkvD419PVJdJaeb9yHpu8bu1/j9x76Z6TfwyG+Z/z3GrX7rX+L+nX6stGYxbHmzkfGhIvjw8bm6K7hPiTRWXq+8fsa/wvUrzcbztevbw5D9fY0QJ0oJJ2IocbuFTf/TzPq/9OM5Msc9/8uqlVOptv1tghzzPX18/rUIpT/b0IIIcTz9JxawV41Hwcf2wiwiLAIsAmxSS+HWESYyalNmGxLt0eYxsQHEIUQYjqRwG0WGlId7FRLueLP57HmztW1j48xFrVqoIaKoViZkHxEpeGj7NF+EG6iJqrIaZ6mBxNVx1Db3lgN1Lit+baaK3oYt32iiOFw+zdun+jnNt+fQ1UQHbriaez3qgn/TlCv+DFqp4eqoJo4/GysEBq3fRoHBv0s4Dff3UdvYe8J+5mGQdNzjTGP62xw+k3zT/ZdOEaKONbP2ljpsC5OvvT/qyT0bNgeK7PhfHqdSZReF+vta+54pFY5mf5PrJ8axMpK/i+aRNgNoaBmquYwzjLCWhhX+wBAVDvf+KGh+TQ5b0Qn788shBBCnGC+ctmjFvC29xewTIUfWQSRRRhZBLHFw7c9go9LTC55x3SIlJW80zpEWLXb0u/J6XtujGmEybt6/VS/Rze/N+vz8QTbklMjPol/ISHEbCOB2yy0j7n0Gds5fY7B6TfNm8Rbbq4IOlQ10JEqgfQtGUlVz5GrgfQ+Yyp4oPb9jLnc+LPH3kb99hvv05j7OMHPSr957Z0P18LIpvtS++6x4WTz5fFTGsdXD42dIlm/vvl7x1YHjb2dCamxt1CvZmz6MurbJq6CHFNdNOY6Cx0kNFcU6RhjokqjGIth1UlfyxBD5SxDlRyWGeFYeuBjmzFW+mWk52dfOCY0M3lsrUkOQE+7acExf08cQ6QMotgkUo4+jU0ipU/D2CRW+lRftlhzx2qqZJJXgj42H6s0brOJ0w8MivpReyM9ih/UQrn60X59ate2B9gEcnRfiBewSFkoDGwjPNl3RYijtocFtBkH6cpPPFY95eZFR7yNMErec5P34fS9N1IGYWQRJ+/ZYWwRxiZr7ngYH692IC09TQ+yjTvAphgTxsWYRj2km6gK/lCB3qEq5uX9W4gXDgncZplIWQypLt70vlagOOm331wR9MJ7szj9OD6wn3j1CqHG0DMeE4w2VgrVLzdf11gxNNH2tLpozR2P6JAQkkrKxsl8Vi1uUyqN2CxULXLT0xDzxgim4bJq+wraMiWUMgiTAVOsDD2YipunmlpmjGkozCSE0+cVlqHPG0bDNlPXcFpmjJF8T3pd/Su9rnlbet447DaZUj0bmaZ+NjvW0R/xPtKBDqVU7bkdRF7tQ0EQWcl5iyC0WH3no5TJE+IQYhMpu+kIv6kiHAJsI6iFcDaB3kagp+s0nNoE8hwVYhaIlMlj6lICXGwV4hoVPCq4VHCp4lIhQwWPMo4RnOy7KwSgD3DvV328/q/msms4JmOHeHaAZ4XYx/Aea1vxMe1/xs1HN3aPY6MW5IWxSdwY6iUhXn2bQaRMVn/+YUIc4oZAr1Y9r+p1dOm2lKFUQwiXtLUwJgro0pDu0EFfen1zq4z6eXnfF+LkksBtlinSgkHEU3sWUPI9PDvAMpMKISPGMiMsU9WrhJKAIa0eGhsypNsMFJbZHEjUQw2FlZzKP/XpwTRPbCj6/KYt6oAQWli3Zw5zCkNc+vq+ifdUekAUNXylA6Q41lMQ0+vT83Gsg8TGbaUnnyKI7QmnJKoJtjVOU2y8PJZxmPDOoDnIY4JQz4D6+TFhXv21FmOaCtuMsM0YO6kETC/La3D6MwxwrBjHisk6h/4wfPpNcyfcHscQxBZ+5BJGBfzIJogsqpHDI7fp6rpRWglwCJVLgEOMhYHCVgGO4ePg41LFwU8COR+3tq0qU2qEmMYO0otNwJ9+LEs5yFIOuqgEDqs++yglWhigh6rKEOBiqgiPCp6RhnE6kPOSQM6lKu8b4oQIcfDx2DHUQSnwsM2YaugQKwPLiHGsCNcKcezk1IywrQg3GeM4Vn2841hRcv3kvVeZpsI1I+Do2z2cehQVeSmlqB1AjpVxyFBP1arq69sfvf0Rglo1nkGMXes+mwZ7jS2EGh0u3DMavsuo7aN039qGWSvje99O3O9WQj4hxpPAbZYpk8cnQxSbXPF7ecLIJAjNWjgRRua4wKL4xDr8yNZHbsaEDfVtZlMYESnzmAOHsaHD2MBBhw3p9+nbqu1vNu9jNAQQjbdpjPk5xoTbaA44ZGriSWeaimpos2e0jaWXzefxZw1cO8a1IyxL4dg6nHDsODmyqbdlzOMMeRc//75mafinoNYjrDH0q72WYpLB09h99R0f+736NQalJ54iVmatl1msTB0cKj1AC2vTJXT/E9CvmcYQLh2sOmaEkxxBbtzmWiGOFSYDWAnrZgrTVHhmiGePn0q2/KaFE35PFEM1dPCjHNXQxo9sqqHNw59fS5k8AS6BcglwiTGxVKQ/mI/5kJ6e96hIDzohTpKD9NJh7MexCjhWhdZMBYDFNy9u2i+KDUpBhkrQQSVwKIcOD35+LcN0UFUZfDwAXFXBM8a+xsu1qjkJ4MVkKFFAYTBSzXHlG1vIuPo9JAgNqoFFNbAIQhM/NAkCkyAyGVm7jqLvNfV5S6vBgaQgIG4a89jJ5cYDk7YZN11nmcn+ScHBiRj/GAZYhsIyj30a+OlHWaWXimOjoR2GWQ/ykvP6s5xB3LA9ru2vA76JZqSklXp6xkpjANgc8o3tedtcvdc8XdeiYartuOm56XbpsSdmLgncZpkiBZb/wXlk7WEOjng6tHBiPCfCdXRoYVljAqbFx9fnLQ0cYlUPDdKjN2MDh3RbY+CQ9k6b6HuVgtKTT9XeACZqnE7tMg2BYP08yfba7apDr3yZhnxpMDe2umhsqGccIsBLKwfTYMMyx77xp0fo5M1irP3FAq4VsH1vgdZzF9O6ex2lqh58pcFxGJmEkdE0tVT/vVUtiDNNVdtmmQrLUrWeb3ZyXu/T8GXpoMqy0umn9e2HYhjUrz/MfsftGEJBpSCMdKDuh/pvFaRhe6TPD69dRyV0CCKLKK4PWv3IroXn+rkZ4lohtqmPKjcdbbbCZOpHhGeFuLYELjOFZSpybkCO5oq6UyaY/uqHJpXQoxq2UQ1tyoHLQ7evZZRWfJWhikeM1TSVLf1w3ngqg2IhJl+sDAZVF1e+dzl7RhQ5t0rO8Sfsa2qZihavSotXrW079eZ65WwcG1RCm3LQQjlwqYQOD962hhIFqiqb9KI0cZSfvNartao4jwpOeirTVsVRKFHQ9VMKHnumk6wbkvUiMm5Exg3xnJhCJsB1GgKwRROPhdJxTzo2TMc+6TgxjExG1j5FNbQpxh5BbBElvd+CWId3UcPnAttsDuPsZHaQ3RDipZfTgM8y4obrpteBy+Nph9HoWAM+mDjki5Ppt2mPvXhMH9zx1XvNPfZqfXDH9NhrWsnWSBelal6gqnHxKju53LwKrvTSEyeGBG6zTIjLSCVDvPA0cgdGakeI0sACkiqYhoDCtuKmgEJfrp/WAgurHkTYVoxp0LCvwprsEGkSqpDG0iFfc7BXnyI4UcVSYw80mr5HNX2PDhaj2GT08aeoho5+c6/1abJqfZqUMmqVSE5DybzTMDXQtcPaZTepQEqP3s3WiryRSpaS79HmRMzpCfAWLMdzFY4zvopNKQhDPdiKIyMZXEEUJpWbEUSRQRQZBDHkt6+jGliUqnqbru40m883TFFtNPa5b5n1UC99fTSGdOZE+1kK06D+PbXXVTptWw+OjnegZhjg2ArHjsh6hwjBFhz69ZQOWoPQ1EeYk/8XfmAy8tg6RqseQZQjiGyqkU2QVMQahsK1dKWVY4Vk7KB22bX1Zc8OyNiBLHIxg7h2lISpldq2FWOmtwaRQTnIUw46KAcuD3xuLUN04DOXisoSY+GqKp5RIUORDGWylMhQwqMsg1whjlOFHACP71qE5wS14MC1wlr4lnUCso5P3q2Sc/0Jq2FBv+/k3ICcG5D2/T3l5vp7hVJQDW0qYZ5y4Ohpq59bwzAd+HhUVYYQZ4Jpq5UkkPNrAZ285kWAi0+GgXKOnuWnUrEV8bMbODDsUfWt2vjDQOE5MW5SLKCLB6L6NlvPeNDvVTFZ7xD9SRdMXPGdajxYmR6oTC+HkaEPWIZ6XF8O7PrMgshKzpvj+gtbjRV1SVWdXvyrXk2XHny3GkO9huts89h61E0XxxvyHW24l7aQqS+Y0fA4ROlnLv2YrL79kdpCGWlop/vg2k399EwV1wI5y2hcqKq+SFXjZQe/vl0OKoqjJIHbLDOkOnD9DEvayix8+WJcN+b/+9Y3ueP/fZV9+w9wxqmn8tH3vZ8zzjiHMDQolXw+edun+Ok9P8YPfC656CW858/+lgUj+/BDmzAy2XVgP5/+9hdYu/kJMm6W11z4Gt56+R8B9oRN7I8lnGgKHczkurHfbzTvp2/z+P4+eqoqur3/VFQlwSGPxsEhjsil1VvJ+eHH1lMuu0kFkp0smV7/W9dCubTiyA5rwZxr6aDDazidKQHdYCUHi09nZ3YZA0/pKsIwNLjnvn/jhz/7PwwN72PJotO5/u0f4ewzzsG2FLGqcMf//SR33/sj/MDnpStfzN998EP0zenEsRUbnt7E5//3l3no0bUcHBhkwfy5vO2a3+cdb3vzIe+HDlGTwC6GODlNw7k4ohbqxclpGBtUY8hvX08QmLXgrnHqtoqPHO41V97F9dfPmNdNOvDMuCH5TEjOC3Gd43/j18F7GtaNqVRYMPFAKIz0FBA/MGtTQfzAZGjtegbKefzQphw6VEMHpQxsM9LhmxPUgricoz8IZh2f7CEqNMT0pHvQ1aeyLRmzoEw1tCj57ZQCj6Lv8uDtT3KAOVRUFoWJpypkjSJZimQZJUeRDCX5UC7EEQzTgUKR96pccU07AJ//3s/57Hd+zN7BIU5dsJgbLrqcxZ3LKPkuI1X42urvsGrraoIoZOXiU/jI5VewoN0l6/jkHJ/+kSHe+5//wy+37CLv2vzhBafx0d9YiW2ZZJyQjBPSntU/f+nNzSFGOm21nE5bDVwevH0tQ3ThKx2wKIxaAJ+Gce6YajmZoj77VcjRd9WFWIsXYlmKfD4mt/IUfvLdr/F//vUr7Nu3nzNOP5WP/M2HWHLaufi+yWjR55bP38Ivfv6f+EHIxadfwA1vuJ5Ctgs/NNm8cwvf+59vsGHbk4yUhunr7OV3XvJa3nz5b9Vm+ThWjONESWsSpYM6J21PcoSDlQCLDh8IpX2C9djeaKqyCyJ9cDfdVnxczzaohXVRfTXVtLdbyjLj+sH42syC+sFML1l0ImMHL4iZM2mPPfcoeuyddoQQL44NXemYhHW1qcoN5x+5fTVVsknc5tQWrgqT+MRUcS2Qc8YtXqV74zpjFq6SMc4LkwRus0yJAlZssKW/lYGHCjz4yH/zpa/+M+94699x5unn8t8//Qpve9f1/Nud/01vTyefvv0f+fVD9/Ppf/wU7a0F/vHTH+cfPv0X/NfXvoxhQBRF/Mkb/obe7i5+8M1/Zc++/fzFB/6W+We08aG/ejdAvZroeMIJPwkf0v1VGkSYE2ybuPKosXLIbAjxagFFw5TCxgDPnCDUs5sCQ115dLhphceqsRLpkE1ZF048xTeOwQ91qBEkYZ2fhBzDj61nuJKtBXS6V5N+eacVc54V1t6gM0nQ4Vn1AORkhx3FqsdwyUHF0H1+H7k8/OyH/8HXv/txrn/fZznltBdx1zfv4MP/9E5u/cIazmgp88+3f5IHV9/PX9/wWTy3lf/91b/jbe/6Gz7y198C4P5fb6FcmcM7r/00Pd19bN7yKP/46Y+yZ2+G33v9m7HtpNrTpnbeslRyHixb4bnx0Qe8y5cd0+88NtzToRzJ4MxAxdQux3FydC80UFvXM1R06D+YpVS18QMLy4zJZSJyXqBDuCSIS08ne5qDDulC8pkxV4yppFMKgtCk4ltUAkuf+jaDazYwVMlRCRwqoUsUm3i2rsrIJKcFr0rOqeptzrH3PBEnj/4gENJBCYBTb+oB9POhHDiUggKj1QX86nNPMMxCSioPGHiqTM4YpcAwWYrkGcE25LEXIlUlQ4gHKLbsLnDPo//Dh//PN/jsu9/KyjOW8fnv3c0HfvxVHvu//0Rveys3fPbfeOrgU3zxfX+Fa7XwsS98nvfc9T0+8Vt/QSlwCUL40A//ic5cgc+94U8ZqQ7w9z/9HmHs8be/sZKMffjVjSeatnrazfWFj5SCSuhQCfKUApdK4PDAbWtr01Z1FYo1ZrXVtJ9cfRqrgz9tpuuJ4xMqm7LvYVZsdve7HPRifn7fD/ni//sU173l7znzjPP48d1f5ro/+zP+/f/9iLlzOrntCx/nwYfu447P/Qsd7S185O//iVv+81Pc9Y2vAvD0tx/glHPn8853X0t311xWr13LP956E+bcPt523oWMlu16q43QIgh1MKYwMI2GHsFJMFcL6OwxX8l1rh1hW80zEgyjfuDyiI4we0fPlqlX3YWRocf8SX+7oTVPMVLNsHe0BT90qIY2kTIxkxkHGTvAc4LaGD99L64Hc7KgATT0wj3MPqfdfOjpzGlLljC28CNLF6kk5x/6fH2F+UC5TSGdpSK9WFWyeFXzV7W2oJWEc7OLBG6zTJUsduDStXg+S17Wy8fv+Dde94Y/4qo/eTeBb3DdeS/nwbecyg/v/i6vu/xN/OePvseN13+KtpZX4AcG17zhVj7wd1dy55ef4bRTLuDJ9feyafOzfPDGfyUMu+jtVlx7zT6+9NV/5g9e/xdks7YOJ2wdJNmWwnX1G5hlHeHOHkc4ESUBXjwm3IvVmMsNIV86pdAPrdq+YZQ0B40aK5GOflphvepOhzHplFzX1v3ysl497LAnKbAzTZI+FxO8oU8wXVApmqqPqoF+wx5cs56hco5q6FBJ3qxjZeJYURLIBWTtgKzrk7H9ZHqKDuim6k06jg0OlArEHQZB1WTtwxaGCf965+d58Sv/iHMvuBbXU/zJuz/How/+mId++VXm/eGf8OOff5eP3vL/eOWVbwBg3kWL+V+/fRHF1m2cftYl/OEl79YhbwhhYNB34WU8tX0zv3j4fi79nQ8yL9hKuazD3SDUYVYU6eqtKNTPFUAHr7VATodzjl0P5ywref4n2xxbJfvTcF6Ne03oPnCNoe5RPleWNr92oggqFZNSWX/Fz2xgz0CWUsWm7Ot/8zkvJJ8JKGRD8tmAQiagJRdM2vPzUAwDPUh1Ylobq+cWNE9RrPompWoLZd+mXLU5sHojO4dyFH2PaujoQNGpknerFLxK/dTxZ0wVp9DPh3QKW3d+lCXJVNU0iBuptjFSzfCrz6+nXy2kSoasKpE3hikwTAuDZCnKBwbxghXgsfDqCznQvZS2wRE+/72f8JoLf5Pe9jexZyDibVecw3+t+mM++x8P8varXs1Xf3o/X3n/n/KGly4H4JT57+L8d3yYlnMOcvkZy/nvVU+y4xv9fOuf7iSf6WZg9Xr+10Vl/u+DP+Ili9+MY9v6IIhbHw+klXFZxz9iL0/DIJniGtQC+OVjPsgGkVlbbbUcuDzw2dWUaGGQ7triDiYxjqriGfUALu0ZmZ6XKV7T2xCdmLGBUiZhTx+t3XDPx7/Kb/7uH3H1n72bSgXeds7LeOitp3DXf32Xy1/1v/juf36Xd/3JZ/D9y9m3H97yxk/x3g9dwTe/s4HzzjmPlRdfwyteqnDdGM9TnH7afDY/u4aHV/+Ev/nLN054P9K2JEFQH/v5gUHgG/ihgbN1nT6YOZpMMw3rPeLiWs/bQ4RyyXnbrp9vDPKOdBDfNHUYdMiqu3njV0UNI4OKrw/AVwKLqm8x+Og6Rv0MB0p2bbwfxTqYq431nbTtRz2QSw/Cy3vsoRlGY+uN8U6dIKhLK+qqYRY/KY5IA9OHb3+UEdrwlUeADugAbBXgGtXa6vFeciqLV808ErjNIrEy8JWLGbrs3uswcE/EpnVreOVv/DV7d5t4WYXnmZx/8at4YusmTq/uJYwCXvmm36OltR2Ahcxlzv9eyL7oGV5y/ut4btXTLFp2FoVTz2c41B/sF1x4DcUv/B2Pr3uWJQvPqr1ZpSFFlIx3DMB20gqieijXGEikIUV6fVrebTv6tLGyyDDQ+3CM4QTAsuXH9LecqPIojA5fuefHBsZzGxgt21T8PMWKnpLrJgFcPpN+6QqkQnZqww7DAM+N8dyYpmmC88aXWVd9HcxVAoty1abiWwys2cj+0RZKgUs1dDCNmEzaF8bRfWF0fxjdM+b5vDn7kUUldDBjg93RXObM9Ygin+1b1/CS3/4wWweyLOksUxy1OOW0V/Pwqoew3UsIwwC4nNUPmDgOOO4ZdHUv5Nf3PkRXz0pcFxxX4TiQzelTpYbomdPBkuUKWIR7mPsVx3pQFoVpJacO7sIIqlF9+/x4K8VSY3BXr1ILg3pwZ0AtiKs97y3VtK3pNWE1vj7q+4ytuLMsyOdj8vnkxbewHsgpBeWySbGkwzj/6Y0M7MszWnbwA4ucF1LIBbTmfFpyAW15f0oq4o5EP1d9OvABWD6vsbE3lKo2o+VOihWHfY9sYt9oK6N+hlgZ5N0qLV6ZFq9CW6ZEa6b8gpheMZs0BnFzWoY55aYuQE9NHar0ct+n9jJAN9uV/l/ewiAtDNLKAHlG5MOBeMEIlEO5mqE3F7DoNfPY/N5n+Ov3/znnvnSu/j9fMrnk9HN5cP2zdLedSxBGKHU5//O4Ry4Tks+0Ma+rm1+seY7zl69g9aanOXvJAs5b7gLDMH8+PZe43PbL77HsxQOctmg5pYpFqWpz8BFdTb9npI1S4BBENpYZk3eqZF0/GR/4yQE73TbgaA6IjJuiPma11Tg2KIcelaC1trjDA7etoUjLhAu5pJVxjR9O0y/5gHryVPEwQ5e93mIqW0yee9Zn07o1vPiV72PHVoNMFrJZuOCSV7N++wbOincTRQFXvPUNZLLtBAG0VufQ3buQ1c9u4fxzz6NYNBkYMKn6BtWq/jzy9OYKYdTFqofyOohzdTGA58X61NGXXVeRzU6w0MHSUw75O4Qh9c89gQ7q0sCuGBqwdR2jFbveOqahlzboxdmOFMrZSX+6dPprxo0OO9PCthSFbAjZho1XjQ/moshIxvn6QHylajH46HoOlvJJKGfjhzoaSGfDZJMALpued3yydjAje8ydTIdbXf60m5tnNsWxkcxWytUKIyqhw0OfX5MEc/X/eXpF+bH9M8v1BW4M/0T9iuIwJHCbRRQGERZl36bLjQkKo8RxRFxYxNaBLIspMzQABnPYuW0TD/9qH5btsmldJ44LnqfDiUJLL/079xAEMDS4h+7eXnr76gOmnl49NajcatB27vjwJo7rQUQYpoGFgR9CuRZawDx/G6VyGmDoN6wgbA7t0sqiNISoB3VJOOfoL3vMPhMFdsfi+CuPljZdDAIolS3KFYNSyaL8zAb2D2UYLTsEoUnGjZqqjVpzPq25YFKnsR6NNJhrqkBaWJ8SEsdQ9m1KFZtS1ebA6g0cLOXZPthJOdCRVRrAFdwKLRkdfhxtEKf7V1gEJYdqWbF1E4TRfuI4orVzDu3dUPKyGDlonTuPvU88TegdxLJdCov78AMoBRCWwSv0cWD/XoYGDAIfPRgKDKIQtj67int++B3+9D3f5Yk1OqSzHZUEcyShnQ7mXBfs5LQ5lZvosVl02H+muiIzeS0kQV0ayvnJ66ExuEsD7CDQYW76ukh/cjYT01KIaSlEtLeHdLQdejBmGJDLxeRyaRhXf45WfYPRokmxaFHdtJF9u7KMlB0MFK35gPZClfaCT2dLdeLKyhPENKGQDfWAkjLLX19/bpYqFiPlDkZKDnse2cy2wS4qgUvOrdKWKdGeLdGRLdLiVSSUmYE8O6S3MMIf3KQ/gCsFI9UMB0u93Pe5jexWiwFFGwO0s592DsgUVDGrRdhUA4eBEZd7f1kmiiIMoxc/MOhoj+juilh41hJ2PvwILaeD6zhc/PunNhx0WU9LroMnt/j87NH5PLIpxLF7WPN0F/lMQC4T4tjdAOwbGuLC5GAhVFk85kN8GBmUKjbFiq5MHli9nv7Rtlovt1gZtVYBebdeHZd1AnJO9agr501TkXf1bUy0uAPoxR2qoa6SqwQOqz6rp3UN04mvPHw8YkxMFeGiV11Np2+NndqV9mCS94zJFZCBwCZrQNzmEifjPLNjPtsHPRabVYYHTeJoDjue28TDv9qLZbvs3N6Bl4FMFjIZRWd3L1G4B2PRQjzAA1qSn/HEow/w0Or/5qO3fhdjwVxKvsGQD3OjbQwO2vi+ge8bVH09y8UwSMK3GMdReK7C8/TlseGc69ZbkBzyc8HyiQ/wK6Ur6sKQppAuDHRVnb11HaNlHdT5E0x/dZOKt5ZcQEs2oCXn05ILj2lsZlmKvJW+nhPzmz/HxTFJ6w/9eTIN5faOJmF34BApE8cKyTlBU8VrLlmkRSrknh/TVGRM3TuzjXJt+6ljgrm0MrgadlBu6J85SHftf56p4mRBmzIeZTKUyVAiQxmXikxbPUEkcJtFImwq5Cn0zGNXtRez/yAArgc9c6FiZSEPZsHG8ky8bp0iVHNZigGEI7C0u0QUQbFo8MxGkwP7TYYGDH59n6Wnirqgkub9e/thzy4D11O4Xj2gME0wXZKC2NREL+iFh5w731hZFNbCO4NKUA/y5kX1cCI92hQkb2JpYGeZSdVQEsw1hnJ6W4zr6IDOTfZxneMP6sZyHGhzItpaAUJYUg87fN+gWNKVR+bTG+g/mGXTjjb8wCKfBHDtBV+HHnn/hIdwjUyTWoUewOLfrL9BK5VWHzkUyzb7Vm9i7/5Wir6HYUCLV6bVK9OW1eGHHjA3S1cMHcgtJAZ27x3Gr4wAcHAvbHocUPq5PHQA/CqMDjXct1Zqb+6OC6FtE7ZlMaA2GNvxzJN89f+8kSve+DGWXPzbDAQQFXUourSrzOiIPh8kgzEVA8lALA3edCiXBHJJQO15aVB3+L+faerXR7Oxj+nhg7s0rC6VYLhoYI5uY8euHGFo0N4W0t0V0tMdkMse3XPFcxWeG9HVEcEC/dyMYyiWTIZHLKINm3hmZytryw5ZN6KjpUp3W5nutpMbwDXKZSJymTJzOsqcMr8X0FOpB4ttDI267Hr4WZ7epwO69myR7vwo3fkRCg39hsTMYRjQmtGVMEtu6kIpGCzn+NktO9nNIp5VZ9DKAJ3spYu9Us0iZp0R2nBQlKs2ga3/t+3bZ/PoWv1ekM3G7N1nU6mYDA5ZKCCbbaiAXrSczJ0evacWuPgP5vDNtXlGdmQJV5ymDwoOZzg4rJtzrtnURSHbm1Tlh+QyAYVMvV2GbemDM6355GDdvOaxQTWwatVxpYrNwKMbOFAqUPZ1lZppKF0JV1td1W+aunoslcppr6q0Sm7xmCo50B9QK2GGathOJdCVIw/etoZR2ghwx/VbslWQ9FtqboKerlZoS0P0Y1JVHkQ2/ojJ3g36OZLq6IGS40EGrIKJ6RoYBf047Bz2WOJUObgvaZ9RNNi1w2D1AyZeBjxP4WVgX/+T/P373shb3vEhXnb55cktpz9kIVmai8CiCAI/HftB0TcY9GFeuI1i0SYIdDBX9U3iSI/jHKcexmU8/ZmhFs55uu9vGsw1qgd7kJvoM9EhquqU0gdHfd+gVDIpFk2CpzexbW+BUsXCsePkgH1Aa14ftG/JHX/gZZrpuCqCZMbB2FDOD0z9mq5alJPXdf9oG8WqRzW09YHeZCZMzq1ScHU7kLxbPeIUdHH00srgxhXlG/tnRrFBOchQDtopBw6/+oxeTX6vmkeVLAoDT1XIGOlK8kWylMhSlAOXk0wCt1kmQpctByWDYd/DMC2eXbeHKAQ3OTq0b+cesoU+Cu19RKGPZQ/S0t4OwCg5hkf20TpvAe68LF0L57Nz52rcuRnCAMo+7OvvByCX62P/PgO/qr/CEAyz/obieugwztU/1/MUXjapGDoC0zyayqJDhxNxrN9Ao1AHFGkJeDkJ8OYnYV0QWLpvQ2DgByZR8j5gWbrvlDMmiEvfaDOePu958XEHdPrvFNHRHsG8+hGxqm8wMmoxMmIyuPFptuxuwQ9NWnMBHS1VulordLdVprz31tEyjIYwrgOWJVMB4xiKFYfhUhd7HtzE9sEunupfgG3GtGeLdOaKteAjUiah0s1hDQxaO2NMqwPDtBgafZaOxWfooKlssH/fDgqtfVi2fv4+/sAgXq4d1wMvAwP792A7fYwO6+ed7cDureu47SOv4aWveyevv/Yj436HSjIEM6kHdGm4FQVQDGA4gLCkQ+niqMHBA/VwLo7qz/20Uk6/BnQg52aSU49xg7Bjoasu9e/Z0amAheSAUhEGBww4sJ1NmzPk8zG9PQHz+vyjDt9SpklSPRfD3KUsRL+WhoZtonUbeG5PC48/20VLNmBOZ5m+jlL9w9Y04Toxve0VetsrrFjQjVIwXHI4ODyHbQ9sYdO+PjJOQG9hmLktg7Rly0e+UTEtGQZ05Eq1CriS77BndAV3f85lq1pBF3uZww7yxuhJvqdCTA6FQTWyCOYu4qzzWzAti6A9Zv7KPvwqlEuwr1imo72HOJpLEAT8148U3V0FCvmYfC5mz94DtLf2YJowb24XT61/gmVLfFii2xFs274DgHOuOJ22Rcsol0xGNm/UC/VUbILIJONEyRRV3SYjn62fN0392kz7znamH9wbFoWqV85blCoOB1evY7CSY/dwO6XAJYwtbDPS4VsSwuUcv9ba4minqzbSH1CbF3hYPsFqhnFsUI1s/DBHNbJ1g/TQ5sHPraZKhgCHEJdQOeMaotsE2MbY1QoDbMKmVQzTrxdK3zmldGFAHFuMRp2ExQEMy8QwLXY+u6d2UDWbh32795Jr6aOjV4/zci2DjLrt4ILdBsXSXtrmz8PPu4xWICiCW17Lp2+6iotf8seceuaHeOB+PVbKZHQY52Uhm1W1Srl0PGVl9eXkXianemzVKArBbwjnRn2Dgz7MC7YzWrSTKa0mQaD7TFuWqk1lTSvoPE+HdLWpra7+LHG4cMwwIJN8X2tL8lxZtkTfpwhGRk1GRy3iTRvYtrfASEmvDN+S82lrmKmQz0xeqxDdl9envZBsmF+vNk1f16NlHbIffGQDu4bba/14HSuk4FVpcSsUvAotnj6VNiCTzzIVBa9aO8C86OZ6hXJ9AatWilWPX332sWQl+Rw+Hq6q1laSzzFKnhFZSf55mDGB2+23386tt95Kf38/5513HrfddhuXXHLJyb5b00qMSYxejSeTgZ4+i57557PtuR8y76xXUioZVA8qnl1/D+dcegOl0YswLYf7f3AP5172e+QKMDq0kYN7t7Hs9MsAWHbGZfz4m/+IX9lLS7uuHnnywbvJ5FrpPO1CYtfDRj+R4qj+RlT2ISzCkowOJw7sh2rFJPB1MJEejfI88LKKbBZyeVV7E3y+TFPfdnMJXeM/iUXjjnRBvbIu8OsNVUuB/r3mhVsZLZr4A7oxadXXQR1QK0Nva43o7Ajp6QqOO1jxXIXXGdLdCSzWHyLLFYPBIZt4/UY2bm/n0adtOlqq9HWUmddVTPq0TS+miS59zwXMv0oPaOMYhoouAyN97HjwWTbt68O1Q0xDMVLNEkXwzDaPyA7ItVh09p3PjqfvY+nZV+G4YNsRe7ffx9kv/hNyc5ZjWg7bd/4ni05/PaWSwYFnNjN8cBudPZex4xldCTd08Cm+/+VXc+6l1/LiK/6R0SE9oLOO8PikgzHGrMJZJAceGC06D3aph3NpKB1WdMXoks4yI8NQKdeDOdtOgugMeK4O47JZyCSvg/FVcEeWy+vXDwsWkA90+Da6bzu/frCFtraIRfOr9PYc/2DLcaC7K4SXncIcdHXmgQGb0cef5te75pDPhCzoKbKgZxTHnn5vxoYBbfmAtnzA0jd0E0UG+4YyPPfLEg9vX0bGCVjQdpAFbQelL8kMl3MDlnbu55035RmuZPjvT8SsUxfSwhAL2ELBGD7Zd1Ecgozzjo6PixHZRBEMD7qsOP0CHn3wXl766tfrgzpOzPonfsHVb/ozLrjqcuxbHHb5T9G36GoOlgx2b7mP/j27sZ1L+fl9LeRzl7Bh0/9m9doRFi3ooFCIuP/XD9BSKHDBeUvx3KTSYen4Cv1yWfeMC57ZwK4DOYoVhyg2aotG1frWZvX5xv6gzZXz46erBqFRq4wrV20Ort4w4XTV3ASLOTzfxu+mqciauql8o6UTVM1BvedSEGcII0uHdKFujP7QbaupkEuCOScJ6exaY3RTxWNCurAprLOSy2llXXrdTJuyF2Hj4+F09+G6CisXk8nZdM09j+c2/zdzTnkpxVGD/n2wZf09nPmi6ymN6M8pD959D+e/9PfIt8LAvo0M7NvGKWddRr4F8i2we9tTfOrm13LJa97G6//oE/rziA+lKgyWYVmhyugw7N9jUinrMZvj6n5xXhLIZXOKbE5vm2h8aNmQtRs/N6RjnQXY0BTQpZ+FAl+HdMXAYJ7aVus3V6nqMWEYGkmBQT2A05VzSTiX0Qf4c7kJ+syhx6jtbTHtbTHMX85cklknJZOhERNzgw7hnnjWxTIV7S1VOgo+na1VOgrVSZvN02jsjJilv10PtMPIYLTsMFxy2P/QBvaMtrF5/xz8yCbn+LRk0hkxZdoyJQnhptDYBawWNxx4CCKT0Wono9V5/M9nHmM/c9mqTkVhkKFEnhFy6NXkc4xICHcUZkTg9s1vfpMbb7yRL3zhC6xcuZLPfOYzXHnllWzcuJHe3t6TffemDYVJpCz80GRk1KM7LnPuy/6cX3zrz+lZcAG9Cy/k8V/eSbU6yikX/y5OXrHigrfys++9h5b2TpRq5Z7vvpu+RZdh2Zeyvx9OOfsK5i46k6/c+lbe8PZbGB7o5z+/+hFe8dvX47jNE0JNC7yk+iY1Sg5cMFv0m5SXhHLVCoz6EJRgEWUGDkC5ZBKF+s0vm9Nvfrk8tLTq0xMxuEgr6+pVeM0hXY7mN9W0ks6vgl81cEafY8tWj3UbsszpDVi2uFrvnfU8ZDOKbCaAOcuYj670OnDQYc/jz7BhezvdbRWWzBmhp71yxNs6mUwTOlp8Olp8lr2hhygyODDi8ez9z9GRLVJMVofd89w6Trv4dBaf8W7W3vunZAsXsmDFhWxcfQeBX+S0F70FL9vG6Rf/L1b94MNkch24mRYe/un7mLP4YloWnI7PIPv3rOMH/+93mLv01fSueAd7dvZTLUMYWLR19pArQCYPhVYdwh3vc6yx8qxRBT2N2+3QwVyYDMJKPgxVIRiBxZ1lBg/ohQ3CQAdu2ayqHY3NFaClRY277UOxHejuVdC7AM+HfXsMNjy9i2eeU5y6vKKDs+fJdRVz5wTwG0tYFMKefQ67H93Cph1tLOkb4ZR5wyd1CvSRWJair7NM3+v7iCKD3QezbLwv5tkDvSzp3MeSjv2y8uks0Jqp8Kab5uGHFnf9wwjr1fl0sYfFbJapptOMjPOOXkAGI7Y4eNAiWG9y/sV/yXf+vz+hveMizr7gRdzzw9uolEu89uq3Umhp43VvuJb//dn38/6/7yBfaOFzX/oYZ563kle++bVUypBZ9kbmffufufmf3s81v/8B9u7dz5e+cjtXvPp/8cyzrRTyES0tMYV8hJMcEGqq0AdYXg/jKlWDUlH3i7M2r+PAcIZte3T/V6A5jMsGtemqY9sUOLaizdYHSgCWzatX0TROVy1WHMpVi4FHN7C/WKAcuE2N37OuT9b2k5VSdRiXrsY+WQdYaj2XGP/+uvzmRRN8R7KSfFI9F0RW7XwYWzqo+/yjtaAuUA5REtLF6JTEVmFDUOePCeqChqBuekx5TftMu8DwoMHQQYfehSFnvfjP+OX33k33vPPoWXAhT636In51lOUXvR7lBiw9+y384q73Ytr6c8qqn/wFc5dcRkv7pVQrcHDPk9z+kddw+gVX8sqrb2R4QM/CMU2Llnbdc3oID/Jg5PVnkTAZtx+sgn8QlnRVGRowKZf0wfY0jMvmdCFANq/I5Ror4Q7PcfQX+fpvn7bRaew3F0X6fqSfIwZ93Xt4bnk7A4M6mKtUTVC6F297W0hfb0h7e3TI8aphNCyi1acPksaxroQbGrIY2bCJrXsKBKFJe8Gnp13PmmnLT33PQttSSascn0W/tbC23Q9MhortDBdd9j78NDuGdH/onOPTni3SkS3RkStKK5ATxLFiOnIlOnIl3nxz/XEq+Q7D1Q7u+9TjDNHJTrWEGCupgBumhSFaGcAxptesl+nAUEpN+08VK1eu5OKLL+bzn/88AHEcs3DhQt797nfzgQ984IjfPzw8TFtbG9+ylpMzJqF8apoqqTzfit6J/crX0N+ygkzXKHMWRTzz2BdZe99tlEb20j3vHF7yO59gzqIXARAGFVb94CNsXvsdotBnwamv5pLXfhrT7GPB3FaKwxD6W7n3v97Fc5vuxfPyrLz8Wq7+409gHalE6DgEvg7jqmVY3KGr40aGdVPTllZFS5uiu0cHcNNZcRTsXdvp3+OwdHGVZUum7k2iXDEYfWQTW/pbactXOWvJQNJcfmb57v8s4Zf9Z7Mj7GNP/69wkqPqOzbfxb6d36FS3ENr9zm85Lc/ycLTLgLGP38XnvZqXvaGT5FrmQPAwz/9BKt/9slxP6vQvpDf+4sn8CsGC+fp57lhQksbtHVBa8eJ+70bRaF+/vtV8CuwsL1McRRKRQPbhkKLotCimL9QHVMlXBzDnt0GwXO7mN8XcOopU7OAwMCgxe5fbcUPTM4/5QDthZm1OtK+wQxr79aD9fPmbZPB3SxT8h2+8U/7CHE4jceOavWukop4Y/QMQ0NDtLa2noB7+cIk47yjd3f8u6gXv5z8yvNou3gujgs//+7neeAntzI4sIe588/jd9/yac698GLauxS5XIUv/vMH+PmPvk3gV3nRSy7nPR/+DJ3d9V4//bu28Zl/+Asee+R/yGTyvOp1b+GNb/t75qrdtSlr1apBJhNTKMQU8jGFQkRrIT5k9c1YesVsg1JSFec+s57RslNbjMkyVb0aLgnlCtmAQjY45srptPF7uthTxdeBXCV0qAROrfG7bUZk7ADPCcnavg7oHJ9cssDDdGz+nlbT+ZE9LrB76LbVtWAuwCEaO+WVQ095ddIprkl/unT7ZP3+VeXxH/GfkHvdb7CvcApPP7eexWcswnIU+3Z8kadW3U55dC+dfWdz6W/+I70L6+O8h37yMZ594nvEoU/f0ldx3stvZcWpp1McgTW/vIlHfvF3435eR+9iPvZ/thzz/QyTogA/GYst7qxSHDWolPVB42xOzyjI5qFQUBRajjxj4vlQCipl3TqkvbidPXsdbFsf9Jw/PyDjHd/H+FLJ4OCATfjUJg4MZTBNRW97md6OCr3t5SmpfjsWfmAyMOrSv2ojA+U8Q+UcthnRlR+lK6d78WacmfdZZ7Yp+i6D5Rz3/fOTjNBGWeXxqNBqDNDKAG0cnPb94E7EOG/aB26+75PL5fiP//gPrr766tr2a6+9lsHBQb7//e+P+55qtUq1Wv+gNDw8zMKFC2f9QKyk8nwjehf2K1/Bwa5TObD/YfqWncG85eFhG7ofThRCacSgp70N04TFpx6+OfxUUAoqJSiOwLx8mQP7DTo6FYuXxdM+eBsZgtENu+ibE7Bi2dR+eA8C2PurZ9l1IMdlZ+6ZcaHbf9y3hF/tOZtdcR97+n+J7TQf7VYxLDrrAob2m8xZHJHJTd6/LhVDtWywaH4bB/fqXh8Llo2vWDtZ4ki/Bsol6LR0v7Gzz4+PeUBULsHgE7uY1xewfOnUPB+VgoOrnuaZXa285Oz+5tWwZoA4hjU/2sme0VYuW7x5wiXcxcylFPz7zXuokOMMHj1ixYcEblNPxnnH5ifx76Ne/HLaLj2XtpV9jJlsQBTq8dL8QpWBAwZBAB1dis5uRVfP8VdyBwGUkgNAPcH2WhCHga6CK8S1ariWQnRMbTXiWE+DK5X1QlLu5vWMVnQYVw0sXDuqTUvNN/aNy4THXU0dhAblqk05WZGx6lsMrtlAKXCbFnXIOVXynl7UIZ+swphzqjPqw34cGwRJ5VyYhnUNU17T6a5BbcqrS4R+HaWVc45RXySiXjXnJ9915ICuorL8R/x2clf+Bgfal7O9/1EyuQo9i8+lWjaYsyg45uBKj40MFi3sYuigbtnR0QudvUx6YBTHOoSrlHVRwMJ2HcRVKzqEK7Qo8i3Q1q7IF458e8/nfgwcgMzBnRw8aDO3L2DJoiq55zEmVgoGBy2CxzfQfzBHGBn0dZZZNGe0VmF6ssUxDIx67PzlJg4UCwxVsrR4Fea0DDGnZVgOkE4TQWQyUM5zz61PMaQ6qZCjYAzTxgE62UfWKJ3suzjOiRjnTfsppfv37yeKIubMmdO0fc6cOWzYsGHC7/n4xz/OzTfffCLu3rSlAC9bwbIhqBo47vH9I7ZsaOlQFKNBrFI7xRFo75rc+3okhqGn+2Xz4JMl48Hw7gp7dhssPWVa58W0tAGnz2PrY/1THrg5Dsx/5TL8nz3Hc/0tnL10YEp/3mRTGCjVvGpVI8OE7evX0LPoQsojxqQGboYJmbxi7+AgsQVGpZ3B/TBnfC/lk8K0INeiv+IoS2VnhdFhaG0/ttvJ5qB66jy2rts9ZYGbYUDXi1cw/LPn2LqnwJmLB6fk50wV04SLrprPfd/bz/bBTk7p3nuy75KYRIYBb/poH1+8ucqw0UE7B0/2XXrBk3HesVMKMCYOzyxbV2mP4GH36YbymWyVbc+abHsWuufoKuljDTccB9o6oK1DAQvoANqVPpBTHAU32M6BAZvntulquFw2prU1Ip+PaW2JaG3RfaomYproyrlCMsVzcX0hqSBAV8WVTUpFk/gZvXhDsWITRiZZVy/YUEimp+YyIYVMQNY79LQ70FNWHTtoXvRngkUdRss2xbLDwdW6+XvJ96iEDpYZk28I49LVGHNuddr1njJNhWeGEx5AOtSU1yg2kgq6bFJNZ+GHTm26a4lCsrJrPaAzUHpl1zHhnINPiJ4WqwyFgR53GSbs2/Y4bb3nUR41KbQf299Nj40U+wf3o4DBAROMTkYHYdEKff1kMU3I5PQXoPvRFcBIguj9B2BBUGXbFhPbhvYOlQTdk9sSxzShqwfomY9ZAtW/g1UPF1i8wGfZ0uPry2YY0NERwStW0KNgcMii/OgmVj01h/ZClVPmD9PddnIDLdOErtYqXb+p+yj6gcmegR62/SrgmQNzaPXKzG8bYF7bAJa0BDlpHCumtzDCm5L/K+XAYf/oMu75TMAutQRPleky9tBNP57xwglJp33gdjw++MEPcuONN9Yup0c+X0jiGHoWXYBS4D2PYMKvwMK57RzYA27h2D/gT5a0ym10CNqNMmDQ0TUz/qGWigaOo1Bq6vvQKQVhZOLa02uwdzQMQ6/UpADU+D9UFJnMX3E+5aJBZ9/k91+KQqgUdTVntQKFtkn/EZMiDPXr+3gHkirWz8Opfj66dkwYneQ5Cc9Di1ehEpzgcl5xQlimImeMUCEHErjNSC/0cZ4Bhz1A1Sibh0E8zF4YGQTrgM/oMJx21rGHbuPuh5Eu2gMxC8mj21b5vq6y2zdqoEa3s3u3Q6lsksnEtLbEtLRERwzhUo4DbU5MW2u6QuPE/eKMp9ezbzBDqWJTrNj6vjX0i8tl6uezbnjEYKKp+XtHpamHXBQZFCs2oxU7WWF1AwdKeUarGcLYwrVC8p4O4PK1rwpZZ/pNUT0U6xALRwCcevP8cdvSlV2rYSEJ52yqoc2Dtz1KiRaqZCgwhJn0RlbJw7ngtLMZ2GvgZp7fmN4wId8WM1Q8QMbsIvD1bIWpZjvQ0qG/AjwyBSiNgONW2fqMybYtsHBJTPcUtKLM5oBlC+jogX3P7mZo2OLcs0u1XovHwzCgoz2i49XL6fYNig9v5NFN3XS3Vzh7yQCuMz0+X7hOzMLeIgvfMIcgNNi1v5en7zfZtH8OSzr2s6RzvwRv00DWCVjYcZDrbu4hjEz2Fjv5yafL7FJLaOUgc9hJuzH7x2HTPnDr7u7Gsiz27NnTtH3Pnj309fVN+D2e5+F53oTXzWaGXjYBE51amLaid0F01Kt+qjjpoVY2WDivjdEhMBWUi7BwObS0T+ndr0mbmVbKsLC1xOiwweioXslnTquit0/R1XPs0+lOtDAEY9s2Kjtdzju7POWDrHLFYNsvtlKsOJy79MDU/rApYBp6gGtGoJLALY4NgqrDgtPOplo2AMW8ZeFxreTZSCkIfahWDBbPb6M4ApUqdLXqCs6O3slZLff5Ukq/Fqpl/TqcWygTDBnMmRtTaDny949VHIXipt0sW1yd0ufj3n022/fmWXnGzKwOGy467Bjs5Pz5W0/2XRFTwA8tRlU784xtJ/uuCGScd6xMYjAUsVLER3nsSSk9trJtyNqK/XsNymV1XO8jR8N1we0iOTC6gAz654+OwIERA7NYD+Fy2Zi2tiSAa9Uh3NGO7zKeIuNFdBLB/FNq28f2i1PP1MO4UtVGKch6EVlPr5yaz4RkvIh8JqQlGxxxmqplKVrzaXVcGebXK+OCUK/EOFJ2OPjweg6W8mwf7KTku5iG0uGbV6XgVsh7VVq8Cjln6hvWT7VDrey6vKHp+l1PdPHrUR2O+b7L3L5TGdpv0LMgeF6BWxRCtWwyr6+TkUBPKT0RYdtETFMfsB1KQu4D/VBe59PVc3S9Do9HoQWyZ82ltGkXTz+T4czTJ2cBNddVuC85lbOqBrt+sYVVT/Wy8sx94xY4OdkcW7G4b5TFb+xg72CGJ+8O2DnUydlzd9CZK57suycSthUzr3WIP7q5h0pg85//MMqz6gxcKixgy6wO3qZ94Oa6LhdddBH33HNPrbdHHMfcc8893HDDDSf3zk0zBgrTiLCsiK450L3k0P8Q40hPNfWrsHhBG+WiDhwyQEeX7l3VNUcfGZ3sYCtKlusOqjpMWNJZoloxKJd12BeG+ohRR1KZ1zdfUWiJyeZOzEqlz4dSurFpZu82du12KOQtLn3RqF4taIp+3uCQxeAjz9B/MMe8rogLV+w/5gbD04Fjx5imIoqgXMwy79RzqBYNHE+RbVH0LIiO+Wi8itOVQQ38isGSRa1USrohrgu0tumB35wFkCuc+P6EUF+51K/q18SijhKVikGlBJWKXjAkm1F0t+uFQxYvPfawLQx0+Ltvp8uyJT6LF07NYgblikH/L7ewdyDL+accoKNlZi2aoBRs35dn7c/2sbRrH9350ZN9l8QkCyKTr/7DIG1GhRZj6GTfHYGM846VSQRJ78GB/fp9S8V6bLWir0qs9BgvDMD3DXxfnwdwPTDa4NwLj++gzfNhO9DeCe2dOoTrQU8XHR2GbGUbBwZsntniESuD9raQthYdxHW0h8fUDw6SyrucIpeLoCuChc1hXKVqUC6ZlCsm5bJJ9OwG+gcsShWbIDRpyQW0F3w6W6t0t1bw3KMfwzm2qq3Gvuiq+nTNOIZS1Wak5DBadjiweiP9I+0UfR0c590qLV6ZFq9CwavSminPuh6ihhGTcSJMA3oWLCOTi2iZHx5TxX4UQugb+FWDxYs7KY2AH+uQy8vCnIUnv/9uHOsDpXNzVfzYwD4B98eygQXz6F/Xz5mnT+5tZzzF0iuXsPXuLWzY1sb5p0zfYKS3vcKrfr+TDT99ltXbl3DBgq0ylpuGMk7IG29eShQb3HXzNp5RZ9HGQRazaVaucjrtAzeAG2+8kWuvvZYXvehFXHLJJXzmM5+hWCzyR3/0Ryf7rk07JjGurShkq7Vybf1h3mDpojYdNpT1h/u8A92t+p90zzwdrrne8YdaUTLAS78CX38t6SrrKp0KBIFBFOrpcJ6raMvqSrB8QdHVC5lMTCbLMQ+uToQo0vc1DPRpkAxkAx/mRlupVk0GhiyUMujuMrjgnBId7VMw9TGCgUGbyuOb2DOQI4oN5nfHvPzc3TOuQT3AaNnm2fueoX+rjd13DoYFS84+hVxB0T0vOmI1W5Q+Jr5B4BssXdxaW+Uz8MEzoaUAmV69pHtbp+7B8Xye60eSVhPUXguBrqhb2l3CT4Ju39cfhlSsn+/5jCKTS/pUdCu8jCKb1QPH472fjavltreZXHrxKIVJDn+V0quTDjz8LHsHs/R1wivO2z3tjoAeThzDrgM5nvrFbiI1wnnzdtJTGDnZd0tMsn2jLXz71gPkDZ9lrDvZd0c0kHHe0TNQmFZESz6mo1NXK5tmUpVtgGOD6emAy3VjXDc5703+AdTny3H0Qd6IReSBXHLQcmTIIFPdzqanPSrVLK0tER3tEZ0dIR0dh+/NdiTpQaxsJgKS96nl9Wmq5YrB8LAF6zawZXcLj23upDUf0N1WobutQmfL8fXJMk0oZMNkQasyKxbMBZIDtVWb4aLDSMlh/+pNbB/sohS4uFZIa0aHcK2ZMq2ZMnl3Zh3IamSg/w6tHQqvEByyF68OjA3CIBnXLe3Ar+jPL2YMuSx4XTpsnrtYf355vjMfjkfjAVO9snyVcsmgXNSvx5KCFWfEtHeemIKB4qiBd5w9u4/EMCB/4Qr6fzn9K/8NA864chmFvXke/1nMK5dvwJTppdOSZSp+7+YVVEObr/+9yTp1EaexlowxOVWa08U0jDXGu+aaa9i3bx8f/ehH6e/v5/zzz+fHP/7xuAa7L3Rmshi4bUVUytASthNFumqtvV0HE60d4M3VgcPRvDlFYUPIlLyxhAEs7SoTpG80SQVRHAGGLkHOeuBmwW1XuB60tYGbUbgueN7JeWOEemgWhQ2/W2gkpzAv3EoQGoShQRAaBEH9K07+V1uW7h3guooWR+G6CsdVFPIhy5ZUaW15foPBsaq+HvyFT23k4IjHUNEl40b0tsO5yw7Q1VqZdoPowylXLQ4Me+x84BkOlAr4oQ30sr/YgmUrViyqMpyJatVmKk4epyRQW7aktbZce1AFInBt8NrBzegPFYXW+vnJqFqLoobnTNAQ8oUNr4Xa60M/n0CH2Z6jaPHAbdODgNY2/ZrQzxt9Hydz+uroCBQObmXPXodKxaRvDlxy0SgthckL2uIYBoYsKo89Tf/BHLGCBd0hrzh3F7nMzAjalILBUZdn7ttC/0g7tjXMss59zGsdlIHZLDNQyvG9W3ZRUhELjefoNXad7LskxpBx3tFzqGKaEZms4rSz1LSv/D8WhgH5gj4Im1bBlUswPGRQKW3niXVZDAPm9AZ0d4V0Ps/wbSI6jAuh9xTmoMdgBwcsqk9uYu3mLuLYoLejTF9nmZ62ynGvkpoyjHqvuLldZU5dqKdRh5HBcNFhuOSy76GNbDnQw6ifwTRi2rJl2jMl2rIl2jMlXHtmvO/GysBzQ0aBKDAIfEVQNQh9g6XLOqmW9cH5KALX0b2jvawexxVa9Xk3M3UtP1RaHZp+TqgdYIdlPdXkIHv9YHucHDBtzUC2XZHLQ3dvTC6vD/CeKEpBZt9Wgm0ZzjpnaoKKOIahh5+ho2VmPNcAFvQUWR1ZlAJXVjGd5jw75NqbevjaTTt5mnM4Sz1yxFXkZ5IZEbgB3HDDDTK14AhMYr0st6XIdMDcJRNXraXhWblYP7+0u4TvG8kUhLQqR1ffGGYSorngZMBtBcfVbyyOq8+7rj5SaTuTfxRHqSTwSEOP2nkdbDReNy/eShgaRJFBGOmgLIp0T40oNEhfupYJtq1wHIVtKzK2PsWBbCaubXeSfdzksm2rKQu3dM8Rk5FRk5GiBZs2MVT0qPgW+UxAZ6vJ4jkjdLVWyXoz4w2v6psMl1yGii79D29mqJLDj2xavf105kLO7ttBR7bIUCXHjsFOqpaiGEBXdztK6aOZgQ+uAYUceJ36dgtt+nnteuAcQ2AVR/VKzPQ5UzsfwLKeenimAzX9HEurRW0HMo7CdsDJ6ee+4yTTUR2wHVWrJnCcE1NNUK3A0KBBy+A2Dg7YhJEBnSbLllTp7Q4mZWAaxzA8YjEwaOGv28zAiIdtKeZ0Gpyz7ADdMyT0DUKD/cMZtv3qWfYXW4iVyZyCyfnzt9KRLc6qD64vdGFk0j/Sxo8+s42KipljDLPCeBLbmHlVwC8UMs47Oh4VsGKsndspFbvJ5ad/u43nI5uDbE4HcH3LYPAgRMM7eGp9FstUrDilSm/P1L2uPVcxd04Ic5YxX8HQsEnw2EY2bGvnscBkbmeJBT1FOlsnt/LMthSdrT6drT5LXq8XKYhj9Jhq1KX/wU30j8yl6HsU3AoduRIduVE6s0UyzvT8P2dbMa6pCCMoZDoxDb3yrZfR46Z8a31sd7wH5qMoGeslC0ylnxvihs8Qy+dU62O8oGGGTvJnM019wDSbfsZpSVb/zemqUcdN+hRO8gHTYxXHcGAvsHs3SrlcdH6R9rbJb2EzMmqy4xdbAZOLTt0/6bc/VXbsy2OZo+ScmVsV+kJiGPCmjy3gCzeVGDK66GDmPNeOZMYEbuLIDBQ2Pp4b0mnsIfQX0dVSojoyfgpbWnlTcMFr0WFPLq9wnXqIYDs6UDvW6Z1KJW9q8fiALD2fBh9RBPPibYQRxElIpkO0JDQLDaKG9w7T0KGGbSksS+HZCtvWzVodR2E7imwmxrZ1U1vbUrVgTV9mSkOzo6GXuLcolU2KJRPj6U0UKw7Fiv5DFzIBLbmAtlafpXNHaMvrEHU6q/omoxXdl2T/IxsZrWYYqWbwI5ucO0hbpkRHrsySzv20emVsq3lAYBkxlhnTXd5G0NqF4+ojmT1z9dFMx23+QJFO2YxCHRw3Vp5FISztLuujkmk1WlgPkEE//x1HkXPATgIy/TxpCM+S51Yanln2iflQkwbM6UCxNmCMk9dFqBcU6SpvZ3jEolo1aGmJyHTGnH1miY626Hk9v5WCYslkeMRCbdjIwKjLSMnFMhWdLRXmdFQ4c/EgLbnp32OhXLUYGPXY/cDTHCzlGfUz5N1BuvMR583bRnumJNVss0gYmewrtvCzf97MgOoiY+ygl366jX4sY2YcpBDiSGx8YjPGcyL2P6YXmjAtPTXHspL3LUthWqp2cNE0YXu0EMvS72WWqcdIpkVtWzotVd+WPp1uQZ5h6CmodC1gzhLYtM7gsSf6eeXLRp7XyozH8vPb22J4+Qp60OFb8ZGneWRjD7lMyCnzh5nTMXWLZJkmtBd82gs+i39HL9TgByYHRzrZ9etNPHeghyeqC8m7VboLI/TkR+jITp/3OcuIyWUC2tuhewUU2psPTNY+P0R6FkPtM0RYD8yWz6k2HDitf65Ig7OUaenPLxlbn1qOXpU3Hddlc9QOpFtWOg7Up9Nh0axDUQpGhqFlaDt79jjYlmLJYp+5fcGkfrZRCg4ctBh++Bn2D2VYOrfCqQuGZsTBVaVg3U+28Mz+Xi5YsG3aPP/FkZmmImOUqHKSGzFOMgncZhGDGJcqxr6dmKd305MtE8e60bqXOfwUtjhuKKFOyqn9okE0XL8cRzA/3qpDsbTCLAnGokiXv8dRc0BmmWDZOvgyk4FfxlLJtmRQ6CryyRteGpJZdn2gWA/Opt/gbyJBAL5vUq6alMsG9uYNlKo25apN2bfwAwvXich5IYVsQKEQsqCnSCEbkPPCafk7xjFUfItSVa/wdeCRDZQCj3LgUvJdwtgi4wxRcCsUXMXc1gFO9Srk3eq4cG0ithVhmTGZrM98dw/l/GJMU/dy6cuW8EcNqtX6Agi1o5CWDs6yaTicJwleIW8nQZlVD5DTwdTz/RunoXEc14PjOE4GhLHRFJSl+yxga1J5SfI60b9HHBtN2+OGcYFp0PShybIUnqVozyrybRELF1Rpa4mOq+ehUrpXTbFoMVrUwe9IyWG04mCgV2Bry8PSvhHaC/60fW5CQw+cksOeBzcyUs0yXMniRzYt3gE6srCsay8d0/jIvzg+I1WPA8UWfvG5pxlR7Xj002GUOctYTc6Q1cnE7JOhTGCFdLdWeNHLRpL3HCM5yGnUxmhxOlZLxmZLrG36vaZC0/cEoUGlFlwYqMb3IBMMQ4+/LFM1BHtgmPq9yTRVsp9+v90eLapdTm/DtNDTgwxqPedqDN3bKxUnQwal0i9D9wQOYKG1jWpVL3bg+wYZ3+D0UysnJGybSFtrTNurl9MbQunhDTy1pYMtu1s4d/nBE9ZT13Vi+jrL9P2WXg00CA32DXWx41fP8PjuhUSxSV/LEH2tQ3TlRk/q+7hjhZgG9Ll72b1rPnOyVapVo973OTmOl1aYeek4Lqefc+nBz4ytP8fYdlwPkZOALb08XccrE4ljPZMiVslpw1caPvq+QXd1OwcO6gFfrsfg7DPLkzqtWveItqiu3cSeAT19e1GvzznLBmZEX944hp3786z7+S6gk0sWPUtbtnyy75Y4BkXfZUS1scjYfLLvyqSSwG0WMQ2FZ1QoeBXyuZh5C2PCQFe3FUehNdqmlysPjKY+ZVFY/5BvGvWATE+phKyVHjVVGBZknbgehCXBWNN5O61AO7FveOngLIp0nwjdi0H/bvqNy9Cnyqi/oSk9yFSq4fo4+Z7IIL9jHbEy6ttiQ39PrLcplVyO9KkfmsSxgWXGZL2IjBuSzxh0FKrM6y6SdSPymWBarSIax1ANLCq+Rdm3qfoWA2vWUw1tKoFLKXCphg6GocjYATnHJ+datGeLzG0dIOf45N0q1vM4guRaIZ4dYFqKjBdjBmVcD7xWfX2hRdHRVZ++fKQpm43TkNNgLPChUkk/fDRUWiZB2Xy1tVZRmQZiOkgzxmxv/llpUJx+CDFNHYrpSgEdLOsPKnpqsmWp5u+xGyoTrDRgS2/ruP+ktb9DpWpQLpuUyvpDirm5XlGplO4dU8gGtORC5nSWaMkG5DPTM1xLV3kbLTsUKw77HtnEqJ+h6HsoBQWvSovn0J0fYVnnXloz5ef1vBTTi1IwUs0wUM5z/2c3MKzaiYhpNXbTzkGWGJvIGDK4FrObZ1QpZEoMl/rYu8/RVf2OboGRy8bPe9Gp2oGk2KgfRIrGvy/Gcb3ymmR8FMUwj+3EYX1Mlm5XsVHf1vBvWY+j6pdNU2Em7z9pONfqpK0+IJcLmZdRuG5MPheftLCtkW1D62Wnc3YI+/7nGX71xBxedm7/SWn/4diKeV1l5r1eV8ANjLhsuW+AJ3YvwAAWdRxgQdvBk9L3LWOHZL0IIxdx3vIqjgttHXoWitPQmuZ4K8xqz68oCa8aAiwYE2wl19WD3eR6VX+eNoZgY/db7GxLPgfUt6WfFfT3pp85kud4PPazRn37WPp5r5KqU4XnKloyMfl8zIL5ZdrbJidk832DwSEL1q3n4IjHcNHFcyLmdCouPPUAnS3VaTkWbKRU+hx/lt0jbbjWIMu6pB/vTFTyHb76D4P0GAdm3QFTCdxmmSxlLEOR2fsc5U0+rqtodZunWzrJwCwdoKXTLI91qmV96ltzqOX7BpXYrAVa6Rtf+iaTvsEcbbjVuE3FesBXC7oaQzQ1/l1BD9xUbQBXP68w0m3pPkYSehjJm5wZJ1MqYh2YJN+bvhE2bkvPO7ae5nGyA7U4Bj+0qAYmfmDhhyZV32Jw7Xr80KYa2fo0dPAj/W/AswMydpCcGhS8Kj2FEbK2T8bR103VG69txuQcH9+IyWVjTrswRsVJL7WwvhBBdUQfCZ2vtlIZ06svjnWVZTTBNORa8GXpxysNktPqMSsJlScMxJIQLQ2Um79nav4eRysN1CoVk0rVpFIxsJ/dSKliJRWVOlTLuBG5TKirKgtBraIy64bTbnqAH5iU02rKisPAo+spBh4l36MSOpiGIudUybtVCl6V3pYh8m6VvOPL4GqWKQcOQ5Us93/6SUZpo6hagBIFYzctjNJr7KTA0KxqrCvEkTj4bLnrcV70v0YZXr2cg5GJH5iEkYHCwECPRVw7xnFiHCvGsfVXafGZ+mCqm4z/bP2+l4ZZacBlmuDUut7K6+to2TbMfdVywp89y6YdbZy3/ODJvkt0tPh0/NZClII9A1k2/MLnmQO9nNrdz6KOAyc0UDEMaM9XKTqQb4FMRtVaflTKyWyaGBaY25Lq/3pgWz+APv5zRXogXR3iqWqaQO0zQD3QMtB9qtPPCHZafWkkY/10P4Pa9xmmwkxeK3YypiR93TTcfvoZo/6aSi4nQVrtts3m722sDp0suke0wfCIhb1xPSNlh+GiQ9m3KWQCOlpMFvUW6Ww9cZWZz0fFt9g3mGHXqqeTfrwGc1sNLpi/TfrxzkBKwfdu2sQOtYweYz+LmF3VbSCB26zTwgDKDpnTUWHlylFdyRYkoURYP1rpBwbliqmng8aQ375eH7lMprdFTZVcZnIk0yRW1Kq5xgZchpEETxOEW6bZeL5+3dhwyzTjWvhVP8Jz6NDMGnO7BvUAzDBmVkn5RHSIZBIkA+ogMglC/eWHFiOPrSOILPzIIohs/MgmiCzCWCdBjhXhWgGuFeHaIRnbIO9V6bCKuFZYC9hcKzqpYYVhQFu2TCkTUVIGOx/ox4CmDwWFhoUrJurV1zhNWU9JnpwqsYmkRzTTKaFp4Kwajm5ONBBsDp6pHR1tPCoaRwaFnWn4TC1wVora6zIMTapJkArgOTEZNyTrhThezNyuKtkkZJsuoZpSOkyrBrqSsuJbVAOLwTUbKIcOlcChErpEsamfm05AzqmSdWLmtgySdXxyrj+lwa84OaLYoOh7jFSz/M+/PEGJAiXVQgRkjUHyOHTRz2JjE1lkMC1e2DKU8CiRd3xees6e2nal9EEnP7SScYI+H4b1MYT77AZ9UCMyCRrGFHEynnOsGNeJdXN7J8KxFK4TUVx0pj5I6+gDVo4TJ4tJ6TYO8pqsS2cNZN3pFVwYBnrq6e91s2/Q49Efh+wvFbhg3onrceVYIflsSFtxI8NbFYariwBcq2GmjJVOYY4xzPoUZtNKD5LXq7/MhvDKME5MeDVdxTFUG2Y0OE+vp1ixKVV0KxiAllxAS86iq7XCkj7dI/pkFwgcSRzDUFEvvrbnwU0MlvOUA4fWzD668gHnz5d+vDNVHBvsGm7nB/+8A8UCVhhP0GYMnOy7NSUkcJtlbCMkly0xWOxj1bf2AcmCApYeQKVHY+z0sqnwktDKceMxVVtxrcqnMdyyGgIuy4ybjgCJOt1HxdS9upLzQZheNmuXRx5fl4RkJlFsEcRWLTSLYp2UmEaMY0X6y4xwrDA5r5IALcQ2Izw7xLFCHbBZ03Na4KG0ZUq4LVU6y+s4/bULDjmIT/vMNB7xTC8HgUGlYtTDqobS/bQasrBjnQ6PG8Ks8eHW+G2NlyeqpjTGBsUN4bDRdL5hv4Yg2U72s8xY9zs04nH7pbft2jGuHeE5ERn3+S2S8HyklZRpkOaH9YrKobUbqEa6irIa6jBYKQPHivBqlZT6tC1bImMHZByfrB0cVd8/MfP4oUXR9ygFHr/8l8cpk6Os8lTJYlMka+wlh0EXe1hoPEOWIpYhzwUhGjn4OASMVDNs3NZGLhPiOpF+X3B0lf2xVqnog7Imfth4UM8kCC2C0CCzZT1+aDE65vrGoC6toku/XDumuOhMHDfGsesrwzsNFXbT4WDQZIlj6N9rM/jQFgzD5MIVgyf7Lh1ST3uVV/9+O/d+5yBbB7pY2nViVgP07BC3tUo1sLn4FSNT8jPSA6LQ3A+w8bS+b/NY7mgjm0NV0h3K8YzF029RpK1RDIIw6RFdMfB9E+/ZDZSqFpWqTSWwMA1Vm9FgZ6GnvUIuE5JPZjhM588EaS/ekZJegO3AIxsYqWYZrXrY1ghtmTKtmYAzWnfRni3iyDhxxhquZPjvj29iv+rDYQd9xja66Z/VsxUkcJtlPCrs+N6jvOad/Vz00rk4djzpq9boSp20b4FBEBuotF8H9e36cuP5hr4IyqjdBlAbtNWub7id+vaG8423NcHPBCg/+VTD9cn3pvendlq/D7XbwYCGfZq/r/k+K9L7pPePY5NImbWgDHRYZpt6FU7bjLDNGNuKsM00PIvIOj5OsnCAY+rrbKt+/QuhD1WLV+Hghk1Yy89g893bMU1FGJpjgsvmJ3NjAJz2QTMbQuDGANlNzmOCa0e1ICsNktMgrLECs+nyBNvSqs6ZXE2ZVkUEoVmrptRhsEEQ6vBs5LF1BLGVVFDqKsqxlZSOFeJZ9cDXswNaM2VcO8BLevR5dviCeC6/UCkF1dCuLahS9F0evP0JKmSpqhwhBi6DZIwyGWzaGKDP2EGWIq7hn+y7L8SMkGeEEJdTe/o5+Ogw/bUKdws/tFEYusVF8j/ZtUPc5LT1/LNwHV295jn6wI2uaFPYVnTMPceiyGiqwK9V4ien2efWEUQmxYagLn2PAV295CTVdLaVToWNKKZTX5OKdtdRtcuN019PpjjWK3oPDFhE657mwLBHxolY3FdkYU8Ra5qvLu/YitZMmaLvnbCfaZsxwdOPEyy4iCeeyuC6isI2fRA0nWVTr/ivH+yszQhg4s8QtbH7LJa+VjxXH2gtuBHZXEhvR0TWDZO+0ZO3gMJUiCKj1jKkXLU4+Mh6Sr5H0ddjBkC3CHGrFDyfOS3DtHhlcm5wku+5eD6UgsFyjp9+ch0DqocqIZ2GwynGU7QyMK2fs5NFArdZJscoDj57RtvYsb+QfJg2KT7xVDIl1CBSZkNvtIbzSYCUVvDEyqyHa0xc1dPIMBQGSfjQdKoarq/vZ9a21/czGvZjzO0dbt/azxjz882JfvaY25jovukXf73CauzPhIbbbviZlhnrFb2ScM1KQhpxZAvbD7BpXx/nzR9CKQM7OUpu1yoy9allNoZkJ/tenzzpdOOxgWQY6/Asatg28vg6wtgkjC3CSFdRhrFJ2BCapc9bqyEIrldUxnhOiGsVa4Fa7dQ8udORxYkTx0bT9N9y4PDg5x/DJ0NVZfHxUIS4FPGMCh4lslToYD8Zo0SGMpYx/Vc6E2I6cw2frCpim12cP3/buOuDyMRP+rSmp9Wk5cTeh5+uBXNpCwqFgZVU0Xt2iJu0mWg9/4ykJ62umtPVczoQSw/k6l6m0TGvYBjH1MK3se0ygtDE2vFU7XypIcDzA7MWrIytqrMt3a+uuPjM2sJftlNvNWFaejrssSzsFcdQ9Q3KJb3oULmsp+UWK7oSxzQV7QWf7tYqKxYM0ZafGcFAFBk89ZPn2DPSzWVLTly/pM7cKE/v6+PCUw6wq7+ix3aOwrbCWguZptY0ZvJ5odYypnm8nj4Pa+PwhjE7NFxuqJyp70PDtsOPYSZjrJmGg4Zx7BVyM6ESNAgNKr5VaxfiBxYDj9YXYCsHume0aSiyju4NnXdMOnNFFrYfJOdWyTn+C3pcP5uMVj0OlvLc+5n1DKkOwKfd8FhgPEsbB15wsxckcJtl2tnPc5zKwrYD7H5ouFZZZZkK1w50WGGkfdLi+ptZWsHTNI0trr2x6fPU9h0beMkHbvF8WaZiUccBtj1Q5BVv6J5wn8Z+Z2Fg1o98plNBSY+C1hfoqG+rV0E2Vmg2Vk/Wt09cOTm2alLRWJ1Zr4A8VLXkkSorG/ep/86NlZR6v8YKSsPQr2krea07SXWkbcZYRr2qMuMEDdfpoMwy9YesdB8Z6LwwxbFRW0ilEjq1acAP3b6WAA8fD195hDiYVHEYxjOquFTw8CkwnARsFVwqs3pagBDTwRxjJz/+TMQ7bm4bd51jxTiWT949ctWoUhDGJtXQIYispgWVRh9bx8HIqod2oV07QGOZcVI9FyQVzWES0MU4DdVznqPDsLHvLaYJnhvjEUP22H73tCI7DezS6a1hQ1iXtuyoNLXxqB+cqt0Po/lAnmWppEm/UeuHZ6DIevWeqLlcRF9nidZ8MO2n6Y01VHTYcu8z7BzqIOcUuGTRsxS86gn7+d35ER7btYisF02LBSVOpMbnyXR/zoSR0RSE16eaWwyveSr5X+EQhPp/RhDZxMpo+r+QsUM8W9GRLeG1DJF1ArKOj2dPr96G4vmLYoOhSo7Bco77P7eOUdVKRETB2E0rRfqM7eQZnvbP+6kkgdss4+BjE9LXOkRnbnYtqStmv2Wde/nVc6fyo2+OYBgqqcqsV2FOuBJtEgabterEhj5pDdWHjUGxaahxFZS1kJmJKx4bqyYPVzF5rNWSE/0caK7mhMYqzrR3otJVlBJ2izGUIllMxW46rUYOD922hhCXAIdAeQS4hNhAiEMJx/Bxqdb6ROUZxaWKa1RwqWIji1YIcbJ1sI9tajn/92MHyVDmkhsuJGMHTdNHM8lB1sMxjDSgO7rQJY4NgtiiGtoNAZ0O6IfWrK9dTqvoImXqVVOTvrKuHeoqOiuk9YKzkqmtzQHdkaZiHu/011TaRiGKzeRUB3Hp4mCGoWoV9V7SE28m/s+LYxgpOwyOuvQ/8DQHSwWC2KK34HDO3B30FKamh9rhOFbMnJYhtu2Zy5lLBo/5+xvb0jROL208gNm4X+O245WOyaCxYq75+rGVdI1VdI3bpmL10XQabuOU3DAydF/oqL4AXtTQOqT0xFPJrAeTILJ0/+haL2mzttqxbm0T41qhPm9FOJZB3q3SYZWa/t94Vij9d18AqqHNSDXDSCXDLz/3BEXVQoUcDgcoGFtoYYi5xjbyDMvB1wYSuM0ypqHoZC8/uGWAt900cZVQo6beaDSfp+my0fQ9h73NSeqj0Pgmd9j9Jvhxh/reQ5WNj72Jifab6Lcau196X462XPxIDVvHPh7jtxtNP2tsJRQ0V2BN9L2HqrDS1VvmmAows3Z9bQpyXN937R0PozCJdcRFUj/ZcNkkTrbr29LnI2xyxgh/fFM7lyx6htFqphYmmY0VmUbary2Wykox60WxQZgMhNOeeUHDtOCHb3uUEIcQmwiHUDkEOIQ4QIxJBZsAx/D1KT42ihwjOlAz/CRY018z8UOlEC9EruFzJo8yShs+Hg9+/lECdIAeKJcAV08VJaq91nWQXmXlX1xUWwnaS3psOtbRhUqmqfDM8KirVKLYSMI5u6F6Tk9n3f/Ixvp1YfP0Vv1BPqr1AG09/0y9MEQSgLkN01yP9f+WYej+ZQ6zY3p7GBkUK3ayIqVuNl/0M4xUM5hGTGumTEc24Oy5O+jMFk/6uGlB2wBrf7mTobU68AvT3sdRenDVJKq1tknHpUbTuPZojZ1aejwmGmM/X2MPsDLBgdtkc9PnjHoLILM2m6ORZdTb2ui+0TGGoSs4m2c2xGTsuN47OpkVYSc9pHWwJuHZC1k1tBmt6v56v/zMY5TJU1Z5AhQew+SMInnKdBr7yDMsfXiPQAK3WWg+W3hMXcYXPlbRwUZD8NHQdewQbxzjop0pv78z21R/Qj3U3/8IR60bHul0iJCeT7enX2OvT6utaIjMqO0f1/Y1khjNGHOdRYjdcL1Z2y9uiN70ICA9rzDYqM5jsJyjPVs6qqkwQkxHcWwQKR2UpSsPp8FZpNK+efrI8urbHyXGIsJOQjOLSDn6FDt5RUWYSeWyRYhtJKcE2KD7ohFi4+MYQbJdf73QemQI8UKSN0bJMzr+iqRHVIijA7jky08CuV9+7gk9VTypcI3Q0yYdfGwjqAdzN1xYW+wmrZ7zkl5bR8syVdLw/Mi9zRorc/2GEK4aOow8ti4J6ixdURfZtdYKtZXZk/vnWiEt559Zm97qJiumpiunTvfFDED/LRoXoqgGaV8sk5G166gkvTTLoUMQ2dhmRN71yTo+eTeguzBCq1ch71an3YGUnsIIL1q4hf3Fllo7C8tKeh6PObhqGI2zE+orvE/Y9zk9fwJ+36YQ7ghFCxMdCD/SQfGxbUdSjb2i0/ZA6YwH8wT97mJ2UAoqoUM5cCn5LqXA5YHPP06FLBWVI0LhMULWKJJB0cUeskaJHKPSi/c4SOA2C7mGz1k8QoDbFHaMD1kaL2vNQQ0w7vLhK8+m8p/9oarGjnTEafz14/ef6DaO5kjW8R5tS8u1j2bfsec5zOM1k99se9nJNz/Ryds+0kbWmRmNh8X0lQZfSjUvChPFZm1b0wIyyRHj9Oh6rHSvn0dvX12rzNThmD7VXyaxsogaLqevcAjR14T6u42odtlKrjNReFSSfXTsZtUCtbC2r5TlCyGOhWGArncNgEO0F0nGC5Eyk6nl9WBubNVcGs4B2IRJ1Zyeeu5S5dK/vAjPDpqCuWOdXmYYegVx146AI09xTXtPpqFcOo21GtkMrtmAH1kE6cIRDQsEpe0YmqbJmRG2FdNy3pm1Xm71lhHN0wIb/x9PNPugvoomkJxGsZ6yGiuD4uNPJe9PevpeWt0VxmayoJFVCxNNQ+FaYdNiFq4V05UbxXMCsrbui6X/ZjNHR65ER650su/GcWvuxzbx+FyIkymMTB3Mp+F84PLg59dQJUNVZfDJAFXcWg/eEjnKdLKXjFHCoywHbSeRBG6zVM4ocshB1gx1qDDpyFNP5Q1wJljIM8SGxZf/weY3/3LeuCmtEx0xRMHaOx9uCD7HT4FOHflZcKzB7eQ53tueOJQdM815wv3H7qM4/10XH9PPXnvnw5z/rotZc+cj4+6V/gkTTYceW107NvZvvP4Q16l6tW69BtMYcz69/fFVnSYxoLCIkiPmUa0O2KT5vI7ZdNWmQ9ywreHUSGM4/VU/L4tQCCGmP8uIsagAlUPvlFTNNVbM1avmPO797Hp8XMJkOmuMiUmE2zR1vcqlf3FhUzCXsYPjnrpmmoqsGSQH6A5z3xNpBV0QWwRJUBckq3Wn24fWrCeMraaDNI2tN2gcfzDB+LO26Fi9p6xpNC5WpjDNGMfWlVz1hc3i+pS+JAB0LVkBXAjRLIjM5ACDTSXUPTMf+Ozq+v9jpQ+YRFiY+Lj4uLVFraoUGEoCtjIuVTmge4IYSh3r4sQzz/DwMG1tbXzLWk7OsE723RFCHMZOtYQiLUl1ZjxmKuz4qbETnR7KRNcffWBrMH3D24Yei4c432js9kltKjxBxNZ8fqJpzTRto+m6iaY2j53K3BymmU3bItJ+KUIcq5KKeGP0DENDQ7S2tp7suyMOQcZ500uo7NoUVl1n59XCOb3qcRrMWZjEyXTW5MMhVVa++wK8ZIGFekA3s6q4hBDicKLYqC1qVTsYkEydf7DWo1e3BgiVUzv0a9Z6c6YtAPQBDQcfj0q9N68hs4WOxokY50mFmxBiWplvPHey74IQQgghjpNt6GnxR5rOGqp0gqrXVDn369seT6o1XAI8QmxM4mQRmGrtA+Wl776gaRpr2nNODrAIIaaSXhXWTHry6mngQdq7NwnPwtjkkc+vTnr06v91kbJrl/UcCj/p4htgGfrwhO7Dq8hSrK0YbxtB7f+e9FCbeSRwE0IIIYQQQpxQaTCXoTzxDk195rxx01kfuG1tLazzlUeIg4GqLRzTuBJzujprbQVUS/dEO9Zec0KI6Un34TVqLWmipC9vrU+v0iGZ7uFrEMcNfRRj3b/30dsfaejZa9V79yo7aSSiF7jSM0P0bIpaf14jHNer1ybEpdKw8FXQ1KfXJpADBC8AErgJIYQQQgghpiXdZ6586GAOwNCLEoztM5dOydKrsyaXlT5VGLXKOdsI6pUmBFxyw4W4VlRfBTVZZMG1QmxTenSKOqWo9f2rBzrpAk06+FEYDYs06bBHNYRD6W2k+6XXKWWw9o4HJ2z9kbbkOP/PV9a3GY1tOphw+0TXj7su2T9dPbXp953wbzB+hVaANXc8BIdsIHKYfr0T9OYd28M37birku67zfdMV4GZyQJV9R69sV4Jd1xf3qgWszX27E0XvrKMsOFyvV+vLCwgjoYEbkIIIYQQQogZzTQUHlW8I61ymiwCkU7z0kFcMuULmwCXhz//aEP/JLvWTykNPnSFSoA9wcrSF7/7ReMWQbBriyPUz0tod2Kkq5Y3VjOl0wAjZRBGeqGMdFsYmzx6R73SqWmVcmXVgp76dY1hT1TrL5uub54uxmQYDedrvWbTy/UYiYZYaaJ+t40UOpBrvFx36J6+k9GR+HCLcqWXTSaO2hr307/zRH18Ywyo/U0MozGKq/d5HrsYVu3vKgsCiGlCAjchhBBCCCHEC4ZhkFS0HWZKa23n+tlIWc09mbDHXLZ44La1tfMRNpGya+d1OKM1V8rUq20aV7s2ibnw+hdhGXplU8vUq54ayYqnVrr6acNKqMbYU+qXDWg+ncTQr3FV+XqVltFUvdW4iFFtNdjkK60MG1sJNrZyLGoIxOprilv1AEw1hmRWQ9g0wd/YaHgMiDGTiia7aeXxhmooI6pNI6ytSN4QrplEEqQKIZpI4CaEEEIIIYQQR2AlAQ1HqqJr1BDApJV1jQFcY7+otE9UvYrK5NHbH67tpxqindp51Ty1Lq3/oTbV7kh3b6KV3seuON64Xny6x0TnD11VZBI3TCWsVy7V73lSEdZQCZZOBbSagq36X64x9KqHaA3nx4RmEoYJIU40CdyEEEIIIYQQYoo1VtYdU2h32Bs9/NVpdVlz76zmCYtjb2j8FERjgqmNE3XlauzGFde3SdAlhHiBksBNCCGEEEIIIWYh3ctK+lkJIcTJcOQ6YyGEEEIIIYQQQgghxFGTwE0IIYQQQgghhBBCiEkkgZsQQgghhBBCCCGEEJNIAjchhBBCCCGEEEIIISaRBG5CCCGEEEIIIYQQQkwiCdyEEEIIIYQQQgghhJhEErgJIYQQQgghhBBCCDGJJHATQgghhBBCCCGEEGISSeAmhBBCCCGEEEIIIcQkksBNCCGEEEIIIYQQQohJJIGbEEIIIYQQQgghhBCTSAI3IYQQQgghhBBCCCEmkQRuQgghhBBCCCGEEEJMoikJ3J577jne/va3s3TpUrLZLMuXL+djH/sYvu837ff444/zspe9jEwmw8KFC7nlllvG3da3v/1tTj/9dDKZDOeccw4//OEPp+IuCyGEEEKIoyRjPSGEEEKIw5uSwG3Dhg3EccwXv/hFnnrqKf7lX/6FL3zhC3zoQx+q7TM8PMwVV1zB4sWLWb16Nbfeeis33XQTX/rSl2r7/PrXv+ZNb3oTb3/721mzZg1XX301V199NU8++eRU3G0hhBBCCHEUZKwnhBBCCHF4hlJKnYgfdOutt3LnnXfy7LPPAnDnnXfy4Q9/mP7+flzXBeADH/gAd911Fxs2bADgmmuuoVgs8oMf/KB2O5deeinnn38+X/jCF476Zw8PD9PW1sa3rOXkDGsSfyshhBBCzFYlFfHG6BmGhoZobW092Xdn2jtZYz0Z5wkhhBDiWJ2Icd4J6+E2NDREZ2dn7fKqVat4+ctfXhuAAVx55ZVs3LiRgYGB2j6XX3550+1ceeWVrFq16rA/q1qtMjw83PQlhBBCCCGmzoka68k4TwghhBAzwQkJ3DZv3sxtt93Gn/7pn9a29ff3M2fOnKb90sv9/f2H3Se9/lA+/vGP09bWVvtauHDhZPwaQgghhBBiAidyrCfjPCGEEELMBMcUuH3gAx/AMIzDfqVTBFI7d+7kta99LX/wB3/AO97xjkm984fywQ9+kKGhodrX9u3bT8jPFUIIIYSYyWbCWE/GeUIIIYSYCexj2fm9730v11133WH3WbZsWe38rl27eNWrXsWLX/zipga5AH19fezZs6dpW3q5r6/vsPuk1x+K53l4nnfYfYQQQgghRLOZMNaTcZ4QQgghZoJjCtx6enro6ek5qn137tzJq171Ki666CK+/OUvY5rNxXSXXXYZH/7whwmCAMdxALj77rs57bTT6OjoqO1zzz338J73vKf2fXfffTeXXXbZsdxtIYQQQghxFGSsJ4QQQggxOaakh9vOnTt55StfyaJFi/jUpz7Fvn376O/vb+rH8eY3vxnXdXn729/OU089xTe/+U0++9nPcuONN9b2+cu//Et+/OMf8+lPf5oNGzZw00038cgjj3DDDTdMxd0WQgghhBBHQcZ6QgghhBCHd0wVbkfr7rvvZvPmzWzevJkFCxY0XaeUAqCtrY2f/vSnXH/99Vx00UV0d3fz0Y9+lHe+8521fV/84hfzta99jY985CN86EMfYsWKFdx1112cffbZU3G3hRBCCCHEUZCxnhBCCCHE4RkqHRXNYsPDw7S1tfEtazk5wzrZd0cIIYQQM0BJRbwxeoahoSFaW1tP9t0RhyDjPCGEEEIcqxMxzpuSKaVCCCGEEEIIIYQQQrxQSeAmhBBCCCGEEEIIIcQkksBNCCGEEEIIIYQQQohJJIGbEEIIIYQQQgghhBCTSAI3IYQQQgghhBBCCCEmkQRuQgghhBBCCCGEEEJMIvtk34ET6cqDj07Zcq9CCCGEmF2Gh4ehre1k3w1xlGScJ4QQQoijdSLGeVLhJoQQQgghhBBCCCHEJJLATQghhBBCCCGEEEKISSSBmxBCCCGEEEIIIYQQk0gCNyGEEEIIIYQQQgghJpEEbkIIIYQQQgghhBBCTCIJ3IQQQgghhBBCCCGEmEQSuAkhhBBCCCGEEEIIMYkkcBNCCCGEEEIIIYQQYhJJ4CaEEEIIIYQQQgghxCSSwE0IIYQQQgghhBBCiEkkgZsQQgghhBBCCCGEEJNIAjchhBBCCCGEEEIIISaRBG5CCCGEEEIIIYQQQkwiCdyEEEIIIYQQQgghhJhEErgJIYQQQgghhBBCCDGJJHATQgghhBBCCCGEEGISSeAmhBBCCCGEEEIIIcQkksBNCCGEEEIIIYQQQohJJIGbEEIIIYQQQgghhBCTSAI3IYQQQgghhBBCCCEmkQRuQgghhBBCCCGEEEJMIgnchBBCCCGEEEIIIYSYRBK4CSGEEEIIIYQQQggxiSRwE0IIIYQQQgghhBBiEkngJoQQQgghhBBCCCHEJJLATQghhBBCCCGEEEKISSSBmxBCCCGEEEIIIYQQk0gCNyGEEEIIIYQQQgghJtGUB27VapXzzz8fwzBYu3Zt03WPP/44L3vZy8hkMixcuJBbbrll3Pd/+9vf5vTTTyeTyXDOOefwwx/+cKrvshBCCCGEOEoy1hNCCCGEGG/KA7f3ve99zJs3b9z24eFhrrjiChYvXszq1au59dZbuemmm/jSl75U2+fXv/41b3rTm3j729/OmjVruPrqq7n66qt58sknp/puCyGEEEKIoyBjPSGEEEKI8QyllJqqG//Rj37EjTfeyHe+8x3OOuss1qxZw/nnnw/AnXfeyYc//GH6+/txXReAD3zgA9x1111s2LABgGuuuYZiscgPfvCD2m1eeumlnH/++XzhC1846vsxPDxMW1sbQ0NDtLa2Tt4vKIQQQohZS8YPRzYdxnryOAkhhBDiWJ2I8cOUVbjt2bOHd7zjHfzbv/0buVxu3PWrVq3i5S9/eW0ABnDllVeyceNGBgYGavtcfvnlTd935ZVXsmrVqqm620IIIYQQ4ijIWE8IIYQQ4tCmJHBTSnHdddfxZ3/2Z7zoRS+acJ/+/n7mzJnTtC293N/ff9h90usPpVqtMjw83PQlhBBCCCEmx8kc68k4TwghhBAzwTEFbh/4wAcwDOOwXxs2bOC2225jZGSED37wg1N1vw/r4x//OG1tbbWvhQsXnpT7IYQQQggxk8yEsZ6M84QQQggxE9jHsvN73/terrvuusPus2zZMn7+85+zatUqPM9ruu5FL3oRb3nLW/jXf/1X+vr62LNnT9P16eW+vr7a6UT7pNcfygc/+EFuvPHG2uWhoSEWLVokR0CFEEIIcdTSccMUtruddmbCWE/GeUIIIYR4vk7EOO+YAreenh56enqOuN/nPvc5/uEf/qF2edeuXVx55ZV885vfZOXKlQBcdtllfPjDHyYIAhzHAeDuu+/mtNNOo6Ojo7bPPffcw3ve857abd19991cdtllh/35nuc1DQDTP6QcARVCCCHEsRoZGaGtre1k340TYiaM9WScJ4QQQojJMpXjvCldpTT13HPPsXTp0qaVq4aGhjjttNO44ooreP/738+TTz7JH//xH/Mv//IvvPOd7wT0UvGveMUr+MQnPsFVV13FN77xDf7pn/6JRx99lLPPPvuof34cx+zatYuWlhYMw5iKX3FaGB4eZuHChWzfvl1W6Zol5DGdXeTxnH3kMZ19Gh/TlpYW/nKC8wABAABJREFURkZGmDdvHqY5ZetMzQonc6wn4zwxU8ljOvvIYzq7yOM5+5zocd4xVbhNpra2Nn76059y/fXXc9FFF9Hd3c1HP/rR2gAM4MUvfjFf+9rX+MhHPsKHPvQhVqxYwV133XVMYRuAaZosWLBgsn+Faau1tVX+Icwy8pjOLvJ4zj7ymM4+6WP6Qqlsmwonaqwn4zwx08ljOvvIYzq7yOM5+5yocd4JqXATJ8bw8DBtbW0MDQ3JP4RZQh7T2UUez9lHHtPZRx5TMV3Jc3P2kcd09pHHdHaRx3P2OdGPqcyPEEIIIYQQQgghhBBiEkngNot4nsfHPvaxcSuGiZlLHtPZRR7P2Uce09lHHlMxXclzc/aRx3T2kcd0dpHHc/Y50Y+pTCkVQgghhBBCCCGEEGISSYWbEEIIIYQQQgghhBCTSAI3IYQQQgghhBBCCCEmkQRuQgghhBBCCCGEEEJMIgnchBBCCCGEEEIIIYSYRBK4zSK33347S5YsIZPJsHLlSh566KGTfZfEBG666SYMw2j6Ov3002vXVyoVrr/+erq6uigUCvze7/0ee/bsabqNbdu2cdVVV5HL5ejt7eVv/uZvCMPwRP8qL0j3338/v/3bv828efMwDIO77rqr6XqlFB/96EeZO3cu2WyWyy+/nKeffrppn4MHD/KWt7yF1tZW2tvbefvb387o6GjTPo8//jgve9nLyGQyLFy4kFtuuWWqf7UXrCM9ptddd9241+xrX/vapn3kMZ0+Pv7xj3PxxRfT0tJCb28vV199NRs3bmzaZ7L+z957771ceOGFeJ7HKaecwle+8pWp/vXEC5iM82YGGefNfDLWm11knDe7zLRxngRus8Q3v/lNbrzxRj72sY/x6KOPct5553HllVeyd+/ek33XxATOOussdu/eXfv65S9/Wbvur/7qr/iv//ovvv3tb3Pfffexa9cufvd3f7d2fRRFXHXVVfi+z69//Wv+9V//la985St89KMfPRm/ygtOsVjkvPPO4/bbb5/w+ltuuYXPfe5zfOELX+DBBx8kn89z5ZVXUqlUavu85S1v4amnnuLuu+/mBz/4Affffz/vfOc7a9cPDw9zxRVXsHjxYlavXs2tt97KTTfdxJe+9KUp//1eiI70mAK89rWvbXrNfv3rX2+6Xh7T6eO+++7j+uuv54EHHuDuu+8mCAKuuOIKisVibZ/J+D+7ZcsWrrrqKl71qlexdu1a3vOe9/Anf/In/OQnPzmhv694YZBx3swi47yZTcZ6s4uM82aXGTfOU2JWuOSSS9T1119fuxxFkZo3b576+Mc/fhLvlZjIxz72MXXeeedNeN3g4KByHEd9+9vfrm1bv369AtSqVauUUkr98Ic/VKZpqv7+/to+d955p2ptbVXVanVK77toBqjvfe97tctxHKu+vj5166231rYNDg4qz/PU17/+daWUUuvWrVOAevjhh2v7/OhHP1KGYaidO3cqpZS64447VEdHR9Pj+f73v1+ddtppU/wbibGPqVJKXXvttep3fud3Dvk98phOb3v37lWAuu+++5RSk/d/9n3ve58666yzmn7WNddco6688sqp/pXEC5CM82YOGefNLjLWm11knDf7TPdxnlS4zQK+77N69Wouv/zy2jbTNLn88stZtWrVSbxn4lCefvpp5s2bx7Jly3jLW97Ctm3bAFi9ejVBEDQ9lqeffjqLFi2qPZarVq3inHPOYc6cObV9rrzySoaHh3nqqadO7C8immzZsoX+/v6mx6+trY2VK1c2PX7t7e286EUvqu1z+eWXY5omDz74YG2fl7/85biuW9vnyiuvZOPGjQwMDJyg30Y0uvfee+nt7eW0007jXe96FwcOHKhdJ4/p9DY0NARAZ2cnMHn/Z1etWtV0G+k+8r4rJpuM82YeGefNXjLWm51knDdzTfdxngRus8D+/fuJoqjpCQMwZ84c+vv7T9K9EoeycuVKvvKVr/DjH/+YO++8ky1btvCyl72MkZER+vv7cV2X9vb2pu9pfCz7+/snfKzT68TJk/79D/da7O/vp7e3t+l627bp7OyUx3iaeu1rX8tXv/pV7rnnHj75yU9y33338brXvY4oigB5TKezOI55z3vew0te8hLOPvtsgEn7P3uofYaHhymXy1Px64gXKBnnzSwyzpvdZKw3+8g4b+aaCeM8+5h+IyHE8/a6172udv7cc89l5cqVLF68mG9961tks9mTeM+EEBP5wz/8w9r5c845h3PPPZfly5dz77338prXvOYk3jNxJNdffz1PPvlkU/8kIYSYSjLOE2JmkXHezDUTxnlS4TYLdHd3Y1nWuJU39uzZQ19f30m6V+Jotbe3c+qpp7J582b6+vrwfZ/BwcGmfRofy76+vgkf6/Q6cfKkf//DvRb7+vrGNbkOw5CDBw/KYzxDLFu2jO7ubjZv3gzIYzpd3XDDDfzgBz/gF7/4BQsWLKhtn6z/s4fap7W1VT5Ui0kl47yZTcZ5s4uM9WY/GefNDDNlnCeB2yzgui4XXXQR99xzT21bHMfcc889XHbZZSfxnomjMTo6yjPPPMPcuXO56KKLcByn6bHcuHEj27Ztqz2Wl112GU888UTTP/67776b1tZWzjzzzBN+/0Xd0qVL6evra3r8hoeHefDBB5sev8HBQVavXl3b5+c//zlxHLNy5craPvfffz9BENT2ufvuuznttNPo6Og4Qb+NOJQdO3Zw4MAB5s6dC8hjOt0opbjhhhv43ve+x89//nOWLl3adP1k/Z+97LLLmm4j3Ufed8Vkk3HezCbjvNlFxnqzn4zzprcZN847joUgxDT0jW98Q3mep77yla+odevWqXe+852qvb29aeUNMT28973vVffee6/asmWL+tWvfqUuv/xy1d3drfbu3auUUurP/uzP1KJFi9TPf/5z9cgjj6jLLrtMXXbZZbXvD8NQnX322eqKK65Qa9euVT/+8Y9VT0+P+uAHP3iyfqUXlJGREbVmzRq1Zs0aBah//ud/VmvWrFFbt25VSin1iU98QrW3t6vvf//76vHHH1e/8zu/o5YuXarK5XLtNl772teqCy64QD344IPql7/8pVqxYoV605veVLt+cHBQzZkzR731rW9VTz75pPrGN76hcrmc+uIXv3jCf98XgsM9piMjI+qv//qv1apVq9SWLVvUz372M3XhhReqFStWqEqlUrsNeUynj3e9612qra1N3XvvvWr37t21r1KpVNtnMv7PPvvssyqXy6m/+Zu/UevXr1e33367sixL/fjHPz6hv694YZBx3swh47yZT8Z6s4uM82aXmTbOk8BtFrntttvUokWLlOu66pJLLlEPPPDAyb5LYgLXXHONmjt3rnJdV82fP19dc801avPmzbXry+Wy+vM//3PV0dGhcrmcesMb3qB2797ddBvPPfecet3rXqey2azq7u5W733ve1UQBCf6V3lB+sUvfqGAcV/XXnutUkovF/+3f/u3as6cOcrzPPWa17xGbdy4sek2Dhw4oN70pjepQqGgWltb1R/90R+pkZGRpn0ee+wx9dKXvlR5nqfmz5+vPvGJT5yoX/EF53CPaalUUldccYXq6elRjuOoxYsXq3e84x3jPuTKYzp9TPRYAurLX/5ybZ/J+j/7i1/8Qp1//vnKdV21bNmypp8hxGSTcd7MIOO8mU/GerOLjPNml5k2zjOSOy2EEEIIIYQQQgghhJgE0sNNCCGEEEIIIYQQQohJJIGbEEIIIYQQQgghhBCTSAI3IYQQQgghhBBCCCEmkQRuQgghhBBCCCGEEEJMIgnchBBCCCGEEEIIIYSYRBK4CSGEEEIIIYQQQggxiSRwE0IIIYQQQgghhBBiEkngJoQQQgghhBBCCCHEJJLATQghhBBCCCGEEEKISSSBmxBCCCGEEEIIIYQQk0gCNyGEEEIIIYQQQgghJpEEbkIIIYQQQgghhBBCTCIJ3IQQ4hAMw+Cmm26qXf7KV76CYRg899xzJ+0+HY3rrruOJUuWnOy7IYQQQgghngcZ0wkxs0ngJoQ4ag8//DA33HADZ511Fvl8nkWLFvHGN76RTZs2Tbj/t771LS699FLa29vp6uriFa94Bf/93/89br84jrnllltYunQpmUyGc889l69//etT+rvccccdGIbBypUrp/TnCCGEEELMVDN57Pe6172Ojo4O9uzZM+66oaEh5s6dy8qVK4njeFJ/rhBCpCRwE0IctU9+8pN85zvf4TWveQ2f/exneec738n999/PhRdeyJNPPtm072233cY111xDd3c3n/jEJ/jbv/1bhoaG+K3f+i2++93vNu374Q9/mPe///38xm/8BrfddhuLFi3izW9+M9/4xjem7Hf593//d5YsWcJDDz3E5s2bj+p73vrWt1Iul1m8ePGU3S8hhBBCiOliJo/97rjjDnzf56/+6q/GXfehD32I/fv386UvfQnTlI/EQogpooQQ4ij96le/UtVqtWnbpk2blOd56i1veUvT9hUrVqiLL75YxXFc2zY0NKQKhYJ6/etfX9u2Y8cO5TiOuv7662vb4jhWL3vZy9SCBQtUGIaT/ns8++yzClDf/e53VU9Pj7rpppsm3A9QH/vYxyb950+1a6+9Vi1evPhk3w0hhBBCzHAzfez3yU9+UgHqJz/5SW3bQw89pEzTVO973/sm7edMFRnTCTGzSZwvhDhqL37xi3Fdt2nbihUrOOuss1i/fn3T9uHhYXp7ezEMo7attbWVQqFANputbfv+979PEAT8+Z//eW2bYRi8613vYseOHaxatWrSf49///d/p6Ojg6uuuorf//3f59///d+P6vsm6uEWxzE33XQT8+bNI5fL8apXvYp169axZMkSrrvuunHf+6tf/Yobb7yRnp4e8vn8/8/efcfJWZf7/3/dc08vu7O9pAMhhZZA6MWGoKAexV5Rz9EjRxCB0/ye3znqQcGGoPjFcor6PaJ4VOyiIi2hI0hLIKGEkLZJNrs7fe65574/vz/uMjNbkk2yPdfz8dhHktnNzmz2hvu91/X5XB/e8pa3sGfPnhHPddttt3H22WeTSCRIpVJceOGFrF+/fsTH/eIXv+DYY48lGo1y7LHH8vOf//yA/z2EEEIIIUYz27PflVdeyfHHH8/f/d3fUS6XsSyLj33sYyxatIhPf/rTPPnkk3zwgx/kiCOOIBqN0t3dzYc//GH27t3rf44nn3wSTdP41a9+5T/26KOPomkaJ554YsPzvf71rx8xrkQynRCHLym4CSEOiVKKXbt20d7e3vD4K1/5Sn7/+99z44038tJLL/Hss8/y8Y9/nEwmw+WXX+5/3F/+8hcSiQQrVqxo+PunnHKK//6JdvPNN3PRRRcRDod597vfzXPPPccjjzxyUJ/rU5/6FJ/97GdZs2YNX/7yl1m6dCnnn38+hUJh1I+/7LLLeOKJJ/j0pz/NJZdcwq9//WsuvfTSho/5n//5Hy688EKSySRf/OIX+dd//Vc2bNjAWWed1VDs++Mf/8hb3/pWNE3j2muv5c1vfjMf+tCH+POf/3xQX4sQQgghxP7MpuwXDAb5zne+w+bNm7n66qv5xje+wWOPPcY3v/lN4vE4t99+Oy+++CIf+tCHuPHGG3nXu97FLbfcwgUXXIBSCoBjjz2WdDrN2rVr/c+7bt06AoEATzzxBNlsFnCasPfffz/nnHOO/3GS6YQ4zE3zCjshxCz3P//zPwpQ//Vf/9Xw+K5du9RrXvMaBfhv7e3t6v7772/4uAsvvFAdccQRIz5voVBQgPrnf/7nCX29f/7znxWgbr/9dqWUs4Vh/vz56vLLLx/xsQzbUvrd735XAWrz5s1KKaX6+vpUMBhUb37zmxv+3mc+8xkFqIsvvnjE3z333HMbtlpcccUVStd1NTQ0pJRSKpfLqXQ6rT7ykY80fM6+vj7V3Nzc8PiqVatUT0+P/3eVUuqPf/yjAmT7gRBCCCEmxWzLfkopdemll6pQKKSSyaR697vf7T9eLBZHfOyPfvQjBai1a9c2vOZTTjnF//NFF12kLrroIqXrurrtttuUUko99thjClC//OUvlVKS6YQQsqVUCHEIvM7l6aefzsUXX9zwvng8zrJly7j44ov5yU9+wn//93/T09PDRRdd1HBIQalUIhKJjPjc0WjUf/9Euvnmm+nq6uJVr3oV4GxheOc738ktt9yCZVkH9LnuuOMOqtVqw5YIcFaxjeWjH/1ow1aLs88+G8uy2LJlCwC33347Q0NDvPvd76a/v99/03WdU089lbvuuguAnTt38vjjj3PxxRfT3Nzsf77Xvva1rFy58oC+DiGEEEKI8ZiN2Q/g85//PG1tbQQCAa6//nr/8fqtruVymf7+fk477TQAHnvsMf99Z599No899pi/g+Hee+/lggsuYNWqVaxbtw5wVr1pmsZZZ50FSKYTQkBwul+AEGJ26uvr48ILL6S5uZmf/vSn6Lre8P63v/3tBINBfv3rX/uP/dVf/RVLly7lX/7lX/jxj38MOEHHMIwRn79cLvvvH0upVCKTyTQ81t3dPebHW5bFLbfcwqte9So2b97sP37qqady3XXXcccdd3Deeeft46tu5BXJjjrqqIbHW1tbaWlpGfXvLFy4sOHP3scNDg4C8NxzzwHw6le/etS/39TU1PDcS5cuHfExy5YtawiJQgghhBCHajZmP09TUxPLli2jv7+frq4u//GBgQE++9nPcsstt7B79+6Gv1P/PGeffTbVapUHHniABQsWsHv3bs4++2zWr1/fUHBbuXIlra2tgGQ6IYQU3IQQByGTyfD617+eoaEh1q1bR29vb8P7X3zxRX7/+9/zne98p+Hx1tZWzjrrLO677z7/sZ6eHu666y6UUg0rv3bu3Akw4nPX+/GPf8yHPvShhseUO29jNHfeeSc7d+7klltuGfXY+ZtvvvmACm4HY3g49Xiv27ZtwJn5MVqADAblf9tCCCGEmFqzNfvtzzve8Q7uv/9+/uEf/oFVq1aRTCaxbZvXve51fiYDWLNmDdFolLVr17Jw4UI6Ozs5+uijOfvss7npppswDIN169bxlre8xf87kumEEPJfuRDigJTLZd74xjeyadMm/vSnP4261H3Xrl0Ao27RNE2TarXq/3nVqlX853/+J88880zD53rooYf894/l/PPP5/bbbx/3a7/55pvp7Ozk//7f/zvifbfeeis///nP+da3vrXPzmq9RYsWAfD888+zZMkS//G9e/f6K9YO1JFHHglAZ2cn55577n6f2+ue1tu4ceNBPbcQQgghxHCzOfvty+DgIHfccQef/exn+bd/+zf/8dGyVTgc5pRTTmHdunUsXLiQs88+G3BWvhmGwc0338yuXbsaDkyQTCeEkBluQohxsyyLd77znTzwwAP85Cc/4fTTTx/144466igCgQA//vGPG7qO27ZtY926daxevdp/7K/+6q8IhULcdNNN/mNKKb71rW8xb948zjjjjDFfT09PD+eee27D21hKpRK33norb3jDG3jb29424u3SSy8ll8s1HPm+P695zWsIBoN885vfbHj8G9/4xrg/x3Dnn38+TU1NXHPNNZimOeL9e/bsAZyvfdWqVXz/+99v2PJw++23s2HDhoN+fiGEEEIIz2zOfvvj7ToYvkLuhhtuGPXjzz77bB566CHuuusuv+DW3t7OihUr+OIXv+h/jEcynRBCVrgJIcbtqquu4le/+hVvfOMbGRgY4Ac/+EHD+9/3vvcB0NHRwYc//GH+8z//k9e85jVcdNFF5HI5brrpJkqlEp/61Kf8vzN//nw++clP8uUvfxnTNDn55JP5xS9+wbp167j55pvH3IJ5oH71q1+Ry+V405veNOr7TzvtNDo6Orj55pt55zvfOa7P2dXVxeWXX851113Hm970Jl73utfxxBNPcNttt9He3t6wTWK8mpqa+OY3v8n73/9+TjzxRN71rnfR0dHByy+/zG9/+1vOPPNMv6B37bXXcuGFF3LWWWfx4Q9/mIGBAW688UaOOeYY8vn8AT+3EEIIIUS92Zz99qepqYlzzjmHL33pS5imybx58/jjH//YMOe33tlnn83nP/95tm7d2lBYO+ecc/j2t7/N4sWLmT9/fsPnl0wnxGFuuo5HFULMPq94xSsajnof/lbPNE114403qlWrVqlkMqmSyaR61atepe68884Rn9eyLHXNNdeoRYsWqXA4rI455hj1gx/8YEJf+xvf+EYVjUZVoVAY82M++MEPqlAopPr7+5VSSgHq05/+tP/+7373uwpQmzdv9h+rVqvqX//1X1V3d7eKxWLq1a9+tXrmmWdUW1ub+tjHPjbi7z7yyCMNz3nXXXcpQN11110jHj///PNVc3Ozikaj6sgjj1Qf/OAH1Z///OeGj/vZz36mVqxYoSKRiFq5cqW69dZb1cUXXyxHyAshhBDikM3m7Dfa13LMMcc0PLZt2zb1lre8RaXTadXc3Kze/va3qx07dozIgEoplc1mla7rKpVKqWq16j/+gx/8QAHq/e9//6jPK5lOiMOXptQhTJkUQggxwtDQEC0tLXzuc5/jX/7lX6b75QghhBBCCCGEmGIyw00IIQ5BqVQa8Zg3++OVr3zl1L4YIYQQQgghhBAzgsxwE0KIQ/DjH/+Y733ve1xwwQUkk0nuvfdefvSjH3Heeedx5plnTvfLE0IIIYQQQggxDaTgJoQQh+D4448nGAzypS99iWw26x+k8LnPfW66X5oQQgghhBBCiGkiM9yEEEIIIYQQQgghhJhAMsNNCCGEEEIIIYQQQogJJAU3IYQQQgghhBBCCCEm0GExw822bXbs2EEqlULTtOl+OUIIIYSYBZRS5HI5ent7CQSkRzlTSc4TQgghxIGaipx3WBTcduzYwYIFC6b7ZQghhBBiFtq6dSvz58+f7pchxiA5TwghhBAHazJz3mFRcEulUoDzD9nU1DTNr+bQ/aH1xHF/7PkDj03iKxFCCCHmrmw2y4IFC/wcIWYmyXlCCCGEOFBTkfMOi4Kbt72gqalpTgSxuKaP+2PXtZ086uMXmhsn6uUIIYQQc5psU5zZJOeNJDlPCCGEGJ/JzHmHRcFNjPTb0LIRj0k4E0IIIYSY/STnCSGEENNPCm7CN1o4AwloQgghhBCzneQ8IYQQYmpJwW2WGSssTcdzSkATQgghhJjdJOcJIYQQk0MKbuKgyXYFIYQQQoiJMx2N1bFIzhNCCCEOjRTcxISSLqkQQgghxNwkOU8IIYQYPym4iSkhAU0IIYQQYm6SnCeEEEKMJAU3Ma1ku4IQQgghxNwkOU8IIcThTApuYsaRLqkQQgghxNwkOU8IIcThQgpus8hMGqQ7HSSgCSGEEELMTZLzhBBCzDVScBOznmxXEEIIIcRsd7g3VsciOU8IIcRsJQU3MSdJl1QIIYQQYm6SnCeEEGI2kIKbOKxIQBNCCCGEmJsk5wkhhJhJpOAmBLJdQQghhBBirpJCnBBCiOkgBTchxiDhTAghhBBi7pKGqxBCiMkkBbdZQgbpzhxSiBNCCCHERJKcN3NIzhNCCDFRpOAmxASRLqkQQgghxNwkhTghhBAHSgpuQkwiCWdCCCGEEHOXNFyFEEKMRQpuQkwDKcQJIYQQQsxNkvOEEEKAFNyEmFGkSyqEEEIIMTdJIU4IIQ4vUnCbBWSQ7uFNwpkQQgghxNwlDVchhJibpOAmxCwlhTghhBBi9pPGqhiN5DwhhJj9pOAmxBwjXVIhhBBCiLlJCnFCCDF7SMFNiMOAhDMhhBBCiLlLGq5CCDHzSMFNiMOYFOKEEEIIIeYmyXlCCDG9pOAmhBhBuqRCCCGEEHOTFOKEEGJqSMFthpNBumKmkHAmhBBCCDF3ScNVCCEmlhTchBCHRApxQgghxMGRxqqY6STnCSHEwZOCmxBiUkiXVAghhBBibpJCnBBC7J8U3IQQU0bCmRBCCCHE3CUNVyGEqJGCmxBi2kkhTgghhBBibpKcJ4Q4XEnBTQgxY0mXVAghhBBibpJCnBBirpOC2wwmg3SFGEnCmRBCiLlAcp4Qo5OGqxBirpCCmxBiTpBCnBBCCCHE3CQ5TwgxGwUm+wm2b9/O+973Ptra2ojFYhx33HH8+c9/9t+vlOLf/u3f6OnpIRaLce655/Lcc881fI6BgQHe+9730tTURDqd5q//+q/J5/OT/dKFEHPAb0PLRn0TQghx6CTnCSGmk+Q8IcRMNqkFt8HBQc4880xCoRC33XYbGzZs4LrrrqOlpcX/mC996Ut8/etf51vf+hYPPfQQiUSC888/n3K57H/Me9/7XtavX8/tt9/Ob37zG9auXctHP/rRyXzpQog5TsKZEEIcGsl5QoiZSnKeEGIm0JRSarI++T//8z9z3333sW7dulHfr5Sit7eXq666ir//+78HIJPJ0NXVxfe+9z3e9a538cwzz7By5UoeeeQR1qxZA8Dvf/97LrjgArZt20Zvb+9+X0c2m6W5uZlMJkNTU9PEfYGTTG4MQswMsl1BiMPTbM0PU0Vy3qGRnCfEzCA5T4jD01Tkh0ld4farX/2KNWvW8Pa3v53Ozk5Wr17Nf/zHf/jv37x5M319fZx77rn+Y83NzZx66qk88MADADzwwAOk02k/hAGce+65BAIBHnrooVGf1zAMstlsw9tsIyFMiJlDtisIIcRIkvOEEHOB5DwhxGSZ1ILbiy++yDe/+U2WLl3KH/7wBy655BI+8YlP8P3vfx+Avr4+ALq6uhr+XldXl/++vr4+Ojs7G94fDAZpbW31P2a4a6+9lubmZv9twYIFE/2lCSGEhDMhxGFNct7Bk/uFEDOf5DwhxKGa1FNKbdtmzZo1XHPNNQCsXr2ap59+mm9961tcfPHFk/a8n/rUp7jyyiv9P2ez2VkZxoQQs4+coiWEOFxIzhNCHG4k5wkhDsSkFtx6enpYuXJlw2MrVqzgZz/7GQDd3d0A7Nq1i56eHv9jdu3axapVq/yP2b17d8PnqFarDAwM+H9/uEgkQiQSmagvQwghDpkENCHEXCM5TwghHJLzhBCjmdQtpWeeeSYbNzb+T2bTpk0sWrQIgCVLltDd3c0dd9zhvz+bzfLQQw9x+umnA3D66aczNDTEo48+6n/MnXfeiW3bnHrqqZP58oUQYtLJdgUhxGwlOU8IIfZNcp4Qh7dJXeF2xRVXcMYZZ3DNNdfwjne8g4cffpjvfOc7fOc73wFA0zQ++clP8rnPfY6lS5eyZMkS/vVf/5Xe3l7e/OY3A06n9HWvex0f+chH+Na3voVpmlx66aW8613vGtfJVUIIMdtIl1QIMRtIzhNCiAMnOU+Iw4emlFKT+QS/+c1v+NSnPsVzzz3HkiVLuPLKK/nIRz7iv18pxac//Wm+853vMDQ0xFlnncVNN93E0Ucf7X/MwMAAl156Kb/+9a8JBAK89a1v5etf/zrJZHJcr2G2HRcvnQ8hxIGQgCbE5Jht+WE6SM47OJL1hBDjJTlPiMkxFflh0gtuM8FsC2ISwoQQh0rCmRCHbrblh8PVbPs+Sc4TQhwqyXlCHLqpyA+TuqVUCCHE9JDtCkIIIYQQc5PkPCFmBym4CSHEYUQCmhBCCCHE3CQ5T4iZRQpuQgghRg1oEs6EEEIIIWY/yXlCTA8puAkhhBiVdEmFEEIIIeYmyXlCTD4puM0wMkhXCDHTSUATQoiDIzlPCDHTSc4TYuJIwU0IIcSEkO0KQgghhBBzk+Q8IQ6cFNyEEEJMGumSCiGEEELMTZLzhNg3KbgJIYSYchLQhBBCCCHmJsl5Qjik4CaEEGLGkO0KQgghhBBzk+Q8cbiRgtsMIoN0hRBiJOmSCiGEEELMTZLzxFwmBTchhBCzkgQ0IcRsIo1VIYQYP8l5Yi6QgpsQQog5RbYrCCGEEELMTZLzxGwiBTchhBBznnRJhRBCCCHmJsl5YqaSgpsQQojDlgQ0IYQQQoi5SXKemG5ScBNCCCGGke0KQgghhBBzk+Q8MVWk4DZDyCBdIYSY2aRLKoQQQggxN0nOE5NBCm5CCCHEIZCAJoTYH2msCiHE7CQ5TxwKKbgJIYQQk0C2KwghhBBCzE2S88R4SMFNCCGEmCLSJRVCCCGEmJsk54nhpOAmhBBCTDMJaEIIIYQQc5PkvMOXFNyEEEKIGUq2KwghhBBCzE2S8+Y+KbjNAHNtkK6lAlSIEqWIpk33qxFzUUWFCWuV6X4ZQkwL6ZIKMbvMtZxnKw2DmOQ8MWkk54nDmeS8uUUKbmJCKQWbOIGsSqNjkSRDghxJsiTIys1THLKX1NHsUvMIqQpJzbmunOsrR1CrTvfLE2LaSEATQkyFFziGAdVBAIskORLuPThJhohmTPfLE7PcdrWYbWoJQVUlqWX8aytBjpBmTvfLE2LaSM6bnaTgJibUHnooqxiXfjZIyYwzVOpi7VefYqs6ghIJwsogruVIkCdBjjg5CWdi3AZUB3tVFx/51ximlWSoNJ91NzzNHtXjdNtViYSWda+tPEmy6Jo13S9biGkl2xWEEBNlULWRUa1c8ukwpq2TKXVyz3VPsYNFlFQCXVVJaDkS5PycF9XK0/2yxSyRU83sUAv58L8kABgs9bD2+qfZq7ooEyOiSiS0vF/klWarEJLzZjopuIkJYymdLWopb76yi4A2SFO0TFO0zPuungdA1QqQM5Jky/NZe/1TDKgOysTRVZWkliVOnrhbiItQkm0KYoTd9NLKLuKhCIGIoiVeZMnV3QBUqjqZchPZ8mLWfW09fWoBFSJuEc4J/V4hTjqk4nAnXVIhxIFSCl5UK3j95fPQA/1EQ1VSEYP3Xj0fAMvW3JzXw9qvPsl2FrtFOIuEn/OcpqtsRxWj2U0vafaSioQJBBTNsRKLr+4BwLQCZEpdZI3FrLvhaXareRhE/SKcl/NkJZwQkvNmEk0ppab7RUy2bDZLc3MzmUyGpqam6X45I8yV2R6Dqp0NajXHv28lAE2REi3xAi3xIulYkUhwZAfKCWdRMqU4665/giIpSiqBhiI+7OYZpUhAm/OXqxhDUSV4XJ3OyvccQ0hXNMeKtMXztMSLNEeL6IGR14ZRDZIrR8mUY9z7tacpqCQGMSKUiWu1VZYJcrLdWYh9OFwD2kzPD8Ix079PcyXn5VQzT6hTOf69K9A0SIYNWhN50jEn58VCI4sctpvzsuUYa7/6JEWSFFUSUMS1QsN9OEZBct5hrKLCPKbOYvl7jicYUDR5Oc+9voK6PfLvVHWy5RhZI8a9NzxFQaUoEyOM4TZbZUeNEOMhOW/y8oOscJtmcyWEAexWPVSIsqR1D0e/5gi+9tNH+fYtt7K3mGdhej4fPeMtnLKwg3SsSDSU5ct33snPn3yOimXxqqUL+Mo/nkNnKo5ta+QrEf7Pbx5n3WOb2EGedtJ8LPBWohT9VUremywlPzzsZCEVIsxPD7Hy3IXceOtf+M7NP2OgmGdhyzz+7ow3c+ridppjRaLBLF/4093c+uTzI64v0wqwZSDJ5T+/l/UvbadAhQQxlrOQNwWW0aoZ0oEXYhjZriCE2EM3JmHmNw9y3OsWcsNPH+Xb/+3mvJZ5fOS0t3Kym/NioSxfvusOfjFKzlMK8pUIn/rNX1j36HPsIE8HaT4aeBtRVfS3pMYoyKr0w0gfCzCI0ZnKceLrevn6rY/y7R/e6uS89HwuOfOvOGVR7eeIL/zpLn4+Rs57eTDIJ25d6+Y80895bwwsp00rS84TYhjJeZNHVrhNs7lScKuoMGvVBSx843HMW9XN05tv5ws//Cpf/OiHOeeEhXzj57dz67pH+OXnv4G5cQ9fvvNXPLZ1A1e98h10Nml8fe2vCek2f/zYm/0b3z//+l6Oak/z6LZdrN+5l9s+9j5y5Sj3fPkJv0NaIUIEbyl53t+uIF2suUUpeEC9ltY3nMGiE7t4+qU/cs0PvspXLvkQZx+/iBt++id+ce8j/PA9HyegdfLVu3/BX7av5x9f/Ta6UnDDPb8hFFD84ZK3ADBUMrj1iedYPb+T9kSM5/uz/MOv1rGss5cLNh1BgSQltwMf0wp1MwfzxMijayO7rEIIx1wKaDM5P4iamfx9mis5z1Ya69QFdL1xDfOO72L9ltv54g+v49qPfphXHL+I//uLP/LzdY/wy2tupLpxD1+649c8unUDV7zyXXSn4OvrfkUoYPOHj72FgLsivSHn9e3l93/7XnJGjGw5yn1ff5qiSjpbBikT0/Ik6pqtMnpk7nnUPovEG85l3qountnyB669+at8+WNOzvv6z/7Ez+99hB++5+8IBDq5/q5f8piX85Ia19/zG8K64g+XvBkYb85z5sRJzhPiwEjOOzCywk1MiCwtFFUCW+nMO2chn/3x73njGedx1Py3snWPxvteezy/ffCD/P7hP3LZRedw9388yLev/DvOWXUWux7ayMfPeg9/+79f5qb7YqxZ0ENztMjlr7iQ5miR/sL9rO/bSyJcIRGu8M6rl/jP6ywlbyJnLGLdDU+xV3W6c+Esf0uqF85kq8LsVSDFkGolrTSaT1rM/97yey487XwWdL6D7Xts/ubCY/n9Qx/igdJLXHrRIu757we46ZMf56zjzqbv4ef4m9Mu5tKffYHv3B/h1EWdNMeKvOX4FpqiJfSAYkFLio+cvpIb1z3OzVefAzhFvkIlQrbcztqvPMEAHWxVR2ARJKpKxBu2KkgHXgiPzA0RYu7JkSarmmm3NLrPWsTVP72NN51xHssXXMTWPTrvOfd4fvvgxfzuwdu57KJzuOs7D/Kdv7+EV5zg5LxLz3oPH/3fL/PN++KctLCL5miJy855A83REv2Fe1nft5d42CQeNulKZVl6dSfgzO3KGR1kywu49/onGaSdsoo7o0fqGq1ezpNCyexkqAi76WWRDYs68/z7//6eN5x+Pou63872fsWHLziW2x76EA+UtnDpRYu5+78e4KYrPs7Zx51N38Ob+OjpH+DjP/sC3/ZyXrQ0ITmvfleN5DwhHJLzDsyUFdy+8IUv8KlPfYrLL7+cG264AYByucxVV13FLbfcgmEYnH/++dx00010dXX5f+/ll1/mkksu4a677iKZTHLxxRdz7bXXEgxKrXAmyao0edVMoW0p658J8Oym9bznnR9jyXkLCWiQyeqsWXYC9zz+ErHwiZhVi8U9pwKw4tzFnBix+Nzdbdhduzji7NPY/dAmNu/tIGdE2bx3E8XKdjbt7qI5VqIpWvLnhISDFu3JPO3JPEvcoarOltQE2XIXa697gj30UlRJbAL+9oT6N7mBznx5msmTItdyNC++pNi4aT0Xv/dvWfnGeRhGgKGMzuqlq/njn7cSDecxqxYrl5xEKmGy4A29nKb38MW1bRRb+2k76Wx2PfIcL+7txLR0kmED0+rjZ09s5eQFC7BtjUBAOfNpIgbJiMG7rl7sv5ayGSRbTpMzlnDv155mj+qlTIyQqvjzQrw32aogRI1sV5jbJOfNbTnVTIEU+daj2fQcPLtxPe9++8dY+JpFBIOKbE7n5GUnsPaJWs5b0HEaVUtj6auOYFWsytV3t0HPDo46+2R2P7yRrYNtrC/HeHHvRoqV7Wzc3U1TtERztEg87GSzkG7TGi/QGi+w2D2Eyxs9ki13su66x9lLF1vVUVjoDQ0x701mtM58eZopqQSZ9HL+YqXYuGk9H3jP37L8wvmYVY2hISfn3f7nrURCTs5bsWgNiZjJSRfO41Rd8YW1bZTa+ulYcxa7HnmezQMdmJZOImxgVnfx04PMebvVPGcunDLcZr4c8ibEaCTnjW5K0swjjzzCt7/9bY4//viGx6+44gp++9vf8pOf/ITm5mYuvfRSLrroIu677z4ALMviwgsvpLu7m/vvv5+dO3fygQ98gFAoxDXXXDMVL12M03aW0HLmCvRFPaiuCrZtEQl38JfHYwC0pC1aFh3Jtg0Pk1oOoVCI5kSCzTvDPPF8K5GQRTLWypZdeZJRk3kXzEfXFbYNj5TjPDUYxqiGeG5PE4VKhJBu+aGsKVqmOVokGnJmuQUCyj8h9T1XL/RfY7ESIme0kDOi3Pu1p9ml5mEMu4HGyMtMhxmoT82n6czjSUSqWO06tm1h213c/1CCeMymtcWic+kS+p56mNARAUKhEEq18PhzYQxTpylRoSnRQt9ghgWdBZa+xflh772f+za/e/AxypUKpy1awdtXfYQ/bYqQipSc6ypWpClaIhk2/C0w0VCVaChHZyrHkVc7n8c7gTdn9LL2q0+ykwX+ltS4W+SVrQpCjCRd0rlBct7ct5OFNJ95LPT2YrWVsW2LaKyDJ56KYdsa6bRF86Ij2brhYZpWODmvtSnOy7sjPL05TFC3SURbeXFngVjE4oTXLyTo5TwjytODYaqW7jdbgwEn53kZryla8otw9Tnv3Vcv8l9jfaHkvq895TfEgsoctSEmux5mjj2qm4xqYXGoitXq5Dy0Lh58OEEkomhtqdJx1BJ2Pv0wkaOcnKeR5onn3ZwXN0klWugbyDKvvchRb953zktGyjRHS+POeaYVIG8kyZbns+76J9jJQndLqqrb6iwrLYUYTnLeFBTc8vk8733ve/mP//gPPve5z/mPZzIZ/uu//osf/vCHvPrVrwbgu9/9LitWrODBBx/ktNNO449//CMbNmzgT3/6E11dXaxatYqrr76af/qnf+Izn/kM4XB4sl++GAdL6fSrbiwzQp/RSXbjDgAG9E6OOLobDdibgWI5QCEf4IUXIyilUT7qGOalLY6M2uRyOup7UcoVncc2tVOpBmhKVGhJVjCrAYK64pQ39TrPZ2lkCiGyhTC7HtnErlzzfotwQMNWhaPcrQpeocS7gWbqCiW11XAFf3ivHNAw9ZRygljJDDOQWkT/c858PiPVTtvxXZSLoJW2MTSkk83p7NgRAgXxk46mt9nCNDUyGR0FDOUi3PlYD5GQRUuqwuVv/TCXv/Wt7BrYyqe/91PWDv2aaz7yYYYK7ex+6Fm2Z1p4ZlcPSgXc4F/0C3HJsOEXZYO6TUu8SEu8yPuunu+/7nwlQq5uq8I2tQSTMFFVIqHliNV1SaUDL0SNBLTZQ3Le3Ofdh4tGmDTw0gsBAAboZMmR3ehByGSgXA5QKAR47gUn5xWWHEt3i8WRcZtcPoD2/SgVU+eJ51sxTJ1U3CSdrGBUdHRdcdIb5qFpYNuQLYbJ5MPsfmQjL/R3ka9E0AN2Q8arL8LB8EJJNwCWrZEzEuTKPaz96pPsYj5FlQC0hoO45ICG6dWvumk5dSn9sUVkN5cAKMbaaT22C8MAvbSNbFYnl9PZvt3JeZHVR7MibWFZGkMZHb4BQ/kQd/3FyXnpVIVPXPTXI3LetR/9EEOFNnY9uHHcOS9Ul/MWuTnPW2mZMzpY+5Un3JWWR8roESHG4XDKeZNecPv4xz/OhRdeyLnnntsQxB599FFM0+Tcc8/1H1u+fDkLFy7kgQce4LTTTuOBBx7guOOOa9h6cP7553PJJZewfv16Vq9ePepzGoaBYdSG5mez2Un4yg7dXBmkm6eJvaqTltZu2jsVWns3WkBn755dbHxaQ9OgpQ0GSgU6Fs6nc8XRVKsVNm8p8tzzLei6It1sMTi4l/kXXsDxb51PuewUSXhmA0P5MPlSkD8+Mo900qC1yaA5UWFeR4HF4yzCNUVKI7ajQmOhZFFdoaRQiZAz2ln75cfJ0MpO5ZyQGVEl4lrjtlRZTj65DGL0qQXEWnoItLeSmKfQAjpbN+8mGAyQSCmKrQvI2wU6F84ntWgZZtXk0ccM9GCappRFS9pioFxk6alHsPptvWSzOpmsDs9oZAqLCAZX8dE3zueKb/wjH7rgHSxbkGDehc7qSKWgUA4ylG9n98Mb2ZZp4ZldznWXcq+t0cKZpkEqYpAatlXBqAbduYOLufeGp9iruikTQ1dVf6WlF86kAy9EI9muMPNIzpv7SiTYreaTaO2m2tRGzL0PD+zdxaYNzk2vpRX6iwU6Fsyn5xgn5728rciLm1vQNCfnDQzupfeCCzj2LQuouM0w/Zn1ZIthCl7OS1VoSRo0Jyv0tBVZ9EZvG6lXhOseUYRzmq0lt2BSIhGuNbD0gCIdK5GOlXhvXc4rmmFy5Vay5Rj33fgUfWoBBlF310POX50u4yEmn6V0trMEVQ2SbEuTWtKMFtDZsXU3T4YDxBKKXNsCspab8xY7Oe+JJw20QJpU0iadthgoFVl68pGc+HYn5w1ldALPagzlFzo57w3zueL//iMffP07Wb4Qeg8g53k/Q9TnvPGstBw+eiSu5d0mvtPQj1GQa0uIOnMx501qwe2WW27hscce45FHHhnxvr6+PsLhMOl0uuHxrq4u+vr6/I+pD2He+733jeXaa6/ls5/97CG+ejFeGdVCnhTBaAebtoaI9kPnvJP4y+P3cOTpb6NcAE0zeOKRuznl7EsIR05CD4Z4cvszvPqCt1AswNNPb2LX7h1EI6dy99ok6bRFutkivWoFrU+mib0cYsl5C8hkdHIbn2Hr7iTFsk4yVqU56ayES6cMFnblG4pw2WLI7ZBu4vk9TeQrkYZtCsNnhQANMx2GH9CQM1LkjCjrrn9qxODemLsSrrac3Jry78VclFcpCjQRqOg8vz1ESxm6F5zEhk33cPTZb2MgA8GcwaMP3s0Zr7yE9i7n+tpS3MBp57yFbAZefG4tfX07gNN59C9xWlqqpJstWs49giUhKBY1dq/dBcDz26Ls6K91R1uSFdJJg57WEvMvXAC4q9dKQTKFDnY9NDKc1Qf/+nAGEAlW6Ujm6UjmOaKuA+9sVehh3VefYDfzKKokSjrwQuzX4dQlnWkk5+3bXGms5lQTBVIETZ2X+kIkCk7Oe+yxezjitLdhFCEYNnjy0bs55axLCIac+/DjW5/h3De8hVIBnlnv5Lx4zMl5zc1uzjtuJS2Pp4ltCXHU652cV3z2GXb0xymUgySitZzXnKywoDM/sghXCLH7YWf2b96IEnCLcE5DzCmWxEOVhoaYdxBXd1OWoxsOaEiRG2XboOx6mDwFUuRUE9HmXjb3hcgp6FpwEuufuYejz3obmQxEiwaPPXg3p7/yEto6nOtrc24Dp7/yLWSH4KXn1tK3awdop/Pnx+Kk0xYt6SrpVx/B4jCUShq773Fy3gvbI+zce2A5b+tgGzkjCtRynrfaMjEs5+1v9Mi6rz7JLhb4Ky2da6uxyCvXlhA1sz3nTVrBbevWrVx++eXcfvvtRKPRyXqaUX3qU5/iyiuv9P+czWZZsGDBlL6Gw8ke1UPTcYuJRhVltQcsm1NecwW/+58PkkiuYckxp/DrB2+gYhY4+cK/phBo5/RXfJDvXPdPDPS30t7ZxM9+cAUrjj+Ns955AcW8szWhb9N99PeXeeKpDJlMhQcf2kQyabP6jMXMT4QxKhrZbAB9wwb6BmM8+3IzCmhKmKQTTgEunaiwuGdkES5bcLYpvNjfOWaHtD6cgXNAQ1uwQFuiwOKrnc9Xv5x83VceH7FtsH64apwcEc0Y5V9Q7Es/3eRoIt7aimn3kynYnHDmFdz+4w+SbFrDUcedwu3rbsA0Cxz36r8mmWrm5DM/yI3X/BNDA610dKX40X/+GytPOI3TL3o92Qzcv+4H7Ng5QE/PKtpaYwwNPct/ff8LnLT6RF7xwVOwLNxVcAEGnn2WF3eknG3OcdO5rtzwP7+jyPw3NIazoXwHux/edEDhTA8ommPODwXvubr2+bwOfM6Ict/Xnx7WgW88/EM68EI0+m1o2awJY7OR5LzDxwDdFEjQ1NqGae/BsG1OPfcKfvs/HySeWsOSFafwq4duoFIpcPIb/ppSoJ0zXvlB/uP6Ws679QdXsPy40zjzHRdQKkJ2CPpfvI/de2o57977N5FK2qw+fTHzEmEqFcjmdLJZnd3PPsumbc1YtkYq7jVaK6QTFRZ1FRqKcLlSiEyhiz0Pb2TLQDs5I4am2Q2N1tHuxfUHNCwaZTzEuq/IrofJMKjayJJGb2pl8dHQt2s3q8++gj/+6IMk3Jz3h3udnHf8q/+apmY35137Twx6Oe+/nJx3xltfT3YIHrz3B2zfOUBP9ypaW5yc99/f/wInHmLOyxVDDBU62fPwRl4ebCdbrl1b3jbn4QVeaNxR894RO2raRtlRUx6R8+TaEqLRbMl5mlJqUvYr/eIXv+Atb3kLuq77j1mWhaZpBAIB/vCHP3DuuecyODjY0P1ctGgRn/zkJ7niiiv4t3/7N371q1/x+OOP++/fvHkzRxxxBI899tiYWw2Gy2azNDc3k8lkaGpqmqgv8ZDNlc7n76x38tLyN6OWH4fenqGlq4qmwTMP/zfr7/8mRnE3rV2rOOdNX2PZ6lNpbgXbLvOr717F4+tuwaoaLDvmtbz+ohvp6u2iuQXSLYp/v+q1PPnouhHP98XP3cuSxfOczmizRbrFIhpRzo2rECCbCxB45hky+TDZYohw0Ha6oylnK2o6WSEUrF32XjgbyofZ/fAmsuUYeSM6rnA2FqMaJFeOkjVi3HvDkxRVkjJxdCximtfJytethpPhqmNZZ53HhpUfoHr0aqK9g6RanZWDGx78b9Y/8E2M0m7aulZx3ju/xoqTTyUaA7NS5hf/eRVP3HcLdtXgqOWv5aL3f52FS7pJtyo2P3c337/pM2x54RkqFYPO9m7WnPg6zn3139HRnnIO+UjXri1wuqOZjE7gmQ0MFcJkC84Q6HSy4r4ZI64tL5x53fdsOdYQzg7m2nI68DFy5Sjrrn+CIsna3EHNO6ChFtBkpaU4nB1qEJup+WEmkJy3f3Ml591tXcAzy9+PcdTx6G1DdMyrEgh4Oe8mjOIeWrtWcdYbvsby1afS3AZKjZ7zOrvdnNeq+Pe/fy1PjZHzFi10cl5Li5P1YjHn3losamSzzr14MB8mVww720bde7D3Fg7VcpVtQ74UYqgQZs/DG8mWYw0NMW80RFO0RCpSHte92Nn1EPV3PRRJ+rseavdi2fUwHo9ZZ/DnY/6O8NFHYrRbtHS5Oe8hN+cVnZz32nd8jRVrTiWWcHPef13FE/fegm25Oe+9X2eBm/Neeu5uvv/N0XNee5ub81qcrBeNNuY8/Vnn2qrPefv6GcK7tnY/tIlsOdpQ4G2OFv3tqPVbnfdlX9dWrQgnBzQIAbMj501awS2Xy7Fly5aGxz70oQ+xfPly/umf/okFCxbQ0dHBj370I9761rcCsHHjRpYvX+7P9rjtttt4wxvewM6dO+nsdJZ7f+c73+Ef/uEf2L17N5FIZFyvRYLY5LGUzv+zLqd46nkUehYTTgwSCiva55kNgcW2oJgL0N3dQbkITS3Q3AbJZvyPq5pQyEJv0mRo0FmN1tSsaGlTNLdALO58XKUCuQy0lbcxlNHJ5QNEI8pZOu5uRU0knMvasiCXC5DJ6gSefZZMIexvRfU6o+mUQSpmEgjUvd5RwplXKElFy/vcMjiW2jH2MdZd9zhFkhRVyjnGHmc1nAzRH+ln1ofYtfw8rKOPpxLN0dptkmhqDBflokZvTyfZQYgloKUDmlrxv6e2BYUczEuZDA1AxdBoSivSrYqWNog6h+lSNSGbgdaycwhD/bXlBTMv9Ns2ZHMBJ5xtfIahfIRiWScVd7a/pJMGLckKqfiw/xbca8srwmVKsVG776N1SMdS68BHWfcV59oqqJSz0hJvpWVOri1x2JkNQWy2kpy3f3Mh5ykFP7Y+yt5T34q+aD6lYJZgUNGxYGRuKuUD9HR3UMw7+S7dBsl07V5sVSGfde7FmUEwKxopN+elW2s5zzTdnGds9Q9ECoeV0whrtkinLZIJ2z9gIZd37sWBZ51ma/1WVK8A15yoNLze2pbBMLse2kjWiJErO2EgFSn7GW/4CZb7Utv1ULsXF1Vy2L3Ya7bmiWrlCfouzW6/t97Oi8suwjjyOKxEnpbOKqmWxgKlUdKY19tJZgDCUSfnpdsg4Nb7bRuKdTnPKGuk0oqW1sZrq2pCLgut5a0MDgb9nJdOW7S640bi8f3nvLQ7Z3CsnOessnSKcBm3kR8Ytptm+Eibfam/ttZ+5YlRfobI+QVeGT0iDiezIedNWsFtNK985StZtWoVN9xwAwCXXHIJv/vd7/je975HU1MTl112GQD3338/4HRKV61aRW9vL1/60pfo6+vj/e9/P3/zN39zQMfFSxCbPHnVxHetK9FPOYPw8QvZvWMtybbjiCUtmttH7+aZFY358zrJ7AUtAK2dkO6AuiY5AOUS5IegJ2mSy2iEI85NM92qaErXPt6qOkWSdmMrQxmdTEYnGFR+KEunLVJJ2w9a9VtRhwrOKViWrfmnojo3UIN4tPH1N65WmphwBs5w1ZwRdQb3fu0pdzVcDB1rxAlHh9sQfUNF+H/W5Vinv4bSvEVkhx4g1b6CniOMEdcLuIW1rE5XZzu2BS2dzvWlD9s8b5Qgn4HuhHNtRaJO4S3dqkg1N/5wkM1AW3krg0PO6VghN/R7wT+ZrBX/jIpGJhMg6HbeM/kwCmhOVGhJVdwtCgaRcGPBcHiBd3gRbl/bFPb57zdipWXKvbaqJLSc3yVNyJZUMUfNhiA2l0jOazQXcl5ZRfmedSXVU16JfeRC8tm1pNqPJRxRtHSNPmeqasKC+V0M7QVlO/filg4Ihho/zig79+KehEl2SCMUruW85nTt3m1ZTqEul9FIl7c7xbVAXc5rtmhqquU804RM1tmKqrnN1qoVIBWvNKyCS0SrDfe92vD8sJPzyjGy5ShKBUjVrYLzVsKNN+d59+KcEWXdDU817HoY3myNUTiscp6lAvzQ+jiF097AUPsijPKDpNqX07WoQig88t/BKawF6OrooGrWct5Y11Z3wiQ35PwM4eW8pnRjzstlazkvm3VyXrrZ8rNefc4rG+7PEM9sYDAXJlMIo0HDPOmWYSssvdc92m6aQN3JuwdahAPvgIaYk/O+9jRFlcAgRhjDLcLVVsRJgVfMRbMh501rwa1cLnPVVVfxox/9CMMwOP/887npppvo7u72/86WLVu45JJLuPvuu0kkElx88cV84QtfIBgc//i5mRjE5kIIA9huL+Rm+zIirz4Hs93GLD5FuvsYlIL23n0P/FTK6YZ2dXRQLkG6HTp6R940wQlbhSzMbzIZHADTGL1zBW7xIud0R1vL2xnK6Ni2VhvQ64Yzr2CjlLtFIeduF3S3KAR12y+UOL8aDcvIvb/rdUjHCmfNseIBF+GcIfpOOFt73ZN+l1ShEdWKDV2suTxcdcBu53/sy+E155EJga49Saz5OLoWVghFxv63VArKhQBdnR2UCtDWDe3dtU5oPcuCQsYp7A4NOF3E5hZFa7uipbXxerTclXJeMBsaaizutrbWuu7e68gXAmSzAbRnnmUo55y4G49a/jU1Wucd9r9N4WC2o4JzbXkF3nVffZKCvyUVYlptO6p3ipZsVRCz2WwIYnOJ5LyauZLzBux2vm9fAa96LaWkjaaepJiL07XkCDoX7LswUH8vLuadFUkdvRAaZeGibUExX1uhVC45q9/Sbs5LJBs/byHnFEpaSk7Oq1Y1mprcZljaornJIlR3/y6VNDJZ3SmUuNsF9YByVsHVzf0d3hBTCorlIJliiF0POs3WbDmGbQdIDmu2piJl9HHmvJG7HlIUVdJdsVT0T7Oc6yuW8irF960r0E8/E/vIRQwOrCOePpa2HpNofN//luWCRldXJ4WsU3TrmDeyeQ+1nyF63ZxXrWqkWxQt7U4RLjRKzssO1Yq7ur7/nOetsKzPed5Oh3SqQlN89JxXf+iHt9VZryvCeQ3XAynCeaNHsuUo917/JAVSlFSCALa/46F+u/PhVOAVc89syHlTWnCbLhLEJs8GezW/tN9P+nVnko0r4ikbq6rR3msSjo7/0qqUNTo7OinmoHO+0wndVwHBKNdWv2WHNEIRRWsbtLQ1rlACt7DnDuhtNbYzNKRjVDT/GPGWtLOEPByu/R1vGXk2O/oWBW8l3GiFEi+cOYWSZ0cNZ80H0SGtDdF3CnH3fv1pSiqJQZQIZb9Y4hVK5kIna7N9ND+zP0z0ta9iKAKJlE0sadPaPf4Co1HSaGvpxKrCvCUQT439sUpBuQjzUyYDe6GYd7aetrQpWtshMmwueH1xt6W8g6EhHU1TfuBvaXFWV9Zfy6ZZGwKtPfssQ3mn896U8EL/6Css/efbx0q4pmiJdKx4wB1Sb3Bv1t2SWiBFQaWwCMpWBTFrTcQg3ZmYH8RIM/H7NFdy3mZ7Gf9rf4TEa88mE4V0u0XF0MZVEKlnGhrdXc7oh45eaO1iRH6qVzGcFUrOmBGNYNApjnhjRob/3VLRa7RuY3AoSNnQSCZsWtIWze4suEjdiinb9hpijYWSWMRqmM3anDDR9ZFfZ7Gs17ajlp0mVtXWSYaNhiJcU7Q07iIcQMkM+YWXkSuWao3WBLk5MUS/z57Hj+xL0M89jwEd0m0W4ZhNW0913F9bxdBob+mkYkDvYmc7876Ui05hd3AvFHJOYbe1vXHEiOdgc179CsuhfATL1hqKuy3JCrHI6DmvvgiXKcX9w93qi3DpWJFoaPxZuL7Au/a6Jyi5o0dqjfyszP8Vs85syXlScJsmcyWIPWC9midX/A3lo07AimdpbrdINFmjriQaj1IhQEtTB+k2p/A2Ht58rt6kyUC/c1NpaautfhttxZxR9rYKOnPg8oWAH8zqD2Ko552WlcnoBDY2blGobUWtkIiNfgMslJwO6W43nGXKcSw7cMjhrL6TNfpw1dys3arwmH0mTxz7twSPXspA1Nm+ciAB36MU9HZ3MbAblp6w75BfzzScQm133CnsxpNOYbe1QxFPjP48hZxzbbWUtjM4FETTlH9NtY4SzKA2BFpzV1hmC2HCQdsPZWl3lWVwlNA/fCbcUClOzogS0i1a43la4wVa4gVSkQM/IXesrQoRaqdnJcg6p2fJCbxihpktQUwcupn4fZorOe8J+1QeOeYy8otWUY3naemoEm+yRoxqGC+jpNHS1Ek8Cb1Lxvd3vPlcvUmnSGKaY69Q8lQMb9zINgaHnJwXi9r+sPz6gxg89Q2xwMZnGMpFqFQDpOKmsxrdHQuRjI1eDCoZurNlsK7Zalo68VDF3+3QFC3TFCkR1Me/erxqBfwh+mu/+iRFd8USKOJaoa4hlpt1Q/SfsVfzW/tdtL/lFQxEFO29JpG4OuBColKQH9JpTbdz9AkjR4mMZXjOiyWcBmtru2pYVVn/PF7OS5fGV4ADKBTqdtLkImSLISIhy22y7ru4O7wIN1SKkzeiREMVWmJF2hJ5WuKFcR/KUP+1eI38e778BAV3laU3c9AZPVJruEqzVcw0syXnScFtmsyVIPZr6z30HXMBTWetRrX1j7uQMZxSzg2lWnGCGMBRxx3c5ykXa6GsVKitUGrrpGEVWz1vQG/9sHwvmKXTjcPy69WfluWdXOltUWipOzFr+CwHz1jhLBk2aHELJa3xApHggW0Z3ddWheGnZ83kLal3Wm9k6/Fvwz7+JEI9A4T3sY10NLblzAy0TI158zvIDsLS4yE8vjncDaqmOw8kbjI0oBGNKzq6FO2dY3++0QpwgLOqch8FOO+wjyH3sI+hXBjD1P3Qn04atKRGzp+p/X2NoUKYwVyY7Q+9SKYURw/YtMbztLnXVfIgCnDgFHi97vu665+ioFLuLJoqSS1b133PzolVlmL2mi1BTBy6mfh9mis5707rjWw+9h3oJ55IuKd/1CbmeNkWVE2N9tZOSgVYcdLBfZ7hK5SSTc4KpbaOkSvRPfXD8r2DGCJh5R6IVG04cKvhucoaQxmd4LPrGcxHyBZCDTO7mseYzer//YpOphAiWwiz65HnyJZjGNUQyUiZdKzoN8YOZLUSNB6W5A3RH74yvT7rzdRiyYP2q9h0/MWUl68h2jtAdJTvwb54PztUTY2FCzsY7IcjVjoHaB0oq+rkvC4v58UU7Z2Kjq7x5bz6Apx3wu5YBTjLgmxWJ5MNOKvg3OJuU9x0tjfvp4lftTSG8mF23L+RvcUk2VKckF6lLeFcT63x/AHtdKhnVIP+qs17v/Y0BZX0m61eES5OniTZGXtdicPDbMl5UnCbJnMhiNlK46f231B91V8RXrGYpkVBGq6m4VeW5jym3DcU2MorijiP6bpzgmlbN0SGLes+GBUDckPQGTXJZzWaWpybZ1v7vrtfXjDzh6jWnZDV4m5DHS2Y1Z+WpW90tigM34o61iwHT7miM5ALs/OBTQwWk+SMKPGwQUus6BbgDv4mWqyEyBm1rQoFlaJChAglEnVHjc+EkywtFeBW+8Nw/puozD+S9GKdYBD/GlO2c4n515xbtLVt55ryrrNg0DnRKhqH9h4IjVF0PaDXZkFuEDoiTke0Ka1o73LC/mjzQzxKOTNqMkO1uTNKaf4pqMNng9QrG+5x9c84oT+Td4q7XvEt7RZ4h88ZBOffZDAfcYJZIUmmFCeoW7S5Qb81kT/gzmjDv4c7Fy5TirPu+if87nsAm4SW9QN/ghxRrXTQzyPEgZgtQUwcupn4fZoLOQ/g19Z72Xv8awmdfDKtR+iNOxgOIucFApBKOznvYIoiw5kVp0jSGTPJDjrFt44uRWvH6CvfPPXD8r0Dt0Ih5c/5bWkZ/X48fGZXJh8mV3S2ovo5bx+rlQCMSoDBfISdD2xkwM15kaBJS6zor0o/2KaYtzK9lvOSI4boz6TRI7+x3k1u1bmYJ5xKy5Ig4aiT76D2qz0s5ym7lve8nx3CUWc7aFvP2EXXA+HnvKhzXaWaneuqrWPfPz8Mz3neTgdvZWVrS+MhDPVKJSfnBdw5g7limJBu+wU472203Q6WpTGYD7P9vk0MlBJkS3HCQdNvsrYl8sRCB18c85qtmXLcP4SrRJwwBgl/7MjM+PlBHD5mS86Tgts0mCshrKgS/Mz+ME0XvpquVxyFlQr5wWS0goFSzuPeG+6vug7BsBOMDnYr6niYBmQGoD1iUi5qpNsUXT3OttP98U7I8gpwXjBrbnZunq0toxfgoLZFIZNpnOVQP7MrnRi7i2VWNQZztWCWKccmLJgBVKp6bcXSDU+NOMkyUbecfCrnheRVil/aHyD9ptfQdMpSAq0htIAT1r3rB2i45gIB5xrS3I8JBse/reBgmRXI7HWuq4oBPfOhu1eNaxVAfTDzOqOBgNNxb2ut0pKuHU8/XH1xN/Csc1x9ydBpSlRobzboainRkho99HgFuO33udfUBAcz5zlqhzPcU7cFxhnaW7uupAgnJstsCWLi0M3E79NcyHoVFean9l8Tv+B8Wk8/Er3NuQ97RitGjZnzQk7W21dT6lBVTSfndUZMCnnnAKSObmeL4P6yizerKzuk0VLeXrsfp0cflt/wvFVvtZJ7Kmo+3LBayTuAa6xV6VVLYzAXruU8tynWEivUjYUoH3T+Gm30SEkl3FNS64slU3tiuaEi/NL+ALE3vp74qqVEe0J+ftM0/Gut/vXobsbzsqAeHH10zESqmrWcZ5Shex50z1P7LOh6vBVw9TkvGFRu8a1Ka8voO2jA3UqadXY76O7M33JFpzlZoaO5TFdriebE6FnNsjQGcmG23/8cg8UEmXKMWKji5rw8bYkD3z0zXNUKuLtzoqy9/umGIlytuJuVlXBi0syWnCcFt2kwF0IYwIDq4Lf2u+l48ytoOm0ZvfMVWsApcjy/M0RAd2+EbtFDD9V+P91DXssl6Imb7NrhdMJ6Fzhdq/G+ruHBbHDQKcA5WxOcm+hYhRJwtqLWn5blnYqaTlZoTRl0tZZIjlGA826iw4PZoc7raniOumJJ/bwQDdUw0yFBbtLCWb/q4g77r2i96LWEV61gyVLlF9Ge2xkiEHBCVkCvu8am+frKZyCtOUG/d75i/uID3xqRz0FbaSsDg06RNhxWtLZUaWsdfbZgvbKhMTSoYz39LLsHYwR1m+7WEj1txTGLb1C7pnbcv8kv6sZDFdoSOdoSzqrK0AHMmxn763O2OmdKcdZ+tfHkLG8lXJIscXIyE04ckokIYTDz8oMY3Uz7Ps2VnJdTzfzafi+tb34NiTXLWLDYyXm6Ds/3hdD12n03OMNyXsWo5Txdh96FzgiI8Y4+sW2nIVa/VTAQUP6YkX2tVILaVlTdHTnirUpv9nJeS4mmMYolXlNsMBdmx0MvMFRKoGnK3yrYeogFOOc5aqNH7rnuqboTy5W746GW82IUJuX7mVEt3G6/heaLLkA/djlHrVB+gfb5Pifn1V9fgeD0X1+FLKQDJrmMRvc8xcIlBzZvzradBn6rl/OyOtGI8otvLa2Nh3sMVy5rDAzq2G7OC4dsetqK9LQVxyy+gVPU3ZuN+AW4nBElGTZoTeT93Q4HMldw7Odx5g1myjF37EjTsJVwTgEuQW7GjrMRs4cU3GYQCWKTY7fq4Q77r1j8nlew4E3HEE86nZxqVcOqOh2/qums8Kqatcc1DYIhRSjsbO8LhZy35/tCBEPDgltocruhtgWD/U6RRNdh5arxdaxGfB67tgLOK5SEwspf/dbaYhHdx6mt3qmomYyO2rCR/kyUWLhKV2uJ7tYS6WRlzBu6bcNQPsxALuIHs4Bm0+quVJqIApzzPPUnHD3pDld19oN44SzpDtCfiHD2kr2UB9S5HPM3Z5B6xQmkmkHZGtWqs+KwWnW2hNRfX7Z7qFIw5HwfQ2HnGgqF4IW+UENRzrvW9ODEX2PFPITyJu2dsPiog/9frGW5swVLWxkYDJLLB4jHbNpaLdranBVwY71224aBQZ3K4xvZNRAjHLTobXdCWSq+75BjVjX2ZqNsv/85BooJCpUITZESbYk87ck86Whx3Kfr7o+3Ei7jFncLNFFSCYKYJLQsSXLu6Vk56ZCKcZOC2+Flpn2f5krOG1Rt3G5fxLx3v4beC1fSnG7Mef492L8XO4+Dcx8Oezkv7OS6F/pCfrabspxnO6uTmjFRCo5ZpQ5qy6FtQyEPmcHaCrhg0CnAeVlvX43W+lXpPPMse4aihIM2XS0lulpLtDUZY+YmpSBTCLM3E2HHwy8wWIyjadASK/gzuw61AOc9j5/zvvIEBZooqiQKjZiWJ1m3bXAiDuHarhZxn30eR3/4FSTOPp6WttFzXrXq7CYYV85zrycv53kFuoneQVMqQLho0tQER604hJxXdYq6reWtDLo5LxG3aW21aHdz3lhFYtuG/r065hNOzouGnZzX21Ycc9eMp2IG6M9G2H7/8wwUE5TMMM2xIh2JHG2JPM3RidvR4q2Ey5RirLvhafIq5c6EK5HUahkvQU5ORxXjNptynhTcpsFcCWLb1SLut1/LUR9+Fb0ndxKP2YRCikhYEQ4rdqgFhCOKcMRZRRYOO8vAzYr7Zjq/ViqaX5jzHquazrB7pZybZCis/MKcdwN9vr6AojeucDrQ8GZZYGyv0tquWHbsof8n4W1B9TpY2dyBdbCqVadYUn3SuYnqAZuu1hK97kqlfd0ERyvA1Q/MP9R5XfWUorYS7jpndldBOcc6OSdnZQ+6Q/qMfQLG695OeOEC2lf3km62/Otru+1cW6GwM8g2EnGuC8tyi2/DrifT1PzHvUJwpQJWtXaNBYPKD/7Buo5q/WrNgN64XaZ+2wyq7vNXIGlXSaQUx580cf+LrZput72wjb0DQQxDc2e/VWlvHbvbbtuwpz+I8fhG9gxFSUSrzO8o0NtWHHPQc71yRWfPUITtD7zA3mISy9ZojRfoSOZoT+QOeqbgWCxbc2eFxFh7/dMUVBPlYeHMWwk3m05jE1NnNgUxcehm2vdpruS83aqHe+3zWXDxeSw8rYNYVBEKKaIRm3BYsV0tIOLei72cF9Dde6wx7D7sZr2KWXefrmjYtrPqLBRWfuHEy3rP72wsoNRnPO9+PF62DdVdJuEInLDm0O/Lo61IP9BG68CgTvWJZ9k1EEMBXS3OivT25rGLb1ArwA1kI2x/qFaAa40XnNVKifyENFq95ypUImTLUe75ypNuzkuNKMIlyR5wzntBrWCDvZqFf/16utd0k262CIdrOS8Udn6G8N5C48x5Zt2v9TkvFFJ+tgvW/ezgrdYM6LUtq6NtjYbac1dNZ6WbUrDmjAM/VXUspgmZQWgpbqN/IEjV1Pztpx3tYxd1Las+58VIxUwn57UXxzy4rV6xrLMnE/VzHkBbPO/nvAM91GO/X6cVIFOKOyvhvraegkq5p6MWSfo7HjITUtgVc9NsynlScJsGcyWIvaBWkD3vfRxxUivH/VUvtqVRMTUMQ6NS0TAqAQxDo1zWMIwAlg1BHaJRm1jUJhpV7GA+kYhzQEIk4nSqvJuW00X1QplTIKm6HdSG1XPVWqHDu7FqmhfGlHNDrZv5ENCdgauW5axws9xTs0IRxYLFzmlEE83rYDkr4JwOVjJh09bqbhXcTwdrcEjHfPxZ+gZiBDTVsE1wPHNJhvJhtt+/yR+YHw6atCfyThFuAuY41KvvkNbCmXPzTmh5twjnrFwaayacUvCAOpeON53OwhO7WHzuQqpVDaOiYbrXVqVSu7aqFgQ059qKRp0fBnZqzg8CfsE3MrIQ23CNmTSszLSs2kpNr9NqV53hvUq5Q3vdodDeNRcM4Xf0U02Kju7J3fZQKsLQAKSL2xkYDBKP2/T2mMzrNccsOlersHtPkOJjzzGUj9CRLrGgs0BnenzdcaUgVwyxZyjK1gc3M1SKEwtVaE/k6EjmaIsXJmz1W72xwllMK7jbE7IHFfjF3DSbgpg4dDPt+zRXct7L6kget0/nlL9/Bae8o9PPeZWKm/MM535cLmuUy07O0wNuzos59+IdLCAaVYSjTs4LRxrviyMKJ5W6nFdtLK7sK+d5+S4QqG0btSznvm7bTkEmGFT0LlD0zJ/4f6vRGq3xmE1bW20m61j3ZaUgkwlQ+YuT82yljbv45v39oXytAOc1WtviedoS+QmZyzr8+YpmmEwpNmYRzmu47uue/Jh9Bqk3voaOY+ex/IJeLKt2bdX/HGEYGmZVO6Sc56yQ8/Kd+2u1dp1514r3s4F38Ef9G7gF4QiEQxBPKrrnjX+b8sEoFpwCXFNhB4ODOsmkk/N6e8bOeabp5ry/PE8mH6azpcSCjgIdB5DzhvJhtt23if58ikw5RjJs0JbI0ZnKTeguh3plM0imHOfuLz1BgRQF1YRNYNhW1OyMOOxDTL/ZlPOk4DYN5koQ26yWod70NmJHLqYl5ZyOGA1bRMNVYhGL8pErnZti1CYecwbNlg0nmJVKAcqGE9C8oGZUajdTL6jt1BYQiTrL/6PRxoLcaJSqFU280yptt7imVO3PuDMivI5WKASx+JT90zkdrAFIF7exd7DWwWpvq9LTbRIcY9C/V3yr/OVZdg3G0AOK3vYi89oL+90m6KkfpLq34JyOlQgbznbBRI7WeAF9gm+kXhEuU4rXbUdNujPhavMcEmSJaAYlFedJdQpHvetE9CVL6W4rEw1bxMIWhSOOIRpWRGNO6IqElbNC0dD868u/rur+bCuIhBWRiHKvMZsdagHRWOMqudnKqsLePRDeu5NqFY5ZWSbdvO+uZqmkUf7zM2zd7WwNXthVYEFngWh4/Ev6q5ZGf8bZfro7n8K0grTG83Qmc3QksxPeFa1XNoMMleLc/WVnK2pepdDAv6act4xsRT0MzaYgJg7dTPs+zZWct00t4Rn7BFZe+QbamgyCupvzIhaxcJXykce4DVSbWFyhB5Rz/zXcnFd3Hy6VneKJpkE0oojFbKIRmz5tAeGoIhqtFU32VxTwtrL6Oc/NfvvKecGgk/OmqiFTNd2TKou1FenptJPzenvMMceXKAVDQzrm48+wc68TTHvbi8zrKOxzRlc9bwbctntrc1mdxlje3YI6MXNZh7/u+pVwBZrGbLZGtRKmCvEXdSbL3nMC1QXH0NNWJB6tEg1ZFI90c17UJhqr5Tyn0Tr69TVWztvJAv+6ikYn/yCtyVSf80xT49iVJdLpfX8fi0WN8p+fZdseZxXkwq48CzoK49rd4PG2n2677wX2FFJYtkZ7Ik9nKktHIkc4ODnbQL1rasj92SHvjhwJYJHSMn4RLklWtqIehmZTzpOC2xSbKyEM4EW1jMTb38Rpr0szr72IYeqUKjplI0ipolMsBykazp8NM0BQV8SjVeLRKololdKRxxKLOcW4aFShFH4o84pypbqCXNk49ILcTFUsOCuV4pmdGIbG8mVlOjv2ffOwbdg7oGP8ZSN9A3FS8Qrz3VAWCo7/P+v6OQ57C0mMaoh0vEC7W4Brik5OJ6l+Jtzd1z3lz+7SqaIIECPHgve+gjPe0IJZDVAxdcoV9xqr6JQN59dAAOKRKrGId10dQzxuE4s6gd7rABoVzSkwuddSuS6slUrOKrlQUPmd01hMsVObT8Trykc5qPl+U00piPa/zIsvRlixvExP9/4LXko5c0ByjzzPQDZCb3uRJd25MQc670uuGGT3YIyXH9xMphQnFSnTkczSlcpO2rXk8bY4Z0px7vnqU+RVMyXi7lbUWgEuTl62KMxxsymIiUM3075PcyXrbVVHsFkdzZsva2Plaxdj1N+HDSfjFY2gfz/WdUU8YhGPmn7Oc+7Hzj3Vy3n1RZP6zGdUnAA3vCAXiSkiEYjGZm/O81akJ3M7yOcDHL3UoLdn3/dnpZxtp8ZfNtK3N0YsYjG/o8C89gMrmNTmsm5ibyFF0Z3X1Z7I05HI0TSB87qGv/76ZmueFCWVJIDz2sOUWPy+M1lzXjto+Dmvdo3Vcl4sXPV/higfYM5zrrFazvN+hohGZ2/Oi/W/zAsvRli+rLzf68j7O3v6nZw3mIswr73Akp7cuJv19Z8nWwzx8rrn2J1rImdEaY4V6Uzm6ExmSU7QVuax2LZGphxzinA3rCevmvzdDgmypMg4ux204qS+DjH9ZlPOk4LbFJsrIQxgkzqOxR84m3I1TFO0RDRkEgtVaD1xBTG3qBaPVAkEnFUwTgEuSLEcpOD+vlR2wpqmOUUTrxhXPsq5mXrFOE1zCkxjFeS8zml9QS4WrW1lGG3L6kzVvwvMl/toa7NYubw8rnl0w5eP97YXWdiZ3+fJlGMplIL0Z6JsfeAFBopJggHLKb65cxwmuitaz5vdlS3HaIkXeGrHApa/ah7zO0a/cdo2/jVVMrzrSqdYDlE0dCxLIxq2/OvKOGolsZjyr636f1vTxC2+OWGtvthbKjnbGeq3yjjX19hboqfb0AAUntvF8ceVaG8bf+evUNDIPbSJ7f1x2pvLLJ2fHXdXfbiKGWD3UJSX73uR/kKKsF6lM+UU31piU7P109uKOlSOs/ZrG9wtChpJzZkPknTDmayCmzsmKoTBzMoPYmwz6fs0l3LeZrWMIdXKke89lVSkTDRUcXLeSSuIRSwSbmEtEHBWz5cqunMf9nKe+1aqOMuKvKLJ8JwXizk5z2+8lgKUyo33Ym9nRP22wlh0djZeB/dCZUsfTUmLY1aWx1XksazaOIjBXISulhILu/K0Nx94gaNkOPO6tt3vzOvSUH7Om8wVS9B4UFIqUub5/k7mn3YkR/Tmxvh4KBm1bHeoOa9UDjSujivVfq4wq1rD6JtYzBl9462OC7tzCmeK7BDkN+1i5YoyXZ3jL5zl8wFyD21ke3+CzpYSS+dlD6rBCs6MXy/n7S2kiIUqdKUydKWyNMdKB/U5D/g11O12yNNMQaUIYJPUhki6RbgEWZn5O8dIwW2GkSA2OTarZWjK5sJ/WUbJDFGuhihWwpRM561YiaCAWKhCPFxxti2etIJEzCQZq/rb1rybaX1I84NaXTEuETPdkHYs8ZhNPGETjdQu3/qCXKmuq+UVUOq3rPpBjVrndLxbGaZCxYDyCzsIBuGE40oHNB8ilw9QfORZtu9JkIhWWdyTY1578aC+LtuGgVyErfc+R38hRaESIR0r0uFuF5yoobxj2bS7ixf3dhINVYjoVaIhk2jIpO2kFcSjJvGIRcwt6o6mXNEplr0fAEIN11h1lJAWjzsBa3hIA2ebcmNXfvQt0d5WhmhUsZP5DfNFIpGp3c6w/WVoLu7gpNUHHnrKhkbugY28vDtBZ7rMysVDB7TVdDjL0ujPRnj53hfYlWtC06A7laErlaE1PnVz1+o77ndf9zQ5laZMjBjFhnAm3dHZSwpuh5+Z9H2aSzlvm1pCmThv/pfFlMwwZTNE0c14pUqYohnGsgNuzjNIhCu0nbS8Ied5hbRiubFoUp/zlPJyXmMxLhG3iURqA+m9nOcU4vbdeI1EhhXk6nLeZM7cGq+qCZXNOzBNOGl16YAO+yoWNYqPPMu2PQnCQZvFPTkWdBQO6utSCgZzYT/n5YwozdES7e6Kpclemb5loI1ndvUSCZpEgyaRUNVv3nv5bF85z6gE6q6n8eW8uFuQG/45q1VGFHidnyecxyrm6D9H1B8QF4lO7fXVtx2igzs59eQDzyxlQyN7/0a27knQ1VJixaLMIeW8qqWxZyjKlntfZE8hRTBg0ZXK0tM0RHqKim/gFHWzRtRZBXf9enKqGZMwcS1PCi/nDRHWJuYAOTH1ZlvOk4LbFJtLQWxAdbBNHcHHPpcc9f1K4RfhCpVI7c2IUDLD6AGLhFuIa19zNAn3hpiMmf7NyivG5RuKcSG3a+psX/D+nnHkChIJZ2ZDIm6P6BiOtkKufqact5UhElb+Kqb6gok362syj6+vZ1Vh4Kk+jjrSoLvrwOdgWRbs7AuRefgFFBpHzssyv/3gApmnZDidrK33v8hAMTnpK5a8wbyVapByNUTZDFEyQxTNCMVKmLIZbijqxkO1oq4T0qwxX9N4Qlot/K8k7l5XsZga9d+w/geBhvmEdfNFLNvZzuD9IBCJKHZQ+2HAO3V1oq6xLS9qtJvbOXHVwQedsqHRv/Y59gzFWL5oiIWdhUN+XUrB3myELeteoC/XjIaiuykz5aHMU6nqDJXi3PWlJ8mRdrujzoyQFEOkyBAnJ9tQZ4nZFsTEoZtJ36e5lPNyqplN6jguvToy5r20bAYpmk62K9TlvZIZJqAp4qEKyUiZtpOWOYU4N7PpuvP/0/piXKE0shinaTg7JqJOEc9YeoyzKi6uRpz2Pvw+XBo2OqJsOAcuRCJ1oyPcnOcVS6ayMWbbkN2wk55uk4ULDnyFkW3Drt1BMg+/QMUMcERvjoWdBf/f9mAYlYCf8/oLSYIBm65Ulo5kdtIORSpWQhhVp3FvVIN+877oXkcKiAZNt6hruE1X5+eFA8153ptlacQioxXjxs55lsWIXDfaHLlwqDaexDsgzjtp1ct6E1WU27nNKbiddsrBNwnLZY3+dROb82wb9mSibFn3IrvyTYQClp/zJruIO5qSGWKwGOfurzxNjmZKKkEYg5Q25G5DzcihW7PIbMt5UnCbYnMpiFVVkEfV2cQoEtWKRCly1lWr/dVs+zr50rI1ChWnaJKvRN2g5rzZSiMWqpCMuDfWNctJxpwba/1sMtvGL8AVSs4NNF8OUSw5M+NCQeUXXipHrXQKcYmRS8zrP5938qU376FUGr1g4t1IvYJJOKL807cmqmCiFGQ37KCj3WLJ4oPvwigFfbuCDD74IpatsXLxEN2th17UqF+xtDvfhK00Ot1ZXe2J3IQfvDAapZybaLESoWiG/WvKC/sa1ALaicv8wD78WhrOC2l5t7hbX4yz7VpIS0ZNykcd419X3vbnsVQqNJzoVh/UDMPpztuqVpSLRBThsPMDQSik/IKcdxLqaNeZVYXBAYgNOnNijj+utN/DE8ZjT7/OznteorOlzLFLBicslCgF/ZkIm9duZle+ibBepbd5iN6mQeLh6dnm6XVHB4pJ7rlhPXmVdrehOnPgmhgkSUa2J8xQsy2IiUM3k75Pcynn2UrjUXU2IUxiWp4oJc66crV/X93XoTi2rfn35bxRa7jmKxEsWycWqpBwc177yctJuvfncMiu+xzO2AjvHpwvhciXnN+XKzpBvTHnebsf4jF71MOnlHLmfJWHj46oa77WN8a8rLdDNa5iCocnrihX2rSdWEyx7OiD3zHgzecafOBFyhWd5YuGxhzFcSBs22mOOTkvhWnpdCRzTgEukSM4iSNGPPXN+2LFuX683xeH5bxE2KB1zYpx5byyu/25dm3VinLeikunqDf2isvRXmvF1NxM19jY9w72Moxacz8cdq6vcNj9WSLs5jw36421PVop5+TS+NB2+vuDHHfsgY0OGUv/Xp0dd79ER7rMcUdMXM6zbdg9FOOldS+yO99ELFRhXvMgPU1Dk3qw1r5UrQBDpTh3fvFJcjSTV00EsElpTvGtiSFptM5gsy3nScFtis2lIAZgqAhFkhjEKBOnRJyyilMhQpAqMa1AlAJnXXECibBBMmLs92jykhnyQ1nBiDq/ViJUqkEiQZNExCAZLtO+xlnJlIqZI4bHmlWNouGEM+9GWigHKZRCI1Yvjaer5X+9Ffem6RZIymXNL6AYRq27VV8wiUZs/0YajrhHiofH7nAZZedkq9CenVgWnLKmOCFDXJWCHTuD7L5vC23NZY5bMtgQbA/1cw/lw2xZ9zy7ck0Y1RAdySzdqQwdyakpvg1n2xqlaqihmFuou5ZCetW9lozaFhh3IO++wlR9SPO68V4xbrTtz4m4TSzeuP15X7yinGFo7pvz+0rFDWsV5/fKvc7CYYWuuyf0Ws52iHjMpruryvx5lQmdN1Iua7z4+y10t5ZYtjAzcZ/YZduwazDGC2tfYm8hRTpeYH7zAF2p7LRcQx5vG+pQMcHdX3W2oVaIkNBy7go4p0Ma1KYnOIpGsy2IiUM3k75Pcy3nVVSYIknKxCm7Wa+sYhjE0LGIagXiFDjjk6tIhsskI2ViIXOfP6yXzaBbiIs6v7rFOKMaIhyskggbpCJl/96cildHbHXzZgPn64px3n3ZrGpEQjbxmNMYM5a6xbgxthI2fL11jTFjWLHEe8yyIahDJOKdlu7kvEhE+fkuvI+cVzGc+VvhvTsolQKcsqZINDox97i+XUF237uZZLzK8UcMEItM3Dy2bCHES2ufY1eumWIlQlsiR3dThq5kdkqKb8NNZs7zCnDezw/DV1zWct4xbs4bueJyrM/v/SxRn/EMQ6Ni1v++sTAXDCrnVF5bo1AIEAopurqqLJxfIRabuHxUNjQ2/34LHWlni+lEsyyNnQMxXlz3EgPFJG2JPPObB+hM5iZl9eR4eY3WwWKCe27YQE41YxNwdzpk3K2oGSnAzRCzLedJwW0KzbUQti+W0ikTo0ScEklKJCipBAZRAtjEtAIxCpz5yRNIRZyAtr8uh2kF/HCW80KaEaFshgnqFslImWTYoH3NMhLRKqm4OWrQqF+9VCg1LjUfPkfE27oQT9hEwvteveQZK6x5RZRKpXYjDQUVoZBzMw0EoFh0CipNKYuuzioL5psTPgvCqGj03fU8hVKI01buPqCTrsYrWwix+Z7n6cs1+8W3nqYMHYnpvaF6TCvgd0rrg1qxEgEaV8U5Yd8JVsF9bNPwtsV4xbh8KeR05ktBSobun9LrbX+Ox22/0HugRTGvi1pxi2/VqkYgoNADjJhtONEGBnRe+tPLnHfy9kldem9UAmzvT/D8uq0YVpAF6QEWtfRPWzd0uJIZYqCY4K6vPE1OtWAQ9eeDNDEoBbhpNNuCmDh0M+X7dHjlvAAGMYokKJPwc16ZGBo2Ma3o57xkuEwqWt5vw9W0An4hLj/s3hzULZLuvbl9zTK/4TralsKK6eY8r2iyj1XqxtKRh3Ttj2ni5Duj1mwdLecp5RTmwmGbUEgRDELJHdKfStp0dlRZML8y6mq8Q2GasGft8+zNRDh1xR4SsYm/FxVKQTbf8xx92TSFSoT2ZI6epiE6k9PbIPN411JtZWXUXxkHjTkvGTdJusW4fW3H9VZces38WvPVWXEZCir/hF7jyJV+wzUeGznmZn+8XTdecc6yNDQNAgFFIm4Tj4/vWj0Y2VyAjb/dxnknb99n7j1U5YrO83c+z7ahViwVYEF6LwtbBva5Q2qqeI3WwWKCu7+6gaxKYxEkqWX9nCcFuOkz23KeFNym0OEUxMZiK40ycYokRhTidCy/EHfWFSeQipZJhsv7PS3JsjUnnNV3Sw1vfojtBLSIQftJy0jEqqRi5qjdLaWcGWVehzQ/znlxE1EwMSsalg3RqKK5yZrw8DXa82+7/QVsBWuW7Z3U5/KKbzuyaaq2Tk8qw/z0wJSdXnQgvJlx9UU477qqWjqRoEkyUnYD/9grLIezLM0/mdcr8nrXmbf92Qtp49kWM52y9z3Dll1JXn3izil7zr3ZCM/e+TL9+RSdqQyLW/unZdbbvpTNoFuAW0+2rgDnFN9kBdxUmcgQBjMnP4h9mynfJ8l5tZxX8opwdYW4WsM1z1lXnEAybJCKlvf7A7Y3hiRv1HKeV4jTNOVvJ/TmAXtNstFynr9K3V0R521RHW1e3IGuXhr+XF7OM92s5+W8ppQ1ITsX9mfXXZvIFMKceezuSX2efCno5LxMGqMapDuVZV56cMpOIz8Q9VudC3VN13wlQtXSiYYq/o4cf6RNdP85r+rmvMKwFZfFcpCKGfBXXHrFuPqm61TNhh6vvr4gO9ZumfTGqkcp2DMUZePdLzNQSNKVyrCkbc+0zHrbl0IlzGAxwZ3XbSCn0lQJkdSyfs6TAtzUmI05TwpuU0iC2NgsFfADWnFYIS5EhbiWJ0aBs69a5a+I218HzbY1fzuq1ynNG1G/u+XcUMsNAS0+xklIBzMvzruRzrSCiad/r87Ld7zM+adsn5Ln807CeuGezezMNhMNVpmfHmB+eoDQNGxFOFCVql7rvA87AKS+8952ktst3c+2BY8X0vKlECVDr5tR07gtZrpCmlLOiWj9e4OUn3iOkhHkxKP30tY0uSfUjqZY1nn2jpfYNtRCS7zIUe27ZlzhzeMV4O78ynp/BVxCy9HEoB/OJJhNvNkYxMShmynfJ8l5Yxut4VpUCQxiBDGJu4W4s69cRSpaIhk29rtN0Sue1Gc8ryAHziqmZKTsr2JKuTltrJznzYurP7xhMlYvTZVcPsAzv97G607ZfkgHKRyIoXyYF+5+gZ3ZNMGAzbz0IAvSM2PV0v4Y1WBdYbd2TRnVUMP2VG8nzf4ObfB4Ky7ri3H1h3TVH95QPsq5tsYz5mYilQ2NoUGd4l+eYzAX5oQjB+hpm/p8lS8F2XjHS2zPtNCWyHNU+64ZV3jzFCphBgpJ7qpbAZfShvyclyA34wrOc8FszHlScJtCEsQOXFUF/Q6pF9KKKkGVEFFKxLQCZ37iWJIRZ95HImzs939uSlFbvWSMHtASYYP2k472Cyf1J6eOeI11BZP6eXFewWSsI8lj09TVMioau3YFGXxoM/M7CyyfhFlc+2NZGn2DMTbd8zK5coyepiEWtuydsTfVfanvvNeuq8bCbiJSdldY7jvwDzc8pNX/IFB/3H0sYlFcvJJQyJnnFgg4Ic15qwU2DfwtvUo5211s5Xw/LMv51TQ1Ei89TbmiUzaC5ErOTxItKYPe9iI9rcV9DiKeChUzwIbbX+LlwTbaEzlWdO2YMVtNx1I2g/QXUtx1nbMCzumMZmhmgGYGiJOXYDYBZmMQE4dupnyfJOcdOEvplIj7zdYiSUoqgUmYCGViWp44Bc7++1WkomUSocp+R1PUr1b3DubKu7+vP5ir/cSjx7Wd0FulXtuaWju8oWIGCIfs2iiSGbB6qVKBPf1BBh7cTFuzwQlHDkz5a/AG5W+6ewuDRWfV0sKWvbTED/0wh6lW9bY6121PLRjOoQ2BYSssvQMbxmrgD7e/wxu8YlwsXKW45Bh3a7IioIEWAF13fh8IKCfk4WQ/TXP+O1AKlO38rGJZmr9VtVLRiL+0gXJFJ1cMUTEDNCVMetuKzOsojpiZONWMSoD1t29h21Arncksyzp3zviclzci7C0kuev6Z8ipNAApbcjPeVFtZjaIZ5vZmPOk4DaFJIhNnIoKN6yG8wIaUNuW+snjxz0fDsYf0JLhMu2nrBjXvIeKGWgowO3rSPLcwmP8GR9BXRHQFUG3eKIFQPeKJ7pzI9UY+by20rAtpwhUNTXMKlQqAWIvPE2xHCRbcF5Dc7LCUfNyE3Ja6aHKFkJsuvMldmTTNEVLHNm2m/Zkfrpf1iHzrqf6bc7e722lEXdPaDuQ66le/XH3hqlTMpwiXNUKONeB7VwHSmnYtlNcA+ca8QQ0rzBnowcUesAZ/hwJWURCFtGwNebWnJnAqAR4/Pfb2JVrYllnHwtbpv6HioNVH8yyqgUNm2ZtkCY3mEW0qV9BOBfMxiAmDt1M+T5Jzps4pgrVZbxawxU0IpSIa3nO+uTx454PB7UTL4eviMsZtZNTk5Gyv50wFXeKJ/uaY2VWtYaZrfUjI+obY4lolfyiY5yMF3SKJrruNMn0g8x5VtV5/krFOREz+uIGcsUwuWKQpoTJkp4c89qL037/LpSCbLxzM9szLcRDFY5s301nMjvtr+tQ2bZGoW4Myf5WWO6vgV9v+CFdZSNI2dQxq405z7YDbtajIecppaFpym+06gGFrjtZLxS0iYRsomGLSNgi5c4qnsx5bQerXNF5/LZt7M6nWN7Zx4JZkvOUgmw5xt5ikrtueJa8aiZEhSZtgGZ3BVxI2///s8RIszHnScFtikgIm3xK4Q7wTfpv3tyQ+u0K51x1gn/AwnhOVfICmndyav28uKp1cAENRna1zGqAqqU5v9oBbEtzOlJu0cSyNf+mui+BAP4NNag7xZNYxCIeqZKMm7SmjGlfoTQas6qx8U8v8tJAO7GQyVHtu+hM5ab7ZU24sQK/Nz8kVleIazt5BamYud/j7Q93/ZkID/9uD53JHCu7p2bmyERSCoZKcf507VNkaCWvmohSolnbS5q9JMmgazN/2/VMMBuDmDh0M+X7JFlvcjk5L+oU3/wiXJKye2JqTCsQJ89ZV9YO5BrvyIr6k1NrOS+CaQWJug3XRNig/eTl474v1zfGiuUQppvx6nOeZTtZ72ByXlC3CQVtwiGbWNgZY5GMVWlNGRN2Cv1EsiyNTXc8z+a9HQQDNke276K3eep3WUy2sRv4EWwVaGjgt528glT8wBquh6M9QxEevq2frmSWFV07ZsQBbAfCsjUGignu+OLTDKk2ysSJaznSbpM1SWbWZdfpMhtznhTcpoiEsOljqcCI1XBFlaRKyO2SOttSUxGnSxoPVcb9P72yGaxbwRQl5y43P5SAtj/1XSzlrlbSNIVSzkmVs/1/2F4ge6G/k5Z4kZVd22f8MvKJ4gV+/3pyr61KNUgkaNZWxK1Z4XZL9z/I93BRMnTW/WIvHcksy7v6pvvlHBLTCrC3kORPX95AVrViEqLJ3ZaQpp+oNvu2Xk+FiQ5hMDPyg9i/mfB9kpw3fWyljZrzxtqWmhzH+BFP41yvkfflhoaru1JIct6+2TZs60/w9B07iYcrHNuzjUS4Mt0va0qUzH038BOT8HPDXFEydO79ZT9tiTwruqbu4K7J4I0ZufO6DWRUK6DRrA3QjNNoldVvY5OC2wwlQUyMxtuuMHJbqnK7pAXOusLZlpqK7P+01HrDB6/mK07HdKyAlohWpXAyTMUM8NjvtrOnkOKk+S/NyrkfE8W0An5hN2dE/dVxZffAhkTIIB6uEAmatJ60klikSjRsEYtUD6uglisGuePWLK9eumFWHMQxXjl3++kd128ip9JEKZHW+v3Vb3L4gkMKboevmfB9kpw38wzfllrLeRpRreishjvA8SP+53bvy/Wr4bwB++Fg1d9J0b5mOUl3NEMktP8B+4eTqqXxxG1b2Z5Jc0Lv1jm5q2G8jGqwYedDfWE3HKw686VDFdKrlxOLOLN7Y2Fn9MfhtDKuUAryp59lOefIZ+dMM14pyJRj3H7N0wzSRlGliGs5WthLmn4S2uwfszNRZmvOk4LbFJEgNjsohXuKVl0hzj1FyzstNU7e6ZK6YepAljXXn3SZG3YCkh6wiQZNYuEKsaBJ+sTl7g3VubFGw4dnUNt0+/M8u7ubkxdunrEnUk6XqhXwj7cvmWHKZoii+2vJDGHZun9dRUMVosEqzatWEPUKcm5YCwXtOXFtZQsh7rg1y2uOXj+nCm71qlaA/kKSP335GQZVO05X1AllaQYIanMjgB6M2RrExKGbCd8nyXmzw/DxI07OS9aNH3Fz3lWr/EKcfgA5z/QG7NcVTfKG0yALaIpoqEIsVCEWMkmvXlFXPHHuy1N1KuVMsnNvjEd+38+qeVvomAMzfCdSpar7Oa9YCVM2w37OM6ohbKUR0qvEQibRkEk0aNK8egVRN9/NtaJcuaLz+//NcdYRm+bsqkijGmRPPsUd1z1LRrWiU6VZ20sL/TQzcFg3WWdrzpOC2xSRIDa7WUpv3KrgblewCRClSFzLc+blx/vbUsczvLfh87tH2zuFkrBfPClVQ/5NFSAaNImETGJB01/NFHFXMkVDFuHQ3CicDPf4716mUIlw4vwt0/1SZpWqFWi4hkrDfi1XQ1QtnYCmiLjXVkSvEgmaNK9e6R6e4MyH8Q5SmIk/DJQrOs/f+TybBzpY1NLP0o7d0/2SpoQ3lPf312xgiDbKKk5KG6KFflrYQ1ibm2F0LLM1iIlDNxO+T5LzZrf68SNO3vPGjwSJuoc0nHn5ce6uhxKxkHlAecsekfOce7CX98puzosETaLBqtskM2k5cSVRt+kaDVtzdpXciztSbLn/JU5b/MJ0v5RZQymoWEGMapBiJdyY86ohjLqiXFC3nJ8h3OuradUKJ9eFnZznZbyZuiuiamns3Btj/Z07aYkXOL5323S/pClh2xqDpTh//MIGBlU7JmHS2gAt7CHN3sOuyTpbc54U3KaIBLG5yVCRYeEsQZl4w/Des688gVS0NO5DGkZj2xrlatAJZlW3WOKuYiqbYUqjFE6cG2uV9OqVRCNV50Qi9+Y6E08iGotS8Nhvt1I0I6xZ8NJ0v5w5x7I1/5oqmSEqVSe8Vawg5Wrtz6YVBCCoW4T1KmHdIqhbRPQqqRNWEArahHRFMGgTcgc5B3WboK78Xw/lhwTL0qhUA1SqAYruQSMDjz3LYDFB0QzTEi9wROueOXHC7cEqVkLszjdxx/XPkVPNJLQcreymhT2Hxdy32RrExKGbCd8nyXlzU0WFGw/jIkFZxdH88SN5zr7y+AM+pGE470AlpwAXpFyt/9W5P5tWEM3NedG6BlnLiSvdwkmtMDebch7Ac9uaePmBlzhjyfPT/VLmnEpVp1zXfDWsIJWqk/EMM+gW7ZzCXEBThPQqkWC1Ie81rVpJSLedjNeQ85yMpwfUhDRkq5ZGxQxQqgTJl4IM/PkZMuU4mVKceNhgcWs/85oH52TReTyy5Sh/+Px6BmmnqJI0aYO00E8ruw+LuW+zNedJwW0KSAg7vOx7eG/jIQ3eoQoTcePwCidep9SohjCqQf8GW64Gqbg3VD1gEwmahINVN7BVSR5/DJGQRdjtdoV0Z2VTODj1q5qUgmI5yO6hKJvv3YJhBTlx/haaonO/aDBT1XdSK9Ugpq1jWjoVK0ilqmNazmNVy3m8ajunsFm27n+OgKYIBGx0za4dV68pAppCc5fIK6WhcP47ct4CVC0d2x0cHdQt4qEK8bBBPFShOVaiNZ6fs1tID5a3JeH26zaRVS3EtAKt7KaV3XO2+DZbg5g4dDPh+yRZ7/BhK80dP+KelOrmvAqRUQ9pSIQqE3Kqom1rzsqlaoiyGfRXqjtZL4xRrRVO9IBN2M13XtZLnbCSsLsbIhKyCLvFk3DQnpYth8Wyzp6Mk/PyRoRV816mLVGY8tchHFUr4BfjKlZw1IxnWrW34RlPD9gENBs9YKPXZTsNhRZwMp93+IcClO1kPFtpfn60leYXlRNhg0S4QipSpjWRn7NbSA+W12T90/XPk1dNpLSMn/PmavFttuY8KbhNAQlhAoYP700OO6TBGd575idPOKjhvQeiUtX9G6q3ksmohjAt3V/JZFRrxRMAPWAR0i2CAZugbhGq+3P8uGP8DlcgoNwulyKgOTdW54brPLf3fxtbadi2hmVrVN1VS7kn1lOxghTdUzqV0miJ5+lM5pifHjigGSpiZqlabvFNBbBsJ1wpt6Dm/0qt6hzQbL8QF9BUwzV3uHY1D4VpBdiVa/aLb3EtTxu7aGPXnAllkxHCYPrzgxif6f4+Sc4TAFUVrFsNN/KQhhgFzvrk8STDBzd+ZLxMK4BRDTkr1d0VTF4RpfZ7p5hSy3k2QS/buffcYMAmGLBJHL+yIecFNIWu7z/nKeXkPNMMYFpuznO3P+YrEWwVoDlWpDOZY0F6rzTOZiGlwHIbrFXbKZhZdl3WQ/MbqPUn7mqokTnPXVEXDMzN8TiTqWwGnZznFt+atEG3+LZnTm07lYLbDCZBTMxU9Yc01J+U6gzvrRLX8sQocPaVJ7gnmx78doWDfX1OQBu+csn7vT7qjXZkMcXh3T+9rpcesAl5wU63iASrxEOGcyz6BHWEhRA1larOrlwzf/zq8+RUM03aIO300cIedG32/rAjBbfD23R/nyTnibF4hzQ07HxwD2kIYPs576wrTiAVLZMMlwkHrSl9fd5KJi/jefnOtGoZz7L1hsbZeHNeIGATClj+GIqwXiUerrirlwxppgoxwcpmkJ3ZNLff8AIllaBZG6CDnTSzd1YfuDCbc96kFtyuvfZabr31Vp599llisRhnnHEGX/ziF1m2rBZMyuUyV111FbfccguGYXD++edz00030dXV5X/Myy+/zCWXXMJdd91FMpnk4osv5tprryUYDI7rdUgQE7ONpQKjFuIqRAhj1ALaVatpipYktAghDpgXyv5w/WYqRGnVdtFBHyktM90v7YDN5iA2m0nOc0jOEweqti21MecZRAlRqTVc3dNSE4cwB1gIcXgqVML89upn6VfdWOi0a310sJO4Nvu2bs/mnDe+JHOQ7rnnHj7+8Y9z8sknU61W+T//5/9w3nnnsWHDBhKJBABXXHEFv/3tb/nJT35Cc3Mzl156KRdddBH33XcfAJZlceGFF9Ld3c3999/Pzp07+cAHPkAoFOKaa66ZzJcvxLTRNZsEeRLUDYDXnO0K9VtSf3/di5RUwj9FK6YVOOOy49zVcAbJsCGrxIQQo4qGqixp6+djn0uRKcX47TV9bFLHE1IVOrXttNM3p7YiiIknOU+IgxPQFHEKxKn7wdfNed58uCJJ/nDd8+5pqSEibs6LU+Csv1/tF+Kk4SqEGE0iXOEdVx+BUjBQTPC7L+xlvTqJGEU62U4bu2b17obZYkq3lO7Zs4fOzk7uuecezjnnHDKZDB0dHfzwhz/kbW97GwDPPvssK1as4IEHHuC0007jtttu4w1veAM7duzwu6Hf+ta3+Kd/+if27NlDOBze7/NK51PMdRUVpkSirhiXoKQSKAJ+Ie7My48jGXYKcXHZrimEGIVta/TlmvjdV16ioJK0abvoYjsJbWaf/jqbO59zieQ8ISZH/Rzg+hVxNgH3oAZpuAoh9q9qBdiZTfO7r75ERUVp0/roYjsxrTjdL22fZnPOm9QVbsNlMs42ldbWVgAeffRRTNPk3HPP9T9m+fLlLFy40A9iDzzwAMcdd1zD1oPzzz+fSy65hPXr17N69eqp/BIOmIQwMRXCWoUwFZoZ9B9TgEHUD2cPfO1x5/cqDmj+ialnXH68FOKEEAAEAore5gx/c3UL2XKUX39+FxvUiSTJ0cMW0trAdL9EMYNJzhNicoQ0k2YGG3IeGhgq4ue8h298bNSG6xmfOI5E2JBCnBCCoG6zoGWAv726icFinF9fu5en1ck0MUgPL9OkDU33S5xzpqzgZts2n/zkJznzzDM59thjAejr6yMcDpNOpxs+tquri76+Pv9j6kOY937vfaMxDAPDMPw/Z7PZifoyhJg1NA2ilIlSpoW9/uNOIc4b4Jvg/q89QZk4JRV3A1qRmFbkjE8cRzLiDLWVgCbE4acpWua9V8/HtAL84jNbeFGtIESFHrbQxu4Zc4rYZHU9xYGRnCfE1ItoBhEM0tSaIQqoUCvEPfT1vzQU4rwVcTEKnP33q/ysJ1tThTi8tMSLfODqHoxqkF98Ns9z6jiiFOllCy1a/3S/PN9sz3lTVnD7+Mc/ztNPP82999476c917bXX8tnPfnbSn0eI2cgpxJWIUqKF2v9Mh6+IGy2gRetmh3iFOBniK8TcFtJt3n71UVi2xvZML7+5LshObRHz1Yu0aHv3/wnEYUFynhAzg6ZBhJGFuPoVcd6cuN9+ZQtlFadK0J0RV/QP5XJWxZUJSc4TYk6LBKu88+olVK0Av/rMZjarZWxnEQt4kWZtcP+fQOzTlBTcLr30Un7zm9+wdu1a5s+f7z/e3d1NpVJhaGioofu5a9cuuru7/Y95+OGHGz7frl27/PeN5lOf+hRXXnml/+dsNsuCBQsm6ssRYk4aa0WcF9DKxP1i3G1f2UxJxakSIoxBVCsRo8CZV6xyjnqPGMRC5vR9MUKICacHFAtbBvjYvyf4xaef5UW1gjgFFrNxxs/+EJNLcp4Qs4O3Io5hhThvFrCX9f5w3QuUVYwKEUJUiGolohQ464oTnJwXdnLeTFnpLIQ4dEHd5qKrl2HZGj//9FaeV8eSJMMiNhHVytP98matSS24KaW47LLL+PnPf87dd9/NkiVLGt5/0kknEQqFuOOOO3jrW98KwMaNG3n55Zc5/fTTATj99NP5/Oc/z+7du+ns7ATg9ttvp6mpiZUrV476vJFIhEgkMolfmRCHFy+gDZ8dYqqQG87ilIlz5/XPUHaPtdewiWlFohQ5/RMn+PND4qGKrIoTYhYLBBQXXb2MqhXgJ5/p42m1hl5eppeX5Ievw4zkPCHmhtFmAdefmlp2R5Hcff0zlOpynlOIK3H6ZceTcLemJsKGrIoTYhbTA4q3Xb0U0wrwv5/ZzVPqFObxEj28LDnvIEzqKaV/93d/xw9/+EN++ctfsmxZbahsc3MzsVgMgEsuuYTf/e53fO9736OpqYnLLrsMgPvvvx9wjotftWoVvb29fOlLX6Kvr4/3v//9/M3f/M24j4ufrtOrZJCuOFzZSnMDWq0YVybub1vwVsVFKXLmFScQD1WIhytyaIMQs1CmFONHn99DWCtzJBsIaVO7unUyZ3tM9+mXM93hnvNAsp44PNlKwyBWV4yLU3YP5qoSalgVd+YnVzkZL2yQkJwnxKwzVIrxo8/3E9FKkvMOwqQW3LQxSqDf/e53+eAHPwhAuVzmqquu4kc/+hGGYXD++edz0003NWwj2LJlC5dccgl33303iUSCiy++mC984QsEg+NboCcFNyFmjvpVcd7hDWUVwyCGQiNMmZhWJEKJM69YTTxsEA9XiAVNCWmzhG1rZMoxckYU09Kx7AC20lBoPP6NB1nziZMJBmxCuoUesAkFLMLBKsGARUi3pDM+C1WtAD/4TB9lFWOl9hhBrTolzzvZg3Sl4LZvkvMk5wkx3PBVcd7vyyqGje7OBC4SpcQZV6ySpussZVoBsuUY5WoI2w6gAKU0FKABQd0i5OY67/dh3ZLv8SxlWgFudnPeCu0vU1p0k4LbLCBBTIiZTynnVC1/NRwxysQwVByDKArND2kRSpxxxWoJaTPQz/51EzvUYkCR1LIEMQlgo2HjxDCw0LEJUnXfLBVyfiWIQkNDEaJCSDMIUyFEhVMvP5Fo0CSsV4mGnF8jwaosbZ9BlILv/9tuFBrLtCen5Dml4CZAcp4Qs0VFhYflvPiIpmtUKxGhzBnuyrhYqCKnqM4g2XKUn3x+BznVTBiDsGagUwUUGqChUGhYfsYLUiWEhQ5AwHuPZhLGIITBKZedRDRkEglWiQTdX/WqZPsZRin4f/+2iypBVmiPT8lzzoWcN2WnlAohxL7Un6o1fIaIUs4Jqt72BYMod1//jBvSon7HNKKViVDi9MtXEXOLcTH3Bi4m39bBVvrUAo7SnqaJwfEXw+o+rqqcgGYSoUIEkzAmYR742uOYhKko57EqITQUQUzCmkGICmEMvzAXDZpEQiaxoCkzA6eIpsF7Pt3DNz9TpkCShJaf7pckhBBiBvFmxTUxVHtQa2y6GjjZbu0N693GawwLnTDGyJwXcgpy0oCbGnkjwnc/l6NHG+JIbT1hrbL/v+R+X2zlFeFC/ptJmAoRHr7x0VruU07uA/yM5xTmKpxy2Yl+Yc77vod1+d5PFU2D936mh29+ukSGFjnBdJyk4CaEmPHqT1AdXoyDWsfUIEqZOPd97UknsKkoJmECWG5Bzu2aXrGaaND0O6eyhfHQ2bbGr67bzkLt+UO6AQc1Z91blDFOQ6oLbhUiVN2CXMUNag987XEqRKmoCBXC2OjoWE5Yc0PbKZc5RTm/ixo0iQalkzoRwkGLCAYVoiSQgpsQQoj9q2+6wrAMUXdIl9d8feBrj/s5r0KEAHZDzjv9k6uJhky/IBcOWtPydc01P/ncNjq0MvO1zQf8dwOaIoBJiP1sRXQLsF62M93m6/DCXEVFqRIkgE0Iwy3mOivmTvvkSU62C7kr5vSqNF8nSFC3SWg5DGKM+G9VjEoKbkKIWc/rmI6ggaUCVIg6XVK3a3rP9Ruc0KZiVAm6BRkvqBmc9skTiQadFXJRtygj3bN925FNEyBPK7un5PkCmnKLcvsuzFVV0C/GeYHtzzf+2f19GNNdMafQhnVSDU67/EQierWhMCfzR/Zt21ALFUySZKb7pQghhJgjQppJiAyp4fcWzWvANea8dTc8TdnPeaG6xmuZMAanXb6aWMjZBRENmbJ9cRwGi3GyqoVV2v2T/lyahpvSKkBujA9yMr5JBIOovyPCWx1Zv1rOJrDP5qu/nVWug/0aLMbJqTQLteen+6XMGlJwmyQy10OImUHXbGIUiVEc+U4NLKW7HVOna1ohwr03POUW5JwbuIby51SEMQhT5vQrnO6Zs2X18C7KDRbj/PwruzhCe37G/Rt4K+biFEb/gFE6qV6B7sGv/aVWqFMRqoScz4npzpir+NscTv3kGsJuWAsHq4fVNgelYLCU4JfXbiavKizVnp7yE6yEEEIcnpwGXIkopZHvrMt5FSJ+zrvva09Sqct5zvy44TnvxIati4dzMSZvRPjRNf3M07bPqPu7rtnoY33vwW++mirUUJAz3eZrhbCzgs4tzDnN16qf8UJUCGE4Ga+uAXs4zhEuVkL88urn2a16WaQ9T1wbI1eLEeTQhEkiBTch5gZv62KFqNtri7pv3pL2iF+Uq92gnWH/p7orpMJzdAhsoRLml1e/wB7VwyLtOTq1HdP9kiaVrTR/5kitQBd235yCnHc9eMOBg+72iaBm+oW6ky87yT2V1fZXzdWf5jXTA5xla+SMKLlyjLu/+jQZ1YoiQKe2nW62TlkYn+xBuiCHJswWkvOEEAfLmx9Xn+0MP+s1roRvbLYZnPqJE4kGaznPK8TMlQMeSmaIX/37JvrUfLq1bSzQXpzulzRplMIttdVnu3BDzvMKc1V3zdLwjBekwiluxgvpFmG9Sli3COnOn4MBe8ZnPE/ZDJItx7jrS0+SoZWiStKi9TOPzVNabJsLhyZIwW2SSBAT4vBhK82/GddvX2woyjQMga11z/wizCdOarg5OwUZyy3GzIy5E2UzSKYc5+4vPUGGVkoq4d98Y9ooKwgPY941URsMHPLnzZmEsLzHVcg9vSuITQAAHYsgJrq7Oi9AFR0LHYs1l60hGLDQAzbBgE1As9EDyunyBpw3TVPOrBRNoeH8CqBpjbd7pTQUGko52zJspWHbAap2gKqtY1o6FStIparz8Df+4s/GM4gSxCSh5UiQo5kBUgxNeYiUgpvwSM4TQkym2kr4aMPc2IaCTN0qKR2rYZVUENNvtoV0i4hbgJlphRijGiRbjnLnF58iR5q8aqJZG2Aem0lqY2ztPAzVN2CHZzzvcYugn/GqhNwzXJ2fAXRMgloVnar/Zx2LNZ84maCb7/SAhR5QfuYLaKr2q2bXcp6m9nvtKOUeWmEHsFQAy816Xs4zLZ2Hrv9z7YA6dyt2jCIJLUsTg6TZO+WrG+dKzpMtpUIIcYgCmqob9jsGrdY9qw9o3p8f+vpjVL0/K6d7ZhFEoaGhajdl9wbtFGCc36+57GS/2KK7N9+Gm3LAKbyMRqFh2c5N2FYatnJuwEY1yJ+/8SgmIQz/NFibGIMktRBdbKNF6yeoyQmwoxnXNQENJ7RaKuCf4OX8Gqz7s46NzqM3PuKW3pwCnY3u/Kp092MCKAIoNL+ANx4aigA2AfezO8U+E+/M2BgGafYS1gyiFMd3MpkQQggxBzTOFBvrg0bLebVCzMM3PurnvKoKuc23sXKek/G8VLDmsjUjcl59w208Oc9WAf9Xr9DyyI1/pupusyyrGDY2UTIktQjt9LFUe2pGbSGdKQKa2v/1AMMynu7nOtM91Mu7Bpw3nYe+/hi2+3vvMVvpjXlvjGzntlAbHlPuo3Wvwnn9/jOYhDQTnSphgsTJk6afqFYiRhFdk8NGJoIU3IQQYopoGm4fzISxZoqBf4NWioaCS5UQNrUbtne7fOTGR7HQ/ZJJ/U1ZqQA2Gt6t2LsZezdgzftIzfYLLl6RJYxJghxhrUyUEhFK/mopMfGcWSTjCHCjGaO7qVR94Br+QcoPaDOhsy6EEELMZgea88ApxJh+o23snDc833m/P9Ccp2H7Oy3CmMQp1J3wWkLXZsauirlG15zvJhjs89oYblg+Uwq36Ka5Tdb6BuvInBfAdt+jnEKbfH+nnBTchBBihtI03OLXIawik0LKYU3TcMO3FEqFEEKImaZWiDlIkvMOK5oGultEO6TrRkyZ8e83EeMmcz2EEEIIIeYmyXlCCCGEGA8puAkhhBBiVpmKQbpCCCGEEGLqzaWcJwU3IYQQQgghhBBCCCEmkBTchBBCCCGEEEIIIYSYQFJwE0IIIYQQQgghhBBiAknBbYLJIF0hhBBCCCGEEEKIw5sU3IQQQggxa8ylQbpi9pHGqhBCCCHGSwpuQgghhBBCCCGEEGJazbXGqhTcxKSwVABThab7ZYg5zFLyvy8hhBBCiLnIVtp0vwQhhDhkwel+AWLusZXGenUyJeJEVYmkliFBjiQZ4uQJaGq6X6KY5Z5Xx7BXdRInT5IsCbIkyRKjgCb5TAghhJhU/aqLAimaGCLFEEGtOt0vScwhW9RR9KkF/s8PSTfnRbXSdL80IYQ4IFJwExPuZY4ioFn83afDZMtNDJWWcO/X17NdLcEmQIwCCXLum1MkkSKcGK8+NZ+sSvPX/1+cQqWFu7/8JP30sEUtRQP/uoqTI0mOCCUpwgkhhBATJKNa2KyW06L1s1UdSZkYcfKkGKKJQVJkpAAnDtqA6mCP6uUDn0phVFu4+ytPsYv5bFZJAsomqWUaGq5hrTLdL1kIIcYkBbcJJIN0wVI6u9U8Lv4/SSLBEh3JPB3JPEuv7gCgWAmRKbex9suPs5dOtqoj/SJcnBwJ8iTIESOPrtnT/NWImahPLeBt/9hJUzRLU7TMu69eBIBSkDOiZMud3HPdU/SxgJJKoqFIkHOvrxxx8rISTgghhDhI2ziCN13RzZI258eIshlkoNjKXV/J8bJaikGUGAWaGJQCnDhgO1jIm6/qoi0xAMB7rl4IgG1r5IwoQ6Ue1l7/FFvVEZSJE1QmCS3X0MyXIpwQYqaQgpuYUHvowULnoS1HEQmatMYLpGNFWuIFUpEy8bBJPJzhnVcv8f9OoRIm6xbhBmlnm1qCRZCoKhHXnAKJVygJaeY0fnViug2pVsrE+Mu2RSQjBq3xAi3xPC3xIrGQSVO0TFO0zHuvng844SxfiZAtd7L2uifZxXyKKgFAnIJ7bWWJk5ftzkLMAnNtkK6YXaSxCnnVRE41kStH2Jltpi2eJxqq0tuc8e+9ZTPIYKmVO7+c9QtwtRVwQyTJSJ4ToyqqBHnVzIa+HrYMtNOWyNMSL9ASKxANVWmOlWiOlXj/1b0AWLZGtpwiW57HuuufZEB1UCaOrqoNRbg4OaJaeZq/OiHE4UgKbmLCKAXb1WIWve0kVp/bzE/X/pZv3vJb9gwNsqhlHh865e2cuKCLdKxILJTl+rv/yK+e3kTFsnjV0gV85R/PoTMVB5ywtnG3xv/3uwd4ePNmwoQ4nqM5XzuJVKBQVyyRLYOHk356MIgyLz3IPYXn+eb3fs7eYp6FLfP4yGlv5eSFHf719eW77uAXTz434vpSCh55OcvX1j7OA89sJo9JmiQnaSt5hXakH9C8rc/SlRdCCCEc21mESYS9xRS3/OUxfvrE3WTKWZa2d/Hvr38lrzyqmWioSgt7eXzNi9z65PMYls0Zi5fwqucXk+H/Z++9w+S663v/1zlnzvS6XatqW7bkLncbbNOMTXAChIQQSgIJITf8CGAbgklIKHFuHDcwEALhPjchN/eGEEhiEgIBY+OGKzYukiXZsq2ulbRl+syp398f58zsrLSruqttn9fzzDO7O+3Mznf3+z7vTzuZBikSqo7Lbr7rP8UmiiTQeYOW5X16D4aIukXLfpZgEaM7VeNRaxNf+/txnff7l729rfOSZplb772Xf59E53m+xuPbGnzlwQ08uunlUOdluFBbwxv0VWHFQ5kUVeLU5RxCEOYQCzGwKmP+hGnDIsEovTi+zjd/9BR//g//l4/9+q/x4Ff+nCsuWsWt9/8NuXPyOJ7Bp/7zEb6/YScfu/L3uO0tf8C2UZt3/+PdOF6wJE3D5v/77neIGE1+8odv5+/e93peSL7A3ss28frrT8fBZA8reE5dzJPqSp5X57NVncY+tYSqysgEywWIo0x2qZUM/MqF/HC0wl/84z/yid/6DR7+6ue54sJV3PzTrxNZ08dYI8V1//5z/uO5XXzidb/Dl371g2wfs3nP//0xSoGmwQv7d7E8H+Eff+8aHv/Eb/IX77iQ+yNPUH/DEJd+dB0lgv40T6oreNq/jBfU2exUJzGmerBUbLZ/FYIgCIJwwlEKhtUAq95+LttTL/F3T/wHn/u9t/O9v7yFk7uX8L5/+jf+9ZkVPLF9FR/5t6f44cbt/N27rub7H3wrxUaJ7y17lj/4iwwf/pzJW/5ogK/7j1Enxvu1X+Wt2mv5karxDb9JUyVm+60Ks4CvNHapk+j/5Yu5p1Q8SOf95b1/i35aP8O1DB/5t6f43nO7+KM3vJ8vv/332DFm8d7/+2MADF3x0sgOVhSMts7781+/gPuMJxl93RgKnb0sZ726kJ+rK9mgLphwDiHTUQVBmE4kw02YNkboo6Yy2K7Jf6z/L3718jdy3qlvYed+k1+/8ly+//Bv8a/3/5QPv+013PO1x/i7T/4Brzv/1ZSqURKmye9864t8/WdJzl06yKa9T7N53xjffNdvcHKPztmDPfzJGy/mc//9KJ990zree0DJYMXq5YHbn2GEfnao1XgYxFWdpFaVktQFQokCVZVF1xR3PfFD3vrqqzl9xdvZsd/gPW88h/969H384NG7+cO3X8lPv/Eo3/jEh7jy3MvZ++hmPnz5u/kf/3Ibf/OzJBcsH+DC5QO84bQGuXidZNRhVVeWJ7YPcf9Lz3PD607l1Jv6AHA8nXKzl3JzBQ/d2Vmq4IVra7zkOU5dSlIFQRCEBcsYvZRVgZod5+v//mPecP6bOXf1W+jNN/nmzX/I2b97HTviT3HeuW/me994mo9c8T4c/zx8VeNPrurh7X//dZ7YPsRFKwbYMLSBIa3G85/6NbqSaYqNU3Bu3sO/qxc5z38jMc0no42XoCa12my/fWGGqZJjTHXToyvu+vkPeMurr2bt8ok674eP3c1H334l9/2vR/jbG/4/Lj/ncvY9/gJ/8Or38qHv3MrXfxbnohX9XLaqlzetbZBL1DENn1VdWZ7cMcRDL6/neze9FQgM5Kodo9Ls4f7bn51wDtGqcmi1HElRwdC8Wf4NCYIwHxHDTZg29qlBCq85l2Zvjs3/sYHfePuHKFx6CivSLrW6wSX/cQ6PPP8S2dQ6HNejOxeYbfm0xTt++1w+c0835rKdnPfG8/nh/62xqmuAHaUzeHnUIBW1WJpLUrEe4IntdS5blUXXFbqu2n27Ws3zARqOSaWZp2LFeehL69mvBmmSwFQ2SW18MEOSmjTQnydUVZYKeWo9q3jxpfW8913/g+VvWEnUVBRLBhetOZf7n9lKInY+juuxsv9SlNJYe9VJnBfz+Iv7uvH7hzjlikvY99gLvDLSS8WKE9E98ok6u0o6CTON5UaIRYIyUtPw6U7V6E7VOCnsFxKYvCnKzX4euOMZ9jPIVpUGtHD4R3XCRUpSBUEQhIXAqOqlQpbEyQO88l8v8tEbPoy/5nR2bXiBDa8UOHPVBTz47CucedKLuL7HH330AjQtz3BpCd5jGj2pAt96ShE1lnPvC8+ytq87bCXi05Ou8smPn8e3bn+e132oworCSu75qz2M0Mc2tRpd+WS0ElnGAgNO+q4uOKpkqZOmUjiJLS+t57fe9T9YcdVKzEig8y5ccy73/WIriWig805ZejFmRHH2NSu4wPT5y/u7sXr2s/TSVzH0+IvsLHbRcKKkoha5RJ09ZY1UNIXva+i6QtMgE7PIxKwJ5xB126RiFSg34zz05fXsUSuwiYW9pasThnDJcAZBEA6HGG7ThDTShf1qCb5r4g7G8X2Prq5uXno5Sr0RJ5P2SQ6uZuvGx8msVZimSfr8CxndtImXd2ewXZ1krJvNO5q4vkbDHubkVV1c+64MTdugWO1m24PDADyyNU3VPpN0uIFm4w1y8QaZWBNdD8RXwnRImA59mQqn3NQPgOvpVKw0FWuQB7/wLHtZHjbQ19pTUpNhRCtBTYySOcYQy+m6/HR8dwTf94gnennm2QS+r9FVcMmvOoWdGx4jsxZM0ySXSvHKnijPbOkiHvVIJ7rYvrdKNumw/JeXomngeRqlmsl9T5e5+4UN/NkbP8hPXzyduGmTizfaa6sVIQUmmLytyVlKQd0ZH/5RotAWaDHVIKnVOjItK8Q0azZ/lYIgCMJRIjoPhhmg/7VnsCOSx/M8RkcHsW2NnstOYUXKY8mmVTz18AM8udklYpi8sHMlffkG/YUGq9/ex8p78ySWeCSjFtvGXCJ6L/dvWUN3qkpXskomFmi44VqN85bV+I2bTgaCQFepmWCssYz779zALnUSPhoZSmQokQ4vMt1+fjOsBshdfjZ2qPMSiV6efiYoLy4UPLpWncKuDY+RXhPovEQswws7YlTqEdIJl0yii90jZfryTU566xIALFunWCvw43+9mx9tfp5PveEP+MkLZ5KJBcMXsvEG+USdVNRqB9+DAW8O/Zlyu+LBciNUmlnK1ioeuvM5htWSdiA/pU3MhJPe0oIgdCKGmzAt1FSa/SwhU1jO9nIwBXJno5/+wSX0JKFaBd/TaDQ1Nr0QRykN19UoXHQaS7MejqNh/FMMpeClXVl2DycZKcd48oVuCmmbfNrijKtWwlfh4tcmuOKcDKVaN/se28TeSpYX9g/g+zrpWLNtlGQPMOEihk8hWaeQrLcnaSkFNTtGxWoZJV1TGiUJarKJzhKuirBbrUR3o4ykAwN1VOvjlFMH0DQYHtOo13WqVYOXXo6hlIZ92hksz3tEo4py2UD9XYK6FeHxjb34CnIpm66Mzd6xLXz0y7fwp7/1Vm58z6U4rkaplqdUjbL3iRfZUeyi6URJRq22+dZaY0a4tjQNUlGbVNSeMIHXdg3KzWyQaXmIktQkVRLUJFovCIdgITbSFYT5gqNMhtQyTDvKylxQWhcZ6EYp2LAxjudq1Oo6JBIsPb8L7d/AOPM09m/YzOYdOUzDp2FF8HyNtVedzOCmOM7eGudf08/uR0psHe1luBbs79vHutsTUKMRD11Xbf128k197VLAsXo/931hA/vUIA5RUlTIUAwvJQmcziOUgp3qJGw7hpMYAIJWNSefFui8TH0H1Vqg817ZGgMFnHE6JxU8dE1RKhtof6Mo100eeHYg0PwZi0I60Hl/8qN/4U9/66186j0XUWtEKNZ62PvYZnaWCmzcOwioYAJqPGg3kks0SJjjbWhiEZdYukpPusrJNwXH1wrkBxNSn2EPK2ioFBoq1HbjmXCi8QTh8CxUnSeGmzAtVFWGisqRAWIDA+i6Qb22lx2vaFhNjUxesadSp3vpclaefxru/7YZHqmyZ6iAZWtk0j7DIyP0XH0tp/zSSk5/aQU//snL+GvWtrPgduwPBF61sYzRSoxC2mbJmztSwJsGxVo3+x7bzJ5Kjs0dJlxnplI6arVNOE2DdMwiHbMOMkoqVoaKFefBLz7HGD00VbJjE612GCVViarOMDUyVFSefPcS+s9YjqYbjOzfy8bndAxD0dUDo1aNvpXL6F17Gq5r8+KWBp5XIBpVFAoexdIwq97yS6z79aXUajqlss7Ge3/Mh77wl7z+vF/m0jN+m6e32IHBm7E4ebDCKW8LRJVl65RqBUq1KPt+/iKvjPRie5GgTKGVCZeok4k12yYcQDTi0RMKtEOVpNZVGh+93Xews2+I9B0UBEEQZps6aSoqR1f3ICNqFbpu8PIL+1hx8qV0nQGuA9VvD5NI9LF7aDmO41CulDnpitWsTPoUiwajt42haf385MlBLHcJO/ZvwzAU57xpBboOL+4chn+C7mSal4f7eMZaQTrWpCtZpTtVoytZxTT8CaWAv31TkMnUcExG693cd/t6dqjVNEiSpNo237KMyX46h2mSZIxekt0D9JwW6rzhTp23gjG7Rt+KZXSfehqO6/D8pia+ypNM+BTyHiONOqdcuJrz3zFIuaxTLBs8de+P+eiX/oo3XPArXHHue3l+a6DxurMWS69dDoDvQ7VhUqz1s/exF3hpuJ+qHcM0vPD8oR6eQzTaLUdgYiB/5QG9pcvNPh644xmGWUJNZVBoxKlLXzhBWITMG8Ptq1/9KrfddhtDQ0Oce+65fOUrX+Hiiy+e7cMSQoYZoEGSojlAbDhKz+AFPPro/ay44NfRXNgz6rP+qfu4+PIP4TgXYERMHn1xE1e/5VdxXdi0/gX27d9NIX8x9z2YJp2+hBdf+gb1xjAnv3Y1K2OKX/zjI6RSaU4ZXM62vSmeezmKoStyaZtC2iKftunJWgy+eUX7uGqNCKV6N3sfndqEOzATDgKjpDsS9O5aNcEoCQY0PHj704zSyw51Mi4mcdUgpbX6wgUXKRucPsZUNyXyxGyDZzal6Ft6Ac88cz+rX/Xr1Cvg+xZPP34fl1z5IVLpYH1t3L+R11zzq1RKsG/L/Qzt3Y1hXMpDD6coFDzGxjby0b/+HO/8zV/lk9d/glLZwHh+A0NjCTbvyLWz4AoZm3y4xvoKTU5dFkTgW6XOex/dxP5ahi3Dfbi+QTpqtQ24bLxB9oC1NVlJKoz3DGn1HdyrlmKRIKqs9vAPKVcQBGGhIjpvblNWBSrk6NLA6E2y9OQLeOa5+znnwrey7SWNVMbjiV88zlt+8w+46FfegPEVkwcfeoz9+3+ZaFTRaLzA0Ogw17z7dZx15lK2x1/Pt37yL9z3C51UYildGYuf/uIRMskEb3/vecSiJrajM1rpYtfDL/DCvgFqdoxMrElXqkp3skohWWu3e0iYDktzxXYFg+VGGKsv497biuxmJVvUmcRVg4wWDGHIUCKh1WfzVyp0UFFZSiqPZkfY+FKg854OdV6tPK7zLn3Nh8jkA533wujzXHHVr1Iuwa4tDzC0dzdwKY89kaSr4DEyuonrv/5Z3vmuX+X6P/wjSmUD7/mNvLQry9N1k3jUI5+26cpY5DM2y3pqrPiVpUDQcqRcN8NqhxcYKuep2TFiESfMhKsf1HIEDt12pNLs4v7bnpnQdqSzL1xL40lfOEFYWMwLw+3b3/42N9xwA1//+te55JJLuPPOO7nmmmvYvHkzfX19s314ArBXLSN91ircVBZN7WPVmR/gyXs+SjJzISetvZgNT9yJbde49K0fQBk9XP769/N3X7mR4mg3he4Md/3z9aw561IuefubcRxInPQbrPiXm7nx0zfyq2/9E5rNvXztf32ZX3vbeyi8+iyWJhW+D5WqTqlkUN+8kd3DSWrNCKm4G5pwNvmMzUChweC1B5twU2XCtYy49AHZSp2b6G/etKr986YToWJlKTdX8bMvPcuI6peywWlmWA2QOftk9J5ums4wF73+en74f99PMnshq8+6mB88fCeOU+OCX/oAo24Pl1zxfv7m1hsZG+mipz/Ld775WU4/51Iuf+cvUSnBnk33cP2N7+PM06/k7LM+xMOPVchlPbpX9XPy8kJQahxmwdkbN7J5e45qI0Iy7pFPW+211ZdvMNCRZdmwAhOuVer84v7+tgnXWYp6oMELE3uGrO6YklqxMlSay8JyheU0VBpQJOnsCxesLYmUCoIwHxGdN/fZqwbJrjuFYmyA+lY457Lr+dE/v5/VZ1/I4KqL+de/u5Nmo8bAkvezZ2ee1179fv73//srPvH5U1DNLP/nSzdy6innUy6/mk2bXC48/wpWn3IK37j/y1z3h3/EE6+Mcud3v83VF76Vh55bQU/eojvbpDfXZOCXg0wky9YZqXSx55EX2bRvCQ0nSjbWoJCs0Z2qUkjUiYTmRyziMpAtt00Px9MpNvq595Z9DLOEbeo0DOWS0UpkWpNQZRDDrDHCAHXSZAtdNJwRLn7D9fzgH99PKnMhq8++mB+GOu+8qz9AT2+OS654P1+9JdB5vQNZvv33n+GMcy7l8t/4JcpFeGXTvXzij9/HGWdcyfnnfoinny2RzXp0ndHD2oECrgvlskGpbLBv4yZe2BkEWrMpJzDgwkBrIWOz6i1B4N1xNcr1aNuEaw1lSJh2W+PlEg2ysUZ7HcLUbUcm9oV7lhEVJC9ElENKq7QHvKWoEqcugVZBmKdoSqk5v7NccsklXHTRRfz1X/81AL7vs3z5cj7ykY/wqU996rCPL5fL5HI5SqUS2Wx22o9vsTfS9ZXGt73/QeVVb6PrvKW4+VF0HTY98Xesf/hvsGr76RpYx6vf9CVWn3sJhR7QjSb/+fcf5xcP/jOuY3HGOW/kl97+FXKFfvJdkC8omtY2/uaWj/LsEw8Qjad40xveyjvefiO1WgzTVORyHoW8Rz7vkUkHJQa2DeWKQblsoG3aRLEaw/M1simbfCowSfIpm1RiYl+PoBw1yr7HNlNuxik1k3i+3s5W6rwY+uH/ZDxfo2rFqVhxHrjjGRqkqas0HgZx6u2MpVZvOIlmHZr/8n6TXWf8CplXr0PrGUY3YONjf8eGR75Gs76Prv51vP7tX+KMCy8hnQPHbvIffxesL9+zOPX0N/KWd36ZpSsHKHQr/uu7N/FP/+t/HvQ63d3LuPPWh8jnPfI5j64uj3QqWFuOE6ytUungtVVI20GvkIxNPDrR9Ko3jaAU9bFNlJqJ9trKHCbLcirGx9jHeeD2Z6iHa8shShyZoCUsXGajt8dM6wchYK7rPBCt9wPvHQyd/SvELroAJzPKihW9PPzff82Gx2+nXh1i8KR1vO33vsTgqksoj0LBqPDd/3Mj63/xbTzX4oJXvZGP/emXiCcGGBuBTHU3L72yh299+9M8v+lRkokEv/72t3LjDddTrcZQ659nuBinXDfJJB16ck26s0EpoGEEe2XTNhguxdjz6IuM1NI0XZNsrEFXWH7aacAdyPgghhT337mBqsoHgxi0UjiMoUiKsrQMOUE86F3D82f8NtHz1xEdHMGMqoN03ht+LdB5qWyg8773vz/O0w8FOm/12jfytnd9meUnBTrvP//lJv7fNybReV3L+JsvPdg+fygUPGJRFWSh1TWKJQN940aK1WAYQyvQ2pUJSlGzSWeC8WU7OqWaSakWZe8TWyg1EliuOaGn9GQtR6bC8zUqVpxyM8EDX3iWOunxQKtWaw/fGg+0yvoUFg4LVefNecPNtm2SySTf/e53edvb3tb++fve9z6KxSLf+973DvscYrjNLHWV4h+86+DSK7FWrkSPjdK3zEE3xu+jFDTrOksHeymPQTINhV7I5Gnfz/ehUYWlWYfiKDRqGqmMIt8FuYIinQFdD3stlKFc0ig0d1EqBU+QywUmSSHvkc16GOHz1utaUC648XnGqlEq9aAUNR+WobYuUXPiphVkKwVGSdlKUG4mcDyDVIcJ15qOOpWgO5CGY1JuJqhYcX72peeoqzRNEkRwJkw5SobRLIm0BgMT/p/3h1ivuoaRwkn0rhwm2z3R1HJsjeXL+hjbD0YkWFu5boiYwe3B+oNlGYexUahVNJLpYG3luxSZbBCB9H2oVqBc1OiydlEsGmiaIp/zyBfCtZXx22KrVtMoVwy05zdSrEap1E1ipkc+Y7eHfeRSTvvkoEWnwVtqBmvrwKEfB/YbPBxBpmWcipXgoTufpaayk6ytikRKhXnLQhViix3ReXMfV0X4lvchnCt+icFXL6dsjgLgubB0aT9j+4K9t3cQsl209xfHhvIo9CUcqmWNbEHR3aPo6gXTDPq+FUchW9vF6KiBUtDd7dHT7dLd5RKNBoHU0bEIav1GRspxmrZBPm3Rm2/Sk7PIpez26zUsg5Hy5AZcqwR1KtNDKahYccbqKe7/4gYqKoeLSVKrkmWsXYYqgxhmhu96H2D/2qvwTj+HaG+RfN/E37Njayxd2kdxP0Si0NUHua5g3UHHOUTGYWyEoH90TpHvUhS6IZEMn8eBSgm6mjsZGzOo1vR2D7hC3qPQFRhwrfuWKwb6hg2MVWMUK1EUB7cbiUUnngMELUei7H00OH8oNRIHVTscjcZrBVrLzQQP3v40NTLUVaYdxB/PhgsMOVmjwnxloeq8OV9SOjw8jOd59Pf3T/h5f38/mzZtmvQxlmVhWeP9s8rl8owe42KnqjI0SKGnCjSaRbJJKI8a5HvHTRFNg0TKZ7S0F0/B2C4D1+lhz7bAGOkegGgMUlkoYkIXRNIwWoZ4w2Fol4ZSGrm8otAdGCXZvAIGSSqoV6FcgkhtFzt3mzi2RiYzngHX0+1ivu40+mBCKWpt0+SlqLm0TS5ls6S7MWEwQ6tvV7lmsu/nL/LySB+2G2mbcEHfriaZWGNCT4cWCdMhYbbKBoM1HUSzUlSaS3jwC8+wl2XUVQrQSFALI1m1thG32DbSOmkq5DCVTrYA5dEIyazXNtMAzKhiaN9elILGiI4R6WXvzsB461kCZhQSKRjxTciDmYJiGRJNh83rA6Ve6IJCjyJfgGwuWFuJcG0VS8DYLrZujaKUFkRF8y75nEd/n4s+cCoDgOtCpWJQKuvtYR+2q5NNOuTbJQpBhmUy3jiifoOZWINsvNnuCTeVQIubLnGzSm+6yslhE+nW2io3l/DgF55laMqS1IpESoU5zUKdXCWIzpsPNEhRJUdCg0bH5mtEYGhvsPfWhnV8v5f9u4N9N9sV7L3dA+BhEonD0Bj4rsMrL2pk84qevmDoUaR/Kf0nBQGvRHUH23dE2bAxTi7r0dPt0dPjknnDqSwhCKKOjEYobtjEy7uDk6PuXJOeXFB+uqy3zrKwD1dgwPWw+5EtrB9aiu2aZBN1uhJBCWo+UZ8wbbzVNuS3wymUNTvKWL2X++6osl2dSpNEOIihRDocxiD9eo8fS8UYUz2Q68LWDayiQSrnYcbGtY4ZVezbvzcw1vbrGHove3dAoQ96BoIAa+scQusB3YK9JdDGHHa8ohGNBcZbV09wjbaMwjLIOMH5g97cydbtUZ57XieVHDfg8gWP+BVrKcCU7UZScbcdaC1kLDJJh4GuiS1HDhzstmnfAErpYQA/mIra0ngHBkQ7h4R0trQJgvjjvX+H1HIs4sRUs2MAV0X6wgnzgoWs8+a84XYs3HzzzXz+85+f7cNYNIzRg0WMrKHQsz66ofDcqdNnDAMyBY+6sxeroZF2+9jyXBCp6lkCsURwPzMK+R6oY2IOBBlKO4rgOA4vv6CRSAWbZitDKZUBWEo/0GwEG6jT3MkLL8aoN3QyaT/IVAqzlVYsd2D5apYxXopaKhns2xz0cpiqFHWgq8FAV4PTlo83zy/VCpQ7JlharkmyZcJ1lKNOZsIZuiKfaJBPNHj3TUGfklaD1XKzmwdue3pCg9WYanSklQdZSwtZ8JVUAYsEpPMUx0ok06B8jWAm/EQ0DZJZn0pjL7ajkXH6ePHZicYbBMIs1z2+thpVMGOBKNuyMZiqWwijoqnM+NqKK6jXoFQEvbSLbdujeJ7WLm/uKrjB1wUPVp7CSqDR0CiVDPRNz7Ntb5rnXo4SMfzAfMtY7UhpKuGSSrjtfoNKQb0ZjK7f99gmdpfzbNy7pEOgjV8yseakGWuda6vVSHq8JLWHB25/hhH62KFOxiNy0JRUiZQKgjAXEZ13YimrHE0SxPJd7N07TNfAxNs1DdI5n4a7l1pZR6leRvbC4Kog2AVgxjrMtyQMjYK3JzDfcoXAfCt0g5ddTn4QklaQ/VYu72LrtiRGRNHT5dLT47JkwCGy7BRWKCiVdcbGIuzesJnntxaIRz16QgOup2XAhT246k2D4XIvux/ZwrO7l+N4EbKJOt3JKl3J2gQDDsb7br033D+bToRiYxk/vW2MIVbwskoTVRZprUQ27AOXoCYZ5EdJTWWokUZL5SmXymS7gz7Nk6HrkMr5VJp7sS2NZCPUeX3Qu2Q84y0aC7LgbEyiiaAyJuM6bN4wHmTNdwdB1q4egIMNuG07oqzfqJOI+6HGC84flg66MBgYwI7DhKFbm7bnUNAOsOYzQd/fZNybEGhVCmrNCMVqD3sf28yOYheVZgJo9YsOBzMkGqSik5tlE4P4Qa9L2zWoWBnKzRU8eOdzYV/pBIZy25lwnZU0slYFYeZZkCWlk0U+ly9fLqUGM8Rj3mv4xdr/QWXFuahMhXhC0b3EmRCZOhyOrbGkv4/iCHT3Q98yDrkJeC5US7AkHZSfAu3ywHxXUKrQiW0HKeTdzZ0USwaVarCB5kNzJJ/zSCYPKPubpBQ1YvjkUuNlqIWMhRk5+H1ath5MNwp7OpSbcZphY9VsR1PVbLxBNHLkje6DjTTo7fDgna2S1CQGHkmtMqGJ/kIpSX3Wv4ifn/lR7GWnMRaD7gFnQvbk4bAtjf7ePupVWL46KGc+FFYTqkUYSDmUixqJpKLQA929itQkj63XoFyEQjMoQXWccQOukPfI5cbLmyHIsCxX9NCE20SxGqVhGWRTTrC2MkGJQjrhHvQ30BJopVqUvY9tptxMUG7GAS3sCRdkWBaStSkF2lQ0HJNKM07ZSvDQl9ZTV+kgUkpzggm30A1eYW4yW5FPKSmdeUTnzX2e98/jB/5vsuQ3rsRe4pLKHjobWilYMtDPyFAQ7OodnPq+VhMGUw4j+6FZ18h3KXr6A/NN14P7+H6wz+brOxkZMWg0dAqFoHqhp9tt6zfXhWLJQD23keFSnGojQjZl05uz6M416cpY7eeEILN8pBJj9yNbGK2ncLwIuUSdrtCAKyTqhyz5cz2dYiPJvbc8S4UcVZVFR5HWimTDDLgklQWhxWaSV/zT+Ff/AySufi1jUehd6pLvPVgDTYXd1Ojt7sO2Ap0XT059X6WCIOtgxqE4As1GEGTt6Q203oHnD64DlTIUGjspFsfPHzoNuHjH+U4rC65YMtA3baRYiU7MggsNuMwBveBaj63UzbDlyAuUm0GbEF3321NRW+cQCdM5wt/ueF+4SjPB/Qf0hUtp1ba2S1NeMOcOwvxjIeu8OW+4QdBM9+KLL+YrX/kKEDTTXbFiBX/4h384J5rpLnYh9gPvnew44y3ELzoXlR8jkfaPOWLi2BrZZB/JNCw9+cgeoxQ0arAsG/RtqFc10llFd29QqhCLH/yY1gba3dxBsRQMWTBN1W6WXyiMN8tv0TJKyuVgEy1Vo5NORc0m7QmCrv3eXI1iNUq5FmXvEy9SbiZoOFHiph2UDMaDksH8ASPGD8fEAQ3PtpvoKzQS2nhJasswmW+TLO/3fomXzno3nHM+kYER4slj+5c1uKSfvTvh9POZ0F/wUHhuEBUdSDqMjWhEo0Hvme4eRXqKfyWN+rgBN1Y0gjWdDYRZVyEw4A5cH00ryIIzNm6gWI1SqkXRNcJ1ZR3S3FUKqo3AhNv3eNgTrpEkYngUEjW6kjW6UlUysaM3yRxPD029Vl+4TGjwujJBSzihLGQhJojOm+v8zLuKF87+bbyzzic2OEoscWT7sN3USJh9nLQWkpnD399qwJKUw/DewDzr7oWe/vE+qy0a9SD7LVPdTbFokEj49PS49HZP3GOblsbYmIG/fhPDxTiur1HI2PSG2W/Z1ETTYioDrjsVZsDFD23A+aGxMVpPcf+dz1MJBzGktXJ7EEOakrRvOIBn/Et48swPkzhzNc1+l1T26HWeUrCkv5+x/bDmvCN/nG2N9xmsVYJS5+7QfItGD75/6/yhq7mDsbEIlWrQA66rEJw7FPLuQY9rZcHpG4IAfqka3KF17hAM3Zpc4/k+wWTUmsm+x1+g1EhStWNEDZdCaAoXkrUpKx0O9ftq9YULBnBlqKnMhHOHdMeABjHhhJlmIeu8eWG4ffvb3+Z973sff/u3f8vFF1/MnXfeyb/8y7+wadOmg3p+TMZM/iIXuwjzlca/+L9P44q30nvxCuqJkaN+DqWCi+dq2A2NJUt60XVYcdqxHZNjQ6UI/YkgQymZDoy37l7Vbpp6IJ4HtcrEQQyHapbforMUVd985FNR28fqapRqgQm374kXKDUT1O0YyajV3kSPJVtpvCQ1wQO3PU2dNDWVaU+yTGktoyQwTUztyCNlJxKl4N/991M95zVEL7kY1TM8IVvsUI/zvWBNeZ6Ga2kMLOnBc+G0c4/tWHxvovkWMRXdPdA7oEimpn5cox5kV+Yb4wZcLtcy4FyyWf8gA873oVprZcEFEdJaM0I6EURI8+mpI6Stx49VY4xVoux+7CWKjRSG7h+3AQfjBm9rglbtoEhppb2upLRGmC4WshAT5rbOA9F6P/Tewf5zroXzLqLnVINYIjDAdB1e2DiMpoGmBz9TClaf1oPrBNlrdhNWrR0vLT1S6pVAx43sD1qRdPdB38DBOs5zoTgG+dpOhkcieJ5GV5dLX+/44IUW1arOyKiBen4zo+UYhq7G+7/lrYOmjNcaEYbLMXY/uoXRehrXM8gna+0S1Fy8cUgDTimo2THG6il++oUNVFUOmxhJrdoewpChuOj7a93r/Qrbzn4HrLuA6MDIEVXIdOo83wPH1hno7wnW39nHdhyOBeWx8SEfmZyit1/R3TteqnogbliC2tXYyWg4hCGT9tvmWyHvHZQ1p9S4xtM2TtR4hYx1yEoHAM/TGKtGKVbHNZ6u+W1jODDgjl7jHXjuUCNDTWUPGs7Q6g0nxrEwnSxknTcvDDeAv/7rv+a2225jaGiIdevW8eUvf5lLLrnkiB4rhtvMUVcpvuP9Hubr30hl5WqWnQKq8/+vBhrjphqMRyl9P9wsvfGfJ1KQSAfCyowd//G5TlB6OpB0KI5qxOKKnv5AtEUP8fxKtQw4KDR2BSUKnc3yQwNusky2Q5WiFkKzJJ+2J41kQTBivFiNsueRzYw2Uu1spa6OHiNHG8lqYbmR8bLBO58LM5YSmNjtSZatjTSuNY/+BaaZpkrwr/7vEnvTG9FXr8bsGVc8StFu4+b7HWtMjXd3i0QCkRSNQToP2QIThi0cK74PtXJwMjC6XyOVVvQtObQoa9HKgMs3djE2ZuB5rXXlUSi4U64r2271CZk8QtrqE3LgtN3W8RarUUYrsQkGXOukoZCskT5GAw7Gp7uVmwkeuKMVKU0DGgktyIBLUW6bcBIpFY6G2WykK4bbiUN03tzEVRH+zf8djDf9Mj2vOhmj20SFe67vd+y/4de6HuyDETO4ZAuH3xcPRWu/7Y05FEcCE6RvIMhAOjAAp8JBR/naDvYPB9lHuaxHb49LT7dHOu1PeN5yWUc99zz7S3FK1SipuBv0fss36c5aRA6YMF5tRBgpxdn9WDAF1Vd6kAF3hAYcBO0bxupJ7rt9PVWy1FWaKE0yWok0ZTIUF12w6i7vt6mtey36hZeQXhZ8qOoAKTOVzjOMYJ2ZMcjkp0/ntSbsdkcdrKZGd2+g8zKH+ffiOFAaGzfgGs3AgOsquHR1BVU0kwWObTsohzY2Ps9YZbzSIZ+2KISlqPm0fdCahHGNN1KOs/vxlyg1kkR0j65kLTThqiSjxx5YD4YzBC1MHvryBmoqg4s5wYRrnT/MtyoaYe4ghts8R4TYzDGmurnL+20K174G89K19C4NjLOWUDjQZOtE14PSPsMIrnXj0H3bjhfPC8y33miQ+ZbNB5tnZ5+QqWiJuJYBN1Y08P0jM0o6e3YZmzdSrMaoNw3SCXeCWZKdIlvJ8zSKtSij5Rh7Ht9CsZFC0xSFRK0dzTpWAw6CHiTtvnBffJYaGRoqFfaFG89YSlI94SJwVPXyX/676H7La+l//an4WbP9O24fhzYeaSf8ma4HgutEHKvnEvQeNANR1tOnWLby0IZuJ/VaIM4KzcCAaxm7LXGWSU8eQeyMkOqbNjJWDiKk2ZRDX75JX6FBPm0fMgNu98ObGa2nKNZTmIZLd6oaXJJV4ubxDUtoRfbLzTgP3P4MtfDEwkcXE044KsRwEw6H6LyZo65SfM//LbJvuZrCq07F7DMxY0G53ZG2Z5guXAeKw8F+6zjQ0wdLliniicnvb4eDFzKVXYyORTBNFZhvPS5dhYntHRwHxooGav1Ghotx6laEfFh+2p1tkk8f3C6kUo8wWo6z69GgBNVXOvkwk7w7VSUbax7WgJusD5wGpLVSOA01MOIWqpHRVHHu8t9H8tpr6L78VGID5vh5RId+0fWJP2sZu4fT79NBowb9cYfhfUGPt2UrFd19R6YxbSsYtFWo72R0LIIdVjl0d3l0dbmTVs/AeKVDsRhqvEqMpm2QSTp0Zy168w26s9aU5x1j1Ri7fraZkXqaUiNJPOK0zbfuVI1Y5Pg0XtOJUGomQxNuPXWVwSZGgjopLdB2acokqEomnHBYFrrOE8PtOFnsQmyPv4wf+e9g4G2X03XFGgrdCt0INqRIBLbsMduRzs7rE7VJToVjBVlv+4YCw2TZSsXA0iM3aJQ6uFn+hEyl/OSlgi06s5WKtSjFSrQ91SiYrBVEsiaj1c9htBxj12MvMVYP6iuCTKWg2W8u3jgus8n3tfHeDncEJlxdBfUgJ7LB6i61inv9tzD461eQvOh0+pYojFb0PFxfeiuSHhlfW7O1vho16DKCbMrB5YrB5eqojqNzXeXquxkbM4hEFIWCR3dXYMDFD1FqYdswOhrBfW4T+4sJDN1nSXeDJd11CpmpS1Za5Qm7fvYCI7U0ZStBwrTpSVXoTtXoSlaPqq/goajZUUqNRGjCZairTNuES1OZYMItpgi/MDULXYgJx4/ovJljVPXyI//XWPabryP76jOIxaHZDMr4zGhgdsXjsHXYJBoPMo2isenJMjoU9Sr0mEGWeaFHsWTZobOPPC/MLq/tZP9wBMfR6O6evPQUgvc4Mmrgr9/MSDmG72t055r05ix6cs1JW4VU6q0MuIkGXGsfPRJt1soYLzaS3DdJGWqrFHWhDC8qqQI/8N9J16++kfRFa+hbcvB5hG6MZ0y29J9hnnid53tQGoWM72BGYeXJilzh6J6jUQ+CrPl6ELwHQo0X6LzEIfojNi2NYtGADRvZX4xjuzq9+SaD3XX68k2MSbLfAFxPC84ZHn6B0XqaihUnFbXoSlbpTVfoStYmTOc9VppOhHIzwX23BvquqrJ4REhotXYpaoqy9IQTDmKh6zwx3I6TxS7Etvqrud+/lnN+5yJO+o1zMIxA1DiOhucF0UjXCSKHjh00wXWdQG1ETEUkAmY0uESj8NKQiWGOb6xtg26GoqhKBVlvKcdBN2D12sknUR7J83SWChbDDLhC3qVQ8OjqOngIw4GPr9X0ILr6/CZGSnEM3ae/q8FAV+OgyVoHPrZcNxkpxdnzeCDylIJCcrzMIXucBlzrdaZusDozGUsv+Gcx/IbfJrNqgO43rSOVCtaX62p4bms9dawxJ/g5BOvGNFXbjDOj8PLeKQzgac6wrFcgYTl098HyVcf+e/D9oG9cV2MHI6MG5YpBMuHT3RVkVXYVPCJTlOr4fhCtt36xmb2jCcyIz9KeGoM9ddJT9BRs4bgaI+U4ux4OymbqTrRdNtOTqpJPTN+AhFbPkFIjwf23P0uNbFiOGpi7wZoqk6ZCXGtMz4sK84qFLsSE40d03syxVy3lfv9aVv/OlXRddS79S8K+pVrQo81qBJMemw1oNqHZCAZgGRGIxRXxOMQT8PJ+k2gsMOTM6PSZJbYFvabDvqFgYNYpp6lJh2UdSK0K+eoBpae9Lr3dLqnUxH1bKahUdUZHDbwNLzBWiREzvXb5aU/WOqidQ2viZCs42tJmPanA5OhJVY44k7zhmBQbSX5623NhGWoGEzssQw0u89XE2K8GuM//ZVb+1utZcu1Z5AuBfnGcca3XPocItV7rPEI3AtPXPEDnTTDnDtB504HvQX/cZscrOudc6E/ZH/pwtNrXFMc0cvWgf3QspujuctuB1gP7v3VSqeo4T21kz0gCyzHo72qwtKdGT846pEazHZ2RcoxdD29huJbGck1yiTo9qQo9qeq0nDO0aGXCtUy4mspKkFU4iIWu88RwO04WuxDb7J/NyOt/m8LqPrrWDRKLKWJRRTzmE40qdrOcaDQor4vFg6inpk004drXtoZjg925sdoaSrVKBAPzxAw3UtMcN+g6N9N2iap+ZCaKUoFoNKsOhS446dTj/5OYLFPJMBRdXWGpYME7ZBSrZZY4T29i72gCX2n0dzVY0lWnJ9c8pFBtGXCj5Ri7Hn2JsUaQmdaVrIWp5MfeMH/S9xk2WL3/tgMzliZGtI7FhHvcfy2xN72BzOqlpM9cTibtt9fWLjW+tqIxiIURdd/vFGWd1xquE2SBdQo3zw3WmKaBERkXboFhF1xv2WO2G0K315YeNImG8d41rSa+K7oc9g9p9PYrVp8+ff9iW815C/WdjIwGvUFyWY+ebo/u7qA0YTJ8H4ZHDJq/eIF9YwkyCYelvTUGu+vEoofPXGtYBvtLcXY/EogzX2l0p2r0pir0pCtHNZ7+SGiZu6VGkgfueJYqGRoqjY7fUaoQlNnM1YEfwvSx0IWYcPyIzps5dqiT+bl/Bed99DWsuHwJ1ZpBo6lhRhTJpE865bMvsoxEEpKpYD/2vMB4s5rBpdnQaDQCc862NHw/MONi8WDvfmU4NOOigSEXOYbsJc+FnHIY3qex8mSfgaVH/ljbgrGRYOrp6KhBPO7T2+vS1+OSyx0cLPW8oN+Weu55hktxKnWTbNIJzLdcc9IgaUub7XjwBfbXMpQaSdJRi550hd50hULiyA0Hz9coNpIUG0ke+NLzVFUOH52UVmlnwKUpzYv9cbs6hZ/7V7L6A6+n/8IBEnFFNOq3zyd2qeXBWgm1Xus8oq3t7Kl13oGB/s5ziUhHdcRLQ2Zb22n6RI3XKmVt9Z32/eDzX553GN6rccoan74l0/O7aGVhFho7GR01qNXHNV5PjztlixEIWtdYT25i93Dg/g321BnsqU9ZLdNJazjIrkdeYqQeBDxb5tvRGMNHSqvSoTPIqkF7/bbOGxZKFqdweBa6zhPD7ThY7CIM4Hn/PGpv/A0ueV2CFVetwvc1LFvHsjRsW6NpBV83mxqWpeP5YEYU8bgiEfeJxxW7WdYWXbEEB0VzxrOXJmYzuY424WeuO5795He0ugjMuImlfZ2L3rE1UBBPKk46VZHNTf/vyfehWoGu+g5GxwxKZYN4TLX7dHUVDi5naB+rglJJx3l6E0OjCVxPZ6CrzpLu+pT9Gw56fK2zBHW8Yf50NFOdjJo9PuWoSpaayrYz4Y40ouWqCA+rNzL41gtYc2kPg689GcsO1lVrfbXWmmVpOK6GoUM8XFfxmM8ebaJQi8UPNmCDCbm0MzIdpyNzLoyuel4otFpTsbzxZtEw3kNON8DQg+Efubwik5vZkgerGZQmZGu7GB0N+tOctMpicMnkk60geH/79kdo/OJFitUYfYUGy3tr9OaPrA9g66RhuBhnx6OvUGwkSZp2cNKQCkoTDtez5ljwfY2yFQ9MuC8+R01laZAkRoP0ASJtPkb5halZ6EJMOH5E580cW9VprPcv4OI/eh1rf2mQdNojmfBpWjq12vilWtOpN3TMiCKV8smkffYay0imIZkcLzFVKjC4rGaQEWc3NZqhMWdZwfdKQTSm2oHaaBReCjPUDSPUdWYYYA33XqWCdiH7d0OX6XLZa4+tDYLnhftqJSg91XXo7XHp7T2471sLy9YYGzXwN2xiuBjD8XS6Mha9oQGXSR5sWNiOzv5SnJ0Pb2G4lsFXGj2pSpj9Vj2qHlutnqnFRpL77niOqsrTIEmcBuk5PozhJXU6zTe/k4GzBrjoHQM4Tnje0NZ7evscomkFayMWCzRePK4Y0pYF5lyc9mWyYRrjuq4z4DpeGeG54HWYap0GWyvw3w7uhzqvp1eRyszc76at8aq7GBmNEDEVvd0uy5c5EwaAHPheR8eC6oahkQTJuMuKvhqDPbUph7Ud+PhiNcqOh15guJqhbCUmGMP5eH3aNV7n4K377niOGlkaKkUEh7TWqnIoL+hehoudha7zxHA7DkSIwUa1Dv2X30L/2YPETQ8zokjEXOJRj2TMpXHKmcTjQRQ0EffxfWiGm2ejobe/bjaDa9sJTJNEwm8bcnu0wJCLxwn6gxxBX5BOE6V16TThOgWHGQ3KHU6kCPHc1gCGnYyFY8TzOY9lgw59fe4hy0dLJR37F4H55iuNwe46S3uPLIoFkzdTDfp1jRtw09Wvq/O4O8sG62SoqkClTFU2OKZ6eFGdxUnvvJDUaSdRyNrEox6JqEf9lDNJxFV7nZhmIKKazUCQtdZT51qz7OADjkUV8bhPIqHYwzLi8fEMzFh8dnsLHg++D6P7gT170DQ468zmlBlvLep1jebPN7FjXwpdV6zor7KirzbppNOpcD2N4VKcHT/bwv5qBtfX2yUzvenKcTfmPRSOp1NqJCk1EzzwpaDXjUck7HVTbmfBSSnq/GU2RRiI4TZfEJ03c2xVp/GKfxpvvOUqYlGfSt3EdnRScZdsysE97XQyGY9MxidiKGp1nWo1MOCq1UDfWJZGPKZIp31SKY/9keXBVPrkwXuuUkFmUmDGhSacpeG6HYFXNwiW+gece+t6kDmXzgYtQo4XpcJKhepO9u2P4Lph37cel+7uqcv9qlU96P+2YTOjlRim4dObb9Lf1aB3kiqFTpNjfzVLxYqTjTXozVToS5ePaTCWEw5j+OkcH8bwvDqfwq+9AfPkU8kkHeJRj3jMIxF1aZ58Rnj+EOi9aFRhO1pQwhzqvc5ziUYjCOxHzTCwH2rEPdpyorFA689Xnef7wVrMlHeyZ8ikt9dlzWkWsejU69x1Ye++CLWntlCuRRnoqrOyv0pX9sjOFyAwhofLMXb87CX2V4M2Mi1juDdVIRqZmfXj+RrlZiLI4rxzA1WVxSFKnHrbRE6H1TNzzUQWjo7FoPPEcDsORIjBenUB/b/xWl771hxdGYumbdCwDRrNCHUrMuFrx9WImj6JmEsq7mKdcgaJhE8y4ZNIBqnjngeNhk6jw4SrN/QJhlzECLKYEi3TROvIkIvPfKPemcC2YHgfREf24Hkap5xssXTw0EaFUjA2ZmD9YhN7RpIkYh7L+6os7akftWEyUo6x82cvMlLLtPt1tVLJj3cAw6GOv9UT7v7bn6VKdkLZYEOliFNn+Xtfw+VvyWM7RrC+JllXEUORjLsk48HaapxyVnttxeMKTQter23utkRaaMo1QvHmh5HTltk7pM0/Q873Ib5/B69sjXLG2iYDA4c3vFolp9Wfb2GsEmVpT52Tl1QmbQp9OEo1k+0Pvsj+ShAZzcUb9GXK9KXLpKeplPlQ1O2g102wpnLUVRodj7RWnmDCzfZJhnBkLAYhJhw/ovNmjpfVWrre9SZOunQZZ588ihlRNG2Dcs2kXDcp16KUaya1ZoSY6ZNN2YERt/ZMMmmPZFJh21CrGaEJp1Op6tRqBp4PqaRPOu2zz1hGKh30hzuSHmwwHlxtZZub0ZkNntYqkAv7vtVqOt1dLn19Lr09U5tvrRYh/rMbGRpN4PkaS3vqLOutkU1NXl1g2Tr7inF2PPwyw7U0hq7oTVXoTZfpSVWJHENQtJVFNFZPcf8X17eHMSS0WocBVyKuNY/6uY+HZ/2LWfnuV3H+G3voKzTD84gIDcug3oxQa0Zoht9rGiRjnVrvTJLJ8DwiEWg9y9bGg/rhdaM5/rXfkSGXSIzrvJbGi8bmvs6zLVA7g37RZ5/ZpFA4vJ6p1TTqT2xmx74U6aTDSUsqDBQaRz3Yq1SLsv3BcWM4l6jTny7TlymTih65kXcstPrB/fTWoBS1qjJhKWq5ncWZpkxEm7lArzD9LAadJ4bbcSBCDJ5TF7Hmty/CVQYp0yJuOiSjNl0Xnk4q3BDj0WAjcFyNWtOkHm6i9WaEatOk0QyMlIihSIWmiXXK6aRSfts0aZVbtrKYGp2baGPcNAnMl44MuTCLqZ1qfgImZx0vo8PgbB+ikPc4Y23ziAZGeF5QJlh7MigT7M03WDVQpSd39AZHq1/XrkeCMgcNRW+6QneqOqPRLAjKBitWPMhY+sKzvOXTq3li+0lc8uYeevOTvxfX04L1ZEXa4qxuRWg0DepWBE2DRNQllRgXaKnUuGHbEudKhUItNN8azdCIO9CQi6rAlAvX2G6WT1hfxhRDDE40YyNQ37KX88+rk88duTivVHXKj77AnpEkfYUGpy0rTVoOcyRYts7eYoLtP3uZkVqGhGnTnynRnymTS5yYrLNWKWqxkeSBLwZR0tZJxrhAO/EnGcKRsRiEmHD8iM6bObaoM1j7e6+i7kRpOlESpk023qDvolPJpWzyaRszonA9jXLNpFKPUqoFRlylYWLoikzSJpdycNeeQSbtk0oFe1KzqbXNt5YZV6vrGDqk0167P1wyFfSHm0v6rVGHkf0a6cpuqlWdQsGjrzcoPZ0q66gVKG08tZmh0QTpuMuy3hpLe6cu92tVJWx/8EX2V7M0nCj5ZI3+dJmedOW4TI6mE2GskeK+24IsuNYwhrQ2bl4kqcxom4an/Ffzqv+xhlIzQVeyRuG8tSTjTvscotVn1vehYYUaL9R5tWaEWiNCw46gVGDGtbSedeqZJBM+yZTfnu7e1nlNjWZjXOcF10EwFiZWQgxpy9qtSeaaITe0C/xde7nwgvoh+7t14rqwa7dJ5cmX8X1YvbTC8r7qMb2npm2wdyzO9odfYbSWJhW16E2XGciWyMZnXlO1TORSI8l9XwhM5CYJEtRJa8VQ45VIaPUZPxbh2FkMOk8Mt+NAhBi8oM7m1R85i75MJRRjJnU7Rs2JUrcDcWboPqmoRTJq0XXeWtLJYCNNJxwi4Qhrz9OCjbPDiKs1I20zzowoUgmnnRnX2kSTCX/ClEbHoW2QtNPMw8202QwMuQN7yM3FDDnbBuul3QBccN7RZZjV6xqNn29i+9408ajHqiUVlvXUjmkzVQrGKlF2PPQiw7VMEM2KN+hJB2UOJ2JDfWbXcoYqOWIRJzB0TZv8utNJhGIsFXeJmd6kv6OWQAtMXnPCGqtbhxBoyaBhb+dzThBqzfFS6M7I6VQ9CqOxiSXRJyr9Xd+1g3pD59yzj/5zaloa5Yc3s31fmqU9NdYsLx3RgIWp8DyNfcU42x56mX3VDKbh0Z8psyRbnLEsyqloOpGOiW9BFlyrV0jLgJuvE98WGotBiAnHj+i8mWOnOokGKd53Uz+2a1BuJihbCUqNBOVmgkZowuUSdfovOo1c2iaXsokYCt+HSsOkFGbBlWpRKvVAZGVTDrmkHZhwGb89yd33aZeltsy4SjUoS43FVGjYeeyLLCc5RVnqiabZCIKlqfJuyhWDroLHQL9DX6875STxA8v9+gsNlvdVpwwutqg1Iuwvxtn2yCsU6ykSpk1vukx/pnzcE8Q9X6PUTDJWT7bbNPgYpLRKe2+czmFFSsFT6gp+88YuXGVQt6M0nCg1O0bdjmK5JhHDI2VapGIW3ResaZ8/pOLj7VeUCoLFgQEXaL1q0wyD+8HQspZetFefTirpk0j6pJITzyGUAqtdphoG9tuB14k95DorITp7yEVjB/eQm0m0XTuo1QzOO/fogphKBetv7NGX8XyN1UtLLOs99vXjehp7xxLs+NlLB2m8/AkKsALYrhGYyLc+Q4U8NZVBx28bcFmK0ut3jrEYdJ4YbseIiLCAPWo5ZfL8zk19k97u+xo1J0rNilF3YtSsGDU7RtWO4XoGsYhDKmaRjlp0X7CWVMIhkxzPioPgn3itGaHaCDbPaiOMbDVMHFcL+sXFW4ZJYMalkkFk6kARNpUhd2CGXGfj/d0sb5cVti4nQtx5Loyt38PJJ9ksOYKywIMe78HQ3gjlJ17GdnRWLy2zov/YolgtJpY5ZDANl77QfJupZvlKQdM1aTomDcek4QSCrN5h6uqaIhm1SEZtkqZF90UHZ1hO9rwNy2ivq06B1rAMdH0849I+5fSgbCE5MePyQGw7+B01Duwv0gyHO9gauhaWM8QDU28PgVhrTVo1Y9NjyikF/radOI7GueccuzHaaGjsf3ALI6U4Z508ymD38Qsn34fhUpxtD73EUCVHRPdYki0xmBubtgm6R0PrJKPYSHL/nRuoqjw+eliGWiLLmJShzhKLQYgJx48YbjNHReXYpM7l//t8bNL+ri0TrtRMUGomKTUSWK5JKmqRT9Tpu+g08hmbbNJG18N2Eo1IaMJFKYZmnFIamWSQMeeuOYNsNtByLc3iOLR7wnX2iPN8At2X8hmOLCORCspST3Rv3vbvI2wRkijuoVbT6elxWTro0N01eWAQgnK/5pNBP1XT8Fk5UGXZIbLeWriexv5ivG1yKDT60kELh2MtPT3o2OwoY/UU990RZBC1hjFktLFpySB6Tl3EtR9fybL82EG3eb4WnDOE5w51O7iu2TF8pZE07fAcokn3RaeTTkwM5kNo4DYj1JomtcZ4QL/WiGA7OjHTHw/on3oGqdCIi8cPPodoGXKdAdeWITehZDWshGidS+xWy8Zbk8Smt/R5/17Q9uzh1Zcd22egVHCuMPzwKyTjLmefNHZM7UQ68X3YX4qz7cGX2VvNEtE9BjIlBnPFExKon3gs41UO93/xeSodvX4zFOfVRN+FymLQeWK4HSMiwgKqKssGdQEprUKcBpd99BxSUYt0zCIVtTAOYcDYrtHeOFubaWtDNXSPdHQ8otXaRJOxiQMFbEen2mhlLZlUm+Nlhb6vkYh5pOIO6YRLc3XQ6yE1SfZSC9elnbF0YOP9ZnO88X40Oj4hKR732a2Wtw2T6cpi8n0ort/DsqUOy5cd+0agFOwfNhh5+BU8X+O05SWW9hx/enXLNNnxsy3sq2ZwPCMw3zJlelOVaRF6R3YcWtt8C64DQ3c8w9IjFbVJRS26zl9DKjEeHe0UZQe+t5ZAa5m8rcip5QRT2FolD/bqMyaYcVNFsyEwQS1rfC211phljU/0tZ3AlItGFbFwjcVioWCLBoavGQ0yMSfrGWNbUCqCuX8Plq1x0fl1Eonj/ze/d1+E3fdvY3lfldNXlo77+Vq0hNnLD7zC/mqWpGmzJFdkMDs27aPoj4aqFUx8++kdG6ioHDbxcBhD0HA6y5gItBPAYhBiwvEjOm/m8JTO81xAXaXbUy+vvP5s8ok6mVhz0kBb04m0G563jDjf18nEGuQSDfouPo1CxiYVd9s9VmvNwIQrVcdLUv3QhMulHLy1px9kwkFnWapOtWYEZam14A6pVKs/3NJ2WeqR9oebDhp1SBd3sHvIxIwozj6zOeV0SQj2w337IlSe3EKpGmWwp85JA5Upe7110hq8sO3BYIBR3Y7RlaoykClN6wAj2zWCvfHWZzsyiDwyWqltYBxNGeomdS6v+djpnNKz/4iPQSloOGbHOUScanjtegZx026fh/RctJZMwiGdcA4yMG1HDwP6oSHXkSHXWQGRTjhYp54ZZsapQ5YM205HDzlrfMpqS/dZlobW0ngd5xK71LLgHCLUeIfLlLOakBrbwbbtUdauaTK45Pg+X9eFkQdfYOf+FOedOkJ/YXqMsZbGe+WBV9hXzRKPOCzNj82qxhs3kccn+iaok9GKZBgjQ4mYduKDv4uVxaDzxHA7RkSIjdNUCeqkaZKgSZIGKZoqiUuEGA0SWo0EdS7/+HlkYk1SUeuQZozva1Q7olg1K9hEa3YMgIRpk4416T5/DemkQyY0T4wO80SpoLfAhPTyxngpYWf2Ujru0jz1zMNmL7WetzO6NWEztcYHO3QaJkFzVsVOfznRmCIaDTZTM3qwMadUINAKte3s2m1imorzzm0c0WTWw9GKYu17aCuFrMXZJ40d1XCFw1GqmWy9fwv7qlnqdoyedIWBTJG+9Ikz3w6kFR2t29EJhm4rwzJuBkZcS5SlEy7puHPI0kn3wPLnhhmurYkZl4HJe+iMy0mPOTTlrNCAa9rja8yyNGxbx7Y1PJ8Jog1oG3aZtM9Af2DUTmc2ZqOh8eIPtnPyYIWTllSn74lDXE9jaDTByw9uZayepjtVYVl+jL50edanULV63fz0tvVUyNFQKWI0yWhjZBkjS5GoNrMNgxcbsy3CQAy3+YLovJnHUSZVstTIUiMTlhvq7UDEaz5xDvlEnWR0cnOoZgeTykvNwIQrN5Jomk8u0SAfr9N/6VoKaau9/3aacOWaSbEandSEa5Wjdu51SgXtNao1g1pNbxty9UbQHy6Z9EmnPPZFlpFIBmWpsfjMZcT5PphDO9ixM8p559bJ5w+viapVnerjm9m5P0UhY3Hykgp9R2GC1BoRhkYTbH9kK6VmMMCoP1Oa9ub2vq9RaiYYa6R44M4NVA7IED9cI/uNah0Jarz7phXTcjyWG2kH8atWnEp4/mC7EWIRh3SsSToWar64QyZ5sBF3YAVENdR6tUak3eYmGQbzW0HXVBh4PZzm8n2wW+1JWjovvO7Ufr4CQw80XjTqE4sqNB1cV2v3nesqeJx8knVUfXoPx959EXbet40LThs+bHnz0eJ5GkNjCV56INB4XakqS3Nj9KfLM1Ihc6S0ylDvvfU5KuSpqzRRrNCAK5KlKNPuZ4jFovPEcDtGRIgdHkeZ1EnTIBWYcCSpqxQuZtuIS1Lj8k8ERlw6ah3yH24rotUy39rXoXnSMuLaEa3kwanlEGx2dWtiieqB2Uut9HJ7dTBJNRX2izvSAQadm6ZlhxcrMEpat7neuGFi6AqlNOwwgy6f9xhcEvT/mO7yVduGPT99iUo9yqvO3HtcfbmmotqI8Mr9Wxgq52g40aCJaqZEX7oyq5tqJ5YbGTd0O7Ism06UiOEFoiwsdU6H0dFEbOqSEJiYcTlVtHS8/PnwGZeHorXObDsw2ZTSiMWCE49DZdkdL/v2G+x7aCuvO2/PzL0Igdjd8tOX2FksoJTGsvwoKwqj0xalP14cT2esHgi0MnnqKkOUJlmtSJYxMhQlQnqcLBYhJhw/ovNmh6ZKUCVLlRxVshP6YV553ZkUEjWy8cak1Q6t4GqpEZTzFxtJanaMuGmTD/vB5dMWuZTTDqgqBfVmpF2G2ipL9XyNTMIhl7anNOGC1wz6w9XC4QzV2rgRp2tBRlwq5bNXX0YypUgkp7c0Nb5/O9t2RLns4toRB1JtGxpPbGTrngzxqMfqZWUGuo7u5N+ydYbGEhOa2/eFA4ymu8RPKajZQYb4fXesp6LyNEmEJXwl0mEWXGt/fF6dz+s+dtpRZbgdC46nB5lwVpyKFaNqB19PZsRNlREH4z2nK6EB16nzXE8jGQ+DrnHnuHSebdMOsLZ0nq+CPsHRqCKf86YlGD8Z27abNJ/ewuXn7J2ZFyDQeC/9dAu7SgUcz2BpbowVhZEpDfsTievpFBtJ7rnluXYWZwSHTKjvxICbPhaLzhPD7RgRIXbsHGjENUhRV2l8dOKhEfeqj55NOma1M+IOt0k1ncgEI65loDjekUe0YGK/uMk20njUa6eXN08Z30g7p10eKZ5H24Dz/CArzjQVqbBx8Eyz48cv4Su4cM3IjL5OuWYG5lslh+VGGMyWWJofPaFNVI8G19OpO9EgKhqKsqAHYdArrp0Rd+FppOIumeTBpc4H0sq4bGXCHZhxqWmEGZfj5c+HK12YDZSCkQc2M1yKc8UMCrEDX3NfMc7mn25nrJ5mMDfGqq5h0rPQ6+1QuJ7OWCPJvbc8R4lChwEnGXDHymIRYsLxIzpvbuApnToZqmSpkKeqsu1+SWlKvO6PglLUqUrJHE/vKEUNTDjHM8jEmkGG1iWnkk/bpBPuhAnj9WaEUt0My1E7TLjWdNQ1Z5DNepOacBAGYkMDrvO6VZqaaGWqJ3326suJJwIjLho7+t/R3qeGOPP0Jt1dR9cT1POg8fjzvLQrSyzqsWZ56agy3lq0mttveyjoxRuPOAxkizNivrUYzxAfH1RkYuOj42Ly/j9JU0hObHXyxT8NgsEFbZgoTS677vz24KyEaRONTE9P1aM14jLJgwP57fcZ6rzWucNklTXB8LfTg0B+WFkzU8bZsbJrd4Sxx16Z8cBqi+FSjBd+uo391Sy96TKruoYPWg+ziedrgQH3V8+1/69NNODGZNL9MbJYdJ4YbseICLHpx1KxcQOuZcipFABxrU6SKpdfdw7pWJNMrHlEtf+2a7QNk8k20laz1VY5YSbhTFlmadn6hGarrQ21bgXpRIno5OPIY9GjN+NOBENDEUYeeZnXnjd0wl5zrBLlpfteYXc5Rzzisiw/ymCuOGeylg5F5wCQ1prqLHVOhkbcoUqdJ39e2uPtWyWqrTXWtA0irelaCQfrlKChbzwU/ydCpPk+VGs6o6MGjadfwvdh3amj5NMn3jwq10w23bONPeU8vekyp/bunXPGW4uWAXfPLespU2j3Pxo34MamLLERAhaLEBOOH9F5c5emilMlF5yokqWhUkSxSGslXnP9WRSStUNWODQcMzDgGgmKzSSVZgJQU5aiwmFMuCPIhOt8nmZTC7LiasGkynoj+Lppae3y1GTSJxH3GdKXtydVxuITB2w5DiSGd7B9R5RLLqqRTB7b6Zfnwc5dJqOPbaUr2+SMlUWS8WMznzxPY284PXx/NUss4rAkW2RJtjSje6vr6ZSaCSK6TzJqTTqMY8dYF9+9YxiABDViWgOHKJZK4GJi4BHX6sRpcOlHziUZDapcktNkxk08fwhKU1uB/FaPuNb5QyYZnD9MpfeOZHBDMtHKijv6ViTTgVJQLBo0n9rE7pEkZ588Ni39no+GetNg8z2vsLPURSbW5LTeoTllvLXoNODKFKiq7IQAa056/B4xi0XnieF2DIgIO3EoRbsvXMuEq6ugX1wENyxLrXLFDee2jbgj6RfWimjV7Fh7E61acSzXJBpx2+WEPReubZsnUxlxLWHXMkwONY7cak27TAQC7VD94maKel3Dfmojr+zJcOqy0oz04jocrT4OWx7YRrGeYkm2yMqu4RM+vWg6UArqoRHXWepcsWJ4vtE24tIxi+4Lpy51ngyvo19cZ5lqvRGZUP6cjLnETJ/yirMwIgpDB8MIhJqmgaZ1fN067vDYlQpex/fBcTQcRyO9bQOWo7ez8XRN0ZW16O9qsKyndsIE4FQ0bYP1P9rOrlKBwdwYp/UOTVu0e6ZwPJ3Repp7bl1PWRVokiSpVciF5luGooypP4DFIsSE40cMt/mDp4x2GWqFHDWVxUcjrVWCLLhPBr3gpvqffmApaqmZoGrF26WoAxefSi5lTyhFhSMz4dw1Z5DJeGTSR9aLq17XqTc06vVxM67V49dXEDUVkUiw/9bqOvmcx+pTpqfnlmVrjD74AntGkpw1DeaI52nsK8Z55cFggFEqarEkV2RJtkjCnB3zwPV0vvO5VxhTvTiYZLUiOUZJU0LHp0ky7B+doEkKS8WxiRHBJa7VSVDj1dedG2qwJgnTOe4AeMuIqzQDrVcOs+M6W9u0MuKyyaA09VBryXG1jkDr1MPfUnGX+slnYpoKwwg0XsQAvaX1AF1XoeZjgthTKlivnq/huUF5aqtUNf7y81QbESr1KKbhM9BdZ9VAlfRxTio9HhxXY+Pdr7B1tId8os7a/j2zMsH+SJmswiFOnZw22q5wkCn3k7NYdJ4YbseAiLDZx1N60BOO9AQjziFKjCYJrUqSGlf+0bojLkuF4KS4XZbazogL+nqZhhtGtCx6LhzPYjpUD7QDo1ptM67DMEnGHeJRj3jUo7LirLY4i0TGN1VDH99UdW18Q21vquFm6vtBjwffC8oGWhtq8uUNVJsm5ZqJ4+r05pus7K8eUznCdFNtRNj0k23sLufJxhuc3L2P3vSJNwFnglapc9WOUbPiVMKeca0IacuIO1yp82Q4rtY24BqWge0YOJ6O5wUlyq2LUoDS8JXWNtiAjjWk0DRFxFBEDJ9oxCdm+kRNrz1UJBl352SWZq0R4ekf7aLYSHLmwC76M+XZPqQjpulEGKmnuff25ymrAi6R9slEljGSWm22D3FWmQsiDMRwmy+Izpu/KAUNUuMmXNjzK06DjFbkNTecTS6ciDrVPuR4OqWOiaiTlaJ2TkXtpNY42IRzPY1s0iGbsvHWnkE6HZhwR9LHt/WeWhMpXTcIaGXSwTTK6Wb/sMHOn25n1UCF05ZPzx7ouMEAo1ce2spoPU0+UWdpboyBTGnWhmBVrBgjtTT3fnEzFZXHxKKgDVNgmAzF9ufqKYMmCRokabZa16gUTRJoqHEj7mPnBJo+zIo7Xo3Tqfda15VmHF/poRFn0XP+aWRSdrsC4mhbkViOjuUYgb7z9PB6XN/5KlhrB6JpgRlnhJeo6YU6z29X5+RSk/99zCaOq7H+R9vYUexmZWGY1T375kwf6EPheDojtTT33PY8JVXAIUZaK5NllByjpKjMqd/zbDIXtJ4YbtOECLHFQ2d/uHorK06lAG1CWWom1iR9hGWpEEQvOrPhWqZco6PBfiY04lIJh0zSJR49dDSjc9qlZRs0bQPH1XG9IDLqejquFzTDd0MjxVehoeYH/6k7/3qDDCaFrkHE8IkYCjMSGHkx0ycVd8ml7UOmvc8mjqvxwj0v88pID6mozam9Q3SnFqbp0IqQBpmV4yWqrQzLVDToX9hz4dpgPR3G2F3s7BpO8tSP97GyMMypvftm+3COidbJxE+/uImyyhPBJaeNkA8NuMVWfjoXRBiI4TZfEJ23sGhNRG0NY6iqLDqKtFbiyo+dQSFZJxevTzqMoUWrFLWVBVduJNF1n1y8HmTCXbqWfNqetHqh3jTCwQzR9pRUx9XJJB2yKQdvzentTLgjNeFmklpNY/N/7WTdqSP0T3Mg1bJ1do8keenBHdSdKAOZEkvzY3QlZ0+feb7GSC3Nj2/dSFH1oNA7solGJ+2n5SsNm3j7/KA90E0lAdpG3OXXnUM62iQTb05LZl/TiYTnDvEJwXxfaSRNm0y8Qc8Fa0iH/eGmy/Ty/Y7A/DynVDP5+Q/2ous+FyzbOmkJ8lymbpuM1DLc+4WNlFUBINR3I+QYXbTlp4tJ54nhdgyIEJtfKAUWiXY2XMuEC8pSHZJalQQ1rvz4uW0j7lAirhPP1zqMuPHS1LYRF6ax91zY2kwPb8QtdlxPY/NPXublkV4KiRpnLdk1L3q8TQedGZaV9hCQgyenyno6mGojwv13jXFy9z5Wdc3sIJCZxvc1RuspfnLLeoqqmyZJ0lqZHCMUGF4U2W+LSYgJx4/ovIWNUlAnHfaBy1FRORyiJLUKmSMYxgDB/9WKFW8bcMVGkrodIxm1xqeiZmyySXvSzKOGZVCsBiZcscOESydcsikb97TTyWU90umZnRQ+FZs2xyjsfo6zTirO2GuUaiZbfvoyu8sFoobL8vwoS3Njs9rSQSkoNRMM1zLc/6VNVFUWE4usFvTSyjF6yIBVZ+uazkFuTRLo+CS0GgmqXHH9ue1y0ePVpEoFhnCQCTd+7lC14gDtEtieC09r95eeq5UGJwrP03j0P4do2FEuW7VlXmS6TUZrvf74LzdQpIu6ypDUquQYpcAwKcqL5nNeTDpPDLdjQITYwsBTers33HhZagaXCHEaJLUqr/7Y2W0T7mhSzjuNuFpHaWrDiaJrPplYa9LlmqBsL3H4SZeLDdvReeoHuxippzlv6bY52Tj1RNHKsKx29IjrXE+pqE3cdEiYNoXzTyce9UjEPBJRl6h5YqbezgX2jcV5/If7ef2pGxfUe244JiO1ND+5YzNlVcAIs98KDJNlDEObX9HeI2ExCTHh+BGdt/iwVIwKOarkqYSTL2M0yGglXnPDWeQPU4YKQbZ5y3xrTUb1fZ1svEEuUWfg0tPIp+wphxI07ZYJZ7Yz4Zq20TbhnFODctRYTBGNqhkZomXZGvv2Rdj/8FbOPmWUwe6ZnwDv+7BnNMkL92+n3EjOqT68XhiwuqcjYJXSKuQZJs8IKe3IWpb4Sgtb16RokA6uVQqLBCb2eA/pj68jG2+QilpHHKyfilZP4M4Afudwrrhpk4zaJCIOhfPXEo95JGNuuy3NQtI9k+H7cM93x1hZGGF5YXS2D2dasF2D4Vqan9y+iZLqBlrZb8PkD2MWz3cWk84Tw+0YECG2sLFVtKMsNTDjgpRzRbIj0pWJN8nEGkeV2twy4qodEy5rdoy6HUMBUcMlEW6m+fPWkoi5JKJBL6141DuiRvsLjW1DaZ65Z4hLV700p5umzgat5tF1O0rTNWk4UZpOcN1wTBwvGHgQN0NDLuKQW3c68Q6BFje9BWPK7S/GeOS/RrjqtOcXxPuZDN/XGGsk+fFfPc+Y6sEhRlYLIqN5RohqJ3567EywmISYcPyIzhNawxgqoQFXU8E6SGsl0pR5/Y3BMIbD9SCr2dFwKmpgwlWsOKbhkYvXGbh4NbmUTSFjT6nHmrZBqWZSqZuUa1GqDTNsGaKhaRCN+JgRH9P0iUY8opGgBciBQ4/aQ45afXoV7X5wqVc2ULcMamGz/Vza5uQlFZacALPtQCr1CJvvGe/De0r3PnrmUB/ephNhuJbhnjs2UVJd6Hhh9lvQT+to90xPGZME69PTEqyfipYR17CjwXWo8ZpO8L3tRtA0RTziEDcd4hGHwnlrg5YyodZbKAHYB/5tH13JGqf07J/tQ5l2lIJiI8mPb95AkW4aKkVGK4b6bnjSUun5zGLSeWK4HSUiwhYnB0e60tRVGpvYhCENV3xiHZl4k5RpH1W6s1LQdM3QLDFpuq2NNdhQm66J5+tEDI9ExCFu2iRMh/x5pxPryGaKR70FmSX35Pd34ngG5y7dMduHMq/wfK1jXUUnrDHLNbHcCI4XCLWo4ZIwHaIRl3jEIbvuDGJRj5gZiLVoJBioMBf7/9WbBi/e+zLbxro5rXcvK+d5SenRULVi7KtmuefOF6mpDCmtQoH9FBgmoc3frNDFJMSE40d0nnAgrWEMLQOuqrLYxEloNdKUee0nzqKQqJGMHrp/kudrlJuJCZlwTSdKunMgQ9omkzz0BEzfB8sxsBwD29FxPD24doOL54f9ejsGHvkqeEJNCwZmGXow3Chm+iRiwUCjfMqeEz1eHVdj009eYdtoNwnT4ZSefXNukJHvaxSbSe6+ef1B0yTzjBzXtPBWsL4zYN8K1rez4Y4xWH8k76vpRkIjLooVft10TSzHpNmh9WIRh3jEJRZxiEVccuedPq7zzHBoVmTunUuMlqM8f88OKlacS1a+PGuTc08kddtkfzXLPeGgkLhWp8AwXexbEK1FFpPOE8PtKBEhJnTiqkhHb7hDD2nIxJvH1ffBdo0JWUxt8yS8tlwTpTSiEZeY4QZZTa3NNMxkiocGynyKcikFj/3HHnylcd6y7bN9OAuOlilnu5FAnLkRmo6J7UWw3AiWG6w11ws6Qxu6RyziEjU8TGP8OrPuTMwwUm8aYQQ//D5i+Bj68ZXS+H7wN9CwggEjTdtg7+MvUmomaDhRetMVVnUNz2oj59nGciPsr2a4+47NlFUXMRp0afvnnTibKyIMxHCbL4jOE44EW0WDHnDhpa4ymNhBGer1Z1JI1g5bhgrB/9ogCy5BsRlcg0Y23gj6wV2yhkLGXpQ9Vj1PY/u+FBt+uod0zOL0/t1zotR0MlrTJH9y2/OUVRcOJlltjDyj5Bg57oyiQwXro1gktWpgxB1jsP5o8Hwt0HdulKYTaQddWxrPdiNYXqSt9SKGR9RwiYZ6L2q4ZM89AzPiY4Qar5WtGQmNYMNQx6X1PE/DdnUalkHDjtCwDPY+sYWxehKFxrLcKKu6ho944N1CwvF09lcz/OT2zYypbqLYdGn7KLCftFaZ7cM7ahabzhPD7SgRISYcjiMZ0tDZ9yEdtaZlg1WKCZtnYMIFJkqnoeJ6BpqmMA2PmOESDaNcUcMld96ZmJHxKJdp+ETNoJT1RBp0vg+lWpSxSowXH9yBUhoXL5KI1lxFKdomnOMZ2F4E243g+Aa2a+B4wdeur+OGt3u+juePh0l1TaHrfnCt+RiamjKarCB4vNInPE8rAy9uOmRiwclNLt6Y1abNcxHX09lXzXD37S9QVF3EsOjS9s0L822xCTHh+BGdJxwLntKpkQ17weWoqhw+GmmtTIbSEZehKgVVO9YuQy01klTtGKbhhTqvSc9Fa8kkg569i6E9iOtprP/RNraPdbMsP8qa3qE53+i+3IwzXMvw0zs3U1E5YjTb0yQzFKetX+qJDNYfLa1ziZbGs7xQ84VZco6v43gGnm9ge0b761Y2JkzUeoYWXGuTaD1fafhKCzVe8BztLLywDUrLxM7FG3N+/ZwoPF9juJbhx7duoqh6MHDp0vbRzd4j7lE42yw2nSeG21EiQkw4Vg7s+9DaYD2Mdt+HV31sfBz5dPR9mAzf17A6spdsN4LtGe1ol+2NGyqOZ6DCTTRieJh6EOWKGB4R3Q8uhkfq7LMwwiwmXQNdDyJdenj8mqbazwPBht4qm/C8oJyi/Mzz7Z4UDSeKrvsUEjUGsiWWZEqy0c5TlAI3NMxa5pnqEFm+0lAcvNB1LVhPhuZj6D4R3SNqeLIOjgHP19hXzXL3bUFkNEaTbm0v3eydkz1BFpsQE44f0XnCdNAqQ62So0x+QhlqhhKv+cTZR1SGCuOlqOVmIpg8Hg49cj2DuGmHkygtei5aSzrukE4EPbYWGrVGhEe/vw+A85dtnTfZSa6nM1JPc8+tGyiqLhyi7cmnM9FPa7Jgfb1jSMOEbLhwYv1c0kO+r+G1zLMOrecpHd/XmOxINcDQ/fbF1D1MY+EPf5hOfF9juJbmR7duZkz1YmLTow2F+u7E93Q8UhabzhPD7SgRISZMN5aKtXs+TN73ocbl159DOmqd8EgXBKLD8YMoVuvihplMra99X8cNzRO/vcGGZoqa3EzRddU2UiK63+4h1prCNFOGoyAsZlqZbz+6fQtlVSClVehhiC72zZlpWItNiAnHj+g8YaaYqgw1rZV5zfVnkE/UycaaR2x+WG7kgOFZwVRKyzWJGB7paDDFvuuCNaTibvsyF/unHim+D098fzeVZoJLVr502IzBuUjFijFczXDvnZupqhwxGhS0YXKMkqE4Y3q1M1hfI9M24jqz4a64PhjSkIk1Jdt/EdMKrv7othcpqS4SWpVeAvNtrui7FotN54nhdpSIEBNOBK2+D61NthGOIx8vS62RoMYVN5xLOpyENJ0NWAVBWPjYrsGecp4ff/El6ipNQdtPL3vIMjarZvdiE2LC8SM6TzhRTCxDzVJVeXx00lqZNCVef+PZ5BP1o9ZkrqdTd6JUrfHp9cEk+yiebxCLOCSjQWZc4fy1JGIeqbhLMjY/MuN8H+797hgru4ZZlh+b7cM5LlxPZ38tw09u20hRdQNaWHo6TJ7RGTc35ns2nDDzOJ7OUDnPf3/h5Tml71osNp0nhttRICJMmG2CSNfBRlyrAWtrEtLlHz+vPZLckE1WEITDULVifP8vNjOsBtDx6NX20MduTO3E901cbEJMOH5E5wmzSUMl233gKipPkwQJasEwho8HBlw6Zh3z81tuhLodDY24aHsaZc2O4ngRDN0jabYm2NsUzg+mjCeiLolYMCxrtqdOup7G/f82wmBujFULaJK4UlBqJvjRXz5PkW4aKkVGK5FnmALDJ7Ssz1PGxLY1pKirND46ceoktSqv/th4bzjpi7w4qFgx/usvNrNfLcHApU/bTS97ZkXftVhsOk8Mt6NAhJgwV3FVZEJ/uMCIS+JiEqMxXpr6ifMk2iUIwpT4vsa+aoYf3PYyFZWnoO1ngB0nbArWXBJhIIbbfEF0njCXcJRJhXyQAUeOmsqg45PWSlz5sTPIxRvkjiELbjJcT6fhmtTtWDC5vj3FPkojnDjemmAfjzjEwkFZuXWnB8OxTI9oxCce9doTxqfLnLNsnWItyu6HX2BnqYtsvMEFy7Yu6EBwwzEZrmb4yRc2U1aFdunpbE6TbKp4OCU1nJaq0jRJoOOPB+qvb1XMWCe8dY1wYmjpu/+6bStVlaVbG2KAnSd8kNZi1HliuB0FIsSE+YajzPEoFymaYUach0GMJgmtxqs+cnZ7k01FrQUthARBOHJqdpTv3bSFYbWEhFZjCdspsH9GyxEWoxATjh/RecJcxlcaddLBJFSyVFUOizgJakEvuBvOJpeok4k1p/3/a2vqZGt6ve1Fwin2ZjhlMtIemNWaBm6Ezetbw7F03W8PMAomT47rRAUoFTTFd8PJlXY4lMvzdZJRi0KizmBujO7U3J6QPd24ns5wLc2Pb9vcnibZMt9mu7Sv1bqm8xyhodJYxMPWNdWwdc060rEmqagl/eEWEOVmnP/4n1sYUf1ktSKDbCOjlU7Iay9GnTcjhtvWrVu56aabuPfeexkaGmJwcJD3vve9fPrTnyYajbbv9+yzz/LhD3+YJ554gt7eXj7ykY/wyU9+csJzfec73+HP/uzP2Lp1K6eeeiq33HILb37zm4/qeESICcJEbBXtGNIQRLzGjbiJGXGtBr7zscmtIAjHj+vp7CwV+K8v7MTAY1DbSjd7Z+RkYTEKsfnKXNJ6ovOE+YajzHEDjiw1lUUBKa1KijKv/aNzyMXrRzQRdbrwfS0w4XwD1wuGY7m+0Z4o3nmt0NBQaJpC00AjGIRlGh4xwyVmOiQijmjHEN/XGK2n+PEtGxlVvSg0CtowXewjyxi6NjeC3eNDGlLt84RW6xoTm4RWJ0GNy284tz1pVzLi5i+WG+Guz7/IXrWMlFZhGS/PuPG2GHVeZCaedNOmTfi+z9/+7d+yevVq1q9fzwc/+EFqtRq33347ELy5q6++mquuuoqvf/3rPPfcc/zu7/4u+Xye3//93wfg4Ycf5l3vehc333wzv/zLv8w//cL1sckAACaESURBVNM/8ba3vY2nnnqKs846ayYOXRAWBVHNJopNjo7GtdpEI65Bih/e/kq7NLXVIy5OnStuWEcqZpGOykQkQVjoRAyfVV0jfOjPk+wu5/mP2zV2cRIr2EJBG57twxNmCdF6gnDsmJpDIezzBUGmWJNkYL6R5T9v20ZDpdHxSGtlLv/omeTiDfKJ+ozpLl1XxHWXOGKgTDe6ruhJV3n3TctRCoqNJP998xBb1Ro8IhTYPyfMN0PzSFMmTXn8h1rQuibIiAvOD+75wmYaKhVmxLnh+UGNV183nhGXMJ050aBfmJpYxOWdN52E4+nc9bntbFbnkmOU5bx0QvsPLnROWEnpbbfdxte+9jVefvllAL72ta/x6U9/mqGhoXYk9FOf+hR33XUXmzZtAuCd73wntVqN73//++3nufTSS1m3bh1f//rXj/i1p8O5lKinsJhxlEmDVHuzbZKkqZLt1POEVm9vtKmoRSpmkTRt2WgFYQHi+xq7SgW+d8duElqdlbwwbT1AFmPkcyExW1pPMtyEhUhQipoJTbgMVZWjSYIYTVJahSuuO4tcvE423pBJ9fOU1tCFH/7lJkZVHz4GBW0f3aH5Ntd1tKcMmiQmBOtb5wcAMRoktRqXffScdkZc0rQl83GOYrkRvvv5rQyrfga1bQyybdrX4GLUeTOS4TYZpVKJrq6u9vePPPIIV1555YSyg2uuuYZbbrmFsbExCoUCjzzyCDfccMOE57nmmmu46667TtRhC4JAEIk1KZKlOP5DbXxqajOcnPrAnRvaES+AGE3iYfr5qz9+fjvqJcJQEOYvuq5YXhjlDz6f5F8/t4cN6gIG2cYSth9XZH6uiTDh6JnPWk/MNmGuoWtqYrZRmGlUI0ONDA/euZ6aymARJ06DlFbh8uvOFhNuHqFpkE80eNdNK9uZbz+8eYiX1BloKLrYRw9DpLTqbB/qpBiaR4oqKTqOTwvMYjtYlTRI8tiXf9E241wiRLHC84M6r7o+CNYno7YE62eZWMTlPTcto9RI8K3/OUBR6+FU9RxRzZ7tQ5vXnBDDbcuWLXzlK19plxgADA0NcdJJJ024X39/f/u2QqHA0NBQ+2ed9xkaGjrk61mWhWWNj98ul8uHuPeRceCJgAgzQWilnldI0zF5SQub9JKgSaJtxv3ojpdoqCQO0Y6suDqXfWx8o5WhDYIwf4gYPu+86aRQmPVT0ro5TT1LRJNypMXIidR6ovOExUpEc8kxNt4SRBsfkFUlywN3bqAeNr+P0SAdmnDZWINsvCFtQOYwmgaFZJ1337QCpWCklua/bxllozqfqGrSow3Rw9C8MD90TRGnQZwGhc4bwvUanBsEAfv7vrhxQlZcYMbViNPg8hvOI2HaJKVE9YSSSzT44J9n+NZnd/K8uoA1PENCqx/38y7WwOpRGW6f+tSnuOWWWw55n40bN7J27dr297t27eJNb3oT73jHO/jgBz94bEd5lNx88818/vOfn9HXmGrBiEAThEA0tDZaGO24odUHomXGpfjZl55tl6i2pqfGtOCxr77+XJKm3Y566WLGzQt8X6PYTNJwTOxw+tmTX3mc8//wYgzdx9BVe+JZRA8moZmGRzTiEjNc+ZznGYEwy/KPn93L8+oCTucpTO3ENfoWppf5oPVE5wnCOKbmHNKECzLh0lgkiGKR1Cpc/tGzyMSaZOONEzqYQTgyNA160lXee9NSPF9jb6WH/77dYpc6iSxj9LKHPMNzZtjC0RBUzZTI0NGcvyNYb4WZcU0S3P2FF7BU8DMN1c6Mi9Hg1de3zDibhGlLwH6aMXTFe29ayrf+bBsvqrM5kycwNMmaPRaOynD7+Mc/zvvf//5D3ufkk09uf717925e97rX8apXvYpvfOMbE+43MDDA3r17J/ys9f3AwMAh79O6fSr++I//eEJ5QrlcZvny5Yd8zHQxmUATcSYI40Q09+CsOGgPbWiSbGfGBVGvYKNV6B0bbZPLrjuPpDmegi79IOYG//JnL7NXLUOnTkxrEsUigoOOz1N//Tg+Oj4GPgZe66JMXCK4mADhVzamZmNiYWJzyXUXEjVc4hEnMOYiLlHDlWjnHMHQFe/78z7+z2f28hJnsJZnZvuQhGNkPmi9uabzQLSeMLeYzIRzVYQ6aeqkefTLT1MPJ9Tr+KS0CkkqXPHxdWTjDdJRS4JfcwRDVwzmSvzuTT00HJPv//lWtqtTeIU19LGbXnYT15qzfZjHTWew/sChbp1mXOs84d4vbmybcT4GJjYxrUmMBpd+ZF3biEuYNvGIBHOPld/885V84zNlRhigj92zfTjzkqMy3Hp7e+nt7T2i++7atYvXve51XHDBBfz93/89uq5PuP2yyy7j05/+NI7jYJrBSdbdd9/NmjVrKBQK7fvcc889XHfdde3H3X333Vx22WWHfO1YLEYsFjuKdzaziDgThCOjNT31wF5xSoFNjCbJ9ob70J3P0SCJpRJ44UYb1xrBRvvRdSRMJ5ySZBOLiDFzIvjOn21hWA1ymvbs0Y0VDz8bpcAhGtptMRyi7ctDdz6LQwxHRcP7RNDxMbHCdROYe5defwHxiEPcdIhJxtwJRdPg3Z9bwtc+a1EjPWd7zgiHZj5ovbmm80ACrsLcJ6K5ZA/ox+uj0SBFjQx10vz3HS9TV2l8dOLUSWpVLr/uHDKxBplYk7gpLQNmk4Tp8I6bVqMUjNZTfP+vijynLiHHKP3sJKeNHf5J5iGHMuMgyOgMWtnEsUjw+FeeDM4XVBy7o1S1Zchd8tHzSJhO+xxBMuSmRtMgRZkGydk+lHnLjEwp3bVrF6997WtZuXIl//AP/4BhGO3bWhHLUqnEmjVruPrqq7nxxhtZv349v/u7v8sXv/jFCaPiX/Oa1/BXf/VXXHvttfzzP/8zf/mXf3nUo+Ln25QxEWiCcHRM3GiDPhAWCZoqgU0MHb+dHRfF4rLrwjR0024bM8Lx4Xo6f/NZizXaM0dnth0jntJxiGETI7Bp4+HXcWyiOCow7BRaO1suioWJxSUfPZ+E6RCLBJ99kDUnfW2mi7/9szJL2UqXtv+oHjcXe3vMN/1wIplLWm++fU6i84S5TlPFaYTZcHXS1FWaJgkiOCS1KglqXHHDOjJhNpxUGcweDcfkP/78BfapQaKaxRK20c0+CTSHtIL2rYC9RSL8Po6tAu3ooxPBIapZxFoB3OvOJxZxiHdoxcW4zsfqSf7xL0ucqj133IbuYtV5M2K4ffOb3+R3fud3Jr2t8+WeffZZPvzhD/PEE0/Q09PDRz7yEW688cYJ9//Od77Dn/7pn7J161ZOPfVUbr31Vt785jcf1fHMNyE2GSLOBOHYaE1Kam2ybTOOOJZK4GKi4xHDIqY1gk32Y+eFaehhppRkSR2W7/zZFor0cKb25GwfSptWxlyQLdcy52Ltn7WElodxQLZcaMxdd2FgyhkusXAdiDF3aHaXcnz3tmHO0R49qsbOc1GEwcLQDzPFXNJ6C+VzEq0nzGU8pdMgFZSitq5VCocoMZoktCpJalzxiXWkY5aUpZ5gPF9jd6nAf96xAw1Yom2jh6F52eftRBME7uM4LSOurRnj2CqK0zbl3FArBu1SWpUVUSNoddJqd2Ia3rw2PH1fY6yR5L/+agtjqpcV2hb6tV3H9ZyLWefNiOE211goQmwyRJwJwvHhKX2CIdeOehHHUnEcogCY2EQ1iygWUZpcdv357YhXEAFbvKbcvkqGb90yytoTlN023XjK6DDjTGziYSlraM6F2XKdxlzQ9NcO+st97PzQjHOJRRxMwyNmuIsqEjpWT/KfN79MSXVxsvY8BW3kqB6/mIWYcPws5M9JdJ4w12kNaAhMuBSN0Ijz0UMjrsarPnI26ViTdMySifQzjO9r7C7n+c/bd6KhWK5tOeo9WTgYR5njAdsJbU9aWjH43sdAQ2FiEwm1YgSHCA4Xf+xCTN3DNFyihodpeEQML/zZ7Jh0rqfTcE3qdoxyM85DX15PVeXR8Sho+xlgx7T0CFzMOk8MtwWKCDRBmB5aqeiBKRdrR7/aGVOHKF28+CMXjPcSizjtCNhCEZrlZpy7/ucrFFUPJ2mb6Nb2zfYhzSieMjoy5sb7y3V+74aCTKGF5pxNRLMxQ7FlYnPxdRe1I6DBxcXUPaKGNy9MW9/XqDlRKs04996+gbIq4GHSrQ0xyLajymxrsZiFmHD8LMbPSXSeMNexVNB7t9OIa6okLhFiNEhodRLUuPzj55GKWqRjTcxFFKiaaZSCHcUuvnfHHlJahZPYREyzZvuwFjyBVjRx2zrRxMUMA7dBjpyLiRsODPOI4BP0Pw3GirnBSDEtuNZxMfDR8dBQnP+HF6FrCl3zw+tAN2oHZDIqpeGHF8/Xw8FlBi4mHpHQQIyFPZE94lqDJFVSVEhTIkVlWg3AxazzxHBbRIg4E4SZ4cDSxfEIWEf0K4x8KTQMvAmRLxObiz5yAdFIYMJE25Gv4PuI7s96arpSUHeilJsJ7rvtWYqqB5sYPdoQS9i2ICZkTSeuirQHQIxfj389UXCZeAT9r/RQjrXEVgS7Pc/1wo9cSET3MHSfiO5j6D6GFl7r48Kr9bWGmlKMKRUsKAWhINPxlYbr63i+jusZ2J6B6xvYXoTHvvRUkP0ZTgQDRUKrhQ24x8hQPK5x8YtZiAnHj3xO44jWE+Y6torSINU24xqkaKgkDlEiOCS0OnFqvPq6daSiFqmYRSLizIuA1FzE8XS+/bntjKk+VmmbF3xwdD7iqUD9BRcjNOGM9tceBgodP7x0ft2aHKGYeKKgoQCFjte+d/CMbjvjLkgQsDE1Z8bf42LWeWK4CSLOBOEEoRRtA6bTjGlFwLxWFEy1vo+0N9DAhHFDEyb8OjRmLvjIRRPMl07TRdd8NAKzRdNaG3CAr7SJETAVGC2Ob+B6Oj//6ycnNJUFSGhVUlTJM0KW0eMyWYRxfKVNiHy2JJEXfn2gEPMw8MOYp6+MtpTy0fAxDv+CUzCZ4WeGmXlRLGI0iFMnRlMin8KcQT6nQyM6T5gPuCpCk0TbiGuSpKGC6fQKjRhN4lqdOHVefcN5JE2bZNQiYTqzHpScDwyVs/zLrSMs015mQNs524cjLDIWs84Tw02YEhFogjD7eMpop5y30sC9dkq4EcarxqNfXtt4CUwYpTRUmKquOqJgGn47FqZrXmjT+B1GXisnK5jYFFwaImrnCb7SCHPcJnzuLTqNVz206WazsfJiFmLC8SOf07EhOk+YDyhFx8CrZNuUa6pgKr2GCjSKFgSDXn19OIk+Gkyjl8y4cYqNBP/nf5anZeKkIBwNi1nnRWbkWYUFwWR/GCLOBOHEYmhBThMcY98NMcgWJYF5poC5n4E4V0WYICx0pvrbE60nzCU0DeI0idMkR4dJpE2cRN8ghUWce7+4MWx/kMBHD7KztSBoeOlH15EwnXASvb3oBl7lEw0Gta3sZuXE36UgzCCLXeeJ4SYcFSLOBEEQBEEQFi4ScBXmC7qmiNMgTuMgM67VX9ci0c6Qe+zLvwi+VsE0eiCYPq8FE+gv/cg64qZDPOIQD425hTbIIch2l2isIJwoxHATpgUx4gRBEARBEBYmovOE+YamQRSbKDYZSgfcePAUeosET3zlyXBAUHzCBMcoNlEtmEAfxeLS6y9oT56PRVziEYfIHDfmGo7Jv//5y+xXK1mrPTPbhyMIiwYx3IQZRaKkgiAIgiAICxMx4oT5iqZBLLTaMgfdGFx5yghNuViYLRcYcfd9cWMw8EqZOMTw0dHxwwn0djiB3uHCP7wgnD4fTJ6PRjwiuhdOoJ+ZKfRKge1FqNtRanaMB+54hgp5GipFXotxpvYkSa02vS8qCMKUiOEmnHBEnAmCIAiCICxcJOAqLAQMzSNBnQT1ye8QmmWuinRMnY+2J44/9dePt792MXFVJJxIP34KbuChhzPI9bBvr47XHm6l40M4Bqk18MhHR4Ujj1Q4LMtVZseEe58oFRJajTgwyDZy2igRzZ3R35cgCAcjhpswZxAjThAEYXGx2BvpCsJiQnSesFCJaC4R3KmNuRahQacU7QnzHhF89PDaaE+bb00Z77yM915T4UAtwvn0XngMDhEcTGwMbW6XuArCYkEMN2HOI1FSQRAEQRCEhYkYccJiQ9MgQmDSHfMUekGYB0hgVQw3YZ4i4kwQBEEQBGHhIgFXQRAEYb4jhpuwoBAjThAEQRAEYWEiOk8QBEGYT4jhJiwKRKAJgiAIgiAsTETnCYIgCHMRMdyERY2UKwiCIAiCICxMROcJgiAIs4kYboJwABIlFQRBmHmkka4gCLOB6DxBEISZR3RegBhugnCEiEATBEEQBEFYmIjOEwRBEKYbMdwE4TiRcgVBEARBEISFieg8QRAE4VgRw00QZgCJkgqCIAiCICxMROcJgiAIR4IYboJwAhGBJgiCIAiCsDARnScIgiB0IoabIMwBpFxBEARBEARhYSI6TxAEYXEihpsgzFEkSioIwkJFJlcJgrDYEZ0nCMJCRXTeOGK4CcI8QwSaIAiCIAjCwkR0niAIwsJBDDdBWCBIuYIgCIIgCMLCRHSeIAjC/EMMN0FYwEiUVBAEQRAEYWEiOk8QBGFuI4abICxCRKAJgiAIgiAsTETnCYIgzA3EcBMEoY2UKwiCMNNII11BEITZQXSeIAjCiUUMN0EQDolESQVBEARBEBYmovMEQZhOJLA6ETHcBEE4JkSgCYIgCIIgLExE5wmCIBw/YrgJgjCtSLmCIAiCIAjCwkR0niAIwpGjz/QLWJbFunXr0DSNp59+esJtzz77LFdccQXxeJzly5dz6623HvT473znO6xdu5Z4PM7ZZ5/ND37wg5k+ZEEQpplrnc2TXgRBEIT5j2g9QVjciM4TBEGYnBk33D75yU8yODh40M/L5TJXX301K1eu5Mknn+S2227jc5/7HN/4xjfa93n44Yd517vexQc+8AF+8Ytf8La3vY23ve1trF+/fqYPWxCEE4AINEEQhPmPaD1BECZDdJ4gCIsdTSmlZurJf/jDH3LDDTfwr//6r5x55pn84he/YN26dQB87Wtf49Of/jRDQ0NEo1EAPvWpT3HXXXexadMmAN75zndSq9X4/ve/337OSy+9lHXr1vH1r3/9iI+jXC6Ty+UolUpks9npe4OCIJwwpFxBEOY/8+1ES/TD4ZkLWk8+J0GY/4jOE4T5j+i8g5mxHm579+7lgx/8IHfddRfJZPKg2x955BGuvPLKtgADuOaaa7jlllsYGxujUCjwyCOPcMMNN0x43DXXXMNdd911yNe2LAvLstrfl8vl43szgiDMOtK8VxAEYW4xW1pPdJ4gLDxE5wmCsBCZEcNNKcX73/9+/uAP/oALL7yQrVu3HnSfoaEhTjrppAk/6+/vb99WKBQYGhpq/6zzPkNDQ4d8/ZtvvpnPf/7zx/cmBEGYF4hAEwRBOPHMptYTnScIiwfReYIgzGeOqofbpz71KTRNO+Rl06ZNfOUrX6FSqfDHf/zHM3Xch+SP//iPKZVK7cuOHTtm5TgEQZg9pGeIIAjC0TMftJ7oPEEQROcJgjAfOKoMt49//OO8//3vP+R9Tj75ZO69914eeeQRYrHYhNsuvPBC3vOe9/AP//APDAwMsHfv3gm3t74fGBhoX092n9btUxGLxQ56bUEQBImSCoIgHJr5oPVE5wmCMBmi8wRBmGscleHW29tLb2/vYe/35S9/mb/4i79of797926uueYavv3tb3PJJZcAcNlll/HpT38ax3EwTROAu+++mzVr1lAoFNr3ueeee7juuuvaz3X33Xdz2WWXHc1hC4IgHBIRaIIgCAGi9QRBWGiIzhMEYbaYkR5uK1asmPB9Op0G4JRTTmHZsmUAvPvd7+bzn/88H/jAB7jxxhtZv349X/rSl/jiF7/YftzHPvYxXvOa13DHHXdw7bXX8s///M/8/Oc/nzBOXhAEYaaYTKCJOBOEY0PKfRYWovUEQZjviM4ThOlDdN7kzNiU0sORy+X48Y9/zIc//GEuuOACenp6+MxnPsPv//7vt+/zqle9in/6p3/iT//0T/mTP/kTTj31VO666y7OOuus2TpsQRAWORIlFQRBODJE6wmCMN8QnScIwnSiKaXUbB/ETFMul8nlcpRKJbLZ7GwfjiAIiwgRaIIQMB8jn6If5gfyOQmCMFuIzhOEANF5kzNrGW6CIAiLASlXEARBEARBWJiIzhME4VCI4SYIgnCCkXIFQRAEQRCEhYnoPEEQWojhJgiCMEcQgSYsVOZjmYEgCIIgTCei8wRh8SGGmyAIwhxHyhUEQRAEQRAWJqLzhPmOBFanRgw3QRCEeYhESQVBEARBEBYmovMEYWEghpsgCMICQgSaIAiCIAjCwkR0niDML8RwEwRBWARIuYIgCIIgCMLCRHSeIMxNxHATBEFYpEiUVBAEQRAEYWEiOk8QZh8x3ARBEIQJiEATphNppCsIgiAIcwfRecJ0Ijrv0IjhJgiCIBwRUq4gCIIgCIKwMBGdJwjTjxhugiAIwjEjUVJBEARBEISFieg8QTg+xHATBEEQph0RaIIgCIIgCAsT0XmCcGSI4SYIgiCcMKRcQRAEQRAEYWEiOk8QJiKGmyAIgjCrSJRUEARBEARhYSI6T1jMiOEmCIIgzElEoM1/ZHKVIAiCIAiTITpv/iM67/CI4SYIgiDMK6RcQRAEQRAEYWEiOk9YSIjhJgiCIMx7JEoqCIIgCIKwMBGdJ8xXxHATBEEQFiwi0ARBEARBEBYmovOEuY4YboIgCMKiQ8oVBEEQBEEQFiai84S5ghhugiAIgoBESacbaaQrCIIgCMJcQXSeMBuI4SYIgiAIh0AEmiAIgiAIwsJEdN6xIYHVI0MMN0EQBEE4BqRcQRAEQRAEYWEiRpwwHYjhJgiCIAjThIgzQRAEQRCEhYsEXIWjQQw3QRAEQZhhxIgTBEEQBEFYmIjOE6ZCDDdBEARBmCUkSioIgiAIgrAwESNOEMNNEARBEOYQC0GcSSNdQRAEQRCEyZnvAVfReUeOGG6CIAiCMA9YCEacIAiCIAiCcDCi8xYmYrgJgiAIwjxmvkdJBUEQBEEQhMkRI25+I4abIAiCICwwRJwJgiAIgiAsXCTgOj8Qw00QBEEQFglixAmCIAiCICxMROfNPcRwEwRBEIRFjkRJBUEQBEEQFiZixM0ei8JwU0oBUC6XZ/lIBEEQBGF+cMXIE5P+/Edd5x/ycdeMPrVg9tvW+2jpCGFuIjpPEARBEI6eybSe6LzpZVEYbpVKBYDly5fP8pEIgiAIwgInl5vtI5h2KpUKuQX4vhYKovMEQRAE4QSxAPXQTOo8TS2CsK3v++zevZtMJoOmabN9OAuOcrnM8uXL2bFjB9lsdrYPR0A+k7mGfB5zC/k85h5z9TNRSlGpVBgcHETX9dk+HGEKROfNLHP173MxI5/J3EI+j7mHfCZzi7n6eZwInbcoMtx0XWfZsmWzfRgLnmw2O6f+gAT5TOYa8nnMLeTzmHvMxc9EMtvmPqLzTgxz8e9zsSOfydxCPo+5h3wmc4u5+HnMtM6TcK0gCIIgCIIgCIIgCIIgTCNiuAmCIAiCIAiCIAiCIAjCNCKGm3DcxGIxPvvZzxKLxWb7UIQQ+UzmFvJ5zC3k85h7yGciCHMX+fuce8hnMreQz2PuIZ/J3GIxfx6LYmiCIAiCIAiCIAiCIAiCIJwoJMNNEARBEARBEARBEARBEKYRMdwEQRAEQRAEQRAEQRAEYRoRw00QBEEQBEEQBEEQBEEQphEx3ARBEARBEARBEARBEARhGhHDTThuvvrVr7Jq1Sri8TiXXHIJjz/++Gwf0oLkc5/7HJqmTbisXbu2fXuz2eTDH/4w3d3dpNNpfu3Xfo29e/dOeI7t27dz7bXXkkwm6evr44/+6I9wXfdEv5V5yQMPPMCv/MqvMDg4iKZp3HXXXRNuV0rxmc98hiVLlpBIJLjqqqt48cUXJ9xndHSU97znPWSzWfL5PB/4wAeoVqsT7vPss89yxRVXEI/HWb58ObfeeutMv7V5yeE+j/e///0H/b286U1vmnAf+Tymj5tvvpmLLrqITCZDX18fb3vb29i8efOE+0zX/6j77ruP888/n1gsxurVq/nmN785029PEBY1ovNODKLzZhfReXMP0XpzB9F5x44YbsJx8e1vf5sbbriBz372szz11FOce+65XHPNNezbt2+2D21BcuaZZ7Jnz5725aGHHmrfdv311/Of//mffOc73+H+++9n9+7dvP3tb2/f7nke1157LbZt8/DDD/MP//APfPOb3+Qzn/nMbLyVeUetVuPcc8/lq1/96qS333rrrXz5y1/m61//Oo899hipVIprrrmGZrPZvs973vMeNmzYwN133833v/99HnjgAX7/93+/fXu5XObqq69m5cqVPPnkk9x222187nOf4xvf+MaMv7/5xuE+D4A3velNE/5evvWtb024XT6P6eP+++/nwx/+MI8++ih33303juNw9dVXU6vV2veZjv9Rr7zyCtdeey2ve93rePrpp7nuuuv4vd/7PX70ox+d0PcrCIsF0XknFtF5s4fovLmHaL25g+i840AJwnFw8cUXqw9/+MPt7z3PU4ODg+rmm2+exaNamHz2s59V55577qS3FYtFZZqm+s53vtP+2caNGxWgHnnkEaWUUj/4wQ+UrutqaGiofZ+vfe1rKpvNKsuyZvTYFxqA+vd///f2977vq4GBAXXbbbe1f1YsFlUsFlPf+ta3lFJKPf/88wpQTzzxRPs+P/zhD5WmaWrXrl1KKaX+5m/+RhUKhQmfx4033qjWrFkzw+9ofnPg56GUUu973/vUW9/61ikfI5/HzLJv3z4FqPvvv18pNX3/oz75yU+qM888c8JrvfOd71TXXHPNTL8lQViUiM47cYjOmzuIzpt7iNabW4jOO3Ikw004Zmzb5sknn+Sqq65q/0zXda666ioeeeSRWTyyhcuLL77I4OAgJ598Mu95z3vYvn07AE8++SSO40z4LNauXcuKFSvan8UjjzzC2WefTX9/f/s+11xzDeVymQ0bNpzYN7LAeOWVVxgaGprw+8/lclxyySUTfv/5fJ4LL7ywfZ+rrroKXdd57LHH2ve58soriUaj7ftcc801bN68mbGxsRP0bhYO9913H319faxZs4YPfehDjIyMtG+Tz2NmKZVKAHR1dQHT9z/qkUcemfAcrfvIniMI04/ovBOP6Ly5iei8uYtovdlBdN6RI4ab8P+3dzehTaxRGMfPpe2EBomppGZCpSWVKkgtasEQ1FWlNCtxVbsQcaH40YVQXbhwXzduRMSVxVVxI4KLQM2HomhBiR9FKUSjIjSKldBII7bNuYtLBwe13NZpJm3/PwiEzJvJ+84hkyeHkFmyL1++yNzcnO1NIyISDAYln8+7NKvVKxKJyNDQkMTjcbl69arkcjnZt2+fFItFyefzYhiG+P1+23N+rkU+n/9trea3Yenmj99C74V8Pi8bN260ba+trZUNGzZQo2XQ09MjN27ckEQiIRcvXpR79+5JLBaTubk5EaEey6lcLsuZM2dkz5490t7eLiLi2DnqT2OmpqakVCotx3KANYucV1nkvOpFzqtOZD13kPMWp9btCQD4f2KxmHW/o6NDIpGItLS0yM2bN6W+vt7FmQHV59ChQ9b97du3S0dHh2zevFnS6bR0dXW5OLPV7/Tp0zI2Nmb77yEAwMLIecDikPXcQc5bHH7hhiULBAJSU1Pzy9VHPn36JKZpujSrtcPv98uWLVskm82KaZry48cPKRQKtjE/18I0zd/Wan4blm7++C30XjBN85c/mZ6dnZWvX79SowpobW2VQCAg2WxWRKjHcunv75c7d+5IKpWSTZs2WY87dY760xifz8cXUsBh5Dx3kfOqBzlvZSDrLT9y3uLRcMOSGYYhnZ2dkkgkrMfK5bIkEgmJRqMuzmxt+Pbtm7x580ZCoZB0dnZKXV2drRbj4+Py4cMHqxbRaFRevnxp++AZGRkRn88n27Ztq/j8V5NwOCymadqO/9TUlIyOjtqOf6FQkKdPn1pjksmklMtliUQi1pj79+/LzMyMNWZkZES2bt0qDQ0NFVrN6vTx40eZnJyUUCgkItTDaaoq/f39cuvWLUkmkxIOh23bnTpHRaNR2z7mx/CZAziPnOcucl71IOetDGS95UPO+wtuX7UBK9vw8LB6PB4dGhrSV69e6fHjx9Xv99uuPgJnDAwMaDqd1lwupw8fPtT9+/drIBDQz58/q6rqiRMntLm5WZPJpD558kSj0ahGo1Hr+bOzs9re3q7d3d367Nkzjcfj2tjYqOfPn3drSStKsVjUTCajmUxGRUQvXbqkmUxG379/r6qqg4OD6vf79fbt2/rixQs9cOCAhsNhLZVK1j56enp0586dOjo6qg8ePNC2tjbt6+uzthcKBQ0Gg3r48GEdGxvT4eFh9Xq9eu3atYqvt9otVI9isahnz57VR48eaS6X07t37+quXbu0ra1Nv3//bu2Dejjn5MmTun79ek2n0zoxMWHdpqenrTFOnKPevn2rXq9Xz507p69fv9YrV65oTU2NxuPxiq4XWCvIeZVDznMXOa/6kPWqBzlv6Wi44a9dvnxZm5ub1TAM3b17tz5+/NjtKa1Kvb29GgqF1DAMbWpq0t7eXs1ms9b2Uqmkp06d0oaGBvV6vXrw4EGdmJiw7ePdu3cai8W0vr5eA4GADgwM6MzMTKWXsiKlUikVkV9uR44cUdX/Lhl/4cIFDQaD6vF4tKurS8fHx237mJyc1L6+Pl23bp36fD49evSoFotF25jnz5/r3r171ePxaFNTkw4ODlZqiSvKQvWYnp7W7u5ubWxs1Lq6Om1padFjx4798gWRejjnd7UQEb1+/bo1xqlzVCqV0h07dqhhGNra2mp7DQDOI+dVBjnPXeS86kPWqx7kvKX7R1V1eX9DBwAAAAAAAKwd/IcbAAAAAAAA4CAabgAAAAAAAICDaLgBAAAAAAAADqLhBgAAAAAAADiIhhsAAAAAAADgIBpuAAAAAAAAgINouAEAAAAAAAAOouEGAAAAAAAAOIiGGwAAAAAAAOAgGm4AAAAAAACAg2i4AQAAAAAAAA6i4QYAAAAAAAA46F8ziitFvpvU1AAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "from floris.tools.visualization import visualize_cut_plane, add_turbine_id_labels\n", + "from floris.flow_visualization import visualize_cut_plane\n", + "from floris.layout_visualization import plot_turbine_labels\n", "\n", "fig, axarr = plt.subplots(2, 2, figsize=(15,8))\n", "\n", "# Plot the first wind condition\n", "wd = wind_directions[0]\n", "ws = wind_speeds[0]\n", + "ti = turbulence_intensities[0]\n", "\n", - "horizontal_plane = fi.calculate_horizontal_plane(wd=[wd], ws=[ws], height=90.0)\n", + "fmodel.reset_operation()\n", + "horizontal_plane = fmodel.calculate_horizontal_plane(wd=[wd], ws=[ws], ti=[ti], height=90.0)\n", "visualize_cut_plane(horizontal_plane, ax=axarr[0,0], title=\"270 - Aligned\")\n", - "add_turbine_id_labels(fi, axarr[0,0], color=\"w\", backgroundcolor=\"k\")\n", + "plot_turbine_labels(fmodel, axarr[0,0])\n", "\n", - "horizontal_plane = fi.calculate_horizontal_plane(wd=[wd], ws=[ws], yaw_angles=yaw_angles[0:1] , height=90.0)\n", + "fmodel.set(yaw_angles=yaw_angles[0:1])\n", + "horizontal_plane = fmodel.calculate_horizontal_plane(wd=[wd], ws=[ws], ti=[ti], height=90.0)\n", "visualize_cut_plane(horizontal_plane, ax=axarr[0,1], title=\"270 - Yawed\")\n", - "add_turbine_id_labels(fi, axarr[0,1], color=\"w\", backgroundcolor=\"k\")\n", + "plot_turbine_labels(fmodel, axarr[0,1])\n", "\n", "# Plot the second wind condition\n", "wd = wind_directions[1]\n", "ws = wind_speeds[1]\n", + "ti = turbulence_intensities[1]\n", "\n", - "horizontal_plane = fi.calculate_horizontal_plane(wd=[wd], ws=[ws], height=90.0)\n", + "fmodel.reset_operation()\n", + "horizontal_plane = fmodel.calculate_horizontal_plane(wd=[wd], ws=[ws], ti=[ti], height=90.0)\n", "visualize_cut_plane(horizontal_plane, ax=axarr[1,0], title=\"280 - Aligned\")\n", - "add_turbine_id_labels(fi, axarr[1,0], color=\"w\", backgroundcolor=\"k\")\n", + "plot_turbine_labels(fmodel, axarr[1,0])\n", "\n", - "horizontal_plane = fi.calculate_horizontal_plane(wd=[wd], ws=[ws], yaw_angles=yaw_angles[1:2] , height=90.0)\n", + "fmodel.set(yaw_angles=yaw_angles[1:2])\n", + "horizontal_plane = fmodel.calculate_horizontal_plane(wd=[wd], ws=[ws], ti=[ti], height=90.0)\n", "visualize_cut_plane(horizontal_plane, ax=axarr[1,1], title=\"280 - Yawed\")\n", - "add_turbine_id_labels(fi, axarr[1,1], color=\"w\", backgroundcolor=\"k\")\n", + "plot_turbine_labels(fmodel, axarr[1,1])\n", "\n", "plt.show()" ] @@ -564,36 +566,32 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAADgCAYAAAA5U2wdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUMElEQVR4nO3dfZRdVX3G8e8zk4S8kmAG5EUyICAtUMEYXkWKojZQEF1GjVp5UxGWtdUWW1lWQairxWW1YhZkpSoURapEEFoTBBVJQEwJAcQowfAS8wKaAcm7QGZ+/eOckdPL3HvnTO5lz5w8n7XOyj3n7LvPnrMmz92zzz7nKiIwM7N0OlI3wMxsZ+cgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMQ7IUmvl7RiB94fkg4cZNmLJX0zfz1N0mZJnUM99mBJep+kW9t9HLNWcBBXgKQLJS2s2fbrOttmR8TiiDj4pW0lRMRvImJiRPS2sl5J++UfDqMKx7o2It7SyuPkxzpG0m2Snpa0XtL1kvYq7F+Yf9j0L89JerCmrbdL2irpIUlvanUbbeRxEFfDIuC4/p5mHgyjgdfUbDswLzvsKDMSfh93A+YB+wHdwCbgqv6dEXFy/mEzMSImAj8Fri+8/zrgPmAq8ClgvqTdX6K22zA1En7xrbl7yIL3iHz99cDtwIqabY9ExDpJJ0pa0/9mSY9LukDSzyVtkPRtSWML+z8h6QlJ6ySd06ghkvaXdIekTZJuA7oK+/5fz1XSTyR9TtJdwFbglZL+pNDjXCHpXYX3j5P0b5JW5e28U9I4XvhweSbvhR4r6SxJdxbee5yke/L33SPpuMK+n0i6VNJdebtvlfTHdhdFxMKIuD4iNkbEVmAO8Lo652K//Lxfk6+/CpgOXBQR2yLiu8CDwDsanVOrPgdxBUTEc8AS4IR80wnAYuDOmm2NesPvAmYC+wOvBs4CkDQTuAB4M3AQ0OxP6W8B95IF8KXAmU3Kvx84F5gErAduy+vYA5gNXCHpkLzsF4DXAscBLwP+Aegr/IxT8p7o3cUDSHoZ8H3gcrKe6BeB70uaWij2XuDs/Lhj8p95ME4AltfZdwawOCIez9cPBR6NiE2FMg/k220n5iCujjt4IZBeTxbEi2u23dHg/ZdHxLqIeBr4b17oSb8LuCoifhERW4CL61UgaRpwJPDpiHg2IhbldTVydUQsj4jtZB8Ej0fEVRGxPSLuA74LvDMftjgH+NuIWBsRvRHx04h4tkn9AH8J/DoivpHXex3wEHBaocxVEfFwRGwDvlP4+euS9GrgM8An6hQ5A7i6sD4R2FBTZgPZh5DtxBzE1bEIOD7v/e0eEb8mG588Lt92GI17xE8WXm8lCw2AvYHVhX2rGtSxN/D7PLAHU56auruBoyU9078A7wP2JOthjwUeaVJfvXbVtmMVsE9hvd7PP6B81shCsg+GxQPsP56s3fMLmzcDu9YU3ZVsnNl2Yg7i6rgbmAx8CLgLICI2Auvybesi4rEh1PsEsG9hfVqTsrtJmjDI8gDFx/+tBu6IiCmFZWJEnA/0AH8ADmhSx0DWkYV80TRgbZP3DUhSN/BD4NKI+EadYmcCN0TE5sK25WTj4MUe8OHUH9qwnYSDuCLyP6mXAn9HNiTR785821BnS3wHOEvSIZLGAxc1aMOqvA2flTQm7xWeVq/8AP4HeJWk90sanS9HSvrTiOgDvg58UdLekjrzi3K7kI0t9wGvrFPvgrze90oaJendwCH58UqRtA/wY2BORMytU2Yc2ZDO1cXtEfEwcD9wkaSxkt5ONh7/3bLtsGpxEFfLHWQXm+4sbFucbxtSEEfEQuDfycJnZf5vI+8FjgaeJgvta0ocaxPwFrKLdOvIhgsuA3bJi1xANsvgnrz+y4COfPbC54C78iGNY2rqfQo4Ffh74Cmyi3ynRkTPYNtW8EGywL+4OF+4pszbgGfIZq7Umg3MAH4P/CswKyLWD6EdViHyg+HNzNJyj9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0tsVOoGmJm1y2s7J8TG6C31npXx7A8iYmabmjQgB7GZVdYm9TFnygGl3jPz6V92tak5dTmIzay6BB2jlLoVTTmIzayy1CE6xw3/S2EOYjOrrg4cxGZmKUnQOcZBbGaWkFCHx4jNzJLJesSdqZvRlIPYzKpLonO0hybMzJKRoGO0e8RmZumMkB7x8G+hmdkQSdlc4jJL8zr1cUnLJf1C0nWSxtbs30XStyWtlLRE0n7N6nQQm1l1CTpGdZZaGlYn7QP8DTAjIg4DOoHZNcU+APw+Ig4EvgRc1qyZHpows8pSe4YmRgHjJD0PjAfW1ew/Hbg4fz0fmCNJERGNKjQzq6a8R1xSl6SlhfV5ETEPICLWSvoC8BtgG3BrRNxa8/59gNV5+e2SNgBTgZ56B3QQm1mFDemGjp6ImDFgbdJuZD3e/YFngOsl/VVEfHNHWukxYjOrLLV4jBh4E/BYRKyPiOeBG4DjasqsBfbNjq9RwGTgqUaVukdsZtXV+jHi3wDHSBpPNjRxErC0pszNwJnA3cAs4MeNxofBQWxmFaahjRHXFRFLJM0HlgHbgfuAeZIuAZZGxM3A14BvSFoJPM2LZ1W8iIPYzCpMLQ1igIi4CLioZvNnCvv/ALyzTJ0OYjOrrvyGjuHOQWxmFSbU6WdNmJkl0+ox4nZxEJtZdan1Y8Tt4CA2s0obCWPESW/okLS5sPRJ2lZYf19e5uOSnpS0UdLXJe2Sss0pNTtfkg6T9ANJPZIazlvcWQzinJ0p6d7892uNpM/nk/B3SoM4X7MlrZC0QdLvJP2npF1Tt7seSWhUZ6klhaRBHBET+xeyidKnFbZdK+kvgE+STZruBl4JfDZhk5Nqdr6A54HvkD39yRjUORsPfAzoAo4m+127IFmDExvE+boLeF1ETCb7/zgK+OeETW5M0NHZWWpJYbh/8p8JfC0ilgNIuhS4liycrUZErABWSDowdVtGioi4srC6VtK1wBtStWe4i4jVNZt6geH7+5b3iIe74R7EhwI3FdYfAF4uaWpENLx322yITgCWp27EcCbpeOD7wK7AVuDtaVtUn1CyXm4Zwz2IJwIbCuv9ryfR5CEaZmVJOgeYAXwwdVuGs4i4E5icPyT9Q8DjaVvUgIARcLFuuAfxZrJP3X79rzclaItVmKS3Af8CvCki6j431l6QP5v3FuC/gOmp21PPSJi+Ntwfg7kcOLywfjjwWw9LWCtJmgn8B9mFqQdTt2eEGQUckLoRdSm7s67MksJwD+JrgA9IOkTSFOCfgKuTtmgYU2YsMCZfH7szT/cbDElvJLsA/I6I+N/U7Rnu8ils0/LX3cDngB+lbVV9chDvuIi4Bfg8cDvZVJpVvPipR/aCbrJnpPZfbNoGrEjXnBHh02QP7l5QmC+7MHWjhrFDgJ9K2kI2lW0F2Tjx8NXRUW5JQE2eV2xmNmJN794rFv3jmaXeM+kjl91b76uS2mVY94jNzHZUq4cmJB0s6f7CslHSx2rKnJjffdhf5jN1qgOG/6wJM7Oha8MNHfmNU0dk1auT7Dvqbhyg6OKIOHUwdTqIzay6BLT3AtxJwCMRsWpHKvHQhJlVmLKHEpdZoEvS0sJyboMDzAauq7PvWEkPSFoo6dBGrWzYI56sztiD0Q1/zCpbybM9EbH7YMv7fJU7X1MnjItpu01qaRv6pnS1tL5+W/rGtbzOR361rNT56po8KabtOejig7Kpc7eW1tdv67Otr3Pdo+XOF5DlcGfpP/x7BnOxTtIY4K3AhQPsXgZ0R8RmSacA3wMOqldXwxbuwWi+1NndrD2VdVrvw6X+3PD5Kne+pu02iR//danvWGzq2dPPaWl9/ZZsObx5oZLeduTocudrz92568pLW9qGH+767pbW1+/BR1pf56dmlztfkD1roo1zg08GlkXEb2t3RMTGwusFkq6Q1FXvrk2PEZtZdUntHCN+D3WGJSTtSXYXcEg6imwYuO4dwQ5iM6s2tf6hP5ImAG8GPlzYdh5ARMwFZgHnS9pOdmPV7Ghw04aD2MyqS4LyY8RNRcQWYGrNtrmF13OAOYOtz0FsZtXm5xGbmSXU3jHilnEQm1m1dTiIzczSkZI9Ua0MB7GZVZt7xGZmCXmM2MwsrUCEe8RmZonJY8RmZunIPWIzs/Q8RmxmlpB7xGZmqTmIzcySC1+sMzNLSBoRN3QM/48KM7MhCiA6OkstzUg6WNL9hWWjpI/VlJGkyyWtlPRzSdMb1ekesZlVmOhTa3vEEbECOAJAUiewFrixptjJZN9RdxBwNHBl/u+AGgbxLlPGcMAb9x16i0e6Gx4uVdznq9z50vgJjH3tkS1twpJn/6yl9fW7bdGWttRbxvNjJrKm+3UtrfMHN7Xn57rv9vvbUu+QtHeM+CTgkYio/T6904Fr8m/l+JmkKZL2iognBqrEPWIzq6yQ6GvvGPFsBv7eun2A1YX1Nfk2B7GZ7XyGMH2tS9LSwvq8iJhXW0jSGOCtwIU70DzAQWxmlTakMeKeiJgxiHInA8si4rcD7FsLFMcpX5FvG5BnTZhZdUmEOkstJbyHgYclAG4GzshnTxwDbKg3PgzuEZtZhQXZOHGrSZoAvBn4cGHbefDHb3NeAJwCrAS2Amc3qs9BbGaV1urpawARsQWYWrNtbuF1AB8ZbH0OYjOrsLbPmmgJB7GZVVao9Td0tIOD2MwqLWj9GHGrOYjNrNLcIzYzSyja8KyJdnAQm1ml9Y2A2yUcxGZWWYHowz1iM7OkfLHOzCwpeWjCzCylAPrCQWxmlpR7xGZmSYkIjxGbmSUTQK97xGZmCYXHiM3Mkgo08oN4zKTxvOLPj3iJmjIM3fCjUsV9vsqdr75RY9i2+/4tbcIfnm/Pf7oxu6Tvs/RGB5t6J7W0znHjR7e0vn4v23uPttQ7FL0tHiOWNAX4KnAY2ejHORFxd2H/icBNwGP5phsi4pJGdab/7TIza6M2XKz7MnBLRMzKv0B0/ABlFkfEqYOt0EFsZpXV6qEJSZOBE4CzACLiOeC5Ha13+A+emJkNVWRDE2WWJvYH1gNXSbpP0lfz76+rdaykByQtlHRos0odxGZWWf131pVZgC5JSwvLuYUqRwHTgSsj4jXAFuCTNYddBnRHxOHAV4DvNWunhybMrNIiSr+lJyJm1Nm3BlgTEUvy9fnUBHFEbCy8XiDpCkldEdFT74DuEZtZZQWiNzpKLQ3ri3gSWC3p4HzTScAvi2Uk7SlJ+eujyHL2qUb1ukdsZpXW1/pZEx8Frs1nTDwKnC3pPICImAvMAs6XtB3YBsyOaNwvdxCbWWVFQG9fa4M4Iu4Haocu5hb2zwHmlKnTQWxmldbqGzrawUFsZpU2hIt1LzkHsZlVVoRaPjTRDg5iM6u0NlysazkHsZlVVgC9falb0ZyD2MwqzWPEZmYJtWP6Wjs4iM2s0jw0YWaWUAT0uUdsZpaOL9aZmQ0DvlhnZpZSjIwesRo9FEjSemDVS9ecYac7InYfbGGfL5+vkny+yil1vgC6XzUjLvzK0lIHOX+m7m3wPOK2aNgjLvtD7+x8vsrx+SrH56u8GCE9Yg9NmFmlNXkU8LDgb+gws0rr7S23NCNpiqT5kh6S9CtJx9bsl6TLJa2U9HNJ05vV6R6xmVVWm4YmvgzcEhGz8m/pGF+z/2TgoHw5Grgy/7cuB7GZVVpfb+uGJiRNBk4AzgKIiOeA52qKnQ5ck3890s/yHvReEfFEvXo9NGFmldXfIy6zNLE/sB64StJ9kr4qaUJNmX2A1YX1Nfm2uhzEZlZpfX1RagG6JC0tLOcWqhsFTAeujIjXAFuAT+5oGz00YWaVlT1rovTbehrMI14DrImIJfn6fF4cxGuBfQvrr8i31eUesZlVWNDbW25pWFvEk8BqSQfnm04CfllT7GbgjHz2xDHAhkbjw+AesZlVWARNw3UIPgpcm8+YeBQ4W9J52fFiLrAAOAVYCWwFzm5WoYPYzCqt1Td0RMT9QO3QxdzC/gA+UqZOB7GZVVabesQt5yA2s0pzEJuZJRQRLb2ho10cxGZWab1DmL/2UnMQm1llZfOI3SM2M0vKQxNmZglFBL0j4MnwDmIzqy5PXzMzSyuA8BixmVlCHpowM0srgD4HsZlZQu4Rm5ml5R6xmVlqvqHDzCy1cI/YzCylCOjd3tvyeiU9DmwCeoHttV+tJOlE4CbgsXzTDRFxSb36HMRmVl3R1h7xGyKip8H+xRFx6mAqchCbWWWNlBs6/OWhZlZdAb29vaWWwdfMrZLulXRunTLHSnpA0kJJhzaqzD1iM6usGNrFui5JSwvr8yJiXk2Z4yNiraQ9gNskPRQRiwr7lwHdEbFZ0inA94CD6h3QQWxm1TW0i3U9tRffXlRtxNr8399JuhE4ClhU2L+x8HqBpCskddUbU/bQhJlVVvZVSb2llmYkTZA0qf818BbgFzVl9pSk/PVRZFn7VL063SM2s0prw8W6lwM35jk7CvhWRNwi6TyAiJgLzALOl7Qd2AbMjoi6DXEQm1llZQ+Gb+084oh4FDh8gO1zC6/nAHMGW6eD2MyqK6CvDTd0tJqD2MwqK2h9j7gdHMRmVl0B0ednTZiZJRSDmgmRmoPYzCorIkbEGLEazKgwMxvRJN0CdJV8W09EzGxHe+pxEJuZJeY768zMEnMQm5kl5iA2M0vMQWxmlpiD2Mwssf8D6oqQL2nKV70AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAFyCAYAAACUWPJkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApxUlEQVR4nO3deXwUZYL/8W8lkAtJRMwJIQnHD2MAkWsloIgjZiCDohIGFwVEcRVmEJzBkfXnqMNwqQyyoiCigFy+kMsDHAQHXI6osIMHIJdgEjFBnYEkhhyQrv2DSa9tUiRFNd108nm/XvXa7afrqXo6ZSZfnqsN0zRNAQAA1CDI3w0AAACXLoICAACwRFAAAACWCAoAAMASQQEAAFgiKAAAAEsEBQAAYImgAAAALBEUAACAJYICGpytW7fKMAxt3br1krnmU089JcMwPMqSk5M1cuRI543zokuxTQAuLoICAsrKlStlGIbWrl1b7b1rrrlGhmFoy5Yt1d5r1aqV0tPTfdHEgLdz50499dRTOnXqlL+b4rZr1y795je/UVpampo0aaJWrVppyJAhOnToULVzDcOwPPr16+dxrsvl0jPPPKOUlBSFhYWpU6dOWrFiha8+FhAQGvm7AYAdvXv3liRt375dt99+u7u8qKhIe/fuVaNGjbRjxw717dvX/V5eXp7y8vI0dOhQSdINN9yg0tJShYSE+LbxNh08eFBBQb7P8jt37tTTTz+tkSNH6vLLL78k2jRjxgzt2LFDWVlZ6tSpkwoKCjRnzhx16dJFH330kTp06OA+d8mSJdXq7969W7Nnz9Ytt9ziUf74449r+vTpGj16tLp376633npL//7v/y7DMNz/vQANHUEBASUhIUEpKSnavn27R3l2drZM01RWVla196peV4WMoKAghYWF+abBDoSGhtZ6TklJiZo0aeKD1pxTlzZdDI888oiWL1/uEe5+/etfq2PHjpo+fbqWLl3qLr/77rur1a8aGrrrrrvcZcePH9fMmTM1duxYzZkzR5J0//33q0+fPpo4caKysrIUHBx8ET8VEBgYekDA6d27t/bs2aPS0lJ32Y4dO5SWlqb+/fvro48+ksvl8njPMAz16tVLUs3zCW688UZ16NBB+/fvV9++fRUREaEWLVromWeeqXb/b775RoMGDVKTJk0UExOjCRMmqLy8vM7t3759u7p3766wsDC1adNGL7/8co3n/Xw+wKJFi2QYhj788EONGTNGMTExatmypfv99957T9dff72aNGmipk2bKjMzU/v27at23QMHDmjIkCGKjo5WeHi42rdvr8cff1zSubkSEydOlCSlpKS4u+y//vrrGtskSUePHlVWVpauuOIKRURE6LrrrtP69es9zqn6ma9cuVJTpkxRy5YtFRYWpl/84hc6cuRIrT+z9PT0aj1A7dq1U1pamr788svz1i0vL9fq1avVp08fj5/XW2+9pTNnzmjMmDHuMsMw9NBDD+mbb75RdnZ2re0CGgJ6FBBwevfurSVLlujjjz/WjTfeKOlcGEhPT1d6eroKCwu1d+9ederUyf3eVVddpebNm5/3uidPntQvf/lL3XHHHRoyZIhWrVqlP/zhD+rYsaP69+8vSSotLdUvfvEL5ebmaty4cUpISNCSJUv0t7/9rU5t/+KLL3TLLbcoOjpaTz31lM6ePasnn3xSsbGxdf78Y8aMUXR0tP74xz+qpKRE0rnu9hEjRigjI0MzZszQ6dOnNXfuXHeoSk5OliR9/vnnuv7669W4cWM98MADSk5O1ldffaV33nlHU6ZM0R133KFDhw5pxYoVmjVrlq688kpJUnR0dI1tOXHihNLT03X69GmNGzdOzZs31+LFi3Xrrbdq1apVHsNDkjR9+nQFBQXp97//vQoLC/XMM89o2LBh+vjjj+v8+auYpqkTJ04oLS3tvOdt2LBBp06d0rBhwzzK9+zZoyZNmig1NdWjvEePHu73q3qhgAbNBALMvn37TEnm5MmTTdM0zTNnzphNmjQxFy9ebJqmacbGxpovvviiaZqmWVRUZAYHB5ujR49219+yZYspydyyZYu7rE+fPqYk8/XXX3eXlZeXm3Fxceadd97pLnv++edNSebKlSvdZSUlJWbbtm2rXbMmgwYNMsPCwsycnBx32f79+83g4GDz57+OSUlJ5ogRI9yvFy5caEoye/fubZ49e9ZdXlxcbF5++eUen9E0TbOgoMCMioryKL/hhhvMpk2betzfNE3T5XK5//9nn33WlGQeO3asWvt/3qbx48ebksxt27Z5tCclJcVMTk42KysrTdP8v595amqqWV5e7j539uzZpiTziy++qOnHdV5LliwxJZmvvvrqec+78847zdDQUPPkyZMe5ZmZmWbr1q2rnV9SUmJKMh977DHbbQLqI4YeEHBSU1PVvHlz99yDzz77TCUlJe5VDenp6dqxY4ekc3MXKisr6/Qvw8suu8xjfDskJEQ9evTQ0aNH3WUbNmxQfHy8Bg8e7C6LiIjQAw88UOv1KysrtXHjRg0aNEitWrXy+DwZGRm11q8yevRoj7HzTZs26dSpU7rrrrv0ww8/uI/g4GD927/9m3sVyPfff6///u//1qhRozzuL6na0sy62rBhg3r06OHx873sssv0wAMP6Ouvv9b+/fs9zr/33ns9hhCuv/56SfL4GdfFgQMHNHbsWPXs2VMjRoywPK+oqEjr16/XgAEDqk3MLC0trXHORdX8lZ8ObQENGUEBAccwDKWnp7vnIuzYsUMxMTFq27atJM+gUPV/6xIUWrZsWe0PZrNmzXTy5En365ycHLVt27baee3bt6/1+t9//71KS0vVrl27au/VpX6VlJQUj9eHDx+WJN10002Kjo72ON5//3199913kv7vj/FPVwg4lZOTU2Pbq7rzc3JyPMp/HlCaNWsmSR4/49oUFBQoMzNTUVFRWrVq1XknHK5evVplZWXVhh0kKTw8vMa5JWVlZe73ATBHAQGqd+/eeuedd/TFF1+45ydUSU9P18SJE3X8+HFt375dCQkJat26da3XtPqDY5qm19rtDT//A1Y1cXPJkiWKi4urdn6jRpfOr7nTn3FhYaH69++vU6dOadu2bUpISDjv+cuWLVNUVJR+9atfVXsvPj5eW7ZskWmaHsEvPz9fkmq9NtBQXDr/CwLY8NP9FHbs2KHx48e73+vatatCQ0O1detWffzxxxowYIDX7puUlKS9e/dW++Ny8ODBWutWrTKo6gH4qbrUt9KmTRtJUkxMjG6++WbL86rC0t69e897PTvDEElJSTW2/cCBA+73vaWsrEwDBw7UoUOHtHnzZl199dXnPT8/P19btmzRyJEjaxxi6Ny5sxYsWKAvv/zS41pVEys7d+7stbYDgYyhBwSkbt26KSwsTMuWLdPx48c9ehRCQ0PVpUsXvfjiiyopKfHqzPUBAwbo22+/1apVq9xlp0+f1vz582utGxwcrIyMDK1bt065ubnu8i+//FIbN2684DZlZGQoMjJSU6dO1ZkzZ6q9//3330s6F1RuuOEGvfbaax73lzz/RV+1L0NddmYcMGCAPvnkE4+lhCUlJZo/f76Sk5Nr/WNeV5WVlfr1r3+t7Oxsvfnmm+rZs2etdd544w25XK4ahx0k6bbbblPjxo310ksvuctM09S8efPUokULdvIE/oUeBQSkkJAQde/eXdu2bVNoaKi6du3q8X56erpmzpwpqW7zE+pq9OjRmjNnjoYPH67/+Z//UXx8vJYsWaKIiIg61X/66af117/+Vddff73GjBmjs2fP6oUXXlBaWpo+//zzC2pTZGSk5s6dq3vuuUddunTR0KFDFR0drdzcXK1fv169evVybyj0X//1X+rdu7e6dOmiBx54QCkpKfr666+1fv16ffrpp5Lk/lk+/vjjGjp0qBo3bqyBAwfWuLHTY489phUrVqh///4aN26crrjiCi1evFjHjh3T6tWrvbaL4+9+9zu9/fbbGjhwoP75z396bLAk1bzJ0rJly5SQkOBeQvtzLVu21Pjx4/Xss8/qzJkz6t69u9atW6dt27Zp2bJlbLYEVPHnkgvAiUmTJpmSzPT09GrvrVmzxpRkNm3a1GMpoWlaL49MS0urdp0RI0aYSUlJHmU5OTnmrbfeakZERJhXXnml+fDDD5t//etf67Q80jRN88MPPzS7du1qhoSEmK1btzbnzZtnPvnkk3VeHrlr164ar7tlyxYzIyPDjIqKMsPCwsw2bdqYI0eONHfv3u1x3t69e83bb7/dvPzyy82wsDCzffv25hNPPOFxzuTJk80WLVqYQUFBHkslf94m0zTNr776yhw8eLD7ej169DDffffdam2TZL755pse5ceOHTMlmQsXLjzvz6xq+arV8XMHDhwwJZmPPPLIea9bWVlpTp061UxKSjJDQkLMtLQ0c+nSpeetAzQ0hmleYjO1AADAJYM5CgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAIClRv5uAAAAgaKsrEwVFRVeuVZISIjCwsK8cq2LiaAAAEAdlJWVKSH8Mp1UpVeuFxcXp2PHjl3yYYGgAABAHVRUVOikKrU4rLUiHI7cn5ZLIwqOqqKigqAAAEB90qRRsJoYwY6uYZje6ZXwBYICAAA2GI2DZBjOehQM0/RSay4+ggIAADYEBRsKCjKcXcPlrL4vERQAALDBaGzIcBgUDIICAAD1U1AjehQAAIAFehQAAICl4JAgBQc7m8wYXMlkRgAA6qWgYENBwQ6HHkSPAgAA9ZIR5IWhB5OgAABAvWQEB8lwOPRgiKEHAADqJYYeAACAJcNg1QMAALBgBMtxj4IROCMPBAUAAOwwgg0ZjoMCPQoAANRLRlCQjCCHkxkd1vclggIAADZ4ZXmkw/q+RFAAAMAGr6x6YOgBAID6iR4FAABgyTC8MEfBYI4CAAD1Ej0KAADAklfmKLDhEgAA9VNQo2AFNQp2dg0zcHZcIigAAGBDQxt6CJzZFAAAXAKqgoLTw47Kyko98cQTSklJUXh4uNq0aaPJkyfLrKVnYuvWrerSpYtCQ0PVtm1bLVq0yPbnpUcBAAAb/NGjMGPGDM2dO1eLFy9WWlqadu/erXvvvVdRUVEaN25cjXWOHTumzMxMPfjgg1q2bJk++OAD3X///YqPj1dGRkad701QAADAhnNBwekWzvaCws6dO3XbbbcpMzNTkpScnKwVK1bok08+sawzb948paSkaObMmZKk1NRUbd++XbNmzbIVFBh6AADABiPIcK98uNCjKigUFRV5HOXl5TXeMz09XR988IEOHTokSfrss8+0fft29e/f37Kd2dnZuvnmmz3KMjIylJ2dbevz0qMAAIAN3hx6SExM9Ch/8skn9dRTT1U7/7HHHlNRUZGuuuoqBQcHq7KyUlOmTNGwYcMs71FQUKDY2FiPstjYWBUVFam0tFTh4eF1aitBAQAAG7z57ZF5eXmKjIx0l4eGhtZ4/sqVK7Vs2TItX75caWlp+vTTTzV+/HglJCRoxIgRjtpSG4ICAAA2eLNHITIy0iMoWJk4caIee+wxDR06VJLUsWNH5eTkaNq0aZZBIS4uTidOnPAoO3HihCIjI+vcmyARFAAAsMUfqx5Onz6toJ/1YgQHB8vlclnW6dmzpzZs2OBRtmnTJvXs2dPWvZnMCACADVVDD04POwYOHKgpU6Zo/fr1+vrrr7V27Vr95S9/0e233+4+Z9KkSRo+fLj79YMPPqijR4/q0Ucf1YEDB/TSSy9p5cqVmjBhgq1706MAAIAN/uhReOGFF/TEE09ozJgx+u6775SQkKD/+I//0B//+Ef3Ofn5+crNzXW/TklJ0fr16zVhwgTNnj1bLVu21IIFC2wtjZQkw6xtWycAAKCioiJFRUVp/+jb1DSksaNrFVec0dWvvKXCwsI6zVHwJ3oUAACwwzDOHU6vESAICgAA2GAYXhh6ICgAAFA/eeVrpiutVytcaggKAADY4M0NlwIBQQEAABuMIPurFmq6RqAgKAAAYIM/lkf6E0EBAAA7goLOHU6vESAICgAA2GAYhuNVC6x6AACgnmIyIwAAsMQcBQAAYM3wwhyFAFr2QFAAAMAOL/QoiB4FAADqJ8MIkuGwR8BpfV8iKAAAYEeQ4bxHgB4FAADqJ1Y9AAAAS6x6AAAA1gzD+aoFNlwCAKB+MhoFy3D4NdNO6/sSQQEAABsa2hbOgTObogZVD6u2Y+vWre46r776qlJTUxUWFqZ27drphRde8N8HaODsPr+5c+cqKytLrVq1kmEYGjlypF/bD3vPMC8vT08//bR69OihZs2a6corr9SNN96ozZs3+/tjNGh2nmFpaanuu+8+dejQQVFRUbrssst0zTXXaPbs2Tpz5oy/P4rvVG245ORgeaRvLFmyxOP166+/rk2bNlUrT01NlSS9/PLLevDBB3XnnXfqkUce0bZt2zRu3DidPn1af/jDH3zWbpxj9/nNmDFDxcXF6tGjh/Lz833WTliz8wzffPNNzZgxQ4MGDdKIESN09uxZvf766+rXr59ee+013Xvvvb5sOv7FzjMsLS3Vvn37NGDAACUnJysoKEg7d+7UhAkT9PHHH2v58uW+bLrfNLTJjIZpmqa/G+Etv/nNb/Tiiy+qpo9UWlqqxMREXXfddXr33Xfd5XfffbfWrVunvLw8NWvWzJfNxc+c7/lJUk5Ojrs34bLLLtPgwYO1aNEi3zYS53W+Z7hv3z7FxsbqyiuvdJeVl5erc+fO+vHHH5WXl+fLpsJCbb+HNfntb3+rOXPmKD8/X3FxcRexdf5VVFSkqKgoHX9uvCLDQ51dq7RcLX7/vAoLCxUZGemlFl4cgdP34dCWLVv0j3/8Q2PGjPEoHzt2rEpKSrR+/Xo/tQx1lZSUFFDjevCUlpbmERIkKTQ0VAMGDNA333yj4uJiP7UMTiUnJ0uSTp065dd2+EzVhktOjwDRYILCnj17JEndunXzKO/atauCgoLc7wPwrYKCAkVERCgiIsLfTUEdVVRU6IcfflBeXp7Wrl2r5557TklJSWrbtq2/m+YTVVs4Oz0CRUDPUbAjPz9fwcHBiomJ8SgPCQlR8+bN9e233/qpZUDDdeTIEa1Zs0ZZWVkKDg6c5WIN3Zo1a3TXXXe5X3fr1k2vvfaaGjVqIH9S2MK5fiotLVVISEiN74WFham0tNTHLQIattOnTysrK0vh4eGaPn26v5sDG/r27atNmzbp1KlT+uCDD/TZZ5+ppKTE383yGbZwrqfCw8NVUVFR43tlZWUKDw/3cYuAhquyslJDhw7V/v379d577ykhIcHfTYINsbGxio2NlSQNHjxYU6dOVb9+/XT48OF6PZnRzTCc76wYQPOtAifSOBQfH6/Kykp99913HuUVFRX6xz/+wf9QAT40evRovfvuu1q0aJFuuukmfzcHDg0ePFg//vij3nrrLX83xTeCDOf7KATQ0EODCQqdO3eWJO3evdujfPfu3XK5XO73AVxcEydO1MKFCzVr1iyPcW4Erqqh28LCQj+3xEeqehScHgGiwQSFm266SVdccYXmzp3rUT537lxFREQoMzPTTy0DGo5nn31Wzz33nP7zP/9TDz/8sL+bA5t++OGHGvdXWLBggaTqq8rqq6o5Ck6PQNGg5ihMnjxZY8eOVVZWljIyMrRt2zYtXbpUU6ZM0RVXXOHvJqIW77zzjj777DNJ0pkzZ/T555/rz3/+syTp1ltvVadOnfzZPNRi7dq1evTRR9WuXTulpqZq6dKlHu/369fPPe6NS9PSpUs1b948DRo0SK1bt1ZxcbE2btyoTZs2aeDAgQ1nGMnwwhbMLI+8NI0ZM0aNGzfWzJkz9fbbbysxMVGzZs3iXzYBYvXq1Vq8eLH79Z49e9z7X7Rs2ZKgcImrCnmHDx/WPffcU+39LVu2EBQucb1799bOnTu1YsUKnThxQo0aNVL79u31l7/8Rb/97W/93TzfMbywPDKAhh7q1RbOAABcLFVbOJ947WlFRoQ5u9bpMsWOejIgtnBuUD0KAAA4xtADAACw1MD2USAoAABgR9VeCE6vESAICgAA2MHQAwAAsMSXQlXncrn07bffqmnTpjICaFwl0JmmqeLiYiUkJCjIYTcVz9A/vPUMeX7+we9g4PPmM3QzDC/0KATOfwN1CgrffvutEhMTL3ZbYCEvL08tW7Z0dA2eoX85fYY8P//idzDweeMZuvlhMmNycrJycnKqlY8ZM0YvvvhitfJFixbp3nvv9SgLDQ1VWVmZvXaqjkGhadOmkqSFRooiAmhcJdCdNl261zzm/vk7wTP0D289w6r6L67NUXgT36+5/irX5fN7/lSbVv75b7a0pEhjb0/y6u9gQ32GrRP99wx/c4d3nqGbHyYz7tq1S5WVle7Xe/fuVb9+/ZSVlWVZJzIyUgcPHnS/vtCerDoFhaqLRxhBijCCL+hGuEDmhT/cn+IZ+pEXnmFV/fAmkYrwwx+ZsAj//pGJaOLfcOvN30GeoX94dbjHDz0K0dHRHq+nT5+uNm3aqE+fPue5heGVr/3mn5YAANhRterB6XGBKioqtHTpUo0aNeq8AejHH39UUlKSEhMTddttt2nfvn0XdD9WPQAAYIfhhaGHfwWFoqIij+LQ0FCFhoaet+q6det06tQpjRw50vKc9u3b67XXXlOnTp1UWFio5557Tunp6dq3b5/tuRr0KAAAYEfV0IPTQ1JiYqKioqLcx7Rp02q9/auvvqr+/fsrISHB8pyePXtq+PDh6ty5s/r06aM1a9YoOjpaL7/8su2PS48CAAB2eHHDpby8PI8vhaqtNyEnJ0ebN2/WmjVrbN2ucePGuvbaa3XkyBHbTaVHAQAAO7zYoxAZGelx1BYUFi5cqJiYGGVmZtpqcmVlpb744gvFx8fb/rj0KAAAYIMZHCwz2NnqsQup73K5tHDhQo0YMUKNGnn++R4+fLhatGjhHrr405/+pOuuu05t27bVqVOn9OyzzyonJ0f333+/7fsSFAAAsMNPOzNu3rxZubm5GjVqVLX3cnNzPXaePHnypEaPHq2CggI1a9ZMXbt21c6dO3X11Vfbvi9BAQAAO/z0pVC33HKLTNOs8b2tW7d6vJ41a5ZmzZp1IS2rhqAAAIANpmHIdLjhktP6vkRQAADADr5mGgAAWPLDFs7+RFAAAMAOP3wplD8RFAAAsIE5CgAAwBpzFAAAgBXTCJLp8A+90/q+RFAAAMAOJjMCAAArprzQoxBAX7VEUAAAwA56FAAAgCU/fdeDvxAUAACwgeWRAADAkmkEyzQcfs20w/q+RFAAAMAGlkcCAABrbLgEAACsMEcBAABYYugBAABYYx8FAABgyQs9CsxRAACgnjJlyJTDOQoO6/uSraDw/4a0UdOQxherLfiZ4ooz0htfefWaPEPf8vYz3PLhPxUSdsZr16urI58e8fk9f+rrzm39ct+KsmKvX3PrtpMKCTvr9evW5vDfD/v8nj919Jr68wyZowAAAKwZ8sIcBa+0xCcICgAA2GAqyPG3P/LtkQAA1FPsowAAACwxRwEAAFhi1QMAALBEjwIAALDkMoLkcviH3ml9XyIoAABgAz0KAADAEnMUAACAJVNe6FFgHwUAAOonehQAAIClcxsuOZ2jQFAAAKBeokcBAABYYgtnAABgyTQNmabDoOCwvi8RFAAAsMX5t0eKVQ8AANRPzFEAAACWCAoAAMBSQwsKgTNIAgDAJaAqKDg97EhOTpZhGNWOsWPHWtZ58803ddVVVyksLEwdO3bUhg0bLujzEhQAALChatWD08OOXbt2KT8/331s2rRJkpSVlVXj+Tt37tRdd92l++67T3v27NGgQYM0aNAg7d271/bnJSgAAGCDS0FeOeyIjo5WXFyc+3j33XfVpk0b9enTp8bzZ8+erV/+8peaOHGiUlNTNXnyZHXp0kVz5syx/XkJCgAA2ODNoYeioiKPo7y8vNb7V1RUaOnSpRo1apQMi42bsrOzdfPNN3uUZWRkKDs72/bnJSgAAGCDKS8MPfwrKCQmJioqKsp9TJs2rdb7r1u3TqdOndLIkSMtzykoKFBsbKxHWWxsrAoKCmx/XlY9AABgg0uGXA5XLVTVz8vLU2RkpLs8NDS01rqvvvqq+vfvr4SEBEdtqCuCAgAANnhzeWRkZKRHUKhNTk6ONm/erDVr1pz3vLi4OJ04ccKj7MSJE4qLi7PdVoYeAACwwR+rHqosXLhQMTExyszMPO95PXv21AcffOBRtmnTJvXs2dP2PelRAADABlPON0wyL6COy+XSwoULNWLECDVq5Pnne/jw4WrRooV7jsPDDz+sPn36aObMmcrMzNQbb7yh3bt3a/78+bbvS48CAAA2+KtHYfPmzcrNzdWoUaOqvZebm6v8/Hz36/T0dC1fvlzz58/XNddco1WrVmndunXq0KGD7fvSowAAgA3+2sL5lltukWnW3BexdevWamVZWVmWGzLZQVAAAMAGJ3MMfnqNQGErKMRn9FZkRNjFagt+puh0mfTG+169Js/Qt7z9DEuKS1VR4ft8f6a8wuf3/Kkfi0r9ct8z5d6/74+Fp9W4LNjr162Nv59hSeFpv9z3TLn372tKcnnhGoGCHgUAAGygRwEAAFhqaF8zTVAAAMAGehQAAIClStNQpcM/9E7r+xJBAQAAGxh6AAAAlhh6AAAAlkzz3OH0GoGCoAAAgA3e/JrpQEBQAADABoYeAACAJYYeAACAJVY9AAAASy7z3OH0GoGCoAAAgB1emKMg5igAAFA/MUcBAABYYnkkAACwRI8CAACwxD4KAADAEqseAACAJZdpyOWwR8BpfV8iKAAAYINLXuhR8EpLfIOgAACADUxmBAAAlggKAADAEnMUAACAJXoUAACAJYICAACwZHphHwWCAgAA9RQ7MwIAAEsMPQAAAEts4VwD81/Rp7i07KI2Bp6qft6mF6Inz9A/vPUMq+qfKf/RcZsuxNkzJX65b5Uz5cV+uu+5n7c3fwd5hj6+b4X3nmEVehRqUFx87gG3GzP1ojYGNSsuLlZUVJTja0g8Q39x+gyrnt87L1/nrSYFlE82+vf+3vwdbKjPUPXgGVYhKNQgISFBeXl5atq0qQwjcCZgBDrTNFVcXKyEhATH1+IZ+oe3niHPzz/4HQx83nyGVRh6qEFQUJBatmx5sduCGngrAfMM/ccbz5Dn5z/8DgY+bz3DKvQoAAAAS5WV5w6n1wgUBAUAAGygRwEAAFhyyQtzFLzSEt8gKAAAYINpml5b8hwIgvzdAAAAAknV0IPTw67jx4/r7rvvVvPmzRUeHq6OHTtq9+7dludv3bpVhmFUOwoKCmzdlx4FAABsMF2Sy+HYgWmz/smTJ9WrVy/17dtX7733nqKjo3X48GE1a9as1roHDx5UZGSk+3VMTIytexMUAACwwR+TGWfMmKHExEQtXLjQXZaSklKnujExMbr88svt3fAnGHoAAMCGqg2XnB6SVFRU5HGUl5fXeM+3335b3bp1U1ZWlmJiYnTttdfqlVdeqVN7O3furPj4ePXr1087duyw/XkJCgAA2ODNOQqJiYmKiopyH9OmTavxnkePHtXcuXPVrl07bdy4UQ899JDGjRunxYsXW7YzPj5e8+bN0+rVq7V69WolJibqxhtv1N///ndbn9cwA2nqJQAAflJUVKSoqChNXnJSYRGRtVc4j7LTRXrinmbKy8vzmD8QGhqq0NDQaueHhISoW7du2rlzp7ts3Lhx2rVrl7Kzs+t83z59+qhVq1ZasmRJnevQowAAgA3eHHqIjIz0OGoKCdK53oGrr77aoyw1NVW5ubm22t6jRw8dOXLEVh0mMwIAYIM/JjP26tVLBw8e9Cg7dOiQkpKSbF3n008/VXx8vK06BAUAAGxwuUy5HG7NaLf+hAkTlJ6erqlTp2rIkCH65JNPNH/+fM2fP999zqRJk3T8+HG9/vrrkqTnn39eKSkpSktLU1lZmRYsWKC//e1vev/9923dm6AAAIAN/uhR6N69u9auXatJkybpT3/6k1JSUvT8889r2LBh7nPy8/M9hiIqKir0u9/9TsePH1dERIQ6deqkzZs3q2/fvrbuzWRGAADqoGoy4/9/9Z9emcz45/uuUGFhocdkxksRPQoAANhQWWmqstLZv7Gd1vclggIAADaY8sKXQomgAABAveSP73rwJ4ICAAA2NLSvmSYoAABgw083THJyjUBBUAAAwAbTZcp0+JfeaX1fIigAAGCDP/ZR8CeCAgAANvhjZ0Z/IigAAGADkxkBAIAl0+V8eSPLIwEAqKdcpimXwx4Bp/V9iaAAAIANDD0AAABLTGYEAACWWB4JAAAsmaYXNlwKoKRAUAAAwAZXpUuVlc6WLbgc1vclggIAADawhTMAALDEl0IBAABL9CgAAABL7KMAAAAsuVzO90FwBc5cRoICAAB20KMAAAAsMUcBAABYIigAAABLLnnh2yNFUAAAoF6iRwEAAFhiMiMAALBkeuFrpulRAACgnmLoAQAAWGLoAQAAWKo8W6mg4ErH1wgUBAUAAGygRwEAAFhijgIAALBEUAAAAJZccsllOvv6R5cC5+sjCQoAANhgupz3CDjMGT5FUAAAwAaGHgAAgCVWPQAAAEsul0sul8M5Cg7r+1KQvxsAAEAgqRp6cHrYdfz4cd19991q3ry5wsPD1bFjR+3evfu8dbZu3aouXbooNDRUbdu21aJFi2zfl6AAAIANpunyymHHyZMn1atXLzVu3Fjvvfee9u/fr5kzZ6pZs2aWdY4dO6bMzEz17dtXn376qcaPH6/7779fGzdutHVvhh4AALDBH5MZZ8yYocTERC1cuNBdlpKSct468+bNU0pKimbOnClJSk1N1fbt2zVr1ixlZGTU+d70KAAAYIc3hh3+FRSKioo8jvLy8hpv+fbbb6tbt27KyspSTEyMrr32Wr3yyivnbWZ2drZuvvlmj7KMjAxlZ2fb+rgEBQAAbHCZLq8ckpSYmKioqCj3MW3atBrvefToUc2dO1ft2rXTxo0b9dBDD2ncuHFavHixZTsLCgoUGxvrURYbG6uioiKVlpbW+fMy9AAAgA3eHHrIy8tTZGSkuzw0NLTG810ul7p166apU6dKkq699lrt3btX8+bN04gRIxy1pTYEBQAAbHBVVsrl8GuiXZXn6kdGRnoEBSvx8fG6+uqrPcpSU1O1evVqyzpxcXE6ceKER9mJEycUGRmp8PDwOreVoAAAgA0XsmqhpmvY0atXLx08eNCj7NChQ0pKSrKs07NnT23YsMGjbNOmTerZs6etezNHAQAAG1wuyeUyHR727jlhwgR99NFHmjp1qo4cOaLly5dr/vz5Gjt2rPucSZMmafjw4e7XDz74oI4ePapHH31UBw4c0EsvvaSVK1dqwoQJtu5NUAAAwAbT5fLKYUf37t21du1arVixQh06dNDkyZP1/PPPa9iwYe5z8vPzlZub636dkpKi9evXa9OmTbrmmms0c+ZMLViwwNbSSEkyzEDacBoAAD8pKipSVFSU0n/1vho1buLoWmfPlGjnu7eosLCwTnMU/Ik5CgAA2OCPOQr+RFAAAMAGvmYaAABYOltRbHuOwc9Vni3xUmsuPoICAAB1EBISori4OO3+YIhXrhcXF6eQkBCvXOtiYjIjAAB1VFZWpoqKCq9cKyQkRGFhYV651sVEUAAAAJbYRwEAAFgiKAAAAEsEBQAAYImgAAAALBEUAACAJYICAACwRFAAAACW/hcDP7XAgOEGMwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAADgCAYAAAA5U2wdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAATXUlEQVR4nO3de5RdZX3G8e8zMwm5EiAXVCohgCDgAoRQEZSq4RJUsCwVImIBb4AuFSxqWa2iUFeLUGsVNU2rIIJRQGi5yK1eIMEbAVGINlwKCSYKDJGEhItk5tc/9h7ZHM9l9uQc3jN7ns9ae2XO3u959zt7TZ7zzm9fRhGBmZml05N6AGZmY52D2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCPMZJeK2nFZrw/JO08zLaflnRx/vX2kjZI6h3pvodL0jsl3djp/Zi1i4N4lJN0hqTratbd22DdgohYEhG7vrCjhIhYFRFTImKgnf1K2iH/cOgr7OuSiDi0nfvJ97W/pJskrZX0qKTLJL24sH0LSQslPZy3uVrSdoXt20i6UtJGSSslHdvuMdro5CAe/W4BDhiaaebBMA54Zc26nfO2XUeZ0fCzuDWwCNgBmA08AVxQ2P4R4NXAnsBLgD8AXyps/zLwR2Bb4J3AVyXt0fFRW9cbDT/81txtZMG7d/76tcAPgRU16+6PiDWSXifpt0NvlvSgpNMl/UrSOknfkTShsP1jkn4naY2kdzcbiKQ5km6W9ISkm4AZhW3Pm7lK+pGkz0q6FXgS2FHSywszzhWSji68f6Kkf8lnkuskLZU0kec+XB7PSx+vlnSCpKWF9x4g6bb8fbdJOqCw7UeSzpZ0az7uGyX9adxFEXFdRFwWEesj4kngfODAQpM5wA0R8XBEPA18B9gj389k4K3AJyNiQ0QsBa4C3tXsmNrY4CAe5SLij8DPgIPyVQcBS4ClNeuazYaPBuaTBcmewAkAkuYDpwOHAC8DDm4xnG8Bt5MF8NnA8S3avwt4PzAVeBS4Ke9jFrAA+Iqk3fO25wH7AgcA2wAfBwYL3+NWeenjJ8UdSNoGuBb4IjAd+DxwraTphWbHAifm+x2ff8/DcRCwvPD6a8CBkl4iaRLZrHeoRLQLsCki7im0/yV5UNvY5iCuhpt5LpBeSxbES2rW3dzk/V+MiDURsRa4mudm0kcDF0TE3RGxEfh0ow4kbQ/sRzbjeyYibsn7aubCiFgeEZvIPggejIgLImJTRPwC+C7w9rxs8W7gIxGxOiIGIuLHEfFMi/4B3gTcGxHfzPtdDPwvcEShzQURcU9EPAVcWvj+G5K0J/Ap4GOF1fcCDwGrgfXAbsBZ+bYp+bqidWQfQjbGOYir4RbgNfnsb2ZE3Av8mKx2vA3wCprPiH9f+PpJstCArM75UGHbyiZ9vAT4Qx7Yw2lPTd+zgVdJenxoIZtRvohshj0BuL9Ff43GVTuOlcB2hdeNvv+68qtGriP7YFhS2PRlYAuymfdk4AqemxFvALas6WpLsjqzjXEO4mr4CTANeB9wK0BErAfW5OvWRMQDI+j3d8BLC6+3b9F267wWOpz2AMVH/z0E3BwRWxWWKRFxCtAPPA3s1KKPetaQhXzR9mSz1tIkzQb+Bzg7Ir5Zs3lvsln+2ny2/iXgL/Oa8z1An6SXFdrvxfNLGzZGOYgrIP+VehnwUbKSxJCl+bqRXi1xKXCCpN3zmueZTcawMh/DZySNl/Qanv/rfyvXALtIepekcfmyn6TdImIQ+Drw+bz+2puflNuCrLY8COzYoN/v5f0eK6lP0jHA7vn+SskvRfsBcH5ELKzT5DbgbyRNkzQO+ADZh2B//pvCFcBZkiZLOhB4C1Ab5jYGOYir42ayk01LC+uW5OtGFMQRcR3wBbLwuS//t5ljgVcBa8lC+6IS+3oCOJTsJN0asnLBOWS/6kN2Au0usrBbm2/rya9e+Cxwa17S2L+m38eANwN/CzxGdpLvzRHRP9yxFbyXLPA/nV+hsUHShsL208lm7veSfUC8ETiqsP0DwETgEWAxcEpEeEZsyA+GNzNLyzNiM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2MwsMQexmVliDmIzs8QcxGZmiTmIzcwScxCbmSXmIDYzS8xBbGaWmIPYzCwxB7GZWWIOYjOzxBzEZmaJOYjNzBJzEJuZJeYgNjNLzEFsZpaYg9jMLDEHsZlZYg5iM7PEHMRmZok5iM3MEnMQm5kl5iA2M0vMQWxmlpiD2Mwssb7UAzAz65R9eyfH+hgo9Z774pkbImJ+h4ZUl4PYzCrrCQ1y/lY7lXrP/LW/ntGh4TTkIDaz6hL09Cn1KFpyEJtZZalH9E7s/lNhDmIzq64eHMRmZilJ0DveQWxmlpBQj2vEZmbJZDPi3tTDaMlBbGbVJdE7zqUJM7NkJOgZ1/0z4u7/qDAzG6l8Rlxmad2lTpO0XNLdkhZLmlCz/aOSfi3pV5K+L2l2qz4dxGZWWVJ2LXGZpXl/2g74MDA3Il4B9AILapr9It++J3A58LlW43RpwsyqS9DT1/bSRB8wUdKzwCRgTXFjRPyw8PKnwHHD6dDMrJI0spN1MyQtK7xeFBGLACJitaTzgFXAU8CNEXFjk77eA1zXaocOYjOrrpHNiPsjYm7d7qStgbcAc4DHgcskHRcRF9dpexwwF/irVjt0jdjMKqxcfXgYN38cDDwQEY9GxLPAFcABf7ZX6WDg74EjI+KZVp16RmxmlaX214hXAftLmkRWmpgHFMsYSHol8O/A/Ih4ZDidOojNrLrafENHRPxM0uXAHcAmsiskFkk6C1gWEVcB5wJTyMoWAKsi4shm/TqIzayyOjAjJiLOBM6sWf2pwvaDy/bpIDazClMnLl9rOwexmVVXfkNHt3MQm1mFCfV6RmxmlkwnasSd4CA2s+qSa8RmZsmNhhpx0jvrJG0oLIOSniq8fmfe5jRJv5e0XtLXJW2RcswptTpekl4h6QZJ/ZIi9Xi7wTCO2fGSbs9/vn4r6XOSxuwEZRjHa4GkFZLWSXpE0jckbZl63I1IQn29pZYUkgZxREwZWsjuWDmisO4SSYcBf0d298psYEfgMwmHnFSr4wU8C1xK9qARY1jHbBJwKjADeBXZz9rpyQac2DCO163AgRExjez/Yx/wjwmH3Jygp7e31JJCt3/yHw98LSKWA0g6G7iELJytRkSsAFZI2jn1WEaLiPhq4eVqSZcAr081nm4XEQ/VrBoAuvfnLZ8Rd7tuD+I9gP8uvP4lsK2k6RHxWKIxWbUdBCxPPYhuJuk1wLXAlsCTwFFpR9SYULJZbhndHsRTgHWF10NfTwUcxNZWkt5N9tjC96YeSzeLiKXAtPyvVbwPeDDtiJoQMApO1nV7EG8g+9QdMvT1EwnGYhUm6a+BfwIOjoj+xMMZFfKHpF8PfBvYJ/V4GhkNl691+/OIlwN7FV7vBTzssoS1k6T5wH+QnZi6K/V4Rpk+YKfUg2hI2Z11ZZYUuj2ILwLeI2l3SVsB/wBcmHREXUyZCcD4/PWEsXy533BIegPZCeC3RsTPU4+n2+WXsG2ffz0b+Czw/bSjakwO4s0XEdeT/QXUH5JdSrOSP3/8nD1nNtnDqodONj0FrEg3nFHhk8A04HuF62Vb/o2xMWx34MeSNpJdyraCrE7cvXp6yi0JKMLX/ZtZNe0z+8VxyyeOL/WeqR885/ZGf7OuU7r9ZJ2Z2Wbx09fMzFLyDR1mZokJ8IzYzCwlZQ8l7nJNg3iaemMW416osXSd+3imPyJmDre9j1f646VxnflPt8WW7b8K8O7H1pU8Xn0xq6e9x2vcpM7MFie+aHrb+7zjvlWljheQ5XBve+ebkk4ju/sygLuAEyPi6cL2Lcguvd2X7A7gYyLiwWZ9Nh3hLMbxr72zN3PYo9cRA/esLNPexyv98ZowszMfhDseOqftfe504TXljlfPOL44eYe2jmHWPlu3tb8he3y83JUKwzHxTSeXOl6QPWuinSfr8tu6PwzsHhFPSboUWMDz7294D/CHiNhZ0gLgHOCYZv129XXEZmabRcpqxGWW1vqAiflzqycBa2q2vwX4Rv715cA8qXl9xEFsZtUmlVtghqRlheX9Q11FxGrgPLIbzH4HrIuIG2v2uB3wUN5+E9nDyprWanyyzsyqS4LyNeL+Rjd0SNqabMY7B3gcuEzScRFx8eYM0zNiM6u29pYmDgYeiIhHI+JZ4ArggJo2q4GXAuTli2m0eGyvg9jMqqv9NeJVwP6SJuV133nAb2raXEX214UA3gb8IFo8S8KlCTOrtp72XTURET+TdDlwB7AJ+AWwSNJZwLKIuAr4GvBNSfcBa8muqmjKQWxm1SW1/YlqEXEmf/4UyE8Vtj8NvL1Mnw5iM6u2Ns6IO8VBbGbVNVQj7nIOYjOrrECEZ8RmZomp+y8OcxCbWXXJM2Izs/RcIzYzS8gzYjOz1BzEZmbJhU/WmZklJPmGDjOzlAJcmjAzS0sMapQH8dQdZzLvn9/frEm1HX16qeY+XiM4Xuec1NYhaMKktvY3ZP2cfdrf6YXXlGq+5ZyZvP7cU9o6hIFZf9HW/oZcPnBUB3o9eWRvc43YzCydkBh0acLMLC3XiM3MkqpAjdjMbFSTCAexmVk6QVYn7nYOYjOrNJcmzMySGh1XTXT/BXZmZiMUyk7WlVlakbSrpDsLy3pJp9a0mSbpakm/lLRc0onN+vSM2MwqLWhvjTgiVgB7A0jqBVYDV9Y0+yDw64g4QtJMYIWkSyLij/X6dBCbWaV1uEY8D7g/IlbWrA9gqiQBU4C1wKZGnTiIzayyYmTXEc+QtKzwelFELGrQdgGwuM7684GrgDXAVOCYiBhstEMHsZlV2mD5U2H9ETG3VSNJ44EjgTPqbD4MuBN4A7ATcJOkJRGxvl5fPllnZpUViEF6Sy0lHA7cEREP19l2InBFZO4DHgBe3qgjB7GZVVqgUksJ76B+WQJgFVn9GEnbArsC/9eoI5cmzKzCNJLSROtepcnAIcBJhXUnA0TEQuBs4EJJdwECPhER/Y36cxCbWWUFMBjtD+KI2AhMr1m3sPD1GuDQ4fbnIDazSuvEjLjdHMRmVmEiwg/9MTNLJoABz4jNzBKKztSI281BbGaVFWj0B/Havm1ZPP2jL9RYulC5v0rs41X+eH1r69PaOoJnG97Nv3nuX/JUZzou4bGeWVw89UNt7bN/TcO7bjfL1Rfd0pF+R2LANWIzs7R8ss7MLKFKlCbMzEa1cGnCzCypTt1Z124OYjOrtIjUI2jNQWxmlRWIAc+IzczSGnSN2MwsnQgYGHQQm5kl5asmzMwS88k6M7OEIuTShJlZaj5ZZ2aWUAADnXmuUVs5iM2s0kZDjbj7r3Q2MxuhocvXyiytSNpV0p2FZb2kU+u0e12+fbmkm5v16RmxmVVau0sTEbEC2BtAUi+wGriy2EbSVsBXgPkRsUrSrGZ9OojNrLIiYLCzV03MA+6PiJU1648FroiIVdk44pFmnTiIzayyRniyboakZYXXiyJiUYO2C4DFddbvAoyT9CNgKvBvEXFRox06iM2s0kZwsq4/Iua2aiRpPHAkcEadzX3AvmQz5onATyT9NCLuqdeXg9jMqis6evna4cAdEfFwnW2/BR6LiI3ARkm3AHsBdYNY0eTjQtKjQG3tYyyZHREzh9vYx8vHqyQfr3JKHS+A2bvMjTO+tKx1w4JT5uv2Yc6Ivw3cEBEX1Nm2G3A+cBgwHvg5sCAi7q7XV9MZcdlveqzz8SrHx6scH6/yokMzYkmTgUOAkwrrTs72GQsj4jeSrgd+BQwC/9kohMGlCTOruGa/9W9GnxuB6TXrFta8Phc4dzj9OYjNrNIGBlKPoDUHsZlVVqdKE+3mIDazShsc6P6HTTiIzayyPCM2M+sCg4OeEZuZJZM9ayL1KFpzEJtZhQUDrhGbmaUTgYPYzCy1TtzQ0W4OYjOrLM+Izcy6gIPYzCyhiPANHWZmqQ2MguvXHMRmVlnZdcSeEZuZJeXShJlZQhHBwCh42ISD2Myqy5evmZmlFUC4RmxmlpBLE2ZmaQUwOAqCuCf1AMzMOiafEZdZWpG0q6Q7C8t6Sac2aLufpE2S3tasT8+IzayyOjEjjogVwN4AknqB1cCVte3ybecAN7bq00FsZtXV+Rs65gH3R8TKOts+BHwX2K9VJw5iM6uwGMmMeIakZYXXiyJiUYO2C4DFtSslbQccBbweB7GZjWURMLBpoOzb+iNibqtGksYDRwJn1Nn8BeATETEoqeUOHcRmVl0xohnxcB0O3BERD9fZNhf4dh7CM4A3StoUEf9VryMHsZlVVodv6HgHdcoSABExZ+hrSRcC1zQKYXAQm1mVBQwMlC5NtCRpMnAIcFJh3ckAEbGwbH8OYjOrrBjZybrW/UZsBKbXrKsbwBFxQqv+HMRmVl0jO1n3gnMQm1llZX8qyUFsZpaUn75mZpZQ9mB4z4jNzNIJGHSN2MwsncAzYjOztAJisPufR+wgNrMK81UTZmZJRcSoqBErovsv7TAzGwlJ15M9dKeM/oiY34nxNOIgNjNLzH+zzswsMQexmVliDmIzs8QcxGZmiTmIzcwS+3+vaJYDteIEIAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAF5CAYAAAD+nwKnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsDklEQVR4nO3deXgV5aHH8d+chGyEhC2BhATCdpEGKYKiRHBjSSE3ShGsSCWQKlXSAvbqFaoUuZRVXLiouEFkt4ARRKg8REllK2IvorihAklAoFpLEpJAknPm/kFz6iEZyHAOOST5fp5nHp8zM+/MOxnD+eV933nHME3TFAAAQDUc/q4AAAC4chEUAACAJYICAACwRFAAAACWCAoAAMASQQEAAFgiKAAAAEsEBQAAYImgAAAALBEU0ODk5OTIMAzl5ORcMcd84oknZBiGx7qEhASNGTPG+8r50JVYJwCXF0EBdcqaNWtkGIbefPPNKtt++tOfyjAMbdu2rcq2tm3bKikpqTaqWOft2rVLTzzxhE6dOuXvqrjt3btXv/nNb5SYmKjGjRurbdu2uuuuu3Tw4MFq91+zZo1uuOEGNW3aVC1atNDNN9+sTZs2VdnP5XJp3rx5at++vUJCQtS9e3etXr36cl8OUKcQFFCn9O3bV5K0Y8cOj/WFhYU6cOCAAgMDtXPnTo9t+fn5ys/Pd5e96aabVFpaqptuuql2Kn2JvvzyS73yyiu1ft5du3Zp+vTp1QYFf9Vp7ty5euONN9S/f38tWLBA48aN0/vvv6+ePXvqwIEDHvsuXLhQv/jFL9SyZUvNmTNHU6dOVUFBgf7zP/9TWVlZHvs+9thjevTRRzVw4EAtXLhQbdu21T333KPXX3+9Ni8PuLKZQB3Tvn17s3fv3h7r3nnnHdMwDHPkyJFmcnKyx7ZVq1aZkswNGzZctjpt27bNlGRu27btkspPmzbNvJRfx9OnT1/S+S7kySefNCWZhw8f9vmxL9XOnTvNs2fPeqw7ePCgGRwcbI4aNcpjfefOnc3rrrvOdLlc7nUFBQVmeHi4efvtt7vXHT161GzUqJGZkZHhXudyucx+/fqZcXFxZkVFxWW6GqBuoUUBdU7fvn21b98+lZaWutft3LlTiYmJGjx4sP7617/K5XJ5bDMMQzfeeKOk6scT3HLLLerWrZs+++wz3XrrrQoLC1ObNm00b968Kuc/evSohg4dqsaNGys6OloPPfSQzp49W+P679ixQ9ddd51CQkLUsWNHvfTSS9Xud/54gNdee02GYegvf/mLxo8fr+joaMXFxbm3//nPf1a/fv3UuHFjNWnSRCkpKfr000+rHPeLL77QXXfdpaioKIWGhqpLly567LHHJJ0bK/HII49Iktq3by/DMGQYho4cOVJtnSTp0KFDGjFihJo3b66wsDDdcMMNVZr5K3/ma9as0cyZMxUXF6eQkBD1799fX3/99UV/ZklJSQoKCvJY17lzZyUmJurzzz/3WF9YWKjo6GiPMR8REREKDw9XaGioe92GDRtUXl6u8ePHu9cZhqEHH3xQR48e1e7duy9aL6AhCPR3BQC7+vbtq+XLl2vPnj265ZZbJJ0LA0lJSUpKSlJBQYEOHDig7t27u7ddddVVatGixQWP+89//lM/+9nPNGzYMN11111at26dHn30UV199dUaPHiwJKm0tFT9+/dXXl6eJkyYoNjYWC1fvlzvvfdejer+ySefaNCgQYqKitITTzyhiooKTZs2Ta1atarx9Y8fP15RUVH6wx/+oOLiYknS8uXLlZaWpuTkZM2dO1clJSVatGiRO1QlJCRIkj7++GP169dPjRo10rhx45SQkKBvvvlGGzdu1MyZMzVs2DAdPHhQq1ev1jPPPKOWLVtKkqKioqqty8mTJ5WUlKSSkhJNmDBBLVq00NKlS3X77bdr3bp1+vnPf+6x/5w5c+RwOPTwww+roKBA8+bN06hRo7Rnz54aX38l0zR18uRJJSYmeqy/5ZZbtG7dOi1cuFCpqak6c+aMFi5cqIKCAk2cONG93759+9S4cWN17drVo3zv3r3d2yu7q4AGzd9NGoBdn376qSnJnDFjhmmaplleXm42btzYXLp0qWmaptmqVSvz+eefN03TNAsLC82AgADz/vvvd5evrpvg5ptvNiWZy5Ytc687e/as2bp1a/POO+90r3v22WdNSeaaNWvc64qLi81OnTrVqOth6NChZkhIiJmbm+te99lnn5kBAQFVuh7atWtnpqWluT9nZmaaksy+fft6NIsXFRWZTZs29bhG0zTNEydOmJGRkR7rb7rpJrNJkyYe5zdN06OZ/kJdD+fXadKkSaYkc/v27R71ad++vZmQkGA6nU7TNP/9M+/atatHF8KCBQtMSeYnn3xS3Y/rgpYvX25KMhcvXuyx/uTJk2b//v1NSe6lZcuW5q5duzz2S0lJMTt06FDluMXFxaYkc/LkybbrBNRHdD2gzunatatatGjhHtC4f/9+FRcXu59qSEpKcg9o3L17t5xOZ43+MgwPD9cvf/lL9+egoCD17t1bhw4dcq/bvHmzYmJiNHz4cPe6sLAwjRs37qLHdzqd2rJli4YOHaq2bdt6XE9ycvJFy1e6//77FRAQ4P68detWnTp1SiNHjtT333/vXgICAnT99de7nwL57rvv9P777ys9Pd3j/JKqPJpZU5s3b1bv3r09fr7h4eEaN26cjhw5os8++8xj/7Fjx3p0IfTr10+SPH7GNfHFF18oIyNDffr0UVpamse2sLAwdenSRWlpaVq7dq2WLFmimJgYDRs2zKObo7S0VMHBwVWOHRIS4t4OgK4H1EGGYSgpKUnvv/++XC6Xdu7cqejoaHXq1EnSuaDw3HPPSZI7MNQkKMTFxVX5wmzWrJk+/vhj9+fc3Fx16tSpyn5dunS56PG/++47lZaWqnPnzlW2denSRZs3b77oMaRzYwd+7KuvvpIk3XbbbdXuHxERIenfX8bdunWr0XlqIjc3V9dff32V9ZXN+bm5uR7nOz+gNGvWTNK5bp+aOnHihFJSUhQZGal169Z5hCZJGjFihAIDA7Vx40b3ujvuuEOdO3fWY489pj/96U+SpNDQ0GrHlpw5c8a9HQBBAXVU3759tXHjRn3yySfu8QmVkpKS9Mgjj+jYsWPasWOHYmNj1aFDh4se8/wvnEqmafqs3r5w/hdY5cDN5cuXq3Xr1lX2Dwy8cn7Nvf0ZFxQUaPDgwTp16pS2b9+u2NhYj+2HDh3SO++8o5dfftljffPmzdW3b1+PR2djYmK0bds2mabpEfyOHz8uSVWODTRUV86/IIANP55PYefOnZo0aZJ7W69evRQcHKycnBzt2bNHQ4YM8dl527VrpwMHDlT5cvnyyy8vWrbyKYPKFoAfq0l5Kx07dpQkRUdHa8CAAZb7VYal8+cdOJ+dboh27dpVW/cvvvjCvd1Xzpw5o9TUVB08eFDZ2dn6yU9+UmWfkydPSjrXzXO+8vJyVVRUuD/36NFDr776qj7//HOPY1UOrOzRo4fP6g7UZYxRQJ107bXXKiQkRCtXrtSxY8c8WhSCg4PVs2dPPf/88youLvbpyPUhQ4bo22+/1bp169zrSkpKqvwFW52AgAAlJydr/fr1ysvLc6///PPPtWXLlkuuU3JysiIiIjRr1iyVl5dX2f7dd99JOhdUbrrpJi1ZssTj/JLnX/SNGzeWpBrNzDhkyBB98MEHHo8SFhcX6+WXX1ZCQkK1X+aXwul06he/+IV2796ttWvXqk+fPtXu16lTJzkcDv3pT3/yuKajR49q+/btuuaaa9zr7rjjDjVq1EgvvPCCe51pmnrxxRfVpk0bZvIE/oUWBdRJQUFBuu6667R9+3YFBwerV69eHtuTkpL01FNPSarZ+ISauv/++/Xcc89p9OjR+tvf/qaYmBgtX75cYWFhNSo/ffp0vfPOO+rXr5/Gjx+viooKLVy4UImJiR5jIeyIiIjQokWLdO+996pnz566++67FRUVpby8PG3atEk33nije8zG//7v/6pv377q2bOnxo0bp/bt2+vIkSPatGmTPvroI0ly/ywfe+wx3X333WrUqJFSU1PdAeLHJk+erNWrV2vw4MGaMGGCmjdvrqVLl+rw4cN644035HD45m+R//qv/9Jbb72l1NRU/fDDD1qxYoXH9spBqFFRUUpPT9err76q/v37a9iwYSoqKtILL7yg0tJSTZkyxV0mLi5OkyZN0pNPPqny8nJdd911Wr9+vbZv366VK1dadpMADY4fn7gAvDJlyhRTkpmUlFRlW1ZWlinJbNKkSZUZ9qwej0xMTKxynLS0NLNdu3Ye63Jzc83bb7/dDAsLM1u2bGlOnDjRfOedd2o8M+Nf/vIXs1evXmZQUJDZoUMH88UXX6x2ZkarxyP37t1b7XG3bdtmJicnm5GRkWZISIjZsWNHc8yYMeaHH37osd+BAwfMn//852bTpk3NkJAQs0uXLubUqVM99pkxY4bZpk0b0+FweDwqeX6dTNM0v/nmG3P48OHu4/Xu3dt8++23q9RNkrl27VqP9YcPHzYlmZmZmRf8mVU+vmq1/Fh5ebm5cOFCs0ePHmZ4eLgZHh5u3nrrreZ7771X5bhOp9OcNWuW2a5dOzMoKMhMTEw0V6xYccG6AA2NYZpX2EgtAABwxWCMAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLBAUAAGCJoAAAACwRFAAAgCWCAgAAsERQAAAAlggKAADAEkEBAABYIigAAABLgf6uAAAAdcWZM2dUVlbmk2MFBQUpJCTEJ8e6nAgKAADUwJkzZxQbGq5/yumT47Vu3VqHDx++4sMCQQEAgBooKyvTP+XU0pAOCvOy575ELqWdOKSysjKCAgAA9UnjwAA1NgK8OoZh+qZVojYQFAAAsMFo5JBheNeiYJimj2pz+REUAACwwRFgyOEwvDuGy7vytYmgAACADUYjQ4aXQcEgKAAAUD85AmlRAAAAFmhRAAAAlhwBhhwBXrYoOAkKAADUS0aAIcPLoGCIoAAAQL3kkxYFggIAAPWT4fDBGAWToAAAQL1kBDhkBHg54ZKYcAkAgHqJrgcAAGDJMHg8EgAAWHAEGQoI9K7rweFw+ag2lx9BAQAAGwyHQ4bDyzEKXpavTXWnpgAAXAEqn3rwdrHD6XRq6tSpat++vUJDQ9WxY0fNmDFD5gXeQpmVlaWBAwcqKipKERER6tOnj7Zs2WL7emlRAADABp8MZrT5eOTcuXO1aNEiLV26VImJifrwww81duxYRUZGasKECdWWef/99zVw4EDNmjVLTZs2VWZmplJTU7Vnzx5dc801NT43QQEAABt8Mo+CzfK7du3SHXfcoZSUFElSQkKCVq9erQ8++MCyzLPPPuvxedasWdqwYYM2btxoKyjQ9QAAgA2G4XCPU7jkxTj39VtYWOixnD17ttpzJiUl6d1339XBgwclSfv379eOHTs0ePDgGtfb5XKpqKhIzZs3t3W9tCgAAGCDL1sU4uPjPdZPmzZNTzzxRJX9J0+erMLCQl111VUKCAiQ0+nUzJkzNWrUqBqfc/78+Tp9+rTuuusuW3UlKAAAYINPxij8ax6F/Px8RUREuNcHBwdXu/+aNWu0cuVKrVq1SomJifroo480adIkxcbGKi0t7aLnW7VqlaZPn64NGzYoOjraVl0JCgAA2ODLFoWIiAiPoGDlkUce0eTJk3X33XdLkq6++mrl5uZq9uzZFw0Kr7/+uu677z6tXbtWAwYMsF1XggIAADb4Yx6FkpISOc4rExAQIJfrwhM3rV69Wunp6Xr99dfdAyHtIigAAGCDP556SE1N1cyZM9W2bVslJiZq3759evrpp5Wenu7eZ8qUKTp27JiWLVsm6Vx3Q1pamhYsWKDrr79eJ06ckCSFhoYqMjKyxufmqQcAAGzwx4RLCxcu1PDhwzV+/Hh17dpVDz/8sH79619rxowZ7n2OHz+uvLw89+eXX35ZFRUVysjIUExMjHuZOHGives1LzStEwAAkHTuUcbIyEj97c7+Cm/kXYP86fIK9XrjXRUUFNRojII/0fUAAIAN51oEvB2jwNsjAQColwyH949HGk6CAgAA9ZIjMECOwADvjnGRpxWuJAQFAABs8MdTD/5EUAAAwAaCAgAAsOSPCZf8iaAAAIANtCgAAABLtCgAAABrhnFu8fYYdQRBAQAAGwzDB10PBAUAAOonuh4AAIAlBjMCAABLtCgAAABLhsP7FgGj7uQEggIAAHbQ9QAAAKw5HOcWb49RRxAUAACwwTAMrx9v5PFIAADqKZ+8ZtrpXfnaRFAAAMAOwwddD3VoNCNBAQAAO3wwmFEMZgQAoH4yDIcML1sEvC1fmwgKAADY4TC8bxGgRQEAgPqJmRkBAIAlJlwCAADWDMP7pxaYRwEAgPqJFgUAAGCNKZwBAICVhjaFc92JNNWovFkXW3JyctxlFi9erK5duyokJESdO3fWwoUL/XcBDZzd+7do0SKNGDFCbdu2lWEYGjNmjF/rD3v3MD8/X9OnT1fv3r3VrFkztWzZUrfccouys7P9fRkNmp17WFpaql/96lfq1q2bIiMjFR4erp/+9KdasGCBysvL/X0ptadyZkZvFuZRqB3Lly/3+Lxs2TJt3bq1yvquXbtKkl566SU98MADuvPOO/W73/1O27dv14QJE1RSUqJHH3201uqNc+zev7lz56qoqEi9e/fW8ePHa62esGbnHq5du1Zz587V0KFDlZaWpoqKCi1btkwDBw7UkiVLNHbs2NqsOv7Fzj0sLS3Vp59+qiFDhighIUEOh0O7du3SQw89pD179mjVqlW1WXW/aWhjFAzTNE1/V8JXfvOb3+j5559XdZdUWlqq+Ph43XDDDXr77bfd63/5y19q/fr1ys/PV7NmzWqzujjPhe6fJOXm5rpbE8LDwzV8+HC99tprtVtJXNCF7uGnn36qVq1aqWXLlu51Z8+eVY8ePXT69Gnl5+fXZlVh4WK/h9X57W9/q+eee07Hjx9X69atL2Pt/KuwsFCRkZE6Nn+SIkKDvTtW6Vm1efhZFRQUKCIiwkc1vDzqTtuHl7Zt26Z//OMfGj9+vMf6jIwMFRcXa9OmTX6qGWqqXbt2dapfD54SExM9QoIkBQcHa8iQITp69KiKior8VDN4KyEhQZJ06tQpv9aj1lTOzOjtUkc0mKCwb98+SdK1117rsb5Xr15yOBzu7QBq14kTJxQWFqawsDB/VwU1VFZWpu+//175+fl68803NX/+fLVr106dOnXyd9VqhREQ4JOlrmgwQeH48eMKCAhQdHS0x/qgoCC1aNFC3377rZ9qBjRcX3/9tbKysnTnnXcqoA79w9nQZWVlKSoqSm3bttWwYcMUFxenjRs3KjCwTg97q7HKKZy9XexwOp2aOnWq2rdvr9DQUHXs2FEzZsy4aBdRTk6OevbsqeDgYHXq1OmSumsbxl3VuTEKQUFB1W4LCQlRaWlpLdcIaNhKSko0YsQIhYaGas6cOf6uDmy49dZbtXXrVp06dUrvvvuu9u/fr+LiYn9Xq/YYhvczK9osP3fuXC1atEhLly5VYmKiPvzwQ40dO1aRkZGaMGFCtWUOHz6slJQUPfDAA1q5cqXeffdd3XfffYqJiVFycnKNz91ggkJoaKjKysqq3XbmzBmFhobWco2AhsvpdOruu+/WZ599pj//+c+KjY31d5VgQ6tWrdSqVStJ0vDhwzVr1iwNHDhQX331Vb0ezOjmMHww4ZK9oLBr1y7dcccdSklJkXRuXMjq1av1wQcfWJZ58cUX1b59ez311FOSzj25smPHDj3zzDO2gkKD6XqIiYmR0+nU3//+d4/1ZWVl+sc//sE/VEAtuv/++/X222/rtdde02233ebv6sBLw4cP1+nTp7VhwwZ/V6V2VLYoeLvo3JMUP17Onj1b7SmTkpL07rvv6uDBg5Kk/fv3a8eOHRo8eLBlNXfv3q0BAwZ4rEtOTtbu3bttXW6DCQo9evSQJH344Yce6z/88EO5XC73dgCX1yOPPKLMzEw988wzGjlypL+rAx+o7LotKCjwc01qhy/HKMTHxysyMtK9zJ49u9pzTp48WXfffbeuuuoqNWrUSNdcc40mTZqkUaNGWdbzxIkT7pafSq1atVJhYaGt7vYG0/Vw2223qXnz5lq0aJGGDBniXr9o0SKFhYW5m3MAXD5PPvmk5s+fr9///veaOHGiv6sDm77//nu1aNGiymPKr776qqSqT5XVW4YPZlb8V/n8/HyPeRSCg6ufn2HNmjVauXKlVq1apcTERH300UeaNGmSYmNjlZaW5l1dLqLBBIXQ0FDNmDFDGRkZGjFihJKTk7V9+3atWLFCM2fOVPPmzf1dRVzExo0btX//fklSeXm5Pv74Y/3xj3+UJN1+++3q3r27P6uHi3jzzTf13//93+rcubO6du2qFStWeGwfOHBglb9+cGVZsWKFXnzxRQ0dOlQdOnRQUVGRtmzZoq1btyo1NbXhdCMZPpgH4V9hKyIiokYTLj3yyCPuVgVJuvrqq5Wbm6vZs2dbBoXWrVvr5MmTHutOnjypiIgIW+PyGkxQkKTx48erUaNGeuqpp/TWW28pPj5ezzzzDH/Z1BFvvPGGli5d6v68b98+9/wXcXFxBIUrXGXI++qrr3TvvfdW2b5t2zaCwhWub9++2rVrl1avXq2TJ08qMDBQXbp00dNPP63f/va3/q5erTEMhwwvWxTsli8pKZHjvAGUAQEBcrlclmX69OmjzZs3e6zbunWr+vTpY+vc9WoKZwAALpfKKZxPLpmuiLAQ745Vckat0qfVeArnMWPGKDs7Wy+99JISExO1b98+jRs3Tunp6Zo7d64kacqUKTp27JiWLVsm6dzjkd26dVNGRobS09P13nvvacKECdq0aROPRwIAcNn4cIxCTS1cuFBTp07V+PHj9fe//12xsbH69a9/rT/84Q/ufY4fP668vDz35/bt22vTpk166KGHtGDBAsXFxenVV1+1FRIkWhQAAKgRd4vCa3/0TYvCmMfrxEuhaFEAAMAOh8MHEy7VndkJCAoAANjhh64HfyIoAABghy9eE12HXjNdo6Dgcrn07bffqkmTJlUm2sDlY5qmioqKFBsbW+WxGLu4h/7hq3vI/fMPfgfrPl/eQzeHQ3J4+bbT+tb18O233yo+Pv5y1wUW8vPzFRcX59UxuIf+5e095P75F7+DdZ8v7qEbYxSqatKkiSQp02ivsDrUr1LXlZgujTUPu3/+3uAe+oev7mFl+XWdfqKwAC//krkEcdf79wuu+WWeotZKUXGJut4+1qe/g/66h/F92tb6OX+s6eixfjlvUXGJfpI62if30M0Pr5n2pxoFhcpmsjDDoTCj9v8Hb9BM+aSZknvoRz64h+77FxCgxn74kmkS1KjWz/ljEY3D/Hp+n/4ONtR7GF737+G/D8ZgRgAAYMXwQdcDQQEAgHqKrgcAAGCJrgcAAGCJFgUAAGCJxyMBAIAV0zBketki4G352kRQAADADsPwwRgFggIAAPUTgxkBAIAVuh4AAIA1WhQAAIAlHo8EAABWzIAAmV6+r8Pb8rWJoAAAgB10PQAAACum4ZDp5Re9t+VrE0EBAAA7GKMAAACsmPJBi4JoUQAAoH6iRQEAAFhiCmcAAGCFmRkBAIA1Ho8EAABWTBky5WWLgpflaxNBAQAAG5hHAQAAWKPrAQAAWGEwIwAAsETXAwAAsNbAJlyqO5EGAIArgGkEyOXlYhr2XjOdkJAgwzCqLBkZGZZlnn32WXXp0kWhoaGKj4/XQw89pDNnzti+XloUAACwwR9dD3v37pXT6XR/PnDggAYOHKgRI0ZUu/+qVas0efJkLVmyRElJSTp48KDGjBkjwzD09NNP2zq3raBw0/N3KSI0xNYJcOkKS89ID8726TG5h7XL1/ew19RfKiKs9u9fafura/2cP7bmH7f45bylxYU+P2ZDvYevf3eLX857Oe6hDPmg6+HcfwoLPesXHBys4ODgKrtHRUV5fJ4zZ446duyom2++udrD79q1SzfeeKPuueceSedaJEaOHKk9e/bYripdDwAA2GDK4ZNFkuLj4xUZGeleZs+++B8WZWVlWrFihdLT02VYBJakpCT97W9/0wcffCBJOnTokDZv3qwhQ4bYvl66HgAAsMGXj0fm5+crIiLCvb661oTzrV+/XqdOndKYMWMs97nnnnv0/fffq2/fvjJNUxUVFXrggQf0+9//3nZdaVEAAMCGyjEK3i6SFBER4bHUJCgsXrxYgwcPVmxsrOU+OTk5mjVrll544QX93//9n7KysrRp0ybNmDHD9vXSogAAgA3+fNdDbm6usrOzlZWVdcH9pk6dqnvvvVf33XefJOnqq69WcXGxxo0bp8cee0wOR83bCQgKAADY4M8JlzIzMxUdHa2UlJQL7ldSUlIlDAQEnHsk0zRNW+ckKAAAYIO/pnB2uVzKzMxUWlqaAgM9v75Hjx6tNm3auAdDpqam6umnn9Y111yj66+/Xl9//bWmTp2q1NRUd2CoKYICAAA2+KvrITs7W3l5eUpPT6+yLS8vz6MF4fHHH5dhGHr88cd17NgxRUVFKTU1VTNnzrR9XoICAAA2+KvrYdCgQZbdBjk5OR6fAwMDNW3aNE2bNu1Squd5LK+PAABAA+LPwYz+QFAAAMAGUz5oUahDsxMQFAAAsIEWBQAAYOncUw/ejlEgKAAAUC+5DIdcXgYFb8vXJoICAAA2mKYh0/Sy68HL8rWJoAAAgC0OHwxGpEUBAIB6icGMAADAEkEBAABYIigAAABLBAUAAGCJpx4AAIAlWhQAAIAlggIAALBEUAAAAJZM+WCMAkEBAID6ySVDLi+/6L0tX5sICgAA2EDXAwAAsMTjkQAAwJLLNOQyvXzNNEEBAID6ia4HAABgia4HAABgyZTk8sEx6gpbQWH7T/5LYeERl6suOE/J6UJJs316TO5h7fL1Pfxzq3EKa1z79+/wN/79Z+2tpdv9ct6K8mKfH7Oh3sMNr73vl/NejntIiwIAALDEGAUAAGCJFgUAAGCJFgUAAGDJZZ5bvD1GXUFQAADABloUAACAJcYoAAAAS6Z5bvH2GHUFQQEAABsa2mumvXurBQAADUxl14O3ix0JCQkyDKPKkpGRYVnm1KlTysjIUExMjIKDg/Uf//Ef2rx5s+3rpUUBAAAb/NH1sHfvXjmdTvfnAwcOaODAgRoxYkS1+5eVlWngwIGKjo7WunXr1KZNG+Xm5qpp06a260pQAADABqdpyOnlYES75aOiojw+z5kzRx07dtTNN99c7f5LlizRDz/8oF27dqlRo0aSzrVKXAq6HgAAsMMX3Q7/CgqFhYUey9mzZy96+rKyMq1YsULp6ekyjOoDx1tvvaU+ffooIyNDrVq1Urdu3TRr1iyPVomaIigAAGBDZdeDt4skxcfHKzIy0r3Mnn3xl8itX79ep06d0pgxYyz3OXTokNatWyen06nNmzdr6tSpeuqpp/THP/7R9vXS9QAAgA2+fOohPz9fERH/fptocHDwRcsuXrxYgwcPVmxsrPXxXS5FR0fr5ZdfVkBAgHr16qVjx47pySef1LRp02zVlaAAAIANvhzMGBER4REULiY3N1fZ2dnKysq64H4xMTFq1KiRAgIC3Ou6du2qEydOqKysTEFBQTU+J10PAADY4I/HIytlZmYqOjpaKSkpF9zvxhtv1Ndffy2Xy+Ved/DgQcXExNgKCRJBAQAAWypfCuXtYvu8LpcyMzOVlpamwEDPDoHRo0drypQp7s8PPvigfvjhB02cOFEHDx7Upk2bNGvWrAvOu2CFrgcAAGzw1xTO2dnZysvLU3p6epVteXl5cjj+/bd/fHy8tmzZooceekjdu3dXmzZtNHHiRD366KO2z0tQAADABn+9PXLQoEEyLRJGTk5OlXV9+vTRX//6V9vnOR9BAQAAG1y6tK6D849RVxAUAACwgbdHAgAASwQFAABgyWUacnn5rgdvy9cmggIAADbQogAAACwRFAAAgCWXy5DT5WXXg5flaxNBAQAAG2hRAAAAli51Cubzj1FXEBQAALCBFoVqVE4ZWVJcdFkrA0+VP2+rKTvt4B76h6/uYWX50uJCr+t0Kc6U+PdftYryYv+ct6JEkm9/B7mHtcvpw3tYiaBQjaKic//YjRnS/rJWBtUrKipSZGSk18eQuIf+4u09rLx/Dw5t56sqwQZf/g5yD/3DF/ewEl0P1YiNjVV+fr6aNGkiw6g7IzXrOtM0VVRUpNjYWK+PxT30D1/dQ+6ff/A7WPf58h7++5i0KFThcDgUFxd3ueuCavgqAXMP/ccX95D75z/8DtZ9vrqHlVyuc4u3x6grGMwIAIANtCgAAABLBAUAAGDJJR8MZvRJTWoHQQEAABtM0/TZI891AUEBAAAb6HoAAACWTB889WDWob4HggIAADbQogAAACw5XecWb49RVxAUAACwwXSZMr187MHb8rWJoAAAgA286wEAAFhijAIAALDkcplyedkk4G352kRQAADABloUAACAJYICAACw5DJNubz8pve2fG0iKAAAYIPp8n5mRWZmBACgnjLlg5dCiRYFAADqJd71AAAALDW010w7/F0BAADqksqZGb1d7EhISJBhGFWWjIyMi5Z9/fXXZRiGhg4deknXS4sCAAA2+ONdD3v37pXT6XR/PnDggAYOHKgRI0ZcsNyRI0f08MMPq1+/fpdUT4kWBQAAbKmcR8HbxY6oqCi1bt3avbz99tvq2LGjbr75ZssyTqdTo0aN0vTp09WhQ4dLvl6CAgAANjidLp8sklRYWOixnD179qLnLysr04oVK5Seni7DMCz3+5//+R9FR0frV7/6lVfXS1AAAMCGynkUvF0kKT4+XpGRke5l9uzZFz3/+vXrderUKY0ZM8Zynx07dmjx4sV65ZVXvL5exigAAGCDL2dmzM/PV0REhHt9cHDwRcsuXrxYgwcPVmxsbLXbi4qKdO+99+qVV15Ry5YtvaqnRFAAAMAWXz4eGRER4REULiY3N1fZ2dnKysqy3Oebb77RkSNHlJqa6l7n+tfED4GBgfryyy/VsWPHGp+ToAAAgA3+fM10ZmamoqOjlZKSYrnPVVddpU8++cRj3eOPP66ioiItWLBA8fHxts5JUAAAwAZ/vT3S5XIpMzNTaWlpCgz0/PoePXq02rRpo9mzZyskJETdunXz2N60aVNJqrK+JggKAADYYJo+mEfhEpJCdna28vLylJ6eXmVbXl6eHI7L83wCQQEAABtMHwxmvJSgMGjQIMtyOTk5Fyz72muv2T5fJYICAAA2+GNmRn8iKAAAYANBAQAAWLqUlzpVd4y6gqAAAIANtCgAAABLvpxwqS4gKAAAYIPLdekTJv34GHUFQQEAABtoUQAAAJZcFS65KrxrEvC2fG0iKAAAYINLPnh7pGhRAACgXuKpBwAAYIkxCgAAwJLpg9dM06IAAEA9RdcDAACwRNcDAACwZLpcMr2cMcnb8rWJoAAAgA0uH4xR8LZ8bSIoAABgA10PAADAEoMZAQCAJYICAACw5JJLLtPLdz2IwYwAANRLpsv7FgEvc0atIigAAGADXQ8AAMCS0+mUw+n0+hh1BUEBAAAbaFEAAACWTNMl08tBBt6Wr00EBQAAbKBFAQAAWPNBUBBBAQCA+sll+mAeBboeAACon+h6AAAAlkzTB6+ZpkUBAID6iRYFAABgiccjAQCAJZdLcnnZIuBlz0Wtcvi7AgAA1CWmy+WTxY6EhAQZhlFlycjIqHb/V155Rf369VOzZs3UrFkzDRgwQB988MElXS9BAQAAGyrHKHi72LF3714dP37cvWzdulWSNGLEiGr3z8nJ0ciRI7Vt2zbt3r1b8fHxGjRokI4dO2b7eg3TNOvOiAoAAPyksLBQkZGR6pPyjgIbNfbqWBXlxdq96WcqKChQRESE7fKTJk3S22+/ra+++kqGYVx0f6fTqWbNmum5557T6NGjbZ2LMQoAANhQUXba66cWnBXFks6Fjx8LDg5WcHDwBcuWlZVpxYoV+t3vflejkCBJJSUlKi8vV/PmzW3XlaAAAEANBAUFqXXr1tq7dbhPjhceHq74+HiPddOmTdMTTzxxwXLr16/XqVOnNGbMmBqf69FHH1VsbKwGDBhgu550PQAAUENnzpxRWVmZT45lmmaVFoGatCgkJycrKChIGzdurNF55syZo3nz5iknJ0fdu3e3XU9aFAAAqKGQkBCFhIT47fy5ubnKzs5WVlZWjfafP3++5syZo+zs7EsKCRJBAQCAOiMzM1PR0dFKSUm56L7z5s3TzJkztWXLFl177bWXfE4ejwQAoA5wuVzKzMxUWlqaAgM9/84fPXq0pkyZ4v48d+5cTZ06VUuWLFFCQoJOnDihEydO6PTp07bPS1AAAKAOyM7OVl5entLT06tsy8vL0/Hjx92fFy1apLKyMg0fPlwxMTHuZf78+bbPy2BGAABgiRYFAABgiaAAAAAsERQAAIAlggIAALBEUAAAAJYICgAAwBJBAQAAWCIoAAAASwQFAABgiaAAAAAsERQAAICl/wfr1ZwGCgupRwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "from floris.tools.visualization import plot_rotor_values\n", + "from floris.flow_visualization import plot_rotor_values\n", "\n", - "fig, _, _ , _ = plot_rotor_values(fi.floris.flow_field.u, findex=0, n_rows=1, n_cols=4, return_fig_objects=True)\n", + "fig, _, _ , _ = plot_rotor_values(fmodel.core.flow_field.u, findex=0, n_rows=1, n_cols=4, return_fig_objects=True)\n", "fig.suptitle(\"Wind direction 270\")\n", "\n", - "fig, _, _ , _ = plot_rotor_values(fi.floris.flow_field.u, findex=1, n_rows=1, n_cols=4, return_fig_objects=True)\n", + "fig, _, _ , _ = plot_rotor_values(fmodel.core.flow_field.u, findex=1, n_rows=1, n_cols=4, return_fig_objects=True)\n", "fig.suptitle(\"Wind direction 280\")\n", "\n", "plt.show()" @@ -640,22 +638,20 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAADyCAYAAABkv9hQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABsWElEQVR4nO29eXhb5bU1vo4ky5LleXY8x44dJ3bsDE6AAmUoUykklCm0BULhg1Jo0wHaUu7tdIfQlkLby9fe269cOkAZEkIZG27JD25bCAmZPMfzINuy5nmWzvv7w34PR7KGI1mSnVjreXiIZenoWDrrvPvde+21GUII0kgjjXMbouU+gTTSSCP5SBM9jTRWAdJETyONVYA00dNIYxUgTfQ00lgFkET5fToln0YayQeT7DdIr+hppLEKkCZ6GmmsAqSJnkYaqwBpoqeRxipAmuhppLEKkCZ6GmmsAqSJnkYaqwBpoqeRxipAmuhppLEKkCZ6GmmsAqSJnkYaqwBpoqeRxipAmuhppLEKkCZ6GmmsAqSJnkYaqwBpoi8DCCHw+/1gWXa5TyWNVYJoxhNpJBiEEHg8HrhcLhBCIBaLkZGRAbFYDIlEAoZJugdBGqsQTBRf97TDTALh9/uhVCpBCIHP54NCoUBWVhaA+RsAwzAc8SUSCcRicZr4qwNJ/5LTK3oKQInt8/lgs9kwOzuLkpIS6HQ62O12ZGVloaCgAPn5+ZDL5fD7/QGvF4vFkMvlaeKnETfSK3qSwbIsvF4vWJbF7OwsRkZGUFFRgbq6OjAMA0IIHA4HjEYjjEYjHA4HsrOzkZ+fj/z8fNhsNthsNtTV1QFAesU/N5H0LzFN9CSBJty8Xi98Ph8GBgbAMAzy8vJACEFFRUVIkhJCYLPZYDKZYDQaYbPZIBaLUV1djfz8fMhkMrAsy702TfxzAmmin40ghMDr9cLv98NisaC/vx91dXVYs2YNZmZm4PV6wxI9GFqtFjqdDgqFAkajEW63Gzk5OVyoL5VKA4gvkUi4/9LEP2uQ3qOfbWBZFh6PByzLYmpqCmq1Gu3t7VAoFADAhevAxwm4SGAYBlKpFDU1NaipqQHLsrBarTAajRgYGIDX60Vubi5HfIZh4PV6A4hPV3yRSJQm/ipFmugJAj9U93q96O3tRVZWFrZv3w6R6GO5AiU6n/CREExMkUiEvLw85OXloa6uDizLwmKxwGg0YnZ2Fj6fjyN+Xl4eGIaBz+fjjsUP9dPEXz1IEz0BoLVxlmVhMBgwODiIdevWobS0dNFzhRJcKEQiEZe4A8BtF4xGI6anp+H3+5GXl8cRH0AA8fmhfpr45y7SRF8iWJaFXq+HUqlERkYGzGYztm7dCplMlpDjx3pjEIvFKCgoQEFBAYB54pvNZhiNRkxNTYEQsoj4FosFGo0GdXV1aeKfo0gTPU7wa+NutxtqtRq1tbXYtm1bRHIkekWPBrFYjMLCQhQWFgKYX80p8ScmJgAACoUCLpeLKwV6vV7uXOkeXywWp4l/FiNN9DjAr41rNBoMDw8jJycHDQ0NUV8bK9ETfWOQSCQoKipCUVERAMDr9WJubg5msxmnT58GwzBcYi83N3cR8fmlvDTxzx6kiR4D+Ak3v9+PoaEheDwetLW1catjNKR6RY+GjIwMTpjT0tICr9cLk8kEnU6H0dFRbitAie/xeOB2u8EwTADxqU4/TfyViTTRBYIfqtvtdvT29qKyshLV1dVwOp2CybvSiB6MjIwMlJSUoKSkBADg8XhgNBq5yCUjI4PLAWRnZ4ckPg3108RfOUgTXQBoqO73+zE7OwulUom2tjbk5OQAmM98C205Xe7QPVZIpVKUlZWhrKwMAOB2u7lSntVqhVQq5Vb8nJwceDweeDweAPOfS/AeP43lQZroERAsY+3v74dEIsH27dshkXz80cVCRvpcvpptuSFEuEORmZmJ8vJylJeXAwBcLheMRiNmZmZgs9mQmZnJEZ+u+JT4Ho8HUqkUCoUiTfwUI030MODLWM1mMwYGBlBfX4+KiopFz42V6DabDUePHoVYLOZKXVTOupRjLwdkMhkqKipQUVEBQghHfKVSCZvNhqysLK7Or9VqOYUgkF7xU4k00UOAZtMNBgMYhoFWq0VHRwfXOx4MkUgkiIx+vx/j4+NwOp3o7OwEwzCwWq0wGAyYnp4Gy7IBxOdHDclGIqILhmEgl8shl8uxZs0aEELgdDphNBoxOTkJo9GIrKwseL1eriU3ONQPzuqnkRikic5DcG1cqVSioqICnZ2dES86Iauu3W5Hd3c3CgoKIJVKkZGRAZZlF6naaNfaxMQEGIZBVlYWp7pL1oWfrIiBnn9WVhYqKysxMjICuVwOQgjGx8e5llx6Y8vMzITb7Ybb7QaAtPtOApEm+gL4Mla9Xo+hoSHk5OSgubk56msZhomYjFOpVBgbG0NraysAQKlUhnyeWCxeVOOenZ2F2WzGiRMnIJFIUFBQgMLCQuTk5JyVF75cLkdhYSGqqqoCWnJHRkbgcrkWEd/lcnGvTbfkxo800TGvFqMCmNHRUVitVrS0tECtVgt6fbgV3e/348yZM/B6vdi+fTsyMjJgsVgEr6AZGRkoLCyEw+FAS0sL3G43F+bbbDbIZDKO+FlZWUu68FNBmuCkH8MwyMnJQU5ODqqrq0EIgdVqhclkwtDQ0KKWXIZh0sSPE6ua6PxQ3el0ore3FyUlJdi6dStsNltMJbNg0FCd1trpc5aSXMvMzAxIfNH97/j4OOx2O7caFhQUQC6XCz5uqpJ90bYfDMMgNzcXubm5glty08QXhlVLdL6MVa1WY2xsDBs3buT2y0shJD9Up40jFInKogfvf2kYbDQaudWQkoLmBZYbsZTxgNhacinxnU4nXC4XrFYrKioq0sRfwKojerCMdXBwED6fjwutKWIRwVCECtWDkSzBDD8M5q+GBoMBMzMzXLtqYWHhoox+rASMF0t9H6EtuVKpFG63G2VlZXA6nWnbLawyovNr4zabDb29vaiurkZVVVVIg4dYCOn3+3Hs2LFFoXowUlUX56+G9fX1nB7AYDBwGf38/HwUFBSkLHRP9A0lXEsuTWBarVbuxkBNOPjE59fwz3XirxqisyyLyclJ5OfnQ6fTYWZmBps2bUJ2dnbI50fLpPOhUqngdDqxY8eORaH6UpGoG0Nwuyq/eUWv14NlWU7HnpOTk5RSXrIjB/o3+v1+KBQKVFdXB7Tk0psbJb7f7+dMOIBz23brnCc6P+Gm0WgwMzPDWTyJxeKwrxMSuvNDdYVCIYjkK0Xpxm9eMRgM0Gq1kMlknIadZvQLCgqgUCgSctGnaotAk36hWnJpVDM+Ps615NKbG5/455r7zjlNdH5t3GQyQa/Xo76+HmvXro362miEDM6qHzlyRNA5xUP0VNwYxGJxgIbd6XRyYb7dbodCoeBKeTKZLK6LPlX6/nDZ/YyMDBQXF6O4uBjAx1GNVqvFyMhIwFYgJyeHK7sCZz/xz1mi04Qby7KYmJiATqdDSUkJt5+Lhkgrukqlwvj4ODZu3BhzqB5PMm45IJfLUVlZyWX07XY7jEYjhoeH4XK5uPp2QUEBMjMzBR2TEJISWatQFWG4lly1Wo3h4WFOoERbcs9m4p9zRA+Wsfb29iIvLw+dnZ0YGhpaUjspP1Tv7OwMmVUXetyVdFFEOx+GYZCdnY3s7GxUV1cH1Lf7+/vh8/kCNPrhPpdUhu7x9AlEa8nNzMzkEpjZ2dnwer1QqVQghKC0tHRFu++cU0Tn18Z1Oh2Gh4exfv16bo8Wa984H+EEMLGC2i+fPHkShBAuQZadnR3ymCtlT89HcH07lAFlfn4+CgsLkZeXx+VCUr1HXyrCteTylYkAOF8CfoPOk08+ibvuuosbpbXcOCeIzq+NsyyL4eFhOBwOdHZ2BghF4qmNA0sL1YNhMBhgs9mwefNmSKVSjhw2mw0KhQKFhYUxK9uWG6EMKGlOhG9H5fV6U3LTSlYDUKiW3OHhYRgMBmg0Gm5Ypt/vx4kTJ7Bnzx5Bx2UY5r8BfAaAhhDSuvDYDwD8HwDahad9lxDy1sLvHgFwNwA/gK8SQt6O9h5nPdH5tXGHw4He3l6Ul5dj/fr1i1YPsVi8aFJptGP39fUJCtXdPoIpvQPleTJIJYsvMkIIRkZGYDQauSGKfr8/4MKh+2CqbMvLy0N2dnZM5xwPEr3SSiSSgKQX3fu63W6cPn2aM6egIXCiV/lkdvpR0JZchULBRS9UkvzTn/4Ux48fx9e+9jVcc801uP322wP68EPgdwCeAvCHoMefJIQ8HvS+GwDsBrARwBoA7zAM00QIiXiRnNVEZ1mWa2lUqVSYnJyMuOrGUhu32+1wOByorq6OGqp7fCzenfbhmHMadUVZuHVbVeDvPR50d3cjLy8PW7duxbFjxwAEEizUPpj6rVssFhw/fpwjBz8cPhtA975KpRJbtmzh9r40ksnKygqIZJZK/FQQncLv93P7cSpJfuqpp3DZZZfh+9//Po4cORL1uyKE/I1hmDqBb7kTwAuEEDeAcYZhRgBsBxCx7HNWEp2G6kqlEna7nTNnDLZ4CobQ0J2G6jKZDDU1NVGf7/L6YfUClXIJZkwusCyBSDR/sZpMJvT19aGpqQklJSWCbzRU7imXy+FyubBhw4YAd1aJRBJ1f7/SQG9sweYUdGx0cKtqYWGh4Iw+H6kmeigi+3w+tLe3Y8uWLUs5/IMMw9wB4DiAbxJCjAAqAXzIe870wmMRcdYRnV8bd7vdmJ6eRlNTE9asWRP1YheJRAFKqGAEZ9U/+uijsM91ef34YNQAEQNc0FCEjpIMeBngmo1lEInmE2hTU1NQqVTYsmULt+eOt44eHA7TllWlUgmr1RpQ5451f5/KKkDw+zAMA4VCAYVCwfWo8zP6Xq+Xy+gXFBQIqnSkkugsy4YkegJKib8G8C+Yn2j8LwB+BuCL8R7srCI6f1KpUqnE9PQ0iouLUVkZ9YYGYH6PTrOiwYg1q358woi/j+oBAuTIMrChJAPt7VWQSqXw+Xzo7e2FVCoNOWQxEQhuWXU4HDAYDAGdazQcjqcMuFzgt6rW1taCZVkuo69UKrmMPi3lhSLZcq/oiUg4EkI4MwSGYf4fgDcWfpwBUM17atXCYxFxVhCdXxv3er3o6+uDXC7Hhg0bBJtDAOFD91iy6j4/C4lYBJlUzE2Pz5SI4FpYqa1WK3p6erh56EuFkAiAvyry9/d8ckTa36+08h0fIpEooHGFZvSpjJVucQoLC5Gbm8t9x8sdugNLu6kzDFNBCFEt/HgDgN6Ff78G4E8MwzyB+WTcOgDHoh1vxROdH6objUacOXOGm1RqNptjKpcFE12IAIYf1r7ercLxSRPOW1uIK1tKkZ0572PWVKrAKbUIKpUKs7OzEZtlUgF+O2d9fT1HjnD7e2D5FHixIlRG32QyQa1WY2hoCFKpFC6XCw6HI26pbiwIRfRYbzQMwzwP4BIAxQzDTAP4PoBLGIbpwPxyMgHgPgAghPQxDPMSgH4APgAPRMu4AyuY6PzaOCEEY2NjMBqNAZNKYy2X8YkuJFSnzxeLxbC5ffho0oQ1eTIcGTPgsqZirC+fF0r4/X5YrVZBCcFYkQjBTLT9vVgshlQqhdPpPKvq98B8Rr+0tJQbUe1yuXD69GmoVCqMjIxwte2CgoIl222FQqj8hsPhCOsYHOYYt4V4+OkIz/83AP8m+A2wQokeLGPt6elBYWEhZ5FMEasAhj5faKjO70nPyhCjuTQbQxobNlbkcLVyh8OB7u5uSCQSNDc3Cyb5cq6gwfv7qakpmEwmTsd+tu7vgXlRS0ZGBlpaWiASibiM/tjYGOc6S/+2RIy2DkV0Kn5aSVhxROfLWGlXUUtLC6e64iPWFR0A9Ho9PB6PIK06v+4uEjG4rbMKFpcPubL5kJ3OI9u4cSMmJydjOg+hSLYElmEYyGQy5Ofnc8mvYK/5UHLWlQwaOofK6FO7rTNnzsDj8XA3tXADNOIB9e9bSVgxRKdmh263G1KpFENDQ3C5XItkrHzEsqLb7Xb09fVBIpGgvb1d0IoafHyRiEF+VgYIIRgaGoLFYuHOj2q8z3YEO9OE29/TVs6VuLcPVy4MZbfFt6JK1ACNNNHDgMpY1Wo198GvWbMGLS0tES8koSs6DdXXrVsHlUol+OIMZSfldru5QQxbt27ljhWvjn4lIFIdPdT+nt/YQX3a46nfJwuxfL/8pGWoARr8akVwgi3cjZ2q/VYSlp3o/No4zZ5u3boVubm5UV8bLawNzqr7fD7MzEQtOQYcn09eKuJobm7mLnyh58IHIQTd3d1wOp2cyCXUhRTrcVMBfkcXv37P39+vJOfZWBBqgIbJZIJGo8HIyMiiARrhxDLpFZ0HfsLN7/dzKqjy8nJBJAci37lDZdVZlo0reUcIwcTEBDQaTYDKLfhchBDSarXCbrejvr4eOTk5nJ59eHgYmZmZ3OqYjAxxOMR7IwlVv+c7z/L390K/05WEYGOK4GhGKpXC4/FwyTf6fTkcDq51daVgWYjOr41bLBb09/ejrq4OcrkcKpUq+gGiIFxWPdbwmmEYeL1enD59GjKZLOIMNiFEp+cll8tRVlYGr9cbcCEFZ4jp6pjs7jV6/ktFuP09bVd1OByYmJg4a0dKBUcz1HGH2m3RMdHT09OCQ/cvfvGLeOaZZzQIbFH9KYDrAHgAjAK4ixBiWmh8GQAwuPDyDwkhXxLyPiknOlW30bKOWq3mJpVaLJYlXdTRBDCxEt3n86Gvrw/r1q3jzAfCIdKxWZbF4OAgXC4Xtm/fznWvBYM/kIGujnq9Hk6nk+teixTmrzTw9/d+vx8nT56ETCbD9PQ0rFZrwrvWYoXL68ezx2agtrrxuc5K1BcJ31czDAOpVIrs7Gxs3LiRy+gfPnwYL730EnQ6HQYHB/HAAw+go6Mj7HH27NmDZ5555moEtqj+FcAjhBAfwzA/BvAIgG8v/G6UEBL+gGGQMqLzQ3WPx4O+vj4oFIoALXg85TKKWAQwQjA9PQ2j0Yj169dHJTkQfkV3u93o6upCcXFxyB75cKCrY05ODvR6PTo6OmA0GpMS5qciB0AICTCgDNW1lpOTwxE/3v19LH/LoMaO7lkLZBIx3urV4IFP1sX0Xvw9Os3o79q1C2NjY6irq0NTU1PUEP7iiy8GAEPQ3/A/vB8/BHBTTCcWAikhOr82bjAYMDg4yLVt8hEv0YUKYISQwe/3Y2BgACzLory8XHCbZCii0+Qd384qVvCHDfDDfOrSyg/zl0KSZK+mwZn94Bp3uP19pOaVUBAiP3V5/fD6CcpypJBLxHD5WKwtjj1LHk7n7nA4kJ+fj/PPPz/mY4bAFwG8yPu5nmGYUwAsAP6JEPJ3IQdJKtGDLZ7GxsZgNpsDZKx8xEp0v98Pl8uFubm5uM0a+XA4HOjq6kJVVRWqqqowPDwck8ec2elFvo9FhpgJ2aIa/PylgO/SGixyoU0sKynMj9YKG25/T29mQkdGRyP6nMWNnx0eg8vrx13nV+PbVzbA6vajpiB2lVw4olN77KWCYZhHMa9nf27hIRWAGkKInmGYrQD+zDDMRkKIJdqxkkZ0QghMJhOXmezp6UFxcTG2bdsW9kuKheg0VJdIJGhtbV0yydVqNUZGRgIGI8ZS2hrQunHG4ECFyo8mqRFZUjE6OzuXrCQTKuwJJkksYX6qQvdYbm5C6/fB+/toRB/V2mF1+SDPEOHohAlbqvNQGCcnqbtMMGw225LLawzD7MG8j9zlZOELWnCVcS/8+wTDMKMAmjBvTBERSSE6rY339/ejrKwMU1NT2LBhQ1RPdaHE4ofqQ0NDS7pQWZbF0NAQ7Hb7kswkZyxeyERA/8g4WrZWo7Ul8pCIZJIrnjA/2aH7Uoc3hKrfh9rfy+XykMKWMZ0DfgI0lylQki2FxeXDJxsXy6pjQaTQfSlEZxjmagDfAvBJQoiD93gJAAMhxM8wzFrMt6iOCTlmQonOT7ixLAu73Y65ubmwk0WDEe1CCJVVX0oCz+Vyobu7G0VFRdiyZcui949G9FmTC3qbG2tLFFibS/D3EQM616/FpqbaiO+bahFMuDCf7oUlEgkUCkVS+7gTObwh0v5+amoKTqcTIyMj3P6+a8aKX/99CgBw53lV+OFnmuBnCTLESzufSKG70Dr6bbfdBsz7vfFbVB8BkAngrwvXJC2jXQzgRwzDeAGwAL5ECDGEPHAQEkZ0fm3cbrejt7cXmZmZaGpqSkgHVLiserzSU71ejzNnzkRMlEUipMnhxSunZ+HxscjqG8eGLBvuvqhBkI/3cqrdQoX5IyMjsFqtOH78eNJEO8m0q+L/TcXFxZiamkJBQQEXxXykIbA7CDIyJJgxOSFiCiESL/1c/H5/yMRnLHv0559/Hs8//3xF0MMhW1QJIS8DeDnW8wQSSHR68U5PT2N6ehptbW1co8BSESmrHo+F8+joKPR6fdikIEWkm4ifJfD6fNBqNCjPk6G2NvIqzsdKkrVKJBJkZ2cjNzcXa9asWRTm05C4sLBwSZLWVA5vCB6uWGe2w/z3cdgdThQ5p9HTYwjw14v3vFatBLavrw8AsGPHDm7mdCQzxmjgh+rhDB1iWdG9Xi+cTic8Hg+2bdsWNZQUiUQBNxGD3YPDZ7TIk2dg25pMrPGrUd9Yjotba2E3aFKiYEs2gmeuWSwWGAwG9Pb2Bkha8/PzYwrFU0n04PMqyVPgkc+0cueRqPp9JAfYeNxrk4mEEn3dunUBf2A8+2eqSXc6nYLMGoW+h9ls5rYT69atE3SRBq+874/qoTQ60T2hhknpwKc/sZm7czuMwldpenPy+XwrovEjUltnqGy+TqfDyMgIN4ihsLAw6mjl5SQ6H9Hq936/P+BmFqlqEo7oKyVa4yOhRJfL5QGrq0QiiXlFF4vFmJmZgVKpFGTWGG1F528nOjo60N/fH5O3Ov+5xdkZ+EevDiB+XHBpR0B4Fks4zrIsTp8+zV0oBQUFKCoqWvH671DZfNrSSRNQ4cL8VBI9lvcJzlnQVlW6feGPmwr+fpLlAJsMJJTowR9wPAIYh8MBjUYj2Hst0nv4fD709/eDYRhs376dm3IZC9HpF+dyucBoR7GztRCNdTUozZUteq6Q45rNZlgsFmzcuBFFRUXwer2c0MVqtXJWR/EOL0glggcxUG1+cJifl5eXMmfWpb5PcKuqx+PhVnur1Qq5XM5FMT6fL2KT00pCUpVxkXzUg0Gz6lKpFOvXrxfs7hGOYDabDT09PaiurkZVVVXU54cC3UYIkbIKWdFnZmYwNTWFvLw85OfnA5g3N+TXh202GwwGAzeOuKCggCtXJrP0tdQLk+/HHuxMMzIyAoZh5k02g1o6E41wCbJ4Efz90GTl6OgoTCYTxsbGUFRUxEUxkeyfQyFM91oh5mWvdZh3gL2FEGJk5j+0XwD4NAAHgD2EkJNC3iepRJdIJDE5wFDvtaVYOAPA3NwcxsbG0NrauqgPOlaiG41GGAyGsFJW/nPDEZ12r7ndbnR2dqK7uzvkc/lWR7W1tRxZVCoVV/qiF9VydHvFgmBlm0qlglqtFhTmLwXJvCEyvPlqVVVVOH78ONasWcPlf+x2O5599llkZGQILrGF6V77DoDDhJDHGIb5zsLP3wZwDeZFMusA7MD8NJcdQs496Su60BFINFSPNdznP5/fDhpO+y6U6H6/H+Pj4/B4PLjggguiXjzhiO7xeNDV1YWioiKue03ofp6ShfbCO51O6PV6Llucl5fHZYsTaTGdDGRkZCA3Nxdr167lwnyazff7/QHa/KWsyIle0SOBPzWmrq4OLpcLo6OjOHHiBC699FJ84hOfwJNPPhnxGKG61zA/SPGShX//HsB7mCf6TgB/WJDEfsgwTD4TOOghLJZtjx5OABOPV7vX64XL5UJXVxdKS0sjtoMKITptbikqKoq4D4t2XHqnD+7Uo+cWa8gsl8u5hhs6qshgMGBychIikQiFhYUoKiqKeehiKhJl/Pfgh/l1dXWLDCgzMjK41T7WMJ9l2ZRaVPPPTSaT4ROf+AT+9re/Yf/+/dyk3zhQxiPvHICyhX9XAlDynkcHLKaW6MEIR1oaqocKreNZ0a1WK2ZnZ8PaQvMRjei0EaS1db7uqlQqwz6Xj+BVenZ2FpOTk9i8eXNIt5Glkit4VBFNGtFRxNnZ2QF7x+VGLAaULpcLBoMhrjA/lSt6KPA93RORTCWEEIZhlpzKT/oenR+6CxHAxEJ0Qgjm5uZgMplw3nnnCfpgg0Uw/GONjIzAbDZzzS10+ooQUKIH78dD/Y3JWD1DJfX4GfBIbaupWNFj2TvLZDKsWbMmIJsvNMyPpbyms3kwprOjrigLpTmJqXAkaHiDmobkDMNUANAsPB7XgEUghaG70GmlQonu8XjQ3d3NGfgJvXuGsnD2er3o7u5GTk5OgIUzzboLPa7P58OJEycC9uOhkGwJLD+pR0NjftuqTCbjwvxUWTTHezOJFOaPjIxAKpUGhPlCbyh+luDpD6ZgdPqQmynBNz+1FpmS2JR+oZAg+etrAO4E8NjC/1/lPf4gwzAvYD4JZxayPwdSFLpHCtVDvSYauUwmE+flZnQDUzMqbBB4TsGhu8ViQW9vLxoaGlBWVrbouUIJ6XA4oNVqsWnTpkXOOcFItdY9WOgSPGKZP5E0WUm9REUN0cJ8almlUCgi3vxZQuDysZBniOD2+eFnY59ZH+rvibVFNUz32mMAXmIY5m4AkwBuWXj6W5gvrY1gvrx2l9D3SbrDjMPhgFqtFiyAocm1cMejzi2bN2/GiNGLb7/SC5fHA2/2HD7dGt3bjU/02dlZTExMhJ1+KnRFn52dxdjYGCDPA5uZE/WiXu6mFn6JiGVZnDlzBg6HA6dPnw5QgsWa1IuEZG0PgsP8np4ebrR2qDB/UG3DiSkzttXk4fbtlTgxZcamylxkSWPb1yfKXSZM9xoAXB78wEK2/YFYzpMiaaE7DdXFYrHgEUhA+NDd5/Oht7cXGRkZnHPL4MAM3D4WhCU4MWUWRHSxWAyv14v+/n54PJ6IN6BoiTtqWuF0OlFY3YjXj49jVqzBBWuL0FAS/sumRE+VLDQSRCIR5HI5srOzUVJSwk1apUm9RHavJVsZR0U5lZWVyM7OXpTNZ0USPDfIQi7LRO+sFT+4tglri+PbT4cjus1m48RQKwlJWdH5oXpvb29MF3MoottsNnR3d6O2thbi7CKcmraivSoXn2wqxqHeOWhMVty8ZY2g4/v9fiiVSlRXV0cd+RQpdKc5goKCAjQ3N6N3Sg+WACIwcHgi5xgo0Zeb5KEQPGmVnwijSb2ioiLk5uau+O614DDfandAPjYEvckKmciPwTN+FBfFJzeO5C5TXV0d4hXLi4QS3e/3o6+vL2JWPRqCiU7D67a2NtjYDNz9x1Pw+FhcvK4Y/3xtM359Wxu6urq4WeWRQGvOJSUlqK+vj/r8cKG71Wqd98CrrIPGnwmx3oHaIjlq88RoKFVgXWnkVYJhGLjdbuj1+oSHyPEgUvdacCLMaDRibm4OQ0NDMc1dSxXR6R6d//Nfz+hwYsqMT60vxkNXt2BU50BDcRYyiTtAbiy0aw1Irl9cMpDw0L2goAAVFRWLMtdC7/6U6HTvyA+vz0wY4fGxEImAftW88aUQAQwhBJOTk1Cr1Vi7dm3YHEAwQh2bRiubNm3C/wxb4PDaMai249qWQjQXirG1ProPmcvlwtDQEKqqqgJCZFr3XqkzyflJPZp/oUk9j8cToNQLVfZKRVOL3+8PuKEYHF681adBrkyCF47P4qefbUEJV0rL5G5iwV1r1LyioKAg5I040oq+0majAwkmulgsxpo1axY9Fu7uF+4YHo8Hx44dQ3l5OUqq1+LIhBkdVXlor8rDJxoLMaCy4SuXrg04fjjQaSsSiQSdnZ3Q6XSCFUv8pBlZGJVst9u5G49MYoPJwUIqEUMiFpahVyqVMJlMaG5uRlFREfce1OBhenoaALjy10qb4UXB7+uurq6G3+/nlHrj4+McUWjZa7n60bMzJSjIyoDR4UV9URbCnUFw1xrN5vMFSPyuwrPJXQZIwh49OKNMG1uErlL0rrpt2zZIs3Jw29PHYXX5UFkgwx/3bMUPPtOy6P3CgSYEa2pqUFlZCSD2phbg4/14dm4e9LJKHDg1h0uainFJcwlUZhcKsjKgyIjci0wjFDpIkv95BBs8UJUbbV11u92Ym5tDUVFRUlb7RJCQn60HwG1NaNmLYRjO1CGZEUtw0i9TIsLXL1sLldmF2kLhjUDB2fzgrkKpVIqMjIxFK/uqIXowhNpJUWWa0WjkhgvOmlywOL3IEDNQGpzwsQQZAk39qDikra0toHYfq5mk3+/H8ePH0djYCHdGDoa7VcjOlOCjSSOu21TBZddpK2ko8BtbWlpaMDw8HPGmEKxyO3r0KOe4AwSu9isxoQfMJ/X4RBkYGOBmywMIMNtIZEgfaouQK5MgV7Yk++WArkK/34+xsTFYrVacPHkSEokEhYWFYFk27j06wzDNCJzIshbA9wDkA/g/ALQLj3+XEPJWrMdPCdGjKd3oBZCfn4+tW7fio48+AgBU5GXic9ur8dcBDT6/vUqQPW8oKSsfsRB9bm4OTqcTF1xwAbKzs2FxeqGQSuDw+NBWGSj8CVcbt1qt6O7uxrp161BaWhrxuaFAS0b19fWor68PaVSxkjTtocAwTICCzev1wmg0YnZ2ljNzoH9DJLPOlQKxWAy5XA6FQoE1a9ZwJcl9+/bh1KlTePjhh/GZz3wGt956q+DvhBAyCKADABiGEWNe2voK5kUxTxJCHl/KOSc9dI9GdGrqQDu8qF6cHuvei+pw70V1gt6bhth5eXkBUlY+hCbvhoeHYbVaoVAouDt0rjwDN2+thNPjR6EiMPwMRV61Wo3R0VG0t7fHbTsVjIyMDJSVlaGsrCykpp2u9rm5uYJX+1R3r2VkZKC0tBSlpaVcUo/ab3u93piy38sFv9/PVZVoSfKXv/wlurq68M1vfhN/+9vflnLul2N+aupkor6XpK/o4Xzj+JlwvqlDvH+YxWJBT09PwMoZCtGITnXvubm52LJlC44cORLw+yypOKSKKjhxNzY29nGuIeiunihlXLCmnb9SnjlzBgqFgkswLfdqHy7rzk/q1dTULMp+05bVoqIiQT7zqdrKRDKG7OzsxPbt25dy+N0Anuf9/CDDMHdgfvTSNwkhxlgPuCyhu8/nQ09PDzIzM9HZ2bnkPZrH40Fvby86OjqiljYiEZ0Kc0Lp3qOBXmB+v5/727Zu3Rr24k4GgldKu92+qIMtHrFLIiA0agiX/R4bG4PT6eTKkAUFBSGTeqmSFofKulO141LAMIwUwPWYn9YCzLvI/AsAsvD/n2F+wmpMSEroHvAGQXZSVGxSX1+PiopQEl/hoJlsv98fcuUMhXBEp2F2ON270PM5duzYIp+6YKRC684wDLKzs5Gdnc3ZUlGxy+DgIBQKBbdSpjp0jwX87De1Ztbr9ZxPAN33x7JVSQQiecMt8TyuAXCSEKIGAPr/heP+PwBvxHPQlKzoVKAyMzODycnJJZGJgjrKlJWVxaQsCyY6Td5ZLJYljV42Go1wOBzo7OyMOkySvm8sWCoZg8UudrudKxfZ7XbOxDNZY5YTcTPhWzMD4BKT/K2Kz+eD2+1OuoNuOKIn4GZzG3hhe5BV1A0AeuM5aEqI7nA4ONMAIdLYaGo6g8GAgYEBzlFGr9cLrtXzic7vQw81ZJEi2kVKfeOzsrIEkXy5u9f4q31NTQ0GBwchlUq5kmQysuDJiBqCE5M0WuRLWouKipbsQxcKoYju9XqX9D4MwygAXAHgPt7DP2EYpgPzoftE0O8EI+mhu8/nw/T0NBoaGiIaTvBByRjKCYUm8Phz02L1aqf1zu7ubqxduxbl5eG73mhjS6jzDnaTOXr0qKBziJXoyW6CodLl/Pz8gCz4wMAAZzlNCRPvai/k/D0+FgaHB2U5mTH/rcyCQ6tcLsfmzZu5pB7tXOOX97KyssASYEzngCxDhOqC2M03QhE91hbVYBBC7ACKgh67Pe4D8pDUFV2j0WBsbAwFBQWoqakR/DqawOOv/LRNVSqVLkrgCTGroGAYhivDtbW1RZWYhosuqAimsLAwoptMuGPSMuJKKx+FyoIHu9PQZFksq300oltcPnzumVPQ2Ty4rq0Uj169LuZz539PwUk9/vBIp9OJMUcmegwMsuQyfGFHNWoLYyN7KFn3Sm1oAZJEdJZlMTw8DJvNho0bN2J2djam1wdn6kNJWfkI5wMXDLIwSdXr9eKCCy6IOdSnoNFAY2NjxFJeJGi1WoyPjweUj1KdUOIjkrUXbfUkCwMMgmveRUVFUYcuRmtqGVTbYHLM53L+Z0C3ZKIHI3hG/NTxKfg0eqg1NpzoMoOtK45JbRjqJh2ru0wqkXCiu91uzjdty5YtcDgcMQ9a5BNdrVZjZGRkkZSVwub24SOVG85MOzojzGnz+Xzo7u6GQqGAXC4XnHQL7knXaDTc+cTTcMKyLHfj6+zs5EJMmlCiSje+rj3Ze/pYVHrUnYY2svD92yJ50YVb0T0+FgwDbKzIwZo8GSYMDty8Jb5qTLSbidvH4tS0GQqpGJ9qXQOpTIbsTAl21GTDajbFPBYr+O+x2+0hHX9XAhJOdI/Hg4aGBi5kEjqthQ+qjx8aGoLVag0pZaX42V9H8MGwDfKhCfxHUT6qCxd/0HQFpiU9vV4v+Fxo6E4Iwfj4OPR6veBSXjDcbjdOnz7NzSwDwPmx02YQ2vpJNeFFRUXw+/0rcnhfcHgc7EXHX+1DEf3YhAlf2d8HiYjB05/fhBfu3gyXl43Z1okiGtHfHdLh/VEjGAa4fXsVrt/0cW5GIQ89Fit4umqk46+q0D03Nzfgbh7vjPQzZ86guLg4YjYcmLfslYgY+FkCi2vx+yx1BaYedkNDQ8jIyAgrgokGqnlvbm6GVCrF8PAwTp48uai5g66YNMQ0Go1clJSbm8tlwxNt4piILQPfiy5Y4eZ0OjE7O4uSkhJu1Xvx5Cw8PhZuQvBGrxoPlTfETXIgOtH9LCBiGBAQsGFunMENLMGus3QsFr35B9unrRqiByPWgQxmsxlqtRrV1dVYt27xPs3nZ/H+qAFSiQjn1Rfga5c34Fd/7UNTmQIbKj4mMpWhGo3GuFdgepyenh7U1NTEbRHEv9nQmWkdHR0ckWlmmF5ENGxnGAZFRUWYnp5Ga2trQI80fzUVIg2N9jcmGsGr/UcffQSRSMSNk8rPz8dFNXL8fYQBw4hwaVPxkt8zFNHNTi/+d9iAwqwMfHJdIbIzxVBkSqK6AFEE21HRHIXb7cZHH30UYLaxFKIzDDMBwArAD8BHCNnGhBm2GM/xk15ei+UCnJ6ehlKpREVFRdjV9+CpWfzuQyUYAN/4VAMuX1+Kr1xQyhED+FhiK5fLsWXLlrhLQiaTCXq9HuvXr4+odOODf5cnhGBiYgI6nQ5btmyBWCwGwzDc70Ui0aLQV6fTYXBwEF6vl7t4FAoFJBJJQO2b6trpapmXl8dJQ1daJh+Yvw4qKyvx0pAXL5yw4OJ6J+5rB/ZdIEWmNAOljAUOR8aShkeGIvpf+rXonrGAEIKSHCk+uS70NFyhoGOiVSoVtm7dypltLLi5oq6uDidPnkRHR0c8192lhBAd7+dwwxZjxoqYzMeyLFez7ezsxPT0dNgowGD3zpemABgXsrT8rDvN0NfW1i5yu+EjWrmHjjguKSkRHPLza+4sy6Kvr49bvenjkd4zKysLNTU1qKmpgcvlwunTpyESiTjrKUpkiUTCDa6gWX/qUDM+Pg6pVMrdQIQMaEiVBNblY/H7o9MgBHhv1IKvX9GEy5uauNIXf3hkPDetUESXZ4jgZwnEDBPTgIZo7yMWiwPGYn31q1+F2+3G7OwsnnzySezevRvXXnvtUt8q3LDFmLHsROdLWWtra7n+az7RTylNMNi9uKixCLd2VsLi8iEzQ4SrN843nlCZrVarxdDQUNgMPQUtmYW6iPgWzp2dnRgaGop5nrrP58Pp06dRWloa4GwjlEzUZKK+vp5Tfdntdmi1WvT39we0o1KbptzcXK6LzePxwGg0ckkxmgeIlkxKNuQZYtQXZWHO7EJ2pgTFivntVHDpy2w2Q6/XB1hSCdmihCL61RtKUV0gR3amBHVFicmIR9K5X3HFFbj11lvjOSwB8D/M/Jy1/yKE/Abhhy3GjKSH7hShVg1aj92wYUOAdFQsFnO+bienTHj01X74WYJ+VQW+culafOuqwL27SCSCTqeDVquNmKHnPz8U0b1eL7q6upCfn4+Ojg4wDBOz9ZTVasXAwAAaGxtRWFgYs5+5yWTCwMAANmzYwGm6+ZJVaj6h1+sxMzMDq9WK3Nxcbp9ITR740lCz2cwlk6i8taioKOl68GAwDIPn79qM3lkr1pdnQ5axmCzBwyODu9doQjLUqOhQRM+UiLClOnzZNR4kanhDEC4khMwwDFMK4K8Mw5zh/5KQpQ1bTMmKHiwjpXtXjUYTIGWl4K/oersHPpaAAaC2uBYd2+fzYXJyEoQQ7NixI+4Rx+FaVGMhOp0Q0tbWxmWWYyH53NwcJicn0dHRETHkzsjICLCaslgs0Ol0UCqVAft+mUwGlmWRn5/PDRVwuVyc2QedZLKE8b4xI0sqxva6fMHPD+5eo3viiYkJzsKJRjapdJpNtDEkIWRm4f8ahmFeAbAd4YctxoykED2Uyww11IskZeU/nxL94sYi9KssUFvc+NLFgV7sdI45rUEL/ZKDyUtD/k2bNi3ajwsRq1ANvsvlwrZt27gQMxaHl/HxcZjNZmzdujWm0hnfWLKhoQFutxs6nQ7j4+NwOBxcLZv2oMtkMlRUVHA3CZPJBI1Gg97e3oDy3XIbVYQCf7WnfyvfgFIsFiMnJwc+ny9pM+SAxBN9oZlFRAixLvz7SgA/QvhhizEjJSs6Fc3QVbOuri5iooxP9MwMMfZe1rjoOZScra2tYFkWKpWgoZIAPiY6jSwihfxCxjL19/eDEIL8/HxotVqUl5cLnlJKXy+RSNDe3r7kFSkzMzNgv0trwGNjY8jMzORWQKlUyu311Wo1ampqIBKJYDAY0NPTA2Dlm1DyDSip7JqKkmhkk4wBGeHsy5ewopcBeGXhHCUA/kQIOcQwzEcIPWwxZqSE6GKxGGq1GrOzs4ImqkYiF139dDodtm3bhszMTJjN5picXemI456eHkgkEmzbti0swaKNZerq6kJxcTGqqqrgdruh0WgwMDAAr9eLoqIiFBcXIy8vL7T80+NBT08PSkpKYmr6EYpg1Z3T6YROp+MGLlCjRr/fz0Uh9CZBm1mUSiU3YKK4uDipE1eXApFIhMzMTBQUFKC0tBQejwd6vR6Tk5Ow2+0Be/ul2k0n2tOdEDIGoD3E43qEGLYYD5IeutM+YWrKIORDjjZoMTMzM4CcsYpyCCHo7e1FdXV1VILRTHow+Ht66tIik8lQW1vLKaoMBgNmZmYwMDCAnJwclJSUcJNY7HY7enp60NDQEHXMcqIgl8tRXV2N6upq7kbndDrBMAxXvuMTubh4vtFDJBJxstCpqamAPIBCoVgxqz1/jy6VSgNmyFksFuj1eu78abQSz2ofKXRfqQM3knprpiueWCxGY2Oj4DtpKOLS/XioDrZYEmY0lG1sbBS0ioY6NhW1bNy4kcuyBkcEEokkwL+NJswmJyfBsiw8Hg/Wr1+fMpLzQWfk5ebmoqOjA8D8RarT6bjyXfCUFf5UFnoTm5iYgMPhWDFinUgGlDSPsXbtWm5ARrzjsMIR3el0rp6mFgqz2Yze3l40NTXFHFoHE50Sq7W1lSs58SGU6LOzs5icnERpaangECs4GUfns2/ZsgUSiURQ0o1/ocnlckxNTaGmpoabq15QUICSkpKU1LlpL35FRUXADZOW76ibLLVoslgsHBGo/TK1paJiHTpxlbbd8uveqYTQrHvwgAzqQxdqHFao79bv94fM5wR7KKwkJOWsZmZmMDExgc2bNyMrKws2my2mxhZKdH6yjO7HIz0/HMjC3DS6fRgbG4vJkcbr9XJGlD6fD1u2bAGAmDPro6OjsNvt3Hx3AAHGDtS0kWqrE535djqd6OrqirpdCLZoCi7f8VtRCSEBltNUrMPXtNNe9mQjnvIaw3w8MZavUYg0ICPUir4Suwv5SArRs7OzsX37du7DiHUPTSWt3d3dyMjIiJgso8cPR1y+TzsVwcRyPjRxd/LkSRQWFnKNLbGQnIbKMpkMmzZtCnhdsLEDVcB1dXUBmG9TLSkpWXLm2Gq1ore3N0CIIwShynf8JBdt4aTH5FtOA+DEOg6HA93d3RHdaaheQixKnNY9VgRrFOhqTysRBQUFnO10KKyUfEUwkkL0/Pz8ACJJJBLOZVQInE4nHA4HamtrBTWThEuY2e12dHV1LfKFi2VP7/F4oFQq0dLSwpExFpLTPEVFRUXUvyVYAUczx+Pj4xypaOY7lr2wXq/H8PAw2tvblxxOB5e0aOPPxMREQNhOy3d5eXnIzc2F2WzG2rVrYTQaOXcavhfd8SkLHnntDLIyxPjV7ta4fNwSLZgJtdobDAZoNBquy5JGN/ymqligVCpRU1PzLuZLbATAbwghv2AY5gdIwMw1iqRl3fmIZQWlstjMzEzBHWOhRC10Xx9K9x7uxhDqXCYmJlBSUsJ1mMVyIdlsNvT29mLdunXc62MBP3PMr4nTltbi4mKUlJRE9G6bnZ3FzMwMtmzZkvCtQLjyHa1nU3GLSqXiJLd0SwDMJ0bVajWGhobw234Cj9cHl9ePv40Y8PnOxZZh0ZBsZRzd0uj1elRVVYFhGOj1epw6dQoPPfQQ3G43jhw5EhDNRsPCnv6bhJCTDMPkADjBMMxfF3695Jlr3Psk4iDRIMR8gu/wum3bNpw4cULQsb1+Fj8/PIq/97vx5bw5XLWxDJOTk9BoNGH39UJWdKVSidnZWTQ1NWFsbAxqtRrFxcWCKwd0FW1tbU2IGUEoJxqdToe+vj74fL5FNXua3zCZTFyLbLLBL9/5/X7o9XoMDg5yn7VOp+PKd3RyTH5+PhiGwafFsxj832lIwEJuncHYmBvFxcUxiXVSJYFlWRYSiQRZWVlcbuKZZ57BXXfdhaeffhrPP/88fvnLXwo61kL57yQALCjjBgDEfpeLgpQRPdKKTvewYrE45hFNSqMTXdNmKDKAA6dmUUm0YBgmqggm3I2HWjh7PB5s3rwZwLzeWqfT4dSpUwF76nANDNPT01xmPllSUn5Lq8/n45pcaM2eDjFIhNouHhBCoFQqUV9fj8rKSjgcDmi1WgwMDMDv96OwsBDvTPnxco8en2ouwlc/WYPzGoohlYiQLRXBaDRyCTGh5a/l1LpLpVJUV1fjt7/9bdzHZRimDsBmAEcBfAIJmLlGkZLQPdygReDjTHBlZeUiBxchfdLluTKU5mRi2EzQKLYhL68uqn+8WCwOmTOgibu8vDysW7eOe3+6T1u7di3cbjcnv3W73SgsLERJSQm3kg4PD8PlcqVsFQXmP18aEvt8Ppw6dQrAfI7i1KlTUW9MiYbH48Hp06dRW1vLhem0Dl9XVwefzweVRovfHh2EiBC8fEqFK+pl2FBbxkVbdK/PMAxsNhtHfIZhwopdlpPoS7WRYhgmG8DLAL5GCLEwDJOQmWsUy7qi04krwW2q/NeEqkv+pVeN5z+aRmddAb78yXp8+9IqvHtEhcvPb0dJcXRLolChu8PhwOnTp1FfX8+NLQqVdKO5A+qLZjAYoFKpOOOMvLw8bNiwYVmEIzTxt2bNGq5G7nK5uH2zy+VKes2e+gs0NjaGzUtIJBJUVZSjoWQGMyYXFFIRZIyXy2zzTTP4Yh3+Z06z/nyxDsuyKcl6hyN6vIlOhmEyME/y5wghB4HEzVyjWBaiE0IwNTWFubm5kG2q/NeEIvofjyqhkIrw92EdzisXwWdSoaogC8UCE17BRKc3nNbWVmRlZQnuIReLxZwDDTXPAMCF+HTWmdAGl6UgXI1cJpMF3JiSWbOnst7169dzbbF8eP0snjg8CqXRiYc+1Yj/vr0DXdMWtFRkoyBr/v09Hg+nIOQTmT8lhn6uDMPAYrHAaDRiYmICTqcTSqUyIT560RB87HgdYBeSyE8DGCCEPME7fkJmrlGkLHSnRKf7cZFIFHE/Hmlf31Gdi+OTJsgZL7xWPbZ3duLEiROClUl8otO5aR0dHZBKpTGVzoCP69Pr16/nopKGhga4XC5uT+r1eheF+ImExWJBX19f1Bp5tJo9/V08NXt6Dm1tbWEv+HfOaHHw9By8PhY/dA/imTs244KGwoDnSKXSRf3nOp2OK9/RsF0mk8Hv9wc4th4/fhxisRijo6OcWIev6Esm4g3d33//fQC4HUAPwzCnFx7+LoDbmATMXKNImfGE3+/nfNDWrFkTVWfOF8GMaGz45btjKMmR4uuXN+Krl9Thfz44jbrSYrS1NMXsBEPP58yZM9x+mhI8lgtcq9Vyo5aD978ymSyggYTf4JKbm8s1uCxVMhlvjTyRNXvq5R7NMCNfnsEJYoqzhY24DnaboeVFug2hI5MtFgvEYnGAWIf66AU77CYjworXXebCCy8EISTURRd3zTwUUkJ0hmHg8/lw4sSJkPvxUOAbPj53bBozJhcm9Q78bUCFfIcSnc2B89VjqdWzLAutVovKykq0trbGLIIB5jXvGo1GUGY9uMGFrlJUG05D0VgnlyayRh6tZl9SUoLi4uJF56jRaDA+Po7NmzdHtaY6f20hfryrBSqLG9dtit3+LNQ2hO+aW1tby5W+WJYNELu43W7OR8/j8SRkcCQfK9nTHUgB0WmZxe1246KLLhJ8MfOJ21yWjdPTZojAwjo3gQsvaF8kghG6ojscDgwMDEAul6O+vj5mklPzSKp5j0dbTa2dGhsb4XQ6OdNH2sNeUlIScQ5bsmvkQmv2drudKyMK1Rd8MgH+7cDH2xCGYWAymbBx40ZYLBYuKco3nQDA+ejxpbnBY6KF+OiF07TbbLaAhWelIal7dL/fj/7+fgDzdd9YViw+0W/ZugZFjA1uqxFXXLA95JchZKIq9UprbGzEyMgIdDodV8IRAtrDnZeXh+bm5oTsteVy+aJ6uFKphNVqRV5eHhfiUzITQnDmzBkQQlJWIw9Vsx8cHITdbkdJSQkMBgOKiopS3rlFB1XSiKagoCDAC2Bubg5ms5lrTKFttNRHj+ZLgn30Ig29DNeiupIHLAJJXNGppU95eTlqampw5MiRmPzDKdGp1VKFDNiwJbz5Y7SJqjMzM1AqlVzSjTrHjoyMQKFQcKFpuJWJWjDX1tZGnKe+FPDr4dTPLXiKi1arRUFBAerr65elgUIsFsNms0Eul2Pbtm2w2WzQarWcWWOqavZqtRpTU1PYvHnzou8seKtEz7G3dz5xHVy+oz56/G1LuKGXSXKATTqSQnRCCLq6urBu3Tou/KN3UqFhplgshsvlwkcffcTdLCJd2OFCd36LKj/pRr88/oUQrixmNpvR39+PlpaWkGWjZIBhGC4RtW7dOpjNZnR3d3M3KEIIV9pLFeEJIRgcHAQhBG1tbQGdbY2NjSmr2c/NzXE37WhbBoY3S42aTlCnGZvNxllM8c+RJvkYhoHdbofRaOSGXubk5HAt1PzPfVXu0RmGwfbt2wMeoyu0UKJ7PB7MzMygra2Nm3sVCaGScXRUcnZ2Ntra2kLux4MvhOCymEwmg91uR0dHx7K5hzidTgwMDHAddLRnenJyEjabLe6utlhAJ8/I5XI0NDSEvLmESpap1eqE1uxnZ2ehUqmwefPmuLYKwRZTNDE6OTnJDYsoLCyETCYDIQRZWVncgAm/34+5uTm4XC4cO3YswIcuEaE7wzBXA/gFADGA3xJCHlvSAfnHjtIwH3c3PTVroDh16hSam5sFkUWlUmFoaAjl5eVobm4W9H4jIyPIycnhRCtOpxOnT59GTU0NFwrHY8GsVquhUCi4khPdM6dKPx6tRk5DTa1WC6PRCJlMxm1DEjWggXoDFBYWora2NubX06hJp9NBp5sfLRZPzX56ehoajQbt7e1JuaHRiESn08HpdHKZeZr4JYTAaDRCr9dj3bp1sFqtMBqN+MlPfoKjR4/ixhtvxJ133omWlpZYoyyGYRgxgCEAVwCYBvARgNsIIf2J+NtSRnQ6YiiSeR4hBCMjI7BYLCgvL4fL5UJDQ4Og9xsfH+d6pU0mE0cOepeNhZjUTQYA1q9fz20LKKEMBgOysrK4EH+prqLhQHMImzZtEnSDJIRwzSM0vF+KCAb4eHoNFbEkAjR81mq1gmv2U1NT0Ov12LRpU0rkxfxJt0ajEZmZmcjNzcXc3Bw2bNgQUItnGAY33HADdu7ciSNHjuDpp5+O1SSSYRjmfAA/IIRctfDAIwBACNmXiL8nZUTv7+9HRUVF2Bo6P8xet24d9wE3NTUJer/JyUlu8N3k5CTa2tqQmZkZc32cNrYUFRVxs+CCwVeVabVaiEQijvSJCu9pjby9vT3uUDeYUHTPXFBQIOjG53a70dXVhbq6Oq4slWjwa/YGgyFkzX5iYgJmsxltbW3LNjvOYDCgt7eXC+lp+VGhUECtVuPCCy9ET09PvDdDhmGYmwBcTQi5Z+GB2wHsIIQ8mIjzT1k9JJKghTq88iegxmM/pVKpIBaLufp2rCSndkdr166NeGEHq8poRxttbxVSCw8HWiM3m81LrpEHi2CMRiPXeUcjknB7Zqqdb2pq4hKqyQCt2UsVubDLy1CdI4LDYuRq9nTUdJxjiBMCp9OJoaEhtLe3Iy8vjyvfqVQq3HnnnXA4HLjvvvuSFtklAkkjulCXGeooE+zwGgvRfT4fpqenIRaLsWnTJq6LKRaS0eGGGzdujDpgIhj8jjZ6EUSqhYcDv0a+adOmhF7YfC/2cDr3kpISLh/R09MTs79cvPD6Wdz/fDc0VjfW5Mnw2y90oLq6GsPDwzCbzZDJZDh27BjnjZ/Kmj3txmtpaeE+C1q+YxgGcrkce/fuhdFoxBNPPIF9++KOtGcA8Pu0qxYeSwhStqLzG1uAjxVzdKB8pEGLkUD181T8QHuSYyG5SqWCUqnE5s2bY5ahBoNfw6VNGVQTL5fLw66ifr8fPT09nGQz2Z1XwTp3Wq+32Wzwer1Yt25dyoYR2Nw+zJndkGWIoDQ64fD4oJoah8/nw7Zt2zjHHIvFAq1Wy23T6M0pWdUQem2tX79+0Q1Pr9fj5ptvxr/+67/i05/+dCLe7iMA6xiGqcc8wXcD+FwiDgwkcY/u8/kCiKpUKkEIQU1NDViWxcDAAFiWxcaNG0OuXLSkRK2VQ4F6x7e0tCAzMxODg4NwOBwoLCxEaWkpZ1MU9o/jDTdsa2tL6irBX0V1Oh0YhuEu1IyMjEV95MsBvV6PoaEh1NbWwmw2w2QyCRITxQuPn4XXx0KRKcFv35/Em71q7NxUjvMKHAAQUX1IM+RarZYzACkuLk5Yzd7tdnOVouC8kslkwmc/+1k88sgj2Llz55LfCwADAAzDfBrAzzFfXvtvQsi/JeLgQBKJ7vf7A1xlZmdn4Xa7UVlZidOnT6O0tDRssgv42EShs7Mz5O9VKhUmJiYWJd1Ylg1w6qSdYkVFRQGhM3+4YaLkrLGATj1VqVQwm80oLi5GbW1tUtpYhUCtVnMjm2m0wRcT6XQ6LumYCOWbyuzCl/7UDavbh4evaMA1G+dLoAMDA5BIJFi3bl1MdtoGgwE6nY67OS2lZk9VnU1NTYtIbrFYcOONN+LrX/86brrpppiPHQZJ/8JTRnSNRgOtVguTyYTm5uaoIhi/34/jx49jx44dgSe0MAjBbDajtbU1YtKNCiK0Wi30ej0XOufl5WFgYAClpaVJGW4oFLRGvn79eni9Xmi1WlgslrA3p2RhZmYGKpUK7e3tEVdtmnTkr6L084x1FX29Zw4/e2cUYoZBY4kC//m5TZz3fThBjhAstWbv8Xhw6tSpAFUnhc1mw0033YT7778ft912W1znFwbnDtGHh4ehVCqxY8cOQasBIQRHjhzBBRdcEHDMnp4eyGQyNDY2xiSCoaHzzMwMpqenkZWVhcrKypQ5wAQjXI08+OZEBTAlJSVJMZqcmJiA0WiMuT5NV1GtVguz2cxNW6Wa8GiYNbvwpT91web24+uXrUUtNMjOzsbatWuX8ucsAs0/6HS6qDV7SvJQNlgOhwO33HIL9uzZgzvuuCOh54izmegsy8Lr9XIiGL1eD4VCgba2NsHH+OCDDzii08RIZWUlJ1+MNbNuMBi4GW4ZGRnc6uT1elFcXMzNZEt26BxLjZxfrwc+tlFaauhMvxe3240NGzYsaV/LH9uk0+m42WzBN9GeGQv+5a0hrMmX4d92rodExMDp8WNyeAB5eXmoq6tb0t8UDZFq9mKxGKdOncLatWsXRZtOpxO7d+/GrbfeinvuuScZp3Z2E93pdKKnpwdZWVlYs2YNxsfHsWnTJsHHoES3WCycF1leXl5cJJ+dncX09DTa29sXSUO9Xi+X2LHb7YKTebGCJv8sFgva2tpiDss9Hg9HepfLxYXOsZ4n3QuLRKKk5Cdov4BWqw3QFTz8xgQG5mxgGOA7V63D1S3F6O7uRnFx8SIH4FSATpDVaDSwWq1cnoSvf3C73fj85z+Pz3zmM7j//vuTtQgknehJSzM7nU589NFHnAjG6XTGJIChmJubw9jYGEdQocaNFPzhhlu3bg1JroyMjABhCRVDnDlzJmH7Zb6sNt4auVQqRWVlJddgEc95siyL3t5eKBQKrF27NikXbjgbrVzWApYlkIhEqMyRoKurC6WlpYIn8iQaCoUCUqkUGo0GGzZsAMMwmJ6ehsVigdPpxMTEBA4dOoQrr7wymSRPCZK2ons8HphMJq7+GC2LvuiNCcF7772HnJwctLa2cgqpWD5sakQpl8vR2NgYl0otVDIvVn17smvkwedJQ9KSkpKA6MXv96OrqwvFxcXLkoT0+Vn8b/8M4LKAsaohl8tRVVWF4uLiZcmTUA/82traACUkIQT9/f14+OGHMT4+jqamJjzyyCO47LLLknUqZ2/oTggJGJLAsiyOHTuG8847L+pr/X4/ent7odfrceGFF8Zl3Oh2u7k54IlYMYL17ULtnOkNrrKyMmFNIdHAr9fTxpaCggIMDQ2hurp6WS2PvF4vTp8+jerqauTl5XHnKdRGK1Hw+XzcedCOR/7v7r33XmzcuBH/9E//hJmZGfj9/rg69wTi3CF6qCx6KNAaZkVFBebm5lBUVISysrKY7vhLHW4oBPx9aLhkHtXONzY2CuqpTwY8Hg9UKhXGxsY4I8rS0tKEmSLGAq/Xi1OnToVskqEWVVqtlpMO0yx+okuMfr8fp06dQlVV1SK3IL/fjy9/+cuoq6vDj370o1SF62cv0YF50vLBz6KHAk26NTc3Iz8/n1M/aTQa+P1+bgWN1OCf6OGGQhAqmadQKDA1NYXW1taYtfOJBL3ZNDc3Izc3d1FJLFXacTqmiU7CiQS+jRZ/KxLKhTZW+P1+znI8OLJhWRZ79+5FUVERHnvssVTeCFcP0TUaDVdXpvtK/gdNBSUajQYulwtFRUUoLS0NCPPocMOltHYuFSzLYnx8HEqlEhkZGcjPz0dpaWlS3V/CgQ6XCNWow9eO6/V6SKXSkPv6RIBGaZHGNEUCv8fe7/dzIX6sNlqU5BUVFYu2USzL4qGHHoJMJsMTTzyxZJLX1dUhJycHYrEYEokEx48fh8FgwK233oqJiQnU1dXhpZdeQkFBARiGEWHeWebTABwA9tAJq4lCUonu8XgC7HFDEZ2WnPR6PVdyirYf9/v93ApqtVpRUFAAt9sNhmGwcePGZZl7RsGvkWdkZCQkmRcPTCYTzpw5g7a2NkE192Ay0a2IQqFYUvhK9Q+Janel0ZNOp4vJRosmIsvKyhb1E7Asi0cffRRerxdPPfVUQlbyuro6HD9+PGDL9q1vfQuFhYX4zne+g8ceewxGoxE//vGPwTDMtQC+gnmi7wDwC0LIjjCHjgspJ/r555/PXTi01CMWizmDiViTbjQkZFkWhBDk5uYuywoarUYebzIvHtBOtPb29rhCXUomjUbDNQnFY/JIe9rDzWJbKoJdf/jdgfyohGVZdHV1oaSkZFFilmVZ/PCHP4TRaMRvfvObhIXroYje3NyM9957DxUVFVCpVLjkkkswODgIhmF+A+A9QsjzAMAwzCCAS3iz15aMlBL96NGj2Lp1KyQSCSc3LC8vR1VVVVw95C6XC93d3VwmmZaZNBoNp8QrLS1FcXFxUvegtEbOMAyam5sFXSxCknnxYG5uDlNTUwHNKUsB1RXQPgWh+3qaG+D3cScTwTZaLMtyybzR0VGUlJSEHMv97//+71AqlXjmmWcSujDU19fTsBz33Xcf7r33XuTn58NkMnHvXVBQAJPJBIZh3gTwGCHkHwDAMMxhAN8mhBxP1PkkNQND+4i5N1voSace6bQ7KB6ShxpuyJ+CQpsbNBoNJicnIZVKUVpamnDNODVOzM/PR11dneC/gS8qoSsonXsWrzJvenoaarUaW7ZsSdiNTSQSBQxmpPt6OvQw1Dgpu92O7u5utLa2pqynnWGYgBnsVEXY1dXFubnq9XrORosQgscffxxjY2P44x//mPDo7x//+AcqKyuh0WhwxRVXYP369YvON5UCnJSO1hCLxdBoNFAqldi0aRPnvxVruESNHCINFuTbODc0NAQ4qjAMw5lDLCWLm6gaOV+ZF0rxFm0rQu2nLBYLOjo6krZlCfZxp+Ok+vr6uH29QqHgBk8up8+5RCKBTqdDbW0tqqurA2y0nnvuOXi9XhiNRrzyyitJifZoHqC0tBQ33HADjh07hrKyMqhUKi5055UYk+ouAyQ5dOcbRNI6OsMw2Lx5c1xKNzpXXafTYdOmTXEntGjYzC/b0cSTUNDQNJm1ev5WhL8H5SfzCCEYHh6G1+tFS0vLsvmqeb1eKJVKLnqimXGhRpSJBM395ObmLmqUYVkW+/btw9tvvw2ZTAaFQoFDhw4ldHW12+1gWRY5OTmw2+244oor8L3vfQ+HDx9GUVERl4wzGAz4yU9+AoZhPgPgQXycjPslIWR75HeJDUklOnWZoSYPRqORS8zESnKWZTE4OAiWZRN6QQeX7eheOVLphk5uicdfLl6ESuYVFxfDZDJBJpOhqalpWbXYZrMZAwMDXKRGV1Cj0Yjs7GxuX5/sagMhBL29vZxNVvDvnn76aRw6dAgHDx6ETCbj+v8TibGxMdxwww0A5jnwuc99Do8++ij0ej1uueUWTE1Noba2Fi+99BKdCCMC8BSAqzFfXrsrkftzIAVEp4MUSktL4fV6YTKZUFlZybUGCj1Od3c3CgoKYtoHxwpattNoNLDZbFy2mSZVgI/7yNvb25dFn01B98F+vz9gr5yKNttg0FJeqM+EEAKr1cqVGGkLazL07YQQ9PX1ISsrK2Rf+x/+8AccPHgQr7766rJ+dyFwdgtmjEYjJ5QoLCwEy7IBX7pcLkdZWVnErDhN3NXV1S3SJCcToSypxGIxtw9eLkEOMH/jo51f/GResttsQ8FgMGB4eFhwKY/u67VaLXw+H+ebt9QZcrQRhTrUBOP555/Hc889h9dff30lDkM8u4muVCohl8u5C4AfbvOz4lqtFjKZjMuK0/COhsipsh0OB2pmaTQaIRaLU1a2CwWaAKyurg451TXY+SWZugJar+/o6IhLTUdnyGm1WthstpgHTFDQ/nqpVBrShurll1/Gb3/7W7z55psJSRD6/X5s27YNlZWVeOONNzA+Po7du3dDr9dj69at+OMf/wipVAq324077rgDJ06cQFFREV588cVw5hpnN9FPnDiBmpoaZGVlRb1b2+12jvQSiQQymQxmsxkdHR3LGmbxa+S0RGKz2aBWqznpaDLKdqFAPcYbGhoENckISebFCzqbPJH1ev6+Xqj7LCV5RkZGyFbk1157DU899RTefPPNhC0WTzzxBI4fPw6LxYI33ngDt9xyCz772c9i9+7d+NKXvoT29nbcf//9+NWvfoXu7m7853/+J1544QW88sorePHFF0Md8uwm+r/927/hxRdfRHNzM3bt2oUrr7wyathEs8harRYZGRmcgmyppbB4IKRGzr9BJfNc6VCFeFVmiVTm0dnkQsYWxwN+tKfX68OeKx3jLBKJQrrG/uUvf8Hjjz+ON998M2HTZqanp3HnnXfi0UcfxRNPPIHXX38dJSUlmJubg0QiwZEjR/CDH/wAb7/9Nq666ir84Ac/wPnnnw+fz4fy8nJotdpQ19HZTXRg/k598uRJ7N+/H2+//Tbq6+tx/fXX45prrlmU7aQhMrU4EolEcLlcHJFYlkVJSUnMbavxIJ4aeSLKdqFA3WITKUAJPle6V46WzFOpVJiZmUFHR0dKp6XwVYS0dKdSqcAwTMiKwzvvvIN//dd/xVtvvZXQFuGbbroJjzzyCKxWKx5//HH87ne/w3nnnYeRkREA89vVa665Br29vWhtbcWhQ4c42W1DQwOOHj0a6nzOXispCpFIhG3btmHbtm3Yt28fenp6sH//flx77bWoqKjA9ddfj2uvvRY+nw8nTpxAS0sLampquC9OJpOhpqYGNTU18Hg80Gg0GBgYgM/nSxiRghFvjZyvdqPuo8PDw4LLdqFgNBoxODgYURwUD+JR5s3MzGBubi6lJA8+V5/PB51Oh97eXni9XpSVlUGv1weMsv7f//1f/OhHP8Kbb76ZUJK/8cYbKC0txdatW/Hee+8l7LipQEozSSKRCO3t7Whvb8e//Mu/oL+/HwcOHMA111wDnU6Hz33uc9wInlCQSqXcjDNa/x4aGoLb7eZIv9TyUqJq5FKplBs1TE0VJicnubKdkKy4VqvF2NgYOjo6krptEaLMczqd0Ol0SVXeCYFYLIbVakVhYSGampq47sDh4WG89957cLlcePvtt/H2228nvErz/vvv47XXXsNbb70Fl8sFi8WCvXv3wmQywefzQSKRYHp6mlPFVVZWQqlUcjP5zGZz0sRV0ZD00D0aRkZGcPPNN+P73/8++vv78frrr0Mul2Pnzp247rrrUFZWFpW49C6vVqvhdDpD9qoLAV9am6ytQXDZLi8vj8uK8zPNKpUK09PTSdsHCwFN5o2MjHDtwMGVkVSfz+joKDweD1paWgK+W0IIXnzxRfz85z/nZpk/++yzSbPNeu+99/D444/jjTfewM0334wbb7yRS8Zt2rQJX/7yl/F//+//RU9PD5eMO3jwIF566aVQhzv79+jRQEUq9O5Lddsvv/wy/vznP0MsFuO6667Drl27UFFREZW4fr8fer0earWaWz3LysqijjqamZnB7OxsSk0rqJMKzYpnZ2dzq6fBYMCmTZtSXr4LBh3h3NraGlADT2abbTiMjo7C5XJxjq18nDhxAl/5ylfw6quvora2FjMzMygrK0va58cn+tjYGHbv3g2DwYDNmzfj2WefRWZmJlwuF26//XacOnUKhYWFeOGFF8INqDj3iR7xzQnBzMwMXn75Zbzyyivwer247rrrcP3110ec20bBsiz0ej00Gg0sFgvy8/NRVlYW0FdNCMHY2BhsNhvnNrscoJ1hQ0NDnKECFRMthziHfi4OhyPkIMx4k3nxgn8uwcfv6urCl770Jbz88stobGxM+HunAKub6HwQQqBWq3Hw4EEcPHgQVqsV1157LXbu3CnIypnWaTUaDUwmE+eDrtVqIRKJsH79+mXVitNSEdXyOxyOgLIdDZlTUWKkITKd4hLtc0m2Mm98fJy7EQcfr6+vD3fffTf279+P5ubmJb/XMiFN9HDQarX485//jIMHD0Kn0+Gaa67Bzp07BRGWEAKDwYD+/n6wLMuF96kaahgM2vSTmZkZ8qYVXGLk2zwlGoQQDA0Nwe/3L9oHC0GilXm0/ZYO1OTjzJkz2LNnD55//nls3Lgx5mPz4XK5cPHFF8PtdsPn8+Gmm27CD3/4w0So3oQgTXQhMBgMeO2113Dw4EFMT0/jyiuvxA033BB29jq/Rl5RUQGLxQKNRgOdTpdyeSsd7kBFOdFADRU0Gg3cbnfcZbtQIITgzJkzEIlECemGC3b8ycrKikmZNzk5CZPJhLa2tkXf4/DwMG6//XY8++yzMY35inSudrsd2dnZ8Hq9uPDCC/GLX/wCTzzxxFJVb0KQJnqsMJvNeOONN3Dw4EGMjo7iU5/6FHbu3InNmzdDJBLBarWir68vZI2cKrLUajV0Ol1I/X0i4fV60d3djbKysriGTNCynVqtXnLIHE1KulRQItEbarRk3tTUFIxGY0iST0xM4LbbbsMzzzyDLVu2JPQ8gXkdxYUXXohf//rXuPbaa5eqehOCNNGXApvNhr/85S84cOAABgYG0NHRga6uLsGSSLvdzpFeIpFwrjSJSI5RU8va2tqE1Htp4pGGzOHKduFe29/fD7lcnrR5bMGIlMybnp6GXq8POaNOqVTi1ltvxW9+8xts355Qbwb4/X5s3boVIyMjeOCBB/Dwww8nQvUmBGe/Mm45kZ2djZtvvhk333wzDh48iG9961vYunUrrrnmGlx44YXYtWsXzj///LAhOh1EuHbtWi451tXVBZFItKTkGHVHTaQ7jUgk4lZIftlueHiYK9uF8gCgbiw5OTmLjBqSiVDKvLGxMZjNZjAMEzIJODs7i927d+Opp55KOMmBeTHO6dOnYTKZcMMNN3BDMc8FnNNE58Nms+HYsWMoLCyE2+3G4cOH8cILL+Cb3/wmzj//fOzatQsXXnhh2BA9KysLdXV1qKur45Jjvb29IIRwK72QejI1jEhm6y3DMCgoKEBBQQFn/KDRaDA+Ph6wHRGLxZyhRxLnikUFVeaxLAufz4eqqiqo1WoMDQ0hNzcXFosFZWVluOOOO/Dkk0/iwgsvTOr55Ofn49JLL8WRI0fOCtWbEJzTobsQeL1evPfeezhw4ADef/99bNu2Dbt27cIll1wiKESn+nuNRhNVf0/ltW1tbctmnEj3yRqNBk6nk5OSprozMBizs7OYm5tDe3s7F3XQZN6+ffvw0ksvoampCffddx9uuummhJ8v7ZbMz8+H0+nElVdeiW9/+9v4/e9/v1TVmxCk9+iphM/nwz/+8Q8cOHAA7733Htrb27Fr1y5cfvnlgi4sqr9Xq9XweDwBXu1GoxFDQ0PLbkEFfDy1hO7f+Z2BpaWlCW2eEQKVSoXZ2dmQOnq9Xo8bb7wR3//+91FXV4dXX30V3/jGNxJO9O7ubtx5552cx+Ett9yC733ve4lQvQlBmujLBb/fjyNHjuDll1/G4cOHsX79euzcuVNQTz0wf9OgySaLxQJCCDZs2ICioqJlFebQccG0tEjBL9sF36SSeb5zc3OYnp7mnIH5MBqNuPHGG/Hd734X119/fdLOYQUgTfSVAJZlceLECa6nvqGhgeupj9YfTmexVVZWQq/Xx6S/TzTobPKampqImX7aJKTRaLiyXTLOV61WQ6lUhmx7tVgsuPHGG/GNb3wDN954Y8Lec4UiTfSVBpZl0d3djf379+PQoUOoqKjAzp07ce211y5yfpmcnOSaU+hqFay/px1hsc41ixWRZpNHAlW60fPNy8tDWVnZkv3a6QSdzZs3LyK5zWbDTTfdhPvvvx+33XZb3O8BzJfE7rjjDqjVajAMg3vvvRd79+4NO9mUEIK9e/firbfeQlZWFn73u98lpVYfhDTRVzKovfCBAwe42vyuXbtwzTXX4MUXX8RFF10UshZMEay/j6X2HQtozX7t2rVLMmKgQw01Gg2MRiM3hy0W627gY5KHasG12+249dZbsWfPHtxxxx1xnyuFSqWCSqXCli1bYLVasXXrVvz5z3/G7373u5CTTd966y38x3/8B9566y0cPXoUe/fuxdGjR5d8HlFwbhD90KFD2Lt3L/x+P+655x585zvfScRhVxSoRvyll17Cf/3Xf6G8vByf//znsWvXLpSWlgrS3/NbVnNyclBaWrpk/f1SZ5NHOl86hy0WFSE1ldy8efOi5zmdTuzevRu33nor7rnnnoSdKx87d+7Egw8+iAcffDDkZNP77rsPl1xyCRdJ8CegJhFnv2DG7/fjgQcewF//+ldUVVWhs7MT119/PTZs2JDst04p6CRVt9uNu+66C3v27MHBgwfxhS98ARKJJGpPfXDtm+rvx8bGkJWVFZf+ns4mb25u5gZRJgrBc9hsNhu0Wi1OnTrFdduVlpYG2EBTu6pQJHe73fjCF76AG264AXfffXdCz5ViYmICp06dwo4dO6BWqznylpeXQ61WA5j3JeBPXa2qqsLMzEyyiZ50JJ3ox44dQ2NjI1d62L17N1599dVzjugUjzzyCJeVf/jhh/HQQw9henoaL7/8Mu6++274fD585jOfwQ033IDq6uqwpA8mkVqtxsTEhOCVM9mzyYORnZ3NjUGiBhU9PT0ghHBW2OEcczweD+68805cddVVuP/++5OSoLTZbLjxxhvx85//fJFFWKonmy4Hkk70UHfIFOx5lg3BpTeGYVBdXY2vfe1r2Lt3L+bm5nDw4EE8+OCDsNlsXE99qMED9PV0KiwlvUajwcmTJ5GRkRFSf0/Vd6mcDceHXC4PMPScmJjA+Pg45HI5lEplQNnO6/Xi7rvvxoUXXoi9e/cmhXBerxc33ngjPv/5z+Ozn/0sAISdbEoVbxR8NdzZjFUjgV0JYBgGFRUVeOCBB/DAAw9Aq9XilVdewbe+9S3o9Xp8+tOfxvXXXx+xp56unOH09wqFAoODgymdTR4JNpsNRqMRF1xwAcRiMRe+azQa7N+/HwaDATt27MDDDz+cFJITQnD33XejpaUF3/jGN7jHr7/+evz+97/Hd77zHfz+97/Hzp07ucefeuop7N69G0ePHkVeXt5ZH7YDKUjG8Vv7AGDfvn0A5kPcND6GwWDAq6++ioMHD2JmZgZXXXUVdu3aFbanPhgulwtTU1OYnp5GVlYWKioqBOvvkwVqVb158+ZFI5tsNhvuv/9+TExMwOv14tZbb8Wjjz6a8HP4xz/+gYsuuiig3fXf//3fsWPHjpCTTQkhePDBB3Ho0CFkZWXhmWeewbZt2xJ+XkE4+7PuPp8PTU1NOHz4MCorK9HZ2Yk//elPS3YEOZdhNpvx+uuv4+DBgxgbG8OnPvUp7Nq1Cx0dHWFJT4c8UENJqnJLpv99JNAJq6GsqlmWxd69e1FcXIx9+/aBZVlMT08vxaHlbMfZT3QAeOutt/C1r30Nfr8fX/ziF5Ny5z5XYbPZ8NZbb+HAgQM4c+YMLr30UuzatQudnZ0c6els8lA6+lD6+7KyMigUiqQloOj5hCP5Qw89BJlMhieeeCKpIqGzCOcG0dNIDJxOJ95++20cOHAAp0+fxsUXX4z6+noMDg7ixz/+cdQwna+/p/73ZWVlCbGhooh002FZFt/97nfh8/nw1FNPLZnkX/ziF7npKb29vQCw0hRvQpF0op91t1OlUolLL70UGzZswMaNG/GLX/wCwPwXfMUVV2DdunW44oorYDQaAcwnY7761a+isbERmzZtwsmTJ5fz9JcEuVyOXbt24dlnn8WJEydQVVWFxx9/HKdOncJ3vvMdvPvuu/B6vWFfL5FIUFFRgfb2dnR2diI3NxeTk5P48MMPMTg4CJPJhCg3/oiwWCwRSf7DH/4QDocjISQHgD179uDQoUMBjz322GO4/PLLMTw8jMsvvxyPPfYYgPmBi8PDwxgeHsZvfvMb3H///Ut+/7MKhJBI/604zM7OkhMnThBCCLFYLGTdunWkr6+PPPzww2Tfvn2EEEL27dtHvvWtbxFCCHnzzTfJ1VdfTViWJUeOHCHbt29ftnNPJHw+H/nc5z5H1Go18Xg85O233yb33nsv2bBhA9mzZw955ZVXiNFoJHa7Pep/VquVTExMkGPHjpF33nmHnDhxgiiVSmK1WgW93m63k7m5OfLOO+8QrVa76Hc2m41897vfJbfffjvx+XwJ/RzGx8fJxo0buZ+bmprI7OwsIWT+WmlqaiKEEHLvvfeSP/3pTyGftwIQjYdL/u+sK6/RGWEAkJOTg5aWFszMzODVV1/lBt/deeeduOSSS/DjH/8Yr776Ku644w4wDIPzzjsPJpOJq5+ezRCLxXjuuee4n6+88kpceeWV8Pl8+Pvf/44DBw7gn/7pnwT11PNtqKj+fm5uDoODg4L091arFb29vSEHQRJC8Pjjj2N8fBx/+MMfkm6nvdoUb0Jx1hGdj9UsaQwHiUSCSy+9FJdeein8fj8++OADvPzyy/jRj36ElpYW7Nq1C1dccUXYDLxIJEJRURGKioo4/b1arcbw8HBI/b3NZkNvby82bdoUkuS//OUv0dPTg+effz7l46VWg+JNKM5aoq92SaMQiMViXHTRRbjooovAsiyOHz+O/fv348c//jEaGhqwa9cuXHXVVWGFNaH092q1GqOjo1AoFMjLy8PMzAza29sX3TgIIfjP//xPfPjhh9i/f3/KhjKuNsWbUJx1yTggsqQRQPoLDgGRSITt27fjpz/9KU6dOoV//ud/xpkzZ3DNNdfg1ltvxZ/+9CeYTKawr6f6+6amJpx33nkoLy/H+Pg4gPlhCiqViksEEkLw9NNP4/Dhw3jppZdSOjuOKt4ALFK8/eEPfwAhBB9++OE5o3gTjCib+BUHlmXJ7bffTvbu3Rvw+EMPPRSQjHv44YcJIYS88cYbAcm4zs7OVJ/yigbLsqS7u5t873vfI9u2bSNXXXUV+dWvfkWmpqbCJt60Wi155513yNzcHLHb7UStVpOenh7y7rvvkttvv53s2bOHfPKTnyQOhyOp5757925SXl5OJBIJqaysJL/97W+JTqcjl112GWlsbCSXX3450ev13N/55S9/maxdu5a0traSjz76KKnnFiOSnow76+roZ4mk8awEWRj0eODAAbzxxhvIzs7G9ddfj+uuu47rqXc4HOjq6gqrpf/lL3+JF198EXK5HFlZWThw4EBKuufOcqQFM2ksD8jC2GQ6p14qleLiiy/G4cOHsX///pDkPXDgAJ5++mm8+eab3MSVysrKdL4kOtJEX274/X5s27YNlZWVeOONN1I1XXNFgRCCI0eO4JZbbkFDQwN8Ph9npEF76l977TU89dRTePPNN5M2mOIcRloZt9z4xS9+gZaWFu7nb3/72/j617+OkZERFBQU4OmnnwYAPP300ygoKMDIyAi+/vWv49vf/vZynXLCwTAMV6Z77733sH//fmRnZ+OBBx7A5Zdfjvvuuw8/+9nP8NprryWd5IcOHUJzczMaGxs51VsaAhBlE7+qoVQqyWWXXUYOHz5Mrr32WsKyLCkqKiJer5cQQsgHH3xArrzySkIIIVdeeSX54IMPCCGEeL1eUlRURFiWXbZzTxXUajX50pe+REZHR5P+Xj6fj6xdu5aMjo4St9tNNm3aRPr6+pL+vilA0pNx6RU9Ar72ta/hJz/5CZf00+v1yM/P54QfVHwDBApzJBIJ8vLyoNfrl+fEU4jS0lL8+te/XsqUEsHg25JJpVLOliyN6EgTPQxoV9TWrVuX+1TSWEA4lWMa0XHWKuOSjffffx+vvfYa3nrrLbhcLlgsFuzdu/ecma6ZxupCekUPg3379mF6ehoTExN44YUXcNlll+G5557DpZdeigMHDgBYrLyiiqwDBw7gsssuS5eVEoy0ynEJiLKJT4MQ8u6775Jrr72WEELI6Ogo6ezsJA0NDeSmm24iLpeLEEKI0+kkN910E2loaCCdnZ0pSU6tNni9XlJfX0/Gxsa4ZFxvb+9yn1YikFbGpZEGH+eoLVlaMLNaYDKZcM8996C3txcMw+C///u/0dzcfDbaIqURO9KCmdWCvXv34uqrr8aZM2fQ1dWFlpaWtC1SGglDekVfATCbzejo6MDY2FhAAo8/4G8FDAJMI3lIr+irAePj4ygpKcFdd92FzZs345577oHdbo/ZNedswf79+7nBFMePHw/43b59+9DY2Ijm5mZu6AeQlr4uFWmirwD4fD6cPHkS999/P06dOgWFQrHoYj6XXHNaW1tx8OBBXHzxxQGP9/f344UXXkBfXx8OHTqEL3/5y/D7/dxE3r/85S/o7+/H888/j/7+/mU6+7MTaaKvAFRVVaGqqgo7duwAANx00004efLkOeua09LSgubm5kWPv/rqq9i9ezcyMzNRX1+PxsZGHDt2LC19TQDSRF8BKC8vR3V1NQYHBwEAhw8fxoYNG1adLVK4LcnZvlVZCYiWjEsjRWAYpgPAbwFIAYwBuAvzN+KXANQAmARwCyHEwMzH8E8BuBqAA8BdhJDjoY67XGAY5h0A5SF+9Sgh5NWF57wH4CF67gzDPAXgQ0LIsws/Pw3gLwuvu5oQcs/C47cD2EEIeTC5f8W5g7TWfYWAEHIaQCiPq8tDPJcAeCDZ57QUEEI+FcfLZgBU836uWngMER5PQwDSofsqBMMwX2cYpo9hmF6GYZ5nGEbGMEw9wzBHGYYZYRjmRYZhpAvPzVz4eWTh93VJPLXXAOxeeM96AOsAHAPwEYB1C+coBbB74blpCESa6KsMDMNUAvgqgG2EkFYAYswT58cAniSENAIwArh74SV3AzAuPP7kwvOWeg43MAwzDeB8AG8yDPM2ABBC+jC/VekHcAjAA4QQPyHEB+BBAG8DGADw0sJz0xCI9B59lWGB6B8CaAdgAfBnAP8B4DkA5YQQH8Mw5wP4ASHkqgUS/oAQcoRhGAmAOQAlJH3hnFVIr+irDISQGQCPA5gCoAJgBnACgGlh5QSAaQC0XlcJQLnwWt/C89ON9mcZ0kRfZWAYpgDATgD1ANYAUGA+e5/GOYw00VcfPgVgnBCiJYR4ARwE8AkA+QuhORCY1eYy4Qu/zwNw7pvhnWNIE331YQrAeQzDZC3U4y/HfPLrXQA3LTznTgBUevbaws9Y+P3/l96fn31IJ+NWIRiG+SGAWwH4AJwCcA/m9+IvAChceOwLhBA3wzAyAH8EsBmAAcBuQsjYspx4GnEjTfQ00lgFSIfuaaSxCpAmehpprAKkiZ5GGqsAaaKnkcYqQJroaaSxCpAmehpprAKkiZ5GGqsA/z/KQU6lN2LWawAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVjklEQVR4nOy9d3xjZ501ftQlN8m922N73MYz43GZ8XgmhAAhAQKEsixhWXYWFtgNKUD4ActuKBtaArwwlCUJvLyUhSxbgJAACRtSSJtMsS333ru6ZfVy7+8P73Nzda1yJV1Z0uSez4fPbmzPo6urq+c833aOhKZpGiJEiBAhQkQKIU33BYgQIUKEiKsfItmIECFChIiUQyQbESJEiBCRcohkI0KECBEiUg6RbESIECFCRMohko0IESJEiEg5RLIRIUKECBEph0g2IkSIECEi5RDJRoQIESJEpBwi2YgQIUKEiJRDJBsRIkSIEJFyiGQjQoQIESJSDpFsRIgQIUJEyiGSjQgRIkSISDlEshEhQoQIESmHSDYiRIgQISLlEMlGhAgRIkSkHCLZiBAhQoSIlEMkGxEiRIgQkXKIZCNChAgRIlIOkWxEiBAhQkTKIZKNCBEiRIhIOUSyESFChAgRKYdINiJEiBAhIuUQyUaECBEiRKQcItmIECFChIiUQyQbESJEiBCRcohkI0KECBEiUg6RbESIECFCRMohko0IESJEiEg5RLIRIUKECBEph0g2IkSIECEi5RDJRoQIESJEpBwi2YgQIUKEiJRDJBsRIkSIEJFyiGQjQoQIESJSDpFsRBw4aJpGMBgETdPpvhQRIkQcEOTpvgARryxQFIVAIACXywWpVAq5XA65XA6ZTAapVAqJRJLuSxQhQkQKIKHF46WIAwBN06AoCn6/HxRFwev1hvxOKpWK5CNCxFUMkWxEpBw0TSMQCGB8fBxFRUUoLS2Fz+eDVCplfk/IiEAikUAqlUKhUEAmk0Eul0MikYjkI0JElkJMo4lIKUg0EwwG4XA4kJeXBwAhpEFIhEs+wWAQgUCA+T0hHRL5iOQjQkT2QCQbESkBmywoimJSYiSQJv83HFlEIp9AIAC/3x9CPiTyIWk3ESJEZCZEshEhOGiaZqIZAAzRJBqFRCIfu92OkZERnD59WiQfESIyHCLZiBAUFEXB5/OFRDME7MgmGbAjm0AgAJlMFhL5ANjXbCCSjwgR6YVINiIEAUmb+f1+pruMG8kIRTbs9cj/DRf5+P1++Hw+5vci+YgQkT6IZCMiaURKm3EhNNmQ1w73OlzyIY0KJPLhkg/pdhMhQkRqIJKNiKRAoplwabNwoGlasE2d7zok5ca+BkI+4SIfdrebCBEihIFINiISAqmRBAIBAJGjGTYOKrKJBT7kI5VK9zUciOQjQkTiEMlGRNxgKwEA4F37YJNNJm3cfMmHW/PJpPcgQkSmQyQbEbzBlZyJV06GkA1N03C5XFCr1SGbfLwgry1kao6sS66LkCPpsvN6vSL5iBCRAESyEcELfJsAokEikSAYDEKv18NgMEAmk6GwsBA6nQ6FhYXIy8vLuA2bXI9IPiJEJAeRbETEBFtyJhlxTJ/Ph62tLRQWFuLs2bPwer2w2WywWq1YXFyEVCpliKewsBA5OTlRXysdm3k48iH/83q98Pl8AMLP+YjkI+KVDJFsREQETdPw+XxYW1tDeXl5wu3BNE1jcXERRqMRhYWF6Orqgt/vh1KpREFBAerq6kBRFHZ3d2G1WmE0GjE3Nwe5XM4QT2FhITQaTcT107WRs5URyHApm3xI5ENRFGQyGXJyckRFaxGvSIhkIyIs2EORY2NjKCsrS2hz9Hq9GB0dhdPpRHl5OdRqddh1pFIptFottFotDh06hGAwCLvdDqvVis3NTUxPT0OlUoWQTyZu1pHIZ2NjA1arFUeOHAlRtBbtFES8UiCSjYh94M7OJAqz2YyRkREUFhbizJkzmJub492qTOo5hYWFzDWRlNva2homJiaYSMdgMKCoqAhKpTLha00VCPmwZ3kIAXk8HuZvuIrWIvmIuNogko0IBuzZGSI5w1Vp5gOKojA/P4+lpSW0traitraW2WzZnjXxQCaTobi4GMXFxQCAQCAAk8mEiYkJLC8vY2JiArm5uQxB6XQ6KBSKhF4rVWCTDhAa+VAUxZCPaCQn4mqESDYiALxs1xyp24wv2Xg8HgwPD8Pn8+H06dPIz89nfifkUKdcLmeIp6enBxRFMZHP/Pw8XC4X8vPzGfLRarWQy9P3uEd639HIx+v1wuPxiOQj4qqASDavcLBnZ0ihPZyxGZ+IxGAwYHR0FGVlZejp6dm3uadCQYBAqVSirKwMZWVlAPZqRVarFVarFdPT0/B6vSgoKGDIp6CgIKkZn0TAhxy4959tJBcMBkNarUUXUxHZBJFsXsHgzs5E2rBikQRFUZiZmcHq6io6OjpQVVUV9u+EthuItrmqVCpUVFSgoqICAOB2uxny2djYQCAQgFarZcgnPz8/I1WgRRdTEVcLRLJ5hSKe2ZloxOByuTA8PAyKonDmzBnk5uYmtE4y4LOmRqOBRqNBVVUVo2BgtVphs9mwuroKiqKg0+mYOZ/8/HxBN2uh3rfoYioiWyGSzSsMkeyaoyESSWxtbWFsbAxVVVVobW2NmZZKlZ9NIv8uNzcXubm5qKmpAU3TcDqdTOSztLQEiUQSMmCam5ubNPmkItIQyUdEtkAkm1cQEpWckUqlITWbYDCIqakpbG5u4ujRo0yqiu81CA0h0nF5eXnIy8tDbW0tKIqCw+GA1WqF2WzG/Px8SCs2GTCNhzxSVaviIhb5AKKLqYj0QCSbVwii2TXHAjsicTgc0Ov1kMlkOHPmDHJycnivw26lzmRIpVIUFBSgoKAA9fX1oCiKGTDd3t7GzMwMlEplCPmo1ep0X3ZYiC6mIjIFItlc5eBj1xwLhGzW19cxMTGBuro6NDc3J7QhZUIaLV4QzTadToeGhgYEg0Hs7OzAarVifX0dU1NTUKvVIWk3lUqVtuuNBr4uphKJBEqlkiGhTLh2EdkNkWyuYsSanYkHc3Nz2N3dxYkTJ1BaWprQGulsEBASMpkMRUVFKCoqArA3YErIZ3V1FRMTE8jJyQmJfDI1oovk5TM4OIjKykqUl5eLLqYiBIFINlchYs3OxAO73Q6v1wuFQoEzZ84klS7KlAYBoUEGTMmQqd/vD1GzHhsbY6IEk8kEnU6X1gHTaGCTDyEW0cVUhBDIzCdeRMIgxeCxsTHU1tYm7BFD0zRWVlYwMzMDhUKB5ubmpOsSqdqQMi1qUCgUKC0tZSJAn8+H6elpOJ1OzM7OwuPx7FM3OOgB01hgp1xFF1MRQkAkm6sI7NkZo9GIioqKhL70fr8fY2NjsNls6OnpweTkpCDXd7VGNrGgVCqRm5sLuVyO9vZ2eDweps16cnISPp+PGTDV6XTQarVpL9BHsm0QXUxFJAqRbK4ChJud4bYr84XNZoNer0d+fj7Onj0LpVIpGElw1xHKhybTIptYUKvVqKysRGVlJWiaDlE3WF9fzwh1Az6fTTgjOUAkHxHhIZJNliPS7Ey8BEEMzubn53H48GEcOnSI2RCSUWsO9zputxtTU1NQKBQoLi5OqoaRTZtWpEghJycHOTk5qK6uDlE3sFqtWFlZAU3TIZ1uB2GfTVFUQl2LQHjyEV1MRYhkk8WINjsTT2TDNjg7efIkdDpdyO+Fmo+RSqXwer148cUXUVpaCpqmMTc3B7fbnVQNIxsiG77XGE7dgAyYkoYDiUQS0ukWyz470esVSjGBEEokF1OuqKioaH11QiSbLASf2Rm+kQ3X4CycB4wQaTSKorCxsQGn04njx4+jpKSEIUl2DWNiYiIkjVRUVCS4Tlm6kMh7kEgkyM/PR35+Pm/77EhuqPEgFVbbkewUuEZyoovp1QmRbLIMfCVnYkU2JKrgGpyFQ7Jk43a7odfr4fV6kZeXh8rKSmaAENhfw+CmkQAwaaSioqKQk/wrbRPi2mdTFMXM+BD7bCHUDcghJpXgSz6ii+nVAZFssghcu+ZoX7hoZBPN4CzetWKBeNyUl5ejvr4eS0tLUf8+XBqJnORNJhPm5+dDTvJkc8p0pOoapVLpPvtstrrB5OQkNBpNCPnwsc9ORWQTC5HIh+1iKpJP9kIkmywA264Z4KcEEKmobzQaMTIyEtHgLNJa8W6WFEVhdnYWKysrjMfN9vZ2XGuQ1+bqlLFP8jRNQ6/Xo7i4GEVFRdDpdLw203TgIDbEcOoGZMB0eXkZ4+PjvOyz00E2XEQjH9HFNPsgkk2Gg8zOEOLgqwbALerzNTgLh3jJxuPxQK/XIxAIoL+/H3l5eSHrJLMRcE/yzzzzDOrr6+F2u7G0tASHw4G8vDwm5ZZuO+h0Qy6Xo6SkBCUlJQD2Bkz52Gcn0o2WanCffbaRnMvlwszMDI4fPy6ST4bilfstzHCwJ7UTUWpmp77iMTgLh3jIhkRO5eXlaG9vD+kqY68j1JefiGTW1NQA2NtMI9lBFxUVoaCgIC0Dk5mS6uNrn02UrtVqdcapGxCwRUW9Xi/sdjskEonoYpqhEMkmA5Go7wwbZGOP1+AsHPjUbCiKwtzcHJaXl3HkyBFUV1eH/btUb7pKpRLl5eUoLy8HEGoHPTo6CoqioNVqUVRUdGAzKwSZuMFFss/e2dnB3NwcpqenGbIuLCxMG1nHAonESFoNiG4kJ5LPwUMkmwxDPHbN0SCRSLC1tQWXyxW3wVm4taKRBGk48Pv9IWkzLlLlZxNtTa4dNNuRc3FxkYmMCPnEa4p2tUGj0UCtVmNqagonT54ERVHM/VpbW2PImq1ukAn3i0T/bISzUxBdTNMHkWwyBInYNUeCw+GA0WiEVCqN2+AsHKKRjclkwsjICEpKSng1HAhNNvHcI4lkvyMn6XTjmqIR8gnnS5MIMqHgzhfkM5JKpVCr1SHqBmyyXl5eBgDB7bMTQTiy4SIW+QCii2kqIZJNBoCmadjtdqyvr6OhoSEpoiEGZzk5OSguLk6aaIDwnW3sOZ329namZhJrHaFrNuRaEgF3ZoXdNsz1pSGdbuE6t/gi28gm3KAwm6zZbelC2WcnCoqi4k4RRyIfomgNiOQjJESySTPI7IzL5cLy8jKampoSWicQCGBiYgImkwknTpyA2WwWLIrgRjYejwcjIyPwer285nTCrSPktQkFdttwU1NTiC8Nt3OLdLplavE8GbA7H6MhXFs62z57dnYWCoUiJPLRaDQpu2Yh5HW45BPOxVQkn8Qgkk2awJ6doWmaaTdNBHa7HXq9Hmq1mjE4s1gsgolnsmstZrMZw8PDKC4uRnd3d1xtxak64aaq6YDrS0M6tywWyz5rACKrE2njyZRuND5INPqMZp9N1A1UKlVI5CNUmpJPGi1ekHoOAR/yES20I0MkmzQgnF1zIlP6NE1jdXUV09PTaGhoQFNTE/OgS6XSEEmYZEDaSefm5rC4uIi2tjbU1NQk3CGXrWB3brGtASwWC1M8ZzcbcOsX2bIJCZXqTMQ+O9E0ZSrIhoto5CO6mMaGSDYHiGh2zYRs+BaSuQZn5AtNkIzEDBfBYBAGgwEymQx9fX0oKChIaJ1UkE26vsgSyX5rAKLObLFYsLCwwAygFhUVIRAIZM1waSrqagA/+2wykEvUDfjes4MgGy74ko9op7CH7Hj6rwJwZ2e4vf3sPHGshzGcwRkXkeRq4oXZbMb6+jqUSiXOnDmT1IaZqsgmE6KlcOrMpH6xubmJnZ0dyOVy+Hw+JvLJVFkd7kEoVQhnn0063eK1z04H2XDBJh/RSG4/RLI5APCZnSFflGhfGpqmsbS0hLm5uX0GZ+HWS2YTpmkaCwsLWFhYQFFREfMFSRZXS2QTC9z6xcTEBCiKgkKhCNEoI8STjIGc0EhXmzZ3IDecfTZ7wJRtn50JZMMGW9MNiEw+gUAAMpkMubm5Vz35ZMbTfZUintkZ8lBGikZ8Ph9GRkYiGpxxkUwajbyWy+VCX18fTCYTdnd3E1qLjas5sokFknZrbGwEsJdCCneKJ+TD3kgPGpmiixbOPpuk3TY2NkJ8j9xud0ZccyREIp/FxUUEAgE0NzcDuLpdTEWySRHilZxhn9C44GNwxkWiG7vFYsHw8DB0Oh36+/uhUCgEa6Mm10TTNLa3t+H3+1FcXJyQ3wp7zWyEQqEI0Sgjp3iLxRKykRLyOchJ/UwcQGXXyIgaBNv3iDyjgUDgQO2zEwW5LpqmmWYCtospe85HoVBgbGwMtbW1qKysTOdlJwWRbFKAaHbNkUBy5GyyicfgjIt4IxuaprG4uIj5+Xm0tLSgrq6OeS2hIhKyzsjICMxmM9RqNWZmZqBWq5lNNZGOpGyIbIDoxBjJQM5isYRM6pP7lAoraIJMJBsuJJJQ36OZmRkmzXaQ9tnJIhgMMu3S7OiHayR355134iMf+Qj+5m/+Js1XnDhEshEQfOyao4FNEPEanHERT4OAz+fD6OgoHA4HTp06Ba1WG/G6koHb7Qaw9976+vogk8lAURRsNhssFgvTkcRWaY6VTsq0zSMS4iFE7kZKJvUtFss+K2hCPslEh+GuNVvuKwFN01Cr1airq4tqn80dME33+wwGg2GbHrjk43K5ImoOZgtEshEI4WZnEhmKoygqIYOzcGvx2eCsViuGh4eh1WojpuiEiGw2NzcxNjYGAOjt7QWwV7fg+q14vV5YLBZYrVaMj48jEAiEnOjDpUayJbJJFOxJfSKrY7fbYbFYsL6+jqmpqaSjQzaykWxI8wVBNPtsrg5eMvbZySIS2bBBNOlEsnmFI9rsTLyQSCRYXFyEwWCIKtPPB7GiEXZnW3NzM+rr6yNedzJkQ1EUpqensb6+jiNHjmB0dDTqeiqVal86yWKxMJEPe3aFGKhlC4TawNn6Y8DLbpzs6DAvLy+k0y0eWR0SlWcTYnWjxbLPJoQdr312suBDNgBEsnmlg2vXnAzRuFwu+P1+7OzsRJXp54toGzpJm+3u7vLqbAOAOYsfprFtlOarcKKmAHJZ7M3I7XZDr9eDpumQGR2+xMVOJxGVZvbsyvT0NABgbW0NwWAw6RN9KpHK6CucGyeJDtmGaIR8YnnSZEo3WjyIt/VZKPvsZCGSjYiYID7oJJpJ5iRIDM5kMhna2toEeagiRTZkILSgoABnzpzhdXpbtPpxYcOPEr8VEqkENE3h5KGiqP8mnGMn6bBJVIyTO7sSCARw8eJFJiIcGxtj2of51HuuViiVyn2GaIR82LI6kbq2sjWNlsxnnah9thDXzTeNFq/DbqZBJJs4QZoAnE4nnnnmGbz+9a9P+CEPBoOYmprC5uYmjh49ivn5ecGuk0s2NE1jeXkZs7OzMQdCubB5gvAFaRwuy8OCyYktuzfi37I76LipwHhUEvhALpdDoVCgqqoKJSUlEes9JO2W7lbYdL22RqNBdXV1iCcNuU/s1CT53yshsokFPvbZfNUNooEMekeDy+UCTdNxNwllGkSyiQPs2Rl2n3wicDgcGB4eDjE4W1xcFEzPjJ1G8/v9GB0dhd1uR29vb9y1jtI8BdQyYHp7F0q5FNW68DLxPp8Pw8PDcLvdUTvohD45k/cZqd5jtVqxtLS0r96TKrn7aNeYbrA9adhdWxaLhSmcy+Vy0PSepbiQysypRKoVBMLZZ5PIZ3JyEn6/PyH7bD5pNKfTCQBiGu2VAu7sDMnfkj75eEAMzurq6tDc3Mw8lEKKZ5K1dnZ2oNfrkZeXxytt5gtQMDq8yFPJodXsvcfGYg1OV0pR1VSKwhwlOir3kwhJz5GutnD3JBWn5WhNDdx6D9lUSb1HyA6uZK41nWB3bRFbgKWlJWxubjLKzAdRu0gWBy1XQ+zG2eoGbPvsYDAYkqqMNJTLl2zkcnlWkH40iGQTA7FmZ+IhB67BGREgJBCSbIju0qVLl9DU1ISGhoaYm53TG8Bv9JtYMDmRr5Ljzccr0FyWB6lUiupcCV7VXLLv39A0jZWVFczMzPDqagPSo2PF3VTZBWFuvSeZtEgkZEpkEwtEpysnJwfd3d2MMrPFYsH8/Dzcbrcg6SOhkU5ttHAK4Hzss8l18yGbnJycrK8/imQTBdEkZ0hTAPldLNjtdgwPD0OlUjEGZ1wIRTZ+vx/T09OgaTqutNmc0YnJrV3U6DTY2HHjpQULmsvyIna2BQIBjI2NwWq18nqdTDJPCzffQyb2JyYmQuRiMqHec5Bg12zCGciR1CQ7fcSW1UnHpphJQpzsVGU4+2xiP0GGp71eL1QqVcTny+FwZH0KDRDJJiJINBNNcoZMwEdDNIMzLoQgm52dHYbUAMRVn5FKJJAA8AaCoCgaMmlkuZrd3d0Qd1A+IX6yda5oayYLrjFaKuo92UJW0Wpq3LoYu9NtZWUFNE2HNBtwDeRShUwiGy7YQ7nEPnt3dxdGoxEAMDg4CIVCEXLf2M9Xsp1ozz77LL7+9a9jYGAAm5ub+M1vfoO3ve1tYf/2H/7hH/Dggw/iW9/6Fj72sY8xP7dYLLjjjjvw6KOPQiqV4p3vfCe+/e1vx0WCItlwwJ2diaYEEIscYhmcxbterOsmpNbY2Iiqqir8+c9/jqsY31qeh546HWYMDtQUapi0GVf6ZmNjA+Pj4zh06BAOHz4c12ZCiCsVDQJCgW+9h00+seoY2ZJGA/g3cLDTR0RWx+FwwGKxwGw2Y35+npHVCbeJColMJhsuSFSjVCqxurqKV73qVUzkw7bP1ul0ePHFFwEgKV03p9OJzs5OfOADH8A73vGOiH/3m9/8Bi+99BKqqqr2/e69730vNjc38cQTT8Dv9+P9738/PvzhD+Ohhx7ifR0i2bBAlADIxhprSFMmk0VMo9lsNgwPDyMvLy+iwRkX8aTl2GCnswipkZmWSDnhmW0HxjfsyFfLcbqxCHkqOZRyKW7urMSuNwCNQgal/OXGBVK7mpqawtbWVtiaE19kYmQTDemu9xw0Ej0MsA3kyAmeTOmzN1F2U4ZQU/rZRDYEpO2ZTcjAy/bZCwsLePDBBzEzMwOVSoWPfOQjeO1rX4vrrruOSf/ywRvf+Ea88Y1vjPo36+vruOOOO/DHP/4RN910U8jvJicn8fjjj+Py5cuM1NR3v/tdvOlNb8I3vvGNsOQUDiLZIFRyJh6l5nCRSDwGZ3zWiwW73Q69Xg+NRhOSzmJbFnA3vg2bB/81sA6re6/pwery41091f/77yRMFxoBiWzIAOWZM2cSPqEma+oWDgcdNUSr95A6BrfeA1wdabR4wJWICTeln6gNdLhrzkayCXcoYdtnX758Gd/85jfx8MMPQ6lU4p577sG73/1u6PV6HDt2TJDroCgK73vf+/DJT34SHR0d+35/4cIF6HQ6hmgA4Prrr4dUKsXFixfx9re/ndfrvOLJJl7fGTa4kUi8Bmfh1uNLNjRNY21tDVNTU2FrQdHqIyaHF1aXHy3ludiye7FscUV9LavVygxItrW1Jf2lzsYJ9WgIV+8h5EPqPaShpLi4+EDnexJBqjbucFP6XAO5SE6csa43WyMbPhGwVCpFY2Mjzp8/D2BPnSNWSj4e3HfffZDL5bjzzjvD/n5ra4sZbiWQy+UoKirC1tYW79d5RZMNH7vmaGA3CBCDM51Ox9vgjAu+abRAIIDx8XGYzWZ0d3ejuLg47FpA+NbsCq0aZQVKTG05IJVKcKJGu+9vgL0v8ezsLJaXlyGRSHDkyJE439F+CE0yqXL/TBRcewBS75mYmMDu7i5eeuklJpXEt95z0DgoBQGuDTR7VoUYyPGZVSHP+NVKNtwGgUTT1+EwMDCAb3/72xgcHEz5Z/6KJJt47JqjQSqVIhAIYHZ2NiGDs3DrkVpLJJAuMJVKhbNnz0bsAgtnxkZQlq/Ce3prMGNwIkcpQ3ftfrLxer0YHh6G1+vFiRMnMDg4mNB7Cndd7JrY1Q5S78nJyUFJSQnKy8vD1nvY/j3prvekK/Ikg5LEiTPcrEo4M7RXAtmkqvX5ueeeg8FgQF1dXch1feITn8D58+extLSEiooKGAyGkH8XCARgsVgYRQU+eMWRTTJps3BYWlqCRCJJyOCMi2hpNJqmsb6+jsnJSd5dYNFO/bVFOagtygn7O6vVCr1ej8LCQmawT6jogVwzKRwXFRUlZWKVLYRF7l889Z6DtoNmX2u67yt3VoWiKKbTjZihkXZh8r3LNrLhm/pzOBxxNQTEg/e97324/vrrQ35244034n3vex/e//73AwD6+/ths9kwMDCAnp4eAMBTTz0FiqLQ19fH+7VeUWTDZ3aGL4xGIywWC/Lz83Hq1ClBFGAjkQ1beaCrq4v3g5eINTRpbmBbQ5M2cKE2oc3NTaysrCA/Px+zs7NJp5UyKY0WDeHuXax6j0QiYe4LIeZUIxPIhgupVLrPQI7d6QYAly5dCol8Mi09yQXfyCZZl06Hw4G5uTnmvxcXF6HX61FUVIS6urp9aXiFQoGKigq0trYCANrb2/GGN7wBH/rQh/DAAw/A7/fj9ttvxy233MK7Ew14hZAN8fEmzpDJEA1FUZiZmcHq6ip0Oh2Ki4sFIRogPDmQtJlSqYyoPBAJ8VhDk5mgnZ2dfc0N7GaDZDYhMr+0vr6O3t5e5OTkgKbpsLbQ7DbiV4otdKR6D1sk8yDqPZlINlyw/WgqKioYWaZw6clEDOQOAonWbOLFlStX8JrXvIb577vuugsAcO7cOfzkJz/htcYvfvEL3H777Xjd617HDHV+5zvfies6rnqyIXbNs7Oz8Pv96OjoSMrgbHh4GBRFob+/H8vLy4JpmQH7yYYIdtbX1+Pw4cNxpwn4thmT9umcnJywYp3sZoNEUxVOpxNDQ0OgaRodHR3Q6XTw+XyQyWRMmyfwshwKsTwm3itkYwk33JYtkU28CDffs7OzE0LMqaj3ZFsbMU3TkMlk+2R1uJYAWq02blXmVOKgajbXXXddXN+RpaWlfT8rKiqKa4AzHK5asuHaNctkMni93oSJhhicVVVVobW1FTKZLOEhzEggZBMMBjExMQGDwZDU8CSfNNra2homJyejSukkKzNjMBgwMjKCmpoaBIPBqKdxrhyKw+GA1WqFyWTC/Pw8FApFyMk+00/gbCR7rez5CyB0Q2XXewj5JFrvyYbIho1whyBuepKryhzLQO4gkAkNAgeJq5JsuE0AEomEl45ZOHANztjdFzKZDH6/X7Drlkql8Pv9uHDhAhQKBc6ePRtX2oyLaA0CwWAQk5OT2N7ejlkHSpRs2K3TR48eRWVlJQwGQ1y20GQiva6ujsnTWywWZihQJpOBpmloNBrodLq0n1YjIRXRV7R6D2lXJ8QTT70n28zTYhmQhVNlJoeYSAZyyTStxHPdfDQFXS5X1rt0Alch2USanYkmLRMJ4QzO2BA6srHZbHA4HGhoaAjxuUkUkSIbl8uFoaEhyGQyXoTGtgbgC2Kk5vF40N/fHzJFn+jGy/WN9/l80Ov1TAMFmcsgf3NQIpCZgHjqPbGkYq6GyCYauIcYiqJgt9thtVpD7hWbfFLhJcPnukkLeLa7dAJXEdnEmp2Jl2wiGZyxkWi0xAWJMjY3N6FSqZgukGQRjmy2t7cxOjqK6upqtLa28vqSxhvZ7OzsYGhoCFqtFv39/SENFEJuYkqlkjFAq66uZuYyLBYLFhYWmClnssGm23zqIDfwcKZopBGDRIWR6j3ZRjbJ1pikUil0Oh10Ol3IvbJarWEN5AoLCwVpChLTaFkIPrMzfMmGnJKNRmPMeokQkY3T6YRer4dMJkNHRwdmZ2eTWo8NdhTB7qI7duxYXMNYZECUD9msrq5iamoqoi5cKib+yebIncsgKTeyYeTl5THEc9DdSeluYuA2Yvh8vn2+NKTe4/P5siptI7RUDfde+f1+JuUmpIHcQbU+Zwqynmy4ds2RTmR8yIZtcMYnvZRsZLO5uYmxsTHU1taipaUFOzs7Kelu83g8GB4eht/vD0lpxYNYJEGiM4PBEFFCh886iVxXOLBz8E1NTYwOl8ViwdTUVFixzGw6zScLpVK5r4BOyMdms2FnZwe7u7sh/j2Zen9i1WyShUKhQFlZGaMP5vF4GPJhG+3F25jBh2woikq69TlTkLVkE8uumYtoZBOPwRkbifrPsKX6Ozs7mYdYSFtosp7dbsfU1BRKSkrQ09OTcPgfbWbH5XJBr9czitDRSDpVkU0ssHW4IollEuIpKipKScotUzdrri/N8PAwcnJyoFAo9tUwCPkIZQ0gBIRu1TY5fPAFKVQUqCAN85mp1eqQjknyLBEDOeBlC+hI7foAP7JxOp0AINZs0gUyOxOP5EykKCRegzPumvGm0ZxOJ4aHhyGRSNDf3x/SdCAk2bBPq0eOHEFNTU1Sm12kmR2j0YiRkRFUVlbyVoROt59NuGK63W5nZnsmJyeZHD3ZXJNNuaU7jRYvSOcWmdbn1nvSmZLkQsg02gvzFjw8sg1/kEJvnQ639FZBLo38jHGfJa4FdDQDuXjIRoxsDhjc2ZlY5mZsENFMNhIxOOOuGQ85kFmdSMV5ocjG7/djZGQEHo8H9fX1qK2tTXpNbkRC0zQWFhawsLCAI0eOoLq6OqF1MgHsAnFjYyOTo7dYLJiZmWEGAknUk+j8SqZGNlxwW5+j1XvYKclk53uSuV4hyMYXoPCHcQM8/iDyVHK8tGjFqUM6tJTx3+glkv0W0FwDOeLyyjZqjASXywWFQpH25hYhkDVkw7VrjodogJcjG7LRJWpwxgbfBgGKojA1NYWNjQ0cO3aMkVQPtx5N00l1A+3s7ECv1yMvLw/FxcWCPaRskiBk5nA40NfXh4KCgoTWEQpCr8fN0bNTbiRNwu5yy3R/mngR6/mLVu8h94cdFaa63iN0zYamAep/n6lkrzqagVwwGGQOu5EM5BwOx1XTwp8VZMOenSEmVPGCDP95vV6MjY0lbHDGXZPPyUSv1wNA2Fkd7npAZCvnaGDXnZqamtDQ0ICRkRFB1ZrJ7MbQ0BByc3MT8u05qAYBIcEeCGTPr5CTqkajCdlcw9XFMi2ai4Z4Djvceg9JI3Hne1JZ7xGqZqOUS/GWY+X4zfAW/EEKZ5sK0VgS+fuaCIjqd3FxMVZXV9Hb28uoG5AomhjIra2tIRgMJpVCe/bZZ/H1r38dAwMD2NzcxG9+8xu87W1vA7B3aLz77rvxhz/8AQsLC9Bqtbj++utx7733hghsWiwW3HHHHXj00UcZXbRvf/vbcTcaZTTZCOU7A7y8kROL00QNztiIlfYiMy1VVVW86hnRrJyjga0Kze4EE7IGJJVKYTQasbKyElcTBRepIIeD3MjD6ZWRqIe0xRIhUZJSIp9rtpxOk9m82Wkkdr2HawUtZL0n0TTajtuPwVU7ZFIJeuu0yFHKcLqhEO0VefAGKJTmKVP2mZHvpVqtRkFBwT4Due3tbZw7dw52ux0KhQLf+MY3cP3116OzszOu9+p0OtHZ2YkPfOADeMc73hHyO5fLhcHBQXz2s59FZ2cnrFYrPvrRj+Ktb30rrly5wvzde9/7XmxubuKJJ56A3+/H+9//fnz4wx+OWystY8lGSN8ZmqaxuLgIAKirq0NjY6MgD1GkBgGKojA9PY319fV9EjfREM1dMxIcDgf0ej0UCsW+TjChogjSXr6yshLSPZcIsjGyiQa5XB4iAEk2CzLfA4CZXfF6vem8VN4QcqgzXL2H3YLu8/mSroclQjZufxDff3YZU9sOSCTA2IYO//CqekglEmg1qbcmIPsGl2jZBnLz8/P41re+hf/7f/8vnnvuOXzxi1+EQqHA448/jpMnT/J6nTe+8Y144xvfGPZ3Wq0WTzzxRMjPvve97+HUqVNYWVlBXV0dJicn8fjjj+Py5cvo7e0FAHz3u9/Fm970JnzjG9/IfosBvrMzfODxeDAyMsKIcFZUVAj2RSKRA/vLyVWGjicEjlcWZmtrC6OjoxFVDoSIbDweD/R6PUwuCru5VTAve9FNO9BSntiQWTbUbJIB122SpJQsFgtmZ2exsrKS0ZbQQGoVBLgt6JHqPWz/nljXQlFU3C396zYPFs0u1OjU8PopTG45YHX5UZx7MC3d7EN0JEilUpSXl6OxsRGPPPIIAoEArly5gvb29pRd187ODiQSCVNeIJkgQjQAcP3110MqleLixYt4+9vfznvtjCIbkjabn58HRVFoaGhI2uBsZGQEpaWl6O7uxp///GdBtcy4NRaDwYDR0VFUVFSgra0t7vQAaXqIRRDsyOn48eMRGw7i8bMJB7PZjOHhYRQWl2DO6YFUEoRfHsDzcyaU5itRmBP/FzMTu9FSBXZKyWAwoL6+HjKZjLEIIJIxhHwyQfYeODghzmj1HoPBwBjrxar3JBLZ6DQK5KvkWN/xgKKAuiIN8lQHtx2SPSPWfWYPdMrlcpw+fTpl1+TxePDpT38a73nPe5imn62trX2ZDCIDtbW1Fdf6GUM27LSZ1+uF3+9PyuCMnCLZbbmpsAQAwPjlrK6uMurGiSJW0wGJNILBYMyGg0TfL9uxs62tDUVllXh4/AUUK2UozlXC5PTCF0iMxAjZ2Gw2xoAumSHKdKfR4oFMJttnCU2intHRUVAUFbKxRhoGTDXSpY2WaL0nEbIpyVPi3Oka/M+kEQrZXmOASn5wRM+3g+6g1AP8fj/+8i//EjRN4/7770/Ja2QE2XDtmhUKBTweT0JrcdNY7I4JoYQzCcjDMjAwAJqmcebMmaQfjGipL5PJhOHhYZSXl6O9vT1m5EQsC+JBIBDA6OjoPsfO2nwZTL4gtuwetJbloSjBdANN08z8Snl5OTNESTaRREzAsiFSCneN4bx7LBYLjEYj5ubm9nn3HNTUfqYIcUar97AN0Xw+H1QqVcTrpmkaz8xaMLhiQ1mBCjcfr0CBWo7j1QU4Xs2/bV9IZJIIJyGa5eVlPPXUUyGjDBUVFTAYDCF/HwgEYLFY4tJXBNJMNtzZGVKfSWQyHwhvcMZGoutGgtlsBrDXGnvs2DFBpqjDkQ1N05ifn8fi4iLa29tRU1OT8FrR4HA4MDQ0BAelRH1zJ+Salx/yjlI5lDotSkrLUKlVQyGL/xQYDAaxu7sLn8+Hnp4eZn6APLwWi4URhWT7sEQ74WfCpsgX0a6VLXtfX18f9lTPTrnFsstOBpnq1Bmu3mO1WrGwsID19XVsbm6GrfcMr+/i55fW4A9S8K/Q8AUo/N2ZurS+l4OyhI4FQjSzs7N4+umn92ka9vf3w2azYWBgAD09PQCAp556ChRFoa+vL67XShvZkNkZshmyhzRlMtm+af9oiGZwxoZQZMNO00kkEjQ1NQkm18ElCJ/Ph5GREbhcrpQOUJJmA29uOeZ9ORgeM6Ku0IG3Hq9EnloOmVSK8jw5aooTmztwu92M90xdXR3ToQXsDVGyNxGn0wmLxcLIfZATfnFxcdiiejZENvEinF02OdWPj48jEAiEbKxCDv5lSmQTDex6z/b2NiorK5Gbm8tEhrOzs1AqlSgqKsK0TQ6nN4Dmslys73ixYnGn+/LjIptINVk+cDgcmJubY/57cXERer0eRUVFqKysxF/8xV9gcHAQv/vd7xAMBpk6TFFREZRKJdrb2/GGN7wBH/rQh/DAAw/A7/fj9ttvxy233BJXJxqQJrJh12fCdZvJ5XLepBDL4IwNIciGq6B86dKllCg1A3tyOnq9nvGFibdziU9kQ4hzdXUVx48fx5+WfIDEh8aSXCyYnFizudFWkR9RG40PLBYL9Ho9ysrKkJOTE7VziG0VwHbnNJvN+4rqkZSlMxHJEiLXlZMQcjjvHrJRJHOtmU42bJBiO7feQywmVG4T4PFgeMkFlUKOpkO5vDf7VOGg0mhXrlzBa17zGua/77rrLgDAuXPn8IUvfAGPPPIIAODEiRMh/+7pp5/GddddBwD4xS9+gdtvvx2ve93rmKHO73znO3FfS1rIhqgARHqo+ZICH4OzRNaNBNLdVlZWhiNHjkAmk6VEqTkYDGJ5eRkzMzNJyenEimy8Xi+Gh4fh8/mYNu387U0sW1ww7HqhlEmhVsh4rRUONE1jeXkZs7OzaGtrQ21tLUZHR+Nah+vOSYrqZrMZ6+vrCAQCUKvVjIlaJkvHCLWBcwmZoqh9Zl/J1MCyzRY6XIMA+7k5fPgwmlttGFgwQBZwoQ7bePbZVWa+p7CwMGT49qCuma+XTTJptOuuuy7q943Pd7GoqCjuAc5wSFsaLZq2Waw0WjwGZ2wk2p1FURTm5uawvLy8T3RS6DqQRCLB0tIS3G43ent7GU2lRBCNCG02G4aGhlBYWIju7m4m2rimqRhBisaOy48j9TrUFWqY64qHJILBIMbHx2E2m0PeR7Ktz9yi+vj4OLxeLyONotFomE2GqzN1tYJtj8D17mEbo/H17snGyCYWUXRU69BRrQOAkHoPW++ObSl+EHpufMjG4XBcFcZpQIZ0o3ERbQPf3d2FXq/nbXDGd91IIGkzcvrnfvBCRjYOhwO7u7vQaDQ4c+ZM0iKakZoNVldXMTY5DWduFcxBHagNB07UaCGVSlCUq8TbT1Tt23DimdkhenBSqRT9/f0pUTUgaxFr6MOHD4dIx8zOzsLj8UCr1aK4uDjtBmkHWVcK591DUm58vHuuRrJhg13vqa6uDpnv4XYCkpqY0J2AfFufXS7XVeFlA6Q5somEcDWbRA3O2Ii39dlkMmFkZCSq8ZhQszsbGxsYHx+HSqVCfX29IGrN3I2dHW2g7DDG1z1QOZyYNTqQo5ShrSI/5N9GWysSSHt2JH8bso6Qmxm5Lq50TLRNtri4+MANwNI1u0L8Vth22VarNcS7hx0NXu1kw0W4+Z5wluKEeITQc4unZhOtDp1NyNjIhqIo5iFKxuCMuy4fYqBpGnNzc1haWkJ7ezuqq6ujpvySiWyI/cDm5iY6OzuxtrYmqHgmWcvlcmFoaAhyuRz9/f14bNICpcyHQ8U5mNnexY47+jxOrAYB9iBorPZsso4QG1q0NdjT6cQgzWw2Y21tbd9sj06nS2nOPlM65tiS91zvHjK7AuwdfkpLSw/cmyYRCGmeBuyvE5K0pNVqDZnvYfv3xPv6wWAwZsMPaQQRI5sUgjB+MBiE3W7H8PAwcnNzEzI4465L2m0jgRTNvV4vTp8+HfODTqZmQ9qBaZpmXDs3NjYE25gIQRgMBoyMjISYtjWW5mJ624HpbQcKc5So0kZPR0aLbAKBAHMYOHXqFLRabULrJAo+67EN0th1DbPZzPjI853tuZrA9u4hm9ulS5ewu7uLtbU1hpzIfYknbX1QEJpsuGCnJQEwem5ssVVS7+Gr/BAMBnndy4MY6jwoZDTZLC0tYWlpKamOLO660YiBaIEVFxeHFM2jIdGaDelsq6ioQHt7O/NlEbq7ze12Y3h4GB0dHSF98cerC6BRyLDj9qNCq0ZtYfQurkg1GyJTrlAo0N/fHzP9l6xeW7j1EiEvbl0j3GwPqfUIJZiZ6eQlkUiYDbCjowMymSysd08mNWAQ996D7CTTaDSorq4OqfdYrda46j0H1Y2WScjImg3pRFtbW0va4IyNSGTDntBva2tDTU0N740h3poNTdOYnZ3F8vLyPgIg6wmxGft8PszNzSEQCODMmTP7IjSJRBKXcnO4NBohTKLYwOcLn4kbbrjZHpvNFlYws7i4OKG0Saak0WKBneKM5t1DGjDY3j0FBQUH/vmS602X4gHXBjpcvYddE9NqtUxNOhbZBINBuN1uMbJJFSwWC4aHhyGRSHD8+HHBiAYITzZerxcjIyNwu91xT+iTNfmSA3ktj8cTMUUnBNkQa2iVSgWlUilIzpcdQdA0jYWFBSwsLIQlTL7rCIFUpOW40/sej4dJm6ytrQF42fa4uLiYd2opE4mWi2j1tHDePdx0EjvldhAzT+S7kinyOuHqPeTgwq73uN1ueDyeqFGZw+EAALFmIzTY0UVrayvm5+cF/3JyyYYQW2FhIbq6uhJKCfAlB6vVCr1eH/O1ku1uI8XvpqYmFBYWMpbUyYJs6kSo0263J0TO2WgxoFarUVVVFeJRYzabsbW1tW+2p7CwMK2T6ckinuaNcOkkth00GbQlKbdUePdkGtlwoVQqmZoY8DJBz8/PY3V1FaurqxGVvl0uFwAkHNlEs4QG9j7rz3/+8/jhD38Im82Gs2fP4v7770dzczPzN0JZQgMZkkZjG5yRDWxlZUXQYUng5Y2cfTJvbW1FbW1tUnbT0a6TPUXf0tKCurq6qK8llUrj0oUjoCgKExMT2N7eRldXF0pKSmC32wWrj0gkEni9Xly4cAFqtRr9/f0JNWtku3kaO23CTS0RD3n2cCCZ7ckWgk20U5DbPhwIBJgTPbHLToV3D1tbMRtACHplZQUtLS1QKpX75nsKCwsxPT2N4uJiqFSqhOti0SyhAeBrX/savvOd7+CnP/0pGhoa8NnPfhY33ngjJiYmmGhdKEtoIAMiG67BGbmx8Ypx8gEhhoGBATidzpidU3wQTcY/klx/rPXiJQjS1QYAZ86cYdIXQm5ybrcb29vbOHToEFpaWhL+cl/tttDc2R6SVgkGg4I/z6kAmbFJ9r7K5fIQ7x52KnJ9fT3EuyeZiX0h3HzTgWAwCLlcvk/pm9R7vvnNb2JkZAQSiQSf+MQn8PrXvx7XXnttXBFFNEtomqZx/vx53H333bj55psBAD/72c9QXl6Ohx9+GLfccougltBAmlWfp6en9xmcEcQjxskXTqcTbrcbBQUFOHPmjCBhfaS01+7uLoaGhhg1AL5RQLxkQ4YouV1tiawVDmTmaHt7GzqdDq2trUmtR9YUEpkUNXBne8jmQVEUhoeHmdme4uLilNoEJIpU6aJxU5Fs7x62I2ckZe9o15tp95APwnWjses9zz33HB599FHceeedcLlcuPPOO7G8vIxHH30Ub3jDG5J+/cXFRWxtbeH6669nfqbVatHX14cLFy7glltuEdQSGkgj2QQCAezu7oaVgAGE1RyjaRqLi4uYm5uDVCrFiRMnBPtChWsQIAKhiSgd8FVXZqcCIw1RJttm7Pf7MTIyAqfTidraWkFO5txGg2Q/h0w+0bIHKDc2NnDkyBH4/X7GJiAYDDIpt+Li4pTrcfHBQagHRPLuId1/Y2NjvL17spVs+HSjKZVKlJaW4sEHHwSwRxBCKZ0TKwGufUF5eTnzOyEtoYE0ko1KpQphTC6ESqP5fD6Mjo7C4XCgs7MTer1e0C8TO7IJBoOYnJzE9vZ2XAKhkdaLBL/fj9HRUezu7kZNBZIvYSIbiMPhwODgIHJyctDf34/V1VXY7fa41ggHQjarq6uYmppCbm4uM8+SaB4/kyKbaFAqlSguLt5nE2AymTA/P8/4rwg52xMv0iFVE867h6TcuKTMHbjNRrKhKAo0TcckG65xWkNDQ6ovLaVIa80mWv5eiMjGarVieHiYSZuRD1nIB5RENkR8UiKRhNRN4kWs1BdJzxESiJaeI++R7wAZATFSO3ToEA4fPhxiCSEE7HY7LBYLjh49ypz0ifUASaVk6rR6ouDeOz6zPemYYckEXTSusne4gVtS75FKpVlHNmRfi3XdqVR8JgaTxHiOgByUyd8IZQkNZECDQCQkU7Nh63Q1Nzejvr6esR8G+Cuu8oFUKoXH48GLL74YIgeTzHqRyIaIdbJJINZaAP+TPxk4XVlZwfHjx0NCbCEK+16vFysrK/D7/Thz5gzkcjlommY2FdJSTKbVc3JymBRTJO2ydG+MQiHabA+ZYWErNaeKiDOBbNiIZKZHrAEcDgekUinm5uYS8u5JB8i+Fus6U6ke0NDQgIqKCjz55JMMudjtdly8eBG33norAGEtoYEMJhuZTMaIAsYDkmKy2+37OsDIZsVHBI8PKIrC1tYWXC4XOjs7Q04IiSIc2ZBmivX1dXR2du7Lo0YCO9UQC8R+2u124/Tp0/tOVMmSzc7ODoaGhqBUKpGbmwuNRhPSxcdtKSYCkWazmfFkYUc9bCXcbEmjxbOJcwvqJBrkysYQIhZqg6VpOqMjBe7Q5MbGBpaXl+H3+5nnhJ1yi9cuW0iR2EiI5FDMBTeNFi+iWULX1dXhYx/7GL70pS+hubmZaX2uqqpiZnGEtIQGMjyNFm/Nhtgo5+fnh+0AIx+wELMnxOfG7XZDo9EIQjTAfrLxeDzQ6/UIBoMxba/DrQXEJpvd3V0MDg4iPz8f/f39Yfv6k7lvJCJramqCXC7fF5qHQziBSG73UnFxMYLBoKBaa6lCMoQokUhCZGP8fj9sNhvMZjMzlR5uticRZJtLp1QqhUqlQnt7+z7vnsXFRchkspAW62jafeObu/ifCSNoANe3leB4dXwDy3zBN62dbBotmiX0T37yE3zqU5+C0+nEhz/8YdhsNlxzzTV4/PHHQ6JmoSyhgQyObOJJo7EHJ2OJdgpRC7JYLNDr9SguLkZTUxPGxsaSWo8NNtkQhYPi4mJGGDEe8IlsNjc3MTY2FrNzLlFb6OnpaaytrTENE2tra3GvEy6VQgYpzWYz/H4/hoaGmJN+vKfZbINCoWBme4jrJLkX7Nke8r94hm8zLY0WC+z6ayTvHiIzFM67h3ynHN4Afju8DbPLBymA345so75IA61G+CaNeLxsUmkJLZFIcM899+Cee+6J+DdCWUIDGUw2fCMb4nWzs7PDy0Y5GbIhLdTz8/OM8oCQU/rAy91oS0tLmJ2dTVrhIFJhn6IozMzMYG1tjVdqLt4GAZ/Ph+HhYXg8HvT394d8aZJNe8lkMmZgUK1Ww2KxoKSkJGSQkqTbioqK0tLVFQ6p2MTZrpPc2R4iBMm3jRjIbrLhgt163tTUFNa7R6fTobCwELS6AC5fAMU5CkilEtjdAbh8wbSSjcvlSihdlalIexotEviQAhGczMvL4z04mSjZsGtB7HZjT4CGzR0U7EtK0zT8fj8WFxcFUbwOVwPy+XzQ6/WM1TWf01M8kQ3pmMvNzd2XlkuFdItcLkdNTQ2z2ZKurqWlJWazJcX3dJmBHVRdibvB+ny+sG3EhIy5sz1XE9lwwU3NsoVEzUvLULskWDQroVAqcaqhCKX5ybvlhgPfBqVkI5tMQ0ZHNpFIgaZprKysYGZmBk1NTWhoaOD9BUmEbCKR2rOzJvyfJ2ZhtQOz8ll84vrDkMsSL646HA6MjY2BpmmcOXMmJdbQpFCv1Wp5e/aQdfhEcNvb2xgZGYnYMZdq1We29fPhw4fh9XphNpv3dXWRzVaIexzPtR40lEolKioqQmZ7zGZzSO2L3I/CwsKrmmzYoAHYAzLkFpUzh5SjVhuGFg3Y2dmB1r2IK5e2UuLdE08a7WqxFwAymGwi1Wz8fj/Gx8dhtVoTsoiOR1WZpmmsra1hamoKjY2NaGxsZNVBaHz36QVYXXsdVX8cN+Da5hL0NyZmWb29vY3R0VGUl5djY2NDsE2QHdkQZYN4CRrY2yg3HEFcWLBAp5GjuSwvhFjZVtrHjh2L2Id/0KKUKpWK6eqiKIppr15fX2esoQnxZKJ8jJBg177Yk/tkfoU0u5D24nT408SLRBoaAhSN/x7cxODqDpRyKd56rBynDulQWlyEG4r3vr+kCYPt3UOsoJONkPmSTSrnbNKBjE6jcWs2drsder0eOTk5CVtE841sgsEgxsfHYTKZ0N3dvU8mIkjT8AWovQ2X2vtvbyD+2g1FUcxsy7Fjx1BQUID19XXBTphkvmhychIbGxuMInS82HL4MW4KYjd/FxQFUDTQUbXXrRMIBDAyMoLd3d2YVtrc9yTE++RLXmwzsMbGxrApJnZ7tZB+LJnYnh1utmdhYYFxrAUOZrYnGcQ7sAwAS2YXLi5Zka+Ww+EN4rFxA7pqC6BgHZ7YTRiAsN498bh0imRzAGBHNkTeZHp6el+EES/4mJ05nU4MDQ1BoVDgzJkzYb9kCpkUt5yswY9fXMZuAOipzcfJel1c10JqJ16vl9GI83g8AITLnUskEkxPTwPYG9KKp3WaDaePgjdIo74oB6tWN6wu397P//deqVQqXrYDmaT6zE0xORwOmM1mxo9F6FmWTI8S1Go1dDodvF4vTpw4sW+2hwzZcju50olk1UBoAODxsXC9e8i9IZ5GbO+ewsLCqCm3g+pGyzRkLNnIZDLQNA2fz4eJiYmE02bh1o0W2WxtbWFsbAw1NTVoaWn53zQUDaPDhwK1HBrlyw/Je07WoKdOiz/9+QW85w2HkavifzvJTJBOpwupnbBnY5JN6dhsNng8Huh0OvT09CSVcy7KUUAjAxZMTiikEpQXqBnF6XhtoTNR9ZktDkn8WNidSz6fL0Q0k63PdTWBbTHAne3h3g+tVstEgelqN6coKu7nuqE4B/2NhRhY3kGuUoY3HikLiWpigXtvwnn3FBQUhKTc2N8NPmRD6mtXi0snkOFpNAC4cOECcnJyBCuYRyIb9pT+0aNHmZqD2xfE5383hYEVG/JVMtz9pjb0siKYlvJ8LOmkUMr4fdHYUVq4mSC+g5ixQOYKlEolDh06FPcX0u0LQiaVQCnfu57yAjU6ioDWhiLkKGWg7NsYmp8Paw8RDZkU2UQD26eGPSxoNpuxsLAAhULBpKBinWSBzEyjhUOkiDpcJxdpvFhYWGDUgBOZ7UkGfGo2VpcfyxY3inIUqCvSQCaV4C+6KvHqw8VQyaXQ5STX3hyvd08gEOD1fUylXE06kJGRDU3T2NjYAACUlZWhra1NUEsALtmwp/S5rcB/mjLihXkzcpUyGHa9+N4z8/jJuZ6Ya4ZDMBjExMQEjEZjxCgtWbKhKAqTk5PY2tpCd3c3ZmZm4troaJrG4MoOprZ2oVJIcbqhCDWFe+2xhSqgrTwXY2NjsFgsCZvPZcvGS8AdFmSLZrJPsoR8Ik3wZ0MkxCd9y57tYQ9Pms1mrKysxD3bkwxi1T8Mu1488PwyVi0eaDVy3NJbhd46HaQSCcoLUtOJGM5G3GKxwGAwYHZ2FlKpFDk5OTAYDFHVvcVutBQjEAhgYmICJpMJUqk0qYHGcOASg8lkYpxCjxw5su/B9QUpgAaUcimkPgm8/v0kwMekzOVyYWhoCDKZLGIdiKyVqDQMIU2Kohjl6XgN1Ay7XujXdqBRSmFx+nBpyYoqrZq5posXL0IqlSYcaaa69fkgwC6sNzc3hxSPl5eXIZVKQ4ZKD+qULwQS0UZjz/YAiNh4wbYIEAqx0s2jG7tYsbjRVJKLZYsbFxZs6K3TCfb6scC1yw4Gg4yrLvHuISk3NjH7/X54vV7ByCYYDOILX/gCfv7zn2NrawtVVVX427/9W9x9993M/krTND7/+c/jhz/8IWw2G86ePYv7778fzc3NglxDRpHN7u4u9Ho9VCoVzp49ixdeeEFwt06ZTAafz8fLfAwAXtNSgt/qN7FodkGjlOF9p2v3/U2sdmpifV1ZWYm2traYX+ZEHDatVisjocOWtol3Mw5SQJCioJbL4ZVJEaBo0Nj7bPx+P8rLy3HkyJGET6rpIIdUg108jjTBD+zdQ6VSmdHt1UJoo4VrvAina8enmJ7s9eYoZZBJpTA7ffAHKeSr09vUIJPJIJPJUFpaiurq6hDvnrGxMVAUhUceeYTJrghFNvfddx/uv/9+/PSnP0VHRweuXLmC97///dBqtbjzzjsBAF/72tfwne98Bz/96U8ZYc4bb7wRExMTgnQiZkzNhtQY2MOAQhmosSGTyeD3+zEwMACXy4W+vj4UFOy18PoCFNz+UImKolwlvv+eTkxu7aIkT4mGkv051EgdbjRNY35+HouLi+jo6OAtPREP2bBrQC0tLairq9tXA4qHuMrylWgtz8ec0QmlXIoTNVqsr+0ZnUkkEnR0dCS1GRGyETJazSTyCjfBT5SrJycnASCjPXuE/mzCuXKSRgN2CpI0XsQ7vxIrsump1WLJ7MLI+i6OVxfgjUf4KaanEuwGAa53j8PhwMWLF/HII48AAI4fP44bbrgBr3/963HDDTck3CD14osv4uabb8ZNN90EADh06BD+/d//HZcuXQKw97mfP38ed999N26++WYAwM9+9jOUl5fj4Ycfxi233JLs205/ZMNOm3FnQJLxtIkEr9cLk8mEkpIS9Pf3M/nS5+bM+Mpj03D7KdzQXopP39gCmXTvoc9Ty3HyUGTNtXCRDdtSOdbsSbj1+BAEnxpQtJRcIEhh3eYBDaBap4ZCJoVcJsU1h4txpDIfMimwsTiLNYMBR48exdjYmGA2zhRFMSmnkpKShGdaMr0OolQqUV5ejsnJSZw6dYohn3g8ew4SqVYQYOvaAeHnV+KZ7YlVs1HKpXhPbzXe1U1DJsmM5yXSNRNi/tSnPoWbb74Zr3rVq/CjH/0If/rTn3DfffeBpmm85z3vSeg1z5w5gx/84AeYmZlBS0sLhoeH8fzzz+Ob3/wmgL2U3tbWFq6//nrm32i1WvT19eHChQvZTzYejwcvvfRSxHkWIRSaCUgEsLy8DI1Gg66urhA1gK/9cQYWpx9qhRS/G93Cq5pL8KrD/Py+uZGN3W7H0NAQ8vLyQgiNL/iQjdvtZnK/sWpA4YU4aTw3Z8bIuh0S7A1ovqalBFKpBDKpBAVKYGhoCBRFob+/HzRNC9ZiTFEULl++DL/fD7lcjrm5uaRmWjIpsokGqVSasGfPQeGg5Wq4KUii8LCxscFrtofviIBcmn6SIeCjjUbUA0hEAyT3nP/jP/4j7HY72tramH31y1/+Mt773vcC2Bv5ABBimEj+m/wuWaSVbNRqNerr61FdXR325guVRgsEAhgfH4fFYkFjYyPMZnPIF4qiabj9FOQyCdQKKTx+Ci4f/9cNJwmTzPBpLLIhFgdlZWUx6yeR1rJ7ApgzOlGcq4RUIsGcwYGuWi2KcpXY2dnB4OAgioqKcPToUchkMrjdboZwktmMXC4XfD4fioqK0NnZCWBvwyCb7tTUVFybbiacVBMFX88eQsBCaXNFQzq10bgKD+zZHvJccGd7ss1/B+A3ZxNuoDOZ9/mf//mf+MUvfoGHHnoIHR0d0Ov1+NjHPoaqqiqcO3cu4XXjQdprNnV1dREZW4g0msPhYCbcz5w5g52dnX3mXXKZFO85WYOfXFjBjjuA1vI8nGnkF9UAL9eBxsfHsbW1lbAkDEEkgmD79rS1taG2dn+zAheRCvIquRQahQwWp29vSE0jh0ouZciSOwPE7lhJ9KHf3t7G2NgYpFIpOjs7EQgEEAwG9820cDddtVodsulyv6iZHtnwub5onj1Em4s9VJqqIcpMcurkkjHbGI3M9pA29Pz8/Kzp+ouHbIT6jD/5yU/iH//xH5l02LFjx7C8vIyvfvWrOHfuHDNXuL29HWIEub29zdhGJ4u012yiIdk0GjEGq6+vx+HDhyGVSiOu+YEzdTh5SIcddwDdtdq41AAICSiVyqQkYQjCkQ3RajObzbx8e6KtBQAapQzXNhfj0pIVFA301GmxujgXYnTGXQdIbGNnN0q0tLRgbm6OmVLngrvpkkn+SFFPNiGejYNb22BvtKn07MkksmEjnDGazWbDyMgIDAYDlpeXD2y2J1kkGtkkA5fLte9+sNP/DQ0NqKiowJNPPsmQi91ux8WLF3HrrbcKcg0ZTzaJpNEoisLU1BQ2Njb2GYNFIhuJRILj1fEPKJrNZpjNZuTl5aGvr08QvSguQbhcLuj1ekilUvT398fVwRQtJVdXlIO6ohzG6IxotIV7yNmRTTwIBoMYHR2FzWbD6dOnAQCzs7O8/324SX62RD7ZZM1mc8bodaUCXIO0VHn2ZIvFALGSkEqlOHr0KJRK5b4W4lTN9iQDiqJA03TM51Roxee3vOUt+PKXv4y6ujp0dHRgaGgI3/zmN/GBD3wAwN73+2Mf+xi+9KUvobm5mWl9rqqqwtve9jZBriHtZBNt7iKRyIYUzoknDPchE6rpgO3aSaTHhdro2ARB9Mf4zuhwEWtAdHd3F4ODg8jPz8fp06cj1gX4WExz4Xa7QwZZlUolHA4H83knYg9NTrck6llaWsLm5mZI1MPWL8sECJ3mS6VnT7bVQEiDQLgWYrPZzEztCznbk+z1Aoi5V7hcLkGf3+9+97v47Gc/i4985CMwGAyoqqrC3//93+Nzn/sc8zef+tSn4HQ68eEPfxg2mw3XXHMNHn/8ccHa89NONtEgl8vhdrt5/z0ZnqyoqGC6LriIx88mEgKBAEZHR7Gzs4NTp05hY2ND0BZtco2Li4uYm5uLOnTKd61w2NrawujoaESjM+46AP+N02q1YmhoaF8Tg5BDnXK5HAUFBbDZbOjp6WGiHpPJhLm5uZi1noNGqjZxIT17siWyAfauNVw3WjhR1UjyQkVFRQfq3kq+i7EOjUJL1eTn5+P8+fM4f/58xL+RSCS45557cM899wj2umxkNNnwTaOxjbtiCUMSNelEVZUdDgcGBweh0WiY0/r29jb8fn/ca0WCRCLB2toa/H5/wvpjBET6gg32/Tp+/Pi+dsdI10T+bSyQAd1wQ6apKmqHi3rCqTYT8smUqEdoJOvZk21kA8SOErhCmezZnpWVlT3dP1ZEnEr31mAwCIlEcuBkkwnIeLKJFTGQeoPb7eY1PEkezETIht1w0NzczHwphYiWCEghWKFQoL+/P+kHnxtJxGN0xl0HiE42RDl7Y2MjrOFcuOtJFpE2xki1nnREPenslovXsydTGwTCgaSk4iXHaLM9U1NTyM3NTZlvzyvVpRPIALKJ9qDEan0memA6nQ5nzpzhlYclHzRpueUDtv0At+GArJmsJQDwchpQpVKhoqJCkBMWu/7jdDoxODgItVrNy+iMi2hE4ff7Q0g/UidNoo0GySBc1EPskA8y6kl3xMDHs4c8y9ng2UOe62TIMdJsD7v7kbScC+Hbw5dsXC5X2MNaNiPtZBMNkSIb9rxJc3Mz6uvreT8ARFWZbyTi9Xqh1+vh9/sjdmolIpzJBlsUtKOjA1arVRDyAl5uEDAajRgeHg4xhYsXkd4nIbGcnBz09/dHJXGhySaRSImdVokW9ZBicrprPalCuOhvbGwMLpcLly9fjtuz56AhBNlwEWu2R6FQhMjpxNtyHo9LpxjZHCDC1WxIcd5ms8U1b8Jdlw/ZkMipqKgoqtNlMh1u5P3Y7XZGFHRnZ0dQsnE4HNDr9XGJgUZai7uxExKrra1FS0sLLy8UIHNqA9GinpmZmX1Rj0ajifu6M33oFHj5PqhUKpSWlqKioiIhz56DBOmcS9V1hPMxIorey8vLGB8fZ1rOi4qKUFBQEJP4Ymm5EVxtLp1ABpBNPGm03d1dDA0NQaPR4OzZswlPDMciB5qmsbKywojWcYvcXCQa2RB1A25aS6gaUDAYxObmJtxuN/r6+pJqNABCyYYdXSZCYkJuwEKuFSvqYUvIxBv1pHtz5gNyCMgGzx4hrNPjgUwmY94vgBB7gNHR0ZDZHnIw4YKPLhpw9bl0AhlANtHAJgUio8KnTTeedblg66jxjZwSIQeDwYCRkZGwEUG4DrJ4QWZcAoEAk5NOFoRsKIrC+Pg4TCYTTp48CZ1OF9cagHCRTSo3cG7UQyRkwkU9ZHAwGwglGiJ9Lnw8e+I54QuBgyYbLmLN9qjVaoacSBpSbBDIUJA02tjYGKPRw5VRSQTRag9DQ0OMCjXfAn08DQLstuOjR4+G6BDFuj6+IEKd5eXl0Gq1WF9fT3gtNiQSCbxeLyYnJxk16HgHvthkI9RGcVBpKraEDDufbzabMT8/D6VSGTbqyYY0GgGfQ0Akzx5ywqdp+kA8e9JNNmxEm+2Zm5uDx+NhZpyIikC0+yy0XE0mIO1kE+2Gk9O93W5nbI6FQLjIZnt7G6OjowkV0PmSA1+Pm0TTaGwjtdbWVtTV1WFra0uw+g8AjI2Nobi4mFGDjhdCn/zTFUmEy+dHinrICTUbop5EDgFKpTLkhE9aiVPt2SMk2QQpGlt2L2RSCSoKku8CjTTbs7q6Crfbjeeffz6k0YB9sCVitGLN5oBA0kwA0N3dLejpiE02NE1jdnYWy8vLESONeNaLBDIMSjq2onWxJBLZUBSFiYkJGAyGkPSfUHMtW1tb8Hq9qKmpScqtMx2tzwcBbtTjdrsZ3by5uTkAwMzMTEK1noNEMunNRbMLP3h+Bd4AhfedqkZPT2o9e4QimyBF4/EJA/RrdsikEpxtKsKrmoQVeSVpSLfbjUAggIqKClgsFkblgcz2+Hw+1NfXCy5Xs76+jk9/+tN47LHH4HK5cPjwYfz4xz9Gb28vgL3P/fOf/zx++MMfwmaz4ezZs7j//vvR3Nws2DVkHNlQFIXZ2VmsrKygo6MDIyMjgp7MgZfJgQyEejwe9Pf3J5wjjUUO8cjC8FmPC4/HA71ez6S22BGgEG3ZJO2nUqlQXl6etC00WXd3d5eRzk9m08g04pJIJIxwZm1tLZxOJy5evAgATNRDfFkybZ4lUW00X4DCR345BsOuFzQNXFq24b8/2IOKAlXKPHuEIpvtXS/0a3bkq+TwBChcXrKhu6YgLuV3vqAoCnK5HDqdDjqdjpntIY0G//zP/4znn38efr8fv/rVr5CTk4P29vakng+r1YqzZ8/iNa95DR577DGUlpZidnY2pB79ta99Dd/5znfw05/+lBHhvPHGGzExMXH1aKOxb6LX6w1RH87Ly2MkNoSETCaDw+HAiy++CK1WG3M2JBYipb1I1LSyssJbFoasx5cgbDYbhoaGUFxcjI6Ojn0n5mTIht2Wffr0aQwPDye9sZPPe2trCzMzM8xmQdIsxcXFcXU2ZcomHQ3kM2ltbd0X9SwsLESs9aQDiUY227temBw+yKQSSCUSuH1BzBudISkpoT17hCIbmUQCuVQCtz8IX5CGSi2HNEXOnuGGyRUKBcrLy1FeXo5f//rXuHLlCq6//npcvHgR3/72t1FcXIx7772XcdWMF/fddx9qa2vx4x//mPlZQ0MD8//TNI3z58/j7rvvxs033wwA+NnPfoby8nI8/PDDglhCAxlANgQWiwXDw8MoKipCd3c384EIYaDGhcfjwfb2NlpaWkIMwhIFaRBgf1F9Ph9GRkaYifp4oia+BBHJ6IyNRNNobrcbg4ODjGyOUqmMaDEdD8i/n52dRWdnJ/Lz8+F0OmE2mxlNNfY8Bx+RxEyLbLhgXx836om04aYr6kmUbMrzVSjLV2LL7kUANPKUcjSXRS9wJ+vZIxTZlBeo8KrDRXhp0QaNUoLXtZRAo0gN4cfqRpNKpTh8+DAA4OGHH4ZSqcTzzz/PmJslgkceeQQ33ngj3vWud+HPf/4zqqur8ZGPfAQf+tCHAACLi4vY2trC9ddfz/wbrVaLvr4+XLhw4eohGyLVPzc3h9bWVtTW1oY87EJZAgB7H/Tk5CTsdjvKy8tD2D0ZOHwUjG7AFwhApVCEyPYnEjXFIhu2BlksV9BEIhui2FxeXo729nbBFJtJpAQAnZ2d0Ol08Pl8yMvLQ35+PiMcSU79q6urkEgkzMYbbsPJhsgGiHyd4TbcdEY9iZKNUi7F/bccw49eXIU3SOG9vVUoy4+v0B6vZ0/CYrreAJbNbqgVUjSW7JH5mcYinKjRQioB1CkiGoCfgoDD4QCwdz/kcnkICSSChYUF3H///bjrrrvwT//0T7h8+TLuvPNOKJVKnDt3DltbWwCwL/NSXl7O/E4IpJ1sPB4P1tfXI6obJ2qgxgUxIJNIJKiqqhKsi+WlRQu+/eQcts0yTP5uGh/sKcT89AQaGhrQ1NSU0Bc3GkFwjc5iFRFj+dlwsbq6iqmpKaabLZm12PB4PBgcHIRMJoNEIoFKpWI2NvZhQiqVory8HJWVlcw8h9lsZjacgoIClJSUMGkWIPMjm3jAjXqImsFBRT18utFomsYTUyasWNy4pqkIbRV7UXtdkQb/8uYWQa6Dj2ePWq1m2vH5jik4vQE8dHkd8yYXVHIprm8twbXNexpkOcrUpy/jcekUsmuvt7cXX/nKVwAAXV1dGBsbwwMPPIBz584J8hp8kHayycnJwdmzZ6Oq9yYb2RCBS2JANj8/D6/Xm9SaBP/20iosLj9UUhoX5owo9m7hfa/dL9YZDyKRDYmYCgoK0NXVxSti4pv6SqViM6krlZaWor29HU899RRMJhMqKyuhVCqZQVGSiiSHC4lEgoKCAmi1Whw+fBgej4c59S8uLkKhUCA/Px/BYBCBQCDjtLsIEiVD9hQ/EDnqEdIQjE9k88DzK3jw+RVIADz4/Ar+318fx7HqgqRfOxrCefbMz8/D4XDghRde4O3Zs2L1YMHkQkOxBkaHD5eWd3DN4SJID9DPhk9kk6zgJxuVlZU4cuRIyM/a29vxq1/9CgCYFN329nZINy6ZbRQKGfHtjLYhJhPZsAUu2T43QqbmaJoGaACSvQepubUlKaIBwpMN6WiLN2Lik0bjGy0lUrMhtgzNzc2oq6sDRVFoaGjA5uYm5ubmoNVqmTRSXl4eaJpGMBhkCIj9OcnlclRWVqK6upo59W9ubiIYDOK5556DTqdjop5M86sRYuOIFPWQoUEhoh4+3Wi/HdneszaWShCgaPzPlCnlZMMGUWrW6XTQaDRoamri7dmjUUihVsiwveuD0xtEZYH6wIgG4KeNJnTb89mzZzE9PR3ys5mZGdTX1wPYaxaoqKjAk08+yZCL3W7HxYsXceuttwp2HRlBNtGQKDGQAUqHw8EIXCa7Zji87WgRvvWECZ6gBCcbSvDaI4kLXRKwCSIRozM2YkUjZP4nLy8vqi00n7XYINe9vLyMzs5OlJaWIhgMgqIoHDp0CA0NDfB4PDCZTDCZTFhcXAwZhCsqKoJcLmfIh0Q+bKVf4jVis9nQ3d0dMteSSS6dqUjzRYp62OrEiSg284lsqgpU2LZ7Efzft1UpwBBkIiA1m3g8e2p1OtzQXopLSzbU6tR4Q0dyB8N4wUcbTejI5uMf/zjOnDmDr3zlK/jLv/xLXLp0CT/4wQ/wgx/8AMDe9/pjH/sYvvSlL6G5uZlpfa6qqsLb3vY2Qa4ByAKySSSNRgQ7c3NzcebMmX1F5UTJxubyQyGTMP336+vrkGxP40tvqMfkwgrecLYeeQL05hOyCQQCGB4ejqk4EGstmqbDbiJEsbmuri7EDC4S+JJNMBgMsc3Oy8tjolNi8QDs5dxramqYgrDVaoXJZMLs7CzcbjcKCwtRWlrK1GdIpEPSbeQe0TQNlUqF6urqkA4vk8nEeJIUFhYyJCaUEkUmgW/UE8uThQ/ZfOGmFnz64SksW914XWsx3tUd/yC0EOBjCb1idmB8xQib1Qmj8WV/mrc3FaKkpBg5OQdLlHxrNkLqop08eRK/+c1v8JnPfAb33HMPGhoacP78+ZBW6k996lNwOp348Ic/DJvNhmuuuQaPP/64oMP0GUE20TaxeIlhY2MD4+PjUdNN8a5J0zQeeHYRf5wwQCGT4h+uPYQq2hzSDbZr3IBMoGiczO1cuHCBUYSO1zeDvRYQGr7TNI2lpSXMzc3FpdjMJyXn8XgwNDQEqVTKRErkXkeTgycqwsXFxWhtbYXL5WKiHnI6JVEPGUZzOByYmZlBUVHRviYDUlyWSCRMazU56ebk5DCvFS2/LyQOsmsuXNRDNNxiRT1csnH5glg0uVBTqIZWs/cM1hVp8O8f6Dqw9xMJNE1H3bhXrW787NImTE4fNAo5bj5+BCfKlMy9IHW/g/TsiadmIyTe/OY3481vfnPE30skEtxzzz245557BH1dNjKCbKKBb82GoihMTU1hc3MzpmBnvGQzum7HIyNbkMukcLh8+OZjY/hkrzKkviGkNbTVagUAlJaWorW1VbCJfWDvYR8fH4fZbI7YARhtrWiRzc7ODgYHB5kBUxJ9APEbXOXk5KCuro7xmLFYLDCZTBgfH0cgEEBeXh52d3dRVVWFtra2kHQbt8lAo9GgtrYW9fX1jHyKyWTC2NgYKIoKGShNhf98urvl2C3F7KiH+NSwox422Sxb3Pibn+phcfmhUUjxg786jhM1B1ebiYVgMBh1AHjR5ILJ6UNLaS6WLW5MbO7idENdiJ7dQXr2kO8Dn5rN1SbCCWQB2cjl8pidY1y5lljFtXiJwRugEKRoaGQUdr0eyJUydPX0Iifn5RBTCGtoMnM0Pz8PALxSW7HAjmxI1AEgYcXmSBsnaWBoamrCoUOHmPoKO22WKORyeYjkycLCAhYXF6FWq7G+vg6bzYbS0lKUlJRAq9WGdLdxmwykUilKSkqYtbj+8+xZjoKCgqyZ4+GLWFEPsDeXUVZWhv/7khk77j0xXG+AwnefWcSP/rozbdfORaw5mwKNAgqZFKs2DzwBCiV5ocR00J495Dk86DRapiDjySZWFGI2mzE8PIzS0lIcOXKEVyE4XmI4Xl2AthIFhlZ3oFGp8J7T9dDmhG7UyUY2pM5hs9nQ09ODS5cu8Xb1iwayWdpsNoyPj0eUteG7Fpds2B1/3EYAIYiG+1pzc3NYW1tDd3c3ioqK4Pf7GXMzvV4PACguLma60mK1Vufm5iIvLw8NDQ0hA6Vra2uQSCQhUU+iqUzyWpkIdtTj9/vx3HPPQSaTYX5+HptbHtD03mZO0wCVYeNMscjmeHU+bK5SjG86UKlV4bWtkYefgdR79pA9RySbNCLaFzFSGo1ddwinPBANfJw6yVoURWFuZgpvKrPjHZ2tqCgpRGv5/gchmciGSMPI5fKQ+owQAqTkfej1ejQ3Nyclz8Md6gwGgxgbG4PVakVfXx/y8vJSRjTktXZ3d3Hq1CkmzaBQKEI6kXZ2dmAymRjbXjIEWlJSgvz8/JhRD3ug1G63w2w2Y2VlZZ+MTjwplnSn0fiCvJ+mpqa9GaYaCz747xNw+CjIpTSuLdrF1NTUgdU3YiHWAKpUIsF1LSW4riU6yYT9tynw7AkGg7xsrEWySRPCEQORPdnZ2YnbKTLSmgBg2PXivj/OYN7oxKlDhbj1mhpMj+/Zvb76mrNRu5gSjWzMZjP0ej0qKioYaRiyOQmRlpudnQWwN8RVW1ub1Hrsa/N6vRgcHIREIsHp06ehUCiY9y800Xi9Xuj1ekilUpw6dSpiOkMikTBquuwhUJPJhKWlpait1aRjjx315Ofno6CgAE1NTcwEu9lsxvLyMpOCIQ0L6d54hQD5bMln11FThD/ecRpzRidqtErI/K6Q+gZbuVrIVl2+4GuxLASE8Owh18uHbOIdccgGZPw3hNv67HA4MDQ0BJVKhTNnziSURw0nnAkAP3phGZeWrMhRyvDY2BYCljW87Vgpr7RTvJENTdNYWVnBzMwM2traQoiAnH6SIZtAIMDMGZFTWrIgaTS73Y7BwUEUFhaio6MDwMvEKPSXn3zeOp0OHR0dca2vVqtD0iI2mw1GoxFzc3NwuVxMO3RJSQlycnKiDpTKZDJUVFQwE+yRiuyRBiozNY3GBpdsAKBALUd3LWki0YTUN7hqDkVFRQdKvuly6iTKFgUFBWho4O/Zw9cS+mp06QQyhGxipdHIl54UoclcSKIPGvnAuXLfJocXEkiQI6Ng9fmgzC/BsWPHeG0U8QheRjI6S3Q9LlwuFwYHB6FSqXD69Gk899xzgqXkHA4HLl68iMbGRjQ0NAjaCMCFyWRiPu/Gxsak1me3QwMIaa2em5uDSqUKaa2ONVBKJti5G2848cxsSaOFI5tI0Gg0zIxUMBhkNOwOMuoR0lo8GSgUCl6ePUQ5PRbENFqaIJPJ4Pf7MTU1hbW1tYSm6MOtCewnm9e3lWJw0YR1WxBlBTl460n+sjB826nZnXNnzpyJmOtNtAZE0nJEB04qlSZtoAaAiWhsNhs6OztRXl4edlBTKKyurmJmZgZHjhxJyD01Ftit1cFgkGmtnpychM/nQ1FREdPhplarww6UAnsbs1KpRFVVFbPxcu2hSS3L7XZn9EBpPGTDhkwmY4g8WtRDTvpCRT3pimyiIZpnz/r6Onw+H4aGhqJ69oitz2kCRVHw+/0wmUzo7+8X5EMgaSo2Objdbmh3F/HBowrklB3GifoiNJTwfy0+G3oso7N41+NiZWUF09PTYdNyyZyuKYrC2NgY7HY7c4Ij6aZUdJzNzMxgc3MTPT09cdfjEoFMJkNpaSlKS0uZk6nRaMTm5iampqaQm5vLRD1kLokd9UQaKG1paYHL5cL6+jp2d3fx0ksvQaPRhMjoZNJmSXTRkv08I0U9CwsLGB8fFyzqOciaTaJgW0gUFBRgZWUFpaWlYT17CgsLoVQqUxbZ3HvvvfjMZz6Dj370ozh//jyAvcPvJz7xCfzyl7+E1+vFjTfeiO9///spqRllBNlEetisVivTztrX15dU6yn39dibucVigV6vR1lZGd7TdyShBzhWgwAxBmtubkZ9fX3ML1i8aTky0NrT08OkihJZiwuv14uhoSHQNM0IYKaqESAQCGBsbAxOpxOnTp1Ki5gm+2RK8vGkyYA4lZLGgEhRD7vJQK1Wo6ysDAaDAadPn2ZmWiYmJhAMBlM+UBoPEvWyiYZIUY/FYkk66snEyCYaKIqCQqEIkWhie/bcfffdGB0dxcbGBtbX13nXePjg8uXLePDBB3H8+PGQn3/84x/H73//e/zXf/0XtFotbr/9drzjHe/ACy+8IMjrspERZMMFTdNYXV3F9PQ0GhsbMTs7m5IvQSAQwNLSEmZnZ/dFA4mux0U8Rmds8CUIn88HvV4Pv98fcaA1UbLZ3d3FwMAAdDodjh49isXFRRgMBiwtLaG0tFTQ0xdJL8rlcpw6dUqwg0Wy4LZW2+12mEwmZvaCT2u1z+dj1mMPlBLBSNLRlJubGzJQetAbaSrIhgt21MNutGBHPYR8YrWXZ0rNhi+45MH17KmoqMAjjzyCe+65B5/97GfxxS9+ETfccAP+9m//FjfeeGPCr+twOPDe974XP/zhD/GlL32J+fnOzg5+9KMf4aGHHsJrX/taAMCPf/xjtLe346WXXsLp06cTf7NhkHFkw5ZTIWmU2dnZsN7dyUAqlWJ2dhYOhyNikT7e9biRDSECn8/HS9mAu14sgmD727CttLlIJI1mMBgwPDyMhoYGNDY2MpGNUqlkVJqVSiVKSkpQWlqalIuk3W6HXq9HcXFxiDNopkEikUCr1UKr1Ya0QxuNRmbinBBPcXEx5HI57HY7ZmZmUF5evi/qycnJQW5uLg4dOsREUGazmZnjYDuUJju9zgcHQTZssDdb9gQ/t708UtSTbZFNrEilvr4et99+O+677z786U9/QiAQwOOPPw6j0ZjU695222246aabcP3114eQzcDAAPx+f4gTaFtbG+rq6nDhwoWrk2zIA+5yuTA0NASZTMbIqYRzc0wWLpcLPp8v5HWSBbegb7fbMTQ0FJMIIiEW2RgMBoyMjKC+vh6HDx+OuknEE9mwh2WPHj2KiooKJkWkVCpDcvFEY4wU1bnpJT4wGAwYGxtDY2Mjr/RiJoFr6GWz2WAymTA/P4/R0VHk5ubC6XSirq6O8ZWP1FotlUpRVlYWEkERa+zJycl9lsip6u5K5/3nTvCTqGdxcTFs1HO1kQ0ApmZIOh37+/uTes1f/vKXGBwcxOXLl/f9bmtrC0qlcl9dVGg7aIKMIBvg5c2zuroara2tIb73QvrPkNy7XC5HU1OTYBLa7A09UaOzSOuxwdZPO3bsGOOyFw18Z3YoisL4+DhMJhNOnTrFuGCGa21mFz5bW1v3FdXz8vKYqCecxhiZM5qfn0dHR0fWD7FxGwMIYefm5mJ1dRUGgyFia3W4gdK8vDzk5+ejsbExZKB0ZWWFqYOwh1OFQCalpbit6uGiHpqmYbFYUFZWljFp12jgQzYejwfBYDAhOxEuVldX8dGPfhRPPPGEoFYBiSIjyMbpdGJkZARHjhwJK3cvl8sTduskYJ/Y29vbsbGxIej8g1QqRSAQwMzMDFZWVtDZKbw1NFseJh7FZj4Om6QlMxgM4vTp01CpVLwbAbhFdSLtYTQaMTg4uC+9JJVKMT09DYPBgJ6enriUpzMd5DlbWlpCV1cXiouLI7ZWk3ui0WiYSIfPQCnp7mKf+IXo7uLj0pkucKMei8WCkZERpkU+lWrNQiEYDMZsAnG5XAAgSNftwMAADAYDuru7Q67h2Wefxfe+9z388Y9/hM/ng81mC4lutre3eR1i40VGkE1eXh6uvfbaiHnpZCMb0uVks9mYTXp7e1vQ1BywV0Pxer04ffp00sVzLtkQxWaJRIL+/v64OpdipdEcDgcGBgZQUFCAY8eOAUAI0cQLtrQH2RyNRiOTXpLL5ZBIJDh27NhVRzRTU1PMsC45nYZrrTaZTNje3makTohJHPnSRxsoLSgogFarxeHDh8POtBBSj7eOlu40Gl+QoVpgzxjM5/NFrPUUFhZmTNTDJ+3ncDiYel6yeN3rXofR0dGQn73//e9HW1sbPv3pT6O2thYKhQJPPvkk3vnOdwIApqensbKyknT6LhwygmwARC2A8vW0CQcyTa9UKkM2aSH9ZxwOB2ZnZ0HTdFJGZ2ywCYLM55SUlMQt2QJEbxAgbp319fVoampiNjmh2prZgoa1tbUYHBwEsFfvGBwcRE5ODnPCz7S5k3hAVLtdLhdOnToVcXiTHQWSxgAS9YyO7unwsVWr4x0oJXWO2dlZeL3efTI60ZAtZAOEyiOFq/WQ1moixpoJUU88Lp1CXGN+fj6OHj0a8jPS8Uh+/nd/93e46667GCXrO+64A/39/YI3BwAZRDZCunUSGI1GjIyMoKqqKqQORNYUQsKFbNYlJSWw2+2CnaII2RDnUb7zOdHWYoOmaSwvL2N2dhYdHR2orKxMmWIzsNdmSWaZyGdBTNGMRmPIRktO+QfRgSUESNehRCLByZMn43oGFAoFysvLmW41bmt1fn5+yFAgqe9EGiglmlw0TTNRD5HkUavVDJGFI/ZsI5twA6jcdmIixsqOetgabgcZ9fAlm4MUNf3Wt74FqVSKd77znSFDnalAxpBNNHDFOGOB7bESyfY42dQc9zXUajVGRkYSXo8LiUQCo9EIh8MR03mUz1pssmFrs508eRIFBQUpJZrt7W2Mj4/j8OHDIVYQXFM0stESewCtVss0GaRDVZgPiD1EXl4ejh49mtQQHre12ufzMfptKysrjJlXaWkpI2sfbaBUpVKhuroatbW1CAQCIWKRgUCAISYSQWUb2fCJgrlirNx610FGPXzJJpXDzM8880zIf6vVavzrv/4r/vVf/zVlr0mQFWQTDzEQ+wG73Y6+vj4UFIS3sU2GbNg1IPIaOzs7gkRKZH2z2cwU64Wo/5CokT0Eevr0aajV6pQpApBi+eLiIo4dOxaVMLkbrcfjYTZaIm4pxEyPkCDt7eXl5Unbd4cDSZGxGwPI/RgdHYVOp2Ointzc3JhePYSo2HWjra0tzMzMICcnh2lUyIaW4kSukZ3SjRb1kLkeoaMePmTjcDgy9mCVLDKGbGKl0fjUbIgcvVqtRn9/f8w6UCy76XAgs0ByuTzE4kCoGpDT6WTqGuXl5YJM6ZM0msPhYE7hXV1dIfNLQmhisUFRFCYnJ2E2m9Hb2xuR9CNBrVYLPtMjJEwmE0ZGRg5sPoi9UZIBSELG8/PzDBlzvXoiOZRqNBrU1dWF1I3W1tbgdrvx/PPPh8joZGI6UwhCjBT1LC0tMeoQQkY98dRsrkZkDNlEA580GpnTqa2tRUtLS8wHI5HIJpyiMnu9ZCMbsn5VVRVT0xACUqkUTqcTL730EjNgmEprAL/fj+HhYQQCAZw6dSppMkh2pkdobGxsYHJyMmWK1Hyg0WhQW1uL2traEDKenp6G1+tFYWEho1odq7VaKpWitLSUeX6bm5thNpuxvr4eMlBKJHki3d9VqxsbOx60ledBq0ltLUTo6CtS1GOxWASLeigqts17qtNo6URWkA2xGQgH4ku/tLSEo0eP8v7yxxOJRDM6Y69Hirfxbnbs9dvb21FTU4O5ubmEIq9wcDgcsFqtOHr0KKqqqlJanyGRX25uLrq6ugRPd8U70yOkxBF3hoYreJousMmYpmm4XC4YjUYYDAamtZrd8Qe83FrNjn78fj8kEglyc3P33V9yEJJIJCESMmTTfWrahC8+PgevP4iKAhX+9d1HUalNXcSZ6lQfn6iHkA9fRQc+KtViZHMAiGWg5na79/3c7/djZGQETqcTp0+fjmvqlm9kEwwGMTExAZPJFFVDjTxE8Wq4kXTT9vZ2yPpCeNAQNWibzYaysrKUd5xZrVYMDw+jsrKSV3QpBLgzPVzJGPYJP5kTI5mhMRqNITM0mQZCFkRzjdT/2K3V7IFSlUoFiqJgt9uxsrLCyBORtWQyGcrLy5n7S2R0lpeXQ1JN/+9FM9y+IPJUMmzsePH7MQM+eLYuZe/zIOtK4aIeMtfDVnSIFvUQchfTaBmOcMRA6g85OTkJzbbwSXuRQUoAMTXUyEMUD0GQqf1AIID+/v6Q2Qw+U//R4Pf7odfr4fV6UV1dzTzsZG2hiWBzcxMTExNoaWlJSj07GYTzkjGZTDAajUwRPJGZHvYMzcmTJzPaAI0LuVwe0lq9u7sLk8nEpMiILM729jZqa2vR2NgIABFbq4kdMmniIFGP1+VAICiB10cBtASyFJ8z0tnEoFar9zVusKOecDp2ZF/g0yAgkk0awa3ZEO2xQ4cOxRShjIRYkU08RmdWlw//fmkNF+elcJZs4e3dtZBKo18TUWzWarXo6enZFw0lE9mQJoOcnBz09fVhaWkJm5ub2NjYQGlpqaC+KaQFfGVlBSdOnEBxcbFgaycLthtnuBM+n5meZGZoMg0SiYQhi8bGRvh8PiwvL2N5eRkSiQTr6+vwer1RB0rZTQYKhQKVlZWorq7GPxfa8JnfTsHu9qMuj0aZcx5DQ+aQgVKhG1AyoWMuVtRDugCJ4kEssnG5XFeVqgYbWUE2pBuNpmnMzs5iZWUlaXvoaGQTr9HZQ5fW8D8TBnhcEvz7lQ1UF+fhdEPkfP729jZGRkaiCnUm2t1GcuvV1dVoaWkBRVGorKwETdNYX1/H1NQUCgoKGPmUZJ0SJyYmYLPZcPLkyYw+kXFP+Hxmekj9SYgZmkyEzWbDysoKjhw5goqKCqa1enFxEWNjY8w9KSkpQV5eXtSB0qOVefjvD/VgxxNEeb4KXs/LMjrs1nUiyZPsvcwUsuEiUtSzuroKAMwBNlKtx+Vyobq6Oh2XnnJkDNnEqtkEAgEMDAzA7XYLMnsSjmzYjpfd3d28T+mrVjfUChly1RLsBigYdsMX9tmDoLEUmxOJbFZXVzE1NYX29nbGVZOiKKjVajQ1NTEeLCS1tLCwAJVKFTK/wvcL7PP5GOfKU6dOpd1lMh7wmenRarUwm82oqKhAW1vbVTf3sL6+junpaRw7dowRjGW3Voe7J8XFxSgsKsEPB6x4atqE2kINvvCmw6jRqUDTNBQSGiUaKahgIGSglHTLmc1mTE1Nwe/3hwyUJpKWzFSyYYMd9VRWVuLy5cuoqqraF/WQeo9CoWDmbITAV7/6Vfz617/G1NQUNBoNzpw5g/vuuw+tra3M37zibKFjwefzweVyITc3F/39/YJ0GHHJho/jZSScOlSIeaMTJjdQXSJHR+X+mRKS92cPgkZDvLbQxA20p6cHhYWFERsByCZAyIjIxYyPjyMYDIbMr0RKLTmdTsarJ1aKMRvAnelZXl7GwsICZDIZNjY2mNRSumZ6hMby8jLm5+dx4sSJiB113Htis9lgNBrx02en8OuZAKQSCcbcfnzlj3P40d90hwyThqv1kKaElpYWOJ1OmM1mGAwGzM7OIicnhyEerVbLi0SygWzYIM0B3KjHYrFgZWUFDzzwAB5//HE4HA60t7cL8v7+/Oc/47bbbsPJkycRCATwT//0T7jhhhswMTHBENpB2kJLaCF19pNAMBgMO1eyubmJ0dFRSCQSXH/99YKdMB0OB1588UXccMMNsNvtTP3k2LFjcZNZkKJxYcGC56+M4HXdzTjZUhPye4/Hg8HBQchkMpw4cYJXFGAwGDAzM4Nrrrkm6t+RmRaPx4Ouri5mpoK0YPO9X6R4bDQaGZkcrVbLpNtIzt1sNjPzTIl69WQy2DM0FRUVzEyPyWTCzs4O8vLymO62g5jpERI0TWN+fh5ra2vo6upKqDZw/7NL+OELy9DIAJefQqGSxhfPqEK8eshrsb16yDYjkUiYAxBbH4+k3ILBYMhAaaTvyuLiIjweD9rb2xO/IQcIq9WKyclJnDlzJuzvV1dX8fDDD+PrX/86vF4v8vPzceONN+Ld7343brrpJkGuwWg0oqysDH/+859x7bXXYmdnB6WlpXjooYfwF3/xFwDAZEauWqdOYH8ajaIozMzMYG1tDW1tbZiamhL0iy2Xy0OELhsbG9HY2Bj1NdZtbjwxaYQEwA1Hypg5AplUgmsOFwNbChwqDP1yWK1WDA0NoaysDEeOHOF9WuET2bhcLgwMDECj0eDUqVMh0Vq8igDs4jE7tUSsAVQqFTQaDaxWK5Omu5pATOmWl5dDZmgizfSQNEiqZnqEBrd1O9E09GtaSvDQ5TW4fEHIZTLccroWzc25MJlMGB8fRyAQiKhaHWmgtKSkhNHHczgcMJlM2NjYwPT0NHJzc5m12OSerZFNJNTW1uKOO+7AL3/5S/zzP/8zKisr8dhjj2F0dFQwstnZ2QEA5tl+RdpCc0HqAV6vF/39/ZDJZJiYmBBUKJCsMzExwcvozOkN4N7HZzFndAAABldsuPftHdAoX36AuASxvr7OtAPX1dXFde2xyMZisWBoaAhVVVVoaWkJkZ4X4kvITqMEAgGMj4/DaDRCJpNhZmYGFouF6eTK5g4t4OVaHZmlijRDc1AzPUKDoiiMjY1hd3c36dbttoo8/PhvunBhwYpqnRqvaSmGRCIJIQuj0RjSWk0IWavV7msy4Hr15OTkoL6+niF3EvUMDw8DABPx+P3+rErfxmMJXVhYiGuvvRbXXnutYK9PURQ+9rGP4ezZs4y9wCvWFppgZ2cHQ0ND0Gq16OrqglwuZ9QD4h2YjAQyDAqAqXHEwpbdi40dNyq1KoAG1nc82N714lDxy5sK6SCjaRrT09NYX19HV1cXSkpK4r7GaGRDuuXa2tqYnHq8aTO+CAaDGB8fx+7uLlPLstvtMBqNTNeSTqcLSbdlE4LBIEZGRuB2u+PaiPnO9JSWlvKuQ6QCwWAQw8PD8Pl8OHnyZFw6Z+s2D36t34RCJsG7e6pQmLP3bw+X5uJw6f4itkQiQX5+PmNnTSJBk8kEvV4PAPs07aJ59chkMpSVlaGioiKkg3BlZQUOhwMqlQpyuZzplsvklCYfsgFethgQGrfddhvGxsbw/PPPC742X2QM2ZA+/4mJCTQ1NaGhoYF5eMiHFAgEkiYb9jAoAN4F3/J8FcryVVgy79m2NpbkojQv9ItLZHXYXXOJPjiRPGgIiXV3d6OoqCilROP1eqHX6yGVSnHq1ClmoyKdXMQpkmyypNhLTvc6nS6jNwAhZ2gizfSMjIykzafH7/djaGgIUqkUvb29cX137B4/3v+zIRgdPgDAU1Mm/OID3VDI+JMmOxKkaZpprea2m/NprZZKpQyRNTU1YWxsjBGXJVP8bBmdTEtp8tFFA1KjIHD77bfjd7/7HZ599lnU1LxcT66oqHjl2UIDe3LtU1NTYSMBqVQqiKoyEeusq6tDc3Mz/vSnP/FeM08tx6duaMbvx7YhAXDTsQrkqkJvH0VRmJ+fR0FBAU6fPp3U5sUlm0AggOHhYbhcLvT19SEnJyel0jO7u7vQ6/UoLCyMWmtiC0KSTZYYygFgTveZVtMgMzT5+fmCd9SFm+kxGo0H6tPj9XoxODgItVqN48ePx/3+JjYdMDh8UEj31NjnTE6s2zwhkXw8kEgk0Ol00Ol0zPAjaa1eXFxkIhSiWq1UKqMOlAJAQUEBDh06FDLPsrCwEHKPUzFQmgjiSaMJRTY0TeOOO+7Ab37zGzzzzDNoaGgI+X1PT88r0xa6oKAAr371qyNuSMn4z7DnW9hinZHWXDK7MLW1i2qdBseqX25RbijJxe3XNYZ9DZPJxJwQenp6kn64CdkQx8XBwUGoVCr09fWFXHcqiIZM2ZPcOd/1uZvszs4O02DArmmUlpamVfKF+NBUVFSkXMONPdPD3WTJ/AqJBIXy6SFW6DqdLq6mFDaqdWooZRJ4A3sHngK1fF8knwzYNUGKohjV6tnZWbjdbuZZKS4uRm5ubkh9x+v1Ynd3FwUFBfD5fJBKpdBqtcwUP3EoZQ+UkqgnXV5IfEQ43W43aJoWTHfvtttuw0MPPYTf/va3yM/PZ+owWq0WGo0GWq32lWsLHe3ky9fThgtiprazs7NvviUc2Uxt7eKe30/D5PAiTy3Hba9uxOvaIpt+se2VyWlKiM2LPJgWiwXDw8OoqKhAa2ur4I0AXKyurmJmZiZp+Xz2Sba5uXlfTSM3N5fZZLVa7YGdPElqq6mpCfX19QfymmyE8+kxGo2C+fQ4HA4MDAwkbehWW6jBl9/ajgeeW4JSJsUnrm/aF8kLBTLcWFxczFhIkDTkzMwMNBpNiEnc2NgY8vLyGAdebtRDTOfYM0JmsxkzMzPw+XyM6VyiA6WJgK8IJwDBajb3338/AOC6664L+fmPf/xj/O3f/i2Ag7WFzpg5GwBRJfWff/55tLa2xmWPTE54SqUSJ06c2JcrD7fmTy+s4OeXVtFQnIMVqxsn6wvxxbeG7+Un9spGoxFdXV1YX1+HQqFAS0sL72uMBJ/Ph6eeegpSqRStra2oq6tLadqMpmnMzMxgc3MTJ06c2NehIiT8fj+TbjOZTEz7K7E7TlW6jcj1dHR0pCQnnQzYbb+JzvQQPb+6urqYbfzZAjKHQw4qPp8PKpUKDQ0NKC0tZZoM2P9jb2kkBU+EbV0uFxP12Gw2aDQahujiEWeNF1NTU1AoFGhqaor4NwsLC+jp6YHX682qTju+yJjIBojt1hlPGi2a0RlBuDqQLkcBmUQCo8OHIEWjJDd86sDr9WJoaAgURTGK0Jubm4K4dZK0HwBGAy6VREOiP7fbjVOnTqW8o0yhUKCiogIVFRUhLcSzs7PweDwh6TYhJvYjzdBkEtidXNFmeiIRMmkPPnz4MOrqUiftf9CQy+UoKytDQUEBLBYLEwlvbW2FzOGQrj92kwH5/9lRD4ksSSMHkdGZnJxEIBAIkdERUi0iGAzGXI90omXT/FA8yCiyiQa+aTR2WosYkUVbk9vx9YYjZVgyu3Bl2YrO6gK8t2//vyeKAzqdDseOHWNOIUK4awYCAYyMjMDh2JvnKSgoSCnReDwe6PV6KBSKtKgac1uIycQ+2UySndjnO0OTaYg00zM3NweXyxXiSbO7u4uxsbG0OoemEm63GwMDAygqKkJ7ezskEgkaGxuZCDlcazVRH4g1UEq6BElkaTabsbW1xaR6CfEUFBQkRQJ8XTpT0facKcgqsokVNZCZELPZjJMnT8ZMBYVbU6WQ4aOvjRzqEnuDcIoDMpkMPp8v9puJANIIoFAo0NfXh2eeeQZerxcKhSIlREMK5aWlpRGjv4MG2/jL7/cz6RNyuicRT1FRUcwvL3uGRgh76nQh2kzP9PQ0AKCsrIxJKWXC5ygUiEpGaWnpvhoUO0IO11pdUFDAEHJ+fj6vgVL2s0cGSkdHR0HTdIiMTrzt63xrNiLZHBCipdG4njZcxGN0RhBPao7oSi0uLka0N0imPdtms2FwcBBlZWVob28HTdPQ6XS4dOkSdDodysrKBO3iMhgMGBsbQ2NjIy8bhXSA+KWQ0z3pWJqenobX60VRURFDPlwNLTJDI5VKs96Hhgsy0xMMBrGzs4NDhw7B7XYzMz1kgy0pKcnq9+10OnHlyhVUVlaiubk56jMarrWaRD1LS0uMdTY5qIRrrWYPlJKDDdd0jgxUE4dSvrbQfC2hU9UKnwnIKLKJhmjEYLVaodfrUVJSgiNHjvAurvElG1LTsNvtUe2n+bh/hgPRZ2tubkZdXR3z4Pf09MDj8TDimOwurtLS0oTSSjRNY2VlBfPz8+jo6EiJlHgqwO5YYqfbNjY2MDU1hfz8fOa+SKVSRpX66NGjV9VJHwDj67S5uYne3l6mwzJdMz2pADEXrK6uTkjwVa1WM+rmJA1JBo9JazUh5JycnJgDpXl5eSGmc6TJYHV1FRKJJGSgNBzB84lsrmaXTiDLyCZcPYR4uCSiP8aHbEhqSy6Xo7+/P2r4HG9kQ9M05ubmsLy8jBMnTqCkpGRffUaj0TCT6SRHbTAYGBVpImLIZ36A1C+MRiN6enqy1hFQIpHsE8gkaaXFxUVQFIW8vDxmcv1qAk3TmJiYgMViQW9vb0jaJdJMD/EuSsVMTypAaqKkqy5ZsNOQra2tTBqS1MCIpxO5L7EGSmUyGcrLy5mIm2sLrdVqGfIhBM+HbIiNytWKjCKbaEQhl8tDWqMTNTpjIxY5EMXm8vJytLe3xzwhxxPZcKMlPooA3C4u9oyG3+9nip3hvGiIHpzP58OpU6fSOlQpNMhchUKhgMlkQnV1NaRSKWPURYrGpaWlByYVkwpQFIXR0VE4nU6cPHkyZqo41TM9qcDOzg4GBwfR0NCAQ4cOpeQ12NJCxNPJZDIx94WkZ9n6bdG8etgDpSR9Zzabsbi4CIVCwQiHxoKQxmmZiIwim2hgRzY+nw9DQ0MIBAJxG51x14xU0Ce5WTLjwgd8Dc/Y/jZE1iZeRQDuIJzD4YDBYMDKygomJiZCxDElEgmGhoagVqtx8uTJjJKNEQrhZmjIfTEajSG5diEssQ8aRK4oEAigt7c3btIkUXBJSck+Kf+pqamM8Okh6fCmpqYDa9+WyWTM80DkYoxGIzY3NzE1NcW0VpOWawBMmjtc1EPqjMSckDQtkM+PPVDK3bdSoYuWSciaXYekvNhtxz09PUltnOEiEbbrZbwRE5+0HDm5kfoSyRMD8XvQELBnNIgXDanzzM7OAgCTcsrU1EmiIDNJKysr+2ZouCrEQlliHzRIs4NMJkv6mQeSn+lJBSwWC/R6PVpaWqKOK6QS3PQsu7WaWKCzo0E+rdU6nQ6FhYVYX19HZ2cno44wNzcHtVrNuJPm5eXB5XKlnGz+9V//FV//+textbWFzs5OfPe738WpU6dS+poEGUU2sdJoLpcLFy9e5GV0xgdccvD7/dDr9YyPTrwRU6zIZnNzE2NjYzh8+DDq6+uZB1Totma1Wo3a2looFApYrVamo4Z0Z8XTPpzJYM/QnDx5MuYXVQhL7IMGiYJzc3Nx9OjRlHxekWZ6SDGdPdOTioFfIiHU1tbGSNBkArit1cTiYHV1FRMTE0xHWmlp6b7Wanb0QyIgjUYDnU6H2tpaJq1pNpvxq1/9Cp///OdRWFiIo0ePYmVlJSWR3X/8x3/grrvuwgMPPIC+vj6cP38eN954I6anp2P6eQmBjJKriWQNTdM0hoaGYDAY0N3dLdiNWV1dxfb2Nnp7exnrgdzcXHR2diZ0miNpgNe85jX7rp+0TXd2dqK0tDTl0jNLS0tYXFzEsWPHGDkedleOwWCAz+djTrCZtMHyAZmhIXbYydQc+FpiHzTIjAkZZkxH5MWe6bFarSEWEkL49JAWfGLDnS0gUbLJZILFYgnr2kpRFAKBAObn55mmHLYlNvm/FEVhYGAAt99+O1wuF9bW1tDe3o53v/vduPvuuwW75r6+Ppw8eRLf+973AOztB8Qh9B//8R8Fe51IyHiy8fv9GB4exu7uLqRSKV796lcL9nobGxtYXV1FY2MjhoeHUVtbm5QKsN1ux+XLl/G6172O+VkwGMTo6ChsNht6enpCFGxTQTREr81isaCrqytimzbbVdFoNGJ3dzdkg83kQiWp2clkMnR2dgo+S8Lu4rJYLFCpVMx9SaV+Fhuk9ZfPjMlBge3TYzQaQdN0UjM929vbGBsbw7Fjxw7kZJ0qsKNBk8kEl8vF1GacTidMJhN6enqg0WhCOtwIyD7w13/917juuuvwwQ9+EE888QQMBgNuu+02Qa7R5/MhJycH//3f/423ve1tzM/PnTsHm82G3/72t4K8TjRkdBqNHW0cPXoU4+Pjgr6eVCqFy+WCXq9HR0dH0iE8t7uNDJpKJBKcPn0aSqUypdYAhJgDgQD6+vr2DTqywa1nsOs8c3NzzAmWaE5lwmYHvCyumsoZGm4XF6lnjI6OHsjQJBHUPHToEA4dOpQx956PTw+JemI1X2xubmJychLHjx+PS1w3E8FVeCCGgsvLy3C73VCpVFhbW4vaWk3UT9rb26HT6fCud71L0Gs0mUwIBoP75urKy8sxNTUl6GtFQkaRDRtco7Pd3V1BRC4JKIrC6uoqfD4fTp8+LcjMCWk4IGmZgYEBFBcXo6OjQ5BGgGhwOp3Q6/XIzc1FV1dX3Ll9UufhmqARJ0u2CVq66jzEMryysjLlPjQExJq4rKwsZINdWlrC+Pi44JbYpH6RzkI5H0Sb6Zmfn48607O+vo7p6Wl0dnYmNLKQ6dBoNPD5fAgGg+jr62NSbuzWanJf8vLyQFEU/uVf/gUWiwVnz55N9+WnDBlHNuz6xrFjx5g8bqJ+NuFAFJv9fj+USqVgw43klL21tYWxsTE0NTUxToIURTE5WqFhtVoxPDyMqqoqQVIu7BMsu84zMzMDr9fLFEUPcm6FRBbp8qEB9m+wbrebsUkQwhJ7c3MTExMTGWmBEAvcaJA9u+L3+5nZFZ/Ph8XFRZw4cSIj1beFwMLCAlZXV9Hb28s0rbBbq00mE7a3t/HFL34Rzz//PIqKijA/P49nnnkGXV1dKbmmkpISyGQybG9vh/w8VRbQ4ZBRNRufz4fBwUHY7XZ0dXWFGJ15PB4888wzuOGGG5LasMnpuLCwELW1tdDr9Xjta18rxOXD7/fjySefhEwmw/Hjx1FWVpbSRgBgr+5E5oFSfRJmzyEYjUbY7XYUFBQwum2pqvNksg8NATsaNJlMAOKzxF5dXcXs7CyOHz++zxY9G7BkdkG/toNqrRq99S8TLXumZ21tDR6PBzk5OaioqEjrTE+qQKwsenp6YiqMm0wm3HnnnXjssceQn58Pv9+PG264AR/84Adx4403Cn5tfX19OHXqFL773e8C2Mvu1NXV4fbbbz+QBoGMimzcbjfjD8M9MZMvKx9Bu0ggrcdNTU1oaGiA0+kULDUXDAYxMTEBAOjq6kJxcXHKO87m5+exurqKEydOHEg6gjuH4PV6GeKZn5+HWq0OKaQn+56jzdBkGhK1xGZ77XR3d6fUtC5VmDU4cNd/j8Pq8kMll+Ijr27AO7v2rA5IbZAMNnZ1dTHyQuma6UkVlpaWeBMNTdN46KGH8Oyzz+L5559HT08PBgcH8Yc//AEWiyUl13fXXXfh3Llz6O3txalTp3D+/Hk4nU68//3vT8nrcZFRn2xBQQF6enrC/o7kfIPBYNxFWbYGWWdnJ9P5QuZsaJpOamP0er0YHBxk/lutVjMpv1QQDSkm7uzs8JovSRVUKhWTOiGOigaDAcPDwwDAbK6J1HninaHJJMRjib21tcW032eL1w4Xz85ZYHX5UZavhMnhw2Pj2wzZkAMDSSuR91hVVRV1pkdIhfODwMrKChYXF3kTzYMPPoh7770Xjz32GE6ePAkA6O3tRW9vb8qu8d3vfjeMRiM+97nPYWtrCydOnMDjjz9+YGK8GUU20UDqHfHWbdgaZH19fSEPAtkA+RgbRQJRNCgsLERHRweefvppOBwOqFSqlDQCkGlyYC8szpTZGOKoSArpbJXd0dHRqHYAXLBnaLLZh4aArcXFtsS+cuUKaJpGWVkZ3G43NBpNVp7si3MVkEok2HEHEKSBsvy9z5cc8jY2NkLqFwThjPPYpCz0TE+qsLq6ivn5eXR3d4ek/sOBpmn8+Mc/xhe+8AX87ne/Q39//wFd5R5uv/123H777Qf6mgQZ9WTH2phjedpwQdpklUpl2NQcO1pKhGzIKb6xsRENDQ2gKAplZWUYGRmBWq1mahlCtQ47HA7o9XoUFBSgo6MjY6f/JRIJCgsLUVhYiObm5n12ANH0ydgzNL29vVntxxIOCoUCpaWl2NraQk5ODhobG2G321NmiX0QeNPRcswYnHhu1owjlfm47dUNoGkaMzMzTNTGp55HjPPq6+tDZnqIVEwm+vSsrq5ibm4O3d3dMRuNaJrGv/3bv+Ezn/kMHnnkEVx77bUHdJWZgYxqEAD2NptIl/TnP/8Zx44d45W7t1gsTJtsJBdKmqbxxz/+Ea9+9avjCtlJnn1+fh7Hjh1DeXl5SH2GPZthNBoZiZiysjIUFRUldEIzm80YGRlBbW1tQv4emQLSBmowGEIGJsvKyqBUKq9qHxpgL9LW6/WgKApdXV0hmya7+WJnZycjxDHDIUjRoEFDHuHzoWmaSYH29PQk3RLObjk3mUwhCg98ZnpShbW1NczMzPCqtdE0jf/4j//AnXfeiV/96lcpaQDIdGQV2Tz//PNoaWmJOW1MPG74KDY/8cQT6O/v510ToCgKY2NjMJvNTNgcrRGAbQVgMBgQCAQYD5ri4mJeJ7S1tTVMT0+jvb09o7SjkgWblMm9yc3NRVNTE68OrmwD6bZUKpXo7OyMGpmyLbHNZnPGaNo9MrKF7z+7BJqm8fevOoR3nKgM+T3x27FarczUvNAIp/Bw0IKqZFaoq6sLhYWFMf/+17/+Nf7+7/8e//mf/4mbbrop5deXicgqsrlw4QIOHTqEysrKsL9ne9zw7V568skn0dvby2vWhmwW5FRKVF/5dpyRYU+DwQCj0Qin0xlSy+CmTYgj48bGBjo7O3k91NkIo9GIkZER1NTUQCqVwmAwwOPx7PMVyWYQQc28vLy4oza2JbbRaIxpiZ0qGHa9uOVHA/D491LZaoUMP39/N6q0auY6JyYmsLOzg56engP5zNgzPSaTKWSmhygzCw2SDuY7K/Too4/iAx/4AH7xi1+ESMW80pBVR8doNRtSOPf5fHEpNvM1PCNaVVqtFkePHmXc9wD+HWcSiQQFBQUoKCjA4cOH4XK5YDAYsLW1henpaaaWUVZWBrVajbGxMTgcDpw8eTKjtcqSAYnajh49ynTFsOs8xFeE2D6XlZVllQ8NsJceGxwcRHFxMdrb2+O+9ngssfPy8lJ2b+yeAAIUDY1CBokE8AVo2N0BVGlfjvidTid6e3sPjAC5fjRkpmd9fR2Tk5PIz89nop78/Pyk7w15HvkSzWOPPYYPfOAD+MlPfvKKJhogA8lGIpFEjGwiqQgQDbW8vDx0d3fHlX7h40FDpHMOHTqExsZGJpoBkFTInpOTw+hf+Xw+Jp00Pz/PGDEdOXIkJbLu6UasGRpSLGbfG2L7nA5hzERBuhWrq6tx+PDhpDe7aJbYS0tLUCgUISklIdNtDcU56K3T4qVFGwAaJ+t1OFyWA4qimO7Bnp6etHVIhvPpIRGPEDM9W1tbmJycRGdnJ++syblz5/CDH/wAf/EXf5Ho27pqkHFpNL/fHzHSGBkZYXL6BFwNtXi/zC+++CKamprC9poTqf65uTkcPXoUFRUVKVcEIBFUTk4O1Go1TCaTIA0GmQSKojA5OckoU8czQ8P2oTEajaAoKmSeJ5PqPBaLBcPDwym1OGaDoigmpWQ0GlNiie0NBPHCvBU0aFzTVAS5BBgeHobf70d3d3fGdIlxwZZdMplMcc/0bG9vY3x8nLfCw7PPPot3vetd+O53v4tz585lVSSeKmQV2YyPj0OhUKClpSWkI+zo0aMR6zixcPHiRdTW1u4rvJP8s9FoZBoB2PavqXh4iP7XoUOH0NDQAIlEIkiDQSYhEAhgZGQEXq9XEB8aMqlvNBrhcrmi1sAOEsSnpbW1FdXV1Qf++uEsJOKxxA5SNP4wvo11mwdnG4twrHr//EgwGAzprMskoo8FMtNjMpli+vQYDAaMjo7yVqh+4YUX8M53vhPf+MY38KEPfUgkmv9FxpFNIBCImNaampoCRVFobW3F+Pg40xGWjJDmlStXUF5ejtraWuZnZNYjGAwm1AiQCFZWVjA3NxfVRCreBoNMQ6p9aMK1DpNZp1TWMrggenXsOlS6wbbENpvNjCpzpA6u7/95ET+7uAaK3qvRfO/dx0IIJxAIMPYZJ06cyCqi4cLv9zPRsslkCpnpAYCJiQnenjuXLl3CzTffjC9/+cu47bbbRKJhIavIZnZ2Fk6nE263GwCSPhkDYEQ5SZrD4XBgYGAgZNaDRFqpiGgoisLMzAwjHxGPNhZpMCCbK7vBINMaCsiArVarRUdHR8pTgexahtlsZoYpU90eSw4NmSyfz05FEp8TriX2Ox68jI0dD/JVMux4Avi7M3X4+1cdArC3OQ8NDUEul8ds4c42sGd6tra24Ha7kZubi6qqqpgzPYODg3jLW96Cz372s/j4xz8uEg0HWXUc8fv9MBgMqKioEGyCnm14ZjQaMTw8jLq6Ohw+fFiwRoBIIFI6brcbfX19cc8ksBsM2MOSCwsLKVEwSBREaVsoCwQ+UCqVqKqqQlVVVcjmOjY2xhigkTqPEBEWWwOsp6dHMNuKVIDbwUUssVdWVjAxMbE3MKmmsGqlsOvdO2RV6/aeTdL+r1KpcPz48auKaICXbST8fj9WVlbQ1tYGiUTCiKpGmukZGRnBW9/6Vnz6058WiSYCMi6yCWcNDeylJkZHR5GTk4NrrrlGsA9zbGwMSqUSKpUKMzMz6OjoQGVlJeOkl6q0GXHxVCqVOH78uKApJbbcPVEwIMRz0A0GpA51+PDhmAO2BwH2yZWkIiMpMsez5vT0NAwGA7q7u7NKNJQLMjA5vbKN/ze0A5NXgrP1ebj11Y3Iz8vF0NAQcnJycOzYsaxvVIkEs9mM4eHhfSlt7kzP6OgoHn30UZw4cQL/9m//ho9+9KP43Oc+JxJNBGQ82ZDBxpWVFdTU1GBnZwd9fX2CvR6ZdvZ6vUz9J9UdZzs7O9Dr9SgtLY0opSMUuA0GJGVSVlaGkpKSlObaiZxHR0dHxtQuuHC5XAzx2Gw2RiKG71wGRVGMAneqJubTBa7skt/vh1qtRlNTE0pLS7OuOYUPLBYL9Ho92tvbozYdkQPGt771Lfzyl79EMBhET08P3vzmN+Mtb3kLuru7D/CqswMZTTaBQADDw8NwOp3o7u6G0+nE/Pw8zpw5I8hr+Xw+vPjiiwgGgzhz5syBNAKQLqXGxkbU19cf6CkoUoMBiXqEGsTjeu1ki/IBWyLGZDLFrPMQdWrSWXdQg4wHDY/Hg8uXLzPzPSaTCU6nU3BL7HTDarViaGgIbW1tvGSh5ubm8IY3vAF/9Vd/hU9+8pP44x//iN/97nfweDx45JFHDuCKswsZRzYURcHv9zMFZZVKhRMnTkChUDA2s6961auSfh0yCEoGwY4fP87UblLRCEDTNJaXl7GwsICjR4/y6mxJNVLRYJDMDE0mgcyskFM9iQhJeywAxuqBPJ9XI9xuN65cubJP/YBtiW2xWJK2xE43bDYbBgcHebeqLy4u4o1vfCPe9ra34fz584JnJ77whS/gX/7lX0J+1traiqmpKQB7B4BPfOIT+OUvfwmv14sbb7wR3//+90MyCCsrK7j11lvx9NNPIy8vD+fOncNXv/rVtHUOZmSDgNlshl6vR1VVFVpbW5kPMpKCQLwwmUzQ6/Wora2FQqGAzWYLkZ4RGkSzzWg0ore3N6bnxUEhWoOBRqNhiIev4jB7hubkyZMZ34odDWTavKSkBG1tbUxEuLS0hPHxcUilUqjVasHrbZkEp9OJgYEBlJeXo6WlJeQZ0Gg0jEcPu0ZIjPPiscRON2w2G4aGhtDS0sKLaFZWVnDTTTfhTW96U0qIhqCjowN/+tOfmP9m38ePf/zj+P3vf4//+q//glarxe233453vOMdeOGFFwDsRd033XQTKioq8OKLL2JzcxN/8zd/A4VCga985Sspud5YyLjIxmAw4NKlS2hrawuZfQH2pusvXryI66+/PuH1V1ZWMD09jSNHjqCqqgpbW1sYHR1FcXExysvLBffK8Pv9GBkZgc/nE6RV+yCQSIOB1+vF0NAQFArFVb0Bk5O+QqGAXC6HzWZjnDfLysoE0d/KBJARgKqqqrhkdsIN2ibbgJFK7OzsYHBwEIcPH96334TD5uYmbrzxRrz61a/GD37wg5R1433hC1/Aww8/zETPbOzs7KC0tBQPPfQQI4MzNTWF9vZ2XLhwAadPn8Zjjz2GN7/5zdjY2GCinQceeACf/vSnYTQa0yIplHFHjqKiIpw6dSps62gyNs5sReje3l7odDoEg0Hm9YxGI5aXlzE+Pi5YHcPtdmNoaAgajQYnT57M+BMegVwuR3l5OcrLy0MaDCYmJsI2GDidTgwNDR3YDE26QFKvZWVlaG1thUQiCanzDAwMhLQVZ6u00O7uLgYGBlBbW4vGxsa4vmvxWGKnuyWf6NY1NTXxIpqtrS286U1vQn9/f0qJhmB2dhZVVVVQq9Xo7+/HV7/6VdTV1WFgYAB+vz/k0N3W1oa6ujqGbC5cuMB4bRHceOONuPXWWzE+Po6urq6UXns4ZNzuJ5PJIs4oyGQy0DQdN9n4/X7o9Xp4vV709/dDrVYzHWcymYwR72tsbITb7YbBYGDUXbVaLWN3HM+pzGazQa/Xo6KigtmYshFsxeHW1lYmnbS4uIixsTEUFBRgd3cXVVVVzEzC1QgyK1RTUxNiXqdQKFBZWcm0yxNinpycZLTJCDFnQ7RHNuD6+no0NDQkvV4kS+yhoaGkhTGTgd1ux8DAABobG3m15BuNRrzlLW/BiRMn8OMf/zjlRNPX14ef/OQnaG1txebmJv7lX/4Fr3rVqzA2NoatrS0olcp9A+Dl5eXY2toCsEeM3A5Q8t/kbw4aGUc20UA+4EAgwDsMJPLuOTk56OvrC1F5DtdxptFoUF9fj/r6eni9XqZleHZ2lmmLLS8vjzpJvLW1hfHxcTQ3N2fEbIlQ4FokrK2tYWpqCmq1Guvr69jd3c1YBYNkQOYuYs0KhSNmdsSc6d1bpHZBOiWFhkKhQEVFBSoqKhhhTJPJdOCW2ETstqGhgdf7NJvNeMtb3oKWlhb8/Oc/PxBSfOMb38j8/8ePH0dfXx/q6+vxn//5nxmXiuSLrCSbWJYABKTRoLq6Gi0tLcygJsCv40ylUqGmpgY1NTVMuoQUiVUqFcrLy0Mm9Ik46PLyMm/RvmwFmaEhoTohZqPRmHCDQSaCtKrzbYclYBNzU1MT071lNBoxOzvLpJNKS0sz4v5YrVbo9XretYtkIZVKUVRUhKKiohCPHuLtlCpLbFKLqq+v56XEbbPZcPPNN6Ourg7/8R//kbboVKfToaWlBXNzc3j9618Pn88Hm80WEt1sb28zQ6gVFRW4dOlSyBrb29vM79KBjCObaA+VRCLh5T8DvGwN3d7ejurq6qQHNdnpEjLsZjAYGGHJkpISuN1uxjwqPz8/7tfIBrBnaNiWuGxiJg0GBoMBg4ODaVUwSAbE+leIVnV29xY7nUTuTzotn0nk1tLSgpqamgN9bQK2fxG7DkZ8aIS4P4Ro6urqeKUI7XY73v72t6O0tBT//d//nTafHmDv2ufn5/G+970PPT09UCgUePLJJ/HOd74TADA9PY2VlRX09/cDAPr7+/HlL38ZBoOBeXafeOIJFBQU4MiRI2l5DxnXjQZEt4Z++umn0dXVFVGwkqZpTE1NYWNjg9kMU6kIQFEUjEYjpqam4Pf7mQIxsQC4mrSjEpmhSaeCQTJYWlrC4uIib6OsRMG+P2wPGnKqT/UGZzKZMDIyEnfkdlAQyhLb6XTiypUrTM0tFhwOB97+9rdDpVLh97///YGnrv6//+//w1ve8hbU19djY2MDn//856HX6zExMYHS0lLceuut+MMf/oCf/OQnKCgowB133AFgz58L2Mv+nDhxAlVVVfja176Gra0tvO9978MHP/hBsfWZjWhk8+yzz6KjoyOsom4gEIBer4fb7WY80FOtCEA6sfLz89HR0QGHwwGDwQCDwQCv18t4z2RLgTgShPChYeuSGQwGxn9GaAWDZEAit7W1NcbH6CBfm3jQGAwGOByOPVHM/z28CF3nISnCaLYWmQSapkNsJOx2Oy9LbEI01dXVIc0dkeByuZiI4fe//31aBpNvueUWPPvsszCbzSgtLcU111yDL3/5ywxRkqHOf//3fw8Z6mR/jsvLy7j11lvxzDPPIDc3F+fOncO9996btgNe1pHNCy+8gObm5n1pDaI4QAbt5HJ5ShUBgJedGGtqavbNIpCNgxBPqqRhDgLsGZrOzk7BHlau/0y6LRJomsbk5CTjk5TuJgePx8PcH/aUvhBK3tvb2xgbG+Pt05KJCGcjwbXEdrlcuHLlCiorK3nNC7ndbrz73e+Gy+XC448/njED2FcDMpJsorl1vvTSS6irqwsJ+S0WCyNh39LSAgAp9aABXjbIam1t5ZXn5krDJNpSfdA4qBkadoOBxWI58AYDiqIwNjaG3d1ddHd3Z9xnEm7QNtE6xubmJiYnJ3Hs2LGrpoklnCW2TqfDzs4OKioqeLXle71e/NVf/RXMZjP+53/+Jy5vKRGxkXVkw3XWXFtbYzb92tpapj4jkUhSsjGyC+THjx9PyCCL3VJtsVgYR0lyok93ZxIBmRWqrq6Oa4o8WbAbDEwmU8obDILBIIaHh+Hz+dDd3Z3WQjAfkLZhQjxer5ep85SWlka9ftL0kMnmbsmCpmmYTCaMjY1BKpXC7/fHtMT2+Xx43/veh7W1NTz55JMprdO9UpF1ZEOcNevr6zE9PY319XWcOHECRUVFKbcGCAaDGB8fh91ux4kTJwTJ5bJbqk0mE2N6lu6WYZLPT7cPTbgGA5IqEaLBgLhOSqXSrLQ3JnUMEjXv7u4ydR6ysRKsrq5idnY2pIvwaoTH48GVK1dQUlKC1tbWfek2Yoktl8tRU1MDmUyGD3zgA5iZmcFTTz111UR7mYasI5uRkRGo1Wrs7u7C6XSip6cHOTk5KScar9fLiAyeOHEiJadfdku10WiETCZjiEen0x1Yy3Cm+tAI3WDg9XoxODgIjUaDY8eOXRWdg8T8jETNGo0GZWVlCAaD2NjYQHd391WdHiJEU1xcHDZ1xnZtvffee/GHP/yBUan+05/+hPb29jRd+dWPjCSbQCAQcZZmZGQERqMRBQUFTLGaoihGwiYVRONwOELqFgexKZETPWkwoGmaOa2mqqU623xowjUYEOKJVdwnDSU6nQ5HjhzJmtmfeEDSkYuLi9jd3YVcLmfuz9XWlg/sHR6uXLmCwsLCEDuESPD7/XjXu96FK1euoLa2FuPj4+jv78dtt92GW2655YCu+pWDrMoZWK1WbG1tIScnh3HCS3XHmdlsxsjICOrq6uIWJUwGbOmTtrY27OzswGAwYGZmBj6fT3DNLfYMzcmTJ7PCh4Y9CMhuMJibm2M6t8KlI4lcSUVFxT7p/KsJMpkMDocDHo8HfX19CAaDzDNE5lXIM5RN3ZHh4PV6MTAwAJ1Ox4toKIrCXXfdhfn5eej1etTV1WF9fR2/+93vMr5ml63ImshmfX0dExMTKCwshFKpxJEjR5j26FSdStfW1hg7gmgWsQeJaC3VZWVlCX1RhJihySRwGwzYg7YSiQTDw8OM0OTVSjQ0TWNubg4bGxvo6ekJOTyEm1eJVUDPZPh8Ply5cgUFBQXo6OjgRTSf/OQn8Yc//AHPPPOMIIKjsXDvvffiM5/5DD760Y/i/PnzALLTAC0ZZOQVc+dVZmdnsbKygq6uLuzu7sJkMqW0PkNek+S4MymdRJxF8/Pz0dTUxLRUb2xsJKRSzZ6hySYbhGiIZJEwOjrKdCaROt/V8H65oGkaMzMz2N7eRm9v776UokQiYSyeGxoa9unaqdVqhngy3XXT5/NhYGCAGarmQzT/9E//hEcffRRPP/30gRDN5cuX8eCDD+L48eMhP89GA7RkkJGRTTAYRCAQYE7cDoeDGbIj4prs4nlhYaFgX4hgMIjR0VE4nU50dXVlpDpvJJAhQIPBAKvVGrOlmihiFxYWXrV1C4Lt7W2Mjo6isbERFEVlrIJBsiByTSaTCb29vXHPC5EmFUI+ABgVjEyr8xCiyc3NxdGjR2M+vzRN4wtf+AJ+/vOf4+mnn0ZbW1vKr5HsXd///vfxpS99CSdOnMD58+ez1gAtGWQs2ZC8OplaVygUjPQMsDcDsr29DaPRCJqmmU01mTkMj8cDvV4PuVzOvGa2wu/3M8RjNpv3tVTv7OykZYYmHWArVLPbWpNpMMhE0DSNiYkJWK1W9PT0JD2YStN0yDyPx+NJSJcsFfD7/RgYGGA6CfkQzVe/+lX84Ac/wFNPPYWjR48eyHWeO3cORUVF+Na3voXrrruOIZunnnoKr3vd62C1WkO6A+vr6/Gxj30MH//4x/G5z30OjzzySIhb5+LiIhobGzE4OJgWA7RkkJE5hJ2dHVy8eBFlZWVMKyLXg4YUz2maZrq2iJNkIkKYu7u7GBoaQnFxMdrb27P+lK9QKFBVVYWqqioEg0FmzmBwcBASiQSBQGCfEdjViMXFRSwtLYWdLUm0wSATQVEUxsfHsbu7i97eXkHqbhKJBIWFhSgsLAyxASAp23TVefx+PyNNxZdo/s//+T+4//77D5RofvnLX2JwcBCXL1/e97tsNUBLBhlJNjKZjLFqJW3NQPhGAIlEwvhitLa27uvaKikpQXl5OUpKSiISD8nnNzQ04NChQxm/scQLmUzG1DBWVlYwOzuLoqIibG9vY2tri9lU0yFvnyqQuhuxAY9l+RDNIoHdYFBYWJhxBxGKojA6OgqXy4Xe3t6UpVfY5Ozz+ULqPCqVKqTOk6p7RIhGqVTi+PHjvIjmO9/5Ds6fP4//+Z//QWdnZ0qui4vV1VV89KMfxRNPPJH1DTdCISPJJj8/HyqVKu5BTa7/ObEwnp+fx9jYGIqLixniUSgUoGkaq6urmJuby7gBRqHBVjPu6emBTqcDTdMMOU9PTzPknOny/7HAbuMOVyCPhXANBgaDAePj44IrGCQLiqIwPDwMr9eLnp6eA8vjK5VKVFdXM15RpM4zOjoKmqaZe1RcXCzYPQoEAiGCsHyI5oEHHsB9992Hxx9/HL29vYJcBx8MDAzAYDAwIxrAXnbm2Wefxfe+9z388Y9/zEoDtGSQkTWb0dFR5OXlMWkwISIN0i68vb3NtAtTFAWHw4ETJ05c1VPVFEUxufxIasbhWqqJ3laiLdXpADnlO51OdP//7Z15VFPXvse/CZMohHm0gigggihToWjValEmJVhr1WsrUmtXW73q1WrRV/G+23rV633W2quifXVYtbYO4ACi1gGxDkVNAAEFqSKISMIg85hkvz+6znkEUCNkhP1Zi7Xa5JDsE8n5nr337/f9+vkp9a5S2yISGE83iUQCX19frdhjZG5gmFkP8xn1Nu6ZERrGVuhlM3BCCPbu3Yv/+q//wunTpzF+/PgevW9Pqa+vR3FxsdxjsbGx8PDwwBdffIEhQ4bAxsYGP//8s1wAmoeHR5cCgadPn7LO3Hv27MGqVasgFot1rqBFK8Xmr3/9KxISEhAcHAw+n4+oqCg4OjoqbXmrrq4OOTk5aGlpASEEFhYW7Oa5rv0Dvgymoq+trQ2+vr4Knx9TUi0Wi1FXVwczMzM2BlvbHJEZJBKJ3MVX1QLJ7GEwn5E6CwykUikyMzNBCIGvr6/GZ1jPo3MRhiL5M52RSqVsoqmiQvPjjz9i1apVSE5OxltvvaWks+kdHQsEAOhkAFpv0EqxYZa3EhMTcfz4cdy4cQMBAQHg8/lsHnhPhae5uRlZWVkwMjKCt7c321UtEol0yvpfEZSVQ/OikmptcRpoa2tDZmYmW0mo7otvxwKDqqoqlRYYvOpdvrbQ0RCzsrJSoX0eRlQBwNfXVyGhOXz4MJYuXYqkpCRMnTpVJefSEzqLjS4GoPUGrRSbjhBCUFZWhuPHjyMpKQm//fYbxowZg+joaPD5/FeykGHKfW1tbTFixIguf9ytra3s3fyzZ89gamoKW1tb2NnZ6VS/DaC6HpqXlVRroriipaUFQqEQgwYNUqg6SdW8yMGgtwUGzAY5cwOhK0LTmY6GmBUVFZDJZF32wqRSKbKysiCTyRSevSUmJuKTTz7BkSNHEBkZqYYzoSiK1otNRwghqKiowIkTJ5CYmIi0tDSMHDmSFZ4RI0Y892InEomQl5eH4cOHKzQzYqptmIvqoEGDWOHRdjsPdeXQMCXVzEVVX1+fvaiqy6WaEVVLS0utLFnvWGBQUVHRqwKDtrY2CIVCGBkZKbRBriswe2HMZ9TU1AQLCwu0traCy+UiICBAoc/p1KlTWLhwIX766SdER0erfuCUV0KnxKYjTH/NyZMnkZiYiAsXLmD48OGIiorCjBkz2Lt5mUyGq1evQiKRYNSoUT2KwO0uc8bOzg62trYwNTXVKuFhcmjc3NzYgDl1wCQlMhcMxqValSXVTOOvg4MD3NzctOrfoTu6KzDoGHr2ov00Jg5h4MCBWjF7UyUNDQ24c+cOWlpaIJPJYGJiwv4tPW+fJzU1FTExMdi/fz9mzZqlgVFTXobOik1namtrkZycjKSkJJw9exavvfYaIiMjkZmZiYcPH+L69etKSd9j7uZFIhEqKythaGjILiP1Nhe+tzDhWD0VVWXBdJ4zS5Lt7e1KL6l+9uwZsrKyMHToULX4W6kCRQsMmGVCxv+rLwuNTCZjTWH9/PzY1E1mL8zAwIBNbOXxeBgwYAAuXLiAuXPn4vvvv8fcuXO1/qajv9JnxKYj9fX1OHLkCNauXYuKigo4Ojpi5syZmDFjBgICApT2ZWXWnRnbHFX5tb0MxuGXSS3VpjJupqSa+YyYkmrmotqTijGmn8Pd3R2vvfaaCkatfrorMGD2wQoKCmBpaQlPT88+fSFlytabm5vh7+/fpZRbKpWyS5IXL17EV199BQ8PD+Tm5mLr1q349NNP+/Tno+v0SbF58OABpk2bBjc3N/zv//4vrl27hsTERKSkpMDU1BRRUVGIjo7GG2+8obTlHWZtXiQSQSwWAwC7x6PKrnNFemi0ic538+bm5qzwKFL99/TpU9y7d69PN+EyBQZlZWVsgYGDg4PWOhgog5cJTWekUil2796NNWvWwM7ODmKxGBMnTkRUVBQ+/fRTnazW6uv0SbG5cOECzpw5g3/9619yYtLS0oLz588jKSkJp06dgqGhIaZPn47o6GiMGzdOaU1xHf3axGIx69dmZ2en1P0Lpq+kvb39lXpotIXOJdVM9R/jUt0ZZplwzJgxsLKy0sCI1UdjYyMEAgG79MjMepgCA8b7ry9cVGUyGXJzc9mYd0VmuxkZGYiOjsaGDRuwePFiPHr0CKdOncKtW7fw448/0hmOFtInxUYR2tvbkZaWhmPHjuHkyZOQyWSIjIzEjBkzMHHiRKU1BHa0hBGJROz+xcv82l4G00PDeETp+kWH6cFgqv+MjY3ZGY+pqSkePXqE4uJi+Pr6atUyoSpoaGiAQCCAo6OjXDVhbwoMtBVCCHJzc1kDUUW+dwKBAFFRUYiPj8fy5ctVJiy7du3Crl278OjRIwCAl5cX4uPjER4eDqD/hZ/1ln4rNh2RSCT47bffcPToUZw8eRJNTU2IjIwEn8/H22+/rTTLE0II69cmEonQ0tIit3Gu6Myqr+fQdOxTYTJVCCHw8PBQqpOENlJfXw+BQIAhQ4a8tIdMkw4GyoAQgry8PNTV1cHf318hsczOzkZkZCS++OILrF69WqV/C8nJydDT04ObmxsIIThw4AC2bNmCzMxMeHl54dNPP8Xp06exf/9+NvyMy+XKhZ/5+PjA3t4eW7ZsYcPPFi1apJMOAL2Fik0npFIprl+/zroX1NTUICwsDNHR0ZgyZYrSmjuZaF5mj0fRjXOmh6Y/xAMwtvnV1dWwsLDAs2fP5Eqqrays+pTQ1tbWQigU9qjC7nkFBjY2NloZkcBk79TU1CAgIEAhocnLy0N4eDiWLl2KdevWaeScLC0tsWXLFrz77rv9Lvyst1CxeQEymQw3b95khae8vBxTp05FdHQ0QkNDX2pb/yo0NTWxwlNfX9+tX5umemg0AZOY2tzcDD8/PxgZGamlpFpT1NTUIDMzE8OGDYOzs3OvXkuVDgbKgBAi58qtyMpBfn4+wsPD8dFHH+Hrr79Wu9BIpVIcPXoUMTExyMzMRHl5eb8LP+stVGwURCaTITMzE4mJiUhKSkJxcTFCQkIQHR2NiIgIpd49Njc3sxdUxq/N0NAQlZWV8Pb21mgPjTqQSCRyNiXdLS92XJIUi8Vobm6Wc2DWpbvG6upqZGVlqeQm4nkOBpoqMGBiq6uqqhQWmsLCQoSHh2PevHnYvHmzWsUyJycHwcHBaGlpgYmJCQ4dOoSIiAgcOnQIsbGxaG1tlTs+MDAQkyZNwubNm/Hxxx+juLgY586dY59vamrCoEGDkJqayu799Bd091ZQzXC5XPj7+8Pf3x8bNmxAbm4ujh07hm3btuGzzz7D5MmTwefzERkZCUtLy14Jj7GxMZydneHs7IyWlhbk5eWxexdFRUVoamqCra2tzvm1KQJjyWJoaPhC40UOhwMejwcejwdXV1c0NjZCLBajtLQU9+7dY0uqbW1ttTq8qqqqCtnZ2RgxYgQGDx6s9Nfncrlsqq2HhwdrC/PgwQPk5OSotcCAEIKCggJUVlYqLDRFRUWYNm0a3n33XbULDQCMGDECWVlZqK2txbFjxxATE4P09HS1jqGvQGc2vYT5AjEznpycHIwfPx7R0dGYPn06bGxseiw8nXtoDAwMuvi1MbY52uK+3BtaWlogEAhgamqKUaNG9fjC0tLSws54ampqXlpSrSmY5tSRI0fCwcFB7e+vzgIDQgju378PsViMgIAAhXqqSkpKEBYWhrCwMOzcuVPjy38AEBISguHDh2P27Nl0Ge0VoWKjRAghePjwIY4dO4bjx49DIBAgODgY0dHRiIqKgoODg8LC87IeGsavTSQSyZUKa6NfmyIwFXZWVlYYOXKk0sbf0VC1urpaaz4nsViMnJwcjBo1SiuaU5kCA+ZzUmaBARPRXV5ejoCAAIVm5GVlZQgNDcVbb72FPXv2aI279eTJk+Hk5IRvv/2234Wf9RYqNiqCEIKSkhIkJSUhKSkJN27cQGBgIJvJM2TIkOd+gVtaWpCVlaVwDw2zIayNfm2KUFdXB6FQqPIKu86fk4GBAfs5mZubq+1zKi8vx927dzXuYfc8JBKJXO5MbwoMGCulp0+fwt/fX6EZU3l5OcLDwxEUFIR9+/ZpTGjWrFmD8PBwODk5ob6+HocOHcLmzZtx7tw5TJkypd+Fn/UWKjZqoGMmT2JiIq5evQofHx82GsHFxYW90JWVleHBgwc97qFh8uCZDWFN+bUpSnV1NbKzs5VShfUqyGQyVFVVsXfzANg7eVWWVJeVlSE/Px+jR4+GtbW1St5DmfS2wIDx7AsICFBIaCoqKhAREQFvb28cPHhQoxWGCxcuxMWLF/H06VOYmZlh9OjR+OKLLzBlyhQA/S/8rLdQsVEzhBCIxWI2k+fy5cvw9PQEn8+Hra0t1q5di7179yIsLKzXwtDR9l8sFoPD4bC2OdpQAsuUcqtqc1xRnldSbWdnp9SKrdLSUty/f19n7Xa6y515UYHBgwcPUFpaCn9/f4X2FKuqqhAZGQlXV1ccPnxYafZRFO2Aio0GIYSguroaJ0+exI4dOyAUCmFra4uFCxdixowZSg0D686vjZnxaKI5krnD17alJFWVVD9+/Bh//PEHfHx8YGFhoeRRa4bOBQZmZmas8IhEIpSUlCAgIEAhoampqcG0adMwePBgJCYm6lTpOkUxqNhoAf/5z38QFxeHPXv2QCqVIikpCefOncNrr70GPp+PGTNmYPTo0UoVns5+bcyafG/82hSlpKQEf/zxh07c4TMl1UyzbU9KqouLi/Hw4cM+7evWscCgqqoKADB48GAMHjz4pQUGdXV1iIqKgqWlJU6cOKHVpeqUnkPFRsNUVVVh/Pjx+OGHHxAcHMw+Xl9fj9OnTyMpKQlnzpyBtbU1+Hw+oqOjlZrJ8yK/NhsbG6WuLRNC2KUVX19fmJmZKe211UFPSqqLiopQXFwMPz8/8Hg8NY9Y/Tx69AhFRUVwcXFBfX09W2DA/D11Xr5taGjAjBkzMGDAAKSkpChUEk3RTajYaAFSqfSFs4mmpiacPXsWiYmJOH36NHg8HqKiosDn85WaydNTvzZFX7ugoABisRh+fn463xf0spJqQH7PQpnWRtpKSUkJHjx4AH9/f1ZYOxYYiMViyGQy1NfXo6qqCmFhYfjwww8BAKdPn9b5vwnKi6Fio2M0NzfLZfIMGDBALpNHmTORzktI3fm1KQJjqFlXVwc/P78+d/fKlAozXmQGBgYwNDREU1MTAgIC+oXQMHtSfn5+z52xMgUGSUlJ2Lx5M0pLS2FmZoZ//OMfeO+997Si34iiOqjY6DBtbW1ymTwA2EyeCRMmKHWTtTu/Nsa94EVr7FKplM2U18WAt1dFIpEgJycH1dXV4HK54HK57H6YpaWlxisAVQEjNIruSbW2tmLu3Ll48uQJ3n33XZw7dw43b95EREQETp06pfoBUzQCFZs+gkQiwZUrV9hMnpaWFkRGRiI6OhqTJk1S6qZra2srKzxMwiYjPB27w9vb21mrDh8fnz5fysq4GTMmk0ZGRmxJdUVFBSQSSZ9L2WTKuf38/BQSmra2NnzwwQcoLS3FxYsXYWlpCeDPuO/8/HxMmjRJKePauHEjkpKSkJ+fD2NjY4wdOxabN2/GiBEj2GNo+Jl6oWLTB5FKpbh27RobjVBbW4vw8HBER0cjJCREqQaezN6FSCRCdXU1TExM2AbSgoICGBkZYfTo0VpjN6IqmCAwJp+ls7h3Ttlsbm5m98Osra11stT3yZMnKCgogK+vr0Ll3O3t7YiNjUVhYSHS0tJU2tQaFhaGOXPm4PXXX4dEIsHatWuRm5uLu3fvssUcNPxMvVCx6ePIZDJkZGSwwiMSiRAaGgo+n4+wsDClbsoyfm1lZWWorq6Gnp4ehgwZAnt7e5iYmGide4GykMlkyM3NRUNDg8KJkw0NDazwdNwPs7Gx0YnSX6ZPysfHh52dvAiJRIKPP/4Yd+7cQVpamtr3ZyoqKmBra4v09HRMmDABtbW1NPxMzejcAvKOHTswdOhQDBgwAEFBQbh586amh6TVcLlcBAcH49///jcKCwuRnp4Od3d3bNiwAUOHDsWcOXPw888/o7a2Fr297zAwMICpqSkaGxsxePBgeHp6orm5Gbdu3cK1a9dw//59pbyPNiGTyZCTk4PGxkaFEycBwMTEBC4uLggKCsK4cePYRsirV6/i5s2bKCoqQmNjo4pH3zOYJa8xY8YoJDRSqRSLFy+GUCjEhQsXNFIIUFtbCwDseAUCAdrb2xESEsIe4+HhAScnJ9y4cQMAcOPGDXh7e8uNNzQ0FHV1dcjLy1Pj6PsGOrXwePjwYaxYsQIJCQkICgrCtm3bEBoaioKCAq3qQtdWOmby/POf/0Rubi6OHj2Kb775BosXL8bkyZMRFRWFadOm9chHrba2FpmZmRgyZAiGDRsGDocDe3t7Ob82oVDI9l3Y2dmp1QBT2XQsfvD39+/xna6xsTGcnJzg5OQkV1L94MED1n1Z0y7VDOXl5bh3757CDbkymQzLli3D9evXkZaWBkdHRzWMsusYli9fjnHjxmHUqFEA/jwPQ0PDLvtMdnZ2KC8vZ4/pLIzM/zPHUBRHp8Rm69atWLRoEWJjYwH8OaU9ffo09u7di7i4OA2PTrfgcDjw9vaGt7c3/vu//xv5+fk4duwY9uzZg6VLl2LChAlsJo+1tfVLL3JMCJirqyucnJzknutoBtrRry07O1vr/NoURSqVIjs7GxKJBP7+/korfjA0NGQ77zuWVN++fVtjLtUMIpEIeXl5ryQ0n3/+OS5duoS0tLQufxfqYvHixcjNzcXVq1c18v6UP9GNbzb+3IgWCARy014ul4uQkBB22kvpGRwOByNHjsS6desgEAhw9+5dhISE4Mcff4SrqysiIiKwe/duPH36tNslMJFIhKysLHYZ4kVwuVxYW1vD09MTEyZMgLe3N7hcLnJzc3HlyhU2lVQmk6nqdHuNRCJBZmYmpFIpG2qnCvT19WFvb4/Ro0dj4sSJ8PDwYHOOrly5grt376KyslItnxVjmqqoW7VMJsPatWuRkpKCCxcuwMXFReVj7I4lS5YgJSUFaWlpeO2119jH7e3t0dbWhpqaGrnjRSIR69psb28PkUjU5XnmOcqroTNiU1lZCalU2u20lk5plQeHw4Grqyvi4uLw+++/o7CwEHw+H4mJiRgxYgSmTp2K//znP3j8+DEIIdi+fTt++eUXjB49+pWXSLhcLiwtLeHh4YEJEybAx8cH+vr6yM/Px+XLl5GTkwORSASpVKqis3112tvbIRQKweFw4Ofnp7YSWCZTxsvLS06k7969i/T0dJV+VkyiqLe3N2xsbF56vEwmw9///nccPXoUFy9ehKurq9LH9DIIIViyZAmOHz+OS5cudRE7ZjZ68eJF9rGCggKUlJSwtlHBwcHIyclhIygA4Pz58+DxePD09FTPifQhdKYaraysDIMHD8b169flPMRWr16N9PR0ZGRkaHB0fR8mkycpKQmJiYm4du0abG1tUVFRga1btyI2NlZpyzqMXxtjm6NKv7ZXgREaAwMDjBkzRivKuTva/jOfVUeLod7OuioqKnDnzh2FE0UJIfjnP/+J77//HmlpafDy8urV+/eUzz77DIcOHcLJkyflemvMzMxYBwsafqZedEZs2traMHDgQBw7dgzR0dHs4zExMaipqWE76Cmqh9n03b9/P0aOHImsrCx4eXmxRqFubm5KFZ6Ofm1NTU2wtLSEnZ2dUi6mitLW1gahUIgBAwYo1YFb2TQ0NLDC09DQ0KuS6srKSty5cwdeXl4KC82///1vbN++HZcuXcKYMWN6ehq95nl/f/v27cOCBQsA0PAzdaMzYgMAQUFBCAwMxHfffQfgz4uek5MTlixZQgsE1Mjy5cuRlJSE8+fPw93dHdXV1WwY3MWLF+Hu7o6oqCg2k0eZG9nd+bUxwqMqK5zW1lYIBAKYmJhg1KhRWis0nelsMcTj8dgCg5c19jIFHyNHjoSDg8NL34tZUt2yZQt+/fVXBAQEKOs0KH0EnRKbw4cPIyYmBrt370ZgYCC2bduGI0eOID8/n5r4qRFGUIYMGSL3OJOTc+rUKTaTx8nJic3kYfYZlAVzMRWJRGx4lyJ+ba9CS0sLBAIBzMzMehTTrS20tbWxwlNdXY1BgwaxwtO54ba6uhpZWVmvJDQJCQn46quvcPbsWbzxxhuqPBWKjqJTYgP8GTS2ZcsWlJeXw8fHB9u3b0dQUJCmh0Xphrq6OrlMHltbW3apzd/fX6kX7paWFtY2p6am5pXu4p9Hc3MzBAIBLCws4OnpqfEeF2XBOD1UVFSgsrIShoaGcqXpTGWhIgUfhBD88MMP+PLLL5Gamoo333xTDWdA0UV0TmwoukljY6NcJo+5uTmbyRMUFKTUzfbOd/GMXxtzF68ITU1NEAgEsLa2hoeHR58Rms5IpVK274mpZrOwsICLi8tL+54IIfjxxx+xatUqJCcn46233lLfwCk6BxUbitphMnkSExORnJzMZvLMmDEDY8eOVerma3t7u1xcMRNyZmdn91y/tsbGRggEAtjZ2cHd3b3PCk1HampqIBQKMXjwYBBCIBaLIZVKYWNjAxsbmy5x4YQQ/PLLL1i2bBmOHz+OKVOmaHD0FF2Aig1Fo7S1teHSpUtsJg+Hw8G0adPYTB5lVpt1DjkzNDRk93h4PB44HA4aGhogEAjg6OgIV1fXfiE0tbW1EAqFcHV1ZffhuiuptrS0hFAoRFRUFNLT0/HZZ5/hyJEjiIiI0PAZUHQBKjYUrUEikSA9PZ3N5Glra5PL5FFmtVlHv7aKigro6+vD3NwcFRUVcHJywvDhw/uF0NTV1UEgEGD48OHPdX9gys8LCwsRGxuLBw8eAAAWLVqE9evXK1REQKFQsaFoJVKpFFevXmWjEerr6+UyeZQZLS2TyfD48WMUFhaCw+FAX1+f3ePRJb+2V4URmmHDhsHZ2Vmh30lNTcX777+P2bNno6ioCNevX0dgYCB2794Nb29vFY+Yosv0zW+Ritm4cSNef/11mJqawtbWFtHR0SgoKJA7pqWlBYsXL4aVlRVMTEwwc+bMLj5LJSUliIyMZJ19V61aBYlEos5T0Vr09PQwceJEbN++HcXFxUhNTYWjoyPWrFmDoUOHYv78+UhMTERDQ0Ov36uurg4PHz6Eu7s7Jk2axF40dcmv7VWpr6+HUCiEi4uLwkJz4cIFLFiwAPv27cOBAwdw5coVPHnyBLGxsUqf3Vy5cgXTp0+Ho6MjOBwOTpw4Ifc8IQTx8fFwcHCAsbExQkJCUFhYKHdMdXU15s2bBx6PB3NzcyxcuFApfy+UnkFnNj2ApgBqDplMBqFQiGPHjiEpKQmlpaWYMmUK+Hw+wsPD2b0XRWF6Stzc3J7bN8S4F3SMde68Ya5LNDQ04Pbt23B2dlbYIDM9PR2zZs3Cjh07MH/+fJUvMZ45cwbXrl2Dv78/3nnnHRw/flzOOWTz5s3YuHEjDhw4ABcXF6xbtw45OTm4e/cu22MVHh6Op0+fYvfu3WxK6Ouvv45Dhw6pdOyU7qFiowRoCqBmYILLGOF58OABJk+eDD6fj8jIyJdm8jBd8iNGjMDgwYNf+F7dbZhrg1/bq8IIjZOTE4YNG6bQ71y9ehUzZ87E1q1b8dFHH6l9L4vD4ciJDSEEjo6OWLlyJT7//HMAfxY52NnZYf/+/ZgzZw7u3bsHT09P3Lp1i3UzOHv2LCIiIlBaWqqRXJ3+Dl1GUwI0BVAzcLlcjBkzBl999RVyc3MhFArxxhtvICEhAcOGDUN0dDT27duHioqKLtEITJ7OyJEjXyo0wJ8XPDMzM7i5uWHs2LEIDAyEiYkJHj16hPT0dGRmZqKsrAzt7e2qOt1ew5R0M+F2ipCRkYFZs2Zh48aNGhGa7igqKkJ5ebnc98vMzAxBQUFy3y9zc3M525yQkBBwuVxq2qshqNj0EpoCqB1wOBx4enoiPj4eQqEQeXl5mDx5Mg4cOABXV1dERkZiz549KC8vx4EDBzB//nx4enr2aK+Bw+HA1NQUw4cPR3BwMN544w2Ym5ujpKQE6enpEAqFKC0tRVtbmwrOtGc0Njbi9u3bGDx4sMJCIxAI8M477+Dvf/87Fi9erBVCA/z/9+NFcSPl5eVd0nv19fVhaWlJv18aQjfm/loMTQHUPjgcDtzc3LBmzRrExcWhuLgYiYmJOHr0KFasWAEAmD17NiQSCQghvb6IDho0CC4uLnBxcWH92srKypCfnw9zc3O2sk1Zfm2vCuOG4OjoqHBJd3Z2NqKiohAXF4fly5drjdBQdBcqNr2ASQG8cuXKc1MAO85uOqcA3rx5U+71aAqg8uFwOBg6dChWrlwJKysrZGVl4YMPPsC9e/fg5eUFPz8/8Pl88Pl8DB06tNcXVWNjYzg7O8PZ2VnOr+3+/fusX5udnZ1SS7dfBOPvZmdnp3CTal5eHqZPn44VK1Zg9erVWic0zPdDJBLJzUxFIhF8fHzYYzqGngF/9nFVV1fT75eGoMtoPYCmAOoe586dw1//+lckJycjISEBly9fxuPHj7FgwQJcunQJPj4+GD9+PLZs2YL79+93G3/9qgwYMABDhgxBQEAAJkyYAEdHR1RXV+PatWv4/fff8fDhQzQ2Nirh7LqnubkZt2/fho2NjcK2O/n5+Zg2bRo++eQTfPnll1onNADg4uICe3t7ue9XXV0dMjIy5L5fNTU1EAgE7DGXLl2CTCajxr0aglaj9QCaAqh7tLa24t69e+ydb0cIIaiqqsLJkydx7NgxXLp0Ce7u7qxDtbIzeXri1/aqtLS04Pbt27CyslLYSLSwsBDh4eF4//33sWnTJo02szY0NOCPP/4AAPj6+mLr1q2YNGkSLC0t4eTkhM2bN2PTpk1ypc937tzpUvosEomQkJDAlj4HBATQ0mcNQcWmB9AUwL4LIQQ1NTVsJs+vv/4KZ2dnNpNH2eFpivi1vSqM0FhaWioslEVFRQgLC8M777yDb775RuOuCZcvX8akSZO6PB4TE4P9+/eDEIL169djz549qKmpwZtvvomdO3fC3d2dPba6uhpLlixBcnIyuFwuZs6cie3btyvs/E1RLlRsKJQXUFdXh5SUFCQlJeHs2bOws7NjZzx+fn5KvSh359fGFBeYm5srJBqtra24ffs2zM3NFc7gKSkpQWhoKCIiIrBjxw6NCw2lb0LFhkJRkMbGRpw5c4bN5LGwsEBUVBSio6MRGBioVEcBmUyG6upqiEQiVFRUgMPhvNSvjYmvZlJFFRGasrIyhIaGYtKkSdizZw8VGorKoGJDofSA5uZm/Prrr0hMTERKSgqMjY0xffp0REdHKz2TRyaToaamhrXNIYTAxsYGtra2sLKyApfLRVtbG27fvg0ejwcvLy+FhKa8vBzh4eEICgrCvn37dNZ+h6IbULGhUHpJW1sbLly4gMTERJw8eRJ6enpsJs/48eOVmsnTnV+bpaUl6urqYGZmBm9vb4WERiwWIyIiAqNHj8bBgwfpPiFF5VCxoVCUSHt7O9LT03Hs2DGcOHEC7e3tmDZtGvh8vtIzeZgqutzcXMhkMhBCYG1tDTs7O1hbWz9XQKqqqhAZGQk3Nzf88ssvShVDCuV50AXafsimTZvA4XCwfPly9jEaiaAcDAwMEBISgoSEBDx58gSJiYng8XhYunQpXFxc8NFHHyElJQXNzc29fi+JRII//vgDFhYWmDhxIuvX9vDhQ6SnpyMrK6uLX9uzZ8/A5/Ph7OyMn3/+mQoNRW3QmU0/49atW3jvvffA4/EwadIkbNu2DQCNRFA1UqkUv//+OxsGV1lZibCwMPD5fISGhrLRFIrS3t4OoVAIIyMjjB49usvGfmNjI8RiMUQiEQoLC/HDDz9g6tSpSElJgb29PU6cOKEx+xxKP4VQ+g319fXEzc2NnD9/nkycOJEsW7aMEEJITU0NMTAwIEePHmWPvXfvHgFAbty4QQghJDU1lXC5XFJeXs4es2vXLsLj8Uhra6taz0PXkUql5ObNm2T16tXEzc2NDBw4kPD5fLJ3717y9OlT0tjY+MKfmpoacunSJXL16lVSX1//0uMLCgrIsmXLyMCBAwmHwyETJkwg3333HSktLdX0R0HpR9BltH7E4sWLERkZKWfNDtBIBHXD5XLx+uuvY/PmzcjPz8e1a9cwatQobNmyBUOHDsWsWbNw8OBBPHv2rIttjkQiQWZmJgwMDDBmzBiFSpUtLCwgFAoREBCA/Px8zJo1C4mJiRg6dCgePHigqtN8ITt27MDQoUMxYMAABAUFdfEJpPQ9qNj0E3755RcIhUJs3Lixy3M0EkFzcLlc+Pj44Ouvv0ZeXh4EAgECAwOxc+dOuLi4YMaMGdi/fz8qKyvx7NkzvPfee3j27JnCQtPc3Iw5c+ZAKpUiOTkZ7u7uWLJkCdLS0lBWVqZw3IAyOXz4MFasWIH169dDKBRizJgxCA0N7WKcSelbULHpBzx+/BjLli3DTz/9RNfptRgOhwMvLy+sX78emZmZyM3NxVtvvYV9+/Zh2LBhGDlyJO7evQtXV1eFhKa1tRXz5s1DfX09Tp8+DR6PJ/e8jY2NRow2t27dikWLFiE2Nhaenp5ISEjAwIEDsXfvXrWPhaI+qNj0AwQCAcRiMfz8/KCvrw99fX2kp6dj+/bt0NfXh52dHRuJ0JHOkQidq9NoJILq4HA4cHd3x9q1a3H58mUEBgbCxsYG9vb28PX1RVhYGHbs2IHS0tJuHarb2towf/58iMVinD17tsusVVO0tbVBIBDILdlyuVyEhISwS7aUvgkVm37A22+/jZycHGRlZbE/AQEBmDdvHvvfNBJBO5FIJJgxYwb09fWRnZ2NjIwMFBUV4d1330VKSgq8vLzw9ttv49tvv8WjR49ACEF7ezs+/PBDFBcX49dff2XjyrWByspKSKXSF6ZsUvomtG24H2BqaspGVjMMGjQIVlZW7OMLFy7EihUrYGlpyUYiMJHHADB16lR4enrigw8+YCMRvvzySyxevFipjYoUefT19fGXv/wFM2fOZN2KhwwZgmXLlmHp0qUoLy/H8ePHkZiYiPj4eIwaNQpSqRRtbW1IT0+HtbW1hs+AQvkTOrOhAAC++eYbTJs2DTNnzsSECRNgb2+PpKQk9nk9PT2kpKRAT08PwcHBeP/99zF//nz84x//0OCo+wcLFiyAqalpl8c5HA4cHBzw2Wef4cKFCygrK0NsbCyqqqqQmpraZfagDVhbW0NPT6/bJVm6HNu3oU2dFApFrQQFBSEwMBDfffcdgD+NRp2cnLBkyRLExcVpeHQUVUGX0SgUilpZsWIFYmJiEBAQgMDAQGzbtg2NjY2IjY3V9NAoKoSKDYVCUSuzZ89GRUUF4uPjUV5eDh8fHzaYjtJ3octoFAqFQlE5tECAQqFQKCqHig1Fq3ny5Anef/99WFlZwdjYGN7e3rh9+zb7PCEE8fHxcHBwgLGxMUJCQlBYWCj3GtXV1Zg3bx54PB7Mzc2xcOFCNDQ0qPtUKJR+DRUbitby7NkzjBs3DgYGBjhz5gzu3r2L//mf/4GFhQV7zL/+9S9s374dCQkJyMjIwKBBgxAaGoqWlhb2mHnz5iEvLw/nz59HSkoKrly5go8//lgTp0Sh9Fvong1Fa4mLi8O1a9fw22+/dfs8IQSOjo5YuXIlPv/8cwBAbW0t7OzssH//fsyZMwf37t2Dp6cnbt26hYCAAADA2bNnERERgdLSUjg6OqrtfCiU/gyd2VC0llOnTiEgIACzZs2Cra0tfH198f3337PPFxUVoby8XM5ny8zMDEFBQXLRCObm5qzQAEBISAi4XC4yMjLUdzIUSj+Hig1Fa3n48CF27doFNzc3nDt3Dp9++imWLl2KAwcOAPj/aIMX+WyVl5fD1tZW7nl9fX1YWlpSLy4KRY3QPhuK1iKTyRAQEMDGTvv6+iI3NxcJCQmIiYnR8OgoFMqrQGc2FK3FwcGhi6P0yJEjUVJSAuD/ow1e5LNlb2/fJZRLIpGgurqaenFRKGqEig1Faxk3bhwKCgrkHrt//z6cnZ0BAC4uLrC3t5eLRqirq0NGRoZcNEJNTQ0EAgF7zKVLlyCTyRAUFKSGs9BdNmzYgLFjx2LgwIHPzcMpKSlBZGQkBg4cCFtbW6xatQoSiUTumMuXL8PPzw9GRkZwdXXF/v37VT94ivZBKBQt5ebNm0RfX59s2LCBFBYWkp9++okMHDiQHDx4kD1m06ZNxNzcnJw8eZLcuXOH8Pl84uLiQpqbm9ljwsLCiK+vL8nIyCBXr14lbm5uZO7cuZo4JZ0iPj6ebN26laxYsYKYmZl1eV4ikZBRo0aRkJAQkpmZSVJTU4m1tTVZs2YNe8zDhw/JwIEDyYoVK8jdu3fJd999R/T09MjZs2fVeCYUbYCKDUWrSU5OJqNGjSJGRkbEw8OD7NmzR+55mUxG1q1bR+zs7IiRkRF5++23SUFBgdwxVVVVZO7cucTExITweDwSGxtL6uvr1XkaOs2+ffu6FZvU1FTC5XJJeXk5+9iuXbsIj8cjra2thBBCVq9eTby8vOR+b/bs2SQ0NFSlY6ZoH7TPhkKhvJD9+/dj+fLlXWLD4+PjcerUKWRlZbGPFRUVYdiwYRAKhfD19cWECRPg5+eHbdu2scfs27cPy5cvR21trXpOgKIV0D0bCoXSI8rLy7stO2eee9ExdXV1aG5uVs9AKVoBFRsKpR8RFxcHDofzwp/8/HxND5PSB6F9NhRKP2LlypVYsGDBC48ZNmyYQq9lb2+Pmzdvyj3GlKF3LD3vrjSdx+PB2NhYwVFT+gJUbCiUfoSNjQ1sbGyU8lrBwcHYsGEDxGIx69Jw/vx58Hg8tj8qODgYqampcr93/vx5tjSd0n+gy2gUipKRSqVYt24dXFxcYGxsjOHDh+Orr75Cx1ocogPRCCUlJcjKykJJSQmkUimysrKQlZXFjmHq1Knw9PTEBx98gOzsbJw7dw5ffvklFi9eDCMjIwDAJ598gocPH2L16tXIz8/Hzp07ceTIEfztb39T23lQtATNFsNRKH2PDRs2ECsrK5KSkkKKiorI0aNHiYmJCfn222/ZYzZt2kTMzMzIiRMnSHZ2NomKiuq2P2jMmDHk999/J7/99htxdXVVa39QTEwMAdDlJy0tjT3m0aNHJDw8nBgbGxNra2uycuVK0t7eLvc6aWlpxMfHhxgaGpJhw4aRffv2qe0cKNoDLX2mUJTMtGnTYGdnhx9++IF9bObMmTA2NsbBgwdpNAKlX0KX0SgUJTN27FhcvHgR9+/fBwBkZ2fj6tWrCA8PB0CjESj9E1ogQKEombi4ONTV1cHDwwN6enqQSqXYsGED5s2bB4BGI1D6J1RsKBQlc+TIEfz00084dOgQvLy8kJWVheXLl8PR0ZFGI1D6LVRsKBQls2rVKsTFxWHOnDkAAG9vbxQXF2Pjxo2IiYmRi0ZwcHBgf08kEsHHxwcAjUag9D3ong2FomSamprA5cp/tfT09CCTyQDQaARK/4TObCgUJTN9+nRs2LABTk5O8PLyQmZmJrZu3YoPP/wQAMDhcLB8+XJ8/fXXcHNzg4uLC9atWwdHR0dER0cD+DMkLiwsDIsWLUJCQgLa29uxZMkSzJkzh1aiUXQSWvpMoSiZ+vp6rFu3DsePH4dYLIajoyPmzp2L+Ph4GBoaAvizqXP9+vXYs2cPampq8Oabb2Lnzp1wd3dnX6e6uhpLlixBcnIyuFwuZs6cie3bt8PExERTp0ah9BgqNhQKhUJROXTPhkKhUCgqh4oNhUKhUFQOFRsKhUKhqBwqNhQKhUJROVRsKBQKhaJyqNhQKBQKReVQsaFQKBSKyqFiQ6FQKBSVQ8WGQqFQKCqHig2FQqFQVA4VGwqFQqGoHCo2FAqFQlE5/wewTaT5dvE7hAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "# Get the grid points\n", - "xs = fi.floris.grid.x_sorted\n", - "ys = fi.floris.grid.y_sorted\n", - "zs = fi.floris.grid.z_sorted\n", + "xs = fmodel.core.grid.x_sorted\n", + "ys = fmodel.core.grid.y_sorted\n", + "zs = fmodel.core.grid.z_sorted\n", "\n", "# Consider the shape\n", "print(f\"shape of xs: {xs.shape}\")\n", @@ -710,9 +706,9 @@ "Calculating AEP for 1440 wind direction and speed combinations...\n", "Number of turbines = 25\n", "Model AEP (GWh) Compute Time (s)\n", - "Jensen 643.122 1.179 \n", - "GCH 646.972 3.742 \n", - "CC 633.776 6.833 \n" + "Jensen 661.838 0.285 \n", + "GCH 683.869 1.415 \n", + "CC 661.315 2.859 \n" ] } ], @@ -731,6 +727,7 @@ "# meshgrid returns arrays with shape (len(wind_speeds), len(wind_directions)), so we \"flatten\" them\n", "wind_directions = wind_directions.flatten()\n", "wind_speeds = wind_speeds.flatten()\n", + "turbulence_intensities = 0.1 * np.ones_like(wind_speeds)\n", "\n", "n_findex = len(wind_directions)\n", "print(f\"Calculating AEP for {n_findex} wind direction and speed combinations...\")\n", @@ -749,23 +746,41 @@ "print(f\"Number of turbines = {len(x)}\")\n", "\n", "# Define several models\n", - "fi_jensen = FlorisInterface(\"jensen.yaml\")\n", - "fi_gch = FlorisInterface(\"gch.yaml\")\n", - "fi_cc = FlorisInterface(\"cc.yaml\")\n", + "fmodel_jensen = FlorisModel(\"jensen.yaml\")\n", + "fmodel_gch = FlorisModel(\"gch.yaml\")\n", + "fmodel_cc = FlorisModel(\"cc.yaml\")\n", "\n", "# Assign the layouts, wind speeds and directions\n", - "fi_jensen.reinitialize(layout_x=x, layout_y=y, wind_directions=wind_directions, wind_speeds=wind_speeds)\n", - "fi_gch.reinitialize(layout_x=x, layout_y=y, wind_directions=wind_directions, wind_speeds=wind_speeds)\n", - "fi_cc.reinitialize(layout_x=x, layout_y=y, wind_directions=wind_directions, wind_speeds=wind_speeds)\n", + "fmodel_jensen.set(\n", + " layout_x=x,\n", + " layout_y=y,\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " turbulence_intensities=turbulence_intensities\n", + ")\n", + "fmodel_gch.set(\n", + " layout_x=x,\n", + " layout_y=y,\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " turbulence_intensities=turbulence_intensities,\n", + ")\n", + "fmodel_cc.set(\n", + " layout_x=x,\n", + " layout_y=y,\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " turbulence_intensities=turbulence_intensities,\n", + ")\n", "\n", - "def time_model_calculation(model_fi: FlorisInterface) -> Tuple[float, float]:\n", + "def time_model_calculation(model_fmodel: FlorisModel) -> Tuple[float, float]:\n", " \"\"\"\n", " This function performs the wake calculation for a given\n", - " FlorisInterface object and computes the AEP while\n", + " FlorisModel object and computes the AEP while\n", " tracking the amount of wall-time required for both steps.\n", "\n", " Args:\n", - " model_fi (FlorisInterface): _description_\n", + " model_fmodel (FlorisModel): _description_\n", " float (_type_): _description_\n", "\n", " Returns:\n", @@ -774,14 +789,14 @@ " 1: Wall-time for the computation\n", " \"\"\"\n", " start = time.perf_counter()\n", - " model_fi.calculate_wake()\n", - " aep = model_fi.get_farm_power().sum() / n_findex / 1E9 * 365 * 24\n", + " model_fmodel.run()\n", + " aep = model_fmodel.get_farm_power().sum() / n_findex / 1E9 * 365 * 24\n", " end = time.perf_counter()\n", " return aep, end - start\n", "\n", - "jensen_aep, jensen_compute_time = time_model_calculation(fi_jensen)\n", - "gch_aep, gch_compute_time = time_model_calculation(fi_gch)\n", - "cc_aep, cc_compute_time = time_model_calculation(fi_cc)\n", + "jensen_aep, jensen_compute_time = time_model_calculation(fmodel_jensen)\n", + "gch_aep, gch_compute_time = time_model_calculation(fmodel_gch)\n", + "cc_aep, cc_compute_time = time_model_calculation(fmodel_cc)\n", "\n", "print('Model AEP (GWh) Compute Time (s)')\n", "print('{:8s} {:<10.3f} {:<6.3f}'.format(\"Jensen\", jensen_aep, jensen_compute_time))\n", @@ -818,7 +833,14 @@ "y = np.zeros_like(x)\n", "wind_directions = np.arange(0.0, 360.0, 2.0)\n", "wind_speeds = 8.0 * np.ones_like(wind_directions)\n", - "fi_gch.reinitialize(layout_x=x, layout_y=y, wind_directions=wind_directions, wind_speeds=wind_speeds)" + "turbulence_intensities = 0.1 * np.ones_like(wind_directions)\n", + "fmodel_gch.set(\n", + " layout_x=x,\n", + " layout_y=y,\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " turbulence_intensities=turbulence_intensities,\n", + ")" ] }, { @@ -826,42 +848,48 @@ "execution_count": 14, "id": "7d773cdc", "metadata": {}, - "outputs": [ - { - "ename": "UserWarning", - "evalue": "Variable input must have shape (n_wind_directions, n_wind_speeds, nturbs)", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mUserWarning\u001b[0m Traceback (most recent call last)", - "Input \u001b[0;32mIn [14]\u001b[0m, in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfloris\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01moptimization\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01myaw_optimization\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01myaw_optimizer_sr\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m YawOptimizationSR\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Define the SerialRefine optimization\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m yaw_opt \u001b[38;5;241m=\u001b[39m \u001b[43mYawOptimizationSR\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mfi\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfi_gch\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[43m \u001b[49m\u001b[43mminimum_yaw_angle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Allowable yaw angles lower bound\u001b[39;49;00m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximum_yaw_angle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m25.0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Allowable yaw angles upper bound\u001b[39;49;00m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mNy_passes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m4\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mexclude_downstream_turbines\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mexploit_layout_symmetry\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Development/floris/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py:49\u001b[0m, in \u001b[0;36mYawOptimizationSR.__init__\u001b[0;34m(self, fi, minimum_yaw_angle, maximum_yaw_angle, yaw_angles_baseline, x0, Ny_passes, turbine_weights, exclude_downstream_turbines, exploit_layout_symmetry, verify_convergence)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 44\u001b[0m \u001b[38;5;124;03mInstantiate YawOptimizationSR object with a FlorisInterface object\u001b[39;00m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;124;03mand assign parameter values.\u001b[39;00m\n\u001b[1;32m 46\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 48\u001b[0m \u001b[38;5;66;03m# Initialize base class\u001b[39;00m\n\u001b[0;32m---> 49\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 50\u001b[0m \u001b[43m \u001b[49m\u001b[43mfi\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfi\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 51\u001b[0m \u001b[43m \u001b[49m\u001b[43mminimum_yaw_angle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mminimum_yaw_angle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 52\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximum_yaw_angle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaximum_yaw_angle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 53\u001b[0m \u001b[43m \u001b[49m\u001b[43myaw_angles_baseline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43myaw_angles_baseline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 54\u001b[0m \u001b[43m \u001b[49m\u001b[43mx0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mx0\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43mturbine_weights\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mturbine_weights\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 56\u001b[0m \u001b[43m \u001b[49m\u001b[43mcalc_baseline_power\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 57\u001b[0m \u001b[43m \u001b[49m\u001b[43mexclude_downstream_turbines\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexclude_downstream_turbines\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mexploit_layout_symmetry\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexploit_layout_symmetry\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 59\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_convergence\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_convergence\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 60\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 62\u001b[0m \u001b[38;5;66;03m# Start a timer for FLORIS computations\u001b[39;00m\n\u001b[1;32m 63\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtime_spent_in_floris \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n", - "File \u001b[0;32m~/Development/floris/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py:135\u001b[0m, in \u001b[0;36mYawOptimization.__init__\u001b[0;34m(self, fi, minimum_yaw_angle, maximum_yaw_angle, yaw_angles_baseline, x0, turbine_weights, normalize_control_variables, calc_baseline_power, exclude_downstream_turbines, exploit_layout_symmetry, verify_convergence)\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 134\u001b[0m b \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfi\u001b[38;5;241m.\u001b[39mfloris\u001b[38;5;241m.\u001b[39mfarm\u001b[38;5;241m.\u001b[39myaw_angles\n\u001b[0;32m--> 135\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39myaw_angles_baseline \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_unpack_variable\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m np\u001b[38;5;241m.\u001b[39many(np\u001b[38;5;241m.\u001b[39mabs(b) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0.0\u001b[39m):\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 138\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mINFO: Baseline yaw angles were not specified and \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 139\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mwere derived from the floris object.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 140\u001b[0m )\n", - "File \u001b[0;32m~/Development/floris/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py:245\u001b[0m, in \u001b[0;36mYawOptimization._unpack_variable\u001b[0;34m(self, variable, subset)\u001b[0m\n\u001b[1;32m 235\u001b[0m variable \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mtile(\n\u001b[1;32m 236\u001b[0m variable,\n\u001b[1;32m 237\u001b[0m (\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 241\u001b[0m )\n\u001b[1;32m 242\u001b[0m )\n\u001b[1;32m 244\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(np\u001b[38;5;241m.\u001b[39mshape(variable)) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m:\n\u001b[0;32m--> 245\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mUserWarning\u001b[39;00m(\n\u001b[1;32m 246\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mVariable input must have shape (n_wind_directions, n_wind_speeds, nturbs)\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 247\u001b[0m )\n\u001b[1;32m 249\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m variable\n", - "\u001b[0;31mUserWarning\u001b[0m: Variable input must have shape (n_wind_directions, n_wind_speeds, nturbs)" - ] - } - ], + "outputs": [], "source": [ - "from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR\n", + "from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR\n", "\n", "# Define the SerialRefine optimization\n", "yaw_opt = YawOptimizationSR(\n", - " fi=fi_gch,\n", + " fmodel=fmodel_gch,\n", " minimum_yaw_angle=0.0, # Allowable yaw angles lower bound\n", " maximum_yaw_angle=25.0, # Allowable yaw angles upper bound\n", " Ny_passes=[5, 4],\n", " exclude_downstream_turbines=True,\n", - " exploit_layout_symmetry=True,\n", ")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "id": "1ccb9ab7", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Serial Refine] Processing pass=0, turbine_depth=0 (0.0%)\n", + "[Serial Refine] Processing pass=0, turbine_depth=1 (7.1%)\n", + "[Serial Refine] Processing pass=0, turbine_depth=2 (14.3%)\n", + "[Serial Refine] Processing pass=0, turbine_depth=3 (21.4%)\n", + "[Serial Refine] Processing pass=0, turbine_depth=4 (28.6%)\n", + "[Serial Refine] Processing pass=0, turbine_depth=5 (35.7%)\n", + "[Serial Refine] Processing pass=0, turbine_depth=6 (42.9%)\n", + "[Serial Refine] Processing pass=1, turbine_depth=0 (50.0%)\n", + "[Serial Refine] Processing pass=1, turbine_depth=1 (57.1%)\n", + "[Serial Refine] Processing pass=1, turbine_depth=2 (64.3%)\n", + "[Serial Refine] Processing pass=1, turbine_depth=3 (71.4%)\n", + "[Serial Refine] Processing pass=1, turbine_depth=4 (78.6%)\n", + "[Serial Refine] Processing pass=1, turbine_depth=5 (85.7%)\n", + "[Serial Refine] Processing pass=1, turbine_depth=6 (92.9%)\n", + "Optimization wall time: 2.581 s\n" + ] + } + ], "source": [ "start = time.perf_counter()\n", "\n", @@ -884,10 +912,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "id": "686548be", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAANBCAYAAAA1KvUtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtzUlEQVR4nOzdeXxTZdr/8U/apvsGAi21BRmHTZRFdkaR4YEiKIvwc2DwcUHAUcGtuAzKgDI44AaIIo6oOI6ijlLUQcR2kEVlr1Q2QR0qLUJZFOjehia/P3gSWmkhaXOa0/T7fr360p4k97no1SS9ct/3dSwOh8OBiIiIiIiIABDg6wBERERERETMREWSiIiIiIhIBSqSREREREREKlCRJCIiIiIiUoGKJBERERERkQpUJImIiIiIiFSgIklERERERKQCFUkiIiIiIiIVBPk6AKPZ7XYOHTpEVFQUFovF1+GIiIiIiIiPOBwO8vPzSUhIICCg+vkivy+SDh06RFJSkq/DEBERERERk8jJySExMbHa2/2+SIqKigLO/CCio6N9GovNZiMtLY3k5GSsVqtPY2nolAtzUB7MQXkwD+XCHJQH81AuzMGf8pCXl0dSUpKrRqiO3xdJziV20dHRpiiSwsPDiY6Orve/YPWdcmEOyoM5KA/moVyYg/JgHsqFOfhjHi60DUeNG0RERERERCpQkSQiIiIiIlKBiiQREREREZEK/H5PkoiIiIhIQ1FeXo7NZvPqmDabjaCgIEpKSigvL/fq2N4WGBhIUFBQrS/949Miafbs2aSmprJ3717CwsLo06cPTz31FG3btnXdp6SkhClTpvDuu+9SWlrKoEGDeOmll4iLi/Nh5CIiIiIi5lJQUMDBgwdxOBxeHdfhcBAfH09OTk69uO5oeHg4zZs3Jzg4uMZj+LRIWrduHZMmTaJ79+6cPn2aRx99lOTkZPbs2UNERAQADzzwAJ988gnvv/8+MTExTJ48mZEjR/LVV1/5MnQREREREdMoLy/n4MGDhIeH07RpU68WM3a7nYKCAiIjI897AVZfczgclJWVcezYMbKysmjdunWN4/VpkbRq1apK37/xxhs0a9aMjIwM+vbty6lTp3jttddYunQp/fv3B2DJkiW0b9+eTZs20atXL1+ELSIiIuITn3/+OXfddRdz587luuuu83U4YiI2mw2Hw0HTpk0JCwvz6th2u52ysjJCQ0NNXSQBhIWFYbVaOXDggCvmmjDVnqRTp04B0LhxYwAyMjKw2WwMGDDAdZ927drRokULNm7cWGWRVFpaSmlpqev7vLw84MwvjrfXZ3rKeX5fxyHKhVkoD+agPJiHcmEOZs7DBx98wHfffcdtt93Gjh07aNKkia9DMpSZc2E2ziLJ4XBgt9u9OrZz+Z4RYxvF4XBgs9kIDAysdNzd3yXTFEl2u53777+f3/3ud1x++eUA5ObmEhwcTGxsbKX7xsXFkZubW+U4s2fP5oknnjjneFpaGuHh4V6PuybS09N9HYL8H+XCHJQHc1AezEO5MAcz5mHv3r0AHD9+nD/+8Y888MADPo6obpgxF2YTFBREfHw8BQUFlJWVGXKO/Px8Q8b1trKyMoqLi1m/fj2nT5+udFtRUZFbY5imSJo0aRK7du3iyy+/rNU4U6dOJSUlxfV9Xl4eSUlJJCcnEx0dXdswa8Vms5Gens7AgQP95mrF9ZVyYQ7KgzkoD+ahXJiDmfPwxhtvuP5/3bp1PPDAAwwZMsR3ARnMzLkwm5KSEnJycoiMjKzxErPqOBwO8vPziYqKqheNG0pKSggLC6Nv377n/Cycq8wuxBRF0uTJk1mxYgXr168nMTHRdTw+Pp6ysjJOnjxZaTbpyJEjxMfHVzlWSEgIISEh5xy3Wq2meXKZKZaGTrkwB+XBHJQH81AuzMGMeSgsLASgVatWZGVlcc8999C/f3+ioqJ8HJmxzJgLsykvL8disRAQEOD1fUPOJXbO8c0uICAAi8VS5e+Nu79HHv0r7XY7a9asYebMmYwfP54//vGP3HvvvSxZsoScnBxPhgLOVKWTJ09m+fLlfP7557Rq1arS7V27dsVqtbJ69WrXsX379pGdnU3v3r09Pp+IiIhIfeZc7vTXv/6V3/zmN+Tk5DB16lQfRyVSMxaL5bxfjz/+OADZ2dlcd911hIeH06xZMx566KFzltF5m1tFUnFxMbNmzSIpKYkhQ4bw6aefcvLkSQIDA/nhhx+YMWMGrVq1YsiQIWzatMntk0+aNIm33nqLpUuXEhUVRW5uLrm5uRQXFwMQExPD+PHjSUlJYc2aNWRkZDBu3Dh69+6tznYiIiLS4BQUFABn9me/8sorALz00ku13q4g4guHDx92fc2fP5/o6OhKxx588EHKy8u57rrrKCsrY8OGDfzjH//gjTfeYPr06YbG5tZyuzZt2tC7d28WL15c7ZrQAwcOsHTpUsaMGcNjjz3GxIkTLzjuokWLAOjXr1+l40uWLOG2224DYN68eQQEBDBq1KhKF5MVERERaWicM0lRUVH07NmT22+/nddff50JEyaQmZnp9b0oUn85HA63mxRciN1up7CwkMDAQLeW24WHh7u1d6ni9pmYmBgsFss5W2o+/fRT9uzZw3/+8x/i4uLo3Lkzf/3rX3nkkUd4/PHHa3XB2PNxq0hKS0ujffv2571Py5YtmTp1Kg8++CDZ2dlundydqwGHhoaycOFCFi5c6NaYIiIiIv6qYpEE8Oyzz7Jy5Ur27dvHrFmzmDVrli/DExMpKioiMjLSJ+cuKCggIiLCK2Nt3LiRK664gri4ONexQYMGcdddd7F79266dOnilfP8mlvL7S5UIFVktVq59NJLaxyQiIiIiFTNudzO+cdvo0aNXB8kP/XUU+zYscNnsYkYITc3t1KBBLi+r+6SQN7gcXe76p58FouF0NBQWrRoUWV3ORERERGpubKyMtf1byp2sxs5ciQjR44kNTWV8ePHs3HjRoKCTNHAWHwoPDzcVVTXlt1uJy8vj+joaLeX29V3Hj+DOnfufN41hlarldGjR/P3v/9d62JFREREvKTihTx/3fL7xRdf5PPPP2fbtm3Mnz+fBx98sK7DE5OxWCxeW/Jmt9spLy8nIiKizluAx8fHs2XLlkrHjhw54rrNKB7/K5cvX07r1q155ZVXyMzMJDMzk1deeYW2bduydOlSXnvtNT7//HOmTZtmRLwiIiIiDZKzSAoNDT1npqh58+Y899xzAEyfPp2srKw6j0/ECL1792bnzp0cPXrUdSw9PZ3o6Gguu+wyw87rcZH05JNP8vzzzzN+/HiuuOIKrrjiCsaPH8+8efN47rnnuOmmm3jhhRdYvny5EfGKiIiINEi/3o/0a+PGjaNv374UFxfzzjvv1GVoIoZJTk7msssu4+abb+abb77hs88+Y9q0aUyaNMnQLT4eF0k7d+6kZcuW5xxv2bIlO3fuBM4syTt8+HDtoxMRERER4NzOdr9msVgYMWIEAJs3b66rsEQMFRgYyIoVKwgMDKR379787//+L7fccgszZ8409LweF0nt2rVjzpw5ro2DADabjTlz5tCuXTsAfvrpp3O6UIiIiIhIzV2oSALo2bMncKZIcudSKyJmcdttt3Hy5Mkqb2vZsiUrV66kqKiIY8eO8eyzzxrenMTj0RcuXMiwYcNITEykY8eOwJnZpfLyclasWAHA/v37ufvuu70bqYiIiEgDdqHldgBdunQhKCiII0eOkJ2dXeXqHxG5MI+LpD59+pCVlcXbb7/Nd999B8CNN97I2LFjXZ9s3Hzzzd6NUkRERKSBc2cmKSwsjE6dOpGRkcHmzZtVJInUUI3mqaKiorjzzju9HYuIiIiIVMOdIgnOLLlzFkl/+MMf6iI0Eb9To0bn//znP7nqqqtISEjgwIEDAMybN4+PPvrIq8GJiIiIyBmeFEmg5g0iteFxkbRo0SJSUlIYPHgwJ06coLy8HIBGjRoxf/58b8cnIiIiIri3JwnOFkkZGRnYbDbD4xJzUcMO7/wMPC6SXnjhBRYvXsxjjz1WqatEt27dXC3ARURERMS73J1Jat26NbGxsZSUlOhvswYkMDAQoFIH6oaqqKgIAKvVWuMxPN6TlJWVRZcuXc45HhISQmFhYY0DEREREZHquVskBQQE0KNHD9LS0ti8eTNXXnllXYQnPhYUFER4eDjHjh3DarUSEFCjXTVVstvtlJWVUVJS4tVxvc3hcFBUVMTRo0eJjY11FY414XGR1KpVKzIzM8/plrJq1Srat29f40BEREREpHruLreDM0vunEXSXXfdZXRoYgIWi4XmzZuTlZXl6hngLQ6Hg+LiYsLCwrBYLF4d2wixsbHEx8fXagyPi6SUlBQmTZpESUkJDoeDLVu28M477zB79mxeffXVWgUjIiIiIlVzdyYJ1LyhoQoODqZ169ZeX3Jns9lYv349ffv2rdUStrpgtVprNYPk5HGRNGHCBMLCwpg2bRpFRUWMHTuWhIQEnn/+ecaMGVPrgERERETkXJ4UST169ABg7969nDhxgkaNGhkam5hHQEAAoaGhXh0zMDCQ06dPExoaavoiyVtqtKjwpptu4vvvv6egoIDc3FwOHjzI+PHjvR2biIiIiPwfT4qkpk2b8pvf/AaArVu3GhqXiD+qUZF0/Phxtm3bxrfffuuV6SwREREROT9P9iSBltyJ1IZHRdLu3bvp27cvcXFx9OzZkx49etCsWTP69+/Pvn37jIpRREREpMHzZCYJoFevXoCKJJGacHtPUm5uLtdccw1NmzZl7ty5tGvXDofDwZ49e1i8eDFXX301u3btolmzZkbGKyIiItIgeVokVZxJcjgc9aIrmYhZuF0kzZs3j5YtW/LVV19V2gx27bXXctddd3HVVVcxb948Zs+ebUigIiIiIg2VzWajtLQUcH+5XefOnQkODub48eNkZWW59iiJyIW5vdwuPT2dRx55pMpuGWFhYTz00EN89tlnXg1ORERERM7uRwL3Z5JCQkLo3LkzAOvXrzciLBG/5XaRtH///vNesblbt27s37/fK0GJiIiIyFnOpXbBwcEEBwe7/bjBgwcDsHz5ckPiEvFXbhdJ+fn5REdHV3t7VFRUpU85RERERMQ7PN2P5DRq1CgAPvvsM/2dJuIBj7rb5efnk5eXV+2Xw+EwKk4RERGRBsvT9t9Ol19+Ob/97W8pLS1l5cqVRoQm4pfcLpIcDgdt2rShUaNGVX61bdvWyDhFREREGqyaziRZLBbXbNKyZcu8HpeIv3K7u92aNWuMjENEREREqlHTIgnOLLl76qmn+OSTTygpKamyCZeIVOZ2kXTNNdd4/eTr16/nmWeeISMjg8OHD7N8+XJGjBjhut3hcDBjxgwWL17MyZMn+d3vfseiRYto3bq112MRERERMauaLreDM821kpKSyMnJIS0tjWHDhnk7PBG/49Zyu8LCQo8Gdff+hYWFdOrUiYULF1Z5+9NPP82CBQt4+eWX2bx5MxEREQwaNIiSkhKP4hERERGpz2ozk2SxWBg5ciSgJXci7nKrSPrtb3/LnDlzOHz4cLX3cTgcpKenM3jwYBYsWODWyQcPHsysWbO44YYbqhxv/vz5TJs2jeHDh9OxY0fefPNNDh06xIcffujW+CIiIiL+oDZFEpztcvfxxx9js9m8FpeIv3Jrud3atWt59NFHefzxx+nUqRPdunUjISGB0NBQTpw4wZ49e9i4cSNBQUFMnTqVP/3pT7UOLCsri9zcXAYMGOA6FhMTQ8+ePdm4cSNjxoyp8nGlpaWuK1ID5OXlAWeuVO3rFwXn+X0dhygXZqE8mIPyYB7KhTmYMQ+nTp0CICIiokZxde/enWbNmnH06FHS09MZOHCgt0M0hBlz0RD5Ux7c/Te4VSS1bduWZcuWkZ2dzfvvv88XX3zBhg0bKC4upkmTJnTp0oXFixczePBgAgMDaxW4U25uLgBxcXGVjsfFxbluq8rs2bN54oknzjmelpZGeHi4V2KrrfT0dF+HIP9HuTAH5cEclAfzUC7MwUx52LlzJwBHjhypcSvvLl268Nlnn/H888/Xuz92zZSLhswf8lBUVOTW/dxu3ADQokULpkyZwpQpU2oUVF2YOnUqKSkpru/z8vJISkoiOTn5vBfDrQs2m8316Y3VavVpLA2dcmEOyoM5KA/moVyYgxnz4Nxq0KlTJ4YMGVKjMaxWK5999hmZmZkMGjTIax9sG8mMuWiI/CkPzlVmF+JRkVSX4uPjgTOfmDRv3tx1/MiRI3Tu3Lnax4WEhBASEnLOcavVapqkmimWhk65MAflwRyUB/NQLszBTHlwNsWKjY2tcUwDBw6kUaNGHD16lC1bttC3b19vhmgoM+WiIfOHPLgbv9sXk61rrVq1Ij4+ntWrV7uO5eXlsXnzZnr37u3DyERERETqVm1agDtZrVZX+291uRM5P58WSQUFBWRmZpKZmQmcadaQmZlJdnY2FouF+++/n1mzZvHxxx+zc+dObrnlFhISEipdS0lERETE39W2u52TsxV4amoqDoej1nGJ+CufLrfbtm0bv//9713fO/cS3Xrrrbzxxhs8/PDDFBYWcscdd3Dy5EmuuuoqVq1apStFi4iISIPirSIpOTmZyMhIDh48yNatW+nRo4c3whPxOz6dSerXrx8Oh+OcrzfeeAM4c/GzmTNnkpubS0lJCf/5z39o06aNL0MWERERqXPO5Xa1LZJCQ0O57rrrAC25Ezkfj4ukvn37Mn36dFavXk1JSYkRMYmIiIhIBc6ZpNrsSXLSkjuRC/O4SEpOTmbTpk0MHz6c2NhYrrrqKqZNm0Z6errbfcdFRERExH3eWm4HMGTIEEJCQvjhhx9c118Skco8LpKmTZtGWloaJ0+eZM2aNVx//fVs27aN6667jsaNGxsRo4iIiEiDdfr0aYqLiwHvFEmRkZEMGjQI0JI7kerUeE/S/v372blzJ9988w07duwgKiqKwYMHezM2ERERkQbPeY0k8E6RBDBq1CjgzJI7ETmXx0XS2LFjufjii+nTpw+rVq2iV69efPrppxw/fpzly5cbEaOIiIhIg+VcahcUFERwcLBXxhw6dChBQUHs2rWL7777zitjivgTj4ukd999F5vNxoQJE7jzzjuZOHEinTp1wmKxGBGfiIiISINWcT+St/7eatSoEf379we05E6kKh4XST///DOvvvoqZWVlTJ06lSZNmtCnTx8effRR0tLSjIhRREREpMHyVvvvX9OSO5HqeVwkNWrUiGHDhjF37lwyMjLYsWMHbdq04ZlnntGeJBEREREv82b774qGDx+OxWJh27Zt5OTkeHVskfouyNMH/Pzzz6xbt461a9eydu1a9uzZQ2xsLEOHDuWaa64xIkYRERGRBsub7b8riouLo3Pnzmzfvp2MjAySkpK8Or5IfeZxkdSsWTOaNGnC1VdfzcSJE+nXrx9XXHGFEbGJiIiINHhGFUkAl112Gdu3b+fbb79lxIgRXh9fpL7yuEjasWMHHTp0MCIWEREREfkVo/YkwZkiCeDbb7/1+tgi9ZnHe5JUIImIiIjUHaP2JAG0b98egD179nh9bJH6zOOZJIAPPviAf/3rX2RnZ1NWVlbptq+//torgYmIiIiIscvtnEXS3r17sdvtBAR4/Pm5iF/y+JmwYMECxo0bR1xcHNu3b6dHjx5cdNFF7N+/X93tRERERLzMyOV2l156KVarlcLCQg4ePOj18UXqK4+LpJdeeolXXnmFF154geDgYB5++GHS09O59957OXXqlBExioiIiDRYRi63s1qttG7dGtCSO5GKPC6SsrOz6dOnDwBhYWGuJ+7NN9/MO++8493oRERERBo4I5fbwdkld2reIHKW20XSoUOHAIiPj+eXX34BoEWLFmzatAmArKwsHA6HASGKiIiINFwqkkTqnttF0uWXX87bb79N//79+fjjjwEYN24cDzzwAAMHDmT06NHccMMNhgUqIiIi0hAZuScJzrYB13I7kbPc7m43a9Ys7rzzTpKTk3nqqacAmDRpEhdddBEbNmxg2LBh/OlPfzIsUBEREZGGyMg9SVB5JsnhcGCxWAw5j0h94vZM0t13382OHTs4ceIEHTp04N///jcAY8aMYcGCBdxzzz0EBwcbFqiIiIhIQ2T0cru2bdtisVj45ZdfOHbsmCHnEKlvPLpOUqtWrfj888958cUXGTlyJO3btycoqPIQuk6SiIiIiPcYvdwuLCyMVq1asX//fvbs2UOzZs0MOY9IfeLxxWQPHDhAamoqjRo1Yvjw4ecUSSIiIiLiPUYvt4MzS+7279/Pt99+S79+/Qw7j0h94VGFs3jxYqZMmcKAAQPYvXs3TZs2NSouERERkQbPbrdTWFgIGDeTBGeKpE8++UQd7kT+j9tF0rXXXsuWLVt48cUXueWWW4yMSUREREQ4u9QOjC2S1OFOpDK3i6Ty8nJ27NhBYmKikfGIiIiIyP9xFkmBgYGEhoYadh5dK0mkMreLpPT0dCPjEBEREZFfqbgfycjW3M4i6dChQ5w6dYqYmBjDziVSH7jdAlxERERE6pbR7b+dYmJiaN68OaDZJBFQkSQiIiJiWka3/67IuS9JRZJIPSmSFi5cyCWXXEJoaCg9e/Zky5Ytvg5JRERExHB10f7bSfuSRM4yfZH03nvvkZKSwowZM/j666/p1KkTgwYN4ujRo74OTURERMRQdbXcDs4WSepwJ1IPiqS5c+cyceJExo0bx2WXXcbLL79MeHg4r7/+uq9DExERETGUltuJ+IbF4XA4fB1EdcrKyggPD+eDDz5gxIgRruO33norJ0+e5KOPPjrnMaWlpZSWlrq+z8vLIykpiePHjxMdHV0XYVdr3Lhx/PDDDzRr1szQDjVyYQ6Hg6NHjyoXPqY8mIPyYB7KhTmYKQ/79+9n165djB07ljfeeMPQcx05coSkpCQsFgtDhw419FzuMlMuGjJv5KFz585MmzbNy5F5Li8vjyZNmnDq1Knz1gZutwD3hePHj1NeXk5cXFyl43Fxcezdu7fKx8yePZsnnnjinONpaWmEh4cbEqe7VqxYwalTp3wag4iIiNQ/ZWVlrFy50tBzOBwOmjRpwvHjx/n4448NPZc0PDk5OVx55ZW+DoOioiK37mfqIqkmpk6dSkpKiut750xScnKyz2eSnn32Wb7++msuu+wyAgMDfRpLQ1deXs6ePXuUCx9THsxBeTAP5cIczJaHsLAwhg0bVidL7tasWcMXX3xh+HncZbZcNFTeyMPFF1/M4MGDvRyZ5/Ly8ty6n6mLpCZNmhAYGMiRI0cqHT9y5Ajx8fFVPiYkJISQkJBzjlutVqxWqyFxuuvWW2+ladOmDBkyxOexNHQ2m42VK1cqFz6mPJiD8mAeyoU5NOQ8XH755Vx++eW+DsOlIefCTPwpD+7Gb+rGDcHBwXTt2pXVq1e7jtntdlavXk3v3r19GJmIiIiIiPgrU88kAaSkpHDrrbfSrVs3evTowfz58yksLGTcuHFuPd7Zl8LdqTUj2Ww2ioqKyMvLq/dVeH2nXJiD8mAOyoN5KBfmoDyYh3JhDv6UB2dNcKHedaYvkkaPHs2xY8eYPn06ubm5dO7cmVWrVp3TzKE6zusLJCUlGRmmiIiIiIjUE/n5+cTExFR7u6lbgHuD3W7n0KFDREVF+bx1pLOJRE5Ojs+bSDR0yoU5KA/moDyYh3JhDsqDeSgX5uBPeXA4HOTn55OQkEBAQPU7j0w/k1RbAQEBJCYm+jqMSqKjo+v9L5i/UC7MQXkwB+XBPJQLc1AezEO5MAd/ycP5ZpCcTN24QUREREREpK6pSBIREREREalARVIdCgkJYcaMGVVex0nqlnJhDsqDOSgP5qFcmIPyYB7KhTk0xDz4feMGERERERERT2gmSUREREREpAIVSSIiIiIiIhWoSBIREREREalARZKIiIiIiEgFKpJEREREREQqUJEkIiIiIiJSgYokERERERGRClQkiYiIiIiIVKAiSUREREREpAIVSSIiIiIiIhUE+ToAo9ntdg4dOkRUVBQWi8XX4YiIiIiIiI84HA7y8/NJSEggIKD6+SK/L5IOHTpEUlKSr8MQERERERGTyMnJITExsdrb/b5IioqKAs78IKKjo30ai81mIy0tjeTkZKxWq09jaeiUC3NQHsxBeTAP5cIclAfzUC7MwZ/ykJeXR1JSkqtGqI7fF0nOJXbR0dGmKJLCw8OJjo6u979g9Z1yYQ7KgzkoD+ahXJiD8mAeyoU5+GMeLrQNR40bREREROqJkpISVq9ezenTp30diohfU5EkIiIiUk+88MILDBgwgDvuuMPXoYj4NRVJIiIiIvXEf//7XwCWLFlCenq6j6MR8V9+vydJRERExF8UFBS4/v+OO+5g165dRERE+DAiMRu73U5ZWZlXx7TZbAQFBVFSUkJ5eblXx/Y2q9VKYGBgrcdRkSQiIiJST1Qskn788Uf+8pe/MHfuXB9GJGZSVlZGVlYWdrvdq+M6HA7i4+PJycmpF9cdjY2NJT4+vlax+rRImj17Nqmpqezdu5ewsDD69OnDU089Rdu2bV33KSkpYcqUKbz77ruUlpYyaNAgXnrpJeLi4nwYuYiIiEjdKywsBOB///d/eeutt3j++ecZM2YMPXr08HFk4msOh4PDhw8TGBhIUlLSeS+U6im73U5BQQGRkZFeHdfbHA4HRUVFHD16FIDmzZvXeCyfFknr1q1j0qRJdO/endOnT/Poo4+SnJzMnj17XFPHDzzwAJ988gnvv/8+MTExTJ48mZEjR/LVV1/5MnQRERGROuecSRo1ahQAb731FuPHjycjI4Pg4GBfhiY+dvr0aYqKikhISCA8PNyrYzuX8IWGhpq6SAIICwsD4OjRozRr1qzGS+98WiStWrWq0vdvvPEGzZo1IyMjg759+3Lq1Clee+01li5dSv/+/YEzGxXbt2/Ppk2b6NWrly/CFhEREfEJZ5EUGRnJvHnzWLVqFbt27eKNN95Qx7sGzrlXSMUyriLRZrPVzyLp106dOgVA48aNAcjIyMBmszFgwADXfdq1a0eLFi3YuHFjlUVSaWkppaWlru/z8vKAMz8km81mZPgX5Dy/r+MQ5cIslAdzUB7MQ7kwBzPnwVkkhYaGEhMTw913383MmTP5/PPPGTdunI+j8z4z58JsbDYbDocDh8NhyJ4k53+9PbYRnD+Hqookd3+XTFMk2e127r//fn73u99x+eWXA5Cbm0twcDCxsbGV7hsXF0dubm6V48yePZsnnnjinONpaWlen3qsKbXsNA/lwhyUB3NQHsxDuTAHM+bhl19+AeDrr7/m559/di19Wrt2LStXrvRlaIYyYy7MJigoiPj4eAoKCrze3c4pPz/fkHG9raysjOLiYtavX3/OhZeLiorcGsM0RdKkSZPYtWsXX375Za3GmTp1KikpKa7v8/LySEpKIjk5mejo6NqGWSs2m4309HQGDhyI1Wr1aSwNnXJhDsqDOSgP5qFcmIOZ8+D8FHzw4MFccskl9OnTh8cff5wjR47QvXt3mjZt6uMIvcvMuTCbkpIScnJyiIyMJDQ01KtjOxwO8vPziYqKqhfd7UpKSggLC6Nv377n/Cycq8wuxBRF0uTJk1mxYgXr168nMTHRdTw+Pp6ysjJOnjxZaTbpyJEjxMfHVzlWSEgIISEh5xy3Wq2meXKZKZaGTrkwB+XBHJQH81AuzMFseSgvL6e4uBiARo0aYbVaadq0Ke3atWPv3r1s376d6667zsdRGsNsuTCj8vJyLBYLAQEBXm+u4Fxi5xzfWy5UcM2YMYPHH3+ce++9l6+++opdu3bRvn17MjMzz/u4gIAALBZLlb837v4eeVQk2e121q1bxxdffMGBAwcoKiqiadOmdOnShQEDBpCUlOTJcDgcDu655x6WL1/O2rVradWqVaXbu3btitVqZfXq1a4uLvv27SM7O5vevXt7dC4RERGR+szZ/huodAHZnj17snfvXjZt2uS3RZL4p8OHD7v+/7333mP69Ons27fPdSwyMtL1/7fffjubN29mx44ddRKbW0VScXExzz33HIsWLeKXX36hc+fOJCQkEBYWxg8//MCHH37IxIkTSU5OZvr06W53nZs0aRJLly7lo48+IioqyrXPKCYmhrCwMGJiYhg/fjwpKSk0btyY6Oho7rnnHnr37q3OdiIiItKgOJs2BAQEVFpC1LNnT/7xj3+wefNmX4UmUiMVV4bFxMRgsViqXC22YMECAI4dO2auIqlNmzb07t2bxYsXV7sm9MCBAyxdupQxY8bw2GOPMXHixAuOu2jRIgD69etX6fiSJUu47bbbAJg3bx4BAQGMGjWq0sVkRURERBqSiu2/Ky5T6tmzJwBbtmzBbreb/jo2UjecF1b1BrvdTmFhIYGBgW79foWHh9eLvUvn41aRlJaWRvv27c97n5YtWzJ16lQefPBBsrOz3Tq5s53g+YSGhrJw4UIWLlzo1pgiIiIi/si53K7iEiSAK664gtDQUE6dOsV3331Hu3btfBGemExRUdE5vyt1paCgoNKS0PrIrY8aLlQgVWS1Wrn00ktrHJCIiIiInKviTFJFVquVbt26AWjJnYiXeNzdrrp1gBaLhdDQUFq0aFFldzkRERERqTlnkVTVJ/Q9e/bkyy+/ZPPmzdx66611HZqYUHh4uOt3prbsdjt5eXlER0e7vdyuvvO4SOrcufN51xharVZGjx7N3//+d6/3aBcRERFpqKqbSYKz+5I0kyROFovFa0ve7HY75eXlRERENJg9bx7/K5cvX07r1q155ZVXyMzMJDMzk1deeYW2bduydOlSXnvtNT7//HOmTZtmRLwiIiIiDZI7RdKOHTtc11IS8Rc//PADmZmZ5ObmUlxc7KpBysrKDDunxzNJTz75JM8//zyDBg1yHbviiitITEzkL3/5C1u2bCEiIoIpU6bw7LPPejVYERERkYaqusYNAElJScTHx5Obm8vXX3/N7373u7oOT8QwEyZMYN26da7vu3TpAkBWVhaXXHKJIef0eCZp586dtGzZ8pzjLVu2ZOfOncCZJXkVLw4lIiIiIrVzvpkki8WiJXdSr912222cPHmyytvWrl2Lw+E458uoAglqUCS1a9eOOXPmVJrestlszJkzx9Vy8qeffiIuLs57UYqIiIg0cOdr3ADalyTiTR4vt1u4cCHDhg0jMTGRjh07Amdml8rLy1mxYgUA+/fv5+677/ZupCIiIiIN2PlmkkBFkog3eVwk9enTh6ysLN5++22+++47AG688UbGjh1LVFQUADfffLN3oxQRERFp4C5UJHXr1g2LxcKBAwfIzc0lPj6+LsMT8SseF0kAUVFR3Hnnnd6ORURERESqcb7GDQDR0dFcdtll7N69m82bNzN8+PC6DE/Er9So0fk///lPrrrqKhISEjhw4AAA8+bN46OPPvJqcCIiIiJyxoVmkkBL7kS8xeMiadGiRaSkpDB48GBOnDhBeXk5AI0aNWL+/Pnejk9EREREcK9I6tWrF6AiqSFzOBy+DsHn7HZ7rcfweLndCy+8wOLFixkxYgRz5sxxHe/WrRsPPvhgrQMSERERkXNdqLsdnJ1J2rp1K+Xl5QQGBtZJbOJ7VqsVi8XCsWPHaNq0KRaLxWtj2+12ysrKKCkpISCgRgvR6oTD4aCsrIxjx44REBBAcHBwjcfyuEjKyspyXcCpopCQENdaWRERERHxLndmkjp06EBERAT5+fns3buXDh061FV44mOBgYEkJiZy8OBBfvzxR6+O7XA4KC4uJiwszKvFl1HCw8Np0aJFrQo6j4ukVq1akZmZec4FZVetWkX79u1rHIiIiIiIVO9CjRvgzB/K3bp1Y926dWzevFlFUgMTGRlJ69atsdlsXh3XZrOxfv16+vbti9Vq9erY3hYYGEhQUFCtizmPi6SUlBQmTZpESUkJDoeDLVu28M477zB79mxeffXVWgUjIiIiIlVzZyYJziy5cxZJt99+e12EJiYSGBjo9WWWgYGBnD59mtDQUNMXSd7icZE0YcIEwsLCmDZtGkVFRYwdO5aEhASef/55xowZY0SMIiIiIg2eJ0USqHmDSG3U6DpJN910EzfddBNFRUUUFBTQrFkzb8clIiIiIv+nrKzMtYTqfI0b4GyRtHPnTgoLCy94fxE5V412Mx0/fpxt27bx7bffqmuKiIiIiMGcs0hw4SLp4osv5uKLL8Zut5ORkWF0aCJ+yaMiaffu3fTt25e4uDh69uxJjx49aNasGf3792ffvn1GxSgiIiLSoDmbNgQHB7vV1lhL7kRqx+0iKTc3l2uuuYZjx44xd+5cVq5cySeffMIzzzzD4cOHufrqqzl69KiRsYqIiIg0SO7uR3JSkSRSO24XSfPmzaNly5Zs376d++67j0GDBnHttdeSkpLC119/TVJSEvPmzTMyVhExmVdffZVbb72V/Px8X4ciIuLXalokbdq0ybCYRPyZ20VSeno6jzzyCKGhoefcFhYWxkMPPcRnn33m1eBExLyKi4u57777ePPNN/nzn//s63BERPyas0hytwlD165dCQgI4KeffuKnn34yMjQRv+R2kbR//36uvPLKam/v1q0b+/fv90pQImJ+n332GUVFRQC89NJLfPnllz6OSETEf3k6kxQZGckVV1wBaMmdSE24XSTl5+cTHR1d7e1RUVGVOq+IiH9btmwZcPYNe8KECZSUlPgyJBERv+VpkQTalyRSGx51t8vPzycvL6/aL4fDYVScImIiZWVl/Pvf/wbgnXfeoXnz5uzbt4+//vWvPo5MRMQ/ObvbqUgSqRtuF0kOh4M2bdrQqFGjKr/atm1rZJwiYiKff/45p06dIj4+niFDhrBw4UIAnn76ab755hsfRyci4n9qM5O0bds2ysvLDYlLxF8FuXvHNWvWGBmHiNQjzqV2I0aMICAggBtuuIFRo0axbNkyxo8fz6ZNmwgKcvvlRURELqAmRVK7du2IiooiPz+f3bt307FjR6PCE/E7bs8kXXPNNW59eWL9+vUMHTqUhIQELBYLH374YaXbHQ4H06dPp3nz5oSFhTFgwAC+//57j84hIt5VXl7ueq6OGjXKdfzFF18kNjaWjIwM5s+f75vgRET8lKfd7QACAwPp06cPAM8995whcYn4K7eKJOc6WHe5e//CwkI6derkWqrza08//TQLFizg5ZdfZvPmzURERDBo0CBtDhfxoS+++ILjx4/TuHHjSh+MxMfHu96Ep0+fzg8//OCrEEVE/E5NZpIAnnjiCSwWC2+++aYu1SLiAbeKpN/+9rfMmTOHw4cPV3sfh8NBeno6gwcPZsGCBW6dfPDgwcyaNYsbbrihyvHmz5/PtGnTGD58OB07duTNN9/k0KFD58w4iUjdcS61GzZsGFartdJt48aN43/+538oLi7mjjvuUDMXEREvqUnjBjizL+m+++4D4I477lAnYhE3ubVpYO3atTz66KM8/vjjdOrUiW7dupGQkEBoaCgnTpxgz549bNy4kaCgIKZOncqf/vSnWgeWlZVFbm4uAwYMcB2LiYmhZ8+ebNy4kTFjxlT5uNLSUkpLS13f5+XlAWCz2bDZbLWOqzac5/d1HKJc1JTdbmf58uUADB8+vMqf38KFC7nyyitZs2YNr7zyCrfffnu14ykP5qA8mIdyYQ5mzIPz75mwsDCP45oxYwYffvghP/74I1OnTmXu3LlGhGgIM+aiIfKnPLj7b3CrSGrbti3Lli0jOzub999/ny+++IINGzZQXFxMkyZN6NKlC4sXL2bw4MEEBgbWKnCn3NxcAOLi4iodj4uLc91WldmzZ/PEE0+cczwtLY3w8HCvxFZb6enpvg5B/o9y4Zl9+/bx008/ud6kV65cWeX9Ro8ezZIlS0hJSSE4OJjGjRufd1zlwRyUB/NQLszBTHn48ccfAfjvf/9b7Wvv+dx666088cQTLFy4kMTERNq1a+flCI1lplw0ZP6Qh6KiIrfu51H7qRYtWjBlyhSmTJlSo6DqwtSpU0lJSXF9n5eXR1JSEsnJyee9GG5dsNlspKenM3DgwHOWKUndUi5qZv369QAMHTqUESNGVHu/QYMGsXPnTrZt28ZHH33E+++/X+X9lAdzUB7MQ7kwBzPm4ZlnngGgd+/eDBkyxOPHDxkyhKysLN58803+8Y9/sGXLFkJCQrwdpteZMRcNkT/lwTkreyGm7dEbHx8PwJEjR2jevLnr+JEjR+jcuXO1jwsJCanySW+1Wk2TVDPF0tApF55Zt24dACNHjjzvz81qtfL6669z5ZVX8tFHH/Hdd9/RoUOH895fefA95cE8lAtzMFMenHuSYmNjaxzTvHnzWLVqFd9++y2rV69m+PDh3gzRUGbKRUPmD3lwN363W4DXtVatWhEfH8/q1atdx/Ly8ti8eTO9e/f2YWQiDVd2djaAW8s0rrjiCq699lrgbLMHERGpmZo2bqiocePGDB06FIBNmzZ5JS4Rf+XTIqmgoIDMzEwyMzOBM80aMjMzyc7OxmKxcP/99zNr1iw+/vhjdu7cyS233EJCQsJ5l/mIiDFKS0s5duwYAImJiW49ZuTIkQCkpqYaFpeISENQ0xbgv9azZ08ANm/eXOuYRPyZT5fbbdu2jd///veu7517iW699VbeeOMNHn74YQoLC7njjjs4efIkV111FatWrSI0NNRXIYs0WIcOHQLOLGm9UCMGp2HDhhEYGMg333zDf//7Xy699FIjQxQR8VveKpJ69eoFwNatWykvL/dawy0Rf+PTmaR+/frhcDjO+XrjjTcAsFgszJw5k9zcXEpKSvjPf/5DmzZtfBmySIP1008/AWdmkSwWi1uPueiii+jXrx+gJXciIjXlcDhcRVJEREStxrrsssuIjIykoKCAb7/91hvhifglj4ukvn37Mn36dFavXk1JSYkRMYmICR08eBCAiy++2KPHjRo1CtCSOxGRmiouLnZdnLu2M0mBgYF069YN0JI7kfPxuEhKTk5m06ZNDB8+nNjYWK666iqmTZtGenq6233HRaT+qTiT5IkRI0ZgsVjYvHmzq9ASERH3OZs2AF655qP2JYlcmMdF0rRp00hLS+PkyZOsWbOG66+/nm3btnHddde5vU9BROqfms4kNW/enD59+gCaTRIRqQnnUrvw8HCv7CFSkSRyYTXek7R//3527tzJN998w44dO4iKimLw4MHejE1ETKSmM0mgJXciIrXhraYNTs4iadeuXa6xRaQyj4uksWPHcvHFF9OnTx9WrVpFr169+PTTTzl+/DjLly83IkYRMYGaziTB2VbgX3zxBUePHvVqXCIi/s7bRVJCQgKJiYnY7XYyMjK8MqaIv/G4SHr33Xex2WxMmDCBO++8k4kTJ9KpUye3u12JSP1Um5mkli1b0rVrV+x2Ox999JG3QxMR8Wve6mxXkZbciZyfx0XSzz//zKuvvkpZWRlTp06lSZMm9OnTh0cffZS0tDQjYhQRHysvL3ddJ6kmM0lwdsmdWoGLiHjG2bjBWzNJcLZI2rRpk9fGFPEnHhdJjRo1YtiwYcydO5eMjAx27NhBmzZteOaZZ7QnScRPHT16lNOnTxMQEEB8fHyNxnAuuVu9ejW7d+/2ZngiIn7N28vtQDNJIhdSo5mk1NRU7r33Xjp27Ei7du1YsWIFQ4cOZe7cuUbEKCI+5lxqFx8fT1BQUI3GaNu2LUOHDuX06dNMmDCB8vJyb4YoIuK3jCiSunbtSmBgIIcOHdLlGUSq4HGR1KxZM+666y4OHTrExIkT2b59O8ePHyc1NZX77rvPiBhFxMecb6A12Y9U0UsvvURUVBSbNm1i4cKF3ghNRMTvGVEkRUREcPnllwOaTRKpisdF0o4dOzhy5AgffPAB99xzD1dccYURcYmIiThnkmq6H8kpMTGRp59+GoBHH32UAwcO1Do2ERF/Z0TjBoBevXoBKpJEquJxkdShQwcj4hARE/PWTBLAHXfcQd++fSksLGTSpEk4HI5ajyki4s+MaNwA2pckcj412lzwwQcf8K9//Yvs7GzKysoq3fb11197JTARMQ9vzSQBBAQEsHjxYjp27EhaWhrt27fnuuuuq/W4IiL+yojldnC2SNq2bRunT5+u8Z5TEX/k8UzSggULGDduHHFxcWzfvp0ePXpw0UUXsX//fnW3E/FT3pxJAmjTpg0zZswA4B//+Ad2u90r44qI+COjiqR27doRHR1NUVGRuo6K/IrHRdJLL73EK6+8wgsvvEBwcDAPP/ww6enp3HvvvZw6dcqIGEXEx7w5k+Q0ZcoUwsLCOHnyJPv27fPauCIi/saoIikgIIDu3bsDWnIn8mseF0nZ2dn06dMHgLCwMPLz8wG4+eabeeedd7wbnYj4nMPh8PpMEkBwcDBXXnklAFu3bvXauCIi/saoxg2gfUki1XG7SDp06BBw5jopv/zyCwAtWrRwXak5KytLG7BF/NCpU6coKioCvDuTBNCjRw8AtmzZ4tVxRUT8iVGNG0BFkkh13C6SLr/8ct5++2369+/Pxx9/DMC4ceN44IEHGDhwIKNHj+aGG24wLFAR8Q3nLFLjxo0JCwvz6tjOZR4qkkREqmfUcjs4WyTt2bOHvLw8r48vUl+5XSTNmjWLO++8kxMnTjB58mQAJk2axOuvv0779u2ZOXMmixYtMixQEfENI5baOTlnknbu3OmarRIRkcqMLJLi4uJo2bIlDodDS59FKnC7SLr77rvZsWMHJ06coEOHDvz73/8GYMyYMSxYsIB77rmH4OBgwwIVEd8wommDU1JSEo0aNaK8vFyXDxARqYaRRRJoyZ1IVTxq3NCqVSs+//xzpk2bxsiRI+nYsSNXXnllpS8R8S9GziRZLBbatGkD6M1ZRKQ6KpJE6p7HVw07cOAAqampNGrUiOHDh+vCYyJ+zsiZJDhzzaTNmzfrzVlEpArl5eUUFxcDxnS3g8pFksPhwGKxGHIekfrEowpn8eLFTJkyhQEDBrB7926aNm1qVFwiYhJGziQBmkkSETmPivs1jZpJuvLKKwkKCuLIkSNkZ2fTsmVLQ84jUp+4vdzu2muv5ZFHHuHFF18kNTVVBZJIA2H0TNJvf/tbLBYL2dnZ5ObmGnIOEZH6yrnULiAggNDQUEPOERYWRqdOnQB9YCXi5HaRVF5ezo4dO7jllluMjEdETMbomaSwsDAuu+wyQG/OIiK/VnE/kpHL4LQvSaQyt4uk9PR0w/5IEhFzKi4udl082qiZJDjbClxvziIilRndtMFJRZJIZR51txORhsW51C48PJzY2FjDzqMiSUSkas4iyaimDU7OIikjIwObzWbouUTqAxVJIlKtivuRjFzm0b17dwC2bt1KeXm5YecREalvCgsLAeNnklq3bk1sbCwlJSXs3LnT0HOJ1Af1okhauHAhl1xyCaGhofTs2ZMtW7b4OiSRBsHo/UhOHTp0ICIigvz8fL799ltDzyUiUp/U1XK7gIAAzeqLVGD6Ium9994jJSWFGTNm8PXXX9OpUycGDRrE0aNHfR2aiN9zFklG7kcCCAwMpFu3boDenEVEKqqrIgnOLrnbtGmT4ecSMTvTXwl27ty5TJw4kXHjxgHw8ssv88knn/D666/z5z//2cfRecbhcFT6Et9RLtzjXG5XF01bevbsybp169i8eTO333674eeTs/R8MA/lwhzMlIf8/Hygbosk50VlzcBMuWjIvJWH+nShYlMXSWVlZWRkZDB16lTXsYCAAAYMGMDGjRurfExpaSmlpaWu7/Py8gCw2Ww+34iYmJjIsWPHfBqDSE3Ex8cb8vxxjmmz2ejatStw5qLVixcv9vq5RETqs7CwMMP/junSpQsA+/btIyDA9IuNpJ5JTk5mxYoVvg7D7eeRqYuk48ePU15eTlxcXKXjcXFx7N27t8rHzJ49myeeeOKc42lpaYSHhxsSp7vKysp8en6RmggJCQFg5cqVhp0jPT0dm81Go0aNOHHihGHnERGpjwICAoiJiTH0ddipU6dOfPPNN4afRxqeY8eO1cnv8IUUFRW5dT9TF0k1MXXqVFJSUlzf5+XlkZSURHJyMtHR0T6MDHbs2MHatWu55pprsFqtPo2lobPZbKxbt065cENkZCRhYWGGjG2z2UhPT2fgwIFYrVZGjBjBqVOnDDmXVE/PB/NQLszBbHkICQmps79hBg8ezPHjx+vkXO4wWy4aKm/kwWq1Gno5EXc5V5ldiKmLpCZNmhAYGMiRI0cqHT9y5Ajx8fFVPiYkJMT1yXdFVqvV50+u5s2bExMTQ0JCgs9jaehsNptyYSLO56fVajX8WiByLj0fzEO5MIeGnoeEhARfh+DS0HNhFv6UB3fjN3WRFBwcTNeuXVm9ejUjRowAwG63s3r1aiZPnuzWGM7NZe5WjUay2WwUFRWRl5dX73/B6jvlwhyUB3NQHsxDuTAH5cE8lAtz8Kc8OGuCCzWgMHWRBJCSksKtt95Kt27d6NGjB/Pnz6ewsNDV7e5CnF1hkpKSjAxTRERERETqifz8fGJiYqq93fRF0ujRozl27BjTp08nNzeXzp07s2rVqnOaOVQnISGBnJwcoqKifN520Lk/Kicnx+f7oxo65cIclAdzUB7MQ7kwB+XBPJQLc/CnPDgcDvLz8y+4rNTiUNP5OpOXl0dMTAynTp2q979g9Z1yYQ7KgzkoD+ahXJiD8mAeyoU5NMQ8qAm+iIiIiIhIBSqSREREREREKlCRVIdCQkKYMWNGlS3KpW4pF+agPJiD8mAeyoU5KA/moVyYQ0PMg/YkiYiIiIiIVKCZJBERERERkQpUJImIiIiIiFSgIklERERERKQCFUkiIiIiIiIVqEgSERERERGpQEWSiIiIiIhIBSqSREREREREKlCRJCIiIiIiUoGKJBERERERkQpUJImIiIiIiFSgIklERERERKSCIF8HYDS73c6hQ4eIiorCYrH4OhwREREREfERh8NBfn4+CQkJBARUP1/k90XSoUOHSEpK8nUYIiIiIiJiEjk5OSQmJlZ7u98XSVFRUcCZH0R0dLRPY7HZbKSlpZGcnIzVavVpLA2dcmEOyoM5KA/moVyYg/JgHsqFOfhTHvLy8khKSnLVCNXx+yLJucQuOjraFEVSeHg40dHR9f4XrL5TLsxBeTAH5cE8lAtzUB7MQ7kwB3/Mw4W24ahxg4iIiIiISAUqkkRERERERCpQkSQiIiIiIlKB3+9JEhERERFpKOx2O2VlZV4d02azERQURElJCeXl5V4d29usViuBgYG1HsenRdLs2bNJTU1l7969hIWF0adPH5566inatm3ruk9JSQlTpkzh3XffpbS0lEGDBvHSSy8RFxfnw8hFRERERMylrKyMrKws7Ha7V8d1OBzEx8eTk5NTL647GhsbS3x8fK1i9WmRtG7dOiZNmkT37t05ffo0jz76KMnJyezZs4eIiAgAHnjgAT755BPef/99YmJimDx5MiNHjuSrr77yZegiIiIiIqbhcDg4fPgwgYGBJCUlnfdCqZ6y2+0UFBQQGRnp1XG9zeFwUFRUxNGjRwFo3rx5jcfyaZG0atWqSt+/8cYbNGvWjIyMDPr27cupU6d47bXXWLp0Kf379wdgyZIltG/fnk2bNtGrVy9fhC0iIiIiYiqnT5+mqKiIhIQEwsPDvTq2cwlfaGioqYskgLCwMACOHj1Ks2bNarz0zlT/ylOnTgHQuHFjADIyMrDZbAwYMMB1n3bt2tGiRQs2btzokxhFRERERMzGuVcoODjYx5H4nrNItNlsNR7DNI0b7HY7999/P7/73e+4/PLLAcjNzSU4OJjY2NhK942LiyM3N7fKcUpLSyktLXV9n5eXB5z5IdXmB+UNzvP7Og5RLsxCeTAH5cE8lAtzUB7MQ7lwn81mw+Fw4HA4DNmT5Pyvt8c2gvPnYLPZzplJcvd3yTRF0qRJk9i1axdffvllrcaZPXs2TzzxxDnH09LSvD71WFPp6em+DkH+j3JhDsqDOSgP5qFcmIPyYB7KxYUFBQURHx9PQUGB17vbOeXn5xsyrreVlZVRXFzM+vXrOX36dKXbioqK3BrDFEXS5MmTWbFiBevXrycxMdF1PD4+nrKyMk6ePFlpNunIkSPEx8dXOdbUqVNJSUlxfZ+Xl0dSUhLJyclER0cb9m9wh81mIz09nYEDB2K1Wn0aS0OnXJiD8mAOyoN5KBfmoDyYh3LhvpKSEnJycoiMjCQ0NNSrYzscDvLz84mKiqoX3e1KSkoICwujb9++5/wsnKvMLsSjIslut7Nu3Tq++OILDhw4QFFREU2bNqVLly4MGDCApKQkT4bD4XBwzz33sHz5ctauXUurVq0q3d61a1esViurV69m1KhRAOzbt4/s7Gx69+5d5ZghISGEhIScc9xqtZrmyWWmWBo65cIclAdzUB7MQ7kwB+XBPJSLCysvL8disRAQEOD15grOJXbO8b3lQgXXjBkzuOGGG5gzZw5ffvklx48f55JLLuHOO+/kvvvuq/ZxAQEBWCyWKn9v3P09cqtIKi4u5rnnnmPRokX88ssvdO7cmYSEBMLCwvjhhx/48MMPmThxIsnJyUyfPt3trnOTJk1i6dKlfPTRR0RFRbn2GcXExBAWFkZMTAzjx48nJSWFxo0bEx0dzT333EPv3r3V2U5EREQanBMnTrB8+XJuvPFGoqKifB2OSK0cPnzY9f/vvfce06dPZ9++fa5jkZGR/Otf/6JZs2a89dZbJCUlsWHDBu644w4CAwOZPHmyYbG5VSS1adOG3r17s3jx4mqnOw8cOMDSpUsZM2YMjz32GBMnTrzguIsWLQKgX79+lY4vWbKE2267DYB58+YREBDAqFGjKl1MVkRERKShWbBgAY8//jjLly/n448/rhdLn0SqU3H7TExMDBaL5ZwtNbfffnul73/zm9+wceNGUlNTfV8kpaWl0b59+/Pep2XLlkydOpUHH3yQ7Oxst07u7JRxPqGhoSxcuJCFCxe6NaaIiIiIvzp48CAAK1as4L333mPMmDE+jkjMynlhVW+w2+0UFhYSGBjo1nK78PBwQwv4U6dOuS4ZZBS3iqQLFUgVWa1WLr300hoHJCIiIiJVq7jp/N5772XgwIFcdNFFPoxIzKqoqIjIyEifnLugoICIiAhDxt6wYQPvvfcen3zyiSHjO3nc3W7Hjh1VHrdYLISGhtKiRYsqGyeIiIiISO04i6SAgACOHTvGAw88wJtvvunjqETqxq5duxg+fDgzZswgOTnZ0HN5XCR17tz5vNNnVquV0aNH8/e//93r7QdFREREGjJnkfTggw/yzDPP8M9//pOxY8dy7bXX+jgyMZvw8HAKCgq8MpbdbicvL4/o6Gi3l9t52549e/if//kf7rjjDqZNm+b18X/N4yJp+fLlPPLIIzz00EP06NEDgC1btvDcc88xY8YMTp8+zZ///GemTZvGs88+6/WARURERBoqZ5E0cOBAysrKmD9/Pn/605/YtWuXut1JJRaLxWtL3ux2O+Xl5URERHi9vbg7du/eTf/+/bn11lt58skn6+ScHhdJTz75JM8//zyDBg1yHbviiitITEzkL3/5C1u2bCEiIoIpU6aoSBIRERHxovz8fACioqKYNWsWH374IT/++COPPfYYCxYs8HF0It63a9cu+vfvz6BBg0hJSXFdMigwMJCmTZsadl6PS8GdO3fSsmXLc463bNmSnTt3AmeW5FXsey4iIiIiteecSYqOjiYiIoLFixcD8OKLL7Jx40ZfhiZiiA8++IBjx47x1ltv0bx5c9dX9+7dDT2vx0VSu3btmDNnDmVlZa5jNpuNOXPm0K5dOwB++ukn4uLivBeliIiISAPncDgqFUkAAwYM4LbbbsPhcDB+/HhKS0t9GaJIjd12222cPHnynOOPP/44DofjnK8ff/zR0Hg8LpIWLlzIihUrSExMZMCAAQwYMIDExERWrFjhujjs/v37ufvuu70erIiIiEhDVVxcTHl5OXC2SAJ47rnniIuL49tvv+Vvf/ubr8IT8Sse70nq06cPWVlZvP3223z33XcA3HjjjYwdO9a1YfDmm2/2bpQiIiIiDZxzPxJQaUN+48aNefHFF7nxxhv529/+xv/7f/+PK664whchivgNj4skOLNZ8M477/R2LCJicvn5+Xz55ZeuTzIBEhMT6dy5s++CEhFpIJxL7aKios7pMDZq1ChGjBjBhx9+yIQJE9iwYQOBgYG+CFPEL9Soh98///lPrrrqKhISEjhw4AAA8+bN46OPPvJqcCJiLjfffDNDhgxh6NChrq8rr7yS9PR0X4cmIuL3fr0fqSKLxcLChQuJiYlhy5Yt/Otf/6rr8ET8isdF0qJFi0hJSWHw4MGcOHHC9Ylyo0aNmD9/vrfjExET2bt3LwDt27ene/fuXHrppTgcDu644w4KCwt9HJ2IiH87X5EEkJCQwIQJEwBYt25dncUl5uJwOHwdgs9542fgcZH0wgsvsHjxYh577DGCgs6u1uvWrZurBbiI+KcTJ04A8O6777Jlyxa2b99OixYt+PHHH+vk6tciIg2Zc09SdUUSQK9evQDYvHlzncQk5uFcXlmxA3VDVVRUBIDVaq3xGB7vScrKyqJLly7nHA8JCdEnySJ+zOFwuFpzNmrUCDizLv7vf/87gwcP5vnnn2fMmDH07NnTh1GKiPivinuSquN8Dd65cydFRUWEh4fXSWzie0FBQYSHh3Ps2DGsVus5+9Zqw263U1ZWRklJiVfH9TaHw0FRURFHjx4lNja2VvvyPC6SWrVqRWZm5jkXlF21ahXt27evcSAiYm7FxcWuT6diY2Ndx6+99lr+93//l7feeosJEyaQkZFBcHCwj6IUEfFfF1puB2ea6TRv3pzDhw+TkZHB1VdfXVfhiY9ZLBaaN29OVlaWq2eAtzgcDoqLiwkLC8NisXh1bCPExsYSHx9fqzE8LpJSUlKYNGkSJSUlOBwOtmzZwjvvvMPs2bN59dVXaxWMiJiXcxYpMDCQyMjISrfNmzePzz77jF27djFnzhymT5/ugwhFRPybO0WSxWKhZ8+efPjhh2zevFlFUgMTHBxM69atvb7kzmazsX79evr27VurJWx1wWq1eqWzo8dF0oQJEwgLC2PatGkUFRUxduxYEhISXEttRMQ/OfcjxcbGnvMpUpMmTViwYAF//OMfmTVrFuPHj+fiiy/2RZgiIn7LnSIJzuxLchZJ0vAEBAQQGhrq1TEDAwM5ffo0oaGhpi+SvKVGiwpvuukmvv/+ewoKCsjNzeXgwYOMHz/e27GJiIk4iyTnfqRfGz16NL169cJms7Fs2bK6DE1EpEFwNm44354kOLsvSUWSSM3VqEg6fvw427Zt49tvv9WFykQaCOdyu4r7kSqyWCz84Q9/ACA1NbWOohIRaTjcnUnq1q0bAQEB5OTkcPjw4boITcTveFQk7d69m759+xIXF0fPnj3p0aMHzZo1o3///uzbt8+oGEXEBC40kwQwcuRIAL744guOHj1aJ3GJiDQU7hZJkZGRdOjQAdBskkhNuV0k5ebmcs0113Ds2DHmzp3LypUr+eSTT3jmmWc4fPgwV199tf4oEvFjF5pJAmjZsiVdu3bFbrfz0Ucf1U1gIiINhLtFEmjJnUhtuV0kzZs3j5YtW7J9+3buu+8+Bg0axLXXXktKSgpff/01SUlJzJs3z8hYRcSH3JlJAhg1ahSA9iWJiHiZOxeTdVKRJFI7bhdJ6enpPPLII1V2ywgLC+Ohhx7is88+82pwImIe7swkwdkld6tXr3YVViIiUnvuXEzWyVkkbd26lfLyckPjEvFHbhdJ+/fv58orr6z29m7durF//36vBCUi5uPuTFLbtm3p0KEDp0+fZsWKFXURmohIg+DJcrvLLruMyMhICgoK+Pbbb40OTcTvuF0k5efnn/dJGRUVRUFBgVeCEhHzcXcmCbTkTkTECJ4USYGBgXTr1g3QkjuRmvCou11+fj55eXnVfjkcDqPiFBEfc3cmCc4uufvss8/04YmIiBeUl5dTWFgIuFckgfYlidRGkLt3dDgctGnT5ry3WywWrwQlIubjyUxSx44dufTSS/nvf//Lp59+yo033mhscCIifq7iB06eFkmbNm0yJCYRf+Z2kbRmzRoj4xARk/NkJslisTBq1Ciefvppli1bpiJJRKSWnEvtrFYrISEhbj3GWSTt3r2bgoICIiMjDYtPxN+4vdzummuucevLE+vXr2fo0KEkJCRgsVj48MMPK93ucDiYPn06zZs3JywsjAEDBvD99997dA4R8Q5PZpLg7JK7Tz75hJKSEoOiEhFpGDzZj+SUkJBAYmIidrudr776yqjQRPySW0WScw2su9y9f2FhIZ06dWLhwoVV3v7000+zYMECXn75ZTZv3kxERASDBg3SH1widay8vNz1Bu3OTBJA9+7dSUxMpKCggPT0dCPDExHxezUpkgCGDBkCwMMPP4zNZvN6XCL+yq0i6be//S1z5szh8OHD1d7H4XCQnp7O4MGDWbBggVsnHzx4MLNmzeKGG26ocrz58+czbdo0hg8fTseOHXnzzTc5dOjQOTNOImKsU6dOuf7f3ZmkgIAA13NbXe5ERGrHkwvJVjRr1iwuuugiduzYwdNPP21EaCJ+ya0iae3atWzdupVWrVrRs2dPJk2axJNPPslzzz3HtGnTGDlyJAkJCdx+++0MHTqUhx9+uNaBZWVlkZuby4ABA1zHYmJi6NmzJxs3bqz1+CLiPud+pIiICKxWq9uPc7YC//jjj/UJpohILXhyIdmKmjZtyvPPPw/AzJkzdc0kETe51bihbdu2LFu2jOzsbN5//32++OILNmzYQHFxMU2aNKFLly4sXryYwYMHExgY6JXAcnNzAYiLi6t0PC4uznVbVUpLSyktLXV973xRsdlsPv8jzXl+X8chyoWnjh07BpyZRfLkZ9azZ0+aNm3KsWPH+M9//lPpQw9QHsxCeTAP5cIczJgH54dVUVFRHsd144038tZbb7Fq1SomTJjA559/TkCAR1eB8Rkz5qIh8qc8uPtvcLu7HUCLFi2YMmUKU6ZMqVFQdWH27Nk88cQT5xxPS0sjPDzcBxGdS/szzEO5cM8333wDnLk44cqVKz16bOfOnUlPT+f555+nrKysyvsoD+agPJiHcmEOZsqDs413QUGBx6/DcGZmf+3atWzYsIF7773XtVepvjBTLhoyf8hDUVGRW/fzqEiqS/Hx8QAcOXKE5s2bu44fOXKEzp07V/u4qVOnkpKS4vo+Ly+PpKQkkpOTPV7H6202m4309HQGDhzo0ZIl8T7lwjPOF5SkpCSP31iDgoJIT08nMzOTQYMGVZptVh7MQXkwD+XCHMyYh+3btwNnVvfUtMApKirivvvuY+nSpTz22GOV/r4yKzPmoiHypzw4V5ldiGmLpFatWhEfH8/q1atdRVFeXh6bN2/mrrvuqvZxISEhVV4/wGq1miapZoqloVMu3OO8iGHjxo09/nkNHDiQ2NhYjhw5wtatW7n66qvPuY/yYA7Kg3koF+Zgpjw4OwfHxsbWOKbJkyezZMkSMjMzWb16NePGjfNmiIYyUy4aMn/Ig7vx+3RBakFBAZmZmWRmZgJnmjVkZmaSnZ2NxWLh/vvvZ9asWXz88cfs3LmTW265hYSEBEaMGOHLsEUaHOdaeHc721UUHBzM0KFDAUhNTfVmWCIiDUZNGzdUFBAQwMCBAwHYvHmzV+IS8Vc+LZK2bdtGly5d6NKlCwApKSl06dKF6dOnA2d6+t9zzz3ccccddO/enYKCAlatWkVoaKgvwxZpcJwXknX3Gkm/5uxyl5qaisPh8FZYIiINRk2vk/RrPXv2BFQkiVyIT5fb9evX77x/MFksFmbOnMnMmTPrMCoR+bXazCQBJCcnExERQXZ2Ntu2baN79+5ejE5ExP/V9DpJv+Ysknbu3ElRUZFpmlqJmI3HM0l9+/Zl+vTprF69mpKSEiNiEhGTqe1MUlhYmGujsZbciYh4zlszSYmJiSQkJFBeXk5GRoY3QhPxSx4XScnJyWzatInhw4cTGxvLVVddxbRp00hPT3e7pZ6I1C+1nUmCs0vuli1bpiV3IiIe8saeJCctuRO5MI+LpGnTppGWlsbJkydZs2YN119/Pdu2beO6666jcePGRsQoIj5W25kkgCFDhhASEsL333/Prl27vBSZiEjD4K2ZJDhbJDmvvSQi56px44b9+/ezc+dOvvnmG3bs2EFUVBSDBw/2ZmwiYhLemEmKiooiOTkZ0JI7ERFPGVEkaSZJpHoeF0ljx47l4osvpk+fPqxatYpevXrx6aefcvz4cZYvX25EjCLiY96YSQIYOXIkcGbJnYiIuM9bjRsAunXrRkBAAAcPHuTQoUO1Hk/EH3lcJL377rvYbDYmTJjAnXfeycSJE+nUqRMWi8WI+ETExxwOh2smqbZF0rBhwwgKCmLnzp18//333ghPRMTvlZaWUlZWBninSIqMjKRDhw6AZpNEquNxkfTzzz/z6quvUlZWxtSpU2nSpAl9+vTh0UcfJS0tzYgYRcSHiouLsdlsQO2W2wE0btyY3//+94CW3ImIuMu51A7OFDje0KtXL0BFkkh1PC6SGjVqxLBhw5g7dy4ZGRns2LGDNm3a8Mwzz2hPkogfcs4iBQYGeuXNWUvuREQ84yySIiIiCAwM9MqY2pckcn4eX0z2559/Zt26daxdu5a1a9eyZ88eYmNjGTp0KNdcc40RMYqID1Vs2uCNZbUjRozg7rvvZuvWrWRnZ9d6PBERf+fN/UhOziJp27ZtlJeXe634EvEXHhdJzZo1o0mTJlx99dVMnDiRfv36ccUVVxgRm4iYgLeaNjjFx8dz1VVX8cUXX/DRRx9x6aWXemVcERF/5c3Odk7t27cnMjKSgoIC9uzZo7/lRH7F4+V2O3bs4MiRI3zwwQfcc889elKJ+DlvtP/+NeeSO3XEFBG5MG9eSNYpMDCQ7t27A1pyJ1IVj4skZzcUEWkYvD2TBGeLpK+++so1voiIVM2ImSTQviSR8/F4uR3ABx98wL/+9S+ys7NdLSmdvv76a68EJiLmYMRMUosWLejWrRvbtm1j8+bNjB071mtji4j4GxVJInXP45mkBQsWMG7cOOLi4ti+fTs9evTgoosuYv/+/epuJ+KHjJhJAhg1ahQAGzdu9Oq4IiL+xojGDXC2SNq9e7frHCJyhsdF0ksvvcQrr7zCCy+8QHBwMA8//DDp6ence++9nDp1yogYRcSHjJhJgrNL7nbu3ElxcbFXxxYR8SdGzSQ1b96cpKQk7HY727Zt8+rYIvWdx0VSdnY2ffr0ASAsLMz1ycPNN9/MO++8493oRMTnjJpJat26Nc2aNaO8vJzMzEyvji0i4k+MaNzgpCV3IlVzu0g6dOgQcKZ97y+//AKc2VewadMmALKysnA4HAaEKCK+ZNRMksVicXVW2rJli1fHFhHxJ0bNJIGKJJHquF0kXX755bz99tv079+fjz/+GIBx48bxwAMPMHDgQEaPHs0NN9xgWKAi4htGzSQB9OjRA1CRJCJyPkbtSYLKRZI+7BY5y+3udrNmzeLOO+8kOTmZp556CoBJkyZx0UUXsWHDBoYNG8af/vQnwwIVEd8waiYJzhZJW7du9frYIiL+wsiZpK5duxIYGMjhw4c5ePAgSUlJXj+HSH3k9kzS3XffzY4dOzhx4gQdOnTg3//+NwBjxoxhwYIF3HPPPQQHBxsWqIj4hpEzSd26dcNisfDjjz9y9OhRr48vIuIPjNyTFB4eTseOHQEtuROpyKPGDa1ateLzzz9n2rRpjBw5ko4dO3LllVdW+hIR/2LkTFJMTAyJiYmA3pxFRKpj5EwSaF+SSFU8vpjsgQMHSE1NpVGjRgwfPpygoBpdj1ZE6oHTp0+71sIbMZME0KZNG3Jycti8eTNDhw415BwiIvWZkXuS4EyR9PLLL6tIEqnAowpn8eLFTJkyhQEDBrB7926aNm1qVFwiYgIVr31mxEwSnCmSVq9erTdnEZFq1NVMUkZGBqdPn9YH4CJ4UCRde+21bNmyhRdffJFbbrnFyJhExCScS+0iIiKwWq2GnKN169bAmQ53drudgACPL98mIuK37Ha74TNJbdu2JSYmhlOnTrFr1y46d+5syHlE6hO3/xopLy9nx44dKpBEGhBn0wajZpEAWrZsSXh4OHl5eezdu9ew84iI1EeFhYWu1txGNG4ACAgIcF23TrP6Ime4XSSlp6e7NliLSMPgnEkyaj8SQGBgoKvpi96cRUQqcy61CwwMJCwszLDzOJfcbdq0ybBziNQnWtciItWqi5kkOHu9JBVJIiKVVVxqZ7FYDDuPOtyJVKYiSUSqVRczSYCWeYiIVMPopg1OziJp7969lZr2iDRUKpJEpFp1PZO0c+dOioqKDD2XiEh9YuSFZCtq1qwZl1xyCQ6Hg61btxp6LpH6oF4USQsXLuSSSy4hNDSUnj17smXLFl+HJNIg1NVMUmJiIs2bN6e8vJyMjAxDzyUiUp/U1UwSaMmdSEWmL5Lee+89UlJSmDFjBl9//TWdOnVi0KBBHD161Nehifi9uppJslgs9OrVC9Cbs4hIRUa3/65Ir8MiZ5n+amFz585l4sSJjBs3DoCXX36ZTz75hNdff50///nPPo7OMytXrmTjxo2UlpbqQm0+dvr0ab7++mvl4gJ2794NGD+TBGc+wVy+fDn//ve/+c1vfmP4+eQsPR/MQ7kwBzPl4csvvwTqdiZp48aNpKamGn4+d5gpFw2ZN/IQFxfH7373Oy9HZhxT/7aVlZWRkZHB1KlTXccCAgIYMGAAGzdurPIxpaWllJaWur53TlPbbDZsNpuxAV/AxIkTOXbsmE9jEKmJ6OhoQ54/zjFtNhtdu3YFYP369axfv97r5xIRqc+Meh2u6PLLL8dqtXL8+HFGjRpl6Lmk4UlOTmbFihW+DsPt55Gpi6Tjx49TXl5OXFxcpeNxcXHVXnRy9uzZPPHEE+ccT0tLIzw83JA43dWyZUuaNGni0xhEPBUbG0twcDArV6407Bzp6emUl5czcOBADh48aNh5RETqo+DgYNq1a2fo67DTLbfcwoYNGww/jzQ8oaGhdfI7fCHuNoiyOJyXcTahQ4cOcfHFF7NhwwZ69+7tOv7www+zbt26KtfMVjWTlJSUxPHjx+tkqvp8bDYb6enpDBw4EKvV6tNYGjrlwhyUB3NQHsxDuTAH5cE8lAtz8Kc85OXl0aRJE06dOnXe2sDUM0lNmjQhMDCQI0eOVDp+5MgR4uPjq3xMSEgIISEh5xy3Wq2mSaqZYmnolAtzUB7MQXkwD+XCHJQH81AuzMEf8uBu/KYukoKDg+natSurV69mxIgRANjtdlavXs3kyZPdGsM5Uebcm+RLNpuNoqIi8vLy6v0vWH2nXJiD8mAOyoN5KBfmoDyYh3JhDv6UB2dNcKHFdKYukgBSUlK49dZb6datGz169GD+/PkUFha6ut1diLN1ZlJSkpFhioiIiIhIPZGfn09MTEy1t5u+SBo9ejTHjh1j+vTp5Obm0rlzZ1atWnVOM4fqJCQkkJOTQ1RUFBaLxeBoz8+5PyonJ8fn+6MaOuXCHJQHc1AezEO5MAflwTyUC3Pwpzw4HA7y8/NJSEg47/1M3bjB3+Tl5RETE3PBjWJiPOXCHJQHc1AezEO5MAflwTyUC3NoiHkI8HUAIiIiIiIiZqIiSUREREREpAIVSXUoJCSEGTNmVNmiXOqWcmEOyoM5KA/moVyYg/JgHsqFOTTEPGhPkoiIiIiISAWaSRIREREREalARZKIiIiIiEgFKpJEREREREQqUJEkIiIiIiJSgYokERERERGRClQkiYiIiIiIVKAiSUREREREpAIVSSIiIiIiIhWoSBIREREREalARZKIiIiIiEgFKpJEREREREQqCPJ1AEaz2+0cOnSIqKgoLBaLr8MREREREREfcTgc5Ofnk5CQQEBA9fNFfl8kHTp0iKSkJF+HISIiIiIiJpGTk0NiYmK1t/t9kRQVFQWc+UFER0f7NBabzUZaWhrJyclYrVafxtLQKRfmoDyYg/JgHsqFOSgP5qFcmIM/5SEvL4+kpCRXjVAdvy+SnEvsoqOjTVEkhYeHEx0dXe9/weo75cIclAdzUB7MQ7kwB+XBPJQLc/DHPFxoG44aN4iIiIiIiFSgIklERERERKQCFUkiIiIiIiIV+P2eJBERERGRhqK8vBybzebVMW02G0FBQZSUlFBeXu7Vsb0tMDCQoKCgWl/6x6dF0uzZs0lNTWXv3r2EhYXRp08fnnrqKdq2beu6T0lJCVOmTOHdd9+ltLSUQYMG8dJLLxEXF+fDyEVEREREzKWgoICDBw/icDi8Oq7D4SA+Pp6cnJx6cd3R8PBwmjdvTnBwcI3H8GmRtG7dOiZNmkT37t05ffo0jz76KMnJyezZs4eIiAgAHnjgAT755BPef/99YmJimDx5MiNHjuSrr77yZegiIiIiIqZRXl7OwYMHCQ8Pp2nTpl4tZux2OwUFBURGRp73Aqy+5nA4KCsr49ixY2RlZdG6desax+vTImnVqlWVvn/jjTdo1qwZGRkZ9O3bl1OnTvHaa6+xdOlS+vfvD8CSJUto3749mzZtolevXr4IW0RERETEVGw2Gw6Hg6ZNmxIWFubVse12O2VlZYSGhpq6SAIICwvDarVy4MABV8w1Yao9SadOnQKgcePGAGRkZGCz2RgwYIDrPu3ataNFixZs3LixyiKptLSU0tJS1/d5eXnAmV8cb6/P9JTz/L6OQ5QLs1AezEF5MA/lwhyUB/NQLtznLJIcDgd2u92rYzuX7xkxtlEcDgc2m43AwMBKx939XbI4vL1osYbsdjvDhg3j5MmTfPnllwAsXbqUcePGVSp6AHr06MHvf/97nnrqqXPGefzxx3niiSfOOb506VLCw8ONCV5ERERExIeCgoKIj48nKSmpVntx/EFZWRk5OTnk5uZy+vTpSrcVFRUxduxYTp06RXR0dLVjmGYmadKkSezatctVINXU1KlTSUlJcX2fl5dHUlISycnJ5/1B1AWbzUZ6ejoDBw70m6sV11fKhTkoD+agPJiHcmEOyoN5KBfuKykpIScnh8jIyBovMauOw+EgPz+fqKioetG4oaSkhLCwMPr27XvOz8K5yuxCTFEkTZ48mRUrVrB+/XoSExNdx+Pj4ykrK+PkyZPExsa6jh85coT4+PgqxwoJCSEkJOSc41ar1TRPLjPF0tApF+agPJiD8mAeyoU5KA/moVxcWHl5ORaLhYCAAK/vG3IusXOOb3YBAQFYLJYqf2/c/T3y6F9pt9tZs2YNM2fOZPz48fzxj3/k3nvvZcmSJeTk5HgyFHCmKp08eTLLly/n888/p1WrVpVu79q1K1arldWrV7uO7du3j+zsbHr37u3x+URERERExBwsFst5vx5//HF+/vlnrr32WhISEggJCSEpKYnJkye7PSNUU27NJBUXF/Pcc8+xaNEifvnlFzp37kxCQgJhYWH88MMPfPjhh0ycOJHk5GSmT5/udte5SZMmsXTpUj766COioqLIzc0FICYmhrCwMGJiYhg/fjwpKSk0btyY6Oho7rnnHnr37q3OdiIiIiIi9djhw4dd///ee+8xffp09u3b5zoWGRmJzWZj+PDhzJo1i6ZNm/LDDz8wadIkfvnlF5YuXWpYbG4VSW3atKF3794sXry42jWhBw4cYOnSpYwZM4bHHnuMiRMnXnDcRYsWAdCvX79Kx5csWcJtt90GwLx58wgICGDUqFGVLiYrIiIiIiJVczgcFBUVeWUsu91OYWEhgYGBbi23Cw8Pd2vvUsXtMzExMVgsliq31Nx1112u/2/ZsiV33303zzzzjJvR14xbRVJaWhrt27c/731atmzJ1KlTefDBB8nOznbr5O401gsNDWXhwoUsXLjQrTFFRERERBq6oqIiIiMjfXLugoICIiIiDBn70KFDpKamcs011xgyvpNbe5IuVCBVZLVaufTSS2sckIiIiIiISEV//OMfCQ8P5+KLLyY6OppXX33V0PN53N1ux44dVR63WCyEhobSokWLKrvLiYiIiIhI3QgPD6egoMArY9ntdvLy8oiOjnZ7uZ23zZs3jxkzZvDdd9+5Lvlj5BYcj4ukzp07n3eNodVqZfTo0fz973/3eo92ERERERG5MIvF4rUlb3a7nfLyciIiInzWAjw+Pp74+HjatWtH48aNufrqq/nLX/5C8+bNDTmfx0XS8uXLeeSRR3jooYfo0aMHAFu2bOG5555jxowZnD59mj//+c9MmzaNZ5991usBi4jvfPrpp7z00kuUl5e7jl1yySXMnz+/wV/dW0SkLnz33XdMmzat0gxBVFQUzzzzDC1atPBhZCJ1x3ndptLSUsPO4XGR9OSTT/L8888zaNAg17ErrriCxMRE/vKXv7BlyxYiIiKYMmWKiiQRPzNjxgy2bt16zvFrrrmG0aNH+yAiEZGG5ZVXXuH9998/53jTpk158cUXfRCRiLFWrlzJkSNH6N69O5GRkezevZuHHnqI3/3ud1xyySWGndfj+bKdO3fSsmXLc463bNmSnTt3AmeW5FXsey4i/uHnn38GYNq0aSxZsoRRo0YBkJqa6suwREQaDOfr8B/+8AeWLFnC1KlTgTMrfZyfrov4k7CwMBYvXsxVV11F+/bteeCBBxg2bBgrVqww9LwezyS1a9eOOXPm8Morr7iW19hsNubMmUO7du0A+Omnn4iLi/NupCLic6dOnQJgzJgxdOjQgcsuu4xly5bxySefUFJSon2IIiIGc74O//73v+e2226jtLSUF198kUOHDrFlyxZ69erl4whFaua2225zXSe1ot///vds2LChzuPxeCZp4cKFrFixgsTERAYMGMCAAQNITExkxYoVrovD7t+/n7vvvtvrwYqI7zgcDk6ePAmcueAbQPfu3UlMTKSwsJC0tDQfRici0jD8+nU4JCSE66+/HoBly5b5KiwRv+NxkdSnTx+ysrKYOXMmHTt2pGPHjsycOZOsrCzXpxc333wzDz30kNeDFRHfKSoqcjVscL45WywWRo4cCejNWUSkLjhnkpyvw0Cl12GHw+GTuET8jcfL7eBMF5U777zT27GIiIk535gDAgIqXcF71KhRLFiwgI8//hibzYbVavVViCIifq+qImnw4MGEhYWRlZXFN998Q+fOnX0UnYj/qFGj83/+859cddVVJCQkcODAAeDMBZ4++ugjrwYnIubhfGOOjo6udK203/3udzRr1oyTJ0+yZs0aX4UnItIgVFUkRUREcO211wKa1RfxFo+LpEWLFpGSksLgwYM5ceKEa/lNo0aNmD9/vrfjExGTqOqNGSAwMJARI0YA6nInImIkh8NR7Wuxlj6Lk5Zceudn4HGR9MILL7B48WIee+wxgoLOrtbr1q2bqwW4iPif6t6YAVcr8OXLl1e60KyIiHhPSUkJNpsNOPe1+Prrr8dqtfLtt9/y7bff+iI88bHAwEAAysrKfByJ7xUVFQHUaguAx3uSsrKy6NKlyznHQ0JCKCwsrHEgImJu5yuS+vXrR2xsLEePHuWrr76ib9++dR2eiIjfc74OWyyWSntDAWJjYxkwYACffvopqampPPbYY74IUXwoKCiI8PBwjh07htVqJSCgRrtqqmS32ykrK6OkpMSr43qbw+GgqKiIo0ePEhsb6yoca8LjIqlVq1ZkZmaec0HZVatW0b59+xoHIiLmdr4iKTg4mGHDhvHmm2+SmpqqIklExAAV94ZW9YfqyJEj+fTTT1m2bJmKpAbIYrHQvHlzsrKyXD0DvMXhcFBcXExYWFilfclmFRsbS3x8fK3G8LhISklJYdKkSZSUlOBwONiyZQvvvPMOs2fP5tVXX61VMCJiXucrkuDMkjtnkTRv3rx68SIqIlKfXOh1ePjw4fzpT39i+/btZGVl0apVq7oMT0wgODiY1q1be33Jnc1mY/369fTt29f0XWytVmutZpCcPC6SJkyYQFhYGNOmTaOoqIixY8eSkJDA888/z5gxY2odkIiY04XenAcOHEhERAQ5OTls3bqVHj161GV4IiJ+70Kvw02bNqVv376sXbuW1NRUpkyZUpfhiUkEBAQQGhrq1TEDAwM5ffo0oaGhpi+SvKVGiwpvuukmvv/+ewoKCsjNzeXgwYOMHz/e27GJiIlc6M05LCyM6667DlCXOxERI1zodRjONtLR67BI7dSoSDp+/Djbtm3j22+/9cp0loiYnztvzrrqu4iIcdx5Hb7hhhsA2LBhA4cOHaqTuET8kUdF0u7du+nbty9xcXH07NmTHj160KxZM/r378++ffuMilFETMCdN+chQ4YQEhLCDz/8wK5du+oqNBGRBsGd1+GLL76YXr16AWcuyyAiNeN2kZSbm8s111zDsWPHmDt3LitXruSTTz7hmWee4fDhw1x99dUcPXrUyFhFxIfceXOOiopi0KBBgC5oKCLibe68DoOW3Il4g9tF0rx582jZsiXbt2/nvvvuY9CgQVx77bWkpKTw9ddfk5SUxLx584yMVUR8yN03Z131XUTEGJ6+Dq9bt47jx48bHpeIP3K7SEpPT+eRRx6psltGWFgYDz30EJ999plXgxMR83D3zXnYsGEEBQWxa9cuvvvuu7oITUSkQXD3dfg3v/kNnTt3pry8nI8++qguQhPxO24XSfv37+fKK6+s9vZu3bqxf/9+rwQlIubj7ptzo0aN6N+/P6ClHiIi3uTu6zBoyZ1IbbldJOXn5xMdHV3t7VFRURQUFHglKBExF4fD4dGbs3Oph96cRUS8pyZFUnp6uutxIuI+j7rb5efnk5eXV+2XWv6K+Kfi4mJOnz4NuPfmPGLECCwWC1u3biU7O9vo8EREGgRPiqT27dvTrl07bDYbn3zyidGhifgdt4skh8NBmzZtaNSoUZVfbdu2NTJOEfEh5xuzxWIhMjLygvePi4vjqquuAjSbJCLiLZ4USXB2NkmNdEQ8F+TuHdesWWNkHCJiYs435ujoaAIC3PtsZdSoUXzxxRekpqZy//33GxidiEjD4GmRNHLkSJ588kk+/fRTCgsLiYiIMDI8Eb/i9kzSNddc49aXJ9avX8/QoUNJSEjAYrHw4YcfVrrd4XAwffp0mjdvTlhYGAMGDOD777/36BwiUnuevjHD2X1JX375Jbm5uYbEJSLSkHj6WtylSxcuueQSiouL1YFYxENuFUmFhYUeDeru/QsLC+nUqRMLFy6s8vann36aBQsW8PLLL7N582YiIiIYNGgQJSUlHsUjIrVTkyIpKSmJ7t2743A41IJWRKSWSkpKKCsrA9x/LbZYLFpyJ1JDbhVJv/3tb5kzZw6HDx+u9j4Oh4P09HQGDx7MggUL3Dr54MGDmTVrFjfccEOV482fP59p06YxfPhwOnbsyJtvvsmhQ4fOmXESEWM5i6TY2FiPHqc3ZxER76i4NzQqKsrtxzln9VesWEFpaakhsYn4I7f2JK1du5ZHH32Uxx9/nE6dOtGtWzcSEhIIDQ3lxIkT7Nmzh40bNxIUFMTUqVP505/+VOvAsrKyyM3NZcCAAa5jMTEx9OzZk40bNzJmzJgqH1daWlrpRSAvLw8Am82GzWardVy14Ty/r+MQ5cJTv/zyC3Cm1b8nP7OhQ4fy5z//mTVr1nDkyBEaN25c6XblwRyUB/NQLszBjHk4fvw4cGZvaHl5OeXl5W49rmvXriQkJHDo0CE+++wzBg8ebGSYXmfGXDRE/pQHd/8NbhVJbdu2ZdmyZWRnZ/P+++/zxRdfsGHDBoqLi2nSpAldunRh8eLFDB48mMDAwFoF7uTcwxAXF1fpeFxc3Hn3N8yePZsnnnjinONpaWmEh4d7JbbaSk9P93UI8n+UC/ds2rQJOLNEduXKlR49tmXLlhw4cIC//e1vrovM/pryYA7Kg3koF+Zgpjw492QHBwd7/DrcuXNnDh06xIIFC+rt5VrMlIuGzB/yUFRU5Nb93O5uB9CiRQumTJnClClTahRUXZg6dSopKSmu7/Py8khKSiI5Ofm8F8OtCzabjfT0dAYOHIjVavVpLA2dcuGZLVu2AGeuuzFkyBCPHpuRkcFf//pX/vvf//Lss89Wuk15MAflwTyUC3MwYx5Wr14NnPmw2NPX4bCwMFauXElmZibJyckEBXn0559PmTEXDZE/5cG5yuxCTPssiY+PB+DIkSM0b97cdfzIkSN07ty52seFhIQQEhJyznGr1WqapJoploZOuXBPQUEBAI0aNfL453XjjTfy17/+lf/85z+UlJRUuZZeeTAH5cE8lAtzMFMenE2xYmNjPY6pf//+XHTRRfz8889s3Lix2ll9MzNTLhoyf8iDu/G73QK8rrVq1Yr4+HjXJydwpvLbvHkzvXv39mFkIg1PTbrbOV1++eW0bt2a0tJSj5eIiIjIGbV5HQ4KCmL48OGAGumIuMunRVJBQQGZmZlkZmYCZ5o1ZGZmkp2djcVi4f7772fWrFl8/PHH7Ny5k1tuuYWEhARGjBjhy7BFGpzavDlbLBZXdyW9OYuI1ExtXofhbLfR5cuXY7fbvRaXiL/yaZG0bds2unTpQpcuXQBISUmhS5cuTJ8+HYCHH36Ye+65hzvuuIPu3btTUFDAqlWrCA0N9WXYIg2Ot96cV65cSXFxsdfiEhFpKGr7Ovw///M/REdHc/jwYVczHhGpnk+LpH79+uFwOM75euONN4Azn0DPnDmT3NxcSkpK+M9//kObNm18GbJIg1TbN+du3bqRlJREYWEhaWlp3gxNRKRBqO3rcEhICNdffz2gWX0Rd3hcJPXt25fp06ezevVqSkpKjIhJREymtm/OWnInIlI7tX0dhrOz+qmpqfW2FbhIXfG4SEpOTmbTpk0MHz6c2NhYrrrqKqZNm0Z6errbfcdFpH7x5pvzv//9b8rKyrwSl4hIQ+GN1+Frr72WsLAwfvzxR7Zv3+6t0ET8ksdF0rRp00hLS+PkyZOsWbOG66+/nm3btnHdddfRuHFjI2IUER9yOBxeeXPu06cPcXFxrtcOERFxnzdeh8PDwxk8eDCgWX2RC6nxnqT9+/ezc+dOvvnmG3bs2EFUVJTriSci/qOkpASbzQbU7s05MDDQ1ZkyNTXVG6GJiDQY3iiSoPKSOxGpnsdF0tixY7n44ovp06cPq1atolevXnz66accP36c5cuXGxGjiPiQ843ZYrEQGRlZq7Gcb84ffvgh5eXltY5NRKSh8FaRdP311xMcHMzevXvZs2ePN0IT8UseF0nvvvsuNpuNCRMmcOeddzJx4kQ6deqExWIxIj4R8THnG3N0dDQBAbVriNmvXz8aNWrE0aNH+fLLL70RnohIg+CtIik6OpoBAwYAWnIncj4e/8Xz888/8+qrr1JWVsbUqVNp0qQJffr04dFHH1VrXxE/5K03ZgCr1cqwYcMALfUQEfGEN1+LteRO5MI8LpIaNWrEsGHDmDt3LhkZGezYsYM2bdrwzDPPaE+SiB/y5hszVH5z1lXfRUQurLS0lNLSUsA7r8XDhg0jMDCQzMxM9u/fX+vxRPxRjWaSUlNTuffee+nYsSPt2rVjxYoVDB06lLlz5xoRo4j4kLeLpIEDBxIZGcnBgwfZtm2bV8YUEfFnFfeGRkVF1Xq8Jk2acM011wCaTRKpjsdFUrNmzbjrrrs4dOgQEydOZPv27Rw/fpzU1FTuu+8+I2IUER86efIk4L0iKTQ0lOuuuw5AzV5ERNzgfB2Oioqq9d5QJ+esvvYliVTN42fajh07OHLkCB988AH33HMPV1xxhRFxiYhJeHsmCWDkyJHAmS53uuq7iMj5GfE67Lwkw6ZNmzh48KDXxhXxFx4XSR06dDAiDhExKSPenIcMGUJoaCj//e9/OXDggNfGFRHxR0a8DickJNCnTx/gzAdWIlJZjeZsP/jgA/7whz/Qq1cvrrzyykpfIuJfjHhzjoyMZNCgQQBs3LjRa+OKiPgjI16HQUvuRM7H4yJpwYIFjBs3jri4OLZv306PHj246KKL2L9/v7rbifgho96cnUvuVCSJiJyfUa/DN9xwAwDr16/n2LFjXh1bpL7zuEh66aWXeOWVV3jhhRcIDg7m4YcfJj09nXvvvdf1JBYR/2HUm/P1118PQHZ2tt6cRUTOw6jX4VatWnHFFVdgt9v54osvvDq2SH3ncZGUnZ3tWsMaFhZGfn4+ADfffDPvvPOOd6MTEZ8z6s25cePGtG3bFoCtW7d6dWwREX9i1OswQO/evQHYvHmz18cWqc/cLpIOHToEQHx8PL/88gsALVq0YNOmTQBkZWWpS5WIHzLyzblHjx4AbNmyxetji4j4CyNfh3v27AmoSBL5NbeLpMsvv5y3336b/v378/HHHwMwbtw4HnjgAQYOHMjo0aNda1tFxH+oSBIR8a26KJK2bt3K6dOnvT6+SH3ldpE0a9Ys7rzzTk6cOMHkyZMBmDRpEq+//jrt27dn5syZLFq0yLBARcQ36qJI2rp1K3a73evji4j4AyNfh9u1a0dUVBRFRUXs3r3b6+OL1FduF0l33303O3bs4MSJE3To0IF///vfAIwZM4YFCxZwzz33EBwcbFigIlL3HA6HoW/Ol19+OcHBwZw6dYrvvvvO6+OLiPgDI1+HAwMD6d69O6AldyIVedS4oVWrVnz++edMmzaNkSNH0rFjR10nScSPlZSUYLPZAGPenK1WK5deeimgN2cRkeoYWSSB9iWJVCXI0wccOHCA1NRUGjVqxPDhwwkK8ngIEaknnG/MFouFqKgoQ87RunVrvv32WzZv3sytt95qyDlEROozFUkidc+jCmfx4sVMmTKFAQMGsHv3bpo2bWpUXCJiAs435qioKAICPL5igFvatGkD6M1ZRKQ6dVUk7dmzh7y8PKKjow05j0h94vZfPddeey2PPPIIL774IqmpqSqQRBoAo9+Y4WyRtGPHDoqLiw07j4hIfWX0a3F8fDwtWrTA4XCwbds2Q84hUt+4XSSVl5ezY8cObrnlFiPjERETqYsiqWnTpsTFxXH69Gm+/vprw84jIlIflZaWUlpaChj7WqwldyKVuV0kpaenk5iYaGQsImIydVEkWSwWVytwvTmLiFTmfB0GDNsbCtCrVy9Ar8MiTsZsMhARv1AXRRKgIklEpBoV94YGBgYadp6KM0kOh8Ow84jUFyqSRKRaKpJERHyrrl6Hr7zySoKCgsjNzSUnJ8fQc4nUB/WiSFq4cCGXXHIJoaGh9OzZky1btvg6JJEGoa7enLt27YrFYuHAgQMcOXLE0HOJiNQndfU6HBYWRseOHQF9YCUC9aBIeu+990hJSWHGjBl8/fXXdOrUiUGDBnH06FFfhybi9+rqzTk6OprLLrsM0JuziEhFdfU6DGreIFKR6YukuXPnMnHiRMaNG8dll13Gyy+/THh4OK+//rqvQxPxe3pzFhHxLb0Oi/iGRxeTrWtlZWVkZGQwdepU17GAgAAGDBjAxo0bq3xMxVaZAHl5eQDYbDZsNpuxAV/A5MmT2bdvH++++65hF+YU99jtdg4fPqxcXMCXX34JnNkwbMTzxzmmzWajW7duvP7667z11lv8+OOPXj+XVE/PB/NQLszBTHn47rvvgDMz7kb/HXPllVcCsHXrVm666SZDz+UuM+WiIfNGHi6//HIefPBBL0fmOXefR6Yuko4fP055eTlxcXGVjsfFxbF3794qHzN79myeeOKJc46npaURHh5uSJzueu+99yq18hSpL3Jzc1m5cqVh46enp1NeXg5AdnY2S5cuNexcIiL1UVlZmaGvw3DmD+HY2FhOnjyp12Hxui5duriW1vtSUVGRW/czdZFUE1OnTiUlJcX1fV5eHklJSSQnJxMdHe3DyGDmzJlkZmbSpk0bQ9t4yoWVl5fz3XffKRduiIuL4w9/+IMhPyebzUZ6ejoDBw7EarWSlJTk+tRU6o6eD+ahXJiD2fIQHh7OjTfeSKNGjQw/V1paGmvXrjX8PO4yWy4aKm/koWXLlgwZMsTLkXnOucrsQkxdJDVp0oTAwMBzul0dOXKE+Pj4Kh8TEhJCSEjIOcetVitWq9WQON111113sXLlSoYMGeLzWBo6m82mXJiI8/k5fPhwX4fSIOn5YB7KhTk05Dx0796d7t27+zoMl4acCzPxpzy4G7+pF3cGBwfTtWtXVq9e7Tpmt9tZvXo1vXv39mFkIiIiIiLir0w9kwSQkpLCrbfeSrdu3ejRowfz58+nsLCQcePGufV451Wj3Z1aM5LNZqOoqIi8vLx6X4XXd8qFOSgP5qA8mIdyYQ7Kg3koF+bgT3lw1gTOGqE6pi+SRo8ezbFjx5g+fTq5ubl07tyZVatWndPMoTr5+fkAJCUlGRmmiIiIiIjUE/n5+edtrW9xXKiMqufsdjuHDh0iKioKi8Xi01icTSRycnJ83kSioVMuzEF5MAflwTyUC3NQHsxDuTAHf8qDw+EgPz+fhISE87YzN/1MUm0FBASQmJjo6zAqiY6Orve/YP5CuTAH5cEclAfzUC7MQXkwD+XCHPwlD+5cnNnUjRtERERERETqmookERERERGRClQk1aGQkBBmzJhR5XWcpG4pF+agPJiD8mAeyoU5KA/moVyYQ0PMg983bhAREREREfGEZpJEREREREQqUJEkIiIiIiJSgYokERERERGRClQkiYiIiIiIVKAiSUREREREpAIVSSIiIiIiIhWoSBIREREREalARZKIiIiIiEgFKpJEREREREQqUJEkIiIiIiJSQZCvAzCa3W7n0KFDREVFYbFYfB2OiIiIiIj4iMPhID8/n4SEBAICqp8v8vsi6dChQyQlJfk6DBERERERMYmcnBwSExOrvd3vi6SoqCjgzA8iOjrap7HYbDbS0tJITk7GarX6NJaGTrkwB+XBHJQH81AuzEF5MA/lwhz8KQ95eXkkJSW5aoTq+H2R5FxiFx0dbYoiKTw8nOjo6Hr/C1bfKRfmoDyYg/JgHsqFOSgP5qFcmIM/5uFC23DUuEFERERERKQCFUkiIiIiIiIVqEgSERERERGpwO/3JImIiIiINBR2u52ysjKvjmmz2QgKCqKkpITy8nKvju1tVquVwMDAWo+jIklERERExA+UlZWRlZWF3W736rgOh4P4+HhycnLqxXVHY2NjiY+Pr1WsPi2SZs+eTWpqKnv37iUsLIw+ffrw1FNP0bZtW9d9SkpKmDJlCu+++y6lpaUMGjSIl156ibi4OB9GLiIiIiJiHg6Hg8OHDxMYGEhSUtJ5L5TqKbvdTkFBAZGRkV4d19scDgdFRUUcPXoUgObNm9d4LJ8WSevWrWPSpEl0796d06dP8+ijj5KcnMyePXuIiIgA4IEHHuCTTz7h/fffJyYmhsmTJzNy5Ei++uorX4YuIiIiImIap0+fpqioiISEBMLDw706tnMJX2hoqKmLJICwsDAAjh49SrNmzWq89M6nRdKqVasqff/GG2/QrFkzMjIy6Nu3L6dOneK1115j6dKl9O/fH4AlS5bQvn17Nm3aRK9evXwRtoiIiIiIqTj3CgUHB/s4Et9zFok2m61+Fkm/durUKQAaN24MQEZGBjabjQEDBrju065dO1q0aMHGjRurLJJKS0spLS11fZ+Xlwec+SHZbDYjw78g5/l9HYcoF2ahPJiD8mAeyoU5KA/moVy4z2az4XA4cDgchuxJcv7X22MbwflzqKpIcvd3yeJw/qt9zG63M2zYME6ePMmXX34JwNKlSxk3blylogegR48e/P73v+epp546Z5zHH3+cJ5544pzjS5cu9frUo4iIiIiIGQQFBREfH09SUlKDn00qKysjJyeH3NxcTp8+Xem2oqIixo4dy6lTp4iOjq52DNPMJE2aNIldu3a5CqSamjp1KikpKa7v8/LySEpKIjk5+bw/iLpgs9lIT09n4MCBWK1Wn8bS0CkX5qA8mIPyYB7KhTkoD+ahXLivpKSEnJwcIiMjCQ0N9erYDoeD/Px8oqKi6kV3u5KSEsLCwujbt+85PwvnKrMLMUWRNHnyZFasWMH69etJTEx0HY+Pj6esrIyTJ08SGxvrOn7kyBHi4+OrHCskJISQkJBzjlutVtM8ucwUS0OnXJiD8mAOyoN5KBfmoDyYh3JxYeXl5VgsFgICArzeXMG5xM45vrdcqOCaMWMGjz/+uOv7n3/+mU6dOvHTTz9x4sSJSvVBRQEBAVgslip/b9z9PfKoSLLb7axbt44vvviCAwcOUFRURNOmTenSpQsDBgwgKSnJk+FwOBzcc889LF++nLVr19KqVatKt3ft2hWr1crq1asZNWoUAPv27SM7O5vevXt7dC4RqT2Hw+H6dEZERESkNg4fPuz6//fee4/p06ezb98+17HIyMhK9x8/fjwdO3bkp59+Mjw2t0rB4uJiZs2aRVJSEkOGDOHTTz/l5MmTBAYG8sMPPzBjxgxatWrFkCFD2LRpk9snnzRpEm+99RZLly4lKiqK3NxccnNzKS4uBiAmJobx48eTkpLCmjVryMjIYNy4cfTu3Vud7UR8YPLkycTFxbFx40ZfhyIiIiL1XHx8vOsrJiYGi8VS6VjFImnRokWcPHmSBx98sE5ic2smqU2bNvTu3ZvFixdXuyb0wIEDLF26lDFjxvDYY48xceLEC467aNEiAPr161fp+JIlS7jtttsAmDdvHgEBAYwaNarSxWRFpO6tX7+e/Px8br/9drZv3+71Nc8iIiLiHc4Lq3qD3W6nsLCQwMBAt5bbhYeHe3Xv0p49e5g5cyabN29m//79Xhv3fNwqktLS0mjfvv1579OyZUumTp3Kgw8+SHZ2tlsnd6exXmhoKAsXLmThwoVujSkixnFudty7dy9PPvkkf/3rX30ckYiIiFSlqKjonOVqdaWgoICIiAivjFVaWsof//hHnnnmGVq0aFFnRZJby+0uVCBVZLVaufTSS2sckIiYV8WOMHPmzGHHjh0+jEZERET83dSpU2nfvj3/+7//W6fn9bi7XXV/FFksFkJDQ2nRokWV3eVEpH5zOByuIqlPnz5s2LCB8ePHs3HjRoKCTNEoU0RERP5PeHg4BQUFXhnLbreTl5dHdHS028vtvOXzzz9n586dfPDBB8DZlWhNmjThscceq/L6qN7g8V82nTt3Pu8aQ6vVyujRo/n73/+u/QoifqS4uNjVAvSNN96ge/fubNu2jeeff54pU6b4ODoRERGpyGKxeG3Jm91up7y8nIiICK+3F7+QZcuWuZq6AWzdupXbb7+dL774wtDVax7/K5cvX07r1q155ZVXyMzMJDMzk1deeYW2bduydOlSXnvtNT7//HOmTZtmRLwi4iPOWaSAgAB++9vf8uyzzwLwl7/8hf/+97++DE1ERET81KWXXsrll1/u+nJeMqh9+/Y0a9bMsPN6PJP05JNP8vzzzzNo0CDXsSuuuILExET+8pe/sGXLFiIiIpgyZYrrjygRqf+cRZLzatvjx49n6dKlrFmzhjvuuIP//Oc/9eIq3CIiIiIX4vFM0s6dO2nZsuU5x1u2bMnOnTuBM0vyKl4cSkTqP2eRFB0dDZyZxl+8eDFhYWF8/vnnLFmyxJfhiYiISD122223cfLkyQver1+/fjgcDmJjYw2Nx+MiqV27dsyZM4eysjLXMZvNxpw5c2jXrh0AP/30E3Fxcd6LUkR87tdFEpyZAp85cyYAU6ZM0YcjIiIi4hc8Xm63cOFChg0bRmJiIh07dgTOzC6Vl5ezYsUKAPbv38/dd9/t3UhFxKfy8/OBM8vtKrr//vt577332LZtG5MnT2bZsmW+CE9ERETEazwukvr06UNWVhZvv/023333HQA33ngjY8eOdf3xdPPNN3s3ShHxuapmkgCCgoJ47bXX6Nq1K6mpqaSmpjJy5EhfhCgiIiLiFTW6uElUVBR33nmnt2MREROrrkgC6NixI4888ghPPvkkkyZNYtCgQV5rOyoiImetWbOGW2+9tdL1byIiInjrrbe45pprfBiZiH+pUaPzf/7zn1x11VUkJCRw4MABAObNm8dHH33k1eBExDzOVyQBTJs2jYsvvpjc3Fw2bNhQl6GJiDQYy5YtIycnhxMnTri+Dh48yG233ea1C4eKSA2KpEWLFpGSksLgwYM5ceIE5eXlADRq1Ij58+d7Oz4RMYnq9iQ5hYaG0rdvXwA2b95cZ3GJiDQkJ06cAODPf/4ze/fuZdeuXbRs2ZIff/xR16gUABwOh69D8Dlv/Aw8LpJeeOEFFi9ezGOPPUZQ0NnVet26dXO1ABcR/3OhmSSAnj17AiqSRESM4myR3KZNG9q2bUuHDh145ZVXAFiwYAGbNm3yYXTiS4GBgQCVOlA3VEVFRQBYrdYaj+HxnqSsrCy6dOlyzvGQkBAKCwtrHIiImJsnRdKmTZtwOBy6uKyIiJc5Z5IqXiMmOTmZW265hTfffJPx48fz9ddfExIS4qMIxVeCgoIIDw/n2LFjWK1WAgJqtKumSna7nbKyMkpKSrw6rrc5HA6Kioo4evQosbGxrsKxJjwuklq1akVmZuY5F5RdtWoV7du3r3EgImJu7hRJnTt3xmq1cvz4cbKysvjNb35TV+GJiDQIzpmkRo0aVTo+d+5cPv30U/bs2cPs2bN5/PHH6z448SmLxULz5s3Jyspy9QzwFofDQXFxMWFhYfXiA9DY2Fji4+NrNYbHRVJKSgqTJk2ipKQEh8PBli1beOedd5g9ezavvvpqrYIREfO60J4kOLMvqXPnzmzdupXNmzerSBIR8bKqZpIALrroIl544QXGjBnD3/72N0aPHq0Prxug4OBgWrdu7fUldzabjfXr19O3b99aLWGrC1artVYzSE4eF0kTJkwgLCyMadOmUVRUxNixY0lISOD5559nzJgxtQ5IRMzJnZkkOLPkzlkk/fGPf6yL0EREGozqZpIA/vCHP/CPf/yDTz/9lFdffZXnnnuujqMTMwgICCA0NNSrYwYGBnL69GlCQ0NNXyR5S40WFd500018//33FBQUkJuby8GDBxk/fry3YxMRE3G3SOrVqxeg5g0iIt5WUlJCSUkJcO5MEpxZbjVx4kTgTKtwdTkTqbkaFUnHjx9n27ZtfPvtt16ZzhIR8/NkJglg+/bt6rAjIuJFzqV2AQEB1S59HjRoEOHh4Rw4cIDt27f///buPC6quu0f+GeAYV8VYSBRScUlFXEBl8IlBLFbMX1Ks1+ZmWWpLZh6Y6bVbbe2qWmmaYt1P2ndJba4kIi7IiqKuJILicYmyr4OzPn9wTMTkyAzcM7MYfi8Xy9eOuec+Z5r5uIA13yXY8rwiCyKUUXS+fPnERoaCm9vb4SEhCA4OBheXl4YOXIk0tLSpIqRiGTA0CKpc+fOaNu2LSorK3HmzBlThEZE1Cpoh9q5ubk1uMKYo6MjIiMjAdT2JhFR0xhcJGVnZ2PYsGG4desWVqxYgZ07d2LHjh344IMPkJWVhYceegi5ublSxkpEZlJTU6O758C9Fm4Aaod7BAcHA+CQOyIiMWl7kuqbj1TXhAkTAHDIHVFzGFwkrVy5Eh07dsTp06fxyiuvICIiAqNHj0Z0dDROnToFPz8/rFy5UspYichMtCvbAY0XSQBvKktEJAVtT1J985Hq+sc//gFbW1ukpaXh4sWL0gdGZIEMLpLi4+OxYMGCelfLcHBwwLx58/Dbb7+JGhwRyYN2qJ2dnZ1BNyhkkUREJD5De5JcXV0xatQoABxyR9RUBhdJ165dQ79+/RrcP2DAAFy7dk2UoIhIXgydj6SlHW53+fJl3LlzR7K4iIhaE0N7kgD9IXdEZDyDi6Ti4uJ7/oHk4uKCkpISUYIiInkx5EaydbVp0wZdu3YFABw/flyyuIiIWhNDe5IAICoqCtbW1jhz5gyuXr0qdWhEFseo1e2Ki4tRVFTU4BcnBxJZJmN7kgAOuSMiEpsxPUlt27bF8OHDAQCxsbHSBUVkoQwukgRBQEBAADw8POr96tatm5RxEpEZsUgiIjI/Y3qSgL+G3LFIIjKejaEH7tu3T8o4iEjGmlskCYIAhUIhSWxERK2FMT1JAPDoo49i9uzZOHbsGG7evIn27dtLFxyRhTG4J2nYsGEGfRnj4MGDGDt2LHx9faFQKPDTTz/p7RcEAYsXL4aPjw8cHBwQFhaGy5cvG3UOImo+Y+ckAUBgYCCcnJxw584dfPvtt1KFRkTUahjbk+Tj44PBgwcDALZt2yZZXESWyKAiqbS01KhGDT2+tLQUgYGBWLt2bb3733//faxevRrr169HUlISnJycEBERgYqKCqPiIaLmaUpPkq2tLRYuXAgAePXVV3Hr1i1JYiMiai20PUmGFkkAMHHiRAAcckdkLIOKpC5dumD58uXIyspq8BhBEBAfH4/IyEisXr3aoJNHRkZi6dKlePTRR+ttb9WqVVi0aBGioqLQp08ffPPNN8jMzLyrx4mIpNWUIgkA5s2bh8DAQNy+fRuvvPKKFKEREbUa2p4kQ4fbAX/NSzp48CA/rCIygkFzkvbv34+FCxfirbfeQmBgIAYMGABfX1/Y29sjPz8fFy5cQGJiImxsbBATE4MXXnih2YGlp6cjOzsbYWFhum1ubm4ICQlBYmIiJk+eXO/zKisrUVlZqXus/eNOrVZDrVY3O67m0J7f3HEQc2Es7aeXTk5ORr9n69evx9ChQ7FlyxY8/vjjeOSRR3T7mAd5YB7kg7mQB7nmQfuz2NnZ2eDY7rvvPgQFBeH06dPYunUrpk+fLmGE4pNrLlobS8qDoa/BoCKpW7du2Lp1KzIyMvDDDz/g0KFDOHr0KMrLy+Hp6YmgoCBs3LgRkZGRsLa2blbgWtnZ2QAAb29vve3e3t66ffVZtmwZ3n777bu27969G46OjqLE1lzx8fHmDoH+D3NhmLS0NADAjRs3sHPnTqOfP27cOPz000947rnnsGbNmruuReZBHpgH+WAu5EFOedBoNCgsLAQAJCcnG3Xvo549e+L06dPYuHEjfHx8pApRUnLKRWtmCXkoKysz6DiFIJObGykUCmzbtg3jx48HABw9ehRDhw5FZmam3gX9+OOPQ6FQ4Pvvv6+3nfp6kvz8/JCXl2f0UCGxqdVqxMfHY9SoUVAqlWaNpbVjLowTFRWFXbt2YePGjZg6darRzy8rK0P//v1x9epVPP/88/jkk08AMA9ywTzIB3MhD3LMQ35+vu6D4+LiYtjZ2Rn83LS0NPTu3RtKpRJ//vmnUcP1zE2OuWiNLCkPRUVF8PT0RGFh4T1rA4OXADc1lUoFAMjJydErknJyctC3b98Gn2dnZ1fvDw6lUimbpMopltaOuTCMdnU7Dw+PJr1fbm5u2LhxI0aOHInPP/8cy5cv15t4zDzIA/MgH8yFPMgpD9pFsRwcHODs7GzUc3v16oWePXviwoUL+O233/D//t//kyJESckpF62ZJeTB0PgNXgLc1Pz9/aFSqZCQkKDbVlRUhKSkJN1ylkRkGk1duKGuESNGoHPnztBoNDhx4oRYoRERtQrGLv/9d9pV7rZu3SpaTESWzKxFUklJCVJSUpCSkgKgdrGGlJQUZGRkQKFQ4NVXX8XSpUvxyy+/4OzZs3j66afh6+urG5JHRKYhRpEE6N9gloiIDGfsjWT/TrvKXVxcHEpKSkSKishymbVIOnnyJIKCghAUFAQAiI6ORlBQEBYvXgwAmD9/PubMmYPnn38eAwcORElJCeLi4mBvb2/OsIlanabcTLY+LJKIiJqmuT1JgYGBuP/++1FRUYG4uDgxQyOySGYtkoYPHw5BEO762rRpE4DaxRzeeecdZGdno6KiAnv27EFAQIA5QyZqdQRBkKQnSSZrxhARtQjN7UlSKBQcckdkBKOLpNDQUCxevBgJCQmoqKiQIiYikpHKykrdPQWaWyT17dsXtra2yMvLQ3p6uhjhERG1Cs3tSQL+GnK3fft2/g1H1Aiji6Tw8HAcO3YMUVFRcHd3x4MPPohFixYhPj7e4HXHiajl0PYiATB6RaW/s7Oz061OySF3RESGa25PEgAEBwfjvvvuQ0lJCfbs2SNOYEQWyugiadGiRdi9ezcKCgqwb98+/OMf/8DJkyfxyCOPoE2bNlLESERmpC2SnJ2dYWXV/BG6nJdERGQ8MXqSrKysdL1JHHJHdG9N/ovn2rVrOHv2LM6cOYPU1FS4uLggMjJSzNiISAa0izaIdTNmFklERMYToycJ+GvI3S+//KIbSk1EdzO6SJoyZQruu+8+DBkyBHFxcRg0aBB27dqFvLw8bNu2TYoYiciMxFq0QUtbJJ06dQqVlZWitElEZOnE6EkCgIceegjt2rXDnTt3cODAATFCI7JIRhdJ3333HdRqNZ577jnMnDkTM2bMQGBgIBQKhRTxEZGZiV0kde7cGW3btkVVVRVSU1NFaZOIyNJpe5KaWyRZW1sjKioKAIfcEd2L0UXS7du38fnnn6OqqgoxMTHw9PTEkCFDsHDhQuzevVuKGInIjLRFUnPvkaSlUCh0vUnHjx8XpU0iIkun7Ulq7nA7ALqlwLdt24aamppmt0dkiYwukjw8PDBu3DisWLECycnJSE1NRUBAAD744APOSSKyQGLPSQLAIomIyEhi9SQBwMiRI+Hm5oacnBwkJiY2uz0iS9SknqTY2Fi8/PLL6NOnD7p3747t27dj7NixWLFihRQxEpEZiT3cDvirSDpx4oRobRIRWTIxe5JsbW0xduxYABxyR9QQo4skLy8vvPjii8jMzMSMGTNw+vRp5OXlITY2Fq+88ooUMRKRGUlRJAUHBwMArly5oncfJiIiult5ebluoRsxepKAv4bcxcbGQhAEUdoksiQ2xj4hNTUVDzzwgBSxEJEMiT0nCaj9JR8QEIDff/8dly9fFq1dIiJLpB1qZ2Vl1eybemtFRETA0dERGRkZSE5OxoABA0Rpl8hSGN2TxAKJqHWRYk4S8NeQu99//13UdomILE3doXZi3NQbABwcHDBmzBgAtb1JRKSvSVfajz/+iMcffxyDBg1Cv3799L6IyLJIMdwO+KtIYk8SEdG9iXUj2b/TDrnbunUrh9wR/Y3RRdLq1asxbdo0eHt74/Tp0wgODkbbtm1x7do1rm5HZIFMUSTxlzMRUcPEupHs340ZMwa2trb4/fffcenSJVHbJmrpjC6SPv30U2zYsAFr1qyBra0t5s+fj/j4eLz88ssoLCyUIkYiMiOpiqQ+ffrAzs4OxcXFuHLliqhtExFZEql6klxdXTFkyBAAwJEjR0Rtm6ilM7pIysjI0F1QDg4OuvkKTz31FLZs2SJudERkdlIs3ADULkEbFBQEAEhKShK1bSIiSyJVTxLwV68+fw4T6TO4SMrMzAQAqFQq3LlzBwDQoUMHHDt2DACQnp7OITNEFkiqhRuAv5YC5/2SiIgaJlVPEsAiiaghBhdJvXr1wrfffouRI0fil19+AQBMmzYNr732GkaNGoVJkybh0UcflSxQIjIPqYbbAcDAgQMBAMePHxe9bSIiS2GKnqTz58+jpKRE9PaJWiqDi6SlS5di5syZyM/Px+zZswEAs2bNwpdffokePXrgnXfewbp16yQLlIhMT6PRmKQnKTU1FRUVFaK3T0RkCaTsSfL19UX79u2h0Whw8uRJ0dsnaqkMLpJeeuklpKamIj8/Hw888AB+/fVXAMDkyZOxevVqzJkzB7a2tpIFSkSmV/dTRbHnJAFAp06d4ObmBrVajdOnT4vePhGRJZCyJwngkDui+hi1cIO/vz/27t2LRYsWYcKECejTpw/vk0RkwbS9SDY2NrC3txe9fYVCgYCAAAD85UxE1BBtTxKLJCLTsTH2CdevX0dsbCw8PDwQFRUFGxujmyCiFqLufCSFQiHJOQICAnDixAn+ciYiaoC2J0mK4XYAMGjQIAAskojqMqrC2bhxI+bOnYuwsDCcP38e7dq1kyouIpIBKRdt0GJPEhHRvUndk9S/f39YW1sjMzMTN2/eRPv27SU5D1FLYvBwu9GjR2PBggX45JNPEBsbywKJqBWQ6h5JdXXp0gUKhQLp6em4deuWZOchImqppO5JcnR0RO/evQHwAysiLYOLpJqaGqSmpuLpp5+WMh4ikhEpV7bTcnJyQrdu3QDwlzMR0d/V1NSgsLAQgHQ9SQDnJRH9ncFFUnx8PLtfiVoZUwy3A/5aCpy/nImI9Gl/DgPS9SQBfxVJx44dk+wcRC2JUavbEVHrwiKJiMi8tEPtHB0dJb3VirZISk5ORnV1tWTnIWopWCQRUYNMMScJAAYOHAigtkjSaDSSnouIqCWR8kaydXXv3h2urq4oKyvDuXPnJD0XUUvQIoqktWvXolOnTrC3t0dISAiOHz9u7pCIWgVT9ST17t0bDg4OKCoqQlpamqTnIiJqSaS+kayWlZWV3gdWRK2d7Iuk77//HtHR0ViyZAlOnTqFwMBAREREIDc319yhEVk8UyzcANTerLZ///4A+MuZiKguU/UkAVy8gagu2RdJK1aswIwZMzBt2jT07NkT69evh6OjI7788ktzh0Zk8UzVkwTwlzMRUX1M1ZME8OcwUV1G3UzW1KqqqpCcnIyYmBjdNisrK4SFhSExMbHe51RWVqKyslL3WPtHnlqthlqtljbgRnTt2hU5OTmwtrY2axxUq6amhrloRHl5OYDaZbqluH60barVagwYMAAAsGHDBvznP/8R/Vx0b7we5IO5kAe55KGqqgpA7YdVUv8d069fPwDAhQsX4OzsLOm5jCGXXLR2zc3DyJEjsXXrVhEjahpDryNZF0l5eXmoqamBt7e33nZvb29cunSp3ucsW7YMb7/99l3bd+/eDUdHR0niNFRBQQEqKirMGgORsWxsbFBaWoqdO3dKdo74+Hio1Wo4OzujpKQEpaWlkp2LiKglcnV1lfTnsFaPHj1w8eJF/hwm0d28edMk38ONKSsrM+g4WRdJTRETE4Po6Gjd46KiIvj5+SE8PNwkQ4bu5dixYzh48CAefPBB2NhY3FvfolRXV+Pw4cPMhQE8PDwkGwuvVqsRHx+PUaNGQalUYuzYsZxvaAa8HuSDuZAHueXBwcEBKpXKJOcKDw/HjRs3THIuQ8gtF62VGHkw5ffxvdS999i9yPq7zdPTE9bW1sjJydHbnpOT0+CbbGdnBzs7u7u2K5VKKJVKSeI0VOfOnZGWloauXbuaPZbWTq1W4/Lly8yFTGivT3d3d5NMTiZ9vB7kg7mQh9acB6VSiYCAAHOHodOacyEnlpQHQ+OXdZFka2uL/v37IyEhAePHjwcAaDQaJCQkYPbs2Qa1IQgCAMOrRimp1WqUlZWhqKioxX+DtXTMhTwwD/LAPMgHcyEPzIN8MBfyYEl50NYE2hqhIbIukgAgOjoaU6dOxYABAxAcHIxVq1ahtLQU06ZNM+j52iWM/fz8pAyTiIiIiIhaiOLiYri5uTW4X/ZF0qRJk3Dr1i0sXrwY2dnZ6Nu3L+Li4u5azKEhvr6+uHHjBlxcXKBQKCSO9t6086Nu3Lhh9vlRrR1zIQ/MgzwwD/LBXMgD8yAfzIU8WFIeBEFAcXExfH1973mcQmisr4lEU1RUBDc3NxQWFrb4b7CWjrmQB+ZBHpgH+WAu5IF5kA/mQh5aYx5kfzNZIiIiIiIiU2KRREREREREVAeLJBOys7PDkiVL6l2inEyLuZAH5kEemAf5YC7kgXmQD+ZCHlpjHjgniYiIiIiIqA72JBEREREREdXBIomIiIiIiKgOFklERERERER1sEgiIiIiIiKqg0USERERERFRHSySiIiIiIiI6mCRREREREREVAeLJCIiIiIiojpYJBEREREREdXBIomIiIiIiKgOFklERERERER12Jg7AKlpNBpkZmbCxcUFCoXC3OEQEREREZGZCIKA4uJi+Pr6wsqq4f4iiy+SMjMz4efnZ+4wiIiIiIhIJm7cuIH27ds3uN/iiyQXFxcAtW+Eq6urWWNRq9XYvXs3wsPDoVQqzRpLa8dcyAPzIA/Mg3wwF/LAPMgHcyEPlpSHoqIi+Pn56WqEhlh8kaQdYufq6iqLIsnR0RGurq4t/huspWMu5IF5kAfmQT6YC3lgHuSDuZAHS8xDY9NwuHADERnsyJEjeOedd1BeXm7uUIiIiIgkY/E9SUQknvnz5+Po0aMoLCzERx99ZO5wiIiIiCTBniQiMtjt27cBAKtWrcLx48fNHA0RERGRNNiTREQGKykpAVC7tP706dORnJwMW1tbM0dFREREWhqNBlVVVaK2qVarYWNjg4qKCtTU1IjattiUSiWsra2b3Q6LJCIymLZIsrW1xblz5/Dee+/hzTffNHNUREREBABVVVVIT0+HRqMRtV1BEKBSqXDjxo0Wcd9Rd3d3qFSqZsVq1iJp2bJliI2NxaVLl+Dg4IAhQ4bgvffeQ7du3XTHVFRUYO7cufjuu+9QWVmJiIgIfPrpp/D29jZj5EStjyAIuiLp3Xffxbx587B06VJMnDgRPXv2NHN0RERErZsgCMjKyoK1tTX8/PzueaNUY2k0GpSUlMDZ2VnUdsUmCALKysqQm5sLAPDx8WlyW2Ytkg4cOIBZs2Zh4MCBqK6uxsKFCxEeHo4LFy7AyckJAPDaa69hx44d+OGHH+Dm5obZs2djwoQJOHLkiDlDJ2p1qqqqdF3sM2bMwP79+7Fjxw4899xzOHz4sKx/aBIREVm66upqlJWVwdfXF46OjqK2rR3CZ29vL/vf9w4ODgCA3NxceHl5NXnonVmLpLi4OL3HmzZtgpeXF5KTkxEaGorCwkJ88cUX2Lx5M0aOHAkA+Oqrr9CjRw8cO3YMgwYNMkfYRK2SthcJAJydnbFu3Tr07NkTiYmJOHz4MEJDQ80YHRERUeum/SCTc4WhKxLVanXLLJL+rrCwEADQpk0bAEBycjLUajXCwsJ0x3Tv3h0dOnRAYmJivUVSZWUlKisrdY+LiooA1L5JarVayvAbpT2/ueMg5qIp8vPzAQD29vbQaDRQqVQIDw9HbGwsDh8+jMGDBxvdJvMgD8yDfDAX8sA8yAdzYTi1Wg1BECAIgiRzkrT/it22FLTvQ31FkqHfS7IpkjQaDV599VUMHToUvXr1AgBkZ2fD1tYW7u7uesd6e3sjOzu73naWLVuGt99++67tu3fvFr3rsani4+PNHQL9H+bCcBkZGQBqP6HauXMnAMDV1RUA8Ouvv+KBBx5octvMgzwwD/LBXMgD8yAfzEXjbGxsoFKpUFJSIvrqdlrFxcWStCu2qqoqlJeX4+DBg6iurtbbV1ZWZlAbsimSZs2ahXPnzuHw4cPNaicmJgbR0dG6x0VFRfDz80N4eLjuDzpzUavViI+Px6hRo6BUKs0aS2vHXBhPe1+kNm3aYMyYMQBqi6RNmzYhIyNDt80YzIM8MA/ywVzIA/MgH8yF4SoqKnDjxg04OzvD3t5e1LYFQUBxcTFcXFxaxOp2FRUVcHBwQGho6F3vhXaUWWOMKpI0Gg0OHDiAQ4cO4fr16ygrK0O7du0QFBSEsLAw+Pn5GdOczuzZs7F9+3YcPHgQ7du3121XqVSoqqpCQUGBXm9STk4OVCpVvW3Z2dnBzs7uru1KpVI2F5ecYmntmAvDaYexOjs7696zkJAQWFtbIzMzEzk5OXrXrzGYB3lgHuSDuZAH5kE+mIvG1dTUQKFQwMrKSvTFFbRD7LTti6WxgmvJkiV466236j1uy5YtmDx5cr3Ps7KygkKhqPf7xtDvI4NeZXl5OZYuXQo/Pz+MGTMGu3btQkFBAaytrXHlyhUsWbIE/v7+GDNmDI4dO2bQiYHaqnT27NnYtm0b9u7dC39/f739/fv3h1KpREJCgm5bWloaMjIymjT/gYiaTrtwg3blSaB2YmTv3r0BAElJSWaJi4iIiFqmrKws3deqVavg6uqqt+3111/XHfvVV1/p7Rs/fryksRnUkxQQEIDBgwdj48aNDXZ3Xr9+HZs3b8bkyZPxxhtvYMaMGY22O2vWLGzevBk///wzXFxcdPOM3Nzc4ODgADc3N0yfPh3R0dFo06YNXF1dMWfOHAwePJgr2xGZmLZIcnZ21tseEhKClJQUJCUlYeLEieYIjYiIiFqguiPD3NzcoFAoGhwtpr1BrKkYVCTt3r0bPXr0uOcxHTt2RExMDF5//XXdBO/GrFu3DgAwfPhwve1fffUVnnnmGQDAypUrYWVlhYkTJ+rdTJaITOteRdJnn33GniQiIiIZ0d5YVQwajQalpaWwtrY2aLido6Oj6HOXZs2aheeeew73338/Zs6ciWnTpkk6P8qgIqmxAqkupVKJzp07G3SsdjnBe7G3t8fatWuxdu1ag2MgIvHdq0gCgJMnT6K6uho2NrJZD4aIiKjVKisru+t3tqmUlJToDc9vrnfeeQcjR46Eo6Mjdu/ejZdeegklJSV4+eWXRTvH3xn910xqamq92xUKBezt7dGhQ4d6F04gopattLQUwN1FUvfu3eHq6oqioiKcO3cOffv2NUN0REREZKnefPNN3f+DgoJQWlqKDz74QF5FUt++fe/ZtaVUKjFp0iR89tlnoi8/SETmU9/CDUDtCjIDBw5EQkICkpKSWCQRERHJgKOjo+53d3NpNBoUFRXB1dXV4OF2UgoJCcG//vUvVFZWStY5Y/Qaftu2bUPXrl2xYcMGpKSkICUlBRs2bEC3bt2wefNmfPHFF9i7dy8WLVokRbxEZCYNDbcDoFtIhfOSiIiI5EGhUMDJycksX1LfSyklJQUeHh6Sjl4zuifp3Xffxccff4yIiAjdtt69e6N9+/Z48803cfz4cTg5OWHu3Ln48MMPRQ2WiMznXkWSdl4SiyQiIiIS06+//oqcnBwMGjQI9vb2iI+Px7///W+95cGlYHSRdPbsWXTs2PGu7R07dsTZs2cB1A7Jy8rKan50RCQbhhRJFy9e1HXHExERETWXUqnE2rVr8dprr0EQBHTp0gUrVqww6HZDzWH0cLvu3btj+fLlqKqq0m1Tq9VYvnw5unfvDgD4888/4e3tLV6URGR2DS3cAABeXl7o1KkTBEHAiRMnTB0aERERtXDPPPMMCgoK7to+evRonD59GsXFxSgpKUFKSgpeeOEFg+ZGNYfRPUlr167FuHHj0L59e/Tp0wdAbe9STU0Ntm/fDgC4du0aXnrpJXEjJSKzamjhBq2QkBD88ccfSEpKwsMPP2zK0IiIiIhEZXSRNGTIEKSnp+Pbb7/F77//DgB47LHHMGXKFLi4uAAAnnrqKXGjJCKzu9dwO6C2SPr+++85L4mIiIhavCbd9dHFxQUzZ84UOxYikjFDiiSgdvEGQRAkX9mGiIiISCpNGsz3n//8Bw8++CB8fX1x/fp1AMDKlSvx888/ixocEclHY0VSUFAQbGxskJOTg4yMDFOGRkRERCQqo4ukdevWITo6GpGRkcjPz0dNTQ0AwMPDA6tWrRI7PiKSiXst3AAADg4OCAwMBMClwImIiMxFEARzh2B2YrwHRhdJa9aswcaNG/HGG2/Axuav0XoDBgzQLQFORJZFo9HoiqSGFm4AeL8kIiIic7G2tgYAvRWoW6uysjIAtcuHN5XRc5LS09MRFBR013Y7OzvdH1FEZFnKy8t1n8o01JME1BZJn376KY4dO2aq0IiIiAiAjY0NHB0dcevWLSiVSlGXyNZoNKiqqkJFRYXkS283hyAIKCsrQ25uLtzd3XWFY1MYXST5+/sjJSXlrhvKxsXFoUePHk0OhIjkSzsfSaFQwMHBocHjtD1Jp06dglqtbtYnOERERGQ4hUIBHx8fpKen69YMEIsgCCgvL4eDg0OLWJjJ3d0dKpWqWW0YXSRFR0dj1qxZqKiogCAIOH78OLZs2YJly5bh888/b1YwRCRPde+RdK9PkLp27Qp3d3cUFBQgNTUV/fv3N1WIRERErZ6trS26du0q+pA7tVqNgwcPIjQ0VPYfgCqVymb1IGkZXSQ999xzcHBwwKJFi1BWVoYpU6bA19cXH3/8MSZPntzsgIhIfhpbtEHLysoKISEh+O2335CUlMQiiYiIyMSsrKxgb28vapvW1taorq6Gvb297IsksTRpUOGTTz6Jy5cvo6SkBNnZ2bh58yamT58udmxEJBN1e5Iaw8UbiIiIqKVr0s1k8/Ly8Mcff0ChUKBTp04ih0REctPYPZLqYpFERERELZ1RPUnnz59HaGgovL29ERISguDgYHh5eWHkyJFIS0uTKkYiMjNjiqTg4GAAQFpaGvLz8yWNi4iIiEgKBhdJ2dnZGDZsGG7duoUVK1Zg586d2LFjBz744ANkZWXhoYceQm5urpSxEpGZGFMkeXp6onPnzgCAEydOSBoXERERkRQMLpJWrlyJjh074vTp03jllVcQERGB0aNHIzo6GqdOnYKfnx9WrlwpZaxEZCaGLtygxSF3RESmo72PHRGJx+AiKT4+HgsWLKh3tQwHBwfMmzcPv/32m6jBEZE8GLNwA8AiiYjIVDZu3AgXFxf89NNP5g6FyKIYXCRdu3YN/fr1a3D/gAEDcO3aNVGCIiJ5MWa4HaBfJPETTiIi6axatQqlpaWYMWMG8vLyzB0OkcUwuEgqLi6Gq6trg/tdXFx0f0gRkWUxtkjq27cvbG1tkZeXxw9PiIgkcunSJVy4cAFA7crDr776qnkDIrIgRq1uV1xcjKKioga/+IkxkWUytkiys7ND3759AXDIHRGRVLZu3QoA6N69O6ysrPDtt99i165dZo6KyDIYXCQJgoCAgAB4eHjU+9WtWzcp4yQiMzJ24QaA85KIiKQWGxsLAHj99dd1vUgvvPACiouLzRgVkWUw+Gay+/btkzIOIpIxYxduAGqLpDVr1rBIIiKSQHp6Ok6dOgUrKyuMGzcOkydPxrZt25Ceno6YmBh88skn5g6RqEUzuEgaNmyYlHEQkYwZO9wOAAYNGgQAOH36NEpKSox6LhER3Zu2F2nYsGFo164dAGDDhg0YNWoUPv30UzzxxBMYOnSoOUMkatEMGm6nHWpjKEOPP3jwIMaOHQtfX18oFIq7lq8UBAGLFy+Gj48PHBwcEBYWhsuXLxsVCxE1X1OKpPvvvx+dO3dGVVUVFi1aJFVoREStkrZImjhxom5bWFgYnn32WQiCgOeeew4VFRXmCo+oxTOoSOrSpQuWL1+OrKysBo8RBAHx8fGIjIzE6tWrDTp5aWkpAgMDsXbt2nr3v//++1i9ejXWr1+PpKQkODk5ISIighc9kYk1pUhSKBT49NNPAQCrV6/GsWPHJImNiKi1yczMxNGjRwEA48eP19v34YcfQqVS4dKlS1i6dKkZoiOyDAYNt9u/fz8WLlyIt956C4GBgRgwYAB8fX1hb2+P/Px8XLhwAYmJibCxsUFMTAxeeOEFg04eGRmJyMjIevcJgoBVq1Zh0aJFiIqKAgB888038Pb2xk8//YTJkycb+BKJqLmaUiQBQHh4OJ5++ml88803mD59Ok6dOgU7OzspQiQiajW2bdsGABg8eDDuu+8+vX0eHh745JNP8D//8z9477338Pjjj6NPnz7mCJOoRTOoSOrWrRu2bt2KjIwM/PDDDzh06BCOHj2K8vJyeHp6IigoCBs3bkRkZCSsra1FCSw9PR3Z2dkICwvTbXNzc0NISAgSExMbLJIqKytRWVmpe1xUVAQAUKvVUKvVosTWVNrzmzsOYi6MpR1Ca2tra/R79t577yEuLg4XLlzA0qVLsXjxYt0+5kEemAf5YC7kQe550C79HRUVVW+M48aNw/jx4/HTTz/h2WefxaFDh2BjY/A0dFmRey5aC0vKg6GvQSHI5OZGCoUC27Zt03UbHz16FEOHDkVmZiZ8fHx0xz3++ONQKBT4/vvv623nrbfewttvv33X9s2bN8PR0VGS2Iks3eOPP46qqips2LABXl5eRj//8OHD+PDDD2FjY4OPPvoIHTt2lCBKIiLLV1RUhGeeeQYajQafffYZvL296z3uzp07mDNnDkpLS/HMM8/cNSyPqLUqKyvDlClTUFhYCFdX1waPa5kfK9xDTEwMoqOjdY+Liorg5+eH8PDwe74RpqBWqxEfH49Ro0ZBqVSaNZbWjrkwXHV1NaqqqgAAY8eORdu2bY1uIzIyEpcuXcL27duxefNmHDx4EAqFgnmQCeZBPpgLeZBzHjZt2gSNRoO+ffti2rRp9zxWrVbjhRdewPfff4+FCxeiU6dOpglSRHLORWtiSXnQjjJrjGyLJJVKBQDIycnR60nKyclB3759G3yenZ1dvXMelEqlbJIqp1haO+aicWVlZbr/e3h4NPn9Wr9+Pfz9/ZGUlITMzEy9X9bMgzwwD/LBXMiDHPNw6tQpALUfPjUW24wZM/C///u/OHToELZs2aI33LmlkWMuWiNLyIOh8Ru0up05+Pv7Q6VSISEhQbetqKgISUlJGDx4sBkjI2pdtIs22NjYwNbWtsnt3HfffQgMDAQArnRHRNREN2/eBFD7d1JjFAoFnn32WQB/zWMiIsOYtUgqKSlBSkoKUlJSANQu1pCSkoKMjAwoFAq8+uqrWLp0KX755RecPXsWTz/9NHx9fTmulsiEtIs2ODk5QaFQNKutkJAQAEBSUlKz4yIiao20RdLfV7VryLhx42BjY4PU1FRcuXJFytCILIpZi6STJ08iKCgIQUFBAIDo6GgEBQXpuoPnz5+POXPm4Pnnn8fAgQNRUlKCuLg42NvbmzNsolalqct/14dFEhFR8/z5558AgPbt2xt0fJs2bTBixAgAf92AlogaZ3SRFBoaisWLFyMhIaHZN3UdPnw4BEG462vTpk0AaruJ33nnHWRnZ6OiogJ79uxBQEBAs85JRMaRokg6deqUbjEIIiIyTGVlJW7dugXA8J4kAJgwYQIADrkjMobRRVJ4eDiOHTuGqKgouLu748EHH8SiRYsQHx+vN8GbiCyDmEVS165d4eHhgcrKSqSmpja7PSKi1iQzMxMAYG9vjzZt2hj8vPHjx0OhUOD48eO4ceOGVOERWRSji6RFixZh9+7dKCgowL59+/CPf/wDJ0+exCOPPGLUBUtELYOYRZJCoeCQOyKiJqo7H8mYOaIqlQpDhw4FAGzbtk2S2IgsTZPnJF27dg1nz57FmTNnkJqaChcXF0RGRooZGxHJQN2FG8TAIomIqGmMnY9U18SJEwFwyB2RoYwukqZMmYL77rsPQ4YMQVxcHAYNGoRdu3YhLy+Pn04QWSAxe5IAFklERE1l7Mp2dT366KMAgEOHDiEnJ0fUuIgskdFF0nfffQe1Wo3nnnsOM2fOxIwZMxAYGNjspYGJSJ7ELpKCg4MBAL///jvy8/NFaZOIqDVoTk9Sx44dMWDAAAiCgJ9//lns0IgsjtFF0u3bt/H555+jqqoKMTEx8PT0xJAhQ7Bw4ULs3r1bihiJyIzELpLatm2LLl26AABOnDghSptERK1Bc3qSAA65IzKG0UWSh4cHxo0bhxUrViA5ORmpqakICAjABx98wDlJRBZI7CIJ+GvI3fHjx0Vrk4jI0jWnJwn4aynwvXv34s6dO6LFRWSJmtSTFBsbi5dffhl9+vRB9+7dsX37dowdOxYrVqyQIkYiMiOxF24A/iqS2JNERGQ4bU9SU4ukgIAA9OnTB9XV1Xj33XfFDI3I4hhdJHl5eeHFF19EZmYmZsyYgdOnTyMvLw+xsbF45ZVXpIiRiMxI6p4kQRBEa5eIyFLV1NQgKysLQNOH2wHA8uXLAQCrVq1ibz7RPdgY+4TU1FQ88MADUsRCRDIkRZEUGBgIW1tb3L59G9nZ2aK1S0RkqXJzc1FdXQ1ra2uoVKomtxMZGYknn3wS3377LaZPn47k5GTY2tqKGCmRZTC6J4kFElHrIkWRZGdnh6CgIAC1q9wREdG9aYfaqVQqWFtbN6utVatWwdPTE+fOncN7770nRnhEFqdJN5P98ccf8fjjj2PQoEHo16+f3hcRWRYpiiTgryF3LJKIiBrX3EUb6vL09MTHH38MAFi6dCkuXrzY7DaJLI3RRdLq1asxbdo0eHt74/Tp0wgODkbbtm1x7do1rm5HZIGkWLgBAAYNGgSARRIRkSGau/z33z3xxBN45JFHUFVVhenTp0Oj0YjSLpGlMLpI+vTTT7FhwwasWbMGtra2mD9/PuLj4/Hyyy+jsLBQihiJyIyk7klKT09HZWWlqG0TEVkaMXuSAEChUGDdunVwdnZGYmIijhw5Ikq7RJbC6CIpIyMDQ4YMAQA4ODiguLgYAPDUU09hy5Yt4kZHRGYnVZHk7+8PT09PVFdX48yZM6K2TURkacTuSQIAPz8/jBo1CgBw7Ngx0dolsgQGF0mZmZkAaicMam9A1qFDB91FlZ6ezqV8iSyMIAiSFUkKhQLBwcEAeFNZIqLGiN2TpKXt1U9KShK1XaKWzuAiqVevXvj2228xcuRI/PLLLwCAadOm4bXXXsOoUaMwadIkPProo5IFSkSmV1VVherqagDiF0kAMHDgQAAskoiIGiNFTxLAIomoIQbfJ2np0qWYOXMmwsPDdctFzpo1C23btsXRo0cxbtw4vPDCC5IFSkSmp120ARB/4QYAup6kEydOiN42EZGlEARBsp6kAQMGwMrKCjdv3sSff/4pehFG1FIZ3JP00ksvITU1Ffn5+XjggQfw66+/AgAmT56M1atXY86cObwZGZGF0Q61s7Ozg42N0feebpS2J+nq1avIy8sTvX0iIktQUFCAsrIyAOL3JDk7O6NXr14A2JtEVJdRCzf4+/tj7969WLRoESZMmIA+ffrwPklEFkyq+Uha7u7uul/4HHJHRFQ/bS9S27ZtYW9vL3r7HHJHdDejPxq+fv06YmNj4eHhgaioKEk+XSYieZC6SAKAgIAA/Pnnn0hKSsKYMWMkOw8RUUulnY8k9lA7rZCQEGzcuJFFElEdRlU4GzduxNy5cxEWFobz58+jXbt2UsVFRDJgiiKpa9eu2LdvH5efJSJqgFSLNmhpe5JOnjyJmpoaWFtbS3IeopbE4CJp9OjROH78OD755BM8/fTTUsZERDKhXbhBikUbtAICAgDUDrfTaDSwsjL69m1ERBZNqkUbtHr06AFnZ2eUlJTg/Pnz6NOnjyTnIWpJDP5rpKamBqmpqSyQiFoRU/QkderUCfb29igoKMDly5clOw8RUUsldU+StbW1biEdDrkjqmVwkRQfHy/ZJxhEJE+mKJJsbGx0i77wlzMR0d2k7kkCuHgD0d9xXAsRNcgURRLw1/2S+MuZiOhuUvckASySiP6ORRIRNchURRKHeRARNcyUPUnnz59HcXGxZOchailYJBFRg0yxcAPwV0/SmTNnUF5eLum5iIhakvLycty5cweAtEWSj48POnToAEEQcPLkScnOQ9RStIgiae3atbrJ3SEhIbzpJJGJmKonqUOHDvD29kZ1dTVOnz4t6bmIiFoSbS+Sk5MTXF1dJT0Xh9wR/UX2RdL333+P6OhoLFmyBKdOnUJgYCAiIiKQm5tr7tCILJ6piiSFQsFfzkRE9ah7I1mFQiHpufhzmOgvRt1M1hxWrFiBGTNmYNq0aQCA9evXY8eOHfjyyy/xz3/+08zRGefgwYNISUmBra0tbGxk/9ZbtOrqaubCANeuXQMgfZEE1P5y/uWXX7Bz50706tVL8vPRX3g9yAdzIQ9yysP+/fsBSLtog5a2SEpMTER8fLzk5zOEnHLRmomRh7Zt2+pWs20JZP3dVlVVheTkZMTExOi2WVlZISwsDImJifU+p7KyEpWVlbrHRUVFAAC1Wg21Wi1twI144okncOvWLbPGQNQUDg4Oklw/2jbVajX69+8PANizZw/27Nkj+rmIiFoyX19fyf+O6d27N2xsbJCTk4Pw8HBJz0WtT3h4OLZv327uMAy+jmRdJOXl5aGmpgbe3t562729vXHp0qV6n7Ns2TK8/fbbd23fvXs3HB0dJYnTUCqVSvIJ8ERi8/DwgLW1NXbu3CnZOeLj41FdXY2HHnoIN27ckOw8REQtkZ2dHXr16iXpz2GtSZMm4ciRI5Kfh1ofKysrk3wPN6asrMyg4xSCIAgSx9JkmZmZuO+++3D06FEMHjxYt33+/Pk4cOBAvWNm6+tJ8vPzQ15enuQTHhujVqsRHx+PUaNGQalUmjWW1o65kAfmQR6YB/lgLuSBeZAP5kIeLCkPRUVF8PT0RGFh4T1rA1n3JHl6esLa2ho5OTl623NycqBSqep9jp2dHezs7O7arlQqZZNUOcXS2jEX8sA8yAPzIB/MhTwwD/LBXMiDJeTB0PhlXSTZ2tqif//+SEhIwPjx4wEAGo0GCQkJmD17tkFtaDvKtHOTzEmtVqOsrAxFRUUt/huspWMu5IF5kAfmQT6YC3lgHuSDuZAHS8qDtiZobDCdrIskAIiOjsbUqVMxYMAABAcHY9WqVSgtLdWtdtcY7V2j/fz8pAyTiIiIiIhaiOLiYri5uTW4X/ZF0qRJk3Dr1i0sXrwY2dnZ6Nu3L+Li4u5azKEhvr6+uHHjBlxcXCS/v0BjtPOjbty4Yfb5Ua0dcyEPzIM8MA/ywVzIA/MgH8yFPFhSHgRBQHFxMXx9fe95nKwXbrA0RUVFcHNza3SiGEmPuZAH5kEemAf5YC7kgXmQD+ZCHlpjHqzMHQAREREREZGcsEgiIiIiIiKqg0WSCdnZ2WHJkiX1LlFOpsVcyAPzIA/Mg3wwF/LAPMgHcyEPrTEPnJNERERERERUB3uSiIiIiIiI6mCRREREREREVAeLJCIiIiIiojpYJBEREREREdXBIomIiIiIiKgOFklERERERER1sEgiIiIiIiKqg0USERERERFRHSySiIiIiIiI6mCRREREREREVAeLJCIiIiIiojpszB2A1DQaDTIzM+Hi4gKFQmHucIiIiIiIyEwEQUBxcTF8fX1hZdVwf5HFF0mZmZnw8/MzdxhERERERCQTN27cQPv27Rvcb/FFkouLC4DaN8LV1dWssajVauzevRvh4eFQKpVmjaW1Yy7kgXmQB+ZBPpgLeWAe5IO5kAdLykNRURH8/Px0NUJDLL5I0g6xc3V1lUWR5OjoCFdX1xb/DdbSMRfywDzIA/MgH8yFPDAP8sFcyIMl5qGxaThcuIGIiIiIiKgOFklERERERER1sEgiIiIiIiKqw+LnJBERERERtRYajQZVVVWitqlWq2FjY4OKigrU1NSI2rbYlEolrK2tm92OWYukZcuWITY2FpcuXYKDgwOGDBmC9957D926ddMdU1FRgblz5+K7775DZWUlIiIi8Omnn8Lb29uMkRMRERERyUtVVRXS09Oh0WhEbVcQBKhUKty4caNF3HfU3d0dKpWqWbGatUg6cOAAZs2ahYEDB6K6uhoLFy5EeHg4Lly4ACcnJwDAa6+9hh07duCHH36Am5sbZs+ejQkTJuDIkSPmDJ2IiIiISDYEQUBWVhasra3h5+d3zxulGkuj0aCkpATOzs6itis2QRBQVlaG3NxcAICPj0+T2zJrkRQXF6f3eNOmTfDy8kJycjJCQ0NRWFiIL774Aps3b8bIkSMBAF999RV69OiBY8eOYdCgQeYIm6jV2rRpE/773//i888/h6+vr7nDISIiov9TXV2NsrIy+Pr6wtHRUdS2tUP47O3tZV0kAYCDgwMAIDc3F15eXk0eeierOUmFhYUAgDZt2gAAkpOToVarERYWpjume/fu6NChAxITE+stkiorK1FZWal7XFRUBKB2LKVarZYy/EZpz2/uOIi5aKpVq1bhzJkzeOGFF7B169Zmd7kzD/LAPMgHcyEPzIN8MBeGq6yshCAIsLGxkWS4nfZfsduWgr29PQRBQHl5Oezs7PT2Gfq9pBC0r9rMNBoNxo0bh4KCAhw+fBgAsHnzZkybNk2v6AGA4OBgjBgxAu+9995d7bz11lt4++2379q+efNm0atqotZm5syZyM7OBgC8/vrrePDBB80cEREREQGAjY0NVCoV/Pz8YGtra+5wzKqqqgo3btxAdnY2qqur9faVlZVhypQpKCwshKura4NtyKYnadasWTh37pyuQGqqmJgYREdH6x4XFRXBz88P4eHh93wjTEGtViM+Ph6jRo2ymLsVt1TMRdPU/fTo66+/xty5c9G2bdsmt8c8yAPzIB/MhTwwD/LBXBiuoqICN27cgLOzM+zt7UVtWxAEFBcXw8XFpUUs3FBRUQEHBweEhobe9V5oR5k1RhZF0uzZs7F9+3YcPHgQ7du3121XqVSoqqpCQUEB3N3dddtzcnKgUqnqbcvOzu6ubjWgdjlAuVxccoqltWMujFNcXAwA8Pb2Rk5ODhYsWICvv/662e0yD/LAPMgHcyEPzIN8MBeNq6mpgUKhgJWVlejzhrQfkmrblzsrKysoFIp6v28M/T4y6lVqNBrs27cP77zzDqZPn44nnngCL7/8Mr766ivcuHHDmKYA1Fals2fPxrZt27B37174+/vr7e/fvz+USiUSEhJ029LS0pCRkYHBgwcbfT4iarqamhqUl5cDAD7//HMoFAp88803+O2338wcGREREbVECoXinl9vvfWW7thNmzahT58+sLe3h5eXF2bNmiVpbAYVSeXl5Vi6dCn8/PwwZswY7Nq1CwUFBbC2tsaVK1ewZMkS+Pv7Y8yYMTh27JjBJ581axb+93//F5s3b4aLiwuys7ORnZ2t+0PMzc0N06dPR3R0NPbt24fk5GRMmzYNgwcP5sp2RCZWUlKi+/+oUaPw8ssvAwBeeOEFvX1EREREhsjKytJ9rVq1Cq6urnrbXn/9dQDAihUr8MYbb+Cf//wnzp8/jz179iAiIkLS2AwabhcQEIDBgwdj48aNDY4JvX79OjZv3ozJkyfjjTfewIwZMxptd926dQCA4cOH623/6quv8MwzzwAAVq5cCSsrK0ycOFHvZrJEZFraoXZKpRJ2dnZYunQpfvrpJ1y/fh2LFi3CqlWrzBsgERER6WjvGSQGjUaD0tJSWFtbGzTcztHR0aC5S3Wnz7i5uUGhUNw1pSY/Px+LFi3Cr7/+iocffli3vU+fPka8AuMZVCTt3r0bPXr0uOcxHTt2RExMDF5//XVkZGQYdHJDFtazt7fH2rVrsXbtWoPaJCJpaHuLnJ2ddf9u2LABERERWL16NSZNmsRhsERERDJRVlam+51taiUlJXBychKlrfj4eGg0Gvz555/o0aMHiouLMWTIEHz00Ufw8/MT5Rz1MWi4XWMFUl1KpRKdO3duckBEJE/aniQXFxfdtvDwcEydOhWCIOC55567a7l+IiIioua4du0aNBoN/v3vf2PVqlX48ccfcefOHYwaNQpVVVWSndfo1e1SU1Pr3a5QKGBvb48OHTrUu7ocEbVs9RVJQO044V27duHChQtYtmyZ3iRLIiIiMg9HR0fR5gxrNBoUFRXB1dXV4OF2YtFoNFCr1Vi9ejXCw8MBAFu2bIFKpcK+ffskm5tkdJHUt2/fe44xVCqVmDRpEj777DPR12gnIvPRFkl/77pv06YN1qxZg0mTJuHf//43/ud//ge9evUyR4hERET0fxQKhWhD3jQaDWpqauDk5GTyJcB9fHwAAD179tRta9euHTw9PQ2e4tMURr/Kbdu2oWvXrtiwYQNSUlKQkpKCDRs2oFu3bti8eTO++OIL7N27F4sWLZIiXiIyE+2nUX/vSQKAxx57DFFRUVCr1Zg+fbreTWeJiIiImmro0KEAam8DpHXnzh3k5eWhY8eOkp3X6J6kd999Fx9//LFe11bv3r3Rvn17vPnmmzh+/DicnJwwd+5cfPjhh6IGS0Tm09BwO6D206pPP/0UCQkJOH78OE6ePIng4GBTh0hEREQWJiAgAFFRUXjllVewYcMGuLq6IiYmBt27d8eIESMkO6/RPUlnz56tt2rr2LEjzp49C6B2SF5WVlbzoyMi2bhXkQQAvr6+CA0NBQCj7pdGREREdC/ffPMNQkJC8Mgjj2DYsGFQKpWIi4ur97ZEYjG6SOrevTuWL1+ut5qEWq3G8uXL0b17dwDAn3/+CW9vb/GiJCKz+/sS4PUJCQkBACQlJZkkJiIiIrIMzzzzDAoKCurd5+rqii+++AL5+fm4ffs2YmNjJV3+G2jCcLu1a9di3LhxaN++ve4mTmfPnkVNTQ22b98OoHapvpdeekncSInIrBrrSQKAQYMGAWCRRERERC2b0UXSkCFDkJ6ejm+//Ra///47gNpJ21OmTNH98fTUU0+JGyURmZ0hRZJ2HtLVq1eRl5cHT09Pk8RGREREJCajiySg9o+kmTNnih0LEclYQ0uA1+Xu7o5u3bohLS0Nx48fx5gxY0wVHhEREZFomrTQ+X/+8x88+OCD8PX1xfXr1wEAK1euxM8//yxqcEQkH/daArwuzksiIiKils7oImndunWIjo5GZGQk8vPzUVNTAwDw8PDAqlWrxI6PiGTCkOF2AIskIiIicxIEwdwhmJ0Y74HRRdKaNWuwceNGvPHGG7Cx+Wu03oABA3RLgBOR5TG2SDp+/DhvKktERGQi1tbWAKC3AnVrVVZWBgDNWiLc6DlJ6enpCAoKumu7nZ0dSktLmxwIEcmbIUuAA0CfPn1gb2+P/Px8XL58Gd26dTNFeERERK2ajY0NHB0dcevWLSiVSlhZNWlWTb00Gg2qqqpQUVEhartiEwQBZWVlyM3Nhbu7u65wbAqjiyR/f3+kpKTcdUPZuLg49OjRo8mBEJG8GdqTpFQq0a9fPxw9ehRJSUkskoiIiExAoVDAx8cH6enpujUDxCIIAsrLy+Hg4ACFQiFq21Jwd3eHSqVqVhtGF0nR0dGYNWsWKioqIAgCjh8/ji1btmDZsmX4/PPPmxUMEcmXoUUSUDvkTlskPf3001KHRkRERABsbW3RtWtX0YfcqdVqHDx4EKGhoc0awmYKSqWyWT1IWkYXSc899xwcHBywaNEilJWVYcqUKfD19cXHH3+MyZMnNzsgIpIfjUajG07b2HA7gIs3EBERmYuVlRXs7e1FbdPa2hrV1dWwt7eXfZEklibdJ+nJJ5/Ek08+ibKyMpSUlMDLy0vsuIhIRurONzS0JwkAzpw5o+ueJyIiImopmjTzKi8vDydPnsTFixdF6c4iInnTDrWztrY26NOpjh07wsvLC9XV1Th9+rTU4RERERGJyqgi6fz58wgNDYW3tzdCQkIQHBwMLy8vjBw5EmlpaVLFSERmpi2SnJ2dDZqwqVAoOOSOiIiIWiyDi6Ts7GwMGzYMt27dwooVK7Bz507s2LEDH3zwAbKysvDQQw8hNzdXyliJyEy0y38bMtROi0USERERtVQGz0lauXIlOnbsiCNHjugNtxk9ejRefPFFPPjgg1i5ciWWLVsmSaBEZD7GrGynxSKJiIiIWiqDe5Li4+OxYMGCeucjODg4YN68efjtt99EDY6I5KEpRdLAgQOhUCjwxx9/4ObNm1KFRkRERCQ6g4uka9euoV+/fg3uHzBgAK5duyZKUEQkL3XnJBnKzc0NgwYNAgD89NNPUoRFREREJAmDi6Ti4mK4uro2uN/FxUU3b4GILEtT5iQBwMSJEwEAsbGxosdEREREJBWjVrcrLi5GUVFRg1+CIEgVJxGZUVOG2wHAhAkTAAAHDhzArVu3RI+LiIiISAoGF0mCICAgIAAeHh71fnXr1k3KOInIjJoy3A4A/P39ERQUBI1Gg19++UWK0IiIiIhEZ/Dqdvv27ZMyDiKSsaYOtwNqh9ydPn0aW7duxfTp08UOjYiIiEh0BhdJw4YNE/3kBw8exAcffIDk5GRkZWVh27ZtGD9+vG6/IAhYsmQJNm7ciIKCAgwdOhTr1q1D165dRY+FiBrW1OF2QO2Qu0WLFmHPnj0oKCiAu7u7yNERERERicug4XalpaVGNWro8aWlpQgMDMTatWvr3f/+++9j9erVWL9+PZKSkuDk5ISIiAhUVFQYFQ8RNU9ziqQePXqgR48eUKvV2LFjh9ihEREREYnOoCKpS5cuWL58ObKysho8RhAExMfHIzIyEqtXrzbo5JGRkVi6dCkeffTRettbtWoVFi1ahKioKPTp0wfffPMNMjMzuZwwkYk1dU6SlnYBh61bt4oWExEREZFUDBput3//fixcuBBvvfUWAgMDMWDAAPj6+sLe3h75+fm4cOECEhMTYWNjg5iYGLzwwgvNDiw9PR3Z2dkICwvTbXNzc0NISAgSExMxefLkep9XWVmJyspK3eOioiIAgFqthlqtbnZczaE9v7njIObCWNoiycHBoUnv2bhx4/Duu+8iLi4OBQUFcHJyAsA8yAXzIB/MhTwwD/LBXMiDJeXB0NdgUJHUrVs3bN26FRkZGfjhhx9w6NAhHD16FOXl5fD09ERQUBA2btyIyMhIWFtbNytwrezsbACAt7e33nZvb2/dvvosW7YMb7/99l3bd+/eDUdHR1Fia674+Hhzh0D/h7kwzM2bNwEAly5dws6dO41+viAI8Pb2Rk5ODpYtW4YhQ4bo7Wce5IF5kA/mQh6YB/lgLuTBEvJQVlZm0HEGL9wAAB06dMDcuXMxd+7cJgVlCjExMYiOjtY9Lioqgp+fH8LDw+95M1xTUKvViI+Px6hRo6BUKs0aS2vHXBhn3rx5AIARI0bgoYcealIbU6ZMwcqVK3H9+nUsXboUAPMgF8yDfDAX8sA8yAdzIQ+WlAftKLPGGFUkmZJKpQIA5OTkwMfHR7c9JycHffv2bfB5dnZ2sLOzu2u7UqmUTVLlFEtrx1wYRrsYi4eHR5Pfr8ceewwrV67Ezp07odFo9K5T5kEemAf5YC7kgXmQD+ZCHiwhD4bGb/DNZE3N398fKpUKCQkJum1FRUVISkrC4MGDzRgZUevTnNXttEJCQuDr64vi4mLs2bNHrNCIiIiIRGfWIqmkpAQpKSlISUkBULtYQ0pKCjIyMqBQKPDqq69i6dKl+OWXX3D27Fk8/fTT8PX11buXEhFJSxAE3c1km7q6HQBYWVnpVrLkKndEREQkZ2Ytkk6ePImgoCAEBQUBAKKjoxEUFITFixcDAObPn485c+bg+eefx8CBA1FSUoK4uDjY29ubM2yiVqWsrAyCIABoXk8SAEycOBEA8PPPP6O6urrZsRERERFJwaxzkoYPH67746s+CoUC77zzDt555x0TRkVEdWmH2llZWTV7hciHHnoIbdu2xe3bt3HgwAGEhoaKESIRERGRqIzuSQoNDcXixYuRkJCAiooKKWIiIhmpeyNZhULRrLZsbGx0w2VjY2ObGxoRERGRJIwuksLDw3Hs2DFERUXB3d0dDz74IBYtWoT4+HiD1x0nopajbpEkBu2Qu23btkGj0YjSJhEREZGYjB5ut2jRIgBAdXU1Tpw4gQMHDmD//v14//33YWVlxd4lIgujXbShufORtEaOHAlXV1dkZWXh2LFjorRJREREJKYmL9xw7do1nD17FmfOnEFqaipcXFwQGRkpZmxEJANiLP9dl52dHcaOHQsA+Omnn0Rpk4iIiEhMRhdJU6ZMwX333YchQ4YgLi4OgwYNwq5du5CXl4dt27ZJESMRmZHYw+0A/SF391q8hYiIiMgcjB5u991338HT0xPPPfccRo4ciQcffLDZK14RkXyJPdwOACIiIuDo6Ijr16/j6tWrorVLREREJAaje5Ju376Nzz//HFVVVYiJiYGnpyeGDBmChQsXYvfu3VLESERmJPZwOwBwdHTUDc/lvCQiIiKSG6OLJA8PD4wbNw4rVqxAcnIyUlNTERAQgA8++IBzkogskBTD7QBgwoQJAFgkERERkfwYPdxOexPI/fv3Y//+/bhw4QLc3d0xduxYDBs2TIoYiciMpOhJAqD7UOXmzZsoLCyEp6enqO0TERERNZXRRZKXlxc8PT3x0EMPYcaMGRg+fDh69+4tRWxEJANSzEkCanulfXx8kJWVhbS0NBZJREREJBtGF0mpqal44IEHpIiFiGRIqp4kAOjRoweysrJw6dIlDB06VPT2iYiIiJrC6DlJLJCIWhep5iQBQPfu3QEAFy5cEL1tIiIioqYyuicJAH788Uf897//RUZGBqqqqvT2nTp1SpTAiEgepBpuB/xVJF26dEn0tomIiIiayuiepNWrV2PatGnw9vbG6dOnERwcjLZt2+LatWtc3Y7IAkk93A4A0tLSRG+biIiIqKmMLpI+/fRTbNiwAWvWrIGtrS3mz5+P+Ph4vPzyyygsLJQiRiIyI1MMt7t27RrKy8tFb5+IiIioKYwukjIyMjBkyBAAgIODg+4PqKeeegpbtmwRNzoiMjspe5K8vLzg7OwMQRDw+++/i94+ERERUVMYXCRlZmYCAFQqFe7cuQMA6NChg+5GkOnp6RAEQYIQicicpJyTpFAo4OfnBwC4ePGi6O0TERERNYXBRVKvXr3w7bffYuTIkfjll18AANOmTcNrr72GUaNGYdKkSXj00UclC5SITE8QBEl7kgCgffv2ALjCHREREcmHwavbLV26FDNnzkR4eDjee+89AMCsWbPQtm1bHD16FOPGjcMLL7wgWaBEZHrl5eXQaDQApJmTBPxVJLEniYiIiOTC4J6kl156CampqcjPz8cDDzyAX3/9FQAwefJkrF69GnPmzIGtra1kgRKR6WmH2gGAk5OTJOfgcDsiIiKSG6Puk+Tv74+9e/fik08+wYQJE9CjRw/Y2Og3wfskEVmOuivbWVkZvc6LQbQ9Sb///juqq6vv+plCREREZGpG/zVy/fp1xMbGwsPDA1FRUfyDhsiCSbn8t5anpyccHR1RVlaGq1evolu3bpKdi4iIiMgQRlU4GzduxNy5cxEWFobz58+jXbt2UsVFRDIg9aINAGBlZYXu3bvj1KlTuHjxIoskIiIiMjuDx8+MHj0aCxYswCeffILY2FgWSEStgJTLf9elvaksV7gjIiIiOTC4J6mmpgapqam6+QNEZPlMMdwO+KtI4uINREREJAcGF0nx8fFSxkFEMmSK4XYA0KNHDwAskoiIiEgepFmuiogsgqmH2128eFF3XyYiIiIic2GRREQNMlVPUufOnaFUKlFWVoYbN25Iei4iIiKixrSIImnt2rXo1KkT7O3tERISguPHj5s7JKJWwVRzkmxsbBAQEACAQ+6IiIjI/GRfJH3//feIjo7GkiVLcOrUKQQGBiIiIgK5ubnmDo3I4pmqJwn4a14SV7gjIiIic5N9kbRixQrMmDED06ZNQ8+ePbF+/Xo4Ojriyy+/NHdoRBbPVHOSAC7eQERERPJh1M1kTa2qqgrJycmIiYnRbbOyskJYWBgSExPrfU5lZSUqKyt1j4uKigAAarUaarVa2oAbsWDBAly8eBE7duyAlZXs61OLptFocOPGDeaiEUeOHAEAODg4SHL9aNtUq9W64XZxcXGYOXOm6OeihvF6kA/mQh6YB/lgLuRBjDz06NEDL730ksiRGc/Qv2dkXSTl5eWhpqYG3t7eetu9vb1x6dKlep+zbNkyvP3223dt3717NxwdHSWJ01BffvklCgsLzRoDUVNkZmZi586dkrUfHx+vuzZu3ryJzz77TLJzERERkekFBQWhU6dO5g4DZWVlBh0n6yKpKWJiYhAdHa17XFRUBD8/P4SHh8PV1dWMkQHz58/H2bNn0blzZ34aYmYajQZXr15lLgygUqnwzDPPQKlUit62Wq1GfHw8Ro0aBaVSCQ8PjwY/ACHp8HqQD+ZCHpgH+WAu5EGMPNx///0YM2aMyJEZTzvKrDGyLpI8PT1hbW2NnJwcve05OTlQqVT1PsfOzg52dnZ3bVcqlZL8kWeMefPmYefOnRgzZozZY2nt1Go1cyEj2utzypQp5g6lVeL1IB/MhTwwD/LBXMiDJeXB0PhlXZLb2tqif//+SEhI0G3TaDRISEjA4MGDzRgZERERERFZKln3JAFAdHQ0pk6digEDBiA4OBirVq1CaWkppk2bZtDzBUEAYHjXmpTUajXKyspQVFTU4qvwlo65kAfmQR6YB/lgLuSBeZAP5kIeLCkP2ppAWyM0RPZF0qRJk3Dr1i0sXrwY2dnZ6Nu3L+Li4u5azKEh2vu8+Pn5SRkmERERERG1EMXFxXBzc2twv0JorIxq4TQaDTIzM+Hi4gKFQmHWWLSLSNy4ccPsi0i0dsyFPDAP8sA8yAdzIQ/Mg3wwF/JgSXkQBAHFxcXw9fW95yIUsu9Jai4rKyu0b9/e3GHocXV1bfHfYJaCuZAH5kEemAf5YC7kgXmQD+ZCHiwlD/fqQdKS9cINREREREREpsYiiYiIiIiIqA4WSSZkZ2eHJUuW1HsfJzIt5kIemAd5YB7kg7mQB+ZBPpgLeWiNebD4hRuIiIiIiIiMwZ4kIiIiIiKiOlgkERERERER1cEiiYiIiIiIqA4WSURERERERHWwSDKhtWvXolOnTrC3t0dISAiOHz9u7pAs2ltvvQWFQqH31b17d93+iooKzJo1C23btoWzszMmTpyInJwcM0ZsGQ4ePIixY8fC19cXCoUCP/30k95+QRCwePFi+Pj4wMHBAWFhYbh8+bLeMXfu3MGTTz4JV1dXuLu7Y/r06SgpKTHhq7AMjeXimWeeuesaGT16tN4xzEXzLVu2DAMHDoSLiwu8vLwwfvx4pKWl6R1jyM+jjIwMPPLII3B0dISXlxfmzZuH6upqU76UFs2QPAwfPvyua2LmzJl6xzAPzbNu3Tr06dNHd1PSwYMHY9euXbr9vBZMp7FctPbrgUWSiXz//feIjo7GkiVLcOrUKQQGBiIiIgK5ubnmDs2iPfDAA8jKytJ9HT58WLfvtddew6+//ooffvgBBw4cQGZmJiZMmGDGaC1DaWkpAgMDsXbt2nr3v//++1i9ejXWr1+PpKQkODk5ISIiAhUVFbpjnnzySZw/fx7x8fHYvn07Dh48iOeff95UL8FiNJYLABg9erTeNbJlyxa9/cxF8x04cACzZs3CsWPHEB8fD7VajfDwcJSWluqOaeznUU1NDR555BFUVVXh6NGj+Prrr7Fp0yYsXrzYHC+pRTIkDwAwY8YMvWvi/fff1+1jHpqvffv2WL58OZKTk3Hy5EmMHDkSUVFROH/+PABeC6bUWC6AVn49CGQSwcHBwqxZs3SPa2pqBF9fX2HZsmVmjMqyLVmyRAgMDKx3X0FBgaBUKoUffvhBt+3ixYsCACExMdFEEVo+AMK2bdt0jzUajaBSqYQPPvhAt62goECws7MTtmzZIgiCIFy4cEEAIJw4cUJ3zK5duwSFQiH8+eefJovd0vw9F4IgCFOnThWioqIafA5zIY3c3FwBgHDgwAFBEAz7ebRz507ByspKyM7O1h2zbt06wdXVVaisrDTtC7AQf8+DIAjCsGHDhFdeeaXB5zAP0vDw8BA+//xzXgsyoM2FIPB6YE+SCVRVVSE5ORlhYWG6bVZWVggLC0NiYqIZI7N8ly9fhq+vL+6//348+eSTyMjIAAAkJydDrVbr5aR79+7o0KEDcyKh9PR0ZGdn673vbm5uCAkJ0b3viYmJcHd3x4ABA3THhIWFwcrKCklJSSaP2dLt378fXl5e6NatG1588UXcvn1bt4+5kEZhYSEAoE2bNgAM+3mUmJiI3r17w9vbW3dMREQEioqK9D71JcP9PQ9a3377LTw9PdGrVy/ExMSgrKxMt495EFdNTQ2+++47lJaWYvDgwbwWzOjvudBqzdeDjbkDaA3y8vJQU1Oj900EAN7e3rh06ZKZorJ8ISEh2LRpE7p164asrCy8/fbbeOihh3Du3DlkZ2fD1tYW7u7ues/x9vZGdna2eQJuBbTvbX3XgnZfdnY2vLy89Pbb2NigTZs2zI3IRo8ejQkTJsDf3x9Xr17FwoULERkZicTERFhbWzMXEtBoNHj11VcxdOhQ9OrVCwAM+nmUnZ1d73Wj3UfGqS8PADBlyhR07NgRvr6+SE1NxYIFC5CWlobY2FgAzINYzp49i8GDB6OiogLOzs7Ytm0bevbsiZSUFF4LJtZQLgBeDyySyGJFRkbq/t+nTx+EhISgY8eO+O9//wsHBwczRkYkD5MnT9b9v3fv3ujTpw86d+6M/fv34+GHHzZjZJZr1qxZOHfunN78SDK9hvJQd75d79694ePjg4cffhhXr15F586dTR2mxerWrRtSUlJQWFiIH3/8EVOnTsWBAwfMHVar1FAuevbs2eqvBw63MwFPT09YW1vftTpLTk4OVCqVmaJqfdzd3REQEIArV65ApVKhqqoKBQUFescwJ9LSvrf3uhZUKtVdC5pUV1fjzp07zI3E7r//fnh6euLKlSsAmAuxzZ49G9u3b8e+ffvQvn173XZDfh6pVKp6rxvtPjJcQ3moT0hICADoXRPMQ/PZ2tqiS5cu6N+/P5YtW4bAwEB8/PHHvBbMoKFc1Ke1XQ8skkzA1tYW/fv3R0JCgm6bRqNBQkKC3rhPklZJSQmuXr0KHx8f9O/fH0qlUi8naWlpyMjIYE4k5O/vD5VKpfe+FxUVISkpSfe+Dx48GAUFBUhOTtYds3fvXmg0Gt0PaJLGzZs3cfv2bfj4+ABgLsQiCAJmz56Nbdu2Ye/evfD399fbb8jPo8GDB+Ps2bN6RWt8fDxcXV11Q2Po3hrLQ31SUlIAQO+aYB7Ep9FoUFlZyWtBBrS5qE+rux7MvXJEa/Hdd98JdnZ2wqZNm4QLFy4Izz//vODu7q63IgiJa+7cucL+/fuF9PR04ciRI0JYWJjg6ekp5ObmCoIgCDNnzhQ6dOgg7N27Vzh58qQwePBgYfDgwWaOuuUrLi4WTp8+LZw+fVoAIKxYsUI4ffq0cP36dUEQBGH58uWCu7u78PPPPwupqalCVFSU4O/vL5SXl+vaGD16tBAUFCQkJSUJhw8fFrp27So88cQT5npJLda9clFcXCy8/vrrQmJiopCeni7s2bNH6Nevn9C1a1ehoqJC1wZz0Xwvvvii4ObmJuzfv1/IysrSfZWVlemOaeznUXV1tdCrVy8hPDxcSElJEeLi4oR27doJMTEx5nhJLVJjebhy5YrwzjvvCCdPnhTS09OFn3/+Wbj//vuF0NBQXRvMQ/P985//FA4cOCCkp6cLqampwj//+U9BoVAIu3fvFgSB14Ip3SsXvB4EgUWSCa1Zs0bo0KGDYGtrKwQHBwvHjh0zd0gWbdKkSYKPj49ga2sr3HfffcKkSZOEK1eu6PaXl5cLL730kuDh4SE4OjoKjz76qJCVlWXGiC3Dvn37BAB3fU2dOlUQhNplwN98803B29tbsLOzEx5++GEhLS1Nr43bt28LTzzxhODs7Cy4uroK06ZNE4qLi83walq2e+WirKxMCA8PF9q1aycolUqhY8eOwowZM+764Ia5aL76cgBA+Oqrr3THGPLz6I8//hAiIyMFBwcHwdPTU5g7d66gVqtN/GparsbykJGRIYSGhgpt2rQR7OzshC5dugjz5s0TCgsL9dphHprn2WefFTp27CjY2toK7dq1Ex5++GFdgSQIvBZM6V654PUgCApBEATT9VsRERERERHJG+ckERERERER1cEiiYiIiIiIqA4WSURERERERHWwSCIiIiIiIqqDRRIREREREVEdLJKIiIiIiIjqYJFERERERERUB4skIqJWbv/+/VAoFCgoKGhWO8888wzGjx8vSkxitiXnc3/xxRcIDw83ybnqs379eowdO9Zs5ycikisWSUREFmL9+vVwcXFBdXW1bltJSQmUSiWGDx+ud6y2MLp69SqGDBmCrKwsuLm5SRqf9pwKhQJWVlZwc3NDUFAQ5s+fj6ysLL1jP/74Y2zatEnSeP744w8oFAqkpKSY/NwAUFFRgTfffBNLlizRbXvrrbd075GNjQ08PT0RGhqKVatWobKyUvQYnn32WZw6dQqHDh0SvW0iopaMRRIRkYUYMWIESkpKcPLkSd22Q4cOQaVSISkpCRUVFbrt+/btQ4cOHdC5c2fY2tpCpVJBoVCYJM60tDRkZmbixIkTWLBgAfbs2YNevXrh7NmzumPc3Nzg7u7eYBtVVVWSxdfYucXy448/wtXVFUOHDtXb/sADDyArKwsZGRnYt28fHnvsMSxbtgxDhgxBcXGxqDHY2tpiypQpWL16tajtEhG1dCySiIgsRLdu3eDj44P9+/frtu3fvx9RUVHw9/fHsWPH9LaPGDFC9/+6w+02bdoEd3d3/Pbbb+jRowecnZ0xevRovd6empoaREdHw93dHW3btsX8+fMhCIJBcXp5eUGlUiEgIACTJ0/GkSNH0K5dO7z44ou6Y/4+5G348OGYPXs2Xn31VXh6eiIiIgIAcO7cOURGRsLZ2Rne3t546qmnkJeXp3ueRqPB+++/jy5dusDOzg4dOnTAu+++CwDw9/cHAAQFBUGhUOh62/5+7srKSrz88svw8vKCvb09HnzwQZw4cULvvVQoFEhISMCAAQPg6OiIIUOGIC0t7Z7vw3fffVfvUDcbGxuoVCr4+vqid+/emDNnDg4cOIBz587hvffe04vr9ddfx3333QcnJyeEhITo5R4ANm7cCD8/Pzg6OuLRRx/FihUr7ioAx44di19++QXl5eX3jJeIqDVhkUREZEFGjBiBffv26R7v27cPw4cPx7Bhw3Tby8vLkZSUpCuS6lNWVoYPP/wQ//nPf3Dw4EFkZGTg9ddf1+3/6KOPsGnTJnz55Zc4fPgw7ty5g23btjUpZgcHB8ycORNHjhxBbm5ug8d9/fXXsLW1xZEjR7B+/XoUFBRg5MiRCAoKwsmTJxEXF4ecnBw8/vjjuufExMRg+fLlePPNN3HhwgVs3rwZ3t7eAIDjx48DAPbs2YOsrCzExsbWe9758+dj69at+Prrr3Hq1Cl06dIFERERuHPnjt5xb7zxBj766COcPHkSNjY2ePbZZ+/5ug8fPowBAwYY9B51794dkZGRejHOnj0biYmJ+O6775CamorHHnsMo0ePxuXLlwEAR44cwcyZM/HKK68gJSUFo0aN0hWIdQ0YMADV1dVISkoyKBYiolZBICIii7Fx40bByclJUKvVQlFRkWBjYyPk5uYKmzdvFkJDQwVBEISEhAQBgHD9+nVBEARh3759AgAhPz9fEARB+OqrrwQAwpUrV3Ttrl27VvD29tY99vHxEd5//33dY7VaLbRv316IiopqMLa/n6euXbt2CQCEpKQkQRAEYerUqXptDRs2TAgKCtJ7zr/+9S8hPDxcb9uNGzcEAEJaWppQVFQk2NnZCRs3bqw3nvT0dAGAcPr0ab3tdc9dUlIiKJVK4dtvv9Xtr6qqEnx9fXWvX/u69uzZoztmx44dAgChvLy83nPn5+cLAISDBw/qbV+yZIkQGBhY73MWLFggODg4CIIgCNevXxesra2FP//8U++Yhx9+WIiJiREEQRAmTZokPPLII3r7n3zyScHNze2utj08PIRNmzbVe14iotbIxlzFGRERiW/48OEoLS3FiRMnkJ+fj4CAALRr1w7Dhg3DtGnTUFFRgf379+P+++9Hhw4dGmzH0dERnTt31j328fHR9fIUFhYiKysLISEhuv02NjYYMGCAwUPu/k77vHvNi+rfv7/e4zNnzmDfvn1wdna+69irV6+ioKAAlZWVePjhh5sUk7YdtVqtN29IqVQiODgYFy9e1Du2T58+uv/7+PgAAHJzc+t9n7VD2+zt7Q2ORRAE3ftz9uxZ1NTUICAgQO+YyspKtG3bFkDt3K9HH31Ub39wcDC2b99+V9sODg4oKyszOBYiIkvHIomIyIJ06dIF7du3x759+5Cfn49hw4YBAHx9feHn54ejR49i3759GDly5D3bUSqVeo8VCkWTCyBDaAuOTp06NXiMk5OT3uOSkhKMHTtWb56Olo+PD65duyZqjI2p+55pixmNRlPvsW3btoVCoUB+fr7B7V+8eFE3j6qkpATW1tZITk6GtbW13nH1FY2NuXPnDtq1a2f084iILBXnJBERWZgRI0Zg//792L9/v97S36Ghodi1axeOHz9+z/lIjXFzc4OPj4/eHJbq6mokJyc3qb3y8nJs2LABoaGhRv2h3q9fP5w/fx6dOnVCly5d9L6cnJzQtWtXODg4ICEhod7n29raAqhdhKIh2tX/jhw5otumVqtx4sQJ9OzZ0+BY6zt3z549ceHCBYOOv3TpEuLi4jBx4kQAtYtN1NTUIDc3967XrlKpANQu5FF3gQkAdz0GanvLKioqEBQU1OTXQ0RkaVgkERFZmBEjRuDw4cNISUnR9SQBwLBhw/DZZ5+hqqqqWUUSALzyyitYvnw5fvrpJ1y6dAkvvfSSwTejzc3NRXZ2Ni5fvozvvvsOQ4cORV5eHtatW2dUDLNmzcKdO3fwxBNP4MSJE7h69Sp+++03TJs2DTU1NbC3t8eCBQswf/58fPPNN7h69SqOHTuGL774AkDtKnsODg66BR8KCwvvOoeTkxNefPFFzJs3D3Fxcbhw4QJmzJiBsrIyTJ8+3ah4/y4iIgKHDx++a3t1dTWys7ORmZmJs2fPYs2aNRg2bBj69u2LefPmAQACAgLw5JNP4umnn0ZsbCzS09Nx/PhxLFu2DDt27AAAzJkzBzt37sSKFStw+fJlfPbZZ9i1a9ddQxoPHTqE+++/X294JRFRa8ciiYjIwowYMQLl5eXo0qWLbiU3oLZIKi4u1i0V3hxz587FU089halTp2Lw4MFwcXG5a/5LQ7p16wZfX1/0798fy5cvR1hYGM6dO2d0z4yvry+OHDmCmpoahIeHo3fv3nj11Vfh7u4OK6vaX29vvvkm5s6di8WLF6NHjx6YNGmSbm6VjY0NVq9ejc8++wy+vr6Iioqq9zzLly/HxIkT8dRTT6Ffv364cuUKfvvtN3h4eBgV799Nnz4dO3fuvKs4O3/+PHx8fNChQwcMHz4c//3vfxETE4NDhw7pDaX76quv8PTTT2Pu3Lno1q0bxo8fjxMnTujmQA0dOhTr16/HihUrEBgYiLi4OLz22mt3zYPasmULZsyY0azXQkRkaRSClIPMiYiIqEGPPfYY+vXrh5iYGJOcb8aMGbh06RIOHToEoLYgGzlyJH7//Xe4ubmZJAYiopaAPUlERERm8sEHHzRpoQVDffjhhzhz5gyuXLmCNWvW4Ouvv8bUqVN1+7OysvDNN9+wQCIi+hv2JBEREVmoxx9/HPv370dxcTHuv/9+zJkzBzNnzjR3WEREssciiYiIiIiIqA4OtyMiIiIiIqqDRRIREREREVEdLJKIiIiIiIjqYJFERERERERUB4skIiIiIiKiOlgkERERERER1cEiiYiIiIiIqA4WSURERERERHWwSCIiIiIiIqrj/wOflxp0OvlYWQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Show the results\n", "yaw_angles_opt = np.vstack(df_opt[\"yaw_angles_opt\"])\n", @@ -901,6 +940,14 @@ "\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c654c6d8", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -925,7 +972,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.1" }, "vscode": { "interpreter": { diff --git a/docs/turbine_interaction.ipynb b/docs/turbine_interaction.ipynb index a9123df1d..2b7507765 100644 --- a/docs/turbine_interaction.ipynb +++ b/docs/turbine_interaction.ipynb @@ -89,14 +89,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyYAAAI5CAYAAABUwC7IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAB+GklEQVR4nO3dd5xcdb3/8fdnewpJSCMkARJCh1CkhBpAEEWqXhE7QRCVK1e99nKvqFfvVX9W9No1dFERUQGNXkpCD0VESCCVhACppG7f/fz+OGd3Z85Ob2dm9/V8POYxc875zjnfXQ6b+cz3+/l8zd0FAAAAAHGqi7sDAAAAAEBgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYkdgAgAAACB2BCYAAAAAYtcQdwdQO8ysWdLscHOjpJ4YuwMAAID81UuaFL5+2t074uxMIgIT5GO2pMVxdwIAAAAlcaykx+LuRB+mcgEAAACIHSMmyMfGvhcLFy7UzJkz4+wLhoG2tjYtXLhQkjR37lyNGDEi5h5hqOOeQ6Vxz6HSVq1apblz5/ZtbszUttIITJCP/pySKVOmaPr06XH2BcNAW1ubJk6cKEmaPn06/2Cj7LjnUGncc6i0tra2xM2qyhdmKhcAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2BGYAAAAAIgdgQkAAACA2A3bwMTMJpvZuWb2JTO7y8w2mZmHj/k5nmNewnuyPeaVqN8Twz7/w8y2h49/hPsmlOIaAAAAQKU1xN2BGK2PuwP5MrM5kn4vaUrk0OzwcbmZXejuj1a6bwAAAEAxhnNgkmiNpKWSziriHK+X9FKG4y8WcW6Z2V6S/ihpkqRuSd+S9Kfw8LmS/l3SnpL+aGZHu3tR1wMAAAAqaTgHJl+StFjSYndfb2YzJK0q4nzPu/vqUnQsja8oCEok6R3u/puEY4vM7HFJt0iaLOm/JM0rY18AAACAkhq2OSbu/gV3/5O7V/2ULjObIumd4eZfIkGJJMndfy3pL+Hmu8P3AAAAADVh2AYmNeZ8Dfy3+mWGdvPD57rwPQAAAEBNIDCpDScnvL4vQ7vEYyeVqS8AAABAyQ3nHJNS+6WZHShpoqTtkpZL+pukH7r7uiLPfUj4vM3dX0nXyN1fNrPtksZIOrjIawI1b9n6HXp45WZ193rcXUnJq6BbZnH3oLp0dXVp6cvBL2X9I2vV2NgYc49qy5iWRp1+0GSNH9UUd1cA1CACk9I5LeH1hPAxR9LHzOwj7v7jIs49PXzOpdLWWkmHStor34uY2fQsTfrzVjo6OtTW1pbvJYC8tLe3p3ydi4XLNusDNz2lKvjsj5pTHzytXhZvN2rUtHEtuvWKYzV2BEFdLor5OwcUoqOjI+4upEVgUryVkn4n6SEFQYEk7SvpXyS9RVKLpB+Zmbv7Twq8xm7h884c2u4Kn0cXcJ212ZsEHnnkEa1YsaKASwCFWbhwYc5t3aX/fqpeLoYDgEpbt7VdP/79vTpyAl8L5Cufv3NAoTZt2hR3F9IiMCnObZKudR80IWOxpFvM7FwFQUujpG+b2R8yTcXKoCV87syhbV8YPKKA6wBDwrLtpvVtBCVAXFq74+4BgFpEYFIEd9+W5fifzOxLkr4saaSkyxSsR5Kv9vD9uUzabQ6fC5lnlW361xQFQZfmzJmjWbNmFXAJIHft7e393yDOnTtXLS0tWd4R+OMtT0va2L89bkSjDppSyCAihpve3l5t3fqqJGncuN1VV0eNmFw8+/IObW8fiEYOOOhgnXVsttnBkAr/OwcUqppnvBCYlN9PFCzmaJJOVWGByQ4FgUkun6xGhc+5TPtKkm21eEvIkm1ubtaIEQzKoHJaWlpyuufWbW3T3c9tTNr3kTP317yTZparaxhC2tratGDBAknSWWcdzd+5HL3jpw/rwRWb+7etroHfXQFy/TsHFKO5uTl7o5jwVVCZufsGSX1/racVeJq+gCGXr5/6Rj1yzhcBhpKbHnlBiUW4RjXV61+O5ptboJwa6pM/TnT39sbUEwC1jMCkMorNAHw2fB6baUV3M9tTQalgSVpS5DWBmtPe1aObH02Oyd/8munarYXqQEA5NdQl53R19ZD4DiB/BCZlZmaTFKxtIkkvFXia+xNen5qhXeKxBwq8FlCz7nz6ZW3ZlVwj4j0n7BNTb4DhIxqY9FTp2kEAqhuBSfldIfXXLM20ansmf5DUNy5+aYZ288Ln3vA9wLBy3UMvJG2fsO8E7b/HbmlaAyiVxuhUrh6mcgHIH4FJgcxshpkdlaXNuZL+M9xsk/TLNO3uNTMPHzOix8MSwzeGm683s7ekOMdFkl4fbl5fYFlioGY9tXar/r52a9K+S05ktASohIb6yFQuRkwAFGDYVuUys5Ml7Zewa2LC6/3MbF5ie3efHznFDEn3mNlDkv4o6SlJG8Jj+ypYXPEtGhgt+bi7ryuiy5+T9AZJkyTdbGbHSPpTeOxcSR8LX2+U9PkirgPUpOhoyZ5jW3TmwXvE1BtgeGmoY8QEQPGGbWAi6XJJl6Q5dlL4SDQ/TdsTwkc6rZI+WsSq75Ikd19rZudJ+r2C9UQ+FT4SvSLpwmxlf4GhZsuuTv3xH8kpXO86fp9BlYIAlEdjdMSE5HcABRjOgUmxHpf0LgVByTGS9lQw6tIg6VVJz0j6P0k/C0sGF83dHzGz2ZI+LOlCBaM2krRK0u2SvuPum1O/Gxi6blm8Vp3dA9/QNtXX6eJjs60XCqBUolO5KBcMoBDDNjBx93kaSBYv5P07FOR93JitbQ7nOi2Ptpsk/Uf4AIa9nl7XDQ8nT+M65/A9NXF09S4gBQw1g6dyMWICIH/McwBQ0+5eukHrtrYl7aNEMFBZ0XLB3SS/AygAgQmAmnbdQ6uTtg+fPlZH7jUulr4Aw9Wgld9JfgdQAAITADVr+YadWrRsU9K+dx+/j8wszTsAlMOg5HdGTAAUgMAEQM2K5pbsPrJR5x0xNabeAMMX5YIBlAKBCYCatLOjW7c+nlwZ++Jj91ZLY31MPQKGr0FVuUh+B1AAAhMANemPT72kHR3d/dt1Jr1zzt4x9ggYvpjKBaAUCEwA1KTFq7ckbb/2oMnaa/zImHoDDG/1kalcPaxjAqAABCYAatKqTbuStk+cNTGmngBg5XcApUBgAqDmuLtWbkwOTGZOGhVTbwCQ/A6gFAhMANScV1u7tK2tK2nfvhMJTIC4DEp+J8cEQAEITADUnFWbdiZtN9abpo0bEVNvADCVC0ApEJgAqDnRaVz7TBg1aOVpAJXDVC4ApcC/5ABqzspI4vtMpnEBsWqoYyoXgOIRmACoOasiIybklwDxio5YdlMuGEABCEwA1JxoqeB9qcgFxIqV3wGUAoEJgJrS0+tatTk6lWt0TL0BIEmNkRwTkt8BFILABEBNeWlrmzq7k6eJkGMCxGtwuWCmcgHIH4EJgJoSnca1W3ODJo5uiqk3AKTB5YKZygWgEAQmAGpKqvwSM0vTGkAlRMsFd1EuGEABCEwA1JSVG5MXV2QaFxC/+ki54B7KBQMoAIEJgJoyeA0TEt+BuDUOKhfscic4AZAfAhMANSU6lWsmpYKB2EWT3yUWWQSQPwITADWjvatH67a2Je1jcUUgftFywRIJ8ADyR2ACoGa8sLlV0dkh5JgA8Us1YtJFyWAAeSIwAVAzVm1KTnzfY0yzRjU3xNQbAH1STuVixARAnghMANSMwYnvjJYA1SBaLliSuikZDCBPBCYAasaqjdE1TKjIBVQDkt8BlAKBCYCaER0xIfEdqA4kvwMoBQITADVjUKlgAhOgKpD8DqAUCEwA1IStbV3asqszaR+BCVAdGupIfgdQPAITADVh9ebWpO2GOtNe40fG1BsAicxsUHDSRfI7gDwRmACoCdHAZO/xI9VYz58woFpEp3OR/A4gX/yrDqAmRAMTpnEB1SVaMriHHBMAeSIwAVATXtjclrS97yQCE6CaREdMusgxAZAnAhMANWHVoBET1jABqkl0xITkdwD5IjABUPV6XXqBqVxAVWuMjpgwlQtAnghMAFS9bZ1Se3fyhxymcgHVZVDyOyMmAPJEYAKg6m1oT/7AM6qpXpN3a46pNwBSia7+3k25YAB5IjABUPU2JOe9a+akUTIbvKAbgPhQLhhAsQhMAFS9jW3JH3hIfAeqT310xIQcEwB5IjABUPU2tCdvk/gOVJ9Bye/kmADIE4EJgKoXHTGZReI7UHUa6kh+B1AcAhMAVa27V9rckbyPEROg+jTUM5ULQHEITABUtU3tkiv5m9gZBCZA1WEqF4BiEZgAqGobI6WCJ45u1piWxph6AyCdwSu/M2ICID8EJgCqWrRUMAsrAtVpUI4J5YIB5InABEBViy6uuC/TuICqxMrvAIo1bAMTM5tsZuea2ZfM7C4z22RmHj7m53iOkWb2ZjP7oZktNrNXzazLzDab2UNmdrWZTSlRf1cn9C/TY3UprgdUi8FrmBCYANWI5HcAxWqIuwMxWl/Mm83scEkPSEq10tt4SceHj4+a2RXufksx1wOGK9YwAWpDYx3J7wCKM5wDk0RrJC2VdFYe7xmjgaDkAUl/kvSYpM2SJkl6s6T3he1uNLPt7n5XCfp6u6TPZzjeWYJrAFVhR3u3dnRFpnJNYtV3oBoNGjEh+R1AnoZzYPIlSYslLXb39WY2Q9KqPN7fK+nXkr7o7s+mOL7AzO6SdJukeknXmNn+7l7sV0hb3f2fRZ4DqAmrN7cmbdeZtPf4kTH1BkAm0XLBJL8DyNewDUzc/QtFvv9BSQ9maXO7mf1O0r9ImiXpKElPFHNdYDiJBiZ7jR+ppoZhmxoHVLVB5YLJMQGQJ/6FL797El7Piq0XQA2KBibklwDVqz5aLpgcEwB5IjApv+aE1z2x9QKoQasigcm+E8kvAaoVK78DKBaBSfmdmvB6SQnON9fM/m5mO8ys1cxWmdktZnahmVn2twO1Y9CICYsrAlWLcsEAijVsc0wqwcyOkHROuPm0u5ciMJkZ2Z4RPt4q6QEzu9jd1xVyYjObnqVJ/5osHR0damtry9QWKIq7DwpMpu3WwH2Hsmpvb0/5GjnoTZ4U0NHZzf+vOeCeQ6V1dHTE3YW0CEzKxMyaJf1MQUUuSfpckafslPQHSQsk/VPSNknjJJ0g6YOS9pJ0kqS/mtkJ7r6tgGuszbXhI488ohUrVhRwCSA32zqltq7kP1Frn3lMO5bH1CEMOwsXLoy7CzXlhRdNA//kSetefkULFrwUX4dqEPccKmHTpk1xdyEtApPy+b6kY8LX17r7H4s833HuvjXF/nvN7PuSfqtgHZaDJX1B0r8XeT0gVhsiK7431bnGNMXUGQBZRXLfRYoJgHwRmJSBmX1G0uXh5mJJ/1rsOdMEJX3HdpjZWyWtVLDq/BVm9ml3z3exxb2yHJ+i4OfRnDlzNGsWRcZQPq8+tk569rn+7RkTR+kNrz8+xh5hOGhvb+//1nru3LlqaWmJuUe1Y92Da/SnNQNDmuMnTNRZZx0ZX4dqBPccKq2aZ7wQmJSYmb1f0lfDzaWS3ujuu8p9XXffZma/knSlpFEKRmsyrrOS4hwvZjqemFvf3NysESNGFNBTIDcvbE2eA7vvpNHcc6iolpYW7rk8tDQnD2n2yvj95Yl7DpXQ3NycvVFMqMpVQmb2dkn/G26+IOl17l7JiXyJK9BPq+B1gZJbvmFn0vZ+rGECVLVBK78zlwtAnghMSsTMzpd0nYLf6cuSzsg2AlEG/CuAISMamOw7aWRMPQGQi2i54C7KBQPIE4FJCZjZGZJ+rWBq3GYFIyVxTOA7JOE1pVBQs3a0d+nlbcllM2exhglQ1RpY+R1AkQhMimRmJ0q6XcEK79skvd7dn4mhH2MlvS3cbJX0WKX7AJTKio3JaVkm14zxjJgA1awxOmLSw4gJgPwQmBTBzI6UdIeCZPNdks5x98cLOM+9ZubhY0aK428ws7TZcGY2WsGIzYRw18/dvXpXzwGyWLZ+R9L2pBapqYE/V0A1a4jkmPT0MmICID/DtiqXmZ0sab+EXRMTXu9nZvMS27v7/Mj7Z0n6i4JFDiXp85K2mdlhGS67wd03FNDdT0u60cx+J+l+SSsk7ZQ0VtKJkj4gae+w7XOSri7gGkDVWL4xOb9kjxF8wAGq3aCpXAQmAPI0bAMTBeuMXJLm2EnhI9H8yPYpkiYnbH87h2t+UYUHDeMV9PnyDG3uk/ROd99S4DWAqrB8fSQwYRYXUPUa6pjKBaA4wzkwqSUfl3SGpBMkHahgdGecglySlyQ9IulmSQvcna+oUPOiIyZTGDEBql50KhfJ7wDyNWwDE3efJ2leEe+fr8GjKIWe67Qsxx8TyewYJtq7erRmS2vSPqZyAdUvmvzeTblgAHkimxRAVVm5cZei4357sBAyUPWiOSZdjJgAyBOBCYCqsmxDckWu3ZtczfUxdQZAzqILLHaTYwIgTwQmAKrKisiK71NG8q0rUAsaozkmVOUCkCcCEwBVZdmGaKngmDoCIC/1lAsGUCQCEwBVZXl0xITEd6AmRJPfe3pdFIoEkA8CEwBVo6unV6s27UraR0UuoDZEk98lEuAB5IfABEDVeGFz66DpH0zlAmpDdMREomQwgPwQmACoGssjFbkmjmrSqMaYOgMgL9EFFiVGTADkh8AEQNWI5pfMmjQypp4AyFdD3eCPFD0kwAPIA4EJgKoRrci178RRMfUEQL5S5ZiwlgmAfBCYAKgag0dMCEyAWpFyKhcjJgDyQGACoCr09rpWbGQqF1CrUia/M2ICIA8EJgCqwrqtbWrvSv4Qw4gJUDsoFwygWAQmAKrCskhFrjEtDZo4qimm3gDIV3Tld4lywQDyQ2ACoCpE80v232M3mQ3+oAOgOpmZGiN5Jt2MmADIA4EJgKqwbH1yYLLfpNEx9QRAoaIlg6MLpgJAJgQmAKrC8o3RERMCE6DWRPNMSH4HkA8CEwCxc3ctj4yYzJpMYALUmmjJYJLfAeSDwARA7Dbs6NCOju6kfUzlAmpPQ310KhcjJgByR2ACIHbRxPcRjfWaNm5ETL0BUKjGQVO5GDEBkDsCEwCxW7Y+uVTwrMmjVJei9CiA6hYdMekixwRAHghMAMRuUOL75N1i6gmAYkRzTHqoygUgDwQmAGI3qFQwie9ATWqMlAvuIjABkAcCEwCxW7GRwAQYCqKrv1MuGEA+CEwAxOrVXZ3atLMzaR+BCVCbWPkdQDEITADEKppf0lhv2mf8yJh6A6AYg5LfKRcMIA8EJgBiFc0vmTlx1KAPNwBqw+CV3xkxAZA7/vUHEKvoGiZU5AJqVyPlggEUgcAEQKyWbYiuYUJ+CVCrKBcMoBgEJgBitWLQiAmBCVCrBk3lIjABkAcCEwCx2dnRrZe2tSftoyIXULsaouuYMJULQB4ITADEJjpaUmdB8juA2hSdykXyO4B8NFT6gmY2SdK+kqZIGiWpS9JWSWskLXf3nkr3CUA8lkUCk73Hj1RLY31MvQFQrEHJ75QLBpCHsgcmZjZK0gWSzpZ0qqRpGZp3mNmTkhZIus3d/1Hu/gGIT7Qi135U5AJqGuWCARSjbIGJmR0l6SpJF0nqWy3N0r9DktQi6QRJx0v6TzN7RtIPJF3v7q3l6iuAeCyPVOQivwSobdE1iKjKBSAfJQ9MwoDkywpGSKSBYOQVSY9KelzSBklbJL0qaYSk8ZJ2l3SApGMlHS6pUdJhkv5X0pfN7OuSrnH3jlL3GUA8Bq9hQmAC1LLGSI4Jye8A8lHSwMTMfinp3RpIqn9C0o2SbnX3NXmcp0nSXEnvlPQmSRMlfU3SlWb2Hne/v5T9BlB57V09WrMleSCUEROgttUzlQtAEUpdlesSSd2SfirpIHc/xt2/nU9QIknu3unuf3P3SyXtIek9kp6TNEPSa0vcZwAxWLVpl6KzPFhcEahtJL8DKEapp3L9r6SvufvaUp0wnLp1g5ndqCBfhZI9wBDw/Prk/JKpY1s0urnihQIBlBDJ7wCKUdJPAe7+oVKeL3Jul/Trcp0fQGUteTk5MDlwChW5gFoXTX7vZsQEQB5YYBFALJa+sj1p+6A9x8TUEwCl0lgXTX5nxARA7ghMAMRiaWTE5CBGTICaR7lgAMUoR7nglyQtlLRI0kJ3f7rU1wBQ27a2duqV7e1J+w5mxASoedEcE8oFA8hHOTJNpyhIUr9Iksxsq6T7FQQrCyU97u78pQKGsaWvJI+WNNXXaebEUTH1BkCpNNST/A6gcOUITF6QtE/C9u6Szg0fkrTLzB7SwKjKw+7eWYZ+AKhSS19Ozi/Zb/LoQWVGAdQekt8BFKPkgYm7zzSzaZJOSXgcqoEV4EdLOjN8SFKnmS3WwIjKA+6+q9T9AlA9oiMmB+1JfgkwFJD8DqAYZVk0wN3XSfpV+JCZ7S7pJA0EKkdLagybN4fHTpL0GUk9ZvZ3DQQqi9z91XL0E0A8lkQCk4OnkF8CDAWMmAAoRkXmTrj7q+7+J3f/lLufKGmsghXcvyDpb5JaFYyomIJg6RhJH5V0m6QN5eiTmU02s3PN7EtmdpeZbTIzDx/zCzjf2WZ2m5m9aGYd4fNtZnZ2ifs90sw+aWaLzWyLme0ys6Vm9k0z2yf7GYB49fS6nmfEBBiSGskxAVCEWJZZdvd2SfeGD5lZvaTXaGBE5WRJE8Lm5Qqe1pfiJGZWJ+knki6LHJoWPi40s59Jen+xSf9mtp+kOyXtHzl0YPi43Mze6e5/KuY6QDmt2dKqtq6epH0HMWICDAkNddEREwITALmrlmzTOgVTuxolNSkImCr512yNpAUFvvcrGghKnpT0dknHhc9Phvsvl/RfxXTQzHaTdIcGgpKfSjpD0omSPidpp6Qxkm4xsyOLuRZQTtHE94mjmzRpt+aYegOglOrroiMmTOUCkLtYRkzMbJSCD9R9IyTHSWrpO5zQdKmCyl3l8CVJiyUtdvf1ZjZD0qp8TmBmB0j6eLj5mKS57t4Wbi82sz9Iuk/B1LRPmNkv3H15gf39hKQDwtefdPdvJBx7yMzuDa81UtJ3JJ1W4HWAsormlzBaAgwd0alcJL8DyEdFAhMzm6DkKl1HSqrvOxw+d0p6QsGaJ/crqM61uVx9cvcvlOA0H9HA7/CqhKCk7xqtZnaVpIfCdh+V9K/5XsTMGiX9W7i5RNI3o23c/UEz+7mk90s61cyOdffF+V4LKLfoiAkrvgNDB8nvAIpRlsDEzPZSEIDMDZ8PSjwcPm+X9KAGApFHw9yTmmBmJumCcHOpuz+cqp27P2xmzynIAbnAzD7k7vl+hXS6goIBknRthlyV+QoCE0l6k4IRIaCqDC4VzIgJMFREywWT/A4gHyUPTMxstaS9+jYTDq3TQBByv6R/FPABvZrMlDQ1fH1flrb3KQhMpkmaoTynjCkoBpB4rnQeU1DhbKSC8stAVdnZ0a01W1qT9jFiAgwd0RGTLnJMAOShHCMme4fP3ZJ+K+lPCqZlvVCGa8XpkITXS7O0TTx+sPIPTHK6lrt3m9lySYeH1wGqynOR0ZL6OtN+k0fH1BsApdYQyTHpoSoXgDyUK8fEFeSQvFXBqu+LzGyRggDlxTJds9KmJ7zO9jOtTXi9V9pW2a+1y9235nCtwyVNMrNmd+/I9SJmNj1Lkyl9Lzo6OtTW1papLTDI02uS08ZmTBgp7+5UW3fq9u3t7SlfA+XCPVec3q7OpO2uHuffiiy451BpHR05fzSsuHIEJh9VMPXoZEl7SJot6TBJH5QkM1ujgelci9z92TL0oRIS55/szNJ2V8LrQr4e7rtWtuukulY+d9/a7E0CjzzyiFasWJHHqQHpbyvrlFilfGzvDi1YkFul7oULF5apV0Bq3HP5W7dLSvxo0dXTk/P/4+CeQ2Vs2rQp7i6kVfLAxN2/K+m7Un853b5KXHMV5FfsEz7eEbZ5VUES/CIFwcpj7t5V6n6VQUvC6860rQKJwcGIIq6V7TqluBZQNi+1Jk/zmDqKaR7AUBKZySWXqdelSE48AKRU1nLB7v68pOcl/VySzGyakgOVQySNl3SupHPCt3WY2aMaGFV50N23q/okjrc2ZWmbuHpcIWPafdfKdp1ir5VtmtkUhZW+5syZo1mzZuV5egxn7q7PPbFQ0sCq7+ecdJROO2Bi2ve0t7f3f4M4d+5ctbS0pG0LlAL3XHFWb27Vfz+VXKTytWecqaaGalnPufpwz6HSqnnGS0UXWHT3dZJ+FT5kZrsrmPI1N3wcpWB0oK/MsBR8isnlA3mlJWbxZpueNSrhdS7TsdJdK5dpYAVfK1v+T1AhOdDc3KwRIxiQQe5efLVVOzt6kvYdsc/EnO+jlpYW7jlUFPdc/kaPHDwK2tDUrBHNsaznXHO451AJzc3N2RvFJNavMNz9VXf/o7t/wt3nSBon6QOSViooNWwaWIix2iR+iM+WNJ44EpFzHkeKa40ys3E5XmtjPonvQLktfTm5ItduLQ3acyzfDAJDSWP94I8V3VTmApCj2L/CMLNDNTBCcooG1gZxJa+DUm0Sk/YPSttq8PElBV7rXxLOlXIxRzNrkNQ3v6qQ6wBl89z65MDk4CljkkbhANS+aLlgSepmLRMAOapoYGJm9ZKO1kCOyUmSdk9sEnnLGknVWqJilaSXFARSp2ZpOzd8XidpdQHXuj/h9alKE5hIOkYDU7keKOA6QNkseTk5VeygPVlYERhqGlJkuTNiAiBXZQ1MzKxF0gkaCETmKFiVvL9J5C3PKQhEFiooJbymnP0rhru7md2uoAzyQWZ2vLsPChjM7HgNjJjcXuBq9/dK2iZprKRLzOzrac4zL+H1bQVcByibpZHFFQ+aMiamngAol+jK7xKrvwPIXckDEzM7VwPTsl4jqTHxcMLrXklPKTkQ2Vjq/pTZdyRdoSAP5hozm+vu/ZWwzGyEpGvCze6w/SBmNl/SJeHm6e5+b+Jxd+80s+9J+g8FK7p/XNI3Iuc4QdJl4eZ97r640B8KKLX2rh6t3Jhci4ERE2DoSTli0sOICYDclGPE5A8K8kOk5ECkU9JjCtYrWahgFfjYygCb2cmS9kvYlVizdD8zm5fY3t3nR8/h7s+b2TckfVrBNKoHzOxrklYoyPX4lIJKY5L0DXdfVkSXvyHpYkkHSPq6me2noLpZm6TTJX1WwX/PNkkfKeI6QMkt37BT0dkcB+5BYAIMNamT3xkxAZCbck3lMkmtkh7SQCDysLu3Z3xXZV2ugVGKqJPCR6L5adp+TtJkSe9VEIT8KkWbn0v6fP5dHODuO8zsHEl3StpfwUjNFZFm2yW9093/Xsy1gFKL5pfsM2GkRlE+FBhy6utMZlLiZOMuRkwA5Kgcnww+qSAYedzdu8tw/qri7r2SLjOzWxUECscqGH3ZpGAxwh+7+10lutZyMztK0r9KukjBiE+TghLEd0r6rru/UIprAaU0OL+E0RJgqGqsq1NnQl5JD8nvAHJU8sDE3f9fqc9ZDu4+T8nJ4sWe704FwUFZ++LuuyR9PXwANWHpK5GKXCS+A0NWQ72pM2EtVZLfAeQq1gUWAQx97q4lkcUVDybxHRiy6iMJ8JQLBpArAhMAZbVxZ4e27OpM2seICTB0RRPgGTEBkKtylAu+u8SndHc/o8TnBFAhSyOjJSMa67X3+JFpWgOoddGSwZQLBpCrciS/n6bkcsHF/EUq9v0AYhbNLzlwym6qS7HWAYChITpiQrlgALkqZ73Odkkbynh+ADUgOmJCfgkwtDXUM2ICoDDlDExaJL0s6TpJt7j7q2W8FoAqtWRQqWDyS4ChbNBULpLfAeSoHMnv/yHpeQXTsI6X9ANJL5vZrWZ2oZk1luGaAKpQV0+vlm9gDRNgOCH5HUChSh6YuPtX3P1gScdJ+r6ChQabJL1J0q0KgpQfmNkJpb42gOqycuOuQas+M2ICDG2DygUzlQtAjspWLtjdH3P3f5M0VdL5kn4rqUPSeEkfkHS/mT1vZv9hZjPL1Q8A8Ykmvk8d26KxIxk0BYayBpLfARSo7OuYuHuPu//J3d8qaYqk90laFB7eT9LVkpab2SIze5+ZjSt3nwBURnRhxYP2ZLQEGOoaIyMm0VFTAEinogssuvt2d/+5u58maaak/5S0XEE+yomSfiRpVSX7BKB8oiMm5JcAQ9/gqlyMmADITWwrv7v7Gnf/L3c/UNJVCqZ5maTmuPoEoLSipYIZMQGGvsHrmDBiAiA35SwXnJGZ7SXpXZLeLenAhEOd8fQIQCltbe3UK9vbk/YdzIgJMORRLhhAoSoamJjZGEkXKQhITlEwQtL3F+whSddLuqWSfQJQHv9clzyNq6mhTjMmjoqpNwAqpb4uMmLCVC4AOSp7YGJm9ZLOVjAycp6CqVp9wchKSTdIut7dV5S7LwAq5+l125K2D95zzKApHgCGnsZ6kt8BFKZsgYmZHasgGLlY0sS+3ZK2Svq1gmDkgXJdH0C8nl63NWl79jTyS4DhgHLBAApV8sDEzD4v6Z2SDujbJalL0l0Kpmr90d3JIwGGuOiIyeHTxsXTEQAVFS0XzAKLAHJVjhGTL0lyBQHJI5Kuk3SLu28pw7UAVKFXd3Vq7Za2pH2HTRsbU28AVNKgcsEkvwPIUTlzTNok7SHpE5I+YWZZmqfl7j6rZL0CUHb/fCl5tKS5oU777zE6pt4AqKRBU7lIfgeQo3IGJiMkzSjBefiqBagx/3iRxHdguBq08jsjJgByVI7AZKEIJoBh7Z/R/JLpTOMChgvKBQMoVMkDE3c/rdTnBFBboiMm5JcAw0e0XDDJ7wByxdwKACW1ZVen1m1NTnyfTWACDBvR5HemcgHIFYEJgJKKlglubqjT/pNJfAeGiwamcgEoEIEJgJKK5pccMnXMoCo9AIauQVO5GDEBkKOSflowsz1Leb4015hS7msAKNzTL0YXVmQaFzCcUC4YQKFK/TXmCjP7nplNK/F5ZWZvNbN/SLqi1OcGUDrRqVwkvgPDS0N05XdGTADkqNSBSYOkf5W03MyuNbOzzKzga5jZXmb2STNbIulmSYdJ6ixRXwGU2OadHYMS3w+fPi6ezgCIRTQw6WLEBECOSl0u+DBJ35Z0tqR3hY8NZna7pIclLZb0rLun/PrEzCZKOlbScZLOkHSiJAsf6yR9QdL8EvcZQIlER0taGus0a9KomHoDIA6Dp3IxYgIgNyUNTNz9eUnnmNmJkj4v6fWS9pD0vvAhSZ1mtlnSq+FjhKTxknaXlDjno+8rlxclXSPpGndvL2V/AZRWNPH90KljSXwHhplo8jvlggHkqhwrv8vdH5T0RjM7QNJ7JV0kaWZ4uFnS1PDhGghAEnVI+oukn0q6y90ZBwZqQHRhRdYvAYafaLngnl7+CQeQm7IEJn3CEZRPS/q0me0t6RQF07OmS5qkYKSkXdLG8PG0pEWSHnV3ckmAGhMdMSEwAYaf6AKLTOUCkKuyBiaJ3H2NpBvDB4AhZtPODr20LXm25ezpBCbAcNMYmb5J8juAXDH5G0BJRBPfRzTWa9YkVnwHhpt6ygUDKBCBCYCSiC6seOjUMYM+oAAY+gat/M5ULgA5IjABUBIsrAhAGpz8zlQuALkiMAFQEtHE98PJLwGGpWjyew9TuQDkiMAEQNE27ujQy9HEd0ZMgGGJ5HcAhSIwAVC06GjJyKZ67UviOzAsNZD8DqBABCYAihZdWJHEd2D4io6YkPwOIFcEJgCKFk18nz1tXDwdARC76JcSXaz8DiBHBCYAivb0uq1J27Onj4mnIwBiFy0X7E4CPIDcEJgAKMqG7e1av70jaR+J78DwFS0XLJEADyA3FQlMzOzu8HFpJa4HoHKi07hGNdVr5kQS34HhKlouWGLEBEBuKjVicoqkUyWtrtD1AFRINDA5dOpYEt+BYSya/C6RAA8gN5UKTDaEz1srdD0AFfJ0pCLXbBZWBIa1aLlgiQR4ALmpVGDyVPh8QIWuB6BCBlfkIjABhrNUOSaMmADIRaUCk59JMkkfqND1KsLM7jUzz/NxWgHXubqc5wcKtX57uzbsiCS+M2ICDGupckxIfgeQi4oEJu7+O0k3SDrVzH5hZqMqcd0q1CtpWdydAEolOo1rdHODZk4Yrv97A5BSByas/g4gFw2VuIiZvUfS/0k6XNIlki4wsz9K+oekVyX1ZHq/u19X9k4W5lJJ2T6FHSLplvD1/7n7uiKvOTvL8VVFnh/I2eDE9zGqI/EdGNYaU0zl6iHHBEAOKhKYSJovKfHrkt0lvTvH97qkqgxM3D1rEGBmiT9n0T+Hu/+z2HMApUJ+CYCoujpTnUmJgyRd5JgAyEElF1i0hEd0O9ujJplZnaR3hps7Jf0uxu4AJeXugwMT8ksASGqIlAwm+R1ALio1YjKzQtepNmdImha+/q27t8bZGaCUXtrWro3RxHdGTABIaqwzdSZsUy4YQC4qEpi4+wuVuE4Vek/C66qcjgYU6okXXk3aHjuiUTMnkvgOQIMWWWXEBEAuKjmVa1gxs9GS3hRuviDp3hKdd4GZbTCzzvD5XjP7tJntXorzA7l6cs3WpO2j9h4ns5qdeQmghKKrv3dTLhhADio1lWs4+hcNVOy6wd1L9XXR6xJeT5J0avj4lJnNc/fbCz2xmU3P0mRK34uOjg61tbUVeikMAY+t3py0PXvP0SW/J9rb21O+BsqFe640InGJdrW1829GGtxzqLSOjo7sjWJS8cDEzPZXMMXpBAUfdEdIer27L09oc5ikvSXtcvf7Kt3HEin1NK6nJf1e0qOSXpLUKOlABcn1Z0kaJ+lWMzvP3e8q8Bprc234yCOPaMWKFQVeBrWuu1d65qV6Jdam6F6/XAsWlG+ZnoULF5bt3EAq3HOF6+5M/vuw+PEn1LqS6VzZcM+hEjZt2hR3F9KqWGASVqj6uqQPK5hC1vcXyyU1RZrvLelPkrrNbGYJ1v6oqHDk4bRw82F3f77IU37H3a9Osf8RSdeZ2fsl/UhSvaSfmdksd+drF5TN2l1Sjw986DC59hnNhw4AgehyRqSYAMhFJUdMfizpvQoCknWSHpL0llQN3f1OM1slaUbY5rsV6mOpvEsD+TvXFnsyd9+a5fiPzexYSZdJmqpgGtmNBVxqryzHp0haLElz5szRrFmzCrgEhoL5D62R/tk/yKlZk0brgjfOKfl12tvb+79BnDt3rlpaWkp+DSAR91xpfG/Zw9rUPlCI8rDZR+isQyfH2KPqxT2HSqvmGS+VWvn9DAUfml3SVyV9wd17zCxTNtxvJH1S0mtVe4FJ36KKHRpY9b3cfqzgdywFOSd5Bybu/mKm44mJzc3NzRoxYkS+l8AQ8c+XdyVtHzNjfNnvh5aWFu45VBT3XOEaG+qTtusaGvhd5oB7DpXQ3NwcdxfSqtSIyRXh853u/vkc3/No+HxoGfpTNmZ2jKRDws0/ufurmdqX0LMJr6elbQWUwJNrkm/ro/YeF09HAFSlhvrkuVys/A4gF5UqF3yCgtGSn+fxnr5v76dkbFV9EpPei57GlQf+6qMiXtnWrpe2JacwvWZvqlUDGNBQR7lgAPmrVGDSN7F0dR7v6Qqfa6aksZk1SnpbuLlRUqHVsQpxSMLrlyp4XQwz0dGS3VoaNGvS6Jh6A6AaNUZGTLp7+e4MQHaVCkz6JqRPyuM9fWtqbClxX8rpbA38jDe5e3cFr/3+hNe1WmIZNeCJSGBy5F7jVBctwQNgWGPEBEAhKhWYrAyfD8nYKtnZ4fMzJe5LOeW9domZzTMzDx9Xpzg+28z2y3KOKyRdHm6+Ium2HPsL5G3wiu9M4wKQLJpjwogJgFxUaprUAklHS/pXM7vG3TN+dWJmh0iapyBv4s7yd694Zra7pHPDzX+6+xMlOvXRCtYmuUfB1LCnJW1W8N/uIA0ssChJPZKucPddqU4EFKuzu1f/WLctad9rSHwHENEYWfqd5HcAuahUYPI9Sf8maZakH5nZlemmOZnZ6yT9UlKLgg/gP61QH4t1saS++mulWOk9Ub2kM8NHOpslXebufyzxtYF+S17ers7u5O8VjtqLERMAyeoj0zuZygUgFxUJTNx9vZl9QMEH9sskvd7M7kho8mELFsk4ScEogEnqlTTP3XdWoo8l0Ld2SY8KW9wwnTsV/M5OkHSUpD0kTVDwO9oi6SlJf5Y03923l/C6wCDR/JJZk0Zp7MjGmHoDoFpFk9+7mMoFIAcVq3jl7jeaWZeChQD3UpCs3feXqi8/ou8v2U5Jl7j7HaoR7n5Sge+bL2l+huMbJP0ifACxIr8EQC5IfgdQiEolv0uS3P3XkvaT9AVJjysYXbCExzOS/lvSfu5OAjdQZaIjJqxfAiCVaPJ7DyMmAHJQ8TVC3H2zpC9L+rKZ1UkaryCHYou7d2V8M4DYbNjRrhdfbUvax4rvAFJprCP5HUD+Yl28MKzOtSnOPgDITXQa16imeh2wx27xdAZAVRtcLpipXACyq8hULjMbWYnrACifaGByxF7jBlXeAQCJcsEAClOpEZNXzewxSQsl3SvpftbaAGoL+SUAckW5YACFqFRg0ijp+PDxSUk9ZvaEpPs0EKjsqFBfAOSpu6dX/3hxa9I+8ksApMPK7wAKUanA5LOS5ipYp2S38LrHSTpW0scVBCp/10Cgsog1OYDqsfSVHWrviiysyIgJgDSiye8EJgByUakFFv9H0v+YWb2k10g6TdKpkk6WNCbsxzGSjpb075J6zewphYEKq5kD8XoyMo1rxoSRGj+qKabeAKh2g0ZMmMoFIAcVrcrl7j2SFoePb4Tlgo9SEKScpiBQGaegfPBR4ePDle4ngGRPRBLfyS8BkAnJ7wAKUdEFFqPcvdfdH3f3b7n7+ZL2V7DGybawSd/CiwBiFB0xIb8EQCYN0eR3ygUDyEGsIxFmNk5B7slp4eNwDQ5GXqh0vwAM2LyzQ6s3tybtI78EQCaDq3IxYgIgu4oGJhkCESU8r9ZAEvy97k5gAsTo72u3Jm2PaKzXQVNYWBFAeoOncjFiAiC7igQmZvYtpR8RWaXkQGRNJfoEIDfR9UsOnz5WDfWxzgIFUOUoFwygEJUaMfmIJFcQkKxSGIQoCETWVqgPAAoQXfGdaVwAsqFcMIBCVPprT5e0K+HRmrk5gDj19Lqeikzleg2J7wCyoFwwgEJUasTkOgW5JTMkHSbpUEn/KsnN7FkNjKDc5+6bK9QnAFk8v36HdnX2JO07ksAEQBbR6Z4kvwPIRaUWWJwnSWa2twbWLDlV0r4iUAGqVjS/ZPruIzR5t5aYegOgVjRGqnJ1US4YQA4qvcDiGknXhw+Z2XQFAcqpkk6XNEuDA5Vn3P2ISvYTQCCaX8LCigByQblgAIWIe4HFF939Rne/wt33lzRdwQKL2xUkytcpCFQAxOCJF1hYEUD+ouWCyTEBkItYF1iUJDM7QAPrmpwqaUp4qK+KF4AYbNjerpWbdiXtO2af8TH1BkAtoVwwgEJUPDDJEIhIyYHIcoV5JhXqGoAED6/akrS9W3ODDpk6JqbeAKglDZQLBlCASi2weIWyByLPayAQudfdX65E3wCk9vDK5LoTx84cP2jeOACk0hgZMWHldwC5qNSIyY80eGrWUiUHIusr1BcAOYgGJsfvyzQuALmhXDCAQlRyKtcSDQQi97n7hgpeG0AeNuxo18qNyfklx+87IabeAKg1DdGqXJQLBpCDSgUmk919U4WuBaBIj6xMzi8Z3dygQ/YkvwRAbqLJ7109LneXGdNBAaRXkXLBBCVAbRmUXzJj90FTMwAgnWjyuyT1kAAPIItYywWbWYOkvhXbXnX37jj7AyDwSKQiF9O4AOQjmvwuBZW5Gupj6AyAmlHxr0DN7GAzu8bMlkhql/RK+Gg3syVm9j0zO6TS/QIQ2LijQ8s37EzaN4fABEAeUo2wUjIYQDYVDUzM7L8l/UPSlZIODK9vGljl/UBJ/yrpKTP7aiX7BiDwyKrkaVyjmup1GOuXAMhDY4rS4qz+DiCbik3lMrNrFAQkfX+tlkh6RMFoiRSsb3KcpEMk1Uv6lJmNcvcPV6qPAAYnvh87czz5JQDykupvRhclgwFkUakFFk9SMBLikp6VdIW7P5im7QkK1j2ZLelDZnZLurYASi+a+D5nJtO4AOQn1WKslAwGkE2lvgZ9f/i8StJJmQINd39I0lxJK8NdHyhz3wCENu3s0LJIfgkLKwLIV8rkd0ZMAGRRqcDkFAWjJf/j7tuyNQ7bfE3BtK9Tytw3AKFHI9W4RjXV67BpY2PqDYBalapcMMnvALKpVGAyJXx+Mo/3PBE+71HivgBIIzqN6+gZ49VIfgmAPKUeMWEqF4DMKvWJoz18HpXHe/radpS4LwDSiAYmTOMCUAgzG5RnQvI7gGwqFZisCp/Py+M9fW1XZmwFoCQ27+zQ8+uj+SUkvgMoTEMkMCH5HUA2lQpM7lSQL3KVmZ2RrbGZnS7pKgV5KXeWuW8ANDi/ZGRTvWaTXwKgQNFpoIyYAMimUoHJdyRtl9Qo6S4z+76ZvcbM+q9vZnXhvu9L+rOkpvA936lQH4FhbVB+yT67k18CoGDRqVzkmADIpiLrmLj7JjN7q6Q/KAg4Phg+Os1si4KRkQnhMSkYXemUdJG7b05xSgAl9nBkYUWmcQEoRjQBnqpcALKp2Neh7r5A0vGSHlMQeJikZkl7Spoavu7b/5ikOe7+t0r1DxjOtuzq1HPrdyTtI/EdQDGiJYMJTABkU5ERkz7u/ndJx5nZsZLOlHSYpL5PP1sk/VPS39x9cSX7BQx3j65KHpgc0Viv2dPGxdMZAENCQ3TEhKlcALKoaGDSJww8CD6AKhGdxnXMjN3V1EB+CYDCkfwOIF9lDUzM7BxJb5C0j6R6SS9JulfSr929q5zXBpC7aOL7nJlM4wJQHMoFA8hXWQITM9tD0u8lHZfi8HslfcnMLnT3p8txfQC5e3VXp5a+Es0vIfEdQHEGV+VixARAZiWfq2Fm9Qqqb83RQDJ79DFT0l/MbGKprw8gP49E1i9paazT4dPHxdMZAEPG4KlcjJgAyKwck8jfKulYBSWAl0u6TNJsSQdJukjSw2G7PSR9rAzXB5CHRyKJ78fsM578EgBFiya/91CVC0AW5ZjK9dbwebWk49x9a8Kx583s95L+JulUBYHKZ8rQBwA5iia+k18CoBQaI+WCuwhMAGRRjq9Fj1IwWvLNSFAiSXL3HklfCDdnmtluZehDxZiZ5/i4t0TXe7uZLTCzV8ys3cxeMLMbzOyEUpwfw8vW1k4tfWV70r7jZ5FfAqB4lAsGkK9yBCaTwufHMrRJPEaeSQ7MbISZ3SHpJkmvUzAVrlnS3pLeKel+M/tChlMAgzy6aos84UvMIL9kbHwdAjBkNERyTEh+B5BNOaZyjVAwYrIzXQN3bzXr/yalpQx9iMMPJf1vhuO7ijz/LyS9MXx9j6TvKii/PFvSZyXNknS1mb3s7j8p8loYJqLTuF6z9+5qbqiPqTcAhpLGSFWuLsoFA8gilgUWIyx7k5qwwd3/WY4Tm9lrJb0t3PyjpDeFU+IkabGZ/UHS4wpGT75mZr9x91fL0RcMLYuWbUzanjOTaVwASoNywQDyRemd2vDx8Llb0pUJQYkkyd03SfpUuDlO0uWV6xpq1bqtbVq2IXlg85QDmFkJoDSi5YLJMQGQTTlHTK40sw2laOfuXypRn2pOWBzgjHDzb+7+Ypqmv5O0XdIYSW+S9I0KdA817L7nkkdLxo1s1BGsXwKgRAYlv1OVC0AW5QxMPpjleN9fqGztJGnYBiYK1oRpCl/fl66Ru3ea2cOSzpJ0rJk1untXJTqI2nTvc8nfB5yy/6RBUy8AoFANkXLBBCYAsinXVK50K74X8qgVF5nZs2bWamY7zGyZmV1rZqcXed5DEl4vzdK273iDpP2LvC6GsM7uXj24InlhxdMOmJSmNQDkrzEyYsLK7wCyKceISbEfxGvVIZHt/cLHe8JFJee5+7YCzjs94XW6aVx91ia83kvSs/lcyMymZ2kype9FR0eH2tra8jk9qsijq1/Vzo7upH3H7b1b1f03bW9vT/kaKBfuuRLy5ECkvaOr6v7GVAPuOVRaR0dH3F1Iq+SBibunnW40RLVK+oOk/1MwYrFTwVoup0r6gKQJki6UdLuZva6A6VWJC1CmLcEcSixJPDrP60jJgU1GjzzyiFasWFHAJVAN/vBCnRIHTKePcj3x4L2x9ScXCxcujLsLGGa454rz0ovJf2dWr1mrBQteiK9DNYB7DpWwadOmuLuQVjWUC65101KtcC/pr2Z2jaS7JB2lIFD5oKTv5Xn+xHVeOrO0TQyBR+R5HQwjS7YmT7E4eBxzvwGUVjRljWrBALIhMClSmqCk79h6M3uLgpGURklXKf/AJHFctyltq0BzwutCxsv3ynJ8iqTFkjRnzhzNmjWrgEsgbht2dOilhx5I2nfJWcfo6L3HxdOhDNrb2/u/QZw7d65aWobKeqyoVtxzpfP035br3pfX9G/vseeeOuusQ2PsUXXinkOlVfOMFwKTMnP3lWb2VwWrtu9nZlPd/aU8TrEj4XW26VmjEl5nm/Y1SIZSxJIks4Gvv5qbmzViBIMyteiRfyYP4e7W0qDj99tDDfXVvaxRS0sL9xwqinuuOCOak79Lc9Xx+8yCew6V0NzcnL1RTKr7k8jQkZiEPi3P9yYGC9mS0xNHPHLOF8Hwct/zyeuXnLL/xKoPSgDUnkHlgpnLBSALPo1URjF/jRODmoOytO073i1pWRHXxBDV3dOrRcuSA5PTDpgcU28ADGWDF1ikXDCAzAhMKiOxlHA+07ikIKejL+n91HSNzKxJ0vF972FxRaTy5Nqt2t6eXCZ4LuuXACiDweuYMGICIDMCkzIzs5mSXhdurnD3dfm83913KChFLElnZlhr5M2SxoSvb8u7oxgW7nsuebTkoCm7acpYEi0BlF79oJXfGTEBkBmBSRHM7DwzS1tAwMz2kHSrBqpp/W+KNvPMzMPH1WlO9f/C5wZJPzCz+sg5Jkr6Wri5VdLPcv4hMKzc+/yGpO1TD2S0BEB5MGICIF9U5SrONZIazexWSQ9JWq2gTO9ESadJen/4WpLul/SDQi7i7neb2a8kvU3S+QrWSPmOgmlhsyV9TtLeYfNPufurhVwHQ9vGHR3657rtSfvILwFQLtHk955eAhMAmRGYFG+qgvVJrsrQ5lZJl7t7R4Y22bxXwVStN0o6PXwk6pX0ZXf/SRHXwBC2MFKNa1RTvY7eZ/eYegNgqBuU/N7DVC4AmRGYFOcSBQnpJ0jaV8HoyBgFa4islfSgpGvd/aFiL+TubZLOMbN3SJon6QhJ4yStl7RI0vdLcR0MXdEywSftN1FNDczmBFAeTOUCkC8CkyK4+32S7ivyHPMlzc+j/U2Sbirmmhh+enpdC6Nlgg9kGheA8hm0jgnJ7wCy4OtSYBh46sWt2tqaXEGaxHcA5RQdMWGBRQDZEJgAw0C0TPD+k0dr2rgRMfUGwHAQLRfcxYgJgCwITIBh4N5IfsmpLKoIoMyiye89jJgAyILABBjituzq1D9e3Jq0j/wSAOXWOGjEhMAEQGYEJsAQt2jZRnnC54ERjfU6diZlggGUF+WCAeSLwAQY4qL5JSfOmqDmhvqYegNguCD5HUC+CEyAIay31wetX0I1LgCVEC0XTPI7gGwITIAh7JmXtmvzrs6kfacdQH4JgPKrr2PEBEB+CEyAIeye5zYkbe87cZT2njAypt4AGE4a66MLLLrcCU4ApEdgAgxhf/7nK0nbcykTDKBCosnvktRDZS4AGRCYAEPUms2tevbl7Un7Xn/olJh6A2C4iZYLloJREwBIh8AEGKLu+ufLSdsTRjXpuJnjY+oNgOEm1YhJFyWDAWRAYAIMUXdFpnGddegeg5JRAaBcUgUmJMADyITABBiCXt7Wpr+v3Zq07w2H7RlPZwAMS6mmclEyGEAmBCbAEBRNeh/T0qAT9p0QU28ADEf1jJgAyBOBCTAERadxnXnwHmpq4H93AJWTasSEqlwAMuGTCjDEbNzRocWrtyTte8NhVOMCUFkkvwPIF4EJMMT89dn1SlzDbGRTPeuXAKi4hhTFNigXDCATAhNgiImWCT79oMlqaayPqTcAhiszGxScMGICIBMCE2AI2dbapYdWbE7adzbTuADEJDqdi+R3AJkQmABDyF+XrE+aKtHcUKfTD5wcY48ADGfRBPhuygUDyIDABBhC/hyZxjX3gEka1dwQU28ADHfRksFdjJgAyIDABBgidnZ0a+GyTUn73nAo07gAxKchMmJCuWAAmRCYAEPE3Us3qLN7YJpEQ53pzIP3iLFHAIa7xkEjJkzlApAegQkwRESncZ2430SNHdkYU28AgOR3APkhMAGGgPauHt2zdGPSPqpxAYgbye8A8kFgAgwB9z2/UW1dPf3bdSaddQjTuADEKzpiQvI7gEwITIAh4M//fCVp+7iZ4zVhdHNMvQGAQD0jJgDyQGAC1LjO7l79bcn6pH1nH7ZnTL0BgAHR5HdyTABkQmAC1LgHVmzSjvbupH2vp0wwgCrQUBcJTCgXDCADAhOgxv356eRpXEftPU5TxrbE1BsAGNBQH5nKRblgABkQmAA1rLunVwueTQ5MqMYFoFoMXseEERMA6RGYADXs0VVb9GprV9I+8ksAVIvoyu8kvwPIhMAEqGG/e3Jd0vahU8dor/EjY+oNACRjxARAPghMgBq1q6Nbdz6dvNr7+UdMjak3ADBYfTT5ncAEQAYEJkCNuuufr6i1M3lRxTcdNS3GHgFAsmjyew9TuQBkQGAC1KjfPr42afvUAyZp8hiqcQGoHo2REZMuygUDyIDABKhBa7e06uGVW5L2veXovWLqDQCkRrlgAPkgMAFq0K1PvJi0PXZEo844eHJMvQGA1Eh+B5APAhOgxvT2+qDA5PwjpqqlsT6mHgFAapQLBpAPAhOgxjy6eovWbmlL2veWo6fH1BsASK+hnqpcAHJHYALUmN8+njxasv/k0Tp8+tiYegMA6TVEywWT/A4gAwIToIakWrvkLUdPl5mleQcAxIfkdwD5IDABasifWbsEQA2hXDCAfBCYADUkOo2LtUsAVDNGTADkg8AEqBFrt7TqoZWbk/axdgmAakbyO4B8EJgANeJ3T6xL2mbtEgDVrjFSLpipXAAyITApkpkdY2b/aWYLzOxFM+sws51m9ryZ/dLMTi7Rda42M8/xcVopronq0dvr+u0Ta5P2sXYJgGpXH8kx6WEdEwAZNMTdgVpmZgslnZLiUJOk/cPHPDO7TtL73L2zkv3D0LE4xdol/8LaJQCqHCu/A8gHgUlxpobPL0n6jaRFktZIqpd0gqSPSZom6T2SGiW9o0TXnZ3l+KoSXQdVIpr0vt/k0TqCtUsAVDmS3wHkg8CkOEslfVbSre7eEzn2sJldL+kBSQdIeruZ/cjdFxZ7UXf/Z7HnQO3Y1dGtO1i7BEANYoFFAPkgx6QI7n6uu/86RVDSd3yTglGTPm+pTM8wlLB2CYBa1RgZMWEqF4BMCEzK756E17Ni6wVqVnQa19wDJmkP1i4BUAMGlwtmKheA9AhMyq854XXKkRUgnTWbU61dQtI7gNrQECkXzFQuAJkQmJTfqQmvl5TihGFp4g1m1hk+32tmnzaz3UtxflSP6x5anbQ9pqVBZx68RzydAYA8Dc4xYcQEQHokv5eRmdVJ+nTCrl+X6NSvS3g9SUHwc6qkT5nZPHe/vZCTmlm2r+Kn9L3o6OhQW1tbprYo0q7Obt2yOHntkguOmCLv7lRbd0ydqrD29vaUr4Fy4Z4rrd6erqTtru5e/u2I4J5DpXV0dMTdhbQITMrro5KOC1//zt0fL/J8T0v6vaRHFZQobpR0oKR3SjpL0jhJt5rZee5+VwHnX5u9SeCRRx7RihUrCrgEcrXoFdOOjoEFFE2uGZ2rtWDB6vg6FaOFC4suaAfkhXuueM9tMwUV9AO72tq1YMGC+DpU5bjnUAmbNm2KuwtpEZiUiZmdKul/ws0Nkj5Y5Cm/4+5Xp9j/iKTrzOz9kn6k4F+An5nZLHfnq5ca1evSwpeTZ1oeurtrIjnvAGpIvSXnlFCUC0AmBCZlYGaHSrpNwe+3XdJF7r6hmHO6+9Ysx39sZsdKukzBwo//IunGPC+zV5bjUyQtlqQ5c+Zo1iyKjJXLouWbteHhp5L2/fu5r9EJ+46PqUfxaG9v7/8Gce7cuWppITJDeXHPldaktdt0zTMDkwWsrkFnnXVGjD2qPtxzqLRqnvFCYFJiZjZT0gJJuyuowvW2UiyqmKMfKwhMpCDnJK/AxN1fzHQ8cUG/5uZmjRgxIt/+IUc3Ln4pafuAPUbr9EOmDutFFVtaWrjnUFHcc8UbPTJ5Lnt3r/M7zYB7DpXQ3NycvVFMCExKyMymSvqbghELl/TeQhPRC/RswmtW4KtRyzfs1H3Pb0zaN+/EmcM6KAFQXu3t7dq6dataW1vV01O6yvY9Hd363MkDBSPNpGXLlpXs/ENBb2+vJkyYIElas2aN6uoomIr06uvr1dTUpDFjxmj06NFD7n4hMCkRM5so6a+S9g13XeXu11W4G8zeHQKufXB10va4kY2s9A6gLNxdL7/8srZt21aW89erVzPGJ09N6u4eJmUFc+Q+MIrU09OjXkoqI4Pu7m51dHRox44dMjNNmzZNu+22W9zdKhkCkxIws7GS/iLpkHDXp939BzF05ZCE1y+lbYWqta2tS7c+kTyj7m3H7q0RTfVp3gEAhdu8efOgoKShoXQfDerqXRN2S/5Gt5TnHyr6RsT53SCbnp4euQffQ7u71q1bN6SCE/4PKJKZjZR0h6TXhLu+4u5fi6k77094fV9MfUARfvPYWrV2DkyjqK8zveeEfWLsEYChqrOzUxs3DkwbnTx5ssaNG6f6+tJ9EdLZ3aOlr+xI2jdr6ljV1TE1tU9vb6+2b98uSRozZsyQm5qD0nJ3tba2asuWLdq5c2d/cHLAAQcMiXun9n+CGJlZk4LqWyeFu77r7p8v4DzzzMzDx9Upjs82s/2ynOMKSZeHm6+E/UIN6el1zY9M43rDoVM0dRyJkABKb+fOnf2vJ0yYoAkTJpQ0KAkMDkCcWcdAwcxMo0aN0vTp0zV69GhJQbCS+P9zLWPEpDg3K1jYUJLulvRzMzssQ/tOd3++gOscrWBtknsk3aVgocXNCv77HaSBBRaloBLYFe6+q4DrIEZ/W7JeL76avCLypSfNiKczAIa8XbsG/pkYM2ZMWa6RqmaHE5cARTMzjR8/vj8g2b59e9n+P64kApPivDnh9Wsl/SNL+xckzSjwWvWSzgwf6WyWdJm7/7HAayBGv3xgVdL27GljdfQ+u6dpDQDF6ezslBR8wClX+dBUE7aIS4DSGDlypMxM7t7//3OtIzCpDXcqWJ/kBElHSdpD0gQFf/O3SHpK0p8lzXf37XF1EoVb8vJ2PbxyS9K+S0+aQYlgAGXTV/2pvr6+bH9rGDEBysfMVF9fr+7u7pKW+Y4TgUkR3L0kf8ndfb6k+RmOb5D0i/CBISg6WjJxdLPOOXzPmHoDAKVh5JgAyAPJ70DMtuzq1O//nlzd+V3H763mBkoEA6htjJgAyAeBCRCzmx9do87ugQW1murr9M45lAgGAADDC4EJEKOO7h5d99DqpH3nHrGnJu1WnkRUAKgkMxuUv+IMmQBIg8AEiNEti9dq/faOpH2Xnjgzpt4AQOlFZ3MN17Bk/vz5/YHa6tWr4+4OUJUITICYtHf16Af3LE/ad/y+4zV7+tiYegQApRfNM2HAZOjp7e3Vs88+q/nz5+vKK6/Uscceq+bm5v5A7N57783pPKeddlr/e7I90kkMAM1Ms2bNyunaa9eu7a9QlyqA3LBhQ//+N7/5zelPJGnr1q1J57r77rsztv/iF7/Y3/auu+7Kqb9DFVW5gJjc+MiaQaMlHz3zgJh6AwDlwYjJ0Hf99ddr3rx5cXcjpZUrV+rBBx/UiSeemLHdjTfe2F9CO5XJkyfrwAMP1HPPPaf7778/47nuv//+pHMtWrRIr33ta9O2X7RokaSgdPdJJ52U8dxDHYEJEIPWzm798N7k0ZKT95uoOftOiKlHAFAmZkoMR4Zrjsm8efOq9sN7sRL/mzY2Nmr27Nnq6urS008/XdD5jjnmGP3yl78sul8tLS1qb2/X9ddfnzUwuf7665Pek8rcuXP13HPPaePGjVq6dKkOOuiglO0SA42enp7+7VS6u7v18MMPS5KOOOKIIbF6ezGYygXE4PqHXtCmncmrtH70dYyWABh6GDEZ+g455BB973vf00MPPaTt27fr8ccfzzrdKZNRo0bpsMMOy/jIxfnnny9J+vWvf51xZfQnnnhCzz77rCTpggsuSNtu7ty5/a8XLlyYtl3fsYsuukiS9PDDD6urqyvttXft2jXo/MMVgQlQYTs7uvWj+1Yk7TvtwEk6ep/dY+oRAJTPoHQAIpMh57jjjtNVV12l448/Xi0tLXF3p9/FF1+spqYmbdmyRXfccUfadn2jJccee2zaURBJOuWUU/pfpxsFaWtr0+OPPy5J+vCHP6wRI0Zo165deuKJJ1K2TzwPgQmBCVBx1z64Wq+2Jn9z8u+MlgAYoqKrvw/XqVy5VOXq6enRtddeq3PPPVdTp05Vc3OzJkyYoJNPPlnf+ta31NbWlvb8vb29uvvuu/Xxj39cJ510kiZOnKjGxkaNGzdORx55pD7+8Y9rzZo1ZfrpqtP48eN1zjnnSBoIPqK6u7t18803S5Le/e53ZzzfPvvso7333ltS+sCkb3Rkt91207HHHqvjjjsuY/u+/WaWFPgMVwQmQAVtb+/STxauTNp35sF76PDp4+LpEACU2aCqXPF0o+qtXbtWxx57rObNm6c77rhDL7/8sjo7O7VlyxY98MAD+tjHPqbDDz9czz//fMr3f+lLX9IZZ5yhb37zm3rwwQe1efNmdXd3a9u2bXrqqaf0zW9+UwcffLBuu+22Cv9k8eoLNu644w5t2bJl0PEFCxZo/fr1amho0Nve9ras5+sb1XjhhRe0du3aQcf7pnEdf/zxqq+v18knn5y0P5G79yfSH3zwwZo4cWKOP9XQRWACVNAv7l+lbW3JoyUffd3+MfUGAMqPmVzZbdmyRWeffbaeeuopNTc360Mf+pB+85vfaPHixbrnnnv0mc98RiNHjtTy5ct19tlna9u2bYPO0d3drT333FNXXnmlrr/+ej3wwAN6/PHH9fvf/16f/OQnNXr0aLW2tuod73iHlixZEsNPmbulS5dqzpw5GjdunFpaWjR9+nRdcMEFuu6669LmaqRzzjnnaPz48ers7NSvf/3rQcf7RlLe8IY3aNKkSVnPly3PpG8EpC8g6Xt+4IEHBo0WLlmyRJs3bx503uGMwASokG2tXfr5olVJ+84+bIoOncq6JQCGLtYxye5Tn/qU1q1bp3322UdLlizRNddco7e85S065phjdNppp+mrX/2q7r//fo0aNUorV67U17/+9UHnuPzyy/XCCy/oBz/4gd71rnfpxBNP1Gte8xpdcMEF+trXvqYlS5Zo2rRpam9v11e/+tUYfsrcrV+/Xo8++qi2bdumjo4OrVu3Tn/4wx90ySWX6Mgjj8wrsGpqatLFF18safB0rh07duj222+XJL3nPe/J6XyZ8kwSK2z1tTvxxBNVV1enLVu26JlnnklqT37JYJQLBirkp4tWakdHd/+2mfQR1i0BUMV6e12vtqavZpSLra1dauvq6d8e2dhRtXkmu49sUl1d+sX7ymH16tX906u+973vaebMmSnbHXXUUfrXf/1Xff3rX9f8+fP1la98Jen4jBkzMl5n+vTp+sQnPqGPfOQj+sMf/iB3z7hQYRzq6up0xhln6I1vfKOOOOIITZgwQTt27NATTzyhH//4x1qyZImeffZZnX766Xr00Uf78z2yefe7360f/vCHevDBB7Vy5Urtu+++kqTf/va3amtr09ixY3XeeefldK6DDjpIkydP1oYNGwYFJn0VthobGzVnzhxJ0pgxYzR79mw99dRTWrRoUVJFMQKTwQhMgArYsqtTv3wgebTk3MOn6sApu8XUIwDI7tXWTh39X3+LuxsV8/jnz9SE0c0Vveadd96pnp4ejRw5UmeffXbGtnPnztXXv/51vfTSS1qzZk3GD+bbt2/X5s2b1dra2h8Ijhw5sv/YqlWr+j+gV4vf/e53Gjdu3KD9p5xyiq688kq9733v07XXXqv169frIx/5iH73u9/ldN4TTjhB++23n5YvX64bbrhB//mf/ylpYATloosuyqua2CmnnKJbb71VS5Ys0aZNm/pzQ/qmdh111FH9v2spmM711FNPaeHChfrgBz/Yv78vMNl33301bdq0nK8/lDGVC6iAnyxcqV2dA98Y1pn04TPILQGA4e6xxx6TJLW2tqqpqam/cleqx7nnntv/vldeeWXQuV544QVdddVVmjFjhsaOHat9991Xhx12mGbPnq3Zs2friiuu6G+7adOm8v9weUoVlPRpbGzUz372Mx144IGSpNtuu03r1q3L+dx9SfA33HCDpKDYwL333isp92lcffqmaSUmr0sDgUa0ulbfduIIyZo1a/qrpFGNawCBCVBmG3d06NoHVyftu/DIadpv8uh4OgQAqBobNmwo6H2tra1J23fddZcOOeQQff/739cLL7yQ9f2ZSg9Xq4aGBl122WX92/fdd1/O733Xu94lSVq2bJkefvhh3XDDDXJ3zZgxoz9BPVeJ0676go3EICV6vr7tdevWadWqVUnvi55vuGMqF1BmP7pvRdL86vo6078xWgIAULB2iSRNmDBBd999t+rqcvvOODEXZdOmTXrHO96h1tZWjR49Wh//+Mf1+te/XrNmzdLYsWPV1NQkSbr77rt1xhlnSKrd9WQOOeSQ/tf5jJjsu+++Oumkk/TAAw/o+uuv1z333CMpCFjyzbU54ogjNHbsWG3btq1/+tYzzzzTX444GphMmzZNM2bM0OrVq7Vw4ULNnDmTwCQNAhOgjJat36HrHlqdtO9fXjNNMyaOiqdDAJCH3Uc26fHPn1nUOV58tVXb2wcKf0wa3axJu1U2jyNXu49sqvg1J0yYIEnauXOnDj74YDU2NuZ9jt/+9rfaunWrpGCK05lnpv5vlmodj1pTTML+e97zHj3wwAP6xS9+ofb2dknZF1VMpa6uTieddJLuvPNOPfnkk9q5c2d/oHHQQQelXI/k5JNP1urVq7Vo0SJdcskl/QHN1KlTtd9++xX8Mw01BCZAmfT2uj5729Pq6hn4VqqhznTVaxktAVAb6uqs6GTwXR3dSR8mx41sqniCeTU76qijdPPNN6ujo0OPPfaYTjjhhLzP0VeGdvz48WmDEmkgn6WWPfvss/2vp06dmtd73/rWt+rf/u3f+oOSOXPm6IADCquOecopp/QXLnjooYcGrV8SdfLJJ+uGG27QokWLtGnTJi1durT/PBhAjglQJr95fK0Wr341ad8Vc/fVXuNHpnkHAAw90W+4nSUWk5x77rn9v6Pvfve7BZ2juzsYkWpvb1dvb2/KNq2trYPW8ag13d3d+sUvftG/ne8UqHHjxunCCy9Uc3OzmpubdckllxTcl+hCi7kEJpL0/PPP69Zbb+2fSsc0rmQEJkAZbN7Zof++a2nSvr3Gj2C0BMCwV6OpDWVz4IEH6sILL5Qk3XLLLfrWt76Vsf2qVat08803J+3bf//g35bW1taUq5v39PTo8ssv10svvVSaTpfBPffc0z8dLZWuri5dfvnl/Ysrnnfeedprr73yvs6vfvUrtbe3q729Pal0b76OOeYYjRgxQpJ000036cUXX5SUfgTkkEMO0fjx4yUpaYFMApNkTOUCyuArdy7R1taupH1fvuAwjWiqj6lHABCPKlvDryp985vf1JNPPqnVq1frYx/7mG6//Xa95z3v0aGHHqrm5mZt3rxZTz31lP785z/r7rvv1pve9Ca9/e1v73//W9/6Vn32s59VR0eHLr30Uv3973/X6173Oo0dO1bPPPOMrrnmGj3++OP9yd/lMH/+/KTtv//97/2v//znP2v16tX92/vtt9+gkYVrr71W559/vs4//3yddtppOvDAAzVmzBjt3LlTjz/+uH7yk5/0T+OaPHlywaNLpdLU1KQ5c+bo3nvv1cqVKyUFU8vSrQ1jZjrxxBP1pz/9qb/9hAkTdOihh1asz7WAwAQosQeXb9LvnkiuFHLu4XvqtAMnx9QjAIjPoKlcDJkMsvvuu+vPf/6z3ve+92nRokVauHBhf3J0KmPGjEnanj59un74wx/q8ssvV3t7u772ta/pa1/7WlKbiy++WO973/sy5qAU49JLL017LNqXSy65JOWUp507d+qmm27STTfdlPZcs2fP1q9+9aukqmRxmTt3bv9aKJJ00kknZWx/8skn609/+lPSdjHJ/EMRgQlQQu1dPfr87/+ZtG+3lgb957mHpHkHAAxt0Y9dhCWp7bHHHrr33nt111136eabb9ZDDz2kV155RV1dXRo3bpz2339/nXDCCTr//PNTTv+59NJLdeCBB+ob3/iGHnjgAW3dulUTJ07UEUccoUsvvVRvfetbkz5EV5tPfepTOvLII/XQQw/p2Wef1caNG7VlyxY1Nzdrjz320DHHHKO3vOUtetOb3qT6+uqYfRD975BtPZToNC+mcQ1mfHOBXJnZdElrpSB5q29OKwZ8+6/P67v/tyxp35cvPEzvPn6fmHpU29ra2rRgwQJJ0llnndU/nxcol+F0zy1btkzd3d1qaGgo69/zl7e1aeOOjv7t3Uc2UQQkQW9vr7Zv3y4pGAnJdR0TQCrs/+Nly5YlViPby91fLFsH88TdD5TIio079cN7VyTtO3KvcXrncXvH1CMAiB8jJgByRWAClIC763O3Pa3OnoEyjfV1pq++abbq6pg/CmAYI8cEQI4ITIAS+N0T6/TwyuQVdS87eaYOmTomzTsAYHgYNGJCXAIgDZLfgSK9uqtTX7lzSdK+aeNG6CNnkoMDABQdqm4bNmzQhg0b8n5fU1NTwaumA+kQmABFcHd94Q/PaMuuzqT9X7rgUI1s4n8vADBFV35HNfnf//1fffGLX8z7ffvss0/S2iRAKTCVCyjCjY+s0R+eSl5J9w2HTtEZB+8RU48AoLpER0zIMQGQDoEJUKCnX9ymL/3x2aR9uzU36Avns2YJAPQhx6S6XX311XL3vB+MlqAcCEyAAmxr7dKVNz2eVIVLkr5x0RHac+zQXfcAAPI1aMQknm4AqAEEJkCe3F0f/+1TWrulLWn/5SfP1BsOmxJTrwCgWlEuGEBuCEyAPP100Ur99dn1SfuO3md3fersg2LqEQBUr+hSToQlANIhMAHy8NjqLfran59L2jd+VJO+/46j1FjP/04AkA0DJgDS4ZMUkKPNOzv0oZueVE/vwL+qZtJ3Lj6SvBIASMNYyARAjghMgBz09Lo+csvf9cr29qT9V712f809YFJMvQKA6je4KhdDJgBSIzABcnDN3cu0aNmmpH0n7zdRHz6D1d0B1Ka6uuAjQE9PT1mDBapyAeXh7urp6ZEk1dfXx9yb0iAwAbL427Pr9d3/W5a0b48xzfrO245UfTSrEwBqRFNTk6Tgw01HR0fZrsM6JkB5tLa29n+p0Pf/c60jMAEyuH/ZJl150xNJ/5DW15m+/47XaOLo5vg6BgBFGjVqVP/r7du3l+060RwTZ8wEKJq7a8uWLf3bY8aMibE3pUNgAqSxePUWve+6x9TZnbyI4idff6COnTE+pl4BQGmMHj26//XmzZu1efPm/mkh5cSICVA4d9euXbv04osvaufOnZKC4D/x/+da1hB3B4Bq9NTarbr0l4vV1pX8j/Rbjp6uK+buG1OvAKB0mpqaNGnSJG3cuFGStGHDBm3YsEH19fUlraTV0+vq7hz4W2qSlrVuKNn5h4Lu7m5J6v9vAaQTzQkzM02bNq0/Z6zWEZgAEUte3q73/OJR7ezoTtp/7uF76mv/cjilLwEMGRMmTFBnZ6e2bdvWv6/UoyZdPb3avGMgh8UktTRQYr2Pu6utrU2SNGLECP6NQc76gpLddtst7q6UDIEJkGD5hp16988f0ba2rqT9Zx68h759McnuAIYWM9PUqVM1fvx4bd26Va2trSUPTDp7u7V6S3Kp9X0mDZ0PUsXq7e3tD0xGjx49ZL75RnnU19erqalJY8aMGZL3C4EJEFq7pVXv+tkj2rSzM2n/KftPZGV3AENaS0uLpkyZUpZzr9q0S1+5fmXSvkvecLyaGvibKkltbW1aunSpJOnoo4/WiBGMJmH44q9CCZnZPmb2TTNbama7zGyLmS02s0+Y2cgSXudsM7vNzF40s47w+TYzO7tU1xhuXt7Wprf/9OFBCygeN3O8fvLuY9TSODTqgwNApTWkGGnu7u1N0RLAcMeISYmY2XmSbpCUWK9tpKRjwsflZnaOuy8v4hp1kn4i6bLIoWnh40Iz+5mk97s7f/VztGZzq+b98lG9+Gpb0v4j9hqnX8w7ViOaCEoAoFCpRpu7eijNBWAwRkxKwMyOknSLgqBkp6TPSTpR0hmSfho2O0DSHWZWzMTar2ggKHlS0tslHRc+Pxnuv1zSfxVxjWFl4fMbdd7379fKTbuS9h+85xhdd+lxGt1M7A4AxWioTzFi0sN3ZwAG41NXaXxX0ghJ3ZLOcveHEo7dbWbLJH1dQXDyMUlX53sBMztA0sfDzcckzXX3vq/4F5vZHyTdp2B05hNm9otiRmeGOnfXjxeu1Nf/vFS9kS/uZk0apesvO05jRzbG0zkAGEIaUyTn9kT/8AKAGDEpmpkdJ+mUcPPnkaCkzzclLQlff9jMCvnE+xENBJJXJQQlkiR3b5V0VbjZIOmjBVxjWGjt7NaHbn5S/3PX4KDkgD1G68bLj2dVdwAokfoUIyZdBCYAUiAwKd6FCa9/mapBmO9xXbg5TtLp+VzAgqLmF4SbS9394TTXeVjSc+HmBUYx9EHWbG7Vm//3Qd3xj5cHHXvj7Cm67cqTNGVsSww9A4ChKWXyO1O5AKRAYFK8k8PnXZIez9DuvoTXJ+V5jZmSpqY4T6brTJM0I8/rDGl9+SRLX9mRtN9M+sTrD9QP3vEajSKnBABKiuR3ALniU1jxDg6fl7t7d4Z2S1O8J1eHpDlPLtdZlee1hoStrZ1auWmXVm3cpZWbdmr5hp3667PrB03dGtPSoO++/SidfuDkeDoKAENcfZ3JTPKEv7+UCwaQCoFJEcysRdLEcPPFTG3d/VUz2yVplKS98rzU9ITXGa8jaW3C67yuY2bTszSZ1vfi0zferzHjn8/n9GXXI9eG7Z1a+2qbtrVlihEDMyaM1H+dc5Cm1W3TsmXbKtBD5Kujo0ObNm2SJK1YsULNzeT+oLy458pk52Z1J4ySfPa6ezW2hVLsktTT26uNm7ZIkm5d9TfVD7GVvFF9tm/ZkLhZVf8jEpgUJ7H0784c2vcFJqPLeJ3Eurf5Xmdt9iaB333xvXmeuvqsk3Q6hZUBoOJui7sDAPpMkvRC3J3oQ1henMQs6c4c2neEzyPKeJ2OhNf5XgcAAADDR1XNZWfEpDjtCa+bcmjfNyegLWOr4q6TOO8g3+tkm/q1t6QHwtfHKxh0AMppiqTF4etjJb0SY18wPHDPodK451Bp0yT1VXjNlrtcUQQmxUks75TLtKlR4XMu074Kvc6ohNd5XcfdM+avRKoPr8vWHihW5J57hXsO5cY9h0rjnkOlRe65XGb8VAxTuYrg7u2SNoebGRPHzWx3DQQNOedyhBL/SGVLUE8c9cj3OgAAAEAsCEyK92z4vJ+ZZRqBOijh9ZK0rTJfI3qeUl8HAAAAiAWBSfHuD59HSTo6Q7tTE14/kLZVaqskvZTiPKnMDZ/XSVqd53UAAACAWBCYFO/3Ca8vTdXAzOokvSfc3Crpnnwu4O4u6fZw8yAzOz7NdY7XwIjJ7eH7AAAAgKpHYFIkd39U0qJw8zIzOyFFs49pYLX377p7V+JBMzvNzDx8zE9zqe9I6glfX2NmSaWAw+1rws3usD0AAABQEwhMSuPDCkrzNkhaYGafMbPjzex0M/uxpK+H7Z6X9M1CLuDuz0v6Rrh5jKQHzOxiMzvGzC5WMD3smPD4N9x9WaE/DAAAAFBplAsuAXd/MgwObpA0RtJXUzR7XtI57r4jxbFcfU7BQjjvlXSUpF+laPNzSZ8v4hoAAABAxRlpCKVjZvsoGD05R0FZ305JyyX9RtL33b01zftO00DeybXuPi/Ldd4o6QoFCzFNlLRJweJMP3b3u4r9OQAAAIBKIzABAAAAEDtyTAAAAADEjsAEAAAAQOwITAAAAADEjsAEAAAAQOwITAAAAADEjsAEAAAAQOwITAAAAADEjsAEAAAAQOwITAAAAADEjsAEOTGzfczsm2a21Mx2mdkWM1tsZp8ws5Fx9w/Vz8wmm9m5ZvYlM7vLzDaZmYeP+QWc72wzu83MXjSzjvD5NjM7uwzdRw0ys2PM7D/NbEHCfbLTzJ43s1+a2cl5no97DmmZ2Rgze1v4b+V9ZrbczLaZWaeZbTCze83sk2Y2IcfznWhmN5jZC2bWbmavmNlfzOzt5f5ZMDSY2dcS/p11Mzsth/fE+nfO3L0S10ENM7PzJN0gaUyaJs9LOsfdl1euV6g1Zpbpj8217j4vx/PUSfqJpMsyNPuZpPe7e2/uPcRQYmYLJZ2SQ9PrJL3P3TsznIt7DlmZ2ZmS/ppD002S3uXuf8lwrqsl/YfSf4F8h6S3uHt7vv3E8GBmR0paLKkhYffp7n5vmvZV8XeOERNkZGZHSbpFQVCyU9LnJJ0o6QxJPw2bHSDpDjPbLZZOohatkbSgwPd+RQN/OJ+U9HZJx4XPT4b7L5f0X8V0EDVvavj8kqTvSnqLgvvkBEn/LmldePw9kuZnORf3HHK1VkGw+2FJb1Zwv50k6WJJv5HUI2mipD+Y2RGpTmBm75f0BQWf0VYouPeOk3ShpHvCZudI+kW5fgjUtoQgo0HShhzfVhV/5xgxQUYJ3zp2S5rr7g9Fjn9C0tfDzS+6+9WV7SFqhZl9UcG3N4vdfb2ZzZC0Kjyc04iJmR0g6RkFf2wfU3BPtiUcHynpPknHKLhnD2Ykb3gysz8p+IB4q7v3pDg+UdIDCr5YkaRT3X1hinbcc8iJmdWnutcibS6UdFu4eZu7vzlyfLyklZLGKvgC52h335R4jfD954W70n4DjuHLzD4i6duSliq4Xz4THkp5v1TT3zlGTJCWmR2ngakQP48GJaFvSloSvv6wmTVWpHOoOe7+BXf/k7uvL+I0H9HAsPRViX84w2u0Sroq3GyQ9NEiroUa5u7nuvuv031QDD/sfSxh11vSnOoj4p5DDrIFJWGb30t6LtxMNdXwcgVBiSR9KjEoSbjGlQpGXiTpEwV1FkOWme0t6cvh5gckpZ2mmuAjqpK/cwQmyOTChNe/TNUgnGd4Xbg5TtLp5e0ShiszM0kXhJtL3f3hVO3C/X3/8F8Qvg9I5Z6E17OiB7nnUCY7wueWFMcuDJ+3S/pdqje7+4uS/hZunsE0akT8QNJoBTMR7svWuNr+zhGYIJO+ijW7JD2eoV3ijX9S+bqDYW6mBvIGsv2x7Ts+TdKMcnUINa854XWqb7u551BSZnagpCPDzaWRY00K5vRL0kOZCjJo4H5rVjC9BpCZvVXSuZK2SPp4jm+rqr9zBCbI5ODwebm7d2dol/jH9eC0rYDiHJLwemnaVoOPc08inVMTXi9JcZx7DkUzs5Fmtr+Z/buCD3Z9U2a+E2l6gKT68DX3G/JiZuMUFPqQUkwDzKCq/s41ZG+C4cjMWhRUDpGkFzO1dfdXzWyXpFGS9ip33zBsTU94nfGeVFAZpw/3JAYJq9Z8OmHXr1M0455DQcxsntJMgQ79j6SbIvu431CMr0uaoqCox8/zeF9V3XcEJkgncc7qzhza9wUmo8vTHSCve3JXwmvuSaTyUQ1Mm/mdu6earso9h1L7u6Qr3H1ximPcbyiImZ2ioHBCt6QPeH4ld6vqvmMqF9JJTMrLpaJDR/g8ogx9AaT87smOhNfck0hiZqcq+MZaCmr8fzBNU+45FOr3kmaHj761IG5TkF9ys5mdm+I93G/IW5ib9BNJJunb7v7PPE9RVfcdIyZIJ3E12aYc2vclkbZlbAUULp97MjGpmXsS/czsUAUfEBsU3FMXuXu6Bci451AQd98qaWvCrsWSfmVm75Z0raTbzewyd5+f0Ib7DYX4rKSDFKx788UC3l9V9x0jJkhnR8LrXIbrRoXPuUz7AgqRzz05KuE19yQkSWY2U9ICSbsrqML1tlSLKibgnkNJufv1ClaAr5P0/XBBxT7cb8iLmR2kgcUTr3L3XZnap1FV9x0jJkjJ3dvNbLOkCUpOjBrEzHbXwM26NlNboAiJSXkZ70klJ+VxT0JmNlXB2g9TJbmk97r77Vnexj2Hcrhd0lsV/Lv5Bg0kwXO/IV8fVTDKsVLSSDN7W4o2hyW8fq2ZTQlf/zEMZKrqviMwQSbPKliZdj8za8hQMvighNepSm4CpfBswuuD0rYafJx7cpgzs4mS/ipp33DXVe5+XYa39OGeQzlsTHi9T8Lr5xWM5NWL+w256Ztata+km3No/x8Jr2cqSGavqr9zTOVCJveHz6MkHZ2hXeJaAA+UrzsY5lZJeil8fWqmhpLmhs/rJK0uV4dQ/cxsrKS/aKBW/6fd/Qc5vp17DuUwLeF1/3SYcEHFR8PNE8Kk5nT67scOSY+VtnsYZqrq7xyBCTL5fcLrS1M1CNcCeE+4uVXSPeXtEoarsPxh39Sbg8zs+FTtwv193+rcnmfZRAwhZjZS0h2SXhPu+oq7fy3X93PPoUwuSnj9dOTY78PnMZLenOrNZjZd0pnh5v+5+45U7TD0ufs8d7dMDyUnxJ+ecGx1eI6q+jtHYIK03P1RSYvCzcvM7IQUzT6mgdU/v+vuXRXpHIar7yiY6iBJ15hZUrnCcPuacLNbg1dWxjARftt8m6STwl3fdffPF3Cq74h7Djkws3nh4sSZ2nxU0hvDzVUa+De2z88kbQtf/4+ZTYi8v17S/2pghfhvFNVpIPAdVcnfOXJMkM2HFUzPGiFpgZl9VcGoyAhJb5N0RdjueUnfjKWHqAlmdrKk/RJ2TUx4vV+4UnK/SBnNvn3Pm9k3FKzYfYykB8zsa5JWSJol6VOSjgqbf8Pdl5XsB0CtuVnSWeHruyX93MwOy9C+092fj+7knkMerpb0TTO7VcFU6BUKpmrtpmA9k3dqIFDuVLDQYk/iCdx9i5l9StKPFOSfPGJmX1EwsjJV0kcknR42v9nd7y3jz4Nhopr+zhkjzsjGzM6TdIOCoeVUnpd0jrsvr1yvUGvMbL6kS3JtHw5BpzpPnaSfSnpvhrf/XME/+r359BFDh5nl+4/bC+4+I825uOeQlZmtVnIyezovKqgK99cM5/qigkTllH8HJd0p6V/cvT3NcUCSZGZXS/pCuHl6umC2Wv7OMZULWbn7HyUdLunbCoKQVgX5JI8pjKIJSlAp7t7r7pdJOkfBvNiXFHz7+FK4/UZ3v5wPiCgV7jnk6PUKpjf/TtI/JK1XMO1lh4Jvnm9VkK95YKagRJLc/QuSTlZQSnitgvttg4Lqcu9w93MISlBK1fJ3jhETAAAAALFjxAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAqpSZXW1mbmZeBX2Z0dcXM5sXd3+GGzObl/D7n1GC8703PNfTZmYl6GJVMrOLwp/zeTNrjLs/ADIjMAGAHJhZvZltDz/kPJGlrZnZ5oQPku/N0v6ShLYfLG3Pq4+ZTQ+DrkVmttHMusyszcxeNLOFZvZdM3uLmY2Nu69DkZmNlvTVcPNL7h574JvIzBaE/y98twSnu1XSs5L2l3RVCc4HoIwITAAgB+7eI+nBcPMIMxuTofmhksYnbJ+S5fSJxxcW0L2aYWbvk/ScpC9IOlnSREkNklokTVPwu/g3Sb+R9OOYujnU/ZukPRR8YP9tzH1JYma7STo13Pxjsedz915JXwk3P21mo4o9J4DyITABgNz1BQ11kk7M0K4v0OiJbGdrv0nBh0VJkrtf7e7m7kNiqo2ZvV3STySNlNQu6YeSLpR0jKRjJV0g6cuSnoypi0OemY2Q9O/h5rerbbRE0uslNUnaLum+Ep3zFknrJE2S9P4SnRNAGRCYAEDuEkcz5mZo13fsN+HzLDObmqqhmU2WdEC4eX8VflAsCTOrl/StcHOHpDnufqW73+7uj7v7Y+7+B3f/T3d/jaRDJP0utg4PXe+SNEFSh6pstCR0Xvj8F3fvKsUJw9HOW8LND5kZn32AKsX/nACQu8UKvumXMo+C9B37raQVWdoPl2lccyRNCV//2N3/kamxuy9x91+Xv1vDzmXh8x3uvjXOjkSFAcMbw80/lfj0N4bPMyWdXuJzAygRAhMAyJG7d0h6NNw81syao23MbKaCXAlJuj98SAUEJtmqcpnZ6vD4/HD7QDP7abi/w8zWm9ltZnZ8tp8tTO6/0sweCZP8t5nZE2b28VQ/ZwH2Tni9vNCTpKoOFlZe+puZbQiT6Jea2X+b2bgcz3m6mV1rZivNrDX8+Z82s2+kG+kq9TnMbHcz+5+w723hz/I3M7sol+vn2Md9FASIUpAUnq7daQm/49PCYg6Xmdn9YVGH7Wb2qJm9O/K+JjP7gJk9bGZbzGyHmT1gZm/NsYvHK8g56pV0Z4p+HW1mP7egwtYuM2s3s7Vm9riZ/cDMzjdLXWHM3Z+QtCrcfHuO/QFQae7OgwcPHjxyfCjIgfDwMTfF8UvCY8+H25eH2/9Ic77Hw+PbJNVHjl3dd600710dHp8v6U2SdiX0LfHRLeniDD/TaAVBUar3etjHoxK25xXwe3tzwvu/U8Tvf0ZiPyT9PEO/10k6KMO5WiTdnOH9LmmnpPPKfI6Dw76me/8vwp+1b3tGgb+7SxLOsW+GdqcltHudpD9k6Nt3w/fsriAnJF27z+bQv/8O296f4thHFeRsZfo9u6TRGc7f99/pxXL8beDBg0fxD0ZMACA/iaMaqUZB+vbdH3k+zMx2T2wYViA6Itx80IO58IWYLekmSeslfUjBN88nKAhs2iXVS/qJmU1K8/4bEvr9qIJvlI+RdI6CPJnXqPgKWYkJ7e83s9cWeT5JulLSe5Xc5zdK6psCNlXSX8Lfc5Lwm/XfSnpbuOuPkt4t6SQFv7sPS1ojaZSk35rZMWU6xxhJfwn7KgW5EG8Mf5Z3SHpM0qXhz1qsvv/Gm919ZY7v+bKCvI8bFdwPRyv4XT8XHv83MztTQXB8ooKCBmeF7S6T9FLY7ktmdmiWa/XllyRV4zKzwyX9PwWzPFZJ+pikMxQEy3MlvU/B/b8ry/n7Rjunmdl+WdoCiEPckREPHjx41NJDwehCl4JvXv+c4vhz4bFLE/ZtDPedG2n7eg180/uZFOe6uu94mr6sTnj/Y5LGpGjzzoQ2H01x/JyE43dIakjR5j+V/K30vAJ/d3+MnOdRSV+UdLakiTmeY0bkHOn6/B8Jbb6e4vj7wmOdkt6Q5lq7S/qn0n+LX4pzfCPLPdCoIHBJ/JlnFPj7fzZ8/9+ytDstcr0Pp2gzRUHlLJe0QcH0qwtTtDtcAyMd381wzZkJ1zs0cuxLGhh52iPDOcZKqstwfG7CNdKOIPLgwSO+ByMmAJAHd9+pgW//TwyrTUkaXGEr4W0PhM/REZZSJr6/1923p9h/kwa+tU41wtP3TXyHpPe5e3eKNv+l4MN1sS5VUECgz7EKgp47JW00s+fM7Boze02O58vU569ooM+XmVlT34FwpONT4eb33P3PqU7u7q9K+kS4eZKZ7V/iczRpIBn9H5L+J8X7u8I2pahQNT183pDHex5x90ELHbr7K5JuCzcnSfq1u/8+Rbt/KHuelSSdGz6vcvdnIsf6iiY87+7r053A3bd5sG5JOok/974Z2gGICYEJAOSvL4jYTdKRCfv7ygSvd/dlCfvvjxzv0/dBrV3JH9jz9bSnqXLl7q6BQCrpw1gYVJ0Wbi5w95eUQvhh79oi+td3nk0KpjldIemJFE0OUDAV7XEzu96yL4aXa5/HK5iO1ucQSbPC19lK5iYGjCeU+BxHKxhRkaRrw/9Wg7j7i5IWZLlGRmEBg74pba/m8dZfZTj2VJ7tMgUDKadxhV4Onw8xs+MynCObLQmvp6RtBSA2BCYAkL9FCa9PSfE6cbQksf3RFixw1/dted+HrEfcvbOI/izNcrzvA1k012KWgsUOpeyB0aNZjufE3bvc/afufrSC6mVvU5A/sEjJowLvkvSHxBGpFPLp8+yE14m5Hg8lVKAa9FAwfajPlBKfI7FP5f79j094nU9g8nyGY1vzbDco10fKabX3mxXcG82SHjCzP4bVvw5LV4UrjcSfmxXggSpEYAIA+VukYJ66lFtg8oSkVgX5An2le49VUNFJKn4aV2uW433TW6If8hM/rGab3pN2Ck2h3P0ld7/F3T/h7nMVfGj/bw3097XKXNo1nz4n/qyT8+5sYGTC61Kco5K///aE1yPyeF+meytx2lQu7dJ95uhb7X2HUqz27u5LFdwHr0pqUDDt64eSnpa0IRxdyzRNrE/iz12SxRsBlFZD3B0AgFrj7lvM7BlJhykMRsLqSn0Vtu6PtO8ys0cVTJuaK+keVd/CiimnEVW0A+5bJH02/Bb80+HuixRUDUv5lgIvlRignaegiEAuEoOHUpwjUbl//1sVlI1uUHJAVA368kvSrvbu7rea2d8kXawgkDlFQW7LRAWja+8ys2sV5FqlyzNJ/Lm3lqLjAEqLwAQACrNQQWAyycwOUlBVqE7BtJ0nU7S/X0Fg0heQ9OWbdEl6qKw9TS9xasseWdpmO15KP9VAYJKprGs+fU7ML9ic8HqruxeS2F+Kc0R//5mmQxX1+3d3N7NNCkalds/WvlIsebX3VNO4+rn7Nkk/CR8ys4MlXSDpKgXlli9R8P/eoGT9UOLPvabwXgMoF6ZyAUBhonkmfQHHw556PZK+UZTjw0TkE8PtJ9w92/oL5bJCUlv4+tgsbbMdL6XEhPZMIwn59DkxcEgMHE/KtVMRpTjH0wmvK/H777veARlbVdbxCkY+Uq72nom7L3H3/wnP0ff/UKZV5hN/7mjlLwBVgMAEAAqTOP1qrgZGQKL5JX0eUrCewygFq3iPTXGeigrL7N4bbp5lZnumahd+q31JMdfKM0k5MbE800KAufb5VSVXAXtC0ovh6yvMrEX5K8U5HtfAqMm70/2OzGyagkULi9UXTB+YatHJmPRV43oorNqWN3dfq4HRpokZmvYFd11KXRUOQMwITACgAGGZ2hXh5uka+DC9KE377Rr4xvqTCYfizi/5YfjcLOnHaapgfUbJFaQKcbaZ/drMjsrUyMzGS/pewq7bMzTP1OdPa6DPv3D3jr4DYQ7CV8PNfSVdF45ipevTGDP7UOK+Ep2jQ9Ivw80jNbDeSeL7GhRMbWuKHitA371Zp+TgL059gcmf0jUwswvNbFyG43tJOijcXJXhWn1V8B4K1yMCUGXIMQGAwi1SUHJ3WrjdLenhDO3vV/ABtG89h16lH2GpCHf/o5n9UcEHxPMUlGP9tqRlCipPzVOQcPyYivswW6cgkf0iM3tKwYrtixWsUdEZXutkBWuc9FW8elyZ1095LE2fL1FQhlgKRjW+nOK9P5L0OklvCvv1GjP7sYKyvNskjVHwYfc0SecrqGr1/TKc40sKph9Nl/Q1MztS0nUKkuQPkPTvCr7pL/b3L0kPStqoYOrUGQqKMMTGzGZIOjTczJRf8hFJN5rZHZLulrREwe93dwW/k6s0UHHrR2mutZsGRkxuS9UGQPwITACgcAsVfHDv86S7Zyqber+CBQT7PO3uW8vQr3y9U9JdCnIl5mjwYnlPSnq/gkChUK8qyAMYpaB62RGZm+uvkt6eZlX3Pj9QsP7FPKVe4O9lSa8Pk6aThMngFytIlP6AggDz6xmuNaiaVonOsc3M3iDpbwoS09+uwSWS5ysoo/tLFcHdO83sOkkfC6/x+WLOVwJ9oyWpVnuPGqkwsE1zvFfSF1KtPh96s4Ly3N3KvBgkgBgxlQsAChedhpVt9CM6zSvuaVySJHffoeBb/asUjGLsVLCmxN8VTOM6UclVrQq5xgMKvqk/X9K3FHzQfklSh4IPi1sUzPv/saTT3f0sd9+c5nSJ571U0jsU5MpsDs/3vIIA4VB3fzbDe7vc/UoFQdI1CqbabVOQC7RNwc//c0lvkXRwGc/xjIKRg68rGPXpkLRJwYjGO8KfsVR+Gj7va2bHZ2xZfplWe0/0dgUjaTcp+H2+ouCe2akgif2Hko5y9//KcI53hM+3ufsrhXYYQHmZe+yl6wEAyEk4/acvj+BSd58fX29qk5ndKelsST9z9/fF1IfdFARfTZLOcve/lvFa+yjIB6uXdIK7Z5puCSBGjJgAADC8fEbB1Kf3hInjcThLGVZ7L7HPKghK/kxQAlQ3AhMAAIYRd39KwbSoJgVBShx2SPqipKvcvbNcFwkDr3kKptZ9MnNrAHEj+R0AgOHnswqmN7WbmXmF53W7+wJJCypwqb0k/bekle7+dLbGAOJFjgkAoGaQYwIAQxdTuQAAAADEjhETAAAAALFjxAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7AhMAAAAAMSOwAQAAABA7P4/L5mDbNViQ5IAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyYAAAI5CAYAAABUwC7IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AACVS0lEQVR4nOzdeVxUVf8H8M8ww46AgKiICy6Iey64IWhlmntmaWVuqdlm2lNWTz2Z9lSPtpdtmhouZaWVlUtZJouIC2qmuaKgiCibiOzMzP39wY8rc4eB2e8MfN6vl69m7r1zzoGu43znnO/3KARBEEBERERERCQjF7kHQERERERExMCEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkp5J7AOQ8ysrKcPz4cQBAs2bNoFLx9iEiIiJyJmq1Gjk5OQCAHj16wMPDQ+YR3cJPlmS048ePo3///nIPg4iIiIis4ODBg4iMjJR7GCIu5SIiIiIiItlxxoSM1qxZM/FxQkICwsLCZBwNNQalpaVISEgAAMTExMDT01PmEVFDx3uO7I33HNlbWloaYmJiAOh+tnMEDEzIaDVzSlq0aIHQ0FAZR0ONQWlpKYKCggAAoaGh/AebbI73HNkb7zmyt9LSUvGxo+ULcykXERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJrtEGJtnZ2di2bRsWL16MUaNGISgoCAqFAgqFAjNnzjSqjdjYWPE19f2JjY21yrhzc3OxePFi9OzZE76+vvD19UXPnj2xePFi5OXlWaUPIiIiIiJ7U8k9ALk0b95c7iGY7MCBA7jnnntw9epVnePHjx/H8ePHsXr1amzduhX9+/eXaYREREREROZptIFJTW3atEFERAR27dpldhu//fYbQkJCDJ4PDQ01u20AyMjIwLhx45CTkwOVSoV//etfGDt2LABg27ZteO+995CVlYVx48bh8OHDFvdHRERERGRPjTYwWbx4MSIjIxEZGYnmzZsjPT0dYWFhZrcXHh6Odu3aWW+AEi+//DJycnIAAF9//TXuv/9+8Vx0dDT69u2LKVOmIDs7G//5z3+stnSMiIiIiMgeGm2OydKlSzF27FinWNJ19epVfPXVVwCAkSNH6gQl1SZPnoyRI0cCADZs2KC33IuIiIiIyJE12sDEmfz888/QarUAgFmzZhm8rjppX6vV4ueff7bH0IiIiIiIrIKBiRPYu3ev+Hjo0KEGr6t5LikpyaZjIiIiIiKypkabY2Jts2bNwpkzZ5CbmwtfX1907NgRw4cPx+OPP45WrVpZ1PbJkycBAH5+fmjRooXB61q2bAlfX18UFhbi1KlTFvVJ1BCcu3YT+y/kQa0V5B4KOYnKykqczlIAAK4dyICrq6vMI3Iuvh6uuD0iGAHebnIPhYicEAMTK4mLixMf5+XlIS8vDwcOHMC7776LDz74APPmzTO77cuXLwMwrrJX69at8c8//yAjI8PsfgzJysoSH5eXl6O0tNTkPohMUVZWVutjYyScy8NjXx8DQxIynbLqP+nn5B2Gk2rl74HvH42EnyeDOmNY8j5HZI7y8nK5h2AQAxMLtW/fHvfeey8GDRqE1q1bAwAuXLiA77//Hlu2bEFZWRkee+wxKBQKPProo2b1cfPmTQCAj49Pvdd6e3sDAIqKikzup3r8xjhw4ADOnz9vch9E5kpISDD6WkEA/ndMCQEKG46IiGqTWVCGlVvjcFsgvxYwlSnvc0Tmys3NlXsIBjEwscDEiRMxY8YMKBS6H34iIyMxZcoUbNu2Dffeey8qKyvxzDPPYPz48XUuxTKk+hsUN7f6p8bd3d0BgLMZ1KidK1TgWimDEiK5lKjlHgEROSMGJhbw8/Or8/zYsWOxePFivPLKKygpKcGaNWvw8ssvm9yPh4cHSkpKUFFRUe+11dNznp6eJvdT3/KvrKwscVf5AQMGoEOHDib3QWSKsrIy8RvEmJgYeHh4GPW6X749DiBHfN7UyxWdm9c/40ik1WpRUHAdAODv3xQuLqwRY4yTWTdRWHYrGgmP6IIRkdzo1xjmvs8RmcuRV7wwMLGxRx99FIsXL4YgCIiPjzcrMGnSpAlKSkqMWp5VXFwMwLhlX1Km7Bbv7u5uVvBDZC4PDw+j7rnMglL8eSZH59jC4eGYMbidjUZGDUlpaSl27doFABgxoi/f54z00Bf7se98nvhc4aLi784Mxr7PEVmienWNI+JXQTYWHByMwMBAAEBmZqZZbVQHDPUlpwO3Zj1MyRchaki+PnARNYtwebspcW8fyyrjEVHdVErdjxPq/997i4jIFAxM7ECag2Kqrl27AgBu3LhR547uWVlZKCwsBAB06dLFoj6JnFFZpQabDuouSby3TyiaeLA6EJEtqVx0/52r1DDxnYhMx8DExnJycsTqByEhIWa1MWTIEPFxfHy8wetqnouKijKrLyJntuN4FvKLdXOxpg9qK9NoiBoPaWCi4d5BRGQGBiY2tmrVKghC1Rt0Xbu212X8+PFiAuaXX35p8LrY2FgAgIuLC8aPH29WX0TObH3yRZ3ngzsEolPzJjKNhqjxcJUu5dJwKRcRmY6BiZnS09Nx9OjROq/Ztm0bXnvtNQBVVbJmzZpV63XDhg2DQqGAQqFAenq63vkWLVpg6tSpAIDffvsNW7Zs0btm8+bN+O233wAA06ZNM6ssMZEzO5ZRgL8yCnSOcbaEyD5USslSLs6YEJEZGm1Vrr179yI1NVV8XnOzmdTUVHH2odrMmTN1nqenp+P222/HoEGDMG7cOPTq1QvBwcEAqjZY3LJlC7Zs2SLOlrzzzjto1cr8BNw33ngDv/76K3JycvDggw8iJSUFY8eOBVAVAL377rsAgGbNmuH11183ux8iZyWdLWnp54HhXZrLNBqixkXlwhkTIrJcow1MVq9ejXXr1tV6LikpCUlJSTrHpIFJteTkZCQnJxvsx8vLC++//77Zu75Xa926NX755Rfcc889uHr1KpYvX47ly5frXNOiRQts3brVpLK/RA1BfnEFfvn7is6xhwe21asURES24SqdMWHyOxGZodEGJpbq27cvNm7ciOTkZKSkpCArKwu5ublQq9Vo2rQpunXrhjvvvBNz5swRZ1IsNWDAABw/fhwffvghtm7dKi77CgsLw4QJE7Bw4UKxNDFRY/LtoQxUqG99Q+umdMGUSJbMJrIX6VIulgsmInM02sAkNjZWb7mWKZo0aYKpU6eKuR+WiIuLM/raoKAg/Pe//8V///tfi/slagg0WgEb9+su4xrTsyWCfBx3AymihkZ/KRdnTIjIdFznQERO7c/T2cgsKNU5xqR3IvuSlgtWM/mdiMzAwISInNr65HSd5z1D/XBba39ZxkLUWOnt/M7kdyIyAwMTInJaqdlFSDyXq3Ns2sC2UCgUBl5BRLagl/zOGRMiMgMDEyJyWtLckqZerhjXK0Sm0RA1XiwXTETWwMCEiJxSUbka3x++rHNsSmQbeLgqZRoRUeOlV5WLye9EZAYGJkTklH45dgU3y9XicxcFMHVAGxlHRNR4cSkXEVkDAxMickqH0vN1nt8REYzWAV4yjYaocVNKlnJpuI8JEZmBgQkROaW03GKd54M7BMk0EiLizu9EZA0MTIjI6QiCgAs5uoFJWDNvmUZDREx+JyJrYGBCRE7nekklbpRW6hxrH8TAhEguesnvzDEhIjMwMCEip5OWW6Tz3FWpQCt/T5lGQ0RcykVE1sDAhIicjnQZV9tAb72dp4nIfriUi4isgf+SE5HTuSBJfA/jMi4iWalcuJSLiCzHwISInE6aZMaE+SVE8pLOWKpZLpiIzMDAhIicjrRUcHtW5CKSFXd+JyJrYGBCRE5FoxWQliddyuUj02iICABcJTkmTH4nInMwMCEip3KloBQVat1lIswxIZKXfrlgLuUiItMxMCEipyJdxtXEXYUgHzeZRkNEgH65YC7lIiJzMDAhIqdSW36JQqEwcDUR2YO0XHAlywUTkRkYmBCRU7mQo7u5IpdxEclPKSkXrGG5YCIyAwMTInIq+nuYMPGdSG6ueuWCBQgCgxMiMg0DEyJyKtKlXGEsFUwkO2nyO8BNFonIdAxMiMhplFVqkFlQqnOMmysSyU9aLhhgAjwRmY6BCRE5jYt5JZCuDmGOCZH8apsxqWTJYCIyEQMTInIaabm6ie/Nfd3h7a6SaTREVK3WpVycMSEiEzEwISKnoZ/4ztkSIkcgLRcMAGqWDCYiEzEwISKnkZYj3cOEFbmIHAGT34nIGhiYEJHTkM6YMPGdyDEw+Z2IrIGBCRE5Db1SwQxMiBwCk9+JyBoYmBCRUygorUR+cYXOMQYmRI5B5cLkdyKyHAMTInIK6XklOs9VLgq0DvCSaTREVJNCodALTiqZ/E5EJmJgQkROQRqYtAnwgquSb2FEjkK6nIvJ70RkKv6rTkROQRqYcBkXkWORlgzWMMeEiEzEwISInMLFvFKd5+2bMTAhciTSGZNK5pgQkYkYmBCRU0jTmzHhHiZEjkQ6Y8LkdyIyFQMTInJ4WgG4yKVcRA7NVTpjwqVcRGQiBiZE5PBuVABlat0POVzKReRY9JLfOWNCRCZiYEJEDi+7TPcDj7ebEsFN3GUaDRHVRrr7u5rlgonIRAxMiMjhZevmvSOsmTcUCv0N3YhIPiwXTESWYmBCRA4vp1T3Aw8T34kcj1I6Y8IcEyIyEQMTInJ42WW6z5n4TuR49JLfmWNCRCZiYEJEDk86Y9KBie9EDkflwuR3IrIMAxMicmhqLZBXrnuMMyZEjkel5FIuIrIMAxMicmi5ZYAA3W9i2zEwIXI4XMpFRJZiYEJEDi1HUio4yMcdvh6uMo2GiAzR3/mdMyZEZBoGJkTk0KSlgrmxIpFj0ssxYblgIjIRAxMicmjSzRXbcxkXkUPizu9EZKlGG5hkZ2dj27ZtWLx4MUaNGoWgoCAoFAooFArMnDnTqDZKSkrwww8/4PHHH0dkZCSaNm0KV1dXBAYGYtCgQViyZAmuXr1qlfG2a9dOHF9df9q1a2eV/ogchf4eJgxMiBwRk9+JyFIquQcgl+bNm1v0+r///htRUVEoKirSO5efn4/9+/dj//79eP/997Fq1SpMmTLFov6IGivuYULkHFxdmPxORJZptIFJTW3atEFERAR27dpl9GsKCwvFoCQqKgpjx45Fv379EBgYiJycHPzwww/44osvUFhYiKlTp8LX1xejRo2yeKwTJkzA66+/bvC8m5ubxX0QOYqbZWrcrJQs5WrGXd+JHJHejAmT34nIRI02MFm8eDEiIyMRGRmJ5s2bIz09HWFhYUa/3sXFBZMnT8arr76Krl276p0fMWIERo0ahYkTJ0Kj0WD+/Pk4d+4cFApFLa0Zz9/fH927d7eoDSJnkZ5XovPcRQG0CfCSaTREVBdpuWAmvxORqRptYLJ06VKLXj948GAMHjy4zmsmTJiAe++9F99//z3Onz+Po0ePok+fPhb1S9SYSAOT1gFecFM12tQ4IoemVy6YOSZEZCL+C29jt99+u/j4/PnzMo6EyPlIAxPmlxA5LqW0XDBzTIjIRAxMbKy8vFx8rFQqZRwJkfNJkwQm7YOYX0LkqLjzOxFZioGJjcXHx4uPu3TpYnF7CQkJuO2229CkSRN4eXkhLCwMU6ZMwdatWyEI/EeAGha9GRNurkjksFgumIgs1WhzTOzh2LFj2L59OwCgR48eVglM0tLSdJ6np6cjPT0d3333HaKiovDtt9+iVatWZrV9+fLlOs9nZWWJj8vLy1FaWlrH1USWEQRBLzBp1UTF+45sqqysrNbHZAStRudpeYWaf1+NwHuO7K3mah5Hw8DERsrLyzFnzhxoNFVv1G+88YZF7bm5uWH8+PEYMWIEunfvDj8/PxQUFCA5ORmfffYZMjIykJSUhLvuugvJycnw8/MzuY/WrVsbfe2BAweYM0M2daMCKK3UfYvK+CcFN1NlGhA1OgkJCXIPwalcvKwAcGvJcmbWVezadUW+ATkh3nNkD7m5uXIPwSAGJjby1FNPISUlBQAwY8YMjBs3zqL2Dh48CH9/f73jw4YNw1NPPYX77rsPu3btwqlTp7B06VK89957FvVHJLdsyY7vbi4CfLlND5HDkuS+gykmRGQqBiY28L///Q+rV68GAERGRuKTTz6xuM3agpJqTZo0wXfffYf27dsjPz8fq1atwrJly0zebDEjI6PO81lZWejfvz8AYMCAAejQoYNJ7ROZ4npKJnDyjPi8XZA37h45UMYRUWNQVlYmfmsdExMDDw8PmUfkPDL3XcK2S7emNAMCgzBixG3yDchJ8J4je3PkFS8MTKxs5cqVeOmllwAAERER2LFjB7y9bZ+w6+fnhwceeACffvopiouLkZKSUu8+K1KhoaFGX+vu7g5PT09Th0lktIsFumtg2zfz4T1HduXh4cF7zgQe7rpfhmmh4O/PRLznyB7c3d3lHoJBrMplRZs2bcITTzwBAGjbti1+//13BAUF2a3/mjvQZ2Zm2q1fIltIzS7Sed6Re5gQOTS9nd+5louITMTAxEp+/vlnTJ8+HVqtFi1btsTu3btNmoGwBoVCUf9FRE5CGpi0b+Yl00iIyBjScsGVLBdMRCZiYGIFu3fvxuTJk6FWqxEYGIjff/9dlvyLkydPio9DQkLs3j+Rtdwsq0TWDd2ymR24hwmRQ1Nx53cishADEwvt27cPEyZMQHl5Ofz8/PDbb7+hW7dudh/HjRs38M033wAAvLy80K9fP7uPgchazucU6zxXQEC7AM6YEDkyV+mMiYYzJkRkGgYmFvjrr78wZswYFBcXw9vbG9u3b0ffvn1NbmfYsGFQKBRQKBRIT0/XO//rr7/WuUlVUVERJk+ejLy8PADA7NmzHTqxiag+567d1HnezANwU/HtisiRqSQ5JhotZ0yIyDSNtirX3r17kZp6q6xhzc1mUlNTERsbq3P9zJkzdZ6fP38eI0eOREFBAQDg9ddfh5+fH06cOGGwz+DgYAQHB5s81mXLlmHq1Km49957MWTIEHTo0AE+Pj64ceMG9u3bh88//xyXLl0CAHTu3BlLliwxuQ8iR5Kao5tf0tyTH3CIHJ3eUi4GJkRkokYbmKxevRrr1q2r9VxSUhKSkpJ0jkkDk8TERGRnZ4vPn3nmmXr7fPXVV80OGvLz87F69Wpxf5TaDB06FF999RUCAgLM6oPIUaRekwQmXMVF5PBULlzKRUSWabSBiTN55513sHv3biQnJ+PMmTPIzc1FQUEBvLy8EBISggEDBuDBBx/EiBEjWJmLGgTpjEkLzpgQOTzpUi4mvxORqRptYBIbG6u3XMsUM2fO1JtFMVdcXFyd5/v168dkdmo0yio1uJRfonOMS7mIHJ80+V3NcsFEZCJmkxKRQ7mQUwxBEoc050bIRA5PmmNSyRkTIjIRAxMicijnsnUrcjV1E+CulGkwRGQ06QaLauaYEJGJGJgQkUM5L9nxvYUXv3Ulcgau0hwTVuUiIhMxMCEih3IuW1oqWKaBEJFJlCwXTEQWYmBCRA4lVTpjwsR3IqcgTX7XaAUI0oQxIqI6MDAhIodRqdEiLbdY5xgrchE5B2nyO8AEeCIyDQMTInIYF/NK9JZ/cCkXkXOQzpgALBlMRKZhYEJEDiNVUpEryNsN3q4yDYaITCLdYBHgjAkRmYaBCRE5DGl+SYdmXjKNhIhMpXLR/0ihYQI8EZmAgQkROQxpRa72Qd4yjYSITFVbjgn3MiEiUzAwISKHoT9jwsCEyFnUupSLMyZEZAIGJkTkELRaAedzuJSLyFnVmvzOGRMiMgEDEyJyCJkFpSir1P0QwxkTIufBcsFEZCkGJkTkEM5JKnL5eqgQ5O0m02iIyFTSnd8BlgsmItMwMCEihyDNL+nUvAkUCv0POkTkmBQKBVwleSZqzpgQkQkYmBCRQzh3TTcw6djMR6aREJG5pCWDpRumEhHVhYEJETmE1BzpjAkDEyJnI80zYfI7EZmCgQkRyU4QBKRKZkw6BDMwIXI20pLBTH4nIlMwMCEi2WXfLMfNcrXOMS7lInI+KqV0KRdnTIjIeAxMiEh20sR3T1clWvl7yjQaIjKXq95SLs6YEJHxGJgQkezOXdMtFdwh2BsutZQeJSLHJp0xqWSOCRGZgIEJEclOL/E9uIlMIyEiS0hzTDSsykVEJmBgQkSy0ysVzMR3IqfkKikXXMnAhIhMwMCEiGR3PoeBCVFDIN39neWCicgUDEyISFbXiyuQW1Shc4yBCZFz4s7vRGQJBiZEJCtpfomrUoG2AV4yjYaILKGX/M5ywURkAgYmRCQraX5JWJC33ocbInIO+ju/c8aEiIzHf/2JSFbSPUxYkYvIebmyXDARWYCBCRHJ6ly2dA8T5pcQOSuWCyYiSzAwISJZndebMWFgQuSs9JZyMTAhIhMwMCEi2RSVq3HlRpnOMVbkInJeKuk+JlzKRUQmYGBCRLKRzpa4KKqS34nIOUmXcjH5nYhMobJ3hzk5Obhw4QKuXr2K4uJiuLq6wt/fH23atEHHjh2hVCrtPSQiksk5SWDSJsALHq58DyByVnrJ7ywXTEQmsHlgUlxcjJ9++gk7d+5EfHw8MjMzDV7r7u6O3r17Y8SIEZg4cSJ69uxp6+ERkYykFbk6siIXkVNjuWAisoTNApOjR49ixYoV2Lx5M0pKSgAAglD3G1RZWRmSk5Oxf/9+vPbaa+jWrRuefPJJTJs2DV5e3HCNqKFJlVTkYn4JkXOT7kHEqlxEZAqrByZHjx7FK6+8gp07dwK4FYy0aNEC/fv3R9++fREcHIyAgAA0bdoUpaWlyM/Px/Xr13H27FkcOnQIf//9NyorK3HixAk88cQTeOWVV/D8889j/vz5cHd3t/aQiUgm+nuYMDAhcmaukhwTJr8TkSmsGpjMmjULGzZsgPb/15T26dMHU6dOxaRJk9CmTRuj26moqEBCQgK++uor/Pjjj8jNzcULL7yATz/9FOvXr8eQIUOsOWwikkFZpQaX8kt0jnHGhMi5KbmUi4gsYNWqXOvWrYNKpcLcuXNx+vRppKSk4JlnnjEpKAEANzc3DB8+HF9++SWuXbuG9evXo3PnzkhPT8eff/5pzSETkUzScoshXeXBzRWJnBuT34nIEladMXniiSfwwgsvoHXr1lZr093dHQ8//DCmTp2KzZs3Q6PRWK1tIpLP2Wu6+SUhfh7wcbd7oUAisiImvxORJaz6KeDjjz+2ZnM6FAoFJk+ebLP2ici+TmXpBiadW7AiF5Gzkya/qzljQkQm4AaLRCSL01cLdZ5HtPSVaSREZC2uLtLkd86YEJHxGJgQkSxOS2ZMIjhjQuT0WC6YiCxh9QXdISEhiImJQXR0NGJiYtCjRw9rd0FETq6gpAJXC8t0jnXhjAmR05PmmLBcMBGZwuqBydWrV7F582Zs3rwZAODv748hQ4YgJiYGMTEx6Nu3L1xcOFFD1Jidvqo7W+KmdEFYkLdMoyEia1EpmfxOROazemDStm1bXLx4UXx+/fp1bNu2Ddu2bQMAeHt7Y9CgQeKsysCBA+Hm5mbtYRCRAzudpZtf0jHYR6/MKBE5Hya/E5ElrB6YpKWlITMzE4mJieKff/75R9wBvqioCH/88Qf++OMPAFV7lkRGRoozKlFRUfD25jenRA2ZdMYkoiXzS4gaAia/E5ElbLJpQKtWrfDAAw/ggQceAFA1a5KUlCQGKocPH0ZlZSUAoLy8HElJSUhKSsL//vc/KJVK3HbbbWKgEh0djaZNm9pimEQkk1OSwKRLC+aXEDUEnDEhIkvYZe1E06ZNMXbsWCxfvhz79u3DjRs38Oeff2Lp0qUYPnw4vLy8IAgCBEGAWq1GSkoK3n//fUycOBHBwcE2GVN2dja2bduGxYsXY9SoUQgKCoJCoYBCocDMmTNNbm/nzp2YOHEiQkND4e7ujtDQUEycOBE7d+606rhLSkrw1ltvITIyEgEBAfD29kZERASeffZZnSV0RI5KoxVwljMmRA2SK3NMiMgCsmyz7OHhgWHDhmHYsGEAAI1GgyNHjogzKnv37kVeXh4AQGujb1uaN29ulXa0Wi0effRRrFmzRud4ZmYmMjMzsXXrVsyZMwcrV660OOk/NTUVo0ePxrlz53SOnzlzBmfOnMHq1avx1VdfYezYsRb1Q2RLl/JLUFqp0TkWwRkTogZB5SKdMWFgQkTGc4hsU61Wi8rKSlRWVqKiogJqtRoKhaL+F1pJmzZtMGLECLNe+/LLL4tBSe/evbFp0yYcPHgQmzZtQu/evQEAq1evxn/+8x+Lxnjz5k2MGTNGDErmzp2L3bt3Y9++fXjjjTfg4+ODwsJCTJkyBX/99ZdFfRHZkjTxPcjHDc2auMs0GiKyJqWLdMaES7mIyHiyzJgUFxdj37594gzJwYMHUVZWtadBdZI8AERERCA6OtomY1i8eDEiIyMRGRmJ5s2bIz09HWFhYSa1cfbsWbzzzjsAgH79+iEhIQGenp4AgMjISIwfPx5Dhw5FSkoK3n77bTzyyCPo2LGjWeN9++23cfbsWQDAW2+9hUWLFonnBg0ahGHDhmHo0KEoKSnBwoULERcXZ1Y/RLYmzS/hbAlRwyFdysXkdyIyhV0Ck7y8PJ0qXX/99Rc0mqqlHNWBiJubG/r06YMhQ4ZgyJAhiIqKQmBgoM3GtHTpUovb+OCDD6BWqwEAK1asEIOSal5eXlixYgUGDRoEtVqN999/H5988onJ/VRWVuKjjz4CAHTp0gXPPvus3jWDBw/G7NmzsXLlSsTHx+PQoUOIjIw046cisi3pjAl3fCdqOJj8TkSWsElgkpGRgcTERCQkJCAxMRGnT58Wz1UHIr6+vhg8eLAYiPTv3x8eHh62GI5NCIKAn376CUDVzM7AgQNrvW7gwIHo3Lkzzpw5g59++gkff/yxycvU9uzZgxs3bgAAZsyYYTBXZebMmVi5ciUA4Mcff2RgQg5Jv1QwZ0yIGgppuWAmvxORKawemLRr1w4ZGRkAdJdltWrVSgxChgwZgp49e9o1j8Ta0tLScOXKFQDA0KFD67x26NChOHPmDDIzM81aMrZ3716dtgzp168fvLy8UFJSgqSkJJP6ILKHonI1LuWX6BzjjAlRwyGdMalkjgkRmcDqgcmlS5eqGlapcN9992Hs2LGIiopC27Ztrd2VrE6ePCk+joiIqPPamudPnTplcmBibF8qlQodO3bE33//jVOnTpnUB5E9nJHMlihdFOgY7CPTaIjI2lSSHBMNq3IRkQlsspRLoVBAo9Hgu+++wz///IPo6GhER0cjKioKoaGhtujS7i5fviw+ru9nat26tfi4ejbJnL68vb3h7+9fb19///03cnJyUF5eDnd346sd1fyZapOVlSU+Li8vR2lpqdFtEwHA8Ut5Os/bBXpBUFegVF379dVFMaSPiWyF95xltJUVOs8rNQL/ragH7zmyt/LycrmHYJDVA5P3338fe/fuxd69e3Ht2jUcP34cJ06cwGeffQagqjRv9XKu6OhodO3a1dpDsIubN2998+vjU/c3vt7e3uLjoqIis/uqr5/a+jIlMKkZQNXnwIEDOH/+vNHXEwHAHxdcULNKuZ/2Jnbt2mXUaxMSEmw0KqLa8Z4zXWYxUPOjRaVGY/TfceI9R/aRm5sr9xAMsnpgsmDBAixYsABAVTnd6kpcCQkJSE9Px8WLF3Hx4kV8/fXXAKp2hR88eDCio6MxZMgQ9OvXD66urtYeltXV/FbDzc2tzmtrBgfmfHNU3Vd9/VijLyJbulKiu8wjxJvLPIgaEslKLghQQCsALs6bUkpEdmTTcsHh4eEIDw/H7NmzAVTthl4zUDl58iTy8/Oxbds2bN++HUDVB+v+/fuLsyqDBw+Gr6/jVe2pWUGsoqKijit1p8ykJYVN6au+fiztq75lZllZWejfvz8AYMCAAejQoYNJ7VPjJggCXj6SAODWru9jonpjWHiQwdeUlZWJ3yDGxMQ4VeU+ck685yyTnleC/x3br3PsjjuHw03lEPs5OyTec2Rvjrzixa4bLLZq1QoPPPAAHnjgAQDA9evXsXfvXiQkJCAhIQFHjx4V/4ImJiYCAJRKpVEfyO2tSZNblYTqW55VXFwsPjZmOZahvoxZBmZJX6bk/7i7u5sVZFHjdfl6CYrKNTrHerUNMvo+8vDw4D1HdsV7znQ+XvqzoCo3d3i6y7Kfs9PhPUf2YMoyf3uT9SuMpk2bYty4cXj77bdx4MABFBQU4PPPP0f79u0hCAIEQRA3YnQ0NT/E15c0XnMmwpQ8DmlfxcXFKCgoMKqvZs2aOfSNR43P6SzdilxNPFRo6cdvBokaElel/scKNStzEZGRZP8K459//hFnSBITE8W9QRQKhc4+KI6mZtJ+zQ0ka1PzfJcuXczq6/vvvxfbMrSZo1qtFqfnzOmHyJbOXNMNTLq08HXqvYyISJ+0XDAAqLmXCREZya6BiUajweHDh8Uck6SkJFy/fl08Lw1E2rRpg5iYGHsO0WhhYWEICQnBlStXEB8fX+e11WtHW7VqhXbt2pnc15AhQ8TH8fHxBgOTlJQUcSlXVFSUyf0Q2dKprEKd5xEtubEiUUOjqiXLnTMmRGQsmwYmZWVlSE5OFgORAwcOoKTk1q7P0kCkc+fOiImJQUxMDKKjo9GmTRtbDs8iCoUCEyZMwGeffYbTp09j//79tQYM+/fvF2dMJkyYYNY3xMOGDYOfnx9u3LiBdevW4fnnn6+1ndjYWPHxxIkTTe6HyJZOSzZXjGjheEUtiMgy0p3fAe7+TkTGs3qOybZt2/DCCy9g8ODB8Pf3x/Dhw7F06VLs2bMHxcXFYu6IQqHAbbfdhqeffhpbtmzBtWvXcOrUKaxcuRJTp0516KCk2sKFC6FUKgEA8+fP1yvPW1paivnz5wOo2pV94cKFtbYzc+ZMKBQKKBQKxMXF6Z13c3PD008/DaBq5/h33nlH75rk5GSsWbMGADB06FBERkaa+2MRWV1ZpQYXcnSLN3DGhKjhqXXGRMMZEyIyjtVnTMaPHy9+m19zRsTNzQ39+vVDdHQ0YmJiEBUVJWsZ4L179yI1NVV8XnOzmdTUVJ3ZB6AqeJAKDw/HokWLsGzZMqSkpCAqKgovvPACOnTogPPnz2P58uU4evQoAGDRokXo1KmT2eNdtGgRvv32W5w9exbPP/88UlNT8cADD8DT0xN79uzBm2++CbVaDU9PT3zwwQdm90NkC6nZRZCu5ujcnIEJUUNTe/I7Z0yIyDg2WcolCAK8vLwwaNAgMRAZOHCgQ9XmXr16NdatW1fruaSkJCQlJekcqy0wAYA33ngD2dnZWLt2LY4ePSqWQq5p9uzZeP311y0ab5MmTbB9+3aMHj0a586dw6pVq7Bq1Sqda3x9ffHVV1/htttus6gvImuT5pe0DfSCN8uHEjU4ShcFFAqg5krtSs6YEJGRrP7J4K233kJ0dDT69u0Llarhf/BwcXHBmjVrMGnSJKxatQqHDh1Cbm4ugoKCEBkZiXnz5mHUqFFW6atjx444evQoPvnkE2zevBmpqamoqKhA69atMXr0aCxYsABt27a1Sl9E1qSfX8LZEqKGytXFBRU18ko0TH4nIiNZPXJ47rnnrN2kTcTGxuot17LE6NGjMXr0aJuPxdvbG88//zyef/55s/oiksPpq5KKXEx8J2qwVEoFKmpsQcbkdyIylqwbLBJRwycIAk5JNlfswsR3ogZLKUmAZ7lgIjIWAxMisqmconLkF1foHOOMCVHDJU2A54wJERnL6ku57rjjDqu2p1AosHv3bqu2SUT2c1oyW+LpqkSbAC+ZRkNEtiYtGcxywURkLKsHJnFxcTrlgs3ZULCapa8nIvlJ80s6t2gCl1r2OiCihkE6Y8JywURkLJuVzfLw8EBwcLCtmiciJyGdMWF+CVHDplJyxoSIzGOzwKSsrAwtW7bE9OnTMWXKFDRt2tRWXRGRAzulVyqY+SVEDZneUi4mvxORkaye/P7f//4X4eHhEAQB+/fvx5NPPomWLVti0qRJ2Lp1KyorK63dJRE5qEqNFqnZ3MOEqDFh8jsRmcvqgcnLL7+MU6dO4eDBg3jqqacQFBSEiooK/Pjjj5g0aRJatmyJJ598EsnJydbumogczIWcYr1dnzljQtSw6ZUL5lIuIjKSzcoF9+vXDx999BGuXLmCn3/+Gffddx/c3d2Rn5+Pzz//HEOGDEF4eDj++9//Ii0tzVbDICIZSRPfQ/w84OflKtNoiMgeVEx+JyIz2XwfE6VSibFjx+K7777D1atX8cUXXyA6OhoAkJqaiiVLlqBjx46Ijo7GF198gYKCAlsPiYjsRLqxYkRLzpYQNXSukhkT6awpEZEhdt1g0dfXF7Nnz0ZcXBzS0tLw2muvoWPHjhAEAfv27cNjjz2GsLAwew6JiGxIOmPC/BKihk+/KhdnTIjIOLLt/N6mTRv85z//wZkzZ7BixQq4u7tDEASUl5fLNSQisjJpqWDOmBA1fPr7mHDGhIiMY7NywfXJyMjAxo0bsWHDBpw5c0Y87ubmJteQiMiKCkoqcLWwTOdYF86YEDV4LBdMROaya2BSWFiIzZs3Y+PGjUhMTIQgCBCEqjesQYMGYdq0aZgyZYo9h0RENnIiU3cZl5vKBe2CvGUaDRHZi9JFMmPCpVxEZCSbByYajQY7d+7Ehg0b8Msvv6C8vFwMRtq3b4+HH34Y06ZNQ4cOHWw9FCKyo+OZN3Sed2npq7fEg4gaHlclk9+JyDw2C0wOHTqEDRs24Ntvv0Vubi4AQBAE+Pv7Y/LkyZg2bRqioqJs1T0Ryex4ZoHO8x6tmF9C1BiwXDARmcvqgcnrr7+Or776CmfPngVQFYy4urpi1KhRmDZtGsaNG8c8EqJGQDpj0rOVvzwDISK7kpYL5gaLRGQsqwcmixcvhkKhgCAIGDBgAKZPn44pU6YgICDA2l0RkYO6XlyBjPxSnWPdW/nJNBoisie9csFMficiI9lsKZenpyeuXbuGt99+G2+//bbZ7SgUCpw/f96KIyMiWztxRXe2xF3lgk7NfWQaDRHZk95SLia/E5GRbBaYlJaWIj093eJ2FApF/RcRkUP5+zIT34kaK72d3zljQkRGsnpgEhMTw2CCqJE7Ic0vCeUyLqLGguWCichcVg9M4uLirN0kETkZ6YwJ80uIGg9puWAmvxORsbi2goisKr+4ApkFuonvPRiYEDUa0uR3LuUiImMxMCEiq5KWCXZXuaBTMBPfiRoLFZdyEZGZGJgQkVVJ80u6hvjqVekhooZLbykXZ0yIyEhW/bSQlZVlzeZqdfXqVZv3QUTmO35ZurEil3ERNSYsF0xE5rJqYNKhQwc8/fTTyMzMtGazAIDvvvsOPXv2xKpVq6zeNhFZj3QpFxPfiRoXlXTnd86YEJGRrBqYqNVqfPLJJ+jYsSNmzJiBXbt2Qas1/5uSjIwMvPXWW+jSpQsefPBBnDhxAm5ublYcMRFZU15RuV7ie89Qf3kGQ0SykAYmlZwxISIjWbVc8IkTJ/DMM89g586d2LhxIzZu3Ijg4GBMmDABAwcORGRkJLp27Wpwn5Pc3FwcOnQIBw8exO7du7Fv3z4IggBBENCqVSssXboUM2fOtOaQiciKpLMlHq4u6NDMW6bREJEc9JdyccaEiIxj1cAkPDwc27dvx759+/D666/jt99+w7Vr1/DFF1/giy++AAC4ubkhMDAQTZs2RdOmTVFaWor8/Hxcv34dN27c+lAjCFVvZKGhoZg/fz7mz58PDw8Paw6XiKxMmvjeLcSPie9EjYw0+Z3lgonIWFbfYBEABg8ejB07duDs2bNYu3YtNm/ejLS0NABAeXk5rly5gitXrkChUIgBSE3u7u4YOXIk5s6di1GjRsHFhR9siJyBdGNF7l9C1PhIywVrLFjSTUSNi00Ck2rh4eFYtmwZli1bhkuXLiExMRH79u3D5cuXkZOTg/z8fHh4eKBZs2Zo1qwZevTogejoaPTv35+5JEROSDpjwsCEqPGRbrDIpVxEZCybBiY1tWnTBlOnTsXUqVPt1SUR2VFuUTmu3CjTOdYjlIEJUWPjKlm+yeR3IjIW10gRkVVIE989XZXo0Iw7vhM1NkqWCyYiMzEwISKrkG6s2C3EV+8DChE1fHo7v3MpFxEZiYEJEVkFN1YkIkA/+Z1LuYjIWAxMiMgqpInvPZlfQtQoSZPfNVzKRURGYmBCRBbLuVmOLGniO2dMiBolJr8TkbkYmBCRxaSzJV5uSrRn4jtRo6Ri8jsRmYmBCRFZTLqxIhPfiRov6YwJk9+JyFgMTIjIYtLE9x6t/OUZCBHJTvqlRCV3ficiIzEwISKLHc8s0HneI9RXnoEQkeyk5YIFgQnwRGQcBiZEZJHswjJcKyzXOcbEd6LGS1ouGGACPBEZxy6ByR133IE77rgDX375pT26IyI7ki7j8nZTIiyIie9EjZW0XDDAGRMiMo5dApPExETEx8ejXbt29uiOiOxIGph0C/Fj4jtRIyZNfgeYAE9ExrFLYBIcHAwA8Pf3t0d3RGRHxyUVuXpwY0WiRk1aLhhgAjwRGccugUmvXr0AAGfPnrVHd0RkR/oVuRiYEDVmteWYcMaEiIxhl8Bkzpw5EAQBn3/+uT26s5thw4ZBoVCY9CcuLs7kfpYsWWLT9onMda2wDNk3JYnvnDEhatRqyzFh8jsRGcMugcm9996Lhx9+GPHx8XjkkUdQXFxsj24djouLCzp16iT3MIisRrqMy8ddhbBAb5lGQ0SOoLbAhLu/E5ExVPboZP369bjzzjvx999/Y926dfjpp58wbtw49OzZE02bNoVSqazz9dOnT7fHME325Zdf1htknTx5ElOmTAEA3HnnnWjVqpVFfR4/frzO82FhYRa1T2QK/cR3X7gw8Z2oUXOtZSmXhjkmRGQEuwQmM2fOhEJx68PK9evXsWHDBqNeq1AoHDYwMSYIqPlzWuPn6N69u8VtEFkL80uISMrFRQEXBVBzkqSSOSZEZAS7BCYAIAhCnc8bIq1Wi6+++goA4OPjg3vvvVfmERFZjyAI+oEJ80uICIBK6YIK9a1ZEia/E5Ex7BKYpKWl2aMbh7N7925kZmYCAO677z54eXnJPCIi67lyoww50sR3zpgQEQBXFwUqajxnuWAiMoZdApO2bdvaoxuHs379evGxoy5HIzLXkYvXdZ77eboiLIiJ70QEvU1WOWNCRMawS1WuxqioqAg//vgjgKrAbNiwYVZpd8SIEQgODoabmxuCg4MxbNgwLFu2DNevX6//xURWdPRSgc7z3m38dXLJiKjxku7+rma5YCIygt1yTBqb77//XqzY9fDDD1vtA9vvv/8uPs7JyUF8fDzi4+OxfPlyxMbGYsKECWa3ffny5TrPZ2VliY/Ly8tRWlpqdl/k/FLS83Se92jpY/V7oqysrNbHRLbCe846JHEJikvL+G+GAbznyN7Ky8vrv0gmdg9Mzp07h/Xr1yM5ORlXr15FaWkpfvvtN3Ts2FG85sSJE7h06RK8vb0xdOhQew/RKqy9jKtHjx6455570L9/f4SEhKCyshJnzpzBV199hV27dqGgoACTJk3CL7/8glGjRpnVR+vWrY2+9sCBAzh//rxZ/ZDzU2uBf64oAdwKuNXXUrFr1zmb9ZmQkGCztolqw3vOfOoK3feHQ4ePoOQCl3PVh/cc2UNubq7cQzDIboGJVqvF888/jw8//BBarVasyqVQKFBRUaFz7aVLlzB27FioVCqkpaVZvPeHvV2+fFncgX3gwIEIDw+3qL2FCxdiyZIlescHDBiA6dOnY+XKlXjssceg0WgwZ84cnD9/Hh4eHhb1SVSXjGJAI9z60KGAgLY+/NBBRFWk2xkxxYSIjGG3wGTevHlYu3YtBEFAq1atMGjQIGzZsqXWa0ePHo2wsDCkp6djy5YtWLBggb2GaRUbN26E9v8rkMyYMcPi9vz9/es8P2/ePBw6dAhr1qzBlStX8P3332Pq1Kkm95ORkVHn+aysLPTv3x9AVVDUoUMHk/ughiE2+RJwIlV83qGZDyaMHmD1fsrKysRvEGNiYhhwk83xnrOOj87tR25Zifi8e49eGNEtWMYROS7ec2RvjrzixS6Bye7du7FmzRooFAq89NJLWLp0KZRKJVxq2R222v3334+33noLf/75p9MFJtWbKrq7u4u7vtvavHnzsGbNGgBAfHy8WYFJaGio0de6u7vD09PT5D6oYTiRVazzvF+7AJvfDx4eHrznyK54z5nPVaXUee6iUvF3aQTec2QP7u7ucg/BILsEJqtWrQJQNRPy+uuvG/Wa6m/m//nnH5uNyxZSUlJw8uRJAMDYsWPRtGlTu/TbtWtX8XH13ilEtnL0km4VuN5t/OUZCBE5JJVSdy0Xd34nImPYpVxwcnIyFAoFZs+ebfRrqr+9v3r1qq2GZRM1k96tsYzLWCzTSvZy9UYZrtzQrRzTp419AnAicg4qF5YLJiLT2SUwyc7OBgC0a9fO6Ne4uroCANRqtS2GZBOVlZX45ptvAADNmjUzuzqWOapnaQAgJCTEbv1S4yOdLWnioUKHZj4yjYaIHJGrZMZEreWMCRHVzy6Bibd31W7QOTk5Rr+mek+NgIAAm4zJFnbu3Cn+jA899BBUKvtVY165cqX42FlLLJNzOCIJTG5r7Q8XaQkeImrUOGNCROawS2DSvn17ALrf6tdn586dAIBu3brZZEy2YM7eJbGxsVAoFFAoFLWWBD5+/DhSU1P1X1jDqlWrsHr1agBAixYtMHHiROMHTWQi/R3fuYyLiHRJc0w4Y0JExrBLYDJixAgIgoBPPvlELKNbl5MnT4of2EePHm2HEVru+vXr2LZtGwCge/fu6NOnj1XaPXz4MCIiInDXXXfhvffew++//44jR47g4MGDWL9+PUaOHIl58+YBAJRKJVatWiXOUBFZW4Vai78zb+gc68PEdyKScJVs/c7kdyIyhl3WGj399NP46KOPcP78eTz22GP49NNPDS5z+v333zFr1iyUlZUhMDAQc+fOtccQLfbtt9+ivLwcgHV2eq9Jo9Hgjz/+wB9//GHwmsDAQKxZswbjxo2zat9ENZ3KKkSFWvfLhd6tOWNCRLqUkuWdXMpFRMawS2DSvHlzfP7555g+fTrWrFmD3377DWPGjBHPf/jhhxAEAUlJSTh9+jQEQYCLiwtiY2Ph4+McSbXVe5colUqz9hAxZPTo0VizZg2Sk5Nx9OhRXLt2DXl5eRAEAQEBAejVqxfuvvtuzJw5E76+vlbrl6g20vySDs284eflKtNoiMhRSZPfK7mUi4iMYLfs7KlTp8LV1RXz5s1DRkYGVq5cKZa4rc6PEISqNy4fHx+sW7dOJ3hxdElJSWa9bubMmZg5c6bB88HBwXjkkUfwyCOPmDkyIuthfgkRGYPJ70RkDrvkmFSbPHkyUlNTsXTpUvTt2xdKpRKCIIh/unXrhn//+99ITU1lAjeRA5LOmHD/EiKqjTT5XcMZEyIygv3q2f6/wMBAvPLKK3jllVeg1WqRn58PjUaDgIAAce8SInI82TfLcPl6qc4x7vhORLVxdWHyOxGZzu6BSU0uLi4ICgqScwhEZCTpMi5vNyXCmzeRZzBE5ND0ywVzKRcR1c8uS7lKSkrs0Q0R2ZA0MOnV2l+v8g4REcBywURkHrvMmDRt2hT9+vVDTEwMhg0bhiFDhnCvDSInw/wSIjIWywUTkTnsEphUVlZi//792L9/P9566y0olUr06dMHQ4cOFQOVJk24JITIUak1Wvx9uUDnGPNLiMgQ7vxOROawy1KuN998EyNHjoSPjw8EQYBarcbBgwfxzjvvYOzYsQgMDET//v2xaNEibN++HYWFhfYYFhEZ6fTVmyirlGysyBkTIjJAmvzOwISIjGGXGZMXX3wRL774IjQaDY4cOYK4uDjEx8dj7969KCwshFqtRkpKCg4fPoz33nsPLi4u6NWrlzijwt3MieR1VLKMq12gFwK83WQaDRE5Or0ZEy7lIiIj2LUql1KpRGRkJCIjI7Fo0SJotVocPXoU8fHxiIuLw969e1FQUACNRoOjR4/i6NGj+PDDD6FWq+05TCKSOCJJfGd+CRHVhcnvRGQOu26wqNe5iwv69u2Lf/3rX/j5559x7tw5vPLKK/Dz8wMAceNFIpKXdMaE+SVEVBeVNPmd5YKJyAiy7mNSUFCAhIQExMXFIS4uDn///bdeMNK2bVsZR0hEeUXlSM/TLfnN/BIiqot+VS5+yUhE9bNrYGIoEAEg/rddu3ZibsmwYcMYmBDJ7K+MAp3nnq5KRLRgFT0iMkx/KRdnTIiofnYJTP71r38ZnBEJCwvTCUTatGljjyERkZGk+5f0DPWDSinrKlAicnAsF0xE5rBLYPLBBx9AoVBAEASEhYWJQciwYcPQunVrewyBiMwk3fGdy7iIqD4sF0xE5rDr154KhQLe3t7iHy8vL3t2T0Qm0mgFHJMs5erDxHciqgfLBROROewyYzJ9+nQkJCQgPT0dJ06cwD///INPPvkECoUCXbt2FWdPhg4disDAQHsMiYiMcPbaTRRXaHSO3cbAhIjqIV3uyeR3IjKGXQKT2NhYAMClS5fEPUvi4+Nx4cIFBipEDkyaXxLa1BPBTTxkGg0ROQtXSVWuSpYLJiIj2LUqV5s2bTBt2jRMmzYNAHD58mXEx8cjPj4ee/bswfnz5/UClW7duuHYsWP2HCYR/T9pfgk3ViQiY7BcMBGZQ9bSOqGhoZg6dSpWrVqFc+fO4fLly3jllVfg6+sLQRCg1Wpx4sQJOYdI1KgduciNFYnIdNJywcwxISJjyLrBIgCcPXtW3NckPj4eV69eBQCxihcRySO7sAwXcot1jvVrGyDTaIjImbBcMBGZw+6BiaFABIBOINKxY0cxz4SI7G9/Wr7O8ybuKnQN8ZVpNETkTFQsF0xEZrBLYLJq1ap6A5Hw8HAxEBk2bBhatmxpj6ERkQH7L+TpPI8MC9BbN05EVBtXyYwJd34nImPYJTB57LHH9JZmRURE6AQizZs3t8dQiMhI0sBkYHsu4yIi47BcMBGZw25Lubp06SIGIkOHDkVwcLC9uiYiE2XfLMOFHN38koHtWbqbiIyjklblYrlgIjKCXQKT7OxsBAUF2aMrIrKCAxd080t83FXo2pL5JURkHGnye6VGgCAIUCi4HJSIDLNLuWAGJUTORS+/pF1TvaUZRESGSJPfAUDDBHgiqoes5YLVajWuX6/aJ6Fp06ZQqWSvXkxEAA5IKnJxGRcRmUKa/A5UVeZSKWUYDBE5Dbt/BXrq1CnMnz8fXbp0gYeHB1q0aIEWLVrAw8MDXbp0wdNPP42TJ0/ae1hE9P9ybpYjNbtI59gABiZEZILaZlhZMpiI6mPXwOTf//43evbsiU8//RRnzpyBVquFIAjiLu9nzpzBJ598gl69euGll16y59CI6P8dSNNdxuXtpkR37l9CRCZwraW0OHd/J6L62G3t1Pz58/Hpp5+KJYO7dOmCAQMGoEWLFgCAq1ev4uDBgzh58iQ0Gg2WL1+O4uJifPjhh/YaIhFBP/E9MiyA+SVEZJLa3jMqWTKYiOphl8AkKSkJn3zyCRQKBbp27YpVq1Zh8ODBtV6bnJyMxx57DMePH8fHH3+MKVOmGLyWiKxPmvg+IIzLuIjINLVtxsqSwURUH7t8Dbpy5UoAQFhYGJKSkuoMNAYNGoSEhAS0b98eAPD555/bY4hEBCC3qBznJPkl3FiRiExVa/I7Z0yIqB52CUwSExOhUCjw4osvws/Pr97r/fz88MILL0AQBCQmJtphhEQEAAcl1bi83ZTo3qr+v7NERDXVVi6Yye9EVB+7BCZXr14FAPTu3dvo1/Tp0wcAcO3aNZuMiYj0SZdx9W0XAFfmlxCRiWqfMeFSLiKqm10+cXh4eAAAiouLjX5N9bXu7u42GRMR6ZMGJlzGRUTmUCgUenkmTH4novrYJTAJCwsDAPzyyy9Gv6b62upcEyKyrbyicpy9Js0vYeI7EZlHJQlMmPxORPWxS2AyevRoCIKAFStWYPfu3fVev2fPHqxYsQIKhQKjR4+2wwiJSJpf4uWmRA/mlxCRmaTLQDljQkT1sUtgsnDhQvj6+qKyshKjRo3CU089hSNHjkBb49sTrVaLI0eO4KmnnsLdd9+NiooK+Pr6YuHChfYYIlGjp5df0rYp80uIyGzSpVzMMSGi+thlH5OgoCB89913GD9+PCoqKvDZZ5/hs88+g5ubGwICAqBQKJCXl4eKigoAgCAIcHNzw+bNmxEYyKUkRPawX7KxIpdxEZElpAnwrMpFRPWx29ehI0aMwP79+9GvXz8IggBBEFBeXo6srCxcuXIF5eXl4vF+/frhwIEDGD58uL2GR9So5RdX4My1mzrHmPhORJaQlgxmYEJE9bHLjEm12267DQcPHsShQ4fwxx9/4MSJE8jPr/qWNiAgAN27d8fw4cMRGRlpz2ERNXoH03SXcXm6KtGjlb88gyGiBkElnTHhUi4iqoddA5NqkZGRDD6IHIh0GVe/dk3hpmJ+CRGZj8nvRGQqmwYm27dvx6+//oqLFy9Co9EgJCQEw4YNw+TJk+Hq6mrLronIBNLE9wFhXMZFRJZhuWAiMpVNApNr167hnnvuwcGDB/XOrV27FosXL8bWrVvRo0cPW3RPRCa4XlyB01el+SVMfCciy+hX5eKMCRHVzeprNTQaDcaPH48DBw6IyezSP2lpaRg5ciRyc3Ot3T0RmeiAZP8SD1cX9Az1l2cwRNRg6C/l4owJEdXN6oHJd999h0OHDkGhUKBjx45Ys2YNjh8/jtOnT2Pz5s0YOHAggKpZlXfffdfa3RORiQ5IEt/7tQ1gfgkRWUya/K5hVS4iqodNAhMAaNeuHQ4ePIhZs2ahW7duCA8Px6RJk5CYmIihQ4dCEARs3rzZ2t0TkYmkie/MLyEia3CVlAuuZGBCRPWwemBy9OhRKBQKPPvss/D399c7r1QqsXTpUgBAWloabt68qXeNM1EoFEb9GTZsmFX627RpE0aMGIEWLVrAw8MDbdu2xcMPP4zk5GSrtE+NS0FJBU5fLdQ5NrAD80uIyHIsF0xEprJ6YJKTkwMA6Nevn8Frap5jnolxSktLMWbMGDz00EP4/fffce3aNZSXl+PSpUv46quvMGTIEDHgIzLWwbR8CDW+xKzKL/GTb0BE1GCoJDkmTH4novpYvSpXaWkpFAoFfHx8DF7j5eUlPi4rK7P2EGTx+OOP44knnjB43tvb26L2H3nkEezYsQMAcPvtt2PBggUICQnB8ePH8eabb+L8+fNYsmQJWrZsiUcffdSivqjxkC7j6tOmKdxVSplGQ0QNiaukKlclywUTUT1k2WCxJkFoGN+gBAcHo3v37jZp+88//8Q333wDABg3bhx+/PFHKJVVHx4jIyMxfvx49O3bF5cuXcILL7yA+++/H02bNrXJWKhhSTyXo/N8QBiXcRGRdbBcMBGZiqV3nMA777wDAFCpVPj000/FoKRaUFAQli9fDgAoKCjA6tWr7T5Gcj6ZBaU4l12kcyw6PEim0RBRQyMtF8wcEyKqj81mTD799FMEBwdb5brFixdba1hO5+bNm9i9ezcAYPjw4QgNDa31unvvvRe+vr4oLCzEjz/+iEWLFtlzmOSE4s/ozpb4e7miF/cvISIr0Ut+Z1UuIqqHzQKTzz77rM7zCoXCqOuAxh2YHDp0CBUVFQCAoUOHGrzOzc0NAwcOxK5du3Do0CFUVlbC1dXVXsMkJxR3JlvneXSnZnpLL4iIzKWSlAtmYEJE9bHJUi5DO76b88dZbN68GV27doWXlxeaNGmCTp06YcaMGdizZ49F7Z48eVJ8HBERUee11efVajXOnTtnUb/UsFWotdh3XndjxWHhzWQaDRE1RK6SGRPu/E5E9bH6jImlH8SdVc0AAgBSU1ORmpqK9evX45577kFsbCz8/Ewvw3r58mXxsaFlXNVat24tPs7IyEDXrl3N7qs2WVlZ4uPy8nKUlpaa1D45joPp11FUrtY51r9NE4f7f1qzal9DqeBHjo33nBUJuoFIWXmlw73HOALec2Rv5eXlcg/BIKsHJnUtN2qIvLy8MH78eNx5552IiIiAj48PcnJyEB8fj88//xx5eXnYunUrJkyYgN9//93k5VU1N6CsqwQzoFuSuKioqI4ra1czsKnPgQMHcP78eZP7IMfw80UX1JwwDfUWcGRfnGzjMUZCQoLcQ6BGhvecZa5c1n2fSb+UgV27Lso3ICfAe47swZH3EJS9XLCzy8zMrHWH+7vuugvz58/HqFGjcPToUcTHx+Ozzz7D008/bVL7Nb89cXNzq/Nad3d38TG/laK6nCrQXWLRxd95lk0SkXOQpqyxWjAR1YeBiYVqC0qqNW/eHFu2bEFERAQqKyuxYsUKkwMTDw8P8XF1ErwhNafmPD09TeoHqFr+VZesrCz0798fADBgwAB06NDB5D5Iftk3y3ElOUnn2IwR/dC3jb88A6pDWVmZ+A1iTEyMzt8HIlvgPWc9x/9IRVzWJfF585YtMWJENxlH5Jh4z5G9OfKKFwYmNta+fXvcdddd2LFjB1JTU3HlyhWEhIQY/fomTZqIj+tbnlVcXCw+rm/ZV23qy2Gpyd3d3azgh+R34ITuFG4TDxUGdmwOldKxtzXy8PDgPUd2xXvOMp7uurP8Alz4+6wH7zmyh5orbByNY38SaSBqJqFnZmaa9NqawUJ9yek1ZzxMyRehxiX+rO7+JdGdghw+KCEi56NXLphruYioHvw0YgfVe7aYo2ZQc/r06TqvrT6vUqnQqVMns/ukhkut0SLxnG5gMiy8/o1QiYhMpb/BIssFE1HdGJjYQc1SwqYs4wKAyMhIMek9Pj7e4HUVFRXYv3+/+Bpurki1OZpRgMIy3TLBMdy/hIhsQH8fE86YEFHdGJjYWFpaGn7//XcAQIcOHdCqVSuTXt+kSRPceeedAIA//vjD4HKuH374AYWFhQCAiRMnWjBiasjiz+jOlkS0aIIWfky0JCLrU+rt/M4ZEyKqGwMTC/zyyy9Qq9UGz1+7dg2TJk0Sq2k98cQTetfExsZCoVBAoVBgyZIltbbz3HPPAaja0f3JJ5+ERqPROZ+bm4sXXngBQFWVsDlz5pjz41AjEHc2W+f50M6cLSEi2+CMCRGZilW5LDB//nxUVlZi0qRJGDRoENq1awdPT0/k5uYiLi4OK1euFDexGTJkCJ588kmz+rnjjjvwwAMP4JtvvsHPP/+Mu+66CwsXLkRISAiOHz+ON954A5cuVZVkXL58OZo2bWq1n5Eajpyb5TiRWahzjPklRGQr0uR3jZaBCRHVjYGJha5cuYIVK1ZgxYoVBq+ZNGkSVq9ebVF5trVr16KwsBA7duzAnj17sGfPHp3zLi4ueOWVV/Doo4+a3Qc1bAmSalzebkr0bcsglohsQy/5XcOlXERUNwYmFli3bh3i4+ORnJyMCxcuIDc3F4WFhfDx8UHr1q0xePBgzJgxA4MGDbK4L09PT2zfvh1ff/01YmNjcezYMRQUFKB58+aIjo7GU089ZZV+qOGSlgmO6hgENxVXcxKRbXApFxGZioGJBYYOHYqhQ4da1MbMmTMxc+ZMo69/6KGH8NBDD1nUJzU+Gq2ABGmZ4M5cxkVEtqO3jwmT34moHvy6lKgROHa5AAUllTrHmPhORLYknTHhBotEVB8GJkSNgLRMcKdgH7Ty95RpNETUGEjLBVdyxoSI6sHAhKgRiJPklwzlpopEZGPS5HcNZ0yIqB4MTIgauPziCvx9uUDnGPNLiMjWXPVmTBiYEFHdGJgQNXCJ53Ig1Pg84OmqRGQYywQTkW2xXDARmYqBCVEDJ80vGdwhEO4qpUyjIaLGgsnvRGQqBiZEDZhWK+jtX8JqXERkD9JywUx+J6L6MDAhasD+uVKIvOIKnWPDwplfQkS2p3ThjAkRmYaBCVEDtudMts7z9kHeaBPoJdNoiKgxcVVKN1gUIAgMTojIMAYmRA3Yryeu6jyPYZlgIrITafI7AGhYmYuI6sDAhKiBupRXgpNZhTrHRnZrIdNoiKixkZYLBqpmTYiIDGFgQtRA7TyRpfM80NsN/cMCZBoNETU2tc2YVLJkMBHVgYEJUQO1U7KMa0S35nrJqEREtlJbYMIEeCKqCwMTogYo60Yp/soo0Dl2d/eW8gyGiBql2pZysWQwEdWFgQlRAyRNevf1UGFQ+0CZRkNEjZGSMyZEZCIGJkQNkHQZ1/AuzeGm4l93IrKf2mZMWJWLiOrCTypEDUzOzXIcSs/XOXZ3d1bjIiL7YvI7EZmKgQlRA/P7yWuouYeZl5uS+5cQkd2paim2wXLBRFQXBiZEDYy0TPDtEcHwcFXKNBoiaqwUCoVecMIZEyKqCwMTogbkRkklks/n6RwbxWVcRCQT6XIuJr8TUV0YmBA1IL+fuqazVMJd5YLbOwfLOCIiasykCfBqlgsmojowMCFqQH6VLOOKCW8Gb3eVTKMhosZOWjK4kjMmRFQHBiZEDURRuRoJ53J1jt3djcu4iEg+KsmMCcsFE1FdGJgQNRB/ns5GhfrWMgmViwLDuzSXcURE1Ni56s2YcCkXERnGwISogZAu4xrcMQh+Xq4yjYaIiMnvRGQaBiZEDUBZpQZ7TufoHGM1LiKSG5PficgUDEyIGoD4szkordSIz10UwIiuXMZFRPKSzpgw+Z2I6sLAhKgB+PXEVZ3n/cMCEOjjLtNoiIiqKDljQkQmYGBC5OQq1Fr8ceqazrFR3VvKNBoiolukye/MMSGiujAwIXJySedzcbNMrXNsJMsEE5EDULlIAhOWCyaiOjAwIXJyvx7XXcbVu40/Wvh5yDQaIqJbVErJUi6WCyaiOjAwIXJiao0Wu07qBiasxkVEjkJ/HxPOmBCRYQxMiJzYwbR8XC+p1DnG/BIichTSnd+Z/E5EdWFgQuTEfjiaqfO8W4gvWgd4yTQaIiJdnDEhIlMwMCFyUsXlauw4rrvb+/heITKNhohIn1Ka/M7AhIjqwMCEyEntPHEVJRW6mypO7N1KxhEREemSJr9ruJSLiOrAwITISW05nKHzfGh4MwT7shoXETkOV8mMSSXLBRNRHRiYEDmhjPwS7L+Qr3Psvr6tZRoNEVHtWC6YiEzBwITICX1/5LLOcz9PV9zZJVim0RAR1Y7J70RkCgYmRE5GqxX0ApPxvULg4aqUaURERLVjuWAiMgUDEyInczA9Hxn5pTrH7usbKtNoiIgMUylZlYuIjMfAhMjJbDmsO1vSKdgHPUP9ZBoNEZFhKmm5YCa/E1EdGJgQOZHa9i65r28oFAqFgVcQEcmHye9EZAoGJkRO5FfuXUJEToTlgonIFAxMiJyIdBkX9y4hIkfGGRMiMgUDEyInkZFfguQLeTrHuHcJETkyJr8TkSkYmBA5iR+OZOo8594lROToXCXlgrmUi4jqwsDEQikpKXjttdcwYsQIhIaGwt3dHT4+PggPD8esWbOwd+9eq/SzZMkSKBQKo/7ExcVZpU9yHFqtgC1HMnSOce8SInJ0SkmOiYb7mBBRHVRyD8CZxcTEIDExUe94RUUFzp07h3PnziE2NhbTp0/HF198ATc3NxlGSQ3BoVr2LpnEvUuIyMFx53ciMgUDEwtcuXIFABASEoL7778f0dHRaNOmDTQaDZKTk/Huu+8iMzMT69evR2VlJb7++mur9Hv8+PE6z4eFhVmlH3Ic0qT3jsE+6MW9S4jIwTH5nYhMwcDEAhEREXjzzTcxadIkKJW6S2oGDhyIadOmISoqCmfPnsWmTZvw2GOPISYmxuJ+u3fvbnEb5DyKy9XYzr1LiMgJcYNFIjIFc0wssG3bNkyePFkvKKkWFBSEd999V3y+ZcsWew2NGhDuXUJEzspVMmPCpVxEVBcGJjZ2++23i4/Pnz8v40jIWUmXccWEN0Nz7l1CRE5Av1wwl3IRkWEMTGysvLxcfGxoZoXIkEt5te1dwqR3InIOKkm5YC7lIqK6MDCxsfj4ePFxly5drNLmiBEjEBwcDDc3NwQHB2PYsGFYtmwZrl+/bpX2yXGsT07Xee7rocLwLs3lGQwRkYn0c0w4Y0JEhjH53Ya0Wi2WLVsmPp88ebJV2v3999/Fxzk5OYiPj0d8fDyWL1+O2NhYTJgwwax2L1++XOf5rKxbCdjl5eUoLS2t42qyVHGFGt8e0t27ZEKvFhDUFShVyzQoOysrK6v1MZGt8J6zLq2mUud5pVrLfzskeM+RvdVczeNoGJjY0Pvvv4+DBw8CAO6991707dvXovZ69OiBe+65B/3790dISAgqKytx5swZfPXVV9i1axcKCgowadIk/PLLLxg1apTJ7bdu3droaw8cOMCcGRtLvKrAzfJby/8UENCuIh27dqXLNygZJSQkyD0EamR4z1nuzA0FgFvvY8WlZdi1a5d8A3JwvOfIHnJzc+UegkEKQRC44NMG4uPjMXz4cKjVagQHB+P48eMIDg42u72CggL4+/sbPL9y5Uo89thjAKr2VTl//jw8PExLkDal/Ozq1asRFBRkUvtkPK0A/O8vJbLLbv0/6d5Ui7kRXAZBRM4jtRBY8c+t70C9VAL+F6mp4xVEZGu5ubmYM2cOACAjIwOhoY6Tu8oZExv4559/MHHiRKjVanh4eGDz5s0WBSUA6gxKAGDevHk4dOgQ1qxZgytXruD777/H1KlTTeojIyOjzvNZWVno378/AGDAgAHo0KGDSe2T8RJT85C9/5jOsX+N7YNB7QNkGpE8ysrKxG8QY2JiTA62iUzFe866mmXcwIp/DovPFS4qjBhxp4wjcjy858jeHHnFCwMTK0tLS8OIESNw/fp1KJVKfPPNN1bZVNEY8+bNw5o1awBUzdiYGpiYEjG7u7vD09PTpPbJeF8duqLzPLy5D27vGtKoN1X08PDgPUd2xXvOcj5eumvZ1VqBv9M68J4je3B3d5d7CAYxMLGiK1euYPjw4bhy5QoUCgXWrl1rdiK6Obp27So+zszMtFu/ZF2p2UWIP5ujc2zm4LBGHZQQkW2VlZWhoKAAJSUl0Gist9RKU67Gy0Oais8VCuDcuXNWa78h0Gq1CAwMBABcunQJLi4smEqGKZVKuLm5wdfXFz4+Pg3ufmFgYiW5ubm46667cOHCBQDAihUrMH36dLuOgR9cG4Z1+9J1nvt7uXKndyKyCUEQkJWVhRs3btikfSW0aBeguzRJrW4kZQWNJAi3ZpE0Gg20LKlMdVCr1SgvL8fNmzehUCjQqlUrNGnSRO5hWQ0DEyu4ceMGRo4ciZMnTwIAli1bhieffNLu46juH6hKgCfnc6O0Et8f0S3b/EBkG3i6cXNOIrK+vLw8vaBEpbLeRwMXpYDAJrrf6Fqz/Yai+otF/m6oPhqNBtV1qwRBQGZmZoMKTvg3wEIlJSUYM2YMjhw5AgB4+eWX8cILL8gylpUrV4qPhw4dKssYyDKbUzJQUnFrGYXSRYHpg9rKOCIiaqgqKiqQk3Nr2WhwcDD8/f2hVFrvi5AKtQanr97UOdYhxA8uLpzhr6bValFYWAgA8PX1bXBLc8i6BEFASUkJ8vPzUVRUJAYn4eHhDeLecf6fQEYVFRWYOHEikpKSAAALFizA66+/bnI7sbGxUCgUUCgUWLJkid7548ePIzU1tc42Vq1ahdWrVwMAWrRogYkTJ5o8DpKXRisgVrKM6+5uLRDiz0RIIrK+oqIi8XFgYCACAwOtGpRU0Q9ABHCXAiJzKRQKeHt7IzQ0FD4+PgCqgpWaf5+dGWdMLPDggw+KG0XdcccdmD17Nk6cOGHwejc3N4SHh5vcz+HDhzFnzhzcfvvtGDVqFHr06IHAwECo1WqcPn1a3GARqEqKWrVqFby9vc37oUg2f5y6hsvXdXdEnhXVTp7BEFGDV1xcLD729fW1SR+1pT5y9zQiyykUCgQEBIgBSWFhoc3+HtsTAxML/PDDD+LjP//8Ez179qzz+rZt2yI9Pd2svjQaDf744w/88ccfBq8JDAzEmjVrMG7cOLP6IHl9mZSm87xHKz/0bdvUwNVERJapqKgAUPUBx1blQ2tbsMW4hMg6vLy8oFAoIAiC+PfZ2TEwcQKjR4/GmjVrkJycjKNHj+LatWvIy8uDIAgICAhAr169cPfdd2PmzJkNIlpujE5lFWL/hXydY7Oi2rHSGhHZTHX1J6VSabP3Gs6YENmOQqGAUqmEWq22aplvOTEwsYBgpXfXmTNnYubMmQbPBwcH45FHHsEjjzxilf7I8UhnS4J83DGmZ0uZRkNEZB0K5pgQkQmY/E4ks/ziCmz9S3en94cHtoG7iiWCici5ccaEiEzBwIRIZpsOXkKF+taGWm5KF0wdwBLBRERE1LgwMCGSUblag/XJ6TrHxvZqiWZNbJOISkRkT9Wl8Guy1jJoImp4GJgQyejbQxm4Vliuc2zW4DCZRkNEZH3S1VyNNSypuWeZuRU6iRo6BiZEMimr1OCTPbobZw5sH4AeoX4yjYiIyPqkeSacMGl4tFotTp48idjYWDzxxBOIjIyEu7u7GIjFxcUZ1c6wYcPE19T3x5CaAaBCoUCHDh2M6jsjI0OsUFdbAJmdnS0ev/fee+tsq6CgQKetP//8s87rly5dKl67c+dOo8bbULEqF5FMvjpwSW+25Jnhpm/ASUTkyDhj0vBt2LChzuqicrpw4QL27duHwYMH13ndV199JZbQrk1wcDA6d+6MM2fOYO/evXW2tXfvXp22EhMTcccddxi8PjExEUBV6e6oqKg6227oGJgQyaCkQo3P4nRnS4Z0DMKA9oEyjYiIyEYUCtQMRxprjkl9WwM4s5r/T11dXdGjRw9UVlbi+PHjZrXXr18/fPnllxaPy8PDA2VlZdiwYUO9gcmGDRt0XlObmJgYnDlzBjk5OTh9+jQiIiJqva5moKHRaMTntVGr1di/fz8AoFevXo1+Pzou5SKSwYbki8gt0t2l9Zm7OFtCRA0PZ0wavq5du+Kjjz5CcnIyCgsLcfjw4XqXO9XF29sb3bt3r/OPMcaPHw8A+O677+rcGf3IkSM4efIkAGDChAkGr4uJiREfJyQkGLyu+tz9998PANi/fz8qKysN9l1cXKzXfmPFwITIzorK1fg8/rzOsWGdm6Fv26YyjYiIyHb00gEYmTQ4/fv3x/z58zFw4EB4eHjIPRzRlClT4Obmhvz8fGzfvt3gddWzJZGRkQZnQQAgOjpafGxoFqS0tBSHDx8GACxYsACenp4oLi7GkSNHar2+ZjsMTBiYENndun3puF6i+83JvzhbQkQNlHT398a6lMuYqlwajQbr1q3D2LFjERISAnd3dwQGBmLIkCF47733UFpaarB9rVaLP//8E8899xyioqIQFBQEV1dX+Pv747bbbsNzzz2HS5cu2einc0wBAQEYM2YMgFvBh5RarcamTZsAANOmTauzvbZt26JNmzYADAcm1bMjTZo0QWRkJPr371/n9dXHFQqFTuDTWDEwIbKjwrJKrEq4oHNseJfm6BnqL8+AiIhsTK8qlzzDcHgZGRmIjIzEzJkzsX37dmRlZaGiogL5+flISkrCs88+i549e+Ls2bO1vv61117DnXfeiXfffRf79u1DXl4e1Go1bty4gWPHjuHdd99Fly5d8OOPP9r5J5NXdbCxfft25Ofn653ftWsXrl27BpVKhQceeKDe9qpnNS5evIiMjAy989XLuAYOHAilUokhQ4boHK9JEAQxkb5Lly4ICgoy8qdquBiYENnR2r1puFGqO1vyzF2dZBoNEZHtcSVX/fLz8zFq1CgcO3YM7u7ueOqpp7B582YcOnQIe/bswb///W94eXkhNTUVo0aNwo0bN/TaUKvVaNmyJZ544gls2LABSUlJOHz4MLZu3Yrnn38ePj4+KCkpwUMPPYRTp07J8FMa7/Tp0xgwYAD8/f3h4eGB0NBQTJgwAevXrzeYq2HImDFjEBAQgIqKCnz33Xd656tnUu6++240a9as3vbqyzOpngGpDkiq/5uUlKQ3W3jq1Cnk5eXptduYMTAhspMbJZVYk5imc2xU9xboFsJ9S4io4eI+JvV74YUXkJmZibZt2+LUqVNYsWIF7rvvPvTr1w/Dhg3Dm2++ib1798Lb2xsXLlzAW2+9pdfGnDlzcPHiRXzyySd4+OGHMXjwYPTp0wcTJkzA8uXLcerUKbRq1QplZWV48803ZfgpjXft2jUcPHgQN27cQHl5OTIzM/Hzzz9jxowZuO2220wKrNzc3DBlyhQA+su5bt68iZ9++gkAMH36dKPaqyvPpGaFrerrBg8eDBcXF+Tn5+Off/7RuZ75JfpYLpjITr5IvICb5WrxuUIBLOS+JUTkwLRaAddLDFczMkZBSSVKKzXicy/XcofNM2nq5QYXF8Ob99lCenq6uLzqo48+QlhYWK3X9e7dG08++STeeustxMbG4o033tA5365duzr7CQ0NxaJFi7Bw4UL8/PPPEAShzo0K5eDi4oI777wTo0ePRq9evRAYGIibN2/iyJEjWLlyJU6dOoWTJ0/i9ttvx8GDB8V8j/pMmzYNn332Gfbt24cLFy6gffv2AIAtW7agtLQUfn5+GDdunFFtRUREIDg4GNnZ2XqBSXWFLVdXVwwYMAAA4Ovrix49euDYsWNITEzUqSjGwEQfAxMiO8gvrsCXSbqzJWN7hqBziyYyjYiIqH7XSyrQ9/U/5B6G3Rz+z3AE+rjbtc8dO3ZAo9HAy8sLo0aNqvPamJgYvPXWW7hy5QouXbpU5wfzwsJC5OXloaSkRAwEvby8xHNpaWniB3RH8cMPP8Df31/veHR0NJ544gnMnTsX69atw7Vr17Bw4UL88MMPRrU7aNAgdOzYEampqdi4cSMWL14M4NYMyv33329SNbHo6Gh8//33OHXqFHJzc8XckOqlXb179xZ/10DVcq5jx44hISEBjz/+uHi8OjBp3749WrVqZXT/DRmXchHZwaqECyiuuPWNoYsCWHAnc0uIiBq7lJQUAEBJSQnc3NzEyl21/Rk7dqz4uqtXr+q1dfHiRcyfPx/t2rWDn58f2rdvj+7du6NHjx7o0aMHHn30UfHa3Nxc2/9wJqotKKnm6uqK1atXo3PnzgCAH3/8EZmZmUa3XZ0Ev3HjRgBVxQbi4uIAGL+Mq1r1Mq2ayevArUBDWl2r+nnNGZJLly6JVdJYjesWBiZENpZzsxzr9qXrHLvntlboGOwjz4CIiMhhZGdnm/W6kpISnec7d+5E165d8fHHH+PixYv1vr6u0sOOSqVSYfbs2eLz+Ph4o1/78MMPAwDOnTuH/fv3Y+PGjRAEAe3atRMT1I1Vc9lVdbBRM0iRtlf9PDMzE2lpaTqvk7bX2HEpF5GNfR5/Xmd9tdJFgac5W0JERKjauwQAAgMD8eeff8LFxbjvjGvmouTm5uKhhx5CSUkJfHx88Nxzz2HkyJHo0KED/Pz84ObmBgD4888/ceeddwJw3v1kunbtKj42Zcakffv2iIqKQlJSEjZs2IA9e/YAqApYTM216dWrF/z8/HDjxg1x+dY///wjliOWBiatWrVCu3btkJ6ejoSEBISFhTEwMYCBCZENnbt2E+uT03WOTerTCu2CvOUZEBGRCZp6ueHwf4Zb1Mbl6yUoLLtV+KOZjzuaNbFvHoexmnq52b3PwMBAAEBRURG6dOkCV1dXk9vYsmULCgoKAFQtcRo+vPb/Z7Xt4+FsLEnYnz59OpKSkrB27VqUlZUBqH9Txdq4uLggKioKO3bswNGjR1FUVCQGGhEREbXuRzJkyBCkp6cjMTERM2bMEAOakJAQdOzY0eyfqaFhYEJkI1qtgJd+PI5Kza1vpVQuCsy/g7MlROQcXFwUFieDF5erdT5M+nu52T3B3JH17t0bmzZtQnl5OVJSUjBo0CCT26guQxsQEGAwKAFu5bM4s5MnT4qPQ0JCTHrt5MmT8fTTT4tByYABAxAebl51zOjoaLFwQXJyst7+JVJDhgzBxo0bkZiYiNzcXJw+fVpsh25hjgmRjWw+nIFD6dd1jj0a0x6tA7wMvIKIqOGRfsMtcItFHWPHjhV/Rx9++KFZbajVVTNSZWVl0Gq1tV5TUlKit4+Hs1Gr1Vi7dq343NQlUP7+/rjnnnvg7u4Od3d3zJgxw+yxSDdaNCYwAYCzZ8/i+++/F5fScRmXLgYmRDaQV1SO/+08rXOsdYAnZ0uIqNFz0tQGm+ncuTPuueceAMC3336L9957r87r09LSsGnTJp1jnTpV/dtSUlJS6+7mGo0Gc+bMwZUrV6wzaBvYs2ePuBytNpWVlZgzZ464ueK4cePQunVrk/v55ptvUFZWhrKyMp3Svabq168fPD09AQBff/01Ll++DMDwDEjXrl0REBAAADobZDIw0cWlXEQ28MaOUygoqdQ59t8J3eHpppRpRERE8nCwPfwc0rvvvoujR48iPT0dzz77LH766SdMnz4d3bp1g7u7O/Ly8nDs2DH8+uuv+PPPPzFx4kQ8+OCD4usnT56Ml156CeXl5Zg1axb++usv3HXXXfDz88M///yDFStW4PDhw2Lyty3ExsbqPP/rr7/Ex7/++ivS09PF5x07dtSbWVi3bh3Gjx+P8ePHY9iwYejcuTN8fX1RVFSEw4cPY9WqVeIyruDgYLNnl6zFzc0NAwYMQFxcHC5cuACgammZob1hFAoFBg8ejG3btonXBwYGolu3bnYbszNgYEJkZftSc/HDEd1KIWN7tsSwzsEyjYiISD56S7k4ZaKnadOm+PXXXzF37lwkJiYiISFBTI6uja+vr87z0NBQfPbZZ5gzZw7KysqwfPlyLF++XOeaKVOmYO7cuXXmoFhi1qxZBs9JxzJjxoxalzwVFRXh66+/xtdff22wrR49euCbb77RqUoml5iYGHEvFACIioqq8/ohQ4Zg27ZtOs8tSeZviBiYEFlRWaUG/9l6QudYEw8VFo/tauAVREQNm/RjF8OS2jVv3hxxcXHYuXMnNm3ahOTkZFy9ehWVlZXw9/dHp06dMGjQIIwfP77W5T+zZs1C586d8fbbbyMpKQkFBQUICgpCr169MGvWLEyePFnnQ7SjeeGFF3DbbbchOTkZJ0+eRE5ODvLz8+Hu7o7mzZujX79+uO+++zBx4kQolY6x+kD6/6G+/VCky7y4jEufQuBXF2Sky5cvi+s5z549K65ppVve//0sPtx9TufYf+/pjmkD28o0IudWWlqKXbt2AQBGjBghruclspXGdM+dO3cOarUaKpXKpu/nWTdKkXOzXHze1MuNRUBq0Gq1KCwsBFA1E2LsPiZEgHl/j8+dOydWI8vIyEBoaKgth2gS3v1EVnI+pwifxZ3XOXZba39M7d9GphEREcmPMyZEZCwGJkRWIAgCXv7xOCo0t8o0Kl0UeHNiD7i4cP0oETVizDEhIiMxMCGygh+OZGL/Bd0ddWcPCUPXEF8DryAiahz0ZkwYlxCRAUx+J7LQ9eIKvLHjlM6xVv6eWDicOThERCw65Niys7ORnZ1t8uvc3NzM3jWdyBAGJkQWEAQBr/78D/KLK3SOvzahG7zc+NeLiEgB6c7v5Eg+/fRTLF261OTXtW3bVmdvEiJr4FIuIgt8deASfj6mu5Pu3d1a4M4uzWUaERGRY5HOmDDHhIgMYWBCZKbjl2/gtV9O6hxr4q7Cq+O5ZwkRUTXmmDi2JUuWQBAEk/9wtoRsgYEJkRlulFTiia8P61ThAoC37++Fln4Nd98DIiJT6c2YyDMMInICDEyITCQIAp7bcgwZ+aU6x+cMCcPd3VvINCoiIkfFcsFEZBwGJkQm+iLxAn4/eU3nWN+2TfHCqAiZRkRE5LikWzkxLCEiQxiYEJkgJT0fy389o3MswNsNHz/UG65K/nUiIqoPJ0yIyBB+kiIyUl5ROZ76+ig02lv/qioUwAdTbmNeCRGRAQpuZEJERmJgQmQEjVbAwm//wtXCMp3j8+/ohJjwZjKNiojI8elX5eKUCRHVjoEJkRFW/HkOiedydY4N6RiEBXdyd3cick4uLlUfATQajU2DBVblIrINQRCg0WgAAEqlUubRWAcDE6J6/HHyGj7cfU7nWHNfd3zwwG1QSrM6iYichJubG4CqDzfl5eU264f7mBDZRklJifilQvXfZ2fHwISoDnvP5eKJr4/o/EOqdFHg44f6IMjHXb6BERFZyNvbW3xcWFhos36kOSYC50yILCYIAvLz88Xnvr6+Mo7GehiYEBlwKD0fc9enoEKtu4ni8yM7I7JdgEyjIiKyDh8fH/FxXl4e8vLyxGUhtsQZEyLzCYKA4uJiXL58GUVFRQCqgv+af5+dmUruARA5omMZBZj15SGUVur+I31f31A8GtNeplEREVmPm5sbmjVrhpycHABAdnY2srOzoVQqrVpJS6MVoK649V6qAHCuJNtq7TcEarUaAMT/F0SGSHPCFAoFWrVqJeaMOTsGJkQSp7IKMX3tQRSVq3WOj+3ZEssn9WTpSyJqMAIDA1FRUYEbN26Ix6w9a1Kp0SLv5q0cFgUADxVLrFcTBAGlpaUAAE9PT/4bQ0arDkqaNGki91CshoEJUQ2p2UWYtuYAbpRW6hwf3qU53p/CZHcialgUCgVCQkIQEBCAgoIClJSUWD0wqdCqkZ6vW2q9bbOG80HKUlqtVgxMfHx8Gsw332QbSqUSbm5u8PX1bZD3CwMTov+XkV+Ch1cfQG5Rhc7x6E5B3NmdiBo0Dw8PtGjRwiZtp+UW440NF3SOzbh7INxUfE8FgNLSUpw+fRoA0LdvX3h6cjaJGi++K1jRxYsX8eyzzyIiIgLe3t4ICAhAZGQk3n77bZSUlFitn507d2LixIkIDQ2Fu7s7QkNDMXHiROzcudNqfTQ2WTdK8eAX+/U2UOwfFoBV0/rBw7Vh1AcnIrI3VS0zzWqttpYriaix44yJlfzyyy94+OGHdUoulpSUICUlBSkpKVi9ejW2b9+Ojh07mt2HVqvFo48+ijVr1ugcz8zMRGZmJrZu3Yo5c+Zg5cqVDW5qz5Yu5ZVg5pcHcfl6qc7xXq39sXZmJDzdGJQQEZmrttnmSg1LcxGRPn56tYKjR49iypQpKCwshI+PD9544w3s27cPu3fvxty5cwEAZ8+exZgxY3Dz5k2z+3n55ZfFoKR3797YtGkTDh48iE2bNqF3794AgNWrV+M///mP5T9UI5FwNgfjPt6LC7nFOse7tPTF+ln94ePO2J2IyBIqZS0zJhrOmBCRPn7qsoIFCxagtLQUKpUKu3btwqBBg8Rzd9xxBzp16oTnn38eZ8+exbvvvoslS5aY3MfZs2fxzjvvAAD69euHhIQEcR1qZGQkxo8fj6FDhyIlJQVvv/02HnnkEYtmZxo6QRCwMuEC3vr1NLSSL+46NPPGhtn94eflKs/giIgaENdaZvA10jdeIiJwxsRiBw8eRGJiIgBg9uzZOkFJtWeffRZdunQBAHz44YeorKzUu6Y+H3zwgVjnfMWKFXrJcV5eXlixYgWAqnro77//vsl9NBYlFWo8tekolu3UD0rCm/vgqzkDuas7EZGVKGuZMalkYEJEtWBgYqGtW7eKj2fNmlXrNS4uLpg+fToAoKCgAHv27DGpD0EQ8NNPPwEAIiIiMHDgwFqvGzhwIDp37gwA+Omnn3Q24KEql/JKcO+n+7D97yy9c6N7tMCPT0ShhZ+HDCMjImqYak1+51IuIqoFAxML7d27FwDg7e2Nvn37Grxu6NCh4uOkpCST+khLS8OVK1f02qmrn8zMTKSnp5vUT0NXnU9y+qpuno9CASwa2RmfPNQH3swpISKyKia/E5Gx+CnMQqdOnQIAdOzYESqV4V9nRESE3muMdfLkyVrbMaafsLAwk/pqKApKKnAhtxhpOcW4kFuE1Owi/H7ymt7SLV8PFT58sDdu7xwsz0CJiBo4pYsCCgVQcxKf5YKJqDYMTCxQVlaG3NxcAEBoaGid1zZt2hTe3t4oLi5GRkaGSf1cvnxZfFxfP61btxYfW9JPbWq29+JXe+EbcNak9m1NAwHZhRXIuF6KG6Xqeq9vF+iF18dEoJXLDZw7d8MOIyRTlZeXi3/Hzp8/D3d35v6QbfGes5GiPKhrzJK8tD4Ofh4sxQ4AGq0WObn5AIDv0/6AkuX+ycYK87PFx9X5y46CgYkFapb+9fHxqff66sCkqKjIZv14e3uLj03tp2ZQU58flj5iUtuOKBPA7a/LPQoiosbnR7kHQEQAgJycHLRr107uYYgYllugrOzWLuFubm71Xl/9zVtpaWk9V5rfT81v90zth4iIiIgaj2vXrsk9BB2cMbGAh8et6k0VFRX1Xl9eXg4AeqV+rdlPdR/m9FPf0q+0tDTExMQAAPbt22fSDAuRObKystC/f38AVaW5W7ZsKfOIqKHjPUf2xnuO7C0jIwODBw8GUH/usr0xMLFAkyZNxMfGLJsqLq7aXdyYZV/m9lPdhzn91Je/UlPr1q1Nup7IUi1btuQ9R3bFe47sjfcc2VvNL78dAZdyWcDDwwOBgYEA6k8cv379uhg0mDrTUPNNypQEdc5oEBEREZGzYGBioa5duwIAUlNT66xscPr0afFx9S7wpvYhbcfa/RARERERyYWBiYWGDBkCoGoJ1eHDhw1eFx8fLz6OiooyqY+wsDCEhITotVObhIQEAECrVq0cqsoCEREREVFdGJhY6J577hEff/nll7Veo9VqsX79egCAv78/br/9dpP6UCgUmDBhAoCqGZH9+/fXet3+/fvFGZMJEyZAoVCY1A8RERERkVwYmFiof//+iI6OBgCsWbMGycnJete8++674m7vCxYsgKurq875uLg4KBQKKBQKzJw5s9Z+Fi5cCKWyajOq+fPn65UCLi0txfz58wEAKpUKCxcutOTHIiIiIiKyKwYmVvDhhx/C09MTarUaI0aMwP/+9z/s378fe/bswbx58/D8888DAMLDw/Hss8+a1Ud4eDgWLVoEAEhJSUFUVBS+/fZbpKSk4Ntvv0VUVBRSUlIAAIsWLUKnTp2s88MREREREdkBywVbQe/evfHtt9/i4YcfRmFhIV566SW9a8LDw7F9+3ad0r+meuONN5CdnY21a9fi6NGjeOCBB/SumT17Nl5/nduZExEREZFzUQiCIMg9iIbi4sWL+PDDD7F9+3ZcvnwZbm5u6NixI+6//3489dRT8PLyqvV1cXFxYt7JjBkzEBsbW2c/O3bswKpVq3Do0CHk5uYiKCgIkZGRmDdvHkaNGmXtH4uIiIiIyOYYmBARERERkeyYY0JERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJGuXjxIp599llERETA29sbAQEBiIyMxNtvv42SkhK5h0dOIDs7G9u2bcPixYsxatQoBAUFQaFQQKFQYObMmSa3t3PnTkycOBGhoaFwd3dHaGgoJk6ciJ07d1p/8OSUUlJS8Nprr2HEiBHifeLj44Pw8HDMmjULe/fuNak93nNUl8LCQnzzzTd49tlnMXToUHTs2BF+fn5wc3NDcHAwhg0bhrfeegt5eXlGtbdv3z48/PDDaNu2LTw8PNCiRQuMHDkSmzZtsvFPQg3FCy+8IP47q1AoEBcXV+9rZH+fE4jq8fPPPwu+vr4CgFr/hIeHC+fOnZN7mOTgDN0/AIQZM2YY3Y5GoxFmz55dZ3tz5swRNBqN7X4YcnjR0dF13iPVf6ZPny6Ul5fX2RbvOTLG77//btQ9FxQUJPz66691tvXqq68KLi4uBtsYM2aMUFpaaqefjJzR0aNHBZVKpXPf7Nmzx+D1jvI+x8CE6nTkyBHB09NTACD4+PgIb7zxhrBv3z5h9+7dwty5c3WCk8LCQrmHSw6s5ptbmzZthBEjRpgVmLz44ovi63r37i1s2rRJOHjwoLBp0yahd+/e4rl///vftvthyOF16NBBACCEhIQICxYsELZs2SIcPHhQSE5OFt577z2hVatW4r3y4IMP1tkW7zkyxu+//y60bt1amD59uvDhhx8KP/zwg5CcnCwkJSUJ3377rXD//fcLSqVSACC4ubkJf/31V63tfP755+I91aFDB2HNmjXCwYMHha1btwq333670fctNV4ajUaIjIwUAAjBwcFGBSaO8j7HwITqVP2to0qlEvbt26d3/q233hJv1ldffdX+AySnsXjxYuGXX34Rrl69KgiCIKSlpZkcmJw5c0b8Bqhfv35CSUmJzvni4mKhX79+4j3LmbzGa8yYMcK3334rqNXqWs/n5OQI4eHh4j0YHx9f63W858hYhu61mn788Ufxnps4caLe+by8PMHPz0/8AicnJ0evj3Hjxhn1QZMar/fff18AIERERAj//ve/671fHOl9joEJGXTgwAHxZp43b16t12g0GqFLly4CAMHf31+oqKiw8yjJWZkTmDz++OPia5KTk2u9Jjk5WbzmiSeesOKIqaH55ZdfxHtl/vz5tV7De46srXPnzuKSLqnly5eL99KmTZtqfX1GRoY48zJ69GhbD5eczMWLFwUfHx8BgBAXFye8+uqr9QYmjvQ+x+R3Mmjr1q3i41mzZtV6jYuLC6ZPnw4AKCgowJ49e+wxNGqEBEHATz/9BACIiIjAwIEDa71u4MCB6Ny5MwDgp59+giAIdhsjOZfbb79dfHz+/Hm987znyBaaNGkCACgrK9M7V/3vrq+vL+69995aXx8aGorhw4cDAHbv3o2bN2/aZqDklJ588kkUFRVhxowZGDp0aL3XO9r7HAMTMqi6Yo23tzf69u1r8LqaN35SUpLNx0WNU1paGq5cuQIA9b7ZVp/PzMxEenq6rYdGTqq8vFx8rFQq9c7zniNrO3PmDP766y8AVR8Ca6qoqMDBgwcBAIMGDYKbm5vBdqrvt/LycqSkpNhmsOR0vvvuO2zbtg0BAQF45513jHqNo73PMTAhg06dOgUA6NixI1QqlcHrar65Vr+GyNpOnjwpPpb+gy7Fe5KMER8fLz7u0qWL3nnec2QNJSUlOHfuHN577z0MHToUarUaALBw4UKd686ePQuNRgOA9xuZrqCgAAsWLAAALF++HEFBQUa9ztHe5wx/2qRGraysDLm5uQCqpo3r0rRpU3h7e6O4uBgZGRn2GB41QpcvXxYf13dPtm7dWnzMe5Jqo9VqsWzZMvH55MmT9a7hPUfmio2NNbgEGgBefPFFPPTQQzrHeL+RJZ5//nlcvXoVUVFRmD17ttGvc7T7joEJ1armmlUfH596r68OTIqKimw5LGrETLknvb29xce8J6k277//vrhs5t577611uSrvObK22267DatWrUJkZKTeOd5vZK7ExESsXr0aKpUKn3/+ORQKhdGvdbT7jku5qFY1k/LqWudazd3dHQBQWlpqszFR42bKPVl9PwK8J0lffHw8XnzxRQBAcHAwPvvss1qv4z1H5rrnnntw/PhxHD9+HAcPHsSmTZswceJE/PXXX3jwwQexbds2vdfwfiNzVFRU4NFHH4UgCHjmmWfQvXt3k17vaPcdAxOqlYeHh/i4oqKi3uurk0g9PT1tNiZq3Ey5J2smNfOepJr++ecfTJw4EWq1Gh4eHti8eTOCg4NrvZb3HJnL398f3bt3R/fu3REZGYkHHngAP/zwA9avX48LFy5gwoQJiI2N1XkN7zcyx5tvvonTp0+jTZs2ePXVV01+vaPddwxMqFbV5QwB46briouLARi37IvIHKbck9X3I8B7km5JS0vDiBEjcP36dSiVSnzzzTeIiYkxeD3vObK2adOm4f7774dWq8VTTz2F/Px88RzvNzLV6dOn8b///Q8AsGLFCp2lVsZytPuOOSZUKw8PDwQGBiIvL08nMao2169fF2/WmolRRNZUMymvvnuyZlIe70kCgCtXrmD48OG4cuUKFAoF1q5diwkTJtT5Gt5zZAsTJkzAd999h+LiYvz6669iEjzvNzLV+++/j4qKCrRv3x4lJSX45ptv9K45ceKE+PjPP//E1atXAQDjxo2Dt7e3w913DEzIoK5duyIxMRGpqalQq9UGSwafPn1afFxbyU0ia+jatav4uOY9Vxvek1RTbm4u7rrrLly4cAFA1TeL1RvD1oX3HNlCs2bNxMcXL14UH4eHh0OpVEKj0fB+I6NUL626cOECHnzwwXqv/+9//ys+TktLg7e3t8O9z3EpFxk0ZMgQAFVTd4cPHzZ4Xc29AKKiomw+LmqcwsLCEBISAkD3nqtNQkICAKBVq1Zo166drYdGDuzGjRsYOXKkWKt/2bJlePLJJ416Le85soXMzEzxcc3lMG5ubujfvz8AIDk5uc71/tX3o7u7O/r162ejkVJj4GjvcwxMyKB77rlHfPzll1/Weo1Wq8X69esBVCX73X777fYYGjVCCoVCXHpz+vRp7N+/v9br9u/fL36rM2HCBJPKJlLDUlJSgjFjxuDIkSMAgJdffhkvvPCC0a/nPUe2sHnzZvFxjx49dM5V/7tbWFiIH374odbXX758GX/88QcA4M4779TJEaDGJTY2FoIg1PmnZkL8nj17xOPVgYXDvc8JRHWIjo4WAAgqlUrYt2+f3vm33npLACAAEF599VX7D5CcVlpamnjvzJgxw6jXnDlzRlAqlQIAoV+/fkJJSYnO+ZKSEqFfv37iPXv27FkbjJycQXl5uTBixAjxHluwYIFZ7fCeI2N9+eWXQmlpaZ3XvPfee+I9GRYWJqjVap3zeXl5gp+fnwBAaNu2rZCbm6tzXq1WC+PGjRPb2LNnj7V/DGpgXn311XrvF0d6n2OOCdXpww8/RFRUFEpLSzFixAi89NJLuP3221FaWopvvvkGq1atAlC1NvbZZ5+VebTkyPbu3YvU1FTxeW5urvg4NTVVr3TmzJkz9doIDw/HokWLsGzZMqSkpCAqKgovvPACOnTogPPnz2P58uU4evQoAGDRokXo1KmTTX4WcnwPPvggdu3aBQC44447MHv2bJ0kUCk3NzeEh4frHec9R8ZasmQJnn32WUyaNAlDhgxBhw4d4OPjg5s3b+L48eP46quvkJSUBKDqflu1ahWUSqVOGwEBAVi+fDkee+wxXLx4EQMGDMDLL7+MHj164MqVK/jggw+wZ88eAFX3+LBhw+z9Y1ID5FDvczYLeajB+PnnnwVfX18x4pb+CQ8PF86dOyf3MMnBzZgxw+A9VNsfQzQajfDII4/U+drZs2cLGo3Gjj8dORpT7jX8/7fThvCeI2O0bdvWqHstNDRU2LVrV51tLV68WFAoFAbbGD16dL2zM0SCYNyMiSA4zvscc0yoXuPGjcPff/+NZ555BuHh4fDy8oK/vz/69esnRtEdO3aUe5jUSLi4uGDNmjXYvn07JkyYgJCQELi5uSEkJAQTJkzAjh07sHr1ari48O2NrIP3HBnjt99+w7vvvot7770XPXv2RPPmzaFSqdCkSRN06NABkyZNwpdffokzZ87grrvuqrOtpUuXYu/evXjooYfQunVruLm5ITg4GHfddRe+/vprbN++XWdjPCJLOcr7nEIQBMGmPRAREREREdWDX+8QEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQETmoJUuWQKFQQKFQyD0UpKeni2OJjY2VeziNTmxsrPj7T09Pt7i9tWvXQqFQoEePHhAEwfIBOqjNmzdDoVAgPDwclZWVcg+HiOrBwISIyAgajQa+vr5QKBTo06dPndcKgoDAwEDxg+TatWvrvH7dunXitZ999pk1h+2QLl++jCVLliA6OhrNmjWDq6srPD09ERoaipiYGCxYsABbtmzBjRs35B5qg1RUVISXXnoJALB48WKHCHxrGjFiBBQKBRYsWGBxW5MmTULXrl1x7tw5rFixwgqjIyJbYmBCRGQEpVKJwYMHAwCOHTuGwsJCg9f+888/yM/PF58nJibW2XbN8zExMRaO1LF98cUX6Ny5M5YuXYq9e/ciNzcXarUaZWVlyMzMRGJiIj766CPcf//9mDdvntzDbZA++ugjXLt2DV27dsV9990n93B03Lx5E/Hx8QCAcePGWdyei4sLXn75ZQDAsmXLUFxcbHGbRGQ7DEyIiIxUHTRotVrs27fP4HXVgYZSqdR5Xt/1QUFB6Nq1q3h8yZIlEAShwSy12bRpEx599FGUlJTAw8MDjz/+OLZu3YqUlBQcOnQIP/30E1555RX07t1b7qE2WKWlpXjvvfcAAM8884zDzZb89ttvqKiogK+vL4YOHWqVNqdMmYJWrVohJycHK1eutEqbRGQbDEyIiIxUczYjISHB4HXV5+6//34AwPnz53HlypVar83OzsbZs2cBAEOGDHG4D4rWotFo8K9//QsA0KRJExw4cACffvopJkyYgL59+6Jfv34YP348XnvtNRw5cgQnT57EvffeK/OoG56NGzciLy8P7u7uDjdbAgC//PILAGDkyJFwdXW1SptKpRJTpkwBAHz88cfQarVWaZeIrI+BCRGRkSIjI+Hh4QGg7lmQ6nP33XcfOnToUOf1jWUZ14EDB3D16lUAwLx589CzZ886r+/SpQsmT55sj6E1KmvWrAEAjBkzBv7+/vIORkKr1WLHjh0AgLFjx1q17alTpwIA0tLSsGfPHqu2TUTWw8CEiMhI7u7u6N+/PwDg0KFDKC8v17smLS0NmZmZAKpmQIYMGQLAvMCkvqpc7dq1g0KhwMyZMwEAZ86cwdy5c9GuXTu4u7ujefPmmDhxIvbv31/vz6bRaPDpp59iwIAB8PX1hZ+fH/r06YN33nmn1p/TVJcuXRIfd+zY0ex2aqsOtnnzZgwfPhzBwcHw9PREREQE/v3vf6OgoMCoNvfs2YMZM2agffv28PLygq+vL3r06IFFixYZnOmydhvXr1/Hiy++iIiICHh6eiI4OBjDhw/H5s2bjerfGBcvXsSBAwcAVCWFGxIXFyf+juPi4iAIAtasWYMhQ4YgMDAQvr6+6N+/PzZs2KDzuoqKCnz++ecYOHAgAgIC0KRJE0RFReG7774zanz79+9Hbm4uXFxcMHr0aL3zhw8fxuzZsxEeHg5vb294eHigdevW6Nu3L5588kn8/PPPBpc99unTB2FhYQCqlhQSkYMSiIjIaP/5z38EAAIAIT4+Xu98bGysAEDo1KmTIAiC8MUXXwgAhB49etTaXp8+fQQAgq+vr6BWq3XOvfrqq2JftWnbtq0AQJgxY4bwww8/CF5eXuL1Nf8olUrhm2++Mfgz3bx5U4iOjq71tQCEPn36CEeOHBGff/nll0b+tm75/vvvxdcvWLDA5NdXS0tL0xnHI488YnDcISEhwqlTpwy2VVpaKjzwwAMGXw9A8Pb2Fn7++WebtnHy5EkhJCTE4OtnzZolfPnll+LztLQ0s3531fcmAOH8+fMGr9uzZ4943a5du4Rx48YZHNvTTz8tCIIg5OfnCzExMQave+ONN+od34svvigAEKKiovTOvffee4KLi0udv2cAws2bNw22X/3/qVWrVkb8tohIDgxMiIhMsGvXLvFD0Ouvv653fvbs2eKHSUEQhFOnTgkABIVCIeTn5+tcW1hYKCiVSgGAcPfdd+u1ZWxg0qdPH8HDw0MICwsTPv74Y2H//v1CcnKysGTJEsHDw0MMfLKzs2ttZ8KECWI//fv3FzZt2iSkpKQI27dvF+6//34BgBAZGWlRYHLhwgXx9R4eHsLu3btNbkMQdAOT6jHVHPOOHTuEyZMni9e0adNGKCws1GtHq9UKY8aMEa8bN26csGHDBiEpKUlITk4WPvzwQ6FNmzYCAMHNzU04dOiQTdq4ceOG0Lp1a7GNKVOmCDt27BBSUlKEr7/+WujXr5/e79/cwKT63gwMDKzzupqByYABAwQAwtSpU4Xt27cLhw8fFjZt2iR07txZvOb3338Xxo8fL6hUKuHxxx8Xdu3aJRw+fFhYs2aNGHAplUrhxIkTdfbbrVs3AYCwbNkynePHjh0Tg5KwsDDh3XffFXbv3i0cPXpUSEhIEL744gvhoYceEry9vesMTN577z1xzOfOnTP+F0dEdsPAhIjIBDdv3hRUKpUAQBg5cqTe+fDwcAGAsHbtWvFYUFCQAED45ZdfdK799ddfxQ9Kb775pl5bxgYmAIS+ffsKN27c0Ltm48aN4jXvvfee3vlt27aJ50ePHi1UVlbqXbN06VKdb6XNCUwEQRDGjh2r005kZKSwePFiYceOHUJOTo5RbdQMTOoa82uvvSZes2jRIr3zq1atEgAIrq6uws6dO2vtKz8/X/ywXNu3+NZo47nnnqvzHqioqBBGjBih8zObG5h06dJFACDceeeddV5XMzABIHzwwQd612RlZQlNmjQRAAjNmjUTFAqF8OOPP+pdVzOoqJ5dqU3NwFUawLzyyivizNPVq1cNtlFQUCBoNBqD5+Pj48U+6ppBJCL5MDAhIjJR9bfXTZo00Vl+de3aNfGDz9mzZ8Xj1TMSzz//vE47L7/8snj93r179foxJTA5duxYrddotVrxW+uJEyfqnR89erQAQHB3dxcyMzNrbUOj0Qjdu3e3ODDJycnR+eZf+ic8PFx46qmnhMOHDxtso2ZgYuyYAwIChPLycvGcVqsVOnToIAAQnn322TrHvGPHjlr/n1qjjfLycqFp06YCAKFnz56CVqut9fUZGRmCq6urxYFJdSDx4IMP1nmddMbEkOnTp+vM9BhSvcSrd+/eBq/56KOPxBkRqblz59b7emNUz14aCgKJSH5MficiMlF1kvrNmzfx119/icerywQ3b94cnTp1Eo9XJ8BLSwxXJ757eHggMjLS7PH06NHDYJUrhUIh7gty4cIFnXMajQZxcXEAqnbbDgkJqbUNFxcXzJgxw+zxVQsKCkJSUhJWrVqFPn366J0/e/YsPv74Y/Tt2xfTpk2rdzM8Y8ecn5+PI0eOiOdOnjyJ8+fPA0C9JXNrFiRITk62ahuHDx/G9evXAQAzZswwWOQgNDQUI0aMqLOP+pSXl+PmzZsAgKZNmxr9ugceeMDguV69epl0nfT+q6m6THBtmyq2bNkSQNXv/ODBg3UPuA4BAQHi4+oKcUTkWBiYEBGZKDo6Wnxcs6pW9ePqQER6/eHDh1FaWgqgqoJR9YesAQMGwM3NzezxRERE1Hm++gNZ9QfTaufPn0dJSQkA1BsYVVcjs5Srqyvmzp2Lw4cPIzMzE9988w2ee+45REdH6+xbsXHjRowfPx4ajcZgW6aM+fjx4+LjlJQU8fGgQYPEClS1/fHx8RGvrflh1hpt1ByTrX//+fn54mNTApPw8HCD52qWGzbmOun9V62+3d4ffPBBuLq6ory8HFFRURg3bhw+//xznDhxwqTNR2v+3NwBnsgxMTAhIjJRdHS0+O22MYFJnz594OXlhcrKSrF076FDh1BWVgbA8v1LvLy86jzv4lL1Vi/9kF/zw2pwcHCdbTRv3tzM0RkWEhKCKVOm4O2330ZCQgKuXr2Kf//73+J4//zzzzpLu5oy5po/a3Z2tlnjrQ7irNWGPX//1fvvABCDY2PUdW9V/38y9jpDGxtW7/bepEmTWnd7j4iIwKZNm9C0aVOo1Wps27YNjz/+OHr06IHg4GBMmzatzn2FqtX8ua21eSMRWZdK7gEQETmbgIAAdOvWDSdOnBA/EBUWFuLYsWMA9AMTV1dX9O/fH3FxcUhISMDtt9/ucBsrOsKO8wEBAXjzzTchCAKWLVsGoGqPkocffrjW680dc80A7ZdffkG7du2Mel3N4MEabdRk69+/v78/VCoV1Gq1TkDkCLZt2wag7t3eJ02ahOHDh+Pbb7/Fb7/9hsTEROTk5CA3NxcbN27Exo0bMWPGDKxdu1YnYKqp5s/taJtLElEVBiZERGaIiYnBiRMnkJOTg9OnTyMtLQ1arRY+Pj5iTkdNQ4YMQVxcnBiQVOebuLq6YtCgQXYde7WaS1uuXbtW57X1nbemuXPnioFJamqqwetMGXPN/ILAwEDxsb+/P7p3727yGK3RhvT3X9dyKEt//wqFAkFBQbh69aqY1+IIau72Xtsyrpr8/Pzw6KOP4tFHHwUAnDp1Cj/99BNWrFiBK1euYN26dejduzcWLFhQ6+tr/txt2rSx0k9ARNbEpVxERGaQ5plUBxwDBw6EUqnUu756FmX//v0oLy/Hvn37AFQt8/L29rbDiPV16NABnp6eAKqWltWlvvPWVDOhva6ZBFPGXDNwqBk4JiUlmTNEq7TRo0cP8bE9fv/V/Z09e9bitqxl//79yMnJMbjbe126dOmCF198Efv37xf/DtW1y3zNn7tbt27mDZiIbIqBCRGRGWouv0pISBBnQKTLuKoNGjQISqUSxcXFiI2NxY0bN/TasTeVSoVhw4YBAHbt2oWsrKxar9NqtVi3bp1FfZmSpFwzsbx9+/YGrzN2zE2bNtWpAtanTx+EhoYCAFatWiXm+pjCGm307dtXnDXZsGGDwd9RZmYmdu3aZXL7UtXB9JkzZwwmottbdTWuQYMGISgoyKw2WrduLc425ebmGryuOrhzdXWttSocEcmPgQkRkRlCQkLQoUMHAMCePXvED9M1Z1Jq8vX1Fb+xfuutt8TjcueXPP744wCqysnOmzev1ipY//vf/3QqSJlj586dmDx5Mo4ePVrndfn5+Xj66afF5xMmTDB4bV1jXrZsmTjmRx55BO7u7uI5FxcXvPTSSwCqSthOnz4d5eXlBvspLCzExx9/rHPMGm24u7tj1qxZAIC//voLb7/9tt7r1Go15s6di4qKCoNtG6v63tRqtTrBn5yqA5OxY8cavGbr1q0oKCgweD7j/9q7n5Cm/ziO4y/nckKOQVnMLpFiUBJb5aJaYQZKJB66GuSgRIU6VGAE/TkE7hbBoINB39VhWQsCPQSL0IPUoX8GjSQIjBWBBoHeBvb5HSTR8rv8pf4+9uv5AE/7fD+fz7542IvPn3cup5GREUnSpk2bXNt9vwVvz549c25KA7BycMYEAH7T/v379f79e3369EnS9ArE7t27Xdvv27dPw8PDM/UcPB6P6wrLf6W5uVnNzc3q7+9Xf3+/otGoTp8+rerqao2NjSmZTOru3buqra1d1I/Zb9++KZ1OK51OKxQKqampSZFIRBUVFSopKdHY2JiGhobU09Mzc+PVzp07C9ZPqa2tnXfOt27dUm9vr6TpGiAXL1786dmOjg49evRIDx48UDqd1suXL9Xe3q5du3YpEAhoYmJCIyMjGhwcVF9fn0pLS3Xy5Mkl7+PSpUu6d++ePn78qHPnzml4eFjHjh3T+vXr9e7dO129elXPnj1b9PuXpL1792rdunUaHx/X48ePVV9fv6j+Fmt0dFTZbFZS4fMl165d09GjR9XU1KSDBw9qy5YtCgQC+vr1q54/f65EIjFz41ZHR8e8fUxOTs6smBw5cmSJvwmAJWO3viMA/Llu3rw5p3J5JBIp2L63t3dO+1AoVLD9Qiu/t7a2FuyntbXVSDIbN26c9/OJiQkTjUZdK7Jv377dvHjxYlGV34eGhszq1atdx/jxr6GhwXz58uWnfmZXfnccx8RiMdc+KioqTDabdZ1TPp83nZ2dpqio6Jfzma8i+VL18ebNGxMMBl2fi8VixnGcRVd+N8aYs2fPGkmmsrLStc3syu8DAwOu7RY6J7f/40LV3merq6v75bv1eDzmypUrrn0kk0kjyXi9XvP58+eC4wGwh61cAPCbftyG9avVjx+3ednexvWd3+/X4OCgEomEIpGIysrK5Pf7FQ6HFY/H9eTJkzm3Wv2OaDSq8fFx9fX16cyZM6qrq9OGDRvk8/nk9Xq1Zs0a7dixQ+3t7RoYGFAmk5lz85Ubx3GUSqV04MABrV27Vj6fT5s3b1ZXV5ey2ay2bt3q+uyqVat0/fp1vX79WqdOndK2bdsUCARUXFysQCCgcDis48eP6/79+3r79u2y9VFTU6NsNquuri5VV1fL5/OpvLxc9fX1SqVSchxnYS95Adra2iRNbz/7XlPHlkLV3me7c+eOenp61NLSonA4rGAwKK/Xq7KyMtXU1Kizs1OvXr3ShQsXXPtIpVKSpldLgsHg0n0JAEuqyJh/cSIRAACLRkdHZ84ROI6jWCxmd0J/oMOHD+vhw4c6ceKEbty4YWUOk5OTKi8vVz6fVyaTUUNDw7KN9eHDB1VVVWlqakpPnz4tuN0SgF2smAAA8BeJx+PyeDy6ffu2crmclTlkMpmC1d6XUnd3t6ampnTo0CFCCbDCEUwAAPiLhEIhtbS0KJ/PKx6PW5mD3+/X5cuXlUgkVFJSsmzj5HI5JZNJFRcXz7kND8DKxK1cAAD8Zbq7u1VVVaXS0lIZYwoWslwOjY2NamxsXPZxcrmczp8/r8rKyjkFLQGsTJwxAQD8MThjAgD/X2zlAgAAAGAdKyYAAAAArGPFBAAAAIB1BBMAAAAA1hFMAAAAAFhHMAEAAABgHcEEAAAAgHUEEwAAAADWEUwAAAAAWEcwAQAAAGAdwQQAAACAdQQTAAAAANYRTAAAAABYRzABAAAAYB3BBAAAAIB1BBMAAAAA1hFMAAAAAFhHMAEAAABgHcEEAAAAgHUEEwAAAADWEUwAAAAAWPcPkMARciNb5W0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -114,14 +112,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AACGAklEQVR4nO3dd5xcVf3/8ddne3aT3fSEFFJJQkhooSYQQQSkoyKIhSKIXRQr6lex4Vf8oWJDVJAmKKB0ROBLSQgBAoSWQnqvm77J7mbL+f1x7+zO3J2ZbTNzZ2fez8djHrfMufeeTW4293PP+ZxjzjlERERERETiKQi7AiIiIiIikr0UMIiIiIiISEIKGEREREREJCEFDCIiIiIikpACBhERERERSUgBg4iIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAGDiIiIiIgkpIBBREREREQSUsAgIiIiIiIJKWAQEREREZGEisKugKSfmZUCU/3NrUBTiNURERERkViFwCB//R3nXH2YlQlSwJAfpgLzwq6EiIiIiLTraOC1sCsRTV2SREREREQkIbUw5IetkZVZs2YxZsyYMOsiOay2tpZZs2YBMHPmTHr16hVyjSRX6V6TTNB9JpmycuVKZs6cGdncmqxsGBQw5IeWnIWhQ4cyYsSIMOsiOay2tpaBAwcCMGLECP3nKmmje00yQfeZZEptbW30ZtblmqpLkoiIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAGDiIiIiIgkpIBBREREREQSKgq7AiIiItLW/v37qampYe/evezfv5/m5uawq5R3mpubGTBgAABr1qyhoEDvWSW+wsJCysrKqKyspKKiAjMLu0oppYBBREQkizjnqK6uprq6Ouyq5D3nHL169QKgqalJQZsk1NjYSH19Pbt27aJXr14ceOCBORVgKmAQERHJIhs3bmTXrl0x+8yMwsLCkGqU3yJviouK9MgkiTU1NeGcA6C2tpY1a9YwatSonGlp0N0vIiKSJerq6mKChQEDBlBZWUlpaWnOPHj0JM3NzezevRuAysrKnHpjLKnV3NxMTU0NmzZtoqmpidraWvbu3Uvv3r3DrlpK6M4XERHJEjt37mxZHzx4MIMHD6asrEzBgkiWKygooLKykqFDh7bs27NnT4g1Si0FDCIiIlli3759Let9+/YNryIi0iW9e/duCfBra2tDrk3qKGAQERHJEk1NTYDXX145CyI9T0FBQcu/3ci/51yggEFERERERBJSwCAiIiIiIgkpYBARERERkYQUMIiIiIiISEIKGEREREREJCEFDCIiIpK3br/9dswMM2PVqlVhV0ckKylgEBEREclBzc3NLFy4kNtvv50vfOELHH300S2zhpsZzz//fIfOc9JJJ7Uc094nkejAzMwYN25ch669du1aCgsLY46NDuy2bNnSsv/DH/5w0nPt3Lkz5lzPPvts0vI/+tGPWsr+5z//6VB9c1VR2BUQERERkdS76667uOyyy8KuRlwrVqzgpZdeYvr06UnL/f3vf6e5uTnh94MHD2bixIm89957vPjii0nP9eKLL8aca/bs2bz//e9PWH727NkAFBYWMmPGjKTnznUKGERERCRvXXbZZVn7UN1dzrmW9eLiYqZOnUpDQwPvvPNOl8531FFH8be//a3b9SorK6Ouro677rqr3YDhrrvuijkmnpkzZ/Lee++xdetWFi9ezKRJk+KWiw4AmpqaWrbjaWxs5OWXXwbgsMMOo7Kyst2fK5epS5KIiIhIDpo8eTK//e1vmTt3Lrt37+b1119vt9tOMhUVFUyZMiXppyPOPfdcAO677z7279+fsNwbb7zBwoULATjvvPMSlps5c2bL+qxZsxKWi3z30Y9+FICXX36ZhoaGhNfeu3dvm/PnKwUMIiIiIjnomGOO4ctf/jLHHXccZWVlYVenxUUXXURJSQnbt2/n8ccfT1gu0rpw9NFHJ2w1ADjxxBNb1hO1GtTW1vL6668DcPXVV9OrVy/27t3LG2+8Ebd89HkUMChgEBERkTzWkVGSmpqauOOOOzj77LMZNmwYpaWlDBgwgBNOOIFf/epX1NbWJjx/c3Mzzz77LN/4xjeYMWMGAwcOpLi4mL59+3L44YfzjW98gzVr1qTpp8tO/fv356yzzgJag4KgxsZG7r33XgA+9alPJT3fqFGjOPDAA4HEAUOkNaFPnz4cffTRHHPMMUnLR/abWUxAkq8UMIiIiIgksHbtWk466SQ+/elP8/jjj7Nx40b279/P9u3bmTNnDl//+tc59NBDWbJkSdzjf/zjH3PKKadw44038tJLL7Ft2zYaGxvZtWsXb731FjfeeCMHH3wwDz74YIZ/snBFgoDHH3+c7du3t/n+qaeeYvPmzRQVFfGxj32s3fNFWgFWr17N2rVr23wf6Y503HHHUVhYyAknnBCzP5pzriWB+uCDD2bgwIEd/KlylwIGERERkTi2bdvGGWecwbvvvktpaSlf+tKXuP/++5k3bx7PPfcc1157LeXl5SxbtowzzjiDXbt2tTlHY2MjBxxwAF/4whe46667mDNnDq+//joPPfQQ3/rWt+jduzf79u3j4x//OIsWLQrhp+y4xYsXc+yxx9K3b1/KysoYMWIE5513HnfeeWfCXIBEzjrrLPr378/+/fu577772nwfaXn44Ac/yKBBg9o9X3t5DJEWg0igEFnOmTMnJjkcYNGiRWzbtq3NefOZRkkSERHpQZqbHTv2JU4UzUX9yksoKEg8xn+6XH311axfv56RI0fy3HPPtZk74KSTTuKjH/0oJ554IitWrOCGG27gZz/7WUyZK6+8kh/+8IcUFxfH7D/yyCM577zzWnIM1q9fz/XXX5+wi0422Lx5M5s3b27ZXr9+PevXr+eRRx7hF7/4BQ888AAHH3xwh85VUlLCRRddxM0338xdd93F5z73uZbv9uzZw8MPPwzAJZdc0qHzBfMYPvGJT7RsR494FCk3ffp0CgoK2L59OwsWLIhJ2Fb+QlsKGERERHqQHfv2M+2nz4RdjYx6/fsfYEDv0oxec9WqVS1vvm+44QbGjBkTt9wRRxzBF7/4RW644QZuv/32NgHD6NGjk15nxIgRfPOb3+SrX/0qjzzyCM65pBOghaGgoIBTTjmFM888k8MOO4wBAwawZ88e3njjDW655RYWLVrEwoULOfnkk3n11Vdb8gna86lPfYqbb76Zl156iRUrVjB27FgAHnjgAWpra6mqquKcc87p0LkmTZrE4MGD2bJlS5u8hMiIR8XFxRx77LEAVFZWMnXqVN566y1mz56tgKEd6pIkIiIiEvD444/T1NREeXk5p556atKykYfKDRs2tJvAvHv3blauXMmCBQt49913effddykvL4/5Ltv8+9//5plnnuGaa67hlFNO4fDDD+fEE0/k6quv5q233uLSSy8FvBaIr371qx0+7/HHH8/48eMBuPvuu1v2R1pZPvrRj3ZqdKdI68GiRYuorq5u2R/ponTEEUe0/FkDCfMYIgHD2LFjGT58eIevn8sUMIiIiIgEvPbaawDs27ePgQMHUlhY2DKaUvBz9tlntxy3adOmNudavXo1X/7ylxk9ejRVVVWMHTuWKVOmMHXqVKZOncpVV13VUjb6QTdb9O3bN+F3xcXF/PWvf2XixIkAPPjgg6xfv77D544kP0cChrVr1/L8888DHe+OFBEJGKKTlqE1AAiOdhTZjm5RWLNmTUvQp9GRWilgEBEREQnYsmVLl47bt29fzPZ//vMfJk+ezO9//3tWr17d7vHJhmjNVkVFRVxxxRUt2y+88EKHj/3kJz8JwNKlS3n55Ze5++67cc4xevTolhaAjoruPhQJAqKDh+D5Itvr169vadlRd6T4lMMgIiLSg/QrL+H1738g7GpkVL/ykoxfs6mpCYABAwbwyCOP0Lt3bwoK2n/PGp3rUF1dzcc//nH27dtH7969+cY3vsHpp5/OuHHjqKqqoqTE+7meffZZTjnlFIA2I/b0FJMnT25Z70wLw9ixY5kxYwZz5szhrrvu4rnnngO8QKKzuRyHHXYYVVVV7Nq1q6Wb0YIFC1qGbQ0GDMOHD2f06NGsWrWKWbNmMWbMGAUMCShgAMxsFPAV4CxgJFAPLAfuA/7gnNuX5PCOXmM08HngA8A4oALYAywGngT+5Jzr2usMERHJGwUFlvEE4Hw0YMAAAGpqapg4cSL9+vXrUMAQ7YEHHmDnzp2A11XnAx+IH+jFm4egp+lOovYll1zCnDlzuO2226irqwPan6wtnoKCAmbMmMETTzzB/PnzqampaQkAJk2aFHc+hRNOOIFVq1Yxe/ZsLr300pZAY9iwYS35FaIuSZjZOcDbwDXARKAc6AccBdwAzDezbt0xZvYpYCHwLeBIoAovWOsHHA/8CFhkZsmzqkRERCQjjjjiCADq6+uZP39+l86xYMECwJvZOFGwAK35Ej3ZwoULW9aHDRvWqWMvvPBCSktLW4KFY489lgkTJnSpHpG8g6amJubOndtm/oWgyP7Zs2dTXV3N4sWLY84jnrwOGMzsCOCfQCVQA3wPmA6cAvzFLzYBeNzM+nTxGjOA24FeQDPwN+B84BjgAuBRv2h/4GEzG9uV64iIiEjqnHPOOS1vzW+++eYunaOxsRGAuro6mpub45bZt29fVs+90BGNjY3cdtttLdud7crTt29fzj//fEpLSyktLW0ZdakrghO4dTRgWLJkCf/6179auoSpO1KsvA4YgJvwHuQbgdOcc9c75+Y65551zl2F1yIAXtDw9S5e41pa/5y/7Jz7tHPuYefcPOfcv5xz5wK/8r/vhdfSISIiIiGaOHEiF1xwAeANK/rrX/86afmVK1dy7733xuw76KCDAC8oiDebcVNTE1deeSUbNmxIUa1T77nnnmvpVhVPQ0MDV155Zcss1eeccw4jR47s9HX+8Y9/UFdXR11dHZ///Oe7Wl2OOuooevXqBcA999zDunXrgMQtBpMnT6Z///6AN99GhAKGWHmbw2BmxwCRu+dW59zcOMVuBC4HDgauNrOfOec6N/e512IBsM0598cEZX5Ma6BwfCfPn9OWbN7De5v2cNzYAQzqoz67IiKSOX/84x+ZN28eq1at4hvf+AaPPPIIl1xyCYcccgilpaVs27aNt956iyeffJJnn32WD33oQ1x88cUtx1944YV897vfpb6+nssvv5w333yTU089laqqKhYsWMDvfvc7Xn/99Zak33S4/fbbY7bffPPNlvUnn3ySVatWtWyPHz++zZv4O+64g3PPPZdzzz2Xk046iYkTJ1JZWUlNTQ2vv/46f/7zn1u6Iw0ePJibbropLT9HR5WUlHDsscfy/PPPs2LFCsDrIhWZFC7IzJg+fTqPPfZYS/kBAwZwyCGHZKzOPUHeBgx43YIi/havgHOu2czuBH4O9AVOBp7q5HUiQzsknInFObfLzKqBgVHl896LS6u5/PZXaWhyDOxdwt+vPI6JQ7vUM0xERKTT+vfvz5NPPsnll1/O3LlzmTVrVptJvqJVVlbGbI8YMYKbb76ZK6+8krq6On7xi1/wi1/8IqbMRRddxGc+85mkOQ7dcfnllyf8LliXSy+9NG7XnZqaGu655x7uueeehOeaOnUq//jHPxLOiJ1JM2fObJnLAWDGjBlJy59wwgk89thjMdvZNtt22PI5YIj8i9gLvJ6kXPRgwjPofMDwHl6ic8J/QWZWiRcsRMoL8MDra2lo8voSVtfs50v3vMHDX5pBeUk+37YiIpJJQ4YM4YknnmD27Nn885//ZO7cuWzatImGhgb69u3LQQcdxPHHH8+5554btxvL5ZdfzsSJE/nlL3/JnDlz2LlzJwMHDuSwww7j8ssv58ILL4x5uM023/72tzn88MOZO3cuCxcuZOvWrWzfvp3S0lKGDBnCUUcdxQUXXMCHPvQhCgsLw64u0LY7UXvzOQS7K6k7UlvWU8f77S4z24r3kP6Wc+7wJOX6AZHxzu53zl3Yyet8Bvizv/l559yf4pT5JfANf/NU59wznblGB+owAlgLXlJPpE9ltrvktleZtWRrzL4LjxrBDRccFlKNpD21tbU89ZQXU5922mkt/UhFUi1X77WlS5fS2NhIUVFRj/ldncuam5vZvXs34LUedHZYVclPXfl3vHTp0uiRoUY659alrYJdkJevas2sjNY3+kn/QpxzO8xsL968CZ3P4oHb8FozLgH+YGbTgEeAjcCBwKdo7R71s64EC35AkMzQyEp9fX2PmUVyf0Njm333vbaOaSMrOffQoXGOkLBFhsQLroukWq7ea83NzS2jtCQaVUcyJ/rvQH8f0hnOOZqbmzv8zFVfX5/mGnVPXgYMQHRH+JoOlI8EDL07eyHnXBNwqZk9CnwXuNL/RHsOuL4bLQtrO1rwlVdeYfny5V28TGZtrS4E2vYh/J+HF7B75dsMzo0XijkrWT9fkVTKpXttwIAB9OrVCzNrebMt2aGmpiOPCyLeMLO1tbXU1ta2zOvQnurq6jTXqnvytW2tLGp9fwfKR8K+Lj2imtnBeC0MUxMUOR64wsyGd+X8uaopQW+5/c3G7UsKadDLHhEREZG0y9cWhuj2646MShQZz7PTfXnM7ES8ydmqgNXA94Gn8fIihgDnAj8BPgbMNLPTnHMLOnmZ9rpKDQXmgTd74rhx4zp5+nD8edU8qNkT97v1+4w3mkfxPx+cmOFaSTJ1dXUtb3tnzpxJWVlZO0eIdE2u3mtr1qyhqamJoqKiNiPuSOY1Nze3tCz07t07ozkMW7ZsYcuWLZ0+rqSkpMuzJEtqbN26lV69etG7d2+mTZvWoWOyvfdHvgYM0U+hHelmVOEvO9UeaWalwL14wcIm4Djn3KaoIuuAP5rZC8BrwDDgDuCozlynvcSY6KHBSktLe0xyYLCFobDAaGpu3XnPvPWcOGEIZ0w9IMM1k44oKyvrMfea9Gy5dK8VFBS09JVXgm12KSgoyOjfyZ/+9Cd+9KMfdfq4UaNGxcytIOEwMwoKCjr8u6m0NLvnmsrLgME5V2dm24ABQNKEYX+UpEjA0OFcAd8HgUg3o98FgoXo+iwws7vxchummdlhzrm3OnmtnNPYHBsxfPHk8fx51nLqovoifetfbzNleBUj+5entS7OObbW1LN2+z7Wbq9lzfZ9rNm+jz11DTQ7P7nJQbNzuKhl79IihlaVMbiylKGVZQzxP0Oryuhdmpf//ERERKSHyecnloV4Mz2PN7Mi51zbIXk8k6LWF3XyGgdHrb/RTtnXaU2GngTkfcDQFAgYJh/Qhx+fO4Vv/evtln176hr50r3zuf+zx1NS1P03P845Vm/bx7sbdvHO+l0s21zDmu37WLtjX0ygkgq9S4uYPKyS6eMGMGP8QA4b0TclP4OIiPR81113Hdddd13Y1RAB8jtgeBEvYKgApgGvJCj3vqj1zs7bHh2EtPdnXZzguLzV0BT7gF5UUMBHjxrBS8ureejNDS3731q7k0tue4XzDx/OyZMGM6SyY32Zm5odq7bt5d31u3h3vRcgLNiwmz11mfnjr6lv5NWV23l15XZ+88xSyksKOXp0/5YA4uADKiks0EyTIiIiEq58DhgeAq711y8nTsBgZgV4oxsB7MQb/rQzVkatnwg8lqggsYHJyoSl8khjIImhqNAwM376oam8tW4XK6v3tnz38ortvLzCm19v6vAq3j9pMKccPJgpw6ooKDBq6htZvHE3izbuZuHGPSzauJv3Nu2htqEpoz9TMvv2N/HCkq284E9W17e8mDOmHMAnjzuQQ4ZVhVw7ERERyVd5GzA45141s9l4D/JXmNkdzrm5gWJfp7Vb0U3OuYboL83sJFqDiDucc5cFjv8/YB9QDnzezO52zr0TrIuZnQF8yN9cD7zZlZ8p1zQGJskpLvS66/QuLeL3Hz+CD/3xJfY3tu0m9I7fWnDT/y1lUJ9SyksKWb1tX0rqVFJYwIh+vRjZv5yR/XsxqHcZRYVeK0CBGQUGZt46wM59DWzaXcdm/7NpVx27O9iCsXNfA/e+uoZ7X13D4SP78oljD+TsQ4fRq6QwJT+LiIiISEfkbcDguxqvm1Ev4Ckzux4vAOiFN8zpVX65JcCNnT25c26nmf0v8GO8yeJeMrPf4Q2rugNvWNXzgM/QOifGd5xzmmEAaAi2MER1zzlkWBW//djhfPOBt5N2Idq6p2szJw6oKGHK8CoOGVbJ2EG9GdmvFwcOKGdInzIKutlNqHZ/E5t317GiuoaXlm1jzvJtLNqYfIKmN9fu5M21O/nJYwu5YNpIPn7sgYwf3Ol5BEVEREQ6La8DBufcfDO7CLgbqASuj1NsCXCWcy7+hADt+ynQHy846Y3XDeraOOUagO865+7u4nVyTmMwh6EwNiH4g1MO4NgxA3juvS383+ItzHpvK3vqO59/MKhPKVOHVzFleBVThlUydUQVQyvLYoajTaVeJYWMHljB6IEVvH/SEAC2793P3OXbmLO8mrnLt8V0t4q2u66R2+as5LY5K5kyvJLykuz6J9zc3MyO7YX0L3XsHbyRkycfwAFVuTHcpYiISL7KrqeNEDjnHjWzQ/Ee6M/CG2Z1P7AMuB/4vXOuy/1ZnHMO+FrUsKknAKPwuinV+Nd5AbjFObekOz9LrmkIjJJUXNj2Ab5fRQkfPnIEHz5yBA1NzcxbtZ1nF23h2cVbWBF46C4sMMYNquDgAyqjPn0Y3Cf8CZ/6V5Rw1qEHcNah3pwSa7fv419vrOMfr65l0+66uMe8uz55q0R4jOV7jHkPL4KHFzF2UAUnjB/IjPEDOW7sAKp6Fbd/ChEREckaeR8wADjnVgPX+J/OHPc80KHX0M651/GGTpUOCrYwtDdiUHFhAdPHDWT6uIF8/+zJrKzey7xV2ykwY9LQPowf3Juy4p7R/39k/3K++oEJfOnk8fzf4i38/ZU1zPKToXuaFVv3smLrXu6cu5oCg0NH9OWy6aM57/BhaWvFEempCgsLaWxspLGxkaamJgoLe8bvLBHxNDc309TkDaiSS/9+FTBIVmpu9iZCi1Zc2Lk5CsYMrGDMwIr2C2axosICTj9kKKcfMpTV2/Zyz6truP+1dWzfuz/sqnVJs/PyMb76zzcpLynktEOGhl0lkaxSXl5Ofb2Xe7Vz504GDBgQco1EpDNqamrwOpeQMzPQgwIGyVLBWZ4hNuk5H40aUMG1ZxzMNadOYM6yatbvjN9VKUwN+/fz9oJFrNxjrNpXwq4kCelPvLNRAYNIQN++fdmxYwcAW7ZsoampicrKSkpLS9UiJ5LFmpubqampYdOmTS37+vTpE2KNUksBg2Sl4JCq0PkWhlxVWlTYkiydbWpraxmwYyEn4zjlAyeyYsd+XlxWzZxl1cxbtSNmGNxVKRrqViSXlJWVUVVVxa5duwDYtm0b27Ztw8xyqntDT9LY6L342Lq1Z3YLlcxoampqaVkAr3WhoqJn93KIpoBBslJwSFWgZb4D6RkKC4xDR/Tl0BF9+cJJ43lu8RYuv31ey/ertsUfCUok3x1wwAGUlJTEPKA651oeXCVznHPU1tYC3gOgWnmkI3r16sWBBx6YU/eLAgbJSsGEZ4CiArUw9GSjA/kkO/c1sHPffvqWl4RUI5HsZGYMHDiQyspKampq2Lt3L/v376c5TsurpFdzc3NLwNC7d28K9P+QJFBYWEivXr3o06cPFRUVORUsgAIGyVLxchjiDasqPceIfr0oLDCaov5uV23bx+EKGETiKikpoX///vTv3z/squSt2tpaFi9eDMC0adNyKolVpDMUKktWaojXwqAchh6tuLCAEf1i/7NdrW5JIiIiWU9PYJKVmjRKUk4aPSC2W1KiGa1FREQkeyhgkKwUN+lZAUOPN3pAecz2ao2UJCIikvUUMEhWijesanszPUv2CyY+q4VBREQk+ylgkKzUGGhhKC60nBtxIB8FuyQph0FERCT7KWCQrBRMetaQqrkh2MKwY18Du/Y1hFQbERER6Qg9hUlWCg6rqknbckNkaNVomsBNREQkuylgkKwUbGEo1pCqOSHe0KoKGERERLKbnsIkKwVzGDRCUu4YFchjWFWtkZJERESymQIGyUrBeRgUMOSOMYGhVdXCICIikt0UMEhWapP0rC5JOaNNC4MCBhERkaympzDJSkp6zl1jBga7JClgEBERyWYKGCQrtUl61rCqOWNUoEuShlYVERHJbnoKk6zUJulZLQw5Y0S/8jZDq67erlYGERGRbKWAQbJSY7NyGHJVSVEBw/vGDq26Ut2SREREspaewiQrNQRaGIo1SlJOCc74vHqbhlYVERHJVgoYJCs1thklSQFDLhkdHFpVLQwiIiJZSwGDZKU2oyQp6TmnaGhVERGRnkNPYZKVNKxqbhszMDh5m7okiYiIZCsFDJKV2nRJUgtDTgm2MGzfu59dtRpaVUREJBvpKUyyUpukZ7Uw5JSR/coJ5rGvVrckERGRrKSAQbKShlXNbSVFBQzvFzu0qroliYiIZCc9hUlWCk7cpmFVc8/oYOKzRkoSERHJSgoYJCsFuyQp6Tn3tAkY1CVJREQkKylgkKykLkm5Lzh5m1oYREREspOewiQrtZ2HQS0MuSY4eZtmexYREclOChgkK2lY1dwXbGHYtnc/u+s0tKqIiEi20VOYZKU2Sc/KYcg5cYdWrVYrg4iISLZRwCBZqUEzPee8eEOrrlTis4iISNZRwCBZSV2S8kNwpKTVSnwWERHJOnoKk6ykmZ7zQzBgUAuDiIhI9lHAIFlJw6rmh1EaKUlERCTr6SlMslIw6VnDquamMZqLQUREJOspYJCs1KaFQQFDTho1QEOrioiIZDsFDJKV2rQwqEtSThrZv5eGVhUREclyegqTrBQcVlVJz7mptKiQYX1jh1ZdpcRnERGRrJKRgMHMZvqfXu2XbjmmLHJcOusm2UnDquYP5TGIiIhkt0w9hT0PPAuM6cQxw6OOkzzTtkuSWhhyVXCkpFUaKUlERCSrZPK1bVef+PSkmIcaAknPxcphyFnBuRjUJUlERCS7ZPNTWKRuTaHWQkKhYVXzR5vZnhUwiIiIZJVsDhhG+ctdodZCQtEmh0FdknLW6IGxXZKqa/azR0OrioiIZI2idJzUzA5M8NUBZlbTzuGlwDjgJ4ADFqSybtIzNDYHWxiyObaV7hjZvxwzcFF/5au37WPK8KrwKiUiIiIt0hIwACvj7DPgqS6c685u1kV6oDYBg1oYclZpUSHDqnqxfmdty76V1XsVMIiIiGSJdL22tcAn0f5kn3rgl86529JUR8liDU1Kes4nwaFVlccgIiKSPdLVwnB5YPtveN2L/gdYn+Q4B9QBG4H5zrn2ui9JjlLSc34ZNaCcF5e1bq/UbM8iIiJZIy0Bg3PujuhtM/ubv/qQc25hOq4puaVRw6rmFbUwiIiIZK90tTAEnewv4+U2iMRwztGgidvyyijNxSAiIpK1MhIwOOdeyMR1JDc0BRKeQaMk5boxCYZW7VNWHFKNREREJEJPYZJ1giMkgXIYct2Ift7QqtFWb1Meg4iISDbIVJekFmZ2GHAiMBboAxS2c4hzzl2R9opJ1ogbMKhLUk4rK247tKrmYhAREckOGQsYzGwicBtwXGcOwxs5SQFDHgnO8gxKes4Hw/qWxQQMW/fUhVgbERERichIwGBmw4FZwEBa52WoAXYAbZ8OJa8FE55BXZLywaA+pTHbW2vqQ6qJiIiIRMtUC8P3gEF4rQV/Bf6fc25Jhq4tPUxwSFWAIrUw5LxBvQMBwx4FDCIiItkgUwHDB/GChTudc1dl6JrSQwUnbQMoVg5Dzgu2MFTX7A+pJiIiIhItU69th/nLOzN0PenBGuLkMGhY1dw3UC0MIiIiWSlTT2E7/OXODF1PejANq5qf2uQwKGAQERHJCpkKGF7zlxMydD3pwYJdkgoMChQw5Ly2XZLqaY4TPIqIiEhmZSpg+C3e6EjKX5B2BZOelfCcH4IBQ2OzY1dtQ0i1ERERkYiMPIk5554GfgGcbGY3m1lxJq4rPVNwWNVitS7khQEVpW32aWhVERGR8GVqHoZLgEXAS3itDOeY2QPAYmBfe8c755QsnUeCE7ephSE/lBQV0Le8mJ37WlsVtu6pZ8KQPiHWSkRERDI1rOrteMOqRhwAfLmDxzo0ulJeCSY9a0jV/DGod2mbgEFERETClclXt9aNj+SR4LCqGlI1f8RLfBYREZFwZaqFYUyGriM5IDhKUpFaGPKG5mIQERHJPhkJGJxzqzNxHckNwVGSipXDkDc0F4OIiEj20ZOYZJ1gDkOhRknKG20CBnVJEhERCZ0CBsk6bbokKWDIG4PUJUlERCTrZCqHoYWZHQRcAhwPDAV6Aac755ZFlZkCHAjsdc69kOk6SriCSc/qkpQ/BirpWUREJOtkLGAwswLgBuBqvJaNyGtjB5QEih8IPAY0mtkY59z6TNVTwhfskqSk5/wRbGHYtnc/jU3NmotDREQkRJn8X/gW4GtAIbABeCBRQefcE8BKv+wFGamdZI3gxG3FGlY1bwRzGJyD7Xv3h1QbERERgQwFDGZ2CnCFv3k9MNo5d2E7h92P1wrx/nTWTbJPg4ZVzVv9K0oIpqwo8VlERCRcmXp1e5W/fMI5933nXFMHjnnVXx6SpjpJlgoOq6ruKPmjsMDoX6HEZxERkWySqSex4/FyFW7txDHr/OXQ1FdHslmwhaFYoyTlFc3FICIikl0yFTAM9perOnFMg7/M+EhOEq4mzcOQ14IBQ3WNchhERETClKmAYa+/HNSJY0b4y+0prksbZjbKzG40s8VmttfMtpvZPDP7ppmVp/haHzCz281smX+tXWa2xMweMLPPm1nvVF6vJ2qT9KwuSXlFczGIiIhkl0y9vV8BHAlMBp7u4DFn+MsFaamRz8zOAe4GKqN2lwNH+Z8rzeys6HkiunidfsDfgPPifF0JHAR8BJgLvNmda/V0DRpWNa8N7BM7yrKSnkVERMKVqVe3T+GNePRFfz6GpMxsMnAZXt7DE+mqlJkdAfwT74G9BvgeMB04BfiLX2wC8LiZ9enGdarwAqVIsPAg8AngOOBo4MPATbTmbeS1YAtDkYZVzSttWxjqQqqJiIiIQOZaGH4LfAUYB/zJzL7gnGuMV9DMTsV7E18GbKP1wT0dbsKbaboROM05Nzfqu2fNbCneZHMTgK8D13XxOr8DpgH1wIXOuUcC378GPGhmkXkq8lqbpGe1MOQV5TCIiIhkl4y8unXObQY+529eASw3sz9GFbnazP5sZguAJ4FhQDNwmXOuJh11MrNjgBP9zVsDwULEjcCiqDoWd+E6JwCf8je/HydYaOE8cQOpfNJ2WFUFDPlEoySJiIhkl4z19XDO/R24GNgNjAQ+i9flCOBKvEDiYLyuSzXAR51zj6exSudHrf8tXgHnXDNwp7/ZFzi5C9f5kr/cBfy+C8fnncbgxG3qkpRXgl2SdtU2UN/YkalbREREJB0y+iTmnLsPGA/8EHgdaMILECKfBcDPgfHOuQfTXJ0T/OVevy6JvBC1PqMzFzCzElrzFp52ztX5+wvNbKSZjTazss6cMx+oS1J+C7YwgLoliYiIhCnjr26dc9uccz9xzh2Dl6cwGDgAKHXOTXXOfc85tyUDVTnYXy5rpxvQ4jjHdNRheD8jwDtmVmlmvwGqgTXASmCXmT1tZid18tw5qynQJalQLQx5papXcZsgsVrdkkREREIT6qRofpef6kxf13+rP9DfTDoykXNuh5ntBSrwulJ1xuSo9QK85OaDAmVKgA8Ap5jZtc65X3TyGpjZiHaKtMyWXV9fT21tbWcvkVF1DYH4rbkp6+ssnrq6urjrnTWwooSNu1uDhPXb9jBhYNuWB8lfqbrXRJLRfSaZUl+f3S/G8nUW5eghUjuSVB0JGDo7qVr/qPVv47U2PAn8AHgbbzjXjwD/C1QB/2tmi51zD3fyOms7WvCVV15h+fLlnTx9Zm3YWEB049fqlct56qluTYMhIZg1a1aXjy1qKsTrpeh54dX5NKx2iQ+QvNade02ko3SfSTpVV2f8/Xmn5Gtfj+i8gY50jo6Efb06eZ2KwDWfBs52zs1zztU757Y65/4EnI03KhTAz80srzvtB1IY0ETP+aeyJPYm2NMQUkVEREQktS0MZvasv+qcc6fE2d8VMedKkeh2xZKEpVpF+kJ0tl9MsP3y2865NsO9OOdeNLN/Axfg5UlMxWuB6Kj2ukoNBeYBHHvssYwbN64Tp868+7e8CTu2t2wfPHEip00/MLwKSYfV1dW1vIWbOXMmZWVdy+mfXbeIBTs2tmz3HXogp502MSV1lNyQqntNJBndZ5Ip2d77I9Vdkk7yl8G+Ayf5+zrz5jxSPh39EPZErXekm1GkpaCzc0JEX2erc25+krL/xQsYwJv9ucMBg3MuaR5GdINFaWkpvXp1tqEks5oDt0mv0pKsr7O0VVZW1uW/twP6VcRs76ht0j0gCXXnXhPpKN1nkk6lpdmdp5fqgGEW8R/wE+0PhXOuzsy2AQOApAnDZtaP1oChw7kCcconfagPlB3UyevklOA8DBpWNf8M7K3J20RERLJFSgMG59xJndkfsoV4Mz2PN7OiJEOrTopaX5SgTCILotYL2ykb/X1ez/bc0GamZyUx5Js2sz3XKGAQEREJSz4/ib3oLyuAaUnKvS9qfU5nLuCcW4033wLA6HaSmaMTC9Z35jq5pqk5toWhsEAtDPkmGDBoHgYREZHw5HPA8FDU+uXxCphZAXCJv7kTeK4L1/mXv6wEkiVvfzhq/cWEpfKAZnqWQYEuSXv3N7G3Pq8b3kREREKTtwGDc+5VYLa/eYWZHR+n2Ndpnd35JudczOCOZnaSmTn/c3uCS/2G1tGSfmVmlcECZvZJWhPGH3fOdTZXIqc0NgW6JGmm57wzsE/b5K9qdUsSEREJRUaexMxsqpmtMLOlZja8A+WHm9kyM1tuZhPSWLWr8YZKLQKeMrNrzew4MzvZzG4BbvDLLQFu7MoFnHNr8CZqA2+41FfN7HIzm+Zf53fA7f73u4GvdfFnyRmNzWphyHcVJYX0Ko5N+1His4iISDgyNdPzJ4HRwH+dc+32z3fOrTezJcDp/rE/aOeQLnHOzTezi4C78boMXR+n2BLgLOfcnjjfdfQ6vzSz/nizPU8EbotTbAtwvnNuaVevkysa1MKQ98yMQX1KWbN9X8s+tTCIiIiEI1NPYu/DG1b1kU4c8zDePAypnrQthnPuUeBQ4Nd4wcE+vHyF1/Ae8I9wzi1LwXWuBWYAdwGr8GaP3oU3odr/ABOcc3O7e51cEBxWtUgtDHmpzUhJamEQEREJRaZaGCLdijoze/G7/jLt07v6oxld4386c9zzdGIyOj8gUFDQjsbAsKrFGlY1Lw3sHTsJuwIGERGRcGTqSSwym3JnZkqOlG2TJCy5LThKkoZVzU+ai0FERCQ7ZCpg2OEvh3bimEjZLucOSM8UnIdBSc/5aVDvspjtrXv2h1QTERGR/JapgCGSyPvBThxzhr9cnuK6SJZT0rOAWhhERESyRaaexP6L19f/KjM7uL3CZnYI8Bm8ROkn01w3yTLBYVWV9JyfgjkMmu1ZREQkHJkKGG4G9gJlwLNmdnaigmZ2LvAM0AtvjoQ/ZKSGkhWcc3G6JKmFIR/Fa2FwziUoLSIiIumSkVGSnHPVZvY5vCFFBwMPm9kK4EVgo1/sAOBEYAxea4QDPu+c25yJOkp2CCY8AxQp6TkvBQOG/Y3N7K5rpKpXcUg1EhERyU+ZGlYV59zfzawAr7WhHBgHjA0UizwZ7sULFu7OVP0kOwSHVAW1MOSrgb1L2+zbuqdeAYOIiEiGZfRJzDl3FzAe+F/gHX+30dqi8DbwM2C8goX8FLeFQTkMeamsuJA+ZbHvNDQXg4iISOZlrIUhwjm3Cfgu8F0zKwL6+19td841Zro+kl0am9q2MGgehvw1qE8pe+pafy1Ua6QkERGRjAu1r4dzrtE5t8X/KFiQNgnPAMUaVjVvDQp0S1ILg4iISObpSUyySkOcgEFdkvKX5mIQEREJnwIGySrxuiQp6Tl/BROf1cIgIiKSeSnNYTCzZ/1V55w7Jc7+rog5l+Q2Dasq0YItDMphEBERybxUJz2f5C+DT30n+fs68+QXKa+ZmvJIvGFVlfScv9p0SVILg4iISMalOmCYRfwH/ET7RWI0NgVneTbMFDDkKwUMIiIi4UtpwOCcO6kz+0WCGgI5DEUaISmvBUdJ2rZ3P83NjgK1OomIiGRMSp/GzOxQ/1OSyvNK/ggOq6r8hfwWbGFoanbs2Lc/pNqIiIjkp1S/vn0TeANvNucWZvYD/zMwxdeTHBNMetaQqvmtf0UJwR5pGlpVREQks9LR3yPeE951wA+BwWm4nuSQYNJzkYZUzWvFhQX0L49tsFQeg4iISGal+mmswV/2SvF5JU+0SXpWl6S8p7kYREREwpXqgGGzv5yW4vNKnmiT9KwWhrynuRhERETClY5hVT8O/MLMxgFLaG11ADjPzI7q7Emdc3emqH6S5RqDSc/KYch7GlpVREQkXKkOGH4OfAioAr4R+M6An3bhnA5QwJAngi0MxRpWNe8pYBAREQlXSp/GnHMLgJnAM3gtC0ZsErR18SN5IpjDoBYGGdg7kPSsLkkiIiIZleoWBpxzrwOnmVkRMBAoA1bgtRScDixN9TUld2geBglqk8OwR/MwiIiIZFLKA4YI51wjsAnAWgdS3+CcW52ua0rP16BhVSVgUO+ymG21MIiIiGRWSgMGM/uKv3qXc25H1Fc/wmth2JLK60nuadMlSS0MeS/YwrB9734ampopVjApIiKSEan+H/c3wK+BAwL7T/I/FSm+nuSYNknPeijMe8EcBoBtNeqWJCIikilp65IU8D68FgYFDJKUhlWVoH7lJRQWWEx+S3VNPUOrypIcJSIiIqmS6te3df6yb4rPK3miMThxm4ZVzXsFBdZ2pCQNrSoiIpIxqX4aW+Uvz07xeSVPNARyGIrVwiBoLgYREZEwpbpL0hPAJODbZnYKbWd6/qmZ7ezkOZ1z7ooU1U+yXKNGSZI4BvYOBAwaKUlERCRjUh0wXA+cC4wHjgaOivrOgPM6eT7Dy31QwJAn2uQwaJQkAQYFAwa1MIiIiGRMSgMG59x2MzsK+BJwCjAcKAVG4T34byS2xUEkhoZVlXjadElSC4OIiEjGpGOm5914LQ3XR/aZWaSfyWnOuYWpvqbkjjZJz+qSJCiHQUREJEx6GpOs0tCspGdpK5jDUK0WBhERkYzJ1DwMJ/vLlRm6nvRQGlZV4lELg4iISHgyEjA4517IxHWk5wvmMKiFQaBtwLCnrpG6hibKigtDqpGIiEj+yFQLQwszK8BrcTgeGAqUA99zzm2MKlPi163JOadXiXkk2CVJMz0LwJDKtrM6L9tSw5ThVSHURkREJL9ktL+HmZ0NLAOeAn4EfB64FOgXKHolsAfYYmYVmayjhEtdkiSe3qVFjBpQHrPv3fW7QqqNiIhIfsnY05iZfQZ4GBiNN7/CNn8Zz1+BXUBv4EOZqJ9kB83DIIkEWxPeUcAgIiKSERkJGMzsIOAP/uazwGTn3OBE5Z1z+4F/4QUUp6W/hpItNKyqJDI1EDCohUFERCQzMvU09jW8nIQFwJnOucUdOGa2vzwibbWSrBNsYVDSs0QEA4ZFm/bQEAgwRUREJPUyFTC8H2+m59/4rQcdscxfjkxPlSQbBR8A1SVJIqYMiw0Y9jc2s2TznpBqIyIikj8yFTCM8JdvdeKYvf6yPGkpySnBYVXVJUkiqsqLObC/Ep9FREQyLVNPY5GnwM48/A/wl3oiyCOa6VmSCXZLUuKziIhI+mUqYFjvL8d24pgT/OWKFNdFspiGVZVk2o6UtDukmoiIiOSPTD2NPY834tGlHSlsZlXA5/BaJp5NX7Uk27TtkqQWBmnVJvF5424lPouIiKRZpgKGW/Ae/t9nZpclK2hmA4CH8GaBbgT+lO7KSfZobFYLgyQ2ZXhlzPb+xmaWbq4JqTYiIiL5ISNPY865+cBNeK0Mt5rZP83swqgi083s42b2B7zRkWbiBRg/cc6tzkQdJTu0mbhNLQwSpW95CSP794rZp8RnERGR9Mrk69uvAzfjBQ0XAPfSmgx9C3AXXjekKr/MTc65n2awfpIFgl2SlPQsQUp8FhERyayMBQzO80XgdLycBocXGER/AOYCZznnrslU3SR7tJ2HQV2SJFbbxGcFDCIiIulUlOkLOueeBp42sz54szgPBgqBbcCbzrnqTNdJsoe6JEl7ghO4Ldq4m8amZs3ZISIikiYZDxginHN7gFlhXV+yU7CFoVgPgRIQ7JJU39jM0i01HHxAZYIjREREpDv0NCZZpc2wqgVqYZBY/SpKGN43NvFZ3ZJERETSJ5QWBjMbApwETAH6+7u3A+8CzzvnNodRLwmfhlWVjpg6vIr1O2tbtt9dv4sLjxoZYo1ERERyV0YDBjM7APgV8OEk1240s38BX3fObcxY5SQrKIdBOmLqiCqeXLCpZVtDq4qIiKRPxl7fmtlhwNvAhUAxbUdIinyKgYuAt8xsaqbqJ+Frana42HhBw6pKXMGRkhb6ic8iIiKSehkJGMysAngcGIAXFDyDFxSMBsr8z2i8YOIpv8xA4HEzK89EHSV8wYRnUJckiS+Y+FzX0MzyrXtDqo2IiEhuy9TT2JeAYUAz8Bnn3GnOufudc2ucc/v9zxrn3APOuQ8CV+LN0zAc+GKG6ighC3ZHAnVJkvj6K/FZREQkYzIVMJyHFwDc7py7tb3CzrnbgL/htTR8KM11kywRr0uJhlWVRKYMjx1GVXkMIiIi6ZGpp7EJ/vIfnTjm3sCxkuMamuK0MGhYVUkg2C1JLQwiIiLpkamAobe/3N6JY3b4y4oU10WyVHBIVUCz90pCbRKfN+ymKU63NhEREemeTD2NbfWXB3fimEn+sjrFdZEsFZy0DdTCIIkFWxhqG5pYvrUmpNqIiIjkrkwFDC/j5SNcY2btzv3gl7kGL+/h5TTXTbKEkp6lMwb0LmVYVVnMvnfWqVuSiIhIqmUqYLjTXx6ON1TqsEQF/e8eBY70d92e1ppJ1oib9KxhVSWJYLck5TGIiIikXkZmenbOPWpmDwHnAx8AVpjZU8ArwBa8loQhwLHAqUCJf+iDzrnHM1FHCV8w6bnAoEBdkiSJqcOreGrh5pZtjZQkIiKSehkJGHwX47U0fBQvIDjL/wRFnhDvBy7JTNUkGwSTnpXwLO2ZMiK2hWGBn/hcqEBTREQkZTL2ROacq3fOXQScA/wHqMULDqI/tf53ZzvnLnLO1WeqfhK+YAtDsR76pB1ThrVNfF6hxGcREZGUymQLAwB+F6PHzawQGAv097/aDqxwzjVluk6SHYI5DGphkPYM6lPK0MoyNu2ua9n3zvpdHDSkT4i1EhERyS2hPZE555qcc0udc6/4n6UKFvJbcJSkYo2QJB2gxGcREZH00itcyRrBgEH90KUjgvMxKPFZREQktdISMJjZcWb2b/9zQSeP/WjUsdPSUT/JTm26JGlIVemAqSMqY7YXaMZnERGRlErXE9lNwHnASODhTh77sH/cecCvU1wvyWJtkp7VJUk6INglad/+JlZWK/FZREQkVVIeMJjZscDR/uZXnHMNnTneObcf+AreqEkz1MqQPzSsqnTF4D5lDKksjdmnPAYREZHUSccT2YX+8kXn3NyunMA/7gV/82MpqZVkvcZAC0ORchikg4J5DO+s2x1STURERHJPOgKG4/Fmbu5sV6SgR/BaGaZ3u0bSIzQEchiK1cIgHdR2pKSd4VREREQkB6XjiWycv3ynm+d5N3A+yXHBUZKKlMMgHXTYiL4x22+t3UXtfo3SLCIikgrpCBj6+sut3TxP5Pi+yQpJ7giOklSsUZKkg44a3S9mGN79Tc3MW7U9xBqJiIjkjnQ8ke3zl5VJS7UvMlVrbTfP0y4zG2VmN5rZYjPba2bbzWyemX3TzMrTdM1yM1thZs7/rErHdXoSzcMgXdWnrJhDR8R2S5qzvDqk2oiIiOSWdAQMkZaB8d08T+T47rZUJGVm5wBvA9cAE4FyoB9wFHADMN/MuvuzxPNjYEwazttjtUl6Vpck6YQTxg+M2X5p2baQaiIiIpJb0hEwzMdLVj6jm+c5K+p8aWFmRwD/xGsNqQG+h5dkfQrwF7/YBOBxM+sT9yRdv+5XgTpgT6rO29M1NCvpWbpu+rjYgOHdDbvYuW9/SLURERHJHel4IvuvvzzfzA7pygnMbApwPt5oS/9NXrpbbgJ6AY3Aac65651zc51zzzrnrgK+5ZebAHw9FRc0s0K8YKQQuB5QR2ufhlWV7jhyVF/Kilt/pTkHL69QK4OIiEh3pSNg+AewxT/3A2Y2oDMHm9lA4F/+8Vv986WcmR0DnOhv3ppgzogbgUX++tVmVpyCS18NTAPeA36RgvPljDZJz2phkE4oLSrk6NH9Y/bNUbckERGRbkv5E5lzbh/wQ7xuSROAN83svI4ca2bn43VBOgivdeEH/vnS4fyo9b/FK+Ccawbu9Df7Aid354JmNgovdwHgc/6s1uJr0LCq0k3BbklKfBYREem+onSc1Dl3i5kdCXwGGAb82x8F6EngdbwWiL1ABTAEOBIv52EUXqAB8Gfn3J/TUT/fCf5yr1+nRF6IWp8BPNWNa/4R72e+yzn3fDfOk5OCLQxFGlZVOmnG+NgGzRVb97JpVx1Dq8pCqpGIiEjPl5aAwfc5YBNeInEBMNrfl4wBzcBPgR+lsW4AB/vLZc65xiTlFsc5ptPM7GPAmcAOUpQPkWsaAjkMxWphkE46ZFgVlWVF7K5r/Sc9Z1k1H5k2IsRaiYiI9GxpCxiccw74oZk9DHwXOA8v0TeRJuAh4OfOuTfSVS8AMysDIn0X1iUr65zbYWaR1pCRXbxeP+A3/uZ3nHMpHSrWzNp7GhoaWamvr6e2Nu1TW3RJ/f6GmG3X3Jy1dZX46urq4q5n0jGj+/HM4tZ/Yi+8t5kzJ3cqlUp6gGy41yT36T6TTKmvrw+7Ckmls4UBAP/h/wIzq8LrBnQYMABvYrY9wDbgLeBF59yudNfHFz1Eak0HykcCht5dvN4v8bpezaV1uNZUWtvRgq+88grLly9PQxW6b9WaAqLTajauX8tTT60Or0LSLbNmzQrlun3rjeh3Ey8s2sh/y9dharDKWWHda5JfdJ9JOlVXZ3fOXdoDhgg/GHjc/4QtukNzRxKPI2Ffr85eyMxmAp/GG7r1c37Li8QR6JGERlWVrphQFXsj7WowttTBkE7/6xURERHIYMCQZaLbFUs6UL7UX3aqf4yZlQJ/xsvNuMk593Znju+E9rpKDQXmARx77LGMGzcuTdXonmdqFsDWzS3b48eO5rQPpGOSbUmXurq6lrdwM2fOpKws88nGzjn+unwOW/a0vgsoOGAypx2jPIZckg33muQ+3WeSKdna+yMiXwOG6NmVO9LNqMJfdqT7UrTvARPxugz9sJPHdphzLmkehkX1xSgtLaVXr+x81dpssaMi9Sotydq6SvvKyspC+/s7Yfwg/j1/fcv2vDW7uPJ9B4VSF0m/MO81yR+6zySdSktL2y8UorwMGJxzdWa2DS+XIulrRz9hORIwdDhXwPdtf/kMcI7F70QdOXeFP5ISwBbn3LOdvFaPp2FVJVWmjx8YEzDMXb6NpmZHofq5iYiIdFpeBgy+hXgzPY83s6IkQ6tOilpflKBMIpHuTpf7n2QGAvf66y8AeRgwaOI2SY3gfAy76xpZsGEXh47oG06FREREerB8foX7or+sAKYlKfe+qPU56auOtJnpWW+DpYsOqOrF2IEVMfvmLNsWUm1ERER6tnwOGB6KWo/79t/MCoBL/M2dwHOduYBzztr7AJFxQ1dH7T+pUz9JjmhqDnRJKszn21O6a3qgleGl5dk9ZJ2IiEi2ytsnMufcq8Bsf/MKMzs+TrGv0zq7803OuZiZxczsJDNz/uf29NU2P2imZ0mlGeMGxmzPW7Wd+samkGojIiLSc+VtwOC7Gm+o1CLgKTO71syOM7OTzewW4Aa/3BLgxrAqmS+U9CypdPy4ATGTtdU1NPPG6p2h1UdERKSnyusnMufcfOAiYDfe8KrX483G/CxwlV9sCXCWc25P3JNIyjQGcxjUwiDd0Le8hEOGVcbsU7ckERGRzstIwGBml/ifyvZLtxzTO3JcOuvmnHsUOBT4NV5wsA8vX+E1vGFRj3DOLUtnHcSjLkmSasFuSXOWKWAQERHprEwNq3o74PAewhd28Jgh/nHNwJ1pqZXPObcauMb/dOa45/Fmce7OtUd35/hcoi5JkmrTxw/kllkrWrbfWreLPXUN9CkrDrFWIiIiPUtPeCLTa+Y8EeySpBYG6a6jR/eLuY+amh2vrtweYo1ERER6nmwOGAr9ZaIJ1STHNARaGArVwiDdVF5SxBEH9ovZp/kYREREOiebn8gm+ku9DswTTUp6ljQI5jEo8VlERKRz0pLDYGYzE3x1tJkNTPBdRCkwDvgGXt7DmymsmmSxNknPamGQFJgxfgC/fqZ1e/GmPWzdU8+gPqXhVUpERKQHSVfS8/N4D/vRDLitE+cw/xy3pKhOkuUa28z0rBYG6b7DRvaloqSQvftbJ217aXk15x0+PMRaiYiI9BzpfIVrUZ94+9r7rAO+6Jx7KI11lCzSqGFVJQ2KCws4duyAmH3PLd4SUm1ERER6nnS1MJwctW54E6E54ApgZZLjHFAHbHTOrU1T3SRLBZOeNayqpMr7Jgzi2agg4f8WbaG+sYnSosIkR4mIiAikKWBwzr0QvW3W8qb4VedcR+dhkDyjmZ4lXT44ZSg/fGRBy/ae+kbmLKvm/ZOGhFgrERGRniFTr3DHAGPxZlIWacM512aUpOJCtTBIagypLGPaqNjhVf/zzqaQaiMiItKzZOSJzDm32v9oTgWJKzhCEkBhgVoYJHXOmDI0ZvuphZvbdIMTERGRtrLmFa6ZnWNmd5nZf8zsj2Z2ZNh1kswJti6AhlWV1Dpj6gEx27tqG5i7XJO4iYiItCcjT2RmdrKZbTGzNWbWN873PwEeAj4OnAZ8FnjZzD6VifpJ+Bqa277pVQ6DpNLwvr04bGTfmH3/eXdjOJURERHpQTL1CvdMYCAwzzm3M/oLMzsU+C6tw6nu9JdFwC1mNjpDdZQQBYdUBQUMknpnBrol/XfBZhrVLUlERCSpTAUMJ+ANmfpMnO8+jxcg7ACmOecGAMcA2/Fmff5chuooIYr30KYuSZJqZ0yJ7Za0fe9+Xl21PaTaiIiI9AyZeiKL/C+9IM53Z+MFE793zs0HcM69BvweL5D4QEZqKKFqiJPDoBYGSbUDB5RzyLDKmH0aLUlERCS5TAUMg/zlzuidZjYOGO5vPhg4Zra/HJe+akm2iNvCoGFVJQ3ODCQ/P7lgU9ykexEREfFk6oks8qq4KrD/RH+5yzn3ZuC7yPAl5emqlGSPeMOqFmlYVUmD4PCqW/fU8/rqHSHVRkREJPtlKmCItPkfHNh/ur+cE+eYCn+p/8nzQLw3vJqHQdJh7KDeTBraJ2bfE+9otCQREZFEMhUwvIzXyvB5MysHMLOxwHl4+QtPxzlmgr9UB+M8EJxAq6jAMFPAIOkRTH7+74JNNKtbkoiISFyZChj+6i8PBd41swfwgogyoBa4J84xM/3lkvRXT8LWGHhYU8KzpNOZU2O7JW3cVceb63aGUxkREZEsl5GAwTn3LHATXivDaOBDePMyAHzTOVcdXd7MymhtfZiViTpKuIJJzxpSVdLpoCF9GD+4d8y+/6hbkoiISFwZeypzzn0NOBe4C28+hjuBDzjnbo5T/FxgN7AGeDRTdZTwBJOe1cIg6RZMfn7inU04p25JIiIiQRl9jeuce8w5d6lz7nTn3GV+y0O8cvc550Y758Y451Znso4SjsbmQA6DhlSVNAvmMazfWcs763eFVBsREZHspacyyQqNgRaGYo2QJGl28AF9GD0gdtTm/7yrMRZERESCFDBIVmgzSpJaGCTNzIwzApO4/eedjeqWJCIiElCUiYuY2YHdOd45tyZVdZHsFJyHQZO2SSacOeUAbn5+ecv2qm37WLRxD5OHVYZYKxERkeySkYABWNmNYx2Zq6eEpEHDqkoIpgyvZES/XqzbUduy7z/vblTAICIiEiVT/T6smx/JccFhVYs0rKpkgJnFGS1Jw6uKiIhEy9Sb+8s7UKYCb3bnjwDDgTm0TvgmOa5N0rNaGCRDzph6AH+Z3doIunzrXhZv2s2koWplEBERgQwFDM65Ozpa1sy+Cfwa+Dwwxzn3nbRVTLJGg4ZVlZAcPqIvB1SVsXFXXcu+++at4wfnTA6xViIiItkj657KnHMNzrkvAc8D3zSz00OukmRAsIVBSc+SKQUFxvlHDI/Z96831lHX0BRSjURERLJL1gUMUW7By1/4ctgVkfQLDqtarBYGyaCPHT0yZntXbQNPak4GERERILsDhqX+8qhQayEZ0ahRkiREowZUcML4gTH77nlVozmLiIhAdgcMVYGl5DDNwyBhu/iY2OliXl25nWVbakKqjYiISPbI5oDhUn+pMQ7zQJuZnjWsqmTYqZOHMKCiJGbfP9TKICIikn0Bg5kdZGZ/wgsYHPBEyFWSDGiT9KwuSZJhJUUFXHDUiJh9/3pjHfWNSn4WEZH8lpFhVc1sRQeKFQB9gT5R+7YAP0tHnSS7BIdVVdKzhOFjRx/ILS+0/rrasa+B/y7YzLmHDQuxViIiIuHK1MRto7twzFzg0845dUnKAxpWVbLBmIEVTB83gJeWb2vZd+8raxQwiIhIXstUwNCRiduagT3ASuAF59ybaa2RZJXGYA6DWhgkJB875sCYgGHuim2s2FrD2EG9Q6yViIhIeDI10/PlmbiO9FwNgVGSipXDICE5/ZAh9CsvZse+hpZ9/5y3lmvPPDjEWomIiIRHr3ElK7RpYdAoSRKS0qJCLpgWm/x8/+tKfhYRkfyVkacyM1vhf76UietJz6OJ2ySbfCwwJ8P2vft5euHmkGojIiISrky9xh0BjALezND1pIdR0rNkk3GDenPsmP4x++7VnAwiIpKnMhUwbPKXtRm6nvQwjc1Kepbs8vFjY1sZ5izbxqrqvSHVRkREJDyZeip7xV8ekqHrSQ/TEGhhKFYLg4Ts9EOG0re8OGbfP+atDak2IiIi4clUwHAzYMDXzKy4vcKSfzSsqmSbsuJCPnJkbPLzA6+vZX9jc4IjREREclNGnsqcc88CPwcOAx4zs5GZuK70HMGkZw2rKtng4mNif1VV1+zn/xYp+VlERPJLRuZhMLMfAPXAO8CpwAozmwO8DewAko5X6Jz7cdorKaFqaDOsqgIGCd/4wX04ZnR/Xl21vWXfPa+u4YypB4RYKxERkczK1EzP1wGRV8gOKARO9D8doYAhxwVHSSpUlyTJEh87ZmRMwDB7aTULNuzikGFVIdZKREQkczL5VGZRn+B2ex/JcW26JKmFQbLEmVMPoF8g+fm3/7c0pNqIiIhkXqZyGAq688lEHSVcGlZVslVZcSFXnjg2Zt9/F2xm0cbdIdVIREQks/RUJlkh2CVJSc+STS45fhRVvdTKICIi+UkBg2SFtknPujUle/QpK+aKE8bE7PvPu5t4b9OekGokIiKSOXoqk6wQzGEoUguDZJnLZoymsix2nIjfPqtWBhERyX2hBQxmVmlmw83swPY+YdVRMkddkiTbVZYV8+lAK8MT72xk6Wa1MoiISG7LaMBgZqea2YNmthVv/oU1wMp2PisyWUcJh7okSU9w+Ywx9CltbWVwDn777LIQayQiIpJ+GXsqM7PfAk8C5wID0LCqEqVNlyQNqypZqKpXMZfPGB2z77G3N7Bsi1oZREQkd2VqpuePA1/yN+uAh4DXge1Ac4LDJI80BlsYNKyqZKlPnzCG2+asoqa+EfBaGX7/7DJ+87EjQq6ZiIhIemRqpufP+su1wPudc8szdF3pIZT0LD1F3/ISLps+mt8/19oV6ZG3NvCVUw5i7KDeIdZMREQkPTL1GvdQwAE/UrAg8bRJelYOg2SxK04YQ0VJYct2s9/KICIikosy9VQWmfFofoauJz1MQ5uZntXCINmrX0UJl0wfHbPvoTfXs7J6bzgVEhERSaNMBQyr/KXa66WNpmaHi21g0LCqkvU+c+JYytXKICIieSBTAcO//eUpGbqe9CDBIVVBw6pK9utfUcKnjh8Vs++hN9ezeptaGUREJLdk6qnsRrw5F75qZpMydE3pIYIJz6AuSdIzfObEsfQqbm1laGp23PSMZn8WEZHckpGAwTm3Czgd2Ay8ZGZfMLN+mbi2ZL/gkKqgFgbpGQb2LuWTx8VORv/v+et5Y82OkGokIiKSeikdVtXM2puVuRzoC/wO+K2ZVQP72jnGOefGpaB6kqXUwiA92VUzx3Hvq2tb5mUAuO6RBTz0hRkUaAJCERHJAameh2F0B8tFZnAe3IGybZ8mJacEh1QFDasqPcegPqVcfcpB/OyJRS373l63iwdeX8eFR48MsWYiIiKpkeqA4Y4Un0/yQNykZ7UwSA9y6fTR3DtvDSu2tiY83/DfxXxw6lAqy4qTHCkiIpL9UhowOOcuT+X5JD+oS5L0dCVFBfzg7Mlc9rd5Lfuqa/bz22eW8v2zJ4dYMxERke5Leb8PM2s2s0Yz0/+S0iHxkp7VJUl6mpMmDuYDB8f2srz9pVUs27InpBqJiIikRrqeyvR6WDqsIZDDUGAoWVR6pO+fNZmSwtZfq43Njh89uhAXnJlQRESkB9FrXAldY3NsC0NRoW5L6ZlGD6zgyhPHxOybvbSapxduDqlGIiIi3acnMwldMIehSK0L0oN98eTxDKksjdn3k8cXUtfQFFKNREREukcBg4QuOKyqAgbpySpKi/jumQfH7Fu7vZa/zm5vmhoREZHspIBBQhdMei5WlyTp4c49bBhHjYqdzP4Pzy1nw87akGokIiLSdXoyk9A1BLskaUhV6eHMjOvOPQSLupVrG5r4+X8Wh1cpERGRLkr1xG3R/mZme9sv1i7nnDslBeeRLBVsYSjSkKqSA6YMr+LiYw7knlfWtOx79K0NXHzMSKaPGxhizURERDonnQHDUSk4hwEajzDHBYdVLVYLg+SIb5w2kcfe2sDuusaWfd964G3++9WZVJSm89eviIhI6qTzVa6l4CN5QMOqSq7qX1HCN06fGLNv3Y5arn9iUUg1EhER6bx0PplNcc4VpOBTmMY6AmBmo8zsRjNbbGZ7zWy7mc0zs2+aWXk3z11uZh82s5v9c+4wswYz22Zmc83sOjMbmqqfpSfSKEmSyz557CiOGd0/Zt/fX1nD7KVbQ6qRiIhI5+T9q1wzOwd4G7gGmAiUA/3wulTdAMw3s/FdPPehwGbgX8Dn/HP2xesK1h84Dvgh8J6ZXdStH6QHazMPg7okSQ4pKDB++dFD6VUc++7j2w+8ze66hpBqJSIi0nF5HTCY2RHAP4FKoAb4HjAdOAX4i19sAvC4mfXpwiUqgd7++hzgWuBU4EjgdOAWoNkv93czO6NrP0nPpqRnyXWjBlRw7ZmTYvZt2FXHTx9bGFKNREREOi7fn8xuAnoBjcBpzrnrnXNznXPPOueuAr7ll5sAfL0L528G7gMOcc6d4Jz7X+fcM865+c65p5xznwM+jJfYXQj8zszy7vV6cFhVJT1LLvrksaOYPm5AzL77XlvHc4u3hFQjERGRjsnbgMHMjgFO9Ddvdc7NjVPsRiCSnXi1mRV35hrOuZeccxc55xK+RnTOPQz8298cBxzRmWvkArUwSD4oKDB+8ZFDqSiJ7Zr0nX+/za596pokIiLZK5+fzM6PWv9bvALOuWbgTn+zL3BymuryXNT6uDRdI2u1SXpWC4PkqJH9y/n+2ZNj9m3eXc91jy4IqUYiIiLty+eA4QR/uRd4PUm5F6LWZ6SpLqVR601pukbWaggMq1qsYVUlh33s6JHMnDAoZt+D89fz3wWbQqqRiIhIcul4MhsDjAWWpOHcqXSwv1zmnGtMUm5xnGNS7X1R63k3QLuGVZV8Ymb84iNT6VMWO3Hb9x58h+1794dUKxERkcRSPtWoc251qs+ZamZWBgz0N9clK+uc22Fme4EKYGQa6nIYcJa/+Y5zrtMBg5mNaKdIyzwP9fX11NbWdvYSaVVbH/uQVIDLujpKx9TV1cVdl1h9S+C7px/EtQ+3/nOvrtnPd//9Fr/6yCHk4dgHnaZ7TTJB95lkSn19fdhVSCrlAUMPET1Eak0HykcCht7tFewMMysF/oo3QhJ4w7p2xdqOFnzllVdYvnx5Fy+THkvXFBDd2LVl8yaeempDeBWSlJg1a1bYVchqvRwc0q+ABTta7/0nF2yhqnYj04e4JEdKkO41yQTdZ5JO1dXVYVchqXztLF4Wtd6RPgCRsK9Xiuvxe7zJ3ADucM49muLz9wiBFAaUwiD5wAwuGttMeWFscPDAygLWduQ1hoiISIbkawtDdLtiSQfKR5KSU9ZPxsyuBa70N+cBX+zG6drrKjXUvwbHHnss48Zl10BMrz25BDa29gw7cMRwTjstXekikk51dXUtb+FmzpxJWVlZO0dI5dgtfPX+d1u2m5xx79rePHDV0fTt1amRnPOK7jXJBN1nkinZ1vsjKF8Dhj1R6x3pZlThL1Py3s/MPgtc728uBs50zu3t6vmcc0nzMKL7Q5eWltKrV6obSrrJYselLyspzr46SqeVlZXp77EDzp82irc37OW2OStb9q3fWcf3HnmPv15yFAUaBKBdutckE3SfSTqVlpa2XyhEedn5wzlXB2zzN5MmDJtZP1oDhg7nCiQ538XAH/3N1cCpzrns7riWZo0aVlXy3LVnTmLaqH4x+55dvIWbX8juN04iIpIf8vnJLDL78ngzS9bSMilqvVtDnprZuXgTwRUAG4FT2msdyAcNGlZV8lxxYQF/+PiRDKiI7SF541PvMWdZXr9PEBGRLJDPAcOL/rICmJakXPQcCXO6ejEzOwW4D68b2Da8lgW9PgQam2JbGIrUwiB5aGhVGb+9+Aii4+VmB1+5dz6bdmk4RxERCU8+P5k9FLV+ebwCZlYAXOJv7gSe68qFzGw68DBe8vQu4HTn3IKunCsXNTSrhUEEYMb4gXz9tIkx+7bt3c8X73mDhkBgLSIikil5GzA4514FZvubV5jZ8XGKfZ3W2Z1vcs41RH9pZieZmfM/t8e7jpkdDjyO15KxFzjLOfd6Cn6EnNEU7JJUqIBB8tfn3zeOUyYNjtn3+uod/PyJxQmOEBERSa+8DRh8V+MNlVoEPGVm15rZcWZ2spndAtzgl1sC3NjZk5vZOOC/QF9/1/eBXWY2JclncMIT5iglPYu0KigwfnXh4YzoFzsay21zVvLY25rQUEREMi9fh1UFwDk338wuAu4GKmkd6jTaErxWgT1xvmvPiUB0APDrDhzzI+C6Llyrx1LSs0isqvJibv7END7yp5fY39gaUF9z31v0ryhh+riBIdZORETyTd6/yvVnVz4U72F+CbAPL1/hNeDbwBHOuWWhVTAPBFsYlPQsAlNHVPGjcw+J2be/sZnP3PEab67dGU6lREQkL+V1C0OEc241cI3/6cxxzwMJX4c7524Hbu9G1fJCsIWhWDkMIgB87OiRvL1uF/e+uqZl3979TVz2t1e577PHM2FInxBrJyIi+UKvciV0bYZVLdBtKQLeLO0/PX8KZ04dGrN/574GPnXrK6zdvi+kmomISD7Rk5mErjE4rKpaGERaFBYYv77ocE48KDZvYfPuej7x11fYsltzNIiISHopYJDQKelZJLnSokJu+dQ0po3qF7N/zfZ9fOrWV9m5b39INRMRkXyggEFC16SkZ5F2lZcUcdulRzNpaGzewnub93DZ3+axt74xpJqJiEiu05OZhK4xmPSsFgaRuKrKi7nrimMZPaA8Zv+ba3dy1V2vUdfQFFLNREQklylgkNA1qIVBpMMG9Snl7iuP5YCqspj9c5Zt4zN3vsa+/WppEBGR1NKTmYQu2MKgpGeR5Eb0K+euK46lf0VJzP7ZS6u59LZX2V3XEFLNREQkFylgkNC1mYdBw6qKtGv84N7c+elj6FMaO53OvFU7+MRfXmHHXiVCi4hIaujJTELXdqZntTCIdMSU4VXcfeWx9C0vjtn/zvpdXPTnuRpyVUREUkIBg4SuTdKzAgaRDjtsZF/+edXxDOxdGrN/yeYaLrxlLut2aHI3ERHpHgUMErqGwEzPheqSJNIpE4f24f7PHc+wQCL0qm37uPBPc1lZvTekmomISC7Qk5mErik407OGVRXptDEDK7j/89PbDLm6YVcdH/3TXBZv2h1SzUREpKdTwCChcs7R2BzskqTbUqQrhvftxX2fPZ6JQ2Ind6uuqeeiW17mlRXbQqqZiIj0ZHoyk1AFgwVQ0rNIdwyuLOMfVx3HoSOqYvbvqm3gk7e+woPz14VUMxER6akUMEioggnPoGFVRbqrX0UJf7/yWI4e3S9mf0OT42v/fItfP70E59r+2xMREYlHT2YSquAsz6AWBpFU6FNWzJ2fPpYPHDy4zXc3/d9SvvrPN6lraAqhZiIi0tMoYJBQxWthUMAgkhq9Sgq55VNH8ekZY9p89/CbG/jkX19huyZ4ExGRdihgkFA1NrVtYVCXJJHUKSwwfnDOZH5y3iEEByB7bfUOPvTHOSzfWhNO5UREpEfQk5mEqiFO0nOhWhhEUu5Tx4/m1suOpqKkMGb/6m37+PAfX+KlZdUh1UxERLKdAgYJVZOSnkUy5uSJg7n/c9M5IDDBW2QEpV89vSRuq5+IiOQ3PZlJqJT0LJJZk4dV8tAXZzBleGXM/mYHv/2/pVz8l5dZv7M2pNqJiEg2UsAgoYqb9KyZnkXSakhlGfd99nhOnTykzXfzVu3gjN/M4j/vbAyhZiIiko0UMEioGgLdH4oKDDMFDCLpVl5SxC2fnMa3PjiRwkCQvruukc///Q2+++A71O7X0KsiIvlOAYOEKjjTs7ojiWROQYHxhZPGc//njmdEv15tvr/nlTWc94cXeW/TnhBqJyIi2UIBg4QqmGCphGeRzDvywH48cfWJnH3oAW2+W7K5hnN//yJ/nb2CpjijmomISO7T05mEqqFJLQwi2aCyrJjfXXwEN1xwKL2KY4derW9s5qePL+LDN7+k1gYRkTykgEFCFXxjWagWBpHQmBkXHjWSx75yApMPqGzz/Vtrd3L272bz66eXUN+o3AYRkXyhpzMJVXBY1WK1MIiEbtyg3jz4xel8esaYNt81NDlu+r+lnPO7F5m/ZkcItRMRkUxTwCChCg6rqi5JItmhtKiQH5wzmfs/dzxjB1W0+X7J5ho+fPNL/OSxhezb3xhCDUVEJFMUMEiolPQskt2OHt2fJ75yIl88eVyb4Vedg1tfXMlpv57FMws345ySokVEcpGeziRUDRpWVSTrlRUX8s3TJ/HIl2ZwyLC2uQ3rdtRy5Z2v8enb57Gqem8INRQRkXRSwCChCrYwFKmFQSRrHTKsioe/OINvf3ASJUVt/60+995WTvv1LP7ff99TNyURkRyipzMJVTCHQUnPItmtqLCAz580jievPpFjxvRv8/3+pmZ+/9wyPnDjCzzxzkZ1UxIRyQEKGCRUwVGSigp1S4r0BGMH9eafVx3Hry86jEF9Stt8v2FXHV/4+xt88tZXWLJZczeIiPRkejqTULWdh0EtDCI9hZnxoSNG8OzX38dnThxDUZx/v3OWbeP038ziq/+Yz4qtNSHUUkREuksBg4QqONOzuiSJ9Dx9yor53lmT+c/VJzJ93IA23zsHD725gQ/86gWuue9NJUaLiPQwChgkVEp6FskdBw3pw9+vPJY/fuJIhlWVtfm+2cG/31jPKb96gW/e/xZrtu0LoZYiItJZejqTUDU2q4VBJJeYGWdOPYBnvv4+vnLKQfQuLWpTpqnZcf/r63j/jc/znX+9rcBBRCTLKWCQUDWohUEkJ5WXFHHNqROY/a2T+eLJ4ygvKWxTprHZ8Y95aznp/z3Hl++dz7vrd4VQUxERaY+eziRUwWFVNXGbSG7pV1HCN0+fxOxvncxn3zeWXsVtA4dmB4++tYGzf/cin7r1FeYsq9ZwrCIiWUQBg4QqOKxqsYZVFclJA3qXcu0ZBzPrWydz5QljKI0z8RvA7KXVfOKvr3Du7+fw2Nsb2oykJiIimaenMwlVsIVBw6qK5LZBfUr5/tmTme0HDhVxuioBvLN+F1+6Zz4n/7/nufXFleyua8hwTUVEJEIBg4Qq+PZQSc8i+WFwZRnfP3syL33nFL5x2gQGVJTELbdm+z5+8thCjrv+//j+Q++wVJPAiYhkXNvhK0QySEnPIvmtqryYL73/IK48cSwPvL6Ov8xeweo4oybt29/E3S+v4e6X1zBj/AAunjaMZgdqlBQRST8FDBIqJT2LCEBZcSGfPG4UFx9zIE++u4k/vbCcdxKMmjRn2TbmLNtG/9JCZgxp5rDd9Yzu1SvDNRYRyR8KGCRUSnoWkWiFBcZZhx7AmVOH8urK7dwxdxX/XbA5bvLz9nrj0TWFPPbrOcwYP5APHTGcD04ZSkWcuR9ERKTr9FtVQtWmhUH9C0QEbwK4Y8cO4NixA9iws5a7X17NP+atZfve/W3KOuDFZdW8uKya7z/0Lh+cMpQPHzmc6eMGaiAFEZEUUMAgoWoMtDAUqYVBRAKG9e3Ftz44ia+cchCPvrWBO+au4t31u+OWrW1o4sH563lw/nqGVJZyzqHDOOewYRw6ogozBQ8iIl2hgEFC1RBoYSjW20ARSaCsuJCPHjWSC6aNYO7Szdz06Dze3G7UN8X/vbF5dz1/fXElf31xJaMGlLcEDxOH9slwzUVEejYFDBKqxsAoSYVKehaRdpgZR4ys4uPjm7mgCWzkYTz+7hZmLa1OONHb6m37+P1zy/j9c8uYMKQ35xw6jLMPG8aYgRUZrr2ISM+jgEFC1Rich0HDqopIJ5QUwmlThnDB0aPZuqeeR97awIPz1yXssgSwZHMNNz69hBufXsKEIb05dfIQPnDwEA4b0ZcCtXKKiLShgEFCpWFVRSRVBvUp5YoTxnDFCWNYsnkPj761gUff2sCqOPM6RCzZXMOSzTX84bnlDO5TyikHD+HUyYOZPm4gZcXxZ6EWEck3ChgkVEp6FpF0mDCkD18/bSLXnDqBd9fv5tG3N/DYWxvYsKsu4TFb9tRz76truPfVNZSXFHLC+IG8b+IgZh40iJH9yzNYexGR7KKAQUKlpGcRSSczY+qIKqaOqOI7H5zEG2t28OhbG3j8nU1U19QnPG7f/iaeWriZpxZuBmDswApmThjEzAkDOXbMAM31ICJ5Rb/xJFRqYRCRTCkoMI4a3Z+jRvfnB+ccwptrd/D0wi08vXATy7fuTXrsiuq9rKjey+0vraK40DhqVH9OnDCQGeMGMmV4leZ7EJGcpoBBQhXMYShWDoOIZEBhgTFtVH+mjerPd86YxIqtNTyzaDNPL9zM66t3kGCwJcBrGZ27YhtzV2wD3qOyrIjjxg7ghIMGMn3cQMYNqtCcDyKSUxQwSKgaAsOqFmmUJBEJwdhBvblqUG+umjmObTX1PPfeVmYt2cqLy6rjzi4dbXddY0z3pSGVpcwYN5Cjx/Rn2qh+jB/UW6MviUiPpoBBQhUcVlXN+iIStgG9S7lg2ggumDaC5mbHgg27mbV0Ky8s2cobq3e0+b0VtHl3Pf+ev55/z18PQJ+yIo48sB/TRnmfw0b2pbdyIESkB9FvLAmVuiSJSDYrKGhNmv7iyePZU9fA3OXbmL20mjnLq1nRTu4DwJ66Rl5Y4gUcAAUGE4dWcvjIvhwxsi+HH9hXrRAiktUUMEiolPQsIj1Jn7JiTjtkKKcdMhSATbvqmLPMCx5eWraNTbsTD9sa0exg0cbdLNq4m3tfXQNA79IiDh1RxeEj+7Z8BleWpfVnERHpKAUMEqo2LQx6wyYiPcjQqjI+Mm0EH5k2AuccK6r38tKyal5dtYM3Vu9g/c7aDp2npr6Rl5Zv46Xl21r2De5TypThVUwZVskhw6uYMryKYVVlSqgWkYxTwCChapP0rBYGEemhzIxxg3ozblBvPnX8aAA27qrljdU7eX31Dl5fs4OFG3a1mX8mkS176nl28RaeXbylZV+/8mKmDK9i8gGVTBzah0lDKxk3uILSIs1KLSLpo4BBQhVMHixSDoOI5JADqnpx1qG9OOvQAwCoa2ji7XW7eHPtDt5cu5M31+xMOvt00I59DcxeWs3spdUt+4oKjLGDKpg01AsiDj6gDxOG9GF4315qjRCRlFDAIKFq2yVJLQwikrvKigs5Zkx/jhnTv2Xflt11zF+7kzfX7mT+mh28s24Xe/c3dficjc2OJZtrWLK5Bt5q3d+7tIjxg3szcUgfDhrSm4lDvUBicJ9SBRIi0ikKGCRUDW2SnvWfmIjkl8GVZZx+yFBO9xOpm5sdK7ft5d31u1iwYTfvrt/Fu+t3sbuusVPnralv9Fox1u6M2T+8by+uO/cQTp08JFU/gojkOAUMEpqmZocLdOUtUtKziOS5goLWXIjzDh8OgHOOtdtreXfDLhZs2MV7m/awaOOeDidVR1u/s5av/fNN5nz7/VSVF6e6+iKSgxQwSGiCQ6qCkp5FROIxMw4cUM6BA8o5c+oBLft31zWwZNMeFm/aw+JNu1m8cQ/vbd7DnnZaI2rqG3lywUYuOvrAdFddRHKAAgYJTTB/AdTCICLSGZVlxRw1uj9HjW7NiXDOsXl3Pe9t3sPSzXt4b9Melmyp4b1Nu6lraH1R8+hbChhEpGMUMEho4gUMxWphEBHpFjNjaFUZQ6vKeN+EQS37H397I1+8542W7ZeWV7NlTx2D+2iCOBFJTk9nEppgwjMo6VlEJF1OOXgwFSWt8zU0O3ji7Y0h1khEegoFDBKauC0MGlZVRCQtyooLOc0fiSnikbc2hFQbEelJ9HQmoQnO8gxqYRARSadzDjsgZvuNNTtZu31fSLURkZ5CAYOEJjjLMyhgEBFJpxPGD6JvYCjVR99WK4OIJKeAQULTGK+FQV2SRETSpqSogDOmxLYyPPKmAgYRSU5PZxKaYAuDGRRqWFURkbQ697BhMduLN3nDr4qIJKKAQUITTHpWwrOISPodM6Y/QypLY/Yp+VlEktETmoQmOKyq8hdERNKvsMA4+9DYVoZH3tqAc23zykREQAGDhCjYwqBZnkVEMiPYLWn1tn28vW5XSLURkWyngAEws1FmdqOZLTazvWa23czmmdk3zaw8hdc5w8weNLN1ZlbvLx80szNSdY2eJJj0rFmeRUQy49ARVYwaEPvfm7oliUgief+EZmbnAG8D1wATgXKgH3AUcAMw38zGd/MaBWb2V+AJ4HxgOFDiL88HnjCzv5hZXv19NASSntUlSUQkM8ysTSvDY29voCnOcNciInn1gBpkZkcA/wQqgRrge8B04BTgL36xCcDjZtanG5f6GXCFvz4fuBg4xl/O9/dfCfy0G9focYItDBpSVUQkc4IBw+bd9by6cntItRGRbJbvT2g3Ab2ARuA059z1zrm5zrlnnXNXAd/yy00Avt6VC5jZBOAb/uZrwAzn3D+cc/Occ/8ATvD3A3yzu60ZPUlwWFW1MIiIZM5BQ/owaWjsuzB1SxKRePI2YDCzY4AT/c1bnXNz4xS7EVjkr19tZsVxyrTnq0CRv/5l51xt9JfOuX3Al/3NIuBrXbhGj6SkZxGRcJ17eGwrw3/e3cj+xraTaopIfsvbgAEvdyDib/EKOOeagTv9zb7AyZ25gJkZcJ6/udg593KC67wMvOdvnucfl/Mam5X0LCISpnMCw6vu3NfAi8u2hlQbEclW+fyEdoK/3Au8nqTcC1HrMzp5jTFA5LfxC8kKRn0/HBjdyev0SA3BFgZ1SRIRyaiR/cs58sC+MfseeVPdkkQkVj4HDAf7y2XOucYk5RbHOaajJic4T6qv0yMp6VlEJHzB5OenFm6mdn9TSLURkWxU1H6R3GNmZcBAf3NdsrLOuR1mtheoAEZ28lIjotaTXgdYG7XeqeuY2Yh2igyPrHz19ln06d9e7JIZG3fX0bh7X8t2/c56li5dGmKNpLvq6+uprq4GYPny5ZSWloZcI8lVutdSZ3LvBpr3VBMZh2I38OFfPkxVWVfS9nJLU3MzO3Z4I0fdveQpCvViS9Jkz/Yt0ZuFYdUjkbwMGIDoYSFqOlA+EjD0TuN19katd/Y6a9sv4nni+is7eerMWQ9M+H7YtRARkfVhV0Akvw0CVoddiWj5GiqXRa3v70D5en/ZK43XqY9a7+x1RERERCQ3DA67AkH52sJQF7Ve0oHykbbu2qSluned6Pb0zl6nvS5MBwJz/PXj0MsjSZ+hwDx//WhgU4h1kdyme00yQfeZZMpwIDKaZnb0HY+SrwHDnqj1jnT/qfCXHem+1NXrVEStd+o6zrmk+RGBUVrXt1depKsC99om3WuSLrrXJBN0n0mmBO61jvR+yai87JLknKsDtvmbSROGzawfrQ/zHc4V8EX/YmkvMTm6laCz1xERERERSYu8DBh8C/3leDNL1tIyKWp9UcJSya8RPE+qryMiIiIikhb5HDC86C8rgGlJyr0van1OwlLxrQQiM+C8L1lBYKa/XA+s6uR1RERERETSIp8Dhoei1i+PV8DMCoBL/M2dwHOduYBzzgEP+5uTzOy4BNc5jtYWhof940REREREQpe3AYNz7lVgtr95hZkdH6fY12mddfkm51xD9JdmdpKZOf9ze4JL/QaITJn5OzOLGTLV3/6dv9nolxcRERERyQp5GzD4rsYbwrQIeMrMrjWz48zsZDO7BbjBL7cEuLErF3DOLQF+6W8eBcwxs4vM7Cgzuwivm9NR/ve/dM5pqmMRERERyRr5OqwqAM65+f5D+91AJXB9nGJLgLOcc3vifNdR38ObhOPTwBHAP+KUuRXQPMciIiIiklVM3eXBzEbhtTachTf86X5gGXA/8Hvn3L4Ex51Ea17DHc65y9q5zpnAVXiTvwwEqvEmhLnFOfef7v4cIiIiIiKppoBBREREREQSyvccBhERERERSUIBg4iIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAFDjjOzUWZ2o5ktNrO9ZrbdzOaZ2TfNrDzs+kn2MrPBZna2mf3YzP5jZtVm5vzP7V043xlm9qCZrTOzen/5oJmdkYbqSw9iZkeZ2Q/M7Kmo+6PGzJaY2d/M7IROnk/3mrRhZpVm9jH//8QXzGyZme0ys/1mtsXMnjezb5nZgA6eb7qZ3W1mq82szsw2mdl/zezidP8s0nOZ2S+i/i91ZnZSB44J/XeaOecydS3JMDM7B7gbqExQZAlwlnNuWeZqJT2FmSX75XCHc+6yDp6nAPgzcEWSYn8FPuuca+54DSUXmNks4MQOFL0T+Ixzbn+Sc+lek4TM7APA0x0oWg180jn33yTnug74HxK/eH0cuMA5V9fZekruMrPDgXlAUdTuk51zzyconzW/09TCkKPM7Ajgn3jBQg3wPWA6cArwF7/YBOBxM+sTSiWlJ1kDPNXFY39G6y+7+cDFwDH+cr6//0rgp92poPRYw/zlBuAm4AK8++N44Bpgvf/9JcDt7ZxL95q0Zy1e8Hk18GG8+2wGcBFwP9AEDAQeMbPD4p3AzD4L/BDvGWo53j13DHA+8Jxf7CzgtnT9ENLzRD38FwFbOnhY1vxOUwtDjop6a9cIzHTOzQ18/03gBn/zR8656zJbQ8l2ZvYjvDch85xzm81sNLDS/7pDLQxmNgFYgPcL8jW8e7E26vty4AXgKLx79WC1eOUXM3sM7wHuX865pjjfDwTm4L3gAHifc25WnHK61yQpMyuMd48FypwPPOhvPuic+3Dg+/7ACqAK70XKNOdcdfQ1/OPP8XclfHss+cXMvgr8GliMd49c638V9x7Jtt9pamHIQWZ2DK1N/LcGgwXfjcAif/1qMyvOSOWkx3DO/dA595hzbnM3TvNVWptevxz9y86/xj7gy/5mEfC1blxLeiDn3NnOufsSPcj5D2Nfj9p1QYJTfRXda5JEe8GCX+Yh4D1/M15XuSvxggWAb0cHC1HX+AJeSwXAN7tUWckpZnYg8BN/83NAwq6VUb5KFv1OU8CQm86PWv9bvAJ+X7c7/c2+wMnprZLkGzMz4Dx/c7Fz7uV45fz9kf+gz/OPE4n2XNT6uOCXutckxfb4y7I4353vL3cD/453sHNuHfCMv3mKuv0K8AegN17r/AvtFc7G32kKGHJTZESRvcDrScpF37Qz0lcdyVNjaO2f3t4vyMj3w4HR6aqQ9FilUevx3hLrXpOUMLOJwOH+5uLAdyV4/ccB5iZLwKf1PivF6zIiecrMLgTOBrYD3+jgYVn3O00BQ2462F8uc841JikX/cvw4ISlRLpmctT64oSl2n6ve1GC3he1vijO97rXpMvMrNzMDjKza/AeviLdQH4TKDoBKPTXdZ9Ju8ysL95gDhCnC1sSWfc7raj9ItKTmFkZ3ggPAOuSlXXO7TCzvUAFMDLddZO8MyJqPem9iDdySYTuRWnhjyzynahd98UppntNOsXMLiNBl13f/wL3BPbpPpPOugEYijdww62dOC7r7jUFDLknuq9kTQfKRwKG3umpjuSxztyLe6PWdS9KtK/R2g3k3865eN0sda9JqrwJXOWcmxfnO91n0mFmdiJeknwj8DnXuWFJs+5eU5ek3BOdpNWRLPx6f9krDXWR/NaZe7E+al33ogBgZu/De9ML3rjln09QVPeadNZDwFT/ExnX/kG8/IV7zezsOMfoPpMO8fNd/gwY8Gvn3LudPEXW3WtqYcg90bNKlnSgfCSZsDZpKZHO68y9GJ3UqntRMLND8B7givDupY865xJNdqR7TTrFObcT2Bm1ax7wDzP7FHAH8LCZXeGcuz2qjO4z6ajvApPw5ur4UReOz7p7TS0MuWdP1HpHmqYq/GVHui+JdEZn7sWKqHXdi3nOzMbgzSzeD29UpI/Fm6wtiu41SQnn3F14Mz4XAL/3J2qL0H0m7TKzSbROyvZl59zeZOUTyLp7TS0MOcY5V2dm24ABxCbNtGFm/Wi90dYmKyvSBdGJWknvRWITtXQv5jEzG4Y3hv0wwAGfds493M5hutcklR4GLsT7//GDtCY/6z6TjvgaXqvACqDczD4Wp8yUqPX3m9lQf/1RP8DIuntNAUNuWog3Q+V4MytKMrTqpKj1eEMVinTHwqj1SQlLtf1e92KeMrOBwNPAWH/Xl51zdyY5JEL3mqTS1qj1UVHrS/BavArRfSaJRboIjQXu7UD5/4laH4OXxJx1v9PUJSk3vegvK4BpScpFj20+J33VkTy1Etjgr78vWUFgpr9cD6xKV4Uke5lZFfBfWscf/45z7g8dPFz3mqTS8Kj1li4e/kRtr/qbx/uJrYlE7sN64LXUVk/yQNb9TlPAkJseilq/PF4Bf2zzS/zNncBz6a2S5Bt/CLlIV5JJZnZcvHL+/sgbkoc7OfSc5AAzKwceB470d/3MOfeLjh6ve01S7KNR6+8EvnvIX1YCH453sJmNAD7gb/6fc25PvHKSm5xzlznnLNmH2ETok6O+W+WfI+t+pylgyEHOuVeB2f7mFWZ2fJxiX6d1RsCbnHMNGamc5Jvf4DXhA/zOzGKGfPO3f+dvNtJ2ZlXJcf5b2geBGf6um5xz3+/CqX6D7jVJwswu8yc3TVbma8CZ/uZKWv8vjfgrsMtf/18zGxA4vhD4I60zQv+yW5WWfPYbsuh3mnIYctfVeN2MegFPmdn1eK0IvYCPAVf55ZYAN4ZSQ8lqZnYCMD5q18Co9fH+TKktAsMPRvYtMbNf4s3UexQwx8x+ASwHxgHfBo7wi//SObc0ZT+A9BT3Aqf5688Ct5rZlCTl9zvnlgR36l6TDrgOuNHM/oXXdXc5XpejPnjzMXyC1sB1P94Ebk3RJ3DObTezbwN/wstveMXMfobXEjEM+Cpwsl/8Xufc82n8eSSHZdvvNFOLbO4ys3OAu/GaTuNZApzlnFuWuVpJT2FmtwOXdrS838wa7zwFwF+ATyc5/Fa8/5ybO1NH6fnMrLP/Ca12zo1OcC7da5KQma0iNok5kXV4o3M9neRcP8JLVo37ew94AviIc64uwfeSx8zsOuCH/ubJiQLLbPqdpi5JOcw59yhwKPBrvOBgH16+wmv4kamCBUk351yzc+4K4Cy8Ppkb8N7ebfC3z3TOXakHOOku3WvSjtPxuuP+G3gb2IzXlWMP3lvbf+Hl/U1MFiwAOOd+CJyAN+TqWrz7bAveKF8fd86dpWBBuiubfqephUFERERERBJSC4OIiIiIiCSkgEFERERERBJSwCAiIiIiIgkpYBARERERkYQUMIiIiIiISEIKGEREREREJCEFDCIiIiIikpACBhERERERSUgBg4iIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAGDiEg3mdl1ZubMzGVBXUZH6mJml4Vdn3xjZpdF/fmPTsH5Pu2f6x0zsxRUMSuZ2Uf9n3OJmRWHXR8RiaWAQURyipkVmtlu/+HjjXbKmplti3rA+3Q75S+NKvv51NY8+5jZCD8Ymm1mW82swcxqzWydmc0ys5vM7AIzqwq7rrnIzHoD1/ubP3bOhR6QRjOzp/x/Czel4HT/AhYCBwFfTsH5RCSFFDCISE5xzjUBL/mbh5lZZZLihwD9o7ZPbOf00d/P6kL1egwz+wzwHvBD4ARgIFAElAHD8f4svgLcD9wSUjVz3VeAIXgP0g+EXJcYZtYHeJ+/+Wh3z+ecawZ+5m9+x8wquntOEUkdBQwikosiD/MFwPQk5SIBQFNgu73y1XgPcQA4565zzplzLie6jJjZxcCfgXKgDrgZOB84CjgaOA/4CTA/pCrmPDPrBVzjb/4621oXgNOBEmA38EKKzvlPYD0wCPhsis4pIimggEFEclH02/+ZScpFvrvfX44zs2HxCprZYGCCv/liFj7ApYSZFQK/8jf3AMc6577gnHvYOfe6c+4159wjzrkfOOeOBCYD/w6twrnrk8AAoJ4sa13wneMv/+uca0jFCf3WwX/6m18yMz2jiGQJ/WMUkVw0D+/NOCRvNYh89wCwvJ3y+dId6VhgqL9+i3Pu7WSFnXOLnHP3pb9aeecKf/m4c25nmBUJ8h/kz/Q3H0vx6f/uL8cAJ6f43CLSRQoYRCTnOOfqgVf9zaPNrDRYxszG4PXFB3jR/0AXAob2Rkkys1X+97f72xPN7C/+/noz22xmD5rZce39bH5S9xfM7BU/uXuXmb1hZt+I93N2wYFR68u6epJ4ozX5I+E8Y2Zb/OTpxWb2czPr28Fznmxmd5jZCjPb5//875jZLxO1DKX6HGbWz8z+1697rf+zPGNmH+3I9TtYx1F4gRt4ycCJyp0U9Wd8kp/Ef4WZvegn8+82s1fN7FOB40rM7HNm9rKZbTezPWY2x8wu7GAVj8PLaWkGnohTr2lmdqt5Ix7tNbM6M1trZq+b2R/M7Fyz+CM+OefeAFb6mxd3sD4ikm7OOX300UefnPvg9bF3/mdmnO8v9b9b4m9f6W+/neB8r/vf7wIKA99dF7lWgmNX+d/fDnwI2BtVt+hPI3BRkp+pN16wEu9Y59fxiKjty7rw5/bhqON/040//9HR9QBuTVLv9cCkJOcqA+5NcrwDaoBz0nyOg/26Jjr+Nv9njWyP7uKf3aVR5xibpNxJUeVOBR5JUreb/GP64eUcJCr33Q7U7+d+2RfjfPc1vJygZH/ODuid5PyRv6d16fjdoI8++nT+oxYGEclV0a0A8VoNIvteDCynmFm/6IL+iDCH+ZsvOa+vdVdMBe4BNgNfwntTezxewFEHFAJ/NrNBCY6/O6rer+K9gT0KOAsvD+NIuj9iUXQi82fN7P3dPB/AF4BPE1vnM4FIV6ZhwH/9P+cY/pvoB4CP+bseBT4FzMD7s7saWANUAA+Y2VFpOkcl8F+/ruD1tT/T/1k+DrwGXO7/rN0V+Tve5pxb0cFjfoKXV/B3vPthGt6f9Xv+918xsw/gBa3T8RLZT/PLXQFs8Mv92MwOaedakfyFmNGRzOxQ4P/h9V5YCXwdOAUviJ0JfAbv/t/bzvkjrYPDzWx8O2VFJBPCjlj00UcffdLxwXsb34D3pvLJON+/5393edS+rf6+swNlT6f1zei1cc51XeT7BHVZFXX8a0BlnDKfiCrztTjfnxX1/eNAUZwyPyD2Le5lXfyzezRwnleBHwFnAAM7eI7RgXMkqvP/RJW5Ic73n/G/2w98MMG1+gHvkvitdyrO8ct27oFivIAi+mce3cU//4X+8c+0U+6kwPWujlNmKN5IRg7YgteN6Pw45Q6ltWXgpiTXHBN1vUMC3/2Y1paaIUnOUQUUJPl+ZtQ1Era46aOPPpn7qIVBRHKSc66G1rfl0/3Rf4C2Ix5FHTbHXwZbJFKZ8Pxp59zuOPvvofUtb7wWkcib63rgM865xjhlfor30Ntdl+MljkccjReMPAFsNbP3zOx3ZnZkB8+XrM4/o7XOV5hZSeQLv2Xg2/7mb51zT8Y7uXNuB/BNf3OGmR2U4nOU0JqE/Dbwv3GOb/DLpGLEoBH+cksnjnnFOddmAjXn3CbgQX9zEHCfc+6hOOXepv08HoCz/eVK59yCwHeRZPklzrnNiU7gnNvlvHkXEon+uccmKSciGaKAQURyWeThvg9weNT+yHCqm51zS6P2vxj4PiLyAFVH7IN0Z73jEow65JxztAY4MQ9JfrBzkr/5lHNuA3H4D2F3dKN+kfNU43XXuQqIN1v2BLwuVa+b2V3W/iRbHa1zf7xuVRGTgXH+entDi0YHcsen+BzT8FogAO7w/67acM6tA55q5xpJ+Ynrka5ZOzpx6D+SfPdWJ8sle0iP2x3Jt9FfTjazY5Kcoz3bo9aHJiwlIhmjgEFEctnsqPUT46xHty5El59m3sRZkbfLkYefV5xz+7tRn8XtfB95UAr25R+HN4katB+wvNrO9x3inGtwzv3FOTcNbzSpj+H1T59N7Fv0TwKPRLfgxNGZOk+NWo/OJZgbNSJQmw9eN5iIoSk+R3Sd0v3nHz3zeGcChiVJvtvZyXJtckmgQ7M734t3b5QCc8zsUX80pimJRkVKIPrn1ozPIllAAYOI5LLZeP2goWMBwxvAPrz+6JEhTo/GG2EHut8daV8730e6aQQfvqMfItvrppKwK0hXOec2OOf+6Zz7pnNuJt7D9M9pre/7ST4EZmfqHP2zDu50ZT3lUeupOEcm//zrotZ7deK4ZPdWdPefjpRL9GwQmd15D3Fmd3bOLca7D3YARXjdl24G3gG2+K1R7c2mDrE/d0omhROR7ikKuwIiIuninNtuZguAKfhBgj/aTWTEoxcD5RvM7FW87j8zgefIvgnb4naHyWgFnNsOfNd/a/wdf/dH8UZxintIFy8VHTidg5c83hHRD/WpOEe0dP/578QbXreI2EAlG0TyFxLO7uyc+5eZPQNchBdgnIiXOzEQrzXqk2Z2B14uT6I8huife2cqKi4i3aOAQURy3Sy8gGGQmU3CG+WlAK/7yfw45V/ECxgigUIkn6EBmJvWmiYW3UVjSDtl2/s+lf5Ca8CQbPjLztQ5uv/6tqj1nc65riR0p+IcwT//ZN16uvXn75xzZlaN14rTr73ymWKxszvH647Uwjm3C/iz/8HMDgbOA76MNyztpXj/9tokafuif+41Xa+1iKSKuiSJSK4L5jFEAoGXXfz5FCKtDsf5CajT/e03nHPtjR+fLsuBWn/96HbKtvd9KkUnMid7896ZOkc/0EcHdDM6WqmAVJzjnaj1TPz5R643IWmpzDoOr6Ug7uzOyTjnFjnn/tc/R+TfULJZpaN/7uBITCISAgUMIpLrorsRzaS1xSCYvxAxF288+gq8WXur4pwno/zhSJ/3N08zswPilfPfAl/anWt1Mjk1OqE42QRjHa3zDmJHZXoDWOevX2VmZXReKs7xOq2tDJ9K9GdkZsPxJkPrrkiQOzHeZHYhiYyONNcfRavTnHNraW2dGZikaCToaiD+KF0ikmEKGEQkp/nDeS73N0+m9SF3doLyu2l9w/utqK/Czl+42V+WArckGJXoWmJH9OmKM8zsPjM7IlkhM+sP/DZq18NJiier83dorfNtzrn6yBd+H/fr/c2xwJ1+q0+iOlWa2Zei96XoHPXA3/zNw2mdryH6uCK8Llolwe+6IHJvFhAblIUpEjA8lqiAmZ1vZn2TfD8SmORvrkxyrcioZHP9+VREJGTKYRCRfDAbb2jS4f52I/BykvIv4j0YRsajbyZxi0RGOOceNbNH8R7czsEbtvLXwFK8kYAuw0s0fY3uPWQW4CUwf9TM3sKboXke3hj7+/1rnYA3R0NkBKLXST7/w2sJ6nwp3nCt4LUC/CTOsX8CTgU+5NfrSDO7BW/40l1AJd5D6EnAuXijDP0+Def4MV43mhHAL8zscOBOvOToCcA1eG/Gu/vnD/AS3qzjg4BT8JLvQ2Nmo4FD/M1k+QtfBf5uZo8DzwKL8P58++H9mXyZ1hGQ/pTgWn1obWF4MF4ZEck8BQwikg9m4T1QR8x3ziUbXvJFvInJIt5xzu1MQ7066xPAf/D64h9L20m45gOfxXuA76odeP3MK/BGkzoseXGeBi5OMItzxB/wxu+/jPgTh20ETveTZWP4ScAX4SXIfg4v8LshybXajG6UonPsMrMPAs/gJSRfTNuhZG/HG270b3SDc26/md0JfN2/xve7c74UiLQuxJvdOagcP+BM8H0z8MN4s037Pow3jHEjySeZE5EMUpckEckHwe5E7bUWBLsrhd0dCQDn3B68t+BfxnvrX4M3Jv6beN2RphM7ylBXrjEH7832ucCv8B6ANwD1eA9x2/H6ld8CnOycO805ty3B6aLPeznwcbxcjG3++ZbgPbgf4pxbmOTYBufcF/CCl9/hdRnbhZdrsgvv578VuAA4OI3nWID3pv0GvFaSeqAarwXg4/7PmCp/8Zdjzey4pCXTL9nsztEuxmt5ugfvz3MT3j1Tg5e8fDNwhHPup0nO8XF/+aBzblNXKywiqWUJZrgXERHpMr8bS6Sf+uXOudvDq03PZGZPAGcAf3XOfSakOvTBC4pKgNOcc0+n8Vqj8PKNCoHjnXPJug2KSAaphUFERCQ7XYvXhecSP2E4DKeRZHbnFPsuXrDwpIIFkeyigEFERCQLOefewuveU4IXPIRhD/Aj4MvOuf3puogfEF2G10XsW8lLi0imKelZREQke30Xr5tOnZmZy3A/YufcU8BTGbjUSODnwArn3DvtFRaRzFIOg4iIpJxyGEREcoe6JImIiIiISEJqYRARERERkYTUwiAiIiIiIgkpYBARERERkYQUMIiIiIiISEIKGEREREREJCEFDCIiIiIikpACBhERERERSUgBg4iIiIiIJKSAQUREREREElLAICIiIiIiCSlgEBERERGRhBQwiIiIiIhIQgoYREREREQkIQUMIiIiIiKSkAIGERERERFJSAGDiIiIiIgkpIBBREREREQSUsAgIiIiIiIJKWAQEREREZGEFDCIiIiIiEhC/x9T4Amm5d7WCQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AACbRElEQVR4nOzdd3gU1foH8O/spmx6Dy0QCCGEKkgndAUVREAF9IoUQbGjF0VFr6A/UVGBi3pFEQTRKyCodATEAKH3XkJCEkISSnovuzu/P3KzZFvq7s5k9/t5njzuzp6ZOYtDmHfOed8jiKIogoiIiIiIyASF1B0gIiIiIiL5YsBARERERERmMWAgIiIiIiKzGDAQEREREZFZDBiIiIiIiMgsBgxERERERGQWAwYiIiIiIjKLAQMREREREZnFgIGIiIiIiMxiwEBERERERGYxYCAiIiIiIrMYMBARERERkVkMGIiIiIiIyCwGDEREREREZBYDBiIiIiIiMosBAxERERERmcWAgYiIiIiIzHKSugNkfcXFxTh37hwAICgoCE5O/N9OREREJBdqtRp37twBAHTq1AkqlUriHunjnaMDOHfuHHr27Cl1N4iIiIioGkePHkWPHj2k7oYeTkkiIiIiIiKzOMLgAIKCgnSv9+3bh1atWknYG7JnRUVF2LdvHwBgwIABcHNzk7hHZK94rZEt8DojW0lISMCAAQMA6N+3yQUDBgdQOWehcePGCAkJkbA3ZM+KiooQGBgIAAgJCeE/rmQ1vNbIFnidka0UFRXpXssx15RTkoiIiIiIyCwGDEREREREZBYDBiIiIiIiMosBAxERERERmcWAgYiIiIiIzGLAQEREREREZjFgICIiIiIisxgwEBERERGRWQwYiIiIiIjILAYMRERERERklvzWniYiIiKUlpYiPz8fBQUFKC0thVarlbpLDker1SIgIAAAcP36dSgUfM5KpimVSqhUKnh7e8PDwwOCIEjdJYtiwEBERCQjoigiPT0d6enpUnfF4YmiCDc3NwCARqNh0EZmqdVqlJSUICcnB25ubmjRooVdBZgMGIiIiGQkLS0NOTk5etsEQYBSqZSoR46t4kmxkxNvmcg8jUYDURQBAEVFRbh+/TpCQ0PtZqSBVz8REZFMFBcX6wULAQEB8Pb2hqurq93ceDQkWq0Wubm5AABvb2+7emJMlqXVapGfn4+bN29Co9GgqKgIBQUF8PT0lLprFsErn4iISCays7N1r4ODgxEcHAyVSsVggUjmFAoFvL290bhxY922vLw8CXtkWQwYiIiIZKKwsFD32tfXV7qOEFGdeHp66gL8oqIiiXtjOQwYiIiIZEKj0QAony/PnAWihkehUOj+7lb8fbYHDBiIiIiIiMgsBgxERERERGQWAwYiIiIiIjKLAQMREREREZnFgIGIiIiIiMxiwEBEREQOa+XKlRAEAYIgIDExUeruEMkSAwYiIiIiO6TVanHx4kWsXLkSL774Inr06KFbNVwQBOzZs6dGxxk0aJBun+p+zKkcmAmCgNatW9fo3MnJyVAqlXr7Vg7sbt++rdv+6KOPVnms7OxsvWP9/fffVbb/4IMPdG23b99eo/7aKyepO0BERERElvfTTz9h8uTJUnfDpGvXruHgwYPo27dvle3++9//QqvVmv08ODgYbdu2xZUrV7B///4qj7V//369Y8XExGDIkCFm28fExAAAlEoloqKiqjy2vWPAQERERA5r8uTJsr2pri9RFHWvnZ2d0alTJ5SVleHcuXN1Ol737t2xYsWKevdLpVKhuLgYP/30U7UBw08//aS3jykDBgzAlStXcOfOHVy+fBmRkZEm21UOADQaje69KWq1GocPHwYA3HPPPfD29q72e9kzTkkiIiIiskPt27fHl19+iUOHDiE3NxcnTpyodtpOVTw8PNCxY8cqf2rikUceAQD8+uuvKC0tNdvu5MmTuHjxIgBg1KhRZtsNGDBA93rfvn1m21V8NnbsWADA4cOHUVZWZvbcBQUFRsd3VAwYiIiIiOxQz5498corr6B3795QqVRSd0dn/PjxcHFxQWZmJrZu3Wq2XcXoQo8ePcyOGgBA//79da/NjRoUFRXhxIkTAIAZM2bAzc0NBQUFOHnypMn2lY/DgIEBAxERETmwmlRJ0mg0+PHHH/Hwww+jadOmcHV1RUBAAPr164eFCxeiqKjI7PG1Wi3+/vtvvPHGG4iKikJgYCCcnZ3h6+uLLl264I033sD169et9O3kyd/fHyNGjABwNygwpFarsXr1agDA008/XeXxQkND0aJFCwDmA4aK0QQvLy/06NEDPXv2rLJ9xXZBEPQCEkfFgIGIiIjIjOTkZAwaNAjPPPMMtm7dirS0NJSWliIzMxMHDhzAzJkz0blzZ8TGxprc/8MPP8R9992HBQsW4ODBg8jIyIBarUZOTg7OnDmDBQsWoF27dvjjjz9s/M2kVREEbN26FZmZmUaf79y5E7du3YKTkxOeeOKJao9XMQqQlJSE5ORko88rpiP17t0bSqUS/fr109temSiKugTqdu3aITAwsIbfyn4xYCAiIiIyISMjAw899BDOnz8PV1dXvPzyy1i3bh2OHTuG6OhovPPOO3B3d0dcXBweeugh5OTkGB1DrVajSZMmePHFF/HTTz/hwIEDOHHiBDZs2IBZs2bB09MThYWF+Mc//oFLly5J8C1r7vLly+jVqxd8fX2hUqkQEhKCUaNGYdWqVWZzAcwZMWIE/P39UVpail9//dXo84qRhwcffBBBQUHVHq+6PIaKEYOKQKHivwcOHNBLDgeAS5cuISMjw+i4joxVkoiIiBoQrVZEVqH5RFF75OfuAoXCfI1/a5kxYwZSUlLQvHlzREdHG60dMGjQIIwdOxb9+/fHtWvX8Nlnn2HevHl6baZNm4Y5c+bA2dlZb/u9996LUaNG6XIMUlJS8PHHH5udoiMHt27dwq1bt3TvU1JSkJKSgk2bNmH+/PlYv3492rVrV6Njubi4YPz48ViyZAl++uknPP/887rP8vLysHHjRgDAxIkTa3Q8wzyGp556Sve+csWjinZ9+/aFQqFAZmYmLly4oJewzfwFYwwYiIiIGpCswlJ0++gvqbthUyfeux8Bnq42PWdiYqLuyfdnn32GVq1amWzXtWtXvPTSS/jss8+wcuVKo4ChZcuWVZ4nJCQEb775Jl577TVs2rQJoihWuQCaFBQKBe677z4MHz4c99xzDwICApCXl4eTJ0/iu+++w6VLl3Dx4kUMHjwYR48e1eUTVOfpp5/GkiVLcPDgQVy7dg1hYWEAgPXr16OoqAg+Pj4YOXJkjY4VGRmJ4OBg3L592ygvoaLikbOzM3r16gUA8Pb2RqdOnXDmzBnExMQwYKgGpyQRERERGdi6dSs0Gg3c3d0xdOjQKttW3FSmpqZWm8Ccm5uLhIQEXLhwAefPn8f58+fh7u6u95nc/P777/jrr7/wz3/+E/fddx+6dOmC/v37Y8aMGThz5gwmTZoEoHwE4rXXXqvxcfv06YPw8HAAwM8//6zbXjHKMnbs2FpVd6oYPbh06RLS09N12yumKHXt2lX3Zw3AbB5DRcAQFhaGZs2a1fj89owBAxEREZGB48ePAwAKCwsRGBgIpVKpq6Zk+PPwww/r9rt586bRsZKSkvDKK6+gZcuW8PHxQVhYGDp27IhOnTqhU6dOeO6553RtK9/oyoWvr6/Zz5ydnbFs2TK0bdsWAPDHH38gJSWlxseuSH6uCBiSk5OxZ88eADWfjlShImConLQM3A0ADKsdVbyvPKJw/fp1XdDH6kh3MWAgIiIiMnD79u067VdYWKj3fvv27Wjfvj2+/vprJCUlVbt/VSVa5crJyQlTp07Vvd+7d2+N950wYQIA4OrVqzh8+DB+/vlniKKIli1b6kYAaqry9KGKIKBy8GB4vIr3KSkpupEdTkcyjTkMREREDYifuwtOvHe/1N2wKT93F5ufU6PRAAACAgKwadMmeHp6QqGo/jlr5VyH9PR0/OMf/0BhYSE8PT3xxhtv4IEHHkDr1q3h4+MDF5fy7/X333/jvvvuAwCjij0NRfv27XWvazPCEBYWhqioKBw4cAA//fQToqOjAZQHErXN5bjnnnvg4+ODnJwc3TSjCxcu6Mq2GgYMzZo1Q8uWLZGYmIh9+/ahVatWDBjMYMCA8qHCL7/8Elu3bkVycjJcXV3RunVrjBs3Di+99JLefLe6SkxMxJIlS/DXX38hPj4eBQUF8PLyQmRkJB588EE8//zzCA4OtsC3ISIie6ZQCDZPAHZEAQEBAID8/Hy0bdsWfn5+NQoYKlu/fj2ys7MBlE/Vuf9+04GeqXUIGpr6JGpPnDgRBw4cwA8//IDi4mIA1S/WZopCoUBUVBS2bduGU6dOIT8/XxcAREZGmlxPoV+/fkhMTERMTAwmTZqkCzSaNm2qy68gTknC5s2b0blzZyxcuBBXrlxBYWEhsrKycPz4ccyaNQtdu3ZFXFxcvc7x008/oX379vjss89w8uRJ5OTkQK1WIysrC4cOHcKcOXPQrl077Nq1y0LfioiIiOqja9euAICSkhKcOnWqTse4cOECgPKVjc0FC8DdfImG7OLFi7rXTZs2rdW+48aNg6urqy5Y6NWrFyIiIurUj4q8A41Gg0OHDhmtv2CoYntMTAzS09Nx+fJlveNQOYcOGE6dOoXx48cjNzcXnp6emDdvHg4ePIjdu3fj2WefBQDExsZixIgRyMvLq9M5Dhw4gMmTJ6OoqAgKhQJTpkzBhg0bcPToUaxfv15XLiwzMxOjRo3CtWvXLPb9iIiIqG5Gjhype2q+ZMmSOh1DrVYDAIqLi6HVak22KSwslPXaCzWhVqvxww8/6N7XdiqPr68vRo8eDVdXV7i6uuqqLtWF4QJuNQ0YYmNj8dtvv+mmhHE6kj6HDhhmzJiBoqIiODk5YefOnZg9ezb69OmDIUOGYOnSpfjss88AlF9ECxYsqNM5PvnkE90via+++go//PADRo0ahR49euCxxx7Dpk2b8M9//hNAeaLTwoULLfPliIiIqM7atm2Lxx9/HEB5WdFFixZV2T4hIQGrV6/W29amTRsA5UGBqdWMNRoNpk2bhtTUVAv12vKio6N106pMKSsrw7Rp03SrVI8cORLNmzev9XnWrFmD4uJiFBcX44UXXqhrd9G9e3e4ubkBAH755RfcuHEDgPkRg/bt28Pf3x8AdPd9AAMGQw6bw3D06FFd1Dl16lT06dPHqM3MmTOxYsUKXLp0CYsXL8a7775rtFJjdQ4ePAigfC7kiy++aLLN+++/rwsUDh06VKvj27vYW3m4cjMPvcMCEOTFObtERGQ733zzDY4dO4bExES88cYb2LRpEyZOnIgOHTrA1dUVGRkZOHPmDP7880/8/fffGDNmDJ588knd/uPGjcPs2bNRUlKCKVOm4PTp0xg6dCh8fHxw4cIFfPXVVzhx4oQu6dcaVq5cqff+9OnTutd//vknEhMTde/Dw8ONnsT/+OOPeOSRR/DII49g0KBBaNu2Lby9vZGfn48TJ05g6dKluulIwcHBWLx4sVW+R025uLigV69e2LNnj27WRtOmTXWLwhkSBAF9+/bFli1bdO0DAgLQoUMHm/W5IXDYgGHDhg2611OmTDHZRqFQYOLEiXjnnXeQnZ2N6OhoDBs2rFbnKS0tBQCzK0QCgI+PDwIDA5Genq5rT8D+q+mYsvIoyjQiAj1d8N9pvdG2sZfU3SIiIgfh7++PP//8E1OmTMGhQ4ewb98+o0W+KvP29tZ7HxISgiVLlmDatGkoLi7G/PnzMX/+fL0248ePx7PPPltljkN9mLvHAWDUl0mTJpmcupOfn49ffvkFv/zyi9ljderUCWvWrKnyfsdWBgwYoFvLAQCioqKqbN+vXz9s2bJF773cVtuWmsNOSaqoyevh4YFu3bqZbTdw4EDd67pE/xULmVS1cmNubq5uoZaK9gSsP5GMMk35XML0/FK8/MtJFJaqJe4VERE5kkaNGmHbtm3YtGkTnnrqKYSFhcHd3R3Ozs4ICgpC3759MXPmTOzdu1dvHn+FKVOmICYmBqNHj0ZQUBCcnZ3RpEkTPPjgg1i7di3WrFkDpVIpwTermbfeeguLFi3CuHHj0LFjRzRq1AjOzs7w9PRE69atMX78eKxbtw6nTp3SK60qJcPpRNWt52A4XYnTkYwJYkMt+FtPQUFBSE9Pxz333KM3PGcoKytLN7dt7NixJucgVuX777/XreC4ZMkSPP/880Zt3nzzTXzxxRcAgF27dln8KcONGzd08wljY2N1cyrlbuIPR7Ev9o7etnHdQ/DZ4/dI1COqTlFREXbu3AkAGDZsmG4eKZGl2eu1dvXqVajVajg5OTWY39X2TKvVIjc3F0D56EFty6qSY6rL3+OrV6/qKkMlJycjJCTEml2sNYecklRcXKx7ol/d/xA/Pz94eHigoKAAycnJtT7XM888g/3792PVqlV46aWXcOLECTzyyCNo0qQJrl+/jp9++kk3Perdd9+tU7BQkdBjTlpamu51SUlJg1lFsrTMeDTh1+M30K25Nx7p3FiCHlF1KkriGb4msjR7vda0Wq2uSou5qjpkO5X/H/D/B9WGKIrQarU1vucqKSmxco/qxyEDhsolUj09PattXxEw5Ofn1/pcSqUSP/74I0aOHImPP/4Yy5Ytw7Jly/TaDB48GLNnz67zyEJtqhEcOXIE8fHxdTqPrd1JVwIwnkP4r40XkJtwFsH28UDRblU1z5fIkuzpWgsICICbmxsEQdA92SZ5qMs9ADkmtVqNoqIiFBUV6dZ1qE7Fg2y5csixtcpPoyqWZa+Kq2t5dZ66Ppm/dOkSVq1ahXPnzpn8/NChQ1i+fHmtllJ3BBozk+VKtQJWxipRxoc9RERERFbnkCMMKpVK97omVYkqhonqMkc2JiYGI0eORE5ODkJDQ/HRRx9h6NCh8Pf3x61bt7Bp0yb861//wpo1a7Bv3z7s3Lmz1qW8qpsqlZaWhp49ewIoXz2xdevWtf4eUliaeAzIN71gXkqhgJPaUPzrQSaJy0lxcbHuae+AAQP0/q4RWZK9XmvXr1+HRqOBk5OTUcUdsj2tVqsbWfD09LRpDsPt27dx+/btWu/n4uJS51WSyTLu3LkDNzc3eHp6VllYpzK5z/5wyIDBy+tuac6aDDEWFBQAqNn0pcpKSkrw5JNPIicnB40bN8bhw4fRuPHdufchISF48cUXMXDgQHTv3h2pqamYNGlSrZeIr01ijKura4NJDjQcYVAqBGi0dzf+ciwF/SMa4aFOTWzcM6oJlUrVYK41atjs6VpTKBS6ufJMsJUXhUJh0/8n3377LT744INa7xcaGqq3tgJJQxAEKBSKGv9uqpjNIlcOGTCoVCoEBAQgIyOj2oThrKwsXcBQ25UL//zzT900o1deeUUvWKisQ4cOmDBhApYtW4YTJ07gzJkzuOceVgJSa/UjhpcGh2PpvngUV5qLNOu3s+jYzAfN/d2t2hdRFHEnvwTJmYVIzizC9cxCXM8sRF5xGbTi/5KbREArihAr/dfT1QmNfVQI9nZFY28VGv3vp7GPCp6uDvnXj4iIiBoYh71jad++PWJiYhAXF6crfWVK5WSVdu3a1eocFcukA8C9995bZdtu3brpkqEvX77MgAHQG00AgPZNvPDhIx0x67ezum15xWq8vPoU1k3vAxen+j/5EUURSRmFOJ+ag3MpOYi7lY/rmYVIzirUC1QswdPVCe2beqNv6wBEhQfinhBfi3wHIiJq+ObOnYu5c+dK3Q0iAA4cMPTr1w8xMTEoKCjAiRMn0KtXL5Pt9u7dq3td3UqBhioHIWp11QuOlZWVmdzPkZVp9G/QnRQKjO0egoPx6dhwOlW3/UxyNib+cASjuzTD4MhgNPKu2VxmjVZEYkYBzqfk4HxKeYBwITUXecW2WRwuv0SNowmZOJqQiX//dRXuLkr0aOmvCyDaNfGGUsGVJomIiEhaDntnOnr0aHzyyScAgBUrVpgMGLRaLVatWgUA8PX1xeDBg2t1jsrLo8fExODhhx8227ZyYCKHZdXlQG2QxOCkFCAIAj4a0wlnbuQgIb1A99nha5k4fC0TANCpmQ+GRAbjvnbB6NjUBwqFgPwSNS6n5eJSWi4upuXhUlourtzMQ1GZxqbfqSqFpRrsjb2Dvf9brM7X3RkPdWyCCb1boENTH4l7R0RERI7KYQOGnj17on///oiJicHy5csxadIk9OnTR6/NggULdNOKZsyYAWdnZ73P9+zZowsiJk2ahJUrV+p9ft9998Hd3R2FhYVYsmQJJkyYgE6dOhn1Zfv27fjjjz8AAM2aNUOXLl0s9C0bNrXBIjnOyvLpOp6uTvj6H10x5puDKFUbTxM697/RgsW7ryLIyxXuLkokZRRapE8uSgVC/NzQ3N8dzf3dEOSpgpOyfBRAIQhQCIAglL8GgOzCMtzMLcat//3czClGbg1HMLILy7D66HWsPnodXZr74qleLfBw56Zwc1Fa5LsQERER1YTDBgwAsHjxYkRFRaGoqAjDhg3D7NmzMXjwYBQVFWHNmjVYunQpACAiIgIzZ86s9fF9fX3x9ttv4/3330deXh769u2LV155BUOHDoWfnx9u3bqFjRs34vvvv9dVxfj0009ZGeN/ygxHGCpNz+nQ1AdfPtEFb64/W+UUojt5dVs5McDDBR2b+aBDU2+EBXmiuZ8bWgS4o5GXCop6ThMqKtXgVm4xrqXn42BcBg7EZ+BSWtULNJ1Ozsbp5Gz835aLeLxbc/yjVwuEB9euahcRERFRXTh0wNC1a1esXbsWEyZMQG5uLmbPnm3UJiIiAlu3btUrxVob7733HjIzM7F48WLk5+fjk08+0U2FqszZ2Rkff/wxJkyYUKfz2CO1YQ6DUj+QerBjE/RqFYDoK7ex+/Jt7LtyB3kltc8/CPJyRadmPujYzAcdm3qjU4gPGnurIAjWyR9wc1GiZaAHWgZ6YEhkIwBAZkEpDsVn4EB8Og7FZ+hNt6ost1iNHw4k4IcDCejYzBvuLvL6K6zVapGVqYS/q4iC4DQMbt8ETXzso9wlERGRo5LX3YYERo4cibNnz2Lx4sXYunUrbty4ARcXF4SHh2Ps2LF4+eWX4e5e95KdgiBg0aJFurKp+/fvR1JSEgoLC+Hp6Ynw8HAMHDgQ06dP50IrBsoMqiQ5K41v4P08XPDovSF49N4QlGm0OJaYib8v3cbfl2/jmsFNt1IhoHWQB9o18a7044VgL+kXfPL3cMGIzk0wonP5mhLJmYX47eQNrDmajJu5xSb3OZ9S9aiEdATE5wk4tvESsPESwoI80C88EFHhgegdFgAfN+fqD0FERESyIYiiKFbfjBqyGzdu6NaQiI2NRZs2bSTuUc2EvbMVlWOGra/2q1Xyb0J6AY4lZkIhCIhs7IXwYE+onBvW/H+1Rovdl2/jv0euY9//kqEbMoUAdA7xxeS+LTGqS1OrjeKQ/SsqKsLOnTsBAMOGDbObhduuXbuGkpLyqZQRERFQKhvW7yx7o9VqkZtb/nDG29ubU4apWlqtFrGxsRBFEa6urggLC6vRflevXtU9OE5OTq7Vory24PAjDCRPWq0IgwEGXdJzTbUK9ECrQA8L9sr2nJQKPNChMR7o0BhJGQX45eh1rDt+A5kFpVJ3rU60Ynk+xmtrT8PdRYlhHUwvZkjkqNzd3XUBQ3Z2NgICAiTuERHVRn5+PiqexdvLgwyAAQPJlOEqz4B+0rMjCg3wwDsPtcM/h0bgQFw6UrJNT1WSUllpKc5euISEPAGJhS7IqSIhfdu5NAYMRAZ8fX2RlZUFALh9+zY0Gg28vb3h6urKETkiGdNqtcjPz8fNmzd12+qa/ypHDBhIlgxLqgK1H2GwV65OSl2ytNwUFRUhIOsiBkPEfff3x7WsUuyPS8eBuHQcS8zSK4ObaKFSt0T2RKVSwcfHBzk5OQCAjIwMZGRkQBAETk+SSMXCq3fuNPxpoWQ9Go0GlWf5u7m5wcOjYc9yqIwBA8mSYUlVALr1DqhhUCoEdA7xRecQX7w4KBzRl29jyspjus8TM0xXgiJydE2aNIGLi4veDaooirobV7IdURRRVFQEoPwGkKM8VBNubm5o0aKFXV0vDBhIlgxLqgKAE5PNGrSWBvkk2YVlyC4sha+7i0Q9IpInQRAQGBgIb29v5Ofno6CgAKWlpbr1esh2tFqtLmDw9PRk0jOZpVQq4ebmBi8vL3h4eNhVsAAwYCCZMpXDYKqsKjUcIX5uUCoEaCr9v03MKEQXBgxEJrm4uMDf3x/+/v5Sd8VhFRUV4fLlywCAbt262VUSK1FtMFQmWSozNcLAHIYGzVmpQIif/j+2SZyWREREJHu8AyNZ0rBKkl1qGaA/LcncitZEREQkHwwYSJZMJj0zYGjwWgbor5qexEpJREREsseAgWTJVFlVJQOGBs8w8ZkjDERERPLHgIFkSW0wwuCsFOyu4oAjMpySxBwGIiIi+WPAQLJkmPTMkqr2wXCEIauwDDmFZRL1hoiIiGqCd2EkS4ZlVblom32oKK1aGRdwIyIikjcGDCRLhiMMziypahdMlVZlwEBERCRvvAsjWTLMYWCFJPsRapDHkJjOSklERERyxoCBZMlwHQYGDPajlUFpVY4wEBERyRsDBpIlo6RnTkmyG0YjDAwYiIiIZI13YSRLTHq2X60CDackMWAgIiKSMwYMJEtGSc8sq2o3Qg2mJLG0KhERkbzxLoxkySjpmSMMdiPEz92otGpSJkcZiIiI5IoBA8mSWsscBnvl4qRAM1/90qoJnJZEREQkW7wLI1kqMxhhcGaVJLtiuOJzUgZLqxIREckVAwaSJbVRlSQGDPakpWFpVY4wEBERyRYDBpIloypJTHq2KyytSkRE1HDwLoxkiWVV7VurQMPF2zgliYiISK4YMJAsGU1J4giDXTEcYcgsKEVOEUurEhERyRHvwkiWjJKeOcJgV5r7ucMwjz2J05KIiIhkiQEDyRLLqto3FycFmvnpl1bltCQiIiJ54l0YyZLhwm0sq2p/WhomPrNSEhERkSwxYCBZMpySxKRn+2MUMHBKEhERkSwxYCBZ4pQk+2e4eBtHGIiIiOSJd2EkS8brMHCEwd4YLt7G1Z6JiIjkiQEDyRLLqto/wxGGjIJS5BaztCoREZHc8C6MZMko6Zk5DHbHZGnVdI4yEBERyQ0DBpKlMq70bPdMlVZNYOIzERGR7DBgIFnilCTHYFgpKYmJz0RERLLDuzCSJa707BgMAwaOMBAREckPAwaSJZZVdQyhrJREREQke7wLI1kyTHpmWVX71IprMRAREckeAwaSJaMRBgYMdik0gKVViYiI5I4BA8mS0QgDpyTZpeb+biytSkREJHO8CyNZMiyryqRn++TqpERTX/3SqolMfCYiIpIVmwQM+/btw759+1BUVFTjfYqLi3X7keNhWVXHwTwGIiIieXOyxUkGDRoEhUKBs2fPon379jXaJyUlRbefWq22cg9JboynJHGEwV6FBrgj5urd94mslERERCQrNntsK4pi9Y0suB81bGUGSc/OzGGwW4ZrMXBKEhERkbzI9i5M+78bRqVSKXFPSAosq+o4jFZ7ZsBAREQkK7INGJKSkgAAPj4+EveEpGCUw8ApSXarZaD+4m3p+aXIY2lVIiIi2bBKDsP169dNbk9LS4Onp2eV+5aUlCA+Ph7/+te/IAgCOnToYI0uksyptYYjDLKNbamemvu7QxCAyrMPkzIK0bEZHxYQERHJgVUChlatWhltE0URw4YNq/WxJk6caIkuUQNjFDBwhMFuuTop0dTHDSnZd6uoJaQXMGAgIiKSCasEDOYSlWuTwKxSqfDqq6/imWeesVS3qAEp0zDp2ZG0CvTQCxiYx0BERCQfVgkYVqxYofd+ypQpEAQB//d//4dmzZqZ3U8QBKhUKjRp0gRdu3atdvoS2S8mPTuW0AB37I+7+z6Bqz0TERHJhlUChkmTJum9nzJlCgBg9OjRNV6HgRybmmVVHYrh4m0cYSAiIpIPmyzcFh0dDcB0bgORIVEUUcaF2xxKKNdiICIiki2bBAwDBw60xWnITmi0xrkurJJk31qZKa3qpXKWqEdERERUgXdhJDuGFZIA5jDYuxC/8tKqlSVlMI+BiIhIDmwywlDZmTNnEBMTg2vXriEvLw8ajabK9oIgYPny5TbqHcmByYCBU5LsmsrZuLQq12IgIiKSB5sFDFeuXMEzzzyDw4cP13gfURQZMDggw1WeASY9O4Kmviq9gOFOXrGEvSEiIqIKNgkYUlJSMGDAAKSnp+vWYvD09ISfnx8UnJtOBgwTngFOSXIEQV6ueu/v5JdI1BMiIiKqzCYBw7x583Dnzh0IgoBp06bhjTfeQEREhC1OTQ2QYUlVAHDiCIPdC/I0CBjyGDAQERHJgU0Chj///BOCIGDixIlYunSpLU5JDZjhom0A4MwcBrtnOMKQnl8qUU+IiIioMps8tk1NTQUATJw40RanowauzEQOA8uq2r9AjjAQERHJkk3uwvz8/AAAvr6+tjgdNXAsq+qYjHIYGDAQERHJgk0Chu7duwMAYmNjbXE6auAMpyQpBEDBgMHuGU9JKoHWRPBIREREtmWTgOHVV1+FKIrMX6AaMUx6ZsKzYzAMGNRaETlFZRL1hoiIiCrY5E5s6NCheOuttxAdHY0XXngBZWW8CSDzDMuqOnN0wSEEeLgabWNpVSIiIunZpErSqlWr0K5dO/Tt2xdLly7F5s2b8fjjjyMyMhLu7u7V7s9kacdiuHAbRxgcg4uTAr7uzsguvPtA4U5eCSIaeUnYKyIiIrJJwDB58mQIwt2nxGlpafjqq69qtG9FOVZyHIZJzyyp6jiCPF2NAgYiIiKSls0e3YqiWOcfciyGZVVZUtVxmEp8JiIiImnZZIQhISHBFqchO2FYJcmJIwwOg2sxEBERyY9NAobQ0FBbnIbshGGVJGfmMDgMrsVAREQkP7wTI9kxzGFQskqSwzAKGDgliYiISHIMGEh2jKYkMWBwGEGckkRERCQ7NpmSVNnVq1exatUqHDp0CDdv3kRRURF27NiB8PBwXZvz58/j+vXr8PDwwMCBA23dRZKYYdIzpyQ5jkAmPRMREcmOzQIGrVaLWbNmYfHixdBqtbrqR4IgoLS0VK/t9evX8fDDD8PJyQkJCQlo1qyZrbpJMmA4JYlJz47DcIQho6AUao2Wa3EQERFJyGb/Ck+fPh2LFi2CRqNB06ZN8fjjj5ttO3z4cLRq1QoajQbr16+3VRdJJgwXbnNmWVWHYZjDIIpAZkGpmdZERERkCza5E9u9ezeWL18OAJg9ezYSExPx66+/VrnP2LFjIYoi/v77b1t0kWSkjGVVHZa/hwsMU1aY+ExERCQtmwQMS5cuBVA+cvDRRx9BqVRWu0/Pnj0BABcuXLBq30h+DMuqcjqK41AqBPh7MPGZiIhITmxyJ3bo0CEIgoCpU6fWeJ+QkBAAwM2bN63VLZIpwxEGZ1ZJcihci4GIiEhebBIw3L59GwDQsmXLGu/j7OwMAFCr1dboEsmYhuswODTDgCE9nzkMREREUrJJwODh4QEAuHPnTo33uXHjBgDA39/fKn2qLCkpCTNnzkRkZCQ8PDzg7++PHj164PPPP0dhYaFFz/XXX39h8uTJCA8Ph4eHB3x8fBAREYHHH38cS5YsQX5+vkXP1xAZJT1zSpJD4VoMRERE8mKTsqphYWE4efIkLl68iKFDh9Zon+3btwMAOnToYM2uYfPmzZgwYQJyc3N12woLC3H8+HEcP34cy5Ytw9atW/XWiaiLrKwsTJkyBRs3bjT6LDc3F1evXsVvv/2GPn36oEuXLvU6V0NXxrKqDi3Qy0XvPZOeiYiIpGWTR7fDhg2DKIr4z3/+A61BQqspFy9exMqVKyEIAoYPH261fp06dQrjx49Hbm4uPD09MW/ePBw8eBC7d+/Gs88+CwCIjY3FiBEjkJeXV+fz5OTkYOjQobpgYcyYMfjvf/+Lw4cP49ixY/j9998xY8YMXd6GozMcYXBiWVWHYjzCUCxRT4iIiAiw0QjDq6++ii+//BLx8fF4/vnn8c0338DJyfSpd+3ahSlTpqC4uBgBAQG6G3drmDFjBoqKiuDk5ISdO3eiT58+us+GDBmCNm3aYNasWYiNjcWCBQswd+7cOp3nlVdewYkTJ+Dq6opff/0VjzzyiN7n3bt3x5gxY3TrVDg6o6RnjjA4FOYwEBERyYtNHt02atQI3377LQBg+fLlaN26NV588UXd54sXL8Zzzz2HDh064MEHH0RqaioUCgVWrlwJT09Pq/Tp6NGjiImJAQBMnTpVL1ioMHPmTLRr107Xx7KyslqfZ//+/fjpp58AAB999JFRsFCZIAhmAylHYlxWlQGDI2GVJCIiInmx2VyPp556CqtXr4a3tzeSk5Px3XffQRDKbwSXLVuG5cuX49KlSxBFEZ6enli3bh1GjBhhtf5s2LBB93rKlCkm2ygUCkycOBEAkJ2djejo6Fqf5+uvvwYA+Pj44OWXX659Rx2Q2nDhNk5JciiGU5JyispQoubIGxERkVRseic2btw4xMXF4YMPPkC3bt2gVCohiqLup0OHDnjnnXcQFxeHMWPGWLUv+/fvB1Bewalbt25m2w0cOFD3+sCBA7U6R2lpqS5vYejQoVCpVAAAjUaD5ORkJCYmoriY87MNcUqSYzMcYQA4LYmIiEhKNn90GxAQgH/96184evQoiouLcfv2baSlpaGkpATnzp3DvHnzEBwcbPV+XLp0CQAQHh5e5TSgyMhIo31q6syZM7qAoFOnTsjNzcVrr72GwMBAtGjRAq1atYKPjw+GDh2KPXv21P5L2CmNwZQkJUcYHIqPm7NRkJjOaUlERESSkXTCvEKhQGBgoM3PW1xcjPT0dACotjKRn58fPDw8UFBQgOTk5Fqd5+LFi7rXWq0W3bt3x9WrV/XalJaW4q+//sLu3bvxySef4K233qrVOYC7a1aYk5aWpntdUlKCoqKiWp/DlorLDBbr02pk32cqV3nErD6jZ4EeLkjLvRskpGTkISLQeOSBHJelrjWiqvA6I1spKZH3gzGHzLCtXCK1JknVFQFDbRdVy8zM1L2eP38+iouL8eCDD+LDDz9E586dkZubi99++w1vv/02cnJy8PbbbyMyMhKjRo2q1XmaN29e47ZHjhxBfHx8rY5va6lpClQe/EpKiMfOnXHSdYjqZN++fXXe10mjBHB3lGHv0VMoSxLN70AOrT7XGlFN8Toja6p4kC1XDjnXo/JTAhcXlypalnN1LX+yWdun3AUFBXrnHDp0KLZs2YIePXrA1dUVQUFBeP7557FlyxYo/jft5p133oEoOvaNkUEKA7jQs+PxdtG/CPJqX6CMiIiILMSiIwxDhgwBUF4edPfu3Ubb68LwWJZQkXwMlE8Jqk7FMJGbm1udzwOUjzIolUqjdv369cOjjz6K9evX49KlSzh37hw6d+5c4/NUN1UqLS0NPXv2BAD06tULrVu3rvGxpbDu9mkg6+7oTLu2bTGsbwvpOkQ1VlxcrHsKN2DAAKO/AzUVU3wJF7LuTqXzbdwCw4a1tUgfyT5Y6lojqgqvM7IVuc/+sGjAUJG4W1EutfJ2QRBq9eS8or3hsSzBy8tL97om04wqRgpquyZE5fMEBQWha9euZts+8MADWL9+PQDg2LFjtQoYarNCtKura60DH1vTQv//uZuri+z7TMZUKlWd/7818fPQe59VpOE1QGbV51ojqileZ2RNFbNZ5MqiAcOAAQNM3uCb2y4VlUqFgIAAZGRkVJswnJWVpQsYapMrYNi+upv6ym3v3LlTq/PYG8N1GFhW1fEEenLxNiIiIrmwyghDTbdLqX379oiJiUFcXBzUarXZ0qqXL1/Wva5Y9bmmOnTooHut0VS98FTlzx19tecyo5WemcTgaIxWe85nwEBERCQVh70T69evH4Dy6UYnTpww227v3r2611FRUbU6R2hoKFq0KJ97n5iYWOWUrMpz15o1a1ar89gbjVb/z0mp4AiDozEMGLgOAxERkXQcNmAYPXq07vWKFStMttFqtVi1ahUAwNfXF4MHD671eR577DEAQG5ubpXJ27///rvudUUw46i40jMFGUxJKijVoKBEbaY1ERERWZPDBgw9e/ZE//79AQDLly/HoUOHjNosWLBAt7rzjBkz4OzsrPd5RTK3IAiYPHmyyfO89tpruqoK//znP5Gbm2vU5ueff9ZN2xoxYkStcyXsjVpjMCWJKz07nEAv4+SvdE5LIiIikoRN7sTOnTuHsLAwtGnTBikpKdW2T0lJQXh4OFq3bo3Y2Fir9Wvx4sVwc3ODWq3GsGHD8Mknn+Dw4cOIjo7G9OnTMWvWLABAREQEZs6cWadztGjRAh9++CGA8j+Hnj17YsWKFThx4gSio6Pxyiuv6IINb29vLFq0yCLfrSFTaznC4Og8XJRwc9YvQczEZyIiImnYJLv2559/RmJiIh544IEazc9v1qwZIiIisGPHDvz888+6G25L69q1K9auXYsJEyYgNzcXs2fPNmoTERGBrVu36pVIra0333wTmZmZmD9/Pq5cuYJnnnnGqE1wcDA2bNiANm3a1Pk89qKMIwwOTxAEBHm54npmoW4bRxiIiIikYZM7sb1790IQBDzyyCM13mfUqFEQRdHii7YZGjlyJM6ePYvXX38dERERcHd3h6+vL7p374758+fj1KlTCA8Pr/d5PvnkExw4cABPP/00WrZsCVdXV/j4+KBHjx74v//7P8TGxqJPnz4W+EYNn2FZVSeOMDgko0pJHGEgIiKShE1GGCqmFdVmMbKOHTsCAK5cuWKVPlUWGhqKhQsXYuHChbXab9CgQbVajK5Pnz4MCmpAbVBW1ZllVR1SoKeL3nsGDERERNKwyZ1YxWrKtVkpuaKtqSRhsm+GVZJYVtUxcS0GIiIiebBJwODn5wcAuHnzZo33qWhbn9wBapgM12Fg0rNjCvJU6b2/k1cqUU+IiIgcm00ChopE3j///LPG+2zfvh0A0Lp1a6v0ieSLSc8EcISBiIhILmxyJ/bAAw9AFEUsXbpUt65BVS5cuIDvv/8egiDgwQcftEEPSU4My6oy6dkxGeYwcLVnIiIiadgkYHjhhRfg4eGB4uJiDBkyBFu2bDHbdtOmTbj//vtRVFQENzc3vPTSS7boIsmEKIompiRxhMERmRphqE2RASIiIrIMm1RJCgwMxLfffounn34at2/fxqhRoxAWFoZ+/fqhSZMmAIC0tDTExMQgISEBoihCEAQsWbIEjRo1skUXSSYME54BwIlJzw7JMGAoVWuRW6yGj5uzmT2IiIjIGmwSMADAU089Ba1WixdeeAGFhYWIj4/HtWvX9NpUPD308PDAkiVLMGHCBFt1j2TCsKQqwBEGRxXo6Wq07U5eCQMGIiIiG7PpndjTTz+NuLg4vP322+jUqROA8iChYkShc+fOePfddxEXF8dgwUGZHGFgDoNDUjkr4aXSf6bBtRiIiIhsz2YjDBUaN26Mjz/+GB9//DHUajUyMzMBAP7+/nBysnl3SGbUGuMRBq7D4LiCvFyRV6zWvU9npSQiIiKbk/QO3cnJCcHBwVJ2gWTGMOEZAJxZVtVhBXm64tqdAt17jjAQERHZHu/ESFbKTAQMnJLkuLgWAxERkfQYMJCsmJqSxKRnx2WY+MwRBiIiItuz6JSkIUOGAAAEQcDu3buNtteF4bHIvrGsKlVmOMLAHAYiIiLbs2jAsGfPHgDlN/mG2wVBqNWiSxXtDY9F9s1UWVUmPTsuoylJHGEgIiKyOYsGDAMGDDB5g29uO5EhtcZwlWeB144DY8BAREQkPauMMNR0O5GhMoMcBidWSHJoQQY5DBkFpdBqRSg46kRERGQzFr0bO3v2LM6ePYvS0lJLHpYciGFZVeYvODbDEQaNVkRWIX+/EBER2ZJFRxi6dOkChUKBs2fPon379rrtH374IQDgxRdfRGBgoCVPSXbGMOmZJVUdm7+HCwQBqJz+dCe/BAEGIw9ERERkPRZfuM1UYvPcuXMhCAIef/xxBgxUJcOkZyeWVHVozkoF/N1dkFFwd1ThTl4JIhtL2CkiIiIHY9G7MWdnZwBAUVGRJQ9LDsQo6ZlTkhwe12IgIiKSlkUDhkaNGgEATpw4YcnDkgMxSnrmCIPD41oMRERE0rJ4WdVffvkFb731FuLj4xEREaEbdQCAjRs34vjx47U+7sSJEy3ZTZIxtWHSM3MYHB5LqxIREUnLogHDO++8gz/++AM5OTn44osv9D4TRRHvvfderY8pCAIDBgdiOMLgzLKqDo8BAxERkbQsejfWoUMH7Nu3D/fffz+cnZ0hiqJeEnTF+9r+kOMwzGHgCAMFerrovb/DKUlEREQ2ZfEqSd26dcPOnTuhVquRnp6O4uJihIWFQRAE7NixA23atLH0KcmOcB0GMmSUw5DHdRiIiIhsyeIBg+7ATk5o3Fi/9mHTpk0RGhpqrVOSHShjWVUyEOSp0nvPEQYiIiLbsmjA8OWXXwIAnn76afj5+em2z5kzB4IgIDg42JKnIztkNCWJIwwOz3CEIbOgFGUaLZwZTBIREdmERf/Ffe211/D6668jLS1Nb/uePXuwZ88eFBQUWPJ0ZIeMkp55U+jwDHMYACAjn9OSiIiIbMVqU5Iq27t3LwRBYMBA1WJZVTLk5+4CpULQy29Jzy9BYx9VFXsRERGRpVj08a1KVf4PeHZ2tiUPSw5EbbhwG8uqOjyFQjCulMTSqkRERDZj0buxli1bAgC2bNliycOSAykzyGFw5ggDgWsxEBERScmiU5KGDx+Oy5cvY/78+di9e7fRSs/vvfcefH19a3VMQRCwfPlyS3aTZEzNKklkQqCnQcDASklEREQ2Y9GAYfbs2di0aRPi4uJw7NgxHD9+XPeZKIrYuHFjrY4niiIDBgdjlMPAKkkEIMgwYOAIAxERkc1YNGDw9/fH8ePH8fXXX2P37t1ISUlBSUkJkpKSIAgCmjRpojfiQGSIZVXJFKMpSRxhICIishmLV0ny9vbG7NmzMXv2bN02xf8SV3fu3In27dtb+pRkR4ySnjklicAcBiIiIinxboxkpUzLpGcyZpjDkM4RBiIiIpuxyToM0dHRAIBWrVrZ4nTUgLGsKpnCEQYiIiLp2CRgGDhwoC1OQ3bAMIeBIwwEGAcMecVqFJdpoHJWStQjIiIix2GTgKEyrVaL6OhoHDp0CDdv3kRhYSHmzZuHJk2a6NqUlpZCrVZDqVTC1dW1iqORvTGcksSVngkAGnkbr+ocdzsfHZv5SNAbIiIix2LTgGHLli149dVXkZSUpLf9jTfe0AsYli1bhldeeQWenp5ITU2Fh4eHLbtJEuKUJDLF09UJoQHuSMoo1G07n5LDgIGIiMgGbHY39v3332PUqFFITEyEKIoICAiAKIom206bNg0+Pj7Iz8/HH3/8YasukgxwHQYyxzA4OJeSI1FPiIiIHItNAoarV6/ipZdeAgAMGTIEFy9exO3bt822d3FxwWOPPQZRFLFz505bdJFkgmVVyZxOBgHDeQYMRERENmGTu7FFixZBrVajQ4cO2LZtGyIjI6vdp3///gCAU6dOWbt7JCOGIwxMeqYKhgHDpZt5KDMIMImIiMjybBIw/P333xAEAa+99hpcXFxqtE94eDgAIDk52ZpdI5kxvAHklCSq0LGpfsBQqtYi9laeRL0hIiJyHDYJGG7cuAEAuOeee2q8T0Wic2FhYTUtyZ4YllXllCSq4OPujBb+7nrbOC2JiIjI+mxyNyYI5U+Ja3Pzn5GRAQDw8WEVFEfClZ6pKobTkpj4TEREZH02CRiaNWsGALh27VqN99m/fz8AICwszCp9InliWVWqinGlpFyJekJEROQ4bHI3NmjQIIiiiB9//LFG7XNycvDtt99CEAQMGTLEyr0jOTGeksQRBrrLKPE5LZeJz0RERFZmk4Bh+vTpEAQBe/fuxcqVK6tsm5GRgdGjR+PmzZtwcnLC888/b4sukkyotRxhIPM6NvPWe1+q1uLqrXyJekNEROQYbHI31rVrV8yYMQOiKGLq1KkYP348fv31V93nBw8exC+//IKXXnoJ4eHh2LdvHwRBwL/+9S+EhobaooskE0YLt3GEgSrxdXdBc383vW1MfCYiIrIuJ1udaMGCBSgpKcGSJUuwfv16rF+/XpcMPX36dF27itWfX3vtNbz33nu26h7JhOGUJCY9k6FOzXyQnFmke38uJQfjejSXsEdERET2zWbzPQRBwH/+8x/s2LEDgwYNgiAIEEVR7wcA+vTpg61bt2LhwoW26hrJiPE6DJySRPqME585wkBERGRNNhthqDB06FAMHToUeXl5OHXqFG7fvg2NRoOAgAB06dIFgYGBtu4SyQinJFF1DBdwu5SWC7VGyzU7iIiIrMTmAUMFLy8vDBgwQKrTk0wZjjA48yaQDBhWSipRa3H1dj7aNfE2swcRERHVB+/GSFaMyqoqOMJA+vw8XNDMVz/xmdOSiIiIrEeSEYZbt25hz549OH/+PDIzMwEA/v7+6NixIwYNGoRGjRpJ0S2SAZZVpZro1MwHKdl3E5/Pp+RgXHcmPhMREVmDTQOGtLQ0/POf/8Tvv/8OtVptukNOTnjsscewYMECNGnSxJbdIxlgDgPVRKcQH/x54abuPUurEhERWY/NHt+eOXMGnTt3xq+//oqysjKjCkkVP2VlZVi7di3uuecenDt3zlbdIxnQaEWI+vECy6qSSYaVki7+L/GZiIiILM8mAUNBQQFGjBiBjIwMiKKI+++/H2vXrkViYiKKi4tRXFyMxMRE/Prrrxg2bBhEUUR6ejpGjBiBwsJCW3SRZMAw4RnglCQyzTDxubhMi/g7BRL1hoiIyL7Z5G7s66+/RmpqKhQKBb7//nvs3LkTY8eORYsWLeDi4gIXFxe0aNECjz/+OP78808sW7YMgiAgJSUF//nPf2zRRZIBw+lIAKckkWn+THwmIiKyGZsEDBs3boQgCJg8eTKmTp1abftnnnkGU6ZMgSiK+OOPP2zQQ5IDU1NKWFaVzOnYTL+MKvMYiIiIrMMmd2OxsbEAgCeeeKLG+zz55JN6+5L9K9OYGGFgWVUyw3BaEkcYiIiIrMMmAUN+fj6A8tKpNeXn5wegPP+BHINhSVUAXL2XzDJKfE7NhcbEtDYiIiKqH5vcjQUFBQEALl26VON9Ll++DAAIDAy0Sp9IfgwXbQM4wkDmGY4wFJVpEH8nX6LeEBER2S+bBAy9e/eGKIpYuHCh2fUXKlOr1Vi4cCEEQUDv3r1t0EOSAyY9U20EeLqiqY9Kb9u5G5yWREREZGk2CRgmTpwIADh9+jRGjBiB1NRUs21TU1MxcuRInDx5EgAwefJkW3SRZMBk0jPLqlIVDKclMY+BiIjI8myy0vPIkSMxevRobNiwAX/99RfCwsIwbNgw9OrVC8HBwRAEAbdu3cKRI0ewa9culJaWAgDGjBmDESNG2KKLJAOGSc8KAVBwShJVoVMzH+y8eEv3npWSiIiILM8mAQMArF69GhMnTsS6detQWlqKrVu3YuvWrUbtxP8t9Tt27FisWrXKVt0jGTBMembCM1WnY4j+CMOF/yU+KxloEhERWYzN7shcXV2xdu1abN68GQ899BDc3NwgiqLej5ubGx566CFs2bIFa9euhaurq626RzJgOMLgzJs+qkbHpsaJz9eY+ExERGRRNhthqDBixAiMGDECGo0G165dQ2ZmJoDykqthYWFQKpW27hLJhGEOA0cYqDpBXq5o7K3Czdxi3bZzKTlo08hLwl4RERHZF5sHDBWUSiXatGkj1elJhgyrJDmzQhLVQMdmPkYBw6P3hkjYIyIiIvvCR7gkG4YBA+ehU00YrsfAxGciIiLLskrAcPjwYTz66KN49NFHsX79+lrtu27dOt2+J06csEb3SKaMpiSxpCrVQKcQb733F7jiMxERkUVZ5Y5sxowZ2LhxI5KTkzFq1Kha7Ttq1CgkJydj48aNeP31163RPZIpo6RnTkmiGjBci6GwVIOEdCY+ExERWYrFA4YjR47g2LFjAIAvv/wSzs7OtdrfxcUFX375JURRxIEDBzjK4EBYVpXqIthLhUbe+hXVuIAbERGR5Vj8juzXX38FAPTr1w99+vSp0zH69OmDgQMHAgDWrFljsb6RvKkNRhicmMNANWSYx3DuRq5EPSEiIrI/Fg8YDh06BEEQaj0VydAjjzwCURRx8OBBC/WM5K7MIIfBmSMMVEOG05LOpWRL0xEiIiI7ZPE7svj4eABAp06d6nWcjh076h2P7J9hlSQn5jBQDd0T4qv3/kxyDopKNdJ0hoiIyM5YPGDIzs4GAAQFBdXrOBX7VxyP7J9hlSRnVkmiGure0k+vDG+pRotjiZkS9oiIiMh+WPyOzN3dHQCQm1u/OcR5eXkAADc3t3r3qTpJSUmYOXMmIiMj4eHhAX9/f/To0QOff/45CgsLrXLOwsJChIWFQRAECIKAli1bWuU8DQnXYaC68lI5o3OI/rSkA/HpEvWGiIjIvlg8YKgYGYiLi6vXcSr2r+9IRXU2b96Mzp07Y+HChbhy5QoKCwuRlZWF48ePY9asWejatWu9v4sp77//PhISEix+3IbMKOmZU5KoFvqFB+q9PxiXIVFPiIiI7IvFA4auXbtCFEVs3769XsfZunWr7njWcurUKYwfPx65ubnw9PTEvHnzcPDgQezevRvPPvssACA2NhYjRozQjXhY6rz//ve/oVKp4OXlZbHjNnRlWiY9U931ba0fMJxPzUF2YalEvSEiIrIfFr8je+CBBwAAGzZswIULF+p0jPPnz2PDhg0QBEF3PGuYMWMGioqK4OTkhJ07d2L27Nno06cPhgwZgqVLl+Kzzz4DUB40LFiwwCLn1Gg0ePbZZ6HRaDB79mz4+/tb5Lj2gGVVqT7uDfWFyvnurzRRBA5f4ygDERFRfVk8YHjiiScQHBwMrVaLxx9/HBkZtfsHOz09HY899hi0Wi2CgoLwxBNPWLqLAICjR48iJiYGADB16lSTa0bMnDkT7dq1AwAsXrwYZWVl9T7v4sWLceLECbRt2xZvvfVWvY9nT4ySnjnCQLXg6qREj5b6AfgBTksiIiKqN6skPX/wwQcQRRGxsbHo0qULNm7cWKN9N2zYgK5du+Lq1asQBAEffvihLona0jZs2KB7PWXKFJNtFAoFJk6cCKC8WlN0dHS9zpmUlIT3338fAPDtt9/CxcWlXsezN2Usq0r1ZDgtiYnPRERE9edkjYNOnz4dJ0+exPfff4/U1FQ8+uijaNmyJR588EF069YNwcHB8PDwQEFBAW7duoWTJ09i+/btSEpKgiiW3zQ+99xzeO6556zRPQDA/v37AQAeHh7o1q2b2XYVK04DwIEDBzBs2LA6n/PFF19EQUEBnn76aQwaNKjOx7FXhiMMTiyrSrUUFR6g9/7anQLczClGYx+VRD0iIiJq+KwSMADlT9AbN26MefPmQavVIjExEd9++22V+4iiCIVCgffeew9z5syxVtcAAJcuXQIAhIeHw8nJ/B9DZGSk0T51sWbNGmzbtg1+fn4Wy4ewN2UGOQzOHGGgWurQ1AfeKifkFqt12w7EpeOxbiES9oqIiKhhs1rAIAgCPvjgA4waNQoff/wxNm7cCI3G/MqrSqUSo0ePxjvvvIN7773XWt0CABQXFyM9vXyqQkhI1TcSfn5+utGQ5OTkOp0vKysLr732GgDg008/tXip2Bs3blT5eVpamu51SUkJioqKLHp+Sykp1c8REbVa2faVTCsuLjb52pZ6tvTDX5fv6N7vvXILw9sHVLEHNURyuNbI/vE6I1spKSmRugtVslrAUOHee+/F+vXrkZOTg/379+PMmTPIyMhAXl4evLy8EBAQgHvuuQf9+vWDj49P9Qe0gMolUj09PattXxEw5Ofn1+l8b775Jm7duoU+ffroyrVaUvPmzWvc9siRI4iPj7d4Hywh8boCldNq0lKSsXNnknQdonrZt2+fJOf1LREAKHXv915Kww73GxA4YGW3pLrWyLHwOiNrqniQLVdWDxgq+Pj4YMSIERgxYoStTmlW5acENUk8dnV1BYA6Pe3et28ffvjhBzg5OeHbb7+FwLsWswxmJIFVVakuInz0L6ScMgG3i4FG1l80noiIyC7ZLGCQE5XqbgJkaWn1CztVDBO5udXujqOkpATPPfccRFHEjBkz0Llz59p1tIaqmyqVlpaGnj17AgB69eqF1q1bW6Uf9fVX/gXgzi3d+/Cwlhh2f7iEPaLaKi4u1j2FGzBggN7fNVsRRRHL4g/gdt7dv9uKJu0xrCfzGOyJHK41sn+8zshW5Dr7o4JDBgyVV1euyTSjgoICADWbvlTZvHnzcOXKFTRv3hwffPBB7TpZC9XlYVTm6upa68DHVrSCflUkN1cX2faVqqdSqST7/9cvPAi/n0rRvT92PQfTBraRpC9kfVJea+Q4eJ2RNVXMZpErhwwYVCoVAgICkJGRUW3CcFZWli5gqE2uAADMnz8fAHD//fdj8+bNJttUHLugoABr1qwBAAQHB2PIkCG1Opc9YFlVspS+4YF6AcOh+AxotCKUnOdGRERUaw4ZMABA+/btERMTg7i4OKjVarOlVS9fvqx7XbHqc01VTHdasWIFVqxYUWXb9PR0PPnkkwDK135wzICBC7eRZRiux5BbrMaF1Bx0DvGVpkNEREQNmMM+wu3Xrx+A8if7J06cMNtu7969utdRUVFW75cjM1rpmU+DqY6a+LghLNBDb9uBuAyJekNERNSwOWzAMHr0aN1rc0//tVotVq1aBQDw9fXF4MGDa3UOURSr/QkNDQUAhIaG6rbt2bOnTt+podNoDaYkKR328iQL6GswynAwXt4l64iIiOTKYe/Ievbsif79+wMAli9fjkOHDhm1WbBggW515xkzZsDZ2Vnv8z179kAQBAiCgMmTJ1u9z/aOKz2TJUW1DtR7fywxEyVq84tHEhERkWkOGzAAwOLFi+Hm5ga1Wo1hw4bhk08+weHDhxEdHY3p06dj1qxZAICIiAjMnDlT4t7aPyY9kyX1aR2gt1hbcZkWJ5OyJesPERFRQ+WwSc8A0LVrV6xduxYTJkxAbm4uZs+ebdQmIiICW7du1SvFStahNsxh4AgD1YOvuws6NPXG+ZRc3baD8eno0zqgir2IiIjIkE0e4a5atQqrVq1Cbm5u9Y3/Jz8/X7efNY0cORJnz57F66+/joiICLi7u8PX1xfdu3fH/PnzcerUKYSHc/EwW+CUJLI0w2lJB+KYx0BERFRbNhlhmDx5MgRBQPfu3dG+ffsa7XPr1i1MnjwZCoUCEydOtGr/QkNDsXDhQixcuLBW+w0aNAiiKFbfsAqJiYn12t+ecEoSWVrf8EB8t++a7v2ZGznIKy6Dl8q5ir2IiIioMtnfkdX3hpwaDsMpSRxhoPrq0dJP7zrSaEUcTciUsEdEREQNj2wDBo2mvJqJuQXVyP6UGYwwKDnCQPXk7uKEri389LZxPQYiIqLake0d2ZUrVwAA/v7+EveEbEXDpGeyAsM8Bq7HQEREVDtWeXy/b98+k9uPHTuG9PSq/7EuKSlBfHw8vvjiCwiCgC5dulihhyRHRknPHGEgC4gKD8Civ+6+v3wzD3fyShDk5Spdp4iIiBoQqwQMgwYNgiDoPx0WRRHPPPNMjY8hiiIEQcD06dMt3T2SKbXRSs8cYaD6u6e5LzxclCgovbto28H4dIzq0kzCXhERETUcVnuEK4qi7sfUtup+QkJC8J///AejR4+2VhdJZtQsq0pW4KxUoFeY/toL0ZdvS9QbIiKihscqIwzR0dG616IoYsiQIRAEAcuXL0erVq3M7icIAlQqFZo0aYLmzZtbo2skY4ZJzyyrSpYyMCIIf1cKEnZfuo0StQauTkoJe0VERNQwWCVgGDhwoMntPXv2rPE6DOR4uNIzWcuDHRtjzqYLuvd5JWociEvHkMhGEvaKiIioYbDJI9yEhARcu3YNERERtjgdNUCiKBpVSXJWcoSBLKORtwrdQvXLq24/d1Oi3hARETUsNrkjCw0NRWhoKNdUILMMKyQBgFLBEQaynIc6NtZ7v/PiLaNpcERERGRMNo9wN2/ejKeffhoPPfQQXnzxRZw8eVLqLpENGY4uACyrSpb1UKcmeu9zispwKJ6LuBEREVXHJndk0dHRCA4ORosWLZCdnW30+b/+9S+MHj0av/zyC3bu3InvvvsOvXv3xk8//WSL7pEMlGmNn/Qyh4EsqZmvG+5p7qu3bfv5NGk6Q0RE1IDYJGDYtm0b0tPT0aNHD/j6+up9dvbsWXz88ce6cqq+vr4QRRFqtRrTp09HYmKiLbpIEjMsqQowYCDLG24wLWnHhVtQc1oSERFRlWwSMOzfvx+CIOD+++83+mzJkiUQRRF+fn44ceIEMjIycPToUfj7+6OkpATffvutLbpIEjN108YpSWRpD3XUn5aUWVCKo4mZEvWGiIioYbDJHVlaWvmwf4cOHYw+27JlCwRBwMsvv4yuXbsCALp3746XX34Zoijir7/+skUXSWJlJnIYOMJAltYiwB0dmnrrbWO1JCIioqrZJGC4c+cOABhNR4qPj0dKSgoAYMyYMXqf9e/fX9eG7J/JEQaWVSUrGG6Q/PznhZsmk+6JiIionE3uyESx/B/jnJwcve0xMTEAAB8fH3Tp0kXvs4CAAABAYWGh9TtIkjNVVtWJZVXJCgzLq97JK8GJpCyJekNERCR/NgkYGjcu/wf60qVLett37NgBAIiKijLap6CgAADg5+dn9BnZH1NPeLkOA1lDWJAnIht76W3bdo7VkoiIiMyxScDQu3dviKKIJUuW6EYMrl27ho0bN0IQBAwdOtRon9jYWAB3gw2yb4YLaDkpBAgCAwayDsPk5x0XbkLLaUlEREQm2SRgmDZtGoDyEqodO3bE448/jt69e6O4uBhubm74xz/+YbTPvn37AAARERG26CJJTG1ws8aEZ7Km4Z30H0Sk5RTj9I1saTpDREQkczYJGIYMGYIZM2ZAFEUkJibijz/+QHp6OgDg888/R2BgoF774uJi3ejDgAEDbNFFkphh0jNLqpI1tWnkhfBgT71t2zktiYiIyCQnW51o0aJFuO+++7Bu3TrcvHkTTZo0wcSJEzFkyBCjtps2bYK3tzd8fHwwcuRIW3WRJGSY9MwRBrK2hzo2xld/x+nebzt3E7OHt+NUOCIiIgM2CxgA4OGHH8bDDz9cbbtx48Zh3LhxNugRyYVaa5DDwJKqZGUPdWyiFzCkZBfhXEoOOof4StcpIiIiGeJdGcmC2mCEwZkVksjK2jXxQssAd71t289zETciIiJDDBhIFoyqJHGEgaxMEAQ8ZLCI2/Zzabp1Y4iIiKicTaYkXb9+vV77t2jRwkI9IbkyXIeBi7aRLQzv2ARL9txdTT4xoxCX0vLQvqm3hL0iIiKSF5sEDK1atarzvoIgQK1WW7A3JEdlLKtKEujYzBshfm64kVWk27b9fBoDBiIiokpsMu9DFMV6/ZD9Myyr6sSyqmQDgiDgoY76azJw1WciIiJ9NhlhWLFiRbVtCgoKEBsbi99++w0pKSmIiorSLfhG9s8o6ZkjDGQjD3Vqgu9jEnTv4+8U4PLNXEQ25igDERERYKOAYdKkSTVu+/nnn+P111/HkiVLEBUVhU8//dSKPSO5KGNZVZJIlxBfNPFRIS2nWLft12M38P7I9hL2ioiISD5kd1fm7OyMr7/+GoMGDcLnn3+OHTt2SN0lsgHDEQYmPZOtKBQCRndtprftt5M3UFymkahHRERE8iK7gKHC9OnTIYoivvrqK6m7QjZgWFbVmSMMZENP9Giu9z6nqAx/ck0GIiIiADIOGNq0aQMAOH78uMQ9IVtQs0oSSSg0wAP9wgP1tv1ytH7loImIiOyFbAOGnJwcvf+SfeM6DCS1J3vqr/dyNCETcbfzJeoNERGRfMg2YPjxxx8BAE2aNKmmJdkDo5WeWVaVbGxo+0YI8HDR27aGowxERETyCxiuXr2K559/Hj/++CMEQcDw4cOl7hLZgFHSM6ckkY25OCnwePcQvW2/nbyBEjWTn4mIyLHZpKxqWFhYtW20Wi2ys7ORl5en2xYcHIx3333Xml0jmTAsq8qkZ5LCEz1a4Lu913TvswrLsOPCLTxyT1MJe0VERCQtmwQMiYmJtd6nT58++OGHHzglyUGwrCrJQatAD/RtHYCD8Rm6bauPXGfAQEREDk02C7cpFAp4eXmhVatWGDhwILp06WL9jpFsqA1zGDjCQBJ5omcLvYDh0LUMXLuTj7AgTwl7RUREJB2bBAwrVqywxWmoASszqJLkzBwGksgDHRrBz90ZWYVlum1rjyXjneHtJOwVERGRdPgYl2TBaISBVZJIIq5OSjzeTT/5ed0JJj8TEZHjssldWVhYGMLCwvD111/b4nTUAHHhNpKTJwzWZMgsKMWui7ck6g0REZG0bBIw3LhxA0lJScxLILOY9Exy0jrIE71a+ettW801GYiIyEHZJGBo3LgxAMDNzc0Wp6MGSK1l0jPJyz966Y8yHIjLQGJ6gUS9ISIiko5N7sp69eoFALhw4YItTkcNUJnBCIMzRxhIYg90aAxfd2e9bWuOJUvUGyIiIunYJGB44YUXIIoiFi1ahLKysup3IIfDsqokNypnJR67Vz/5ef2JZJSqtWb2ICIisk82uSsbMmQI3nnnHZw5cwYPP/wwkpP5lI70GSY9s6wqycGTPZvrvU/PL8XuS0x+JiIix2KTdRg+/PBDuLq6olOnTti1axfCwsIQFRWFzp07w8/PD0qlssr933//fVt0kyRUZlRWlQEDSS882As9W/rjaGKmbtsvR6/joU5cgZ6IiByHTQKGuXPnQhDKbwAFQYBGo0FMTAxiYmJqtD8DBvtnWCVJySlJJBNP9GyuFzDEXE3HhdQcdGjqI2GviIiIbMdmd2WiKOp+DN9X90P2z2hKEkcYSCaGd2oCP4Pk5y93X5WoN0RERLZnk4BBq9XW64fsH8uqklypnJWY1j9Mb9uOC7dwKS1Xoh4RERHZFu/KSBYMpyQx6ZnkZGKfUPi4cZSBiIgcEwMGkgXjpGdemiQfXipnTO3XSm/b9vM3ceVmnkQ9IiIish3elZEsGOYwOHGEgWRmclRLeKv060R8+TdHGYiIyP7ZpEqSKbm5ucjLy4NGo6m2bYsWLWzQI5ISpySR3HmrnPFMv1b49193g4Rt59Jw9VYe2jTykrBnRERE1mXTgGHXrl345ptvsH//fmRmZla/A8rLsKrVaiv3jKTGKUnUEEyJaoXlMQnIKyn/nSSKwJd/x+GrJ7tK3DMiIiLrsdld2auvvooHH3wQmzZtQkZGBsuqkh6jKUksq0oy5OPmjClRLfW2bTmbirjbzGUgIiL7ZZMRhl9++QVff/01AEClUmH06NHo1q0b/P39oeCTZAKgNhxhYFlVkqln+rXCDwcSkV9plOHrv+Pw7yc4ykBERPbJJgHDd999BwBo3rw5/v77b7Ru3doWp6UGhEnP1FD4urtgct+W+Do6Trdt05lUvHpfG4QFeUrYMyIiIuuwyWPcs2fPQhAEzJkzh8ECmWSU9MyRJ5Kxqf1awcNFqXuv/d8oAxERkT2yyV1ZWVkZAKBrVw7Zk2llRis9c4SB5MvPwwUT+7bU27bhdAoS0guk6RAREZEV2SRgaNmyJQAgPz/fFqejBkajFWGY286yqiR3z/YPgztHGYiIyAHYJGB49NFHAQC7d++2xemogTEsqQqwrCrJn7+HC57uE6q3bcPpFCRlcJSBiIjsi03uymbOnIkWLVrg3//+Ny5fvmyLU1IDYpjwDHBKEjUMz/YPg5vz3VEGjVbE4r+4+jMREdkXmwQMPj4+2LFjBxo1aoS+ffvim2++QVZWli1OTQ2AYUlVgCMM1DAEerpiQm/9leh/P5WCk9f5+42IiOyHRcuqhoWFVfl5YWEhsrOz8corr+DVV19FYGAg3N3dq9xHEATEx8dbspskMxxhoIbsuQGtsfposm5dBgCYu+kCNrwYBQUXICQiIjtg0YAhMTGxRu0qVnC+fft2tW0Fgf/g2jvDkqoAy6pSwxHk5YoZ97XBvG2XdNvO3sjB+hM3MK5Hcwl7RkREZBkWDRgmTZpkycORgzCZ9MwRBmpAJvVtidXHruPanbsJz5/tuIwHOzWGt8pZwp4RERHVn0UDhhUrVljycOQgOCWJGjoXJwXef7g9Jq84ptuWnl+KL/+6ivcebi9hz4iIiOrP4vM+FAoFnJyccPHiRUsfmuyUqaRnTkmihmZQ22Dc3y5Yb9vKg4mIu50nUY+IiIgswyp3ZaLhKlxEVSgzyGFQCGCyKDVI741oDxfl3V+raq2IDzZf5O9EIiJq0PgYlySn1uqPMDgpeVlSw9Qy0APT+rfS2xZzNR27Lt6SqEdERET1xzszkpxhDoMTRxeoAXtpcDgaebvqbfu/rRdRXKaRqEdERET1w4CBJGdYVpUBAzVkHq5OmD28nd625MwiLIu5JlGPiIiI6ocBA0nOMOnZmVOSqIF75J6m6B7qp7ftP9HxSM0ukqhHREREdcc7M5JcmeGUJJZUpQZOEATMfaQDKq87WVSmwSfbL0vXKSIiojqy6DoMlU2ZMgUeHh71Po4gCNi9e7cFekRyZTjC4MSSqmQHOjbzwZM9W+CXI9d12zafScWTPZujb+tACXtGRERUO1YLGI4fP17vY4iiCEHg02Z7Z1hW1ZkjDGQn3hjWFlvOpCK3WK3bNmv9Wex4bQA8XK3265eIiMiirPYoVxTFev+QY2BZVbJX/h4ueOOBtnrbbmQV4eNtlyTqERERUe1Z7c7s/Pnz0Gq19f7RaKxfijApKQkzZ85EZGQkPDw84O/vjx49euDzzz9HYWFhvY5dWFiI33//HS+88AJ69OgBPz8/ODs7IyAgAH369MHcuXNx8+ZNC32TholVksieTegVip4t/fW2/ffIdcRcvSNRj4iIiGrH4R/lbt68GZ07d8bChQtx5coVFBYWIisrC8ePH8esWbPQtWtXxMXF1enYZ8+eRaNGjfDYY4/h22+/xfHjx5GdnQ21Wo3MzEwcPnwYH3zwAdq2bYu1a9da+Js1HEbrMHBKEtkRhULA52M7w81Zqbf9rfVnkVtcJlGviIiIas6hA4ZTp05h/PjxyM3NhaenJ+bNm4eDBw9i9+7dePbZZwEAsbGxGDFiBPLy8mp9/NzcXOTn5wMAoqKi8Mknn2DXrl04efIkduzYgenTp0OhUCA3NxdPPfUUtm/fbtHv11Aw6ZnsXWiAB94ZHqm3LTWnGB9tuShRj4iIiGrOobPuZsyYgaKiIjg5OWHnzp3o06eP7rMhQ4agTZs2mDVrFmJjY7FgwQLMnTu3VsdXKBQYN24c5syZg/bt2xt9PmzYMDz00EMYM2YMNBoNXnnlFVy9etXhEr0Ny6oy6Zns0YReofjz/E0cjM/Qbfv1+A081LEJBkcGS9gzIiKiqjnso9yjR48iJiYGADB16lS9YKHCzJkz0a5d+YqtixcvRllZ7aYP9O3bF2vXrjUZLFQYNWoUHn30UQBAfHw8Tp06Vatz2AOOMJAjUCgEzH+sMzxc9Kcmvf37WeQUcmoSERHJl8PemW3YsEH3esqUKSbbKBQKTJw4EQCQnZ2N6Ohoq/Rl8ODButfx8fFWOYecGSU9c4SB7FRzf3e897D+A4RbuSWYu/mCRD0iIiKqnsMGDPv37wcAeHh4oFu3bmbbDRw4UPf6wIEDVulLSUmJ7rVSqayipX0qMyir6syyqmTHnujRHAMigvS2/XEqBTsuOHa1NCIiki+L35klJCTg2rVriIiIsPShLerSpfI66OHh4XByMp/KERl5N1GxYh9L27t3r+51xRQoR8KyquRIBEHA/Mc6wUul/3vn3T/OIbOgVKJeERERmWfxpOfQ0FBLH9LiiouLkZ6eDgAICQmpsq2fnx88PDxQUFCA5ORki/flzJkz2Lp1KwCgU6dOdQoYbty4UeXnaWlputclJSUoKiqq9TmsqahE/yZJAVF2faSaKS4uNvma9Pm6ALMfaIN3Nt59CJGeX4rZv5/Bwsc6OFzhg7rgtUa2wOuMbKXybBM5csgqSZVLpHp6elbbviJgqCiRaiklJSWYNm2abnG6efPm1ek4zZs3r3HbI0eOyC5P4up1BSoPdt2+dRM7d6ZK1yGyiH379kndBVlzE4EOfgpcyLp77f954TZ8itLQtxFXuq8NXmtkC7zOyJoqHmTLlUNOFq/8lMDFxaXa9q6urgBg8afeL7/8Mo4fPw4AmDRpEkaOHGnR4zcUBikMYAoDOQJBAMaHaeGu1A8O1icokGzZZxNERET14pAjDCqVSve6tLT6OcMVw0Rubm4W68Mnn3yCZcuWAQB69OiB//znP3U+VnVTpdLS0tCzZ08AQK9evdC6des6n8sajv8ZC6TdnVbVIqQZhg1zvFwOe1BcXKx7CjdgwAC9v2tkmnfYbby27rzuvUYUsDrZE+uf6wFfN2cJeyZvvNbIFnidka3IbfaHIYcMGLy8vHSvazLNqKCgAEDNpi/VxHfffYfZs2cDKE+q3rZtGzw8POp8vOryMCpzdXW1aOBjEYJ+ZSiVi7P8+ki1plKp+P+xBkZ3C8XZ1AL8cCBBty0luxjvbrqCZRO7Q8EiANXitUa2wOuMrKliNotcOeTkD5VKhYCAAADVJwxnZWXpAoba5AqYs3r1arz44osAyhPEd+3ahcDAwHoftyFTs6wqObh3hkeiW6if3ra/L9/Gkr3yfuJERESOwWHvzCpWX46Li4NarTbb7vLly7rX9S15umnTJkycOBFarRZNmjTB7t27azU6YK/KWFaVHJyzUoH//ONeBHjo51Qt2HkFB+LknQhHRET2z2EDhn79+gEon2504sQJs+0qr5EQFRVV5/Pt3r0b48aNg1qtRkBAAHbt2iW7XAKpqDX6IwxOHGEgB9TYR4Uvn+yKyvGyVgReXX0KN3NYzpGIiKTjsHdmo0eP1r1esWKFyTZarRarVq0CAPj6+mLw4MF1OtfBgwcxatQolJSUwMfHBzt27ECHDh3qdCx7VKblCAMRAESFB2LmsLZ62zIKSvHSLydRZhBYExER2YrDBgw9e/ZE//79AQDLly/HoUOHjNosWLBAt7rzjBkz4OysX7Fkz549EAQBgiBg8uTJJs9z+vRpjBgxAgUFBfDw8MDWrVvRrVs3y36ZBk5jOCVJyYCBHNcLA1vjvshgvW0nkrLwybbLZvYgIiKyLoesklRh8eLFiIqKQlFREYYNG4bZs2dj8ODBKCoqwpo1a7B06VIAQEREBGbOnFnr48fHx+OBBx5AdnY2AOCjjz6Cj48Pzp8/b3af4OBgBAcHm/3cHjHpmeguhULAwnFdMOKrGNzIurv2yw8HEnBvqC8e7txUwt4REZEjcuiAoWvXrli7di0mTJiA3NxcXanTyiIiIrB161a9Uqw1FRMTg9u3b+vev/7669XuM2fOHMydO7fW52rImPRMpM/H3RlLnuqGx749iFL13YD6n7+egb+HC/q2duzKakREZFsO/yh35MiROHv2LF5//XVERETA3d0dvr6+6N69O+bPn49Tp04hPDxc6m7aNcMRBiY9EwGdQnzwwSP6uU6lai2e/fE4TidnS9MpIiJySA49wlAhNDQUCxcuxMKFC2u136BBgyCKotnPJ0+ebDa3ge4yHGFwZg4DEQDgiR7NcfZGDlYfva7bVlCqweQVR/Hr9D6IaFT7kU8iIqLa4qNckpxRWVUFL0siABAEAR+N7ojhnRrrbc8uLMPTy48gObNQop4REZEj4Z0ZSU5tWFaVIwxEOkqFgEXju6B/G/28hVu5JXhq2RHczuUaDUREZF0MGEhyTHomqpqrkxLfPd0N3UL99LZfzyzE08uPIruwVKKeERGRI2DAQJLTMOmZqFruLk74YVIPRDbWz1u4cisPk1ccQ0GJWqKeERGRveOdGUlObZj0zBEGIpN83J3x09ReaBngrrf9dHI2nvvpOIrLNBL1jIiI7BkDBpJcGUcYiGosyMsVP0/rhSY+Kr3tB+Iy8Oyq4ygs5UgDERFZFu/MSHKGIwxMeiaqWoifO36a2gv+Hi5622OupmPSD0eRW1wmUc+IiMgeMWAgyRmtw8CyqkTVCg/2xKpnesLLVX85nWOJWXjq+yPIKmAiNBERWQbvzEhyxis9c4SBqCY6NvPBz9N6wdfdWW/7uZQcjF96iCVXiYjIIhgwkOSMkp4ZMBDV2D3NfbH2uT4I9HTV2x57Kx/jvjuEG1lc3I2IiOqHAQNJrsxgpWclpyQR1Urbxl5Y93wfNDVIhE7MKMS4bw8hIb1Aop4REZE94J0ZSU5juNIzy6oS1VqrQA+se6GvUcnV1JxijP32EC7fzJWoZ0RE1NAxYCBJiaIItdZwShIvS6K6aObrhl+n90HbRvqLu6Xnl2D8d4dx5FqGRD0jIqKGjHdmJCnDYAFg0jNRfQR7q7Dmud7oHOKjtz2nqAwTlh/BH6duSNQzIiJqqBgwkKQME54BllUlqi8/Dxf8d1ov9Gjpp7e9TCPi9bVnsGhXLETR+O8eERGRKbwzI0kZrvIMcISByBK8VM5Y9Uwv3N8u2Oizxbuv4rW1p1FcppGgZ0RE1NAwYCBJmRphYMBAZBluLkp893R3PBPVyuizjadTMWHZEWRygTciIqoGAwaSlFpjPMLAKUlElqNUCHh/ZHv836gOMCxAdjwpC2O+OYD4O/nSdI6IiBoE3pmRpMpMJD0rOcJAZHFP92mJ5ZN7wMNFqbc9KaMQj35zEAfj0iXqGRERyR0DBpKUhknPRDYzuG0w1j3fF00MFnirqKC0cFesyVE/IiJybLwzI0kx6ZnItto39caGl6LQsZm33natCHy5+yqe/P4wUrKLJOodERHJEQMGkpTJpGeu9ExkVY28Vfh1eh8Mbd/I6LNjiVl46N/7sP1cmgQ9IyIiOWLAQJIqM5j+4KQQIAgMGIiszd3FCd9N6IZZD7aF0iBIzy1W44X/nsTsP86hqJSlV4mIHB0DBpKU4UrPnI5EZDsKhYAXB4Vj3fN9EOLnZvT5L0euY9R/9uPKzTwJekdERHLBgIEkZZhgyYRnItu7t4Ufts3oj4c7NzH6LPZWPh75ej+WxVyDxkRVMyIisn+8OyNJlWk4wkAkB94qZ3z1ZFd89nhnuDnrl14tUWvx0dZLeHTJQY42EBE5IAYMJCnDJ5ZKjjAQSUYQBIzr3hxbXu2H9k28jT4/k5yNh7+KwaJdsShRM7eBiMhR8O6MJGVYVtWZIwxEkmsd5Ik/XuqLZ6JaGX1WphGxePdVjPxqP05dz5Kgd0REZGsMGEhShmVVOSWJSB5cnZR4f2R7rHu+D8KCPIw+j72Vj0eXHMT/bbmIwlK1BD0kIiJbYcBAkmLSM5G89Wjpj22v9sdLg1sblV8VRWD5/gQMW7QPf128BVFkUjQRkT3i3RlJqoxlVYlkT+WsxJsPRGLTy1Ho0NQ4t+FGVhGmrTqOZ1YeQ2J6gQQ9JCIia2LAQJIyHGFw4ggDkWx1aOqDjS9F4a0HI+HiZPx3NfrKHQxbtA9f7LjCaUpERHaEd2ckKcMcBiY9E8mbk1KBFwa1xp8z+qNnK3+jz0s1WnwdHYf7F+zFtnNpnKZERGQHGDCQpAyrJDkpeUkSNQRhQZ5Y+1xvLBp/D4K8XI0+T80pxov/PYkJy48g9hbXbiAiash4d0aSMl6HgSMMRA2FIAgY0zUEf88ciGf7t4KTib+/B+Iy8MC/9+G1Nadw7U6+BL0kIqL6YsBAkjJc6ZlTkogaHi+VM94d0R7bZ/RH39YBRp+LIrDhdCruX7gX//z1NBOjiYgaGAYMJCkmPRPZjzaNvPDfab3wzVP3oqmPyuhzrQj8fjIF9y3cizfXncH1jEIJeklERLXFuzOSlFrLEQYieyIIAoZ3aoK/Zg7Eq/e1gaerk1EbjVbEuhM3MGTBHrz921kGDkREMseAgSRVxhEGIrvk7uKEfw6NQMyswXhpcGu4uyiN2qi1ItYcS8agL6LxyupTOJ+SI0FPiYioOrw7I0kZllXlwm1E9sXPwwVvPhCJmFmDMX1gGNycjQMHrQhsPpOKh7/aj6eXH8GBuHSWYyUikhEGDCQpw7KqziyrSmSXAjxd8c5D7bBv1mBM69cKriYWfgOAmKvpeGrZETzy9QFsOZtqVEmNiIhsj3dnJCnDEQaWVSWyb0Fernjv4faI+V/g4GFiqhIAnEvJwcu/nMLgL/Zg+f4E5BaX2binRERUgQEDScrw6SGTnokcQ7C3Cu893B4H374PbwyLQICHi8l21zML8X9bLqL3x7vx3oZzuMpF4IiIbM64fAWRDTHpmcix+bg74+UhbTCtfxjWn7iB72OuIclE1aTCUg1+PnwdPx++jqjwADzZrSm0IsBBSSIi62PAQJJi0jMRAYDKWYkJvUPxZM8W+PP8TXy7Nx7nzFRNOhCXgQNxGfB3VSKqkRb35JagpZubjXtMROQ4GDCQpJj0TESVKRUCRnRuguGdGuNoQiZ+PJSIHRdumUx+ziwRsPm6ElsWHUBUeCDGdG2GBzs2hoeJtR+IiKju+FuVJGU0wsD5BUSE8gXgeoUFoFdYAFKzi/Dz4SSsOZaMzIJSo7YigP1x6dgfl473NpzHgx0b49F7m6Fv60AWUiAisgAGDCQptcEIgxNHGIjIQFNfN8x6MBKv3tcGm8+k4sdDiTifkmuybVGZBn+cSsEfp1LQyNsVIzs3xch7mqJziA8EgcEDEVFdMGAgSZUZjDA482kgEZmhclZibPfmeLxbCA5dvYXFm4/hdKaAEo3p3xu3ckuwbH8Clu1PQGiAuy54aNvYy8Y9JyJq2BgwkKTUBlWSlEx6JqJqCIKArs198I9wLR7XAELze7D1/G3su5pudqG3pIxCfB0dh6+j4xDRyBMjOzfFw/c0RatADxv3noio4WHAQJJSG67DwLKqRFQLLkpgWMdGeLxHS9zJK8GmM6n449QNs1OWACD2Vj4W7IrFgl2xiGjkiaHtG+H+do1wT4gvFBzlJCIywoCBJMWyqkRkKUFerpjarxWm9muF2Ft52HwmFZvPpCLRxLoOFWJv5SP2Vj7+Ex2PYC9X3NeuEYa2D0bf1oFQOZtehZqIyNEwYCBJMemZiKwhopEXZg5ri38OjcD5lFxsPpuKLWdSkZpTbHaf23klWH30OlYfvQ53FyX6hQdiYNsgDGgThOb+7jbsPRGRvDBgIEkx6ZmIrEkQBHQK8UGnEB+8/WAkTl7PwuYzqdh67ibS80vM7ldYqsHOi7ew8+ItAEBYoAcGRARhQEQgerUK4FoPRORQ+BuPJMURBiKyFYVCQPeW/uje0h/vj+yA08lZ2HXxNnZdvIn4OwVV7nstvQDX0guw8mAinJUCuof6o39EIKJaB6JjMx+u90BEdo0BA0nKMIfBmTkMRGQDSoWAbqH+6Bbqj7cfisS1O/n469It7Lp4CyeSsmCm2BKA8pHRQ9cycOhaBoAr8FY5oXdYAPq1CUTf1oFoHeTBNR+IyK4wYCBJlRmUVXVilSQikkBYkCeeC/LEcwNaIyO/BNFX7mBf7B3sj0s3ubp0ZbnFar3pS428XRHVOhA9WvmjW6gfwoM8WX2JiBo0BgwkKcOyqhzWJyKpBXi64vFuIXi8Wwi0WhEXUnOx7+od7I29g5NJWUa/twzdyi3B76dS8PupFACAl8oJ97bwQ7fQ8p97mvvCkzkQRNSA8DcWSYpTkohIzhSKu0nTLw0OR15xGQ7FZyDmajoOxKfjWjW5DwCQV6zG3tjygAMAFALQtrE3ujT3RdfmvujSwpejEEQkawwYSFJMeiaihsRL5YxhHRpjWIfGAICbOcU4EFcePByMy8DNXPNlWytoReBSWi4upeVi9dHrAABPVyd0DvFBl+a+up9gb5VVvwsRUU0xYCBJGY0w8AkbETUgjX1UeKxbCB7rFgJRFHEtvQAH49JxNDELJ5OykJJdVKPj5JeocTA+AwfjM3Tbgr1c0bGZDzo29UaHZj7o2MwHTX1UTKgmIptjwECSMkp65ggDETVQgiCgdZAnWgd54uk+LQEAaTlFOJmUjRNJWThxPQsXU3OM1p8x53ZeCf6+fBt/X76t2+bn7oyOzXzQvok32jb2QmRjb7QO9oCrE1elJiLrYcBAkjJMHnRiDgMR2ZEmPm4Y0dkNIzo3AQAUl2lw9kYOTidn4XRyNk5fz65y9WlDWYVliLmajpir6bptTgoBYUEeiGxcHkS0a+KFiEZeaObrxtEIIrIIBgwkKeMpSRxhICL7pXJWomcrf/Rs5a/bdju3GKeSs3E6ORunrmfh3I0cFJRqanxMtVZE7K18xN7KB87c3e7p6oTwYE+0beSFNo080bZxeSAR7OXKQIKIaoUBA0mqzCjpmf+IEZFjCfZW4YEOjfHA/xKptVoRCRkFOJ+SgwupuTifkoPzKTnILVbX6rj5JeryUYzkbL3tzXzdMPeRDhjavpGlvgIR2TkGDCQZjVaEaDCV14lJz0Tk4BSKu7kQo7o0AwCIoojkzCKcT83BhdQcXLmZh0tpeTVOqq4sJbsIr689jQNvDYGPu7Olu09EdogBA0nGsKQqwKRnIiJTBEFAiwB3tAhwx/BOTXTbc4vLEHszD5dv5uHyzVxcTsvDlVt5yKtmNCK/RI0/L6RhfI8W1u46EdkBBgwkGcP8BYAjDEREteGtckb3lv7o3vJuToQoiriVW4Irt/Jw9VYertzMQ+ztfFy5mYvisrsPajafYcBARDXDgIEkYypgcOYIAxFRvQiCgMY+KjT2UWFgRJBu+9azaXjpl5O69wfj03E7rxjBXlwgjoiqxrszkoxhwjPApGciImu5r10wPFzurtegFYFtZ9Mk7BERNRQMGEgyJkcYWFaViMgqVM5KDPtfJaYKm86kStQbImpIeHdGkjFc5RngCAMRkTWNvKeJ3vuT17ORnFkoUW+IqKFgwECSMVzlGWDAQERkTf3Cg+BrUEp181mOMhBR1RgwkGTUpkYYOCWJiMhqXJwUeKij/ijDptMMGIioarw7I8kYjjAIAqBkWVUiIqt65J6meu8v3ywvv0pEZA4DBpKMYdIzE56JiKyvZyt/NPJ21dvG5Gciqgrv0EgyhmVVmb9ARGR9SoWAhzvrjzJsOpMKUTTOKyMiAhgwkIQMRxi4yjMRkW0YTktKyijE2Rs5EvWGiOSOAQOApKQkzJw5E5GRkfDw8IC/vz969OiBzz//HIWFlis3t337dowZMwYhISFwdXVFSEgIxowZg+3bt1vsHA2JYdIzV3kmIrKNziE+CA1w19vGaUlEZI7D36Ft3rwZnTt3xsKFC3HlyhUUFhYiKysLx48fx6xZs9C1a1fExcXV6xxarRbTpk3D8OHDsWHDBqSkpKC0tBQpKSnYsGEDhg8fjmeffRZaEysf27Myg6RnTkkiIrINQRCMRhm2nE2FxkS5ayIihw4YTp06hfHjxyM3Nxeenp6YN28eDh48iN27d+PZZ58FAMTGxmLEiBHIy6t7BYl3330Xy5cvBwB07doVq1evxtGjR7F69Wp07doVALBs2TK899579f9SDYjhCANLqhIR2Y5hwHArtwRHEzIl6g0RyZlD36HNmDEDRUVFcHJyws6dOzF79mz06dMHQ4YMwdKlS/HZZ58BKA8aFixYUKdzxMbG4osvvgAAdO/eHQcOHMATTzyBHj164IknnsD+/fvRvXt3AMDnn39e79GMhsSwrCpHGIiIbKdNIy9ENvbS28ZpSURkisMGDEePHkVMTAwAYOrUqejTp49Rm5kzZ6Jdu3YAgMWLF6OsrKzW5/n3v/8NtVoNAPjqq6/g5uam97m7uzu++uorAIBarcaiRYtqfY6GiknPRETSeqSL/ijD9vNpKFU71vRYIqqewwYMGzZs0L2eMmWKyTYKhQITJ04EAGRnZyM6OrpW5xBFERs3bgQAREZGonfv3ibb9e7dG23btgUAbNy40WFK26m1THomIpLSSIPyqtmFZdgfd0ei3hCRXDnsHdr+/fsBAB4eHujWrZvZdgMHDtS9PnDgQK3OkZCQgNTUVKPjVHWelJQUJCYm1uo8DVWZ4QgDpyQREdlUc3933NvCV2/bptOclkRE+hw2YLh06RIAIDw8HE5OTmbbRUZGGu1TUxcvXjR5HEufp6Fi0jMRkfQMk593XryFolKNRL0hIjkyf6dsx4qLi5Geng4ACAkJqbKtn58fPDw8UFBQgOTk5Fqd58aNG7rX1Z2nefPmutf1OY8plY/32sp98PK/XKvjW0tabjHUuXfXuSjJLsHVq1cl7BHVV0lJie7vVnx8PFxdXSXuEdkrXmuW096zDNq8dFTUocgF8OjnG+Gjcpa0X3Kg0WqRlVVeOern2J1Q8sEWWUle5m3d64rcVzlxyIChcolUT0/PattXBAz5+flWO4+Hh4fudW3PUznYqM62j6fV6ti2lAIgwrEqyxIRyVKK1B0gcmB37txBy5Ytpe6GHocMlYuLi3WvXVxcqm1f8eSqqKjIauep/HSstuchIiIiIvtw69YtqbtgxCFHGFQqle51aWlpte1LSkoAwKgkqiXPU3GOupynuilMCQkJGDBgAADg4MGDtRqRIKqNtLQ09OzZE0B56eImTZpI3COyV7zWyBZ4nZGtJCcno2/fvgCqz3uVgkMGDF5edxeqqcn0n4KCAgA1m75U1/NUnKMu56kuP6Ky5s2b16o9UV01adKE1xrZBK81sgVeZ2QrlR84y4VDTklSqVQICAgAUH3CcFZWlu5mvrZP5iv/YqlNYjJHAIiIiIhILhwyYACA9u3bAwDi4uKqzEa/fPluRaGKVZ9rew7D41j6PERERERE1uKwAUO/fv0AlE8FOnHihNl2e/fu1b2Oioqq1TlatWqFpk2bGh3HlH379gEAmjVrJrvMeCIiIiJyXA4bMIwePVr3esWKFSbbaLVarFq1CgDg6+uLwYMH1+ocgiBg1KhRAMpHEA4fPmyy3eHDh3UjDKNGjYIgcMVjIiIiIpIHhw0Yevbsif79+wMAli9fjkOHDhm1WbBggW7V5RkzZsDZWX8Rmz179kAQBAiCgMmTJ5s8z2uvvQalUgkAeOWVV4xKphYVFeGVV14BADg5OeG1116rz9ciIiIiIrIohw0YAGDx4sVwc3ODWq3GsGHD8Mknn+Dw4cOIjo7G9OnTMWvWLABAREQEZs6cWadzRERE4M033wQAHD9+HFFRUVi7di2OHz+OtWvXIioqCsePHwcAvPnmm2jTpo1lvhwRERERkQU4ZFnVCl27dsXatWsxYcIE5ObmYvbs2UZtIiIisHXrVr0SqbU1b9483L59Gz/88ANOnTqFJ554wqjN1KlT8dFHH9X5HERERERE1iCIoihK3QmpJSUlYfHixdi6dStu3LgBFxcXhIeHY+zYsXj55Zfh7u5ucr89e/bo8homTZqElStXVnmebdu2YenSpTh27BjS09MRGBiIHj16YPr06XjooYcs/bWIiIiIiOqNAQMREREREZnl0DkMRERERERUNQYMRERERERkFgMGIiIiIiIyiwEDERERERGZxYCBiIiIiIjMYsBARERERERmMWAgIiIiIiKzGDAQEREREZFZDBiIiIiIiMgsBgx2LikpCTNnzkRkZCQ8PDzg7++PHj164PPPP0dhYaHU3SMZu337NrZs2YL3338fDz30EAIDAyEIAgRBwOTJk2t9vO3bt2PMmDEICQmBq6srQkJCMGbMGGzfvt3ynacG5fjx4/jwww8xbNgw3fXh6emJiIgITJkyBfv376/V8XitkSm5ublYs2YNZs6ciYEDByI8PBw+Pj5wcXFBcHAwBg0ahM8++wwZGRk1Ot7BgwcxYcIEhIaGQqVSoXHjxnjggQewevVqK38Tasjeeust3b+lgiBgz5491e4ji99pItmtTZs2id7e3iIAkz8RERHi1atXpe4myZS56waAOGnSpBofR6PRiFOnTq3yeNOmTRM1Go31vgzJVv/+/au8Nip+Jk6cKJaUlFR5LF5rVJVdu3bV6FoLDAwU//zzzyqPNWfOHFGhUJg9xogRI8SioiIbfTNqKE6dOiU6OTnpXSvR0dFm28vpdxoDBjt18uRJ0c3NTQQgenp6ivPmzRMPHjwo7t69W3z22Wf1gobc3Fypu0syVPkXUosWLcRhw4bVKWB4++23dft17dpVXL16tXj06FFx9erVYteuXXWfvfPOO9b7MiRbrVu3FgGITZs2FWfMmCGuX79ePHr0qHjo0CFx4cKFYrNmzXTXyJNPPlnlsXitUVV27dolNm/eXJw4caK4ePFi8ffffxcPHTokHjhwQFy7dq04duxYUalUigBEFxcX8fTp0yaP8+233+qupdatW4vLly8Xjx49Km7YsEEcPHhwja9XciwajUbs0aOHCEAMDg6uUcAgp99pDBjsVMVTOycnJ/HgwYNGn3/22We6C23OnDm27yDJ3vvvvy9u3rxZvHnzpiiKopiQkFDrgOHKlSu6pyndu3cXCwsL9T4vKCgQu3fvrrtWOeLleEaMGCGuXbtWVKvVJj+/c+eOGBERobv29u7da7IdrzWqjrlrrLI//vhDd62NGTPG6POMjAzRx8dH9yDlzp07RucYOXJkjW4GybEsWrRIBCBGRkaK77zzTrXXiNx+pzFgsENHjhzRXYjTp0832Uaj0Yjt2rUTAYi+vr5iaWmpjXtJDU1dAoYXXnhBt8+hQ4dMtjl06JCuzYsvvmjBHpO92Lx5s+4aeeWVV0y24bVGltK2bVvd1CRD8+fP111Dq1evNrl/cnKybqRi+PDh1u4uNQBJSUmip6enCEDcs2ePOGfOnGoDBrn9TmPSsx3asGGD7vWUKVNMtlEoFJg4cSIAIDs7G9HR0bboGjkQURSxceNGAEBkZCR69+5tsl3v3r3Rtm1bAMDGjRshiqLN+kgNw+DBg3Wv4+PjjT7ntUaW5OXlBQAoLi42+qzi31dvb288+uijJvcPCQnB/fffDwDYvXs38vLyrNNRajBeeukl5OfnY9KkSRg4cGC17eX4O40Bgx2qqCji4eGBbt26mW1X+aI9cOCA1ftFjiUhIQGpqakAUO0vyIrPU1JSkJiYaO2uUQNTUlKie61UKo0+57VGlnLlyhWcPn0aQPmNWmWlpaU4evQoAKBPnz5wcXExe5yK66ykpATHjx+3TmepQfj111+xZcsW+Pv744svvqjRPnL8ncaAwQ5dunQJABAeHg4nJyez7Sr/MqzYh8hSLl68qHtt+A+vIV6LVJW9e/fqXrdr187oc15rVB+FhYW4evUqFi5ciIEDB0KtVgMAXnvtNb12sbGx0Gg0AHidUc1kZ2djxowZAID58+cjMDCwRvvJ8Xea+btJapCKi4uRnp4OoHxYtCp+fn7w8PBAQUEBkpOTbdE9ciA3btzQva7uWmzevLnuNa9Fqkyr1eLTTz/VvR83bpxRG15rVFsrV640O2UXAN5++2384x//0NvG64xqa9asWbh58yaioqIwderUGu8nx2uNAYOdqTxX0tPTs9r2FQFDfn6+NbtFDqg216KHh4fuNa9FqmzRokW6aSCPPvqoyWmWvNbIUrp06YKlS5eiR48eRp/xOqPaiImJwbJly+Dk5IRvv/0WgiDUeF85XmuckmRnKidpVTW/soKrqysAoKioyGp9IsdUm2ux4joEeC3SXXv37sXbb78NAAgODsaSJUtMtuO1RrU1evRonDt3DufOncPRo0exevVqjBkzBqdPn8aTTz6JLVu2GO3D64xqqrS0FM899xxEUcTrr7+Ojh071mp/OV5rDBjsjEql0r0uLS2ttn1FMqGbm5vV+kSOqTbXYuWkVl6LBAAXLlzAmDFjoFaroVKpsG7dOgQHB5tsy2uNasvX1xcdO3ZEx44d0aNHDzzxxBP4/fffsWrVKly7dg2jRo3CypUr9fbhdUY19fHHH+Py5cto0aIF5syZU+v95XitMWCwMxXl4ICaDU0VFBQAqNn0JaLaqM21WHEdArwWqbxCyLBhw5CVlQWlUok1a9ZgwIABZtvzWiNLefrppzF27FhotVq8/PLLyMzM1H3G64xq4vLly/jkk08AAF999ZXelKGakuO1xhwGO6NSqRAQEICMjAy9pBlTsrKydBda5aQZIkuonKhV3bVYOVGL16JjS01Nxf3334/U1FQIgoAffvgBo0aNqnIfXmtkSaNGjcKvv/6KgoIC/Pnnn7rkZ15nVBOLFi1CaWkpwsLCUFhYiDVr1hi1OX/+vO7133//jZs3bwIARo4cCQ8PD1leawwY7FD79u0RExODuLg4qNVqs6VVL1++rHttqlQhUX20b99e97rytWYKr0UCgPT0dAwdOhTXrl0DUP50rmKByarwWiNLCgoK0r1OSkrSvY6IiIBSqYRGo+F1RmZVTBG6du0annzyyWrb/9///Z/udUJCAjw8PGT5O41TkuxQv379AJQPU504ccJsu8q1zaOioqzeL3IsrVq1QtOmTQHoX2um7Nu3DwDQrFkztGzZ0tpdIxnKycnBAw88oKs//umnn+Kll16q0b681siSUlJSdK8rT/FwcXFBz549AQCHDh2qcm55xXXo6uqK7t27W6mnZK/k+DuNAYMdGj16tO71ihUrTLbRarVYtWoVgPLkr8GDB9uia+RABEHQTSW5fPkyDh8+bLLd4cOHdU9IRo0aVavSc2QfCgsLMWLECJw8eRIA8O677+Ktt96q8f681siS1q1bp3vdqVMnvc8q/n3Nzc3F77//bnL/Gzdu4K+//gIA3HfffXrz0cn+rVy5EqIoVvlTORE6Ojpat73ihl+Wv9NEskv9+/cXAYhOTk7iwYMHjT7/7LPPRAAiAHHOnDm27yA1OAkJCbprZtKkSTXa58qVK6JSqRQBiN27dxcLCwv1Pi8sLBS7d++uu1ZjY2Ot0HOSs5KSEnHYsGG6a2vGjBl1Og6vNarOihUrxKKioirbLFy4UHcttmrVSlSr1XqfZ2RkiD4+PiIAMTQ0VExPT9f7XK1WiyNHjtQdIzo62tJfg+zAnDlzqr1G5PY7jTkMdmrx4sWIiopCUVERhg0bhtmzZ2Pw4MEoKirCmjVrsHTpUgDlczJnzpwpcW9Jjvbv34+4uDjd+4oVxAEgLi7OqOTg5MmTjY4RERGBN998E59++imOHz+OqKgovPXWW2jdujXi4+Mxf/58nDp1CgDw5ptvok2bNlb5LiRfTz75JHbu3AkAGDJkCKZOnaqXEGjIxcUFERERRtt5rVF15s6di5kzZ+Kxxx5Dv3790Lp1a3h6eiIvLw/nzp3Df//7Xxw4cABA+XW2dOlSKJVKvWP4+/tj/vz5eP7555GUlIRevXrh3XffRadOnZCamop///vfiI6OBlB+bQ8aNMjWX5PshOx+p1k1HCFJbdq0SfT29tZFsYY/ERER4tWrV6XuJsnUpEmTzF47pn7M0Wg04jPPPFPlvlOnThU1Go0Nvx3JRW2uMfzvqa45vNaoKqGhoTW6xkJCQsSdO3dWeaz3339fFATB7DGGDx9e7WgGOa6ajDCIorx+pzGHwY6NHDkSZ8+exeuvv46IiAi4u7vD19cX3bt310Wm4eHhUneT7JxCocDy5cuxdetWjBo1Ck2bNoWLiwuaNm2KUaNGYdu2bVi2bBkUCv46ovrhtUZV2bFjBxYsWIBHH30UnTt3RqNGjeDk5AQvLy+0bt0ajz32GFasWIErV65g6NChVR7rgw8+wP79+/GPf/wDzZs3h4uLC4KDgzF06FD88ssv2Lp1q97iW0R1IaffaYIoiqLVz0JERERERA0SH7MQEREREZFZDBiIiIiIiMgsBgxERERERGQWAwYiIiIiIjKLAQMREREREZnFgIGIiIiIiMxiwEBERERERGYxYCAiIiIiIrMYMBARERERkVkMGIiIiIiIyCwGDEREREREZBYDBiIiIiIiMosBAxERERERmcWAgYiIiIiIzGLAQEREREREZjFgICIiIiIisxgwEBHV09y5cyEIAgRBkLorSExM1PVl5cqVUnfH4axcuVL355+YmFjv4/3www8QBAGdOnWCKIr176BMrVu3DoIgICIiAmVlZVJ3h4gMMGAgIrui0Wjg7e0NQRBw7733VtlWFEUEBATobvB++OGHKtv/+OOPurZLliyxZLdl6caNG5g7dy769++PoKAgODs7w83NDSEhIRgwYABmzJiB9evXIycnR+qu2qX8/HzMnj0bAPD+++/LIiCtbNiwYRAEATNmzKj3sR577DG0b98eV69exVdffWWB3hGRJTFgICK7olQq0bdvXwDAmTNnkJuba7bthQsXkJmZqXsfExNT5bErfz5gwIB69lTevv/+e7Rt2xYffPAB9u/fj/T0dKjVahQXFyMlJQUxMTH48ssvMXbsWEyfPl3q7tqlL7/8Erdu3UL79u3x+OOPS90dPXl5edi7dy8AYOTIkfU+nkKhwLvvvgsA+PTTT1FQUFDvYxKR5TBgICK7U3Ezr9VqcfDgQbPtKgIApVKp97669oGBgWjfvr1u+9y5cyGKot1MGVm9ejWee+45FBYWQqVS4YUXXsCGDRtw/PhxHDt2DBs3bsS//vUvdO3aVequ2q2ioiIsXLgQAPD666/LbnRhx44dKC0thbe3NwYOHGiRY44fPx7NmjXDnTt38N1331nkmERkGQwYiMjuVH76v2/fPrPtKj4bO3YsACA+Ph6pqakm296+fRuxsbEAgH79+snuBs5SNBoN/vnPfwIAvLy8cOTIEXzzzTcYNWoUunXrhu7du+ORRx7Bhx9+iJMnT+LixYt49NFHJe61/fn555+RkZEBV1dX2Y0uAMDmzZsBAA888ACcnZ0tckylUonx48cDAL7++mtotVqLHJeI6o8BAxHZnR49ekClUgGoetSg4rPHH38crVu3rrK9o0xHOnLkCG7evAkAmD59Ojp37lxl+3bt2mHcuHG26JpDWb58OQBgxIgR8PX1lbYzBrRaLbZt2wYAePjhhy167KeeegoAkJCQgOjoaIsem4jqjgEDEdkdV1dX9OzZEwBw7NgxlJSUGLVJSEhASkoKgPIRg379+gGoW8BQXZWkli1bQhAETJ48GQBw5coVPPvss2jZsiVcXV3RqFEjjBkzBocPH672u2k0GnzzzTfo1asXvL294ePjg3vvvRdffPGFye9ZW9evX9e9Dg8Pr/NxTFVrWrduHe6//34EBwfDzc0NkZGReOedd5CdnV2jY0ZHR2PSpEkICwuDu7s7vL290alTJ7z55ptmR4YsfYysrCy8/fbbiIyMhJubG4KDg3H//fdj3bp1NTp/TSQlJeHIkSMAypOBzdmzZ4/uz3jPnj0QRRHLly9Hv379EBAQAG9vb/Ts2RM//fST3n6lpaX49ttv0bt3b/j7+8PLywtRUVH49ddfa9S/w4cPIz09HQqFAsOHDzf6/MSJE5g6dSoiIiLg4eEBlUqF5s2bo1u3bnjppZewadMms9P37r33XrRq1QpA+dQ4IpIJkYjIDr333nsiABGAuHfvXqPPV65cKQIQ27RpI4qiKH7//fciALFTp04mj3fvvfeKAERvb29RrVbrfTZnzhzduUwJDQ0VAYiTJk0Sf//9d9Hd3V3XvvKPUqkU16xZY/Y75eXlif379ze5LwDx3nvvFU+ePKl7v2LFihr+ad3122+/6fafMWNGrfevkJCQoNePZ555xmy/mzZtKl66dMnssYqKisQnnnjC7P4ARA8PD3HTpk1WPcbFixfFpk2bmt1/ypQp4ooVK3TvExIS6vRnV3FtAhDj4+PNtouOjta127lzpzhy5EizfXv11VdFURTFzMxMccCAAWbbzZs3r9r+vf322yIAMSoqyuizhQsXigqFoso/ZwBiXl6e2eNX/H9q1qxZDf60iMgWGDAQkV3auXOn7ubko48+Mvp86tSpups8URTFS5cuiQBEQRDEzMxMvba5ubmiUqkUAYgPPvig0bFqGjDce++9okqlElu1aiV+/fXX4uHDh8VDhw6Jc+fOFVUqlS4guX37tsnjjBo1Sneenj17iqtXrxaPHz8ubt26VRw7dqwIQOzRo0e9AoZr167p9lepVOLu3btrfQxR1A8YKvpUuc/btm0Tx40bp2vTokULMTc31+g4Wq1WHDFihK7dyJEjxZ9++kk8cOCAeOjQIXHx4sViixYtRACii4uLeOzYMascIycnR2zevLnuGOPHjxe3bdsmHj9+XPzll1/E7t27G/351zVgqLg2AwICqmxXOWDo1avX/7d3/zFV1f8fwJ/AvUACIYgIzH4IgyQkfolJSEolNRSba6vEBPqByGa10igrbdUGLBdz4VrDxY9igNFmCUnhDCJUll6BBUkUZSMCuQwV1g8Q7vvzBztn58I9lwtcfnz5Ph+b2+2+3+d93ud4bed13j9eAoDYuXOn+Oqrr4ROpxOlpaXirrvukuucPn1abNu2TWg0GpGeni6qq6uFTqcTH3/8sRwI2dnZiZaWFrPnDQoKEgBEdna20ffNzc1ysLBq1Srx/vvvizNnzojGxkZRV1cnjh07JhITE4WTk5PZgCEnJ0fu8y+//GL5jSOiWcOAgYgWpcHBQaHRaAQA8fDDD08oDwgIEABEfn6+/J2Hh4cAICoqKozqfv311/IDTGZm5oS2LA0YAIiIiAhx48aNCXWKi4vlOjk5ORPKKysr5fL4+Hhx8+bNCXXefvtto7e40wkYhBBi69atRu1ERkaKQ4cOiVOnTgm9Xm9RG8qAwVyf33nnHbnOK6+8MqE8Ly9PABBarVZUVVWZPFd/f7/8EGvqrbc12ti/f7/Z38Dw8LCIi4szuubpBgyBgYECgHjwwQfN1lMGDADEkSNHJtTp7u4WLi4uAoBYvny5sLGxESdOnJhQT/mwL41GmKIMKMcHFgcPHpRHanp6elTbuH79uhgdHVUt/+677+RzmBtxI6K5w4CBiBYt6W2vi4uL0TSiq1evyg8k7e3t8vfSG/yMjAyjdt544w25fn19/YTzTCVgaG5uNlnHYDDIb3m3b98+oTw+Pl4AEA4ODqKrq8tkG6Ojo2LNmjUzDhj0er3Rm/LxfwICAsTevXuFTqdTbUMZMFjaZ3d3dzE0NCSXGQwG4efnJwCIffv2me3zqVOnTP6dWqONoaEh4ebmJgCIe+65RxgMBpPHd3Z2Cq1WO+OAQXrA37Fjh9l640cY1CQlJRmNjKiRpiqFhYWp1vnggw/kEYTxUlNTJz3eEtJon1pwRkRzj4ueiWjRkhYnDw4OoqmpSf5e2k51xYoV8Pf3l7+XFj6P34pVWvDs6OiIyMjIafcnODhYddchGxsbOa/Bb7/9ZlQ2OjqK2tpaAGPZdX18fEy2YWtri+Tk5Gn3T+Lh4YGzZ88iLy/PZLbs9vZ2HD16FBEREdi1a9ekSbYs7XN/fz8uXbokl/3000/o6OgAgEm3FlUuRD9//rxV29DpdLh27RoAIDk5WXVx+8qVKxEXF2f2HJMZGhrC4OAgAMDNzc3i45588knVspCQkCnVG//7U5K2UzWVrM3b2xvA2D3/4YcfzHfYDHd3d/mztGMXEc0vBgxEtGjFxMTIn5W7HEmfpQBhfH2dTod///0XwNiOMtLDz7333gt7e/tp92f16tVmy6UHJemBUdLR0YF//vkHACYNWKTdoWZKq9UiNTUVOp0OXV1dKCsrw/79+xETE2O0735xcTG2bduG0dFR1bam0ucff/xR/nzx4kX5c1RUlLwjkKk/zs7Ocl3lQ6Y12lD2abbvvzLz+FQChoCAANUy5basltQb//uTTJbdeceOHdBqtRgaGkJ0dDQSEhLw0UcfoaWlZUpJDZXXzYzPRAsDAwYiWrRiYmLkt8GWBAzh4eFYsmQJbt68KW9xeuHCBfz3338AZp5/YcmSJWbLbW3H/pc8/uFb+RDp6elpto0VK1ZMs3fqfHx88MQTT+Dw4cOoq6tDT08PDhw4IPf322+/NbsF5lT6rLzW3t7eafVXCq6s1cZc3n8pfwgAOWi1hLnflvT3ZGk9tYRpUnZnFxcXk9mdV69ejdLSUri5uWFkZASVlZVIT09HcHAwPD09sWvXrkmzqQPG122tpHBENDOa+e4AEdFscXd3R1BQEFpaWuQHlYGBATQ3NwOYGDBotVqsW7cOtbW1qKurQ2xs7IJL2LYQMky7u7sjMzMTQghkZ2cDGMux8NRTT5msP90+KwOniooK3HnnnRYdp3yot0YbSrN9/5cuXQqNRoORkRGjQGUhqKysBGA+u/Njjz2Ghx56CMePH8c333yD77//Hnq9Hn19fSguLkZxcTGSk5ORn59vFMgoKa97oSWtI/r/igEDES1q999/P1paWqDX69HW1obff/8dBoMBzs7O8poBpQ0bNqC2tlYOFKT1DFqtFlFRUXPad4lyisbVq1fN1p2s3JpSU1PlgOHXX39VrTeVPivnry9btkz+vHTpUqxZs2bKfbRGG+Pvv7lpPTO9/zY2NvDw8EBPT4+8bmIhUGZ3NjUdScnV1RW7d+/G7t27AQCXL1/Gl19+idzcXPz1118oKipCWFgYXnzxRZPHK6/79ttvt9IVENFMcEoSES1q49cxSIHA+vXrYWdnN6G+NOrQ0NCAoaEhnDt3DsDYdCUnJ6c56PFEfn5+uOWWWwCMTZEyZ7Jya1IuZDb35n0qfVY+0CsDurNnz06ni1ZpIzg4WP48F/dfOl97e/uM27KWhoYG6PV61ezO5gQGBuK1115DQ0OD/G/IXFZp5XUHBQVNr8NEZFUMGIhoUVNOI6qrq5NHDMZPR5JERUXBzs4Of//9NwoLC3Hjxo0J7cw1jUaDTZs2AQCqq6vR3d1tsp7BYEBRUdGMzjWVxanKBcW+vr6q9Szts5ubm9GuTOHh4Vi5ciUAIC8vT15LMhXWaCMiIkIeZfj0009V71FXVxeqq6un3P54UpD7888/qy5AnmvS7khRUVHw8PCYVhu33XabPDrT19enWk8KurRarclduoho7jFgIKJFzcfHB35+fgCAmpoa+SFXOfKgdOutt8pveN977z35+/lev5Ceng5gbNvNtLQ0k7sSZWVlGe3oMx1VVVV4/PHH0djYaLZef38/XnjhBfm/H330UdW65vqcnZ0t9/mZZ56Bg4ODXGZra4vXX38dwNhWn0lJSRgaGlI9z8DAAI4ePWr0nTXacHBwwNNPPw0AaGpqwuHDhyccNzIygtTUVAwPD6u2bSnpt2kwGIyCsvkkBQxbt25VrfPFF1/g+vXrquWdnZ1oa2sDAKxatUq1nrQrWVRUlNHOVUQ0f7iGgYgWvZiYGHR0dKCrqwvA2Bv79evXq9bfsGEDmpqa5P3obW1tVUck5kpCQgISEhJQUVGBiooKREdH46WXXoK/vz96e3tRWFiI48ePY+3atTN6yDQYDCgvL0d5eTlCQkKwZcsWREZGwtvbG/b29ujt7UV9fT3y8vLkHYgiIiLM5n9Yu3atyT4XFRWhrKwMwFgOg4MHD044ds+ePTh9+jROnDiB8vJyXLp0CWlpaVi3bh1cXV0xMDCAtrY21NbW4uTJk3B0dMTevXut3sahQ4fw2Wef4c8//8Srr76KpqYmJCUlwdPTE+3t7cjJycGFCxdmfP8B4L777sPy5cuh1+tx5swZxMbGzqi9mbpy5QpaW1sBmF+/cOTIEezcuRNbtmzBAw88gMDAQLi6uuLatWu4ePEicnNz5R2Q9uzZY7KNwcFBeYRh+/btVr4SIpq2+c0bR0Q0+/Lz840yFUdGRpqtX1ZWZlQ/JCTEbH1LMz0nJyebbSc5OVkAEHfccYfJ8oGBAREdHa2agTksLEzodLoZZXqur68XTk5OqucY/2fz5s2ir69vQjvKTM8FBQUiJSVFtQ1vb2/R2tqq2qfh4WGRnp4ubGxsJu2PqQzE1mqjpaVFeHl5qR6XkpIiCgoKZpzpWQgh9u3bJwAIX19f1TrKTM81NTWq9Sztk9rv2Fx2Z6WNGzdOem9tbW3Fu+++q9pGYWGhACA0Go3o7u42ez4imjuckkREi9746USTjRaMn64039ORJC4uLqitrUVubi4iIyPh7OwMFxcXhIaGIisrC+fOnTPaZWg6oqOjodfrcfLkSbz88svYuHEjfHx84ODgAI1GA3d3d4SHhyMtLQ01NTWorq422olITUFBAUpKSrBp0yYsW7YMDg4OCAgIQEZGBlpbW3H33XerHqvVavHhhx+iubkZzz//PIKDg+Hq6go7Ozu4uroiNDQUzz77LD7//HNcvnx51toICgpCa2srMjIy4O/vDwcHB3h4eCA2NhYlJSUoKCiw7CZbIDU1FcDYNCopJ8h8MZfdWam0tBR5eXlITExEaGgovLy8oNFo4OzsjKCgIKSnp6OxsRFvvvmmahslJSUAxkYXvLy8rHcRRDQjNkJMYYUbERGRBa5cuSLPUy8oKEBKSsr8duj/oPj4eFRVVeG5557DsWPH5qUPg4OD8PDwwPDwMKqrq7F58+ZZO9cff/wBPz8/jI6O4vz582anDRLR3OIIAxER0QKUlZUFW1tbfPLJJ+js7JyXPlRXV5vN7mxNmZmZGB0dxSOPPMJggWiBYcBARES0AIWEhCAxMRHDw8PIysqalz64uLjgrbfeQm5uLuzt7WftPJ2dnSgsLISdnZ3R7mREtDBwlyQiIqIFKjMzE35+fnB0dIQQwmyCvNkQFxeHuLi4WT9PZ2cnDhw4AF9fX6NEeUS0MHANAxERWR3XMBARLR6ckkRERERERKo4wkBERERERKo4wkBERERERKoYMBARERERkSoGDEREREREpIoBAxERERERqWLAQEREREREqhgwEBERERGRKgYMRERERESkigEDERERERGpYsBARERERESqGDAQEREREZEqBgxERERERKSKAQMREREREaliwEBERERERKoYMBARERERkSoGDEREREREpIoBAxERERERqWLAQEREREREqhgwEBERERGRKgYMRERERESk6n+1XywpNfO8LQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -171,14 +167,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLYAAAI5CAYAAAC8ULOiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAD+fElEQVR4nOzdd3iUVd7/8fdJQjKEEELvEDoBZFFASIAAShOwIUp5UEFd9ecqy65r2VUpPoiCuzZUWCuKgOyK3UcNuHRQQRFWEEGKoIC0ECAkpJ3fH5MMmUlPpqR8Xtc1V+Y+95lzTmZuhsx3zvkeY61FRERERERERESkogkK9ABERERERERERERKQ4EtERERERERERGpkBTYEhERERERERGRCkmBLRERERERERERqZAU2BIRERERERERkQpJgS0REREREREREamQFNgSEREREREREZEKSYEtERERERERERGpkBTYEhERERERERGRCkmBLRERERERERERqZAU2BIRERERERERkQpJgS0REREREREREamQFNgSEREREREREZEKSYEtERERERERERGpkBTYEhERERERERGRCkmBLRERERERERERqZAU2BIRERERERERkQopJNADkIrDGBMGXJR9eAzIDOBwRERERERERMQ/goH62ff/a609H8jB5KbAlpTERcCmQA9CRERERERERAKmJ7A50IPIoaWIIiIiIiIiIiJSIWnGlpTEsZw7a9asoVWrVoEci/hZSkoKa9asASA+Pp7q1asHeETib7oGqja9/qJroGrT6y+6Bqo2vf6yb98+4uPjcw6PFVbX3xTYkpJw5dRq1KgRzZo1C+RYxM9SUlKoV68eAM2aNdN/ZlWQroGqTa+/6Bqo2vT6i66Bqk2vv6SkpOQ+LFf5trUUUUREREREREREKiQFtkREREREREREpEJSYEtERERERERERCokBbZERERERERERKRCUvJ4EREREZFKJCsri9OnT3Pq1CnS09O91mbdunUBOHDgAEFB+n68qtE1ULXp9a/cgoODqVGjBpGRkRVyYwAFtkREREREKpHffvuNU6dOebVNa63rw05mZiZZWVlebV/KP10DVZte/8otIyOD8+fPc/LkSZo0aUKtWrUCPaQSUWBLRERERKSSSElJcQtqBQcHY4zxSts57YSE6CNEVaVroGrT6195ZWRkuO4fOnSIsLAwHA5HAEdUMroiRUREREQqiZMnT7ru16tXj/r163ul3ZzljQCRkZFahlQF6Rqo2vT6V26ZmZkcOXLE9RonJSVVqMCWrkYRERERkUoiLS3Ndb9evXoBHImIiFQUwcHBNGrUyHWcnJwcwNGUnAJbIiIiIiKVRM5yEm8uQRQRkcovODjYtcw0MzMzwKMpGQW2REREREQqGQW1RESkqlBgS0REREREREREKiQFtkREREREpNxbsGABxhj2798f6KGIj0RHRzNx4sRi1R0wYAADBgzwSb+rVq3CGMOqVau80r6I+JYCWyIiIiIiIsW0dOlSJkyYQLt27TDGFBhcyQmO5Hf78ssv3epGR0djjGHQoEH5tvXyyy+7Hrt582YA5syZgzGGLVu2uNW11lK7dm2MMezbt8/tXGpqKmFhYYwfP76Uv71/7dixg+nTpyuYGUCzZs3i/fff92qbEydOLPDfRu5bcYOcpbFz507uv/9+unXrRs2aNWncuDEjRoxw/fsqrYkTJxIREVHgeWMMd999d5n6KMzZs2eZNm0aw4YNo06dOhhjWLBggc/6Ky9CAj0AERERERGRotx4442MHTuWsLCwgI5j3rx5fPPNN/Ts2ZMTJ04UWX/y5Mn07NnTraxt27Z56jkcDlauXMmRI0fcdicDWLRoEQ6Hg9TUVFdZ3759AVi3bh0XX3yxq3z79u2cOnWKkJAQ1q9fT6tWrVznNm3aRFpamuux5d2OHTuYMWMGAwYMIDo62u1cQkKCz/qNj48nJSWF0NBQn/VRUcyaNYvRo0dz1VVXea3NO+64wy2Iu2/fPqZOncrtt99Ov379XOVt2rTxWp+eXnnlFV599VWuu+467rrrLpKSkvjnP/9J7969+eyzzwoMMpd3x48f59FHH6VFixb87ne/qzKzDqtsYMsY0wC4NPvWM/tWN/v0G9baicVoYyLwejG7nGStXVDigebtsx4wGbgGiM4u3g+8DzxrrS36f1cRERERkQomODiY4ODgQA+DhQsX0rRpU4KCgujSpUuR9fv168fo0aOLrNenTx82bdrE0qVL+eMf/+gq/+WXX1i7di3XXnsty5Ytc5X36NEDh8PBunXruOeee1zl69evp27duvTo0YN169YxYcIE17l169YBVJjAVmF8GXQKCgrC4XD4rP2qLjY2ltjYWNfx5s2bmTp1KrGxsW7Xqy+NGzeO6dOnu82uuuWWW4iJiWH69OkVNrDVuHFjDh8+TKNGjdi8eXOeoHplVZWXIv4GfAQ8AgzjQlCr3DLG9AL+i3PMFwE1s28XZZf91xhzaeBGKCIiIiLiGwXl2Pr000/p168fNWrUoGbNmowYMYLt27e71dm2bRsTJ06kdevWOBwOGjVqxC233FKsGVeemjdvTlBQyT5GnTlzhoyMjELrOBwORo0axeLFi93KlyxZQu3atRk6dKhbeWhoKD179mT9+vVu5evXryc2NpY+ffrkey4qKqpYAbkcAwYMoEuXLmzbto0RI0bQpEkT2rdvzzvvvAPA6tWr6dWrF9WrV6dDhw6sWLHC7fETJ07MM9sKYPr06YXu3rlgwQKuv/56AAYOHOhanpYzA6U0ObastcycOZNmzZoRHh7OwIED81wrkH+OrdzPQ//+/QkPD6dt27bFfh6KIysri2effZaLLroIh8NB/fr1GTZsmNvyuJylbIsWLaJDhw44HA66d+/OmjVrvN6fMYbk5GTeeOMNgoODqV27NnfddVeJ+ymr6OhoRo4cSUJCAt26dcPhcNCpUyfefffdPHX37NnDnj17imyze/fueZYM1q1bl379+vHDDz+4lZ87d46dO3dy/Pjxsv0iBZg7dy6dO3cmPDyc2rVr06NHjzzvAzt37uTAgQNFthUWFpZnxmdVUGVnbHk4AOwEhpShjaHAoULO/1KGtjHGNMcZiKsPZABPAR9nnx4J/BloDHxkjOlurS1TfyIigbLn2Fk2/HSc9Ewb6KFILunp6ew87PwAcuTLg1SrVi3AIxJ/0zVQMbQKTSGimiHcEcTxM+cByLKWpHPpZWrXWkvq+XSCDNQjlWohZZ85VTs8lKCgggMbxbFw4UJuvvlmhg4dyuzZszl37hzz5s2jb9++bNmyxRVQWb58OXv37mXSpEk0atSI7du389JLL7F9+3a+/PLLQgMsZTVp0iTOnj1LcHAw/fr148knn6RHjx751h0/fjxDhgxhz549rmVYixcvZvTo0fn+m+vbty9r165l//79rt91/fr13HbbbVx66aVMmzaNU6dOERUVhbWWDRs2EBsbW+LAXGJiIldddRXXXHMNV199NW+88QZjx45l0aJFTJkyhTvvvJPx48fz5JNPMnr0aA4ePEjNmjVL9kR5iI+PZ/LkyTz33HP87W9/IyYmBsD1szSmTp3KzJkzGT58OMOHD+fbb79lyJAhpKWlFevxiYmJjBw5krFjx3L99dczb948rz4Pt956KwsWLOCKK67gtttuIyMjg7Vr1/Lll1+6XTOrV69m6dKlTJ48mbCwMF588UWGDRvG119/XaKgZVH9LVy40HUt3XbbbaSkpLgtbfWn3bt3M2bMGO68805uvvlmXn/9da6//no+++wzBg8e7Kp3+eWXA5Q6L9uRI0eoV6+eW9nXX3/NwIEDmTZtGtOnTy9WO8UNgr388stMnjyZ0aNH88c//pHU1FS2bdvGV1995ZYLLyYmhv79+1eZpYUlVZUDW48Cm4BN1trfjDHRwL7CH1KoXdba/d4YWAEewxnUAhhvrf13rnNrjTHfAEuBBsBMYKIPxyIi4hPrdh/nxte+wiqmVU5lf5Ddvzuww5AA0jVQ3j3UtzbRdRwEh4RwKCkFgKSUdG589esAjyyvbx4eRN2I0ufLOnv2LJMnT+a2227jpZdecpXffPPNdOjQgVmzZrnK77rrLu699163x/fu3Ztx48axbt06t7w+3hIaGsp1113H8OHDqVevHjt27ODvf/87/fr1Y8OGDW55sXJcdtllNGrUiCVLlvDwww/zww8/8N133/Hss8+yd+/ePPVz59mKjo7myJEj7N27lz59+nDJJZcQFBTEhg0bGD58ODt27CAxMbFUyxAPHTrEW2+9xYgRIwC48sor6dSpE+PHj2fDhg306tULcH74Hjp0KMuWLStz4u/WrVvTr18/nnvuOQYPHlzmHRCPHTvGnDlzGDFiBB999JErmPnQQw8xa9asYrVx6NAhFi9ezLhx4wAYPHgwHTt29MrzsHLlShYsWMDkyZN59tlnXeX33nsv1uMPo++//57NmzfTvXt3AMaOHUuHDh2YOnVqvrOYStvfhAkTuPPOO2ndujUTJkzg9OnTxWrbF3bt2sWyZcsYNWoU4AzKdezYkQceeMAtsFUWa9euZePGjTz88MNlaic5OZn69esXXRH45JNP6Ny5M//+97+LriwFqrJLEa2106y1H1trfwv0WIpijGkE/E/24eceQS0ArLX/Aj7PPrwx+zEiIhXK3xN+VFBLRESKZfny5Zw6dYpx48Zx/Phx1y04OJhevXqxcuVKV93q1au77qempnL8+HF69+4NwLfffuuT8cXFxfHOO+9wyy23cNVVV/Hggw+6Zof99a9/zfcxwcHB3HDDDSxZsgRwJo1v3rx5gYG3uLg4goKCXLmz1q9fT7Vq1ejZsycRERF07drVtRwx52dpAlsRERGMHTvWddyhQweioqKIiYlxBXMA1/38gnCBtmLFCtLS0rjnnnvcZuhNmTKl2G348nlYtmwZxhimTZuW55znjMLY2FhXUAugRYsWXH311Xz++edkZmZ6vb/yoEmTJlx77bWu48jISG666Sa2bNnCkSNHXOX79+8v1Wyto0ePMn78eFq1asX999/vdm7AgAFYa4s9W8vhcLB8+fJ8b56ioqL45Zdf2LRpU6FtWms1W6sQVXnGVkVyFReCkIUlq1+Ac0lkUPZjXiqkrohIuXI4KYXvDp4K9DBERKSC2L3bOXPwsssuy/d8ZGSk6/7JkyeZMWMGb7/9NkePHnWrl5SU5LtBemjbti1XX3017777LpmZmfkmwx8/fjzPPfccW7duZfHixYwdO7bAQENUVBSdO3d2C15dfPHFrkBeXFyc27nQ0FAuvbTkKXmbNWuWZwy1atWiefPmecrAuWSvvPn5558BaNeunVt5/fr1qV27drHa8OXzsGfPHpo0aUKdOnWKrOv5OwC0b9+ec+fOcezYsWLlWCpJf8WVO8AEzuchd1C5LNq2bZvnuW/fvj3gDGaVJa9UcnIyI0eO5MyZM6xbty5P7q2SCg4OLnby+QceeIAVK1Zw6aWX0rZtW4YMGcL48ePp06dPmcZQ1SiwVTHk/lpldSH1cp/rgwJbIlKBJGx3n0BbvVowl7SMCsxgygGD778ttRR/elxmZhYnTzqTLNepU5fg4Co76bvK0jVQMdQOD8YREkRwkCEizPmnfkZmVoBH5RtZWc7fa+HChfl+qA0JufBR54YbbmDDhg3cd999dOvWjYiICLKyshg2bJirHX9p3rw5aWlpJCcnuwXfcvTq1Ys2bdowZcoU9u3b55ZnJz99+/Zl/vz5nDp1ivXr1xMXF+c6FxcXx2uvvUZ6ejrr1q2je/fupdrtr6DdKAsqz710rqCgXHFnFpUnZXkeqoLGjRu7Hb/++utlXpLqa2lpaYwaNYpt27bx+eeflyhHmTfExMTw448/8vHHH/PZZ5+xbNkyXnzxRaZOncqMGTP8OpaKTIEt73ndGNMBqAecBn4CVgDzrLW/lrHtTtk/k6y1RwqqZK09bIw5DUQCpc+qKCISAJ997/72dkWXRjw1pltgBiN5pKSkkJCQAMCQIRd77RtYqTh0DVQMu3fvJiMjg5CQYFrXd846yMqyfPNw2bauP3AimbNpFwIRDWqGUa8M+bHAmTy+LHKSqzdo0KDQ2RGJiYl88cUXzJgxg6lTp7rKc2Z8+dvevXtxOByFzgoZN24cM2fOJCYmhm7duhXaXt++fZk3bx4rVqxgy5Yt3Hfffa5zcXFxpKSk8Mknn7B3716uu+46b/0axVa7dm1OnTqVpzxnBlVhvLkkrmXLloDzdW/durWr/NixY+VihlmbNm34/PPPOXnyZJGzqPK7dnft2kV4eHixczsVt7+SvAaeS+06d+5c7McW5aeffsJa6zaeXbt2AeS762ZxZGVlcdNNN/HFF1/wr3/9i/79+3tjqCVWo0YNxowZw5gxY1yBtscee4y//vWvpQpEV0UKbHnPgFz362bfegH3GmOmWGv/WYa2m2X/LM5OhweBzkDzoip6MsY0K6KK66uw8+fPk5KSUtIupAJLTU3N975UHb68BhLPpfHVPvct1we2r6P3mXJE7wGia6BiyMrKcs0SyT0TqXZ42XaxPJMaSnBwhuu4VvVqZW4TLFlZxZ/RkvP7ZGVlkZWVxeDBg4mMjGTWrFn0798/z66Bx44do379+q4PwjmPy/H00087R2FtmWdt5ff4nP5z27p1Kx9++CHDhg3L87jc47jlllsICgri0ksvdfu98/s9cmZoPfXUU6Snp9O7d2/X+RYtWtC4cWPmzJnjqlva3zX343LuF/Tc5S5v3bo1SUlJfPfdd3Tt2hWAw4cP89577+Vp1/OxOQH0kydPFjju4v4+l112GdWqVeO5555j0KBBrusiv+ugoOe6oP6K8zwU5dprr+WFF15g+vTpPPPMM3nayR3Q2bhxI5s3b+aSSy4B4ODBg3zwwQcMHToUY0yx+ixufzVq1CAxMTHf199TfsuCizOWwp7vHIcOHXJLHn/69GnefPNNunXrRoMGDVyP27NnD3Ah8F2Yu+++m6VLlzJv3jyuueYar8zezO/9N786OedPnDhB3bp1XedCQkKIiYnh008/5fz584SGOr8A2LlzJ+Hh4bRo0aLYYynO81rY+Dz/Dj9//nyx2/A3BbbKbi/wLrARZ1AJoDVwHTAacADzjTHWWlvapYE5e8SeLUbd5OyfpVkYfLDoKk5fffWV601Dqp41a9YEeggSYN6+Br48asiyF6bxhwZZUvdtIeGAV7sRL9F7gOgaKL/q1q1L9erVMcZ4dQezjAz349TU85y2/v2QkxNQPXv2rOt3+/vf/86dd97JxRdfzKhRo6hXrx6//PILCQkJ9OrViyeffBJwBnSefPJJzp49S+PGjVm5cqVrxtD58+dL9FytX7+ejRs3As6E02fOnHHNBIuNjXXlxrn++utxOBxceuml1K9fnx9//JE33niD6tWr89BDD7n1mZWVRUZGhqusdu3a/OlPfwJwleX8/snJyW6PjYqKomnTpmzcuJEWLVoQERHhdr5nz558+OGHGGPo2rVria+LjIwMMjMzOXv2wkeRs2fP5hlzbmlpaa7y4cOH8+CDD3Lttddyxx13cO7cOV577TXatGnD1q1b8zwP6enprrI2bdoQHBzME088wW+//UZoaCjx8fHUr1+fjOyLsri/T1hYGHfffTdPP/00V1xxBYMHD+a///0vK1asoG7dum79njt3zvUzpyznefDsr7jPQ1G6d+/OmDFjmDt3Lj/88AODBg0iKyuLjRs30rdvX26//XZX3ZiYGIYNG8Ydd9xBaGgor776KgB/+ctfvN5f165d+eKLL5g9ezaNGjWiZcuW9OjRo1h9FFdysvMjbGpqar7jz8rKom3bttx2222sX7+eBg0a8NZbb/Hbb78xd+5ct8dcfvnlAGzbtq3QPufNm8e8efPo2bMnxhhefvllt/MjR46kRo0agHPX0SuvvJIHHniABx98sNB209PTgcKvy9zXxeDBg2nQoAG9evWiQYMG7Nq1i5dffpkhQ4ZgrXXV69y5M3369OHjjz8utH+Al156idOnT3P48GEA3n//fddGBr///e9dOeDyk5GRQUpKCikpKezcudPt3PHjx4vsO1AU2Cqb94A3bN7F05uApcaYkTiDXtWAp40xHxa2lLAQOfMP04pRN+cvDK0PEJEKY+sJ92nuMVGW0PzTVYiISAB4LkYqL5mDrr/+eho3bswzzzzD3LlzSUtLo3HjxsTGxvI///M/rnovv/wyDzzwAK+88grWWi677DL+/e9/ExNT8uwda9euZfbs2W5ljz32GOBMBJ0T2BoxYgT//ve/efHFFzlz5gz16tVj5MiRPPDAA25L4byhd+/eLFu2LN/E8L169eLDDz+kffv2Xk0UXlx16tRh4cKFPPTQQ0ybNo2WLVsydepU9u7dy9atWwt9bMOGDXnqqad4+umnueeee8jMzOSjjz4q9nI7Tw8//DAOh4PXX3/dlXNs2bJljBkzplTtedsLL7xA586deeutt5g6dSqRkZF069bNbcdFgD59+tCzZ0/mzJnDL7/8QocOHXjxxRdLnB+qOP099thjTJkyhccee4yUlBTGjRvn9cBWcbRu3ZrZs2czdepUfvrpJ1q2bMlrr73mCmSV1H//+18ANm3alO+OhFu3bnUFtnKCug0bNizl6As2ceJE1/tEcnIyTZo04fbbb+cvf/lLqdt8/vnnOXjwwpyVjz76iI8++ghw5hssLLBVUZmqltCuIMaYaGBf9uEb1tqJXmr3YeB/sw8fttY+Voo2koFw4Ctrbe8i6n4FXAqctdbWLKxuPo8tzlLETeB8IyjO9E6pPFJTU13f0MfHx2u9dxXkq2vg7PkM4p5cS3rmhf+PnhzViZEXlX53G/E+vQeIroGK4cCBA2RmZlKtWjWv/q126FQKJ8+lu47rhIfSJErXQFWSlZXl+oAfERFBUJA2kAiE4OBg7rrrLubOnevXfgP5+rdu3ZrOnTu7gjP+9sADD/D222+za9cuwsLKlluwvNuzZw/p6ekEBwfnWfa4Z88eLrroopzD5tba4qRK8gvN2PK9l4BHcX7R1R8ocWALOIMzsFWc5YU1sn8WZ9mim6IuzNzrusPCwpQ0tgpzOBx6/as4b14DCT/+6hbUqhZsGNq1GdUdZc3dIr6i9wDRNVB+BQUFuXKpePODZ5BHAmnr5falYgkKCtLrH0DGmIA+/4F4/QP5O69atYpHHnmkyvy/l/Nce/6+5Tmop8CWj1lrjxpjTuDcLbFpKZv5BWjIhSTyhclJGl/sfFkiIoH0+Xb3Fdp92tYjUkEtEZFyxXNntMq25iMzM5Njx44VWiciIqLQnQwrmpMnT5KWVnCmk+Dg4FIv+fO3Y8eOkZmZWeD50NDQgCzDBP9fW1XxWva1/JYqSvmiwJZ/lPX//h1Ad6CWMaZRQXm6jDGNgcjswx/K2KeIiM+lpmeycqf7H1/DOmsJoohIeeMR16KypTM5ePAgrVq1KrTOtGnTmD59un8G5AejRo1i9erVBZ5v2bIl+/fv99+AyqBnz56uzQDy079/f1atWuW/AeXi72urKl7LIgps+Zgxpj7O2VoAh0rZzDrgxuz7/YGlBdTrn+v++lL2JSLiN2t2HSMl/cI3rEEGBnXyfmJOEREpG8/AVlblimvRqFEjli9fXmgdbyd8D7R//OMfJCYmFni+Ii27WrRoESkpKQWer127th9H487b11ZRQeXKeC1XlACrBI4CW753Oxc2kin4K5HCfQjMA4KASRQc2JqY/TMr+zEiIuXaZx7LEHtG16FeRPldvy8iUlXlybFVyWZsORwOBg0aFOhh+FX37t0DPQSvydmJsjzy97VVFa9lEWX8KyVjTLQx5uIi6owEpmYfpgCvF1BvlTHGZt+iPc9nLz1clH041BgzOp82rgeGZh8uLGi5oohIeZGemcWKHb+5lQ3romWIIiLlkceErUo3Y0tERCquKjtjyxjTF2ibq6hervttjTETc9e31i7waCIaWGmM2Qh8BGwFjmafaw2Mzr7l/B3wF2vtr2UY8kPAMKA+sMQY0wP4OPvcSODe7PvHgIfL0I+IiF98ufcEp1Mz3MqGKr+WiEi5lCd5fCWbsSUiIhVXlQ1sAbcBNxdwrk/2LbcFBdSNzb4V5BzwJ2vtSyUanQdr7UFjzJXA+0Aj4IHsW25HgGustb+UpS8REX/47Hv3iaW/a1aLJlEVJ5+HiEhVEuSZPD4wwxAREcmjKge2yuobYALOoFYPoDHOWV8hQCKwHfgCeMVae7SgRkrCWvuVMeYi4I/ANThnjQHsAz4AnrHWnvBGXyIivpSZZfl8u+cyxMYBGo2IiBQlb/J4hbZERKR8qLKBLWvtRC4kWy/N48/gzHu1qKi6xWhrQAnqHgceyb6JiFRIWw4kcvzsebeyoZ21G6KISHkVhOdSxAANRERExIOSx4uIiN95LkPs0LAmretHBGg0IiJSFM8ZW8qxJSIi5YUCWyIi4lfWWj7b7h7YGqrdEEVEyjXP5PHaFVFERMoLBbZERMSvth86zS+JKW5lw7QboohIuZYneXwAAlsLFizAGMP+/fv937n4RXR0NBMnTixW3QEDBjBgwACf9Ltq1SqMMaxatcor7YuIbymwJSIifvW5x2ytFnXCiWlcM0CjERGR4sizFBFbZZcjLl26lAkTJtCuXTuMMQUGV3KCI/ndvvzyS7e60dHRGGMYNGhQvm29/PLLrsdu3rwZgDlz5mCMYcuWLW51rbXUrl0bYwz79u1zO5eamkpYWBjjx48v5W/vXzt27GD69OkKZgbQrFmzeP/9973a5sSJEwv8t5H7VtwgZ2ns3LmT+++/n27dulGzZk0aN27MiBEjXP++SmvixIlERBScXsMYw913312mPgpTkvedyqTKJo8XEZHA8MyvNaxLozxLXEREpHwx5H2fzrIQ7Me37xtvvJGxY8cSFhbmv07zMW/ePL755ht69uzJiRNFb0g+efJkevbs6VbWtm3bPPUcDgcrV67kyJEjNGrkPpN50aJFOBwOUlNTXWV9+/YFYN26dVx88cWu8u3bt3Pq1ClCQkJYv349rVq1cp3btGkTaWlprseWdzt27GDGjBkMGDCA6Ohot3MJCQk+6zc+Pp6UlBRCQ0N91kdFMWvWLEaPHs1VV13ltTbvuOMOtyDuvn37mDp1Krfffjv9+vVzlbdp08ZrfXp65ZVXePXVV7nuuuu46667SEpK4p///Ce9e/fms88+KzDIXFEU932nslBgS0RE/Oano2fZffSsW9lQLUMUESn38vv+wTljy3+RreDgYIKDg/3WX0EWLlxI06ZNCQoKokuXLkXW79evH6NHjy6yXp8+fdi0aRNLly7lj3/8o6v8l19+Ye3atVx77bUsW7bMVd6jRw8cDgfr1q3jnnvucZWvX7+eunXr0qNHD9atW8eECRNc59atWwdQYQJbhfFl0CkoKAiHw+Gz9qu62NhYYmNjXcebN29m6tSpxMbGul2vvjRu3DimT5/uNrvqlltuISYmhunTp1f4wFZx33cqCy1FFBERv/FchtigZhgXN48KzGBERKTYgvKJbPl7JWJBObY+/fRT+vXrR40aNahZsyYjRoxg+/btbnW2bdvGxIkTad26NQ6Hg0aNGnHLLbcUa8aVp+bNmxMUVLKPUWfOnCEjI6PQOg6Hg1GjRrF48WK38iVLllC7dm2GDh3qVh4aGkrPnj1Zv369W/n69euJjY2lT58++Z6LiooqVkAux4ABA+jSpQvbtm1jxIgRNGnShPbt2/POO+8AsHr1anr16kX16tXp0KEDK1ascHv8xIkT88y2Apg+fXqhM7YXLFjA9ddfD8DAgQNdy6ly8l6VJseWtZaZM2fSrFkzwsPDGThwYJ5rBfLPsZX7eejfvz/h4eG0bdu22M9DcWRlZfHss89y0UUX4XA4qF+/PsOGDXNbHpezlG3RokV06NABh8NB9+7dWbNmjdf7M8aQnJzMG2+8QXBwMLVr1+auu+4qcT9lFR0dzciRI0lISKBbt244HA46derEu+++m6funj172LNnT5Ftdu/ePc+Swbp169KvXz9++OEHt/Jz586xc+dOjh8/XrZfpABz586lc+fOhIeHU7t2bXr06JHnfWDnzp0cOHCgRO0W532nslBgS0RE/MYzsDW0cyOCPDMSi4iId2VlQfLxMt3MueMEp5xwu2UlHytbu1lZZf7VFi5cyIgRI4iIiGD27Nk88sgj7Nixg759+7oFwJYvX87evXuZNGkSc+fOZezYsbz99tsMHz7c57nCJk2aRGRkJA6Hg4EDBxaaw2f8+PF8/fXXbh/MFy9ezOjRo6lWrVqe+n379uXXX391+13Xr19PXFwccXFxrmWJ4AzqbNiwgdjY2BIH5hITE7nqqqvo3r0706dPJywsjLFjx7J06VLGjh3L8OHDeeKJJ0hOTmb06NGcOXOmRO3nJz4+nsmTJwPwt7/9jYULF7Jw4UJiYmJK3ebUqVN55JFH+N3vfseTTz5J69atGTJkCMnJycV6fGJiIiNHjqRXr17MmTPH68/DrbfeypQpU2jevDmzZ8/mwQcfxOFw5MmNtHr1aqZMmcKECRN49NFHOXHiBMOGDeP777/3an8LFy4kLCyMfv368cYbbzB//nyf5r0qzO7duxkzZgxXXHEFjz/+OCEhIVx//fUsX77crd7ll1/O5ZdfXup+jhw5Qr169dzKvv76a2JiYnj++eeL3c7x48fzvXl6+eWXmTx5Mp06deKZZ55hxowZdOvWja+++sqtXkxMDDfddFOx+y/J+05loKWIIiLiF7+eSmHbL0luZcO6aBmiiIjPpZyEJ8uWqyYE6Oyd0Vxw3x6oUa/oegU4e/YskydP5rbbbuOll15yld9888106NCBWbNmucrvuusu7r33XrfH9+7dm3HjxrFu3Tq3vD7eEhoaynXXXcfw4cOpV68eO3bs4O9//zv9+vVjw4YNbnmxclx22WU0atSIJUuW8PDDD/PDDz/w3Xff8eyzz7J379489XPn2YqOjubIkSPs3buXPn36cMkllxAUFMSGDRsYPnw4O3bsIDExsVTLEA8dOsRbb73FiBEjALjyyivp1KkT48ePZ8OGDfTq1QtwfvgeOnQoy5YtK3MApHXr1vTr14/nnnuOwYMHl3kHxGPHjjFnzhxGjBjBRx995Jot9tBDDzFr1qxitXHo0CEWL17MuHHjABg8eDAdO3b0yvOwcuVKFixYwOTJk3n22Wdd5ffee2+e4Ov333/P5s2b6d69OwBjx46lQ4cOTJ06Nd9ZTKXtb8KECdx55520bt2aCRMmcPr06WK17Qu7du1i2bJljBo1CnAG5Tp27MgDDzzA4MGDvdLH2rVr2bhxIw8//HCZ2klOTqZ+/frFqvvJJ5/QuXNn/v3vf5epzxyled+pDBTYEhERv/jcI2l8VHg1Lm1VJ0CjERGRim758uWcOnWKcePGuc2ECA4OplevXqxcudJVVr16ddf91NRUzp49S+/evQH49ttvfRLYypk1leOqq65i9OjRdO3alb/+9a989tlneR4THBzMDTfc4ApsLVq0iObNm9OvX798A1txcXEEBQW5cmmtX7+eatWq0bNnT6pXr07Xrl1Zv349w4cPdy1LLE1gKyIigrFjx7pmIHXo0IGoqCiaNm3qCuYArvv5jTXQVqxYQVpaGvfcc4/bEsgpU6YUO7CV8zzk8ObzsGzZMowxTJs2Lc85zyWbsbGxrqAWQIsWLbj66qv56KOPyMzMLFYuupL0Vx40adKEa6+91nUcGRnJTTfdxOzZs902XCjtDppHjx5l/PjxtGrVivvvv9/t3IABA0o0s9PhcPDRRx/le84zCBcVFcUvv/zCpk2b8iR7z624/ZfmfacyUGBLRET84jOPZYiDYhpSLVgr4kVEpHR2794NOGc55ScyMtJ1/+TJk8yYMYO3336bo0ePutVLSkryfKjPtG3blquvvpp33323wADE+PHjee6559i6dSuLFy9m7NixBQYaoqKi6Ny5sytotX79ei6++GJXIC8uLs7tXGhoKJdeemmJx92sWbM8Y6hVqxbNmzfPUwbOJXvlzc8//wxAu3bt3Mrr169P7dq1i9WGL5+HPXv20KRJE+rUKfpLP8/fAaB9+/acO3eOY8eO5dlVs6z9FdeRI+5/69WqVcstqFwWbdu2zfPct2/fHnAGs4rzOxckOTmZkSNHcubMGdatW5cn91ZJBQcHFzv5/AMPPMCKFSu49NJLadu2LUOGDGH8+PH06dOnTGPIrTjvOxWdAlsiIuJzx86cZ9P+k25lw7QbooiIlEFWdo6uhQsX5vuhNiTkwkedG264gQ0bNnDffffRrVs3IiIiyMrKYtiwYa52/KV58+akpaWRnJzsFnzL0atXL9q0acOUKVPYt28f48ePL7S9vn37Mn/+fE6dOuXKr5UjLi6O1157jfT0dNatW0f37t1LtdtfQR+ECyrPPbukoKBcZmZmiccRaGV5HqqCxo0bux2//vrrAcvJVVxpaWmMGjWKbdu28fnnn5doYwVviImJ4ccff+Tjjz/ms88+Y9myZbz44otMnTqVGTNmeK2fot53KjoFtkRExOdW/PCb2+5Z4aHB9G1X+rwqIiJSAtXrOPNZlUFWVha7fztDRq738hZ1wqnpyJvQvETjKoM2bZx5wxo0aFDo7IjExES++OILZsyYwdSpU13lOTO+/G3v3r04HI5CZ4WMGzeOmTNnEhMTQ7du3Qptr2/fvsybN48VK1awZcsW7rvvPte5uLg4UlJS+OSTT9i7dy/XXXedt36NYqtdu7YrgX1uOTOoCuPNJXEtW7YEnK9769atXeXHjh0rFzPM2rRpw+eff87JkyeLnEWV37W7a9cuwsPDi53bqbj9leQ18Ezk3rmz9zLz/fTTT1hr3caza9cugHx33SyOrKwsbrrpJr744gv+9a9/0b9/f28MtcRq1KjBmDFjGDNmjCvQ9thjj/HXv/61VIHo/BTnfaci0xoQERHxuc888msN7NgAR7XKNw1aRKRcCgpyJmkv4y0rvC6Z1S/cssLrlq3NEu7M52no0KFERkYya9Ys0tPT85w/duwYcGE2jefsmWeeeaZM/Rclp//ctm7dyocffsiQIUMK3ZnwtttuY9q0afzjH/8osp+cnFlPPfUU6enpbjO2oqOjady4MXPmzHGr609t2rQhKSmJbdu2ucoOHz7Me++9V+Rja9SoAZBvYKykBg0aRLVq1Zg7d67bteDr66C4rrvuOqy1+c7S8bx2N27cyLfffus6PnjwIB988AFDhgwp9jKz4vZXo0aNYj//gwYNcrt5zuAqi0OHDrldM6dPn+bNN9+kW7dubjM29+zZ47araGHuueceli5dyosvvuhKSu9vJ06ccDsODQ2lU6dOWGvd3td27tzJgQMHimyvLO87FZlmbImIiE8lpaSzYY/79sZahigiUvEFepVVZGQk8+bN48Ybb+SSSy5h7Nix1K9fnwMHDvDJJ5/Qp08fnn/+eSIjI4mPj2fOnDmkp6fTtGlTEhIS2LdvX6n6XbNmDWvWrAGcHyKTk5OZOXMmAPHx8cTHxwMwZswYqlevTlxcHA0aNGDHjh289NJLhIeH88QTTxTaR8uWLZk+fXqxxtOiRQuaN2/Oxo0biY6OpkmTJm7n4+LiXInCvZm3p7jGjh3LAw88wLXXXsvkyZM5d+4c8+bNo3379m7Bmfx069aN4OBgZs+eTVJSEmFhYVx22WU0aNCgxOOoX78+f/nLX3j88ccZOXIkw4cPZ8uWLXz66afUqxf4WeQDBw7kxhtv5LnnnmP37t2uZbJr165l4MCB3H333a66Xbp0YejQoUyePJmwsDBefPFFgBItXStuf927d2fFihU8/fTTREVF0bJlywLz2vlS+/btufXWW9m0aRMNGzbktdde47fffuP11193q3f55ZcDRSeRf+aZZ3jxxReJjY0lPDyct956y+38tdde6wqsrlq1ioEDBzJt2rRi/7ssriFDhtCoUSP69OlDw4YN+eGHH3j++ecZMWIENWvWdNWLiYmhf//+rFq1qtD2yvK+U5EpsCUiIj71n52/kZ554dNPaHAQAzuW/A9SEREJLM8FSVnlIH3Q+PHjadKkCU888QRPPvkk58+fp2nTpvTr149Jkya56i1evJh77rmHF154AWstQ4YM4dNPP80TBCqO//znP3kCCI888ggA06ZNcwW2rrnmGhYtWsRTTz3F6dOnqV+/PqNGjWLatGm0bdu2DL91Xn379mXJkiVus7Vy9OnTh2XLltGxY0fq1q3r1X6Lo27durz33nv8+c9/5v7776dVq1Y8/vjj7N69u8jAVqNGjZg/fz6PP/44t956K5mZmaxcubJUgS2AmTNn4nA4mD9/PitXrqRXr14kJCQwYsSIUrXnba+//jpdu3bl1Vdf5b777qNWrVr06NEjz+vav39/YmNjmTFjBgcOHKBTp04sWLCArl27er2/p556ittvv51HHnmElJQUxo0bF5DAVrt27Zg7dy733XcfP/74I61atWLp0qUMHTq0VO199913gHP228aNG/Oc37dvnyuwdfbsWSBvDjFvuOOOO1zvE2fPnqVZs2ZMnjyZhx9+uFTt+fN9pzwxVS2hnZSeMaYZcBCc65nz241DKq+UlBQSEhIA5zcL3trhRCqO0l4DdyzczOfbf3MdX96xAa9OLHg7Yymf9B4gugYqht27d5ORkUFISIhX/1Zz5tg6zflc+b6bRlWnbkSY1/qQ8i0rK4vTp08DztlylXVJU3lnjOEPf/gDzz//vF/7DeTrHx0dTZcuXfj444/91mdu999/P0uWLOGnn34iLKxyv+cV9n/I7t27XTtRAs2ttb/4fYAF0LuRiIj4zLm0DFbvcl/rP7SLliGKiFRE5XHGloiIr61cuZJHHnmk0ge1KjItRRQREZ9Zs+sYqekXtlEPDjIMimkYwBGJiEhpeQa2KtPKj8zMzHyTLucWERFRqXYUO3nyJGlpaQWeDw4OLvYOe4F27NgxMjMzCzwfGhpa5E6DvuLva6sqXsu+tmnTpkAPQYqgwJaIiPiM526IvVrVoU6N0ACNRkREysJ4RLay8q9WIR08eJBWrVoVWscXiaMDadSoUaxevbrA8y1btiwyAXd50bNnT37++ecCzxcn6bav+PvaqorXsogCWyIi4hNpGVl88cNRt7JhWoYoIlJhVeYZW40aNWL58uWF1mndurWfRuMf//jHP0hMTCzwfEXKo7do0SJSUlIKPF+7dm0/jsadt6+tov7dVcZruaIEWCVwFNgSERGf2LDnOGfOZ7iVDemkwJaISEWVN7AVkGH4hMPhYNCgQYEehl9179490EPwmj59+gR6CAXy97VVFa9lESWPFxERn/jPTvfZWhe3iKJRLUeARiMiImXmuRSxMkW2RESkwlJgS0REfGLjnhNux0oaLyJSsXl+cFBcS0REygMFtkRExOuOnTnP7qNn3cpi29QN0GhERMQXKlOOLRERqbgU2BIREa/7ap/7bK0aocFc1LRWgEYjIiLekGdXRMW1RESkHFBgS0REvM5zGWKP6DpUC9Z/OSIiFVme5PEBGYWIiIg7fcoQERGv+3Kve2BLyxBFRCq+vDO2FNoSEZHAU2BLRES86ujpVPYcS3Yr691agS0RkYouz4wtP8e1FixYgDGG/fv3+7dj8Zvo6GgmTpxYrLoDBgxgwIABPul31apVGGNYtWqVV9oXEd9SYEtERLzqy30n3Y4jwkLo0iQyQKMRERFvyRvYqpoztpYuXcqECRNo164dxpgCgys5wZH8bl9++aVb3ejoaIwxDBo0KN+2Xn75ZddjN2/eDMCcOXMwxrBlyxa3utZaateujTGGffv2uZ1LTU0lLCyM8ePHl/K3968dO3Ywffp0BTMDaNasWbz//vtebXPixIkF/tvIfStukNMbFi1ahDGGiIiIMrUzYMAAunTpku+5/fv3Y4zh73//e5n6KMzhw4d58MEHGThwIDVr1qwyAdqQQA9AREQqF8/8Wj2jaxOi/FoiIhVeoJPH33jjjYwdO5awsDD/duxh3rx5fPPNN/Ts2ZMTJ04UWX/y5Mn07NnTraxt27Z56jkcDlauXMmRI0do1KiR27lFixbhcDhITU11lfXt2xeAdevWcfHFF7vKt2/fzqlTpwgJCWH9+vW0atXKdW7Tpk2kpaW5Hlve7dixgxkzZjBgwACio6PdziUkJPis3/j4eFJSUggNDfVZHxXFrFmzGD16NFdddZXX2rzjjjvcgrj79u1j6tSp3H777fTr189V3qZNG6/1WZizZ89y//33U6NGDb/050s//vgjs2fPpl27dlx00UVs3Lgx0EPyCwW2RETEq75Sfi0RkUop0DO2goODCQ4O9muf+Vm4cCFNmzYlKCiowJkZufXr14/Ro0cXWa9Pnz5s2rSJpUuX8sc//tFV/ssvv7B27VquvfZali1b5irv0aMHDoeDdevWcc8997jK169fT926denRowfr1q1jwoQJrnPr1q0DqDCBrcL4MugUFBSEw+HwWftVXWxsLLGxsa7jzZs3M3XqVGJjY92uV3+ZOXMmNWvWZODAgV6fneZv3bt358SJE9SpU4d33nmH66+/PtBD8gt9hS4iIl7z2+lU9h53z68V27pegEYjIiLe5BnYyvJz/wXl2Pr000/p168fNWrUoGbNmowYMYLt27e71dm2bRsTJ06kdevWOBwOGjVqxC233FKsGVeemjdvTlBQyT5GnTlzhoyMjELrOBwORo0axeLFi93KlyxZQu3atRk6dKhbeWhoKD179mT9+vVu5evXryc2NpY+ffrkey4qKqpYAbkcOUurtm3bxogRI2jSpAnt27fnnXfeAWD16tX06tWL6tWr06FDB1asWOH2+IkTJ+aZbQUwffp0jOc0wFwWLFjg+lA+cOBA1/K0nGVVpcmxZa1l5syZNGvWjPDwcAYOHJjnWoH8c2zlfh769+9PeHg4bdu2LfbzUBxZWVk8++yzXHTRRTgcDurXr8+wYcNcy08BjDHcfffdLFq0iA4dOuBwOOjevTtr1qzxen/GGJKTk3njjTcIDg6mdu3a3HXXXSXup6yio6MZOXIkCQkJdOvWDYfDQadOnXj33Xfz1N2zZw979uwpdtu7d+/m6aef5qmnniIkJP95P0lJSezcuZOkpKRS/w4FSU9PZ8aMGbRr1w6Hw0HdunXp27cvy5cvd6uzc+dODh8+XGR7NWvWpE6dOl4fZ3mnwJaIiHiN526INR0hdFJ+LRGRgMqyWZxMPVnm26m0RE7nuiWdL1t7WbbsobGFCxcyYsQIIiIimD17No888gg7duygb9++bgGw5cuXs3fvXiZNmsTcuXMZO3Ysb7/9NsOHD/f5zLNJkyYRGRmJw+Fg4MCBbkEKT+PHj+frr792+2C+ePFiRo8eTbVq1fLU79u3L7/++qvb77p+/Xri4uKIi4tzLUsEZ1Bnw4YNxMbGljgwl5iYyFVXXUX37t2ZPn06YWFhjB07lqVLlzJ27FiGDx/OE088QXJyMqNHj+bMmTMlaj8/8fHxTJ48GYC//e1vLFy4kIULFxITE1PqNqdOncojjzzC7373O5588klat27NkCFDSE5OLvrBOJ+HkSNH0qtXL+bMmeP15+HWW29lypQpNG/enNmzZ/Pggw/icDjy5GRbvXo1U6ZMYcKECTz66KOcOHGCYcOG8f3333u1v4ULFxIWFka/fv144403mD9/vl/zXuW2e/duxowZwxVXXMHjjz9OSEgI119/vVsACODyyy/n8ssvL3a7U6ZMYeDAgQwfPrzAOu+99x4xMTG89957xWozMzOT48eP57klJibmqTt9+nRmzJjBwIEDef7553nooYdo0aIF3377ravOr7/+SkxMDH/961+L/XtVNVqKKCIiXuOZX6tXqzoEBxX8bayIiPjeqfOn6L+0f6CHkcfqMaup4yj9zIKzZ88yefJkbrvtNl566SVX+c0330yHDh2YNWuWq/yuu+7i3nvvdXt87969GTduHOvWrXPL6+MtoaGhXHfddQwfPpx69eqxY8cO/v73v9OvXz82bNjglhcrx2WXXUajRo1YsmQJDz/8MD/88APfffcdzz77LHv37s1TP3eerejoaI4cOcLevXvp06cPl1xyCUFBQWzYsIHhw4ezY8cOEhMTS7UM8dChQ7z11luMGDECgCuvvJJOnToxfvx4NmzYQK9evQCIiYlh6NChLFu2rMwBkNatW9OvXz+ee+45Bg8eXOYdEI8dO8acOXMYMWIEH330kWu22EMPPcSsWbOK1cahQ4dYvHgx48aNA2Dw4MF07NjRK8/DypUrWbBgAZMnT+bZZ591ld977715gq/ff/89mzdvpnv37gCMHTuWDh06MHXq1HxnMZW2vwkTJnDnnXfSunVrJkyYwOnTp4vVti/s2rWLZcuWMWrUKMAZlOvYsSMPPPAAgwcPLlWbn3zyCQkJCWzdutWbQ2Xnzp3Ur1+/2GMYPny423uYlJxmbImIiNd4ztjq3Vr5tURExDeWL1/OqVOnGDdunNusiODgYHr16sXKlStddatXr+66n5qayvHjx+nduzeA28wIb4qLi+Odd97hlltu4aqrruLBBx/kyy+/xBhT4MyL4OBgbrjhBpYsWQI4k8Y3b968wMBbXFwcQUFBrtxZ69evp1q1avTs2ZOIiAi6du3qWo6Y87M0ga2IiAjGjh3rOu7QoQNRUVHExMS4gjmA635+QbhAW7FiBWlpadxzzz1uSyCnTJlS7DZ8+TwsW7YMYwzTpk3Lc85zyWZsbKwrqAXQokULrr76aj7//HMyMzO93l950KRJE6699lrXcWRkJDfddBNbtmzhyJEjrvL9+/cXaxfNtLQ0/vSnP3HnnXfSqVOnQutOnDgRa22xg5TR0dEsX748z+2tt97KUzcqKort27eze/fuQtuz1rJgwYJi9V8VacaWiIh4xeGkFPafOOdWpsCWiIj4Ss4Hwcsuuyzf85GRF5bCnzx5khkzZvD2229z9OhRt3q+yJtTkLZt23L11Vfz7rvvkpmZmW8y/PHjx/Pcc8+xdetWFi9ezNixYwsMNERFRdG5c2e34NXFF1/sCuTFxcW5nQsNDeXSSy8t8bibNWuWZwy1atWiefPmecqAfJdcBdrPP/8MQLt27dzK69evT+3atYvVhi+fhz179tCkSZNi5Ufy/B0A2rdvz7lz5zh27FieXTXL2l9x5Q4wgfN5yB1ULou2bdvmee7bt28POINZxfmdc3v66ac5fvw4M2bM8Mr4cqtRo4bbro858gu4Pfroo1x99dW0b9+eLl26MGzYMG688Ua6du3q9XFVZgpsiYiIV3jO1op0hBDTWPm1RETEN7KynDm6Fi5cmO+H2tyJoG+44QY2bNjAfffdR7du3YiIiCArK4thw4a52vGX5s2bk5aWRnJyslvwLUevXr1o06YNU6ZMYd++fYwfP77Q9vr27cv8+fM5deqUK79Wjri4OF577TXS09NZt24d3bt3L9VufwXtRllQee6lcwUF5Yo7s6g8KcvzUBU0btzY7fj1118PWE6uwiQlJTFz5kzuuusuTp8+7VpiefbsWay17N+/n/DwcBo0aODzscTHx7Nnzx4++OADEhISeOWVV3j66aeZP38+t912m8/7rywU2BIREa/Ik1+rdV3l1xIRKQeiwqJYPWZ1mdrIysoiKekMh1Pcy9s3rElIcOmym0SFRZVpTG3atAGgQYMG+c6OyJGYmMgXX3zBjBkzmDp1qqu8sKU/vrR3714cDgcREREF1hk3bhwzZ84kJiaGbt26Fdpe3759mTdvHitWrGDLli3cd999rnNxcXGkpKTwySefsHfvXq677jpv/RrFVrt2bVcC+9xyZlAVxptL4lq2bAk4X/fWrVu7yo8dO1YuZpi1adOGzz//nJMnTxY5iyq/a3fXrl2Eh4cXO7dTcfsryWvgmci9c+fOxX5sUX766SestW7j2bVrF0C+u24WJjExkbNnzzJnzhzmzJmT53yrVq24+uqref/998sy5GKrU6cOkyZNYtKkSZw9e5b4+HimT5+uwFYJKLAlIiJe8eXek27HWoYoIlI+BJmgMiVpB2dgK+h8CMkek2yiwiIJDQlM2t6hQ4cSGRnJrFmzGDhwYJ5dA48dO0b9+vVds2k8Z88888wzPh1fTv+5bd26lQ8//JArrrii0J0Jb7vtNleusKLk5Mx66qmnSE9Pd5uxFR0dTePGjV0f3kuTX6us2rRpQ1JSEtu2bXMtrzp8+HCxdpirUaMGQL6BsZIaNGgQ1apVY+7cuQwZMsQVIPH1dVBc1113HS+88AIzZsxwS+YO5AnobNy4kW+//ZZLLrkEgIMHD/LBBx8wbNiwAmePlba/GjVqFPv5LyzAXFaHDh3ivffecyWPP336NG+++SbdunVzm7GZs6NoTuA7Pw0aNMj3+nvuuefYuHEjS5YsyTP7zFdOnDhB3boX/maOiIigbdu2HDx40FWWnp7Onj17qFWrlt/GVdEosCUiImX266kUDpx0z68Vq8CWiEilkt+8jUAutYqMjGTevHnceOONXHLJJYwdO5b69etz4MABPvnkE/r06cPzzz9PZGQk8fHxzJkzh/T0dJo2bUpCQgL79u0rVb9r1qxhzZo1gDN4lZyczMyZMwHnsqL4+HgAxowZQ/Xq1YmLi6NBgwbs2LGDl156ifDwcJ544olC+2jZsiXTp08v1nhatGhB8+bN2bhxI9HR0TRp0sTtfFxcnCtReJ8+fUr425bd2LFjeeCBB7j22muZPHky586dY968ebRv377IxP3dunUjODiY2bNnk5SURFhYGJdddlmplojVr1+fv/zlLzz++OOMHDmS4cOHs2XLFj799FPq1atX2l/PawYOHMiNN97Ic889x+7du13LZNeuXcvAgQO5++67XXW7dOnC0KFDmTx5MmFhYbz44osAJcoXVdz+unfvzooVK3j66aeJioqiZcuWBea186X27dtz6623smnTJho2bMhrr73Gb7/9xuuvv+5W7/LLLwfyz2eVIzw8nGuuuSZP+fvvv8/XX3+d59yCBQuYNGmST5ZWdurUiQEDBtC9e3fq1KnD5s2beeedd9xe719//ZWYmBhuvvnmYiWQz3k/2r59O+Bcrp2zwcTDDz/s1fGXFwpsiYhImX3psQwxKrwaHRvVDNBoRETEX/ybnSqv8ePH06RJE5544gmefPJJzp8/T9OmTenXrx+TJk1y1Vu8eDH33HMPL7zwAtZahgwZwqeffponCFQc//nPf/IEEB555BEApk2b5gpsXXPNNSxatIinnnqK06dPU79+fUaNGsW0adNo27ZtGX7rvPr27cuSJUvcZmvl6NOnD8uWLaNjx45uM0P8pW7durz33nv8+c9/5v7776dVq1Y8/vjj7N69u8jAVqNGjZg/fz6PP/44t956K5mZmaxcubLUuY9mzpyJw+Fg/vz5rFy5kl69epGQkMCIESNK1Z63vf7663Tt2pVXX32V++67j1q1atGjR488r2v//v2JjY1lxowZHDhwgE6dOrFgwYISJxwvTn9PPfUUt99+O4888ggpKSmMGzcuIIGtdu3aMXfuXO677z5+/PFHWrVqxdKlSxk6dKjP+z579iyQN4eYN0yePJkPP/yQhIQEzp8/T8uWLZk5c6bbkuKSynk/yvHaa6+57lfWwJapagntpPSMMc2Ag+Bcz5zfbhxSeaWkpJCQkADAkCFDvLbDiVQchV0Df/n3Vt755hfX8dDODfnnjT38PkbxHb0HiK6BimH37t1kZGQQEhLi1b/VsrKyOH36NAfPQu5PD20bRBAequ/Kq4KcawCcs+UKW0opvmOM4Q9/+APPP/+8X/sN5OsfHR1Nly5d+Pjjj/3WZ2433HAD+/fv5+uvvw5I//5U2P8hu3fvdu1ECTS31v6Sp4EA0f9CIiJSZp47Iiq/lohI5WQM5P5eXN+Ri0hlZq1l1apVvPXWW4EeihRCgS0RESmTgyfP8Uui+zZZsW0U2BIRqYw882xlVZLIVmZmJseOHSu0TkRERKE7GVY0J0+eJC0trcDzwcHBxd5hL9COHTtGZmZmgedDQ0OL3GnQV/x9bVXFa9mXjDEcPXo00MOQIiiwJSIiZeI5W6t2eDXaN1B+LRGRysgzsFVJ4locPHiQVq1aFVpn2rRpxU7oXhGMGjWK1atXF3i+ZcuWhSbgLk969uzJzz//XOD5/v37s2rVKv8NKBd/X1tV8VoWUWBLRETKZGM+yxCDgvLbO0tERCo6Y3BLslVZZmw1atSI5cuXF1qndevWfhqNf/zjH/8gMTGxwPMVKY/eokWLSElJKfB87dq1/Tgad96+torKkV0Zr+WKEmCVwKmygS1jTAPg0uxbz+xbztqZN6y1E4vRRjgwDBgM9ADaAhHAaWAX8Dkw31p7xAvj3Q+0LEbVn6210WXtT0SkOKy1fLX3pFuZ8muJiFReeWZsBWQU3udwOBg0aFCgh+FX3bt3D/QQvKZPnz6BHkKB/H1tVcVrWaTKBraA38ryYGNMV2A9zkCWpzpA7+zbn4wxt1trl5alPxGR8ujgyRR+PaX8WiIiVUXepYiVJbQlIiIVVVUObOV2ANgJDCnBYyK5ENRaD3wMbAZOAPWBUcDvs+stMsacttZ+6oWxfgA8XMj5gjNAioh4mWd+rbo1QmnXQMlIRUQqLY/IVpbiWiIiEmBVObD1KLAJ2GSt/c0YEw3sK8Hjs4B/ATOstTvyOZ9gjPkUeA8IBuYaY9rZsn+tdcpa+30Z2xAR8Yr88msZo/xaIiKVlWZsiYhIeVNlA1vW2mllfPwGYEMRdT4wxrwLXAe0AS4Gvi1LvyIi5YW1Ns+Mrd5ahigiUql5BrY0Y0tERAItKNADqAJW5rrfJmCjEBHxsp9PnONwUqpbWWzrOgEajYiI+IPnpFxN2BIRkUBTYMv3wnLdzwzYKEREvMxztla9iDDa1Fd+LRGRyizvroiKbImISGApsOV7/XPd/8EL7cUbY74zxpwxxpwzxuwzxiw1xlxjlNhGRPwob36tOsqvJSJSyXm+zWspooiIBFqVzbHlD8aY3wEjsg//a631RmCrlcdxdPbtBmC9MWaMtfbX0jRsjGlWRJVGOXfOnz9PSkpKabqRCio1NTXf+1J15H7dU1JS2LjnuNv5Hs0j9b5Qiek9QHQNVAxZWVmuhO5ZWVlebRfyybGVleXVfgqzYMECbr31Vvbs2UN0dLRf+pQLcr/OvnrNW7duTf/+/Xn99deLrHvZZZcB8J///Mfr/a5atYrLL7+cL774ggEDBpS5/crAH6+/lA/WWrKysvL8XX/+/PkAjahoCmz5iDEmDHgF546IAA+Vsck04EMgAfgeSAKigFjg/wHNgT7AcmNMrLU2qRR9HCxuxa+++oo9e/aUogupDNasWRPoIUiALUtYy9Ez7v+FpP26nYST2wM0IvEnvQeIroHyq27dulSvXh1jDKdPn/Z6+56BrbS0dE6fTvd6P/nJCaiePXvWJ79bcb377rt89tlnfPPNN+zdu5c+ffrw8ccf56m3bt06rrzyynzbSEhIoGfPnq7jrl27cvDgQfr378/777+fp/4bb7zBlClTAGcg5+KLL+bZZ59l+vTprF69mq5du7rqWmtp1aoVSUlJfPfdd7Rs2dJ1LjU1lZYtW3LllVfyyiuvlPIZcL4GvpCVlUV6errr9d25cyfvv/8+48ePp0WLFm51MzIyALxyLXj2e+7cOdfPQF5r5cE//vEPOnbsyIgRI1xlZX3977rrLpYsWVJkvXHjxvHiiy+Wqa/i+te//sUdd9xBjRo1+OWXX0rdzsiRIzlx4gQbN27Mc+7AgQP87ne/49FHH+Wee+4py3ALtHjxYv7whz/ke27nzp00bNiw0MdnZGSQkpJCSkoKO3fudDt3/PjxAh4VeAps+c7zQI/s+29Yaz8qY3uXWmtP5VO+yhjzPPAOMASIAaYBfy5jfyIiBfrptPtHm8hqlgaOAA1GRET8Jk/yeD/2PWbMGEaNGkVYWFjRlX3otddeY+vWrVx88cWcPHmyyPp33HEHF198sVtZ69at89RzOBysXbuW3377Lc+Hz3//+984HA632ZK9e/cG4Msvv3QLbP3www8kJSUREhLCl19+6RbY+vbbb0lLS3M9trz78ccfmT17Nn379s0T2Hr33Xd91m9cXByHDx8mNDTUZ31UFE8//TRXXXWVW2CrrCZOnEj//hcy9hw4cIBZs2Zx8803Exsb6ypv1cpzsZJvnD17lunTp1OjRg2/9OcPf/vb3/L8m6lVq1aARuN7Cmz5gDHmr8Bt2YebgPxDpiVQQFAr59wZY8wNwF6gDnC7MeZBa21aCbtpXsT5Rjh/H3r16kWbNtrksSpJTU11fUMfHx+Pw6EoRlWT+xo4FdYQuPCtTb8OjRg6tHOARib+oPcA0TVQMRw4cIDMzExCQkKIjIz0WrtZWVmcPXs2z4yt4JAQIiPDvdZPRbBo0SKaNm1KUFAQXbt2LfC5Dg93Pi+XXXYZo0ePLrTNoKAg+vTpw6ZNm/j000+ZPHmy69wvv/zCxo0bueaaa3j33XepUaMGkZGR9O/fH4fDwebNm/nLX/7iqr9161bq1q1L9+7d+fbbb/n973/vOvfdd98BMGjQoBJfHznXAEBERARBQd5P1xwUFES1atVcY6tevTrgfC69eT0X1a+4q1atGhEREV57/QcNGuR2vHnzZmbNmkV8fDwTJ04sy1BL5fHHHycyMpKBAwfywQcflOk6CAkJITg4ON82IiKcmyw5HA6fXWs5/zdfffXV9OjRo4jaeR07dozq1asTERFB9+7d3c6V5xVbCmx5mTHmDmBW9uFOYLi1NtnX/Vprk4wxbwN3ATVwzhbbUMI2Cp1zmTspdFhYmOs/Gql6HA6HXv8qzFr45oD7tPy+7RvomqhC9B4gugbKr6CgIFf+G18EHvLsimh9009+FixYwKRJk9i3b59bjq1PP/2UWbNm8e233xIUFER8fDxz5syhc+cLX7hs27aNp556ijVr1nDo0CGioqIYPnw4Tz75JHXr1i3ROHLPgMqR33OQUxYUFERycjLVq1cnJKTgj18Oh4NRo0axZMkS17JDgKVLl1K7dm2GDRvGu+++S1BQEEFBQTgcDnr27MmGDRvc+t+4cSOxsbFceuml/Otf/3I7t2HDBqKioujatWuxX7cBAwZw/Phx3nrrLf7whz+wZcsWmjRpwhNPPMHo0aNZvXo1999/P9u2baNFixa88MILboGLiRMnsmrVKvbv3+/W7vTp05kxY4YrJ1wOYwxBQUGu1xvg8ssvd51fuXIlAwYMcOW+WrVqVbF+D3Au03zssceYP38+J0+epFevXjz//PNu/ea0OXDgQFdfuZ+HxYsXc88997Bp06YSPQ/FkZWVxdy5c3nllVfYvXs3NWvWpHv37sycOdMVpDDG8Ic//IHY2FgeffRRfv75Zzp37szTTz9NfHy8V/vL+fz35ptv8uabbwLO5YFvvfWWV//d5/63kl+70dHRdOnShcmTJ3P//fezc+dOWrduzcyZMxk1apRb3ZzgS3EnYezevZtnnnmG9957j3/9619u48mRlJTE4cOHady4cbFnPRX2npD7WktPT2fWrFm89dZbHDx4kBo1ahATE8O0adMYPHiwq86ePXuoVasWjRs3Lla/Oe874eHhBAcHF/oYTznj8/x/PtCzZQujXRG9yBgzDshZBPwzMNha68+FqDty3W/qx35FpAo5mgrHk90nhPZuXbIPBSIi4j82K4uMkyfLfMtMTMSeSoRct6zExFK3Z72QgHrhwoWMGDGCiIgIZs+ezSOPPMKOHTvo27evWyBl+fLl7N27l0mTJjF37lzGjh3L22+/zfDhw/MEVrxt0qRJREZG4nA4GDhwIJs3by6w7vjx4/n666/dZkYsXryY0aNHU61atTz1+/bty6+//ur2u65fv564uDji4uLYvn07p06dApxBnQ0bNhAbG1vioERiYiJXXXUV3bt3Z/r06YSFhTF27FiWLl3K2LFjGT58OE888QTJycmMHj2aM2fOlKj9/MTHx7tmrv3tb39j4cKFLFy4kJiYmFK3OXXqVB555BF+97vf8eSTT9K6dWuGDBlCcnLx5iEkJiYycuRIevXqxZw5c7z+PNx6661MmTKF5s2bM3v2bB588EEcDgdffvmlW73Vq1czZcoUJkyYwKOPPsqJEycYNmwY33//vVf7W7hwIWFhYfTr14833niD+fPnB2RGFTgDUGPGjOGKK67g8ccfJyQkhOuvv57ly5e71bv88svdAqFFmTJlCgMHDmT48OEF1nnvvfeIiYnhvffeK1abmZmZHD9+PM8tMTExT92cAO/AgQN5/vnneeihh2jRogXffvutq86vv/5KTEwMf/3rX4v9ew0cOJDIyEjCw8O56qqr2L17d7EfWxFpxpaXGGOuAt7EGSw8DFxe1AwoH9CGyyLic7uT3L+vbxTpILpu1VqGIiJSkWSeOsXuuD5eay93eCUdKO3HpXYb1hNSp06px3H27FkmT57MbbfdxksvveQqv/nmm+nQoQOzZs1yld91113ce++9bo/v3bs348aNY926dfTr16/U4yhIaGgo1113HcOHD6devXrs2LGDv//97/Tr148NGzbkybsFzmWLjRo1YsmSJTz88MP88MMPfPfddzz77LPs3bs3T/2+ffsCzkT10dHRHDlyxJXQ/pJLLiEoKIgNGzYwfPhwduzYQWJiousxJXHo0CHeeustV56lK6+8kk6dOjF+/Hg2bNhAr169AIiJiWHo0KEsW7aszAGQ1q1b069fP5577jkGDx5c5t0Jjx07xpw5cxgxYgQfffSRazbSQw89xKxZs4p4tNOhQ4dYvHgx48aNA2Dw4MF07NjRK8/DypUrWbBgAZMnT+bZZ591ld977715gq/ff/89mzdvdi0VGzt2LB06dGDq1KnFzj1WnP4mTJjAnXfeSevWrZkwYUJAE+nv2rWLZcuWuWZo3XrrrXTs2JEHHnjANbOppD755BMSEhLYunWrN4fKzp07qV+/frHHMHz4cLf3sLIIDw9n4sSJrsDWN998w1NPPUVcXBzffvstzZsXlX2oYtKMLS8wxlwO/AtnoPAEzplagViA2inX/UMB6F9EqgDPxPG9W9dxW6osIiLiD8uXL+fUqVOMGzfObVZEcHAwvXr1YuXKla66uZfUpKamcvz4cVcC9dwzI7wpLi6Od955h1tuuYWrrrqKBx98kC+//BJjTIEzL4KDg7nhhhtcO8YtWrSI5s2bFxh4i4uLIygoiHXr1gHO2VrVqlWjZ8+eRERE0LVrV9avX+86B5QqsBUREcHYsWNdxx06dCAqKoqYmBhXMAdw3c8vCBdoK1asIC0tjXvuucft75bcyz6L4svnYdmyZRhjmDZtWp5znn9nxcbGuuU/atGiBVdffTWff/45mZmZXu+vPGjSpAnXXnut6zgyMpKbbrqJLVu2cOTIEVf5/v378yx7zU9aWhp/+tOfuPPOO+nUqVOhdSdOnIi1tthByujoaJYvX57n9tZbb+WpGxUVxfbt2wudURUdHY21lgULFhTZ9w033MDrr7/OTTfdxDXXXMP//u//8vnnn3PixAkee+yxYo2/ItKMrTIyxsQBHwBhQBIw1Frr9/3ujTG1gJx32XNAwXOcRURKyVrY7RHYim2jZYgiIuJ/OR8EL7vssnzP507OfPLkSWbMmMHbb7/N0aNH3eolJSX5bpAe2rZty9VXX827775LZmZmvrlvxo8fz3PPPcfWrVtZvHgxY8eOLTDQEBUVRefOnd2CVxdffLErkBcXF+d2LjQ0lEsvvbTE427WrFmeMdSqVSvP7I+c/EP5LbkKtJ9//hmAdu3auZXXr1+f2rVrF6sNXz4Pe/bsoUmTJtQpxixGz98BoH379pw7d45jx47RqFEjr/ZXXLkDTOB8HryVj7Ft27Z5nvv27dsDzmBWcX7n3J5++mmOHz/OjBkzvDK+3GrUqJFvfrX8Am6PPvooV199Ne3bt6dLly4MGzaMG2+80W2n07Lq27cvvXr1YsWKFV5rs7xRYKsMjDHdgE9wJmtPBkZYa78pRTurgJz9TltZa/d7nB8GrLbWphTw+AicM8ZyPl2+aq09X9JxiIgU5bcUOJvuOWNLgS0REfG/nCT5CxcuzPdDbe5E7TfccAMbNmzgvvvuo1u3bkRERJCVlcWwYcNc7fhL8+bNSUtLIzk5Od+d0XJ2H58yZQr79u1j/PjxhbbXt29f5s+fz6lTp1z5tXLExcXx2muvkZ6ezrp16+jevXupdjQtKPl0QeW5l84VFJQr7syi8qQsz0NV4JnY/PXXXw9YTq7CJCUlMXPmTO666y5Onz7tWmJ59uxZrLXs37+f8PBwGjRo4POxxMfHs2fPHj744AMSEhJ45ZVXePrpp5k/fz633Xab1/pp3rw5P/74o9faK2+qbGDLGNMXaJurqF6u+22NMRNz17fWLvB4fBvgcyAqu+hhIMkY06WQbo9aa48Wcr4gDwKLjDHvAuuAPcBZoBYQB9wJtMiu+yMwvRR9iIgUyXO2VpNaDlrUUX4tEZHyLDgqinYb1pepjaysLM6cOcP5DDie6+vTkKAg2jeqWepxlUXOrmcNGjQodPe5xMREvvjiC2bMmMHUqVNd5YFKprx3714cDgcREREF1hk3bhwzZ84kJiaGbt26Fdpe3759mTdvHitWrGDLli3cd999rnNxcXGkpKTwySefsHfvXq677jpv/RrFVrt2bVcC+9xyZlAVxptL4nJ2s9y9ezetW7d2lR87dqxczDBr06YNn3/+OSdPnixyFlV+1+6uXbsIDw8vdm6n4vZXktfAM5F77p1Jy+qnn37CWus2nl27dgG47ZJaHImJiZw9e5Y5c+YwZ86cPOdbtWrF1Vdfzfvvv1+WIRdbnTp1mDRpEpMmTeLs2bPEx8czffp0rwa29u7dW+xroyKqsoEt4Dbg5gLO9cm+5bbA47gfkDuE+3Qx+pxB6YNOdXCOubCrezXwP9bak6XsQ0SkUD8l5Z2tVR7zMIiIyAUmKKhMSdrBGdgKDgkhOBPItYbAGkNInVplG2ApDR06lMjISGbNmsXAgQPz7Bp47Ngx6tev75pN4zl75plnnvHp+HL6z23r1q18+OGHXHHFFYXuTHjbbbe5coUVJSdn1lNPPUV6errbjK3o6GgaN27s+vBemvxaZdWmTRuSkpLYtm2ba3nV4cOHi7XDXI0aNQDyDYyV1KBBg6hWrRpz585lyJAhrr9ffH0dFNd1113HCy+8wIwZM9ySuQN5AjobN27k22+/5ZJLLgHg4MGDfPDBBwwbNqzA2WOl7a9GjRrFfv4LCzCX1aFDh3jvvfdcyeNPnz7Nm2++Sbdu3dxmbObsKJoT+M5PgwYN8r3+nnvuOTZu3MiSJUvyzD7zlRMnTlC37oXVDxEREbRt25aDBw+6ytLT09mzZw+1atUqclz5ve/83//9H998841rl9HKqCoHtiqSvwCXA7FAB5yzy6Jw5tI6BHwFLAESbFWb7yoifpNlbZ4ZW72VX0tEpErx/CrDv4v43EVGRjJv3jxuvPFGLrnkEsaOHUv9+vU5cOAAn3zyCX369OH5558nMjKS+Ph45syZQ3p6Ok2bNiUhIYF9+/aVqt81a9awZs0awPkhMjk5mZkzZwLOZUXx8fEAjBkzhurVqxMXF0eDBg3YsWMHL730EuHh4TzxxBOF9tGyZUumT59erPG0aNGC5s2bs3HjRqKjo2nSpInb+bi4OFei8D59vLc7ZnGNHTuWBx54gGuvvZbJkydz7tw55s2bR/v27YtM3N+tWzeCg4OZPXs2SUlJhIWFcdlll5VqiVj9+vX5y1/+wuOPP87IkSMZPnw4W7Zs4dNPP6VevXpFN+BjAwcO5MYbb+S5555j9+7drmWya9euZeDAgdx9992uul26dGHo0KFMnjyZsLAwXnzxRYAS5Ysqbn/du3dnxYoVPP3000RFRdGyZcsC89r5Uvv27bn11lvZtGkTDRs25LXXXuO3337j9ddfd6t3+eWXA/nns8oRHh7ONddck6f8/fff5+uvv85zbsGCBUyaNMknSys7derEgAED6N69O3Xq1GHz5s288847bq/3r7/+SkxMDDfffHORCeTj4uK4+OKL6dGjB7Vq1eLbb7/ltddeo3nz5vztb3/z6tjLkyob2LLWTgQmluHxC8g7i6u0bQ0o4vxmlAxeRALsp2PJJGd4JI5Xfi0RkSrFM7Blrc0zm8Sfxo8fT5MmTXjiiSd48sknOX/+PE2bNqVfv35MmjTJVW/x4sXcc889vPDCC1hrGTJkCJ9++mmeIFBx/Oc//8kTQHjkkUcAmDZtmiuwdc0117Bo0SKeeuopTp8+Tf369Rk1ahTTpk2jbdu2edoti759+7JkyRK32Vo5+vTpw7Jly+jYsaPbzBB/qVu3Lu+99x5//vOfuf/++2nVqhWPP/44u3fvLjKw1ahRI+bPn8/jjz/OrbfeSmZmJitXrix17qOZM2ficDiYP38+K1eupFevXiQkJDBixIhStedtr7/+Ol27duXVV1/lvvvuo1atWvTo0SPP69q/f39iY2OZMWMGBw4coFOnTixYsKDECceL099TTz3F7bffziOPPEJKSgrjxo0LSGCrXbt2zJ07l/vuu48ff/yRVq1asXTpUoYOHerzvs+ePQvkzSHmDZMnT+bDDz8kISGB8+fP07JlS2bOnOm2pLgkxowZwyeffEJCQgLnzp2jcePG/P73v2fatGk0bNjQy6MvP4wm+EhxGWOaAQfBuZ45v904pPJKSUkhISEBgCFDhnhthxOpOF5etYvHPruQ06FpVHXWP+j/P2wkMPQeILoGKobdu3eTkZFBSEiIV/9Wy8rK4vTp06RnweFz7ue6NKlFUJCWpVd2OdcAOGfLFbaUUnzHGMMf/vAHnn/+eb/2G8jXPzo6mi5duvDxxx/7rc/cbrjhBvbv38/XX38dkP79qbD/Q3bv3u3aiRJobq39xe8DLECVnbElIiIl8/XPp9yOtRuiiEjVk1/4KstagvI9IyJSsVlrWbVqFW+99VaghyKFUGBLRESKlJVl+Xq/+45BscqvJSJS5eQXvqoM6z8yMzM5duxYoXUiIiIK3cmwojl58iRpaWkFng8ODq4wu6gdO3aMzMzMAs+HhoYWudOgr/j72qqK17IvGWM4evRooIchRVBgS0REivTjb2dISslwK+vdOjB/IIqISODkl0qrMqQ2OXjwIK1atSq0zrRp04qd0L0iGDVqFKtXry7wfMuWLQtNwF2e9OzZk59//rnA8/3792fVqlX+G1Au/r62quK1LKLAloiIFGn9T8fdjptFOWhWOzxAoxERkUDJfymi34fhdY0aNWL58uWF1mndurWfRuMf//jHP0hMTCzwfEXKo7do0SJSUlIKPF+7dm0/jsadt6+togLJlfFarigBVgkcBbZERKRIa3a7B7Z6tQrcH4giIhI4xoDBYHMtQKwMM7YcDgeDBg0K9DD8qnv37oEegtf06dMn0EMokL+vrap4LYtoKwsRESlUanomX+094VbWV/m1RESqLM/liJVhxpaIiFRcCmyJiEihvtp3kvMZWa5jgyW2tWZsiYiUZ76cRRXkEdiqBBO2RESkAlNgS0RECrVml/vOOi0joFb1agEajYiIFCYkxJlpJDMz02fBLeMxZctWin0RRUSqtszMTDIynJtFBQcHB3g0JaPAloiIFMozsNUxKquAmiIiEmihoaGu+8ePHy+kZul5JpDXUkQRkYotMzOTI0eOuI5r1KgRwNGUnJLHi4hIgQ6dSmH30bNuZTFR+gQjIlJe1alTh9OnTwPOwFZiYmKeGVallfNN/vlM92DWobNBHA3W9+VVQc41cOzYsSJqSmWk17/yynltc9SqVStAIykdBbZERKRAnrO1wkMsLSICNBgRESlS9erViYqK4tSpU4DzW3hvsNaSkpICwNmMINIyL0S26tSoRnioPlZUdrmvgerVq3stYCoVg17/qqNJkyY4HI5AD6NE9D+QiIgUaM1u98BWh1o2T9JgEREpXxo2bEj16tU5deoU6enpXmkzKyvL9aH2SGoop1MvfLsfWi2EyHB9rKjscl8DERERBAVpll5Vote/cgsODqZGjRrUqlWrwgW1QIEtEREpQEZmFmt3u+dn6ahliCIi5V5QUBBRUVFERUV5rc2UlBR27twJwHtH6vPlvkTXuakjG9O/XSuv9SXlU+5roHv37lSvXj3AIxJ/0usv5ZnCrCIikq+tv5ziTKr7evuOtRTYEhGp6sJC3D9CnM/QpiIiIhI4CmyJiEi+Vu9yn63VrkENosICNBgRESk3QvMEtryTx0tERKQ0FNgSEZF8rfZIHN+vTd0AjURERMoTzxlbaZqxJSIiAaTAloiI5JGYnMa2X065lfVpWycwgxERkXIlNFhLEUVEpPxQYEtERPJY+9NxbK50Wo5qQXRvUStwAxIRkXIjb44tLUUUEZHAUWBLRETyWOOxDDG2dV3CQoIDNBoRESlP8gS20jVjS0REAkeBLRERcWOtzRPYim9fP0CjERGR8ka7IoqISHmiwJaIiLjZeeQMR8+cdyvrr8CWiIhk066IIiJSniiwJSIibjxnazWrXZ1W9WoEaDQiIlLeeAa2tCuiiIgEkgJbIiLiZs3uvMsQjTEBGo2IiJQ3WoooIiLliQJbIiLici4tg037Et3KtAxRRERyU2BLRETKEwW2RETE5cu9J0jLvPABJSTIENembgBHJCIi5Y1ybImISHmiwJaIiLis2XXc7fiSFrWp6agWoNGIiEh5lGfGVrpmbImISOAosCUiIi6rPRLH9++gZYgiIuJOSxFFRKQ8UWBLREQAOHjyHPuOJ7uVxbdTYEtERNyFBmtXRBERKT8U2BIRESDvbK26NULp3CQyQKMREZHySjm2RESkPFFgS0REgLyBrX7t6hEUZAI0GhERKa+0FFFERMoTBbZERIS0jCw27jnhVhbfXssQRUQkLwW2RESkPAnxd4fGmPpAa6ARUANIB04BB4CfrLWayywi4mffHkjk7PkMt7J+yq8lIiL58AxsZWZZMjKzCAnWd+YiIuJ/Pg9sGWNqAFcDVwD9gaaFVD9vjNkCJADvWWu3+Xp8IiICazyWIXZuEkn9mmEBGo2IiJRnnjm2wDlrS4EtEREJBJ8FtowxFwP3ANcD4TnFRTzMAcQCvYGpxpjtwAvAQmvtOV+NVUSkqluz2z2wpWWIIiJSkPwCW2kZWdTQ9yEiIhIAXg9sZQe0/hfnDC24EMw6AnwNfAMcBU4CiUB1oA5QG2gP9AS6AtWALsCLwP8aY+YAc6215709ZhGRquzYmfN8/+tpt7J4LUMUEZECeC5FBOXZEhGRwPFqYMsY8zpwIxeS0n8LLAKWWWsPlKCdUCAe+B/gWqAeMBu4yxhzk7V2nTfHLSJSla37yX22Vo3QYLq3rB2g0YiISHmXf2BLaXJFRCQwvL0Q/mYgA3gZ6Git7WGtfbokQS0Aa22atXaFtXYS0BC4CfgRiAYu8/KYRUSqtDW7jrsdx7apl+8yExEREYDQfHJpacaWiIgEireXIr4IzLbWHvRWg9lLD98yxizCma8r2Ftti4hUdVlZNk/i+P4dtAxRREQKZowhNCSItFzBrPPpCmyJiEhgeDWwZa2925vtebRtgX/5qn0Rkapox+HTnEhOcyvrr/xaIiJShDDPwJaWIoqISIBorYmISBW22mO2VnTdcFrUDS+gtoiIiJNnnq00LUUUEZEAUWBLRKQK8wxs9W+v2VoiIlK0sBD37CDKsSUiIoHi7RxbGGMOAWuAtcAaa+1/vd2HiIiU3ZnUdL79OdGtLF6BLRERKQbPGVtaiigiIoHi9cAW0AhnkvfrAYwxp4B1OINda4BvrLX6SkdEJMA27DlBRpZ1HVcLNvRuXTeAIxIRkYrCc/dczdgSEZFA8UVg62egZa7j2sDI7BtAsjFmIxdmdX1prXXPXCwiIj7nuRtiz+g61AjzxX8LIiJS2YRV81iKqF0RRUQkQLz+CcZa28oY0xTol+vWGTDZVSKAQdk3gDRjzCYuzOhab61N9va4RETkAmttnvxaWoYoIiLFpaWIIiJSXvjkq3lr7a/A29k3jDG1gT5cCHR1B6plVw/LPtcH+CuQaYz5jguBrrXWWvckMCIiUib7jifzS2KKW1l8OwW2RESkePIGtjRjS0REAsMvuyJaaxOttR9bax+w1sYBtYDLgGnACuAczhldBmewrQfwJ+A94KgvxmSMaWCMGWmMedQY86kx5rgxxmbfFpSivSuMMe8ZY34xxpzP/vmeMeYKL4873BhzvzFmkzHmpDEm2Riz0xjzD2NMy6JbEBHJuwyxfs0wYhrXDNBoRESkolFgS0REyouAJFOx1qYCq7JvGGOCgUu4MKOrL5CTwdhXwbffvNGIMSYIeAm41eNU0+zbNcaYV4A7ypo03xjTFvg/oJ3HqQ7Zt9uMMf9jrf24LP2ISOW3Zvdxt+P4dvUxxhRQW0RExF1YiEeOLQW2REQkQPwyY6sYgnAuTawGhOIMuNlCH+FdB4CEUj72MS4EtbYA44BLs39uyS6/DZhZlgEaY2oCn3AhqPUycDkQBzwEnAUigaXGmG5l6UtEKrfzGZls3HPCrSy+fb0AjUZERCoi5dgSEZHyIiAztowxNXAGZHJmaF0KOHJO56q6E+fOib7wKLAJ2GSt/c0YEw3sK0kDxpj2wF+yDzcD8dbanKQ1m4wxHwKrcS6tvM8Y85q19qdSjvc+oH32/futtU/mOrfRGLMqu69w4BlgQCn7EZFK7ut9J0lJv/ABxBjop/xaIiJSAmHVPAJb2hVRREQCxC+BLWNMXdx3SewG5MxfzglkpQHfAuuyb+utte5TCrzIWjvNC81M4cJzeE+uoFZOH+eMMfcAG7Pr/Qn4Q0k7McZUAyZnH/4A/MOzjrV2gzHmVeAOoL8xpqe1dlNJ+xKRym/FDveV2F2bRVGnRmiARiMiIhWRliKKiEh54ZPAljGmOc4AVnz2z465T2f/PA1s4EIg6+vs3FsVgnEmo7k6+3CntfbL/OpZa780xvyIMwfW1caYu621JV1mORBnwn2ANwrJ1bUAZ2AL4FqcM9JERFystSz3CGwNjmkQoNGIiEhFpaWIIiJSXng9sGWM2Q80zznMdepXLgSx1gHbShHgKU9aAU2y768uou5qnIGtpkA0JVzyiDOZfu62CrIZ5w6T4UCfEvYhIlXA9kOnOZTk/h3C4E6NAjQaERGpqEI9AltpmrElIiIB4osZWy2yf2YA7wAf41xW+LMP+gqkTrnu7yyibu7zMZQ8sFWsvqy1GcaYn4Cu2f2IiLjxnK3Vok447RtGBGg0IiJSUeWdsaXAloiIBIavcmxZnDm0bgA6A2uNMWtxBrh+8VGf/tYs1/2ifqeDue43L7BW0X0lW2tPFaOvrkB9Y0yYtfZ8cTsxxjQrooprWsf58+dJSUkprK5UMqmpqfnel4olYftht+MB7eoW+/XUNVC16fUXXQNVm+frH+SRGSPlfLr+Nqzk9B5Qten1l/Pnix1a8DtfBLb+hHPpXF+gIXAR0AX4fwDGmANcWI641lq7wwdj8Ieaue6fLaJucq77pZkakdNXUf3k11dJrr6DRVdx+uqrr9izZ08JmpbKZM2aNYEegpTCyfPwwxH3t/3IM/tJSCjpJFJdA1WdXn/RNVC1rVmzhr1HDBf2goIjx06QkJAQuEGJX+k9oGrT6181HT9+PNBDKJDXA1vW2meBZwGMMe25sBNiPM78Ui2zb+Oz6yTiTCK/Fmewa7O1Nt3b4/IBR677aUXUzR1cql6Gvorqxxt9iUgl9f1J43YcHmJpHVmRUx2KiEighLj/l0K6ViKKiEiA+GopIgDW2l3ALuBVAGNMU9wDXZ2AOsBIYET2w84bY77mwqyuDdba074cZynlnn8ZWkTdsFz3SzNHO6evovopa19FLZNsRPZOi7169aJNmzYlbF4qstTUVNe3M/Hx8TgcjiIeIeXN2wu3AImu40GdGnPF0E4FP8CDroGqTa+/6Bqo2jxf//O7TvH23gsLL6rXqMmQIZcGanjiB3oPqNr0+kt5XrHl08CWJ2vtr8Db2TeMMbVxLlmMz75djHN2UjzO4BdAJsUL6PjbmVz3i1peWCPX/eIsJyyor+IsYyx1X0XlPzPmwldzYWFhVK+uCWFVlcPh0OtfwZxOTWfT/lNuZcMualLq11HXQNWm1190DVRtDoeDiHD3D7XpWVbXRBWi94CqTa9/1RQWFlZ0pQAJKrqK71hrE621H1lr77PW9gKigDuBvYDJvgUX0kQg5Q4CFZV0PfdMqGLnscqnrxrGmKhi9nWsJInjRaRyW/XjMTKyLiw7DA0OIr59/QCOSEREKjLtiigiIuWFX2ds5ccY05kLM7T6AU2yT1mcga3yKnfS+45F1M19/odS9nVdrra+zK+SMSYEyFkfWJp+RKSSWr7jN7fjuLZ1iQgL+H8BIiJSQYWFuH/3rMCWiIgEil8/1RhjgoHuXMix1QeonbuKx0MOAOV1y4V9wCGcgbj+RdSNz/75K7C/FH2ty3W/PwUEtoAeXFiKuL4U/YhIJZSWkcWqnUfdygZ3ahig0YiISGUQVs1jxlZ6ZoBGIiIiVZ1PA1vGGAcQy4VAVi8gPHcVj4f8iDOQtQZYa6094MvxlYW11hpjPgD+H9DRGNPbWpsn4GSM6c2FGVsfWGtLswXZKiAJqAXcbIyZU0A7E3Pdf68U/YhIJfT1vpOcOZ/hVjYoRoEtEREpPS1FFBGR8sLrgS1jzEguLCu8BKiW+3Su+1nAVtwDWce8PR4fewa4HWcesLnGmHhrrWsnQmNMdWBu9mFGdv08jDELgJuzDwdaa1flPm+tTTPGPAc8AsQAfwGe9GgjFrg1+3C1tXZTaX8pEalclu844nb8u2a1aBipnWxERKT08luKaK1122xIRETEH3wxY+tDnPmxwD2QlQZsBtbiDGStt9ae9kH/xWKM6Qu0zVVUL9f9tsaYibnrW2sXeLZhrd1ljHkSeBDnMsD1xpjZwB6cua4ewLnTI8CT1trdZRjyk8AYoD0wxxjTFufukinAQOBvOF/PFGBKGfoRkUrEWpsnv5aWIYqISFmFhuTdgyo90xIaosCWiIj4l6+WIhrgHLCRC4GsL621qT7qrzRu48IsKU99sm+5LSig7kNAA+AWnEGst/Op8yrwcMmHeIG19owxZgTwf0A7nDPFbveodhr4H2vtd2XpS0Qqj+2HTnMoyf2td3CnRgEajYiIVBaeSxEBzmdk5hvwEhER8SVfBLbuxxnM+sZam1FU5YrOWpsF3GqMWYYz0NQT5+yv48Am4J/W2k+91NdPxpiLgT8A1+OccRYKHMQZ8HrWWvuzN/oSkcphxQ/us7Va1AmnfcOIAI1GREQqi/wDW1nUDMBYRESkavN6YMta+3dvt+kL1tqJuCdbL2t7/4czuOTTsVhrk4E52TcRkUJ5LkMcFNNQ+U9ERKTMwqoF5ylTAnkREQkEzRUWEamkfj2VwvZD7qkMlV9LRES8Id8ZW+mZARiJiIhUdQpsiYhUUis8ZmtFhVejZ3TtAI1GREQqk5AgQ5DHBGDN2BIRkUDw+lJEY8x/vNyktdZe7uU2RUQqPc/8Wpd1aEBIsL7PEBGRsjPGEBoSRGr6hWBWmgJbIiISAL5IHj8AsNn3Ta77pVHWx4uIVEmnU9P5cu8JtzItQxQREW8KCwl2C2xpxpaIiASCLwJbOVKBoz5sX0RECrDqx2OkZ174XiA0OIh+7esHcEQiIlLZeObZOp+hHFsiIuJ/vgxsOYDDwJvAUmttog/7EhGRXDx3Q4xrW5eIMF++5YuISFUTVs0jsJWuGVsiIuJ/vki28giwC+cywt7AC8BhY8wyY8w1xphqPuhTRESypWVksWqn+4RZLUMUERFvCwsJdjvWUkQREQkErwe2rLWPWWtjgEuB54HjQChwLbAMZ5DrBWNMrLf7FhER+HrfSc6cz3ArGxSjwJaIiHiXliKKiEh54LPtsay1m621k4EmwFXAO8B5oA5wJ7DOGLPLGPOIMaaVr8YhIlLVLN9xxO34d81q0TDSEaDRiIhIZZU3sKUZWyIi4n8+3/fdWptprf3YWnsD0Aj4PbA2+3RbYDrwkzFmrTHm98aYKF+PSUSksrLW5smvpWWIIiLiC6Eega00BbZERCQAfB7Yys1ae9pa+6q1dgDQCpgK/IQzH1ccMB/Y588xiYhUJtsPneZQUqpb2eBOjQI0GhERqczy5tjSUkQREfE/vwa2crPWHrDWzrTWdgDuwblM0QBhgRqTiEhFt+IH99laLeqE075hRIBGIyIilVmepYjaFVFERAIgYHu/G2OaAxOAG4EOuU6lBWZEIiIVX37LEI0xARqNiIhUZmHVtCuiiIgEnl8DW8aYSOB6nAGtfjhnaOV84toILASW+nNMIiKVxa+nUth+6LRbmXZDFBERX9GuiCIiUh74PLBljAkGrsA5M+tKnEsNc4JZe4G3gIXW2j2+HouISGW2wmO2VlR4NXpG1w7QaEREpLLTrogiIlIe+CywZYzpiTOYNQaol1MMnAL+hTOYtd5X/YuIVDWe+bUu69CAkOCApVIUEZFKTrsiiohIeeD1wJYx5mHgf4D2OUVAOvApzqWGH1lrlUdLRMSLTqem8+XeE25lgztpGaKIiPhO3l0RFdgSERH/88WMrUcBizOg9RXwJrDUWnvSB32JiAiw6sdjpGda13FocBD92tcP4IhERKSyU44tEREpD3yZYysFaAjcB9xXhl25rLW2jddGJSJSCXnuhhjXti4RYQHb+FZERKqAsGoega10zdgSERH/8+WnnupAtBfasUVXERGputIyslj141G3Mi1DFBERX9NSRBERKQ98Edhag4JRIiJ+8/W+k5xJzXArGxSjwJaIiPiWliKKiEh54PXAlrV2gLfbFBGRgi3fccTt+HfNo2gY6QjQaEREpKrQrogiIlIeaB94EZEKzFqbJ7/W4JgGARqNiIhUJXlnbCmwJSIi/qfAlohIBbbtlyQOJaW6lQ3u1ChAoxERkapEObZERKQ8UGBLRKQC+2jrIbfj6LrhtG8YEaDRiIhIVZJ3V0Tl2BIREf/zamDLGNPYm+0V0IemIoiIAFlZlo+3HXYru/J3TTDGBGhEIiJSlWgpooiIlAfenrG1xxjznDGmqZfbxRhzgzFmG3C7t9sWEamINv+cyJHT7ssQr/xdkwCNRkREqhotRRQRkfLA24GtEOAPwE/GmDeMMUOMMaXuwxjT3BhzvzHmB2AJ0AVI89JYRUQqtA+3/up23LFRTdo3rBmg0YiISFXjOWNLuyKKiEgghHi5vS7A08AVwITs21FjzAfAl8AmYIe11ub3YGNMPaAncClwORAHmOzbr8A0YIGXxywiUuFkZGbxf/894lam2VoiIuJPeQJbmVlkZVmCgrQkXkRE/MergS1r7S5ghDEmDngYGAo0BH6ffQNIM8acABKzb9WBOkBtoFau5nL+R/wFmAvMtda6r7kREamiNuw5wclk9wmsI7v6PM2hiIiIi+dSRHAGtxxBectFRER8xdsztgCw1m4Ahhtj2gO3ANcDrbJPhwFNsm+WCwGs3M4DnwMvA59aazWvWUQkF8/dEH/XrBYt69YI0GhERKQq8twVEeB8ehaOagpsiYiI//gksJUjewbXg8CDxpgWQD+cywubAfVxztRKBY5l3/4LrAW+ttYql5aISD7OZ2Ty2XYtQxQRkcDyXIoIzv+joJr/ByMiIlWWTwNbuVlrDwCLsm8iIlJKq388xpnUDNexMTCyqwJbIiLiX/ktRdTOiCIi4m/e3hVRRER87KNth92Oe0bXoVEtR4BGIyIiVVVogTO2RERE/EeBLRGRCuRcWgYrdvzmVqZliCIiEgjBQYYQjx0QNWNLRET8TYEtEZEKZMUPR0lJv/BteHCQYXiXRgEckYiIVGWeebYU2BIREX9TYEtEpALx3A2xT9t61I0IC9BoRESkqgvz2AHxfLoCWyIi4l8KbImIVBBJKems/vGYW9mVXRsHaDQiIiL5zdhSji0REfEvBbZERCqIhO1HSMu88E14aHAQQzprGaKIiASOliKKiEigKbAlIlJBfOixDHFAh/rUql4tQKMRERGBsBCPpYgKbImIiJ8psCUiUgEcP3ueDXtOuJVpN0QREQm0UI8ZW2kKbImIiJ8psCUiUgF8+v0RMrOs67h6tWAuj2kQwBGJiIgox5aIiASeAlsiIhWA526Igzo1JDw0JECjERERcQqr5hHY0q6IIiLiZ34JbBlj/pN9m+SP/kREKpPDSSls2n/SrewqLUMUEZFyQDm2REQk0Pw1Y6sf0B/Y76f+REQqjU+2HcZeWIVITUcI8e3rBW5AIiIi2bQUUUREAs1fga2j2T9P+ak/EZFKw3MZ4rDOjfJ8Qy4iIhIIeQNbmrElIiL+5a/A1tbsn+391J+ISKXw84lktv6S5Fam3RBFRKS80K6IIiISaP4KbL0CGOBOP/XnF8aYVcYYW8LbgFL0M92X7YtI+eU5W6tujVDi2tQN0GhERETc5c2xpaWIIiLiX34JbFlr3wXeAvobY14zxtTwR7/lUBawO9CDEJGK46Oth92Oh1/UmJBgbWgrIiLlQ56liNoVUURE/Mwve8UbY24CvgC6AjcDVxtjPgK2AYlAoV/tWGvf9PkgS2cSUFSQrhOwNPv+F9baX8vY50VFnN9XxvZFpJz48cgZfvztjFuZliGKiEh5ElZNObZERCSw/BLYAhYAufb0ojZwYzEfa4FyGdiy1hYZRDLG5P49y/x7WGu/L2sbIlIxfLzNfRlio0gHPVrWDtBoRERE8tJSRBERCTR/BbbAmWOrsONKxxgTBPxP9uFZ4N0ADkdEKhBrbZ78WiO7NiYoqNK/dYqISAWiXRFFRCTQ/BXYauWnfsqby4Gm2fffsdaeC+RgRKTi+O+vSew/4f6WcVW3KrIM8acV8PMGyMoI9Egkl5CMDDr9ut95f9VXEOLP78akPNA1ULXlvP7pweGYxPZQPQbQrogiIhJ4fvmLxFr7sz/6KYduynW/XC6nFJHyyXO2Vsu64VzUtFaARuNHm16BT+4N9CgkH9WAdjkHRwM4EAkYXQNVW+7X3765Au7eBBH181mKqMCWiIj4l7bW8hFjTARwbfbhz8AqL7WbYIw5aoxJy/65yhjzoDFGiXdEKomsLMvH29x3Q7yyaxOMqeTLEE/ug88fDvQoRESkCCY1Efb8B8hvKaJybImIiH9pDrnvXMeFHRPfstbawiqXwOBc9+sD/bNvDxhjJlprPyhtw8aYZkVUaZRz5/z586SkpJS2K6mAUlNT870v3vfNgVMcTnJ/jgd3rBPwf3M+vQasJfTDPxKcofcVEZGKIC3pMJkpKRjrvmw8JS0z4P9fiW/ob8GqTa+/nD9/PtBDKJDfA1vGmHY4l+jF4gyUVAeGWmt/ylWnC9ACSLbWrvb3GL3E28sQ/wu8D3wNHMI5I7wDzuT0Q4AoYJkx5kpr7ael7ONgcSt+9dVX7Nmzp5TdSEW3Zs2aQA+hUvv33iByT6htXN2y/7sN7A/YiPLy9jXQ/MRaLjng/nZ/skZbkkMberWfisRW8gl65YHx1ldOIlVA3eQfCU877jreu2MLPyYmsOOkAS4sRzx1+iwJCQkBGKH4k/4WrNr0+ldNx48fL7pSgPgtsJW9Q+Ac4I84P7Hl/MlugVCP6i2Aj4EMY0wra+2v/hqnN2TPfBqQffiltXZXGZt8xlo7PZ/yr4A3jTF3APNx/lXxijGmjbVWYXSRCijTwncn3CMal9Sr3PlKwtKT6PLrYreylGq12djmPjKCqwdoVCIiklu3n1+h5ckLH2arZTo3OKnmkdhEKbZERMTf/Dlj65/ALTgDWr8CG4HR+VW01v6fMWYfEJ1d51k/jdFbJnBhusUbZW3MWnuqiPP/NMb0BG4FmuBcBrmoFF01L+J8I2ATQK9evWjTpk0pupCKKjU11fXtTHx8PA6HI8AjqpzW7znJ2S+/cyu755o+tKwTHpgB5eKra6Dah3cSkpnsVhZ05TNc1m6oV9oX79B7gOgaqNpMwhrIFdhq2TCKJkOGELU/kXk/bLlQLySUIUP6BWKI4mN6D6ja9PpLeV6x5ZfAljHmcpxBFwvMAqZZazONMYV9p/Nv4H7gMipeYOvG7J/ngaV+6vOfOJ9jcObcKnFgy1r7S2HncyeuDgsLo3p1zaSoqhwOh15/H0nY6T7Ft2uzWnRsWjdAoymY166BHz+DH953L+t8LWFdryl72+Izeg8QXQNVT3oN932KQjLOEVK9OpE13BcJpGVm6dqoAvQeULXp9a+awsLCAj2EAvlrxtbt2T//z1pb3C2vvs7+2dkH4/EZY0wPoFP24cfW2kQ/db0j1/2mfupTRLwoNT2TT78/4lZ21e+aBGg0fnD+DHzyZ/cyRxRcMScgwxERkYLZsFruBalJAISFBLsVn9daRBER8bOgoqt4RSzO2VqvluAxObOHGhVaq/zJnTS+zMsQS0ApcEUquM++P8KZ1Au7SxkDI7o2DuCIfOyLR+G0RwrFoY9BRIPAjEdERArmiHQ/Tj0FQJhHkq3MLEtGpoJbIiLiP/4KbOV8StlfgsekZ//0+86NpWWMqQaMzT48BpR2d8LS6JTr/iE/9isiXvKvze4bk/ZtW4/GtSrpNO8DX8HXL7uXteoP3f4nMOMREZFC2TDPwNZpAMJC8n6c0KwtERHxJ38FtnKyAtcvwWOaZf886eWx+NIVXPgdF1trMwqr7GV35Lq/2o/9iogXHDx5jg17TriV3dCjqP0cKqiM8/DhPbhNNA2pDlc+45ymJiIi5U+ewFb+SxFBgS0REfEvfwW29mb/7FRoLXdXZP/c7uWx+FLuZYhvFucBxpiJxhibfZuez/mLjDFti2jjduC27MMjwHvFHK+IlBP/9pitVat6NQZ3ahig0fjYuqfh+I/uZQP/BnVaB2Y8IiJSJOvwyLF1/jRYm2cpIsD5jEw/jUpERMR/y/wSgO7AH4wxc621hX6NY4zpBEzE+XX+//l+eGVnjKkNjMw+/N5a+62Xmu4OvGKMWYlzaeN/gRM4X7uOwP8AQ7LrZgK3W2uT82tIRMqnzCzLO9+4b0p67cVNcVTL+y14hXd0J6z5u3tZ499B77sCMx4RESmesJruxzYL0s4SGhyep2qaZmyJiIgf+Suw9RwwGWgDzDfG3FXQMj1jzGDgdcCBM4Dzcn71yqExQM7+l8WarVUCwcCg7FtBTgC3Wms/8nLfIuJj6346zqEk9+3Sr+/RrIDaFVhWlnMJYlb6hTITDFfNheAKk05RRKRKyrMrIkBqEmGREXmKtRRRRET8yS+fJKy1vxlj7sQZ8LkVGGqM+SRXlT8aYwzQB+csJANkAROttWf9MUYvuDH7ZyawyIvt/h/O5ywWuBhoCNTF+RydBLYCnwELrLWnvdiviPiJZ9L4zk0i6dwknw8QFd3mV+GXr93L4u5xztgSEZHyLawmFoPJnR8xNQlTqxmhIUFus7TOpyuwJSIi/uO3r8ittYuMMenAP4HmOJOd5/zPmJMfKidr8FngZmvtJ1QQ1to+pXzcAmBBIeePAq9l30SkkklMTmP59t/cysb0rIRJ45N+gRXT3ctqt4IBDwZkOCIiUkImiIwgB9WyUi6U5doZ0S2wpRxbIiLiR/5KHg+AtfZfQFtgGvANztlNJtdtO/A40NZaqwToIlLpvf/dr6RlXvgwEBoSxNW/axrAEfmAtfDJvZDmMQH3quegWvXAjElEREos3TOfVgE7I2opooiI+JPfk5pYa08A/wv8rzEmCKiDM4fUSWtteqEPFhGpRKy1LN3kvgxxWOdG1AqvFqAR+cj3y2DXZ+5lF98IreIDMx4RESmV9OBwSD9xocAV2HL/rlwztkRExJ8Cmq03e3fE44Ecg4hIoHz/62l2HjnjVnZDj0q2DPHcSfj0AfeyiIYw5H8DMx4RESm1PDO2zl9YipibdkUUERF/8stSRGNM3n2ARUSqOM+k8U2jqhPXpm6ARuMjnz8E5zy+vxj+JFSvHZjxiIhIqeVdingKcC6jz01LEUVExJ/8NWMr0RizGVgDrALWWWuT/dS3iEi5k5qeyQff/epWdn2PZgQFmQIeUQHtWwNbF7uXdRwJMVcFZjwiIlImGQXl2KrmkWNLuyKKiIgf+SuwVQ3onX27H8g0xnwLrOZCoOtMwQ8XEalcPt9+hNOpGa5jY2B092YBHJGXWQtfPOpeFhbpnK1lKlHwTkSkCkkP9tjwIzX/pYjKsSUiIv7kr8DW34B4oA9QM7vfS4GewF9wBrq+40Kga6219rSfxiYi4neeyxD7tKlHs9qVaNX2T1/AL5vcyy6fCpFNAjMeEREps4J3RdRSRBERCRy/BLastU8ATxhjgoFLgAFAf6AvEJk9jh5Ad+DPQJYxZivZgS5r7Uf+GKeIiD8cPHmO9T+dcCu7oWclShpvLaya5V5WOxq6TwzEaERExEvSg2u4F7gCWx5LERXYEhERP/LrrojW2kxgU/btSWNMEHAxziDXAJyBriggOLv8YuCP/h6niIgv/fubX9yOa1WvxpBODQM0Gh/YvRx+/ca9LP4+CK4WmPGIiIhX5FmKWMCuiApsiYiIP/llV8SCWGuzrLXfWGufstZeBbQD/hdIyq5ism8iIpVCZpblHY9liNd0a4LDI/FuhZXvbK1W0HVsYMYjIiJeU/yliMqxJSIi/hPQmVDGmCicubcGZN+6kjeY9bO/xyUi4ivrfzrOoaRUt7Lre1SiZYi7PoNDW9zL+t8PwZp4KyJS0RW8K6JHYEu7IoqIiB/59ZNGIYEscv3cz4Uk8qustQpsiUil4Zk0vlPjSLo0rRWg0XiZtbDqcfeyOm3gohsCMx4REfGq9JCCZmwpx5aIiASOXwJbxpinKHhG1j7cA1kH/DEmERF/O3UujYTtv7mVjalMSeN//D84vNW9TLO1REQqjfQgj8BWZhqkp2opooiIBJS/Pm1MASzOgNY+soNYOANZBwt8lIhIJfL+ll9Jy7zwLXZoSBBXd2sSwBF5UX6zteq2hS6jAzMeERHxujw5tgBSk5Q8XkREAsrfyeMtkJzrds7P/YuIBMy/Nrvvhji0cyOiwkMDNBov2/kxHPmve1n/BzRbS0SkEikosBXqEdhKU2BLRET8yF+BrTdxJoE3QBfgD8C/gd+MMduMMc8ZY0YZY+r6aTwiIn71/a9J7Dh82q3shh7NAjQaL8vKglVPuJfVaw9drgvMeERExCds0P9v777D46iuPo5/j3bV3QvuxgVsbFONC83G9BAIHQIkgEMNSQgphJYCCW8KqRCSQAiETui9mm5TbUwzLrj33mSrl73vHzOydqRV36KVfp/n0aOZO3dnjryj9ersveeGqbRaH8iU7VCNLRERSamkfJTunJsKYGaDgcPx6m0dDgzDS3SNwUt2OTObR81UxXecc1uSEaOISCLVLho/oFsuhw7vlaJo4mzB87Dhy2Db4ddARih2fxERSVuVoTzCleU1DaXbyc4M/n9WVqEaWyIikjxJnSPiF4Z/wP/CzAbiJbgOB44AhlM30TXXObdfMuMUEYmn0ooqnvl0TaDtjAMHkpFh9TwijcQcrTUSxpyamnhERCShKsJ55FRur2lQjS0REUmxZNfYCnDOrXbOPeScu9Q5tycwELgJ2IE3bTEDL9ElIpK2Xp27nh2llbv2zbzEVrsw/1nYOC/YNkWjtURE2quKjNxgQ6mmIoqISGqlvKqvmY3Am5o4BW/kVl//UPUqiiIiae3xWkXjDx3ei0E9YhTgTTeRCLx9c7Ct9ygYrdFaIiLtVUUoP9hQWkB219ojtjQVUUREkifpia0GElkQTGQtxq+zlaTQRETibtXWYt5dvDnQdmZ7KRo/72nYND/YNuUayEjpYGAREUmgOisjlhaQ1bNWYqtCI7ZERCR5kpLYMrNLaTyRtZCaRNbbzrl1yYhNRCSRnpgdHK3VJSfMcWP61tM7jUSq6o7W2m0MjDo5NfGIiEhSVIRqTUWMsSpieZUSWyIikjzJGrF1B3WnFi4gmMjakKRYRESSIhJxdRJbpxwwgJzM9K8/FVrwHGz+Ktio0VoiIu1eZYwRW9mZtUdsaSqiiIgkTzKnIs6nJpH1jnNuYxKvLSKSdO8t2cya7SWBtrPGDUpRNHHkIoTf+2uwrc/esNc3UhOPiIgkTaypiFoVUUREUilZia3dnHObG+8mItJ+PDprVWB/dL8u7D2ga4qiiZ+B2z4kY+uiYOOUazVaS0SkA6ib2Iq9KqJzDjOtAyUiIomXlL9ClNQSkY5mfUEpr3y5PtB2VjsoGm+uipHrnwk29t0H9joxJfGIiEhyNWXEFqjOloiIJE9KP143s7CZ9fa/kr5Co4hIojz44QoqI27Xfk5mBqccMCCFEcXHgG0f0qksmLBjynWgT+VFRDqEmImtzLp/Umg6ooiIJEvSE1tmNsrMbjOz+UApsN7/KjWz+Wb2dzMbney4RETipbSiiodnrgy0nTZ2IN3yslIUUZxEKuuO1uq3H4z8ekrCERGR5KuT2CrbQVYoxogtJbZERCRJkprYMrPfA18A3wNG+tc3/yvDb/s+8LmZ/S6ZsYmIxMuzn61ha1F5oO07hwxJTTBxFJr7JJ3Kai1gq9FaIiIdSp1VEcsLyQ65Ov00YktERJIladP/zOw2vIRW9V9A84GP8EZrAfQFJgCjgRBwjZnlO+euTFaMIiKt5ZzjnveWB9om7dmLPft0Tk1A8VJVSfj9vwXb+h8AI76WmnhERCQlKsJ5ddqyKwvrtJVVVCUjHBERkeQktszsULyRWA6YB1zqnHu/nr4HA3cA+wA/MLNH6+srItLWfLB0CwvW7wy0XXjo0BRFE0efPkDG9uXBNo3WEhHpcCoy6ia2whU7yTCIKi2pEVsiIpI0yZqKeJn/fRlwaEOJKufcB8BkYKnf9N0ExyYiEje1R2sN65XP4SN6pyaYeCnbCW/9NtAU6XcA7HlsigISEZFUqcrIwmUEPxu30gKyw6FAmxJbIiKSLMlKbE3CG631B+dcQWOd/T43401bnJTg2ERE4mLllmJenx+sQXXBIUPIyEjzUU3v3gJFmwJNFZOv12gtEZGOyAyyuwTbYqyMqKmIIiKSLMlKbPX1v3/ajMd84n/vE+dYREQS4r4PluOipmF0zg5z+oEDUxdQPBSsgQ/+EWha32U/IkP0mYOISEflaie2YqyMWF6lEVsiIpIcyUpslfrf85vxmOq+ZXGORUQk7grLKnls1qpA21njB9EpO2lrdCTGmzdBZemu3QgZzB1wdgoDEhGRlMtpyogtJbZERCQ5kpXYWuZ//0YzHlPdd2mDvURE2oAnPl7FzrLKXftmcMHBQ1IXUDys/Qw+/1+gaUWvKRTmDEhNPCIi0ia47K7BBtXYEhGRFEpWYuslvHpZV5jZUY11NrMjgCvw6nK9lODYRERaJRJx3PfBikDbMaP6MLhn3ZWj0oZzMO0XwaasTizoe1qKAhIRkTajTo2tHWSHa43YqlSNLRERSY5kJbZuAXYAmcDLZvYPMxtrZruub2YZfts/gFeALP8xtyQpRhGRFnl74UaWbS4KtH3n0KEpiiZOFr4Cy2cEmioP+iHlmV3qeYCIiHQUdWpslRbESGxpxJaIiCRHUhJbzrnNwFlABRAGLgdmAUVmtsbMVgNFftvleAmwcuBM59yWZMQoItJS97y3PLC/V9/OHDSsR2qCiYeqCpj2y2Bbl4FUjrskNfGIiEib4mLV2Ko9FVGrIoqISJIka8QWzrlpwEHAx3jTEg3IBvoB/f3t6vaPgYnOudeTFZ+ISEss3LCTGYs2B9ouPHQoZpaiiOJg9r2wZVGw7ahfQWZuSsIREZE2JtaqiGGtiigiIqmR1OW6nHOfARPMbDxwNLA3UD2sYSvwJfC6c25WMuMSEWmp2qO1euRncdL+/VMTTDyUFsDbvw+29T8A9jkTyrRIrYiI1Fc8XqsiiohIaqRkHXo/caXklYikte3F5Tz96epA27kTBpOTGarnEWlgxl+huNYM8GN/CxlJG+ArIiJtXZ2piNvJ7qpVEUVEJDUSmtgysxOArwG7AyFgLfA28JhzriKR1xYRSbT/zVxFadQn0uEM47yDd09hRK20fSV8eHuwba8TYcihqYlHRETapJgjtnpqVUQREUmNhCS2zKwP8AwwIcbhC4HfmNkpzrk5ibi+iEiiVVZFeOCD5YG2E/btR58uOakJKB7e+A1URU03zAjD0b9OXTwiItI2ZXcO7pfu0KqIIiKSMnGfW2JmIeA5YCI1xeBrfw0FXjWzXvG+vohIMrw6dwNrC0oDbd85dGiKoomD1bNhzuPBtnEXQa89UhOPiIi0WS6n1oitsh1kh4KLpqjGloiIJEsiiqacBYwHHLAYuAjYB9gLOBP40O/XB/hpAq4vIpJw/31vWWD/gMHd2H9Qt9QE01rOwbSfB9uyu8Lh16QmHhERadtqr4roInSy4Ic9WhVRRESSJRFTEc/yvy8HJjjntkcdW2hmzwCvA4fjJbquS0AMIiIJ88Xq7cxesS3QltajtRa8ACs/CLZNvgrye6YmHhERadNc7cQW0NmKA/uqsSUiIsmSiBFbB+CN1vpLraQWAM65KuAGf3eomXWu3SedmJlr4tfbcbreOWY2zczWm1mpma0wswfN7OB4nF9EGnfPe8sD+3275HD83n1TE0xrVZbDa78KtnUbDBMuTU08IiLS9mV3xqsuUqMzRYF9TUUUEZFkSURiq7f//eMG+kQfU52tJjCzXDN7EXgYOAZvKmc2MBj4FvCumd3QwClEJA427ijlhS/WBtrOO3h3MkOJeDlNgo/vhq1Lg21H3wiZaVwEX0REEssy6kxH7ORqj9hSYktERJIjEVMRc/FGbBXW18E5V2y261Oe9vLX0+3Avxo4XtTAsab4L/B1f/st4FZgLV79suuB4cCNZrbOOXdnK68lIvV48KOVVFS5XfvZ4QzOmTA4hRG1Qsk2eOfmYNvA8TDmtNTEIyIi6SOnC5QV7NrNd0VEv63XVEQREUmWRCS2mssa75IWNjrnvkzEic3sSOBsf/d54FR/SifALDN7DpiNN3rrZjN73Dm3LcapRKQVSiuqePijFYG2Uw8YQI/8rBRF1ErT/+wlt6Id+1uw9vKyLCIiCZPTFQpW7drNixQCNbUZNWJLRESSJU3nznQ4V/nfK4HvRSW1AHDObQaqly/rBlycvNBEOo7nP1/L5sLyQNvUQ4ekJpjW2roMZtYa3Dn6ZBg8MTXxiIhIesnpGtjNjajGloiIpEYiR2x9z8w2xqOfc+43cYop7fjF9Y/yd193zq2up+tTwA6gC3Aq8KckhCfSYTjn6hSNP2R4T/bqW3dlqLTwxq+hKipJl5Hp1dYSERFpilo1tnKqglVIyquU2BIRkeRIZGLr8kaOVxepaawfQIdNbAHjgep5Tu/U18k5V25mHwLHAuPNLNM5V5GMAEU6gpnLtjJv3Y5A23cOHZqiaFpp+bsw9+lg28TLoMew1MQjIiLpp9aIrZyqnYH9sgrV2BIRkeRI1FREi+NXujjTzOaZWbGZ7TSzRWZ2n5kd0crzjo7aXtBI3+rjYWDPVl5XRKLcOT24cuDgHnkcudduKYqmFSrL4YWfBNtyusHkq2J2FxERialWYiu7slZiSzW2REQkSRIxYqu1iZx0NbrW/h7+1/lm9gww1TlXUOdRjRsYtV3fNMRqq6K2BwHzmnMhMxvYSJe+1RtlZWWUlJQ05/SS5kpLS2NudwRz1+3kjQXBGdPnjh9AeVn6/TuEP/g7mZu/CrSVT7qaKnKgkd/pjnwPiJ5/0T3Q0dV+/sOhPDKjjofKg6OaSyuq9F6xndFrQMem51/KyspSHUK9zDnXeC+pl5kVAc8Bb+CNmCoEegOHA9+lZnmYd4Bjmjs90Mz+CXzP3x3lnKt31JaZXQ78y989wzn3ZDOv1eSb4a677qJXr17NOb1I2rprQQZzttUMcM0PO24YW0V2KIVBtUBe2SaOmH8dYVdTW2tb3lCmj7gBTGuJiIhI0w3f8DJ7r/3frv2VeXszeev1u/ZD5vjrQZqOKCLSXmzevJmLL961Tt2gBup/J10ia2x1FAOcc9tjtL9mZrcBLwMH4CW6Lgf+3szz50Rtl9fbyxOdQs1t5nVEJIbVRQSSWgBH9I+kXVIL59hn9f2BpJbD+HzQVCW1RESk2SrCeYH9nEhxYL/KGREHGelUWERERNKSElutVE9Sq/rYBjM7A28kVyZwBc1PbEWP88yqt5cnO2q7JWO/BzVyvC8wC2DixIkMHz68BZeQdFVaWsr06dMBmDx5Mjk5OY08on248rE5wKZd+11zw9x47mTys9Pr5TNj4Utkf/Z5oK1q7HeYeMxlTT5HR70HxKPnX3QPdGy1n/+85WWw8u5dx7tl1x34P+XIo8jJTLdPgqQ+eg3o2PT8y5IlS1IdQr3S6y+zNOScW2pmrwFfB/Yws/7OubXNOEV0Jc5OjfTNj9ourLdXPRobSmhW85FbdnY2ubkaFNZR5eTkdIjnf8H6HUybvynQdsmkYfTq1jlFEbVQ2U5445fBtk59CB97I+Gclj2PHeUekNj0/IvugY4tJyeH7C69A22hip11+mWEs8nNzazTLulPrwEdm57/jik7O7vxTimi+SfJEV3EfUAzHxudbGqsuHv0iKtV9fYSkSa57c3Fgf0uOWHOP2RIaoJpjbf/ADvWBNuO+12dFa1ERESarNb/IRllO+p0KatUjS0REUk8JbaSozUV+qOTYns10rf6eCWwqBXXFOnwFm3YyUtz1gXaLjpsGF1y0uyT5/Vz4MPbg23DjoC9T09NPCIi0j7USmxZVTnZtcrBllVGkhmRiIh0UEpsJcfoqO3mTEMEr6ZV9buEw+vrZGZZwEHVj2nu6osiEnTbm4uJXjS2c06YqYcOSVk8LRKJwAs/ARf1iXkoG074C5iq+YqISCvEGPXbhWABeY3YEhGRZFBiK8HMbChwjL+7xDm3pqH+tTnndgJv+LtHm1l90xFPA7r42083O1AR2WXxxkKe/yKYg/7OoUPpmm51Qj69H1bPDLZN+gn01MIPIiLSStld6jT1CAUTW6UVGrElIiKJp8RWK5jZN8ys3gL8ZtYHeJKa1Qz/FaPPVDNz/teN9Zzqz/73MPBPMwssL2NmvYCb/d3twF1N/iFEpI5/vhUcrdUpO8yF6TZaq3ATvHZDsK3HMDj0RykJR0RE2plwFoSDxaO7h0oD++VVSmyJiEjiaVXE1rkNyDSzJ4EPgOVACdALmAJc5m8DvAv8syUXcc69aWaPAGcDJwGvmdkteNMa9wF+Dgz2u1/jnNvWkuuICCzdVMiznwUHVk49ZAjd8rLqeUQb9dqvoHR7sO2Ev0CmlmYWEZE4yekKhSW7dnuGS4kus1WmEVsiIpIESmy1Xn/gCv+rPk8CFzvnylpxnQvxphp+HTjC/4oWAW5yzt3ZimuIdHj/fGsJkajRWnlZIS46bGjqAmqJZTPg84eDbXufDsOPTE08IiLSPuV0hcL1u3a7Z6jGloiIJJ8SW61zAV5B94OBYXijs7oAhcAq4H3gPufcB629kHOuBDjBzM4FpgL7Ad2ADcAM4B/xuI5IR7ZiSxHP1Bqtdf7BQ+ien0ajtSrL4cWfBtuyu8Bxv0tNPCIi0n7lBOtsdcsoCexrVUQREUkGJbZawTn3DvBOK89xL3BvM/o/DDzcaEcRabZ/vrWYqqjhWrmZIS6ZlGajtT64DTZ/FWw78pfQuW9q4hERkfar1sqISmyJiEgqqHi8iAiwamsxT30SHK113sG707NTdooiaoFty+GdPwbb+u0P4y9KRTQiItLe1UpsdbVaUxErNBVRREQST4ktERHgX28vpjJqtFZOZgaXTBqWwoiayTl46WdQGb0ilcGJf4OMUL0PExERabHs4FTEzgQTW1oVUUREkkGJLRHp8FZvK+aJ2asDbd+auDu9O6fRaK35z8OiacG2CZfAgLGpiUdERNq/WiO2OlMU2NeqiCIikgxKbIlIh3f720uoqKoZrZUdzuCyyWk0WqtsJ7xybbCtUx848hepiUdERDqGWomtTrUTW6qxJSIiSaDEloh0aGu3l/DYx6sCbedMGMxuXXJSFFELvP0H2BGsD8Zxv6vzB4eIiEhc1U5sudqJLdXYEhGRxFNiS0Q6tDveCY7WygpncPmU4SmMqJlWzYQP/xVsGzYF9j49JeGIiEgHUiuxlRfRiC0REUk+JbZEpMNaX1DKIzODo7XOHj+IPukyWqu8CJ6+DFzUHw6hbDjhr2CWurhERKRjaCyxpRpbIiKSBEpsiUiHdcc7SwIrNmWF0my01rRfwtalwbbDr4aeafQziIhI+qqV2MqJFAb2y6s0FVFERBJPiS0R6ZA27ijlfzNXBtrOHDeQfl1zUxRRMy16HT6+O9g2cAIc+qOUhCMiIh1QdpfgbqSEEDXJLI3YEhGRZFBiS0Q6pH9PXxqo/ZEZMr53xB4pjKgZirfCs98PtmXmwal3QCicmphERKTjibFISWeKd22rxpaIiCSDElsi0uFs2lnGQx+tCLSdceBABnRLk9FaL/4UCtcH2479P01BFBGR5IqR2Opi0YktTUUUEZHEU2JLRDqcf761mNKo6RHhDON7U9JktNacJ2DuU8G2PY6GcRemJh4REem4MnMhIzhSWCO2REQk2ZTYEpEOZfnmIh78MDha69QDBjCoR16KImqGHWvhxZ8E23K6wUn/0CqIIiKSfGZ1Rm0FRmypxpaIiCSBElsi0qH86dWvqIy4XftZoQyuPHrPFEbURM55dbVKC4LtJ/4VuvRLTUwiIiK1E1sU7drWVEQREUkGJbZEpMP4dOU2XpyzLtA29dAhDOyeBqO1Zt0FS94Mtu19Bux9emriERERgTorI0aP2Cqv0ogtERFJPCW2RKRDcM7x+5cWBNq65mby/XSorbVlCUz7ZbCtcz/4+p9SE4+IiEi1OiO2NBVRRESSS4ktEekQXpu3gZnLtwbarjhyD7rmZaYooiaqqoSnLoXKkmD7yf+EvB6piUlERKRaQzW2VDxeRESSQIktEWn3Kqsi/OGV4Gitgd1zOe/g3VMUUTO89zdY83GwbfzFsMdRqYlHREQkWk5wKmJwVUTV2BIRkcRTYktE2r1HZq1i6aaiQNvPjhtJdjiUooiaaO1n8PYfgm09hsMxv0lJOCIiInXkdAvsasSWiIgkWzjVAYiIJFJhWSW3vL4w0LbPgK58Y9/+KYqoiSpK4enLIFJZ02YZcOq/ISs/dXElWMRFeHfNu7y/9n0qo392SbnKykpWFa8C4NPZnxIO6y1ER6N7oGOrfv5zLIfhBcPZO3dv70BDqyKqxpaIiCSB3pGISLt25/SlbC4sD7Rd9/W9yMiwFEXURG/eBJuC0yeZ9FMYND418STBjvId/HzGz3l79dupDkUaMXPJzFSHICmme6Bj+/iNj3nh1Bfonde7zqqInampCalVEUVEJBk0FVFE2q2NO0r5z/SlgbYj99qNQ4b3SlFETbT8Xfjgn8G2vvvC5KtTE08SfLX1K85+4WwltURE0kBxZTEz1szwduoUj68ZsVUVcVQquSUiIgmmxJaItFt/e30hJRU1hWszDK49fq8URtQEpTvg6csBV9MWyobT7oRwVsrCSqTnlzzPt1/6Nqt2rkp1KCIi0kSrd672NupMRSwO7KvOloiIJJqmIopIu7Row04enRVMlJw1bhAj+nROUURN4By8fDUUrAy2H/Ur2G1UamJKoIqqCv4464888tUjdY51z+7OsUOOxWjjU0Y7kKqqKlau9O7NwYMHEwq18cUXJO50D3Rsn238jAXbaqbIry1a623UXhXR6ia28rMTHp6IiHRgSmyJSLt08ysLiEQNesrNDPHjY0akLqCm+PQB+Px/wbbdD4ODvpeaeBJofdF6fvrOT/li0xd1ju3Tax/+OuWv9M3vm4LIpD4lJSVM2zwNgGPHHktubm6KI5Jk0z3Qsd392d2BxNa6wnXeRq0RW50pxojg/IkhZZVViIiIJJISWyLS7ny4dAuvz98YaLtk0lD6dMlJUURNsO5zePGqYFtWZzjlX5DRvmaNz1w3k59N/xlbS7fWOfbNkd/k6vFXkxVqn9MuRUTSVb/8foH9mhFbwcRWyBz5lFJIHqCVEUVEJPGU2BKRdiUScfzupfmBtp75WVx6+PAURdQEJdvhsfOhqizYfvJt0H33lISUCM457pl7D7d+cisRF/xDJzuUzS8P+iUn73FyiqITEZGG1E5sbSzeSEWkgsxaqyKCtzJidWJLKyOKiEiiKbElIu3KC3PW8cXqgkDbj47ek07ZbfTlLhKBZy6HbcuD7RMvhzGnpiSkRCgsL+SX7/2S11e+XufYgE4DuOWIW9irRxsv7C8i0oH1zQtOD4+4CBuKNjAwvz9gRC960sWKWOd6AhqxJSIiide+5reISIdWVlnFn15dEGgb1iufsycMTlFETfD+rfDVS8G2gRPgmN+kJp4EWLxtMee8eE7MpNbkgZN59MRHldQSEWnjumZ1JYvgNPF1Reu86fK1Rm1Fr4yoGlsiIpJoSmyJSLvxwAcrWLW1JNB29df2IjPURl/qls2AN2olsPJ6wpn3Qrh91Jh6ZfkrnPvSuSzfsTzQbhg/2P8H3HbkbXTN7hr7wSIi0maYGd0yugXa1hSu8TYaWBmxrFIjtkREJLHa6NwcEZHmKSiu4LY3Fwfaxu3enePG9ElRRI3YuR6euBACtaYMTr8Lug5IWVjx9ND8h/jDzD/Uae+a3ZWbJ93MoQMOTUFUIiLSUt0yurExUrM4S2BlxIJVu9o1YktERJJJiS0RaRf+9fZiCkoqAm3XfX0UZpaiiBpQVekltYqCKzdyxPUw/MjUxBRnD857kJtn3VynfVSPUfztiL8xoFP7SN6JiHQk3TO6B/brWxmxixXt2laNLRERSTQltkQk7a3eVsw97y8PtB2/d18O3L177Aek2hu/hhXvBdv2OAYmXZWaeOLs/rn386eP/1Sn/bQ9T+P6ideTHcpOQVQiItJataciri30E1sN1NjSqogiIpJoSmyJSNr767SFlEfV8AhnGFd/rY0WI5//Arz/92Bb10Fw2p1eAd40d9/c+/jzx3+u0/7DA37IJftekoKIREQkXupNbNUasRWosaURWyIikmBKbIlIWvt81Xae/mxNoO1bEwcztFd+iiJqwJYl8MzlwbaMTDjrPsjrkZqY4uieL+/hr7P/Wqf9yrFXcvE+F6cgIhERiafaia31xeupilQRqj0VUTW2REQkidJ/eICIdFiVVRGue2oOztW0dcoO88Oj9kxdUPWpKIHHLoCyHcH2r/0eBhyYmpji6O45d8dMav34wB8rqSUi0k7UTmxVRirZVLKp4RpbWhVRREQSTIktEUlb/31vGfPWBRNF3ztiOD07tcEaTi9dBRvmBNv2ORPGp3/S5645d3HLJ7fUab9q3FVcuPeFyQ9IREQSIt/yCdea8LGuaB3kBGtsdaZk17YSWyIikmhKbIlIWlq1tZi/vbYo0DaiTycuPmxYiiJqwCcPwKcPBtt67wXfuBXa4qqNzXDnF3dy6ye31mn/2bifccGYC1IQkYiIJEqGZdQZtbWmcE0jqyJqKqKIiCSWElsiknacc/zimS8pqfVm+fen7UNWuI29rK37whutFS0zH856ALLaYB2wZrjj8zu47dPb6rRfM/4azh9zfgoiEhGRROuaEUxirStcVzexFaixpRFbIiKSWG3sL0ARkcY9/8U63lm4KdD27YMGc+DubawAe8l2eOw8qCwNtp98G/QekZKQ4uU/c//DPz/7Z532aydcy7dHfzsFEYmISDLUWRmxaC1k15qKaEpsiYhI8mhVRBFJKwXFFfzm+bmBtt06Z3P11/ZKUUT1qKqEJy+CbcuD7RMug71PT0lI8eCc483SN3lr7lt1jl0/8XrO2eucFEQlIiLJ0j2je2B/beFaGBxrxJYDTIktERFJOI3YEpG08vuX57O5sDzQduNJY+iSk5miiGJwDl76KSx+Pdg+cDwc+3+piSkOnHO8UfoGb5XVTWr9fOLPldQSEekA6ozYKlxbZypitlWSTQUAZZWqsSUiIomlxJaIpI2Plm7hkVmrAm1Hj9qN4/fum6KI6vHeLTD73mBbXk84814IZ6UgoNZzznH7l7fzdtnbdY798qBfcvZeZyc/KBERSbraia11RetwtaYiQk2dLY3YEhGRRFNiS0TSQlllFdc9PSfQlpcV4tcn7421pZUFv3wSXr8x2BbKhnMega4DUxJSa1VFqrjpw5u4d/69dY796uBfcdbIs5IflIiIpETtxFZZVRlbXGWdftUrI5ZVKLElIiKJpRpbIpIWbn97CUs3FQXarjp2JAO65aYoohhWfABPf7dWo8Fpd8KgCSkJqbVKK0u5evrVvLWq7vTDGw++kdNHpG+9MBERab4u1oWQhahyNVMM15VupldmHlTUFI2vGbGlqYgiIpJYGrElIm3e4o2F/OutJYG2fQd25YJDhqQmoFg2L4ZHzoGqYP0vjr0JxpySkpBaq6CsgEumXVInqWUYPx/3cyW1REQ6oAzLoE9en0BbQysjlmsqooiIJJgSWyLSpkUijuufnkN5Vc0b41CG8btT9yGU0UamIBZthofOgJJtwfbxF8PBP0hNTK20rnAd5798Pp9t+izQHibM2Xlnc/Kwk1MTmIiIpFy/vH6B/VgF5FVjS0REkkWJrVYys3Fm9iszm2Zmq82szMwKzWyhmd1jZofF6To3mplr4teUeFxTpC14fPYqZi7bGmi76LCh7D2gaz2PSLKKEvjf2bBtWbB9z+PgazdDW6r/1UQLty3k2y99m6UFSwPtnTI7cUGnCxiTNSZFkYmISFvQNz+4aEvMxJYpsSUiIsmhGlutYGbTgUkxDmUBe/pfU83sfuAS51x5jL4iUo9NO8v47YvzA20DuuXyo6P3TFFEtUQi8NSlsHpWsL3ffnDGfyGUfi+xs9bP4so3r2Rnxc5A+255u3HrpFtZ8tGSeh4pIiIdRe0RW+uK1kFOramIqrElIiJJkn5/dbUt/f3va4HHgRnASiAEHAz8FBgAnA9kAufG6br7NHJ8WSPHRdLCTS/MY0dpcKWl/zt1b/Ky2shL1+u/gvnPBdu6DoJzH4PsTqmJqRVeXf4q1824jopIRaB9eNfh3HHMHXTN6MoSlNgSEeno+uUHE1trCtdATvdAm1ZFFBGRZGkjfx2mrQXA9cCTzrnaH0d9aGYPAO8BI4BzzOwO59z01l7UOfdla88h0ta9/dVGnvt8baDtG/v154iRu6Uoolpm/gfevy3Ylt0FvvU4dO4b+zFt2EPzH+LmmTfjcIH2sbuN5e9H/p2u2V0pKSlJUXQiItKW9M0L/j+3rmgdrvPuRE++V40tERFJFtXYagXn3InOucdiJLWqj2/GG7VV7YzkRCaS3orLK/nFM8H8bZecML86cXSKIqrlq1fg5auDbRlh+OYDsNuo1MTUQs45bpl9C3+Y+Yc6Sa0jBx3Jv4/5N12z20g9MxERaRP65/cP7BdVFLEjKzfQVrMqoqYiiohIYmnEVuK9FbU9PGVRiKSRW19fxOptwdFB1399FL07Z6cooihrP4UnvgOu1ifQJ90Gw6akJKSWqohUcOP7N/LckufqHDtrxFlcP/F6QhmhFEQmIiJt2W65u2FY4AORtaEMoj8G0YgtERFJFo3YSrzov8T1kZVII+auLeCud4Nl4iYM6cFZ4walKKIo21fCw9+EiuJg++HXwv7xKqGXHMUVxVzx5hUxk1o/2P8H/OKgXyipJSIiMWWGMtktL1gaYK0FE1jRqyI6FxwRLCIiEk9KbCXe4VHb8+vt1QxmNs3MNppZuf/9bTO71sy6N/5okbarsirCdU/NoSpS8wY4K5TB707bm4wMa+CRSVCyHR46Cwo3BNv3PRumXJuSkFpqfdF6pr4ylffWvBdoD1mIXx/yay7b7zLMUvzvLSIibVr/TsHpiGsJLjxSvSoiQHmVRm2JiEjiaCpiAplZBhD9F+9jcTr1MVHbvfGSZ4cD15jZVOfcsy05qZkNbKTLrkqhZWVlKiTdwZSWlsbcjqe/v7WUL1YXBNouOWwwAzqHU3u/le0g+9FvkrEpmJuuGnwo5cf+ERL075EIn236jGvfv5atZVsD7dmhbH538O+Y1H9Svf/WybgHpO3S8y+6Bzq22s//bjnBEVurygsD+9UjtgAKdhbTOUd/dqQ7vQZ0bHr+paysLNUh1Ms0NDhxzOynwJ/93aecc6e34lw3AqcBzwAzgbVAJjAS+BZwrN+1CviGc+7lFlyjyTfDXXfdRa9evZp7CZF6LSow/jkvAxe1ptJuOY5r9qsinMKxpeGqEg5e/Ed6FC8JtO/IGcCMPX9BZTg/RZE136yyWbxQ8gJVtWZF51ke5+Wfx6BwG5juKSIiaeG1ktd4p+ydXfv72WAeXPrurv0il82YsnsAuOnASrpkJT1EERGJo82bN3PxxRdX7w5yzq1OZTzR9NFJgpjZ4cAf/N2NwOWtPOUtzrkbY7R/BNxvZpcBdwAh4C4zG+6cUypd0kJRBTywOJjUyjDHt/ZIfVLroCV/rpPUKg1348NhP0mbpFaVq+Klkpf4qPyjOsd6ZvTk2/nfpneodwoiExGRdNUto1tgfwvB+pP5VkaIKqoIUanP0UVEJIGU2EoAMxsDPI3371sKnOmc29iaczrntjdy/N9mNh64COgPnA481MzLNDZcoy8wC2DixIkMH65FHjuS0tJSpk+fDsDkyZPJycmJy3mdc1zx6BwKyjcH2n905B5cctjucblGi5QXkfX4uYSKFgWaXX5vOOcpJvXcM0WBNc+20m1c98F1fFLwSZ1jB/U9iP876P/oktWlSedK1D0g6UHPv+ge6NhqP/+dt3fm2ek11S92hOtOUelMMdvpzMRDDmNoz7ykxSqJodeAjk3PvyxZsqTxTimixFacmdlQYBrQHW9a4NnOuelJuvy/8RJb4NXcalZiq7GhhNHFpLOzs8nNzW1ufNJO5OTkxO35f+CD5bzxVTCpddgevfjBUSNTVzC+vAieOh9W1xrhlN8bm/oiOb1HpiauZlqwdQFXvnkla4vW1jn2nTHf4cqxV7Z45cN43gOSfvT8i+6Bji0nJ4ehPYYG2nZU7KTIjPyoMiddrJjtrjMWytT90s7oNaBj0/PfMWVnZ6c6hHopsRVHZtYfeB1vxJQDLmxpIfcWmhe1PSCJ1xVpkQXrd3DTi8GC7D3ys/jrWfulMKlVDA9/E1YEVwwkrxdc8DykSVLr1eWv8sv3fklJZbAQfHYomxsPuZETh52YoshERKQ96Jffr07b2qxs9iyrqYRRvTJiWaVWRRQRkcRRYitOzKwX8BowzG+6wjl3f5LDUAUDSRsl5VVc8fCnlNd6s/uXM/djty4pGtpcUQKPnAPLZwTb83rCBc/BbqNSE1czRFyEf3z6D/4z5z91jvXJ68OtR9zKmF5jUhCZiIi0JznhHHrk9GBrac0qu+tyuwQSW12sGByUVVTFOoWIiEhcKLEVB2bWFXgVGO03Xeuc+2cKQhkdtV137pFIG3LTi/NYtDG4NPiFhw7liL12q+cRCVZRCo+cC0vfDrbndofzn4U+bT8ZVFheyHUzruPt1W/XObZ/7/352xF/o1euVjMVEZH4GNBpQCCxtTYnWEerC0WARmyJiEhipXC9sfbBzPKAF4GxftNvnXM3pyicy6K236m3l0iKvTxnHQ9/tDLQNrpfF645PkXT/CpK4dFvwZI3g+053eD856DvPikJqzlW7FjBt176Vsyk1ul7ns7dx92tpJaIiMRV7emIazOzAvtdzJuKWHt0toiISDwpsdUKZpaFt/rhoX7Trc65X7TgPFPNzPlfN8Y4vo+Z7dHIOS4FLvZ31/txibQ5a7aXcM2TXwTacjND3HbuAWSHW1bIvFUqy+Cx82Dx68H2nK7eSK1++yY/pmaavno657x4DksLlgbawxbm5xN/zg0H30BWKKueR4uIiLTMgE7Bkq5ra/0/3kU1tkREJAk0FbF1/gcc62+/CdxtZns30L/cObewBdc5ELjLzN4CXgbmAFvwnr+9gG9FxVEFXOqcK2rBdUQSqrIqwo8f+YwdpZWB9l+fPIbhvTulIKByeOwCWDQt2J7dFc57Bvrvn/yYmqG8qpy/zf4bD85/sM6x7tnd+cuUvzC+7/gURCYiIh1Bv07BEVvrLFjutXrEVlmlamyJiEjiKLHVOqdFbR8JfFFfR98KYEgLrxUCjva/6rMFuMg593wLryGSUP94azEzl28NtH1jv/6ceeDA5AdTWQ6PT4WFLwfbs7vAeU/DgLExH9ZWLCtYxtXTr2bB1gV1jo3sPpJbj7y1zifpIiIi8dQ/v39gfw0VgX3V2BIRkWRQYis9vARcBBwMHAD0AXoCBmwFPgdeAe51zu1IVZAiDZm5bCt/f2NRoG1g91x+e+remFlyg6kshycvhK9eDLZndYZvPwUDD0xuPM3gnOOZxc/w+5m/p6SypM7xY3c/lpsOvYm8zLwYjxYREYmf/p2Cia0troIyg2x/4FZn8/6f0qqIIiKSSEpstYJzLi5/jTvn7gXubeD4RuC//pdI2tleXM6PHvmUSNQMhVCG8fdzDqBLTmZygykr9Gpq1S4Un9UJvv0kDGq7U/d2lO/gpg9u4pXlr9Q5lpWRxc/G/4xvjvxm8hOFIiLSIdVObAGsC4UZUumVHNCILRERSQYltkQkoZxzXPvkHNYWlAbaf3LMCMYO7p7cYIq2wMNnwprZwfbMfPjWEzB4YnLjaYbPNn7GNdOvYW3R2jrHhncdzh8P/yMjuo9IQWQiItJR5Wfm0yWrCzvKayYMrM2MSmyZiseLiEjiKbElIgn18MyVvDJ3faDt4GE9+e7hw5MbyPaV8MBpsCU4HdJLaj0Oux+c3HiaqCpSxd1f3s2/PvsXVa7uVI6zRpzFVeOvIjecm4LoRESkoxvQaQA7tkYltqJWRuzsr4pYrsSWiIgkkBJbIpIwCzfs5DfPzwu0dc/L5G/f3J9QRhKny22c7yW1dtYa7ZTbwxup1UZraq0vWs/1717PrPWz6hzrktWFXx/ya47evaH1JNKTi0So3LQZIqrJ0pZUlpYS3r7d216/noqcnNQGJEmne6Bjq37+I7We9375/Zi/df6u/bXhmj8vuqBVEUVEJPGU2BKRhNhRWsH3H/qkzvSDP52xH327JvGPoZUfwcNnQen2YHvXQV6h+N5tc/remyvf5Ffv/4qCsoI6x8buNpY/TPpDnWXW013Z0mVsf/IJCp55lqotW1IdjsQwzP+++vd/SGkckjq6Bzq2YYALhdj8xRwG/t9NmFmdOluBxJapxpaIiCSeElsiEncVVRG+/9AnLNpYGGifesgQjh7dJ3mBLHwVHrsAaq8e2HuUVyi+64DkxdJEpZWl/OXjv/DIV4/UOZZhGXx33+9yyb6XEM5oHy/fkeJidrw6je1PPEHJ7NmNP0BERFLKqqoofPJJir52HJ0mTaqT2FoXNRWxEyUYEcoqlNgSEZHEaR9/GYlIm+Gc44bn5jJj0eZA+159O3Pt8XslL5DP/gfPfh9q16UaNBHOeQTyeiQvlib6eP3H3PjBjazYsaLOsb75fbl50s2M7TM2BZHFl3OO0i/nsv3JJ9jxwotECgsbf5CIiLQphdNneImt/GBia03UiK2QOfIp1VREERFJKCW2RCSu7n53GQ9/tDLQ1qtTFv85fxw5maF6HhVn7/0dXvtl3fY9j4Mz74WsvOTE0USF5YXc8sktPPrVozGPH7P7Mdxw8A10ze6a5Mjiq6qggILnX2D7E09QtmBBqsMREZFWKJ7l1X+sPS1+UyhEBZDp73ehWFMRRUQkoZTYEpG4eW3eBn770vxAW3Y4gzvPH8egHklIJjkHr/0K3v973WP7nQMn3QahzLrHUmjG6hn85sPfsL5ofZ1jOaEcrplwDafveTpmSSy2H0cuEqF45iy2P/kkO199FVde3mD/UI8edD3lFLqdegrhfu2rhli6Ky0p4c033wTgyCOPJCdXK3F2NLoHOraCWbPYcPn3du2XffUVVQUFDOgUnNYfMWNDOMRAf5RWZyvWqogiIpJQSmyJSFx8uaaAH/7vU5wLtv/lrP0YO7h74gOoqoDnfgifP1z32CFXwNG/gYyMxMfRRNtLt/PHWX/k+aXPxzy+b699uenQmxjWbVjM422dq6pix0svs/mOOyhfsqThzmbkTzqMbmecQecpU7CsrOQEKc2SEQrtWg0to1MnQkpqdDi6Bzq2nLFjiYTDZFRWeg3OUTz7E7ocMYW8cB7FlcW7+q4Nh3cltjRiS0REEk2JLRFptfUFpVx03yxKKoI1NH523EhO3Ld/PY+Ko/JieOI7sPCVuseO+Q0cemXiY2gi5xzTVkzjdx/9jq2lW+sczw3ncsUBV3DuXucSykjS1M04cpWV7HjpJTbffgfly5Y12Dezf3+6nnE63U49lUyNzhIRadMsK4vSwYPJW7p0V1vxrFl0PvII+nfqz+Lti3e1eysjlgHeyog7VGNLREQSSIktEWmVorJKLrpvFht2lAXaTx87kO9NGZ74AHZugEe/DatnBtstBCf/A/Y/N/ExNNGm4k389qPf8sbKN2Ien9h3IjcccgODOg9KcmSt5yorKXjhBbbcfgflK+oWv69mmZl0Ovooup1xBvkHH4y1oVF0IiLSsJJhQ+sktoA6ia3olRE7U8ImjdgSEZEEUmJLRFqsKuK48pHPmLt2R6B94tAe/P60fRJfF2rVTHj0PCisVZ8qnANn3gcjv5bY6zeRc45nFj/Dnz7+EzvLd9Y53imzE1eNu4rT9jwt7WppucpKCp57ns3/voOKFSvr7Zc1fDjdzzqTLiedRLh7EqamiohI3BUPG0ZPaj6cKZ03j6rCQvrlB0fdRq+M2MWKKKtQYktERBJHiS0RabHfvzSf1+dvCLQN7ZXPHd8+kKxwAkfiOAez74GXroZIRfBYTlc49zEYfFDirt8MawrX8Ov3f80H6z6IeXzKoCn8YuIv6JPfJ8mRtY6rqGD7Sy+x+Y5/U7FqVb39skePovf3v0+nI49Mu6SdiIgElQ4ejAuFsCp/amEkQsmnnzKge7CA/LroxBbFlGkqooiIJJASWyLSIg9+uIK73g3WUOqWl8l/p46ne34Ci39XlMJLV8GnD9Q91nUQnPso9BmTuOs3UVlVGffPvZ//zPkPJZUldY73yOnBdROu47ghx6VXwqeyki6ffMKav99G5Zo19XbLGTOGXt//Pp2OmJJeP5+IiNTLZWZSOmgguctrppwXz5xFv9NHB/qtjZ6KqFURRUQkwZTYEpFme2/JFm54bm6gLTNk3PHtAxnaKz9xFy5Y7U09XPtJ3WNDD4cz7oH8nom7fhM453h95ev85eO/sKYwduLnhGEncM34a+iekz5T8iIlJex47HGG3nE7mdu2U1lPv5x99qHX979Hp8MPV0JLRKQdKh46LJjYmjWL/ucfHeizPhymCgihVRFFRCTxlNgSkWZZVwz/ePxLqiIu0P6H0/bloGEJTCotmwGPT4XizXWPHfJDOOoGCKX2JW3B1gXcPPNmPt7wcczjffL68KuDf8XkgZOTHFnLVW7axNaHH2b7/x6havt2Muvpl7PfvvT+/vfJnzRJCS0RkXasZNhQeOutmv0vv6RfKPhBTaUZm0Ih+lZVeTW2lNgSEZEEUmJLRJpsRzncuSBEYVmwVsYVR+7B6QcOTMxFnYMP/wXTfgmuVo2OzHxv5cO9T0vMtZtoS8kW/vHZP3hy4ZM4XJ3jhnHmiDP58YE/plNWpxRE2HylCxey9d772PH887iKinr75e6/P72+/33yDztUCS0RkQ6gZPfdIRSC6jpblZXkLlhFdiibsqqaFZLXhb3EVmdKVGNLREQSSoktEWmS0ooq7voqxNayYPLixH378eOjRyTmouXF8PwPYc7jdY/1GAbffAj6jK57LEkqqip4eMHD3PH5HRRWFMbsM3a3sVw74VpG9RyV5OiazzlH0Xvvs/Weeyh6770G+2bvvz+7XfED8g85RAktEZEOxGVnkzVqFOVffrmrreTjj+k3qB/Ldyzf1bYmHOaAsnK6WBEVVY6qiCOUof8vREQk/pTYEpFGlVVW8ZMn5rKiMPiG9IDB3fjzmfuRkYg3qluXefW0Nsype2zP4+C0OyG3W/yv2wTOOaavns6fPv4TK3asiNmnX34/fjrupxy7+7FtPvETKS9nxwsvsvXeeylbuLDBvkUjR7J18iQOu/xy8vLykhShiIi0JTkHjg0ktopnzqL/qP6BxFb1yohdKAagvDJCblYIERGReFNiS0QaVFJexaUPfMyMRcHaVgO753LneePIyUzAm9TFr8MTF0Hp9rrHDr8WDr8GMjLif90mWLJ9CX+a9SfeWxt7RFNuOJeL9r6IC8ZcQE44J8nRNU/ltm1sf/RRtj70EFWbYtQu81lWFl1PPom8b57N20sWe21tPFknIiKJk3Pggey47/5d+yVffMGArJMCfdb4ia3OpsSWiIgklhJbIlKvwrJKLr5vFh8u3Rpo75Qd4r9Tx9O7c3Z8L1hVCe/+Fd76HdSuVZXdxRulNfL4+F6ziTaXbObOL+7ksa8eo6p2rS/ficNO5Edjf0Sf/D5Jjq55SubOZfsjj1Lw/PO40tJ6+4W6d6f7OefQ/dxzCPfqRUlJCfiJLRER6biy998fzLw6mIArL2fkuuAHTuvCXhLLG7Hl/Dpb9S1BIiIi0nJKbIlITAUlFXznnpl8snJ7oD075Pj3ufsxok/n+F5w82J4+jJYE2NFwV4j4eyHodce8b1mE2wp2cI9X97Do189SmlV7CTQPr324ZoJ17Bf7/2SHF3TRYqL2fHyy2x75FFK58SY3hkla+hQekydSteTTyIjp22POhMRkeQLde5M9qi9KJs3f1fbwMXbYVBNn7X+iK1sqySbCq2MKCIiCaPElojUsa2onPP++xFfrtkRaM8LOb47uoqxg7vF72LOway7vFUPK0vqHh91EpzyL8iOcyKtEdtKt3HP3Ht4ZMEjlMSKC9gtdzd+dOCPOGHYCWRYaqZGNqZs0SK2PfoYBc8+S2Tnzgb75k2cSI+pF9Dp8MOxFE31FBGR9JA/fnwgsdV1/ppAYmtdOIQDDG/UllZGFBGRRFFiS0QCNu0s47y7P2LB+mASpEdeJhfvUcKA/DhebMdaePb7sOTNuscsA478JRz2Y2+6Q5JsL93OffPu46H5D9Wb0MrKyOKCMRdw8T4Xk5fZ9gqoR8rL2fnqNLY9+gglH89uuHM4TJfjj6fH1AvIHTMmOQGKiEjayx03DqLqbIW+XEzoKEdVyPs/uywjgy0ZGfSKROhiRZRWaMSWiIgkhhJbIrLL+oJSzr3rQ5ZuKgq079Y5m7vP25+ln8YumN5szsGXT8KLP4HSgrrHewyHU/8Ng8bH53pNUFBWwP3z7ueh+Q9RVFEUs0/IQpyyxylcuu+l9O/UP2mxNVX5ypVsf+wxtj/5FFXbtjXYN9y3L93OOpNup59BZp/dkhShiIi0F3njxgUbysoYsT6L+QNqEljrwmF6lZf7I7aU2BIRkcRQYktEAFi1tZhv3fURK7cWB9oHdMvloYsn0ic/g6XxuFDxVi+hNffp2MfHXwLH/Bqy4jk0rH47ynfw4LwHeWDeAxRWFMbsE7IQ3xj+DS7d91IGdR4Us0+qREpK2PnGmxQ89RRF77/fcGcz8idPovs3z6bT5ElYWP8FiIhIy4S7dyd7zz0pW7RoV9v49XnMH1Dzf+mazDD7lJfTxTQVUUREEkd/1YgIyzYX8a3/fMjagmBx9ME98nj4kokM7J7nrYjXWgunwXM/gMINdY917g8n/wP2OKr112mCwvJCHpz/IPfPu5+d5bFrT2VYBicOO5HL9r2MwV0GJyWupnBVVRTPnEnBs8+xc9o0IsXFDfYP9exJtzPOoNuZZ5I1cECSohQRkfYub/z4QGJrzCrgwJrj1SsjdqaYco3YEhGRBFFiS6SDW7RhJ+fe9RGbdpYF2of1zufhiw+ib9c4rIpXVgjTfg6z7419fJ8z4et/gtzurb9WIzYWb+Sh+Q/x+FePs7MidkLLML4+7Otctu9lDO06NOExNVXpwoXseO45Cp5/gcoNMZKDteRNnEj3s79J56OOwrKykhChiIh0JHnjx7Ht4Yd37Q9cVkhGxBHJ8OpsVa+M6I3YUmJLREQSQ4ktkQ5s7toCzrt7JluLygPte/XtzAMXTaR35+zWX2Tlh/D0ZbBted1jud3hhL/C3qe1/jqNWLxtMffOvZcXl71IZaQyZh/D+NqQr/Hd/b7LsG7DEh5TU1Rs3MiOF16k4LnnKFuwoNH+GV270u2UU+j2zbPIHtY2fgYREWmfatfZyiytZMiGEEv7efu7ElsUKbElIiIJo8SWSAf12artnH/3R+woDSZ59hnQlfsvnED3/FaO8CnZBm//AT76N+DqHt/jGG/qYee+rbtOA5xzzFo/i3vm3sO7a95tsO8xux/D5ftdzp7d90xYPE0VKS5m5+uvU/DscxR98AFEGvljICOD/IMPpuvJJ9H52GPJyInDKDsREZFGhHv3JmvoUMqXLdvVNnqlY2m/6hFb/lREK6asQjW2REQkMZTYEumAZizaxOUPfkJhWTCpNXZwN+75zgS65ma2/OSRKvj0QXjj11C8pe7xzHw47rdw4FQwa/l1GlAZqeT1Fa9zz9x7mLdlXr39DOOowUfx3f2+y8geIxMSS1NVFRZR+M7b7Jz2GoXTp+OaUNMse6+96HrSSXQ54QStbCgiIimRN25cILE1apXjhYne9rpwGAdaFVFERBJKiS2RDsQ5x+3vLOHPr35FpNYgqoOG9eDuC8aTn92Kl4VVM+Gln8G6z2IfH3QQnHo79EjMFLniimKeXvw0D8x7gDWFa+rtl5WRxcl7nMx5o89LaQ2tqoICdr71FjunvUbRu+/iyssbfUy4Tx+6fuNEunzjJHJGjkhClCIiIvXLmzCe7Y8/vmt/1CqHOYczoygjgx0ZGXSxYjYrsSUiIgmixJZIB1FYVslVj33OK3PX1zk2ac9e3HneOHKzQi07+c718NoN8MUjsY+HsmHKtXDolZDRwms0YGPxRh5Z8AiPfvUoO8p31Nuva3ZXzh55NufsdQ49c3vGPY6mqNy6lZ1vvMHOV6dR9OGHUBm73le0jLw8Oh97LF1PPom8CROwUPz/DUVERFqidp2tTqUweCOs6OPtrw2H6FxRzFoltkREJEGU2BLpABZvLOSyBz5myaaiOse+NqYvt56zP9nhFiRLKsvho9vhnT9CeWHsPnud6E097D6k+edvQFWkivfWvscTC59g+urpVLn6a3cM7DSQ88ecz8nDTyYvMy+ucTRFxYaN7Hz9NXZOe43iWbMar5kFXt2sQw+l60kn0fnoo8jIzU18oCIiIs2U2a8fmQMHUrF69a620SsdK/rUrIzY1Yopq1SNLRERSQwltkTauVe+XM9Vj39ep56WGVx17EguP3w4GRktqHW16DV45VrYsjj28V4j4Gt/gD2OakHU9VtftJ6nFz3NU4ufYn1R3dFn0fbuuTdT957K0YOPJpSAkWL1cZEIpfPnUzRjBoVvv0PJ55+Di1FAv7ZwmPyDD6bzscfQ+aijCPfokfhgRUREWilv/HgKohJbo1Y5Xh7vba8NhxmkVRFFRCSBlNgSaaeqIo6/TPuKf729pM6xrrmZ/P2cAzh8RO9mnze/bANZT5wHS16L3SG7izftcMKlEGpFEfoolZFKZqyewROLnuDdNe8ScQ2/OZ4ycAoXjLmAA/sciCWoQH1tVTt2UPT++xROn0HhjOlUbdrcpMdZVhb5hx3mJbOOOIJQ164JjlRERCS+8saPp+Dpp3ftj1rlvA90zLypiFZCWYUSWyIikhhKbIm0Q9uKyvnhI58yY1Hd5Mrofl3493kHMqhHM6fklRYwau3jDN/4MiFXT12o/b8NR98AneKzQt+awjU8tegpnln0DBtLNjbYNzecy9eHfp3zR5/PsG6JKU4fzTlH2cKFFL4znaLp0yn+9FOoato0C8vNpdPkyXQ+9hg6HT6FUKf8BEcrIiKSOHkTxgf2uxbDgC2wppc3YqsLOzUVUUREEkaJLZF25ss1BVz2wGzWbC+pc+y0Awbw21P3aV6R+KLN8OG/yPnoTkaU74zdZ8CBcPyfYOCBLYy6RnlVOe+sfocnFz7J+2vfx9HwFL7RPUdz+p6n8/WhX6dTVqdWX78hVYWFFH3wAUXTp1M4fQaVGzY0+bEZ+fl0OuIIL5k1aZJqZomISLuROWAA4b59qVxfUyJg9ErHml7GunCYfCujoqLxlX9FRERaQoktkXbkidmr+fnTc+rUsQhnGL88cTTnH7x706fm7VgL798Gs++FimJiPiq/Nxx9I+x3LmRktDjuykglM9fP5JVlr/D6ytfZWV8CrfqymfmcMPQETh9xOqN7jm7xdRsTKSqi+JNPKP7oI4o+mknp3LlNK/zuyxw8mE6TJ9Np8iTyDjqIjKyshMUqIiKSKmZG3vjx7Hj++V1to1c6XhvrrYoIkNHI/+0iIiItpcSWSDtQXhnh/16cx/0frKhzrHfnbG7/1ljGDWliIfJty+HdW+Czh6Aq9qerLiOMTfwuHH415LSsJlTERfhs42e8vOxlpq2YxtbSrY0+Zt9e+3LGiDM4bshxCVndMFJS4ieyZlL80UeUfPllk6cXglcvK2/CBDpNnkSnyZPJGjIk7jGKiIi0RXnjxwUSW9V1tgpCIYrMCJXvSGF0IiLSnimxJZLmlm0u4qrHP2f2im11jo3bvTv/+tZYduuS0/iJNi2Ed/8KXzwGLnYyx2Gs7Taenqf/mZxB+zU7Vucc87bM4+VlL/PK8lfYUNz4VL7OmZ05cfiJnL7n6YzsMbLZ12xIpLSUks8+o+ijjyieOYuSL76AiopmnSNzwAA6HT6Z/EmTyJ84kYy8+CfcRERE2rq8ccE6Wz0Koe82WN/Dq7MVVmJLREQSRIktkTRVXhnh3+8s4ba3FlMeYwntCw7enZ+fMJqscCNTBNd9ATP+AvOehfrqWVmIyjGn807VWApz+nNsrxHNinXRtkW7klmrdq5q0mPG7jaW00eczjG7H0NuOD71qCq3bqXk008p+fRTij/9jNI5c3Dlzav5YZmZ5I47kE6TD6fT5ElkDRuWtJUXRURE2qqsoUMI9epF1eaahWtGrXKs72GsC4fIrChMYXQiItKeKbElkoZmLd/KdU/NYfHGum8Ss8MZ/P60fTht7MD6T+AcrJrpJbQWvVp/v1AWHPBtOPRKKnL6UDhtWpPiq4xU8sWmL5i+ejpvr3qbJQVLmvS4MT3HcPzQ4zluyHH0ze/bpMfUx0UilC9ZQvGnn1LyiZfMKl9Rd6pmo8Jhcvfdl7wJ48mfOJHc/fdX4XcREZFavDpb49j58iu72kavdLy1H6wJh8ms0IgtERFJDCW2RNJIQXEFv395Po/Mij3qaVCPXG7/1oHsPaCeulcl27yphrPvg41z679QZh6MuxAO/gF06ec/tu4qi4HYygp4d827vLP6Hd5b8x47mjjlYI9ue3D80OP52pCvMbjL4CY9JpZIURElc+b4o7E+peSzz4nsaMGb6FCI3L33Jm/iRPImTCBv7AGaXigiItIEeePH10lsAawLh8lW8XgREUkQJbZE0oBzjuc+X8tNL8xjc2HdqXMZBhceOpQfHzOC/Oxw7QfDivfhk/u86YaVpfVfKLsLTLgUDvoe5PdsNKaF2xYyY80Mpq+ezuebPifimrZi4KDOg/jakK9x/NDj2bP7nk16TLRIcTGlCxZQOncepXPnUjp3LmVLlzar0PsuGRnkjBlD/sQJ5E2YQO7YAwl1ym/+eURERDq4vHHjAvu9d0Dv7Y614RDDi4tSFJWIiLR3SmyJtHErthTxi2e+ZMaizTGP7zOgK78/bZ+6o7QKN8HnD8Mn98OWxQ1fJLcHHPw9GH8J5Hart1u5K2dp5VI+mf0J769/n/VF65v8c/TJ67MrmTW65+gm16WqKiyibMF8SufOpWTuXErnzaN86TKINC2JVpvl5ZG7777kHrA/eWPHkrv//oQ6d27RuURERKRG9h57EOrWjart23e1jVrlWLtnmDFVqrElIiKJocSWSBtVURXhPzOWcuvriyiLURw+PyvET48dyQWHDCGU4SeJIhFY+pY3OmvBSxBpZIW/brt7I7TGfQey6o5S2lm+k882fsYnGz9h1rpZfFnwJVVUQdNKZrFn9z2ZPGAyhw86nP1670eG1V/I3jlH5aZNlC1aRNlXCymd543GKl++3Bt11kLh/v3IO2AsuQccQO4B+5MzciQW1kufiIhIvFlGhldn67XXd7WNXul4fFSYvIimIoqISGLor7s4MrPdgR8CJwCDgDK8FMBjwD+dc8Vxus7xwKXAeKA3sAmYBdzpnHs5HteQ1Jq9YhvXPzWHrzbEfhN49Kg+/ObkMfTv5hcxL1gNn/0PPr0ftq9s+OQZmbDXCXDgBTB0CmTUJJu2lm7lkw2fMHvDbGZvmM1X275q8vRCgJxQDhP7TWTywMlMGjCJfp36xexXtX07ZYsXe0msRYsoW+h9ryooaPK1YgqHyRk1KjAaK7Nv64rQi4iISNPljaub2NoSDhN2SmyJiEhiKLEVJ2b2DeBBoEtUcx4wzv+62MxOcM41MieswWtkAHcCF9U6NMD/OsXM7gIuc64Z2QhpM1ZtLeafby3m0Y9XxRyk1LdLDjeeNIavjekDm76C6S/Aghdh7SeNn7znnjD2fNj/XMjvBcC6wnXM3jh7VyJrWcGyZsfcP78/kwZOYvLAyUzoO4GccM6uY1UFBZSvWEHZoqgk1qJFVG7c2Ozr1BEKkT18ODmjR5MzZoz3NWovrVgoIiKSQnnjxwf2+26H7jsdZSEltkREJDGU2IoDMzsAeBTIBQqB3wNv+ftnA5cAI4AXzWyccy3+yOq31CS1PgX+iDcibDhwNXAAcDHeCK7rW3gNSYHFGwv519uLefaztVRF6ma0zGDqQYO5au+d5C/9F7z5AmxtwnzAcA6MPhnGXsDG3nswf+sC5i16nHlb5zFvyzw2Fjc/wZRBBvv13o8pg6cwecBkhmb1o2LVKsq/XE7hC/exdflyylesoHz5cqq2bWv2+WP/HGGy99iDnDGjyRk9mtwxY8geOVJJLBERkTYme+RIMjp3JrKz5u3u6JWOku4qHi8iIomhxFZ83IqXxKoEjnXOfRB17E0zW4SXhBoB/BS4sbkXMLMRwFX+7sfAZOdcib8/y8yeA97BGx32MzP7b2tGh0lyfLmmgH+9vZiXv1wfc4RWFhWc1Ws5Pxq4kF6LXodPNzR6Tges7zuaeXtMZn7X3swrWMr8mb9gc0ns4vONybQw4/NGMy4ymOwFOxmwPcSI3E5EHp1O+fL7Wbih8Ziaw/LyvCTWyBHeKKzRo703ydnZcb2OiIiIxJ+FQuQdeCCFb7+9q230KkdR7zIqqyKEQ/XX2xQREWkJJbZaycwmAJP83btrJbWq/QX4DjAKuNLMfuuca6Sqdx0/oub5uiIqqQWAc67YzK4APvD7/Rj4fjOvIUkye8VW/vHmYt76alOdY10pZFLGHL4e/pijM78gq7AIFsQ+T7EZKzLDLMvMZFFuJ+Z178d8q2RbxU5Y8xKsaTwWizi6FUHvAuhd4OhXGGZkWQ8GFeXQdXsF4Y3bcMWfADXTHeOyrlFmJtnDhpG95541XyP2JLN/fyxDb3pFRETSVd74cYHE1qiVjo8mVlBWqcSWiIjEnxJbrXdK1PY9sTo45yJmdj/eFMVuwBHAtKZewMwMONnfXeCc+7Ce63xoZl8BI4GTzewHzrViOTmJK+cc7y3ewj/eWsSHS7fuat+NbUzIWLDra6+MVTUPqvJGYG0JZbAsM5NlmZkszcxkWWaYZVmZrKu9ul9l1NQ/58gvhW5F0GOno1shdC+C7oX+dqGj507ouQPCgYps5cD6mtO09gcPhcgaOJDsEXsGklhZu++OZWa29uwiIiLSxtSuszVwC7xTXkVZZYR8DcAWEZE4U2Kr9Q7zvxcBsxvo907U9qE0I7EFDAX6xzhPfdcZiVdMfgjQ/GrgElfOOV6fv5F/vLWYz1dtY7Bt5MzQfCbYAsZnfMWQjA1E8JJXa8NhXgnnsTocZllmmOV+Mmun/+lmqMrRuQQ6F0KPEsfuxRE6l0CXYuhS7OjuJ6y6F0K3QsiqSt7PGe7bl6whQ8gasjtZu0d9HzgAy8pKXiAiIiKSUjmjR1OVHSZUVrmrLXeDUVZRAeg9gYiIxJcSW603yv++2DlX2UC/6Mlko+rtFdvoes7TlOukbWIrEnFUOUdVxP9yjqqqWm3+V2XEEXGOyir/u99euy0SqTlWfc5IxFFZFcFFqqisqiLiIkQqq6hyEVxVhKpIFc5FqKqKEIlU+V8OF4lQVVWFc45IpJJIxO06hquiKuJwkSo2btlCt22fcWrWPC7vuozSUCmbXIglVZl8UhViZ2U/SitDZBVCfhnklUF+qWNgCYwqhs4lEbr4Caz8shQ+IWZUdO5MZY/u9N53X3KH71GTyBo8WIXcRUREBAALhynfazC5ny/d1dZzbYjy4p3QLT+FkYmISHukxFYrmFkO0MvfXd1QX+fcNjMrAvKBQc281MCo7QavA0TNY2vedcxsYCNdBlRvPHXR8fTIyQRcjLlqTWxrYJakOf8xsY5FHbFYHVz0sbrXtVr96uUfD/m74Vrndv6ZquOxOj+f920IEKqE3DKIlGfQtTyPrsAeuzpV+l8N2+l/JUxWJuHeuxHabTfCu9V8z+jjfa/s3JlZs71BiRMnTqQ0upj76sZuS2kPysrK2LzZW4RgyZIlZKugf4ei5190D3RszX3+twwbQvjjr3bt95sD075zREJjlMSrfvv+4L+uTW0gkhJ6/ju2baWBMuGh+vqlghJbrdM5arsp9bSrE1udEnid6LWUm3udVY138Vw7Y0kzTy1pYUFjAwJFREREWmhuqgMQEZE46Q2sSHUQ1bQsSevkRG2XN6F/9USy5s7Zas51oieraW6YiIiIiIiIiMTTbqkOIJpGbLVOadR2UyphVo/ZLkngdaLHhTf3Oo1NXRwMvOdvHwSsaeb5Jb31BWb52+OJXjpROgrdAx2bnn/RPdCx6fkX3QMdm55/GQB86G+3qak+Smy1TnTJo6ZM+6uultmUaYstvU50Rc5mXcc512ChJLNARas1jfWX9qXW879ez3/Ho3ugY9PzL7oHOjY9/6J7oGPT8y+17oGmzFhLGk1FbAXnXCmwxd9tsPC6mXWnJunU5FpWvugXjcYKvEePumrudURERERERERE0oYSW603z/++h5k1NAJur6jt+S28Ru3zxPs6IiIiIiIiIiJpQ4mt1nvX/54PHNhAv8Ojtt+rt1dsy4C1Mc4Ty2T/+xpgeTOvIyIiIiIiIiKSNpTYar1nora/E6uDmWUA5/u724G3mnMB55wDnvV39zKzg+q5zkHUjNh61n+ciIiIiIiIiEi7pMRWKznnZgIz/N2LzOzgGN1+Cozyt291zlVEHzSzKWbm/K9767nULUCVv32bmeXWOkcucJu/W+n3FxERERERERFpt5TYio8rgRK8VSanmdl1ZnaQmR1hZv8G/uj3Wwj8pSUXcM4tBP7k744D3jOzb5rZODP7Jt70xnH+8T855xa19IcREREREREREUkHDRU7lyZyzn3qJ5ceBLoAv4vRbSFwgnNuZysu9XNgN+BC4ADgkRh97gZ+0YpriIiIiIiIiIikBVMZpvgxs93xRm+dAAwEyoHFwOPAP5xzxfU8bgo1dbfuc85NbeQ6XwcuBcYDvYDNwCzg3865l1v7c4iIiIiIiIiIpAMltkREREREREREJC2pxpaIiIiIiIiIiKQlJbZERERERERERCQtKbElIiIiIiIiIiJpSYktERERERERERFJS0psiYiIiIiIiIhIWlJiS0RERERERERE0pISWyIiIiIiIiIikpaU2BIRERERERERkbSkxJaIiIiIiIiIiKQlJbakScxsdzP7i5ktMLMiM9tqZrPM7Gdmlpfq+CT+zMw18evtVMcqzWdmu5nZiWb2GzN72cw2Rz2n97bgfMeb2dNmttrMyvzvT5vZ8QkIX+IgHveAmU1txmvF1MT+RNIcZjbOzH5lZtOifm8LzWyhmd1jZoc183x6DUgz8bgH9BqQnsysi5md7b+3f8fMFptZgZmVm9lGM3vbzK42s55NPN8hZvagma0ws1IzW29mr5rZOYn+WaRl4nEPmNmUZvz+35jEH09aycxurvX8TWnCY1L6PiCcjItIejOzbwAPAl2imvOAcf7XxWZ2gnNucSriE5EW2RCPk5hZBnAncFGtQwP8r1PM7C7gMudcJB7XlLiJyz0g6cfMpgOTYhzKAvb0v6aa2f3AJc658gbOpdeANBTPe0DS0gTgf/Uc6w0c7n/9zMy+7Zx7tb4T+QmLXxIcMNEHOBY41sy+BZzhnCuNR+ASN3G7B6R9MbP9gZ80o3+beB+gxJY0yMwOAB4FcoFC4PfAW/7+2cAlwAjgRTMb55zbmapYJWFuB/7VwPGiZAUiCbMSWID3JrS5fkvNf2SfAn8ElgDDgauBA4CLgU3A9a2OVBKlNfdAteOAtQ0cX92Kc0t89fe/rwUeB2bg3QMh4GDgp3hvRs8HMoFzGziXXgPSUzzvgWp6DUgvq/De08/2t9fhJacGAmcApwG9gOfMbIJz7vPaJzCzy4Ab/N0lwO+AOXj315XAEcAJwH9p2j0kydXqeyDKhcCsBo5vjEvEklBRSaow3nO2WxMe1ibeB5hzLlHnlnYg6hO9SmCyc+6DWsd/hnfzAvzaOXdjciOURDGz6hcHPa/tkJn9Gu8NyCzn3AYzGwIs8w/f55yb2oRzjADm4v3n9zHea0RJ1PE84B28kZ2VwCiN7Gw74nQPTAXu8XeHOueWxz9SiTczewG4H3jSOVcV43gv4D28D64ADnfOTY/RT68BaSqO98BU9BqQdswsFOt5r9XnFOBpf/dp59xptY73AJYCXfGSogc65zZHX8N//Df8piOcc2/H5QeQVovTPTAFLzEGen7bBTP7EfA3vA87nwau8w/FfH7b0vsA1diSepnZBGqGqd9dO6nl+wsw39++0swykxKciLSKc+4G59wLzrnWTEf7ETUjf6+I/o/Mv0YxcIW/GwZ+3IprSZzF6R6QNOScO9E591h9f9T4f5z+NKrpjHpO9SP0GpCW4ngPSBpqLKHh93kG+MrfjTVt9WK8pBbANdFJrahrfA+ovtbPWhSsJESc7gFpR8xsMHCTv/tdoClT0H9EG3kfoMSWNOSUqO17YnXw58ne7+92wxtyLCLtnJkZcLK/u8A592Gsfn579Zuik/3HiUjb91bU9vDaB/Ua0CE0eA9Ih1BdYiQnxrFT/O87gKdiPdg5txp43d89ysw6xzU6SYaG7gFpX/4JdMIbtf9OY53b2vsAJbakIdWr4RThzb2uT/SNf2jiwhGRNmQoNTVaGvvPr/r4AGBIogISkbjKjtqO9cm+XgPav8buAWnHzGwksL+/u6DWsSy84uMAHzSyuED173823nQkSRMN3QPSvpjZWcCJwFbgqiY+rE29D1BiSxoyyv++2DlX2UC/6Be6UfX2knR1ppnNM7NiM9tpZovM7D4z0+i8jm101HZjb3b0GtEx3GNma/2lwjeb2Ydm9n9mNiDVgUmLHB61PT/Gcb0GtH+N3QO16TUgzZlZnpntaWY/wftDtHqK0S21uo7AW2gA9PvfrjTjHqjtt2a2wszKzGybmX1qZn/zazBJG2Zm3YBb/d0604ob0KbeByixJTGZWQ7eKhjQyCo2zrlt1KyMNyiRcUlKjMZ7AcrFG566B94qSW+a2dNm1rWhB0u7NTBqu7GVrlZFbes1ov2aAvTDW0GtJzAR+Dmw2F85S9KEvyrStVFNj8XopteAdqyJ90BtU9BrQNoxs6lm5vxFg4qAhXg1dPv4Xf4APFzrYfr9b0daeA/UdggwGMjCK0+zP179pflmdqOmobdpfwT64i0YcnczHtemXgfCjXeRDip6DnxhE/oXAfl4iQ9pH4qB54A38LLshUBvvE9wv4v3pvUU4FkzO8Y5V5GiOCU1mvMaURS1rdeI9mcpXn2VD6h54zIMOB2v4HQOcIeZOefcnakJUZrpx9RMM3rKORerHIFeA9q3ptwD1fQa0D59BlzqnJsV45h+/zuGz6j/Hqi2Du/3/12814JKvATXiXgfhGcCN+AlvK5PZLDSfGY2CW8hiErgu84514yHt6nXASW2pD7RBQKbsiJCmf89NwGxSGoMcM5tj9H+mpndBrwMHICX6Loc+HsSY5PUa85rRFnUtl4j2pen8YqM1n4jNAt41MxOxHvDmwn8zcyec86tT3aQ0nRmdjjep/MAG/Fe32PRa0A71Yx7APQa0B48A3zsb+fiLRRwFnAq8D8z+5Fz7oVaj9Hvf/vyDM2/B8D7Pd89xofbnwDPmNmdwDS81TOvNbNHnXOfJ+IHkObza+XdCRjwN+fcl808RZt6HdBURKlPadR2VhP6VxcYLWmwl6SNepJa1cc24H0KW/0f2RX19ZV2qzmvEdEFiPUa0Y445woa+nTPfyP8G383D7goKYFJi5jZGLxERRjvd/xM59zGerrrNaAdauY9oNeAdsA5t90596X/Ncs594hz7jS80TbD8EbmT631MP3+tyMtvAdwzhU1NGPDOTcT+IG/a1Hb0jZcD+wFrAR+3YLHt6nXASW2pD47o7abMlww3//elGmL0g4455YCr/m7e5hZ/4b6S7vTnNeI/KhtvUZ0PHcC1X/4Ht5QR0kdMxuK98l6d7wV8M52zk1v4CF6DWhnWnAPNJVeA9KQc+4B4HG8vxf/YWY9og7r978DaOQeaKpHgB3+tn7/2wgz2wu4zt+9wjlX1FD/erSp1wEltiQm51wpsMXfHdhQXzPrTs3NuqqhvtLuzIva1qpHHUt0kcgGXyMIFonUa0QH44/2qP7/RK8TbZD/wcTreMt2O+BC59yzjTxMrwHtSAvvgSbRa0Baq74H8oGvRbXr97/jqO8eaBLnXCVeMXrQ739b8mO8UVZLgTwzO7v2F7B3VP8jo45V/93fpl4HVGNLGjIPmIQ3GifsvzDFslfUdlOWg5b2ozkFBqV9iU5q7lVvr7rH9RrRMem1oo0ys154o2+H+U1XOOfub8JD9RrQTrTiHmgOvQakp01R27tHbS/EG9UXQr//7V1990Bz6Pe/7ameGjgM+F8T+v8yansoXjH4NvU+QCO2pCHv+t/zgQMb6Bc9rPS9xIUjbdDoqO21KYtCUmEZNc95Y0PLJ/vf1wDLExWQtE1m1hvo5e/qdaINMbOuwKvUvJZf65z7ZxMfrteAdqCV90BTr6HXgPQVPcJm1/Qh51w5MNPfPdgvQl2f6teHMmoKlEv6iHkPNJWZhYER/q5+/9uXNvU+QIktacgzUdvfidXBzDLwCgsCbAfeSmxI0lb4tTiO8XeXOOfWpDIeSS6/WHD18PS9zOygWP389upPaZ5t5jLC0j5cilc0FuCdVAYiNcwsD3gRGOs3/dY5d3NTH6/XgPTX2nugGfQakL7OjNqeU+vYM/73LsBpsR5sZgOBo/3dN5xzO2P1kzatoXugKb6Jtyoi6Pe/zXDOTXXOWUNfBAvKHxF1bLl/jjb1PkCJLamXv5LFDH/3IjM7OEa3nwKj/O1bG1oZQ9KHmX3D/4SlvuN9gCepWQHjX0kJTNqaW/CmIgDcZmaB5Xv9/dv83Uq/v7QTZjbEzA5opM+JwK/83RLgnoQHJo3yR1c8DRzqN93qnPtFC051C3oNSEvxuAf0GpC+zGyqmeU00ufHwNf93WXU/E1Q7S6gwN/+g5n1rPX4EN77w5Df9KdWBS1x1dp7wMy6m9mURh4/AfiHv+uA21sar7RZt9BG3geoxpY05kq86YW5wDQz+x3eqKxc4Gy8T+HAm2v/l5REKIlwG5BpZk8CH+ANGS3Bm0owBbiMmmkF7wJxnbYgiWdmhwF7RDX1itreo/ayzs65e2ufwzm30Mz+BFwLjAPeM7ObgSXAcOAaoPqPnj855xbF7QeQVovDPTAEeMvMPgCeBz4HNvrHhgFn+F/VIzWu0sjONuN/wLH+9pvA3Wa2dwP9y51zC2s36jUgrcXjHhiCXgPS1Y3AX/z3ee/i/c4WAp2BfYBvUZP0LAcudc5VRZ/AObfVzK4B7sCrvfSRmf0Wb1RPf+BHwBF+9/85595O4M8jzXcjrbsHuuL9/n+BN3pvNrAOL8kxGDgROI+aD8H/7JybncCfR1KgLb0PMI0Il8aY2TeAB/GGGseyEDjBObc4eVFJIpnZcppWIPJJ4GLn3PaEBiRxZ2b3Ahc0tb8/JDnWeTKA/wAXNvDwu/HeEEWaE6MkVmvvAf+T2qZMPy8Gfuycu7MZ4UkCmVlz3/ytcM4Nqedceg1IQ/G4B/QakL6a8T5vNd4Kma81cK5f4xWWjvk+AXgJON1fcV3aiNbeA2Y2BG8UV2OqgJuA32gqenoxsxuBG/zdI+pLTreV9wEasSWNcs49b2b74o3eOgFvOc9yYDHwOPAP51xxCkOU+LsArwjgwXifuvbCS2wW4i3R+j5wn3Pug5RFKG2C/x/URf4nfpcC4/Hul83ALODfzrmXUxiiJM5s4Nt4rxPjgH54z30Y2AbMBd4A7nLObazvJJLe9BrQoek1IH0dh/ee/lC8kbt9gJ54o/M3Ap8BLwCPNfYe3zl3g5m9CnwfbzX1Pnh1dz8H7nHONWXFNUm+1t4Da/Hqbx0MTMArMt8LyMGbovoV8Dbe7//yxP0Ykmpt5X2ARmyJiIiIiIiIiEhaUvF4ERERERERERFJS0psiYiIiIiIiIhIWlJiS0RERERERERE0pISWyIiIiIiIiIikpaU2BIRERERERERkbSkxJaIiIiIiIiIiKQlJbZERERERERERCQtKbElIiIiIiIiIiJpSYktERERERERERFJS0psiYiIiIiIiIhIWlJiS0RERERERERE0pISWyIiIiIiIiIikpaU2BIRERERERERkbSkxJaIiIiIiIiIiKQlJbZERERERERERCQtKbElIiIiIiIiIiJpSYktERERSTtmdqOZOTNzbSCWIdWxmNnUVMfT0ZjZ1Kh//yFxON+F/rnmmJnFIcQ2yczO9H/OhWaWmep4REREWkqJLREREWkVMwuZ2Q7/j+RPGulrZrYlKhFxYSP9L4jqe3l8I297zGygn7SbYWabzKzCzErMbLWZTTezW83sDDPrmupY2yMz6wT8zt/9jXMu5YnTaGY2zf9duDUOp3sSmAfsCVwRh/OJiIikhBJbIiIi0irOuSrgfX93PzPr0kD3MUCPqP1JjZw++vj0FoSXNszsEuAr4AbgMKAXEAZygAF4/xY/BB4H/p2iMNu7HwJ98BI+T6Q4lgAz6wwc7u8+39rzOeciwG/93WvNLL+15xQREUkFJbZEREQkHqqTThnAIQ30q05UVdXab6z/ZrxkAwDOuRudc+acaxdTxczsHOBOIA8oBW4HTgHGAeOBk4GbgE9TFGK7Z2a5wE/83b+1tdFawHFAFrADeCdO53wUWAP0Bi6L0zlFRESSSoktERERiYfo0VSTG+hXfexx//twM+sfq6OZ7QaM8HffbYOJhrgwsxDwV393JzDROfc959yzzrnZzrmPnXPPOed+5ZwbC4wGnkpZwO3Xt4GeQBltbLSW7xv+91edcxXxOKE/2vJRf/cHZqa/DUREJO3oPy8RERGJh1l4I42g4VFY1ceeAJY00r+jTEOcCPT1t//tnPuioc7OufnOuccSH1aHc5H//UXn3PZUBlKbn3D6ur/7QpxP/5D/fShwRJzPLSIiknBKbImIiEirOefKgJn+7ngzy67dx8yG4tWKAnjX/4IWJLYaWxXRzJb7x+/190ea2X/89jIz22BmT5vZQY39bH5x/O+Z2Ud+kfwCM/vEzK6K9XO2wOCo7cUtPUms1Rn9le9eN7ONfhH6BWb2ezPr1sRzHmFm95nZUjMr9n/+OWb2p/pG2sX7HGbW3cz+4Mde4v8sr5vZmU25fhNj3B0vwQheUfX6+k2J+jee4i+GcJGZvesvirDDzGaa2Xm1HpdlZt81sw/NbKuZ7TSz98zsrCaGeBBezbUI8FKMuA40s7vNW+GwyMxKzWyVmc02s3+a2UlmsVd4dM59Aizzd89pYjwiIiJtRjjVAYiIiEi7MR1vqmE2XpKg9iir6mmIi5xzG8zsXeAC6p+6WJ3Y2gF81tKgzOxU4EG8+lXVdsOrYfUNM/uWc+7Reh7bCS+RUDv5doD/dQ5wcUtj85VHbY9q5bl2MbO7gdqrTo4ErgXON7OjnHML6nlsDnAPcHaMw3v7X5eb2TnOuZiFzON0jlHA60B0AiwHOAo4yszuIT6j+aZEbX/YxMdkAs9SM0Ww2njgfjMb55y70sy6A89Q9z4/BDjEzPZwzv2OhlVf4wPn3OboA2b2Y+DP1P3AeqD/NRb4HtAZKKzn/B/hjdj6WiNxiIiItDkasSUiIiLxEp1giDUKq7rt3Vrf9/b/+N/FXwFuP3/3fb8WUEvsAzwMbAB+gDfy5WDgRrypkyHgTjPrXc/jH4yKeyZeImsccAJenbCxtH6FwuiC8JeZ2ZGtPB94iYwLCcb8daB6CmN/4FX/3znAH9nzBDUJqeeB84BD8f7trgRWAvnAE2Y2LkHn6AK8Sk1S61H/ZxgHnAt8DHzH/1lbq/o53uKcW9rEx9yEl3B6CO9+OBDv3/or//gPzexo4F68JNbtwLF+v4uAtX6/35jZmEauVZ3YCiQAzWxfapJay4Cf4iX9DsBLpF2Cd/8XNXL+6tGWA8xsj0b6ioiItCkasSUiIiLx8gFQiff+oqHE1gwA59wCM9uMN8XqUIK1gw7BSzpB60bkjAVmA0c653ZEtX9oZovxEldd8AqH/y36gWZ2At5qhOCN2jrZOVcZ1eUlM/sV8OtWxIdzbpmZvQCciDca6Q0zmwW8jDd6aFbtUTpNML6emF82sy+B3+BNgfwlcHWtx16Ml6ipAE5yzr1S6/iHZvYA3vM4BrgFOCwB5/glMMjfvt459/uoY7PN7Am8e+bYOj9981Wv5PlZMx4zEfiRc+7WqLZPzOxtYCHeCKmH8e7v05xzz9Tq9zFeUjMEXIqX7KvDvCm81Ymv2vW1zsBLahUBBzvnNtQ6PgO4y8y6AsUN/Cyzo7YPpBVTYkVERJJNI7ZEREQkLpxzhdSMPjrEvNX+gLorHEY97D3/e+1EWDwLx19YK6lV7WFqRs3ESsRVjwQqAy6plSCq9n/Al62MD7yRR7Oi9scDv8JLTm0ys6/M7DYzG9vE8zUU82+pifkiM8uqPuCPtLrG3/17jIQUAM65bcDP/N1DzWzPOJ8ji5pi7l8Af4jx+Aq/TzxWCBzof9/YjMd8VCupVR3XeuBpf7c38FitpFZ1vy9ovM4ceAlPgGXOubm1jlUvOrAwRlIr+loFzrlIA9eI/rmHNdBPRESkzVFiS0REROKpOgnVGdg/qr26vtAG59yiqPZ3ax2vVv2HfinBhE9zzalvlUHnnKMmERf4Y95Pyk3xd6c559YSg58suK8V8VWfZzPeqLVLgU9idBmBN5Vytpk9YGb5jZyyqTH3wBvVVm00MNzffqKRa0QnHA+O8zkOBKqnp97nP1d1OOdWA9MauUaDzFsAoHpK5rZmPPSRBo593sx+DSWTYk5D9K3zv482swkNnKMxW6O2+9bbS0REpA1SYktERETiaUbU9qQY29GjtaL7H2hmubBrtE71H+kfOefKabmYxdGjVP9BX7vW1HBqis03llib2cjxJnHOVTjn/uOcOxBv9ciz8eonzSA4KunbwHPRI+JiaE7M+0RtR9e6+iBqBcA6XwQLkfeN8zmiY0r0v3+PqO3mJLYWNnBsezP71al1BrtqzR3u78ZKbP0P797IBt4zs+f91Rf3rm8VxHpE/9yNJU1FRETaFCW2REREJJ5mANWja5qS2PoEr/ZPJl5hd/Cm4eX4262dhthQXSGA6ulZtZNE0cmOxqan1TsFrKWcc2udc486537mnJuMl/T5PTXxHolXqLw+zYk5+mfdrdnBemqvONnacyTz3780aju3GY9r6N6KnvbXlH71vSc/DsgCdgLv1D7or2p5Dl5iKow3bfF2YA6w0R/d19A0x2rRP3c8pnaKiIgkjYrHi4iISNw457aa2Vxgb/xklr+6XfUKh+/W6l9hZjPxpv1NBt4ivvW14iHmNLikBuDcVuB6fxTOtX7zmXjF72M+pIWXik7wfQNY3sTHRSef4nGOaIn+999OzaIHPRrumnTV9bVe9WuK1eGce9LMXge+iZcIm4RX26sX3ui+b5vZfXi15uqrsxX9c2+PR+AiIiLJosSWiIiIxNt0vMRWbzPbCxiKNyIlurh8tHfxElvVCa3qelsVeCstpkL01Kw+jfRt7Hg8/YeaxNYeDfRrTszR9ZW2RG1vd861pDB+PM5R+9+/oel8rfr3d845f3XOvtTU9Uo5M8sAvu7vxpqGuItzrgC40//CzEbhreh5BdAfuADvd69OsXtf9M+9suVRi4iIJJ+mIoqIiEi81a6zVZ2w+tA5VxWjf/UoroP8Qt6H+PufOOeKEhRjY5YAJf72+Eb6NnY8nqILwjc0kqk5MUcnnqITj4c2Naha4nGOOVHbyfj3r77eiAZ7JddBeCOvInirYzaZc26+c+4P/jmqf4fOauAh0T937ZUXRURE2jQltkRERCTeoqcPTqZmBFbt+lrVPgCq8IpWTwW6xjhPUjnnKoG3/d1jzaxfrH7+qJoLWnOtZhb5ji7MvrSBfk2NeRvBVRg/AVb725eaWQ7NF49zzKZm1NZ59f0bmdkA4NgWnL+26mTsSL9ge1tQvRriB/6qmc3mnFtFzWi3Xg10rU4OVhB7VU4REZE2S4ktERERiSvn3Fq8EU8AR1CTjJlRT/8d1IyYuTrqUKrra93uf88G/l3PKoTXEVzBryWON7PHzOyAhjqZWQ/g71FNzzbQvaGYr6Um5v8658qqD/g1mH7n7w4D7vdH0dUXUxcz+0F0W5zOUQbc4+/uD/wsxuPCeFMzs+o7dzNU35sZBJOHqVSd2Hqhvg5mdoqZdWvg+CBgL393WQPXql6F9APnXGED/URERNoc1dgSERGRRJgBDAcG+PuVwIcN9H8XL4ExzN+PUP8Ir6Rwzj1vZs/jJRi+AbxnZn8DFuGt/DcVr2D3x7QuGZKBVwj+TDP7HHgRmAWsA8r9ax0GXErNioOzgfsaOOfH9cR8AXC232c1cFOMx94BHAOc6sc11sz+DcwECoAueMmSKcBJeKsK/iMB5/gN3vS5gcDNZrY/cD9ekfkRwE/wRhq19t8f4H1gE97Uv6PwFjFIGTMbAozxdxuqr/Uj4CEzexF4E5iP9+/bHe/f5ApqVjy8o55rdaZmxNbTrYlbREQkFZTYEhERkUSYjpf4qfapc664gf7vAtGjduY457YnIK7m+hbwMl6tqInAI7WOfwpchpdoaqlteHWQ8vFWj9yv4e68BpzjT5eszz+Bw/Geg9oxg5c0O84vOh7gF1P/Jl6h8e/iJSj/2MC16qxmGKdzFJjZ14DX8Qq7n+N/RbsXeIea0V0t4pwrN7P7gZ/61/hFa84XB9WjtZY55xqreZWHnxit53gEuME590w9x08DcvCSz7HuFRERkTZNUxFFREQkEWpPI2xs9FXtaYqpnoYIgHNuJ96ooivwRlEVAjuBz/CmIR5CcFXBllzjPbyRQicBf8VL1KwFyvCSDVvx6h79GzjCOXesc25LPaeLPu93gHPxaoVt8c+3EC/BNMY5N6+Bx1Y4576Hl2S7DW+qaAFeLbQCvJ//buAMYFQCzzEXb+TSH/FGnZUBm/FGVJ3r/4zx8h//+zAzOyiO522J6sRWg6sh4iXhLgUexvv3XI93zxTiFYG/HTjAOfd/DZzjXP/708659S0NWEREJFXMuYYW1BERERGRdOBPX6uuo/Qd59y9qYsmPZnZS8DxwF3OuUtSFENnvORdFnCsc+61BF5rd7x6eCHgYOdcQ9OFRURE2iSN2BIRERER8VyHN3XvfL/weioci5fU2ok3ei+RrsdLar2ipJaIiKQrJbZERERERADn3Od40/qy8JJcqbAT+DVwhXOuPFEX8RN3U/Gmhl7dcG8REZG2S8XjRURERERqXI83Pa/UzMwluW6Hc24aMC0JlxoE/B5Y6pybk4TriYiIJIRqbImIiIi0A6qxJSIiIh2RpiKKiIiIiIiIiEha0ogtERERERERERFJSxqxJSIiIiIiIiIiaUmJLRERERERERERSUtKbImIiIiIiIiISFpSYktERERERERERNKSElsiIiIiIiIiIpKWlNgSEREREREREZG0pMSWiIiIiIiIiIikJSW2REREREREREQkLSmxJSIiIiIiIiIiaUmJLRERERERERERSUtKbImIiIiIiIiISFpSYktERERERERERNKSElsiIiIiIiIiIpKWlNgSEREREREREZG0pMSWiIiIiIiIiIikJSW2REREREREREQkLSmxJSIiIiIiIiIiaUmJLRERERERERERSUtKbImIiIiIiIiISFr6f304J1e6TlceAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLYAAAI5CAYAAAC8ULOiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1iTV/8/8HcSRhgiiCgOFBBRXEURkam4xVVHFa1arD61X1upffqofdqq0Fpnq3W0Wussjtpqta0+VtS6GFZt3RPBgRtkyR7J7w9+3OVOGAFCwni/rovL5Nwn55wkt4H7k3M+R6JUKpUgIiIiIiIiIiKqZaT6HgAREREREREREVFlMLBFRERERERERES1EgNbRERERERERERUKzGwRUREREREREREtRIDW0REREREREREVCsxsEVERERERERERLUSA1tERERERERERFQrMbBFRERERERERES1EgNbRERERERERERUKzGwRUREREREREREtRIDW0REREREREREVCsxsEVERERERERERLUSA1tERERERERERFQrMbBFRERERERERES1EgNbRERERERERERUKzGwRUREREREREREtRIDW0REREREREREVCsZ6HsAVHtkZ2fjypUrAAAbGxsYGPD0ISIiIiIiIqrr8vPzkZCQAADo3Lkz5HK5nkf0D0YmSGNXrlxBjx499D0MIiIiIiIiItKTs2fPwt3dXd/DEHApIhERERERERER1UqcsUUas7GxEW6fOnUKDg4OehwN6VpWVhZOnToFAPDz84OJiYmeR0S6xnOgfuP7TzwH6je+/8RzoH7j+093796Fn58fAHFsoCZgYIs0Vjynlq2tLVq2bKnH0ZCuZWVloXHjxgCAli1b8pdZPcRzoH7j+088B+o3vv/Ec6B+4/tPWVlZwu2alm+bSxGJiIiIiIiIiKhWYmCLiIiIiIiIiIhqJQa2iIiIiIiIiIioVmJgi4iIiIiIiIiIaqWalfGLiIiIiIiqRKFQIC0tDSkpKcjLy9Nam9bW1gCABw8eQCrl9+P1Dc+B+o3vf90mk8lgZmYGCwuLWrkxAANbRERERER1yLNnz5CSkqLVNpVKpXCxU1BQAIVCodX2qebjOVC/8f2v2/Lz85GTk4OkpCQ0b94cDRs21PeQKoSBLSIiIiKiOiIrK0sU1JLJZJBIJFppu6idmrbNO+kOz4H6je9/3ZWfny/cfvz4MYyNjSGXy/U4oorhGUlEREREVEckJSUJtxs3bgwbGxuttFu0vBEALCwsuAypHuI5UL/x/a/bCgoK8PTpU+E9Tk1NrVWBLZ6NRERERER1RG5urnC7cePGehwJERHVFjKZDLa2tsL9jIwMPY6m4hjYIiIiIiKqI4qWk2hzCSIREdV9MplMWGZaUFCg59FUDANbRERERER1DINaRERUXzCwRUREREREREREtRIDW0REREREVONt3boVEokE9+7d0/dQqJrY29sjKChIo7q9e/dG7969q6XfEydOQCKR4MSJE1ppn4iqFwNbREREREREGtq9ezcmTpyItm3bQiKRlBpcKQqOlPRz5swZUV17e3tIJBL069evxLa+++474bHnz58HACxbtgwSiQQXLlwQ1VUqlbCysoJEIsHdu3dFx7Kzs2FsbIwJEyZU8tnr1vXr1xESEsJgph4tWrQI+/fv12qbQUFBpf7fKP6jaZCzMm7evIk5c+bA1dUVDRo0QLNmzTBkyBDh/1dlBQUFwdzcvNTjEokE7777bpX6KEt6ejoWLFiAQYMGoVGjRpBIJNi6dWu19VdTGOh7AEREREREROWZNGkSAgMDYWxsrNdxrFu3Dn/99Rfc3d3x4sWLcusHBwfD3d1dVObk5KRWTy6X4/jx43j69KlodzIA2LFjB+RyObKzs4UyHx8fAEBERAS6du0qlF+7dg0pKSkwMDBAZGQkHBwchGPnzp1Dbm6u8Nia7vr16wgNDUXv3r1hb28vOhYeHl5t/fr5+SErKwtGRkbV1kdtsWjRIowZMwbDhw/XWpvTp08XBXHv3r2L+fPn46233oKvr69Q3qZNG631qWrjxo3YtGkTRo8ejRkzZiA1NRXffvstevbsid9//73UIHNNl5iYiE8//RStWrXCK6+8Um9mHdbbwNbz589x9uxZnD17FufOncO5c+eEX0xvvPGGRlHNrVu3YsqUKRr1t2XLFq1EnBMTE7F69Wrs379f+ObC3t4er776Kt577z1YW1tXuQ8iIiIioppGJpNBJpPpexgICwtDixYtIJVK0alTp3Lr+/r6YsyYMeXW8/b2xrlz57B792689957QvnDhw9x+vRpjBw5Env37hXKu3fvDrlcjoiICMycOVMoj4yMhLW1Nbp3746IiAhMnDhROBYREQEAtSawVZbqDDpJpVLI5fJqa7++8/T0hKenp3D//PnzmD9/Pjw9PUXna3UaP348QkJCRLOr3nzzTbi4uCAkJKTWBraaNWuGJ0+ewNbWFufPn1cLqtdV9XYpYtOmTTFs2DB89tln+P333zX6tkXf/vzzT3Tu3BmfffYZrly5gpcvX+Lly5e4cuUKPvvsM3Tu3Blnz57V9zCJiIiIiLSutBxbhw4dgq+vL8zMzNCgQQMMGTIE165dE9W5fPkygoKC4OjoCLlcDltbW7z55puVugaws7ODVFqxy6iXL18iPz+/zDpyuRyjRo3Czp07ReW7du2ClZUVBg4cKCo3MjKCu7s7IiMjReWRkZHw9PSEt7d3iccsLS01CsgV6d27Nzp16oTLly9jyJAhaN68OZydnbFnzx4AwMmTJ+Hh4QETExO0a9cOR48eFT0+KChIbbYVAISEhJS5e+fWrVvx2muvAQD8/f2F5WlFM1Aqk2NLqVRi4cKFaNmyJUxNTeHv7692rgAl59gq/jr06tULpqamcHJy0vh10IRCocCqVavQuXNnyOVy2NjYYNCgQaLlcUVL2Xbs2IF27dpBLpfDzc0Np06d0np/EokEGRkZ2LZtG2QyGaysrDBjxowK91NV9vb2GDp0KMLDw+Hq6gq5XI4OHTrg559/VqsbGxuL2NjYctt0c3NTWzJobW0NX19f3LhxQ1SemZmJmzdvIjExsWpPpBRr1qxBx44dYWpqCisrK3Tv3l3tc+DmzZt48OBBuW0ZGxurzfisD+ptYKu4Vq1aYcCAAVVq4/Dhw7hy5UqpP6+++mqV2o+Pj8ewYcPw9OlTGBgYYM6cOTh16hROnTqFOXPmwMDAAE+ePMGwYcPw8OHDKvVFRERERHWHQqHEi/ScKv8kZeYhKTNPK229SM+BQqGs8nMLCwvDkCFDYG5ujqVLl2LevHm4fv06fHx8RAGwI0eOIC4uDlOmTMGaNWsQGBiIH374AQEBAVAqqz6OskyZMgUWFhaQy+Xw9/cvM4fPhAkTcPbsWdGF+c6dOzFmzBgYGhqq1ffx8cGjR49EzzUyMhJeXl7w8vISliUChUGdqKgoeHp6Vjgwl5ycjOHDh8PNzQ0hISEwNjZGYGAgdu/ejcDAQAQEBGDJkiXIyMjAmDFj8PLlywq1XxI/Pz8EBwcDAD766COEhYUhLCwMLi4ulW5z/vz5mDdvHl555RUsX74cjo6OGDBgADIyMjR6fHJyMoYOHQoPDw8sW7ZM66/D1KlTMWvWLNjZ2WHp0qX48MMPIZfL1XKynTx5ErNmzcLEiRPx6aef4sWLFxg0aBCuXr2q1f7CwsJgbGwMX19fbNu2DevXr6/WvFdliYmJwbhx4zB48GAsXrwYBgYGeO2113DkyBFRvb59+6Jv376V7ufp06do3LixqOzs2bNwcXHB2rVrNW4nMTGxxB9V3333HYKDg9GhQwd89dVXCA0NhaurK/78809RPRcXF0yePLlyT6oeqLdLEefPnw93d3e4u7ujadOmuHfvnmj9eUU5OzuX+E2Etnz88cdISEgAUPjLrejbC6BwerObmxvGjRuH58+f45NPPqkXCeKIiIiIqHzJmblwW1jx2SPV7a9P+sHavPL5stLT0xEcHIxp06Zhw4YNQvkbb7yBdu3aYdGiRUL5jBkz8MEHH4ge37NnT4wfPx4RERGivD7aYmRkhNGjRyMgIACNGzfG9evX8cUXX8DX1xdRUVGivFhF+vTpA1tbW+zatQuffPIJbty4gYsXL2LVqlWIi4tTq188z5a9vT2ePn2KuLg4eHt7o1u3bpBKpYiKikJAQACuX7+O5OTkSi1DfPz4MbZv344hQ4YAAIYNG4YOHTpgwoQJiIqKgoeHB4DCi++BAwdi7969VQ6AODo6wtfXF6tXr0b//v2rvANiQkICli1bhiFDhuC3334TZot9/PHHWLRokUZtPH78GDt37sT48eMBAP3790f79u218jocP34cW7duRXBwMFatWiWUf/DBB2rB16tXr+L8+fNwc3MDAAQGBqJdu3aYP39+ibOYKtvfxIkT8fbbb8PR0RETJ05EWlqaRm1Xh9u3b2Pv3r0YNWoUgMKgXPv27TF37lz0799fK32cPn0a0dHR+OSTT6rUTkZGBmxsbDSqe/DgQXTs2BE//fRTlfqs7+rtjK3Q0FAMHToUTZs21fdQyvX06VPs2LEDADBw4EBRUKvI2LFjhenJYWFhePr0qU7HSERERESkS0eOHEFKSgrGjx8vmhEhk8ng4eGB48ePC3VNTEyE29nZ2UhMTETPnj0BAH///Xe1jM/Lywt79uzBm2++ieHDh+PDDz/EmTNnIJFI8N///rfEx8hkMowdOxa7du0CUJg03s7OrtTAm5eXF6RSqZA7KzIyEoaGhnB3d4e5uTm6dOkiLEcs+rcygS1zc3MEBgYK99u1awdLS0u4uLgIwRwAwu2SgnD6dvToUeTm5mLmzJmiJZCzZs3SuI3qfB327t0LiUSCBQsWqB1TXbLp6ekpBLWAwhVII0aMwOHDh1FQUKD1/mqC5s2bY+TIkcJ9CwsLTJ48GRcuXBBd+967d69Su2g+f/4cEyZMgIODA+bMmSM61rt3byiVSoSEhGjUllwux5EjR0r8UWVpaYmHDx/i3LlzZbapVCrrTSL4yqi3M7Zqk19//RUKhQIAykxWHxQUhMOHD0OhUODXX3/FW2+9pashEhERERHpVExMDIDCWU4lsbCwEG4nJSUhNDQUP/zwA54/fy6ql5qaWn2DVOHk5IQRI0bg559/RkFBQYnJ8CdMmIDVq1fj0qVL2LlzJwIDA0sNNFhaWqJjx46i4FXXrl2FQJ6Xl5fomJGREXr06FHhcbds2VJtDA0bNoSdnZ1aGVC4ZK+muX//PgCgbdu2onIbGxtYWVlp1EZ1vg6xsbFo3rw5GjVqVG5d1ecAFK4gyszMREJCgkY5lirSn6ZUJ1c0bNhQFFSuCicnJ7XX3tnZGUBhMKsqeaUyMjIwdOhQvHz5EhEREWq5typKJpNpnHx+7ty5OHr0KHr06AEnJycMGDAAEyZMgLe3d5XGUN8wsFULFH0DAwC9evUqtV7xY5GRkQxsEREREVGdVfTFb1hYWIkXtQYG/1zqjB07FlFRUZg9ezZcXV1hbm4OhUKBQYMGCe3oip2dHXJzc5GRkSEKvhXx8PBAmzZtMGvWLNy9excTJkwosz0fHx+sX78eKSkpQn6tIl5eXti8eTPy8vIQEREBNze3Su32V9pulKWVF186V1pQTtOZRTVJVV6H+qBZs2ai+1u2bNFbTi5N5ebmYtSoUbh8+TIOHz5coY0VtMHFxQW3bt3CgQMH8Pvvv2Pv3r345ptvMH/+fISGhup0LLUZA1taMmXKFNy6dQuJiYmwsLCAk5MT+vXrh//7v/9DixYtqtT29evXARRGvMuKRDdr1gwWFhZIS0tT28mBiKi2uPY4FX/dT0aBFpIKk/bk5eXh5pPCi5Nnf8aXmMSY6jaeA7WDvWEWzI0kMJVIkZieAwBQKJU48r5fldpVKpXIzs6BVAI0tjSDYSkX8hVhZWpUpce3adMGANCkSZMyZ0ckJyfj2LFjCA0Nxfz584XyohlfuhYXFwe5XF7mrJDx48dj4cKFcHFxgaura5nt+fj4YN26dTh69CguXLiA2bNnC8e8vLyQlZWFgwcPIi4uDqNHj9bW09CYlZWVkMC+uKIZVGXR5pK41q1bAyh83x0dHYXyhISEGjHDrE2bNjh8+DCSkpLKnUVV0rl7+/ZtmJqaapzbSdP+KvIeqC6169ixo8aPLc+dO3egVCpF47l9+zYAVDrXtUKhwOTJk3Hs2DH8+OOPZU4iqU5mZmYYN24cxo0bJwTaPv/8c/z3v/+tVCC6PmJgS0uKr3d98eIFXrx4gT///BNffvklvvrqK0yfPr3SbRftctiyZcty69rZ2eHatWuIj4+vdD+lefLkiXA7JycHWVlZFe6Daq/s7OwSb1P9oYtz4ODVZ5jz8zUwplVT/f8L2Xv6uRikmoDnQE33sY8V7BvJIZMZ4HGKlv9WMzCEAkByZj6cbIwhk1Y16KCs0M6IRTOrFAoFFAoF+vfvDwsLCyxatAi9evVSC7YmJCTAxsZGuBAuelyRlStXFo5CqazyrK2SHl/Uf3GXLl3Cr7/+ikGDBqk9rvg43nzzTUilUvTo0UP0vEt6HkUztFasWIG8vDz07NlTON6qVSs0a9YMy5YtE+pW9rkWf1zR7dJeu+Lljo6OSE1NxcWLF9GlSxcAhdcV+/btU2tX9bFFy9iSkpJKHbemz6dPnz4wNDTE6tWr0a9fP+G8KOk8KO21Lq0/TV6H8owcORJff/01QkJC8NVXX6m1UzygEx0djfPnz6Nbt24AgPj4ePzyyy8YOHAgJBKJRn1q2p+ZmRmSk5NLfP9VlbQsWJOxlPV6F3n8+LEoeXxaWhq+//57uLq6okmTJsLjinYULQp8l+Xdd9/F7t27sW7dOrz66qtamb1ZNEuvrLaKnxcvXryAtbW1cMzAwAAuLi44dOgQcnJyYGRU+AXAzZs3YWpqilatWmk8Fk1e17LGp3q9n5OTo3EbusbAVhU5Ojpi1KhR8PT0FNZWx8XFYe/evdizZw+ys7Px9ttvQyKRVHppYNE2sZqs9TUzMwNQuEtMRamuDS/Ln3/+KdqGmOqXU6dO6XsIpGfVcQ68yAaWXpZBoax5CUuJiOgfeQUKJKS8hKmOrySKvlRJT08Xdmf74osv8Pbbb6Nr164YNWoUGjdujIcPHyI8PBweHh5Yvnw5gMKAzvLly5Geno5mzZrh+PHjwoyhnJycCu32FhkZiejoaACFCadfvnwpzATz9PQUcuO89tprkMvl6NGjB2xsbHDr1i1s27YNJiYm+Pjjj0V9KhQK5OfnC2VWVlZ4//33AUAoK3r+GRkZosdaWlqiRYsWiI6ORqtWrWBubi467u7ujl9//RUSiQRdunSp8M52+fn5KCgoEF1fpKenq425uNzcXKE8ICAAH374IUaOHInp06cjMzMTmzdvRps2bXDp0iW11yEvL08oa9OmDWQyGZYsWYJnz57ByMgIfn5+sLGxQX5+vuj1KY+xsTHeffddrFy5EoMHD0b//v1x5coVHD16FNbW1qJ+MzMzhX+LyopeB9X+NH0dylO0y/2aNWtw48YN9OvXDwqFAtHR0fDx8RFdS7q4uGDQoEGYPn06jIyMsGnTJgDAf/7zH63316VLFxw7dgxLly6Fra0tWrduje7du2vUh6YyMjIAFJ7jJY1foVDAyckJ06ZNQ2RkJJo0aYLt27fj2bNnWLNmjegxffv2BQBcvny5zD7XrVuHdevWwd3dHRKJBN99953o+NChQ4Vr64iICAwbNgxz587Fhx9+WGa7eXl5AMo+L4ufF/3790eTJk3g4eGBJk2a4Pbt2/juu+8wYMAAKJVKoV7Hjh3h7e2NAwcOlNk/AGzYsAFpaWnCxJT9+/cLGxn861//EnLAlSQ/Px9ZWVnIysrCzZs3RccSExPL7VtfGNiqgpEjR+KNN95Qm57p7u6OcePG4cCBAxg1ahTy8vLw/vvvY/jw4ZVKalf0S6woWlsWY+PCLZM5m4qIahOFEtgZK0NOAYNaRES1QU2ZWfvaa6+hWbNm+Oqrr7BmzRrk5uaiWbNm8PT0xOuvvy7U++677zB37lxs3LgRSqUSffr0wU8//QQXF5cK93n69GksXbpUVPb5558DKEwEXRTYGjJkCH766Sd88803ePnyJRo3boyhQ4di7ty5oqVw2tCzZ0/s3bu3xMTwHh4e+PXXX+Hs7KzVROGaatSoEcLCwvDxxx9jwYIFaN26NebPn4+4uDhcunSpzMc2bdoUK1aswMqVKzFz5kwUFBTgt99+03i5napPPvkEcrkcW7ZsEXKO7d27F+PGjatUe9r29ddfo2PHjti+fTvmz58PCwsLuLq6inZcBABvb2+4u7tj2bJlePjwIdq1a4dvvvmmwvmhNOnv888/x6xZs/D5558jKysL48eP13pgSxOOjo5YunQp5s+fjzt37qB169bYvHmzEMiqqCtXrgAAzp07V+KOhJcuXVKbNNK0adNKjr50QUFBwudERkYGmjdvjrfeegv/+c9/Kt3m2rVrRSu4fvvtN/z2228ACvMNlhXYqq0kyvqW0a4U9+7dg4ODAwDgjTfewNatW7XS7sKFCzFv3jzh9scff1zhNszMzJCZmQkPDw+cOXOmzLoeHh44e/YszM3NhZlemtJkKWLRL8srV65oNL2T6o7s7Gxhlo6fnx/Xe9dD1XkObI1+gKXhd0RlbWzMYGNetfwrpD0KhQIpKYU5SCwtrSCVSvU8ItI1ngO1w+i2BmhqboSGZnKYNyk/jYWmsvMKRLkPm1nIYc3P6HpFoVAIF/jm5ub8DNATmUyGGTNmYM2aNTrtV5/vv6OjIzp27CgEZ3Rt7ty5+OGHH3D79m1hIkldFRsbi7y8PMhkMrVlj7GxsejcuTOAwuWvmqRK0hXO2Kpmb731FubPnw+lUomTJ09WKrDVoEEDZGZmarS8sGgaZ2W2KK3IiWlsbKy1rVup9pHL5Xz/6zltngMxz15i5R9xorIWlibY/443GsiZnLqmyMrKQnh4OABgwAA3fgbUQzwHaoeYmBjk5+fDwECGNjZV27K+uLsJ6XiZky/cV0rAwEY9JpVK+f7rkUQi0evrr4/3X5/P+cSJE5g3b169+b1X9FqrPt+aHNRjYKuaNWnSBNbW1khMTMSjR48q1UbLli3x7NmzcmdUARCmHFYkXxYRkb7k5ivw/o8XkZv/T0JLiQT4cuwrDGoREdUgqqk36tqaj4KCAiQkJJRZx9zcvFJfHtdUSUlJyM3NLfW4TCar9JI/XUtISEBBQUGpx42MjPSyDBPQ/blVH8/l6lbSUkWqWRjY0oGqblPboUMH/PXXX0hNTcXTp09LzdP15MkTIblcZfIFEBHp2to/YnD1kTi55lRvB/R0tC7lEUREpA+qGyDWtWwm8fHxQlqS0ixYsAAhISG6GZAOjBo1CidPniz1eOvWrXHv3j3dDagK3N3dhc0AStKrVy/RLva6pOtzqz6ey0QMbFWzhIQEYfeA5s2bV6oNHx8fhIWFAQBOnjxZanLD4r+YipJWEhHVVBceJOPrE+LdVds2Mcd/BrbT04iIiKg0qt/T1pTk8dpia2uLI0eOlFlH2wnf9e3LL79EcnJyqcdr07KrHTt2lLl5lpWVlQ5HI6btc6u8oHJdPJdrS4CV9IeBrWq2YcMG4cOnV69elWpj+PDh+L//+z8oFAps2bKl1MBWUcJ7qVSK4cOHV6ovIiJdyMotwAc/XhIlIjaQSrBynCvkhjI9joyIiEoigepSxLoV2ZLL5ejXr5++h6FTbm5u+h6C1tTkL/V1fW7Vx3OZiBn/KunevXu4cOFCmXUOHDiATz/9FEDhNx5TpkwpsV7v3r0hkUggkUhKjEbb2toK2xUfPnwYe/bsUavz008/4fDhwwCASZMmlbpckYioJlhy6AbiEjNEZe/1bYtOLere9sNERHWB6lLEujZji4iIaq96O2MrIiICd+78s7V80XJBALhz544w+6lIUFCQ6P69e/fg7+8PT09PDBs2DK+88gqaNGkCAIiLi8OePXuwZ88e4dusL774Ai1atKj0eD///HP8/vvvSEhIwPjx43H+/HkMHToUQGEA7csvvwQA2NjYYOHChZXuh4ioup2OScC2aHEejFfsLPF/vdvoaURERFSeup48noiIaq96G9jauHEjtm3bVuKxyMhIREZGispUA1tFoqOjER0dXWo/pqamWLlyJd56661KjxUo3OXwt99+w6uvvoqnT59i6dKlWLp0qaiOra0t9u/fj5YtW1apLyKi6pKamYfZP10WlckNpVgx9hUYyDiJmIioplLNsaUEI1tERFQz1NvAVlW5ublh+/btiI6Oxvnz5/HkyRMkJiYiPz8fVlZW6NixI/r27Ytp06YJM7mqysPDA1euXMGqVauwf/9+Ydmig4MDRowYgVmzZsHamjuJEVHNFfLbNTxNyxaV/XewC9rYcMtpIqKajEsRiYiopqq3ga2tW7eqLTesiAYNGuD1118Xcl9VRUW2nm3cuDE+++wzfPbZZ1Xul4hIl/535Qn2XXgkKvNt2xiTerbW04iIiEhT6ksRGdkiIqKages+iIio2j1Py8bH+66IyhrIDbBsTBdIVacBEBFRjaP6Sc0ZW0REVFMwsEVERNVKqVTiw5+vIDkzT1T+2YhOaNbQRE+jIiKiipByxhYREdVQDGwREVG1+uFcPP64+VxUFtDZFiNcm+tpREREVFGqyeP1MWNr69atkEgkQp5Zqnvs7e1L3bRLVe/evdG7d+9q6ffEiROQSCQVShlDRPrDwBYREVWbBy8y8dmB66IymwbGWPhqZ7V8LUREVHOpzdiqx7si7t69GxMnTkTbtm0hkUhKDa4UBUdK+jlz5oyorr29PSQSCfr161diW999953w2PPnzwMAli1bBolEggsXLojqKpVKWFlZQSKR4O7du6Jj2dnZMDY2xoQJEyr57HXr+vXrCAkJYTBTjxYtWoT9+/drtc2goKBS/28U/9E0yFkZN2/exJw5c+Dq6ooGDRqgWbNmGDJkiPD/q7KCgoJgbl76pkgSiQTvvvtulfooS0U+d+qSeps8noiIqleBQokPfrqIzNwCUfnS0Z3RyMxIT6MiIqLKUP0uQh8rESdNmoTAwEAYGxvrvvNi1q1bh7/++gvu7u548eJFufWDg4Ph7u4uKnNyclKrJ5fLcfz4cTx9+hS2traiYzt27IBcLkd29j87C/v4+AAAIiIi0LVrV6H82rVrSElJgYGBASIjI+Hg4CAcO3fuHHJzc4XH1nTXr19HaGgoevfuDXt7e9Gx8PDwauvXz88PWVlZMDLi3yuLFi3CmDFjMHz4cK21OX36dFEQ9+7du5g/fz7eeust+Pr6CuVt2rTRWp+qNm7ciE2bNmH06NGYMWMGUlNT8e2336Jnz574/fffSw0y1xaafu7UFQxsERFRtdh/4RHO3UsWlY3vYYc+7ZvqaURERFRZ6snjdR/ZkslkkMlkOu9XVVhYGFq0aAGpVIpOnTqVW9/X1xdjxowpt563tzfOnTuH3bt347333hPKHz58iNOnT2PkyJHYu3evUN69e3fI5XJERERg5syZQnlkZCSsra3RvXt3REREYOLEicKxiIgIAKg1ga2yVGfQSSqVQi6XV1v79Z2npyc8PT2F++fPn8f8+fPh6ekpOl+r0/jx4xESEiKaXfXmm2/CxcUFISEhtT6wpennTl3BpYhERFQtfr/2VHS/VSNTfDKkg55GQ0REVaG6fFwfM7ZKy7F16NAh+Pr6wszMDA0aNMCQIUNw7do1UZ3Lly8jKCgIjo6OkMvlsLW1xZtvvqnRjCtVdnZ2kEordhn18uVL5Ofnl1lHLpdj1KhR2Llzp6h8165dsLKywsCBA0XlRkZGcHd3R2RkpKg8MjISnp6e8Pb2LvGYpaWlRgG5Ir1790anTp1w+fJlDBkyBM2bN4ezszP27NkDADh58iQ8PDxgYmKCdu3a4ejRo6LHBwUFqc22AoCQkJAy0xJs3boVr732GgDA399fWE5VlPeqMjm2lEolFi5ciJYtW8LU1BT+/v5q5wpQco6t4q9Dr169YGpqCicnJ41fB00oFAqsWrUKnTt3hlwuh42NDQYNGiRaHle0lG3Hjh1o164d5HI53NzccOrUKa33J5FIkJGRgW3btkEmk8HKygozZsyocD9VZW9vj6FDhyI8PByurq6Qy+Xo0KEDfv75Z7W6sbGxiI2NLbdNNzc3tSWD1tbW8PX1xY0bN0TlmZmZuHnzJhITE6v2REqxZs0adOzYEaamprCyskL37t3VPgdu3ryJBw8eVKhdTT536goGtoiISOsUCiXO3UsSlQX3bQszY04UJiLSOYUCyEis0o80KxGyrBfCjyQzEcr0hKq1q1BU+amFhYVhyJAhMDc3x9KlSzFv3jxcv34dPj4+ogDYkSNHEBcXhylTpmDNmjUIDAzEDz/8gICAgGrf4XHKlCmwsLCAXC6Hv79/mTl8JkyYgLNnz4ouzHfu3IkxY8bA0NBQrb6Pjw8ePXokeq6RkZHw8vKCl5eXsCwRKAzqREVFwdPTs8KBueTkZAwfPhxubm4ICQmBsbExAgMDsXv3bgQGBiIgIABLlixBRkYGxowZg5cvX1ao/ZL4+fkhODgYAPDRRx8hLCwMYWFhcHFxqXSb8+fPx7x58/DKK69g+fLlcHR0xIABA5CRkaHR45OTkzF06FB4eHhg2bJlWn8dpk6dilmzZsHOzg5Lly7Fhx9+CLlcrpYb6eTJk5g1axYmTpyITz/9FC9evMCgQYNw9epVrfYXFhYGY2Nj+Pr6Ytu2bVi/fn215r0qS0xMDMaNG4fBgwdj8eLFMDAwwGuvvYYjR46I6vXt2xd9+/atdD9Pnz5F48aNRWVnz56Fi4sL1q5dq3E7iYmJJf6o+u677xAcHIwOHTrgq6++QmhoKFxdXfHnn3+K6rm4uGDy5Mka91+Rz526gFcYRESkdbefv0RKZp6ozLONtZ5GQ0RUz2UlAcurlqvGFEBH7YzmH7NjAbPG5dcrRXp6OoKDgzFt2jRs2LBBKH/jjTfQrl07LFq0SCifMWMGPvjgA9Hje/bsifHjxyMiIkKU10dbjIyMMHr0aAQEBKBx48a4fv06vvjiC/j6+iIqKkqUF6tInz59YGtri127duGTTz7BjRs3cPHiRaxatQpxcXFq9Yvn2bK3t8fTp08RFxcHb29vdOvWDVKpFFFRUQgICMD169eRnJxcqWWIjx8/xvbt2zFkyBAAwLBhw9ChQwdMmDABUVFR8PDwAFB48T1w4EDs3bu3ygEQR0dH+Pr6YvXq1ejfv3+Vd0BMSEjAsmXLMGTIEPz222/CbLGPP/4YixYt0qiNx48fY+fOnRg/fjwAoH///mjfvr1WXofjx49j69atCA4OxqpVq4TyDz74QC34evXqVZw/fx5ubm4AgMDAQLRr1w7z588vcRZTZfubOHEi3n77bTg6OmLixIlIS0vTqO3qcPv2bezduxejRo0CUBiUa9++PebOnYv+/ftrpY/Tp08jOjoan3zySZXaycjIgI2NjUZ1Dx48iI4dO+Knn36qUp9FKvO5UxcwsEVERFr3Z5x4tlZLKxO0sDTR02iIiKguOnLkCFJSUjB+/HjRTAiZTAYPDw8cP35cKDMx+ed3UHZ2NtLT09GzZ08AwN9//10tga2iWVNFhg8fjjFjxqBLly7473//i99//13tMTKZDGPHjhUCWzt27ICdnR18fX1LDGx5eXlBKpUKubQiIyNhaGgId3d3mJiYoEuXLoiMjERAQICwLLEygS1zc3MEBgYKM5DatWsHS0tLtGjRQgjmABBulzRWfTt69Chyc3Mxc+ZM0RLIWbNmaRzYKnodimjzddi7dy8kEgkWLFigdkx1yaanp6cQ1AKAVq1aYcSIEfjtt99QUFCgUS66ivRXEzRv3hwjR44U7ltYWGDy5MlYunSpaMOFyu6g+fz5c0yYMAEODg6YM2eO6Fjv3r0rNLNTLpfjt99+K/GYahDO0tISDx8+xLlz59SSvRenaf+V+dypCxjYIiIirTt7VxzY6uHQSE8jISKiuiomJgZA4SynklhYWAi3k5KSEBoaih9++AHPnz8X1UtNTa2+QapwcnLCiBEj8PPPP5cagJgwYQJWr16NS5cuYefOnQgMDCw10GBpaYmOHTsKQavIyEh07dpVCOR5eXmJjhkZGaFHjx4VHnfLli3VxtCwYUPY2dmplQGFS/Zqmvv37wMA2rZtKyq3sbGBlZWVRm1U5+sQGxuL5s2bo1Gj8v9mUn0OAODs7IzMzEwkJCSo7apZ1f409fSpOL9qw4YNRUHlqnByclJ77Z2dnQEUBrM0ec6lycjIwNChQ/Hy5UtERESo5d6qKJlMpnHy+blz5+Lo0aPo0aMHnJycMGDAAEyYMAHe3t5VGkNxmnzu1HYMbBERkVYplUr8eVecjLenA5chEhGRdin+f46usLCwEi9qDQz+udQZO3YsoqKiMHv2bLi6usLc3BwKhQKDBg0S2tEVOzs75ObmIiMjQxR8K+Lh4YE2bdpg1qxZuHv3LiZMmFBmez4+Pli/fj1SUlKE/FpFvLy8sHnzZuTl5SEiIgJubm6V2u2vtAvh0sqLzy4pLShXUFBQ4XHoW1Veh/qgWbNmovtbtmzRW04uTeXm5mLUqFG4fPkyDh8+XKGNFbTBxcUFt27dwoEDB/D7779j7969+OabbzB//nyEhoZqrZ/yPndqOwa2iIhIq2ITMpCYnisq83DkjC0iIr0xaVSYz6oK8gsKcOtZuqjMycYcxoZV+ObfpGq/G9q0Kcwb1qRJkzJnRyQnJ+PYsWMIDQ3F/PnzhfKiGV+6FhcXB7lcXuaskPHjx2PhwoVwcXGBq6trme35+Phg3bp1OHr0KC5cuIDZs2cLx7y8vJCVlYWDBw8iLi4Oo0eP1tbT0JiVlZWQwL64ohlUZdHmkrjWrVsDKHzfHR0dhfKEhIQaMcOsTZs2OHz4MJKSksqdRVXSuXv79m2YmppqnNtJ0/4q8h6oJnLv2FF7mfnu3LkDpVIpGs/t27cBoMRdNzWhUCgwefJkHDt2DD/++CN69eqljaFWmJmZGcaNG4dx48YJgbbPP/8c//3vfysViC6JJp87tRl3RSQiIq1SXYbY1MIYrRqZ6mk0REQEqbQwSXsVfiRmjVFgYi36UVSxTVRwZz5VAwcOhIWFBRYtWoS8vDy14wkJCQD+mU2jOnvmq6++qlL/5Snqv7hLly7h119/xYABA8rcmXDatGlYsGABvvzyy3L7KcqZtWLFCuTl5YlmbNnb26NZs2ZYtmyZqK4utWnTBqmpqbh8+bJQ9uTJE+zbt6/cx5qZmQFAiYGxiurXrx8MDQ2xZs0a0blQ3eeBpkaPHg2lUlniLB3Vczc6Ohp///23cD8+Ph6//PILBgwYoPEyM037MzMz0/j179evn+hHdQZXVTx+/Fh0zqSlpeH777+Hq6uraMZmbGysaFfRssycORO7d+/GN998IySl17UXL8SrHIyMjNChQwcolUrR59rNmzfx4MGDcturyudObcYZW0REpFWqyxA9HKxrZBJSIiLSnEQigQRA8ctrfS+zsrCwwLp16zBp0iR069YNgYGBsLGxwYMHD3Dw4EF4e3tj7dq1sLCwgJ+fH5YtW4a8vDy0aNEC4eHhuHv3bqX6PXXqFE6dOgWg8CIyIyMDCxcuBAD4+fnBz88PADBu3DiYmJjAy8sLTZo0wfXr17FhwwaYmppiyZIlZfbRunVrhISEaDSeVq1awc7ODtHR0bC3t0fz5s1Fx728vIRE4drM26OpwMBAzJ07FyNHjkRwcDAyMzOxbt06ODs7i4IzJXF1dYVMJsPSpUuRmpoKY2Nj9OnTB02aNKnwOGxsbPCf//wHixcvxtChQxEQEIALFy7g0KFDaNy48rtzaou/vz8mTZqE1atXIyYmRlgme/r0afj7++Pdd98V6nbq1AkDBw5EcHAwjI2N8c033wBAhZauadqfm5sbjh49ipUrV8LS0hKtW7cuNa9ddXJ2dsbUqVNx7tw5NG3aFJs3b8azZ8+wZcsWUb2+ffsCKD+J/FdffYVvvvkGnp6eMDU1xfbt20XHR44cKQRWT5w4AX9/fyxYsEDj/5eaGjBgAGxtbeHt7Y2mTZvixo0bWLt2LYYMGYIGDRoI9VxcXNCrVy+cOHGizPaq8rlTmzGwRUREWqNUKtV2RGTieCKiukEiAYrHsmpC+qAJEyagefPmWLJkCZYvX46cnBy0aNECvr6+mDJlilBv586dmDlzJr7++msolUoMGDAAhw4dUgsCaeKPP/5QCyDMmzcPALBgwQIhsPXqq69ix44dWLFiBdLS0mBjY4NRo0ZhwYIFcHJyqsKzVufj44Ndu3aJZmsV8fb2xt69e9G+fXtYW+s+56W1tTX27duHf//735gzZw4cHBywePFixMTElBvYsrW1xfr167F48WJMnToVBQUFOH78eKUCWwCwcOFCyOVyrF+/HsePH4eHhwfCw8MxZMiQSrWnbVu2bEGXLl2wadMmzJ49Gw0bNkT37t3V3tdevXrB09MToaGhePDgATp06ICtW7eiS5cuWu9vxYoVeOuttzBv3jxkZWVh/PjxeglstW3bFmvWrMHs2bNx69YtODg4YPfu3Rg4cGCl2rt48SKAwtlv0dHRasfv3r0rBLbS0wuXYWtzBlqR6dOnC58T6enpaNmyJYKDg/HJJ59Uqj1dfu7UJBKlvr9qoVrj4cOHwo4ft2/fLnE3Dqq7srKyEB4eDqDwmwVt7XBCtYcm58CDF5nwW35cVHb0335watJArS7VLvwMIJ4DtUNMTAzy8/NhYGCg1b/VFAoFbjxJQ0GxKweHxmZoIDfUWh9UsykUCqSlpQEonC1XV5c01XQSiQTvvPMO1q5dq9N+9fn+29vbo1OnTjhw4IDO+ixuzpw52LVrF+7cuQNjY2O9jEFXyvodEhMTI+xEGR8fj5YtW+pjiCXipxEREWnNGZVliNZmRmhjUzeTVBIR1Teqi8r59TgR1QfHjx/HvHnz6nxQqzbjUkQiItIa1cTxPRwaMb8WEVEdIVFJsqWoQ5GtgoKCEpMuF2dubl6ndhRLSkpCbm5uqcdlMpnGO+zpW0JCAgoKCko9bmRkVO5Og9VF1+dWfTyXq9u5c+f0PQQqBwNbRESkNeqJ45lfi4iorqjLM7bi4+Ph4OBQZp3qSBytT6NGjcLJkydLPd66detyE3DXFO7u7rh//36pxzVJul1ddH1u1cdzmYiBLSIi0orHKVmIT8oSlXk46j5JLRERVQ/VwJYCdSeyZWtriyNHjpRZx9HRUUej0Y0vv/wSycnJpR6vTXn0duzYgaysrFKPW1lZ6XA0Yto+t8pLkV0Xz+XaEmAl/WFgi4iItEJ1GWJDE0O0a8qk8UREdYXqyvK6NGNLLpejX79++h6GTrm5uel7CFrj7e2t7yGUStfnVn08l4mYPJ6IiLRCdRmiu30jSKXMr0VEVFdxc3UiIqoJGNgiIiKt+FNlxhbzaxER1S1qSxEZ1yIiohqAgS0iIqqy5y+zEZeQISrzcGRgi4ioLqnLSxGJiKj2YmCLiIiqTDW/lrmxATo0s9DTaIiIqDqo74rIyBYREekfA1tERFRlqoEtt9ZWMJDxVwwRUV2iOmNLoZ9hEBERifCqg4iIquzPOJX8WlyGSERU56jN2GKSLSIiqgEY2CIioipJysjFrWcvRWUeDtZ6Gg0REVUXteTxOu5/69atkEgkuHfvno57Jl2xt7dHUFCQRnV79+6N3r17V0u/J06cgEQiwYkTJ7TSPhFVLwa2iIioSs7dE8/WkhtK0blFQz2NhoiIqot68vj6OWNr9+7dmDhxItq2bQuJRFJqcKUoOFLSz5kzZ0R17e3tIZFI0K9fvxLb+u6774THnj9/HgCwbNkySCQSXLhwQVRXqVTCysoKEokEd+/eFR3Lzs6GsbExJkyYUMlnr1vXr19HSEgIg5l6tGjRIuzfv1+rbQYFBZX6f6P4j6ZBTm3YsWMHJBIJzM3Nq9RO79690alTpxKP3bt3DxKJBF988UWV+ijLkydP8OGHH8Lf3x8NGjSoNwFaA30PgIiIajfVZYhura1gZMDvTYiI6hr15PG67X/SpEkIDAyEsbGxbjtWsW7dOvz1119wd3fHixcvyq0fHBwMd3d3UZmTk5NaPblcjuPHj+Pp06ewtbUVHduxYwfkcjmys7OFMh8fHwBAREQEunbtKpRfu3YNKSkpMDAwQGRkJBwcHIRj586dQ25urvDYmu769esIDQ1F7969YW9vLzoWHh5ebf36+fkhKysLRkZG1dZHbbFo0SKMGTMGw4cP11qb06dPFwVx7969i/nz5+Ott96Cr6+vUN6mTRut9VmW9PR0zJkzB2ZmZjrprzrdunULS5cuRdu2bdG5c2dER0fre0g6wcAWERFVydl74j/qe9hzGSIRUV2kthRRx5EtmUwGmUym0z5LEhYWhhYtWkAqlZY6M6M4X19fjBkzptx63t7eOHfuHHbv3o333ntPKH/48CFOnz6NkSNHYu/evUJ59+7dIZfLERERgZkzZwrlkZGRsLa2Rvfu3REREYGJEycKxyIiIgCg1gS2ylKdQSepVAq5XF5t7dd3np6e8PT0FO6fP38e8+fPh6enp+h81ZWFCxeiQYMG8Pf31/rsNF1zc3PDixcv0KhRI+zZswevvfaavoekE/xKnYiIKi0tOw/XH6eJypg4noioblJfiqjb/kvLsXXo0CH4+vrCzMwMDRo0wJAhQ3Dt2jVRncuXLyMoKAiOjo6Qy+WwtbXFm2++qdGMK1V2dnaQSit2GfXy5Uvk5+eXWUcul2PUqFHYuXOnqHzXrl2wsrLCwIEDReVGRkZwd3dHZGSkqDwyMhKenp7w9vYu8ZilpaVGAbkiRUurLl++jCFDhqB58+ZwdnbGnj17AAAnT56Eh4cHTExM0K5dOxw9elT0+KCgILXZVgAQEhICiepJVczWrVuFi3J/f39heVrRsqrK5NhSKpVYuHAhWrZsCVNTU/j7+6udK0DJObaKvw69evWCqakpnJycNH4dNKFQKLBq1Sp07twZcrkcNjY2GDRokLD8FAAkEgneffdd7NixA+3atYNcLoebmxtOnTql9f4kEgkyMjKwbds2yGQyWFlZYcaMGRXup6rs7e0xdOhQhIeHw9XVFXK5HB06dMDPP/+sVjc2NhaxsbEatx0TE4OVK1dixYoVMDAoed5Pamoqbt68idTU1Eo/h9Lk5eUhNDQUbdu2hVwuh7W1NXx8fHDkyBFRnZs3b+LJkyflttegQQM0alT//hZnYIuIiCrt/L0kFN8Uy0gmhaudpd7GQ0RE6hRKBZKyk6r8k5qTjLTcf36Sc6rWnkJZ9fTzYWFhGDJkCMzNzbF06VLMmzcP169fh4+PjygAduTIEcTFxWHKlClYs2YNAgMD8cMPPyAgIKDac4VNmTIFFhYWkMvl8Pf3FwUpVE2YMAFnz54VXZjv3LkTY8aMgaGhoVp9Hx8fPHr0SPRcIyMj4eXlBS8vL2FZIlAY1ImKioKnp2eFA3PJyckYPnw43NzcEBISAmNjYwQGBmL37t0IDAxEQEAAlixZgoyMDIwZMwYvX74sv9Fy+Pn5ITg4GADw0UcfISwsDGFhYXBxcal0m/Pnz8e8efPwyiuvYPny5XB0dMSAAQOQkZGh0eOTk5MxdOhQeHh4YNmyZVp/HaZOnYpZs2bBzs4OS5cuxYcffgi5XK6Wk+3kyZOYNWsWJk6ciE8//RQvXrzAoEGDcPXqVa32FxYWBmNjY/j6+mLbtm1Yv369TvNeFRcTE4Nx48Zh8ODBWLx4MQwMDPDaa6+JAkAA0LdvX/Tt21fjdmfNmgV/f38EBASUWmffvn1wcXHBvn37NGqzoKAAiYmJaj/JyclqdUNCQhAaGgp/f3+sXbsWH3/8MVq1aoW///5bqPPo0SO4uLjgv//9r8bPq77hUkQiIqq0P++K82u52llCbqj/ZSJERPSPlJwU9NrdS9/DUHNy3Ek0kld+ZkF6ejqCg4Mxbdo0bNiwQSh/44030K5dOyxatEgonzFjBj744APR43v27Inx48cjIiJClNdHW4yMjDB69GgEBASgcePGuH79Or744gv4+voiKipKlBerSJ8+fWBra4tdu3bhk08+wY0bN3Dx4kWsWrUKcXFxavWL59myt7fH06dPERcXB29vb3Tr1g1SqRRRUVEICAjA9evXkZycXKlliI8fP8b27dsxZMgQAMCwYcPQoUMHTJgwAVFRUfDw8AAAuLi4YODAgdi7d2+VAyCOjo7w9fXF6tWr0b9//yrvgJiQkIBly5ZhyJAh+O2334TZYh9//DEWLVqkURuPHz/Gzp07MX78eABA//790b59e628DsePH8fWrVsRHByMVatWCeUffPCBWvD16tWrOH/+PNzc3AAAgYGBaNeuHebPn1/iLKbK9jdx4kS8/fbbcHR0xMSJE5GWllZac9Xu9u3b2Lt3L0aNGgWgMCjXvn17zJ07F/37969UmwcPHkR4eDguXbqkzaHi5s2bsLGx0XgMAQEBos8wqjjO2CIiokpTTRzPZYhERKQrR44cQUpKCsaPHy+aFSGTyeDh4YHjx48LdU1MTITb2dnZSExMRM+ePQFANDNCm7y8vLBnzx68+eabGD58OD788EOcOXMGEomk1JkXMpkMY8eOxa5duwAUJo23s7MrNfDm5eUFqVQq5M6KjIyEoaEh3N3dYW5uji5dugjLEYv+rUxgy9zcHIGBgcL9du3awdLSEi4uLkIwB4Bwu6QgnL4dPXoUubm5mDlzpmgJ5KxZszRuozpfh71790IikWDBggVqx1SXbHp6egpBLQBo1aoVRowYgcOHD6OgoEDr/dUEzZs3x8iRI4X7FhYWmDx5Mi5cuICnT58K5ffu3dNoF83c3Fy8//77ePvtt9GhQ4cy6wYFBUGpVGocpLS3t8eRI0fUfrZv365W19LSEteuXUNMTEyZ7SmVSmzdulWj/usjztgiIqJKycjJx9VH4lwDHg5MHE9ERLpRdCHYp0+fEo9bWFgIt5OSkhAaGooffvgBz58/F9Wrjrw5pXFycsKIESPw888/o6CgoMRk+BMmTMDq1atx6dIl7Ny5E4GBgaUGGiwtLdGxY0dR8Kpr165CIM/Ly0t0zMjICD169KjwuFu2bKk2hoYNG8LOzk6tDECJS6707f79+wCAtm3bisptbGxgZWWlURvV+TrExsaiefPmGuVHUn0OAODs7IzMzEwkJCSo7apZ1f40VTzABBS+DsWDylXh5OSk9to7OzsDKAxmafKci1u5ciUSExMRGhqqlfEVZ2ZmJtr1sUhJAbdPP/0UI0aMgLOzMzp16oRBgwZh0qRJ6NKli9bHVZcxsEVERJXy94Nk5BdLsGUglaBba0v9DYiIiOoVhaIwR1dYWFiJF7XFE0GPHTsWUVFRmD17NlxdXWFubg6FQoFBgwYJ7eiKnZ0dcnNzkZGRIQq+FfHw8ECbNm0wa9Ys3L17FxMmTCizPR8fH6xfvx4pKSlCfq0iXl5e2Lx5M/Ly8hAREQE3N7dK7fZX2m6UpZUXXzpXWlBO05lFNUlVXof6oFmzZqL7W7Zs0VtOrrKkpqZi4cKFmDFjBtLS0oQllunp6VAqlbh37x5MTU3RpEmTah+Ln58fYmNj8csvvyA8PBwbN27EypUrsX79ekybNq3a+68rGNgiIqJKUV2G2LllQ5ga8dcKEVFNY2lsiZPjTlapDYVCgRcpL5GQ/U+ZVCJB+2bqgZmKjKsq2rRpAwBo0qRJibMjiiQnJ+PYsWMIDQ3F/PnzhfKylv5Up7i4OMjlcpibm5daZ/z48Vi4cCFcXFzg6upaZns+Pj5Yt24djh49igsXLmD27NnCMS8vL2RlZeHgwYOIi4vD6NGjtfU0NGZlZSUksC+uaAZVWbS5JK5169YACt93R0dHoTwhIaFGzDBr06YNDh8+jKSkpHJnUZV07t6+fRumpqYa53bStL+KvAeqidw7duyo8WPLc+fOHSiVStF4bt++DQAl7rpZluTkZKSnp2PZsmVYtmyZ2nEHBweMGDEC+/fvr8qQNdaoUSNMmTIFU6ZMQXp6Ovz8/BASEsLAVgXwCoSIiCrlrEri+B4OzK9FRFQTSSXSKiVpBwoDWwpjA+QUm9wkgQSN5A2rOLrKGzhwICwsLLBo0SL4+/ur7RqYkJAAGxsbYTaN6uyZr776qlrHV9R/cZcuXcKvv/6KwYMHl7kz4bRp04RcYeUpypm1YsUK5OXliWZs2dvbo1mzZsLFe2Xya1VVmzZtkJqaisuXLwvLq548eaLRDnNmZmYAUGJgrKL69esHQ0NDrFmzBgMGDBACJNV9Hmhq9OjR+PrrrxEaGipK5g5ALaATHR2Nv//+G926dQMAxMfH45dffsGgQYNKnT1W2f7MzMw0fv3LCjBX1ePHj7Fv3z4heXxaWhq+//57uLq6imZsFu0oWhT4LkmTJk1KPP9Wr16N6Oho7Nq1S232WXV58eIFrK3/SeVhbm4OJycnxMfHC2V5eXmIjY1Fw4YNdTau2oaBLSIiqrDsvAJcjE8RlfVkfi0iojpNdeKGEkq1C25dsrCwwLp16zBp0iR069YNgYGBsLGxwYMHD3Dw4EF4e3tj7dq1sLCwgJ+fH5YtW4a8vDy0aNEC4eHhuHv3bqX6PXXqFE6dOgWgMHiVkZGBhQsXAihcVuTn5wcAGDduHExMTODl5YUmTZrg+vXr2LBhA0xNTbFkyZIy+2jdujVCQkI0Gk+rVq1gZ2eH6Oho2Nvbo3nz5qLjXl5eQqJwb2/vCj7bqgsMDMTcuXMxcuRIBAcHIzMzE+vWrYOzs3O5iftdXV0hk8mwdOlSpKamwtjYGH369KnUEjEbGxv85z//weLFizF06FAEBATgwoULOHToEBo3blzZp6c1/v7+mDRpElavXo2YmBhhmezp06fh7++Pd999V6jbqVMnDBw4EMHBwTA2NsY333wDABXKF6Vpf25ubjh69ChWrlwJS0tLtG7dutS8dtXJ2dkZU6dOxblz59C0aVNs3rwZz549w5YtW0T1+vbtC6DkfFZFTE1N8eqrr6qV79+/H2fPnlU7tnXrVkyZMqVallZ26NABvXv3hpubGxo1aoTz589jz549ovf70aNHcHFxwRtvvKFRAvmiz6Nr164BKFyuXbTBxCeffKLV8dcUDGwREVGFXX6UhtyCf762l0oAN3vNEq8SEVHtVFL4SqEEZHrcQG3ChAlo3rw5lixZguXLlyMnJwctWrSAr68vpkyZItTbuXMnZs6cia+//hpKpRIDBgzAoUOH1IJAmvjjjz/UAgjz5s0DACxYsEAIbL366qvYsWMHVqxYgbS0NNjY2GDUqFFYsGABnJycqvCs1fn4+GDXrl2i2VpFvL29sXfvXrRv3140M0RXrK2tsW/fPvz73//GnDlz4ODggMWLFyMmJqbcwJatrS3Wr1+PxYsXY+rUqSgoKMDx48crnfto4cKFkMvlWL9+PY4fPw4PDw+Eh4djyJAhlWpP27Zs2YIuXbpg06ZNmD17Nho2bIju3burva+9evWCp6cnQkND8eDBA3To0AFbt26tcMJxTfpbsWIF3nrrLcybNw9ZWVkYP368XgJbbdu2xZo1azB79mzcunULDg4O2L17NwYOHFjtfaenpwNQzyGmDcHBwfj1118RHh6OnJwctG7dGgsXLhQtKa6oos+jIps3bxZu19XAlkRZ3zLaUaU9fPhQ2PHj9u3bJe7GQXVXVlYWwsPDAQADBgzQ2g4nVHsUPwdijNti7Yl/vunu1MICB2aWvBU51Q38DCCeA7VDTEwM8vPzYWBgoNW/1RQKBZJT0vAoU1zeoZkFDGSlL6mjukOhUAhJti0sLMpcSknVRyKR4J133sHatWt12q8+3397e3t06tQJBw4c0FmfxY0dOxb37t3D2bNn9dK/LpX1OyQmJkbYiTI+Ph4tW7bUxxBLxBlbRERUYefvp4jue3AZIhFR3VfCzCx+RU5EdZlSqcSJEyewfft2fQ+FysDAFhERVUi+ArgYnyoqY+J4IqK6r8SliKgbka2CggIkJCSUWcfc3LzMnQxrm6SkJOTm5pZ6XCaTabzDnr4lJCSgoKCg1ONGRkbl7jRYXXR9btXHc7k6SSQSPH/+XN/DoHIwsEVERBUSnwFk5ytEZT3sGdgiIqrrSgps1ZUZW/Hx8XBwcCizzoIFCzRO6F4bjBo1CidPniz1eOvWrctMwF2TuLu74/79+6Ue79WrF06cOKG7ARWj63OrPp7LRAxsERFRhdxJE1/atLdtACszIz2NhoiIdEUiKQxuFY9lKepIZMvW1hZHjhwps46jo6OORqMbX375JZKTk0s9Xpvy6O3YsQNZWVmlHrey0t8GN9o+t8pLkV0Xz+XaEmAl/am3ga3nz5/j7NmzOHv2LM6dO4dz587hxYsXAKDxNpqZmZn4/fffceTIEZw/fx537txBeno6LCws4OzsjIEDB+Ltt9+Gra1tlcdrb29f5rcQRWrTNytEVDvFqgS2uAyRiKj+kEjEs7TqSFwLcrkc/fr10/cwdMrNzU3fQ9Aab29vfQ+hVLo+t+rjuUxUbwNbTZs2rdLjL1++DG9vb2Hrz+KSkpJw5swZnDlzBitXrsSGDRswbty4KvVHRFQTFCiBOJXAFhPHExHVH6rLEbnBOhER6Vu9DWwV16pVK7Rv317YwloTaWlpQlDL29sbQ4cORffu3WFtbY2EhAT8/PPP+O6775CWlobXX38dFhYWGDx4cJXHOmLECCxcuLDU40ZGXA5ERNXnYQaQo+CMLSKi+ko1sKVgXIuIiPSs3ga25s+fD3d3d7i7u6Np06a4d+9euUn2ipNKpRg7diwWLFiADh06qB0fMGAABg8ejJEjR6KgoAAzZ85ETEwMJJKS0m5qztLSEp06dapSG0RElaW6DNHRxgw2DYz1NBoiItI1iUqSLc7YIiIifau3ga3Q0NAqPd7LywteXl5l1hkxYgRGjRqFvXv3IjY2FhcuXEC3bt2q1C8RkT6pBra4DJGIqH5Rm7Gll1EQERH9Q6rvAdR1/v7+wu3Y2Fg9joSIqGoUSmUJgS0uQyQiqs84Y4uIiPSNga1qlpOTI9yWyWR6HAkRUdXcfpaOrAKVwJYjA1tERPWJalYNxrWIiEjfGNiqZidPnhRuu7i4VLm9U6dOwdXVFQ0aNICpqSkcHBwwbtw47N+/n9+YEVG1Onc/RXS/VSNTNGtoop/BEBGRXjB5PBER1TT1NseWLly6dAkHDx4EAHTu3Fkrga27d++K7t+7dw/37t3Djz/+CG9vb+zevRstWrSoVNsPHz4s8/iTJ0+E2zk5OcjKyqpUP1Q7ZWdnl3ib6o8/416I7ru1suDnQD3CzwDiOVA7KBQK4ctOhUJ7GbCK2lILbCkUWu2nLFu3bsXUqVMRGxsLe3t7nfRJ/yj+PlfXe+7o6IhevXphy5Yt5dbt06cPAOCPP/7Qer8nTpxA3759cezYMfTu3bvK7dcFunj/qWZQKpVQKBRqf+cXX41W0zCwVU1ycnIwbdo0FBQUAAA+//zzKrVnZGSE4cOHY8CAAejUqRMaNmyIlJQUREdHY926dYiPj0dkZCT69++P6OhoNGzYsMJ92NnZaVz3zz//ZM6weuzUqVP6HgLpmFIJ/BknQ/FLGpOXjxAeXnZAnOomfgYQz4Gay9raGiYmJpBIJEhLS9N6+6pLEbOzc5Cm1M3FTlFANT09vVqem6Z+/vln/P777/jrr78QFxcHb29vHDhwQK1eREQEhg0bVmIb4eHhcHd3F+536dIF8fHx6NWrF/bv369Wf9u2bZg1axaAwkBO165dsWrVKoSEhODkyZPo0qWLUFepVMLBwQGpqam4ePEiWrduLRzLzs5G69atMWzYMGzcuLGSr0Dhe1AdFAoF8vLyhPf35s2b2L9/PyZMmIBWrVqJ6ubn5wOAVs4F1X4zMzOFf/V5rtUEX375Jdq3b48hQ4YIZVV9/2fMmIFdu3aVW2/8+PH45ptvqtSXpn788UdMnz4dZmZm5U74KMvQoUPx4sULREdHqx178OABXnnlFXz66aeYOXNmVYZbqp07d+Kdd94p8djNmzfRtGnTMh+fn5+PrKwsZGVl4ebNm6JjiYmJWhuntjGwVU3effddnD9/HgDwxhtvlPpLTVNnz56FpaWlWnnv3r3x7rvvYsyYMQgPD8eNGzcQGhqKFStWVKk/IqLinmUB6fniqxknC64/ISKqb1RnbOnyN8G4ceMwatQoGBsb67BXdZs3b8alS5fQtWtXJCUllVt/+vTp6Nq1q6jM0dFRrZ5cLsfp06fx7NkztYvPn376CXK5XDRbsmfPngCAM2fOiAJbN27cQGpqKgwMDHDmzBlRYOvvv/9Gbm6u8Nia7tatW1i6dCl8fHzUAls///xztfXr5eWFJ0+ewMjIqNr6qC1WrlyJ4cOHiwJbVRUUFIRevXoJ9x88eIBFixbhjTfegKenp1Du4OCgtT7Lkp6ejpCQEJiZmemkP1346KOP1P7PVGbyS23BwFY1WLx4sfANiLu7O77++usqt1lSUKtIgwYN8OOPP8LR0RFJSUnYsGEDlixZUuEP4vj4+DKPP3nyBD169AAAeHh4oE2bNhVqn2q37Oxs4Rt6Pz8/yOVyPY+IdGnXuYfApdvC/aYNjBA4zB8S1a/uqc7iZwDxHKgdHjx4gIKCAhgYGMDCwkJr7SoUCqSnp6sFtgyNjGBhUb/OhR07dqBFixaQSqXo0qVLqa+1qakpgMIlc2PGjCmzTalUCm9vb5w7dw6HDh1CcHCwcOzhw4eIjo7Gq6++ip9//hlmZmawsLBAr169IJfLcf78efznP/8R6l+6dAnW1tZwc3PD33//jX/961/CsYsXLwIA+vXrV+Hzo+gcAABzc3NIpdpP1yyVSmFoaCiMzcSkMJenqampVs/n8volMUNDQ5ibm2vt/e/Xr5/o/vnz57Fo0SL4+fkhKCioKkOtlMWLF8PCwgL+/v745ZdfqnQeGBgYQCaTldiGubk5gMIgdnWda0W/m0eMGIHu3btX+PEJCQkwMTGBubk53NzcRMdq8ootBra07Ntvv8VHH30EAGjfvj3+97//6STy27BhQwQGBuKbb75BRkYGzp8/Dy8vrwq10bJlS43rGhsbC79oqP6Ry+V8/+uZs/fF0/B72FsJf7BT/cPPAOI5UHNJpVIh/011BB7UdkWspn5KsnXrVkyZMgV3794V5dg6dOgQFi1ahL///htSqRR+fn5YtmwZOnbsKNS5fPkyVqxYgVOnTuHx48ewtLREQEAAli9fDmtr6wqNo/gMqCIlvQZFZVKpFBkZGTAxMYGBQemXX3K5HKNGjcKuXbuEZYcAsHv3blhZWWHQoEH4+eefIZVKIZVKIZfL4e7ujqioKFH/0dHR8PT0RI8ePfDjjz+KjkVFRcHS0hJdunTR+H3r3bs3EhMTsX37drzzzju4cOECmjdvjiVLlmDMmDE4efIk5syZg8uXL6NVq1b4+uuvRYGLoKAgnDhxAvfu3RO1GxISgtDQULUNsCQSCaRSqfB+A0Dfvn2F48ePH0fv3r2F3FcnTpzQ6HkAhcs0P//8c6xfvx5JSUnw8PDA2rVrRf0Wtenv7y/0Vfx12LlzJ2bOnIlz585V6HXQhEKhwJo1a7Bx40bExMSgQYMGcHNzw8KFC4UghUQiwTvvvANPT098+umnuH//Pjp27IiVK1fCz89Pq/0VfYH5/fff4/vvvwdQuDxw+/btWv1/X/z/Sknt2tvbo1OnTggODsacOXNw8+ZNODo6YuHChRg1apSoblHwRdNJGDExMfjqq6+wb98+/Pjjj6LxFElNTcWTJ0/QrFkzjWc9lfWZUPxcy8vLw6JFi7B9+3bEx8fDzMwMLi4uWLBgAfr37y/UiY2NRcOGDdGsWTON+i363DE1NYVMJtNozEWKxqf6e17fs2XLwl0RtWjXrl2YMWMGgMJfeEeOHEHjxo111n+HDh2E248ePdJZv0RUtxUolIhWSRzv5dhIT6MhIqKKUioUyE9KqvJPQXIykCL+USQlV7o9pRYSUIeFhWHIkCEwNzfH0qVLMW/ePFy/fh0+Pj6iQMqRI0cQFxeHKVOmYM2aNQgMDMQPP/yAgICAat9ZfMqUKbCwsIBcLoe/v7+QrqQkEyZMwNmzZ0UzI3bu3IkxY8bA0NBQrb6Pjw8ePXokeq6RkZHw8vKCl5cXrl27hpSUFACFQZ2oqCh4enpWOCiRnJyM4cOHw83NDSEhITA2NkZgYCB2796NwMBABAQEYMmSJcjIyMCYMWPw8uXLCrVfEj8/P2Hm2kcffYSwsDCEhYVVaUOu+fPnY968eXjllVewfPlyODo6YsCAAcjIyNDo8cnJyRg6dCg8PDywbNkyrb8OU6dOxaxZs2BnZ4elS5fiww8/hFwux5kzZ0T1Tp48iVmzZmHixIn49NNP8eLFCwwaNAhXr17Van9hYWEwNjaGr68vtm3bhvXr1+tlRhVQGIAaN24cBg8ejMWLF8PAwACvvfYajhw5IqrXt29fUSC0PLNmzYK/vz8CAgJKrbNv3z64uLhg3759GrVZUFCAxMREtZ/k5GS1ukUBXn9/f6xduxYff/wxWrVqhb///luo8+jRI7i4uOC///2vxs/L398fFhYWMDU1xfDhwxETE6PxY2sjztjSkl9//RWTJ0+GQqFAs2bNcOzYsQrNgNIGLgkioupw7XEqUrPyRGU9Ha30NBoiIqqogpQUxHh5a6294uGVDACVvVxqGxUJg0aV/6IkPT0dwcHBmDZtGjZs2CCUv/HGG2jXrh0WLVoklM+YMQMffPCB6PE9e/bE+PHjERERAV9f30qPozRGRkYYPXo0AgIC0LhxY1y/fh1ffPEFfH19ERUVpZZ3Cyhctmhra4tdu3bhk08+wY0bN3Dx4kWsWrUKcXFxavV9fHwAFCaqt7e3x9OnT4WE9t26dYNUKkVUVBQCAgJw/fp1JCcnC4+piMePH2P79u1CnqVhw4ahQ4cOmDBhAqKiouDh4QEAcHFxwcCBA7F3794qB0AcHR3h6+uL1atXo3///lXenTAhIQHLli3DkCFD8NtvvwnXTh9//DEWLVqkURuPHz/Gzp07MX78eABA//790b59e628DsePH8fWrVsRHByMVatWCeUffPCBWvD16tWrOH/+vLBULDAwEO3atcP8+fM1zj2mSX8TJ07E22+/DUdHR0ycOFGvifRv376NvXv3CjO0pk6divbt22Pu3LnCzKaKOnjwIMLDw3Hp0iVtDhU3b96EjY2NxmMICAgQfYZVhampKYKCgoTA1l9//YUVK1bAy8sLf//9d4U2jKtNOGNLC44dO4axY8ciPz8f1tbWOHLkiF7yT12/fl243bx5c533T0R1U8Qd8Q4oTeRK2NazfCpERFTzHDlyBCkpKRg/frxoVoRMJoOHhweOHz8u1C2+pCY7OxuJiYlCAvXiMyO0ycvLC3v27MGbb76J4cOH48MPP8SZM2cgkUhKnXkhk8kwduxYYce4HTt2wM7OrtTAm5eXF6RSKSIiIgAUztYyNDSEu7s7zM3N0aVLF0RGRgrHAFQqsGVubo7AwEDhfrt27WBpaQkXFxchmANAuF1SEE7fjh49itzcXMycOVM0IaD4ss/yVOfrsHfvXkgkEixYsEDtmOoEBk9PT1H+o1atWmHEiBE4fPgwCgoKtN5fTdC8eXOMHDlSuG9hYYHJkyfjwoULePr0qVB+7949tWWvJcnNzcX777+Pt99+W7TyqSRBQUFQKpUaBynt7e1x5MgRtZ/t27er1bW0tMS1a9fKnFFlb28PpVKJrVu3ltv32LFjsWXLFkyePBmvvvoqPvvsMxw+fBgvXrzA559/rtH4ayPO2KqiqKgojBgxAjk5OWjYsCEOHz4sWs+vK6mpqfjhhx8AFEZpK5MojoioJJEqga12DbkbIhER6V/RhWCfPn1KPF48OXNSUhJCQ0Pxww8/4Pnz56J6qamp1TdIFU5OThgxYgR+/vlnFBQUlJj7ZsKECVi9ejUuXbqEnTt3IjAwsNRAg6WlJTp27CgKXnXt2lUI5Hl5eYmOGRkZCZtBVUTLli3VxtCwYUO12R9F+YdKWnKlb/fv3wcAtG3bVlRuY2MDKyvNZqJX5+sQGxuL5s2bo5EGsxhVnwMAODs7IzMzEwkJCbC1tdVqf5oqHmACCl8HbeVjdHJyUnvtnZ2dARQGszR5zsWtXLkSiYmJCA0N1cr4ijMzMysxv1pJAbdPP/0UI0aMgLOzMzp16oRBgwZh0qRJop1Oq8rHxwceHh44evSo1tqsaRjYqoKLFy9iyJAhyMjIgJmZGQ4ePKi2c4AmevfujZMnTwKAWjJMAPj999/Rq1evUj8U0tPTMXbsWLx4UZgDZ+rUqTU6sRsR1R7ZeQU4d0/8R5mzJQNbRESkf0VJ8sPCwkq8qC2eqH3s2LGIiorC7Nmz4erqCnNzcygUCgwaNEhoR1fs7OyQm5uLjIyMEndGK9p9fNasWbh79y4mTJhQZns+Pj5Yv349UlJShPxaRby8vLB582bk5eUhIiICbm5uldrRtLTk06WVF186V1pQTtOZRTVJVV6H+kA1sfmWLVv0lpOrLKmpqVi4cCFmzJiBtLQ0YYlleno6lEol7t27B1NTUzRp0qTax+Ln54fY2Fj88ssvCA8Px8aNG7Fy5UqsX78e06ZN01o/dnZ2uHXrltbaq2nqbWArIiICd+7cEe4nJv4zI+HOnTtq0/xU/0PGxsZi4MCBQjLGhQsXomHDhmUm7GvSpEml/nMsWbIEr7/+OkaNGgUfHx+0adMG5ubmSE1NRVRUFNavX48HDx4AKJwOGxISUuE+iIhKcv5eMnLz//mDXwIlnCzq1x9pRES1nczSEm2jIqvUhkKhwMuXL5GRB6Tk/lNuYiSDQ2PzSo+rKopSfzRp0qTM3eeSk5Nx7NgxhIaGYv78+UK5vpIpx8XFQS6Xw9y89Ndt/PjxWLhwIVxcXODq6lpmez4+Pli3bh2OHj2KCxcuYPbs2cIxLy8vZGVl4eDBg4iLi8Po0aO19TQ0ZmVlJVwzFVc0g6os2lwSV7SbZUxMDBwdHYXyhISEGjHDrE2bNjh8+DCSkpLKnUVV0rl7+/ZtmJqaapzbSdP+KvIeqCZy1+ZKpjt37kCpVIrGc/v2bQBQmxhSnuTkZKSnp2PZsmVYtmyZ2nEHBweMGDEC+/fvr8qQNdaoUSNMmTIFU6ZMQXp6Ovz8/BASEqLVwFZcXJzG50ZtVG8DWxs3bsS2bdtKPBYZGSlM2S2iGtg6ffq0aBrz+++/X26fCxYsqHTQKSkpCRs3bsTGjRtLrdOrVy/s2LFDq9NJiah+U82v1cocMK23vzmIiGoniVRapSTtQGFgS2ZgAFkegJx/ypWGMhg0alC1AVbSwIEDYWFhgUWLFsHf319t18CEhATY2NgIs2lUZ8989dVX1Tq+ov6Lu3TpEn799VcMHjy4zJ0Jp02bJuQKK09RzqwVK1YgLy9PNGPL3t4ezZo1Ey7eK5Nfq6ratGmD1NRUXL58WVhe9eTJE412mDMzMwOAEgNjFdWvXz8YGhpizZo1GDBggBAgqe7zQFOjR4/G119/jdDQUFEydwBqAZ3o6Gj8/fff6NatGwAgPj4ev/zyCwYNGlTq7LHK9mdmZqbx619WgLmqHj9+jH379gnJ49PS0vD999/D1dVVNGOzaEfRsnJeN2nSpMTzb/Xq1YiOjsauXbvUZp9VlxcvXsDa2lq4b25uDicnJ8THxwtleXl5iI2NRcOGDcsdV0mfO//73//w119/CbuM1kW8PKkFvvjiCxw7dgzR0dG4desWEhMTkZKSAlNTUzRv3hweHh4YP3686AOaiEgbmF+LiIiKU/1TU58rrSwsLLBu3TpMmjQJ3bp1Q2BgIGxsbPDgwQMcPHgQ3t7eWLt2LSwsLODn54dly5YhLy8PLVq0QHh4OO7evVupfk+dOoVTp04BKLyIzMjIwMKFCwEULivy8/MDAIwbNw4mJibw8vJCkyZNcP36dWzYsAGmpqZYsmRJmX20bt1a4y/EW7VqBTs7O0RHR8Pe3l5tEykvLy8hUbi3t/Z2x9RUYGAg5s6di5EjRyI4OBiZmZlYt24dnJ2dy03c7+rqCplMhqVLlyI1NRXGxsbo06dPpVbB2NjY4D//+Q8WL16MoUOHIiAgABcuXMChQ4fQuHHjyj49rfH398ekSZOwevVqxMTECMtkT58+DX9/f7z77rtC3U6dOmHgwIEIDg6GsbExvvnmGwCoUL4oTftzc3PD0aNHsXLlSlhaWqJ169al5rWrTs7Ozpg6dSrOnTuHpk2bYvPmzXj27Bm2bNkiqte3b18AJeezKmJqaopXX31VrXz//v04e/as2rGtW7diypQp1bK0skOHDujduzfc3NzQqFEjnD9/Hnv27BG9348ePYKLiwveeOONchPIe3l5oWvXrujevTsaNmyIv//+G5s3b4adnR0++ugjrY69Jqm3ga2tW7dqtKtAaYKCgrR2Up84caLM4927d2cyeCLSuZTMXFx9LE6o68zAFhFRvab6Faq+cwhNmDABzZs3x5IlS7B8+XLk5OSgRYsW8PX1xZQpU4R6O3fuxMyZM/H1119DqVRiwIABOHToUKV2Ev/jjz/UAgjz5s0DULhCoyiw9eqrr2LHjh1YsWIF0tLSYGNjg1GjRmHBggVwcnKqwrNW5+Pjg127dolmaxXx9vbG3r170b59e9HMEF2xtrbGvn378O9//xtz5syBg4MDFi9ejJiYmHIDW7a2tli/fj0WL16MqVOnoqCgAMePH6907qOFCxdCLpdj/fr1OH78ODw8PBAeHo4hQ4ZUqj1t27JlC7p06YJNmzZh9uzZaNiwIbp37672vvbq1Quenp4IDQ3FgwcP0KFDB2zdurXCCcc16W/FihV46623MG/ePGRlZWH8+PF6CWy1bdsWa9aswezZs3Hr1i04ODhg9+7dGDhwYLX3nZ6eDkA9h5g2BAcH49dff0V4eDhycnLQunVrLFy4ULSkuCLGjRuHgwcPIjw8HJmZmWjWrBn+9a9/YcGCBWjatKmWR19zSJT6/m1EtcbDhw+FHT9u375d4m4cVHdlZWUhPDwcADBgwACt7XBCNdehK0/wfzv++YNTbiDF5265MJDyHKiP+BlAPAdqh5iYGOTn58PAwECrf6spFAqkpaUhOx94nv1PuYFUig7N1ROgU91TdA4AhbPlylpKSdVHIpHgnXfewdq1a3Xarz7ff3t7e3Tq1AkHDhzQWZ/FjR07Fvfu3cPZs2f10r8ulfU7JCYmRtiJMj4+Hi1bttTHEEtUb2dsERFR2VTza7m1toSB9HkptYmIqD5QX4rI78iJqO5SKpU4ceIEtm/fru+hUBkY2CIiohKp5tfydLACMhjYIiKqz1SXIipKrFX7FBQUICEhocw65ubmZe5kWNskJSUhNze31OMymazW7KKWkJCAgoKCUo8bGRnpbYMtXZ9b9fFcrk4SiUS0aRzVTAxsERGRmvikTNx7kSkq83RshIdX9DQgIiKqEUrKsaW6Y1ttFB8fDwcHhzLrVGWH85po1KhROHnyZKnHW7duXWYC7prE3d0d9+/fL/V4r169ys1rXF10fW7Vx3OZiIEtIiJSExUrnq1lZWqI9rbmDGwREdV3JcSvlEr1JYq1ja2tLY4cOVJmHUdHRx2NRje+/PJLJCcnl3q8NuXR27FjB7Kysko9bmVlpcPRiGn73Cpv+W9dPJdrS4CV9IeBLSIiUhNx54XovpdTY0hr+1ULERFVWUm/CRRKJaQlHqk95HI5+vXrp+9h6JSbm5u+h6A13t7e+h5CqXR9btXHc5mIW1kQEZGIQqFElEp+LR+nxnoaDRER1SQlha+YPp6IiPSJgS0iIhK5+fQlXmSIk8kysEVEVLtU126FJU3e5c6IRESkTwxsERGRiGp+LbtGJrBrZKqn0RARUUUYGBRmGikoKKiWgFPJSxG13g0REelYQUEB8vPzARTuilqbMLBFREQiEVyGSERUaxkZGQm3ExMTy6hZORIJIFEJb3HGFhFR7VZQUICnT58K983MzPQ4mopj8ngiIhLk5ivwZ1ySqMybgS0iolqjUaNGSEtLA1AY2EpOToZES5t/FH2Tn58vzqt1P0MGmbR2J48nzRSdAwkJCXoeCekD3/+6q+i9LdKwYUM9jaRyGNgiIiLBhQfJyMorEJV5tWFgi4iotjAxMYGlpSVSUlIAFH4Lrw1KpRJZWVkAgNRcCQqKRbak5kYwNqxdy1ao4oqfAyYmJloLmFLtwPe//mjevDnkcrm+h1EhDGwREZEgUmUZYsfmFmhkZlRKbSIiqomaNm0KExMTpKSkIC8vTyttKhQK4aL2YboBcvIVwrEGpsYwM+BlRV1X/BwwNzeHVMqsNvUJ3/+6TSaTwczMDA0bNqx1QS2AgS0iIiqG+bWIiGo/qVQKS0tLWFpaaq3NrKws3Lx5EwCw8VYDPEjKEo6tn+iInm1ttdYX1UzFzwE3NzeYmJjoeUSkS3z/qSZjmJWIiAAAadl5uPQwVVTG/FpERKTK2EB8CZGTr53ljkRERJXBwBYREQEA/oxLQkGxPduNZFK42zfS44iIiKgmUg1s5RZblkhERKRrDGwREREA9fxabq2tYGLEZMBERCSmPmOLgS0iItIfBraIiAiAemDL28laTyMhIqKazIiBLSIiqkEY2CIiIjxLy0bM83RRGfNrERFRSZhji4iIahIGtoiISG22VgO5ATq3aKin0RARUU2mFtjK44wtIiLSHwa2iIgIESqBLU9HaxjI+CuCiIjUcSkiERHVJLxqISKq55RKpdqMLZ+2XIZIREQlM5ZxKSIREdUcDGwREdVzsQnpeJaWIypjfi0iIiqNsYF4x1zO2CIiIn1iYIuIqJ6LiBHP1mrWUA7HxmZ6Gg0REdV0zLFFREQ1CQNbRET1XMSdF6L73k6NIZFI9DQaIiKq6dRzbHEpIhER6Q8DW0RE9Vh+gQJ/xqkGtqz1NBoiIqoN1GZscSkiERHpEQNbRET12OVHqXiZky8q827D/FpERFQ6BraIiKgmYWCLiKgei1TJr+Xc1BxNLOR6Gg0REdUGaksR87gUkYiI9IeBLSKieizijjiwxd0QiYioPJyxRURENQkDW0RE9VRmbj7+fpAsKvNhYIuIiMqhnjyegS0iItIfBraIiOqps3eTkFegFO7LpBJ4ODJxPBERlU11xlYud0UkIiI9YmCLiKieilRZhtjVzhLmxgZ6Gg0REdUWnLFFREQ1ic6vYBISEhAXF4enT58iIyMDhoaGsLS0RKtWreDk5ASZTKbrIRER1UsRd16I7jO/FhERaYI5toiIqCap9sBWRkYGfvnlFxw6dAgnT57Eo0ePSq1rbGyMrl27YsCAARg5ciS6dOlS3cMjIqqXEtNzcONJmqiMgS0iItKEWmCLuyISEZEeVVtg68KFC1izZg1++uknZGZmAgCUSmWZj8nOzkZ0dDTOnDmDTz/9FB07dsQ777yDSZMmwdTUtLqGSkRU70TFimdrmRrJ4GpnqZ/BEBFRrcIZW0REVJNoPbB14cIFzJs3D4cOHQLwTzDL1tYWPXr0gJubG5o0aYJGjRrBysoKWVlZSEpKQnJyMm7fvo1z587h8uXLyMvLw9WrVzFjxgzMmzcPc+bMwcyZM2FsbKztIRMR1TtRKvm1PBwaqeVMISIiKklJObaUSiUkEomeRkRERPWZVgNbU6ZMQVhYGBSKwm9tunXrhtdffx2jR49Gq1atNG4nNzcXp06dwo4dO7Bv3z4kJiZi7ty5+Oabb/D999/Dx8dHm8MmIqpXlEolTseIA1tchkhERJpSnbEFALkFChgbMFcuERHpnla/nt+2bRsMDAzwr3/9Czdv3sT58+fx/vvvVyioBQBGRkbo168ftmzZgmfPnuH7779Hu3btcO/ePfzxxx/aHDIRUb1z/0UmHqVkicp82jKwRUREmikpsMXliEREpC9anbE1Y8YMzJ07F3Z2dlpr09jYGBMnTsTrr7+On376CQUFTE5JRFQVJ249F91vbG6Edk0b6Gk0RERU25QY2MpTAHI9DIaIiOo9rQa21q5dq83mRCQSCcaOHVtt7RMR1Rd/3EoQ3fdztmFeFCIi0lhJORlz8vnlMxER6QczBRMR1SOZufk4EyfeEbFP+yZ6Gg0REdVGXIpIREQ1CQNbRET1SOSdF8gtdvEhk0rg29ZGjyMiIqLaxkAqhUwqnumbk8fAFhER6YdWlyICQPPmzeHn5wdfX1/4+fmhc+fO2u6CiIgq6Y+b4vxa3VtboaGJoZ5GQ0REtZWxgRSZuf8sP+RSRCIi0hetB7aePn2Kn376CT/99BMAwNLSEj4+PvDz84Ofnx/c3NwglXKiGBGRrimVShxXCWz1deEyRCIiqjj1wBZnbBERkX5oPbDVunVr3L9/X7ifnJyMAwcO4MCBAwAAMzMzeHp6CrO6evbsCSMjI20Pg4iIVFx/koanadmiMubXIiKiylBNIM/AFhER6YvWA1t3797Fo0ePcPr0aeHn2rVrUCqVAID09HQcPXoUR48eBQAYGRnB3d1dmNHl7e0NMzMzbQ+LiKjeU52tZdfIBG1szPU0GiIiqs2MDWSi+7kMbBERkZ5oPbAFAC1atEBgYCACAwMBFM7aioyMFAJdf/31F/Ly8gAAOTk5iIyMRGRkJBYvXgyZTAZXV1ch0OXr6wsrK6vqGCYRUb2iml+rT7smkEgkpdQmIiIqnerOiMyxRURE+qKTZFdWVlYYOnQoli5diqioKKSmpuKPP/5AaGgo+vXrB1NTUyiVSiiVSuTn5+P8+fNYuXIlRo4ciSZNqmeZzPPnz3HgwAHMnz8fgwcPRuPGjSGRSCCRSBAUFFTh9g4dOoSRI0eiZcuWMDY2RsuWLTFy5EgcOnRIq+POzMzEsmXL4O7ujkaNGsHMzAzt27fHBx98IFoCSkRUXFJGLi7Ep4jK/LkMkYiIKsnYUCWwxV0RiYhIT6plxlZ55HI5evfujd69ewMACgoK8PfffwszuiIiIvDixQsAgEJRPb8kmzZtqpV2FAoF3nrrLWzatElU/ujRIzx69Aj79+/HtGnT8O2331Y5af6dO3cQEBCAmJgYUfmtW7dw69YtbNy4ETt27MDQoUOr1A8R1T0nbj3H/18RDgAwMZShp6O1/gZERES1mupSRObYIiIifakR2xMqFArk5eUhLy8Pubm5yM/P1+nymFatWmHAgAGVeuzHH38sBLW6du2KXbt24ezZs9i1axe6du0KANi4cSM++eSTKo3x5cuXGDJkiBDU+te//oVjx44hKioKn3/+OczNzZGWloZx48bh4sWLVeqLiOoe1WWI3k6NITeUlVKbiIiobFyKSERENYVeZmxlZGQgKipKmKF19uxZZGcX7tSlLDaloH379vD19a2WMcyfPx/u7u5wd3dH06ZNce/ePTg4OFSojdu3b+OLL74AAHTv3h2nTp2CiYkJAMDd3R3Dhw9Hr169cP78eSxfvhxvvvkmnJycKjXe5cuX4/bt2wCAZcuWYfbs2cIxT09P9O7dG7169UJmZiZmzZqFEydOVKofIqp78gsUOHU7QVTG3RCJiKgq1ANbnLFFRET6oZPA1osXL0S7JF68eBEFBYXf6hQFsoyMjNCtWzf4+PjAx8cH3t7esLauvmUyoaGhVW7jq6++Qn5+PgBgzZo1QlCriKmpKdasWQNPT0/k5+dj5cqV+PrrryvcT15eHlavXg0AcHFxwQcffKBWx8vLC1OnTsW3336LkydP4ty5c3B3d6/EsyKiuuav+8lIy84Xlfm3t9HTaIiIqC5QW4rIHFtERKQn1RLYio+Px+nTp3Hq1CmcPn0aN2/eFI4VBbIsLCzg5eUlBLJ69OgBuVxeHcOpFkqlEr/88guAwpllPXv2LLFez5490a5dO9y6dQu//PIL1q5dW+FllsePH0dqaioA4I033ig1V1dQUBC+/fZbAMC+ffsY2CIiAMAft8TLEDs0s0Czhial1CYiIiqfWvJ4LkUkIiI90Xpgy97eHvHx8QDEywpbtGghBLF8fHzQpUuXWr3N/N27d/H48WMAQK9evcqs26tXL9y6dQuPHj2q1JLHiIgIUVul6d69O0xNTZGZmYnIyMgK9UFEdddxlfxaXIZIRERVxaWIRERUU2g9sPXgwYPChg0MMGbMGAwdOhTe3t5o3bq1trvSq+vXrwu327dvX2bd4sdv3LhR4cCWpn0ZGBjAyckJly9fxo0bNyrUBxHVTfFJmbj9LF1U5s/AFhERVZH6roicsUVERPpRLUsRJRIJCgoK8OOPP+LatWvw9fWFr68vvL290bJly+roUucePnwo3C7vOdnZ2Qm3i2azVaYvMzMzWFpaltvX5cuXkZCQgJycHBgbG1e4n9I8efJEuJ2Tk4OsrCyN26bar2iDB9XbVLMdvvJIdN/K1BDtGhtX6v8vz4H6je8/8Ryo31TffxnEM7Qys/P4t2Edx8+A+o3vP+Xk5Oh7CKXSemBr5cqViIiIQEREBJ49e4YrV67g6tWrWLduHQCgVatWwnJEX19fdOjQQdtD0ImXL18Kt83Nzcusa2ZmJtxOT08vo2bZfZXXT0l9VSSwVTwAV54///wTsbGxGtenuuXUqVP6HgJpaO8NKYB/lou0Mc3BsaNHqtwuz4H6je8/8Ryo306dOoVH8eLfL/fiHyE8vOJf4FLtxM+A+o3vf/2UmJio7yGUSuuBrffeew/vvfceAOD27dvCToinTp3CvXv3cP/+fdy/fx87d+4EAFhZWcHLywu+vr7w8fFB9+7dYWhoqO1haV3xKLWRkVGZdYsHl6oyS6K8frTRFxHVHbkFwJ1UcS7DjlbKUmoTERFpzlAq/n2Sz18vRESkJ9WyFLGIs7MznJ2dMXXqVADAo0ePRIGu69evIykpCQcOHMDBgwcBFAZmevToIczq8vLygoWFRXUOs1KK7+CYm5tbZt3iU/ZMTCq+E1lRX+X1U9W+ylsm+eTJE/To0QMA4OHhgTZt2lSofardsrOzhW9n/Pz8atUupvXV8duJyDt7Wbgvk0gwY1RvWMgr9+UBz4H6je8/8Ryo31Tf//i/nuF/8f/M3m/YyAYDBryir+GRDvAzoH7j+081ecVWtQa2VLVo0QKBgYEIDAwEACQnJyMiIgKnTp3CqVOncOHCBeE/zOnTpwEAMplMo4COrjVo0EC4Xd7ywoyMDOG2JssJS+tLk2WMVemrIvnPjI2NKxWko7pBLpfz/a8FIuJSRPfd7K3Q1Eo7XxTwHKjf+P4Tz4H6TS6Xw8xEnO4iX1G5L3CpduJnQP3G979+qkiaI12Tll+l+lhZWWHYsGFYvnw5/vzzT6SkpGD9+vVwdHSEUqmEUqlEQUHN3GGleBCovKTrxWdCVSSPlWpfGRkZSElJ0agvGxubGn3iEVH1UiqVOH7zuaisD3dDJCIiLVHdFTG3QFFKTSIiouql0xlbJbl27ZowQ+v06dN4/PgxgMKdFZXKmrtYv3jS+5s3b5ZZt/hxFxeXSvW1d+9eoa2ePXuWWC8/P1+YHliZfoio7rj59CWepIp3rOnLwBYREWmJsYH4+/Gc/Jr5ZTQREdV9Og1sFRQU4K+//hJybEVGRiI5OVk4rhrIatWqFfz8/HQ5RI05ODigefPmePz4MU6ePFlm3aK1yC1atIC9vX2F+/Lx8RFunzx5stTA1vnz54WliN7e3hXuh4jqjj9UZmu1tDKBU5OKL4UmIiIqibGhSmArjzO2iIhIP6o1sJWdnY3o6GghkPXnn38iMzNTOK4ayGrXrh38/Pzg5+cHX19ftGrVqjqHVyUSiQQjRozAunXrcPPmTZw5c6bEgNOZM2eEGVsjRoyARCJRq1Oe3r17o2HDhkhNTcW2bdswZ86cEtvZunWrcHvkyJEV7oeI6o6SliFW5vOHiIioJKpLEXPyGdgiIiL90HqOrQMHDmDu3Lnw8vKCpaUl+vXrh9DQUBw/fhwZGRlC7iyJRAJXV1cEBwdjz549ePbsGW7cuIFvv/0Wr7/+eo0OahWZNWsWZLLCX+ozZ85EVlaW6HhWVhZmzpwJADAwMMCsWbNKbCcoKAgSiQQSiQQnTpxQO25kZITg4GAAwI0bN/DFF1+o1YmOjsamTZsAAL169YK7u3tlnxYR1XLJGbn4+0GyqMyfyxCJiEiLuBSRiIhqCq3P2Bo+fLgwK6D4jCwjIyN0794dvr6+8PPzg7e3NywstLM7V2VERETgzp07wv3ExETh9p07d0Szn4DC4JMqZ2dnzJ49G0uWLMH58+fh7e2NuXPnok2bNoiNjcXSpUtx4cIFAMDs2bPRtm3bSo939uzZ2L17N27fvo05c+bgzp07CAwMhImJCY4fP45FixYhPz8fJiYm+OqrryrdDxHVfidvJ0BRbEKs3FAKT0dr/Q2IiIjqHPXAFmdsERGRflTLUkSlUglTU1N4enoKgayePXtCLpdXR3eVsnHjRmzbtq3EY5GRkYiMjBSVlRTYAoDPP/8cz58/x+bNm3HhwgUEBgaq1Zk6dSoWLlxYpfE2aNAABw8eREBAAGJiYrBhwwZs2LBBVMfCwgI7duyAq6trlfoiotpNNb+Wj1NjyA1lpdQmIiKqOGOV3yvMsUVERPqi9cDWsmXL4OvrCzc3NxgY6H3TxWonlUqxadMmjB49Ghs2bMC5c+eQmJiIxo0bw93dHdOnT8fgwYO10peTkxMuXLiAr7/+Gj/99BPu3LmD3Nxc2NnZISAgAO+99x5at26tlb6IqHbKL1Dg5O0EURmXIRIRkbaVtBSxKN0IERGRLmk98vSf//xH201Wi61bt6otN6yKgIAABAQEVPtYzMzMMGfOHMyZM6dSfRFR3XYhPgWpWXmiMv92DGwREZF2qQa2FEogX6GEoYyBLSIi0i2tJ48nIiL9OXZDvAyxvW0DNLc00dNoiIiorlJdiggwzxYREekHA1tERHXIcZX8Wn24DJGIiKqB6owtAMjJ486IRESke1pfitinTx+ttieRSHDs2DGttklEVBc9SsnCrWcvRWV9XRjYIiIi7SsxsMUZW0REpAdaD2ydOHFCSBpZ1QSSTEBJRKQ51d0QrUwN4WpnpafREBFRXWZswKWIRERUM1TbtoVyuRxNmnCmABGRrqguQ+zlbAOZlF8OEBGR9hnKJJBIAKXyn7KcfC5FJCIi3au2wFZ2djaaNWuGyZMnY9y4cbCy4qwBIqLqkpVbgMg7iaIyf+bXIiKiaiKRSGAkk4pmaeXkccYWERHpntaTx3/22WdwdnaGUqnEmTNn8M4776BZs2YYPXo09u/fj7y8vPIbISKiComOSxRdXMikEvRyttHjiIiIqK5TzbOVW8DAFhER6Z7WA1sff/wxbty4gbNnz+Ldd99F48aNkZubi3379mH06NFo1qwZ3nnnHURHR2u7ayKieks1v5ZbKytYmhrpaTRERFQfGBuK82xxxhYREemD1gNbRbp3747Vq1fj8ePH+PXXXzFmzBgYGxsjKSkJ69evh4+PD5ydnfHZZ5/h7t271TUMIqI6T6lU4vjNBFEZlyESEVF1U52xxRxbRESkD9UW2Coik8kwdOhQ/Pjjj3j69Cm+++47+Pr6AgDu3LmDkJAQODk5wdfXF9999x1SUlKqe0hERHXK7WfpeJSSJSrrw8AWERFVM/XAFmdsERGR7lV7YKs4CwsLTJ06FSdOnMDdu3fx6aefwsnJCUqlElFRUXj77bfh4OCgyyEREdV6qssQW1iawLmpuZ5GQ0RE9YWxgcpSRM7YIiIiPdBpYKu4Vq1a4ZNPPsGtW7ewZs0aGBsbQ6lUIicnR19DIiKqlf64+Ux0v0/7JpBIJHoaDRER1RfGhioztphji4iI9MBAXx3Hx8dj+/btCAsLw61bt4RyIyMmOyYi0lRyRi7+up8sKuMyRCIi0gUuRSQioppAp4GttLQ0/PTTT9i+fTtOnz4NpVIJpVIJAPD09MSkSZMwbtw4XQ6JiKhWO3L9GRTKf+7LDaXwbGOtvwEREVG9waWIRERUE1R7YKugoACHDh1CWFgYfvvtN+Tk5AjBLEdHR0ycOBGTJk1CmzZtqnsoRER1zv+uPhHd92/XBHKV7deJiIiqg9qMLS5FJCIiPai2wNa5c+cQFhaG3bt3IzExEUDhlvSWlpYYO3YsJk2aBG9v7+rqnoiozkvNzEPknURR2eDOzfQ0GiIiqm+MDVVnbDGwRUREuqf1wNbChQuxY8cO3L59G0BhMMvQ0BCDBw/GpEmTMGzYMObRIiLSgqM3niGv4J91iEYGUubXIiIinVHPscWliEREpHtaD2zNnz8fEokESqUSHh4emDx5MsaNG4dGjRppuysionrtf1fEyxB7OdvA3Fhve4IQEVE9w+TxRERUE1TbFZCJiQmePXuG5cuXY/ny5ZVuRyKRIDY2VosjIyKq/dKy83A6RrwMMaCzrZ5GQ0RE9ZFa8njm2CIiIj2otsBWVlYW7t27V+V2JBJJ1QdDRFTH/HHjOXIL/rmAMJJJ0delqR5HRERE9Y2xIZciEhGR/mk9sOXn58dgFBFRNVNdhujbtjEs5IZ6Gg0REdVHRjIuRSQiIv3TemDrxIkT2m6SiIiKSc/Jx4nbCaIy7oZIRES6pj5ji4EtIiLSPWn5VYiIqCb54+Zz5Ba7eDCQStCfyxCJiEjHVHNs5TKwRUREesDAFhFRLXNIZRmit1NjNDTlMkQiItIt9V0RmWOLiIh0j4EtIqJaJDM3H8dvPReVDeEyRCIi0gP1wBZnbBERke5pNbD15MmT8itV0dOnT6u9DyKimurErQRkF9tOXSaVoH8HLkMkIiLdMzYUL0XMyWNgi4iIdE+rga02bdogODgYjx490mazAIAff/wRXbp0wYYNG7TeNhFRbaG6G6JXG2tYmRnpaTRERFSfcSkiERHVBFoNbOXn5+Prr7+Gk5MT3njjDYSHh0OhqPw3N/Hx8Vi2bBlcXFwwfvx4XL16FUZGvIAjovopO68Af9wUL0Mc3InLEImISD+4FJGIiGoCA202dvXqVbz//vs4dOgQtm/fju3bt6NJkyYYMWIEevbsCXd3d3To0AESiaTExycmJuLcuXM4e/Ysjh07hqioKCiVSiiVSrRo0QKhoaEICgrS5pCJiGqNE7cSkJn7z7fhUgkwoCOXIRIRkX6o7orIwBYREemDVgNbzs7OOHjwIKKiorBw4UIcPnwYz549w3fffYfvvvsOAGBkZARra2tYWVnBysoKWVlZSEpKQnJyMlJTU4W2lEolAKBly5aYOXMmZs6cCblcrs3hEhHVKoeuipch9nS0RmNzYz2NhoiI6jtjQ5UZW3lcikhERLqn1cBWES8vL/zvf//D7du3sXnzZvz000+4e/cuACAnJwePHz/G48ePIZFIhABWccbGxhg4cCD+9a9/YfDgwZBKuXkjEdVv2XkFOHZDZRkid0MkIiI94lJEIiKqCaolsFXE2dkZS5YswZIlS/DgwQOcPn0aUVFRePjwIRISEpCUlAS5XA4bGxvY2Nigc+fO8PX1RY8ePZhLi4iomIiYRKTn5Av3JRJgIJchEhGRHqkuRcxXKJFfoICBjF9KExGR7lRrYKu4Vq1a4fXXX8frr7+uqy6JiOoM1d0Q3e0boUkDLs8mIiL9UZ2xBQC5DGwREZGO8bcOEVENl5NfgCM3nonKAjrZ6mk0REREhVRzbAFATh6XIxIRkW4xsEVEVMNF3XmBl9n5ojLm1yIiIn1TXYoIMM8WERHpHgNbREQ1nOoyxO6trdDUgssQiYhIv0paipiTz50RiYhItxjYIiKqwfIKFAi/Ll6GyNlaRERUExiVkEuLM7aIiEjXGNgiIqrBomJfIDUrT1Q2iPm1iIioBpBKJWrBrVwGtoiISMcY2CIiqsEOqSxDdLWzRAtLEz2NhoiISEx1OSKXIhIRka4xsEVEVEPlFyhw+NpTUdkQLkMkIqIaRHVnRO6KSEREusbAFhFRDfXn3SQkZ3IZIhER1VyqOyMyxxYREekaA1tERDXUQZVliF1aNoRdI1M9jYaIiEgdlyISEZG+MbBFRFQDFSiUOHxVvAxxcCcuQyQioprFSC2wxRlbRESkWzoJbPXp0wd9+vTBli1bdNEdEVGtd/ZuEl5k5IrKAjpzGSIREdUsxoYqSxGZY4uIiHRMJ4Gt06dP4+TJk7C3t9dFd0REtd6hq+JliB2bW6C1tZmeRkNERFQyLkUkIiJ900lgq0mTJgAAS0tLXXRHRFSrKRRKHFJZhhjA3RCJiKgGUg9sccYWERHplk4CW6+88goA4Pbt27rojoioVjt/PxkJL3NEZYO5GyIREdVA3BWRiIj0TSeBrWnTpkGpVGL9+vW66E5nevfuDYlEUqGfEydOVLifkJCQam2fiGqW/6nshtjetgEcbcz1NBoiIqLSGRuqzNjK41JEIiLSLZ0EtkaNGoWJEyfi5MmTePPNN5GRkaGLbmscqVSKtm3b6nsYRFSDKRRK/M7dEImIqJbgUkQiItI3A1108v3336Nv3764fPkytm3bhl9++QXDhg1Dly5dYGVlBZlMVubjJ0+erIthVtiWLVvKDdJdv34d48aNAwD07dsXLVq0qFKfV65cKfO4g4NDldonIv26EJ+Cp2nZorIhXbgMkYiIaiYuRSQiIn3TSWArKCgIEolEuJ+cnIywsDCNHiuRSGpsYEuTIFLx56mN59GpU6cqt0FENdchlWWIbZuYw6lJAz2NhoiIqGzcFZGIiPRNJ4EtAFAqlWXer4sUCgV27NgBADA3N8eoUaP0PCIiqslK2g1xMHdDJCKiGkwtsJXHGVtERKRbOgls3b17Vxfd1DjHjh3Do0ePAABjxoyBqampnkdERDXZuXtJeJSSJSrjbohERFSTqQW2ChjYIiIi3dJJYKt169a66KbG+f7774XbNXU5JRHVHPsuPBLdd25qjva2XIZIREQ1l7GhSo4tztgiIiId09lSxPomPT0d+/btA1AY2Ovdu7dW2h0wYAAuXryIlJQUWFpaokOHDhg0aBCmT58OKysrrfRBRLqXnVeAgyr5tUZ2bSnKT1iv5OcASl4c1Sh5WZAqcoXb/AuiHuI5UL/9//dfKREHsphji4iI9I1/klSTvXv3CjsmTpw4UWsXp0eOHBFuJyQk4OTJkzh58iSWLl2KrVu3YsSIEZVu++HDh2Uef/Lkn4vunJwcZGVllVGb6prs7OwSb5N2HL7+HC+z84X7EgAD2zeqUf/PdHEOSJ5chOHxEEjj/4QEdT8XY21iAmBY0Z1LehwI6Q3Pgfqt6P3PlxghHxORNWAhIJFCohQHsrJy82vU7y7SHv4tWL/x/aecnBx9D6FUOg9sxcTE4Pvvv0d0dDSePn2KrKwsHD58GE5OTkKdq1ev4sGDBzAzM0OvXr10PUSt0PYyxM6dO+PVV19Fjx490Lx5c+Tl5eHWrVvYsWMHwsPDkZKSgtGjR+O3337D4MGDK9WHnZ2dxnX//PNPxMbGVqofqv1OnTql7yHUOZtuSgH88623k4UCV/48hSv6G1KZtH4OKBVo8/wwOjz5EVIlv+0nIqqpDJS5MLi4GaczmiHJvB3uPJcA+GcWV8KLZISHh+tvgKQT/FuwfuP7Xz8lJibqewil0llgS6FQYM6cOVi1ahUUCoWwK6JEIkFubq6o7oMHDzB06FAYGBjg7t27aNGiha6GqRUPHz7EiRMnAAA9e/aEs7NzldqbNWsWQkJC1Mo9PDwwefJkfPvtt3j77bdRUFCAadOmITY2FnK5vEp9EpHuZOQB11PEszq729Sf2UrGeSnodn8Dmry8qu+hEBGRhiyyHiLJvB0MVBYlMMUWERHpms4CW9OnT8fmzZuhVCrRokULeHp6Ys+ePSXWDQgIgIODA+7du4c9e/bgvffe09UwtWL79u1QKAp/q7/xxhtVbs/S0rLM49OnT8e5c+ewadMmPH78GHv37sXrr79e4X7i4+PLPP7kyRP06NEDQGFQrU2bNhXug2qv7Oxs4dsZPz8/Bk+1aNe5hyhQ3hbuGxtI8f4YPzSQ16zV4tVxDkjjjsPo4KeQZNbcb4CIiEhdB8cWcPYcANx4jrA7/3wxYWRihgEDeupxZFRd+Ldg/cb3n2ryii2dXDUdO3YMmzZtgkQiwUcffYTQ0FDIZDJIpdJSH/Paa69h2bJl+OOPP2pdYCssLAwAYGxsjHHjxumkz+nTp2PTpk0AgJMnT1YqsNWyZUuN6xobG8PExKTCfVDdIJfL+f5r0cFrCaL7/To0RROrmr0bYpXPgfxc4FgoEL22hIMSwOd9oNukwttUI2Tn5OD06dMAAF9fX8iNjfU8ItI1ngP1W8GhDyGL+V24b1iQAUMTE1iYin8X5BUo+TdCPcC/Bes3vv/1k3EN/r2vk8DWhg0bABTOxFq4cKFGjymaGXTt2rVqG1d1OH/+PK5fvw4AGDp0qM52KuzQoYNw+9GjRzrpk4iq7v6LDPx1P1lUNqpr7Vp+XWEvYoE9bwJPLqofM7cFRm0AHGtnfsW6TJmVhUzjW4W3LVsD/IO23uE5UL8pzW3FBdlpALgrIhER6Z9OAlvR0dGQSCSYOnWqxo8pmj309OnT6hpWtSieNF4byxA1pa1dF4lIt/ZfeCy638jMCH7ONnoaTTVTKoFLPwAHPwDyMtSPOw8CRnwDmFnrfmxERFQmpbyhuCA7FQBgbKgS2GKSLSIi0jGdBLaeP38OALC3t9f4MYaGhgCA/Pz86hhStcjLy8MPP/wAALCxsan07oSVUTRLDACaN2+us36JqPKUSiX2XXgoKhvWpRkMZaUv0661stOAg/8GrvykfkxmBAxYCPR4C2CQnoioZjK2EN8vCmwZyETFOfkMbBERkW7pJLBlZmaGlJQUJCQklF/5/3v4sPBir1GjRtU1LK07dOiQ8BwnTJgAAwPdJX7+9ttvhdu9enEJD1FtcDE+BfdeZIrKXq2LyxAf/gXsfRNIvqd+rLEzMGYzYNtZ58MiIiLNKY1LmbGlshQxt0ABhUIJqZRfVBARkW7oZFqAo6MjAPGsovIcOnQIANCxY8dqGVN1KL4McfLkyRo9ZuvWrZBIJJBIJAgJCVE7fuXKFdy5c6fMNjZs2ICNGzcCAGxtbTFy5EjNB01EerPvgjgfnkNjM7jaWepnMNUlai2weUDJQa1uk4G3TjCoRURUCyjlms3YAgqDW0RERLqikylFAwYMwF9//YWvv/4aM2fOLHM3RKAwAFYU8AkICNDFEKssOTkZBw4cAAB06tQJ3bp100q7f/31F6ZNmwZ/f38MHjwYnTt3hrW1NfLz83Hz5k3s2LED4eHhAACZTIYNGzbAzMxMK30TUfXJK1Dgt0vi/FqvuraoW/nyruwBwj9WLzduCAxfBXRkEJ6IqNYobSmiofrf9Tl5CsgN1QNeRERE1UEnga3g4GCsXr0asbGxePvtt/HNN9+UukzvyJEjmDJlCrKzs2FtbY1//etfuhhile3evRs5OTkANJ+tpamCggIcPXoUR48eLbWOtbU1Nm3ahGHDhmm1byKqHidvJSA5M09U9mrXOpQfryAf+OMz9XI7D2D0RsCyle7HRERElaYsJbBlVEJeyMKdEQ11MCoiIiIdBbaaNm2K9evXY/Lkydi0aRMOHz6MIUOGCMdXrVoFpVKJyMhI3Lx5E0qlElKpFFu3boW5ubkuhlhlYWFhAApnTb3++utaazcgIACbNm1CdHQ0Lly4gGfPnuHFixdQKpVo1KgRXnnlFQwaNAhBQUGwsLAov0EiqhH2XRQvQ3RrbYXW1nVotuXVPerLD33+Dfh/DMh0l3+QiIi0RHVXxIIcIC8bxobqn+lMIE9ERLqks6uL119/HYaGhpg+fTri4+Px7bffCktuivJDKZVKAIC5uTm2bdsmCn7VdJGRkZV6XFBQEIKCgko93qRJE7z55pt48803KzkyIqpp0rLzcOT6M1FZnUoarygATi0XlzXvBvSdz10PiYhqKbUZWwCQkwYjk8bqxQxsERGRDul0T/mxY8fizp07CA0NhZubG2QyGZRKpfDTsWNH/Pe//8WdO3eYAJ2I6qzfrzxFbrE/+g1lEvy/9u48LKqy/QP498wMMOwIiIo7KOK+4q5opua+lZYtWprWa2Zlli2a9Xuz1d7KstJcKsu1NNdyA1xRUTR3FHADVEBlh9nO7w9i5DAM68wcBr6f6+Jy5jnPOefGORyGe57nfoa3rSdjRBZ2bhOQWmTRi9A3mNQiIrJnxSW2ctOgUiqgKrICYv5URCIiItuw+XwQHx8fzJs3D/PmzYPBYMDdu3eh1+vh7e0NBwfOxSei6u+P6JuS5/1a+KGWq6NM0ViYwQDs/1zaVrctEPSIPPEQEZFlqJygExyhEjUP2owrIyqg0zxIZnHEFhER2ZKshU4UCgV8fU2HLxMRVVcJ93MQGXdX0ja2Ok1DvLgNSL4gbevL0VpERNWBTukCla5wYus+AMDJQYmswoktLRNbRERkOzaZipidnW2L0xARVXl/Fika765WoX+wn0zRWJgoAvs/lbb5tQKCh8sTDxERWZRW5SJtKDRiqzBORSQiIluyyYitWrVqoUuXLujbty/69euH3r17w9W1Gq3+RURUBqIoYtNJaWJreLt6UDsoZYrIwmL+Am6dkbb1mQ0obFrOkYiIrESrcJY2mE1sccQWERHZjk0SW1qtFpGRkYiMjMSnn34KpVKJTp06ITQ01Jjocnd3t0UoRESyOZeYjst3MiVtoztUk2mIoghEFBmt5dMcaM2FQIiIqgutssgH07npAAAnlfQDGia2iIjIlmzyMfrChQsxePBguLm5QRRF6HQ6HDt2DJ9//jmGDx8OHx8fdO3aFXPmzMH27duRnp5ui7CIiGxqc7R0tFZ9L2eENPGWKRoLu7IXSDwpbev7OqCoJqPRiIgIWqWZqYgORUZsaTkVkYiIbMcmI7bmzp2LuXPnQq/X4+TJkwgPD0dERAQOHjyI9PR06HQ6REVF4cSJE/jiiy+gUCjQvn1744iuESNG2CJMIiKr0ekN+PN0oqRtdEd/KBTVoKh6cbW1ajUF2jwqTzxERGQVZa+xxRFbRERkOzZdFVGpVCIkJAQhISGYM2cODAYDoqOjERERgfDwcBw8eBD379+HXq9HdHQ0oqOj8dVXX0Gn09kyTCIiizscm4rkjDxJ25jqshpi/H7gxlFpW5/XAKWsC+8SEZGFmR2xxamIREQkI1kr+ioUCnTu3BmvvfYatmzZgsuXL2PevHnw9PQEkF9oWRRFOUMkIrKIotMQ29b3RDO/alJbcP9n0ueejYB2j8sTCxERWY35xBZXRSQiIvnI+nH6/fv3sX//foSHhyM8PBz//POPSTKrcePGMkZIRFR52Rod/jp3S9I2urqM1rp2GLh6QNrW+xVA5ShLOEREZD1lr7HFEVtERGQ7Nk1smUtkATD+26RJE2NtrX79+jGxRUR2b9e528jWPPj0WqkQMLK9v4wRWVDRlRDd/YGOT8kTCxERWRWnIhIRUVVkk8TWa6+9ZnZEVtOmTSWJrEaNGtkiJCIim/mjyDTE3s18UdvdSaZoLOhmFBAXJm3rNQtQVYPvjYiITOjMJLYclZyKSERE8rFJYuvLL7+EIAgQRRFNmzY1JrH69euHhg0b2iIEIiJZ3MnIxcHLyZK2sZ2qyTTEoqO1XP2AzpPkiYWIiKzOZMRWXjoA06mIGo7YIiIiG7Jp8XhBEODq6mr8cnFxKX0nIiI7tuVUIgyF1sBwcVRiYKs68gVkIcKt08Dlv6WNvV4GHJzlCYiIiKzOJLGlzQZ0mmKKxzOxRUREtmOTEVvPPPMM9u/fj6tXr+Ls2bM4d+4cvv32WwiCgFatWhlHb4WGhsLHx8cWIRER2cTmU9JpiI+0qQsXR1nX7bAIh8NfShtcfIAuz8kSCxER2YZJYgsA8tJZY4uIiGRlk7+uVq1aBQC4fv06IiIiEB4ejoiICMTFxTHRRUTV1uXbGTibkC5pG1MNVkP0yLkO5eWd0sYeMwBHV3kCIiIimyg2sZWbZjpiS8saW0REZDs2HTbQqFEjPP3003j66acBADdv3kRERAQiIiIQFhaG2NhYk0RX69atcfr0aVuGSURkEZuKFI33c3dCz0BfmaKxnKBbW6QNai8g5HlZYiEiItsxKByhFxygFLUPGnPvw8nBS9KPI7aIiMiWbFpjq6gGDRrgySefxNKlS3H58mXcvHkT8+bNg4eHB0RRhMFgwNmzZ+UMkYioQnR6A34/eVPSNqqDP5QKQaaILMMtNwH+949LG7v/B1B7yBMQERHZlMmordy0YqYicsQWERHZjuyFXmJiYhAeHm6cnnjr1i0AMK6iSERkj/ZevIPb6XmStjEdG8gUjeUE3doKAYXuzU4eQLfp8gVEREQ2pVM6A7q0Bw3FTUXkiC0iIrIhmye2zCWyAEgSWc2aNTPW2SIisje/Hr0ued6hoRda+dv3qCbhbhwa3Dsibew6DXD2kiUeIiKyPdMRW+lwcihaY4uJLSIish2bJLaWLl1aaiIrKCjImMjq168f6tWrZ4vQiIgs7lpqFvbHJEvanureWKZoLEd15CvpaC0H1/yi8UREVGMUOxXRg1MRiYhIPjZJbL3wwgsmUwuDg4Mliaw6derYIhQiIqv77Zh0tJaHWoXh7ew8WX/vKpTnNkrbuk4FXLzliYeIiGRRbGLLm1MRiYhIPjabitiyZUtjIis0NBR+fn62OjURkc3k6fTYECUtGv9o54ZQOyjN7GEnwj+GID74BF5UOUPoMVPGgIiISA5apau0odji8UxsERGR7dgksXXnzh34+tr/EvdERKX56+wt3M3SSNomdmskUzQWcvs8cHqtpEnf4Rmo3GrLFBAREcml2BFbJjW2OBWRiIhsR1F6l8pjUouIaoqiReO7B3ijmZ+bTNFYyL7/AwrV1tIp1NBytBYRUY1UbGKLqyISEZGMbJLYMken0yE5ORnJycnQ6XRyhkJEVGkxtzNwLP6upM3ui8bfOAZc2iFpuuL3CODCDyyIiGqi4hNbplMRC9fWJSIisiabJ7YuXLiAmTNnomXLllCr1ahbty7q1q0LtVqNli1b4uWXX8b58+dtHRYRUaX9VmS0lq+bIwa1qitTNBYgisCeBZKmPJU7Yv2GyBMPERHJTqt0ljbkpcNRZfonhUbPUVtERGQbNk1svfXWW2jXrh2WLFmCS5cuwWDI/zRHFEUYDAZcunQJ3377Ldq3b4+3337blqEREVVKtkaH309Ki8aP79Kw2Df7duPKXuDaIUlTTJ0R0BX9o4aIiGqM4ovHm/6u43REIiKyFZutijhz5kwsWbLEOCy5ZcuW6NatG+rWzR/NcOvWLRw7dgznz5+HXq/HJ598gqysLHz11Ve2CpGIqMK2nU5CRu6DKdWCADzR1Y6LxhsMwN4F0ib3+rjq+5A88RARUZVQlhpbAKBhYouIiGzEJomtQ4cO4dtvv4UgCGjVqhWWLl2Knj17Ftv3yJEjeOGFF3DmzBl88803mDBhgtm+RERVxa9Hr0mehwbVRkNvFzO97cD5TcCtM5ImXe/XYbjlKFNARERUFeiKJrY0mXBSmtbT4ogtIiKyFZvMkfnhhx8AAE2bNsWhQ4dKTFT16NED+/fvR0BAAADg+++/t0WIREQVduZmGk7fTJO0PdXNjovG67XAvv9K23xbQN/mMXniISKiKkOrMv3QxkmXadKWp9XbIhwiIiLbJLYOHDgAQRAwd+5ceHp6ltrf09MTb775JkRRxIEDB2wQIRFRxRUdreXvqUb/YD+ZorGA6F+Au3HStofeBRQ2m71ORERVlMlURAAqTToUgrSNI7aIiMhWbJLYunXrFgCgY8eOZd6nU6dOAIDbt29bJSYiIktIz9Xiz1OJkrbHuzaCsug7fHuhyQbCP5G2+XcCWo6QJx4iIqpS9IIjRIWDpE3IS4OTSilpY2KLiIhsxSaJLbVaDQDIysoq8z4FfZ2cnKwSExGRJWyOTkBOoekWSoWACSENZYyoko4tBTJvSdseXpBfDZ+IiEgQACd3aVtuGpwcpH9WcCoiERHZik0SW02bNgUAbN26tcz7FPQtqLVFRFTViKKIXyOvS9oGtqyDOh5qmSKqpJx7wMEvpG0B/YGAUHniISKiKklUFyktkptusjIiR2wREZGt2CSxNXToUIiiiMWLF2Pv3r2l9g8LC8PixYshCAKGDh1qgwiJiMov6to9XLqdIWl7qrsdF40/9DWQKy2CjwHz5YmFiIiqLicP6fNcTkUkIiL52CSx9corr8DDwwNarRZDhgzBSy+9hJMnT8JgePALz2Aw4OTJk3jppZfwyCOPQKPRwMPDA6+88ootQiQiKrdfI6VF45v4uKBnoI9M0VRSxi0g8jtpW6tRQP1O8sRDRERVluhUdMRWWjEjtjgVkYiIbMMmS1z5+vpi/fr1GDlyJDQaDb777jt89913cHR0hLe3NwRBQGpqKjQaDYD86T2Ojo7YsGEDfHzs9I9EIqrW7mZpsOOMtBbVxG6NoLDXovH7PwN0OQ+eC0rgoXnyxUNERFWXupgRWyY1tjhii4iIbMMmI7YAYNCgQYiMjESXLl0giiJEUUReXh6SkpKQmJiIvLw8Y3uXLl1w9OhRPPzww7YKj4ioXDaeuAGN/sGbdkelAo92ttOi8XfjgBOrpG0dnwR8m8sSDhERVW3Fj9jiVEQiIpKHTUZsFejQoQOOHTuG48ePY8+ePTh79izu3r0LAPD29kabNm3w8MMPIyQkxJZhERGVi8Eg4tej0qLxQ9vWhbero0wRVVLYQsCge/Bc6QSEzpUvHiIiqtLE4kZscSoiERHJxKaJrQIhISFMXhGR3ToUm4JrqdmSNrstGn/rDHBmg7St6/OAZ3154iEioqqvTDW2OGKLiIhsw6qJre3bt+Ovv/7CtWvXoNfr4e/vj379+mH8+PFwcHCw5qmJiKzm10jpaK0WddzRuXEtmaKppL3/J33u5AH0mS1PLEREZBdEJ3dpQ1666VRE1tgiIiIbsUpi6/bt2xg9ejSOHTtmsm3FihWYP38+Nm/ejLZt21rj9EREVnM7PRe7L9yWtD3ZvREEwQ6Lxl87DFz+W9rW82XAxVueeIiIyD6oTUdsOXpxKiIREcnD4sXj9Xo9Ro4ciaNHjxqLwRf9io+Px+DBg5GSkmLp0xMRWdW64zegN4jG584OSozuaIfT9kQR2PO+tM21NtD9RXniISIiuyE6lV5jS8OpiEREZCMWT2ytX78ex48fhyAIaNasGZYvX44zZ87g4sWL2LBhA7p37w4gf1TXokWLLH16IiKr0ekNWHNMOg1xVAd/eKjtcGr15V3AjUhpW985gJObPPEQEZH9KGbElpMDa2wREZE8rJLYAoAmTZrg2LFjePbZZ9G6dWsEBQVh3LhxOHDgAEJDQyGKIjZs2FDK0YiIqo6wS8lISsuVtD3ZzQ6Lxhv0wN4PpG1ejYDOk2UJh4iI7IvJiK28dKiVRZo4FZGIiGzE4omt6OhoCIKA2bNnw8vLy2S7UqnE++/nT3+Jj49HRkaGpUOwKUEQyvTVr18/i5xvzZo1GDRoEOrWrQu1Wo3GjRvjqaeewpEjRyxyfCIy79ej1yTP2zfwRNsGnmZ6V2HRq4HbZ6Vt/d4GVE7yxENERHZFLLoqIgB3IUfynCO2iIjIViye2EpOTgYAdOnSxWyfwttYZ6tscnJyMGzYMEycOBG7d+/G7du3kZeXh+vXr+PXX39F7969jQlDIrK8G3ezERGTLGmzy9FaOfeBvUXuFbVbAu3GyxIOERHZoaJTEQF4IFvynKsiEhGRrVh8VcScnBwIggA3N/N1WlxcXIyPc3NzzfazJy+++CL+85//mN3u6upaqeM/99xz2LFjBwCgf//+mDVrFvz9/XHmzBksXLgQsbGxWLBgAerVq4dp06ZV6lxEZOrXo9chPqgZD3e1CsPb15MvoIoK/wjITpW2Df4QUCiL709ERFSUgwsgKAHxwXRDt6KJLU5FJCIiG7F4Yqu8xMJ/KdoxPz8/tGnTxirH3rdvH9auXQsAGDFiBDZt2gSlMv+P0JCQEIwcORKdO3fG9evX8eabb+Kxxx5DrVq1rBILUU2Ukas1mYY4rlMDuDjKfgstn9vngWPLpG3Bw4FmA+SJh4iI7JMgAGoPIOeesclNzATw4INcTkUkIiJbsfhURLK8zz//HACgUqmwZMkSY1KrgK+vLz755BMAwP379/Hjjz/aPEai6mzNsevIyNUZnwsC8HQPO5uGKIrAzjckn65D6QQM+q98MRERkf0qMh3RVcySPGdii4iIbMVqww2WLFkCPz8/i/SbP3++pcKyOxkZGdi7dy8A4OGHH0aDBg2K7Td27Fh4eHggPT0dmzZtwpw5c2wZJlG1pdEZsPxgvKRtUKs6CKxtfrp1lXT+T+DqAWlbr1mAd1N54iEiIvtWJLHlYsgE8OA9PaciEhGRrVgtsfXdd9+VuF0QhDL1A2p2Yuv48ePQaDQAgNDQULP9HB0d0b17d+zatQvHjx+HVquFg4ODrcIkqrY2n0rA7fQ8Sdv00ECZoqkgTTaw611pm0cDoPer8sRDRET2r0hiy9mQKXnO4vFERGQrVpmKKIqixb7sxYYNG9CqVSu4uLjA3d0dzZs3x6RJkxAWFlap454/f974ODg4uMS+Bdt1Oh0uX75cqfMSEWAwiPghIlbS1rWpNzo1srMadoe+BNJuSNsG/xdwdCm2OxERUamKJLbUuiKJLU5FJCIiG7H4iK3KJnLsVeEEFABcuXIFV65cwc8//4zRo0dj1apV8PQ0XRq5NDdv3jQ+NjcNsUDDhg2Nj2/cuIFWrVpV+FzFSUpKMj7Oy8tDTk5OuY5P9q3wCqbVZTXT0uy9mIzYZGnNkOd6NLCra1+4fw1OB7+EUKhN36gXNE0HA+X8PmriNUAP8PUnXgM1W9HX30HlJvlDwkFzX9pfq7Or35dUOt4Daja+/pSXl1d6J5lYPLFV0nS56sjFxQUjR47EgAEDEBwcDDc3NyQnJyMiIgLff/89UlNTsXnzZowaNQq7d+8u9/TAjIwM42M3t5Jr+ri6PliJJjMzs4SexSucGCvN0aNHERsbW3pHqpb2798vdwg28eVZJVAoJVTPWURu3Ensije/T1UTEvcV/PUPfgkZoECEy1Bk7N5dqePWlGuAisfXn3gN1Gz79+9H61v30KxQW/rtq5I+mTl52LVrl03jItvhPaBm4+tfM6WkpMgdgll2tlZ91ZOQkAAvLy+T9oEDB2LmzJkYMmQIoqOjERERge+++w4vv/xyuY5fOBvu6OhYYl8nJyfjY35CRlQ5selAfIYgaRtQ3wBBMLNDFVQ7/Sz8005I2q7WHoAM57InsYmIiIqjVUqnszsbpO89ORORiIhshYmtSiouqVWgTp062LhxI4KDg6HVarF48eJyJ7bUarXxcUEReXMKDw10dnYu13mA/OmLJUlKSkLXrl0BAN26dUNgoJ0V0KZKyc3NNX4607dvX8m1WR29uOY0gFTj83qeTnjj8R5wUFqlNKHl6bVwWvl/kibR2Rv1Ji5GPbVXhQ5Z064BkuLrT7wGarair7/r2evArT+M2/3cVYV/bUInChg0aJCtwyQr4j2gZuPrT1V5xhYTW1YWEBCAgQMHYseOHbhy5QoSExPh7+9f5v3d3d2Nj0ubXpiV9aAWUGnTFotTWg2vwpycnCqUPKPqQa1WV+vXP+Z2BsJjUiVtz/cJhIebq5k9qqAjK4BU6SISwsPvwblWPYscvrpfA1Qyvv7Ea6BmU6vVcHT3lbQ5FikebxABB0cnqOzlAyEqF94Daja+/jVT4RliVQ1/09hA4SLuCQkJ5dq3cLKptOLuhUdcladeFhFJ/RARJ3nu6eyACSF29DOVeQcI/1jaVq890PFpeeIhIqLqp8iqiEpNukkXroxIRES2wMSWDQiVKMpTOCl28eLFEvsWbFepVGjevHmFz0lUkyXez8Gfp6QJ6Ek9GsPVyY4GuO55H8gr8gfGkM8AhVKeeIiIqPopkthSFP29Aya2iIjINpjYsoHz588bH5dnGiIAhISEGIvGR0REmO2n0WgQGRlp3Ke8qy8SUb7lB+OhM4jG52oHBSb1bCJfQOV18wRwarW0rd3jQKNu8sRDRETVU5HElpCXDgHSRFaeTm/LiIiIqIZiYsvK4uPjsXv3bgBAYGAg6tevX6793d3dMWDAAADAnj17zE5H/OOPP5Cenv9J2ZgxYyoRMVHNlZatxZpj1yVt47s0hI9b1Z1PLmEwADvnSNsc3YCB78sTDxERVV9FE1sQ4YZcSVueliO2iIjI+pjYqoStW7dCp9OZ3X779m2MGzfOuJrhf/7zH5M+q1atgiAIEAQBCxYsKPY4r7/+OgBAp9NhxowZ0Ouln36lpKTgzTffBJC/SuPUqVMr8u0Q1Xi/RF5FtubBz5dCAKb2DpAxonI6/RuQcELaFvoG4F5XnniIiKj6KpLYAgB3ZEuecyoiERHZgh0Vjal6Zs6cCa1Wi3HjxqFHjx5o0qQJnJ2dkZKSgvDwcPzwww9ISUkBAPTu3RszZsyo0HkeeughPP7441i7di22bNmCgQMH4pVXXoG/vz/OnDmDDz/8ENev548y+eSTT1CrVi2LfY9ENUWuVo+Vh65K2oa180cjHxd5Aiqv3DRgzwJpm08zoNuLsoRDRETVnKMbAAHAg+n7vqocJBb6zJdTEYmIyBaY2KqkxMRELF68GIsXLzbbZ9y4cfjxxx8rtTzmihUrkJ6ejh07diAsLAxhYWGS7QqFAvPmzcO0adMqfA6immzDiZtIzdJI2qb3taPRWhGfAlnJ0rZHPgFUjvLEQ0RE1ZtCAag98j9Y+ZePKgeQJLY4YouIiKyPia1K+OmnnxAREYEjR44gLi4OKSkpSE9Ph5ubGxo2bIiePXti0qRJ6NGjR6XP5ezsjO3bt+O3337DqlWrcPr0ady/fx916tRBnz598NJLL1nkPEQ1kd4gYtn+OElbn+a+aFPfdJpFlZR8CTj6vbStxVCg+cPyxENERDWD2lOS2PJWssYWERHZHhNblRAaGorQ0NBKHWPy5MmYPHlymftPnDgREydOrNQ5iUhq59kkXL8rrQvyQmigTNGUkygCO98ADIU+Ilc6AoM/lC8mIiKqGYrU2aqlKFpji1MRiYjI+lg8nohqNFEU8X1ErKStbX1P9Az0kSmicjq9BogLl7b1nAl429E0SiIisk9qL8lTL5PEFkdsERGR9TGxRUQ12uHYVJxNSJe0vRAaCEEQZIqoHNKTgL/mStvc/YE+s+WJh4iIapYiI7Y8hRzJc47YIiIiW2Bii4hqtKKjtRr7uOCRNnVliqYcRBHY/pqktgkAYPj/AEdXeWIiIqKapUhiy0MoMmKLNbaIiMgGmNgiohrrbEIaDlxOkbQ93ycASoUdjNY6+ztwaYe0re14oMUj8sRDREQ1j0liK0vynFMRiYjIFpjYIqIaq+hoLV83RzzauYFM0ZRDZjKwY460zbU2MOQTeeIhIqKayclD8tRNZPF4IiKyPSa2iKhGup6ajR1nkiRtz/ZqCrWDUqaIymHnHCDnrrRt2CLAxVueeIiIqGYqMmLLTZSO2NJwxBYREdkAE1tEVCMtOxAHg/jguaujEk91ayxfQGV1fgtwbpO0rdWo/C8iIiJbKpLYchUzJc85FZGIiGyBiS0iqnFSMvOwPuqGpO2Jro3g6eIgU0RllH0X2F5kxUNnb2Do5/LEQ0RENVuRxJaLgTW2iIjI9pjYIqIaZ9mBOMmbbQelgCl9msoYURn9NRfIuiNtG/Ip4OYnTzxERFSzmSS2iozY0rLGFhERWR8TW0RUo9xKy8WqQ1clbaM61Ec9T2d5AiqrS38B/6yTtgUNAdo+Kk88RERERRJban0WgAfz/Dlii4iIbIGJLSKqUb7ed1nyRlupEDCjfzMZIyqDnPvAtlekbU6ewPD/AYIgR0REREQmiS0F9HBBnvE5E1tERGQLTGwRUY0Rn5KFdceltbUmhDREU19XmSIqo13vAhnSFRzxyELAo5488RAREQGA2sOkyQMP6mzl6TgVkYiIrI+JLSKqMb7YHQN9oaUQnVQKzBrQXMaIyiB2HxD9i7QtcADQ4Ul54iEiIirgVExiS8g2Ps7TcsQWERFZHxNbRFQjnE1Iw9bTiZK2yb2aoI6HWqaIyiAvA9jysrTN0Q0Y8RWnIBIRkfwUSpPklnTEFhNbRERkfUxsEVGN8PmuS5Ln7moVXgwNlCmaMtqzAEiTTp3EwA8Ar4ayhENERGSiSJ0tyYgtTkUkIiIbYGKLiKq9yLhUhF9KlrS9EBoILxdHmSIqg6sHgeM/Stua9AE6PytPPERERMUpmthC4cQWR2wREZH1MbFFRNWaKIr49K+LkjZfNyc826uJPAGVhSYb+PMlaZuDCzByMaDgbZuIiKoQkxFbhaYissYWERHZAP9CIqJqbe+FOzh5/b6kbdaAZnBxVMkTUFns+y9wL17aNuA9wLupPPEQERGZUySx5Y4c42NORSQiIltgYouIqi29QcRnf0trazXydsGEkEYyRVQGN44BkUukbQ27A12nyRMPERFRSUoascWpiEREZANMbBFRtfXnqQRcup0haXttYBAcVVX01peXCWx6AYD4oE2lBkZ9wymIRERUNZmsisgaW0REZFtVeC4OEVHFaXQGfLE7RtIWXNcdI9v7yxRRGex8E7gbK23r/zbg21yeeGRyNe0qYu7FwAD+QVSVaDQanNGcAQAINwQ4OlbhxRfIKngN1GwFr79aUKOPrg+c4Zy/oYQRWxomtoiIyAaY2CKiamnNseu4eS9H0vbGIy2gUAgyRVSKs78Dp1ZL2+p3AbrPkCceG0vNScXO+J3YGrcV51PPyx0OlWLdkXVyh0Ay4zVQsx3YcwBrhq+Bi4NLKasissYWERFZHxNbRFTtZOXpsHjfZUlbl8a10L+Fn0wRleLeNWDrK9I2R3dg3I+AsvrepnN0OQi/EY6tsVtxOPEw9CL/ACIisgdx6XHYn7AfjzR5pJgRWw8SW1q9CL1BhLKqfqhERETVQvX9i4mIaqwVB+ORkqmRtL05JBiCUAXfWOt1wO9Tgbx0afvwL6rlKogG0YDjt45ja+xW7Lm+B1narNJ3IiKiKudq2tX8ByYjtqT3dY3OAGdHpY2iIiKimoiJLSKqVu5labB0f5yk7aFgP4Q08ZYpolJEfALcPCZta/c40G68PPFYyZV7V7A1biu2x23H7ezbpfb3VnvDW11FX7MaymAwIDMzEwDg5uYGBRc0qHF4DdRsydnJSNOkGZ8nZSXlPyiS2HIXpGUA8nR6JraIiMiqmNgiomrlu4hYZOTpJG2vD2ohUzSluHoIOPC5tK1WE2DY58V2tzeiKGJH/A78dO4nXLh7odT+zipnDGg0ACMCRqBbvW5QKviHUFWSk5ODXbt2AQAGDRoEZ2dnmSMiW+M1ULN9f/J7fHvmW+PzhMyE/AfFjtgSAeSPkubKiEREZG1MbBFRtZGUloNVh69K2kZ18Ecrf4/id5BT9l3gj+cBsdAbfoUKGLcCcHKXLy4LEUURi6MXY9mZZSX2UwgKdKvbDSMCR2BAowH5hYiJiKjKqedaT/I8MTMx/4Fa+jvWUdBDDQ1y4QQAyNMysUVERNbFxBYRVRtf770sWVpcpRDw2sAgGSMyQxSBrS8D6QnS9v7vAA06yxOThX1/+vsSk1pBtYIwImAEhgYMhZ9LFS3qT0RERkUTW0lZSTCIBijUXiZ9PZD9ILHFlRGJiMjKmNgiomohNjkT66NuStoe79oQjX1cZYqoBCdWARe2Stua9gV6vSJHNBa37J9lWHJ6iUl7befaGBYwDMMDhqOFdxWdHkpERMWq5yJNbOkMOiRnJ6OO2sekr4eQhTtiLQCcikhERNbHxBYRVQtf7IqB3iAan6sdFHj5oeYyRmTGnYvAX29J25y9gTFLgWpQiHnl2ZX4Ovprk/a3u72N8UHjWTeLiMhO+ah9oIIKOjyoY5mYlYg6rnUARzdAk2ls90C28TFHbBERkbXZ/19RRFTjnbmZhu1nkiRtz/VqCj8PtUwRmaHNBX6fAuikK0Zh9BLAo17x+9iRX87/gi9OfGHSPq/7PDwR/ASTWkREdkwQBHgpvCRtZgvIC1nGx6yxRURE1sbEFhHZvU//vih57qFWYXrfQJmiKcGe94DbZ6VtIc8DLYbIE48Frbm4Bp8e/9SkfW7XuRjfYrwMERERkaUVTWw9KCBfdGXEwiO2mNgiIiLrYmKLiOza/phkHLicIml7sV8zeLo4yBSRGTF/A0e/l7b5tQIG/Z888VjQhpgNWHh0oUn7611ex5Mtn5QhIiIisoYyJ7YETkUkIiLbYWKLiOxWrlaP+X9KR0D5uTthcs8m8gRkTsYtYPOL0jaVGhi3HHBwlicmC9l0eRM+OPKBSfsrnV7BpNaTZIiIiIispZailuQ5R2wREVFVwMQWEdmt7yNicTU1W9L22sAgODtWoVpOBgOw6QUgO1XaPui/QJ1W8sRkIVtjt+K9w++ZtL/U4SVMaTtFhoiIiMiaTEZsZf2b2HLykLRLRmyxxhYREVkZE1tEZJeupmRhSXispK1TIy+M79JQpojMOPINEBcmbWsxDAiZKk88FrL7+m68e+hdiBAl7dPbTcf09tNlioqIiKyp6IitpMwkGERDMSO2ChWP51REIiKyMpXcARARlZcoipj351loCk1vUCoE/Hd0WygUgoyRFZFwEthbZJqeez1g5GJAqEJxltM5zTmsP7o+/4+ZQqa0mYIZHWbIFBUREVlb0RFbGoMGqTmpqF1ijS2O2CIiIuviiC0isjvbzySZFIyf3LMJWvl7mNlDBlkpwPpnAIO2UKMAjF0KuPrIFlZlXdBewLrsddCL0k/gJ7WahFmdZkGw44QdERGVzE1wgxLS6f4JmQmljNhiYouIiKyLiS0isisZuVp8sPW8pK2uhxqvDgySKaJi6DT5Sa20G9L23q8CTfvKE5MFHEo6hLVZa2GA9I+UJ1s+idldZjOpRURUzSkERfErI3LEFhERyYiJLSKyK1/sjsGdjDxJ2/wRreDmVIVmVv81F7h2SNrWsDvQ/2154rGAfdf34Y1Db0AP6UitCS0m4M2QN5nUIiKqIYotIF8kseUuWRWRNbaIiMi6mNgiIrtxNiENPx2+KmkLDaqNIW3qyhNQcaJWAFHLpW0e9YEJvwBKB3liqqRtcdvwWvhr0EqmVQLjmo/D293eZlKLiKgGKfeILa6KSEREVsbEFhHZBYNBxLubz8JQaBE+J5UCH4xqXXUSK9cOAzvmSNtUauDxXwE3P3liqqT1l9bj7QNvm9TUGtZkGOb3mA+FwF8jREQ1SdGVEYtNbIFTEYmIyHaq0NwdIiLz1hy/jlM37kvaZvRvhsY+rvIEVNT9G8C6pwGDTto+6lvAv6M8MVXS8jPL8eXJL03aOzt2xrtd3mVSi4ioBio6Yqu44vFOghZO0CAPjpyKSEREVsfEFhFVeSmZefhk50VJW4CvK6aHBsgUURGabGDtRCBbulIjer0CtH1UlpAqQxRFLI5ejGVnlpls6+XUC4+oH4FSoSxmTyIiqu6KJraSspIgOnmg6NhpD2QjGY4csUVERFbHxBYRVXkLd1xAeq50JNT/jW4DJ1UVSK6IIvDnDODWP9L25oOAAfPliakSDKIBHx/7GGsurjHZNq31NDS82bDqTP0kIiKbKzoVMU+fh1RRB98i/TyELCSLXqyxRUREVsd5JERUpUXGpeKPkwmStpHt/dGrWdG30DI5+AVw7g9pm09zYNyPgJ2NatIZdJh3aF6xSa03Qt7A1NZTmdQiIqrh3AV3KAXp77fE3GTAwUXSVlBni1MRiYjI2pjYIqIqS6Mz4N3NZyVt7k4qvDu8pUwRFXHpL2Dv/0nbnDyBJ9aY1Bup6jR6DeZEzMGW2C2SdgEC3u/5Pp5u9bRMkRERUVWiEBSo6yJdjTgxy7SAvLtQkNjiiC0iIrIuJrYqKSoqCh988AEGDRqEBg0awMnJCW5ubggKCsKzzz6LgwcPWuQ8CxYsgCAIZfoKDw+3yDmJ5Lb8YDyu3MmUtL0+uAX83NUyRVRI8iXg96kACi3TCAF4dDng21yuqCokW5uNmftmYs/1PZJ2laDCp6GfYmzzsTJFRkREVVE913qS5yWtjMjEFhERWRtrbFVC3759ceDAAZN2jUaDy5cv4/Lly1i1ahWeeeYZLFu2DI6OjjJESWSfbt7Lxtd7L0va2tb3xFPdG8sUUSE594A1TwCaDGn7wwuA5gNlCamiMjQZmLF3BqLvREvanZRO+KLfF+jboK9MkRERUVVVpsRWwYgtLaciEhGRdTGxVQmJiYkAAH9/fzz22GPo06cPGjVqBL1ejyNHjmDRokVISEjAzz//DK1Wi99++80i5z1z5kyJ25s2bWqR8xDJacGW88gp9GZYEIAPx7SBUiFzjSeDHtg4BbgbK21v+xjQa5Y8MVXQ3dy7eGH3C7hw94Kk3UXlgm8GfIOQuiEyRUZERFVZPRdpYishMwFw8pC0eSALQH5ZASIiImtiYqsSgoODsXDhQowbNw5KpbSIZvfu3fH000+jV69eiImJwZo1a/DCCy+gb9/Kj35o06ZNpY9BVJXtPn8bey7clrQ91a0x2jXwkiegwva8B8TulbbVaw+MXJyffbMTt7Nu4/ndzyM+LV7S7unkie8GfIe2tdvKFBkREVV1RUdsJWUmAWofSZsHa2wREZGNsMZWJWzbtg3jx483SWoV8PX1xaJFi4zPN27caKvQiOxWtkaHBVvOSdp83Zzw+uAWMkVUyOl1wOHF0jZXP+Dx3wAHZ3liqoDL9y7j6Z1PmyS1fJ19sXLwSia1iIioRCZTEbMSIZoZscXEFhERWRsTW1bWv39/4+PY2NgSehIRAHy99woS7udI2t4d1hKezg4yRfSvG8eBLTOlbQoHYMIvgGcDeWKqgIMJB/H0zqeRlJUkafd39cdPj/yE5rXsq/A9ERHZnr+Lv+R5ji4H9xylH/A8GLHFGltERGRdTGxZWV5envGxuZFdRJTvzM00/HggTtLWM9AHozr4m9nDRu5cAH59FNDnSduHLQIadZcnpgpYe3EtZuydgSxtlqS9iUcT/DTkJzTyaCRTZEREZE98nX2hFKTvaxOV0un47lwVkYiIbISJLSuLiIgwPm7ZsqVFjjlo0CD4+fnB0dERfn5+6NevHz7++GPcu3fPIscnkkO2RodZa6OhM4jGNgelgA9GtYEgZ+2qe1eBX8YAufel7V2nAZ0nyRFRuekNenxy7BN8ePRDGETpHxjtarfDqkdWoa5rXZmiIyIie6NSqEx+byQK0t8vBSO2NDoDRFEEERGRtbB4vBUZDAZ8/PHHxufjx4+3yHF3795tfJycnIyIiAhERETgk08+wapVqzBq1KgKHffmzZslbk9KejB1KS8vDzk5OSX0puomNze32MeWsmDrRcSlSEcSPd+rMeq7K+W71jLvwOnXUVBkSKft6Zv2h6bvPMAOfgaytFl4N/JdHEo6ZLJtYMOBmBcyD2qoy/R/bO1rgKo2vv7Ea6BmK/r613Wum78a4r+u66S/Rzz+HbEFAGmZWXBSceaCveM9oGbj60+FZ6NVNYLIj1CsZtGiRXj99dcBAGPHjsXvv/9e4WMtWLAAf/zxB0aPHo2uXbvC398fWq0Wly5dwq+//opdu3YByJ/uuHXrVgwZMqTc5yjPqJgff/wRvr6+5T4HUXHO3BXw4yXpG97GbiJmtdZDKdO4UpUuC70vL4Rn7g1Je6prcxxp9gb0Cid5AiuH+4b7WJ25GrcMt0y29XPqh4fUD0EhcOAuERGV3+/ZvyNaE2183g/NsDh+n/H5bdEL3fKWAAA+CtHBhR+nExHZtZSUFEydOhUAcOPGDTRoUHXqDPNXjJVERERg7ty5AAA/Pz989913lTreK6+8ggULFpi0d+vWDc888wx++OEHvPDCC9Dr9Zg6dSpiY2OhVqsrdU4iW0jTAGtipckVR4WIp5vJl9RSGvLQPe4Lk6RWmrohjga8ZhdJrQRdAlZnrUaGmCFpV0KJ0S6j0dGxo0yRERFRdeAleEmepwjST/ILj9himS0iIrImJras4Ny5cxgzZgx0Oh3UajU2bNgAPz+/Sh3Ty8urxO3Tp0/H8ePHsXz5ciQmJuL333/Hk08+Wa5z3Lhxo8TtSUlJ6Nq1K4D8hFpgYGC5jk/2LTc3F/v37wcA9O3b1yKJU4MoYtqvp5Gluytpnz+8JcZ1lKlgvF4Dxz8mQ5l1WdJs8GoCxye3oL9b5X6WbSHsZhhWHF2BPFH6R4anoyc+7fUpOtauWFLLGtcA2Q++/sRroGYr+vprkjQIOx5m3J7jIu3vLGjgCC00cECP3n1Q30u6aiLZH94Daja+/hQbGyt3CGYxsWVh8fHxGDRoEO7duwelUom1a9eib9++Njn39OnTsXz5cgD5I8bKm9gqz1BCJycnODvzDUpNpVarLfL6rzgYj0Ox0qTWI63r4skeAfIUjDfogT9mAHH7pO1udaGY9CecazW2fUzlIIoiVp1bhf+d+B9ESGeZN/Fogm8HfGuxlQ8tdQ2QfeLrT7wGaja1Wo0m3k0kbUl5KRABFP7t7Y5spMITUDryeqlmeA+o2fj610xOTlV31goTWxaUmJiIhx9+GImJiRAEAStWrKhwIfeKaNWqlfFxQkJCCT2J5HfxVjo+/uuipK2OhxM+GttWnqSWKAI75gBni9TCU3sBT28CajWxfUzloDVo8WHkh/j9smktv651u+KLfl/A08lThsiIiKg68neTjqzO1uUgTaGAl+HBvEMPIRupoifydHpbh0dERDUIE1sWkpKSgoEDByIuLg4AsHjxYjzzzDM2jUGWZABRBeRq9Zi15hQ0RYpuLHqsA2q5OsoT1L7/AlHLpW0OrsCTG4E6rYrfp4pIy0vD7IjZOJp01GTbmGZjMK/7PDgoHWSIjIiIqis/Fz8oBAUM4oPf5YlOLvDKyTQ+d/+3zlYei2wREZEVcTksC0hLS8PgwYNx/vx5AMDHH3+MGTNm2DyOgvMDgL+/TPWJiMrg078u4dJtaVHzqb2bondzmVbaPPwNcOBzaZvCAXh8NdAwRJ6Yyuji3Yt4YvsTxSa1Xun0Ct7v+T6TWkREZHEOCgfUcakjaUt0dpc89xD+TWxpmdgiIiLr4YitSsrOzsawYcNw8uRJAMA777yDN998U5ZYfvjhB+Pj0NBQWWIgKs3+mGSsOBQvaQuu6445j7SQJ6Do1cCud6RtggIY9yMQ+JA8MZWBKIr4/fLv+OjoR9AYNJJtaqUaC/ssxMDGA2WKjoiIagJ/N38kZSUZnyc4SWvueCALADgVkYiIrIojtipBo9FgzJgxOHToEABg1qxZ+O9//1vu46xatQqCIEAQBCxYsMBk+5kzZ3DlypUSj7F06VL8+OOPAIC6detizJgx5Y6DyNruZmkwe8NpSZuTSoGvn+gIJ5XS9gFd2AZsmWnaPvxLoPVoW0dTZtnabLxz8B28f+R9k6SWr7MvVj6ykkktIiKyOn9X6QyBRAfpCGHjiC1ORSQiIiviiK1KeOKJJ7Br1y4AwEMPPYQpU6bg7NmzZvs7OjoiKCio3Oc5ceIEpk6div79+2PIkCFo27YtfHx8oNPpcPHiRfz666/GOJRKJZYuXQpXV9eKfVNEViKKIt78/R8kZ+RJ2t8e2hJBddzN7GVFcRHAxmcBscib7YffBzpPsn08ZRR7Pxazw2cjNs10ud12vu2wqN8i1HWtK0NkRERU0xQtIJ+olH5m/mDEFhNbRERkPUxsVcIff/xhfLxv3z60a9euxP6NGzfG1atXK3QuvV6PPXv2YM+ePWb7+Pj4YPny5RgxYkSFzkFkTWuP38Du87clbf1a1MYzPRrbPphrh4G1EwG9dLQTer0C9H7F9vGU0ba4bfjgyAfI0eWYbHuq5VN4rfNrrKdFREQ2U9+tvuR5oiBNYBWM2Cq6WAwREZElMbFlB4YOHYrly5fjyJEjiI6Oxu3bt5GamgpRFOHt7Y327dvjkUceweTJk+Hh4SF3uEQm4pIz8cHW85I2H1dHfPpoO9uv5nl5D7DuKaBocqjTJODhBbaNpYzy9Hn45Ngn2BCzwWSbm4MbPuj1AaceEhGRzZmM2IL0AyMP46qIrLFFRETWw8RWJYiiaJHjTJ48GZMnTza73c/PD8899xyee+45i5yPyJa0egNeWXcKOVrpm9pPH20HP3e1bYM5txn4fSpg0ErbW40Ghv8PsHWSrQxupN/A7IjZuHD3gsm2YO9gLApdhEYejWSIjIiIarqiNbYyRT3SFQI8DPnvkd25KiIREdkAE1tEZFVf7onBPzfTJG1PdW+EAS3rmNnDSqJ/Bba8ZFpTq8UwYOxSQCFD8fpS7L22F/MOzUOGNsNk26NBj+LNkDehVtk4OUhERPSvuq51IUCAiAcf9iaqVPDQ5H+A9GDEFhNbRERkPUxsEZHVHI1LxZJwaZHzwNqueGdoK9sGEvk98Nebpu3tJgCjvgWqWF0qrUGL/534H345/4vJNmeVM+Z1n4cRgaylR0RE8nJQOsDPxQ+3sx/U0ExQqRBckNgSCorHcyoiERFZDxNbRGQVd9JzMWvtKRSeseugFPDV4x3h7Gij0VGiCBz4HNj3X9NtXaYAQz8HFArTbTJKykzCnP1zcDr5tMm2AM8AfNHvCwR6BcoQGRERkan6bvUlia1E1YM/Lzhii4iIbIGJLSKyuFytHs//cgK30nMl7bMHtUCb+p62CUIUgd3zgcNfm27r9Up+ofgqVFNLFEVsjduKj45+hExtpsn2YQHDML/7fLg4uMgQnW0YNBpoYmORe+kSdElJFqtjSJah0+rgfeUKAOD+1WvIdOBbiJqG10DNVvD6691coe/SBaifvyJiPbd6wJ0H/RJVDz688mCNLSIisgG+IyEiixJFEW9s/Aenb9yXtPcI8MHzfQJsE4RBD2yfDZxYabptwHygz2zbxFFG93Lv4YMjH2DP9T0m2xwVjpjbbS4ebf6o7VeQtBJRFKFLTkbepRjkXbqI3EsxyLt4EXnx8YBOJ3d4VALff/+9v3u3rHGQfHgN1GwFr3/ikUgEbtsGpZurSQF56YgtTkUkIiLrY2KLiCzqm31XsOV0oqStobczvn2yE5QKGyRm9Fpg84vAmQ2m24Z8BnSbZv0YymH/zf2Yf2g+UnNTTbY1cGuARf0WoZWPjWuSWZCo1yPv0iVj8io35hLyLl6C/t49uUMjIqIK0t+6hbQ/N8P7ySdR362+ZFvhxJarkAcVdJyKSEREVsXEFhFZzM4zSVi0O0bS5uakwvJJIfB2dbR+ANpcYOOzwKUd0nZBkV8kvsNE68dQRtnabHwW9Rk2xmwsdvvIwJGY23Uu3B3dbRyZZYhaLdL+/BMp330PbUKC3OEQEZGFZR+PgveTT8LfTTpiK0El/fPCDTlMbBERkVUxsUVEFnE2IQ2vrj8laVMIwOKJHRFUxwbJmbxMYO0TQPx+abvCAXh0OdBqlPVjKKNTd07h7YNv40bGDZNttZxq4b0e72FA4wEyRFZ5ok6HtG3bkLLkO2ivX6/QMRwaNIBjYAAUjjZIhlKZ6fV63L6dX0inTh0/KJU2WgSCqgxeAzWb5tZt5J05Y3yeffw4RFE0SWxlKBXIEAS4/1sn0UPIRp6WUxGJiMh6mNgiokq7k56LqT9FIbdIcdi3h7ZE/xZ+1g8g5x7w62PAzePSdpUz8PhqoNnD1o+hDLR6Lb47/R2Wn10Og2j66XXfBn3xfs/34evsW8zeVZtoMCB9x06kfPstNPHxZdpHcHGBunlzOAUHw6lFENTBwXBq3hxKd/scpVbd5eTk4NSuXQCAtoMGwdnZWeaIyNZ4DdRs6TExSBj54EMifWoqNHFxqNekoUnfRJUKLbRaAPl1tjhii4iIrImJLSKqlFytHs//HGWyAuLjIQ0xpXdT6wdw/zrw2+PAnXPSdicPYOJ6oHEP68dQBlfuXcHbB9/GhbsXTLY5q5zxRsgbGNd8nN0ViBcNBmTs3oOUbxYj7/IVs/0c/P3h1Kol1EEt4BTcAuoWLeDQsCEEhcKG0RIRUUWpGjSA1tMTDmlpxrbs48dRKzAQfs5+uJPzYGnERIdCiS0hm8XjiYjIqpjYIqIKE0URczb+g9M30yTt3Zp644NRbayfpLl6CFj/NJBdpPC6szfw9CbAv4N1z18GBtGAX87/gq9Pfg2NQWOyvUPtDljYeyEaeph+4l2ViaKIjH37kLz4G+RdME3WFVC3b4faL78M15497S5pR0REDwiCgJyApnCIPmVsyz52DLUefxz+bv7SxJbqwTRVD2TjNkdsERGRFTGxRUQVtnjfFWwtsgJiI28XfPdUZziqrDwS5/hyYOcbgEEnbXevBzy9GfALtu75y+BG+g0sOLIAx24dM9mmUqgwo8MMPNv6WSgVdlSnRhThEhODpJ9/gebcObPd1K1awfflmXALDWVCi4iomsgOCIBHocRW1r91tuq51cOp5AfthVdG9BCycF3LxBYREVkPE1tEVCHb/0nCF0VWQHR3UmH5pC7WXQFRp8lPaJ1YabrNpznw5AbA2wZTIEug0Wuw/Oxy/PjPj8WO0mrm1Qwf9fkIwd7yJ9/KShRF5ERGouF338P52jWYflf5nIKC4DvzJbg//DATWkRE1UxOQIDkuT45BZr4q6jvVl/SLklsIRsaPRNbRERkPUxsEVG5nUtMx+wNpyRtCgH4emJHNLfmCoiZycD6Z4Drh023NR8EjPsRUHta7/xlEJkUiQ8jP8TV9Ksm2wQIeKbVM5jZaSaclE62D64CRL0eGXv2InXpUuSeOwdzpaIdAwJQe+ZLcB88mHWziIiqKa2PD3QeHlClpxvbso8fh39H6cqICUVGbLHGFhERWRMTW0RULmka4MO1/5isgPjOsFbWXQEx6R9g7UQg7Ybptt6vAg/NA2Sc0peSk4JPj3+KnfE7i91ez7UePuz9IULqhtg4sooRNRqkbd2K1B+Xl7jKoUPjRqg9YwY8hg2DoLSjKZVERFR+goDsgKbwOHXa2JR97Bjq9x4r6ZZUqMaWO3KQx6mIRERkRUxsEVGZafTAsotK3MmSTkR7omtDPNerifVOfG4TsOlFQJcjbVepgVHfAm0ftd65S6E36LHu0josjl6MTG2myXaFoMDE4ImY0WEG3BzdZIiwfAxZWbi3YQPurlwF3e3bZvup/P1Re8Z/4DlqFAQVf5UQEdUUOQEB0sTW8eOo6/ofSZ/7SiWyBAGuovjviC0mtoiIyHr41wgRlYkoivgtVoEbWdK6Sd2aeuP9kVZaAdFgAMIXAvs/M93mUR94/FfAv6Plz1tG51LO4YPID3A+9Xyx29v5tsO8HvPsopaW/v593F39K+798gv0aWlm+2l8fHAvtC+6zp0LFw8PG0ZIRERVQXaROlu6O3dQN1Vr0i9RpUJzrRYeyOZURCIisiomtoioVKIo4st9cYhOldZOauzjgu+ttQJibjqwaTpwaYfptobdgQm/AG5WnPpYgnRNOhafXIx1l9ZBhGiy3d3RHa92fhXjmo+DQqja9aa0t2/j7spVuLd+PcTsbLP9nIKD4T5pEg6LBkCphODgYMMoiYioqtD6+kLh4wNDaqqxTXfyH/g6+yIlJ8XYlqRS5ie2hGzkaQ0QRZGLihARkVUwsUVEJRJFEZ/+fQlLD16TtBesgFjLGisg3o0D1jwBJF803dbpGWDo54DK9sXXRVHEjvgd+Oz4Z0jNTS22z8jAkXit82vwcfaxcXTlkxcbi9SVK5H25xZAa/pJewGXLl3gM+15uPbpg9zcXGDXLhtGSUREVY4gQN25M7IL/T7IPnYc/v38JYmtggLyHsiCKAJavQhHFRNbRERkeUxsEZFZoihi4Y4LWHZAWjxcIQCLJ3ZEMz8rrIB4ZS+w8Tkg9760XVACQz4BQqYCMnzieyH1AhZFLcLRW0eL3R7gGYB3u79bpYvDi3o9MsPDcXf1amQfiSyxr1u/fvCZNg0uneSb6klERFWTSWLr+HH4D+uMf1L+MbYlFiS2hPzRwHk6vXVGeBMRUY3HxBYRFUsURXyw7TxWHroqaRcg4v3hLdHP0isganOBff8HHPnGdJuzNzD+J6BpX8ueswxuZNzAN9HfYEd8MVMiAaiVakxvPx2TWk2Cg7JqTs/T37+P+7//jnu/rYE2IcF8R6USHkOHwmfqVKhbBNkuQCIisivqLp0lz3W3biEwR/phV4JDwYitgsSWAVb4OIyIiIiJLSIyZTCIeG/LOfwSKZ1+KEDEE4EGPNrJ37InvH0e+H0qcOec6Ta/1sATvwG1mlj2nKW4m3sXS/9ZinWX1kFn0BXbJ7RBKOZ2nYsG7g1sGltZ5V66hHurVyNt6zaIublm+wmOjvB6dBy8n3sOjg2q5vdCRERVh0PTplD6+EBfqM5WYFwOUGjx3ySVEgDgLuRAAQNXRiQiIqthYouIJAwGEe9sPos1x65L2hUCMDHQgJDapsXSK3Ey4NgPwO73AH2e6fbg4cCYHwAnN9NtVpKtzcZP53/CqrOrkK0rvph6HZc6eKvbW3io4UNVrhCuqNMhY89e3F39C3KiTpTYV1mrFrzGj4f3009B5etrowiJiMjeCYIAl5AQZPz1l7HN9+IdoMuDPgVTEQHADdnI03JlRCIisg4mtojISG8Q8dYf/2B91E1Ju1Ih4JPRLeGQ9I+ZPSsgPQnY/CIQF2a6TekEDHwf6DodUNimHofWoMXvMb/j+9Pfmy0M7+bghiltp+DJlk/CWeVsk7jKSnf3Lu6vX497a9dBd+tWiX3VrVuj1lNPwWPoECicbF+En4iI7J9LSBdJYkt95ooksXVXqUS2IMBFFPNXRuSILSIishImtogIQH5Sa86G0/gjWlqDSaUQ8NXjHfFQcy/sslRi6/wWYOvLQM49021+rYFxy4A6rS1zrlKIooi/r/2NxScX43rG9WL7OCgc8ETwE3i+7fPwUnvZJK6yEPV6ZB0+grRNfyBj9x6IJaxuCJUKHoMHo9ZTT8K5Q4cqN9KMiIjsi2vXrtKGW8mofV+JZK8Hv1+SVEoEanXwBBNbRERkPUxsERF0egNeW38aW04nStodlAIWP9EJj7Spi5ycnMqfKC8D+GsuEL26+O09XgIemgc4qCt/rjI4lnQMX5z4AudSi6ntBUCAgBGBIzCjwwz4u1m4rlglaK5dw/0/NiHtzz9LHZ2lrO2LWuMnwGvCeDj4WbjgPxER1ViOzZpBWasW9PcefEjVNckF270evF9IVKkQqNXBQ8jiVEQiIrIaJraIajit3oBX1p7C9jNJknZHpQJLnuyEh1vVscyJbhwH/ngeuBdvus3dHxjzHRDQzzLnKoEoioi6HYVl/yzDkaQjZvv1bdAXL3d8GS28W1g9prIwZGUh/a+/cX/TH6XWzgIA5/bt86cbDh4EwdHRBhESEVFNYqyztWuXsa39TQdsbylNbAH5KyNyxBYREVkLE1tENZhGZ8DMNSfx97nbknZHlQI/PN0Z/VtYYISPXgfs/yz/Syzm09pWo4DhXwIu3pU/VwkMogHhN8Kx/Mxy/JNifkplO992eKXzKwipG2LVeMpCFEXknDiB+39sQvpff0HMLr6YfQHBwQEeQ4ei1lNPwbltGxtFSURENVXRxFZgvHR0d0JBYkvIgoaJLSIishImtohqqDydHjN+jcaeC9KklpNKgWXPdEHfoNqVP0nKFWDzC8DN46bbHN2BoZ8B7R8HrFjvSWvQYmf8Tqw4swKxabFm+zXxaIJZnWZhQKMBstef0t66hbTNf+L+pj+gvVZ83a/C1K1awXPsWHgMGwpVrVo2iJCIiAhwKVJnyz01B75pSqR45v8eTVIp89uRwxFbRERkNUxsEdVAuVo9Xlx9AmGXkiXtagcFlk8KQa9mvpU7gSYLOLAIOLwY0GtMtzfsBoxdCtRqUrnzlCBHl4NNlzfhp3M/ITEr0Wy/2s618WKHFzGm2RioFPLdEnX37iHj711I37ED2cePA6JYYn+llxc8Ro6A19ixUAcH2yhKIiKiB5yaN4PS0xP6tDRjW6vrIva3zU9sJRYasZWnY40tIiKyDia2iGqYpLQcvLD6JE7fuC9pd3FUYsXkEHQP8Kn4wUURuLAF+OttIP2m6XZBCfR7C+j9KqC0zu0nXZOOdRfXYfWF1bibe9dsv/pu9TG59WSMbjYaapVtitUXpc/MQubePUjbsQNZhw4DOl3JOygUcOvTB55jx8K9fz/WziIiIlkJCgWcQ7ogc89eY1t+Yiv/cQJrbBERkQ0wsUVUgxy/ehcvrj6JlMw8SburoxKrnuuKkCaVqHOVcgXYOQeI3Vf8du9AYOwyoEHnip+jpNPnpODn8z9j/aX1yNJmme3XzKsZprSdgkeaPCLLCC1Dbi4yI/YjfccOZIaHQ8zLK3Ufx6ZN4TVuLDxGjuTKhkREVKW4du1qktgqkKpSIlcQ4CFkI5OrIhIRkZUwsUVUA4iiiF+PXseCLeegM0inuLk7qbDqua7o3LiCtZk0WcD+z/OnHRq0ptsVKqD7f4DQNwEnt4qdowTnUs5h3aV12B63HRpDMdMe/9W+dntMbTsVfRv0hUJQWDyOkohaLbKOHEH69h3I2LMHhizzibcCCldXeAwdCs+xY+DcoYPsdb+IiIiK4xIiXWyl7n3AJ11EqseDOlseuiykcsQWERFZCRNbRNVcnk6P9/48h7XHb5hsa+zjgqVPd0GLuu7lP3Bp0w4BoGlfYOjnQO0W5T9+CbK12fjr6l9Yd2kdzqeeL7FvL/9emNJ2CrrU6WLT5JAhLw/ZR48iY89eZOzaBf39+6XuIzg5wa1/f3gMHQK30FAonJysHygREVElOLVoAYWnJwxF6mwdaPOgzpaHwKmIRERkPUxsEVVjt9Nz8cLqE4i+ft9kW9+g2lj8eEd4ujiU+7hC6hVg3zwgLqz4Du7+wOAPgdZjLLri4ZV7V7A+Zj22xm5FpjbTfHwQMKjJIExpMwUtfVpa7Pyl0d27h8yICGTuC0PmwYMQs7NL30mlgluvXvAYPgxu/R+C0s3V+oESERFZiKBQwKVzZ2Tue1CKID+xlf84QaVCG2SzeDwREVkNE1tE1dSJa/fwwuoTSM4wreH0Yr9AvD6oBZSK8iWdlPo8BN3+E06n/zY/7bDHDKDvGxabdqjRa7Dn2h6sj1mPE7dPlNhXpVBhVOAoPNvmWTT2aGyR85ca3/XryNi7D5l79yL75EnAUIZPpAUBLl27wmPYULgPHAhVrQpOAyUiIqoCXLqGSBJbLQvV2UpUKdFTyEKeliO2iIjIOpjYIqqG1hy7jvl/noVWL62n5eygxGePtcPwdv7lO6BOA+Wp1RhwYSGctWZWGgzoBwz5DKgdVLGgi7iRcQMbYzZi85XNJa5uCAB1Xevi0eaPYmzzsajtUtsi5zdHNBiQe+YMMvbuQ8a+vdBciS3zvur27eA5bBjcBz8ChzosAk9ERNVD0Tpb/veAWhki7rkLSFSp4M5VEYmIyIqY2CKqRjQ6AxZsPYffjl432dbQ2xlLn+6ClvU8yn5AbS4Q/Qtw8Es4mquj5VE/f9phq9GVnnaYo8tBxI0IbI7djMMJhyFCNNtXgIDe9XtjQosJ6F2/N5QKZaXOXRLd3bvIOnIEWYcPI3P/fuiTU8q2oyDAuWNHuD/UH+6DB8OxYUOrxUhERCQXdXAwFO7uMGRkGNtaXRdxqHVBYisHGm0xI72JiIgsgIktomriTkYu/rP6JKKu3TPZ1qe5L75+vCNquTqW7WDaHODET8ChL4GMpOL7KBz+nXY4p1LTDnUGHSKTIrEjbgf2Xt+LbF3Jdam81d4Y13wcxgWNQ323+hU+b0kMubnIPnECWYcPI+vwEeRduFDmfQW1Gq69esH9oYfg1i8UKh8fq8RIRERUVQhKZX6drfBwY1t+Yit/KqJCEAGN+dqYRERElcHEFlE1EH09v57W7XTTelrT+gbgjcEtoFIqSj+QJguIWgEc+hrIumO2m75xXyiHL6rwtENRFHE6+TS2x23Hrmu7Sp1qCAAhdUMwvsV4DGg4AA7K8he8LzEegwF5Fy/+m8g6jOwTJyHmmf5fmqP08YFb/35wf2gAXHt0h8LZ2aLxERERVXUuXbuaJLYAIFmlggaAMi9dnsCIiKjaY2KLyI5pdAZ8Fx6Lb8OuQKOX1q5QOyjwybh2GNWhDKOa8jKAY8uAI98A2almu6W4tsCleqPRaewrcHZxKXe8V+5dwY74HdgRvwMJmQml9nd3dMeowFF4rMVjCPAMKPf5zBFFEdqEBGQfPYqsQ4eRFRkJ/d3Sk2uFOQYG5o/Keqg/nNu3h6AoQ+KQiIiomipaZ6v+XcArU8R9NwFJKhVUWia2iIjIOpjYIrJTJ67dxdzfz+DyHdOh/fW9nLH0mc5o7e9Z8kFy04CjS4HIb4Ec0ymMRk37Iq/7Kzh08d9zlaOWVlJmEnZe3YkdcTtw6d6lUvsrBAW61e2GYQHDMKjJIDirKj/6SdTrkRcTg+wTJ5Fz8gSyo05Ad8f8iLTiCC4ucA0JgWuvnnDr2xeOTZpUOi4iIqLqQt0yGAo3NxgyH7wvaXldxJFWAhJUKqi0GSXsTUREVHFMbBHZmYxcLT77+xJ+ibwGsZja6j0CfPDtk53gXVI9rbQE4MTK/KRWXpr5foEDgNA3gEbdYcjJAS7uKjU+g2jAhbsXEHEjAuE3wnHhbtnqU7X1bYthAcMwuMlg+Dr7lmkfszHk5iL3zBlknziRn8yKjpa80S4ThQLqtm3g2rMn3Hr2zB+V5VjGGmVEREQ1jKBSwblzJ2RF7De2tb4u4kgrINFBCUcmtoiIyEqY2CKyI7vP38a8zWdxKz3XZJtSIWBa3wDMHhhUfD0tgx64sgeIWglc/hsQS1h2O+gRoO8bQIPOZYorR5eDo0lHEX4jHPtv7kdyTnKZ9mvi0QTDAoZhaNOhaOTRqEz7FEeXmoqc0//kj8Y6cRI5Z88CFVh9yaFRI7j27AHXnj3h2q0blJ6ljHgjIiIiI9eQEEliq6DOVqJKBUcti8cTEZF1MLFFZAfuZOTi/S3nsf1M8SsUtvb3wCfj2qFN/WISMemJwMlfgJM/A+k3Sz5R8HCg7+uAf8dSY7qVdQv7b+5HxM0IHE06ijx92Yqt+zn7YUjTIRgaMBQtvVtCKMe0RgDQ37+PnHPnkHvmLHLPnUXO2XPQJZlZubEUSm9vuISE5CeyevWEY4MGFToOERER5ReQL6xBKuCZJSJRpUKjHI7YIiIi62Bii6gKE0UR66Nu4MPtF5CeqzPZrnZQ4LWBQXiuV1PpKC2DHojdlz86K+YvQNSXcBYBaDUK6DsHqNvGbC+dQYcbuhuI0cbgl12/4NL90utlFXB3dMegxoMwtOlQdK7TGUqFskz76TMzkXvuPHLPnkXO2TPIPXsO2hs3ynzeohwaNYJLp05w6dIZzp06w7Fpk3In1oiIiKh46latoHBxgSE729jW8rqIxKZKBOk5YouIiKyDiS2iKio+JQtv/fEPIuOKX62vdzNfLBzTFo18Cq1OmJ4ERK/OH52Vdr3kEzi6AW0fA7pNB/xammzW6rU4l3oOUbejEHUrCtF3opGt+/eNahkGZzX2aIzQBqEIbRCKjnU6wkHhYLavKIrQ3b6NvJgY5MXEIPdSDHLPnoUmPr70E5mjUMApuAVcOneBS+dOcO7UCQ5+fhU/HhEREZUov85WZ2QdOGBsa31dxNbmKjgzsUVERFbCxJYFXbt2DV9//TW2b9+OGzduwMnJCYGBgRg/fjxmzJgBFxeX0g9SBjt37sTSpUtx/PhxJCcno3bt2ggJCcG0adMwZMgQi5yD5KPVG7B0fxy+2nsZGp1pHSwvFwfMG9YKYzvVzx9tpM0F4sLyE1qXdpYyOgtAvQ5Al2eBNuMAJ3djc54+D/8k/4Oo21E4cfsETt85jVy9aS0vc5SCEh39OuYnsxqGoqln02L76TMzkRdz+d8k1iXkxsQg7/IVGNJKKGJfBoKLC5xbt4Zzl85w6dQZzh07QOnmVqljEhERUfm4hIRIElstr4tYoVTCwcCpiEREZB1MbFnI1q1b8dRTTyE9Pd3Ylp2djaioKERFReHHH3/E9u3b0axZswqfw2AwYNq0aVi+fLmkPSEhAQkJCdi8eTOmTp2KH374AQpFMcXDqUrTG0Rs+ycRi/ddwZU7xX+qOaqDP+YNbwVfBw1w7g/gwjbg8i5AU8qnoA6uQNtH8xNa/9bPytZm45+kSETdikLU7SicST4DjUFTrpjdHdzRu35vhDYMRe/6veHp9KDGlz4zC5qrV6GJj0fe5cvG0VjaxMRynaM4gqMj1C1bQt2mDdRt2sC5TWs4BgRAUJZtiiMRERFZh2vXEBReQqZRCuCWA2iVlfsAi4iIyBwmtiwgOjoaEyZMQE5ODtzc3PDWW2+hf//+yMnJwdq1a7Fs2TLExMRg2LBhiIqKgru7e+kHLcY777xjTGp17NgRb7zxBgIDAxEbG4tPP/0U0dHR+PHHH1G7dm0sXLjQkt8iWZFWb8CfpxKxJOwK4lKyiu1T38sZnwz1R2/dcWDLx0BsGFCWYu112wFdnkVOyxG4lJWAc6nncD5uI86nnkdcWhwMJa2MaEZtRW0MbDYQDzd9GO1rtYaYeBua+KvQhP+BpH8TWZqrV6FLLtvKiKVycIA6KOjfJFZrOLdpA6dmzSA4mJ/aSERERPJQt24NwcUFYqE6W62ui8jxKP49DhERUWUxsWUBs2bNQk5ODlQqFXbt2oUePXoYtz300ENo3rw53njjDcTExGDRokVYsGBBuc8RExODzz//HADQpUsX7N+/H87OzgCAkJAQjBw5EqGhoYiKisJnn32G5557rlKjw8j6NDoDfj95E0vCr+DG3Zxi+9QXUvFus3gMUhyDctNhoAyJqBxHV1wKfhjn6rXGeX06zidsRdz5ryqUxAKAli4B6K0IQmuNH3SnkuB2NwP1D8RDf20eYm/eBPSlTH0sB4WrK5yaN4dTUBCcglvAuW1bOAUFQeHkZLFzEBERkfUIDg5w6dgRWYcOGdtaXReR1SEPOr1ButgNERGRBTCxVUnHjh3DgX/rCEyZMkWS1Cowe/ZsrFy5EhcuXMBXX32Fd955Bw7lHG3y5ZdfQqfLXxVv8eLFxqRWARcXFyxevBg9evSATqfD//73P3z77bcV/K7ImnK1emyIuoHvwmORmCatYSXAgGDhBvopTmO0+iRa6GMAM4sAGgAkqZSIc3BAnIMDLteqj3POzojT3IMhIxrIiC5TPM65IvzSAN90EX73gRYabzTJcYXvfQPUKRkw3IsBECPZp/g0XDkolXBs2gTqoCA4BbXIT2QFBcGhvj9XKSQiIrJzLiEhJomtE120yNMxsUVERJbHxFYlbd682fj42WefLbaPQqHAM888g7feegv3799HWFgYBg0aVOZziKKIP//8EwAQHByM7t27F9uve/fuaNGiBS5duoQ///wT33zzDZMEVUiORo/fjl3HDxGxuJORP41QCT1aC1fRVXER3RQX0FVxEZ7Cv0P3/x0IpQVwzcEBcQ4qxDvmJ7HiHRxw1UGFHEkttWwg78Gwf5VORK1MwCsT8M7Mf1yr4N8MoFaWCJ90wNVkRmPKv1/5ybNKEQQ41K8Px6ZNoW4RZExgOQYEQOHoWNmjExERURXk0rWr5HnjZOCATo88nQGuHIRNREQWxsRWJR08eBAA4Orqis6dO5vtFxoaanx86NChciW24uPjkfhvwe3CxzF3nkuXLiEhIQFXr15F06bFr0xHtpOVp8Mvkdfw44E4pGVmo50Qi0eV+YmszooYuAm5yBUEJKmUOKdSIVHlipsqlTGBdcNBBb0gAKII5zzAIwdwTwNaZotwzzHAIxvwyBHhkQXU+jeJ5ZWZ389WlN7ecGzSJP+raf6/Tk2awKFRI04jJCIiqmGc27SG3lEJpeZBuQKX20CeVgeAH2wREZFlMbFVSRcuXAAANGvWDCqV+f/O4OBgk33K6vz588UepyznYWLLugwGEfeyNUjJ1CA5Iw8pGbm4l5aG9PR7yEhPR3ZmGlLvJCBQewZvOF2EV60E3BVEpOhVCNersEXviSydN/RaBVzy8kdPueSKcM0F2uUAvbMB9xx9fvIqG1BVeghVxSlq1UK2qyu0tWqhQbeucG3ePD+R1bgxlF5e8gVGREREVYrg6AhNcCM4/xNvbPNOUkKTnQF4ucgYGRERVUdMbFVCbm4uUlLyp2w1aNCgxL61atWCq6srsrKycOOGmaJJZty8edP4uLTzNGzY0Pi4MucpTuHjbZo6BLXUNXRVOoMIiCJgMEAQAUCEAEAwiPnPRcBTBDxFAYIICCLgoAEcNQA0atTRAXUeHAxlmfCnQcHkQCsRBCi9vaH084OqTh0o6/z7r59ffpufHzSCgJNHjwIAXLp1Q1bBSKzk5Pwvqvby8vKM97zY2Fg4cTRejcLXn3gN1Gzlff1TmzaB6sSDGp3+/wC7nu1nxQjJFkQx/9/VS+bKGwjJgq9/zXYvV2t8XFD/u6pgYqsSMjIyjI/d3NxK7V+Q2MrMzLTaeVxdXY2Py3uewkmx0ry5P7ZcxyY7wJeUiIiIrOms3AEQEZElJCcno0mTJnKHYcRlSSohN/fBinaOZSiEXfDJVk5O+Yoflec8hT89K+95iIiIiIiIiIhKcvv2bblDkOCIrUpQq9XGxxqNptT+eXn5y885Oztb7TwF56jIeUqbuhgfH4++ffsCAA4fPlyuEV5k/5KSktD131WOjh07hnr16skcEdkar4Gaja8/8Rqo2fj6E6+Bmo2vP924cQM9e/YEUHrtb1tjYqsS3N3djY/LMu0vKysLQNmmLVb0PAXnqMh5SqvfVVjDhg3L1Z+ql3r16vH1r+F4DdRsfP2J10DNxtefeA3UbHz9qfDgm6qAUxErQa1Ww8fHB0Dphdfv3btnTDqVd6RT4ZtGeQq8c0QVEREREREREVVnTGxVUqtWrQAAV65cKXFlgIsXLxoft2zZskLnKHocS5+HiIiIiIiIiMieMLFVSb179waQPwXwxIkTZvtFREQYH/fq1atc52jatCn8/f1NjlOc/fv3AwDq169fpVYpICIiIiIiIiKyNCa2Kmn06NHGxytXriy2j8FgwM8//wwA8PLyQv/+/ct1DkEQMGrUKAD5I7IiIyOL7RcZGWkcsTVq1CgIglCu8xARERERERER2RMmtiqpa9eu6NOnDwBg+fLlOHLkiEmfRYsW4cKFCwCAWbNmwcHBQbI9PDwcgiBAEARMnjy52PO88sorUCqVAICZM2ciJydHsj0nJwczZ84EAKhUKrzyyiuV+baIiIiIiIiIiKo8JrYs4KuvvoKzszN0Oh0GDRqEjz76CJGRkQgLC8P06dPxxhtvAACCgoIwe/bsCp0jKCgIc+bMAQBERUWhV69eWLduHaKiorBu3Tr06tULUVFRAIA5c+agefPmlvnmiIiIiIiIiIiqKJXcAVQHHTt2xLp16/DUU08hPT0db7/9tkmfoKAgbN++He7u7hU+z4cffog7d+5gxYoViI6OxuOPP27SZ8qUKfjvf/9b4XMQEREREREREdkLQRRFUe4gqotr167hq6++wvbt23Hz5k04OjqiWbNmeOyxx/DSSy/BxcWl2P3Cw8ONdbcmTZqEVatWlXieHTt2YOnSpTh+/DhSUlLg6+uLkJAQTJ8+HUOGDLH0t0VEREREREREVCUxsUVERERERERERHaJNbaIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFZXLt2jXMnj0bwcHBcHV1hbe3N0JCQvDZZ58hOztb7vDICgRBKNNXv3795A6VKuDOnTvYtm0b5s+fjyFDhsDX19f4mk6ePLncx9u5cyfGjBmDBg0awMnJCQ0aNMCYMWOwc+dOywdPFmGJa2DVqlVlvlesWrXKqt8PlU9UVBQ++OADDBo0yPhz6+bmhqCgIDz77LM4ePBguY7He4D9scQ1wHuAfUpPT8fatWsxe/ZshIaGolmzZvD09ISjoyP8/PzQr18/fPrpp0hNTS3T8Q4fPoynnnoKjRs3hlqtRt26dTF48GCsWbPGyt8JVZQlroHw8PAy//wvWLDAdt8cVdqbb74pef3Cw8NL3Uf29wEiUSm2bNkienh4iACK/QoKChIvX74sd5hkYeZe76JfoaGhcodKFVDSazpp0qQyH0ev14tTpkwp8XhTp04V9Xq99b4ZqhBLXAMrV64s871i5cqVVv1+qOz69OlTptfsmWeeEfPy8ko8Fu8B9slS1wDvAfZp9+7dZXrNfH19xb/++qvEY7333nuiQqEwe4xhw4aJOTk5NvrOqKwscQ2EhYWV+ef/vffes+03SBUWHR0tqlQqyesXFhZmtn9VeR+gAlEJoqOjMWHCBOTk5MDNzQ1vvfUW+vfvj5ycHKxduxbLli1DTEwMhg0bhqioKLi7u8sdMlnYiy++iP/85z9mt7u6utowGrKGRo0aITg4GLt27Sr3vu+88w6WL18OAOjYsSPeeOMNBAYGIjY2Fp9++imio6Px448/onbt2li4cKGlQycLqcw1UODvv/+Gv7+/2e0NGjSo8LHJshITEwEA/v7+eOyxx9CnTx80atQIer0eR44cwaJFi5CQkICff/4ZWq0Wv/32m9lj8R5gnyx5DRTgPcC+NGzYEP3790fnzp3RsGFD1KtXDwaDATdv3sTGjRvxxx9/ICUlBSNHjsSxY8fQvn17k2P88MMPeP/99wEAgYGBePvtt9G2bVskJibiq6++QlhYGLZv347nnnuuTNcQ2ZYlroECK1asQEhIiNntfn5+1vgWyMIMBgOmTZsGnU4HPz8/3Llzp9R9qsz7AKumzcjuFXyip1KpxMOHD5ts//TTT5mJr6b4ulZv8+fPF7du3SreunVLFEVRjI+PL/donUuXLhk/0enSpYuYnZ0t2Z6VlSV26dLFeA/hyM6qxRLXQOHRGvHx8dYLlixq2LBh4rp160SdTlfs9uTkZDEoKMj42kZERBTbj/cA+2Wpa4D3APtk7nUvbNOmTcbXdsyYMSbbU1NTRU9PTxGA2KhRIzE5OdnkHCNGjCjTiA+yPUtcA4VHbPH1rR7+97//iQDE4OBg8a233ir19a1K7wNYY4vMOnbsGA4cOAAAmDJlCnr06GHSZ/bs2WjZsiUA4KuvvoJWq7VpjERUMe+//z6GDx+OOnXqVPgYX375JXQ6HQBg8eLFcHZ2lmx3cXHB4sWLAQA6nQ7/+9//Kh4wWZwlrgGyT9u2bcP48eOhVCqL3e7r64tFixYZn2/cuLHYfrwH2C9LXQNkn8y97oWNHj0aLVq0AADj3wOF/fjjj0hLSwMAfPLJJ/D19TU5x5IlS4zn+uyzzyobNlmQJa4Bql6uX7+OefPmAQC+//57ODo6lrpPVXofwMQWmbV582bj42effbbYPgqFAs888wwA4P79+wgLC7NFaEQkM1EU8eeffwIAgoOD0b1792L7de/e3fim6M8//4QoijaLkYgqrn///sbHsbGxJtt5D6j+SrsGqPorKDGSm5trsq3g7wQPDw+MHTu22P0bNGiAhx9+GACwd+9eZGRkWCdQspqSrgGqXmbMmIHMzExMmjQJoaGhpfavau8DmNgiswpWw3F1dUXnzp3N9it84R86dMjqcRGR/OLj4401Wkr75VewPSEhAVevXrV2aERkAXl5ecbHxX2yz3tA9VfaNUDV26VLl3Dq1CkA+X+0FqbRaHDs2DEAQI8ePUoc2VHw85+Xl4eoqCjrBEtWUdI1QNXL+vXrsW3bNnh7e+Pzzz8v0z5V7X0AE1tk1oULFwAAzZo1g0plfp2Bwje6gn2o+tiwYQNatWoFFxcXuLu7o3nz5pg0aRJH59Vw58+fNz4u7c0O7xE1w7PPPgt/f384OjrC19cX3bt3x7vvvouEhAS5Q6MKiIiIMD4uKDlQGO8B1V9p10BRvAfYv+zsbFy+fBlffPEFQkNDjVOMXnnlFUm/mJgY6PV6APz5r27Keg0U9c4776Bx48ZwcnJCrVq10LFjR7z66quIiYmxQdRUGffv38esWbMAFD+t2Jyq9j6AiS0qVm5uLlJSUgCUvopNrVq1jCvj3bhxw+qxkW2dP38eFy5cQE5ODjIzM3HlyhX8/PPPeOihhzBmzBhjfQWqWW7evGl8XNo9omHDhsbHvEdUX+Hh4UhKSoJWq0VqaiqOHj2KDz/8EM2aNcMPP/wgd3hUDgaDAR9//LHx+fjx40368B5QvZXlGiiK9wD7tGrVKgiCAEEQ4OrqiqCgIMyePRu3b98GAMydOxcTJ06U7MOf/+qlItdAUYcPH8b169eh0Whw//59nDp1Cl9++SVatmyJBQsWcBp6FfbGG2/g1q1b6NWrF6ZMmVLm/arafcD8MByq0QrPgXdzcyu1v6urK7KyspCZmWnNsMiGXFxcMHLkSAwYMADBwcFwc3NDcnIyIiIi8P333yM1NRWbN2/GqFGjsHv3bjg4OMgdMtlQee4RBYlvALxHVEMBAQEYO3YsevToYXzjEhcXh99//x0bN25Ebm4uXnjhBQiCgGnTpskcLZXF//73P+M0o7FjxxZbjoD3gOqtLNdAAd4DqqcOHTpg6dKlCAkJMdnGn/+aoaRroEC9evUwduxY9O7dGwEBAVCpVLh+/Tq2bduGn3/+GVqtFu+//z40Gg0WLlxow+ipLA4cOIAff/wRKpUK33//PQRBKPO+Ve0+wMQWFatwgcCyrIjg5OQEAMjJybFaTGRbCQkJ8PLyMmkfOHAgZs6ciSFDhiA6OhoRERH47rvv8PLLL9s+SJJNee4RBfcHgPeI6mbMmDGYNGmSyRuhkJAQTJgwAdu2bcPYsWOh1Wrx6quvYuTIkahbt65M0VJZREREYO7cuQAAPz8/fPfdd8X24z2g+irrNQDwHlAdjB49Gl26dAGQ//MZGxuL9evXY9OmTXjiiSfw5ZdfYvjw4ZJ9+PNfvVTkGgDyf86vXbtm8uF2p06dMHr0aEybNg2DBg1CWloaPv74Y0yYMAHt27e3yfdEpdNoNJg2bRpEUcSrr76KNm3alGv/qnYf4FREKpZarTY+1mg0pfYvKDBadIlPsl/FJbUK1KlTBxs3bjT+IitYxpVqjvLcIwoXIOY9onrx9PQs8dO94cOHY/78+QDy63YsX77cVqFRBZw7dw5jxoyBTqeDWq3Ghg0b4OfnV2xf3gOqp/JcAwDvAdWBl5cX2rRpgzZt2iAkJASPP/44/vjjD/z888+Ii4vDqFGjsGrVKsk+/PmvXipyDQD5o3BKmrHRtWtXfPPNNwDyV9AreExVw8KFC3Hx4kU0atQI7733Xrn3r2r3ASa2qFgFS7sCZRsumJWVBaBs0xapeggICMDAgQMBAFeuXDGuikE1Q3nuEQX3B4D3iJpo2rRpxj98CxejpqolPj4egwYNwr1796BUKrF27Vr07dvXbH/eA6qf8l4DZcV7gH16+umn8dhjj8FgMOCll17C3bt3jdv4818zlHQNlNXjjz8ODw8PAPz5r0ouXryIjz76CED+AIXCUwXLqqrdB5jYomKp1Wr4+PgAkBaGK869e/eMF2vhwnBU/bVq1cr4mKse1SyFi0SWdo8oXCSS94iax8/Pz/j7hPeJqikxMREPP/wwEhMTIQgCVqxYgVGjRpW4D+8B1UtFroGy4j3AfhVcA1lZWfjrr7+M7fz5rznMXQNlpVKpEBQUBIA//1XJ//73P2g0GgQEBCA7Oxtr1641+Tp79qyx/759+4ztBX/3V7X7AGtskVmtWrXCgQMHcOXKFeh0OqhUxV8uFy9eND4uy3LQVH2Up8AgVS+Fk5qF7wHF4T2CeK+oulJSUjBw4EDExcUByP/k9plnnil1P94Dqo+KXgPlwXuAfapdu7bx8bVr14yPg4KCoFQqodfr+fNfzZm7BsqDP/9VT8HUwLi4ODzxxBOl9v+///s/4+P4+Hi4urpWufcBHLFFZvXu3RtAfob+xIkTZvsVHlbaq1cvq8dFVcf58+eNj/39/WWMhGytadOmxte8tKHl+/fvBwDUr18fTZo0sXZoVMUkJycjJSUFAO8TVU1aWhoGDx5svJd//PHHmDFjRpn25T2geqjMNVBWvAfYr8IjbApPH3J0dETXrl0BAEeOHCmxvk7B/cHJyclYoJzsh7lroKx0Oh1iYmIA8Oe/uqlq7wOY2CKzRo8ebXy8cuXKYvsYDAb8/PPPAPILD/bv398WoVEVEB8fj927dwMAAgMDUb9+fZkjIlsSBME4PP3ixYuIjIwstl9kZKTxU5pRo0bxU7saaOnSpRBFEQAQGhoqczRUIDs7G8OGDcPJkycBAO+88w7efPPNMu/Pe4D9q+w1UFa8B9ivDRs2GB+3bdtWsq3g74T09HT88ccfxe5/8+ZN7NmzBwAwYMAASU0esg8lXQNlsW7dOqSlpQHgz39VsmrVKoiiWOJX4YLyYWFhxvaCxFSVex8gEpWgT58+IgBRpVKJhw8fNtn+6aefigBEAOJ7771n+wDJKrZs2SJqtVqz22/duiV27NjR+NovWrTIhtGRNcTHxxtfz0mTJpVpn0uXLolKpVIEIHbp0kXMzs6WbM/Ozha7dOlivIfExMRYIXKylPJeA/Hx8eLJkydL7LN161bR0dFRBCA6OzuLN2/etFC0VBl5eXnioEGDjK/3rFmzKnQc3gPslyWuAd4D7NfKlSvFnJycEvt88cUXxuujadOmok6nk2xPTU0VPT09RQBi48aNxZSUFMl2nU4njhgxwniMsLAwS38bVAmVvQbu3r1b6mt69OhR0cvLSwQgCoIgRkVFWSJ0spH33nuv1J/fqvQ+gDW2qERfffUVevXqhZycHAwaNAhvv/02+vfvj5ycHKxduxZLly4FkD/Xfvbs2TJHS5Yyc+ZMaLVajBs3Dj169ECTJk3g7OyMlJQUhIeH44cffjBOK+jdu7fFpy2Q9R08eBBXrlwxPi94PYH8VS6LLus8efJkk2MEBQVhzpw5+PjjjxEVFYVevXrhzTffRGBgIGJjY/HJJ58gOjoaADBnzhw0b97cKt8LVUxlr4GrV6+if//+6NGjB0aMGIH27dvDz88PQH7Nho0bN2Ljxo3GkRqff/45R3ZWEU888QR27doFAHjooYcwZcoUSZHYohwdHY3FfwvjPcB+WeIa4D3Afi1YsACzZ8/GuHHj0Lt3bwQGBsLNzQ0ZGRk4c+YMfv31Vxw6dAhA/mu/dOlSKJVKyTG8vb3xySef4IUXXsC1a9fQrVs3vPPOO2jbti0SExPx5ZdfIiwsDED+9davXz9bf5tUgspeA2lpaejfvz/atWuH0aNHo3PnzqhXrx6USiWuX7+Obdu24ZdffjFOU3399dfRuXNnWb5Xsp4q9T7Aaikzqja2bNkienh4GDO2Rb+CgoLEy5cvyx0mWVDjxo3Nvt6Fv8aNGyfeu3dP7nCpAiZNmlSm17jgyxy9Xi8+99xzJe47ZcoUUa/X2/C7o7Ko7DUQFhZWpv1cXFzEH374QYbvkMwpz+uOf0djmMN7gH2yxDXAe4D9Kuv7vAYNGoi7du0q8Vjz588XBUEwe4yhQ4eWOjKIbK+y10DhUd4lfSmVSnHBggWiwWCQ4bukyijLiC1RrDrvAzhii0o1YsQI/PPPP/jqq6+wfft23Lx5E46OjmjWrBkee+wxvPTSS3BxcZE7TLKgn376CREREThy5Aji4uKQkpKC9PR0uLm5oWHDhujZsycmTZqEHj16yB0qyUyhUGD58uUYN24cli5diuPHjyMlJQW+vr4ICQnB9OnTMWTIELnDJCvo3LkzVq9ejSNHjiAqKgpJSUlISUmBTqdDrVq10Lp1awwYMABTp041juKg6of3gJqL9wD79ffff2P79u04dOgQrly5gtu3byM1NRXOzs7w8/NDhw4dMHz4cIwfP77U9/jvv/8+Bg8ejG+//RYHDhzA7du34eXlhfbt2+PZZ58t04prZHuVvQb8/f2xYcMGHDlyBMeOHUNCQgJSUlKQm5sLT09PtGjRAv369cPUqVO5aEg1V1XeBwii+O/4YCIiIiIiIiIiIjvCVRGJiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIjI7ixYsACCIEAQBLlDwdWrV42xrFq1Su5wapxVq1YZ//+vXr1a6eOtWLECgiCgbdu2EEWx8gFWURs2bIAgCAgKCoJWq5U7HCIiogpjYouIiIgqRa/Xw8PDA4IgoFOnTiX2FUURPj4+xkTEihUrSuz/008/Gft+9913lgy7Srp58yYWLFiAPn36oHbt2nBwcICzszMaNGiAvn37YtasWdi4cSPS0tLkDrVayszMxNtvvw0AmD9/fpVInBY2aNAgCIKAWbNmVfpY48aNQ6tWrXD58mUsXrzYAtERERHJg4ktIiIiqhSlUomePXsCAE6fPo309HSzfc+dO4e7d+8anx84cKDEYxfe3rdv30pGWrUtW7YMLVq0wPvvv4+DBw8iJSUFOp0Oubm5SEhIwIEDB/D111/jsccew/Tp0+UOt1r6+uuvcfv2bbRq1QqPPvqo3OFIZGRkICIiAgAwYsSISh9PoVDgnXfeAQB8/PHHyMrKqvQxiYiI5MDEFhEREVVaQdLJYDDg8OHDZvsVJKqUSqXkeWn9fX190apVK2P7ggULIIpitZkqtmbNGkybNg3Z2dlQq9V48cUXsXnzZkRFReH48eP4888/MW/ePHTs2FHuUKutnJwcfPHFFwCAV199tcqN1vr777+h0Wjg4eGB0NBQixxzwoQJqF+/PpKTk/HDDz9Y5JhERES2xsQWERERVVrh0VT79+83269g22OPPQYAiI2NRWJiYrF979y5g5iYGABA7969q1yiwVL0ej1ee+01AIC7uzuOHj2KJUuWG8g3vgAAE0ZJREFUYNSoUejcuTO6dOmCkSNH4oMPPsDJkydx/vx5jB07Vuaoq5/Vq1cjNTUVTk5OVW60FgBs3boVADB48GA4ODhY5JhKpRITJkwAAHzzzTcwGAwWOS4REZEtMbFFRERElRYSEgK1Wg2g5FFYBdseffRRBAYGlti/pkxDPHr0KG7dugUAmD59Otq1a1di/5YtW2L8+PG2CK1GWb58OQBg2LBh8PLykjeYIgwGA3bs2AEAGD58uEWP/eSTTwIA4uPjERYWZtFjExER2QITW0RERFRpTk5O6Nq1KwDg+PHjyMvLM+kTHx+PhIQEAPkjsHr37g2gYomt0lZFbNKkCQRBwOTJkwEAly5dwvPPP48mTZrAyckJderUwZgxYxAZGVnq96bX67FkyRJ069YNHh4e8PT0RKdOnfD5558X+32W1/Xr142PmzVrVuHjFLc644YNG/Dwww/Dz88Pzs7OCA4OxltvvYX79++X6ZhhYWGYNGkSAgIC4OLiAg8PD7Rt2xZz5swxO9LO0se4d+8e5s6di+DgYDg7O8PPzw8PP/wwNmzYUKbzl8W1a9dw9OhRAPlF1c0JDw83/h+Hh4dDFEUsX74cvXv3ho+PDzw8PNC1a1f88ssvkv00Gg2+//57dO/eHd7e3nB3d0evXr2wfv36MsUXGRmJlJQUKBQKDB061GT7iRMnMGXKFAQFBcHV1RVqtRoNGzZE586dMWPGDGzZssXstN1OnTqhadOmAPKnxBIREdkdkYiIiMgC3n33XRGACECMiIgw2b5q1SoRgNi8eXNRFEVx2bJlIgCxbdu2xR6vU6dOIgDRw8ND1Ol0km3vvfee8VzFady4sQhAnDRpkvjHH3+ILi4uxv6Fv5RKpbh27Vqz31NGRobYp0+fYvcFIHbq1Ek8efKk8fnKlSvL+L/1wO+//27cf9asWeXev0B8fLwkjueee85s3P7+/uKFCxfMHisnJ0d8/PHHze4PQHR1dRW3bNli1WOcP39e9Pf3N7v/s88+K65cudL4PD4+vkL/dwXXJgAxNjbWbL+wsDBjv127dokjRowwG9vLL78siqIo3r17V+zbt6/Zfh9++GGp8c2dO1cEIPbq1ctk2xdffCEqFIoS/58BiBkZGWaPX/A61a9fvwz/W0RERFULR2wRERGRRRQeVVXcKKyCtoKRWgX/nj17Fvfu3ZP0zcjIwOnTpwEAPXv2NBabL68zZ85g4sSJqFOnDr755htERkbiyJEjWLBgAdRqNfR6PaZNm4bk5ORi93/qqaeMcXft2hVr1qxBVFQUtm/fjsceewwnT56s9AqFhQvC//DDD9i3b1+ljgcAS5YswYoVKyQx79ixwziFMTExEYMHD0ZGRobJvqIo4tFHH8XatWsB5K/A98svv+DQoUM4cuQIvvrqKzRq1AhZWVl49NFHERUVZZVjpKenY/DgwcZRXRMmTMCOHTsQFRWF3377DV26dMHKlSuxZMmSSv9/FbzGPj4+CAgIKNM+8+bNw9atW/Hkk09i+/btOHHiBNasWYMWLVoAyF9hcc+ePZg8eTIOHz6MF198Ebt27cKJEyewfPly+Pv7AwDmz5+Pc+fOlXiugvpaRVdD/Oeff/D666/DYDCgadOmWLRoEfbu3Yvo6Gjs378fy5Ytw8SJE+Hq6lri8QtGWyYkJODKlStl+v6JiIiqDLkza0RERFQ9ZGRkiCqVSgQgDh482GR7UFCQCEBcsWKFsc3X11cEIG7dulXS96+//jKONFm4cKHJsco6YguA2LlzZzEtLc2kz+rVq419vvjiC5Pt27ZtM24fOnSoqNVqTfq8//77klExFRmxJYqiOHz4cMlxQkJCxPnz54s7duwQk5OTy3SMwiO2Sor5gw8+MPaZM2eOyfalS5eKAEQHBwdx586dxZ7r7t27YuvWrc2OIrLEMV5//fUSrwGNRiMOGjRI8j1XdMRWy5YtRQDigAEDSuxXeMQWAPHLL7806ZOUlCS6u7uLAMTatWuLgiCImzZtMul3+vRp40irgtFdxYmLizOe7+zZs5Jt8+bNM458u3Xrltlj3L9/X9Tr9Wa3R0REGM9R0ghGIiKiqogjtoiIiMgi3NzcjKOPDh8+DL1eb9xWdIXDAr169QJgOsLLkoXjV6xYAQ8PD5P2iRMnGkfNFDfCrGAkkJOTE5YtWwaVSmXS591330WbNm0qFR8ArFy5EiEhIcbnx48fxwcffIChQ4eidu3aaNGiBWbOnImTJ0+W6XglxfzOO+8YY16+fDk0Go1xmyiK+OSTTwAAL7/8Mh555JFij1+rVi189tlnAIBDhw7h8uXLFj2GRqMxFnNv164d5s6da7K/g4MDli9fbpEVAm/evAkA8PPzK/M+3bp1w6xZs0za69atizFjxgAAkpOTMX78eIwePdqkX7t27UqtMwcA27ZtAwA0bdoUrVu3lmwrWHQgKCgIderUMXsMT09PKBTm3/YX/r7j4uLM9iMiIqqKmNgiIiIiiylIQmVkZODUqVPG9v379wMA6tSpg+bNmxvbC/6wL9heoOAPfbVaLUn4lFfbtm3NrjIoCIIxEVf0j3m9Xo/w8HAAwKBBg4wJsKIUCgUmTZpU4fgK+Pr64tChQ1i6dCk6depksj0mJgbffPMNOnfujKeffhpZWVklHq+sMd+9e1eSLDt//jxiY2MB5K9cWZLCCccjR45Y9BgnTpwwTk+dNGmS2UUCGjRogEGDBpV4jtLk5eUZp2TWqlWrzPs9/vjjZre1b9++XP1KSiaZm4YIAPXq1QOQ/39+7NixkgMugbe3t/FxQbKMiIjIXjCxRURERBbTp08f4+PCo1CK1tcq2v/EiRPIyckBkD9ap+CP9G7dusHR0bHC8QQHB5e4veAP+qK1pmJjY5GdnQ0ApSbWCuoTVZaDgwOef/55nDhxAgkJCVi7di1ef/119OnTRzIqafXq1Rg5cqRkRFxR5Yn5zJkzxseFa1316NHDuAJgcV9ubm7GvoWTIZY4RuGYrP3/f/fuXePj8iS2goKCzG7z8vIqV7/iap0VtEdERAAoPrH1xBNPwMHBAXl5eejVqxdGjBiB77//HmfPnjW7CmJxCn/fpSVNiYiIqhomtoiIiMhi+vTpYxxdU5bEVqdOneDi4gKtVovIyEgA+dPwcnNzAVR+GqKLi0uJ2wumZxVNEhVOdpQ2Pa2kKWAV5e/vjwkTJuCzzz7D/v37cevWLbz11lvGePft24c1a9aY3b88MRf+Xu/cuVOheAuSgJY6hi3//9VqtfFxQXK1LEq6tgpP+ytLP4PBUOz2v//+GxqNBu7u7ggNDTXZHhwcjDVr1qBWrVrQ6XTYtm0bXnzxRbRt2xZ+fn54+umnS5zmWKDw922JqZ1ERES2ZFp4gYiIiKiCvL290bp1a5w9e9b4B3V6erpxhcOiiS0HBwd07doV4eHh2L9/P/r372/R+lqWYG4anC15e3tj4cKFEEURH3/8MQBgw4YNeOqpp4rtX9GYCyf4tm7diiZNmpRpv8LJJ0scozBr//97eXlBpVJBp9NJEmpVQUF9rcGDB5tNOI0bNw4PP/ww1q1bh7///hsHDhxAcnIyUlJSsHr1aqxevRqTJk3CihUrzNbZKvx9Fx5tRkREZA+Y2CIiIiKL6tu3L86ePYvk5GRcvHgR8fHxMBgMkuLyhfXu3Rvh4eHGhFZBvS0HBwf06NHDprEXKDw16/bt2yX2LW27JT3//PPGxNaVK1fM9itPzIXrK/n4+Bgfe3l5VagwviWOUfT/v6TpfJX9/xcEAb6+vrh165axrldVYDAYsGPHDgDFT0MszNPTE9OmTcO0adMAABcuXMCff/6JxYsXIzExET/99BM6duxYbLF7AJLvu1GjRhb6DoiIiGyDUxGJiIjIoorW2SpIWHXv3h1KpdKkf8EorsjISOTl5eHw4cMA8qcpurq62iBiU4GBgXB2dgaQPzWyJKVtt6TCBeFLGslUnpgLJ54KJx4PHTpUkRAtcoy2bdsaH9vi/7/gfAUrd1YFkZGRSE5OhkKhwNChQ8u1b8uWLTF37lxERkYaf4bWr19vtn/h77voyotERERVHRNbREREZFGFpw/u37/fOAKr6DTEAj169IBSqURWVhZWrVqFtLQ0k+PYmkqlQr9+/QAAu3btQlJSUrH9DAYDfvrpp0qdqzxFvgsXZg8ICDDbr6wx16pVS7IKY6dOndCgQQMAwNKlS421zsrDEsfo3LmzcdTWL7/8Yvb/KCEhAbt27Sr38YsqSMZeunTJbCF3WytYDbFHjx7w9fWt0DEaNmxoHO2WkpJitl9BctDBwaHYVTmJiIiqMia2iIiIyKL8/f0RGBgIAAgLCzMmYwqP5CrMw8PDOGLm008/NbbLXV/rxRdfBADk5eVh+vTpxa5C+NFHH0lW8KuInTt3Yvz48YiOji6x3927d/Hyyy8bn48aNcps35Ji/vjjj40xP/fcc3BycjJuUygUePvttwEAcXFxeOaZZ5CXl2f2POnp6fjmm28kbZY4hpOTE5599lkAwKlTp/DZZ5+Z7KfT6fD8889Do9GYPXZZFVybBoNBkjyUU0Fia/jw4Wb7bN68Gffv3ze7/caNG7h48SIAoGnTpmb7FaxC2qNHD8lKlURERPaANbaIiIjI4vr06YPY2FgkJCQAyB8B1b17d7P9e/fujVOnTiEuLg5AfnLE3AgvWxkxYgRGjBiBrVu3YuvWrejVqxdeffVVNG/eHHfu3MGqVauwbt06dOnSpVLJEIPBgA0bNmDDhg1o3749hg0bhpCQENSrVw+Ojo64c+cODh48iKVLlxpXHOzcuTMmTZpk9phdunQpNuaffvoJa9euBQA0aNAA8+bNM9n3hRdewO7du7Fp0yZs2LABJ0+exPTp09G1a1d4enoiPT0dFy9eRHh4OLZs2QK1Wo2XXnrJ4seYP38+1q9fj5s3b+LNN9/EqVOn8Mwzz8DPzw8xMTH44osvcPz48Ur//wNAz549Ubt2bSQnJ2Pv3r3o379/pY5XWVevXsW5c+cAlFxf68svv8STTz6JYcOG4aGHHkLLli3h6emJe/fuISoqCosXLzauePjCCy8Ue4yMjAzjiK0xY8ZY+DshIiKyAZGIiIjIwlasWCECMH6FhISU2H/t2rWS/u3bty+x/3vvvWfsW5zGjRuLAMRJkyaVeJxJkyaJAMTGjRsXuz09PV3s1auXJLbCXx07dhRPnDhhfL5y5coSz1ecgwcPiq6urmbPUfRr4MCBYkpKislx4uPjJXFMnjzZ7DHq1asnnjt3zmxMGo1GfPHFF0VBEEqNp2nTplY7xtmzZ8W6deua3W/y5MniypUrjc/j4+PL/f9fYPbs2SIAMSAgwGyfsLAw47nCwsLM9itrTOau46+//rrE/5cCoaGhpf7fKhQK8f/+7//MHmPVqlUiAFGlUolJSUklno+IiKgq4lREIiIisrii0whLG31VdJqi3NMQC7i7uyM8PByLFy9GSEgI3Nzc4O7ujg4dOuCjjz7C4cOHJasKVkSvXr2QnJyMLVu24LXXXkNoaCj8/f3h5OQElUoFb29vdOrUCdOnT0dYWBh27dolWXnQnJUrV+K3335Dv3794OPjAycnJwQFBeGNN97AuXPn0KpVK7P7Ojg4YMmSJTh9+jRmzpyJtm3bwtPTE0qlEp6enujQoQOmTJmCjRs34sKFC1Y7RuvWrXHu3Dm88cYbaN68OZycnODr64v+/fvjt99+w8qVK8v2n1wGzz//PID86ZORkZEWO25FFExDLG01xDVr1mDp0qWYOHEiOnTogLp160KlUsHNzQ2tW7fGiy++iOjoaLz77rtmj/Hbb78ByB+tVbduXct9E0RERDYiiGI5KpYSERERUZV09epVYx2llStXYvLkyfIGZIeGDh2KnTt3YurUqVi2bJksMWRkZMDX1xcajQa7du3CwIEDrXaua9euITAwEHq9HkeOHClxujAREVFVxRFbRERERETIXwxAoVDg559/xo0bN2SJYdeuXdBoNHB3d0doaKhVz7Vw4ULo9Xo88sgjTGoREZHdYmKLiIiIiAhA+/btMXHiRGg0Gnz00UeyxODu7o733nsPixcvhqOjo9XOc+PGDaxatQpKpVKyGikREZG94aqIRERERET/WrhwIQIDA6FWqyGKIgRBsOn5Bw0ahEGDBln9PDdu3MBbb72FgIAAtG3b1urnIyIishbW2CIiIiKqBlhji4iIiGoiTkUkIiIiIiIiIiK7xBFbRERERERERERklzhii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrv0/5jBicKdK+iGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -199,14 +193,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXxU1fn48c/JOiQhCxBIApGwE0QEATEhBOICCBQFEQMVBfGr/lpBWos7W78UBCuKYEFbFYuAVBHr8qUCyiKLAopSWSSyCmEJSxISss/5/TGTITOTZZLMluR5v17zmsydc+85M1yS+9yzPEprjRBCCCGEEEKUx8fTDRBCCCGEEEJ4LwkYhBBCCCGEEBWSgEEIIYQQQghRIQkYhBBCCCGEEBWSgEEIIYQQQghRIQkYhBBCCCGEEBWSgEEIIYQQQghRIQkYhBBCCCGEEBWSgEEIIYQQQghRIQkYhBBCCCGEEBWSgEEIIYQQQghRIQkYhBBCCCGEEBWSgEEIIYQQQghRIQkYhBBCCCGEEBWSgEEIIYQQQghRIQkYhBBCCCGEEBWSgEEIIYQQQghRIT9PN0C4nlIqELjB/DIDKPFgc4QQQgghhDVfINL883+11gWebIwtCRgahhuA3Z5uhBBCCCGEqFJvYI+nG1GWDEkSQgghhBBCVEh6GBqGjNIftm7dSps2bTzZFlGP5eXlsXXrVgCSk5Np1KiRh1sk6is514Q7yHkm3OXYsWMkJyeXvsyorKwnSMDQMFjmLERFRdGqVStPtkXUY3l5eTRr1gyAVq1ayR9X4TJyrgl3kPNMuEteXl7Zl14311SGJAkhhBBCCCEqJAGDEEIIIYQQokISMAghhBBCCCEqJAGDEEIIIYQQokIy6VkIIaopLy+P7OxscnNzKSnxurlpDYLRaKRp06YAnDx5Eh8fuf8lnE/OM+Es/v7+hIeHExoaWifPIwkYhBCiGrKyskhPT/d0Mxo8rbVlxZqSkhKMRqOHWyTqIznPhLMUFxeTl5dHXl4e0dHRnm5OtUnAIIQQDsrLy7MLFvz85NeopyilAPk3EK4l55moLa21pTc6MzOT8PDwOrdEr5z9QgjhoOzsbMvPoaGhREVF4evr68EWNVxGo9Hy71FXu/iF95PzTDhLRkYGFy5cAODSpUu0bNnSwy2qHjnzhRDCQbm5uZafJVgQQgjhqNK5MACFhYUebEnNSMAghBAOKu1S9vPzk2BBCCGEw3x8fCx/N4qLiz3cmuqTgEEIIYQQQggXK50PUxdJwCCEEEIIIYSokAQMQgghAFi2bBlKKY4fP+7ppggXiYuLY/z48Q6VHTBgAAMGDHBJvZs3b0YpxebNm51yfCGEa0nAIIQQwqusXr2a+++/nw4dOqCUqvCiddu2bURERODr64tSyurxzTffWJWNi4tDKcXtt99e7rH+/ve/W/bds2cPAPPnz0cpxd69e63Kaq2JiIhAKcWxY8es3svPzycwMJCxY8fW8NO714EDB5g5c6YEiR40Z84cPv74Y6cec/z48Xb/J8p7OBo81sShQ4d46qmn6N69O40bNyY6OpqhQ4da/n/V1Pjx4wkJCanwfaUUjz/+eK3qqExOTg4zZsxg8ODBNGnSBKUUy5Ytc1l93kKWVRVCCAHAuHHjSE1NJTAw0KPtWLJkCd999x29e/fm4sWLVZafNGkSN998s9W29u3b25UzGAxs2rSJs2fPEhUVZfXeihUrMBgM5OfnW7YlJSUBpsCkR48elu379+8nMzMTPz8/tm/fTps2bSzv7d69m8LCQsu+3u7AgQPMmjWLAQMGEBcXZ/Xe+vXrXVZvcnIyeXl5BAQEuKyOumLOnDmMGjWKu+++22nHfPTRR62C42PHjjF9+nQeeeQR+vXrZ9nerl07p9Vp6x//+AdvvfUW99xzD7/73e/IysrijTfe4JZbbuE///lPhcG7t7tw4QJ//vOfue6667jxxhsbTC+ZBAxCCCEA8PX19YrVn5YvX07Lli3x8fGha9euVZZPSkpi9OjRVZbr27cvu3fvZvXq1TzxxBOW7adOneLrr79mxIgRrFmzxrK9V69eGAwGtm3bxqRJkyzbt2/fTtOmTenVqxfbtm3j/vvvt7y3bds2S5vqOldezPv4+GAwGFx2/IYuISGBhIQEy+s9e/Ywffp0EhISrM5XVxozZgwzZ8606g146KGHiI+PZ+bMmXU2YIiOjubMmTNERUWxZ88eevfu7ekmuYUMSRJCCAFUPIdh3bp19OvXj+DgYBo3bszQoUPZv3+/VZl9+/Yxfvx42rZti8FgICoqioceesihHgJbsbGx1U6QdeXKlSqXKjQYDIwcOZKVK1dabV+1ahUREREMGjTIantAQAC9e/dm+/btVtu3b99OQkICffv2Lfe98PBwhwKdUgMGDKBr167s27eP/v37ExQURPv27fnwww8B2LJlC3369KFRo0Z06tSJjRs3Wu0/fvx4u94BgJkzZ1a6KsuyZcu49957AUhJSbEMUym9Y1qTOQxaa2bPnk2rVq0ICgoiJSXF7lyB8ucw1PZ7cITRaGThwoXccMMNGAwGIiMjGTx4sNUwmdIhLStWrCA+Pp6oqCgGDBjA1q1bnV6fUorc3FzeffddtwwTqkhcXBzDhg1j/fr1dO/eHYPBQJcuXfjoo4/syh45coQjR45UecyePXvaDR1q2rQp/fr14+DBg1bbr169yqFDhyyJzZxt0aJFXH/99QQFBREREUGvXr3sfg8cOnSIkydPVnmswMBAux7KhkACBiGEqAWjUXMxp8DrHkajdsrnW758OUOHDiUkJIR58+Yxbdo0Dhw4QFJSklVgsWHDBo4ePcqECRNYtGgRqampvP/++wwZMgStndOWikycOJHQ0FAMBgMpKSmVjpEeO3Ysu3btsrrgWblyJaNGjcLf39+ufFJSEqdPn7b6rNu3bycxMZHExETL8CQwXSzv2LGDhISEagc8ly9fZtiwYfTp04f58+cTGBhIamoqq1evJjU1lSFDhvDiiy+Sm5vLqFGjuHLlSrWOX57k5GQmT54MwHPPPcfy5ctZvnw58fHxNT7m9OnTmTZtGjfeeCMvvfQSbdu2ZeDAgVZJDyvj6u9h4sSJTJkyhdjYWObNm8czzzyDwWCwm/OyZcsWpkyZwm9/+1ueffZZLl26xJAhQ/jpp5+cWt/y5csJDAykX79+lu//0UcfrVYdzpKWlsZ9993HnXfeydy5c/Hz8+Pee+9lw4YNVuVuu+02brvtthrXc/bsWZo1a2a1bdeuXcTHx7N48WKHj3PhwoVyH7b+/ve/M3nyZLp06cKrr77KrFmz6N69O99++61Vufj4eB544IGafagGQIYkCSFELVy+WkjP2dW/0+lq371wO01DajcXIScnh8mTJ/Pwww/z5ptvWrY/+OCDdOrUiTlz5li2/+53v+PJJ5+02v+WW25hzJgxbNu2zWrctLP4+/szfPhwfvOb39C8eXMOHDjAX//6V/r168eOHTus5h2UuvXWW4mKimLVqlW88MILHDx4kB9++IGFCxdy9OhRu/Jl5zHExcVx9uxZjh49St++fbnpppvw8fFhx44dDBkyhAMHDnD58uUaDUdKT09n5cqVjBkzBoA77riDzp07M3bsWHbs2EGfPn0A00XNoEGDWLNmTa3vRLdt25Z+/frx2muvcccdd9R6RaSMjAzmz5/P0KFD+fTTTy29G88//zxz5sxx6Biu/B42bdrEsmXLmDx5MgsXLrRsf/LJJ+2C2p9++ok9e/bQo0cPsrOzGTlyJDfffDPTp08v9657Teu7//77eeyxx2jbtq3bhgpV5PDhw6xZs4aRI0cCpmCnc+fOPP3009xxxx1OqePrr79m586dvPDCC7U6Tm5uLpGRkQ6V/fzzz7n++uv54IMPalVnQycBgxBCiHJt2LCBzMxMxowZY3XnztfXlz59+rBp0ybLtkaNGll+zs/PJycnh1tuuQWA77//3iUBQ58+fejTpw+hoaH4+PgwfPhwRo0aRbdu3Xj22Wf5z3/+Y7ePr68vo0ePtgQMK1asIDY2ln79+pUbMCQmJuLj42OZq7B9+3b8/f3p3bs3jRo1olu3bmzfvp0hQ4ZYhifVJGAICQkhNTXV8rpTp06Eh4fTsmVLy0Vy6WcGym2rp23cuJHCwkImTZpkNRRqypQpDgcMrvwe1qxZg1KKGTNm2L1nO3QrISGBnj17YjQaAdMwueHDh/PZZ59RUlLi0Fyf6tTnDWJiYhgxYoTldWhoKA888ADz5s2zWiigpitqnT9/nrFjx9KmTRueeuopq/cGDBhQrZ5Ig8HAp59+Wu57tsFNeHg4p06dYvfu3ZXON3B1T2hdJwGDEEKIcqWlpQGmu/LlCQ0Ntfx86dIlZs2axfvvv8/58+etymVlZbmukTbat2/PXXfdxUcffVThhd3YsWN57bXX+PHHH1m5ciWpqakVXsCFh4dz/fXXW4KB7du306NHD0uAlJiYaPVeQECA3YpNjmjVqpVdG8LCwoiNjbXbBqahO97mxIkTAHTo0MFqe2RkJBEREQ4dw5Xfw5EjR4iJiaFJkyZVlrX9DAAdO3bk6tWrZGRkODSGvTr1Oers2bNWr8PCwqyC9dpo37693XffsWNHwBQk1Gbcfm5uLsOGDePKlSts27at0mVRHeHr6+vwpOmnn36ajRs3cvPNN9O+fXsGDhzI2LFj6du3b63a0NBIwCCEEKJcpXdXly9fXu7Fgp/ftT8ho0ePZseOHUydOpXu3bsTEhKC0Whk8ODBluO4S2xsLIWFheTm5loFNaX69OlDu3btmDJlCseOHasyZ0JSUhJLly4lMzPTMn+hVGJiIm+//TZFRUVs27aNnj171mj1n4ruWFe0vezd0IqCnZKSkmq3w9Nq8z00BNHR0Vav33nnHY9Mkq6OwsJCRo4cyb59+/jiiy+qtSCAM8THx/Pzzz/z2Wef8Z///Ic1a9bwt7/9jenTpzNr1iy3tqUuk4BBCCFqISIogO9e8L7lASOCar8kZuka7c2bN6/0bt7ly5f58ssvmTVrFtOnT7dsL+2hcLejR49iMBgqvYs5ZswYZs+eTXx8PN27d6/0eElJSSxZsoSNGzeyd+9epk6dankvMTGRvLw8Pv/8c44ePco999zjrI/hsIiICMvE67JK7/hXxplDY1q3bg2Y/t3btm1r2Z6RkeEVPSLt2rXjiy++4NKlS1Xe9S/v3D18+DBBQUEOj513tL7q/BvYTkC+/vrrHd63Kr/88gtaa6v2HD58GKDcVbgcYTQaeeCBB/jyyy/517/+Rf/+/Z3R1GoLDg7mvvvu47777rMEMH/5y1949tlnZXlfB8kqSUIIUQs+PoqmIYFe9/Dxqf2F4KBBgwgNDWXOnDkUFRXZvZ+RkQFcu/tre7f31VdfrXUbKlPeiig//vgjn3zyCQMHDqx0paKHH36YGTNm8PLLL1dZT+mchAULFlBUVGTVwxAXF0d0dDTz58+3KutO7dq1Iysri3379lm2nTlzhrVr11a5b3BwMEC5AUd13X777fj7+7No0SKrc8HV54Gj7rnnHrTW5d5Vtj13d+7cyffff295ferUKct55WiuEkfrCw4Odvj7v/32260etj0OtZGenm51zmRnZ/PPf/6T7t27W/UwOrqsKpiSKq5evZq//e1vlsnU7ma7tHNAQABdunRBa231e83RZVUbKulhEEIIUa7Q0FCWLFnCuHHjuOmmm0hNTSUyMpKTJ0/y+eef07dvXxYvXkxoaCjJycnMnz+foqIiWrZsyfr16zl27FiN6t26datlzfuMjAxyc3OZPXs2YFoKNDk5GTAlgTIYDCQnJ9OiRQsOHDjAm2++SVBQEC+++GKldbRu3ZqZM2c61J7rrruO2NhYdu7cSVxcHDExMVbvJyYmWia4emJcdGpqKk8//TQjRoxg8uTJXL16lSVLltCxY0eri97ydO/eHV9fX+bNm0dWVhaBgYHceuutNG/evNrtiIyM5E9/+hNz585l2LBhDBkyhL1797Ju3Tq7ZTQ9ISUlhXHjxvHaa6+RlpZmGS739ddfk5KSwuOPP24p27VrVwYNGsSkSZPQWvPWW28BVGsIi6P19ezZk40bN7JgwQJiYmJo06aN1QRvd+nYsSMTJ05k9+7dtGjRgrfffptz587xzjvvWJUrXVK1qsnPr776Kn/7299ISEggKCiI9957z+r9ESNGWALWzZs3k5KSwowZMxz+f+mogQMHEhUVRd++fWnRogUHDx5k8eLFDB06lMaNG1vKxcfH079/f4cyNy9evJjMzEzS09MB+PTTTzl16hRgCpJK59jUJxIwCCGEqNDYsWOJiYnhxRdf5KWXXqKgoICWLVvSr18/JkyYYCm3cuVKJk2axOuvv47WmoEDB7Ju3Tq7i2tHfPXVV3YXZtOmTQNgxowZloBh6NChfPDBB7zyyitkZ2cTGRnJyJEjmTFjBu3bt6/Fp7aXlJTEqlWrrHoXSvXt25c1a9bQuXNnmjZt6tR6HdG0aVPWrl3LH//4R5566inatGnD3LlzSUtLqzJgiIqKYunSpcydO5eJEydSUlLCpk2bahQwAMyePRuDwcDSpUvZtGkTffr0Yf369QwdOrRGx3O2d955h27duvHWW28xdepUwsLC6NWrl92/a//+/UlISGDWrFmcPHmSTp06sWzZMrp16+b0+hYsWMAjjzzCCy+8QF5eHg8++KBHAoYOHTqwaNEipk6dys8//0ybNm1YvXq1XUJDR/3www+Aqbdm586ddu8fO3bMEjDk5OQA9nM0nOHRRx9lxYoVLFiwgJycHFq1asXkyZNrtbTrX//6V6shfx999JFlud3777+/XgYMqqFNGGqIlFKtgF/BNB6xvNUfhHCGvLw81q9fD5ju6jhr9Q5vkZaWRnFxMX5+fvL/yMOMRiPZ2dkAlmVVhXAGpRS///3vWbx4cYM5z+Li4ujatSufffaZR+p/6qmnWLVqFb/88guBgbXLH+PNKvsbkpaWZlmVCojVWp9yewMrUT/PfCGEEEIIUSds2rSJadOm1etgoa6TIUlCCCFcrqSkxDJJuiIhISG1Xp/dm1y6dInCwsIK3/f19XV4xR1Py8jIqHSZ1oCAAKfmG6gOd59bDfFcdrXdu3d7ugmiChIwCCGEcLlff/2VNm3aVFrGFRMePWnkyJFs2bKlwvdbt25d46y57ta7d+9Kl2l1dLKoK7j73GqI57IQEjAIIYRwuaioKLs15G2VXbu/Pnj55ZcrzT9Ql+b4rFixgry8vArfdzSTsys4+9yqam5nfTyX60rgKjxHAgYhhBAuZzAYKk3+Vh/17NnT001wGk8sF+sod59bDfFcFkImPQshhBBCCCEqJAGDEEIIIYQQokISMAghhBBCCCEqJAGDEEIIIYQQokISMAiv9u3Ri7y17RhHMnI83RQhhBBCiAZJAgZAKdVaKfWyUuqQUipXKXVJKbVbKTVVKRXkpDrilFLzlFLfKaUylVJF5np2KKWmK6WaO6Oe+uQ/P53lvje/4X8/O8Bdi7ez71Smp5skhBBCCNHgNPiAQSn1G2Af8EegExAERAC9gPnAXqVU+1rWMQ44ADwF3ASEYVrSNgJIAGYBB5VSd9Smnvrmw+9+tfycU1DMnz74kYLiijONCiGEEEII52vQAYNSqgewGggFcoDngUTgNuDv5mIdgc+VUo1rWEdfYBnQCDAC7wB3AzcDo4BPzUWbAP9WStWtbC8u9Osl6yRBh8/lsOjLXzzUGiHqv2XLlqGUkiRO9VhcXBzjx493qOyAAQMYMGCAS+rdvHkzSimPZYcWQlRPgw4YgIWYLuSLgYFa6zla651a66+01o9g6hEAU9DwZA3reJZr3/MkrfVDWut/a613a63XaK2HAwvM7zfC1NMhgPQs+6yiS7Yc4b+nsjzQGiGEu6xevZr777+fDh06oJSq8KJ127ZtRERE4Ovri1LK6vHNN99YlY2Li0MpVWHCrb///e+Wfffs2QPA/PnzUUqxd+9eq7JaayIiIlBKcezYMav38vPzCQwMZOzYsTX89O514MABZs6cKUGiB82ZM4ePP/7YqcccP3683f+J8h6OBo81cejQIZ566im6d+9O48aNiY6OZujQoZb/XzU1fvx4QkJCKnxfKcXjjz9eqzoqUxrslvew/b1TnzTYTM9KqZuBfuaXb2mtd5ZT7GVgAhAPPKGU+ovWuqiaVSWany9qrf9WQZk/cy1QSKjm8eulnIJiruQX220vMWr+9MGPfDopiQC/hh7vCuFc48aNIzU1lcDAQI+2Y8mSJXz33Xf07t2bixcvVll+0qRJ3HzzzVbb2re3H0lqMBjYtGkTZ8+eJSoqyuq9FStWYDAYyM/Pt2xLSkoCTIFJjx49LNv3799PZmYmfn5+bN++nTZt2lje2717N4WFhZZ9vd2BAweYNWsWAwYMIC4uzuq99evXu6ze5ORk8vLyCAgIcFkddcWcOXMYNWoUd999t9OO+eijj1oFx8eOHWP69Ok88sgj9OvXz7K9Xbt2TqvT1j/+8Q/eeust7rnnHn73u9+RlZXFG2+8wS233MJ//vOfOp8te/LkyfTu3dtqW3m/d+qLBhswYBoWVOqd8gporY1KqX8Cc4FwIAWo7m/Q0t+GxyoqoLXOUkpdAJqVKd+gncm0710o9fO5Kyz+Ko0/DuzkxhYJUf/5+vri6+vr6WawfPlyWrZsiY+PD127dq2yfFJSEqNHj66yXN++fdm9ezerV6/miSeesGw/deoUX3/9NSNGjGDNmjWW7b169cJgMLBt2zYmTZpk2b59+3aaNm1Kr1692LZtG/fff7/lvW3btlnaVNe58mLex8cHg8HgsuM3dAkJCSQkXLv/uGfPHqZPn05CQoLV+epKY8aMYebMmVa9AQ899BDx8fHMnDmzzgcM/fr1Y9SoUZ5uhts05Fu0pb/Nc4HvKim3pczPfWtQz8/m5zYVFVBKhWIKFsqWb9DSs/Irff/1zUf46bQMTRLCmSqaw7Bu3Tr69etHcHAwjRs3ZujQoezfv9+qzL59+xg/fjxt27bFYDAQFRXFQw895FAPga3Y2Fh8fKr35+nKlSsUF9v3SpZlMBgYOXIkK1eutNq+atUqIiIiGDRokNX2gIAAevfuzfbt2622b9++nYSEBPr27Vvue+Hh4Q4FOqUGDBhA165d2bdvH/379ycoKIj27dvz4YcfArBlyxb69OlDo0aN6NSpExs3brTaf/z48Xa9AwAzZ85EKVVhvcuWLePee+8FICUlxTKsonReQU3mMGitmT17Nq1atSIoKIiUlBS7cwXKn8NQ2+/BEUajkYULF3LDDTdgMBiIjIxk8ODBVsNkSoe0rFixgvj4eKKiohgwYABbt251en1KKXJzc3n33XfdMkyoInFxcQwbNoz169fTvXt3DAYDXbp04aOPPrIre+TIEY4cOVLlMXv27Gk3dKhp06b069ePgwcPWm2/evUqhw4d4sKFC7X7IBVYtGgR119/PUFBQURERNCrVy+73wOHDh3i5MmT1TquI7936ouGHDDEm59/0VpX9q99qJx9qmOp+bmpUuqxCspMK6d8g3bWZv5Cs5AA/Hyu/eErHZpUWGx0d9OEsGY0Qu4F73sYnfN/Y/ny5QwdOpSQkBDmzZvHtGnTOHDgAElJSVaBxYYNGzh69CgTJkxg0aJFpKam8v777zNkyBC01k5pS0UmTpxIaGgoBoOBlJSUSsdIjx07ll27dlld8KxcuZJRo0bh7+9vVz4pKYnTp09bfdbt27eTmJhIYmKiZXgSmC6Wd+zYQUJCQrUDnsuXLzNs2DD69OnD/PnzCQwMJDU1ldWrV5OamsqQIUN48cUXyc3NZdSoUVy5cqVaxy9PcnIykydPBuC5555j+fLlLF++nPj4mvypM5k+fTrTpk3jxhtv5KWXXqJt27YMHDiQ3Nxch/Z39fcwceJEpkyZQmxsLPPmzeOZZ57BYDDYjT3fsmULU6ZM4be//S3PPvssly5dYsiQIfz0009OrW/58uUEBgbSr18/y/f/6KOPVqsOZ0lLS+O+++7jzjvvZO7cufj5+XHvvfeyYcMGq3K33XYbt912W43rOXv2LM2aNbPatmvXLuLj41m8eLHDx7lw4UK5D1t///vfmTx5Ml26dOHVV19l1qxZdO/enW+//daqXHx8PA888IDD9U+YMMHh3zv1QYMckqSUMnDtjv6pyspqrS8rpXKBYCC2BtW9jak34wHgdaVUT+AT4AxwHTCOa8Oj/qK1rvYtE6VUqyqKWAbrFhQUkJdX8XAfb3HygvUfgRtiQukSHcLrW45bth06e4WFGw7y+ABZWMpblB3/Xfbn+sJoNFoufo2lF+S5F/B5uYMHW1U+45NpENys6oJl9zF/JqPRiNFoJCcnh8mTJzNx4kTeeOMNS7lx48YRHx/PX/7yF8v2xx57jD/84Q9Wx7v55pv57W9/y9atW63GTdfo89gEQEajEX9/f4YPH86wYcOIjIzk4MGDvPzyy/Tr189u3gGYLugHDBhAVFQUK1eu5Pnnn+fgwYP88MMPvPLKKxw9etTq8wMkJpqmoW3dupXrrruOs2fPcvToURISErjpppvw8fFh27ZtDBkyhP3793P58mX69u1r196qpKen89577zFmzBjAdFHWpUsXxo4dy7Zt2+jTpw8AnTp14s477+SDDz6w3Im2OyfLfN6KthuNRuLi4ujbty+vvfYat912m1VvQtl9HP0sGRkZzJ8/nyFDhvDJJ59YejdeeOEF5s6da6m37DHLfte1/R6qsmnTJpYtW8akSZN49dVXLdv/8Ic/WLUN4KeffmLXrl306NGDnJwcRo4cyc0338y0adOshq3Vtr6xY8fy2GOP0aZNG6uJ8tU9f6pS0fdd1uHDh/nggw8YOXIkYLog7tKlC08//XS5AUJN2vj111+zc+dOnn/++XLPMdt/h/JorcnNzSUyMrLSMqXH+eyzz7j++utZvXq1Q5+hqvr9/PwYOXIkd955J82aNavy905FbbO9FisoKKh0P09rkAEDUHaJVEdSCJcGDBVPy6+A1roEeFAp9SnwHPCw+VHWJmBOTYIFs1+rLmLy7bffOtSV6Gl7fvGhbAdYUdZ52kacJSbIl/Sr13oalmw9RtDlX2gV7IFGikrVpPve2zVt2pRGjRqhlCI7OxsAdfUKYR5uV3muXLmCLqneGPTSIC8nJ4fs7Gw+++wzMjMzGT58uN1qQD179uSrr76yfA8ARUVFluPk5uZahuXs3LmTG2+8sUafo6SkhOLiYqt6SvXp08dyAQmmIS2DBg0iKSmJp59+2jKUBUwXAcXFxeTm5nLXXXexcuVKJk2axDvvvEPLli258cYbOXDgAAC5ubmW+m644QZ8fHzYtGkTw4cPZ+PGjfj7+9OpUyeMRiPXX389mzZtIikpiS+//BKA7t27l9veihQXFxMSEsKQIUMs+0VHRxMWFkZ0dDTx8fGW7aV3/w8dOmTZVlRUhNFotKuz9AKk7Haj0UhRUZFlW+lFy9WrV+32Lx1q4ehn+fTTTyksLOShhx6yuvP/0EMPMXfuXKt6r169aldvbb+Hqrz//vsopfjDH/5Q5T69e/emQ4cO5OSYLhFiY2O58847+eKLL7h8+bJDc32qU1/Z78YVSnt48vPzy63HaDQSHR3NbbfdZvX+6NGjWbhwIWlpabRo0QKAH374AXD8vCiVkZHB2LFjad26NY8++qjV/jfddBOXL1926LhFRUUYDAZWrVpV7vsjRoygsLDQcpzg4GB+/fVXNm/ezE033VThcR2tv2vXrrz11luW15X93rFVXFxMXl4eeXl5HDp0yOo9Vw3HcpaGGjCUnWlV6ED50rCvUU0qU0rFY+phuKGCIgnARKXUQa316ZrUUd9k2vyrhAdq/Hzgt+1LeHmfL0ZMQYNRK1b+4suTN5Tg25AH2AnhAqU3F4YPH17u+40bX7v3cvnyZebNm8dHH31ERkaGVTlXXgjZatu2LXfeeSefffYZJSUl5V7YjRo1ijfeeIP//ve/fPjhh4wcObLCsf5hYWF07tzZMnzh22+/pVu3bjRqZPpzcPPNN1u9FxAQQM+ePavd7piYGLs2hIaG0rJlS7v2AJZhUN7k119N965sV95p1qwZ4eHhDh3Dld/DsWPHiI6OJiIiosqy5a0e1L59e9auXcuFCxcsF8/Oqs9R586ds3odGhpqORdrq02bNnbffemqPydPnnToM1ckNzeX1NRUcnJyWLduXaXLojrC19fX4fk1TzzxBFu2bOG2226jbdu2pKSkMGrUKG655ZZataEsR37v1HUNNWAoO1bCkVtwpWsMVnssj1KqH6bkbGHACeAFYANwCWgBDAf+F0gFkpVSA7XW9jPEKlfVUKkoYDeY7si5chk1Z1mY9g1w1fI6uecNDOxmGlmVE36UJVuPW947fVWxq6Q1f0ppR3BgQz2lvUN+fr6lZyE5ObnerYJy8uRJSkpK8PPzIzQ01LTR15F7Du7XuHFjCA6t1j6l/14hISGEhoZaVsl599137ZYhBay+h1GjRrFjxw7+9Kc/ceONNxISEoLRaGTIkCH4+/tf+76qydfX1/r7NisdMlXa3rJzBtq2bUthYSG+vr6W/Xx8fCzHufXWW2nXrh3Tp0/nxIkTjB8/3jIWGUx3JMvWl5yczBtvvIHRaGTPnj0kJSVZ3u/fvz8rVqygUaNG7Nq1i549e9K8efNqfUY/P79yvyMfHx8CAwPL/e7Klg8ICMDHx8eunJ+f6fdh2e0+Pj5W+5ZebAYFBTm0f2Vsz5+ylFJW9QYFBdnVW9vvoSp+fn4opRwqX3rcsudZ6f+Hxo0bO3SMmtRXFdvg46233nJoSFZwsKkb3mAwlFtP2f8fZVX0f6I6CgsLGT16NPv372fdunW1vlAvnWtUWXsCAgIs7/fu3ZtDhw7x2Wef8cUXX/DZZ5/x1ltvMW3aNGbOnFmrtpRV3u8dWxkZGTRq1IiQkBC7GwvePvqjoV5dlR0g70iYWzrgxZHhSxZKqUBgFaZg4Sxwi9b6bJkip4C/KaW2AHuAGOBdoFd16tFaVzoPo+wdg8DAQKfdjXAVrTVns63H8l0Xee0uyh8GxrPp8EUOnb32z/j+ntP830/neDAxjvGJcTQNqf068lprsvOLuZRbyMWcAi7kFFp+vphbyMXcQopLjIQa/AkL8ieskT+hjczPBj/CGvnTMqIRzRvXr4tmRxkMBq8/16rLx8fHMr7VcoEa3Aymet8vep9GTaCaE29LP5OPjw8+Pj6Wu4tRUVEMHDiwwv0uX77Ml19+yaxZs5g+fbple1paGmD6HVTdScAVta2i98q+f+zYMcuFUdntZdsxZswYZs+eTXx8vGWYgu3nL9WvXz+WLl3KV199xd69e5k6darl/aSkJPLy8li3bh1Hjx7lnnvuqfFnLW+/ir67stubNGlCZmamXbnSFV9st5fdt/ROqO1nrqpd5SldqenIkSNW69FnZGRw+fJlq3or+q4rqs+R76Eq7du3Z/369WRmZtKkSZNKy/7yyy92x01LSyMoKIgWLVo4VKej9ZWujuTIMW0nIF9//fUO7VfZ913ql19+sbSl7DYwXQzX5Lw2Go2MHz+er776in/961+kpKRU+xi2SttXWXtsv8/GjRszZswYxowZQ2FhISNHjmTOnDk899xzTruxVdHvnYraZvv30dP5b6rSIAMGrXW+Uuoi0BSodMKwUiqCawGDw3MFzAYDpf2oi2yChbLt2a+Ueg/T3IaeSqkbtdY/VrOueiM7r5irhSVW22LCrv3HCvDz4aVRN3L337ZTYry2+kp2fjGLvvqFv399lNTe1/E/yW1pGV75BavRqDmbnc+Ji1c5cTGXE5fMzxevcuLiVXIKar9cWlSogRtahdGtZRg3tArjhpZhTglohJfw8an25OK6YtCgQYSGhjJnzhxSUlLsVhHKyMggMjLSctFpuxpS2YmernDhwgW71VZ+/PFHPvnkE+68885K/2g//PDD+Pr6Ws2BqEhpToUFCxZQVFRkmQgNpovk6Oho5s+fb1XWndq1a0dWVhb79u2jW7duAJw5c4a1a9dWuW/pnWdnDHG6/fbb8ff3Z9GiRQwcONByYefq88BR99xzD6+//jqzZs1i4cKFVu9pra0ulHfu3Mn3339P9+7dAVOujk8++YTBgwc7PNzE0fqCg4Md/v5dmbsgPT2dtWvXWiY9Z2dn889//pPu3btb9TCW3gl3ZLTCpEmTWL16NW+88YbluO528eJFmjZtankdEBBAly5dWLdunWU+BJjmwwQFBXHddddVerzS33tlOfp7py5rkAGD2QFMmZ7bK6X8KllatXOZnw9WUKYiZdem+76Kst9xbTJ0Z6DBBgzpWfYjv1qEWV9g39AqjOnDujDz0/3YrtiYX2Rk2Y7jvPfNCe7q3pI7urTg8tVCzmcXkJGTb34uMD1fKaCwxLVLs57NzufsgXw2HLg29rRleCO6tQojsV1ThtwQLQGE8EqhoaEsWbKEcePGcdNNN5GamkpkZCQnT57k888/p2/fvixevJjQ0FCSk5OZP38+RUVFtGzZkvXr19tNlHbU1q1bLUPbMjIyyM3NZfbs2YBpeFBycjJgmkxrMBhITk6mRYsWHDhwgDfffJOgoCBefPHFSuto3bq1w8MRrrvuOmJjY9m5cydxcXHExMRYvZ+YmMiaNWtQStG3b03S9dROamoqTz/9NCNGjGDy5MlcvXqVJUuW0LFjR77/vvI/Pd27d8fX15d58+aRlZVFYGAgt956a7WHVQFERkbypz/9iblz5zJs2DCGDBnC3r17WbdunV1g5wkpKSmMGzeO1157jbS0NAYPHozRaOTrr78mJSWFxx9/3FK2a9euDBo0iEmTJqG1tkxynTVrltPr69mzJxs3bmTBggXExMTQpk0bhwJZZ+vYsSMTJ05k9+7dtGjRgrfffptz587xzjvWuW1LV0yyzddi69VXX+Vvf/sbCQkJBAUF8d5771m9P2LECEvAunnzZlJSUpgxY4ZThwkBDBw4kKioKPr27UuLFi04ePAgixcvZujQoVbzsOLj4+nfv79VbpDy3HfffTRq1IjExESaN29erd87dVlDDhi2YQoYgoGewLcVlOtf5uftFZSpSNkgpKrvuuytu4aRBaQCZ22StjULCSTQz/6OzoOJcXSPDef1Tb+w/sA5u/eLjZo1359izfeVjtjyiNOZeZzOzGPdT2eZ+ekB+nVoxl3dY7ijSxQhMg9DeJGxY8cSExPDiy++yEsvvURBQQEtW7akX79+TJgwwVKudNWh119/Ha01AwcOZN26dXYX14746quv7C7Mpk0zpauZMWOGJWAYOnQoH3zwAa+88grZ2dlERkYycuRIZsyYYTUkxhmSkpJYtWqVVe9Cqb59+7JmzRo6d+5sdSfTXZo2bcratWv54x//yFNPPUWbNm2YO3cuaWlpVQYMUVFRLF26lLlz5zJx4kRKSkrYtGlTjQIGgNmzZ2MwGFi6dCmbNm2iT58+rF+/nqFDh9boeM72zjvv0K1bN9566y2mTp1KWFgYvXr1svt37d+/PwkJCcyaNYuTJ0/SqVMnli1bZunBcWZ9CxYs4JFHHuGFF14gLy+PBx980CMBQ4cOHVi0aBFTp07l559/pk2bNqxevdouoaGjSldT2rlzJzt37rR7/9ixY5aAoXSeSHR0dM0aX4lHH32UFStWsGDBAnJycmjVqhWTJ0/mhRdeqNHx7r77bsvxXP17x5soVyfU8VZKqZu5FiS8obW2S6qmlPIBfsLUU5AJNNdaF1WjjnuA0vW15mutn66k7IfAPeaXPbXWVfVIOMycp+FXMK2z3KGD960ZX9aKb0/w/NpryXG6tQrjk8cr7+ZPO3eFJVuO8MkP6RQbnX9OBwX40jQkgCbBgTQLDqBJcABNQwIJ8FVk5xeTlVdkeWSbnzOvFlW798Lg78MdXaK468YYkjtGEuBXt7o28/LyWL9+PWC6q1Pf5jCkpaVRXFyMn5+f1/8/qu/KLiNa1ZhhIapDKcXvf/97Fi9e3GDOs7i4OLp27cpnn33mkfqfeuopVq1axS+//OL1Y/lro7K/IWlpaXTs2LH0ZWxV81PdrcHeytRa71JKfY2pl2GiUupdrbVtCPwk14YVLbQNFpRSAzDlUAB4V2s93mb/LzEt9RME/D+l1Hta6//atkUpdScwwvzyNPBDTT5TfXEm07qHITqs6glJHVo0ZsHo7vzxjo784+tjvL/7JPlFjl+sN/L3pXXTIPMj2PTcJJjrmgQR2TiQRgHVXyLNaNQcvZDLf09nsu9UFv89lcVP6VmVtiu/yMinP6bz6Y/phDXyJ7ljJIntmpLYrinXNQmqcOlHIYQQoq7atGkT06ZNq9fBQl3XYAMGsycwDTNqBKxXSs3BFAA0wrTM6SPmcoeBl6t7cK11plLqReDPmJLF7VBKLcK0rOplTMuq3gX8D9eylD2jtXbtoHovZzuHITrM8bvUrSKCmDn8eh6/tT3Lth/ni/1nuZJfTPPQQJo3DiSycSCRjQ1lfg6kVUQjIkMCnX4x7uOjaN88hPbNQxjRwzS3vrjEyJGMXPadymRr2gU2HDhbYQCRlVdkCR7ANO8hsV1TEts3JaFtM6IcCKQ8xaghPSufi2fzOJ15lVOX8izDsK7kF5PcoRmTbuuAvyTPaDBKSkrs8jPYCgkJqfX67N7k0qVLFBZWvOyur69vpdlqvUlGRgYlJSUVvh8QEFDlykOu4u5zqyGey662e/duTzdBVKFBBwxa671KqfuA94BQYE45xQ4DQ7XWV8p5zxGzgSaYgpMQ4Fnzw1YR8JzW+r1y3mtQbHsYYsKrf2HcLCSQPw3qxJ8GdXJWs5zCz9eHTlGN6RTVmHt7xZJbUMyGA+f49w+n2Zp2wWrVJ1unM/P44LtTfPCdqZcysnEgfj7e1eOgteZqni85RWD8ZkeF5X74NZOY8Eak3lz5ahSi/vj1119p06ZNpWVcMeHRk0aOHMmWLVsqfL9169ZVThz1Fr179+bEiRMVvu/IZFFXcfe51RDPZSEadMAAoLX+VCnVDdMF/VBMy6wWAr8AHwCLtdZXKzlEVcfXwB/KLJuaBLTGNEwpx1zPFkzzKA7X5rPUF2dsehiiqtHDUNcEB/pxd4+W3N2jJRdzCvi/n87yyQ+n2X38cpX7ZlwpqLKMZzgWxGz6+bwEDA1IVFSU3Rryttq2beum1rjHyy+/zOXLFf9frktzfFasWEFeXsW5S52Zzbi6nH1uVTW3sz6ey3UlcBWe0+ADBgCt9Qngj+ZHdfbbjINXR1rr7zAtnSoqobXmjM0qSTFePPTGmZqGBDLultaMu6U1pzPz2Ho4gx1HLrLzyAUu5HhnNuHaKJt4T9R/BoPBpWvIeyPbTK51mSeWi3WUu8+thnguCyEBg/Aql3ILKSi2HtMfXUXytfqoZXgjxtx8HWNuvg6tNWnnc9jxywV2HLnIN0cvkp1fN1beDfTzoVVEI1pGBNE40I/P/3vG8l5pYjxZRlYIIYTwbvKXWngV294FHwUtGjfsVROUUnRs0ZiOLRozvm8bSoyag2eyuZDjfUOSCgsL+f677wny14wcNICWTUMtk8nzi0r4z/6zVvM0fj57hZ6tPTeUQQghhBBVk4BBeBXbgKF5YwN+spKOFV8fRdeWYZ5uRrny8vLIO2oKCJoGB1itPGXw96VdZDCHz+VYth08ky0BgxBCCOHl5EpMeBXbCc/RNVghSXivzlGhVq8Pnc32UEuEEEII4SgJGIRXSbddUrUer5DUEHWObmz1+uAZmfgshBBCeDsJGIRXsethaCArJDUU8dHWPQw/n72CsZLcE0IIIYTwPAkYhFexTdrmzdmMRfXF2wxJyiko5tTlitd2F+61bNkylFKyJns9FhcXx/jx4x0qO2DAAAYMGOCSejdv3oxSymPJ3oQQ1SMBg/Aq6TY9DDENcEnV+qxFaCARQf5W2w7KPAZhY/Xq1dx///106NABpVSFF63btm0jIiICX19flFJWj2+++caqbFxcHEqpCtfP//vf/27Zd8+ePQDMnz8fpRR79+61Kqu1JiIiAqUUx44ds3ovPz+fwMBAxo4dW8NP714HDhxg5syZEiR60Jw5c/j444+deszx48fb/Z8o7+Fo8OgMK1asQClFSEhIrY4zYMAAunbtWu57x48fRynFX//611rVUZkzZ87wzDPPkJKSQuPGjRtM4CurJAmvYTRqzmVb9zDIkKT6RSlF56hQdh69aNl28Ew2g66P8mCrRKlx48aRmppKYKBnlzJesmQJ3333Hb179+bixYtVlp80aRI333yz1bb27dvblTMYDGzatImzZ88SFWV9zq1YsQKDwUB+/rXfQUlJSYApMOnRo4dl+/79+8nMzMTPz4/t27fTpk0by3u7d++msLDQsq+3O3DgALNmzWLAgAHExcVZvbd+/XqX1ZucnExeXh4BAQEuq6OumDNnDqNGjeLuu+922jEfffRRq+D42LFjTJ8+nUceeYR+/fpZtrdr185pdVYmJyeHp556iuDgYLfU50o///wz8+bNo0OHDtxwww3s3LnT001yCwkYhNe4kFtAUYn1eHbpYah/4qOtA4ZDMvHZa/j6+uLr6+vpZrB8+XJatmyJj49PhXcSy0pKSmL06NFVluvbty+7d+9m9erVPPHEE5btp06d4uuvv2bEiBGsWbPGsr1Xr14YDAa2bdvGpEmTLNu3b99O06ZN6dWrF9u2beP++++3vLdt2zZLm+o6V17M+/j4YDDIDSFXSUhIICEhwfJ6z549TJ8+nYSEBKvz1V1mz55N48aNSUlJcXpvirv17NmTixcv0qRJEz788EPuvfdeTzfJLWRIkvAatvMX/HwUzUIadtK2+shupSQZkuQ1KprDsG7dOvr160dwcDCNGzdm6NCh7N+/36rMvn37GD9+PG3btsVgMBAVFcVDDz3kUA+BrdjYWHx8qvfn6cqVKxQXV54B3WAwMHLkSFauXGm1fdWqVURERDBo0CCr7QEBAfTu3Zvt27dbbd++fTsJCQn07du33PfCw8MdCnRKlQ6x2LdvH/379ycoKIj27dvz4YcfArBlyxb69OlDo0aN6NSpExs3brTaf/z48Xa9AwAzZ860yoVia9myZZaLnZSUFMswldLhFTWZw6C1Zvbs2bRq1YqgoCBSUlLszhUofw5Dbb8HRxiNRhYuXMgNN9yAwWAgMjKSwYMHW4ahgakn9PHHH2fFihXEx8cTFRXFgAED2Lp1q9PrU0qRm5vLu+++65FhQqXi4uIYNmwY69evp3v37hgMBrp06cJHH31kV/bIkSMcOXLE4WOnpaXxyiuvsGDBAvz8yr9PnZWVxaFDh8jKyqrxZ6hIUVERs2bNokOHDhgMBpo2bUpSUhIbNmywKnPo0CHOnDlT5fEaN25MkyZNnN5ObycBg/AatisktQg14OtT8R87UTd1sVkp6cTFq+QWVH6h582M2sil/Ete9zBqo1M+3/Llyxk6dCghISHMmzePadOmceDAAZKSkqwCiw0bNnD06FEmTJjAokWLSE1N5f3332fIkCFo7dqVsCZOnEhoaCgGg4GUlBSriz9bY8eOZdeuXVYXPCtXrmTUqFH4+/vblU9KSuL06dNWn3X79u0kJiaSmJhoGZ4EpovlHTt2kJCQUO2A5/LlywwbNow+ffowf/58AgMDSU1NZfXq1aSmpjJkyBBefPFFcnNzGTVqFFeu1L5nLjk5mcmTJwPw3HPPsXz5cpYvX058fHyNjzl9+nSmTZvGjTfeyEsvvUTbtm0ZOHAgubm5Du3v6u9h4sSJTJkyhdjYWObNm8czzzyDwWCwm/OyZcsWpkyZwm9/+1ueffZZLl26xJAhQ/jpp5+cWt/y5csJDAykX79+lu//0UcfrVYdzpKWlsZ9993HnXfeydy5c/Hz8+Pee++1urAGuO2227jtttscPu6UKVNISUlhyJAhFZZZu3Yt8fHxrF271qFjlpSUcOHCBbvH5cuX7crOnDmTWbNmkZKSwuLFi3n++ee57rrr+P777y1lTp8+TXx8PM8++6zDn6uhkSFJwmvY5WCQpG31UvvmIfj6KErKLKd66OyVOpvxObMgk/6r+3u6GXa23LeFJoba3QXLyclh8uTJPPzww7z55puW7Q8++CCdOnVizpw5lu2/+93vePLJJ632v+WWWxgzZgzbtm2zGjftLP7+/gwfPpzf/OY3NG/enAMHDvDXv/6Vfv36sWPHDqt5B6VuvfVWoqKiWLVqFS+88AIHDx7khx9+YOHChRw9etSufNl5DHFxcZw9e5ajR4/St29fbrrpJnx8fNixYwdDhgzhwIEDXL58uUbDkdLT01m5ciVjxowB4I477qBz586MHTuWHTt20KdPHwDi4+MZNGgQa9asqfWd6LZt29KvXz9ee+017rjjjlqviJSRkcH8+fMZOnQon376qaV34/nnn2fOnDkOHcOV38OmTZtYtmwZkydPZuHChZbtTz75pF1Q+9NPP7Fnzx569OhBdnY2I0eO5Oabb2b69Onl3nWvaX33338/jz32GG3btvXIUKGyDh8+zJo1axg5ciRgCnY6d+7M008/zR133FGjY37++eesX7+eH3/80ZlN5dChQ0RGRjrchiFDhlj9DhPVJz0MwmvY9jBESdK2esng70vbZtYT3yTjs3fasGEDmZmZjBkzxuounq+vL3369GHTpk2Wso0aXfv/mp+fz4ULF7jlllsArO7kOVOfPn149913eeihhxg+fDjPPPMM33zzDUqpCu8U+vr6Mnr0aFatWgWYJjvHxsZWGNAkJibi4+NjmZuwfft2/P396d27NyEhIXTr1s0yLKn0uSYBQ0hICKmpqZbXnTp1Ijw8nPj4eMtFculnBsoNbjxt48aNFBYWMmnSJKuhUFOmTHH4GK78HtasWYNSihkzZti9Zzt0KyEhgZ49e1pex8bGMnz4cL744gtKSkqcXp83iImJYcSIEZbXoaGhPPDAA+zdu5ezZ89ath8/ftyhVbUKCwv5wx/+wGOPPUaXLl0qLTt+/Hi01g4Hf3FxcWzYsMHu8d5779mVDQ8PZ//+/aSlpVV6PK01y5Ytc6j+hkh6GITXSM+yzfIsPQz1VefoUNLO51heHzwjAYM3Kv0De+utt5b7fmjoteFlly5dYtasWbz//vucP3/eqpwrxiVXpH379tx111189NFHlJSUlDuJe+zYsbz22mv8+OOPrFy5ktTU1Aov4MLDw7n++uutgoIePXpYAqTExESr9wICAuxWbHJEq1at7NoQFhZGbGys3Tag3KEXnnbixAkAOnToYLU9MjKSiAjHehBd+T0cOXKEmJgYh8af234GgI4dO3L16lUyMjLsVtmqbX2OKnvhDqbvoWywXhvt27e3++47duwImIIERz5zWa+88goXLlxg1qxZTmlfWcHBweUukVxeIPPnP/+Zu+66i44dO9K1a1cGDx7MuHHj6Natm9PbVZ9JwCC8xplMyfLcUMRHN+bTMj3UslKSdzIaTfMgli9fXu7FQtkJjKNHj2bHjh1MnTqV7t27ExISgtFoZPDgwZbjuEtsbCyFhYXk5uZaBTWl+vTpQ7t27ZgyZQrHjh2rMmdCUlISS5cuJTMz0zJ/oVRiYiJvv/02RUVFbNu2jZ49e9Zo9Z+KVqeqaHvZITQVBTuO3gn3JrX5HhqC6Ohoq9fvvPOORyZJVyUrK4vZs2fzu9/9juzsbLKzTTeFcnJy0Fpz/PhxgoKCaN68ucvbkpyczJEjR/j3v//N+vXr+cc//sErr7zC0qVLefjhh11ef30hAYPwGmdtehiiZUnVess24/Ohs1cwGjU+dXCSe3hgOFvu2+LpZtgJDwyv9TFK12hv3rx5hQnPwHSX98svv2TWrFlMnz7dsr2yIQCudPToUQwGQ6UJosaMGcPs2bOJj4+ne/fulR4vKSmJJUuWsHHjRvbu3cvUqVMt7yUmJpKXl8fnn3/O0aNHueeee5z1MRwWERFhmXhdVukd/8o4c2hM69atAdO/e9u2bS3bMzIyvKJHpF27dnzxxRdcunSpyrv+5Z27hw8fJigoyOGx847WV51/A9sJyNdff73D+1bll19+QWtt1Z7Dhw8DlLsKV2UuX75MTk4O8+fPZ/78+Xbvt2nThrvuusttS6w2adKECRMmMGHCBHJyckhOTmbmzJkSMFSDBAzCK5QYNeeuFFhti5E5DPVWvM1KSTkFxZzOzCO2SZCHWlRzPsqn1pOLvdWgQYMIDQ1lzpw5pKSk2K0ilJGRQWRkpOXur+3d3ldffdWl7btw4QLNmjWz2vbjjz/yySefcOedd1a6UtHDDz9smYtRldI5CQsWLKCoqMiqhyEuLo7o6GjLRZEn8i+0a9eOrKws9u3bZxlmcebMGYdWnClNpFVewFFdt99+O/7+/ixatIiBAwdaLjxdfR446p577uH1119n1qxZVpOQAbsL5Z07d/L9999bgslTp07xySefMHjwYIdzlThaX3BwsMPff2WBe22lp6ezdu1ay6Tn7Oxs/vnPf9K9e3erHsbSFcYqS/rWvHnzcs+/1157jZ07d7Jq1Sq73hJXuXjxIk2bNrW8DgkJoX379vz666+WbUVFRRw5coSwsDC3tauukYBBeIXzV/KtVs0BiJZVkuqtFqGBhAf5k3m1yLLtwJnsOhkw1GehoaEsWbKEcePGcdNNN5GamkpkZCQnT57k888/p2/fvixevJjQ0FCSk5OZP38+RUVFtGzZkvXr13Ps2LEa1bt161bLmvcZGRnk5uYye/ZswDS8IDk5GYCHHnoIg8FAcnIyLVq04MCBA7z55psEBQXx4osvVlpH69atmTlzpkPtue6664iNjWXnzp3ExcURExNj9X5iYqJlgmvfvn2r+WlrLzU1laeffpoRI0YwefJkrl69ypIlS+jYsWOVE867d++Or68v8+bNIysri8DAQG699dYaDRWJjIzkT3/6E3PnzmXYsGEMGTKEvXv3sm7dOrvAzhNSUlIYN24cr732GmlpaZbhcl9//TUpKSk8/vjjlrJdu3Zl0KBBTJo0Ca01b731FkC1xuM7Wl/Pnj3ZuHEjCxYsICYmhjZt2jgUyDpbx44dmThxIrt376ZFixa8/fbbnDt3jnfeeceqXOmSqpVNfA4KCio3c/XHH3/Mrl277N5btmwZEyZMcMkQqy5dujBgwAB69uxJkyZN2LNnDx9++KHVv3fpsqoPPvigQxOfS38fleYYWb58uWVhhBdeeMGp7fcWEjAIr2C7pGqAnw9Ng12XZVR4llKK+Cj7jM+Drq/epDrhemPHjiUmJoYXX3yRl156iYKCAlq2bEm/fv2YMGGCpdzKlSuZNGkSr7/+OlprBg4cyLp16+wurh3x1Vdf2V2YTZs2DYAZM2ZYAoahQ4fywQcf8Morr5CdnU1kZCQjR45kxowZtG/fvhaf2l5SUhKrVq2y6l0o1bdvX9asWUPnzp2t7mS6S9OmTVm7di1//OMfeeqpp2jTpg1z584lLS2tyoAhKiqKpUuXMnfuXCZOnEhJSQmbNm2q8djy2bNnYzAYWLp0KZs2baJPnz6sX7+eoUOH1uh4zvbOO+/QrVs33nrrLaZOnUpYWBi9evWy+3ft378/CQkJzJo1i5MnT9KpUyeWLVtW7YmyjtS3YMECHnnkEV544QXy8vJ48MEHPRIwdOjQgUWLFjF16lR+/vln2rRpw+rVq+0SGrpCTo5pEQxX3N2fPHkyn3zyCevXr6egoIDWrVsze/Zsq6GF1VX6+6jU22+/bfm5vgYMqqFNGGqIlFKtgF/BNB6xvNUfPO2zfek8vnKv5XXrpkFsmZriwRaJmsjLy2P9+vUADBw4sNLVO2Z9up93th+3vB58fRRLx/WssLw3SEtLo7i4GD8/P6/8f9SQGI1Gy0TK0NDQaidKE6IiSil+//vfs3jx4gZznsXFxdG1a1c+++wzj9Q/evRojh8/zq5duzxSv7tU9jckLS3NsioVEKu1PuX2BlZCehiEVzhj08MQFSrDkeo723kMkotBCCEaHq01mzdvLjeHgvAeEjAIr5Buk7QtRlZIqvdsV0o6cekquQXFBAfKr6X6qKSkhIyMjErLhISEVLqyUV1z6dIlCgsLK3zf19fX4RV3PC0jI6PSZVoDAgKcmm+gOtx9bjXEc9mVlFJ2uVuE95G/zMIr2PYwSA6G+q9DixB8FJTOddcafj53hZuucyzBk6hbfv31V9q0aVNpmRkzZjg8EbkuGDlyJFu2VLzkbuvWrR3KmOsNevfuXekyrf3792fz5s3ua1AZ7j63GuK5LIQEDMIrnMmWHAwNjcHfl7aRIfxSJuPzoTMSMNRXUVFRdmvI2yq7dn998PLLL1eaf8BZGXrdYcWKFeTl5VX4vqOZnF3B2edWVXM76+O5XFcCV+E5EjAIr2Cb5TlGehgahPjoUKuA4eAZmcdQXxkMBpeuIe+Nevb07kn81eGJ5WId5e5zqyGey0LUz+n+ok4pLDaSkWOdtC1akrY1CJ2jGlu9lonPQgghhPeRgEF43LnsfGx7gGMkaVuD0MV2paQzV6ocDiCEEEII95KAQXjcmSzr+QuN/H0Ja+TvodYId+ocbd3DcKWgmFOXKx4nLYQQQgj3k4BBeNwZmyVVo8MMKKU81BrhTlGhBsKDrINDmccghBBCeBcJGITHpdsuqSrDkRoMpVQ58xiueKg1QgghhCiPBAzC4+x7GGTCc0Nim/FZehiEEEII7yIBg/A42zkMsqRqw2Kb8Vl6GIQQQgjvIgGD8Di7HgZJ2tag2E58Pn4xl6uFxR5qTcO2bNkylFKSxKkei4uLY/z48Q6VHTBgAAMGDHBJvZs3b0Yp5bHs0EKI6pGAQXjcGds5DNLD0KB0bNEYnzJz3LWGn6WXoUFbvXo1999/Px06dEApVeFF67Zt24iIiMDX1xellNXjm2++sSobFxeHUqrChFt///vfLfvu2bMHgPnz56OUYu/evVZltdZERESglOLYsWNW7+Xn5xMYGMjYsWNr+Ond68CBA8ycOVOCRA+aM2cOH3/8sVOPOX78eLv/E+U9HA0enWHFihUopQgJCanVcQYMGEDXrl3Lfe/48eMopfjrX/9aqzoqU3pjpbzH2bNnXVavp0mmZ+FR+UUlXMwttNoWIz0MDYrB35c2zYI5kpFr2XbwzBV6XBfhwVY1TOPGjSM1NZXAwECPtmPJkiV899139O7dm4sXL1ZZftKkSdx8881W29q3b29XzmAwsGnTJs6ePUtUVJTVeytWrMBgMJCff+0GRlJSEmAKTHr06GHZvn//fjIzM/Hz82P79u20adPG8t7u3bspLCy07OvtDhw4wKxZsxgwYABxcXFW761fv95l9SYnJ5OXl0dAQIDL6qgr5syZw6hRo7j77ruddsxHH33UKjg+duwY06dP55FHHqFfv36W7e3atXNanZXJycnhqaeeIjg42C31ucOf//xnq//7AOHh4Z5pjBtIwCA86qzN/AWQHoaGKD461CpgkIzPnuHr64uvr6+nm8Hy5ctp2bIlPj4+Fd5JLCspKYnRo0dXWa5v377s3r2b1atX88QTT1i2nzp1iq+//poRI0awZs0ay/ZevXphMBjYtm0bkyZNsmzfvn07TZs2pVevXmzbto3777/f8t62bdssbarrXHkx7+Pjg8Egv+tdJSEhgYSEBMvrPXv2MH36dBISEqzOV3eZPXs2jRs3JiUlxem9KZ5y55130qtXL083w21kSJLwqHSb+QshgX40NkjStoZGVkryDhXNYVi3bh39+vUjODiYxo0bM3ToUPbv329VZt++fYwfP562bdtiMBiIiorioYcecqiHwFZsbCw+PtX783TlyhWKiyuf+2IwGBg5ciQrV6602r5q1SoiIiIYNGiQ1faAgAB69+7N9u3brbZv376dhIQE+vbtW+574eHhDgU6pUqHWOzbt4/+/fsTFBRE+/bt+fDDDwHYsmULffr0oVGjRnTq1ImNGzda7T9+/Hi73gGAmTNnVprTZtmyZdx7770ApKSkWIZVlM4rqMkcBq01s2fPplWrVgQFBZGSkmJ3rkD5cxhq+z04wmg0snDhQm644QYMBgORkZEMHjzYMgwNTMs9P/7446xYsYL4+HiioqIYMGAAW7dudXp9Silyc3N59913PTJMqFRcXBzDhg1j/fr1dO/eHYPBQJcuXfjoo4/syh45coQjR444fOy0tDReeeUVFixYgJ9f+feps7KyOHToEFlZWTX+DBUpKipi1qxZdOjQAYPBQNOmTUlKSmLDhg1WZQ4dOsSZM2eqdewrV65QUlLi7CZ7JQkYhEfJ/AUBEG8z8fnQmStorT3UmurRRiPFly553UMbjU75fMuXL2fo0KGEhIQwb948pk2bxoEDB0hKSrIKLDZs2MDRo0eZMGECixYtIjU1lffff58hQ4a4/N9y4sSJhIaGYjAYSElJsbr4szV27Fh27dpldcGzcuVKRo0ahb+//c2KpKQkTp8+bfVZt2/fTmJiIomJiZbhSWC6WN6xYwcJCQnVDnguX77MsGHD6NOnD/PnzycwMJDU1FRWr15NamoqQ4YM4cUXXyQ3N5dRo0Zx5Urt5/kkJyczefJkAJ577jmWL1/O8uXLiY+Pr/Exp0+fzrRp07jxxht56aWXaNu2LQMHDiQ3N7fqnXH99zBx4kSmTJlCbGws8+bN45lnnsFgMNjNedmyZQtTpkzht7/9Lc8++yyXLl1iyJAh/PTTT06tb/ny5QQGBtKvXz/L9//oo49Wqw5nSUtL47777uPOO+9k7ty5+Pn5ce+991pdWAPcdttt3HbbbQ4fd8qUKaSkpDBkyJAKy6xdu5b4+HjWrl3r0DFLSkq4cOGC3ePy5ct2ZWfOnMmsWbNISUlh8eLFPP/881x33XV8//33ljKnT58mPj6eZ5991uHPlZKSQmhoKEFBQQwfPpy0tDSH962LZEiS8ChZIUkAdLZZWvVKQTGnLucR2yTIQy1yXElmJmmJfT3dDDsddmzHr0mTWh0jJyeHyZMn8/DDD/Pmm29atj/44IN06tSJOXPmWLb/7ne/48knn7Ta/5ZbbmHMmDFs27bNaty0s/j7+zN8+HB+85vf0Lx5cw4cOMBf//pX+vXrx44dO6zmHZS69dZbiYqKYtWqVbzwwgscPHiQH374gYULF3L06FG78mXnMcTFxXH27FmOHj1K3759uemmm/Dx8WHHjh0MGTKEAwcOcPny5RoNR0pPT2flypWMGTMGgDvuuIPOnTszduxYduzYQZ8+fQCIj49n0KBBrFmzptZ3otu2bUu/fv147bXXuOOOO2q9IlJGRgbz589n6NChfPrpp5bejeeff545c+Y4dAxXfg+bNm1i2bJlTJ48mYULF1q2P/nkk3ZB7U8//cSePXvo0aMH2dnZjBw5kptvvpnp06eXe9e9pvXdf//9PPbYY7Rt29YjQ4XKOnz4MGvWrGHkyJGAKdjp3LkzTz/9NHfccUeNjvn555+zfv16fvzxR2c2lUOHDhEZGelwG4YMGWL1O6w2goKCGD9+vCVg+O6771iwYAGJiYl8//33xMbGOqUebyM9DMKjJAeDAFPPUlgj67u7slKS523YsIHMzEzGjBljdRfP19eXPn36sGnTJkvZRo2uBfv5+flcuHCBW265BcDqTp4z9enTh3fffZeHHnqI4cOH88wzz/DNN9+glKrwTqGvry+jR49m1apVgGmyc2xsbIUBTWJiIj4+Ppa5Cdu3b8ff35/evXsTEhJCt27dLMOSSp9rEjCEhISQmppqed2pUyfCw8OJj4+3XCSXfmag3ODG0zZu3EhhYSGTJk2yGgo1ZcoUh4/hyu9hzZo1KKWYMWOG3Xu2Q7cSEhLo2bOn5XVsbCzDhw/niy++cHgISnXq8wYxMTGMGDHC8jo0NJQHHniAvXv3Wq3+c/z4cYdW1SosLOQPf/gDjz32GF26dKm07Pjx49FaOxz8xcXFsWHDBrvHe++9Z1c2PDyc/fv3V9oDEBcXh9aaZcuWVVn36NGjeeedd3jggQe4++67+d///V+++OILLl68yF/+8heH2l8XSQ+D8CjbgEGyPDdMSinaRgaz92SmZZtt75Nwv9I/sLfeemu574eGXusZunTpErNmzeL999/n/PnzVuVcMS65Iu3bt+euu+7io48+oqSkpNxJ3GPHjuW1117jxx9/ZOXKlaSmplZ4ARceHs71119vFRT06NHDEiAlJiZavRcQEGC3YpMjWrVqZdeGsLAwu7uVYWFhAOUOvfC0EydOANChQwer7ZGRkUREOLbqmSu/hyNHjhATE0MTB3rebD8DQMeOHbl69SoZGRl2q2zVtj5H2S7bGRYWZhWs10b79u3tvvuOHTsCpiDBkc9c1iuvvMKFCxeYNWuWU9pXVnBwcLlLJJcXyPz5z3/mrrvuomPHjnTt2pXBgwczbtw4unXr5rT2JCUl0adPnxrNq6kr3BIwKKWSzT/u1lo7dBWglDIANwNoras/00jUCemZtkOSpIehoWrR2Prf/lx2gYdaIkoZzfMgli9fXu7FQtkJjKNHj2bHjh1MnTqV7t27ExISgtFoZPDgwZbjuEtsbCyFhYXk5uZaBTWl+vTpQ7t27ZgyZQrHjh2rMmdCUlISS5cuJTMz0zJ/oVRiYiJvv/02RUVFbNu2jZ49e9Zo9Z+KVqeqaHvZITQVBTt1cTJmbb6HhiA6Otrq9TvvvOORSdJVycrKYvbs2fzud78jOzub7GzTQhY5OTlorTl+/DhBQUE0b97c5W1JTk7myJEj/Pvf/2b9+vX84x//4JVXXmHp0qU8/PDDTqsnNjaWn3/+2WnH8zbu6mHYDBiBbsABB/dpWWY/6Qmpp+yHJEkPQ0PVItR67f/zV+yX3PVGvuHhdNixveqCbubrhPXAS9dob968eYUJz8B0l/fLL79k1qxZTJ8+3bLdU5MAjx49isFgqDRB1JgxY5g9ezbx8fF079690uMlJSWxZMkSNm7cyN69e5k6darlvcTERPLy8vj88885evQo99xzj7M+hsMiIiIsE6/LKr3jXxlnDo1p3bo1YPp3b9u2rWV7RkaGV/SItGvXji+++IJLly5Vede/vHP38OHDBAUFOTx23tH6qvNvYDsB+frrr3d436r88ssvaK2t2nP48GGAclfhqszly5fJyclh/vz5zJ8/3+79Nm3acNddd7ltidUmTZowYcIEJkyYQE5ODsnJycycOdOpAcPRo0cdPjfqIndeiNf0t5L3DfQTTnG1sJisvCKrbVEyh6HBah5aN3sYlI9PrScXe6tBgwYRGhrKnDlzSElJsVtFKCMjg8jISMvdX9u7va+++qpL23fhwgWaNWtmte3HH3/kk08+4c4776x0paKHH37YMhejKqVzEhYsWEBRUZFVD0NcXBzR0dGWiyJP5F9o164dWVlZ7Nu3zzLM4syZMw6tOFOaSKu8gKO6br/9dvz9/Vm0aBEDBw60XHi6+jxw1D333MPrr7/OrFmzrCYhA3YXyjt37uT777+3BJOnTp3ik08+YfDgwQ7nKnG0vuDgYIe//8oC99pKT09n7dq1lknP2dnZ/POf/6R79+5WPYylK4xVlvStefPm5Z5/r732Gjt37mTVqlV2vSWucvHiRZo2bWp5HRISQvv27fn1118t24qKijhy5AhhYWFVtqv0915Z//d//8d3331nWXWsPvLmO/elv+nrXp+qcEh6pv0d5BgZktRgNW9s28NQNwKG+iw0NJQlS5Ywbtw4brrpJlJTU4mMjOTkyZN8/vnn9O3bl8WLFxMaGkpycjLz58+nqKiIli1bsn79eo4dO1ajerdu3WpZ8z4jI4Pc3Fxmz54NmIYXJCebRrk+9NBDGAwGkpOTadGiBQcOHODNN98kKCiIF198sdI6WrduzcyZMx1qz3XXXUdsbCw7d+4kLi6OmJgYq/cTExMtE1z79nX/ilmpqak8/fTTjBgxgsmTJ3P16lWWLFlCx44dq5xw3r17d3x9fZk3bx5ZWVkEBgZy66231mioSGRkJH/605+YO3cuw4YNY8iQIezdu5d169bZBXaekJKSwrhx43jttddIS0uzDJf7+uuvSUlJ4fHHH7eU7dq1K4MGDWLSpElorXnrrbcAqjUe39H6evbsycaNG1mwYAExMTG0adPGoUDW2Tp27MjEiRPZvXs3LVq04O233+bcuXO88847VuVKl1StbOJzUFBQuZmrP/74Y3bt2mX33rJly5gwYYJLhlh16dKFAQMG0LNnT5o0acKePXv48MMPrf69S5dVffDBB6uc+JyYmEiPHj3o1asXYWFhfP/997z99tvExsby3HPPObXt3sSbA4bW5mf3zZYTbmU7qTWskT9BAd58SgpXamHTw3A+u24MSarvxo4dS0xMDC+++CIvvfQSBQUFtGzZkn79+jFhwgRLuZUrVzJp0iRef/11tNYMHDiQdevW2V1cO+Krr76yuzCbNm0aADNmzLAEDEOHDuWDDz7glVdeITs7m8jISEaOHMmMGTNo3759LT61vaSkJFatWmXVu1Cqb9++rFmzhs6dO1vdyXSXpk2bsnbtWv74xz/y1FNP0aZNG+bOnUtaWlqVAUNUVBRLly5l7ty5TJw4kZKSEjZt2lTjseWzZ8/GYDCwdOlSNm3aRJ8+fVi/fj1Dhw6t0fGc7Z133qFbt2689dZbTJ06lbCwMHr16mX379q/f38SEhKYNWsWJ0+epFOnTixbtqzaE2UdqW/BggU88sgjvPDCC+Tl5fHggw96JGDo0KEDixYtYurUqfz888+0adOG1atX2yU0dIWcnBzAfo6GM0yePJlPPvmE9evXU1BQQOvWrZk9e7bV0MLquO+++yzLxV69epXo6Gj+53/+hxkzZtCiRQsnt957KFdMGFJKXWez6TiggYFAVYNaA4F2wP8CNwFfa60HOLmJDYpSqhXwK5jGI5a3+oMn/Gv3rzy1Zp/ldeeoxvxnSnIlewhvl5eXx/r16wEYOHBgtVbvOHQ2m8Gvfm217fDsOwnw857Vn9PS0iguLsbPz89r/h81VEaj0TKRMjQ0tNqJ0oSoiFKK3//+9yxevLjBnGdxcXF07dqVzz77zCP1jx49muPHj7Nr1y6P1O8ulf0NSUtLs6xKBcRqrU+5vYGVcNXt3PL6oRWwvgbH+mct2yK8lN2EZ0na1qDZrpIEcCGnQM4LIYSox7TWbN68udwcCsJ7uCpgqGiicnUmMOcDr2mt33ZCe4QXssvyLBOeG7TwIH8CfH0oLLm2BOe57HwJGOqJkpISMjIyKi0TEhJS6cpGdc2lS5coLCys8H1fX986s6pKRkZGpcu0BgQEODXfQHW4+9xqiOeyKyml7HK3CO/jqoBhgs3rdzANSZoGnK5kP40pUDgD7NVa57imecIbpEsPgyhDKUVk40BOl8nNUVdWShJV+/XXX2nTpk2lZWbMmOHwROS6YOTIkWzZsqXC91u3bu1Qxlxv0Lt370qXae3fvz+bN292X4PKcPe51RDPZSFcEjBord8t+1opVTrF/mOttaN5GEQ9d8Y2aZv0MDR4LUKtA4aMOpKLQVQtKirKbg15W2XX7q8PXn755UrzDzgrQ687rFixgry8ivOuOprJ2RWcfW5VNbezPp7LdSVwFZ7jriVpUszPNVtjT9RLtnMYJAeDsF0pSXoY6g+DweDSNeS9Uc+ePT3dBKfxxHKxjnL3udUQz2Uh3BIwaK0r7pMVDVJ2fhE5BcVW2yTLs7DPxSA9DEIIIYSn1c/1wYTXO1NO0jbpYRB1NduzEEIIURVXpDJwF7dnyVJK3Qj0A9oCjYGqcqxrrfVElzdMuJXtCklNgwMw+Fd1Koj6zraH4ZyXJW/z9fWluLiY4uJiSkpK8PWVc1YIIUTVjEajZaUxP7+6l6TWbS1WSnUC3gZuqc5umFZOkoChnrGdvxAdLr0Lwn4OQ8YV7+phCA4OpqDA1KazZ88SFRUlQYMQQogqXbx40fJzQECAB1tSM24JGJRSLYGtQDOu5WLIAS4Dxor2E/WX/QpJMn9B2AcMF3MLKSw2ek2259DQUC5dugRAdnY22dnZdfJOUX1RXGyaB1XVmvhC1IacZ6K2tNZWeUyaNm3qwdbUjLv+0j0PRGLqLfgH8Fet9WE31S28kF0OBpm/ILAfkgSQkVNASy/J0dGoUSNiYmJIT0+3bCu9mBDupbW2LPPZqFEjlKpOXlAhHCPnmXC28PBwDIa6d83jroBhMKZg4Z9a60fcVKfwYnZZnr3kglB4VnnZns9n53tNwAAQFhZGYGAgWVlZ5ObmVpr9VriO0Wi0XMiFhITg4+MdvVCifpHzTDiLv78/4eHhhIaGeropNeKugCHG/PxPN9UnvJztKkmStE2AKdtz89BATl327mzPBoOhTt4hqk/y8vI4dOgQYMp3UJeSoIm6Q84zIUzcFSqXprrMdFN9wotprUm37WGQOQzCzHZYkmR7FkIIITzLXQHDHvNzRzfVJ7xY5tUi8ous57pLD4MoJdmehRBCCO/iroDhNUyrI8n8BWG3pKpSkrRNXGMfMEgPgxBCCOFJbgkYtNYbgHlAilJqiVLK3x31Cu9kO+E5MiQQf1+ZSCZMIm2GJJ33slwMQgghREPjrjwMDwAHgR2Yehl+o5T6EDgEXK1qf621TJauR2yXVJUVkkRZ0sMghBBCeBd3rZK0DNOyqqWigUkO7quR1ZXqFdukbZKDQZRlO+lZehiEEEIIz3JnilLJdiIA+zkMskKSKMu2h+GSl2V7FkIIIRoadwUMbdxUj6gD0jNtl1SVHgZxTYtQ7872LIQQQjQ0bgkYtNYn3FGPqBvsehjCJWAQ14Q18ifAz4fC4mtL757zsmzPQgghREMiffzCrYxGzVkZkiQqoZSyn8cguRiEEEIIj5GAQbjVpauFFJZYJ22LkR4GYcN2HsN5yfYshBBCeIw7Jz0DoJTqADwAJABRQCNgkNb6lzJlugLXAbla6y3ubqNwnTOZ1hd+vj6K5o0lYBDWpIdBCCGE8B5uCxiUUj7AfOAJTD0bpasmaSDApvh1wGdAsVKqjdb6tLvaKVwr3SZpW4vGgfj6yAJawprkYhBCCCG8hzuHJL0B/AHwBdKBDysqqLX+P+CYuewot7ROuIVtDgZJ2ibK09xmpaRzkotBCCGE8Bi3BAxKqduAieaXc4A4rfXoKnb7AFMvxK2ubJtwL/scDDIcSdizHaZ2XnoYhBBCCI9x15CkR8zP/6e1fsHBfXaZn693QXuEh6RLwCAcYJuLQbI9CyGEEJ7jriFJCZjmKrxVjX1OmZ+jnN8c4Sl2Q5JkSVVRDtsehtJsz0IIIYRwP3cFDM3Nz8ersU+R+dntKzkJ17EdkiRLqoryVJTtWQghhBDu566AIdf8HFmNfVqZny85uS12lFKtlVIvK6UOKaVylVKXlFK7lVJTlVJBTq7rdqXUMqXUL+a6spRSh5VSHyql/p9SKsSZ9XmTEqO2W+1GehhEeUqzPZclKyUJIYQQnuGuu/dHgZuALsAGB/e50/y83yUtMlNK/QZ4DwgtszkI6GV+PKyUGlo2T0QN64kA3gHuKuftUKADcA+wE/ihNnV5qws5BRQbtdW2aOlhEOUozfZ86vK1IWySi0EIIYTwDHf1MKzHtOLR7835GCqllOoCjMc07+H/XNUopVQPYDWmC/Yc4HkgEbgN+Lu5WEfgc6VU41rUE4YpUCoNFtYCvwVuAXoDI4GFXJu3US+l28xf8PdVNAu2H3oiBEi2ZyGEEMJbuKuH4TVgMtAOWKqU+p3Wuri8gkqpOzDdiTcAF7l24e4KCzFlmi4GBmqtd5Z57yulVBqmZHMdgSeBmTWsZxHQEygARmutP7F5fw+wVilVmqeiXrKdvxAVZsBHkraJCtjOY5AhSUIIIYRnuKWHQWt9DnjM/HIicEQp9bcyRZ5QSr2plNoP/AeIAYzAeK11jivapJS6GehnfvmWTbBQ6mXgYJk2+tegniRgnPnlC+UECxbapNxAqj6w7WGIDpX5C6Ji9rkYZEiSEEII4Qluy/SstV4BjAGygVjgUUxDjgAexhRIxGMaupQD3Ku1/tyFTbq7zM/vlFdAa20E/ml+GQ6k1KCex83PWcDiGuxfb9glbZP5C6ISku1ZCCGE8A5uCxgAtNb/AtoDM4DvgBJMAULpYz8wF2ivtV7r4uYkmZ9zzW2pyJYyP/etTgVKqQCuzVvYoLXON2/3VUrFKqXilFIN5qr5TJbkYBCOayHZnoUQQgiv4NaAAUBrfVFr/b9a65sxzVNoDkQDgVrrG7TWz2utz7uhKfHm51+qGAZ0qJx9HHUjps8I8F+lVKhS6lXgAnASOAZkKaU2KKUGVPPYdU56puRgEI6z7WGQbM9CCCGEZ3g0KZp5yM8Fd9drvqvfzPyy0pWJtNaXlVK5QDCmoVTV0aXMzz6YJjd3sCkTANwO3KaUelZrPa+adaCUalVFEUu27IKCAvLy8ior6zK2WZ6bNvLxWFuEa+Tn55f7c02EBVi/vpRbSFZOLgG+br/PIbyQM881ISoi55lwl4IC774p1lCzKJddItWRSdWlAUN1k6o1KfPz05h6G/4DTAf2YVrO9R7gRSAMeFEpdUhr/e9q1vOrowW//fZbjhw5Us3D116JhvNXfDGNPDM5fmAv60+4vSnCTbZu3Vqr/XOLwPZX1Ef/t5EmshKvsFHbc00IR8h5JlzpwgW33z+vloZ6q67sWJhCB8qXhn3VHXQfbFPnBmCY1nq31rpAa52htV4KDMO0KhTAXKVUvVtrNKsQNNYfKzyggsJCAEF+4KesE/1lO/K/VQghhBBO5dQeBqXUV+Yftdb6tnK214TVsZykbL+iI5etpfc0qzt+xrb/8mmtdYltIa31NqXUR8AoTPMkbsDUA+GoqoZKRQG7Afr06UO7du2qcWjn+P5kJnz/veV1oJ8PI4bcQT2MjRq0/Px8y1245ORkDIbazVP566EdnCoz9yWuS3cGxjev1TFF/eDsc02I8sh5JtzFE6M/qsPZQ5IGmJ91Ods1UJ2rw9LytsdyhitlfnZkmFFpT0F1c0KUrSdDa723krJfYAoYwJT92eGAQWtd6TyMshflgYGBNGrk/tWJLuZftnodHWYgKCjI7e0Q7mMwGGp9rrUIa2QVMGQVaI+cv8K7OeNcE6Iqcp4JVwoM9O7xts4OGLZS/gV+Rds9Qmudr5S6CDQFKp0wrJSK4FrA4PBcgXLKV3pRb1M2spr1eD3bCc+ypKpwhGR7FkIIITzPqQGD1npAdbZ72AFMmZ7bK6X8KllatXOZnw9WUKYi+8v87FtF2bLv17tsz5K0TdSEbbbnc5LtWQghhHC7hjrpGWCb+TkY6FlJuf5lft5enQq01icw5VsAiKtiMnPZiQWnq1NPXWCbtC1GehiEAyQXgxBCCOF5DTlg+LjMzxPKK6CU8gEeML/MBDbVoJ415udQoLLJ2yPL/LytwlJ1lPQwiJqQbM9CCCGE5zXYgEFrvQv42vxyolIqoZxiT3Itu/NCrXVR2TeVUgOUUtr8WFZBVa9ybbWkBUqpUNsCSqn7uTZh/HOtdXXnSng9uyzP0sMgHCA9DEIIIYTnuSVgUErdoJQ6qpRKU0q1dKB8S6XUL0qpI0qpji5s2hOYlkr1A9YrpZ5VSt2ilEpRSr0BzDeXOwy8XJMKtNYnMSVqA9NyqbuUUhOUUj3N9SwClpnfzwb+UMPP4rUKiku4kGN9oSc9DMIRLUKtz5NLuYUUFNutTCyEEEIIF3JXpuf7gTjgC611lePztdanlVKHgUHmfadXsUuNaK33KqXuA97DNGRoTjnFDgNDtdZXynnP0XpeUko1wZTtuRPwdjnFzgN3a63TalqPtzqXZX9XWFZJEo6wHZIEkHGlgFYRsiSvEEII4S7uGpLUH9Oyqp9UY59/Y8rD4OykbVa01p8C3YBXMAUHVzHNV9iD6QK/h9b6FyfU8yzQF1gOHMeUPToLU0K1aUBHrfXO2tbjjdJtJjwHBfgSanBXrCrqstBGfgT4Wf+akmFJQgghhHu566qtdFhRdbIX/2R+7uTkttgxr2b0R/OjOvttphrJ6MwBQb0MCipju0JSdJhBMjwLhyilaBEayK+Xrp1DMvFZCCGEcC939TCUZlOuTqbk0rJ2k4RF3WI34TlchiMJx9kOS5JcDEIIIYR7uStguGx+jqrGPqVlazx3QHiHs7ZLqobJhGfhOPuVkqSHQQghhHAndwUMpRN5B1djnzvNz0ec3BbhZvZDkqSHQThOsj0LIYQQnuWugOELTGP9H1FKxVdVWCl1PfA/mCZK/8fFbRMuZj8kSXoYhONsl1Y9J3MYhBBCCLdyV8CwBMgFDMBXSqlhFRVUSg0HNgKNMOVIeN0tLRQuIz0MojaaN7YekpQhqyQJIYQQbuWWVZK01heUUo9hWlK0OfBvpdRRYBtwxlwsGugHtMHUG6GB/6e1PueONgrXyCss4fJVqwTZ0sMgqkV6GIQQQgjPctti+FrrFUopH0y9DUFAO6CtTbHStTZzMQUL77mrfcI1bHsXAKKkh0FUg+2k58tXiygoLiHQz9dDLRJCCCEaFncNSQJAa70caA+8CPzXvFlxrUdhH/AXoL0EC/XDGZsVkhob/AgJlKRtwnEVZXsWQgghhHu4/cpNa30WeA54TinlBzQxv3VJa13s7vYI10rPtO5hiJHeBVFNoY38CPTzoaDYaNl2LruAVhFBHmyVEEII0XC4tYfBlta6WGt93vyQYKEessvBIPMXRDUppeyGJWVILgYhhBDCbTwaMIj6L90uaZv0MIjqk2zPQgghhOdIwCBcynbSc4xkeRY1ICslCSGEEJ7j1DkMSqmvzD9qrfVt5WyvCatjibrlTKbtkCTpYRDVF2mTi+G8THoWQggh3MbZk54HmJ91Ods115ZNdURpedtjiTokXXoYhBNID4MQQgjhOc4OGLZS/gV+RdtFPZZTUMyVfOu57FESMIgaaGE36Vl6GIQQQgh3cWrAoLUeUJ3ton47k2mftE0mPYuaaG436Vl6GIQQQgh3ceqkZ6VUN/MjwJnHFXWT7QpJEUH+NAqQ7Lyi+mx7GEqzPQshhBDC9Zy9StIPwPeYsjlbKKWmmx/NnFyf8GJnbeYvSO+CqKkW5QxlO3nxqgdaIoQQQjQ8rlhWtbyJzTOBGUBzF9QnvFS6zQpJMZK0TdRQqMGfKJuJz4fOXvFQa4QQQoiGxdkBQ5H5WW4lC7scDNLDIGqjU1Rjq9c/S8AghBBCuIWzA4Zz5ueeTj6uqIPO2GZ5lh4GUQudbQIG6WEQQggh3MMVy6qOBeYppdoBh7nW6wBwl1KqV3UPqrX+p5PaJ9woPdO2h0ECBlFzHVvY9DCcy/ZQS4QQQoiGxdkBw1xgBBAG/MnmPQXMrsExNSABQx2jtbbvYZAhSaIWbIck/Xopj9yCYoIDnf1rTAghhBBlOXVIktZ6P5AMbMTUs6CwngStavgQdUx2XjFXC62XvYyRgEHUQvvmIfj6WP86OHxOhiUJIYQQrub0W3Na6++AgUopP6AZYACOYuopGASkObtO4X3Ss+yTtrUICyynpBCOMfj7Etc0iCMZuZZtP5+9Qo/rIjzYKiGEEKL+c1lfvta6GDgLoJTlrmC61vqEq+oU3uOszXCkZiGBBPpJ0jZRO52iGlsFDDLxWQghhHA9pwYMSqnJ5h+Xa60vl3lrFqYehvPOrE94L9seBsnBIJyhU4tQ/u+/Zy2vZUiSEEII4XrO7mF4FVNgsBEoGzAMMG9/F7jg5DqFFzqTaTvhWQIGUXuSi0EIIYRwP3ctL9IfU8AQ7Kb6hIfZ9jDICknCGWxzMVzMLSTjSgGRjWV+jBBCCOEqzk7cVnpbOdzJxxV1jPQwCFeIbRKEwd/615b0MgghhBCu5eyA4bj5eZiTjyvqmDO2PQzh0sMgas/XR5WTwE0CBiGEEMKVnD0k6f+AzsDTSqnbsM/0PFsplVnNY2qt9UQntU+4QXlJ22Kkh0E4SacWjdl3Ksvy+uezkvFZCCGEcCVnBwxzgOFAe6A30KvMewq4q5rHU5jmPkjAUIdcvlpEQbHRapv0MAhnkYnPQgghhHs5NWDQWl9SSvUCHgduA1oCgUBrTBf+Z7DucRD1UHqm9XAkHwUtZFKqcJLOUaFWrw+fy8Fo1Pj4SFJ4IYQQwhVckek5G1NPw5zSbUqp0tvNA7XWB5xdp/AutsORmjc24Ofr7OkyoqHqGBVi9TqvqISTl64S10wWYRNCCCFcQa7ihNPZT3iW+QvCeSJDAmkSHGC1TSY+CyGEEK7jroAhBbgVOOam+oQHpWfaTniW+QvCeZRSdLJdKUnmMQghhBAu45aAQWu9xfzIq7q0qOtsexiiZIUk4WQy8VkIIYRwH3dlerZQSvlg6nFIAKKAIOB5rfWZMmUCzG0r0VoXuLuNonYkaZtwNduA4ZAsrSqEEEK4jFsDBqXUMOA1TKsmlfVXTCsolXoYWATkKKVitNa5bmqicIJ0mx6GGFlSVTiZbcBw/OJV8otKMPj7eqhFQgghRP3ltknPSqn/Af4NxGHKr3DR/FyefwBZQAgwwh3tE85hNGrOZUsPg3At22zPJUbNkYwcD7VGCCGEqN/cEjAopToAr5tffgV00Vo3r6i81roQWIMpoBjo+hYKZ7mQW0BRibbaJj0MwtlCAv2IbWJ9Xsk8BiGEEMI13NXD8AdMw5/2A0O01occ2Odr83MPl7VKOJ3t/AU/H0WzEEnaJpxPVkoSQggh3MNdAcOtmDI9v2ruPXDEL+bnWNc0SbiC7QpJLUIN+EoGXuEC9hOfJWAQQgghXMFdAUMr8/OP1dindKJzkJPbIlzILgeDJG0TLtIpKtTq9WFJ3iaEEEK4hLsChtJB7dW5+G9qfs5ycluEC9nnYJD5C8I1Otv0MJzJyifrapGHWiOEEELUX+4KGE6bn9tWY58k8/NRJ7dFuFB6lm2WZ+lhEK7Rplkw/r7Ww91+ll4GIYQQwuncFTBsxrTi0YOOFFZKhQGPYeqZ+Mp1zRLOdibTuodBllQVruLv60O7yBCrbT9LAjchhBDC6dwVMLyB6eK/v1JqfGUFlVJNgY8xZYEuBpa6unHCec7a9DBEy5KqwoVsJz5LD4MQQgjhfG4JGLTWe4GFmHoZ3lJKrVZKjS5TJFEpNVYp9Tqm1ZGSMQUY/6u1PuGONoraKzFqzl0psNoWI3MYhAvZBQyyUpIQQgjhdH5urOtJIBD4f8Ao86N0MvQbZcqVDkp+VWs9233NE7V1/ko+JUbrpG3RskqScCHbic+Hzl5Ba41SspSvEEII4SzuGpKENvk9MAjTnAaNKTgo+wDYCQzVWv/RXW0TzmG7pGqAnw9NgwM81BrREHS0Sd52Jb+YMzbD4oQQQghRO+7sYQBAa70B2KCUaowpi3NzwBe4CPygtb7g7jYJ57BdUjU6zCB3eoVLtQxvRONAP64UFFu2/Xz2CjEyd0YIIYRwGrcHDKW01leArZ6qXzjfGZsehqhQGY4kXEspRceoxnx34rJl28/nrpDSubkHWyWEEELUL24bkiTqv3SbHga5yyvcQSY+CyGEEK7lkR4GpVQLYADQFWhi3nwJ+AnYrLU+54l2idqx7WGQHAzCHTq1sJ/4LIQQQgjncWvAoJSKBhYAIyupu1gptQZ4Umt9xm2NE7V2JltyMAj3s+1hOHI+h6ISI/6+0oEqhBBCOIPb/qIqpW4E9gGjAX/sV0gqffgD9wE/KqVucFf7RO3ZZnmOkR4G4Qa2S6sWlhg5cTHXQ60RQggh6h+3BAxKqWDgc6AppqBgI6agIA4wmB9xmIKJ9eYyzYDPlVJB7mijqJ3CYiMZOdZJ26IlaZtwg/CgAFqEBlptk2FJQgghhPO4q4fhcSAGMAL/o7UeqLX+QGt9UmtdaH6c1Fp/qLUeDDyMKU9DS+D3bmqjqIVz2flo65xtxEjSNuEmtvkYZOKzEEII4TzuChjuwhQALNNav1VVYa3128A7mHoaRri4bcIJbJNlGfx9CGvk76HWiIamvIzPQgghhHAOdwUMHc3P71djn1U2+wovZpu0LSaskSRtE27TKSrU6vV/T2Whbbu8hBBCCFEj7goYQszPl6qxT2kmpmAnt0W4QLrtkqoyHEm4UffYMKvXZ7PzOXU5r4LSQgghhKgOdwUMGebn+Grs09n8fMHJbREuYNvDIBOehTu1iwyhSXCA1bZdx6pzf0IIIYQQFXFXwPANpvkIf1RKVZn7wVzmj5jmPXzj4rYJJ7CdwyBLqgp3UkrRq3WE1bbdxyVgEEIIIZzBXQHDP83P3TEtlRpTUUHze58CN5k3LXNpy4RT2PUwSNI24WY3t2li9XqXBAxCCCGEU7gl07PW+lOl1MfA3cDtwFGl1HrgW+A8pp6EFkAf4A6gdGzBWq315+5oo6idM7ZzGKSHQbiZbcBwNCOXCzkFNAsJrGAPIYQQQjjCLQGD2RhMPQ33YgoIhpoftkqX1vkAeMA9TRO1kV9UwsXcQqttMdLDINysS3QowQG+5BaWWLbtOX6JwV2jPdgqIYQQou5z15AktNYFWuv7gN8A64A8TMFB2Uee+b1hWuv7tNYFFR1PeI+zNvMXAKKkh0G4mZ+vDzfZzGPYdexyBaWFEEII4Sh39jAAYB5i9LlSyhdoC5SOI7gEHNVal1S4s/BK6TbzF0IC/Qg1SNI24X6945rwddq1hdVk4rMQQghRe24PGEqZA4M0T9UvnEfmLwhv0TvOeh7D/vQscgqKCQn02K86IYQQos5z25AkUX+dzbZN2ibzF4Rn9LguHH/faxnGjRq+PyHDkoQQQojacEnAoJS6RSn1kfkxqpr73ltm356uaJ9wrvRM6yFJkoNBeIrB35cbWlpnfZZhSUIIIUTtuKqHYSFwFxAL/Lua+/7bvN9dwCtObpdwAdukbZLlWXhSb9t8DJLxWQghhKgVpwcMSqk+QG/zy8la66Lq7K+1LgQmY1o1qa/0Mng/2x6G6HDpYRCec7PNPIYffs2koFjWUhBCCCFqyhU9DKPNz9u01jtrcgDzflvML1Od0irhMrY9DDHSwyA8qFfrJqhr0xgoKDby0+kszzVICCGEqONcETAkYMrcXN2hSLY+wdTLkFjrFgmXuVpYTFaedSeS5GAQnhQW5E+nFo2ttn0rw5KEEEKIGnNFwNDO/PzfWh7nJ5vjCS+UnmmftC1GhiQJD7NdXnW3BAxCCCFEjbkiYAg3P2fU8jil+4dXVkh41hmbpG1hjfwJCpA174Vn2U583nPiMiVG7aHWCCGEEHWbKwKGq+bn0Foep3RMQV6lpZxAKdVaKfWyUuqQUipXKXVJKbVbKTVVKRXkojqDlFJHlVLa/DjuinpczX6FJOldEJ5nO/H5Sn4xP5+94qHWCCGEEHWbKwKG0p6B9rU8Tun+te2pqJRS6jfAPuCPQCcgCIgAegHzgb1Kqdp+lvL8GWjjguO6lW2W5xhJ2ia8QFSYgdgm1uei5GMQQgghasYVAcNeTJOV76zlcYaWOZ5LKKV6AKsx9YbkAM9jmmR9G/B3c7GOwOdKqcblHqTm9U4B8oE6fdvTdkiS9DAIb2E7j2GXBAxCCCFEjbgiYPjC/Hy3Uur6mhxAKdUVuBvTaktfVF66VhYCjYBiYKDWeo7WeqfW+iut9SPAU+ZyHYEnnVGhUsoXUzDiC8wB6vRVTLrtkqrO7GHQGn7ZCJtfhPQfnHdc0SD0aWM/8VlrmccghBBCVJcrAob3gfPmY3+olGpanZ2VUs2ANeb9M8zHczql1M1AP/PLtyrIGfEycND88xNKKX8nVP0E0BP4GZjnhON51BnbpG3O7GE49Bm8dw9sngtv9ocv/wwlxc47vqjXbHsYzl8p4OSlqxWUFkIIIURFnB4waK2vAjMwDUvqCPyglLrLkX2VUndjGoLUAVPvwnTz8Vzh7jI/v1NeAa21Efin+WU4kFKbCpVSrTHNXQB4zJzVuk6znfTs1BwM3yyxfv31y/DP4ZB9xnl1iHqrTbNgmoUEWG3bJcurCiGEENXmih4GtNZvYBp2o4AY4COl1BGl1OtKqYeUUsOUUinm54nm7Ucx9Sy0NB/mTa31m65on1mS+TkX+K6SclvK/Ny3lnX+DQgGlmutN9fyWB6XnV9EToH1HX+nZXkuKYLT5fyznNgOS5Pgly+dU4+ot5RS9vkYZB6DEEIIUW2uXDD/MeAsponEPkCceVtlFGAEZgOzXNg2gHjz8y9a68rGuRwqZ59qU0qlAkOAyzhpPoSn2a6QBE7sYTi7D4rtjw/A1QumoUrJf4IBz4KPr3PqFPVO77gmrPvprOX17uOXPdgaIYQQom5yWcCgTbMLZyil/g08B9yFaaJvRUqAj4G5WuvvXdUuAKWUAWhmfnmqsrJa68tKqVxMPQOxNawvAnjV/PIZrbVTl4pVSrWqokhU6Q8FBQXk5TkntcWJjCyr102C/NHFheQ5YZqB79EdBFRaQsPWlyg5vp3C3yyBkBa1r1TUWn5+frk/e0q3mGCr18cu5HIyI5PIkEAPtUg4i7eda6J+kvNMuEtBQYGnm1Apl6fkNV/8j1JKhWEaBnQj0BRTYrYrwEXgR2Cb1jqrwgM5V9klUnMcKF8aMITUsL6XgBbATq4t1+pMvzpa8Ntvv+XIkSNOqXTHOUXZGDBIFbJ+/XqnHLvnsU8pGwWlh/VC6RKis61X2fU9uQP1Rj+ON7uNiyEduRzUnhJf110MKl2Mb0kBfsYCfI0FKDQlyh+jTwAlPv4YlT9G5QdKuawNdcXWrVs93QSMGgJ9fSkoufbv8c6nW+neVFZLqk+84VwT9Z+cZ8KVLly44OkmVMrlAUMpczDwufnhaWXHzTgy8bg07Kv2AH2lVDLwEKalWx/T9Whdx8wC64viiADnfbQmuWlWr8+FduNk0/60O/8fuqT/Cx9KLO8ZirPpfHYtAEZ8yAqK42JwRy6FdORicEcK/UNRugS/knx8jfn4GfPxKykwP+fhX3IV/5JcAopzCCjJxb8kF//iXPPPV/E1Bwd+xgJ8dAlV0ShzEOFPoW8w+f4R5PuHmx9NzM+mbVcDm6GV2/4bNjg+CtqEaA5lXTtXj2QrCRiEEEKIamioVypl+xUrH/liUnrLulpjeZRSgcCbmOZmLNRa76vO/tVQ1VCpKGA3QJ8+fWjXrp1TKt387wNw+tr48G7tr2PgwI61P3B2Oo32Wk9OjR/4IJ2bdQIGUXT6t/j/+1F8rpy229UHIxFXjxJx9Shk/AcA7RuIKnFfV59C46cLoaSQgJJcQgrPV1hW+/ijm7bHGBmPjozHGNkZHRmPbtyyTvZS5OfnW+7CJScnYzB4PpHfUcNxDm06anmdQSgDB97swRYJZ/DGc03UP3KeCXdx1ugPV2moAUPZ7MqODDMqHQjtyPClsp4HOmEaMjSjmvs6TGtd6TwMVebCMzAwkEaNnLOS0fmcIqvXsc1CnHPsozZxlSEMQ8tu4GNe1Kt9P/h/22DtY5BWdV4/dwYL1aWMRaiMg/hkHLR+IzAMmneGJm0hvDVEtL723Di6Tkz0NhgMpvPBaITCK5CfDfnmUYfN4932GRI7NGdhmYDh53M5FCs/GhuckVZFeAPLuSaEC8l5JlwpMNC759Y1yIBBa52vlLqIaS5FpROGzROWSwMGh+cKmD1tft4I/EaVf8e49NjB5pWUAM5rrb+qZl1uZ7tKktOStv26y/p1q97XgoVSQU1g7Go4usm0xOqJHXDmR3BgyFCdUJAFv35retjy8YfwWAhu7nW9EAFGI0mXL+FnLCDwyHPXAgVshgCFXwcPfwUhkS5v042x4QT4+lBYYgRM8xq+O3GZAZ2au7xuIYQQoj5okAGD2QFMmZ7bK6X8KllatXOZnw9WUKYipcOdJpgflWkGrDL/vAXw6oBBa016lm2WZyfdebG9SI7tU345paDdraYHQGEunNoNJ7+Bkzvh191QlFv+vn4GCAg2PQzh0CgCGpU+R1zbZgiDgBAICAJ/86P054BgUD5QXGBaArY4/9rPRflQnAe5F+DKWbiSbn4+Y34+CwXZNft+jEVw6ajp4WV8MUXhQOUD+DJPwld/huGLXN4mg78v3VqFsefEtSVVvzl6SQIGIYQQwkENOWDYhilgCAZ6AuXcygWgf5mft7u6UXVF5tUi8ouMVtuc0sNQlGfqKSgr1sHx5gHB0HaA6QGm5G8ZP0NJofmiPxgCQ8A/GHydeOr7+puOW115mXD+IJz7Cc4fgHMHTM81DSTqmv0fw53zwd/1Xfx92jaxChi+OnSOZ+7sXMkeQgghhCjVkAOGj4FnzT9PoJyAQSnlAzxgfpkJbKpOBVrrKseLKKWOA62BE1rruOoc35POZFkPR1LKSUnb0n8AY5nOHuUDLXvW7Fi+/hDVtfZtcpVG4dA6wfQopTVknTIFDhfSIPMEXD5x7bnYOTk0vEJBNvy8DrqOdHlVt3Zuweubrk0oO3wuh5MXr3Jd0yCX1y2EEELUdQ02YNBa71JKfY2pl2GiUupdrfVOm2JPci2780KttdUsX6XUAK4FEe9qrce7rsXe5YzNcKTIkED8fX0qKF0NtsORml8PgY3LL1sfKWWanxAeCx0HWb+nNeRmXAsgSicQe5HCoiIOHjxIsU8gXXsmEhgaaRrWZQg1Pb//Wzj+9bUd9q12S8DQPTacpsEBXMy9toryxoPneCipjcvrFkIIIeq6BhswmD2BaZhRI2C9UmoOpgCgEZAKPGIudxh42SMt9FLpNj0M0eHOmr9gM+HZ0eFIDYFSENLc9Ijt7enWlKskL4/jGabkfV06DATbFUVuTLUOGH7ZaJrnEdwMV/L1UaR0bs6H311bUOzLQxIwCCGEEI5wwi3huktrvRe4D8jGtLzqHEzZmL/COlgYqrW+Uu5BGqgzmdY9DDHOGI6kteMTnkXdFD/cNOG8lLEYflrjlqpvj29h9frbo5fIzi+qoLQQQgghSrklYFBKPWB+hFZjn5DS/VzZNq31p0A34BVMwcFVTPMV9mBaFrWH1voXV7ahLrKdw+CU+QuXj8FVm9To0sNQvxhCofNQ620/vu+Wqvt1aEZAmWFzxUbNlp8z3FK3EEIIUZe5q4dhGfAOVeQ8sNHCvN/bLmiPFa31Ca31H7XWnbTWwVrrCK11b631fK311Ur226y1VubH+BrWHWfeP66m7feEdLseBicMSbIdjhQcCRFxtT+u8C7dUq1fp39vmuDtYsGBfiS0a2q17cuD51xerxBCCFHX1YUhSd6VmUoA9j0M0eFO6GEobziSlyUmE07Q7lZTMFiWm3oZbu9iPSxp088ZFJcYKygthBBCCPDugMHX/FxRQjXhIVprztoGDK7oYZDhSPWTrx/ccK/1tn3/AqPrL9xv62ydrC0rr8gqP4MQQggh7HlzwNDJ/HzJo60Qdi7mFlJoc1c2prY9DPnZptwDZbWSgKHe6naf9eusk6bs3C4WE96ILtHWU6lkWJIQQghROZcsq6qUSq7grd5KqarWTwwE2gF/AjTwgxObJpzgTKZ174Kvj6J541oGDKe/A10mCPHxh5jutTum8F7RN0JkZ8g4dG3bvvchrq/Lq749vjkHzlzLpv3lwfM8P7SLy+sVQggh6ipX5WHYjOlivyxF9SYwK/Mx3nBSm4STpNskbWvROBBfn1rONbAdjhR9I/g7KbeD8D5KmXoZvpx1bdv+f8OdL4G/E+bDVOL2Li147atrC58dvZDLkYwc2kWGuLReIYQQoq5y5ZAkVeZR3raqHqeA32utP3ZhG0UN2OZgcErSNsm/0PB0G43Vr4eCLDi8zuXVdo0Jo3njQKttMixJCCGEqJirehhSyvysMCVC08BE4Fgl+2kgHzijtf7VRW0TteT0HAxGI5zaY73NSzMZCycKawVxSdaZn/f9C64f4dJqfXwUt8U3Z9Wua79iNh48zyPJ7VxarxBCCFFXuSRg0FpvKftaXVsac5fW+oD9HqIuSbcJGGqd5fnCz6a7y2XJhOeG4cZU64AhbT3kXoTgphXv4wS3x7ewChi+O3GZy7mFRAQHuLReIYQQoi5y1ypJbYC2mDIpizrObkhSbZdUtR2OFBYLYS1rd0xRN8QPB78yAaexGPZ/5PJq+7ZvhsH/2q+/EqNm8+HzLq9XCCGEqIvcEjCYMymf0FpLToV6wHZIUq2XVLWd8NxKhiM1GIZQ6DzUepsbkrgZ/H1Jam+9YNvGgxIwCCGEEOXxmjwMSqnfKKWWK6XWKaX+ppS6ydNtEvZKjJpz2U5O2maXsE0mPDco3VKtX5/eAxd+Kb+sE90Wb531eevPGRQWS9ZnIYQQwpZbAgalVIpS6rxS6qRSKryc9/8X+BgYCwwEHgW+UUqNc0f7hOMu5BRQbLReMTe6Nj0MuRfhYpr1Nsnw3LC0uxWCI6237Vvt8mptsz5fKShm1zHJEymEEELYclcPwxCgGbBba51Z9g2lVDfgOa4tp5ppfvYD3lBKxbmpjcIB6TbzF/x9Fc2CAyso7YBTu61f+zWCqBtqfjxR9/j6QddR1tv2rQZtm8rFuZqHGrixVZjVto2yvKoQQghhx10BQxKmJVM3lvPe/8MUIFwGemqtmwI3A5cwZX1+zE1tFA4ob0lVn9okbbOd8NzyJvD1r/nxRN10433WrzNP2AeTLmA7LOnLQ+fQLg5UhBBCiLrGXQFDtPl5fznvDcMUTCzWWu8F0FrvARZjCiRud0sLhUNsexiiQ2s5f8H2olCGIzVM0d2hWUfrbSe/cXm1t9sEDL9eyuPwuRyX1yuEEELUJe4KGEoHKGeW3aiUageUrp+51maf0sXZJZuSF7HtYajV/IWSIjj9nfU2mfDcMCkFrROtt535weXVxkc3tssjIsOShBBCCGvuChhKx6yE2WzvZ37O0lr/YPPeRfNzkKsaJarvTJYTczCc+wmKrlpvk4RtDVd0d+vX6XtdXqVSyn5YkgQMQgghhBV3BQxnzc/xNtsHmZ+3l7NPsPn5sktaJGrEqTkYbJdTbdLO5Rl+hReL6W79+tJRyM8qt6gz3d7FOmDY+2smGVcKXF6vEEIIUVe4K2D4BlMvw/9TSgUBKKXaAndhmr+woZx9Sgc0ny3nPeEhZzKdmIPBLv+C9C40aM27gG+A9bYzP7q82lvaNiE4wNfyWmtY99MZl9crhBBC1BXuChj+YX7uBvyklPoQUxBhAPKAleXsk2x+Puz65glHFJcYOX/FNmBwYg+DzF9o2PwCTUFDWek/uLzaQD9fUmxyMqz5/rTL6xVCCCHqCrcEDFrrr4CFmHoZ4oARmPIyAEzVWl8oW14pZeBa78NWd7RRVO3clQJscrYRE17DHobsM5B10nqb9DAI22FJbpjHAHDPTa2sXv/4aya/nJfVkoQQQghwXw8DWus/AMOB5ZjyMfwTuF1rvaSc4sOBbOAk8Km72igqd8ZmSdVAPx8igmqYM+GUTe9CYChEdq5hy0S9YTvx2Q0rJQH069CMZiHWCQg/+v6UW+oWQgghvJ3bAgYArfVnWusHtdaDtNbjzT0P5ZX7l9Y6TmvdRmt9wp1tFBVLt11SNcyAUjVM2mY7HKlVL/DxLb+saDhieli/dtPEZz9fH+7uHmO1be3e05TYdqkJIYQQDZBbAwZRt9n2MNRuwrNNhmeZvyDAYxOfAe7paT0s6UxWPjuPXKygtBBCCNFwSMAgHOa0pG1F+faTWVv1rtmxRP3iF1DOxGf3zGOIjw4lPjrUapsMSxJCCCHcFDAopa6rzcMdbRRVs03aFlPTHoYzP4KxqMwGZRqSJASUM/H5B7dVfc9NLa1er/vpLDkFxW6rXwghhPBG7uphOFaLx1E3tVFUwWk9DLbDkZp3AYNtEnDRYNnOY3DTxGeAu7q3xNfn2rycvKIS/vOTpIIRQgjRsLkrYFC1fAgvkG6TtK3GPQx28xdkOVVRhu1KSW6a+AwQ2TiQ/h0jrbat+U6GJQkhhGjY/NxUzwQHygRjyu58D9AS2M61hG/CwwqKS7iQU2C1rUY9DFpLhmdRudKJzyWF17ad+RHaJFe8jxPdc1Mrvjp03vJ659GLnLp8lVYRQW6pXwghhPA2bgkYtNbvOlpWKTUVeAX4f8B2rfUzLmuYcNi5rAK7bTVaJSnzBOSet94mKySJskonPpcdipS+120Bw23xzQk1+JGdf23uwsd7T/P4rR3cUr8QQgjhbbxulSStdZHW+nFgMzBVKTXIw00SQLrNhOegAF9CDTWIN217F4KaQpO2tWiZqJds5zG4ceKzwd+XYTda52RY8/1ptJacDEIIIRomrwsYyngD0/yFSZ5uiLBfIanGSdvKy79Q0+Rvov6yXSnJjROfwX61pGMXctn7a6Zb2yCEEEJ4C28OGNLMz7LephewXSEpJtxJE54l/4IoT3kTn/My3Vb9TddF0KZZsNU2mfwshBCiofLmgCHM5ll40BmbFZKiw2ow4bkgB87tt94m8xdEeTyY8RlAKcXIHta9DJ/+mE5BcYnb2iCEEEJ4C28OGB40P5/xaCsEUN6QpBr0MJz+DrTx2msfP/ux6kKAaeJzi+utt7l5WNLdNgFDdn4xXx48X0FpIYQQov7yuoBBKdVBKbUUU8Cggf/zcJME5eRgqMmSqrYTnqO6QYAsVSkqYDssyY0TnwFimwRxS9smVts++l6GJQkhhGh43LKsqlLKkWzNPkA40LjMtvPAX1zRJlE9TulhkIRtojpiusN3ZV67uYcBYORNrfjm6CXL680/Z3Ahp4BmIYFub4sQQgjhKe7qYYhz4HEdEMq17M47gQFaaxmS5GF5hSVcvlpkta3acxiMRji123qbBAyiMh6e+Aww5IZoDP7Xfk0WGzX//iHdrW0QQgghPM1dmZ4dSdxmBK4Ax4AtWusfXNoi4TDb3gWA6OquknQxDfIzrbfJhGdRmYoyPrft77YmhAT6Mfj6KD4uEySs+e4UD/WNq9mywkIIIUQd5K5MzxPcUY9wDdslVRsb/AgJrOapYzscKbQlhLWqZctEvVY68Tl977VtZ35wa8AAcE/PVlYBw4Ez2ew6dok+bZu6tR1CCCGEp3jdpGfhfexyMDhj/oLkXxCO8PDEZ4DEds1oFWF9zr+x1ZFpWUIIIUT94JaAQSl11Px43B31Cec6k2kz4blGKyTZzl+Q4UjCAbYZn8v2NriJr4/if/q1tdr21aHz/Hz2itvbIoQQQniCu3oYWgGtgR/cVJ9wovQs26Rt1exhuHoJLvxsvU0CBuEI2zwdl4+5feIzwL29WhER5G+17U3pZRBCCNFAuCtgOGt+tp89K7ye7aTnmOqukHRqj/VrPwNE3VDLVokGITLeoxmfSwUF+PFAQpzVtn//cJr0TPmVJoQQov5zV8BQOoD9+kpLCa90xiZpW7VXSLKdvxDTwzShVYiqeEHG51IPJLS2W2L17W3HPNIWIYQQwp3cFTAswZRb4Q9KKf+qCgvvkm6XtK26PQw2GZ4l/4KoDruJz+6fxwDQNCSQ0b1irbat2nWSLJscJUIIIUR945aAQWv9FTAXuBH4TCkVW8UuwkvkFBRzJb/Yalu1AoaSYjj1nfU2mb8gqsN2HoMHVkoq9XBSW3zKpF/ILSzhvW9PeKw9Qggh/n979x0nRXk/cPzz7O71zlGu0HtXQBQRENSggr3F3nuJmkRjyS8xMZZojD32iD32DooNAaWD0ns7OMo1rpctz++Pmbvb2dvda3u3V77v12teO/PMMzPPHsPdfOdpojW0yjwMSqm/AJXAGuA3wHal1E/AaqAAcAc7Xmv99xYvpPDLd4QkaGSn54PrwFlqTespNQyiEXxHSqru+ByT3OpF6Z0ay4xR6XyxunYC+ld/2slVk/oRHWFv9fIIIYQQraG1Znq+D9DmugbswGRzaQgJGMLEdw6GlNgIYiIb8WCU5dMcKaUfxHcLQclEp1Hd8TmMMz57u/7YAZaAIbekko9X7eWCI3uHpTxCCCFES2vNiduU1+K7Xd8iwsR3hKRGD6nqGzBIcyTRWI5I6DHSmhamfgwAIzOTmDSwqyXtpfnbcXt0gCOEEEKI9q21+jDYmrO0RhmFf9k+IyRlNHbSNt8RkqTDs2gK32ZJYRopqdp1x1onctueW8o36w+EqTRCCCFEy5KHcRFUs2oYig/AIZ8OoVLDIJqizkhJv4SjFDUmDezK8PRES9rzP25Da6llEEII0fFIwCCC8u3DkNaYEZJ8axci46H7sBCUSnQ6/jo+F2WHpSgASqk6tQy/ZB1i6Y78MJVICCGEaDkSMIigfGeybVSTJN/5F3oeATYZSUY0QffhEGV9o8+6j8NTFtPMUelk+kxi+ML87WEqjRBCCNFywhYwKKUSlVKZSqne9S3hKmNnp7WuU8PQqCZJ0uFZhIo9AoaeYk1b8354ymJy2G1cM7mfJe37jQfZtL84TCUSQgghWkarBgxKqd8opT5WSuVgzL+wG9hRzyKv7MKkqMJFWZV1ioyMhgYMrsq6I9lIh2fRHKPOsW5nr4K8beEpi+m88b1IjrVOXv+feVvDVBohhBCiZbRawKCUegr4CjgNSEWGVW3zfDs8A/RIimrgwb9ax80HyDwiBKUSnVa/YyHOZw6PNR+Epyym2EgHlx7d15L22a/ZrN1bGJ4CCSGEEC2gtWZ6vhC42dysAD4BVgD5gKc1yiAab5/PkKpd46OIcjSwD4Jvc6Ruw8IyM6/oQOwOGHEmLH2xNm3N+3DsnaDC917h8ol9eXXhDoorXQBoDQ/N2cCbVx2FCmO5hBBCiFBprZmerzM/s4DjtNbhbUcgGiS7sBkdnmX+BdESRp1rDRjytsD+1ZB+WNiK1CUukuunDuDRrzfVpP20NY/5W3I5drDMai6EEKL9a60mSaMBDfxNgoX2w7eGIb2hQ6pq7afDswQMIgR6jodkn3EQwtz5GeDKY/qRlmj9//HQ7A0y+7MQQogOobUChupegauC5hJtim8NQ4NHSCrMgpL91jQZIUmEglIw0qfz89qPwBPelo0xkXZ+P32wJW3j/mI+XrU3TCUSQgghQqe1Aoad5md8K11PhECTaxh8axdiUiB1YIhKJTo939GSivbC7kXhKYuXs8f2ZEiPBEvaY3M3UeF0BzhCCCGEaB9aK2D4yPw8vpWuJ0LAd5Sk9OQG1jDU6b9wVFg7pYoOpscIYyI3b2vDO1oSgN2muGvGUEvavsIKXv1pZ3gKJIQQQoRIawUMj2HMuXCbUmpofZlF+PmbtC2jwTUMPgFDz/EhKpUQppFnW7fXfQyuKv95W9HUwd2YOCDVkvafH7aSXxr+sgkhhBBN1SoBg9a6EDgROAD8rJS6USmV0hrXFk1TUOak0mVtF96gGoaqUti/1pom/RdEqPk2SyovgO0/hKcsXpRS3H3yMEtacaWLZ76XydyEEEK0XyENGJRS2wMtGJO2JQHJwNNAjlJqf7BjzEVGVQqD7EPW5kg2BT0SGjBp296VoL3abCs7ZI4NcelEp5fSt27NVZgncas2qmcSZxyeYUl7Y/FOduWVhqlEQgghRPOEeh6Gvg3MVz2Dc/cG5JVxCcPAtzlS94RoHPYGxJe+zZHSRkFkXAhLJoRp1LmwZ1nt9sYvoaoMImPDVybTH6YPYfaa/VS5jVo6p1vz6NebeOZCCZ6FEEK0P6EOGF4L8flEmNTt8NzEEZJk/gXRUkacCV/dBdpsOucshc1z6vZvCINeXWK5bGIfXlqwoybti9X7uHryIQ7vlRy+ggkhhBBNENKAQWt9RSjPJ8In+5Bvh+cG9F/QGvb4BgzSf0G0kPju0O9Ya9+FNR+0iYAB4KZpA3l3WRZFFa6atIdmb+B/105AyahhQggh2pGQd3pWSnmUUi6l1PD6c4u2yreGIa0hIyTlbTU6n3qTGgbRknw7P2/5Bsryw1MWH8mxkdx8nHX+kSU78pm7/kCYSiSEEEI0TUuNkiSvz9q5Jk3a5tt/ISEdknqFsFRC+Bh2Kti9OuN7nLDh8/CVx8elR/cl02d0sfs+W0dJpSvAEUIIIUTb01rzMIh2Zl+RtYYhoyFDqvqbf0GaXoiWFJ0Eg35jTVvzfnjK4kd0hJ07TxpiSdtXWMG/vt4UphIJIYQQjScBg6jD49HsL2xKDcMy67b0XxCtYdS51u2dC6FoX3jK4sdph2UwaWBXS9pri3byS9ah8BRICCGEaCQJGEQduaWVON3W0WzrrWEoPwQ5G6xpEjCI1jD4RIhM8ErQsO6jsBXHl1KKB84cSZSj9tet1nD3R2twuj1BjhRCCCHaBgkYRB2+/RccNkXX+Hombduz3Lptj4L00SEumRB+RMTAsFOsaStfB0/beRjvkxrHrScMsqRt2FfEfxfuCHCEEEII0XZIwCDq8B0hqUdiNHZbPX0RfPsvZBwOjgbMDC1EKPg2S8rZaMzJ0IZcM7k/Q9MSLGmPf7uZrPyyMJVICCGEaJhQT9zm7VWlVGkIzqO11seH4DyigXznYGhQ/4U68y/IcKqiFfWfBt2GWZvFLXgMhsxoMx3vI+w2HjxrFGc/9zPabPFX4fRw7ydree2K8TI3gxBCiDarJQOGI0JwDgXoenOJkKo7y3M9/Rc87rpNkqT/gmhNNhtM/j18dE1t2t4VsONH6D81bMXyNbZ3CpdM6MPri3bVpM3fnMNnv2Zz+uGZYSyZEEIIEVhLNklSIVhEGGQX+s7yXE8Nw8H1UFViTespNQyilY04C5L7WNMWPBaesgRxx4lDSEu0/p/6++frOVRWFaYSCSGEEMG1ZMAwUmttC8Fib8EyAqCU6qOUekwptVEpVaqUyldKLVNK3aGUim3muWOVUmcppZ4zz1mglHIqpfKUUouUUvcppdJC9V1CodFDqvr2X0juAwk9QlwqIephd8Ck26xpO+bXHe43zBKiI7jvtBGWtLzSKh6cvSHAEUIIIUR4dfpOz0qpU4HVwO+BIUAskILRpOoRYJVSamATzz0aOAB8CFxvnjMZoylYF2AC8Fdgk1Lqt836IiG071AjmyTJ/AuirTjsQoj3ib8X/js8ZQnipJFpTB9uDarfW76HRdvywlQiIYQQIrBOHTAopcYA7wKJQAlwLzAROB54ycw2GPhSKZXg9yTBJQLx5vpPwN3Ab4CxwInAC4DHzPeWUurkpn2T0HF7NAeKKy1pGUn1BQw+NQzS4VmES0Q0TLzZmrZpNhxYF57yBPG300cQH2XtRnbvx2sor3KHqURCCCGEf506YACeBGIAFzBda/2g1nqR1vp7rfW1wJ1mvsHAH5pwfg/wHjBCaz1Ja/2w1vpbrfUqrfVcrfX1wFkYHbvtwNMqzEOlHCyuwO2x9jNPTw7SJKnkIBT4jCUvNQwinMZdAdHJ1rSFj4elKMGkJ8Vwx4lDLGnbc0v5x5frw1QiIYQQwr9OGzAopY4EJpubr2itF/nJ9hhQ3bD4VqVURGOuobX+WWv9W611wCcArfWnQPW0tAOAMY25Rqj5DqkaabeRGhcZ+IAsn+FUI+Kg+/AWKJkQDRQVDxNusKat/RDyt4enPEFcPKEPh/dKtqS9tWQ3X6/bH54CCSGEEH502oABOMNr/VV/GbTWHuB1czMZmNZCZfnBa31AC12jQXyHVE1Lig4+Przv/As9xxmdT0NAa82cHXP417J/8dXOr6h0V9Z/kBAAR15rBK/VtAcWPhG24gRitykeO+8wYiKsYzv86cPVdf4vCiGEEOHSmQOGSeZnKbAiSL4fvdaPaaGyeE+JHNYGzPsaO2mbbw1DCJsjvb/5fe6cfyevrX+NO368g2nvTeMfi//B2ty1aC3Tc4ggYrvA+Cutab+8DUXZ4SlPEAO6xXPfadZauUNlTm5/95c6zQOFEEKIcGiJgKEf0B/Y3ALnDqVh5udWrbUrSL6Nfo4JtWO91sM6tuI+3zkYgo2Q5KqC7FXWtBDNv+B0O3n+1+ctacVVxby76V0u+PICzvz0TF5d+yo5ZTkhuZ7ogI6+Gexezek8Tvj5mfCVJ4jzjujFzFHplrTF2/N5/sdtYSqREEIIUSvkMz1rrXfVnyu8lFLRQFdzc0+wvFrrAqVUKRAH9GqBshwGzDQ312itGx0wKKV61pOlZpzJyspKyssDN3XYk2+dgK1bnCNgfpW9kmiXNcAo7zYKgpy/ob7Y+QU55YGDgW2F2/j3in/z5MonOaL7EfRP6k9abJplSY5KDt6cyuTRHqrcVVS4K6h0V1qWKncVLu3C6XHi8rhwecx17cLldqHR2JUdh82B3WbHruw12w7lIMoeRWxELLGO2iXGEdOgcrVHFRUVftfDwpFExKjzcfzyek2SXvFfKsbfCLGpYSyYf/938kBW7s5nX2Ft07t/z93M2J7xHN4zKYwla5va1L0mOiy5z0Rrqaxs282uQx4wtBPeQ6SWBMxVqzpgiK8vY2MopaKAlzFGSAJjWNemyGpoxiVLlrBtW+C3lpuy7HhPsl2wdztz5/rP3//gV4zy2i6OzuD7+Uv95m0MrTUvFL/QoLxu7WbJgSUsObCkzj4HDpJtyUSoCNzajRt37ae57sKFu5VbgSkUkUQSpaKIVbHE2eKIV/HE2+KJV/E123EqjhgVQ4yKIUpFYVPtqwXh/Pnzw10EYqtGczw2bHgAUM5ydr9/DxvTzw5zyfw7tyc8XWhHm/8H3Vpz85vLuWO0m5jO+tu6AdrCvSY6PrnPREvKzc0NdxGC6qx/grwb5lc1IH912FfPhASN9gzGZG4Ar2mtPw/x+RutwCfATY7ynw+gS+lWy3Z+3KCQlGGraysHPAcsaafGnEqpLmVV1SoKPAUNOo8LF7metvcfUKOppJJKXUmRLsJ8lg1KoYgiimhbNDEqhmgVTSRBRq8KMxeumoDMpV24cOHUTly4UCgGRwzmlJhTiFQt+x3KorqzN2UCvQp+rknrl/MNW7vPwGUP9X/n5huQCCf21Hy1pzZoz6tUvL/DxqWDGnCjCCGEEC2gswYM3vWKDXliqX5sDtmwJUqpu4Grzc1lwE3NOF19TaXSzGtw1FFHMWCA/4GYqtweihfNs6TNOHYCQ9P8zFmnNdH/udOSlH7k6XQfPb2hZQ7o8x8/N+p0TL0TenPvSfdiUzY82sMvub/wxY4v+G7Pd5S7OsdIMhpNBRVUeCo4xKFwF6fZVlatJCMjg78c+ZcWv5bK6Q3/nVqzHekuY3rCZlyT7mjxazfFcR4PB2etYmVWYU3ailwb504awemHpQc5snOpqKioeeM7ZcoUoqPrGaBBiCaQ+0y0lmCtP9qCzhowFHutN6SZUfX4jA1pvlQvpdR1wIPm5kZghta6NMghQWmtg/bD8G4vHxUVRUyM/zerufll+I7J0q9HMjExfmKqQ1lQYh0rPrL/JAhw7obalL+pTvOiy0deTlxs7RCZx/Q+hmN6H0OZs4x5WfPYcmgL2SXZ7C/dz77SfRwsO4hbN6+ZkUIR7Ygm0h5JhC0Ch81R8+m9rlB4tMfo36BduD1mUyezv0O5q5wyZxmuoP3qO6cvdn7BpF6TmNl/Zv2Zm6P3GBh6Cmz8oiYpYvEzRIy7GLr0b9lrN9FTF47l5CcXUFxRe9/cP3szEwb2oG/XuCBHdk7R0dEBf68JESpyn4mWFBUVpElHG9ApAwatdYVSKg9IBYJ2GFZKpVAbMDS4r0CQ810A/Mfc3AX8RmvdJtrN+I6QFB1hIykmwFx1vvMvRCdDavObJL2+/nXLdpfoLpza/1S/eWMjYpnRf0addJfHRW55bk0Q4dZuImwRxmKvffiv3o6yRRHliCLaHl3zGWGLCFnHZK01VZ4qSp2llDpLKXOWUeospcRZQn5FPvkV+eSV51k/K/IoqChoduDT1t2/+H5GdxtNr4SQjydgNfVu2DQHqn+e7kqY8ye48D1ogx3Qe6bE8tBZo7j57dpRyEqr3Nzw1krev/5o4qM65a9uIYQQYdKZ/+qsx5jpeaBSyhFkaNWhXuvNGvJUKXUaxkRwNmAfcHx9tQOtyXeiqIykIKP51Jl/4UiwNa9T7sGyg8zeMduSdv6Q84l2NK4K2GFzkBaXRlpcWv2ZW4FSiih7FFH2KLpEd2nwcVpryl3lFFUVUVRVRHFVMUWVRRQ7jc+2OJGd0+lky5Yt2LEzavgo4qPjibRHEmWPItIeyfZD23lsxWM1+Uudpfxp/p947eTXiLA1aiL1xkkbaUzmtuS52rQtc2HTbBjawjUcTXTK6Ax+3JTD+ytqf0Vs2FfEjW+t5JXLjiDC3r46wQshhGi/OnPAsBAjYIgDxgF1h9kxeM+R8FNTL6aUOh54D+NnnodRs9CmGqz51jCkJwd5UM/y+XH1av78C29veBuXpzZui7JH8duhv232edsrpZQxJGtEbJsJfupTXl7O3Ky5AEwfOL1O9f2UnlPYemgrn277tCZtTe4anl31LLeNu61lCzftblj3EZR4daifcxf0nwaRsS177Sa677QRrNhdwPac2haL8zfn8OeP1/Lw2aM67PC8Qggh2pbO/IrqE6/1K/xlUErZgEvNzUPAD025kFJqIvApRufpQuBErfW6ppyrJe07ZK1hSE8K0Fazqgz2r7GmNXPCtjJnGe9tfs+SdtqA0xr1Rl60D/ccdQ99EvtY0v679r8syl7UsheOToLpD1jTCnfDgsf8528D4qIc/Pey8XSJs/Yjend5Fs98vzXAUUIIIURoddqAQWu9FFhgbl6llDraT7Y/UDu785Naa6f3TqXUVKWUNpdZ/q6jlDoc+BKjJqMUmKm1XhGCrxBy2b6zPCcFqGHIXgVeNQEoG2SOa9a1P976McVVxZa0S4Zf0qxzirYpNiKWR6Y8gsNWW8Gp0dyz8B7yK/Jb9uKjzoG+k61pPz8FuW334btv1zhevuwIohzWX9ePfbOZD1e0mRaNQgghOrBOGzCYbsUYKtUBzFVK3a2UmqCUmqaUegF4xMy3GWj0a0il1ADgayDZTPozUKiUGhlk6d7sb9VEvn0Y0pMD1DD4NkfqMRKimj6nncvj4o31b1jSpvaaSr+kfk0+p2jbhqcO57axt1nScstz+fPCP6O171hdIaQUzHgUvIIV3FUw5w5oyes209jeKTx5/pg6/bP/9OFqftraJsZMEEII0YF16oBBa70K+C1QhDG86oPAIuB74Foz22aMWoFivycJbjLgHQA8DqypZ7mxCdcJiX2HfPowBKph8NfhuRm+2/0de0v2WtIuG35Zs84p2r5Lhl/CMZnHWNIW7F3AWxveatkLdx8GE26wpm37HtZ/6j9/G3HSyDT+cspwS5rLo7n+jRVs3F8UplIJIYToDDp1wABgzq48GuNhfjNQhtFfYTnwJ2CM1rrttlcIkQqnm7xS66TXGf5qGLSuO6Rqr6OafF2tNa+te82SNjJ1JON6NK+Jk2j7bMrGP475B6nRqZb0f6/4NxvymjUgWf2OvQsSMqxpX90NlSGZaqXFXHFMP66eZK15K650ccWry9jv06RQCCGECJVOHzAAaK13aa1/r7UeorWO01qnaK3Ha60f0VqXBTluntZamcvlfvbP8trf0OW+lvyugfh72EjzV8OQvx3K8qxpzahhWHVwFWtyrR2oLxtxmYz+0kl0jenKg5MetKQ5PU7unH9nyw4bGxUPJ1mvS3E2zH/Ef/425J4Zwzh5pHXUrH2FFVz+6lKKK5wBjhJCCCGaTgIGAUC2T/+F+CgHidF+xsX37b8Q3wOS+9TN10C+tQsZcRmc0OeEJp9PtD8TMydyxQjrQGU7i3Yye/vsAEeEyPAzoP9Ua9qiZ+Hgxpa9bjPZbIrHf3s44/qkWNI37i/mylnLKK2UWcWFEEKElgQMAqhbwxC4/4JPwNBzfJNnyt1VtIsfsqwj1V4y/BLL6Dmic7hlzC0MT7W2z/9g8wcte1GlYMa/wHvCOI8LZv+xTXeABoiOsPPSpUfQr2ucJX3ZzgKumLWMsioJGoQQQoSOBAwC8DdpW6ARkpZZt5vRf+GN9W+gqX0wS4hI4MxBZzb5fKL9irBHcN3o6yxpq3NXsyl/U8teuOsgOOZ31rSdC2DJ8y173RDoEhfJrCvG0zXeOkfD0h35XDlrGeVV7jCVTAghREcjAYMAINtn0ja/czBUFMLB9da0JgYMBRUFfLL1E0vaOUPOIS4izv8BosOb0nMK3WOsowq/v/n9lr/w5D9AUi9r2tz/M+YbaeP6pMbx1tUT6kzstnh7Ple/vowKpwQNQgghmk8CBgH4qWHwN8vznuXgVSOAPRLSD2vS9d7d9K6lU6tDObho6EVNOpfoGBw2R50api+3f0mZM+C4A6ERGQenPWVN8zjh/Sugou0PVzokLYG3rj6KlFhrn6OftuZxzevLJWgQQgjRbBIwCKBuDUN6sp8aBt/5F9IPg4gAfR2CqHRX8s7GdyxpM/rPoEdcj0afS3QsZw86G0Vtn5gSZwlf7/y65S884DiYdLs1rWAHfHFbm+/PADAsPZE3rz6KZJ+gYcGWXK59Y4UEDUIIIZpFAgYB1K1hyPBbwxCa+Re+2PYF+RX5lrRLh1/apHOJjiU9Pp1JmZMsaa3SLAlg2r3Q02eI4LUfwsrXW+f6zTQiI4k3rzqKxGjroAHzN+dww5srqHRJ0CCEEKJpJGAQlFW5KCy3jt9eZw4Gj9tskuSlCfMveLSH19Zbh1KdkD6BIV2GNPpcomM6d/C5lu01uWvYmN8KQ53aI+CcVyA6yZo+509wsIUnkguRkZlJvHn1UST4BA0/bMrhxjdXSk2DEEKIJpGAQZB9qO6kbRm+TZJyNkKlT3tu37exDbBw70J2FO6wpF0+4vJGn0d0XJN7TqZ7rLXzc4sPsVotuTec/h9rmqsc3r8cqlq4L0WIjO6ZzBtXHUVClDVo+G7jQS5/dSlFMrmbEEKIRpKAQdSZgyEpJoLYSJ+5EHznX0jqDYnpjb7WrHWzLNsDkwcyMWNio88jOi6HzcFZg86ypH2x/YuW7/xcbdgpcOS11rScjfDVn1rn+iFweK9kXrvqSOJ9gobF2/M5/4XFHCyu+5JACCGECEQCBlFnlme/k7bVmX+h8bUL6/LWsWy/9TyXjbgM1cSJ30THddbAs7Cp2l9Ppc5Svtr5VesV4Df3Q9ooa9rK12FNK9V0hMDY3im8duX4OkHD+n1FnPPcInbllYapZEIIIdobCRgE+3yaJGX4m7TNt4ahCR2eX1tn7bvQNaYrM/rNaPR5RMfnr/NzqzVLAmP0r3Nmge+8IJ/fCnnbWq8czTSuTxf+d+0EusZHWdJ355dx9nOLWLu3MEwlE0II0Z5IwCDYV18NQ2ku5Ps8JDWyhmFfyT7m7pxrSbto2EVE2iMDHCE6u7B1fq7WdSCc+oQ1raoE3r0YygtarxzNNDIziQ9vOJreXWIt6bkllVzw4mIWbcsLU8mEEEK0FxIwCLJ9h1T1rWHwnX8hIhZ6jGzUNd7c8CZuXTtCS4wjps4DoRDeJmVOqtP5+f1NrTTEarXR58HhF1vTDq6Ht3/bbjpBgzEj9Ac3HM3w9ERLenGli8teXcpXa/eFqWRCCCHaAwkYBPt8Jm1LS/SpYfCdfyFzHNh9OkUHUVxVzIdbPrSknTnwTJKikgIcIYTR+fnsQWdb0r7c0QozP/ua8Qh09Rn2N2sJvHcpuKpatyzN0D0hmv9dN4EJ/btY0qtcHm58ayVvLN6FbgeT1AkhhGh9EjCIOpO21Znl2beGoZHNkT7c/CGlztoOljZl4+LhFwc5QgjDWYPqdn6es2NO6xYiMg4ueh8SfEYF2/oNfHIDeDytW55mSIyOYNYVR3LSiDRLukfD/32yljs/WC1zNQghhKhDAoZOrqjCSUmly5JmmeXZ7YS9K6wHNaLDs9Pj5M0Nb1rSju99PL0SejW6rKLzSYtLY3LmZEtaq3Z+rpbSBy75GKKTrelrPzCGW21Hb+ajI+w8e9FYLjiyd51976/Yw5n/+VlGUBJCCGEhAUMn5zsHA/jM8rx/Nbh88vQc3+Dzf73zaw6UHbCkXTbiskaVUXRu5ww+x7K9Nm8tG/LCMPNy92Fw0QdGHx5vS1+EeQ+3fnmawW5TPHjmSH533MA6+zbsK+KUpxfy7foDfo4UQgjRGUnA0Mll+/RfSI2LJDrCXpvgO/9C6iCItbaBDkRrzevrXrekjek+hsO6HdaksorOaVLmJHrE9rCkhaWWAaDXePjtm2CLsKb/+DAseSE8ZWoipRS/nz6EZy8cS1yk3bKvuMLF1a8v55GvNuJyt58mV0IIIVqGBAydXP39F5o+/8LS/UvZkG99E3zZcKldEI3jr/PzZ9s+Y1fRrvAUaODxcNaLgM+Eg3PuhNXvhaVIzTFzdDqf3jyJQd3j6+z7z7xtXPrfpeSWVIahZEIIIdoKCRg6Od8RktKT6hlStVfDmyP5TtTWK6EXU3tNbUzxhADgzEFnWjo/V7gruHvB3Tg9zvAUaORZMPOxuumf3ADrP2v98jTTwO7xfHLTMZx6WEadfT9vy+OUpxayZLvM1yCEEJ2VBAydXJ05GLz7LxTuhaI91gMaWMOw7dA2FuxdYEm7dPil2G32AEcIEVhaXBrnDT7PkrYmdw0vrX4pTCUCxl8Fx/3ZmuZxwfuXwYpZYSlSc8RFOXjq/MO579ThOGzW2pP9RRWc/9JiHpq9gUqXjKIkhBCdjQQMnZzvLM9p3jUMvvMvRCXVHY8+gNfXW/suJEclc/rA05tURiEAbh93O30S+1jSXlz9IqtzVoepRMDkP8KEG61p2gOf3wrz/9WuRk8Co1/D5cf0493rJtAjMcqyT2t4Yf52Tnv6J9ZnF4WphEIIIcJBAoZObt8h31mevWoY/DVHstV/y+SW5/L5ts8taecNOY8YR0yAI4SoX2xELA9Negi7qq2lcms3dy+4u/Unc6umFEx/AMZdUXff9/fDV3e1q3kaqo3r04UvfzeZiQNS6+zbdKCY059dyH/mbcXtaV8BkRBCiKaRgKET01qTXRikD0MTOzy/s/EdS9vyCFsEFwy9oMnlFKLaqG6juO6w6yxpu4t38+jyR8NUIowg+pTHYcoddfcteR4+uqZdzQhdrWt8FG9cdRR3nzyUSLv1T4XTrXnkq02c98IimbNBCCE6AQkYOrHCcicVTuvbz/TqPgzOctj3q/WABsy/UOYs491N71rSTh1wKl1jujarrEJUu2bUNYzuNtqS9sHmD5iXNS8s5QGMmobj/gwn/bPuvrUfwDvnQ1X7e7C22xTXHTuAz245hmHpiXX2r9hVwMlPLuCtJbvQ7az5lRBCiIaTgKETy/ZpjqSU16Rt2b8YHThrdtogc1y95/xs22cUVhZa0i4dfmlziypEDYfNwcOTHq7TxO2vP/+V3PLcMJXKNOF6OOtlsDms6du+g9dOg7L88JSrmYamJfLJTRO5ceoAfPpDU1bl5t6P13LBS4vZnlMSngIKIYRoURIwdGK+HZ67xUcRUd30wLc5UvcREF33DaM3t8ddp7Pz5MzJDEge0OyyCuGtV2Iv/jT+T5a0/Ip87vv5vvC/6R59Llz4bt0Zofcuh/+eCHnbwlOuZopy2LnzpKG8d93R9O4SW2f/4u35nPTkAp7+bgtVrvbXb0MIIURgEjB0Yr5DqqYne/df8O3wfGS955uXNY+s4ixL2uUjLm9i6YQI7qxBZ9WZ1+PHPT/ywZYwzQLtbeAJcNnnEJNiTc/dDC9OhU1fhaVYoXBE3y7MuXUyFx7Vu86+KpeHx77ZzMynFrBiV/usTRFCCFGXBAydmO+kbTVzMGjdpA7Pr623TtQ2rMswxqc1fKI3IRpDKcV9R99Hl+gulvRHlz3KzsKd4SmUt55HwJVfQ2KmNb2yCN75Lcx7uF2OoATGnA0PnjmKWVeMJzO57uhnWw6WcPZzi/jzJ2soqgjT5HpCCCFCRgKGTmyfbw1D9QhJBTugzKcteD0zPP+a8yurDq6ypF024jKUUgGOEKL5UmNSuf+Y+y1p5a5ybvzuRnLKcsJUKi/dhsBVc40mfb7mPQT/uxAqCuvuayemDunON7+fwjWT+9Xp2wDw5uLdnPDYj3z+a3b4m4oJIYRoMgkYOrFs3xqG6jkYfJsjxXWDlH5Bz/XaOmvtQo/YHkzvO73ZZRSiPlN6TuHcweda0rKKs7hm7jUUVBSEqVReknrC1d/AyLPr7ts8B16cBgc3tH65QiQ20sG9M4fz6U2TGJlZt5/TweJKbnlnFWf852cWbcsLQwmFEEI0lwQMnZhvDUPNCEn+miMFqSnIKs7iu93fWdIuGX4JEbaIkJRTiPr88Yg/MihlkCVtW+E2rvvmOoqq2sCsxJFxcPYrxiRvXhPPAZC/DV46HtZ9Epaihcqonkl8cuMx/HnmMGIi7HX2/5p1iAteWszlry6VmaKFEKKdkYChk/J4NPsDNUlqZIfnN9e/iUfXtsWOi4jjrEFnhaScQjREbEQsL/7mRXonWDvibsjfwE3f3hS+maC9KQUTb4ZLP4FYnxmUnaXw/mXw9b3gqgxL8ULBYbdx9eT+zL19CscO7uY3z7xNOcx8egG/f/cXsvLbwL+LEEKIeknA0Enll1VR5bZ2uMxIjoaKIji43pq5Z+CAobCykI+3fmxJO2fQOSREJoSknNrtxl1YiG6nnUNF6+ka05WXp79Mely6Jf2XnF/43fe/o9LdRh7E+02Ba3+EjDF19y16xmiitH9t65crhHp1iWXWFeN57qKx9OsaV2e/1vDRqr0c/9iP3P/FevJK2si/jRBCCL8kYOik9vlM2ma3KbonRMPeFeBVW4AtAjIOD3ie9ze/T7mrti+EXdm5aNhFISlj5ZYtbD/lVDYfNYHNR4xn54UXsf/v91Pw/vuUr12Hp1IeMoRVenw6L09/uc7M4kv2L+H3836P091GRuxJ7gVXfAWHX1x338F18NI0WPgEeNytXrRQUUpx8qh05t4+hX+cMZKu8VF18lS5PbyycAeT/vkDD87eQE6x/J8WQoi2yFF/FtERZftM2tYjIQq7TdVtjpR+GETUHTYRoMpdxVsb3rKkndj3RNLj0/3mbwzn3r3svupqXAcPAuApK6N85UrKV66szWS3E9W/P5EDB2BPTMKeEI8tPgFbQjz2hARs8QnYE+LB7gCPG+32+Hy6weNBu9zgdqFdLrTLjXa7wHvd7UF73ODR1uM9HtCATaGUDWw2lN1mzIpts6FsCuwOVGQEKiICFRmJLTISIiKwRUYaaTEx2GJjscXEGEtsLComBmWTWL6peif25qXfvMQVX1/BocpDNenz98znrgV38ciUR7Db6raxb3UR0XD6M5A5Br66G9xVtfvcVfDtX2Hz13Dmc5DSN2zFbK4Iu42LJ/ThzDGZ/HfhDl6Yv52SSpclT7nTzYvzt/P6op1cdFQfrpvSn+6J0WEqsRBCCF8SMHRSvnMw1Ezatse3/0Lg+Rdm75hNbrl1+NXLRlzW7LK5CgrYffU1NcFCQG43lVu2ULllS7Ov2dao6GhsMTGoqChsUVEoc/FeVw5H0M7o4eB2u0nfvx+05sCXs7GhvYIvN7hcqMhI4iZPpsull2CLbpmHwoEpA3nhNy9w1ddXUeIsqUmfu2su0T9H8/eJf28bQYNSMP5q6H00fHQtHPBpirT7Z3juGDjpYRhzcZv7926MuCgHtxw/iAuP6s0zP2zlzcW7cLqtQ61WOI0ahzcW7+LCI3tz3bH9a/tWCSGECBsJGDqpunMwRBuTSGUts2YM0OFZa11nKNUj045keOrwZpXLU1bGnutvoGrHjmadp73TFRW4Kyrqz9gGVfdeKQ+Sp2zZMgo/+YSMf/6TmFEjW6Qcw1OH89wJz3HtN9dams19tu0zCioKeGTKI8RHxrfItRutxwi45nv44UH46UmMqitTVQl8djNsmgOn/BsS0sJWzFBIjY/ir6eO4Mpj+vHEt1v45Je9uD3WwKHK5WHWzzt5e8luzhvfk2snD6B3amyYSiyEEELaPXRS2T4BQ0ZyDORugkqfSaQCBAw/Z//M1kNbLWnNrV3QTid7b/895b/+akmPHDiAnv95lm633UbCSScR2adPs64j2oaq7dvZef755DzzLNrZMn0LDu9+OE8f9zSRtkhL+oK9C7ho9kVkFWW1yHWbxBEFv/kbXDEbknvX3b/pS3hqLMx/FJzBwrH2oVeXWB477zC+/8Ox/PaIXjj8zPxW5fbw5uLdTP3XD9z01kp+yTrU+gUVQgghNQydVZ0mSUnRkPWjNVNSL0jM8Hv8rHWzLNv9k/ozKXNSk8ujtWbfX++j5EdrGRxpafR+6SUi0tNJOO64mnR3SSmVmzdTsXEDrv0H8JQU4y4uwVNcjLukGE/Negm43WC3G/0C/H3a7agIh9HfwOFA2e0Q4UDZzXWvvNgUymYHu834BNAetEcbNTTaY/ZxMPs9uNzoqiq004nHWQVOJx5zW1dWocvL8ZSXG8PGdEZuN7nPPEPJjz+S8c+HierfP+SXOCr9KB6f9ji3/nArLk9t2/nthdu5YPYF/PvYf3NkevChg1tVn4lww89Gv4ZVb1j3OUvh+3/AiteM4GLEWe26mRJAn9Q4/nnOaG4+biD/mbeND1Zk1Wmq5NHw5Zp9fLlmH0f27cI1U/ozsW9oRmITQghRPwkYOim/TZK2Nqw50qb8TSzet9iSdunwS7GppldY5Tz+BIUffWRJsyUl0ftlI1jwZY+PI3bsGGLH+hmasp3RWqMrKvCUl+MpK0eXl+EpK8NTXoGuqsRTWWkEF5UVXuuVaJer/pO3MpfLydat28CmGDhkKJHR0SiHHWx241PZOPT++1SsW2c5rmLNGnaceRbd//hHUi66MOSdvqf0nMIr01/h9nm3k1+RX5NeWFnIdd9cx91H3c15Q84L6TWbJSrB6BA9ZAZ8dguUWfsKUZgFH1wJS16Ekx6CzLHhKWcI9eoSy0NnjeLm4wby3LytvLdsT52hnwGW7sxn6c58+qXGcmSSYny3ThpsCyFEK5KAoRNyezT7i/xM2uZvhmc/fPsudInuwikDTmlyefLfeJO8F1+0pKmoKHo99xxRAwc2+bzthVLKGC0pJga6hLs0zVNeXk7+3LkAJE+fTkxM3Q6ryWefRe7zL5D7/PNG7Y9JV1Zy4IEHKP7+OzIefNBvoNgcY3uM5e2Zb3PL97ewpaC2o7xLu7h/8f1sKdjCnUfe2bZmKB86A3qOh+//DivfwNK3ASBrsTEE62EXwvF/gcTQ/szCITM5hn+cMYqbpg3klQU7eGfpbkqr6g4vuyOvjB15dr7YrfmVzVx0dD+GpiWGocRCCNHxSR+GTii3pLJOJ8OMyFLI8xltqOf4OsfuL93PnB1zLGkXDL2AKHvdMdYbomjOHA48+KA10W4n8/HHO0TtgahLRUTQ7Zab6fu/d4js16/O/rJFi9lx3nk4s7NDfu3M+EzePPlNpvWaVmff/zb9jxu+vYFC33484RbfDU57Gq6bD30CNPv79W14agzM/T8ozfWfp51JT4rhz6cM5+e7j+fuk4eSFmCY1VKX4o0lezjpiQWc/uxPvL1kN8UVbWS+DSGE6CAkYOiEsn36L0TYFakFq62ZHDGQNqrOsW9vfBuXrm0KE22P5rdDftukcpQuXkz2nX+q034//W/3kXBc3Qc60bHEjBpFv48+JOWSS+rsc+fksufmW/C0wEhRsRGxPDHtCa4ZdU2dfUv2LeG8z89j6b6lfo4Ms/TRcPkXcN4bkOyn47+rHH5+Cp4YDd/+Dcry6+Zph5JiIrju2AHMv3Ma/z7vMIamBe678GvWIe75eA1HPvAdf3z/V5btzEd31v5BQggRQhIwdEK+/RfSkqKx7fXpv5A5DuzWphmlzlI+2PSBJe30gaeTEp3S6DJUrF/PnpturjM6TrfbbiX5nHMafT7RPtliYki79x56v/pfHGnW4UIr1q9n/1//2iIPfDZl43djf8fDkx+uM4JSdmk2V829igeXPEiZsyzk124WpWD4aXDzMjjhbxDp5+HZWQoL/20EDt//A8oLWr+cLSDSYeOssT2Zc+tk3rjqSCb2D/x7p9zp5oMVezj3+UVM+9c8nvpuC1n5bezfUggh2hEJGDoh3xoGo/+C74RtdTs8f7TlI4qdxTXbCsUlw+u+Ha5PVVYWu6+9Dk9pqSU95cILSb3uukafT7R/cUcfTf9PPq4zZG7hp59R8MYbAY5qvpn9ZzLrpFl0i+lWZ987G9/h3M/PZdXBVS12/SZzRMGk2+B3K2HsZaD8TEJXVWwMwfrEaPjhISg/1NqlbBFKKSYP6sYrl4zhz4e7OCHTQ7f4yID5d+aV8e9vNjP5kR847/lFvLN0N4Xl0mRJCCEaQwKGTsi3hqFnogP2rrBm8gkYXB4Xb65/05I2rdc0+iQ2bk4EV14eu6++GneutZ11wokn0uPee1DtfIhI0XT25GR6PvsMtljrBF0H/vkIpYuXBDiq+UZ1G8U7M9/hiB5H1Nm3u3g3l825jMeWP0alu7LFytBk8d3htKeMGofDLgB/I5VVFsGPD8PjI+Hre6FwT+uXs4V0i4FTe3v4/vaJvHzpEfxmeA/sfuZzqLZ0Zz53f7SG8Q98y01vr+S7DQeoctUdiUkIIYSVBAyd0L5Caw3D6Ig94Nv0oqc1YPh217dkl1o7oTZ2ojZPaSlZ112Pc9duS3rskUeS8cg/jTkPRKcWNXAgGY/805rodrP39ttx7t3bYtftEdeDV058hbuOvItou7VzrUYza90szvv8PNbmrm2xMjRL6gA483m4aRmMOg/w89BcVQyLnoEnD4OProX9a1q9mC3FYbNxwvAevHTpESy6+zj+dNJQ+nWNC5i/yuXhy9X7uOq15Yz7xzf8/r1f+Gb9ASqcdUdjEkIIIQFDp5R9yFrDMNy10ZohdSDEpdZsaq3rDKU6uutoxnRv+ChGuqqKPb+7lYq11geuqKFDjbfKUU0bZUl0PAknnEDXG2+wpLkLCthzy+9apBN0NZuycdGwi3j/1Pc5rNthdfZvL9zOxbMv5sElD5JXntdi5WiWrgPh7JfgpiUw8mz8Bg4eF6x+F56fBG+cCdu+71ATB3ZPiOaGqQP4/g/H8tGNE7l4Qm+SYgIPlVtc4eKjlXu55vXljLv/G255ZxVz1uyj3M9QrkII0VlJwNAJ+dYw9C7zeWvqM//CigMrWJtnzXPpiEsb3HxIezxk3/tnSn/6yZIekZlJrxdfwJ4gM7YKq64330z81KmWtIr169n3l7+0+Kg3fZP68tpJr3H7uNvrzMng1m7e2fgOMz6awfO/Pt/2OkVX6zYEzvkv3LgIRpzpv6kSGMHCG2fC85NhxSyoLPafrx1SSjG2dwr/OGMUS+89nucvHseJI3oQYQ/8e6u0ys3nv2Zzw1srGXv/N1z/xgreW55FTnEbbI4mhBCtSAKGTsbl0Rz0+ePXJf8Xayaf/guvrbfWLmTGZ3J87+MbfM2Dj/6Los8/t6TZU1Lo9fJLRHTv3uDziM5D2WxkPPoIkX37WtKLPvucgtdfb/Hr2212rhx5Je+d8h7DU4fX2V/mKuPZX55lxkczeG/Tezg9bbQTbfdhcO4suGUFjL/GGC7ZnwNr4PNb4V+D4ZMbYffiDlXrEOWwc9LINF645AiW3nMC958xkrG9k4MeU+5089W6/dz5wWrGP/Atpz+zkCe/3cKaPYV4PB3nZyOEEA0hAUMnk1daZXkO6E4BkSU+nSC9+i/sKNzBvKx5lt2XDL8Eh61hk4TnvfJf8l991ZKmYmLo9cLzRPmZtEuIavaEBKO5Wpy1LfqBRx6lZOFPAY4KrYEpA3lzxpvcdPhNdYZfBciryOP+xfdz1qdn8e2ub9vumP9d+sPMf8Ht62DavRDb1X8+Zxn88hb890R4Zjz89CSUHGzdsrawlLhILpnQh49uPIZFdx/HfacO58h+XaivwvTXPYU8/u1mTn1mIRMe+o4/fbCar9buo0gmiRNCdAISMHQyvlXrR0VstWaISoRuQ2s231hvHdIyITKBMwee2aBrFX72GQcffdSa6HDQ86kniRk9uuGFFp1W1IABfjtBZ113HTn/+Q/a3fLtzCNsEVx/2PV8ceYXnDbgNJSffgE7i3Zy+7zbuXj2xXy3+zs8uo2OvBOXCsfeCbevhVMehy4DAufN2wLf/AX+PQzeuRDWfQxVbbQJVhOlJ8Vw+TH9eO+6o1lyz/H844yRHDMwNehISwAHiyt5d3kW17+5kjF//4Zzn/+Zp7/bwq9Zh6T2QQjRITXsNbHoMA4WV1m2J0dvB+8XZD2PAJsRR+ZX5PPZts8s+c8bfB6xEdZhL/0pWbCQ7HvurZOe/o/7iZ88ufEFF51WwvHH0/XGG8n9z39qE91ucp96mtKffibzkX8SkZnZ4uVIj0/ngUkPcOnwS3li5RMs3LuwTp7Vuau57Yfb6JvYl0tHXMppA04jyt4GO/RHxMARVxpzOGyZCytfh81fg/YTgHlcsOlLY4mIg6EzYOQ5MOA4cASe/6C96Z4QzcUT+nDxhD7kl1bx7foDfL/xIAu25FAapAO026NZtrOAZTsLeOybzaTERjB5UDemDO7G0QNSyUwO0AxMCCHaEQkYOhnf/gtj2GzN0GtCzeq7G9+1jD3vsDm4cNiF9V6jfM0a9tx6K7hclvTuf/wDyWec0fhCi06v6803Ubl1K8Vz51rSy1esYPsZZ5J2319JmjmzVcoypMsQnjvhOZbuW8rjKx6vMyAAGDUOf1/0d55Z9QwXDr2Q84eeT1JUUquUr1FsdhhysrEU74df34GVb0D+Nv/5naWw5n1jiU6CYacZozH1m2Kcq4PoEhfJeeN7cd74XlS5PCzdkc/3Gw/y/cYD7MwLXstSUObks1+z+exXYxjqzOQYjuzXpWbp3zVO5psRQrQ7qs22uRUho5TqCWQB3PLi13y2zahSiKKKddFX48Drwf6Sj2HAcVS4Kpj+wXQKKgtqdp024DQemPRA0GtV7dzJzgsuxF1QYEnvctmldL/rLvlD2cGVl5cz13yonz59OjExoXu7ql0ucl94gdz/PAd+miIlnX46Pf7v/7DHBx5/P9S01ny962ueWvkUWcVZAfPFOGI4c+CZXDzsYnol9mq18jWJ1rB7kRE4rPsYXOX1HxPb1Qg6hp0K/Y6FiOj6j2mmlrzXgtmeU8L3Gw8yb1MOS3fmN3rit67xkYzv24XxfbtwRN8UhqUnEmGX1sFtVbjuM9H5bNmyhcGDB1dv9tJat6lZNqWGoZMxahiMP04j1Q5rsICCTGO228+3f24JFqD+idpcOTnsvvqaOsFC4syZdP/TnyRYEM2iHA663XQTcRMnkn3HnTj3WH+XFn76KWUrV5L5r0eJOazuPAotUialOKnvSRzf+3i+2vEVr617jU0Fm+rkK3eV8/bGt3l749tMSJ/A2YPP5vhexxNhDzw/QNgoBX0mGsvJ/4T1n8DaD2HHfAjUN6MsF1a9YSyR8TDoNzD0FBg0HaITW7X4La1/t3j6d4vn6sn9Ka9ys3hHHj9uymH+lhy255TWe3xuSRVz1u5nztr9AMRE2DmsVxJH9OnCuD4pjO2dQlJsG7wvhBCdmgQMnYwRMBhvSMbatlh39hgB0Yl4tIfX11mHrpyYMZHBKYMJxF1Swu5rr6vzEBc38WgyHnoQZZM3aCI0YseMod8nH7P/73+n6DPrcL3OrCx2XngRSWeeQbcbbyQiI6NVyhRhi+DUAadySv9TWLRvEbPWzmLRvkV+8y7et5jF+xaTEpXC6QNP5+xBZ9M3qW+rlLPRohNh7KXGUnIQ1n1iBA9ZiwMfU1Vi1Eys+xjskUaNw+ATof80Y0bqDvTiICbSzrQh3Zk2xBgeOiu/jPlbcpi/OYclO/I5VFb/CErlTjeLt+ezeHt+TdrgHvGM7Z3C6J7JjO6ZxJC0BKmFEEKElQQMnUxOcWXNWOzjfAMGc/6F+Xvms7Nop2VXsNoFT1UVe26+hcoNGyzp0cOHk/nU06jIjtMxUrQN9vh4Mh95hPjJU9j/t7/hKSmp3el2U/jBhxR9+hkpF15A6rXX4khNDXyyEFJKMTFjIhMzJrIxfyOz1s3iqx1f4fbTmbigsoBZ62Yxa90sjuhxhFHr0Pt4YgLNlRBu8d3hqGuN5VCWERCs/QD2/Rr4GHcVbP3GWACSekH/qTBgGvSbaplRviPo1SWWi47qw0VH9cHj0Ww5WMLSnfks3ZHP0h15HChq2ARwmw+UsPlACf9bZjRzi3LYGJGRyOieyRzWK4nRPZPplxqHrZ7RnIQQIlSkD0Mn4N2HIfOGWTgSuwKaZVE30k0V1mY88wU47Hwu/+pyVhxYUZM8OGUwH5z6gd8mRdrjYe8f/kDxnK8s6RG9e9P37bdwdA0w3rvokMLR3rdqzx6y77iT8lWr/O5XsbF0uexSUq+8Miyziu8r2cebG97kk62fUFRVFDRvrCOWab2nMaPfDI5OP7ptNlnylb8DNn4BG76ArCVAQ/+mKEgfbdQ89J0MvY+CqIb/+7S3tuVaa7Lyy80AIo/luwoa1IQpkPgoB8PSExiensiIjCSGZyQyqEc8UY6O0/m8LWhv95lov9p6HwYJGDoBfwFDL3WABVG3WzP+bhVrPWVc8OUFluQHJj3AaQNOq3NerTUHHniQgjfftKTbU1Pp+87bRPbuHdovItq8cP1x1S4XeS+9RO6LL6HL/XfStSUl0fWaq0m56CJsYfijX+mu5Jtd3/Dh5g9ZfmB5vfmTopI4ofcJzOg3g3E9xmFvD6MQFR+ATbONAGL7j9CYGbCVHTIOhz7HQN9J0HuCMRJTAB3hQS6/tIqVuwpYvquAlbsK+HXPISob2Ynam8OmGNg9nhEZSQxLT2BoWiLD0hNIjW+DQ/u2Ex3hPhPtgwQMIuz8BQxn2BbyRKTXuPaxXeGOrdwx/06+2llbW9A9pjtfnf2V3zeduS+8SM7jj1vSbLGx9H7jdWJGjGiZLyPatHD/cXXl5JD7wosUvPsuOP0/rNqTk0k6+yxSzj+fyF7hGbFoR+EOPtryEZ9u/bTO4AL+dIvpxvS+05mSOYVxaePa5twOvioKYcs3xrJ9HpTsb9zxygZpo4wAotdRxpKYXrM73PdaS6hyeVibXWgGD4Ws3nOIXfUM49oQ3RKiGJqWwLD0RIamJTCuTwp9UltvNLH2rCPeZ6JtkoBBhJ2/gOF+x3+5xPFtbaYhM8k+9V/M+GiGpb31rWNv5epRV9c556EPP2LfvT4Ts0VE0PuF54mbOLFFvodo+9rKH9eqPXvJffZZCj/9FDwB3tgqRdzkSaRccAHxU6ag7K3/Br/KXcX3Wd/z0eaPWLJ/SYNmiI5xxDA+bTyTMicxKXMSvRLa+DCtYAzVenCDEThs/wF2LgRnEx6Ek3obfa16HUVF98OY++tetLJ36Ae5gtIqVu8tZHXWIX7dU8ivew4ZfdGaQSm4ZdpAfj99SIhK2XG1ld9pouOTgEGEnb+A4cvIuxlh21Wb6YS/8UhUFW+sf6MmKcYRwzfnfFNnwqniH35gz8231BkLP+Nf/yLplNaZPEu0TW3tj2vltm3kPPU0xV9/HTRfREYGyeefT/LZZ7VaB2lfueW5fL3za+bsmMOvOUE6Evvom9iXSZmTmJgxkbE9xhIX0Q7eHLuqYM9S2GYGD3tXNK75UvVpbJEciulH8tApOHqNhfTDoOsQsHfc8Ty01hwsrmR9dhHr9xWxLruQ9dlF9U4o50spmH/HNHp1iW2hknYMbe13mui4JGAQYecbMCQlxrE66mrsqvbfvujij/jNknsoc9X+0blo2EXcdeRdlnOVrVrF7iuuRFdUWNJ73H0XXS4LPk+D6Pja6h/X8rXryHnqSUrnLwiaT0VEEHfsFBJPPpmEqVOxxYXn4XtvyV6+2vEVc3bM8TuvQyB2ZWdE1xEcmXYk49PGM6b7mLY76pK3qjLYs8wIHnb9BHuWg7uJb9Ed0cYQ0WmjjQAibRR0HwaR7SCQaobiCicb9xezbm8hG/cXs2FfEZsOFFPhDFxrde+MYVwzpX8rlrL9aau/00TH09YDho77GkYEdJhtmyVYwBbBh6XbLMGCTdm4eNjFluMqt21jz/U31AkWUq++SoIF0abFjBxB7xdfpHLHDg79710OffwxnqK6IxZpp5OSb7+j5NvvUNHRxB97LIknn0z8sVNataN0ZnwmV426iqtGXcX2Q9v5etfXLNyzkDW5a9BBRiFyazerc1azOmc1L695GYfNwaiuoxifNp5xPcYxuuto4iPjW+17NFhkLPQ/1lgAnBWwdzns/MmoichaBpWFwc9RzVVh1FjsXeGVqIw5IHqMgB6jIG2ksZ7Uq8PMC5EQHVEzg3Q1t0ezK6+0JoCYu+4Amw4U1+yfvXafBAxCiAaRGoZOwLeG4faU+fwh4oOa/c7MsZyUbONg2cGatOl9pvPY1Mdq8xw4wM7zL8C1b5/l3Emnn076ww/JLM4CaD9v4zzl5RTNnk3BW29TsX59vflVbCwJU6eScNKJxE2ciD0+PA/dBRUF/Jz9Mwv3LuTn7J/Jr8iv/yAvCsWglEEc3u1wDu9uLD3je7b9/78eD+RuMoZtzVpqfOZtbf55o5Kg2xBzGWouQyCpZ4cJJLzN23SQy19dZkn7+a7jyEhum/9P24L28jtNtH9SwyDaHN8J277q2pODRb9Y0rwnanMXFpJ19TV1goW4KZNJ/8f9bf9hQwgftpgYks8+m6SzzqJizRoK3n6Hotmz0VVVfvPrsjKKZs+maPZssNuJGT2auGOOIW7iRGJGj0I5WudXaUp0CjP7z2Rm/5l4tIcNeRtYsHcBi7IXsTp3NS6PK+jxGs3mgs1sLtjMe5vfA6BrTFcO63YYw1OHM6zLMIalDqNrTBubP8VmM5oVdR8G4y4HoDwvi1+/fIWk8l0MTqjAfmAtFO5u3HkrC40ajD1LremR8dB1kNEfInUgpPY3PrsMgKg2WEPTQBMHdCUx2kFRRe198tXa/Vw5qV8YSyWEaA8kYOhkFB7GeAUMGnjNaR3ucGz3sYzuNhoAT2UlWTfdROUWa5ARPXo0PZ94AhXRDiaWEiIApRQxo0cTM3o0Pe6+i+Jvv6NozhxKFy2q06m/httN+apVlK9aRe4zz2CLjyf2qKOIm3g0cRMmENm/f6sE0TZlY0TXEYzoOoLrD7ueMmcZv+T8wrL9y1i6fynrctf5nWHaV255Lt/t/o7vdn9Xk9YtphtDuwxlWOowhnUZxpAuQ8iMz8SmbC35lRontisHksZwIGkMfavf/JblGzNP718N2b/AgbVGTUQDRp+yqCqB7FXG4is+zQwiBkCX/l5LvzbfTyLSYWP6iDQ+WFH74nLO2n0SMAgh6iUBQyfTRx0gSdX2VVgSHcWmcmvAUF27oN1usv/4R8qXr7Dsj+zbl14vPI8tVkbXEB2HPSmJ5LPPIvnss3AVFFD8zTcUzZlD2ZKlgYdmBTwlJZR89x0l331Xc56YMWOIGTOG2LFjiB41Clt0dIuXPzYilokZE5mYYQxrXOosZeWBlSzbv4yVB1eyLm9dvTUQ1XLKc8jZm8OCvbWdxGMcMQxMHlizDEoZxKCUQaRGp7adWsbYLjBgmrFUqyqDnA2wf60RQOxfCwfWNbxPhK+S/caya2HdffE9IKVfbQCR3Nto3pTUCxIzoA3M3D1jlDVgWL6rgANFFfRIbPl7VAjRfknA0MmMtu2wbM9K7W7Z7pPYh6m9pqK1Zv/f76f4m28t+x3dutHr5ZdxpKS0eFmFCBdHSgop551Hynnn4crLo3juXIq+nkv5ihXoABPCVXMXFlIybx4l8+aZJ3MQPXw4sWMOJ3rUaKJHDCeyTx+UrWXf1sdFxDG552Qm95wMGDNNr89bz6qDq/jl4C/8mvNro/pAlLvKWZO7hjW5ayzpyVHJ9E/qT7+kfrWfyf1Jj0tvGzUSkbGQOc5YqmkNh3ZDzibI2Wh85m4yPivrdoZvsJIDxpK1uO4+ZYOEDCOASO5lBBFJmZDY0wwqMiE6ucX7ThwzsCsJUQ6KK43gUWujWdJlE/u26HWFEO2bBAydzCi1vWZ9S0QEP0Va/zhdMuwSbMpGzrPPcujddy37bPHx9Hr5JSJ7ZrZKWYVoCxypqaRccAEpF1yAp7ycsuXLKf3pZ0p//pnKzZvrP4HLRcXq1VSsXl2TZIuLI3rYMKJHjCB65AiiR4wwgogWnDwuyh7FmO5jGNN9DGCM559VnMWqg6tYn7eeDfkb2Ji/kXJXeaPOe6jyECsPrmTlwZWW9Gh7NH2T+tIvsR+9EnvRK6EXPeN70iuhF91iu4U3mFAKUvoYy+DptelaQ/E+M4jYbDRnytsKedugMAuCjFBVL+2Boj3G4i+gAIiIqw0eEjOMACMhzVxPN5a4bkafjiaKctg5YXgPPl61tyZt9pp9EjAIIYKSgKGTGWWrDRheS0qw7EuJSuG0gadR8O575D79jGWfioig57PPEj1EZgYVnZctJob4yZOJn2y8tXcePEjZokWU/vwzpYuX4DpwoEHn8ZSWUrZ8OWXLl9ekqdhYogYOJGrwIKIHDSJq0CCiBg/GntoyTX6UUvRO7E3vxN6cPvB0ANweN7uLd7Mhzwge1uevZ2P+Rgqb0Hynwl3BxvyNbMzfWGdflD2KzPhMeib0pGd8TzLiM8iMzyQ9Pp3MuEySopLC08xJKePhPDEDBhxn3eesgIIdXkHEVsjfaaQV7fV7ukZzlho1HblB5t6wOYymT9VLQvV6d6/07hDX3ahd8ePkkWmWgGHpznxyiivplhAVmu8hhOhwJGDoZPraDgI2cuw2voy3dtA7f+j5uOb9xP6//c16kFJkPPoocUcd2XoFFaIdiOjenaTTTyfp9NPRWuPat4+ylUaH6LJVK6ncuClo/wdvuqyspibC+/HcnpJiBA8DBxDZpw8RffoQ2bsPkT0zUZGRIf0+dpudfkn96JfUjxn9Zxjl0prc8ly2FGxhy6EtbD20la0FW9lWuK3RtRHVKt2VbC/czvbC7X73xzhiyIzPJCM+g/S4dNLi0ugR24O0uLSa9VYXEV07UpMvZzkU7IT8HZC/3QgiCnbCoSyjZsLZuFmYg/K4jAClIUFKZALEdzOCh5rP7kxNGUhyZBSHqoyaCq3h63X7uXhCn9CVUwjRoUjA0Em9nZiAy+sNXpQ9ijPLhrL3D7+v84DT4//+TOJJJ7Z2EYVoV5RSRGRkkJSRQdIpMwGjJqF89WrKVq2i4tfVlK9fhzsnt1HndRcUULZ0KWVLfYb+tNmIyMggsk8fIvv0JqJXbyIyM4js2ZOIzEzsSUkh+17dYrvRLbYbEzMn1qR7tIe9xXvZcmgLOwp31CzbC7dT4ixp1jXLXeVGYHIo8FwLXaK7EOOMIUElsGL5CtIT0uka25Wu0V3pFtuNrjFdSY1JJcLWCh2NI2ICBxNaG6M3FZrBQ3UQUbjHWIr2Gv0eWkJVMeQXG0GMl0jgnfjxzMy/FQ9G0DBn7T4JGIQQAUnA0AmVKcW7CdbmSBdFTabotrvRlZWW9NQbrqfLhRe2ZvGE6DBscXHEHX00cUcfXZPmPHCQinXrqFi/3vhctw7XwYNBzhKAx4Nzzx6ce/ZQ+tNPda+dkEBEZiYRmZlE9szEkZZORHoaEenpONLScXRNbVafCZuyGX0TEntZ0qtrJKqDh11Fu9hTvIes4iz2lOyh0l0Z4IyN491he+P2us2eqiVHJRvBQ3QqqTHmEp1aE1CkRKWQEm0sMY4WmJRLKYhLNZaMw/3ncVVBcbYZROw1+zrsM/pTFO8z1ksOQAOGyW2oYWXLuML+Fa+4jZqkRdvyyCupJDVemiUJIeqSgKET+jghjmJ7bae51ELNSS8vw1NkHR0k+dxz6Pa737V28YTo0CJ6dCeiR3cSjqsd+tOVk0PFps1UbtlC5Wbzc+tWdEVFk6/jKS6mcuNGKjcGeJh2OIjo3h1HejoRaWk4unXD0a2r+WkuXbtiS2pcfwLvGokj063NGLXW5JTnsKd4D3tKjCBib/FeskuzyS7J5kDZATyNnTOhHocqD3Go8hBbqX9m6BhHTE0AkRydTEpUCslRySRFJZEclex3PcYR0/z+Fo5ISOlrLIF43FCaUxtAlB6E4gO1IzOVHDSHfD0IrobdN390vMe3nrHs0ml4NMxdf4ALjuzdvO8ihOiQJGAAlFJ9gN8BM4FeQCWwDXgPeFZrHZIGqEqpk4FrgfFANyAHWAa8qLWeE4pr1McFvJGYWLMdX6Z54KNoyMmz5IufNo20v/617YyvLkQH5ujWjfhu3YifdExNmna7ce7ZYwQPW7ZQtXMnVbt2U7VrF+6CguZf1OXCmZ2NMzubYD0RVGQk9q6pOLqk4khNxZ6aiiO1C/YuXp9dUrCnGEuwOSeUUnSP7U732O6M7TG2zn6nx8nBsoNkl2TXLPvL9rO/tHYpc4WwP4CPclc55a5yskuzG3yMw+YgKTKJpKgkEiMTSYqqXU+ITCA+Ip6EyISaJT4ynoSIhJp9EQ2dm8FmN0ZMSkiDjDGB82ltDA1bkmMEFSUHjUCj5IARaPzyZk3WGFXFIxEvcn7Vn9HYmL1mnwQMQgi/On3AoJQ6FXgTSPRKjgWOMJerlVIztdb1v54KfA0b8CJwlc+uTHM5Qyn1MnCd1iF+veZjQUwMeyOMf/aoKs1d77vpsr/Ukifm8MPJ/PdjKEenvz2ECBtlt5v9E/qQcMIJln3uoiIjeNi9i6pdu3Du2o1z716q9u7FtX+/8dAYIrqqClf2PlzZ+xpW7thYHMnJNQGEPSUFe1IS9sRE7EmJ2BKTsCcl1qTZEpOwJyagoqOJsEWQGZ9JZrz/oZu11hQ7i9lfup/dBbuZt3wexbqYpIwkCpwF5JblklOeQ155Hi7dsEnqmsvlcZFXkUdeRV79mf2IskcRHxFPfGS88Wmux0XEBV8cccRGxBLriK35jLBHGE2gopOMpevAuheMiIFlL9VsHmXbyMX2b3nDPZ2ft+VRUFpFSlxoO9MLIdq/Tv1EqJQaA7wLxAAlwEPAD+b2+cA1wGDgS6XUEVrr4iZe6gFqg4VVwCMYNRgDgDuBMcDVGDUO9zTxGg3yQaIxMpLdrbntEw+DfV6kRQ4YQK/nn8MW0wJteYUQIWFPTCRm1EhiRo2ss09XVeHcvx/n3r1GELFnD8692bj27TPSDxyAeiafaw5dVoazrAxndsPf0gMQEYE9Ph5bYgL2hETsiQnY4hOwJcRjj0/AFh9vrseTFp9A18gI3Ad64InqzaTxJxCbmootNhYVEYFHeyisLKwJHvIq8ozP8jxyy3PJqzA+8yvyOVRxqNWCC38q3ZVUuiubHHB4c9gcxEXEEeOIIdYRa3xGxFq3uyTRv3tvTsrNItFjBJZ3Od7hB8/h7PF055sNBzjviF71XEkI0dl06oABeBIjOHAB07XWi7z2fa+U2oLxcD8Y+ANwX2MvoJQaDPzR3FwOTNFaV7cAWKaU+gz4EaM24w6l1H+bU5tRn02RUURozXVzPIzbZn0L6UhLo/dLL2JPTm6pywshWpiKjCSyd28ie/tvWqI9Htx5eUbwkL0P1/59OA8exJWTU7O4c3JxFzZ+7oVmcTpxFxTgLiigoeFM9Tfc8+/Ha9JUZCS22FhssbE44uJIj40lIzYGW2xcTbotpj+22JHYYmNQ0TFURkCpw02Z3UWRrYoiVcEhWwUFlFGgSymgjFxPEfmuQoqcxRRWFuIOYQfkUHF5XBRWFtY/b0YcvBiVzqMHcxlTWUWcquRhx0tc7LyH2Wv2ScAghKij0wYMSqkjgcnm5is+wUK1x4ArgGHArUqpB7TWjX01dxu1P+dbvIIFALTWZUqpW4BFZr7bgZsaeY1GuWieh6lrrMGCLSmJ3i+9SERGRkteWggRZspmq+nUHDNqVMB8nqoq3NVBRH4+rrw83Hn5uPLzcOfm4crPx51nfh46BO628QCtq6pwV1UZZWqkCCDVXPyy2bBFR6Oi4yA6Ch3hwB1pxx1hxxlhwxkBVXaocHiosHuosLkpt7spU07KlJMSVUUJlVTaPTgd4LTj9alqtl12LOvV2y47RpOjEDjgcHBFeg9uyz/EZUXFTLKv4wLP93yw9QQKy5wkxbbCcLRCiHaj0wYMwBle66/6y6C19iilXsdoqpQMTAPmNvQCyugxfLq5uVFrvTjAdRYrpTYBQ4DTlVI3ax3CRshejvvFw+lLrH9wVHQ0vZ57jqhBg1rikkKIdsgWGYnNHJa1PtrjwVNcbAQPBYdwHzJqCmq2iwrxFBbhLjKXwkN4CovwlJbWe+42xePBU1YGZbUdrxXGH1IHRnV1SzMCCIXLrnHaagOKmsXmnac23e2VtyAOlg6xsauH4rHUFFZER/GP3HzucbzNvMrD+XbDAc4e17MVvo0Qor3ozAHDJPOzFFgRJN+PXuvH0IiAAegHVL+y/zFYRnP/EIxO0H2BHY24ToOdu9ADEV5jr9vtZD7+b2LHBhl1QwghglA2m9GJOSnJ+K3XQNrlwl1cjKe4GHdRMZ7iorrbJSV4ikvwlJTgLinGU1Jq7C8pwVlYiK0F+2O0RQ43ONwNeZ8UPM+5P7nZ2R3mjbKxcEQM52Wk8WhOLg95XubNNUMlYBBCWHTmgKF6Ss6tWgft8eY9iLmfaTyDGh7gPA25TosEDL7S77+fhGnT6s8ohBAhphwOHCkpkJLS6GPLy8uZO3cueDyccMwxRGqNp7QUT2mZ8VlmfpaX4SkrQ5eXG2ll1Z9leMrL0OUVeMrL8VSUo8vK8VRU4KmoQJeXh3S0qbao70G4/DsPF/8AqwYonh7Vnakp2+my9QOKK8aQEC3NkoQQhk4ZMCilooGu5uaeYHm11gVKqVIgDmOOhsbwfkUT9DpAltd6o66jlKrvVVBNm4IcV21slHTVleSMGknOli2NuZwQAVVWVpKbmwvAtm3biIqSWWNFy/C+13YcPFh7r0VHGUtqlyadVwHVdbC6shJdVWV8VlahqyrxVFaiKyvBK606j8drm8oqtLMKXeVEu5xGXmcV2uky8zjB5YQqJ9rprM3rdIalP0iv9XDheiiJjmZw9w959+RPQ9Vdot2rjhvffvLO8BZEdGj5FZbaUnugfOHSKQMGIMFrvaQB+asDhvgWvI53Y97GXier/iyG3+7eVbtx773GIoQQQlRbH+4CCNHpdQN21ZurFdnCXYAw8Z6KtKoB+SvNz8b2aWvMdSq91mUSBCGEEEKIzql7uAvgq7PWMFR4rTdkSsvqdhXlQXM17zrebTcae536mjD1Bn4y1ycAext5fiEaKg1YZq6PB/aHsSyiY5N7TbQGuc9Ea8kEqkfTrK/fa6vrrAGD94zNDWn+E2d+NqT5UlOvE+e13qjraK2D9o9Q1oaoe+vLL0RT+dxr++VeEy1F7jXRGuQ+E63F515rSOuXVtUpmyRprSuAPHMzaIdhpVQKtQ/zDe4rYPL+xVJfx2TvWoLGXkcIIYQQQogW0SkDBlN1t66BSqlgNS1DvdY3NPEavucJ9XWEEEIIIYRoEZ05YFhofsYB44LkO9Zr/aeAufzbAWT7OY8/U8zPvcDORl5HCCGEEEKIFtGZA4ZPvNav8JdBKWUDLjU3DwE/NOYCWmsNfGpuDlVKTQhwnQnU1jB8ah4nhBBCCCFE2HXagEFrvRRYYG5epZQ62k+2P1A7u/OTWmvLrBpKqalKKW0uswJc6gmgehaep5VSliFTze2nzU2XmV8IIYQQQog2odMGDKZbMYYwdQBzlVJ3K6UmKKWmKaVeAB4x820GHmvKBbTWm4FHzc0jgJ+UUr9VSh2hlPotRjOnI8z9j2qtZdplIYQQQgjRZnTWYVUB0FqvMh/a3wQSgQf9ZNsMzNRaF/vZ11D3YkzCcSUwBvifnzyvAH9uxjWEEEIIIYQIOSXN5UEp1QejtmEmxvCnVcBW4H3gGa11WYDjplLbr+E1rfXl9VxnBnAtxuQvXYFcjAlhXtBaz2nu9xBCCCGEECLUJGAQQgghhBBCBNTZ+zAIIYQQQgghgpCAQQghhBBCCBGQBAxCCCGEEEKIgCRgEEIIIYQQQgQkAYMQQgghhBAiIAkYhBBCCCGEEAFJwCCEEEIIIYQISAIGIYQQQgghREASMAghhBBCCCECkoChg1NK9VFKPaaU2qiUKlVK5Sulliml7lBKxYa7fKLtUkp1V0qdopT6u1JqjlIqVymlzWVWE853slLqY6XUHqVUpfn5sVLq5BYovmhHlFJHKKX+opSa63V/lCilNiulXlVKTWrk+eReE3UopRKVUuebfxN/VEptVUoVKqWqlFIHlVLzlFJ3KqVSG3i+iUqpN5VSu5RSFUqp/Uqpr5VSF7T0dxHtl1Lqn15/S7VSamoDjgn77zSltW6ta4lWppQ6FXgTSAyQZTMwU2u9tfVKJdoLpVSwXw6vaa0vb+B5bMCLwFVBsr0MXKe19jS8hKIjUErNByY3IOvrwDVa66og55J7TQSklDoB+KYBWXOBi7XWXwc5133A/xH4xeuXwDla64rGllN0XEqpw4FlgMMreZrWel6A/G3md5rUMHRQSqkxwLsYwUIJcC8wETgeeMnMNhj4UimVEJZCivZkNzC3icc+QO0vu1XABcCR5ucqM/1q4B/NKaBotzLMz2zgSeAcjPvjaOD3wF5z/6XArHrOJfeaqE8WRvB5K3AWxn12DPBb4H3ADXQFPlNKHebvBEqp64C/YjxDbcO4544EzgB+MLPNBP7bUl9CtD9eD/8O4GADD2szv9OkhqGD8npr5wKmaK0X+ey/A3jE3Pyb1vq+1i2haOuUUn/DeBOyTGt9QCnVF9hh7m5QDYNSajCwDuMX5HKMe7Hca38s8CNwBMa9OkxqvDoXpdQXGA9wH2qt3X72dwV+wnjBAXCs1nq+n3xyr4mglFJ2f/eYT54zgI/NzY+11mf57O8CbAeSMF6kjNNa53pfwzz+VDMp4Ntj0bkopW4DHgc2Ytwjd5u7/N4jbe13mtQwdEBKqSOpreJ/xTdYMD0GbDDXb1VKRbRK4US7obX+q9b6C631gWac5jZqq15v8f5lZ16jDLjF3HQAtzfjWqId0lqforV+L9CDnPkw9gevpHMCnOo25F4TQdQXLJh5PgE2mZv+mspdjREsAPzJO1jwusaNGDUVAHc0qbCiQ1FK9QbuNzevBwI2rfRyG23od5oEDB3TGV7rr/rLYLZ1e93cTAamtWyRRGejlFLA6ebmRq31Yn/5zPTqP9Cnm8cJ4e0Hr/UBvjvlXhMhVmx+RvvZd4b5WQR85O9grfUe4Ftz83hp9iuAZ4F4jNr5H+vL3BZ/p0nA0DFVjyhSCqwIks/7pj2m5YojOql+1LZPr+8XZPX+TKBvSxVItFtRXuv+3hLLvSZCQik1BDjc3Nzosy8So/04wKJgHfCpvc+iMJqMiE5KKXUecAqQD/yxgYe1ud9pEjB0TMPMz61aa1eQfN6/DIcFzCVE0wz3Wt8YMFfd/XIvCl/Heq1v8LNf7jXRZEqpWKXUIKXU7zEevqqbgTzhk3UwYDfX5T4T9VJKJWMM5gB+mrAF0eZ+pznqzyLaE6VUNMYIDwB7guXVWhcopUqBOKBXS5dNdDo9vdaD3osYI5dUk3tR1DBHFrnLK+k9P9nkXhONopS6nABNdk0PA2/7pMl9JhrrESANY+CGVxpxXJu71yRg6Hi820qWNCB/dcAQ3zLFEZ1YY+7FUq91uReFt9upbQbykdbaXzNLuddEqPwCXKu1XuZnn9xnosGUUpMxOsm7gOt144YlbXP3mjRJ6ni8O2k1pBd+pfkZ0wJlEZ1bY+7FSq91uRcFAEqpYzHe9IIxbvkNAbLKvSYa6xNglLlUj2v/MUb/hXeUUqf4OUbuM9EgZn+XFwEFPK61XtvIU7S5e01qGDoe71klIxuQv7ozYXnQXEI0XmPuRe9OrXIvCpRSIzAe4BwY99K5WutAkx3JvSYaRWt9CDjklbQM+J9S6hLgNeBTpdRVWutZXnnkPhMNdQ8wFGOujr814fg2d69JDUPHU+y13pCqqTjzsyHNl4RojMbci3Fe63IvdnJKqX4YM4unYIyKdL6/ydq8yL0mQkJr/QbGjM824BlzorZqcp+JeimlhlI7KdstWuvSYPkDaHP3mtQwdDBa6wqlVB6QirXTTB1KqRRqb7SsYHmFaALvjlpB70WsHbXkXuzElFIZGGPYZwAauFJr/Wk9h8m9JkLpU+A8jL+PJ1Hb+VnuM9EQt2PUCmwHYpVS5/vJM9Jr/TilVJq5/rkZYLS5e00Cho5pPcYMlQOVUo4gQ6sO9Vr3N1ShEM2x3mt9aMBcdffLvdhJKaW6At8A/c2kW7TWrwc5pJrcayKUcrzW+3itb8ao8bIj95kIrLqJUH/gnQbk/z+v9X4YnZjb3O80aZLUMS00P+OAcUHyeY9t/lPLFUd0UjuAbHP92GAZgSnm515gZ0sVSLRdSqkk4Gtqxx+/S2v9bAMPl3tNhFKm13pNEw9zoral5ubRZsfWQKrvw0pgeWiLJzqBNvc7TQKGjukTr/Ur/GUwxza/1Nw8BPzQskUSnY05hFx1U5KhSqkJ/vKZ6dVvSD5t5NBzogNQSsUCXwJjzaQHtNb/bOjxcq+JEDvXa32Nz75PzM9E4Cx/ByulegInmJvfaa2L/eUTHZPW+nKttQq2YO0IPc1r307zHG3ud5oEDB2Q1nopsMDcvEopdbSfbH+gdkbAJ7XWzlYpnOhsnsCowgd4WillGfLN3H7a3HRRd2ZV0cGZb2k/Bo4xk57UWv+5Cad6ArnXRBBKqcvNyU2D5bkdmGFu7qD2b2m1l4FCc/1hpVSqz/F24D/Uzgj9aLMKLTqzJ2hDv9OkD0PHdStGM6MYYK5S6kGMWoQY4HzgWjPfZuCxsJRQtGlKqUnAQK+krl7rA82ZUmv4DD9YnbZZKfUoxky9RwA/KaX+CWwDBgB/AsaY2R/VWm8J2RcQ7cU7wHRz/XvgFaXUyCD5q7TWm30T5V4TDXAf8JhS6kOMprvbMJocJWDMx3ARtYFrFcYEbm7vE2it85VSfwKex+jfsEQp9QBGTUQGcBswzcz+jtZ6Xgt+H9GBtbXfaUpqZDsupdSpwJsYVaf+bAZmaq23tl6pRHuhlJoFXNbQ/GY1q7/z2ICXgCuDHP4Kxh9nT2PKKNo/pVRj/wjt0lr3DXAuuddEQEqpnVg7MQeyB2N0rm+CnOtvGJ1V/f7eA2YDZ2utKwLsF52YUuo+4K/m5rRAgWVb+p0mTZI6MK3158Bo4HGM4KAMo7/CcszIVIIF0dK01h6t9VXATIw2mdkYb++yze0ZWuur5QFONJfca6IeJ2I0x/0IWA0cwGjKUYzx1vZDjH5/Q4IFCwBa678CkzCGXM3CuM8OYozydaHWeqYEC6K52tLvNKlhEEIIIYQQQgQkNQxCCCGEEEKIgCRgEEIIIYQQQgQkAYMQQgghhBAiIAkYhBBCCCGEEAFJwCCEEEIIIYQISAIGIYQQQgghREASMAghhBBCCCECkoBBCCGEEEIIEZAEDEIIIYQQQoiAJGAQQgghhBBCBCQBgxBCCCGEECIgCRiEEEIIIYQQAUnAIIQQQgghhAhIAgYhhBBCCCFEQBIwCCGEEEIIIQKSgEEIIYQQQggRkAQMQgjRTEqp+5RSWiml20BZ+laXRSl1ebjL09kopS73+vn3DcH5rjTPtUYppUJQxDZJKXWu+T03K6Uiwl0eIYSVBAxCiA5FKWVXShWZDx8r68mrlFJ5Xg94V9aT/zKvvDeEtuRtj1KqpxkMLVBK5SilnEqpcqXUHqXUfKXUk0qpc5RSSeEua0eklIoHHjQ3/661DntA6k0pNdf8v/BkCE73IbAeGATcEoLzCSFCSAIGIUSHorV2Az+bm4cppRKDZB8BdPHanlzP6b33z29C8doNpdQ1wCbgr8AkoCvgAKKBTIyfxe+A94EXwlTMju53QA+MB+kPwlwWC6VUAnCsufl5c8+ntfYAD5ibdyml4pp7TiFE6EjAIIToiKof5m3AxCD5qgMAt892fflzMR7iANBa36e1VlrrDtFkRCl1AfAiEAtUAM8BZwBHAOOB04H7gVVhKmKHp5SKAX5vbj7e1moXgBOBSKAI+DFE53wX2At0A64L0TmFECEgAYMQoiPyfvs/JUi+6n3vm58DlFIZ/jIqpboDg83NhW3wAS4klFJ24N/mZjFwlNb6Rq31p1rrFVrr5Vrrz7TWf9FajwWGAx+FrcAd18VAKlBJG6tdMJ1qfn6ttXaG4oRm7eC75ubNSil5RhGijZD/jEKIjmgZxptxCF5rUL3vA2BbPfk7S3Oko4A0c/0FrfXqYJm11hu01u+1fLE6navMzy+11ofCWRBf5oP8DHPzixCf/i3zsx8wLcTnFkI0kQQMQogOR2tdCSw1N8crpaJ88yil+mG0xQdYaC7QhIChvlGSlFI7zf2zzO0hSqmXzPRKpdQBpdTHSqkJ9X03s1P3jUqpJWbn7kKl1Eql1B/9fc8m6O21vrWpJ/E3WpM5Es63SqmDZufpjUqph5RSyQ085zSl1GtKqe1KqTLz+69RSj0aqGYo1OdQSqUopR42y15ufpdvlVLnNuT6DSxjH4zADYzOwIHyTfX6GU81O/FfpZRaaHbmL1JKLVVKXeJzXKRS6nql1GKlVL5Sqlgp9ZNS6rwGFnECRp8WDzDbT7nGKaVeUcaIR6VKqQqlVJZSaoVS6lml1GlK+R/xSWu9Ethhbl7QwPIIIVqa1loWWWSRpcMtGG3stblM8bP/MnPfZnP7anN7dYDzrTD3FwJ2n333VV8rwLE7zf2zgDOBUq+yeS8u4LdBvlM8RrDi71htlnGM1/blTfi5neV1/BPN+Pn39S4H8EqQcu8FhgY5VzTwTpDjNVACnNrC5xhmljXQ8f81v2v1dt8m/uwu8zpH/yD5pnrl+w3wWZCyPWkek4LR5yBQvnsaUL6HzLwL/ey7HaNPULCfswbig5y/+t9pT0v8bpBFFlkav0gNgxCio/KuBfBXa1CdttDnc6RSKsU7ozkizGHm5s/aaGvdFKOAt4EDwM0Yb2qPxgg4KgA78KJSqluA49/0KvdSjDewRwAzMfphjKX5IxZ5d2S+Til1XDPPB3AjcCXWMs8AqpsyZQBfmz9nC/NN9AfA+WbS58AlwDEYP7tbgd1AHPCBUuqIFjpHIvC1WVYw2trPML/LhcBy4ArzuzZX9b9xntZ6ewOPuR+jX8FbGPfDOIyf9SZz/++UUidgBK0TMTqyTzfzXQVkm/n+rpQaUc+1qvsvWEZHUkqNBv6F0XphB/AH4HiMIHYKcA3G/V9az/mrawczlVID68krhGgN4Y5YZJFFFllaYsF4G+/EeFP5lZ/9m8x9V3il5Zhpp/jkPZHaN6N3+znXfdX7A5Rlp9fxy4FEP3ku8spzu5/9M732fwk4/OT5C9a3uJc38Wf3uc95lgJ/A04GujbwHH19zhGozP/nlecRP/uvMfdVAScFuFYKsJbAb71DcY5H67kHIjACCu/v3LeJP//15vHf1pNvqs/1bvWTJw1jJCMNHMRoRnSGn3yjqa0ZeDLINft5XW+Ez76/U1tT0yPIOZIAW5D9U7yuEbDGTRZZZGm9RWoYhBAdkta6hNq35RPN0X+AuiMeeR32k/npWyMRyg7PV2qti/ykv03tW15/NSLVb64rgWu01i4/ef6B8dDbXFdgdByvNh4jGJkN5CilNimlnlZKjW3g+YKV+QFqy3yVUiqyeodZM/Anc/MprfVX/k6utS4A7jA3j1FKDQrxOSKp7YS8GnjYz/FOM08oRgzqaX4ebMQxS7TWdSZQ01rvBz42N7sB72mtP/GTbzX19+MBOMX83KG1Xuezr7qz/Gat9YFAJ9BaF2pj3oVAvL93/yD5hBCtRAIGIURHVv1wnwAc7pVePZzqAa31Fq/0hT77q1U/QFVgfZBurDU6wKhDWmtNbYBjeUgyg52p5uZcrXU2fpgPYa81o3zV58nFaK5zLeBvtuzBGE2qViil3lD1T7LV0DJ3wWhWVW04MMBcr29oUe9A7ugQn2McRg0EwGvmv1UdWus9wNx6rhGU2XG9umlWQSMO/V+Qfb82Ml+wh3S/zZFM+8zP4UqpI4Ocoz75XutpAXMJIVqNBAxCiI5sgdf6ZD/r3rUL3vnHKWPirOq3y9UPP0u01lXNKM/GevZXPyj5tuUfgDGJGtQfsCytZ3+DaK2dWuuXtNbjMEaTOh+jffoCrG/RLwY+867B8aMxZR7lte7dl2CR14hAdRaMZjDV0kJ8Du8ytfTP33vm8cYEDJuD7DvUyHx1+pJAg2Z3fgfj3ogCflJKfW6OxjQy0KhIAXh/b5nxWYg2QAIGIURHtgCjHTQ0LGBYCZRhtEevHuJ0PMYIO9D85khl9eyvbqbh+/Dt/RBZXzOVgE1Bmkprna21fldrfYfWegrGw/RD1Jb3OIIPgdmYMnt/1+6NLqwh1ms9FOdozZ9/hdd6TCOOC3ZveTf/aUi+QM8G1bM7F+Nndmet9UaM+6AAcGA0X3oOWAMcNGuj6ptNHazfOySTwgkhmscR7gIIIURL0VrnK6XWASMxgwRztJvqEY8W+uR3KqWWYjT/mQL8QNubsM1vc5hWLYDW+cA95lvju8zkczFGcfJ7SBMv5R04nYrRebwhvB/qQ3EOby398z+EMbyuA2ug0hZU918IOLuz1vpDpdS3wG8xAozJGH0numLURl2slHoNoy9PoH4M3t/7UCgKLoRoHgkYhBAd3XyMgKGbUmooxigvNozmJ6v85F+IETBUBwrV/RmcwKIWLWlg3k00etSTt779ofQStQFDsOEvG1Nm7/breV7rh7TWTenQHYpz+P78gzXradbPX2utlVK5GLU4KfXlby3KOruzv+ZINbTWhcCL5oJSahhwOnALxrC0l2H836vTSdvk/b13N73UQohQkSZJQoiOzrcfQ3UgsFj7n0+hutZhgtkBdaK5vVJrXd/48S1lG1Buro+vJ299+0PJuyNzsDfvjSmz9wO9d0B3TEML5SMU51jjtd4aP//q6w0Omqt1TcCoKfA7u3MwWusNWuuHzXNU/x8KNqu09/f2HYlJCBEGEjAIITo672ZEU6itMfDtv1BtEcZ49HEYs/Ym+TlPqzKHI51nbk5XSqX7y2e+Bb6sOddqZOdU7w7FwSYYa2iZC7COyrQS2GOuX6uUiqbxQnGOFdTWMlwS6GeklMrEmAytuaqD3CH+JrMLk+rRkRaZo2g1mtY6i9rama5BslYHXU78j9IlhGhlEjAIITo0czjPbebmNGofchcEyF9E7RveO712hbv/wnPmZxTwQoBRie7GOqJPU5yslHpPKTUmWCalVBfgKa+kT4NkD1bmu6gt83+11pXVO8w27g+am/2B181an0BlSlRK3eydFqJzVAKvmpuHUztfg/dxDowmWpG++5qg+t60YQ3Kwqk6YPgiUAal1BlKqeQg+3sBQ83NHUGuVT0q2SJzPhUhRJhJHwYhRGewAGNo0kxz2wUsDpJ/IcaDYfV49B4C2JF20gAAA+lJREFU10i0Cq3150qpzzEe3E7FGLbycWALxkhAl2N0NF1O8x4ybRgdmM9VSv2KMUPzMowx9qvMa03CmKOhegSiFQSf/2F5gDJfhjFcKxi1APf7OfZ54DfAmWa5xiqlXsAYvrQQSMR4CJ0KnIYxytAzLXCOv2M0o+kJ/FMpdTjwOkbn6MHA7zHejDf35w/wM8as492A4zE634eNUqovMMLcDNZ/4TbgLaXUl8D3wAaMn28Kxs/kFmpHQHo+wLUSqK1h+NhfHiFE65OAQQjRGczHeKCutkprHWx4yYUYE5NVW6O1PtQC5Wqsi4A5GG3xj6LuJFyrgOswHuCbqgCjnXkcxmhShwXPzjfABQFmca72LMb4/Zfjf+KwfcCJZmdZC7MT8G8xOshejxH4PRLkWnVGNwrROQqVUicB32J0SL6AukPJzsIYbvRVmkFrXaWUeh34g3mNPzfnfCFQXbvgb3ZnX7GYAWeA/R7gr/5mmzadhTGMsYvgk8wJIVqRNEkSQnQGvs2J6qst8G2uFO7mSABorYsx3oLfgvHWvwRjTPxfMJojTcQ6ylBTrvETxpvt04B/YzwAZwOVGA9x+Rjtyl8Apmmtp2ut8wKczvu8VwAXYvTFyDPPtxnjwX2E1np9kGOdWusbMYKXpzGajBVi9DUpxPj+rwDnAMNa8BzrMN60P4JRS1IJ5GLUAFxofsdQecn87K+UmhA0Z8sLNruztwswap7exvh57se4Z0owOi8/B4zRWv8jyDkuND8/1lrvb2qBhRChpQLMcC+EEEI0mdmMpbqd+hVa61nhK037pJSaDZwMvKy1viZMZUjACIoigela629a8Fp9MPob2YGjtdbBmg0KIVqR1DAIIYQQbdPdGE14LjU7DIfDdILM7hxi92AEC19JsCBE2yIBgxBCCNEGaa1/xWjeE4kRPIRDMfA34BatdVVLXcQMiC7HaCJ2Z/DcQojWJp2ehRBCiLbrHoxmOhVKKaVbuR2x1nouMLcVLtULeAjYrrVeU19mIUTrkj4MQgghQk76MAghRMchTZKEEEIIIYQQAUkNgxBCCCGEECIgqWEQQgghhBBCBCQBgxBCCCGEECIgCRiEEEIIIYQQAUnAIIQQQgghhAhIAgYhhBBCCCFEQBIwCCGEEEIIIQKSgEEIIYQQQggRkAQMQgghhBBCiIAkYBBCCCGEEEIEJAGDEEIIIYQQIiAJGIQQQgghhBABScAghBBCCCGECEgCBiGEEEIIIURAEjAIIYQQQgghApKAQQghhBBCCBGQBAxCCCGEEEKIgCRgEEIIIYQQQgQkAYMQQgghhBAiIAkYhBBCCCGEEAH9P+zHh8TcQdJeAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1gU1/oH8O/sUpbeBKlSRBRFg0FEqmCsYCxoDBoLam7ML4kl8aqJsZFrrFFjydWYGE2MLdFojF4jarCAJtbYsCDFXui97/7+IDsyW2CBbey+n+fhkZ2dnXN2HWDeOed9DyMSiUQghBBCCCGEEBl4mu4AIYQQQgghRHtRwEAIIYQQQgiRiwIGQgghhBBCiFwUMBBCCCGEEELkooCBEEIIIYQQIhcFDIQQQgghhBC5KGAghBBCCCGEyEUBAyGEEEIIIUQuChgIIYQQQgghclHAQAghhBBCCJGLAgZCCCGEEEKIXBQwEEIIIYQQQuSigIEQQgghhBAiFwUMhBBCCCGEELkoYCCEEEIIIYTIRQEDIYQQQgghRC4KGAghhBBCCCFyGWi6A0T1KioqcP36dQCAvb09DAzov50QQgghRFvU1NQgOzsbANC1a1cIBAIN94iLrhz1wPXr19GzZ09Nd4MQQgghhDTi/PnzCAwM1HQ3OGhKEiGEEEIIIUQuGmHQA/b29uz3p0+fhqenpwZ7Q3RZeXk5Tp8+DQCIiIiAiYmJhntEdBWda0Qd6Dwj6pKZmYmIiAgA3Os2bUEBgx6on7Pg6OgIV1dXDfaG6LLy8nK0adMGAODq6kp/XInK0LlG1IHOM6Iu5eXl7PfamGtKU5IIIYQQQgghclHAQAghhBBCCJGLAgZCCCGEEEKIXBQwEEIIIYQQQuTSvqwKQgjRcuXl5SgqKkJpaSlqa2s13R29JBQKYWdnBwB48OABeDy6/0WUj84zoiyGhoawtraGpaVlqzyPKGAghJAmKCwsxJMnTzTdDb0nEonYijW1tbUQCoUa7hHRRXSeEWWpqalBeXk5ysvL4eTkpOnuNBkFDIQQoqDy8nKpYEEby9/pC4ZhAND/AVEtOs9IS4lEInY0uqCgANbW1q2uRC+d/YQQoqCioiL2e0tLSzg6OoLP52uwR/pLKBSy/x+tdYifaD86z4iyZGdnIycnBwCQl5cHFxcXDfeoaejMJ4QQBZWWlrLfU7BACCFEUeJcGACoqqrSYE+ahwIGQghRkHhI2cDAgIIFQgghCuPxeOzfjZqaGg33pukoYCCEEEIIIUTFxPkwrREFDIQQQgghhBC5KGAghBACANi2bRsYhkFWVpamu0JUxMPDA/Hx8QrtGxkZicjISJW0e/LkSTAMg5MnTyrl+IQQ1aKAgRBCiFbZs2cPxo4diw4dOoBhGLkXrcnJybCxsQGfzwfDMJyvP//8k7Ovh4cHGIZB3759ZR7rm2++YV978eJFAMCKFSvAMAyuXLnC2VckEsHGxgYMwyAzM5PzXEVFBYyNjTFmzJhmvnv1Sk1NxaJFiyhI1KAlS5bgwIEDSj1mfHy81M+ErC9Fg8fmuH37NmbPng1/f39YWFjAyckJMTEx7M9Xc8XHx8Pc3Fzu8wzD4IMPPmhRGw0pKSnBwoULMXDgQNja2oJhGGzbtk1l7WkLKqtKCCEEADBu3DjExcXB2NhYo/3YuHEjLl26hMDAQOTm5ja6/9SpU9GzZ0/ONm9vb6n9BAIBkpKS8OzZMzg6OnKe27FjBwQCASoqKthtYWFhAOoCk+7du7Pbb968iYKCAhgYGCAlJQWenp7scxcuXEBVVRX7Wm2XmpqKhIQEREZGwsPDg/NcYmKiytqNiIhAeXk5jIyMVNZGa7FkyRKMHDkSw4YNU9oxp0yZwgmOMzMzsWDBArzzzjsIDw9nt7dv315pbUr69ttvsWXLFowYMQLvvfceCgsL8fXXX6NXr174/fff5Qbv2i4nJwefffYZ2rVrh1deeUVvRskoYCCEEAIA4PP5WlH9afv27XBxcQGPx4Ofn1+j+4eFhWHUqFGN7hcaGooLFy5gz549mD59Orv90aNHOHPmDIYPH459+/ax23v06AGBQIDk5GRMnTqV3Z6SkgI7Ozv06NEDycnJGDt2LPtccnIy26fWTpUX8zweDwKBQGXH13fBwcEIDg5mH1+8eBELFixAcHAw53xVpdGjR2PRokWc0YBJkybB19cXixYtarUBg5OTE54+fQpHR0dcvHgRgYGBmu6SWtCUJEIIIQDk5zAcOXIE4eHhMDMzg4WFBWJiYnDz5k3OPteuXUN8fDy8vLwgEAjg6OiISZMmKTRCIMnNza3JC2QVFxc3WqpQIBAgNjYWO3fu5GzftWsXbGxsMGDAAM52IyMjBAYGIiUlhbM9JSUFwcHBCA0NlfmctbW1QoGOWGRkJPz8/HDt2jX07t0bpqam8Pb2xt69ewEAp06dQlBQEExMTNCxY0ccP36c8/r4+Hip0QEAWLRoUYNVWbZt24Y33ngDABAVFcVOUxHfMW1ODoNIJMLixYvh6uoKU1NTREVFSZ0rgOwchpZ+DooQCoVYu3YtunbtCoFAAHt7ewwcOJAzTUY8pWXHjh3w9fWFo6MjIiMjcfr0aaW3xzAMSktL8f3336tlmpA8Hh4eGDx4MBITE+Hv7w+BQIDOnTvjl19+kdo3PT0d6enpjR4zICBAauqQnZ0dwsPDcevWLc72srIy3L59m13YTNnWr1+PLl26wNTUFDY2NujRo4fU74Hbt2/jwYMHjR7L2NhYaoRSH1DAQAghLSAUipBbUql1X0KhSCnvb/v27YiJiYG5uTmWL1+O+fPnIzU1FWFhYZzA4tixY8jIyMDEiROxfv16xMXFYffu3YiOjoZIpJy+yDN58mRYWlpCIBAgKiqqwTnSY8aMwfnz5zkXPDt37sTIkSNhaGgotX9YWBgeP37Mea8pKSkICQlBSEgIOz0JqLtYPnv2LIKDg5sc8OTn52Pw4MEICgrCihUrYGxsjLi4OOzZswdxcXGIjo7GsmXLUFpaipEjR6K4uLhJx5clIiIC06ZNAwDMnTsX27dvx/bt2+Hr69vsYy5YsADz58/HK6+8gpUrV8LLywv9+/fnLHrYEFV/DpMnT8aMGTPg5uaG5cuX4+OPP4ZAIJDKeTl16hRmzJiBt956C5988gny8vIQHR2NGzduKLW97du3w9jYGOHh4eznP2XKlCa1oSxpaWl48803MWjQICxduhQGBgZ44403cOzYMc5+r732Gl577bVmt/Ps2TO0adOGs+38+fPw9fXFhg0bFD5OTk6OzC9J33zzDaZNm4bOnTvjyy+/REJCAvz9/fHXX39x9vP19cX48eOb96b0AE1JIoSQFsgvq0LA4qbf6VS1S/P6ws68ZbkIJSUlmDZtGt5++21s3ryZ3T5hwgR07NgRS5YsYbe/9957mDlzJuf1vXr1wujRo5GcnMyZN60shoaGGDJkCF5//XU4ODggNTUVX3zxBcLDw3H27FlO3oFYnz594OjoiF27dmHevHm4desW/v77b6xduxYZGRlS+9fPY/Dw8MCzZ8+QkZGB0NBQvPrqq+DxeDh79iyio6ORmpqK/Pz8Zk1HevLkCXbu3InRo0cDAPr164dOnTphzJgxOHv2LIKCggDUXdQMGDAA+/bta/GdaC8vL4SHh2PdunXo169fiysiZWdnY8WKFYiJicFvv/3Gjm58+umnWLJkiULHUOXnkJSUhG3btmHatGlYu3Ytu33mzJlSQe2NGzdw8eJFdO/eHUVFRYiNjUXPnj2xYMECmXfdm9ve2LFj8e6778LLy0ttU4XkuXv3Lvbt24fY2FgAdcFOp06dMGfOHPTr108pbZw5cwbnzp3DvHnzWnSc0tJS2NvbK7Tv4cOH0aVLF/z8888talPfUcBACCFEpmPHjqGgoACjR4/m3Lnj8/kICgpCUlISu83ExIT9vqKiAiUlJejVqxcA4PLlyyoJGIKCghAUFARLS0vweDwMGTIEI0eORLdu3fDJJ5/g999/l3oNn8/HqFGj2IBhx44dcHNzQ3h4uMyAISQkBDwej81VSElJgaGhIQIDA2FiYoJu3bohJSUF0dHR7PSk5gQM5ubmiIuLYx937NgR1tbWcHFxYS+Sxe8ZgMy+atrx48dRVVWFqVOncqZCzZgxQ+GAQZWfw759+8AwDBYuXCj1nOTUreDgYAQEBEAoFAKomyY3ZMgQHDp0CLW1tQrl+jSlPW3g7OyM4cOHs48tLS0xfvx4LF++nFMooLkVtV68eIExY8bA09MTs2fP5jwXGRnZpJFIgUCA3377TeZzksGNtbU1Hj16hAsXLjSYb6DqkdDWjgIGQgghMqWlpQGouysvi6WlJft9Xl4eEhISsHv3brx48YKzX2Fhoeo6KcHb2xtDhw7FL7/8IvfCbsyYMVi3bh2uXr2KnTt3Ii4uTu4FnLW1Nbp06cIGAykpKejevTsbIIWEhHCeMzIykqrYpAhXV1epPlhZWcHNzU1qG1A3dUfb3L9/HwDQoUMHznZ7e3vY2NgodAxVfg7p6elwdnaGra1to/tKvgcA8PHxQVlZGbKzsxWaw96U9hT17NkzzmMrKytOsN4S3t7eUp+9j48PgLogoSXz9ktLSzF48GAUFxcjOTm5wbKoiuDz+QonTc+ZMwfHjx9Hz5494e3tjf79+2PMmDEIDQ1tUR/0DQUMhBBCZBLfXd2+fbvMiwUDg5d/QkaNGoWzZ89i1qxZ8Pf3h7m5OYRCIQYOHMgeR13c3NxQVVWF0tJSTlAjFhQUhPbt22PGjBnIzMxsdM2EsLAwbNq0CQUFBWz+glhISAi+++47VFdXIzk5GQEBAc2q/iPvjrW87fXvhsoLdmpra5vcD01ryeegD5ycnDiPt27dqpEk6aaoqqpCbGwsrl27hqNHjzapIIAy+Pr64s6dOzh06BB+//137Nu3D//973+xYMECJCQkqLUvrRkFDIQQ0gI2pka4NE/7ygPamLa8JKa4RruDg0ODd/Py8/Nx4sQJJCQkYMGCBex28QiFumVkZEAgEDR4F3P06NFYvHgxfH194e/v3+DxwsLCsHHjRhw/fhxXrlzBrFmz2OdCQkJQXl6Ow4cPIyMjAyNGjFDW21CYjY0Nm3hdn/iOf0OUOTXG3d0dQN3/u5eXF7s9OztbK0ZE2rdvj6NHjyIvL6/Ru/6yzt27d+/C1NRU4bnzirbXlP8DyQTkLl26KPzaxty7dw8ikYjTn7t37wKAzCpcihAKhRg/fjxOnDiBn376Cb1791ZGV5vMzMwMb775Jt588002gPn888/xySefUHlfBVGVJEIIaQEej4GdubHWffF4Lb8QHDBgACwtLbFkyRJUV1dLPZ+dnQ3g5d1fybu9X375ZYv70BBZFVGuXr2KgwcPon///g1WKnr77bexcOFCrFq1qtF2xDkJq1evRnV1NWeEwcPDA05OTlixYgVnX3Vq3749CgsLce3aNXbb06dPsX///kZfa2ZmBgAyA46m6tu3LwwNDbF+/XrOuaDq80BRI0aMgEgkknlXWfLcPXfuHC5fvsw+fvToEXteKbpWiaLtmZmZKfz59+3bl/MlOeLQEk+ePOGcM0VFRfjhhx/g7+/PGWFUtKwqULeo4p49e/Df//6XTaZWN8nSzkZGRujcuTNEIhHn95qiZVX1FY0wEEIIkcnS0hIbN27EuHHj8OqrryIuLg729vZ48OABDh8+jNDQUGzYsAGWlpaIiIjAihUrUF1dDRcXFyQmJiIzM7NZ7Z4+fZqteZ+dnY3S0lIsXrwYQF0p0IiICAB1i0AJBAJERESgbdu2SE1NxebNm2Fqaoply5Y12Ia7uzsWLVqkUH/atWsHNzc3nDt3Dh4eHnB2duY8HxISwia4amJedFxcHObMmYPhw4dj2rRpKCsrw8aNG+Hj48O56JXF398ffD4fy5cvR2FhIYyNjdGnTx84ODg0uR/29vb497//jaVLl2Lw4MGIjo7GlStXcOTIEakympoQFRWFcePGYd26dUhLS2Ony505cwZRUVH44IMP2H39/PwwYMAATJ06FSKRCFu2bAGAJk1hUbS9gIAAHD9+HKtXr4azszM8PT05Cd7q4uPjg8mTJ+PChQto27YtvvvuOzx//hxbt27l7CcuqdpY8vOXX36J//73vwgODoapqSl+/PFHzvPDhw9nA9aTJ08iKioKCxcuVPjnUlH9+/eHo6MjQkND0bZtW9y6dQsbNmxATEwMLCws2P18fX3Ru3dvhVZu3rBhAwoKCvDkyRMAwG+//YZHjx4BqAuSxDk2uoQCBkIIIXKNGTMGzs7OWLZsGVauXInKykq4uLggPDwcEydOZPfbuXMnpk6diq+++goikQj9+/fHkSNHpC6uFfHHH39IXZjNnz8fALBw4UI2YIiJicHPP/+MNWvWoKioCPb29oiNjcXChQvh7e3dgnctLSwsDLt27eKMLoiFhoZi37596NSpE+zs7JTariLs7Oywf/9+fPTRR5g9ezY8PT2xdOlSpKWlNRowODo6YtOmTVi6dCkmT56M2tpaJCUlNStgAIDFixdDIBBg06ZNSEpKQlBQEBITExETE9Os4ynb1q1b0a1bN2zZsgWzZs2ClZUVevToIfX/2rt3bwQHByMhIQEPHjxAx44dsW3bNnTr1k3p7a1evRrvvPMO5s2bh/LyckyYMEEjAUOHDh2wfv16zJo1C3fu3IGnpyf27NkjtaChov7++28AdaM1586dk3o+MzOTDRhKSkoASOdoKMOUKVOwY8cOrF69GiUlJXB1dcW0adNaVNr1iy++4Ez5++WXX9hyu2PHjtXJgIER6VvGkB569OgRW2Hi7t27Mqs/EKIM5eXlSExMBFB3V0dZ1Tu0RVpaGmpqamBgYEA/RxomFApRVFQEAGxZVUKUgWEYvP/++9iwYYPenGceHh7w8/PDoUOHNNL+7NmzsWvXLty7dw/Gxi1bP0abNfQ3JC0tja1K9fDhQ7i6umqii3Lp5plPCCGEEEJahaSkJMyfP1+ng4XWjqYkEUIIUbna2lo2SVoec3PzFtdn1yZ5eXmoqqqS+zyfz1e44o6mZWdnN1im1cjISKnrDTSFus8tfTyXVe3ChQua7gJpBAUMhBBCVO7hw4fw9PRscB9VJDxqUmxsLE6dOiX3eXd392avmqtugYGBDZZpVTRZVBXUfW7p47lMCAUMhBBCVM7R0VGqhryk+rX7dcGqVasaXH+gNeX47NixA+Xl5XKfV3QlZ1VQ9rnVWGqnLp7LrSVwJZpDAQMhhBCVEwgEDS7+posCAgI03QWl0US5WEWp+9zSx3OZEEp6JoQQQgghhMhFAQMhhBBCCCFELgoYCCGEEEIIIXJRwEAIIYQQQgiRiwIGQgghhBBCiFwUMAC4f/8+Zs6ciU6dOsHMzAy2trYIDAzEypUrUVZWppQ2srKyMGfOHAQEBMDa2hqGhoawtbVFSEgIPvvsM7x48UIp7RBCCCGEEKJMel9W9bfffsPYsWNRVFTEbisrK8PFixdx8eJFfPvttzh8+DC8vb2b3cb27dsxZcoUqRrW+fn5OHfuHM6dO4e1a9di9+7d6NevX7PbIYQQQgghRNn0eoThypUrePPNN1FUVARzc3N8/vnnOHv2LE6cOIF//etfAIC7d+8iJiYGxcXFzWojJSUF8fHxKC8vB4/Hw8SJE3HgwAGcP38ee/fuxeuvvw4AyMvLw9ChQ5GRkaG090cIIU2xbds2MAxDizjpMA8PD8THxyu0b2RkJCIjI1XS7smTJ8EwjMZWhyaENI1eBwzTp09HeXk5DAwMkJiYiLlz5yI4OBh9+vTB5s2bsWLFCgB1QcOqVaua1cbSpUshFAoBAOvXr8d3332HoUOHIjAwECNGjMDBgwfx0UcfAQDKy8uxevVq5bw5Qghppfbs2YOxY8eiQ4cOYBhG7kVrcnIybGxswOfzwTAM5+vPP//k7Ovh4QGGYeQuuPXNN9+wr7148SIAYMWKFWAYBleuXOHsKxKJYGNjA4ZhkJmZyXmuoqICxsbGGDNmTDPfvXqlpqZi0aJFFCRq0JIlS3DgwAGlHjM+Pl7qZ0LWl6LBY3Pcvn0bs2fPhr+/PywsLODk5ISYmBj256u54uPjYW5uLvd5hmHwwQcftKiNhoiDXVlfkr93dIneTkk6f/48zpw5AwCYPHkygoODpfaZOXMmtm7dilu3bmHt2rX49NNPYWho2KR2zp49CwCws7PDe++9J3OfBQsWsIHCuXPnmnR8XXf3eTHuPCtGLy872FsYa7o7hOi0cePGIS4uDsbGmv1Z27hxIy5duoTAwEDk5uY2uv/UqVPRs2dPzjZZ00gFAgGSkpLw7NkzODo6cp7bsWMHBAIBKioq2G1hYWEA6gKT7t27s9tv3ryJgoICGBgYICUlBZ6enuxzFy5cQFVVFftabZeamoqEhARERkbCw8OD81xiYqLK2o2IiEB5eTmMjIxU1kZrsWTJEowcORLDhg1T2jGnTJnCCY4zMzOxYMECvPPOOwgPD2e3t2/fXmltSvr222+xZcsWjBgxAu+99x4KCwvx9ddfo1evXvj9999b/WrZ06ZNQ2BgIGdbS6avazu9DRjqR/MTJ06UuQ+Px8P48ePxySefoKCgAElJSejfv3+T2qmqqgIAzh8USVZWVmjTpg1ycnLY/QmQnJaDidvOo7pWhDbmRtjxdi90dLTQdLcI0Vl8Ph98Pl/T3cD27dvh4uICHo8HPz+/RvcPCwvDqFGjGt0vNDQUFy5cwJ49ezB9+nR2+6NHj3DmzBkMHz4c+/btY7f36NEDAoEAycnJmDp1Krs9JSUFdnZ26NGjB5KTkzF27Fj2ueTkZLZPrZ0qL+Z5PB4EAoHKjq/vgoODOTdCL168iAULFiA4OJhzvqrS6NGjsWjRIs5owKRJk+Dr64tFixa1+oAhPDwcI0eO1HQ31EZvpySJf6mbmZkhICBA7n69e/dmv09JSWlyOx07dgQAqWHr+oqKipCTk8PZnwB7Lz1Eda0IAJBTUoUPdl5GWVWNhntFiO6Sl8Nw5MgRhIeHw8zMDBYWFoiJicHNmzc5+1y7dg3x8fHw8vKCQCCAo6MjJk2apNAIgSQ3NzfweE3781RcXIyamoZ/PwgEAsTGxmLnzp2c7bt27YKNjQ0GDBjA2W5kZITAwECp3/0pKSkIDg5GaGiozOesra0VCnTEIiMj4efnh2vXrqF3794wNTWFt7c39u7dCwA4deoUgoKCYGJigo4dO+L48eOc18fHx0uNDgDAokWLwDCM3Ha3bduGN954AwAQFRXFTqsQ5xU0J4dBJBJh8eLFcHV1hampKaKioqTOFUB2DkNLPwdFCIVCrF27Fl27doVAIIC9vT0GDhzImSYjntKyY8cO+Pr6wtHREZGRkTh9+rTS22MYBqWlpfj+++/VMk1IHg8PDwwePBiJiYnw9/eHQCBA586d8csvv0jtm56ejvT09EaPGRAQIDV1yM7ODuHh4bh16xZne1lZGW7fvs1eCynb+vXr0aVLF5iamsLGxgY9evSQ+j1w+/ZtPHjwoEnHVeT3jq7Q24BBfLJ6e3vDwED+QEunTp2kXtMU7777LgAgNzcXmzZtkrnPf/7zH6n9CZBXVs15nPaiBIsOSv/hIUSjhEKgNEf7vv7JnWqp7du3IyYmBubm5li+fDnmz5+P1NRUhIWFcQKLY8eOISMjAxMnTsT69esRFxeH3bt3Izo6GiKRSCl9kWfy5MmwtLSEQCBAVFRUg3Okx4wZg/Pnz3MueHbu3ImRI0fKnHIaFhaGx48fc95rSkoKQkJCEBISwk5PAuouls+ePYvg4OAmBzz5+fkYPHgwgoKCsGLFChgbGyMuLg579uxBXFwcoqOjsWzZMpSWlmLkyJHNLsRRX0REBKZNmwYAmDt3LrZv347t27fD19e32cdcsGAB5s+fj1deeQUrV66El5cX+vfvj9LSUoVer+rPYfLkyZgxYwbc3NywfPlyfPzxxxAIBFJzz0+dOoUZM2bgrbfewieffIK8vDxER0fjxo0bSm1v+/btMDY2Rnh4OPv5T5kypUltKEtaWhrefPNNDBo0CEuXLoWBgQHeeOMNHDt2jLPfa6+9htdee63Z7Tx79gxt2rThbDt//jx8fX2xYcMGhY+Tk5Mj80vSN998g2nTpqFz58748ssvkZCQAH9/f/z111+c/Xx9fTF+/HiF2584caLCv3d0gV5OSaqoqGBPKldX1wb3tbGxgZmZGUpLS/Hw4cMmtzVp0iQkJyfjhx9+wPvvv49Lly5hyJAhcHJywoMHD7B9+3Z2etSnn37arCG6R48eNfj806dP2e8rKyulyrtqq6pq6aj9p4uPEOBmiSHdHGW8gmha/fnf9b/XFUKhkL34FRczQGkOeKs6aLBXsglnpgFmbRrfsf5r/nlPQqEQQqEQJSUlmDZtGiZPnoyvv/6a3W/cuHHw9fXF559/zm5/99138eGHH3KO17NnT7z11ls4ffo0Z950s96PRAAkFAphaGiIIUOGYPDgwbC3t8etW7ewatUqhIeHS+UdAHUX9JGRkXB0dMTOnTvx6aef4tatW/j777+xZs0atkqd+P0DQEhICADg9OnTaNeuHZ49e4aMjAwEBwfj1VdfBY/HQ3JyMqKjo3Hz5k3k5+cjNDRUqr+NefLkCX788UeMHj0aQN1FWefOnTFmzBgkJycjKCgIQN0o9KBBg/Dzzz+zd6Klzsl671fedqFQCA8PD4SGhmLdunV47bXXOKMJ9V+j6HvJzs7GihUrEB0djYMHD7KjG/PmzcPSpUvZdusfs/5n3dLPoTFJSUnYtm0bpk6dii+//JLd/uGHH3L6BgA3btzA+fPn0b17d5SUlCA2NhY9e/bE/PnzOdPWWtremDFj8O6778LT05OTKN/U86cx8j7v+u7evYuff/4ZsbGxAOouiDt37ow5c+bIDBCa08czZ87g3Llz+PTTT2WeY5L/D7KIRCKUlpbC3t6+wX3Exzl06BC6dOmCPXv2KPQeGmvfwMAAsbGxGDRoENq0adPo7x15fZO8FqusrGzwdZqmlwFD/TsSDWXai4kDhpKSkia3xefz8f333+P111/HkiVL8O233+Lbb7/l7BMVFYW5c+c2ez6fm5ubwvv+9ddfCg0laoPsHD4A6eH0+b/eRFHmNTiYqL9PRHHNGb7XdnZ2djAxMQHDMOzaLUxZMaw03C9ZiouLIapt2hx0cZBXUlKCoqIiHDp0CAUFBRgyZIjUtMqAgAD88ccfnDVsqqur2eOUlpay03LOnTuHV155pVnvo7a2FjU1NZx2xIKCgtgLSKBuSsuAAQMQFhaGOXPmsFNZgLqLgJqaGpSWlmLo0KHYuXMnpk6diq1bt8LFxQWvvPIKUlNTAQClpaVse127dgWPx0NSUhKGDBmC48ePw9DQEB07doRQKESXLl2QlJSEsLAwnDhxAgDg7+8vs7/y1NTUwNzcHNHR0ezrnJycYGVlBScnJ/j6+rLbxXf/b9++zW6rrq6GUCiUalN8AVJ/u1AoRHV1NbtNfNFSVlYm9XrxVAtF38tvv/2GqqoqTJo0ifN3dtKkSVi6dCmnXfGiqPXbbenn0Jjdu3eDYRh8+OGHjb4mMDAQHTp0YP/uu7m5YdCgQTh69Cjy8/MVyvVpSnv1PxtVEI/wVFRUyGxHKBTCyckJr732Guf5UaNGYe3atUhLS0Pbtm0BAH///TcAxc8LsezsbIwZMwbu7u6YMmUK5/Wvvvoq8vPzFTpudXU1BAIBdu3aJfP54cOHo6qqij2OmZkZHj58iJMnT+LVV1+Ve1xF2/fz88OWLVvYxw393pFUU1OD8vJylJeX4/bt25znVDUdS1n0MmCof+dTkaQuccWQ5t6Zv3XrFn744Qdcv35d5vPnzp3Dli1b4OvrCxcXl2a1oYtq5cxiqBIy2HaXjw+71sJQbyfVEaJ64psLQ4YMkfm8hcXLIgT5+flYvnw5fvnlF2RnZ3P2U+WFkCQvLy8MGjQIhw4dQm1trcwLu5EjR+Lrr7/G9evXsXfvXsTGxsqd629lZYVOnTqx0xf++usvdOvWDSYmdXcsevbsyXnOyMiowbw4eZydnaX6YGlpKfU3wcqqLjwVT4PSJuJReMnKO23atIG1tbVCx1Dl55CZmQknJyfY2Ng0uq+s6kHe3t7Yv38/cnJy2ItnZbWnqOfPn3MeW1pasudiS3l6ekp99uKqPw8ePFDoPctTWlqKuLg4lJSU4MiRIwrdrG0In89XOL9m+vTpOHXqFF577TV4eXkhKioKI0eORK9evVrUh/oU+b3T2ullwFC/MoMiVYnEd2ma80N55swZvP766ygsLIS7uzsWL16Mfv36wdbWFs+fP8fBgwcxf/587N69G6dPn0ZiYiK6dOnSpDYamyr19OlTtuRgUFCQSsuoKdPmrAtAiez5qY/LGFwWumP+QEoS1yYVFRXsyEJERITOVUF58OABamtrYWBgAEtLy7qNfO2sbGZhYQGYWTbpNeL/L3Nzc1haWrI3VL7//nupMqQAOJ/DyJEjcfbsWfz73//GK6+8AnNzcwiFQkRHR8PQ0PDl59VEfD6f+3n/QzxlStzf+jkDXl5eqKqqAp/PZ1/H4/HY4/Tp0wft27fHggULcP/+fcTHx7NzkYG6O5L124uIiMDXX38NoVCIixcvIiwsjH2+d+/e2LFjB0xMTHD+/HkEBATAwcGhSe/RwMBA5mfE4/FgbGws87Orv7+RkRF4PJ7UfuL8vPrbeTwe57Xiv2umpqYKvb4hkudPfQzDcNo1NTWVareln0NjDAwMwDCMQvuLj1v/PBP/PFhYWCh0jOa01xjJ4GPLli0KTckyMzMDUPd/JKud+j8f9cn7mWiKqqoqjBo1Cjdv3sSRI0dafKEuzjVqqD9GRkbs84GBgbh9+zYOHTqEo0eP4tChQ9iyZQvmz5+PRYsWtagv9cn6vSMpOzsbJiYmMDc3l7qxoO2zP/QyYKh/V0yRaUbiobymRsSVlZUYPXo0CgsL4ejoiD///JPzR9fV1RXvvfceevfujR49euDJkyeYMGFCkxNnGsvDqM/Y2FhpdyNUTXKEgc9jUCt8uXHnhccI92mLQV2d1NwzogiBQNBqzjVF8Xg8dn4re4Fq1gaYpX2/6HkmtkATE2/F74nH44HH47F3Fx0dHRssKZ2fn48TJ04gISEBCxYsYLenpaUBqLtYbGoSsLy+yXuu/vOZmZnshVH97fX7MXr0aCxevBi+vr7sNAXJ9y8WHh6OTZs24Y8//sCVK1cwa9Ys9vmwsDCUl5fjyJEjyMjIwIgRI5r9XmW9Tt5nV3+7ra0tCgoKpPYTV3yR3F7/teI7oZLvubF+ySKu1JSens6pR5+dnY38/HxOu/I+a3ntKfI5NMbb2xuJiYkoKCiAra1tg/veu3dP6rhpaWkwNTVF27ZtFWpT0fbE1ZEUOaZkAnKXLl0Uel1Dn7fYvXv32L7U3wbUXQw357wWCoWIj4/HH3/8gZ9++glRUVFNPoYkcf8a6o/k52lhYYHRo0dj9OjRqKqqQmxsLJYsWYK5c+cq7caWvN878vom+fdR0+vfNEYvAwaBQAA7Ozvk5uY2mjCcn5/PBgxNyRUAgN9//x2PHz8GULewkKw7dEDdD/zYsWPx7bff4tKlS7h69Wqz5/vqkhohN2J4P8obm0+no6L6ZULS7H3X4OdiBTdbU5X2RSQSIbukEg/zyvAwrxwP8srwIK8MxRXVEIr+SWISAUKRCKJ6/5obG8DRSgAHS2M4WgrQ9p8vRysBzI318sdP9/B4TU4ubi0GDBgAS0tLLFmyBFFRUVJVhLKzs2Fvb89edEpWQ6qf6KkKOTk5UtVWrl69ioMHD2LQoEEN/tF+++23wefzOTkQ8ojXVFi9ejWqq6vZRGig7iLZyckJK1as4OyrTu3bt0dhYSGuXbuGbt26AagbWd6/f3+jrxXfeVbGFKe+ffvC0NAQ69evR//+/dkLO1WfB4oaMWIEvvrqKyQkJGDt2rWc50QiEedC+dy5c7h8+TL8/f0B1BUXOXjwIAYOHKjwdBNF2zMzM1P481fl2gVPnjzB/v372aTnoqIi/PDDD/D39+dcv4jvhCsyW2Hq1KnYs2cPvv76a/a46pabmws7Ozv2sZGRETp37owjR46w+RBAXT6Mqakp2rVr1+DxxL/36lP0905rprdXLJ07d8aZM2dw79491NTUyC2tWj8ppaml5uqXYW0o0QaoSyAUJ0Pfvn2bAgaAM5oAAJ2dLPDZED/M3neN3VZcUYMPdl3Bz1OCYWTQ8h9SkUiE+7lluPGkENcfF+Le8xI8yCvDw/wyTqCiDObGBujsbImQ9nYI9W6DV1ytlfIeCFEWS0tLbNy4EePGjcOrr76KuLg42Nvb48GDBzh8+DBCQ0OxYcMGWFpaIiIiAitWrEB1dTVcXFyQmJjY4PozDTl9+jQ7tS07OxulpaVYvHgxgLrpQREREQDqkmkFAgEiIiLQtm1bpKamYvPmzTA1NcWyZcsabMPd3V3h6Qjt2rWDm5sbzp07Bw8PDzg7O3OeDwkJwb59+8AwDEJDQ5v4blsuLi4Oc+bMwfDhwzFt2jSUlZVh48aN8PHxweXLlxt8rb+/P/h8PpYvX47CwkIYGxujT58+TZ5WBQD29vb497//jaVLl2Lw4MGIjo7GlStXcOTIEanAThOioqIwbtw4rFu3DmlpaRg4cCCEQiHOnDmDqKgofPDBB+y+fn5+GDBgAKZOnQqRSMQmuSYkJCi9vYCAABw/fhyrV6+Gs7MzPD09FQpklc3HxweTJ0/GhQsX0LZtW3z33Xd4/vw5tm7dytlPXDFJcr0WSV9++SX++9//Ijg4GKampvjxxx85zw8fPpwNWE+ePImoqCgsXLhQqdOEAKB///5wdHREaGgo2rZti1u3bmHDhg2IiYnhzDjx9fVF7969OWuDyPLmm2/CxMQEISEhcHBwaNLvndZMbwOGsLAwnDlzBqWlpbh06ZLcH85Tp06x3zf1D0H9IKSxhT3E1UUkX6fPqmu5F+gGPB7e6OGKs+k5OPD3E3b71YcFGP/dXxjm74KoTg5oa6nY8GKtUISs3FLceFyIG4/rAoSbT4pQXKGeRVhKKmtwPjMP5zPz8OXxNJga8RHoYcsGEL5OluDz5C+6RIg6jBkzBs7Ozli2bBlWrlyJyspKuLi4IDw8HBMnTmT3E1cd+uqrryASidC/f38cOXJE6uJaEX/88YfUhdn8+fMBAAsXLmQDhpiYGPz8889Ys2YNioqKYG9vj9jYWCxcuJAzJUYZwsLCsGvXLs7oglhoaCj27duHTp06ce5kqoudnR3279+Pjz76CLNnz4anpyeWLl2KtLS0RgMGR0dHbNq0CUuXLsXkyZNRW1uLpKSkZgUMALB48WIIBAJs2rQJSUlJCAoKQmJiImJiYpp1PGXbunUrunXrhi1btmDWrFmwsrJCjx49pP5fe/fujeDgYCQkJODBgwfo2LEjtm3bxo7gKLO91atX45133sG8efNQXl6OCRMmaCRg6NChA9avX49Zs2bhzp078PT0xJ49e6QWNFSUuJrSuXPncO7cOannMzMz2YBBPD3cyUn5U4ynTJmCHTt2YPXq1SgpKYGrqyumTZuGefPmNet4w4YNY4+n6t872oQRqXpFHS11/vx59gdyypQpMhdVEwqF8PPzw61bt2BtbY0XL17IXNhHnn379rHLhs+ePRvLly+Xu+/IkSPZ2s6XLl1qdESiKR49esROp7p79y46dNC+mvGy9FpyAs+KXla02jYxEJEdHVBSWYPX1ycjM0f2QkBdXazQp5MDXvN1gJ+zFXg8BiWVNbj9tAi3nhYh9Wkxbj0twp1nxSivrlXX22kya1NDDPJzwthe7dDFWRsLd0orLy9HYmIigLq7OrqWw5CWlsaOSLaWnyNdVb+MaGNzhglpCoZh8P7772PDhg16c555eHjAz88Phw4d0kj7s2fPxq5du3Dv3j2tn8vfEg39DUlLS4OPjw+AumI2TclPVQe9vZXds2dPhIeH48yZM9iyZQsmTJiA4OBgzj6rVq1ipxVNnz5dKlgQD6EBwIQJE7Bt2zbO86+99hpMTU3Z4eGxY8eia9euUn05cuQIO9fUxcWFnTOp72okFk8x5Nf9ojY3NsCGMd0x/L9nUVUjPU3o+j+jBWtPpMHewhimRnzczy1TSp+M+Dy42pjAzdYUbrYmsDcXwID/TwIWw4DHAAxT9z0AFJRV41lRBZ7/8/WssAJFCo5gFJRVY9f5B9h1/gH83azxVlA7DO7mDBMj3SvXRgghRH8lJSVh/vz5Oh0stHZ6GzAAwNq1axEaGory8nL0798fc+fORVRUFMrLy7F7925s3rwZQN28vpkzZzb5+NbW1vj444+xYMECFBcXIyQkBFOnTkW/fv1gY2OD58+f49dff8U333zDVl5ZtmyZzt7BaKpqiTJJBvWm53RxtsK6OH/M2nutwSlE2cXNWznRzswIfi5W6OJsCS97c7jZmKCdnSnaWgjAa+E0ofKqWjwvqkBGTgnO3stFSnoubj1tuE793w8L8PfDAvznUCpGBrhhTFA7eDu0rI41IepUW1srtT6DJHNz8xbXZ9cmeXl5DZbu5vP5Da5Wq02ys7NRWyt/RNbIyKjRykOqou5zSx/PZVW7cOGCprtAGqHXAUP37t2xZ88ejB07FkVFRZg7d67UPj4+Pjh8+DAnMaYp5s2bh7y8PKxduxYlJSVYunQpli5dKrWfoaEhlixZgrFjxzarHV1UI5nDwOcGUgP9nBDkaYekOy9w4vYLnL6TjeLKpucf2FsYo6uLFfxcrODnbImurlZwtBTIXcippUyM+PBoYwaPNmbo06luIZy80iqcS89FSnoOzqXnyp1uVVRRg+9SMvFdSib8XCxhaqRdP8JCoRD5eXzYGotQ6vAUUZ2d4GSlW9OSSPM8fPgQnp6eDe6jioRHTYqNjeXkwUlyd3dvNHFUWwQGBuL+/ftyn1ckWVRV1H1u6eO5TIh2XW1owOuvv45r165h7dq1OHz4MB49egQjIyN4e3vjjTfewAcffMAuMNMcDMNgzZo1bNnU5ORk3L9/H2VlZTA3N4e3tzd69+6NKVOmsHPXSJ1qiSpJhnzpC3gbMyPEvuqK2FddUV0rxIWsPPxx6wX+uP0CGRIX3Xweg/b2ZvB1sqz3ZQEHC80vLmZrZoSYbk6I6VaX8PUwrwz7Lj/C7vMPOXkc9d14rL7Vc5uGQXoxgwu/3gJ+vQUvezOEebdBqHcb9PKyg5WJ4nlARHc4OjpK1ZCX5OXlpabeqMeqVauQn58v9/nWlOOzY8cOlJeXy31emasZN5Wyz63GUjt18VxuLYEr0Ry9TXrWJ6016dnrk8OoHzMcnhbWpOTfzJxSXMjKA49h0MnRAt4O5hAYtq75/zW1Qpy4/QI7/nqA03cbHgJvDXgM0M3VGvEhHhjq76yyURxVoaRn7aEvyahEs+g8I8pESc+EKJlQKILEAAOb9KwozzZm8GxjpsReqZ8Bn4cBXRwxoIsj7ueWYuf5B/j54iPklcqfF63NhKK6fIwZe/6GqREf/bvIXsyQEEIIIdqDAgailSRXeQa4Sc/6yN3ODJ8M8sVH/XyQci8HjwtkT1XSpOqqKly7eQuZxQyyyoxQ2EBC+v+uP6WAgRBCCGkFKGAgWkmypCrQ9BEGXWVswGeTpbVNeXk57PJTEQURXusbjoz8KiTfy0HKvRxcyMrnlMHNUlKpW0IIIYSoFgUMRCtJllQFwK53QFoHPo9BN1drdHO1xnuR3ki6/QITt70snZeVK7sSFCGEEEK0C92yJVpJsqQqABhQslmr5iGRT1JQVo2CstaZi0EIIYToE7oCI1pJVg6DrLKqpPVwtTEBXyIPhaYlEUIIIdqPAgailapljTBQDkOrZsjnwdWGW3f+Pk1L0irbtm0DwzBUk12HeXh4ID4+XqF9IyMjERkZqZJ2T548CYZhNLbYGyGkaegKjGilWqqSpJM87LjTkuStaE302549ezB27Fh06NABDMPIvWhNTk6GjY0N+Hw+GIbhfP3555+cfT08PMAwDPr27SvzWN988w372osXLwIAVqxYAYZhcOXKFc6+IpEINjY2YBgGmZmZnOcqKipgbGyMMWPGNPPdq1dqaioWLVpEQaIGLVmyBAcOHFDqMePj46V+JmR9KRo8KsOOHTvAMAzMzc1bdJzIyEj4+fnJfC4rKwsMw+CLL75oURsNefr0KT7++GNERUXBwsJCbwJfSnomWklm0jMFDK2eh50pTtV7fJ+mJGmVcePGIS4uDsbGxhrtx8aNG3Hp0iUEBgYiNze30f2nTp2Knj17crZ5e3tL7ScQCJCUlIRnz57B0ZFb0nfHjh0QCASoqHhZrjgsLAxAXWDSvXt3dvvNmzdRUFAAAwMDpKSkwNPTk33uwoULqKqqYl+r7VJTU5GQkIDIyEh4eHhwnktMTFRZuxERESgvL4eRkZHK2mgtlixZgpEjR2LYsGFKO+aUKVM4wXFmZiYWLFiAd955B+Hh4ez29u3bK63NhpSUlGD27NkwM2vdayMBwJ07d7B8+XJ06NABXbt2xblz5zTdJbWggIFoJVllVSXnv5PWRzLxmUYYtAufzwefr/nV0Ldv3w4XFxfweDy5dxLrCwsLw6hRoxrdLzQ0FBcuXMCePXswffp0dvujR49w5swZDB8+HPv27WO39+jRAwKBAMnJyZg6dSq7PSUlBXZ2dujRoweSk5MxduxY9rnk5GS2T62dKi/meTweBAKByo6v74KDgxEcHMw+vnjxIhYsWIDg4GDO+aouixcvhoWFBaKiopQ+mqJuAQEByM3Nha2tLfbu3Ys33nhD011SC5qSRLRSjcQIgyG/bviUtG6SU5Ioh0G7yMthOHLkCMLDw2FmZgYLCwvExMTg5s2bnH2uXbuG+Ph4eHl5QSAQwNHREZMmTVJohECSm5sbeE2silZcXIyaGvkLBQJ1IwyxsbHYuXMnZ/uuXbtgY2ODAQMGcLYbGRkhMDAQKSkpnO0pKSkIDg5GaGiozOesra0VCnTExFMsrl27ht69e8PU1BTe3t7Yu3cvAODUqVMICgqCiYkJOnbsiOPHj3NeHx8fLzU6AACLFi1q8Pfmtm3b2IudqKgodpqKeHpFc3IYRCIRFi9eDFdXV5iamiIqKkrqXAFk5zC09HNQhFAoxNq1a9G1a1cIBALY29tj4MCB7DQ0AGAYBh988AF27NgBX19fODo6IjIyEqdPn1Z6ewzDoLS0FN9//71GpgmJeXh4YPDgwUhMTIS/vz8EAgE6d+6MX375RWrf9PR0pKenK3zstLQ0rFmzBqtXr4aBgez71IWFhbh9+zYKCwub/R7kqa6uRkJCAjp06ACBQAA7OzuEhYXh2LFjnH1u376Np0+fNno8CwsL2NraKr2f2o4CBqKVJJOeqaSqbpAcYcgvq0ZhWbWGeqMcQpEQeRV5WvclFEmP0jXH9u3bERMTA3Nzcyxfvhzz589HamoqwsLCOIHFsWPHkJGRgYkTJ2L9+vWIi4vD7t27ER0dDZFIeoqhMk2ePBmWlpYQCASIioriXPxJGjNmDM6fP8+54Nm5cydGjhwJQ0NDqf3DwsLw+PFjzntNSUlBSEgIQkJC2OlJQN3F8tmzZxEcHNzkgCc/Px+DBw9GUFAQVqxYAWNjY8TFxWHPnj2Ii4tDdHQ0li1bhtLSUowcORLFxcVNOr4sERERmDZtGgBg7ty52L59O7Zv3w5fX99mH3PBggWYP38+XnnlFaxcuRJeXl7o378/SksVuzmg6s9h8uTJmDFjBtzc3LB8+XJ8/PHHEAgEUjkvp06dwowZM/DWW2/hk08+QV5eHqKjo3Hjxg2ltrd9+3YYGxsjPDyc/fynTJnSpDaUJS0tDW+++SYGDRqEpUuXwsDAAG+88QbnwhoAXnvtNbz22msKH3fGjBmIiopCdHS03H32798PX19f7N+/X6Fj1tbWIicnR+orPz9fat9FixYhISEBUVFR2LBhAz799FO0a9cOly9fZvd5/PgxfH198cknnyj8vvQNTUkiWkmyrCot2qYbxKVV6ye1Z+WW4hVTa811qoUKKgvQe09vTXdDyqk3T8FW0LK7YCUlJZg2bRrefvttbN68md0+YcIEdOzYEUuWLGG3v/fee5g5cybn9b169cLo0aORnJzMmTetLIaGhhgyZAhef/11ODg4IDU1FV988QXCw8Nx9uxZTt6BWJ8+feDo6Ihdu3Zh3rx5uHXrFv7++2+sXbsWGRkZUvvXz2Pw8PDAs2fPkJGRgdDQULz66qvg8Xg4e/YsoqOjkZqaivz8/GZNR3ry5Al27tyJ0aNHAwD69euHTp06YcyYMTh79iyCgoIAAL6+vhgwYAD27dvX4jvRXl5eCA8Px7p169CvX78WV0TKzs7GihUrEBMTg99++40d3fj000+xZMkShY6hys8hKSkJ27Ztw7Rp07B27Vp2+8yZM6WC2hs3buDixYvo3r07ioqKEBsbi549e2LBggUy77o3t72xY8fi3XffhZeXl0amCtV39+5d7Nu3D7GxsQDqgp1OnTphzpw56NevX7OOefjwYSQmJuLq1avK7Cpu374Ne3t7hfsQHR3N+R1Gmo5u2xKtJDnCYEglVXWCrNKqtOKz9jp27BgKCgowevRozl08Pp+PoKAgJCUlsfuamLz8f62oqEBOTg569eoFAJw7ecoUFBSE77//HpMmTcKQIUPw8ccf488//wTDMHLvFPL5fIwaNQq7du0CUJfs7ObmJjegCQkJAY/HY3MTUlJSYGhoiMDAQJibm6Nbt27stCTxv80JGMzNzREXF8c+7tixI6ytreHr68teJIvfMwCZwY2mHT9+HFVVVZg6dSpnKtSMGTMUPoYqP4d9+/aBYRgsXLhQ6jnJqVvBwcEICAhgH7u5uWHIkCE4evQoamtrld6eNnB2dsbw4cPZx5aWlhg/fjyuXLmCZ8+esduzsrIUqqpVVVWFDz/8EO+++y46d+7c4L7x8fEQiUQKB38eHh44duyY1NePP/4ota+1tTVu3ryJtLS0Bo8nEomwbds2hdrXRzTCQLSSZA4DVUjSHe52ZpzqSFk5VClJW4n/wPbp00fm85aWluz3eXl5SEhIwO7du/HixQvOfqqYlyyPt7c3hg4dil9++QW1tbUyk7jHjBmDdevW4erVq9i5cyfi4uLkXsBZW1ujS5cunKCge/fubIAUEhLCec7IyEiqYpMiXF1dpfpgZWUFNzc3qW0AZE690LT79+8DADp06MDZbm9vDxsbG4WOocrPIT09Hc7OzgrNP5d8DwDg4+ODsrIyZGdnS1XZaml7iqp/4Q7UfQ71g/WW8Pb2lvrsfXx8ANQFCYq85/rWrFmDnJwcJCQkKKV/9ZmZmckskSwrkPnss88wdOhQ+Pj4wM/PDwMHDsS4cePQrVs3pfdLl1HAQLSS5DoMFDDoDk87U9RPHaQRBu0l/Kda2fbt22VeLNRPYBw1ahTOnj2LWbNmwd/fH+bm5hAKhRg4cCB7HHVxc3NDVVUVSktLOUGNWFBQENq3b48ZM2YgMzOz0TUTwsLCsGnTJhQUFLD5C2IhISH47rvvUF1djeTkZAQEBDSr+o+86lTyttefQiMv2FH0Trg2acnnoA+cnJw4j7du3aqRJOnGFBYWYvHixXjvvfdQVFSEoqIiAHXTHEUiEbKysmBqagoHBweV9yUiIgLp6en49ddfkZiYiG+//RZr1qzBpk2b8Pbbb6u8fV1BAQPRSlJJzzQlSWe4S1RKau0Bg7WxNU69earxHdXM2ti6xccQ12h3cHCQu+AZUHeX98SJE0hISMCCBQvY7Q1NAVCljIwMCASCBheIGj16NBYvXgxfX1/4+/s3eLywsDBs3LgRx48fx5UrVzBr1iz2uZCQEJSXl+Pw4cPIyMjAiBEjlPU2FGZjY8MmXtcnvuPfEGVOjXF3dwdQ9//u5eXFbs/OztaKEZH27dvj6NGjyMvLa/Suv6xz9+7duzA1NVV47ryi7TXl/0AyAblLly4Kv7Yx9+7dg0gk4vTn7t27ACCzCldD8vPzUVJSghUrVmDFihVSz3t6emLo0KFqK7Fqa2uLiRMnYuLEiSgpKUFERAQWLVpEAUMTUMBAtBIlPesuT4lKSVmtfC0GHsNrcXKxthowYAAsLS2xZMkSREVFSVURys7Ohr29PXv3V/Ju75dffqnS/uXk5KBNmzacbVevXsXBgwcxaNCgBisVvf3222wuRmPEOQmrV69GdXU1Z4TBw8MDTk5O7EWRJtZfaN++PQoLC3Ht2jV2msXTp08VqjgjXkhLVsDRVH379oWhoSHWr1+P/v37sxeeqj4PFDVixAh89dVXSEhI4CQhA5C6UD537hwuX77MBpOPHj3CwYMHMXDgQIXXKlG0PTMzM4U//4YC95Z68uQJ9u/fzyY9FxUV4YcffoC/vz9nhFFcYayhRd8cHBxknn/r1q3DuXPnsGvXLqnRElXJzc2FnZ0d+9jc3Bze3t54+PAhu626uhrp6emwsrJSW79aGwoYiFaSSnqmsqo6w93OlPNYXFrVylS6pCXRLEtLS2zcuBHjxo3Dq6++iri4ONjb2+PBgwc4fPgwQkNDsWHDBlhaWiIiIgIrVqxAdXU1XFxckJiYiMzMzGa1e/r0abbmfXZ2NkpLS7F48WIAddMLIiIiAACTJk2CQCBAREQE2rZti9TUVGzevBmmpqZYtmxZg224u7tj0aJFCvWnXbt2cHNzw7lz5+Dh4QFnZ2fO8yEhIWyCa2hoaBPfbcvFxcVhzpw5GD58OKZNm4aysjJs3LgRPj4+jSac+/v7g8/nY/ny5SgsLISxsTH69OnTrKki9vb2+Pe//42lS5di8ODBiI6OxpUrV3DkyBGpwE4ToqKiMG7cOKxbtw5paWnsdLkzZ84gKioKH3zwAbuvn58fBgwYgKlTp0IkEmHLli0A0KT5+Iq2FxAQgOPHj2P16tVwdnaGp6enQoGssvn4+GDy5Mm4cOEC2rZti++++w7Pnz/H1q1bOfuJS6o2lPhsamoqc+XqAwcO4Pz581LPbdu2DRMnTlTJFKvOnTsjMjISAQEBsLW1xcWLF7F3717O/7e4rOqECRMUSnwW/z4SrzGyfft2tjDCvHnzlNp/bUEBA9FKUknPNMKgM1xtTKVKq97PK0W3VlxaVZeNGTMGzs7OWLZsGVauXInKykq4uLggPDwcEydOZPfbuXMnpk6diq+++goikQj9+/fHkSNHpC6uFfHHH39IXZjNnz8fALBw4UI2YIiJicHPP/+MNWvWoKioCPb29oiNjcXChQvh7e3dgnctLSwsDLt27eKMLoiFhoZi37596NSpE+dOprrY2dlh//79+OijjzB79mx4enpi6dKlSEtLazRgcHR0xKZNm7B06VJMnjwZtbW1SEpKavbc8sWLF0MgEGDTpk1ISkpCUFAQEhMTERMT06zjKdvWrVvRrVs3bNmyBbNmzYKVlRV69Ogh9f/au3dvBAcHIyEhAQ8ePEDHjh2xbdu2JifKKtLe6tWr8c4772DevHkoLy/HhAkTNBIwdOjQAevXr8esWbNw584deHp6Ys+ePVILGqpCSUkJAOkcDWWYNm0aDh48iMTERFRWVsLd3R2LFy/mTC1sKvHvI7HvvvuO/V5XAwZGpG8ZQ3ro0aNHbIWJu3fvyqz+oG32XHiAOfuus49fcbPGr++r/84daZry8nIkJiYCAPr37y+3ekfEiiQ8yHtZHWltnD+G+ruopY8tkZaWhpqaGhgYGLSKnyNdJhQK2URKS0vLJi+URog8DMPg/fffx4YNG/TmPPPw8ICfnx8OHTqkkfZHjRqFrKwsnD9/XiPtq0tDf0PS0tLYqlQPHz6Eq6urJrooF40wEK1ULTHCYEhVknSKRxszTsBQv8wqIYQQ/SESiXDy5EmZaygQ7UEBA9FKNVJVkihg0CUekqVVW3niM2lcbW0tsrOzG9zH3Ny8wcpGrU1eXh6qqqrkPs/n8xWuuKNp2dnZDZZpNTIyUup6A02h7nNLH89lVWIYRmrtFqJ9KGAgWkmqSpKODgPrK10rrUoa9/DhQ3h6eja4z8KFCxVORG4NYmNjceqU/JK77u7uCq2Yqw0CAwMbLNPau3dvnDx5Un0dqkfd55Y+nsuEUMBAtBKVVdVtnm24lZKyaEqSznN0dJSqIS+pfu1+XbBq1aoG1x9Q1gq96rBjxw6Ul5fLfV7RlZxVQdnnVmOpnbp4LreWwJVoDgUMRCtJTUmiEQadIjnCkFdahcLyaliZUGlVXSUQCFRaQ14bBQQEaLoLSqOJcrGKUve5pY/nMiF0FUa0klTSM40w6BQ3G1NI5rHfp2lJhBBCiFaigIFopRqhZNIznaq6xMiABxcb7nQMmpZECCGEaCe6CiNaSXLhNiqrqns8JBOfqVISIYQQopUoYCBaSXJKEiU96x6pgIGmJBFCCCFaiQIGopVoSpLu82hDIwyEEEJIa0BXYUQrSa/DQCMMusbDjltalVZ7JoQQQrQTBQxEK1FZVd0nOcKQW1qFoopqDfWGEEIIIfLQVRjRSlJJz5TDoHNkllbNoVEGTdq2bRsYhqFFnHSYh4cH4uPjFdo3MjISkZGRKmn35MmTYBhGY6tDE0KahgIGopWqaaVnnSertGomJT4TAHv27MHYsWPRoUMHMAwj96I1OTkZNjY24PP5YBiG8/Xnn39y9vXw8ADDMHIX3Prmm2/Y1168eBEAsGLFCjAMgytXrnD2FYlEsLGxAcMwyMzM5DxXUVEBY2NjjBkzppnvXr1SU1OxaNEiChI1aMmSJThw4IBSjxkfHy/1MyHrS9HgURl27NgBhmFgbm7eouNERkbCz89P5nNZWVlgGAZffPFFi9poiPjGiqyvZ8+eqaxdTaOVnolWoilJ+sHDzgwP88rZx/cp8Vmjxo0bh7i4OBgbG2u0Hxs3bsSlS5cQGBiI3NzcRvefOnUqevbsydnm7e0ttZ9AIEBSUhKePXsGR0dHznM7duyAQCBARUUFuy0sLAxAXWDSvXt3dvvNmzdRUFAAAwMDpKSkwNPTk33uwoULqKqqYl+r7VJTU5GQkIDIyEh4eHhwnktMTFRZuxERESgvL4eRkZHK2mgtlixZgpEjR2LYsGFKO+aUKVM4wXFmZiYWLFiAd955B+Hh4ez29u3bK63NhpSUlGD27NkwMzNrfOdW4rPPPuP87AOAtbW1ZjqjBhQwEK1EKz3rBw87M5xJy2Ef0wiDZvH5fPD5fE13A9u3b4eLiwt4PJ7cO4n1hYWFYdSoUY3uFxoaigsXLmDPnj2YPn06u/3Ro0c4c+YMhg8fjn379rHbe/ToAYFAgOTkZEydOpXdnpKSAjs7O/To0QPJyckYO3Ys+1xycjLbp9ZOlRfzPB4PAoFAZcfXd8HBwQgODmYfX7x4EQsWLEBwcDDnfFWXxYsXw8LCAlFRUUofTdGUQYMGoUePHpruhtrQbVuilaisqn5wp0pJWkVeDsORI0cQHh4OMzMzWFhYICYmBjdv3uTsc+3aNcTHx8PLywsCgQCOjo6YNGmSQiMEktzc3MBr4qhicXExampqGtxHIBAgNjYWO3fu5GzftWsXbGxsMGDAAM52IyMjBAYGIiUlhbM9JSUFwcHBCA0NlfmctbW1QoGOmHiKxbVr19C7d2+YmprC29sbe/fuBQCcOnUKQUFBMDExQceOHXH8+HHO6+Pj46VGBwBg0aJFYBj5N1u2bduGN954AwAQFRXFTqsQ5xU0J4dBJBJh8eLFcHV1hampKaKioqTOFUB2DkNLPwdFCIVCrF27Fl27doVAIIC9vT0GDhzITkMDAIZh8MEHH2DHjh3w9fWFo6MjIiMjcfr0aaW3xzAMSktL8f3332tkmpCYh4cHBg8ejMTERPj7+0MgEKBz58745ZdfpPZNT09Henq6wsdOS0vDmjVrsHr1ahgYyL5PXVhYiNu3b6OwsLDZ70Ge6upqJCQkoEOHDhAIBLCzs0NYWBiOHTvG2ef27dt4+vRpk45dXFyM2tpaZXdZK9FVGNFKkknPVFZVN3nqwFoMIqEQNXl5Wvclkgi6m2v79u2IiYmBubk5li9fjvnz5yM1NRVhYWGcwOLYsWPIyMjAxIkTsX79esTFxWH37t2Ijo6GSCSS34ASTJ48GZaWlhAIBIiKiuJc/EkaM2YMzp8/z7ng2blzJ0aOHAlDQ0Op/cPCwvD48WPOe01JSUFISAhCQkLY6UlA3cXy2bNnERwc3OSAJz8/H4MHD0ZQUBBWrFgBY2NjxMXFYc+ePYiLi0N0dDSWLVuG0tJSjBw5EsXFxU06viwRERGYNm0aAGDu3LnYvn07tm/fDl9f32Yfc8GCBZg/fz5eeeUVrFy5El5eXujfvz9KSxX72Vb15zB58mTMmDEDbm5uWL58OT7++GMIBAKpnJdTp05hxowZeOutt/DJJ58gLy8P0dHRuHHjhlLb2759O4yNjREeHs5+/lOmTGlSG8qSlpaGN998E4MGDcLSpUthYGCAN954g3NhDQCvvfYaXnvtNYWPO2PGDERFRSE6OlruPvv374evry/279+v0DFra2uRk5Mj9ZWfny+176JFi5CQkICoqChs2LABn376Kdq1a4fLly+z+zx+/Bi+vr745JNPFH5fUVFRsLS0hKmpKYYMGYK0tDSFX9sa0ZQkopWkRhgoYNBJ7nayS6taCqQv3LRVbUEB0kJCNd0NKR3OpsDA1rZFxygpKcG0adPw9ttvY/Pmzez2CRMmoGPHjliyZAm7/b333sPMmTM5r+/VqxdGjx6N5ORkzrxpZTE0NMSQIUPw+uuvw8HBAampqfjiiy8QHh6Os2fPcvIOxPr06QNHR0fs2rUL8+bNw61bt/D3339j7dq1yMjIkNq/fh6Dh4cHnj17hoyMDISGhuLVV18Fj8fD2bNnER0djdTUVOTn5zdrOtKTJ0+wc+dOjB49GgDQr18/dOrUCWPGjMHZs2cRFBQEAPD19cWAAQOwb9++Ft+J9vLyQnh4ONatW4d+/fq1uCJSdnY2VqxYgZiYGPz222/s6Mann36KJUuWKHQMVX4OSUlJ2LZtG6ZNm4a1a9ey22fOnCkV1N64cQMXL15E9+7dUVRUhNjYWPTs2RMLFiyQede9ue2NHTsW7777Lry8vDQyVai+u3fvYt++fYiNjQVQF+x06tQJc+bMQb9+/Zp1zMOHDyMxMRFXr15VZldx+/Zt2NvbK9yH6Ohozu+wljA1NUV8fDwbMFy6dAmrV69GSEgILl++DDc3N6W0o21ohIFoJakRBpqSpJPcbE2otKoWO3bsGAoKCjB69GjOXTw+n4+goCAkJSWx+5qYvKx4VVFRgZycHPTq1QsAOHfylCkoKAjff/89Jk2ahCFDhuDjjz/Gn3/+CYZh5N4p5PP5GDVqFHbt2gWgLtnZzc1NbkATEhICHo/H5iakpKTA0NAQgYGBMDc3R7du3dhpSeJ/mxMwmJubIy4ujn3csWNHWFtbw9fXl71IFr9nADKDG007fvw4qqqqMHXqVM5UqBkzZih8DFV+Dvv27QPDMFi4cKHUc5JTt4KDgxEQEMA+dnNzw5AhQ3D06FGFp6A0pT1t4OzsjOHDh7OPLS0tMX78eFy5coVT/ScrK0uhqlpVVVX48MMP8e6776Jz584N7hsfHw+RSKRw8Ofh4YFjx45Jff34449S+1pbW+PmzZsNjgB4eHhAJBJh27ZtjbY9atQobN26FePHj8ewYcPwn//8B0ePHkVubi4+//xzhfrfGtEIA9FKkmVVKelZNxkb8OFsbYJH+S8rJWXllqKrq5UGe0XExH9g+/TpI/N5S0tL9vu8vDwkJCRg9+7dePHiBWc/VcxLlsfb2xtDhw7FL7/8gtraWplJ3GPGjMG6detw9epV7Ny5E3FxcXIv4KytrdGlSxdOUNC9e3c2QAoJCeE8Z2RkJFWxSRGurq5SfbCyspK6W2llVfezIWvqhabdv38fANChQwfOdnt7e9jY2Ch0DFV+Dunp6XB2doatAiNvku8BAHx8fFBWVobs7GypKlstbU9RkmU7raysOMF6S3h7e0t99j4+PgDqggRF3nN9a9asQU5ODhISEpTSv/rMzMxklkiWFch89tlnGDp0KHx8fODn54eBAwdi3Lhx6Natm9L6ExYWhqCgoGbl1bQWagkYxIlCgYGBCp/YFRUVOH/+PIC6eZZEv1BZVf3h2caMGzC0wjwGXSX8Z2rg9u3bZV4s1E9gHDVqFM6ePYtZs2bB398f5ubmEAqFGDhwIHscdXFzc0NVVRVKS0s5QY1YUFAQ2rdvjxkzZiAzM7PRNRPCwsKwadMmFBQUsPkLYiEhIfjuu+9QXV2N5ORkBAQENKv6j7zqVPK2159CIy/YaY3JmC35HPSBk5MT5/HWrVs1kiTdmMLCQixevBjvvfceioqKUFRUBKBumqNIJEJWVhZMTU3h4OCg8r5EREQgPT0dv/76KxITE/Htt99izZo12LRpE95++22ltePm5oY7d+4o7XjaRi0BQ2RkJHg8Hq5du9bosJTY48eP2dc1VvmC6B7pKUk0wqCr3O1McabeSHFWK6uUxLe2RoezKY3vqGZ8JdQDF9dod3BwkLvgGVB3l/fEiRNISEjAggUL2O2aSgLMyMiAQCBocIGo0aNHY/HixfD19YW/v3+DxwsLC8PGjRtx/PhxXLlyBbNmzWKfCwkJQXl5OQ4fPoyMjAyMGDFCWW9DYTY2NmzidX3iO/4NUebUGHd3dwB1/+9eXl7s9uzsbK0YEWnfvj2OHj2KvLy8Ru/6yzp37969C1NTU4XnzivaXlP+DyQTkLt06aLwaxtz7949iEQiTn/u3r0LADKrcDUkPz8fJSUlWLFiBVasWCH1vKenJ4YOHaq2Equ2traYOHEiJk6ciJKSEkRERGDRokVKDRgyMjIUPjdaI7VNSWruXQB9u3tA6lRL3JE0pBwGneUhkfic1crWYmB4vBYnF2urAQMGwNLSEkuWLEFUVJRUFaHs7GzY29uzd38lf19/+eWXKu1fTk4O2rRpw9l29epVHDx4EIMGDWqwUtHbb7/N5mI0RpyTsHr1alRXV3NGGDw8PODk5MReFGli/YX27dujsLAQ165dY6dZPH36VKGKM+KFtGQFHE3Vt29fGBoaYv369ejfvz974anq80BRI0aMwFdffYWEhAROEjIAqQvlc+fO4fLly2ww+ejRIxw8eBADBw5UeK0SRdszMzNT+PNvKHBvqSdPnmD//v1s0nNRURF++OEH+Pv7c0YYxRXGGlr0zcHBQeb5t27dOpw7dw67du2SGi1RldzcXNjZ2bGPzc3N4e3tjYcPH7LbqqurkZ6eDisrq0b7Jf69V9///vc/XLp0ia06pou0NodBPIStDYsIEfWjsqr6QzJguN/KAgZdZmlpiY0bN2LcuHF49dVXERcXB3t7ezx48ACHDx9GaGgoNmzYAEtLS0RERGDFihWorq6Gi4sLEhMTkZmZ2ax2T58+zU5lzc7ORmlpKRYvXgygbnqBeJrqpEmTIBAIEBERgbZt2yI1NRWbN2+Gqakpli1b1mAb7u7uWLRokUL9adeuHdzc3HDu3Dl4eHjA2dmZ83xISAib4Boaqv6KWXFxcZgzZw6GDx+OadOmoaysDBs3boSPj0+jCef+/v7g8/lYvnw5CgsLYWxsjD59+jRrqoi9vT3+/e9/Y+nSpRg8eDCio6Nx5coVHDlyRCqw04SoqCiMGzcO69atQ1paGjtd7syZM4iKisIHH3zA7uvn54cBAwZg6tSpEIlE2LJlCwA0aT6+ou0FBATg+PHjWL16NZydneHp6alQIKtsPj4+mDx5Mi5cuIC2bdviu+++w/Pnz7F161bOfuKSqg0lPpuamspcufrAgQM4f/681HPbtm3DxIkTVTLFqnPnzoiMjERAQABsbW1x8eJF7N27l/P/LS6rOmHChEYTn0NCQtC9e3f06NEDVlZWuHz5Mr777ju4ublh7ty5Su27NtHagEE8lCpObCL6RSqHgaYk6SyPNtzF23JKqlBcUQ2LVlRaVZeNGTMGzs7OWLZsGVauXInKykq4uLggPDwcEydOZPfbuXMnpk6diq+++goikQj9+/fHkSNHpC6uFfHHH39IXZjNnz8fALBw4UI2YIiJicHPP/+MNWvWoKioCPb29oiNjcXChQvh7e3dgnctLSwsDLt27eKMLoiFhoZi37596NSpE+dOprrY2dlh//79+OijjzB79mx4enpi6dKlSEtLazRgcHR0xKZNm7B06VJMnjwZtbW1SEpKavbc8sWLF0MgEGDTpk1ISkpCUFAQEhMTERMT06zjKdvWrVvRrVs3bNmyBbNmzYKVlRV69Ogh9f/au3dvBAcHIyEhAQ8ePEDHjh2xbdu2JifKKtLe6tWr8c4772DevHkoLy/HhAkTNBIwdOjQAevXr8esWbNw584deHp6Ys+ePVILGqpCSUkJAOkcDWWYNm0aDh48iMTERFRWVsLd3R2LFy/mTC1sijfffJMtF1tWVgYnJyf861//wsKFC9G2bVsl9157MCIVzPl58OAB57GHhwcYhkFiYqLMygP1VVZWIj09HfPnz8fly5cRHh7OWQmSNN2jR4/YChN3795t9P9AG/T8/DheFFeyj3+Y1BMRPro7N1BXlJeXIzExEQDQv39/hYocVNbUotP831H/N9GhqWHwc9G+mwVpaWmoqamBgYFBq/g50mVCoZBNpLS0tGzyQmmEyMMwDN5//31s2LBBb84zDw8P+Pn54dChQxppf9SoUcjKymKL3eiqhv6GpKWlsVWpHj58CFdXV010US6VjDB4enpKbRPfcWqq8ePHK6NLpJWpEVLSs74wNuDD2coEjwteVkrKzCnVyoCBEEKIcolEIpw8eVLmGgpEe6gkYJA3aNGUwQyBQIBp06Zh0qRJyuoWaUWqaynpWZ94tjHjBAyUx6B7amtrkZ2d3eA+5ubmDVY2am3y8vJQVVUl93k+n99qqqpkZ2c3WKbVyMhIqesNNIW6zy19PJdViWEYqbVbiPZRScAgmSAzceJEMAyD//znP3BxcZH7OoZhIBAI4OTkhO7du9MPmx6jpGf94m5niuR7Lx9n0mrPOufhw4cyR5/rW7hwocKJyK1BbGwsTp06Jfd5d3d3hVbM1QaBgYENlmnt3bu3xqYPq/vc0sdzmRCVBAwTJkzgPBYnxg0bNkzhdRiIfquhsqp6xbMNVUrSdY6OjlI15CXVr92vC1atWtXg+gPKWqFXHXbs2IHy8nK5zyu6krMqKPvcamw2hC6ey60lcCWao5YqSUlJSQBk5zYQIkkkEqGaFm7TK+6tfC0G0jiBQKDSGvLaKCAgQNNdUBpNlItVlLrPLX08lwlRS8DQu3dvdTRDdEStUPrujoGOVqYgdTyptCohhBCitegqjGgdyQpJAOUw6DpXG1MwEv/F93Mpj4EQQojuUMFKBmqj9oXbrl69ijNnziAjIwPFxcUNVl0A6hKhxSssEv0gM2CgKUk6TWAoXVr1fm6Z1pVW5fP5qKmpQU1NDWpra2klekIIIQoRCoXsNa+BgdaumyyX2np8584dTJo0CX/++afCrxGJRBQw6CHJVZ4BSnrWB87WAk7AkF1cocHeyGZmZobKyroFBZ89ewZHR0cKGgghhDQqNzeX/d7IyEiDPWketQQMjx8/RkREBHJyctjhGHNzc9jY2Ojsqomk+SQTngGakqQP7C2MOY+zSyrl7Kk5lpaWyMvLAwAUFRWhqKioVd4p0hU1NTUA0GhNfEJags4z0lIikYgzo8bOzk6DvWketfyl+/zzz5GdnQ2GYfD222/j3//+N7v8NSGSJEuqAoABjTDoPHtziYChWPsCBhMTEzg7O+PJkyfsNvHFBFEvkUjElvk0MTEBI5kEQ4gS0HlGlM3a2hoCgUDT3WgytQQMv//+OxiGwfjx47F582Z1NElaMclF2wDAkHIYdJ7kCENOifwVcjXJysoKxsbGKCwsRGlpaaN5WEQ1hEIheyFnbm5Oo9VEJeg8I8piaGgIa2trWFpaarorzaKWgEF8N278+PHqaI60ctUychiorKrua9MKRhjEBAJBq7xDpEvKy8tx+/ZtAHXrHbSmRdBI60HnGSF11HIVJl4B0traWh3NkVaOyqrqJ6kcBi0OGAghhBB9opaAoUePHgCAu3fvqqM50spJTkniMQCPAgadJz0lqRJCGcEjIYQQQtRLLQHDtGnTIBKJKH+BKEQy6ZkSnvWDZMBQIxShsLxaQ70hhBBCiJharsT69euHOXPmICkpCf/3f/+H6mq6CCDySZZVNaTRBb1gZ2YstU0bS6sSQggh+kYtSc8//PADfH19ERISgs2bN+O3337DyJEj0alTJ5iamjb6ekqW1i+SC7fRCIN+MDLgwdrUEAVlL28oZBdXwqethQZ7RQghhBC1BAzx8fGc2sVPnz7F+vXrFXqtuBwr0R+SSc9UUlV/2JsbSwUMhBBCCNEstd26FYlEzf4i+kWyrCqVVNUfshKfCSGEEKJZahlhyMzMVEczREdIVkkyoBEGvdGa1mIghBBC9IVaAgZ3d3d1NEN0hGSVJEPKYdAbtBYDIYQQon3oSoxoHckcBj5VSdIbUgEDTUkihBBCNI4CBqJ1pKYkUcCgN+xpShIhhBCiddQyJam+tLQ0/PDDDzh37hyePXuG8vJyHD16FN7e3uw+N27cwIMHD2BmZobevXuru4tEwySTnmlKkv5oQ0nPhBBCiNZRW8AgFAoxe/ZsrF27FkKhkK1+xDAMqqqqOPs+ePAAgwcPhoGBATIzM+Hi4qKubhItIDkliZKe9YfkCENuaRVqaoW0FgchhBCiQWr7KzxlyhSsWbMGtbW1cHZ2xsiRI+XuGx0dDU9PT9TW1mLv3r3q6iLREpILtxlSWVW9IZnDIBIBeaVVcvYmhBBCiDqo5UrsxIkT2LJlCwBg7ty5yMrKwk8//dTga9544w2IRCL88ccf6ugi0SLVVFZVb9maGUEyZYUSnwkhhBDNUkvAsHnzZgB1IweLFy8Gn89v9DU9e/YEANy8eVOlfSPaR7KsKk1H0R98HgNbM0p8JoQQQrSJWq7Ezp07B4ZhMHnyZIVf4+rqCgB49uyZqrpFtJTkCIMhVUnSK7QWAyGEEKJd1BIwvHjxAgDg4eGh8GsMDQ0BADU1NaroEtFitbQOg16TDBhySiiHgRBCCNEktQQMZmZmAIDs7GyFX/Po0SMAgK2trUr6VN/9+/cxc+ZMdOrUCWZmZrC1tUVgYCBWrlyJsrIypbZ1/PhxxMfHw9vbG2ZmZrCysoKPjw9GjhyJjRs3oqSkRKnttUZSSc80JUmv0FoMhBBCiHZRS1lVLy8vXL58GampqejXr59Crzly5AgAoEuXLqrsGn777TeMHTsWRUVF7LaysjJcvHgRFy9exLfffovDhw9z1olojvz8fEycOBG//vqr1HNFRUVIS0vDvn37EBwcDH9//xa11dpVU1lVvdbGwojzmJKeCSGEEM1Sy63b/v37QyQS4auvvoJQIqFVltTUVGzbtg0MwyA6Olpl/bpy5QrefPNNFBUVwdzcHJ9//jnOnj2LEydO4F//+hcA4O7du4iJiUFxcXGz2yksLES/fv3YYGH48OHYsWMH/vzzT1y4cAG//PILpk+fzuZt6DvJEQYDKquqV6RHGCo01BNCCCGEAGoaYZg2bRrWrVuH9PR0vPvuu/jvf/8LAwPZTR87dgwTJ05ERUUF7Ozs2At3VZg+fTrKy8thYGCAxMREBAcHs8/16dMHHTp0wOzZs3H37l2sWrUKixYtalY7U6dOxaVLl2BsbIyffvoJQ4YM4Tzfo0cPDB8+nF2nQt9JJT3TCINeoRwGQgghRLuo5dZt27ZtsWnTJgDAli1b0L59e7z33nvs82vXrsU777yDLl26YODAgXjy5Al4PB62bdsGc3NzlfTp/PnzOHPmDABg8uTJnGBBbObMmfD19WX7WF1d3eR2kpOTsX37dgDA4sWLpYKF+hiGkRtI6RPpsqoUMOgTqpJECCGEaBe1zfV46623sGvXLlhaWuLhw4f4+uuvwTB1F4LffvsttmzZglu3bkEkEsHc3Bw///wzYmJiVNafAwcOsN9PnDhR5j48Hg/jx48HABQUFCApKanJ7WzYsAEAYGVlhQ8++KDpHdVDNZILt9GUJL0iOSWpsLwalTU08kYIIYRoilqvxEaNGoV79+4hISEBAQEB4PP5EIlE7FeXLl3wySef4N69exg+fLhK+5KcnAygroJTQECA3P169+7Nfp+SktKkNqqqqti8hX79+kEgEAAAamtr8fDhQ2RlZaGiguZnS6IpSfpNcoQBoGlJhBBCiCap/datnZ0d5s+fj/Pnz6OiogIvXrzA06dPUVlZievXr+Pzzz+Hg4ODyvtx69YtAIC3t3eD04A6deok9RpFXb16lQ0IunbtiqKiIsyYMQNt2rRBu3bt4OnpCSsrK/Tr1w8nT55s+pvQUbUSU5L4NMKgV6xMDKWCxByalkQIIYRojEYnzPN4PLRp00bt7VZUVCAnJwcAGq1MZGNjAzMzM5SWluLhw4dNaic1NZX9XigUokePHkhLS+PsU1VVhePHj+PEiRNYunQp5syZ06Q2gJdrVsjz9OlT9vvKykqUl5c3uQ11qqiWWKxPWKv1fSZ16o+YtWT0rI2ZEZ4WvQwSHucWw6eN9MgD0V/KOtcIaQidZ0RdKiu1+8aYXmbY1i+RqkhStThgaOqianl5eez3y5cvR0VFBQYOHIjPPvsM3bp1Q1FREfbt24ePP/4YhYWF+Pjjj9GpUycMHTq0Se24ubkpvO9ff/2F9PT0Jh1f3Z485aH+4Nf9zHQkJt7TXIdIs5w+fbrZrzWo5QN4Ocpw6vwVVN8XyX8B0WstOdcIURSdZ0SVxDeytZVezvWof5fAyMiogT3rGBvX3dls6l3u0tJSTpv9+vXDoUOHEBgYCGNjY9jb2+Pdd9/FoUOHwPtn2s0nn3wCkUi/L4wkUhhACz3rH0sj7klQ3PQCZYQQQghREqWOMPTp0wdAXXnQEydOSG1vDsljKYM4+RiomxLUGPEwkYmJSbPbAepGGfh8vtR+YWFhiI2Nxd69e3Hr1i1cv34d3bp1U7idxqZKPX36FD179gQABAUFoX379gofWxN+fvE3kP9ydMa3Y0f0D2mnuQ4RhVVUVLB34SIiIqR+BhR1puIWbua/nEpn7dgO/ft3VEofiW5Q1rlGSEPoPCPqou2zP5QaMIgTd8XlUutvZximSXfOxftLHksZLCws2O8VmWYkHilo6poQ9duxt7dH9+7d5e47YMAA7N27FwBw4cKFJgUMTVkh2tjYuMmBj7oJwf0/NzE20vo+E2kCgaDZ/29ONmacx/nltXQOELlacq4Roig6z4gqiWezaCulBgwREREyL/DlbdcUgUAAOzs75ObmNpownJ+fzwYMTckVkNy/sYv6+vtmZ2c3qR1dI7kOA5VV1T9tzGnxNkIIIURbqGSEQdHtmtS5c2ecOXMG9+7dQ01NjdzSqrdv32a/F6/6rKguXbqw39fWNrzwVP3n9X2152qplZ4piUHfSK32XEIBAyGEEKIpenslFhYWBqBuutGlS5fk7nfq1Cn2+9DQ0Ca14e7ujnbt6ubeZ2VlNTglq/7cNRcXlya1o2tqhdzPic+jEQZ9Ixkw0DoMhBBCiObobcAwbNgw9vutW7fK3EcoFOKHH34AAFhbWyMqKqrJ7YwYMQIAUFRU1GDy9i+//MJ+Lw5m9BWt9EzsJaYklVbVorSyRs7ehBBCCFElvQ0YevbsifDwcADAli1bcO7cOal9Vq1axa7uPH36dBgaGnKeFydzMwyD+Ph4me3MmDGDrarw0UcfoaioSGqfH3/8kZ22FRMT0+RcCV1TUysxJYlWetY7bSykk79yaFoSIYQQohFquRK7fv06vLy80KFDBzx+/LjR/R8/fgxvb2+0b98ed+/eVVm/1q5dCxMTE9TU1KB///5YunQp/vzzTyQlJWHKlCmYPXs2AMDHxwczZ85sVhvt2rXDZ599BqDuc+jZsye2bt2KS5cuISkpCVOnTmWDDUtLS6xZs0Yp7601qxHSCIO+MzPiw8SQW4KYEp8JIYQQzVBLdu2PP/6IrKwsDBgwQKH5+S4uLvDx8cHRo0fx448/shfcyta9e3fs2bMHY8eORVFREebOnSu1j4+PDw4fPswpkdpUs2bNQl5eHpYvX447d+5g0qRJUvs4ODjgwIED6NChQ7Pb0RXVNMKg9xiGgb2FMR7klbHbaISBEEII0Qy1XImdOnUKDMNgyJAhCr9m6NChEIlESl+0TdLrr7+Oa9eu4cMPP4SPjw9MTU1hbW2NHj16YPny5bhy5Qq8vb1b3M7SpUuRkpKCcePGwcPDA8bGxrCyskJgYCD+85//4O7duwgODlbCO2r9JMuqGtAIg16SqpREIwyEEEKIRqhlhEE8ragpi5H5+fkBAO7cuaOSPtXn7u6O1atXY/Xq1U16XWRkZJMWowsODqagQAE1EmVVDamsql5qY27EeUwBAyGEEKIZarkSE6+m3JSVksX7ykoSJrpNskoSlVXVT7QWAyGEEKId1BIw2NjYAACePXum8GvE+7Ykd4C0TpLrMFDSs36yNxdwHmcXV2moJ4QQQoh+U0vAIE7k/f333xV+zZEjRwAA7du3V0mfiPaipGcC0AgDIYQQoi3UciU2YMAAiEQibN68mV3XoCE3b97EN998A4ZhMHDgQDX0kGgTybKqlPSsnyRzGGi1Z0IIIUQz1BIw/N///R/MzMxQUVGBPn364NChQ3L3PXjwIPr27Yvy8nKYmJjg/fffV0cXiZYQiUQypiTRCIM+kjXC0JQiA4QQQghRDrVUSWrTpg02bdqEcePG4cWLFxg6dCi8vLwQFhYGJycnAMDTp09x5swZZGZmQiQSgWEYbNy4EW3btlVHF4mWkEx4BgADSnrWS5IBQ1WNEEUVNbAyMZTzCkIIIYSogloCBgB46623IBQK8X//938oKytDeno6MjIyOPuI7x6amZlh48aNGDt2rLq6R7SEZElVgEYY9FUbc2OpbdnFlRQwEEIIIWqm1iuxcePG4d69e/j444/RtWtXAHVBgnhEoVu3bvj0009x7949Chb0lMwRBsph0EsCQz4sBNx7GrQWAyGEEKJ+ahthEHN0dMSSJUuwZMkS1NTUIC8vDwBga2sLAwO1d4domZpa6REGWodBf9lbGKO4ooZ9nEOVkgghhBC10+gVuoGBARwcHDTZBaJlJBOeAcCQyqrqLXtzY2Rkl7KPaYSBEEIIUT+6EiNapVpGwEBTkvQXrcVACCGEaB4FDESryJqSREnP+ksy8ZlGGAghhBD1U+qUpD59+gAAGIbBiRMnpLY3h+SxiG6jsqqkPskRBsphIIQQQtRPqQHDyZMnAdRd5EtuZximSYsuifeXPBbRbbLKqlLSs/6SmpJEIwyEEEKI2ik1YIiIiJB5gS9vOyGSamolV3lm6NzRYxQwEEIIIZqnkhEGRbcTIqlaIofBgCok6TV7iRyG3NIqCIUi8GjUiRBCCFEbpV6NXbt2DdeuXUNVVZUyD0v0iGRZVcpf0G+SIwy1QhHyy+j3CyGEEKJOSh1h8Pf3B4/Hw7Vr19C5c2d2+2effQYAeO+999CmTRtlNkl0jGTSM5VU1W+2ZkZgGKB++lN2SSXsJEYeCCGEEKI6Sl+4TVZi86JFi8AwDEaOHEkBA2mQZNKzAZVU1WuGfB5sTY2QW/pyVCG7uBKdHDXYKUIIIUTPKPVqzNDQEABQXl6uzMMSPSKV9ExTkvQercVACCGEaJZSA4a2bdsCAC5duqTMwxI9IpX0TCMMeo/WYiCEEEI0S+llVXfu3Ik5c+YgPT0dPj4+7KgDAPz666+4ePFik487fvx4ZXaTaLEayaRnymHQe1RalRBCCNEspQYMn3zyCfbv34/CwkJ88cUXnOdEIhHmzZvX5GMyDEMBgx6RHGEwpLKqeo8CBkIIIUSzlHo11qVLF5w+fRp9+/aFoaEhRCIRJwla/LipX0R/SOYw0AgDaWNuxHmcTVOSCCGEELVSepWkgIAAJCYmoqamBjk5OaioqICXlxcYhsHRo0fRoUMHZTdJdAitw0AkSeUwFNM6DIQQQog6KT1gYA9sYABHR27tQ2dnZ7i7u6uqSaIDqqmsKpFgby7gPKYRBkIIIUS9lBowrFu3DgAwbtw42NjYsNsXLlwIhmHg4OCgzOaIDpKakkQjDHpPcoQhr7QK1bVCGFIwSQghhKiFUv/izpgxAx9++CGePn3K2X7y5EmcPHkSpaWlymyO6CCppGe6KNR7kjkMAJBbQtOSCCGEEHVR2ZSk+k6dOgWGYShgII2isqpEko2pEfg8hpPfklNSCUcrQQOvIoQQQoiyKPX2rUBQ9we8oKBAmYcleqRGcuE2Kquq93g8RrpSEpVWJYQQQtRGqVdjHh4eAIBDhw4p87BEj1RL5DAY0ggDAa3FQAghhGiSUqckRUdH4/bt21i+fDlOnDghtdLzvHnzYG1t3aRjMgyDLVu2KLObRIvVUJUkIkMbc4mAgSolEUIIIWqj1IBh7ty5OHjwIO7du4cLFy7g4sWL7HMikQi//vprk44nEokoYNAzUjkMVCWJALCXDBhohIEQQghRG6UGDLa2trh48SI2bNiAEydO4PHjx6isrMT9+/fBMAycnJw4Iw6ESKKyqkQWqSlJNMJACCGEqI3SqyRZWlpi7ty5mDt3LruN90/iamJiIjp37qzsJokOkUp6pilJBJTDQAghhGgSXY0RrVItpKRnIk0yhyGHRhgIIYQQtVHLOgxJSUkAAE9PT3U0R1oxKqtKZKERBkIIIURz1BIw9O7dWx3NEB0gmcNAIwwEkA4YiitqUFFdC4EhX0M9IoQQQvSHWgKG+oRCIZKSknDu3Dk8e/YMZWVl+Pzzz+Hk5MTuU1VVhZqaGvD5fBgbGzdwNKJrJKck0UrPBADaWkqv6nzvRQn8XKw00BtCCCFEv6g1YDh06BCmTZuG+/fvc7b/+9//5gQM3377LaZOnQpzc3M8efIEZmZm6uwm0SCakkRkMTc2gLudKe7nlrHbbjwupICBEEIIUQO1XY198803GDp0KLKysiASiWBnZweRSCRz37fffhtWVlYoKSnB/v371dVFogVoHQYij2RwcP1xoYZ6QgghhOgXtQQMaWlpeP/99wEAffr0QWpqKl68eCF3fyMjI4wYMQIikQiJiYnq6CLRElRWlcjTVSJguEEBAyGEEKIWarkaW7NmDWpqatClSxf873//Q6dOnRp9TXh4OADgypUrqu4e0SKSIwyU9EzEJAOGW8+KUS0RYBJCCCFE+dQSMPzxxx9gGAYzZsyAkZGRQq/x9vYGADx8+FCVXSNaRvICkKYkETE/Z27AUFUjxN3nxRrqDSGEEKI/1BIwPHr0CADwyiuvKPwacaJzWVlZI3sSXSJZVpWmJBExK1NDtLM15WyjaUmEEEKI6qnlaoxh6u4SN+XiPzc3FwBgZUVVUPQJrfRMGiI5LYkSnwkhhBDVU0vA4OLiAgDIyMhQ+DXJyckAAC8vL5X0iWgnKqtKGiJdKalIQz0hhBBC9IdarsYiIyMhEonw/fffK7R/YWEhNm3aBIZh0KdPHxX3jmgT6SlJNMJAXpJKfH5aRInPhBBCiIqpJWCYMmUKGIbBqVOnsG3btgb3zc3NxbBhw/Ds2TMYGBjg3XffVUcXiZaoEdIIA5HPz8WS87iqRoi05yUa6g0hhBCiH9RyNda9e3dMnz4dIpEIkydPxptvvomffvqJff7s2bPYuXMn3n//fXh7e+P06dNgGAbz58+Hu7u7OrpItITUwm00wkDqsTY1gputCWcbJT4TQgghqmWgroZWrVqFyspKbNy4EXv37sXevXvZZOgpU6aw+4lXf54xYwbmzZunru4RLSE5JYmSnomkri5WeJhXzj6+/rgQowLdNNgjQgghRLepbb4HwzD46quvcPToUURGRoJhGIhEIs4XAAQHB+Pw4cNYvXq1urpGtIj0Ogw0JYlwSSc+0wgDIYQQokpqG2EQ69evH/r164fi4mJcuXIFL168QG1tLezs7ODv7482bdqou0tEi9CUJNIYyQXcbj0tQk2tkNbsIIQQQlRE7QGDmIWFBSIiIjTVPNFSkiMMhnQRSCRIVkqqrBEi7UUJfJ0s5byCEEIIIS1BV2NEq0iVVeXRCAPhsjEzgos1N/GZpiURQgghqqOREYbnz5/j5MmTuHHjBvLy8gAAtra28PPzQ2RkJNq2bauJbhEtQGVViSK6uljhccHLxOcbjwsxqgclPhNCCCGqoNaA4enTp/joo4/wyy+/oKamRnaHDAwwYsQIrFq1Ck5OTursHtEClMNAFNHV1Qq/33zGPqbSqoQQQojqqO327dWrV9GtWzf89NNPqK6ulqqQJP6qrq7Gnj178Morr+D69evq6h7RArVCEUTceIHKqhKZJCslpf6T+EwIIYQQ5VNLwFBaWoqYmBjk5uZCJBKhb9++2LNnD7KyslBRUYGKigpkZWXhp59+Qv/+/SESiZCTk4OYmBiUlZWpo4tEC0gmPAM0JYnIJpn4XFEtRHp2qYZ6QwghhOg2tVyNbdiwAU+ePAGPx8M333yDxMREvPHGG2jXrh2MjIxgZGSEdu3aYeTIkfj999/x7bffgmEYPH78GF999ZU6uki0gOR0JICmJBHZbCnxmRBCCFEbtQQMv/76KxiGQXx8PCZPntzo/pMmTcLEiRMhEomwf/9+NfSQaANZU0qorCqRx8+FW0aV8hgIIYQQ1VDL1djdu3cBAHFxcQq/ZvTo0ZzXEt1XXStjhIHKqhI5JKcl0QgDIYQQohpqCRhKSkoA1JVOVZSNjQ2AuvwHoh8kS6oCoNV7iVxSic9PilArY1obIYQQQlpGLVdj9vb2AIBbt24p/Jrbt28DANq0aaOSPhHtI7loG0AjDEQ+yRGG8upapGeXaKg3hBBCiO5SS8DQq1cviEQirF69Wu76C/XV1NRg9erVYBgGvXr1UkMPiTagpGfSFHbmxnC2EnC2XX9E05IIIYQQZVNLwDB+/HgAwN9//42YmBg8efJE7r5PnjzB66+/jsuXLwMA4uPj1dFFogVkJj1TWVXSAMlpSZTHQAghhCifWlZ6fv311zFs2DAcOHAAx48fh5eXF/r374+goCA4ODiAYRg8f/4cf/31F44dO4aqqioAwPDhwxETE6OOLhItIJn0zGMAHk1JIg3o6mKFxNTn7GOqlEQIIYQon1oCBgDYtWsXxo8fj59//hlVVVU4fPgwDh8+LLWf6J+lft944w388MMP6uoe0QKSSc+U8Ewa4+fKHWG4+U/iM58CTUIIIURp1HZFZmxsjD179uC3337DoEGDYGJiApFIxPkyMTHBoEGDcOjQIezZswfGxsbq6h7RApIjDIZ00Uca4ecsnficQYnPhBBCiFKpbYRBLCYmBjExMaitrUVGRgby8vIA1JVc9fLyAp/PV3eXiJaQzGGgEQbSGHsLYzhaCvCsqILddv1xITq0tdBgrwghhBDdovaAQYzP56NDhw6aap5oIckqSYZUIYkowM/FSipgiH3VVYM9IoQQQnQL3cIlWkMyYKB56EQRkusxUOIzIYQQolwqCRj+/PNPxMbGIjY2Fnv37m3Sa3/++Wf2tZcuXVJF94iWkpqSRCVViQK6ulpyHt+kFZ8JIYQQpVLJFdn06dPx66+/4uHDhxg6dGiTXjt06FA8fPgQv/76Kz788ENVdI9oKamkZ5qSRBQguRZDWVUtMnMo8ZkQQghRFqUHDH/99RcuXLgAAFi3bh0MDQ2b9HojIyOsW7cOIpEIKSkpNMqgR6isKmkOBwsB2lpyK6rRAm6EEEKI8ij9iuynn34CAISFhSE4OLhZxwgODkbv3r0BALt371Za34h2q5EYYTCgHAaiIMk8huuPijTUE0IIIUT3KD1gOHfuHBiGafJUJElDhgyBSCTC2bNnldQzou2qJXIYDGmEgShIclrS9ccFmukIIYQQooOUfkWWnp4OAOjatWuLjuPn58c5HtF9klWSDCiHgSjoFVdrzuOrDwtRXlWrmc4QQgghOkbpAUNBQQEAwN7evkXHEb9efDyi+ySrJBlSlSSioB4eNpwyvFW1QlzIytNgjwghhBDdofQrMlNTUwBAUVHL5hAXFxcDAExMTFrcp8bcv38fM2fORKdOnWBmZgZbW1sEBgZi5cqVKCsrU0mbZWVl8PLyAsMwYBgGHh4eKmmnNaF1GEhzWQgM0c2VOy0pJT1HQ70hhBBCdIvSAwbxyMC9e/dadBzx61s6UtGY3377Dd26dcPq1atx584dlJWVIT8/HxcvXsTs2bPRvXv3Fr8XWRYsWIDMzEylH7c1k0p6pilJpAnCvNtwHp+9l6uhnhBCCCG6RekBQ/fu3SESiXDkyJEWHefw4cPs8VTlypUrePPNN1FUVARzc3N8/vnnOHv2LE6cOIF//etfAIC7d+8iJiaGHfFQVrtffvklBAIBLCwslHbc1q5aSEnPpPlC2nMDhhtPClFQVqWh3hBCCCG6Q+lXZAMGDAAAHDhwADdv3mzWMW7cuIEDBw6AYRj2eKowffp0lJeXw8DAAImJiZg7dy6Cg4PRp08fbN68GStWrABQFzSsWrVKKW3W1tbiX//6F2prazF37lzY2toq5bi6gMqqkpZ41d0aAsOXv9JEIuDPDBplIIQQQlpK6QFDXFwcHBwcIBQKMXLkSOTmNu0Pdk5ODkaMGAGhUAh7e3vExcUpu4sAgPPnz+PMmTMAgMmTJ8tcM2LmzJnw9fUFAKxduxbV1dUtbnft2rW4dOkSOnbsiDlz5rT4eLpEKumZRhhIExgb8BHowQ3AU2haEiGEENJiKkl6TkhIgEgkwt27d+Hv749ff/1VodceOHAA3bt3R1paGhiGwWeffcYmUSvbgQMH2O8nTpwocx8ej4fx48cDqKvWlJSU1KI279+/jwULFgAANm3aBCMjoxYdT9dUyyurKjFViRB5JKclUeIzIYQQ0nIGqjjolClTcPnyZXzzzTd48uQJYmNj4eHhgYEDByIgIAAODg4wMzNDaWkpnj9/jsuXL+PIkSO4f/8+RKK6i8Z33nkH77zzjiq6BwBITk4GAJiZmSEgIEDufuIVpwEgJSUF/fv3b3ab7733HkpLSzFu3DhERkY2+zi6SnKEwUaYD3w3CHhyGfAZAAxYCli5aKh3pDUI9bbjPM7ILsWzwgo4Wgk01CNCCCGk9VNJwADU3UF3dHTE559/DqFQiKysLGzatKnB14hEIvB4PMybNw8LFy5UVdcAALdu3QIAeHt7w8BA/sfQqVMnqdc0x+7du/G///0PNjY2SsuH0DXVEjkMr+XuAnL/Wek79Vcg/SQwaDnwShzAUH4DkdbF2QqWAgMUVdSw21Lu5WBEgKsGe0UIIYS0bioLGBiGQUJCAoYOHYolS5bg119/RW2t/JVX+Xw+hg0bhk8++QSvvvqqqroFAKioqEBOTt1UBVfXhi8kbGxs2NGQhw8fNqu9/Px8zJgxAwCwbNkypZeKffToUYPPP336lP2+srIS5eXlSm1fWSqruDkibSskys5WFgIH3kXtjV9QNeALwNxBjb0jiqioqJD5vTr19LDB8dvZ7ONTd54jurNdA68grZE2nGtE99F5RtSlsrJS011okMoCBrFXX30Ve/fuRWFhIZKTk3H16lXk5uaiuLgYFhYWsLOzwyuvvIKwsDBYWVk1fkAlqF8i1dzcvNH9xQFDSUlJs9qbNWsWnj9/juDgYLZcqzK5ubkpvO9ff/2F9PR0pfdBGbIe8FA/rUZUUShzP/69RPAzg3HNdTwe2/Si0QYtdfr0aY20a13JAOCzj0/deoqjpo/oNNFhmjrXiH6h84yokvhGtrZSecAgZmVlhZiYGMTExKirSbnq3yVQJPHY2NgYAJp1Z/706dP47rvvYGBggE2bNoGhqxa5JGYkwQjyq1IZ1Zaix/2NcC68iKuuE1BlaKnczohEMKotgXF1EQxrS//5KoNRTSkMastg9M82vlBc518E5p/Xsd8DqGUMUMM3QQ1PgBq+oN73JqjmmaDCyAZlRvao4at+RXN94WPFPZEKqxm8qADa0kdMCCGENIvaAgZtIhC8TICsqmp8YSfxMJGJSdOuOCorK/HOO+9AJBJh+vTp6NatW9M6qqDGpko9ffoUPXv2BAAEBQWhffv2KulHSx0vuQlkP2cfmxuKgHqz2EQMD4yImxjtXHABTpXpqPWMhMjGCyLb9hDaekFk4wUYy1gUr7YKKM0BU/oCTFk2mJJsMKXPwZQ8A1PyAkzJc6D0OZjSbDC16lv0S2RiC5F1Owit2kFk1Q4i63YQWXtA6NAZMG3T+AG0REVFBXsXLiIigvOzpi4ikQjfpqfgRfHL/z+eU2f070l5DLpEG841ovvoPCPqoq2zP8T0MmCov7qyItOMSktLASg2fam+zz//HHfu3IGbmxsSEhKa1skmaCwPoz5jY+MmBz7qImS4VX6NRNz5fMyQDcC948DNX7jby/NgkMrdBgAwbwvYeQMMDyh5AZS+AMrzld5vZWDK88CU54H39G/pJ63aAc7+gMurgHN3wMkfMLFWbwebQSAQaOxcC/O2xy9XHrOPLzwoxNu9O2ikL0T1NHmuEf1B5xlRJfFsFm2llwGDQCCAnZ0dcnNzG00Yzs/PZwOGpuQKAMDy5csBAH379sVvv/0mcx/xsUtLS7F7924AgIODA/r06dOktnSB1MJtQokEMysX4I2tQOchwKGPgPK8hg9Y8rzuq7UrfFD3devgy222Xv8EQ3z5r9MAI2Eter7IRrWBOQxSbgAOHQAbj7ovM3u15ZuEeLfhBAzn0nNRKxSBT6uHE0IIIU2mlwEDAHTu3BlnzpzBvXv3UFNTI7e06u3bt9nvxas+K0o83Wnr1q3YunVrg/vm5ORg9OjRAOrWftDPgEFi4TahRMUAw38W8esyHHAPBQ59CNw+pPqOGVkAAqu6u/oCa+6/hqb/XAQzL/8FXl4Y11QAlcVAZQlQ9c+/lcVAVQlQXgCUPGten/Iy6r60DB+Ak/hB8hnuk4am/wQPnkC3UUCXYSrrh+R6DEUVNbj5pBDdXK1V1iYhhBCiq/Q2YAgLC8OZM2dQWlqKS5cuISgoSOZ+p06dYr8PDQ1VV/f0EnelZxEMaiVGGAzrDQWbOwBv/gg8vQo8PA/k3nv5VfAAgEQGtSSeAWDmAJjbA+aOgEXbl/9aOL383swBMFDhitzVFUDhQyD/PpCfCRTc/+f7LCAnDajRzhK4zVJdBrxIrfu6cxgw2A10HKSSppysTODVxgwZOaXstpR7uRQwEEIIIc2gtwHDsGHDsHTpUgB1IwCyAgahUIgffvgBAGBtbY2oqKgmtSFetbohHh4euH//Ptzd3ZGVldWk4+uaWuHLKUlGqAEP3ClK7AiDGMPUze139udur66ou+DOvVd3F57h1eUzmDv889W2boSAx82Z0AhDAdCmQ92XpNoaIOcO8OTKy69n1+sSt3XBhS0qCxgAIMTbjhMwnE3Pwf9FamfCPyGEEKLN9DZg6NmzJ8LDw3HmzBls2bIFEyZMQHBwMGefVatWsas7T58+HYaGhpznT548yQYREyZMwLZt29TSd11Vf6VnAWQsYGKgYHUKQwHg0KnuqzXjGwBtu9R9dR9bt62mCsi+BTz5GyjL1Wj3ZKmuqcG9u3cgqM5HOwsh+EX/jJ4IZZTIzToDVJdzR46UKLR9G/z45wP28YWsPFTW1MLYQLvyPgghhBBtp7cBAwCsXbsWoaGhKC8vR//+/TF37lxERUWhvLwcu3fvxubNmwEAPj4+mDlzpoZ7q/vqJz0LZK3BoKILy1bFwAhweqXuSwvVlJfjblEiAMCxf/+6iiLCWqD4KZBzF/hxBCAujVtTAWSlAB36qqQvwe3twDD/LI0BoKJaiMv3CxDcnlZ9JoQQQppCrwOG7t27Y8+ePRg7diyKioowd+5cqX18fHxw+PBhTilWoho19XIYTBgZIwySU5JI68DjA1audV+ugcDDv14+d++YygIGa1MjdHG2xI3HRey2s+k5FDAQQgghTaSWSdw//PADfvjhBxQVFTW+8z9KSkrY16nS66+/jmvXruHDDz+Ej48PTE1NYW1tjR49emD58uW4cuUKvL29VdoHUqf+lCQTSM7TZwAD7a5RTBTgLREcpB1TaXOh7bmL3qXcy1Fpe4QQQoguUssIQ3x8PBiGQY8ePdC5c2eFXvP8+XPEx8eDx+Nh/PjxKu2fu7s7Vq9ejdWrVzfpdZGRkQolNjdE3xOd66s/JclEMofB0ERtNfyJCnn3BZI+f/k4L70uMd3WSyXNhXi3wdenX5afvfqoEMUV1bAQGDbwKkIIIYTUpwVlYhrW0gty0nrUn5IkYCRGGCh/QTc4+dct4FZf2nGVNRfoYQND/stAs1YowvnMRhb8I4QQQgiH1gYMtbW1ACB3QTWie6o5Sc+SAQPlL+gEHg9o/xp32z3VTUsyNTJA93Y2nG0p97SvuhQhhBCizbQ2YLhz5w4AwNbWVsM9IepSWz/pWdaUJKIbOvTjPs48U7d2hopI5jGcTac8BkIIIaQpVHL7/vTp0zK3X7hwATk5Df+xrqysRHp6Or744gswDAN/f38V9JBoI+46DBIjDIquwUC0X/s+dYvpseVVy4H7ydIJ0UoS6m2HNfVmPd1+Vozs4krYW1ASPSGEEKIIlQQMkZGRYCQSVEUiESZNmqTwMUQiERiGwZQpU5TdPaKlauqt9GwilcNAU5J0hqkt4BIAPLrwclvacZUFDK+4WcPMiI/Sqlp229n0HAz1d1FJe4QQQoiuUdmUJJFIxH7J2tbYl6urK7766isMGzZMVV0kWqamoZWeaUqSbvGWmJakwjwGQz4PQV7ctReSbr9QWXuEEEKIrlHJCENSUhL7vUgkQp8+fcAwDLZs2QJPT0+5r2MYBgKBAE5OTnBzc1NF14gWq+aUVaURBp3WoS9wcsnLx7n3gLxMwFb+74eW6O1jjz/qBQknbr1AZU0tjA34KmmPEEII0SUqCRh69+4tc3vPnj0VXoeB6J+Gy6pSDoNOceoOmLYByurlNN07DvT8l0qaG+jniIUHb7KPiytrkHIvB306tVVJe4QQQoguUUuVpMzMTGRkZMDHx0cdzZFWSCQSSVRJonUYdBqPB3hLlFdV4arPbS0FCHDnllc9cv2ZytojhBBCdIlaAgZ3d3e4u7vTmgpErvoVkgBZZVVpSpLOkcxjyFJtedVBfo6cx4mpzznT4AghhBAim9asw/Dbb79h3LhxGDRoEN577z1cvnxZ010ialR/dAGglZ71Qvs+AOpVU6suAx6cVVlzg7o6cR4XllfjXDot4kYIIYQ0Ri0BQ1JSEhwcHNCuXTsUFBRIPT9//nwMGzYMO3fuRGJiIr7++mv06tUL27dvV0f3iBaoFnLv9Eqvw0ABg84xs6srr1pf2nHZ+yqBi7UJXnGz5mw7cuOpytojhBBCdIVaAob//e9/yMnJQWBgIKytrTnPXbt2DUuWLGHLqVpbW0MkEqGmpgZTpkxBVlaWOrpINKym0SlJFDDoJMlVn1VYXhUAoiWmJR29+Rw1NC2JEEIIaZBaAobk5GQwDIO+faUXZtq4cSNEIhFsbGxw6dIl5Obm4vz587C1tUVlZSU2bdqkji4SDZO8aKOF2/SEZB5Dzl0g/77Kmhvkx52WlFdahfNZeSprjxBCCNEFagkYnj6tG/bv0qWL1HOHDh0CwzD44IMP0L17dwBAjx498MEHH0AkEuH4cdVNUSDao1oyh4FGGPSDc3fAlLuomipHGdrZmaKLsyVnG1VLIoQQQhqmloAhOzsbAKSmI6Wnp+Px48cAgOHDh3OeCw8PZ/chuk9yhEGAau4OFDDoJh4PaC9ZXlW1NwmiJZKff7/5TCrpnhBCCCEvqSVgEInq/hgXFhZytp85cwYAYGVlBX9/f85zdnZ1dx3LyspU30GicY2XVaWAQWdJ5jFkngZqKmXvqwSS5VWziytx6X6+ytojhBBCWju1BAyOjnV/oG/dusXZfvToUQBAaGio1GtKS0sBADY2NlLPEd0jeYdXOoeBAgad1f41cMurlgL3VVde1cveHJ0cLTjb/nedqiURQggh8qglYOjVqxdEIhE2btzIjhhkZGTg119/BcMw6Nevn9Rr7t69C+BlsEF0m+QCWlIjDFRWVXeZ2QEur3K33VPttCTJ5OejN59BSNOSCCGEEJnUEjC8/fbbAOpKqPr5+WHkyJHo1asXKioqYGJigjFjxki95vTp0wAAHx8fdXSRaFiNxMWaseQ6DDTCoNskqyWlqbi8alfujYinhRX4+1GBStskhBBCWiu1BAx9+vTB9OnTIRKJkJWVhf379yMnJwcAsHLlSrRp04azf0VFBTv6EBERoY4uEg2rn/RsgBoYMbXcHaisqm6TzGPIuQMUPFBdc20t4O1gztl2hKYlEUIIITKpJWAAgDVr1uDgwYMYN24c+vbti/Hjx+P48eP4v//7P6l9Dx48CEtLS7Rr1w6vv/66urpINKh+0rPUKs8AjTDoOufugIktd1tWikqblEx+/t/1Z2yBBkIIIYS8ZKDOxgYPHozBgwc3ut+oUaMwatQoNfSIaIsa4csRBhMKGPQPjw+06wXc+d/Lbc9vqLTJQX5OWP/HPfbx44JyXH9ciG6u1iptlxBCCGlt1DbCQEhDauqNMBhLVkgCKGDQB45duY+fXVdpc75OFvCw4051O3KDFnEjhBBCJFHAQLRC/SpJMkcYqEqS7mvrx3387DqgwilCDMNgkMQibkeuP6VpSYQQQogEtUxJevCgZcmL7dq1U1JPiLaqvw6DdElVQd2KwES3SY4wlOcBxU8BS2eVNRnt54SNJ1+uJp+VW4ZbT4vR2dlSZW0SQgghrY1aAgZPT89mv5ZhGNTU1CixN0QbVXMCBokRBgOBmntDNMLaHTCyAKqKX257dl2lAYOfiyVcbUzwKL+c3XbkxlMKGAghhJB61HLbViQSteiL6L76ZVUFUqs8U0lVvcDjAY4ypiWpEMMwMqolUXlVQgghpD61jDBs3bq10X1KS0tx9+5d7Nu3D48fP0ZoaCi74BvRfTWcsqoSU5Io4Vl/tPUDHpx7+VjFAQMADOrqhG/OZLKP07NLcftZETo50igDIYQQAqgpYJgwYYLC+65cuRIffvghNm7ciNDQUCxbtkyFPSPaorqhsqo0wqA/JPMYVFxaFQD8Xa3hZCXA08IKdttPFx5hweudVd42IYQQ0hpoXSapoaEhNmzYgMjISKxcuRJHjx7VdJeIGtQfYTBhJEcYKIdBb0hOScpNB6pKVdokj8dgWHcXzrZ9lx+horpWzisIIYQQ/aJ1AYPYlClTIBKJsH79ek13hahB/bKqUis905Qk/eHQGWDq/1oSAc9TVd5sXKAb53FheTV+pzUZCCGEEABaHDB06NABAHDx4kUN94SoQ01DVZJoSpL+MDQB7Dpwtz27pvJm3e3MEObdhrNt5/mWlYMmhBBCdIXWBgyFhYWcf4luq78Og0BqShKNMOgVDeQxAMDontz1Xs5n5uHeixK1tE0IIYRoM60NGL7//nsAgJOTUyN7El3Q4ErPtMqzflFzaVWxfp3bws7MiLNtN40yEEIIIdoXMKSlpeHdd9/F999/D4ZhEB0drekuETXgllWlHAa9JjXCkAoIVZ+AbGTAw8gerpxt+y4/QmUNJT8TQgjRb2opq+rl5dXoPkKhEAUFBSgufrnKq4ODAz799FNVdo1oCU5ZVamF2yhg+P/27js+ijp94PhntmXTQxIChBYIhN6bdLBgAUTseiogKsdZ0OPE3u7sBUU8T7GAFRF/iiAgINJ7qFIDoQVCQnrPZsv8/liyZJNsCtnshuR5v17z2sl3vjPzbBzDPvttDUqTUgmDOQ/ST0B4u1q/9Z39WvHpuuOOnzPyzaw4kMyNPWpvtWkhhBCirvNIwnDy5MlqnzNw4EC+/PJL6ZLUQFS8cJsMem5QApuAfwTknb9YlvyXRxKGNuH+DIoOY3N8mqNs/rbTkjAIIYRo0OrMwm0ajYbAwEDatGnD8OHD6dmzZ+0HJuoMS0VjGGQdhoanaVeI//Piz0l/QZfxHrn1nf1bOSUMW46ncTwll7aNAzxyfyGEEKKu8UjCMHfuXE/cRlzGzLaKxjBIC0OD07RbqYTBMzMlAVzbpQmN/PRk5JsdZQt2JPDMDZ08FoMQQghRl9S5Qc+iYXJqYZBpVUXpcQwemikJwEen5dY+zoOfF+6Uwc9CCCEaLo8kDG3btqVt27Z89NFHnriduAzJwm3CSemZknISIS+t/Lq14M5SazKk5xWx6mCyx+4vhBBC1CUeSRjOnDnDqVOnZFyCcKnCQc86GcPQ4IS1A62Pc1my51oZohsHMKBNqFPZfFmTQQghRAPlkYShadOmAPj6StcSUT5LiWlVjYrZ+aC0MDQ8Wh006exc5sFxDAB3D3BuZdh0LI2TqXkejUEIIYSoCzySMAwYMACAAwcOeOJ24jJktpbskiRjGATQxDsrPhe7tktTQvz0TmU/7EjwaAxCCCFEXeCRhGHq1Kmoqsr777+P2Wyu/ATR4FQ8raokDA1S0+7OPyd7toXBqNdyS2/nwc8/7UygyGJzcYYQQghRP3kkYbjyyit55pln2Lt3L2PGjCEhQb6lE86KBz1rsOFTpkuSJAwNUtNSLQwph8FiKr9uLbmrf0unn1Nzi1h9SAY/CyGEaFg8sg7Dv//9b3x8fOjWrRurVq2ibdu2DB48mO7du9OoUSO0Wm2F57/44oueCFN4kflCC4NP6dYFkIShoWrSxflnm8WeNDTr4bEQ2kUE0j8qlO0n0x1l328/zfXdZAV6IYQQDYdHEoaXX34ZRVEAUBQFq9XKhg0b2LBhQ5XOl4Sh/iueJalMdySQQc8NlTEYQlpD5qmLZUn7PZowANzZv6VTwrDhaCoHErPoEhns0TiEEEIIb/HYwm2qqjq20j9Xton6r7hLUpkBzyAtDA1Z6fUYPDzwGeCGbs1oVGrw84erj3o8DiGEEMJbPJIw2Gy2Gm2i/iueVtWolNPCoJOEocEqnTB4eOAz2Ac/PzC0rVPZigPJHDqX7fFYhBBCCG/wWAuDEBUp7pJkLN0lSaO3z8kvGqYyLQz7wAutjvcNbE2wr7QyCCGEaJgkYRB1QvGg57JrMMj4hQat9FoMhVmQdcbjYQQa9Uwe0sapbPn+JI4k5Xg8FiGEEMLTJGEQdYJjDEPpLkkyfqFhC2kFPqUGF3thHAPAxMFRBBmdW7s+/FNaGYQQQtR/XuvrkZ2dTU5ODlartdK6rVq18kBEwptcdknSG70QjagzFMW+HsOpTRfLkvdDxxs8HkqQUc/9Q9rwwR8Xk4Rlf53jaHIO7ZsEejweIYQQwlM8mjCsWrWKjz/+mI0bN5Kenl75CdinYbVYLLUcmfC2i12SSicM0iWpwWvazTlhSNrntVAmDW7DFxtOkGOy/01SVfjwz2PMvquX12ISQgghapvHuiQ99thjXHfddSxevJi0tDSZVlU4Ke6SZFRKj2GQLkkNXulxDEmenympWLCvnkmDo5zKftuXyLHzMpZBCCFE/eWRFobvv/+ejz76CACj0chNN91Enz59CA0NRaORYRQCLNLCIFwpPVNSxgkozAZjkFfCuX9IG77cdJLcEq0MH/15jA/ulFYGIYQQ9ZNHEoZPP/0UgJYtW/Lnn38SHR3tiduKy4ijhaF0wqCTMQwNXuOOoGhBLTHe6fxBaHWFV8IJ8TMwcVAUH6055ihbvDeRx65qT9vGAV6JSQghhKhNHvl6f9++fSiKwksvvSTJgihX8aBnX+mSJErTG6FxB+cyL82UVGzykDb4G7SOn20XWhmEEEKI+sgjCYPZbAagVy9pshflMxev9CxdkkR5yoxj8G7C0MjfwH2DopzKFu05y4nUPO8EJIQQQtQijyQMUVFRAOTm5nriduIyY7WpjsV7yy7cJi0MgnJWfPZuwgDw4NC2+EkrgxBCiAbAIwnDzTffDMDq1as9cTtxmSmeUhXAiNn5oCQMAuxrMZR0/iBYisqv6yGh/gbuHdjaqWzRnrOcSpNWBiGEEPWLRxKG6dOn06pVKz744AMOHz7siVuKy0jxgGeQMQzChabdnX+2FELccu/EUsKDQ9viq7/YymC1qcz6Q1Z/FkIIUb94JGEIDg5mxYoVNGnShEGDBvHxxx+TkZHhiVuLy4ClRAtD2WlVJWEQgH84tCw1K9LOeV4JpaTwAB/uucJ5Jfqfd59l12n5+yaEEKL+cOu0qm3btq3weH5+PpmZmTz66KM89thjhIeH4+dX8aBWRVGIj493Z5iijinZwmAsM4ZBBj2LC/pMhIStF3+OXwMZJ6FRlJcCsntoWDTztyc41mUAeHnxARb9YzAajeLFyIQQQgj3cGvCcPLkySrVK17B+fz585XWVRT5B7e+K55SFcCoyDoMwoUuN8HvT0Fh1oUCFXZ9A1e94M2oaBzow7Sr2vPaskOOsn1nsvhp5xlu79fSi5EJIYQQ7uHWhGHChAnuvJxoIMwVdkmSFgZxgd4Xut8B2+dcLNv9LYx4GrR678UFTBgUxfwdpzmecnHA89srDnNdt6YEGb0bmxBCCFFTbk0Y5s6d687LiQbCadCzTKsqKtJnonPCkJsEcSug0xivhQRg0Gl4cUxnJs7d4ShLzS3iwz+O8vyYzl6MTAghhKg5tw961mg06HQ6Dh486O5Li3qq5KDnMl2SpIVBlNSkC7To51xWBwY/A4zoEMHVnSKcyuZtPsmx8zleikgIIYRwj1qZJUlV1corCXGBueQYhjJdkmQMgyilz0Tnn4/9AZmnvRJKac+P7oxBe/HPqsWm8sqSg/I3UQghxGXNI9OqClERi03GMIhq6DIefIJKFFwY/FwHRIX788DQNk5lG46msupgspciEkIIIWpOEgbhdRfHMKj4ycJtojIGf+h+u3PZ7m/Baim/voc9PLIdTYJ8nMr+s/QghWarlyISQgghakYSBuF1xdOq+mAue1ASBlGe0t2SchLh2CqvhFKav4+OZ2/o5FSWkF7A5xuOeykiIYQQomYkYRBeVzzoucz4BQCdJAyiHE27QfM+zmV1ZPAzwI09IunbupFT2X/XxJOYWeCliIQQQohLJwmD8DrzhS5JZaZUBWlhEK6VbmU4uhKyzngllNIUReHlG7tQct3JArOVN5Yf9l5QQgghxCVy6zoMJU2aNAl/f/8aX0dRFFavXu2GiERdVdzC4Ft6SlWQQc/CtS43w+/PQFGu/WfVdnEhtzqga/Ng7urfiu+3XZzBacneRO7q35JB0eFejEwIIYSonlpLGGJjY2t8DVVVUUp+RSfqpeJpVcu0MChar6/gK+ownwDodhvsLLFg5K6vYdiToNF6L64S/jWqA7/tTSS78OKA7Bk/7WPF48Pw96m1P79CCCGEW9ValyRVVWu8iYaheFrVsmsw+IIkjKIipbslZZ+1r8tQR4T6G/jXtR2cys5kFPD6skNeikgIIYSovlpLGPbv34/NZqvxZrXW/lSEp06dYvr06XTs2BF/f39CQ0Pp168f77zzDvn5+TW6dn5+Pj///DNTp06lX79+NGrUCL1eT1hYGAMHDuTll18mKSnJTe/k8lQ8S1LZVZ5l/IKoRGRPaNbTuWznV96IxKV7BrSmf1SoU9l3206z4WiKlyISQgghqqfBD3pesmQJ3bt3Z+bMmRw5coT8/HwyMjKIjY1lxowZ9OrVi2PHjl3Stfft20eTJk245ZZb+OSTT4iNjSUzMxOLxUJ6ejpbt27llVdeoUOHDixYsMDN7+zyYXE16FkSBlEVpVsZ4n6H7ESvhFIejUbhndu646t37ib11E/7yC4sZyphIYQQoo5p0AnD7t27ueOOO8jOziYgIIDXXnuNzZs3s3r1ah588EEA4uLiGD16NDk5OdW+fnZ2Nrm59gGZgwcP5o033mDVqlXs2rWLFStWMGXKFDQaDdnZ2fztb39j+fLlbn1/lwvHoGdZ5Vlcim63gr7EBAuq1T74uQ5pHebPMzd0dCpLzCrk1d8OeikiIYQQouoa9Ki7adOmUVBQgE6nY+XKlQwcONBx7Morr6R9+/bMmDGDuLg43nvvPV5++eVqXV+j0XD77bfz0ksv0blz5zLHR40axfXXX8/48eOxWq08+uijHD16tMEN9C6eVrVMlySd0QvRiMuOT6A9adhVoivStk/hiqn2Y3XEPQNa8/v+JDbHpznKfow9w/VdmzGyY4QXIxNCCCEq1mBbGLZv386GDRsAmDx5slOyUGz69Ol06mRfsXXWrFmYzdXrPjBo0CAWLFhQbrJQbNy4cdx8880AxMfHs3v37mrdoz5wuXCbtDCIquo7yfnn/FTY+ol3YnFBo1F465bu+BucuyY9/fM+svKla5IQQoi6q8EmDIsWLXLsT5o0qdw6Go2G++67D4DMzEzWrFlTK7GMHDnSsR8fH18r96jLLK6mVZUxDKKqIntBzHXOZZs/hPx078TjQstQP54f4/wFQnK2iZeXHPBSREIIIUTlGmzCsHHjRgD8/f3p06ePy3rDhw937G/atKlWYjGZLn5Q1mrrxvzxnmS2uRrD4Mv5/PPsSNpBakGqFyITl5Urn3f+2ZQNm2Z5J5YK3NmvJcNiGjuV/bL7LCsONOzZ0oQQQtRdbk8YTpw4wfHjx4mJiXH3pd3q0CH7POjt2rVDp3M9lKNjx4sDFYvPcbd169Y59ou7QDUkrqZV3auxcOOiG7l/xf1ctfAqJq+YzI9HfiStIK28y4iGrmk36HqLc9m2TyGnbn0QVxSFt27pRqDR+e/Oc7/8RXpeOaudCyGEEF7m9kHPrVu3dvcl3a6wsJDUVPs31i1atKiwbqNGjfD39ycvL4+EhAS3x7J3716WLl0KQLdu3S4pYThz5kyFx8+dO+fYN5lMFBQUVPsetanAZP+QVLpL0nxzKnmWPABsqo3tSdvZnrSd17a9Rt+Ivlzd4mpGtBhBiE+IR+JUVRWT1USRrcj+ai3CYrOv4KtycaHBkvsaRYNBY0Cv0aPX6DFo7ftaRVsvB7cXFhaWu+8pysDp+BxYhKJeWL/FUoBlzZuYr3nD47FUJMQAz17bnmd+vfglRGpuEc/+vJeZt3Spl8+Gu3n7WRMNgzxnwlNK9japixrkLEklp0gNCAiotH5xwlA8Raq7mEwmHnjgAcfidK+99tolXadly5ZVrrtt27Y6N07i6GkNoCkz6Pm4KQfK6aFlU21sT97O9uTtvLnzTVrrWhOkBOGn+OGn8bO/Kn74Kr74KfaB00UUUaRe2EruX/jZpJowqSaKVPt+cR2TasKCBYtqwYLFbe9ZQUGHDh/FB1/FF6NiLPPqp/gRoAkgSBNEoBJIkCYIg2JwWwy1bf369V65b4/QoUSlrXX8rNn9NRsLu5Lv09j1SV7gq0KXRhoOZFxs6P39wHmCC84xqImsdF8d3nrWRMMiz5moTcVfZNdVDTJhKPktgcFQ+QcwHx8fALd/M//II48QGxsLwIQJExg7dqxbr3+5uDCEAV/FObvOVmyVn4uNE5YTtRFWrVJRMWPGrJrJVaueiPrgY08gNIH4KnV3ULgePb6KL74aX6dEyFfxxV/xJ0wTVmvfoh9pOo6W6ZvQqvaZhzSqlQ5Jv7C79UO1cr9LpShwR1sbb+5RyLde/F38dEJDS38rLSv/LkMIIYTwiAaZMBiNF+f3LyqqvM9wcTORr6/7PqC98cYbfP755wD069eP//73v5d8rcq6Sp07d47+/fsDMGDAAKKjoy/5XrUh9vc4OHcGI85TS+bpgBI5Q/ew7sRlxlFobbjNwiZMpNhSSLGleDuUGokOjmb20NmE+4bXyvVV38MQ+6nj55YZm4kY/xpqeIdauV9NBLU9z+ML9zt+tqoK8xMC+OmhfoT46r0YWd1WWFjo+MZ32LBhTn/XhXAXec6Ep9S13h+lNciEITDw4mJOVelmlJdn70dfle5LVfHpp5/y7LPPAvZB1cuWLcPf37+Ss1yrbBxGST4+Pm5NfNxCsfc7KjmGwQZk25yTuRcGvUDroNZsOLOB30/+zoYzGxp08nA5i8+K5/197zNzxMzaucHIGbDvOyiy//+tqDaMm9+FO+rWCtAAN/Vpzb7EPL7cdLGl7GxmIc8tPsLn9/VFo5HxDJUxGo117++aqHfkORO1qbg3S13VIBMGo9FIWFgYaWlplQ4YzsjIcCQM1Rkr4Mr8+fP5xz/+AdgHiK9atYrw8Nr5lvVyYbnQJ6nkLEk5Gg02nPtxh/iE4KvzZVTUKEZFjSLfnM+mxE2cyj5FlimLTFMmmaZMx36WKYssUxYAfjo/fPW++On88NP74auz7/vqfPHX++Ov98dP74efzu/izxfOMWqN+Gh9HJtBa8CoM2LQGtBpdCjYP9ApKI5uNgoKKipW1YrZaqbIWoTZZqbIVuTYN1lM5JhzyC7KJqcoh2xT9sX9omwyCjNIKUghJT+FXLN7x8/UBatOrSI2KZa+Tfu6/+L+4XDFP2D92xfLDi2BszuhuetplL3lmRs6svdMJjtPZTjK/jx8nv+ti+fhke28GJkQQgjRQBMGgM6dO7NhwwaOHTuGxWJxObXq4cOHHfs1nfJ08eLF3HfffdhsNpo1a8bq1aur1TpQX5mLp1UtMeg5U1N2xt/SsyH56f24pvU1FV5bVe3X9sasMwoKGkWDXqPHr4arVueb80kpSOF8/nlS8u2v+ZZ8N0XqPmazmfj4eIooIrRZKHnWPLKLsh1ban4qFvXi4PG3d7zN/NHz0WpqYf2RQY/A9jlQmHmx7M9X4d5f3H+vGtJrNfz37t6M/nADaSWmVn1v5RF6tgxhcLuG/aWCEEII72qwCcOQIUPYsGEDeXl57Ny5kwEDBpRbr+QaCYMHD77k+61evZrbb78di8VCWFgYq1atqnNjCbzFYi1euO1il6QMrXPC4Kvzxairft/R+jI9pZ/ej9b61rQOqtvTFhcUFLAycSUAo/qPKtN8P//wfF7f9rrj50Pph1gcv5jx7ce7PxhjMAx5Av546WJZ/J9wYgO0Ger++9VQ02AjH97Vi3u/2IbtQuOaTYXH5u9m6WNDaRosfaeFEEJ4R4Nd6fmmm25y7M+dO7fcOjabja+//hqAkJAQRo4ceUn32rx5M+PGjcNkMhEcHMyKFSvo0qXLJV2rPjJf+HRUcqXnrFItDME+wR6NSdSO22JuIzrYOVH+cPeH5JnzaueG/R+CgKbOZX/+B9S6OW3p4HbhTB/lPDA7La+Ih7/fhdla+axhQgghRG1osAlD//79GTrU/i3jF198wZYtW8rUee+99xyrO0+bNg293nnGkrVr16Io9n7rEydOLPc+e/bsYfTo0eTl5eHv78/SpUvp06fu9aH2JqtjpeeSLQzOXVQa+TTyaEyidug0Op7s96RTWWpBKl/89UXt3NDgB8Od70fCNji8tHbu5wZTh0dzVccIp7KdpzJ4Y9lhF2cIIYQQtavBJgwAs2bNwtfXF4vFwqhRo3jjjTfYunUra9asYcqUKcyYMQOAmJgYpk+fXu3rx8fHc+2115KZmQnAq6++SnBwMPv373e5nT9/3p1v8bLgGPRcYlpVaWGovwY3H8zQ5s5dgr468BVnc8/Wzg173QchpbpyLfsXFGTWzv1qSKNRmHl7T1o0cu7O9eWmE/y2L9FLUQkhhGjIGnTC0KtXLxYsWEBQUBC5ubk8++yzDBw4kCuvvJI5c+YA9mRh6dKlTlOxVtWGDRucEoAnnniCbt26Vbh9/PHHbnt/lwv7oGe1wjEM0sJQv/yr37/QKhdbkYpsRby/8/3auZnOAFe+4FyWcw5WvVB+/Tog2E/P//7WB4PO+f+Df/64l83xdXs1UCGEEPVPg04YAMaOHcu+fft44okniImJwc/Pj5CQEPr27ctbb73F7t27addOpjWsTRabDT1WdCVWds4sNWuOtDDUL22D23JnxzudylacXMGu5F21c8Nut0L0Vc5lu76G+DW1cz836NYimFdudB7rVGSx8eBXsexJyPROUEIIIRqkBp8wgH09hJkzZ3LkyBHy8vLIyMhgx44dzJgxAz8/19NhjhgxAlVVUVWVefPmlTk+ceJEx/Gqbi+//HLtvdE6ymx1bl0AyCzdwmCUFob6ZmqPqQQZgpzK3trxFja1Fgb3KgqMnQWGUosvLnkMTHV3jYs7+7Xkrv6tnMryiqxMnLuduOQcL0UlhBCioZGEQXidxWrDB+dVnUuvwyAtDPVPsE8w/+j5D6eyg2kHWRK/pHZuGNISrnnFuSzzNKz+d+3czw0UReHVm7pyQzfnmZ4y883c+8U2EtLr3locQggh6h9JGITXWWwqvkqphEHGMDQIt3e4nTbBbZzKZu2aRb65lj4I97kfWg9xLtv+KZwqO0taXaHVKLx/R0+GtndevC0528TfPt/G+exCL0UmhBCioZCEQXhduV2SSo1hKL3Ks6gf9Bo9T/Z1nvY0pSCFL/d/WTs31Gjgxg9B5zwDEYsfAXNB7dzTDXx0Wj69tw99WjsnzqfT87n3i+1k5he5OFMIIYSoOUkYhNdZbTanRdtUIKtUC0OIMcSzQQmPGdpiKIObO6+iPu/APJLzkmvnhmHRcOXzzmVpx2DtG7VzPzfxM+j4ckI/OjZ1nrHtSHIOE+fuIM9k8VJkQggh6jtJGITXWawqxhJdknIVBYuiONWRFob67cm+TzpNs2qymvg1/tfau+EVU6F5X+eyzbPh7M7au6cbBPvp+WbyAKLCnCdj2JOQyUPfxFJotnopMiGEEPWZJAzC68w2G8YSXZIyS63yDJIw1HfRIdHcGH2jU9ni+MWoqlo7N9RoYdx/QWu4WKba4NdHwFK3u/c0DvTh2wcG0CzY6FS+6VgaD34dS36RtDQIIYRwL0kYhNdZrKpTl6TSMyQZNAZ8S/c5F/XOze1vdvr5VPYp9qbsrb0bRnSE4TOcy84fhA3v1d493aRFIz++mTyAUH+DU/mGo6lM+HI72YVmF2cKIYQQ1ScJg/C60oOeS6/yHGIMQSnVRUnUPz0a96B1UGunssXxi2v3poMfh6bdnMs2vAunt9bufd2gXUQAX9/fn0AfnVP5jpMZ/O2zbWTk1e2WEiGEEJcPSRiE11lsNozKxW9Eywx4lu5IDYKiKIxtO9ap7PeTv2Oymlyc4QZaPYz7GDQlPnTbLPDjfZB9rvbu6yZdmwfz7QMDCPHTO5X/dTaLO+ZskSlXhRBCuIUkDMLrLKVbGEpNqSprMDQcY6OdE4acohzWJKyp3Zs26w5D/+VclptsTxostZisuEmPliEseGgg4QE+TuVxybnc/ukWzmTI4m5CCCFqRhIG4XVmqw1jyTEMWlnluaGKDIikf9P+TmWLj9VytySwj2WIvsq57Mx2WP5U7d/bDTo0DWTh3wcSWWog9Mm0fG7/ZAsnUvO8FJkQQoj6QBIG4XVWm4qvUmKWpFKDnhsZpYWhISk9W9LmxM2kFqTW7k01WrjlcwhxHkPBzrmwc17t3ttN2oT7s3DqoDJTriZmFXLbJ1s4nJTtpciEEEJc7iRhEF6lqioWm1qqhcG5S5K0MDQs17S+xmlWLKtqZenxpbV/Y79QuPN70Dt/4GbZk5Cwo/bv7wbNQ3z5ccpAOjRxXtwtNdfEHZ9uZdvxNC9FJoQQ4nImCYPwKovNPs9+RdOqyhiGhsVP78c1ra9xKvs1/tfaW5OhpKZd4cbZzmXWIvjxXsippZWn3SwiyMgPD11B9xbOiXZWgZl7vtjGL7vPeCkyIYQQlytJGIRXWaz2D4HGkl2SZAxDg1e6W9LRjKMcTj/smZt3uxUGPuJclnMOFk6o84u6FWvkb+C7BwbQL8o52TZbVZ5YsJf3V8V5JgETQghRL0jCILzKbLMBlbQwyBiGBqdf034082/mVFbrazKUdPUr0GaYc9npLbDyOc/FUEOBRj1f3z+AqztFlDk2a/VRHl+wh0Kz1QuRCSGEuNxIwiC8ytHCcCFhUCk7hkHWYWh4NIqGMW3HOJUtO7EMs81DKxhrdXDrPAhu5Vy+fQ7s+sYzMbiBr0HLp/f25f7Bbcoc+3VPIvd8vo10WeBNCCFEJSRhEF5lsTq3MOQrCuZSqzpLwtAwle6WlF6YzsYzGz0XgH8Y3PEN6JynKmXJY7D//zwXRw1pNQovju3Mf8Z1QVNqwfTYUxmM/3gT8Sm53glOCCHEZUESBuFV5uJBzxfGMJQevwCSMDRUUcFR9Gjcw6nMo92SACJ7wthZzmWqDf7vQTjwi2djqaF7B0bxxcR++BucW/BOpeVz88eb2XyslqeuFUIIcdmShEF4lbVUl6TMUqs86zQ6/PX+Ho9L1A2lWxnWnllLZmGmZ4PocScMesy5TLXCT5Ph4K+ejaWGRnaIYOHfB9Gs1AJvxTMozVwV52j1E0IIIYpJwiC8qnjQsyNhKNXCEOITglKqi5JoOK5rcx0GjcHxs8VmYfnJ5Z4P5Jp/Q/8pzmWqFX66Hw4t8Xw8NdA5MohFDw+ma/Mgp3KbCh+uPspdn23lbGaBl6ITQghRF0nCILyqeNBzcZekDE3ZhEE0XEGGIEa2GulUtviYh7slASgKXP8W9HvQudxmgYUT4bAHFpZzoyZBRn6cMpBrOjcpc2zHyQyu/2A9y/8654XIhBBC1EWSMAivMpca9JxVTguDaNhKd0van7af45nHPR+IosAN70Dfyc7lNgv8OAGOeKHlowb8DDo+vacPM67rgLbUaOjsQgtTv9vFs7/8RUGRTL0qhBANnSQMwquKV3o2UtzC4DyGQdZgEIMiBxHuG+5U9mu8l8YOKArc8C70meRcbjPDgnshboV34rpEGo3CP0a0Y+HfB9KikW+Z499vO824/27kSFKOF6ITQghRV0jCILzKYrWhxYpBsX+LKas8i9J0Gh2j24x2Klt0bBFpBWneCUijgdEzofd9zuU2Myy4Bw56octUDfVu1Yhl04YypnuzMsfiknO58aONfL7hOFabrA4thBANkSQMwqvMVtUx4BnKWeXZR1oYBNzYruyaDP9a9y/PLeRWmkYDY2ZBr3ucy61F8OO9sPEDUC+vD9dBRj2z7+rF27d2x1fv3NJnsth4dekhbv7fZmltEEKIBkgSBuFVVpvqGL8AZVd5lhYGARDTKIbBzQc7lcUmxzIzdqaXIsKeNIydDT3/VvbYHy/ZF3izeimhuUSKonB735b89tgQOjcLKnN8b0ImY2Zv4P1VcZgsMrZBCCEaCkkYhFeZbTaMF2ZIgnJaGGQMg7jg1cGv0sTPeVafbw99y5J4L05rqtHAjbOhz8Syx3Z9Dd/dCgWZno6qxqIbB/DLw4O4f3CbMsfMVpVZq48ydvZGdp/O8EJ0QgghPE0SBuFVltJdkmSWJOFCuG84H4z8wGldBoBXtrzCobRDXooK0GhhzAf2tRpKO74WvhgFGSc9HFTN+ei0vDi2Mwv/PpC2jcsunhiXnMvN/9vMf347SH6RxQsRCiGE8BRJGIRXWaw25y5Jsg6DqEDX8K48f8XzTmUmq4nH1zxORqEXv+1WFBg8DW7/BnSlZhtKPQKfXQUJ270TWw31iwpl2WNDeXhkdJnpV1UVvth4glHvr+ePg8mol9m4DSGEEFUjCYPwKrNNxffClKoFioJJEgZRifHtx3NHhzucyhLzEnly/ZNYbF7+prvzjTBpKfhHOJfnp8K8MfDXT96Jq4aMei1PXtuRxY8Mpktk2bENZzIKeODrWO6ft4OTqXleiFAIIURtkoRBeJXFasNXsbcwlG5dAAgxhng4InE5eKrfU/Rs3NOpbNu5bXy460PvBFRS8z7w4GqI6OxcbjXB/02G5U+DxVT+uXVcl8hgfn14ME9d1xGDruz/r2uOpDDq/fW8u+KIdFMSQoh6RBIG4VUlxzCUHr+gVbQE6gO9EZao4/RaPTNHzKSxb2On8rkH5vL7id+9FFUJIa3g/hXQ7uqyx7b9D764BtLiPR+XG+i0GqaOiOb3aUPp3ya0zPEiq42P1hzj6vfWseyvc9JNSQgh6gFJGIRXmW02l6s8B/sEoyhKeacJQWO/xswcMROdRudU/uLmF707CLqYMQjuWgB9J5c9dm4vfDr8su2iBNC2cQALHrqC9+/oQeNAnzLHE7MK+cd3u7jni23EJcvaDUIIcTmThEF4ldWmOrokZckMSaKaekb05NkBzzqVFVgKeGDlA+xP3e+lqErQ6mD0e/ZZlHRG52NFOfYuSkumgbnAK+HVlKIojO/Vgj+nD+fBoW3Qacom+JuOpXHtB+t5/IfdHE/J9UKUQgghakoSBuFVJVd6zihnwHPBnj2kf/0N2cuXYzp6FNV8eS2EJWrfbTG3cUv7W5zKsouyeWDlA+xM3umlqEpQFOg7CR5YDeExZY/vnAefXQkpRzwemrsEGvU8N7ozy6cNZVB0WJnjqgqL9iRy9cx1/PPHPTIwWgghLjO6yqsIUXtKTqtauoWhx5EiTv7zbvunjWJ6PT5RrTG0a4dPu3b4tGuPoXUrNL6+KEZfNEYfFF9fFL3eZXcm1WZDNZtRzRZUcxFqkfnCz+XsW8xgsaBaragWC1x4VS1WsFpQrbaK36ACilYLWq39VaO5+KrToRh80PgYUHx8UHyMF/eNRjQ+F96LdMuq1LMDnuVU9ilik2MdZXnmPP6+6u/MunIWgyIHeTG6C5p2hQfXwLInYe/3zsfOH4Q5I+C6N6D3BHuScRlq3ySQ7x4YwPL9Sbz620ESswqdjttU+HnXWX7dk8jNvZrz6JXtaRXm56VohRBCVJUkDMKrLDbVsdJz6TEMPTYnOycLAGYzpqPHMB09RoW9ojUax4duFOVCEmDfsFrd+yZqk6Kg8fNDExCAxt/fefMxAHXrg6XVaqVpUhJoNaRu347ez9+exBl8UIw+aHx80Pj54TdgAIaWLd12X4PWwMdXf8zjax5nc+JmR3mhtZBHVj/Ce8PfY2SrkW673yXzCYDx/4M2w2DpdDCX+KbdnG/vnrT/Zxg7C0LLrrJ8OVAUhRu6NWNEh8Z8su44X248Qa7JecYkq01l4c4z/LL7LLf2acE/RrSTxEEIIeowSRiEV5mtNvxczJIUcq4G/Z1tNtT8fKz5+TUJz/tUFVteHra8y6cLR/Es/bm7druso+j1NHv9dYLHjnHbfX11vsy+cjb/Wvcv1iSscZSbbWaeWPsEbwx9g+vbXO+2+9VIz7vs06/+NAmSS421OLEO/jcIrnwBBkyxryR9GfIz6PjnNTFMGhTF5xuPM3fTSfKLnJN1i03lhx0J/BibwOjukUwZ1pauzYO9FLEQQghXZAyD8CpX06rqLSq+qTKzSn2lms0kPvkkqXM+c+u0mwatgfdGvFcmMbCqVp5a/xS/HP3FbfeqscYx8MAf0Pf+ssfM+bDiGfhiFJyvAzM+1UAjfwNPXtuRDTNGMmV4W3z1ZRMgmwpL9iYyZvZG7v1iG5uOpcp0rEIIUYdIC4PwKrPN5ljpObPEN6lNM0Ap9Xmh3Zo/MZ87d6FL0lFMx45hOnYMa2qqW2NSDAb7GAiDAUWnA70ORauzjz3QaVF0+ov7isa5v3npvuc2G6rNZh8HYbNdHPdQPBaiqAhbURGqyYRa6NzfuyFImTkTc+JZmj7/vP137QZ6jZ43hryBr86Xn4/+7ChXUXlx84vkW/L5W6e/ueVeNab3hTHvQ8z18NvjkH3W+fjZWPhkKAx7EoY8ATqDV8J0h7AAH565vhMPDGnLp+vi+WbrKUyWsmOANhxNZcPRVLo1D2bK8LZc37UZ2nJmXxJCCOE5kjAIr7JYL06rWrKFITLNOVvQRUSgb9YMfbNm+PXu7XRMVVXHB26byYRaUHDxtbAQUFAMensSUHrT6S4mCHo96HReG2Ssqqp9nEXxeyksxJaf7+iSVGYrKvJKnBWxmC0cPx6PYrXRulkztFaL/b9FoQnVZMKamUnB3r1O52T+sADLuSSaz3wPjb+/W+LQarS8NPAlfHW+fHfoO6djb25/k/jMeJ7q/xQ+2rLrB3hFzCj4x1ZY/Qrs+Nz5mM0Ma1+Hg4vg+rfs4x8uY40DfXh+TGceGtaWOeuPM3/7afKKyo4r+utsFo98v5tWoUeYMCiK2/q2IMio90LEQgghJGEQXmW1qY6F2zJLTKsame5cz9DG9QBQRVFQjEYwGrk8e3vbKYqCYjCAwQCBl+cK1wUFBaStXAlA71Gj8PX1dTquqirp877i/FtvOZXnrlvHqfsm0PKT/6Fr7Lx686XSKBqe6vcUvjpfPv/L+UP4wriF7E/dz3sj3qNloPsGX9eIMci+ZkOXm2Hxo5BeaiXo8wfhq7EQfRVc/RI06+GdON0kIsjI82M68+iV7flm60nmbjpJWl7ZJPh0ej7/+e0g7608ws29mzNhYBTtm1ye/38IIcTlSsYwCK8yW20YKcKkQIHGdQuDoU2UhyMTtUFRFMImTaT5B+/bk6MSCg8c4OSdd2E6ftyt95vWexqP9XqszLFD6Ye4Y8kd/Hn6T7fdzy2iBsPUTTD4cVDKSYHjV8Onw+CnyZDuvt+VtwT76XnkyvZsevpKXr2pK61dzJaUX2Tl262nueb99fzt862sPpyCTYY5CCGER0jCILyquEtSZqmZYJqlO38S8KmghUFcfoKuu45Wc79EG+w8I4757FlO3nU3+bGxLs68NA92f5DXh7yOr865xSPHnMO0NdN4L/Y9zLY6tCig3heueQUeXA1NupVfZ/9P8FE/WPovyD3v2fhqgVGv5Z4rWvPn9BH89+7edKtgtqRNx9J4ZMFf/Ge3lj/OKiRnmzwYqRBCNDySMAivsg96LnKeUlVVq9UlSVye/Pr0ofX8+ehbtHAqt2VlcfrBhyiMi3Pr/cZGj+X7G74nKiiqzLF5B+bxwIoHSM5Ldus9ayyyFzy0BkbPhIAmZY/bLLDjM5jVE/58DfLTy9a5zGg1CqO7N2PxI4NZ8NAV3NCtqctBz+kmhSWntYx8fxP3fL6N/9t5hrxSaz4IIYSoOUkYhFfZp1U1OY1fCMqHgFITBknCUD/5tG1D1A/zMXbt6lSuFhRw9p//xObmdTTaNWrHD2N+4Pqosusx7Dq/i9t/u51NZze59Z41ptVDv8nw2G772gw+QWXrmPNg/dvwfldY8Rxkn/N8nG6mKAoD2obx8d/6sGHGSP4xIppQ//JniVKBjcdSmb5wL31f/YMnFuxhw9EUrNJnSQgh3EISBuFVFpsNo1JEhvZil6TSrQuKwYA+MtLDkQlP0YWH0/rrrwgYMcKpvOhYPEmvveb2+/nr/Xlr2Fs8N+A5dBrneR/SC9P5+x9/55kNz5BeWMe+rTf4w7B/wbS9MPARKG+GJ3MebPkIZnW3rxpdD8Y4AESG+DLjuo5sfvpK3rm1O12bl5M0XVBgtvLL7rPc+8V2Br25mld/O8jehExZ10EIIWpAEgbhVWarii9FZFU04Ll1K/u6B6Le0vj50XzWB/h06uRUnvV/P5O1eLHb76coCnd2vJNvrv+GSP+yyehvx3/jxkU38svRX+reB02/ULj2NXh0J/S8B5Ry/oxbi2DnPJjdxz44Oml/2TqXIaNey219W7LkkSF8f38fBjS24aN1/d8nOdvE5xtPMO6/mxjx7lreXXGEI0myIKQQQlSXJAzCqyxW+8JtGSXXYCg14NkQJd2RGgKNj499LQY/51lyzr38CqYTJ2rlnl3Du/Lj2B8Z1qLs2gZZpixe3Pwik1dO5kRW7dy/RkJawk3/halboPsd5c+opNrsg6M/GQzf3gpH/wBb2cXSLjeKotCrZTB3t7Pxah8r797ShZEdGle4wNuptHw+WnOMaz9Yz6j31zF79VFOpOZ5MGohhLh8ScIgvMpqtWJUzKVaGJzryPiFhsOnTRuavvKKU5man8/Zf07HZqqdmXCCfYKZfeVsXrjiBQL1Zef335G0g1sW38L/9v6PImvdWyyPiI5w8xx7i0Pf+0HrYjXoY6vgu1vgo76w7VMozPZsnLXEoIXRXZswd1J/tj5zFS+M6VxhlyWAuORc3lsVx8h31zLq/XW8s+Iwu09nYJMxD0IIUS5JGIRXKRb7h0DnMQyl12CQhKEhCR47huBbb3EqMx06xPm33q61e2oUDbd3uJ1fb/qVa6OuLXPcbDPz8Z6PuXXJraxNWFv3uikBhLaBMe/D43/BoMfAEFB+vfR4WD4DZnaGZTMg9Zhn46xFjQN9mDykDb89OpSVTwzj0SvbEeViXYdiccm5/HdNPOM/3swVb6zmmZ//4s/DyRSay64+LYQQDZUkDMKrtLYC4OIqz1qrSkSmcx0fWbStwWn63HMY2kU7lWV8/z3ZK1bW6n0b+zXm3eHv8t+r/lvu2IYTWSd49M9HuWvpXaw/s75uJg6BTWHUf+yJw4hnwbdR+fWKcmD7p/BRH/j2Fjj4K1jqz3oGMU0CmT6qA2v+NYIljwzhoWFtiQw2VnjO+RwT87ef5v55sfT+zyoe+jqW77adIiHdvbN1CSHE5UZXeRUhao/GYp8/tXgdhohM0JXqYi0tDA2PxteXFu+/z4nbbkctvDjH7rnnn8fYpTOGUms3uNuwFsPoO64v/9v7P745+A1W1fnb5gNpB3h49cN0D+/O1J5TGRw5GEVx3X/eK/xCYcRTMOgR2PcjbJ8D5w+WX/fYH/bNGAxdxkOPu6DlAKhr7+kSKIpCtxbBdGsRzNPXdWTX6QyW7E1k6V9JpOa6TpDyi6ysPJjMyoP2tTnahvszLKYxw2LCGdAmDH8f+edTCNFwSAuD8Cqdo4XB3iWpdHckbWhomdWARcPg0749TV943qnMlpPD2X9ORy2q/bEEfno/pvedzg9jfqBLWJdy6+xL3cfUP6Zy7/J72Zy4uW62OBj8oe8kmLoZJiyBjmPKn1kJoDDLPrvSl9fChz1hzeuQFu/JaGuVRqPQNyqUV8Z1ZduzV/F/Uwfy9+HRRDf2r/Tc46l5zNt8kvvnxdLz3yu5a85WPl57jL0JmbLegxCi3pOvSIRXaS90gShuYZABz6Kk4JtvJm/rNrKXLHGUFe7bR+LTT9P0xRfRhoTUegwdQzvy3Q3fsezEMj7Z+wmnc06XqbM3ZS9TVk2hZ+Oe3NP5Hq5qdVWZNR68TlGgzTD7lnkadnwOu76Ggozy62echHVv2bfmfaHLTdDpRmjU2pNR1xqtRqFP61D6tA7l6es7cjwllz8OJbPqYDI7T2VQUQ5gtqpsOZ7GluNpwBGCjDquaBvGkPbhDIoOJ7qxf91rcRJCiBqoY/+iiYZGay3EDORdGMNQdsBzlOeDEnWGoig0feklCvfto+jUKUd59rLl5G3dRpNnniZozJha/3Cm1WgZGz2W69tcz9LjS/l036ck5CSUqbcnZQ971u2hiV8T7uhwB7fE3EKoMbRWY7skIa3gmn/D8KfhwM+w9wc4ucF1/bOx9m3l89Cshz1x6DwOwtt7LuZa1rZxAA81DuChYdGk5ZpYcySF9XEpbDyWSnpexS1a2YUWp+5LTYJ8GBwdTr82ofRp3Yh2jQPQVDDlqxBC1HWSMAiv0quFjtYFKLtom4+0MDR42gB/mn/wPifvuNOpK5I1PZ3EJ2eQtehXmr70IoZWrWo9Fp1Gx7h247ih7Q38Fv8bn+77lLO5Z8vUS85P5sPdH/LJ3k+4rs113N3pbpfdmrzK4Ae97rFvmaftYx32LYDUONfnnNtr3/78DzTuaE8eOo2Bpt3rxZgHgLAAH27t04Jb+7TAZlM5kJjN+qMprItLYdepDCyVdEFKzjbx8+6z/Lzb/mwEGnX0btWIPq3tW4+WIQTIGAghxGVE/mIJr9JZCx3jFwAi052PS5ckAWDs1InId9/h3NPPYMt3nrEmb9Mmjo+9kfCHHyZs0kQUvb7W49Fr9IxvP54x0WNYfGwxc/bNITEvsUy9IlsRi+MXszh+MT0b9+T2DrdzVaur8NNXPNWnV4S0gmH/gqHTIXG3vdVh/0+Qn+b6nJTD9m392xDUHNqPgpjr7N2eDHXwPV4CjebioOmHR7Yjp9DMlvg0NhxNZVN8KsdTKl/8LafQwro4e8IBoFGgQ9MgerYMoVfLEHq2CpFWCCFEnSYJg/Aqvc1Ept7ewuBfoBJcavZCWeVZFAsaNQrf7t1JevVVcv9Y7XRMNZlImTmT7CVLaPrvV/Dr1csjMek1em6JuYUbo2/kj9N/8N2h79ibsrfcuntS9rAnZQ9+Oj9GRY3ixugb6dOkDxpXA5C9RVGgeW/7du1rcHytfcrVw0uhIN31edlnYedc+6YzQpvhEHOtfQuu3VmtPCnQqGdUl6aM6tIUgKSsQjYdsycPm4+lkZRdWMkVwKbCoXPZHDqXzfzt9jExAT46urcIpmfLEMcWEVTxNLBCCOEpkjAIr9LbCh1rMJRuXUCnw9Cy/nzQEDWnb9qUlh99RM4ff5D0n1exJCc7HTcdPcqpu+4mYMQIwqY85LnEQavn+jbXc32b6zmQeoDvD3/P8hPLMdvMZermW/JZdGwRi44tonlAc8ZGj+XGtjfSMqilR2KtFq0e2l9j38Z8AKc3w8HFcGgJ5Ca5Ps9SCEdX2LelQHgHaDMUooZA1FDwD/fUO6h1TYON3NKnBbf0aYGqqhxPzWPzsVS2n8xg16kMzmYWVOk6uSYLm+PT2Bx/sUUnItCHrs2D6RoZRJfmwXRtHkxksFEGVAshPE4SBuFVetXkWOW59PgFQ4sWHuleIi4/gVdfjd8VA0mZNYuMb7+FUtOZ5q5dS+7atfj170/436fgN3Cgxz5kdQnvwmtDXuOfff7J/x39PxYcXsD5gvPl1j2be5ZP9n7CJ3s/oXdEb66NuparW19NhF+ER2KtFq3u4ixL178NZ3bAocVw+Df7jEoVST1i33Z8bv85orM9cWgzFFoPtq8ZUQ8oikJ04wCiGwdw78AoAM5lFbDrVCY7T2Ww83QGBxOzMFurNg3r+RwTfx4+z5+HLz4/jfz0dG0eTOdmQXRoGkjHpkFER/jjo9NWcCUhhKgZSRiEVxlshWS5nCFJuiMJ17QB/jR97lmCbxzLuRdexHT4cJk6+du3c3r7dozduhE+5SECrrwSReOZLkBhvmE81P0hJnWdxOrTq1l0dBFbzm3BptrKrb/r/C52nd/FG9vfoEfjHlzT+hqubn01zQOaeyTeatFooNUA+zbqVUg9CnHLIW4FnN4KpRa6K+P8Qfu2/VP7z407XbjeQPuCcY2i6s0A6mbBvozu7svo7s0AKDRb2Xcmiz0JGexJyGTP6UwSsyrvxlQsI9/MhqOpbDia6ijTaRTaNvanY1N7EtGpWSAxTQJpHuIrrRFCCLeQhEF4lUEtIkNbfpckSRhEVfh260abnxaS/vU3pM2ZgzUzs0ydwr/+4swjj2JoF03YpEkEXXcdGv/KF+tyB71Gz3VR13Fd1HWczz/P0uNLWRy/mGOZx1yeszdlL3tT9vJu7Lt0DuvM1a2u5qrWV9EmqE3d+wCoKNA4xr4Nngb56RD/J8T9DkdXQWFm5ddIOWTfds6z/xzQBFpdAS2vsCcQTbuCzqc234XHGPVa+rcJpX+bi60q57ML2Z2QyZ6ETHafzuCvM1nkFVWSdJVgsanEJecSl5wLJYbQBPjoaBcRQIcmgbRvEkCHpvZEIiLQp+49R0KIOk0SBuFVBtVE8oVvfJuV7pIkazCIKlJ0OsLun0SjO24nY+FC0r+ci+V82W5ARcfiOffc8yS99jpB119HyM0349u7t8c+PEX4RTCp6yQmdpnIwfSDLD62mGUnlpFpynR5zsG0gxxMO8iHuz+kmX8zrmh2BQMjBzKg2YC6ucaDXyh0u9W+WS1wbg+cWA8nN9pbH8yVzypEbrJ9oPXBX+0/aw32aVub94EWfe2vvs1q9W14UkSQkWu7NOXaCwOpbTaVE2l57D+bxYHEbPafzWL/2SyyCy3Vum6uyWJvxUjIdCpvHuLLyzd24ZrOTdz1FoQQ9ZyiqqqsaV/PnTlzhpYt7QMq4+LiaN++biy2ZLWpfPPi7WxvvpuNRiPfvGvFUOJLtdbffoNf377eC1BUW0FBAStXrgRg1KhR+Pr6eiUOW1ERWYsWkfbZ55gTyi6wVpKhdWuCb7mF4HHj0Dfx/NgBs9XMhrMbWHVqFesS1pFjzqnyuR1DO9oTiGYD6dWkF7467/y+q8xqhrO74OR6OLEBErbZB0hfAtUYwnl9S7L8oogaMAZDqz4Q2hY09bMvv6qqJKQXsD8xiwOJWRxJyuHQuZwqD6ouLcBHx6anriTYT8aJVaSu/E0T9d/Ro0eJiYkBICEhgRYt6takL5IwNAB1NWEwWawsevlmFrc8RFKBgY8+cW6Cb79pI7qwMC9FJy5FXfvHVbVYyP59BWmfforp6NGKK2s0+A8dQtD11xM4YgTakBCPxFiS2Wpm67mt/HH6D/48/WeFLQ+l6TQ6Ood1pndEb3pH9KZXRC9CjCG1FqtbWEz2ReBOb7UnD6e3Qn5q5ee5ovOFiE72LkxNutlfIzqBbyP3xVzHZBeaiUvK4XBSDoeTsjl8LocjyTnkVKE14q1bunFHv9pf8PByVtf+pon6q64nDNIlSXiNxapiVOxjGEoPeNYEBaENrYPdLcRlRdHpCB4zmqAbrid37Toyf/yR3PXrwVbOwGObjbx168lbt55zWi1+/foRePXVBF51Jfpmnun+otfqGdpiKENbDOWFK15gZ/JOVp1axZrTa1zOtFTMYrOwL2Uf+1L2Me/APACig6Pp3aQ3vZv0pkfjHrQIaFG3+q7rfKBlf/sG9tmu0uIhYevFJKKiVadLsxRA4i77VlJgM3viENH5wmsn+yrVBs+MY6lNQUY9faNC6Rt18e+lqqokZ5s4kpzD0eQcjiTlEHc+lyNJ2RSaLz77S/aek4RBCFElkjAIr7FYVXwxkanR0q3UYrKGNlF164ONuKwpGg2BV44k8MqRmJPPk7X4V7J+/oWiEyfKP8FqJX/rVvK3biX51Vcxdu1K4NVXETDySnxi2nvk2dRpdAxoNoABzQbw3IDniM+MZ+u5rWw5t4UdSTsosFTeFSU+K574rHgWxi0EoJFPI7o17kbX8K50D+9O1/CuBPsE1/ZbqTpFgfB29q3XPfaywix7N6azsfbXM7GQV3HyVEbOOfsW/2fJm9lXtw6PgfD2ENbu4n5Ak8t6liZFUWgabKRpsJHhMY0d5Uv3nePh7y8mU5vjUzmfU0hEoCwQJ4SomCQMwmvMNht6TORoNUSmO3dH8pEVnkUt0TeJIPzBBwl74AEKdu8h8+f/I2fZcmz5+S7PKdy/n8L9+0n5YBbasDD8+vfDf8AA/PoP8EhyqygK7Rq1o12jdtzT+R7MVjP7UvfZE4jELexP3Y+1sqlMgQxTBuvPrGf9mfWOsqigKLqGd6VjaEfaN2pPh0YdCPOtQ10BjcEQPdK+gb0VIusMphObOb3lV4IKThNhS0apbhKBCpmn7NuxVc6HfILsCURYOwhtYx8b0ejCq3/4ZZtMXNUpAn+D1jEDk02FZfvOMXGw/L0VQlRMEgbhNRarik1nAmRKVeF5iqLg17sXfr17YXvmGbJXrSJn5SryNm1CNZlcnmdNSyNn+e/kLP8dAF3jxvj174/fgP749e2LISqq1td60Gv19GnShz5N+vBwz4fJM+exN2Uvu5J3sfv8bval7KPQWrXBxCezT3Iy+yS/Hf/NURZmDKNDaAdiGsU4tqjgKHy0dWBqU0WBkJbYOt7IwdP2b8ZHjRqFrzUXkvfbt6QLrylHoJzVtitlyi6/axOAIcCeRDRqY38NaW1fN6JRFAS3BJ2hRm+vNhn1WkZ1acovu886yhbvTZSEQQhRKUkYhNeYrTaKNEVAOas8S8IgPEjj70/ITTcRctNN2PLzyd20idw//iBn7TpsWVkVnmtJSSF76VKyly61XyswEN9u3TB274Zv9x74du+GLjy8VuP31/szKHIQgyIHAfbB0wfTD7IreRe7knexN2UvGaaMKl8vrTCNzYmb2Zy42VGmUTQ0D2hOdHA0bULaEB0cTdvgtrQNaYu/vg6MBQhoDAElWiLAPitTWvyFheIOXXxNPw5c4nwfRbmQ9Jd9K0OBoOYXEojW9v3g5hDU4sJrczAGXdp93WRsj2ZOCcOu05kkpOfTMtTPi1EJIeo6SRiE11hsKmatGaNJS2iu8zFZg0F4i8bPj6BrriHommtQzWbyY2PJ+WM1OWv+xJJ4rtLzbTk55G3eTN7mix+29ZGRGLt3x9i5M8ZOHTF27IiuceMKrlIzeq2eHo170KNxDyZ1nYSqqpzJPcNfKX/xV6p9O5R2iCJbUZWvaVNtJOQkkJCTwNoza52ORfhFEBUUReug1rQOau3Ybx7YHL3Gi9N2avUQ0dG+lWQusLc+pMbZV6lOO3rh9dglT/Nqp0L2Gft2amP5VXyCLiYSgc3s+0HFr5H2Mt9GtdbtaUi7xoT46cnMv9jysmRfIv8Y0a5W7ieEqB8kYRBeY7HaKNBaaZZeat50RcHQurV3ghKiBEWvx3/gQPwHDqTJ889hTkggf/t28rZtJ3/btnIXhyuPOTERc2IiOb//7ijThoVh7NABnwsJhE+HDvhERaEY3N+lRVEUWga2pGVgS25oe4M9JquZuIw49qXu40j6EY6kH+FY5rEqd2Uq6Xz+ec7nn2d70nancq2ipXlAc1oEtiAyIJLmAc0dW2RAJGHGMO9MbqD3hcie9q0km83+YT81DlKP2VsiMk5A+gnIOHlp3ZtKM2VDSrZ9ZWtXdL4Q2NS+BTRxfg1sCgFNISACfEOhmt3fDDoN13dtxvztpx1li/dIwiCEqJgkDMJrLDaVQq2FyPPO30DqmzdH41MH+koLUYKiKBhatcLQqhUht96KqqqYT51yJA/5sbFVTiDAPhaidEsEWq39HtFt8Yluh090WwzR0fi0aYPGz71dRvRaPV3Cu9AlvMvFmGxWTuecJi4jjiPpR4jLiCMuI45zeZW3rJTHqtqvdzrndLnHjVojkQGRNPVvSjP/ZjT1b+rYb+bfjCb+TTw7bkKjsc+cFNIK2l3tfMxmheyz9iQi/YT9NfMUZJyyJxOFme6Lw1JgT1QyXMziVUzR2gdh+ze2bwERF/cdW/jFV719DYEbe0Q6JQyHk+zTr7ZvEui+9yCEqFckYRBeY7Gq5GtsMn5BXJYURcEQFYUhKopGd9wOgDk5mYK9eynct4+CfX9RsH8/agWzL5VhtVJ04gRFJ06Q+8dqp0O6yGYYWrRE36ql/bVlCwytWqFv0QJtSIhbvqnXarS0CW5Dm+A2XBt1raM835zPiawTxGfFczzzOMez7FtCTgI2tZw1Laqo0FrouJYrocZQIvwiaOLXhAi/CMd+iC6EZGsygUogHll/VKO9mEy0HVH2eEHmhQTipD2JyDxtTzCyzthf89PKnlNTqhVyk+1bVRgCwD+cK8LaMzzgGtblXlwYavHeRKaP6uD+GIUQ9YIkDMJrzFYreVq1nBmSorwSjxA1pW/SBP2oUQSNGgWAarViio+3JxD792M6fITCuLjqJREXWBLP2cdQbN9e5pgmIAB98+boIyPRN2uGvvmF18hIdM0i0TUOr9HMTX56vzKtEQAmq4lT2ac4nX2ak9knOZV9yrGlF6a7uFr1pBemk16YzuH0wy7rvP1/bxNqDCXcN5wwYxhhvmGO/VBjKKG+ofZXYyiNfBqh1WhdXuuS+YbYt2Y9yj9uLrQnDtlnIevCa845yE68uFV7athqKsqFolyUjJN8ot3KSF4nCfsUuov3JvLPa2Jk/RshRLkkYRBeYzWbyNRq6FxqlWcfaWEQ9YSi1WKMicEYE0PIrbcCoNpsmE+fpvDwEQoPH7InEYcPY0lKuuT72HJzMR05gunIkfIr6PXoGzdG17QpuiYR6COaoGvaFH2TCHRNmti3sDA0vr7Vuq+P1scx7WppWaYsTmef5lTOKRJzE0nMTeRM7hkScxM5l3cOi81yKW+1XBabxTGOojIKCiE+IY5EIsQnxGlrZGzkeA02BBPkE0SgIRCNUsOpcvVGCIu2by7fSBHkJtmTh5wk+5abBDnJzq9uaK3wtebwrv4T7jU/g4qGU2n57DuTRY+WITW+thCi/pGEATh16hQffvghS5cuJSEhAR8fH6Kjo7n99tt5+OGH8XNT3+Hly5czZ84cduzYQUpKCo0bN6Zfv3489NBDXH/99W65x+VENeWRpWhoJmswiAZE0WgcXZmCrrvY7ceak0NRfDym+OOY4uMv7MdjPnvWvlhZTZjNjoHXFdH4+aFtHI4uLBxdWBja8DD7fngY2pBGaEMboQsNRRsaijY4GEXr+pv6YJ9gujXuRrfG3cocs9qspBSkcCbnDOfyzpGcn8y53HOcyztHUn4SSblJ5JhzavaeXVBRyTBlkGHKID4rvkrnKCgEGgIJ9gkm2BBMsE8wQYYggnyC7K8Ge1JR8ucgnyAC9AH46/3Raar4T63OcLHbU0UsRZCfCnkpkJtib5nIS4HcEq/5qZB3YXMxWHuI9gATbSuYa7X/+7N4b6IkDEKIcjX4hGHJkiXcc889ZGdnO8ry8/OJjY0lNjaWzz//nKVLl9Ku3aXPIGGz2XjooYf44osvnMrPnj3L2bNnWbRoEQ888ACffvopmlpe8KkusZoLsBRoMZb6t0wSBtEQaQMD8e3ZE9+ePZ3KbQUF9nENpxMwn0mgKOEM5oTT9tfERLBWvsJzVdny87GdOo35VPmDlJ0oCtqQEHvyEBJyYQsusW/fdCEhaIKC0QYFogkMQuPvh1ajdQxwdiW3KJdzeeccLQdJ+UmO/eS8ZJLzk8k0ZbrtvVdERSW7KJvsomwSSKj2+b46X0fyEGgIdLz66fwIMNjL/fX+jjrFm5/eD3/dhVe9P746X3tLh85gn4I1KLIKwatQmGVPHHKT4OeH7N2hLnha9wMbbN04prbgt32JPHtDJ7Qa6ZYkhHDWoBOG3bt3c8cdd1BQUEBAQADPPPMMI0eOpKCggB9++IHPPvuMuLg4Ro8eTWxsLIGBlzaDxHPPPedIFnr16sWMGTOIjo4mPj6et99+m927d/P555/TuHFjXn/9dXe+xTpNLcrHmOmcINl8fdBFRHgpIiHqHo2vr339hs6dyxxTLRbMSUmYExIutCCcs7+es79azp1DNbthKtDyqCrWjAysGVVfEA4ArRZtYCCaoKALr4FoAwLQBASiCQxAGxCIJiAATWAATQIDaeYfgCYgCm1AVzSN/e3H/P0pLCpi2Ypl5Kq5dO3flVxbLmmFaaQWpJJWcOG1MI2MwgzSC9M9llyUp8BSQIGlgJSClBpfy1fni5/ODz+9n2PfV+dr39df3He5jXiC1kufosmFRNNHMfOB/mPGF/2b5GzYfiKdgdFhNY5TCFG/NOiEYdq0aRQUFKDT6Vi5ciUDBw50HLvyyitp3749M2bMIC4ujvfee4+XX3652veIi4vj3XffBaBv376sX78e3wv9hPv168eNN97I8OHDiY2N5Z133uH++++vUWvGZcVcgH+m8zdZaoumMuhOiCpSdDoMLVpgaNGi3OOqzYYlNRXLuXOYk5OxJJ/Hcj7Zvp+UjCU5GfP586gFBZ4L2mrFmpmJNTOTmqQyiq8vMTodNoOBgPBwwgICaOPri8bP78IWjOLbFI2vHxpfX1RfA4U6yNWaydGaydIUkqWYyFIKyVDySVNzSVNzSLNmk1GURYYpA7M71l1ws+LkI63w0scxKK2ac11uHs+lpRNsU+mqOcnjup94x3Ini/cmSsIghCijwSYM27dvZ8OGDQBMnjzZKVkoNn36dObOncuhQ4eYNWsWzz33HHp99VYt/eCDD7BY7IP7Zs+e7UgWivn5+TF79mwGDhyIxWLh/fff57///e8lvqvLi7Uoj9AMBbjYP1sbVUnfXSFElSkaDfqICPQREbgazqyqKra8PCwpKVjT0rCkptmTjLRUrBf2renpWC60JthyamdsQXWpBQWOf8CK0qr34TngwtbcxXHFxwfFaETxCUT10WMz6LAatFj0Gsw6hSIdFOpUTFr74pMFGit5GjN5ShG5ShE5igmT1oZZC2YdjleLVrlYpgOLprj8Yh2rhlpb5bmYCiwP8Ge30Yc3UtLoW2ji79olrLH2ZPl+Pa/c2AWDruF0jxVCVK7BJgyLFi1y7E+aNKncOhqNhvvuu49nnnmGzMxM1qxZw6gL0yVWhaqq/PrrrwB07NiRK664otx6V1xxBR06dODIkSP8+uuvfPTRRw3iW/Z8U1qZAc++bRtI64oQdYSiKGgDAtAGBEAVxg+pRUVYMjKxZqRjzcjAkp7uaDGwZmZd3M/IsL9mZdWZJKOqVJMJ1WRyKtNe2DyxjJw9mVAw61QsmosJhUV7cd+qtdexFO9rcdS1ltx3vCqO8zP9YU9bhSRfHfc3jeCBrGymZmQxU/8/rs9/k43HUriyYxMPvFMhxOWiwSYMGzduBMDf358+ffq4rDd8+HDH/qZNm6qVMJw4cYLEC7OSlLyOq/scOXKEs2fPcvLkSdo0gIG/uUUZRJaaUjWwnSwcJERdphgM6JtEoG9S9bFGqtWKLS8Pa3YOtpzssq85udhycrDm5mDLycWWm4s1115my83FlpeH7RLWrrhc6S2gR8W3qLKa1Zk9y7muRQO7oxU2dlH4ql0QW41G3kpJ40XbNyzeEy0JgxDCSYNNGA4dOgRAu3bt0Olc/xo6duxY5pyqOnjwYLnXqcp9GkLCkJefQscs5zL/6PbeCUYIUWsUrRZtUBDaoCBcdwSqmGq12mdxysvDlptLfloasevXoykqontMDDqLBVt+gb1O8VaQj1pQYC8vsG9qfr5j31ZQABb3rQdxOdHZoN9RlX5HVQoMsD1Gx0udmzAuaAeWg0soKOqOr6EWFrgTQlyWGmTCUFhYSGpqKgAtXAwWLNaoUSP8/f3Jy8sjIaF60+mdOXPGsV/ZfVq2bOnYr8l9ylPyeosmXEuosXrjMGqLxmrjvNn5Wy+t1Ypy9KiXIhI1ZTKZHP9vxcfH4+PjiQ4coiEy+ftzOjQUgCadOlX7WdNc2LBYUIuKsF3ohlS82QoLoagItXgrNKEWmez7piLHPkVmbEXFP5svvppM9hmqLBb7dcxm+1ZUhGqxuHU63BozQ4fd9i3bz49e4V/x3bXf1fZQistG8TIo38+a4d1ARL2WXnhxkgVLHfwio0EmDDkl+tMGBARUWr84YcjNza21+/j7+zv2q3ufkslGZWZsOVGta3tc9+7ejkAIIYQQwmtSUlKIiorydhhOGuQ0CIWFhY59g8FQaf3ib64Kqjn1YHXuU/LbsereRwghhBBC1A/JycneDqGMBtnCYDQaHftFRZWOKsN0YbaM0lOiuvM+phIzclT3PpV1YTpx4gTDhg0DYPPmzdVqkRCiOs6dO0f//v0B+9TFzZo183JEor6SZ014gjxnwlMSEhIYNGgQUPm4V29okAlDyRWbq9L9Jy8vD6ha96VLvU/xPS7lPpWNjyipZcuW1aovxKVq1qyZPGvCI+RZE54gz5nwlJJfONcVDbJLktFoJCzMvpJlZQOGMzIyHB/mq/vNfMk/LNUZmCwtAEIIIYQQoq5okAkDQOfOnQE4duxYhaPRDx8+7Njv1KnTJd2j9HXcfR8hhBBCCCFqS4NNGIYMGQLYuwLt3LnTZb1169Y59gcPHlyte7Rp04bIyMgy1ynP+vXrAWjevHmdGxkvhBBCCCEargabMNx0002O/blz55Zbx2az8fXXXwMQEhLCyJEjq3UPRVEYN24cYG9B2Lp1a7n1tm7d6mhhGDduHIpMfi2EEEIIIeqIBpsw9O/fn6FDhwLwxRdfsGXLljJ13nvvPcfqztOmTUOvd17wbO3atSiKgqIoTJw4sdz7PP7442i19tUyH3300TJTphYUFPDoo48CoNPpePzxx2vytoQQQgghhHCrBpswAMyaNQtfX18sFgujRo3ijTfeYOvWraxZs4YpU6YwY4Z9VceYmBimT59+SfeIiYnhySefBCA2NpbBgwezYMECYmNjWbBgAYMHDyY2NhaAJ598kvbt27vnzQkhhBBCCOEGDXJa1WK9evViwYIF3HPPPWRnZ/Pss8+WqRMTE8PSpUudpkitrtdee43z58/z5Zdfsnv3bu68884ydSZPnsyrr756yfcQQgghhBCiNiiqqqreDsLbTp06xaxZs1i6dClnzpzBYDDQrl07brvtNh555BH8/PzKPW/t2rWOcQ0TJkxg3rx5Fd5n2bJlzJkzhx07dpCamkp4eDj9+vVjypQpXH/99e5+W0IIIYQQQtSYJAxCCCGEEEIIlxr0GAYhhBBCCCFExSRhEEIIIYQQQrgkCYMQQgghhBDCJUkYhBBCCCGEEC5JwiCEEEIIIYRwSRIGIYQQQgghhEuSMAghhBBCCCFckoRBCCGEEEII4ZIkDEIIIYQQQgiXJGGo506dOsX06dPp2LEj/v7+hIaG0q9fP9555x3y8/O9HZ6ow86fP89vv/3Giy++yPXXX094eDiKoqAoChMnTqz29ZYvX8748eNp0aIFPj4+tGjRgvHjx7N8+XL3By8uK7Gxsfz73/9m1KhRjucjICCAmJgYJk2axMaNG6t1PXnWRHmys7P54YcfmD59OsOHD6ddu3YEBwdjMBiIiIhgxIgRvP3226SlpVXpeps3b+aee+6hdevWGI1GmjZtyrXXXsv8+fNr+Z2Iy9lTTz3l+LdUURTWrl1b6Tl14m+aKuqtxYsXq0FBQSpQ7hYTE6MePXrU22GKOsrVcwOoEyZMqPJ1rFarOnny5Aqv98ADD6hWq7X23oyos4YOHVrhs1G83XfffarJZKrwWvKsiYqsWrWqSs9aeHi4+vvvv1d4rZdeeknVaDQurzF69Gi1oKDAQ+9MXC52796t6nQ6p2dlzZo1LuvXpb9pkjDUU7t27VJ9fX1VQA0ICFBfe+01dfPmzerq1avVBx980ClpyM7O9na4og4q+QepVatW6qhRoy4pYXj66acd5/Xq1UudP3++un37dnX+/Plqr169HMeeeeaZ2nszos6Kjo5WATUyMlKdNm2a+tNPP6nbt29Xt2zZos6cOVNt3ry54xm56667KryWPGuiIqtWrVJbtmyp3nfffeqsWbPUn3/+Wd2yZYu6adMmdcGCBeptt92marVaFVANBoO6Z8+ecq/zySefOJ6l6Oho9YsvvlC3b9+uLlq0SB05cmSVn1fRsFitVrVfv34qoEZERFQpYahLf9MkYainir+10+l06ubNm8scf/vttx0P2ksvveT5AEWd9+KLL6pLlixRk5KSVFVV1RMnTlQ7YThy5Ijj25S+ffuq+fn5Tsfz8vLUvn37Op5VafFqeEaPHq0uWLBAtVgs5R5PSUlRY2JiHM/eunXryq0nz5qojKtnrKRffvnF8ayNHz++zPG0tDQ1ODjY8UVKSkpKmXuMHTu2Sh8GRcPy/vvvq4DasWNH9Zlnnqn0Galrf9MkYaiHtm3b5ngQp0yZUm4dq9WqdurUSQXUkJAQtaioyMNRisvNpSQMU6dOdZyzZcuWcuts2bLFUecf//iHGyMW9cWSJUscz8ijjz5abh151oS7dOjQwdE1qbS33nrL8QzNnz+/3PMTEhIcLRU33HBDbYcrLgOnTp1SAwICVEBdu3at+tJLL1WaMNS1v2ky6LkeWrRokWN/0qRJ5dbRaDTcd999AGRmZrJmzRpPhCYaEFVV+fXXXwHo2LEjV1xxRbn1rrjiCjp06ADAr7/+iqqqHotRXB5Gjhzp2I+Pjy9zXJ414U6BgYEAFBYWljlW/O9rUFAQN998c7nnt2jRgquvvhqA1atXk5OTUzuBisvGww8/TG5uLhMmTGD48OGV1q+Lf9MkYaiHimcU8ff3p0+fPi7rlXxoN23aVOtxiYblxIkTJCYmAlT6B7L4+NmzZzl58mRthyYuMyaTybGv1WrLHJdnTbjLkSNH2LNnD2D/oFZSUVER27dvB2DgwIEYDAaX1yl+zkwmE7GxsbUTrLgs/Pjjj/z222+Ehoby7rvvVumcuvg3TRKGeujQoUMAtGvXDp1O57JeyT+GxecI4S4HDx507Jf+h7c0eRZFRdatW+fY79SpU5nj8qyJmsjPz+fo0aPMnDmT4cOHY7FYAHj88ced6sXFxWG1WgF5zkTVZGZmMm3aNADeeustwsPDq3ReXfyb5vrTpLgsFRYWkpqaCtibRSvSqFEj/P39ycvLIyEhwRPhiQbkzJkzjv3KnsWWLVs69uVZFCXZbDbefPNNx8+33357mTryrInqmjdvnssuuwBPP/00d999t1OZPGeiumbMmEFSUhKDBw9m8uTJVT6vLj5rkjDUMyX7SgYEBFRavzhhyM3Nrc2wRANUnWfR39/fsS/Poijp/fffd3QDufnmm8vtZinPmnCXnj17MmfOHPr161fmmDxnojo2bNjA559/jk6n45NPPkFRlCqfWxefNemSVM+UHKRVUf/KYj4+PgAUFBTUWkyiYarOs1j8HII8i+KidevW8fTTTwMQERHB//73v3LrybMmquumm27ir7/+4q+//mL79u3Mnz+f8ePHs2fPHu666y5+++23MufIcyaqqqioiIceeghVVXniiSfo2rVrtc6vi8+aJAz1jNFodOwXFRVVWr94MKGvr2+txSQapuo8iyUHtcqzKAAOHDjA+PHjsVgsGI1GFi5cSERERLl15VkT1RUSEkLXrl3p2rUr/fr148477+Tnn3/m66+/5vjx44wbN4558+Y5nSPPmaiq119/ncOHD9OqVSteeumlap9fF581SRjqmeLp4KBqTVN5eXlA1bovCVEd1XkWi59DkGdR2GcIGTVqFBkZGWi1Wn744QeGDRvmsr48a8Jd7r33Xm677TZsNhuPPPII6enpjmPynImqOHz4MG+88QYAs2fPduoyVFV18VmTMQz1jNFoJCwsjLS0NKdBM+XJyMhwPGglB80I4Q4lB2pV9iyWHKglz2LDlpiYyNVXX01iYiKKovDll18ybty4Cs+RZ02407hx4/jxxx/Jy8vj999/dwx+ludMVMX7779PUVERbdu2JT8/nx9++KFMnf379zv2//zzT5KSkgAYO3Ys/v7+dfJZk4ShHurcuTMbNmzg2LFjWCwWl1OrHj582LFf3lSFQtRE586dHfsln7XyyLMoAFJTU7nmmms4fvw4YP92rniByYrIsybcqXHjxo79U6dOOfZjYmLQarVYrVZ5zoRLxV2Ejh8/zl133VVp/f/85z+O/RMnTuDv718n/6ZJl6R6aMiQIYC9mWrnzp0u65Wc23zw4MG1HpdoWNq0aUNkZCTg/KyVZ/369QA0b96cqKio2g5N1EFZWVlce+21jvnH33zzTR5++OEqnSvPmnCns2fPOvZLdvEwGAz0798fgC1btlTYt7z4OfTx8aFv3761FKmor+ri3zRJGOqhm266ybE/d+7ccuvYbDa+/vprwD74a+TIkZ4ITTQgiqI4upIcPnyYrVu3lltv69atjm9Ixo0bV62p50T9kJ+fz+jRo9m1axcAzz33HE899VSVz5dnTbjTwoULHfvdunVzOlb872t2djY///xzueefOXOGP/74A4CrrrrKqT+6qP/mzZuHqqoVbiUHQq9Zs8ZRXvyBv07+TVNFvTR06FAVUHU6nbp58+Yyx99++20VUAH1pZde8nyA4rJz4sQJxzMzYcKEKp1z5MgRVavVqoDat29fNT8/3+l4fn6+2rdvX8ezGhcXVwuRi7rMZDKpo0aNcjxb06ZNu6TryLMmKjN37ly1oKCgwjozZ850PItt2rRRLRaL0/G0tDQ1ODhYBdTWrVurqampTsctFos6duxYxzXWrFnj7rch6oGXXnqp0mekrv1NkzEM9dSsWbMYPHgwBQUFjBo1imeffZaRI0dSUFDADz/8wJw5cwB7n8zp06d7OVpRF23cuJFjx445fi5eQRzg2LFjZaYcnDhxYplrxMTE8OSTT/Lmm28SGxvL4MGDeeqpp4iOjiY+Pp633nqL3bt3A/Dkk0/Svn37Wnkvou666667WLlyJQBXXnklkydPdhoQWJrBYCAmJqZMuTxrojIvv/wy06dP55ZbbmHIkCFER0cTEBBATk4Of/31F9999x2bNm0C7M/ZnDlz0Gq1TtcIDQ3lrbfe4u9//zunTp1iwIABPPfcc3Tr1o3ExEQ++OAD1qxZA9if7REjRnj6bYp6os79TavVdER41eLFi9WgoCBHFlt6i4mJUY8ePertMEUdNWHCBJfPTnmbK1arVb3//vsrPHfy5Mmq1Wr14LsTdUV1njEufKvrijxroiKtW7eu0jPWokULdeXKlRVe68UXX1QVRXF5jRtuuKHS1gzRcFWlhUFV69bfNBnDUI+NHTuWffv28cQTTxATE4Ofnx8hISH07dvXkZm2a9fO22GKek6j0fDFF1+wdOlSxo0bR2RkJAaDgcjISMaNG8eyZcv4/PPP0Wjkz5GoGXnWREVWrFjBe++9x80330z37t1p0qQJOp2OwMBAoqOjueWWW5g7dy5HjhzhmmuuqfBar7zyChs3buTuu++mZcuWGAwGIiIiuOaaa/j+++9ZunSp0+JbQlyKuvQ3TVFVVa31uwghhBBCCCEuS/I1ixBCCCGEEMIlSRiEEEIIIYQQLknCIIQQQgghhHBJEgYhhBBCCCGES5IwCCGEEEIIIVyShEEIIYQQQgjhkiQMQgghhBBCCJckYRBCCCGEEEK4JAmDEEIIIYQQwiVJGIQQQgghhBAuScIghBBCCCGEcEkSBiGEEEIIIYRLkjAIIYQQQgghXJKEQQghhBBCCOGSJAxCCCGEEEIIlyRhEEIIIYQQQrgkCYMQQtTQyy+/jKIoKIri7VA4efKkI5Z58+Z5O5wGZ968eY7f/8mTJ2t8vS+//BJFUejWrRuqqtY8wDpq4cKFKIpCTEwMZrPZ2+EIIUqRhEEIUa9YrVaCgoJQFIXevXtXWFdVVcLCwhwf8L788ssK63/11VeOuv/73//cGXaddObMGV5++WWGDh1K48aN0ev1+Pr60qJFC4YNG8a0adP46aefyMrK8nao9VJubi7PPvssAC+++GKdSEhLGjVqFIqiMG3atBpf65ZbbqFz584cPXqU2bNnuyE6IYQ7ScIghKhXtFotgwYNAmDv3r1kZ2e7rHvgwAHS09MdP2/YsKHCa5c8PmzYsBpGWrd99tlndOjQgVdeeYWNGzeSmpqKxWKhsLCQs2fPsmHDBj788ENuu+02pkyZ4u1w66UPP/yQ5ORkOnfuzK233urtcJzk5OSwbt06AMaOHVvj62k0Gp577jkA3nzzTfLy8mp8TSGE+0jCIISod4o/zNtsNjZv3uyyXnECoNVqnX6urH54eDidO3d2lL/88suoqlpvuozMnz+fhx56iPz8fIxGI1OnTmXRokXExsayY8cOfv31V1544QV69erl7VDrrYKCAmbOnAnAE088UedaF1asWEFRURFBQUEMHz7cLde84447aN68OSkpKXz66aduuaYQwj0kYRBC1Dslv/1fv369y3rFx2677TYA4uPjSUxMLLfu+fPniYuLA2DIkCF17gOcu1itVv75z38CEBgYyLZt2/j4448ZN24cffr0oW/fvtx44438+9//ZteuXRw8eJCbb77Zy1HXP99++y1paWn4+PjUudYFgCVLlgBw7bXXotfr3XJNrVbLHXfcAcBHH32EzWZzy3WFEDUnCYMQot7p168fRqMRqLjVoPjYrbfeSnR0dIX1G0p3pG3btpGUlATAlClT6N69e4X1O3XqxO233+6J0BqUL774AoDRo0cTEhLi3WBKsdlsLFu2DIAxY8a49dp/+9vfADhx4gRr1qxx67WFEJdOEgYhRL3j4+ND//79AdixYwcmk6lMnRMnTnD27FnA3mIwZMgQ4NIShspmSYqKikJRFCZOnAjAkSNHePDBB4mKisLHx4cmTZowfvx4tm7dWul7s1qtfPzxxwwYMICgoCCCg4Pp3bs37777brnvs7pOnz7t2G/Xrt0lX6e82ZoWLlzI1VdfTUREBL6+vnTs2JFnnnmGzMzMKl1zzZo1TJgwgbZt2+Ln50dQUBDdunXjySefdNky5O5rZGRk8PTTT9OxY0d8fX2JiIjg6quvZuHChVW6f1WcOnWKbdu2AfbBwK6sXbvW8Tteu3YtqqryxRdfMGTIEMLCwggKCqJ///588803TucVFRXxySefcMUVVxAaGkpgYCCDBw/mxx9/rFJ8W7duJTU1FY1Gww033FDm+M6dO5k8eTIxMTH4+/tjNBpp2bIlffr04eGHH2bx4sUuu+/17t2bNm3aAPaucUKIOkIVQoh66Pnnn1cBFVDXrVtX5vi8efNUQG3fvr2qqqr62WefqYDarVu3cq/Xu3dvFVCDgoJUi8XidOyll15y3Ks8rVu3VgF1woQJ6s8//6z6+fk56pfctFqt+sMPP7h8Tzk5OerQoUPLPRdQe/fure7atcvx89y5c6v427ro//7v/xznT5s2rdrnFztx4oRTHPfff7/LuCMjI9VDhw65vFZBQYF65513ujwfUP39/dXFixfX6jUOHjyoRkZGujx/0qRJ6ty5cx0/nzhx4pJ+d8XPJqDGx8e7rLdmzRpHvZUrV6pjx451Gdtjjz2mqqqqpqenq8OGDXNZ77XXXqs0vqeffloF1MGDB5c5NnPmTFWj0VT4ewbUnJwcl9cv/u/UvHnzKvy2hBCeIAmDEKJeWrlypePDyauvvlrm+OTJkx0f8lRVVQ8dOqQCqqIoanp6ulPd7OxsVavVqoB63XXXlblWVROG3r17q0ajUW3Tpo360UcfqVu3blW3bNmivvzyy6rRaHQkJOfPny/3OuPGjXPcp3///ur8+fPV2NhYdenSpeptt92mAmq/fv1qlDAcP37ccb7RaFRXr15d7WuoqnPCUBxTyZiXLVum3n777Y46rVq1UrOzs8tcx2azqaNHj3bUGzt2rPrNN9+omzZtUrds2aLOmjVLbdWqlQqoBoNB3bFjR61cIysrS23ZsqXjGnfccYe6bNkyNTY2Vv3+++/Vvn37lvn9X2rCUPxshoWFVVivZMIwYMAAFVD/9re/qUuXLlV37typzp8/X+3QoYOjzqpVq9Qbb7xR1el06tSpU9WVK1eqO3fuVL/44gtHIqTVatX9+/dXeN8uXbqogPrmm286le/du9eRLLRp00Z977331NWrV6u7d+9W169fr3722Wfq3Xffrfr7+1eYMMycOdMR89GjR6v+ixNC1BpJGIQQ9VJOTo6q0+lUQL322mvLHI+JiVEB9csvv3SUhYeHq4C6ZMkSp7q///674wPM66+/XuZaVU0YALVPnz5qVlZWmTrffvuto87MmTPLHP/tt98cx2+44QbVbDaXqfPKK684fYt7KQmDqqrqmDFjnK7Tr18/9cUXX1SXLVumpqSkVOkaJROGimL+97//7ajz5JNPljk+Z84cFVD1er26fPnycu+Vnp7u+BBb3rfe7rjGv/71rwqfgaKiInXUqFFO7/lSE4ZOnTqpgHrVVVdVWK9kwgCoH3zwQZk6586dUwMDA1VAbdy4saooivrLL7+UqVfyw35xa0R5SiaUpROLF154wdFSk5SU5PIamZmZqtVqdXl83bp1jntU1OImhPAcSRiEEPVW8be9gYGBTt2IkpOTHR9I4uLiHOXF3+DPmDHD6TrPPfeco/7GjRvL3Kc6CcPevXvLrWOz2Rzf8o4fP77M8RtuuEEFVB8fH/Xs2bPlXsNqtapdu3atccKQkpLi9E156S0mJkZ95JFH1J07d7q8RsmEoaoxh4aGqiaTyXHMZrOp0dHRKqBOnz69wpiXLVtW7n9Td1zDZDKpjRo1UgG1e/fuqs1mK/f8hIQEVa/X1zhhKP6Af9ddd1VYr3QLgyv33XefU8uIK8VdlXr16uWyzocffuhoQSjtwQcfrPT8qihu7XOVnAkhPE8GPQsh6q3iwck5OTns2bPHUV48nWqTJk1o3769o7x44HPpqViLBzwbjUb69et3yfF069bN5axDiqI41jU4fvy40zGr1cratWsB++q6kZGR5V5Do9EwYcKES46vWHh4OJs2bWLOnDnlrpYdFxfHRx99RJ8+fbj33nsrXWSrqjGnp6eza9cux7GDBw8SHx8PUOnUoiUHom/ZssWt19i5cycZGRkATJgwweXg9hYtWjBq1KgK71EZk8lETk4OAI0aNaryeXfeeafLYz169KhWvdLPX0nF06mWt1hbs2bNAPvvfPv27RUHXIHQ0FDHfvGMXUII75KEQQhRbw0dOtSxX3KWo+L94gShdP2dO3dSUFAA2GeUKf7wM2DAAAwGwyXH07FjxwqPF39QKv7AWCw+Pp78/HyAShOW4tmhakqv1/Pggw+yc+dOzp49yw8//MC//vUvhg4d6jTv/rfffsuNN96I1Wp1ea3qxPzXX3859mNjYx37AwcOdMwIVN4WEBDgqFvyQ6Y7rlEyptr+/Zdcebw6CUNMTIzLYyWnZa1KvdLPX7HKVne+66670Ov1mEwmBg8ezNixY/nkk0/Yv39/tRY1LPm+ZcVnIeoGSRiEEPXW0KFDHd8GVyVh6N27N35+fpjNZscUpzt27KCwsBCo+foLfn5+FR7XaOx/kkt/+C75ITIiIqLCazRp0uQSo3MtMjKSO+64g3feeYf169eTlJTEM88844j3zz//rHAKzOrEXPK9nj9//pLiLU6u3HUNT/7+i9cPARxJa1VU9GwV/3eqaj1XC6YVr+4cGBhY7urOHTt2ZP78+TRq1AiLxcJvv/3G1KlT6datGxEREdx7772VrqYOzu/bXYvCCSFqRuftAIQQoraEhobSpUsX9u/f7/igkp2dzd69e4GyCYNer6d///6sXbuW9evXM3LkyDq3YFtdWGE6NDSU119/HVVVefPNNwH7Ggv33HNPufUvNeaSidOSJUuIioqq0nklP9S74xol1fbvPyQkBJ1Oh8VicUpU6oLffvsNqHh151tuuYWrr76aBQsWsGLFCjZs2EBKSgqpqal8++23fPvtt0yYMIEvv/zSKZEpqeT7rmuL1gnRUEnCIISo14YNG8b+/ftJSUnh8OHDnDhxApvNRkBAgGPMQElDhgxh7dq1jkSheDyDXq9n4MCBHo29WMkuGsnJyRXWrey4Oz344IOOhOHYsWMu61Un5pL918PCwhz7ISEhdO3atdoxuuMapX//FXXrqenvX1EUwsPDSUpKcoybqAtKru5cXnekkoKDg3nooYd46KGHADh06BC//vors2fPJjExka+++opevXoxbdq0cs8v+b5btWrle+51gwAAB3RJREFUpncghKgJ6ZIkhKjXSo9jKE4ErrjiCrRabZn6xa0OW7duxWQysXnzZsDeXcnf398DEZcVHR2Nr68vYO8iVZHKjrtTyYHMFX3zXp2YS36gL5nQbdq06VJCdMs1unXr5tj3xO+/+H5xcXE1vpa7bN26lZSUFJerO1ekU6dOPP3002zdutXx/1BFq0qXfN9dunS5tICFEG4lCYMQol4r2Y1o/fr1jhaD0t2Rig0cOBCtVkteXh7z5s0jKyurzHU8TafTMWLECABWrlzJuXPnyq1ns9n46quvanSv6gxOLTmguG3bti7rVTXmRo0aOc3K1Lt3b1q0aAHAnDlzHGNJqsMd1+jTp4+jleGbb75x+Ts6e/YsK1eurPb1SytOco8cOeJyALKnFc+ONHDgQMLDwy/pGi1btnS0zqSmprqsV5x06fX6cmfpEkJ4niQMQoh6LTIykujoaADWrFnj+JBbsuWhpKCgIMc3vG+//baj3NvjF6ZOnQrYp92cMmVKubMSvfHGG04z+lyK5cuXc/vtt7N79+4K66Wnp/PYY485fh43bpzLuhXF/Oabbzpivv/++/Hx8XEc02g0PPvss4B9qs/77rsPk8nk8j7Z2dl89NFHTmXuuIaPjw+TJk0CYM+ePbzzzjtlzrNYLDz44IMUFRW5vHZVFT+bNpvNKSnzpuKEYcyYMS7rLFq0iMzMTJfHExISOHz4MABt2rRxWa94VrKBAwc6zVwlhPAeGcMghKj3hg4dSnx8PGfPngXs39hfccUVLusPGTKEPXv2OOaj12g0LlskPGXs2LGMHTuWJUuWsGTJEgYPHswTTzxB+/btOX/+PPPmzWPBggX07du3Rh8ybTYbCxcuZOHChfTo0YPRo0fTr18/mjVrhsFg4Pz582zcuJE5c+Y4ZiDq06dPhes/9O3bt9yYv/rqK3744QfAvobBCy+8UObcv//976xatYpffvmFhQsXsmvXLqZMmUL//v0JDg4mOzubw4cPs3btWhYvXozRaOSRRx5x+zVefPFFfvzxR86cOcNTTz3Fnj17uO+++4iIiCAuLo6ZM2eyY8eOGv/+AQYNGkTjxo1JSUlh9erVjBw5skbXq6mTJ09y4MABoOLxCx988AF/+9vfGD16NFdeeSWdOnUiODiYjIwMYmNjmT17tmMGpL///e/lXiMnJ8fRwjB+/Hg3vxMhxCXz7rpxQghR+7788kunlYr79etXYf0ffvjBqX6PHj0qrF/VlZ4nTJhQ4XUmTJigAmrr1q3LPZ6dna0OHjzY5QrMvXr1Unfu3FmjlZ43btyo+vv7u7xH6e2aa65RU1NTy1yn5ErPc+fOVSdOnOjyGs2aNVMPHDjgMqaioiJ16tSpqqIolcZT3grE7rrG/v371aZNm7o8b+LEiercuXNrvNKzqqrq9OnTVUBt27atyzolV3pes2aNy3pVjcnVc1zR6s4lDR8+vNLfrUajUf/zn/+4vMa8efNUQNXpdOq5c+cqvJ8QwnOkS5IQot4r3Z2ostaC0t2VvN0dqVhgYCBr165l9uzZ9OvXj4CAAAIDA+nZsydvvPEGmzdvdppl6FIMHjyYlJQUFi9ezD//+U+GDx9OZGQkPj4+6HQ6QkND6d27N1OmTGHNmjWsXLnSaSYiV+bOncv333/PiBEjCAsLw8fHh5iYGGbMmMGBAwfo3Lmzy3P1ej0ff/wxe/fu5dFHH6Vbt24EBwej1WoJDg6mZ8+eTJ48mZ9++olDhw7V2jW6dOnCgQMHmDFjBu3bt8fHx4fw8HBGjhzJ999/z9y5c6v2S66CBx98ELB3oypeE8RbKlrduaT58+czZ84c7r77bnr27EnTpk3R6XQEBATQpUsXpk6dyu7du3n++eddXuP7778H7K0LTZs2dd+bEELUiKKq1RjhJoQQQlTByZMnHf3U586dy8SJE70b0GXohhtuYPny5TzwwAN89tlnXokhJyeH8PBwioqKWLlyJddcc02t3evUqVNER0djtVrZsmVLhd0GhRCeJS0MQgghRB30xhtvoNFo+Prrr0lISPBKDCtXrqxwdWd3ev3117FarVx33XWSLAhRx0jCIIQQQtRBPXr04O6776aoqIg33njDKzEEBgby0ksvMXv2bAwGQ63dJyEhgXnz5qHVap1mJxNC1A0yS5IQQghRR73++utER0djNBpRVbXCBfJqw6hRoxg1alSt3ychIYFnnnmGtm3bOi2UJ4SoG2QMgxBCCLeTMQxCCFF/SJckIYQQQgghhEvSwiCEEEIIIYRwSVoYhBBCCCGEEC5JwiCEEEIIIYRwSRIGIYQQQgghhEuSMAghhBBCCCFckoRBCCGEEEII4ZIkDEIIIYQQQgiXJGEQQgghhBBCuCQJgxBCCCGEEMIlSRiEEEIIIYQQLknCIIQQQgghhHBJEgYhhBBCCCGES5IwCCGEEEIIIVyShEEIIYQQQgjhkiQMQgghhBBCCJckYRBCCCGEEEK4JAmDEEIIIYQQwiVJGIQQQgghhBAuScIghBBCCCGEcEkSBiGEEEIIIYRL/w+H2AVxDBK5BQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -250,10 +242,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "nrel_5MW\n", - "iea_10MW\n", + "iea_15MW_floating\n", "iea_15MW_multi_dim_cp_ct\n", - "iea_15MW_floating\n" + "nrel_5MW\n", + "iea_10MW\n" ] } ], @@ -294,10 +286,10 @@ "name": "stdout", "output_type": "stream", "text": [ + "iea_15MW_floating\n", + "iea_15MW_multi_dim_cp_ct\n", "nrel_5MW\n", "iea_10MW\n", - "iea_15MW_multi_dim_cp_ct\n", - "iea_15MW_floating\n", "iea_15MW\n" ] } @@ -336,14 +328,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXxU1f3/8dfJvkCEBDCExSBbXQADZQcJqKxa0VotX5AtLahfrQgoiFZFAVsRBGxRWiVx6U9KEawWq1ZkgCIq0i8KohjZAhQkhDWQhWTO749Jhkz2ZZJJwvv5eMxjZs4995zPzb0J3PnMOcdYaxEREREREREREREREfElP18HICIiIiIiIiIiIiIiooSFiIiIiIiIiIiIiIj4nBIWIiIiIiIiIiIiIiLic0pYiIiIiIiIiIiIiIiIzylhISIiIiIiIiIiIiIiPqeEhYiIiIiIiIiIiIiI+JwSFiIiIiIiIiIiIiIi4nNKWIiIiIiIiIiIiIiIiM8pYSEiIiIiIiIiIiIiIj6nhIWIiIiIiIiIiIiIiPicEhYiIiIiIiIiIiIiIuJzSliIiIiIiIiIiIiIiIjPKWEhIiIiIiIiIiIiIiI+p4SFiIiIiIiIiIiIiIj4nBIWIiIiIiIiIiIiIiLic0pYiIiIiIiIiIiIiIiIzylhISIiIiIiIiIiIiIiPqeEhYiIiIiIiIiIiIiI+JwSFiIiIiIiIiIiIiIi4nNKWIiIiIiIiIiIiIiIiM/Vy4SFMaaFMWaKMeYjY0yKMSbbGHPUGPO2MaZnCftEGGMWGmMOGGOyjDH7jTHzjTENKtH/EGPMBmPMWWPMGWPMemPMDVU/MhERERER8ZWK3mcYY54yxthSHrEl9KP7CRERERG5JAX4OoBq8gAwA9gDfASkAu2BkcBIY8z/WGv/ml/ZGBMObACuy6v/FhAHTAcGGGOut9ZmlqdjY8wY4I28PpPyiu8C/mWMudNau6qqByciIiIiIj5RofuMAl4D9hdTfqpwge4nRERERORSZqy1vo7B64wxtwNp1toNhcr7A+uAdKC5tTYrr3w28ATwe2vtzAL1f4frhmSWtfbZcvTbGNgL5ABx1tpDeeUtgf/Lq3altfZsFQ9RRERERERqWCXuM54CngQGWmsd5Whf9xMiIiIickmrl1NCWWtXF76JyCvfBKwHGgOdAIwxBvgVrpuLZwrt8kxe+a/K2fUvgEbAi/k3F3n9HgL+ADQBbqvIsYiIiIiISO1QkfuMStL9hIiIiIhc0urrlFCluZD3nJP33B6IAT601p4rWNFae84YsxkYYoxpZa09WEbb8XnPHxWz7UPgKWAA8Hp5g837NlVpgoCfAMdwDRvPLW/bIiIiInJJ8wea5r3ekT8qQCqt8H1GQdfnrXHhBJKBj6216cXUi8971v2EiIiIiNR21XI/cUklLIwxrYEbgSPAjrzi9nnPySXslgwMyatXVsKitLaSC9Upr7L6FBERERGpqu7Al74Ooq4q4T6joNmF3p8yxjxorS2ceND9hIiIiIjURV67n6iXU0IVxxgTiGvxumBghrU2/5tDl+U9ny5h1zOF6pWmtLYq0o6IiIiIiNQBpdxnAHwFTASuBEKBNrgW7rZAkjHmZ4Wa0/2EiIiIiFzSLokRFsYYPyAJuB74s7X2Dd9GVCGtytjeAvgM4F//+hdXXHFF9UckVZaVlcXnn38OQM+ePQkODvZxRFIWnbO6SeetbtJ5q3t0zuqmAwcOcNNNN+W/TfVlLHVVWfcZ1to1hXbZD/zBGPMt8C9gDvBuNYdZ7vuJjRs3Eh0dXc3hiIiIiEh9cPToUa6//vr8t167n6j3CYu8m4jlwP8AbwL3FKqS/+2lkr6pFFGoXmkKtpVWhXbcCi62VxzXmuEuV1xxBe3bV3SEuPhCRkYGe/bsAaBt27aEhob6OCIpi85Z3aTzVjfpvNU9Omf1gtYtqKBy3GeUyFq7zhizB+hkjImw1uaPnvDp/USbNm1o2bKsJS9ERERERCh83+e1+4l6PSVU3k1EIjAOeAsYb611FqpW1lywZa1xUd62KtKOiIiIiIjUUuW8zyjL8bznsAJlup8QERERkUtavU1YFLiJGAv8Fbi70Hyy+ZKB/wJ9jTHhhdoIB/oC+6y15VmsbkPe8+Bitg0pVEdEREREROqYCtxnlNZGOHANcI6LiQvQ/YSIiIiIXOLqZcKiwPDsscDfgDEl3URYay3wCtAA+G2hzb/NK/9zofbDjDE/Mca0LlR/Ja4h2g8YY1oWqN8SuB/XzUjheWxFRERERKQOqMh9hjGmoTGmQzHlobjuLxoCK621OQU2635CRERERC5p9XUNiydwDc9OB74HHi84N2ued6y12/NePwfcCswwxsQB/wG64vpm01ZgUaF9ewDrcX27KT6/0Fp70hhzP/AG8B9jzF/zNt0FRAF3WWvPVv3wKsZay/Hjxzl37hwXLlyo6e6lGE6nk6ioKABSUlLw86uXucN6xdvnLDAwkPDwcJo0aUIxf59ERESkdqrIfUYU8J0xZivwLXAUuBy4EWgJ7AAeLrhjbb2fEBERERGpKfU1YRGb99wAeKyEOvuB7QDW2nPGmAHAU8DPgYHAEWABMNtam1Hejq21bxpjjgOzgAmABbYBc6y1H1fwOKrMWsuPP/7IyZMna7prKYW11r0wTW5uLk5nRac8lprm7XOWk5NDRkYGubm5XH755UpaiIiI1A2xec/luc84ASzF9WWn4UBjIANX8mIJ8Ifi7jNq2/2EiIiIiEhNqpcJC2vteGB8Bfc5DTyU9yirrgMo8dNFa+0HwAcV6b+6HD9+3CNZ4e/vrw9Ga4n88xAQUC9/Deslb50zay25ua7ZI06ePIm/vz9NmzatcnwiIiJSvSpyn2GtPYNrGqfK9FNr7idERERERGqSPimt586dO+d+3bx5cxo1auS7YMTN6XRy5swZACIiIjQlVB3g7XN26tQpjhw5Arh+T5WwEBERERERERGRS50+Ja3n8tes8Pf3V7JCpBZp1KgR/v7+gGt6KBERERERERERkUudEhaXCE0DJVL75P9eWmt9HImIiIiIiIiIiIjvaUooERERERERERHxitiZa30dgpTD/t+NqJF+dD3UfjV1LYCuh7qgJq+HkmiEhVxyjDG88847vg5DRERERERERERERApQwkKkFLGxsRhjPB6/+93v3NsdDgfGGBo3bkxmZqbHvlu3bnXvA5Cenk5gYCArVqzwqDdq1CiMMezfv79I37/97W+r58BEREREREREREREahklLKTeyF9g3Nuefvppjhw54n488MADReo0bNiQNWvWeJS9+uqrtG7d2v2+QYMG/PSnP8XhcHjU27BhA61atfIo37dvHwcOHGDQoEFePRYRERERERERERGR2koJC6m14uPj+c1vfsMjjzxCZGQk0dHRPPXUU+7txhheeuklfvaznxEeHs7cuXMB+Pvf/07Xrl0JCQnhyiuvZPbs2eTk5FQ6joYNGxIdHe1+hIeHF6kzbtw4li9f7n6fkZHBihUrGDdunEe9gQMHeiQmdu/eTWZmJvfee69HucPhIDg4mN69e1c6bhEREREREREREZG6RAkLqdVee+01wsPD+fzzz3nuued4+umn+de//uXe/tRTT3HbbbexY8cOJk6cyKZNmxg7diwPPvggu3btYtmyZSQlJbmTGZXxu9/9jqioKOLi4pg/f36xyY+7776bTZs2kZKSAsDbb79NbGwsXbt29ag3cOBAdu/ezZEjRwDYtGkTffv2ZdCgQR4Ji/Xr19O7d29CQkIqHbeIiIiIiIiIiIhIXRLg6wDEN2558d+kns2q0T6bNgzmvQf6VWifzp078+STTwLQvn17/vCHP7Bu3TpuuukmAP7nf/6HCRMmuOtPnDiRmTNnukc2XHnllTzzzDM88sgj7nYq4je/+Q1du3YlMjKSTz/9lEcffZQjR46wcOFCj3rNmjVj2LBhJCUl8cQTT7B8+XImTpxYpL2+ffsSFBSEw+FgxIgRbN68mQEDBtCtWzeOHz/Ovn37aNOmDRs2bCAhIaHC8YqIiIiIiIiIiIjUVUpYXKJSz2Zx9Exm2RV9rHPnzh7vmzdvzrFjx9zvf/rTn3ps/+qrr9i8ebPHiIrc3FwyMzM5f/48YWFhFep/6tSpHrEEBQUxefJknn32WYKDgz3qTpw4kQcffJAxY8awZcsW/va3v7Fp0yaPOmFhYXTv3p0NGza4ExYzZ84kICCAPn364HA4sNaSkpLCwIEDKxSriIiIiIiIiIiISF2mhMUlqmnD4LIr1YI+AwMDPd4bY3A6ne73hdeTSE9PZ/bs2dx+++1F2vLG9Eo9e/YkJyeH/fv307FjR49tw4YNY9KkSSQkJHDLLbcQFRVVbBsDBw7kr3/9K99++y2ZmZnuaaMGDBjA+vXrcTqdhIWF0bNnzyrHKyIiIiIiIiIiIlJXKGFxiaro1Ex1RdeuXdm9ezft2rWrlva3b9+On58fzZo1K7ItICCAsWPH8txzz/HPf/6zxDYGDhzInDlzWLVqFT179sTf3x+A66+/nj/96U9Ya91TR4mIiIiIiIiIiIhcKpSwkHrliSee4Oabb6Z169bccccd+Pn58dVXX7Fz507mzJlToba2bNnC559/zsCBA2nYsCFbtmzhoYceYsyYMTRu3LjYfZ555hkefvjhEkdXAPTp04fg4GD+/Oc/e0w51aNHD44dO8bf//53Hn300QrFKiIiIiIiIiIiIlLX+fk6ABFvGjJkCP/4xz/46KOP6N69O7169eKFF17giiuuqHBbwcHBrFixggEDBnDNNdcwd+5cHnroIf70pz+VuE9QUBBNmjTBGFNinZCQEHr16sXZs2fp1+/iSJfg4GB3udavEBERERERERERkUuNRlhIreVwOIqUvfPOO+7X1tpi9xsyZAhDhgwpsd2S9iusa9eufPbZZ6XWiY+PL7W9kSNHFrv9k08+4cyZM0XK169fX67YREREREREREREROobjbAQERERERERERERERGfU8JCLlnz5s2jQYMGxT6GDRvm6/BERERERERERERELimaEkouWffccw933nlnsdtCQ0NrOBoRERERERERERGRS5sSFnLJioyMJDIy0tdhiIiIiIiIiIiIiAiaEkpERERERERERERERGoBJSxERERERERERERERMTnlLAQERERERERERERERGfU8JCRERERERERERERER8TgkLERERERERERERERHxOSUspNaKj49nypQpvg5DRERERERERERERGqAEhZSa61evZpnnnmmRvrauHEjt9xyCzExMRhjeOedd4rUsdbyxBNP0Lx5c0JDQ7nxxhtJTk72qGOMwRjDZ5995lGelZVFVFQUxhgcDgcAN910Ew899JBHvZdffhljDElJSR7l48ePp3///lU+ThEREREREREREZHaSgkLqbUiIyNp2LBhjfR17tw5unTpwh//+McS6zz33HMsWbKEl19+mc8//5zw8HCGDBlCZmamR71WrVqRmJjoUbZmzRoaNGjgUdavXz82b97sUbZ+/XpatWrlTmrkczgcDBo0qBJHJiIiIiIiIiIiIlI3KGEhtVbBKaGysrKYPn06LVq0IDw8nJ49e3p8qJ+WlsaoUaNo0aIFYWFhdOrUibfeeqvcfQ0bNow5c+Zw2223FbvdWsuiRYt4/PHHufXWW+ncuTOvv/46//3vf4uMxhg3bhwrVqwgIyPDXbZ8+XLGjRvnUa9///4kJydz9OhRd9mGDRuYOXOmx7Ht27ePAwcOMHDgwHIfj4iIiIiIiIiIiEhdo4SF1An3338/W7ZsYcWKFXz99df84he/YOjQoe4pmTIzM+nWrRtr165l586dTJo0ibvvvpsvvvjCK/3v27ePo0ePcuONN7rLLrvsMnr27MmWLVs86nbr1o3Y2FjefvttAFJSUti4cSN33323R72ePXsSGBjI+vXrAdi1axcZGRkkJCSQlpbGvn37ANeoi5CQEHr37u2VYxERERERERERERGpjQJ8HYD4yLIBkH6sZvts0Awmb6jwbikpKSQmJpKSkkJMTAwA06dP54MPPiAxMZF58+bRokULpk+f7t7ngQce4MMPP2TlypX06NGjyqHnj4K4/PLLPcovv/xyjxES+SZOnMjy5csZM2YMSUlJDB8+nKZNm3rUCQ8Pp2vXrmzYsIHRo0fjcDjo168fwcHB9OnTB4fDQZs2bXA4HPTu3Zvg4OAqH4eIiIiIiIiIiIhIbaWExaUq/Ric/a+voyiXHTt2kJubS4cOHTzK8xeyBsjNzWXevHmsXLmSw4cPk52dTVZWFmFhYb4ImTFjxjBz5kz27t1LUlISS5YsKbZev379eO+99wDXOhXx8fEADBgwAIfDwYQJE3A4HPz617+uqdBFREREREREREREfKJeJiyMMWOA/kA3oBMQBEyw1iYVU9eWo8nW1tqD5eh3P3BFCZs3WGvjy9FXzWjQrM70mZ6ejr+/P9u2bcPf39+zybyFrOfPn8/ixYtZtGgRnTp1Ijw8nClTppCdnV3lsAGio6MB+PHHH2nevLm7/Mcff+S6664rUj8qKoqbb76ZhIQEMjMzGTZsGGfPni1Sr3///ixYsIDDhw/jcDjco0QGDBjAsmXL2LNnDwcPHtSC2yIiIiIiIiIiIlLv1cuEBTAHV+LgOHCEkpMIALNLKG8HjAZ2lSdZUcBpYFEx5fsr0Eb1q8TUTL4SFxdHbm4ux44do3///sXW2bx5M7feeitjxowBwOl08v3333P11Vd7JYY2bdoQHR3NunXr3AmKM2fO8Pnnn3PvvfcWu8/EiRMZPnw4M2bMKJJoydejRw+CgoJYunSpex0OgO7du5Oamsry5csJDw/3yrRWIiIiIiIiIiIiIrVZfU1Y/ApIttYeMMbMBJ4tqaK19qniyo0xL+a9fLWCfZ8qqU2pnA4dOjB69GjGjh3LggULiIuLIzU1lXXr1tG5c2dGjBhB+/btWbVqFZ9++imNGzdm4cKF/Pjjj+VOWKSnp/PDDz+43+/bt4/t27cTGRlJ69atMcYwZcoU5syZQ/v27WnTpg2//e1viYmJYeTIkcW2OXToUFJTU4mIiCix39DQUHr16sWLL75I37593YmNoKAgj/LAwMDy/8BERERERERERERE6iA/XwdQHay1H1trD1R2f2NMCK7RFdnAG14LTCotMTGRsWPHMm3aNDp27MjIkSPZunUrrVu3BuDxxx+na9euDBkyhPj4eKKjo0tMJBTnyy+/JC4ujri4OACmTp1KXFwcTzzxhLvOI488wgMPPMCkSZPo3r076enpfPDBB4SEhBTbpjGGJk2aEBQUVGrf8fHxnD171r1+Rb4BAwZw9uxZBg4cWO7jEBEREREREREREamr6usIi6q6HWgMrLLWplZw32BjzHggBjgDbLXWfl7ZQIwxLcuoEp3/Iisri4yMDI+NTqcTa637dV3yySefAK64/f39efLJJ3nyySeL1HM6nTRq1IjVq1cX2055jvv6668nNze3zP2feuopnnrqqRK357dRXJ8RERHFbv/tb3/rPq7C5b/97W/LfQxSvQqeA2+eD2stTqezyO+ueEdmZmaxr6V203mre3TO6qasrCxfhyAiIiIiIuJBCYviJeQ9v1KJfaOBxIIFxpitwChr7Z5KtFfu9TM+//xz9uzx7CIqKorQ0FCMMZw5c6YS3Ut1S09P93UIUkHeOmc5OTlkZGSQkZHBd99955U2pWQbN270dQhSCTpvdY/OWd1x/PhxX4cgIiIiIiLiQQmLQowxbYCBQArwrwrunghsAnYC6UAHYCpwN7DOGNPJWnvWi+FKORw8eJDevXuXuH3Lli20atWqBiMSERERERERERERkcKUsChqImCARGttheZ9sdbOLlS0HRhrjAFX0uLXwMIKxlPWJ+nRwFaAnj170rZtW4+NKSkp5ObmEhAQUOriz/VZx44d+c9//lPi9tjYWAICavZXwel0ur+l36BBA/z86uVyMvVKdZyz1NRUQkNDadCgAd26datye1JUZmam+9ve119/fYlrzkjtovNW9+ic1U2FR+aKiIiIiIj4mhIWBRhj/IDxgBNY7sWml+FKWPSlggkLa+2h0rbnJUMACA4OJjQ01GO7n5+fe779S/VD8aCgIDp06ODrMErk5+d3yZ6busqb58wYg5+fX5HfXfG+kJAQ/ZzrIJ23ukfnrO4IDg72dQgiIiIiIiIe9Cmpp6FAS+Bf1toUL7abP0FwuBfbFBERERERERERERGpN5Sw8FSVxbZL0zPveb+X2xURERERERERERERqReUsMhjjGkK3AKkAu+WUi/QGPMTY0zbQuU/McaEFVP/J8Dv897+Py+GLCIiIiIiIiIiIiJSb9TLNSyMMb8C+uW97ZT3/CtjTHze639bawuPohgLBAJvWGuzS2m+BfAtcACILVD+S2CqMWZj3rZzQAdgeF67z1prN1bmeERERERERERERERE6rt6mbDAlawYV6isb94jX+GERVWng1oPXAXEAf2BMFxrV7wPLLXWflTJdkVERERERERERERE6r16OSWUtXa8tdaU8hhfzD5X5237toy29+fViy1UvsFae5e1toO19jJrbaC1trm1dqSSFRUXHx/PlClTfB1GnfTOO+/Qrl07/P39mTJlCklJSTRq1KhG+o6NjWXRokU10ld5pKWl0axZM/bv31/jfffq1Yu33367xvsVERERERERERGpq+plwkLqvtWrV/PMM8/UWH8bN27klltuISYmBmMM77zzTpE648ePxxjj8Rg6dKhHnfzyzz77zKM8KyuLqKgojDE4HA4AbrrpJh566CGPei+//DLGGJKSkor03b9//3Idy+TJk7njjjs4ePBgtf0MS0qCbN26lUmTJlVLn5Uxd+5cbr31VmJjYwH46quvGDVqFK1atSI0NJSrrrqKxYsXV7jd8lwvjz/+ODNnzsTpdFbxKERERERERERERC4NSlhIrRQZGUnDhg1rrL9z587RpUsX/vjHP5Zab+jQoRw5csT9eOutt4rUadWqFYmJiR5la9asoUGDBh5l/fr1Y/PmzR5l69evp1WrVu6kRj6Hw8GgQYPKPI709HSOHTvGkCFDiImJqdGfIUDTpk0JCyuy9rxPnD9/nldffZWEhAR32bZt22jWrBlvvvkm33zzDY899hiPPvoof/jDHyrUdnmul2HDhnH27Fn++c9/VvoYRERERERERERELiVKWEitVHhKqKysLKZPn06LFi0IDw+nZ8+eHh/qp6WlMWrUKFq0aEFYWBidOnUqNplQkmHDhjFnzhxuu+22UusFBwcTHR3tfjRu3LhInXHjxrFixQoyMjLcZcuXL2fcOM9lVfr3709ycjJHjx51l23YsIGZM2d6HNu+ffs4cOAAAwcOLDU2h8PhTlAMGjTIYzRHYS+99BJt27YlKCiIjh078sYbb3hsX7hwIZ06dSI8PJxWrVpx3333kZ6e7u5nwoQJnD592j2i5KmnngKKTglljOGVV17htttuIywsjPbt2/Puu+969PXuu+/Svn17QkJCGDhwIK+99hrGGE6dOlXq8Zbl/fffJzg4mF69ernLJk6cyOLFixkwYABXXnklY8aMYcKECaxevbpCbZfnevH392f48OGsWLGi0scgIiIiIiIiIiJyKVHCQuqE+++/ny1btrBixQq+/vprfvGLXzB06FCSk5MByMzMpFu3bqxdu5adO3cyadIk7r77br744guvxuFwOGjWrBkdO3bk3nvvJS0trUidbt26ERsb616/ICUlhY0bN3L33Xd71OvZsyeBgYGsX78egF27dpGRkUFCQgJpaWns27cPcI26CAkJoXfv3qXG1qdPH3bv3g3A22+/zZEjR+jTp0+RemvWrOHBBx9k2rRp7Ny5k8mTJzNhwgR3HAB+fn4sWbKEb775htdee41PPvmERx55xN3PokWLiIiIcI80mT59eolxzZ49mzvvvJOvv/6a4cOHM3r0aE6cOAG4kjF33HEHI0eO5KuvvmLy5Mk89thjpR5neW3atIlu3bqVWe/06dNERkZ6pc/CevTowaZNm6qlbRERERERERERkfomwNcBiO+89s1rvL7r9TLrXR15NS/e8KJH2QPrHmDXiV1l7jv26rGMu2ZcmfVKk5KSQmJiIikpKcTExAAwffp0PvjgAxITE5k3bx4tWrTw+ND8gQce4MMPP2TlypX06NGjSv3nGzp0KLfffjtt2rRhz549zJo1i2HDhrFlyxb8/f096k6cOJHly5czZswYkpKSGD58OE2bNvWoEx4eTteuXdmwYQOjR4/G4XDQr18/goOD6dOnDw6HgzZt2uBwOOjduzfBwcGlxhcUFESzZs0A15Ra0dHRxdZ7/vnnGT9+PPfddx8AU6dO5bPPPuP55593j+IoOLolNjaWOXPmcM8997B06VKCgoK47LLLMMaU2EdB48ePZ9SoUQDMmzePJUuW8MUXXzB06FCWLVtGx44dmT9/PgAdO3Zk586dzJ07t8x2y3LgwAH39VKSTz/9lL/+9a+sXbu2yv0VJyYmhoMHD+J0OvHzU35YRERERERERESkNEpYXMLOXTjHsfPHyqwXHV70Q+kTWSfKte+5C+cqFVtBO3bsIDc3lw4dOniU5y9kDZCbm8u8efNYuXIlhw8fJjs7m6ysLK+up/DLX/7S/bpTp0507tyZtm3b4nA4uOGGGzzqjhkzhpkzZ7J3716SkpJYsmRJsW3269eP9957D3CN3oiPjwdgwIAB7qmXHA4Hv/71r712HN9++22RhbH79u3rsfj0xx9/zLPPPst3333HmTNnyMnJITMzk/Pnz1f4Z9q5c2f36/DwcCIiIjh2zHXt7N69m+7du3vULyvBdM899/Dmm2+63+dPVVVYRkYGISEhJbazc+dObr31Vp588kkGDx5c5nFURmhoKE6nk6ysLEJDQ6ulDxERERERERERkfpCCYtLWHhgOM3CmpVZLzK46HQ5kcGR5do3PDC8UrEVlJ6ejr+/P9u2bSsykiF/Iev58+ezePFiFi1a5F57YcqUKWRnZ1e5/5JceeWVNGnShB9++KFIwiIqKoqbb76ZhIQEMjMz3QswF9a/f38WLFjA4cOHcTgc7lEiAwYMYNmyZezZs4eDBw+Wa8Ftb9m/fz8333wz9957L3PnziUyMpJ///vfJCQkkJ2dXeGERWBgoMd7YwxOp7PS8T399NOlTkGVr0mTJpw8ebLYbbt27eKGG25g0qRJPP7445WOpSwnTpwgPDxcyQoREREREREREZFyUMLiEjbumnGVnq6p8BRR1SkuLo7c3FyOHTtG//79i62zefNmbr31VsaMGQOA0+nk+++/5+qrr662uA4dOkRaWhrNmzcvdvvEiRMZPnw4M2bMKJJoydejRw+CgoJYunSpex0OgO7du5Oamsry5csJDw/32rRWAFdddRWbN2/2WAR88+bN7p/Vtm3bcDqdLFiwwD2N0cqVKz3aCAoKIjc3t8qxdOzYkffff9+jbOvWraXu06xZM/fUV6WJi4vzGImR75tvvmHQoEGMGzfOK1NPlWbnzp3ExcVVax8iIiIiIiIiIiL1hRIWUut16NCB0aNHM3bsWBYsWEBcXBypqamsW7eOzp07M2LECNq3b8+qVav49NNPady4MQsXLuTHH38sd8IiPT2dH374wf1+3759bN++ncjISFq3bk16ejqzZ8/m5z//OdHR0ezZs4dHHnmEdu3aMWTIkGLbHDp0KKmpqURERJTYb2hoKL169eLFF1+kb9++7sRGUFCQR3nhUQpV8fDDD3PnnXcSFxfHjTfeyHvvvcfq1av5+OOPAWjXrh0XLlzgxRdf5JZbbmHz5s28/PLLHm3ExsaSnp7OunXr6NKlC2FhYZWafmvy5MksXLiQGTNmkJCQwPbt20lKSgJcIzGqYsiQITz66KOcPHmSxo0bA64EwqBBgxgyZAhTp07l6NGjAPj7+xdZY6Q06enp7N271/2+8PWSb9OmTdU23ZSIiIiIiIiIiEh9o1VgpU5ITExk7NixTJs2jY4dOzJy5Ei2bt3q/nD48ccfp2vXrgwZMoT4+Hiio6MZOXJkudv/8ssviYuLc38bfurUqcTFxfHEE08Arg+0v/76a372s5/RoUMHEhIS6NatG5s2bSpxMWxjDE2aNCEoKKjUvuPj4zl79qx7/Yp8AwYM4OzZs+6FsL1l5MiRLF68mOeff55rrrmGZcuWkZiY6O6/S5cuLFy4kN///vdce+21/OUvf+HZZ5/1aKNPnz7cc8893HXXXTRt2pTnnnuuUrG0adOGVatWsXr1ajp37sxLL73EY489BlDmIuNl6dSpE127dvUYHbJq1SpSU1N58803ad68uftRcB2N/fv3Y4zB4XCU2HZZ1wvA4cOH+fTTT5kwYUKVjkNERERERERERORSYay1vo5BqsAY0xI4CPD999/Tvn17j+3Jycnk5OQQEBBQZJv4jtPp5MyZMwBERES4p14SmDt3Li+//DIHDx6scltr167l4YcfZufOneX+Ga9fv57bb7+dvXv3ukdmQMXP2YwZMzh58iR/+tOfSqyj38/ql5GRwUcffQTA4MGDtZ5IHaHzVvfonNVNycnJdOjQIf9tK2vtIV/GI75R8H7i4MGDtGzZ0scRiUhdFztzra9DkHLY/7sRNdKProfar6auBdD1UBdU5Ho4dOgQrVq1yn/rtfsJTQklIj61dOlSunfvTlRUFJs3b2b+/Pncf//9Xml7xIgRJCcnc/jw4YJ/QEv1/vvvM2vWLI9kRWU0a9aMqVOnVqkNERERERERERGRS4kSFlLvpaSklLqWxa5duzzWHajNhg0bxqZNm4rdNmvWLGbNmlXDEVVdcnIyc+bM4cSJE7Ru3Zpp06bx6KOPeq39KVOmVKj+/PnzvdLvtGnTvNKOiIiI1B7GmBbAL4DhwE+AaOAEsBl4zlr7eTH7RABPAT/Pq38E+Bsw21qbXkx9P+B/gUlAOyAd+Bh4zFq7t3B9EREREZH6RAkLqfdiYmLYvn17qdvrildeeYWMjIxit0VGRtZwNN7xwgsv8MILL/g6DBEREZHyeACYAewBPgJSgfbASGCkMeZ/rLV/za9sjAkHNgDX5dV/C4gDpgMDjDHXW2szC/WxDPgV8A2wBIgB7gQGG2N6WWuTq+3oRERERER8TAkLqfcCAgJo166dr8PwihYtWvg6BBEREZFL2RdAvLV2Q8FCY0x/YB3wkjHmHWttVt6mR3AlK35vrZ1ZoP7vcCU+HgKeLVA+EFeyYiNwk7U2O6/8/wHvA38AhlTPoYmIiIiI+J5W+hURERERESkHa+3qwsmKvPJNwHqgMdAJwBhjcCUf0oFnCu3yTF75rwqV/zrv+bf5yYq89v8JOHCNsqgbc5mKiIiIiFSCEhYiIiIiIiJVdyHvOSfvuT2u6Zw2W2vPFayY934zcKUxplWBTfFA/rbCPsx7HuCtgEVEREREahtNCSUiIiIiIlIFeaMebsS1oPaOvOL2ec8lrTmRjGt6p/bAwbz1LpoDO621uSXUL9hueWNrWUaV6PwXGRkZJa6XJiIi9Yv+3ks+XQtSUEWuh+q6dpSwEBERERERqSRjTCDwBhAMzCiQbLgs7/l0CbueKVSvovXL62B5K27cuJEmTZpUsHkRkcL0UVNd8NFHH9VQT7oearuauxZA10PtV5Hr4fjx49USg6aEEhERERERqQRjjB+QBFwP/Nla+4ZvIxIRERERqduU1pJaKT4+nuuuu45Fixb5OpQ655133mH69Ons27ePBx54gOuuu44pU6Zw6tSpau87NjaWKVOmMGXKlGrvqzzS0tK46qqr+OKLL4iNja2xfrOzs+nQoQOrVq3ipz/9aY31KyIiIjUnL1mxHPgf4E3gnkJV8kdKlDQiIqJQvYrWL69WZWyPBrYCXH/99bRsWdYMUiIiZdjyia8jkHIYPHhwzXSk66HWq7FrAXQ91AEVuR4OHTpULTEoYSG10urVqwkMDKyx/jZu3Mj8+fPZtm0bR44cYc2aNYwcOdKjzvjx43nttdc8yoYMGcIHH3zgfm+MAWDLli306tXLXZ6VlUVMTAwnTpxg/fr1XH/99dx0001ce+21vPrqq+56L7/8Mvfeey+JiYmMHz/eo+89e/awadOmMo9l8uTJTJgwgd/85jc0bNiQt99+uyI/inJJSkoqNgmydetWwsPDvd5fZc2dO5dbb73Vnaz46quv+N3vfse///1vjh8/TmxsLPfccw8PPvhghdqdPXs2Tz/9tEdZx44d+e677wAICgpi+vTpzJgxg3Xr1nnlWERERKT2yEtWJAJjgbeA8dZaZ6FqZa054bHGhbX2nDHmCNDGGONfzDoWZa2JUSxrbal3kvn/fwUIDQ0lNDS0Is2LiEgdpb/3kk/XghRUkeuhuq4dJSykVoqMjKzR/s6dO0eXLl2YOHEit99+e4n1hg4dSmJiovt9cHBwkTqtWrUiMTHRI2GxZs0aGjRowIkTJ9xl/fr1Y+3atR77rl+/nlatWuFwODwSFg6Hg3HjxpV5HOnp6Rw7dowhQ4YQExNTZn1va9q0aY33WZLz58/z6quv8uGHH7rLtm3bRrNmzXjzzTdp1aoVn376KZMmTcLf35/777+/Qu1fc801fPzxx+73AQGef05Hjx7NtGnT+Oabb7jmmmuqdjAiIiJSaxRKVvwVuLuURbL/C/Q1xoRba88VaCMc6Avss9YWXGNiA/DLvG0bC7U3JO+5cLlIrRA7c23ZlcSn9v9uhK9DEBERKZPWsJBaKT4+3mNaoaysLKZPn06LFi0IDw+nZ8+eOBwO9/a0tDRGjRpFixYtCAsLo1OnTrz11lvl7m/YsGHMmTOH2267rdR6wcHBREdHux+NGzcuUmfcuHGsWLGCjIwMd9ny5cuLJBz69+9PcnIyR48edZdt2LCBmTNnehzbvn37OHDgAAMHDiw1NofDQcOGDQEYNGgQxhiPdgp66aWXaNu2LUFBQXTs2JE33vCcbnnhwoV06tSJ8PBwWrVqxX333Ud6erq7nwkTJnD69GmMMRhjeOqppwDXlFAFp/EyxvDKK69w2223ERYWRvv27Xn33Xc9+nr33Xdp3749ISEhDBw4kNdeew1jTJWnsHr//fcJDg72SBxNnDiRxYsXM2DAAK688krGjBnDhAkTWL16dYXbDwgI8LgWCi9Q2bhxY/r27cuKFSuqdBwiIiJSexSYBmos8DdgTAnJCqy1FngFaAD8ttDm3+aV/7lQ+Z/ynp8xxgQV6HcYEA98ZK09UMXDEBERERGptZSwkDrh/vvvZ8uWLaxYsYKvv/6aX/ziFwwdOpTkZNeI+MzMTLp168batWvZuXMnkyZN4u677+aLL77wahwOh4NmzZrRsWNH7r33XtLS0orU6datG7Gxse6pmFJSUti4cSN33323R72ePXsSGBjI+vXrAdi1axcZGRkkJCSQlpbGvn37ANeoi5CQEHr37l1qbH369GH37t0AvP322xw5coQ+ffoUqbdmzRoefPBBpk2bxs6dO91TSOXHAeDn58eSJUv45ptveO211/jkk0945JFH3P0sWrSIiIgIjhw5wpEjR5g+fXqJcc2ePZs777yTr7/+muHDhzN69Gj3SJN9+/Zxxx13MHLkSL766ismT57MY489VupxltemTZvo1q1bmfVOnz5dqRE9ycnJxMTEcOWVVzJ69GhSUlKK1OnRo0e5pvESERGROuMJYByQDnwPPG6MearQ47oC9Z8DvgJmGGM+NMY8a4z5EJiBa92IRQUbt9aux5XkuB74jzHm98aY14F3gBPAA9V6dCIiIiIiPqYpoS5haYlJnEhKKrNeyNVX0+qlpR5lB++9j8xdu8rcN3L8eKImjK9khC4pKSkkJiaSkpLinuZo+vTpfPDBByQmJjJv3jxatGjh8aH5Aw88wIcffsjKlSvp0aNHlfrPN3ToUG6//XbatGnDnj17mDVrFsOGDWPLli34+/t71J04cSLLly9nzJgxJCUlMXz48CLTJYWHh9O1a1c2bNjA6NGjcTgc9OvXj+DgYPr06YPD4aBNmzY4HA569+5d7PRTBQUFBdGsWTPANaVWdHR0sfWef/55xo8fz3333QfA1KlT+eyzz3j++efdozgKjm6JjY1lzpw53HPPPSxdupSgoCAuu+wyjDEl9lHQ+PHjGTVqFADz5s1jyZIlfPHFFwwdOpRly5bRsWNH5s+fD7jWgdi5cydz584ts92yHDhwoMxpsT799FP++te/Fpmaqyw9evQgKSmJjh07cuTIEWbPnk3//v3ZuXOne5QLQExMDAcO6EuQIiIi1cEYczlwA9AVuBxoDJwEfgS2AZ9Ya3/0crexec8NgJK+ZbEf2A7udSkGAE8BPwcGAkeABcBsa21GMftPBnYAk4AHcSVH1gCPWWv3eOEYRERERERqLSUsLmHO9HRyfiz7Hi63mA+lc0+cKNe+zrxphKpix44d5Obm0qFDB4/yrKwsoqKiXPHk5jJv3jxWrlzJ4cOHyc7OJisri7CwsCr3n++Xv/yl+3WnTp3o3Lkzbdu2xeFwcMMNN3jUHTNmDDNnzmTv3r0kJSWxZMmSYtvs168f7733HuAavREfHw/AgAED3FMvORwOfv3rX3vtOL799lsmTZrkUda3b18WL17sfv/xxx/z7LPP8t1333HmzBlycnLIzMzk/PnzFf6Zdu7c2f06PDyciIgIjh07BsDu3bvp3r27R/2yEkz33HMPb775pvt9egnXWEZGBiEhISW2s3PnTm699VaefPJJBg8eXOZxFDRs2DD8/FwD1Dp37kzPnj254oorWLlyJQkJCe56oaGhnD9/vkJti4iISMmMMYHAXcD/Avn/aTDFVLV59T8H/gistNZeqGr/1trxwPgK7nMaeCjvUZ76TmBJ3kNERERE5JKihMUlzK9BAwIuv7zMev7FTJfjHxlZrn39GjSoVGwFpaen4+/vz7Zt24qMZGiQ1/78+fNZvHgxixYtcq+9MGXKFLKzs6vcf0muvPJKmjRpwg8//FAkYREVFcXNN99MQkICmZmZDBs2jLNnzxZpo3///ixYsIDDhw/jcDjco0QGDBjAsmXL2LNnDwcPHmTQoEHVdhyF7d+/n5tvvpl7772XuXPnEhkZyb///W8SEhLIzs6ucMIiMDDQ470xBqfTWen4nn766VKnoMrXpEkTTp48Wey2Xbt2ccMNNzBp0iQef/zxSseSr1GjRnTo0IEffvjBo/zEiRO1aiFyERGRuswYczfwLNAcV5IiFdgCfAOkAWeAy4Ao4FqgN9AL6An8zhjzqLX2zWKaFhERERGRWkIJi0tY1ITKT9dUeIqo6hQXF0dubi7Hjh2jf//+xdbZvHkzt956K2PGjAHA6XTy/fffc/XVV1dbXIcOHSItLY3mzZsXu33ixIkMHz6cGTNmFEm05OvRowdBQUEsXbrUvQ4HQPfu3UlNTWX58uWEh4d7bVorgKuuuorNmzd7LAK+efNm989q27ZtOJ1OFixY4B5FsHLlSo82goKCyM0tdn3JCunYsSPvv/++R9nWrVtL3adZs2buqa9KExcX5zESI98333zDoEGDGDdunFemngJXUm3Pnj1F1inZuXMncXFxXulDRETkUmaM2YJrRMVxXCMPkqy1X5Vjv+uACcAo4DVjzH3W2qKLfImIiIiISK2gRbel1uvQoQOjR49m7NixrF69mn379vHFF1/w7LPPutceaN++Pf/617/49NNP+fbbb5k8eTI/lmPKqnzp6els376d7du3A67FoLdv3+5eSDk9PZ2HH36Yzz77jP3797Nu3TpuvfVW2rVrx5AhQ4ptc+jQoaSmpvL000+X2G9oaCi9evXixRdfpG/fvu7ERlBQkEd54VEKVfHwww+TlJTESy+9RHJyMgsXLmT16tXuUQvt2rXjwoULvPjii+zdu5c33niDl19+2aON2NhY0tPTWbduHcePH6/0tEeTJ0/mu+++Y8aMGXz//fesXLmSpLx1VYwpbnaH8hsyZAjffPONxyiLnTt3MnDgQAYPHszUqVM5evQoR48eJTU1tUJtP/zww2zYsIH9+/fz6aefctttt+Hv7+9eqyPfpk2bKjzdlIiIiBSrPfAI0Npa+1B5khUA1trt1toHgVbATKBDGbuIiIiIiIgPKWEhdUJiYiJjx45l2rRpdOzYkZEjR7J161Zat24NwOOPP07Xrl0ZMmQI8fHxREdHM3LkyHK3/+WXXxIXF+f+NvzUqVOJi4vjiSeeAMDf35+vv/6an/3sZ3To0IGEhAS6devGpk2bSlwM2xhDkyZNCAoKKrXv+Ph4zp49616/It+AAQM4e/aseyFsbxk5ciSLFy/m+eef55prrmHZsmUkJia6++/SpQsLFy7k97//Pddeey1/+ctfePbZZz3a6NOnD/fccw933XUXTZs25bnnnqtULG3atGHVqlWsXr2azp0789JLL/HYY671K8taZLwsnTp1omvXrh6jQ1atWkVqaipvvvkmzZs3dz8KrqOxf/9+jDE4HI4S2z506BCjRo2iY8eO3HnnnURFRfHZZ595TP+0ZcsWTp8+zR133FGl4xAREREArrTWLrDWZlVmZ2ttlrV2PnCll+MSEREREREvMtZaX8fgdcaYMUB/oBvQCQgCJlhrk4qp+xTwZCnNtbHW7q9A3x2AOcAgIBz4HngZeNlWww/bGNMSOAjw/fff0759e4/tycnJ5OTkEBAQUGSb+I7T6eTMmTMAREREuKdeEpg7dy4vv/wyBw8erHJba9eu5eGHH2bnzp3l/hmvX7+e22+/nb1799K4cWN3eUXP2V133UWXLl2YNWtWiXX0+1n9MjIy+OijjwAYPHgwoaGhPo5IykPnre7ROaubkpOT6dDBPeCglbX2kC/jEd8oeD9x8OBBWrZs6eOIpK6KnbnW1yFIGfb/bkSN9KNroW7Q9SD5aupaAF0PdUFFrodDhw7RqlWr/Ldeu5+or2tYzAGuwDXH7ZG812V5DdhfTPmp8nZqjLka+BQIBVYC/wVGAEuBq4EHytuWyKVi6dKldO/enaioKDZv3sz8+fO5//77vdL2iBEjSE5O5vDhwwX/gJbq/fffZ9asWR7JiorKzs6mU6dOPPTQQ5VuY+GXCzmdfbrMerdceQs/jf6p+33q+VT+sP0P5erjoa4P0Sikkfv9p//9lA/3f1jmflEhUfym6288yt7Y9QY/nPqhhD0u6tW8F8PaDPMoe/LTJylPPnfM1WPo0PjiTB4/nPyB13e9Xuo+Obk5HD5/mJGhIz3KP9j/AVv+u6XMPq+87ErGXTPOo+yP2//IsfPHytx38BWD6duir/v96azTLNy2sMz9AO7tci/R4dHu9//58T/8fc/fy9yvYWBDpnf3XJR+5e6VfJP2TZn7Xtf0Om5rf5tH2bzP55GVW/aXme9ofwedmnZyvz949iCv7HilzP0AZvaYSWjAxQ+3HQcd/Gvfvzh8/jAAX2z9goCAov9dadGgBZM6T/Ioe2XHKxw8W3ay8/qW13ND6xvc77Nys5j3+bxyxZtwbQKtI1q733+T9g0rd68sZQ+XQL9AHu/1uEfZ33/4O/859p8y970q8ip++ZNfepTVtr8ROTmu37UGpgHdMrvRMlQfeIqIiIiIiEjF1deExa+AZGvtAWPMTODZsnbAtXCfo4r9vgRcBgy31v4TwBjzW+Bj4H5jzP+z1pb9CZl4VUpKSqmLb+/atcs9tVRtN2zYMDZt2lTstlmzZpX6bf7aKjk5mTlz5nDixAlat27NtGnTePTRR73W/pQpUypUf/78+VXuMygoiMcff7zsioC1FkvRD+v/uf+fHD13tMz9OzXp5PFh5Nnss6xOXl2uvu/pfA+NaOR+v+fUnnLt2+ayNkUSFpv/u5nNhzeXuW9YQFiRhMWa5DXF/gwKu+mKmzwSFscyjrHmhzVl7gcUSVjsTN1ZrmPt1bxXkYTFxwc+Lldypk1EG4+ERWZOZrnPzeirRnskLA6cOVCufZuFNiuSsPji6BflSkQ5rbNIwuIfe/7B2Qtny9y3d/PeHgmLk5kny32s0346jVAuJiy+PfEt7+571/1+275txe7XqUmnIgmLDQc3sD11e5l9Ng1t6pGwyHXmljveke1GeiQs/pv+33LtGxoQWiRh8X/H/q9c+97Y+sYiCYva/Dci6psoZvebXa4+RLzBGOMPRAEhJdWx1qbUXEQiIiIiIlJZ9TJhYa39uKb7zJsK6npgfX6yIi+W7LykhQP4NaCERQ2LiYlxL6Zd0va64pVXXiEjI6PYbZGRkTUcjXe88MILvPDCC74Ow2fSL6TzQ9oPbMzcyC86/ILLgi/zdUgiIlVyKF2zCknNMMb0wTW16/W4poAtiaWe3veIiIiIiNQ39XINi4IKjLAoaw2LJ4EswAkkAx9ba9Mr0M8kYBnwqLX2d4W2+QOngR+ttW0rGH9ZcypEA1sBduzYQdu2ns2npKSQm5tLYGBgkW3iO06nk/R01+XVoEEDrWFRB1THOfvhhx/475n/cuDsAT767l3m9Z5H42DXVFRHzx8l1+aW2Uaj4EaEB4S7319wXuBYRtnTFQFcHno5AX4XP79Jv5BerilmAkwAl4dd7lGWlplGZm5mmfs2CGhQJClz+NxhDKbMfSODGxNSYOqgzJxM0rLSSt0n50IOu3fvppFfI67rch1BQa7Ps05nnSY9p+w/8cH+wTQJaeJRduz8MS7YC2Xue1nQZTQIbOB+n2tzOXq+7G/EAzQLbUqg38XP3s7lnONU1qky9/M3/kSHRXuUncg6QUZO8YnOgsICwtzXX74j54/gtM4y940MjvSY1ik7N5vUzNQy9wNoHhaNn/F3vz+TfYaT50+ye/duADp27EhAYNHPGYP8gmga2tSjLDUjlWxndpl9NgxsSERQhPu90+ZypJznpmloU4L8L56bjJwMTmSeKHM/P+NH87DmHmUns05yPud8mfuG+ocSGeKZlK5tfyOyL2Tz0TcfEhLcgO79+tAluku5+hDf2rNnD506uUdH1ak1LIwxg4B/AoF5RSeAEoeEWWvb1ERcdZHWsBBv0bzktZ/WLJCCdD1IPq1hIQVpDYvapfDcBaeMMQ9aa0ufIP2i/BVzkwtvsNbmGmP2AVcbYwKstTkViKvcKw9//vnn7Nmzx6MsKiqK0NBQjDHuBYOldsn/EFzqDm+ds+ycbHBarj3flhsOTIEDxziD64PEsHK2kUs6hX+zG5Zz3/MUPY7y7num0PI+gVz8xKh06ZzB84Ph8vaZzVkKfxRdnn175S1jlLlrH/kpFVPuftM5g2dSJIRS5hwpwFmFc5NBOoVTDOU/N54fKAeUe9909/WXL7yEmoVdIJ3CKZzyxptO0em1GnPxvPFdyYmwM3gmCoLzHuXp9QxHPErKG28m6RSOqPznxvOK8C/3vumcwTMBVBv/RoxiIAAp507xUfOPytmL+NLx48d9HUJVzMH1T88iYI61tuzMoYiIiIiI1Hr6Wjd8BUwErsS1WHYbXItjWyDJGPOzcraT/5Xhkr6efAbXz7u8nxOISD2Xa3O5LLchQba0WSxEROqWy06WL30pUkXXAduttVOVrBARERERqT8u+REW1trCK7buB/5gjPkW+Beub2+9W3i/GtSqjO3uKaF69uxZ4pRQAQEBREREFLe/+ICmhKp7vH3OsnOzCbIB5Fgn4MSvURBB19TNdUjKZKEcMz5Vi9ycHA4edA1Ua9WqFf4Bl/w/e3VCrTlvFZ0100fXeW2QeyGHC1+4vq3fuGEjBg/u4+OIpDwKj8ytY9KB73wdhIiIiIiIeJc+uSmBtXadMWYP0MkYE2GtLWs+pfyRFSWtmBuB66OPEufWLSGOUuf+MubipyPBwcGEhoZ6bPfz88PpdLpfS+3j5+enc1PHVPWcWWu5cDIDP+tqw+lnaZrQicCm5Z3kRcorIyODwx99D8A1g2OL/I2U2knnre45f/48x79IxQ/D+cx0YnTO6oTg4PJNolZLfQZ08HUQIiIiIiLiXfqUtHT5E/uW51PE/LUr2hfekLfodhtgXwXXrxCReij3bDbB2RfzxQExYUpWiEidZowhy8+1ykzq2fIt6i1SRXNxfbHof3wdiIiIiIiIeI8SFiUwxoQD1wDnuJi4KM2GvOfBxWzrh2vt0g3FbJNixMfHM2XKFF+HUSe98847tGvXDn9/f6ZMmUJSUhKNGjWqkb5jY2NZtGhRjfRVHmlpaTRr1oz9+/fXeN+9evXi7bffLlKee+4CzjMXl47OCMomKLw8SziLiNRu2X6updeDnIHkOnN9HI3Ud9baz4G7gCXGmLeMMWONMfHGmOuLe/g6XhERERERKZ9LOmFhjGlojCkylNwYEwr8GdcC2SsLj4owxvzEGPOTgmXW2t3ARmCgMWZYgbpBwDN5b1/x8iHUW6tXr+aZZ54pu6KXbNy4kVtuuYWYmBiMMbzzzjtF6owfPx5jjMdj6NChHnXyyz/77DOP8qysLKKiojDG4HA4ALjpppt46KGHPOq9/PLLGGNISkoq0nf//v3LdSyTJ0/mjjvu4ODBg9X2MywpCbJ161YmTZpULX1Wxty5c7n11luJjY0tsi0tLY2WLVtijOHUqVMVarc818vjjz/OzJkz3VOyATgzc8g9mel+f8HkEBRSp6fjEBFxu2Bc/10KdgaRlZvl42jkEuEPnAfuBBKBdcD6Yh6f+CpAERERERGpmHqZsDDG/MoYk2SMSQJ+kVfsLjPG/CqvLAr4zhjzeV7574wxicD3wChgB/BwMV18m/co7D5ca1m8Y4x53Rjze+A/QH/gD9baT712kPVcZGQkDRs2rLH+zp07R5cuXfjjH/9Yar2hQ4dy5MgR9+Ott94qUqdVq1YkJiZ6lK1Zs4YGDRp4lPXr14/Nmzd7lK1fv55WrVq5kxr5HA4HgwYNKvM40tPTOXbsGEOGDCEmJqZGf4YATZs2JSysdkxtdP78eV599VUSEhKK3Z6QkEDnzp0r1XZ5rpdhw4Zx9uxZ/vnPfwLgvJBLzomLyYrTAenk+jkJ9lfCQkTqhwt++QmLQDJzM8uoLVI1xpifAX8FWgIncf2fe2MJj00+ClNERERERCqoXiYscE3BNC7v0TWvrG+Bsn55ZSeApYABhgPTgJ8D/wUeAXpaa9PK26m19hugJ/AuMAJ4EHAC/wv8pkpHdIkpPCVUVlYW06dPp0WLFoSHh9OzZ0+PD/XT0tIYNWoULVq0ICwsjE6dOhWbTCjJsGHDmDNnDrfddlup9YKDg4mOjnY/GjduXKTOuHHjWLFiBRkZGe6y5cuXM27cOI96/fv3Jzk5maNHj7rLNmzYwMyZMz2Obd++fRw4cICBAweWGpvD4XAnKAYNGuQxmqOwl156ibZt2xIUFETHjh154403PLYvXLiQTp06ER4eTqtWrbjvvvtIT0939zNhwgROnz7tHlHy1FNPAUWnhDLG8Morr3DbbbcRFhZG+/bteffddz36evfdd2nfvj0hISEMHDiQ1157rVKjHgp7//33CQ4OplevXsUe/6lTp5g+fXql2i7P9eLv78/w4cNZsWIFNtdJzvFMcFoATEgAkc2aERKgqaBEpP644OeaBirYBpFxIaOM2iJV9jiu/8P/BrjcWtvdWjuwpIePYxURERERkXKqlwkLa+14a60p5TE+r94Za+391toe1tpm1tpAa22EtbantXa+tbbYu+38dkrYttta+wtrbZS1NsRa29lau9Raa6vxkOu9+++/ny1btrBixQq+/vprfvGLXzB06FCSk11rnWdmZtKtWzfWrl3Lzp07mTRpEnfffTdffPGFV+NwOBw0a9aMjh07cu+995KWVjSf1a1bN2JjY93rF6SkpLBx40buvvtuj3o9e/YkMDCQ9evXA7Br1y4yMjJISEggLS2Nffv2Aa5RFyEhIfTu3bvU2Pr06cPu3bsBePvttzly5Ah9+vQpUm/NmjU8+OCDTJs2jZ07dzJ58mQmTJjgjgPAz8+PJUuW8M033/Daa6/xySef8Mgjj7j7WbRoEREREe6RJqV98D979mzuvPNOvv76a4YPH87o0aM5ceIE4ErG3HHHHYwcOZKvvvqKyZMn89hjj5V6nOW1adMmunXrVqR8165dPP3007z++uv4+VXvn8AePXqwadMmco5nQK5raigT6E9AZAj+fv74mXr5J1hELlE5eQkLP/zIytIIC6l2VwNbrLV/sNZq0RQRERERkXoiwNcBiO9s/ziF7R8fLLNe09YNGXGf59Q5a5d+TWrK2TL3ve7GVlx3Y+tKxwiuD/wTExNJSUkhJiYGgOnTp/PBBx+QmJjIvHnzaNGihceH5g888AAffvghK1eupEePHlXqP9/QoUO5/fbbadOmDXv27GHWrFkMGzaMLVu24O/v71F34sSJLF++nDFjxpCUlMTw4cNp2rSpR53w8HC6du3Khg0bGD16NA6Hg379+hEcHEyfPn1wOBy0adMGh8NB7969CQ4ufeqgoKAgmjVrBrim1IqOji623vPPP8/48eO57777AJg6dSqfffYZzz//vHsUR8HRLbGxscyZM4d77rmHpUuXEhQUxGWXXYYxpsQ+Cho/fjyjRo0CYN68eSxZsoQvvviCoUOHsmzZMjp27Mj8+fMB6NixIzt37mTu3LlltluWAwcOuK+XfFlZWYwaNYr58+fTunVr9u7dW+V+StO8eXMOHjxIblaOKzni70dAkxCMX7H5ThGROi3H7+KaPZmZ530YiVwizgEHfB2EiIiIiIh4lxIWl7DsjBzOnSp7UcwGjYt+UJ5xNrtc+2Zn5JRZpyw7duwgNzeXDh0810fPX8gaIDc3l3nz5rFy5UoOHz5MdnY2WVlZXl1P4Ze//KX7dadOnejcuTNt27bF4XBwww03eNQdM2YMM2fOZO/evSQlJbFkyZJi2+zXrx/vvfce4Bq9ER8fD8CAAQPcUy85HA5+/etfe+04vv322yILY/ft25fFixe733/88cc8++yzfPfdd5w5c4acnBwyMzM5f/58hX+mBdeJCA8PJyIigmPHjgGwe/duunfv7lG/rATTPffcw5tvvul+nz9VVWEZGRmEhHhOufToo49y1VVXMWbMmAodQ2VYawnODcDpdJKVlUVoeBiZETn4G4t/2buLiNQ5uQUSFlmZGmEh1c4BxPk6CBERERER8S4lLC5hQaEBhDcqe8Hf0IZBxZaVZ9+g0KpfYunp6fj7+7Nt27YiIxnyF7KeP38+ixcvZtGiRe61F6ZMmUJ2dnaV+y/JlVdeSZMmTfjhhx+KJCyioqK4+eabSUhIIDMz070Ac2H9+/dnwYIFHD58GIfD4R4lMmDAAJYtW8aePXs4ePBguRbc9pb9+/dz8803c++99zJ37lwiIyP597//TUJCAtnZ2RVOWAQGBnq8N8bgdDpLqF22p59+ulxrTzRp0oSTJ096lH3yySfs2LGDVatWAa6kQn7dxx57jNmzZ1c6rsKc6RdIO5pKeFg4oWGhOBv5cfD8AUymoWloU5qGNS27ERGROqRgwiI7s+wvNYhU0W+BbcaYmdba3/k6GBERERER8Q4lLC5h193YutLTNRWeIqo6xcXFkZuby7Fjx+jfv3+xdTZv3sytt97q/ua80+nk+++/5+qrr662uA4dOkRaWhrNmzcvdvvEiRMZPnw4M2bMKJJoydejRw+CgoJYunSpex0OgO7du5Oamsry5csJDw/32rRWAFdddRWbN2/2WAR88+bN7p/Vtm3bcDqdLFiwwL3Gw8qVKz3aCAoKIje36tNFd+zYkffff9+jbOvWraXu06xZM/fUV6WJi4vzGIkBrrU9Ci6GvnXrViZOnMimTZto27ZtBSIvnc11knsmi2927+K6azrj3ziE485U1zZr8ffTGAsRqX9y/S8u15VTjV8YEMnTC1gOzDXG/Az4AEgBiv1WhLX29RqMTUREREREKkkJC6n1OnTowOjRoxk7diwLFiwgLi6O1NRU1q1bR+fOnRkxYgTt27dn1apVfPrppzRu3JiFCxfy448/ljthkZ6ezg8//OB+v2/fPrZv305kZCStW7cmPT2d2bNn8/Of/5zo6Gj27NnDI488Qrt27RgyZEixbQ4dOpTU1FQiIiJK7Dc0NJRevXrx4osv0rdvX3diIygoyKO88CiFqnj44Ye58847iYuL48Ybb+S9995j9erVfPzxxwC0a9eOCxcu8OKLL3LLLbewefNmXn75ZY82YmNjSU9PZ926dXTp0oWwsLBKTb81efJkFi5cyIwZM0hISGD79u0kJSUBrpEYVTFkyBAeffRRTp48SePGjQGKJCWOHz8OuJI4jRo1Knfb6enpHutfFL5enJm5YGHzF1u46cabIMSP0ydPA+Bn/Lgs6LIqHZuISG3ULPBy9+ufRv3Uh5HIJSIJsIDBlbzoWUZ9JSxEREREROoAP18HIFIeiYmJjB07lmnTptGxY0dGjhzJ1q1bad3aNULk8ccfp2vXrgwZMoT4+Hiio6MZOXJkudv/8ssviYuLIy7ONRXy1KlTiYuL44knngDA39+fr7/+mp/97Gd06NCBhIQEunXrxqZNm0pcDNsYQ5MmTQgKKjqlVkHx8fGcPXvWvX5FvgEDBnD27Fn3QtjeMnLkSBYvXszzzz/PNddcw7Jly0hMTHT336VLFxYuXMjvf/97rr32Wv7yl7/w7LPPerTRp08f7rnnHu666y6aNm3Kc889V6lY2rRpw6pVq1i9ejWdO3fmpZde4rHHHgMoc5HxsnTq1ImuXbsWGR1Slv3792OMweFwlFinrOvFmZHD4SP/Zcu2z5mQMJHTWadxWtcXPi8LvkwjLESkfvK7mGi22VUfhSdShtfzHq/lPV4v4yEiIiIiInWAyZ/DXeomY0xL4CDA999/T/v27T22Jycnk5OTQ0BAQJFt4jtOp5MzZ84AEBER4Z56SWDu3Lm8/PLLHDx4sMptrV27locffpidO3eW+2e8fv16br/9dvbu3esemQHlP2fWablw5Byz5v6Wk2dO8coby9lzeg9ZOa753Ns2aktIgGsxcP1+Vr+MjAw++ugjAAYPHkxoaKiPI5Ly0HmrezIyMvg6cSMtUlyj7aLuvprQa6J8HJWUJTk5mQ4dOuS/bWWtPeTLeMQ3Ct5PHDx4kJYtW/o4IqmrYmeu9XUIUob9vxtRI/3oWqgbdD1Ivpq6FkDXQ11Qkevh0KFDtGrVKv+t1+4nNCWUiPjU0qVL6d69O1FRUWzevJn58+dz//33e6XtESNGkJyczOHDhwv+AS3V+++/z6xZszySFRVhs3LBWppGNeWhB6eQkZPhTlaEBoa6kxUiIvWN0+/il2DsBY2wEBERERERkYpTwkLqvZSUlFLXsti1a5d7aqnabtiwYWzatKnYbbNmzWLWrFk1HFHVJScnM2fOHE6cOEHr1q2ZNm0ajz76qNfanzJlSoXqz58/v0r9OTNyAHho8gMERIVyJPNH97bI4MgqtS0iUpud5RwQDsCuo9/wU5r5NiARERERERGpc5SwkHovJiaG7du3l7q9rnjllVfIyMgodltkZN38MPyFF17ghRde8HUYXmGtxZnpSlhgDM4gOH3etdi2v/EnIrjkBdhFROq6dL9z7teHTx5Cy26LNxljbrPWrvFCO7dba1d7IyYREREREfE+JSyk3gsICKBdu3a+DsMrWrRo4esQpBQ2OxecrilR/EL8OZV9ivx1ghqFNMLPaK0SEam/TIG1fewFpw8jkXrqbWPM58BT1toPK7KjMcYAw4EngJ8C/tUQn4iIiIiIeIESFiIiXuLMuDhnuwkJoFFwIwBOZp6kcXDl1sQQEakrCiYsUMJCvO8h4EngfWPMYeB1YB3whbX2XOHKxphwoCdwEzAGiAFO57UjIiIiIiK1lBIWIiJe4DEdFK4RFsbPjyahTYgKicL15U4RkfrL+Bf40voFW3JFkUqw1i42xvwFeAoYB8wCHgWcxphDQBpwBogAooCWgB9ggHPAUmC2tfZ4zUcvIiIiIiLlpYSFiIgX2Bwn5Li+UWyC/TH+F79prGSFiFwKPP7u5ZRSUaSS8pIN9xtjHgMmAiNxjaK4Iu9RUDawGXgHSLTWnq65SEVEREREpLKUsBAR8QKbUXB0hf60isilx6/ACAs/JSykGuUlH14AXjDGhADXAJcDlwGngGPAN9baTJ8FKSIiIiIilaJP1UREvMCZeXH9ivMBWZw/d5KIoAhCAkI0wkJELgnGr2DCQn/3pGbkJSW2+ToOERERERHxDr+yq4iISGlsjhOb7UpYmEA/Tl44yfGM4+w9vZeMnAwfRyciUjOs/8UkhX+u/ospIiIiIiIiFae7SamV4uPjmTJliq/DqJPeeecd2rVrh7+/P1OmTCEpKYlGjRrVSN+xsbEsWrSoRvoqj7S0NJo1a8b+/furtZ+Ci20T4s+JcycY3HUw3371LaEBodXat4hIbeH0u7jQthIWIiIiIiIiUhm6m5RaafXq1TzzzDM11t/GjRu55ZZbiImJwRjDO++8U6TO+PHjMcZ4PIYOHepRJ7/8s88+8yjPysoiKioKYwwOhwOAm266iYceesij3ssvv4wxhqSkpCJ99+/fv1zHMnnyZO644w4OHjxYbT/DkpIgW7duZdKkSdXSZ2XMnTuXW2+9ldjY2CLb0tLSaNmyJcYYTp06VaF2Z8+e7XEdBDQMplN8NwAyA7IJDAxk/H3jWfTMIk0HJSKXDFvgf5WR/o18FoeIiIiIiIjUXUpYSK0UGRlJw4YNa6y/c+fO0aVLF/74xz+WWm/o0KEcOXLE/XjrrbeK1GnVqhWJiYkeZWvWrKFBgwYeZf369WPz5s0eZevXr6dVq1bupEY+h8PBoEGDyjyO9PR0jh07xpAhQ4iJianRnyFA06ZNCQsLq9E+S3L+/HleffVVEhISit2ekJBA586dK93+Nddcw5EjR/jv4f9y4D/JrF/9Efj7cdp5BoARd4xg65atfPPNN5XuQ0SkTjEXR1m0DG7h42BERERERESkLlLCQmqlwlNCZWVlMX36dFq0aEF4eDg9e/b0+FA/LS2NUaNG0aJFC8LCwujUqVOxyYSSDBs2jDlz5nDbbbeVWi84OJjo6Gj3o3HjxkXqjBs3jhUrVpCRcXHtguXLlzNu3DiPev379yc5OZmjR4+6yzZs2MDMmTM9jm3fvn0cOHCAgQMHlhqbw+FwJygGDRrkMZqjsJdeeom2bdsSFBREx44deeONNzy2L1y4kE6dOhEeHk6rVq247777SE9Pd/czYcIETp8+7R5h8NRTTwFFp4QyxvDKK69w2223ERYWRvv27Xn33Xc9+nr33Xdp3749ISEhDBw4kNdee61Sox4Ke//99wkODqZXr17FHv+pU6eYPn16pdsPCAggOjqaZo2aEN30cppERuEX6s/Z7LMANG7cmL59+7JixYpK9yEiUtfkJyzshVwfRyIiIiIiIiJ1UUB1Nm6MaQQMAW4AugKXA42Bk8CPwDbgE+BDa+2p6oxFivryH2vYtvadMus1a9OW2x55wqNszXNPc2zfnjL37TZiJD+9ufQkQHncf//97Nq1ixUrVhATE8OaNWsYOnQoO3bsoH379mRmZtKtWzdmzJhBREQEa9eu5e6776Zt27b06NGjyv3nczgcNGvWjMaNGzNo0CDmzJlDVFSUR51u3boRGxvL22+/zZgxY0hJSWHjxo388Y9/9JiiqWfPngQGBrJ+/XpGjx7Nrl27yMjIICEhgRkzZrBv3z7atGnD+vXrCQkJoXfv3qXG1qdPH3bv3k3Hjh15++236dOnD5GRkUXWb1izZg0PPvggixYt4sYbb+Qf//gHEyZMoGXLlu6kiJ+fH0uWLKFNmzbs3buX++67j0ceeYSlS5fSp08fFi1axBNPPMHu3bsBioweKWj27Nk899xzzJ8/nxdffJHRo0dz4MABIiMj2bdvH3fccQcPPvggv/rVr/i///u/KiURCtq0aRPdunUrUr5r1y6efvppPv/8c/bu3Vvp9pOTk4mJiSEkKJiecd15ZuZTNL+mFc4cJwANgxrSo0cPNm3aVOk+RETqmvyEhfOC08eRiIiIiIiISF1ULQkLY0wn4EFgFBACFJ7EPQxogSuJ8Ssg0xjz/4AXrbVfV0dMUlR2xnnST6SVWa9hVJMiZRlnTpdr3+yM85WKraCUlBQSExNJSUkhJiYGgOnTp/PBBx+QmJjIvHnzaNGihccH3Q888AAffvghK1eu9FrCYujQodx+++20adOGPXv2MGvWLIYNG8aWLVvw9/f3qDtx4kSWL1/OmDFjSEpKYvjw4TRt2tSjTnh4OF27dmXDhg2MHj0ah8NBv379CA4Opk+fPjgcDtq0aYPD4aB3794EBweXGl9QUBDNmjUDXFNqRUdHF1vv+eefZ/z48dx3330ATJ06lc8++4znn3/enbAoOLolNjaWOXPmcM8997B06VKCgoK47LLLMMaU2EdB48ePZ9SoUQDMmzePJUuW8MUXXzB06FCWLVtGx44dmT9/PgAdO3Zk586dzJ07t8x2y3LgwAH39ZIvKyuLUaNGMX/+fFq3bl3phEWPHj1ISkqiQ4cOHNy5j7kvPMsNPx/Kv774GIJcdSKCIoiJieHAgQNVPRQRkTrDmTd212YrYSEiIiIiIiIV59WEhTGmGfAsMA7XdFPHgbXAp8A3QBpwBrgMiAKuBfoA1wMJwARjTBIwy1p7zJuxSVFBoWE0iIwqs15oxGXFlpVn36DQqq9nsGPHDnJzc+nQoYNHef5C1gC5ubnMmzePlStXcvjwYbKzs8nKyvLqegq//OUv3a87depE586dadu2LQ6HgxtuuMGj7pgxY5g5cyZ79+4lKSmJJUuWFNtmv379eO+99wDX6I34+HgABgwY4J56yeFw8Otf/9prx/Htt98WWRi7b9++LF682P3+448/5tlnn+W7777jzJkz5OTkkJmZyfnz5yv8My24TkR4eDgREREcO+b69d69ezfdu3f3qF9Wgumee+7hzTffdL/Pn6qqsIyMDEJCQjzKHn30Ua666irGjBlToWMobNiwYfj5+eHMzOGqqCvpcV032ve+lpWrVnLb/9yGn/GjQVADQkNDOX++6kk7EZG64qQ5TXMiuZCVRVpGGlGhZf9fQaQyjDFPAGettS/4OhYREREREfEeb4+wSAYaAv8AXgXWWmtzSqn/EbDQGBMA3AJMzHv8HNfUUVKNfnrzbZWerqnwFFHVKT09HX9/f7Zt21ZkJEP+VETz589n8eLFLFq0yL32wpQpU8jOzq62uK688kqaNGnCDz/8UCRhERUVxc0330xCQgKZmZkMGzaMs2fPFmmjf//+LFiwgMOHD+NwONyjRAYMGMCyZcvYs2cPBw8eLNeC296yf/9+br75Zu69917mzp1LZGQk//73v0lISCA7O7vCCYvAwECP98YYnM7Kf/P26aefLte0UU2aNOHkyZMeZZ988gk7duxg1apVAFhr3XUfe+wxZs+eXaFYnBmuP2+NLmtEu3bt2L9nPwANghrgZ/w4ceJEkZE1IiL1WabJAiDA+pORdR6UsJDq8wSuew4lLERERERE6hFvJyy+AGZaa7dVZKe8pMYaYI0xpjswz8txSR0WFxdHbm4ux44do3///sXW2bx5M7feeqv7m/NOp5Pvv/+eq6++utriOnToEGlpaTRv3rzY7RMnTmT48OHMmDGjSKIlX48ePQgKCmLp0qXudTgAunfvTmpqKsuXLyc8PNyr63BcddVVbN682WMR8M2bN7t/Vtu2bcPpdLJgwQL8/Fxze6xcudKjjaCgIHJzq76gaseOHXn//fc9yrZu3VrqPs2aNXNPfVWauLg4j5EYAG+//bbHYuhbt25l4sSJbNq0ibZt21Ygcleyw5npSlikn09n3/593DXmLhoFN6JhkGvx8507dxIXF1ehdkVE6rIcv4v/NmRmZpRSU6TKjgG6yERERERE6hmvJiystTd5oY2tQJXbkfqjQ4cOjB49mrFjx7JgwQLi4uJITU1l3bp1dO7cmREjRtC+fXtWrVrFp59+SuPGjVm4cCE//vhjuRMW6enp/PDDD+73+/btY/v27URGRtK6dWvS09OZPXs2P//5z4mOjmbPnj088sgjtGvXjiFDhhTb5tChQ0lNTSUiIqLEfkNDQ+nVqxcvvvgiffv2dSc2goKCPMoLj1Koiocffpg777yTuLg4brzxRt577z1Wr17Nxx9/DEC7du24cOECL774IrfccgubN2/m5Zdf9mgjNjaW9PR01q1bR5cuXQgLC6vU9FuTJ09m4cKFzJgxg4SEBLZv305SUhLgGolRFUOGDOHRRx/l5MmTNG7sGrBVOClx/PhxwJXEadSoUbnbfvjhh7l52AhahDfjyI9HeWbRs/j7+zPh7gk0bXhxRMWmTZs8FloXEanvcv0ujqDLysr0YSRyCdgEeO8bHSIiIiIiUiv4+ToAkfJITExk7NixTJs2jY4dOzJy5Ei2bt1K69atAXj88cfp2rUrQ4YMIT4+nujoaEaOHFnu9r/88kvi4uLc34afOnUqcXFxPPGEa+orf39/vv76a372s5/RoUMHEhIS6NatG5s2bSpxMWxjDE2aNCEoKKjUvuPj4zl79qx7/Yp8AwYM4OzZs+6FsL1l5MiRLF68mOeff55rrrmGZcuWkZiY6O6/S5cuLFy4kN///vdce+21/OUvf+HZZ5/1aKNPnz7cc8893HXXXTRt2pTnnnuuUrG0adOGVatWsXr1ajp37sxLL73EY489BlDmIuNl6dSpE127di0yOqQs+/fvxxiDw+Eosc6hQ4cYffcYOsV3Y/S944hqEsVnn33mMf3Tli1bOH36NHfccUdlD0FEpM7xSFhohIVUr6eBGGPMHFPVbzmIiIiIiEitYfLncPdKY8ZMANZba/d7rVEplTGmJXAQ4Pvvv6d9+/Ye25OTk8nJySEgIKDINvEdp9PJmTNnAIiIiHBPvSQwd+5cXn75ZQ4ePFjlttauXcvDDz/Mzp07y/0zXr9+Pbfffjt79+51j8yAoucsNzUDe8H1wVxg83CMv2f7d911F126dGHWrFkl9qXfz+qXkZHBRx99BMDgwYMJDQ31cURSHjpvdU/+OQv8/jSd09oAcGgU9OpS/FSOUjskJyfToUOH/LetrLWHfBlPRRhjxgJ9gV8B3wPvAPspYZooa+3rNRVbXVPwfuLgwYO0bNnSxxFJXRU7c62vQ5Ay7P/diBrpR9dC3aDrQfLV1LUAuh7qgopcD4cOHaJVq1b5b712P+HtNSxeBawxJgVYn/+oSzc/IlKzli5dSvfu3YmKimLz5s3Mnz+f+++/3yttjxgxguTkZA4fPlzwD2ip3n//fWbNmuWRrCjM5jjdyQoT5M/RjB8JCwyjQWAD/P38yc7OplOnTjz00ENeOQ4Rkboi1+/iF2EuZGX5MBK5BCQBFjBAR+CRMuorYSEiIiIiUgd4O2GxC7gauAIYD4wDMMbsxTOBcdTL/YqUKCUlpdS1LHbt2uWeWqq2GzZsGJs2bSp226xZs0r9Nn9tlZyczJw5czhx4gStW7dm2rRpPProo15rf8qUKRWqP3/+/DLr2MyLi8o6g+FE5glOZJ4gPDCc2MtiCQoK4vHHH69oqCIidZ6zQMIiJ+uCDyORS8DruBIWIiIiIiJSj3h70e1rjTFNgHhgYN7zVUDbvEcCgDHmey4mMBzW2lRvxiFSUExMDNu3by91e13xyiuvkJFR/JzgkZGRNRyNd7zwwgu88MILvg6jQgomLNL9zrtfNwxq6ItwRERqDVtgdrwLWdm+C0TqPWvteF/HICIiIiIi3uftERZYa48Dq/IeGGOa4ZnA6FjgMTmvzi7gE2vtg96IwRgzBugPdAM6AUHABGttUqF6gcDP8h49gFa4vqm1C9cw8z9Za3MpJ2PMflyjS4qzwVobX4HDEC8JCAigXbt2vg7DK1q0aOHrEMQJNtv1Z8EE+HEq97R7kxIWInKps/4XX+dma4SFiIiIiIiIVIzXExaFWWuPASvzHhhjLudi8mIg0B64BtdUUl5JWABzcCUOjgNHKDmJ0BZXYiUdWAe8C1wG3AIsBYYbY35mK7Yy+WlgUTHl+yvQhojUUv65xv3ahhgyczIBCAkIIcg/yFdhiYjUCmH+DdyvOzSoH18WkLrBGNMOaAqkWWu/93U8IiIiIiJSOdWesCjMWvujMeZTXKMeQoAowNtz2fwKSLbWHjDGzASeLaHeWeB/gdestefyC40x0wAHcDNwB/C3CvR9ylr7VGWCFpHazz/nYsLivF+m+3VEUIQvwhERqVXCAsLdry8PutyHkcilwBjjDzwK3I8rWQHwGjAxb/toXP/X/7W19hufBCkiIiIiIhVSIwkLY0xLLo6qiAdi8zcBacA7wAZv9Wet/bic9Q7jGklRuPycMWYh8P+AAVQsYSEi9ZUtMMLCz3DSXpwOSgkLERFw+l8clGovlHtWTZEKy0tW/AMYDOQA3+IasV3QZuAN4HZACQsRERERkTqgWhIWxpgYPKd9apO/CTgGvI0rQbHBWruzOmLwgvyJl3MquF+wMWY8EAOcAbZaaz+vbBB5yZ7SROe/yMrKKrIgs9PpJH9GK6fTWdkwxMsKngudl7rB6XTin2twj68I9uP8BdeC20H+QQT6BVbqXFprcTqdJS6mLlWTmZlZ7Gup3XTe6p788+QssOh29vmi/y+R2iUrK8vXIVTFPcAQ4BNgrLX2v8YYj3+IrbX7jTF7cCU1nvFBjCIiIiIiUkFeTVgYY/6EK0nRFtyf6x0B/srFBMV33uyzGk3Me/6ogvtFA4kFC4wxW4FR1to9lYjjYHkrfv755+zZ49lFVFQUoaGhGGM4c+ZMJbqX6paenu7rEKScgnIufhJ32nnW/Vcu2AZX6vcrJyeHjIwMMjIy+O67uvKnse7auHGjr0OQStB5q1tyC3xe/O3uXaRl1tbvpQjA8ePHfR1CVYwDTgC/sNaeLKXet0CXmglJRERERESqyq/sKhXyK1zJiv8AvwY6WGtbWGv/x1q7rK4kK4wxk4BhwCfW2vcrsGsicANwORAOxOEaht4dWGeMaejtWOuzm2++mUcffdTXYYi4FJgOygJn/C4mmkJMiI+CEhGpXc75uZcEIyX7gA8jkUvAT4AvykhWAJwGmtVAPCIiIiIi4gXVMSWUAboCcwGHMSZ/ZMWuaujL64wxNwN/AA4AYyqyr7V2dqGi7cBYYwzA3biSOAsrGFKrMrZHA1sBevbsSdu2bT02pqSkkJubS0BAABERdWuO/XfeeYfAwEAaNqz+PM/GjRt5/vnn+c9//sORI0d4++23GTlypEedCRMm8Prrr3uUDR48mH/+85/u9/7+/gBs3ryZXr16ucuzsrJo2bIlJ06cYN26dVx//fX07t2ba6+9lj//+c/4+blyhy+//DL/+7//y6uvvsr48eM9+t67dy8bNnhtqRepoNzMHOw519QZJsSfmIgYzmafJSMng6gGUeT9nldIamoqoaGhNGjQgG7dunk7ZME1TU3+N/Svv/56QkKUXKoLdN7qnvxzZvz83WUNAsO4afBgH0YlZSk8MreO8QfKM6dV83LWExERERGRWsDbCYtWeC6ufWfewxpjjgMbAQfgsNbWuoXvjDHDgVXAj8Aga+0RLzW9DFfCoi8VTFhYaw+Vtr3gh6TBwcGEhoZ6bPfz83PPq5//oXhd0aRJkxrrKyMjg+uuu46EhARuv/12/Pz8ivy8jDEMHTqUxMSLM34FBwcXqdeqVStee+01+vTp4y77+9//ToMGDThx4oS77X79+rF27VqPvjZs2ECrVq3YuHEjEydOdO+/YcMGxo0bV+fOYX2Sm3lx8Vi/0ACCAoMIDQwtZY/yMcbg5+dX5HdXvC8kJEQ/5zpI561u8fO/+F9L/1z9bavtgoODfR1CVRwAOpdWwRgTCFwLJNdIRCIiIiIiUmVe/fTTWnvYWvumtfZX1tp2QGtgLJAEpAM/B14EvjbGHDPGrDLG3G+M6eTNOCrDGDMCWA0cBwZaa/d6sfn8CYLDvdhmvRcfH8+UKVMA1wiF6dOn06JFC8LDw+nZsycOh8NdNy0tjVGjRtGiRQvCwsLo1KkTb731Vrn7GjZsGHPmzOG2224rtV5wcDDR0dHuR+PGjYvUGTduHCtWrPBYaHT58uWMGzfOo17//v1JTk7m6NGj7rINGzYwc+ZMj2Pbt28fBw4cYODAgeU+HvEuay02L2FhARPsX/oOIiKXKON38YsU/jkVH3kmUgEfALF5U7mW5AGgKbDWmx0bY8YYY5YZY740xmQZY6wxZnwJdZ/K217SI7aE/YYYYzYYY84aY84YY9YbY27w5nGIiIiIiNRG1TEllFve6IA38x4YYwqOwBgA3A7clrctzVrrk/ll85IVb+NauG+gtfYHL3fRM+95v5fbrbQfX/w/nGeza7RPv4ZBXP5AXKX2vf/++9m1axcrVqwgJiaGNWvWMHToUHbs2EH79u3JzMykW7duzJgxg4iICNauXcvdd99N27Zt6dGjh9eOweFw0KxZMxo3bsygQYOYM2cOUVFRHnW6detGbGwsb7/9NmPGjCElJYWNGzfyxz/+kWeeecZdr2fPngQGBrJ+/XpGjx7Nrl27yMjIICEhgRkzZrBv3z7atGnD+vXrCQkJoXfv3l47DqkYm5ULTgtAboAl0E8fwomIFMfpXyBhkatRgVKt5gPjgaXGmKuBlXnl4caYrrhGeU/F9cWhP3i57znAFXltH8l7XZbXKP5e4FThAmPMGFzr4KXi+uIXwF3Av4wxd1prV1U4YhERERGROqJaExaFWWsPAq8DrxtjWuAafTENiASiStu3uhhjhuFKVpzElawodch43tDytsAFa+2eAuU/AVKstecL1f8J8Pu8t//Pm7FXhfNsNrlnajZhUVkpKSkkJiaSkpJCTEwMANOnT+eDDz4gMTGRefPm0aJFC6ZPn+7e54EHHuDDDz9k5cqVXktYDB06lNtvv502bdqwZ88eZs2axbBhw9iyZYt77Yp8EydOZPny5YwZM4akpCSGDx9O06ZNPeqEh4fTtWtXNmzYwOjRo3E4HPTr14/g4GD69OmDw+GgTZs2OBwOevfuXdenbajTnBk57teZ/tmkZxwnIjiCYP/gSq1dISJSXzn9rPu1EhZSnay1R4wxI3GNkP4NrtEUFrgj72FwJQN+bq09XkIzlfUrINlae8AYMxN4thz7JFlrHWVVMsY0xjUi/TjQNX96WGPM74H/A14yxnxorT1b6ehFRERERGqxGktYGGMuxzWyYmDeo13+prxnW8xule3rV0C/vLf50039yhgTn/f639baV/KSCWuAYFxra4wq5sPH/dbapALvWwDf4po3N7ZA+S+BqcaYjXnbzgEdgOFAIPCstXZjFQ/Na/waBtWZPnfs2EFubi4dOnTwKM/KynKPbsjNzWXevHmsXLmSw4cPk52dTVZWFmFhYVWOO98vf/lL9+tOnTrRuXNn2rZti8Ph4IYbPEfojxkzhpkzZ7J3716SkpJYsmRJsW3269eP9957D3CN3oiPjwdgwIABOBwOJkyYgMPh4Ne//rXXjkMqxlrrTlhY4LTfWc5nnCc1I5UrIq6gQVAD3wYoIlKb+EGOySXA+hOYq+nzpHpZazcaY64BHsL1f+4rcU15exD4JzDfWnu4Gvr92NttFvALoBHwZMG17Ky1h4wxfwCewjVC/fVqjEFERERExGeqLWFhjGmCZ4KiY/6mAtW+A9bnPRxe7L4fMK5QWd+8R75XgGhcyQpwJRyKs4GLQ7FLsx64CogD+gNhuL4Z9T6w1Fr7UXkCrymVnZrJF9LT0/H392fbtm1FRjI0aOD6sHj+/PksXryYRYsW0alTJ8LDw5kyZQrZ2dU3iuTKK6+kSZMm/PDDD0USFlFRUdx8880kJCSQmZnJsGHDOHu26Bfh+vfvz4IFCzh8+DAOh8M9SmTAgAEsW7aMPXv2cPDgQQYNGlRtxyGlKzwdVIZ1rU3iZ/wIC/ReQkxEpL644JdDQK4/gc4aHcgrlyhr7Y/AzLxHbXa9MaYn4MS1CPjH1tr0YurF5z0Xd+/wIa6ExQAqkLAwxrQso0p0/ouMjAyPddhEpH7R77cUpOtB8ulakIIqcj1U17Xj1TtJY8ztXExSXF1wU97zDxRIUFhrj1INrLXjcc1pW1Y9B54JlPK0vb+4fay1G3AlN8TL4uLiyM3N5dixY/Tv37/YOps3b+bWW29lzJgxADidTr7//nuuvvrqYut7w6FDh0hLS6N58+bFbp84cSLDhw9nxowZRRIt+Xr06EFQUBBLly51r8MB0L17d1JTU1m+fDnh4eFeXYdDKsZ5vuB0UFnYvMFgDYMa4mc03YmISGEX/HIIzQ0myBmItVZT50m1MMZcDxy11n5fRr32QPNaMNJ5dqH3p4wxD1prCyce2uc9FzdNbXKhOuV1sLwVN27cSJMmTSrYvEg+Japru48+qqnvUepaqAt0PUi+mrsWQNdD7VeR6+H4cW/PvOri7atkFa5ZU/LvTPdzMUGxvjqGZEv916FDB0aPHs3YsWNZsGABcXFxpKamsm7dOjp37syIESNo3749q1at4tNPP6Vx48YsXLiQH3/8sdwJi/T0dH744eJa6/v27WP79u1ERkbSunVr0tPTmT17Nj//+c+Jjo5mz549PPLII7Rr144hQ4YU2+bQoUNJTU0lIiKixH5DQ0Pp1asXL774In379nUnNoKCgjzKAwMDK/ATE2+x1uLMzEtYGMNZv3Puyesigko+ryIil7IL/rlwAYKdgeQ4cwj0179hUi0cQCKQUEa9R4CJgK/mKPsqr38HrgW6o4GbgaeBJGPMKWvtuwXqX5b3fLqYts4UqiMiIiIiUu94O2FxGPiEiwmKA15uXy5RiYmJzJkzh2nTpnH48GGaNGlCr169uPnmmwF4/PHH2bt3L0OGDCEsLIxJkyYxcuRITp8u7l6vqC+//JKBAwe630+dOhWAcePGkZSUhL+/P19//TWvvfYap06dIiYmhsGDB/PMM8+UuBi2MaZc31CLj49n48aN7vUr8g0YMID169d7xCU1q+B0UCbEn/N500EZYwgPDPdlaCIitVbjBpGQmcNlfhH4+2kdC6lWtX74jrV2TaGi/cAfjDHfAv8C5gDvFt7Py1qVsT0a2Apw/fXX07JlWTNIiZRgyye+jkDKMHjw4JrpSNdCnaDrQfLV2LUAuh7qgIpcD4cOHSq7UiV4NWFhrS3rP8Mi5eZwONyvAwMDmT17NrNnFx5N7xIZGck777xT6b7i4+OxtuR130NDQ/nwww/LbKe0Nho1auTe7nQ63eVPPvlkscf15JNP8uSTT5bZp1SfgtNBZQfm4Mx2nbcGgQ30IZyISAmCgoPJIQcuWEzt/zxZ6r/GQKavgyjMWrvOGLMH6GSMibDW5o+eyP+2zWVAWqHdIgrVKW9fpd5JFpy2LTQ0lNDQ0Io0LyJ1iH6/pSBdD5JP14IUVJHrobquHU0cJiJSjMLTQZ0q8NmApoMSESlFYIH1fXKcEKgEr3iHMaZ1oaIGxZTlCwCuAQYDe6o1sMo7DrQDwrg43VMy8FNc61QUTliUtr6FiIiIiEi94O1Ft2Oqsr+19r/eikUkX0pKSqlrWezatYvWrUu615VLlc30nA7qzAXX5wgGQ4PABr4MTUSkVjMFEhbObCf+SliI9+zHvZoUAD/Pe5TGAG9WV0CVZYwJx5VQOYcrcZFvAzAKV6Lls0K7DSlQR0RERESkXvL2CItDeN5EVIRFIz6kGsTExLB9+/ZSt4sU5sy4OB1UVtAFnFmu6aBCTSh+xq+k3URELnlnbTohea9TT/9IdLjmwxevSeHivUZr4DyeH/YXlI3r3uRt4KXqD60oY0xDoLm19vtC5aHAn4GGQKK1NqfA5pXA74EHjDHL86dzMsa0BO7HdbyF18UQEREREak3qitBUJkJizXJsVSLgIAA2rVr5+swpA4pPB1UWHgYLQJbkHYujVCjuR1FREpzJPsobWgKwOFTh4iOUcJCvMNaG5v/2hjjBP5mrZ1Y03EYY34F9Mt72ynv+VfGmPi81/+21r4CRAHfGWO2At8CR4HLgRuBlsAO4OGCbVtrTxpj7gfeAP5jjPlr3qa78tq7y1p7tjqOS0RERESkNqiuhMUXwHLgLf2HunYobTFoEfFUcDoov9AA/Pz8XetWeHnJzvzfy4KLXYqI1HU28OLftAtZ2T6MROq5CcAPPuq7HzCuUFnfvEe+V4ATwFKgBzAc1wLgGbiSF0uAP1hrMwo3bq190xhzHJiF6zgtsA2YY6392LuHIiIiIiJSu3g7YXEXMBG4CegOLDTGvA28aq3d6OW+pBwCAwPJyckhNzeXU6dO0ahRI1+HJFLrFZwOyi+0evK6p06dIjc3F3CNAhIRqS9MwMVp87Izs3wYidRn1trXfNj3eGB8OeqdwTWNU2X6+AD4oDL7ioiIiIjUZV79lMxa+zfgb3lzrE7A9R/5u4Exxpi9QCLwmrX2sDf7lZKFh4eTkeH64taRI0c4duyYvs1dS+TkuD4UT01N9XEkUpgzMxewYAx+GRcXi/XWObPWupMV4Po9FRGpLwouup2jERZSzYwxbYHJQB+gKfB3a+0jedt6Al2Av1prT/suShERERERKa9q+Vpv3uJwzwDPGGMG4Rp1cRswB5htjPkXrimj/m6tvVAdMYhLkyZNyM3N5eTJkwAeH5KK71hr3Ymk0NBQJZFqEXshl9x0158lE+THmQvnCA0IJcgviMxM15xQ3jxnjRs3pkmTJl5pS0SkNvALupjozc3KKaWmSNUYY8bjWlA7OK/IAgX/UQ3L254NJNVkbCIiIiIiUjnVPg+JtfYT4BNjTAQwGlfyYigwBNgLtK/uGC5lxhguv/xy/P39OXfuHDk5OVrPohZwOp3uhEWDBg3w8/MrYw+pKRdSs+CMK2FxJiqL79KTAWjdoDUhmSFA1c+ZMYaAgADCw8Np0qSJElYiUq/4BV7872XuBX0vRaqHMaYX8GfgPPBbYAPweaFqG4DTwC0oYSEiIiIiUifU2MTpeXO4vmSM+RB4AdeNw2U11f+lzBhD06ZNadq0qa9DkTwZGRl89913AHTr1o3Q0FAfRyTgGl3x3zc+x2bnYkIC+F3Xl/j65A4A/jb0b+z+bDegcyYiUhr/4AIJi2yNsJBq8whggBHW2n8DRb4AYK11GmO2A1fXeHQiIiIiIlIpNfK1bmNMiDHmbmPMeuB7XMmKM8BfaqJ/EZHyyPz+JDbbNW1abodgd7Li6qiruSLiCl+GJiJSZwQEBrpf5/9NFakGfYEv8pMVpTgKNK+BeERERERExAuqdYRF3kJ3E4G7gIZ5xRtxrV+xylqbUZ39i4hUxPmvj7tff954JxxzvR7eZriPIhIRqXv8gwMB11RQ9oLTt8FIfdYISClHvVAgqHpDERERERERb/F6wsIY0xQYC0wArsI1VPsQ8CKQaK3d6+0+RUSqypmdS+a3aQCY0ABeP/c312sMw9oM82VoIiJ1SnBICPkJi3DCfBuM1GdpQHmGP7bDNcpCRERERETqAK8mLIwxa4Dhee1eAN7GNZriQ6uVnkWkFsvcfRKb7fomcGY7P/af2w9Aj+geNAtr5l4kXUREStf8shjO4Frzp2tknI+jkXrsM+AWY8w11tpviqtgjOkLXAO8WaORiYiIiIhIpXl7hMWtgAW+xHVjkAZEAqMKL4JXHGvt//NyPCIi5ZKxI9X9+t8R/wcnXK9HXDnCRxGJiNRNJvDiEmmaEkqq0R+BkcDbxphfWmu3F9xojLkK1xenLLC0xqMTEREREZFKqa41LH6a96goJSxEpMa5poNyZShMWACvnVsJQKBfIDdccYMvQxMRqXM8EhZadFuqibV2nTFmITAV2GaM2YMrOTHEGPM1cDXgBzxnrf3Mh6GKiIiIiEgFeDthsRHXjYKISJ2R+d0J97eAz7WF1CzXaIsBLQcQERThy9BEROqeQH/3S42wkOpkrZ1ujNkNPIVrrQqA5nmP48Bsa+0ffRSeiIiIiIhUglcTFtbaeG+2JyJSEzJ2HHe/btXjJ6yKWsX7+96nR3QPH0YlIlI3FRxhsfvYd/ThKh9GI/WdtfbPxphXgDjgSlyjKg4CW621OT4NTkREREREKqy6poQSEakTnFm5ZH7nmg7KLzyQkCsb0dG/MR0jO/o4MhGRuqlgwiIj45wPI5FLhbXWAv/Je4iIiIiISB3mV3YVEZH6q+B0UKHXRmH8jY8jEhGp4wIu/h0NyPUvpaKIiIiIiIiIJ6+OsDDGxFhr/1tb2hERKUvG16nu16Gdm/owEhGR+sEYQ5ZfNsHOIAJzNZhXqpcxpiUQD8QAISVUs9baZ2osKBERERERqTRv30UmG2NeBH5vrT1Z0Z2NMZHATOB/gXAvxyYi4sGZmUPGbtefKhMewMRd93Fjxo0MbzOc6PBoH0cnIlJ3ZfvluBIWTiUspHoYY/yBJcAkLo4aLzxM0uaVWUAJCxERERGROsDbd5EfAY8ADxhj1gCvARuttVkl7WCMCcb1rajxwK24vhn1jpfjEhEp4vzXqZDjmg7qyBVn2HFiBztO7CD1fCozeszwcXQiInVXjn8u5ECQMwBrLcZouj3xuseBe4Ec4B9AMnDWpxGJiIiIiEiVeTVhYa29zRhzI/AC8D/AKOCCMWY78C2QBpwBIoAo4GqgCxCI69tPO4Gp1tqPvRmXiEhxzm875n79TtjHkLc27M1X3uyjiERE6occ/1wAQpzBZOVmERJQ0kw9IpU2HsgA+ltrtdi2iIiIiEg94fVx+nnJhk7GmJuA+4HBQI+8B1wcmp0vC3gP+IMSFSJSUy4czyD7wBnXm6ZBvJv+IRi4IuIKro662rfBiYjUcTn+rtFrwc4gMnMylbCQ6hANOJSsEBERERGpX6ptYmFr7b+Af+VN+dQXiAMuBy4DTgHHgP8An5Y2ZZSISHU4/58f3a+TWx3BZlgARrQZoalLRESqKDfAlbAIwJ+M7AwahTTybUBSH/0XTQElIiIiIlLvVPtKiHnJiE/yHiIiPmedlvP/yZsOyg/e9H/HvW34lcN9E5SISD3i9Lfu11kZGa7JQEW8aw0wxhgTrC8/iYiIiIjUH36+DkBEpKZl7T1N7inXZxvONsF8kb4NgGujruWKiCt8GZqISL0QEX6Z+3W4CfVhJFKPPY1r1PYKY0wTH8ciIiIiIiJeUu0jLHzFGDMG6A90AzoBQcAEa21SCfUjgKeAn+OaE/cI8DdgtrU2vYJ9DwFmAV1xrdmxDZhjrV1XmWMREe8qOB3Ul812uz7uQKMrRES8pXnjFmQcSAWgsX8j3wYj9ZK19owxpjfgAPYYY7YBKYCz+Oo2oSbjExERERGRyqm3CQtgDnAF8P/Zu+8wuar6j+PvM7OzvWR3k91N7yEhoYSEJJSE3kERVESkKWBDERuooCCKoj8QFUURBUF6VUILNaEmISGkkN43dXudPuf3x53M7GZ3s2225vN6nn323nPPOfc7ubOT3fu955xSnORDi49NG2MygPnAkcA84DGcNTd+CJxgjJljrfW15aTRRMnDQAnwYLT4Ipz1PL5orX26Iy9GRBIj4g/hXVEKgEl182DwSQBcxsWZo87sydBERPoNl8cd27bB5u4fi3ROdJ28B4EpgAFOPEB1CyhhISIiIiLSB/TnhMVVwHpr7VZjzI3Abw5Q98c4yYo7rLU37is0xvwWuAG4vpX2++rnAn/GSZIcZa0tjpbfAXwM3GuMedVaqwUCRXqId0VZ7OZZeFIqu/3OaIsZRTMYlD6oJ0MTEek3jCc+62gkEO7BSKQfuxU4D6jAeVhoPdCuUdEiIiIiItL79NuEhbX29bbUM8YYnORGLXDbfodvA74dPd5qwgL4AjAA+MW+ZEU0lmJjzD04U059DnioLbGJSOI1nA6q8JhxvFn0Ji9veZmhmUN7MCoRkf7FJMcTFiF/kJQejEX6rYtxJnU80lq7vYdjERERERGRBOm3CYt2GA8MAV611tY1PGCtrTPGvAecYYwZ3oY/hk6Mfp/XzLFXcRIWJ9COhIUxZlgrVYr2bfj9frxeb1u7lh7k8/ma3ZauFa7w499UBYArP5XwwCTcYcO5w88FOODPT5des0AdpmwdWJvYfoVgwE9u3UZne8sHmGTdNu0LdN36nn3XzJ+Ujc/nY3XlakaQBcB7m95h9rAzejhCaY7f7+/pEDqjAJinZIWIiIiISP+ihIWTsABnGHlz1gNnROu19gfRgfpav1+dtmrzH2ELFy5k48aN7exeetqCBQt6OoSDxuDtqQwhHYDtGeUsfu21DvWTqGvmjvgZXfI64/fMJTlc13oDabdUYM6+nXU9GIi0i65b39Pwmn1Ss4Jd3iNiCYttW7Yyz9fcsxzS00pLS3s6hM5oaYFt6Uajbnyxp0OQNtjy23N6OgQRERGRNuvShIUxZg4Qtta+15Xn6aSc6PeqFo5X71evo321px8RSTQL+SUp0U3L7vxaeipnayIhRpa9zSG7/0tqqKWPHhGRvmlw5UesTzsitm+0hIV0jUeB7xljBlhrK3s6GBERERERSYyuvlv3dvTr5C4+T382vJXjRcBigJkzZzJ27Niuj0g6zefzxZ7SnzNnDqmpqT0cUf8X3FpD9Ydrne3hSfw6dAen5p7KReMvYsKACa22T8g1i4Rxf/osSe/+HlfVtlixxRA55Bxs5uD29ykHFAqH2LFjBwBDhw4lya2BhX2BrlvfEwqHSFn2IAZLXrqbkaNHO8+/AwV5Azn19NN7NkBpVh8fmfsbnOlYXzLGfM1au7qH4xERERERkQTo6jsAFcDOLj5HZ+17vLmlkQ/Z+9Vra19lnegnpuHi3c1x1gx3pKSkkJaW1p7upRdITU3VdesG3pXx2dU+LFiJt97LC5tf4Kiiozhi8BEHaNlUu6+ZtbBmLrz5KyhZ0/jYpPMwJ/0Md8GkdsUgbRP0elk5z5mKZsjpp5Okn7U+Qdet7wl6vYSWP44n4sUVrCM1Ix0IAGAi6P+5XiolpU+vD/MK4AFmASuMMdtoeZooa609pTuDExERERGRjunqhMUy2r9mQ3drbW2J1ta42L+v6dE2+ycs2tOPiCRQJBDGu8KZp9ukuPi7/z8ApCWlcdbos7ruxNbCprfhjV/CzqWNj405CU65GYZO67rzi4h0o6A7DU/Ei/FX40lJZl/Cwga0zIB0iRMbbLuAUdGv5tgujkVERERERBKkqxMWfwKeM8acY63trSuyrccZBXKcMSbDWhtb+dYYkwEcB2y21rZl8ev5wMXA6cCH+x07o0EdEelGvlVlWL8ziXrJSC/l4QoAzhx1JhmejK456Z5V8PINsOWdxuXDZjiJitFzmm8nItJHhdzpECwHfw3JKckNDihhIV3ipJ4OQEREREREEq+rExYfA/fgJC0eBJ4BtgDe5ipba7c1V96VrLXWGHM/8HPgZuDGBodvBjKB2xu2McakAyOA+v1ifhK4A/iOMeZf+6ZzMsYMA64FSoHnuuq1iEjz6pbuiW0/mzZv30O/XDD+gi46YRk8eA54K+JlhVPg5JthwhnQYCo3EZH+Iuh2pn0yIS/JnvivmCbYUxFJf2at1UNAIiIiIiL9UFcnLDZHvxvga9GvlthExmOMuQo4Prp7WPT7VcaYE6Pb71pr749u/w74LHCDMWYqsBQ4CmekxGLg7v26nwG8hTNaYl9/WGsrjDHXAg8DS40xT0QPXQTkAxdZa2sS8PJEpI1ClX78GyoBsAPcPOd/GQyMzRnLEYPat3ZFm31wTzxZkTsaTr4JJl8ALlfXnE9EpBcIutNj28mu8L7cMCbUM/GIiIiIiIhI39PVCYvt9NycsccDl+9Xdlz0a5/7Aay1dcaYE4BbgAtxhpjvAu4EbrXWNjsipDnW2v8YY0qBnwJX4rz+JcCvrLWvd+yliEhH1X+8N/YptGrIttj2BeMvaLRofcLUlcGi+5xtlweumAs5wxJ/HhGRXqZhwiLVBGMJC1dIo8pERERERESkbbo0YWGtHdWV/bdy7iuAK9pRvwq4PvrVWt23cUaNtHT8FeCVtp5bRLqGtZb6BtNB3c/jACS5kjhv7Hldc9IP7oFArbN91GVKVojIQSMUnRIKIM0EqY5uT8o6pGcCkoOCMWY68HngECCb5n9Ht9baU7o1MBERERER6ZCuHmEhItJjAttrCJU4A6Tqh0RYazcCcPLwk8lNzU38CRuOrnAnw+zvJ/4cIiK9VMMRFu5IHeBMg5dh0ltoIdI5xpj/w3nYaF+SwtI4YbFvv6dGfIuIiIiISDtpQnUR6bfql8RHV1RMCDI8azgAF46/sGtO+MGfNbpCRA5aIVd8hIUJV8e2bSDSE+FIP2eM+QLwfWAH8HVgXvTQGcC1wAc4yYrfAif3RIwiIiIiItJ+3ZKwMMbMNsY8aYwpNsb4jTH/bHDsNGPM7caYou6IRUQODjYYof6TUgCMx8XRJ53I3M/N5YEzHmDWkFmJP2FdGSxsMLri+FZnlxMR6VcajrAwgWpwOw+622C4p0KS/u0aIAycYq39B876c1hrX7PW/tVaexzwa5ykRlXPhSkiIiIiIu3R5QkLY8xNwNs4c8sOATw0HqpdBdwAXNDVsYjIwcO7ugzrCwGQNmUgrpQkXMbF9KLpuEwXfPR98GcI1jnbGl0hIgehYIM1LPBXY6MTj9bV1/ZMQNLfTQUWWmvXH6DOL3ASGTd1T0giIiIiItJZXZqwMMacBfwSZ6j2F4HC/etYaxcBJcC5XRmLiBxcGk4HlT6toGtPptEVIiKEGoywwFdNdaQGgKq6yp4JSPq7LGBbg/0AgDEmc1+BtTYCLASO697QRERERESko7p6hMV1gB84y1r7tLW2pIV6nwDjuzgWETlIhKsD+NZXAGCz3ewaWNG1J9ToChGRJiMsgm5nKqjkiIeI1ToWknAlwIAG+6XR76P2q5cBZHdDPCIiIiIikgBdnbA4GlhkrV3VSr0SQGtYiEhC1C/bC9F7Y4sGfcpn/vtZLn/5cnbX7U78yZqMrvh+4s8hItIHBBuNsKgiHE1YpESS8YV8PRSV9GNbgJEN9j/GmXb2y/sKomvknQBs7dbIRERERESkw7o6YZEBtOUOYU43xCIiBwFrLXUNpoP6l3kSgC3VW8hPzU/8Cd//U4PRFZdDztDEn0NEpA8INRxh4asilORkjlNtMt6gt4eikn7sDWCiMWZUdP9loBy4wRjzlDHmTpzpoDKAZ3omRBERERERaa+kLu5/DzCuDfUOAbZ3cSwichAIbKkmtKcegMpBPrZ5dgHwmbGfweP2JPZkdaWw6B/OttauEJGDXKMRFv5qwkk2tuvzeyG9mUYiHfc4MAQYDmyx1tYZY66Mll/YoN4S4Dc9EJ+IiIiIiHRAVycs3gW+ZIw5zlr7XnMVjDHn4iQ1/t7FsYjIQaD2w12x7f/mvBXb/tz4zyX+ZO//WaMrRESiQq5ULAaDBV81EXc8YeH3aYSFJJa1djVw9X5lLxhjxgPnAXnAauAFa224B0IUEREREZEO6OqExZ3ARcCzxpivA3MbHjTGnAncDwSBP3dxLCLSz4VrAnhXOmtuRtIMz7hfBuCogqMYkzMmsSfT6AoRkcaMi5A7DU+4HvzV2AaD2vw+rWEh3cNauxM9CCUiIiIi0md16boR1tqlwA+AgThzx1YCFrjQGFMJvAgUAD+w1n7albGISP9Xt2g3hJ0nepcP3UTQFQLggvEXJP5kGl0hItJE0BVdx8JXDUkmVh7w+XsoIhEREREREelLunyha2vtH4GzgcVAGmCALCAbWAF8xlp7T1fHISL9mw1b6hZGp4MycK/7EQAyPBmcNvK0xJ6sfr/RFbO/n9j+RUT6qNg6Fv5q8ChhISIiIiIiIu3T1VNCAWCtfRV41RiTD4zGSZRst9buOnBLEZG28a0uI1wdAKBiuJ9trp0AnD36bNI9iV3pNWnRvfHRFdOugOwhCe1fRKSvCrmjIyxCvkYjLCKBUA9FJP2FMSaMM1L7UGvtuuh+W1lrbbf83SMiIiIiIp3Trb+4W2vLgLLuPKeIHBxqP9gZ234m+zWI3sa4cPyFCT1PcrCapJX/cna0doWISCPBfQkLYMrA8dRRDsARuYf3VEjSf5joV8P99rQVEREREZE+oEsTFsaYK4DXrbXFXXkeETm4BffW499YBYA7P5VTTjiXXWsqKfOWcWj+oQk917i9L2OCXmdHoytERBqJTQkFuF3B2LYNtOdheJGmrLWuA+2LiIiIiEj/0NUjLP4FWGPMeuD16Neb1trqLj6viBxE6j6Mzy6XOWsIs4cPZfbw2dQH6zEmcQ9VJgerGV36mrPjTtHoChGR/YQajLBwmfi6FTYY6YlwREREREREpI/p6oTFg8DJwITo1zeBiDFmCfEExnvW2mCLPYiIHEDEH6ZuyR4AjMdFxrSC2LFEr10xbu/LJEWcdTI0ukJEpKmGIyyM9eEsWwaRoEZYiIiIiIiISOu6NGFhrf0qgDFmPHAqcBpwIjAj+vUTwGuMeRd4zVp7Z1fGIyL9T/3He7F+50ZY2hGDcKV7uuZEtXtjoyusOwVz/Pe65jwiIn1YyBUfYVEeKMFQCMDaPWuYxuCeCkv6IWOMC5gOTAbycRbkLgdWAEustbYHwxMRERERkQ7qlkW3rbXrgfXAvcaZn2U6TgLjVOA44PTothIWItJm1tpGi23/zfMIx20/mdnDZuMyiZ3a2vPhH2OjK8JHfoUkja4QEWmi4QiL6lA5OdGExe7KXS01EWkXY4wH+DFwPZDbQrUyY8ydwJ3W2lC3BSciIiIiIp3WE4vVeYCs6Fc28aRJ4iaaF5GDQmBLNaE99QDUFAR5rPJZrn3zWn6/+PeJPVHFVtwfPwRAyJVM8JjvJbZ/EZF+IthgDYsk62twQGtYSOcZYzKA14BfAnk4fz8EgT1ASXTbAAOB24FXjDFpzfcmIiIiIiK9UbeMsDDGHIkzHdSpwPFAKs4fE9XAi8TXsxARabOGoyuezX4ttn3umHMTe6L5d2AizlI7mwadwfCMQYntX0Sknwi6M2LbycQTFjakhIUkxP8BcwAf8GfgP8DKfdM/RaeJmgJcCnwbOAn4PXBtj0QrIiIiIiLt1qUjLIwxjxtj9gJLgDtw1q/4CLgFZyqofGvtZ621f7bWru7KWESkfwlXB/CuLHO20+AZ9ysATC2YyuSBkxN3or1r4JPHAAi409lQcHbi+hYR6WdCDUZYpETqYtuuYE9EI/2JMWYEcA3OA0/HWWtvsNauaLhWhbU2Yq1dbq39Ec5DUrXA140xwxIcy1eMMX83xnxkjPEbY6wx5ooD1M82xtxljNkarb/FGPN7Y0xmC/VdxpjvGGNWGGO8xpgSY8xjxpgxiXwdIiIiIiK9UVdPCfVFnEXwlgMXALnW2hOstbdZaz+w1oa7+Pwi0k/VLdoFEecexcLCTwm6nCmqvzLpK4k90Vu/Bus8Gbyh4ByCSRmtNBAROXg1XMMiJRxPWBitIiCdd0n0+43W2o9bq2ytXQrcCLgbtE2UX+EkT0YCB1ygJTqN1XycNTfWAH8A1gI/BN40xqQ20+zvwJ9wRqT/CXgF52+pxcaY8Ql6DSIiIiIivVJXJyxqcH7RPgJ4BHjWGPMDY8wRXXxeEenHbDhC7aLdzraBvyU9AsDgjMGcPOLkxJ1ox1JY/T/nPBmD2DTo9MT1LSLSDzVcwyIlVB3bdoW0VJl02jE4U0E90I42D0TbHJvgWK4CRllrBwF/a6Xuj4EjgTustWdYa2+01p6BM/r8aJxERowx5qRo/wuAo6IjSS4FzsdZt+OeRL4QEREREZHepqsTFnk4Uz/9AmcqqH3zyC41xuwxxjxqjLky0cO0RaR/835aTqQ6AMD2wlJKPBUAXDzxYpJcCVya583bYpvBY68n7E5JXN8iIv1QqMEIi9RQZWzbFVbCQjptMvCxtdbf1gbWWh+wFGddi4Sx1r5urd3aWj1jjMFJPtQCt+13+LZo+VX7lV8d/X6ztTbQ4JwvA28Dp0enxxIRERER6Ze6dNHt6JRPH0S/bjPGpOOsY3EqcApwUfQLY8w6a+2kroxHRPqHugaLbT+Q+gwAaUlpXDD+gsSdZPM7sPFNZ3vACMJHfAXeeDtx/YuI9EMhVwoWg8HiDlTEypNCXf2MjBwE8nCSD+21EyfZ0RPGA0OAV621dQ0PWGvrjDHvAWcYY4Zba7dHD50I1AHvNdPfq9HjJwAPtzWINjwcVrRvw+v14vV629q19BG6prKP3gvSkN4Pso/eC9JQe94PXfXe6dKExf6stfXAS8BL0WmhLgGuBVKBCd0Zi4j0TcE9dfg3VQFQlxVgYepyAD4z9jPkpOQk5iTWwhu/jO+f+FNwJyembxGR/sy4ICUL/NUQKCdCBBcuksLuno5M+r4snOlm26sOaHZx626wb72J9S0cXw+cEa23PbrexWBgZQtr/e3rp73rWGxvvYpjwYIFDBw4sB1dd+ufk9JB8+bN66Yz6f3Q2+m9IA3p/SD7dN97AfR+6P3a834oLS3tkhi67V0SfbLnNOKjKwbtOwQEcUZhiIgcUO2H8bUtlw3fhLXOwtuXTErgeprrXoXiRc72oIlw+BfBHzhwGxERAcCmZGH81Rh/NSF3hOSwixxXdk+HJX1fZ4bp9NQQn31PUlS1cLx6v3rtrS8iIiIi0u90acLCGHM+ToLiVOJPAhnAAiuB16Nf86OjL0REWhTxh6hfuhcA43HxhS9cyVTfCSzatYjROaMTdJJIo7UrOPkmcOnJYBGRNkvJBnaAv5rU1DQidUEGedrzxLZIizI7sH5DT42u6E2Gt3K8CFgMMGfOHIYNa8fygh+82fGopNucfvrp3XMivR96Pb0XpCG9H2SfbnsvgN4PfUB73g/FxcVdEkNXj7B4tsH2duIJijestXu7+Nwi0s/Uf7wX63dmSEg/sgBXWhIT0iYwITeBM8qtehb2rHS2hxwFE89NXN8iIgcBmxIdTRHyYVKdxbZtsLnZbUTa7cLoV1+xb6RESyMisver1976bWKtPeBfks7a4I60tDTS0tLa0730Abqmso/eC9KQ3g+yj94L0lB73g9d9d7p6oTF88BrwOvW2pbmbhURaZW1ltoP4tNBZRwzOPEnCQfhzV/F90/5OTT4I15ERNogJSu2aaK/adpApIeCkX6mo/8p24RG0XatrTnRaI2L6ELcu4DRxhh3M+tYtLYmhoiIiIhIn9elCQtr7QVd2X+iGGOuAB5opdqb1tpTWunnROCtA1S50lr7YHtiExFHYHM1oT3OzHHhoUkkDU5P/Ek+/g9UbHa2R82GMScm/hwiIv1cbIQFYNzOfWIbDGOtbfQkt0g7JWjux261HtgJHGeMybDW1u07EF1g+zhgs7W24aLY84EvRY8t2K+/M6Lf9y8XEREREek3tDS7YxlwawvHPg9MBl5tR3/zgbdbOI+IdEDthztj23/gn2x4/tdcfdjVfHbcZxNzgqAX5t8R3z/lFxpdISLSEQ0SFjv8uyhgIESgrK6MgZlay0I6xlq7tadjaC9rrTXG3A/8HLgZuLHB4Ztx1te4fb9m9+EkLG4zxpxmrQ0AGGPOAk4E5vXFfwsRERERkbbqloSFMWYScB1wEjA0WrwDeBP4k7V2dXfE0RJr7TKaSSYYY5KBa4EQ8O92dPm2tfaWRMQmIhCq8OFdWQqAPyXIgswlBKtDbK1O4N/ri++HmuiUU4ecDcOPTlzfrQgUF1O/aDHYplOmuPPzyTrxxEZlNW+8QbiystV+Uw89lNRJk2L7Eb+f6rlz2xRT5sknk5SbG49x2zbqFy9utZ1JTibnvPMaldUtWkRw27ZW23qGjyBj5oxGZVUvvID1+1ttmz59OsmjRsX2QxUV1L7xBoFAkOxVqwCoqavHn+xp0jb73HNxpabG9n1r1uBbubLVc7pycsg+7bRGZbXz5xMqKWm1bcohh5B22GGxfRuJUPVsg2WfDpAsyzh+Np7Cgth+cOdO6j74oNVzgmHAhY0HPtZ//DGBTZtabZlUVETmccc1Kqt+5VUidbWttk074ghSxo2L7Ydra6l59cDPAAQCAbJXraJ2ymGNyv0bN+JdtqzVc7oyMsg+88xGZXXvv09w164WWsQljx5D+lFTG5VVPvc8RFpfgyFj1iw8Q4fG9kMlJdQuaNuD0Dmf/SwmKf5rmXflKvxr17Tarrd8RgS3byd78WLCmZlEDouvcew13ti2z1sHSlhIP2CMuQo4Prq774Pqquhoa4B3rbX3R7d/B3wWuMEYMxVYChwFnI6z0PXdDfu21r4VTXJcBSw1xrwIDAYuAsqB73TBSxIRERER6TW6PGERnW7pb4CHxvPOjo9+XWmM+bq1tj0Jge5yPpAPPG+t3dPDsYgctGrf3QHRe/lzBywg6AqRZJK46JCLEnMCXzW8c1d0x8DJNyWm3zbwb9rElou+RKSmptnjadOnNbkZWfrXe/FFb8IfyKDvXdf4ZmR9Pbt+1rbXNuqppxrdjPR+8kmb2roHDGiSsKh65hmq/vu/Vttmn3tuk4TFnt/eQbisrNW2g3/7m8YJi9272XXTzQAURcvKnnmm2baZJ57YKGFR+847lNx5V7N1G0qZOLFJwqLsXw9Qv3Bhq23zr/pao4QF4XAs3taMePCBRgkL39q1bbuuSUlNEhbVL8yl4tFHW22aecIJTRIWe/9wF8GtrSeiCm+6qXHCoqKiTfEWAZtHN54Bpn7RInbf+stW23qGDWuSsCh/5FFq33ij1bYDvnRRk4TF7ltuaVPibNg9f26UsAhs2dLmn7nsc85plLCoee01yv7+91bb9ZbPCP+KFRQ97fyMlZ99BEXRQRYRVzzR4/P62tS3SB9wPHD5fmXHRb/2uR9i61KcANyCs2D4ScAu4E7gVmutl6a+DqwArsF56KsWeA74mbV2Y+JehoiIiIhI79OlCQtjzDTgH4AbmAv8E9j3S/YY4GvAecA/jDGrrLUfdWU8HXBV9Pv9B6zV1HhjzPeANKAYZ/2LHR0JwBgzrJUq++7F4ff78Xqb+5tHehufz9fstjQV8YaoXbQbgLA7wlPZzpPZJw8/mWxXdkLe80nv3o3HWw5A6NALCGaPgf367YprFq6pYdc3v9VisgIgEo40eY2RSNsWrw0Gg43ahtvxb+X3+xv9GwQCgTa1s9Ak3lCo9SfTAcLhcJO21rZtndRgoPFr9bfh5vI+Pp8Pd4O2oWCoTe0ikeauTdteazAUatTWBoNtagfOa3N14NpAM9cm3LbXGo40c20ibbw2wUCjtsF2/vw0/HkLBNr272StbRJvONzG92Go6WttK38gQFIH34derxdXg/d7KNS219prPiNqY1PzU7+hxHl+HIiY+OuoranW7ym9THveoxJnrb0CuKId9auA66NfbakfAf4U/RIREREROah09QiLHwEu4GvW2v0XtV4J/C86AuNfwA+Ai7s4njYzxowETsFJOLzSzuZfjn7tEzLG/Bn4kbW2bXdM4ra3XsWxcOFCNm7UQ1d9zYI2ThdysCoqTmVo0Flg++3sJVQlOVPQjCkfw7x58zrdf3KohtNW/QWACG7eYhb1rfSbkGsWiTD0wX+TsdWZ1spfVEjlscc1qRbKymTFfvFkTp+Gu8FT0S3Z6nbjb9DWBINkX3DBAVrEbVy7hvCO4ti+p7KS9Da0jSS5WbNfvGlDh+C5sPW2wfx8Pt6vbdZpp2HacON2c001wQZtXXV1ZLXxta7/4ANscnJsP9lAWhvahtPTWLVfvBmTp5A0fESrbbdlZOBr2DYSIaeN8W7aupVQg+l+kioqyWhDW2tg3X7xpublkdKGtsEBOXyy//tw9vG4fa3f7NwSCBJoeG18vjZfm3BGZqOft2S/r03XJpKSwqf7xZs+dgyevLxW224bOLDxtQGyzzsX04YEzaY9ewg1aOuuriazja913Vtvgdsd209JSyO1DW17zWdEKBhbEdlbHk/C+oLxacM+XrqUrRvi6xFJzystLe3pEERERERERBrp6oTFbGBZM8mKGGvtg8aYa4E5XRxLe12Jk2x5sB1JhhKcxfTmAluADOAY4Lc4T1RZnMSMiLSBiUDBbmeqngiWR/JeAGC4ezjDklobfNQ243e/QFLEeYJ768ATqE8pTEi/rTHhMOG0NADC6ensuPxyQm24mQpQO2VKh85pPR6q9ptyqa2CAwdSNbBjc897x47FO3Zsh9rW7Dc1T1tFMjI6/FoDQ4YQGDKkQ23rJk3sUDtcrg7HG8od0OG2vlGj8DWYSqs9ao84okPtIqmpHb82hYUECjv2M1o/YUKH2gFUH92xNW3C2dkdfq3+4cPxDx/eobY99RkRzMnBU1UF3oZJxvgIIBtu28gPEREREREROXh1dcJiIPBWG+qtIb5gXY8zxrhwEhYWZ/RHm1hrVwENJ42uA/5rjFkILAe+a4y5w1q7tx3htHa3oghnwT5mzpzJ2A7eFJTu5fP5Yk8Nz5kzh9QG8+dLnG9JCXVBZwTC2kHb2ZXsPAn6jRnf4LThpx2oaZuYqm2kLHc+omxSKkVfvJOirMHNx9IF18yefTbVDz1E8qRJjJ3RsZuEcmD6WeubdN36Hp/Px5Y//glPVRUuXwBrnbXj09JcUOXUGTt6NDNmnNCzgUojGpkrIiIiIiK9TVcnLCqB1ufGcOpUdW0o7XIqTkxvWGs3d7Yza+1uY8x/cdbEmAm80I62xQc6bkx8HfOUlBTSok9sS9+Rmpqq69YMG7FULYzn9v6W8RgAhemFnDXuLDwuT+dP8tLvIexMaWNmfp20gjFtapbIa5b+jW8kpB9pnX7W+iZdt74jnJ4e3YgQCRrcyRaXabDGStjqWvYyKSkpPR2CiIiIiIhII64u7n8xcKwx5uSWKkSPHQcs7OJY2qOji20fyL5JgjMS2KdIv+VbXU6oxFmctTivlHVpzkiLKyZfkZhkxY4lsOIpZzstD47/fuf7bEWorIzAtm1dfh4RkZ4Qzoj/ihP2O79iumiwoH0bF00XaQtjzM+NMW1axFpERERERPqOrk5Y/Dl6jheMMb8zxkw2xqRHv6YYY/6P+GiDP3dxLG1ijMkHPguUA88lsOuZ0e9bEtinSL9VsyA+uGjwKRM5f9z5FKQXcOGECzvfubUw7+b4/ok3QtqAzvd7oFMGAhRfdx2bv/BFat97r0vPJSLSE8IZ6fHtgPMrptt6G5SFuj0m6dd+DmiOMRERERGRfqZLp4Sy1r5qjPk18DOcxaabW3DaALdZa+d1ZSztcCmQDPzHWutvroIxZiDO+hyl1trSBuXTrLVLmql/HXASsJ7oehMi0jL/1moCW6sBSCpIZ+jUidzmug1fyEdqUgLmsl/7EmyNJg3yxsL0r3a+z1bs/vXteD9yPh523XQzY195GZem4hCRfiSc3nCEhRsIMjgST1iMy2jbtHsibbQXGgzhERERERGRfqGrR1hgrb0ZOBtn8W0/ToLCAAHgTeBsa+0vujqOdvha9PuBpoO6Flgd/d7QM8aY9caYx4wxvzfG/NUYsxS4G2c9j69Ya8OJDlikv6mZHx9dkTVnGMblrNWSkGRFOAiv/Ty+f9ovwZ2AKaYOoOLxx6l84gkATHIyw/54t5IVItLv+IcNo2raNLIvu5SkAc7n9cBgbez4IM/AngpN+qd3gBk9HYSIiIiIiCRWVy+6DYC19hXgFWOMG8iPFpf1tpv3xpgZwBRgkbV2RQe6uBc4A5iD8zojwFachMWdrS2gLSIQLKnHt7oMAFd2MulHDkrsCT56AMo2ONsjjoWJ5yS2//3UL17M7l/9OrZf9MtbSTv88C49p4hIT6ibNJG6SRM54vTTSf3bY1BViQlVxo7bQK/6tU/6vl8CHxljfgXcbK21PR2QiIiIiIh0XpckLIwx44ALgFE4oyqWAU9aa704w7d7JWvtIpzRH63VuwW4pZnyO4A7Eh6YyEGk9p0dEL3l8FTOqxRu2Mznxn+OFHcCRiT4quDt38T3T/8VmFZ/5DssuGMHxdd9D0LOvO15V1zBgPPP77LziYj0GqnZUAWuYEWsyAYjPRiQ9EPTgIeAnwAXGmOex1krrtlpoqy1D3VbZCIiIiIi0mEJT1gYY74H/A5w73foNmPM2dbalYk+p4j0D+GaAHVL9wAQSArxaNoL1C/0UR2o5prDr+n8Cd65C7zlzvaUz8OwaZ3vswURr5ft136HcLlzvoxjj6Xgh80t4yMi0g+lZAMQicSnhKqpqyanp+KR/uhBnEccDHAI8ONW6ithISIiIiLSByQ0YWGMOR64E+cPhzpgLZANjAGG4azxMMlaq0fsRKSJ2vd3QsgZXvFizgLq3T7Sk9L54oQvdr7zym3w4b3OtjsFTvn5get3grWWXTfdjH/1agA8I0Yw9K47MUndMgufiEiPsuEwEVcGLqDSHYyVr9y1nGEc0XOBSX/zELExmSIiIiIi0l8k+u7ZtTjJin8D11pr6wCMMYcDzwDjgDOBlxJ8XhHp4yL+MLUf7nK2TYRnc18H4KKJFzEgdUDnT/DGLyHsd7ZnfQNyR3a+zxZ4ly6l+sUXAXClpzP8L/fgHjCgy84nItIrhEKM/fXtbL3xJ6SPzGLkLEi1fuqih02oR6OTfsZae0VPxyAiIiIiIonnSnB/xwDFwNf3JSsArLXLgetwkhmzEnxOEekH6j7ajfU6d7Pm5yyh1FNJqjuVyw+9vPOd71gCK55yttPy4Pjvd77PA0g76iiG3n037oEDKbrtl6SMH9+l5xMR6RWSkjChEFhLyOsMpk1tsJyAK9R1awaJiIiIiIhI/5DoERaFwEvW2kAzx96Nfi9I8DlFpI+zYessth31ZO6rAHx+wufJT8vvZOcW5t0c3z/xRkgb0Lk+W2GMIfvMM8g4/nhcGeldei4Rkd4knJGOKxAgXO9MBZVs/bFj7nCin5MRiTPGGGDfLw3lmoJWRERERKRvSvRfjslAZXMHrLXVDeqIiMR4V5QQrnRuai3NXMOW1J14XB6unHJl5ztf+xJsfc/ZzhsL0xLQZxu5MzNw7p+IiBwcwukZzve6ANaCi3jCIkkJC+kCxphTjDGvALXAnuhXjTHmZWPMKT0bnYiIiIiItJf+chSRHmWtpWZBcWz/ibxXALhg/AUUpHdyQFY4CK81WFz7tF9CUtfkTCM+H7Xz53dJ3yIifUU4w0lYELFEggZjIgSji1ckhd09GJn0R8aYnwPzgNOBNJzpZ010+wxgnjHmpp6LUERERERE2ivRU0IBjDPGXNaR49bah7ogHhHpxfwbKwnudJa82ZhWzPL0dSSZJL465aud7/yjB6Bsg7M94liYeE7n+2xB6V/vpey++8g67TQKb74JT4FmvxORg084PT4NXtjvwp0cJmACeGwSnnBX/NopBytjzKnALUAAuA/4J7AxengM8DXgGuBWY8z71to3eyJOERERERFpn674y/G46Fdz7AGOW0AJC5GDTM2C+NoV2ydX4/F6OG/seQzJHNK5jn1V8PZv4vun/wq6aHom35o1lP3rXwDUvP02g677LihhISIHoXCDdXtCfhfJWWGCriBEwBNRwkIS6rs4fz981lr76n7HlgPXGWNeBF4GrgOUsBARERER6QMS/ZfjNpw/HEREWhXYVYd/XQUA7twULvncNZzu/1xiOn/nLvCWO9tTPg/DpiWm3/3YcJhdN90MIWfKk4Ff/zop48Z1yblERHq7fWtYgDPCAnASFkByxIO1Vmv7SKLMBN5vJlkRY62dZ4x5Hzim+8ISEREREZHOSGjCwlo7KpH9iUj/Vttg7Yqs44di3Kbz61YAVG6DD+91tt0pcMrPD1y/E8offhjfypUAJI8dS/41V3fZuUREervYGhbEExahaMIiJeIhFAnhcXt6JDbpdwYAW9tQbyswo2tDERERERGRRNGi2yLSI4Il9dQv2wuAKz2J9KOLEtf5G7+EsN/ZnvUNyB2ZuL4bCBTvoOSPf3J2jGHwbbfhSu6aRb1FRPqChlNChQPOr5mDo79tpthk3GjhbUmYUmBiG+pNjNYVEREREZE+QAkLEekR1a9vi00gt27CXnzGn5iONy+AFU8522l5cPz3E9Pvfqy17L7lFqzXC0DuxV8i/aipXXIuEZG+wjtqFAV33cXIB+4jZ5Tz+ZhCIF4hrJlDJWHeA6YaY77cUgVjzCXAUcC73RaViIiIiIh0ihIWItLtArvq8H5SAkB1Uh0/8t7GWc+eRZW/qnMdh/ww9/r4/ik3Q9qAzvXZguq5c6l717n/kVRYyKDvd01iRESkLwlnZ5N+0omkzzqepDSnzOCNHbeBcM8EJv3R73EefXjIGPOkMeYcY8yh0a9zjTFPA/8GwsD/9WikIiIiIiLSZoledFtEpFXVr8WnnH4872V8Lj/HDDqWnJScznX87h+gbIOzPWwGHHVF5/prQbi8gj2/vj22X/SLn+POzOySc4mI9EnGQEoW+KowkfpYsQ1GejAo6U+stYuNMd8E/gJ8HrhwvyoGCAHfttYu7u74RERERESkYzTCQkS6VaC4Bt+nZQBUeKp5MfcdAL5++Nc713HpenjnTmfblQTn3Q2urvmIs5EwaUcdBUDWmWeSdfLJXXIeEZE+LZqErqAuVlRStbenopF+yFr7D5wpn/4FbAL80a9NwD+Bo6J1RERERESkj9AICxHpVlXz4qMrHsl/kYAryOyhs5k8cHLHO7XWmQoqHJ0n/ZhrobAT/bUiaeBAhv3lHmpenUf6tKO67DwiIn2Rb/lyQjU12G0pZOdAscvPuOix3ZU7GcyIHo1P+hdr7Urgqp6OQ0REREREEkMJCxHpNv4tVfjXVQCw11POqwPex2VcXD/t+lZatuKTx2GLM1KDASPghBs6GWnrjDFkn3lGl59HRKSvKf3pzwjt2IE7zUX2Z8GY+BoWQX/gAC1F2s4YMwfYba1d10q98cBga+2C7olMREREREQ6Q1NCiUi3sNZS9Wp8dMV/Bs4lZMKcP+58xueO73jH9eUw72fx/XPuguT0TkR6AKFQ1/QrItKPuAYMACDsjWAjYKw/dizo97fQSqTd3gba8oTCj4G3ujYUERERERFJFCUsRKRb+DdUEthcBcCO5L28kbOIVHcq3z7y253r+LWbod5ZE4NDz4fxp3Wuvxb4PlrC6N/9nsyVK7ukfxGR/sIdTVgAhIMuXCaepAj5gz0QkfRjpqcDEBERERGRxFLCQkS6nLWW6gZrVzw8cC4RE+GyyZdRkF7Q8Y63vAcf/8fZTsmGM3/byUibF66upuTmm/FUVTHk4f9Q9+abXXIeEZH+wNUwYeE3uIgnLMIBjVSTbpcL+Ho6CBERERERaRutYSEiXc63ppzA9hoAqnN8LM77lDxPHl+d8tWOdxryw9zvxfdP+TlkD+5coC3Y/cvbCO/eDUD9mNGkn3BCl5xHRKQ/aDTCwu/G3eBesRIW0hnGmP1XbM9spmyfJGAycDqwsUsDExERERGRhFHCQkS6lI00Hl0x+rypzB0zly3VW8jwZHS84/f+BKXRdTaHToPpnUh+HEDVC3OpnjsXgHBqKru/eBGHut1dci4Rkf7AlTsgth32u0hqMMIiooSFdM4WwDbYvzD6dSAG+E9XBSQiIiIiIomlhIWIdCnvqlKCu+oA8AzNJHVyPmnGMCh9UMc7LdsIC37vbBs3nHs3uBKfRAju2MHuW2+N7e/93OcINbgRJyIiTTUeYeEiqcEICxuM9EBE0o9sI56wGAHUA6Ut1A0AxcAzwL1dH5qIiIiIiCSCEhYi0mVsxFL9Wnx0Rc7pIzGmk+tjWgsvfh/C0Sd2Z30TBh/euT6bO004zI4bbiBSWwtAxtlnUXPkEQk/j4hIf9NwDYtQwIWnwQgLJSykM6y1o/ZtG2MiwFPW2q4ZYikiIiIiIj1Ci26LSJep/6SE0F4vAKX5NQRGJSBHuuJp2PS2s50zHE78Sef7bEbZ/f/E+9ESADxDhpB/441dch4Rkf5m/xEWadYb288kvQcikn7qSuCfPR2EiIiIiIgklhIWItIlbDjSaHTF7zLu59znzqXKX9XxTuvL4dUGCYqzfw8pmZ2IsnneFSsp+fOfnR2XiyG/uwNXVlbCzyMi0h+5BgwAY3BnZ2KMZWioPnZsyoDJPReY9CvW2n9ba9/r6ThERERERCSxNCWUiHSJuiV7CJc785Z/nL6GFRnrOWvwWeSk5HS809dvgboSZ3vSeXDIWZ0PtBnh8jJc6elEqqvJv/pq0qdPx+v1tt5QRETwjB7NxJUrMGXr4K+zCEbiCV8b0JRQkljGmCTg88BJwNBo8Q7gLeBpa61WehcRERER6UOUsBCRhLPBCDVvbIvtPzToBTwuD9896rsd73Tbh7D03852ciaceUcno2xZ5gknMOZ//6Xs/n8y6Npvd9l5RET6I+NyYdxuSMkGwGUarmER7qmwpB8yxhwJPA2MBvZfJOsq4DZjzBestcu6OTQREREREekgJSxEJOHqFu0iXBUAYGHmCtakb+ayiZcxLGtYxzoMBeCF78X3T74Zcoa2WD0RPEVFFN30sy49h4hIv5bqJCwMvliRFt2WRDHGDAHmAQOBPcDjwMbo4THAl4CxwKvGmCOttbt6JFAREREREWkXrWEhIgkVCYSpfmt7bP/hQS+QlZzFNYdf0/FOP7gHSlY724OPhBlXdy7IZkT8/tYriYhI2yVngnFhiH++birdeIAGIu1yA06y4n5gjLX2emvtPdGv7+MkLe4HBgE/7sE4RURERESkHZSwiDLGbDHG2Ba+3m5nX5cYYxYZY+qMMRXGmLnGmKO6KHSRXqXug11EaoMAvJO1lI2pxXz98K93fO2K8s0wPzr9k3HBeX8ElztB0TqstRR/5zvs+NGPCdfUJLRvEZGDUfl/HmHnT3/G9ncGYiMhwjgjKwI+JYclYc4CtgHftNY2WWjKWusDvhWtc043xyYiIiIiIh2kKaEaqwLubqZ8S1s7MMb8DPgVsBX4G5CFMyT9fWPMKdba9zofpkjvFK4NxEZXRIjwn0FzGZo5lIsnXtyxDq2FF38Aoeh0IjO/AUOOTEywDVQ88ih1C94BILhtGyMffwxj9p8KW0RE2qru3XepffttIIlI0EXABEizqXjCiU04y0FtOPCctbbFhVGstSFjzAfA+d0WlYiIiIiIdIoSFo1VWmtv6WhjY8x44BZgHTDDWlsVLf8r8CHwD2PMFGutJnCWfql63lasLwTA6zkL2Zaymzum3kGyO7ljHa56Fja+4WxnD4WTfpqgSOP8Gzaw9/e/j+0PvPbbSlaIiHSSe8CA2HbY7yKYHiAtnIonol89JWH8QHYb6mVF64qIiIiISB+gKaES60qcJNCv9yUrAKy1y4DHgEnA8T0TmkjXChTXULd4NwAhT4Snhr7OofmHcuboMzvWobcSXr4xvn/W7yAlq/OBNhDxetnxwx9ho+tX5H7lK2TOnp3Qc4iIHIzcubmx7bDfRdA4n7PJEU9PhST9z6fAScaY4S1VMMaMAE4CVnVbVCIiIiIi0il6zK2xFGPMFcAQoBpYbK1d2I72J0a/z2vm2KvAFcAJwIK2dmiMGdZKlaJ9G36/H6+3yRS+0gv5fL5mt/sqay3Vz68H6+xnnzSCB456iAp/Bf4Ozlfumfdzkur2AhAefyaBUadAAt/f1lpKf3EL/jVrnPONGUPWt7/V4s9Qb7lmwXCEjSV1RGzb2xzMA0YC/gDFdc72J1vLSE7p4Ggf6Va6bn3PvmuWmeR8RkYyM2PHQgEXQRMAnIRFfX29RrL1En5/nx548BDwV+B1Y8z11tqXGh40xpwL3AmkRuuKiIiIiEgfoIRFY0XAAw0LjDGLgYuttRvb0H48UGut3d3MsfUN6rTH9rZWXLhwIRs3tiVM6U0WLGhz/qrXyitJZnSxc3PKmxZmadVy7Hzn2DrWtbu/3LoNzF7n3FsIuVJ4I/kMfPOaywN2XM6HCyl84QUAIh4P6z/7WVa18Vr01DXbUAUPbXBTFdCNvvaJ/le3/JOeDUPaSdet73Gu2aeV73Dmzh2xJyrCfhehaMIiJZLMS6++hMelkRa9QWlpaU+H0Bn/AC4ETgFeMMaUA5ujx0YDeYABXo/WFRERERGRPkBTQsU9gPMHTyGQAUwFHgaOBt4wxrRlLpocnIW7m1PdoI5Iv+EKwbCt6bH97aPqsJ34ZDE2xBHbHsBEh2usHnwhvuT8zobZSOq2bRT873+x/T2f/zyBosKEniORIhZe2W6451MlK0Sk91tS6iKckRHbD/tdhKNTQrlxEYoEeyo06Ueii22fA/wOqAPygenRr/xo2R3AuVo/TkRERESk79AIiyhr7a37FS0DLotOWXApcDVwVzeHBdDivLxRRcBigJkzZzJ27Niuj0g6zefzxZ7SnzNnDqmpqT0cUcfVzduOL7gHgM2Fezj0s8eTk9LxvFzSwr/g8TkDiyKFhzHuy79jnCtxH1Xh8gp23vUHwuEwANmXfJlRP/xhq+166prtrfFzw3Of8mFxRaxs6vAcDinMPECrONuOqaP6o3A4xK5duwAYPHgwbrf+2+sLdN36nnA4xP+W7yYQMXhNKtPmnMDuhx52jvldRKIjLABmzZpJYd7gngpVGujrI3OttQHgRmPML3ASFUOjh3YAH1lr+/ScVyIiIiIiByPdAWjd33ESFsfResKiipZHUGQ3qNNm1triAx1vOAd0SkoKaWlp7eleeoHU1NQ+e92Ce+vxLXTWmQiYILdm3sO4j17nb6f+rWMdVmyFd/8vumNwfeaPpGUkdqHtcE6Y9MMPo+a1PaRNm8aQG2/EeNo3NUl3XbN31pdw/RPLKK11bvS5DFx/6gS+ddI43C6NtGgLr9fLvHk7ADj99Ml99mftYKPr1vd4vV4+WLebHfWwtyZASsGo2DEnYdHgvrGN6Jr2EikpKT0dQkJEExPvNXfMGDMA+JG19mfdGpSIiIiIiHSIEhat2ze5b8YBaznWA8cYY4qaWcdifIM6In2etZbKFzayb/Xnp/NfoySlgj9O/U5HO4SXfgih6KLXM66BodMSFG2cOzOToX/6ExUPP0zWmWe2O1nRHULhCH94fR1/fXtjbIREYXYKf/rSVGaOSez0WCIiiZKbYtlRbwhGLFXJ8akCQ34XuWFvbD+d9OaaiySUMSYb+AFwHZAFKGEhIiIiItIHKGHRupnR71vaUHc+cAxwOvDQfsfOaFBHpM/zfVqOf30lAHuTynky/1W+PPHLTM6f3LEOP/0vrI8urJ01GE6+KTGBNsMYQ95ll3VZ/52xs9LLdY9/zOIt8SmgTjxkEHd+4QjyM/vHk7Ai0j/lJse3d0WSGXTKKbhtJalVb5AVrqMuemyAK7vZ9iJtYYyZBpyHs+7cHuB/1tqlDY6nAt8Hfogz8tkAn/ZAqCIiIiIi0gFadBswxkw0xjR53M8YMxFnsT6ARxuU50Tb7D8B8wNACPiZMSanQf0jgYuB1cC7CQ5fpNvZYITKFzfF9v9R+Aw5mblcO/XajnXoq4KXb4jvn3UHpCbuhlZg2zaCu/cf9NT7vLF6D2f/6Z1YsiLJZfjJWRP51+VHK1khIr1ebkp80ZydNQGG/+Uehlx/OXnj6zHEp4SyQa1/LB1jjPk/YBFwM3BN9PtiY8wt0eNH4yQnbgMGANuBrwKH90C4IiIiIiLSARph4fgS8H1jzAJgK1AHTADOBjzAb6y1CxrU/xxOcuLfwBX7Cq2166J/MP0K+MQY8wzOEPQvRatcba3VX+nS59UsKCZc7gNgWfpa3s36mLtn3k2Gpy0zpzXjzV9BbTShMOFMmPSZBEUKkfp6ir99LaGyMobedScZs2YlrO9ECYQi/O6VNdz/7uZY2dABafzp4qlMG5nbg5GJiLRdboO86o6K6BRQKU7yuXHCItydYUk/YYw5B2fkBEA1zjSr2cAY4GZjzFrg3mhZOc7v43+NLswtIiIiIiJ9hBIWjreAScBUYDaQjrN2xUs4f+jMa2tH1tpfG2O2AN8DvgkEgHeAmxsOVxfpq0KVPmre3g5AmDB/K3ySk0eczCkjTulYh8VLYNE/nG1POpz9ezCJWVDaWsuun/8C/3pn6Zg9t/+G0c89i3G7E9J/IlR5g3ztwcV8tDU+BdTphxby+88fQU5671tfQ0SkJY1GWFRGExbR0XKmwaLbIV+wW+OSfuPq6Pc/Az+OLrSNMWYS8AzOg0RJOL/XX2StLW22FxERERER6dWUsACstfNpx9oS1toHgQcPcPwR4JFOBybSC1W9tDk2nccLuQsoyazi/pk/6Vhn4RDMvQ6I3uQ68ScwYERiAgUq/vMI1XPnAuDKyGDo3X/oVcmKyvoAl/1rEcuLqwBIdrv46dkTufzYUZgEJW1ERLpLwzUsdlQ6o/BIycZGYEWyZWTIKVqyYzEnTDmn+wOUvm4azppy1zccsWytXW2M+R7wCs7Ii/OttTU9EqGIiIiIiHSaEhYi0ma+jZV4lzsPLFa5a3hk0Fy+M/W7FGUUdazDhffC7hXOduFhMOubCYoU6pd+zJ477ojtD779dlLGjElY/51VURfgkvsX8umuagDyM5J54MqjOXzYgJ4NTESkg7KTwWUsEWvYWell7513UvHEk0Sqh+A5Pz4rTzgQ6sEopQ8bBLzYwvSqH0a/v6NkhYiIiIhI36aEhYi0iQ1bKv+3MbZfNstyWMqRXDzx4o51uH0xvPHL6I6B8+4Gd2KmQAqVlLDje9+DkHNTLO9rXyX7jNMT0ncilNX6ueT+hazZ7dxTGZiZwmNXz2R8YVYPRyYi0nEuAwOSodwPO6u82LQIkWonKZsUDDirggHhgNawkA5JBqqaO2CtrY6OTCzp1ohERERERCThlLAQkTap+3AnoT31AHiGZjL7nOOZbc7u2NRFNXvgyUshHH3idta3YNj0hMQZCQQovv56Qnv3ApA+YwYF11+fkL4ToaTGzyX3f8i6PbUAFGSl8OjVsxhXkNnDkYmIdF5uNGFRWR8kUpATK08K+GMJC6uEhYiIiIiIiLRACQsRaVW4NkDVa9ti+wM+Mxbj6uAaC6EAPHkZ1Oxy9kceB6fdmoAowUYi7LrxJ3g/WgJAUmEhQ++6E5PUOz7q9lb7uPgfH7KxpA6AwTmpPHr1LEYPzOjhyEREEiMvxbKxxvn/oTo5/tnmDgQguhsJKmEhHTbOGHNZR45bax/qophERERERCSBesddPBHp1ape2YL1OdMrpR9VQMrI7I539upPYHt0qunsofCFBxM2FZR36VKqX3oJAJOWxrB7/kzSwIEJ6buzdlV5+fI/FrK51ElWDB2QxmNXz2JEfnoPRyYikji5KfHt8qR0BkS33b5g/ECwuSUIRNrkuOhXc+wBjlugxxIWxpgtwMgWDs+31p64X/0U4AbgUmA4UA7MBW6y1u7tukhFRERERHqeEhYickC+dRXUf7QHgHqXl4fzn+SHkRvxuDqQZFj6MCy+39l2p8BFD0NmQcJiTZ8+naF3/4GdP/kpQ++8k7TDDktY352xo9LLxfd9yLZyZ0qt4XlpPHrVLIbnKVkhIv1LboqNbe91pcYTFv74otsmaBHpgG04iYe+qgq4u5nyLQ13jDEu4L/AGTiLiT8DjAeuAk4xxsyy1mqtDhERERHpt5SwEJEWRXwhKp5ZF9v/V8Hz+F0pHUtWFC+BF78f3z/3Lhg6LQFRNpZ95pmkz5hBUl5ewvvuiO3l9Vz8jw8prvACMDI/nceunsWQAWk9HJmISOLlJse3d9oUJkS3Xb54woIgIu1mrR3V0zF0UqW19pY21LscJ1nxGHCJtdYCGGO+AdwL/Ar4elcFKSIiIiLS01w9HYCI9F6VczcRrnJuMi3NWM3bg5Zy44wb299R7V544ivxRbaPvhqmfiUhMUa83iZlvSVZsbWsjov+/kEsWTFmYAZPXHOMkhUi0m81HGGxLdQge+ENxTZdWsJC5ECujn7/yb5kRdTfgU3AJcYY/SIhIiIiIv2WRliISLO8a8obTQX1x8GP8KOjf0RhRmH7OgoH4cnLoWansz/iGDjj9oTEGCjewdavfIWB3/wmuRd9MSF9Jsqmklq+/I+F7K72ATCuIJNHr5pJQXZqD0cmItJ1Gq5hsdlvwOWCSAQajLBwhUwPRCbS41KMMVcAQ4BqYLG1dmHDCsaYVGAmsNZau7XhMWutNca8hjO6YjrwTltPbIwZ1kqVon0bXq8XbzMPg0jfpmsq++i9IA3p/SD76L0gDbXn/dBV7x0lLESkiUh9kIpn18f27yt4hkPHHM4F4y9of2ev/gy2ve9sZw2GL/wbkpIP3KYNwlVVbP/61wnt3s3uX/wCDOR+sXckLVbtrOKKBxZTUuMH4JDCLP5z1UwGZaW00lJEpG9LcUNOWhJV3hDFVX7cOTmEKyqwDUZYjM8Y24MRivSYIuCBhgXGmMXAxdbajdGisTgj4NfTvH3l42lHwgLY3taKCxYsYODAge3oWn9O9gXz5s3rpjPp/dDb6b0gDen9IPt033sB9H7o/drzfigtLe2SGPQuEZEmKuduIlLtPA37UcYqFhet4dljnsWYdj4Vu+xRWPR3Z9udDBf9B7LaOUKjGZFAgOJrv0Ngo/P3ffKoUWSddlqn+02EDzaWcc1DH1Hjd27OTSzK4pGrZpKfqWSFiBwchuSkUuWtZXeVj4Jf/AL3hpdxr32U8ujxVKvPQznoPICTYFgJ1AITgO8DlwJvGGMOs9bWADnR+lUt9FMd/Z7TwnERERERkT5PCQsRacT7aRn1S/cCUOuq54+DH+GWY39Jflp++zra+TG88L34/jl3wrDpnY7PRiLs+slPqV+8GAB3Xh7D/3EfSbm5ne67s15ZuYvvPr6MQCgCwFEjBvCvK45mQHrnR5SIiPQVg3NSWb27llDE4jvmBIoG7oDSByj3BYBkbDDS0yGKdCtr7a37FS0DLos+CHIpzroVd3VhCMNbOV4ELAaYM2cOw4a1NoNUAx+82fGopNucfvrp3XMivR96Pb0XpCG9H2SfbnsvgN4PfUB73g/FxcVdEoMSFiISE64LUvFcfBaCvxc+zQmHnsJJI05qX0e1JfD4VyDsTInE9K/CUZclJMaSu/9I9YsvAmBSUxl+719JHt7a3+Fd79GF27jp+RVEostjnjyxgL98+SjSkt0HbBf0h/l43laK11ZgI5aUdA/nXntEozqL5m5m+6dlrcYw/NB8Zpw7ulHZC3/+hIA32Grb6eeMZuTkeFKqYncdbz60utV2AOd8+whSMzyx/TUf7mLVgh2tthtQkM4pVxzaqGz+o2spLa5pte0hM4uYckL8hko4GOH5PyxtUi8SiVBZmQ7A3NUrcLlczPnSIQwakRWrs3N9BR88t7FJ2/253C4+94OjGpUtnbeVzctKWm07eNwAjr1gXKOyV+5bQV2lv9W2R542grFTC2L7tRU+Xv3HylbbAZxx9RQyc+Prpmxcupdlr29rtV3GgBTOvOawRmXvP7OBXRsrW2075sgCpp4+olHZc3cuJRJu/Sb1MZ8bx5DxA2L7gSoXc//oXLfWnP/9o3AnxeuteLuYdYt2t9pu0PAs5lx8SKOy1x/8lKq99a22nTJnKIfMGhzb99UFefEvn7TaDuCUyw9lQGF6bH/rqjI+enFzq+1662fEvp81V3KE4WPjv17uqPRSlOo8DG7wY5WwEGno7zgJi+NwEhb7Rla0NIIiO/q9pREYzbLWHvAvyYYjaNPS0khL05re/Y2uqeyj94I0pPeD7KP3gjTUnvdDV713lLAQkZjKFzYSqXFuXK3J28aaocU8ffTd7eskHISnroDq6N/Gw2fCmXckJL6KJ56k7L77nB1jGHrn/5F2xBEHbtTFrLX8+c0N3PXauljZhUcN47cXHobHfeCbrJuXl/LO4+uoKffFytKyPE3qVe2tZ/em6ibl+8se1PQ/ir1bq/HVtn4zcv86oUCkTecEsPuyNFF1lf42tQ01c9OyfFddm9oOGd94RI3FHqCdkzTaW1kLQMAXanTUVxdq0zkb3gzfp6bU16a2qZlNR9mUbKuhutTXTO3G6qsCjfZDwbZfm3Co8b9xfXWgw++lij1tex8OHJ7VpGz35ioiIdtM7cb89Y3fh5GQoXRLbavtANiv+9qKtl2b5q5r2Y5aSre3ft5Rhzee5z0SPtD7sLGgP9xo31fTtmvTuz8j3ICbQZ54Im5npZdp6c6915AJ4Lbg9baeDBI5SOyb9Dcj+n0TEMFZo6I5+8pbWuNCRERERKTPU8JCRADwrizFG31S3KQmMeeaC5icdDIZnoxWWu7ntZ/D1ned7cwi+OJDCVlku3b+fHb/8pex/cKf/YysU07pdL+dEY5Ybn1hFQ99sDVW9vU5Y7jxrIkHXO+jptzHO0+sY/MnXbM4kYhIT0qqCTnLBgMlW3dS795JaHsqFUVBBobB5/P2bIAivcfM6PctANZarzFmETDLGDPSWhv7BcM4v1icBtQBH3V3oCIiIiIi3cVY2/oTj9J7GWOGAdsB1q1bx/jxLT2QJb2J1+tl3rx5gDM3XE8PvwvXBtjzh6VE6pwnaHMvOoSMBlPQtNknT8Bz1zjbLg9c+RIMn9Hp+CKBABvPOJPQrl0A5F15JYU3/LjT/bbH/tfM5Unm+09+wovLd8Xq/OzsSVw9Z0yLfYTDEZa/UcyiuZsIBeJPvg+bmMucL01gQIEzPYxxNU527D+C4UA63NY0nhLCWtvkifVOtW0hf7N/Yqc9/yc1OWcznOv2GgCnn35a7Geto6+1X16blpr24Gvd9/NmLZx+2mlt+4zc/7Xq2iS2bSvxer1e/nPrewSr3WDgrmwvYQO3B5cz9cWHAAh+5ibyXCMImCCjbj8Rl2l9qi/pWuvXr2fChAn7doe3NnWQtJ8xZiKwzVpb30z5WzjrR5xgrV0QLb8S+BfwGHCJjf4HZ4z5BnAvcJ+19usJjjH298T27dvbtYbFqBtfTGQo0kW2/PacbjmP3g+9n94L0pDeD7JPd70XQO+HvqA974fi4mKGx6dpT9jfExphISJU/m9jLFmRemg+6UcOan8nO5fBC9+N75/9u4QkKwBcyckM/9vf2HbllaTPmEHBj36YkH47qs4f4rpHPuG9Dc6c8W6X4XcXHs6F0w78B/7Lf1vB1hXxeebTspM5/vPjGH904QFHZOx/g7E9OtrWGNNikqHL2yawnTGGfYec7ab1OhXvwXRteuS1Om070l7Xpmvb7h+vcRmSMiJOwsLCgIihzG3ZTUqsjo34wQXJ1oMv6CM9Ob2ZnkX6nS8B3zfGLAC24oyQmACcDXiA3+xLVkT9G7gIuBgYbYyZD4wDLgA2Azd1Y+wiIiIiIt1OCQuRg1z98hK8y52piWrd9ZTNzmBge28a15XBE1+BUHQ+/qMudxbaTqDUQyYw6onH8RQWYtqwAG9XqQnC5f/+mFW7nIWhUz0u7r1kGidNbH1EyqHHDXESFsZZrHfWZ8eQkt50PnoRkb7Ikxlh32RPBdZFGWF2ROIJC8KB2G+ePm+9EhZysHgLmARMBWYD6ThrV7wE/NVaO69hZWttxBjzWeBGnAW5rwfKgX8CN1lrS7oxdhERERGRbqeEhchBLFwToOL5+LqN9xQ+xizvqRzBUe3oJARPXwFV2539YUfD2b/vdGyB4mI8Q4Y0Sk4kx4eZ9YgyH/x1tZtSn5OsyEnz8K8rjmbayNwmdW3EEvSHSU6Lf8yOPmIgU08fwdijCigcld1tcYuIdIfUQSFcHssxJx7FMy9+ClVetoTiSVkTCrBvwIXP54WcHgpUpBtZa+cD89vZxg/cGv0SERERETmoaPJgkYOUtZaK5zdg68MAvJu1FN8hSXx50pfb19Hrv4DN0ZkMMgvhiw9DUsqB27TCt2YNWy78PLtuuhkbDneqr0RZtKWCu1a4KfU5o08G56Ty9DeOaTZZUV8d4H9/Wsa8f65qtLaCMYZjLxinZIWI9EvJOREyRwYZPD6HQXnOuiM7bfz/A1coENvWwtsiIiIiIiLSHI2wEDlIeT8pwbfKWU+hyl3Dg8Pn8uDxD7dvEdTlT8EH9zjbriT44kOQPbhTcfnXr2fblV8lXFVF1bPPkjxqFAOvubpTfXaGtZZ/vruZ37y0hrB1khVjB6bz8FWzGDKg6ULAuzdV8cp9K6mr9AOwaVkJYzuygLmISB82NDcNNkN1ckaszBWMJywCPl9PhCUiIiIiIiK9nBIWIgehYEk95c82mAqq6HG+e/z1FGUUtb2TXcvhf9+J7591B4yY1am4/Js2s/XKrxKuqAAg7cgjyf1yO0d8JFB9IMSPn17O3OW7YmUTcyI88NVpDN4vWWGtZdWCHbzz5HoiYWdURXpOstaoEJGD0tDoZ2SdJxXrcmMiYVyBhgkLf0+FJiIiIiIiIr2YEhYiB5mIP0zpw59CIALAm9mLyDq8iLPHnN32TurL4YlLIBSd0mPqpTD9a52KK7B1K9uuuIJwqbMAeOqUKQz/x324MzNaadk1NpfW8Y2Hl7B2T02s7PShEc4aHmFAWuMkRDAQZv6ja1n74e5Y2eBxOZxx9RQycjo3PZaISF8SDhh2bagib3eA1Aj4XIZQVjaeqgpMg4RF0B84QC8iIiIiIiJysFLCQuQgYq2l4tn1hPc6iYYtKTt5bMxrPD7ribZ3Eg7B01dC5TZnf+g0OPv/wJgOxxUo3sHWK64ktHcvACmTJjHin/fjzsrqcJ+d8cbqPXzviWXU+EIAZKYk8dvzJxHe9nGTulUlXl7++wrKimtjZUecMpxjLhiL261lgkTk4FKzMZmX3/gUgEEZLra7InjTMvFUVeDyB2P1IsHesT6RiIiIiIiI9C5KWIgcRGrf34n3kxIA6l1efjP8n/zm5N+Rk5LT9k7euBU2ve1sZwxyFtn2pHY4puCuXWy7/HJCu5xpl1ImTGDEv/6JO6cdMSVIJGK5+431/OmN+HRZ4woy+ful0xiS6Wbetsb1t6wo5fUHPsVf7yQ2klLcnHzpRMZPL+zOsEVEeo2kjEhsOz9i2A7UpmaS7QK3ja9bMTn70B6ITkRERERERHo7JSxEDhL+LVVUvbg5tn/3kEe4cs41HFlwZNs7WfkMvP8nZ3vfIts5QzscU3DPXrZefgXBHTsASB47lhEP/Iuk3NwO99lRVfVBvvfEx7y1tiRWdvZhRfzu80eQmZKE1+ttVN9ay8oFO2LJigGF6Zz59SnkD8ns1rhFRHoTT4OERV7YBYT517nf5T+j5lL34U4qnY9MrEZYiIiIiIiISDOUsBA5CIRrApQ9ugYizmLQmXOGccPxv2Rk9si2d7J7Jfz32vj+mb+Fkcd2Ki7jMphkZz2I5JEjnWRFfn6n+uyI1buq+frDS9hWXg+Ay8ANZ07kmjljMC1MdWWM4dQrDuXJ2xczcFgmp1xxKClp+kgVkYNbUmY8YVFonGnxttRGMGk5GOJJcxuMNGkrIiIiIiIiortrIv2cDVvKH1tDpNpZ4DRlTA45Z4xigLsda07Ul8PjX4agc0OfIy+Bo6/qdGxJgwYx8qGH2PXzn1N00014Cgo63Wd7/XfZDm58ZgXe6NO+ueke7vnyURw3bmCTujYMxh3fT83wcOGPp5GendxiYkNE5GDiSrYkp7oJ+MLkRZyExe5qH5GUbIzxx+rZgBIWIiIiIiIi0pRWhBXp56pe3YJ/UxUAruxk8i6eiGlPssJXBY9dDJVbnf0hU+Gcuzq8yLaNNL5JlZSXx/B77sFTVNSh/joqGI7wyxc+5brHl8WSFYcNzeGF7xzfJFlhI5aVb+9k9/wMwr7GrzsjJ0XJChGRKGMgpzANgPQgJFkIRyzVNo0SdyhWb/3etT0VooiIiIiIiPRiSliI9GPelaXULigGIESY92etx52V3PYOakvgwXNh+4fOfvpAuOg/HV5ku/qVV9n65UsI19Z2qH2ilNT4ueT+hfzrvfj0JF+YNoynvnEMw3LTG9WtrfDzvz8tY9F/txL2uyhfkYqNTq0lIiJN5RSkxbbzwoaR1bvY+/i71H8aH6JWUr23J0ITERERERGRXk4JC5F+KlhST+mTa2L7/yh8Bjsspe0dVO2AB86C3cud/fR8uPRZyBnWoXgqHn+cHddfj3fZMoqv/Q6RQKBD/XTW0m0VnPvnd1i0uRwAj9vwq/On8LvPH06qx92o7sale3n8VwspXlMRK/NkRbBWCQsRkZY0SlhEXAzyVhJ+YzGu7Q0qhfQ5KiIiIiIiIk1pDQuRfigSCLP3oZWYgHND6K3sxXhm5POFCV9oWwdlG+Gh86Fqm7OfNQQu+y8MmtDuWKy1lN7zF0r/8pdYmWfIEIyre/Ol1loeXbSNW/63imDY+XcpzE7h3q9M46gRuY3qBnwh3nlyPWve3xUrS89JJv2QSlLzw7jcyvWKiLQkpyA+Ci8vYihNznB2wg0S1UElLERERERERKQpJSwAY8xQ4AvA2cBEoAgoB94DfmetXdjGfk4E3jpAlSuttQ92JlaR1lhrKX96LbbEWdx0a/JO3jpsOX+bdV/bOtizyklW1EWn68gbA5c+D7kj2x9LOMzu226j8vEnYmX5V1/FoO9/v1vXffAFw/z8vyt58qPiWNmM0Xnc8+WpFGQ1nt5q96YqXnvgU6pLvLGysUcNYtYFI5n/3oF+vEVEBGBAYRoulyElN5lAXZCqaMLCNkhYuEIttRYREREREZGDmRIWju8ANwAbgXlACTAeOB843xjzZWvtEy03b2I+8HYz5cs6FaVIG9S9vxPf8jIA6l1e7hn3FH885a8ku9uwdkXxR/CfC8FX6ewXHOokK7IK2x1HxO9n5w9/RM1rr8XKCm68gfwrrmh3X52xo9LLNx5ewoodVbGyrx43mp+cPRHPfiMllr2+jfef3Rhbo8KT4mb2RROYeEwRPp+vW+MWEemrcgalcc2fT6CsLsAvb3+DtOC+ERb+WB2jhIWIiIiIiIg0QwkLxyLgRGvt/IaFxpjZwBvAvcaY5621/mZbN/W2tfaWBMco0ir/1moq5m7E4Ixe+OPQR7nhzJsoSC9ovfGm+fDYxRCsc/aHToNLnob0vHbHEa6pofjb11K/aJFTkJTEkN/cTs5557W7r854b0Mp33nsY8rrnKd6Uz0u7rjwcD575NBm62fmxhfULhydzWlfPZScQenN1hURkeYZl8HtdjEwMwWP2+C1KYRcbpIajLBwh7pvlJ2IiIiIiIj0HUpYANbaZ1sof8cY8xZwOnAY8FG3BibSDsGSevY8uByXdW4CPZ33GiecejZHFhzZeuM1L8FTV8Sffh01Gy5+DFKy2h1HuKqKrZdfgX+Ns+C3SU9n2B//SObs49vdV0dZa/n7gk387pU1RPMPjMhL5++XTmPS4OwW242bVsD2TweTkZvK9LNGaq0KEZFOcLkMg3PS2FZeT3VKJnm+2tgxd1ifryIiIiIiItKUEhatC0a/t2fygvHGmO8BaUAx8Ka1dkdHTm6MGdZKlaJ9G36/H6/Xe6C60ks0nF4oEVMNRWqDVP1zNS6vc3d+WfoaymfC10ec1+p7wr3qGTwvfhdjwwCEx51O4LP3QSQJOvB+sm437mHDYM0aXAMGUPjnP+GeMqXb3pu7q33c+uJa3l5XFiubPS6f319wKDlpnlgc1aU+NnxUwtQzhjVaT2PmhSMxxuAPNB5QlehrJt1D161v0nXre1q6ZkXZyWwrr6fSk06etwobCWNcbtwhl35n6QX8/rYOHhYREREREekeSlgcgDFmBHAqsAtY0Y6mX45+7RMyxvwZ+JG10bvCbbe9rRUXLlzIxo0b29m99LQFCxZ0qr0rBIesyia93vlxrk7z8czodzm34jPMmzfvgG1HlbzB4cUPYXASHdtzj+HjzC9h3+xcTOakEymoKKf8xBNZs3Mn7NzZqf7aImLh3d2Gudtc+CPxBMQZwyKcOXAPC9/ZA4CNQO0WD9XrU7ARw7bd60kf0r7J1Dt7zaRn6Lr1Tbpufc+CBQsIVLmo2ZTMtHIXfreb6uTo9HrhALjScIdcrf4fJV2vtLS0p0MQERERERFpRAmLFhhjPMDDQApwQxsTDSXAjcBcYAuQARwD/Ba4HrDAD7oiXjk4mQiMXZsVS1b4U8JsOdTL+ckXtNp23J65TN75ZGx/88CTWT7sMjDtnKYjFCK5pITA4MGxIpuUxJ4vfrF9/XTCzjp4YpObLbXxREWWx/KlsRGm5NpYWaDKRcXKVILV7lhZzZZk0gaHMJpOXUQkYWwEvLs9ZAKDki3Vyc7C2zYcwHjSyLBpxAexioiIiIiIiDiUsGiGMcYFPAjMAf5hrX24Le2stauAVQ2K6oD/GmMWAsuB7xpj7rDW7m1HOMNbOV4ELAaYOXMmY8eObUfX0lN8Pl/sqeE5c+aQmpra7j6stVQ9vYFwdRUAJi2Jwq9OYcjAVvqylqQFt+NpkKwIzryWohN+RlE779qHy8rY+6MfEVi/gSGP/AfPiBHtfh2d4QuG+duCLfxz5TZCkXhi4gtHDeEHp44lJ80DQCgQ5uNXi1n54U5sJFrJwKGzi5h29gg8Ke5met/vXAm4ZtL9dN36Jl23vmf/a0bYzaMfOkt/5UUMq/NGcUrKOlzGmYIoL2kA406f2mPxikMjc0VEREREpLdRwmI/0WTFv3CmdPoP8I3O9mmt3W2M+S9wFTATeKEdbYsPdLzh3PspKSmkpaV1NEzpIampqe2+btZaKl7YQPhTJ1kRdIUpuHwyGcNzD9wwEoGXfggf/TNedsrP8cz+AZ52xu395BN2ffc6QnucqZbKfvJTRj3zdKP3ZFd6f0MpP31uBVvK6mNlYwZl8JvPHcbMMfmxsuI15bz1yFqqS+JzpecNyeCkSydSNDqnQ+fuyDWTnqfr1jfpuvU9+65ZWpYHb02QvLCLv42bw7cHryJpt5eQBYIRXddeICUlpadDEBERERERaUQJiwaiyYoHgMuAx4ArrI09j91Z+yYJzkhQf3IQq1mwnfr3dwMQJsz/jfg3P8i9mTHktdwoHITnvwUr4iMrOPv/YMbV7T5/5TPPsPuWW7FBZzqPpMJCim75RbckKyrqAtz+0mqeWhLP5Xnchm+eOI5vnTiWVI8zWiISjvD2I2tZ/f6uWD1XkuHos0cx9fSRuJPaOfWViIi0y4DCdLw1VWRZQ7KFynAa2TgjLGzQYq3ttiS3iIiIiIiI9A1KWETtl6x4Ari0AwtkH8jM6PctCexTDkJ1S/ZQ/fLW2P5fhjzJFed/izE5Y1puFPTB01fC2pecfeOG8++FIy5q17ltIMDu3/yGyscej5WlTZ/GsLvvJmngwHb11V7WWv73yU5++cKnlNUFYuXTR+bymwsOY3xhVqP6LreLYCD+Izx4XA4nfWUiuUXKGYqIdIfcwnR2bXBGAuaGDaWhVEZGExYAhCx4lLAQERERERGROCUsaDQN1GXAU8BXDpSsMMYMBAYCpdba0gbl06y1S5qpfx1wErCe6HoTIh3hW1dB2dNrceHc4Hlo0Auccf6FHF10dMuN/LXw+MWw2ZlbHHcyfOFBmHhOu84dKimh+Lrv4V26NFaWe8klFN7wY0xycntfSrtsL6/npudXMn9dSawsKyWJG86ayJdnjMDlav6G1+wvTmDP5mqOOn0Ek2cPxbRQT0REEm9AgwRxfsTFHn8ym5IjDIvmLMpqShmYV9BD0YmIiIiIiEhvpISF4+fA5UAtsA64qZkpCp631i6Lbl8L/AK4FbilQZ1njDFB4COgGGf6p1nAVKCSVhIhIgcSKK5hz0PLcVtnKqMXcucz6bxjOGXEKS03qi+HR74AO5yFT/FkwMWPwpgT23Vu77JlFH/3OkJ7nfXiTXIyRbfcwoALPteRl9JmoXCEB97bwl2vrcMbjP/onDm5iFs/O5nCbGch3rpKPx8+v5GisTlMnj00Vi89O5lLfjkLt1vTP4mIdLfcovTY9kivlynzl5I75TAY7JT5vPUttBQREREREZGDlRIWjlHR75nAz1qoswVY1ko/9wJnAHOAfCACbAXuBu5sbQFtkZaESr3svP9jkkLOjfd3sz4m7axhfG7CARIGNXvg4c/B3lXOfmoOXPIMDD/AaIwWRHx+QiXO6IakoiKG/fnPpB02pd39tMfKHVXc+OxyVu6ojpUVZady62cnc8bkIgBCgTDLXt/Okle3EvKH2bqqjHHTC0lJi3+0KVkhItIzGiYsMkkmo86HKxif0s/v8/VEWCIiIiIiItKLKWEBWGuvAK5oR/1baDyyYl/5HcAdCQpLBIBwTYDif3xEks8Z9bMifT17Totw3eFXtNyochs89Fko3+TsZxTApc9BUceSDBmzZpJ/9dV4P/6YoXf/gaT8/A710xb1gRB3v76ef767mXDEAmAMXDprJD864xCyUj1Ya9mwZC/vP7uB2vL4fOiRsKWsuJYh4wd0WXwiItI2WflpuJIMkZAl0zhTB9pwPGER8CthISIiIiIiIo0pYSHSi4Wr/JTcv4IkZ81SNqfsYOkJO/jp0Te13Kh0vZOsqN7h7OcMh8v+C/lj23zeug8Xkj7jaIwrPjph0HeuBWMwSV33sTF/XQk/e24FxRXeWNmEwkx+c8HhTBuZC8DerdW8++R6dm2sitUxLsOUOUOZce5oUjM9XRZfVwgFAmxftZzUzCwGjz8kVh70+fj41blt6mPyCaeQMSA3tl+6bQubPv6o1XZJySkcddZ5jco2LllIWfH2VtvmDxvB2GkzGpUtffl/hAKBFlrEjTnqaAYOHxnbr6usYNX8N1ptBzD1zHPxpKTG9neuW03x6lUt1g8Gg1SsX4c7NR04vdGx1e++TU1ZafMNGxg8/hCGH3pYbD8SDvPR3OfaFO/E4+aQPTA+R3/Frh2sX/RBq+2My8XR513QqGzLJ0vZu2VTq20HFA1mwszjGpV98trL+OvrWm078rAjKRwzLrbvq61l+RuvtNoO4PBTziQ1MzO2v2fTBrauWNZqu5T0DI447axGZRsXf0DFp07bpcF6PJ7mf64LRo9l1OFTG5Ut/t8zWGtbPe/4mceSWzQktl9dspc17y9otR3A9PM+h8vlju1vX7WcXRvWtdoua+AgJh13QqOylW+9Rn11VQst4oZNmsKQCRNj+73tM2Lfz5orOZXgnNmkpaXhchmmnzWKJTureGPNTj7ncpMSbjjCwt+kHxERERERETm4KWEh0kuFyryU/HMl4XLnCVST42HdCdXcMOsnNLPGiqN4CTz6RaiP3oTNH+ckK3KGtemckbo6dt9+O1XPPEvBjTeQf8UVsWOmhRuGiVBa6+dXcz/l+WU7Y2XJSS6+e/I4rpkzluQkF7UVfhb+byNrPtjdqO2IQ/M47vPjyRuSsX+3vZa3pppNSxezcclCtixbStDv4/iLL2+csPD7eOfRB9vU38jDpza6Gbl3y6Y2tU3LzmlyM3Lt+++w+t23W207afZJTRIWHzzzOL6a6hZaxGXm5TdKWNSWl7X5tU456bRGCYvtq1bw7uMPtdouJXdgk7Llr79C8eqVrbadcf4XmiQs2hrv4PGHNEpYlBVvb1Nbt8fTJGGxYfGHfPLaS622HTt9ZpOExeIXnqFqz+4WWsQlf/WbjRIW3trqNr/WCTOPa5Sw2LludZvaDigc3CRhsebd+ZR9sgSAsmWLW2x75BnnNElYvPv4w0TCoVbPmz9seKOEReWe3W1+rdPO+Sw0SFhs/mQpi//7dKvthh96WJOExdJXXqCkDYmo4y++vHHCohd/RryfkcqZ37gOgKPPGc3e5bvYtnEHdSmpZDRIWAT9rSc4RURERERE5OCihIVILxTcU0fJ/SuI1AQBcOelMuiqw/ha3qzmG0Qi8P4f4c1fQSR6o67oMPjKc5A5qE3n9K5cxc4f/pDAli0A7L3zLrJOOYXk4cM7+3JaZK3l6SXF/Pql1VTWB2Pls8bkcfvnDmPMoPjNzxVvFzdKVgwoTOe4z49j5JT8lhM4vUjl7l1sXLKQDR99yI41n2IjkZ4OSUSkS2xY+D7hq76NOzoib8gAJ8lYk5xOQYOERdgfbLa9iIiIiIiIHLyUsBDpZQI7atlx3xI8fmc6pqSCdAZdNQV3dkrzDap3wnNfh80NpjIZcQxc/DikDWj1fDYSofyBB9l7990QdG4emfR0im6+Gc+wto3M6IgPN5Xx+1fXsmRrRawsJ83Dz86exBemD2uShJh62ghWzC/G5TIcfc5oppw4tE8sqL389VdY+vL/KCve1uzxtKxsxkybwagjjmpUnpyewWd++LM2nSOnoLDR/rBDp7SprbuZ6b2OOvuzjJ91XDO1G8vOb5oIO+vb1xMOtf5ke+HocY32cwqL2vxak9PSG+2Pn3ksecNaTqoF/AGWLVuGKzm5ybHjLvoK3tqaVs+ZN3hoo31XkrvN8eYPG9Fov2jchDa1Nabpe/vwU89k5BFTm6ndWEZObpOyU7/2LYKB1qffGTRidOO+BuS2+bU2fIIfYPTUo/lMftORLftrOGJmn2nnXYA/Ow+AI488kuSUptcPIGdQYZOy866/EUvrU0IVjhnfaH/giJFtfq0Np4MCOHT2SY1GSLUkLSu7SdmJl16F39v6dF35Qxu/l3rbZ0TAH2D+U4/i3b2DcDhE+Y7tDBrpvJ+G5qYBUJ2cgQ3F34fBNkwhJyIiIiIiIgcXJSxEehHf5kp2/WsZnqBzM2xHZilHXHV6y8mK1XPhf9eCd99NfwPHXw8n/RTcrU/hFNyzl10/uZG69+Nz6qdOmcLQ//s9yaNGdfLVNG/ljip+9+paFqwraVT+mSOGcPO5h5Kd5GbR3M0kpyQx9fT4DbrUTA9nXj2FQSOzSMts/uZlb1RfVdkkWZE7eAhjp89i7PSZDJkwscnNT4Akj4fxRx/ToXNmDyxoNA1RexSNHU/R2PGtV2zGmKlHd6hdakZmh19r3pBh5A1pObHm9XrZUFbZ7LFhkzq2CL3L5e5wvJm5eR1uWzBqDAWjxnSo7f4JsbZKTk3rcLwDCosYUFjUobZF4yaQuWkLAGOmzSAtLa3Nbccd3cJItFakZ+d0+LUOHD6y0TRn7TFiyuEdatfbPiO8Xi8r164jfMgUzrvkMrJycmLHMq2LkRE3ZdnjIRRfoygcaD3BKSIiIiIiIgcXJSxEegnv2nL2PLQcT9i5eb0ybQPrTqliRlZ608qBenj1p7DkgXhZ1hC44D4YPbvVc1lrqXn1VXbfcivhykqn0Bjyr7qKQd+5FtPM0+idtbGklrvmrePFFbsalY8ryORn50ziuJF5LH+rmGWvbcNfHyI51c2k4waTmhFPvIyYnJ/wuBIhHAqx6ePFrHxzHqd87ZuNbgSOnT6T9556hMHjD2Hc9FmMnTaTvKFNR5CIiPR1qdHPvqQG/4cEvCEe+PG7fJFk/IOOxRa/HDsWUcJCRERERERE9qOEhUgvULtiD2WPrSEp4iQrPspYRfm5Hr5z5HVNb2zvWg7PfA1K18XLJn0GzvsjpOe16XxVz/+XXT/5SWw/qaCAIXf8loxjOva07oHsrPTyx9fX8/TSYsKR+DQtQwekcf1pEzh3chGr39nJw//4AF9tfD7zUCDCznWVjJnatjU4ekLF7p2sfHMeq+a/QV2lM8qlcMx4jv3Cl2N1Bo4YxTf+9lCT6XJERA4GyWlJpOckU18VAE8ONFjDYkz66AO0FBERERERkYOREhYiPaz24914X9iG2zpz1r+X9THuCwbz1UlfaFwxEoGF98Lrt8Rv+HjS4aw7YOql0I4n9rPPOpPSv/6V4PbtZJ56CoNvu42k3MTeUC+r9fOXtzbynw+3EgjHF5gemJnMtSeN48LDh7Bx4R4e+8WHzo2sKGPgkFlFTD97NDmD2j4NTHeJhEOse/8d1r77Fts/XdHk+NYVyxolLIwxSlaIyEHJWosxhtyidOqrArjdKdhx8cR1rntAzwUnIiIiIiIivZISFiI9aMAuN/4PinHhJCveyFlI4UVTOHPMmY0r1uyB578BG9+Mlw0+Ai78Jwxsfb2BUFkZSfnx6ZRcqakMvu02wlVVZJ1+WkKnJ6r2Bbn/nc38851N1AXCsfKs1CS+ccJYrjxuFGve3sHjN39IwBc/joHx0ws5+pxR5BZlJCyeRCkr3sbexe9Su3UTm/ZbvNjldjN22kwOO/n0Ni2KLCLSX1lrWfvefLZ9spS6qkou/uXvyC3MYMfaSgBq8nPZN9GhbfB/hIiIiIiIiAgoYSHSY/KLkxi1PTu2/1Leu0z+8myOG3Z844rrXoXnvwX1pfGyY78LJ98MSQdeayJcW0vJH+6m8plnGP3cs6SMjk+/kTFrZkJexz57qn38693NPLJwG7X++LzkqR4XVxw7mm+cMIYB6dF4LY2SFWOmDmLGuaPJH5qZ0JgSqbx4O9XrVzcqyx08lMNOPp1D55ysURQiIjijyla8/jJ7N28EoGrvHgYUxtdiqgznU+jMfoj1B5rrQkRERERERA5iSliIdDMbilD38rZGyYrnCt5i9iXncWRhg6fzg16YdzMs/ke8LLMIPvc3GHvSgc9hLTXzXmPPr39NaO9eAHbf+ktGPPCvhC/2vLGklvvmb+K5j3c0mvopyWX40tHDuGhEAaNGDyArPZ5cmTx7CB+/to0xRwzkyNNG9KoRFdWle1nz3gKGjJ/IsEOnxMpHTZ2OSUoCaxk/8zimnnY2QydN1uLZIiL7GX3UjFjCYuNHHzJwZDwRXx3Og2jCoramHKV6RUREREREpCElLES6UajKT/kjqwlsq4mVvT9hNWd+7mLG5zaY2mnPKnj6a1DS4In+Q86Gz9wDGfkcSHDHDnbf9itq3347VmbS0sicPdtZB8PtTshrWbqtgr/P38i8T/dg41OSk5zk4sIjh3Jebg7bPtjDglc/pfKkYcy+aEKsTkq6h8tvP5ak5MTE0lnemmrWffgea96bT/HqlQAccuycRgkLT0oKQ048i5TcPE4951zS0nrf+hoiIr3B6KOOZuEzjwGw4aOFjJt5euxYjT8bovnrdWUbGc6xPRGiiIiIiIiI9FJKWIh0k7r1ZZQ9thpXvXN3P2Is20bXc97Fl8ZvflsLi+5zRlaEo+skJKXCGbfD9K8ecGHtSH095f/+N6X3/QPr9cbKM06YQ9HNPyd52NBOvwZrLW+vLeHe+RtZtLm80bGs1CQuO2IYM0wKWxbu4eOK+BRWn76/i6PPHU1qhidW1tPJivrqKjYs/pANi95n64pPiIRDjY5vXLKQYMCPJzklVpZWUNTdYYqI9Dm5Q4YxoGgwlbt3Ubx6JUmeIG6Pi3AwgqsuC7Kceq5gz8YpIiIiIiIivY8SFiJdzEYse95YS+CNPbHFtV05yaweUUJ9ZoMFR2tL4L/fgvXz4mWFU5yFtQsmttx/OEzl089Qes89hEpKYuVJgwZR+LOfkXXG6Z2etigQivDiip38ff4m1uyuaXSsKCuFK8YWMbQ8zPbX9rIyYhsdLxiVzdTTRpCc1js+bnatX8s7jz5I8epVWBtpcjxvyDAmHX8iE48/sVGyQkRE2sYYw9jps1gy9zlsJMKWZR8xoDCTsuJaalPyYvVcYU2pJyIiIiIiIo31jjuIIv1UxBti08MLSd0UiSUrVg/YwqyrPkP9e7vjFde/Ds9/E+r2xstmfQtO+QV4Ug98EmOoeOyxeLLC7Sb3oosYdP33cGdldSr+NbureXJxMc8v20F5XePFUccMyuDqqSMIvL6L2rf3sq1RTDDqsIFMPW0Eg8fl9Og6D5FIGJcrPpojKSWF7Z+uaFQnM38ghxwzm0nHn0jBqDFal0JEpJPGHe0kLAA2LP6Q3KLPUFpcS5K/AhgMQFK4d0wLKCIiIiIiIr2HEhYiXcS/o5otDywmo9aZrDtChOcHz+f4i84hKcMpc0WCeN74OXx0X7xhxiA4/28w/tQ2nce4XBT84Adsv/pqsk47lUHXX0/KmDEdjruqPsj/PtnBU0uKWV5c1eT41BED+MYJYzltUiEAD7++K3YsPSeZSccO5tDjhpA9sGfWeLCRCHu3bGLDRwvZsOh9Djl2DrMuuCh2fODwkQwoGowxhvEzjmX8jGMpHDteSQoRkQQaMmEiadk5eKur2PLJUq78w3d4zuPlK/f+BDvodow7maSwfg0VERERERGRxvSXokgXKPlgM7UvbCEj4iQmqt21/G/Kh1x9/nfJT8vH6/WS5d3BtK33kuRtMDZh3Glw/l8hs6DZfv2bNrH3rrsYePXVpB1xRKw84/jjGP3f/5J6yIRm27UmErG8t7GUJz8q5tVVuwmEGk+VlG9cnJeTw6TMdL74zSMa3dyffPxQdm2sYvLsIYw8LB+329WhGDrDW1vD1k+WsnnZErZ8spT6qsrYMdei9xslLIwxXHzb/5GWla0khYhIF3G53IydNoOVb71G0O9j75bVDM7LoC45DcIBcCfj0QgLERERERER2Y8SFiIJZIMRNj65iNQVQTzRH691qVvZdpqPHx3zc9wuN3grSHrnj8xZ+xeSbHSaJXcKnH4bzLim2YW1g3v3UnrPX6h85hkIh4lUVjHi4YdiN9yNMR1KVmwrq+fpJdt5ZukOdlR6Gx1LicDJmZkcEfYQ3uODCh+l+Kgu9ZIzKD1Wb9pZI3vkxn/l7l2sfu9tNi9bwu7165pdjwLA7fEQ9PvwpMSn1krPzumuMEVEDlpjp89i5VuvAbBz7acMHT6HmpQ0bCiASYaUsKeHIxQREREREZHeRgkLkQQJlnrZ+MAHZJbFb8C8PnAhh3zxWK4YcSx4K+HDe+HDe/H441MtRfIn4PrCA1A0pWmfu3ZR/u+HqHjiCaw3nlAIbN1KaM8ePEVF7Y7TGwjz8spdPPVRMR9sKmt0zG3hMFcyc1LSSS0JYKvDhGmwMLiBHesqGyUsuitZYa1tdK69Wzby/pOPNKnnSUllxGFHMvrIaYydNoPMvPxuiU9ERBobefiRzP7yFYydPpP8ocOpWbGLXZ5MZ4QF4ImOQhQRERERERHZRwkLkU6yoQg1C4qpfnMbmSEnWeE3Af434X2+/MVrKHSnwfzfwQf3gK9BogI3mwedwpBL/05adl6jPn3r1lH+z39R9eKLEArFyl0ZGeRffRV5l12GKz2dtrLW8vH2Sp76aDsvfLKLWn+o0XEXcGlKNkWVYSL+CODHNjg+oDCdQ2YWMWFmIdn53bM2ha+uluLVq9i+8hO2r1rO9M9cyKGzT4odH3HYkRiXCxuJkD9sBKOOnMboI6cxdOJkkjx6aldEpKd5klOY8dnPx/bNhlpqB51JXXIOWUAy+qwWERERERGRxpSwEOkE/9ZqKp5dT2hPfaysLtPPu8es5zvHXkvS4n86iQpvRbyRcRM67Eu8GToKb8oghnjiCYCI38+O715H7fz5jc5jUlIYcNEXGfiNb5CU1zi5cSB7a3w8t9RZQHvD3tomx8cMzODz04dx4VHDWPTgGrbtKY8dS8vyMP7oQg6ZWcSgEVldPpIi6POxY80qtq1azraVy9m7eWOjaZ62rfikUcIiNSOT866/kcLR48ge1PyaHyIi0nvUbaohKW00AbezdkUSHgLBAMkejbQQERERERERhxIWIh0Q8YVY/+xC0peHMURv5Lsg8/hhDJmdxyHLlsOfjgJvPAGAccMRF8OcHxJMK8I7b16Tfl0pKdhgILbvzskh95JLyP3KJW1OVATDEd5cs5enPirmrbV7CUecsRLGwtCwi0PDSUxyJ3P8tyYzfXR+LBExYUYhOzdUMubIQUyYWcTwibm4umEB7VXz32D5G6+ye8NaIuFw85WMwV/fNOEyfsaxXRydiIgkSsHQDPasryTcYAifO2zQQAsRERERERHZRwkLkXba+/EWyp9fT6Y/FaLJCs/QTHI/M4zk4sfg3ruhvsHaEMYFh38J5vwQ8sc6ZV4vJhQic+VK7KmnNuo//6qr8G/ZQv4VVzLgwgtwZWS0GlNVfZB3NpQwf20Jb67ZS1mdk/RIsjAu5GJc0M3EcBKeWD4gTJHP1WjUxNhpBYw+chDJqYn/WLDWUrV3DzvXreaQY2bjToqfo6aslJ1rP23SZuCIUQyffBgjJh/BsElTSM3MTHhcIiLS9cp3FrPmvfmsWfAOkfAphGkwKi5oIbXnYhMREREREZHeRQkLkTYKVnpZ/dh75G1NITN6d8VrfCwYu5wrD0nG9eQfoa4k3sC44LAvwJwfw8BxseLAli1UPPUUo598iqSaGrwzZ5J+5pmx4+nHHMO4V1/FHGAdhkjEsnJnFfPXlvD2uhI+3lZBdCAFqRGYHHIzPuhmdMhFkm06lZPLZSjfXcfwQ+OjNpI87oQ95RoKBNizeSM7161m59rV7Fy3mvqqSgDyhgyjaOz4WN0RUw7nvScgd/BQRkw5nOGTD2f4oYeRnjMgMcGIiEiP2vzxR3zw9GMAJKVuJGzjCQsbjLTUTERERERERA5CSliItMJGLFveWkH4zRLywimx8qVZq7GTN3DlhudxvbGnQQsDUy6EE26AQRMAiNTVUf3Kq1Q++yzeJUuA+A9f1YP/Jr9BwsIYA80kK8pq/byzvpT560pYsK4kNopifxfXpTAw3HQqJ0+KmxGT8xlz5EBGTsknJT1xc3BYa1nx5qvs2biBPZs3ULptC+FQqNm6O9etbpSwKBo7gWvufZCsvIEJi0dERHqPsdNn8fZD9wMQDm4gbI+JHbPBFqYCFBERERERkYOSEhYiB1C1cQ9bnv2Y/LIMPDiLgpa7q1g4+l3Or3qeQct2NW4w+XNOoqJgEtZavB99ROUzz1L96qvY+vpGVa3LRe2hhzL4B99v9tzhiGXZ9krmryth/tq9LN9RhbWAhdyIYWrITV7YxRvpQcYVZHLChEGceMggwkvKWfX2DsBZOHv0EYMYfcRAhk3MdUZRdEI4FKR021aCPh/DDp0SKzfGsOj5p6jau6fZdikZGQwZP5EhEyYxfPLhjY653G4lK0RE+rEBhUUMHDGK0m1bsOHdhGyAffNAlVTsYUjhmJ4NUERERERERHoNJSxEmuHfWk3Va1sIbKgin/gaEu/kLWJUymNcXby+cYNJn4ETb4TCybGisvv+Qckf/tCk7+SxY8k471w+yswknJXFYVPiN/731vhYsK6Ut9fu5Z31pVR5g4AzzdOEkJuRIRejgi5ybHwExQ3Xz2DC6AGx/Z148HjcjDlyEIWjs3G5mk4J1RbemmpKtm6hdNtmSrZtYe+WTZRu20okHKJg1FguveOPjeoXjh7nJCyMIXfwUCdBcYiTpMgfOhzj6voFvEVEpHcad/QsSrdtASAUrgSKANhbWcwQlLAQERERERERhxIWIg34t1VT/fo2/OsqGpUXJ+9mc96jfK7qLVLrbfzAxHPhxBsJuYvAmEY/UFmnnRpLWLgyM8k++2wGXHgBqYcfjs/nIzxvHuEIfLS1kg+2bGX+uhJW7awGwG3hkKCbGSEPQ0MuBkVavtkf2eOFBgmLIeMHMGT8gBbrH0jxpytZ+N+nKN26mdqK8hbrlW7fSigYJKnB1FVHf+ZCpp55HgWjx5Cclt6h84uISP80bvosPnzmcQCCoRL2JSyCdbU9GJWIiIiIiIj0NkpYiADlG3exZe7HFOzKalRuUut5K+tpjq//L7Mq/fEDh5yNf+xl1C7fQc33bsf7ySfkf+PrFFx3XaxKypgx5F52KWmHHUbWqafiSkujtNbPovWlfLK1lNfXulhfZfB/uJRUC/UNchIWON3rwdPMgtnuJBeDx+UwfFIewyflMXBYZpteY9Dvo2LXTsp3bKd8ZzFlO4qZ8ZkLKRwTXxA8FAywZdmS5jswhrwhwygcM47C0eOIhEON1tooGjehTXGIiMjBp2D0WDLzB1JbVkooVBYrD9UrYSEiIiIiIiJxSljIQa180y42vbCEol05FBBPVrhdpWS7HiHdvslXapwFQa0FX8ZsaryHUvPwKgKbGq89Ufv6G7GEhbWW4govqz5zJat2VrPqiZWs2lnFnio/2RFDYdhQEE7mvLCLwSEX25IiPJcZYMrQbE6cUMAJhwyi+Jkt7FxfiXEZBg7LZOiEAQw/NI/B4wbgST7wWhTFn66kbMc2yncUU77T+aou2duk3sjDjmiUsBg0cjQAqRmZDBo5moEjRzFoxGgGjRhF/rAReFJTO/YPLSIiBzVjDOOmz2TZqy8StoFYeaRKCQsRERERERGJU8JCDkqlm3ay+YWlDN6VQxE5sfKSpFLG8CjZ7jcxJgSArzKZir3jqd1qCZVtBDY27XD0GHZMPprH/ruClXvq+HRXNVXeIJkRGBlyUxB2cWLYUBBOJbWZURPj3R4W/WQ2BTnxhMDgcw3WWgpHZZOcGv9RDYeCVOzaTeWe3VTt2U1SSgpTTjy1UX/z7vsTFbt2tvrvUL5je6P9jAG5XHPvg2Tm5mNMx9a+EBERac646cew7NUXCdlgvLC6vucCEhERERERkV5HCYsGjDFHA7cCxwIeYAVwl7X2yXb0kQLcAFwKDAfKgbnATdbapo+4S7f5f/buOz6O6mrj+O+R5AbYdGya6S2h9w6mORBa6B1CJ3QIEELoHUJCKIHQWxJ4CaEkhNBN7zWEGnrHgAsGV+m8f9w7YrxItmVL2pX9fP3RZ6VpO+OZ3dm9595zGkeO5Y3Hnmfks5/Td+jMzFkKVHzR8BVvzHA7a337L3o3jUb1DbDgBrDE5oz5eHqGHn38eNsKicHzLcYzcy/FP3svzJfdZ2WWsXUMfuwDRpZSO/UfV88m33Wf4H5NP3N35lp4ZmbqPv7LcYYZR/HxG6/y8X8HM/yrwQz7/FOGfv4533w5mIim5uVmn2+BHwQsZp5rnvECFj2mm55Z5p6HWeaaNz/Owyxzz8OMc/T7wf70nmW2Ce6vmZnZ5JjnR0vSY7rpaYxxzdNixOgJrGE2bWuP7yZmZmZmZl2NAxaZpAHA3cAo4EbgG2Br4CZJ80bEeZOwjTrgdmAg8CRwC7AIsDewvqRVI2JwBx2CtSAiGPPecD5/9DXGvvYtfZq604eZm+d/Wf81n4+5g4XffJBVP6vnmyGzMHTfzWnc5Qg+HtWDT4aO5JOeX7FKQzfG0cALc63Aa32XZvCM8zG9ejJzUx1bjBLdR6XRCLdPN5o3uzfRt08PfjzXjCw5Qy+47/s41XR9xIxzBL1mGM2ng98CDWfuOWdl5LAhjBm1P917zdK87Hsvv8D9V/5xosc49PPPiIjxRkQstd5AFlxupebgxHQzzuQRE2ZmVlX1DQ2sucNufPS3fzdPi2/HTmANs2lXe3w3MTMzMzPrihywACQ1AJcDTcDaEfFinn4K8DRwhqS/RcT7E9nU7qRgxV+BnSMi8nb2By4BTgP265CDsPE0Dh/Dt0++w3dPf8y4Ed2pA3rw/UiHoWM+pOnDQfT47+P0b2pkDD0IYGy33vz13uGc+/mz421v7zXOZEb1pA4xPzB/7hyaTvFYmppGQozk54vOzQY7r8rsvXsAMPKbEfz54ctprWRdQAABAABJREFUHDuC0d8O4+sho/i64ioa8p/0uMImWzLDzN8HLHrP+sORDj2mm54Z+/Zjpr5zMlPffsyYH4mAUkBi4RVXmbz/ODMzsw607MCf8tndDzT/rVEOpptVasfvJmZmZmZmXY4DFsl6wELA1cUXAoCIGCbpDOAaUjDilIlsZ5/8eGwRrMj+BBwF7CzpsIgY2V47bt9rGtfI6w8/xNdPf0T/of2pox5KQYrGxu8Y9fF/GP7Fm4wYM5JRPWdm1MLbMqrnrIzsPjOjes5Ao5oYM/arH2x73Li3aBw7mHE5MBExkmgaCTEKaGxebobRGzN773Wa/+4xfS+Gf/HueCmcWjP8q8HMXfp7jgUWZMAe+9J7ttnpM+vs9JmjL71m6N3q+mZmZl3Bd3U/bv5dY3xfM2tBe303MTMzMzPrchywSNbNj/e0MO/u/LhOC/OaSeoJrAK8UdnbKSJC0r2k0RUrAo9M6o5JmmciizS3cf/zokuZbcaZIZqIgCYCmoImmiAgoonZ5+/PzLP3bV552NeD+eT1/wFBRJD+AZH/jiBP4EerrUpD9++LQr/z6ksM+3QwaePFaIO8bnqACLpN14Nl1h4w3k4//8A9NI4cm1cN8pM0rxP5OfvMPTuL/Wg5xn7zHTFiFKNHfMewD4fTXd3pRg+61/Wgu3rQra4H3et60k3d6MH0fM73QYfuda8ypu45Hv9oVr6mDnqPI2iC+JSID2DUaBg5Bobl3a/rzUpL7snsvXvQr3d3Zu/dgyG3vMFXQ96c6Pn6atgnvPXWW+NNG1XfwLgxY+jVuw+9+sxIrz4z0n266Rg8ZCgNvaZnqRVWZKY5+lI340w/WLf3wksAMLwxGP7pZ8BnE90H6xijR4/myy+/BODtt9+mR48eVd4jmxQ+b12Tz1vX05ZzNrRxCJ9+l9IlDh3VxD8uvIZvx31H44gR0JQ6ATR0a0R1gerq6d6rB43j6mgcW0f3um7U1XeHhu8/wg4bMwyNyMW7Bd26p2GQ9d260dC9G+PG1NPUKHrV9aKpvgE1pGJTY2Mc340ajkamOhp1dUF9t/z8PXtQX1/PmJHpeabXdDT27Nb8nCMbRzPmu2FobFq+vqGJuvomEPSYbjqamsS40fXUq4Hu9T2Ibt/v7zfjviW++SZ/6Mn7K1BdA917dW8+1p51PaC+oflYm2jim1HfoO/SsUpBQ/e8vz26U9/QwNjRDUQT9FIvmnp0a04HOTrGMuq74Wj0mLS/dUFdt0YGDxlaPjX1rZ9h62Tr5sfJ/m5S1pbvE++++y4jR05636pxw7+c5GWteiq/Y3QUXw+1z9eClfl6sEJnXQvg66EraMv18Nln47VTttv3CY0/EGDaJOlmYBtgxYh4roX53wBDIqL/BLbxY+AV4J8RsVkL848EfgvsFRFXtWHffILMzMzMrKOtFBHPTnwx62jt8d2kYnl/nzAzMzOzjtZu3yfq2mMjU4EZ8+OwVuYPLy0zJdsoL2dmZmZmVivmqPYOWLP2+G5iZmZmZtYlOSVU7Zt3IvP7A4/l31cFPu7Y3bF20g94Jv++Es711BX4nHVNPm9dk89b1+Nz1jXNDTyZf3+9mjtiHWpi3ye6A4sDXwCDKRdom7b4fcwKvhaszNeDlfl6sIKvhaQemD3//p/22qgDFknRe6m1nkp9gCHtsI3ycpMkIj6a0PwiN3H28cSWt9pQcd4+83mrfT5nXZPPW9fk89b1+Jx1TRXnbUy19sN+oD2+mzSbxNfjO5O6vamV38es4GvBynw9WJmvByv4WhjP+xNfpG2cEiopqoksUjlDUj9ghtIyrXkHaGppGxXb7rxKNmZmZmZm1tW0x3cTMzMzM7MuyQGL5KH8uFEL8wZWLNOiiBgJPA0sJmm+8jylsNuGwLeAixmamZmZmVlrpvi7iZmZmZlZV+WARXI/aYTETpKWLSZKmhH4NWmI/HWl6XNKWjzPL7ssP56p8ccG7QcsCPw5BzbMzMzMzMxa0qbvJmZmZmZmUxPXsAAiYpykvYG7gYcl3Qh8A2wNzAf8MiLeK61yJrA78HPgmtL0a4HtgR2BBSQ9BCwMbAW8C/ymY4/EzMzMzMy6ssn4bmJmZmZmNtXwCIssIh4E1gQeIwUdDgA+B3aIiPMmcRtNwBbASaQK6YcDawBXAqtFxOD233MzMzMzM5uatMd3EzMzMzOzrsgjLEoi4mlg40lYbg9gj1bmjQZOzj9mZmZmZmZtNqnfTczMzMzMpiYeYWFmZmZmZmZmZmZmZlWniKj2PpiZmZmZmZmZmZmZ2TTOIyzMzMzMzMzMzMzMzKzqHLAwMzMzMzMzMzMzM7Oqc8DCzMzMzMzMzMzMzMyqzgELMzMzMzMzMzMzMzOrOgcszMzMzMzMzMzMzMys6hywMDMzMzMzMzMzMzOzqnPAwszMzMzMzMzMzMzMqs4BCzMzMzMzMzMzMzMzqzoHLMzMzMzMzMzMzMzMrOocsDAzMzMzM7OpkiRVex+sNvhaMDOzCfF9onY4YNGFSVpJ0r8kDZX0raQnJW1X7f2y1kl6T1K08jOo2vs3LZO0i6Q/SXpW0uh8TvaYwPJ9JP1O0vt5+fcknStphk7c7WleW86bpJMm8PoLSfN37t5PmyTNLekwSfdI+kDSGEmfSbpF0iqtrOPXWxW19Zz5tVYbJPXMr5uHJX0iaVQ+b49J+rmkbi2s49eaTVUkKSKi2vth1edrwczMJqa4T0jqWe19mdY1VHsHbPJIGgDcDYwCbgS+AbYGbpI0b0ScV839swkaBpzfwvT3Onc3rMJpwHzAl8Cn+fcWSZoeeAhYFrgH+CuwHPBLYB1Ja0fEqI7eYQPacN5KrqXl19vQdtsrm5CDgWOAt0mvn8HAIsCWwJaSdoqIm4qF/XqrCW06ZyV+rVXXDMABwNPAnaTzNjOwMXAVsIOkjSOiCfxas6lTRISkNYC9gP0iYmy198mqI18LdcC5wCMRcZukuuI90KZ+Rc9pB67MrDX5feJ0oKekYyNidLX3aVrlgEUXJKkBuBxoAtaOiBfz9FNIX0rPkPS3iHi/entpEzA0Ik6q9k7YD+wNvBUR70v6FXDmBJY9mtSgc3ZE/KqYKOksUqPe4RNZ39pPW85b4ZqIGNSxu2UT8DSwbkQ8VJ4oaS3gfuASSbeVPhz69VZ9bT1nBb/WqutrYMaIGFOemD9H3gtsRApe3Jln+bVmU518vf8J+BFwKfC0e9pP03YmvZfNB9zmYMW0pdxzugjAS+rmQKYBOIBp2Sqkz72vRsQR1d6ZaZlTQnVN6wELAX8pghUAETEMOAPoDuxenV0z65oi4r5JCfLliPvewAjg1IrZp+bpe7f/HlpLJvW8We2IiL9XNnzn6Y8AD5J6gC8Ffr3ViracM6sdEdFUGazI08cBt+Y/Fwa/1qzrK3pOV0yrz9f7dXnST8C9q6cFlddD6e87SKPdl5C0cKfvmFWdpBNIWSkWB4iIsUqmq/KuWZU5WDFtySPuWvIM8DzwY0lr5mVd16IKHLDomtbNj/e0MO/u/LhO5+yKTYYekvaQ9GtJB7WWs91q1iLAXMBjEfFteUb++zFgQUnzVmPnbJKsLekYSUdJ2tK52WtK0cNtXH706632VZ6zMr/WalD+gvaT/Ocr+dGvNeuycq/Y8XJO52mNeZHHgeHAojn1mU2lyil/JHUvpue/RUqnfDfQj/SeZ9MQSb2ARYHNgOXztD2ARuCQ6u2ZVUMOVNWV/l5a0pWSlqnmflnHKt0nmio/E+SODo2ktPuQ21Xd0aE6nBKqa1okP75VOSMiPpM0orSM1Z5+wNXlCZKeAXaMiLers0vWBq2+/krTB+blPuyUPbK2Orni76GSDo2I61pc2jqFpP7ABqRaJP/Jk/16q2GtnLMyv9ZqQG60+zUgYFZgfWBx4OqIuD8v5teadVm50WEFUgqH5ySdk6cVDQ9fAh8DA0ivAxdgnkqVAlcnAwtIuiAinpXUEBHjJI0BXgO2A5YGHi5dJzb1GwX8hpTy5bg82mJR4AHgNacEmnaUXveRR9f0JNVm+znwpqS3I2JENffROkbpPnEssLekX0XEzflzQXEveI7U0WFxST1cx6I6PMKia5oxPw5rZf7w0jJWW64mNRT0BaYnFbO8HlgJuF9S7yrum02aSXn9lZez2vESsCewINALWIBUTDiAayRtXsV9m6ZJ6kZ6L+wBHFP6sOjXW42awDkDv9ZqTXfgROAE4EBgMeC3wL6lZfxas67uFmAb0jV+ZJ7WBBARrwOvA3MCP63K3lmnkbQbcDypXsXvJE2fgxVFkOqxvOhOAA5WTP0qim1/SxoVuhjpnnY4sGtE3O5gxbSjeN1LOh54klTPa0PSfWMb8ggcmzpJWodUWHsBUi2+1Ri/ffyz/DMQ6JbXcVqoTuaAhVknioiTI+KBiPgiIr6LiBcjYjdSo898wD5V3kWzqVZE3BoRV0fEuxExKiLei4iLgG3zIqdVc/+mVXko9jXA2sDlEXF9dffIJmZi58yvtdoSESMiQkA9MC+pQXdvYJCkPlXdObM2aK1ORf71ivz4MnCWpB1JAdXCn/PjOrnIrkdXdHETaDx6APicNJJiHuBvkuYpznlE3EcKYC3s1LxTt+L9oeL1vg2pHexLUuP0qxHxaV7eDZLTCEnzSLqXNBr4OVKquNtINbtWALaRNHv19tDaQ2t1KnJtvteBN0n3ixuAzUvzXyelTZ0N2KLj99Ra4oBF11T0fmutl1sfWu8hZ7XpT/lxjaruhU2KSXn9lZezGpdTorwNLOXGu86VP0ReRerleAOwf8Uifr3VmEk4Z63ya626chHujyLiEtLoijWA4/Jsv9asppVTOBWNkBXpG/5Lamh6kvS5+nJgj9ImXielM1sM8IjmqUCuS9FSe8ZYUsHUOuBQ0uj230paDJrT5P2L9L42dyftrnWiojZBqRf92pIOlrRqvgduD/ySlPVgO0l9q7m/VhXr5J9LSCOFT4qI84CtgWeBXYDVq7h/1g5yesjmekb5vaHo6PB3YCbSOW8CzpG0Xmn1oqPDqpK6u6ND53PAomsq8gv/oE6FpH7ADLSeg9hq05f50YUAa1+rr7+K6X4Ndi3Fa3C6qu7FNCQ3MlwN7A78FdijhaH4fr3VkEk8ZxPj11ptuCc/rpsf/VqzmpYbpxeQ9H/AjrkmQUgqajK+S3p/6U9KCfUScJKkn+f5XwPvkEaG9YHWe15a1yDpSOCiUiCi6E3/OSk4PiMpUPULUlqPC/P8MXl6d2DN8ro2dYikSdKSkh4A/kFKE3Z8zkf/InArqUf9dsB6xXpV2mXrABMZMbNbfrw0Ir4o7ge5c81ZpDSme0qav2P30tpT5TmXdADweCkdbbmjwwvA7KTRx9uSOj3cIGm5vJ3XgI+AJRh/xKZ1En9I65oeyo8btTBvYMUy1jUUw5Hfq+ZO2CR5C/gEWEPSeAGm/PcawLsR4aKkXUQ+bz8m5bT9ciKLWzsoNXzvBtxEyh3cUg5pv95qRBvO2YS24dda7ZgrP47Nj36tWU1pJZiwPSmdy1l8P3qiqFPxIqlhYXmgkTT66wXgYkmbRcRnwOOk1Gjb53Wcr74LqOgRW0xbmtQDen/gFEl9IqKxFMD6N6lmyfIRcQVwDrCmpOvyCL/7SA2SPyut63RAU4HiPOa0cPeTRtH8nhSY2LIonhsR3+bpAewqaeG8XkNL27Wuo5VUYM3zch22b0kN1J/lWVF6D3iU9B4yENio3EPfalNpVFWUps0BLEz6XHCxpEUr7vtvkM7/1vkzxIGka+I6UhDzHeCD/PvseZtuQ+9E/s/umu4nvXh2krRsMVHSjMCvgTGkF5nVEEmLS/pBj1JJiwNn5z//0rl7ZW2Vb4JXkEYyHV8x+/g8/fLO3i+bMEm9JS3awvRepPPVG/i/iBjX6Ts3jSmlFNoNuBnYpbWGb7/eakNbzplfa7VD0o9a+dwxHfC7/Oe/wK81qz1Fo4KknSRtmCdfBuxICrhdImmdisaH64BlgPkj4j/AMcAzwJWStiK9jwGslL83WReQe8s3SlpE0uF52suka+F+Us/YP+RRN8W95UFSCrAivcdlpBRAuwB/AL4iBd/nJY+ycO/6qUMeedUbOAL4DjgYOC0iBkXE2IrFnyNdGxsBm0mqL64hSbN05n5b+yinCpQ0QNKxkrYvAlIR0Zivg9GkdEA/KVYt1bn5gnRtdCe9vyzZyYdhbVQaVbW4pMvztC8i4kjS6Lq5gWskrV1a5xVSDYvlJc0aEY+TOjTMAfyRlDLu33nxHfI67ujQieT7ctckaQCpMNAo4EbgG1LutfmAX+b8e1ZDJJ1E+uD0MPA+Kaq/KLAJ0A04MyJ+XbUdnMZJ2pv8hQVYihSJfwz4X572aO6hVfQ2fYz0pfgeUp7c5Ukfdp8B1omIkZ2399OuST1veTjvO6Tz8xqpN0VfYANSQcb/AAMi4qvO2/tpU34vPJHUg+UPQEsN17flni5+vdWAtpwzv9ZqR+lzx6OkEZzDSV/YNgZmBR4BBhavH7/WrJbkwOe9pAblu4HNSg2JR5NGWbwN/CoibsnT1wL+CfwuIk7O0/qRijDPSqrZslP+fVOPGOoacq/ns0kBh9HA9hFxR57XH7iTNHrv98BFEfFuDkhdSLr3LFD0qpd0BqkB+27S9XUxcFBEXJobOt04MhWQtC0pILVv6ftbi+c3pxT7B6nT5wGkdHKbAbuS3l9e7Kz9tkmjVE9gTO5RXwS3G0r3iDlJtYw2La32BrBXbpRG0kDgLtJoq60iYkQemVEXEWOVahncl9c9CfhtRHzXGcdnk0fSaaQO3ACHR8Qf8vQZgVNJ9dteAo6IiMfyvH1IdUyWiIi38rRtSaPyBgMXAdeQ2lwPioivO+2ADCLCP130B1iZ9CY7jNR74CnSB7iq75t/Wjxf65A+OL2Zz9lY4FNS7syNqr1/0/oP6UYUE/i5pmL5GUlfjD4gfcB9H/gt0LvaxzIt/UzqeSPlq74IeBr4Ir/+huf3zaOAXtU+lmnlZxLOWZBqI5TX8euti5wzv9Zq5wdYkdRz9BVgSD4XX5Iab/cFGlpYx681/9TEDyn1U1O+br8Cfl6aV09qlPiaVLti2zx9XuBFUo/I3qXl1yEF6EaRghxNwFp5Xl21j9U/E70WZgOeyOdtFClA0as0f13SSItxpNSFRafMY0nfubasuHbOIn13Lq6F2/I8VftY/dNu18zv8rndIv/9g/tdaVmRanM1kTpZPEbqWPgdsHK1j8U/452rOuA8UqCxpc8wDfnxzHxvOAnYCjgtn983gBlKy9+Xpx/XwjVxNanDx8P5vWL+ah+/fyZ6ffwpn88h+TXcpzRvrnxdNJE6VM2Zp69B+p5ySsX53zi/H3wMjCR9j5mj2sc4rf14hIWZmZmZmZl1qgn1aJe0KSlY+gTwU1JjwZaRCiqT6xDsTGq4GgZsGBHPSrqMNHp5w4h4rbS9VUjBuFXzpMsiYv8OOTBrVzl//N2k1HQzAIsB+0fEZaVlfgz8GVgaOD8ijsgpYN4kBS7OhZTOQ1JfUgP1WaWnmT8iPuiM47GOU/S4l3QYKWhxEHBJ5ftMuWd+adqJpBGFvYFrwxkrao6knqRG5O7AmhHxfGne+qRRU6cAa+Xffx/fj676LWnU6ZkRcVyetgwp9VMdcDipEPv0pMbqffO2+pKCJDtExP95JFb1TOQzQx0pQLUX6X1/HfJ9vryepD+T0gneS0ob+Q7pc8b7wI4RMay0zQ1JqXD75Ekrlq8563iuYWFmZmZmZmadIhfHHK/hoYVClg8CvUg9XK8CVgH2LmZGxPCIuISUtmFG4KqcwuN6Uk/K/nm7DXn5p4B9SD0vr+P7tBFWZaooqF0xry4ixpAKqM9KamACOEDSPMX6EfFfUp2ld4DDcmqQb0jp7QaWG6cj4vOIOIcU4HiflA7GwYqpQOk8f0DqYb0G3zc2NhfkzkGN7pJWL617MilgsXIRrJALcNeUiBhFCmDv0ULDcT3pnB9FCjKcExGj9X3B7MuBx4HDJS2Zt/cSsB9pBMXvSakwHyWNLH2TlB3jrbz+SnkdByuqIL/PtxasUH7tvw/0AG4g1TDaV9KSERE52AVwNHAlsD5pRHg9KZXkMkC/im3eS0qJey+ws4MVnc8BCzMzMzMzM+sUkUlaXtJBeVplIctepPQda5IaDEYB+0haGpp73QOcTkr3sTCpZsEypMbt3fJ2i5zmdblRe/GI2CMivm4hSGJVEKmgdp2kgyQtXjGvuC7eJNVq/IDUsLgMsH95/UiFuA8hjcY5mtQ7+jFgFUkL5kbqutJ53yciFoiI2zr6GK1zFAEJUsPzk6TUclsUjZWlXtbzkgKhf5A0Q7F+RHwbEaMk1ecGy5ZqdlkHK4KYpfPZLCIeyyMd5smjKorp95AaoruRRt31yI3cY/L8N4BrgQbghNJ6V5Jq3VxICnA+Skqzvnmk4t1FQ3cRuLAqKN0nzpC0YekaqSsFMh4FZiGlXT8uT7sgrz8qv6Y/Bk4GrgBWB/5OSiU5JymtZHH9FdfeHyNiYET8Nc/7wTVpHccf0szMzMzMzKxTSOqR0zI8C1wg6TeS5s/z6gEi4ktSo9PcwFBSj9f+wC/y/DG5MeobUrqO04ElSMGNGYBFJM1XPGfR8B0Rg/MAj/oWgiRWBbn47XekhqW/SFqzNK8YffF5flyM1LA4Avi5pJXy9GK5f5MKJ39OGlGzAyk/+aaQroPSeS9SxbgX/VSiaLiMiPdIKeW+IL03HCKpm6QZJf2ElA5sIHA7qfZJ5XYa3ZO+enKgAHKwoNQ7nvx3X9KoiIslLVKadUmeviowb27kri8FKf9OOufbSNo4b6s+It6PiEMjYqeI2CIibs73iQ1IxZo/JtXJsSqRtA6p48KvSPVFToQfdHZoINW22og0gu4JYF1JW5XmExEfkT5L3EVKHXVSnr9rnt9Y+swwNj9/8dnE7wudyAELMzMzMzMza3et9EachZyyidQQdDxwpaR+pYYqSL3jFyAVgD+X1Lt+l6KhqRARwyLidFKPyTpgkfyzQEv7lAd4NLY0zzpXbkicl5ST/gtgSeAaSYfAeA2XT5ICDHPmxuhzSD1iixE6Y4u6BBHxIrAH8D9gcVJ6mEUkTVd+7lLjtnvR15AJpQibxPWL95xbSfVLZiIFKN4CngH+AvyMlDLotJxmyGqIpBUkDQf+AM2poJC0uqS+kWoZXQQsSgpKkpd7A7iM1Dv+5Dy5KY+uUkR8RRpl8TlwoqReLd0LJK1GSj93Aek+ch6piLd1glY+N3xICjh8A4wlpQW8IgevAMijKIeQglVB6ugAqZ5NcZ8od1j4Jel6KIJeK+bRVz/gzwzV4YCFmZmZmZmZtZvcKFBO1VBuhPiMlMZpFCl9082klE53VQQjPiMVwF03j6Q4CZgOOEhSz9x7VqUGzhNJQQtIwQ7nm64RRQ/nyoao3Gh0B6lxuY7UK/4d4PeSjpM0Z160Fym4tVb++zxSmqjtJW1Z+XwRcT8pJcjredJdEfFdOx6SdYDcqNyYf18jN1wvWJ4/sW2UAlHfRcQNpFz1p5ACFm+SrrGFIuLcvE23idWez0kjX7aS1FfSjyW9DtwI/DgvcxapEXtXlWqRkHrfP0R6b1gjpx8sj6L6N/APYGVSPYxmSnVNbgFuI6WNGkG6/5zvEXkdrzyKQVK30vSGiHiHdM57k9JFngvsCdwgaanSZp4Fls3buZX0+aK/pGPz/LriPSYiXiN9brgzz/tNRHzYQYdnk0Ee0WJmZmZmZmbtIfdeLBodVwSOAA6MiCGlZfoA5wPbkRqfB5EKZXYHjoqIayStCzwA7BgRN+XGygdIKRz2j4jLcgNnOSgyKzBb7mlrVdbC+WloaURDTr1yO/AwcDGwHnAY8C9g24gYKelpUuqoLSNiqKRtSUVxHwB+FhHf5MbnKDVSLgS86TQetasIQpTqSyxPSvu1MinV1xhSL+izImKKernnHvUj8+/1pN73vjZqSHH/kLQDaTTMR8A8wMukuiN/jYjBedm9SSMq/gQcFhFFmrdtSO8NL0bECqVt1+XRFsuReuHfUZqn/L6xOanA9jPF/Mpr1NpXC/eJs0mdE06LiM9L562eVJ9iNlJ9q/7AH0lpI/eNiPsknUcKZGwYEc/mc/0QKeg9V04L2fwZJT9fT2C0z2/tcTTZzMzMzMzMpkjRUzk3Ns0o6VrgaWAAqeG4WUQMJzVMf0MqjPs+sDG5UUrSqaSGiQ9Joy+KxqLj8yb2lzRPbmCqL233q4h4o2LkhVVJqRF6W0n3APdIul3SxhW9np8k9YweCCwbEUeQcsdvCNwraW3SKIzFSbVNiIibSb2l1wN2Lz1lc6qniHijhR7WVkNyirZQKqg7NylwOT0paHEaKQ/9PsB1pRE3k/tcRbCiLlynolYV5+RH+XEu4G/AZqQCyINLy15LGk23PaXREhHxN+CvwHKS9oDmYGlRl+CFymBEad07IuL40vy64hpt38O0ypGYknaU9BFwFNAIFOerKZ+/RuDIvPqJEXEjsBUpRdTNkvYkBb37kEZwEhEvkNKH1QNn53Urz+Vo3ydqkwMWZmZmZmZmNkWKxiBJx5BSevyU1ECwBfBcC6v8hxS0WILUm/41UqPUTaTc0n8mNTKsXAqGPEpK+7RsXqbF3NK5fck5p6tM0myS/kI6p3MAM5ICDHcCF0rqARARI0g9pT8gFdNeOSJOJDVELkZK67ExqdftWqWnOJ6UOuYISYu11qjY0qgOqx2SjiLVKziWlKf+oIg4IiJOIL2P3AqsAfw6j6KaIk7vUzuKgEFpFENxbmYkpfepAxaMiA8jYly5UTlSQeQTSXVKdlepngGpkfozUn2kFkd25W1E+bFyv3ytdJx8n26StIykJ0j3/NeAHYHTy8Gp4vxFxPWkjhAbStorIgYBW5KulSuAQ0g1TFYqPdXv83b3kLRm5TktB7k75EBtsjlgYWZmZmZmZlNE0mqSPgDOAP4O7AqcERFPt9SQHBFjSA0UL5IapjeNVGdgH1LP6iVIvWs/JDVUF87Kj7MVDd5Ws7bJP+cD2+X0LKuRekXvB5xc6jX/JqlX/QLAXpL6RMRtwN6kBqo1geGkFEFFGpHnSMGQ+UmNllbD8igKVUybiRSo3IuU7u2qHJhEUo/8nnAqKW3cruT89Na15d71Da0FDEjBq7VIdSuWl3R4nl7Z2PwAaVTOpqT3mmL6k6RA10fAfJXX3cR4REXHk9Qg6RJSLatZgINJwcqb4vu0X80BrVKw6tD8eLRSEfbXSGmgziWN6PyOFLQoRsgMBi7P60xxwNM6j2tYmJmZmZmZ2WTLOaDPJDUk/AX4dUR8kOcV+ad7RM4xXlqvDtiFVAj3FuDQiPgkz/spqQHzxoh4Pk8r8owvGKkIp9Wg3MjUh5SyaR5gvnwNFOdvRVIh5LWBYyPiwrzefKRULouSGq5uzNuaLi//AnBbHpFRPFdvYEzltWW1pdzLXdIsQM+I+CS/B6xBGkUzB7BPRFwpqVvuQV+sfxBwAfCHiDi8eF+ZwPM158WX1J1Ur2JcebpVh8avczQDsAcwM/AVcGdEvF96r1gKeISUPnDliPi08txLWhR4BniFVMvgv8W2y+8VVlskzQZcT0oF+OuIOKuFZWaO8etfFZ8nriN9djg7Io4tzd8PGAw8GBFDKt4HxntPsdrngIWZmZmZmZlNlopG6D8AcwLrkkZGLAOsQmqYnoPUU/72iHi6tP5swJXARqTCqX8qzZtgA4Mqimda7ZA0PfBfUlqWAaSREUUKEJGuiZtItUr2j4incg/arUhBizuBX0TER3l73YDG1hqpJ5T2xaqnosFweuA3pECkgD0i1ZyZgdSj/lhSXYK9SinmiveXRYCXgI+BpSPXo5jI89WR3n/WBZ6OiPs78FCtjSQdTApE9ibVLOhGes84NI+cKJY7A/gVcHFEHNzS+76kE4CTgHMj4piKeX5vqFGS1gL+ATwIHEgKTG1MGl0zIP/9OKnY+rP6vij7HMAnwLfAWhHxct5ei4HM0vuIr4UuxCmhzMzMzMzMbLKUeis/R0rfMS+paOaOpELKl5AaDFcnNUgOkrR3af0vST2nxwG7SFoCmhseJtgb0sGK6tCkFTSfjlTLZKaIGBmpyHFRRDWAp0jXxjLAppK654ak+0lFdn8C/KzYWESMnVCPejdC1aZS8GBnUo2SvYERwKPA6LzMCNLIrP+RAgwr53Wa07oAb+efr4ExLaSWKmoOFM+3CKk2zlXA6UD/jjtKawtJfSVdQQow3E9KD7cMKVg5K3BmbsgunEO6NvaUtGppdMaskhbMy1xAGqn3Jyr4vaE6JvE+8Szpc8JPSe8NZ5GCltuTaljNDxwO3CZpFb4vxP0FcAIp2PWrYmOt3SNKqcd8LXQhDliYmZmZmZnZZCv1av4nqWf8gcB1pMaFn5AaIJclNUj0BC6QtHBpE0+SGi1WB7YFFzutRaVG4UZJPSTtKmn2PG+8toWcN/xzYFFJm+dl6kvzR5ECE2+SrpH+efpXpFoWI4AdJC3T0vat65C0HnAeqfDt3sAOEXFURLxXWuwNUqHkxfm+hkmhidTjenFSr+oop3WqGFUxh6SdSA3XvwW+AJaNiKs7/EBtovLr+CfA1qQAwzERcWVEvE5K6TQMWArYTdJ0ABExFDgb6AWclQMVPyHVxvmdpCUiYmhE7BkR71QGs6xztfE+MRK4jBTMPImUHuxc0mt9dVLA4gJgtjx//tK6Z+T1dmjpHmNdn2/6ZmZmZmZmNtlKvRffBf4P+A9wYUSsEBH3RMTHEfFWRFxFKsrdEzgSmhsbvyU1WnwOHJl7UlqNKTUKb0dqCL6aFgJMpUaja/PjfqVUHuXGxA9IdS5WYPxiqM+RiqSuBuyarxEHsLogST2Ao0kjbo6JiNsj4mtlxXK55/PfgIdIBbjPyz3xZ5K0CXAyaRTWJZXXQk710kvSBqTGzmtIdVC2j4h1inQx1nmKhunK4EE+dz2BMyPiyIh4W1J3SX8kBS8bSPeBrUjF2Iv1riTVOVmbFPj6P2Bn4PFIRZebn7cczLLON6n3iZL/Ab8nBS03jogTIuJrYGik2kTnktIHbggsnbfdI697RH48MZ97j7qcijhgYWY2lZK0rqSQdFIHPsdJ+TnW7ajn6CokzZ//L65p43rLSWrMvcFqkqS98z4uVe19MTOz2lRqmLqHFJT4fZ5eNFw15PkXkfKVbyxptlLj0pukXti/jYinOm3HbZJJ6iPpCOAKUsPiWGB7paK3zee6aDSKiFtIKT82JjUuQqpdQJ7/DfBq/nOj0vSRwA2kNEFXugGyS5ud1Mh8f0Q8JqmuGBHRwnn9lNRrfiwpaPEoKXj1J1JQ6+iIuKfyCfLn0+NJ18yOwGkRMU9E3NxRB2Utk1RfDjBWjIQpApnXkEa/IGkj0siKXUkp4nYhpRScmRSsnKe0+eNIge4n8rKzRsQ55ed3YLP6JvU+UcipH28ljcx8ujK9W0R8DDxGar8emFcbk+f9nTQCYx+f+6mPAxZmZjVC0qq5wfvfrcw/P89/vZX5h+X5p3bsnk6+3JlqF0kPSPpK0hhJn0t6QdIfJa1T7X2sgt8Br5PyfncoSSvma+SgNq56LfA+qYeLmZlNxSRtK+lfRZB6UlPxlBoXvgT+FhEf5L+LRoTGHLQYRUrr8inwdalxYgzwu4io2c8xxtqkRsMRwDakURBrkRqJK0dZFIGJk/PjkZLmjFR0u15S9zy96P3+ZV6vCHr8JyJ2iYjXnOKlS+tO6lHfXVKviGhqLQCVpz9CCjyMIY2+OYqU137+iLgQfthrnxQM+xVpdMZcEXFKhxyJjafyPBQ93POIl9UlXSbpKkkXSlq5FMgcnd8HZgN+TQpOHAn8Jgeri+LqKwDbFduPiP9FxO+BHSPimIgYIqnB7w81Z5LvE4WI+CQiHoiIURVBruI+8WX5MV9j9fn3wyLi+Un9rGJdh0+omVnteJZ0Y1+j1AuxbAAQwGKS+rUyH+CB/Pg0sASpJ2OtuAq4npTH+k5ST8q/AkNJPan2qdaOVYNSTt91gfM6qVfIFvnx9raslHu+/B4YKGmNdt8rMzOrJSuTcoxvA5PXY7UyLUOpR/U4YE1SYe5PSJ9ryusVqSTcAFWbRpA+x60WEXeRGqI+BXYqPh+UAg5FAOtOUj2TpUidNMiNmmPyNjfJj+/neeNdb07x0uWNIvWgnzv/jKeFEVhDSD2zRwILAS9GxMUR8VWp937l+8RfgeUiYvscMLUOImnO4rVe+brMQYiZJV1HGh2zGbA5qef8k5IqA0nbkBq3z46IyyJiSJ7+HTAjMAuplsWK+bmL4PZ3+e+6iBjn94eaM8n3iUrFOS7dR4r7xM/y49PFsuXPGeVRPTb1cMDCzKxG5C/xjwAzACuV50malfRF79Y8aUDF/DpSz4XRpGGyRMR3EfF6rXxwl7QWqZDWi6ReUrtFxLG5V8QAoC/wxyruYjUcQPpC9rdOer4tgOcj4sPJWPdGUu7g/dt3l8zMrMacQcolvVsx8nFyey6WUzso5SnfgpS+4V3g1FbSwvygIcxqQ0QMAk6OiPfzpNdI53MRUvqWHrnRsmh0KhqUDwWeJ6UF+aukNSQtIelAUoeVe4H7W3lON0J1bd+QGhmXBtaT1BO+7zldNHIDV0taLr/2XySl/BkIbFXqSd1Yfm8oBcVeioiXOvGYpkmS5iKNfPiDpHnztMp7wymkgtrnkoIVS5LqF3wF/EbS/pJmyMtOnx8HV2xjH9Lo8+tI182M0HKApB0Oy9pZW+8TFetGOfggaWFJ55BG2lwfEf9s5Tn9mWEq5ICFmVlteTA/rlsxfR1Szt8LgK+pCFgAy5CG0z4REaOg9RoWkt7LPzNI+oOkTySNlvSypG1a2ilJ8+YvmF9LGiHpIUlrt/HYVsuP10bE8MqZETE0Ih6veN5r8jEsKOloSW9JGiXpXUknSOrWyv6uLekfkr7Mx/aWpNMkTTely+feXcdI+l/el/9JOpY23lPzl7MtgLsr/z9UqoeRv9D/U9JQSUPyeZgtL7eapPslDc/zrpA0fSvPtwAp6HV7adqMkk6R9Go+r8Pz8Vwrab7y+hExGBgEbFP6omFmZlOZ3Mv1NGA+UtBiutYaFyZhWyGpm6T1gdOBC0mfV06NiBfbc7+tc5R6QRedbW4g1RnYBti0YtlQKrY9DNgXuBLYntRB5xnS9fAhcGSk4qo2FckNj9+QOlx9CBwLbAnf95xW6j1/Cem7zsx53khSod63gJ2o6MhlnUvSnpIOJwUdLiN97/xBEWVJSwO/IH1fODEinomIzyLVsjkQeAc4nBTEgPQeMIIUlFo2f987hFTP4q6I2AeYPSJaDGZa7WrLfaIFPSQtJOlIUmfGXwL3kYJhNg1xwMLMrLYUAYvKgMQAUk/8J0lf8lqaX15/YrqRimJuBNxC+hCxEPB/SsXPmkmakzRqYwdSD6kiaHIvsOokPh+kD7kAi7ZhncL5wDGkDysXkkaSnEwaAj4eSQeQPiivQUo7dQHwESmX5r36PhfmZC1P+qB+FukeejFwN3AE8Ic2HtPapPPw5ASWWQB4HOhBGh7/Euk83CZpTVJvxBF5n94m9VK8sJVtbZkfb4fmXo93k4oUfp23cRnwAqlH1CItbOMJUh7i1Sfh+MzMrOu6kfSZYltSWo8292BUKq67Bqn37A2khqyXSKlbrmnXvbWqiVQQ9TxS+pbdJfXLgYrKAtzP5wbI7UkN15cA20XEqhHxyuQExKzj5dfxlJ6bu0mpRWcErpJ0rqQ9JJ0FXEpKC3Yl6TNv4R3SdbUsKXDacwr3wdooNxrfQ/oOshTQixR4HgLsIWm5vFxRTHs+Uge7OyJilNKoumLeHaSaeIsAG+Rpr5EapDcj1R95gvSd7z1SGmGKVGAdeJjWCSZ2n6hwHvAqcCKpfWLviPhpRLzdeXtstaClHOlmZlY9LwDDgNUldYtUOwDSiIsnI2K0pIeALSTNExEflebDpAcs5iL1alm31MPpL6SAwBGkYEbhTFLO2d9ExOnFREn7An9qw7HdDQwH9pc0I6m31TOl4aITsiqwTHG8ko4jBUy2lrR17rmDpB+RAg4vA+tHRBEkQdKv8rEcTPogNDnLrwvsSWpwWSMivs3TzyANX2+LohbEcxNYZm3gsIj4Q34eAf8kfbH7B6noXBGA6Eaqg7KrpGMj4vOKbW0BvFcaMr8ksApwW0T8rLygpB6kYEqlZ0v7fk8L883MrIvJvaArU200SjqB1EliD0mPRsTHSjnDJykNRx6V8SKpY8R3wJ8j4sn8nPVAq8V3rcu5C7iN1PC4DXBR5XUiqSHnm7+5cuViXqfsqU2yPDqmMf8+Q0SMyL//4D2jJaX0LuMkXUpKJ3QOqcAywLek9HObRsTDFes2SrqT1JnmmmIEuXWO3GHrZGBF4GjgzogYCgyVdDYp5dMukl6K72sJzJsfF4XxRtEoBzAGkTrgbQeclkdv/0rScGBxUkDr5oi4obwvUVETybqsid4nsuuBMaR2kT+X3oPqfS1MWzzCwsyshuSb8MOknJ4rA0iaHfgxaRQApB4okEdV6Pv6FSOBp9rwdIfH94WsyMNt36c07Dp/WN0e+ILcaF9yBWmo9iTJwYatSUPCdwJuBt6T9IWkm5QKULfmD6XgTPEB+Lj85x6l5fYjBeMPLgcfsnNIvTx3nILld8uPpxTBirw/H9P2ERbz5MfKwELZ26SASvE8Qer1CvBCEazI88aSamE0AD8qb0SpBsqatFxse2TlhIgYXXwprVDs6zwtzDMzsy5Eucht0ahYMU8R8RipWOZAWkj/MSnyvfLgiDi4HKyIilz01rXllE+/J42A3U3SQpA6hkjaIS/THJAorrfSKAwHK2pQDhrMLOkS4EFJt0taldzxtZXe0ZXbKOpMjMrBqqVIaWIHAJtExIoR8bCSuop1P4mI/SPi6R9u2TpYP9KI6uci4rcR8Vpp3gWkQuo7kUbrF+4FxgLLFqlly8GtiHiE9N2mn6T+pdf/GRGxG7BlEazwqIqpz6TcJ/JyTwJHR8R1+T2ouYZNNfbbqscjLMzMas8gUs+DAcBjpNET4vuAxYukURgDSD0QlgVmAu4rByAmYmhEvNvC9I/4vtYEwGKkFEAPVPZsyj0nH6Pl1EEtioj78oeTdUmjB1YgNaRvB2wn6cyI+HULqz7SwrQnSEWglytNK1JUDVTKl11pLKkHz+Quv8wE9qelaRMya34cOoFlXm6hQefT/PhiC8sX8+aqmP5ToJ7xAxavkUaW7ChpHlKPl0HAixNokPo6P842gX02M7MaVjQgFY3EknYlNTANJxVGvrv0eeJMUk/IPSQ9GBEvtWWUBUBEfJefpy4imtzoMNV6jpTm6UjgQEmvkzqVrCrp64hoHplZasB00dwaUjlyQtIqpDQ+c5JSu65AGp17OnDh5Jy/3CFmvA5WpZ7TLQYxJ3VEh7WrBlIv94UBJG1BGll/WkRcJOlE0ui53SQ9WYy+IKV+GghsCFyRA+L1ueF5eqB7Xu7jGL/+hfKyvk9M3SbpPhERY4vAtq+FaZcDFmZmtadcePu0/DiK/OE+Bwoe5fu6FcXjA214jmGtTB/H+KPvZsyPX7Sy/IRGB7QoN5Dcl3+KHp57kD68HCvpbxHx/MSeJ3/w/aq0j5DyYsL3oy8mpq3Lzwg0AV+2MK+t/xfFyIYJ5eT9QXFy0jma2LzKdE5bkoINzUGVPDx/PeAk0siXYgTNYEkXAae38AGxV378bgL7bGZmNaxo+JO0FqkBalFSA1IfUgeJGyX9JiLej4j3cvqPs4CdJb2cP4e0uQHRjdNTp1IA7DtJ15JGph5Aqr81AjiiHKyw2lPq6V75Gt2K9B1kd1JHoaVIxbCPkfR6RNzb1gBmSybWIOlgRefK5/QdSTcDx0l6n5Tu6RHgw/yav1XSHaRr5F7SdfElqTPdOqRr5NOIuDN/Z+tNGtm+CHB85Tl3EHPqNjn3Cb/uzSmhzMxqz0ukYmar55RMA8j1K0rLDALmlzQ/ba9f0RZFYGOOVub3ndIniJTP+ArgL3lSZUHxFp8nDw+dlfGDL0Ujfp+IUGs/U7D8MNK9s6URBm39vxicH2eZ4FJTSKlI4Uak3LPjpVyIiK8i4mBSjZIfAQeRAhsnk/LVVir2dXAL88zMrIuQtDyp53QTcAgpteQSpM4DOwO/LS1+KfDfPH0DJkE5xZRS4dVeldOtOto71UopALYKsC9plGcP4GKgX0Scn+f73Neg3JDYlAORCysVwx4gaSZSh5dTI+K2iPg8Iu4jfVacCzhMUq8igFnFQ7B2VgoaLEEa9TI3qWbFNhFxe6kh+WRSkHt3SQvn6Q+RRuAsBFwj6SRJh5FS7R5PqqF4S6cdjE0W3yesFjhgYWZWY/KHxIdIvdk3J31YHFSxWFHHYgNSI8MIvi+I3J7eJPWsWjE3fDfLvbFWb8fnaqlmQmGtFqatRhop+EJpWjHEfNUfLt6iti5fFKxuaX9amjYh/8mPi7VxvbbagFQTpaX6FUD6EBkRr0XExaQh3JCuvUrFvv6nhXlmZlZjJtDosC8wH3BsRPwx3wPeBq4E3gG2lrQVQEQMJ43Gm5PUMNUnp+74QcNCKYVD0TixAikAvqvTulRXrhFQLqI8v6TZc5qWyW4oyttdHfgzqTH7AeBHkeqWfCepwee+utRCrQmNX8Omm6RzgNeBq4D7gX+SGquflVRXGoVxO/BvYGNg1zbsgxsiuxBJu5BGQzxFajecL1KR7Ob7SkS8AFxESvO7fZ42LCL+AJxI6gR1Aim14E7ATcD6EfFG5x6NTSrfJ6yWOGBhZlabitESJ+bHQRXznwe+AQ4lpSl6pLL3fHvIozr+jzTC4siK2XuT0khMEkk/kbRF8QWpYt7C5IKewKMtrH6oUp2FYvnupN47ANeUlvsjKS3ShZL6t/A8M0labgqWvz4/nlB8cMvLzU06F21RBJ1WaeN6bbUFqbjZ3eWJ+QPo/C0sX4wUGdXCvGJfH2phnpmZ1ZhSo8MvJO0nqYekvsAmpNpX/8jzF869YK8BFgRuJDVaFtu5BbiTFMzeIk8r57qvDFQsIOkgUuPnKaTPEf7uWSWldByN+VzfTDq/TwMPSdqA7wspt6lBKp/zUaSe09tFxAYR8XrRyJ1H0roRqkok7Q3cImnB8vSK7w0/JQUf/gQcRiqMuzrpc35T7kylUgD0kPz4C0nz5qBHi6/vVt4bFmtteWt/bXlNl5a9k1Rj8Kfk17aknxaLlVY5F/iEFJRu/k4TEaeSvjesQko9u2xE7BsR37Z3731rH75PWK1xDQszs9pUBCyWJN3cnyzPzB8kHgN+UrF8R/gVsD5wmqQ1SSMaliA1dtxDSjc0KRYnfQH6UtLDwNukD7wL5211By6JiKdaWPdJ4CVJNwHfkoqSLwb8PTeiABARr0j6BSmlxRuS/pWfpzepAWYdUmPM/pO5/IOSrgZ+DvxH0q2k4azb533cdBL/LyAVvH6H70c0tLv8ZXAz4P5IRQ7LlgX+Lulp4FXgM9KQ7y1JKUJ+X7Etka6D1yLizY7aZzMzmzIVvSN7A5eR7lO3kgqijiOlNvyvpBlJ9+DdSffz54BVIuKZvH63iBibN30iaTTnEZLujYjP8jIqNUbOCqwH7JW39yywakQ83fFHbq0pNSj/kpSWZSjwCqkm1Sqkns9HANdOZqPRixGxY/FH+Rq0qtuYFGS8mfS5EwBJ8wEPkz7Xf06qQ3BCRHyV53cj9YT+NXBA6T2lPiL+J+kPpM46+5JqEvyg9kDFe8PspPeGw0g97w8E3uuA47UKpXPQMyJa6pD0g2UjYoikofm94yxSGqfjyClm9X1x7M8knUbqBLazpOcjFUyuj1SI+5li26VROn5vqEG+T1itccDCzKw2vUIqXDYbP6xfUXiITghYRMSneQjnOcBA0rDf50gN7esx6QGLP5PSPg0kFe3bkFRw+ktS4OOacvChwmGkERh7A/2BT0npKc5sYX8vl/Qi6QPV2qQG+2HAB6RG+GunZHlgH1KqrH1IX+Q+An5HGokyyQGL/KHwT8DZklbuoMacVUkjJm5rYd6zwNmkGig/BWYiBS3uA86NiCcrll+b9H9/WAfsp5mZtZPcqWFuYHnS+/rqpMaHv+d7en/SPe5nwHSkYMU3wB4RcV3F5taQ9HREfBcRz0s6lRS4/qz0fCGpB+meszOpp3Zr27MqyI3P+5Du4bcCNwAP5IbHBUiN1vtKejsiHlUbCykXy5YaMd0IVSU5aDgyIr7Lkw4mBSP+XrHoWFJD5Kak2mQbRcRXkrpHxBjS5+xNSD3nr4qIZ3LP+KKh8lek1/tBkv4dEY+V9qHoqR1K9WtWB3YBdiC9N/w+It5r94O3FuVOR6cDPSUd28r3yh8oBS9ulXQbsKWkAyOlkC33sL+a9L6/M2mk/P9Vvgfka8IFtWuY7xNWa+RRN2ZmVqskXUNqSFlgavxiI2kWUm+3myNinw7Y/tnAUcBc5calydzWDaReegvlHlNmZlaDcqPiV6QRgO8AL0XEThXL/B+wDanx8WTgtMqGB0m/AXYDdo+IJybwfAvl5fYkFdI8NyJ+1X5HZFNK0hyk9FyNwCER8X6eviGp08WP87wrgMMiYnS5d7x1DZK2Jo2k2AX4a/n85feFgcC/Sw2HewLnkVKHrgm8E6mIdn0OfO4LXAr8MyI2L22rITdiHka6fjaLiDsrrxlJy5LSAe0DzAqcERFFulvrJJJWBR4DXo2Ipdq4bnEtLAM8Qrq3rBIRX1SM5tuMVC/vkIi4qJ0PwTqB7xNWa5w30MzMrEoi4mvSKJHd89D89rYF8FQ7BCsWJfWKO83BCjOz2qBSIdzStIbcgHQCKWAxD2kUI0pFLYvc4ZcCI0kjH08vByskLZRHUhxIauR6reI5KnNXrwscDrwE9HewojrUQo2wQkR8AZwTEVtExPuS+uY0m3eTGqsPBv5LCmL9tLXtVDyfSr83KNUXs+oaQxqFvB8peAg0ByvuJRXS/klp+etJI7bnANbIwYoGUmpQIuIyUiP1ppK2LW2rMc8/H5glIu7Mfxeph+aTdACp5/1xeRtzO1jRsSrvByXPkOof/lgpve8k1yDIwQpFxEuk9ILzAcfm2U2l5f5B6tTkYEUN833CuhIHLMzMzKrrD8BppHRL7SoiFo+I1dphU/OQeuBe3A7bMjOzKVRKqdCkVMB2gKQFIxfSjYgLgBdJNZn65NWaUzBExAPABXn+S5KOkrSapKNJuciPItVmOrUyUF1qlCwaIu4F1oyITSPi4w48bGtBKS/8uPz35pLWl7S0pOlLiz6a5/+YVFR9Y1K6z71yipeLSb3gd5bUL6fz+UF7QXHeS9fBMqSA1SYTaDC1DlR6Ld5P6iG9FrBt0TiZX/fFZ7idJc2Up48FLiSlaTolTyuuoyK4eQqp7s3ROV1UcxqX3JA9tNwIKmkp4Pz8fEF6b9g2N4ZaByi9JpsqXvPlOgE35knr5GXb0iu+uL7OBN4ldbRaIb9HNBfQjoh3WwqkW/X5PmFdkS8UMzOzKoqIURFxSkQ8Uu19aU1EPBARp+acxmZmViWlRocmSTNKugp4GfgX8JakIyXNmxc/Ij/+XFKfvE65MekcUqqW2Ug1jR4j5a1fAjg4In4WEc1FeiuV8pt/EBEvt++RWiVJqysVLh6vJ3Upvc8Okt4D/kYKIr0I3CZpzvJypAaotYAzSCMnX8rTe+bHFUlpfMrrNCs1QM2bUwZdRrp+lmT8vPbWSXKjYbdIdStuI9UpOwxYrLTMLaSUPVuT6tcU0+8HrgPmlXRcnlxXCm7eT0oztQKpwHb5tV88jivtzrfAzMDeEbF8RDze3sdr4yu9Jo8FXi6NhlEpwPQcMBxYXKnmUFu2X6QJ+wr4Lanu3W/yvMbKZVt637DO4fuETU1cw8LMzMzMzKwLyb0XrwY2Ah4EhpDy089DCkSckfNL30pKD3hwRFycG7CiYlvzAT8CGoB6Ur765l7WlQ1S1vkkHUPq3Xx8RJxeml5H6oR4DKkB8QlS8Oo5UmPSnqQes0dHxItKRVWfJI3qXCynpiy2dRQp/eNypF7U60euH1a+biTNSEoD9nNgc+AV4NCIeLCjjt9aV/kaldSTFIg8h5T67fiIGJHnLQs8RbpO9oqIt/P0JYB/kNL9zBURg4ue8zkl0CLAtsCZE+qZ39L7i3UOSeuQ7gUAXwObAU/H9zUmFicFs2YBFoyIEW05XxXvAScDl3lEXW3xfcKmNg5YmJmZmZmZdQGSNiD1cn4c+BWpVsWfI+JbSUuTghjzAL+IiFskzU8qvP06sGlEvFOkk5rI8zhQUUNyg/K/gdOBK2L8miMLkGoE/I9UKPXlPH1W4NekNBzXAMfkhujrSA1I20fE3Tmdz2bAtcCRQHdgTERcXrEPDcDKwI7A7qT89cdGxCUdduA2yXKv+iOAz0kNjX1JdWy2iYhBpeV+m5erbNQ8itQD+rqI2KN4n6hs1J6U9w/rOBP6/5f0KqlhupHUE/6XEXFraf7fgK2AXSLiL20NMFU+t6+F2uL7hE1tWi24YmZmZmZmZrUhj6pYk1Twci7ggUhFcQGIiJdzSpd/kfJLPxER70k6l1STYn9SD8qJBSvkYEVtiYjXJK0YEYNbmL0z6XrYrtQItSSwCelaAXgtN0IJuIOUEuh8SbeR0vdsQCqmel9EvFv5BJIWIvWw3xeYn5TH/IhINRCsSvL57EVK07M/qYbFW8B7pJQucwL7SXolIr7Mq/2W1EN6V0n3RcRTefqVpGtmN0lXRk5VWhGskBuoqysHkbpHTtOar4Eihdffgb1JPdv/AZwjaVikmkUAfyYFLFaT9LdoY6rXigZwXws1xvcJm9q4hoWZmZmZmVmNyw2HlwIPAKsDRZqXhtIy/yYVytyc7/PU/woYTGqgXDOv0+r3QKd0qU25IWmApEclbQzNhZH7k3LTvytpZkl7AX8CzgLeABaJiHPzNgK4k9Sjdn7gUGBX4FVgh5YaobJNgNNIo3UWjYiD3QhVffl8LkpqjLwHODAijoqIw4AtSSlftgc20vf1bz4jnctFSe8J3fL0r0m1LIaR0ga19nzWiXLjcfnvA4DHJW1eTCoFmF8AZgfmJTUcjwBukLRc3s5rwEfA4qTRN5O9H74WapPvEzY1ccDCzMzMzMysC8iNjZcCASwsqV9EjKsIQJwKjAJ2kbRUbnw4hpQi5vC8HfeM7Zr6k4JV2ygVUm8ExgB9gIOBP5KKm/YDNouIjUp1CmZTKsw8MiIuBJYGNgXWjIjNI+L9ykBWqZHyDmBARGwQEf/rjAO1SbY10JtUU+BNgHyeXwNOBj4gve7nLa1zNfB0XnfjYmJEXA3MHhG3d9K+WyuU1FWMcJkDWBhYHrhY0qIV7+VvAJ+R0oC9CBxIClpcB6xHakh+H1ifFNiYYPC6rFSboJ+k2abw8Kxj+T5hUwUHLMzMzMzMzLqOfwO3ACuSUn+MF4DIDZW/A1Yhp3qIiGuAS0g1L6zruo6U8mt7UjF1gFuBccAvSSNrjoyIhSLizmKlPArnb8AB+W9FxFsR8UBEvJCn1VcGsopGyoh4v0gRZDVnhvz4CTSf63F52v3AP4EVSI2XPQEiYjSp+G5f4BBJfYqN5QBofSftu7UikiZJi0u6PE/7IiKOBC4E5gaukbR2aZ1XgDeB5STNGhGPk94r5iA1UvcF7s6L75DXaTV4XR5VIWkGSQNJqcOu8TVS03yfsKmCAxZmZmZmZmZdRESMAM4njbLYNeeNruwpez6pAfOXklbP6x0YEf+tTO1hXUduGDqVVLdgV0lzAS+RGqcagOMi4vzyOpKWA24gNVoPKW2nctuuW1IlkqbPj5NTY3RIfvwppIBDRERubBxJSiEHsA+wRLFSRNwH/B44NyKGlzfoa6E2SDqNlIZnL0mHlmadQKoPsDxwrqQ1SvP+kqfPApAbmg8iFUm+hTTiBmBJSTO38rzK64akOkkr5ue8gTRS42lfI7XL9wmbWjhgYWZmZmZm1rU8DVwODAR+WhRALTU0fU2qXXF67mULpKCGc493bZGKJF9KKoC6XaRiypeRag8cK+nAnLZlEUkHkYJXA4ELgNuqs9dWSd87E3hOUq+IGDfRFb9fv2jL+SswEthA0qJ5Xj1Q9IB/mdQAuSiwf8VoiiMj4m6sVs2eH4cBZxTnLiKGAWeSAk4rAVdImjMv+yrwHbBLaTt/A35BShV0JjAaWAjo1tKTltI/LQQcQuqx/0tSXYO+EXFKOx2fdRDfJ2xqIH9eNTMzMzMz61pyY9I9wFBg34h4Lgcu/AVvKidpHuB54Atgp4h4WdIOpF7XM5OuCZHSBX0IHBYRd1Rpd20CJN0PDAC2johbJ2P9nsAfSCMoLohUcLs8/9ekWgZvAWsDS0bEq6X5fs+okgn93+eA1EnAXqQ0T+uQ6pTsX15P0l9I6Z3uJdUqegd4glSrYscc3Ci2uSFwM6mWAcCKEfF8C889O6nOxd6kERVPAr/IdTGsi/B9wro6ByzMzMzMzMy6mDya4kBSL9sLgRNyuqgfLOcGyamPpMOB80g9Y4+KiEZJiwObAPMDY4GXI+La0jp1E8pZb50n54JvzI2Ky0XEP0rz2nSeJC1GSveyAHAKqc7AWGBD4Ajgz8AjwPBc48aqrDj/rcxTTse0F3A2KRBxAqlw+tIR8YqknhExKl8/JwI/JwUWNiONrtsFWC8i3qjY9qGk94hrIuKvLTz3ovk5NwSGA0dExI3tc9TW2XyfsK7MAQszMzMzM7MuSNJspIbI74CfRsRnVd4l6ySSegGPA/2APSPiror5zY1Okhrakm7I2teEGqdLy/QHNomISyfzOdYhBSbmAr4GviEVZn4N2CYi3srLuTGyRuRRFKcBDwIP5Mbk8ut2MdL525RUk+I6YFBErJfnF4GNeYDjgP2Ah0ipf/4MbBQR9+UUYUUR724RMba0D+MFtPP7yqfAJRFxbIf/J1iH8n3CujIHLMzMzMzMzLooSYtV9qK1aYOkzYDbgTtIjVFfVxTMbf69irtpmaS5I+LjFhqNu5GK4i4ODIiIhyYlyNHC9hcFdiIVXZ4RuCsizmrHQ7B2kgNM95KKIH8CXBURJ1Qs82NSAOIG4HDgUWA1UgDq7+XrKAc//gFsTEr/tQhwfUTs3srz/+D6Khqscz2Vke14uFZFvk9YV+WAhZmZmZmZWRfn3pHTJkkPk4rpDoiId6u9Pza+3Bg4H/AAaeTDqsXrVNJWwFsR8R9JewBXAfdHxIbFupPbiCipR0SMzr/7vaGKWjqPkhYE/kcaCfM1qY7A7cBxEfF5abm3SCl7tpb0M+AW4IOImL/YNlCXR2csARwNFEGK14CfRMSHHXqAVvN8n7CuqK7aO2BmZmZmZmZTxg2S06xtI2J+N0LVDkkrSFoVmnstDyMVv10eWCfPfwm4CVg3L3cNcA+wfg5ewBS010TEaEl1ubHc7w1VkFMxFb3Yu5WmN0TEO8BZQG/gDeBcYE/gBklLlTbzLLBs3s6tpKLZ/SUV6ZrqipESuT7JicCded5vHKywzPcJ63I8wsLMzMzMzMysC3Mv+togaWngReAxYMOIGJWn/5gUkJge6AO8DFxO6lX/Sa4vsDppJMZ7wEoR8Y1rTnQ9LdSFOBuYDjgtIj4vzmkOaHwKzAasSeoB/0dgKLBvrj9xHimQsWFEPCtpOVKaqF7AXBExuDK9k6SewGin+LFKvk9YV+IRFmZmZmZmZmZdmBuhakNEvAz8G1gD2K00ayAwJylYMYhUa+KPEfFREZCIiMeBq4FFSal9ACap0bnIQ2/Vo6SuCBRI2lHSR8BRQCNQnOem3HDcCByZVz8xIm4EtgLGAjdL2hN4mHTNjMrrvgBcBNQDZ+d1K6+R0XlUR0NHHat1Tb5PWFfigIWZmZmZmZmZ2RQoUgABh+bHAyT1z783kVL1/I+UGmpIblSuq1j3dFKv+wMlLZ6XKea1qtRIPmvRUF1s2zpHJE2SlpH0BPBnUh2JHYHTI2Jwadlx+fF64GlgQ0l7RcQgYEtSKqgrgEMAASuVnur3ebt7SFqzcgROcS24cdrMujLfwMzMzMzMzMzMpkAufFwfEW8BFwDLAPvneecD25Eam/uQAhOURlc05t75H+VlZgKOL+a19HzlURWSekvaFPgdcFB529Y5JDVIugR4AZgFOBg4KCJuKoIVxTnLozGKERBFgOtoSX1zLYo9SXUtBgDfkYIW5GtkMCmdGMCsnXBoZmadzjUszMzMzMzMzMwmQ7mGQKk+QU/SSIlRwOYR8UyePxepsXljYN2IeLhyO7kh+0lgSWDLiPh3xXM010jIoy9WJAVD9gIagP0i4s+dc/RWkDQbcD0p/devI+KsFpaZOSKGlP4urpfrgF2AsyPi2NL8/YDBwIMRMaTi3HeLiLEdfFhmZlXhgIWZmZmZmZmZ2RSQtCTwRtGILGlf4FLguojYo7TcNqR0Py8CGwCN5QBEDlpsDdwMPBsRK7fyfIsCmwH7AQuTAiGHR8R3HXOENjGS1gL+ATwIHAh8QwpOrUUaLfEN8Djw11xEuzjfcwCfAN8Ca+VaKM0BjRaeR0WdCqd+MrOpkQMWZmZmZmZmZmaTQVJv4C/AcsBmuTByMe8lYAlg+4i4NU/rBfwB2BvYKyKuztPnABaMiCfz3ycBN0bE6xXP15cU6NgHWBt4BDggIl7tyOOc1pVHuUxgmV7AGaRgxWlAX1J6p2+Ar0ipvvqSghNbA0+XglW/zuvcGBE7ddBhmJl1CQ5YmJmZmZmZmZlNhpz+6RDgVOAs4LcR8U2etw6pt/0DwM9K09cErgS6A78AugE/A9YnBR/uLG2/SBskYGXgKGBT4AvgsIj4e6cc6DSqIg1TD1L6rX9HxOCWRkBIWoI0ymJBYCRwHnA+EKR6FGeTaps8CPwiIt4trfse0J+UCuyOSQmSmJlNjVx028zMzMzMzMxsMkTEKOAW4GHSqIkVS/MeAm4F1gN+Xpr+KHAhqWjyncBNwI7AnyqCFSo1iDcAywKbAGdERH8HKzpeKVixHSlIdDWwbZ7XUmHz/5EKp78BbBwRJ0TE18DQiBhNKqZ9E7AhsHTedo+87hH58cQcDHGwwsymSR5hYWZmZmZmZmY2EZL2AnoAl0fE2FItAZEasa8m1Z74VUR8lteZF3gfeJ2UMurtPH06YDVSAGIocFFRkLncq7/i+ecChkfEiA4+VMsk9SEFok4C6kkdf58G9omIN1sZZTEXsDipXsXoynNZqm9yaUT8omIUx/mkuifPd+yRmZnVLo+wMDMzMzMzMzObAEmLAb8GTgEWhdT7vtTY/BDwf6TAxdo5iEFEfEiqa7A4sG9pkyMj4n7gmIg4NSKGSKpvLViRt/WJgxWdbm3gOGAEsA2puPlapBExLY6yyOfpgYgYVT6XkrrnX78sP+brqD7/flhEPC/J7XVmNs3yG6CZmZmZmZmZGSCpoeLvOoCIeAP4LTAdsH8eIdEsIj4HrgeGkXrkL1ya9xvgY+BASetXrDeueJ6IaGwtWGFVM4J0XleLiLtIAYtPgZ0krQHfXyOViqBV6Roak2f9LD8+XSxbTv9UkQrMzGya44CFmZmZmZmZmU3TSo3KRQBhRUm9Kha7C7iHVI9ilbx8lBqsX8rzBwA/qVj/FFKwY6ZivfKG3UBdmyJiEHByRLyfJ70GXAAsAuwqqUepKHrlulEOPkhaWNI5pMLd10fEP1t5TgetzGya5oCFmZmZmZmZmU3TSo3KO0h6C7gfuA/4ZWmZ94AbgNHA4ZJmLdbNIyS+Aj4h1TrYDliytO7lwOwRcUvnHJG1l6K2SP59HOkaeI6UImrTiazeQ9JCko4E/ki6nu4jBbDMzKwFDliYmZmZmZmZ2TRFWfF7ftyB1Hv+a2AQsARwVi6SXHgQuInUUP1TSd1gvBESTcCzwBrA3pJmKFaMiK+KOhUdeWzWsSLiY+A8YBZgd0n9KkbalJ0HvAqcCCwE7B0RPy2Kr5uZ2Q/JI83MzMzMzMzMbFohqaGU+qk+Ihol9QAeBj4AjouINyWtBlwEzAf8FHg6N0yvC1wKjAUOjohBOXCxBXAFcBqwFPDviPhrJx+edQJJMwJXA5sBh0fERa0styqwPfAC8OeiVkVx3XXW/pqZdSUOWJiZmZmZmZnZNEfSL0i1KJ4HPgJ2A/bNBbSLZXYlBS3+DRwQEV9L6k4qrH0uMJw04qIPsDapxsGOETGiM4/FOp+ktUh1TV4lnfO3Jf0IWDoibiwt1y0ixubfHagwM5sIByzMzMzMzMzMbKqWa0wUdSqWAP4KLA2MAxqAkcAI4Ec5dVO3iBgraQ7gTGB3YAfg1jwiY4Y87RxAQE/gTuDAiPig8jlt6iNpOuBk4EjgfOB1YA9gVeAnEXFPaVmBC2qbmU0KByzMzMzMzMzMbKonaUGgG/AzYFvgMlJNit2BnwONwC4R8VDFehuQUj19CmwbER9VbHMBYGhEPJenOVAxFZOkIvAgaUnS6JtZgR6koNcJEXF+9fbQzKxrc9FtMzMzMzMzM5uqSVoF+B9wOqlH/GUR8aeIeJM0SuICYC5gQ0m98zr1efXHgOtJ6aO2kdSQ5ysi3omI+0vBinoHK2pL6Ty2i1KwYhVgX9J10wO4GOhXBCtcXN3MbPJ4hIWZmZmZmZmZTdUk9QWuAQYCbwFL5pRPDRExTtKipELaiwC7RsSgvF5dRDRJWjbPXwpYNSL+U4XDsDbIAYO6UqHr+YFvge8i4tvySInJ2O5qwHXAgsADwEER8Xqe3wA0Ov2Tmdnk8QgLMzMzMzMzM+sSJrfXei6k/VtgGKlH/GLFrPz4P1KKqFmA3XKAo7z+i8DNwMPAF5OzD9Z5imBErjeysKSbgfuBp4GHcpqv5pEybdl2DkSMAp4BtouIDSLidUl1OcA1zsEKM7PJ54CFmZmZmZmZmXUJpXQ8PSdj9adJveKnBzbM22ss1ZwYBPwN2A5YKzd6N5VSCv0xIjbOwQ+rYREROYBwNPACqRD2m8DzQD/gJmCnYtnJeIoXI2LHiPgbfJ8KzOnAzMymnAMWZmZmZmZmZtYlKDkDOENSj7asGxHfAFcCnwDbSlq6Yv5nwLXA18B+wKJ5emN+HJn3oV1rIlj7k9QN2B84DLgV2AvYLCK2BtYC6oF9Ja2Zl29T+1gRmCjWK64RMzObcg5YmJmZmZmZmVlXsQpwDLBhRIyejPVfIxXYXhXYSlLPilEUzwJ/B9YH5m1pA26c7hJmBjYhpW06PiLuybVKNgTuAPoAKwM7S+qRr4E2pxvziAozs/bnottmZmZmZmZmVlNKaZoqp9cDTwIrAGtHxKNtLZ4saV5SUGIWYJ+IeKBi/iJAQ0S8NkUHYR2qKJg+gflrR8TD+fe+pEDVtqS0UFcD+wBzA/tFxN8ndh2V5+fC2nURMab9jsjMzMAjLMzMzMzMzMysRhS93HOP9+kr5tXn0Q035knr5GXb2hPzI+A8YD5gG0mz5e0X6X3eiojXcg2EySrybR2ndJ7G5b83l7S+pKUrrplH8/wfk66ZjYFzgL0i4mLgYmBW0iiLfkXdixaer7gmi2DFMsDhwCZtTSVlZmYT5zdWMzMzMzMzM6sJpUbhY4GXJW2b/1YpFdNzwHBg8bbWsSg9x93A7aQ6B+vn6U0VyzVNZkFmaweSVpc0e/69uf2qVD9iB0nvkQql3wu8CNwmac7ycqRAxVrAGcBpEfFSnl4Ubl8R2LpinWala3JeSfsClwFnA0sCDmiZmbUzByzMzMzMzMzMrGZIWgc4HVgAuETSaozffvFZ/hkIdMvrtKnhOCKGkHrYX0dq7LYaIukY0giJfWH8IteSGiQdR0rr9A7wa1LQ6Y/AGsC1kpbNy3cDdgSGAJdFxIjS0/QEXiDVKjlC0vyl51fp9xklbQFcCFwK9ALWj4jTXM/EzKz9NVR7B8zMzMzMzMxs2tNanYqIeEjS66QgRSNwA/BL4NY8/3VJrwBbAZsDf5nMXXiwqF/R1joY1uHuAH4BDC5fJzlV2HzAAcBTwGER8TKApJeB0aR0TYdIOiYiBkv6L7AQsBJwd64/sRlwPHAk0B0YExHvFU+e00M1kApz7wjsDjQBB0bEJR1/+GZm0y4HLMzMzMzMzMys0+XG5+5F4eLcq70u91r/O7A3sC7wD+AcScNKBbL/TApYrCbpb5NT/LiU6qfFwIlVT64hsmJEDG5h9s7AXMB2pWDFksAmwDZ5mddysEKk4MfPgPMl3QbMDGwA/Be4LyLerXwCSQuRCnTvC8xPGo1zRESMbb+jNDOzljgllJmZmZmZmZl1uMq0TZIOAB6XtHkxqZRi5wVgdlK6nm2BEcANkpbL23mNVDx7caBNdSwq98PBitqUAw4DJD0qaWNIhdeB/qQaJu9KmlnSXsCfgLOAN4BFIuLcvI0A7iSljZofOBTYFXgV2KGlYEW2CXAaKeXUohFxsIMVZmadwwELMzMzMzMzM+swSurKKZckzQEsDCwPXCxp0YrAwRukOhXbRMSLwIGkoMV1wHqkhuT3SbULflCYeUJKIyv6SZptCg/POlZ/YHVgG0l9ckBrDNAHOJhUt+IyoB+wWURsFBFvA0iaTVK3iBgZERcCSwObAmtGxOYR8X7lNVMKZt0BDIiIDSLif51xoGZmljhgYWZmZmZmZmYdJpImSYtLujxP+yIijiQVMp4buEbS2qV1XgHeBJaTNGtEPA5sD8xBaqTuC9ydF98hr9PqSImKIsozSBoIXJmft74dD9fa13XAv0jnfos87VZgHKmuyebAkRGxUETcWayU60/8jVTroqhR8lZEPBARL+Rp9ZXXTBHMioj3I+KRjj00MzNriQMWZmZmZmZmZtahJJ1GSsOzl6RDS7NOINUHWB44V9IapXl/ydNnAcgNzQeRiiTfAnyQl1tS0sytPK/yuiGpTtKK+TlvII3UeLqUhspqTA4gnAr0AnaVNBfwEimI0QAcFxHnl9eRtBzp/K4ADCltp3LbPu9mZjXIAQszMzMzMzMz62iz58dhwBmS+gBExDDgTOD3wErAFZLmzMu+CnwH7FLazt+AX5BSBZ0JjAYWArq19KSl9E8LAYeQeuz/klTXoG9EnNJOx2cdJCKeAi4lFcreLiK+JKWBGgYcK+nAnN5rEUkHAecDA4ELgNuqs9dmZja51EKQ2czMzMzMzMxskuWUOy02MOQ6AScBe5HSPK0DXBYR+5fXk/QXUnqne4FjSHUqniDVqtgxBzeKbW4I3EyqZQCwYkQ838Jzz06qc7E3aUTFk8Avcl0M6yIkzQM8D3wB7BQRL0vagTQ6Z2ZgKCBgBuBD4LCIuKNKu2tmZlPAIyzMzMzMzMzMbLLlWgCtBSuU6wS8D/Qgper5ENhX0pI5VVPPvPjRpLoS6wMXAfXAP4FlSEWVm0XEvcCJpODGzq0EKxYl9cS/AvgRqaF7dQcrup6I+Ig0ouZHwB75mrsRWIM0YuYG4Cpg74hYsAhWTGohdjMzqx0eYWFmZmZmZmZmUyQ3DJ8GPAg8EBGNkuqKosaSFgNeAzYl1aS4DhgUEevl+crBi3mA44D9gIdIAYc/AxtFxH25QHZRxLtbRIwt7cN4ozwk9QI+BS6JiGM7/D/BOlQ+n4+Tgld7RsRdFfPL11tDRIyrwm6amdkUcqTZzMzMzMzMzCabpHWAUcCvgKtJIx8oGo+zBuBrYCNSAOIJYF1JW5XmFz3pDwTuIqWOOinP3zXPbyy2WwQrchCDimBFQ0SMBOZ0sGLqkM/nCUBfYD9Js0AKVBUjeUq/O1hhZtZFOWBhZmZmZmZmZpNEklqY/CEp4PANMBY4QNIVkvoWC0TEf4EhwLw5sPDbPOt3ef7Y3NZcnwMSvwSuBRbJy60oad6W9ikiGluYNi4/jpyMw7QaFRH/AB4FlgVmzNOiCFaVfzczs67JAQszMzMzMzMzm6DyKAZJ3UrTGyLiHeAsoDfwBnAusCdwg6SlSpt5ltTQTETcSiqa3V9SMQKirgg+RMRrpJEad+Z5v4mIDzvo8Kxr2TYi5o+Id6u9I2Zm1v5cw8LMzMzMzMzMWtRCXYizgemA0yLi86JuQA5ofArMBqwJ9Af+CAwF9s31J84jBTI2jIhnJS1HqlPRC5grIgbnERaNpefrCYx2r3mr5DoVZmZTJ4+wMDMzMzMzM7Px5PRMdUWgQNKOkj4CjgIagaKORFNuOG4EjsyrnxgRNwJbkVJE3SxpT+BhoA+p3gUR8QJwEVAPnJ3XrQxMjM6jOho66lita3Kwwsxs6uQRFmZmZmZmZmbWIknLAJcCqwD3A1cAD0TE4FaWfxJYGdgnIq6UtARwAbA+8CAwANgrIq7Oy88ODAKWANaOiEc79ojMzMyslnmEhZmZmZmZmZmNR1KDpEuAF4BZgIOBgyLipiJYURTgzqMxihEQh+bHoyX1zbUo9iTVtRgAfAcU69XlbV2e15m1Ew7NzMzMaphHWJiZmZmZmZnZeCTNBlwPDAR+HRFntbDMzBExpPR3Uc/iOmAX4OyIOLY0fz9gMPBgRAwp18eQ1C0ixnbwYZmZmVmNc8DCzMzMzMzMzH5A0lrAP0ipnA4EvgE2BtYijZb4Bngc+Gsuol0fEY2S5gA+Ab4F1oqIl/P26iKiqYXnUVGnwnUJzMzMpm0OWJiZmZmZmZlNY4rgwkSW6QWcQQpWnAb0JaV3+gb4CpgpT/sE2Bp4ujRi4td5nRsjYqcOOgwzMzObyjhgYWZmZmZmZjaNqEjD1APYDvh3RAxuaQRELpr9D2BBYCRwHnA+EKR6FGcD+5NGYfwiIt4trfse0B/YMiLumJQgiZmZmU3bXHTbzMzMzMzMbBpRClZsB3wBXA1sm+f9IF0T8D/g98AbwMYRcUJEfA0MjYjRpGLaNwEbAkvnbffI6x6RH0/MwRAHK8zMzGyCHLAwMzMzMzMzm0ZI6iPpCOAKoAEYC2wvadE8f7x2glwI+1ZSWqinJSlPj/z4MfAYqX1hYF5tTJ73d+ACYJ9WgiFmZmZm43HAwszMzMzMzGzasTZwHDAC2Aa4nFREe0doeZRFRHwSEQ9ExKgo5ZWW1D3/+mX5MRfQrs+/HxYRz1cGQszMzMxa4g8MZmZmZmZmZtOOEcD1wGoRcRcpYPEpsJOkNeCHoywKxeiKYn5EjMmzfpYfny6WLad/ynUzPMLCzMzMJsoBCzMzMzMzM7NpREQMAk6OiPfzpNdIaZsWAXaV1CMimorgRMW6UQ4+SFpY0jmkwt3XR8Q/W3nOaGm6mZmZWSX5c4OZmZmZmZnZtEvS3MBtwALAfhFxSw5M/KDBQFJPYG5gS1LNig2Au4BDIuLtTttpMzMzmyp5hIWZmZmZmZnZNCwXzj4PmAXYXVK/PJqipTaD84BXgROBhYC9I+KnDlaYmZlZe2io9g6YmZmZmZmZWdXdRRplsRmpGPdFrdSduB4YA7wA/LmoVSGpvly3wszMzGxyOCWUmZmZmZmZmSFpLVLg4lVgx4h4W9KPgKUj4sbSct0iYmz+3YEKMzMzazceYWFmZmZmZmZmAM8BlwBHAgdKeh3YA1hV0tcRcQ9ARIwtinI7WGFmZmbtySMszMzMzMzMzKZh5QLbkpYE/g3MCvQARgAnRMT51dtDMzMzm1Z4hIWZmZmZmZlZF9LeaZhKwYpVgJ2BufKsi4FjIuK7PL85sGFmZmbWERywMDMzMzMzM+sCchqmulKh6/mBb4HvIuLbyQ0o5O2uBlwHLAg8ABwUEa/n+Q1Ao4MVZmZm1tHqqr0DZmZmZmZmZjZhRTAiIholLSzpZuB+4GngIUkbkDslFvUlJlUORIwCngG2i4gNIuJ1SXWS6iJinIMVZmZm1hlcw8LMzMzMzMysC5BUB/wSOB4YCrwCfAesAvQCjoiIayd32xHRVPq7XdNOmZmZmU0Kp4QyMzMzMzMzq3GSugH7AIcBtwI3AA9ExDhJCwAvAPtKejsiHq0MQExMsWyxnoMVZmZmVg1OCWVmZmZmZmZW+2YGNiGlbTo+Iu7JwYoNgTuAPsDKwM6SekREU1tTQ8H3gQszMzOzanDAwszMzMzMzKwG5OLWLYqIL4BzImKLiHhfUl9JNwF3A6OBg4H/AtsAP53E51Pp9wZJ3afoAMzMzMymkFNCmZmZmZmZmVVRKQ3TuPz35sC3wGDg7Yj4Ni/6aJ7/Y+AiYAXgHOCvEfGSpDHAn0ijLB6PiM9aSg1VKuAd+e9lgI2AtyTd4VEWZmZmVi0eYWFmZmZmZmbWCSStLmn2/Hvz9/FS/YgdJL0H/A24F3gRuE3SnOXlgI2BtYAzgNMi4qU8vWd+XBHYumKdZqVAxbyS9gUuA84GlgTanEbKzMzMrL04YGFmZmZmZmbWwSQdQxohsS+MX+Q6p2M6DrgaeAf4NbA+8EdgDeBaScvm5bsBOwJDgMsiYkTpaXqSim/PCxwhaf7S85fTP80oaQvgQuBSoBewfkSc5mLbZmZmVk1OCWVmZmZmZmbW8e4AfgEMLqdpysWx5wMOAJ4CDouIlwEkvUyqT3E4cIikYyJisKT/AgsBKwF359oXmwHHA0cC3YExEfFe8eQREXm5lUkBj92BJuDAiLik4w/fzMzMbOIcsDAzMzMzMzPrYBHxmqQVI2JwC7N3BuYCtisFK5YENiEV0QZ4LQcrRAp+/Aw4X9JtwMzABqSi2/dFxLuVTyBpIWBb0giP+YGLgSMiYmz7HaWZmZnZlHFKKDMzMzMzM7NOkAMOAyQ9KmljAEn1QH9gOPCupJkl7UUqnn0W8AawSEScm7cRwJ2ktFHzA4cCuwKvAju0FKzINgFOI6WcWjQiDnawwszMzGqNR1iYmZmZmZmZdZ7+wOrANpIei4jhksYAfYCDgQWA7YD3gM0i4s5iRUmzAcMiYiRwoaR/k+pVDImIF/Iyzemm8t/KQY47gBcj4pFOOUozMzOzyaD0ucXMzMzMzMzMOlpO6fQPYF3ggIi4XtL6wF15kbHAcRFxfsV6DcB9wN8j4oJSIKK8TL2LZpuZmVlX5pRQZmZmZmZmZp0kBxlOBXoBu0qaC3gJ+BcpC0JLwYrlgBuAFYAhpe1UbtvBCjMzM+vSHLAwMzMzMzMz60QR8RRwKalQ9nYR8SVwGTAMOFbSgZL6SVpE0kHA+cBA4ALgturstZmZmVnHc0ooMzMzMzMzs04maR7geeALYKeIeFnSDsDFwMzAUEDADMCHwGERcUeVdtfMzMysUzhgYWZmZmZmZlYFkg4HziONoDgqIholLQ5sAsxPqmfxckRcW1pnvKLaZmZmZlMTByzMzMzMzMzMqkBSL+BxoB+wZ0TcVTG/OTghqSEixlVhN83MzMw6jWtYmJmZmZmZmVVBRIwETgD6AvtJmgVAWUQ0lX53sMLMzMymeh5hYWZmZmZmZlZFkh4G+gMDIuLdau+PmZmZWbU4YGFmZmZmZmZWRZL6RsTn1d4PMzMzs2pzwMLMzMzMzMysBrhOhZmZmU3rHLAwMzMzMzMzMzMzM7Oqc9FtMzMzMzMzMzMzMzOrOgcszMzMzMzMzMzMzMys6hywMDMzMzMzMzMzMzOzqnPAwszMzMzMzMzMzMzMqs4BCzMzMzMzMzMzMzMzqzoHLMzMzMzMzMzMzMzMrOocsDAzMzMzMzMzMzMzs6pzwMLMzMzMzMzMzMzMzKrOAQszMzMzMzMzMzMzM6s6ByzMzMzMzMzMzMzMzKzqHLAwMzMzMzMzMzMzM7Oqc8DCzMzMzMzMzMzMzMyqzgELMzMzMzMzMzMzMzOrOgcszMzMzMzMzMzMzMys6hywMDMzMzMzMzMzMzOzqnPAwszMzMzMzMzMzMzMqs4BCzMzMzMzMzMzMzMzqzoHLMzMzMzMzMzMzMzMrOocsDAzMzMzMzMzMzMzs6pzwMLMzMzMzMzMzMzMzKrOAQszMzMzMzMzMzMzM6s6ByzMzMzMzMzMzMzMzKzqHLAwMzMzMzMzMzMzM7Oqc8DCzMzMzMzMzMzMzMyqzgELMzMzMzMzMzMzMzOrOgcszMzMzMzMzMzMzMys6hywMDMzMzMzMzMzMzOzqnPAwszMzMzMzMzMzMzMqs4BCzMzMzMzMzMzMzMzqzoHLMzMzMzMzMzMzMzMrOocsDAzMzMzMzMzMzMzs6pzwMLMzMzMzMzMzMzMzKrOAQszMzMzMzMzMzMzM6s6ByzMzMzMzMwmgaS5JR0m6R5JH0gaI+kzSbdIWqWVdfpI+p2k9yWNlvSepHMlzdDK8nWSDpb0H0kjJQ2W9FdJC3bs0ZmZmZmZVZ8iotr7YGZmZmZmVvMknQUcA7wNDAIGA4sAWwICdoqIm0rLTw88CiwL3AO8ACwHbAQ8A6wdEaMqnuNyYG/gv8CdwFzAdsAIYNWIeKujjs/MzMzMrNocsDAzMzMzM5sEkrYCvoqIhyqmrwXcTwoqzBkRo/P0k4ETgLMj4lel5YvAx68j4szS9AHAA8DDwIYRMSZP3xj4F3BPRAzswEM0MzMzM6sqByzMzMzMzMymkKS7SSMnVoqIZyUJ+AjoA/SLiG9Ly04PfAZ8ERELlab/BdgRWCciHq7Y/oPAusB8EfFBRx+PmZmZmVk1NFR7B2zKSOoBLJX/HAw0VnF3zMzMzKzrqAdmz7//pxgVYJNtbH4clx8XIaVzurscrACIiG8lPQYMlDRvRHyYZ60LfAs81sL2787z1wGun9SdkjTPRBbpDiwOfIG/T5iZmZnZpOuQ7xMOWHR9S5Hy35qZmZmZTa6VgGervRNdlaT+wAbAp8B/8uRF8mNrNSfeAgbm5T7Moy7mBF6JiJaCBsV2Fmlh3oR8OPFFzMzMzMymSLt9n6hrj42YmZmZmZlNiyR1I4146AEcUwo2zJgfh7Wy6vCK5dq6vJmZmZnZVMcjLLq+wcUvDz/8MAsssEA198Um0ciRI3n44ZSWeO2116ZXr15V3iObGJ+zrsnnrWvyeet6fM66pnfffZe11167+HPwhJa1lkmqA64B1gYuj4hJTtXUieadyPy5gSchfZ/o169fx++RmZmZmXV5n332WYd8n3DAoutrHi7er18/5plnYilqrRaMHDmS2WabDYB55pnHDTtdgM9Z1+Tz1jX5vHU9Pmdd08iRI8t/um5BG+VgxVXATsANwP4VixQjJVobEdGnYrm2Lj9JIuKjCc1PtcGTBRZYwN8nzMzMzGySVHzva7fvE04JZWZmZmZm1gY5WHE1sDvwV2CPiGiqWGxiNSfGq3GRC3N/CiwgqX5iy5uZmZmZTY0csDAzMzMzM5tEpWDFbsBNwK4TKJL9CbBGLqhd3sb0wBrAuxFRLor9EFDMqzQwPz48ZUdgZmZmZla7HLAwMzMzMzObBKU0ULsBNwO7tBKsICICuAKYATi+YvbxefrlFdMvy4+nSupeet6NgXWBeyLi/Sk8DDMzMzOzmuUaFmZmZtYuIoIvv/ySb7/9lrFjx072dpqamph11lkB+OCDD6irc/+KWudzVru6devG9NNPz2yzzTZerQKbbCeQ0kCNAN4EftPC/+ttEfFi/v0cYAvgGEnLAc8DywMbAc8A55dXjIgHJV0B7A08L+lOYE5ge+Br4OD2PyQzMzMzs9rhgIWZmZlNsYjg888/Z8iQIe2yraJ4V2NjI01NlWnhrdb4nNWucePGMXLkSBobG+nbt6+DFlNu/vw4A3BcK8u8B7wIqS6FpHWAk4CtgQGkOhXnASdHxMgW1t8P+A+wL3AoKThyK3BcRLzdDsdgZmZmZlazHLAwMzOzKfbll1+OF6yor6+foobRYt2GBn9U6Sp8zmpPRNDYmLIVDRkyhPr6emafffYq71XXFhF7AHu0cZ1hwOH5Z1KWbwIuyD9mZmZmZtMUf6M0MzOzKfbtt982/z7nnHMy00wzTfa2mpqaGD58OAB9+vRxeqEuwOesdg0dOpRPP/0USK9TByzMzMzMzKyW+dukmZmZTbGiZkV9ff0UBSvMrH3NNNNM1NfXAyk9lJmZmZmZWS1zwMLMzMzajfPjm9We4nUZEVXeEzMzMzMzswlzwMLMzMzMzMzMzMzMzKrOAQszMzOzdiaJ2267rdq7YWZmZmZmZtalOGBhZmZmVkXzzz8/ksb7Oeuss5rnDxo0CEnMPPPMjBo1arx1n3nmmeZ1AEaMGEG3bt248cYbx1tuhx12QBLvvffeD577+OOP75gDMzMzMzMzM2sjByzMzMzMJlFRXLy9nXLKKXz66afNPwcffPAPlunduze33nrreNOuvPJK+vfv3/z3DDPMwIorrsigQYPGW27QoEHMO++8401/9913ef/991lvvfXa9VjMzMzMzMzMJpcDFmZmZjbNWnfddTnkkEM4+uijmWWWWejXrx8nnXRS83xJXHLJJWy++eZMP/30nH766QDcfvvtLL/88vTs2ZMFF1yQk08+mXHjxk32fvTu3Zt+/fo1/0w//fQ/WGb33Xfnqquuav575MiR3Hjjjey+++7jLTdgwIDxAhOvvfYao0aN4oADDhhv+qBBg+jRowerrbbaZO+3mZmZmZmZWXtywMLMzMymaddeey3TTz89Tz31FOeccw6nnHIK9957b/P8k046iZ/97Gf85z//Yc899+SRRx5ht91249BDD+XVV1/lT3/6E9dcc01zMGNynHXWWcw666wst9xynHvuuS0GP3bddVceeeQRPvjgAwBuueUW5p9/fpZffvnxlhswYABvvPEGn376KQAPPvgga665Juutt954AYsHH3yQ1VZbjZ49e072fpuZmZmZmZm1p4Zq74CZmZlNnTa78FEGfzN6MtYMmiIAqJMAtWnt2Xv34B8HrznJyy+99NKceOKJACyyyCJcdNFF3H///Wy44YYA7LTTTvz85z9vXn7PPffkV7/6VfPIhgUXXJBTTz2Vo48+unk7bXHIIYew/PLLM8sss/D4449z7LHH8umnn/K73/1uvOXmmGMONt54Y6655hpOOOEErrrqKvbcc88fbG+NNdage/fuDBo0iB133JFBgwaxzjrrsMIKK/Dll1/y7rvvssACC/DQQw+x1157tXl/zczMzMzMzDqKAxZmZmbWIQZ/M5rPho+a+IJVtvTSS4/395xzzskXX3zR/PeKK6443vyXXnqJxx57bLwRFY2NjYwaNYrvvvuO6aabrk3Pf8QRR4y3L927d2e//fbjzDPPpEePHuMtu+eee3LooYeyyy678MQTT3DzzTfzyCOPjLfMdNNNx0orrdQcsHjooYc46qijaGhoYPXVV2fQoEFEBB988AEDBgxo076amZmZmZmZdSQHLMzMzKxDzN67x8QXatGUj7Boi27duo33tySampqa/66sJzFixAhOPvlkttpqqx9sqz3SK62yyiqMGzeO9957j8UWW2y8eRtvvDH77rsve+21F5ttthmzzjpri9sYMGAAN910E//9738ZOXJkc9qoddZZhwcffJCmpiamm246VllllSneXzMzMzMzM7P24oCFmZmZdYi2pGUqa2pqYvjw4QD06dOHurraKrm1/PLL88Ybb7Dwwgt3yPZffPFF6urqmGOOOX4wr6Ghgd12241zzjmHu+66q9VtDBgwgNNOO42//OUvrLnmmtTX1wOw9tprc9lllxERzamjzMzMzMzMzGqFAxZmZmZmbXDCCSew6aab0r9/f7bZZhvq6up46aWXeOWVVzjttNPatK0nnniCp556igEDBtC7d2+eeOIJDj/8cHbZZRdmnnnmFtc59dRTOeqoo1odXQGw+uqr06NHDy688EKOO+645ukrr7wyX3zxBbfffjvHHntsm/bVzMzMzMzMrKPVVpdFMzMzsxo3cOBA/vnPf3LPPfew0korseqqq/L73/+e+eabr83b6tGjBzfeeCPrrLMOP/7xjzn99NM5/PDDueyyy1pdp3v37sw222xIrafK6tmzJ6uuuirffPMN66677njPV0x3/QozMzMzMzOrNR5hYWZmZtOsQYMG/WDabbfd1vx75FoalQYOHMjAgQNb3W5r61VafvnlefLJJye4zLrrrjvB7W255ZYtzm/p2AAefPDBSdo3MzMzMzMzs87mERZmZmZmZmZmZmZmZlZ1DliYmZmZdZAzzjiDGWaYocWfjTfeuNq7Z2ZmZmZmZlZTnBLKzMzMrIPsv//+bLfddi3O69WrVyfvjZmZmZmZmVltc8Aik7QLsBawArAU0B34eURc08bt1AEHAvsCCwMjgPuA4yLinfbcZzMzM6tts8wyC7PMMku1d8PMzMzMzMysS3BKqO+dRgoyzAd8OgXb+RNwAaD8+G9gK+AZSYtM6U6amZmZmZmZmZmZmU2NHLD43t7A/BExO3Dp5GxA0oC8nYeB5SPimIjYFdgSmAW4qJ321czMzMzMzMzMzMxsquKARRYR90XE+1O4mX3y4/ERMaa07buAQcBGkvpP4XOYmZmZmZmZmZmZmU11XMOifa0LfAs81sK8u/P8dYDrJ3WDkuaZyCL9il9Gjx7NyJEjJ3XTU53BI0bz8dBRk7y8gIY6UVcn6utEvdLvDXWiTqRpdaKhro6ZejUgqd32ddSoUS3+brXL56xr8nnrPE1NTURE8+9Tuq2Wfrfa5XNW+yKCpqam8T4rjh49uop7ZGZmZmZm9kMOWLQTSdMDcwKvRERjC4u8lR/bWsfiw0ld8KmnnuLtt99u4+anDm8OE5e8WkcT7RdUKJt3+uDAHzXSqwNeMQ8//HD7b9Q6lM9Z1+Tz1rFmnXVWevXqhSSGDx/ebtsdMWJEu23LOofPWe0ZN24cI0eOZOTIkbz++uvN07/88ssq7pWZmZmZmdkPOSVU+5kxPw5rZf7wiuWsHf13iDosWAHw4bfihv/V0RQd9hRmZlYFm266Kccee2y1d8PMzMzMzMzM8AiLrmDeiczvBzwDsMoqq7DQQgt1/B7VoMf/+QZ8+jEAmy3Vl5mn6z7RdSKCcU1BUwSNTUFjBI1NNP/e1JSmP/3eUL4ZPY5Xhvw/e3ceX9OdP3789bk3eyKyiQghQaS0QRg7lWiHUC1VXQy1pUVN+6taSlvfFrVMq1VqaplRSXejtukM003FrpZW7QSJRGyRWBKy3XvP74+bXLnZE1l5Px+P88i5n/M5n/M5956Qe97n83nrOOvQjPE9A+66vxkZGZanvR9++GEcHBzuuk1RueQzq53kc6s68fHxGI1GbGxscHV1vau2TCaT5Sl9FxcXdLrKe75iw4YN2NraUqdOnUo7Rq5t27bxwQcf8Ntvv3Hx4kXWrl3LwIEDrepomsaMGTNYsWIF169fp1u3bnzyyScEBt4ZoKnX6wHYuXMnnTt3tpRnZmbSqFEjUlJS2Lx5M6GhoXTt2pU2bdqwdOlSS71ly5bx17/+lU8//ZSRI0daykeNGsXZs2fZunVrmc+tKj8zUXZJSUk4Ojri4uJC+/btLeX368hcIYQQQgghRM0lAYuKkzuyoqgRFK756pWKpmnni9ueN6+Cvb09jo6OZWn+nmHMM7ri1T8H0dy74m48RZ+8wqiofWga/H1rLO38vQh7wLvC2ndwcLhvP7faSj6z2kk+t8ql0+ksuQsq8ma1Tqer1JvfXl5eldZ2funp6bRt25aIiAgGDRpU6Lm99957LF68mM8++4yAgAD+7//+j759+3Ls2DGrgJufnx+fffYZXbt2tZT9+9//xsXFhZSUFEvbYWFhrF+/3uo4W7duxc/Pj23btjF69Gir8hEjRtz1+13Zn5koH6UUOp3O6t9Be3v7auyREEIIIYQQQhQk3yYriKZpt4CLQIBSSl9IldxHI2MK2SbuUkb2nbQh9jaFvf3lFxrkzeTeQQBoGvy/Vb8Td/VWhR5DCCFE9QgNDWXChAmAeYTC5MmTadiwIc7OznTq1Ino6GhL3eTkZIYMGULDhg1xcnIiODiYb775ptTH6tu3L7Nnz+bJJ58sdLumaSxcuJDp06czYMAAWrduzeeff86FCxfYsGGDVd0RI0awatUqqwTKK1euZMSIEVb1wsLCOHnyJJcuXbKUbd26lWnTplmdW2xsLOfOnSMsLKzU5yOEEEIIIYQQQlQ0CVhUrK2AM9CtkG19cn5K1tdKkGkwWdbtbSv+sh4f2ow+D9YHIDXDwNgvDnAr01DhxxFCCFF9Xn75ZXbv3s2qVas4dOgQTz/9NOHh4cTEmJ81yMjIoH379mzcuJEjR44wZswYnn/+efbu3Vshx4+NjeXSpUs8+uijlrK6devSqVMndu/ebVW3ffv2+Pv7s3btWsA8Jde2bdt4/vnnrep169YNW1tbtmzZAsCxY8dIT08nIiKC5ORkYmNjAdiyZQsODg506dKlQs5FCCGEEEIIIYQoD5kSqhyUUl6AF3BV07SreTb9A3gOeFcp9WdN07Jy6vcFQoEfNU07V9X9vR9YBSwqeIQFmKdR+ODpNpy+spMzSbc4eTmV19ce4u9DQqym5RJCCJHH8p6QdqXMuynAVTP/u65UOYLQLt4wtmx5GOLj44mMjCQ+Ph5fX18AJk+ezPfff09kZCRz586lYcOGTJ482bLPK6+8wg8//MDq1avp2LFj2fuZT+4oiPr161uV169f32qERK7Ro0ezcuVKhg0bRlRUFP369aNevXpWdZydnenYsSPR0dEMGTKE6Ohounfvjr29PV27diU6OpqAgACio6Pp0qWLTBEkhBBCCCGEEKJaScAih1LqBaB7zsvgnJ8vKKVCc9Z3aJq2Imf9ZeAdYCYwI7cNTdO2KKVWAC8AvymlNgINgGeBFOCVSjyF+5r1lFCVM3CojoMt/xj+Jwb8fSdpmQY2HrpIm0Z1GfPw/ZnoXAghSpR2BVIvlHk3lbNUpcOHD2M0GmnRooVVeWZmJp6engAYjUbmzp3L6tWrSUxMJCsri8zMTJycnKq4t2bDhg1j2rRpnD17lqioKD7++ONC64WGhvLtt98CEB0dTWhoKAA9e/YkOjqaUaNGER0dzYsvvlhVXRdCCCGEEEIIIQolAYs7ugMj8pV1w3p6pxWUbCxwGBgDvAqkAeuBtzRNO1MB/RSFsB5hUXkznTWr58KCZ9ow5osDAPztfyd40Lcu3ZpXXdJWIYSoNVy8y7WbBmh5RliUOXhRjuOmpaWh1+s5cOAAer31SD0XFxcA5s+fz6JFi1i4cCHBwcE4OzszYcIEsrKyyny8wvj4+ABw+fJlGjRoYCm/fPkybdu2LVDf09OT/v37ExERQUZGBn379iU1NbVAvbCwMObMmUNiYiLR0dGWUSI9e/Zk+fLlnDlzhoSEBHr16lUh5yHEvU4pNQzoAbTH/KCTHTBK07SoQupqpWiysaZpCTn1/YHYYurO1DRtRhm7LIQQQgghRK0hAYscmqaNBEaWsu4M8oysyLfNBHycs4gqkpkzwsLeRlfpUzT1ftCHV3o1Z/EvpzFp8PLXv/GfV7rTyL16nrAVQogaq4zTMuXSTCZu3rwJgKurK0pX+Sm3QkJCMBqNXLlyhR49ehRaZ+fOnQwYMIBhw4YBYDKZOHXqFK1ataqQPgQEBODj48PmzZstAYqbN2/y66+/8tJLLxW6z+jRo+nXrx9Tp04tEGjJ1bVrV+zs7FiyZIklDwdAhw4dSEpKYuXKlZapo4QQpTIbaAJcBS7mrBdlZhHlzYGhwLHcYEU+fwAbCimPLnUvhRBCCCGEqIUkYCHuCVk5Iywqc3RFXhMebcHhxBtEn0zi2u1sxn15gDXjuuJgW/H5M4QQQlS+Fi1aMHToUIYPH86HH35ISEgISUlJbN68mdatW/PYY48RGBjImjVr2LVrF+7u7ixYsIDLly+XOmCRlpbG6dOnLa9jY2M5ePAgHh4eNG7cGKUUEyZMYPbs2QQGBhIQEMD//d//4evry8CBAwttMzw8nKSkJFxdXYs8rqOjI507d2bx4sV069bNEtiws7OzKre1tS39GybE/e0FIEbTtHNKqWnAvKIqFjUaQim1OGf10yJ2PSgjKYQQQgghxP2oau7uClHJcnNYVFXAQK9TLHo2hCae5lEVRxJv8tb6I2haaUb9CyGEqIkiIyMZPnw4kyZNIigoiIEDB7Jv3z4aN24MwPTp02nXrh19+vQhNDQUHx+fIgMJhdm/fz8hISGEhIQAMHHiREJCQnj77bctdV5//XVeeeUVxowZQ4cOHUhLS+P777/HwcGh0DaVUnh5eWFnZ1fsscPCwkhNTbXkr8jVs2dPUlNTCQsLK/V5CHG/0zTtZ03TzpV3f6WUA+bRFVnAFxXWMSGEEEIIIe4BMsJC3BNyc1jY21ZdDK6uky3Ln2/Pk5/sIj3byNrfztPGry7Du/hXWR+EEELcnejoaMu6ra0tM2fOZObMwmdw8fDwYMOGDeU+VmhoaImBbaUUs2bNYtasWUXWKa4NNze3QrfPmDGDGTNmFCh/5513eOedd4rtkxCiwg0C3IE1mqYlFVHHVyn1V6AucBmILm8+PKVUoxKq+OSupKenk56eXp7DCCGEEEKI+0xl/d0oAQtxT7AELGyqdkqmB3xceW9wa/7fN78DMOs/x2jZwJUO/h5V2g8hhBBCCFFrROT8XFFMnT/nLLk0pdRXwDhN026V8XiF5cgo1LZt2/Dy8ipj80IIIYQQ4n509erVSmlXpoQS94SMPEm3q9oTbXx5sUcAAAaTxvivfuPyzYwq74cQQojqEx8fj4uLS5FLfHx8dXdRCFEDKKUCgDAgHvipkCq3gXeB9oAb4AE8CuwFhgGfV0lHhRBCCCGEqCYywkLUegajCYPJPP1FdSW9nhr+AEcv3GTXmWSSUjN56csDrBrTBbtqCKAIIYSoer6+vhw8eLDY7UIIAYwGFBCpaZop/0ZN064Ab+cr3qyU2g38BgxSSrXTNO23MhzTr4TtPsA+gIcffphGjUqaQUoIIYQQQgg4f/58pbQrAQtR62UZ73zXq44RFgA2eh2Lh4TwxN93kng9nd/irzPzP0eZ82RwtfRHCCFE1bKxsaF58+bV3Q0hRA2mlNIBIwETsLIs+2qadlsp9QUwG+iGOXhR2n2L/SaplLKsOzo64ujoWJauCSGEEEKI+1Rl/d0oj3+LWi8ju/oDFgCeLvYsG9beMqriq1/jWb2v1FMGCyGEEEKIe1s40Aj4SdO08swTlztJsHPFdUkIIYQQQoiaRQIWotbLNBgt69U1JVSu4EZ1mTPwIcvr6RuO8EfC9errkBBCCCGEqClKk2y7OJ1yfsbdfVeEEEIIIYSomSRgIWq9zBoywiLX03/y4/nOTQDzdFXjvjzA1bTMau6VEEIIIYSoLkqpesDjQBLwXTH1QlTeOZrulA8CRgDXgP9VVj+FEEIIIYSobpLDQtR6mYa8AYvqHWGR6//6t+L4xZvsP3eNizcyePnr3/gyohM2+uoPqAghhBBCiPJTSr0AdM95mZuw7AWlVGjO+g5N0/KPohgO2AJfaJqWVUzzHwHNcpJsnwf0QLuc42UCIzVNu3HXJyGEEEIIIUQNJXdPRa2XkZ13SqiacUnb2ehYMrQd3nXsAdhzNoV5/ztRzb0SQgghhBAVoDvm0Q4jMAcTwJwIO7eseyH7lHY6qC+BI0BnYBwwFvDN2a+tpmlFjs4QQgghhBDiXlAz7u4KcResRlhUcw6LvLxdHVg6rB22evOo/k93xPLvg4nV3CshhBBCCHE3NE0bqWmaKmYZWcg+rXK2HS+h7RWapvXVNK2xpmlOmqY5aJrWTNO0FzVNk6dfhBBCCCHEPU8CFqLWy5t0uybksMirfRMP3n78QcvrqWsPcezCzWrskRBCiLxCQ0OZMGFCdXejVtqwYQPNmzdHr9fz2muv8fXXX9OkSZMqOba/vz8LFy6skmOVRnJyMt7e3sTFxVX5sTt37szatWur/LhCCCGEEEIIURlq1t1dIcohozKTbmenw6UjcOU4pF4GY3aZmxjWqTFPt28EmPs69sv9XE8veztCCCEq3rp163j33Xer7Hjbtm3j8ccfx9fXF6UUGzZsKFBn5MiRKKWslvDwcKs6ueV79uyxKs/MzMTT0xOlFNHR0YD5hva4ceOs6i1btgylFFFRUQWO3aNHj1Kdy9ixYxk8eDAJCQnMmjWrVPuUVVRUFG5ubgXK9+3bx5gxYyrlmOUxZ84cBgwYgL+/PwB//PEHQ4YMwc/PD0dHR1q2bMmiRYvK3G5prpfp06czbdo0TCZTwQaEEEIIIYQQopaRpNui1ss7wsKhvFNCGTLhagwknTAHJ64ch6TjkBILaNZ17euCkwc4eeb5mbPumO+1kyfK0Z13Bz7EycupHDp/g4SUdF5fd5RBXqBT5T9vIYQQd8/Dw6NKj3fr1i3atGnD6NGjGTRoUJH1wsPDiYyMtLy2t7cvUMfPz4/IyEg6d+5sKVu/fj0uLi6kpKRYysLCwli/fr3Vvlu2bMHPz4/o6GhGjhxpKY+OjmbEiBElnkdaWhpXrlyhT58++Pr6VvnN8nr16lXp8Ypz+/ZtPv30U3744QdL2YEDB/D29ubLL7/Ez8+PXbt2MWbMGPR6PS+//HKp2y7N9dK3b19eeOEF/ve///HYY4/d9fkIIYQQQgghRHWSERai1sssywgLYzYknYSj62HLPFg9HP7eAeY0gGXdYG0EbP8ATm6ElLMUCFYAZN6Aa7GQuB9ifoQ/voHdf4fNs+C/E2D18xDVD5Z0hg8C4V0vHD4MYF32X/mPwzt8ajufgefm4HziGxpc31euURtCCCEqRv4poTIzM5k8eTINGzbE2dmZTp06WUYqgHnqnyFDhtCwYUOcnJwIDg7mm2++KfXx+vbty+zZs3nyySeLrWdvb4+Pj49lcXd3L1BnxIgRrFq1ivT0dEvZypUrCwQcwsLCOHnyJJcuXbKUbd26lWnTplmdW2xsLOfOnSMsLKzYvkVHR1OnTh0AevXqZTWaI7+lS5fSrFkz7OzsCAoK4osvvrDavmDBAoKDg3F2dsbPz4/x48eTlpZmOc6oUaO4ceOGZUTJjBkzgIJTQimlWLFiBU8++SROTk4EBgby3XfWuYm/++47AgMDcXBwICwsjM8++wylFNevXy/2fEuyadMm7O3trQJHo0ePZtGiRfTs2ZOmTZsybNgwRo0axbp168rUdmmuF71eT79+/Vi1alW5z0EIIYQQQgghagoZYSFqvQyrHBY5IyxMRrgWd2ekxJXjcOUEXD0FplIGCGydoF4Q1HsAlB7SU+B28p0l/TqFBjQK7eQNbDJuEAyQOwgkA4gFbem/oN3z0G44uPuXrj0hhKglPjv6GZ8f+7zEeq08WrH4kcVWZdN+nUbMzZgS9x3eajgjHix5VEBpvPzyyxw7doxVq1bh6+vL+vXrCQ8P5/DhwwQGBpKRkUH79u2ZOnUqrq6ubNy4keeff55mzZrRsWPHCukDmG/We3t74+7uTq9evZg9ezaenp5Wddq3b4+/vz9r165l2LBhxMfHs23bNj755BOraa66deuGra0tW7ZsYciQIRw7doz09HQiIiKYOnUqsbGxBAQEsGXLFhwcHOjSpUuxfevatSsnT54kKCiItWvX0rVrV9zc3Dhxwjof8Pr163n11VdZuHAhjz76KP/9738ZNWoUjRo1sgRFdDodH3/8MQEBAZw9e5bx48fz+uuvs2TJErp27crChQt5++23OXnyJAAuLi5F9mvmzJm8//77zJ8/n8WLFzN06FDOnTuHh4cHsbGxDB48mFdffZUXXniB33//ncmTJ5fpMynK9u3bad++fYn1bty4UWkjejp27Mjf/va3SmlbCCGEEEIIIaqSBCxErZeZbcIGA0/pt9Pl0Co4EGcOTBgySteA3h68WoB3S/B+ALxbmYMUbk1AV8yIDZPRHLSwBDBS4NbVPIGNa9YBjtvJkHG9QDPq1hXY/iFsXwDNesGfRkGLcNDbluftEEKIGuVW9i2u3L5SYj0fZ58CZdczr5dq31vZt8rVt/zi4+OJjIwkPj4eX19fACZPnsz3339PZGQkc+fOpWHDhlY3ul955RV++OEHVq9eXWEBi/DwcAYNGkRAQABnzpzhzTffpG/fvuzevRu93nrqw9GjR7Ny5UqGDRtGVFQU/fr1KzBdkrOzMx07diQ6OpohQ4YQHR1N9+7dsbe3p2vXrkRHRxMQEEB0dDRdunQpdPqpvOzs7PD29gbMU2r5+PgUOiXUBx98wMiRIxk/fjwAEydOZM+ePXzwwQeWgEXe0S3+/v7Mnj2bcePGsWTJEuzs7Khbty5KKXx8Cl4f+Y0cOZIhQ4YAMHfuXD7++GP27t1LeHg4y5cvJygoiPnz5wMQFBTEkSNHmDNnTontluTcuXOW66Uou3bt4l//+hcbN2686+MVxtfXl4SEBEwmE7ri/nYRQgghhBBCiBpOAhai1ss0mHhWH80c25WQUExFnQ14BpqDEvXyBCfcA0Bfjl8FnR6cPc1LaRkNaOnXeHf1Ns6dPspg/Tb+rDuAjTIBGpzZbF5cfCBkGLQfAW6Ny943IYSoIZxtnfF28i6xnod9wSfP3ezdSrWvs61zufqW3+HDhzEajbRo0cKqPDeRNYDRaGTu3LmsXr2axMREsrKyyMzMxMnJqUL6APDcc89Z1oODg2ndujXNmjUjOjqaRx55xKrusGHDmDZtGmfPniUqKoqPP/640DZDQ0P59ttvAfPojdDQUAB69uxpmXopOjqaF198scLO4/jx4wUSY3fr1s0q+fTPP//MvHnzOHHiBDdv3sRgMJCRkcHt27fL/J62bt3asu7s7IyrqytXrpgDXidPnqRDhw5W9UsKMI0bN44vv/zS8jp3qqr80tPTcXBwKLKdI0eOMGDAAN555x169+5d4nmUh6OjIyaTiczMTBwdHSvlGEIIIYQQQghRFSRgIWq9TIOR5irxToHSgUdT8ygJ71Z3AhMezcDGrvo6CqC3QbnU49Wnwxm93I6XrranHtd4Wr+VMc7bccu6aK6XdsmcS2P7h9D8UWg/MmfUhfzKCiFqlxEPjij3dE1/6/Q3XF1dq+yJ8bS0NPR6PQcOHCgwkiF3KqL58+ezaNEiFi5caMm9MGHCBLKysiqtX02bNsXLy4vTp08XCFh4enrSv39/IiIiyMjIoG/fvqSmphZoIywsjDlz5pCYmEh0dLRllEjPnj1Zvnw5Z86cISEhgV69elXaeeQXFxdH//79eemll5gzZw4eHh7s2LGDiIgIsrKyyhywsLW1HpmolLqrZOCzZs0q1bRRXl5eXLt2rdBtx44d45FHHmHMmDFMnz693H0pSUpKCs7OzhKsEEIIIYQQQtR6cvdT1HoZ2Sbqk+dG0YtbwLdttfWnNOxsdDzf3ISHPfyU6M4S40CW3nyCyU0TGVdnO/pT/wPNCGhw+ifzUqcBhOTkunDzq+5TEEKIe05ISAhGo5ErV67Qo0ePQuvs3LmTAQMGMGzYMABMJhOnTp2iVatWldav8+fPk5ycTIMGDQrdPnr0aPr168fUqVMLBFpyde3aFTs7O5YsWWLJwwHQoUMHkpKSWLlypWXqqIrSsmVLdu7caZUEfOfOnZb36sCBA5hMJj788ENLUGr16tVWbdjZ2WE0GrlbQUFBbNq0yaps3759xe7j7e1tmfqqOCEhIVYjMXIdPXqUXr16MWLEiAqZeqo4R44cISQkpFKPIYQQQgghhBBVQSa5FbVepsGIg8oTsLCvU32dKQOloH9jEzP7B6HXKTR0zD/rx7PX/8r1cQchbDrUzROYSL0I296HhcHw1dNwYhMYDdXWfyGEuNe0aNGCoUOHMnz4cNatW0dsbCx79+5l3rx5ltwDgYGB/PTTT+zatYvjx48zduxYLl++XOpjpKWlcfDgQQ4ePAhAbGwsBw8eJD4+3rJ9ypQp7Nmzh7i4ODZv3syAAQNo3rw5ffr0KbTN8PBwkpKSmDVrVpHHdXR0pHPnzixevJhu3bpZAht2dnZW5flHKdyNKVOmEBUVxdKlS4mJiWHBggWsW7fOMmqhefPmZGdns3jxYs6ePcsXX3zBsmXLrNrw9/cnLS2NzZs3c/XqVW7fvl2uvowdO5YTJ04wdepUTp06xerVq4mKigLMIzHuRp8+fTh69KjVKIsjR44QFhZG7969mThxIpcuXeLSpUskJSWVqe2Srpdc27dvr7TppoQQQgghhBCiKknAQtR6mQYTDnlHWNgUPY90TfRM+4asGP4nnOzMN4/2n7vGoC/PEv/QX+HVP2DoGgh6DFTuU7MaxPwIq4aYgxdb5sKN89V3AkIIcQ+JjIxk+PDhTJo0iaCgIAYOHMi+ffto3NicT2j69Om0a9eOPn36EBoaio+PDwMHDix1+/v37yckJMTyNPzEiRMJCQnh7bffBkCv13Po0CGeeOIJWrRoQUREBO3bt2f79u1FJsNWSuHl5YWdXfHTHoaFhZGammrJX5GrZ8+epKamWhJhV5SBAweyaNEiPvjgAx588EGWL19OZGSk5fht2rRhwYIFvPfeezz00EN89dVXzJs3z6qNrl27Mm7cOJ599lnq1avH+++/X66+BAQEsGbNGtatW0fr1q1ZunQpb731FkCJScZLEhwcTLt27axGh6xZs4akpCS+/PJLGjRoYFny5tGIi4tDKUV0dHSRbZd0vQAkJiaya9cuRo0adVfnIYQQQgghhBA1gdI0rbr7IO6CUqoROammT506RWBgYDX3qOpNXH2Qxw//P8L0f5gLXo8Fp4LJW2uS9PR0fvzxRwB69+6No6Mjh8/fYFTUPq6mZQLg5WLHpyM60MbPzbzTzQvw+5fw2+dwI192caWDwN7mXBeBvc0JwUWFKuwzEzWffG5VJyYmBoPBgI2NzV3/X2Qymbh58yZAleawEOVXGz+zOXPmsGzZMhISEkquXIKNGzcyZcoUjhw5Uupz37JlC4MGDeLs2bO4u7uX+9hTp07l2rVr/OMf/yiyTlG/nzExMXmTzPtpmiZPQNyH8n6fSEhIoFGjRtXcIyGEEEIIURucP38ePz/L7DAV9n1CcliIWs88wiL7TkEtG2GRK7hRXdaP78rIyL2cSbrF1bQsnvvHHv7+lxAeaVkfXH2h5+vQYxKc3gwHIuHU96CZzMup782La0NoGgZezcGrBXgGgkcA6Ctumg8hhBCitlmyZAkdOnTA09OTnTt3Mn/+fF5++eUKafuxxx4jJiaGxMTEvH+wF2vTpk28+eabdxWsAHOujYkTJ95VG0IIIYQQQghRU0jAQtR6mdkm6xwWtTRgAeDn4cS6l7rx4hf72RubQnq2kRc/38+sAQ8xrHMTcyWdHlr0Ni83Eu+MuriZE8S8mQgH8yX/1NmAu785eOGVu+QEM5w9q/QchRDiXhUfH19s8u1jx45Zppaq6fr27cv27dsL3fbmm2/y5ptvVnGP7l5MTAyzZ88mJSWFxo0bM2nSJN54440Ka3/ChAllqj9//vwKOe6kSZMqpB0hhBBCCCGEqAkkYCFqvUyD0ZLDQtPbo2rBNBTFqetkyxcRHZn87SH+88cFTBpM33CE89fSeb1PEDpdnuSgdRtC6FR4eDLE/AQHoiDmB/OIi7xMBkg+bV5O/c96m6PHnSCGZ04gwyvQHOCQURlCCFFqvr6+luTIRW2vLVasWEF6enqh2zw8ava0i0X56KOP+Oijj6q7G0IIIYQQQgghiiEBC1HrZWabsM9Num1be0dX5GVvo2fRs21p6ObIsq1nAFi29QwXrqcz/+nW2Nvky1Gh00NQuHnJumUOTFyNyVlOQXIMXD0NhkJuPqWnQMKv5sWqTRtwD7AekeHdErxbga3kARBCiPxsbGxo3rx5dXejQjRs2LC6uyCEEEIIIYQQ4j4kAQtR62UajDjmTgllc+/cSNfpFNP6PkBDNwfe+e4oJg2+++MCl29m8I/n/0RdpyJGP9g5Q4M25iUvk8k8XdTVUzkBjVN3ghqpFwq2YzKYAx3JMXAyT7nSmUdi+ASDz0Pmn/WDoU79Cjt3IYQQQgghhBBCCCHE/UcCFqLWMyfdNgcs1D345P/zXfxpUNeRV775nfRsI7/GpvDUsl1EjepAI3en0jek04Gbn3lp/oj1tszUnCBGbiDj1J0ppAwZ1nU1E1w9aV6OrLlT7lwvJ3jxEPi0NgczPANBL//MCCGEEEIIIYQQQgghSiZ3EkWtl5F9J4fFvTpV0aOt6rNqTGdGR+0j+VYWp6+k8eSSXUSO7MBDDeve/QHs64BviHnJy2SCGwk5IzFOwqUjcPkwXDkBpmzrureS4Mwv5iWX3t48jZRPThCj/kPmdYcK6LMQQgghhBBCCCGEEOKeIgELUetlZuedEureyGFRmDZ+bqwf342RkXs5e/UWSamZPLN8N58MbUdYkHflHFSnA/cm5iXw0TvlhizzKIzLR+DSYfNy+QjcTrbe35gJFw+al7zcGt8JYDRoDc0euWfyjwghhBBCCCGEEEIIIcpHAhai1tMMmXde3KMjLHI19nRi7UtdeeHz/Rw4d43bWUZe+Gw/swc+xJCOjauuIzZ2OaMmHoI2z5nLNA1SL5pHYVw6lBPMOGKeVgrNev/r8eblxH/Nrz2awlMroGH7qjsHIYQQQgghhBBCCCFEjaKr7g4IcdcM6XfW7+ERFrncne346oVO9Av2AcBo0nhj3WE++OEkmqaVsHclUgpcfaFFb3h4MjwdBa/shzcT4YXN0H8h/CkC/DqBrbP1viln4dPesG0+mIzV0XshxH0qNDSUCRMmVHc3aqUNGzbQvHlz9Ho9r732Gl9//TVNmjSpkmP7+/uzcOHCKjlWaSQnJ+Pt7U1cXFyVHjcrKwt/f3/2799fpccVQgghhBBCiMoiAQtR66m8SaHv8REWuRxs9fx9SDte6B5gKfv7ltNMXP0HWQZTNfasEHbO0OhP8KdR0H8BRPwIb5yHV36Dpz8D33bmeiYD/DIbovqbR18IIUQVWLduHe+++26VHW/btm08/vjj+Pr6opRiw4YNBeqMHDkSpZTVEh4eblUnt3zPnj1W5ZmZmXh6eqKUIjo6GoDOnTszbtw4q3rLli1DKUVUVFSBY/fo0aNU5zJ27FgGDx5MQkICs2bNKtU+ZRUVFYWbm1uB8n379jFmzJhKOWZ5zJkzhwEDBuDv7w/AH3/8wZAhQ/Dz88PR0ZGWLVuyaNGiMrc7Y8aMAtfCAw88YNluZ2fH5MmTmTp1akWdihBCCCGEEEJUKwlYiFrNYDRhq2XdKbgPRljk0ukU0/u34p3HW6GUuWz974mMjNzLzYzs4neubjodeDaDBweaAxg9JoPK+ecofhcs7Q6H11RrF4UQ9wcPDw/q1KlTZce7desWbdq04ZNPPim2Xnh4OBcvXrQs33zzTYE6fn5+REZGWpWtX78eFxcXq7KwsDBL8CLXli1b8PPzK1AeHR1Nr169SjyPtLQ0rly5Qp8+ffD19a3S9xCgXr16ODk5Vekxi3L79m0+/fRTIiIiLGUHDhzA29ubL7/8kqNHj/LWW2/xxhtv8Pe//73M7T/44INW18KOHTustg8dOpQdO3Zw9OjRuz4XIYQQQgghhKhuErAQtVqGwYQDeQIW92Hi5lHdAlg6tD32NuZf511nkhn49538kXC9ejtWWnpbeOT/YORGqJuThyPzBqyNgLUvQsaN6u2fEOKeln9KqMzMTCZPnkzDhg1xdnamU6dOVjf1k5OTGTJkCA0bNsTJyYng4OBCgwlF6du3L7Nnz+bJJ58stp69vT0+Pj6Wxd3dvUCdESNGsGrVKtLT70yNuHLlSkaMGGFVLywsjJMnT3Lp0iVL2datW5k2bZrVucXGxnLu3DnCwsKK7Vt0dLQlQNGrVy+r0Rz5LV26lGbNmmFnZ0dQUBBffPGF1fYFCxYQHByMs7Mzfn5+jB8/nrS0NMtxRo0axY0bNyyjC2bMmAEUnBJKKcWKFSt48skncXJyIjAwkO+++87qWN999x2BgYE4ODgQFhbGZ599hlKK69evF3u+Jdm0aRP29vZ07tzZUjZ69GgWLVpEz549adq0KcOGDWPUqFGsW7euzO3b2NhYXQteXl5W293d3enWrRurVq26q/MQQgghhBBCiJpAAhaiVsvMNloHLGzujymh8gt/yIevX+yMu5MtAGev3uKppbtYvDkGg7GGTRFVlCZd4aUdEPzMnbLDq82jLc7trr5+CSHuSnJkFDE9Q0tcEl4aX2DflMlTOBPWq8R9kyOjKqy/L7/8Mrt372bVqlUcOnSIp59+mvDwcGJiYgDIyMigffv2bNy4kSNHjjBmzBief/559u7dW2F9APPNem9vb4KCgnjppZdITk4uUKd9+/b4+/uzdu1aAOLj49m2bRvPP/+8Vb1u3bpha2vLli1bADh27Bjp6elERESQnJxMbGwsYB514eDgQJcuXYrtW9euXTl58iQAa9eu5eLFi3Tt2rVAvfXr1/Pqq68yadIkjhw5wtixYxk1apSlHwA6nY6PP/6Yo0eP8tlnn/HLL7/w+uuvW46zcOFCXF1dLaMLJk+eXGS/Zs6cyTPPPMOhQ4fo168fQ4cOJSUlBTAHYwYPHszAgQP5448/GDt2LG+99Vax51la27dvp3379iXWu3HjBh4eHmVuPyYmBl9fX5o2bcrQoUOJjy84bWLHjh3Zvn17mdsWQgghhBBCiJpGAhaiVsuUERYW7Zu4s358N1o3qguAwaTx4U+nePYfe4hPvl3NvSslh7rw1D9h0AqwdzWX3YiHqH7m/BbGGj7VlRCiAFNaGobLl0tcjDk3lq32vX69VPuacp7Iv1vx8fFERkby7bff0qNHD5o1a8bkyZPp3r27Zeqlhg0bMnnyZNq2bUvTpk155ZVXCA8PZ/Xq1RXSBzBPB/X555+zefNm3nvvPbZu3Urfvn0xGo0F6o4ePZqVK1cC5nwP/fr1o169elZ1nJ2d6dixo2UURHR0NN27d8fe3p6uXbtalXfp0gV7e/ti+2dnZ4e3tzdgnlLLx8cHOzu7AvU++OADRo4cyfjx42nRogUTJ05k0KBBfPDBB5Y6EyZMICwsDH9/f3r16sXs2bMt76WdnR1169ZFKWUZXZB/uqu8Ro4cyZAhQ2jevDlz584lLS3NEkhavnw5QUFBzJ8/n6CgIJ577jlGjhxZ7HmW1rlz5/D19S22zq5du/jXv/5V5rwbnTp1Iioqiu+//56lS5cSGxtLjx49SE1Ntarn6+vLuXPnytx3IYQQQgghhKhpbKq7A0LcjUyDCQclIyxy+Xs5s/alrny8OYZPtpzGpMGBc9fou2gb7zzxIE+3b4TKTXhRk7V+Gvw6wvqxEL8bNBNsmw9nfoFB/zTnvxBC1Ao6Fxds6tcvsZ6+kCfPdW5updpXV8xN7LI4fPgwRqORFi1aWJXnJrIGMBqNzJ07l9WrV5OYmEhWVhaZmZkVmk/hueees6wHBwfTunVrmjVrRnR0NI888ohV3WHDhjFt2jTOnj1LVFQUH3/8caFthoaG8u233wLmwERoaCgAPXv2tEy9FB0dzYsvvlhh53H8+PECN+i7detmlXz6559/Zt68eZw4cYKbN29iMBjIyMjg9u3bZX5PW7dubVl3dnbG1dWVK1euAHDy5Ek6dOhgVb9jx47Ftjdu3Di+/PJLy+u0IgJj6enpODgU/cDEkSNHGDBgAO+88w69e/cu8Tzy6tu3r2W9devWdOrUiSZNmrB69WqrnBmOjo7cvl1LHk4QQgghhBBCiGJIwELUahn5p4S6j0dY5LLV65jUO4jQoHpM+NdBElLSuZVl5PU1h/jl+BXmDgrGw7ngk7A1jnsTc16LHQtgyzzQjJB4AJb1gL7vQcgwqA3BFyHuc56jRuI5amS59vX4YD6urq7odFUzIDQtLQ29Xs+BAwfQ6/VW23Kf7J8/fz6LFi1i4cKFltwLEyZMICsrq7AmK0TTpk3x8vLi9OnTBQIWnp6e9O/fn4iICDIyMujbt2+Bp+/BnMdizpw5JCYmEh0dbZlaqWfPnixfvpwzZ86QkJBQqoTbFSUuLo7+/fvz0ksvMWfOHDw8PNixYwcRERFkZWWVOWBha2tr9VophclU/mkRZ82aVewUVLm8vLy4du1aoduOHTvGI488wpgxY5g+fXq5+5LLzc2NFi1acPr0aavylJSUAiNrhBBCCCGEEKI2kimhRK1mnhIqzzRB9/kIi7zaN/Fg0//rwdPtG1nKvj96iT4Lt7H1VFI19qwMdHp4eApE/AQeTc1l2bfgu5dh9XC4XXAKGSGEKK+QkBCMRiNXrlyhefPmVouPjw8AO3fuZMCAAQwbNow2bdrQtGlTTp06Van9On/+PMnJyTRo0KDQ7aNHjyY6Oprhw4cXCLTk6tq1K3Z2dixZssSShwOgQ4cOJCUlsXLlSsvUURWlZcuW7Ny506ps586dtGrVCoADBw5gMpn48MMP6dy5My1atODChQtW9e3s7AqdCqusgoKC2L9/v1XZvn37it3H29vb6hooSkhICMeOHStQfvToUcLCwhgxYgRz5swpX8fzSUtL48yZMwWuhSNHjhASElIhxxBCCCGEEEKI6iQBC1GrZWYbsVcywqIodRxsmf90G5YNa4dbTkLupNRMRqzcyzv/PkJG9t3fBKoSjdrD2O3QbvidsuPfwdKucDa62rolhLi3tGjRgqFDhzJ8+HDWrVtHbGwse/fuZd68eWzcuBGAwMBAfvrpJ3bt2sXx48cZO3Ysly9fLvUx0tLSOHjwIAcPHgTMyaAPHjxoSaSclpbGlClT2LNnD3FxcWzevJkBAwbQvHlz+vTpU2ib4eHhJCUlMWvWrCKP6+joSOfOnVm8eDHdunWzBDbs7OysyvOPUrgbU6ZMISoqiqVLlxITE8OCBQtYt26dZdRC8+bNyc7OZvHixZw9e5YvvviCZcuWWbXh7+9PWloamzdv5urVq+We9mjs2LGcOHGCqVOncurUKVavXk1UVBTAXU+V2KdPH44ePWo1yuLIkSOEhYXRu3dvJk6cyKVLl7h06RJJSWV7YGDy5Mls3bqVuLg4du3axZNPPoler2fIkCFW9bZv317m6aaEEEIIIYQQoiaSgIWo1TIMJhzJvFNgW3FziN9Lwh9qwA8THubhFnemi/hs9zn6L97BkcQb1dizMrB3gScWwzNfgKO7uSz1Inw+AH6cDobM4vcXQohSiIyMZPjw4UyaNImgoCAGDhzIvn37aNy4MQDTp0+nXbt29OnTh9DQUHx8fBg4cGCp29+/fz8hISGWp+EnTpxISEgIb7/9NgB6vZ5Dhw7xxBNP0KJFCyIiImjfvj3bt28vMhm2UgovL69CE1/nFRYWRmpqqiV/Ra6ePXuSmppKWFhYqc+jNAYOHMiiRYv44IMPePDBB1m+fDmRkZGW47dp04YFCxbw3nvv8dBDD/HVV18xb948qza6du3KuHHjePbZZ6lXrx7vv/9+ufoSEBDAmjVrWLduHa1bt2bp0qW89dZbACUmGS9JcHAw7dq1s0q8vmbNGpKSkvjyyy9p0KCBZcmbRyMuLg6llCXpeWHOnz/PkCFDCAoK4plnnsHT05M9e/ZYTf+0e/dubty4weDBg+/qPETpKaWGKaWWK6X2K6UylVKaUmpkEXVn5GwvavEvYr8+SqmtSqlUpdRNpdQWpdQjhdUVQgghhBDiXqI0TavuPoi7oJRqBCQAnDp1isDAwGruUdX68egl9n89gzdtvzEXPP0ZPDiwWvtUGunp6fz4448A9O7dG0fHqpnKStM0Pt99jrmbjpNpMM/rbatXvPbnFox9uBl6XS3JCXHzAmx4yXp0hU8wPPUp1AuqlENW12cm7o58blUnJiYGg8GAjY3NXf9fZDKZuHnzJkCV5rAQ5VcbP7M5c+awbNkyEhIS7rqtjRs3MmXKFI4cOVLqc9+yZQuDBg3i7NmzuLu7l/vYzz77LG3atOHNN98ssk5Rv58xMTF5k8z7aZp2vtwduY8opeKAJsBV4FbO+ihN06IKqTsDeAf4DIgrpLmFmqZdz7fPMOALIAn4V07xs4AX8IymaWvu/iysjmf5PpGQkECjRo1K2EMIIYQQQgjzA1Z+fn65Lyvs+0SN+zaplDIqpT4tRb1/KqUMVdEnUXMVyGFhKzcji6OUYkRXf/77SndaNXAFINuo8f73Jxnyjz0kpJRvqo0q5+oLw9ZD7zmgz3mi+NJhWP4w7P0nSCBWCCFEPkuWLGHfvn2W6afmz5/PiBEjKqTtxx57jDFjxpCYmFjqfTZt2sSbb755V8GKrKwsgoODee2118rdhiiXFwB/TdPqActKqpwjStO0GYUs1/NWUkq5A4sxB0PaaZr2iqZprwDtgGRgqVKqTsWdihBCCCGEEDVLjQtYACpnKW1dcR/LyDbikDeHhY3ksCiNwPp12PDXbrwU2ozcqbv3xqXQd9F21v12nlox8kqng64vw4u/QL0HzGWGDNg0Gb5+FtJqSWJxIcQ9Iz4+HhcXlyKX3DwVtUHfvn2LPI+5c+dWd/fKJSYmhgEDBtCqVSveffddJk2axIwZMyqs/QkTJuR9uqhE8+fPZ8qUKXd1TDs7O6ZPny6jx6qYpmk/a5p2rpKafxpwAxbnfUItZ/3vmEdZPFlJxxZCCCGEEKLa2VR3B+6CE+R9tF7cj8wjLPIm3ZYv7KVlZ6NjavgDhLaox8TVf5B4PZ20TAMTV//B5hNXmDPwIdycip8PvUbwCYYx0fDT27D3H+aymB9gaRd4Ogr8u1dn74QQ9xFfX19LMu2ittcWK1asID09vdBtHh4eVdybivHRRx/x0UcfVXc3xP3rYaVUJ8AExAA/a5qWVki90JyfPxay7QdgBtAT+Ly0B86Z8qk4Prkr6enpRf7uCyGEEEIIkVdl/d1YKwMWSik3oDtwsZq7IqpZpsGEIzLC4m50aurJ/yb0YMa/j7Lud/NUFhsPXeRA3DU+eLoN3QO9qrmHpWDrCP3mQ/M/w7/Hw60k8/L1cxDxA9R/sLp7KIS4D9jY2NC8efPq7kaFaNiwYXV3QYh7zcx8r68rpV7VNC1/4CE3yUhMIW3E5KtTWqVO1LJt2za8vGrB335CCCGEEKLaXb16tVLarREBC6XU2XxFg5VSoUVUt8H8FJAeWF6J3RK1QKbBiJuSERZ3y9XBlgXPtqVXS2/eWn+EG+nZXLqZwbBPfyWiewBT+gThYKuv7m6WrEVveGk3rHvBnJA7K9U8PdQLm6FO/erunRBCCCHuP38Ao4FozA9b+QD9gVlAlFLquqZp3+WpXzfn541C2rqZr44QQtRIr+6uEbeaRAkWdamatLByPdR8VXUtgFwPtUFVXg9FqSlXiX+edQ1wyVmKkgVsAN6svC6J2iAj2zwlVDawvo4LPlcP0cOzOUpJepPy6N/alz818WDyt3+w47Q5Svrpjlh2xFzlo2fb0srXtZp7WAou9eC5byCqH1z4HW4kwDfPwciNYOdU3b0TQgghxH1E07T1+YrigL8rpY4DPwGzge/y71fBSkqu4gPsA3j44Ydp1KikGaSEEKIEu3+p7h6IUujdu3fVHEiuhxqvyq4FkOuhFijL9XD+/PmSK5VDTQlYBOT8VMBZYA1QVBbCLCBJ07TqD/eIapdpMOJANt+41mG+pzv8OoPel3bxdpe3qWsvD5+Vh09dBz4f3ZHIXXG89/0JsgwmTl5OZeAnO/lrWHNefDgAJ7ua8k9HEeycYMgq+OcjcPM8XPgN1o+Fpz8zJ+sWQgghhKhGmqZtVkqdAYKVUq6apuWOnsgdWVEXSM63m2u+OqU9VrHfJPM+6OPo6ChJ3IUQ4j4h/96LXHItiLzKcj1U1rVTI+7caZp2LmeJAz4Dvs9Tln+5WFnBCqVUB6XUJqXUdaXULaXUHqXUM2Vsw1cptUgpdSynjctKqR1KqeeVUrVgTp3aJTNnhMU2pzu/ID+e+5GnvnuKfZf2VWPPajedThHRPYD/vNydB3zqAJBlNPHRz6cInR/Nqr3xGIymau5lCer4wNDVYGfuP8e/g835p48WQgghhKg2uZP+5h0CWlyeiuLyWwghhBBCCHFPqBEBi7w0TRuladrKqj6uUioM2Ik5mfdqYBnm4dH/UkpNKmUbTTHPU/sKcA74O7AOaAZ8Dqyo+J7f3zINRmxUJofs7bA12ZgnFAMu375MxA8RLDywkGxjdvV2shYL8qnDv1/uxtiHm6LXmZ++u5KaybR1h+m7aDs/H7uMpmnV3Mti1H8Qno4ElfNP3c6F8Fv+3JZCCCGEEFVLKeUMPAjc4k7gAmBrzs/CxuL3yVdHCCGEEEKIe06NC1hUB6WUDfBPwAQ8rGnaGE3TJgFtgFPAXKVUk1I0NRnwAl7TNK2vpmlTNU17CWgJxAMjS9mOKKXMbBOX7LNonNmUb2Le45u493le/xQAGhrfnvqWlIyUau5l7WZvo+eNfi35YcLD9G51J3F1zJU0Xvh8P8/+Yw8HE65XXwdLEvhn6Pv+ndf/fQ3Oyvd8IYRZaGgoEyZMqO5u1EobNmygefPm6PV6XnvtNb7++muaNKmaP3P8/f1ZuHBhlRyrNJKTk/H29iYuLq7Kj925c2fWrl1b5ccVJVNK1VFKtSik3BHzd486wOp8o8dXY57y6RWlVKM8+zQCXsYc3MifF0MIIYQQQoh7Ro0MWOT8cT9VKfVTztRKZ4tYzlTQIXthHgXxtaZpB3MLNU27AcwF7IARpWinac7PTXkLNU27DuzIeel1l30VeWQaTJx1MNL9ZgjOJkfcMlz4y5FHiLz1HvWMHszoOoP6zvVLbkiUqLm3C/8Y/ifWjOtCu8ZulvK9sSnm/BZf/8a55FvV18HidHwROr1kXjcZYPXzkHSqevskhKgR1q1bx7vvvltlx9u2bRuPP/44vr6+KKXYsGFDgTojR45EKWW1hIeHW9XJLd+zZ49VeWZmJp6eniiliI6OBsw3tMeNG2dVb9myZSiliIqKKnDsHj16lOpcxo4dy+DBg0lISGDWrFml2qesoqKicHNzK1C+b98+xowZUynHLI85c+YwYMAA/P39C2xLTk6mUaNGKKW4fv16mdotzfUyffp0pk2bhslUw6dqvIcopV5QSkUppaKAp3OKLWVKqRdyyjyBE0qpX3PK/6aUisT8QNQQ4DD58vZpmnYNc2DCC/hNKbVYKbUY+C2nvfGapqVW+kkKIYQQQghRTWpc5lyllC/mm/tNMCfhLk5FzUUTmvPzx0K2/ZDzs2cp2jmCeah2P2BRbqFSyg3oBlwCjpWlY3mfrCqCT+5KZmYm6enpZWm+1ruVmcWgm5kY831J94mvw2f2c3A535jb9W5bkgmmZaVh1IzVnpA7IyOj0PXa4MH6jnw5MoSfTiSx4OcznEsxX3MbD13khyOXeO5PDXnpYX88nO2quaf5PDwdu6sx6M/8DBk3MH01mMznN4JT6WKItfkzu5/J51Z1TCaTZYq4u71xmnf/yr4Jm3szvKpu9qamptK6dWtGjhzJ4MGDMZlMBY6taRp9+vRh5co7M2Ta29sXqOfn58fKlSvp2LGjpWzt2rW4uLiQkpJiaTs0NJQNGzZY7f/LL7/g5+fHli1bGD58uKU8Ojqa4cOHl/h+pKWlceXKFf785z/j4+NTaZ9Zblv52/T09KzwY5XX7du3+fTTT/nf//5XaH9Gjx5NcHAwiYmJhX7exSnN9dKnTx9SU1PZuHEjjz32WJFtaZqGyWSy+lsxMzOz1H0RVrpT8GGmbjlLrhVACrAE6Ij5+4E7kA4cBz4G/q5pWoE/3jVN+1IpdRV4ExiF+TvPAWC2pmk/V+ypCCGEEEIIUbPUuIAF5hEN/sBB4G+Y/6C/WcnHLDKBnaZpl5RSaRSe+C6/+cDjwEdKqXDgEOAKDARuA08W9qWkBAmlrfjrr79y5kxFDTqpHS5c1uFMFjqjLbdzyow6Db1JoTI1bv3nHJe2nuZc01tkOBj59va3xBniGOw0mKa2TYttu6ps27aturtQbq8Gwq4riu/P60jLVhhMGl/uPc+3BxLoVE+jjYeJpq6gKyn0WEVsnJ+mu+Mp6qbHo7t+jtsrn2RX86mYdGULrtTmz+x+Jp9b5fL09MTR0RGlFDdvVtx/22lpaRXWVmH69+9PcHAw8+bNA8w3cGfPns3atWu5ceMGLVu2ZMaMGXTv3h2AlJQUpkyZwu7du7l+/Tr+/v5MnDiRwYMHl+p43bp1o1u3O/c009PTC7xf2dnZ6PV6nJycrMrz13v22WdZvnw5M2fOxNHREYAVK1bw7LPPMn/+fG7fvs3Nmzfp2LEj7733HjExMdSvbx51uHXrVqZMmcLHH39saffcuXOcO3eOjh07FvsZ7tixg8cffxyARx99FID//Oc/lu15P7NPP/2Uv//97yQmJtKkSRMmTZrEc889Z9n+ySef8NVXX3Hu3Dnc3NwIDw9n5syZuLi4sGPHDiIiIgDQ6/UATJ06lWnTptG6dWteeuklXnrJPHrO3d2dRYsW8eOPP/LLL7/QoEED3n33Xfr162c51qZNm/i///s/EhMT6dChA3/5y18YP348cXFx1K1b/gcZ/v3vf2NnZ0erVq0KvG+ffvopycnJvP7663z//fekpqai05V+gHNprhcwfw5ffvllkaNjDAYD6enppKenc+LECUv51atXC60viqdp2khgZCnq3cQ8WqI8x/ge+L48+wohhBBCCFGb1cSARR/gMhCWMyVTVcj9llrU8W7mqVMkTdMuK6W6AF8CfYHc+RvSMSfx/uMu+ynyMZgUjmSSgb2l7ORDN6l/0QHPJHNZnZu2tPqjLr81OMtR1yMYlYnIW5G0tW1LU9umNNY3xkPnYRmFIUpPr4MePhod6hn55YKOLRcUWSZFplGx7ZJi2yUdLrYarT002nhoBLpq6KtxIjqD3pE9TSfS8+QMHAzX8bwVQ0j8Cg40eQnk8xeiUhzffpnj26+UWM+joROhI5pZlUV/doaUxNtF7HFHyx7etOxRMdP/vf7665w4cYIVK1bQoEED/vvf/zJ48GB27txJs2bNyMjIoG3btkyYMIE6derw448/Mm7cOAICAmjfvn2F9AHMQYHAwEDc3Nzo0aMH06dPx8PDw6pO27Ztady4Md999x3PPvssCQkJ7Nq1i/nz5zN//nxLvU6dOmFra8v27dsZPHgwJ06cID09neeff56ZM2dy7tw5mjRpwvbt23FwcKBDhw7F9q1jx47s27ePDh068Pnnn9OxY0fc3d2Jj4+3qvff//6XN954g7lz5xIaGsoPP/zAyy+/TMOGDS031nU6He+99x5NmjQhLi6OyZMn88477/Dhhx/SsWNH5s2bx9y5c9m3bx8Azs7ORfbrvffeY+bMmcyaNYt//OMfjB07lkOHDuHu7s65c+cYOXIkY8eOZfjw4Rw6dIi33367TJ9JUXbv3k2bNm0KlJ84cYL58+fz008/ce7cuQo5VlHatWtXo3J6CCGEEEIIIUR51cSAhTuwqQqDFRVGKdUc+A+QBvTAPErEDRgGzAb6KKV6aJpmLEOzfiVs9wH2gfmGRLNmzUqofm/5Z9xeHFKyuJ0nYNEtvCc6Rxuyztzg1n/PYbqehU5T/OlCM1bcmMW8ev/klOM5fs/+nd+zfwfA3d6dYM9ggj2DaePVhrb12lZI/0yaibTsNFKzUrmZdZPU7FRSs1JJuZ3CoZOHyNKy8Gnkg52tHX9t/Vfrc/vjH+yP34s+S6HPVthii63OBltli63OvNjp7Gju2pzHAvpZTZC2M2k3WfpsXF3cqOvijqerFx7OntjoKu9X/gngSmomn0THsv6Pi2QbzR1Ky1bsuqzYdRnqOtrwSFA9/tyyHl2bemBnU03Riz+1RPt6ICo7nUbX9lC/ZVcMPV4vdpeMjAzLE/oPP/wwDg4OVdFTcZfkc6s68fHxGI1GbGxscHV1tZTrtGTSb2aXuL/BU7PsZzKZSEtLI/OWoVT76jTrY5aFjY0NdnZ2uLq6Eh8fz1dffUVcXBy+vr4AtGnThq1bt7JmzRrmzJmDq6srb731lmX/1q1bs3XrVjZt2kRYWFiZj+/o6Fig7/379+eZZ54hICCAM2fOMH36dJ577jl27txpGWmQu+8LL7zAv/71L1588UXWrVtH3759CQgIAMDJyQlXV1dcXV3p2LEje/fuZfTo0Rw4cIDu3btTr149unTpwv79+wkODubXX3+lS5cu1KtXr1TvG0DDhg0JDAy0mqbIxcUFnU7H0qVLGTFiBBMnTgTMN9UPHjzI0qVLLVMXTZ061bLfQw89REZGBuPHj+ef//wnAN7e3uh0OgIDrQe66nQ6HBwcrN67UaNGMXr0aADmz5/P8uXLOX78OOHh4Xz99dcEBQWxaJF5xs727dtz9uxZ5s6dS506dcp9/QBcvHiRxo0bW7WRmZnJ2LFjef/993nwwQdJSkoCuOtjFXa9ADRt2pTExETLe59fUlISjo6OuLi4WAXWavvIXKWUHugEtAPqY/4ecQ3zw08HgL1l/LtbCCGEEEIIUc1qYsAigapPBp4bHClqFIUr5i8/JYnCnHujqaZpl3LK0oC/KaXqAxOA54CvStsxTdPOF7c976gAe3t7y5QQ94vrtj/yqVsdHrnqaAlZOLk6o2x0OD7kSJ0W9bj50znSdiSCBj63PFh4+3X+47GNKM8NpOvNczdfy7zGtgvb2HZhGw94PMC3j39rOUa2KZs9F/Zw23CbdEM6t7NvW62nG9LNr7PTmfiniQTUDbDs+92Z73hr+1s4mRxwN7jiYaiLu9EVd4MrDQyuuBg9cDnrSF1THVL3n8SUYcCUbsCUYWCQoR2DaFeq9+HmNusE0sF45nmVDiRwVZ0lQ5dNlo0Bo40Jky24u3rgXq8eNu726N0c0LvbY+PugL6uHaocQyGaODry/jMhTH/iIbacuMKmwxfZeiqJjGzzjawb6QbWHbzIuoMXqWNvQ6+W3vR50If6rvbY6HTY6BW2eh02OvNPW31OWc623HXd3c4xFdAZnvoUVg0FNGx3LcDWuwW0HVKq3R0cHO6737V7gXxulUun01luWue9YWrvZIuzm31Ru1k41rErcKPV3tkGZzc7SkppZe9kW6ZpdvJTSqHT6Th69ChGo5EHHnjAantuImudTofRaGTu3LmsXr2axMREsrKyyMzMxNnZuVx90Ol0Bfb7y1/+Yllv06YNbdu2pVmzZmzbto1HHnnEat/nn3+eN954g7i4OD777DM+/vhjS3t52w4NDeXbb79Fp9OxdetWwsLC0Ol0hIaGsm3bNiIiIti6dSsvvvhiqc6jsGPkP6fjx48zZswYq+3du3dn0aJFlrKff/6ZefPmceLECW7evInBYCAjI4OMjAycnJysjpNf7ueW973KfZ0bGLh69So6nY5Tp07RoUMHq/qdOnUq8hwAxo0bx5dffml5XdT0ZBkZGTg6Olq18dZbb9GyZUtLfpDi3q+yKGp/Z2dnTCYT2dnZRf47l/t+5d1ub1/y72ZNpJTqDvwVeAzIO+xGYZ3jLk0ptRH4RNO0nVXYRSGEEEIIIUQ51cSAxRpgjFLKWdO0W1V0zNzcFYGYn8ayUEr5AC7A3uIaUErVwZxo77c8wYq8tmAOWIRQhoCFKF6awzYWO7sReMOZQCPmUJf+zo0tnZ0et8ea4tSmHtfWxpB98RZKUzyR3JPHk3uS7pzFZbsUzqhzxNkkctE2iWCf9piyjOjszE+xGkwGxm8eb31gDVxMjtQ11MHNWAc3Qx3cDK5k3LzINQwYU7MxpWYRfN2NDWkLsddKzpGQlZZage9MQbaaLbZGWzACuTk2r5u4HX+5QF0TGtnOJnRudjh71cXe0xkbdwdsfZyx9XFC2eoL7JOXq4MtA9o2ZEDbhtzOMhB9MolNhy+y5cQVbmWZH3RMzTTw74MX+PfBC2U+F50CG70Ou5yAho1Oh22egEZu4MPeRoe9jR572zzrNrqc1wF0a/L/6HXO/LSt6d9/ZVuCgWTfsJztOXVtdNjb6sGYzZV0cCj+1IUQ+bR9tDFtH21crn1DRzTD1dX1rm7wlkVaWhp6vZ4DBw5YjWQA86gBMD+5v2jRIhYuXEhwcDDOzs5MmDCBrKysSutX06ZN8fLy4vTp01YBCzDnDunfvz8RERFkZGTQt29fUlML/n8SFhbGnDlzSExMJDo6msmTJwPQs2dPli9fzpkzZ0hISKBXr16Vdh75xcXF0b9/f1566SXmzJmDh4eHJW9FVlZWgRweJbG1tbV6rZS6q6Tcs2bNsrxPxfHy8uLaNevnWn755RcOHz7MmjVrACwJ6b28vHjrrbeYOXNmuftVmJSUFJydne/5oKxSqgfwEea/pxVgAg4DR4Fk7kzj6gk8BLTC/LDQs0qp34CJmqZtr4auCyGEEEIIIUqpJgYs3sWc/2G1UmqUpmklT3x997YCbwC9gVX5tvXJU6c4uXekvYrYnju/QmYR20UZXbp1CaP+OgB1jeabFMpWX2guCrtGdfB+uS2p2xO5+XM8GEwowOmWHQG3fAjA507lRLiwZRc6VztsPB2w8XBg0oXh1DXUwT0nQFHXUAfbwn59Lhu5xZ14lS2KO5dGyZS9Hp2jDToHG5SjHp2DjeU1OmX1kLEJE0bNCEphp8+9SaPQ0EhIiSc7PYPsjGxMmQbIMqHLBhuDHjujDY5Gexy0op+q1KGwv6WHW0ayElPIIuXOcZVGlruGe5P62PnWwa6hM7a+LuY+FsLJzoZ+wQ3oF9yAjGwj22Ou8r/DF/np+GVSMwylfm/yMmmQZTCRZSj/jSiAT+nILJs/M9zmJ3Sakc77X2N41jT2ai2L2MN8jp/F/0q/4Ab0eciHVg1cJf+JEPeIkJAQjEYjV65cKTJ58c6dOxkwYADDhg0DzNNXnTp1ilatWlVav86fP09ycjINGjQodPvo0aPp168fU6dOLRBoydW1a1fs7OxYsmQJGRkZlmmBOnToQFJSEitXrsTZ2ZmOHTtWWL9btmzJzp07GTFihKVs586dlvfqwIEDmEwmPvzwQ0tQavXq1VZt2NnZYTTe/Yw+QUFBbNq0yaosNy9GUby9vfH29i6x7ZCQEKuRGABr164lPT3d6lijR49m+/btlTJ955EjRwgJCanwdmsSpdQq4GnAAHyHeWTzL5qmFfnEh1LKFXgEc4LscCBaKbVa07TSDakUQgghhBBCVLmaGLD4O3AGeBI4rZTaD8RjfoIqP03TtIgKOOZm4CzwF6XUx5qmHQRQStUF3gSygM9zKyulGmB+eutibq4NTdOSlVIngSCl1Auapq3IU98NyH1Eb0sF9FcABy7fGQzjYjQHBZRt0U/hKr0O11A/nB7yInXrebIu3cKYnI7pduE3zU03s8i6mUVW7E0epXO5+qhztkHnYoe+jnnR1bFF72KH0R5+O/EHBluNrqHdcXJzRjnYoO52qqMcbgQUuU3TNG5k3uDqrSTq23pjf8sG47UMjNcyOHLmD+ISYvDO9qR+tid1jS4Fz0lTOKQo0lOSSP89yVKeXsfApTopZNVT2Pg4ouwLv2nWxMmHeR38mdWuCUcu3ODExZskph/BqJkwaWA0aWga5tcmMGlaTrkJO2MjMDlh1DSyjRrZWhpZuvMYNXO+EEt90539cxnTrW8QKdur6Gxu8B2hZOmdaKEzz742xu4nPIyZJGlu5vfL6Igpy/dOO0Byxq/84+BVlh3OoI6TkQZu4F7HiF6fyS3DLVKzUknLTsNeb8+MLjPo0ajwG59CiJqlRYsWDB06lOHDh/Phhx8SEhJCUlISmzdvpnXr1jz22GMEBgayZs0adu3ahbu7OwsWLODy5culDlikpaVx+vRpy+vY2FgOHjyIh4cHjRs3Ji0tjZkzZ/LUU0/h4+PDmTNneP3112nevDl9+vQptM3w8HCSkpKKzY3g6OhI586dWbx4Md26dbMENuzs7KzK849SuBtTpkzhmWeeISQkhEcffZT//Oc/rFu3jp9//hmA5s2bk52dzeLFi3n88cfZuXMny5Yts2rD39+ftLQ0Nm/eTJs2bXBycirzyAuAsWPHsmDBAqZOnUpERAQHDx4kKioK4K6Dzn369OGNN97g2rVruLu7AxQISly9ehUwB3Hc3NxK3XZJ10uu7du307t377s4i1rhSWAJMFvTtILDQwuhadpNYD2wPmd61reBivjuIIQQQgghhKgkNTFgMZI7c8+6AKHF1NWogC8dmqYZlFIvAD8A23Ke4EoFnsKck2KypmlxeXaZB4wARmF+uivXa5if+PqnUuo54HfMyf+ewDzCYq2maT/fbX+F2W+Xf7Os5065pOxKnq/HxssR96fuJO803c7GkJyBITnd/PNqumXddCtfslcd6Jzt0LvYonMxBx90znnWXWxzghO26Jxti8wDkZ6eTuolc6BE726PzrHibhCVRCmFm4Mbbg5u5gJXoIF5+udOXX0JuN2eM9fP8NuNM5y7up+Uy1fITE7DPb0OTTMa0SyjEf5Zvug16/faMdWGgFRvuAD8UVwPbpDEYQAa5Swl55bPK/efBwXUAYoaDVGCbGewfLxtrDZNL2nf1K4YMJJkm8LlW8lcvp7CZdtkLtklk2GbTabtLTw8PBnU4klaepazf0KIahEZGcns2bOZNGkSiYmJeHl50blzZ/r37w/A9OnTOXv2LH369MHJyYkxY8YwcOBAbty4UULLZvv377dKzp2bkHrEiBFERUWh1+s5dOgQn332GdevX8fX15fevXvz7rvvFplvQCmFl1dRAzzvCAsLY9u2bYSGhlqV9+zZky1btpQraXhxBg4cyKJFi/jggw949dVXCQgIIDIy0nL8Nm3asGDBAt577z3eeOMNHn74YebNm2fJ+wDmkSHjxo3j2WefJTk5mXfeeYcZM2aUuS8BAQGsWbOGSZMmsWjRIrp06cJbb73FSy+9dNd5HIKDg2nXrh2rV69m7Nixpd4vLi6OgIAAtmzZUuAzyVXS9QKQmJjIrl27CozyuAcF5ft7vExyghx/VUp9UHFdEkIIIYQQQlQ0lTunbk2hlBpRcq07NE37rAKP3RGYCXQFbDHPibtA07R/5asXRU7AQtO0qHzbOgBTgO6YgxQZwHHMIzSWapp29/MaWB+vEeZE5Zw6dYrAwMAS9rh3DPz3QM5cP4Ne0/jviQWAIzb1nfB5rX2FHcOUYcCQkoGy0ZkDE44VMwoiPT2dH3/8EYDevXvX+DmnNU0jKT2JC2kXuJB2Ab1JR5hDN7Iv3CLrQhrZF9JIO5+CnanqAi81XTZGrjnocXmiOS3aFT6Ni6h8te13rTaLiYnBYDBgY2Nz1/8XmUwmbt68CVClOSxE+dXGz2zOnDksW7aMhISEu25r48aNTJkyhSNHjpT63Lds2cKgQYM4e/asZWRGeUydOpVr167xj3/8o8g6Rf1+xsTE0KJFi9yXfpqmnS93R0Stlff7REJCAo0aNarmHgkhajv/aRuruwuiFOL+9liVHEeuh5qvqq4FkOuhNijL9XD+/Hn8/CwPIVfY94kaN8KiIgMQ5Tj2Xsz5M0qqNxLzSJDCtu0DnqnQjokCrmdc58z1MwC0zMwCzE9HlmaERVnoHGyw8y04LdL9RimFt5M33k7etPVuaym3a1QH55x1m1spXE44z834JAxJ6WimwoOhXo6eNHC+cwNfA45cPVKqfvjX9aeO7Z3PIzUrlbib50q1b7DXQ1avL6RdJDkj2bqSKRsuHILsNPNrW2fqNO6Gv0cg2QYDcbGxKJPCycEW2zSF3U0duiLy7NqixzsDDq8+QWRcEq/9uQXedRxK1VchhBAVb8mSJXTo0AFPT0927tzJ/Pnzefnllyuk7ccee4yYmBgSExPz/sFerE2bNvHmm2/eVbACzLk2ckdeCCGEEEIIIURtV+MCFkKUxu9Xfresd8gwAeanGXXF5LAQlcvD2QOPBzzggbLv272YnBvFqQs0onU59y3imKldYWUfuBYHmcDt7TD436SbbEj88Rhg/aS+Kd2A4VoGxpQM0q/eJj72OtcuptHgpgEXFA+i54295/nu4AXGhzUnonsADrYVG1gTQtQM8fHxxeayOHbsmFXegZqsb9++bN++vdBtb775Jm+++WYV9+juxcTEMHv2bFJSUmjcuDGTJk3ijTfeqLD2J0yYUKb68+fPr5DjTpo0qULaEUIIIYQQQoiaoEYHLJRSrTBPz1QPOKpp2nc55TrARtO0Ip5tFve6367cyV8Rkn6nvKJHWIj7UB0feH4DrAyHtEuQeABWDYVBnxdaXedog52jC/i64Ah4hJpvRib/9wzpOy6gQ9GjzmH+h4n5Pxj5as85Xg9/gCfa+KKroCTrQoiawdfXl4MHDxa7vbZYsWIF6enphW7z8PCo4t5UjI8++oiPPvqourshKpBSqikwFXgE8CV3yG1BmqZpNfp7jxBCCCGEEMKsRv7hrpTyAyKBvNkfP8Oc0BrgRWCJUqq3pmmbq7p/ovrlTbgdnKHIyFlXMsJCVASPAHh+HUT2hYwbELsVu/+MB6enQZXuGnN5yIv0HRcA6IYDmz1+xpDamgs3Mpjwr4NE7oxlev9WdPCvnTf+hBAF2djY0Lx58+ruRoVo2LBhdXdBiGIppUKAaMAFKOkJAHlCQAghhBBCiFqixt3dVUp5AFuBXsBRYCkFv2SsBkzAE1XbO1FT/KXlX3i00eN4pdWjrsnOUi4BC1Fh6j8IQ9eArRMA+lMbaZsQCVrhuTnys2vsis7JHBNud6sVDg7n6RxktGz/4/wNnl62m/FfHSA++XbF918IIYS4t70H1AHWAe0BV03TdEUt1dtVIYQQQgghRGnVxD/epwL+wAdAG03TCmRD1DTtGnAY6F61XRM1xWNNH+PFltPodqE1Wp7R/zIllKhQfh3h2S9AZwtAk+SttLqwulS7Kp3CIcg8esLJ5EDw7UC6tInls9EdaVH/TuLwTYcv8eiCrczddJxMg7Go5oQQQghhrQtwEnhG07TfNU1Lq+4OCSGEEEIIIe5eTQxYDADigGmaVuyjzGcxz1Ur7lOZBiP2ZOULWNTES1rUas0fhUHL0XIGegVe2YjN7o9LtatDyzvTPXVKC+a709/Rrbk7m/5fD+Y+GYyXi3l0UJbRxD+2nWXephMV338hhBDi3pQNHCzh+4IQQgghhBCilqmJd3ebAL9pmmYqoV4WIJO/38cysk04koWmOVjKlK2MsBCV4KGnyO7znuWl7ba5sGtxibs5tHAHvTnQ0SktmCu3r7Drwi5s9Dr+0qkxWyaH8tewZtjpzf8Ur96fQFqmoXLOQQghhLi3/AY0qu5OCCGEEEIIISpWTQxYZGCej7YkjYEbldwXUcNkm7KJTojmRuYNMg1GHFS+ERaSw0JUEmPb4Rz1ffZOwY/TYc/SYvfROdhgH1AXgPrZnvhn+rLh9AbL9joOtkzp8wCD/2S+33I7y8h//7hQ4X0XQggh7kEfAF2UUqHV3A8hhBBCCCFEBaqJd3dPAO2UUs5FVVBKeQFtgENV1itRI5xIPsErv7xC91XdWRO7DId8U0LpJIeFqESn6z/G8QaD7xR8Pw32/rPYffJPC7UlYQspGSlWdZ7r4GdZX7UvoWI6K4QoldDQUCZMmFDd3aiVNmzYQPPmzdHr9bz22mt8/fXXNGnSpEqO7e/vz8KFC6vkWKWRnJyMt7c3cXFxVXrcrKws/P392b9/f5UetybQNO174FXg30qpeUqph5VS/kqpxoUt1d1fIYQQQgghROnUxIDFGsATWKCUKqp/8wEn4F9V1itRI/x25TfLuquNNw5kYdJkhIWoOqd8niC726Q7BZsmw/6VRdZ3bOlpWe+UFozBZGDj2Y1WdYIb1qVlA1cADiZc58SlmxXbaSFEkdatW8e7775bZcfbtm0bjz/+OL6+viil2LBhQ4E6I0eORClltYSHh1vVyS3fs2ePVXlmZiaenp4opYiOjgagc+fOjBs3zqresmXLUEoRFRVV4Ng9evQo1bmMHTuWwYMHk5CQwKxZs0q1T1lFRUXh5uZWoHzfvn2MGTOmUo5ZHnPmzGHAgAH4+/sX2JacnEyjRo1QSnH9+vUytTtjxowC18IDDzxg2W5nZ8fkyZOZOnXqXZ5BrfUbcAF4HdgCnAFiC1nOVlcHhRBCCCGEEGVTE+/ufgIcAV4A9iql3swpb6aUmqiU2g0MBw4CUdXSQ1Ftfrt8J2DRwKEVDipbkm6LKmfoNhl6TL5T8N/X4LfPC61r4+GATX0nAILS/alrcGHr+a1WdZRSVqMs/iWjLISoMh4eHtSpU5qZKCvGrVu3aNOmDZ988kmx9cLDw7l48aJl+eabbwrU8fPzIzIy0qps/fr1uLi4WJWFhYVZghe5tmzZgp+fX4Hy6OhoevXqVeJ5pKWlceXKFfr06YOvr2+VvocA9erVw8nJqUqPWZTbt2/z6aefEhERUej2iIgIWrduXe72H3zwQatrYceOHVbbhw4dyo4dOzh69Gi5j1EbKaW6A5uBIEABKUB8EYv8xyqEEEIIIUQtUePu7mqalgH0AXYD7YDcxx67Yx5Z0QnYD/TXNC27WjopqoWmafx+5XcAXO1cqav3KzAllCTdFlVCKeg1Hbq9eqfsu/8HB78utLpjzrRQOnQs8vsbyx5dVqDOwLYNsbMx/5O8/vdEMrKNFd9vIUQB+aeEyszMZPLkyTRs2BBnZ2c6depkdVM/OTmZIUOG0LBhQ5ycnAgODi40mFCUvn37Mnv2bJ588sli69nb2+Pj42NZ3N3dC9QZMWIEq1atIj093VK2cuVKRowYYVUvLCyMkydPcunSJUvZ1q1bmTZtmtW5xcbGcu7cOcLCwortW3R0tCVA0atXL6vRHPktXbqUZs2aYWdnR1BQEF988YXV9gULFhAcHIyzszN+fn6MHz+etLQ0y3FGjRrFjRs3LKMLZsyYARScEkopxYoVK3jyySdxcnIiMDCQ7777zupY3333HYGBgTg4OBAWFsZnn31WrlEP+W3atAl7e3s6d+5c6Plfv36dyZMnF7Jn6djY2FhdC15eXlbb3d3d6datG6tWrSr3MWqp2YADsADw1DStnqZpAUUt1dxXIYQQQgghRCnZVHcHCqNp2kWgu1KqD/AY0BRzcCUB+B/wb03TtGrsoqgGsTdiuZZ5DYAQ7xCyDBr2ZKFpMsJCVAOl4NGZYDTAnk8ADTaMB50NtH7GqqrDAx6kRp8HoMnletjoCv7TW9fJln4P+bDh4AWu387mx2OXeaKNb1WciRCVav9/13Ng44YS63kHNOPJ19+2Kvvpkw9JOR9f4r7tHxvIn/oXHwAorZdffpljx46xatUqfH19Wb9+PeHh4Rw+fJjAwEAyMjJo3749U6dOxdXVlY0bN/L888/TrFkzOnbsWCF9APPNem9vb9zd3enVqxezZ8/G09PTqk779u3x9/dn7dq1DBs2jPj4eLZt28Ynn3xiNc1Vt27dsLW1ZcuWLQwZMoRjx46Rnp5OREQEU6dOJTY2loCAALZs2YKDgwNdunQptm9du3bl5MmTBAUFsXbtWrp27YqbmxsnTpywqrd+/XpeffVVFi5cyKOPPsp///tfRo0aRaNGjSxBEZ1Ox8cff0xAQABnz55l/PjxvP766yxZsoSuXbuycOFC3n77bU6ePAlQYPRIXjNnzuT9999n/vz5LF68mKFDh3Lu3Dk8PDyIjY1l8ODBvPrqq7zwwgv8/vvvdxVEyGv79u20b9++QPmxY8eYNWsWv/76K2fPln9GopiYGHx9fS2fzbx582jc2DolQ8eOHdm+fXu5j1FLtQN+1zStYj5IIYQQQgghRI1Qo+/uapr2g6Zp/0/TtP6apvXTNG2spmkbJFhxfzpw5YBlvV39dmQaTDkjLBws5TLCQlQppaDPHOg4NqdAg/Vj4chaq2p2jV3ROZuDFJkx19AMpkKbe7bDnRtQ/9pX8k1aIWqDrPTbpKUkl7ik37xRYN/01NRS7ZuVfrtC+hofH09kZCTffvstPXr0oFmzZkyePJnu3btbpl5q2LAhkydPpm3btjRt2pRXXnmF8PBwVq9eXSF9APN0UJ9//jmbN2/mvffeY+vWrfTt2xejseDIq9GjR7NypTmPTlRUFP369aNevXpWdZydnenYsaNlFER0dDTdu3fH3t6erl27WpV36dIFe3t7imNnZ4e3tzdgnlLLx8cHOzu7AvU++OADRo4cyfjx42nRogUTJ05k0KBBfPDBB5Y6EyZMICwsDH9/f0tgJve9tLOzo27duiilLKMLigtYjBw5kiFDhtC8eXPmzp1LWloae/fuBWD58uUEBQUxf/58goKCeO655xg5cmSx51la586dw9fXOsCcmZnJkCFDmD9/foHgQll06tSJqKgovv/+e5YuXUpsbCw9evQgNTXVqp6vry/nzp0r93FqqSzgZHV3QgghhBBCCFGxauQICyEKkzd/RTvvdvxywYiDyj8lVI2OwYl7kVLQ9z0wGWD/p6CZYO2LoPTw4EBzFZ3CIciD279dQcsykXn2Bg4t3DGYDFajLTo39cDf04m45NvsPJ1MfPJtGnvWjDnahSgvO0cnXDw8S6zn6Fq3YFmdOqXa186xYn5PDh8+jNFopEWLFlbluYmsAYxGI3PnzmX16tUkJiaSlZVFZmZmheZTeO655yzrwcHBtG7dmmbNmhEdHc0jjzxiVXfYsGFMmzaNs2fPEhUVxccff1xom6GhoXz77beAOTARGhoKQM+ePS1TL0VHR/Piiy9W2HkcP368QGLsbt26sWjRIsvrn3/+mXnz5nHixAlu3ryJwWAgIyOD27dvl/k9zZsnwtnZGVdXV65cuQLAyZMn6dChg1X9kkbEjBs3ji+//NLyOneqqvzS09NxcHCwKnvjjTdo2bIlw4YNK9M55Ne3b1/LeuvWrenUqRNNmjRh9erVVjkzHB0duX27YgJ3tcivQIsSawkhhBBCCCFqFQlYiFojN2DhoHfgQc8H+Z/htHmERZ4poXR2MsJCVAOloN8H5qDFb5+BZoS1EebpoVr2B8ChpTlgAXBq70GWxX+LUTOy/M/L8zSjeKaDH+9/b35gdPX+BCb3Car68xGiAv2p/5Plnq7pz3+dhKurKzpd1QSj09LS0Ov1HDhwAL3e+v+T3Cf758+fz6JFi1i4cKEl98KECRPIysqqtH41bdoULy8vTp8+XSBg4enpSf/+/YmIiCAjI4O+ffsWePoezHks5syZQ2JiItHR0ZbpkHr27Mny5cs5c+YMCQkJpUq4XVHi4uLo378/L730EnPmzMHDw4MdO3YQERFBVlZWmQMWtra2Vq+VUphMhY9oK41Zs2aVatooLy8vrl27ZlX2yy+/cPjwYdasWQOY83Dl1n3rrbeYOXNmufrk5uZGixYtOH36tFV5SkpKgZE194F3gW1KqSGappU+kYwQQgghhBCiRqv2gIVS6iygAY9qmhab87q0NE3TmlVS10QNcunWJS7cugBAcL1gbPW2ZGQbcSDbeoSF5LAQ1UWng/4LwWSEg1+agxffjoTn10HAwzgEuoNegVFDO3WL7YbtoCAxLZGGLg0tzQxu14gPfzyF0aTx7YEEJjwaiI1ermshqkJISAhGo5ErV67Qo0ePQuvs3LmTAQMGWJ6cN5lMnDp1ilatWlVav86fP09ycjINGjQodPvo0aPp168fU6dOLRBoydW1a1fs7OxYsmSJJQ8HQIcOHUhKSmLlypWWqaMqSsuWLdm5c6dVEvCdO3da3qsDBw5gMpn48MMPLUGp/FNr2dnZFToVVlkFBQWxadMmq7J9+/YVu4+3t7dl6qvihISEWI3EAFi7dq1VMvR9+/YxevRotm/fTrNm5f/TNS0tjTNnzvD8889blR85coSQkJByt1tL2QELgS+UUk9gznMXDxQapdI0bVvVdU0IIYQQQghRXtUesAD8MQcsbPO8Li3JZXGfuJZxjQc9H+REygnaebcDsOSwMEkOC1FT6HTwxMfmYMWhVWDKhq3vQ8DD6BxssG9al8yY63hm1cU/syFxDon8+/S/Gd92vKUJb1cHej3gzU/HLnP5ZiZbTyXxSMv61XhSQtw/WrRowdChQxk+fDgffvghISEhJCUlsXnzZlq3bs1jjz1GYGAga9asYdeuXbi7u7NgwQIuX75c6oBFWlqa1dPxsbGxHDx4EA8PDxo3bkxaWhozZ87kqaeewsfHhzNnzvD666/TvHlz+vTpU2ib4eHhJCUl4erqWuRxHR0d6dy5M4sXL6Zbt26WwIadnZ1Vef5RCndjypQpPPPMM4SEhPDoo4/yn//8h3Xr1vHzzz8D0Lx5c7Kzs1m8eDGPP/44O3fuZNmyZVZt+Pv7k5aWxubNm2nTpg1OTk7lmn5r7NixLFiwgKlTpxIREcHBgweJiooCzCMx7kafPn144403uHbtGu7u7gAFghJXr14FzEEcNze3Urc9efJkHn/8cZo0acKFCxd455130Ov1DBkyxKre9u3brRKt3yeiMX8XUMAzOUtRNGrG9x4hhBBCCCFECWrCY7sBQFPgbJ7XpV2aVnVnRfVo6dmSVf1XsXPITp5vZX6qMNNgMuew0CSHhahBdHoYuATccpKsJuyF7AwAHB/wsFTrkmaea33D6Q2YNOuHQZ/r4GdZX7UvoZI7LITIKzIykuHDhzNp0iSCgoIYOHAg+/btsyROnj59Ou3ataNPnz6Ehobi4+PDwIEDS93+/v37CQkJsTwNP3HiREJCQnj77bcB0Ov1HDp0iCeeeIIWLVoQERFB+/bt2b59e5HJsJVSeHl5FZr4Oq+wsDBSU1Mt+Sty9ezZk9TUVMLCwkp9HqUxcOBAFi1axAcffMCDDz7I8uXLiYyMtBy/TZs2LFiwgPfee4+HHnqIr776innz5lm10bVrV8aNG8ezzz5LvXr1eP/998vVl4CAANasWcO6deto3bo1S5cu5a233gIoMcl4SYKDg2nXrl2ZE6/HxcWhlLIkPS/M+fPnGTJkCEFBQTzzzDN4enqyZ88eq+mfdu/ezY0bNxg8eHB5T6G22pazbM2zXtSyvZr6KIQQQgghhCgjlTunrqidlFKNgASAU6dOERgYWM09qjovfXmA92IeIz1rLtlaIOgUjeZ2r+5ulUp6ejo//vgjAL1798bR0bGaeyRKUubP7N9/hd9zpggZuRH8u2NIyeDS++YpSBJdr/JCQ/MNyuV/Xk5X366WXQ1GE13/9gtXUjPR6xS7p/XC29WhwCFEyeR3rerExMRgMBiwsbG56/+LTCYTN2/eBKjSHBai/GrjZzZnzhyWLVtGQsLdB4Y3btzIlClTOHLkSKnPfcuWLQwaNIizZ89aRmaUx7PPPkubNm148803i6xT1O9nTExM3iTzfpqmnS93R0Stlff7REJCAo0aNarmHgkhajv/aRuruwuiFOL+9liVHEeuh5qvqq4FkOuhNijL9XD+/Hn8/CwP3VbY94ma/21SiCLkTgmVm8NCRleIGsU/z/z3cTsAsPFwwKa+eSoT35ueuBnqALAhZoPVrjZ6HU//yXyzwGjSWPOb3D8SQoi7tWTJEvbt28fZs2f54osvmD9/vlV+jbvx2GOPMWbMGBITE0u9z6ZNm3jzzTfvKliRlZVFcHAwr732WrnbEEIIIYQQQoiapMbd4VVK+Smlhiulgoqp80BOHXn85z6QbcouvDw7CztlRNPMT55Lwm1RozTpdmc9J2AB4NjSEwCFIjSjEwCb4zdzI/OG1e7P/OnOtFCr9yUgo+GEqPni4+NxcXEpcomPj6/uLpZa3759izyPuXPnVnf3yiUmJoYBAwbQqlUr3n33XSZNmsSMGTMqrP0JEybkfbqoRPPnz2fKlCl3dUw7OzumT58uo8eEEEIIIYQQ94yamHzuFWAS8GAxdRQQBfwNKHr8u7gnLP5tMd/HfU+7+u14JeQVGro0BEDLSjf/zB1hYScJt0UN4uYHbk3g+rk7eSxsHXBo6UFqtHn6kX6GnmzgZ7JMWWyK3cSQB+4kUW3i6UzXZp7sOpNMXPJtfo1NoXNTz+o6GyFEKfj6+nLw4MFit9cWK1asID09vdBtHh4ehZbXdB999BEfffRRdXdDlJNSqp2mab/VlHaEEEIIIYQQlaMmPpLeGziuadqJoipomnYcOAaEV1mvRLU5cOUAF29dZOPZjTjo78zjrxmsAxY6mRJK1DS500IZMyFxPwB2fnXQOdsC0OiqJ7Ymc9x4fcz6Ars/myf59r8k+bYQNZ6NjQ3NmzcvcrGxqYnPiRSuYcOGRZ5HbQ1YiFpvn1JqlVLqgfLsrJR6UCm1Gth3tx1RSg1TSi1XSu1XSmUqpTSl1MhC6tkqpZ5SSn2mlDqulEpTSqUqpX5VSr2klCrwtI1Syj+nvaKWGXfbfyGEEEIIIWqymniH1w84XYp6p3PqintYuiGdY1ePAeDv6o+nY54nzLMz0DSFRs6UULYywkLUMP55ksDnTAuldAqHB8w3+1Q2PKH/MwD2envSstKsdu/zoA91Hc3BjU2HL3LjduHTowkhhBD3gY+BQcBRpdQOpdQLSqmA4nZQSjVVSo1VSu0GDgEDgUUV0JfZwBigCXCxmHrNgDU5/T4JfAJ8BTQClgAblFKqiH3/AGYWskTfffeFEEIIIYSouWrio35OQOFzEFhLB+pUcl9ENTty9QgGzQBAu/rtrLYpQwYadndeywgLUdP4F5XHwoPbBy4DMNR2EMP7jaNp3aYFdnew1fNkSEOidsWRaTDx7z8SGd7Fv7J7LYQQQtQ4mqa9ppT6BzAf6At0AVBKJQHHgWTgJuAKeAItgXp5mtgEvJ4zUvtuvQDEaJp2Tik1DZhXRL1U4K/AZ5qm3cotVEpNwhx46A8MBr4tZN+DmqbNqIC+CiGEEEIIUavUxDu8F4G2pajXBrhSuV0R1e3A5QOW9Xbe1gELDOmW6aBAcliIGsitsTmPBcD5feY8FoB9oDvozQ9UusTpCHAt+gHRvNNCfbNXkm8LIYS4f2madlzTtP7AA8DfgQTAG+iJeRTDyJyfPXPKE4DFwAOapj1eQcEKNE37WdO0c6Wol6hp2pK8wYqc8lvAgpyXPSuiT0IIIYQQQtwrauIIi+3AMKXUU5qmrS2sglJqEOYvKl9Xac9Elfvt8p2ciPlHWOgMmfkCFjUx/ibue/494OA5MGRA4gHw74bOXo99MzcyT13DeCOT7Iu3sPN1KXT3lg1caePnxh8J1zl+8SZHEm8S3KhuFZ+EEEIIUXNomhYDvAq8qpRqCoQA9YG6wHXMDzX9pmlabLV1smS58zwaitjuq5T6K+ZzugxEa5p2pjwHUko1KqGKT+5Keno66emlGewuhBCitpN/70UuuRZEXmW5Hirr2qmJAYtFwFDg85w/rldqmpYKoJSqA4wG5gAmzHPZinuUwWTgj6Q/APB29KaRi/V3LZ0xHU3lCVhIDgtRE/l3g4NfmtfjdlimiXJs6UHmqWsAZBxPKTJgAfBcBz/+SLgOwKp98QQ3Cq7ULgshhBC1haZpZ4Gz1d2Pchid8/PHIrb/OWfJpSmlvgLG5R+xUQoJpa24bds2vLy8yti8EELkVxNvNYn8fvyxqP+CKppcDzVd1V0LINdDzVeW6+Hq1auV0oca90i6pmm/AW8AjpiHSqcopeKVUvFASk6ZEzBd07S91ddTUdlOppzktuE2YB5dkTcnoaZp6Iz5RlhIDgtREzXJm8diu2U1N/E2wPUjF5i5eyZP/+dpvj5ecODY4218ccqZ8uy7gxe4nVXUw5hCiLIKDQ1lwoQJ1d0NIcR9RCk1BnMejl80TduUb/Nt4F2gPeAGeACPAnuBYcDnVddTIYQQQgghql6NDGtpmjZfKXUSmIk5V0XeR+v/AGZqmrahOvomqo5V/op800FlGU04kIWGg6VMcliIGsm9iTmXxfV4cx4LQybY2GPj7oCtjzPZl26hu5jN5qM/cs32JgeTDvKXln+xasLF3ob+rRuwev95UjMNbDp8icHtS5rdQQhRGuvWrcPW1rZKjrVt2zbmz5/PgQMHuHjxIuvXr2fgwIFWdUaOHMlnn31mVdanTx++//57y+vcAP7u3bvp3LmzpTwzMxNfX19SUlLYsmULoaGhdO7cmbZt27Js2TJLvWXLlvHSSy8RGRnJyJEjrY595swZtm+/E1wVQlQspVR/zPk3zmEOQFjRNO0K8Ha+4s1Kqd3Ab8AgpVS7nIe8SsuvhO0+wD6Ahx9+mEaN5G8MIcRd2v1LdfdAlELv3r2r5kByPdR4VXYtgFwPtUBZrofz589XSh9qZMACQNO074DvlFL1gcY5xfGapl2uxm6JKnTo6iHLev6E25mGnICFJiMsRC3g3wMOfnUnj0WTrgA4tPQg+5J5Vodut0P4b92tHLl6pNAmnu3QmNX7zf8R/GtfvAQshKggHh4eJVeqILdu3aJNmzaMHj2aQYMGFVkvPDycyMhIy2t7e/sCdfz8/IiMjLQKWKxfvx4XFxdSUlIsZWFhYaxfv95q3y1btuDn50d0dLRVwCI6OpoRI0aU59SEEKWglOoHrMGck6KXpmkXS7uvpmm3lVJfALOBbpiDF6Xdt9hvknlHMTs6OuLo6FjapoUQQtRi8u+9yCXXgsirLNdDZV07Nf4Or6ZplzVN25ezSLDiPjKvxzy+7vc1r3d4nUD3QKttmdkmHFS21ZRQOkm6LWoq/+531uN2WFYdWt65URqW2QmAhNQErmdcL9BEu8ZuBHqb81zsi7vG6StpldNXIe4zeaeEyszMZPLkyTRs2BBnZ2c6depEdHS0pW5ycjJDhgyhYcOGODk5ERwczDfffFPqY/Xt25fZs2fz5JNPFlvP3t4eHx8fy+Lu7l6gzogRI1i1apVVkrOVK1cWCDiEhYVx8uRJLl26ZCnbunUr06ZNszq32NhYzp07R1hYWKnPRwhRekqpx4B1wFUgLCf3RlnlThLsXGEdE0IIIYQQooapsSMshLDV2RJcL5jgegUTDGdkG3EgC1PeHBYyJZSoqfLnsej5OgB2jeqgc7HFlJZNi+t+2HnZkqXL5kjyEbo37G7VhFKKZzv4MXvjcQDWHDjPtL4PVNkpCFEelxf/jik1q8z7aYCmmQC4rXSo4qsXoKtjR/1XQsp83Jdffpljx46xatUqfH19Wb9+PeHh4Rw+fJjAwEAyMjJo3749U6dOxdXVlY0bN/L888/TrFkzOnbsWObjFSU6Ohpvb2/c3d3p1asXs2fPxtPT06pO+/bt8ff3Z+3atQwbNoz4+Hi2bdvGJ598wrvvvmup161bN2xtbdmyZQtDhgzh2LFjpKenExERwdSpU4mNjSUgIIAtW7bg4OBAly5dKuw8hBBmOcGKtZjz8YVpmna6nE11yvkZVxH9EkIIIYQQoiaq9oCFUmp4zup6TdNS87wuFU3TJPHcfUimhBK1insTqNsYbsRDwl5LHgulUzg84MHt/ZexMeppcyuIfXWOcPjq4QIBC4AnQxoyZ9NxNA22xyRJwELUeKbULIw3yx6wyEuroL6UJD4+nsjISOLj4/H19QVg8uTJfP/990RGRjJ37lwaNmzI5MmTLfu88sor/PDDD6xevbrCAhbh4eEMGjSIgIAAzpw5w5tvvknfvn3ZvXs3er11YH706NGsXLmSYcOGERUVRb9+/ahXr55VHWdnZzp27Eh0dDRDhgwhOjqa7t27Y29vT9euXYmOjiYgIIDo6Gi6dOlS6PRTQojyU0r1xRysuIY5WBFTQv0Q4KCmaVq+8kHAiJx2/ldJ3RVCCCGEEKLaVXvAAojCfD9iD5Ca53VpScDiPpRpMGKv8iXdtpURFqIG8+8Of3xdII+FY0tzwAKgY9pD7KtzpMg8Fp4u9rT0ceXYxZscu3iTG7ezqetUNcmChSgPXR27cu2Xd4SFKucIi7I6fPgwRqORFi1aWJVnZmZaRjcYjUbmzp3L6tWrSUxMJCsri8zMTJycnMp8vKI899xzlvXg4GBat25Ns2bNiI6O5pFHHrGqO2zYMKZNm8bZs2eJiori448/LrTN0NBQvv32W8A8eiM0NBSAnj17Eh0dzahRo4iOjubFF1+ssPMQ4l6mlHoByH2yIHco8AtKqdCc9R2apq1QSj0ArAfsgWhgSN58ETniNE2LyvP6I6BZTpLt84AeaJdzvExgpKZpNyryfIQQQgghhKhJakLA4nPM9yZu5Hst7mPv7HqHJq5N6FC/QxFTQplwJAstzxS+MsJC1Gi5AQsw57HICVjYN3cHBWjQKrMZAEeuHkHTNAq5qUHnpp4cu3gTTYO9cSn8uVX9qjoDIcqsPNMyAZhMJm7evAmAq6srOl3l//uelpaGXq/nwIEDBUYyuLiY88fMnz+fRYsWsXDhQoKDg3F2dmbChAlkZd3dKJLiNG3aFC8vL06fPl0gYOHp6Un//v2JiIggIyODvn37kpqaWqCNsLAw5syZQ2JiItHR0ZZRIj179mT58uWcOXOGhIQEevXqVWnnIcQ9pjvm0Q55dctZcq0AfMAyf+lzFG4r5ge2cn0JPAV0Brww5xxMzGnvQ03TTtxNx4UQQgghhKjpqj1goWnayOJei/vP5VuXWRezDoD29dsTFR5VoE6mwZgzJdSdpMWSw0LUaPkTb+fksdDZ67Gp54Thym2aZPhgo+lJyUghMS2RRnUaFWimc1MPVu6MBWDP2WQJWAhRQUJCQjAajVy5coUePXoUWmfnzp0MGDCAYcOGAebAyqlTp2jVqlWl9ev8+fMkJyfToEGDQrePHj2afv36MXXq1AKBllxdu3bFzs6OJUuWWPJwAHTo0IGkpCRWrlxpmTpKiNpCKWUEojRNiyih3j+BUZqmVdj3npzvKyNLUS8ayjZITNO0FZiDE0IIIYQQQtyXqv2RdKXUSqXU6DyvGyulPIrbR9zbfrvym2W9nXe7QutYclhYJd2u9stZiKLl5rGAO3ksctg1ND+9rdf0NMk035QsalqoTgGe5A682H0mufL6K8R9pkWLFgwdOpThw4ezbt06YmNj2bt3L/PmzWPjxo0ABAYG8tNPP7Fr1y6OHz/O2LFjuXz5cqmPkZaWxsGDBzl48CAAsbGxHDx4kPj4eMv2KVOmsGfPHuLi4ti8eTMDBgygefPm9OnTp9A2w8PDSUpKYtasWUUe19HRkc6dO7N48WK6detmCWzY2dlZldvayhRzolZRlD4YUNaZ5YQQQgghhBDVpCbc4R3JnTlgAWKB+dXTFVETHLh8wLLevn77QutkZhtxkBwWorbxz5kpwpAOiXcCc7a+Lpb1MfVGsvzPywtNug1Q18mWVg1cATh+6SbXb1feVDRC3G8iIyMZPnw4kyZNIigoiIEDB7Jv3z4aNzYHG6dPn067du3o06cPoaGh+Pj4MHDgwFK3v3//fkJCQggJMU+VNXHiREJCQnj77bcB0Ov1HDp0iCeeeIIWLVoQERFB+/bt2b59e5HJsJVSeHl5YWdXfN6OsLAwUlNTLfkrcvXs2ZPU1FTCwsJKfR5C1DJOQHZ1d0IIIYQQQghROtU+JRRgBPI+0leWp6XEPSh3hIVO6WhTr02hdTINOTkstDs3cHQywkLUdP7d4Y9vzOtxO6BJFwDsGt7JxdJF1x533+bFNtO5qSdHL+TksYhNofeDPpXWZSHuddHR0ZZ1W1tbZs6cycyZMwut6+HhwYYNG8p9rNDQUDSt6DRdjo6O/PDDDyW2U1wbbm5uhW6fMWMGM2bMKFD+zjvv8M4775R4TCFqI6WUG+YHoy5Wc1eEuC/4T9tY3V0QJYj722PV3QUhhBCiRDXhDu8VoK0qLLusuO/cyLzB6WunAQhyD8LFzqXQepnZ5imhTHmnhJIRFqKms8pjsd2ymneERXZiWonNdG7qaVnfczalYvomhBBC1HBKqbO5S07R4Lxl+ZZ4zN8zGgH/q75eCyGEEEIIIcqiJoyw+AUYCpxVSsXmlIUrpX4pxb6apmmPVF7XRFU7eOUgGuYnQ4uaDgrMSbftVbb1lFAywkLUdG5NoK4f3EjIyWORBTZ26BxssPF0wJCcQdbFW2hGDaUvOobb0d8DpUDTzIm3hRDVLz4+vtjk28eOHbNMLSWEKDf/POsa4JKzFCUL2AC8WXldEkIIIYQQQlSkmhCwmAq0ADoATXLKfHKWkhQ9J4KolQ5cuZO/ol39whNuA2TkjLDIOyWUspWAhajhlLozLZQhHS78Bo07A2Db0AVDcgYYTMScPsof6jgBrgH8yedPBZrJzWNx9MJNSx4LN6fi568XQlQuX19fSzLtorYLIe5aQM5PBZwF1gBTiqibBSRpmmaoio4JIYQQQgghKka1Byw0TbsAdFJKNcEcsIgGvgfeq85+ierx2+U7iYhDvEOKrJdpMJoDFrlTQukVSi8BC1ELNOmWJ4/FdkvAwq6hC+mHrgKw5PuFbHb7lacCnyo0YAHQJU8ei19jU+gjeSyEqFY2NjY0b158/hkhxN3RNO1c7rpS6jNge94yIYQQQgghRO1X7QGLXDlfNs7lpLK4pGna1mrukqhiGYYMjiYfBaCJaxO8HL2KrJtpMFkFLGR0hag1rPJY7ICHzQ+G5s1jEZjZmM38yuGrh4tspnNTT1bsMM+it+dssgQsRI1RXEJoIUT1yP29vJdSxmmaNqq6+yCEEEIIIYSoeNUesMjJVfG9pmnv5xSNAmKqsUuimmhoTO80nQOXD+DjXPzN14xsIw4qC5OWG7CQhNuilnD3B9dGcPM8xP9qyWORN2DxkKEFAKevn+Z29m2cbJ0KNNMhIG8eC0m8Laqfra0tBoMBo9HI9evXcXNzq+4uCSGA69evYzQaAfNIICGEEEIIIYSoyWrCt5ZQIC7P65VAFLCrGvoiqpGjjSNPtXiKp1o8VWLd3BEWt3JHWEjCbVFb5OaxOLTKKo+F3tkWvZs9xuuZ+N2qj9IUJkwcTzleaAL6uo62POjrypHEm5yQPBaiBnB2diY9PR2AixcvcuXKlbt6mttgME87n5SUVCH9E5VPPrOaR9M0S7ACzL+n9xKlVB1gPPAo0BBwKKKqpmlasyrrmBBCCCGEEKLcakLAIhvrLxcqZxGiSJnZJhzIJi0nYKGTERaiNskNWIB5Wqg8ibeN1zOxM9rgm1WPRPsrHLl6pNCABUDnAE+OJEoeC1EzeHl5YTQauXbtGoDVTdKy0jTNEvxwdHS8p6axuVfJZ1bzubu74+VV9HSbtY1SyhfYgTkHXkkXnMxVJ4QQQgghRC1REwIWFzEn3XbWNO1WdXdG1A6Z2dnYYUDLiXXJCAtRqxTIYzEZADtfFzKOJgPQPMOP/8/efcdJVZ1/HP+cadsrZeldBZQOUlTEBvbee2/pamJiEqPJL9EkaozGXmLvxm6CikqTJh0EpXd2WXbZvrNTzu+PmW2wFXZ2Zpfv+/Wa19xy7rnPMHdX9z73nGdbXE6DdSzG96+uYzFnnepYSHQZY8jKysLpdFJSUoLf79/vehbBYLDq5ndycjIOh37Hxzp9Z7HJGIPL5SIpKYmOHTu2t0TSX4A+wBLgfmAVUBjFeEREREREpAXEQsLiE+AWIMcYkx3edr4xZlITjtXw7nZiZ8lO1u5Zy/BOw0n2JDfaPlBRjqV6+hsV3ZY2JaMPpHaHwm2wpUYdi+7V1/5hFf2YzkKW76o/YTG6TyYOA0EbKrwtEm3GGDp16kSnTp0OqJ+ysjJWr14NwKhRo0hISGiJ8CSC9J1JFEwBsoHjrLUF0Q5GRERERERaRizc5b0LeAdwE3pKygLJ4eWmvKQd+HzT59zyxS0c9cZRfLr+08YP8JViw9NBARiPpoSSNqSyjgWArxS2LwbAUyNhMTRceHt7yXZyy3Lr7CZUxyINgNU7i8gvqYhg0CIiIjElA5ijZIWIiIiISPsS9YSFtbbAWnshkEgoAWEIJTD6NuHVryVjMcaMMcZ8aozZY4wpMcbMNcZcuB/9dDbG/MMYs8YYU26M2W2MmWOMuaUl421PFueEbtgGbZD+6Y0PmrG+stoJC42wkLam1rRQMwFwpnhwpIRGDvUoyaqacXtl7sp6uxnXL7Nqed6GvJaPU0REJDZtIQb+lhERERERkZYVM/+Tb631W2s3h1eLrbWbmvJqqfMbY44DZgNHA28BTwJdgDeNMbc3o5/hwArgx8BK4B/Aa0AJcEZLxdueWGtZmL0QgBR3CgPSBzR+jK8Ma6trtRsV3Za2Zu86FmGVoyzifC4GOQdwXM/jSHQn1tvNuH4dqpY1LZSIiBxE3gGOMcYkRTsQERERERFpObFQw6IWa22rJ1GMMS7gGSAITLTWLglv/yMwH/iLMeadxhIkxphU4IPw6ihr7bI6ziN72VS4ibzy0JPhwzsPx+loPPlg/OV7TQkVM7k3kabJ6Fu7jkXAB0437m5JlK8O/Ty8MPxpEoc0XAtgTF/VsRARkYPSn4BTgLeMMddYa3OiHZCIiIiIiBy4mL6BboxJA8YAnYBN1tpvInSq44H+wL8rkxUQmq7KGPMX4AXgKuCPjfRzK9ALuG7vZEW4P39LBdyeLMpZVLU8Mmtkk47ZN2GhERbSxlTWsVj2ZnUdi55H1qpj4dteAo0kLFLj3RzRPY1lWwtYvbOIvJIKMpM8DR4jIiLS1hhjnq9j83rgbGCtMeZbYDOhB5D2Zq2110UwPBERERERaSExmbAwxqQQmkrpCqpjfBH4Jrz/ekLJg3OstfNa4JSTwu+f1bFvavj92Cb0cxGhWeffNcYcBkwGEoDVwP+stc2uiGuM6dFIky6VC16vl7KysuaeIurmb59ftXxE+hFN+wy+MoI1poQKEGxTn728vLzOZYldkfjOnN2OxLPsTQB8a77C33EIgQ7u6vNsKcDThOt6dM9QwgJg5vc7mDyoc4vE1x7oZ61t0vfW9ug7a5u8Xm+0Q2iOqxvYl0z1/8/XxQJKWIiIiIiItAExl7AwxiQAXwMjgBzgW+DUvZp9DDxF6ImqlkhYHBJ+X7P3DmvtTmNMcY02dTLGeIAhwC7gJ8C91K4Rst4Yc7a1dnkzY9vS1Ibz5s1j3bp1zew++r4pDA2cceFi28JtZJvsRo8JlBfXGmGxZsNasitWRCzGSJoxY0a0Q5BmaqnvLMkb5MTwcv7iD5lTNBAsDHWl4/Y7KN24h7lTPyNAgApbQYIjoc5+XPkGCI0yenfGMthS18Olop+1tknfW9uj76ztyM3NjXYIzXFNtAMQEREREZHIi7mEBXAboWTF68CN1toSY0ytu2/hJMIq4LgWOmda+L2gnv2FNdrUJ5PQHcMOwN3Ar4CXATdwE/A74CNjzEBrrR49DCsMFpIfzAegh7MHriaW+XDZCqypTlgEnTYi8YlEUomnM2XuDBJ8+WSW/ICxfqxxUZoUIK3Agdvv4M38V1nlWMMYzxhOSzytzn76pVgMFothTaFp5U8hIiISedbaF6Mdg4iIiIiIRF4sJiwuAnYSqgPR0I39H4AjWyekJqkcTeEE/mWtfbDGvrvDU0RdCJwPvNKMfns2sr8LsABg7Nix9O/fvxldR9/nmz+HuaHl4w49jvqTF4UAAQAASURBVMlDJjfpuJkL5mFtdcJi0NDDGTG8YyRCjIjy8vKqJ1AnTpxIfHx8I0dItEXqO3NXHA/fvYsrWMGUIzoT7D6aEsdWymfvBCCxxIU/xU9xSjGTT6j/5+OVbQtYsb2IHaWG0UdNUh2LMP2stU363toefWdtU1scmSsiIiIiIu1bLCYs+gOfN2EUQinQUneoK0dW1DeKIhXIb2IfAB/Wsf9DQgmL0TQjYWGt3drQfmOqn6aOi4sjIaHuKWNiVVxcHIdlHMYP+T8wtvvYJsVvrcVlvVhTfTMkLim+zX32SvHxbTf2g1WLfmf9j4Xv3gUgbscCGHAMtnd6VcJilD2CeSzn+/zvccW5cDvcdXZz1IBOrNheBMCyHaWcMqSxQWEHH/2stU363toefWdtR1xcXOONREREREREWlEsJiwChKZRakwPoKSFzllZu+IQYGHNHcaYLoQK+c3f+6CawlNXbQO6A3vqaFK5TX/B1zClzxSm9JlCYUUh8c6mPY3p9QeJp6JWDQvjdjRwhEgM63N09fLaaXDMbXi6J1dtOtwXKp9TEaxgTf4aBncYXGc34/p14KkZ6wGYu343pwzpGrmYRUREoswY83wTm1YAuYTq4n1qra2IXFQiIiIiInKgYjFhsQ4YZoxxWWv9dTUwxiQDQ4HvWuic04HfAJOBN/baN6VGm8Z8CVwBDAYW7bWv8i7jxv0LsX1L9aQ2uW1VwqLGlFDG44xEWCKRl9kPOgyA3Wth8zdQkoszswMm3oktD9CtuGOoMg6wfNfyehMWo/tk4DAQtDB3fV4rfgAREZGouDr8XlnIbO8iTntvt0C2MeYqa+3nEY5NRERERET2Uyw+lv4h0JVQker6/I7Q9E3vtdA5pwHrgUuNMcMrNxpj0oC7CD2Z9VKN7V2NMQPD+2t6Mvz+a2NMeo32XYCfAUHg3RaK+aDl9QWINxphIe2EMTDojNCyDcLqTzDG4OkWGmURX+oizR9aXp67vN5uUuLdDOke+pX0fXYRu4u9kY1bREQkuq4B/kUoIbEd+CfwC+DnwMPA1vC+x4C7CT181AV43xgzsPXDFRERERGRpojFu7z/ALYBvzfGvG+MuTS8PcsYc64x5g3gl4RGKjxZTx/NEh7JcT2hf48ZxpinjTEPAkuBQ4G7rLUbaxxyH7AKOGevfr4BHgIOB5YZYx4zxjwd7qc78Dtr7Q8tEXN7UO5vrExJ3UIjLHxYqqeQcmiEhbRllQkLgFUfAeDuVj0t1GHevgCsyF3RYDfj+nWoWp63QaMsRESkXZsPXEsoOdHPWvsLa+0/rbWPWGtvAwYQ+rviGuA/1trjgT8Smp71tijFLCIiIiIijYi5hIW1dg9wMrABOBN4mdAQ7pOBtwkVrt4MnGGtbakaFlhrvwKOBmYDFwG3ANnAxdbaB5vRz+2E/jDKJjRU/VLgB+Bca+19LRVve3DDZzdw6n9O5Xezfocv6GvycV5/gDgqCFqNsJB2ottISO0eWl7/NZQX1KpjMTY88Gt9wXqKK4rr7WZc/+qExdz1uyMRqYiISKy4F9gB3G6t3ed/JMPb7gi3uTe8+c/h9eNbK0gREREREWmeWKxhgbX2O2PMEYRu+J8K9COUXNkC/Bd42lpbGoHzzgdOaUK7q6meN7eu/S8AL7RQWO1Sub+cFbtX4A/6cRgHbkdT6qyHj/UFScBbe0oojbCQtqxyWqh5T0LQBz98hrv7aVW7B/sGAGCxfLf7O47semSd3YzunYHTYQgErRIWIiLS3h0LTLPW2voaWGutMWYBcEJ43WeMWQ5MbKUYRURERESkmWL2sXRrbbm19klr7ZnW2iOstYOttVOstQ9HIlkhrWt57nL8wVBN9ZGdRzbrWK9fNSykHRp0ZvXyqg9xdUyouq67FmVW7VqzZ029XaTEuzkiXMfih+xiclXHQkRE2q9UIKMJ7dKBlBrr+VQX5BYRERERkRiju7wSFYuyF1Utj8xqZsLCF65hUWtKKI2wkDau1zhI7BhaXvsFxl9WVccirsjJo+P/ybQLpnHZoMsa7GZcv+rkxnzVsRARkfZrHTDJGDOgvgbGmEOA48JtK3UFNAxRRERERCRGxXTCwhgzzhjzG2PMv8Kv3xhjxkU7Ljlwi3MWVy03d4RFuT9APDVGWDgNxmlaMjyR1udwwsDwNFC+Ulg3rVYdi3GOkXRO7NxoNzULb89Zp/sxIiLSbv0biAO+NsZcZ4xJrNxhjEkwxlwLfAl4CE/VaoxxA8OAZQdyYmPM5caYp4wx3xpjvMYYa4y5uoH2qcaYh4wxm8LtNxpj/m6MSa6nvcMY8xNjzHJjTJkxZpcx5nVjTL8DiVtEREREpC2IyRoWxphewKvAhMpN4Xcb3j8buNxauzkK4ckBCgQDLNm1BICOCR3pmdKzWcd7fUEyakwJpemgpN0YdCYsejG0vOoj3L2qa1X4thcTPyC90S7G9MlUHQsRETkYPAxMAk4DngaeNsbkEvp7oVO4jQE+DbcFGAwsIfR3xoH4P6A3kEuoiHfv+hoaY5KA6cBw4DPgdWAEoYLgxxpjJlpry/c67CngemAl8AjQDbgQmGyMGWetrX9+SBERERGRNi7m7vQaY9KBr4CjAC/wIfBQ+PVBeNvRwDRjTFqUwpQD8H3+95T4SoDQ6Apjmjc6wusPhkZY2HhABbelHek7EeJSQ8vf/w93l+ppzyq2FTepi+Q4F0PCdSzW5KiOhYiItE/W2gBwJvBzYAOh5EQnoHN4eRNwG3BmuC3W2qXW2uOsta8f4OmvB/pYazsBTzbS9leEkhV/Ddfj+7W1dgrwV2AM8IuajY0xx4X7nwGMtNbeaa29AjgbyAT+dYCxi4iIiIjEtJhLWAC3A30JPQ01wFp7jrX2jvDrXKAf8En4/fYoxin76UDqV0Co6HZcjSmhHBphIe2FywOHnhxa9hbgLv0WXKGEnndbIR+t+4j75t3HW9+/1WA3NaeFmrdedSxERKR9siGPWGsHAD2B8eFXL2ttP2vtw9baYATO+4W1dlNj7UzoqZzrgWLgT3vt/lN4+/V7bb8h/P57a21FjXP+F/ia0CiLXvsZuoiIiIhIzIvFKaHOAXYBF1prS/feaa3daYy5iNCTVOcCd7dyfHKAFuVUJyxGZY1q9vHlvtAIi2DllFAaYSHtyeAzYXkoIWG+/wh3l6vxbS0mmOvlT9PvpczpZVzXcVx42IX1djGuXyZPTg/VF527fjenDe3aKqGLiIhEi7V2G7At2nHs5RBC0zlNtdaW1NxhrS0JT3M7xRjT01q7JbxrElACzK6jv6nh/ccCLzc1CGNMj0aadKlcKCsro6ysrKldi0gbo59vqUnXg1TStSA1Ned6iNS1E4sJi77AJ3UlKypZa0uNMdMJzVkrbczK3JUAJLuTOST9kGYfHxph4a9OWGiEhbQn/U8AVwL4y2D1J3j6/wjf1tB0UCM5gtksZGXuSoI2iMPUfe2PrlHHYo7qWIiIiERL5f/o1ldzYg0wJdxuS7jeRVdgReU0VnW0r9lvU21pvEnIjBkz6NixYzO7F6kUi7cXpKbPPvuslc6ka6Et0PUglVrvWgBdD7GvOddDbm5uRGKIxaskALib0M4FtPgQb4m8j875iJW7V5Jdko3T0fzREV5fkHigMqOlERbSrngS4ZATYdVHULILd3xO1a7xZiSzWUiRr4hNhZvom9a3zi4q61gs2bKHtTnF7Cry0iklrs62IiIibYEx5srw4nvW2qIa601irX0pAmE1prLeXkE9+wv3atfc9iIiIiIi7U4sJizWAJOMMenW2j11NTDGZALHAT+0ZmDSMjxODyM6j9jv48v9AeJwVCcsNMJC2ptBZ4YSFoCneCZwNAADK/pBqNY8K3JX1JuwABjfvwNLtuwBYN6G3Zw+tFskIxYREYm0FwALzAWKaqw3VTQSFrGiZyP7uwALACZOnEiPHo3NICVSjzlfRjsCacTkyZNb50S6FtoEXQ9SqdWuBdD10AY053rYunVrRGKIxYTF28BfgE+MMTdaa1fW3GmMGQI8BaQCb0YhPokyb0WAOEzVukZYSLtzyGRwuCHow73lDXAcA0FL58K0qoTFkpwlnNH/jHq7GNevA098HapjMW1VjhIWIiLS1r1EKEFRsNd6LKuMtb4REal7tWtu+yax1jb4l2SoNnhIQkICCQkJzeleRNoQ/XxLTboepJKuBampOddDpK6dWExY/BO4CBgPLDXGLCZUYBugHzAccABLgEeiEJ9EWcBXjq28a4tGWEg7lJAO/Y6FtV9gijbizjT4ci3uPEjunEQxJXyx+Qt+PfbXuB11z6B3ZJ9M0hLcFJT5+HjZdn59ykCyUuPrbCsiIhLrrLVXN7QeoxqrOVGrxkW4EPcOoK8xxllHHYvGamKIiIiIiLR5MXen11pbBhwPvBXeNAo4P/waGd72JnCitba89SOU/bWrdBc//+rnvLTyJdbvWb/f/QQqyrBUz8evhIW0S4POrFp0u8MPRlo4Lz00qiKvPI/Z22bXe3iCx8llY3sB4AtYXvhmY8RCFRERkTqtAbYDR4ULalcJrx8FbLDW1iyKPR2o3Le3KeH3GRGIVUREREQkJsTknV5rbb619mKgL3AF8Ovw6wqgr7X2EmttXjRjlOZbmLOQaZun8fdv/85H6z/a736CvtoJC4emhJL26LBTwYR+RXtKv6nafILnmKrlD9d92GAXV03og9sZmubh1bmbKPb6IxCoiIhI9BljPMaYruFadzHBWmuBZ4Fk4Pd77f59ePsze21/Ovz+J2OMp3KjMeYUYBLwmbV2U0QCFhERERGJATGZsKhkrd1irX3VWvu38OvVvZ5AkjZkUfaiquWRnUc20LIRvlKCVlNCSTuX3Al6TQDAXTa3anOvkiwy40P3Yr7e8jXFFcX1dpGVGs9Zw7sDUFju560F+vUpIiLtizHmcmPMfKAE2Ao8UGPfOcaY14wxfVv4nNcbY14wxrwAXBDeXLXNGHN9jeZ/A5YCdxpjphpj7jPGTAXuJFTo+uGafVtrvyKU5JgILDLG/NUY8xLwPpAH/KQlP4uIiIiISKyJiTu9xph4Y0yqMSauCW3jmtpWYktlwsJgGN55+P535CuvPSWURlhIezUoNP2T22ygsq6of0cpVwy+guuHXM87Z7xDsie5wS5uOKZf1fLzszfgDwQjFq6IiEhrMsY8C7wIjAbKALNXkx+Ai4HzWvjURwNXhV+VT+EcVWPb0ZUNrbUlwLGEEhODgNuBgcCDwAnh6XD3dhPws/Dyz4BTgfeAI621P7TwZxERERERiSlRT1gYY9zAKiAbOKIJhxwebrvcGKM71W1EYUUhP+SH/r46LPMwUjwp+92X9amGhRwkBp0OgMN4cblzAPDtLOG6Qdfys5E/o196v4aOBuCwLilMPLQTAFvzy/jfyp2Ri1dERKSVGGMuA64FVgBjgLS921hrVxIadXFKS57bWnu1tdY08Lp6r/YF1tpfWGt7WWs91tre1to7rLVF9fQftNY+Yq09wlobb63taK292Fq7riU/h4iIiIhILIqFO70XAL2BB621CxtrbK1dRGiod3/g3AjHJi1kSc4SbPgJ8QOaDgow/nKs1QgLOQik9YBuoZ8XT2BlaFvA4ssubVY3N9YYZfHMjPWEptQWERFp024EioHTrbULbf3/cVtOqC6eiIiIiIi0AbGQsDgH8AP/aMYxDwFB4PyIRCQtrlb9iqwWSFigGhZykBh8JgBuR/VDlb5t9detqMtRAzowqGsqAEu3FrBgY37LxSciIhIdw4B5TahvlwdktUI8IiIiIiLSAmLhTu9IYJG1dndTD7DW5gPfAqMiFpW0qEU5LVRwGzD+MtWwkIPHwFAdC0+NhEXF9lDCYnvxdp5e9jTXf3Y9QVt/bQpjDDccU/1w6TMz10coWBERkVYTBxQ0oV0nIBDhWEREREREpIXEQsKiC7BxP47bBHRt2VAkErwBLytyVwDQM6UnnRI7HVB/joC39pRQGmEh7VnHAdB5MG5TnWSoHGHxf3P/j0cXP8q8HfP4due3DXZz+tBudEkNjUz6YlU263Y1b5SGiIhIjNlGqIh1vYwxBhgMbGiViERERERE5IDFwp1ew/7F4QgfKzFuRe4KfEEfcOCjKwCcgfJaIywcGmEh7d2gM3CYUlxmOwAVO0qwAcuZ/c+savLhug8b7MLjcnD1UX0AsBaem6V7NyIi0qZNAwYaY85qoM0VQA/g89YJSUREREREDlQsJCx2ESqg3Vz9gNwWjkUioFdKL3479rec0vcUJvaYeMD9OQNegmiEhRxEBoWmhXKbtaF1fxD/rlIm9ZxEijsFgM83fU6pr+Fi3Jcc2YukcILv3YVb2V3sjVzMIiIikfUA4AVeM8b83BjTrXKHMSbTGHMz8DhQAjwSpRhFRERERKSZYuFO72JgmDGmV1MPMMb0AUYAixppKjGgU2InLh54MX+b+Dcm95l8wP05g5oSSg4yWUdARp9ahbcrthUT74qv+pkq9ZcybfO0BrtJS3Bz8ZGhX7Vef5CX526KXMwiIiIRZK1dA1xF6O+ZB4EtgA1v2wU8BriAq621m6MVp4iIiIiINE8s3On9gFAczXny6Z81jpWDSDBocQe9KrotBxdjYNCZeEyNhMWWIoBa00J9tO6jRru65qg+OB2h2fRenrOJcp/qkIqISNtkrX0bGAO8DRQRmi7WAOXAR8B4a+270YtQRERERESaKxYSFi8TKrp9hjHmHWNM5/oaGmM6GWPeAc4gVHT75dYJUWJFRSBIvKnAEl+1zXhi4TIWibBBZ+JxrAFC9WDKlu3C+gKM6DyCHsk9AJi7Yy7ZJdkNdtMjI5FTh3QFYHdJBf9ZtC2iYYuIiESStXaFtfZiIAPoDHQBUqy1Z1trF0c3OhERERERaa6o3+m11vqB84Ey4BxgkzHmfWPMb40xN4RfvzXGvA9sDrcpBy4IHysxbPmu5czbMa/RufWbqtwXIJ6K2lNCuTTCQg4C3UfhSE0l0TETgGCpn9KluRhjqkZZWCwfr/+40a5uOKZv1fKzs9YTDNrIxCwiItJKbEiutTbHWhuMdjwiIiIiIrJ/XNEOAMBau8gYM5HQcO6+wJmERlHUZMLvG4ELrbULWy9C2V8vrHyBzzZ9hsu4ePesd+mX1u+A+vP6g6GEReWUUE4wTtPwQSLtgcMBA08nad7HlFYcD0DxnO0kjurM6f1P5/GljwOhaaGuPeJajKn/52Joj3TG9s1k3oY81u8q4cvVOZw4OKtVPoaIiIi0H31+/Um0Q5Am2Hj/adEOQURERKTJYiJhAVVJi8OAS4GzgNFAp/DuXcBCQjUrXtXIirbBWsuinFBd9DhXHL1Teh9wn15fkDhTnbAwbiUr5CAy6Aw885/Bbdbgs4fg21ZMxZYievbqycjOI1mUs4jtJdvZUbKDbsndGuzqxon9mLchD4CnZ65XwkJERGKaMebuAzneWvvHlopFREREREQiJ2YSFlA1PdRL4Ze0cVuKtpBblgvA8E7DcToOfOqmcn+ABCqwNlTDwuGO+qxmIq2n91GY9J4k7/6EfP/PASiZs4O4XqlcP+R68srzOKn3SSS6Exvt6rjDOtOvUxLrd5Uwf0MeS7fsYVjP9MjGLyIisv/uAQ5kDkMlLERERERE2oCYSlhI+7Iwu3rWrpFZI1ukT68vNCVUsGqEhepXyEHE6YKxN5M49V4K/NcSJJXSZbtIO60vx/Q4plldORyGG47px2/+sxyAZ2au51+XtszPqYiISATMoP6ExbFANrC69cIREREREZFIUMJCIqZyOiiAkZ1bKGHhD9SqYWE8SljIQWbklZjpfyXR/znFgfMgYClZkE3qcT2b3dU5I7rzwNTv2V1SwX9X7GRLXik9MxsfnSEiItLarLWT6ttnjAkC/7XWXtt6EYmIiIiISCRoPh2JmEXZoYSF2+FmSKchLdJnuS9IPD7AA4DxKOcmB5n4VBh1FcnOT4EgACVzd2ADtR869QV8jXfldnLl+D4ABIKWf8/e2MLBioiIiIiIiIiINJ0SFhIRuWW5bC7aDMARHY8gzhnXIv2GRlhUF9rWCAs5KI29GZdrN/GObwEIFHgpX70bCCUK75p5F5PemsSe8j2NdnXF+N7EuUL/KXhzwWYKyhpPdIiIiIiIiIiIiESCEhYSEbXqV7TQdFAAXn9l9YoQo6LbcjBK6wGHn0Oy8+OqTcVzdgDw5eYv+Wj9RxRWFPK/jf9rtKvMJA/nj+oBQElFgNfmbY5MzCIiIiIiIiIiIo3Q3V6JiMrpoKDlCm5DaIRFnNEICxHG/5g4x2JcZjsA3rV78OWUcuaAM6uafLjuwyZ1dd3Rfan8sXrhmw1U+IMtHq6IiIiIiIiIiEhjlLCQiOiU2In+af1xGAfDOw9vsX7LfUHibPVlqxEWctDqNhzT92iSao2y2M6hGYcyMHMgAMtzl7O+YH2jXfXrlMyJg7IAyC708vGy7ZGJWUREREREREREpAExd7fXGNPLGJPZhHYZxpherRGTNN/1Q67n/bPfZ+bFM0n1pLZYv15fAE+Ny9ahERZyMJvwE5Kc0zCUA1C6KIeg18+Z/atHWXy07qMmdXXjxH5Vy0/PWI+1toHWIiIiIiIiIiIiLc8V7QDqsAF4AbiukXZ/A64hNj+DhLVksgJCCQs3GmEhAsCAk3B06k7ijq8pCZyM9QYoXZTDKcNP4cFvHyRgA3y07iN+MuInOEzDPyuje2cwvGc6S7bsYfXOImav3c3Rh3RspQ8iIiLSMGPMlY00GdBQG2vtSy0ckoiIiIiIREAs3uw34VdT28pBpKKiAlOj7LZqWMhBzeGA8T8m6YN/UBI4GQgV384aN5Kjuh/FjK0zyC7NZv7O+YzrOq7Browx3HBMP370Wqj+zNMz1ythISIiseQFoL7hfxY4Kvyqb78SFiIiIiIibUBbfjw9BaiIdhCyr+KK4oj1HagoxdZMWGiEhRzshl6EJ6UYj1kJgD+nFO/6glrTQr2+6vUmdTXl8Cx6ZiYAMOOHXXy/s6jl4xUREdk/mw/gtSUK8YqIiIiIyH5oc3d7jTEOY8wQ4HhCf4BIDKkIVDDprUmc+f6ZPL7k8RbvP+grq52w8LS5S1ikZbnjYcwNJLuqi2+XzNnOcT2Po1NCJwC+3PIlq/NWN9qVy+ng2qP6Vq0/M7Pxgt0iIiKtwVrbx1rbd39f0Y5fRERERESaJibu9hpjApWv8Karam7ba78PWAJ0AP4TrZilbityV+ANeNlQsIHtxdtbvP+gtxRra46w0JRQIoy5jgTPYhzkAVC2cjeOYst1Q0KlgAZmDsQb8DapqwtH9yQ1PjRb4AdLtpFdWB6ZmEVERERERERERPYSEwkLqutWGEJzzJoGXn5gI/Ag8IcoxCoNWJSzqGp5ZNbIFu/f+sqxxFeta4SFCJDUETP8ApKc/wutWyiZt4PzDz2fR457hLdOf4thnYY1ras4F5eN6w2AL2B58ZuNEQpaRERERERERESktpi422utdVS+CCUlXqi5ba9XnLW2v7X2V9Za1bCIMQuzF1Ytj+wcgYSFf+8aFhphIQLA+B+R7JpKKKcbSlh4rJvjeh2HMaZZXV09oQ9uZ+iYV+ZuosTrb+loRURERERERERE9hETCYu93Au8H+0gpPkCwQBLcpYAkBmfSe/U3i1/koqyvaaEisVLWCQKOh6Cc+BYEhzfABAs8VO2Ine/uspKjees4d0BKCz38/a3qlUqIiIiIiIiIiKRF3N3e62191prP4x2HNJ8a/espdhXDMCorFHNfqq7SfzlBGtMCeXwaISFSJXxPybZ9UnVavGc2nVkluQs4YmlTzSpq+uPqa5P+tzsDfgDwZaJUUREREREREREpB4xl7AwxjiNManGGNde2xOMMX8wxrxnjPmHMaZbtGKUukV6OigA4y+vPSWUaliIVOs9AU93Dy6zEYCKTUVUbAslEe+efTdX/PcKHl/yOCtzVzba1cAuqUw8tBMAW/LKmLoyO2Jhi4iIiIiIiIiIQAwmLIC7gXxgfOUGE3pU/+vwvrOAnwJzjDEZ0QhQ6laz4PaIrBEROYfxl+81JZRGWIhUMQZz1E9Idn5ctalylMXhHQ6v2vb40seb1N0NNUZZPD1zPdbaFgpURERERERERERkX7GYsDgB2GmtnVlj2xnAGGAN8HPgM6AHcEOrRyd1stayKDuUsEh0JXJYxmEROc8+IyxUw0KktkFnkZixDkMJAKWLswmW+jjnkHPoktQFgBlbZ7B81/JGuzp6QEcGdkkBYOmWPXy7KT9ycYuIiLRDxpirjTG2kde0Gu3vaaRtnyh+HBERERGRiIvFu719gdV7bTsLsMBl1tpHCCUwdgHnt3JsUo+c0hzyy0M3M4d3Ho7L4WrkiP3jDJZja9SwMKphIVKb04VjwjUkOb8IrQegeP5OPE4PNwypzvE2pZaFMYYbjulXtf7MjPUtHq6IiEg7twS4t55X5RyNU+s47sV6jtkT0WhFRERERKIsMneVD0wHYOde244CtllrFwJYa/3GmLnAuNYOTuqWlZTFN5d+w/Jdy3E6IpdEcAa8e00JFYs5N5EoG3EFSdNOoLj4DMBB0debST6yC+cMOIdnlz/LjpIdzNw2k2W7ljG009AGuzpjWDf+NnU12YVePl+VzYbcEvp2TGqdzyEiItIExphxwCRCI7ANsBX42lo7J5pxAVhrlxBKWtRijPEAPwb8hJITe3vBWvt1JGMTEREREYlFsXi31w9U3Q0L16k4BJi9V7siIK0V45JGJLgSOLLrkYzKGhWxczgDNaaEclqMw0TsXCJtVnwq7iNPJtHxFQC2PEjhV1twO93cMLR6lEVTall4XA6unhCqZWEtPDdLoyxERCQ2GGP6G2NmE/o74c/ArcAtwP8Bs4wx3xhjBkQzxgacTehBrY+ttdlRjkVEREREJGbE4giL9cA4Y4zDWhsETif0pNSsvdp1JjQtVIsxxowhNNR6AuAGlgMPWWvf2s/+MoAVQDdgqrX25JaK9WDlCnqrEhYRmnVKpH0YezOpc06ktOxoII7i2dtIHt+Ns/ufzbPLnmV7yXZmb5vNkpwlDO88vMGuLh3bi399uYaSigBvf7uVX5x4KB2S4xo8RkREJJKMMd2AmUAXoBT4H7AhvLsPcDKh0dgzjDFjrLXbohFnA64Pvz9bz/6JxpixQJBQHb8vrLXF+3MiY0yPRpp0qVwoKyujrKxsf04jMUzfqVTStSA16XqQSroWpKbmXA+RunZi8Zbvh8BdwAfGmC+AO4EA8FFlA2OMAUYAq1rqpMaY4wjNH1sOvEFoBMd5wJvGmJ7W2gf3o9t/oVEgLcoV9BK0oRoWxlV7dIVvxw6M242rY8dohCYSW9K64zruOlKmfkBR4EIIQsF/19PhssHcMPQG7p1zLxCqZfHUSU813FWCm4vG9OL52Rvw+oO8MnczPzvxkNb4FCIiIvX5I6Eb7e8Ct1praz3IZIzpCDxOqObdvVQnCKLOGNMbOIHQ1FX/q6fZvXut7zHG/Mxa+9J+nHJLUxvOmDGDjs36f+lY/HNS9vbZZ5+10pl0PcQ6XQtSk64HqdR61wLoeoh9zbkecnNzIxJDLE4J9TdCBehOA/5B6A+Rv1trN9doczTQkX1HXewXY4wLeIbQE0wTrbU3WmtvB4YBPwB/Cf9h0Zw+zwMuJZRwaddmbZvFHdPv4LVVr7GzZO/yIy0nELR4bPUIi5r1Kwo//5y1J5zImmMmsumqq9nzzjsECgsjFotIm3DUz0jp9h2OcH3OsuW7qdhSxFkDzqJ7cncASn2llPpKG+3qmqP6UDkD20tzNlLuC0QqahERkaY4BdgOXLZ3sgLAWpsLXB5uc2orx9aYawj9HfaCtXbv/6AuBa4F+gEJQF/gJ4AFXjDGnNmagYqIiIiItLaYS2tZawuNMUcSehoqC1hgrZ2+V7MOwD+BN1votMcD/YF/hwvjVcZSYIz5C/ACcBWhJ7kaZYzpBDwBvAx8QmikRbs1a9sspm6cytSNU+mR0oMuSV0aP2g/eP0B4o1vn4SFDQTIeeABCAYBKJ03j9J589j5xz/R88knSJowISLxiMQ8pxvHOQ+S+sQD7PHdBMCe91fS6cdjuWvsXbgcLsZ3HU9o0FrDemYmcuqQrny8bAe7Syp4b/E2LjmyV6Q/gYiISH0ygQ+stRX1NbDWVhhjZgFntV5YDTPGOAglLCzw/N77rbXv7bVpI/AvY8wq4HNC9Tk+bOZpezayvwuwAGDixIn06NHYDFI1zPmymaFINEyePLl1TqTrIebpWpCadD1IpVa7FkDXQxvQnOth69atEYkh5hIWANbaMkI3++vb/z7wfgueclL4va4xL1PD78c2o78nCU1j9TMOcEqo5sw56/V6ozLv3Lc7vgXAYBiYMjBiMewp9RFvfYTKi4B1G8rKyiiZOhXfpvAAHJcL/P7QfsAOGFArnmBxMSYxEeOI7uCi8vLyOpcldrXZ7yzjMDzj+uCatRW/7UHFNh+Fi7cxZtAYoHmf5coju/Pxsh0APDNjHWce0RFHE5Id0dRmv7eDnL63tkffWdvk9XqjHcKB2AokNaFdIhBL9StOBHoB06y1GxprXMlaO80Ysw4YYoxJtdY2eSixtbbBvyRrPriQkJBAQkJCU7uWNkLfqVTStSA16XqQSroWpKbmXA+RunZiMmERBZWTsa/Ze4e1dqcxprhGmwYZYy4HzgXOttbmG2MOtIZFk+ecnTdvHuvWrTvA0zVPuS3nh4IfAMhyZDHn6zkRO9ceL9TM3uQXFzJv6lR6/fMR4sPbtl59FYH4eFIXL8EE/Pwwp3Y8We+8Q+IPaygaPpzSAQPwpafhT0vDxkWvgPCMGTOidm7ZP23tO3MEh3FUwjv4S38MwJ73lrJkk3+/JgXsn+JkXZFhfW4pD77xBcM62BaONnLa2vcmIfre2h59Z21HpOacbSVvAz8xxnSvr6C2MaY7oZHUsTTaubFi2w3JBQYQSsJo7lMRERERaZdiLmFhjJnYnPbW2pb4q7gyqVBQz/5CmjBSwhjTDXgEeN1a+0ELxBXzNvs3YwndsOztalaZj2bzBSGRYNV60AFJ339P/I7QE99lPXtSOmAAGMOunvuOfDc+H8nLluP0esmcPp3M6dUzjQUS4vGnpeFPS8eXlkbBuLF4u3evPtbrxVVYiAkEQi9/ABPwQzBYtWwCAXA4KD7iiFrnTVmylLitW3H4fRifHxN+d/j9UNlfIEDpoYew+6STah3b+x//wFlUjAkGwRiswwEOBzb8qlzePfkkiocMqTrOWVRE5/fex8Z5CMbFEfTEEfSEl+M8WE9c1XJ5jx5Yj+fAvhyJaUGHh+/6jeTQlSupsIfj9KXSbXs223uERytZyzr/OhJNIt1c3Rrs6/huQdZ97wTgnQ0O+qUGSHFH/COIiIjs7U+ERkl/aYy53Vr7cc2dxpjTgAeBZexbwDoqjDEdCE1PlQfsPfVTY8cmAYcDJYQSFyIiIiIi7VLMJSyAr4GmPrJria3P8CzgA37agn02ec7ZsWPH0r9//xY8dePWLl8Lq0LLZ448k5N6ndTwAQfgh5xigisfr1rv1KMbiZ+9QuXEE71/8QsGHTep3uP92dnsPnIMZd/MgUDt+obOsnKcZeXE7cwG4NArriDx6KOq9hd/+im5DzzYaIyO9HR63XZbrW27ZsykZObMRo/tOGgQo/aaJ27z3/5OsKSk0WOHHHIIKTWOrVizhu3/9+dGjwPo/sH7uHtV1yIo+fxzCt94E2dmJs6MDByZGTgzQi9HaiqOlBQcyck4UlNxZmQ06RztQXl5edVTwxMnTiQ+Pr6RI2LNZCx/JW/F4QB0357M4EuPIs/u4TdzfsPSgqWM7jyaxyc93mAvJ1nLqleXMmtdHoU+w9Q9nXny0mExOzVU2//eDk763toefWdtU2uPzD0Qxpi6JjwOEhoF/YExZg+heg8AfYD08PIc4GPghIgG2DRXAB7gFWvtPvNxGWNSgK7W2h/22p4APAOkEKq552+NYEVEREREoiGWbvZXmkHdCQsH0JvqG/hzCCUHWkLlyIr6RlGkAvkNdWCMuQo4BbjAWttiTz01Z87ZuLi4Vp93bnne8qrlcT3HRfT8xuklzlbPYeNOiKPHAw+Q9+KLlH27kMyTpzRcm6JPH1KeeQZ/Xh7FX35JxabN+HbuxL9zZ9W79YUuqaRevYiv8Vl8SU2ZIhlsRcU+/wbuxMQmHetg37nfPN27E0hIwDidoZEs/gA2EIBA6N0GAuD3E5eUXOtY6w/QVEnduuGscWzJtm14Fy1q9Li4gQPp937thwN3/un/qNi0CUdKMsbhrPfY1NNOJeX446vWA0VF7LynaQ8/dvrFL/D0qB79Uvrtt+S//kajxzmSk+l67z21tuW9+iplixY3emzCqJEknHNO1Xp8fDy5v/wlwcIibEUFwQovtqIC660IvVdUYL1eTHw8Xf7wB1KntGIBq4acfxtla56lzDuGYCAJ/4fT6XrFyeR7Q7/evs35lhUFKxjTZUyD3fzj4pGc8s+Z5BZ7mbk2j9e+3ckNE/u1xic4IPHx8Zqbsw3S99b26DtrO+KiOCXmfpjUwD4DZIRfe5tA0x+GirTrwu/1TQfVAVhtjFlA6JGgnUAWoboXPYDlwC8jHaSIiIiISDTFXMLCWjupof3GmKHAC4SGQ5/aQqetrF1xCLBwr/N1AZKB+Y30MSL8/rap+0njKcYYCyy11g7f/1BjR0WgguW7QgmLHsk96JzYOaLnK/cF6UD1v61xO3B37kzWL3+JtZZ6/t334crMJP388/fZboNBAvn5+HbsxNO3T6197u49SDvrLIzHjXG7weXCuN3VL1f4PW7fqZUyr7mGtLPPwsTF44jzYOLi8Fr4+pvZWKeTE6dMISElpc5kS9+33mzSZ9pbwpAjGDB9OsHSEoIlpeH3EoKlpaFX5XJJCY7k5FrHBgqLmnQOZ0rKPtvKFi+m/LvvGj027rDDaiUsbEUFhZ980qTzdrjuWqA6YeHbtq1JxzozM/dJWJQtWdq08zodtRIWAKULviVYUN8scpWNSsl/+WVSJp/U5OszouJTSTvzCMreDhWvL1qVQNKOndw07CZ+O+u3ANw3/z7ePP1N3I7653nqlBLHQxcO48rnQ78W/zZ1NWP7ZTK0R3orfAgRETlIHRftAA6EMeZI4AhgvrV2eT3N8oDHgSMJ/Z2TAZQRSl48AvzLWlvWCuGKiIiIiERNzCUsGmOtXWaMORdYSegJo/tboNvpwG+AycDej2pPqdGmIXMIJTb2lgxcBGwFpgKb9z/M2LJy90oqghUAjMwaGfHzef0B4mrc9DWe6hv8LXEz2DgcuDp0wNWhwz77EoYcQcJf9+9Si+vXF+hba1ugrIxgeOSF8XgaHhmyH4zbjTtr/xJIWXf+ik4//QmBvDz8efkE8naH3/MIFBUSLCwiUFxEXN+++xwbKCk+0NDbDIfHU11RxeXC4fGEvsu4OIzHg2/LFtLOPZcu9/whNpIVYa5Rk0me8STF2YcDHgpf/R+n3nE1r3z3CqvyVrEmfw0vrnyR64dc32A/Ew/txE3H9uOp6evxBSw/eX0xH//kaFLiVdBCRERanrW2sf8Xj2nW2vlAg/9DYK0tBH7cOhGJiIiIiMSmNpewALDWbgwPlb6SlklYTAPWA5caYx6x1i4BMMakAXcBFcBLlY2NMV0JTR+1w1pbEI7pTWCfx+GNMX0IJSxWWmsbvgPYxizMrh6MMrJzKyQsfEFc1knlpL3GXf+UQ3JgHAkJOLp3x12j8HhT9P/0U4LFxQSKimlo9gVnamrt9fR0+n/xeZPO4epcOxGTcuKJTTq2rqRB1q/vpNPPGi8540hI2Gf+uX6fflI9wsa577Vog8EWT0S1lNQrzqXkwUVYm0Rp3iEkf/M//jDhD1z6yaUEbZAnljzBSb1Pondq7wb7uWPyYcxdn8fSLXvYtLuU37+/gn9cNDymEjQiIiIiIiIiItJ2tMmERdguQsOlD5i11m+MuZ7QCIgZxpg3gCLgPEJ1M+6w1m6scch9wFXANYSmpzoondjrROKd8SzKWdTonPctwesP4qY6YVGyYA5Jo1JxpqdH/NzSNMbpxJmWhjOtvnIw9R/n6dFjv87pSErC08QaI3urazRNfXxltWdgqGtKrJrqSlbEShLD0bEzqSOCFCwCcFAwdSuDR07gikFX8OJ3L1IRrODeOffy3OTnGkw+uJ0OHr14BKc9MpMir5/3l2zn6EM6cf6o/fsuRURERERERETk4Bb9O2f7wRjjAcYApS3Vp7X2K+BoYDahERG3ANnAxdbaB1vqPO1Jn7Q+XD74ch6a9BC9UntF/HzlvgBuqp9kL/n6S/a8+5+In1ekJXjXrmXDOedSurjxIt+tIfmcKTg9oRocXt/heN96jFuH30r35NComgU7F/De2vca6gKAXh0S+fO5Q6rW7/5gBet3HTxTg4mISHQYY75sxmtatOMVEREREZGmaVMJC2NMkjFmNPAu0BP4qiX7t9bOt9aeYq1Ns9YmWmvHhqd62rvd1dZaY619oQl9bgy3PbklYz0YVVRUYCviqtaNx0X6RRdFMSKRpilbuZINF1yI9/vv2faL2/Dn5UU7JIzbSdoph1St7/m+Dwkb53H3uLurtj3w7QPkluU22teZw7px4ejQqIrSigA/eX0xXn+g5YMWERGpNqkJr2NrLIuIiIiISBsQcwkLY0ygvhdQCMwDTgMKgN9FNVhpVf6KUkpyqmsfJB01Fmfy/k0FJNKa4g87jPjDBwPg37mT7b/8FTYQ/Rv6CeMOxZ1RDoDf9qH07TeY0GkYp/c7HYBjuh+D0zStVsw9Zx5O/06hn8eV2wv563+/j0zQIiIiIcfV8zoBuBb4D6Ei1/cBx0cpRhERERERaaaYS1gQ+sOivpcf2AQ8C4y01uqOWJRM2zSNb3d+izfgbbVzmtxsygqSq9ZTTpjUaucWORDG5aL7Qw/h7NgRgJLZs8l94skoRxUqRJ5+/uiq9YLCUwh+9hd+NeZXPHHiE/x14l/JiM9oUl+JHhePXjISjzP0n5XnZ2/gy9XZEYlbRETEWju9ntdX1toXrLXnAz8Hbgf2RDVYERERERFpsphLWFhrHQ284qy1/ay1N+5VBFtakbWWP8/7M9dMvYYT3z6RoA22ynmzpn0MxlO17spMbaC1SGxxd+5M9wcegHDR7dzHHqN41uwoRwVx/TOIHxAPQJAOFM0pJmPXWo7ufnSz+xrcLZW7Th1YtX7H28vILixvsVhFRESaw1r7CLAFuCfKoYiIiIiISBPFXMJCYt/W4q3sKtsFwKDMQThM5C+jQGEhXWZ/jXHVrGHRtKlqRGJF0rixdPrZz0Ir1rL9jjvw7dgR3aCAtLMOBxNKPBYFzsH79t/BX3v0VLm/aYmHqyb04cRBWQDklVTw8zeWEAjalg1YRESk6ZYCzc/Ci4iIiIhIVMRcwsIYEzTGLIp2HFK/RdnVX8/IrJGtcs78117H5S3HOKtHWBh3zF2+Io3qcMP1JB97LACBPXvY9ovbsBUVUY3J3SmR1JP6hNec5O06n+BX/wBCI6o+WvcRU96dwpKcJY32ZYzh7+cPpUtqaNTGnPW7eeLrtZEJXEREpHGZQHKjrUREREREJCbE4h3fEuC7aAch9VuUU52wGJU1KuLnC5aVkffii6EVp7tqu3FrhIW0PcbhoNtf78fdrRsAZUuWkPPgg1GOClIm9cLTNfQzFbBdKZheDDtXMHXjVO6adRd55XncO+defAFfo31lJHl4+OLhOExo/R9frGHhprxIhi8iIrIPY8xE4BhgXbRjERERERGRponFhMUaoHO0g5D6VY6wcDlcDOk4JOLns4EgGZdcjC8uDneyq2q78cTi5SvSOGd6Ot3/+U+M2w0OB86OHbE2utMmGYch8/IRGGcAgBL/FMreeIQTe0xiUOYgANbuWcvzK55vUn/j+nXgx8cfAkAgaPnp60soKGs82SEiItIUxpi7G3j93RjzMTCN0N87z0Y5XBERERERaSJX401a3SvAn40x/a21ehoqxuSW5bKxcCMAh3c4nHhXfMTP6UxOotNPf8r7xs9ZW51UTp6jGhbSliUMOYIuf/oj7q7dSBp7ZLTDAcDVIYG00/uz54ONAOTvPJ2sWc9zz4R7uPSTSwnYAE8te4rJfSbTN61vo/399PgBzF23m/kb89i2p4zf/GcZj106EmNMhD+JiIgcBO4BLNDQf1SCwD+ttQ+3RkAiIiIiInLgYvER9YeBqcCXxphLjTGRvyMuTbY4Z3HVcmvVr6gUcATBUaPotisWL1+Rpks/++yYSVZUShrXg/heoXs/QTLY80Uxg6yHKwZfAYAv6OPeOfcStMFG+3I5HTx88XDSEkJTuX26fCevz98SueBFRORgci/wx/D73q/fAlcDfay1t0UrQBERERERab5YHGGxltCTUj2Bl4GXjTE5QFkdba21tn9rBnewq1lwe1TnyNevqMkEyrCVs4U5ghiHntIWaWnGGDIuP5Lsv80k6PdQFhhP6atPc+ut9/DFpi/YWryVhdkL+c+a/3D+oec32l+39AT+dv5Qbnp5IQD3frSS0X0yODQrJdIfRURE2jFr7b3RjkFERERERFpeLD6i3gfoHV424VdWeHtdL2lFC7NDNx0NhuGdh0f0XEVffknOPx7Gv3s3AA6/lyChERbGFd35/kVaWqC4mLyXXmb3Cy9EOxScqR7Szz20an3PjuNwz/0Pvx//+6ptD337ELtKdzWpvymHd+GKcaFf615/kB+/tohyX6BlgxYRERERERERkTYvFhMWfZvx6helGA9K1loO73g4vVN7MyBjAGlxaRE9165H/8Xup55i7Qkn4t2wAUegDGtDCQtHLI4NEtlPQa+XdSeeRPZf/kLuE08SLKtrQFnrShzZk8QBoaSCJZn8/xUxPqk3Z/Y/E4AiXxG/nvlr/EF/k/r77WmDGNglNKrih+xi/vTxd5EJXERERERERERE2qyYu+1rrd0U7RikbsYY/jD+DwCU+kojeq6SmTPxrloFQFz//nj69MER8GKrRlhE9PQircoRF0fyscdS8MEHBAsKKPzkE9LPb3y6pUhLv+xovPd9QaAiCW/gCIpffIk7bridOdvnsKtsF5sKN7GzZCc9Uno02le828mjl4zgjH/NotwX5NV5mzl6QEdOGdK1FT6JiIi0dcaYuw/keGvtH1sqFhERERERiRzd9pX9kuhOjGj/uU8/XbXc4aYbMcbgrJmwcMfi4CCR/Zdx+WUUfPABAHmvvkbaeedhTHTrtDgSXGRcOJjcV0J55ILtY8haNJMHjn2AZ5Y/w5+P/jOZ8ZlN7u+QrBT+cMbh/OY/ywG4891lDO2ZTvf0hIjELyIi7co9wIHMCaqEhYiIiIhIG6C7vhJzSr/9lrJvQ7UyPP36kXLiiQC4A17ADYBxq+C2tC8JQ4YQP3QoAN5VqyhbvDjKEYXEH9GL5IHl4bU48j4tYERib5448YlmJSsqXTymJ6eFR1UUlvv52euL8QeCLRixiIi0UzMaeBkgp5E2IiIiIiLSBsRkwsIY08sY84QxZo0xptQYE6jn1bTJ0+WA+YN+CrwFrXKuWqMrbrwB4whdpp5g9U1N43G2SiwirSnz8suqlvNfeTWKkdSWdtnxuOLyAfAF+lL47zf2aRMIBij3l++zfW/GGP5y7pCqURXfbsrnkWlrWjZgERFpd6y1k6y1x9X1Cjf5b337a7QREREREZEYF3MJC2PMQGAxcCPQH4gn9NRUXa+Yi7+9WpG7gmPeOIZzPzyXD9d9GLHzlH/3HSUzZgLg7taNtNNOq9pXK2HhVsJC2p+Uk0/GmRkatVD42Wf4snOiHFGIcTvJvHQoEMoRF20/HO/sL6r255XncfMXN/OHb/6AtY3P1pGW4OaRS0bgdIRGSj361VrmrNsdkdhFRERERERERKTtiMUb/n8GMoDPgHFAmrXWUd8ruqEePBZmL8RiWZO/hopARcTOk/v0M1XLmdddi3G7q9ZrJSziVH5F2h+Hx0P6hReEVvx+9rz1VnQDqsFzWB9SjygOrznJ/zSfYFEBgWCA66Zex9wdc/l0w6e8tvq1JvU3qncGt510KADWws/fXExeSeR+t4iIiIiIiIiISOyLxRv+xwKbgbOstfOttUXRDkhgUc6iquWRWSMjcg7vhg0UTZ0KgLNDB9LPO69qnz8QJJ7quhUOj3uf40Xag4yLLgJnaARR/ltvYiti5yZ+ysWn4Y7fAYA/0IX8f72FI+Dj1uG3VrV5YMEDLMlZ0qT+bjm2P0cN6ABAdqGXX72ztEkjNEREREREREREpH2KxYRFIjDfWhs7d+kOckEbZHFOqABwRlwGfVP7RuQ8FRs34kxLAyDz6qtwxMdX7fP6g8TXuI9p4pSwkPbJ3bUrKSecAECwoJDyVauiHFE143KQefkIDKFaFWUFAyn61784qfuxXHP4NQD4rZ/bv76d3LLcRvtzOAz/uHA4mUkeAL5YlcOL32yMWPwiIiIiIiIiIhLbYjFhsR5IinYQUm3tnrUUVYQGuozoPAJjTCNH7J+U445jwJfTyLrrLjIuuaTWPq8/iMdUX64mzhORGERiQeY1V9P5jtsZMP1rEoYNi3Y4tbgHHELmyUlAaIq2wuyxlD73F3467FbGdBkDQE5ZDr+a8Sv8QX+j/XVOjefBC6o/418+Xc2CjXkRiV1ERERERERERGJbLCYsXgYmGmM6RTsQCVmUHfnpoCo5EhPJvPIKnMnJtbaX+wK1poQy8RphIe1X4ogRdLj+elwZGdEOpU4JkyaQOrb65zFvw9EEX7uHvx19P50TOgOwYOcCHln0SJP6O25gZ647OjRyqyIQ5Mrn5jN7beMjNEREREREREREpH2JxcrFDwInAP81xlxtrV0R7YAOdjUTFqOyRkUlBq8/iKdGjXXjdkYlDhEJSTn7GPx50yld4wTiyF01js6f/J0Hj32Aaz67Fn/Qz79X/pshnYZwUu+TGu3vzpMHsianmBk/7KLMF+CaFxbw+KUjOXFwVuQ/jIiIxDxjzJWNNBnQUBtr7UstHJKIiIiIiERA1BMWxpgv69jsBkYCS4wxmwkV4Q7W0c5aa0+IZHwHO2stC3MWApDgSmBg5sAWP0fxzJnEHXoY7qzO9bbx+gMk1hgQZDyxODhIJDKCJSUAOJJiZ7Y8YwwZV03E/+h0KrJdBOnA7sWDGRr/Or8c/Uvum38fAL+b9TsOzTiU3qm9G+zP43LwzJWj+PFri/n8u2wq/EFufmUhD188nNOHdmuNjyQiIrHtBcDWs88CR4Vf9e1XwkJEREREpA2IesICmNTAPgfQJ/yqS31/tEgL2Va8jZzSHACGdRqGy9Gyl0ygqIhtt92OLS8n/aKLyPrtXXXWyCj3BUkzTgLhdeNWwkLaP192NnnPP8+e/7xHx5tvosN110U7pFqMy0GHG48m5x+zCRQ78dkB5M3N4WLXcpb1PY1PNnzClD5T6JLUpUn9xbmcPH7ZSO54eykfLNmOP2j56euLKasIcMHonhH+NCIiEuM2o//3FxERERFp92IhYXFctAOQ+q3dsxaHcRC0wYjUr8h//Q2CRaGC3sHysnoLent9AVzWVZWwcHg0JZS0f7asjLwXQw+E5r/2OplXX41xxta170xy0/GGMeT861usz0F5cAJFs9/i7mPTOfaYv3JKv1Ob1Z/b6eChC4eT4HbyxoItBC388p1llPkCXDm+T2Q+hIiIxDxrbZ9oxyAiIiIiIpEX9YSFtXZ6tGOQ+k3qOYlvLvmGpbuW0jO5ZZ9wDpaXk/fii6EVh4OO119fb1uvP4izxuWqERZyMPD06UPSMcdQMnMmvm3bKJ4+g5TjYy/H685KosPlQ8h9YQVYQ1HgQjJmPsQpcSnQzIQFgNNhuO/cISR4nPx79kYA7v5gJaUVAW4+tn8LRy8iIiIiIiIiIrEi6nd9jTFfGmN+Fe04pH5J7iQmdJtAz9SWTVjsefddArt3A5AyZTKePn3qbeut8OHAXbWuottysMi47NKq5fxXX41iJA2LPyyT9NOrkwn5vp/gnfYezP5n1bblu5Zz54w7qQhUNNqfMYa7Tx/Mj46r7vP+/67moc++x1rNCCIiIm2HMWajMcbW8/q6jvZxxpi7jTFrjDHlxpjtxpinjTH1F3wTEREREWknoj7CglANi41RjkFamfX52P3cc1XrHW+8scH2Pm8plriqdRXdloNF8jHH4O7ZE9+WLZTMno13/Qbi+vWNdlh1SprQDd+uMkrm7gDc7K74LZ2n3obLFc+SvmO5+YubKfGVUOYv48FJD+J2uBvszxjDL6cMJNHj4u9TvwfgkS/XUlIR4HenDap3CjkREZEYVAA8XMf2jTVXjDEO4ANgCjAXeBc4BLgeOMEYM85auyuikYqIiIiIRJHu+kpUFHz8Cf7tOwBIOnYi8YMGNdje7y3bK2GhERZycDBOJxmXXFK1nv/661GMpmHGGNLP6EfcgHQAgqSR67ub4Kd/wL/qIwLBUBWar7Z8xa9n/Bp/0N+kfn903AD+cMbgqvXnZm3grvdWEAxqpIWIiLQZe6y199TxemGvdlcRSla8Dkyw1v7aWnsecCvQD/i/1g1bRERERKR1KWEh9Xp2+bP8ZuZvePuHtymuKG6xfm0gwO6nn65a73jTTY0eE6goxdoaCQvVsJCDSPq552Di4wEo+M9/CBSXRDmi+hmngw6XDcLVKQEAv+1Nnu9ORn35Dx7pfQ4ehweAzzZ9xm9n/bYqidGYa47qy1/PG0LloIrX52/m9reX4g8EI/I5REREouSG8PtvbO05EJ8C1gOXGWMSWj8sEREREZHWEQtTQkmM+mLTF6zcvZKP13/M5N6TW6zfoi+mUbFhAwCJo0eTOHJko8eERljEV60rYSEHE2d6OmlnnMGet98mWFJCwYcfkHnppY0fGCWOBBcdrzqcnMeWECzzUx4cTZ7vNsZNe4h/nnQHP13/Fr6gj083fIrb4eaPR/0Rh2n8Z/qiMb2Idzu57a2lBIKW9xZvo6wiwD8vGU6cS6OuREQkpsUZY64GugGFwAJr7byaDYwx8cBY4Htr7aaa+6y11hjzOXATMBqY2dQTG2N6NNKkS+VCWVkZZWVlTe1a2gh9p1JJ14LUpOtBKulakJqacz1E6tpRwkLqVOorZXXeagAGpA8gLS6txfre8+47VcsdmjC6AiDo27uGhW5OysEl47JL2fP22wDkv/oaGZdcEtM1HFwdE8i8fBC5z6+AgKUseCy7Kzwc9fkDPDT5Dn6x9nX81s8H6z7A4/Tw+3G/b9LnOWt4dxLcTn782mIqAkH+t3InN760kKeuGEW8W78XREQkZnUB/l1zgzFmAXCJtXZdeFN/QiPg19TTR+X2Q2hGwgLY0tSGM2bMoGPHjs3oWn9OtgWfffZZK51J10Os07UgNel6kEqtdy2ArofY15zrITc3NyIxxMpj6lcZYwL78WraBOjSbEt2LSFgQ1O1jMoa1aJ993j0Ubr84W5STjqRpKOPatIxwYqy2lNCuWLl0hVpHfEDB5IwehSuzp1JPe1UrM8X7ZAaFd8/nQ6XDwJXKBFRHhxPbsVdTPz8Yf52yGU4TSjB8PYPb3P//PupPfNF/SYf3oVnrxpNfHik1fQfdnH1v+dT7NV/EkREJCb9GzgByAKSgBHAy8AYYJoxJiXcrvIJoYJ6+incq52IiIiISLsTK2mt2H1M+CC1KHtR1fKIziNatG9HXBwZl1xSq5BwY4IVNYpumwDGoUtGDj7dH3gAV4cOGLc72qE0WcKgDnS8+nB2v/gd1hfEGxxFbvnvOOHz+/nL5J/ymx9eJmiDvLb6NU7pewrDOw9vUr8TD+3ES9eO5doXFlDs9TN3fR5XPDePF64+krTEtvPvIyIi7Z+19t69Ni0BrgyPLLyCUN2KhyIYQs9G9ncBFgBMnDiRHj0am0Gqhjlf7n9U0momT2656X0bpOsh5ulakJp0PUilVrsWQNdDG9Cc62Hr1q0RiSFWEhb/A/4a7SCk2qKc6oRFS4+w2C++MoKVD5M5m1akV6S9cXfp0nijGBQ/IIOO1x1B7r9XYr0BKuwQcst+z8mf34//pFu5+4eXuXv83U1OVlQ6sm8mr1w/lquen09BmY/Fm/dwyTNzefm6I+mQHNd4ByIiItH1FKGExVGEEhaVIyvqG0GRGn6vbwRGnay1Df4lWXNKxoSEBBISVNO7vdF3KpV0LUhNuh6kkq4Fqak510Okrp1YSVjstNZOj3YQEuIL+Fi2axkA3ZK60SWpZW6S+vPzcWVk7GdQZVjbObTsbNq0MSLtnbUW36ZNePr0iXYojYrrk0anG4aQ+9wKgmV+KuxAdpX+ntO+uJ8RFzxIz0NO269+h/dM540bx3HFc/PILa7gux2FXPT0XF69fixZqfEt/ClERERaVOWkv0nh9/VAkFCNirpUbq+vxoWIiIiISJunQgCyj5W7V+INeAEYmTWyRfosX72aNROPZftv7sK7fkPzO/BXTwllXEpYiPjz89l6y61suPAifNu2RTucJvH0SKHTTUNxJIVy5T7bn10lv6fbO7+B7Utqtf180+eU+kqb1O+grqm8ceN4uoQTFGtzirngyTlsyWva8SIiIlEyNvy+EcBaWwbMBw4zxvSu2dCEhkGcBJQA37ZijCIiIiIirUoJC9nH4pzFVcstlbDY/fQz4PNR8N57lMye3ezjjb+8uoaFs0VCEmnTch99lOKvvyZYWMi22+9oE0W4Adxdkuh08zCcqaE6E37bi5zi3+J/4TrIXgnAfzf8l9u+vo1rp15LblluQ91VGdA5mbdvHk/PzNBwxM15pVz01Bw27FbSQkREoscYM9AYk1jXdqqnxH2txq6nw+/3mZpzNcFNQD/g1XBiQ0RERESkXVLCQvZRs+D2yM4HnrCo2LiRwv/9DwBnZibp55/X7D4cPi+VM5g53Cq4LdLpF7/AHS6KWbZkCbseeTTKETWdu1MinW4ejjPDA0DAdmNX4V34nr+B0h3LuH/+/UBotNdln1zG2vy1Teq3Z2Yib980gf6dQjNrbC8o58p/L2J7SWQ+h4iISBNcDOw0xnxsjHnMGPM3Y8z7wDJCxa7vs9bOqNH+RWAqcAnwjTHmfmPMO8DjwAbgd60bvoiIiIhI61LCQvZxy/BbuH3U7ZzS9xT6pfU74P52P/ccBIMAZF51FY79KMji8vurlh0eJSxEnCkpdH/oQXCFEnm7n3mG4lnNH70ULa7MeDrdPBxXh9DIqQCd2VVwJ+4Xf8azI+6oqp2zvWQ7V/73SubtmNekfrukxfPmTeMZ2CUFgNySCh79zsnm4sh8DhERkUZ8BfwXOBS4HPgFoamgPgWmWGvvqtnYWhsEzgLuATqF2x8FPAeMt9buarXIRURERESiIOoJC2utw1p7bbTjkGqDOwzm6iOu5m8T/0btkejN59u5kz3vfwCAIzmZjEsv2a9+aiUs3JoTSgQgYehQOt92W9X69jvvxL+r7dzHcKXF0enm4bg7h2pPBMlk157b6fXaX3mt6ykMyhwEQJGviJs/v5kP1n7QpH47Jsfxxo3jGNYzHYBSv+Ff3zn5ZPnOiHwOERGR+lhrp1trL7LWHmqtTbPWuq21Xa21Z1trP6vnGK+19l5r7QBrbVy4/Q3W2uzWjl9EREREpLVFPWEh7Vvev1+A8Nz6GZdeijMlZb/6cQcCVcuOOCUsRCplXn0VSROPASCwezfbfvUrbI2fl1jnTPGEkhZdK5MWaewq/yMJ/53LC8UOju06AQC/9fO72b/jsSWPYa1ttN/0RA+vXj+W0b3TAfAGDHf85zt++vpiCkrbRr0PEREREREREZGDjRIWEjH+/Hzy33oLABMXR+ZVV+53X+5A9Q1Kh8d1wLGJtBfG4aDb/ffj6twZgNI5c9n9zDNRjqp5HIluOt00grh+qeEtbvb4f4J3RW8eXjGXi7sfX9X2yaVP8ttZv8UXaDzpkBzn4unLhjGyQ7Bq24dLtzPl4RnMWtO0Yt4iIiIiIiIiItJ6lLCQKtZaXlv1Gkt3LcUXPPAnkPNffhlbVgZA+gUX4OrQYb/7cgWrbzgaJSxEanFlZtLt738HR+hX+q5HHqV00eIoR9U8jngXHa8bSvJR3aq2lQROJ2/XTdw560N+2eFIDKEp6mZum0l2adNmxUhwO7nq0CBXHhIgNT70u2NnYTmXPzePez9aSbmv7YxGERERERERERFp75SwkCrbS7Zz3/z7uPzTy/nplz89oL4CxcXkvfJqaMXlosO11xxQf55g9QgLE6eEhcjeksYeScdbbgEg9dRTiTv00ChH1HzGaUg/oz8Z5x8K4ZnfKuwQdpU/wMXzF/OQ6UKqO4VHjn+EHik9mtX3qI6WD245kqMGVCdO/z17I6c/OosV2wpa8mOIiIiIiIiIiMh+UsJCqizKXlS1PLTj0APqy+HxkHXnnXj69CHtzDNxd+vW+EENcFUPsMDEeQ6oL5H2quOtt9Dj8cfo9ve/4UxOinY4+y1pdBadbhqGI8UNQIDO7Kr4KxPWxDF1Ry4jSopqtW/K9FAAXVLjefnasfzhjMHEuUL/+VubU8zZj83msa/WEgg2XhtDREREREREREQiRwkLqbIwe2HV8siskQfUl/F4SD/vXPp98jFZv/n1gYaGx5rqvuOVsBCpi3E6STn+eIwxjTeOcXG9Usn6yUg8vVIAsMST5/sV/rxTsC+cDV/9BYIBgjbIT7/6Kfd8cw/l/vJG+3U4DNcc1ZePf3I0h3cL1czwBy1/n/o9Fz41h827SyP5sUREREREREREpAFKWEiVRTmhERYu42JopwMbYVHJOJ04U1IOqA9rLa6aCYu4uAMNS+Sg4du2jfLvvot2GPvFmeqh041DSRydVbWtOHA+ub7fE/z6X/DimTz/7T+ZtW0W7655l0s/vZQNBRua1PchWSm8d+tR/Oi4/jjCv14WbsrnlH/O4M0Fm7FWoy1ERERERERERFqbEhYCQF55XtWNvsEdBpPgSohyRNX8QYunxqVq4pWwEGmKoi++YP0557Lp6msoW74i2uHsF+NykHHeIaSf1Z/KzII3OJqcin/g27CJTnOeIN4RmjpqTf4aLv74Yj5d/2mT+va4HPxyykDeumk8vTITASipCHDnu8u54aWF5BZ7I/OhRERERERERESkTkpYCACLsxdXLR/IdFAFH33MttvvoPz771siLAC8/iDuygq8gMPjbKC1iADYQIC8F18iWFhIsLCQzddeS9ny5dEOa78YY0ge342O1x2BI8kFgN92I6fiQU7cNZjXN22mnysZgFJ/KXfOvJN759zbpCmiAEb3yeTTnx3DxWN6Vm37YlU2U/4xg8+/y275DyQiIiIiIiIiInVSwkIAWJhTo35F5/1LWNhgkNwnn6Twk0/YcNbZlP/wQ4vEVu4L4LbVSQqjhIVIo4zTSc8nnyBx9GgAgkVFbL7mWsqWLYtyZPsvvn86nX88AnfXUEFxSyL5vtvJKP0Fr67ZwpmB+Kq27/zwDpd/ejmbijY1qe/kOBf3nzeUZ64cTYekUJ2c3SUV3PDSt/z63WUUe/0t/4FERERERERERKQWJSwEgEXZi6qWR3QesV99FH/5JRXr1gGQMGoU8Yce2iKxef1BnKZGwsKty1akKRxJSfR8+ikSx4wBIFhczOZrr6Ns6dIoR7b/XBnxdLplGIkjO1dtKwtOpKj8UX63IYE/5pdWTRH1ff73XPX5VSyvaPrIkpMGZzH1FxM5cVB13Yw3Fmzh1H/O5NuNeS33QUREREREREREZB+681uDMWaMMeZTY8weY0yJMWauMebCJh5rjDGnGGOeMMYsM8YUGGNKjTFLjTF3GWPiG+8lOkp9pazOWw3AgPQBpMenN7sPay25Tz1dtd7xphtbKjy8vgBO665aV8JCpOkciYn0fOpJEo88EggnLa67nrIlS6Ib2AFweJxkXngYmZcOxCSEpogK0JHdvj9z3K6zeG3TDvo6Q6MwSv2lfO9r3hR1HZPjeObKUfz1vCEkhkd0bc4r5cKn5vD3qaup8Adb9gOJiIiIiIiIiAighEUVY8xxwGzgaOAt4EmgC/CmMeb2JnQRB3wKXANsB54GngMSgD8DM4wxiREI/YAV+4o5pe8pdE/uvt/TQZXOmUN5eH78uEGDSDrmmBaLr9wXxImral1TQok0T1XSYuxYoDppUbp4cSNHxrbEoZ3o8vORxA1Ir9pWHDiH1JK/8sqaMk73u+mT2I0zEs9odt/GGC4a04v//uwYRvXOACBo4bGv1nHO47NZk13UUh9DRERERERERETClLAAjDEu4BkgCEy01t5orb0dGAb8APzFGNO7kW4CwO+Artbak621v7TW/gQ4HPgIGAP8KGIf4gB0TuzMfcfcx//O+x+/PvLX+9VHrdEVN96AMaalwsPr8+OgxggLT92Xra8igN8XaLHzirQnjoSEUE2LceMACJaUsOXGmwjs2RPdwA6QMy2OjtceQdrp/cAV+r3js30p9P6DuzYcwcs/rKB//sJax8zfMZ/iiuIm9d+7QxJv3TSeX045DJcj1P/K7YWc9ugsnp+1gWDQtuwHEhERERERERE5iClhEXI80B94zVq7pHKjtbYA+AvgAa5qqANrrc9a+2drbf7e24H7wqvHtmTQkeB2uhtvtJeyJUsonTcPAE/v3qRMntyiMVV4y7DEVa0b974jLNZ8m83zt8/k6Z/N4LV75jL12RUU53tbNA6Rts6RkEDPJx4nacJ4MIasu+7CmZ4e7bAOmHEYUo7uTtaPR+DuUjmQzU2B/wZ8Jb9m2Ma3GbHpGSjdzZaiLfz4yx9zzofnMGvbrCb173QYfnTcAN7/0VEM6JwMQIU/yB8//o5Ln53Lim0FEfpkIiIiIiIiIiIHF1fjTQ4Kk8Lvn9Wxb2r4/UCSDb7wu7+5BxpjejTSpEvlgtfrpaysrLmnOGDZTzxZtZxy1VWUV1S0aP+lRflYqkuAeANeTFn1P+XmFXlM+/cP2PCTzvk7S8nfWcq4c3tTVlY91/zGpbvZvqaAjK6JZHZNJCkjDne8E3ecE4ej5UaENEV5eXmdyxK72tN31uHBB0n6diFxRx8Vld8ZEZPmIOW6gZR+uY3yOdkAeIPDyfb+i467HiPuqXHcP2AIZf4yyvxl3PLFLZze53R+PvznpHpSG+2+f6aHt68fxUPT1vHyvK0AzF2fx+mPzuLkwZ35yXF96dcxKaIf8WDRnn7eDhb6ztomr1cPd4iIiIiISGxRwiLkkPD7mr13WGt3GmOKa7TZH9eG3+tKiDRmS1Mbzps3j3Xr1jWr83JbjsEQZ+Iab1wHz46d9Jk+HQBfWhpz4jzw2f58zPptyMlnsK2O7/Mvp0E4v1Ce6yT32wSwoQ3OhCCBcoMz3vL1zC9r9ZO3PI7SrZ46z2GcFuOyOFyWhK5+0g6pnXTZszoOLGDBht9Dy+FAwttT+lXgSa1OklQUOChYHRc+xlQda4OATQRrePPr0HQ1XY4toeZMWgU/eCje7Kk6VyjQ0Mtgq/4N4jICdBhZ++bQ7kXx+EocGAcYB+CwGFNj2QHGQEIXHwlZ1dNo2SCUbHVjnBaHM/zvUvUeXnaAcViMC1pw5q82ZcaMGdEOoWXs9bPqKCkhmNQ+brinDHbRZ20yngoHlhTyfL8mPjCX36x+lrIsJwviQyO1Pt74MdM3TefMxDMZ5B7UpL5HOyBlkOGN9Q7yvKEfgv99l8PU77I5spPl5J5BMvfvV6rUod38vB1E9J21Hbm5udEOQUREREREpBYlLELSwu/1zetRWKNNsxhjTgFuAlYRKsIdUxZ4F/BZ+Wd0dXbl9ITT6eXq1azjHeXleLOyiMvOJn/iMeBq+UvKBHxVIyyCVFTdqPfmO9m9qDpZkdDVR+awcrAQ8O57J91XVH+xbhsw2IAh6IVgxb51MIo3uKk6cQMSu/mgxoPaQZ/Bm9fEfxNb+xQ2aLC+us9pazQM+oP77PeXOvAXN16c3JUcrJWwCPoMe1bGN3BEtc4TSvCkVZ+7dIeLgu/jQsmMBiabc8RZOo2p/VT/ntVxeHMbjzchy0/qXsmknLkJWH/j303aQC/xHas/a0Whg/xlTfusncaV4qjxNRZtdFOy2V07CVWVyKreZlyWDiPKiMvY9zuKNakLF9Lpgw/ZeekllAwcGO1wDlhRmp/vhhXQa30imbtD2YPy4DhM6XAe3vI6X6R9zt86plPigCJbxKslrzLUPZTTEk4jydF40uawdMtvhwf4JtswdZuDYp/BYpi3y/BtruGoLMtJ3YOk1p0jFRERERERERGROihhEUHGmDHAm4QSIRdYa/dn3H3PRvZ3ARYAjB07lv79+zer86mzpmK3W7YHtnP8UcfTL61fswO0N1xP2YyZ9Bp7JI6EhGYf35gvZ87AbioEwDgCTJ48mdwtxfz38e+wgdAN6F5HZHD81YficNZ/p9x7jJ/8HaXkbw9NGVVe7MNXHqCiPFDrvf8hfRg9uXaN9Rc+m0sw0Hhx3RHDR9DriMyq9R1rC/jvgu+q1kOjHAzGYQjaABjweNw4HIYTTzwRp6s6/uWubXxfnIMxpmokg7VgrQ3fILdYC1l9OnLs5NoDgD5cuYw93jICfls1VVZdBg0+jMOP7Vq1XrS7nLe/XNzo5wQ4euIE0rMSq9a/n5PN7CXrGz0uyelh8uRjam37cvv3bNyQ1+ixfQd35ejJta/xl7+cj8/beLH1IYOH03d4h6r1nI1FfDx7RaPHARx//PEE8Vc9Ndyzax9WrNrZ6HGZXZM57fwJOJyxPRSlbO5cst9+B6yl+wsvkn7TjaTdcAPG0fbLHJWVlbHivXn02JiIx+fAEk+h/xom5B3PeyVP8qesncxMDP3eWuZbxhbHFu4YcQcn9jwR04QhRKcCd1UEeGXeFp77ZjOF5X4C1jBjp2HBbhdXjO3JtRN6kZbQ/PpAB7Py8vKqn7eJEycSH9+05KJEj76ztqm5I3NFREREREQiTQmLkMqRFfWNokgF8uvZVydjzGhCU0AFgSnW2pX7E5i1dmsj56lajouLI6EZCYOgDbI0dykA6XHpDM4a3KQbdHVJPOXk/TquKUzQhw1PCWUdAeLj45n77gp85aGb1D0HZ3LqTUNxuhu+uZqQAOmZKfQ9vOHzWWv3+Xc4+7aRoWSDMeEpkQwOh9lnPSHVg9tTPVKgz+A4bnykEw6nwWFCiQoI3UT9LDwdz+TJk+v83o48bQBHnjag4WDrcdFdY6s/T9ASDFgCgSABf5Cg34beA5b4JDfxNW6kOjq4Oe6KgfgrgvgrAvi8gdB7RRC/N0DAH8TvC/WTmp5MQkL1vDdx8XEkpHoIhPdTT57E6Xbu83ndHnetZE193B7XPsc63Y4mJZPi4jy1jo2Lq2jSOQES4hMIVJWigfhED54EV+gacBB6d4avifC1EAxYjr9iEEnJibX6skFbdR3EirgJEyg98USKPv8crGXPk0/hX7Wabn/7K860/RpcFlPyO1ZQkO5jvDmM8gU5YMFve0P5ffzf1s+Zm/YGf+7optDpIN+bz/Ornue0Q07D6Wh81A+Efrf8bPIgrj5mAM/MWM9zszZQ5gtQ5gvy9KxNvP7tNm4+tj9XT+hDUpz+s9tc8fHxzfpvm0SfvrO2Iy5O89eJiIiIiEhs0Z2TkMraFYcAC2vuMMZ0AZKB+U3tLJys+BxwAJOttQtaKM4WtW7POgorQiMXRnQesd/JikgLVpRiK3NJziDGGE65eQgfPLyEhBQ3p9w8pNFkRXPU9e/Qtf/+3bR1OB008Z5nxBiHwekwTfo3iktwMfiobvt1nkETujJoQtfGG9Zh8nWNZJEacN0DxzTeqA5d+qVx878mNbl9WVl1wmLoCd0Ze3rzk0nZGwv56uVVTLpsIF36xU4iwBEXR/d/PszuZ55l1z//CcEgxdOns+GCC+nx6CPEH3ZYtEM8YEGXJWlyL1KP7Eb++2vxbS0GoDRwEsPzxvJu8Yvcn7WIackJ/DyhH86Aj+b+8KYluLljymFcNaEPj321ltfmbaYiEKSo3M/fp37Pv2dv4EfHDeDSsb2Ic0X5F4OIiIiIiIiISAxq+/N9tIzp4ffJdeybslebBtVIVjiBk6218w48vMhYnFM99c/IziObdWzBBx9Qtrxp0+kcKFtRjiX8BKAz9CR9ckY859w+ktN+NKzWiAaRWBXwB/nq5VXs3lbCu39fyKy31jRpKqvWYhwOOt50Iz2feRpnejoAvs2b2XjRxRR89FF0g2tBnh4pdL51OOln9cfEhX53BEnFX/ET7tp6By9tjePYOc/Bv8bA8ncgGGTl7pXc8809ZJdkN+kcnVLiuOfMw/nql5O4aHRPKgfU5BZXcO9H33H8A9N5a8EW/IHYr20iIiIiIiIiItKalLAImQasBy41xgyv3GiMSQPuAiqAl2ps72qMGRjeT43towglK1zAKdbaOa0Q+35bmF09mGRkVtMTFv78fHbc+0c2XnABW37041BNhUjylhHK/1CVsABITPUQl6BBQtI2lBX5qqegsrD0yy288ad5bF3deO2O1pR81FH0ffcd4g8PjXqx5eVs/+Wv2Pnnv2B9vkaObhuMw5A8vhtd7hhNwvBOVdsr7OF0KnqAAt+1BPbkw7vXwbMn8PCse3h3zbuc/t7p/HPRP6tGpjWme3oCfz1/KJ/fdiynDa0efbRtTxm/encZk/8xg4+XbSfYQJ0ZEREREREREZGDiRIWgLXWD1xP6N9jhjHmaWPMg8BS4FDgLmvtxhqH3AesAs6p3GCMySSUrEgHZgEnGWPu2ev189b4PE21KGcRAAmuBAZ1GNTk4/JfeRVbWgqAOysr4lNJBUtqPIWuwRTSRiVnxHHer0Yx/tz+VdNzFeaW88HDS/jqldV4y/xRjrCau3t3er/2Kmnnn1e1rXjaNALFxVGMquU5Uzx0uHggHa87AlfHyvn2nRQHzmWn9zkKfJexfedaVuR9B0B5oJxnlz/Lqf85lRdXvkhFoKJJ5+nfKZnHLh3JJz89muMHdq7avj63hB+/tpjTH53FV6tzIp/8FRERERERERGJcUpYhFlrvwKOBmYDFwG3ANnAxdbaB5vQRSqQEV4+GfhDHa+ft2zU+2978XZ2luwEYGjHobgd7kaOCAkUl5D3yiuhFZeLDtddG6kQAago87Pn+55V6wXFKuIpbZfD6WDk5N5c/Lsj6TqgeoDWd7O28/q988je0LQn91uDIy6Obv/3f3T54704UlLo/ugjuDIyGj+wDYo/JIOsn48k9aTe4AolYC2JFAUuwZY+zQfrj+HafB/ucEKhwFvAA98+wBnvncGH6z7EH2xasunwbmk8f/UY3rl5PEf2zaza/t2OQq55YQEXPDmHeet3t/wHFBERERERERFpI5SwqMFaO99ae4q1Ns1am2itHWutfbOOdldba4219oUa2zaGtzX06tOan6ch+zsd1J433yRYUABA2mmn4e7evcVjq+SrCPDxY0uxZUlV21Iy2seUNHJwS89K5JzbRjLx4kNxh+solOzx8snjSynMLYtydLVlXHghA6Z9QcLhtQujB0tL29WIAONykHpCL7rcMYaksV3AWZm4SKbCdxkX7nyID9dP4JzCACb8ubeXbOe3s37LGe+dwds/vN3kf4/RfTJ588ZxvHTtkQzpXp24+nZTPhc9PZcrnpvH4s35Lf8hRURERERERERinBIWB6mtRVsxhG7INTVhEfR6yXvhhdCKMXS48YYIRQcBX5D/PrGMHWsLKu8bAuBJiuz0UyKtxTgMQyb14OK7j6RLv9BN6/JiHzvWFUQ5sn05U1NrrVu/ny0338KW62+gYuu2KEUVGa70ODLOOYQut48maUyXqv9KWlKg4gpu3vY33tswnknF1QWztxZv5ZP1nzRrejxjDBMP7cSHPz6KJy8fyYDOyVX7Zq7J5ZzHv+H0R2fy2rzNFHtjZ7owEREREREREZFIUsLiIHXL8FuYdcksHjvhMYZ1GtakYwreex//rl0ApJx4InH9+0cktkAgyNRnV7BlVegJY5ejuoaF8ajItrQvqR0SOO1HQ+ncO4VTbx3KYWO7RDukRuU89A9K58+nZPZs1p9xBnkvvogNBBo/sA1xZcaTcV4ocZE4KotwfpcgacR5r+Q3W+7nzQ1Hcky4xs6NJT7Y9A2ER1lYaymuaLzmhzGGk4/oytSfT+TBC4bRI6N62rsV2wq5673ljP3zF9z13nJWbIu9ZJaIiIiIiIiISEtSwuIglupJZWKPiSS4Gq8LYf1+dj/7bNV6hxtvjEhMwaBl2gur2LA0FwCXx0Gnjkur9jvjlLCQ9ic+yc35vx5NnyEdox1KkyQeOQZXl1BixZaVkX3f/Wy8+BLKv/8+ypG1PFeHBDIvOJSs20eTOKJzjcRFOqnlV/O7zffzwbqjOXLZDPj3KfDIcPj6fmb/8B8mvzOZRxY9Qn5549M7OR2G80b14MvbJ/HX84YwtEf1VFElFQFem7eZ0x+dxVmPzeatBVsordCoCxERERERERFpf5SwkCYp/O9/8W3dCkDShAkkDDmixc9hrWX6a9+zZkE2AE6Xg1NvHUqCq/qpYmd804qDi7Q1dU0nVJRXHoVIGpcyaRL9Pv6IjEsvrdpWvnw5G847n5yHHybo9UYxushwd0wg86LDyPrFKBKGdaqRuMjAU3Ep2d7nyffdim93BXx9H898/WuKfEU8s/wZprwzmb8t+BvZJdmNnsfjcnDRmF58+OOj+ejHR3PJkT1J9Dir9i/dsodfvbuMsX+ext0frGD1ztgp1C4iIiIiIiIicqCUsJAmKf56etVyh5tuisg5Ar4gBTmlADgchik3HkHPgZm4gtWFbF0JnoicWySWWGtZ8sVmXvn9HDat3B3tcOrkTE6my92/p/drr+Lp1y+00e9n95NPseHscyj99tvoBhgh7s6JdLhkIFk/HxlKXFTVuIinJHAq2RVPklPxW8YV96v63VUWKOfl717m5Hen8OsZd7J81/ImnWtIjzTuO3co8+46gf87+wgGda2uJVLk9fPSnE2c/PBMznviG95duJVyX/ualktEREREREREDj5KWByE7ph+B7+f/XveX/s+1trGDwC6PfB3ej7zNBmXXkrikWMiEpfL4+T0Hw+jz5AOnHjtYPoODU2P46pxD84ZHxeRc4vEkg1Lcpn9zlqCActnz6xg9/bGayFES+LIkfR9/z063noruEMjoCo2bGDT1dfg27EjytFFjjsriQ6XDKTLHWNIPqobpmoUhIOK4HjO2PU7PlrzC36zcxAJ4d9hfhvgkw2fcumnl3LZB+fy6fpP8QV9jZ4rJd7N5eN68+lPj+a9WydwwagexLur//O9cFM+t7+9lLF/mcYfP/qOtTmxe72IiIiIiIiIiDRECYuDTKmvlGmbpvH+2vf594p/1zkNTV2MMSQfcwxd7v59k4/ZHy6Pk1NvHcoho7OqtjmD1edzxGmEhbR/fYd1pN/wTgBUlAf45LFllBZWRDmq+jk8Hjr99Cf0ffcd4ocNBSDziitwd+0a5cgiz5UZT/oZ/en6myNJO6UvztQav6OChzIx/ye8t/Ze7t82ni6+6ho8y/as4c6Zd7J51gNQ0rRRNMYYRvTK4O8XDGPeXSdy75mHc2hWctX+gjIfz8/ewIkPTefCp+bwwZJteP0adSEiEk3GmO7GmJ8bYz4zxmw2xlQYY3YaY941xoyto/09xhjbwKtPFD6GiIiIiEirUQXjg8yy3GX4bahY68iskVGOBn5YsJPuh2aQlFY9cmLvhIjLVq+bhPhWi00kWozDcOI1g3nvwUXs2lxE0e5y/vvkcs76xXBcbmfjHURJ/KGH0ue119jzzruknXF6rX2BoiK8339P4ujRUYoushwJLlKO7UHyUd0oXZ5L8Yyt+HaUAGCDnRhWeAUvFF/Ezriv+XeH2UxP2cX4sjL6f3k/fP0gHDoFhl1CYe/xpCZ2aPR8aQlurprQhyvH92bhpnxem7eZj5fvoMIfBGD+hjzmb8gjM8nD+aN6cMmRvejbMSmi/wYiIlKnnwB3AuuAz4BdwCHA2cDZxphLrbVv1nHci8DGOrbviUiUIiIiIiIxQgmLg8yi7EVVyyM7N56wKP/+B+IPOzQisayes4NpL64irXMCZ/18BCmZdScjXLZ6IJCJV8JCDg7uOCen3jKUd+5fQElBBTvXF/DVy6s58ZrBER3ldKCM00nGRRfusz3vxZfI/de/SJowgU4/+ykJw4ZFIbrIMy4HSSM6kzi8E951eyieuY3y7/MBsEEPWWWT+fXWydwWvxEfH2DtdEywAlZ/TGD1x1zcswdZCR24eOClTBp6NXGuhn/nGWMY3SeT0X0y+f3pg3l30VZem7+Z9btCyZK8kgqenrGep2esZ0L/Dlw4uifHD+pMarw74v8WIiICwHxgkrV2es2NxphjgGnAE8aY96213r2Oe8Fa+3UrxSgiIiIiEjM0JdRBpmbCYlTWqAbbli1bxoazzmLT5VdQumBBi8axdmEOX760CoCCnDLWLMiut61TCQs5SCVnxHHaj4bh8oR+Bn6Yn823n26MblD7IbBnD3kvvABAyTffsPGii9ly8y2Uf/dddAOLIGMM8QMy6HjNEWT9YiRJY7pgatSd8JT3Ian8Z2wPvMkefoov2J2ZCQlscTn41pfPHcsf47hXxvDH9y5gyYbPm1RvKCPJw/XH9GPabcfyxo3jOHNYN9zO6uTWN+t28/M3lzDqT59z5fPzeXXeJnKKyiPy+UVEJMRa+5+9kxXh7TOBr4AMYEirByYiIiIiEqM0wuIg4gv6WJa7DIAuSV3oltytwfa5Tz8NQOm33+LdsIHEMS1TbHvj8lw+f24llfffhhzXgxGTe9Xb3mmrL1MTp0tWDi6deqVw0rWH89+nloOF+R9tID0rsVadl1jnSE4m67e/Jfexx/Bt3QpA8ddfU/z116RMnkynn/yYuEMOiXKUkePOSiLjvENIO60vpYtzKJ67A392KQDW76bYP5liJtPds5nz8/7H+xnL8ZsARQbeLlzN2zNuo+cMN2d0mcAZY35Oj8wBDZ7PGMO4fh0Y168Du4sH887Crbw+fzMbd4fO6QtYZvywixk/7OJ3769gZK8MphyexZTDu9C7g6aNEhFpRb7wu7+OfRPDNS6CwBrgC2tt8f6cxBjTo5EmXSoXysrKKCsr25/TSAzTdyqVdC1ITboepJKuBampOddDpK4d3f09iKzavYoyf+hCamw6KO+aNRR/MQ0AV1YWaWef3SIxbP0+n/89vYJgMJStGDihK8dccEi9U9xYa3FSPWe/8WhQkBx8+g3vxPiz+zPnvXUAzHxrDX2GdsTtid16FjUZl4v0c84m7fTT2POf98h94gn8O3cCUPTZZxR9/jmpp51Gxx/dSlzfvlGONnIc8S6Sx3cjaVxXKjYXUTJ3B6XLd4E/9PswobgX1xXfyNX5FSxLms0rqd/wXcI2MLAFH4/vnM7jH03nBHcHHp7wZ+g1HhwN/07skBzHTcf254Zj+jF/Yx7/W7GTz1buZHtBaGSFtbBwUz4LN+Xzl09XM7BLCpMP78KUw7MY3DU1pqcfExFpy4wxvYATgR3A8jqa3LvX+h5jzM+stS/tx+m2NLXhjBkz6NixYzO61p+TbcFnn33WSmfS9RDrdC1ITboepFLrXQug6yH2Ned6yM3NjUgMukoOIs2ZDir3mWeqljOvuRqHx3PA59+5voBPHl9GwBcqCjtgdGeOu3wgxlH/DTFfwOKscZmaGC44LBJJIyb3Yk92Kdt+yOe0W4e1mWRFTcbtJuOiC0k7+yz2vPU2uU89RSA3F6yl8OOPKZk5kwEzpuOIi4t2qBFljCGudypxvVNJO70fpYtyKJm3A39uKKHsrPAwouI4RuQfR3lCAXPjZ/Fa+gK2xOcA0Dl3I7xwKqT3hmEXw7CL8aX3xO2ovy6Fw1E96uIPZwxmxbZCpq7cydSVO1mTU/3A7uqdRazeWcQj09bQMzOBKYO7MOWILozslYGzgd/VIiLSdMYYN/AyEAfcaa0N1Ni9FLgW+JpQMqMLcDrwR+AFY8wea+2HrRuxiIiIiEjrUcLiILIwZ2HVckMjLCq2bKHwk08BcKank3HhvgV0m2vXliI+/tdS/N7Q32N9hnTgxGsG42jkBli5P4ADF8Hwes054EUOJsYYjr30MCrK/SQk104gVpT78cS3nV/njrg4Mq+4nPTzzyP/tdfZ/cwzBPbsIePKK/ZJVlhr2/VT/s4kNynHdCf56G541xdQMm8HZSt2Q3gUWnxZGpPKTmNS/mkUJuTwZeIsjvdOBfJhzyaY/ld2zfo7Z/XsyTHpA5l8xOVM6HMSCa6Ees9pjGFIjzSG9EjjjimHsX5XMVNXZjN15U6WbNlT1W5LXhnPztrAs7M20DHZw0mDs5h8eBcm9O9AnKvtJcxERGKBMcYBvABMBJ6x1r5cc7+19r29DtkI/MsYswr4HPg/oLkJi56N7O8CLACYOHEiPXo0NoNUDXO+bGYoEg2TJ09unRPpeoh5uhakJl0PUqnVrgXQ9dAGNOd62Bqe9rultZ07XHJAgjbIkpwlAKR6UumX3q/etrufew4CocRCxpVX4EhMPKBzF+WV89EjS/CWhqbn7TEwgyk3HoHT2XjywesL4rCeqoSFQ1NCyUHM6XLsm6wo8/PG/82n79COjDunf5saeeFISKDDddeSftFF5L/+GhmXXFJrv2/7djZfex0Zl1xM2nnn4UxOjlKkkWeMIb5/OvH90wmU+ChbkUvZ0l14NxRAuN5Pallnzi47FziXnITtJPg+JtE5k2mJPoqM5dOCVXw6+7ckzP49x3QYwkmDL2Viz0kkuhv+Hd6vUzK3TErmlkn92VlQzuff7eR/K3cyd30egXDiJLe4gtfnb+H1+VtIiXMxaWBnphyexaTDOpOs2kIiIk0STlY8D1wKvALc3NRjrbXTjDHrgCHGmFRrbWEzjm3wL8maDwYkJCSQkFB/0lvaJn2nUknXgtSk60Eq6VqQmppzPUTq2tFdhoPIw8c9zKLsRfitH4ep+8a/LyeHgv+EHuxyJCaSedllB3ze5PQ4+o/ozIoZ2+jSL41Tbh6Cq4lTO3l9ftyEbtBaguBSwkKkptnvrKFodznLvtrKppW7OeGqwXTtnxbtsJrFmZxExxtu2Gd7/uuvU7FxI9n33c+ufz5C2rnnknn5ZXj69Gn9IFuRM8lN8tiuJI/tSqDAS+nyUPKiYktRVZuKsm5UcCMF/hs4vGgdF7OY6anL2eHJpYwgn+1eymczlxKHg6OyRnHSoedybI9jSfGkNHjuLmnxXDG+D1eM78Oe0gqmrcph6sqdzFizi/LwdH5FXj8fLd3OR0u343E5OHpAR44b2Jnx/TrQv1NSux4RIyKyv8LJin8DVwKvA1dba4MNH7WPXGAAkAg0OWEhIiIiItKWKGFxkHAYB6OyRjVauyLvxRexFRUAZFx6Cc60A7/xaRyGiZccSnpWIgPHd2nW1DXl3nJcVE4R49ONMJEarLVkdkvG6XYQ8AUpyCnjvQcWMmJyL448vR/ONj6Fmm/b9qrlYGkp+a+8Qv6rr5I8cSIZV15B0oQJ7f53gjMtjpSju5NydHf8u8soXRZKXvh2loRbGDLKB3BV+QCu2nUB+e7tTE9Zytepy/khfhNeE+TL7AV8mb2AcYk9eGbK85DatUnnTk/0cN6oHpw3qgdlFQGm/7CLz1bu5ItV2RSWh0bMVfiDfLk6hy9Xh+trpMQxrl8HxvfvwPh+HejdIbHdf0ciIo3ZK1nxJnDFXnUrmtJHEnA4UEIocSEiIiIi0i4pYSFVAkVF7Hn9DQCMx0PmVVe1WN/GGIad0Nj0ufvylZdgKxMWxt9i8Yi0B5U/V70Oz2Tai6vI3lCItbBo6mY2Lt/NCVcNonPv1GiHud+6P/QgHW+9hbyXX6Hggw+w5eVgLcXTp1M8fTqefv1IP+9c0s46C1fHjtEON+JcHRJIPa4nqcf1xJddQunSXZQty60q1g2Q4evG2XndODvvFEode5ibvJzpqctZkvQ9x29eBg8NhIy+0Pso/L3G8ox3K0cPOJ3DOx5R78g7gASPk5OP6MLJR3TBFwgyd/1upq7cyWcrs8kp8la1yyny8uHS7Xy4NJRs6poWz/hwse/x/TvQM/PAphgUEWlrakwDdSXwNnB5fckKY0wK0NVa+8Ne2xOAZ4AU4N/WWv1PsYiIiIi0W0pYSBVHcjI9nniC3U89hbt3L1ydOu1XP+UlPqY+s4IJ5w6gU6+Gpx9pjM9bhrWhhIVVwkKkTv/P3lmHyVVeDfx3xtZ9N7txNyBCEiS4W5GWYqVYi9aFtpQ6LVUqX73QFm0LLV6gFIfiAUIIEiOum2RdR8/3x3tnd2Z2N9mEJCs5v+e5z5157b4z14+WVOVx5ldm8eYTa5j30EoScaV2Qwv3/vQNZp88mlknje51GLb+RtaECQy97nsM+dIXqb/3Xmr//ndiGzYCEFmxgs03/JzgiJEUnrgHk4T1A4KVeRSdkEfRCWOIbm6l7b0a2hfVElnT2JHzIjdRzDGNh3NM4+HEJEzQN58WmUd27Rv46/7GgsV384ehlfxh6Z2UEeCIokkcOfZE5k45h9ysnvOFBP0+Dp9YweETK/j+6fvx9voGXl5Rw8vLa3htVS2tkU453MaGdu57cz33vbkegOHFOR3eF3PHlzGs2GKlGoYx6PkOcDHQDCwFvtWN59kDqroAKAMWi8hrwCJgE1AJHAeMAN4Gvrpnpm0YhmEYhmEYfYMpLPYCtrRu4b+r/susyllMLplMwNf9bhcR8g46kLyDDkRjO6cciLTHePh3b1G9spEHfjmf0z4/k6pxOx9WKtbe2uFhoT5TWBhGT/j8PmafNIYx08p58tb32Lq2mURCee2RVaxdVMtHvzanr6f4gfAXF1N26aWUXnwxTU89Td0dd9D6+uv4i4rIP/qotLbtixej0RjZ++3bJ3Pd0wSH5BIckkvhUSOJN0VoX1zrFBjL6iHmwqMHNAuNz6WOuRCDoKykzv8O01uW817ucmokxv0N73H/gvcIvflLDvTlc1jpfhw47mQmTPwQEszudts+nzBjZDEzRhZz1ZHjicYTLFzXwCsranhlhVNgJHNfAKyvb+OeN9Zxzxsu/+voslwOHuuFkBpfRmVh99sxDMMYwIzx1vnAN3toswpYANQCfwAOBE4BSoA2nPLiN8DvVLWt+yEMwzAMwzAMY3BgCou9gFc3vcrPXvsZAJ+e8Wk+NfNT2+0jgR0/NGKROP/5w0KqV7ocgP6gj+y84A6Pk0o03JKisNihUL+GsVdSNjyfs66Zw+uPruKNR1ejCWXywb3LWTAQkECAwhNPoPDEE4isXk14xQp8oVBam62//z1NTzxJ1sSJ5J56Kv68XOIFH8zba6DgLwiRd0AVeQdUkYjECS+rd8qLxbUkWqId7aI6lqktY/lpC4SlnbfyljAv/z1ez3uP6lANL2gLL9S8CjWvsv8L3+D24AQYPRdGzYWRB0JW9/9n0O9j9ugSZo8u4TNHTyASS/DWunpeXu4UGG+sriMc61RgrK5pZXVNK/98fS0A48rzOHh8GbNGFNAWgcJQt5sxDMMYMKjqJcAlvWzbCHx2d87HMAzDMAzDMPo7prDYC5hfPb/j88whM7vUayIBIh8oMWo8luDRG99h/dJ6ALJyA5z+hf0prvxg8crjrW2As7hVX2LbjQ3DAMAf8HHQaeMYv/8Q3n5mLVMPSVdY1Fe3surtrex7xHCCoYEZKgogNHo0odGj08pitbU0PfMsAOFlywj/6leM8/lomTSR5vYwoZNOxF+0815fAwlfyE/OvmXk7FuGJpTI2ibal9TSvrSO6PrmjtBRWZrNgc0zOLB5BgAbgpuYl/8eb+Yt5r3c5UwKN8GGF2D1C66D+PnliPGMLZ3MgWNPYPjEUyCv+xwioYCPA8aUcsCYUj5/7ETao3EWrHUKjJdX1LBgTT2ReOe1fcXWFlZsbeEfrwIEKM9SHmt6h1mjy5gxsph9hxWSG7JHF8MwDMMwDMMwDMMYrNhb/15AUmHhFz8zKmZ0qa+/5x4a7r2PsiuvIP+ooxBfz4lXuyMRT/DEze+y5t0aAILZfk77/EzKR/QcA723aHunwgK/9tiurbmJRf97mnBbK3lFJeQWFZNbVExecTG5hcUEsy3MiLH3UT4in6MvnNql/PX/rGLJq5uY//ga9j9+FPsdMZxg1sBVXKTiy86m6rvfoeH+B2ib7659kkiQv3gJW7/7Xbb+4AfkzZ1L4YknUHDSSfjzP/h1aiAgPiFrdCFZowspOmEM8eYI4WX1tC+to31pXZr3xbBoFR+uq+LDdcegJIgEN1CXWECW7x2yfO9S52vglkA7NL4Fb73F8Nd/zByy2L9oAvuPOpqxk05FSkZ3O4/soJ+DvSTcXwLao3HeWF3HK14OjAVr64klOq/1W8PCf97ZzH/e2QyAT2BSZQEzRhQzfWQRM0YUM7mqgKB/x+5bhmEYhmEYhmEYhmH0T0xhMcipb69necNyAKaWTiU3mO7xoLEYNX/5K9E1a1j36c8w9r57yd5nn16Prwnl6TsWs3z+FgACQR+nfmY6lWMKd8n8tb298/M2FBbtTY08e8dfnbdINwSzssktdkqMWSedxpRDj+zs29zM208/hj8YxB8IunUwSMBb+wNBRARNKMOn7ksg2Bnmqn7TRmrWr0VVQRVFIaGoJlBVEokEJBKEcvMYP/vAtDm1rF9NrLWFd/xKIOBHFUDRhLq1N2bl+ImM3Gda5/+gyhuPPOB5xAhulf7Z5/MhPh9jZsymsLwzeXpLfR3rF7+L+Hz4/H5vHcDv9+MLBL11AH8gQOnwkWleN7FIBE0kEL8fn9+HiO8DeeUYfUNrY4Rlr1UD0NYY4aV73+fNx1cz8/hRTDtyxIBXXPhycyk5+2xKzj6byKpVbL3nHrbefQ/BhgbXIBaj5fnnaXn+eXIPOGCvUVhk4s8Pkbv/EHL3H4ImlOiG5g7lRWRNI3iXUsFHVnQELYygJX4qAOHAFr60YRlv577Pu7nvsz64lfUS58HWJbB4CSXv/p6ZcR/754/inLGnkTfuaKiY7F2n0skO+jl0QjmHTnAeGq2RGK+vquP5JdU8uXAV65ohqp39EgqLNzWxeFNTRxiprICPfYYVOiXGiCJmjCxmbFkePp9dnwzDMAzDMAzDMAxjoGEKi0HO/M2d4aBmVc7qUt/438eIrlkDQO7cg3dMWaHK/+5aypJXNgHg8wsnXzWNYRNLPuCsUwhHOrfn71n4VDJ0OPsdfTxvP/VYt/XRcDsN1ZtoqN5E++HHpNW11Nfxv7/f0qvpXPnH28gvLev4vmzeS73qWz5qTBeFRf3id2ir3sCW117cZt/Zp34kTWGBKs/d8ddezfej116XprDYvGoFD/3qJ73q++U7/50mYHzhrtt545EH0tr4/H58Pn+HEsPn8zNqvxmc+sVr0tr987qvU1+9abvbPOSs85l2zAkd35tqtvKPb3+lV/M95zs/oqRqWMf3Rc8/w//uvG27/QpKyjj/h79IK3v8xt+w8q35aWWqSri9HVW49T/3gCr7HHEMR17wybR2f7j848TCYVSVQCjEqGkzmXTQoYzbf06/8PTJLQxxzjcP4PX/rOL9+ZtBoa0pysv3LefNx9cwde5Qph46lJKqvL6e6gcmNGYMJZ/5DK+NH0/2mrXs19hI69NPE9u4kaypU7uEk6q/734Sba0UHHccwcrKPpr1nkd8QmhEAaERBRQeM4pEW4zw8nrCKxsIr2wgurGlI3wUQFasghMaKjih4RAAagL1vJuznMU5K1mUs5Ll2Wt5JhTjhfAazn/s665vTimMmsuGYfuRN+owikbNBX/XHEe5oQBHTKrggJH57JdYTjwBo2fMZcmWdhauq2fB2nqWbW4mnuKFEY4leHNNPW+uqe8oK8gKMM1TXswYUcT0EcUMLco2JathGIZhGIZhGIZh9HNMYTHISc1fkamwUFVqbrqp43v5lVfu0Ngb32/gnf+tB5zA68TL9mPUvmXb6bVjSIrCggAk4nHefe4p3nn2Sc7+9g/TvB0OOet8Ru07nUh7G60NDbQ21NPSUE9rQx2t9fW0NtTT3tJMXlFx2jbisSi9RUn38uit8Ktbz4/eCs40fZuZc9gW4ku3lu/JA6VrP1+X0GCJeNek54l43JWn/IWRttYu7Vrq62mu2brd7Ubb27rMtzf9uptfNBzuVd/u9mFbU9M2+7a2tQAQae36W6PhdmLhMACxSJilLz/P0pefJxDKYsyMWUw6+FDGzTqQrNwPlt/lg1A2PJ8TL9+PORuaneLiDae4aG+O8uYTa3jziTUMm1jMKZ+eTlbOILhN+Hy0jxlN6QknMOxb36T97bdJtLSkNVFVav78ZyIrV1L9g+vJmjiBvEMOJe/QQ8idMwdfH+6vPY0vJ0DOfuXk7Oe8HhLtMcKrG4msbCS8soHIuiaId16HymLFHNE0myOaZgMQI8b72WupCb1PPPYmMVmMv3UzsuQRfl73Kk+supMx0TjTgkVMK53K9NFHM2ni6QRzuuYW8ftgn6EFzB43hPMPGgVAWyTOuxsaWLC2noXrGli4rp5VNennYlM4xkvLa3hpeU1HWUVBVofyYp+hhUyuKmBESY4pMQzDMAzDMAzDMAyjHzEIJFHGtkjzsBiSrrBofvZZwkuXApA9Yzq5Bx20Q2MPm1jMUR+fzHN3LuXYi6cybv+K7XfaQSTSKQlvaWvj1qs/Td1GpyRZ+MR/mHXKGR31+aVlaaGeuqM75URhxRBO+/K1xKNRt8SixCJunfzuzYZQdk5a32GT9+HQcy/sFHglwzGJOKG/t87OL+iy3ZKp0ykYM4Fp06YRyspCvP4i0rEWEUqGDk//T8THqV+8JiUMFU6pkfI5kUigiQRlI0am9S0dNoIjLvgkiXgc9dok4jHi8TiJWIx4LEYiHuv2vyuuGsao/WaQSMRJxBNoPO599paEK8sr6aq0yisq7qKM6I5gxv8rPl+aR8u28PnTlTPBrKxe9c0r7uoRlFNQ0KWvqtLe7hQRObk5+Hw+srsJJ1Q2fBTxaAQRoam2hvbmJsApL95/7WXef+1l/IEAZ33rekZM3a9Xv213UTYsnxMv248DTmnh9UdXsXz+ZhKeIDrSHiOUPbDDQ3WHiJAzfXqX8siKFURWruz4Hl72PuFl71N7221IMEjO/vuTd+ih5B1yCNn7TEX8g++/6QlfdoCcyaXkTC4FQKNxImubnQfGqgYiq5vQSKfCMECAKe1joX0stRzvxpB6QrKIYS0bmc4a3s9ew0M081Dta1D7GqH5P2WqhphWMIrpww5mv7Gn9zifnJCfOWNKmTOmtKOsvjXSobx4a10Db62tZ3NTOK3flqYwTy7azJOLNneU5WcFmFSZz+SqAiZXFjC5qpApVQWU5IV2yX9nGIZhGIZhGIZhGMaOYQqLQUxrtJVFNYsAGFc0jpLsTsGsqlLzpxs7vpdfeeVOWZnue/hwRkwpoahiN1kfRzqF5xvXbqKufn3H982rVnbXY5v4A11DkGTn5TPpoEN3anrDJk1h2KQpO9U3d+gIACYfeiQ5OTnbad2JiDB57uE7tc3iqqEccNqZO9V31smnMevk03aq77nf610YqkwKysq58o/bD+vUHVMPP5qphx+9U31PuPLzXcra2tp4/PHHXf0JJ/S4zy748a86PsdjMda99w5LX32B9197hdaGesApnYaMHZ/Wr2FzNbnFxQRDWTs15w9C6bA8Trh0X9rOmciSVzfx3gsb2OfQYWnXBFXlqVsXMXRCERPnVBIaDJ4XKYTGjWPsgw/Q9NjjNL/wAu3vvAOeR5JGo7TOm0frvHls+dWvGHXrLeQdfHAfz7jvkKCfrHFFZI1zHhGaUKLVrUTWNBJZ00RkTSOxLekKyoQW065zOa8GzvOcHtaFqlmWvYZl2atZlrOGpVlreatlOSxbzrde/i0nRUtoyhlO4LnXaC0ZzsbsfEZX7k+gZAxkpSsLi3NDHDGpgiMmdSrONzW089a6ehauc54Yb62tp7E9XSHbHI4xf00981PCSQEMKchiclUBU6oKmFRZwJSqQiZW5pMd3HsUVYZhGIZhGIZhGIbRFwwuiZORxsKtC4mpE85khoNqnfcabW+9BUDWxInkH3VUr8ZsrmsnvyQ9Dv/uUlasW/wu1YvWMirfWUPH1Xk6DJ+yL4d97CJGTNl3t2zXMHYV/kCA0dNnMnr6TI699FOsX/wey159iUQ81sVb54W7bmfjssUcddHljJ9zUJ+EqckpCDHzuFHMOHakl/y9ky1rmljy6iaWvLqJF+5exoTZQ5gwu5IRk0vwB309jDhwEBGyJ08me/JkKj7/OeINDbS88iotL71Ey4svEl23zrXLziZnVvr1tP6++2l56SVy58wmd84cQuPH71VhhsQnhIbmERqaBwcNBSDRGiWyrtmFklrbRGRNE5qhLBgRqWREpJKjGw9wfUiwLrSZZdmrmR1+h2xdQkHbW/heeYWXc7L5TNUQshIJxkejTI4LkwNFTMqtYnLxBApLxkHxSCjylrxyqoqyqSqq4sR9qwCndFtV08rCdfUs2dTkluom1tV19f7a3BRmc1OY55d1hobzCYwpy3PeGJ4yY3JVIaNKc/Fbgm/DMAzDMAzDMAzD2CWYwmIQkxfI46QxJzG/en6XcFCpuSvKrriiS76C7lg6bxNP3b6I4y7Zh4lzdl9C2vpNG3n61htZ+ebrjMqbCp4hbTAvyJmfvo4xM2btVcJAY3Dg8/kZuc+09ATqHrFIhBXz5xFpa+PBn1/PmJmzOfriKygdNrybkXY/IoJkJLlf/U5nLoBYJMHilzex+OVNhLL9jJlezrj9Kxi1TxnBrMFhge4vKqLwxBMoPNElgY+sWUPLSy8Rr6vDF0oPF9T09FM0P/kUjQ8/7PoWF5MzZza5s+eQO2cO2VOnIIG963bryw2SPamE7EnOs08TSmxrm/PAWN9EdF0zkY3NEOtUjPnwMSpSxahIFXAQW7xyP9XkJ9ZzyeYtrM7awKqsDTycXc39vjaIrYStKxm6KcakSJR9w2E+Vd8IgRwoGtGpxCgeiRSNZGzRSMaOGQnTJoDf7ZOm9ihLq5s9JUYjiz1FRn1regjBhMKKrS2s2NrCo+9s6ijPDvqYVOlCSo2ryGdseR5jy/MYXZZrHhmGYRiGYRiGYRiGsYPsXRKUvYxpFdO44cgbUFUS2plsue3td2h58UUAgiNHUnjySdsda8WCLTx56yI0oTz+13cpLMuhcmzhbpm3PxhkzTvO+yMgnSGcJh8yi1EzZ++WbRpGXxINt1M1fiJr3lkIwKoFb3Db259h9qkf5uAzz+3ijdEXHPChsYyZVs57L2xg6bxNRNpdzoJIe5yl86pZOq+aQNDHxAMqOeaiqX08211PaNQoQqNGdSlXVcLvLUori9fX0/ykU2IA+HJzyZk5k5ILPk7BMcfskfn2N8QnBIfkEhySS56n8NZ4gmh1K9H1zUTWNRFZ30x0Y0taQm+AOJUMiVRybk1qWZz1oc2sytrgKTE28n7WBmpz1juFRawNapZBzTJuLiogKsKESJRJkSjDYzF84ofCYVA0goKikcwuHsnsopGwz0g4ZCRaOI3N4YBTXiSVGJuaWLa5mUgskTa/9mjCy5/RkP6bBYYV5TCmPJex5XmMKcvrUGaMLM0l6B/4nkmGYRiGYRiGYRiGsasxhcVegIjgl04rT8kKkX/kkTQ/9xxll166XcvfNe/V8Nhf3ukIEbPv4cMZMqZrEumdJRaNEgh2KiYKysqZecKHWPrKi1QUFYAnu/JnWRJUY3CSU1DIWd/6IctefZFnb/8rTTVbSMRjvPbgPSz639McceGlTDnkiD73LKoYVcCR50/mkLMmsPa9Wla8uYWVC7cSaXOhfmLRBImMUFIAkbbYoMt5kUREGP/Yf2lftIjW116n9Y03aH3jDRINncLrRGsrLS+9RMEJJ6T1jTc10fDQQ+TMmEH2pElIsGuOncGM+H2EhuUTGpZP3gFe2KZYguimFlpW1bFq3hJyWv0URLLQSLqSwI+fUZGhjIoMhaZORXZcYmwK1RP0rSMQX0ZQl/NCqJ0FubVEfe44zUkkGBONMSbaytjGdxlb8xZjolHGRGNkqzt+BajMKaWyeCRHFo2E4lEwciTxguFsoILF7cW8XetnSbVTZKyubUUzDn1VWF/fxvr6Nl58vyatzu8TRpTkpCkyxpTnMa48j2HFORZiyjAMwzAMwzAMw9hrGZwSJGObZE+axMgb/0T74sWExo7dZtsNy+p59I9vk/DCdkw+qIojz5u0SwSnrY0NzHvgXyx99SUu+cUf0qzIDzn7fA477yLe++lvoMWV+XP2fDJiw9hTiAiTDj6MsTPn8OoDd/P6Q/cSj8VorqvlP7+5gYVPPMoxn7iSitHbPmf3BMGQn3EzKxg3s4J4LMH6pXUsf3MLKxdsYfz+FWltw20xbvnqCxRX5jB8cgkjJpcwbGIxWbmDRzgvwSA506eTM306ZZd+Ek0kCL//Pq2vv07b62/Q+vrrxDZvJmfmjLR+bW8tpPr7P3BjZGWRve++bpyZM8jebz+Cw4f3uZJqTyMBH6ERBcTLAqypeROA448/mFDER3RTK9FNLcSq3Tq6pTUtpBSAXwPEwuXEKAdmAvD9tc4jY2NoK2tCG1mTtYn1oWpWhbbwYkE1jf4WELh+Sw1nNLd0jNUQrmNJXQujNr/DkHgcH+AHRnrL8cFcF25q6EiiE4dTE6hkPeWsCJfyXlsRb9Vns7ymnYa29NBSAPGEsrqmldU1rdAR/MoR8vsYWZrT4Y0xpjyPESW5DC/OZnhxLjkhCzNlGIZhGIZhGIZhDF5MYTFI2dSyiaKsInICPYeSyZ4yZZtjVK9q5OHfv0Us6ixbx+9fwTEXTUE+oOVnuLWV1x++nzceeYBou0t2Ov8//+bgM8/taBPKcYm8fSlGtYG89GTfhjEYCWZnc9h5F7LvUcfy7G1/ZsX81wBYt+gdVi54o18oLFLxB3yM2qeMUfuUceTHJpNpZr76na3EYwlq1rdQs76FhU+vQ8R5ayQVGEMnFA+a3BcA4vORPWkS2ZMmwfnno6pE160jOHRoWru2hW91fNZwmLb582mbP7+jzJefT9bkyeRMn07lNV/bY/Pvb4gIgeJsAsXZ5Ewp7SjXuBKraSNa3UJ0Uyuxza1EN7cS29rWJayUH39Hku9DmtPHb/K1siG0mTGluTQOaybAOgLRZbwde4dPFYcByEokGBGLMTIaY1Tquv59hm5dQhCo8pYOfw/xQ+FwosOH05g1lM2+CtYmyljaXszC5kJer8ujNtL1uI/EEyzf0sLyLS1d6gBK80IML85xS0nGujiH4tzgXqfoMgzDMAzDMAzDMAYPprAYpPzo1R/x/Lrn2ad8H357zG8pzS7dfqcUatY389BvFhD14tSP2reM4y/dF98HiLkdjYRZ8NgjzHvgbtqbmzrKA8FQFyFnEn+iU+gSzOn7OP6GsacoqRrGR675Livmv8Yzt92EiI/ZHzojrU1rYwM5BYX9Rjjp8wkumE4ngjBkdAGb1zR1hHdThc2rm9i8uok3H1+Dzy8MHV/E6V/c3xtjcCEihEaO7FJeeOKJ+PPzaXtrIW0LFxJduzatPtHcTNsbb6BtbV361tx8CxqJkDVlMtmTJhEYOrTfHAd7CvF35sUgJZe9xhPEatudJ8bmTkVGdHMbZOSfAChI5DK5fQxsgEaGAOOAIxgD3Lm5iY2hLWwK1rApuJVNoRoWBLfy39ytbA3UkRClKB7n+TXr0478JSHnQTS8cS35DWsoA8qAqUBHYDAfJErLac0ZRl2wko1UsCJawuK2Yt5sLGBlrJRG8sg8p2pbItS2RHh7fXrOjCR5IT/DelBmDC/JYUhBtoWcMgzDMAzDMAzDMPotprAYhCQ0wZub3ySmMVY3rqY4qxiAmltuJTh0KAXHH4f4e7Zmrq9u5cFfLyDc6uJ9D59UzMlX7oc/sHPKingsxjvPPMEr995Jc11tR7nP72faMSdy8Jnnkl9a1m1ff6Jzm6E8U1gYex/jZh3AqGkzaarZgj+QHkbp37/4EU01W5h08GFMnns4leMm9Duh9cQDKpl4QCXtLVE2LKtn/dI61i+po2Z9p/V4Iq7EY4kuyoqFz6wjEPRRObaQkqF5g06ZkTV+PFnjx3d8j9XW0vbWW7QtXEh40WLalywhtnEjWd14w9X94x9E163r+O7LzSXkjZc1YTyhcW4dHD58m9f7wYj4fQQrcglW5JJ619CEEq9rJ7qljdjW9CXeEO5QqKVSHC+guK2AqW3jutTFiLM5WENTbhv148fjDzUS8G3Bn1jLTS1P87hvEwgUx+OMiMUYEY0xPBZjRCzG8GiMYbE4VW1byW/dSj4uzNSBycEDbokF82nOqqQm4BQaq2KlLG0v5r3WItYmytlMMUr6vbklEmfZ5maWbc5wJfEI+oWqomyGFeVQVZRNVWE2QwqzqSzMorIwm8qCbIYUZpEd3LuOG8MwDMMwDMMwDKN/YAqLQcjKhpXUh+sB2H/I/vjER2zLFrb86ldoJEL2fvsx5l//RHzdKyCa6tqJekl0h4wp5JRPTyewkzGzNy1fxiO//hn11Rs7C0WYethRHHLW+RRXDe25M+DTzu0G8nJ3ag6GMdAJBIOUVA1LK2uq3cr6Je+BKq8/dB+vP3QfxZVDmTTXKS8qRo/tV8qL7LxgR94LgLamCOuX1rNuiVNgDJ9cktZeVXn9Pytpa3Lx/4PZfoaMLqRybCFVYwupHFtEbmFoj/+O3UmgtJSCo4+m4OijO8ri9fUkwuG0dvHm5jRlBbjE3u1vv03722+nlQ/94fUUf/Sj6X3XbyA0ehS+7L0rzJ74hEBZDoGyrspvjSaI1SYVGO3Eatzn6NY2Eo2RbscL4GdYdAg0QEtDDMgFRgOj+RKH8WmJsDlYS3WwhupgLZuDtbwfrOHF3Bo2B2upDzRyeVucz1avJ6ktiQB/KyqgKhZnaCxGVayNiublFLOc8cBhyY17h37CF6Qtu5K6YCWbpIK18TLej5TwbmsRq2KlbNQywqSfJ9G4sra2jbW1XT13UinKCXYoMYYUpCg0CrM8BUc2FflZhHbSmMEwDMMwDMMwDMMwusMUFoOQN6rf6Pg8a8gsAGpvvx2NOKFL7oEH9qisABg5pZTTPj+DVx5cwSmfmk4oe+cPk8KKIbQ01Hd8Hz/nYA479wLKR43pVf9UhYXkmsLCMJJEWlsZM2MWa95eQCLuQrfVV29k3gN3M++BuykZOpzJhxzOpIMPo3zk6H6lvADIKQgxYfYQJsweAkAikW7e3lTT3qGsAIi2x1nvKTeS5JdkUT6ygIPPGEfZ8Pw9M/E9jL+4mEx1sS8nh3EP/Zv2xUsIL1lM+P3lhJcvd0qMjPB6qR4cAG1vvMHaK68CEYJDhxIaM4bQ2LFp6+DQqr3PKyPoI1iZR7Ayr0udRhPE6tuJ1bYTr20nVtNOrM77XNuOhuPdjpmlIUZGqhgZqeq2PkaceB5srijCnxvHH2qlSTcyv/ZRtmbXszVQT22ggbhEKY/HqYzFqYzHGRKLUxmP8dGmFooSUfJa15HHOkYAc5KD+70FaM+uoDFUyRbfENZqOSsiLuzU0nAJG7TMCzvVlYa2KA1tUZZWd++pkaQsL8SQwmzK84LEGn2UZSsHt0fJsTCOhmEYhmEYhmEYxk5gCotByPzNnUlbZ1XOIt7QQN0/7gRAgkFKL7l4u2MMm1jCR66etcNCzubamrTwTrmFRcz+0BlsWPIeh513MUMnTt6h8fwpCgtfVnAbLQ1j76JsxCg+eu11tDU1smzeSyx56XnWvvs2qi5Gf93G9bxy71289u97+ezN/yQQ6t/eCJnhnvKKsvjI1bPYtLKBzSsbqV7VSHNduqdBc12Y5rowcz+cLpTf8H49y+dvpnxEAQVDgmgCZBAZgYvfT9bEiWRNnAinndpRnmhrI7JyJeHlToERWb6cUIbCIrJqlfugSnTDBqIbNtDy0kvp44dCZE+bxpi//y2tPFq9GV9eHv787gXcgxUJdoaYykRVSbTGOpQX8fp2YnVh4nWeUqMujEa75s0A56ERaIFIS1IhIAjD+DqXprVr8Dd1KC9qAg3UBhtYEmigvSKXnPAa/K2L8YXXcm9hDncVFFARj1MRj1Mej1MRi1MRb6Y83MCQ+CImxuKclBw4y61iwXxacoZRH6xks28I67ScVdESlrSX8E5LIetjBV3CTqVS0xKhpiXpheLatT6wiJs/cVAv/2HDMAzDMAzDMAzD6MQUFoOQ+dVOYZHtz2af0n2ou+kvJFpcvPiij55JcMiQtPbhthjL529mn0PTQ87siLKiesX7PH/nbWxavpTLfvNXsvM7rZ3nfvRj+HbSWle0U0khFk/bMLqQU1DI9GNPYvqxJ9FSX8eyeS+z5OX/sW7Ru6DK0AmTuygrnvjz72hvamLEvtMYOXU/ykaM2qbXVV/gD/oYNrGYYROLO8qa68JUr2qgemUj1Ssb2bK2iURcKa5Mt+Ret6iWhU+nhEySfIL5CZ7ZtJSKEYWUDs2jZGgeRUNy8Pv71+/+IPhycsjeZx+y99mnxzahsWMpOuN0witXEVm5kkRTU5c2GomQaGvtUr7xm9+k5YUX8BcXExwxguDw4QRHDCc0YgTBYcMIDB1KcNgw/PmD09ulO0QEf14Qf16Q0MiCLvWqSqIlSrwu7BQY9eEORUa8IUy8MUKiJdrNyJ0UxQsoihcwPpyeuD0KbO6YCExvbKe0qZq6QCO1gQbq/U28HWikLtRIXcBb/I3MCNfz5+otHeMEos28EFpHPLGesnicqfE4h8XjlMQTBAKgWSGiecNozRlKXaiKLb4hrNcyVsbKWBouZlFzAeub4sRSvKSeXrKVF9/fyqETynf2rzUMwzAMwzAMwzD2UkxhMcjY2LyRjS0uX8T0iun4w1Fqb7vdVfr9lF2abrkZDcd5+LdvsWlFAw1b2jj4jHE7pKioWbeWF/91B8te7bTQfe3f93D4+Zd0fN9ZZQWAj6TCIgGB/hXSxjD6G3nFJcw84RRmnnAKzbU1LH31RXIKCtPaqCrLXn2JtqZGlr76IuCUHiOm7seIqftSOW4iQ8aMI9gP8xvkl2SRXzKE8fs7pasmlJaGML4MpcPWdRkhbFSINvlZ+WYNK9+s6SgePrmED39p/7SmjVvbyCvKwh8cPIqMVPKPOIL8I44A3LEQr60lssopLyKrVjlFxqpVZI3tmmQ6mTcjXl9PvL6e9nfe6XYbFV/4POWf+lTHd41EaHzscYLDhhIcOpRARQUS3Ds85kQEf34If36oW4UGgMYSxBsjxBs9JUZDpEOZ0bFuikC8m6zgHYNAbjibSYze7pwivigbs+L4/U34qMcf38L6RD1rQi00hJqoDzRR72+m0d+ITxopTkQpi7dSGl/KmVvmc3B7p6dTFNgUCFBcXkEwdyjv1Yd4vnkYt8RO5PpHFvHw5w7D77N7t2EYhmEYhmEYhtF7TGExyHhjc0r+ispZ1N99N/H6egAKP3QKoZGdFpqxaJz//HEhm1Y0APDeCxuYfvQI8oqytrudhs3VvHzPnbz3v6c7QtAAFFZUUjF67C76NSAEO1KR9rcY/IbRn8kvLWPWyad3KW+q2dqR8yJJMqzUsnme4lGE0mEjOOGKzzF8Ss/W+n2N+IT8kq6KlaMvnMK0o5vZuraZ6lX1rF5STazFB5p+DSmp6hri556fvk5bc5T84iwKy3MoqsihsCKHovLOdVZeYFBcj0SEQFkZgbIycmfPTqtT7Soczz3wQALl5UTWrye2aVOXfBlJAhUVad+jmzax4atfTd0w/vIygpVVBCorCVZWunVVJfnHHrf3hZwK+AiUZhMo7VlJqAkl0RrtUF4kGiOdSo6OzxESzZFk/u4eCSWCxNuCxMkGKoCJnLKN/NtNvhbqA000+JvJi9dSF6/FRyM+aWBLoIXvlwRo8DfR5mvGX7aJ8pIVXLPlXb6x8dvc+8Y6zjlgZM+DG4ZhGIZhGIZhGEYGprAYZCTDQQHMKp5Gzc3f6fhefvnlHZ/j8QSP/fld1i12CWyzcgOc/oWZ21VWtNTX8er9/+KtJx4lEY91lOcVl3Dwmecx7dgT8Ad2jeWsqoK6UDZKZDutDcPoDYXlFXz6r/9gy6qVrH3vbda+9zbrF71LuLWls5EqtevXkp2fbhG++u0FLHzqMSrHjmfImHGUjRhFfmlZvxPe5+SHGDmllJFTSmlrq+Dxx1eiCThw5mG01sap29RC7caWtHBTAG1NkY5E38n8GBuW1XcZP5QT4JSrpjF8cklHWXtzlJaGMPml2WTlDPxba3f7dOj3r+v4rJEI0U2biK5bR2TdOqIbNxLbuInoxo2ExqV7Z0Q3bEwfSJX4lq3Et2yFDC+NiS88DykKi8LXXmfT3fcQGjIEf3kZgfIKp2SpKCdQXo6/rJxAWSkSGPj/+bYQX6enxrbQhBeCqilCojm5jhBvSv+caI6QaI1tc6wkBYk8CiJ5JNUOKVcKQjG4fm16+wZ/M7cNuZ1zwv/lhsdz+ND0oeRlDe79YxiGYRiGYRiGYew67A1ykLGlzcWl9oufca+spba6GoD84451CVqBREJ58pb3WLVwKwCBLD+nfnYGFT2Eq0iyeuECHvj5D4iFO8NBZOXlccDpZzHrpNN2eQiZcCyBEHLGorLtGN+GYfQen89P5bgJVI6bwJxTP0IiEWfLqpVsWr6U6hXvU71yOY2bqykZlp7XZt2id1j68vMsffn5jrJQTg6lw0ZQOnwkpcNHUjZ8JOWjxlBcWbWnf9Y2EZ/zqBg2NqfHNrFogokHVNKwpY3GLW2095BbINIWI7sgXTG7+t0anrzlPcApNApKsykoy6agJIv8smz3vTTbC2vV/8Jt7SgSChEaNYrQqFFszx8iOGIEQ665hujGDcQ2biRavZnYpk3Etm6FREpC6mAQf2lpWt9Q9SbaX3+d9m1ORsg74nBG3XhjWnH9vfeh8RiBsjL8paUd3iSSm9vvlGy7CvEJ/oIQ/oJtKzbAhaJKtEaJN0dJtESdgiO5bna5NRItrj7eEoFw98nDMymK53P5pk/yzyHfI2vzHG58bjlfPmHyB/1phmEYhmEYhmEYxl6CKSwGGb895rfUttfyft37cOvTHeXlV1wBOOvLZ/+2mPdfd6k6/UEfH/r0dKrGFW137KoJEwkEQ8TCYQJZWcw+5QzmnHYm2Xm7J8FqOBxGcR4fagoLw9htpCowkiQScXy+9PwzW1av6tI30tbGpuXL2LR8WUfZyH2nc853fpTWbtm8l8jKzaNoSCUFZRUfKLfN7qKgNJsTLt2343u4LUbjljanwNjaRsNWp8ho3NpGYXm64qOpplOkHmmLUbO+mZr1Gbk0gMLybC68/pC0svde3EBbU4T8kmzyi7PI85ZgVv/7j3aG0IjhlH3iki7lGosR27qVWHU10U3VJJoauyR/97duI1ZRx0CKL9RVQL/1T38iunZtl3LJzsZfUoK/pJhAcTElF11EwVFHddQn2tpoW7AAf3Gxa1dcjK8f5nT5oEjAh78wC3/h9sNAAmjUU3B4ioxES/rnaGOY2lXV5LeFyNFsDm34NEVFv+X3z1fysYNGMbSoZ2WhYRiGYRiGYRiGYSQxhcUgpDS7lAOHHgjXHkjxOWfT/Mwz5Eyfjqrywt3LWPSSC8/h8wsnXbEfI1LCmiSJx6JUr1jOsElTOsqycvOY+9HzqK/exEEfOYe84q79diXhtuYOhUVCehe6wjCMXUOmsgLg9C9fS+36tVSvXM7WtaupWbeG2vVradiyOS2fQdmIrjHrH/vjrzvCTonPR0FZBUVDKt1S4daFQ6qoGDWaUE7X3BJ9QVZOgIpRBVSM2rb3GUDZiHymzK2iqbadppp2muvCJLpJkpxX3FU4/N4LG6he2dilPJjlJ6cwRF5hiJzCEJMPrGLc/p35ITShNNW2k1MYIhgaeMoNCQQIVlURrKoiZ0b3barPOZtpv/k1wZYWp9zwlvjWGve5pobY1i2EJkzo0jdeU9PNiKDt7cQ2biS2cSNhoPD09FwvkTVrWfOJT6bPNSsLf2Eh/uIifEVF+IuK8RcVUfn1a/AXdia2j27YQKymBn9hIb7CQvyFhUg/VM7tDBL04S/Kwt9D6Mi2tjZefXQ5494KURTOZ2L7KJZmn8jJvoe54bFh/PKcmXt2woZhGIZhGIZhGMaAxBQWg5ys8ePJGj8egPmPrWbhM+sAEIHjP7kvY6aVp7VPJOIsev5ZXrr7H7Q21nPZb/6SppiYdcoZe2zukZYWwFnbqsS33dgwjN2Oz++nfNQYykeNSSuPhtup27iBmvVrqV2/lmGTpqbVtzc3p+XI0ESCxi3VNG6pZu276ds489rrGDuzMwH01rWrefupx8gvLSO/rJyC0jIKysrJKykjENw1+XJ2BWOnlzN2euf1VBNKa2OkQ4HRVNtOc32YwrKulvot9eEuZQDRcJyoF54KoGpsuidcW3OUO771MgCBkI+c/BA5BUGyvXVOfpDs/CA5BSHGzawgO6///F87gi83l1BZGaFRo3rdR1UZdsPPiNXUEK+tJVZTS7xmq1vX1hCrqydeXw+xGIGSdOV7vL6+63jhMLEtW4ht2ZJWXvmNa9O+1993P1t/97v0+efl4SsqxF9Y5JQeRYVk77MP5Z/6VFq7lnnz0GgUf34+voICfPn5+PPzkZycARPCKuGHdZNi5L0TJ6B+PlR/HJVFv+CG+QtYeMgYpo8o7uspGoZhGIZhGIZhGP0cU1jsRYzffwjvPLee5rowR184lQmzh3TUqSrvv/YyL/7zb9SsW9NR/sp9/+TYT17VF9Ml1tzScYAmfL2LnW0Yxp4nmJXNkDHjGDJmXLf14vNxzCevomFzNY2bq2nYXE3Dlk2EW1q6tC0oLUv7vmXVCuY/+u9ux80pKCSvuITc4hKKKoZwwpWfT6tvqa8jEo2iqntc4Cs+6QjttL2QeyddMY2m2nZa6sM014dprmuntSFCW1OE1sYIYS85cm5Retij1sZIx+dYJOGUI7XdZ3sYNrE4TWHx7vPreeXBFWTnBd3iKTfc90BHeW5RFkPHbz9kYH9DRCg49thttlFVEs3NSFa6x0BgSAVlV1xBvK6OeH0d8YZG4g0NHYu2eWGq/H58eekZPOKNDV22k2hpIdHSQiwl+Xi8qbmLwqL6Rz8mvHhx14n6/U55kZeHLz+f0k98guKPfLhz/NZWam6+BV9+Hr68PPx5eUhurmufl4cvN7djvSfyd7TnJwgdV0XiCafcObDhMn4W+APXPzyJf145d8AoXwzDMAzDMAzDMIy+wRQWg4jPPfc55m45mBM3lHPQh69CAum7t7gyl49cPYsN79cz5eChgBPYrH57AS/ceTvVK5altR8zYxb7HXXcHpt/JrGW1o4DVH3mYWEYA5Ws3Fz2P/HULuXtLc1OibHFU2JsrqagfEham6ba7sP6ALQ1NdLW1AhrV1NYUdml/umb/8TSV18En49Adg7/evFJ8oqKyS0sIqewyFsXMmTMeKrGT/zgP3QnqRxbSOXYwh7rY9E4bU1RsnLSr+n+gDB+VgVtTVHamqO0N0dob46mRufqIKegq7KjvTlKe/O28wOVDc/nvG8fmFb2nz8uZMvaJrJygmTlBsjKDRDKcUtWToBQdoBQjp8hYwqpGNkZTktViUUSBEK+fiG0FhH8BV3DfWWNHcuQL3+px36JcJh4QwOJpqYuvyN3zhyIxYk3NhJvbCDR0Oh9dgtR93/78rumKk80d815AkA8TqKhgURDQ7ftYrV1Xbw6emLcww+RlRI+q+nJJ6m59Van1MjJ9dY5+HJzkJSyQFkpBcelPw/Etm5FE4mOPqkUzx1F65p22pc0kaCISYkPMW7NfTz27jhO2q+qV3M1DMMwDMMwDMMw9k5MYTGIWNW0iqIn13LOPxIs/9ODDPnqVyk44fg0gUpheU5HstgNSxfzwl23s/bdhWnjDJ00hcM/djEj95m2R+efSay1M0xKwteNBM4wjAFNdl4+2WPzqRw7vsc2+x19PMMn70NT7Vaaa7bSVFtDc20NTTVbaKmvo6W+jng0Sl5xcZe+LQ117kMiQay1ha2rV7K1m23M/tAZaQqLRCLOn664kKy8PLLz8snKy3dzzS8gO9/7nu/KRkzdj5yCnpUNu4JA0E9Badc8CCVVeZx0Rfp1OpFQwq1R2pqcAiOpzAhlp/cPhPwUlGXT3hIl2t6zQjgrt+tjQnNdmObaMM10H8oqyQEfGpOmsIiG4/z5i/9DBEI5AYLZfqfc8NbBlM+TD61IG6ulPkztphaCWX63hPwEs91nf2DPKkB8WVn4hgyBIUO61BWecAKFJ5zQbT9VRdvanOKim/mWfuISYlu2kGhuIdHURLylmURTM4mmJhItLcRbWkg0N3fx6kh046nU49xz0/PDRNevp+31N7bbLzh6VBeFxcZvfZvmZ5/tLAiFGB8IECssoCUWo/Sc09n8y5eJtwjhxHSu9r/Hpx/5H8dMOYtQID25umEYhmEYhmEYhmEkMYXFIOMjLznBfnTdOlasjLP55vc49pKp+P3pwoGlr77IQ7/8cVpZxagxHHreRYybdUC/sH5NtLUBTrmigyNnqWEYO0iu5wnRE6pKuLWFaLhrKKRhk/fBFwhSvW4t8fY2NBohEe8qnM8pSB8/3Nra6b2xHc677mcMn7JPx/dl817i0d/9kqy8PLJyk0suWXn5hHJyCOXkkpWTS3ZBITNPOCVtrJb6OhKJOKHsXELZ2Yhvx4W6Pp+4XBb5IaCrFX+S/Y8fxf7Hu5wQ8ViC9pYo7S1Rwi1Jb40o4bYYed0kWM7OC5BTGCLcGiUR61mZHMrwCIm0udBWqhBujXmhrrpXeoyZlZ5XYu3iWp66dVG3bUVcgvJAlp+C0mzOumZOWv07/1vP1rVNBJKKjiw/gZCfQMhHMOTHH3Tr/NIsSqrS/7NYJO4UIr4Pfk8UEee1kNt9UvnSj3+8V+NohgtNcPgwRt50I4nmZuLNzSRaWkm0trh1SwuJ1taOsFS+DI+SRFv3IcQy8eV24xGSDI2VJBLBH4ngb21l6ze/ReSVVyn9xJepuX0J4KM9fg5HJ37P7S/N5rIjelZSGoZhGIZhGIZhGHs3prAYRIyuVmascoKMusnHsGBhFpqoJhqOc9IV++FPsWgcO3M2eSWltNTVUlw5lEPOvYApcw/fKQHZ7iIRDpNUWCT85mFhGEZXRMR5P+Tld6k74vxLaGtr4/HHHwfg+OOPx5dI0NrYQFtjA61Nbl01flJav1g4TFFlFeHmZtpbW+g2xpJHVoa1e7jFKU+i4XaatxHOKqewqIvC4rm/3cyi55/p+B7IyiKUnUMwK4tgdg7B7GxC2TmMmTGLOad+JK3v/EcfQsT1CWZluz5Z2QRCWQSzswl666y8/C7Jyv0BH3lFWd0qJ7rj9C/sDzjBeTyacMqHthgRb0l+zszdoQrDJxcTaYsTDcdd+/YYsUjXHEXBrHQt9ba8QFQh0h4n0h7vopwHWPteLSsWbOmmZzpTDx3KMRemJ4y/+WsvEG13SotAyIc/6CMQ9DmFR7Dz+5wPjWXYhOKOfo1b23j3hQ0pbdLb+5NLwEfVuCJ8KQqRaDhOIp5w9f6uypJMgwJ/fj75Rxyx3d/XHeVXXUnZJz/hlBptbW7dmly3oF6ZL7/r+ZU7eza+/Hy0zfWJtbTQunUrwTrn2dT40EO0vfkmJRd/j7Z3Ewg+5rZ8nL8//2vq5/yc4txQlzENwzAMwzAMwzAMwxQWKYjIAcB1wCFAEHgb+KWq/msHxsgCrgEuBEYCtcDDwLdUdfMun3QKJ76RAHzUlEzl7WFnop4MKBhqY9mrLzDl0E6BRjArmyMv+CSRtjb2O/p4/IH+dyhoe2dCWQJ97/FhGMbARkRcKKf8fBg2vMd2BWXlXPabvwCgiQTh1lbaW5ppb26ivaWZcEsz7c3ue35JepLwQChE6fCRRFpbCLe2duv5ARDKiPkPEMmwWI+Fw8TCXT0QCssrupS9cOdtPW4rlVO/+HUmzz2s43v1ivd56Fc/JhDKcsqNrCwCWVkEgiECIbf4gyECwSCHnXcRgVCnkHnzyuXUrF9LIBjEHwzhDwYJBIPkFwcJVIQQqadxSyvB7GxyCgopKM3mw1+a1WVOiXjCKTDak0qMOHnF6fekilEFzD5pNNFwnGjEKTyi4TixcOfnaDhOXnFXpUs00rscSIFQV1e+pDIlHksQj3VVrCSZdvTItO+NNe3M/+/qXm33yt8eic/Xue3X/7OK+Y919vX5BX/A5y2CP+jD5/dRNb6IYy9KV7C8eO/7tNS14wv48Hv9fF4/V+bDFxCGTyzpyJsioRAqftaujOLzF+ELFOMv9uEr9/r5BZ/fR/3mVnx+Ia8oC3/AR8XnPwfQkdQ+qRwseHMBwx5+GG1uJl5bS/5hw1m74U3K68qpiJVyVHwiNz3yDF87+8Re/T+GsTezK95NDMMwDMMwDGOg0f+k1H2EiBwNPAa0A3cBTcBHgX+KyEhV/UUvxvABDwInAq8A9wITgcuAY0XkYFXdvpnnTrL/CqWufAJvT7uShAqaaKOw5F3ee/YV3n06wdCJkyka0pmYduphR+2uqewSNNyZDFYt3rVhGH2A+HydSo7K7ScLnnLokUw59MiO7/FYjEhbK+GWFsJtrUTaWom0tXUbYmjYpCn4fD7Cba1E29uItjtPjUh7O9H2dmIRp7wIZqcrO1SVaGTb+SSSBLPSBfrh1hYaNlf3qu9hH7s47fvSV15g3oP3bLffiKn7ce73fpJWdtd3v0bNurX4g0H8gaBTdgQC7nswiPj81NbXUzjOeb9UjSuialwRkbZWXrjrDrKyAuTmBfAHAvgDQXx+P/5AAJ8/wMKnHsMfCDBu9oHk5Bdw9AVTaG+O0lhTQ/3GDSQSQiIhaFxIxIV4QkjEhIqRQmtjA/5AgKzcPBIJZdiEImLRBLFIglg0TjzlcyyaAM/5JhBMv0fFoz0rNzLJ9ArJVIwk4koi7hQyqeSXdFXOrHm3htoN289pMffM8WmJ3sMtMR698e1ezffcbx1I+YhOj4vFL2/kmTsW4/MLCc3HFzyU+KUnU/binYz96JFkjR3DlCsqWP3z58mL5zGzdSbV79/Dis2HMG5I16TnhmE4dsW7iWEYhmEYhmEMRExhAYhIAPgzkACOUNUFXvn3gXnAj0TkHlXdnrnkxThlxZ3Ax9ULNC0iVwF/BK4HrtwtPwJozh/BkmmfIi4JYm0vodH5bGno9FKY98DdHH/FZ3fX5nc90VjHRw1YEgvDMAYe/kCAnILCXiXmPvCMs7ZZn0jEu/W4QJXTv3StF4oqTCwSdsqOSJhouJ1YOEw07D7nl5ZldFVyi4pdv3AY1Z4F7ZmeeLFotIeWGf0yQlABHR4q2yOnclja90hbG2/+96Febfein/2WnPwCCkqzKSjNpnr5Kzx726+32y+vuISrbrwDn0/48JedR8ijv/sFy+a9jC/gx+fz4wsECPp8+AIBxOfjqb/cg8/vZ8IBcznk7POpHFPI6V+cSTya4OW7f0c8GgV8ID5QQfEBAvh46ubFiM/HfkcdR+W4CRRX5jJqn1LCLXXUV89HVdCEeGs8ZQu01BXwzjNbEZ+PKYcegT8Q7FCUJOJ1aKLObdPbjiBu+wgtdSGqV8YI5eRQUjUsTUmiiRbc45Ck9BcvUbgP1SjxWBSfz4/4fCTiiirEYwoI8biw9K1myD+Nd17PZpIsZ9JBVWSdWg4POi+ioxvP4N93/ZQvfv76Xu1Lw9jb2IXvJoZhGIZhGIYx4DCFheMYYDxwS/KFAEBVG0TkR8CtOGXE97czzuXe+lpNz4p5I/BV4OMi8kVVbeva9YPzzpSPkxt7m1jza6CdoUECwRAzTzqVA07/6O7Y7G5DUhQWhMzDwjCMvRufz08op2vCZvH5mHjQITs15uhpM/nUTX8DnPIiEY91KC9i0SjxaIRYJEIsGu2SO2HSQYdSXFlFLBIhHnVCbNcnSiwa8dZRKkaN6bLdwvIK4rEo8WjMW3v9YtG0nCGZeZXisVjmUD3iy1CwdJdwvdt+/q6PRkmFTw85wjuoGj8RgOz8ICOnlALw75+/S7S959v+5hVuPWLqflSOm8B+RwxnvyOGs37JIu76zjM99tvYCBsXu88TDpiLPxDkI1+ZRTya4LV/38WCxx7ose+8+9wydOJkzr/+F4RyAsz9yHgS8QRvPPxzmmt6loHe/hW3nnvW+Rxy9vlk5wUZMrqASHsrm5b8Cggi/lJ8/nLqwuW89nA5rz9azuj9hjGu7TmKcg4kpEEO3TyDZ197maMOmNvjtgxjL2ZXvZsYhmEYhmEYxoDDFBaOo7z1493UPeatj+ymrgMRyQYOApZkWjupqorIEzjvijnA872dmIiM2E6TjkDsm2r/SWF2p6DH5/cz4eDDmHHcyeQUFbO+ejNU79Y0GruUjdWbaW904SLqG+oILVvWxzPadYTDYbZu3QrA8uXLycrqXbJbo++wfTYwsf22i/AFWJZ5DfYHyR8/pVfdM/tOO+uCHtsm4nHaWlp4bd6rRPyBtP2WiMU45IovkEjEScRiJGJxEvEY8VgMTcSJx+OuLBFjU00dta2dyvtm9TH8wMOIx2MkEgk0Fnd9EgkS8Rgad8mus/Lyusy3Oa5QWEIiHkcTCbf95Oe4GycRT7C5rr5L39qmJs/DYtus27gRX0rf6lUrqW/tnX3DipUr0/KL1DRt7VXfYGNTx3wLxrmyNtp61Xfj5i2ubwHMPKuYpnpl8fyk10wt8H5a+9qtBays3cqMMdnk5lQBPtbf/giLC0q7TZZu7BlWr057ZDV31v7DUd56p99NUtmR94mVK1fS1tZ726pY49ZetzX6ji738N2EHQ/9HzsWjFTseDCS7KljAex4GAjsyPGwadOm1K+77H1C0h0B9k5E5G7gLGCOqr7RTX0TUKeqo7Yxxr7AO8DDqnpaN/VXAz8HLlXVm3dgbraDDMMwDMMwjN3NAar6el9Pwtg17yYZ7e19wjAMwzAMw9jd7LL3CTNpcxR564Ye6htT2nyQMVLbGYZhGIZhGEZ/YUhfT8DoYFe8mxiGYRiGYRjGgMRCQvV/Rm6nfhTwovf5YGD97p2OsYuoAl7zPh8AbNpGW6N/YPtsYGL7bWBi+23gYftsYDIceMX7vLgvJ2LsVrb3PhECpgCbgS1A75L+DD7sOmYksWPBSMWOByMVOx6MJHYsOPxAhff57V01qCksHEnrpZ4slQqBul0wRmq7XqGq67ZVn5EEdf322hv9g4z9tsn2W//H9tnAxPbbwMT228DD9tnAJGO/RfpqHkYXdsW7SQe9PB9X9Ha8wYpdx4wkdiwYqdjxYKRix4ORxI6FNFZvv8mOYSGhHMlsIhMzK0SkCshPadMTK4BEd2NkjD14MkcbhmEYhmEYhrGr2RXvJoZhGIZhGIYxIDGFheM5b31CN3UnZrTpFlVtA+YBk0VkdGqdOLXb8UALYMkMDcMwDMMwDMPoiQ/8bmIYhmEYhmEYAxVTWDiewnlInC8iM5OFIlIEfAPnIn97SvlQEZni1adyk7f+saT7Bl0JjAP+7ik2DMMwDMMwDMMwumOH3k0MwzAMwzAMYzBhOSwAVY2JyGXAY8D/ROQuoAn4KDAa+Iqqrkrp8mPgYuATwK0p5bcB5wIfA8aKyHPABOBMYCXwrd37SwzDMAzDMAzDGMjsxLuJYRiGYRiGYQwazMPCQ1WfAQ4DXsQpHT4FVAPnqeovejlGAjgD+B4uQ/qXgEOBvwJzVXXLrp+5YRiGYRiGYRiDiV3xbmIYhmEYhmEYAxHzsEhBVecBJ/ei3SXAJT3UhYHrvMUwDMMwDMMwDGOH6e27iWEYhmEYhmEMJszDwjAMwzAMwzAMwzAMwzAMwzCMPkdUta/nYBiGYRiGYRiGYRiGYRiGYRjGXo55WBiGYRiGYRiGYRiGYRiGYRiG0eeYwsIwDMMwDMMwDMMwDMMwDMMwjD7HFBaGYRiGYRiGYRiGYRiGYRiGYfQ5prAwDMMwDMMwDMMwDMMwDMMwDKPPMYWFYRiGYRiGYRiGYRiGYRiGYRh9jiksDMMwDMMwDMMwDMMwDMMwDMPoc0xhYRiGYRiGYRiGYRiGYRiGYRhGn2MKC8MwDMMwDMMwDMMwDMMwDMMw+hxTWBiGYRiGYRiGYRiGYRiGYRiG0eeYwsIwDMMwDMMwDMMwDMMwDMMwjD7HFBYDGBE5QET+IyL1ItIiIq+IyDl9PS+jZ0RklYhoD8uzfT2/vRkRuUBEbhSR10Uk7O2TS7bRvlBEfikiq732q0TkBhHJ34PT3uvZkf0mIt/bxvmnIjJmz85+70REhovIF0XkcRFZIyIREdkkIveKyEE99LHzrQ/Z0X1m51r/QESyvfPmfyKyQUTavf32ooh8QkSC3fSxc80YdIiI9PUcjP6BHQuGYRjGtrD7RP8h0NcTMHYOETkaeAxoB+4CmoCPAv8UkZGq+ou+nJ+xTRqA/+umfNWenYaRwfXAaGArsNH73C0ikgc8B8wEHgfuBPYHvgIcKSJHqGr77p6wAezAfkvhNro/3+p32ayMbfE54BpgOe782QJMBD4MfFhEzlfVfyYb2/nWL9ihfZaCnWt9Sz7wKWAe8Ahuv5UAJwM3A+eJyMmqmgA714zBiYiIqmpfz8Poe+xYMJKCSDsODMPoieT1QUSy7bm3bzGFxQBERALAn4EEcISqLvDKv497Kf2RiNyjqqv7bpbGNqhX1e/19SSMLlwGLFPV1SLydeDH22j7NZxA56eq+vVkoYj8BCfU+9J2+hu7jh3Zb0luVdVnd++0jG0wDzhKVZ9LLRSRw4GngD+KyAOqGvaq7Hzre3Z0nyWxc61vqQWKVDWSWug9Rz4BnIBTXjziVdm5Zgw6VFVF5FDgUuBKVY329ZyMvsE7FnzADcDzqvqAiPiSSltj8NOdIFJEgnZdMAwjiafY/CGQLSLXdvN+Y+whLCTUwOQYYDzwj6SyAkBVG4AfASHg4r6ZmmEMTFT1yd4o+bwb2GVAM/CDjOofeOWX7foZGt3R2/1m9B9U9b5MwbdX/jzwDM4CfBrY+dZf2JF9ZvQfVDWRqazwymPA/d7XCWDnmjF48RR0NwKX4DyGLNzD3s3HccrXC8BdJ/t2OsaeRkS+g4tKMQVAVaPiyO3jqRl9jKfQNIyDcIY6x5uyom+xE3JgcpS3frybuse89ZF7ZirGTpAlIpeIyDdE5LM9xWw3+i0TgWHAi6raklrhfX8RGCciI/tickavOEJErhGRr4rIhy02e78iaeEW89Z2vvV/MvdZKnau9UO8F/KTvK/veGs714wBTXdKCBHxewq6272ik8DCwewNZB4PKd//jQvPO1VEJuzxiRl9iojkAJOA04BZXtklQBz4fN/NzOgPmAJz72IbCqrXgPnAviJymNfWDB36AAsJNTCZ6K2XZVao6iYRaU5pY/Q/qoBbUgtE5DXgY6q6vG+mZOwAPZ5/KeUneu3W7pEZGTvKdRnf60XkC6p6e7etjT2CiIwCjsPlInnbK7bzrR/Twz5Lxc61foCIhIBvAAKUAccCU4BbVPUpr5mda8aAJTWsTzLUi1cW95q8BDQCk0QkL1MpZwweknkqvPBPoaSXmfddcPkfHwOOxylp3+/D6Rp7nnbgWzgL6m963haTgKeBRRYibO/CuyZIyv1jOvAF4Deq+lafTs7YbaTcJxKZzwSeoUNcRO4CZuMMwV8wQ4e+wTwsBiZF3rqhh/rGlDZG/+IWnKCgEsjDuabfARwAPCUiBX04N6N39Ob8S21n9B/eAj4JjANygLG4ZMIK3Coip/fh3PZqRCSIuxZmAdekCJnsfOunbGOfgZ1r/Y0Q8F3gO8BngMnAz4ErUtrYuWYMWDyhw2wR+RfwBU8YkRARv9dkK7AeOBqnuDNryUFKSo6C64C/iMgc73vAq4sAi3ChDKd7df4ehjMGCRnJtltwXqGTcfe0LwEXquqDpqzYe/AE00mhda6IlAIfBj4BnGRewYOXlPvEtcBCETnb+y4p7zNv4J59p4hIVt/M1DAPC8PYg6hqprXpAuAi7xnqQuBy4Jd7eFqGsVegqvdnFK0Cficii3AJaK/HhQow9iCeO+6twBHAn1X1jr6dkbE9trfP7FzrX6hqM+49zIezKD4Nl/NsroicoqqN2xzAMAYG9wKjgINx4V1+DiQAVHWxiCwGPgJ8CPhnX03S2P2IyEXAt3FK8jEicrKqtiStakXkRa/p+cDvMhTuxiAiaS2dYR19Fs5wdyvuGvGeqm702otZUu8dJM97Efk2cDadiqwE7hh5Gfhfn03Q2K2IyJG4xNoAfxSRdcA83PMDwCZvOREIAmG7Pux5zMNiYJK0fuvJyq2Qni3kjP7Jjd760D6dhdEbenP+pbYz+jleSJTlwDQRKdxee2PX4QlQb8YJDf4GXJXRxM63fkYv9lmP2LnWt3hJuNep6h9x3hWHAt/0qu1cM/o9PeWp8D7+xVsvBH4iIh/DeYAl+bu3PlJEgiZ0GPhsw0vmaaAa50kxArhHREYk97mqPgksBiZYLsHBiZdE25cilD5CRD4nIgd798Bzga/goh6cIyKVfTlfY88jIiNE5Alc+NI3cKHiHgCacaGAzhKRir6bobEr6ClPhao+h7sPLMXdL/4GnJ5SvxiX560cOGP3z9ToDlNYDEyS8YW75KkQkSogn55jEBv9k63eOq9PZ2H0hh7Pv4xyOwcHFslzMLdPZ7EX4T1A3gJcDNwJXNKNK76db/2IXu6z7WHnWv/gcW99lLe2c83o16RaNiaVFBnhG97FCZpewRkC/Rm4JGWIxbj8K5MBC8E6CPC8JbqTZ0RxCVN9uHj0xwI/F5HJ0JHX5z84RezwPTRdYw+SEupnPxF5GngI53XzbRHJUtUFwP04AfU5wDHJfn00ZWPPc6S3/BEX2vR7qvoL4KPA68AFwCF9OD9jF+BdB0LJ754yM2nocB9QjNvnCeBnInJMSvekocPBXk4kuz7sYUxhMTB5zluf0E3diRltjIFB0rpnVV9OwugVy4ANwKEikqZg8r4fCqxUVUtKOkDw9tu+OFfgrdtpbuwCUgTfF+FCc1zYQ0gGO9/6CTuwz7Y1hp1r/Ydh3jrqre1cM/o1nnB6rJen4mPJnAQikgxxvBJ3XRkFXI3LpfM9EfmEV18LrMCFsiuEni0vjYGBiFyNCzeYVET4AVS1GufNV4RTVH0a9478W68+4pWHgMNS+xoDn6Tnjedl9RROKfUrnGLiw6oaBvAS7f4KFzrsQhGZ4PWzsOmDhO3kKrrIW/9JVTcn7weeN/BPcMfFJ0VkzO6dpbErydznIvIp4KWU/Hmphg5vAhXASFxYsGbgbyKyvzfOImAdMJV0j01jD2EPaQOTp3AP3OeLyMxkoYgUAd/AJRO7vW+mZvSEiEwRkS4WpSIyBfip9/Ufe3ZWxo7iadb/gvNk+nZG9be98j/v6XkZ20ZECkRkUjflObj9VQD8S1Vje3xyexkpIYUuAu4GLuhJ8G3nW/9gR/aZnWv9BxHZp4fnjlw682X9B+xcM/ofPSgTzsXFFv8Jnd4TyTwVC3CChVm4GNRX4YQRvxeR01R1E/AS4PfGwRLsDgwyLGKTZdNxFtBXAd8XkUJVjacIm/8LDAVmqepfgJ8Bh4nI7V5IwidxAsmPpPS1ROyDAE+RWQB8GWgFPgdcr6rPqmo0o/kbwE04Q9DTvJwXMQBxSZiNAUiK8rKLRbyI+EUkiDOeacblKQDQlGvAC7hryInACakW+kb/JCUMnKaUDQEm4J4Lfi8ikzLu+0tw+/+j3jPEZ3DHxO04r6sVwBrvc4U3psnQ9yBiXi0DExE5Ghdnrx24C2jCuTKNBr7iubMZ/QgR+R7uwel/wGrcTXIScAoukc+PVfUbfTbBvRwRuQzPygqYhruxvQi875W94L3wJK1NXwRm4MJqzPfanwC8Bhypqm17bvZ7L73db551zArc/lmEezipBI7DxTd+GzhaVWv23Oz3Trxr4XdxD4S/xiW4y+QB78HRzrd+wI7sMzvX+g8pzx0v4Dw4G3GWpicDZcDzwInJ88fONaM/IiLnA1tU9QlPgHg8LiRdHDjOi0OdbHsZLrzHPqq6zBNq/xZnHXkVzutiGS4MxKWqajlZBhAiMhE4VVV/5X2fgtu/xwK3AZenCJtzcF4U/1XVK0WkDKeo+p3X9vO40GHnAKer6n/29O8xdh8icjbOG/SKlPe3bhPmeh46D+GMPj+Fu06cBlwIfD35PGoMDFL3syczOxj3XPqGqr6f0u5O3DXhYlW9wxN2J1Lqvwz8HGcsfI2qzt+Tv8PYObz7wtWqenlK2a9xistXcOf0/1LqnsGFZT9ZVWtEZH+csqoe9+5yMfB94Fuq+qM99kMMh6raMkAX4EDgUVwCxFbgVeDcvp6XLT3uryNxD05LvX0WBTbiYmee0Nfz29sX4FacpVVPy60Z7YtwbsRrcA+4q3EPNQV9/Vv2pqW3+w0X/uF3wDxgs3f+NXrXza8COX39W/aWpRf7THG5EVL72Pk2QPaZnWv9ZwHm4CxH3wHqvH2xFZeQ9gog0E0fO9ds6RcLzqhnNc6D4tHU4xX4mle+DGcZmSw/3HvG/m5KWRXwHi6p5mXe8f8WMLKvf6MtvT4WBOchkQDacAqGZN0onCI8AfwCGOuVF+GsZDcAWSntf4Qz9LsHuBKngL8quZ2+/q227LJj5pfeMXGG973L/S7j+LrYa78Jp7hvwclXDuzr32JLt/ss5K19KWWp94ihwL+9fZpcFgGHpLQ50St/HMj3yvxA0Pt8TErf7wC5ff27bdnucXF9yj77Qkp5EfAbnLH3q8ChKXWXe/eBiSllZ+PCTM7DeZcncJFQSvv6N+5ti3lYGIZhGIZhGIZhGP0GETkL+BfOk6IR50F+i1fnB64BvoJTUHxNVe8WkZE4S+lNwNmq2uS1PxInyDgAWA+MxXkMPZ9pVWv0P0SkHLdfD8IpUp8CztJO77CjcKHrjgTuAD6pqioi1wJfx1lQP+C19QM/xHlYbMQdC/9W1Q/3ZIFvDByS57OIfBGntPgs8MfM/drdeS8i38V5FBYAt6lFrOh3eOF4bgCycQLpWEZ9QFVjIvJj4DycN9VCnLfoN3BK7tmq2uy1fxKnmPi2qv4wZRzBhUKdiBNWDweOVdVVu/cXGh8EEbkRp4BowOUoGqqqjV7dMJyXxTW4UFDHqOpGETkUZxTxf6r6Ha+tACfhcvfFgVLccXSaqm7es79q78bibxmGYRiGYRiGYRh7lO3kDGjHJcr+L1ACXCEilQDqcuj8DvgmLhzuTSIyR11S+HnAfrgQdHjtn8MpN+bjBNQAH/fqTFnR/2nEHQ9v4KxeT8aF6wFAVZ/FKSDewVnKJwXNd+OEz5NFxOcJqeM4L7Lv0XksnC4io0xZMfBJOZ/X4LwkDsV5fgKd1xxPqRESkUNS+l6HU1gcmFRWiCXg7m+EgEuBTwDTUytE5Fgg4oXDPBAX8u3Hqnqfqn4Lp8CaCFyb0u1qnELiByLyBREZJSJTgS8Bc4E/APfjrhUHetuxXDd9xLb+e0+ZVY1TRC8AcnCeeckwYRtU9VpcSMnJwK3i8gG/DawF5ojLCYw6HsXdZ/JwCbcPIOW5wtgzmMLCMAzDMAzDMAzD2CN4yTHTrNm7SWT5DE7g8ALO0vUgXEgnAFS1UVX/iBNIFAE3i8gxOAv7YbhQQR0CR1V9FWd5WYcLFWR54/oJmQm1M+p8qhrBJVAvw1nHAnxKREYk+6vqu7jQHSuAL4rI9bjQT4/jcvV0KKZUtVpVfwb8HRd27ExVXbMbfpqxh0kRaM7Hxas/CzhDRLKhMwmz5411M/BrEclP9lfVFlVt9xIzS6YFv9G3qGo78CFcGNLMnBJ+nJLqq7jcaT9T1XBKwuw/Ay8BXxKR/bzx3sKFhluOU2TOx91zfo4L4/1PnFcGOIE1qfctY8/hXee7/e+9czWBu55nAX/DKSGuEJH9PI+7bK/514C/4nIf/Q533DyMy99WlTHmE7gcfk8AH+/mmDN2M6awMAzDMAzDMAzDMPYInvWiisgsEfmsV5bp6ZCDC9twGE5g0A5c7iXSJkUI9UNcuKcJuATMM3DC7Yu8cZNJmH2eUHuKql6iqrXdKEmMPkBV454HxGe9hKmpdcnjYinOm2YNTrA4A5dIvaO/qi7EeVq8ihNKfR+Xj+AgERnnWdX7Uvb75ao6Nhkuyhj4JAWaXuieW3G5tH4IfF5EgiJSJCInAT/B5TB4EBe/PnOcuAmm+46kErM7i3pVfVFV/yUiIzyvimT54zhBdBAXEijLE3JHvPoluBBRAVxOimS/v+KSK/8Wp+B8AZcX9nTPIysp6E4qLow+IOU+8SMROT7lGPGlnKsv4MI3bcR5YILLXYGniBRVXQ9cB/wFOAS4D+eRMRQY6Y3px+W2AfiDqp6oqnd6deZhswexHBaGYRiGYRiGYRjGHkFEsnDWzR/zir4D/E1VV3kCprjX7hmc98ThOMv6bwE3qepVXr3fE2IU4WLV/wCowYWSasDlsVjdzfYFl6w1vjt/p9E7RCQpOA7hBEefV9UXvLrkPv4ILlH2+TiFxEKcB8WHVfU1EQmqatRTRkzH5bwYjku0W4oLDfObjO2KpzgLmCV9/yH1GrCT/ZP7NRc4E/gjLqzLGlwOlHKcEPq7qnrDrpizsXsQkRxVbRORbM+7IlleidufK3F5BZZ55ZOBB4BJwFRVXeoJn9VTWJYBfwI+CnxIVR/t6Xjz7hPH4hQZ+cBRqrp8t/5go0fE5aJ6Aqdw2gDcnMw5kdJmX+A5nIfFl3AKjLm4nEf3Je8TXlsf7j5xMk4ZNRG4Q1Uv7mH7H+i6ZOwcZlViGIZhGIZhGIZh7HJ6sEYsxQvZhEuC/W3gryJSlSEQeBEXOzyCS7S6BrhARE5OHUxVG9QlTP0L7v12oreMpRs8Bw8TPPQDPKHRSJyyYjMu/8itIvJ56MhXAi68TxiXRHUVLhTYUJyiiqSyQlUTqroAuAR4H5iCCw8z0RNgd5BijW/Kin6Cp2xIKiwPFZHZIjIutX57Y6Ts11ZV/RtO6Px9nFByKc7zYnxSWWGeVv0Pb783Ar+GjlBQiMghIlKpqtW4cD6TcMm18dotAW7CWcdf5xUnPGWFqGoNzsuiGviupxDpTlkxF6ck/w3uPvILnHLE2AP0cJ6vxSkrmoAoLizgXzzlFQCeF2UdMNK7Dvzcq/qlVx/1IlL6Pe+9r+COh4leuzleuLgu2DND32AXZ8MwDMMwDMMwDGOX4QkFUkM1pAohNuHCOLXjwjfdjQvp9GiGMmITLmnyUarahEuUnAt81rO4jSeFD1777+KUFuCUHRZvup+QFApnCqI8odG/cYltfThh8grgVyLyTREZ6jXNwSm3Dve+/wInfD5XRD6cuT1VfQoXEmSxV/Soqrbuwp9k7CK8cziZDDsZKu5F4FngNeA9EblRRMbuTJgmVZ2nqt9T1eNxXldfVtWN0pmnIjMcndH3VONCdZ0pIpUisq+ILAbuAvb12vwEJ8S+UFKSpwO34KzszxWRQ5NeVCn1/8VZ1h+Iy4fRgbhE7PfivDS+AzTj7j//Z8fJ7id5L/f2WTClPKCqK3D7vAAXLvIG4JPA30RkWsowrwMzvXHuxz1fjBKRZLL1Du9KVV2Ee254xKv7lqqu3U0/z9gJTGFhGIZhGIZhGIZh7BI868VkCI45IvIPESlJsXxW4GWc8OkYXMLTS4AhwO0icok31Du499VS7/ttOEHUyXg5KrzxksKHjTjL+6mqeqqqNu7eX2psjxRBdFLY1yXBtqpupjNsz0icVfOvcSG+/uxZQa/AWc6WiUixqrbhPHNCOAVWgXbmqEgqRe7HhQTyq+p/dt+vND4I3rVCvX03HBfOJQ8Xiud63LXicty1Yeg2hurNttqgI+695anoh3j3j3XAp3HX/teAt3EK7p97n1HVLbhrxASc0iLLK68Hfg8onfkLYsljzPOo+iMunNw9KdsVdfkubsN5aZynqgeq6iupSjVj15Nyn0h6V/0U+GWK90Ty/vFtYCtwAi7c0/nAbOBBETnOa7MBKBWROd73n+AUT98XkQrP0KHjPqSqa4CzcfeJ+3fXbzR2DlNYGIZhGIZhGIZhGB+IpBW9JxAoEpHbgHnA0cD41LaeMuH3uPAOZwGrcYqIhcDNIvIDXOLMtTiBVFLR8W1viKtEZIQnhEoVPtSo6pIMzwujj0gKhEXkbBF5HHhcRB4UkZMzrJ5fwVlGnwjMVNUv44SRxwNPiMgROAXEFFx+ElT1bpy19DHAxSmb7Aj1pKpLurGwNvoZIvJVnJLqWlzYl896nhDfwVnB3w8cCnxDXB6CD4RZy/drkkqkfbz1MFz+mtNwCZC3pLS9DedNdy4p3hKeIuJOYP+kAtyz0k949W+q6r+98kyvr3+r6rdT6n1Jpdqu/ZlGpiemiHxMRNYBXwXieIoKTxkd8BQaV3vdv6uqd+GU0lHgbhH5JPA/oBCn4EJV38SFD/MDP/X6Zu7LsN0n+iemsDAMwzAMwzAMwzA+EElhkIhcgwvp8SGcgOAM4I1uuryNU1pMBb6IS5B8GvBPXGzpv+OEDAemKENewIV9mum16Ta2tCdfspjTfYyIlIvIP3D7dAguifoxuBAcv02xim7GWTWvAT4hIgeq6ndxgsjJuLAeJ+NCgh2esolv40LHfFlEJvckVFTLU9EvyPCASZYV4877S4Ejccl0k0nXs7xQXj/AhYi6EC/cizE4SB4P3XhjFeHC+/iAcaq6VlVjqUJldQmUvwsUAxenWOSDE1JvwuVHCvR0Dcjw/OsyL1Nu7T5SPDFniMjLuHv+IuBjwA9TlVPJ/aeqd+AMIY4XkUtV9Vngw7hj5S/A53E5TA5I2dSvvHEvEZHDMvdpqpJ7t/xQY6cxhYVhGIZhGIZhGIbxgRCRuSKyBvgRcB9OuPgjdTHkuwiSvfAbfwcW4ATTp3rCyctxoWCm4qxr1+IE1Ul+4q3LkwJvo99ylrf8H3COqs4G5uKsoq8ErksJ87MUFwZoLHCpiBSq6gPAZTgB1WFAIy4JezKEyxs4ZcgYnNDS6KckLdw9S+ZSERnmVTXi8o004vITbPHaB1U1DKAukfp9OMvpU736bcqyUhUjXm6CQGa50Xd41vWBnhQGOG+bw3GhA2eJyJe88kxh89O4MGKn4q41yfJXcJ4564DRO7rfzaNi9yMiARH5Iy6XVSnwOZx31T+TyopUhVaKsuoL3vpr4pKwL8Lls7gB59HZilNaJD1ktgB/9vp8YA8tY88hdh4ahmEYhmEYhmEYO4uIZAM/xgkS/gF8w4sNnRQYJDxr6XBGPx9wAS7Z8r3AF1R1g1f3IZzF9V2qOt8rE0/gOU5dXgOjH+IJmQpxIZtGAKO9YyC5/+YA3weOAK5V1d96/UbjQrlMwgmu7vLGyvXavwk84HlkJLdVAEQyjy2jf5Dc597nPOBbuPNagEu8EG75OAH1tbgwP5emeGwlj5mJwFu45OvT1ctHsZ3t+YCDgKOAeeqSsRt9jLg8Fcl8Bfm4HEYlQA3wiKquTtnv04DnceEDD1SXMN2XaiUvIpNwuS7eAa5Q1XeTY6deK4z+hYiUA3fgQgF+Q1V/0k2bElWtS/mefJ64Hffs8FNVvTal/kqc0vMZVa3LuB4EPa8cY4BgCgvDMAzDMAzDMAxjp8gQQv8aGIoTEK4FZuAEhkfgQgLNAx5U1Xkp/cuBv+ISaX5RVW9MqdumgCFV8GX0Lzzh9Lu4sCxH4zwjkiFABHdM/BOXq+QqVX3Vs6A9E6e0eAT4tLoEvIhIEIj3FKJlW2FfjL5HRD6OS4KcwCme3gJ+r6qrvPp9cRbxMeCT6iU7Tnb31m/hrKcPARKpVvCpgknv+0RcqKnLcWHFLlXVW3bfLzR2FBH5HE4RWYDLWRDEXTO+4HlOJNv9CPg67nj5XHfXfRH5DvA94AZVvSajzq4N/RQRORx4CHgG+AxOMXUyzrvmaO/7S8Cdqvp6ct+LyBBcgu0W4HBVXeiN5+vuHpHynGLHwgDCQkIZhmEYhmEYhmEYO0WKkPANXPiOkbikmR/DJVL+I06BcQjOgvpZEbkspf9WnCAzBlwgIlOhQ/CwTWtIU1b0DdK7hOa5uFwmxarapqodygbvmHkVd2zMAE4VkZAnSHoKl2T3JOAjycFUNdqTssKrNyFUP0VEjgF+gYsjfxlwnqp+Nams8FiCyzswhc6QYEkSOAHmFJyQUntSVojIEBE5H7gR+DmwGZfI3ZQV/QQRqRSRv+AUDE/hwsPNwCkry4Afe4LsJD8D3gc+KSIHp3hnlInIOK/Nb3CeejeSgV0b+oZe3idexz0nfAh3bfgJzsvqXFwOqzHAl4AHROQgOhNxbwa+g1N2fT05WE/3iJTQY3YsDCBMYWEYhmEYhmEYhmHsNCkCw4dxlvGfAW7HCRdOAg7EJcu9DMgGfiMiE1KGeAUntDgEOBss2Wl/JGnx7lm4ZonIhSJS4dWlyRa8uOHVwCQROd1r40+pb8cpJpbijpFRXnkNLpdFM3CeiMzobnxjYCAuz8zXcAqsa1T1QVWt9WLSd+QV8ASJ9wDP4RJw/8ITbBeLyCnAdTil5h8zrw2e5XSOiByHi2N/Ky6s2LmqemTS+troe7zz+CTgo7j9dI2q/lVVF+NCOjUA04CLRCQXQFXrgZ8COcBPPEXFSbjcOL8UkamqWq+qn1TVFanHlbHn2cH7RBtwE7AGp8C6BHcOT8E9D4zBKaPKvfoxKX1/5PU7r7t7jDHwsZu+YRjGIEVEjhIRFZHv7cZtfM/bxlG7axsDBREZ4/0Xt+5gv/1FJO5Zg/VLROQyb47T+nouhmEYRv8jxXpxJfAv4G3gt6o6W1UfV9X1qrpMVW/GJeXOBq6GDmVHC05oUQ1c7VlSGv2MFCv2c3CW67fQjYIpRWh0m7e+MiWUR6owcQ0uz8Vs0pOhvoFLkjoXuNA7RkyBNTCpwIX/ekpVXxQRX1LBmeol4bERJ4SO4pQWL+COhRtxx8jXVPXxzA14z6ffxiVf/hhwvaqOUNW7d9ePMrZNUjCdqTzwzuNs4MeqerWqLheXFP0POOVlAHcfOBMX0ivZ76/A3bhjaRHuPvNx4CV1SZc7ttvNcWXsQXp7n0jhfeBXOC+rk1X1O6paC9Sry010Ay584PHAdG/sLK/vl731d719b16XgwhTWBiGYfQTRORgT+D93x7q/8+rX9xD/Re9+h/s3pnuPJ4x1QUi8rSI1IhIRESqReRNEfmDiBzZ13PsA34JLMaF0ditiMgc7xj57A52vQ1YjXtgNAzDMIwupAimHscpJX7llScFVwGv/ne4eOUni0h5inBpKS5szM9V9dU9NnGj14hIoYh8GfgLTrAYBc4Vl/S2Y18nhUaqei8u5MfJOOEidOYjQFWbgPe8ryeklLfhhM//AP5qAsgBTQgnoA6JSI6qJnran17587h9H8Eps76KCxMzRjuTs2da0H8cFxbmOWCYqn5/t/wSY7uIiD9VwZgRuiupyLwVF64LETkB51lxIS5E3AW4fV6CU1aOSBn+mzhF98te2zJV/Vnq9k2x2ff09j6RxAv9eD/OM3NeiodG0hBiPfAiTn59otct4tXdh/PAuNz2/eDDFBaGYRj9h9dx7u+HprzUp3I0oMBkEanqoR4gmaRsHjAVJxjoL9wM3IELC/EITjBxJ1CPs6S6vK8m1heIi+l7FPCLPfSQdYa3fnBHOnkPkr8CThSRQ3f5rAzDMIx+g4icLSL/SXrV9TYUT4pwYStwj6qu8b4n729x7/mmHReHfiNQmyKciAC/VNV+a3hhcAROaNgMnIXzgjgcZ9We6WWRFCpf562vFpGh6pJu+0Uk5JUnw/Vs9follR5vq+oFqrrIQrwMaNpxAunh3pJGNwrNOpygsw0YDyxQ1d+rak2KMDxpwZ08Lu4E9lfVc73rj7EHyDwvkxbuXoiuQ0TkJhG5WUR+KyIHpigyw951oBz4Bk45cTXwLU9Z/RawHudVc05yfFV9X1V/BXxMVa9R1ToRCdj1od/R6/tEElXdoKpPq2p7hpIreZ/Ymrr2jjG/9/mLqjq/t88qxsDBdqhhGEY/wYvd+jyQDxyQWiciZbh4nvd7RUdn1PtwDwJhnNUJqtqqqov7y4O7uORplwALcFZSF6nqtd5DxtFAJfCHPpxiX/Ap3AvZPXtoe2cA81V17U70vQsXO/iqXTslwzAMo59xIC7G+FmwcxarmWEZUkLAxIDDcIm5N+AMMVL7ZQoijf5FM87wZK6qPooTRG0Ezk8aNKQoHJIKrEdw+Uym4bxK8YSaEW/MU7z1aq8u7XizEC8DniacEdV04BgRyYZOQaQnuC4BbhGR/b19vQBnQX8icGaKYDKeeiykHGNvqepbe/A37bWIyNDkuZ55Xib3pYjcjgvndRpwOs5y/hURyfR8OQsn3P6pqt6kqnVeeStQBJTiclnM8badVG63et99qhqz60O/o9f3iUyS+zjlPpK8T3zEW89Ltk19zkj16jEGD6awMAzD6F88462Pyig/EudC/xuglgyFBTADZ53ysrokhj3msBCRVd6SLyK/FpENIhIWkYUiclZ3kxKRkSJyp4jUikiziDwnIkfs4G+b661vU9XGzEp1ydJeytjurd5vGCciXxORZSLSLiIrReQ7IhLsYb5HiMhDIrLV+23LROR68ZK3fZD2nnXXNSLyvjeX90XkWnbwnuq9nJ0BPJb5f0hKPgwRmSoiD4tIvYjUefuh3Gs3V0SeEpFGr+4vIpLXw/bG4oQFD6aUFYnI90XkPW+/Nnq/5zYRGZ3aX13yzGeBs0Qkf0d+q2EYhjGg+BEulvRF4oVq3FnLxRQBk4qLU34G7llmJfADT4nRRdhkAqj+iao+C1ynqqu9okW4/TkRF74lyxNaJoVOScXTF4D5uLAgd4rIod7zzWdwHrZPAE/1sE0TQg1QPCFiE87gai1wLfBh6BREesLoP+LedUq8ujZc3PtlwPlkGHIZfYOIDMN5PvxaREZ6ZZn3hu/jEmrfgFNW7IfLX1ADfEtErkp5j0i+s2zJGONyXLjc23GKriLoXkGyC36WsYvZ0ftERl9NVT6IyAQR+RnO0+YOVX24h23aM8MgxBQWhmEY/YukwiJTIXE0zhL/FZwXRnf1qf23RxAXY/oE4F5crNjxwL/ExRLtQESG4rw2zsNZNSSVJk8AB/dye+AeVAEm7UCfJP8HXAM8CfwW50lyHc4FPA0R+RROsH4oLuzUb4B1ONfUJ6TTtXSn2uOSgv4Edw/9PfAYLuHXr3fwNx2B2w+vbKPNWOAlIAvnHv8Wbj88ICKH4V7um705Lce99P+2h7E+7K0fhA4hwmO4JIW13hg3AW/iXjAmdjPGy7g4xIf04vcZhmEYAxDPyvV6YDROaZHbk3ChF2OpiARF5Fjgh7h7VAlOWbFgV87b2DOkWEEnvYP/hkuMfBZwakZbFZdsuwG4AvgrcC7uWfY13PGwFrhaXXJVo58hXpLsDzjMY7jQokXAzSJyg4hcIiI/Af6E87L5K+6ZN8kKXOjYmbjrUPYHnIOxk4jIJ0XkS7h3uZtwhnJdkiiLyHTg07j3qu+q6muqukldLpvP4Pbpl3BKDHDXgGacF81Mz0Dt87h8Fo+q6uVAhap2q8w0+i87cp/ohiwRGS8iV+OiL3wFJwOw3DR7G6pqiy222GJLP1kAPy6fQzMQTCl/G3ja+/wlXAiFESn1//bKDk8pO8or+17GNlZ55Q8AoZTyY73y/2a0v9Ur/2ZG+RVeuQJH9eK3jQAagATwd9wDy+jt9Elue3PG7w3hEusp8NGU8n1wib0W4BKxpY71da/91R+gffI/XQDkpZQPx1kHKXBrL/f1z7z2x3VTNyblv/1CSrnglCqKi/F7RkpdEKfQiAKV3Yz5LLAy5fs0b5z7u2mbBeR3U3661+e6vj5XbLHFFlts2X0L7nnkKaAROHcnx/DhjAHqceEgWoCHcGEh+/w32rJLj5fzvOe7fwNVyf3fQ9uzcUYoNwBnpZRLX/8OW7rsK3/K5/yUz73eV8m2OIOXs3HeVQlvacLl8Duih77DcAqNA/v6v9gbF5wx2+PevroZKMaF89uMyz2zf+pxggsBlQCu9L6HUuqycUZSCVyuCoAKnBFYAveOWO19foqUd8TU49CWgbv09j6BMwgMe88fy4FP9vXcbembxTwsDMMw+hHqYjH+D+cieyCAiFQA++IEzuAE9eB5VUhn/oo24NUd2NyXtDMuJOqsV1aT4nbteReci3sw/UVG/7/gXLV7haquw7kIr8W5d98NrBKRzSLyT3EJqHvi117/5FgRnAcEuLwYSa4EAsDnVLWGdH6GUyp87AO0v8hbf19VW1Lms54d97AY4a2rt9FmOc7jI7kdxeWSAHhTVR9MqYvicmEEcIqYDsTlQDmM7pNtt2UWqEuG19xN2+RcR3RTZxiGYQxAegjLEAe+g8urdYmIDPfa9vr9UZ3l7QKcJ+c9wLGqepqqrvLCK1qeisHDozhDmJPpIfeJeEmVVfVuVf2pqn5VVe9J1nnPOEY/QlXj4nIS/BF4RkQeFJGDcc+avboeJPerumS6d+MMZubi3mNOUdU5qvo/cfgy+m5Q1atUdV7XkY3difcOeB0wB/gacIO68L1rgZ/ivCQuEC/RttdtpLeeBO59zTuGRF3I4mdx7x3nePVbVPXrwLdw7yivABep6rHaGU4IzciJZAxYtnuf8LgD51nxWWCSqt4MLizznpmm0V8I9PUEDMMwjC48i7NQORp4EWfVL3QqLBbgrFCOxt3QZ+IsXp5MVUBsh3pVXdlN+To6c00ATMZZxDztPWh2oC48xIt0HzqoW1T1SREZj/tNRwCzcYL0c4BzROTHqvqNbro+303Zy7gk0PunlCVDVJ3ohZ/IJApM+QDtZ2xjPt2VbYsyb12/jTYLu3mB3+itF3TTPlk3LKP8Qzhr2VSFxSKcddTHRGQE7gHyWWBBDw+P4EJHAZRvY86GYRjGAMATEsdUO2JGa0qdqOqLIvJnXDzxs4H/28b9oVtUtUVEPqdeklRvbL8JoAYXqtogIr/ChRq9SEQeVdXlIrIPMF1V71IXFgToTMLuCTsTqXVG39HNdeAg4DZgKC4c0GzgILzwbjt6PQDwDGLSDKxSrgndKq0y52XsEapwIWDfUNWfZ9T9BrgYZ4D2BPBfr/wJ3LvTTBEZraqrU/edqj4vIsuBKhEZBazzzv8fQfp+tvvE4KM39wmv3Ssi8oZnjNdxLNjxsPdhCgvDMIz+R2ri7eu9dTvew72nKHiBzrwVyfXTO7CNhh7KY6TnNyry1pt7aL8t74Bu8V5Kn/SWpMXdJbiEe9eKyD2qOn972/EsdmpS5ghQ6q2/mdm+B3a0fRHOlXVrN3U7+l8kPRu2FZO3S3Jy3D7aXl1mMvIP45QNHUoVVY15Xi3fw3m+JD1otojI74AfdvNgmOOtWzEMwzAGJEmhUFJILCIX4gRMjbjEyI+lGED8GGcJeYmIPKOqbyWFzL3dXlJZkSKcNqHD4OQN3LPc1cBnRGQx7vnuYBGpVdXHkw1TBJiWNLcfkPRs6GZ/nIl7B7kYZyg0DZcM+xoRWayqT+zo9aA7tndNMGVFnxAAIsAEABE5A7gRuF5Vfyci38V5z10kIq+oaj3OCOvfwInA8cBfPMWk33tvy8OFiaoH1mt6/otMJabdJwYnvbpPqGo06YVpx8Lei4WEMgzD6H+8hctPcIjnjns08IqmJyN8FhgjImNwCg3ofcLtHSGp2BjSQ33lB92AZ935F+AfXlFmQvFut+O5hZaRrnxJCvELVVV6Wj5A+wbcvbM7D4Md/S+2eOvSbbb6gHhJCk8AHsm0YFTVGlX9HC4Hxz4419tanAv417oZLjnXLd3UGYZhGAOAFAvWw0XkPZwA8mKc8v4+4K8iMtpruwoX/mM68HFPqLSzCbhNOD0ISREqteKs8TcAn8LlHtgP+HKqssLoXyTPae+8niAuGfbRIlKMM3j5gao+oKrVqvok7llxGPBFEcnZ2euB0X/xlAYrcOF7R4vIauB+YAmw1jtm7scpJ84EPuJ13Yrz/m/HKbU+BB1GZgW468JEXL6/NCG0KTEHNztzn/AMK0xZuRdjCgvDMIx+hveg9hzOmv10YCqd4aCSJPNYHIfLX9GMS1q3q1mKe+ic4wm+O/CssQ7ZhdvqLmdCksO7KZuLs/55M6Us6WJ+cNfm3bKj7d/axny6K9sWb3vryTvYb0c5DpcTpbv8FUDHA+EiVf09ziIK3LGXSXKub3dTZxiGYQwQRGQWTmiQAD6Pu4dNxVk+fhxIDQHyJ+Bdr/y4Xo4vKZ9DIpKTWW70Dbs6DniKAuwg4AqcMDsLlzi1SlX/z6u3fd9HdJdrQjpziqiIBEXkZ8BiXHLlp4CHcSGaXhcRX4oXxoO4EEAnAxfuwBxs/w8QUpQGU3HHwHDgBuAsVX0wRYh8HS5s8cUiMsErfw4XMmw8cKuIfE9EvojLDfht4DWcZ4bRj7H7hNEfMIWFYRhG/yTpLfFdb/1sRv18oAn4Ai5M0fOZ1vO7As+r4184D4urM6ovw0uq1htE5CQROSP5gpRRNwEXHxvghW66f0FcnoVk+xDuYRjg1pR2f8CFRfqtFxs1czvFIrL/B2h/h7f+jufWnGw3HLcvdoSk0umgHey3o5wBhIHHUgtFJOmhk0nSU6S9m7rkXJ/rps4wDMPoZ2xD6HAFMBq4VlX/4CmtlwN/BVYAHxWRMwFUtREXPnAoTjBV6Ak5uwgWUqwok8KJ2TiPvQtT45Mbex5xdMSF954DKpLPMzsrKPLGPQT4O876/mlgH1X9nKq2ikjA9n3fISKXAfeKyLjU8oz3hg/hlA83Al8EfoUzSpoEJDwBtqRcTz7vrT8tIiOToXx62H7mNWGsiEzuqb3RPxCRC3DeEK/i5IajVXWLV+cHUNU3gd/h8hKe65U1qOqvce+wtcB3cKEFzwf+CRyrqkv27K8xeovdJ4z+hOWwMAzD6J8kFRb74QTHr6RWeq61LwInZbTfHXwdOBa4XkQOw3k0TAVOAR7HhRvqDVNwL0BbReR/wHKcVc4Eb6wQ8EdVfbWbvq8Ab4nIP4EWXFLyycB9qtphpaOq74jIp3EWoktE5D/edgqAccCROAXHVTvZ/hkRuQX4BPC2iNyPsw4515vjqb38L8AlvF5Bp0fDLsd7GTwNeEpdksNUZgL3icg84D1gE86C6sM4i9tfZYwluONgkaou3V1zNgzDMHYdKUKHTwNx3D2tGHfffVJVH/LqJ+DuYRfj7n934aysk+PcKyKP4LzvHgPuSBUsJAUNqUJJnBD0clzc++/ghF4Wi7oPSBEExb19/WNgFm6f1IjI13HGCNEdFRp5wup2nOX011X1Hm+bSYt8S6jdt5yMM165G/fcCYC4sG//wz3XV+MSJn9HVWu8+iBOsPgN4FMp1xK/qr4vIr/GGetcAXy7u1A+qceSiFQAx+AUIrXAZ4BVu+H3GhnsyDmd0vYR3Dm9GedRc46I3KGqj+De35LcgHsPulBEnky+x6nqD0TktzilRwXu/WGltw1LqN0PsfuE0d8wrbZhGEb/5B06Eztn5q9IkmrlvtsUFqq6EWdl9U9c6KQv4HJHHI9LwNdb/o4TXDwL7ItTAnwBZ7X/OM7N+NM99P0izpX4eJxVVzbO2vNj3cz3z7hwUQ948/0iLmFoOU4I/38fpL33G67FuUh/Fvci+EuvX6/xHvJuBCaKyIE70ncHOBjnMfFAN3Wv4+KSK06odDUuH8qTwKGq+u+M9kcAo3BzNgzDMPopqV4VIlIgInfirGBPwOUiSuDuce+KSJGIfMyr/yXO6/AgVT1fVRs8oWWS7wL5wJdFpCplG6lCyTIRORtnCPAbnIffwap6vQmo+o6kBbyIfA0noD4YF/ZzPlCFe8Y7P9l2JzaxQFU/liKE8quXF2HX/AKjt3jnYG5K0eeAT+Py06QSBVpxisrTgRtUtUacFzO45+wVOEH0Ad7YftxzIziDpq3AZ0Xk0Iw5dHhViEiOiByLe46/FRcq6DZ1+XGMPUDK9Tm7t21VtQ5Y6q1/4lV/06uLpQiaNwHX47xxPp68Z3jXgHpVfU1V/6OqK71rkM/uBf0Tu08Y/Q0xjxvDMAyjvyIit+KsPccOxhcbESnFvQzeraqX74bxfwp8FRjmvVB8kLH+hlPOjFfV+l0wPcMwDGM3IS5U4Syc99w9wE04r8RF4kIgPo7zEHwMd59tAr6iqrdnjHMUME9dokxE5DqcpexdGe2ycMKNj+NCy3Q7ntE3eELEy4Fv4QwT/gY87Qkex+KEU+8C16jqC55QcYeFSDvbz9g1iMhHcZ4UFwB3ZnhB+YETgf8m95GIfBL4BU6xeBiwQl0Sbb/nzX0FLofNw6p6espYAe/Y+SJO0Xmaqj6SaXUtIjOBj+KOvTLgR6qaDHdr7CE8BdIPcQZf1/ZgCLe9Me7DeWF/TlV/nxE2KAsX4mcKzhvnX93NwcL99G/sPmH0N8zDwjAMwzD6CFWtxbnbXuy55u9qzgBe3QXKiknAecD1pqwwDMPo33iCyXdxOahuBV5U1R+q6iIAVV2DC0s4Giec+DEu6WWmsuJbOEXHjGSZqn63G2XFeFzYmL8BlwK/VtUhpqzoV5TgwoC9hgvf87gnhDoe+DdQCByIs5DO8oTWOxyr3IRQfU4E2AhciUtqC3RcE57AJdI+KaX9HTiP7SE479qEuFxzCQBVvQl4HjjV85xKjhX36v8PKPXCBKVa8o8WkU8Bt+Cs8p8Hhpuyos84CLgGOH5HlRUpHnvXAc3AV0RkiKfQSuayCOO8MEpwx1IXTFkxILD7hNGvMIWFYRiGYfQtv8a5UndJ+v1BUdUpqjp3Fww1Avei8vtdMJZhGIaxC0iG18goC3hWr9/BeVCMwHlTIC6pZVL49CegDSeA+mGqAEFExovID3Ax5l8EFmVsI1NAcRTwJeAtYJSqfn3X/EJjR/AEzd2iqpuBn6nqGaq6WkQqxeUFewxnXf85nJLrLFyYyN5sT1I+B1JCCRl7mJR98RRwM3A4cHbymPCuCclnuI+LSLFXHgV+i/OI+r5XFvPGTF4rvo8LFfc1EQmlhvPxrObrU489EZmGC6f6e1z4qMNU9WzvGDR2I5n3gxRew4X12VdcPsJeJ0/2FBOiqm/hFNijcaFxwVNsee0ewnlh/25n52/sfuw+YQwkTGFhGIZhGH2Iqrar6vdV9fm+nktPqOrTqvoDVY309VwMwzCMzpAKnoXjZBE5WkTGJYWNqvobYAFQgLOKBEgkhY2q+jQux0QB8JaIfFVE5nqxq/+ACyf4CvCDTM+6FCvqpCDiCZxQ8lRVXb8bf7bRDZKRtFRETheRY0VkuojkpTR9wavfF5dU/WRcXoFLVfX3OAFzGU6gXZWMZ97N9jryE3jfZ+AUVqdsQ2Bq7Ea8fRX0Qrc9gMtT9kVgckqbe4EHcSGaPpJS/hRwOzBSRL7pFftSrhVP4cJMzcYl2E7Nc5BcpybMbcFZal+mqrNU9aVd/XuNdFLOyUTGOZ+a4DrpGXek13ZHPB6S1/ofAytxnuGzveOuI2eSpuSp2NnfYuwe7D5hDETsQDEMwzD6Lap6iaqKDsL8FYZhGIaxo6QIHRLiEmbfjAvv9B9gmYhcLSIjveZf9tafEJFCr0+qMOlnuJBQ5cBPcd4U3wOm4uKUf0RVV/Q0lxRh5RpVXbhrf6mRiYgcIiIV3ueO93jtzEdwnoiswuUseQKnsHpARIamtsMJoA4HfoQL9fiWV55MyDsHJ9TuNnRHigBqpLgcBzfhjp/96BRsGnuIlLA8Ua/oXVyop0rgMhHJT2l+HW4fXeyFckvyB1xOte+JSEUy3E+KMPp7uLj22/S09SzxV6jqUap68wf9bUbvSDknrwUWpoTvkhSPmDeARmCKuJwTOzJ+Mq9JDfBzoBh3PKAZCbTVkij3KXafMAYTprAwDMMwDMMwDMMYAKQIHQQXUvAknODhrziB4/U4IWWWqj6Ls6iegUuE7Q2hyfj0dar6V1x88w/h8h6dD4xT1T972+mwnjX6DhG5Bmf5mrRwTx4HPi/Mxjdx+QJW4PKJHIsTQh8K3CYu+XEyqerHgDrgJlVtTtlMNi6p6kjgyyIyJmX7qWE9ikTkDFwooT8BOcCxqnp9pvDS2P1oZ+Ljs0XkZZxV9CeAWtx5Pyel7QLcfjsCl5ssWb4IuBHwAzd0FneEA1qmqj/qyZo6ZRzLU9BHiMiRuMTaY4E/ishc0uV9m7zlRCDo9dkRwXHyvvFH4AfAZ3fBtI1diN0njMGG2D3FMAzDMAzDMAyj/yMix+GEES8BX8flqvi7qraIyHScMGIE8GlVvdcTJqwAFgOnquqKZDip7WzHb0KF/oOITAX+ixNI/kXTc46MxSU1fh/4fNLbRUTKcEKpL+GSr1+jqltE5HbgdOBcVX1MXEzz04DbgKuBEBBJKq1SthPAJVz9GHAxToB5rSfANPoAT0CYg7N6vwqXw2IBTiB9MjAR+CfOY2qr16cKFzKqGbhYVV/1ykuBe3Ehg47sLlSpp7wwAVIfsq3rt4i8h1NSxHGC5a+o6v0p9fcAZwIXqOo/dnR/Zm67N/cSY89h9wljsNFjwhXDMAzDMAzDMAyjf+AJJw/DJbwcBjytqjcl61V1oWdB+R9cfOmXVXWViNyAy0lxFfC1XigrxJQV/QtVXSQic1R1SzfVH8cdD+ekCKH2A07BHSsAizwhlAD/xuUw+D8ReQCXb+A4XCihJ1V1ZeYGvPBBZ+OUZWNwoYG+nBKGyOgDPI+HSbhj4HGcIHIpgIjciMtNcS7wkIjc5YXr2SQi1+Msqy8UkfmqGlXVWk9IORMo7Wl7e+BnGdvAC88UUi+vnHdOJ3OO3AdcBhwFPAT8TEQa1OUsAvg7TmExV0Tu0R3MTZchABdTVvQv7D5hDDYsJJRhGIZhGIZhGEY/xxMW/gl4GjgEZyGdtGhMtvkvLiTM6XQm1v06sAUnnDzM62NhXQYYniDpaBF5QUROho6QXaNwselXikiJiFyKC+/zE2AJMFFVb/DGUOARnEXtGOALuLBB7wHndSeE8jgFF25sBTBJVT9nQqh+w0eBAlzolqSyIuiFeboOWIOznh6Z0ucWYJ7X9+RkoareAlSo6oN7aO7GdsgM2yQinwJeEpHTk0UpCuY3gQrcvj4bd4/4m4js742zCFgHTAF2KI9F5jzsPtE/sfuEMZgwhYVhGIZhGIZhGMYAQFU34ZQWCkwQkSpVjWUoIH4AtAMXiMg0T/hwDS4J75e8ccwydmAyCqesOktcIvU4EAEKgc/hrOZvAqqA01T1BFVdDiAi5Z4gu01VfwtMB04FDlPV01V1daYiK0VI+W/gaFU9TlXf3xM/1Og1yaTaG6BDgRnzyp4CHgZm446ZbABVDeOSJlcCnxeRwuRg3vXEctf0MeLwpSoGRGQIMAGYBfxeRCZlXMuX4PJUnOXlK/kMTmlxO3AMTpC8Gpe7oEti5m2RnIf8f3v3Hq/pXO9//PWZWWNMSjmMkaIpOZWfKBLCdkpIJ4xTNjlrnClbdrQlx9T85FAoOYVNiC0p52SXXWR2DFuKSDEyTmHM4bP/+H6v2dfc1mDGrHWvNfN6Ph497nvd1/W9rvvqvltr+r6v7+cTsWRELP4GL099y78TmicYWEiSJEnS4PFTSq351SmlP2YKIOqd1d+kNNPeur72A+AMSs8LDV7nUUp+bUtpkg5wBWWC+lDKyppDMnPZzLymGVQnsS8D9qk/N42Ub8zMu+prQzuDrGaSMjMf7q2ngeaOiFioPs5Jye5J9XELKIFDLRUVmfkiZUUWwB7ASs2gzLwe+BZwUmY+2z6gJeG6L4vpEbFiRJxVX3siMw+hNDJ+B/CDiFivNeb3wP8Aq0XEYpl5O+V3xRKUSepRwHV19+3qmFmG1+1VFRHx5ojYFPhePa+h1sDl3wnNEwwsJEmSJGmQyMzngXGUVRY71brRnXfKjqPccX1oRKxdx43NzHs6S3to8KgTQ1+jNFreKSKWAu6mTE71AEdk5rj2mIhYDbiAcpf9pNZxOo/tJHU/iv9zHPDbiBiRmVNfc+D/jW/+934R8CKwce1n0ZSAaSaUx1M+9+WBvTtWUxySmdehAan2GrkX2C0iDmhtOpLSH+CDwEkRsU5r2w/r64sC1InmfSlNkn9EKREGsHJELDKL80YdmxExJCJWr+e8gLJS4w5/Xwxc/p3QvMLAQpIkSZIGlzuAs4BNgS2aBqitiaanKL0rvl7vsgXKJKe1xwe3zPw1pSzYxpQGqk9Syns8AxweEWNr2ZblImJfSni1KXAKcGV33rU61TvoE/gwJUz4+GyOb+5yfoQy0bgm8IW6bVor/BhDKRF3K2WVxTvbxzHAHNBG1sdngGObsCkznwGOo6yQWQM4OyLeXve9F3gB+FzrOJdRvhvL1HGTgWWBYb2dtFX+aVlgf8od+4dS+hqMysyj59L1qY/4d0LzgvDfq5IkSZI0uNTJpJ8BTwN7ZuZva3Dh/8Gbx0XEO4E7gSeAHTJzfERsR7nrehHKdyIo/Q0eAQ7MzKu69HbVi1paZVr9LFfLzKtb24bMTp+ZiFiBcvf0u4GjKWV7pgCbAAcDFwK/AJ6tJeM0ALza7+u6guarwG6UMk/rUxqr790eFxE/pJR3+jmlV9Efgf+k9KrYvoYbzTE3AS6l9DIAWD0z7+zl3CMpfS52p6yo+BXwhdoXQ4OEfyc02BlYSJIkSdIgU++MHku5y/bbwJG1XNQr9jPEmPdExEHAyZQ7Y79YJ79XBDYHRlMmrMdn5rmtMbM1Ea65owknXmOfZYDNM/M7c3iO9SnBxFLAU8BzlD4HEyhNmB+o+/kdGABe7TvR/M6OiN2AEyhBxJHA0sAqmfn7iFgwM1+qk9JHAZ+nBAtbUlbXfQ7YMDPv7zj2AZTfET/IzIt6Offy9ZybAM8CB2fmxXPnqtXf/DuhwczAQpIkSZIGoYhYnHLn9AvAFpn5ty6/JfWTiBgB3A4sCeyamdd2bJ8x6RQRPbPTH0F9IyLekZl/iYhhmTml9fowSo35FYENMvOW1xNy9HL85YEdKD0M3gpcm5nHz8VL0FxUV1EcA9wE3Fgnk9v/u133JFfTAAAfc0lEQVSBEjh9gtKT4jzg5szcsG5vgo13AkcAewG3UEr/XAh8LDOvrz1Nmibend+9mQLt+nvlr8AZmXl4n/+XoD7l3wkNZgYWkiRJkjRIRcQKnXfRav4QEVsCPwauokxGPdXRMHfG8y6+zfla/QzeBdxIWfnwkWZSMCI+CzyQmf8dEbsA3wduyMxNmrFz+tlFxPDMnFyfOxE5wNQVMT+nNEF+DPh+Zh7Zsc/7KQHEBcBBwG3AWpQVM5e3w4caflwNbAY8ACwHnJ+ZO8/i/K8IxJrvSW0A/+JcvFx1kX8nNFjZdFuSJEmSBqkmrIiInm6/F/Wv2vfgNmBVyh317WbOMz1X/4mID0XER2DGJOAzlFryHwTWr9vvBi4B/qnu9wNKT5qNangBb2C+JjMnR8SQGnoYVnTRLBqbP0IJK56jlOXZJyLOjohRzQ6ZeQ8wCVi6fo++UTd9s26fEsXQepf8ocC5lLACYPWIWLq399Tb6p3me2JYMW/x74QGK1dYSJIkSZI0CEXEqMx8vNvvQ0VErAL8DvglsElmvlRffz8lkFiI0vR4PHAW5c7nx2q5nrUpKzEeAtbIzOesJz94tVcxdKyGaFYyHEvpN/Ezyud+PHADpW/Ef9d9LwI+nJnL1p8vAbYBjsjM4zpXStReKKcBWwBbZeYV/XW9Grj8O6HByBUWkiRJkiQNQs0klCtsBobMHA/8FFgH+OfWpk2Bt1PCipspvSZOz8xHm0AiM28HzgGWB77UHPL1nHcWd/GrC1oldpqw4gTgm63VE00A9RXgSeBjlDvgdwA+BPw4Ijau+zwGLBoRq9efjweeB46OiJG178XQ5tyZ+WdKoDHUsEIN/05oMDKwkCRJkiRpELPsT/e1Jo4PqI/71DveoUxSXwP8gVIaalKtHz+kY+zXKU2Px0bEinWfGRPSs9KUdImIxZpJyebY6h+1PNOQ1mexfUQ8CnwRmEYNKupqmp4aaBxShx+VmRcDn6WUiLo0InYFbqWEXC/VsXcBpwJDgRPq2M5Qa3L93jg5rZn4d0KDiX/AJEmSJEmS3oDmbvfMfAA4BfgAsHfdNg4YA3yLMgH99fr69NbYIZn5aN3nbZQ78HvtNwAzr6qIiLdExCco/Q32bR9b/aO2ApgeER+IiP8ELgQmANsDX8/Mia19m34R5wN3AJtExG6ZeTPwaeA3wNnA/kAAa7RO9a163F0i4qOdn3OrN4GT05IGLQMLSZIkSZKkOdCxAqK52/1fKM22Px8Ra8CMZsY/Bq6lTDav13mo+jiO0qR7q4j4eOc5WiWHMiKGRsSawFeBC4CtgImo30VET0ScAdwFLArsB+ybmZc0YUXz2dXVGM0KiGZFzpdqr4EJwK7AScAGwAvU70YNtSZS+p8ALNYPlyZJ/c7AQpIkSZIkaQ60ehWsTCnVQ222fRgwChjb2vcxSp+KZyl9CHraPQ/qCo2pwHHAAsDR7XPU503JoeWBA4HzgYOAS4AlMvPCvrxezdLbgNH1+TmZeVpm3t/LPs1qjKk1gPg1JWxajvJ5kpmPZOZhwD6UXihNP4pm9cQ4YHhm/rivLkaSuinq3zpJkiRJkiTNhoh4C/BDYDVgy9pnoNl2N7ASsG3TBDkiRgD/H9gd2C0zz6mvLwG8JzN/VX/+KnBxZt7Xcb5RwMbAHsB6wC+AfTLz3r68Tr22iFgXuBq4iRJUPQdsBqxLWS3xHHA7cFFm/qYGVNPqZ/8Y8A9g3dq8vVlR8YrSXhERTZ8KSz9Jmhe5wkKSJEmSJGnOTKGEBiOBT9cAo7E/0ENpov0WmFEa6jzgAeDIiNgsIj5JaaL87xGxRd3vq5l5X6sxd9TyT6cB3wPeA2ydmesbVvS919P8nNJ74hxgC0ogdTxwLrAtZfXNaMpqmCvrZ9n0MHkCOBJ4C6WcGPX1XvuQ2KdC0rzOwEKSJEmSJGkO1PJPPwJupUxSr97adgulnM+GwOdbr98GfJvSg+AaSjmn7YHvZuY1zX71Tvpm0roHWBXYHDg2M5fJzMv77soEM/UMmRYRwyNip4gYWbfNNKdWw6gzgT9T+orsQulFsSKwNiWwOAVYvG4f3Rp7bB23XQ2wXm9IIknzHEtCSZIkSZIkvYaI2A0YDpyVmVNapXkC2IZyd/2lwL9k5t/qmKWBh4H7KCWjHqyvvwlYixJAPA2cmpmT6rbIXiZrImIp4NnMfL6PL1UdImIMpdn1QsD+mXn6LPYbBuwJ7AvslZm31teb78o7gGOBHYGtMvPHETE8MydHxGeByyiNu9eY1QoLSZrXucJCkiRJkiTpVUTECsCXKY2wl4dSmqcVLtwC/DsluFivdWf+I5QJ6hUpE9mNFzPzBuCwzPxaZk6KiKGzCivqsR4zrOhfEbFwRBwMnE1Z5TIF2LY2Pe9tlcUUyqqascAdre9BU8bpL8AvKfNxm9ZhL9dtl1NWYOxhWCFpfmZgIUmSJEmSBERET8fPQwAy837gG8CbgL3rCokZMvNx4HzgGUppqPe2tv0r8BdKL4uNOsZNbc6TmdNmFVaoa9YDjgCeB7amrLJYl1LCq9c+EzVYujEzX2p/nhGxQH36ZPuxBl9D6/MDM/POziBEkuYn/gKUJEmSJEnztVYw0QQIq0fEiI7drgV+RulHsWbdP1uTy3fX7RsAH+8YfzQl7HhbM659YO+oH7CepwRRa2XmtZTA4q/ADhGxDrxylUWjWV3R+m69XDd9pj7e0eybmdPa4/w+SJqfGVhIkiRJkqT5WjNBHBHbRcQDwA3A9cChrX0eAi4AJgMHRcRizdi6QuLvwGPAUGAMsHJr7FnAyMz8Uf9ckeaGzLwZ+LfMfLi+NIFStmk5YKfaf2J6E050jM12+BAR742IEynfjfMz8z9mcU5X2UiarxlYSJIkSZKk+UpUzfP6uB1lMvop4GZgJeD4iGj3nrgJuAT4BLBFbbLcXiExHfgNsA6we0S8uRmYmX9v+lT05bVp7mqaodfnUymh1W8pJaI+8RrDh0fEshFxCHA6JQC7nrLiRpLUCwMLSZIkSZI034iInqwiYmh9HA4cRGmevVNmfgrYArgLODYi1qx3y/+d0lz7f4AvUoIJImJYRGwN7Fu3nw/c3Nkk2z4Vg19tnH0ysCiwc0Qs2VEarO1k4F7gKGBZYPfM3CIzH+y/dyxJg0v4d1KSJEmSJM1vIuILlF4UdwKPAv8M7FkbaDf77AScCvwU2Cczn6rNk3cHTgKepay4WJjSoHkCsH1nUKF5S0S8FTgH2BI4KDNPncV+HwG2pQRfFza9KmpQNq23MZI0vzOwkCRJkiRJ87TaY6LpJbAScBGwCjAV6AFepDRYfl8t3TQsM6dExBLAccDOwHbAFZk5rZZ62hk4EQhgQeAaYGxm/rnznJr3RMS6lEbs91JCqgcj4n3AKpl5cWu/YZk5pT43qJCk12BgIUmSJEmS5nkR8R5gGPAZYBvgTEpPip2BzwPTgM9l5i0d4zYGzgb+CmyTmY92HPPdwNOZ+dv6mkHFfCAi3gT8G3AIMA64D9gF+Ajw8cz8WWvfABtqS9LrYWAhSZIkSZLmaRGxJvCfwOXA+sC/ZuZ367a3AvsAX6espjghM59r7oaPiBHAl4EjgIOBUzNzau1pkR3n8Q76eVz7c4+IlSnlwhYDhlNW6RyZmeO69w4laXCz6bYkSZIkSZrXPQRcB3wWeAr4PsxowP0MJci4hbLa4kNQGmTX1RIvAj8C7qCEGivV7a+4A9SwYuCJiKFz83itsGJNYE9gKUpYcRqwZBNWNKsqJEmzx8BCkiRJkiQNCnM6CVwbaX8DeIYywbxCs6k+/oFSImpR4J8jYlTH+N8BlwK3Ak/MyXtQ/4pixoqXiBgdESMjYqFm+xs47trAhcC+wI2U3if7ZeYLEdHT2+obSdLrY2AhSZIkSZIGhdbd7QvOwfA7gPOAhYBN6vGaVRTTgZuBy4AxwLp10nl66w790zNzsxp+aABrAoP6+b43Ii4FbqB8B26pfUl6mn1n59j1O/gS8F/AmMzcODPvi4gh9bs01bBCkuacPSwkSZIkSdKgUCeXvw4sCByemZNnc/wqwE+APwN7Z+b4dpPsiNgQ+AFwP7BvZt7fyzHsUzEIRMQQ4FDgK8DTwO+BF4A1gRHAwZl57pweu91Y3e+EJM09rrCQJEmSJEmDxZrAYcAmsxtWVBOAU4CPAJ+NiAU7VlH8htLPYiNg6d4O4MT0wBcRw4C9gQOBK4DdgC0zcytgXWAosGdEfLTuP1vzY62Aa0j92e+EJM0lrrCQJEmSJEkDSucd7K3XhwK/ojTGXi8zb5vdfgERsTQllFgU2CMzb+zYvhzQk5kT3tBFqGsiYglKY/VpwP6Z+XB9fRPgm8D767azgQMzc7J9JyRpYHCFhSRJkiRJGhCafgJ11cNCHduasjsX15fWr/vO7iTzo8DJwLuArSNi8Xr85m75BzJzQu1JMEeNmdX3IqJnVtsy8wngxMz8VGY+HBGjIuIS4DpgMrAfcA+wNbDF6zxftJ73RMQCb+gCJEm9MrCQJEmSJEkDQqup9uHA+IjYpv4crbI7vwWeBVaMiOFzeI7rgB9TygZtVF+f3rHfdO+4H3hawdLU+vMnI2KjiFilI+S6rW5/PyXk2gw4EdgtM08DTgMWA3aMiCUzM3srDdUK0Zrv5geAg4DNZ7eUlCTptfmLVZIkSZIkDRgRsT6lsfa7gTMiYi1mnr/4W/3PpsCwOma2VkJk5iTKhPV5wM/nwtvWXBYRa0fEyPp8xuff6h+xXUQ8BFxG+Qx/B1wZEW9v70cJKtYFjgWOycy76+sL1sfVga06xszQCiqWjog9gTOBE4CVAVfgSNJcZmAhSZIkSZL63azuTs/MW4D7gP8BHgcuAD7Z2n4f8Htg8fbrc+CmzNwlM5+y9NPAEhGHUVZI7AkzN7mu5ZiOAM4B/gh8mbJK5nRgHeDciFi17j8M2B6YBJyZmc+3TrMgcBelufrBETG6df52+ae3RsSngG8D3wFGABtl5jE225akuc/AQpIkSZIk9bvap2JGH4AohtYfLwfeRrnzfTpwYkRs2Bp+YX1cKyIWmJPSTa0754dY+mnAuQp4BJjYy+qKpYF9gF9TGmZ/IzNvAo4CzgA2BvaPiJGZOYXSq2IYsAbM6D/xGeArlABiP+D4zHyodZ6s+60NHAOcD/wTMDYzV6nnkyT1gVk2KJIkSZIkSZpbah+KbP28D7BbRBydmVcB7T4VdwEjKZPT21Dupr8gIraglP6ZQGmevSIwHHh5Tt9Hb2WA1F216fnqmTmxl807AksBYzJzPEBErAxsTmmiDTAhMyfWlRJXAZ8BxkXElcAilFDjHuD6zPxT5wkiYlnK925PYDSlfNjBNQCRJPUhV1hIkiRJkqQ+U1dODOkIK5YA3gt8EDgtIpbvCA7up/Sp2DozfweMBZ6n9JzYkFIK6GFKKaBX9Dl4Na2VFUtGxOJv8PLUR2rgsEFE3BYRmwHUFTjLUJqu/ykiFomI3YDvAsdTvjfLZeZJ9RgJXEMpGzUaOADYCbgX2K63sKLanLKy4o/A8pm5n2GFJPUPAwtJkiRJktRnspgeEStGxFn1tScy8xBKX4B3AD+IiPVaY35P6WGxWkQslpm3A9sCS1B6FYwCrqu7b1fHzHKlREdPgjdHxKbA9+p5h85qnLpuGWBtYOuIWLiuwHkZWJhSyul0ShPsJYEtM/NjmfkgQEQsHhHDMvPFzPw2sArwCeCjmfnJzHy4M+RqfU+uAjbIzI0z8w/9caGSpMLAQpIkSZIk9amIOIZyV/tuEXFAa9ORlHI7HwROioh1Wtt+WF9fFCAz7wL2BRYAfgT8ue63ckQsMovzRh2btWHz6vWcF1BWatxh4+QB7TzgJ5Sw6lP1tSuAqcChlKbrh2Tmspl5TTMoInqAyyi9LpoyYA9k5o31e0REDO0MuZrVN5n5cGb+om8vTZLUGwMLSZIkSZLU10bWx2eAYyNiYYDMfAY4DvgWpSny2RHx9rrvvcALwOdax7kM+ALlzvvjgMnAspSmyq/QKv+0LLA/ZQL8UEqZoFGZefRcuj71gfr5fQ0YAewUEUsBd1NCjB7giMwc1x4TEatRAqkPAZNax+k8tkGVJA1ABhaSJEmSJOkNaZdc6mXbEOBx4K+UhtkjgBObcZn5WGYeDlwMrEAp07Qq8N/AI8AaEfFWmFFe6lpKH4KFKA231wDeOYtzj4yI7Sg9Dr4JPA18MDN3ycxn3+Blqx9k5q+B71AaZY/JzCcpZaCeAQ6PiLG1H8lyEbEvMA7YFDgFuLI771qSNKcMLCRJkiRJ0hyrpXVecQd73Ra17M7DlHDhAkoIsWdErFxLNS1Yd/8Spa/ERsCpwFDgP4APUHoUzJCZPweOAn4O7JiZd/Zy7uUpE9tnA+8DdsjMtWsTbw0uxwFPArtHxCqZ+RNKuaceSh+Ue4E7KCt1lgZ2zswjMvO5br1hSdKciVn8m0KSJEmSJOl1qasojgFuAm7MzGkRMaTpERARKwATKE2PF6WUZro5Mzes26OGF+8EjgD2Am6hBA4XAh/LzOtrg+ymifewzJzSeg/RDk4iYgRlVccZdQWHBrGIOAg4mbKC4ov1O7YisDkwGpgCjM/Mc1tjZnwHJUmDg4GFJEmSJEmaYxGxPmWlQw/wGPD9zDyyY5/3UwKIC4CDgNuAtYCtM/PydvhQw4+rgc2AB4DlgPMzc+dZnH9oZz+CiOjJzKkRMSIzX5yLl6suqQHU7ZTVNrvW0mDt7e2ArCczp3bhbUqS3iBLQkmSJEmSpNdlFr0qHqGEFc9R7nLfJyLOjohRzQ6ZeQ+lAfLSdRXEN+qmb9btU6IYWiedDwXOpYQVAKtHxNK9vafemic3k9WGFfOO+lkeCYwC9oqIRaF8J5vSY63nhhWSNEgZWEiSJEmSpFdVSzFRyzYNa73ek5l/BI4H3gLcD5wE7ApcEBH/r3WY3wCr1uNcAVwKLBMRTbmmIU34kJkTKD0qrqnb/jUzH+mjy9MgkZlXU1bnrAq0G7Fn53NJ0uBkSShJkiRJktSrXvpCnAC8CTgmMx9vyvDUQOOvwOLAR4FlgNOBp4E9a/+JkylBxiaZ+ZuIWI1SJmoEsFRmTuws71Qbck92ElqNiBiVmY93+31IkvqGKywkSZIkSdJMamWdIU1QEBHbR8SjwBeBacB0gBpW9NSQ4ZA6/KjMvBj4LKVE1KURsStwK7Aw8FIdexdwKjAUOKGO7QwmJtdVHT19da0aXJqwwu+EJM2bXGEhSZIkSZJ6FREfAL4DrAncAJwN3JiZE2ex/6+ADwN7ZOb3ImIl4BRgI+AmYANgt8w8p+4/ErgZWAlYLzNv69srkiRJA5krLCRJkiRJ0kwioicizgDuAhYF9gP2zcxLmrCiacBdV2M0d7sfUB+/VEv3TKCUgTqJEla8ADTjhtRjnVXHLNYPlyZJkgYwV1hIkiRJkqSZRMTiwPnApsCXM/P4XvZZJDMntX5u+lmcB3wOOCEzD29t3wuYCNyUmZPa/TEiYlhmTunjy5IkSQOcgYUkSZIkSXqFiFgXuJpSymks8BywGbAuZbXEc8DtwEW1ifbQzJwWEUsAjwH/ANbNzPH1eEMyc3ov54mmT0VmTu2Xi5MkSQOSgYUkSZIkSfOZJlx4jX1GAMdSwopjgFGU8k7PAX8H3lZfewzYCrijtWLiy3XMxZm5Qx9dhiRJmscYWEiSJEmSNJ/oKMM0HBgD/DQzJ/a2AqI2zb4aeA/wInAyMA5ISj+KE4C9KaswvpCZf2qNfQhYBvh0Zl71ekISSZI0f7PptiRJkiRJ84lWWDEGeAI4B9imbntFuSbgD8C3gPuBzTLzyMx8Cng6MydTmmlfAmwCrFKPPbyOPbg+HlXDEMMKSZL0qgwsJEmSJEmaT0TEwhFxMHA20ANMAbaNiOXr9pnmCWoj7CsoZaHuiIior2d9/AvwS8r8wqZ12Mt12+XAKcAeswhDJEmSZmJgIUmSJEnS/GM94AjgeWBr4CxKE+3tofdVFpn5WGbemJkvZauudEQsUJ8+2X6sDbSH1ucHZuadnUGIJElSb/wHgyRJkiRJ84/ngfOBtTLzWkpg8Vdgh4hYB165yqLRrK5otmfmy3XTZ+rjHc2+7fJPtW+GKywkSdJrMrCQJEmSJGk+kZk3A/+WmQ/XlyZQyjYtB+wUEcMzc3oTTnSMzXb4EBHvjYgTKY27z8/M/5jFObO31yVJkjqF/26QJEmSJGn+FRHvAK4E3g3slZk/qsHEKyYMImJB4B3Apyk9KzYGrgX2z8wH++1NS5KkeZIrLCRJkiRJmo/VxtknA4sCO0fEknU1RW9zBicD9wJHAcsCu2fmFoYVkiRpbujp9huQJEmSJElddy1llcWWlGbcp86i78T5wMvAXcCFTa+KiBja7lshSZI0JywJJUmSJEmSiIh1KcHFvcD2mflgRLwPWCUzL27tNywzp9TnBhWSJGmucYWFJEmSJEkC+C1wBnAIMDYi7gN2AT4SEU9l5s8AMnNK05TbsEKSJM1NrrCQJEmSJGk+1m6wHRErAz8FFgOGA88DR2bmuO69Q0mSNL9whYUkSZIkSYPI3C7D1Aor1gR2BJaqm04DDsvMF+r2GcGGJElSXzCwkCRJkiRpEKhlmIa0Gl2PBv4BvJCZ/5jTQKEedy3gPOA9wI3Avpl5X93eA0wzrJAkSX1tSLffgCRJkiRJenVNGJGZ0yLivRFxKXADcAdwS0RsTL0psekv8XrVIOIl4L+AMZm5cWbeFxFDImJIZk41rJAkSf3BHhaSJEmSJA0CETEEOBT4CvA08HvgBWBNYARwcGaeO6fHzszprZ/natkpSZKk18OSUJIkSZIkDXARMQzYAzgQuAK4ALgxM6dGxLuBu4A9I+LBzLytM4B4Lc2+zTjDCkmS1A2WhJIkSZIkaeBbBNicUrbpK5n5sxpWbAJcBSwMfBjYMSKGZ+b02S0NBf8XXEiSJHWDgYUkSZIkSQNAbW7dq8x8AjgxMz+VmQ9HxKiIuAS4DpgM7AfcA2wNbPE6zxet5z0RscAbugBJkqQ3yJJQkiRJkiR1UasM09T68yeBfwATgQcz8x9119vq9vcDpwIfAk4ELsrMuyPiZeC7lFUWt2fm33orDdVq4J315w8AHwMeiIirXGUhSZK6xRUWkiRJkiT1g4hYOyJG1ucz/v94q3/EdhHxEHAZ8HPgd8CVEfH29n7AZsC6wLHAMZl5d319wfq4OrBVx5gZWkHF0hGxJ3AmcAKwMjDbZaQkSZLmFgMLSZIkSZL6WEQcRlkhsSfM3OS6lmM6AjgH+CPwZWAj4HRgHeDciFi17j8M2B6YBJyZmc+3TrMgpfn20sDBETG6df52+ae3RsSngG8D3wFGABtl5jE225YkSd1kSShJkiRJkvreVcAXgIntMk21Ofa7gH2AXwMHZuZ4gIgYT+lPcRCwf0QclpkTI+IeYFlgDeC62vtiS+ArwCHAAsDLmflQc/LMzLrfhymBx87AdGBsZp7R95cvSZL02gwsJEmSJEnqY5k5ISJWz8yJvWzeEVgKGNMKK1YGNqc00QaYUMOKoIQfnwHGRcSVwCLAxpSm29dn5p86TxARywLbUFZ4jAZOAw7OzClz7yolSZLeGEtCSZIkSZLUD2rgsEFE3BYRmwFExFBgGeBZ4E8RsUhE7EZpnn08cD+wXGaeVI+RwDWUslGjgQOAnYB7ge16CyuqzYFjKCWnls/M/QwrJEnSQOMKC0mSJEmS+s8ywNrA1hHxy8x8NiJeBhYG9gPeDYwBHgK2zMxrmoERsTjwTGa+CHw7In5K6VcxKTPvqvvMKDdVf44aclwF/C4zf9EvVylJkjQHovy7RZIkSZIk9bVa0ulq4J+AfTLz/IjYCLi27jIFOCIzx3WM6wGuBy7PzFNaQUR7n6E2zZYkSYOZJaEkSZIkSeonNWT4GjAC2CkilgLuBn5CqYLQW1ixGnAB8CFgUus4ncc2rJAkSYOagYUkSZIkSf0oM38NfIfSKHtMZj4JnAk8AxweEWMjYsmIWC4i9gXGAZsCpwBXduddS5Ik9T1LQkmSJEmS1M8i4p3AncATwA6ZOT4itgNOAxYBngYCeDPwCHBgZl7VpbcrSZLULwwsJEmSJEnqgog4CDiZsoLii5k5LSJWBDYHRlP6WYzPzHNbY2Zqqi1JkjQvMbCQJEmSJKkLImIEcDuwJLBrZl7bsX1GOBERPZk5tQtvU5Ikqd/Yw0KSJEmSpC7IzBeBI4FRwF4RsShAVJk5vfXcsEKSJM3zXGEhSZIkSVIXRcStwDLABpn5p26/H0mSpG4xsJAkSZIkqYsiYlRmPt7t9yFJktRtBhaSJEmSJA0A9qmQJEnzOwMLSZIkSZIkSZLUdTbdliRJkiRJkiRJXWdgIUmSJEmSJEmSus7AQpIkSZIkSZIkdZ2BhSRJkiRJkiRJ6joDC0mSJEmSJEmS1HUGFpIkSZIkSZIkqesMLCRJkiRJkiRJUtcZWEiSJEmSJEmSpK4zsJAkSZIkSZIkSV1nYCFJkiRJkiRJkrrOwEKSJEmSJEmSJHWdgYUkSZIkSZIkSeo6AwtJkiRJkiRJktR1BhaSJEmSJEmSJKnrDCwkSZIkSZIkSVLXGVhIkiRJkiRJkqSuM7CQJEmSJEmSJEldZ2AhSZIkSZIkSZK6zsBCkiRJkiRJkiR1nYGFJEmSJEmSJEnqOgMLSZIkSZIkSZLUdQYWkiRJkiRJkiSp6/4XFPGhaN76vlYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeVxU5f4H8M9hGZZBZBMRBUEFMgNDchcBN8As0UwzUTb3q13X1LTcl3LJLdN7DXCpzOt29aelN2MAcc0yRTIRUcBQERcWh21mfn8gIyM7DAzL5/16zauZc57zPN/DHIk533m+j6BQKBQgIiIiIiIiIiIiIiLSIC1NB0BERERERERERERERMSEBRERERERERERERERaRwTFkREREREREREREREpHFMWBARERERERERERERkcYxYUFERERERERERERERBrHhAUREREREREREREREWkcExZERERERERERERERKRxTFgQEREREREREREREZHGMWFBREREREREREREREQax4QFERERERERERERERFpHBMWRERERERERERERESkcUxYEBERERERERERERGRxjFhQUREREREREREREREGseEBRERERERERERERERaRwTFkREREREREREREREpHFMWBARERERERERERERkcYxYUFERERERERERERERBrHhAUREREREREREREREWkcExZERERERERERERERKRxTFgQEREREREREREREZHGNcqExb1797Bx40YMGjQItra2EIlEsLKywnvvvYcLFy6UekxGRgZmzZqFtm3bQk9PD3Z2dpg7dy6ysrKqPP7Jkyfh4eGBZs2awdjYGF5eXjh9+nRNT4uIiIiIiDSoqp8zlixZAkEQynzcuXOn1HH4eYKIiIiImiodTQdQG7Zs2YLPP/8c7du3x6BBg9CiRQvEx8fjyJEjOHLkCL777juMGjVK2T47OxseHh64cuUKBg0ahNGjR+P333/HunXrEBkZiaioKOjr61dq7L1792Ls2LFo0aIFAgMDAQA//PADBg4ciP3792PEiBG1ccpERERERFTLqvo5o0hAQADs7OxKbDcxMSmxjZ8niIiIiKgpExQKhULTQajboUOHYG5uDg8PD5Xt0dHR6N+/P4yMjJCamgo9PT0AwOLFi7Fs2TLMmzcPa9asUbafP38+Pv/8c6xatQoLFiyocNwnT56gXbt20NHRwe+//442bdoAAFJSUuDq6goAuH37Npo1a6auUyUiIiIiojpS1c8ZS5YswdKlSxEREQFPT88K++fnCSIiIiJq6hplSajhw4eX+BABAO7u7vDy8sKTJ09w7do1AIBCocDOnTthZGSETz/9VKX9p59+CiMjI+zcubNS4/7nP//B06dPMX36dOWHCwBo06YNpk2bhkePHuHw4cM1ODMiIiIiItKUqnzOqA5+niAiIiKipq5RloQqj66uLgBAR6fw1OPj4/H333/D29sbYrFYpa1YLEbv3r1x8uRJJCcnw8bGpty+JRIJAGDQoEEl9nl7e2PJkiWIjIzEuHHjKh1vSkpKuftzcnJw48YNtGzZEi1atFCeFxERERFReQoKCpCWlgYAcHZ2rnQJVCrdq58ziouKisKFCxegpaUFBwcHDBgwAEZGRiXa8fMEERERETUUtfV5okn9NZqUlISff/4ZrVq1grOzM4DChAUAODg4lHqMg4MDTp48ifj4+AoTFuX1VbStqE1lVTQmEREREVFNXbx4EV27dtV0GA1WaZ8zilu8eLHKaxMTE2zatKlE4oGfJ4iIiIioIVLn54lGWRKqNPn5+Rg7dixyc3Px+eefQ1tbGwDw7NkzAEDz5s1LPc7Y2FilXXnK66sq/RARERERUcNQ1ucMAOjcuTNCQ0Nx+/ZtSKVSJCYmYsuWLRAEAYGBgTh69KhKX/w8QURERERNXZOYYSGXyxEYGIioqChMmDABY8eO1XRIlZacnFzh/l69egEA/ve//6Ft27Z1ERbVUG5uLi5cuAAA6N69u3JhRqq/+J41THzfGia+bw0P37OG6e7duxg4cCAAoEWLFhqOpmGq6HPGsGHDVF7b2dlh2rRp6NixIwYOHIhFixbh3XffrdUYq/J5IioqClZWVrUaDxERERE1Dvfv30ffvn0BqPfzRKNPWMjlcgQHB+O7776Dv78/tm/frrK/6NtLZX1TKSMjQ6VdeYr3ZW5uXu1+iiu+2F5F2rZtW2ZpK6pfpFIpEhISAADt27eHgYGBhiOiivA9a5j4vjVMfN8aHr5nDR/XLai6ij5nlKd///5o3749rl27hoyMDOXsCU1/nrC3t69SeyIiIiJquop/7lPn54lGXRJKLpcjKCgIu3btwujRoxEeHg4tLdVTrqgWbEVrXFS2r6r0Q0RERERE9VdlPmdUxMLCAgDw/Plz5TZ+niAiIiKipq7RJiyKPkTs3r0bo0aNwp49e1TqyRZxcHCAtbU1YmJikJ2drbIvOzsbMTExsLe3r9RidR4eHgCAU6dOldh38uRJlTZERERERNTwVPZzRnmys7Nx/fp1iMViZeIC4OcJIiIiIqJGmbAomp69e/duvP/++9i7d2+ZHyIEQcD48eORlZWF5cuXq+xbvnw5srKyMGHCBJXtz58/x40bN5CUlKSyfeTIkWjevDm2bNmClJQU5faUlBRs3boVFhYWJerYEhERERFRw1CVzxmZmZm4efNmie1SqRQTJkxAZmYmRo4cqTJ9np8niIiIiKipa5TFapctW4Zdu3bByMgIjo6OWLFiRYk2fn5+ePPNNwEAH3/8Mf773//i888/x++//44uXbrgt99+w6lTp9C1a1fMmDFD5diLFy/Cy8sLHh4ekEgkyu2mpqbYunUrxo4diy5dumDUqFEAgB9++AHp6en44Ycf0KxZs9o67TIpFAo8evQI2dnZyM/Pr/PxqSS5XK6sS5yUlFTlEgJU99T9nunq6iq/VSkIgjpCJCIiolpWlc8Z6enpeO2119C1a1d07NgRVlZWePDgAX7++WekpKTA2dkZa9euVTm2vn6eICIiIiKqK40yYXHnzh0AQFZWFlauXFlqGzs7O2XCQiwWIzIyEkuWLMHBgwcRERGBVq1aYfbs2Vi8eHGVFo709/eHhYUFVq1ahbCwMAiCADc3NyxatAgDBgyo6alVmUKhwIMHD/DkyZM6H5vKplAolNeVTCaDXC7XcERUEXW/ZwUFBZBKpZDJZGjZsiWTFkRERA1AVT5nmJmZYerUqbh48SJOnDiBJ0+ewMDAAB07dsRHH32EadOmlfo5o759niAiIiIiqkuCQqFQaDoIqr6UlBTl+ho3b94ssQhfWloaHj16pHytra3NG6P1REFBAQColAGg+k1d75lCoYBMJlO+trCwQIsWLWrUJ5VOKpUq64APGjSoSglo0hy+bw0P37OGKT4+Ho6OjgCA5ORktGnTRsMRkSYU/zzB64CIiIiIKqu2/o7kndJGrvhC4q1atYKJiYnmgiEluVyOjIwMAICxsTFLQjUA6n7Pnj59itTUVACF/06ZsCAiIiIiIiIioqaOd0kbuaI1K7S1tZmsIKpHTExMlIt0Fs3cICIiIiIiIiIiasqYsGgiWAaKqP4p+nfJynxEREREREREREQsCUVERERERERERGpiN/+4pkOgSriz5u06GYfXQ/1XV9cCwOuhIajL66EsnGFB9ZKnpydmzJih6TAapCNHjqBDhw7Q1tbGjBkzEB4eXmflwOzs7LBx48Y6Gasy0tPTYWlpiTt37tT52D169MDBgwfrfFwiIiIiIiIiIqKGigkLqpcOHTqE5cuX19l4UVFReOedd2BtbQ1BEHDkyJESbQIDAyEIgsrDx8dHpU3R9vPnz6tsz83Nhbm5OQRBgEQiAQAMHDgQM2fOVGm3fft2CIKA8PDwEmO7u7tX6lwmTZqEESNGIDk5udZ+hmUlQS5duoSJEyfWypjVsXLlSgwdOhR2dnYAgD/++AOjR4+GjY0NDAwM0LFjR2zatKnK/Vbmelm0aBHmz58PuVxew7MgIiIiIiIiIiJqGpiwoHrJzMwMzZo1q7PxsrOz0blzZ3z11VfltvPx8UFqaqry8f3335doY2Njg7CwMJVthw8fhpGRkcq2Pn36ICYmRmVbREQEbGxslEmNIhKJBP369avwPLKysvDw4UN4e3vD2tq6Tn+GANCiRQsYGhrW6Zhlef78Ob755huEhIQot12+fBmWlpbYu3cvrl+/joULF2LBggXYunVrlfquzPXi6+uLzMxM/Pjjj9U+ByIiIiIiIiIioqaECQuql14tCZWbm4s5c+agdevWEIvF6N69u8pN/fT0dIwePRqtW7eGoaEhnJ2dS00mlMXX1xcrVqzAsGHDym2np6cHKysr5cPU1LREm4CAAOzbtw9SqVS5LTQ0FAEBASrt3N3dER8fj/v37yu3RUZGYv78+SrnlpiYiLt378LLy6vc2CQSiTJB0a9fP5XZHK/6+uuv0b59e4hEIjg5OWHPnj0q+zds2ABnZ2eIxWLY2Nhg6tSpyMrKUo4TFBSEZ8+eKWeULFmyBEDJklCCIGDnzp0YNmwYDA0N4eDggKNHj6qMdfToUTg4OEBfXx9eXl7YtWsXBEHA06dPyz3fipw4cQJ6enro0aOHcltwcDA2bdoEDw8PtGvXDv7+/ggKCsKhQ4eq1HdlrhdtbW0MHjwY+/btq/Y5EBERERERERERNSVMWFCDMG3aNJw7dw779u3D1atX8f7778PHxwfx8fEAgJycHLi5ueH48eOIjY3FxIkTMXbsWFy8eFGtcUgkElhaWsLJyQlTpkxBenp6iTZubm6ws7NTrl+QlJSEqKgojB07VqVd9+7doauri4iICABAXFwcpFIpQkJCkJ6ejsTERACFsy709fXRs2fPcmPr1asX/vrrLwDAwYMHkZqail69epVod/jwYfzzn//E7NmzERsbi0mTJiEoKEgZBwBoaWlh8+bNuH79Onbt2oVffvkFH3/8sXKcjRs3wtjYWDnTZM6cOWXGtXTpUowcORJXr17F4MGDMWbMGDx+/BhAYTJmxIgR8PPzwx9//IFJkyZh4cKF5Z5nZUVHR8PNza3Cds+ePYOZmZlaxnxVt27dEB0dXSt9ExERERERERERNTY6mg6ANGdn9G3sjE6ssN0brY2xM6Cryrbxuy4h9l5GhceOd7fHePd21Y4RKLzhHxYWhqSkJFhbWwMA5syZg59++glhYWFYtWoVWrdurXLTfPr06Th58iT279+Pbt261Wj8Ij4+Phg+fDjs7e2RkJCATz75BL6+vjh37hy0tbVV2gYHByM0NBT+/v4IDw/H4MGD0aJFC5U2YrEYXbp0QWRkJMaMGQOJRII+ffpAT08PvXr1gkQigb29PSQSCXr27Ak9Pb1y4xOJRLC0tARQWFLLysqq1Hbr1q1DYGAgpk6dCgCYNWsWzp8/j3Xr1ilncRSf3WJnZ4cVK1Zg8uTJ2LZtG0QiEZo3bw5BEMoco7jAwECMHj0aALBq1Sps3rwZFy9ehI+PD3bs2AEnJyesXbsWAODk5ITY2FisXLmywn4rcvfuXeX1UpazZ8/ihx9+wPHjx2s8Xmmsra2RnJwMuVwOLS3mh4mIiIiIiIiIiMrDhEUTlplTgPsZORW2a2WiX2JbenZepY7NzCmoVmzFXbt2DTKZDI6OjirbixayBgCZTIZVq1Zh//79uHfvHvLy8pCbm6vW9RQ++OAD5XNnZ2e4uLigffv2kEgk6N+/v0pbf39/zJ8/H7dv30Z4eDg2b95cap99+vTBsWPHABTO3vD09AQAeHh4KEsvSSQSTJgwQW3n8eeff5ZYGLt3794qi0///PPPWL16NW7cuIGMjAwUFBQgJycHz58/r/LP1MXFRflcLBbD2NgYDx8+BAD89ddf6NpVNRlWUYJp8uTJ2Lt3r/J1UamqV0mlUujrl7x2i8TGxmLo0KFYvHgxBg0aVOF5VIeBgQHkcjlyc3NhYGBQK2MQERERERERERE1FkxYNGHN9HVgZVz2Dd0i5mJRqdsqc2wz/ZpfYllZWdDW1sbly5dLzGQoWsh67dq12LRpEzZu3Khce2HGjBnIy8ur8fhladeuHSwsLHDr1q0SCQtzc3MMGTIEISEhyMnJUS7A/Cp3d3esX78e9+7dg0QiUc4S8fDwwI4dO5CQkIDk5ORKLbitLnfu3MGQIUMwZcoUrFy5EmZmZjhz5gxCQkKQl5dX5YSFrq6uymtBECCXy6sd37Jly8otQVXEwsICT548KXVfXFwc+vfvj4kTJ2LRokXVjqUijx8/hlgsZrKCiIiIiIiIiIioEpiwaMLGu7erdrmmV0tE1SZXV1fIZDI8fPgQ7u7upbaJiYnB0KFD4e/vDwCQy+W4efMmXn/99VqLKyUlBenp6WjVqlWp+4ODgzF48GDMmzevRKKlSLdu3SASibBt2zblOhwA0LVrV6SlpSE0NBRisVhtZa0AoGPHjoiJiVFZBDwmJkb5s7p8+TLkcjnWr1+vLGO0f/9+lT5EIhFkMlmNY3FycsKJEydUtl26dKncYywtLZWlr8rj6uqqMhOjyPXr19GvXz8EBASopfRUeWJjY+Hq6lqrYxARERERERERETUWTFhQvefo6IgxY8Zg3LhxWL9+PVxdXZGWlobTp0/DxcUFb7/9NhwcHHDgwAGcPXsWpqam2LBhAx48eFDphEVWVhZu3bqlfJ2YmIgrV67AzMwMtra2yMrKwtKlS/Hee+/BysoKCQkJ+Pjjj9GhQwd4e3uX2qePjw/S0tJgbGxc5rgGBgbo0aMHtmzZgt69eysTGyKRSGX7q7MUamLu3LkYOXIkXF1dMWDAABw7dgyHDh3Czz//DADo0KED8vPzsWXLFrzzzjuIiYnB9u3bVfqws7NDVlYWTp8+jc6dO8PQ0LBa5bcmTZqEDRs2YN68eQgJCcGVK1cQHh4OoHAmRk14e3tjwYIFePLkCUxNTQEUJhD69esHb29vzJo1C/fv3wcAaGtrl1hjpDxZWVm4ffu28vWr10uR6OjoWis3RURERERERERE1NhwFVhqEMLCwjBu3DjMnj0bTk5O8PPzw6VLl5Q3hxctWoQuXbrA29sbnp6esLKygp+fX6X7//XXX+Hq6qr8NvysWbPg6uqKzz77DEDhDe2rV6/i3XffhaOjI0JCQuDm5obo6OgyF8MWBAEWFhYQiUqW1CrO09MTmZmZyvUrinh4eCAzM1O5ELa6+Pn5YdOmTVi3bh06deqEHTt2ICwsTDl+586dsWHDBnz++ed444038O2332L16tUqffTq1QuTJ0/GqFGj0KJFC3zxxRfVisXe3h4HDhzAoUOH4OLigq+//hoLFy4EgAoXGa+Is7MzunTpojI75MCBA0hLS8PevXvRqlUr5aP4Ohp37tyBIAiQSCRl9l3R9QIA9+7dw9mzZxEUFFSj8yAiIiIiIiIiImoqBIVCodB0EFR9KSkpsLGxAQDcvHkTDg4OKvvj4+NRUFAAHR2dEvtIc+RyOTIyMgAAxsbGytJLBKxcuRLbt29HcnJyjfs6fvw45s6di9jY2Er/jCMiIjB8+HDcvn1bOTMDqPp7Nm/ePDx58gT/+te/ymzDf5+1TyqV4tSpUwCAQYMGcT2RBoLvW8PD96xhio+Ph6OjIwAgOTkZbdq00XBEpAnFP0/wOiAidbCbf1zTIVAl3Fnzdp2Mw+uh/qurawHg9dAQVOV6qK2/I1kSiog0atu2bejatSvMzc0RExODtWvXYtq0aWrp++2330Z8fDzu3bun/AVakRMnTuCTTz5RSVZUh6WlJWbNmlWjPoiIiIiIiIiIiJoSJiyo0UtKSip3LYu4uDiVdQfqM19fX0RHR5e675NPPsEnn3xSxxHVXHx8PFasWIHHjx/D1tYWs2fPxoIFC9TW/4wZM6rUfu3atWoZd/bs2Wrph4iIiIiIiIiIqKlgwoIaPWtra1y5cqXc/Q3Fzp07IZVKS91nZmZWx9Gox5dffokvv/xS02EQERERERERERGRhjFhQY2ejo4OOnTooOkw1KJ169aaDoGIiIiIiIiIiIioVnClXyIiIiIiIiIiIiIi0jgmLIiIiIiIiIiIiIiISOOYsCAiIiIiIiIiIiIiIo1jwoKIiIiIiIiIiIiIiDSOCQsiIiIiIiIiIiIiItI4JiyoXvL09MSMGTM0HUaDdOTIEXTo0AHa2tqYMWMGwsPDYWJiUidj29nZYePGjXUyVmWkp6fD0tISd+7cqdNx8/LyYGdnh19//bVOxyUiIiIiIiIiImrImLCgeunQoUNYvnx5nY0XFRWFd955B9bW1hAEAUeOHCnRJjAwEIIgqDx8fHxU2hRtP3/+vMr23NxcmJubQxAESCQSAMDAgQMxc+ZMlXbbt2+HIAgIDw8vMba7u3ulzmXSpEkYMWIEkpOTa+1nWFYS5NKlS5g4cWKtjFkdK1euxNChQ2FnZwcA+OOPPzB69GjY2NjAwMAAHTt2xKZNm6rc79KlS0tcC6+99ppyv0gkwpw5czBv3jx1nQoREREREREREVGjx4QF1UtmZmZo1qxZnY2XnZ2Nzp0746uvviq3nY+PD1JTU5WP77//vkQbGxsbhIWFqWw7fPgwjIyMVLb16dMHMTExKtsiIiJgY2OjTGoUkUgk6NevX4XnkZWVhYcPH8Lb2xvW1tZ1+jMEgBYtWsDQ0LBOxyzL8+fP8c033yAkJES57fLly7C0tMTevXtx/fp1LFy4EAsWLMDWrVur3H+nTp1UroUzZ86o7B8zZgzOnDmD69ev1/hciIiIiIiIiIiImgImLKheerUkVG5uLubMmYPWrVtDLBaje/fuKjf109PTMXr0aLRu3RqGhoZwdnYuNZlQFl9fX6xYsQLDhg0rt52enh6srKyUD1NT0xJtAgICsG/fPkilUuW20NBQBAQEqLRzd3dHfHw87t+/r9wWGRmJ+fPnq5xbYmIi7t69Cy8vr3Jjk0gkygRFv379VGZzvOrrr79G+/btIRKJ4OTkhD179qjs37BhA5ydnSEWi2FjY4OpU6ciKytLOU5QUBCePXumnF2wZMkSACVLQgmCgJ07d2LYsGEwNDSEg4MDjh49qjLW0aNH4eDgAH19fXh5eWHXrl0QBAFPnz4t93wrcuLECejp6aFHjx7KbcHBwdi0aRM8PDzQrl07+Pv7IygoCIcOHapy/zo6OirXgoWFhcp+U1NT9O7dG/v27avReRARERERERERETUVTFhQgzBt2jScO3cO+/btw9WrV/H+++/Dx8cH8fHxAICcnBy4ubnh+PHjiI2NxcSJEzF27FhcvHhRrXFIJBJYWlrCyckJU6ZMQXp6eok2bm5usLOzw8GDBwEASUlJiIqKwtixY1Xade/eHbq6uoiIiAAAxMXFQSqVIiQkBOnp6UhMTARQOOtCX18fPXv2LDe2Xr164a+//gIAHDx4EKmpqejVq1eJdocPH8Y///lPzJ49G7GxsZg0aRKCgoKUcQCAlpYWNm/ejOvXr2PXrl345Zdf8PHHHyvH2bhxI4yNjZWzC+bMmVNmXEuXLsXIkSNx9epVDB48GGPGjMHjx48BFCZjRowYAT8/P/zxxx+YNGkSFi5cWO55VlZ0dDTc3NwqbPfs2TOYmZlVuf/4+HhYW1ujXbt2GDNmDJKSkkq06datG6Kjo6vcNxERERERERERUVOko+kASIPObgXOlV8CCQDQqjPw4SvfEv/uAyD1j4qP7fkPoNe06sX3QlJSEsLCwpCUlARra2sAwJw5c/DTTz8hLCwMq1atQuvWrVVumk+fPh0nT57E/v370a1btxqNX8THxwfDhw+Hvb09EhIS8Mknn8DX1xfnzp2Dtra2Stvg4GCEhobC398f4eHhGDx4MFq0aKHSRiwWo0uXLoiMjMSYMWMgkUjQp08f6OnpoVevXpBIJLC3t4dEIkHPnj2hp6dXbnwikQiWlpYACktqWVlZldpu3bp1CAwMxNSpUwEAs2bNwvnz57Fu3TrlLI7is1vs7OywYsUKTJ48Gdu2bYNIJELz5s0hCEKZYxQXGBiI0aNHAwBWrVqFzZs34+LFi/Dx8cGOHTvg5OSEtWvXAgCcnJwQGxuLlStXVthvRe7evau8Xspy9uxZ/PDDDzh+/HiV+u7WrRvCw8Ph5OSE1NRULF26FO7u7oiNjVUpw2VtbY27d+9WK34iIiIiIiIiIqKmhgmLpiw3E8j8u+J2zVuX3Pb8UeWOzc2selyvuHbtGmQyGRwdHVW7frGQNQDIZDKsWrUK+/fvx71795CXl4fc3Fy1rqfwwQcfKJ87OzvDxcUF7du3h0QiQf/+/VXa+vv7Y/78+bh9+zbCw8OxefPmUvvs06cPjh07BqBw9oanpycAwMPDQ1l6SSKRYMKECWo7jz///LPEwti9e/dWWXz6559/xurVq3Hjxg1kZGSgoKAAOTk5eP78eZV/pi4uLsrnYrEYxsbGePjwIQDgr7/+QteuXVXaV5Rgmjx5Mvbu3at8XVSq6lVSqRT6+vpl9hMbG4uhQ4di8eLFGDRoUIXnUZyvry+0tAonqLm4uKB79+5o27Yt9u/fr7JmhoGBAZ4/f16lvomIiIiIiIiIiJqqRlkSau/evZg0aRLeeust6OnpQRAEhIeHl9q2qAZ/eY/k5ORKjWtnZ1dmH0U3ousVvWZAM+uKH4YWJY81tKjcsXo1X/Q5KysL2trauHz5Mq5cuaJ8/Pnnn8qb7GvXrsWmTZswb948RERE4MqVK/D29kZeXl6Nxy9Lu3btYGFhgVu3bpXYZ25ujiFDhiAkJAQ5OTnw9fUttQ93d3fcvHkT9+7dg0QigYeHB4CXCYuEhAQkJydXasFtdblz5w6GDBkCFxcXHDx4EJcvX1YuRl6dn6eurq7Ka0EQIJfLqx3fsmXLVK6DslhYWODJkyel7ouLi0P//v0xceJELFq0qNqxFDExMYGjo2OJa+Hx48clZtYQERERERERERFR6RrlDItFixbh7t27sLCwQKtWrcotybJ48eJSt9+6dQvffvstXn/9ddjY2FR67ObNm6uU0yliZ2dX6T7qTK9p1S/X9GqJqFrk6uoKmUyGhw8fwt3dvdQ2MTExGDp0KPz9/QEAcrkcN2/exOuvv15rcaWkpCA9PR2tWrUqdX9wcDAGDx6MefPmlSgZVaRbt24QiUTYtm2bch0OAOjatSvS0tIQGhoKsVistrJWANCxY0fExMSoLAIeExOj/FldvnwZcrkc69evV84i2L9/v0ofIpEIMpmsxrE4OTnhxIkTKtsuXbpU7jGWlpbK0lflcXV1VZmJUeT69evo168fAgIC1FJ6CihMqiUkJJRYpyQ2Nhaurq5qGYOIiIiIiIiIiKixa5QJi507d8LBwQFt27bFmjVrsGDBgjLbLlmypNTt06dPBwCV8i6VYWJiUmafVD2Ojo4YM2YMxo0bh/Xr18PV1RVpaWk4ffo0XFxc8Pbbb8PBwQEHDhzA2bNnYWpqig0bNuDBgweVTlhkZWWpfDs+MTERV65cgZmZGWxtbZGVlYWlS5fivffeg5WVFRISEvDxxx+jQ4cO8Pb2LrVPHx8fpKWlwdjYuMxxDQwM0KNHD2zZsgW9e/dWJjZEIpHK9ldnKdTE3LlzMXLkSLi6umLAgAE4duwYDh06hJ9//hkA0KFDB+Tn52PLli145513EBMTg+3bt6v0YWdnh6ysLJw+fRqdO3eGoaFhtcpvTZo0CRs2bMC8efMQEhKCK1euKGdDCYJQo/P09vbGggUL8OTJE5iamgIoTCD069cP3t7emDVrFu7fvw8A0NbWrtJMiLlz5+Ldd99F27Zt8ffff2Px4sXQ1tZWrtVRJDo6GsuXL6/ReRARERERERERETUVjbIk1IABA9C2bdtqH5+Tk4Nvv/0WIpGoxDemSTPCwsIwbtw4zJ49G05OTvDz88OlS5dga2sLoHBWTZcuXeDt7Q1PT09YWVnBz8+v0v3/+uuvcHV1VX4bftasWXB1dcVnn30GoPCG9tWrV/Huu+/C0dERISEhcHNzQ3R0dJmLYQuCAAsLC4hEonLH9vT0RGZmZomyYR4eHsjMzFQuhK0ufn5+2LRpE9atW4dOnTphx44dCAsLU47fuXNnbNiwAZ9//jneeOMNfPvtt1i9erVKH7169cLkyZMxatQotGjRAl988UW1YrG3t8eBAwdw6NAhuLi44Ouvv8bChQsBoMJFxivi7OyMLl26qMwOOXDgANLS0rB37160atVK+Si+jsadO3cgCAIkEkmZfaekpGD06NFwcnLCyJEjYW5ujvPnz6skPc6dO4dnz55hxIgRNToPIiIiIiIiIiKipkJQKBQKTQdRm4pmWISFhSEwMLBSx3z33XcYM2YMRowYgf/85z+VHsvOzg65ublYvXo1/v77bxgbG6Nr167o3r17NaMvvDFantTUVGW5oGvXrqF9+/Yq+5OSkiCTyaCrq1tiH2mOXC5XLhZtZGSkLL1EwKpVq7Bjx45yS7lV1vHjxzFv3jxcvXq10j/jiIgIjBgxArdu3VLOzACq/p598MEH6Ny5c7kzvBISEpCfnw9tbW1l8o3UKycnB1FRUQCAvn37lrsQO9UffN8aHr5nDVNCQgKcnZ0BAMnJyWjTpo2GIyJNSElJUZbA5XVAROpgN/+4pkOgSriz5u06GYfXQ/1XV9cCwOuhIajK9VBbf0c2ypJQNfXNN98AAMaPH1/lY+/fv4+goCCVbV27dsX3339frYRBVdbPuHDhAhISElS2mZubw8DAAIIgICMjo8rjU+0rugneVO3cuRNdunSBmZkZzp8/j7Vr12LChAlquV7d3d0xduxY3Lhxo9K/NI8cOYKZM2dCW1u7zBgqes/y8vLg6OiI4ODgcs+joKAAUqkUUqkUN27cqFR8VH1FN1OpYeH71vDwPWs4Hj16pOkQiIiIiIiIVDBh8YrExERERETA1tYWAwcOrNKxQUFBcHd3xxtvvAEjIyPcvHkTGzZswJ49e9C/f39cu3YNzZo1q6XIqSzJycno2bNnmfvPnTtXpcSQJo0YMQLnz58vdd/MmTMxe/bsOo6o5m7fvo3169fjyZMnaNOmDaZNm4aZM2eqrf8pU6ZUqb061pwQiUSYM2dOjfshIiIiIiIiIiJqSpiweEVoaCgUCgWCgoKqXKZn8eLFKq/ffPNN7N69GwCwZ88e/Pvf/8asWbOq1GdycnK5+4uXhOrevXuZJaF0dHTKXfy5MXNycsJvv/1W5n47Ozvo6NTtP4XqloQKCwuDVCotdZ+ZmVmDfI+3bt2KrVu3ajqMCtVGGa+0tDQYGBjAyMgIbm5uNe6PSmKZmoaJ71vDw/esYXp1Zi4REREREZGmMWFRjFwuR3h4OLS0tBAcHKy2fidNmoQ9e/YgJiamygmLqtT+0tPTg4GBgco2LS0tyOVy5fOmSCQSwdHRUdNhlElLS6vS701DmQnS2FXlPauIIAjQ0tIq8W+X1E9fX58/5waI71vDw/es4dDT09N0CERERERERCqa5h3sMvz0009ISUnBwIED1boAroWFBQAgOztbbX0SERERERERERERETUmTFgUU5PFtstz4cIFAIWlh4iIiIiIiIiIiIiIqCQmLF5IS0vDsWPH0KJFC7z77rtltsvPz8eNGzdK1Py9ceMGnj9/XqL9jRs3MG/ePADAhx9+qN6giYiIiIiIiIiIiIgaiUa5hsXOnTtx5swZAMC1a9eU2yQSCQCgT58+JWZR7N69G/n5+Rg7dixEIlGZfd+7dw8dO3ZE27ZtcefOHeX2ffv2YcOGDejbty/atm0LsViMmzdv4sSJE8jPz8eCBQvQt29f9Z4oEREREREREREREVEj0SgTFmfOnMGuXbtUtsXExCAmJkb5+tWERU3LQXl5eeHPP//E77//jujoaDx//hwWFhYYPHgwpk6dikGDBlWrXyIiIiIiIiIiIiKipqBRloQKDw+HQqEo8xEeHl7imLi4OCgUCnTs2LHcvu3s7KBQKFRmVwCAh4cHfvjhB9y8eRPPnj1Dfn4+UlNTceTIESYrqsHT0xMzZszQdBgN0pEjR9ChQwdoa2tjxowZCA8Ph4mJSZ2MbWdnh40bN9bJWJWRnp4OS0vLEv9e60KPHj1w8ODBOh+XiIiIiIiIiIiooWqUCQtq+A4dOoTly5fX2XhRUVF45513YG1tDUEQcOTIkRJtAgMDIQiCysPHx0elTdH28+fPq2zPzc2Fubk5BEFQliYbOHAgZs6cqdJu+/btEAShRFItMDAQ7u7ulTqXSZMmYcSIEUhOTq61n2FZSZBLly5h4sSJtTJmdaxcuRJDhw4tdcH79PR0tGnTBoIg4OnTp1XqtzLXy6JFizB//nzI5fLqBU9ERERERERERNTEMGFB9ZKZmRmaNWtWZ+NlZ2ejc+fO+Oqrr8pt5+Pjg9TUVOXj+++/L9HGxsYGYWFhKtsOHz4MIyMjlW19+vRRKVMGABEREbCxsVEmNYpIJBL069evwvPIysrCw4cP4e3tDWtr6zr9GQJAixYtYGhoWKdjluX58+f45ptvEBISUur+kJAQuLi4VKvvylwvvr6+yMzMxI8//litMYiIiIiIiIiIiJoaJiyoXnq1JFRubi7mzJmD1q1bQywWo3v37io39dPT0zF69Gi0bt0ahoaGcHZ2LjWZUBZfX1+sWLECw4YNK7ednp4erKyslA9TU9MSbQICArBv3z5IpVLlttDQUAQEBKi0c3d3R3x8PO7fv6/cFhkZifnz56ucW2JiIu7evQsvL69yY5NIJMoERb9+/VRmc7zq66+/Rvv27SESieDk5IQ9e/ao7N+wYQOcnZ0hFothY2ODqVOnIisrSzlOUFAQnj17ppxRsmTJEgAlS0IJgoCdO3di2LBhMDQ0hIODA44ePaoy1tGjR+Hg4AB9fX14eXlh165d1Zr18KoTJ05AT08PPXr0KPX8nz59ijlz5lSr78pcL9ra2hg8eDD27dtXrTGIiIiIiIiIiIiaGiYsqEGYNm0azp07h3379uHq1at4//334ePjg/j4eABATk4O3NzccPz4ccTGxmLixIkYO3YsLl68qNY4JBIJLC0t4eTkhClTpiA9Pb1EGzc3N9jZ2SnXL0hKSkJUVBTGjh2r0q579+7Q1dVFREQEgMJ1VKRSKUJCQpCeno7ExEQAhbMu9PX10bNnz3Jj69WrF/766y8AwMGDB5GamopevXqVaHf48GH885//xOzZsxEbG4tJkyYhKChIGQcAaGlpYfPmzbh+/Tp27dqFX375BR9//LFynI0bN8LY2Fg506S8G/9Lly7FyJEjcfXqVQwePBhjxozB48ePARQmY0aMGAE/Pz/88ccfmDRpEhYuXFjueVZWdHQ03NzcSmyPi4vDsmXLsHv3bmhp1e6vwG7duiE6OrpWxyAiIiIiIiIiImosdDQdAGnOruu7sDtud4XtXjd7HVv6b1HZNv30dMQ9jqvw2HGvj0NAp4AK25UnKSkJYWFhSEpKgrW1NQBgzpw5+OmnnxAWFoZVq1ahdevWKjfNp0+fjpMnT2L//v3o1q1bjcYv4uPjg+HDh8Pe3h4JCQn45JNP4Ovri3PnzkFbW1ulbXBwMEJDQ+Hv74/w8HAMHjwYLVq0UGkjFovRpUsXREZGYsyYMZBIJOjTpw/09PTQq1cvSCQS2NvbQyKRoGfPntDT0ys3PpFIBEtLSwCFJbWsrKxKbbdu3ToEBgZi6tSpAIBZs2bh/PnzWLdunXIWR/HZLXZ2dlixYgUmT56Mbdu2QSQSoXnz5hAEocwxigsMDMTo0aMBAKtWrcLmzZtx8eJF+Pj4YMeOHXBycsLatWsBAE5OToiNjcXKlSsr7Lcid+/eVV4vRXJzczF69GisXbsWtra2uH37do3HKY+1tTWSk5Mhl8trPTlCRERERERERETU0DFh0YRl52fj4fOHFbazEpe8Kf0493Gljs3Oz65WbMVdu3YNMpkMjo6OKtuLFrIGAJlMhlWrVmH//v24d+8e8vLykJubq9b1FD744APlc2dnZ7i4uKB9+/aQSCTo37+/Slt/f3/Mnz8ft2/fRnh4ODZv3lxqn3369MGxY8cAFM7e8PT0BAB4eHgoSy9JJBJMmDBBbefx559/llgYu3fv3ti0aZPy9c8//4zVq1fjxo0byMjIQEFBAXJycvD8+fMq/0yLrxMhFothbGyMhw8Lr52//voLXbt2VWlfUYJp8uTJ2Lt3r/J1UamqV0mlUujr66tsW7BgATp27Ah/f/8qnUN1GRgYQC6XIzc3FwYGBnUyJhERERERERERUUPFhEUTJtYVw9LQssJ2ZnpmpW6rzLFiXXG1YisuKysL2trauHz5comZDEULWa9duxabNm3Cxo0blWsvzJgxA3l5eTUevyzt2rWDhYUFbt26VSJhYW5ujiFDhiAkJAQ5OTnKBZhf5e7ujvXr1+PevXuQSCTKWSIeHh7YsWMHEhISkJycXKkFt9Xlzp07GDJkCKZMmYKVK1fCzMwMZ86cQUhICPLy8qqcsNDV1VV5LQgC5HJ5teNbtmxZpdaesLCwwJMnT1S2/fLLL7h27RoOHDgAAFAoFMq2CxcuxNKlS6sdV2keP34MsVjMZAUREREREREREVElMGHRhAV0Cqh2uaZXS0TVJldXV8hkMjx8+BDu7u6ltomJicHQoUOV35yXy+W4efMmXn/99VqLKyUlBenp6WjVqlWp+4ODgzF48GDMmzevRKKlSLdu3SASibBt2zblOhwA0LVrV6SlpSE0NBRisVhtZa0AoGPHjoiJiVFZBDwmJkb5s7p8+TLkcjnWr1+vLGO0f/9+lT5EIhFkMlmNY3FycsKJEydUtl26dKncYywtLZWlr8rj6uqqMhMDKFzbo/hi6JcuXUJwcDCio6PRvn37KkReObGxsXB1dVV7v0RERERERERERI0RExZU7zk6OmLMmDEYN24c1q9fD1dXV6SlpeH06dNwcXHB22+/DQcHBxw4cABnz56FqakpNmzYgAcPHlQ6YZGVlYVbt24pXycmJuLKlSswMzODra0tsrKysHTpUrz33nuwsrJCQkICPv74Y3To0AHe3t6l9unj44O0tDQYGxuXOa6BgQF69OiBLVu2oHfv3srEhkgkUtn+6iyFmpg7dy5GjhwJV1dXDBgwAMeOHcOhQ4fw888/AwA6dOiA/Px8bNmyBe+88w5iYmKwfft2lT7s7OyQlZWF06dPo3PnzjA0NKxW+a1JkyZhw4YNmDdvHkJCQnDlyhWEh4cDKJyJURPe3t5YsGABnjx5AlNTUwAokZR49OgRgMIkjomJSaX7zsrKUln/4tXrpUh0dDQGDRpUg7MgIiIiIiIiIiJqOrgKLDUIYWFhGDduHGbPng0nJyf4+fnh0qVLypvDixYtQpcuXeDt7Q1PT09YWVnBz8+v0v3/+uuvcHV1VX4bftasWXB1dcVnn30GANDW1sbVq1fx7rvvwtHRESEhIXBzc0N0dHSZi2ELggALCwuIRKJyx/b09ERmZqZy/YoiHh4eyMzMVC6ErS5+fn7YtGkT1q1bh06dOmHHjh0ICwtTjt+5c2ds2LABn3/+Od544w18++23WL16tUofvXr1wuTJkzFq1Ci0aNECX3zxRbVisbe3x4EDB3Do0CG4uLjg66+/xsKFCwGgwkXGK+Ls7IwuXbqUmB1SkTt37kAQBEgkkjLbVHS9AMC9e/dw9uxZBAUFVSt+IiIiIiIiIiKipkZQFBVxpwYpJSUFNjY2AICbN2/CwcFBZX98fDwKCgqgo6NTYh9pjlwuR0ZGBgDA2NhYWXqJgJUrV2L79u1ITk6ucV/Hjx/H3LlzERsbW+mfcUREBIYPH47bt28rZ2YAVX/P5s2bhydPnuBf//pXmW3477P2SaVSnDp1CgAwaNAgrifSQPB9a3j4njVM8fHxcHR0BAAkJyejTZs2Go6INKH45wleB0SkDnbzj2s6BKqEO2verpNxeD3Uf3V1LQC8HhqCqlwPtfV3JEtCEZFGbdu2DV27doW5uTliYmKwdu1aTJs2TS19v/3224iPj8e9e/eUv0ArcuLECXzyyScqyYrqsLS0xKxZs2rUBxERERERERERUVPCr3VTo5eUlAQjI6MyH0lJSZoOsdJ8fX3LPI9Vq1ZpOrxqiY+Px9ChQ/H6669j+fLlmD17NpYsWaK2/mfMmFHpZAUArF27FnPnzq3xuLNnz0bLli1r3A8RERHVH/fu3cPGjRsxaNAg2NraQiQSwcrKCu+99x4uXLhQ6jEZGRmYNWsW2rZtCz09PdjZ2WHu3LnIysoqtb1cLseWLVvg7OwMAwMDtGjRAqNHj1ZZP4uIiIiIqLHiDAtq9KytrXHlypVy9zcUO3fuhFQqLXWfmZlZHUejHl9++SW+/PJLTYdBREREVKEtW7bg888/R/v27TFo0CC0aNEC8fHxOHLkCI4cOYLvvvsOo0aNUrbPzs6Gh4cHrly5gkGDBmH06NH4/fffsW7dOkRGRiIqKgr6+voqY0yaNAk7d+5Ep06d8NFHH+Hvv//G/v37cerUKZw/f55lJImIiIioUWPCgho9HR0ddOjQQdNhqEXr1q01HQIRERFRk9WtWzdIJBJ4eHiobI+Ojkb//v0xZcoU+Pn5QU9PDwDwxRdf4MqVK5g3bx7WrFmjbD9//nx8/vnn+PLLL7FgwQLl9oiICOzcuRN9+/bF//73P4hEIgDAhx9+iMGDB2PatGk4efJkHZwpEREREZFmsCQUERERERFRJQwfPrxEsgIA3N3d4eXlhSdPnuDatWsAAIVCgZ07d8LIyAiffvqpSvtPP/0URkZG2Llzp8r2f//73wCA5cuXK5MVQGFZUE9PT5w6dapBlTMlIiIiIqoqJiyIiIiIiIhqSFdXF0Dh7F6gcJ2uv//+G71794ZYLFZpKxaL0bt3b9y+fRvJycnK7RKJRLnvVd7e3gCAyMjI2joFIiIiIiKNY0koIiIiIiKiGkhKSsLPP/+MVq1awdnZGUBhwgJAmWtOODg44OTJk4iPj4eNjQ2ys7ORmpqKN954A9ra2qW2L95vZaWkpJS7PzU1VflcKpWWuV4aERE1Lvx9T0V4LVBxVbkeauvaYcKCiIiIiIiomvLz8zF27Fjk5ubi888/VyYbnj17BgBo3rx5qccZGxurtKtq+8qysbGpdNuoqChYWFhUqX8iopJ4q6khOHXqVB2NxOuhvqu7awHg9VD/VeV6ePToUa3EwJJQRERERERE1SCXyxEYGIioqChMmDABY8eO1XRIREREREQNGtNaVC95enrizTffxMaNGzUdSoNz5MgRzJkzB4mJiZg+fTrefPNNzJgxA0+fPq31se3s7DBjxgzMmDGj1seqjPT0dHTs2BEXL16EnZ1dnY2bl5cHR0dHHDhwAG+99VadjUtERER1Ry6XIzg4GN999x38/f2xfft2lf1FMyXKmhGRkZGh0q6q7Sur+BoZpUlNTUW3bt0AAH379kWbNm2q1D8RUQnnftF0BFQJgwYNqpuBeD3Ue3V2LQC8HhqAqlwPFZUerS4mLKheOnTokHLhwroQFRWFtWvX4vLly0hNTcXhw4fh5+en0iYwMBC7du1S2ebt7Y2ffvpJ+VoQBADAuXPn0KNHD+X23NxcWFtb4/Hjx4iIiEDfvn0xcOBAvPHGG/jmm2+U7bZv344pU6YgLCwMgYGBKmMnJCQgOjq6wnOZNGkSgoKC8NFHH6FZs2Y4ePBgVX4UlRIeHl5qEuTSpUslFpXUpJUrV2Lo0KGlJivS09PRuXNn3Lt3D0+ePIGJiUml+126dCmWLVumss3JyQk3btwAAIhEIsyZMwfz5s3D6dOna3IKREREVA/J5XIEBQVh9+7dGD16NMLDw6GlpTp5vaI1J15d40IsFqNVq1ZITEyETCYrsY5FRWtilKUqCQgDAwMYGBhUqX8iImqY+PueivBaoOKqcj3U1rXDhAXVS2ZmZnU6XnZ2Njp37ozg4GAMHz68zHY+Pj4ICwtTvtbT0yvRxsbGBmFhYSoJi8OHD8PIyAiPHz9WbuvTpw+OHz+ucmxERARsbGwgkUhUEhYSiQQBAQEVnkdWVhYePnwIb29vWFtbV9he3Vq0aFHnY5bl+fPn+Oabb3Dy5MlS94eEhMDFxQX37t2rVv+dOnXCzz//rHyto6P663TMmDGYPXs2rl+/jk6dOlVrDCIiIqp/iicrRo0ahT179pS5SLa1tTViYmKQnZ2t8qWO7OxsxMTEwN7eXmWNCQ8PD+zbtw8xMTHo27evSn9Ff9O8up2ovrCbf7ziRqRRd9a8rekQiIiIKsQ1LKhe8vT0VCkrlJubizlz5qB169YQi8Xo3r07JBKJcn96ejpGjx6N1q1bw9DQEM7Ozvj+++8rPZ6vry9WrFiBYcOGldtOT08PVlZWyoepqWmJNgEBAdi3bx+kUqlyW2hoaImEg7u7O+Lj43H//n3ltsjISMyfP1/l3BITE3H37l14eXmVG5tEIkGzZs0AAP369YMgCCr9FPf111+jffv2EIlEcHJywp49e1T2b9iwAc7OzhCLxbCxscHUqVORlZWlHCcoKAjPnj2DIAgQBAFLliwBUFgSqngZL0EQsHPnTgwbNgyGhoZwcHDA0aNHVcY6evQoHBwcoK+vDy8vL+zatQuCINS4hNWJEyegp6enkjgqfv5Pnz7FnDlzqt2/jo6OyrXw6gKVpqam6N27N/bt21ftMYiIiKh+KSoDtXv3brz//vvYu3dvqckKoPDvoPHjxyMrKwvLly9X2bd8+XJkZWVhwoQJKtsnTpwIAPj000+Rl5en3P7jjz9CIpFg0KBBaNu2rZrPioiIiIio/mDCghqEadOm4dy5c9i3bx+uXr2K999/Hz4+Psqp8Tk5OXBzc8Px48cRGxuLiRMnYuzYsbh48aJa45BIJLC0tISTkxOmTJmC9PT0Em3c3NxgZ2enLMWUlJSEqKioEoswdu/eHbq6uoiIiAAAxMXFQSqVIiQkBOnp6UhMTARQOOtCX18fPXv2LDe2Xr164a+//gIAHDx4EKmpqejVq1eJdocPH8Y///lPzJ49G7GxscoSUkVxAICWlhY2b96M69evY9euXfjll1/w8ccfK8fZuHEjjI2NkZqaitTU1HJv/C9duhQjR47E1atXMXjwYIwZM0Y50yQxMREjRoyAn58f/vjjD0yaNAkLFy4s9zwrKzo6Gm5ubiW2x8XFYdmyZdi9e3eJ0g1VER8fD2tra7Rr1w5jxoxBUlJSiTbdunWrVBkvIiIiahiWLVuGXbt2wcjICI6OjlixYgWWLFmi8rhy5Yqy/ccff4zOnTvj888/h7e3NxYsWABvb298/vnn6Nq1a4l1v7y8vDB+/HhERUWhS5cumDdvHsaNGwc/Pz+YmZlhy5YtdXvCRERERER1jCWhmrD0sHA8Dg+vsJ3+66/D5uttKtuSp0xFTlxchceaBQbCPCiwmhEWSkpKQlhYGJKSkpRljubMmYOffvoJYWFhWLVqFVq3bq1y03z69Ok4efIk9u/fr1xEsKZ8fHwwfPhw2NvbIyEhAZ988gl8fX1x7ty5Et+sCw4ORmhoKPz9/REeHo7BgweXKJckFovRpUsXREZGYsyYMZBIJOjTpw/09PTQq1cvSCQS2NvbQyKRoGfPnqWWnypOJBLB0tISQGFJLSsrq1LbrVu3DoGBgZg6dSoAYNasWTh//jzWrVunnMVR/MOznZ0dVqxYgcmTJ2Pbtm0QiURo3rw5BEEoc4ziAgMDMXr0aADAqlWrsHnzZly8eBE+Pj7YsWMHnJycsHbtWgCF60DExsZi5cqVFfZbkbt375Yoi5Wbm4vRo0dj7dq1sLW1xe3bt6vVd7du3RAeHg4nJyekpqZi6dKlcHd3R2xsrHKWCwBYW1vj7t27NToPIiIiKt2DBw9w+vRp/Pbbb3jw4AGePHkCU1NTtGzZEm5ubujXrx9atmyp1jHv3LkDoLAMZ1l/r9jZ2eHNN98EUPj3XmRkJJYsWYKDBw8iIiICrVq1wuzZs7F48eJS6/7u2LEDzs7O+Ne//oVNmzbByMgIw4YNw8qVK9G+fXu1ng8RERERUX3DhEUTJs/KQsGDBxW2k5VyU1r2+HGljpW/KCNUE9euXYNMJoOjo6PK9tzcXJibmxfGI5Nh1apV2L9/P+7du4e8vDzk5ubC0NCwxuMX+eCDD5TPnZ2d4eLigvbt20MikaB///4qbf39/TF//nzcvn0b4eHh2Lx5c6l99unTB8eOHQNQOHvD09MTQGH94qLSSxKJpES5gJr4888/leUGivTu3RubNm1Svv7555+xevVq3LhxAxkZGSgoKEBOTg6eP39e5Z+pi4uL8rlYLIaxsTEePnwIAPjrr7/QtWtXlfYVJZgmT56MvXv3Kl9nlXGNSaVS6Ovrq2xbsGABOnbsCH9//yqdw6t8fX2VszNcXFzQvXt3tG3bFvv370dISIiynYGBAZ4/f16jsYiIiOil/Px8/PDDD/jqq6+UM2kVCkWJdoIgACic0fqPf/wDI0eOhK6ubo3HDw8PR3glvvBTXPPmzfHll1/iyy+/rFR7LS0tfPTRR/joo4+qESERERERUcPGhEUTpmVkBJ1KfOtMu5QFsLXNzCp1rJaRUbViKy4rKwva2tq4fPlyiZkMRi/6X7t2LTZt2oSNGzcq116YMWOGSu1fdWvXrh0sLCxw69atEgkLc3NzDBkyBCEhIcjJyYGvry8yMzNL9OHu7o7169fj3r17kEgkylkiHh4e2LFjBxISEpCcnIx+/frV2nm86s6dOxgyZAimTJmClStXwszMDGfOnEFISAjy8vKqnLB49eaAIAiQy+XVjm/ZsmWVWnvCwsICT548Udn2yy+/4Nq1azhw4ACAlzc4LCwssHDhQixdurRaMZmYmMDR0RG3bt1S2f748eN6tRA5ERFRQ7Znzx4sWLAAqampUCgUaNGiBXr27IlOnTrB3NwcxsbGePbsGdLT0xEbG4tz587h/PnzuHDhAubPn4/Vq1fX+EsLRERERERUu5iwaMLMg6pfrunVElG1ydXVFTKZDA8fPoS7u3upbWJiYjB06FDlh1C5XI6bN2/i9ddfr7W4UlJSkJ6ejlatWpW6Pzg4GIMHD8a8efPKXIyxW7duEIlE2LZtm3IdDgDo2rUr0tLSEBoaCrFYrLayVgDQsWNHxMTEqCwCHhMTo/xZXb58GXK5HOvXr1fOIti/f79KHyKRCDKZrMaxODk54cSJEyrbLl26VO4xlpaWytJX5XF1dVWZiQEUru1RfDH0S5cuITg4GNHR0TUqsZCVlYWEhIQS65TExsbC1dW12v0SERFRoZ49e+LixYuwsLDARx99hMDAQHTu3LnC465cuYKwsDB8//33CAgIwLZt23D27Nk6iJiIiIiIiKqDi25Tvefo6IgxY8Zg3LhxOHToEBITE3Hx4kWsXr0ax48fBwA4ODjgf//7H86ePYs///wTkyZNwoNKlKwqkpWVhStXrigXSUxMTMSVK1eUCylnZWVh7ty5OH/+PO7cuYPTp09j6NCh6NChA7y9vUvt08fHB2lpaVi2bFmZ4xoYGKBHjx7YsmULevfurUxsiEQile3qKGFQZO7cuQgPD8fXX3+N+Ph4bNiwAYcOHVLOWujQoQPy8/OxZcsW3L59G3v27MH27dtV+rCzs0NWVhZOnz6NR48eVbvs0aRJk3Djxg3MmzcPN2/exP79+5VlFopKOVSXt7c3rl+/rjLLon379njjjTeUD3t7ewCFSZzKJEGKzJ07F5GRkbhz5w7Onj2LYcOGQVtbW7lWR5Ho6GgMGjSoRudBREREQHx8PL744gskJSXhyy+/rFSyAgDefPNNbNq0CcnJyVizZg1u3rxZy5ESEREREVFNMGFBDUJYWBjGjRuH2bNnw8nJCX5+frh06RJsbW0BAIsWLUKXLl3g7e0NT09PWFlZwc/Pr9L9//rrr3B1dVV+G37WrFlwdXXFZ599BgDQ1tbG1atX8e6778LR0REhISFwc3NDdHR0mYthC4IACwsLiESicsf29PREZmamcv2KIh4eHsjMzFQuhK0ufn5+2LRpE9atW4dOnTphx44dCAsLU47fuXNnbNiwAZ9//jneeOMNfPvtt1i9erVKH7169cLkyZMxatQotGjRAl988UW1YrG3t8eBAwdw6NAhuLi44Ouvv8bChQsBoMJFxivi7OyMLl26lJgdUpE7d+5AEARIJJIy26SkpGD06NFwcnLCyJEjYW5ujvPnz6uUfzp37hyePXuGESNGVPcUiIiI6IXbt29j9uzZ1f77QE9PD3PnzsXt27fVHBkREREREamToChtlboGbu/evYiOjsbly5dx7do15OXlISwsDIGBgSXaLlmypNy69YmJibCzs6v02Ddv3sSiRYvwyy+/IDs7G46Ojpg8eTImT55c42+MlyYlJQU2NjbKsR0cHFT2x8fHo6CgADo6OiX2kebI5XJkZGQAAIyNjZWllwhYuXIltm/fjuTk5Br3dfz4ccydOxexsbGV/hlHRERg+PDhuH37NkxNTZXbq/qejRo1Cp07d8Ynn3xSZhv++6x9UqkUp06dAgAMGjQIBgYGGo6IKoPvW8PD96xhio+Ph6OjIwAgOTkZbdq00XBEpAnFP0/wOqCasJt/XNMhUAXurHm7TsbhtdAw8HqgInV1LQC8HhqCqlwPtfV3ZKNcw2LRokW4e/cuLCws0KpVK9y9e7fCYwICAkpNTJiYmFR63Li4OPTq1QtSqRQjR46EtbU1jh8/jqlTpyIuLg5btmypwlkQNQ3btm1D165dYW5ujpiYGKxduxbTpk1TS99vv/024uPjce/ePeUv0IqcOHECn3zyiUqyoqry8vLg7OyMmTNnVrsPIiIiIiIiIiKipqZRJix27twJBwcHtG3bFmvWrMGCBQsqPCYwMLBESZ6qmjJlCp49e4YTJ07A19cXALB8+XIMGDAAW7duxYcffoiePXvWaAyquqSkpHIX346Li1OWlqrvfH19ER0dXeq+Tz75pNxv89dX8fHxWLFiBR4/fgxbW1vMnj27Uv9mK2vGjBlVar927doajykSibBo0aIa90NEREQVk8lkSE9PR05OTpltGsrfekRERERETV2jTFgMGDCgzse8efMmoqKi4OXlpUxWAIU3LpcvXw5PT0/8+9//ZsJCA6ytrZWLaZe1v6HYuXMnpFJpqfvMzMzqOBr1+PLLL/Hll19qOgwiIiJqYM6ePYulS5ciKioKeXl5ZbYTBAEFBQV1GBkREREREVVXo0xYVEdUVBQuXLgALS0tODg4YMCAATAyMqr08UUL9A4aNKjEvj59+kAsFiMyMrLKcaWkpJS7PzU1Vfk8Nze3xM1suVyOomVK5HJ5lcdvDLS0tNCuXbty29T1z6b4eFUZu1WrVpXul9Sruu9ZRRQKBfLyCnAx8jYUcgUsm+nBXPxyofZ8mRy30rIr1Ze9hSH0dbSVr59K85D6LLfC43S0BDhYqv6+u/dUioycim/uNDfQgXVz1Vr1Nx9mQSaveHmk1ib6MNbXVb6W5stwJ/15hccBgIOlGDrF1hFJy8rFo6ySN6sKCvLx7O/C/9X9duYujAz0YW9uqNLmTvpzSPNlFY5pIRahRbOXi73KFQr89SCrUvG2NTOEoejle5ORk497T8v+JnARLUGAU0vV9yY1IwdPn+dXeGwzfR20MVF9b26lZSFfVvF7Y2WsB1PDl9dhboEMtx9V7r3p0MIQutovz/Xx8zw8yKj4OhTpaKG9hRhAYVk1o2c6SM8pfN90dHTLPdZUrAurZvoq2/68n1mpeNuYGqCZ3ss/h7JzC5D0pPTE8Ktea2mksj7Vg8wcPM6u+L0Ri7Rha6Z6HSamZyMnv+LfLfX1d0TRvzVtA3m533Kn+iU3t+L3v7765Zdf4Ovri/z8wn9zZmZmaNasmYajIiIiIiKimmLC4oXFixervDYxMcGmTZswbty4Sh0fHx8PAKUunKutrQ17e3vExcUpF9itrMrW3QeACxcuICEhQWWbubk5DAwMIAiCcsFgql+ysip3w5PqD3W9ZwUFBXieLYXwoADWZ17ebH/1X2rrSvaX9+JRRKsKx746ZrMXj+oca1XJ40o7trLxvnrrXK+cY9vCuPDJ3bRSx6zK3KTqxltQg2NfPU784lGdYy0reVxpx1Y2XumLRxGdKhxbfEynovftdlqVj0UVxlTU4NhXUyIGVTj21THNK3lcacfWl98RRf/WjqVdRHNHJi0agkePHmk6hGpbtGgR8vPzMWPGDCxatKjBzjQlIiIiIiJVWhU3adw6d+6M0NBQ3L59G1KpFImJidiyZQsEQUBgYCCOHj1aqX6ePXsGAGjevHmp+42NjSGXy5GZWblvfBJR46dQANr5WhBBqLgxEVEDYfms/BkxROpw5coVvPnmm9iwYQOTFUREREREjUiTn2ExbNgwldd2dnaYNm0aOnbsiIEDB2LRokV49913NRQdkJycXO7+1NRUdOvWDQDQvXt3tG/fXmV/UlISZDIZdHR0YGxsXGtxUtXI5XLlt/SNjIygpdXkc4f1nrrfM7lcAUGeqvwl/FBLgQet9NHG1ACtmr8sbZMvk+NK8rNK9dnJ2lil7NCjrFwkVqKMj662Ft60UU22JqRl43F22fXAi1gY6cHeQrW0zW9JTytVEqpdC7FKaZvs3ALEpVYuqetq21ylJNTfT6WllliSyxXIyCz8brhxM2M0M9DF661Uvxf+Z2omsnIrLn9lbaKP1sVKLMkVCly++7RS8Xa0agYj/Zf/y33yPA+3HlZcxkcQBLzV1kRl253050jLrLiMi4mhbokyPn+kPENeQcVlh9qaG8KyWPmrnHwZrt2r3Cw9lzbG0CtWduhBRg6SHldcYklfVxvOrQv/PyUrKEBycjLuPRegY2AMLa3yk3otjfVKlFi6dOdJpeJ1aGkEE4OXN9ifSfNxs5Klvt5qa6JSEir5yXPcr0SJJWMD3RKlvmL/zoA0r+LSZPX1d4RcJkfn+4WlefS1dOFRSolMqn9enZnbkBgZGeG1117TdBhERERERKRmTT5hUZb+/fujffv2uHbtGjIyMiq82V80s6JopsWrMjIyIAhClWvrtmnTptJt9fT0YGCgWq9cS0tLWW+fN8XrJy0tLb43DUxN3zOFQoHsR8+h9eKefgEUMAl4HV2cLEptX/7KJWWzAFDdWzmlR1I51b1NaQGgbQ2OdSllu1QqxalTpwAA/Qb1KfE7EgDcqzkmAPhW8zgLACULCFb+2OrqX4NjK/9/I1UWADpV8RipVIp7p24CKPt9q0hN3pv2FbYq+9jq8qzBsfXhd0R2djbSll+GDgToKhTVes+o7unp6VXcqJ7q0aMHbt68qekwiIiIiIhIzXiXtBwWFoUfx58/r/jbh0VrVxStZVGcTCZDYmIi7O3tq7R+BRE1ThmPpDAoeDkDQd7SEO3KSFYQETUEWlpaKJpbolPxJB6iGlu4cCGuXbuG7777TtOhEBERERGRGvHueRmys7Nx/fp1iMViZeKiPB4eHgCAU6dOYf78+Sr7zpw5g+zsbGUb0ixBEHD48GH4+flpOhRqgjKfSGGQ+7LsS4GeNoyN9cs5goiogdBSAHIB5nr885JqX/fu3fHDDz9g/PjxOHbsGHx9fWFra1vmDMi+ffvWcYRERERERFQdTXqGRWZmZqlTyaVSKSZMmIDMzEyMHDmyxKyIGzdu4MaNGyrbnJyc0LdvX0RERODHH39Ubs/Ly8Onn34KABg/fnwtnAXVJjs7OwiCoPJYs2aNcr9EIoEgCDA1NUVOjmr9/EuXLimPAYCsrCzo6upi3759Ku1Gjx4NQRBw586dEmMXXTvUOMhyCiDKfrlWglxLgL4hF6closZBR7dw5pgByl9zhEhdZDIZDA0NsX//fgQFBaF///7w8vIq8ejXr5+mQyUiIiIiokpqlF+B27lzJ86cOQMAuHbtmnKbRCIBAPTp0wfjx49Heno6XnvtNXTt2hUdO3aElZUVHjx4gJ9//hkpKSlwdnbG2rVrS/TfsWNHAIV16Ivbtm0bevfuDT8/P4waNQqtWrXC8ePHcf36dUybNg29evWqxbOm/Px86Oqq/+bvsmXLMGHCBOXr0tYhadasGQ4fPozRo0crt33zzTewtbVFUlISgMLFId966y1IJBKMHDlS2S4yMhI2NjaQSCQIDAwEACQmJuLu3bv8gN2IyPNlkD3OUd7Gk+oK0BFpo6Cg4sWeiYgaAvmLhXkU+awJRbXv6NGjGDVqFORyOczMzGBvbw8jI6OKDyQiIiIionqtUSYszpw5g127dqlsi4mJQUxMjPL1+PHjYWZmhqlTp+LixYs4ceIEnjx5AgMDA3Ts2BEfffQRpk2bVqVFIzt16oQLFy5g0aJFOH78OLKzs+Ho6IivvvoKU6ZMUdv5NRWenp5wcXGBvr4+du7cCZFIhMmTJ2PJkiUACks7bdu2DT/++CNOnz6NuXPnYsmSJfjvf/+LpUuXIi4uDtbW1ggICMDChQurvX5Is2bNYGVlVW6bgIAAhIaGKhMWUqkU+/btw0cffYTly5cr23l5eeHQoUPK13/99RdycnLwz3/+UyVhIZFIoKenh549e1YrZqpfFDI5Ch7lAPLCm3mCvg6amenjYYaGAyMiUiO59osn+XIoFArlDEOi2rBixQooFAps3rwZU6ZMgba2dsUHERERERFRvdcoExbh4eEIDw+vsJ2xsTG2bt1a5f5fnVlRnJOTE/7zn/9UuU8q3a5duzBr1ixcuHAB586dQ2BgIHr37o2BAwcCAJYsWYI1a9Zg48aN0NHRQXR0NMaNG4fNmzfD3d0dCQkJmDhxIgBg8eLF1YphzZo1WL58OWxtbfHhhx9i5syZJZIfY8eOxdq1a5GUlARbW1scPHgQdnZ26NKli0o7Ly8vrF69GqmpqRCLxYiOjkbv3r3Rr18/7NixQ9kuIiICPXv2hL4+1zZo6GQyOWSPpICs8BvHgq42dMz0IWjxRh4RNS4Fwsu/j2R5cujo8QYy1Z64uDj07NkT06ZN03QoRERERESkRo0yYUEV27/qEp5n5NXpmIbGIoz8pGuVjnFxcVEmGhwcHLB161acPn1ambD48MMPERQUpGwfHByM+fPnIyAgAADQrl07LF++HB9//HG1EhYfffQRunTpAjMzM5w9exYLFixAamoqNmzYoNLO0tISvr6+CA8Px2effYbQ0FAEBweX6K93794QiUSQSCR4++23ERMTAw8PD7i5ueHRo0dITEyEvb09IiMjERISUuV4qX6RyxXIfvAc+i9mVkBbCzoWTFYQUeOUJAWcXzzPzMqFqZ6hRuOhxk0sFqNt27aaDoOIiIiIiNSMCYsm6nlGHrKf5mo6jAq5uLiovG7VqhUePnyofP3WW2+p7P/jjz8QExODlStXKrfJZDLk5OTg+fPnMDSs2s2TWbNmqcQiEokwadIkrF69Gnp6eiptg4OD8c9//hP+/v44d+4c/vOf/yA6OlqljaGhIbp27YrIyEhlwmL+/PnQ0dFBr169IJFIoFAokJSUBC8vryrFSvWLQqFA5sNsGLxIVsgBiMz1IWhraTYwIqJakl9shoX0eT5MzTUYDDV6np6e+P333zUdBhERERERqRkTFk2UobGoQYz56iLagiBALn+5mKdYLFbZn5WVhaVLl2L48OEl+lJHeaXu3bujoKAAd+7cgZOTk8o+X19fTJw4ESEhIXjnnXdgbl76nRovLy/88MMP+PPPP5GTk6MsG+Xh4YGIiAjI5XIYGhqie/fuNY6XNCczXQqDghcL0AKQNRdBS8TyKETUeMmK5WNznudrLhBqEpYvXw43NzesWbMG8+fP13Q4RERERESkJkxYNFFVLc3UUHTp0gV//fUXOnToUCv9X7lyBVpaWrC0tCyxT0dHB+PGjcMXX3yBH3/8scw+vLy8sGLFChw4cADdu3dXLhLZt29f/Otf/4JCoVCWjqKGqSBfBr0cmfJ1nlgHzZrplXMEEVHDV6D1coZFrrRAg5FQU3D+/HkEBwdj4cKFOHr0KHx8fGBrawstrdJnMo4bN66OIyQiIiIioupgwoIalc8++wxDhgyBra0tRowYAS0tLfzxxx+IjY3FihUrqtTXuXPncOHCBXh5eaFZs2Y4d+4cZs6cCX9/f5iampZ6zPLlyzF37twyZ1cAQK9evaCnp4d///vfKiWnunXrhocPH+K///0vFixYUKVYqX6RZuahKD0h1dVCc1MDjcZDRFQXZMUSFnk5TFhQ7QoMDIQgCFAoFDh//jwuXLhQbnsmLIiIiIiIGgYmLKhR8fb2xv/93/9h2bJl+Pzzz6Grq4vXXnsN48ePr3Jfenp62LdvH5YsWYLc3FzY29tj5syZKkmGV4lEIlhYWJTbr76+Pnr06IHIyEj06dNHZbwePXpAIpFw/YoGTpH7cnaFrli3nJZERI2HvNgX25mwoNo2btw4CIKg6TCIiIiIiEjNmLCgeksikZTYduTIEeVzhUJRYj9QmLTw9vYus9+yjntVly5dcP78+XLbeHp6ltufn59fqft/+eUXZGRklNgeERFRqdio/pLJ5BDJCt/zAgAGTFgQURMhLzbDIp8JC6pl4eHhmg6BiIiIiIhqQelFXomIqFqkWXnKX6z5OgK//UlETYZc+2XCoqDYTDMiIiIiIiKiymLCgpqsVatWwcjIqNSHr6+vpsOjBkpWbKFZbUNOYiOiJqTYDAtZLmdYEBERERERUdXxbho1WZMnT8bIkSNL3WdgwEWSqeoUCgX05YXP5QAMxSKNxkNEVJcU2i+fy/PkmguEGqXDhw9j2LBhNe7n0KFDGD58uBoiIiIiIiKi2sCEBTVZZmZmMDMz03QY1Igo8mQQ5IXfMNYx0IGWNiexEVHTYWUkBx4UPu9s1UyzwVCj895776F79+5YsmRJuWuVlUahUODEiRNYtmwZfv31V8hkLFlGRERERFRf8W4aEZGayKUvb4AI+swHE1HTIio2qUxXwfV7SL2+/PJL/PXXXxg8eDBsbW2xaNEiREREIDs7u9T22dnZ+OWXX7BgwQLY2tri3XffRXx8PL788ss6jpyIiIiIiKqCd9SIiNRAoVBAnvOyZruWvnY5rYmIGh95sTUsFPn8Bjup1z//+U+MGTMGS5Yswa5du7Bq1SqsXr0aWlpaaNOmDczNzWFsbIyMjAykp6cjJSUFcrkcCoUCYrEYU6dOxeLFi2FhYaHpUyEiIiIionIwYUFEpAZ5uTIIBYU12wU9bQgsB0VETYxKwoJrWFAtsLCwwNatW7Fy5UqEhobiyJEjuHDhAu7evYu7d++qtBWJROjduzf8/PwQFBSE5s2bayhqIiIiIiKqCiYsiIjUICczD0VLtedqC9DVaDRERHVPipcJi9RH2TDVYCzUuDVv3hwzZ87EzJkzkZOTg+vXr+PBgwd49uwZTExMYGlpiU6dOkFfX1/ToRIRERERURUxYUFEpAZaeS/Ln4jETFcQUdOT/TJfgZS0bLyuuVCoCdHX14ebm5umwyAiIiIiIjVhzRIiohrKy5NB78WNujwBEOkxF0xETY+W9suMhXaBopyWRERERERERKVjwoLqLU9PT8yYMUPTYRBVKCczT/lcJuKvVSJqmnR0XiYptORMWBAREREREVHV8c4a1VuHDh3C8uXL62SsqKgovPPOO7C2toYgCDhy5EiJNgqFAp999hlatWoFAwMDDBgwAPHx8SptBEGAIAg4f/68yvbc3FyYm5tDEARIJBIAwMCBAzFz5kyVdtu3b4cgCAgPD1fZHhgYCHd39xqfJ9WS3ALlU5FYpMFAiIg0R6vY5DIdGRMWREREREREVHVMWFC9ZWZmhmbNmtXJWNnZ2ejcuTO++uqrMtt88cUX2Lx5M7Zv344LFy5ALBbD29sbOTk5Ku1sbGwQFhamsu3w4cMwMjJS2danTx/ExMSobIuIiICNjY0yqVFEIpGgX79+1Tgzqm0FBXLoyV88B6BvwHJQRNQ0aWkBOS8W3tbhDAsiIiIiIiKqBiYsqN4qXhIqNzcXc+bMQevWrSEWi9G9e3eVm/rp6ekYPXo0WrduDUNDQzg7O+P777+v9Fi+vr5YsWIFhg0bVup+hUKBjRs3YtGiRRg6dChcXFywe/du/P333yVmYwQEBGDfvn2QSqXKbaGhoQgICFBp5+7ujvj4eNy/f1+5LTIyEvPnz1c5t8TERNy9exdeXl6VPh+qO9KsPAgvnufrakEQhHLbExE1ZrkvEha6cg0HQkRERERERA1SrX4V+OnTpzh58iROnz6N3377DQ8ePMCTJ09gamqKli1bws3NDf369YO3tzdMTExqMxR6xd4FM5D99Emdjik2MYX/6o3VOnbatGmIi4vDvn37YG1tjcOHD8PHxwfXrl2Dg4MDcnJy4Obmhnnz5sHY2BjHjx/H2LFj0b59e3Tr1q3GsScmJuL+/fsYMGCAclvz5s3RvXt3nDt3Dh988IFyu5ubG+zs7HDw4EH4+/sjKSkJUVFR+Oqrr1RKXHXv3h26urqIiIjAmDFjEBcXB6lUipCQEMybNw+JiYmwt7dHREQE9PX10bNnzxqfB6mfXPqyHJSOIWdXEFHTlvviv7qcYEFERERERETVUCt3165du4ZNmzbh+++/R05ODhQK1U+tz58/x7179/Dbb79h586d0NfXx4cffojp06fDxcWlNkKiV2Q/fYKsx+maDqNSkpKSEBYWhqSkJFhbWwMA5syZg59++glhYWFYtWoVWrdujTlz5iiPmT59Ok6ePIn9+/erJWFRNAuiZcuWKttbtmypMkOiSHBwMEJDQ+Hv74/w8HAMHjwYLVq0UGkjFovRpUsXREZGYsyYMZBIJOjTpw/09PTQq1cvSCQS2NvbQyKRoGfPntDT06vxeZB6yeUK6L2o0y4DYMD1K4ioicsTFIACEDFhQURERERERNWg1oTFw4cPsWDBAuzatQtyuRwWFhZ4++230atXL3Tq1Anm5uYwNjbGs2fPkJ6ejtjYWJw9exZRUVH45ptvEBYWhsDAQKxatQqWlpbqDI1eITYxbTBjXrt2DTKZDI6OjirbixayBgCZTIZVq1Zh//79uHfvHvLy8pCbmwtDQ8Max10d/v7+mD9/Pm7fvo3w8HBs3ry51HZ9+vTBsWPHABSuU+Hp6QkA8PDwgEQiQVBQECQSCSZMmFBXoVMVyHMLlHX18rUFGGixHBQRNW35AgAFoK/pQKjRW7ZsGZo1a4aZM2dqOhQiIiIiIlIjtSYsHBwckJmZiSFDhiAkJARvv/02dHTKHmLQoEGYNWsWCgoKcOzYMYSGhiI0NBQHDx7Ekyd1W66oqaluaSZNyMrKgra2Ni5fvgxtbW2VfUULWa9duxabNm3Cxo0b4ezsDLFYjBkzZiAvL08tMVhZWQEAHjx4gFatWim3P3jwAG+++WaJ9ubm5sp/Bzk5OfD19UVmZmaJdu7u7li/fj3u3bsHiUSinCXi4eGBHTt2ICEhAcnJyVxwu77KkSmfiptzBgwRkUx4sYYFBBTky6Cjq13BEUTVs2zZMgwZMoQJCyIiIiKiRkati25369YNly5dwtGjRzF06NBykxXF6ejoYNiwYTh27BguXLiAt956S51hUQPn6uoKmUyGhw8fokOHDiqPokRCTEwMhg4dCn9/f3Tu3Bnt2rXDzZs31RaDvb09rKyscPr0aeW2jIwMXLhwocy1JYKDgyGRSDBu3LgSiZYi3bp1g0gkwrZt25TrcABA165dkZaWhtDQUIjFYrWUtSL1UigUkOe8WL9CALT0uX4FEZGl0ctaUFoy1oWi2mNpaQkDAwNNh0FERERERGqm1jts//vf/2rcR9euXdXSDzUejo6OGDNmDMaNG4f169fD1dUVaWlpOH36NFxcXPD222/DwcEBBw4cwNmzZ2FqaooNGzbgwYMHeP311ys1RlZWFm7duqV8nZiYiCtXrsDMzAy2trYQBAEzZszAihUr4ODgAHt7e3z66aewtraGn59fqX36+PggLS0NxsbGZY5rYGCAHj16YMuWLejdu7cysSESiVS26+rqVv4HRnVCkS8HXtyME/R0ILAcFBER5FovkxSKfDlrQ1GtcXd3x8WLFzUdBhERERERqZlaZ1gQ1ZawsDCMGzcOs2fPhpOTE/z8/HDp0iXY2toCABYtWoQuXbrA29sbnp6esLKyKjORUJpff/0Vrq6ucHV1BQDMmjULrq6u+Oyzz5RtPv74Y0yfPh0TJ05E165dkZWVhZ9++gn6+qXfjREEARYWFhCJyl+I2dPTE5mZmcr1K4p4eHggMzMTXl5elT4Pqju5WS/LjWnps+QJERHwSsIiT1ZOS6Ka+eyzz/D3339j0aJFUCg4m4eIiIiIqLFQ6wyLsLAweHl5wc7OTp3dUhMlkUiUz3V1dbF06VIsXbq01LZmZmY4cuRItcfy9PSs8MOuIAhYtmwZli1bVmab8vowMTFR7pfL5crtixcvLvW8Fi9ejMWLF1cUOmmITFoAZZqC5aCIiAAAcu1XZlgQ1ZLLly9j3LhxWL16NQ4ePAg/Pz/Y2dmVWSZq3LhxdRwhERERERFVh1rvsoWEhEAQBNja2sLLy0v5aNOmjTqHISLSqLxcGUQv7snlCkAzHU5WIyICgNRcwOLF86QHmWhvJdZoPNR4BQYGQhAEKBQK/PXXX/jiiy/Kbc+EBRERERFRw6DWhMXrr7+OuLg43L17F+Hh4di1axcAoF27dioJjKKFkonqQlJSUrlrWcTFxSlLSxFVRm52Poq+vynXYzkoIqIiz4pVgXqWkVd2Q6IaGjduHASB60cRERERETU2ak1YxMbG4tGjR5BIJIiIiIBEIsGff/6JhIQEJCQk4JtvvgFQuIhyUfLC09MTLVq0UGcYRCqsra1x5cqVcvcTVYVW7ss7cnpiLohORFSk+BoW+bkFGoyEGrvw8HBNh0BERERERLVA7YXXLSwsMGLECIwYMQIA8PDhQ5UExl9//aV87NixA0DhzIx+/fph06ZNaolh7969iI6OxuXLl3Ht2jXk5eUhLCwMgYGBKu3y8/Nx9OhRHD16FBcvXkRycjIEQcDrr7+OwMBATJw4Edralf/2tJ2dHe7evVvqPg8PD5U1Gaju6OjooEOHDpoOgxoJuQwweHE/Ll8ADLl+BRGRkqzYGhYFuVx0m4iIiIiIiKqm1u+0WVpaYuTIkRg5ciQA4MGDB8rkRUREBOLj43H9+nXExcWpLWGxaNEi3L17FxYWFmjVqlWZSYSEhASMGDECRkZG6N+/P9599108e/YMx44dw9SpU3HixAkcPXq0StPNmzdvjhkzZpTYzoXIiRoHeb6Aot8IBbpaLEdBRFSMovgMixzOsKC6c+vWLaSlpcHc3ByOjo6aDoeIiIiIiKqpzr8a3LJlS/Tq1Qt5eXnIyclBeno6Hj9+rNYxdu7cCQcHB7Rt2xZr1qzBggULSm3XrFkzfPXVVwgICIBY/HJRyPXr18PT0xP/93//hwMHDuD999+v9NgmJiZYsmRJTU+BiOopHdnLBIWuIctBERGp0Hr5VJbHGRZUu2QyGVavXo2tW7ciLS0NABAQEIDQ0FAAwLfffouvvvoK//73v9GpUydNhkpERERERJVUJwmLlJQU5awKiUSCO3fuAAAUCgXMzc3h5+cHDw8PtY03YMCASrVr3bo1pk6dWmK7WCzGrFmz8OGHHyIyMrJKCQsiarwUcsBAUZiwkAEw4PoVREQqFDovZ1jIWRKKapFMJsOQIUNw6tQp6OjooGPHjoiLi1Np07t3b4wdOxaHDh1iwoKIiIiIqIGolYTF33//rVL2KTExEUBhgsLS0hLvvfcePDw84OHhgTfeeKM2QqgxXd3CG5E6OlX7EeXm5iI8PBx///03jI2N0bVrV3Tv3r3acaSkpJS7PzU1VWVsqVSqsl8ul0OhUCifU/1Q/L3g+9IwyOVyyPIF5ZeH83QE6CkUyn9f1aVQKCCXy0v82yX1yMnJKfU51W983xoe5ftUfA2LnHz+bqvncnNzNR1CtW3fvh0nT55Ev379sHv3blhbW0NLS0uljZ2dHdq3b49Tp07h008/1VCkRERERERUFWpNWEycOBESiQQJCQnKm3itWrXCqFGjlAmK1157TZ1D1pqiqeSDBg2q0nH3799HUFCQyrauXbvi+++/R/v27asch42NTaXbXrhwAQkJCSrbzM3NYWBgAEEQkJGRUeXxqfZlZWVpOgSqJH35yxsh+VqyGv+bKigogFQqhVQqxY0bN2oaHlUgKipK0yFQNfB9a1gE7ZfPnz56glOnTmkuGKrQo0ePNB1Cte3atQtmZmb4z3/+A1NT0zLbdezYEX/88UcdRkZERERERDWh1oTFzp07IQgCunTpgsmTJ8PDwwMdOnRQ5xB14l//+hd+/PFH9OvXD4MHD670cUFBQXB3d8cbb7wBIyMj3Lx5Exs2bMCePXvQv39/XLt2Dc2aNavFyBuXIUOGwNnZGatXr9Z0KESAAtCVC0VPoa1bs5kVRESNkvbLWYNacqGchkQ1c+PGDfTp06fcZAUANG/eHA8fPqyjqIiIiIiIqKbUXhJKoVDgt99+w8KFC+Hp6amcWfH666+re6ha8X//93+YNm0a2rZti71791bp2MWLF6u8fvPNN7F7924AwJ49e/Dvf/8bs2bNqlKfycnJ5e5PTU1Ft27dAADdu3cvMYsjKSkJMpkMOjo6MDY2rtLYmnbkyBHo6urWSZInKioK69atw2+//YbU1FQcPHgQfn5+Km2CgoKU72eRQYMG4ccff1S+1tYu/GppTEwMevToodyem5uLNm3a4PHjxzh9+jT69u2Lnj174o033sC///1vZQmD7du34x//+Ae++eYbBAYGqox9+/ZtREZGqvnMqbJkOQVQZBeWzhD0tdG8ubjGfaalpcHAwABGRkZwc3OrcX9UUk5OjvIb+n379oW+vr6GI6LK4PvW8BS9ZwZ6L7c5tjTDa4N6ay4oqtCrM3MbEplMBj09vQrbpaamVqodERERERHVD2pNWCQnJ6ssrr1//37s378fgiDAwsICffv2haenJzw9PevlwncnTpzAiBEj0LJlS/zyyy9o1aqVWvqdNGkS9uzZg5iYmConLNq0aVPptnp6ejAwMFDZpqWlpVwj4dW6vvWdhYVFnY0llUrx5ptvIiQkBMOHD4eWllaJn5cgCPDx8UFYWJhym56eXol2NjY22LVrF3r16qXc9t///hdGRkZ4/Pixsu8+ffrg+PHjKmNFRkbCxsYGUVFRCA4OVh4fGRmJgICABvceNiaynJeLx2oZ6KjtvRAEAVpaWiX+7ZL66evr8+fcAPF9a1iM9F/OPrNtbsj3rp5ryDfy27Zti6tXr5bbJj8/H7GxsXBwcKijqIiIiIiIqKbUevezdevW8Pf3x86dO3Hr1i0kJSVh9+7dCAwMhJGREQ4ePIjp06fDxcUFlpaWGDFiBLZu3Ypr166pM4xqOX78OIYPHw4LCwtERESgXbt2auu76MZ7dna22vpsCjw9PTFjxgwAhTMU5syZg9atW0MsFqN79+6QSCTKtunp6Rg9ejRat24NQ0NDODs74/vvv6/0WL6+vlixYgWGDRtWbjs9PT1YWVkpH6WVIQgICMC+fftUFhoNDQ1FQECASjt3d3fEx8fj/v37ym2RkZGYP3++yrklJibi7t278PLyqvT5kHrJ5QrIpYUJCwUAQU+7/AOIiJooudbLhIUiT15OS6Ka8fHxwZ07d/Cvf/2rzDZbtmxBWloa3n77bbWOvXfvXkyaNAlvvfUW9PT0IAgCwsPDS227ZMkSCIJQ5uPOnTulHnfy5El4eHigWbNmMDY2hpeXF06fPq3W8yAiIiIiqo/UXhKquDZt2sDf3x/+/v4AVGdgREZG4tChQzh8+DCAwsWhNVVf9vjx43jvvfdgZmaGiIgIta+7ceHCBQCAnZ2dWvutiQdbfoc8M69Ox9RqJkLL6a7VOnbatGmIi4vDvn37YG1tjcOHD8PHxwfXrl2Dg4MDcnJy4Obmhnnz5sHY2BjHjx/H2LFj0b59e2XJLHWQSCSwtLSEqakp+vXrhxUrVsDc3FyljZubG+zs7HDw4EH4+/sjKSkJUVFR+Oqrr7B8+XJlu+7du0NXVxcREREYM2YM4uLiIJVKERISgnnz5iExMRH29vaIiIiAvr4+evbsqbbzoKqRZudBV1F4Ey5XSwFdLdZlJyIqjbzYV2EU+bKyGxLV0Ny5cxEeHo6pU6ciLi4OI0eOBFD4BaHffvsN+/fvx4YNG2BhYYFp06apdexFixbh7t27sLCwQKtWrXD37t0KjwkICCj1s4CJiUmJbXv37sXYsWPRokULZYnQH374AQMHDsT+/fsxYsSIGp4BEREREVH9VasJi1fZ2Nhg3LhxGDduHO7du4fdu3dj/fr1ePz4MdLT0+syFKUff/wR7733HkxNTREREVHhlPH8/HwkJCRAV1dXZb2IGzduwNbWFoaGhirtb9y4gXnz5gEAPvzwQ/WfQDXJM/Mgy6jbhEV1JSUlISwsDElJSbC2tgYAzJkzBz/99BPCwsKwatUqtG7dGnPmzFEeM336dJw8eRL79+9XW8LCx8cHw4cPh729PRISEvDJJ5/A19cX586dU65dUSQ4OBihoaHw9/dHeHg4Bg8ejBYtWqi0EYvF6NKlCyIjIzFmzBhIJBL06dMHenp66NWrFyQSCezt7SGRSNCzZ88GXbahoSvIzofui+d52lxsm4ioLMVnWMg5w4JqUatWrXDkyBEMHz4cmzdvxpYtWyAIAg4cOIADBw5AoVDAxMQEBw8eVHuZ0Z07d8LBwQFt27bFmjVrsGDBggqPCQwMhKenZ4Xtnjx5gunTp8PCwgK//fabsjzsvHnz4OrqiilTpsDb27tO1ngjIiIiItKEOktYPHjwABKJBBEREYiIiMCtW7cAFC7SDRTWcVeXnTt34syZMwCgLDe1c+dOZZmdPn36YPz48bhx4waGDRuG3NxceHp6llpCyM7OTmXx43v37qFjx45o27atyhTuffv2YcOGDejbty/atm0LsViMmzdv4sSJE8jPz8eCBQvQt29ftZ1jTWk1EzWYMa9duwaZTAZHR0eV7bm5ucrZDTKZDKtWrcL+/ftx79495OXlITc3t0QCqSY++OAD5XNnZ2e4uLigffv2kEgk6N+/v0pbf39/zJ8/H7dv30Z4eDg2b95cap99+vTBsWPHABTO3ij6IOvh4QGJRIKgoCBIJBJMmDBBbedBVSOXKyAqKPw9JQegpcuEBRFRmbSAAiigAwG3/s5AS03HQ41a3759cf36dXz55Zc4ceIEbt++DblcDhsbG/j6+mLu3Llo3bq12scdMGCA2vss8p///AdPnz7F0qVLVdaya9OmDaZNm4YlS5bg8OHDGDduXK3FQERERESkSbWWsHj06JFKguKvv/4C8DJBAQCvvfYavLy84OXlValvHFXWmTNnsGvXLpVtMTExiImJUb4eP3487t+/j9zcXACFCYfSeHh4qCQsyuLl5YU///wTv//+O6Kjo/H8+XNYWFhg8ODBmDp1KgYNGlT9E6oF1S3NpAlZWVnQ1tbG5cuXS8xkMDIyAgCsXbsWmzZtwsaNG+Hs7AyxWIwZM2YgL6/2ZpG0a9cOFhYWuHXrVomEhbm5OYYMGYKQkBDk5OTA19cXmZmZJfpwd3fH+vXrce/ePUgkEuUsEQ8PD+zYsQMJCQlITk5Gv379au08qHzSrDzl7IocQQGue05EVL5cFP6BqStngpdqX8uWLbFmzRqsWbNG06GUKyoqChcuXICWlhYcHBwwYMAA5d+xxRV9waq0zw7e3t5YsmQJIiMjq5SwSElJKXd/amqq8rlUKlVZh42IGhf++6bieD1QEV4LVFxVrofaunbUmrA4dOiQMkkRFxen3F6UpOjQoYNKgsLKykqdwyuFh4eXufBdcZ6enioJlMqws7Mr9RgPDw94eHhUqS+qHFdXV8hkMjx8+BDu7u6ltomJicHQoUOV66XI5XLcvHkTr7/+eq3FlZKSgvT0dLRq1arU/cHBwRg8eDDmzZtXItFSpFu3bhCJRNi2bZtyHQ4A6Nq1K9LS0hAaGgqxWKzWdTioagqevywHVaCjqNs6ekREDVCuAIgVgC4rQlEtioqKgpWVVYkZuK+Kj49Hamqqxmc6L168WOW1iYkJNm3aVCLxEB8fDwCllqkt2lbUprJsbGwq3TYqKkrtJbSoKeFfyvXdqVOn6mgkXgsNAa8HKlJ31wLA66H+q8r18OjRo1qJQa1XyYgRIyAIgvKGvp2dnTJB4eXlVStTsqnxc3R0xJgxYzBu3DisX78erq6uSEtLw+nTp+Hi4oK3334bDg4OOHDgAM6ePQtTU1Ns2LABDx48qHTCIisrS1mmDAASExNx5coVmJmZwdbWFllZWVi6dCnee+89WFlZISEhAR9//DE6dOgAb2/vUvv08fFBWloajI2NyxzXwMAAPXr0wJYtW9C7d29lYkMkEqls19XVLbMPqj2vloPSZjkoIqIK5QsAFICIvzKpFnl6eiIoKAjffPNNue2++OILhIaGQibTzCLwnTt3RmhoKDw9PdGqVSvcv38f//d//4fPPvsMgYGBMDExwbvvvqts/+zZMwBA8+bNS/RV9DdlURsiIiIiosZIrQmL1q1bo1+/fsoERdu2bdXZPTVhYWFhWLFiBWbPno179+7BwsICPXr0wJAhQwAAixYtwu3bt+Ht7Q1DQ0NMnDgRfn5+lf5A9+uvv8LLy0v5etasWQCAgIAAhIeHQ1tbG1evXsWuXbvw9OlTWFtbY9CgQVi+fHmZi2ELglCpb6h5enoiKiqqRFk0Dw8PREREqMRFdat4OahcbQECy0EREVUo/8WyZHW/WhY1NVWdKa0Jw4YNU3ltZ2eHadOmoWPHjhg4cCAWLVqkkrCoDcnJyeXuT01NVc7m7du3r8raGURVcu4XTUdAFaizUtW8FhoEXg9UpE7L2PN6qPeqcj1UVHq0utSasKjoj2Giqiiq4QsAurq6WLp0KZYuXVpqWzMzMxw5cqTaY1VUHszAwAAnT56ssJ/y+jAxMVHul8tf1slYvHhxqee1ePHiEuUDqG4VLwelZaANGQo0Gg8RUUOQryUAMsAAAuRyObS4+A9p0JMnT6Cvr6/pMEro378/2rdvj2vXriEjI0M5e6JoZsWzZ89gbm6uckxGRoZKm8qqSgLCwMAABgYGVeqfiBoO/vum4ng9UBFeC1RcVa6H2rp2WDiMiKgUr5aDMjASISsrV7NBERE1AAXaAPILn+fmFMDAkHMtSD2SkpJUXmdlZZXYVqSgoADXr1/HqVOn0L59+7oIr8osLCxw69YtPH/+XJmwcHBwwK+//or4+PgSCYvy1rcgIiIiImos1Jqw+Pvvv2t0vLW1tZoiIXopKSmp3LUs4uLiYGtrW4cRUUMgzylA0VLpudoCRFqCRuMhImooZFovFrEAIM3OZ8KC1MbOzg6C8PL/xwcPHsTBgwfLPUahUMDf37+2Q6uy7OxsXL9+HWKxWKWEqIeHB77//nucOnUKPXr0UDmmaLavh4dHncZKRERERFSX1JqwaNOmjcqHiKoQBAEFBSy3QupnbW2NK1eulLufqIScl4tzGjUvfZ0SIiIqSa5TLGEh5d92pD62trbKzxpJSUkwNDQsc70wkUiENm3a4L333sOUKVPqMkylzMxMpKamwtHRUWW7VCrFhAkTkJmZiaCgIOjovPxINnLkSMybNw9btmxBcHCwspxTSkoKtm7dCgsLixLrYhARERERNSa1UhKqOgvgNYRF86hh0tHRQYcOHTQdBjUgCoUC8pwXN9kEAVr6OlCAv6OIiCpDrv3yyyu50nwNRkKNzZ07d5TPtbS08P777yM0NLTO49i5cyfOnDkDALh27ZpyW9H6a3369MH48eORnp6O1157DV27dkXHjh1hZWWFBw8e4Oeff0ZKSgqcnZ2xdu1alb5NTU2xdetWjB07Fl26dMGoUaMAAD/88APS09Pxww8/oFmzZnV3skREREREdaxWEhbdunVDcHAwRo8ezT+o6wkmhIgqT5EjA+SF/2a0DHQgaAlQyNX/b6jo32V1Z6YREdVH9lZGwJNnAAALfV0NR0ONVVhYmMa+kHLmzBns2rVLZVtMTAxiYmKUr8ePHw8zMzNMnToVFy9exIkTJ/DkyRMYGBigY8eO+OijjzBt2rRSFyr09/eHhYUFVq1ahbCwMAiCADc3NyxatAgDBgyo9fMjIiIiItIktSYsfvjhB4SGhuJ///sfLl26hFmzZuG9995DSEgI+vbtq86hqJJ0dXVRUFAAmUyGp0+fwsTERNMhEdV7OZl5yl+OWga1ktfF06dPIZMVlp0qXgqCiKihMzfRRw4KExZ6/L4E1ZKAgACNjR0eHo7w8PAK2xkbG2Pr1q3VGsPHxwc+Pj7VOpaIiIiIqCFT612y999/H++//z5SUlIQFhaG8PBw7NmzB3v37kW7du0QFBSEgIAAtG7dWp3DUjnEYjGkUikAIDU1FQ8fPuS3ueuJojVb0tLSNBwJqVAA8tyXNde1pC9/TarrPVMoFMpkBVD475SIqLEQdLWUzxV5cg1GQk1BQkICduzYgbNnzyItLQ1Dhw7FF198AQC4cOEC/vjjD4waNQrNmzfXcKRERERERFQZtfK13jZt2uDTTz/Fp59+il9++QWhoaE4fPgwFi1ahMWLF2PgwIEIDg7G0KFDoavLUgG1ycLCAjKZDE+ePAEAlZukpDkKhUKZSDIwMGASqR7JleZD+8WC2/laAoomWNTWe2ZqalrmgqFERA2RSsIin393UO0JDw/HlClTkJubC6CwxOKjR4+U+58/f44pU6ZAJBIhMDBQQ1ESEREREVFV1Hodkn79+qFfv37IyMjAt99+i9DQUPz00084efIk2rVrh/j4+NoOoUkTBAEtW7aEtrY2srOzUVBQwPUs6gG5XK68+W1kZAQtLa0KjqC68jQtC0b5hf9GZBZ6ynJN6nzPBEGAjo4OxGIxLCwsmLAiokYlSy5H0W/I9Kc5aKPRaKixOn/+PCZMmABDQ0MsX74cHh4e6N69u0obDw8PNG/eHMeOHWPCgoiIiIiogaizwunGxsaYMmUKvL29MXPmTBw7dgzPnj2rq+GbNEEQ0KJFC7Ro0ULTodALUqkUN27cAAC4ubmVuuAi1T3p8zwovkmFIQRkQgGXJV2gp1/4a5LvGRFR5dxMf47XXjyPT3mGNkxZUC344osvoFAocPz4cfTp06fUNlpaWnjzzTcRFxdXx9EREREREVF11cnXunNycrBnzx54eXnB0dERx44dg7GxMcaMGVMXwxMRVcrvkUkwROFshyRzkTJZQURElaetp618LstjSSiqHTExMejWrVuZyYoiVlZWSE1NraOoiIiIiIiopmr1btyFCxcQGhqKH374AZmZmQCAvn37Ijg4GCNGjOA3lImoXsn64+Vi2qZuLTUYCRFRw6UjepmwkOdz0W2qHU+fPoWtrW2F7aRSKfLy8uogIiIiIiIiUge1JyzS0tKwe/duhIWF4c8//4RCoUCbNm0wffp0BAUFoV27duoekoioxqTZebB/mg9AQAYUeLOPjaZDIiJqkIrPsFBwhgXVEnNzc9y9e7fCdrdu3YKVlVUdREREREREROqg1oTFsGHDcOLECRQUFEBXVxfvvfcegoOD4e3tzUVliahe+z3yLmxflINKthDhdRHLQRERVYdI/2XCApxhQbWkR48eOHbsGK5fv45OnTqV2iYmJgbXr1+Hv79/HUdHRERERETVpdY7cv/9738hCALeeust+Pv7w9zcHI8fP8b3339fqeM//PBDdYZDRFRp2cXKQZm58ZuYRETVpVt8/Z8CJiyodvzjH//AkSNH8N5772Hfvn148803Vfb/+eefCA4OhiAImDp1qmaCJCIiIiKiKquVrxD/+uuv+PXXX6t8HBMWRKQJ8jwZnLILb6plCAp07s1yUERE1aWnMsNCoblAqFHr378/Zs2ahQ0bNsDNzQ3t27eHIAg4efIkXFxcEBcXB7lcjo8//hg9evTQdLhERERERFRJak1Y9O3bl6WfiKjBybnxGFoFhTfVrN5qBVGxBWOJiKhqRAYv/7zUknGGBdWedevWwcnJCUuWLMGtW7cAAKmpqUhNTYWFhQUWL16Mf/zjHxqOkoiIiIiIqkKtCQuJRKLO7oiI6oT02iPlc8POFhqMhIio4dMz0EXRvIqiZDBRbZkwYQLGjx+P33//Hbdv34ZcLoeNjQ26du0KHR2uR0VERERE1NDwr3giatLkuTLk3HgMANAS60LP3kSzARERNXAGBjp4/uK5jpwJC6p9giCgS5cu6NKli6ZDISIiIiKiGtLSdABERJoUF50ERX5hyRKDN8whaLOsHRFRTRRfw6KjhZEGIyEiIiIiIqKGRq0zLP7++29YW1vXm36IiCqSeiEVJi+ep9uIYarJYIiIGgEtLS0IulpQ5MuhyJdpOhxq5FJSUiCRSPD3338jJyen1DaCIODTTz+t48iIiIiIiKg61JqwcHBwwPTp0zFv3jyYmlb9tt/jx4+xZs0afPXVV8jOzlZnaEREJTx7KkW7zAIAAp4KCrz2ppWmQyIiahQEUWHCQp7PRbepdshkMnz00Uf417/+Bbm88DpTKFRLkAmCAIVCwYQFEREREVEDotaExaBBg/DFF19gy5YtGDZsGAICAtC3b1/o6emVeUxubi4kEgnCw8Px3//+Fzk5OfDz81NnWEREpfrt5G04oLAE1L2W+nhDh1XyiIjUQdDVBlAARR4TFlQ7VqxYga+//ho6OjoYMmQIHBwc0KxZM02HRURERERENaTWhMXhw4fx888/Y+bMmfjuu+/w/fffQ1dXF2+++SY6duwIc3NzGBsbIyMjA+np6YiLi8Mff/yB/Px8KBQKvPHGG9iwYQMGDBigzrCIiEqlHfdY+dzWw0aDkRARNS7PCmQwApDzPF/ToVAjFR4eDgMDA0RHR3OxbSIiIiKiRkStCQsAGDBgAK5du4b//e9/2Lp1K06dOoWLFy/i4sWLAF5OzS6ip6eHd955B9OmTWOigojqTGJ8OtrlFj5P0VGgW+eWmg2IiKgReZxbACMAWjLOsKDacf/+fXh6ejJZQURERETUyKg9YVFk4MCBGDhwIHJzcxETE4Pff/8dDx48wLNnz2BiYgJLS0t06dIFvXr1KrdkFBFRbbh5+g46vXie2aE5tLRYDoqISF0KXvxK1YGAvLwCiES19icnNVHW1tYsAUVERERE1AjV+qdHPT099OvXD/369avtoYiIKkVWIIfl3WwAAgqggMsge02HRETUqBRoCwAKZ9RKn+czYUFqN2zYMOzduxe5ubn88hMRERERUSPCrxQTUZNz5WwyWigKF9tOEGujpfX/s3ff8VFV+f/HXzOTZNITQgKEGkrovUqvAhZs2F0V++pP/bq6q2tbsK1lV9Fdt6iorL2hYKfXSC8qPdRQQkkIqTOTKff3x8AkI4G0mSSE9/Px8OG9555z7me4lyG5n3vOia3liERE6hePxeTb1joWEgx/+ctfiI+P59prryUrK6u2wxERERERkQCpt6+7ffDBByxdupS1a9fy66+/UlxczLvvvsukSZPKrJ+Xl8eUKVOYMWMGhw4dIjk5mauuuorJkycTHR1dqXPPnj2bv/71r6xbtw6TyUSfPn144oknGD16dAA+mYhUV9aKg5xcscLaM6lWYxERqY88IWbAu36FvchVu8FIvRQbG8vy5csZMWIEbdu2pU+fPrRs2bLMKR5NJhNvv/12LUQpIiIiIiKVVW8TFk888QR79+4lMTGR5ORk9u7de9q6hYWFDB8+nA0bNjB27Fiuu+461q9fz9///ncWL17MkiVLCA8Pr9B5P/jgA2688UaSkpJ8yZFPP/2U888/n88++4wrr7wyEB9PRKrI43DROd/7EK3QBH1GazooEZFAM0JKRlg47BphIYHncDiYNGkSGzduxDAMFi1adNq6SliIiIiIiJw96m3CYtq0aaSmptKqVSteeOEFHn300dPWfemll9iwYQOPPPIIL7zwgq/8z3/+My+++CJTp049Y/uTcnJyuO+++0hMTGTdunU0b94cgEceeYRevXpx9913M27cOC0QKFKLbL9mY3J6ExaN+jchIjK0liMSEamHQkrecnfYNMJCAm/y5Ml88803NGjQgBtvvJHU1NRKj4oWEREREZG6p94mLMaMGVOheoZhMG3aNKKjo3nyySf9jj355JP861//Ytq0aRVKWHz++eccP36cp556ypesAGjevDn33nsvU6ZM4auvvuKmm26q3IcRkYApWnfYtx3Zp/EZaoqISJWFliQsiu1KWEjgffzxx8THx7NhwwZatGhR2+GIiIiIiEiA1NuERUWlp6dz8OBBxo0bR1RUlN+xqKgoBg8ezOzZs9m3b1+5vwydHIo+duzYU46NGzeOKVOmsHjx4kolLPbv33/G45mZmb5th8OBzWarcN9Se+x2e5nbElzuHAeOXbkAmBuG404MqfDfmWBeM6fDzrED+8EwAtqvgKPYgT3rCAAZWzZiDbPWckRSEbpuZ5+T18wSHo7dbsewlByz5dv180kd5XA4ajuEKjty5Ahjx45VskJEREREpJ5RwiI9HYDU1NQyj6empjJ79mzS09PL/YXoTH2dLDtZp6Iq80vYypUr2blzZ6X6l9q3ZMmS2g7hnFG8JYKBRACwL+oYq+fOrVI/gbpmHpeL3O2byNn8M57is/eh0dli/5xZtR2CVIGu29nnm8z9RNIbiATg0O6dzHFurd2gpExZWVm1HUKVnW6BbalZKX/+rrZDkArY88JFtR2CiIiISIUF9af8JUuWkJaWFsxTVFturvdt67i4uDKPx8bG+tWral+V6UdEAs/wQMrxMAA8GGTE116CwHC7yd2+mb1ff0L2hlVKVohIvVKwbw/JMSUjxhqHmc5QW6Rqrr/+ehYtWsTx48drOxQREREREQmgoI6wGDFiBCNGjGDBggXBPE29tm/fvjMez8zMpH///gAMGDCAtm3b1kRYUk12u933lv6wYcMIDw+v5Yjqv19XZZLMAQB2RJi4+PLzK9U+ENfM43GTvnwZq2d+Rt7RIyUHTCba9hlAVIOESvcpZ+ZyuzlwwHvdmzVrRojFUk4LqQt03c4+LrebzQtmAxAVbqVLjy4U7N4DQNcOnQnv16gWo5PTOZtH5j766KMsWrSICy+8kLfffptOnTrVdkgiIiIiIhIAQU1YNGjQgKZNmwbzFNV2cjTE6UY+5OXl+dWraF8NGzascj+llV68uzxWq5WIiIhK9S+1Lzw8XNetBuSsPsLJb6OQ7knV+jOv7DUzDIMdq5eT9ukHZO/P8DuW2n8Qg66+gcQWraocj5yezWZjzpw5AIwYO1Z/184Sum5nH5vNxtalC/A4nbjsdsKiSpK6IVh0Desoq/XsXR9m/PjxOJ1OVqxYQbdu3WjZsuVpp4kymUzMnz+/FqIUEREREZHKCmrComfPnpVes6Gmlbe2RHlrXPy2rzVr1pCenn5KwqIy/YhIYBUVFJOSVQyYKMSg7/ltauS8hmGQ8evPLPvkfxza6f8d06p7L4ZccyNN2rWvkVhERILNHBqGx+mk2FaEKbRkVIzh9NRiVFJfLVq0yLft8XjYs2cPe/bsKbOuyaRpyUREREREzhZBTVjcf//9XH755Xz33XdcdFHdXOgrNTWVpk2bkpaWRmFhIVFRUb5jhYWFpKWl0bp16wotfj18+HA+/vhj5syZw3nnned3bPbs2b46IlKz1szdRRu8Dyv2JIbRITos6Oc8mrGHhdPfZN+mX/zKk9t3ZMg1N9Gya/egxyAiUpPMoWFAIcW2Ivbm2og+Ub5mRxajRreszdCkHlq4cGFthyAiIiIiIkEQ1IRFr169uPfee7n88suZNGkSEydOJCUl5bTTArRsWfO/zJpMJm6//XaefvppnnnmGV544QXfsWeeeYaCggIee+wxvzZFRUVkZGQQGRnpF/PVV1/NI488wj//+U9uvfVW33RO+/fv5/XXXycxMZHLL7+8Zj6YiPi4f83ybTce1Czo5yvKy+Wzpx7FXpDvK0tqmcLga2+iTe9+etNTROolc5g3GewqLqaYklEVxXZXbYUk9ZheAhIRERERqZ+CmrBo3bo14J0W5e233+btt98+bV2TyYTLFbhfaKdNm8ayZcsA+PXXX31lJ4ePDxkyhNtvvx2Ahx9+mFmzZvHiiy+yfv16evfuzbp165gzZw79+vXjgQce8Ot71apVjBw5kuHDh/sNR2/QoAGvv/46N954I7179+aaa64B4NNPPyU7O5tPP/2UmJiYgH1GESnfgYxc2hZ5ABOHzQa9zgt+wmLtdzN9yYr4xskMvuZ3dBg4FFMZ82qLiNQX3hEWXhZTyc90Jk0JJSIiIiIiIhUU1IRFixYtau1N4mXLlvG///3PrywtLY20tDTf/smERVRUFIsXL2bKlCnMmDGDhQsXkpyczEMPPcTkyZMrtVDk7373OxITE/nrX//Ku+++i8lkok+fPjzxxBOMGTMmMB9ORCps09zddD4xHVRWSnSZi3EGUlFeLut//BYAsyWEq/7yV2ITk4J6ThGRuqB0wsKM07dtchm1EY6IiIiIiIichYKasDjdwnc1Yfr06UyfPr3C9ePi4pg6dSpTp04tt+6IESMwjNP/8j1+/HjGjx9f4XOLSHAYhkHC7pJpmTqPaR30c679biZOuw2AbqPGKlkhIueMk1NCAZgpLtl2a4SFBM+aNWv44osv2LZtG3l5eWX+jG4ymZg/f34tRCciIiIiIpUV1ISFiEhtKt6XT5MTs5Iciguhb5sGQT1f6dEVlpAQ+l92VVDPJyJSl5QeYQEO35bFrREWEhx//OMfmTp1qi9JYTKZ/BIWJ/e1dpSIiIiIyNlDE6qLSL1VtPawb7vT+TUwuuLbr3yjK7qOGqfRFSJyTrGUSlgYLltJuRIWEgSff/45r7zyCs2aNeONN95g7NixAMyePZvXX3+dgQMHYhgGf/7zn1mwYEEtRysiIiIiIhVVIwmLpUuXcvXVV9O8eXOsViu33Xab79jcuXN57LHHOHToUE2EIiLnCMPpoejnLABMoWYiuiUG9XynjK649Mqgnk9EpK4pPSWUq9iOE2+iIkQzQkkQvPnmm1gsFubPn88dd9xBcnIyAOeffz733HMPaWlpPP7447zyyivExcXVcrQiIiIiIlJRQU9YPPvss4wYMYIvvviCgwcP4nQ6/YZqx8XF8eKLL/Lll18GOxQROYcUbc7CsHvng4romojZGtwZ8NZ++xVOhx3Q6AoROTeVnhKquKjQNylUiEcjLCTw1q9fz4ABA0hNTT1tnaeeeork5GSeffbZGoxMRERERESqI6gJix9++IG//OUvNGvWjM8++4zDhw+fUqd///4kJSXx7bffBjMUETnHrP4m3bcd0atRUM+l0RUiIv4JC0dREcUnlg0I0wgLCYL8/Hxatmzp2w87McKnoKDAV2Y2mxkwYABpaWk1Hp+IiIiIiFRNUF85fu2117Barfzwww906dLltPV69OhBenr6aY+LiFTG4YN5pBS4ARNZJoPkNsGdCkKjK0REfpuwKCQxMhQKXcSFWmoxKqmvkpKSOH78uG8/MdE79eOePXvo2rWrr7ywsJC8vLyaDk9ERERERKooqCMsVq9eTf/+/c+YrADvLxxaw0JEAuWXObsJwftq7+GWUVhCgvdV99vRFQMuuypo5xIRqctKr2HhKCoiNsa7H6YZoSQIUlJS2Lt3r2+/V69eGIbBRx995Cs7dOgQixcvplWrVrURooiIiIiIVEFQExaFhYU0adKk3Hq5ubl4PJovQESqz+PxEJOe69tPHRXchxRrSo2u6DZ6HDENg7u4t4hIXeU/wqIAU5h3ZIXh9GBoHQsJsNGjR7N161b27NkDwAUXXEBCQgIvvvgiV111FQ899BADBgygsLCQiRMn1m6wIiIiIiJSYUGdEqpx48bs2LGj3Hrbtm2jRYsWwQxFRM4Rv6w4QHO3d3TFLisM6xC8BEJRXi4b/Nau0OgKETl3/XYNC1NMyXsxhsvjS2CIBMK1117LwYMH2bdvHykpKURFRfHuu+9y7bXXMmPGDF+9Pn368Oijj9ZipCIiIiIiUhlBTVgMGTKETz75hLS0NAYPHlxmnW+//ZYdO3Zw1113BTMUETlHHFmyH1+Komdw15LQ6AoRkRLm0FDfdnFRIS6zybfvtLuwKmEhAdSpUyfeeustv7IJEyaQnp7ON998w7Fjx+jUqRMTJkzAYtG9JyIiIiJytgjqlFAPPfQQJpOJK664gpkzZ+JyufyO//jjj9x+++2EhoZy3333BTMUETkHHM7MJ/W4E4BcDPqPbxu0c2l0hYiIP5PJ5Btl4Sgq4tcj+b5jR3NstRWWnGOaNm3KXXfdxaOPPspll12mZIWIiIiIyFkmqAmL3r178/LLL5OVlcXEiROJj4/HZDIxY8YM4uPjueiiizhy5Agvv/wynTt3DmYoInIO+PnbHYSeWGx7f8tIwiNCy2lRdRpdISJyqpKERSGGpeTHTIfNdbomIiIiIiIiIj5BTVgA/N///R/ff/89/fr1w2azYRgG+fn55OXl0a1bN77++mvuvffeYIchIvWcs9hN413et3ndGHS5MHijK2y/HV1xmUZXiIgAmMO8CYvioiIILfkxs9jmrK2QRERERERE5CwS1DUsTho3bhzjxo0jOzub3bt34/F4aNGiBcnJyTVxehE5Bxxef5iGhnd0RXq0hTEpDYJ2rg0/flNqdMV4YhI0ukJEBErWsXA5i6HUTDwOu0ZYSPVYLBZMJhObN2+mffv2lZrqyWQynTI1rYiIiIiI1E01krA4qWHDhjRs2LAmTyki5wjrL1k4Tmy3GN0qaOdx2238Ou9H4OToiiuDdi4RkbPNySmhAAyzx7ddrCmhpJoMw8AwDL/9yrQVEREREZGzQ1CnhJo+fTr79+8P5ilERHAeKcKxMxeAkIbhtB/QLGjnytnyC65ib2pEoytERPyVTliYzG7fttPuLqu6SIV5PB48Hg/t27f326/ofyIiIiIicnYI6giLW2+9FZPJRGpqKmPGjGHMmDGMGjWK2NjYYJ5WRM4xhSsyfdtR5zXFZDYF5Txuu43c7ZsBsISGanSFiMhvnFzDAsBkcnHy3Ri3QyMsREREREREpHxBTVhMmjSJBQsWsH37drZv385//vMfzGYzffr08SUwBg8eTOiJ+Y5FRCqrIM9B3ppDmAFTqJmoPo2Cdq6cLb9guL0P3bprdIWIyClKj7DA5MaXsCjWCAsREREREREpX1ATFu+88w4A6enpzJs3j7lz57Jo0SJWrVrFqlWreP7554mIiGDIkCGcf/75PPTQQ8EMR0TqoVXfpdO+2DvVQ0HbWMyRwUmAFh3PKRldERJKv0snBuU8IiJnM0vphIXhBLzfyW6HEhYSWB6PhzVr1rBp0yays7MxmUwkJCTQrVs3+vTpg8kUnNGWIiIiIiISXDWy6HZqaiqpqancfffdGIbBmjVrmDdvHvPmzSMtLY05c+Ywb948JSxEpFI8Hg+Rm44B3ocSnp5JQTvX2m+/8o2u6DxijEZXiIiUofSUUFAMRALgcWoNAQkMp9PJSy+9xNSpU8nJySmzTsOGDXnooYd46KGHCAmpkV93REREREQkQGr8J3in00l+fj75+fnk5eXhcnkfABqGUdOhiMhZ7pcVB2ju8iYrdofB0J5NgnKe3COH2bRwDgAmSwh9JlwRlPOIiJztSk8JlRhZUt47WeuXSfUVFhZy0UUXsXTpUt/vDmFhYSQkJODxeDh+/DjFxcVkZWXx2GOPMXfuXL755hsiIiJqOXIREREREamoGklYbNiwgblz5zJv3jyWLVuG3W7HMAxiY2O56KKLfOtZiIhUxpHF+zg5zsHoFbzRFcu/+BiP2zudSXzHrkTGxQftXCIiZ7PSCQuPx+HbDtEACwmAP/7xjyxZsoTw8HDuu+8+fve739G1a1ff9E8ej4eNGzfy/vvv869//YuFCxfypz/9iddff72WIxcRERERkYoyB7Pza6+9lkaNGtGnTx8eeeQRFi1aRN++fZkyZQppaWlkZ2cza9Ys7rvvPjp16hTMUESknjl8MI/2ud4RWscx6H9B26CcJ3t/BpuXLAC8D+LiO3UPynlEROqD0lNCFRcX+bYNp9awkOrJyMjgzTffJDY2lrS0NF588UW6devmt1aF2Wyme/fu/O1vf2PZsmVER0fzxhtvsH///oDG8sEHH3DXXXfRt29frFYrJpOJ6dOnn7Z+Xl4eDz74IK1atcJqtZKSksKf/vQnCgoKyqzv8Xj45z//Sbdu3YiIiCApKYnrrruOXbt2BfRziIiIiIjURUFNWHz22WdkZ2fTvXt3vvzyS3Jycli8eDFPPvkkAwcOxGKxBPP0IlKPbfh2JyEn1q440DKS8PDgLLad9tkHGIb31eAGnXtgCbMG5TwiIvVB6REWDr+EhYZYSPV8+OGHALzwwgv06tWr3Pq9e/fmhRdewO12+9oGyhNPPMGbb77J3r17SU5OPmPdwsJChg8fztSpU+nYsSN/+MMf6NChA3//+98ZNWoUdrv9lDZ33XUX999/P4ZhcP/99zN+/Hi+/PJL+vXrR3p6ekA/i4iIiIhIXRPUhEVMTAyGYfDzzz9zww03cMUVV/Dyyy/z888/B/O0IlLPFRe7aLI7HwA3Bl0uaheU8xzamU76yp8AiIiNI65Dl6CcR0SkviidsCgsyvdtZ2YVlVVdpMKWL19OeHg4t9xyS4Xb3HLLLYSHh/PTTz8FNJZp06axZ88ejh49yu9///sz1n3ppZfYsGEDjzzyCLNnz+aFF15g9uzZPPLII6xevZqpU6f61V+4cCHTpk1j2LBhrFu3jhdffJH333+fmTNncuzYMe69996AfhYRERERkbomqAmLY8eOkZaWxlNPPUXfvn1988j27t2bxo0bc/311/Puu+8GfJi2iNRvq+fupqHhHV2RHmOheav4oJxn2Sfv+bb7XnIl5pDgjOIQEakvLKWmhLLZSqa7OZSthIVUz6ZNm+jVqxdWa8VHOoaHh9O7d282btwY0FjGjBlDq1atyq1nGAbTpk0jOjqaJ5980u/Yk08+SXR0NNOmTfMrf+uttwB45plnCCv19+mCCy5gxIgRzJkzh4yMjAB8ChERERGRuimoi25bLBYGDhzIwIEDefLJJykqKmLRokXMmzeP+fPn8+mnn/Lpp58C0L59e7Zs2RLMcESknnCuPuzbjh/ULCjn2LfpF/b+sh6A2KTGdB4xmswFC4NyLhGR+sIUEgomExgGxfaShIXFbdRiVFIfHDt2jN69e1e6XdOmTdm0aVMQIipfeno6Bw8eZNy4cURFRfkdi4qKYvDgwcyePZt9+/bRokULABYtWuQ79lvjxo1j0aJFLF68mBtvvLHCcZT3clhmZqZv22azYbPZKty3nB10TeUk3QtSmu4HOUn3gpRWmfshWPdOUBMWvxUZGcmFF17IhRdeyM8//8yHH37I66+/jt1uZ/v27TUZioicpZyHC2ln9z74OmQx6DW0ZcDPYRgGS0uNrhh01fVYNLpCRKRcJpOJsPAIim1FOOwFeMINzJgI8ShhIdWTn59PTExMpdtFRUWddnHrYDu53kRqamqZx1NTU5k9ezbp6em0aNGCwsJCMjMz6dq1a5lr/Z3sp7LrWJxMhlTEkiVLSExMrETvNfrrpFTRnDlzauhMuh/qOt0LUpruBzmp5u4F0P1Q91XmfsjKygpKDDV2l+zfv5+5c+f6RlccPXoU8D4YDA0NZeDAgTUVioicxQpWlLwF2G5cGywhgZ/Zbte61WRu3wpAw+Yt6TR0BA5HccDPIyJSH4VFRnoTFkWFOMIhApSwkGrzeKq+cHt12lZHbm4uAHFxcWUej42N9atX2foiIiIiIvVRUBMWM2fOZN68ecybN8/3JpBhGJhMJrp27cqYMWMYM2YMw4cPJzIyMpihiEg94HG4KFp3BABTqJnYfk0Cfg7D4yGt1OiKwdf8DrP51LccRUSkbGER3p/piouKcCR4ExahtfO8WOqZgoKCSq/fUFujK+qSffv2nfF4ZmYm/fv3B2DYsGE0b9684p0vX1Cd0KSGjB07tmZOpPuhztO9IKXpfpCTauxeAN0PZ4HK3A/BWpc6qAmLK664wrfdokULX4Ji9OjRNGrUKJinFpF6qGj9EQyHG4DIno0wRwT+K2zr8qUczdgDQJO2qbTrp9FfIiKVYT3xEorLWYzTZIBhIlQDLCQAZsyYwYwZM2o7jAo7OVLidCMi8vLy/OpVtn5FVSYBERERQURERKX6l7pP11RO0r0gpel+kJN0L0hplbkfgnXvBDVhcdlll3H++eczZsyY087dKiJSER6Phx0/7ubkrMpRA5MDfg63y8VPn37g2x9y7c2YTKaAn0dEpD47OcICOJGwgHAlLCQADKNqN1Jt/Vte3poTv13jIioqiuTkZHbv3o3b7T5lHYvy1sQQEREREakPgpqw+PLLL4PZfcBMnz6dW2655Yx1Ro0axfz5889YZ9GiRYwcOfK0x999910mTZpUlRBFznk/L99Pkt07p0hGhInmTaMDfo5Ni+Zx/LB3jYwWXbrTsluPgJ9DRKS+K52wcJu8D5jD8CaezebArzsk54bdu3fXdgiVlpqaStOmTUlLS6OwsJCoqCjfscLCQtLS0mjdurXfotjDhw/nk08+IS0tjWHDhvn1N3v2bIBTykVERERE6hMtzQ707NmTyZMnl3nsiy++YNOmTYwbN67C/Q0fPpwRI0aUeR4RqZqjS/aTdGLb1SPpjHWrwlnsYPkXH/n2h1x7k0ZXiIhUgTWy5KGs2+RNNIdgwlnswRquhIVUTatWrWo7hEozmUzcfvvtPP300zzzzDO88MILvmPPPPMMBQUFPPbYY35t7rzzTj755BOefPJJ5s6dS1hYGAA//PADixYtYuzYsWfln4WIiIiISEXVSMJiy5YtvPbaayxcuJADBw4A0KxZM0aNGsX9999Pp06daiKM0+rZs2eZyYTi4mJef/11QkJCuPnmmyvc34gRI5gyZUrgAhQ5x+3fk0P7XBdg4jgG/ce3Cfg5fp79HQU5xwBo23cATdt3DPg5RETOBWGRJSMsTBYDXN7tYrsLa7jelZGz37Rp01i2bBkAv/76q69s0aJFAAwZMoTbb78dgIcffphZs2bx4osvsn79enr37s26deuYM2cO/fr144EHHvDre+TIkdx+++1MmzaN3r17c9FFF5GZmcmnn35KQkIC//znP2vsc4qIiIiI1Iag/9Y4ffp0fv/73+N0Ov3mnU1PTyc9PZ13332XN954o1IJgZoyc+ZMsrOzueyyy2jcuHFthyNyzto4K52ueEc7HGwdTdfw0ID27ygqYuWsL7w7JhODr7kxoP2LiJxLSk8J1TzBCt6Z9og0a9Sa1A/Lli3jf//7n19ZWloaaWlpvv2TCYuoqCgWL17MlClTmDFjBgsXLiQ5OZmHHnqIyZMnl7lQ4RtvvEG3bt148803ee2114iOjubyyy/nueeeo23btsH9cCIiIiIitSyoCYu1a9dyxx134Ha7ufjii7ntttt8P2Tv2rWLt99+m2+++YY77riDLl260Ldv32CGU2nTpk0DSn7hqKj09HReffVVbDYbzZs3Z9SoUTRr1qxKMezfv/+MxzMzM33bDocDm81WpfNIzbLb7WVuy6mO59hom2kHTNgx6HJhq4Df56tmfo49Pw+A1POGEJ3U+JRzBO2auexY1v8PS0YaGJ4yq3haDsHV//d+ZaFf342pOL/87vvfjaflYN++KWc3ofOfrFBoxRP+DdZY375ly0wsm74ot50Rn4JzzLN+ZSGLnsGcta3ctu6Ol+DuenVJgctB2MzbKhSvc/jjGEklI/bMB9ZgWfYKA45le+P/dDpuSxnT0VjCKL78Hf+ide9g2bWg3HN6mvbBNegPfmWh3/8BU9HRctu6ek3C03ZMSUF+JmGz/1RuO4Di8a9AdCPfvnnHHEI2vFduOyO6Cc7xf/crC0l7GXPm+nLbutuOwd1rkl9Z2IybwXCX29Y56EGMpr19+6Yjmwhd8vxp61vcHt91sxcN8j/2y8dYtn9X7jk9SZ1xDfefaiV07mOYcjPKbevqeg2ejhNKCuzHCfv23nLbATjHPIcRXzJdi3nPUkLWvFFuO8Mah3PCv/zKQlb+C/O+5eW2rQvfEXa7naY5K2iUt5HMRpf46jg9Tix4k8y2/CIsoWV/z0ntcDgctR3CWWn69OlMnz69wvXj4uKYOnUqU6dOrVB9s9nM/fffz/3331/FCEVEREREzl5BTVj87W9/w+Px8Pbbb5+yqHXXrl255JJLmD59Orfeeisvv/wyH3/8cTDDqZS9e/cyf/58mjdvzvjx4yvV9qOPPuKjj0rmwg8JCeG+++7jb3/7GxaLpVJ9lV6ErzwrV65k586dlepfat+SJUtqO4Q6LX9zBCPwvn24PqKYsHXLAtq/225nz3czvTsmE8WJTZkzZ84Z2wTqmiUfX0OXAx8TUXzmh9sHj9lYd9x/Gqzx2+didReUe44Nrnbs31ro248r2s2InfMqFN+i+XMpDonx7bc/NI9OmeW3PR6RwmKP/4Kgg7fPI7Gw/ITFzoIIthyM9+2bPcVMqGC8y839yY7e59tvcnwtA/YsoMnJgryy27lNoadc8+775tE6q/yExZGsY6wq6OJXNmbbPKLKuaYAGx3N2LOz5OFtlP0QYyr4WZctnEORtSRh0froXLrvL79tgbUx883+n3XAzrk0ydtQbtu9ufDr0aZ+ZRN2zMNM+QmL1UY3Dsdl+fYT8zcz+Ayf1QK+6/b10iUYppIfVzofmEfqkfI/67HDB/jJ4f8ixIit84izlZ+w2GpLYEeG1bdvdeYyvoLXZknIcPIiSxIWLbKX0Tuj/Lb2kNhT7sPee+bRIqf8hEWd+I4wPLS3H6LVsSXsO+qBE6PisnOO0gzvffPT4jRsUeXfL1JzsrKyyq8kIiIiIiJSg4K68uHSpUvp2bPnKcmK0iZNmkTv3r3r3EPbd999F4/Hw6RJkyqcZEhKSuKFF15g48aNFBQUcPjwYWbOnEm7du2YOnUqDz/8cJCjFqlfXC7onut9aOjGwNk68COIcjZvwHA5AYht25HQmNhyWgRO8vG1FXqwLSJS15nw0OnQlwDEeHJ85S7D6ds2a3CFiIiIiIiIlMNklF5YIsCsVitXXXUVH3zwwRnr/e53v+Pzzz+vM8PSPR4PrVu3Zt++fezcuZPWrVtXq79Dhw7RvXt3cnJyOHDgAI0aNSq/0QkVmRKqf//+gHfRP81re3aw2+2+JN2wYcMIDw+v5YjqpmVfptPp11wANseYGfpg73JaVE7e0SN8/OgDuF1OLKGh3PDSP4lu0LDMukG5ZvmZhL81CE/TPjhHPIkRd5oRVeYwsEb7l9lygAp8fYdGQUjJm+J4XOA4zVCD3wqPB1OpvLazCFwVmA7LZIHwOP8yR5733OUJCYfQkvnvMQyw55y+fmlhMWAptb6JuxhHXjY/Lf8JgEEDB2ENt5bdNiLBf7+4ENwV+DfJHArWGP8y+/HTTu/lJzTS+3lP8rjBkVt+OwBrHJhLJdOdNnBVIKFnMnuva2mOfPA4y6zux2KFsCj/Mtux8tsBhEWDJaxk3+2EM0xX5LA7fNdt4MgLCS89x3uFr02I35RmANhzKzSFFSEREFrqnIbHe10rwhrrPfdJLgc4C09f38cEEQ38ixwF4Ckuv2kd+I6w2+3E/qMdFsPFPnNHPtuUBECfTjfSzu4dYZF9YXPa92tyut6kFuzcuZNu3boBsG/fPpo3b17LEUlt2L9/v29Ud2Xvg5Q/lz9Fn9S+PS9cVCPn0f1Q9+lekNJ0P8hJNXUvgO6Hs0Fl7ofq/Bx5JkGdEio+Pp6MjPKnXsjIyCAuLq7cejVl3rx5ZGRkMHr06GonKwCaNGnCpZdeyrRp01i5ciUTJkwov9EJlbnQVqu1zIX7pG4LDw/XdSuD4TFouqNkOpOm41oH/M9pwczPcJ8YXdH7gktIalqxv2+VvmYuB6x8w7vmQI9rS8oj2sDv07AktMFiquRitNX5s4iKKb9OoM9ZnbaRkeXXKfukYAnDeWLKGmuD5Ipft9r6rFHR5dcJ9Dmr1bZq6zNBBHCG0Uw2m++6hUdE+F+3WrsPo8qvU/ZJgfgqNq2t+7Bq3xG2sIZEOw4T7s4BvAkLu7MkuWSze/TvXR1jtZ4miSsiIiIiIlJLgjolVL9+/fjpp59YsOD084AvWLCAtLQ0BgwYEMxQKqWqi22fSWJiIgCFhRV5y1JE7FuOEWfzvgl9LCGMrn2bltOicg7t2M7WtMUAhMfE0v+yqwLaP+AdHbD1O/jXAJj7JMx+3PuGd2kN20JlkxUiInVQscWbcLO6SkZFuT0lo7JcDq1fIYHz9NNPV3gRaxEREREROXsENWFx33334fF4mDBhAg8//DCbNm2iqKiIoqIiNm7cyB//+EffaIP77rsvmKFUWHZ2NrNmzSIhIYHLL788YP2uXLkSgJSUlID1KVKf5S8pmQ4t9ZLUgPZtGAaLP3jHtz9w4nWEV/XN9tM5uh3euxQ+uR5ydnvLirJhZ/kLOYuInI1OLsBtNZckJjylpu9yOSowLZxIBT399NMsXry4tsMQEREREZEAC2rCYty4cTz++OPYbDZefvllunfvTkxMDDExMfTo0YOpU6dis9l44oknGDt2bDBDqbD333+f4uJifve73512mHxWVhZbt24lKyvLr3zt2rVl1n/ttddYuHAhqamp9OvXL+Axi9Q3jr15FO/1zqEe0iiS8PYNymlROTvXrGT/lo0ANEhuSo/zLwho/xQcgXfGwe5SD1JaDYa7FkOXwCVCRUTqkpMJizCz2zdyzF1q3Rt3sUZYSOA0atRIU4yJiIiIiNRDQV3DAuCZZ55h8ODB/P3vf+enn37Cbvf+4mq1WhkyZAgPPfQQ48ePD3YYFfb2228DZ54O6vXXX+epp55i8uTJTJkyxVc+ceJEQkND6du3L82bN6ewsJAVK1awfv164uPj+eCDD7BYLKftV0S89ny/k5OzxccMa47JHLgpk9wuF0s+fNe3P/SGW7CEBPircPbjJYsRx7eEsc9Cp0s09ZOI1GuOEO9INZMJrNYwHHYHbmcRnFhv3VNcgcXoRSpo6NChrFq1qrbDEBERERGRAAt6wgJg/PjxjB8/HrfbTXZ2NgANGzascw/vV61axcaNG+nfvz/dunWrdPu7776b2bNns2TJErKzszGbzbRq1YoHHniAhx56KGArpYvUZ7u2ZRGxNx8w4Qi3ENkzKaD9/zLvB3IyDwDQrGMX2vU9L6D9s3Mh/PqZdzs8Hm5fANGB/QwiInXRyREWAFZrKA67A6fT5itTwkIC6S9/+Qt9+/bliSee4JlnnsGklwJEREREROqFoCQsduzYwZdffsmePXuwWq307NmTq6++moiICBo1ahSMUwZE//79MQyj3HpTpkzxG1lx0iOPPMIjjzwShMhEzh3p3+6kC96HDrtaRdI2JHAz1zmKCvnpi499+8NvvDWwDzicdvjuoZL9859WskJEzhl+CYsw70spzuJCX5nh1JRQEjhr167lpptu4vnnn2fGjBlcdtllpKSknHaaqJtuuqmGIxQRERERkaoIeMLi1Vdf5eGHH8bt9v+l9Mknn+T777+na9eugT6liNQTRzILSD3qAEwUYtD/8g4B7X/lzM+x53vXxug4eDjJ7QLbP/tXQe4+73aL86DXjYHtX0SkDjsU24uFHZ7lvNEXEfb6f+FoLq5SIyxMTo2wkMCZNGkSJpMJwzDYtm0bL7300hnrK2EhIiIiInJ2CGjCYtmyZTz00EMYhkFUVBQdOnQgLy+PXbt2sX//fiZOnMiWLVswm4O61reInKXWz9zmG12xp3kkHeIDt5hm3tEjrPt+FgCW0FCGXBuEBxeth8Hv0+DHR2Dsc6DvOhE5hxSHxlIcGgsxyVijvCsRuQxXSQWXEhYSODfddJOmgRIRERERqYcCmrB4/fXXMQyDm2++mddff52oE7+s/vLLL0ycOJEdO3bw448/cuGFFwbytCJSDxTkOWi5txAw4cKg26WpAe1/6cf/w+10AtD7gkuIa9Q4oP37JLWHG78KTt8iImcJa6T3Z0C34fSVNY2y1lY4Ug9Nnz69tkMQEREREZEgCOjrv8uXL6d58+a88cYbvmQFQPfu3XnttdcwDIMVK1YE8pQiUk+smLWNmBOjK7YlhNK0RVzA+j60Yztb0xYDEB4TS//LrgpY3yIicqqwEwkLl6ckYZEcGVZb4YiIiIiIiMhZIqAJi8OHD9O3b1/Cwk79hXTIkCEAHDlyJJCnFJF6wFnsJmHzcd9+6wvbBKxvwzBY/ME7vv2BE68jPCo6YP1TdAyW/M274LaIyDmu2bHlWFa/ifX4dgDcpaaEMrSGhQSRYRhkZWWRlZWFx6N7TURERETkbBXQhEVxcTHx8fFlHouNjfXVEREpbfkPO2hkeEdXbI8y0b5r4KZr2rlmJfu3bASgQXJTepw/PmB9AzBvMix4Fv4zEA5uCGzfIiJnmW4HPiBswV+wHloF+E8JpYSFBMP8+fMZP3480dHRNG7cmMaNGxMTE8MFF1zA/Pnzazs8ERERERGpJK0IKyK1yjAMQtaUjLyKG9EiYH27XS6WfPiub3/oDbdgCQkNWP9krIB173m3C45CdJDWxRAROUsUh8QAYHXnA2BgYJgMANwOd63FJfXT008/zdixY5kzZw42mw3DMDAMA5vNxuzZsxk7dizPPvtsbYcpIiIiIiKVENBFtwF27NjBe++9V6XjN910U6DDEZE6zrHzOC1PvIC7LwwGDA5cwuKXeT+Qk3kAgGYdu9Cu73kB6xu3E779Q8n+6CchNjlw/YuInIUclhhigDCjyFdm87iJNIWw/2gB+paUQJk3bx5TpkwhLCyMO++8k9tuu422bdsCsGvXLt5++23efPNNJk+ezKBBgxg1alQtRywiIiIiIhUR8IRFWloaaWlpZR4zmUynPW4ymZSwEDkH5S854NvuPrEDZnNgBn45igr56YuPffvDb7wVk8kUkL4BWP46HNns3U7uCf1uD1zfIiJnqeIQ7xpBVkvJ2hUuww2mEEI1I5QE0D/+8Q9MJhOzZs1i3Lhxfse6d+/Oa6+9xkUXXcQFF1zAa6+9poSFiIiIiMhZIqAJi5YtWwb2gaCI1GvFmYU4tucAYGlgJbJrUsD6Xjnzc+z5eQB0HDyc5HYdAta36fheWPTiiR0zTHgVzJaA9S8icrbyTQllLpn+yYV3O8yolZCknlq5ciWDBg06JVlR2tixYxk0aBDLly+vwchERERERKQ6Apqw2LNnTyC7E5F6LnfRPt92zJBmmCyBSXjmHT3Cuu9nAWAJDWXItQEcvWUYhM59DFw2737/O6Fpr8D1LyJyFvMlLEqNsHAb3m1rrUQk9dXx48dp1apVufVatWrFqlWraiAiEREREREJBC26LSK1Yte2LIp+9i62bYoIIbJfk4D1vfTj/+F2ehfG6H3BJcQ1Ctxi2MnHV2PZNd+7E5MMIx8PWN8iImc7h2+ERakpofB+H1sx4XZpXigJjMTERLZu3Vpuva1bt5KYmFgDEYmIiIiISCAoYSEitWLHV+lY8I6o2NoiAnNYYKZUytj4C1vTFgMQHhNL/8uuCki/ACFuG90OfFhScMGLEB4bsP5FRM52ZU0J5TGcvm273XlKG5GqGDx4MOvXr+ejjz46bZ0PP/yQdevWMWTIkBqMTEREREREqkMJCxGpcdt+OUzn4963b3MxGHBlp4D063I6mTftX779IdfcSHhUdED6BvCYQtiTOArDYoXUcdDpkoD1LSJSHxRbvN+5oWY3J5c1c3tKkhS2QiUsJDD+9Kc/YTKZuOmmm7j66qv57rvv2Lx5M5s3b+bbb7/lyiuv5Oabb8ZisfDHP/6xtsMVEREREZEKCugaFiIiFbHvmx10PLGd2SmOLrGBmdl81czPyck8AEBy+450H336hTirwmMOZXuTS2k94Y+ER8bgexonIiIAOELj8MS1wByVSNjuUBwOJx5Pse+43aaEhQRGv379+M9//sP/+3//jy+++IIZM2b4HTcMg5CQEP71r3/Rr1+/WopSREREREQqSyMsRKRGbVp7kI753jnMs00Gg68KzOiKYwf3s2rmZwCYLRbOv+NeTObgfMUZDVpDfIug9C0icjbLjUzB8fvVcOcirLENAHB7HL7jDpvrdE1FKu2OO+5g3bp13HrrrbRp0war1YrVaqVNmzbcdtttrFu3jjvuuKO2wxQRERERkUrQCAsRqVGHv9tF3IntrO4J9IgMq3afhmEwb9q/cbu8D8L6XHw5SS1Tqt2vT+5+CGsYuP5ERM4B1ohIANwuJSwkeLp27cq0adNqOwwREREREQkQjbAQkRqzYfk+2hcZABwxGQy5vGM5LSpm85IF7Nv0CwCxSY0ZOPHagPQLwJ5l8FoPQhb/FbNHU5mIiFRUWGQUAO5SU0I1jQrMFIAiS5YsYfv27eXWS09PZ8mSJTUQkYiIiIiIBIISFiJSIzweD8dn7/Ht5/VJxBpe/UFetvw8Fr//tm9/zG13E2oNr3a/ADgKYOY94HERuuIfNM/5KTD9ioicA6yRJ0ZYGCXJ3gB9O4swYsQIXnzxxXLrvfTSS4wcObIGIhIRERERkUDQlFAiUiPWL91HO7t3O9NsMPiSDgHpd8mH72LLzwOg/XlDaN2rb0D6BWDeZDi+FwB38/PISBgauL5FROqpkAVT4MhGrAecQJhfwsJwemotLql/DMOo7RBERERERCTANMJCRILOMAySfznm27cNaExomKXa/e7fvJGNC+cCEBYRycibA7iw5q5FsPrEnNihkTgvnAomfWWKiJTHfGQj7F1GWHEWAC5PyboVHiUspIbl5OQQHq6xPSIiIiIiZwuNsBCRoLNvPYbnQAEApqQIBl2UWu0+XU4nc9963bc/5LqbiE4I0MLY9jyYdW/J/pinMBq0BtID07+ISD1mRHi/i61mb6Ki9AiLrGM2omolKqkPMjIy/PYLCgpOKTvJ5XKxadMm5syZQ9u2bWsiPBERERERCQAlLEQkqAyPQd6cvb79hHEphIRUf6TCmq9ncOzgfgCatGtPj/MvqHafPnOfhNx93u2UodDvdnA4Ate/iEh9FpkAgNXiBsBllIywSD+QS6taCUrqg5SUFEwmk29/xowZzJgx44xtDMPgd7/7XbBDExERERGRAFHCQkSCyrYxC2dmIQChzaIJ71L9URA5hw6y4qtPATCZzZx/x72YzdWfYgqAHfNh7XTvdlg0XPovMGsqKBGRijIiTiQsyhhhoSmhpDpatmzpS1hkZGQQGRlJYmJimXXDwsJo3rw5EydO5O67767JMEVEREREpBqUsBCRoHG5PGz6bCvJJ/bjxrbyezOyKgzDYN60f+N2eh+A9b7wUhqltKlmpCfYc+Hr+0r2xz4DDfQusIhIZZQkLLwjLNyeUotuF7trJSapH/bs2ePbNpvNXHXVVbzzzju1F5CIiIiIiAScEhYiEjQ/fbOdNidmAtkbYaJZ+wbV7nNr2mIyft0AQExiEoOuur7affoUHfNOZZJ3ANqMgD63BK5vEZFzxck1LCzefwBKTwllaISFBMi7775Lu3btajsMEREREREJMCUsRCQoiotdRK0+AnhHVESMalnt0RW2gnwWvTfNtz/61t8TFh5RrT79JLSG2xdA2qvQ4zqoZrwiIuci48QaFmFlTAllcilhIYFx880313YIIiIiIiISBEpYiEhQpH21jVSP94F/eoSJkUNbVrvPpR9Npyj3OACp/QfRts+Aavd5ipAwGP5w4PsVETlH+KaEOrnodqkpoUwaYSEB5nK5+OKLL1i4cCEHDhwAoFmzZowcOZIrr7ySkBD9uiMiIiIicjbRT/AiEnB2m5MGG7I5Obqi4fjW1e7zwNbN/Dp/NgCh4RGMnHRntfv08bghUIt2i4ic48606LbJbdRKTFI/bdiwgSuvvJLdu3djGP731rRp03jyySf5/PPP6dmzZ+0EKCIiIiIilaaEhYgEXNqMrXQwvMmKbVFmRg9oVq3+3C4nc9963bc/5NobiWmYWK0+fbZ+Dwufg8v+A8ndA9OniMi5LLIhnHcP1pBY2JGGq1TCwqyEhQTIwYMHGTt2LFlZWTRu3Jhrr72Wtm3bArBr1y4++eQTdu7cybhx49iwYQPJycm1HLGIiIiIiFSEEhYiElBFBcU02pTDydEVTSe0rXafa76dSfb+DAAat2lHz3EXVbtPAPIPwzf3Q+FReGsk3LkYmnQNTN8iIueqECuMf55Qw8A07VLcnpJFty1uTQklgfHiiy+SlZXF7bffzmuvvUZEhP+aVn/961+5//77mTZtGi+99BJTp06tpUhFRERERKQyzLUdQF2RkpKCyWQq878RI0ZUqq8PP/yQ/v37ExUVRYMGDbj44otZt25dcAIXqWPSPt9CgxOjK7bEWujUs0m1+jt++BArvvgYAJPJzPl33Is5ENM3edzw5e3eZAVAuzHQuEv1+xUREQBMJhNhkRF4cOMxvImKMA2wkAD54YcfaNmyJf/5z39OSVYAhIeH8+9//5uWLVvy3Xff1UKEIiIiIiJSFRphUUpcXBwPPPDAKeUpKSkV7uO5557jiSeeoFWrVvz+978nPz+fTz75hEGDBjF//nwGDx4cuIBF6piswwU035YLmPBg0Pqy1Gr1ZxgG89/+Ny5nMQC9LphA4zbtAhApsOTvsHuJdzsmGS79F5hMgelbREQAsEZG4SgsxIMLM2G0iY+s7ZCknti3bx+XX345FsvpX2IICQlh4MCBzJw5s+YCExERERGRalHCopT4+HimTJlS5fbp6elMmTKF9u3bs2rVKuLi4gC45557OO+887jjjjvYuHEjZrMGtkj9ZFp6kJgTU0FtaRjGuM5J1epv2/Kl7PnZOzopumEig6++odoxArB7KSx+wbttMsPEtyEqQGtiiIgIGAY48rCGeX/UdHmchFjCMJyaEkoCw2q1kpeXV269/Px8rFZrDUQkIiIiIiKBoCfnAfTuu+/icrl4/PHHfckKgJ49e3LdddexZcsWli1bVosRigRP8f58bGsPe3fCzPS5sXrTK9kLC1g4/U3f/qhb7iIsIgBv5hYchRm3w4npSRjxGKRo5JOISEDNvBteaIk1ZwvgTVgAGMXu2oxK6pHOnTuzcOFC9u3bd9o6GRkZLFy4kC5dNOWjiIiIiMjZQiMsSnE4HEyfPp2DBw8SGxtLv379GDBgQIXbL1q0CICxY8eecmzcuHFMnz6dxYsXM2zYsAr3uX///jMez8zM9G07HA5sNluF+5baY7fby9w+WxmGQd7MdDgxN3nkiKZExIVU635c/ME7FOUeB6B1r34079qz+ve34SHsi9uxFBwCwN1qKMV974YK9FtXrpnH7eH4YRuG5oGvkGKHg+I8b24+c9cxwvSW7VlB1+3sc/KaWcIM7HY7oaExhABhZu+C227D+39PsVs/q9QhDoejtkOosptuuol77rmHMWPGMHXqVC688EK/499++y0PPfQQdrudm266qZaiFBERERGRylLCopRDhw5xyy23+JX169ePjz/+mLZt25bbPj09nejoaJo0OXWR4dTUVF+dymjRokWF665cuZKdO3dWqn+pfUuWLKntEKot9nAYqfujAbBFuFmX+wvGnF+q3J896zD7F8wBwBQSgqdlO+bMmVPtOFMPfUPnzEXec4TEsSjmahzz5le6n9q6Zo5jFo79HI7brsFxlRMFwA9p22o5DqkcXbezj/eafX90Ob1Dj9EJsPoSFt4RFp5iN7N/nINJX2N1QlZWVm2HUGV33HEHM2bMYP78+UyYMIGEhARat24NwO7duzl27BiGYTBmzBjuuOOOWo5WREREREQqSr8unnDLLbcwf/58Dh8+TGFhIevXr+fGG29k9erVjB49mvz8/HL7yM3N9ZsKqrTY2FhfHZH6xOmAxF0lUzXtSynEqMY3i+HxcGRVydRpDbv3JTQqujoh+rjNoXiwYGBibcrvcYSW/fe1rjEMyNsRxtGVEUpWiEidV3QwBEeI93vbavFOAXVySigzJjxaxkICwGKx8N133/Hwww8TFRVFdnY2a9asYc2aNWRnZxMVFcUjjzzCt99+q/XjRERERETOIhphccLkyZP99nv27Ml7770HwPvvv89bb73Fgw8+WONxnWleXvBOCdW/f38ABgwYUKGRIFL77Ha77y39YcOGER4eXssRVd2it36lAd4pJbbHWhh49ahq9bf++1nsPH4MgMRWrbny/z2A2WKpdpxeY3EeuB5T5np6963c25a1dc2K8opZ/MEO8tJLkp2NUmJIaBqA9TzOAS63m8yDBwFIbtqUkIDdSxJMum5nH5fbzc41RzHcJkKNSDr1GQL7ppcaYeHy1R04cCjxDSJqK1Qp5WwfmRsWFsYLL7zAU089xZo1azhw4AAAzZo1o2/fvlpsW0RERETkLKSERTnuuusu3n//fdLS0spNWMTFxZ12BEVeXp6vTmU0b968wnWtVisREXoAcLYJDw8/a6/brq1ZdDpoB0wUY5B6badqfZbcI4dZPfNz747JxLg77yMqOjCjK3zaDfX+Vw01dc32bT7G3Hc3Ycv3vplsMkG/i1vT54IUzGZT0M9fH9hsNubM2Q3AsLGpZ+3ftXONrtvZx2azsXfzYZz5Fmx5TkJjvdNjhp0cYXFiSigAPCG6pnVEfXmgb7VaGTx4cJnHjh8/zt/+9jeee+65Go5KRERERESqQuOjy5GYmAhAYWFhuXVTU1MpKCjg0KFDpxw7uXbFybUsRM52Ho+HPZ9tJQTvg/P0lChatGlQ5f4Mw2D+O//BVewdrdFr3MU0ade++oHmZZZfp47xuD2smLmTr/+5wZesiIoL49I/9KLfRa2VrBCROskSYQDgcRvYPN5/D367hgWA3eY8tbFIgOXl5TF58mRSUlJ44YUXajscERERERGpII2wKMfKlSsBSElJKbfu8OHDWb58OXPmzOGmm27yOzZ79mxfHZH6YOWc3bQv8j6cyjIZDP1dt2r1l74yjd3r1wAQ3SCBwdfcWO0Y2bcapl8EQx+EYX8Cc92fVqYgx86ctzeRuaNktFbLLg0ZM6kTETFhtRiZiMiZWcJLFqfId8QQBVjN3hEWbk/JlFCOItdvm4pU2Nq1a/nmm284fPgwjRs35pJLLqF3796+43a7nVdeeYW///3v5ObmYhgGnTt3rsWIRURERESkMjTCAti6dStFRUVllj/yyCMAXH/99b7y3Nxctm7dSmam/5vbt9xyCyEhITz33HN+U0Nt2LCBjz/+mE6dOjFkyJAgfQqRmmMrcmJdcsC3XzA4mcjoqj9MdxQVsmD6m779kbfchTWymms02HLgi1vB7YBFz8O696rXXw3Y82sWnz672pesMJlNDLyiLRf/v+5KVohInRdyYoQFQH6h9zvLavEmJ0pPCVVsV8JCquaPf/wj/fv355lnnuHNN9/kmWeeoV+/fkyZMgWA1atX07lzZ5588kmOHz9OixYteOedd/jll19qN3AREREREakwjbAAPvnkE1555RWGDRtGq1atiIqKYvv27Xz//fc4nU4effRRhg0b5qv/1Vdfccstt3DzzTczffp0X3n79u2ZMmUKTzzxBD169GDixInk5+fzySefAPDWW29hNitHJGe/pR9tpLPHOy3RjnATwy6s3mLvyz55n8Ic70LbbXr3I7X/oOoFaBgw617IzfDutzgPegVgxEaQuF3eKaA2zNvnK4tOsDLu9q40aVO5dW9ERGqLJaLUCIvjxRAeT1jRqVNCOZWwkCr47rvveOWVVwCIjY0lNTWVvLw8du3axTPPPEOHDh24++67ycvLIyEhgSeeeIJ77rmHsDAl/EVEREREziZKWAAjR45ky5YtrF+/nqVLl1JUVERiYiIXXngh99xzD2PHjq1wX48//jgpKSm8+uqr/Oc//yEsLIyhQ4fyzDPP+A1XFzlbHdh7nDY78gETLgyaXtmhWom4zB3b2DDnOwBCrFZG33o3JlM112hY+QZs/da7HdEArnwbLHXz685R5OS7f/1C5s6SUVmteyQy6qZOhEeF1mJkIiKVU3pKqIJjDrjhC6zZ+fD8K7hKTQmlhIVUxVtvvQXAfffdx0svveRbMHzLli1MnDiRm2++GZfLxciRI/n0009969CJiIiIiMjZpW4+wathw4cPr9TaEpMmTWLSpEmnPX7DDTdwww03BCAykbpn9xfbSTmx0PbW5HDGd21U5b48bjdz3/qXd0QEMOiqG4hNqnp/3gCXwJzHS/YvfwPimlevzyCxFzr55h8bOLI3HwBziInBE9vRbUTz6idtRERqmN+UUMfs0KIf1sgs4DcjLBzuGo9Nzn5r164lJSWFqVOn+r0o0alTJ1599VXGjx9PbGwsM2fOJCYmphYjFRERERGR6lDCQkQqzL7zOClHHQDkmQzOu7F6C22v+34WR/fsAiCpVWt6X3BJ9QLM3gmf3ggn3+QddD+0H1e9PoPEXuBk1mvrydpXAEBETCgX39uDRq1iazkyEZGqMVsNMBlgmCjIsQNgjYoC/NewiA+11Ep8cnY7evQoF110UZmjOs877zwAhg4dqmSFiIiIiMhZTgkLEakQw21w/Oudvv0Wl6USkxBR5f4Obt/Ksk9OLIRtMnH+HfdiCanGV5LtOHx0DdiPe/dTx8GYKVXvL4hs+cXMenU92QcKAYiIDeOyB3qR0DSqliMTEak6kwks4QZum8k7wgIItYZjMptxe0oSFq3jq/5vh5y7iouLiYsre12n2Fhvsj8pKakmQxIRERERkSBQwkJEKqRwxUFch4sACG0WTXS/JlXv63gO37zyV9wu70iIPhdeQnJqh+oF+P0fITvdu53UCSZOA3Pde4u3KM+brDh20JusiIwL47I/9KJBEyUrROTsZwn34LaZcRS6KN6/hbCs9VhDzbiMknUrjGLPGXoQERERERGRc5kSFiJSruwjhRTO2cPJSRjiL2mLyVy1NRbcLidfv/I8BTnHAGjeqStDr7+l+kGOehIOb4KCw3D9JxBe96ZWKsx1MGvqenIOeRM/0Q2sXPpAL+IbR9ZyZCIigRESYVCc490u+HkxCasfIczTD7e5ZISF4dQaFlI1O3bs4L333qvS8ZtuuilYYYmIiIiISAApYSEi5Vrz3q90cXjfiLV0T8RajXUWFv5vGge3bQYgumEiFz/wSPWmgjqpQSu4bQ4c2w0NUqrfX4AV5NiZOXU9uUdsAEQnWLnsD72JS9LUKCJSf1giSkZP5LsakgBYzS6/Rbc9To2wkKpJS0sjLS2tzGMmk+m0x00mU60mLFJSUti7d2+Zx4YPH86iRYv8yhwOBy+++CLvv/8++/btIyEhgYsvvphnn32WRo0a1UDEIiIiIiK1RwkLETmj1Qv30CXL+6CpEIP4Ec2q3NevC+fw85zvALCEhnLpg48RFd8gIHECYI2B5O6B6y9A8o/ZmfnKOvKyvHO6xyaGc+kDvYhNVLJCROoXS7jh2y4o9q43YLW4KXSVTAm1Nj2L0Re0rvHY5OzWsmVLTKaqje6sC+Li4njggQdOKU9JSfHb93g8XHrppcyePZvzzjuPiRMnkp6ezrRp05g/fz4rVqzQWh0iIiIiUq8pYSEip5V73EbonAzA+4Bgf48EOjSt2uiKzB3bmD/t3779MbfdQ5N27aseXPZOWPYKXPAShNXd9R/ysmzMnLqe/OwTyYqkCC77Qy9iEsJrOTIRkcALKT3Cwu6d7i7M7CKv1AgLl0NTQknl7dmzp7ZDqJb4+HimTJlSbr3//e9/zJ49m+uuu44PP/zQl6T573//y913380TTzzBG2+8EeRoRURERERqj7n8KiJyrlox7WcSDe8vyukRJkZc3blK/RQez+Hrl0sW2e457iK6jjy/6oHZcuCjq2H9B/DOeMg/VPW+gij3aBFfvbzOl6yIbxzJ5Q/2VrJCROotvxEWhaGAd0ooV6mEhcmlKaFETuett94C4Pnnn/cbUXLXXXfRpk0bPvzwQ2w2W22FJyIiIiISdBphISJlWjlvl99UUKk3d8ViqXyO0+1y8c3UFyg4lg1As46dGXHT7VUPzO2CzydB9o4T+04IrXuLVh8/XMTMqespPO4AoEGTSC79Qy+i4qy1HJmISPD4rWGR733YarW4cXtKpoSyuI1T2onUdw6Hg+nTp3Pw4EFiY2Pp168fAwYM8Ktjt9tZuXIlHTp0oFWrVn7HTCYT559/Pm+88QZr1qxh6NChFT73/v37z3g8MzPTt22z2ZQQqYd0TeUk3QtSmu4HOUn3gpRWmfshWPeOEhYicorj2TbC5+/n5FRQB3o1ZFRK1daaWPz+2xzYugmA6AYJTPjDo1hCQqse3OxHYdci73ZkQ7j+Ewiv+iLgwXB0Xz7f/vNnivKKAUhoGsWlD/QiMjasliMTEQkucwhYI0NwFLnIP+6CMMspi26blbCQc9ChQ4e45ZZb/Mr69evHxx9/TNu2bQHYuXMnHo+H1NTUMvs4WZ6enl6phEWLFi0qXHfJkiUkJiZWuL5+nTw7zJkzp4bOpPuhrtO9IKXpfpCTau5eAN0PdV9l7oesrKygxKApoUTkFCvf3kDDE1NBbY80MeKqTlXqZ9Pi+az/8RsALCEhXPLQ49VbZHv1NFj1pnfbHArXfAgNUqreXxAc2JbDzJfX+ZIVDZtFc9kflKwQkXNHVAPv911hjgNPRCJhFjduo2SERYgSFnKOueWWW5g/fz6HDx+msLCQ9evXc+ONN7J69WpGjx5Nfn4+ALm5uYB3ge6yxMbG+tUTEREREamPlNYSET8rZu+kyzHvg6UCDDpM6o7ZXPnc5uFdO5j71uu+/dG33UNyaoeqB7ZrEXz/cMn+hNeg1cCq9xcEO9cfYe7bm3GfmJ+9SZtYLvp/PQiPqsaIEhGRs0x0AyvHDhTh8RgUhaVgNe/FwMDtcWExhxCiJSzkHDN58mS//Z49e/Lee+8B8P777/PWW2/x4IMPBu38+/btO+PxzMxM+vfvD8CwYcNo3rx5xTtfvqA6oUkNGTt2bM2cSPdDnad7QUrT/SAn1di9ALofzgKVuR/Km3q0qpSwEBEfd6GTZquO+PYz+ybSsWXZb/mdSVHucWb9/TncTu8UID3Ov4Buo6rxD2DmL/DpjWC4vfuD7oNeN1S9vyDYtPQAiz/ahnHixeFW3Roy7o6uhIZZajcwEZEaFhVfslZPQXhHrLH5cAhchhMLIYR4NMJCBLwLab///vukpaXx4IMP+kZWnG4ERV5eHnD6ERinU5kEREREBBEREZXqX+o+XVM5SfeClKb7QU7SvSClVeZ+CNa9o4SFiPgc/2YnpkLv6Iq8ZpEMv6Jjpftwu1x88+oL5GcfBaBp+06MnHRnNYLKgA8mgsP7Szrtx8OYp6reX4AZhsGa7/ew6pvdvrKO5zVhxI0dz7hIuWEYbD22lWUHlrHswDJ25u7EOJHt+PKSL2kc1dhX95Otn/DP9f8sN5aUuBQ+vPBDv7IHFz3IysyV5ba9psM13N/7fr/4hnwypNx2AC+PeJnzks/z7a/IXMFDix6qUNu069L89v+x7h98uu3TctsNSB7AKyNe8Su74fsb2JO755S6zhOJs5dmvgTAfb3u49qO1/qOHy48zBVfX1GheN+/8H3axLXx7X+z8xteWPVCue0aRTbiq0u/8it7YtkTLNy3sNy2F7e5mEcHPOpXNvaLsRQ6C8tt+/TgpxndcrRvf2PWRu6ae1e57QBmT5xNdFi0b3/ar9N4d+O75bbr0rALb45906/szjl3sil7U7ltb+16K7d1u823bzfsjJk5pkLxvnH+G3RN7Orbn58xn7+k/aXcdlGhUcy50n+OzudXPs+3u74tt+3IFiN5dsizfmWXz7qcI0VHTtOixJ/7/5kJbSf49nfl7uLG728stx3U3e8Ip9NJlCmK+61TfGX5fR/Het5+eH6yb1qoMOUrRAB8a0UUFnq/z9u0aYPZbCY9Pb3M+ifLT7fGhYiIiIhIfaCEhYgAYNuYhW2DN8lgCg+hw81dqzQV1JIP32X/5o0ARDVIYMKD1VxkO6oRtOgPW7+F5v3hynfAXDdGLXg8Bss+3c6viw/4ynqd35KBV7TFZDKdUj+vOI/lB5ez7MAy0g6kcdR2tMx+Dfyf5jncDvKK88qNp7D41AfYhc7CCrW1u+1lxlsRbo/bb9/lcVW47W/ZXLYKtS1yFp1SVlBccMa2tmIbAMXuYr9yA6PC8Z5MKp1U7C6uUNuIkFPfOihyFVXr2lQkYeHyuE7Zr+q1qfB96Kr6ffjbawOVuA8N//vQ6XFWqK3HOHV+oorehzaX7ZSyvOK8CrV1epx++x6Pp+L3YR3+jrAZNn7KX0IKgwHIP2anSUokgG/hbSUsRLxWrvQmC1NSUgDvG2r9+/dnxYoV7N27l1atWvnqGobB3LlziYqKom/fvrURroiIiIhIjVDCQkTIOVpE0Vclb/PFX9oWS6z1DC3KtnnpQtZ9PwsAsyWESx58lOgGCdULLjQcrn4Plvwd+t8BYVHV6y9A3E4P86ZvZsfakjepB01sR6/zW5ZZf1/+PiZ8NeGUh6onNYlqQrglHIAQs/9Xc2xYLCmxKeXG1DS66SlljSMbV6htQvip16ki7QDCQ8L99y3hFW5bVhwVaVv67fKTmkY3PeXhs8fwUFToTW5ERkViNpmJtcb61bGYLBWON9Tsn3yLDouuUNuGEQ1PKWsU2ahibcNPbdsypmWZD8t/KzIk0m/farFW+LOaTf4Jy3hrfIXaJkcln1LWJKpJhR6Kx1n9pzkxYaJlTMtTYimL1eL/nRUVElWheMtKJjWMaFihtkmRSaeUNY9ufsqfe1miQ6P99kMtoRW+NnXxO8JjeNifvx8PHvYY6b6ERUG2HWtn7/e260SSJqoKyXCRs9XWrVtp2bIlkZGRp5Q/8sgjAFx//fW+8jvvvJMVK1bw6KOP8uGHH/pegHjjjTfYtWsXd955p6ZtEBEREZF6zWT89nVROavs37+fFi1aALB9+3YNET9L2Gw25szxTkEyduzYWv/Fc+7zP9Ep1/sgPbxzQxre2KnMEQJncnjXDj75y8O4nN43pMfc/v/ocf4FAY+1tpS+ZiOHjWbh/9LZvzUHAJPZxKibOtLxPO+DWrfHjcfwEGopebhtGAbnf3E+h4sOA96H+gOSBzCk2RCGNBtC85hKLHApFVbX/q5Jxei6nX1sNhtXzriSDHcGkcWx3LT2GQBSuicy7NqmvHn3JEYn30BiuPe7rtlfh2AyV+7fGQm89PR02rdvD3gXZq7UYstSIVOmTOGVV15h2LBhtGrViqioKLZv387333+P0+nk0Ucf5a9//auvvsfj4cILL2T27Nmcd955DB8+nB07dvDll1+SkpLCypUrSUo6NVlaHaV/n6jsfZDy5+8CGosEx54XLqqR8+h+qPt0L0hpuh/kpJq6F0D3w9mgMvdDdX6OPBONsBA5xy37ZrsvWZGHQfxFKZVOVhTl5TLr5ed8yYpuo8dVPVnhdsHsR+G8eyChddX6CCK3w8T3/9pE9n7v1CohoWbG3dmVlG7eeajzivP485I/0yiyEZMHTvb9WZpMJia2n0ieI4+hzYbSp0mfU94IFxE5myVaEslwZ1AUmo/JAoYb8g8fw/q9d50Xl1EyRZnh9GCy1o3p/USCaeTIkWzZsoX169ezdOlSioqKSExM5MILL+See+5h7NixfvXNZjOzZs3ihRde4P3332fq1KkkJCRw22238eyzzwY8WSEiIiIiUtcoYSFyDjuSWUBC2iHA+1A9e1BjOjcsfyqT0jxuN9+99iL5Wd71GJJTOzDqlt9XLSDDgG/+DzZ8AJtnwe9mQJNuVesrCFxFJrJWR+Iq8iYrrJEhXHxvD5q08U5js+v4Lu5feD978/YC0DGho9/iznf3uLvmgxYRqSFJ5hMPUk0GlmgPrlwzBbluQtO/w8QQ3KXW7TCcblDCQs4Bw4cPZ/jw4ZVqY7VamTx5MpMnTw5SVCIiIiIidZcSFiLnKI/Hwy/v/EzHE8mKLbEWRl9c+SnFlnz4LhkbfwEgKr4Blzz4GCGhVVxke95kb7ICwJYDRdlV6ycIMnfkcmR5JJ5i79zr0Q2sTLivJwlNvXOzL8xYyKPLHvUthBxvjad1XN0bISIiEiztQtphCjcxrt84co7EcCS3EIfdhDM2HKvZhcsoSVjYi5xERYfVYrQiIiIiIiJSFylhIXKOWvZ1Oh3zvQsU52LQ87bumCu5EOqWZYtY+91MAMwWCxP+8CjRCacuEFwhaf+AtNdO7JjgiregzYiq9RVAhmHw8/x9/PTlDgyP988nvnEEl/xfL2ISwvEYHt745Q3+veHfvjYdGnTgtVGv0Sy6WW2FLSJS45JDkkkOSWZw8mDSknZzZKc3gZvvTiLM4sZdakqog1lFpDaKqq1QRUREREREpI5SwkLkHLRrWxaNVxzm5FRQOUOS6dI4ulJ9HNmzizlv/NO3P3LSXTTr2LlqAa3/EOY+WbJ/8SvQ5bKq9RVAToebBe9vYceaI74ya6KLi+7rQkxCOIXOQh5b+hgL9i3wHR+fMp6nBj1FZGjlptYSEalPYhLCfdsFniSsZpfflFAOm7OsZiIiIiIiInKOU8JC5BxTkOfg6HubaXYiWbG5QQhjKzkVlC0/j1l/fw5XsQOAriPHVn2R7W0/wNf3leyPfAL63lq1vgLo+OEifnjjV44dLPSVxbR1EJtajDUqlIy8DO5fcD87c3cCYMLE//X+P27temulFy0XEalvohtYfdv5RjJWyz6/KaGKba6ymomIiIiIiMg5TgkLkXOIx+Php3+vo7Pb+0B9v8Vg8P/rXbk+3G6+fe0l8o4eBqBJu/aMvvX3VXtIv/cn+HwSGG7vfv+7YNgfK99PgO35JYu57272PVALDbcw7Pp2bMtc46vz8pqXfcmKmLAYXhr2EkOaDamVeEVE6gqH4WBT9iZ2Og4DEQAUmFsQZt7tNyWU06GEhYiIiIiIiJxKCQuRc0jh8kw6H/c+JCrEoNFNnYmKtpbTyt/Sj/9Hxq8bAIiMi/cush1WhYVT8w7Ch1eBy+7d73oljH8BanF0guExWPXdbtZ8t8dX1qBJJBf8vhvhcWa2ZZbUnTxoMlu/3UpESASvjXqNVrGtaj5gEZE6Zql9Kc/Mf4b4osZcy2MA5BuNCbf4L7rtsrtrK0QRERERERGpw5SwEDlHOPbkkvvdbt9+7shm9O+QWKk+tv60hDXffAmcXGT7z8Q0rFwfPrFNYcgfYMEz0G4MXPYfqOSi34FkL3Qy793N7N2Y7Str2zuJUTd1Iiw8BJvN5lc/ITyB/57/XxpFNiIqVAvHiogAJFq8/yYUWHN8ZQXuJGLNbgpcpRIWGmEhIiIiIiIiZVDCQuQc4M4vJvujreAxAIge1pz+41pXqo+je3cz+7+v+fZH3HwHzTt1rV5gw/4IcS2g86UQUoVRGgGStb+AH/77C3lZ3tEeJhOcd3lbep3fEpPJxKbsTTy/4nku8FxAtLlkcfLWcZX7MxQRqe+SzEkAuCzFeKxOzI5Q8ovjSDK7yC01JZS7WCMsRERERERE5FRKWIjUc85iN3vf+ZXwvGIArG3iiBuXUqk+bAX5zPr7s7gc3kW2uwwfQ8+xF1U+mMIsiPrNiIwe11S+nwDavvoQC9/fiqvYA0B4VChj7+hCi44JGIbBh1s+5O9r/o7L46IgpICbo26u1XhFROqykyMsAIrCc4l2JFLgiCKszQBcW0pGWLgdntoIT0REREREROq42pt/RURqxII31xOeWQSAOSaMhOs6YrJUfJ0IR1EhM196htwj3kW2G7dJZczt91R+ke2NM+DV7rBjfuXaBYnb7WHZZ+nMfXuzL1mR1DKGqx7rS4uOCeQ6cnlg4QO8sOoFXB7vW8F2w47dsNdm2CIidZrVZKVxZGMAckKOAmAYJuhwCW5PScLCcGqEhYiIiIiIiJxKIyxE6rGfvt9Bl/3etRdcGNjGtaBpTMWnXirKPc6Mv07myJ6dAETExnHJQ1VYZHvDxzDrHjA88Mn1cMdCaNy5cn0EUFFeMbPf2sjB9OO+so6Dkhl+XXtCQi38fPRnHl78MAcLD/qOX9/+etofbk+ISV+bIiJnkhKTwuGiwxwPPUILOgHgcYfiKjUllOHUCAsRERERERE5lUZYiNRTu7Zl0XBJyQP3HV3i6dS3aYXb52dn8cmUP5ckK2JimfjY08QmJlUukDXvwsy7vckKgO5XQ1LHyvURQId25fLZc6t8yQqzxcTw6zsw6saOmENMTN84nUk/TPIlK+Kscfxz1D95oOcDSlaIiFRAq5hWgP/C225nCG6jZIRFn6ZxNR6XiIiIiIiI1H16+iZSDxUWODjy3maa4522aXN8CGNuqPgC2TmZB/jiuSfJO3oEgOiEhlz5xLM0bNaicoGsfAN+eLhkv/+dMP5FMNd8rtQwDDYtPcjST7fjcXsXH4+KC2P8Xd1o0iaOHHsOjy97nKUHlvra9GrUi5eGvUSTqCbYbLYaj1lE5GyUEpsCQEFYScKi2G72S1hYTnwPi4iIiIiIiJSmERbAgQMHePXVVxk7diwtW7YkLCyMJk2aMHHiRFauXFnhfhYtWoTJZDrtf9OnTw/ehxA5wePxkPb6Opq7vcmKAxaDQff0xlzBJMHRjD18MvkRX7Iivkky1z71UuWTFWn/8E9WDLoPLnipVpIVLqebhe9vZfFH23zJiqap8Vz1WD+atPG+5bsyc6VfsuL2brfz9ri3aRLVpMbjFRE5m50cYZFfaoSFY/VM33pAoCmhREREREREpGwaYQH885//5MUXX6Rt27aMHTuWpKQk0tPTmTlzJjNnzuSjjz7immuuqXB/w4cPZ8SIEaeU9+zZM3BBi5zGwo820fm496FQIQZJN3UmOtZaobaZ6dv48vnJ2AsLAEhs0Yorn3iWqPgGlQti8d9g4bMl+8P+BCMfh8ou1B0A+cfs/PDfXzmake8r6zGqBQMntsViKUmejG89np8O/sTi/Yv565C/MrjZ4BqPVUSkPmgd2xqAyAahvjK7kYjLOOLbN4q16LaIiIiIiIicSgkLoH///ixatIjhw4f7lS9dupTRo0dz9913c9lll2G1Vuyh74gRI5gyZUoQIhU5s19W7qftxhw4MRVU1tBkBndIrFDbjI0/M/OlZ3A67AA0adeeKx59iojomMoFsehFWPTXkv2RT8DwP1WujwDZt/UYc6Ztwl7gnYYkJNTMyBs70r5/Ew4UHKBpVFNMpZIojw54lHt73UujyEa1Eq+ISH3QMLwhK69fSYQlgv/+tAiP26DIaIzb+NlXJzO7iIa1GKOIiIiIiIjUTZoSCrjiiitOSVYADB06lJEjR5KTk8Ovv/5aC5GJVFzxkSJCZ+0m5ESyYlPzCAZflFqhtjvWrOTLF6b4khUtunTnqieerXyyAqDlADCfyIWOfbZWkhWGYbBu9l6+eW2DL1kRmxjOxEf60qZvItN+ncaErybw7a5v/dpFhEQoWSEiUk0mk4nI0EhMZhPRDbwvexS6k/F4in11snO0LpCIiIiIiIicSiMsyhEa6p3OICSk4n9U6enpvPrqq9hsNpo3b86oUaNo1qxZlc6/f//+Mx7PzMz0bTscDi0MfJaw2+1lbleVp8BJ7jtbiDkxJXh6OAy8uWOF7oftPy1l/rTXMTzexik9+zD2ngdxY6ra/ZQ8AMvYF8HjxN1rEtTwPVl43MFPn+9m3+aSudObd4pn+O9SOejK4N7vnmbTsU0APL/yeXo06EFSRFK5/Qb6mknN0HU7O+m6nX1Od80i48PIy7JTTDShZicew4PZZMbiMfQzSx3gcDhqOwQRERERERE/SlicQUZGBvPmzSM5OZlu3bpVuN1HH33ERx995NsPCQnhvvvu429/+xsWi6VSMbRoUfGFjleuXMnOnTsr1b/UviVLllSrvdkFHTbFElnk/etcGOHiaMd8Fi6YX27b3PTNHF2d5tuPbtUWS8eeLFi0qMLnjyjOwhba8DfrU5xIAMyZU+F+qsswoDAjlNxtVgx3SSwx7Ry4W+7l2XkfMd8+Hxfe9T1MmOhp7smqJasINYWertsyVfeaSe3QdTs76bqdfUpfszxbOHDi5Q+zgdtwYjZZsbg8zKnBfyOkbFlZWbUdgoiIiIiIiB9NCXUaTqeTG2+8EYfDwYsvvlihRENSUhIvvPACGzdupKCggMOHDzNz5kzatWvH1KlTefjhh2sgcjmXuF3QZluML1nhsLrZ2Tkfa7hRbtuczRv8khWx7TrReNBITOaKfy00yv2ZUVseI/Xwt+VXDiJnvpmjKyI5vjncl6wwh3lo2KeI4jYHmFb4FrPts33JikRzIndG38m4iHGVTlaIiEj5stxZzCiawQbzal+ZxWzG5fFO0xdW/j9TIiIiIiIicg7SCIsyeDweJk2axJIlS7jjjju48cYbK9SuS5cudOnSxbcfFRXFpZdeyoABA+jevTv/+Mc/eOSRR2jUqOJz5O/bt++MxzMzM+nfvz8AAwYMoG3bthXuW2qP3W73vYE6bNgwwsPDK92H2+Mh7bUNxOV5p3IyRYTQ+NauNE08c1+GYbDii4/YsaHkIVKvCy/lvKtu8FuAujyWtdMI3TAVk+Ghc+bntB1yOZ42oyr9OarDVexmw9wD/PrTQQxPydOv9uc1ovdFzZl5YAb/3fhfHG7vlBcmTFzf/nru6noX4SGV+zMPxDWTmqfrdnbSdTv7/PaaHSo+xKs/vkrHUCvtGQSA2RSK2/AmjsMxMXbs2FqLV7w0MldEREREROoaJSx+w+PxcOutt/LRRx/xu9/9jv/+97/V7rNJkyZceumlTJs2jZUrVzJhwoQKt23evHmF61qtViIiIqoSotSi8PDwSl83j8fDnH+uoeuJZEWxCZpN6oy1RdwZ2xkeD/Pf+S8/z/3eVzbk2psYcPnVFT+52wWzH4VVb5aUdb4Ma/tREFpz99/+rcdY9OE2co+WzIEe3ziSkb/rQNPUBvx7w7/5z8//8R1rGdOSZ4c8S69Gvap97qpcM6l9um5nJ123s094eDjt4toRYgqhwFqynhAmK27jxAgL0HWtA6xWa22HICIiIiIi4kcJi1I8Hg+33HIL7733Htdddx3Tp0/HXInpcc4kMTERgMLCwoD0J+e2+f/7la6Z3lEDLgyOjGxGm1ZnTla4XS5m/+dVtixb5Csbfevd9Bx3UcVPbM+DL26FHXNLyoY+BCOfgAD9XSk3hAInaV/uYOtPJQvOmy0meo9vRZ/xrQgJ9U7fdm3Ha/l026fk2HO4odMN3N/7fiJC9HBMRKQmhJpDaRHbgpyikoSFYYrAdSJhYTVMeDyegP2cJSIiIiIiIvWDEhYnlE5WXHPNNbz//vuVXiD7TFauXAlASkpKwPqUc9PiL7fQaVueb393n0RGjj3zVGCu4mK+fe1Fdq7x3ocms5nx9/yBzkNHVvzExzPgo2vgyGbvvjkUJrwGvW6o9GeoCsMwSF99mGWfp2PLd/rKk9vGMfyGDthjc33JCoCE8ASeG/Ic4ZZw+jbpWyMxiohIidaxrdl3bJlv3xPZErfHOyWU2WTCYXcTEamEhYiIiIiIiJRQwoKSaaDee+89rrrqKj744IMzJiuysrLIysoiMTHRN3ICYO3atfTp0+eU+q+99hoLFy4kNTWVfv36BeUzyLlh1YLdtFp1FPCuNbGpbTTjrup8xjbFdhuz/vYMGRt/AcASEsLFD/yZdv3Oq/iJ962CT26AwiPe/fB4uPZDSBlShU9ReXlZNhZ/vI2MTcd8ZWHhFgZe0Y7o7k4eX/NHfj7yM99c/g2JESV/J4c0q5n4RETkVK3jWrPAsgBbSAERrmic7khcISUJZ7vNSURkaC1GKCIiIiIiInWNEhbA008/zf/+9z+io6Np3749zz777Cl1LrvsMnr27AnA66+/zlNPPcXkyZOZMmWKr87EiRMJDQ2lb9++NG/enMLCQlasWMH69euJj48vNxEiciab1h6kwZx9hJxMVjS2cv5tPc7YxlaQz1fPTyFzxzYAQq3hXPqnJ2jVrWfFT2wYMPuxkmRFQlu4/jNIbFeVj1EpHreHnxfsZ9U3u3AVe3zlbXol0W9iCz7KeI/p30zH6fE+AHtlzSv8dehfgx6XiIiUr3VcawAKrDnehEVxCO4wl++42+GurdBERERERESkjlLCAtizZw8ABQUFPPfcc2XWSUlJ8SUsTufuu+9m9uzZLFmyhOzsbMxmM61ateKBBx7goYceqtQC2iKl7U7Pxvh8BxEnkhVbYiyMvq/vGef+LjyewxfPPUlWxh4ArFFRXPHnp2javmPlTm4yweVvwBvDIbkHXPM+RCZU9aNU2NGMfBZ+sJWjGfm+sqh4K0OvSWV3wi9cv+ghMgtL1rFoHNmYkS0rMcWViIgElS9hEZZDUmELIAy3p2SERVyoXuIQERERERERf0pYANOnT2f69OkVrj9lyhS/kRUnPfLIIzzyyCOBC0wEcOcXU/j+FuJPJCt2hsOQP/QjJOT0yYq8o0f4/NnHOX7I+0A/Mi6eKx9/hqRWrSt2UlcxhISV7DdsC7d8D406gSW403c4HW5Wfbubn+fvw/AY3kITdBvWjORRofztl7+Q9kuar36IOYSbO9/Mnd3vJDI0MqixiYhIxZUeYQFgMll9i24DGE5Pme1ERERERETk3KWEhUgd5s51cHTar8QXex/c7w8x6PF//c445/exg/v5/NknKMjOAiAmMYmrnniWBsnNyj+hxwPLXoFNX8FtcyGsVAIguXu1PktFZGzKZtFH28jPtvvKEppGMfDaFL7M/5AP5nzgm/4JYGDyQB4d8KjvodjZyjAMcLkwhYb6lRk2W4Xam6xWTKWmmzNcLozi4gq1NUf6J3k8xcXgcp2mdikWC2ar1b+tzeadQqy8eEND/T+rx4Nht5+hRam24eGYSo0sMpxODKfztPU9djum0/xZeBwOcFdgSpqQEMxhYX5FnqKiisUbFoYppOSfWsPtxnA4KtY2IgKTyVRyzopeG7MZc3i4f7x18NqUNDRhjojwj9fh8F03j82G53Sx15FrYxQXY1T12tjt3u/e8s4ZEoKp1Geta98RJ/+uGaXOExMWQ1JEEvknEhaYwnAbJTErYSEiIiIiIiK/pYSFSB3lyrZx9O2NuI95Hxaa46ykTupEfIOI07bJ3LGNr158GlteLgANkptx5RPPEpuYVP4JC47Al3fCroXe/R/+BJf+q9qfoyKK8opJ+yKd7asO+8osIWb6XphCr7EtcVLM919970tWNI5szCP9H2FMyzF+Dw3rMsMwcGdnU7x3L8V7M078fy/FGXtx7s0g4eabSLr//pL6RUVs69O3Qn23+uhDInv39u3nz1/Agf/7v3LbmSIj6bhurV/Z4Wee5fjnn5fbNub882n+z3/4le286CJcBzNP06JEk6eeosE1V/v2i/fsYdeFF5XbDqDd/HmENitJvuV89BGHn3/hjG1SgeKkJLj4Yr/y/ffeR+HSpeWes8FNN9Lkscf8yrb16VuhBECLN98getgw337hihXsu+32ctsBdNy8yTsl2wlHp77KsXffLbdd1KCBtHznHb+yPVdfgyM9vdy2jf70Jxredqtv33U0ix3Dh1co3tazZhHeob1vP/frb8h8/PFy24UkJZG6dIlfWdZfJpM6Zw4AGU/+5bRt4y6/nKbP+69bkz58BJ78/NO0KNH05b8Td1HJfWffuJE911xbbjuA9qtWYomNLYn3rbfI+ufr5bYL796d1p996leWccut2NavL7dt4j131/nviFTAExZGYWgYERO8f9+u73Q97tAoXHvLGGFRrDUsRERERERExJ8SFiJ10I7NR7HO2IGp0PsWqyUhnKTbuxGSEF5mfcPjYfU3X5L26ft4TrwxnpTShisfe5rIuPjyT7h7Ccy4HQpOJgxMENvM+0A2iAkBwzDYuvwQaTPScRSWvLHbrH08I27oSHxj75u9FsK5t9e9PL38aW7qfNNZNf3T4RdepHDVSpx7M/AUFtZ2OCIiQWUuLub4m2+QeCJhcXu32zkUncuM2WvBZPVbw2Lrvlx6pjaorVBFRERERESkDlLCQqSO2bI+E+PTdMJPrFkR0iiSpNu7Yom1llk//1gWP/7rFTI2/uIra9axM5c9/BfCo6LPfDKPG5b8DRa/CMaJqTmiG8MVb0KbEYH4OKd1YHsOK2bu4tCuXF+ZNTKE5DFmPjGm0ifyr8RTkpSY0GYC5yWfR5OoJkGNqzoMl8tvihkAx+5dODZvOX0ji4XQZs0Ibdr0lPLIgedV6LzmaP/rHNIwoUJtzWGn3lNhbdpUqK21fftTyiJ79cbVKrvctiGNG/nHER5e4c9q+s00VCFNks/Y1uP2kH3sGK64uFOOhXfsiOEqf8qisJSUU8qiBp7nncqrHJb4eP/9uPgKf9ZT4mjVqmLXplOnU8oievbAktiw3LahTZP99k1hoRW/DyP9R3+FNEqqUNvf/hkBhLVrx9FduwBomJCA2VL2mj3Wdm1PKYvs1w+PrfxpoUIaJvrtm6OjK34fWvwXiw5r3rxi16Z1m1PKwrt2xRRe9vd7aaHNW/gX1LHvCI/bQ8GmTYQUFuJM30FxRgZhLVsCEHMi2f7bERb5BRWbgktERERERETOHUpYiNQhG5bvI2LWbqJOJCsyI8z0vqs7lqiy16xIX72cOf/9B/aCE9OfmEz0v/RKBl11A5aQcv565x30TgG1p9SUOG1GwBVvQXSj0zarrqMZ+ayYuZOMzcf8ypv0iGBhi0957eh8AP657p+8NPwl33GL2VInkxWGYWBbu5acTz7FvnULbb7+2m8e/7CWrSg0mwlt1oywVq1O/NeSsFatCG3ZkrBmzfzmpT/JHB5OqwpM/1OWyL59q9y24S2TaHjLpCq1bfby36vULrRp0yrHGztuLLHjxp72uM1m45cTUwv9VqOHHqzSOYFTplyqqIiuXar8WRtcew0Nrr2mSm2Tn3mmSu1CGjSocrzRQ4cSPXRoldrG33E7q1p5H3Z3GTuWiIjTT4X3Wy3+XbWp7Kxt21b5s8Zdeilxl15apbZNHn+s/EplqGvfETabjdWPP0HUls00u/wKzDExJeeLCcMcYsLttOL2lIymczs0JZSIiIiIiIj4U8JCpI5Ys3AP8bMzfCMrdlmhx//1LjNZ4XTYWfTeNH6Z96OvLDqhIRfe+xAtulRgcewNH8EPj4Ajz7tvMsPIx2DIQ2Au+03m6so5VMjKr3ezc90Rv/KYxmHs7bKaN2zvYmSXvLG+O283NpeNiJCKP6isSe7cXHJnzSLn088o3rnTV164fDnRgwf79pP+734a/+mPZSYlRETqk5xhQ8kZPozOY8cSUirJZHPbsMaaKcoO8UtYuJSwEBERERERkd9QwkKkDkj7fgfJSw4SdiJZsT3SxHkP9icy+tSH3Ef27OK7117i2MH9vrLUAYM4/877iIiOOaV+mRz5JcmKmKZw5dvQalC1P0dZ8o/ZWf3dbrYuP4ThKUlIRDYIJafbdqa7/4vdZveVN4lqwn297uOi1hdhMVvK6rL2GAbhGRkcffIvFM2di+Hwn87EEheHOyvLvyy6nGm5RETqizLWPDIMg1Gfj2KUaxLNTO1xlTrm0aLbIiIiIiIi8htKWIjUsuXf7qTN2mOEnEhWbI21MOTBfoSH+4+sMDwe1v3wNUs/mo7b5X3kE2K1MmrSXXQdeT6myiyO3e922DgDGraDsc9CZELAPs9Jtvxi1v6wl1+X7MfjKklUhMeEcqzzNqab38TutPnKY0JjuKP7HVzf6XqslvLnc69peZ99Tqu338Z65Ai/XTo7om8fGlxzDTFjx2K21r3YRURqi8lkolVsKwqsOQC4Sy39Yjg9tRSViIiIiIiI1FVKWIjUotztVvpk58CJZMWmhBBGPdCf0DD/kQWFx3P44V+vsPeX9b6yRq3bctH9fyKhafMzn+TgBtizDAbdW1JmtsBNX0NoeIA+SQmHzcWGeRn8PG8fzlLTfYRFhNBrbEu6jWzGNT++jD3Xm6ywWqxc0+Ea7uh2B/Hh8QGPJ1Cc6elYj5RMZ2WOjSXu0ktpcM3VWNu1q8XIRETqFsPjwfbzzzh27CR+4hW0jmvN4ZMJC0ol1zXCQkRERERERH5DCQuRWmLdFc6o7Ejf/qbGVsbc1xdLiP8aErvWrebH/7yKLS/XV9Z3whUMufZGLCFlL8YNQHERLHoelv8LDA807wstzys5HuBkReFxBz/P38fGpQdw2kseQllCTfQY1YJeY1sRfmI9jju638FTy5/i2g7XclOXm0iMSAxoLFVlGAa29evJnfU1jf7wAJb4eN+xqAkXk//FF9hSWtHilltpeMkEzJVYCFhE5FyRefMkijduxBQaSsy4cbSObc3OsDUAuI1S/8YVu07Tg4iIiIiIiJyrlLAQqWGGy0PhDxl0PVwqWdEygvN/3xtzqQWvncUOlnzwDhtmf+cri2qQwAX3PEir7j3PfJJdi+Gb/4Oc3SVlK/7tn7AIkJxDhayfm8G2lYf8pn4ymeF4mz18HfcO7wx705esABiXMo7BTQfXmREVzgMHOD5rFrmzZuHcmwGAtUN7Eq6/3lfH2q0bux/+E86GDek0dqySFSIip2Ht0pnijRsxnE4Kly2ldcfWFFjnAuCm5N85kxIWIiIiIiIi8htKWIjUIFeug2MfbqE4I99XdqRnAuOu7eJX72jGHr577SWy92f4ytr2HcDYu+4nMjbu9CcoOgZz/wLr3y8ps4TB8Idh0P8F7HMAHNqVy/o5Gez6+SiUmpPcZIFjrXbzfdz75IdnA/DWL28xdeRUX50Qc0itJyucR46QP2cueT/+gG3N2lOO5//wo1/CwmQy4WzYsCZDFBE5K0WOGEn+p58BkD93Hq0H3EW+b0qokoSF2aWEhYiIiIiIiPhTwkKkhqxdspeE+fsJdXgXGfWYDDJaF9Hn0r6+OoZhsP7Hb1ny4Tu4nU4AQkLDGHHz7XQfc8HpF9Z2OWDVW7DkJbCXTB1Fy4Ew4R+Q1D4gn8EwDPZuzGb9nAwOph/3O2ayetjdfB2L42diCytJyCRGJNK7cW8Mw6jcwuBBkr9gAcfenU7RmjVgGP4HTSYiBwwg/vLLiDn//NoJUETkLBfepzfm2Fg8eXkULF5MyrNPUWT1/tvkpmSNpkZW/RgqIiIiIiIi/vSbokiQuV0e5v/vFzqk52E5sdioOS6MLS2PUhRdstZDUe5xfvzPq+xev8ZXltQyhYv+72EaNm95+hPkH4Z3xkLOnpKysBg4fwr0uRXM5tO1rNRn2LH2COvn7CX7QKHfMSOymPVN5rO+4UKcIQ5feXJUMrd2vZXLUy/HarFWO4ZAcWZmUrR6tV9ZWOvWxF0ygbhLLiG0WbNaikxEpH4whYYSPWI4eV9/g6egAOea9STHNcYWUoC11I+e8aHV//dJRERERERE6hclLESC6HiOjTX/WkfnAg+cSFbsibXQ687OFC1b4Ku3e8Nafvz3VIpyj/vKel94KUOvu5mQsLAznyS6EcQ2P5GwMEGP62D0kxDbtNrxZx8oYEtaJttWHcJe4PQ7Ft84kgYDPDx6+EE85pLES4+kHlzf8XrOb3U+oZYzLAoeRK6sLPLnLyDvxx9Iuu9+Inv38h2LHTuWw8/9lbCWLYm5YDyx4y/A2j61Toz+EBGpL2LGjCHv628AyJ8/j9ZDW5NvPUZoQcm/C0axp7bCExERERERkTpKCQuRINny8yEKP91OR4/3QbgHgy1tYhhzaw+Knd6RCIbbzbKPpvPLnJKFtSPj4hl/zx9o3bNP2R3nZUJscsm+yQRjn4F5U7z/T+5RrbjthU7SVx9m6/JMjuzNP+V449ax9B7XitbdE8EEb3/Tlj25e7ig9QVc1+k6ujTsUkavwWUYBo5t2yhYuJD8hYuw//KL71heu1S/hEVIUhJtf/ie0JYtlaQQEQmS6CFDMFmtGA4HBfMX0PrCSzhozSHBFIbL4yTEHIrhdJffkYiIiIiIiJxTlLAQCYJFX2ymxZosYk6MqsjDoGBsC8aNau2t4ITi3BwOpS2g+PgxX7vWPfsw7u4HiIpvcGqnthxY8ndY+QZc/wm0G1NyrFlvuPnrKsdreAz2b81hy08H2bUhC7fL/61Xw+xhT8NfKWi/j3t+97Lfg/7nhjxHo8hGJIQnVPn8VeFxOChauZL8hQspWLQYV2ZmmfXsWzafUhbWqlWwwxMROaeZIyOJGjyYggULcB09yu8YwKZuCWw8tAS34SKEUAynRliIiIiIiIiIPyUsRALIVuRkyX/W0uWok5NTQO0NhVa3daNzijcJYS8oYNWsz9n340wMt/ftUktoKMNuuJVe4y8+9a1/lwNWvw2LXwT7cW/ZnCehzUgwW6iO3KM2ti7PZOuKTAqOOU49HnuIXxouJT1xLcUhNvDA5uzNdEksGUXRMaFjtWKoqqOvvMKx/71X5jFr+/ZEjxxJzNjzCe/cuYYjExERgJjRoylY4J3+0LRkJQk9rwaTFbfhBCKw2zTCQkRERERERPwpYSESIM4sGxv/tY4utpI3Rjc1CmP4Pb0JDw/FXljAuu9nse77r3EUlSxc3aBpcyY88AhJrVr7d+jIhzXvwvJ/QcGhkvKQcOhwIbidVUpYOIvd7Fp3hC3LMzmw7fgpx11hdjY3XMHWpJUcizroK48IieDC1hcSa42t9DmrylNcjG3degrT0mhw3bWENi1ZlyNq2DBfwsIUGkrkgAFEjxxBzIgRWjhbRKQOiB41EktiItHDhhE1ZCjRoeGYTkwJBRCKFt0WERERERERf0pYiFST4fKQv2Q/eQsySHYZADgw2N8viXETO+EoKmL5jC9Y+91MHIUliQpMJuLad+Gqh/5MTFx8SXlhNqz8L6x6s2REhbcB9LgWRj0Bcc0rF6NhcHh3Hlt+yiR9zWGcdv+3Wk0m2N9gGxsTl7G3wSbfItomTPRv0p9L213K6JajiQyNrNR5K8swDIp37qQwLY2CtDSKVq/BsNkACG3enAbXXO2rG9WvH/FXXUXU0CFEDRqMJToqqLGJiEjlhDRoQOqSxZjM3sREzO68EyMsXACEmqo3SlBERERERETqHyUsRKohf+dxCr/eietwka/MER2K65LWDEyNYeVXn7Hm26+wF5QsXm0ym+k4ZCRF8UmERscQEmYt6bDoGLzWHYoLSp3FBJ0uhmF/qvSC2oW5DratPMTWnzLJOVR0yvH4xpF0Vjn9gwABAABJREFUHNiEjucl8/j6r9md4V2sumVMSy5pewkT2k6gaXTTU9oFkuvYMQqXL6cw7ScK09JwHT5c9mdZtswvYWEKCyP5maeDGpuIiFTPyWQFwJqi5ZhMVlyGN3lvMVlwFrsJDVPiQkRERERERLyUsBCpgtzjNla8+yudDtsxn1irAjNED2lO0pAkNiz4gbf+8RX2/DxfG5PZTOdhozjvimuxxsYxZ86cUzuOTIA2I2Drt2AOge7XwOAHIKl9hWNzuz3s/TWbLT9lsndjNobH8DvutDjYnfgLD95wCy1Tk3xrZlzV/irirfFc1u4yeiT1OHUtjSA5+Oc/U7hkaZnHQpKSiBo82PvfoIE1Eo+IiATHmtwVxJn7nFjDwstudylhISIiIiIiIj5KWIhUUtr3O4heepAuhomTC2uHNosm5uKWbNq4mNUPfoGtdKLCZKbzsJEMuOIaGjTxjlaw2WzEFe2mVfYS8IzyP8HQB71TPg28F+JbVCgme6GTfVuOkbH5GHt/zcKW7zylzsGYHWxttIJdDX/GZSnmsvD+tDKN9B0f3Gwwg5sNruSfRvmcBw5QtGYNRWvWYPvlV1I+/wxzWJjvePTgwb6EhSk8nMh+/YgaPIioQYOwpqbWWOJERESCx52XR5+fC9kYmo/L4/KV2wqdxMRaz9BSREREREREziVKWIhUUOb+PDb971c65ns4maiwYZDRMYa4hntY/fzLFOUe99U3mcx0HDKc8664loSmJxaBtufBxhlY1/6PEZnrASje+g30ub7kRM36eP87A8NjcHRfPhmbstm78RiHd+diGKfWKwg7zraklWxLWkVeRBYAoeZQhjUdRkxYTJX/LE4bl9uNY8dObBs2ULTWm6RwHcz0q2PfuJHI3r19+9HDh+M6epSowYOJ6N0bs1UPrkRE6pPcWbM4+PgTtHW52DqyNW5LqO+Yw3Zqgl1ERERERETOXUpYiJTD5fKw+NNNNP81h46UvO2/PRJC2maRvuQtCo/nlDQwmeg4aBjnTbyWhs1agGHA3uWw/n3Y9BU4izCX6t/y6yf+CYvTsOUXk7H5GBmbs9m3+ViZoygA3GYnexpsZGvSCvbHb8MwGUSERDC22VjGtBrD0GZDiQ6LruofR5mM4mIybr8D28aNGEWnrpXhExpK8d4Mv4RFWEoKjf74x4DGIyIidYe1Y0dweUdVxOfl4I5P9B2zKWEhIiIiIiIipShhIXIGv6zcT+53u+lQDCdHVeTg4UCTbPZsnUnhpmN+9dsPHMrAideS2KIV5B+GZa/C+g8gO/2UvnMjWrI7cRQdJk4hooxzezwGR/bksXdTNhkbszmSkQ9ljKIAaNAkkpZdGtKqS0M+y5vO3G3TiQmLYUKLCYxuOZpBTQcRHhJerT8Ld34+9o0bsf38C+bYGBKuL0mymMLCcB4+dEqywhQeTkTPnkT27Utk375E9OiOOaKsTysiIvWVtX17Qlu0wLlvH02yj+GOb+g75ihSwkJERERERERKKGEhUgbH3jxy5uwhYWcuCaXKt1pz2HvkG47v9p/mKHXAIAZeeT1JLVNKCle/BUv+5t+xNQ66XYm9y9Us+vkQmEx0KJVIKMx1sG/zMfZu8o6icBS5KEux2c6BuO1kNNjCs9c+SvtS5738+GWc12IA/Zv0J7TUtBsVZRgGrsxM7Fu3Yd+6BcfWbdi3bsWZkVHyMTp08EtYAER074HhdBLRvQcR3boS0bs3EV26YCq1XoWIiJx7TCYTMaNHc2z6dCLsx3CXmsPQUWCvxchERERERESkrlHCQqQUR0YeefMycGzP8Ss/atjZWjCPg7s3+ZW36zeQgVdcRSMOQrTHv7OeN5QkLFKGQq8bodMECIvEsNngl8MYHji0M49DOw6SsSmbrH0Fp40tO+Ig+xpsISN+M4diduMxu4kKjeKIZT/tSfHVaxPfhjbxbar0+fO+/57Mp57Gk5t7xnqO9HQ8RUWYIyN9ZU2fe1bJCRERKVPMGG/CItxxjPxSowWbVW/wn4iIiIiIiNQzSliIABvXHCTrx920K/BPOhSHOvk55yd2H12FQcmxtr37MrBfCo1zV8Bn54P9OAz5A4yZUtI4oTVMeM2brGjYFoCivGKy0rM5uCuHrHXhOLJDODDbPwniO7fFxr64reyL38q++C0UWr1JhM4NO3NR01sZ1HQQPRr1INRc/igKj81G8e7dOHbuwrFrJ8Un/p/89NN+60lY4uPLTFaYwsOxtm9PRNcuhHfvTkT37pjC/Z8yKVkhIiKnE9GrF5aEBMJtORwvVW5xFNdWSCIiIiIiIlIHKWEh57SNaw5y+IfddCj0EF+qvMiTz8bsZewp2OiXqGjTrhkDmx+nSfZ/YYnNv7Mt3/oSFoZhkJ9t56j5QrLSCji672eyMvIpzC39YObURENSyxhadkmgZZeGTN7xMCsOLyclNoVxjUfTr0k/BiYPpGFEw1Pa/dbxL7/CsX27LznhPHjQu/j3bzi2p/slLKydOmFJSiS8YyfCO3bE2rED4Z06EdaqFSaLpdzzioiIlMVksRA9aiTFX36N2zD5yp15Zx7RJyIiIiIiIucWJSzknLR5XSaZ3+06JVFR6Mxl8/Gf2FOwEc+JRIXJZCIl0WBg9K8khy6Fw/59eULjyGl6BVmxozn6+Xay9heQta/gtOtPlGYPKWRf3P9n767josreP4B/zsyQ0oogBooB6NrKuhbYrq6ta4PYit2N3a7d2IEiurbLIhJ259cCE0VQVESRmpnn9we/uTICKq4S+rxfL1/Cvefeey7nxsx5TtzGi3wPsLr7XzAy/dBrYazlGJjqmmoFKEitRvKzZ0h6HI6kx4+Q/Pgx5GbmyNuju9Z+X65ejaRHjz55bKGjA9VHvSkU5uYodfz4Z/PNGGOMZZZx/fp447sbpP7QEEAZG5uNOWKMMcYYY4wxltNwwCKV8+fPw9PTE6dOnUJycjLKli2LYcOG4c8///zifSQmJmLOnDnYsmULwsPDYWFhgT/++APTp09H/vz5v2Pu2efExsTjot996Nx4iaLJAiap1sUp3+BmzGk8fHsdaqghkytQtGxFlHSqjhKmsTA82BMAoCQdvFTaIlqUxQvDmniRVAwvI2VQhWt6LzzJ8PiJ8veIzvME0Xme/v//TxBn8ArlrMqheoEqkOfR7gFhE5mMuBN7ERnxDMkREUgKf4zkx+GgJO3hM/Ts7dMELHSLF5cCFjJDQ+gWLw694sWhW9wOesWLQ8/ODjqFCkEo+BHAGGMsa+T57beUuY9UH95jb15yDwvGMvItvpswxhhjjDGW23Bt5f8LDAxEo0aNoK+vjw4dOsDY2Bi7d+9G+/btER4ejuHDh392H2q1Gi1atICfnx+qVauGNm3aIDQ0FF5eXggICMCZM2dgaWmZBWfDNIgISQ9j8fjYA8juxqCkkAP4MBTFe2UsbsacxoO31yGTJcPO+BVK1m4C6wYDkJygwNtXCbjz4i2iY4chSlUcb5KsAZJ9fJQ0x81jqot8RYyhsFRixZO/EJ3nCUj/PSro2KG8KIhiicWQdMsQed+qYWtoBHp+Dop5bQErA2kf8Zcv4/m8+Z89x6TwcBARhPhwXnl79oR5507QK14cCisrrXWMMcZYdpDp6SFP7doQscnSstfRcdmYI8Zyrm/x3YQxxhhjjLHciAMWAJRKJXr16gWZTIaQkBBUqFABADBp0iQ4OTlh3LhxaNu2LWxtbT+5n02bNsHPzw8dO3bEtm3bpEriVatWoV+/fpgwYQJWr179vU+HAUiOSUTs2cd4dzYC8vcyGACA+DAHw+vEKNx7ewXh767D1EAPhc2KALrF8EptjaDTlqBTVz7aY60Mj/VW9zne6j5FogiHY5mS6Ni6FwxNUiagTop5DeuOz6AXkwjExAF0DcA1re01VTXJT55Ax8pKWq5ToIBWOqGrC53ChaFbpAh0ixSGTpEi0C1iC90ihdPkybBSxc/8hRhjjLGsV3DeXFybuE76XZasysbcMJYzfavvJowxxhhjjOVGHLAAcOzYMdy7dw/u7u7SFwIAMDU1xbhx49CtWzds2rQJkyZN+uR+1q5dCwCYNWuWVov2Pn36YN68edi2bRsWLVoEAwODjHbB/oOkJCXOHLgOceEpbNXGkAkZ5PjQGyJJlYBHcTfx4N0dxJIJZLolIDOtjbdCgbcAkJzhrlOQCrLkZ9CPD4fx2yewiAmH5eunUKgSPiTJoysFKwBAx9gEeo+igFTjdWckOTJS63f9X35Bwb8WQFGgAHQKFIAif34I2ce9OxhjjLHcQ+joQGGoC7xP+Z2S0/ZSZOxn962+mzDGGGOMMZYbccACQFBQEACgYcOGadY1atQIABAcHPzJfSQkJODs2bOwt7dP09pJCIEGDRpg9erVuHDhAmrVyri1/seePMl4TgQACA8Pl34+vGIt8pmZfzK9qVVhGJt8GJYqPu4NXkbc+6K8WNv9AoX8Q2X86xfhiIt58dntdPQMYVXEQWtZ1OPbSE58/9lt85jlg5GhFZJjE6CMS0RybAISXr+CDimgAx3oCAV0ZTrQkelCV6YHA6GTsn8kSvt4kfAU4e/vIyoZgI4thLwWhJABiQASX2sdT6GMh1z5BnnL2cPQVAeGJrowNNVFxNZ5KHjtBmSkPZF29Ef5NYx4g9DQUO00ZmYgUkNmbgG5hQUUFhYgExM8inmNZBMTlK5ZE4YFC+K5oSGef7QtSpZM+f/t25R/LNskJiYiOjqlxO/duwc9Pb1szhH7ElxuuROXW+6TmTK7nfAY5rGmAIBXiW+xZcZiqRekkYECQqUEkt8jj9wAKrVAkp4+hEKBJEpGvCoeSFZBxKc0FlDrGAMAZHKBPLoKIDkBUCXCVGGEd8kqwDhl/XtVPJIpGYhPhEhWgoQcpDAEAOgpZNDVkQNJ76CAgL5MD+/VgDDMAwB4o3wHQA3xNh4gNUimB/r/z0OGunLIBQFJ76Av14OAHIkyPQg9HahIjXeqd4CKIOLe/39+8wCQQcgEjPQUgDIRUCbASGGIJCVBaZgHQiZDgjoZiep4IEkJkZAIQECtYwQA0FEI6OsogOT3kKtVMJIb4p1SDRilrI9TxkEJFfA+AUKpAsl0QHJ9AIC+jhw6ChmQGAtdmQ5evvow6blSqf0Zh2Wfb/HdJLXMfJ948OAB4uPjv3jfytiPPw2znOjj7yffC18POR9fCyw1vh6YRlZdCwBfD7lBZq6HyFSNr7/l9wkOWOBDQZTUVA6nYm1tDSMjo88W1r1796BWq9PdR+p9h4aGZipgUbhw2uF+MjJk0bwvTss+Y/dXbnf/HrB2zTfNCmOMMcbY9/bixQsULVo0u7PB8G2+m6SWme8TtWvX/uK0LPcotTK7c8ByCr4WWGp8PTANvhZYal97PXzL7xM8vgyAN2/eAEjpZp0eExMTKc1/2UfqdIwxxhhjjOUUUVFR2Z0F9v++xXcTxhhjjDHGcivuYZHDpe6inZ4HDx5ILaFOnTqVqRZULPs8e/YMTk5OAIBz586hwEcTbLOch8ssd+Jyy5243HIfLrPcKTw8HNWrVwcAODg4fCY1y60+930iISEBt2/fhpWVFSwtLaFQ/JxfEfk5xjT4WmCp8fXAUuPrgWnwtZBCqVTixYuU6QLKli37zfb7c34a/Yim9VJGLZViY2Nhbv6ZuSG+YB+p032pQoUKfXHawoULZyo9yxkKFCjA5ZbLcJnlTlxuuROXW+7DZZY76evrZ3cW2P/7Ft9NUvuS+7FEiRJfvL+fAT/HmAZfCyw1vh5Yanw9MI2f/Vr4HsPK8pBQ0J5f4mORkZF49+5dhnNTaNjZ2UEmk2U4nuynxqJljDHGGGOMMeDbfDdhjDHGGGMst+KABQBnZ2cAwL///ptmnZ+fn1aajBgYGMDJyQl37tzBo0ePtNYREfz9/ZEnTx5UqVLlG+WaMcYYY4wx9qP5Ft9NGGOMMcYYy604YAGgXr16sLOzw/bt23HlyhVp+Zs3bzBz5kzo6urC1dVVWv7s2TPcvn07TTft3r17AwDGjh0LIpKWr169Gvfv30fnzp1hYGDwfU+GMcYYY4wxlmtl9rsJY4wxxhhjPxKewwKAQqGAl5cXGjVqhNq1a6NDhw4wNjbG7t278ejRI8yfP19rPK6xY8di06ZN2LBhA7p16yYtd3Nzw86dO+Ht7Y0HDx7A2dkZYWFh2LNnD4oVK4bp06dn/ckxxhhjjDHGco3MfjdhjDHGGGPsR8I9LP5fnTp1cOLECdSoUQM7d+7EypUrYWVlhR07dmD48OFftA+ZTIZ9+/Zh8uTJePHiBRYuXIiTJ0+iR48eOH36NCwtLb/zWTDGGGOMMcZyu2/x3YQxxhhjjLHciHtYpOLk5IQjR458Nt3GjRuxcePGdNfp6enB09MTnp6e3zh3jDHGGGOMsZ/Fl343YYwxxhhj7EfCPSwYY4wxxhhjjDHGGGOMMZbtBKWeHZoxxhhjjDHGGGOMMcYYYywbcA8LxhhjjDHGGGOMMcYYY4xlOw5YMMYYY4wxxhhjjDHGGGMs23HAgjHGGGOMMcYYY4wxxhhj2Y4DFowxxhhjjDHGGGOMMcYYy3YcsGCMMcYYY4wxxhhjjDHGWLbjgAVjjDHGGGOMMcYYY4wxxrIdBywYY4wxxhhjjDHGGGOMMZbtOGDBGGOMMcYYY4wxxhhjjLFsxwELxhhjjDHGGGOMMcYYY4xlOw5YMMYYY4wxxhj7IRFRdmeB5RB8LTDGGPsUfk/kHBywyMXOnz+PJk2awMzMDHny5EG1atXg4+OT3dlin1C0aFEIIdL95+Likt3Z+6lt3boVffr0QZUqVaCnpwchBDZu3Jhh+tjYWAwbNgy2trbQ09ND0aJFMXLkSLx79y7rMs0yVW6TJ0/O8P4TQuDhw4dZmvef1dOnT7Fo0SI0bNgQRYoUga6uLqytrdGmTRucPXs23W34fstemS0zvtdyhoSEBAwbNgy1a9eGjY0N9PX1YW1tjRo1amDDhg1ITk5Osw3fa+xHQ0QQQmR3NlgOwNcCY4yxz9G8JxISErI5J0yR3RlgXycwMBCNGjWCvr4+OnToAGNjY+zevRvt27dHeHg4hg8fnt1ZZBkwNTXFkCFD0iwvWrRolueFfTBhwgQ8evQI+fLlQ4ECBfDo0aMM08bFxcHZ2RlXrlxBw4YN0bFjR1y+fBnz589HcHAwQkJCoK+vn4W5/3llptw03Nzc0r3fzMzMvn0GWRpLly7FnDlzULx4cTRs2BCWlpYIDQ3F3r17sXfvXmzfvh3t27eX0vP9lv0yW2YafK9lr3fv3mHlypVwcnJC06ZNYWlpidevX+PIkSPo3r07duzYgSNHjkAmS2m/xPca+xEJIXDy5EmsW7cOq1evho6OTnZniWUTIQTUajVGjhyJWrVqoWXLllCr1dIzkDH2c9G0pOdAJkuNiDB+/HgkJCRg1qxZ0NPTy+4s/byI5TrJyclUvHhx0tPTo8uXL0vLY2JiqFSpUqSrq0sPHz7MvgyyDNna2pKtrW12Z4Olw9/fX7pvZs2aRQBow4YN6aadNGkSAaDRo0drLR89ejQBoJkzZ37v7LL/l5ly8/T0JAAUGBiYdRlkaezevZuCgoLSLA8JCSEdHR0yNzenhIQEaTnfb9kvs2XG91rOoFKpKDExMc3y5ORkcnFxIQB08OBBaTnfa+xHlJycTGXKlCEhBJ09e5aIiNRqdTbnimWXzZs3kxCC2rRpk91ZYTmASqXK7iywHCA+Pl76OSkpKRtzwnKC06dPk0wmo19++SW7s/LT4+YEudCxY8dw7949dOrUCRUqVJCWm5qaYty4cUhKSsKmTZuyL4OM5UL169eHra3tZ9MREby8vGBkZISJEydqrZs4cSKMjIzg5eX1vbLJPvKl5cZyjtatW8PZ2TnN8lq1aqFOnTp4/fo1rl+/DoDvt5wiM2XGcg6ZTAZdXd00yxUKBVq1agUACAsLA8D3Gsv9KJ0xp1UqFRQKBVxdXQEA//zzDwBuTfsz+Ph60PzevHlzmJqa4tatW9Lzj/28uHcNmzp1Ktq3b4/bt28DAHR0dEBEeP/+fTbnjH1varU63eVVq1ZFpUqV8L///Q8nTpwAwPNaZBd+QudCQUFBAICGDRumWdeoUSMAQHBwcFZmiWVCYmIiNm7ciJkzZ2LZsmUZjtnOcqbQ0FBERESgRo0ayJMnj9a6PHnyoEaNGrh//z7Cw8OzKYfsc0JCQjBnzhzMmzcPe/fu5bHZcxDNUB0KRcqIlXy/5Xwfl1lqfK/lTGq1Wqq4/eWXXwDwvcZyN7VanWbMabVaDblcDgCoXr06TExMcPfuXcTFxWVbPtn3R6mGeElKSpKWCyFARNDX10ejRo0QGRmJiIiI7MomyyZEpFVJee3aNfTo0QNXr17Nxlyx7BIfH4+7d+/iwIEDuHTpEgBg48aNkMvlWLJkSTbnjn0vmveETCZL85lApVJBLpejQ4cOAD7Uq3JDh+zBc1jkQqGhoQCAkiVLpllnbW0NIyMjKQ3LeSIjI+Hu7q61rGrVqvD29kbx4sWzKVfsS33q/tMs9/PzQ2hoKAoXLpyVWWNfyNPTU+t3MzMzLF68WGqBybLH48ePcfToURQoUABly5YFwPdbTpdemaXG91rOkJSUhJkzZ4KI8PLlSwQEBOD27dtwd3dHvXr1APC9xnI3mUyGixcvYs6cOahcuTJGjRoFmUwmVTzky5cPBQsWRGBgoFRRQTwB8w9JU6aenp548OABBg0ahCpVqkCpVEKhUEBXVxeOjo7w8fHBtWvXULt2bek6YT82TTkLIfD+/XskJCRg79692LBhA0qVKoXixYvDyMgou7PJspC+vj6mT5+Os2fPYsaMGZg6dSru3r2LunXrwtHRkee4+UFp3hOzZs2Cl5cXZs+ejXbt2oGIpHdB5cqVYWJigtu3byMxMZHnscgmfPflQm/evAGQMgRUekxMTKQ0LGdxd3dHQEAAoqKiEBcXh8uXL6Nr1644f/486tWrh7dv32Z3FtlnfMn9lzodyznKly+P9evX4/79+4iPj8eDBw+wdOlSCCHQrVs37N+/P7uz+NNKTk5G165dkZiYiDlz5kgfFvl+y7kyKjOA77WcJikpCVOmTMHUqVOxfPly3LlzByNGjMCaNWukNHyvsdyuTZs28PX1xfLly7FgwQIAH4Z7cXBwgIODA549e4ZDhw5lZzZZFti8eTOmTZuGbdu2YdiwYYiLi4NCoZCCVDVq1AAAbN++HQA4WPGT0JTztGnTUK1aNTRt2hT+/v6QyWTw9fWVWtizH1/qnlh58uSBQqHAnTt38ObNGyxcuBBbtmxBixYtOFjxAwsODsb48ePx4MED9OvXD6dPn9bqfWVtbQ1ra2v4+fkhOTkZAA8LlR34DmQsC3l6eqJu3brInz8/DA0NUaFCBWzevBldu3bFo0ePsHbt2uzOImM/rFatWsHd3R3FihWDvr4+ihYtigEDBmDXrl0AgAkTJmRzDn9OarUa3bp1Q0hICHr16oWuXbtmd5bYZ3yuzPhey1mMjIxARFCpVAgPD8fy5cvh5eUFFxcXxMbGZnf2GPtiGc1TAQA9e/YEAJQrVw5jxoyBt7c3EhMTpXSdO3cGkFJJkZyczL0rfgAZVR7VrVsXVlZWcHR0xJMnT9C2bVs8efJEKvP69evDwcEBYWFhPDTvT+TJkydo0KABPD09UblyZTRq1AgtW7aEkZERLl68CF9fX7x48SK7s8m+I837IvXz39fXF2q1Gvny5YNMJkPp0qVRoEABAFxB/SPIaJ4KZ2dnODg4oFSpUrCyskKXLl20GlQ5ODjgl19+QXR0NPbt25dV2WUf4YBFLqRp/ZZRK7fY2NgMW8ixnKlPnz4AgJMnT2ZzTtjnfMn9lzody/nq1auH4sWL4/r161x5l8XUajW6d++O7du3o0uXLli1apXWer7fcp7Pldmn8L2WvWQyGQoVKoR+/fphzZo1OHnyJGbMmAGA7zWW86UewklT6ZR6+IYyZcrAyMgI1apVQ58+fdCrVy9s3LhR2t7BwQGFCxfGnTt3uEfzD0IIkW5llI6ODipVqgS1Wo3FixcjICAAI0aMwJ07dwCk9Dpr0qQJYmNj8fTp06zONssmwcHBCA4ORr9+/TBnzhxMnjwZw4cPx+7du1GlShVs3boVp06dyu5ssu9AM3eJ5n0REhKCpUuX4syZM+jXrx927tyJ+fPnIyoqCj4+PoiKisrmHLNvRSaTac1npGnAAwCtW7dGTEwMdu/eDZlMhlGjRuHYsWNSWk1DhzNnziApKYkbOmQDDljkQprxhdObpyIyMhLv3r3LcAxiljPly5cPAHgiwFzgU/df6uV8D+Yumnvw/fv32ZyTn4darYa7uzs2bdqEjh07YuPGjWm6XvP9lrN8SZl9Dt9rOUPDhg0BAEFBQQD4XmM5nxACDx48wJ9//glvb28olUoIIaBUKgEAxYoVQ758+fD48WMsWLAA5cuXx+TJk7FhwwYAgIWFBezs7BASEiIF4DJqeclyhwULFmDAgAFSIEJTCWVlZYXixYvjzZs3cHBwwIoVK+Dn54eBAwcCAHR1deHg4ICkpCScOHFCa1uWu32qRfzmzZsBAH379kX+/Pml+79evXoYM2YMhBBYv349Hj58mBVZZVlICAGZTIYbN26gbt26aNasGaZNm4Zp06YhMTERFSpUQKtWrdCyZUv4+PhIldZcQZ37fPwMWLlyJapXry71nkjd0KFixYp48eIFwsPDsWvXLhgZGaFLly64fPkyiAiOjo4oVKgQbt26pdVjk2UdDljkQs7OzgCAf//9N806Pz8/rTQsd9B0Ry5atGj2ZoR9VsmSJWFjY4OTJ0+mCTDFxcXh5MmTKFasGE9KmovExcXhf//7H/LkySNVprLvS1PxvXnzZrRv3x5btmxJdwxpvt9yji8ts0/hey3niIiIAJDSEhnge43lPOkFE3bu3AlfX1+MGTNG6j2hCZpWqFABhQoVwqVLlyCXy7Fq1SpUrFgRHh4eOHDgAKytrVG9enWoVCrs3LlTa1uWs6VuEatx7do1bN26FatWrcKkSZMQGxsLuVwuBbAaN26MZ8+e4dKlS+jZsydGjRqFEydOwNXVFbGxsahfvz6EEPj777+lbXn4l9wrvaF+Uq9LTk5Gnjx5YGRkBGtraymtpsxr1qyJxo0bw8/PD//++69Wi2yWu2nK2NvbG/Xq1cPTp08xdOhQ+Pj4YO/evdJkynny5MHQoUMhhMCWLVsQFhYGANIzheVsml40qZ8Bz58/R1hYGC5dugQPDw/cvXtX671vb28Pa2tr7N69GxUqVMDy5cthZGQEV1dXHDt2DHZ2dihSpAiOHTsmDRfHDR2yFn9Ky4Xq1asHOzs7bN++HVeuXJGWv3nzBjNnzoSuri5cXV2zL4MsXbdv3063Rent27cxevRoAECnTp2yOlssk4QQ6NmzJ969e4dp06ZprZs2bRrevXuHXr16ZVPuWEbevn2Lu3fvplkeHx+PXr164e3bt/jzzz+hUCiyIXc/F82QQps3b0a7du2wdevWDCu++X7LGTJTZnyv5Rw3b95M93PH+/fvMWzYMABAkyZNAPC9xnIeTaXC9u3b4e/vDwDo3bs3vL29ERERgX79+iE4OFir8sHV1RVXr17Fw4cPUbZsWcyZMwdVq1ZFjx49sGfPHnTv3h0AcP78eZ5APhcRQkAulyM0NBQLFy4EkDJXiaYCcteuXRg8eDCUSqX0bqlTpw4KFy4stZTu3bs35s+fj61bt2Lw4MHImzcv2rdvj/DwcKmXBbemzp1St5gODAzErFmzsHPnTqnCWS6XQ0dHB3p6eoiJicE///wjbacp8/z586Ny5cpISkrCrl27cOPGjew5GfbNCSHw9u1b/PXXXzA0NMTSpUsxYcIEuLi4SI02NCpXrozevXvj33//xYEDB6BSqaRnyqtXr7Ij++wLaXrR3L59W/q8mj9/fixYsAADBw7E06dPpfn3NH755ReUKlUKly5dwsuXL1G9enXs3LkTz58/R//+/REVFYXGjRsDAHbs2AGAGzpkOWK50rFjx0hHR4eMjY2pV69eNGzYMLK1tSUANH/+/OzOHkuHp6cnGRsbU9OmTal///40cuRIatGiBeno6BAAGjt2bHZn8ae2du1acnNzIzc3N6pUqRIBoBo1akjL1q5dK6V99+4dlS9fngBQw4YNacyYMdSwYUMCQFWrVqX3799n45n8XL603B48eEBCCHJyciI3NzcaPXo0devWjQoVKkQAqGzZshQdHZ3NZ/Nz8PT0JABkZGRE48ePJ09PzzT/Ll++LKXn+y37ZabM+F7LOTSfO37//Xfq168fjR49mrp06UJ58+YlAFSrVi2t+4fvNZaT3Llzh4oUKUJCCGrcuDElJydL6+bMmUNCCCpRogT5+vpKy0NCQsjExIQmT54sLXv27Bk5OjpS/vz5ae3atVSnTh0qV64cPX78OEvPh309tVpNI0eOJCEE6evr0759+6R1jx49ol9++YWEEDRs2DC6f/8+ERHFxMRQ165dqUCBApSQkCClHzt2LBkZGVGbNm1o1apVJJfLaeXKldJxWM6UmJhIREQqlUpalvqZEBERQc2aNSMhhPTPwcGBTp48KaX5559/SAhBDRo0oLdv3xIRkVKppKSkJCIiCggIkLadMmUKxcXFZcWpsSzg4+NDQgit7/MZ3e+3b9+mkiVLUpkyZSgkJITevHlDW7dupUaNGml9P2E5z/jx46V7eNGiRdLymJgYGjhwIOnp6ZGTkxOdOHFCWrdmzRqSy+V09+5daZmPjw8VLVqUqlatSps2bSIhBHXs2JFevnyZpefDiDhgkYudPXuWGjduTCYmJmRgYEBOTk60Y8eO7M4Wy0BQUBD9+eefVLJkSTIxMSGFQkHW1tbUokUL8vPzy+7s/fTc3NwIQIb/3NzctNLHxMTQkCFDqHDhwqSjo0NFihSh4cOHU2xsbPacwE/qS8vtzZs35OHhQVWrViVLS0tSKBRkbGxMTk5ONHfuXK6Iy0KfKzMAtGHDBq1t+H7LXpkpM77Xco7z589Tr169qEyZMmRmZkYKhYLy5s1LderUodWrV2tV9mjwvcZyil27dpEQghQKBVlYWND69euldUqlkmbMmEHm5uZUtGhR8vHxISKix48fU/ny5alRo0Za12xQUBDVrFmT9PT0yM7OjoQQFBISQkTaFaAsZ3rx4gVVq1aNhBCkp6dHTZo00XqXBAYGUt26dUkul1O3bt2kisiZM2eSiYkJ/f3331JapVJJo0ePJgMDA+laaNGiBRFxwCInUqlUNGzYMOrfv3+67yzNsjFjxlDRokXJ09OTdu/eLVVclipVSgpOEBHVq1ePhBA0ffp0rf2o1Wrq1q0b1ahRg2rVqkV2dnb04MGD73puLOsMHTqUhBC0d+9eIqJ0ryUNtVpNGzduJCEEWVlZUfXq1cnQ0JAMDAzo7NmzWZVl9hV69+5NQggyMzMjQ0NDevPmjbTu6dOnNGbMGCmYGRERQUREJ06cIGNjY5o4caKUVq1W0+HDh8nKyopsbGxIX1+fnJycKCoqKsvP6WfHAQvGGGOMMcYYY1nqUxXEBw4coLx589Iff/xBQgiqVq0aRUZGSuvfvHlDK1askConzp8/T0REvXr1ooIFC9LNmze19nfmzBn67bffpNaXffr0+T4nxb65xMREcnFxoSpVqpCDgwMJIWj16tVaaW7cuEHly5cnIQQNHTqUiIhCQ0NJCEGzZ88mlUolBaciIyOlXjqaf48ePcry82KfFx8fT6ampmRgYEAXL17UWnf06FESQpCnpyfVrVuXZs2apdWbZvjw4SSEoHHjxknLrly5QnK5XGqB/ejRI7p58yYtWLCA7O3tadu2bfTXX3+REIJ27txJRBzIys009/zChQtJCEHLly9PtzzTC1xPnjyZqlevTmXLluURTHKIT92LKpWKJk6cSDY2NuTi4qL1nk+9XadOnUgIQQ0bNqTLly/TmzdvqHTp0vT7779TTEyM1j7//fdfMjU1ld4THz+D2PfHAQvGGGOMMcYYY1lCrVanqXj4uMLo3bt3ZGhoSLNnz6YePXqk2yqaiGj06NEkhKCyZctSQEAAhYSEkBCC/vnnHyLSbkl748YNsrCwIDc3Nx7aIQdRKpUZrtNcF0OHDqVixYrRvn37SAhBFSpUoPDwcK3tr169SsWLFychBI0fP54iIyOpUaNGVKdOHa19aXTp0oWKFi2q1QOD5TwnTpyQggep+fn5kZGRERkaGlKZMmWk8tUMH3X79m2qUaMGGRgY0PXr16XtvLy8qESJEiSEoLx585KFhQUJIahZs2akVCrpwIEDJISgESNGZM0Jsu9u9+7dZGRkRJ06ddKqlE79HkpMTNQaQowo5T0UHx8v/f6pnhns+/rUe0JTjl5eXpQ3b17y8vKShpTU3Puacnzy5An17NmT5HI51ahRg169ekWjRo0iGxsbun37dpp9Llq0iBo2bEjbt2//XqfGPoFnDGGMMcYYY4wxliWEEBBC4NKlS1i2bBmAtBNZxsfHw97eHidOnMCUKVOgr6+PtWvX4tq1awCApKQkAMD48eMxYcIEhIWFYeDAgbh69SoqVqyIzZs3A4A0YaparUaZMmVw+/ZtbNy4ERYWFlCr1Vl1yuwT5HI51Go1li1bhtu3b2ut01wXpUqVwqNHj1CkSBEMHToUV69exapVq7S2L1euHJYsWYJff/0Vc+fOxaRJk1CjRg2cPXsW9+/fh0wmg1qtlsp97dq1ePDgAVq2bJml58vSUqlUAFImwv5YjRo18Oeff+LJkycICAiQljds2BA9evRAcnIyTE1NkZiYCJVKBV1dXQCAvb093NzcoFQqMXXqVGm7Hj164OjRoxg4cCAaNmyImjVrYufOndi/fz/kcjkSEhIAACVLlvyep8yygOZ6qlSpEqpVqwZfX1/s27dPKmPNpOvh4eHo3r07Bg8ejHfv3knb58mTB/r6+lCpVCAi6X3Csp7mOT9u3Dj4+/tLzwy1Wi2VY82aNfHq1SsUKFAAM2bMAAAMGjQIAKCvrw8iQsGCBeHp6YmePXvi1KlTaN26NSpUqIBnz54hPDwcAKTyBoD+/fvDz88PHTt2BJD+M4p9R9kZLWGMMcYYY4wx9vNISEiQhmUQQtC0adOk8eJTt6J0cXGhihUr0rt372jixIlphnLSpI2JiaHp06eTEILy5ctHpUqVoqpVq9LDhw/TPb5arf5ka02Wtf755x/S09MjIQRVrFiRjh8/Lq3TlNOePXtIJpPRjh076MGDB2RsbEw2NjZ07tw5IiJp4mSVSkWXL1+mQoUKkRCCSpcuTdbW1rR48eI0x9W0oOVW0zmHZm6S1K3aiVKG8dLV1SV7e3utyXFv375NDg4OJJPJ6M6dO0SUcs1oeltER0dT27ZtSQhBhw8fltanR61Wk7+/Pzk4OFChQoUoLCzsm58fyz5bt26lQoUKUaFChWjOnDmUlJREMTExdOTIEerUqRPly5ePpk2blubaYzlDUFAQ6ejokBCCChYsqDXnhMaNGzcob968NHjwYFKr1VS9enUSQtDu3buJ6MN7gijlXdGkSRNprhshBLm6umZ4fP7MkD24hwVjjDHGGGOMsW+O0mmN+OrVKzx+/BgAULBgQUybNg09evRAZGQk5HK5lK5GjRp48OABdHV1MXLkSBQpUgRbt27FkSNHtPZnamqK8ePHo2fPnlCr1QgNDUVoaCgePHiQbp6EEFrHYdlHrVYjPDwcSUlJyJ8/P27cuIFu3bphyZIlACCVU7Vq1aCnp4dnz56haNGiGDVqFJ49eyb10NHR0YFarYZMJkOFChWwceNGlChRArdv30ZUVBRCQ0Px/v17rWNrWuVyq+nsd/HiRZiYmGDw4MEAUlpDA8CpU6cQFRUFKysrDBgwAHfv3sWOHTuk7ezt7dG7d28QETw9PQGk9MqRyWQgIuTNmxdubm6wsrLClClTEB8fn+69f/r0acyZMweDBg3CgwcPMHz4cBQrViwLzpx9jqYl/dfSvINatWqFWbNmISYmBmPGjEHJkiVRtWpVdOrUCX///TdGjRqFCRMmSNceyz7pfW4oXLgwlEoljI2NoaOjg5UrV6Jnz56IioqS0pQpUwbm5uYIDw+HEAIjRowAAAwbNgxAynuCiKBSqSCTyTB//ny4ubkhNDQUAHDhwgWpl8XH+DND9uCABWOMMcYYY4yxb4aItIZq0CwDAGtra6liqGLFimjXrh3CwsLw+++/awUjrK2t8fbtWwQFBcHY2BiTJ0/G+/fvsWzZMiQkJEAul0uVDwAwZcoU9OzZE0BKsKNSpUpZeMbsUzTDMH1cESWTydC8eXO0atUKarUa3bp1g52dHYYOHYoZM2bg2bNnAFKGCCtYsCCOHz8OABg+fDhKlSqFnTt3Yu/evWmOV69ePcyYMQMODg4AgN9//x2Ghobf8QzZf2FlZQWFQoE9e/YgKioK//vf/+Dg4IAOHTrgf//7HwBgzJgxKFy4MLZs2YJTp05J27q7u8PZ2Rk7d+7EyZMnIYSAUqmU1jdu3BjNmjXDuXPncOjQIa3jJiUloU2bNmjZsiWmTp0KIyMjBAUFYciQIWmGqWNZj4ikiuKTJ0/i4sWLuH//vtb6z9G8gwwNDdGlSxcEBARg0qRJKFmyJEqVKoVu3brh3r17GDlyJADwUIHZSPMuF0IgOTlZWq5UKmFnZ4cxY8bg7du3sLe3x8iRI7F+/Xp06dIF169fl9JWqVIFV65cAZASpGrXrh0eP36MWbNmAUgpX8015ejoiClTpqBp06YAgOnTp6Nw4cJZcarsS2VPxw7GGGOMMcYYYz+a1EMnnD9/njp27EivXr3SSvPmzRtyd3enPHny0KRJk+jYsWNkY2ND+fLlow0bNhARUWBgIAkhaMeOHUSUMmSLi4sLCSFo9erV0rLUoqOjtSbOZNnr4/LJaPglf39/MjQ0pMaNG9OBAwdo6NChJISgpk2bSsMEVa1alZydnen169dEROTj40NCCKpXrx7FxsYSUcowH6mHerp9+3aaPLCcRfO88Pb2JiEEFS5cmIQQVL58eVq8eDE9f/5cSrt27VoSQlDfvn0pISFBWr5r1y6SyWRUqVIlrX1rhoa6dOkS7du3T2ud5rrYt28fTZgwQWu9Wq3m6yabfPy3v3jxIlWvXp0UCgUJIUhPT4969+5N9+/f/8/H0jxbiFKuQy7z7PHx333UqFE0YMAAioyMJKIP97FSqSRLS0sSQtDJkyfJ29ubzM3NqVixYuTv709ERMOGDSMzMzM6f/48EaXc+8bGxqRQKKRnycfDO8XHx3PZ51AcNmaMMcYYY4wx9p9oWqbK5XK8efMGbm5ucHJyQmBgIO7du6eV1sTEBB4eHjA2Noavry9sbW1x5MgRlCtXDt27d8fEiRNRoEABFC5cGGFhYQBSWl1OmzYNALBq1So8efIEQgitIUPy5s0Le3t7rZ4XLPtoWjfv2rULDRs2RMOGDdGiRQscOXJEqxV8tWrV4O7uDj8/P1y5cgV//fUXJk6cCH9/fzRo0AAhISFo1aoVbt++DVNTUwBAu3bt0LhxYxw7dgybNm2Sjpd6qCd7e/s0Le5ZzqIpr5s3bwIAIiIi0LZtWxw4cAD9+/eHpaWllNbNzQ01atTAzp07tXpLtG3bFh07dsTly5exceNGACmtsjW9JCpWrIjmzZsDSNsqv3nz5pg2bZq0XtMzLHXvMJZ1NH97tVqNp0+fokuXLoiLi8PAgQMxYcIE/Pbbb1i7di1cXV2lHlhfy8DAAMCHVvdc5lmLPuqJ6e3tjUKFCmHevHmQy+XS/SuTyaBUKiGXy7FgwQIAKT0qO3TogD179kBHRwft2rXD+vXrUbt2bcTGxkpDe1WsWBEDBgyASqXC6NGjASBNOevp6fF7IqfK5oAJY4wxxhhjjLEfxOzZs0lPT4/y5s1LY8aMobNnz6bbejExMZGmTZtGQggaOHAgJSUlUVxcHHXo0IH09fWpcuXKVLBgQWrevLnUwpKIqFevXiSEoMGDB2fhWbGv8eLFC+rYsaPUYr5SpUpkZGSUbiv5q1evkq2tLdnZ2dHZs2eJiOjvv/+mfPnyUf78+alWrVpkbGxMwcHB0jYXLlwgHR0dKlasGPesySU0z4KPnwmDBg2iqlWrkhCCKleuLC3/uFdOQEAACSGoefPmUgtsIqLTp09TgQIFSCaTfdVE6tzCOueYO3cuDRgwgDw8PKhkyZJ0/PhxaV1cXBy1bt2ahBA0YMAAio6Ozsacsm/hypUrVK1aNRJCUP369WnHjh1aPas+9uuvv5IQgry8vIiI6ObNm1S/fn0SQlDdunVJCEHr16+X0j9//pxKly5NQgita4nlfNzDgjHGGGOMMcbYf3L69GkUKVIE48aNQ+vWrbFlyxaMGzcOTk5O6bZc1dXVRefOnVGhQgXs3LkTBw8ehKGhIdauXYsJEybg1q1biIiIQOHChbUmTB4zZgwAIDo6GomJiVl2fizzfH194evriyFDhsDHxwcXL17E6dOnUaNGDaxevRqenp5SK+lSpUph4MCBePDgAdatW4fY2Fi0bNkSXl5ecHJywokTJ2BiYgJdXV0AKa1zK1eujPbt2+Phw4eIiYnJxjNln0NEUCqV0rPg42fCrFmzcPz4cXTo0AGXLl3CwoULASDNXBJ169ZFly5dcPDgQfj6+krLq1WrhlatWqFQoUJ49OjRF81vkBq3rs96arU6TTnFxMTgwIEDWLduHYKDg9G9e3fUrFkTAJCYmAhDQ0NMnDgRLi4u2LJlizRfAct9lEol+vXrh4oVK+LVq1dYunQpli1bhvbt20s9qzTXh+b5AQCLFy8GAMydOxdRUVFwdHTE+vXrMXLkSAQGBsLQ0FDaTq1Ww9LSEr169QIAvHz5MqtPk/0HgjL7JGeMMcYYY4wxxv5fQkICxo4di8WLF6NTp06YOXMmihQpAiClwkAmkyExMRF6enpa26nVamzduhXdunVDmzZtsHjxYtjY2AAADh06hODgYHTo0EGaQJuIIITA/fv3YWdnl7Unyb4YESE2NhaNGzfGkydP8OjRI8hkMqn8Lly4gEmTJiEkJASzZs3CwIEDAQCPHj1Cx44dcffuXSxbtgwdOnQAEeH9+/eYNGkSKlasiJYtW8LIyEg61tu3b6Grq5vm2mI5h0qlkia6fffuHTZu3IjXr18jb968aNq0KWxtbaVr4/r166hVqxaMjY1x7tw5FChQQHqGaNy9exdVq1bFL7/8gjVr1qBMmTLSvlNfGyznUiqVUCgUAIBXr14hISEBNjY2UKvVOHnyJNq1a4fnz59j7dq16NGjB5KTk6GjoyNtv2zZMgwaNAiDBw/GwoUL01wjH9NcX0DKZOsymQwKhUJrOcta0dHR6Nq1K/z8/DBz5kypMUJqr1+/hrm5ufS7ppxdXV2xdetWjB49WppQGwBWr14NS0tL1KlTB+bm5lrl+/E1xHI+DlgwxhhjjDHGGPsqqSuhBw8ejGfPniEoKAiFCxfG1atXcfbsWYSEhOD58+dwcnJCixYt4OTkJG0fHR2NHj164N9//8WiRYvQp08fad3nKhhSV4SynCUuLg5lypSBtbU1AgMDoaurCyGEFLgICQlB+/btUaBAAaxatQq//vorlEol9uzZg44dO6Jp06ZYsWIFChUqBCDlWkg9rvnHUleAspxp6dKlmDRpEt6+fQu5XI7k5GSUKVMGixcvRt26daV048aNw+zZs+Hh4YGlS5eme59PnToVkydPxsiRIzFnzhytdXwt5FypK5Dj4uIwffp0BAcHg4iwceNG2Nvb4927d5g1axZmzZoFNzc3rFu3TrrvNduHhoaifPnyKFiwIK5duybNR/Gp46nVapw9exZBQUFwcnJCvXr1suakWYaOHz+OZs2aoU6dOli+fDmMjY1x5MgRHD9+HIGBgTA2Nkb16tXRsWNHVKlSRXoWPH/+HDY2NsiTJw+OHz+OcuXKAUCGgSvNdcDPhtyFh4RijDHGGGOMMfZVNJVBlStXRocOHRAeHo558+bB29sb7u7u6NevH4KCgnDq1CnMmjULLi4u8PLykrbPly8fBg0aBIVCga1bt+LWrVsAUioePtcakoMV2eNLJjR///49rKysEBMTAwMDA61ggxACv/76K/r164erV6/i4MGDSEpKgkKhQL169dC2bVv8888/+Pvvv6X96ejofLIFNVdC5VxRUVHo2bMnJk+ejHr16mH16tW4evUq9uzZg5cvX2Ls2LE4fvy4lH7UqFEoUaIE1q9fjzNnzkj3+cuXL3H//n0AwKBBg9CtWzetAKcGXws5l+Z9sW3bNhQpUgReXl4wMjJCzZo1pV5SRkZG6NSpE0qUKIGzZ8/i3LlzAKA1zE/x4sVRvHhxWFhYQFdXN83QUprfNccLDQ3FokWL0L17d4wfPx6PHz/OkvP9mX3Je6JKlSpwd3fHoUOH4OXlhTFjxsDNzQ07d+6ESqXCw4cPsXDhQrRs2RJnz56V3gH58+fH1KlT8fbtW8yePVvaX0bvCM11wM+GXCZLZspgjDHGGGOMMfZD0kxYe//+fWrRogUJIUgul1OlSpXIz8+Pnjx5Qnfv3qV169aREIIMDAwoNDRU2v7du3c0cOBAkslkNGXKlOw6DfYZqScmTkhIoM2bN0uTo6aeGF2jWbNmJISgffv2ERGRUqnUWn/jxg2yt7enKlWqaF0Px48fJ3Nzc6pevTpduXIlw/2znE+lUtHGjRvJzMyMhg0bRmFhYdK60NBQcnBwIAMDA+rZsyfFxcVJ67y8vEgIQc7OzhQdHU1HjhyhLl26UIsWLejmzZtax+AJs3OXgIAAsrKyoho1atDevXvp5cuXadIkJyfT4sWLSQhBPXv2pDdv3mitDwoKIoVCQS1btkzzbEh9PURFRdG2bduoTp06JISg2rVr09WrV7/PiTEiyvx74ubNm1S8eHESQpChoSFNnDiRXr58Sa9evaKEhAQaPHgw6enpUePGjen+/fta29ra2n7yHcNyNw5YMMYYY4wxxhj7JrZt20blypWjIUOGpLt+/PjxJISgvn37EtGHyo3r169TgQIFyMTEhM6cOZNl+WWZt3PnTjIxMSG5XE7Lly9Ps15TaeTr60tCCGrSpIm0LHVlVmxsLA0ePJiEEFpl/v79exo1ahQJIWj48OFcIZ0LaCoi0yurVatW0Zw5c6TfExMTqV+/fiSEoBIlSlDRokXJwsKCduzYobXdn3/+SUIIsrS0JGNjYxJCaO0n9XFZ7pCQkECNGjUiY2NjOnHihLRcrVanuXaePn1KLi4uUtAiMjKSXr9+TYcOHSJnZ2fS19cnPz+/dI/z/v178vf3J1dXV9LR0aGCBQuSj4/Pdz03pu1z7wmNpKQkWrZsGTk4OFBwcLC0XHM9PHnyhFxdXUkul9PevXuJKOU6IiLavXs3CSGoUqVK/Cz4AXHAgjHGflCBgYEEgDw9Pb/bMTw9PQkABQYGfrdj5BYPHjwgAOTm5pap7S5dukQymYy2bdv2fTL2Daxdu5ZkMhldu3Ytu7PCGGMsh9JULrx48YJ27NhBjx49IqIPFYrJyclERPTs2TNSKBRka2tLL168kLZPTEyk+fPn09SpU7M45+xLvXnzhhYsWEDGxsZkaGhI+vr6VLt2bbpz5w4RpV95XLVqVRJC0KZNm9JNs3r1ahJCpCn3a9euUefOndO0pmc5i1KpzDCgpAlSJSQkSOXu5+dHJUuWJCMjI+rfvz+dOXOGdu3aRUIIatq0KYWHh0vbh4aG0l9//UXNmzenUaNG0atXr77/CbHvKjw8nAwMDKhly5ZElPI8yOj6UavVtHfvXtLV1ZWCW3Z2dlSoUCEyMjKiJUuWpLvdtWvXaOzYsWRlZUU6Ojrcay+Lfc174unTpxQQEEDx8fHpXg+a90S/fv2ISDswOnjwYLp48eJ3OhuWnXgOC8YYyyHOnDkDIQQaN26c7vohQ4ZACAEHB4d01y9atAhCCEycOPF7ZvM/ISJs3boVdevWRd68eaGrqwsrKytUrFgR/fv3R3BwcHZnMcsNGzYMDg4O6NChw3c/1oULFyCEwLJlyzK1nZubG2xtbTFy5MjvlDPGGGM5xa5du9CkSRNcv34dQMp44V9CM0Z0vnz50LZtWxQpUgTAhzGl5XI5lEol9PX1YWNjgwIFCsDCwkIaa1xXVxfDhg3L0Z9jfnYhISGYMWMGjIyM4Ovri169euH48ePw9vYGoD1+uKZcPT09AQALFizAs2fPIJPJoFKpkJSUBADSZKn58uUD8OF6K1u2LLZu3QpHR8c049Oz7PFxOajVasjlcgghcOrUKfTu3Rvdu3fHwIEDce7cOWnuCT09PchkMkRHR2PmzJl4/fo1FixYgOnTp+PXX3+VJk++ePEifHx8pP2XKFECQ4cOhbe3N+bMmQNzc3MolUq+HnKxpKQkJCQkICkpCfHx8ZDJZNK742NCCNSqVQtdunSBrq4uGjdujHnz5mHMmDF4+PAhBg4cCCDtdblt2zbMnj0bzs7OiIiIwKRJk777ebEPMvOe0LCxsUHdunWhr6+vdT1o3hOa94PmfyGENEfGokWLUKlSpS/+rMJyDw5YMMZYDlGlShUYGRnh5MmTUCqVadYHBgZCCIE7d+4gMjIy3fUAULduXQCAk5MTbt26hQEDBnzfjGdC9+7d0bVrV1y5cgVNmzbF8OHD0bFjR5iZmWHdunVYu3ZtdmcxSx07dgxBQUEYPnz4JyeS/Fb27dsHAGjRokWmttPR0cHQoUPh5+eHkydPfo+sMcYYyyHOnTuHf/75B76+vgAynsTyUz6eDJuIIISAQqHAiRMnEB4eDhsbmzQVVZrfuUIyZzIyMkLXrl1x+vRp/P777+jVqxcKFCiA7du3S58PNJVGmrJs2rQpXF1dcf36dQwbNgxAyvWhq6sLADh8+DAAwNbWFkDa602tVmdYocm+v2fPnkll+3E5yGQyvH79Gq6urqhZsyYOHDiA/fv3Y/ny5ahWrVqaimJfX1+EhIRg9OjR6N27N8zNzQEAhoaGePPmDV69eoXNmzfjwoULAD48BwwNDQGkXAsKhYKvh1xMX18fv/zyC54+fYqnT5+mWa95fmi+C5ubm6Nnz54wMDDAvXv3UKFCBXh4eCBv3rxQqVTSuwX4cL107NgRly9fxs6dO6UKbpZ1MvOe+BilmlgdgPSe+PvvvwGk1G9opP6cQURZ8l2aZbHs6NbBGGMsfb///jsBoFOnTmktj46OJiEEtW7dmgDQ9u3btdarVCoyNzcnPT09io+Pz7L8ZmZIqJCQEAJAFSpUSDNxGhHR69ev6eTJk98hl1nja4aEatu2LRkYGKT79/geypYtS5UqVfqqbZ8/f04KhYK6dOnyjXPFGGMsJ3n16hU5ODhQ0aJFKSgoiIi+fpz41MM2JCYm0t69e6lYsWJkZ2dHly9f/hbZZVks9bA8ycnJNHv2bBJCUJ8+faRxxTXlrvk/JiaGKleuTEII6tChA504cYJu3rxJy5YtIxsbG2rYsKG0Lcs5nj59SkIIqly5Mj1+/JiI0j4LBgwYQIaGhjRq1Cg6d+4cPXv2jHx9fSlfvnwkhKCVK1fS27dviYho/vz5JISgjRs3au3D09OTqlatSj179iQhBB09ejRrTpBludjYWOrRowcJIWj16tXS99bExEQpzatXr6hLly506dIlIkqZj2Ls2LEkk8lo3rx5PLFyLpCZ98THUi8PDQ2lkSNHkq6uLrm6un7fTLMch0NQjDGWg9SpUwcAEBQUpLU8ODgYRIRBgwbBwsJC6k2hcfXqVbx+/Rq//fYb9PX1pX0IITB58mSttEWLFkXRokXx7t07DB48GDY2NtDT00O5cuWk1pQfCw8PR8eOHWFhYQEjIyM4OzsjJCQkU+d2+vRpACnDC5mYmKRZb2ZmhurVq2st69atG4QQuH//PubOnYuSJUtCX18fxYoVw9SpU5GcnJzusUJCQtCsWTPky5cPenp6KFmyJCZMmID379//5/QqlQpz5sxBiRIloK+vjxIlSmDWrFmZ7ob6+vVr7Nu3D40aNUrz93j48CGEEOjWrRtu3bqFP/74A2ZmZjA3N0fHjh0RHR0NIOVvWq9ePZiYmEgtkOLi4tI93oMHD3D9+nWt3hVv3rzBpEmTULp0aRgZGcHExAQlSpSAm5sbHj16pLW9paUlXFxc4Ovri3fv3mXqXBljjOUe5ubmmDBhAh49eoTNmzfj/fv3kMlkX9XrQQiB5ORkBAQEYPz48Rg4cCBev36NiRMnokKFCt8+8+y707SKBwCFQoEuXbqgcuXK8PX1xcGDB7XSaobtMDU1xZo1a9CjRw/s3LkTtWrVQtWqVTFw4EAULlwYCxYsgJ6eXlafCsvA+vXrsXDhQuTNmxe9e/fG1atXsWvXLgDaPWCuXbuGFStWwMXFBVOmTEHVqlVhbW2NNm3aYPny5bCzs8PChQtx48YNAEDVqlVhZGSEPXv24MqVK7h//z6WLFmCLVu24Pfff8fatWvx4sUL1KtXL1vOm31fRARjY2O0atUKhQsXxqxZs7B3714AH1rSX7hwAf369UNwcDBev34NADAwMIC7uztKliyJ7du34/z589l1CuwLZeY98bHExETcu3cPCxYsQP/+/TF//nzUr1+fh/b6GWVzwIQxxlgq58+fJwDUoEEDreUDBgwgAwMDSkhIoBYtWlCJEiW01i9YsIAAaE0qltGk27a2tmRjY0O//fYbOTg40IABA6h79+5kaGhIQgjy8/PTSh8REUEFCxYkANSoUSMaO3YstWzZknR1dalRo0Zf3MPCy8uLAEiTZX0JNzc3AkDNmjUjCwsL6tu3L40YMYLs7e0JALVp0ybNNitWrCAhBJmbm5OrqyuNGDGCXFxcCABVr15dqwXP16Tv3r07AaBixYrRsGHDqH///pQvXz76448/MtXDYu/evQSAZs+enWadprdG7dq1yczMjOrXr0/Dhw8nZ2dnAkA1atSg48ePk4GBATVv3pyGDx9OlStXJgDk7u6e7vH++usvAkBXrlwhopTWK7/++qu0v6FDh9Lw4cOpbdu2ZGZmRv7+/mn2MXHiRAKQ5hphjDH2Y1EqlVS3bl0yNjamHTt2fNU+VCoVnThxgkxNTcna2poMDQ3pjz/+oAcPHnzbzLJs5+3tTUIIatasGT179oyIMu6V4+PjQ7Nnz6YRI0bQrl27pOUZtbZlWScsLIwaNGhAQghyd3en169f0+PHj8nS0pLKli0rtXjXtHDfv38/CSFo1apVRJTSSl6zLj4+nqZOnUpCCJo2bRoRpfTWHT16NAkhyMTEhPLnz09CCKpbty49fPhQyge3oM+5PjVJ9udotktOTqaFCxeSubk5GRgY0IgRI2jDhg00evRoqly5MhkbG9PkyZO1Rg1QKpW0Zs0aaeLlrBxRgH0bX/qe6N+/P+nq6pKxsTHZ2dnRunXrsjqrLIfggAVjjOUgSqWSTE1NKU+ePJSUlCQt/+WXX6hOnTpE9KHiOTw8XFrfrFkzAkAhISHSsk8FLABQixYttCrjjx49KgUlUtMEDaZPn661fPXq1QTgiwMW4eHhZGJiQkII6tSpE+3atUvry0l6NMe2tLTUOt/ExESqXbs2ASBfX19p+f/+9z9SKBRUvnx5io6O1trXrFmzCADNnz//q9Nr/qbly5end+/eScufPHlC+fLly1TAYuTIkQQg3cCAJmABgBYtWiQtV6vV1KRJEwJAZmZmtHfvXmldUlISlStXjhQKBUVGRqbZp7OzMxUtWlT6/dq1awSAWrZsmSZtQkKC1H0/tX379hEAmjRp0hedI2OMsZwvo8qnEydOkBCCGjduTE+ePCGizA8N9e7dO+revTsNGDCATp8+LS1XKpVcQf0DiYmJoVatWpFCoaClS5emmyY5OTnD7T+1jmWNxMRE6ty5M5mbm9O8efPo5s2b0jrNUE7Dhg3TegYsX75cWp6a5t4OCQkhQ0NDKlu2rNb6GTNmUNeuXal58+a0ZcuW73hW7FtKHUhK/T0hM89yTdr4+Hjy8fGhokWLkhCChBBkZGRElStXpuDg4HS3ffr0KfXp04fOnj37lWfAstOXvCeIiE6fPk1DhgyhTZs2aV1zHMj8+XDAgjHGchhN8OHEiRNElNIaSQgh9Z64ePEiAaDNmzcTUUrlgZmZGRkYGGgFID4XsLh//36aY9va2pKFhYX0e2JiIunr61P+/PnTtGRRqVRUsmTJLw5YEBH5+/tTkSJFpMp4TTDizz//pICAgDTpMwqWEBEdP36cANAff/whLRs0aFCawE3q/FpaWlLlypW/Or27uzsBoN27d6dJP23atEwFLDp27EgA6Nq1a2nWaQIWxYsXT/MlYPPmzQRACmClNnXqVAJAx44d01oeHR1NcrmcBg8eLC3TBCw6duz4RfklIjpz5gwBoO7du3/xNowxxnKm1JXEH79rNL/37t2bhBC0cOHCrz5OXFyc1u9c6fBjCgkJoTx58lDVqlUpLCyMiFIahnh7e6dJq7m+vnZuFPbtPXr0iIoVK0b169dPsy4pKYnKli1L1tbWdOTIEWn53bt3SVdXV6uHxMfPkrJly5KlpSU9evQoTXmnTsvPhdzh1atX1LdvX6pSpQo1b96cTp8+LTWy+5r7+e3bt3TmzBkKCgrS+j6mVqv5+fAD+tL3ROqGm/xs+HkpvtHIUowxxr4RFxcXHDhwAIGBgahRowaCgoJARHBxcQEAVKhQAaampggMDETXrl1x5coVxMTEoH79+tL4n59jZmaGYsWKpVleqFAhaa4JALhz5w4SEhJQt25daW4MDZlMhho1aiA0NPSLz61+/fq4d+8egoKCEBISgosXL+LEiRPw8fGBj48Pxo4di5kzZ6bZrlatWmmW/fbbb1AoFLh8+bK07MyZMwAAPz8/BAQEpNlGR0cHt2/f/ur0V69ezTA/6S37lJcvXwJIKYuMlCtXDkIIrWUFChQAgHTH/tasi4iI0Fp+6NAhqFQqrfkrHB0dUa5cOXh7e+PJkydo2bIlXFxcUKFCBa3xiVOzsLAAAGkODcYYY7kPEUEIAYUi5avgli1bcOXKFZiYmKBSpUpo1KiR9Hli7Nix8PX1xcaNG1GnTh2UL18earU6w/dEegwNDQFA2k4ul3/7k2LZrnLlyujXrx8WLFiA5cuXw8HBARs3bsSZM2dgYWGBhg0bSmk1n20ycx2x70upVEJXVxdhYWEAgH379qFPnz6YMGECBgwYgClTpqBNmzbYvHkzqlWrBjMzM5iZmaF58+bw8/ODv78/evbsKc1bIpfLERcXh6SkJJiZmaFgwYJa5a15DvFzIefSlJHG2bNn4ebmhmfPniFv3ry4ePEizp49K81P9DX3s5GREX799VetZZrr5+PvQBnli+UeX/qe0NHRkebN4mfDz4sDFowxlsOknnh7woQJCAoKgr6+vvRhTiaToWbNmtLE25r/69at+8XHMDU1TXe5QqHQmjz6zZs3AID8+fOnm97KyuqLj5n6GPXr10f9+vUBpHxB2rhxI/r164dZs2ahbdu2qFSp0mePI5fLkTdvXimPAPDq1SsAwIwZM74oL5lN/+bNG8hkMuTLly/Nusz+LQwMDAAACQkJGaZJb3JyTQXTp9Z9PBn53r17YWFhoRVUUSgUOHbsGCZPnozdu3dj+PDhAFIm1x4wYADGjx+f5gNifHw8gA+VT4wxxnIfTUXP8ePH0adPH9y9exdmZmaIjY0FEaFDhw6YPn06bG1tUbRoUYwePRpjxozBtm3bUK5cOWkC7sxWGHHl9I9Jcy0YGhrCzc0N3t7eWLlyJRITE2FkZIS//vpLK1jBch61Wg07Ozu0a9cOM2bMgK2tLcLDw1GrVi0ULlwYRIRWrVqhefPm2LNnDxo0aAB3d3fky5cPXbt2RXBwMObMmYMCBQqgadOmkMvlePv2LVavXo3Q0FBMmzYtzWdKDlrlXJrvgh+XzZ49e6Cvr49Nmzbht99+w/Xr1+Hu7o45c+bAwcEBDRo0yHRAOz2fq6DmYEXu8zXvCS5nxm8HxhjLYcqXLw9zc3OcOnUKSUlJCAwMRLVq1aCnpyelcXFxwcOHD/Hw4UMEBQUB+BDo+JY0gY3nz5+nuz4qKuo/H0OhUKBnz57o1KkTgA8BmM8dR6VS4eXLl1rBF00lvqbSJaN/X5ve1NQUarU63R4Gmf1bWFpaAvgQNPleEhIS8O+//6Jp06ZSQEMjb968WLp0KZ4+fYqbN29i2bJlsLCwgKenJ+bOnZtmX5q8avLOGGMsd7p06RLc3Nwgk8mwZMkSHD9+HLdu3UK/fv2wbds2jBgxQkrbt29flClTBtu2bcPRo0e/aP+p351JSUlSwDv1cpY9VCrVN92fplLp7NmzWLNmDSIiIpCYmAgPDw9ERkZiyJAhALjsczJNBfOtW7cghMDTp08xcuRI+Pr6okWLFlIZe3p6goiwadMmhIWFQQgBZ2dnjB8/Hvfu3UO3bt0wefJkLFq0CKNGjcK0adNQtWpVtGnTJjtPj2UCEUEmk0EmkyEsLAwbN25EYGAgYmJisHfvXkycOBEtW7aElZUV6tevj2XLliEiIgKLFi1CfHy8FNBmuRu/J1hOwAELxhjLYWQyGZydnREfH4/9+/fj1q1b0nBQGs7OzgCAo0eP4vjx4zAyMkKVKlW+eV5KlSoFfX19XLhwIU1PALVajVOnTn2zYxkZGWW47vjx42mWnT59GkqlEhUrVpSWaXqhaIZ6+pzMpi9fvnyG+Ulv2aeULVsWQMqwW9/T0aNHERcXpzUc1MeEEHB0dISHhwf8/f0BAPv370+TTpNXTd4ZY4zlbBlVOqxZswaPHj3CrFmz0L9/fzg6OqJ48eLo0aMH7OzssHv3buzZswdASnB/8uTJePbsGTZt2oTY2FgIIdKtWNAs01ROXLx4EXPnzsWWLVt4GI9sRkTSUCsA8PDhQ7x48QJxcXHS+q/d76lTp9C5c2csW7YMdevWxc2bN7F06VIYGhpCqVRy2ecCW7duRWhoKH799Veo1Wo8evRIaqCieY5UrFgRAwYMQEhICHbu3AkgpTHP4MGDMWXKFFhYWGDq1KkYO3Ystm/fjvbt2yMgIAD29vbZdl4srdS96TWUSiWAlGd3cnIyRo0aBQcHB3Tv3h316tXDH3/8ASEEqlSpArVaLe2jRYsWaNy4MY4cOYItW7Z8cR64Yjpn4vcEy0k4YMEYYzmQprfElClTACBNwKJSpUowNjbG4sWL8ebNG9SqVStN6/lvQU9PD3/++SeeP3+OBQsWaK3z8vLC3bt3v3hf//zzD/bt2yd9IE4tLCwMu3btAgDUrFkzzfrFixfjyZMn0u9JSUkYP348AKBbt27S8v79+0OhUGDgwIF4/Phxmv3ExMRozXmR2fRdu3YFAEydOlX64AYAT58+xeLFizM89/Rogk5nz57N1HaZtW/fPujp6aFRo0ZayzU9dD6m6Sny8ZwlwIe8avLOGGMsZ9NUOqxYsQKrV69GYmIioqKicPjwYdSvXx/NmjUDkPIeXrRoEbp164b79++jQ4cOqFevnrSfNm3aoGnTpti/fz/27dsHQHu4ho8DFQ8ePMCyZcvQvXt3TJo0Cc+fP0+3koxlDU1FkFwuR1hYGNq1a4d69erByckJzs7OOHr0qPT5LLMVUkII6Ovro2rVqvDx8cHRo0fh4OAgVWoqFAquhMpimSlDTdqmTZvCx8cHhw4dksry0KFDafY3cuRI2NjYYMuWLVqfYSdOnIizZ8/i7Nmz2L17N65cuYI1a9YgT54837y1Nvt6Xl5eaNOmDe7fv6+1PPX3yEOHDmHLli3o06cPFi1ahKFDh+LUqVO4e/eu1PtCU7ENAEuWLAGQ8p4JDw+X5iZJT3rvijt37vD7IQfg9wTLcb7lDN6MMca+jWvXrhEAAkD6+vqUkJCQJk3jxo2lNHPnzk2zPjAwkACQp6en1nJbW1uytbVN97jOzs708ashIiKCChYsSACocePGNHbsWGrZsiXp6upSw4YNCQAFBgZ+9pwWLlxIAChfvnzUunVrGjlyJI0YMULaFwDq16+f1jZubm4EgJo1a0YWFhbUr18/GjFiBNnb2xMAat26dZrjrFmzhuRyOenr60vH6du3LzVs2JD09PSoT58+/ym9u7s7AaBixYrRsGHDyMPDg/Lly0d//PEHASA3N7fP/i2IiNRqNdnZ2VHJkiXTrHvw4EGG+8qoXImINmzYQABow4YNRESkUqnIysqKmjRpkibt33//TUII+vXXX8nd3Z3Gjh1Lrq6uZGJiQjKZjPbt25cmv0WKFCFHR8cvOj/GGGPZQ6lUSj/HxsZShw4dSAhBrVu3poiICHr+/DkZGBjQ0KFDKSYmhrZv306NGjUiIQRVqVKFzp07J22flJQk/Xzx4kUSQlCFChXo2bNn0nK1Wi39HB0dTT4+PtL+qlatSmfPnv3OZ8y+hEqlojlz5pCRkREVKlSIGjduTK1bt6aCBQuShYUFbdy48T/tO7XU1yDLPvHx8ZlKr7mX9+zZQ0II+u2336R1qct45cqVJISggQMHSs+I9MpcpVKluTZY9mrdujUJIWjbtm1ayx8+fEhFihShFi1aUO/evalr164UHR0trR84cCAJIahv375a22nKfciQISSEoAkTJmR47NTviufPn9OOHTuoWrVq1KRJE3rw4ME3ODv2X/F7guUkHLBgjLEcSK1WU758+QgAubi4pJtm1qxZUsDi/PnzadZ/q4AFEdGjR4+offv2ZGZmRoaGhlSrVi0KDg4mT0/PLw5YPH/+nNauXUtt27Yle3t7MjY2Jh0dHSpQoAD98ccf5Ovrm2YbTcDi3r17NHv2bCpRogTp6uqSra0tTZ48mRITE9M91rlz56hDhw5kY2NDOjo6lC9fPqpUqRKNGTOGbt269Z/SK5VKmjVrFtnZ2ZGuri7Z2dnRzJkzKSwsLFMBCyKiOXPmEIA0lTnfKmBx8uRJAkBr1qxJkzY8PJzGjBlD1apVo/z585Ouri4VKVKEWrduTadPn06TPigoiADQokWLvvj8GGOMZY8nT57Q/v376dy5c1SkSBGaPn063bx5k4hS3un29vZUtGhR6tOnD+nr65OlpSVt2rQpzX4CAwMpLi5O+n3SpEnk7e2dJl1CQgIFBQVRr169Prk/lj2SkpJo+fLlVKBAAeratSv5+flRcnIyERHdv3+fTE1NqXr16nT8+HEiSlux9KW4cjpnUKvVNHbsWBo6dGi6jZ6+RKtWrUgIQcuWLSMi7crFhIQEql69OllYWNDOnTszzAPLftHR0VrP8KdPn9LKlSvTBLOePn1KDg4OJJfLydramq5du0ZEJH3XevnyJRUvXpzy5MkjBbWVSqV0zyckJJClpSWZmZnRiRMntPad+lp4//49HT16lLp16ya9KzK6hljW4vcEy2k4YMEYYyzH0gQsftRWNy9fviRTU1Pq2bPnd9n/qFGjSAih1RL2a3Xu3JksLCzo9evX/z1jjDHGvhulUkmmpqakr69PpUuXpo4dO6ZJ065dOxJCkEwmoylTpqRbgTBt2jQqWbIknTp16pPHCwsLo0mTJlGhQoVIJpPR6NGjv9m5sG8jKiqKmjZtSs2bN6eHDx9Ky//991/65ZdfSAhBCoWC+vbtK1Vwc4Vz7nX69GmSyWT0yy+/ZHpbTWDiypUrZGxsTEWLFqWoqCitdURE+/fvJyEELV269Ntkmn1zvr6+Um+Kj+9npVJJhw4d0nr2r1u3jszMzMjKyopCQ0OldZpyX716NQkhqFmzZlr70lRqL1y4kIQQdPDgQSJK+wy5fPkyTZgwgaysrEihUNCkSZO+7Qmz/4TfEyyn4YAFY4yxHOtHD1gQEc2ePZt0dHS0Phh+K/b29lStWrX/vJ87d+6QXC6nv/766xvkijHG2LeQ3nArmoqjxYsXkxCCTExMpF53ycnJUsVTQEAAGRoakomJSZphGcLCwmjChAlkbW1N3bp1SxOo/riCwsvLi4yNjalp06b05MmTb3iGLDM0ZZ+R4OBg6efIyEj6888/SQhBlStXpmXLllH58uUpX758tHv3biL6fEVU6vXJyckZ9npl309GLZWVSiVVqVKFhBBSa+jMVCxq0g4fPpyEEDRkyJB093H//v2vyTbLIvv37ycbGxuqXbu21rNZqVRSnTp1SAhBhw4dkpYnJSVRixYtSAghDf2TnJysVe61a9cmIQT5+PhI+0q9Pr2GTQ8fPqQVK1ZQhQoVSAhBbdu2lYJgLGvxe4LlJjzpNmOMMZaNBg8ejAkTJqQ76fd/dfv2bZw+ffo/7+fJkyfw9PSEh4fHN8gVY4yx/0qtVkuTn965cweBgYG4f/++NHHqoEGDUKFCBbx9+xaxsbEAAJlMJk3CXbduXQwaNAhv375F+fLlMW/ePJw+fRpz585F//79MW/ePFSrVg0TJ06EmZmZ1rE1E2PS/0+62aBBA5w4cQIHDx5EwYIFs+gvwDQ0k9Vqyn7//v0ICAjAtWvXEBcXJ6WrWbMmAOB///sfOnTogCNHjmDUqFFYt24dPDw84OHhgZcvX2Lbtm2IjIzMcOJc+mjS3KtXr2LhwoU4fPgwT5ybRTRlIJPJtMoYAFQqFeRyOTp06AAACA4OBoBMTWir2f/YsWNRrFgxbNq0CRcvXoQQQmsC7WLFikmT5rKcQ1N+9erVQ/fu3XH8+HHs2rVLmjBZLpdLn+m3bduGmJgYAICOjg4GDhwIY2NjTJo0CcCH54qm3CdNmgSFQoG5c+ciKSlJeqdojmtmZiYdBwCuX7+OIUOGwMPDA0IInDhxArt27UL+/Pm/7x+BaeH3BMuVsjFYwhhjjH3Sz9DDgjHGGPtSqVtUx8TEkLu7O+nq6pK+vj7JZDKaP38+PX78mIhS5p/QTJL95s0baXvNPl69ekVeXl5kZWVFQggSQpCBgQEVLlw43bmPWPY6efIkPX/+nIjSb1nv7e1Ntra2pKOjI5Vn/fr1KSIiQivdvHnzSC6X06xZs+jt27fS8iVLlpAQgooUKSLNW/Apjx8/ptWrV5OTkxMJIWjatGk8iWoWmzlzJtnZ2Umt3VO3Zg4MDCRTU1Pq0qXLV81joSnLFStWkBCCWrZs+W0yzbKEZjL0CxcuUNWqVcnW1pZu3LihlaZly5akp6dH69ev11o+YMAAEkLQ9OnTiSjt5MidOnX64uHA7t27R87OzrRu3br/cjrsC/F7gv1IOGDBGGOMMcYYY7mIWq0mNzc3KlCgAHXq1Ik8PDyoRIkSpK+vT5MmTZIqKFu2bKk1cW56wzc8fPiQDh8+TPv376e///5ba8gIrljIGWbPnq1VgaihUqkoOTmZpk+fTvr6+lSnTh2aN28eHTt2jDw8PMjAwIAaNGhAly9fJqKUSsxKlSpRvnz56OXLl1r7mjt3LlWqVImEEGRnZ6fVWCT1dRMTE0N79+6Vho4pW7YsHTt27LudO0tfUFCQVOGYN29eOnXqlNb9euvWLbK3tydLS0upwvFrhoUiIpo0aRIP95ZLfPzMjo+PpyVLlpC+vj4NGTJEq/L58uXLpKurS87OzhQWFiYtv3nzJhUvXpwUCoVU+a1UKqV93717l2bMmJGp4YDY98fvCfaj4YAFY4wxxhhjjOUC/v7+1K5dO1q4cCFZWVnR6tWr6d27d0REdPXqVapUqRLlz5+ffH19iYjowYMHJIQgR0dHunfvHhFlPO59ahyoyFlu3rxJRYoUodWrV6cpv/v371PBggXJ2dmZrl69Ki2Pjo6mYcOGkRCC3N3dpYrHrl27kqmpKf3zzz9ElDKu+J49e8jY2JjWrFlDy5YtS7eHTXJyMp08eZIGDBhAxsbGZGpqSitWrPiOZ82IPn2/Ojo6kr29PZUuXZrs7Oxoz549WuvbtGkjTbpMlPkK5I+P/SXPDpYz+Pj4ULVq1ahFixZUsWJFsrGxobx581JgYKBWOs08JR9Xcs+dO5eEEOTm5kZEH8r+42uIr4mcg98T7EfDAQvGGGOMMcYYy+HUajV5enqSEIJq1KhBHTt2TJPmyJEjJISgVq1a0dOnT4mIaNSoUSSEoJEjR37xcVjOo6lI+ti0adNICEEnT56Ull2/fp3mzJlDRYoUISEEzZ07l4hSynbXrl1kZGREDg4ONGbMGOrTpw8VL16cqlWrluEkymFhYTRr1iwqVqwYCSFowIAB0pAz7PtLPVGtWq2WAorjx48nKysrunXrFpUoUYJKlChBAQEBUto9e/ZI5fVfJ7vl50LOp1arKS4ujvr16ycN9TNixAgaPHgwlSpVioQQ1KFDB3rx4oW0zbNnz6hgwYJkb29PZ86ckZa/fPmSXFxcSAhBISEhGR6P5Sz8nmA/Eg5YMMYYY4wxxlgu8OzZM6pXrx4JIahXr15ERFpDOBERdezYkeRyudYwUPnz5ydra2s6fvw4EXGr2Nzq2LFjVKNGDTp8+DARpfSE6dWrF5mamlJERIQ0L0n16tVJCEENGjTQGuqFiOj9+/fSEDEGBgZkaGhIzZo1o4cPH2Z43CVLlpBcLqd69epRaGjodz3Hn93HlcArVqygypUr0759+4hI+9719fUlmUxG//77L12+fJkqVKhABQoUoEuXLpFaraZbt25R4cKFqX79+hQbG/uf8sFyh8uXL5OJiQk1atSI7ty5Iy2/efMmValSRepxk/o6WrlyJQkhyMPDQ6uCef369WRmZkZ79+7N0nNg/w2/J9iPQpbdk34zxhhjjDHGGPs8a2tr9O3bF0IIhIWFITIyEgqFAmq1WkozceJE6OvrY+vWrbh+/TqEEJgzZw6ioqKwcOFCAIBMxl8Dc6PHjx/j1KlT8PX1RWxsLORyOXR1dREbG4ulS5eif//+6N27NyIjI3HgwAH8+++/KF68OAAgOjoaycnJMDAwwMCBA3Ht2jUcPHgQJ06cwP79+2Fra6t1HQEAEQEAmjdvjsDAQBw9ehQlSpTI8vP+GRAR1Go1hBDSsufPnyMsLAyXLl2Ch4cH7t69q3Xv2tvbw9raGr6+vqhQoQKWL18OIyMjuLq64tixY7Czs4OtrS0CAgLw4sULAEhTxhnR5CMyMhLR0dHf8EzZ97R79268ffsWvXv3RqlSpQAAycnJcHR0hKenJ4oUKYKFCxciPDxc2sbd3R1OTk7YvXs3jhw5orX8xYsXaNGiRZafB/t6/J5gP4xsDpgwxhhjjDHGGPtCb9++pXbt2pGxsTF5e3unm2bixIkkhKBJkyZJy/r37083btzIqmyy70CtVlPTpk0pT548tHnzZiIiOnr0KOno6JCOjg4ZGhrSwoUL02yXnJxMzs7OtHjxYmk/H+N5S3KGW7duUc+ePbWWDRo0iIQQ9Ntvv1FwcLDWOhcXF6patSpFR0cTEdGlS5cof/78VKpUKXr8+LE0FMyMGTM+e+zU18Xbt2/pn3/+oSZNmlDTpk35+sglhgwZQkIIOn36NBGl3Puacn3//j15eHiQEILmz59P8fHx0nb+/v4khKB69erRmzdvtPbJZZ+78HuC/Si4aQ1jjDHGGGOM5RJGRkYYMmQIhBDYsmUL7t27B0C75fSQIUNgY2OD+fPn49SpUwCA5cuXo0yZMlJrSJb7CCEwceJExMfHY8uWLYiIiED58uXRpEkTKJVKzJgxA0OGDNHa5vLly+jSpQsuXrwIc3NzaT8fk8vlWXEK7BMmTJiA0qVLY926dVi8eLG0fOrUqfDw8MClS5cwcuRInDx5UlrXqVMnXLp0Ca9evQIAVKxYEcuWLUNSUhLatGmDIkWKAABu3LiB169fp3tczTNBCAG1Wo0LFy5g6tSp6NKlC44dOwYnJye+PrJQXFwcAECpVGZ6W809fujQIQCAQqGAEAJEBAMDA9StWxcAsHbtWty6dUvarn79+hg6dChGjhwJExMTrX1y2ecu/J5gPwoOWDDGGGOMMcZYLuLk5IRevXrBz88Phw4dAhFBJpNJFY8WFhaYPXs2xo8fj+rVq0vbfTzkDMt9fv31V/Tt2xdHjx6Fj48P8uXLh969e8PU1BSzZs3C8uXLERkZidDQUCxbtgxDhgyBn58fBg0ahJYtW2Z39tknaIZtMjU1xbhx4xAbGyv9PnbsWAwdOhTnz59Hz5498ezZMwBA6dKlYWhoiK1bt0r7adu2LVasWIHHjx9j7Nix0NPTw71795CcnJzucTXPhHv37mHJkiVwdXXF/Pnz0bRpU0RFRWHSpEnf87QZUoJGRISxY8eicuXKiI+Ph0Kh+OLtNQHrjh07wsDAAEePHsXdu3cBACqVCiqVCgBQrlw5mJub4+7du1i1apV0jQHAggUL0KhRo294Viy78HuC/QgEcRMbxhhjjDHGGMtV7t27h4YNG8LMzAxr1qxB5cqVQUQckPgJPHnyBJUqVUL+/Pmxfft2lCtXDjt27ICHhwdev34NMzMzEBHevXuHwoULY9GiRWjevHl2Z/un96n7U61WY/LkyVi3bh1KlSqF4OBg9O7dG6tWrdLarlOnTtixYwcaNGiAOXPmwM7ODr/99htsbW3h7e0NU1NTaZ/+/v5o166dVCl94cIFVKpUKc2xX7x4gYCAAHh5eeHYsWOoVq0aVqxYgQoVKnz7PwL7pHr16iEwMBC7d+9Gq1atMr19QkICBg8ejLVr12LQoEFYtGiR1vqZM2di+fLlKFmyJEJCQnDjxg2ULl1aWs/vkB8HvydYbscBC8YYY4wxxhjLZYgIy5cvx9ChQzFw4EBMnToVRkZG6abjCqgfz8KFCzF8+HAMGTIE8+bNg1wux+3bt3H48GE8fPgQOjo6KFeuHNzc3KRt1Go1T7ieTVQqVYbDqWju0XXr1mH06NGYM2cOpk6divDwcFy7dg2//PILEhISoK+vjydPnmDKlCnYsGEDqlWrhgMHDmD27NnYunUrjh07Bnt7e619L168GIcPH0a3bt3QsWPHNMe+e/cuRo8eDX9/f5iYmOCvv/5Chw4dvsvfgGVMc308efIEly9fRrNmzaR1mb1v79y5gyZNmuDBgweYNGkSevToAR0dHfj7++Ovv/5C586dUatWLZiYmMDR0fF7nA7LIfg9wXIzDlgwxhhjjDHGWC4UHR2NWrVqwdDQEIcOHYK1tXV2Z4llkfj4eFSvXh2RkZFYv349fv/9d631qSudlEplpoaXYd+HWq3GhAkTUKdOHdStWxdyuVyrnO7cuQNHR0ccPHgQr169gqurK1xcXHDs2DEAHwIbT548wYwZM7B69Wo4Ozujd+/e6Ny5M/7991/Ur18fKpUKQgjIZDIkJydDR0dHysPHAcz4+HgUKFAA/fr1w6xZs7L2D/KT+lTwSuPx48c4fPgw+vbt+1XHCA4ORufOnREREQELCwsYGxvj6dOncHR0hK+vL0qWLAmAK6d/dPyeYLkZBywYY4wxxhhjLJe6c+dOmlbV7Odw4MABtGjRAs2bN8f69ethYWGhNYFy6p9Z9goODkaDBg2gVCphY2OD7t27Y+rUqVpp/ve//8HZ2RldunTBwoULUbNmTZw+fRq+vr5o3bq1VvBBrVajWbNmOHLkCEqWLInQ0FB07doVmzZtSvf46VWSayoo4+PjYWBg8H1OnGXo6dOnKFiwYJqgUnJyMsqXL4/bt28jMDAQzs7OXxTk+Njdu3exfft2XLp0CW/evMHvv/+OMWPGfOvTYDkcvydYbsUBC8YYY4wxxhjL5bh15M+pdu3aePz4MQIDA1GsWLHszg5D+sOw3b9/HyVKlICxsTEsLCzw7t07tGjRAjNmzICVlZWUrmTJkihXrhx2796Nv//+G23atEGRIkXw8OFDad9qtRpyuRy3bt3C3LlzpSCFo6Mj/vnnHxQuXDjLzpVlDhHh0aNHqFu3LiwsLHDmzBnpub1nzx6ULFkSZcuWxcaNG9G9e3fUq1cP/v7+0rZfW6mcmJgIPT09APyu+Bnxe4LlRtz3izHGGGOMMcZyOa6A+jnt2rULDx8+5EqoHEClUgFIaamcnJwsLVcqlbCzs8OYMWPw9u1b2NvbY+TIkVi/fj26dOmC69evS2mrVKmCK1euAABatWqFdu3a4fHjx9JwTZpgBZASoJgyZQqaNm0KAJg+fToHK3Kgixcv4syZMwBSrg1TU1NUqlQJly5dQnBwMC5evIjy5cujffv2CAoKAgB069YNDRs2REBAADZu3Aggpey/lp6eHtRqNYiI3xU/IX5PsNyIe1gwxhhjjDHGGGO5GLeazj4ft3wfPXo03r9/jwkTJsDKykoaJ16lUqFAgQKIjo7GiRMn8PjxY/Tv3x9mZmZYs2YN6tevj+HDh2P9+vXw9/dHlSpVcPnyZTg7OyM+Ph4RERGwtLRMMzxQQkIC9PT0eEiXHOjatWuoUKECatSoAX9/f+jr6wNIGf6rYcOGiIuLQ2xsLMqVK4devXqhRYsWsLGxgUwmw6lTp1C3bl0ULVoU58+fh7GxMc85wf4Tfk+w3ISfdIwxxhhjjDHGWC7GlVBZTzM8kyZQ4O3tjUKFCmHevHmQy+VSxbJMJoNSqYRcLseCBQsAAFOmTEGHDh2wZ88e6OjooF27dli/fj1q166N2NhYqWK7YsWKGDBgAFQqFUaPHg0g7VjzmmCFUqnMqlNnX6hcuXJo3LgxTp48ic2bN0vL/fz88OzZM8TGxsLFxQXbt29H//79UahQIem6qV69Otzd3XH37l3MnTsXwJfPM8Dtkll6+D3BchMOWDDGGGOMMcYYY4xlghACMpkMV69exW+//YbOnTvD0dER3t7eGD9+PCwtLaW0morCrl27wsnJCf7+/li3bh1cXFywd+9eVKlSBT179sSSJUtARDh//ry07dChQ+Ho6IiNGzfixIkTaVrYayqxuTIyZ9EMEbZ48WIAwMqVK/H48WMAKUGspk2bokSJErh06RLMzc0hhJCGfdJsO378eBQoUADLly/H7du3IYSQ1n2K5pp4+fKlFMj6L0NKMcZYVuOABWOMMcYYY4wxxlgmKJVK9OvXDxUrVsSrV6+wdOlSLFu2DO3bt5eCFZqW7kQkVRxrKrDnzp2LqKgoODo6Yv369Rg5ciQCAwNhaGgobadWq2FpaYlevXoBSKmAZrmDXC6HSqVCyZIlMWjQIFy9ehWrVq0CAAwZMgQ+Pj4YOnQoYmNjMX78eACQglFyuRxqtRqFChXC0KFDERMTg2nTpknr0pO6V8Xbt29x8OBBDBs2DMuWLdPaN2OM5QY8hwVjjDHGGGOMMcZYJkRHR6Nr167w8/PDzJkzMWbMmDRpXr9+DXNzc+l3zRwErq6u2Lp1K0aPHi1NqA0Aq1evhqWlJerUqQNzc3Ot+TGSk5Oho6Pz/U+M/Sep5xjRlHdCQgIKFCgAfX197N+/H1WrVgUAREREoFevXjhy5AiCgoJQu3btNPtRKpWoVq0abty4gb1796Jx48Zax0h9jahUKly4cAE+Pj5Yt24dlEolVq9ejc6dO2fxX4Exxv4bDlgwxhhjjDHGGGOMZdLx48fRrFkz1KlTB8uXL4exsTGOHDmC48ePIzAwEMbGxqhevTo6duyIKlWqSBXNz58/h42NDfLkyYPjx4+jXLlyAJDhpMqaSmmeNDf3uHHjBuzt7aUg05o1a9C3b1+4urpi48aNUjpfX1/07NkTFSpUwNGjRyGXy7UCEHK5HLt370a7du1QpUoVnDt3Lt3j3b17FwcOHMDq1asRFhaGXr16YeHChTA0NPzu58oYY98aBywYY4wxxhhjjDHGUkndij0j8fHxGDduHJYvX44JEyYgKioK69evh7GxMfLmzYuYmBhERUXBxsYGu3fvhpOTk1QZPXPmTEyYMAEdOnTA9u3bs+KUWBZ4+/YtOnXqhMuXL+PAgQOoWLGitK58+fK4desWdu7ciVatWgFIuYYGDx4MLy8vrFu3Du7u7gCA58+f4/79+6hWrRoAYPLkyejQoQMcHBy0jhcVFYWjR49i7dq1CAkJQa1atbBy5UqULl06i86YMca+PQ5YMMYYY4wxxhhjjEF7iJ3ExET4+PigcePGsLS0TLcHxK1bt9CsWTPcv38fBgYGGD58OIYMGQIhBAwNDTF69GisWrUKderUwYoVK1CsWDFp26JFi+Lx48fYu3cvmjdv/kVBEpazJSQkYMmSJZg4cSLGjBmDESNGwNjYGAAQHByMOnXqoG7duvj777+l5SdOnECPHj2QlJSEFStWIDk5GX///TcCAgKwcuVKNG3aVNq/5hokIpw7dw7z5s3DwYMHkT9/fixatAitW7fOlvNmjLFviWfdYYwxxhhjjDHGGAOkYIWPjw/y588Pd3d37Nq1C0D6ExeXKFECQ4cOhb29PY4cOYKpU6fCwsICZmZm0NPTw8iRI9G+fXv4+/vj2rVrAFICIQDw119/AQCmTJkCtVrNwYofgL6+Ptq0aYPatWvDy8sLFy5ckNY5OzujVatWOHbsGDZs2CAtr1mzJgYOHIiXL1+iadOmaN++Pby9vdGnTx+tYAURSdegUqnElStXcPjwYYwbNw6PHz/mYAVj7IfBPSwYY4wxxhhjjDHGAMTGxsLLywuTJ0+GSqWCWq2Gk5MT1q5di1KlSqXbyyIiIgK3b99G9erVoaenJwU9NDTzF/Tt2xcrVqzQ6sUxZMgQuLq6olKlSll2juzbWLduHRITE9GrVy/o6OhI5UpE2LVrF9zd3dGuXTvMnj0b1tbWAIDw8HDY2trCwcEBBw4cQPHixQEA79+/x+nTp3H48GGYmZlhwIAB0oTtqa+X1CIiImBiYgIjI6OsO2nGGMsC3MOCMcYYY4wxxhhjDEBISAhmzJgBIyMj+Pr6olevXjh+/Di8vb0BpN/LwsbGBnXr1oW+vr5WxXJSUhIAIF++fFr/CyGgUqkAAIsWLUKlSpWgVqu/63mxb+vOnTuYOXMmJk2ahLt37wKAFKwQQsDZ2Rl//vkndu3ahZCQEGjaChcuXBjjxo3D7du3sWbNGml/BgYGqFevHubMmYOJEyfC3NwcKpUqw2AFkHLdcbCCMfYj4oAFY4wxxhhjjDHGGAAjIyN07doVp0+fxu+//45evXqhQIEC2L59O06ePAkAGQYXNJXSmvW6uroAgL///hsA4OTkJKVNPfxT6qF+WM6iVCq1fteUrb29PUaMGIH3799j1apVeP/+vVY6KysrdO3aFaampvDy8kJYWJi0bvr06ShYsCCWL1+OgIAAre0UCoV0HLlcnmGwgjHGfmT8RmSMMcYYY4wxxhgD4OLiAk9PT9ja2gIAHB0dMWjQIISGhmLLli1ITEyUJj3+mKaFvSb4EBYWhlGjRsHHxwddu3bFH3/8ke4xuVI659EEJjQBhAsXLiA+Pl4rze+//46GDRtiw4YNOHv2LICUstRsW758eTRs2BCBgYH4559/tLafNGkS3r9/j5iYGGm71DiAxRj7mfETkDHGGGOMMcYYY+z/aeYOAFIqrLt06YLKlSvD19cXBw8e/OS2iYmJuHfvHhYsWID+/ftj/vz5qF+/PiZNmvS9s82+IU3AYMeOHShZsiTq1auH+vXrY/78+VKaokWLokuXLtDT08PChQvx8uVLaVu1Wo28efPCxsYGKpUKPj4+uHHjhrRtr1698OLFC7Rp0yZrT4wxxnIBDlgwxhhjjDHGGGOMZaBgwYIYPnw4Xr16hU2bNiEyMlKrJX1qw4cPR+nSpTFlyhTcu3cPXl5eOHTokDS5MsuZiEjqNaP5f8eOHRg0aBAsLCzg4uKCW7duYcyYMVpzT9SpUwft27fHwYMHcejQISQnJwP4EPCQyWSoUqUKTp48CS8vL7x7907aNm/evNI8FYwxxj4QxE9GxhhjjDHGGGOMsQy9efMG7u7uOHDgABYuXIgBAwakm+7MmTPYuXMnKlasiM6dO0tzVahUKq15K1jOoVQqpaGfNOWUmJiI2rVro0iRIpgxYwZKlSqF06dPY8CAAXj06BEOHToEJycnCCEQFBSEvn37QkdHB0uXLoWLiwuSk5Oxb98+9OzZExMmTMD169fRuHFjdOzYMZvPljHGcj4OWDDGGGOMMcYYY4x9xvHjx/H777+jdOnS8Pb2RvHixXHz5k1cu3YNHTp0kNIlJydDR0cHAAcqcpMVK1bg7NmzqFSpEgoVKoTNmzdjzZo1sLKyktJs2bIFAwYMQOPGjbFy5UpYWFggKSkJXl5eGDlyJExMTNC+fXvExsYiJCQEjo6O8Pb2hpGRUTaeGWOM5S4csGCMMcYYY4wxxhj7jPfv38PT0xMLFizAkCFD4ODggI0bN+LMmTP4559/0LBhQymtpqqFJ9TOmdRqtTRs061bt9CxY0dcu3YNCoUCSqUSBgYGMDIyws2bN5E3b14pCPX8+XOMHTsWmzZtwo4dO9CqVSvI5XK8e/cOmzZtwqhRo0BESEhIQNOmTbF8+XIUKVIkzTEZY4xljAMWjDHGGGOMMcYYYxkgIinwcOPGDTRu3BgvX75EYmIijIyMMHXqVAwZMiR7M8ky7f79+0hOTsbff/+NXbt2oXfv3qhTpw42bdqEDRs2QC6XY+vWrXB2dtba7ujRo+jZsycKFCiAXbt2oVChQlr7fPDgAczMzFC5cmUAHKhgjLHM4icmY4wxxhhjjDHGfhgqleqb7k8TrDh79izWrFmDiIgIJCYmwsPDA5GRkVKwgtuD5h5nz55FiRIlMH78eCxYsAC9e/dGnz59UKpUKYwaNQqDBg1CREQE/P398fbtWwAfrqsaNWqga9euOHv2LHx9faFUKgGklL+dnR3q1asnBStUKhUHKxhjLJO4hwVjjDHGGGOMMcZyPSKCWq2W5ox4+PAh8uTJA0NDQ+TJk0erp0Rm93v69Gm4urri/v37qFu3LpYtWwYHBwcAKZM2y+VyHv4pF4mKikK3bt3g5+eHkiVL4saNG9DR0ZEm4L579y769u2L0NBQbNmyBS4uLgA+9Ja4cuUK+vbti+vXr+PMmTMoW7Zs9p4QY4z9QDjMyxhjjDHGGGOMsVxNE4yQy+UICwtDu3btUK9ePTg5OcHZ2RlHjx7VagmfGUII6Ovro2rVqvDx8cHRo0fh4OAAtVoNtVoNhULBwYps8rVtcK2srDBixAiYmpoiIiICd+7cAfChN02JEiXQu3dvvHr1Cps3b0ZUVJTW9hUqVEC7du1Qu3Zt5M+f/7+dBGOMMS0csGCMMcYYY4wxxliuJoSAWq3G3LlzUbFiRZw5cwalSpVCpUqVEBkZifbt22P79u1S2syqUKECvL290bZtWwAfhvrh4X6yl6YsExISMr2tk5MTXF1dERcXB39/fwCAXC6XelG4uLigbdu28PHxwfHjx0FEkMlk0tBQ/fv3x5EjR2BlZfXtTogxxhgHLBhjjDHGGGOMMZa7JScnY9WqVVi0aBFatWqFdevW4cCBA9i9ezeOHz8OlUqFNWvW4MSJEwBShvbJDE1gQrOdZtgplr2ICOPGjcO4ceOQmJiYqW2NjY3Ro0cP2NjYYNeuXbh27ZrWemtra7i5ucHCwgKrV6/G3bt3AXwoewMDAwDffs4Uxhj72XHAgjHGGGOMMcYYY7na69evcfjwYVStWhXTpk1Dw4YNoVAo4O/vj+bNmyM2Nhbnzp3Dtm3bkJiYCJlM9lXDCXGPipzl7NmzmDNnDvz9/aGnp5fp7R0dHTFo0CCcOXMGe/bsQUJCglYviipVqqB169YICAhAeHh4uvvg4BVjjH1bPOk2Y4wxxhhjjDHGcjzNhMgZCQkJQe3atQGkTKo8aNAg7Nq1C5UqVYK7uzvWrl2Lp0+fYvXq1WjduvVnJ+FOvV6pVEKtVkNXV/fbnhT7Ipphmj6mUqlQrVo1XLx4ESEhIahZs2amJ1cPDw9H69at8erVK6xduxZ169bVWh8aGgqlUglHR8f/fB6MMcY+j5sGMMYYY4wxxhhjLMfSDMOkCVbs378fAQEBuHbtGuLi4qR0NWvWBAD873//Q4cOHXDkyBGMGjUK69atg4eHBzw8PPDy5Uts27YNkZGR0rwXH9O069RUel+9ehULFy7E4cOHMz2UFPtvNGUhk8m0yhpICVbI5XJ06NABABAcHAwg83OUFCpUCMOHD8ejR4/g6+uL6OhoAB+uu5IlS8LR0RFqtfqrJ/lmjDH25ThgwRhjjDHGGGOMsWx36tQpvHjxAoD2HBOalvU7duxA0aJF0bZtWzRo0AAVKlRAy5Yt8ezZM610R44cwfHjxzFu3DhMmDAB5cuXB/BhYuYLFy5g9+7dWtukpqnwDg8Px5o1a9C7d2+MHj0aN27c4ArrLKYpi1mzZqFcuXLYtWsXgJRAhmYopsqVK8PExAS3b9/O9DwWmmM0atQILVq0wKpVqxAQEAAg7bUhk8m+asJ2xhhjmcMBC8YYY4wxxhhjjGWrOXPmoGbNmlizZg0A7UmulUolZsyYAXd3d9jZ2WHmzJkICAhA//79cfLkSbi5ueHKlSsAUibf9vb2hrm5OXr37g0jIyPpGAkJCahYsSLCw8Px119/4eHDh9K61IGIN2/eYN++fRg4cCD69u2L+Ph4BAQEYMKECTxfQTYIDg7G+PHj8eDBA/Tr1w+nT5/WCmhZW1vD2toafn5+SE5OBoBMB5bMzc3h4eEBV1dXNGjQ4JvmnzHGWOZkPPgjY4wxxhhjjDHGWBZo3rw5VqxYAUtLS635CmQyGR49eoSVK1fi119/xaJFi1CuXDkAQLly5aCnp4eFCxdiyZIlmDNnDiwtLVGmTBncu3cP58+fR6NGjaBUKnHgwAFMmzYNCxYsQFJSEnR1dVG0aFHp+EIIKJVKnDt3Dt7e3ti0aRNkMhmWL1+Ofv36Zcef5KeT0TwVzs7OcHBwgFqthlwuR5cuXTB//ny0atUKAODg4IBffvkFe/bswf79+9GpU6evOn6dOnWk+SsyOw8GY4yxb4cDFowxxhhjjDHGGMtWjo6OuHDhAiwtLdOs27ZtGyIiIuDj4yMFK27cuIHDhw/D19dX2t7S0hJEhObNm+Pvv//GkCFD0LJlS7x+/RpHjx5FmTJlUL9+fRQrVizNMe7du4ddu3ZhzZo1ePjwITw8PPDXX39BR0fn+544k8hkMimYBKQEDTRBitatW8PLywtBQUFo1qwZRo0aBVNTUynA0LlzZ+zZswenT59G27Ztv2pydE2AIqPACWOMsazBT2DGGGOMMcYYY4xlO0tLSwQGBqJmzZo4cuQIgJSJlR8/fgwTExMUK1YMr1+/xrp169CnTx+MGTMG9vb2CA0NxciRIwGkVDo3bdoUM2fOxMOHD7F48WJs2bIFpUuXxo4dO9INVgDA4cOHMWHCBNjZ2eHu3btYunQpByu+s4+HbVq5ciWqV6+O/fv3S+s1Q3BVrFgRL168QHh4OHbt2gUjIyN06dIFly9fBhHB0dERhQoV+qp5LD7OBwcrGGMse/FTmDHGGGOMMcYYYznC48ePcerUKfj6+iI2NhZyuRy6urqIjY3F0qVL0b9/f/Tu3RuRkZE4cOAA/v33XxQvXhwAEB0djeTkZBgYGGDgwIG4du0aDh48iBMnTmD//v2wtbXVmvsA+FBZ3bx5cwQGBuLo0aMoUaJElp/3z0TTcyL1kEvPnz9HWFgYLl26BA8PD9y9e1crcGBvbw9ra2v4+vqiQoUKWL58OYyMjODq6opjx47Bzs4Otra2CAgISHfi9k/R5CMyMhLR0dHf8EwZY4x9DQ5YMMYYY4wxxhhjLEdwdXVFkyZNsHPnTuzbtw8A0KpVKygUCsyfPx/79+/HggULcO/ePTRt2lTaTqlUom3btli5ciWAlErxkiVLom7duqhYsSKAlN4aH7ee11RW29raolatWllxij89IQRkMhlu376NXr16AQDy58+PBQsWYODAgXj69Cm6deuGkJAQaZtffvkFpUqVwuXLl/Hy5UtUr14dO3fuxPPnz9G/f39ERUWhUaNGAIAdO3YA+HRPidS9Kt69ewc/Pz/06NED3bp1g0ql+h6nzRhj7AtxwIIxxhhjjDHGGGM5ghACEydORHx8PLZs2YKIiAiUL18eTZo0gVKpxIwZMzBkyBCtbS5fvowuXbrg4sWLMDc3l/bzMc3wQiz7TZgwAaVLl8a6deuwePFiafnUqVPh4eGBS5cuYeTIkTh58qS0rlOnTrh06RJevXoFIGWYqGXLliEpKQlt2rRBkSJFAKTMb/L69et0j6sJVAghoFarceHCBUydOhVdunTBsWPH4OTkxNcJY4xlMw5YMMYYY4wxxhhjLMf49ddf0bdvXxw9ehQ+Pj7Ily8fevfuDVNTU8yaNQvLly9HZGQkQkNDsWzZMgwZMgR+fn4YNGgQWrZsmd3ZZ19AM2yTqakpxo0bh9jYWOn3sWPHYujQoTh//jx69uyJZ8+eAQBKly4NQ0NDbN26VdpP27ZtsWLFCjx+/Bhjx46Fnp4e7t27h+Tk5HSPqwlk3bt3D0uWLIGrqyvmz5+Ppk2bIioqCpMmTfqep80YY+wLCPp4diHGGGOMMcYYY4yxbPTkyRNUqlQJ+fPnx/bt21GuXDns2LEDHh4eeP36NczMzEBEePfuHQoXLoxFixahefPm2Z1t9v+IKN1eLkDK3BKTJ0/GunXrUKpUKQQHB6N3795YtWqV1nadOnXCjh070KBBA8yZMwd2dnb47bffYGtrC29vb5iamkr79Pf3R7t27aTAx4ULF1CpUqU0x37x4gUCAgLg5eWFY8eOoVq1alixYgUqVKjw7f8IjDHGvgr3sGCMMcYYY4wxxliOUqhQIYwdOxY3b97Exo0boVKp0KFDB5w8eRLz589Hly5d0L17d3h5eeH+/ftSsOJLJ1pm349KpcowWEFEkMlksLW1RWJiIrp06YLChQtjzZo1uHHjBoQQSEhIAADMnTsXPXr0QEBAAAYMGACVSoU//vgDV69eRWRkpNZ+GzRogClTpqBBgwbYtm1busGKu3fvonfv3ujZsydu3ryJ7du349SpUxysYIyxHIZ7WDDGGGOMMcYYYyzHiY+PR/Xq1REZGYn169fj999/11qvVquliZWVSiUUCkV2ZJOlQ61WY8KECahTpw7q1q0LuVyuVV537tyBo6MjDh48iFevXsHV1RUuLi44duwYgA89NJ48eYIZM2Zg9erVcHZ2Ru/evdG5c2f8+++/qF+/vhQckclkSE5Oho6OjpSHj3t5xMfH/x97dx4f0/X/cfw12TchG7GEWFPUEmrXEtTaWvpV6odai/arrVpKVReKVqlSXehXiW+1VbW1/aJaKkSs1SqqJUgk9khChGyz/P6ITI2EBJGl3s/HY9qZc88959y5E5nczz3nQ9myZXn22Wd5++23C/YNERGRPNMMCxEREREREREpclxdXZkyZQrnzp1jwYIF1mTLFovFeqd+1nMFK4qOLVu24OLiwjvvvMOgQYOYPHkygDVYAZkBJm9vb3788Uf69u1Ls2bNCAsLY9WqVdbtkDnT5qOPPqJTp05s2bKFN998E4DPP/8cyEykntVuVrDCZDIBtonXjUYjrq6unDlzRsEKEZEiTgELERERERERESmSHn/8cVq2bMm+ffu4dOkSkHkhOuti9PXPpeDltGhHQEAARqOREiVK4OjoyCeffMLQoUM5d+6ctU7t2rXx8vIiNjYWg8HA2LFjARg9ejSQGXywWCyYTCbs7OyYNWsWAwYMIDIyEsjMUREbG5vjmOzt7bOVZQW0XF1d7+6ARUTknlPAQkRERERERESKrG+++Ybo6GgqV65c2EORa66fxZCRkWEtNxqNVKlShQkTJnD58mWCgoIYN24cixYtol+/fhw4cMBa96GHHmLfvn0A9OjRgyeffJKYmBjrDAiz2WwNPtSsWZPJkyfTpUsXAKZOnUpAQEBBHKqIiBQw5bAQERERERERkSJPeSoK3415IcaPH8/Vq1eZNGkSZcqUseapMJlMlC1blgsXLrBt2zZiYmJ47rnnKFWqFJ9++int2rVjzJgxLFq0iJ9++omHHnqI3377jVatWpGSksLp06fx8/PDZDLZzJhITU3F2dlZs2pERP7BNMNCRERERERERIo8BSsKj8ViwWw2WwMFX331FRUqVGDmzJk2eSTs7OwwGo3Y29vz3nvvATB58mSeeuopVq1ahaOjI08++SSLFi3ikUceISkpCRcXFwCCg4MZOXIkJpOJ8ePHA2QLTGQFK7JyXIiIyD+PZliIiIiIiIiIiEiufv/9d0aMGMGuXbto27YtQ4cOpU2bNvj5+eVYv2nTpuzevZv//Oc/DBkyhD///JMXXniBTZs2ERISwubNm/nss88YNGgQAHFxcbRu3Zo///yTrVu30rJly4I8PBERKQI0w0JERERERERERG7KaDTy7LPPEhwcTEJCAvPmzePDDz+kd+/e1mBF1v2wFovFOgNi7ty5ALz77rucO3eOmjVrsmjRIsaNG8fmzZtxc3Oz7mc2m/Hz8+OZZ54BID4+vqAPU0REigDNsBARERERERERkZu6cOEC/fv3Z8OGDUyfPp0JEyZkq5OYmIiXl5f1dVY+i6effpqlS5cyfvx4a0JtgAULFuDn50dISAheXl42+TEyMjJwdHS89wcmIiJFjgIWIiIiIiIiIiJyS+Hh4Tz++OOEhITw0UcfUaJECdavX094eDibN2+mRIkSNG/enD59+vDQQw9ZE2afP3+ecuXK4e7uTnh4OHXr1gX+DmjcKCtwoSTrIiL3JwUsRERERERERETuY1nBhVtJSUlh4sSJfPTRR0yaNIlz586xaNEiSpQogY+PDxcvXuTcuXOUK1eOlStX0rhxY+uMienTpzNp0iSeeuopvvzyy4I4JBERKaYUsBARERERERERuQ9dvwxTWloay5cvp2PHjvj5+eU4A+LPP//k8ccf5/jx47i6ujJmzBhGjRqFwWDAzc2N8ePHM3/+fEJCQvj444+pXLmydd/AwEBiYmJYs2YNXbt2zVOQRERE7j9Kui0iIiIiIiIich/KClYsX76c0qVLM2jQIL755huAHJdrqlatGi+99BJBQUGsX7+eKVOm4O3tTalSpXB2dmbcuHH07t2bn376if379wOZgRCA2bNnAzB58mTMZrOCFSIikiMFLERERERERERE7kNJSUnMnj2boUOHYjQacXR05Ouvv+bIkSNAZp6J6zk6OtKjRw8++ugjGjduTNaiHVmBj/Lly9OiRQvMZjMbNmwAwMnJCYAnnniCF154gf/85z85BkNERERAAQsRERERERERkfvS1q1bmTZtGh4eHqxYsYJnnnmG8PBwvvrqKyDnWRblypWjTZs2uLi4WAMVAOnp6QD4+vra/N9gMGAymQCYM2cODRo0yBYIERERyaKAhYiIiIiIiIjIfcjDw4P+/fuzY8cOOnXqxDPPPEPZsmX58ssviYiIALLPssiSNbsia3vWTIrVq1cD0LhxY2vd65d/slgsmmEhIiI3pd8QIiIiIiIiIiL3odatW/PGG29QqVIlAGrWrMkLL7xAZGQkn3/+OWlpadjZ2VmDE9czGAw2wYejR4/y8ssvs3z5cvr3789jjz2WY5/Xz8oQERG5kcGS028dERERERERERG575w6dYru3bsTFRXFggUL+Ne//oXFYskx0JCamsqpU6dYs2YNGzZsYOPGjXTq1IkPPviAqlWrFsLoRUSkuNMMCxERERERERERATITZ48ZM4aEhASWLFnC2bNnMRgMOS4NNWbMGGrVqsXkyZM5duwYCxcuZO3atQpWiIjIHXMo7AGIiIiIiIiIiEjR0alTJ7p3787333/PihUrGDlyZI55J/r374+TkxPBwcH07dvXmqvCZDLZ5K0QERHJKy0JJSIiIiIiIiIiNsLDw+nUqRO1atXiq6++omrVqhw6dIj9+/fz1FNPWetlZGTg6OgIKFAhIiJ3TzMsRERERERERETERsOGDXn22Wd57733+Oijj3jggQcIDQ1l586deHt70759ewAcHR2tSbkVrBARkbulGRYiIiIiIiIiIgJgk2D74MGDdOzYkfj4eNLS0vDw8GDKlCmMGjWqcAcpIiL/WJphISIiIiIiIiJSTOX3MkxZwYpdu3bxxRdfcPr0aQD+/e9/M2PGDNzc3ADbwIaIiEh+UcBCRERERERERKSYsVgsmM1ma7AiOjoad3d33NzccHd3v+OAgsViYceOHTz99NMcP36cNm3a8OGHH/LAAw8AYDQasbe3V7BCRETuCbvCHoCIiIiIiIiIiORdVjDC3t6eo0eP8uSTT9K2bVsaN25Mq1at2LhxI0aj0Vr3dhgMBlxcXGjUqBHLly9n48aNPPDAA5jNZsxmMw4ODgpWiIjIPaMcFiIiIiIiIiIixYzZbGbWrFm89dZblCpVigcffBA3Nzd27dpFSkoKs2fPZsCAAXfctp3d3/e45veyUyIiIjejJaFERERERERERIqRjIwM/vOf/zBnzhx69OhBv379aNOmDQ4ODkRFRREcHMynn35K1apVadmyZbYARG6y6mbtp2CFiIgUFC0JJSIiIiIiIiJSjCQmJrJu3ToaNWrEW2+9Rfv27XFwcOCnn36ia9euJCUlsXv3br744gvS0tKws7O77aWhgNsKcoiIiOQH/eYRERERERERESlisnJQ5KR06dK8/PLLfPvtt1SqVIlz587Ru3dvOnTogLOzM/PmzaN27dqsWLGCtWvX5qm/6wMaRqOR9PT0uz4GERGR26UloUREREREREREioisZZgcHDIv2Xz33Xe4u7vj5+dH1apVcXd3B6Bly5YA/PHHH4wcOZK9e/fy8ssv06dPH+rVq4eTkxPDhw/niy++oHnz5vj7++e4NFRWAu+sRNq///47P/74I9WrV6dr166aZSEiIgVKv3VERERERERERArY9u3biYuLAzKDFFmyAgTLli0jMDCQnj178uijj1K/fn26d+/OmTNnbOqtX7+e8PBwJk6cyKRJk6hXrx4AqampAPzyyy+sXLnSZp/rZQUqYmNj+fTTTxk2bBjjx4/n4MGDd7SMlIiIyN1QwEJEREREREREpADNmDGDli1b8umnnwK2Sa6NRiPTpk1j0KBBVKlShenTp7Np0yaee+45IiIiGDBgAPv27QMyk29/9dVXeHl5MWzYMDw8PKx9pKamEhwcTGxsLLNnzyY6Otq67fpAxKVLl/j22295/vnnGTFiBCkpKWzatIlJkyYp2baIiBQ4LQklIiIiIiIiIlKAunbtyscff4yfn5/NMk12dnacOHGCTz75hCZNmjBnzhzq1q0LQN26dXF2dub999/ngw8+YMaMGfj5+VG7dm2OHTvGnj176NChA0ajke+//5633nqL9957j/T0dJycnAgMDLT2bzAYMBqN7N69m6+++oolS5ZgZ2fHRx99xLPPPlsYb4mIiAiggIWIiIiIiIiISIGqWbMmv/zyC35+ftm2ffHFF5w+fZrly5dbgxUHDx5k3bp1rFixwrq/n58fFouFrl27snr1akaNGkX37t1JTExk48aN1K5dm3bt2lG5cuVsfRw7doxvvvmGTz/9lOjoaP79738ze/ZsHB0d7+2Bi4iI5EJLQomIiIiIiIiIFDA/Pz82b95My5YtWb9+PQAmk4mYmBg8PT2pXLkyiYmJfPbZZwwfPpwJEyYQFBREZGQk48aNAzJnSnTp0oXp06cTHR3N3Llz+fzzz6lVqxbLli3LMVgBsG7dOiZNmkSVKlU4cuQI8+bNU7BCRESKBM2wEBEREREREREpBDExMWzfvp0VK1bQokULPD09cXJyIikpiXnz5hEVFcXy5csJDAzk+++/p0uXLtZ9L1y4QMmSJXF1deX555+nY8eOxMbG4uXlRXBwMIDNclOQmbvCYDDQtWtX6tevz8MPP1zgxywiInIrBsv1mZZERERERERERKRAWCwWHn/8ccLCwvjkk0/o378/mzZtolOnTgA4Ojoybdo0Ro0aZbOf0WikXbt2PPHEE7zwwgvWQMT1TCaTkmaLiEixoyWhREREREREREQKgcFg4LXXXiMlJYXPP/+c06dPU69ePTp37ozRaMwxWPHbb7/Rr18/9u7di5eXl7WdGylYISIixZECFiIiIiIiIiIihaRJkyaMGDGCjRs3snz5cnx9fRk2bBglS5bk7bff5qOPPuLs2bNERkby4YcfMmrUKDZs2MALL7xA9+7dC3v4IiIi+UpLQomIiIiIiIiIFKKTJ0/SoEEDSpcuzZdffkndunVZtmwZ//73v0lMTKRUqVJYLBaSk5MJCAhgzpw5dO3atbCHLSIiku8UsBARERERERERKWTvv/8+Y8aMYdSoUcycORN7e3v++usv1q1bR3R0NI6OjtStW5cBAwZY97kxqbaIiEhxp4CFiIiIiIiIiEghS0lJoXnz5pw9e5ZFixZZE29nuT44YTQacXBwKIxhioiI3FMKw4uIiIiIiIiIFDJXV1emTJnCuXPnWLBgAQkJCQBYLBYsFgt2dnbW5wpWiIjIP5VmWIiIiIiIiIiIFBGPPPIIMTExbN68mcqVKxf2cERERAqUAhYiIiIiIiIiIkXEuXPnKFOmTGEPQ0REpFAoYCEiIiIiIiIiUsQoT4WIiNyPFLAQEREREREREREREZFCp6TbIiIiIiIiIiIiIiJS6BSwEBERERERERERERGRQqeAhYiIiIiIiIiIiIiIFDoFLEREREREREREREREpNApYCEiIiIiIiIiIiIiIoVOAQsRERERERERERERESl0CliIiIiIiIiIiIiIiEihU8BCREREREREREREREQKnQIWIiIiIiIiIiIiIiJS6BSwEBERERERERERERGRQqeAhYiIiIiIiIiIiIiIFDoFLEREREREREREREREpNApYCEiIiIiIiIiIiIiIoVOAQsRERERERERERERESl0CliIiIiIiIiIiIiIiEihU8BCREREREREREREREQKnQIWIiIiIiIiIiIiIiJS6BSwEBERERERERERERGRQqeAhYiIiIiIiIiIiIiIFDoFLEREREREREREREREpNApYCEiIiIiIiIiIiIiIoVOAQsRERERERERERERESl0CliIiIiIiIiIiIiIiEihU8BCREREREREREREREQKnQIWIiIiIiIiIiIiIiJS6BSwEBERERERERERERGRQqeAhYiIiIiIiIiIiIiIFDoFLEREREREREREREREpNApYCEiIiIiIiIiIiIiIoVOAQsRERERERERERERESl0CliIiIiIiIiIiIiIiEihU8BCREREREREREREREQKnQIWIiIiIiIiIiIiIiJS6BSwEBERERERyYNTp04xZ84c2rdvT8WKFXFycsLf359//etf7Nq1K8d9kpKSGD16NJUqVcLZ2ZnAwEDGjRtHcnJyjvXNZjPz5s2jTp06uLq64ufnR58+fTh+/Pi9PDQRERERkSLBYLFYLIU9CBERERERkaJuwoQJzJgxg6pVq9K6dWv8/PyIjIxkzZo1WCwWvvzyS3r37m2tf+XKFVq2bMm+ffto3749wcHB/Pbbb/z44480atSIrVu34uLiYtPHM888w8KFC6lduzZdunTh9OnTLF++HA8PD3bu3En16tUL+rBFRERERAqMAhYiIiIiIiJ5sGrVKnx8fGjVqpVNeXh4OG3btsXDw4MzZ87g7OwMwBtvvMGUKVMYP34877zzjrV+VuBj+vTpvPLKK9byzZs306ZNGx555BF++uknnJycAFi/fj2dO3emffv2bNiwoQCOVERERESkcChgISIiIiIicpc6dOjAjz/+yJ49e3jooYewWCxUqFCBpKQkzp49i7u7u7XulStX8Pf3p3Tp0hw7dsxa/n//93989dVXbNmyhUceecSm/ZCQEMLCwjhx4gQVK1YssOMSERERESlIDoU9ALk7qampHDhwAAA/Pz8cHHRKRURERCR3RqORuLg4AOrUqZNtaSK5PY6OjgDW7+ORkZGcPn2aDh062AQrANzd3WnRogUbNmwgNjaWgIAAAMLCwqzbbtShQwfCwsLYsmUL/fv3z/O4Tp48ecvtqamp/PXXX5QpU0Z/T4iIiIhInt2rvyf0bbSYO3DgAI0bNy7sYYiIiIhIMbZ7924aNWpU2MMotmJiYti4cSNly5alTp06QGbAArhpzonq1auzYcMGIiMjCQgI4MqVK5w5c4YHH3wQe3v7HOtf325eZQVDRERERETulfz8e8IuX1oRERERERG5D2VkZNC/f3/S0tKYMWOGNdhw6dIlAEqWLJnjfp6enjb1bre+iIiIiMg/kWZYFHN+fn7W51u3bqVy5cqFOBrJq5SUFLZu3QrAI488gqurayGPSHKjc1Y86bwVTzpvxY/OWfEUFRVlzZNw/XdKyTuz2czAgQPZunUrzzzzzG0t1VRQYmNjc93evHlzIPPvCX9//4IYloiIiIgUc2fPnr0nf08oYFHMXb/GrL+/PxUqVCjE0UhepaSk4OvrC0CFChV0YacY0DkrnnTeiiedt+JH56x4SklJsT5X3oLbZzabGTx4MF9++SX9+vVj/vz5NtuzZkrcbEZEUlKSTb3brZ9Xt/P3QeXKlfX3hIiIiIjkyfV/9+Xn3xNaEkpEREREROQ2mM1mBg0axJIlS+jTpw+hoaHY2dn+aZVbzokbc1y4u7tTtmxZoqKiMJlMudYXEREREfknUsBCREREREQkj7KCFf/973/p3bs3n3/++U2TZJcrV46IiAiuXLlis+3KlStERERQuXJlm6TYrVq1sm670YYNGwCs0+5FRERERP6JFLAQERERERHJg6xloP773//y5JNPsnTp0hyDFQAGg4GhQ4eSnJzMW2+9ZbPtrbfeIjk5mWeeecamfNiwYQC89tprpKenW8vXr19PWFgY7du3p1KlSvl8VCIiIiIiRYcWqxUREZF8YbFYuHDhAleuXCEjI+OO2zGbzfj4+AAQExOTbZkVKXp0zoouR0dH3N3d8fX1xWAwFPZwir0pU6awZMkSPDw8qFGjBlOnTs1Wp3v37tSvXx+Al19+mW+//ZYZM2bw22+/0aBBA3799Vd+/PFHGjVqxKhRo2z2DQkJYejQoSxcuJAGDRrQpUsXzpw5w9dff423tzfz5s0rgKMUERERESk8CliIiIjIXbNYLJw7d47ExMR8aSsreZfJZMJsNt91m3Jv6ZwVXUajkZSUFEwmE2XKlFHQ4i5FR0cDkJyczLRp03KsExgYaA1YuLu7s2XLFt58801WrlzJ5s2bKVu2LGPGjOGNN97IMUH9ggULqFOnDp9++ilz587Fw8ODHj16MG3aNKpWrXqvDk1EREREpEhQwEJERETu2oULF2yCFfb29nd1YTRrXwcHfVUpLnTOih6LxWJN3pyYmIi9vT1+fn6FPKriLTQ0lNDQ0Nvap2TJkrz//vu8//77eapvZ2fHCy+8wAsvvHAHIxQRERERKd70F6WIiIjctesTypYtW5ZSpUrdcVtms5mkpCQAPD09tbxQMaBzVnRdvHiRM2fOAJk/pwpYiIiIiIhIUaa/JkVEROSuZeWssLe3v6tghYjkr1KlSlmTQhuNxkIejYiIiIiIyK0pYCEiIiL5RuvjixQ9WT+XFoulkEciIiIiIiJyawpYiIiIiIiIiIiIiIhIoVPAQkRERO5brVu3ZtSoUYU9jGJpzZo1VKtWDXt7e1566SW+/PJLKlWqVCB9BwYGMmfOnALpKy/i4+MpXbo00dHRBd5306ZNWblyZYH3KyIiIiIici8oYCEiIiL3rVWrVvHWW28VWH9bt27l8ccfp1y5chgMBtasWZOtzsCBAzEYDDaPjh072tTJKt+5c6dNeVpaGj4+PhgMBsLCwoDMC9ojRoywqTd//nwMBgOhoaHZ+n744YfzdCzDhw+nZ8+exMbGMmXKlDztc7tCQ0NzzImyZ88ehg0bdk/6vBPTpk2jW7duBAYGAvD777/Tp08fAgICcHV1pWbNmsydO/e2283L52XSpElMmDABs9l8l0chIiIiIiJS+BSwEBERkfuWt7c3JUqUKLD+rly5Qr169fjoo49uWa9jx46cOXPG+vjqq6+y1QkICGDx4sU2ZatXr8bDw8OmLCQkxBq8yLJ582YCAgKylYeFhdGmTZtcjyM5OZnz58/ToUMHypUrV6DvIYCfnx9ubm4F2ufNXL16lc8++4whQ4ZYy/bu3Uvp0qVZunQpf/zxB6+++iqvvPIKH3744W21nZfPS6dOnbh8+TLr16+/42MQEREREREpKhSwEBERkfvWjUtCpaWlMXbsWMqXL4+7uztNmjSxuagfHx9Pnz59KF++PG5ubtSpUyfHYMLNdOrUialTp9KjR49b1nN2dsbf39/68PLyylZnwIABLFu2jJSUFGvZokWLGDBggE29kJAQDh8+zNmzZ61lW7ZsYcKECTbHFhUVxYkTJwgJCbnl2MLCwqwBijZt2tjM5rjRJ598QtWqVXFyciIoKIjPP//cZvvs2bOpU6cO7u7uBAQE8Nxzz5GcnGztZ9CgQVy6dMk6o+TNN98Esi8JZTAYWLhwIT169MDNzY3q1avz3Xff2fT13XffUb16dVxcXAgJCWHJkiUYDAYuXrx4y+PNzbp163B2dqZp06bWssGDBzN37lxatWpFlSpV6NevH4MGDWLVqlW31XZePi/29vZ07tyZZcuW3fExiIiIiIiIFBUKWIiIiIhcM3LkSHbs2MGyZcvYv38/Tz75JB07diQyMhKA1NRUGjZsyNq1azl48CDDhg2jf//+7N69O1/HERYWRunSpQkKCuLZZ58lPj4+W52GDRsSGBhozV8QExPD1q1b6d+/v029Fi1a4OjoyObNmwE4dOgQKSkpDBkyhPj4eKKiooDMWRcuLi40a9bslmNr3rw5hw8fBmDlypWcOXOG5s2bZ6u3evVqXnzxRcaMGcPBgwcZPnw4gwYNso4DwM7Ojg8++IA//viDJUuW8PPPP/Pyyy9b+5kzZw6enp7WmSZjx4696bgmT55Mr1692L9/P507d6Zv374kJCQAmcGYnj170r17d37//XeGDx/Oq6++esvjzKvw8HAaNmyYa71Lly7h7e2dL33eqHHjxoSHh9+TtkVERERERAqSQ2EPQERERP65FoYfZ2F4VK71HizvycIBjWzKXlxxiMPnrwKGW+479OHKDH24yt0ME8i84L948WJiYmIoV64cAGPHjuWHH35g8eLFTJ8+nfLly9tcNH/++efZsGEDy5cvp3Hjxnc9BshcDuqJJ56gcuXKHDt2jIkTJ9KpUyd27NiBvb29Td3BgwezaNEi+vXrR2hoKJ07d8bPz8+mjru7O40bNyYsLIw+ffoQFhZGy5YtcXZ2pnnz5oSFhVG5cmXCwsJo1qwZzs7Otxyfk5MTpUuXBjKX1PL3988xf8KsWbMYOHAgzz33HACjR49m586dzJo1yzqL4/rZLYGBgUydOpURI0bw8ccf4+TkRMmSJTEYDPj7++f6vg0cOJA+ffoAMH36dD744AN2795Nx44dWbBgAUFBQcycOROAoKAgDh48yLRp03JtNzcnTpywfl5uZvv27Xz99desXbv2rvvLSbly5YiNjcVsNmNnp/uRRERERESk+FLAQkRERO6Zy6lGzial5lqvbCmXbGWJV42cTUrLUx/54cCBA5hMJmrUqGFTnpXIGsBkMjF9+nSWL1/OqVOnSE9PJy0tLV/zKTz11FPW53Xq1KFu3bpUrVqVsLAw2rZta1O3X79+TJgwgePHjxMaGsoHH3yQY5utW7fmm2++ATJnb7Ru3RqAVq1aWZdeCgsL45lnnsm34/jzzz+zJcZu0aKFTfLpjRs38vbbb/PXX3+RlJSE0WgkNTWVq1ev3vZ7WrduXetzd3d3PD09OX/+PACHDx+mUSPbgFhuAaYRI0awdOlS6+uspapulJKSgotL9s9vloMHD9KtWzfeeOMN2rdvn+tx3AlXV1fMZjNpaWm4urrekz5EREREREQKggIWIiIics+UcHHA3/PmF3Oz+Lg7ZSvzcnPA39OZ3GZYlHDJn68zycnJ2Nvbs3fv3mwzGbISWc+cOZO5c+cyZ84ca+6FUaNGkZ6eni9jyEmVKlXw9fXl6NGj2QIWPj4+PPbYYwwZMoTU1FRrAuYbhYSEMG3aNE6dOkVYWJh1lkirVq1YsGABx44dIzY2Nk8Jt/NLdHQ0jz32GM8++yzTpk3D29ubbdu2MWTIENLT0287YOHo6Gjz2mAw5DjzI6+mTJlyyyWosvj6+pKYmJjjtkOHDtG2bVuGDRvGpEmT7ngsuUlISMDd3V3BChERERERKfYUsBAREZF7ZujDVe54uaa5PWvh6elZYEvcBAcHYzKZOH/+PA8//HCOdSIiIujWrRv9+vUDwGw2c+TIEWrVqnXPxnXy5Eni4+MpW7ZsjtsHDx5M586dGT9+fLZAS5bmzZvj5OTExx9/bM3DAdCoUSPi4uJYtGiRdemo/FKzZk0iIiJskoBHRERY36u9e/diNpt57733rOd4+fLlNm04OTlhMpnueixBQUGsW7fOpmzPnj233Kd06dLWpa9uJTg42GYmRpY//viDNm3aMGDAgHxZeupWDh48SHBw8D3tQ0REREREpCAoYCEiIiIC1KhRg759+/L000/z3nvvERwcTFxcHJs2baJu3bp06dKF6tWrs2LFCrZv346XlxezZ8/m3LlzeQ5YJCcnc/ToUevrqKgo9u3bh7e3NxUrViQ5OZnJkyfzr3/9C39/f44dO8bLL79MtWrV6NChQ45tduzYkbi4ODw9PW/ar6urK02bNmXevHm0aNHCGthwcnKyKb9xlsLdGDduHL169SI4OJh27drx/fffs2rVKjZu3AhAtWrVyMjIYN68eTz++ONEREQwf/58mzYCAwNJTk5m06ZN1KtXDzc3tztafmv48OHMnj2b8ePHM2TIEPbt20doaCiQORPjbnTo0IFXXnmFxMREvLy8gMwAQps2bejQoQOjR4/m7NmzANjb22fLMXIruX1esoSHh9+z5aZEREREREQKkrLyiYiIiFyzePFinn76acaMGUNQUBDdu3dnz5491ovDkyZNokGDBnTo0IHWrVvj7+9P9+7d89z+L7/8QnBwsPVu+NGjRxMcHMzrr78OZF7Q3r9/P127dqVGjRoMGTKEhg0bEh4eftNk2AaDAV9fX5ycsi+rdb2QkBAuX75szV+RpVWrVly+fNmaCDu/dO/enblz5zJr1ixq167NggULWLx4sbX/evXqMXv2bGbMmMGDDz7IF198wdtvv23TRvPmzRkxYgS9e/fGz8+Pd999947GUrlyZVasWMGqVauoW7cun3zyCa+++ipArknGc1OnTh0aNGhgMztkxYoVxMXFsXTpUsqWLWt9XJ9HIzo6GoPBQFhY2E3bzu3zAnDq1Cm2b9/OoEGD7uo4REREREREigKDxWKxFPYg5M6dPHmSgIAAAI4cOUL16tULeUSSFykpKfz4448AtG/fXmtOFwM6Z8WTzlvBiYyMxGg04uDgcNe/i8xmM0lJSQAFuiSU3LnieM6mTZvG/PnziY2Nveu21q5dy7hx4zh48GCej33z5s088cQTHD9+3Doz406MHz+exMREPv3005vWudnPZ2RkpDXJfGxsLBUqVLjjcUjxdf3fE/ociIiIiEhe3avvkVoSSkRERET+8T7++GMaNWqEj48PERERzJw5k5EjR+ZL2126dCEyMpJTp05Zv7DnZt26dUycOPGughWQmWtj9OjRd9WGiIiIiIhIUaGAhYiIiEg+iImJuWUui0OHDtnkHSjKOnXqRHh4eI7bJk6cyMSJEwt4RHcvMjKSqVOnkpCQQMWKFRkzZgyvvPJKvrU/atSo26o/c+bMfOl3zJgx+dKOiIiIiIhIUaCAhYiIiEg+KFeuHPv27bvl9uJi4cKFpKSk5LjN29u7gEeTP95//33ef//9wh6GiIiIiIiI3IICFtcsXbqU8PBw9u7dy4EDB0hPT2fx4sUMHDjwttoxm8189NFHfPrppxw9ehQPDw/atWvHtGnTqFKlyr0ZvIiIiBQ6BwcHqlWrVtjDyBfly5cv7CGIiIiIiIjIfajoZ0QsIJMmTeLTTz/lxIkTlC1b9o7bGT58OC+88AIWi4UXXniBjh07smrVKho1akRkZGQ+jlhERERERERERERE5J9DAYtrFi5cSHR0NHFxcYwYMeKO2ti8eTMLFy7kkUce4ddff2XGjBl8/vnnrFmzhoSEhHxL7CgiIiIiIiIiIiIi8k+jJaGuadeu3V238Z///AeAt956CycnJ2t5p06daN26NT/++CMxMTHFJuGmiIiIiIiIiIiIiEhBUcAiH4WFheHu7k6LFi2ybevQoQNhYWFs2bKF/v3757nNkydP3nL7mTNnrM/T0tJumiDzfnA1KZ3khLS872AAOzsDBjvDtf+DwXDDazsDdvYGnN0cMBgM+TbW1NTUHJ9L0aVzVjzpvBUcs9mMxWKxPr/btnJ6LkWXzlnRZ7FYMJvNNt8V09Ju43uTiIiIiIhIAVDAIp9cuXKFM2fO8OCDD2Jvb59te/Xq1QFuO49FQEBAnuvu2rWLY8eO3Vb7/xSp8fZc2OMKlvwLKlzP0dOEX+Or2Dnmf9tbt27N/0blntI5K5503u4tHx8fXF1dMRgMJCUl5Vu7ycnJ+daWFAyds6LHaDSSkpJCSkoKf/31l7X8woULhTgqERERERGR7JTDIp9cunQJgJIlS+a43dPT06ae5K/U8w73LFgBkJFkT8J+F67dPCwiIv8Qjz32GK+88kphD6NYWrt2LQ0aNMDHx4dXXnmFL7/8kkqVKhVI33Xr1uWTTz4pkL7yIiEhgerVqxMTE1Og/aanp1O3bl1+++23Au1XRERERETkXtEMiyIuNjb2ltvPnDlD48aNAWjSpAlVq1YtiGEVOdsvHeev6HMAVG3oi4t77lMhMpdGsGAxZz63mLNeXyu79vrs0STSU02knnekjKEK9dtXuOvxpqamWu/2fuSRR3BxcbnrNuXe0jkrnnTeCk5MTAwmkwkHBwdrkP5Omc1m6136Hh4e2Nndu/sr1qxZg6OjIyVKlLhnfVxv69atzJo1i19//ZUzZ86wcuVKunfvblNn0KBB/Pe//7Upa9++PevXr7e+zprNGRERQdOmTa3laWlpVKhQgYSEBDZt2kTr1q1p3rw59erVs7nAP3/+fP7973/z2WefMXDgQJu+jx8/zpYtW3I9ltGjRzNw4ECef/553N3d+eqrr4D8PWehoaGMHj2ahIQEm/I9e/bg7u6Om5tbvvRztyZPnky3bt148MEHAfj999+ZMWMGERERXLhwgcDAQIYPH84LL7xw2+1OmTLFpiwoKIhDhw5ZX48bN46pU6fy008/3bSduLg4XF1d8fDwoGHDhtby+3VmroiIiIiIFF0KWOSTrJkVN5tBkbU8xs1mYNxMhQp5vzju7OyMq6vrbbX/j3Hd7IrGj1XFu6x7vjV94o94/vfh72CBX3+IpWwVLwLr+OZb+y4uLvfveSumdM6KJ523e8vOzs6auyA/Awx2dnb3NGDh65t//57nRUpKCvXr12fIkCE88cQTOR6fwWCgY8eOLF682Frm7OycrV5AQABLliyhefPm1rJvv/0WDw8PEhISrG2HhISwevVqm/23bNlCQEAAW7duZfDgwTblAwYMyPU9T05O5vz583Ts2JEKFSrY5K3Iz3OW1c6N7ZUpUyZf2s8PV69eZdGiRWzYsME6zt9++40yZcqwdOlSAgIC2L59O8OGDcPBwYGRI0fmuW2DwUDt2rXZuHGjtczBwcHm/ejXrx9jx47lzz//pHbt2rdsy87OzubfQWdn59s5VBERERERkXtOS0LlE3d3d8qWLUtUVBQmkynb9qzcFVm5LCR/GTP+vlDi4Ji/H+tKtX1o0rVK5gsL/LToEBfPX83XPkREpHC0bt2aUaNGWV+npaUxduxYypcvj7u7O02aNCEsLMy6PT4+nj59+lC+fHnc3NyoU6eOdWZBXnTq1ImpU6fSo0ePW9ZzdnbG39/f+vDy8spWZ8CAASxbtswmifKiRYsYMGCATb2QkBAOHz7M2bNnrWVbtmxhwoQJNscWFRXFiRMnCAkJueXYwsLCrDNS2rRpg8FgsGnnep988glVq1bFycmJoKAgPv/8c5vts2fPpk6dOri7uxMQEMBzzz1nnV0TFhbGoEGDuHTpEgaDAYPBwJtvvglAYGAgc+bMsbZjMBhYuHAhPXr0wM3NjerVq/Pdd9/Z9PXdd99RvXp1XFxcCAkJYcmSJRgMBi5evHjL483NunXrcHZ2tpnpMnjwYObOnUurVq2oUqUK/fr1Y9CgQaxateq223dwcLD5LNwYZPPy8qJFixYsW7bsro5DRERERESkKFDAIh+1atWKK1euEBERkW3bhg0bgMwlSST/ma4LWNjnc8ACoGHHSlSp7wdAeoqR9fMPkJ5qzPd+RESkcI0cOZIdO3awbNky9u/fz5NPPknHjh2tNx6kpqbSsGFD1q5dy8GDBxk2bBj9+/dn9+7d+TqOsLAwSpcuTVBQEM8++yzx8fHZ6jRs2JDAwEBWrlwJZC7LtXXrVvr3729Tr0WLFjg6OrJ582YADh06REpKCkOGDCE+Pp6oqCgANm/ejIuLC82aNbvl2Jo3b87hw4cBWLlyJWfOnLGZ5ZFl9erVvPjii4wZM4aDBw8yfPhwBg0aZB0HZM6c+OCDD/jjjz9YsmQJP//8My+//LK1nzlz5uDp6cmZM2c4c+YMY8eOvem4Jk+eTK9evdi/fz+dO3emb9++1qWkoqKi6NmzJ927d+f3339n+PDhvPrqq7c8zrwKDw+3WWbpZi5duoS3t/dttx8ZGUm5cuWoUqUKffv2zTFPRuPGjQkPD7/ttkVERERERIoaLQl1By5cuMCFCxfw9fW1uctt2LBhLFu2jNdee42ffvoJJycnANavX09YWBjt27cvsGSU9xvTPZxhAZl3brYdUJPEs1dIPHuVhNNX2Pz5X7QfWhuD4d4l+xYRKfa2fwg7Psq9Xtl68H+2d4i7fzcEQ9yhm+xwnWb/huZ5X2bnZmJiYli8eDExMTGUK1cOgLFjx/LDDz+wePFipk+fTvny5W0umj///PNs2LCB5cuXW3NK3a2OHTvyxBNPULlyZY4dO8bEiRPp1KkTO3bssOauyDJ48GAWLVpEv379CA0NpXPnzvj5+dnUcXd3p3HjxoSFhdGnTx/CwsJo2bIlzs7ONG/enLCwMCpXrkxYWBjNmjXLdZkgJycnSpcuDYC3tzf+/v42S0JlmTVrFgMHDuS5554DMnNe7Ny5k1mzZllncVw/uyUwMJCpU6cyYsQIPv74Y5ycnChZsiQGgwF/f/9c37eBAwfSp08fAKZPn84HH3zA7t276dixIwsWLCAoKIiZM2cCmXkgDh48yLRp03JtNzcnTpywfl5uZvv27Xz99desXbv2ttpu0qQJoaGhBAUFcebMGSZPnszDDz/MwYMHbfKulCtXjhMnTtzR+EVERERERIoSBSyuWbhwIdu2bQPgwIED1rKsJQ5atmzJ0KFDAfjwww+ZPHkyb7zxhnVpAshccmHo0KEsXLiQBg0a0KVLF86cOcPXX3+Nt7c38+bNK9Bjup8Y7/EMCwAnVwc6jajDN+/8QkaqiaN7z1O6kifB7Svek/5ERP4R0i7D5dO51ytZPluR4Wo8hrzsm3b5DgaW3YEDBzCZTNSoUcO2+bQ0fHx8ADCZTEyfPp3ly5dz6tQp0tPTSUtLy9fkz0899ZT1eZ06dahbty5Vq1YlLCyMtm3b2tTt168fEyZM4Pjx44SGhvLBBx/k2Gbr1q355ptvgMzZG61btwYyZ4dmLb0UFhbGM888k2/H8eeffzJs2DCbshYtWjB37lzr640bN/L222/z119/kZSUhNFoJDU1latXr972e1q3bl3rc3d3dzw9PTl//jwAhw8fplGjRjb1cwswjRgxgqVLl1pfZy1VdaOUlBRcXFxu2s7Bgwfp1q0bb7zxBu3bt8/1OK7XqVMn6/O6devSpEkTKlWqxPLlyxkyZIh1m6urK1evarlKEREREREp/rQk1DXbtm1jyZIlLFmyhF9//RWAiIgIa1lWMCM3CxYssP4hPnfuXNatW0ePHj3YvXt3tgsgkn9sAhYO9+5j7eXvTruBtayvd6w+SuxfCfesPxGRYs+5BJQol/vDLXvya4ubD5a87OtcIoeOb19ycjL29vbs3buXffv2WR9//vmn9Xf7zJkzmTt3LuPHj2fz5s3s27ePDh06kJ6eni9jyEmVKlXw9fXl6NGj2bb5+Pjw2GOPMWTIEFJTU20ucF8vJCSEI0eOcOrUKcLCwmjVqhXwd8Di2LFjxMbG0qZNm3t2HDeKjo7mscceo27duqxcuZK9e/fy0UeZs3Hu5P10dHS0eW0wGHKc+ZFXU6ZMsfkc3Iyvry+JiYk5bjt06BBt27Zl2LBhTJo06Y7HkqVUqVLUqFEj22chISEh28wauXeWLl3K8OHDeeihh3B2dsZgMBAaGppj3az8K7d6xMbGWutHR0ffsu71N0uJiIiIiPwTaYbFNaGhoTf9Q+NGb7755k3/WLCzs+OFF17ghRdeyL/BSa6yloSyd7S750s0Vanvx0OdA/llXTQWC/z4nz94cuJDePq43tN+RUSKpeYj73i5pitdP8PT0xODXcHcXxEcHIzJZOL8+fM8/PDDOdaJiIigW7du9OvXDwCz2cyRI0eoVatWjvXzw8mTJ4mPj6ds2bI5bh88eDCdO3dm/Pjx2ZaMytK8eXOcnJz4+OOPrXk4ABo1akRcXByLFi2yLh2VX2rWrElERIRNEvCIiAjre7V3717MZjPvvfcedtfO8fLly23acHJywmQy3fVYgoKCWLdunU3Znj17brlP6dKlrUtf3UpwcLDNTIwsf/zxB23atGHAgAH5svQUZAbVjh07li1PycGDBwkODs6XPiR3kyZN4sSJE/j6+lK2bNlbLsf1xhtv5Fh+9OhRvvjiC2rVqkVAQEC27fXq1aN79+7ZyrNmR4mIiIiI/FMpYCH/CCZjZsDiXuSvyEmjxypz/sRlYv6IJ/VKBj8sOMgTYxvg4JTzhSIRESn6atSoQd++fXn66ad57733CA4OJi4ujk2bNlG3bl26dOlC9erVWbFiBdu3b8fLy4vZs2dz7ty5PAcskpOTbe6Oj4qKYt++fXh7e1OxYkWSk5OZPHky//rXv/D39+fYsWO8/PLLVKtWjQ4dOuTYZseOHYmLi8PT0/Om/bq6utK0aVPmzZtHixYtrIENJycnm/IbZyncjXHjxtGrVy+Cg4Np164d33//PatWrWLjxo0AVKtWjYyMDObNm8fjjz9OREQE8+fPt2kjMDCQ5ORkNm3aRL169XBzc7uj5beGDx/O7NmzGT9+PEOGDGHfvn3WG1Xu9kaHDh068Morr5CYmIiXlxeQGUBo06YNHTp0YPTo0Zw9exYAe3v725oJMXbsWB5//HEqVarE6dOneeONN7C3t7fm6sgSHh7OW2+9dVfHIXm3cOFCqlevTqVKlXjnnXd45ZVXblr3Zjc5Pf/88wA2S3tdr379+ppNISIiIiL3JS0JJf8IxvTMuy/vVf6KG9nZGXh0cC08/TJnVcTFXGbLl4exWCwF0r+IiNwbixcv5umnn2bMmDEEBQXRvXt39uzZQ8WKmfmKJk2aRIMGDejQoQOtW7fG398/x7ugb+aXX34hODjYejf86NGjCQ4O5vXXXwcyL2jv37+frl27UqNGDYYMGULDhg0JDw+/aTJsg8GAr68vTk5Ot+w7JCSEy5cvZ7tDu1WrVly+fNmaCDu/dO/enblz5zJr1ixq167NggULWLx4sbX/evXqMXv2bGbMmMGDDz7IF198wdtvv23TRvPmzRkxYgS9e/fGz8+Pd999947GUrlyZVasWMGqVauoW7cun3zyCa+++ipArknGc1OnTh0aNGhgMztkxYoVxMXFsXTpUsqWLWt9XJ9HI2vpn6x8aTk5efIkffr0ISgoiF69euHj48POnTttgh47duzg0qVL9OzZ866OQ/KuXbt2VKpU6Y73T01N5YsvvsDJySnbbBkRERERkfudwaIrrMXayZMnrdPIjxw5QvXq1Qt5RIVj0bhwUi5n4OnrQv+pzQus3/hTyayY8QvG9MwZHo88VYM6rSvkul9KSgo//vgjAO3bt8fVVctJFXU6Z8WTzlvBiYyMxGg04uDgcNe/i8xmM0lJSQB4enpalwuSoqs4nrNp06Yxf/58m/wBd2rt2rWMGzeOgwcP5vnYN2/ezBNPPMHx48etMzPuRO/evalXrx4TJ068aZ2b/XxGRkZac6zFxsZSoULu32HEVtYMi8WLFzNw4MA87fPll1/St29fevbsyTfffGOzLTo6msqVK/Poo4/SrVs3Ll26RJkyZWjdujVVq1a9ozGePHnyltvPnDljXQ7uyJEj+hyIiIiISJ6cPHnynvw9oSWh5B8hK+n2vUy4nROf8h606V+THz/7A4BtyyPxqeBBuWqlCnQcIiIicmsff/wxjRo1wsfHh4iICGbOnMnIkXeWX+VGXbp0ITIyklOnTuWYjyAn69atY+LEiXcVrEhPT6dOnTq89NJLd9yGFLzPPvsMgKFDh960zk8//cRPP/1kfW0wGOjbty/z58/H3d39tvrL62cSYOvWrfj6+t5W+yIiIiJyf7pw4cI9abfo3/4mkgem9L+Tbhe06o3KUL9d5h+CZrOFDZ8e5MrFtAIfh4iIFK6YmBg8PDxu+oiJiSnsIeZZp06dbnoc06dPL+zh3ZHIyEi6detGrVq1eOuttxgzZky+5ggYNWrUbV0YnjlzJuPGjburPp2cnJg0aZJmjxUjUVFRbN68mYoVK/Loo49m2+7m5sZrr73G3r17uXjxIgkJCWzcuJHGjRuzdOlSnn766UIYtYiIiIhIwdEMCyn2zCYzZnPmymYOjoWT9LpZj6rExSZz6nAiV5PS+eHTA3Qf3aDAZ3yIiEjhKVeuHPv27bvl9uJi4cKFpKSk5LjN29u7gEeTP95//33ef//9wh6G3OcWLVqExWJh0KBBOS4fVrp0aaZMmWJT1rZtW5o1a0aDBg1YtWoVv/76Kw0aNMhzn7kte3b9klCPPPKIloQSERERkTzJbenRO6WAhRR7JuPfaVgKY4YFgJ29HR2G1mb523tITkjj7PEkwpdH0vr/ggplPCIiUvAcHByoVq1aYQ8jX5QvX76whyDyj2M2mwkNDcXOzo7Bgwff1r5ubm7079+fSZMmERERcVsBi9sJQLi6umrGjoiIiIjkyb363qjbv6XYM2aYrM8dCilgAeBawolOw+tYZ1X8sfUUhyJOF9p4RERERKTo+OGHHzh58iSPPvooFStWvO39s3JLXLlyJb+HJiIiIiJSZChgIcWe6VrCbSjcgAVA6UqetLpuVsWWrw5zLjqpEEckIiIiIkVBXpJt38quXbsACAwMzK8hiYiIiIgUOQpYSLFnvC5gUVhLQl2vZvOyPNgqcykNs9HCDwsOcDUpvZBHJSIiIiKFJS4uju+//x4/Pz+6du1603q//fYbFoslW/mqVatYsmQJXl5edOrU6V4OVURERESkUCmHhRR7piIWsABo+WR14k8mc+bYJZIT0/hx4UG6vlgfO/uiMT4RERERuTMLFy5k27ZtABw4cMBaFhYWBkDLli2zzaL473//S0ZGBv3798fJyemmbb/00kscO3aMZs2aUaFCBUwmE7/++ivbtm3D2dmZ0NBQSpYseW8OTERERESkCFDAQoo9o82SUPaFOJK/2TvY0WHYgyyfvoerl9I5deQi21cdo+WT1Qt7aCIiIiJyF7Zt28aSJUtsyiIiIoiIiLC+vjFgkdfloPr168fKlSvZuXMnFy5cwGw2U758eYYOHcqYMWN44IEH8ukoRERERESKJgUspNgrijMsANxLOtNxWB3WzP4Vs8nC75tiKV2pBDUa+xf20ERERETkDoWGhhIaGnpb+xw6dChP9YYOHXrHOS5ERERERP4Jis7VXZE7VJSSbt+obNWSPNzr71kVmz//iwsnLxfiiERE5HqtW7dm1KhRhT2MYmnNmjVUq1YNe3t7XnrpJb788ksqVapUIH0HBgYyZ86cAukrL+Lj4yldujTR0dEF3nfTpk1ZuXJlgfcrIiIiIiJyLxStq7sid8CYYbI+t3fI3490RnoacSeiuBB7gisXEzEZjbfdRu1HyvNA87JA5vJV6+cfIO1KRr6OU0RE7syqVat46623Cqy/rVu38vjjj1OuXDkMBgNr1qzJVmfgwIEYDAabR8eOHW3qZJXv3LnTpjwtLQ0fHx8MBoN1Pf2mTZsyYsQIm3rz58/HYDBku0t84MCBPPzww3k6luHDh9OzZ09iY2OZMmVKnva5XaGhoZQqVSpb+Z49exg2bNg96fNOTJs2jW7duhEYGJhtW3x8PBUqVMBgMHDx4sXbajcvn5dJkyYxYcIEzGZz9gZERERERESKGS0JJcWeTQ4LpzsLWBgzMkg8fZILJ2OIj43hQuwJ4k+e4OK5s2Cx2NR1dnPHtYQnriU8cSlRwvr8xkfWNhePErTqU4OEU8mcP3GZpAuphC09CoFgMNzNkYuIyN3y9vYu0P6uXLlCvXr1GDx4ME888cRN63Xs2JHFixdbXzs7O2erExAQwOLFi2natKm1bPXq1Xh4eJCQkGAtCwkJYfXq1Tb7bt68mYCAAMLCwhg4cKC1PCwsjAEDBuR6HMnJyZw/f54OHTpQrly5Ar9Y7ufnV6D93crVq1f57LPP2LBhQ47bhwwZQt26dTl16tRtt52Xz0unTp0YOnQo69evp0uXLrfdh4iIiIiISFGigIUUeybjdTkscplhYTIauXj2jDUgkRWcSDx7GkseL7akXb1C2tUrXDx3Js9jdHZ3x9mtBBlXDFgsLkTtdcX5uCMla/jd0awNERHJH61bt6Z+/frW5YXS0tJ49dVX+eqrr7h48SIPPvggM2bMoHXr1kDm3fIjR45k69atJCYmUrVqVSZOnEifPn3y1F+nTp3o1KlTrvWcnZ3x9791zqMBAwbwwQcfMGfOHFxdXQFYtGgRAwYMsJk1EhISwjvvvMPZs2etbW7ZsoXXX3+dd99911ovKiqKEydOEBIScst+w8LCrHXatGkDwKZNm3Ks+8knnzBr1ixiY2OpXLkykyZNon///tbts2fPZvHixRw/fhxvb28ef/xx3n33XTw8PAgLC2PQoEFA5owSgDfeeIM333yTwMBARo0aZV3Oy2Aw8J///Ie1a9eyYcMGypcvz3vvvUfXrl2tfX333XeMGTOG2NhYmjVrxsCBAxk4cCCJiYk5zuLIq3Xr1uHs7GwTOLr++C9evMjrr7/O+vXrb7vtvHxe7O3t6dy5M8uWLVPAQkREREREij0FLKTYM6ZnT7ptNpu4dO7sDTMmYkg4dRKzKW8BAgdnZ3zKV8SnQgAGOztSky+TkpREyuXMR+qV5GyzL24m7coV0q5csSlLOZf5+Hz/L9Rp0546bdpTsrQScovIP8uSP5bw30P/zbVeLe9azGs7z6Zswq4JRCZF5rrv07WeZkDt3GcF5MXIkSM5dOgQy5Yto1y5cqxevZqOHTty4MABqlevTmpqKg0bNmT8+PF4enqydu1a+vfvT9WqVWncuHG+jAEygwKlS5fGy8uLNm3aMHXqVHx8fGzqNGzYkMDAQFauXEm/fv2IiYlh69atfPTRRzYBixYtWuDo6MjmzZvp06cPhw4dIiUlhSFDhjB+/HiioqKoXLkymzdvxsXFhWbNmt1ybM2bN+fw4cMEBQWxcuVKmjdvTqlSpfjrr79s6q1evZoXX3yROXPm0K5dO/73v/8xaNAgKlSoYA142NnZ8cEHH1C5cmWOHz/Oc889x8svv8zHH39M8+bNmTNnDq+//jqHDx8GwMPD46bjmjx5Mu+++y4zZ85k3rx59O3blxMnTuDt7U1UVBQ9e/bkxRdfZOjQofz222+MHTv2ts7JzYSHh9OwYcNs5YcOHWLKlCns2rWL48eP50tfN9O4cWPeeeede9qHiIiIiIhIQVDAQoo9U4YZi8WEKf0QBzbuYO9350k4FYsxIz1P+9s7OuJdrgK+AZXwqVAR34qV8KlQiZJ+pTHY3XzGhtlsIjU5+e8AxuXLXE26lBnYuJxk80i9nERK0rUgxw2uXrrIrtXL2bXmGwLrBlO3XUeqNGiMvYN+PEWk+LuScYXzV8/nWs/fPXvA9mLaxTzteyXjSq518iImJobFixcTExNDuXLlABg7diw//PADixcvZvr06ZQvX97mQvfzzz/Phg0bWL58eb4FLDp27MgTTzxB5cqVOXbsGBMnTqRTp07s2LEDe3t7m7qDBw9m0aJF9OvXj9DQUDp37pxtuSR3d3caN25MWFgYffr0ISwsjJYtW+Ls7Ezz5s0JCwujcuXKhIWF0axZsxyXn7qek5MTpUuXBjKX1PL3989xSahZs2YxcOBAnnvuOQBGjx7Nzp07mTVrljVgcX3C88DAQKZOncqIESP4+OOPcXJyomTJkhgMhlxnm0Bm/o2smS7Tp0/ngw8+YPfu3XTs2JEFCxYQFBTEzJkzAQgKCuLgwYNMmzYt13Zzc+LECevnJUtaWhp9+vRh5syZVKxY8Z4HLMqVK0dsbCxmsxm7W3x3ERERERERKep0RVSKPZPRjCn9IMarmzh56Ob17Ozt8SpbHp+ASvhWqIhPQEV8AypRqkxZ7G64AJQXdnb2uHmWxM2zZJ73MZtMpCRf5qdFe4g5EI0p/Q/MGccAC1gsRP/+K9G//4q7lzcPtn6Uum074OlX+rbHJiJSVLg7ulPaLfd/x7yds+eSKOVcKk/7uju639HYbnTgwAFMJhM1atSwKc9KZA1gMpmYPn06y5cv59SpU6Snp5OWloabm1u+jAHgqaeesj6vU6cOdevWpWrVqoSFhdG2bVubuv369WPChAkcP36c0NBQPvjggxzbbN26Nd988w2QOXsja4mrVq1aWZdeCgsL45lnnsm34/jzzz+zJcZu0aIFc+fOtb7euHEjb7/9Nn/99RdJSUkYjUZSU1O5evXqbb+ndevWtT53d3fH09OT8+czA16HDx+mUaNGNvVzCzCNGDGCpUuXWl8nJ2e/6QAgJSUFFxcXm7JXXnmFmjVr0q9fv9s6hjvl6uqK2WwmLS3NujyYiIiIiIhIcaSAhRR7xgwzFlO89bXBYEcp/7LXzZbIDEx4lS2HvYNjIY40M2jiXrIU7YY255v3zVw9XRWLORlT2h/Y2/1J2tXMJKlXEhPYtfprdq1ZTuV6DajTriNVGzS+o8CKiEhhGlB7wB0v1/ROk3fw9PQssDvGk5OTsbe3Z+/evdlmMmQtRTRz5kzmzp3LnDlzqFOnDu7u7owaNYr09LzN6rsTVapUwdfXl6NHj2YLWPj4+PDYY48xZMgQUlNT6dSpE5cvX87WRkhICNOmTePUqVOEhYVZZ4m0atWKBQsWcOzYMWJjY605KQpCdHQ0jz32GM8++yzTpk3D29ubbdu2MWTIENLT0287YOHoaPs73mAw3FUy8ClTpuRp2ShfX18SExNtyn7++WcOHDjAihUrALBcW0LS19eXV199lcmTJ9/xuHKSkJCAu7u7ghUiIiIiIlLsKWAhxZ4pwwSWv/NS9J0+mzJVqhXiiHJn72CHV91U7F3NXD7mgYNrEyyWxlSscRFHhz85/uvuzCTgFgtR+/YStW8vHl7ePHgt14Wnr2ZdiIjkt+DgYEwmE+fPn+fhhx/OsU5ERATdunWz3jlvNps5cuQItWrVumfjOnnyJPHx8ZQtWzbH7YMHD6Zz586MHz8+W6AlS/PmzXFycuLjjz+25uEAaNSoEXFxcSxatMi6dFR+qVmzJhEREQwY8HfAKiIiwvpe7d27F7PZzHvvvWcNSi1fvtymDScnJ0wm012PJSgoiHXr1tmU7dmz55b7lC5d2rr01a0EBwfbzMQAWLlyJSkpKTZ9DR48mPDwcKpWrXobI8+bgwcPEhwcnO/tioiIiIiIFDQFLKTYM2aYsfB3wMKpmNxdaDBAyRrp1GlQkx0ro8AM5094UbZqJwa8+wyRuzez/+cNXL4QB0ByYgI7Vy5j56qvqVy/IXXbdaJK8EOadSEikk9q1KhB3759efrpp3nvvfcIDg4mLi6OTZs2UbduXbp06UL16tVZsWIF27dvx8vLi9mzZ3Pu3Lk8ByySk5M5evSo9XVUVBT79u3D29ubihUrkpyczOTJk/nXv/6Fv78/x44d4+WXX6ZatWp06NAhxzY7duxIXFwcnp6eN+3X1dWVpk2bMm/ePFq0aGENbDg5OdmU3zhL4W6MGzeOXr16ERwcTLt27fj+++9ZtWoVGzduBKBatWpkZGQwb948Hn/8cSIiIpg/f75NG4GBgSQnJ7Np0ybq1auHm5vbHS2/NXz4cGbPns348eMZMmQI+/btIzQ0FMiciXE3OnTowCuvvEJiYiJeXl4A2YISFy5cADKDOKVKlcpz27l9XrKEh4fTvn37uzgKERERERGRokFZ+aTYM2WYbWZYODjdOlloUfNA8zJ0frYODs6ZF4/OHLvEDwujqPlIN4bOW8gTE96k6kNN/04AbrEQ9dsvfDvzLf4zcjARy78g6VpQQ0RE7s7ixYt5+umnGTNmDEFBQXTv3p09e/ZYLw5PmjSJBg0a0KFDB1q3bo2/vz/du3fPc/u//PILwcHB1rvhR48eTXBwMK+//joA9vb27N+/n65du1KjRg2GDBlCw4YNCQ8Pv2kybIPBgK+vL05OTrfsOyQkhMuXL1vzV2Rp1aoVly9ftibCzi/du3dn7ty5zJo1i9q1a7NgwQIWL15s7b9evXrMnj2bGTNm8OCDD/LFF1/w9ttv27TRvHlzRowYQe/evfHz8+Pdd9+9o7FUrlyZFStWsGrVKurWrcsnn3zCq6++CpBrkvHc1KlThwYNGmSbHZKb6OhoDAYDYWFhN62T2+cF4NSpU2zfvp1Bgwbd0fhFRERERESKEoMla1FdKZZOnjxJQEAAAEeOHKF69eqFPKKCtzH0EAd++hizMRqA5xZ+iWuJm99lWhSkpKTw448/AtC+fXtcXV05fyKJ/320n5SkzHXQXUs40uXf9SgTmHkslxMucHDzTxz4+UfrrIssBoMdlYMbUrddRyoHP4SdnWZd5LeczpkUfTpvBScyMhKj0YiDg8Nd/y4ym80kJSUBFGgOC7lzxfGcTZs2jfnz5xMbG3vXba1du5Zx48Zx8ODBPB/75s2beeKJJzh+/Lh1ZsadGD9+PImJiXz66ac3rXOzn8/IyEhrkvnY2FgqVKhwx+OQ4uv6vyf0ORARERGRvLpX3yO1JJQUe6YMM3D9DItb32FaVJWu5EnPlxvyvw9/J/HsVVIuZ7Bm9q90GPoggXV9KeHtS7N/9aFJj15E//4r+zf+wPG9e7BYzFgsZo7/uofjv+7Bw8eXSnXq412uAt7lKuBVrjylypTF3kE/7iIicv/6+OOPadSoET4+PkRERDBz5kxGjhyZL2136dKFyMhITp06Zf3Cnpt169YxceLEuwpWQGaujdGjR99VGyIiIiIiIkWFrmBKsWfMMGO5fkkox+IZsADw9HXliXENWT//AKcjL2JMN7Puk/080ieIBx8pD4CdnT1VghtRJbgRl+Ovm3URfy3XRfwF/gjbaNOunb09JUv741WuvDWQkRXMcPMsWeDHKSLyTxQTE3PLXBaHDh2yyTtQlHXq1Inw8PAct02cOJGJEycW8IjuXmRkJFOnTiUhIYGKFSsyZswYXnnllXxrf9SoUbdVf+bMmfnS75gxY/KlHRERERERkaJAAQsp9kwZJrJmWNg7OP6d66GYcnF3pOsL9dm05BCRv5zHYoEtXx7mcnwKTbtVxWD3d3LQEj6+NOvZhyZP9CLqt73s3/QDUb/+gsVitmnTbDKReOYUiWdOcXzvbtv+SnjiXbY83uUr4FW2PN7lA/AuV56Spf01K0NE5DaUK1eOffv23XJ7cbFw4UJSUlJy3Obt7V3Ao8kf77//Pu+//35hD0NERERERERuQVcjpdgzXpd0u7guB3Uje0c7Hh1cmxI+Lvy6IQaAXzfEcDkhjbZP18Te0TYoY2dnT9WGjanasDEZqakknDlFwumTJJ4+ScKpkyScOUXi6VMY09Oy9ZV6OYnTl5M4feRP2zbt7SlZpize183K8A2ohE/FSjgWs8TmIiIFwcHBgWrVqhX2MPJF+fLlC3sIIiIiIiIich9SwEKKPdN1S0I5OP9zLqQb7Aw061ENDy8Xwr8+gsUCkXvOceViGp1G1MHF3THH/RxdXChTuSplKle1KbeYzVxOuJAZwDh9XUDj9EmSE+KztWM2mUi8VucYu/4el8EOr3LlKR1YBb9KlSldqTJ+gVVwL3V3a3CLiIiIiIiIiIjI/U0BCyn2TMa/k27/E+/8r9O6Ah7eLvy48CDGdDOnIy+yauZeHnu+Hp4+rnlux2Bnh6dvaTx9SxNYr4HNtvSUqySeOU3CtQBGwqnMQEXimdMYM9Jt6losZhJOxZJwKpa/IrZYy91KlsKvUuXMIMa1YIZ3uQrY2dvf3RsgIiIiIiIiIiIi9wUFLKTYM6b/85aEulHlur50H92AtR/9TsrlDBLPXmXljL08NrIefhVL3HX7Tq5ulKlSjTJVbJcysZjNJF2IuxbEiCXuRBTnT0QRHxuD2WS0qXv10kVO7P+NE/t/s5bZOzriG1DpWiCjyrXZGJVxdnO/6zGLiIiIiIiIiIjIP4sCFlLsGa9Luv1PDVgAlAn05F8vP8T/Pvydi+eucjUpnVXv/UrHZx6k0oM+96RPg50dJUuXoWTpMlSu39BabjJmkHDqZGYAI/o4cSeiiDsRRcrlJJv9TRkZnDt+lHPHj9qUe/qVoXRg1myMqgTWa/CPPnciIiIiIiIiIiKSOwUspNgzZmRYnzv8A5eEul5JP1f+Na4haz/ez9njlzCmmVj78X5a9alB7YcLLkGqvYOjdfmnWo+0AcBisZCcGJ8ZvIjOnIkRdyKKxDOnwGKx2T8p7hxJcec4umcnAKX8y9Ll+XH4V6tRYMcgIiIiIiIiIiIiRYtdYQ9A5G4Z0//OsXA/3KXv4uFIt1H1qdrADwCL2ULYF4fZ+e0xLDcEBgqSwWCghLcvVYIb0aRHLx4fNZ7B78/nhdBv+L+p7/HoMyOp92hnytWoiaOzi82+F8+e4avXx7Fz1deYzaZCOgIRuR+1bt2aUaNGFfYwiqU1a9ZQrVo17O3teemll/jyyy+pVKlSgfQdGBjInDlzCqSvvIiPj6d06dJER0cXaL/p6ekEBgbyyy+/FGi/IiIiIiIi94oCFlLsmTLur4AFgIOTPR2GPki9dgHWsr3rT7Ax9NC1JORFh6OLC2WrB1G3XUfaDX2OPm/N5PnQ5Qye+ymPvzQB/6rVATCbTER8/TnLJ08kKe58IY9aRO4Xq1at4q233iqw/rZu3crjjz9OuXLlMBgMrFmzJludgQMHYjAYbB4dO3a0qZNVvnPnTpvytLQ0fHx8MBgMhIWFAdC0aVNGjBhhU2/+/PkYDAZCQ0Oz9f3www/n6ViGDx9Oz549iY2NZcqUKXna53aFhoZSqlSpbOV79uxh2LBh96TPOzFt2jS6detGYGBgtm3x8fFUqFABg8HAxYsXb6vdN998M9tn4YEHHrBud3JyYuzYsYwfP/4uj0BERERERKRoUMBCijWzyYzZdP8sCXU9g52Blj2r07JXdTBklh3ZdY7v5/1OWorx1jsXMoOdHV7+5ajRtCVPTZlJkx69MRgy/zk69dcf/Pfl5/kzYkshj1JE7gfe3t6UKFGiwPq7cuUK9erV46OPPrplvY4dO3LmzBnr46uvvspWJyAggMWLF9uUrV69Gg8PD5uykJAQa/Aiy+bNmwkICMhWHhYWRps2bXI9juTkZM6fP0+HDh0oV65cgb6HAH5+fri5uRVonzdz9epVPvvsM4YMGZLj9iFDhlC3bt07br927do2n4Vt27bZbO/bty/btm3jjz/+uOM+REREREREigoFLKRYM2aYyUq4DffPDIvr1WsTQKdhdbB3vHbB/3AiK975hXPRSbnsWTTYOzjQ8qn+9HpjOp5+pQFIu3qFdR/MZN28WaRdvVLIIxSRf7Ibl4RKS0tj7NixlC9fHnd3d5o0aWJzUT8+Pp4+ffpQvnx53NzcqFOnTo7BhJvp1KkTU6dOpUePHres5+zsjL+/v/Xh5eWVrc6AAQNYtmwZKSkp1rJFixYxYMAAm3ohISEcPnyYs2fPWsu2bNnChAkTbI4tKiqKEydOEBIScsuxhYWFWQMUbdq0sZnNcaNPPvmEqlWr4uTkRFBQEJ9//rnN9tmzZ1OnTh3c3d0JCAjgueeeIzk52drPoEGDuHTpknV2wZtvvglkXxLKYDCwcOFCevTogZubG9WrV+e7776z6eu7776jevXquLi4EBISwpIlS+5o1sON1q1bh7OzM02bNs3x+C9evMjYsWPvuH0HBwebz4Kvr6/Ndi8vL1q0aMGyZcvuuA8REREREZGiQgELKdZMGWaw3N8BC4AqwX50fykYF3dHAC6eu8qqd/fyy7oozKaitUTUzVSo+SBPvzuPmi1bW8v+3BbGf19+npN/6a5RkeIqfnEoka1a5/qIffa5bPsmjB3HsZA2ue4bvzg038Y7cuRIduzYwbJly9i/fz9PPvkkHTt2JDIyEoDU1FQaNmzI2rVrOXjwIMOGDaN///7s3r0738YAmRfrS5cuTVBQEM8++yzx8fHZ6jRs2JDAwEBWrlwJQExMDFu3bqV///429Vq0aIGjoyObN28G4NChQ6SkpDBkyBDi4+OJiooCMmdduLi40KxZs1uOrXnz5hw+fBiAlStXcubMGZo3b56t3urVq3nxxRcZM2YMBw8eZPjw4QwaNMg6DgA7Ozs++OAD/vjjD5YsWcLPP//Myy+/bO1nzpw5eHp6WmcX3OrC/+TJk+nVqxf79++nc+fO9O3bl4SEBCAzGNOzZ0+6d+/O77//zvDhw3n11VdveZx5FR4eTsOGDbOVHzp0iClTpvDf//4XO7s7/8odGRlJuXLlqFKlCn379iUmJiZbncaNGxMeHn7HfYiIiIiIiBQVClhIsWbMFrC4f5aEupF/lZL8a3xDSlfKvOvVbLaw67soVr/3G5fiUnLZu2hwdnOn8/Nj6fz8WJxcM5f6SIo7z/I3XyHi688xGYv2Ulcikp05ORnjuXO5PkzXLizb7HvxYp72NV+7I/9uxcTEsHjxYr755hsefvhhqlatytixY2nZsqV16aXy5cszduxY6tevT5UqVXj++efp2LEjy5cvz5cxQOZyUP/973/ZtGkTM2bMYMuWLXTq1AmTyZSt7uDBg1m0aBGQme+hc+fO+Pn52dRxd3encePG1lkQYWFhtGzZEmdnZ5o3b25T3qxZM5ydb/271MnJidKlM2fEeXt74+/vj1MONwzMmjWLgQMH8txzz1GjRg1Gjx7NE088waxZs6x1Ro0aRUhICIGBgbRp04apU6da30snJydKliyJwWCwzi64cbmr6w0cOJA+ffpQrVo1pk+fTnJysjWQtGDBAoKCgpg5cyZBQUE89dRTDBw48JbHmVcnTpygXLlyNmVpaWn06dOHmTNnUrFixTtuu0mTJoSGhvLDDz/wySefEBUVxcMPP8zly5dt6pUrV44TJ07ccT8iIiIiIiJFhUNhD0DkbpgyzFju8yWhrleqtBtPvNyQX9ZGs3d9NBYLnD1+ia+n7ubh3tV5oFlZDAZDYQ8zVzVbtqZcjZqs/+g9Tv11CIvFzM5VXxO9/zc6Pz8WL/9yuTciIkWCnYcHDmXK5FrP3ts7+76lSuVpX7tbXMS+HQcOHMBkMlGjRg2b8qxE1gAmk4np06ezfPlyTp06RXp6OmlpafmaT+Gpp56yPq9Tpw5169alatWqhIWF0bZtW5u6/fr1Y8KECRw/fpzQ0FA++OCDHNts3bo133zzDZAZmGjdujUArVq1si69FBYWxjPPPJNvx/Hnn39mS4zdokUL5s6da329ceNG3n77bf766y+SkpIwGo2kpqZy9erV235Pr88T4e7ujqenJ+fPnwfg8OHDNGrUyKZ+48aNb9neiBEjWLp0qfV18k0CYykpKbi4uNiUvfLKK9SsWZN+/frd1jHcqFOnTtbndevWpUmTJlSqVInly5fb5MxwdXXl6tWrd9WXiIiIiIhIUaCAhRRr2WZYON7fAQsAe3s7mnStQsXaPmxc/AdJF1LJSDPx83//IvpAPK37BuHqUfTfp5Kly9DrjbfZvWYF27/5AovZzNmjR/j85RcIGTSMB1s/WiyCLyL3O59BA/EZNPCO9vWeNRNPT8+7Wk7ndiQnJ2Nvb8/evXuxt7e32ZZ1Z//MmTOZO3cuc+bMseZeGDVqFOnp6fdsXFWqVMHX15ejR49mC1j4+Pjw2GOPMWTIEFJTU+nUqVO2u+8hM4/FtGnTOHXqFGFhYdallVq1asWCBQs4duwYsbGxeUq4nV+io6N57LHHePbZZ5k2bRre3t5s27aNIUOGkJ6eftsBC0dHR5vXBoMBs/nOl0WcMmVKnnJP+Pr6kpiYaFP2888/c+DAAVasWAGAxWKx1n311VeZPHnyHY2pVKlS1KhRg6NHj9qUJyQkZJtZIyIiIiIiUhwpYCHFmilb0u37d0moG5WtWpLerzYm/JtI/tp+BoDjv8Vx9tgl2g6oScXaPoU8wtzZ2dnT9IneVKpbn3XzZnHx7Bky0lL5cf4HRP32C48+MxLXEp6FPUwR+YcIDg7GZDJx/vx5Hn744RzrRERE0K1bN+ud82azmSNHjlCrVq17Nq6TJ08SHx9P2bJlc9w+ePBgOnfuzPjx47MFWrI0b94cJycnPv74Y2seDoBGjRoRFxfHokWLrEtH5ZeaNWsSERFhkwQ8IiLC+l7t3bsXs9nMe++9Zw1K3bi0lpOTU45LYd2uoKAg1q1bZ1O2Z8+eW+5TunRp69JXtxIcHGwzEwMyc3tcnwx9z549DB48mPDwcKpWrXobI7eVnJzMsWPHsuUpOXjwIMHBwXfcroiIiIiISFGhHBZSrJmMJixKun1TTq4OtH26Jh2HP4ize2Z88mpSOt/P+52ty45gTL/7i0AFoWy1IPrP+IA6bdpbyyJ3bee/40Zy4sC+whuYiPyj1KhRg759+/L000+zatUqoqKi2L17N2+//TZr164FoHr16vz0009s376dP//8k+HDh3Pu3Lk895GcnMy+ffvYt28fkJkMet++fdZEysnJyYwbN46dO3cSHR3Npk2b6NatG9WqVaNDhw45ttmxY0fi4uKYMmXKTft1dXWladOmzJs3jxYtWlgDG05OTjblN85SuBvjxo0jNDSUTz75hMjISGbPns2qVaussxaqVatGRkYG8+bN4/jx43z++efMnz/fpo3AwECSk5PZtGkTFy5cuONlj4YPH85ff/3F+PHjOXLkCMuXLyc0NBTgrmfrdejQgT/++MNmlkXVqlV58MEHrY/KlSsDmUGcvARBsowdO5YtW7YQHR3N9u3b6dGjB/b29vTp08emXnh4OO3bt79JKyIiIiIiIsWHAhZSrBnTzWDJsL52zCVR6P2qanBp+rzWhIq1/l4j/kDYSZZP30NcTPalQ4oiJxdX2g9/ga6jJ+LikZlYPDkxgRVTJ7Fl6SKMGRm5tCAikrvFixfz9NNPM2bMGIKCgujevTt79uyxJk6eNGkSDRo0oEOHDrRu3Rp/f3+6d++e5/Z/+eUXgoODrXfDjx49muDgYF5//XUA7O3t2b9/P127dqVGjRoMGTKEhg0bEh4eftNk2AaDAV9f3xwTX18vJCSEy5cvW/NXZGnVqhWXL18mJCQkz8eRF927d2fu3LnMmjWL2rVrs2DBAhYvXmztv169esyePZsZM2bw4IMP8sUXX/D222/btNG8eXNGjBhB79698fPz4913372jsVSuXJkVK1awatUq6tatyyeffMKrr74KkGuS8dzUqVOHBg0a3Hbi9ejoaAwGgzXpeU5OnjxJnz59CAoKolevXvj4+LBz506b5Z927NjBpUuX6Nmz550egtympUuXMnz4cB566CGcnZ0xGAzWANiN3nzzTQwGw00f0dHROe63YcMGWrVqRYkSJfD09CQkJIRNmzbdu4MSERERESkiDJasRXWlWDp58iQBAQEAHDlyhOrVqxfyiArW8X1xfD9nEcaUcAAef2kCNZq2LORR5S4lJYUff/wRgPbt2+Pq6log/VosFg6EnWL7qqPXltMCO3sDjR+vTHD7StjZFY+cEJcTLvDDx3OIuW52hV9gFbo8Pw6fCgH3pM/COmdyd3TeCk5kZCRGoxEHB4e7/l1kNptJSkoCKNAcFnLniuM5mzZtGvPnzyc2Nvau21q7di3jxo3j4MGDeT72zZs388QTT3D8+HG8vLzuuO/evXtTr149Jk6ceNM6N/v5jIyMtCaZj42NpUKFCnc8jvtJYGAgJ06cwNfXF3d3d06cOMHixYsZOHBgtrpvvvkmkydPZsCAAQQGBmbbPmrUKEqVKmVTtnTpUvr374+fnx+9e/cG4Ouvv+bChQssX74834NT1/89oc+BiIiIiOTVvfoeWeRyWNjb2zNw4EA+++yzW9Z75plnWLx4MUaj8Zb15J/NZLwh6bZyWNySwWCgbkgFKgR58dPiP7gQm4zZZGHnmuOcOBhPu4G18PQt+hd0S3j70nPiFPau+5ZtXy3BZDQSF32cpRNepFX/IdRr31kJuUVExMbHH39Mo0aN8PHxISIigpkzZzJy5Mh8abtLly5ERkZy6tQp6xf23Kxbt46JEyfeVbAiPT2dOnXq8NJLL91xG3L7Fi5cSPXq1alUqRLvvPMOr7zySq77DBw4MNvsppwkJiby/PPP4+vry6+//mr9o2/8+PEEBwfz7LPP0qFDB0qUKHG3hyEiIiIiUiQVudvfLBYLeZ30ockhYkw3Y0E5LG6Xdzl3eo5/iAYdKsG16/pnjl5i2dTdHN55plj8bBns7HjosR7837TZ+FTIXKrFmJHOpkWfsObdKVy9dLFwBygi952YmBg8PDxu+sjKU1EcdOrU6abHMX369MIe3h2JjIykW7du1KpVi7feeosxY8bw5ptv5lv7o0aNynOwAmDmzJmMGzfurvp0cnJi0qRJmj1WwNq1a0elSpXuSdvffPMNFy9e5Pnnn7e5Q61ChQqMHDmSCxcusHr16nvSt4iIiIhIUVDkZljk1dWrV/M1MaQUT9lnWChgkVf2DnY061GVSg96s3Hxn1xOSCUj1cTG0D+JPhBPq/8LwsW96P+MlQ6sQt+332fr0sXs2/A/AI7/uocl40by2KjxBNSqU8gjFJH7Rbly5azJtG+2vbhYuHAhKSkpOW7z9vbOsbyoe//993n//fcLexhyn9q6dSu7du3Czs6O6tWr065dOzw8PLLVy8ppklMS9Q4dOvDmm2+yZcsWnn766Tz3ffLkyVtuP3PmjPV5SkrKTX/2RURERESud6++NxbLgMXFixfZtm0bZcuWLeyhSCEzZWhJqLtVrroXvV9rTPiyIxzedRaAo3vPc+bYJdoOqElAzaJ/YcrRyZm2g0dQObghGz6Zy9VLF7l66SJr3p3CU1Nm4lcxsLCHKCL3AQcHB6pVq1bYw8gX5cuXL+whiPyjvPHGGzavS5Uqxdy5c7MFHiIjIwFyzAWUVZZVJ69uZ+bP1q1b8fX1va32RUREROT+dOHChXvSbpEIWFSpUsXm9YoVK6x3F93IaDRy9uxZTCYTw4cPL4DRSVFmzDBpSah84OzqQLtBtahUx4ctXx4m7aqRKxfT+G7uPuq1DaBp9yo4ONoX9jBzVSW4EQNmfsjaebOIObCP9JQUVs+YTN9ps3EvdedrhIuIiIjciXr16rFo0SJat25N2bJlOXv2LP/73/94/fXXGThwIKVKlaJr167W+pcuXQKgZMmS2dry9PS0qSMiUlS9uKNIXGqSXMxtVjA5YfV5KPoK6rMA+jwUBwX5ebiZIvEpiY6Otj43GAwkJyeTnJx80/pOTk5079692K6hLPnHmG2GhQIWd6P6Q2UoW7UUm5Yc4uRfiQD8vimW2D8TeHRwLXwrFP0Ej24lS9F93CS+fvMVzh2P5PKFONa8O4Veb7yNo7NLYQ9PRERE7iM9evSweR0YGMjIkSOpWbMmjz76KJMmTbIJWNwLsbGxt9x+5swZGjduDMAjjzxikztDROSO7Pi5sEcgeZDT8oP3hD4PRV6BfRZAn4di4HY+D7ktPXqnikTAIioqCshMol2lShV69uzJzJkzc6zr5OSEn58fDg5FYuhSyEwZZkBLQuUnDy9nur5Qn/2bT7Jj9TFMRjMJp6/wzTu/8FCnQOq3q4ijc9GebeHo7EL3l1/jy1fHcDk+jrPHIln/0WweHzUBg51dYQ9PRERE7nNt27alatWqHDhwgKSkJOvsiayZFZcuXcLHx8dmn6SkJJs6eXU7AQhXV1clcRcRuU/o33vJos+CXO92Pg/36rNTJK7cVapUiUqVKhEYGMiAAQPo2LGjtezGR9myZe9ZsGLPnj107tyZUqVK4e7uTtOmTVm+fPlttXH69GlefPFFatWqhbu7O2XKlKFly5Z8/vnnmEymezLu+1n2HBaaYZEfDHYG6rUN4MlXHsKnfGZCSLPRwu7vo1j6+g4ObTuN2WQu5FHemoeXNz0mvIHTtX88I3dtJ3zZfwt5VCIiIiKZsnJFXL161Vp2qzwVt8pvISIiIiLyT1EkAhbXW7x4MYMHDy7wfjdv3kyLFi3Ytm0bvXr1YsSIEZw9e5bevXvz3nvv5amN48ePU69ePebNm0elSpUYOXIkTzzxBMeOHePpp59m6NCh9/go7j/GDDOWawELO4M9dpp5k698ynvw5ISHCH60IgY7AwBXL6WzeelfLJu6h6j9F7BYLIU8ypvzqxjIYy+Ox2DI/Kduz7crOPDzj4U8KhEREbnfXblyhT/++AN3d3ebJNetWrUC4Mcfs39f2bBhg00dEREREZF/oiIXsCgMRqORZ555Bjs7O7Zu3cqnn37Ke++9x++//06NGjWYOHEiJ06cyLWdWbNmceHCBd5//33Wr1/PjBkz+OSTT/jzzz+pWLEioaGheWpH8i5rSShv57J0q/g8+1/bwfYfjhb2sP5R7B3taP6vavR5vTGV6/39B3XimSus+3g/a2b/xrmopEIc4a1VDn6IkEHDrK83LvyImIO/F+KIROR+YDAYWLNmTWEPQ0QK0eXLlzly5Ei28pSUFJ555hkuX75Mr169bGaP9+rVi5IlSzJv3jybNYFPnjzJhx9+iK+vb7a8GCIiIiIi/yRFMmBx+fJlZsyYwaOPPkqtWrWoUqVKjo+qVavmS38///wzx44d4//+7/+oX7++tbxkyZJMnDiR9PR0lixZkms7x48fB6Bz58425aVKlaJly5YAXLhwIV/GLJmykm4HuAXhZOdMaYuBimFn+Gn6ds6dLroX0YsjL393Oj9blyfGNsC/iqe1/HTkRVbM+IUN/znIpbirt2ih8AR3eIwGnTITWppNJr6bPZ34U7dOQCkiUlACAwMxGAw2j3feece6PSwsDIPBgJeXF6mpqTb77tmzx7oPQHJyMo6Ojixbtsym3lNPPYXBYCA6Ojpb36+99tq9OTCRf6iFCxcycOBABg4cyDfffJOtbOHChQDEx8fzwAMP0KRJEwYOHMiECRMYNGgQNWrU4KuvvqJOnTrZ8vZ5eXnx4YcfcuHCBRo0aMDzzz/P888/T4MGDYiPj+fjjz+mRIkSBX7MIiIiIiIFpcitn3P69GlatmzJiRMncl1qJuuP87sVFhYG5JwFvUOHDgBs2bIl13YefPBBNmzYwLp163jxxRet5RcvXiQiIgJ/f39q1ap1W2PLLdv6mTNnrM/T0tJISUm5rfaLu/TUDCwYcbCzzV1RM8lE4gf72F+3FM26VcW+iCVavv6C040Xn4q6UuWd6TSyFicOJPDL/2JIissc/9G95zn2Wxw1W5ShXvsKuHo4FvJIbTV+8v+IP32SE7//StqVK6x6+03+9do0XD3zlriyOJ+z+5nOW8Exm83W39tm893luLl+/7ttK79lZGTg6Ji3f9/MZnOexz958mSbpSNLlChh3Tfr/yVKlGDlypX06dPHWm/hwoVUrFiRmJgYzGYzbm5uPPTQQ2zevJlevXpZ64WFhREQEMDPP//MwIEDAYiKiuLEiRO0bt36H33OJJPFYsFsNtt8V0xLSyvEERVf27Zty3YzU0REBBEREdbXQ4cOxdvbm+eee47du3ezbt06EhMTcXV1pWbNmrzwwguMHDkyx0SF/fr1w9fXl+nTp7N48WIMBgMNGzZk0qRJtGvX7p4fn4iIiIhIYSpyAYuJEycSHR1N/fr1mTBhAjVr1sTT0zP3He/CrRLY+fv74+HhkWPiuxuNGzeO77//npdeeokffviBunXrkpSUxJo1a3Bzc2P16tW3nT09ICAgz3V37drFsWPHbqv94i7unCtYjDgY/r54lIIFVwx4YKDm/kscOLyLSzWvkOZaNC+gbN26tbCHcMdKNAC7WEeSjjphTrfDYrZwKPwsf24/g3uFDFzLGHHyNpFPscW7Zl+jDk4nokm/mEBS3Dm+mvIq5dp2xs7+9v4pLM7n7H6m83Zv+fj44OrqisFgICkp/2a4JScn51tbOXnssceoXbs2zs7OfP755zg5OTFo0CAmTJgAZN7tPGvWLDZu3MjWrVt5/vnnmTBhAuvWrWPGjBkcPnwYf39/+vTpw5gxY2yWdklJScnTe2E2m3F0dMTNzc1aZjKZrPtmJeTt3bs3CxcupEuXLtb2ly1bxvDhw5k5c6a1frNmzfjf//5nfX348GFSUlIYNmwYGzdu5IknngDghx9+wNnZmdq1axercya3z2g0kpKSQkpKCn/99Ze1XDN/70xoaCihoaG51vP09OTDDz+8oz46duxIx44d72hfEREREZHirMgFLDZs2ECZMmXYvHkzJUvm7c7nu3Xp0iWAm/bn6elprXMrZcqUYceOHfTr14/169fzww8/AODq6sqIESOoV69e/g1aALCYAYsRe7u/Axa7qifhHuNKo7TMWRcBaY6U/70kZyqkcLZcahFdCK14MtiBR6UM3MpncDnKieQoJywmAxaTgeQTTiSfcMLOyYxrGSOu/kacvU0YCvH9t3N0olzrDsRu+BZTylVSL5zj/M6tlGkekm8ztkTkb+vn/UXK5YwC79e1hCOdnn8gz/W/+uor/v3vf7Nx40b27NnDc889R5MmTQgJCQFgxowZvPHGG7z99tvY29uzfft2RowYwYwZM2jWrBlRUVGMGjUKgPHjx9/RmOfMmcPMmTOpUKECPXv25LnnnrMJfkBmwGLevHnExsYSEBDAd999R8WKFbN9v3j44Yd5//33OXv2LP7+/oSHh9O0aVMeeeQRm4us4eHhNGrUCBcXlzsas4iIiIiIiEh+K3IBi8TERDp37lxgwYr8dPToUR5//HE8PDwIDw+nfv36XLx4kaVLlzJp0iQ2bNhAeHg49vb2eW4zNvbW6+yfOXOGxo0bA9CkSZN8y+tRXHx74HeSsJ1h0aFLCzxKuvBb+En8d1/AKdmIncVA+Vg3Kqb7YH60At5VC/fzlZqaar3b+5FHHsnxYpHFaCYhIYXkS2lcvZyB2ZQ5Q8QCWKz/yfyfn4cTvu7XLYvlYCA2OR1ndwfcPJxw83DE2ene/7hfvZTObxtiidwdh9l0bWmYdDuuxDpxJdYJZzcHKj7oRWBdH8oFlcTeoXCiF+fr12PN9DcwpqeRfOIYD9QPpnGP3rfcJy/nTIoenbeCExMTg8lkwsHBwTozMu2KkZSkgg9Y2NkZ8jw708HBgXr16jFt2jQAgoODWbRoETt37qRbt24A/N///R/PPvusdZ+XXnqJCRMmMHz4cADq1q3L5cuXmTBhgrUdyLxhIS/jePHFFwkODsbb25vt27fz6quvkpiYyHvvvQdgnXlRpUoVOnbsyKpVq3jttdf4+uuvGTp0qHX2ZlZfjz76KE5OTuzdu5c+ffqwa9cu2rZtyyOPPEJCQgLx8fFUrlyZHTt2MHjw4HyZyWo2m60zKzw8PLArYksx3u/i4uJwdXXFw8ODhg0bWsuL+8xck8nErl27+PXXXzl37hyJiYl4eXlRpkwZGjZsSOPGjW/re7eIiIiIiBS+IhewCAgIKPC1j7OCIzebRZGUlISXl1eu7QwcOJATJ05w/Phx/P39gcw/2idMmMC5c+eYM2cOy5Yto2/fvnkeW4UKFfJc19nZ+baXnCruzEYzYMHe8PdH2de3JAYHO5q3r465dRWSfjpB8rZTYAHTuRRMS4+wpawrLQbVpYSn870fo9lM0qU04s9d4dKFq1xJSOVqwlWunnTD0WRg9x+HcDRa8LK3p6yLI+YUI+ZUIxgzL/h7XHvk5sbFPLJCMmYgGUjAQiqQaoB0O8iwN2B0MBBQsSSlK3hiX8oFey9nKOmEvacTjncQ4HB1daXdgJI83MvIiQMXOPZrHDF/xGcmRwfSrhqJ3B1H5O44nFzsqVTHlyr1/XAv5YydvcH6sLe3u/bcLsdyg93dzYaoVPNBurwwjm/fmwYWC798uwLf8gHUbtU2T/u7uLjcdz9r/wQ6b/eWnZ2d9fd31sVqN09n4E5+Xi2YzZZrbRluuw03T6fbumBet25dm/ply5YlLi7OWtaoUSOb7b///jsRERFMnz7dWmYymUhNTSU1NdUaYLCzs8vTOMaMGWN9Xr9+fVxcXBg+fDjvvPMOzs7O1jbs7OwYMmQIL774Iv3792fHjh188803hIeHW7dD5nePRo0asXXrVvr27cvWrVt5+eWXcXJyonnz5mzduhWDwUBMTAxt2rTJ9+BCXo9bCpbBYMDOzs7m30Fn53v/Pehe2LZtGx999BFr167lypUr1nKLxWIzY9LDw4MuXbrw73//mxYtWhTGUEVERERE5DYVuYBFz549+fTTT7ly5Qru7u4F0mdW7orIyEibu84Azp49S3JysnUWw81cvnyZiIgIGjRoYA1WXC8kJIQ5c+bw22+/3VbAQm4tIz0zWaRD1pJQdoD933+o2jnZU6pLFdzq+ZG4MpKMM1ewx8CDZ1JJnL6LSAMkudiRVsIRO28X3Mu44xvgSYXAUrh5OOXQYyaz2UxSYhoJF66QFJ/ClcRUUi+lYrycQSO/EpiTMzBfTsd0OZ20pDQczOAMlLZp5dqd3ilZATojxsvGfLrZweoAAQAASURBVHpnsnPCgBPgaQFM1x7pFvjrIkl/XbSpa8JCggGSnAykuTlgKemEs48rvpVLUbWWL65uN39vAJxdHajR2J8ajf3JSDNx4mA8x347z4kD8WSkmQBITzURuecckXvO3faxGAxkBjMcDNbAhr29IVuQw8HRDntHO+wd7P9+7miHg4Md9o4+BNbvRvRvawDY8Mlczp9Ip2yN+tg72FnrO1zb32hOJ+OKAbsi96+mSNHVa2KjO9rPbDZbcyp4enre84vfNybRNhgMNjdP3Ph9JDk5mcmTJ1tzQVwvP2bxNGnSBKPRSHR0NEFBQTbbOnXqxLBhwxgyZAiPP/44Pj4+ObYREhLC119/zR9//EFKSgoNGjQAoFWrVmzevNmaoLtJkyZ3PV6RghIeHs5LL73Eb7/9hsViwc7Ojjp16lC7dm18fHysy7jGx8dz8OBBDh06xLJly/j6669p0KABs2fP5uGHHy7swxARERERkVsocpfeXnvtNdavX0+vXr1YvHgxpUuXzn2nu9SqVSvefvttfvzxR5566imbbRs2bLDWuZX09HTg5skL4+LigOJ7J1tRZbr2vttfWxLK4GifYy4Cpwol8HmuHps/P0CVI0k4Y8AOA6UtUDrFAinpcD4d/koCzpAAXPR0wsHHBQdvVy6nZHAsOhGXDAvuRgueFnC8FgDwvfbIcjXqik3ft/NDZnC2x87VATsXBwyu9kRdTuOi2QRO9ljsDGC4dp/xtWO0XDvUAG83Kni5knUXcsrVDH4/Ho8hw4y90YKD0YyjCZzMFpwt4GIB11vcsWyPAT8L+KUBaUZINEL0VdgbzzmOctYBLns60bRZBZzKe+BYzgM7l5yP1NHZnmoNS1OtYWmMGSZiDyVw7Nc4ovZfID3lzgI0FguYjGZMdxnfsVgqY+9cD1Pa71gsZn5dOx+nLf/CzvFmM5sy57qsOrSPag3KUCXYD98KHsp/IXKfadCgAYcPH6ZatWr3pP19+/ZhZ2eX43cgBwcHnn76ad59913Wr19/0zZCQkKYOnUqX375JS1btrQui/PII4/w6aefYrFYaNGiBU5Otw5AixQVTz31FN988w0ODg507dqVgQMH0qZNG0qUKHHTfZKSkti0aROhoaH88MMPtG7dml69evHVV18V4MhFREREROR2FLmAxciRI6latSqrV6+mWrVqPPTQQ1SsWDHHuysNBgOfffbZXffZtm1bqlSpwpdffskLL7xA/fr1gcwloqZPn46TkxNPP/20tf6ZM2e4dOkSZcuWtS4n5ePjQ1BQEIcPH2bhwoUMHTrUWv/ixYvMmjULwJrAU/KHMePaDAtrwOLmd+E6ONrz6OD6REfG88e3kbgnZeCdbsHzJhfuzUnppCelkx6VhD1Qw7ol7xen7dwduOpoR2xaBhku9ljcHbHzcMTew4HY8yewdzbTtPlD+JYuiUdJZxxuyOlwp+G6koA/1W9Zx2g0k3wpDbc0E6aLaZgSUzEmpnEiKpHk81fxysj5vXHAQAUjkJDBpbVR1nJ7HxdOORlI8HCgZMUSOLo6Zts3S51GfjRvWZa42MvEn0wmPd3ExSvpWMxgMVvAnLmsg8Vsyfbaxd4uc3kvkwWL2UyG0YLJaM6sa8naP2vf3N4pA5YSbTA6uGMxXcsXY9yDg6MHdvY5LwNnAVLOpfDLumh+WReNp68Llev7UbW+H/5VSt71clUiUvS9/vrrPPbYY1SsWJGePXtiZ2fH77//zsGDB5k6depttbVjxw527dpFSEgIJUqUYMeOHbz00kv069fvpstRvvXWW4wbN+6msysAmjdvjrOzM/PmzePVV1+1ljdu3Jjz58/z7bff8sorr9zWWEUK0+rVq3nuueeYNGkSZcqUydM+np6e9OjRgx49enDu3DmmTJmSL387iIiIiIjIvVPkAhahoaHWu5WTk5MJCwu7ad38Clg4ODiwcOFCOnTowCOPPMJTTz1FiRIlWLlyJSdOnGDWrFkEBgZa67/yyissWbKExYsXM3DgQGv5+++/T9euXXnmmWdYtmwZwcHBJCYm8t133xEXF8e//vUv2rVrd9fjlb+ZMq7NsLi2Ts+Zq+mUy2WfwOo+BI79+yJPYvxVTkVdJOHUZVLOXcWQmEo1J0dcko2Yr9gmizViIckAV+wNpDoZyHC2x+zqgJ2HI06eTriWciGoijclfF2xc3fEYJ8ZgLjxHtyUlBQu/3gUgPKBJQtlXX0HBztK+Vzrt9zfWTJKXVcnOSmNM7GXSDh9mctnr2A+e5USlzIoa7TgcEMwwxSfij/gDxB5+ZZ9ZwAJgD1/B2Xynq0lB3aANVBwBwGDEre/PITZYiHFDFdTMrgacZqD4afY42jAsYIH5YNLE9SkLM43mXUiIsVbhw4d+N///seUKVOYMWMGjo6OPPDAAzY3K+SVs7Mzy5Yt48033yQtLY3KlSvz0ksvMXr06Jvu4+TkhK+v7023Q+bSVE2bNmXLli20bt3apr+mTZsSFhammyikWDl8+LDN9/HbVaZMGT766CPGjh2bf4MSEREREZF8V+Supi1evLhQ+g0JCWHbtm288cYbfP3112RkZFCnTh1mzJhB796989RGp06d2L59OzNnzmTbtm1s2bIFFxcXatasyeuvv86zzz57j4/i/mKxWDBlZAYUspaEyriDZc69fNzw8nGDh7JvM6caMSakgr2BZDso6eWKvcP9k0jUw9OZ6rVLQ23buR6pqRkkn0zGNSGN9NPJZJxOJv30FTDmOqXhH8POYMDdHtztbwiQnL0K66M5uy6KRCA9pDyNO1YtlDGKSO5yujFizZo11ucWiyXH/Tp06ECHDh1u2u7N9rtRgwYN2Llz5y3rtG7d+pbtde/ePcftN7vpY/PmzXkam0hRcjfBiutVrlw5X9oREREREZF7o8gFLAYMGFBofTdu3PiW60FnCQ0NJTQ0NMdtjRo1Yvny5fk8MsmJ2WTBYslMYpC1JJQxn5fjsXNxwOna7APvfG25eHNxccSlWuZSJVmpaE0ZZqIi4zl9OJ6Us1cyl2a6iWqlPfDz+DufS3KakQOnLuWp74cqeeFo/3fQ6GRiCrGJV3Pdz8PZgTrlS9qU/XE6iaTU62bRmIzYHf8NQ2oyABYXd8yVgynv60lZTyeio6IwmA34uPlxOuYy3kYLHjeZ0WFvMOALxG88yeYLGTR+vDLuJZXDRkRERERERERE5GaKXMBCJK9MGWYsFiP2BgfrMmL5HbCQvLN3tKNaLT+q1fK77X1LAuXvsN+SQO073Ld5DmXJiTVY9sbLXDp3FgB/96O0GTYVEwZO/XgIgFrtgwi8tozXxcQUzsRcIvF0MlfOXYHTV3G/nIG/GZwMBrztDeyOOE3knnM06FiJ+m0DcHCyv8MRi0hxM336dKZPn57jtocffjhPN0qIiIiIiIiI3C+KdMDi0KFDbN++nbi4OGrXrk3Xrl0BMJvNGI1GnJycCnmEUpiMGWa4FrDIYrpxeR6R2+Th5U3PV6ey7I2XuZKYwNmjR/h21jQ6vTg+x/qlvFwp5eUK9WzLE/93jCvbTmMwGCjjYCA2zcSub4/zx9ZTNO1elRqNyihBt8h9YMSIEfTq1SvHbYWRv0jkn+T48ePMmDGDTZs2cfr0adLS0nKsZzAYMBqNBTw6ERERERG5E0UyYBEbG8ugQYNs1lgeMGCANWDxn//8h+eee44ff/yRtm3bFtYwpZCZjGbA+P/s3Xd8VFX6x/HPnZn0DgkhCQmhBOm9o1SlWcCuqxRdy7rrKqJrWxXb6tp2Leuu+kOKXVSwIYICAUGqFJFOIIQSILQ0kkz9/TFkkkgghSQzge/b17ycuffcc5/JnCTkPvecx1O/AsBp0QVgOXuRsY25+tGn+fTJhyjKzyfjt/X88PZrGC3bY5gqV8MkuH00+Uv2A9AqPoS9GXm4XJB3rIgfp27i1wV76HdtCvEtI2vxnYiItzVo0IAGDbSooEhNW7t2LQMHDiQvL6/CmjGVrSkjIiIiIiLe53PVg48ePcqAAQNYsGAB7dq146677jrlj4zrrrsOk8nE119/7aUoxRfYrQ5cLjsWU6mEhdnnhrTUUzFJyVz18JNYAtx1J3auXkHWqiWVvujhnxSOKdidEw4rsHPdI91JatfQs//Q7lxmvbyG79/ZQHZWQc2/ARERkXPYQw89RG5uLldddRW//PILOTk5OJ3O0z5ERERERKR+8Lmruy+88ALp6ek88MADrF+/nv/85z+ntImKiqJDhw4sWbLECxGKryieYWEpNcPC5acZFlJz4lu1YdTERzGZ3YmHnLStHFm3slLHGiYDc0okAC6rg73px7j8r524/K+daBAf4mmXtiaLj55aztIvduCw6YKKiIhIZSxbtowLLriAGTNm0KVLF0JDQ70dkoiIiIiI1ACfS1h89dVXJCcn889//tNTSLk8zZs3Z//+/XUYmfia8mpYGH4qZiw1K7lzN0bcPRFO/jw6vvlXfvl2VqWO3R5WMjYPrjkIQFK7hlz/9x4MvOkCgsLcyTan3cW6HzJYOnNHDUcvIiJybvLz86Nz585n/HtBRERERETqH59LWOzevZuuXbtiqmCdeH9/f44ePVpHUYkvclid4LJhMZUqvu7nc0NazgGt+/ZnwNjbPa9XfP4Rq7+ZWeFxHS9sgg33ElKNDhV6lqQwmU20uyiBm5/uQ7fhTTGdrL2y+edMrIUqCioiIlKRrl27snfvXm+HISIiIiIiNcznru4GBgaSm5tbYbuMjAwiIiLqICLxVXa7ExdlZ1i0bqIxIbWj3aBLaNi5p+f1og+msOa7r854THhkEOlB7h+zMU6DHZsOl9nvH2Sh9+gWtOkTB4C9yMGO1YdqOHIREZFzzwMPPMCyZctITU31digiIiIiIlKDfC5h0bp1a9asWUN+fv5p2xw+fJj169fTsWPHOoxMfI3j5JJQpWtYNIwK8mJEcq6LatuJBh27e14vnP5/rJ377RmPcTQP9zxPX1H+MnZtL4z3PN+0VEvdidSlgQMHMmHCBG+HISJVNHz4cF577TVGjRrFI488wuLFi0lPTycjI6Pch4iIiIiI1A8+l7C45pprOHLkCBMnTvQsn/J7f/vb3zhx4gTXX399HUcnvsRuc7hrWJhKEhaGloSSWtagfRe6j7rW83rBlLdY/8Oc07a/oF+i53nQ7vJnj8UkhdGwibtY6MFdORzZl1dD0YpIRWbOnMkzzzxTJ+davHgxl19+OfHx8RiGwZdffnlKG5fLxRNPPEFcXBxBQUFcfPHFbN++vUwbwzAwDIPly5eX2V5UVETDhg0xDMNz13nv3r3505/+VKbdW2+9hWEYTJs2rcz28ePHc9FFF531+xSpK127diU+Pp4XX3yRQYMG0aJFC5o1a3bKo3nz5t4OVUREREREKsnnru7+5S9/oX379kyePJmePXvy3HPPAZCWlsa//vUv+vTpw3vvvUfnzp0ZP368d4MVr3LY3EtClZ5hYfj73JCWc1CP0dfS68qShOmPk99kw4J55bZNbB7FXrO7jkVTq4usg6cmIwzDoG0/zbIQ8YYGDRoQFhZWJ+fKz8+nU6dOvPnmm6dt8+KLL/L666/z1ltvsWLFCkJCQhg2bBiFhYVl2iUmJjJ16tQy22bNmkVoaGiZbYMGDTplyZyFCxeSmJh4yvbU1FQGDx5c9Tcm4gVLlixhyJAhbN26FZfLRYMGDUhKSir3kZiYWHGHIiIiIiLiE3zu6m5gYCBz586lT58+rFmzhscffxxw/1Hyt7/9jRUrVtC9e3e+/fZb/Pz8KuhNzmXFS0KVrmGR73R5MSI5XxiGQb/rb6bHFVd7ts175w02LppfbvvshGAATBhs/Kn8ZSla9YzFbHH/SN664oB7BpGI1LrSS0IVFRXxwAMPkJCQQEhICL169SpzUf/IkSPceOONJCQkEBwcTIcOHfj4448rfa4RI0bw7LPPcuWVV5a73+Vy8eqrr/LYY48xatQoOnbsyHvvvcf+/ftPmY0xbtw4PvnkEwoKCjzbpkyZwrhx48q0GzRoEFu3buXAgQOebYsWLeLhhx8u89527drF7t27GTRoUKXfj4g3PfbYYxQWFjJx4kSOHDlCVlYWu3btOu1DRERERETqB0vFTepeXFwcS5YsYe7cucyePZudO3fidDpJTExkxIgRjBo1CsMwvB2meJnd5gTKLgmVkVNIjPdCkvOIYRhc9IfxOB12fpn9FbhcfP+/VzGZTLS5qOwFv7iujSHDfbHEvvV4uf0FhvjRomsM21YepCjfzq51h0npEVvbb0OkVn3wyATyjx+r1rHFy0KaTFW/tyIkMoqbn3+1ysfdfffdbNq0iU8++YT4+HhmzZrF8OHD2bBhAykpKRQWFtKtWzceeughwsPDmT17NmPGjKFFixb07Nmzyuf7vV27dnHgwAEuvvhiz7aIiAh69erFsmXLuOGGGzzbu3XrRnJyMl988QU333wzGRkZLF68mDfffLPMElf9+vXDz8+PhQsXcuONN7Jp0yYKCgr44x//yEMPPcSuXbto1qwZCxcuJDAwkD59+pz1+xCpC2vWrKFLly68/PLL3g5FRERERERqkE8mLIoNGzaMYcOGeTsM8VH2copu+wX69JCWc4xhGAwYcxtOh5O1338DLhdz3vw3htlM6779Pe3ado9n65c7icCgaa6dwkIbgYGnzhBr2y+ebSsPAu5loZSwkPou//gx8o4e8XYYlZKRkcHUqVPJyMggPt69RNsDDzzA999/z9SpU3nuuedISEjggQce8Bzz17/+lblz5zJjxowaSVgUz4KIjS37vR8bG1tmhkSxW2+9lSlTpnDzzTczbdo0Ro4cSUxM2bR9SEgIPXv2JDU1lRtvvJHU1FQuvPBCAgIC6Nu3L6mpqTRr1ozU1FT69OlDQEDAWb8Pkbrg7+/PBRdc4O0wRERERESkhunqrtRbDpsT1+8SFgFBGtJStwzDYND4O3A6HKz/4TtcLiffvfEyJpOJVr0vBMBiMXE8LoiIzEKCMHCm50LrBqf0Fd8qkoiYILKzCti75RjZWQVExATV9VsSqTEhkVHVPvZsZ1hU1YYNG3A4HLRq1arM9uJC1gAOh4PnnnuOGTNmsG/fPqxWK0VFRQQHB1f5fDXh5ptv5uGHH2bnzp1MmzaN119/vdx2AwcO5LPPPgPcdSoGDhwIwIABA0hNTeWWW24hNTWV22+/va5CFzlrvXr1Ytu2bd4OQ0REREREapiu7kq95fAsCVUyjJWwEG8wDIMht/4Jp9PBhvlzcTmdzH79JQyzmZQe7uVVugxO5uiHWwAo2nqU4HISFoZh0KZfHMu/3AnA5p/303tUi7p7IyI1rDrLMoE7WZGTkwNAeHh4tZIWVZWXl4fZbOaXX37BbDaX2VdcyPqll17itdde49VXX6VDhw6EhIQwYcIErFZrjcTQuHFjAA4ePEhcXJxn+8GDB+ncufMp7Rs2bMhll13GH//4RwoLCxkxYgS5ubmntBs0aBD/+Mc/2LdvH6mpqZ5ZIgMGDODtt98mLS2NPXv2qOC21CuPP/44/fv35+OPP+bGG2/0djgiIiIiIlJDvH51t3nz5hiGwY8//kizZs1o3rx5pY81DIO0tLRajE58md1TdLtkhkVgsAqxi3cYJhOX3PYXnA4HG1N/xOlw8O2/X+DqR58mqX1HAlOiwGyAw0Xh5qO4rnCVW4undZ84Vny9C5fTxZafM+l5WTNM5tq/WCtyvuvSpQsOh4NDhw5x0UUXldtm6dKljBo1iptvvhlwJ1a2bdtG27ZtaySGZs2a0bhxY+bPn+9JUOTk5LBixQruuuuuco+59dZbGTlyJA899NApiZZiffv2xd/fn//+97+eOhwAPXr0ICsriylTpniWjhKpL6xWKxMmTGDMmDF8/fXXjBgxgqSkpNMmOPv371/udhERERER8S1eT1ikp6djGAY2m83zurJUePv85rA5gLJLQilhId5kmEwMvfOvuBwONv20EKfDzvIvPiapfUdMgRYCmkdQtP04juNF2A6cwD8u5JQ+QiICSO7QkF3rD5OfbSVj41GSO0Z74d2InF9atWrFTTfdxNixY3nllVfo0qULWVlZzJ8/n44dO3LppZeSkpLC559/zs8//0xUVBT/+te/OHjwYKUTFnl5eezYscPzeteuXaxbt44GDRqQlJSEYRhMmDCBZ599lpSUFJo1a8bjjz9OfHw8o0ePLrfP4cOHk5WVRXh4+GnPGxQURO/evXnjjTfo16+fJ7Hh7+9fZrufn36HSv0xcOBADMPA5XIxY8YMZsyYcdq2hmFgt9vrMDoREREREakurycsdu3aBUBCQkKZ1yIVsdvdNSzMppILLEFButgi3mUymRn25wns3bKJnKyD7N++BbvVisXfn8DWDSjafhyAtQt20eum9uX20bZfPLvWHwbcxbeVsBCpG1OnTuXZZ5/l/vvvZ9++fURHR9O7d28uu+wyAB577DF27tzJsGHDCA4O5o477mD06NFkZ2dXqv/Vq1czaNAgz+uJEycCMG7cOKZNmwbAgw8+SH5+PnfccQfHjx/nwgsv5PvvvycwMLDcPg3DIDq64p8RgwYNYvHixZ76FcUGDBjAwoULy8QlUh/0799fNy+JiIiIiJyDvJ6waNq06Rlfi5yOw+peEspiuIexHRcBgV4f0iKYTGaS2nfkt4U/4LDZyNyxlcS2HchOKJlRYd167LTHJ7VrQHCEPyeyraRvOEJ+dhEhEQF1EbrIeSc1NdXz3M/Pj6eeeoqnnnqq3LYNGjTgyy+/rPa5Bg4ciMvlOmMbwzB4+umnefrpp0/b5kx9REZGlrv/ySef5Mknnzxl+6RJk5g0adIZYxLxRaW/d0VERERE5NyhhdGl3rLbTxbdPrkkVJF3wxEpI7FtB8/zPRs3ANAkOZK9FveFxKZWF4cy88o91mQ20aaPu+Cuy+liy7LMWo5WRERERERERETE+3wuYbFnzx7ee+89tm7deto2W7Zs4b333mPv3r11GJn4GrvVBjixnFwSyqpVAcSHNGlbstzT3k0bPM+z44MBMGGwaUnGaY9v0y/O83zz0swK78oWEe/KyMggNDT0tI+MjNN/v4uIiIiIiIiIm88lLN544w1uueWWM16cc7lcjB8/nv/+9791GJn4GnuRFcAzwyI6Ksib4YiUER7diIhGsQCeOhYAcd1KEhH2badfFioiJpiEC6IAyM4qYP/J2hci4pvi4+NZt27daR/x8fHeDlGkXluzZo1P9SMiIiIiIrXD5xIW8+bNo02bNrRu3fq0bdq0aUPbtm35/vvv6zAy8TW2kwmL4hoWJn+fG85ynmtyclmo4joWAG27xXGck8tC5TooOGE77fFtLyxJbmxaur8WIxWRs2WxWGjZsuVpHxaLaiyJnI0ePXpwww03sGXLlmodv3HjRq677jp69Ohx1rF88MEH3HnnnXTv3p2AgAAMw2DatGmntLPZbHzxxReMGzeONm3aEBoaSlhYGL169eJ///sfDofjlGPS09MxDOO0j/Jq0YiIiIiInEt87q/nPXv2cNFFF1XYrmXLlixdurQOIhJfZbO6q1ZYTP4AGH5mb4YjcorEth3YmPoj4K5jkdi2AxaLiX0N/Yk8YiMIg1+X7aHXkOblHt+8cwwBwRaKTthJW5PFRdfZCAzxq8u3ICIi4hPuuece3nzzTT777DP69OnD+PHjGTJkCM2aNTvtMTt37uSHH35g2rRprFy5ErPZzL333nvWsTz22GPs3r2b6Oho4uLi2L17d7nt0tLSuOaaawgNDWXIkCFcccUVZGdn88033/DnP/+Z7777jq+//hrDOHVd006dOjF69OhTtg8cOPCs4xcRERER8WU+l7A4ceIEQUEVL+0TFBREbm5uHUQkvsphK8JslAxhw08zLMS3lC68vXfzb57nYe0awuIDABz/NQtOk7Cw+Jm5oFdjfl24F4fNyfZVB+kwsEntBi0iIuKD/v3vf3PHHXfwt7/9jTlz5rBs2TIAYmJiaNOmDQ0bNiQ8PJycnByOHDnC5s2bycrK8hw/cuRIXnzxRdq0aXPWsUyePJmUlBSaNm3KP//5Tx555JFy24WFhfHmm28ybtw4QkJCPNtfeeUVBg4cyLfffsvnn3/Otddee8qxnTt31mwKERERETkv+VzCIi4ujnXr1lXYbv369TRq1Kj2AxKfZbdaPfUrADJPWInxYjwivxce465jkX3oIJnb3HUsLP7+dLwwiUOLM/HHIPZQEU6nE5Op/IRbm37x/LpwLwAbl+yn/YCEcu/EFBEROde1adOGb7/9lu3bt/Of//yHr776ioyMDA4dOlRu+6SkJEaPHs1f/vIXUlJSaiyOiy++uFLtEhIS+POf/3zK9pCQECZOnMgf/vAHFi1aVG7CQkRERETkfOVzCYuLLrqIDz74gC+++IKrr7663DYzZ85ky5Yt/OEPf6jj6MSXOGw2T/0KgAMFVjp6MR6R8jRp24HsQwex26wc2LGNJm3bExoewMpgE61OuIh2GWzdcIg2nRqXe3x0k1AaJYdzKD2HI3vzyMrIpVHT8Dp+FyIiIr4jJSWF1157jddee42dO3eydu1aDh48SHZ2NpGRkTRq1IiuXbuecbkob/Pzc990c7r6Nvv37+fNN98kOzub2NhYBg4cSIsWLap1rr17955xf2Zmpud5QUEBBQUF1TqPiIjUL/p5L8U0FqS0qoyH2ho7PpewuPfee/nwww8ZO3Yse/fu5dZbbyUsLAyA3NxcpkyZwt///ndMJhP33HOPl6MVb3LYrfidrF8B4LJoSSjxPWXqWGzaQJO27QGwtIqCdUcBaJhZAJ1O30fbfnEcSs8BYNPSTCUsRERETmrevDnNm5e/tKIvmzJlCgBDhw4td/8PP/zADz/84HltGAY33XQTb731VpnlpSojMTGx0m0XL15MdHR0lfoXETmVz11qknLMmzevjs6k8eDr6m4sgMaD76vKeDh8+HCtxOBzV3i7du3K888/T0FBARMnTqRBgwYkJSWRlJREgwYNmDhxIidOnODZZ5+lZ8+e3g5XvMTlcp0ywwIlLMQHNWnT3vN8z6YNnud9h5XcJenacfyMfaT0iMUS4C4qv33lAWxFjpoNUuQ8NnDgQCZMmODtMETkPPLOO+8wZ84cBg8ezMiRI8vsCw4O5vHHH+eXX37h+PHjHD16lB9//JGePXvywQcfMHbsWC9FLSIiIiJSN3wyrfW3v/2NCy64gEmTJrF+/foy05g7derEpEmTGD16tPcCFK9z2l2AvUwNC1R0W3xQRKNYwmNiyck6WcfCZsPi54clKhC/xiHYDuRj25uHI8eKOdy/3D78Ay2kdGvE5p8zsRY6SFtziNZ94ur4nYicm2bOnOlZmqW2LV68mJdeeolffvmFzMxMZs2adcq/Z8aPH8/06dPLbBs2bBjff/+953VxHZtly5bRu3dvz/aioiLi4+M5evQoCxcuZODAgfTu3ZvOnTvz1ltvedq99dZb3HXXXUydOpXx48eXOXdaWho//fRTDb5rESnt22+/5e6776Zp06Z88MEHp+xv1KgRTz/9dJltQ4YMoU+fPnTt2pWZM2eyZs0aunbtWulz7tmz54z7MzMzPTeC9e/fnyZNmlS6bxGRci1b4O0IpBJON8uvxmk8+Lw6Gwug8VAPVGU8VLT0aHX5ZMIC4IorruCKK67g4MGDZGRkAO7CebGxsV6OTHyB3e4Elx2LSQkL8X2JbTuwcVFxHYutnlkXgW0aYDuQD0DhlqOE9Cy/jgVA2wvj2fyze43pTUv3K2EhUkMaNGhQZ+fKz8+nU6dO3HrrrVx11VWnbTd8+HCmTp3qeR0QEHBKm8TERKZOnVomYTFr1ixCQ0M5evSoZ9ugQYOYNWtWmWMXLlxIYmIiqampZRIWqampjBs3rjpvTUQq4bvvvuOaa64hNjaWBQsWEBdX+d/lwcHBjBkzhscee4ylS5dWKWFRlQREUFAQQUFBlW4vIiL1l37eSzGNBSmtKuOhtsaOz1/hjY2NpUePHvTo0UPJCvFw2Jy4fjfDwuTv88NZzlOJ7Tp4npdeFiqwTcmF0u0/nzkrHdssnKg495rVmTuyOXYy0SEiZ6f0klBFRUU88MADJCQkEBISQq9evUhNTfW0PXLkCDfeeCMJCQkEBwfToUMHPv7440qfa8SIETz77LNceeWVZ2wXEBBA48aNPY+oqKhT2owbN45PPvmkTJGzKVOmnJJwGDRoEFu3buXAgQOebYsWLeLhhx8u89527drF7t27GTRoUKXfj4hU3uzZs7nqqquIjo5m4cKF1aq7UVxbIj9f/wYQERERkXOXz86wEDkTu9VxcoZFyRA2+Zu9GJHI6ZWuY7F30wa4+kYA/BJCOW64iHQZhB44QcEJK0HB5S8LZRgGbfvFsfTzHQBsWZZJnytb1n7wImfh4BtrceZaq3ycC3C5nACcMEwYVTzeFOZP7F+7VPm8d999N5s2beKTTz4hPj6eWbNmMXz4cDZs2EBKSgqFhYV069aNhx56iPDwcGbPns2YMWNo0aJFjdbVSk1NpVGjRkRFRTF48GCeffZZGjZsWKZNt27dSE5O5osvvuDmm28mIyODxYsX8+abb/LMM8942vXr1w8/Pz8WLlzIjTfeyKZNmygoKOCPf/wjDz30ELt27aJZs2YsXLiQwMBA+vTpU2PvQ0TcZs+ezdVXX02DBg1YuHAhLVtW7/f3ihUrAEhOTq7B6EREREREfIvXExbvvfceAFdeeSVhYWGe15WlwnPnJ8fJJaHMpZaEMgcoYSG+yV3HohE5WYfYv7WkjoXJbGJfQ38iD9sIxODXpXvpdcnp77i8oFdjln6xA1yQsekofc58k7aI1zlzrThyqp6wKM1VQ7FUJCMjg6lTp5KRkUF8fDwADzzwAN9//z1Tp07lueeeIyEhgQceeMBzzF//+lfmzp3LjBkzaixhMXz4cK666iqaNWtGWloajz76KCNGjGDZsmWYzWV/z916661MmTKFm2++mWnTpjFy5EhiYmLKtAkJCaFnz56kpqZy4403kpqayoUXXkhAQAB9+/YlNTWVZs2akZqaSp8+fcpdfkpEqm/OnDlcffXVREVFsXDhQlJSUs7Yfu3atXTu3NlTq6bYzJkzmT59OlFRUYwYMaI2QxYRERER8SqvJyzGjx+PYRj07t2bsLAwz+vKUsLi/GS3OXFhw1JqSSizv9eHs8hpuetYzD+ljkVYu2hY5K5Ncfy3LDhDwiIozJ/oJqEc3pPH4b15FObbCAypm2LBItVhCit/xlBFSs+wMKo5w6KqNmzYgMPhoFWrVmW2FxUVeWY3OBwOnnvuOWbMmMG+ffuwWq0UFRURHBxc5fOdzg033OB53qFDBzp27EiLFi1ITU1lyJAhZdrefPPNPPzww+zcuZNp06bx+uuvl9vnwIED+eyzzwD37I2BAwcCMGDAAFJTU7nllltITU3l9ttvr7H3IXIumzx5MkuWLAHcPzuKtxUvs3bhhRdy2223sWXLFq688kqKiooYOHBguUvIJScnl6klc99995GWlkafPn1o0qQJDoeDNWvWsGTJEgICApg2bRoRERG1/h5FRERERLzF61d4x44di2EYnn94F78WOROH7eQMC6PkolRkhO4KFd/V5GTCAtx1LIoTFh37JXJk0X7MGIQerfhO9ISUKA7vyQMXZO44TrNOMRUeI+It1VmWCcDpdJKTkwNAeHg4JlPt1yjKy8vDbDbzyy+/nDKTITQ0FICXXnqJ1157jVdffZUOHToQEhLChAkTsFrPbhbJmTRv3pzo6Gh27NhxSsKiYcOGXHbZZfzxj3+ksLCQESNGkJube0ofgwYN4h//+Af79u0jNTXVM0tkwIABvP3226SlpbFnzx4GDx5ca+9D5FyyZMkSpk+fXmbb0qVLWbp0qef1bbfdxoEDBygqKgLgk08+KbevAQMGlElY3HzzzXzxxRcsX76cw4cP43Q6SUhI4LbbbuP++++ndevWNf+GRERERER8iNcTFtOmTTvja5Hy2G1OwI7FVHJXa0qC7jYT35XYtqTw9t5Nv8HV7ueh4QFsNEOCA+JtLooK7QQEnv5Hc3yrSNYv2APAvm1KWIjUlC5duuBwODh06BAXXXRRuW2WLl3KqFGjuPnmmwF3YmXbtm20bdu21uLau3cvR44cIS4urtz9t956KyNHjuShhx46JdFSrG/fvvj7+/Pf//7XU4cDoEePHmRlZTFlyhTP0lEi9YXZbGb8+PG8++67Z2x3++23M3XqVOx2e42de9q0aZX6m2XgwIG4XFVb2O62227jtttuq2ZkIiIiIiL1X+3fsliB4vWXi2VkZHD06FEvRiT1QckMi5LlcAx/rw9nkdMqrmMBsH+bu45Fsexw9zj2w2DnlsNn7Cc+JZLi9XH2bTtWK7GKnI9atWrFTTfdxNixY5k5cya7du1i5cqVPP/888yePRuAlJQUfvjhB37++Wc2b97MnXfeycGDByt9jry8PNatW8e6desA2LVrF+vWrSMjI8Oz/29/+xvLly8nPT2d+fPnM2rUKFq2bMmwYcPK7XP48OFkZWXx9NNPn/a8QUFB9O7dmzfeeIN+/fp5Ehv+/v5ltvv5aYk5qT9cLlelkwFVTRqIiIiIiIj3eP0K77Rp0zxrwAI0a9aMv/3tb16MSOoDu82By2UvU8PC8FPRbfFtxctA2a1FHEjb5tluNA7xPD+w7cgZ+wgM8SO6iXt5muI6FiJSM6ZOncrYsWO5//77ueCCCxg9ejSrVq0iKSkJgMcee4yuXbsybNgwBg4cSOPGjRk9enSl+1+9ejVdunShSxf3UlkTJ06kS5cuPPHEE4D7jvFff/2VK664glatWvHHP/6Rbt268dNPP522GLZhGERHR+Pvf+a6HYMGDSI3N9dTv6LYgAEDyM3NZdCgQZV+HyL1yYkTJ5SMExERERGpR7y+JJTZbMZW6k7jqtwtJecvx8klocymkj9ATZphIT4usW0HNi1eAMDejRto0rodAA1bRMLmbACK9uVV2E9Cq5I6Fvu3H6d5Zy0LJVJdxUVyAfz8/Hjqqad46qmnym3boEEDvvzyy2qfq6LlYYKCgpg7d26F/Zypj8jIyHL3P/nkkzz55JOnbJ80aRKTJk2q8Jwi9dHx48dZsmTJaZdUE5GalfzwbG+HIBVI/+el3g5BRESkQl5PWDRq1Ih169bhcrlUbFsqzX5ySSiLUTKEj1vtRHsxJpGKJLYrqWOxZ9MGel99AwAt2seQ++1uAEKOVaLwdqtI1s9317HYv00JCxEROT80b968zOvPP/+8TNKxNLvdzoEDB3A4HNx55511EJ2IiIiIiNQErycsBg8ezIcffkjz5s1p1qwZAN9//z2DBw+u8FjDMJg/f35thyg+yGFz4sKO2ShZAsMvyOvDWeSMwmNiCYuOIfdwFvu3bcFht2G2+BERGcQOs4tYh0GiHVwOF4b59AncuJaR7joWLti3XXUsRHxBRkbGGYtvb9q0ybO0lIhUT3p6uue5YRjk5eWRl3f6mYn+/v6MHj2a5557rg6iExERERGRmuD1K7wvvPAC27ZtY9WqVeze7b7D+MCBAxw4cKDCYzUj4/zlmWFhKhnCQcFan1h8m2EYnmWh7NYiDuzYTkJr9wXOpm1jKNxwGIsT7Fkn8CtV1+L3iutYHN6T56ljERii8S/iTfHx8Z5i2qfbLyJnZ9euXYB7WbTmzZtzzTXX8NJLL5Xb1t/fn5iYGCwWr/+5IyIiIiIiVeD1f8HHx8ezYsUKdu/eze7duxk4cCDDhw/noYce8nZo4sMcJxMW5pNFt2248Pf3+nAWqVCTtu09dSz2bNrgSVgENAmlcMNhAKz78s6YsABIuEB1LER8icVioWXLlt4OQ+Sc1rRpU8/zcePGcdFFF5XZJiIiIiIi9Z/PXOFt2rSp5w+Oxo0bM2DAAC9HJL7MYXcX3bacTFgUeTcckUpLbNvR83zPpg30vup6APziQz3bbfvzoFvsGftJaBXF+h/ddSz2bTumhIX4jDMVhBYR7yj+vjyXZidPnTrV2yGIiIiIiEgtMHk7gMGDB/Piiy96Xk+dOpXbbrvNixFJfWC3OnC57JhN7oSF9dz5+1vOcRGNYglr6E4u7N+6GYfdBpRNWBTuza2wn/iWEe46FsC+bcdrPE6RqvLzc/88djgcHD9+3LvBiIjH8ePHcTgcAFoeSUREREREfJ7X/2pJTU0lOTnZ8/rWW29l/Pjx9O3b13tBic9z2IpnWLiHsE0JC6kn3HUs2rPpp4Vl6liYQ/zIDTARVuQkZ3cOMXYnZsvpc8oBwX7EJIaRlZHLkX2qYyHeFxISQkFBAQCZmZkcOnTorO7mttvtAGRlZdVIfFL79Jn5HpfL5UlWgPv79FySm5vLf//7X3788Uf27dtHYWFhue0MwyAtLa2OoxMRERERkerwesLCz8+vzB8XLpdLy0lIhez2sjUsrF6fKyRSeU3adWDTTwsB2Lv5N08di73+0KYIgjHYnXaU5hdEn7Gf+FaRZGXkqo6F+ITo6GgcDgfHjh0DKHORtKpcLpcn+REUFHROLWNzrtJn5vuioqKIjj7z75X6ZP/+/Vx44YXs3r27wr8dNB5FREREROoPrycs4uLiWLFiBfn5+efcXV9Se2xFdsCB5eSSUHaT/hCV+uP3dSx6XXkdAM5GwZCbB8C+rUcqTFg0KV3HYqvqWIh3GYZBbGwsZrOZ/Px87HZ7tW9AcDqdnovfoaGhmEzKSvs6fWa+yTAMLBYLISEhREdHn1MX7h999FHS09Pp3LkzDz/8MG3atCE8PNzbYYmIiIiIyFnyesLi0ksv5X//+x+NGjUiNtZdZPbzzz8nNTW1wmM1vfv8ZbdaPbMrABzmc+cPcDn3RTSKJbRhNHlHDrNv6yYcdhtmix+RzSIgzZ2wyM+ouI5FXMsIDANcLtWxEN9gGAYxMTHExJxd8qygoIAtW7YA0K1bN4KCgmoiPKlF+sykrs2dO5fY2FgWLlxIRESEt8MREREREZEa4vWExXPPPUdWVhZffvkl6enpGIZBXl4eeXl5FR57Lt0lJlVjKyry1K8AiG0Y7MVoRKrGXceiA5t/Woi9qIgDaTtIuKANye1isP24D4CAI+Wvw11aQLAf0aXrWOTZCAxVHQsRETn3HTt2jJEjRypZISIiIiJyjvH6fP2IiAhmzJjBiRMnSE9Px+Vycc0117Br164KHzt37qzRWFatWsXIkSOJjIwkJCSE3r17M2PGjCr3c+jQIe677z5SUlIIDAykYcOG9OnTh//97381Gu/5zF5kxWwquTDbqIHu5JT6JbFtB8/zvZs2ABAbF8ZRw72ETuMCJ06ns8J+ElpFep7v3368RmMUERHxVYmJiZX6PSkiIiIiIvWL12dYFLNYLCQlJQHutY+bNm1ap+dfuHAhw4YNIzAwkBtuuIGwsDC++OILrr/+evbs2cP9999fqX7WrVvH0KFDOXbsGJdeeinXXHMNeXl5bN68mW+++Ya77rqrlt/J+cFuLcRSakkow8/sxWhEqq50wqJ0HYusYDMN8p2EYbAvPZvE5lFn7CehVRTriutYbDtG8y6qYyEiIue+a665hnfeeUd18EREREREzjE+k7Ao5o07pex2O7fffjsmk4nFixfTuXNnAJ544gl69uzJo48+yjXXXFNhEiUnJ4dRo0YB8Msvv9CxY8cy++12e63Efz6y/a6GheHv9clCIlUSEdv4d3Us7JgtFuwxgZB/AoCMzYcrTFjEpUSWqmNxrC5CFxER8brHH3+cOXPmcN111zF16lQaNWrk7ZBERERERKQG+FzCorTs7GxWrVpFVlYWTZs2pW/fvrVyngULFpCWlsYtt9ziSVaAe7mqRx99lPHjxzN9+nSeeOKJM/bz3//+l4yMDN59991TkhXgnkUiNcNhs2IxlXw9rSpnIvXM7+tYHNy5nfhWbQhrGgHp7oRFXkZOhf0EBFmISQrj0O5cjuzLpyDPSlCof22HLyIiUqduvfXWU7Y1b96cL7/8kpYtW9K9e3eSkpIwmU69icUwDN599926CFNERERERM6ST15Bz83N5b777uP999/3zEoYN26cJ2ExefJknnjiCWbNmkWvXr3O+nypqakADB069JR9w4YNA2DRokUV9vPpp59iGAZXX301W7duZd68eRQUFNC6dWuGDx+Ov3/VLyLu3bv3jPszMzM9z4uKiigoKKjyOeojm9VKsFHy9Vyz7zgD69F7LywsLPe5+K7a+MxiW17A5p8WArBz/VqiEpNp3DIMFrm/ry1ZBZX6nm7UPJRDu3MBSN94iOSODWskvnOBvtfqJ31u9Y8+s/qpqKjI2yFU2rRp0067Ly8vz/Pv+fIoYSEiIiIiUn/4XMKioKCAgQMHsnbtWho1akT37t357rvvyrS57LLLuPPOO/nyyy9rJGGxfft2AFJSUk7Z17hxY0JDQz1tTsdqtbJhwwZiYmJ44403mDRpUpnlrYrvAOvQocMZejlVYmJipduuWLGCtLS0KvVfXxUV5BNulAzfI9lHmDdvnhcjqr7Fixd7OwSpopr6zKy52Z7nvy5ZxBH/EFxOaGeKJMhpornVwby586CCGUQFOWYgGICVC35j24H6cwGqLul7rX7S51b/6DOrPw4fPuztECpt6tSp3g5BRERERETqgM8lLP71r3+xdu1abrzxRt555x1CQkJOmdrduHFj2rRpw8KFC2vknNnZ7ouGERER5e4PDw/3tDmdo0eP4nA4OHLkCE8//TQvvvgiY8aMwWaz8fbbb/Pss89y+eWXs2XLFgIDA2sk7vOZy+HAbCqpYeFUzW2ph/xCwzEHheAoyKcw6yAupxPDZMIa5iAo24Sf3YSf1cAW4DpjPwFRDsAFGBQd1TeDiIice8aNG+ftEEREREREpA74XMLi008/pXHjxrz77rtnvLDfqlUrVq5cWYeRnVnxbAqHw8Hdd9/N/fff79n39NNPs3XrVmbMmMHnn3/OzTffXOl+9+zZc8b9mZmZ9OzZE4BevXrRokWLakRf/7z7zRQspWZYJCTF03doSy9GVDWFhYWeO1D79++vJFY9UFuf2Q/pW9m+7CdcDjudWjajccsLyDftpXDpAQD6teqB/wWRFfbz9dZfObwnH1uumYv6DiIo1K/CY84H+l6rn/S51T/6zOqn82VmroiIiIiI1B8+l7BIS0vjkksuqfAP3eDg4Bqbxl48s+J0syhycnKIioqqVB8AV1xxxSn7r7jiCmbMmMHq1aurlLBo0qRJpdsGBAQQFBRU6fb1lcvlwuGwYbaU1LAICK6/7z0wMLDexn6+qsnPLLlDZ7Yv+wmAQ2nbadahM66mkZ6EhXHYSlDnis+V2Lohh/fkA3BsTyENuobXSHznEn2v1U/63OoffWb1R0BAgLdDEBERERERKcPnEhZmsxmbzVZhu7179xISElIj5yyuXbF9+3a6detWZt+BAwfIy8vzzGI4nZCQEBISEti3bx+RkZGn7C/edr4Uxa5NDrsTXHYsppLhawnQMjhSPyW2K6lrk77+F3qNvhZzXMnPtu2/HqLbxU0r7Ce+VSRrf8gAYN+247To2qjmgxUREfERt956a6Xa+fv7Ex0dTffu3Rk5ciT+/v4VHyQiIiIiIl7jcwmLFi1asH79eux2OxZL+eHl5eXx66+/0rZt2xo554ABA3j++eeZN28eN9xwQ5l9c+fO9bSpyODBg3n//ffZtGkTXbt2LbNv06ZNACQnJ9dIzOczh80J2DEbJUve+AX53FAWqZTI2Dii4hI4lrmPfZs3cSInm8CGYeThIhQDc1blkpzxLSMxDHC5YN+2Y7UctYiIiHdNmzYNAMMwAPcM3NJ+v90wDGJjY5k+fTqXXHJJ3QUqIiIiIiJVYqq4Sd264ooryMzM5Nlnnz1tm2effZbs7GyuvPLKGjnnkCFDaN68OR999BHr1q3zbM/Ozua5557D39+fsWPHerZnZmayZcuWU5aQ+tOf/gTAP//5T44fP+7ZfuDAAV577TVMJhNXX311jcR8PrPbnLhcdiylEhb+gUpYSP1kGAYpPfsA4HI52bFqOSaTiQOB7h/P0S6DQwfyKuzHP8hCTFIYAEf351OQa629oEVERLxs6tSp3H333bhcLuLj47n33nv597//zauvvsqECRNo0qQJLpeLv/zlLzz99NMMGDCAAwcOMHr0aLZs2eLt8EVERERE5DR8LmFx3333kZCQwDPPPMPo0aP56KOPADh48CAzZ87khhtu4KWXXiI5OdmTIDhbFouFyZMn43Q66d+/P3fccQf3338/nTp1Ytu2bTz33HNlZkY88sgjtGnThlmzZpXpp2/fvkycOJGNGzfSsWNH/vKXv3DHHXfQqVMn9u3bx7PPPkurVq1qJObzmcPmXhLKbCpJWARohoXUYyk9+3qe71j5MwCFDUrWFU/fmFWpfhJaldTa2bfteM0EJyIi4oN69uzJlClTmDBhAjt37uTf//439957L/fccw//+te/2LFjB/fddx9Tp07lqquuYsGCBTzxxBMUFBTwr3/9y9vhi4iIiIjIafhcwiIyMpLvv/+eZs2a8fXXXzNmzBgMw+D777/n2muvZcaMGSQlJfHNN9/UWA0LgEGDBrFkyRL69evHp59+yv/+9z9iY2P55JNPuP/++yvdzyuvvMLUqVOJjY1l2rRpfPTRR7Rq1YqZM2fyyCOP1Fi85zP7ySWhLEZJkiIwUOsRS/0V2yKF0IbRAOzesJ6iE/kEJ4Z59h9Pzz7doWUkXFCSsNivZaFEROQcNmnSJOLi4njllVfw8/M7Zb+fnx8vv/wycXFxTJo0CYC///3vxMXFsWDBgroOV0REREREKsknb0tv27Ytv/32G9OmTeO7775j586dOJ1OEhMTGTFiBHfccQfBwcE1ft6ePXsyZ86cCttNmzbNs25uecaPH8/48eNrLjApwzPDotSSUI2ig7wYkcjZKV4Wau2cb3A67Oxcs4qE1u1ghXtmhXHwRKX6iWsRgWEycDld7Nt+vBYjFhER8a5FixYxZMgQT62K8hiGQY8ePZg/fz7gTmJ06NCBxYsX11WYIiIiIiJSRT6ZsAAIDAzkT3/6U40t+yTnDrvNiQs7FpNqWMi5o1XPfqyd8w0A21f+zMh7+rMLF0EYNMizV6qP4joWh9JzOLo/nxM5VoLDNftIRETOPTk5ORw7VvFswuPHj5Obm+t5HRUVdcYkh4iIiIiIeJfPLQklUhGHzXHKDAvDz+zFiETOXnzrNgSFRwCwa90vuBxWMgPcF1RinQbHjxRUqp+EVpGe5/s1y0JERM5RLVq0IDU1lR07dpy2zfbt21m4cCEtWrTwbMvMzKRhw4Z1EaKIiIiIiFSDTycsli9fzvPPP8/dd9/N3XffzfPPP8/y5cu9HZZ4mf3kklCeGhZmA8OsO+WkfjOZzLTs0RsAe1ER6evXcCKqpPB22sZDleqnbOFt1bEQEZFz0y233EJRUREDBw7k3Xff5cSJkuUTCwoKmDJlCoMHD8ZqtXqWarXZbKxfv56OHTue1bk/+OAD7rzzTrp3705AQACGYZxxudicnBwmTpxI06ZNCQgIIDk5mb/97W/k5eWV297pdPLGG2/QoUMHgoKCiImJ4cYbb2Tnzp1nFbeIiIiISH3gk+voZGRkcNNNN/Hzzz8D4HK5ADzTt/v168cHH3xAUlKS12IU73GcXBKqeIaFzafTbiKVl9KzLxvmzwVg+8plBDUZAQeKADi68zj0b1phH3EtS9Wx2Ha8FqMVERHxngkTJpCamsrs2bO54447uOOOO4iOjsYwDLKy3DWgXC4XI0eOZMKECQBs2rSJzp07c9NNN53VuR977DF2795NdHQ0cXFx7N69+7Rt8/PzGTBgAOvWrWPo0KHceOONrF27lpdffplFixaxePFiAgMDyxxz5513MnnyZNq1a8c999zD/v37mTFjBvPmzWP58uWkpKScVfwiIiIiIr7M5y71Hj9+nEGDBrF06VICAgK44oormDhxIhMnTmTUqFEEBASwZMkShgwZQnZ2trfDFS/wzLA4WcMix+70ckQiNSOpfUf8g4IB2PnLSuJaRnr2NbG6KtWHf6CFRk3DADiW6a5jISIicq4xm818/fXXvPrqqzRr1gyXy0VWVhaHDh3C5XLRtGlT/vWvf/H1119jNruXDu3UqRMLFy7kxhtvPKtzT548mfT0dLKysiqst/fiiy+ybt06HnroIebOncs///lP5s6dy0MPPcSqVav497//Xab9woULmTx5Mv3792fNmjW88MILvP/++3z55ZccPXqUu++++6xiFxERERHxdT6XsHjllVfYtWsXI0eOZMeOHcyaNYuXX36Zl19+mZkzZ7Jz504uvfRSdu7cySuvvOLtcMULHHYnlJ5hodWg5BxhtvjRoltPAIpO5BPo3A8W9wCPyq1c4W1QHQsRETk/GIbBPffcw44dO9izZw/Lli1j2bJlZGRksHPnTiZMmIDJVPN/7lx88cU0bVrxrEeXy8XkyZMJDQ3l8ccfL7Pv8ccfJzQ0lMmTJ5fZ/n//938APPPMM/j7+3u2jxgxgoEDBzJv3jwyMjJq4F2IiIiIiPgmn1sSatasWcTExDBjxgyCg4NP2d+4cWM+/fRTmjVrxsyZM3n66ae9EKV4k93qPFl02z18rT6XdhOpvpRefdm8JBWA7auX07FxP2x787AfLsBZZMcUUPGP7fhWUayZ676YsW/bMVp2a1SbIYuIiHhdQkICCQkJ3g6jjO3bt7N//36GDRtGSEhImX0hISH069ePuXPnsmfPHhITEwFITU317Pu9YcOGkZqayqJFixgzZkyl49i7d+8Z92dmZnqeFxQUUFBQUOm+RaR+0fe3lKbxIMU0FqS0qoyH2ho7Ppew2LVrF5deemm5yYpiwcHBDBgwgNmzZ9dhZOIrHDYnuByeJaEcJk2xkHNHcqeuWPwDsFuL2LF6Od2GD8W2Nw9cYNufT0CziAr7iGtRqo7FVhXeFhER8Ybt27cDnLbmREpKCnPnzmX79u0kJiaSn59PZmYm7du39yxj9fv2pfutrOJkSGUsXryY6OjoKvUvUsLnLi/I78ybN6+OzqSxUB9oPEixuhsLoPHg+6oyHg4fPlwrMfjcKDGbzdhstgrb2e32WpniLb7PYXdgLpWjsJuVsJBzh19AIM06d2P7yp85kX2cE6Zcz76jaceIq0TCoriOxcFdORw7cIITOVaCw/0rPE5ERMRXvffeewBceeWVhIWFeV5X1tixY2sjrDMqrrcXEVH+7+7w8PAy7araXkRERETkXORzCYuUlBRSU1M5fvw4kZGR5bY5evQoCxcupFWrVnUbnPgEu9VJ6XvOnEpYyDkmpWcftq/8GYAtu3+lNS0B+HVNJnEXJ1eqj4RWURzclQO4l4VK6R5bK7GKiIjUhfHjx2MYBr179yYsLMzzurK8kbDwFXv27Dnj/szMTHr2dNfQ6t+/P02aNKmLsORctGyBtyOQCgwdOrRuTqSxUC9oPEixOhsLoPFQD1RlPFS09Gh1+VzC4tprr+XRRx/l0ksv5Z133qFdu3Zl9m/YsIE777yTnJwcrr/+ei9FKd5kszkwl1oGymHRTBs5tzTr2gOT2YLTYWfX1iW0DG+BBYOInIpnnxVLaBXJmrm7AUjfcFgJCxERqdfGjh2LYRie2QfFr31ZcaynmxGRk5NTpl1V21dWVRIQQUFBBAUFVal/Eak/9P0tpWk8SDGNBSmtKuOhtsaOzyUs7r33Xj799FOWLVtGp06d6NKlC82aNQNg586drFu3DqfTSefOnbnnnnu8HK14g73IisUoWd7GZfHtP1ZFqiowJJSkDp1IX/cLOUcOcjDSToLTjzg7nMizEhxa8fJOcSmRBARbKDphZ8fqQ/S9siUhkQF1EL2IiEjNmzZt2hlf+6KKak78vsZFSEgIcXFx7Nq1C4fDcUodi4pqYoiIiIiInAt87tb0oKAgFixYwHXXXQfAL7/8wueff87nn3/OmjVrALj++uv58ccfCQwM9Gao4iXWoiIsRqlcm2ZYyDkopWdfz/N83IWzzRikbc6q1PF+/mba9U8AwOlw8evC2pmmJyIiIuVLSUkhPj6epUuXkp+fX2Zffn4+S5cupVmzZmWKYg8YMMCz7/fmzp0LuJdtEhERERE5V/nkld6oqCg++eQTdu3axfvvv88///lP/vnPf/L++++za9cuPv74Yxo0aODtMMVL7IVWzCY/z+uAYL8ztBapn1p274VhuH9E5+ft9Gw/tONYpfvoOLAJppM1Xjb+tA9rob1mgxQREfERVquVzMxMjh496u1QPAzD4LbbbiMvL49nnnmmzL5nnnmGvLw8br/99jLb77jjDgAef/xxrFarZ/ucOXNITU1l6NChNG3atPaDFxERERHxEp9bEqq0xMREbrrpJm+HIT7GXlSIxShJUnRtruSVnHuCIyJJaNOWvZt+48jx7RDcGwD7vrxK9xESGUCrnrFsWXaAohN2Ni/NpNOQxIoPFBERqSc++OADXn/9ddauXYvT6WTcuHFMmTIFgFmzZvHZZ5/xj3/8w7PEbE2YPHkyS5YsAdz19Yq3paamAnDhhRdy2223AfDggw/y1Vdf8cILL7B27Vq6du3KmjVrmDdvHj169GDChAll+h40aBC33XYbkydPpmvXrlx66aVkZmby6aef0qBBA954440aex8iIiIiIr7IJ2ZYFBYWkpOTQ1FRUYVti4qKKt1Wzk02qxVzqYSF4W8+Q2uR+qt4Wajj1iycLhcAodmVL7wN0PniJM/z9Qv24HQ4ay5AERERL7rtttsYN24cq1evJigoCNfJ35XFWrVqxSeffMIXX3xRo+ddsmQJ06dPZ/r06Z4la5cuXerZVpzMAHddikWLFjFhwgQ2b97MK6+8wpYtW7j//vuZP39+uYUK3377bV577TUAXnvtNb777juuvPJKVq5cSatWrWr0vYiIiIiI+BqvJyxsNhtt2rQhNjaW3377rcL2GzduJDY2lg4dOuBwOOogQvE1dmsRFlPJ5CDDz+vDWKRWtOzRBwCHy0a24zgA8TYXhYWVT1o0TAglqa17FlLukULS1lauBoaIiIgv+/DDD5kyZQrt27dn1apVZGdnn9KmXbt2NGnShDlz5tTouadNm4bL5Trt4/cFwSMiIvj3v/9NRkYGVquV3bt38/LLLxMWFlZu/yaTiXvuuYfffvuNwsJCDh8+zCeffEKLFi1q9H2IiIiIiPgir1/p/eyzz9i9ezf3338/3bp1q7B9165deeCBB0hLS2PmzJl1EKH4GrtmWMh5Ijw6hsYtUgDILtwHgB8Gu7YcqVI/nS8pmWWx7oeMU+5AFRERqW/eeecdQkND+fbbb+nWrRuGYZTbrkOHDuzatauOoxMRERERkeryesJi1qxZWCwW7rvvvkofM3HiREwmE59//nktRia+ymG3lqlhsfP4CS9GI1K7Unr1A+BY0UHPtqM7j1epjyato2jYJBSAQ7tzydxx6l2oIiIi9cn69evp1asXiYlnrs3UoEEDDh48eMY2IiIiIiLiO7yesFizZg1du3alYcOGlT4mKiqK7t2788svv9RiZOKr7FYrZlNJwuKEU3eLy7mreFmoY9aSiy1tSy2JVhmGYdDl4pILOut+zKiZ4ERERLykqKiIiIiICttlZWVhNms2roiIiIhIfeH1hMWBAwdITk6u8nFNmzYlMzOz5gMSn+ew2TAbJRds/QKrdvFWpD5pEJ9AdGJTjpeaYWHbl1flflp2jyUkMgCAXb8e5tiB/BqLUUREpK4lJCSwefPmM7ZxuVxs2rSJZs2a1VFUIiIiIiJytryesHC5XDidziof53Q6tQ77eer3S0L5BylhIee2lj37YnNZybUdBcCamY/LUbWff2aLiY6DmrhfuGD9/D01HaaIiEidGTJkCFu2bOGrr746bZv333+fvXv3cskll9RhZCIiIiIicja8nrCIiYkhLS2tysft3LmT6OjoWohIfJ3TbsVSakkof82wkHNcSs+Ty0IVz7KwO7FnVb12S7uL4vELcC+LsWX5AQpyrTUWo4iISF164IEHCAgI4A9/+AOvvvoq+/fv9+w7evQob731Fn/+858JCQnhnnvu8WKkIiIiIiJSFV5PWHTp0oX169eTkVH5NdXT09NZu3YtXbt2rcXIxFc5HDbMpWZYBAX7naG1SP0X07QZEbGNy9SxWLtq/xmOKF9AsB9tL4wHwGFzsmHRvhqLUUREpC6lpKQwffp0nE4n999/P4mJiRiGwfTp04mJieEvf/kLdrudadOmkZSU5O1wRURERESkkryesBg1ahROp7NKdz7de++9nmPl/OJyunA5ytawCAhSwkLObYZhkNKzb8kMC+DYjmPV6qvj4CYYJgOA3xbtxW511EiMIiIide3aa69l1apVXHvttYSFheFyuXC5XAQGBnL55ZezbNkyrr76am+HKSIiIiIiVeD1hMWYMWNITk7mm2++4ZprruHQoUOnbZuVlcU111zDN998Q9OmTRkzZkwdRiq+wGF34sKOxeTv2RYUooSFnPtSevblqDUTh8sOQOLBQgpOVH1Jp/CGQbTsGgNAQa6NrSsO1GicIiIidal9+/Z88sknHDt2jEOHDnHgwAFyc3P58ssv6dKli7fDExERERGRKvL64v8Wi4XPP/+c/v37M2vWLGbPns2wYcPo0aMHjRo1AuDQoUOsWrWKuXPnYrVaCQwM5LPPPsNi8Xr4UsfsNie47FhKzbAIVA0LOQ/EtWxFQEQIe/K3kBzannAMVny3g4HXtK1yX50vSWL7andyeN2Pe2jbL94z60JERKQ+MgxD9e1ERERERM4BPnGlt2vXrixevJhrr72WXbt28fXXX/PNN9+UaeNyuQBITk5mxowZdOvWzRuhipc5TiYsimtY2Fwu/PzNXo5KpPYZJhMte/Zhe+oakkPbA+C3/gjOq5yYTFWbLNeoaTjxKZHs336c4wdPkP7bEZp11EUeERERqZrkh2d7OwSphPR/XurtEEREREQqzScSFuBOWmzdupWPPvqIr776itWrV5OVlQVATEwM3bp1Y9SoUdx0002aWXEes9vcS0IV17BwWnRXuJw/Unr2Zd3c2RwtyqRBQBxNbbDxl0w69Eiocl9dLkli//bjAKz7IUMJCxER8WlPP/30WR3/xBNP1FAkIiIiIiJSm3zqyr/FYmHs2LGMHTvW26GIj7LbHO4loU7WsAgM8qkhLFKrmrRpT1h0DDty1tIzJg6AzAUZ1UpYNG3fkMjYYI4fPMH+7cc5mJ5DbHJ4TYcsIiJSI5588kkMo/o3qihhISIiIiJSP+hqr9QrJUtCuYeu4e/1uvEidcZkNtN1xBUs+WA6nRoMIsAcRMtjNrIO5hETG1qlvgyTQeeLE0n9cCsA637MYNht7WsjbBERkbPWv3//0yYsFi1aRGxsLK1bt67jqEREREREpKYpYSH1isPmBOxYTtawMPlrCMv5pcPgYSz7/GN25v5Km8he+GOw9tsdDP1j5yr3dUHvxqz4eicFuTbS1mSRc7iA8Oigmg9aRETkLKWmpp52n8lkYsSIEUyZMqXuAhIRERERkVqh29OlXrHbnOByYDYVz7BQwW05vwQEB9Px4uGk5a7F5XIBkLQ7D5fDVeW+LH5mOgxsAoDL6eLXBXtrNFYREREREREREZGqUMJC6hWHzYnZKLkwuykrz4vRiHhHl+GXU+DKY39BGgChVheFW45Uq6/2AxIw+7l/FWxaup+iE7Yai1NERERERERERKQqlLCQesVuc2KmZP1ih7n6xRdF6qvw6Bha9b6QHTlrPNvylmVWq6+gUH9a93EX8LYVOdj40/4aiVFERERERERERKSqlLCQesVhd1I6R+G0aAjL+an7ZVdyoGAXubajABTtOI7t0Ilq9dV5SCLFecBfF+zBYXfWVJgiIiIiIiIiIiKVpqu9Uq/YrQ4sRknGwmXRDAs5P8U2b0liu47syFnr2ZbxY3q1+oqMDaZZx2gA8rOt7Fh9sCZCFBERERERERERqRKfS1hkZGRw9OjRCtsdO3aMjIyMOohIfInD7sRcethqhoWcx7pfdiW78jZgd1oBsP96mNycomr11fmSJM/ztT/s8RT0FhERERERERERqSsWbwfwe82aNWP8+PG8++67Z2z34IMPMnXqVOx2ex1FJr7AZnVgNpWaVeGnhIWcv5p17kZY4xh2522iRXhnQjBY+e02hvyhQ5X7imsRQWyzcA7uyuHIvjz2bjlGYpsGtRC1iIhI1b333ntn3L9jx44zthk7dmxNhyQiIiIiIrXA5xIWLper0nf26g7g84+9yIbFKBm2hr/Zi9GIeJdhMtHtsitZNe0TWoR3BiB04zGcTicmU9WSeYZh0PniJOb+328ArPshQwkLERHxGePHj8cwyl8K1DAMli5dytKlS0+7XwkLEREREZH6wecSFpWVm5uLv7+/t8OQOmYtLMJs+HleG5phIee5thcNYumn75NVuIeYwEQSHAZrl+6h20VNq9xX887RhEcHknO4kIxNRzmyL4+GCaG1ELWIiEjVJCUlnTZhISIiIiIi5456l7BwOp1s3LiRBQsWkJSUVPEBck6xFRVhMZUkLEwBmmEh5zeLvz+dh17K9u9+ISYwEYCjP+2DaiQsTGYTHQcnsmTGdgDW/ZjBkHFtazReERGR6khPT/d2CCIiIiIiUgd84vZ0s9nseQBMnz69zLbSDz8/Pzp37syRI0e46qqrvBy51DVbYRHmUktCmbUklAidho4k05pOgT0PgFbZdvbvya5WX236xhEQ7P4e27byIPnHq1fEW0REREREREREpKp8ImFRXLfC5XJhGEaZ179/WCwWkpOTuf/++3nqqae8HbrUMXtRERajZCmw1k0ivBiNiG8IDo+g7YCBpOWuA8BsGGyYvaNaffkHWmh3UQIAToeLX1P31lSYIiIiIiIiIiIiZ+QTCQun0+l5uFwuxo8fX2Zb6UdRURFpaWm8+OKLqmFxHrIVFWE2lcywiIgI9GI0Ir6j26WjScv7FafLAUBCej6FhbZq9dVxUBNMZvc64RsX78NaaK+xOEVERERERERERE7HJxIWpU2aNInRo0d7OwzxUXZrERYV3RY5RYP4JiR0bsve/G0ARGKw8vud1eorJDKAVj1jASg6YWfLsswai1NEREREREREROR0fO5q76RJk7jiiiu8HYb4KLvVWiZhYVINCxGP7pdeyY7cNZ7XzTLyq91X54uTPM/Xz9+D0+E8q9hEREREREREREQq4nMJC4fDQU5ODnZ72SVICgoKeOqpp7jyyiu577772L9/v5ciFG+y26yYTSUJi0JcXoxGxLcktGmHKS6Q49YsAIz9+Vj35VWrr4YJoSS1bQBAzuFCdq47XGNxioiIiIiIiIiIlMfnEhZPP/00UVFRLFu2zLPN5XIxcOBAnn76ab766itef/11+vTpw7Fjx7wYqXiDw2bFbJTUsMi2ObwYjYhvMQyD7ldcxY6cXzzb8pZVP7lbepbF2h8ycLmUIBQRERERERERkdrjcwmL+fPn07hxYy666CLPtm+++YZVq1aRkpLCq6++ytChQ9m7dy//93//58VIxRvsNluZJaECg/3O0Frk/NOqVz+OBmZhdRYBcGLtIZwnqld8u0mbKBomhAJwKD2HzLTsGotTRETkfDBt2jQMwzjjY8iQIZ72Tz755Bnbpqene+/NiIiIiIjUAUvFTerWrl27aN26dZltX331FYZh8OGHH9KtWzf+/Oc/06RJEz7//HMefPBBL0Uq3uC0WzGbgjyvg5SwECnDZDbTacRI0r/dQKuI7uBwsfSLLVw0pkOV+zIMg86XJDJ/2mYA1v2QQXzLyBqOWERE5NzVuXNnJk2aVO6+zz//nI0bNzJs2LBT9o0bN47k5ORTtkdGRtZwhCIiIiIivsXnEhZHjhyhcePGZbYtXbqUhIQEunXrBoDFYqF3794sX77cGyGKF9ntViz+mmEhcibtBw3lw5kTSHF1wzAMojce5fiRAiIbBlV88O+kdI9l+aw08rOt7Pr1MMcPniAyNrgWohYREame5cuXk5qayt69e3G5XDRp0oSBAwfSp08fb4dG586d6dy58ynbrVYr//nPf7BYLIwbN+6U/ePHj2fgwIG1H6CIiIiIiI/xuYSFxWIhPz/f8/rYsWNs376d6667rky7sLAwsrO1PMn5xmm3YQ5wD1uby4nF4nOrmol4XUBwMC0G9SZ92W80C+tAGCZWfPQbw/7ao8p9mS0mOg5OZNmsNHDB+vl7GPCHC2ohahERkapJS0tj7NixnpuYimstGYYBQK9evXjvvfdo2bKl12I8nS+//JIjR44wevRoYmNjvR2OiIiIiIjP8LmERfPmzVm+fDlOpxOTycS3336Ly+XiwgsvLNPu0KFDxMTE1Oi5V61axaRJk/j555+x2Wx06NCBiRMnnpIsqaxjx47Rvn179u/fz7Bhw/j+++9rNN7zkdNuw2Jyz6ooQgWARU6n64gr+HDefSSGtMZi8qPV3gL27DxGYvOoKvfV7qJ4Vn+Xjq3IweZlmfS8vBlBYf61ELWIiEjl7N+/n4suuogDBw4QHBzM8OHDadasGQDp6el8//33LF++nP79+7Nq1SoSEhK8HHFZkydPBuC2224rd//ixYtZsWIFJpOJlJQULr74YkJDQ6t1rr17955xf2Zmpud5QUEBBQUF1TqP+C59plJMY0FK03iQYhoLUlpVxkNtjR2fS1hcccUVPPfcc4waNYqLL76YF154AbPZzOWXX+5p43K5WLt2LW3atKmx8y5cuJBhw4YRGBjIDTfcQFhYGF988QXXX389e/bs4f77769yn3fffbdmgdQwp8OG+WTRbauhhIXI6YQ1jKbLlZezbe5q2kb2wc8w2PTpJhIf6VflvgKC/WjbL571C/bgsDn5bfE+elzarBaiFhERqZwnnniCAwcOcPXVV/Pf//73lBuZDh8+zJ///Gc+//xzJk2a5EkQ+ILdu3czf/58mjRpwvDhw8tt8/u6F5GRkbz22muMHTu2yudLTEysdNvFixcTHR1dhd597s9JKce8efPq6EwaD75OY0FK03iQYnU3FkDjwfdVZTwcPny4VmLwufV0HnzwQdq1a8fs2bO57777OHDgAH/7299ISkrytFmyZAmHDx8+ZdZFddntdm6//XZMJhOLFy/mnXfe4ZVXXmH9+vW0atWKRx99lN27d1epzy+++IKPPvqIF154oUZiFHA6XbicNiwnExY2w8sBifi47pdfxcGw/RQ63Mvstc128tvq/dXqq+PgJpxcYYMNqXux2xw1FaaIiEiVzZkzh/j4eD788MNyZ11HR0fzwQcfEB8fz3fffeeFCE9v6tSpOJ1Oxo8fj9lsLrOvU6dOTJkyhZ07d1JQUMCuXbt44403MAyD8ePH8/XXX3spahERERGRuuFzaa3w8HBWrlzJ559/zsGDB+nRowcDBgwo0+bIkSPce++9XH/99TVyzgULFpCWlsYtt9xSpiheREQEjz76KOPHj2f69Ok88cQTleovKyuLu+66izFjxnDppZdy991310ic5zuHzYkLO2bTyRoWpdNtdiusfQ/M/tBqOIQ28k6QIj7EbLEw9K67Wf78+3RreDEAx77agrNrY0ymquWrw6ODaNGtETtWH6Ig18bW5Qdod5FvLa8hIiLnj6NHjzJq1Cj8/U+/RKG/vz8XXnghX331VR1GdmZOp5OpU6diGAa33nrrKfuvvPLKMq+Tk5O5++67adOmDZdccgmPPfYYV1xxRZXOuWfPnjPuz8zMpGfPngD079+fJk2aVL7zZQuqFIt4x9ChQ+vmRBoPPk9jQUrTeJBidTYWQOOhHqjKeKho6dHq8rmEBUBQUBBjxow57f7Ro0czevToGjtfamoqUP4HMmzYMAAWLVpU6f7+9Kc/YTabee211856SaiqrDlbVFR0Tq87V5hvw3A5MBslCYvi92te/X/4z38cABcGzia9cLQaibPVCFwRlZ8GX1cKCwvLfS6+q75+ZuFxCYT0bULOhiOE+zekmc2PJd9upcclyVXuq81FsexYfQiAtT9k0KxrFIbJt6c61dfP7Xynz63+0WdWPxUVFXk7hGpr0qQJ+fn5FbY7ceKET9Wv+PHHH8nIyGDIkCGemhuVMWTIEFq0aMGGDRvIyckhPDy80sdWJQERFBREUFBQpdtL/aDPVIppLEhpGg9STGNBSqvKeKitseOTCYu6tn37dgBSUlJO2de4cWNCQ0M9bSrywQcfMHPmTL788kuioqLOOmFRlTVnV6xYQVpa2lmdz5c5Cg3MpepWNAi0e9ZVC7SFE9biQTrtmUaI9RDmvcsx710OC57geFAymZHd2R/ZjbxA3/mDtdjixYu9HYJUUX37zJzhDVh3YhX9/d3rZIctyeB72zZM1fgN4B8VhPWYhexDBXz9wUKCGttrONraU98+N3HT51b/6DOrP2przdm6cO211/LGG2+wb9++0yYk9u3bx4IFC3xqtnNFxbbPJDo6mh07dnDixIkqJSxEREREROoTn0tYVPWP3P79+5/1OYuTChEREeXuDw8Pr1TiYf/+/dxzzz3ceOONjBo16qzjkrJcDii9yq+z1ItCvyhMThv7onoRd3w1YUUlM08iC9KJLEinTebn5AbEsbXxKPY16Ft3gQO4XHgKAACGy0GDvO2YXFbMThsml63U/8tuS48eyImAWM+xYQV7aZ41D3Anb4zS5zjJaZhxmSz8lvAHXEbJF6pB3lYiCjJwGhb3w+SHzRSE3RyEzRx88hGCw+RfJl6p30wWC0aXRLI27yEmMJEYUzDZewvITq76ZxzWzMqRY+5fHcc2BeAf5cAc4KrgKBERkZr1+OOPk5qayuDBg3nllVe47LLLyuyfPXs2999/Px07djylgLW3HDlyhK+++ooGDRqcsvRTRfLz89m4cSMhISFVLIotIiIiIlK/+FzCYuDAgRiVvFBqGAZ2u+/c3Xvbbbfh5+fH66+/XmN9VmXN2V69etGiRYsaO7evOZZ5gm/mpHpexybE0XLo79/vzQAUHt6GefsczNtmYzrwq2dvWFEmHTt0oF27kuW/TLtS8VvyEq7ASFxBURAYefJ5JARG4QqMAJcTzAE4m5Wtp2L+5V1MWZvBdgLDmu/+v+0EWPPBlu/ZZu9+B/YBj3qOK8zLJurNWyr1vpMGjcOZXJKYM+1cQMBnqac/oJS4W6aDUVKrwLJgKX7b36/wOEdib6x/+LLMNsuif2AU5eAKicUVGosrtBGukEa4QmIhJJpq3a5fjxQWFnoSqv379ycwMNDLEVXdov+8R8wR9/OkzFBix/bCFFi1z83lcjHvxGb2bcnGWWTCtL8Jl9ze2meXhjoXPrfzkT63+kefWf1Un2bmDh48+JRtJpOJ7du3M2rUKCIjI0lOTgYgPT2d48ePA9CnTx8uu+wy5s+fX4fRlu/999/HarVy8803ExAQcMr+3NxcMjMzadWqVZntBQUF3H777eTm5nLLLbdgsZzb/+YSERERkfObz/1rt3///uUmLJxOJ7t37/ZcwO/Tpw9+fn41cs7imRWnm0WRk5NDVFTUGfuYPn06c+bM4bPPPqvRu56qsuZsQEDAOb3uXK7ZhqXURVG/4DO838RO7sfgh+F4Bmz+FjZ/A/vX4N/uMih93IkDsP+XigOIaQ1tV5TdtmsBpFX8B7Cfswi/0ud0uXBixoSjwmMDTK6y8fqf+gduuUwWgoJDym4zKncnvDko8tSv7fbv4cjplkYzICQGQmOh373Q8dqSXcf3wOIXKxfz0H9AYKklDrb/AJu/rvi48CYw8KGy25a+foZ4S2l5MbQtNSPKYYfZ953SzM/uoNO+vYCJ0GXL8QttCO2uhIalkma2Aig4DoER4Bfkc7NUBv1lDOsf/4x4v+b4E0DmZ6tpecegKvcz9NYOfPLsSgpyrOzbcpytPx+myyVJtRBxzQoMDDynf0aeq/S51T/6zOqP8i6a+6rimnPlcblcHDt2jGPHjp2y7+eff670zVC17d133wVOvxzUkSNHaN26NT169KBNmzY0btyYgwcP8uOPP7J37146dOjASy+9VJchi4iIiIjUOZ9LWJzpjxGAX3/9lfHjxxMSEsJ3331XI+csrl2xfft2unXrVmbfgQMHyMvL88xiOJ21a9cC7vV0yzN37lwMw6BTp06sW7fu7IM+D9mtzjJLQu3OKcCTRlr/CQSEQ3g8xHcue2BkEvT5s/tRmO2+mFyateKCjadt5x9cflu/EPc+/xDwD4XQmLL7DYPtjS/DhUGLC9rhFxgKlgCwBJb6/8nnse3KHpvUC+76uXRnnj4B99JQTjs4bafG1elGSOgODqv7YS+Colz316Uo2/3/wmxo3OHUYwvPtCyaC/IPuR+2E2V3FRyDNe+d4dhSBj8OlEpYHPytcsfGdjg1YbF9HqT/VPGxQVFlExa4yj2nBUgufnFkofv/cZ3LJiwylsH7J5d4MPtDWBxc9i93UsQHBAQHEz2qNY7ZJzAbFvzSIGf3QcKbxlZ8cCnB4f5cPL4N37y+HoDlX6aR0CqSRk21nraIiNSOhQsXejuEs7Jy5Up+++03evbsSYcO5fw7C2jQoAF//vOfWblyJd999x3Hjh0jKCiINm3acM8993D33XcrGSgiIiIi5zyfS1hUpGPHjsycOZN27drx0ksv8fDDD591nwMGDOD5559n3rx53HDDDWX2zZ0719PmTPr06UNeXt4p2/Py8vj0009p0qQJw4YNIynJ9+9C9lUOmxNzqTvkDhZY3U+cDpj1J8AFCd3g9gWn7+T3yQqAvndDrz9BUY774np5D8MEwQ1PPfbip2DAw+7kRHGSwi8ETKZT2/7OlrirAWjae2jZ2RcVCQg7NYlRWQld3Y/quGMh5B6EvIOQd+Dk8wOQdwhyD5zcfhDCGlev//ooKLLs69JJHYcVju+GWXfBX1eXP/a8oHn/XqxdPIOYvDjMhoU1b85n4It/qHI/SW0b0mVoEmvnZeB0uJg7eSPXP9oD/6B692tFRETqgYr+Le7revbsict15pmu4eHh/Oc//6mjiEREREREfFO9vLKUnJxMjx49eO+992okYTFkyBCaN2/ORx99xD333EPnzp0B9xJRzz33HP7+/owdO9bTPjMzk+zsbOLi4jzLSV1//fVcf/31p/Sdnp7Op59+Srt27Zg8efJZx3o+s9udmEvVYzD8Ts63KDhGcQHqcpMKlWG2QHAD96MqGp67NUNOEdHE/TgTpxPPZ1EsOgXuWla5cwT97uvfZQykDKv4OEs5S1qM+g9YT5y6/fd+P2ZMlnLjLSwq5Oefl2G4HPTt2o4AVyE0bFm2UUgMtL7Mnbg4uhNy9rlnnSx8Hkb8s+JY6kjzWwdz+NW1BJgCaWE0YclnP3LhtVWfBdJrVHP2bTvOofQccrIKWPTxVi6+pa3PLL0hIiIiIiIiIiL1S71MWADExMSwcuXKGunLYrEwefJkhg0bRv/+/bnhhhsICwvjiy++YPfu3bz88sueIn4AjzzyCNOnT2fq1KmMHz++RmKQijlsTiylEhYm/5PP8w+XNAquufohUg3lzSzxC4LYttXrLyTa/aiOqOTqHWcY5cbrKiggN8hdQ8eZ1LdsXZFiyRe6H+CunfKfnmAvgJVvQ5ebyl9qywsi4qNZ1shK+8OBGIZBwNJDnBiWQ3B41ZZ0MptNDP1jO2b8YyXWQgfbVh4ksU0DWveJq6XIRURERERERETkXFYvExZWq5VVq1YRHHya+gHVMGjQIJYsWcKkSZP49NNPsdlsdOjQgRdeeKHcmRNS9+w2R5kloUz+J2dYnDhS0qiqMyREaktkEvR/ABY8Ay4nzH4Abv3eZwpxD/jLJex8Yj4R5lDiAhOZ//pHXP7Yn6rcT0RMEANvas28dzcCsOiTbTRuHkFkbM39fBYREfm9wYMHV7qtYRjMnz+/FqMREREREZGaUq8SFvn5+WzevJmnnnqKPXv2cNVVV9Vo/z179mTOnDkVtps2bRrTpk2rVJ/JyckVrlcrlWMrsmExSoasOaA4YVFqhkV178YXqQ19/wrrPoKjabBnubs4fOcbvR0VAEFB/mR1jyVirbuYfLOjjdi1dg3NulS9xklKj1j2bD7K5p8zsRc5mDv5N655sDtmv4pruYiIiFRHampqhW0Mw8DlcmmpQhERERGResTnEhZms7nCNi6Xi8jISJ599tk6iEh8hbWgCLPJz/PaEnBy+JZZEqqaNSxEaoMlAEa+CB+4C6yTvsRnEhYA/a/tzKq180gghEj/GFa/O4cmL7fFLzCwyn1ddH0rDuzM5tiBExzek8eyWWlceF1KLUQtIiICCxcuLHe70+lk9+7dfPvtt8ycOZNHHnmEoUOH1nF0IiIiIiJSXT6XsDjTbAQ/Pz8SEhK4+OKLefTRR8vUlZBzn62wCItRKmERWDzD4mhJI9WwEF/T8mLo/Wdo1h8uGOHtaMowmUz4X9YWvt0NQLvALqR+MJ1Lbruzyn35BZgZels7Pvvnapx2F+sX7KFJmyiSO+h7UkREat6AAQPOuH/8+PG8/vrrPPjgg1x33XV1FJWIiIiIiJwtn1uvw+l0nvZRVFTEzp07eeedd5SsOA9ZC4swl1oSyr94hoWWhBJfN/x5n0tWFOtyYRJbg+wABFnCcK3OYf+2LdXqK7pJGP2ubul5PX/6ZvKPF9VInCIiIlV1zz33kJiYyJNPPuntUEREREREpJJ8LmEhcjq2oiIspZaE8g8qTliULrqtJaFEqqrZDR2wu5wAtI7oyZL/vY/dZqtWXx0GNiG5oztxWJhn44epG3E6VcdHRES8o1OnTixZssTbYYiIiIiISCX5XMLCZDLRtWvVi77Kuc9WVIi51JJQEeEB7ifmAAiMdD9XwkJ8ncsFm7+BTV95OxKP5hdEszUlDACTYaKjqRcrP/+sWn0ZhsGQsW0IiXR/f+7bepw13++usVhFRESq4ujRo+Tl5Xk7DBERERERqSSfS1iEhITQtm1bb4chPsheZC1Tw6JxwxD3k9FvwsO74fEjEBjhpehEKsFWCB9eA5/eDN9OhILj3o7IY/C4Tjhi3LOWQv2isC05StbuXdXqKzDUj0tubYthuF+v/HYXmWnZNRWqiIhIpSxevJiffvqJFi1aeDsUERERERGpJJ8rup2SksKhQ4e8HYb4IHtR2RoWhv/v8m1mnxvOImX5BYL/yUTbicOw8B8w8iXvxnSSn5+ZhPGd2f/KSkxOEy3COrHqfzMY/o8HMJnNVe4voVUU3UYms3p2Oi6ni3nv/sYNj/UkINiv4oNFREQq8PTTT592X25uLps3b2bu3Lk4nU5uu+22OoxMRERERETOhs9d4b355pv5+9//Tlpamu6GkjJstrI1LAz/ql9EFfG6Yc/B9h/AdgJWTYYuN0NcJ29HBYClYRCRl7Ug52v3zIoUe0d+/mwWF95wTbX66zEymX1bj5G5I5u8o0Us/GALw25vj1E89UJERKSannzySQzDwOU6fZ0kk8nEvffey4QJE+ouMBEREREROSs+l7CYMGECixcvZvDgwTz//PNcddVVBAYGejss8QH2ImuZGhaGxedWNBOpWEQTGPAg/PgkuJww+wG4dS6YfGM8h/VJ4NjqPZj32wmyhGJaup8j/ffSML5JlfsymU1ccms7Pn12JUUn7KStyWLTkv20uyihFiIXEZHzyaRJk067z9/fn4SEBAYPHkyTJlX//SUiIiIiIt7jcwmLli1b4nK52LNnD2PGjGHMmDE0atSIoKCgU9oahkFaWpoXohRvcNitWAz3OLC5nBgmA3Iy4dv73MW2mw+Ajtd5OUqRSuj9F1j7IRzZDntXwvqP3DMtfIBhGARe047sV1cRbPInKaQVS179jCtemFCtmRFhDQIZPLYNc97aAMBPM7bTuEUEDeNDazp0ERE5j5wpYSEiIiIiIvWXb9zSW0p6ejq7d+8GwOVy4XK5OHjwIOnp6eU+5PzhsNkwn1wSyorTvTF3P2ybA+s+gD0rvBidSBVY/MvWrvhhEhQc8148vxMbH87Bfo09rzu42vPzzO+q3V/zzjG0H+CeVeGwOZk3eSN2q+Os4xQRERERERERkXOLz82w2LVrl7dDEB9ltxZhOVlY25OwyD9S0iA42gtRiVRTi0HQ7krYOMtdgHvBP+DSl70dlcdFo9rx47p5tC4Iwt8cSMBPh8jun0VETEy1+ut3dUsydxznyL58ju7PZ8nnOxj4hwtqOGoREREREREREanPfC5h0bRpU2+HID7KabdhtrhnWNiMkwUWT5ROWDT0QlQiZ2HoP2DbPLDlw+p33ctCxXf2dlQe3e+5iP3P/0S4KYjGgUkseWUmI5+/o1pLQ1n8zQz9Y3s+e34VdpuTjYv3kdg6ihZdG9VC5CIicq55+umnz+r4J554ooYiERERERGR2uRzCQuR03E4rJ4loWzF10tPHC5pEKKEhdQzEQkw8CF3Ae6Wl4DD6u2IyoiMCmLbxUmEL8gCoJ0zhWUzf6Tv1ZdUq78G8SFceF0KqR9uBWDhB1tolBxOWIPAGotZRETOTU8++WS1EubFlLAQEREREakflLCQesNps2M2zADYi6uvnNCSUFLP9boL2l8NEU28HUm5eg5tzbyVu2ibF4rF5EfI0qNkDzxGRMOoavXX9sJ49mw+RtqaQxSdsPPDuxsZPbELJrPPlVQSEREf0r9//9MmLBYtWkRsbCytW7eu46hERERERKSm+WTCIiMjg+eff54ff/yRffv2UVRUVG47wzCw2+11HJ14i+F0ep7bzSf/YM0vNcNCS0JJfWTx99lkRbGLJg5h+6QfaGAOp6F/LMtf/oZhz4+tVl+GYTDo5gs4lJ5D7tFCMtOyWTU7nV5XNK/hqEVE5FySmpp62n0mk4kRI0YwZcqUugtIRERERERqhc/d0rplyxa6dOnCO++8Q1paGoWFhbhcrnIfzlIXsOXcZyr1eTuKExYnjpY0CNEMC5HaEBTsj/PyFJwuBwBtnE1J/3FltfsLCPZj6G3tMEzu7+PVc9LZt/VYjcQqIiIiIiIiIiL1l88lLP7+979z7Ngxhg4dyvLly8nOzsbpdJ72IecPk6tUwsLiXhqqTA2LoAZ1HJFIDXPYYescyFzv7UhO0bl/K7KauGtsmAwThXMPUZSTV+3+GjePoNcVzdwvXPDDlI0U5PlWDQ8REREREREREalbPpewWLRoEUlJSXz11Vf07NmTsLAwb4ckPsDpcGIutW6x03Jy6BbXsAiIcC+tI1JfHdoM/24HH98AS1/zdjTl6nLXxeSajgMQao5g84vfYbNWP8nQdWhTmrR218LIz7ay4L0tuFyumghVRERERERERETqIZ9LWJw4cYKePXvi76+Lz1LCbnNiLvU6qXG4+0mH66DzzdButDfCEqk5DVqA0+Z+vvkbyD9y5vZeYLKYaDy2E/aTcUbb40id9D4Ou61a/Rkmg4tvaUtgqB8A6b8eZkPq3hqLV0RERERERERE6hefS1g0b96c/Px8b4chPsZhd2IumWBB45hQ95OBD8HoN+GK170TmEhNsfhDpxvdzx1W+PVT78ZzGlGtk7AMaeCZCdHG1YrZT76D0+GoVn8hEQEMGdfG83rpFzvYv+N4TYQqIiIiIiIiIiL1jM8lLMaMGcPixYvJysrydijiQ+zWsktCmQP9vBiNSC3pOrbk+Zr3wEeXR2oyrDOb40pmVXS0tuHbf76J01m9pEVyh2g6DUkEwGl38c3r69iz5WiNxCoiIiIiIiIiIvWHxdsB/N7999/P/PnzGTFiBNOmTaN9+/beDkl8gMPmxFIqv2b4mc/QWqSeirkAkvpAxjLI2gx7V0NiD29HVa6L7xnEgmd+pHVBEBaTH22OtWTO6/9l5D1/wTBVPRfe58oWHMvMJ2PTUexWJ7P/8yvD7mhPs47RtRC9iIjUN++9994Z9+/YseOMbcaOHXvafSIiIiIi4ju8nrAYPHjwKdtsNhtr1qyhc+fOJCUlkZSUhKmcC2CGYTB//vy6CFO8zL0kVMkMi0JchDlsgAFmrw9jkZrTdaw7YQGwZrrPJixMJhMXPjSIX55eSFNnEEGWMJJ2N2beO28x9M67MEp9v1aG2WJi5F0dmTv5N3atP4zD7uT7tzZw8a1tSekeW0vvQkRE6ovx48ef9neLYRgsXbqUpUuXnna/EhYiIiIiIvWD16/0pqamnnaf0+kkPT2d9PT0cvdX9YKY1F/uJaFKklabD+cSs2UVfHYLBEXCxU9Bt3HeC1CkprQdBXMegqIc+G0mDH8eAsK8HVW5AgP9aH1fP/a+spyG+BMV0Jj8jdmkTp/MwHG3VT1p4Wdi2B3tmT9tM9tXHcTpdPHDuxuxW5206RtXS+9CRETqg6SkJP3bX0RERETkPOD1hMXChQu9HYLUAw67A0uphIUlwAL5hwEXFBwDk9eHskjN8A+BDtfA6ilgy4ffvoBu470d1Wk1jAnh2NiOFEzfSJBhpknIBWxavowlAe9x4Q1jq560MJu4+Ja2+Pmb2LQ0E5cLFry3GbvVQYeBTWrpXYiIiK873Q1MIiIiIiJybvH6Vd4BAwZ4OwSpB+w2J2ajpG6FJcACJ0oV5Q1u6IWoRGpJ17HuhAXAL9N9OmEB0LJtDCuHNiVg3h5MhkHbyD6s+PFblvt/Qp+rb6xyfyaTwcCbW2MJMPPrgr0ALP5kG7YiB12HNa3p8EVERERERERExEdUvTJqDRs8eDAvvviit8MQH2cvspdJWPgHWuDE4ZIGISrMK+eQ+C7QfCD0/jOMetPb0VRKzyHN2N4hyvO6e/Rwtn2Vyqqvv6hWf4ZhcOG1KXQbXpKgWDYrjRVf78Tlcp11vCIiInUlOTkZwzDKfQwcOPCU9kVFRTz99NOkpKQQGBhIfHw8d9xxB4cOHar74EVERERE6pjXZ1ikpqaSnJzs7TDExxUVFGEx+Xle+wdaIPNISYPgBl6ISqQWjf3K2xFU2aA/tOPH11bT9mARZsNCv9ir+PHT9zD7+dN1xOVV7s8wDHqPboElwMyKr3YCsPq7dGxFDvpd01JrmYuISL0RERHBhAkTTtn++7+DnE4no0aNYu7cufTu3Zurr76a7du3M3nyZObPn8/y5cuJiYmpm6BFRERERLzA6wkLkcqwFRZiMUoSFgHBxTUsTgrWDAsRbzOZTFxyT3cOT91I0Y7jBJqDuSj2an6cPhWLnx8dLx5erX67j0jGL8DMkhnbAVg/fw82q4OBN16AYVLSQkREfF9kZCRPPvlkhe2mT5/O3LlzufHGG/nwww89yfm33nqLu+66i8cee4y33367lqMVEREREfEery8JJVIZRQXuO7aLBQSVqmFh8oOAMC9FJiKlGWYTDW9qgyUmCIAI/xj6NLqCHyf/l42L5le7306DExk0pjWczE9s+mk/P07fhNPhrImwRUREfML//d//AfD888+XmUl455130rx5cz788EMKCgq8FZ6IiIiISK3TDAupF2yFRZhLLQkVFOxfUsMiJBq0NIycq/KyYP3HcHgbjPqPt6OpFFOQhehx7Tj45jpcBXbig1vQK/pS5v3vDcx+frTu279a/bbtF4/F38SPUzfjcrrYtuIgdquTobe2w+yn/LuIiPiuoqIipk2bxv79+wkPD6dHjx706tWrTJvCwkJWrFjBBRdcQNOmTcvsMwyDSy65hLfffpvVq1dz0UUXVfrce/fuPeP+zMxMz/OCggIlRM5B+kylmMaClKbxIMU0FqS0qoyH2ho7SlhIvWArKiSg1JJQQUEWOHGyhkVwQy9FJVIH3rsCDm1yP7/wPmjYwrvxVJIlOghGN8f28Vb8MGga2hazYeH7N/6N2WIhpWffavXbqkdjLH5m5k7+Dafdxc61WXz31q+MuLMDFn9zDb8LERGRmnHgwAFuueWWMtt69OjBxx9/TIsW7t/taWlpOJ1OUlJSyu2jePv27durlLBITEysdNvFixcTHV2VpVb152R9MG/evDo6k8aDr9NYkNI0HqRY3Y0F0HjwfVUZD4cPH664UTX4xC2p06dPx2w2V/lhsWiQny9shUVla1iYC8Bhdb9QwkLOZR2vL3m+9n3vxVENCZ1iOTg4ASsuAJqEtKJfzGjmvPYvdq5dVe1+m3eO4dI/d8RyclZFxsajfPuf9VgL7TUSt4iISE265ZZbmD9/PgcPHiQ/P5+1a9cyZswYVq1axZAhQ8jNzQUgOzsbcBfoLk94eHiZdiIiIiIi5yKfuOLvcrm8HYL4OFuRFbPJPVwdODEHhMCt89yzLAJCvRydSC3q/AdY8Aw47bDuIxj0dzD7VXycj+g9tAWrAyxEzNlNEAZxwc250LiS7/71Epf/7VGaduxcrX6T2jbk8ns68+2b67EVOti37Thfv7aOy+7uRGBI/fn6iIjIuW/SpEllXnfu3Jn33nsPgPfff5//+7//Y+LEibV2/j179pxxf2ZmJj179gSgf//+NGnSpPKdL1twNqFJHRk6dGjdnEjjwedpLEhpGg9SrM7GAmg81ANVGQ8VLT1aXT6RsBg+fDgPPfSQt8MQH2a3lsywcJlc7gu2Sb0qOErkHBDaCC4YAZu/gbyDsH0etL7U21FVSfcBTVnnb8L11S6CMWgUlMRFDa/m25dfYNTDf6dJ2/bV6jc+JZJR93bhmzfWUXTCzsFdOXz16lquuKczQWH+NfwuREREatadd97J+++/z9KlS5k4caJnZsXpZlDk5OQAp5+BcTpVSUAEBQURFBRUpf7F9+kzlWIaC1KaxoMU01iQ0qoyHmpr7PhEwqJx48YMGDDA22GID7NZizAb7mnwLrNm5Mh5pus4d8IC4Jfp9S5hAdC5TyK/+Zuxf7aDcAwaBsbTv+HVfPPiC4x69O/Et2pdrX5jm4UzemJXvn5tLQW5Ng7vyWPWK2sYNaELIZEBNfwuREREak5xrYj8/HwAmjdvjslkYvv27eW2L95+uhoXIiIiIiLnAp+oYSFSEbvVitl0cpkXjVo537QYDOEJ7uc7foDsfd6Np5rad4vHfNMFHMcJQFRALP0bXMV3L7zIwZ07qt1vdJNQrry/qydBcezACWa+/As5hwtqJG4REZHasGLFCgCSk5MB9x1qPXv2ZOvWrezevbtMW5fLxQ8//EBISAjdu3ev61BFREREROqMLv1KvWC3WrEY7glBBS4nHPjNfcf57mVQqMKDco4zmaHLze7nLqe7lkU9dUGHWILGt+OI4U5aRPhH0y9yNLOff4GsjPRq9xvVOISrHuhKeHQgADmHC5n1yhqyDylpISIi3rNlyxZOnDhR7vbiJXH/8Ic/eLbfcccdADzyyCNl6vy9/fbb7Ny5k5tuuknLNoiIiIjIOU0JC6kXHFYbJsMMQLbNDhtmwKc3w9ThkLney9GJ1IEuNwOG+/na98Dp9Go4Z6NF62iibuuINdSdhAzzi6JfxGi++8eLHNl35sKgZxIeHcSV93cjqnEwAHnHivjuPxux5epXnYiIeMcnn3xC48aNueyyy/jLX/7Cgw8+yOjRo+nYsSMHDhzgkUceoX///p7248aNY9iwYXz88cf07duXhx9+mGuuuYY///nPNGvWjGeffdaL70ZEREREpPbpKo7UCy6bzfPcZgLyj5TsDI6u+4BE6lpkkntpKIC8LDi81bvxnKWkFlEk/bUr5obuZZxCLOH0Dbuc75596ayWhwqNCmD0xK40TAgFoCDXRtaKYKzZ+nUnIiJ1b9CgQYwYMYJt27bxwQcf8O9//5sVK1YwcuRI5s6dy3PPPVemvclk4quvvuLJJ58kKyuLf//73yxdupQ//vGPLFu2jJiYGC+9ExERERGRuuH1otvOenyXsNQdl83uGa0OswEnSicsGnonKJG61u8euGAEdLgWgiK9Hc1Zs0QE0OhPnTn0f+txHCokyBJK39BL+f7pf9Hh+hF0GX4ZhmFUud/gcH9GT+zCN2+s51B6Dk6bQdaKYNJaHKZ9v8RaeCciIiLlGzBgAAMGDKjSMQEBAUyaNIlJkybVUlQiIiIiIr5Lt5xK/eAoSWw5LAacOFyyL7iBFwIS8YLmA6Hn7edEsqKYOcyf2D91Ji/CnZEMMAczMPY6dn+xnK9f+QeFeXnV6jcwxI9REzrTuEUYAC6HwaL3tzPv3Y0U5tsqOFpERERERERERLxBCQupF0zOkqKDTosJ8k8mLAIjwOznpahEfID11EKe9Y0p2I+4uzqzw10vG7Nhpkf0cMJ3hvH+Q/eyf9vmavXrH2hh6B1tCIorSVBsX3WQT55ZyZ7NR2sidBERERERERERqUFKWEi9YJSaYeGymOHEyYuNql8h57OsrfC/PvDLNG9HctYiIoPo92hffosL8GxLCe9KN8tgZj31FCu/+hxXNZYQtPibadi5kAadCvAPMgOQf7yIr19bx08ztmG3OmrsPYiIiIiIiIiIyNlRwkLqhdID1fAzoCjb/SJECQs5T+VkwuRL4Fg6zL4fdi32dkRnzc/fzPB7e7Kje0NsLvesqkZBSVwcN4bfPp/DzH8+yYns49XqOzjezpUPdqJJ6yjPtl8X7GXGc6vIysitifBFREREREREROQsKWEh9YK51I3Vfn6l7ohWwW05X4XHQZeb3c+ddvh0DBze4d2YasjAa9qSd00LjhjupEWIJZzBcTfh3FHAew/+lYzffq1WvyGRAVxxT2cuvC4Fs5/719+xAyf4/J+rWT0nHWeppedERERERERERKTuKWEh9YKZkguJFrO1ZIcSFnI+G/oMpAxzPy88Dh9fDwXHvBpSTenQI4HGf+3MLn/3a4vJjz6NrqCF0ZHPn32MpTM+xOms+nJOhsmg0+BErnukB9GJoQA4nS5WfLWTWS+vITuroCbfhoiIiIiIiIiIVIESFuLzXC4XZsPwvA4LMty1KwyTEhZyfjOZ4erJ0Kit+/WRHTBjLDhsZz6unoiND6fHo73ZGO3n2dYmsjcXNbqaX2bN5LNn/k7u0cPV6rtBfAjXPNSdbsObUvzj5cDObD59diWblu7H5dJsCxERERERERGRuqaEhfg8p9OFudRQTenYGR5Mg8ePwKBHvReYiC8IDIcbPykpQL9rMXz3NzhHLrgHBvpxycSemIYmgcmdWYgLbs4l8WPJ2Z7J+w/ew861q6rVt9liovfoFlx5f1fCowMBsBU5WPj+Fr773wZO5Fgr6EFERERERERERGqSEhbi8xw2JxajZKia/M0nn5jAEuClqER8SFRTuOEjMJ9cP+mXqbDiLe/GVINMJhPxg5sS/cf2mEIsAIT5NeDi+DE0ciUy659PseiDKTjs9mr1H9cykusf60nbfnGebem/HuaTZ1awa31WjbwHERERERERERGpmBIW4vPsVmeZJaGM4oSFiJRI6gVX/Kfk9dxH4cBv3ounFgS2iKTR3V2wxIUA4GcKoHfMZfSJuYJfZ3/Hp5MeIvvQwWr17R9oYdCYNoy8qwNBYe4lqApybXz3vw0sfH8z1sLqJUNERERERERERKTylLAQn+ewOzGXmmFh+GnYipSr0/Vw0f2AAZc8A7HtvB1RjbNEBRJ5e3s2Niipa5EU2oZhCbfi2FvI+w/dw/YVP1e7/2adYrjh8V4kd4z2bNu0NJNPn11J5o7jZxO6iIiIiIiIiIhUQFd+S1m1ahUjR44kMjKSkJAQevfuzYwZMyp1rMvlYs6cOdx111107NiRiIgIgoOD6dSpE8899xyFhYW1HP25y70kVMmsitxf3oNZf4K5f4fCHC9GJuKDBj0Gt82HvndDqZlJ55LAYH+GPdib9Asbk4u7VkewJYxBcTfQJrAn3/77BeZP+R92a/VqUASH+zPyrg4MGtMaS4D7Z0/O4UJmvbKG5V+m4bA7a+y9iIiIiIiIiIhICYu3A/AVCxcuZNiwYQQGBnLDDTcQFhbGF198wfXXX8+ePXu4//77z3h8UVERI0eOJCAggIEDBzJs2DAKCwuZO3cuf//73/nyyy9JTU0lODi4jt7RucNuc2AulbAIOLgCsr5xvxj4iJeiEvFRJhM06Xbqdms++IfUfTy16MLLUsjsHMuWd38lpcCduLggoiexQcksX/AN+7Zu5pI/3Vutvg3DoG2/eBJaRfLj1M0c2JmNywW/fL+b3RuPcMkt7WgQf259PUVEREREREREvE0zLAC73c7tt9+OyWRi8eLFvPPOO7zyyiusX7+eVq1a8eijj7J79+4z9mE2m3n22WfJzMzk+++/56WXXuKNN95g48aNXH755axatYo333yzjt7RucVmdWA2SnJrfrbD7ifmgHPuAqxIrfj1M3ij+zlX0wIgrkk4/f/ely1tI7CenG0R6d+ISxLGEXW0ATMmPUjurh3V7j8iJpgrH+hK79HNMZncM1YO78ljxnOrWD9/Dy6nq0beh4iIiIiIiIiIKGEBwIIFC0hLS+MPf/gDnTt39myPiIjg0UcfxWq1Mn369DP24efnx9///neioqJO2f7II+5ZAIsWLarx2M8H1oIiLKaShIW56GRR3ZDoMkveHDpxiB3HdmBz2Oo6RBHftesn+PIuyN0PU0dC+hJvR1TjzBYTF4/tiP3mC9hrcScQzIaFLg2H0C9qNDkrV3Nw+SIKcqu3hJzJZNBteDLXPNydqMbuWXIOu5Mln23nq1fXkpWRW2PvRURERERERETkfKYloYDU1FQAhg4desq+YcOGAWeXbPDzcxeHtViq/uXeu3fvGfdnZmZ6nhcVFVFQUFDlc/i6vOxczEZJgV1T4QEAnIFRFJ18vysOrOCvi/8KgNkwkxCaQHJYMs/0foYgS1DdB12B0jVNVN+kfqi3n1l4MwJiO2DKXANF2bjevwrr5f/FecGl3o6sxiW2CCfm/s4sf28zHTLd9SsaByUzLOEWfjk4jw8f/CvdLr+KDhePwOLvX+X+Q2MsXH5fe1bPzmDTYvfPoX3bjjPjuVUkd2pI1xGJRMb63s+b+qjefr+dx/SZ1U9FRUXeDkFERERERKQMJSyA7du3A5CSknLKvsaNGxMaGuppUx1TpkwByk+IVCQxMbHSbVesWEFaWlqVz+Hr8nYX0r50wsJ5Agw4XADL5s0D4IsTX3j2O1wOMnIzOJh7kMXzF2OUmoWxsHAh6fZ0YkwxhJpC8cMPi2HBDz/8jJLnUaYoGpobeo5zupwccR7BgQOHy4ETJ3bsOF1O97aT2x04aGlpSYipZKmqQ45D/Gb7zbPfiROHy+E5/rM5n+HEiQkT14ZcW+a9/1T4E5ttm3Fy5iK/yZZkhgcNL7Ptk/xPyHXmYjJMFP9nYLj/bxiebV38u9DKr5XnuEJXIcuLlnu+NhYsnv/7G/4EGAH4G/7440+EKaJMfZHzxeLFi70dQpWYY+6iR/4bxOb8iuEowv/L2/g1cRzp0YO9HVrtSIYtkRaap4XibzURYA6ib6NR7MvfzpqZX7Nq9pc07NSD0KYtyvx8qLQQiO5h5thvgTgK3BMV09cfIX39YYIT7ISnFGEJ0lJRNaW+fb+JPrP65PDhw94OQUREREREpAwlLIDs7GzAvQRUecLDwz1tqmrOnDm8/fbbtGnThj/+8Y/VjvF85rQ5MJsCAbA57Z5VoIosYZ42WY4sz/M4cxyHHYeJMceccjEyw55Bmj2NNM6c2OkX0I8RQSM8r23YeC33tUrFe1vobWUSFlmOLBYULqjwOD/8Ttl2xHmEDEdGhceGmcJO2bbXsZfjzuMVHptsSS7zOt+Zz4+FP1Z4HMC9YfcSY47xvF5vXU9qYSp+hh+mM6w4F2WK4vqQ68ts+/bEt+x1nHlGEUBHv470DexbZttbuW9VKt5Lgy4l0VKSBNxj38PsgtmVOvZPYX8q83pN0Ro22zafktQp/f8wUxjt/NoRYARU6hy1xWEOYEXzCXTOeJeko0sxcNFpzzQCbNlsbTy6zNJq54r8SDubOmWTtDOYBkfcX/+EkBRig5qy8fhStv68iONbfiO6ay+CGsVVuf/AaAeNL8onf48fOWn+OK0mwODEPj9O7LcQmmQjrIUVc4ASFyIiIiIiIiIilaWERS1atWoV119/PREREXz22WcEBFT9ouWePXvOuD8zM5OePXsC0KtXL1q0aFGtWH3ZGsdaLPuPAODA4dke17wdQy8eisvl4vkvnwcHxAXH8dVlX+F0Ocmx5hAZEFmmr2lzp0Elck+tmrdiaIeSGTFWh5VnvnimUvF27d6V7o26e14H7Q/i4yUfV3icy+Q6ZRbOul/WsTptNQAGp7+o3KhRI4b2K3vsG9++AScqjrdTu04MbV5ybFp2Gsyt+DiAiwdcTGxwrOd11tYs/p+9+w6PqkofOP69U5NMeq8kBAKhSRNEOiLgunZXgbWAfe0rlrVjhcV117X97Iq9Ym+ASBcRpEgRCBAgIb0nk+lzfn8MmWRIaC6kwPt5nvvMzL33zD03996ZzHnvOW/p+tKDlPAxWozN9vWrxV+RX3zogMWILiMY3y+w7P0f3X9Y9e05oCenJp7qf72iaAUvLXnpsMqOHDnSf9fwyJEj2bRlE79v+/2Q5daGr+Wl0S81OxfbhPoTrsWPYVz5PADZRZ/RNTEM1+kzQXd89pSx2Wxs/GwlUdtDiFI6DDoTfaPHkBHam9Vl89j7w9d0HjiYUy+6hMjE5D+0DZfDw+alRWz4cS9OmweURt1uE/bCIHqOTKLPmGTMIfJ1eyTsdnvA9RYUFNTGNRKHIsesYzoee+YKIYQQQgghOjZpQaGxZ8WBelHU1NQ0S6Z9KKtXr2b8+PHodDrmzp1Lr169/lDdUlNTD3tds9lMcPDxN366cnvQa75T1a3c/vmG8EQMwcGU1JdgdVkByIzK9P8NLCGWZu/16bmfUmGvILc6l1pnLQ6Pwz/Z3Xbfo8fOyQknB/wtzcrMOV3OwagzYtAZMOqMgc/1+4ZP0hnIis0KKDsweSDPj33eX8aoN+J1efnl51/Qo2fUiFFYgi3oNF2z43ff0Pu4f+j96DTdEQ9dM/fCub4hq5THP3m9vtcN891eN5HmSIJNjdtN16fzzJhncHgdOD1OHJ7Gx3pXPfXuet+jq5748HiCjY1ljUYjocZQ6t31KHXgO8v1On2zfTXoDQcNyvi3YTA2K3s45QDMpsBrxGwyH3bZpo1vQUFBeLWDD9PVoGtUVxIiEtBpB+5x0qr+NAMikmHefQAY1r2FQfPCuc+3ccWOncpYJ8WhLkILEuhZ7ECPRoQpjrHJl7Cz9jfWr13EB+um0XfcmQy5cBIh4S33tjuQ4GAYcnZX+o9NZ+38PaxfkIfb6cXt9PLbD3vZsryY/uM7cdKYVExB8rV7pIKCgo7L77bjmRyzjuOP3EwjhBBCCCGEEMeStJzQmLsiJyeHgQMHBiwrKiqirq7O34vhcKxevZpx48bh9XqZN28egwYNOqr1PdG4HA4MOt9wSR4aAxaERAOwo6rx7sAuEQfvYaJpGjHBMcQExxx0vf3pNB2PD3/8iMo0iAmOYWTqyIB5NpuNPXrfUE+poakHbNgx6P74JarX6dGjb3GoqYMJM4UxptOYP7TNKb2mMKXXlD9U9sVxhzesU0t+m/LbHyo3LGXYYZfdP6H97SffzvV9r/cHvBqCOg3PS+pLWLp3KY8Ne6z9BCsaDL0JQuPh8+tBZ4T+l7d1jY45U5Bi9N9OIvf3Kio/2066yzc/M+wkUkKyWF+xiLXff8WmxQs45fyLGfCnc444Mbc5xMiQc7tw0pg0fv1uFxuX7sXrVjhtblZ+sZPffsxj4J8y6D0iBb2xnZ0TQgghhBBCCCGEEO2ABCyAUaNGMXPmTObNm8ekSZMCls2dO9e/zuFoCFZ4PB7mzp3LKaecctTre6Jx2Z3otX29JfTAgMuhvgJifYmid1bv9K+bGZHZBjUUJ6JgQzDBhoPfQXx+1vnN5u2u2U1qaCr6th6C6aSLfUE/jxs6nTifUz0HJOE+KYHFH20i9bdKLGiY9cEMjvsTncP68GvZXJa+N5v1879l+OQpZJ86Ak13ZMGFkHATIyZ2o9+4Tqz6JpctPxWiFNhqXSz7KId1P+xh0J87kz0kEZ1eAhdCCCGEEEIIIYQQDaSlBBg7diyZmZm89957rFu3zj+/urqaGTNmYDKZuPzyxjuQCwsL2bJlS7MhpH799VfGjRuH2+3mu+++49RTT0X879wOh/8OdUOQGc55Fia9C51HAPCXbn9hzjlz+Neof3FqsvzNRfuVX5vPZd9exo0/3kits7atqwNdT4fuZwTOcztg27y2qU8rMRh0jP1rHyJv6c/myMa4fVxQKuNTrqBv9Bjs5TV8+8y/eO/+28nfvPEPbScsOojTLuvB5Omn0HVgvH9+XYWDhW9v4f1HfiFndTHKK4m5hRBCCCGEEEIIIUB6WABgMBh49dVXmTBhAiNHjmTSpEmEhYUxZ84cdu/ezZNPPklGRoZ//XvuuYc333yTN954g6lTpwJQUVHBuHHjqKqq4owzzmD+/PnMnz8/YDuRkZH8/e9/b70dO0547a7GFy3clG7Wm+kW1Y1uUd1ar1JCHCGv8jJt0TQqHZUs37ucS7+9lOdOe4608LS2rlqg+dNh5Qu+nkxn/BNMzXPBHC8SksMYf/eprF60G+bvJtGjodN0ZEcMpktYX7ZVr2Zr7io+fPhuug4awoi/XkF0csoRbycq0cKEa3oz4IxaVn65k90bygGoKq5n3qubWJO2m1POySS9d8wR56oRQgghhBBCCCGEOJ5IwGKfMWPGsGzZMqZPn86HH36Iy+WiT58+zJo1i4kTJx6yfE1NDZWVlQB8//33fP/9983WSU9Pl4DFH+B1NglYGKQxT3RMOk3HnYPu5LZFt1HtqGZn9U4mfzuZp0Y/xaDEdpLnpmCtL1gBsOYt2PMzXPgaJJ3UtvU6xk4enY53WCp1S/ZSs3APuBVGnZleUcPICh/I1ppV5Kxezc41qzjp9D9x6l8mH3FiboC4tDDOurEvhdur+PmLnRTkVAFQllfHN8//RlKXCIacl0lyVtRR3kMhhBBCCCGEEEKIjkGGhGpi8ODBfPfdd1RXV1NfX8/KlStbDFbMnj0bpZS/dwVARkYGSqmDTrt27Wq9nTmOeB0SsBDHh0GJg3j/zPf9uVaqHdVcO+9aPt72cRvXbJ+kfnDOc2AM8b0u2wavjoUV/wfq+B62SGfUEz62E4l3DMJySiLofZ81Jn0QfaJG8Oe0v9E9dBAb583jtVuu4ZcvPsHtdP6hbSV1jeS8af05+5a+xHUK888v3FHNZ/9ey5fPrKMot/og7yCEEEIIIYQQQghxfJKAhWj3nA63/7m35DeYmQYvjwEgtzqXF9e/yLxd8yiyFrVVFYU4bGnhabxz5jsMTxkOgFu5eWTFI8xcORO3132I0seYpsGAy+C6JZC4r1eFxwlz74H3Loa60ratXyswRJqJOj+LsJv6sinOiAdfoMasD+ak6FGclXYdmaY+rHj/Xd6Y9jc2LV6Ay+k44u1omkannjFcdM/JnHFdb6ISQ/zL8jZXMGfWr3w0YxWblu7FaW/j80IIIYQQQgghhBCilUjAQrR/7sbGOgN14KgBhy9h8dqStTy/7nluX3w7C/YsaKsaCnFEwkxhPHfac1ze83L/vPe2vMdjPz/WhrVqIjYLrv4BTr2pcV7OPHhxGOz4se3q1YoiksKYcPsQtKv7sCmmaeAihL7Ro/lz2nUkOdKZ/8KzvHjtZcx76Rnyf9+IOsKeKJqm0aV/PJMePIWxU3sQFhPkX1a6p5ZF725l9j+Ws+jdLZTuaQeJ2oUQQgghhBBCCCGOIclhIdo9ze31n6lGzep7YokFYGfVTv96nSM6t3bVhPjD9Do9dw66ky6RXXj050dxe93MyZnD6emn+3tftCmDGSY8Dplj4PO/gbUU6orh7fPh0k+h69i2rmGr6NQ1ik53DiE3p5ytn26je6ULPRpBegv9Yk4jO/IUcmrWsHXRUjb8OI+IhER6jjiNXqNOIyI+8bC3o9NpZA9JIuvkBLauLGLTkr2U7PYFKFwOD5uWFrBpaQHxGeH0GpFM1skJGM36Y7XbQgghhBBCCCGEEG1CAhai3dO8jc911PuehMQAsLO6MWDRJaJLa1ZLiKPigqwLMOlN3LfsPm7ufzNDk4e2dZUCZZ0O1/8En/0NdiyAtFOg86i2rlWr65wVQ+d/nMqOLWVs/TyH7CoXun2Biz5RI+gRMYRddRvZWr6KFZ+8x4pP3iMluxe9Ro2l25DhmENCDr0RQG/Q0XNYMj2HJVOyu4ZNSwvYtqoYt8MDQMmuGkp21bD84xy6n5JIr5EpxKSEHstdF0IIIYQQQgghhGg1ErAQ7Z7O2xixMGgtBywsRgvxIfGtXjchjoazMs+iV0yv9ttLKDQeLvkEfnkJup8J+v2+Opz1YDq8BvmOrkt2LF3ujiVnUwm5X26nR40HTYFBZ6RreH+6hPVjb30OW6tXsXfLJvZu2cSPb7xE10FD6DVqLJ369EWnO7yeEfHp4cSnhzPswq5sW1XMxiV7Kc+vA8Bp97Bh8V42LN5LYmYEvUYm03VAPAaT9LoQQgghhBBCCCFExyUBC9Hu6ZsMCW/Q2XxPQmKwuW0U1BUAkBmRiaZpbVA7IY6OdhusaKDTwZDrm8/fuRjmXAWnPwR9/+pb7wSQ1SuerF7xuCvs1C3fi3VVMcrpQdM0Ui3dSLV0o9xewNaaVeRbt7Jl+WK2LF9MaFQ0PUaModeoscSkdjqsbZmCDfQemUKvEckU7/L1uti+qhi3yxfMLdpZTdHOapZ9lEP2kCR6jUwmKtFyLHdfCCGEEEIIIYQQ4pg4MVqWRIemaxKw0GP3PbHEsqt6F2pfItx239grxBFaVbSK1za81tbVODiPC767y5ff4osb4fXxULC2rWvVqgzRQUSe3YWkewYT8afOVDfp4BATlMzQ+HM5M+06uoWfjEEzUVdZwaov5zD79ht4557bWPPdV9TXVB/WtjRNI7FzBGMv78HUWcMYMbEb0cmNgQlHvZv1P+bx3kMr+ezfa9j2SxEel/cg7yiEEOJY27t3L//9738ZP348nTp1wmQykZiYyIUXXsjKlSubrf/QQw+hadoBp127drX+TgghhBBCCNGKpIeFaPf0NPac0GuNPSya5q/IjMhs7WoJccy8tekt/vPrf/AoDxkRGYzt1E4TXDvrIK47lG7xvc5fBS+PgYFTYeyDEBLdptVrTbpgA2GjUul6SiIrv9uO8ddS0ty+ZaGGCPrHjKVn1Ej21G1kR80aql1lFO/MoXhnDovffo3MASfTc9RYMvufjN5gPOT2zCFGThqTSp/RKRTtqPb1uvi1BI/bF6AoyKmiIKeKpaE5ZJ+aRK/hyUQmnBjDdgkhRHvy7LPPMmvWLLp06cL48eOJi4sjJyeHzz//nM8//5z33nuPiRMnNis3ZcoUMjIyms2PjIw89pUWQgghhBCiDUnAQrR7TQMWjUNCxbKz+nf//C6RknBbHF88ypdk+b5l99Hlz13IiMho2wq1JDgKLn4Ldiz09bQo2wYo+PUN2Py5L2gxYAocZs6G44E5yMDI87PxntuNtUvzqFqST3erL4hg1hnJCu9PVnh/yj2l5FSsJN+6FY/HzfZVP7N91c8EhYWTPXQkvUaNJSGz6yGHutM0jaSukSR1jWT4RVls+bmQTUsLqCr25fux17lYN38P6+bvIaV7FD2GJpFxUizmYPn6F0KI1jB48GAWLVrEqFGjAuYvXbqUsWPHcv3113PeeedhNpsDlk+dOpXRo0e3Yk2FEEIIIYRoH6TFQrR7hiYjlxm0fUNChUSzM196WIjj02U9L2ND2Qa+3/U9VpeV2xbdxrtnvkuIsZ3eId9lDPxtOax8ERbP8vW8sFXC17fBr2/CmU9C2qC2rmWr0ul0DByVDqPSydlUws7vdpJZ5iR4XwA2Rh9HTNxZeBL/xG7rZraU/UytqwJ7bQ3r5n7NurlfE5PaiZ4jT6PHiNGERccecptBoUb6nd6JvmPTKMipYtPSAnasKcHr8Q2dt3drJXu3VqLTa6R2j6Jzvzg6943FEmE+xDsLIYT4oy644IIW548YMYIxY8Ywb948NmzYwMknn9zKNRNCCCGEEKJ9koCFaPcMTZL4Ok9/kKDwCojOpFtUN8rt5eyt3UtKaEob1lCIo0vTNB4e+jA5lTnsqN7B9qrtTP9pOk+MfKL9Jpc3mGDYLdDnIpj/AGz42De/cB388tIJF7BoqiFBd3WVjdXfbCd+Zy1RVl8PGr1HT2ZQHzJT+5DvKSOv8mfya3/Hi5fy/D0sfW82y95/i059+tJr1Fi6DhqC0Rx00O1pmkZKtyhSukVhuziL31cUsnlpAdWlvh5qXo9iz+YK9myuYPH7W0nsHEFmvzgy+8cSEddOg2JCCHEcMhp9QwAaDM1/ki1ZsoSVK1ei0+nIysri9NNPJzQ09A9tJz8//6DLCwsL/c9tNhs2m+0PbUe0X3JMRQM5F0RTcj6IBnIuiKaO5Hw4VueOBCxEu6aUQk/jcDLBPUfBvga16/tdz/X9rm+rqglxTIUYQ3hqzFNM/mYyVpeV73d9z0lxJ3FZz8vaumoHF54EF74KA6+Ab++Ekk0wfFrgOl4vaJpvOoFERAYz9pI+KKVw7qnF+nMh9RtKwe3rAZGqjyU19ixqYyaQ79rBntIVVDlLUMrL7t/Wsvu3tZiCg+k2ZDi9Ro4lJbsnWpOAbkuCw0wMGJ9O/9M7UbC9ip1rS9m5rpS6SodvBQVFO6sp2lnNT59uJybFQud+cWT2iyM2NbT9BsiEEKKD27NnDz/88ANJSUn06dOn2fLp06cHvI6MjOTpp5/m8ssvP+JtpaWlHfa6S5YsITb20L36GsnPyY5g3rx5rbQlOR/aOzkXRFNyPogGrXcugJwP7d+RnA9lZWXHpA5yloh2zetR6LXGBjnNeOKMhS9E54jOPD7scf6+6O8A/Hv1v+kR3YOTEzvAsBEZw+C6JbDjR0joGbhs7duw5i0YcTt0OwMO0eh+vNE0DXN6OOb0cCLOyiRvaR6lS/NJ8viCA2GakR6mbHqkZFPmrafI9jt7KtdQ66rAabOxceF8Ni6cT0R8Aj1GnEavkacRmZh08G3qGntdDL84i9I9texcV8rOdWVUFlr965XvtVK+18rqb3YRHhvkD14kZkag00nwQgghjgaXy8Vll12Gw+Fg1qxZ6PWN/9/27duX119/ndGjR5OUlERRURFff/01Dz74IFOnTiUyMpJzzjmnDWsvhBBCCCHEsSUBC9GuuV1e9FrjjzjNeGI1bAoxNn0sV/W+itc2voZHebhj8R18dPZHxIfEt3XVDk1vgG7jA+d53LDsKajMhQ8mQ3wvGDENep1/QiXnbqC3GMk4I5NO4zNYuzyP8mV76VbtxrAv10WsLoRYy0B6WwZS4qmh2LqBXdW/Ue+uobqkmJ/nvM/Pc94nJbsnPUeOpfupwzGHWA66TU3TiE8PJz49nCHndqGquH5f8KKU4twa/3o1ZXbW/5DH+h/yCA4z0rmvL3iR2j0KvXwWCyHEH+L1epk6dSpLlizhmmuu4bLLAntOnn/++QGvMzIyuOmmm+jRowfjxo3j/vvvP+KARV5e3kGXFxYWMnjwYABGjhxJamrq4b/5ih+PqC6ibYwfP/7QKx0Ncj60e3IuiKbkfBANWu1cADkfOoAjOR8ONfToHyUBC9GueVxeDFqT03TvCohNxR3ZCYNOTl9xYrip/01sLN/IysKV1Lvr2V65vWMELFpSWwimJg3qJZtgzlWw8HEY9nfoO9mXD+MEo9PpGDgiHUakU15qZf2CXHRbqsi0e9HtC17E68OJDx9Gn/Bh1OqqyCn9lTzr79g9VvZu2czeLZtZ+MZLdBk0hF6jxpJ+Uj90hxEEikwIYcCEdAZMSKeu0kHuel/wYu+2KpTXN1yVrdbF5mUFbF5WgClIT3rvGDr3iyO9dwymIPksFkKIw+H1ernyyit57733uPTSS3nxxRcPu+zYsWPp0qULGzZsoKamhvDw8MMueyQBiODgYIKDgw97fdExyDEVDeRcEE3J+SAayLkgmjqS8+FYnTvSyiDaNZfTjX5fg5tSCt27Z0PXsTyQ0Z2VhSvJjMhk5oiZxIXEtXFNhTh2DDoDT4x8gruW3MU/Bv2DrKistq7SHxeZBn9bBtvmwtInIX+Vb37FTvjqFlg0EwZOhf6XQURKm1a1rcTEWThtUm8ACvNr2PTjLszbq+nsbFwnzBvJgJix9I85jWJnEYW1v7O3Pgerq4qtPy1h609LsERF02P4aHqNGktsWvphbTs0ykyf0an0GZ2K3epi14Yydq4tJW9zBW6XFwCn3UPO6hJyVpegN+hI7RFFRu8YUrpHEZkQInkvhBCiBV6vlyuuuIK33nqLyZMnM3v2bHRHOCRibGws27dvp76+/ogCFkIIIYQQQnQkErAQ7ZrL7sSgGQHwKLcvR68llp3VOym1lVJuLyfcLD/YxPEvOiiaV8e/2mz+9srtRAdHEx0U3Qa1+oM0DbqfAd0mQO4SWPpvyF3sW1Zb6AtarHge7tgGxhP7To+k1HCSLj8JAEeZDceGMmzrS3EV+fJOaGgkmpJIjEmif8xpVLnKKbBuY299DhWVhaz+6lNWf/Up8Z270GvUWLqdMozQ6JjD2naQxUj2kCSyhyThcnrI21TBznWl7NpQhqPeDYDH7WX3hnJ2bygHICTCtC9XRiQp3aOIiAuWAIYQ4oTXNFgxceJE3n777YC8FYfDarWyadMmLBbLESbFFkIIIYQQomORgIVo1xz1dvT+gIULAG9wNLkV6wBICU3BrDe3VfWEaFNur5u7lt5FkbWIm/vfzEXdLupYQ6VpGmSO8k15q3y5LbZ9B8oLPc9tHqxw1oMppG3q2g6YY4Mxj0kjfEwarmIrO5fmUbO2xJ+sGyDSGENk5Kn0jDwVm7uOgvrt7K3fTsmu3SzMfZmFs18mMiGJlB69SM3uRUqPXkQmJB0yqGA06cnsH0dm/zg8Hi8FW6t8eS/Wl1Jf3dj1o77aSc6qYnJWFQO+Hhsp3aJI7hZJavcowmNP7ACUEOLE0zAM1FtvvcVFF13EO++8c8BgRW1tLYWFhXTr1i1gvs1m45prrqG2tpYrrrgCg6EDfdcLIYQQQghxhOS/XdGuOevtGHS+gIVX+e7oLTIFYXPbAOgS0aXN6iZEW/tw64fkVOYAMGPlDOZsm8N9Q+6jf3z/Nq7ZH5A2CCa/B9X5sOZtyD4zcLm9Bv7bBzJHw8lXQueRvoDHCcqYYKH7X7LhL9ns2FLGjp/yCdpdS4ZD+XNeBBtC6RLejy7h/XB7nRTZcimo30FhWS6bFv3ApkU/AGCJjCIluxepPXqRkt2L2E7pB819odfrSOsZTVrPaEZO6kbJnlr2bq1k77ZKCrZX43Z4/OvWVTrYurKIrSuLAAiLDiKlu6/3RUq3KMKig47hX0kIIdreI488wptvvkloaCjdunXjsccea7bOeeedR79+/SgvLyc7O5tBgwbRo0cPEhMTKS4u5ocffiA/P58+ffrwr3/9qw32QgghhBBCiNYjAQvRrjltDkz7km439LDYqfP6l3eO7Nwm9RKiPZiQMYHN5Zv5cseXAGyt3Mrl313OOV3O4baBtxEb3AGHjIhIhTH3NJ+/4SOwV8Hmz31TTFcYMAX6/AXCk1u5ku1Ll+xYumT7jnVJYR2blu7Gs62KznUezPuCFwadiVRLd1It3QGocpRQaNtJkS2Xsqp8tv28jG0/LwPAHGIhuXsPXxAjuxcJXbIwGI0tblvTaSRkhJOQEc6ACel4PF5Kd9eSv7WSgm2VFG6v9ue+AKitsLNlRRFbVvgCGOFxwb7ho7pFkdo9Ckuk9JgTQhxfdu3aBUBdXR2PP/54i+tkZGTQr18/oqOjueGGG/jll1/49ttvqaysJDg4mB49enDLLbdw0003SVJMIYQQQghx3JOAhWjXHPU2gvcNCeXF18NiJw7/8syIzDaplxDtQWxwLI8Pf5yLul3EjJUz+L3idwC+3PElP+75kRv63cCk7EkYdS03Nnc4ljiwlvqel2+H+Q/A/AchYzj0uQh6ngPBUW1bxzYWnxRK/MW9AKivc7Ju2R4i91qJLLDhtbr860Wa44k0x9Mjcggur5MS225/AMNaX03u2tXkrl0NgMFoIjGrm28IqexeJHfLxhTc8tBcer2OxMwIEjMj4E8ZeNxeinfV7OuBUUXRzmo8TQIYNaU2akpt/L680FevhBBSukUSl2HB49DQm9Wx+lMJIUSrmD17NrNnzz6sdcPDw3nuueeObYWEEEIIIYRo5yRgIdo1m9VOtKYDQDX0sHDV+JdLwEII6Bffj/f//D6fbPuEZ9Y+Q42zhjpXHU+seoJPcz5lxvAZ9Ijp0dbV/N8Muhr6Xw5bvobVr8OupfsWKN/zXUvhm9vh1Btg3CNtWtX2IiTUxNAzugKgvApnXi32rRVUby6HIqt/6CijzkSKJYsUSxYA1a4Kiut3UmTbRZkjH5fLQf7mjeRv3giAptMRn9GF1B49SdkXxAgJj2ixDnqDjuSukSR3jWTQn8Ht8lCc2ySAkVuN190YlKgqrqequB6WAoSiD/GysGgbyV2iiM8IJy4tDKP5yBLVCiGEEEIIIYQQouOQgIVo1+y1dsDXOOXFF7DItZf7l3eOaBwSyut0omw2dOHhh0wgK8TxRq/TMzF7IuMzxvP0mqf5NOdTFIpd1buICjpOeh0YTND7At9Uth02fOybKnb4lntdYIkPLKMUmvKgtBO7kVvTaZjTwzGnhxMxPoOy4jp+X5GPbWslyZUuImn8zIwwRhMREU23iJNRKGo9lRRbcym151Nqz8PusVK8M4finTn8+s0XAEQnp/oSeffoTWp2L8Lj4lush8GoJ6WbL38FgNvpoXBnNQXbqti7tZLi3Bq83sYAhqdeR+7acnLX+j73NQ2ik0OJzwgjPt03FFV0igW9Xnes/nRCCCGEEEIIIYRoRRKwEO2as94B+IYeUbhQwA7rXgDiQ+IJM4UBUL9mLXuuvBJlt4PBgD4yEkNUFPqGKToKU6d0Yq6YGvD+jp07UQ4H6PVoBiOaQY9mMIDegGY0oOl9rzWjEc1k8pdTHg/usjLweFBeb+Oj14vyeAIezV26oAtpHD7FVVKCbcMGLFu2gFLUm8y4jYZ95RUoL8rrRTMYCZ8wPqC+9atX49y955B/N2NqKpZTBgfMq12wAOV0+lr8NB1ovjul0evR9Pp9jwZMmZ0xxjc2NnqdTlx5eb6/hdEIRiOa0YjOZGp8LQGidiMqKIqHhj7EhVkX8s9f/kl6eDqJlsSAdX4u/JnO4Z1JsCS0US2PgtiuvlwXo++GgrWwcQ5s+swXzGhCK9nIhI23UBA5CN1OI3Q/3Rf4OMHFJoQy4rxsADxuL1t/KyZ/TRFBeXV0cigM+wIYGhrh+mjCw6PJCh8IQLW7mnLbbkrteZTa87G6q6goyKeiIJ8NC+YCEBYTR0p2T1L3BTGiU9Ja/JwwmPSkZUeTlh0NgMvhoXBHFbs3lbLl1zycNTrwNpZTCsr31lG+t84/jJTeqCM2NZT4jHAS0sOIzwgnMj4ETSefS0IIIYQQQgghREcjAQvRrnnsjQELlIsKvYFqp29IqKbDQZW/9povWAHgduMpK8NTVhbwXubs7GYBi8J77sW2fv0h6xH391uJ/dvfGutVU8P2UaMPax8yPv6Y4D69/a/rV66k+M67SNn3uoQ3Wyynj4hoFrCo+mQO1Z9/fshthp/5p2YBi6KHHsZdWnrIskmPPUrkX/7if+3ctYvcc849eKF9QYwu33yNMSnJP7vygw8of/mVQ27T1KULnV55OWDe3tvvwLZ27SHLRk6cSOx11/pfK7ebHeMnHLIcQPKT/yJkwAD/a+vPP1N4730trutVis52GwD5zz1H13nzAhpgK958k5q583zBH4Mv+KMLCyV8wgTCxo71BXdaUZ+4Prxz5jvY3LaA+Xa3nX8s+Qc1zhrO7HwmU3pNoVtUt1at21GlaZAywDeNf8z3ugn95k8xumvpXPYjfPwjmMIg63To/mfIGgfBkW1T73ZEb9DRc0ASPQf4rt2qShubV+Sj22uls82Lq9AKTVJJRBgiiAg7icywkwCo81ipsOdRbi+g3LGXSmcxteWlbFm+mC3LFwMQFBZOSveepGb3JKVHL+IzuqA3NP8XxGjW06lnDHGdQ6gwbUV54eTew6guclCyq4biXbVUFFpRTXthuLwU59ZQnFvDhn3zTEF64vb1wGjojREaZZbgqhBCCCGEEEII0c5JwEK0a0FN863GdCL8tq18aC9hZ/VOwoy+3hVeqxXrsmUAaCEhmDLS8VRU4qmo8PUo2McQ3XxYHOV2H1Y9lNcb8FrTHcHwI15P4OvDLKvU/5BsVmu+jcN+P/1+HwseT8vrNeVyoVwuX++UJrx1dbgKCg5ZXBcW1myeu7z8sMp6aqqbV+cwygG+3jVNeO32g5ZtCDm4a+uaNXw69+RhW7OmWZna777HEBdH5MUXE3nxRRgTWq9Xg6ZphBgDkyN/vfNrKuwVgC8595c7vmRY8jCm9JrCkKQhHbtBt4W6ax4nHs2Ifl8OHJy1vp4Ymz4DnQHSh/qCF9lnQmSnVq5w+xQZFczQM7P8r712N47dNThza9jwcz7Jdi+mJkNIheothFqy6WTZ12NDeahyllBu30uZwxfEqK+tYcfqn9mx+mcAjOYgkrpl+xN5J2V1w2gOalYXTQcxqRZSs2LpNcIX5nU5PZTtqaV4Vw0lu2sp2VVDdWlgYM5p9/jyZGyt9M8LCTcRnxFOfHoYsWlhxCRbCIsJ6tjnvBBCCCGEEEIIcZyRgIVo15TD1fjCqGG0xNLTEkvPmJ7+2ZrJROpzz1I7bx766Bjib/u7r6xSKJsNd0UlnspKNGPz0z1swgSCevdGedzgcqM8Hl8Qw+NG+V+7MCYnB5TTTCbCxo8Hna5xWCWdzheM0OvQdHr/oz4mJqCsOSuLiGuvYUduLuh0dM3qhtFs8pXXdKDT0HQ6NJO5WX0jzj+f4P79D/l3M3VKazYv7uab8drq9w071TD0lAKvB+X2+P4Gbg/mblkB5XRh4URccAHK7QtKNEy4XCinC6/L6X+tmQPrrAUHo4+LPWR99VHNg0n6iIjDKquzWJqXPYxyQLNeDzqT6cBlFTgcDlAKc0hI88WeAwe/3KWllD3/PGUvvkjMVVcRP+22w6rfsTAqdRTX9LmGD7d+SM2+3krLC5azvGA53aK6cV7X8/hT5z8RG3x4f8P2znX64/zoGkxczQYGWIow7PgB7FW+hV435C7xTSWb4Jxn27Su7ZUuyEBw92iCu0cz/IwMbPVOtqwtonRzOYZCK6n1XkKaBDD0mp4YcxIx5iQa+u7YPVbK7HspdxRQ4Sik0lHEng3r2LNhnW8begMJXbqSmr1vCKlOnZtXZB+jSU9S10iSukb659mtLkp211Cyq5aS3TUU76qhvtoZUK6+xsmu38rY9Vtj7ztjkJ6YZAvRyaHEpFiISQ4lJiWUoNDW7RElhBBCCCGEEEIIH039T7dxi7aWn59PWpqvcXrbtm1kZWUdokTH8uOMj+hW4xumpDLeRp9p4w9RomOw2WzMmzcPgPHjxxMcHNzGNRKHcqhjppRqzF3i9gW77Bs3Uvne+9T++KO/p0riIw8TdfHFrV7//dW76vls+2e8vflt9tbtDVim1/RcmHUhD5z6QBvV7uhpdtxMRtizArZ+C1u+gardvhUnfwjdz2gsWL0XvpkGGSOg8whI6HPYvaNONG63lx2bS9m7uRRXXh1RVU6SPYfutVDjLKfSWUyFo4hKZyGVjhLcal+QQdMwRURhiogiq3cfYpKSCY+NJyw2jvC4eExBh/7MrKt07Ati1Pged9fiqD+8XnUhESZiUkIDghnRSRYMphM7efvByPdax5STk0O3br7QYl5eHqmpqW1cI9EWmv6eONLzIOPub45VtcRRtOuff26V7cj50P7JuSCakvNBNGitcwHkfOgIjuR8+F/+jzwY6WEh2jWvs7FxSScNRaId0zStMYH5vgTtllNPxXLqqbiKiqj66CNqvp9LxFlnBZSzbdxE1ScfEzX5rwR1b71cEiHGEC7pcQmTuk9iwZ4FvLn5TX4r/Q3wDekTExzTrIxXedG1MNxYh6I3+AIQnUfAhBlQ8rsveJE5KnC9XUth2/e+CSAoEjKGNwYw4npIAGMfg0FH95MS6H5S43Bn3noXzvw631BSebXU7qzC5A68PyLcFEO4KYb0UF+POaUUta4KKpyFviCGrYiq6jzW7t7RbJtBoWFNAhhxhMfGEx4X73uMjSM4PILQKDOhUXFk9ovzv391iY2SPTWU77VSsbeO8gIrteX2Zu9fX+2kvrqCvM0V/nmaBhHxIb4gRkpjj4zwuGB0kuBbCCGEEEIIIYQ4KiRgIdo1u71xSChn6e+8u2QxSRmjyYrMIi28+bBHQrRHxsRE4m65hdibb242Xn7lO+9Q/fnnVH3wIRHnnkP83XdjaGGIrGNFr9MzPmM84zPGs7NqJ1/v/Jpvdn7DWZmBgZVd1bu4at5VnNn5TM7KPIvu0d1brY7HjKZBQk/ftL/81YGv7VWw5WvfBBASA+nDoNsE6H/pMa9qR6MLMRLULYqgbr5zOdrtZdf2CvI2luDIqyOk0kGKUwXkwtA0zR/EyAjt7Z9vdVVT7SqlyllKjbOMalcpNXUVlNTtoGRX82AGgMFk9gUz9vXIaAhkhMfGk5gRT9cBGej0viC40+amotBK+d46yvfueyyow2EN7I2hFFQV11NVXM+OtaWN2zLqiN4XxIhKCCEyPoSI+GAi4oKlR4YQQgghhBBCCHGEJGAh2jXl8vozHZutW/hn7mLI/Yx+cf14+8y3qXj3XXQhFsLGjEYfGdmWVRXikPYPVnidTuoWL/a/rv7iS+qWLCXh3nsIP+usVk8GnBmZyS0DbuHm/s0DK9/kfkNJfQmzN81m9qbZdI3sypi0MYxKG0Wf2D4dv+fF/s78F5x8pa+nRe4S2L0cbI0JnKkvh9+/BKe1ecAibxXEdIGQ6NatczumN+jokh1Ll+zG3ChOp5sdv5dRtLUcZ34doZVOUt2g32+gSosxAosxguSQrv55XuWl1lVB9b4ARrWzjBpXGXWuShQKt9NBZUE+lQX5LdZH0+kIjY7xBzEaghpp2XH0Gh5PWEwPXA5dYxCjoI7yvXVUFtbjcXsD3svt8vqSf++u3W8jEBplJjK+MYgRGR9CZEIIYbFB6PXH2TUjhBBCCCGEEEIcBRKwEO2a5m1suarTO/zPMyMzUW43Zc8+h6eqiuLwcLotX9YsibIQ7ZnOZKLL/HlUz5lD6fP/h7emBk9lJQV33kX1l1+R9NB0jCkprV6vlgIl1Y5qDJoBt/Lddb69ajvbq7bzyoZXiA6KZkTKCEanjebU5FOxGJsnQu9wmva+OOU68Hp9iblzl/qCGLuWg6Ma0k4JLOf1wNvng7MWYrr6lqcO8j3GZcswUk2YTAZ69E2kR99E/zzl9uIqsmLdVcmuX7ZirtejrzNgIfCc1Gk6IkyxRJhigWz/fC9e7DorNa4KKqyFVNmLqXGWUeuqxIuncTteL7VlpdSWlbKXzS3WLygsPCCg0bVfPKGnxaAzROC0h1BbCZUF9ZTvraO6zAb7ZwRTUFfhoK7CQf6WyoBFmk4jLCZoXzAjmIh9j5EJIYRGB8kQU0IIIYQQQgghTlgSsBDtWtM7bSuNTv/zzIhM6levxlNVBYBl2FAJVogOSR8aSvSUKYSfeSZFj8+g9ntfzgTr0qXsOPsc4m+9hahLL/XlxmhD955yL9f3vZ65u+by1c6v/PkuACrsFXyx4wu+2PEFZ2eezYwRM9qwpseITgeJfXzTqTf4AhNFv/mGhmqq5HdfsAKgfLtvWveu77UpDJL6QnI/SO4PWeMhKLxVd6O90ww6TKlheGIM7ClfC8Dpp59OZZmLvdvKqc6rhVIbobVuEt2BQ0oB6NAR4g0jRB9GYng67PvzepSiEjs1mhWbqsLuLKPGupeq2r04vbYW62KvrcFeW0NJ7gGGnTKb/cGMuL6xGMwR6HQReDwWHPZg6muMVJfYW0z0rbyKmlIbNaU29mwKXKYzaETENgYxIuJDCI8JIjQ6iLCYIIwyzJQQQgghhBBCiOOYBCxEu6ZvMvJGmaExMWrniM7Uzpnvfx0+blxrVkuIo84QF0fqf5+idsFZFD3yKO7iYlR9PcUz/4n155WkvfB/bV1FooKimJQ9iUnZkyitL2Xp3qUszlvMisIV2Ny+Rt+RqSMDylhdVl5a/xIDEwbSL74fEeaItqj60afT+4IO+zOFwJAbIW8lFK4Hb2MeHpy1sHuZbwL4+8bAgEV1vi8QEtnJ18NDAKDT6UhNjyQ1PTJgvsvpYc/OSop2VFKXX0v/kCC8ZTbcZTbwBHZ30GsasQQTSzBosWDuCmYgGqx4CY424DI6qKeWGkc5xdV7qajKo6ayCKUCh4Bq4HY4qNibR8XevBaXazodYTGxRMfFYrZEozdFAGG4XCHY64KwVptwO5v3uPG6FZVF9VQW1bf4vkGhRsL2BS/CooOaPTdbDK0+nJwQQgghhBBCCHG0SMBCtGv6JnfPFpiaBCzCMqidfz8AmsmEZeSoVq+bEMdC2NixhJxyCqX/+Q+V770PQMS557RxrZqLC4njgqwLuCDrAhweB6uLVrMobxFDU4YGrLeiYAVvbHqDNza9gYZG16iuDIwfyMCEgQxIGEB8SHzb7MCxEp0JZ+zrYeKyQ+E6yPvFF8AoWAc1+3IqhMRCRGpg2Z9fgBXPQXA0JJ0E8T0hvofvMa47mMNac0/aPaNJ3ywvBoDyeHFX2Nm+uZT8nApUuZ3QOjcJLoWZ5g35FnRQ4cWMETPRRBFNOlkQAVURiiqDB4fRjdvowKtZcatK7I4SamsKqC0twe1yNntP8A07VVNaQk1pyQH3ITgsguDwGEzBkWj6cLzeUJz2EGx1QShvKGjmZsEHe50Le52L0j21Lb6n0az39cbwBzLMvsco3+uQCLMMOSWEEEIIIYQQot2SgIVo15oGLPKCfTksgvRBRO8oY09pKQCWYcPQhx4HY+YLsY8+NJTEBx8k/KyzqJ07j7AJEwKWK7cbzdB+Pr7NejPDUoYxLGVYs2WL8xuTiisUOZU55FTm8MHWDwBIDU1lYMJATkk6hbO7nN1qdW4VxiDoNMQ3Nagr8QUu7FXNe1EU+IZAwlYBOxf5pqYiO/mCF70ugL4Tj129OzhNr8MYF0KPUen0GJXun+92eynYXU3hzgpqC614ym2YalwkeTVCnd7mOSiASDQi3QZwG8AWBEQAyUAv3GaFo5uBiPhgPEEeHDo7de5q8ioLcdpLqa0ppLasFHtdy4EFAFttNbba6gMuN5iDCLJEYwiKRKcLR6lQ3K4QHLYQNF0YaKHNAhouh4fKQiuVhdYW31On1wiNMhMaFYQl0kxopBlLpJmQCBOWSDOWCDOWCBMGGXpKCCGEEEIIIUQbaD8tXkK0wEDjcBm7zL6hVTpHdKbuhwX++WEyHJQ4ToUMGEDIgAHN5u+9bRqO3J2EjR5N6OjRBPfr164CGE1NGziNUamj+LX4V34t/pWtlVvxNhliJ78un/y6fPJq85oFLNaVrCMlNIW4kLjWrvaxExoP3ca3vCxrHJgssHcN1Jc1X161xzcl9A6c73HBx1MhpgvEZEFsFsR2g5Doo179jsxg0NGpSxSdukQ1W6ZcXtwVvuGkXGU2fl5dgKnWRZTDS4xquTeCAQ1DvQf3rjoATEA04UQTDnTHoSnKE6HOpOE2e/AanWj6ejxU43KUYa0tora8hLrKClAtREsAt8NOnaMAKGhxuU6vx2yJwhQchd4YjlJheDwWnPYQvN5QNF0Ymhb42eD1KGrK7NSU2Vt8zwbmEMO+AIYJS4SZkIZgRqRp36OZkHATeoMkkhdCCCGEEEIIcfS0zxYuIfbRNwlY1O5Lut05PIPa+fvyV+j1hI4Z3foVE6KN1Myf7z//y7fvoPzV19BHRGAZOZLQ0aMIHT4cfUT7yRMRFRTF6emnc3r66QDUOetYX7reH8DYWLYRp9fJwISBAeWUUty44EZqnDXEB8fTM6YnPWN70iumF71iehETHNPS5jq24bf5JqXAWgolm31JvP2Pv4OzzjdMVFOVu2DL183fLzh6X/AiqzGQkTnGl2dDBNCMOowJFowJFoKB8aPS/Mts9S4K86opza+hrsiKu8KOvsaJxeYlRdOhc7Wc48KMRrIHsAE2PRC8b4oBMkGnoe9kQtfbiDcIiux1FFur8GLF467EbiulpnovteXFeNzNE3cDeD0ebDVl2GpaCHA11MMSgTkkCr0pAk0Lx+Ox4HKE4HZZfAENXVCL5Rz1bhz1bioKWu6p0SA4zEhIhJngMAOVtWb0IQqHzU1w8EGLCSGEEEIIIYQQLZKAhWjX9FrjkBR2vS9g0acqDFeeL8lpyOBBGKKa3y0rxHHL5SK4Xz9s69f778r2VFdT89VX1Hz1Fej1hAwcSOjo0URNnoSunbUahppCA4aPcngcbCrbRGxwYB6C/Lp8apw1AJTYSijJL2FR/iL/8kRLIj2ie5AVlcXF3S4mwZLQavtwzGmarydGaDxkjm6crxRU50FQZOD6ZTktv4+twpc7I29l47w7tgcGLHKX+Iaiis70TVGdJaCxn+AQI5ndY8nsHttsmVIKb70bT4Udd4WdvXuq2Lm9EmOdC4vdQ7QHglvImwGAV+GpduCp9g13GAfEEQlEAim+dUKgOkRRq/di17tx65wYTE5CgxzU1JdRXV1EWWU+tbVlqJbGtAIc1moc1gMPO2U0BxMUFo0pOAqDKRJ0YXg9obidIdhtwXg9wQdN4m2rdWGrbUgubwJg6XvbOfumFpLSCyGEEEIIIYQQhyABC9GuGZoELLoazOQYNLLWl/vnhY8/wNAqQhynws88k/Azz8RdUUHdkiXULVqMdelSvNZ9d0F7PNT/8gv2338n+rJLA8q6KyrQR0ai6drPEC5mvZkBCc2HvTLqjFzR+wo2l29mc9lmal2BeQCKrEUUWYtYmLeQ87qcF7BsXck61pasJSsqi7SgNJRSB21w7TA0zZfHYn/dzoC/b4CybVC2HcpzfEGMshyobTKUkCkMLPs1um/5Bla+GDgvLMkXvIhMh8g0iEiDhF6Q0vw4neg0TUNvMaK3GDGlhZHVN46sJsu9Xi8VpfUU5dVQXWSlvqweb6UDi91DVogZT40Tr9V1wPcHiEAjwqMHjx4wgx2ogUSSQX8SxII3VlGNF6vmwqk5cWHD7a3D5azCbivHai3B7qnH7rHiVoFJwl0OGy7HXmBvi9vXGQxYImMJ9gc1ItB04XhVKC5nCA5bELZqD15vY8Bkz8ZK8rZUkJYtw5IJIYQQQgghhDgyErAQ7VpDwEIpL29d5kve68jbgzW5NzXz5xM6dmxbVk+INmOIjibyvPOIPO88lNNJ/a+/UrdoEbULF+Has4fQEcPRjMaAMvk33YwjJ4fgvn0J7t+PkP79CTqpb7tMWp9oSWTawGkAeJWX/Np8NpVvYlPZJjaVb2Jz+Wbq3fUEG4JJCUsJKLsobxGvbXzN/zpYCyZeF8+qVavoGt2VzhGdyYjIICU0BYPuOPga1Ol8gYzITtD19MBljjoo3+4LXrSU6LtiZ/P3qy30TbuXN87rdQFc9Ebget/c4UssHtEJIlIhPBnCUyAkxlcngU6nIzYhlNiE0AOuo9xePDVOtu+soLSgFnuFHU+1E329iyCbh1CXIlKB8UA9NQAdGlHoiVJ6UEFAOJDg6/BgwpcrvGF7eoVH78GJHaurjur6KhzOKhzuOhyeehyeeuyeehzeehweG163m9qyImrLilreuKZhiYwiLDKGmlqFuy4Wg7k/yz/ZzsX3DkKnOw6ChUIIIYQQQgghWs1x0FIjjmcNQ0K5ldt/h3RQp3SCrr6amKuvbsuqCdFuaCYTllNPxXLqqcTffTfO3F3g9QSso5xO7Bs3opxOrMuWYV22zLdAp8PcrRvB/fsR3LcvQdnZmDMz0Uym1t+RA9BpOjqFd6JTeCf+1PlPgC+Isbd2L0X1Rei0wMbxnKrAIZJsysZuz2525+6G3Mb5I1NH8vzY5wPW3VqxlfiQeCLNkcdHrwxzKCT3800tGTsdTproC1w0naylgetFpAa+9nrg1zfA20JuBb3J10sjPMUXxBh2CyT1bVzu2VdGL/+CAGgGHYboILKjk8k+wDoet5fK8nrKiqxYXF6ilYanxomnxoGjysGOnZWEuRURCvQHCWwAaB4Ng8eAgVBCCCUuONGXWuMA7F47Dk89To8Vh8fmC2p4bf7ghsNrw2Gtx1pbjNtTj0dtR7nzKcu7iC0rCuk5LPmP/3GEEEIIIYQQQpxwpLVAtFtKKQya7xT1KM8h1hZCgG+IGnNm52bzPTU1hI4aSf3adXjKmiTo9XpxbNmCY8sWqt7/AIC0V14mdMSIxrK1tSi7HX1sbLtpxNdpOtLC00gLT2u27LYBtzEhYwI5lTlsKd/CpuJN1KraZut1CgscXkkpxeXfXU69u54QQwjJocmkhqaSHJpMSmiKbwpLITk0mXBT+DHbt1aV2Ns37c9e48uXUZXne0w8KXB5bVHLwQoAjxOqdvsmgJOvDFy+/Qf4YDJY4iAs0RfcaHgMTYCwJDRTFGZXFQ5j5P+8i8cDveHgPTUS9z263b4hqCpKrNSU12OrtOOsceCpdaGrd9MzIhiDzYO3zom3/gDHbz9BuiCCdEFgPLzhnRyeelaVfU+xYz0rvzDTdWA8piD5d1MIIYQQQgghxOGRX5Ci3fK4vej3DdfiQQIWQvwvDLGxpD77LEopXPn52NaupX7tWmzr1uPYuhW8Xv+65m7dA8rWzp1L4f0PoI+OJii7O+Zu3TFnZWHq3BlT5wxfXox2EsgA6BrVla5RXQGw2WzMmzcPu7LTdVBXCuwF5FbnsqtmF/3jA5MCl9pKqXfXA1Dvrmd71Xa2V21vcRsvj3uZU5NP9b/Or81nfel6Ei2JJFoSiQ+Jx6gztli2QwgKh6BevtwVLQlLhFvWNgY0agqgZu++xwKozvcNQQW+XhZN1RaC8kJdsW8qXN9888AYfSjfn/R/gQtWvQalW33BDkusLzF5w/OQWDCHNR/26gRiMOiITwolPunAQ1A1UG4vNRU2Cgprqau0Y6u046h14q1zQr0bvd2D2eklxK0IVxrBLef0bsasD+GUuLOYt/cd6io7s3beHk45J/N/3DMhhBBCCCGEECcKCViIdstpc6LXfA1+Lq+TO2afzaS8bvS+8CrMPXq0qwZSIToKTdMwpaVhSksj4pxzAPDUWbH/th775s04d+/GEB8XUMa+dZtvvYoKrD+twPrTioDluogITBnpWE4ZQvy021pnR45QkBZEz+ieDAweeMB1vMrLRd0uIr82nwJrAQV1Bbi8LSdETg4NbIT/pegXpv803f9aQyM2OJZESyIJIQn+x5SwFMaljzs6O9WWdHpfYu7ogzREO61QU+hL2t2UOQySB/h6adQVwwF60DmNLfRi2TYXcuYeeJt6ky+HxsCpMPruwGVr3oKgCF9gIyQagqMhOAoM7Wf4s9akGXRExFuIiD+8HDbK5cVb78JjdeG1uvh9RwXlpVa8Vheq3o1mcxNa56KT0mPUmTg1/kwWlvzA2nmR9BqRTGhU0DHeIyGEEEIIIYQQxwMJWIh2y15Xj2FfwMKt3OhW78Tyw3Zy3/2W+Lv/QczUqW1bQSGOE/pQC5ahQ7EMHdricnOXTCxDT8W+ZSueiopmy73V1djX/4YhNq7Zsj1XX4NyOjEmJ++bkvzPDUlJ6Mzmo74/f1SiJZEHT33Q/9qrvJTWl7K3bi976/ZSUFfgf0yyJAWULbIGJiRWKEptpZTaStnABv/8zhGdmwUsHvv5MXKrc4kNjiU+JJ644Dhig2OJCY4hOiia6KBoIs2R6HX6Y7DXx5DJArFdm8/v8xffBL5cGNYyqCvyBTBqC6G2CHdlPoVFVc3L7p9bY38ep+893PbA+W4nfHnzAeoZ6gtehET5AhjjHoWkJkNg1RRCwRoIioTgyMZHY8gJ1ZtDM+rQR5jRR/iu2f5ZUQHLbTYb33w9D/2v4aRgINqcSO/wLmy0rufnLxI4fWrPtqi2EEIIIYQQQogORgIWot2qq7Ki29cY5MbDKVsbh6xpOr6+EOLYipo0iahJkwBwl5Zi37IVZ+5OnLt24cjNxblrN+7CQkwZ6QHllNdL/apVKIfjgO+tj43FmJRE/O3TsAwZ4p/vra/HXVGJIT4OXRslANdpOhIsCSRYEhiQMOCg645MHYnFaKHIWkRxfTFF1iKKrEWU2cpQNI6lEx8c36zshrINbC7ffND319C4od8N/K3v3/zzXB4Xb2x6g0hzJFFBUUSaI/3PI8wRHWNIKp0ewhJ8U5PE3C6bjd/nzWu+/sVvQm2xL3Dhn8rAWgL15WAth/oyXz6MpurLD1wHZ51vqt7je+1xBi7fswI+uaKFuhv3BTAifEGMsESY9G7gOrt/8gVQGtYJigBzuO/RYD7uAh5GE2zLshK/LQyjpqN7xCCKbZ+xZfk2ThqTSnz6cZL7RQghhBBCCCHEMSMBC9Fu1VXZaGjacCs32Xm+56bMTMxdurRZvYQ4kRni4giNi4MRwwPme202lDOwoddTUYEuKAjPQQIWnrIyXxLwJjk0AOrXrCXv6qsB0EdEYIiP32+KwxAbhyE2huABA9p8iLjesb3pHds8ebXL46LEVkKRtYjS+lIsxubD71hd1kO+v0I1K1thr+DZtc8esEyoMdQfxJg1chadwhuTjO+q3sXm8s1EmCN8kymCcHM4YaYwdJrukPVpM5GdfNORMlngnGf3BTXKwFbpm+orwFbR+Fx5fL0smmrIxbE/r6sxaAIQmth8nVWvwcZPWi6vM/qGxzKHQu8L4fSHApcvnOkLaJjDfL1AzKFg2re+f16YL/ihbz/BqfBYD/kh0XReXwXAKXETmFc8n2Ufp3H+7W1/rQohhBBCCCGEaN8kYCHarfrqxoCFx+umoQktbNxxMP67EMcZXXAwBAcHzDPExtJt5c94amtxFRTiKizAVVCAu6DA97pg3+vSUozJgTkh3CUl/uee6mo81dU4cnKab9diofuvqwPmlb3yCvWrV2OIiUWFhxNZWoonNJT6EAskJqCPikIfGYXOEnLMG0+NeiMpoSmkhKYccJ2vz/8aq8tKSX0JZbYyiuuLqbBVUGEPnNLCAnNBVNibD8/VVJ2rjjpXHfl1+c2Gk/qp4Cdm/jKzWRkNjXBzOBGmCMJMYXSO6MzMEYHrLclfQoW9gjBTGGHGMEJNoYQZw7CYLIQaQzHp22FOiKBwGHD5wddRChw1vkBAU8kD4LT7wVblC17Yqxuf26p9rx3VvsDB/uzVB96e17UvWFLR8nrLnwa37eB1BrjoTeh1XuPrwt/g67/7gjSm0H2PFjBaGp83LOtzEeib/CtoLQdX/b71Q/5wL5CB53ahzr4d59ZqzPoQBkf1Y9mmZeSu60Rm/+ZDxwkhhBBCCCGEEA0kYCHaLXtdY0ON5mlMfCsBCyE6Fn1YGPruYQR179bicuV0giHw68iQEE/YGWfgLinxT/v34ADQx8Q0m2f/7Tesi5f4XzcMwlTy4YcB60Wcfz7JM2cEzCue9QSayYQ+PBxdeBj6sHD04WHowsLRR4SjCwtDHxaGZji6X58Wo4XOEZ3pHNH5sMukhKXw9JinqXJU+SZ7FZWOSv/zhvnVjmqizIG9BqqdLTekKxTVjmqqHb7lnhYSYr+16S1WFq08YL2MOiOhxlAu7Xkp1550rX++V3mZsXIGIYYQQowhWIwWLEaL77nBEvA6XGuDoYM0reWgQ3I/33QwXo+voX9/g66GzNG+QIi9OnBy1ICjDhy1vhwaTXlchxesAF+Pi6aspbD318Mr2+eiwNfL/ws/PdP4WtP5AhfGEDDtezQGQ9oQOCPw2tGvepnuhWtwGCPRHKcQc3EPCp5ciWZTJASn082+lyUf/kp6n/HoDe24F48QQgghhBBCiDYlAQvRbrmsDmDfXcFuX6OZMTmZoF6SuFOI44nWQo6K0GHDCB02zP9aKYW3uhpXSQnuklLcxcW4y8vRBTVP2u2uqDys7eojAhunlddLxZtvNhueqiWpL75A2OjR/tf2rVspf+kldJZQdGFh6EIt6END0YU2fR6KzmLBlJl5VHp2hJvCOa3TaYdcz+P1NBvmaUTKCMKMYVQ7q/0BimpnNTWOGqod1VQ5qqhz1RFqDG32fjXOmoNuz+V1UemoxOMNDHbY3DY+3PrhAUoFemnMSwGvl+Yv5Z+//JNgQ3DgZAx8HWYMY2rvqQFld1bvpMZRQ5AhyL+eWW8myBCESWc6Or1sdHrf8Ez7637GH3s/TQdXfO8LZjhqfDk2HPtybThqG187aiEssHeSL+G4Bk1yp7RIbwrsXQHNgy7K25jjo+nIZSHNA4WGdW+SXbHDV+y1uWjnPU/85SdT8tJ6NDR6RQ6hrHghvy3sQf9x6c3KCyGEEEIIIYQQIAEL0Y65bE7AN8SM2tfDImzcOBn/WogTkKZp6CMj0UdGQreWe2o0SH/rTTzV1bjLyqgvLGTdokXorVayEhPR1dXhqarCXVmJOatrQDlvTc1hBSsA9KGBDfmu/Hxqvv3uMArqyd64IWBWydNPU/Ptt+gsFvQhFnQWi2+4quBgdMEh6IKD0YUEY87KIuz00wPK2jdvBk1DCwryrRcUhBYcjGZqbIjffzgoOHDOjaaUUji9zXu13NDvBoqtxdS6aql1+iary4rVZfUNQ+X0DUUVExzYqF3nrDv032cfi8FCKaX+11WOKvbU7jlkuQhzRLOAxWsbXuPLHV+2uL6GRpAhCLPezISMCdw/5P6A5fcuvRe7x45Zbw6cDIGvT0k6hfTwxkb4elc926u2Y9abMelN/kf/80MFSnR6SD/1kPvbouw/w/RKcNnAad0XcLA2f75/cnGAxJOg57ngrPcFL5xW3/u49r1ueG4MaV7W1aRXZF0hvHMB5pOvJK/LJDrtcKLTdJwSM4hFc76jx9CrCLK0n7wbQgghhBBCCCHaDwlYNLFq1SqmT5/OTz/9hMvlok+fPkybNo2LL774sN/D4XAwa9Ys3n77bfLy8oiOjuass87iscceIz4+/tBvIPy89XaaBSzGy3BQQoiD0/R6DNHRGKKjUWlp1FZVARA1fjzB++XZaEpnsZDxySd4a6rx1NTiqa3BW1ODp6YWb63v0VNTjbemttlQVN66w2uM11kszRqq3UXFuHYfujE+bPz4ZgGLvBtuxF1U1HxlTfMFPIKC0ILMJNxxB+Fnnulf7CospPiJJ9CZfct9j0HogsxoTeeZzRjHnubLUbLP8JA+uG3J6MLNaGazLzjSMBmNB2yIjw6K5sOzPsTqslLvqvcFOdxNnu+b6l31RAVFsYtdAeUjzBHYXLYWgygNgg3Nj6/tIEMrKRQ2tw2b24bD0zw5/KK8RdS6ag9YvsGsEbMCAhY7q3dyybeXHLSMUWfEpDcx98K5RJgbe/vM2TaHOTlzMOqMGPVGTDpfoMOkM2HUG/3l0sLSuKznZQHv+cPuH6h0VPrKNp30RoxGIwZzJEZdHImWROJDGv8n8SovlfZKjH3Ox3DSRRh1Rgw6Q8vHUinwupvNdp77Cmt/+pEupXOJr93om7n6dYZELuRX3aMkeSMJMYRzkimI5R+uYeyVpxzy7yrEie5o/DYRQgghhBCio5GAxT4LFy5kwoQJBAUFMWnSJMLCwpgzZw4TJ04kLy+P22+//ZDv4fV6Offcc5k7dy5DhgzhwgsvJCcnh1dffZUFCxbw888/ExcnySYPm80G+MZd93rd6GKiCe7Xr02rJIQ4fmlGI8G9e/2hsmETJtBl4EC8dXV46+rw1NbirbPite57XluH12ptMfeFZjKhi4jAa7WCu3lDcANdSPO72r22AzTGK4Wqr8dT7xviR7lcAYvdFRXUfvf9Ye1b1rKlAQGLqk8/pfTf/zng+g3Bi6CePUl/603/fKPeSPT/fYpl69bG4EaLjzEYnNsC3vOsjDMZtrIWLciI0utw6RROvcKpeXDqvDg1Dw7cKIMeT11dQA+YMfHDSHeFU6+c2JSTehzU48DmdeLwOv3Birjg5t/PNs/h5ZEw6wOHJmsp+LE/l9eFy+vCqAvsaVBgLWBD2YYDlGrUN65vs4DF6xtfP6yyN/S9gev7Xe9/XeeqY/RHo5utZ9AMGHQGfwDDoDPw3Njn6BnTODTjioIVPLfuOfToqdZXE5SYyvk9B3DGujlEOqzoqnLpb7yV3bYXMeuCSQ3pwpqVP1N5Zm+iEi2HrKsQJ6qj8dtECCGEEEKIjkgCFoDb7eaaa65Bp9OxZMkS+u1rFH/wwQcZPHgw9957L3/5y19ITz/4mMtvvvkmc+fOZfLkybz77rv+OxNffPFFrr/+eu6//35eeumlg76HaGRpMq6906yIOv98NH3zoU2EEKKt6YKCMKWm/qGySQ8/RNLDD6GUQjmdeK1WvPX1eOvrUTYbXpsNb70NQwu99CL/cqEvGGK3oewO36PNjtduR9ltePc914UF5ldQjkM3qDfQzIGN8cpx4B4O4EuirpzOFoMp9s2bsa1de8htRhj0kJXVZJsOih959IDrm/ZNAI53ehJy8sn+ZaP2htP15gPkzjAY0PR6NIMBXeinsPiWgMVfll+C7YeFeA06lE5D6XR49eDV6/DowKvT8Oggzvob3DDWXy42OJbHNvZAs9px67y4NYVL8+LWvLjw4NK8vgkv3sG50KMxUKarszH6Ny8eDbw68DY8NjzXwKODLtX1eB0OdE2Oj6nGRnqxCljXu//7aBBcHxgYc3vd6D2+nBdeHah9/7+4lRu3x43dY288Fvvlxii3l/Nb6W8B8zaXbGZWSjyneAxMKC/gtPoK4oz/psbjG3Krb8RJzH/6Uy6eGRhwEUL4HK3fJkIIIYQQQnREErAAfvzxR3bs2MEVV1zh/0EAEBERwb333svUqVN58803efDBBw/6Pq+88goAM2fODBhG4brrruNf//oX7777Lv/9738POiSJaGRUjUliI7r3IH7aWW1YGyGEOLY0TUMzm30N0NHRh1Um4c47/9C2gnr3pssPP6Ac+4IbDgfKbsdrd+yb5/DNczrRBQUFlu2RTcRfLkQ5nL51HA6Uy4nX6UQ5Xf6AhTE1pdl29+/pcSCaIbDXgTpIz5PmZff71+ZgZd1ulNt9wACOvrQSz/adje8N6PdNTWtojEgLKJceno7zlxLcxcWHrK9r6OaAgMXVieez85s3DlkOfsdzUQW6pCT/nBuKehP2+pZDlvSkfwZzb/a/1mt6Zn0VQaffK/zzfAEODaU1BDF88wyFH8PdjfV1e1w8939uf3DEaYTCaI28WC95cS5eio3m8ZQoRrn3cGZxJd3ro9DrDPR2hrNh6Vb6jOh+GPsqxInlaP02EUIIIYQQoiOSgAWwaNEiAMaPH99s2YQJEwBYvHjxQd/DbrezcuVKunfv3uxuJ03TGDduHC+99BKrV69mxIgRh123/Pz8gy7Py8vzP9+9e/dhv29HUFRShN7ma2gqCrGSk5PTxjU6ehwOB2VlZQDs2LED8353MIv2R45ZxyTH7TCYTL5pv14YDcp37Qqc0akTTJlyyLe1QfPP7RmPY3C7US6Xb2rynIbnbjelYWGU5eYC+46bTofz1lt9yz0ecPseG9bH7d43381uqxV9k+067HbqBg1Cedwolxs8vnWV2w0eD8rtAY/bl8Njv/pW1tRQr9P53/tAaurqsO1XtsBqxXsYARpHSQllTcq6cnMpPtzAzu496JvkTzHYQyg6jLIGt67ZsQnTJVHkOnSAxVthCyjbS/Uiv8y3TR0QBHTeC52blHHroC7GTPRtDjb9uJ1ofTgAu9/4DlO8hk53kATk4phq+r+j+wgCg+LYOhq/TZo6kt8Tubm52A403GAL3DVlh72uaDut9TtKzof2T84F0ZScD6JBa7a3yfnQ/h3J+VDUJKfmUf09oYT6y1/+ogC1evXqFpeHhoaqtLS0g77Hxo0bFaDOOuusFpc/+eSTClCvvfbaEdUNkEkmmWSSSSaZZJJJpmM6/fLLL0f0P6o4do7Gb5Om2vrckkkmmWSSSSaZZJLp+J+O5u+JxjF3TmDV1dWAr5t1S8LDw/3r/C/v0XQ9IYQQQggh2oviwxjCTLSOo/HbRAghhBBCiI5KhoRq55p20W5Jbm4uI0eOBOCnn34iLS3toOuL9qGwsJDBgwcD8Msvv5DUZAxy0T7JMeuY5Lh1THLcOh45Zh1TXl4eQ4cOBSA7O7uNayOOlUP9nrDb7WzZsoWEhATi4uIw7J8L6AQhn2OigZwLoik5H0RTcj6IBnIu+LjdbkpLSwHo06fPUXvfE/O/0f003L10oDuVampqiIqK+p/fo+l6hys1NfWw101LSzui9UX7kJSUJMetg5Fj1jHJceuY5Lh1PHLMOqagoKC2roLY52j8NmnqcK7Hrl27Hvb7nQjkc0w0kHNBNCXng2hKzgfR4EQ/FzIyMo76e8qQUEBWVhbQclKRoqIi6urq/OscSGZmJjpd8ySWDRrmH+p9hBBCCCGEECeuo/HbRAghhBBCiI5KAhbAqFGjAJg3b16zZXPnzg1Y50CCg4MZPHgwW7duZffu3QHLlFLMnz8fi8XCySeffJRqLYQQQgghhDjeHI3fJkIIIYQQQnRUErAAxo4dS2ZmJu+99x7r1q3zz6+urmbGjBmYTCYuv/xy//zCwkK2bNnSrJv2tddeC8A999yDUso//6WXXmLnzp1ccsklBAcHH9udEUIIIYQQQnRYR/rbRAghhBBCiOOJ5LAADAYDr776KhMmTGDkyJFMmjSJsLAw5syZw+7du3nyyScDxuO65557ePPNN3njjTeYOnWqf/6UKVP48MMPef/998nNzWXUqFFs376dTz/9lM6dO/PYY4+1/s4JIYQQQgghOowj/W0ihBBCCCHE8UR6WOwzZswYli1bxrBhw/jwww954YUXSEhI4IMPPuD2228/rPfQ6XR88cUXPPTQQ5SWlvLUU0+xfPlyrrrqKlasWEFcXNwx3gshhBBCCCFER3c0fpsIIYQQQgjREUkPiyYGDx7Md999d8j1Zs+ezezZs1tcZjabmT59OtOnTz/KtRNCCCGEEEKcKA73t4kQQgghhBDHE+lhIYQQQgghhBBCCCGEEEKINqepptmhhRBCCCGEEEIIIYQQQggh2oD0sBBCCCGEEEIIIYQQQgghRJuTgIUQQgghhBBCCCGEEEIIIdqcBCyEEEIIIYQQQgghhBBCCNHmJGAhhBBCCCGEEEIIIYQQQog2JwELIYQQQgghhBBCCCGEEEK0OQlYCCGEEEIIIYQQQgghhBCizUnAQgghhBBCCCGEEEIIIYQQbU4CFkIIIYQQQgghhBBCCCGEaHMSsBBCCCGEEEIIIYQQQgghRJuTgIUQQgghhBBCCCGEEEIIIdqcBCw6sFWrVnHmmWcSGRmJxWJhyJAhfPTRR21dLXEQGRkZaJrW4jR69Oi2rt4J7Z133uG6667j5JNPxmw2o2kas2fPPuD6NTU1TJs2jfT0dMxmMxkZGdx5553U1dW1XqXFER23hx566IDXn6Zp7Nq1q1XrfqLau3cv//3vfxk/fjydOnXCZDKRmJjIhRdeyMqVK1ssI9db2zrSYybXWvtgt9uZNm0aI0eOJDk5maCgIBITExk2bBhvvPEGLperWRm51sTxSCnV1lUQ7YScC0IIIQ5GvifaD0NbV0D8MQsXLmTChAkEBQUxadIkwsLCmDNnDhMnTiQvL4/bb7+9rasoDiAiIoK///3vzeZnZGS0el1Eo/vvv5/du3cTGxtLUlISu3fvPuC6VquVUaNGsW7dOsaPH8/kyZNZu3YtTz75JIsXL2bJkiUEBQW1Yu1PXEdy3BpMmTKlxestMjLy6FdQNPPss88ya9YsunTpwvjx44mLiyMnJ4fPP/+czz//nPfee4+JEyf615frre0d6TFrINda26qrq+OFF15g8ODB/PnPfyYuLo7Kykq+++47rrzySj744AO+++47dDrf/UtyrYnjkVIKTdPauhqiHZBzQQjRVEPDtHwuiKYazge73S7/97Y1JTocl8ulunTposxms1q7dq1/flVVlerWrZsymUxq165dbVdBcUDp6ekqPT29rashWjB//nz/dTNz5kwFqDfeeKPFdR988EEFqH/84x8B8//xj38oQM2YMeNYV1fscyTHbfr06QpQCxcubL0KimbmzJmjFi1a1Gz+kiVLlNFoVFFRUcput/vny/XW9o70mMm11j54PB7lcDiazXe5XGr06NEKUF9//bV/vlxr4ni1bNkydcUVVyin09nWVRFtzOPxqGnTpqnPPvvM/1oIcWKz2Wz+5/I9Ibxer7rnnnvUbbfdFvD7RrQ+GRKqA/rxxx/ZsWMHf/3rX+nXr59/fkREBPfeey9Op5M333yz7SooRAd0+umnk56efsj1lFK8+uqrhIaG8sADDwQse+CBBwgNDeXVV189VtUU+znc4ybajwsuuIBRo0Y1mz9ixAjGjBlDZWUlGzZsAOR6ay+O5JiJ9kOn02EymZrNNxgMnH/++QBs374dkGtNHL/cbjfXXXcds2fPZu3atYAM93Aie/fdd3nqqad45513APw9zMSJyev1tnUVRBt75JFHmDhxIlu2bAHAaDSilKK+vr6NaybaysqVK5k1axbz58/HbDa3dXVOaPIN3QEtWrQIgPHjxzdbNmHCBAAWL17cmlUSR8DhcDB79mxmzJjBc889d8Ax20X7lJOTQ0FBAcOGDcNisQQss1gsDBs2jJ07d5KXl9dGNRSHsmTJEmbNmsW//vUvPv/8cxmbvR0xGo2Ar0EV5HrrCPY/Zk3JtdY+eb1evv/+ewB69+4NyLUmOr6WghAejweDwcDll18O4D/vZfiP49/+50PD63POOYeIiAh+//13f8BWnLgkYHVis9lsbNu2ja+++oo1a9YAMHv2bPR6Pc8880wb104cawcKWA4aNIgBAwawadMmli1bBsiNDm1Fclh0QDk5OQBkZWU1W5aYmEhoaKh/HdH+FBUVccUVVwTMGzRoEO+//z5dunRpo1qJw3Ww669h/ty5c8nJySEtLa01qyYO0/Tp0wNeR0ZG8vTTT/sbNETb2LNnDz/88ANJSUn06dMHkOutvWvpmDUl11r74HQ6mTFjBkopysvLWbBgAVu2bOGKK65g7NixgFxromPzer3+hseGMae9Xi96vR6AoUOHEh4ezrZt27Barc2CcuL4ofblqdA0DafT6e9lpmkaSimCgoKYMGEC8+fPp6CggK5du7ZxjUVrUkqhlPJ/Xvz22288/fTT3HLLLfTt27eNaydaW1BQEI899hgrV67k8ccf55FHHmHbtm2cdtpp9OjRI+C7RRw/Gr4ndDpds/8JPB4Per2eSZMm8euvv7J48WKGDx8uNzq0Ebn6OqDq6mrANwRUS8LDw/3riPbliiuuYMGCBRQXF2O1Wlm7di2XXXYZq1atYuzYsdTW1rZ1FcUhHM7113Q90X707duX119/nZ07d2Kz2cjNzeXZZ59F0zSmTp3Kl19+2dZVPGG5XC4uu+wyHA4Hs2bN8jcyyfXWfh3omIFca+2N0+nk4Ycf5pFHHuH5559n69at3HHHHbz88sv+deRaEx2ZTqfj119/5eKLL+bpp5/2N0h6PB4AYmNjSUlJYeHChf67JOVuyeNTQ6PS9OnTufrqq1m9ejXgGxpM0zRMJhM9evSgsrKS3377DcB/nojjm8fj8TdS1tfXU1FRweeff84bb7zB999/L71ATyCqSbJti8WCwWBg69atVFdX89RTT/H2229z7rnnSrDiONXwPTFz5kxOOukkPv74Y8B3XjT8nhk4cCDh4eFs2bIFh8PRZnU90UkPCyFa0f53m/br14+33noLgLfffptXXnmFadOmtUXVhDjuNYzZ3iAjI4ObbrqJHj16MG7cOO6//37OOeecNqrdicvr9TJ16lSWLFnCNddcw2WXXdbWVRKHcKhjJtda+xIaGopSCq/XS0FBAV999RX33nsvK1as4Ntvv/UHI4ToyC688EL27NnDzz//jF6v54477vA3NmVnZ5Odnc1nn33GN998w8SJE9u4tuJYeuutt3j00UfRNI1du3bx3XffYbFY/HfVDhs2DID33nuPm266KSDgLo5fDcf50Ucf5eOPP/Y3VOt0Oj755BNOPfVURo4c2ca1FMdSw93zTe+W/+STT/B6vcTGxqLT6ejZsydJSUlA45344vizePFi7rvvPgCuv/56UlNTGTx4sP9zIjExkcTERObOnYvL5cJsNsv50AYkZNgBNdz9dqC73Gpqag54h5xon6677joAli9f3sY1EYdyONdf0/VE+zd27Fi6dOnChg0b/MdPtA6v18uVV17Je++9x6WXXsqLL74YsFyut/bnUMfsYORaa1s6nY7U1FSuv/56Xn75ZZYvX87jjz8OyLUmOoYD5akAuPrqqwE46aSTuPvuu3n//fcD7oq85JJLAF8jhcvlkkaH48CBesmcdtppJCQk0KNHD/Lz8/nLX/5Cfn6+/5iffvrpZGdns337dskleALJz89n3LhxTJ8+nYEDBzJhwgTOO+88QkND+fXXX/nkk08oLS1t62qKY6Dhpo2GxuglS5bw7LPP8vPPP3P99dfz4Ycf8uSTT1JcXMxHH31EcXFxG9dYHC0HylMxatQosrOz6datGwkJCVx66aUBPcCzs7Pp3bs3ZWVlfPHFF61VXbEfCVh0QA3jC7eUp6KoqIi6uroDjkEs2qfY2FgArFZrG9dEHMrBrr+m8+Ua7FgarsH6+vo2rsmJw+v1csUVV/Dmm28yefJkZs+e3azrtVxv7cvhHLNDkWutfRg/fjwAixYtAuRaE+1f0zsbG4IUTYdv6NWrF6GhoQwZMoTrrruOa665htmzZ/vLZ2dnk5aWxtatW2UI1uOEpmktNkYZjUYGDBiA1+vl6aefZsGCBdxxxx1s3boV8A2Td+aZZ1JTU8PevXtbu9qijSxevJjFixdz/fXXM2vWLB566CFuv/125syZw8knn8w777zDTz/91NbVFMdAw1BgGzdu5LTTTuPss8/m0Ucf5dFHH8XhcNCvXz/OP/98zjvvPD766CN+/PFHfznRsel0OpxOp/+1Usr/P8QFF1xAVVUVc+bMQafTcdddd/mPPTTe6PDzzz/jdDrlfGgDErDogEaNGgXAvHnzmi2bO3duwDqiY2i4uycjI6NtKyIOKSsri+TkZJYvX94swGS1Wlm+fDmdO3eWpKQdiNVqZdOmTVgsFn9jqji2Ghq+33rrLSZOnMjbb7/d4pAMcr21H4d7zA5GrrX2o6CgAPA17IFca6L90zSN3NxcLr74Yt5//31/TgK32w1A586diY2NZc+ePfz73/+mb9++PPTQQ7zxxhsAREdHk5mZyZIlS/w9hg5056XoGP79739z0003+QMRDY1QCQkJdOnSherqarKzs/m///s/5s6dy8033wyAyWQiOzsbp9PJsmXLAsqKju1guWkahmH+29/+Rnx8vP/6Hzt2LHfffTeapvH666+za9eu1qiqaCUN58T777/P2LFj2bt3L7fddhsfffQRn3/+OWazGQCLxcJtt92Gpmm8/fbbbN++HcD/HSM6hv0/A1544QWGDh3q7z3R9EaH/v37U1paSl5eHh9//DGhoaFceumlrF27FqUUPXr0IDU1ld9//13yWLQRCVh0QGPHjiUzM5P33nuPdevW+edXV1czY8YMTCYTl19+edtVULRoy5YtLd5RumXLFv7xj38A8Ne//rW1qyWOkKZpXH311dTV1fHoo48GLHv00Uepq6vjmmuuaaPaiQOpra1l27ZtzebbbDauueYaamtrufjiizEYJLXTsdYwpNBbb73FRRddxDvvvHPAhm+53tqHIzlmcq21H5s3b27x/476+np/vqwzzzwTkGtNtD8tBRM+/PBDPvnkE+6++25/74mGXl79+vUjNTWVNWvWoNfrefHFF+nfvz833ngjX331FYmJiQwdOhSPx8OHH34YUFa0b03viG3w22+/8c477/Diiy/y4IMPUlNTg16v9zcunnHGGRQWFrJmzRquvvpq7rrrLpYtW8bll19OTU0Np59+Opqm8dlnn/nLSiL2jqvh/GjpDmiPx4PL5cJisRAaGkpiYqJ/3YZjPnz4cM444wzmzp3LvHnzAu7IFh2bpmnU1tbyn//8h5CQEJ599lnuv/9+Ro8e7b9po8HAgQO59tprmTdvHl999RUej8f//2pFRUVbVF8cpoZhv5p+BpSUlLB9+3bWrFnDjTfeyLZt2wK+97t3705iYiJz5syhX79+PP/884SGhnL55Zfz448/kpmZSadOnfjxxx/9w8XJjQ6tS1PyzdwhLVy4kAkTJhAUFMSkSZMICwtjzpw57N69myeffJLbb7+9raso9vPQQw/xn//8h5EjR5Keno7FYmHbtm18++23uFwu7rnnHmbMmNHW1Txhvfrqq/67rDZs2MCaNWsYNmwYXbt2BXz/yDaMj2y1Whk2bBjr169n/PjxDBgwgDVr1jBv3jwGDRrE4sWLCQ4ObrN9OZEc7nHbtWsXmZmZDBo0iB49epCYmEhxcTE//PAD+fn59OnTh4ULFxITE9OWu3NCeOihh3j44YcJDQ3l1ltvbbHh+rzzzqNfv36AXG/twZEcM7nW2o+G/zuGDx9ORkYG4eHh7N27l++++47y8nJGjBjB3Llz/dePXGuiPXrvvfeIi4tj3LhxVFRUMH/+fCZPnoxer+eHH34I6FX+6quvcv3117N582aysrL47bffuPnmm/n999958cUX6du3L1lZWVxwwQW89tprkpOlg8nJyeHrr7/mtttuA3w3fd18880sWLCAKVOm8Morr/i/n2w2G9nZ2Zxxxhm89NJLlJeX8+GHH3LTTTcxZcoUnnnmGa677jo++ugjvvzyS3/wVnQ8TYeLW7hwIT///DOZmZkMHDjQ/3sAYPLkyXz44Ye8+eabXHbZZXi93oDGy//85z/ccccdjB07llmzZjFgwIBW3xdxbHz88cdMnDiRl19+2f97/kAJlLdu3crZZ5+NyWTihRdeoG/fvnz11Ve8/fbb/POf//T/PhHt05YtW/j3v//NK6+84p9366238uyzzzJkyBD++c9/MnLkSP+yMWPGYLVa+e6774iJiWHt2rWcccYZREZG8sMPP/Dmm2/y4IMP8thjj3Hvvfe2xS6d2JTosFauXKnOOOMMFR4eroKDg9XgwYPVBx980NbVEgewaNEidfHFF6usrCwVHh6uDAaDSkxMVOeee66aO3duW1fvhDdlyhQFHHCaMmVKwPpVVVXq73//u0pLS1NGo1F16tRJ3X777aqmpqZtduAEdbjHrbq6Wt14441q0KBBKi4uThkMBhUWFqYGDx6snnjiCVVfX9+2O3ICOdQxA9Qbb7wRUEaut7Z1JMdMrrX2Y9WqVeqaa65RvXr1UpGRkcpgMKiYmBg1ZswY9dJLLymXy9WsjFxror3YunWr6tSpk9I0TZ1xxhkB5+usWbOUpmmqa9eu6pNPPvHPX7JkiQoPD1cPPfSQf15hYaHq0aOHio+PV6+88ooaM2aMOumkk9SePXtadX/EH+f1etWdd96pNE1TQUFB6osvvvAv2717t+rdu7fSNE1NmzZN7dy5Uynl+yy77LLLVFJSkrLb7f7177nnHhUaGqouvPBC9eKLLyq9Xq9eeOEF/3ZE++RwOJRSSnk8Hv+8pp8JBQUF6uyzz1aapvmn7OxstXz5cv8633//vdI0TY0bN07V1tYqpZRyu93K6XQqpZRasGCBv+zDDz+srFZra+yaaAW33Xab0jRNff7550op1eL/Pw28Xq+aPXu20jRNJSQkqKFDh6qQkBAVHBysVq5c2VpVFn/Afffd57+G//vf//rnV1VVqZtvvlmZzWY1ePBgtWzZMv+yl19+Wen1erVt2zb/vI8++khlZGSoQYMGqTfffFNpmqYmT56sysvLW3V/hFISsBBCCCGEEEII0W58/PHHStM0ZTAYVHR0tHr99df9y9xut3r88cdVVFSUysjIUB999JFSSqk9e/aovn37qgkTJgQE2RYtWqSGDx+uzGazyszMVJqmqSVLliilAhtARftUWlqqhgwZojRNU2azWZ155pkBwe+FCxeq0047Ten1ejV16lR/4GHGjBkqPDxcffbZZ/513W63+sc//qGCg4P958K5556rlJKARXvk8XjUtGnT1A033NBiI3PDvLvvvltlZGSo6dOnqzlz5vgbLrt16+YPTiil1NixY5Wmaeqxxx4LeB+v16umTp2qhg0bpkaMGKEyMzNVbm7uMd03cew1fL4/9dRTStM09fzzz7d4nbf0PfDQQw+poUOHqj59+qgnn3zymNdV/O+uvfZapWmaioyMVCEhIaq6utq/bO/everuu+/2BzMLCgqUUkotW7ZMhYWFqQceeMC/rtfrVd9++61KSEhQycnJKigoSA0ePFgVFxe3+j6d6GTgTiGEEEIIIYQQrUodZGTioKAgoqOjOeOMM6isrOTll1+muLgYAL1ez0033cTjjz/O7t27ufbaa1m9ejVpaWkMHjyYjRs3kp+f73+vUaNG8eSTTzJgwAByc3MBePfddwHJY9ERhIeHExQUxMCBA+ncuTPfffcdb7/9tn/56NGjeeaZZ+jduzdvvvmmf2jkiy66iNraWrZu3YrX68Xr9aLX67ntttt46KGH/OfCl19+yZ49e1ocHka0LafTyWuvvcYbb7zBb7/9FrBswYIFmEwmHnroIX755Reuu+467rnnHi644AIee+wxpk2bRk5ODjNnzvSX+fe//41Op+OBBx7g6aefZs+ePfz+++889dRTrFixghtuuIHzzz+f3NxcfvnlF+Dgn1OifWv4fO/UqRMWi4Xly5dTU1PjX95wbHU6HU6nk59++sm/bPr06cybN49ffvnF/5kiCbjb1sGuRa/XS0JCAklJSfTr1w+bzcZdd93lL5ecnMzMmTOZPHkyW7duZerUqaxbt44+ffqQlpbG6tWrqa6uBnx5T/70pz/x9ttvY7VacTgcrFq1KuD/CtE65D80IYQQQgghhBCtQvl6+Qc0EO+fyHLMmDHYbDaGDx/OlVdeycqVK3n11Vf9y8PDw7n++uu56667qK6u5sorr+THH3/ksssuo6CggD179gCNDUynnHIKr7zyClFRUVx++eWSN64d2T+hdlNerxeTyUT//v0pLy9n1qxZALzwwgv+xiOPx0OvXr146623yMzM5L///S/3338/YWFhjB8/nrlz5wYEphISErjrrru45JJLSE9P59NPP6VTp07HdifFHxIUFMQ333zD7Nmzm+WU8Hg8WCwW/vWvf1FcXMxdd92F2Wz2J8y+5pprGDp0KE899RQbN24EoG/fvrz00kt06dKF2267jQEDBjB8+HDuuOMOunXrxsSJE8nKygJg1apVQMuJvEXH0NDAPWDAAIYMGcInn3zCF198gd1uBxqPbV5eHldeeSW33nordXV1/vIWi4WgoCA8Hg9KqRZzuInW4fF4DngtKqXQ6XSkp6fjcDi49NJLSUtL4+WXX2bjxo1omuY/5k888QRXXXUVCxYs4KabbsLj8XDWWWexfv16ioqKAt5z3LhxPPzww4wbN453331X8tq0AQlYCCGEEEIIIYRoFZqmoWkaa9as4bnnngOa93Sw2Wx0796dZcuW8fDDDxMUFMQrr7ziv8u6oVHyvvvu4/7772f79u3cfPPNrF+/nv79+/PWW28B+BuYvF4vvXr1YsuWLcyePZvo6OhmQRLRNvR6PV6vl+eee44tW7YELGs4L7p168bu3bvp1KkTt912G+vXr+fFF18MKH/SSSfxzDPPcMopp/DEE0/w4IMPMmzYMFauXMnOnTvR6XT+nhYAr7zyCrm5uZx33nmtur+iuYagVUt3UA8bNoyLL76Y/Px8FixY4J8/fvx4rrrqKlwuFxERETgcDjweDyaTCYDu3bszZcoU3G43jzzyiL/cVVddxQ8//MDNN9/M+PHjGT58OB9++CFffvkler3e37DZELgQHVdDA3dGRgZTp04lPj6e++67j2eeeQaXy0V1dTXff/89d999N3PnzuXcc89tMSih1+slcNXGGj7n7733XubPn+//zPB6vf5jM3z4cCoqKkhKSuLxxx8H4JZbbgF8wU+lFCkpKUyfPp2rr76an376iQsuuIB+/fpRWFhIXl4egD9ABXDDDTcwd+5cJk+eDEiPq1bXBsNQCSGEEEIIIYQ4AdntdvXXv/7Vnxzz0Ucf9Y8X73a7/euNHj1a9e/fX9XV1akHHnhAaZqmrrvuOv/yhnWrqqrUY489pjRNU7Gxsapbt25q0KBBateuXS1u3+v1BmxHtK3vv/9emc1mpWma6t+/v1q6dKl/WcNx+vTTT5VOp1MffPCBys3NVWFhYSo5OVn98ssvSinlT5zs8XjU2rVrVWpqqtI0TfXs2VMlJiaqp59+utl2G8ayP1gCXtG6GnKT2Gy2gPlFRUXKZDKp7t27ByTH3bJli8rOzlY6nU5t3bpVKeU7ZxpyEpSVlam//OUvStM09e233/qXt8Tr9ar58+er7OxslZqaqrZv337U908cuf/1s7rhOrdarertt99WoaGhStM0lZ6errKyslRUVJQKDg5WTzzxxNGorjhGFi1apIxGo9I0TaWkpATknGiwceNGFRMTo2699Vbl9XrV0KFDlaZpas6cOUqpxu8JpXzfFWeeeaY/142maeryyy8/4Pblf4a2IT0shBBCCCGEEEIcdaqFuxErKir8QzalpKTw6KOPctVVV1FUVIRer/evN2zYMHJzczGZTNx555106tSJd955h++++y7g/SIiIrjvvvu4+uqr8Xq95OTkkJOT489RsD9N0wK2I9qO1+slLy8Pp9NJfHw8GzduZOrUqTzzzDMA/uM0ZMgQzGYzhYWFZGRkcNddd1FYWOjvoWM0GvF6veh0Ovr168fs2bPp2rUrW7Zsobi4mJycHOrr6wO23XBXrgzz0vZ+/fVXwsPDufXWWwHf3dAAP/30E8XFxSQkJHDTTTexbds2PvjgA3+57t27c+2116KUYvr06YCvV45Op0Mf7RutAABtSElEQVQpRUxMDFOmTCEhIYGHH34Ym83W4rW/YsUKZs2axS233EJubi633347nTt3boU9FwejlPIfr+XLl/Prr7+yc+fOgOWH0nCdh4SEcOmll7JgwQIefPBBsrKy6NatG1OnTmXHjh3ceeedQPPhCUXra+m4pqWl4Xa7CQsLw2g08sILL3D11Vf7c1sB9OrVi6ioKPLy8tA0jTvuuAOAadOmAb7vCaUUHo8HnU7Hk08+yZQpU8jJyQFg9erV/l4W+5P/GdpIGwZLhBBCCCGEEEIcZ7xer/8u56bzGh6///57FRwcrM4++2x1ySWXqE6dOql+/fr574JWSqlnn31W6fV6NW/ePKWUUm+88YbSNE2deeaZ/juwm/aWKCgoUHfddZfSNE39+c9/VtXV1a2xq+IwNJwLDedAU8XFxeqCCy5QcXFx6pprrlHjxo1TOp1OPfbYY6qgoEAppdSOHTtU165d1QUXXKCU8t2J3717d2U2m9Vnn30WsI0GH330kerZs6fSNE198803x3DvxP8qLy9PRUVFqZiYGFVUVKQ2btyounfvrtLS0tSCBQuUUkqVlJSoTp06qaysLLV8+XJ/2crKSjV69GilaZpatmyZUsrXa6ZpD5prrrlGaZqmPv7444DtOhwOdcEFF6j4+HgVHBysBg0apFasWNFKey1a4vV6Az4nfv31VzV06FBlMBiUpmnKbDara6+9Vu3cufN/3lZDjx6lfHfQt/T5JFpP014MTXtDNPSCu+eee5SmaWrChAlq1qxZStM0dfrpp6vffvvNv+6kSZNUZmam//XFF1+sNE1TM2bMaLYNpZTavXu3Ouuss5SmaerTTz89Jvsl/jgJWAghhBBCCCGEOCqaNgisWrVKTZ48WVVUVASsU11dra644gplsVjUgw8+qH788UeVnJysYmNj1RtvvKGUUmrhwoVK0zT1wQcfKKV8DVkNDZMvvfSSf15TZWVlasuWLcdw78SR2P/4HGj4pfnz56uQkBB1xhlnqK+++krddttt/sBTQ6PioEGD1KhRo1RlZaVSyheQ0DRNjR07VtXU1CilfEGLpg3VW7ZskUbIdq7h8+L9999XmqaptLQ0pWma6tu3r3r66adVSUmJf91XXnlFaZqm/va3vym73e6f//HHHyudTqcGDBgQ8N4NQaw1a9aoL774ImBZw3nxxRdfqPvvvz9g+f6N5qL1eTwelZ+fr3r06KH69u2rbrvtNvXAAw/4vwOGDx/uD2gejW2JtrP/tXbXXXepm266SRUVFSmlGo+P2+1WcXFxStM0tXz5cvX++++rqKgo1blzZzV//nyllFLTpk1TkZGRatWqVUop37UfFhamDAaD/7Nk/6CFzWaT672dkoCFEEIIIYQQQoj/SdNGn6qqKnX55ZcrTdNUYmKiv/GgqdWrV6vExETVs2dPtWPHDrV+/Xp12mmnKU3T1P3336+2bNmiOnXqpB577DF/maVLl/pzHeTl5SmlWh5bWvJUtC8fffSRGjdunBozZow655xz1LfffhsQvKitrVU33nijP6eJUko9+OCDymQyqWHDhqnFixerGTNmqISEhICGpT/96U9K0zT17LPPKqVa7sGhlOSpaM8aPjca8tTo9Xp10UUXqT179jQ7bk6nUw0fPlxFRUX5x6VvcMkllyhN0/wBzwMd86Y9vQ5WH9F2nnjiCXXTTTepG2+8UWVlZQXktbFareqCCy5Qmqapm266SZWVlbVhTcX/Yv+emO+9955KSUlRmqapW2+9NSBY2XA9v/XWW0rTNDV+/HillO/Ghm7duqnIyEj12muvqc8//1zpdDq1YcMGf9mGnhlXXHGFUqr5NS75jNovCVgIIYQQQgghhDgq/vnPfyqz2axiYmLU3XffrVauXNli46DD4VCPPvqo0jRN3XzzzcrpdCqr1aomTZqkgoKC1MCBA1VKSoo655xzAhoYGoZ3ufXWW1txr8QfUVpaqiZPnuy/Y37AgAH+pLf73yW/fv16lZ6erjIzM9XKlSuVUkp99tlnKjY2VsXHx6sRI0aosLAwtXjxYn+Z1atXK6PRqDp37iw9azqIAwUMbrnlFjVo0CClaZoaOHCgf/7+jYgLFixQmqapc845x38HtlJKrVixQiUlJSmdTveHGh7lDuvW17RHVIPKyko1YsQIFRwcrHr37q1mzpzpX9bwebF27Vo1ZswYFRERoX744YdWrbM4+tatW6eGDBniH+Lpgw8+CAhW7O+UU05RmqapV199VSml1ObNm9Xpp5+uNE3z3/Tw+uuv+9cvKSnxDw/YNPgl2j9Jui2EEEIIIYQQ4n+yYsUKOnXqxL333ssFF1zA22+/zb333svgwYP9iU+bMplMXHLJJfTr148PP/yQr7/+mpCQEF555RXuv/9+fv/9dwoKCkhLSwtImHz33XcDUFZWhsPhaLX9E0fuk08+4ZNPPuHvf/87H330Eb/++isrVqxg2LBhvPTSS0yfPp3CwkIAunXrxs0330xubi6vvfYaNTU1nHfeebz66qsMHjyYZcuWER4ejslkAnyJWQcOHMjEiRPZtWsXVVVVbbin4lCUUrjdbv9nwf6fCTNnzmTp0qVMmjSJNWvW8NRTTwG+JNpNnXbaaVx66aV8/fXXfPLJJ/75Q4YM4fzzzyc1NZXdu3cfVkLmplr6jBLHjtvtRqfToWkaFRUVFBQUABAeHs7jjz9OeHg4mzZtIi4uDgCXy4XZbAagX79+XHDBBdTU1PD1118Dh06W3fR8cDqduN3uZvNF63K73Vx//fX079+fiooKnn32WZ577jkmTpzoP+4Nx6fh8wPg6aefBuCJJ56guLiYHj168Prrr3PnnXeycOFCQkJC/OW8Xi9xcXFcc801AJSXl7f2bor/gabkChVCCCGEEEII8QfZ7Xbuuecenn76af76178yY8YMOnXqBPgaDHQ6HQ6Hw9/g1MDr9fLOO+8wdepULrzwQp5++mmSk5MB+Oabb1i8eDGTJk1iwIABgK/RQtM0du7cSWZmZuvupDhsSilqamo444wzyM/PZ/fu3eh0Ov/xW716NQ8++CBLlixh5syZ3HzzzQDs3r2byZMns23bNp577jkmTZqEUor6+noefPBB+vfvz3nnnUdoaKh/W7W1tZhMpmbnlmg/PB4Per0egLq6OmbPnk1lZSUxMTH8+c9/Jj093X9ubNiwgREjRhAWFsYvv/xCUlKS/zOkwbZt2xg0aBC9e/fm5ZdfplevXv73bnpuiPan4TgDWK1WHnvsMRYvXoxSitmzZ9O9e3fq6uqYOXMmM2fOZMqUKbz22mv+499QPicnh759+5KSksJvv/1GcHDwIbfn9XpZuXIlixYtYvDgwYwdO7Z1dlq0qKysjMsuu4y5c+cyY8YM/80ITVVWVhIVFeV/3fBZcPnll/POO+/wj3/8g5kzZ/qXv/TSS8TFxTFmzBiioqICjr/L5cJoNB77HRNHjQQshBBCCCGEEEL8IU0boW+99VYKCwtZtGgRaWlprF+/npUrV7JkyRJKSkoYPHgw5557LoMHD/aXLysr46qrrmLevHn897//5brrrvMvO1QDQ9OGUNG+WK1WevXqRWJiIgsXLsRkMqFpmj9wsWTJEiZOnEhSUhIvvvgip5xyCm63m08//ZTJkyfz5z//mf/7v/8jNTUV8J0Ler2+2R33DdxuNwaDoTV3URyhZ599lgcffJDa2lr0ej0ul4tevXrx9NNPc9ppp/nXu/fee/nnP//JjTfeyLPPPtvidf7II4/w0EMPceeddzJr1qyAZXIutH/vvvsut9xyCzqdjv79+9O3b19uvPFGMjIyANi0aRPnn38+BoOB119/nSFDhgTcbQ/Qt29fQkJC+Omnn/y9NRo0bagGyMnJ4auvvuKVV15h69atvPbaa1xxxRWtt8OiRUuXLuXss89mzJgxPP/884SFhfHdd9+xdOlSFi5cSFhYGEOHDmXy5MmcfPLJ/s+CkpISkpOTsVgsLF26lJNOOgmgWXCzQcP5IJ8NHUzrjDwlhBBCCCGEEOJ45fV61TPPPKMMBoO66aab1Lvvvqv69eunNE1TycnJKiQkRGmapoKDg9Urr7wSUPaHH35QoaGhavjw4Wrz5s1KKUl+254dTkLzkpISNXjwYNW9e/cWl9tsNvXQQw/5k6w7HA6llFJlZWXq4osvVkajUT3zzDNHtd6ibRQVFamrrrpKRUdHqwsvvFC9+uqr6vfff1efffaZSkpKUoMHD1ZLlizxr19ZWamysrJUSEiIWrFihX9+WVmZ2rFjh3+dK664wv9adBwLFixQCQkJatiwYerzzz9X5eXlzdZxuVzq6aefVpqmqauvvlpVV1cHLF+0aJEyGAzqvPPOO2ASZaWUKi4uVu+++64aM2aM0jRNjRw5Uq1fv/7Y7JgIcDjfE/X19ervf/+7MhqN6uGHH1Y33HCDCgoKUnFxcSo7O1slJiYqTdNUSkqK+vnnnwOO7eOPP640TVOTJ08+lrsh2pAELIQQQgghhBBC/GENjQg7d+5U5557rtI0Ten1ejVgwAA1d+5clZ+fr7Zt26Zee+01f9AiJyfHX76urk7dfPPNSqfTqYcffritdkMcQtPGIrvdrt566y1/ctSWAkxnn3220jRNffHFF0qp5g1YGzduVN27d1cnn3xywPmwdOlSFRUVpYYOHarWrVt3wPcX7Z/H41GzZ89WkZGRatq0aWr79u3+ZTk5OSo7O1sFBwer/2/vvsOiuNo2gN+zdAQpigUL1iBq7LErir1hf9UotthRg71jxNh7wYIl9oLYW1QQFWvsJXYUxQJ2UUNb9vn+4NuRFUzUqIC5f9flJcycmTmzM7tnOc+c83Tp0kXevHmjrlu8eLEoiiKurq7y5MkT2b17t7Rr104aN26sBjX1mDA7/YiJiZE6deqItbW1HD58WF2u0+mSXcf79+9LtWrV1KBFRESEPH/+XHbu3Cmurq5ibm4ue/bsSfE4f/31l+zbt0/at28vJiYmkiNHDvH39/+i50aJPraduHz5suTPn18URRFLS0sZNWqUPH36VJ49eyYxMTHy888/i5mZmdStW1du3bplsK2Tk9PftjGUvjFgQUT0jQoODhYAMnr06C92jNGjRwsACQ4O/mLHSC9u374tAKRDhw4ftd2ZM2dEo9HI6tWrv0zFPoNFixaJRqORCxcupHZViIgojVu9erUUK1ZMvLy8Ulw/YsQIURRFevToISJvOzcuXrwo2bNnl4wZM8rx48e/Wn3p461fv14yZswoRkZG4uvrm2y9vtMoICBAFEWR+vXrq8uSdmZFRUXJzz//LIqiGFzzv/76SwYPHiyKosiAAQPYIZ0O6DsiU7pWCxYskEmTJqm/x8bGSs+ePUVRFClQoIDkyZNH7O3tZd26dQbb/e9//xNFUcTBwUGsra1FURSD/SQ9LqUP4eHhYmFhIU2aNBGRxOv3vve3TqeTLVu2iKmpqXqv5MuXT3LmzClWVlbvHYF14cIFGTZsmGTNmlV9cp++vn9qJ/Ti4uJk7ty5UqhQITl48KC6XH9f3Lt3T9q3by9GRkayZcsWEUkMhIiIbNy4URRFkVKlSvGz4BuU8gSQRET01R0/fhyKoqBu3boprvfy8oKiKChUqFCK62fOnAlFUTBq1KgvWc1/RUSwatUquLm5IVOmTDA1NUXWrFlRsmRJ9OrVCwcPHkztKn51/fv3R6FChdC6desvfqxTp05BURTMnTv3o7br0KEDnJycMGjQoC9UMyIiSu/k/+cVr127NoYPH45+/foBSJxTGkicVx4AevfuDSMjI+zevRtPnjxR5xn/7rvvMGDAAAwcOBDlypVLhTOgfxIVFYXp06ejS5cu0Gq1MDExwfr163H9+nUAb6+1Pt9A8+bNUaZMGezevRurV68G8PY+AQBra2sULlwYALB37151uYWFBdq1a4cff/wRP/30k8Fc9JS2JCQkQETUeeOTXquEhAQAQMeOHTFw4EAAide5aNGiWLlyJXr27IlVq1ZhypQpeP78OVauXIl79+6p248bNw7Tpk1DhQoV0LNnTzx9+hSDBw82OP77cppQ2hQXF4eYmBjExcUhOjo6We6JpBRFQZUqVdCuXTuYmpqibt26mDJlCoYOHYqwsDD06dMHgOFnCpCYH2PixIlwdXXFgwcP4O3t/cXPi9760HZCz8TEBE2bNoWvry/Kli2rXk/9fZEjRw5UqlQJOp0Oe/bsAQCYmpoCAJo1a4a+ffti0aJF/Cz4BvGKEhGlEWXKlIGVlRWOHDmi/lGfVHBwMBRFwbVr1xAREZHiegBq0rqyZcviypUr6N2795et+Efo3LkzPDw8cO7cOTRo0AADBgxAmzZtYGtriyVLlmDRokWpXcWvav/+/Thw4AAGDBjwVb5kbd26FQDQuHHjj9rOxMQE/fr1w549e3DkyJEvUTUiIkojNmzYgPr16+PixYsAkncuvI++cyFz5sxo0aIFcufODeBth6KRkRG0Wi3Mzc3h6OiI7Nmzw97eXu2cMDU1Rf/+/dP0gxf/dYcOHcK4ceNgZWWFgIAAdO3aFSEhIVi7di0Aw85j/XUdPXo0AGDatGl4+PAhNBoNEhISEBcXBwBqstTMmTMDeHu/ff/991i1ahVcXFySdUhS6nj3Ouh0OhgZGUFRFBw9ehTdunVD586d0adPH/zxxx9q4MrMzAwajQZPnjzB+PHj8fz5c0ybNg2//vorypUrh+LFiyNHjhw4ffo0/P391f0XKFAA/fr1w9q1azFp0iTY2dlBq9XyfkjHzM3NUbRoUdy/fx/3799Ptv7dALednR26dOkCCwsLhIaGokSJEvD09ESmTJnUYJm+7dHfF23atMHZs2exfv169XOFvp6PaSf0HB0d4ebmBnNzc4MAlr6d0F9H/f+KoqgB0ZkzZ6JUqVIf/F2F0g8GLIiI0ghjY2NUqVIFr1+/xsmTJw3WPX36FBcvXkTTpk0BvA1O6Ol0OoSEhMDMzAwVKlQAAFhaWqJQoUJp5otaSEgIli1bhhIlSiAsLAwrVqzAhAkTMHPmTAQHByMyMhK9evVK7Wp+VfPnz4eFhQVatGjxVY63detWlCpVCrly5frobVu3bg1jY2MsWLDgC9SMiIjSij/++AO///47AgICAHzaE8z6jko9faeSsbExDh8+jPDwcDg6OiZ7svbdjidKW6ysrODh4YFjx46hXr166Nq1K7Jnz441a9aoDzToO43017JBgwZo3749Ll68iP79+wNIvD/0T8ju2rULAODk5AQg+f2m0+k4wiIVPXz4UL22714HjUaD58+fo3379qhcuTK2b9+Obdu2wdfXF+XLl0/2ZHtAQAAOHTqEIUOGoFu3brCzswOQ+DfLy5cv8ezZM6xYsQKnTp0C8PZzwNLSEkDivWBsbMz7IR2ztrZG2bJlceHCBezfvx8xMTEA3nZM6++pTp064ezZs1AUBSVKlEDPnj2xZ88ebNq0Se2o1gfL9PQ/Fy9eHMWLF//KZ0Z6H9NOvEv/ntev17cTmzdvBpD4QKZe0u8ZSUd50beDV5SIKA2pXr06AODAgQMGyw8ePAgRQd++fWFvb58sYHH+/Hk8f/4cFSpUgLm5uboPRVHwyy+/GJTNkycP8uTJg9evX+Pnn3+Go6MjzMzMUKxYMbVz4l3h4eFo06YN7O3tYWVlBVdXVxw6dOijzu3YsWMAEqcXypgxY7L1tra2qFixosGyjh07QlEU3Lp1C5MnT0bBggVhbm6OvHnzwsfHB/Hx8Ske69ChQ2jUqBEyZ84MMzMzFCxYECNHjsRff/31r8snJCRg0qRJKFCgAMzNzVGgQAFMmDDho5/qeP78ObZu3Yo6deokez3CwsKgKAo6duyIK1euoGHDhrC1tYWdnR3atGmDJ0+eAEh8TWvUqIGMGTOqTyC9efMmxePdvn0bFy9eNBhd8fLlS3h7e6Nw4cKwsrJCxowZUaBAAXTo0AF37twx2N7BwQHVqlVDQEAAXr9+/VHnSkRE6cfw4cPh7OyMFStWqFM1fuqTi0mndoiLi8PWrVvRt29f5M2bF6NGjYKiKCl2PrJDMm2qVq0aRo8erQYXXFxc0LdvX9y4cQMrV65EbGwsNBqNet31/8+aNQulSpXC+vXr0aZNGxw5cgRXrlyBr68vlixZglq1aqFGjRopHpOdUKnnwYMHyJEjB37++WeEh4cDSP5Z4O3tjY0bN2LQoEHYtm0bLl26hA0bNiBTpkz49ddfsWDBAvV7o/47qoODg8E+Fi1ahEKFCqF9+/a4cOECXr58CSDlAAmlXyICa2trNG3aFLly5cKECROwZcsWAG87pk+dOoWePXvi4MGDeP78OYDEKeI6deqEggULYs2aNcke7KO05WPbiaQURTEIPty8eRODBw+Gv78/PDw80LBhwxSPye8M36ivli2DiIj+0cmTJwWA1KpVy2B57969xcLCQmJiYqRx48ZSoEABg/XTpk0TAAZJxd6XdNvJyUkcHR2lQoUKUqhQIendu7d07txZLC0tRVEU2bNnj0H5Bw8eSI4cOQSA1KlTR4YNGyZNmjQRU1NTqVOnzgcn3V68eLEAkJ49e37w69GhQwcBII0aNRJ7e3vp0aOHDBw4UJydnQWANG/ePNk28+bNE0VRxM7OTtq3by8DBw6UatWqCQCpWLGixMbG/qvynTt3FgCSN29e6d+/v/Tq1UsyZ84sDRs2/Kik21u2bBEAMnHixGTr9Am8q1atKra2tlKzZk0ZMGCAuLq6CgCpVKmShISEiIWFhbi7u8uAAQOkdOnSAkA6deqU4vGmT58uAOTcuXMikpjIrFy5cur++vXrJwMGDJAWLVqIra2t7Nu3L9k+Ro0aJQCS3SNERPRtWbVqlSiKIp07d5Y3b96ISMrJdD9EXFycBAYGysCBAyVXrlxia2srv/3222esLaWme/fuSZkyZSRTpkwSEBAgIob3ij7Z9unTp6VLly6iKIooiiIZMmQQRVGkXLlycvHixVSpO6VsyZIlMn36dImJiZHu3buLsbGxTJs2LVm58+fPi0ajkfr160t0dLTBuvXr10v+/Pnlu+++k2PHjomIyMGDB8Xa2lrc3d3l7NmzEhoaKrNmzZJ8+fKJt7e3iIg8efLky58gfbK/S5L9T/TbxcfHy4wZM8TOzk4sLCxk4MCB8ttvv8mQIUOkdOnSYm1tLb/88ovBPaXVasXPz08URZGePXsmu98obfundiKp6OhouXnzpkydOlVq1aoliqJI/fr15ebNm1+zypQGMGBBRJSGaLVasbGxkQwZMkhcXJy6vGjRolK9enURedvxHB4erq5v1KiRAJBDhw6py/4uYAFAGjdubNAZHxgYqAYlktIHDX799VeD5QsXLhQAHxywCA8Pl4wZM4qiKPLjjz/Khg0bJCws7G+30R/bwcHB4HxjY2OlatWqAkD90iMi8ueff4qxsbEUL1482R88EyZMEAAyderUTy6vf02LFy8ur1+/Vpffu3dPMmfO/FEBi0GDBgmAFAMD+oAFAJk5c6a6XKfTSf369QWA2NraypYtW9R1cXFxUqxYMTE2NpaIiIhk+3R1dZU8efKov1+4cEEASJMmTZKVjYmJkVevXiVbvnXrVgGg/lFJRETfJq1WK25ubmJtbS3r1q37pH0kJCTI4cOHxcbGRrJlyyaWlpbSsGFDuX379uetLKW6tWvXiqIo0qhRI3n48KGIJF7/lPj7+8vEiRNl4MCBsmHDBnX5p3aC0udz8+ZNtYOwU6dO8vz5c7l79644ODjI999/L2fOnBGRt0Gobdu2iaIosmDBAhFJ/H6uXxcdHS0+Pj6iKIqMHTtWREQePXokQ4YMEUVRJGPGjJIlSxZRFEXc3NwM/ibQ74PSlqTXJenfCR/z3tWXjY6OFn9/f8mTJ48axLSyspLSpUvLwYMHU9z2/v370r17dzlx4sQnngGlpg9tJ3r16iWmpqZibW0t+fLlkyVLlnztqlIawYAFEVEaow8+HD58WEQSv9wriqKOnjh9+rQAkBUrVohIYkNva2srFhYWBgGIfwpY3Lp1K9mxnZycxN7eXv09NjZWzM3NJUuWLMmeZElISJCCBQt+cMBCRGTfvn2SO3dutTNeH4z43//+J0FBQcnKvy9YIiISEhIiAKRhw4bqsr59+yYL3CStr4ODg5QuXfqTy3fq1EkAyMaNG5OVHzt27EcFLNq0aSMA5MKFC8nW6QMW+fPnT/ZHwIoVKwSAGsBKysfHRwDI/v37DZY/efJEjIyM5Oeff1aX6QMWbdq0+aD6iogcP35cAEjnzp0/eBsiIkrb3tfZdPjwYVEURerWrSv37t0Tkfd3Qr/P69evpXPnztK7d2/1KWuRxI4vdlB/O168eCFNmzYVY2NjmTNnTopl4uPj37v9362jryM2Nlbatm0rdnZ2MmXKFLl8+bK6burUqaIoivTv39/gM8DX11ddnpT+vX3o0CGxtLSU77//3mD9uHHjxMPDQ9zd3WXlypVf8Kzoc3v27Jn06NFDypQpI+7u7nLs2DH1IbuPbR9EEgMfx48flwMHDhj8PabT6T5pf5R2fUg7ISJy7Ngx8fLykuXLlxsEyRjI/O8x/kwzSxER0WdSrVo1bN++HcHBwahUqRIOHDgAEUG1atUAACVKlICNjQ2Cg4Ph4eGBc+fO4cWLF6hZs6Y6/+c/sbW1Rd68eZMtz5kzp5prAgCuXbuGmJgYuLm5qbkx9DQaDSpVqoQbN2588LnVrFkToaGhOHDgAA4dOoTTp0/j8OHD8Pf3h7+/P4YNG4bx48cn265KlSrJllWoUAHGxsY4e/asuuz48eMAgD179iAoKCjZNiYmJrh69eonlz9//vx765PSsr/z9OlTAInX4n2KFSuWbE7O7NmzA0i8D96lX/fgwQOD5Tt37kRCQoJB/goXFxcUK1YMa9euxb1799CkSRNUq1YNJUqUeO8cwfb29gCg5tAgIqL0S6vVqgls5f+TYuuJCCpVqoSuXbti0aJF2LBhA7y8vD56DvkMGTJgzpw5atJcIDEX1LtJuSl9s7GxQb9+/bB3716sWLEC9erVQ/78+XH58mVcuHABrVu3hrHx264H/f2m0+mg0WgM1lHqiIiIwNGjR1G6dGkMHDjQYF3fvn2xfPlyrFmzBrVq1ULdunUBALVq1YKJiQnOnTuHO3fuwMnJyeCzpEqVKsifPz8iIiJw9+5d5MyZExqNBsOHDwcAg7L8XEh73m0XTpw4gQ4dOuDhw4fIlCkTTp8+jRMnTmDEiBHo06fPJ+UYsbKyQrly5QyW6e+F9+UleLdelD58SDsBAOXLl0fp0qVhYmIC4O39wM+H/x5+MyAiSmOSJt4eOXIkDhw4AHNzc/XLnEajQeXKldXE2/r/3dzcPvgYNjY2KS43NjY2SKanT3qXJUuWFMtnzZr1g4+Z9Bg1a9ZEzZo1ASR2mCxbtgw9e/bEhAkT0KJFC5QqVeofj2NkZIRMmTKpdQSAZ8+eAQDGjRv3QXX52PIvX76ERqNB5syZk6372NfCwsICABATE/PeMiklJ9f/Uf93695NRr5lyxbY29sbBFWMjY2xf/9+/PLLL9i4cSMGDBgAIDERYu/evTFixIhkXwyjo6MBwKDjiYiI0hd9Z4++zVi5ciXOnTuHjBkzolSpUqhTp476AMSwYcMQEBCAZcuWoXr16ihevLjayfyh9G2Gfjt2OnybSpcujZ49e2LatGnw9fVFoUKFsGzZMhw/fhz29vaoXbu2Wlbf2cgkymmHVquFqakpbt68CQDYunUrunfvjpEjR6J3794YM2YMmjdvjhUrVqB8+fKwtbWFra0t3N3dsWfPHuzbtw9dunSBoihqB+ObN28QFxcHW1tb5MiRw+B6vxu04udC2qH/W/Dd9+emTZtgbm6O5cuXo0KFCrh48SI6deqESZMmoVChQqhVq9ZHtw8p+ad7gcGK9OtD2wkTExM1KTc/G/67+A2BiCiNKV68OOzs7HD06FHExcUhODgY5cuXh5mZmVqmWrVqCAsLQ1hYGA4cOADgbaDjc9IHNh49epTi+sjIyH99DGNjY3Tp0gU//vgjgLcBmH86TkJCAp4+fWoQfNF34kdFRUESpz1M8d+nlrexsYFOp0txhMHHvhYODg4A3gZNvpSYmBjs3bsXDRo0SPYEY6ZMmTBnzhzcv38fly9fxty5c2Fvb4/Ro0dj8uTJyfalr6u+7kRElP7oO3tCQkJQuHBhdOrUCcuXL8e4cePQrFkz/PTTT7hz5w4AIE+ePBgyZAguXLiA1atXQ0Sg0WgM2sYPxc7pb5P+XrC0tESHDh3g6OiI+fPno0ePHrh06RKmT59uEKygtEen0yFfvnxo2bKlOlKiadOmcHZ2Rq5cuSAiaNq0Kdzd3bFp0yZs3rwZAJA5c2Z4eHjA3NwckyZNws6dOwEkdjC+evUK8+fPx40bN9CxY8dknY4MWqVN+s94jUaDmzdvYtmyZQgODsaLFy+wZcsWjBo1Ck2aNEHWrFlRs2ZNzJ07Fw8ePMDMmTMRHR39ye0Dfds+pZ1QFIXBqf84tg5ERGmMRqOBq6sroqOjsW3bNly5ckWdDkrP1dUVABAYGIiQkBBYWVmhTJkyn70u3333HczNzXHq1KlkIwF0Oh2OHj362Y5lZWX13nUhISHJlh07dgxarRYlS5ZUl+lHoeinevonH1u+ePHi761PSsv+zvfffw8gcdqtLykwMBBv3rwxmA7qXYqiwMXFBZ6enti3bx8AYNu2bcnK6euqrzsREaVPZ86cQYcOHaDRaDB79myEhITgypUr6NmzJ1avXm0wJUyPHj1QpEgRrF69GoGBgR+0/6QdVnFxceoIPXZkpb6EhITPuj99h9KJEyfg5+eHBw8eIDY2Fp6enoiIiICXlxcAXvu0TB80uHLlChRFwf379zFo0CAEBASgcePG6jUePXo0RATLly/HzZs3oSgKXF1dMWLECISGhqJjx4745ZdfMHPmTAwePBhjx47FDz/8gObNm6fm6dE7ko6m19NqtQAS38/x8fEYPHgwChUqhM6dO6NGjRpo2LAhFEVBmTJloNPp1H00btwYdevWxe7du7Fy5coPrgM/D9I2thOUFjBgQUSUBulHS4wZMwYAkgUsSpUqBWtra8yaNQsvX75ElSpVvsj8v2ZmZvjf//6HR48eYdq0aQbrFi9ejOvXr3/wvn7//Xds3bpV/UKc1M2bN7FhwwYAQOXKlZOtnzVrFu7du6f+HhcXhxEjRgAAOnbsqC7v1asXjI2N0adPH9y9ezfZfl68eGGQ8+Jjy3t4eAAAfHx88ObNG3X5/fv3MWvWrPeee0r0QacTJ0581HYfa+vWrTAzM0OdOnUMlutH6LxLP1Lk3ZwlwNu66utORERp2/s6Hfz8/HDnzh1MmDABvXr1gouLC/Lnz4+ffvoJ+fLlw8aNG7Fp0yYAiaMRf/nlFzx8+BDLly9HVFSUmvfiXfpl+s6J06dPY/LkyVi5ciXnHU9lImKQJyAsLAyPHz9Wv898akeRiODo0aNo27Yt5s6dCzc3N1y+fFnNXaLVannt04FVq1bhxo0bKFeuHHQ6He7cuaOOqNV/jpQsWRK9e/fGoUOHsH79egCJo49//vlnjBkzBvb29vDx8cGwYcOwZs0atGrVCkFBQXB2dk618yJDixcvRvPmzXHr1i2D5Un/jty5cydWrlyJ7t27Y+bMmejXrx+OHj2K69evq6Mv9J8nADB79mwAwLx58xAeHq5O9ZWSd9uI27dv49q1a+8tT18X2wlKS5jDgogoDdIHLC5dugRzc3OUL1/eYL2RkREqVaqE33//3aD8lzBx4kQEBQVh5MiROHz4MEqWLIkrV65g165dqF27Nvbu3ftB+7l69Sr69euHzJkzo2rVqsifPz9EBDdv3sSuXbsQFxeHnj17Jku8BiQm3ypevDhatWqFDBkyYPv27bh27RqaNWtm8NRW0aJFMW/ePPTs2RPOzs6oX78+8ufPj1evXuHWrVs4ePAgOnbsiAULFnxS+erVq6NTp0747bff8P3336Np06aIjY3F+vXrUb58eezYseODX9dixYohX7586oiGL0Gn02H79u2oUaNGshEs586dQ7NmzVC2bFkULlwY2bJlw/3797FlyxZoNBr069fPoLyIICgoCC4uLvjuu+++WJ2JiOjz0Xc6zJs3D0ZGRujYsSNevHiBXbt2oWbNmmjUqBGAxAcHduzYgeXLl+PWrVto3bo1atSooe6nefPmaNCgAbZt24Y6derAw8MjWZLupNM33L59Gzt37sSiRYtw8eJF+Pj4QKfTcS7qVKK/PkZGRrh58yaGDRuGM2fOQKfTIVOmTJg4cSJcXV3VecM/ptNIURSYm5vjhx9+wMSJE9GiRQsAb5/iZkLtr+9jrqG+bIMGDfDDDz8gS5YsqFu3Lvz9/eHh4YEGDRoYdFIOGjQI69evx8qVK1GzZk31e/uoUaPQp08f3LhxA48fP4aLiwvy5s0LgAm105Ldu3dj69ataNmyJfLly6cuv3PnDqpWrYqSJUsia9asqFWrFnx8fJApUyYAifnx5s6di/Hjx2P+/Pnq9UxISECBAgXw888/Y9asWfDz88PYsWNTnOor6X35+PFj7N+/HzNnzoS9vT18fX2RJ0+eL/8C0HuxnaA0R4iIKM3R6XSSOXNmASDVqlVLscyECRMEgACQkydPJlsfHBwsAGT06NEGy52cnMTJySnFfbq6ukpKTcOdO3ekVatWYmtrK5aWllKlShU5ePCgjB49WgBIcHDwP57To0ePZNGiRdKiRQtxdnYWa2trMTExkezZs0vDhg0lICAg2TYdOnQQABIaGioTJ06UAgUKiKmpqTg5Ockvv/wisbGxKR7rjz/+kNatW4ujo6OYmJhI5syZpVSpUjJ06FC5cuXKvyqv1WplwoQJki9fPjE1NZV8+fLJ+PHj5ebNmwJAOnTo8I+vhd6kSZMEgJw4ccJg+e3bt9+7r/ddVxGR3377TQDIb7/9JiIiR44cEQDi5+eXrGx4eLgMHTpUypcvL1myZBFTU1PJnTu3NGvWTI4dO5as/IEDBwSAzJw584PPj4iIvj6tVqv+HBUVJa1btxZFUaRZs2by4MEDefTokVhYWEi/fv3kxYsXsmbNGqlTp44oiiJlypSRP/74Q90+Li5O/fn06dOiKIqUKFFCHj58qC7X6XTqz0+ePBF/f391fz/88EOyNo5SR0JCgkyaNEmsrKwkZ86cUrduXWnWrJnkyJFD7O3tZdmyZf9q30klvQcp9URHR39Uef17edOmTaIoilSoUEFdl/Qaz58/XxRFkT59+qifESld84SEhGT3Bn1dT548kTdv3qi/379/X+bPn5/s3rh//74UKlRIjIyMJFu2bHLhwgUREfVvradPn0r+/PklQ4YMahuh1WrV6xsTEyMODg5ia2srhw8fNth30jbir7/+ksDAQOnYsaOYm5uLg4ODrF+//vOfOH0SthOUljBgQUREaZY+YHH79u3UrsoX8fTpU7GxsZEuXbp8kf0PHjxYFEUx6Fj6VG3bthV7e3t5/vz5v68YERF9Uffu3ZNt27bJH3/8Iblz55Zff/1VLl++LCKJDyE4OztLnjx5pHv37mqn0fLly5PtJzg42KCzy9vbW9auXZusXExMjBw4cEC6du36t/uj1BEXFye+vr6SPXt28fDwkD179kh8fLyIiNy6dUtsbGykYsWKEhISIiLJO5Y+FDun0wadTifDhg2Tfv36SUxMzCfto2nTpqIoisydO1dEDDsXY2JipGLFimJvb//ezuakndSUOgICAkRRFFm9enWy66HVamXnzp0G79klS5aIra2tZM2aVW7cuKGu01/7hQsXiqIo0qhRI4N96T9LZsyYIYqiyI4dO0Qk+T1w9uxZGTlypGTNmlWMjY3F29v7854w/StsJyitYcCCiIjSrG89YCEiMnHiRDExMZGwsLDPvm9nZ2cpX778v97PtWvXxMjISKZPn/4ZakVERF+SVqsVGxsbMTc3l8KFC0ubNm2SlWnZsqUoiiIajUbGjBmTYgfC2LFjpWDBgnL06NG/Pd7NmzfF29tbcubMKRqNRoYMGfLZzoU+j8jISGnQoIG4u7sbfN/Yu3evFC1aVBRFEWNjY+nRo4fawc0O5/Tr2LFjotFopGjRoh+9rb5z+ty5c2JtbS158uSRyMhIg3UiItu2bRNFUWTOnDmfp9L02W3btk0cHR2latWqcu/ePXW5VquV6tWri6IosnPnTnV5XFycNG7cWBRFUZ+kj4+PN/gsqFq1qiiKIv7+/uq+kq5P6cGmsLAwmTdvnpQoUUIURZEWLVqo9xSlHWwnKK1h0m0iIqJU9PPPP2PkyJEpJv3+t65evYpjx4796/3cu3cPo0ePhqen52eoFRERfQ46nS5ZolKtVgsjIyP4+PggNjYW9+7dQ+3atdV1+iSpPXr0gIWFBaysrDBixAiD+cZDQ0MxatQo+Pr6olKlSnBxcTE4hryTdPPAgQOYMWMGihcvjrt372LixIlf4nTpH2i12veuy5IlCwYPHoytW7fCyckJkZGRaNWqFerUqQMzMzPMmTMHRYoUQUBAAHbu3PlBx0t6H2i1WsTFxf3rc6CP875ExT/88ANKlSqFP//8E4cPHwbw4clyjYyMICIoXrw4unXrhjt37mDChAkAYPA50ahRI4SGhqJ3797/8izoc9Nf6xo1aqBz584ICQnBhg0b1M8IIyMj9Tv96tWr8eLFCwCAiYkJ+vTpA2tra3h7ewN4m1tA33Z4e3vD2NgYkydPRlxcnEFuEhGBra2twWfRxYsX4eXlBU9PTyiKgsOHD2PDhg3IkiXLl30RKEVsJyg9YcCCiIgoFZmbm8Pb2xtVqlRJ7aq8l5ubG0aNGgVTU9PUrgoRESGxo1Kj0UCj0eDatWsIDg7GrVu31M6lvn37okSJEnj16hWioqIAJHY26juX3Nzc0LdvX7x69QrFixfHlClTcOzYMUyePBm9evXClClTUL58eYwaNQq2trYGx9Yn2tR3RNSqVQuHDx/Gjh07kCNHjq/0CpDeu0lLt23bhqCgIFy4cAFv3rxRy1WuXBkA8Oeff6J169bYvXs3Bg8ejCVLlsDT0xOenp54+vQpVq9ejYiICCiKkmKHuP666++D8+fPY8aMGdi1a9d7O9Dp89JfA41GY3CNgbcJrlu3bg0AOHjwIAB8VIJc/f6HDRuGvHnzYvny5Th9+jQURVE7rgEgb968KQZOKXUpioL4+HhYWlqiSZMmKFOmDGbOnIlr166pZZo3b47GjRtj48aN2Lx5s7q8Ro0aaN++PcLDwzFu3DgAiZ8x+rajRo0aaNmyJU6fPg0/Pz/1eEn/T5pAOUOGDHj+/DkWL16MM2fOoGLFil/25ClFbCcoXUqdgR1ERERERET0MZJO3fTixQvp1KmTmJqairm5uWg0Gpk6darcvXtXRBLzT+iTZL98+VLdXr+PZ8+eyeLFiyVr1qyiKIooiiIWFhaSK1cu8fPz+/onR3/ryJEj8ujRIxFJeQ7wtWvXipOTk5iYmKjXs2bNmvLgwQODclOmTBEjIyOZMGGCvHr1Sl0+e/ZsURRFcufOreYt+Dt3796VhQsXStmyZUVRFBk7diyTqH5l48ePl3z58qnT8ySdniU4OFhsbGykXbt2n5THQn8t582bJ4qiSJMmTT5PpemLevc9GB0dLbNnzxZzc3Px8vIyeM+fPXtWTE1NxdXVVW7evKkuv3z5suTPn1+MjY3VzxytVqvu+/r16zJu3Lh/nA6I0wV9fWwn6FvCgAUREREREVE6otPppEOHDpI9e3b58ccfxdPTUwoUKCDm5ubi7e2tdlA2adLEIHFuSh1IYWFhsmvXLtm2bZts3rxZTbIpkrzzi1LHxIkTRVEU+fXXXw2WJyQkSHx8vPz6669ibm4u1atXlylTpsj+/fvF09NTLCwspFatWnL27FkRSZyjvlSpUpI5c2Z5+vSpwb4mT54spUqVEkVRJF++fAb5w5LeNy9evJAtW7aoc91///33sn///i927pSyAwcOqB2OmTJlkqNHjxq8X69cuSLOzs7i4OCgdjh+TAdy0rLe3t4GORAo7fP395fy5ctL48aNpWTJkuLo6CiZMmWS4OBgg3IDBgxI8bNl8uTJoiiKdOjQQUTedn6/ew8xgXLawXaCvjUMWBAREREREaUD+/btk5YtW8qMGTMka9assnDhQnn9+rWIiJw/f15KlSolWbJkkYCAABERuX37tiiKIi4uLhIaGioiH9bBxEBF2nL58mXJnTu3LFy4MNn1u3XrluTIkUNcXV3l/Pnz6vInT55I//79RVEU6dSpk/rUrYeHh9jY2Mjvv/8uIolJdTdt2iTW1tbi5+cnc+fOTXGETXx8vBw5ckR69+4t1tbWYmNjI/PmzfuCZ00if/9+dXFxEWdnZylcuLDky5dPNm3aZLC+efPmoiiKrF69WkQ+/on3d4/Nzum0TafTyZs3b6Rnz57qk/MDBw6Un3/+Wb777jtRFEVat24tjx8/Vrd5+PCh5MiRQ5ydneX48ePq8qdPn0q1atVEURQ5dOjQe49HaQfbCfrWMGBBRERERESUxul0Ohk9erQoiiKVKlWSNm3aJCuze/duURRFmjZtKvfv3xcRkcGDB4uiKDJo0KAPPg6lPfqOpHeNHTtWFEWRI0eOqMsuXrwokyZNkty5c4uiKDJ58mQRSby2GzZsECsrKylUqJAMHTpUunfvLvnz55fy5cvLrVu3UjzGzZs3ZcKECZI3b15RFEV69+4tcXFxn/8kKUWxsbHqzzqdTg0ojhgxQrJmzSpXrlyRAgUKSIECBSQoKEgtu2nTJvV6Jd3Hp+DnQvpw9uxZyZgxo9SpU0euXbumLr98+bKUKVNGDWAl7dCeP3++KIoinp6eBu/rpUuXiq2trWzZsuWrngN9OrYT9C1hwIKIiIiIiCgdePjwodSoUUMURZGuXbuKiBhM4SQi0qZNGzEyMjKYBipLliySLVs2CQkJERE+KZ1e7d+/XypVqiS7du0SkcSRMF27dhUbGxt58OCBmpekYsWKoiiK1KpVy2BuehGRv/76S53T3sLCQiwtLaVRo0YSFhb23uPOnj1bjIyMpEaNGnLjxo0veo7/de8GBubNmyelS5eWrVu3iojhezcgIEA0Go3s3btXzp49KyVKlJDs2bPLmTNnRKfTyZUrVyRXrlxSs2ZNiYqK+lf1oPRh5MiRoiiKbNy4UV2m7zTevn27ODk5SZkyZQze7zExMVKuXDnJli2bep/pvdu+UNrHdoK+FZrUTvpNRERERERE/yxbtmzo0aMHFEXBzZs3ERERAWNjY+h0OrXMqFGjYG5ujlWrVuHixYtQFAWTJk1CZGQkZsyYAQDQaPhnYHp09+5dHD16FAEBAYiKioKRkRFMTU0RFRWFOXPmoFevXujWrRsiIiKwfft27N27F/nz5wcAPHnyBPHx8bCwsECfPn1w4cIF7NixA4cPH8a2bdvg5ORkcB8BgIgAANzd3REcHIzAwEAUKFDgq5/3f4GIQKfTQVEUddmjR49w8+ZNnDlzBp6enrh+/brBe9fZ2RnZsmVDQEAASpQoAV9fX1hZWaF9+/bYv38/8uXLBycnJwQFBeHx48cAkOwav4++HhEREXjy5MlnPFP6kl6/fg0AcHR0BABotVoYGxsDAGrUqIGGDRvi9OnTCAgIQExMDADAzMwMv/76KyIjIzF79mxERUWp+zM2NkZCQsJXPgv6N9hO0DcjlQMmRERERERE9IFevXolLVu2FGtra1m7dm2KZUaNGiWKooi3t7e6rFevXnLp0qWvVU36AnQ6nTRo0EAyZMggK1asEBGRwMBAMTExERMTE7G0tJQZM2Yk2y4+Pl5cXV1l1qxZ6n7exbwlacOVK1ekS5cuBsv69u0riqJIhQoV5ODBgwbrqlWrJj/88IM8efJERETOnDkjWbJkke+++07u3r2rTgUzbty4fzx20vvi1atX8vvvv0v9+vWlQYMGvD++In1eok8Z3TBmzBhRFEVGjhxpsFx/bTdu3CiKooizs7OcOXPGoEz//v3VnAWUfrGdoG8FH60hIiIiIiJKJ6ysrODl5QVFUbBy5UqEhoYCMHxy2svLC46Ojpg6dSqOHj0KAPD19UWRIkXUpyEp/VEUBaNGjUJ0dDRWrlyJBw8eoHjx4qhfvz60Wi3GjRsHLy8vg23Onj2Ldu3a4fTp07Czs1P38y4jI6OvcQr0N0aOHInChQtjyZIlmDVrlrrcx8cHnp6eOHPmDAYNGoQjR46o63788UecOXMGz549AwCULFkSc+fORVxcHJo3b47cuXMDAC5duoTnz5+neFz9Z4KiKNDpdDh16hR8fHzQrl077N+/H2XLluX98YVJ4nTtGDZsGEqXLo3o6Gh1ZMSH0H/+t2nTBhYWFggMDMT169cBAAkJCeooiWLFisHOzg7Xr1/HggULDEZTTJs2DXXq1PmMZ0Wpge0EfSsYsCAiIiIiIkpHypYti65du2LPnj3YuXMnRAQajUbteLS3t8fEiRMxYsQIVKxYUd3u3SlnKP0pV64cevTogcDAQPj7+yNz5szo1q0bbGxsMGHCBPj6+iIiIgI3btzA3Llz4eXlhT179qBv375o0qRJalef/oZ+2iYbGxsMHz5c7Uy2sbHBsGHD0K9fP5w8eRJdunTBw4cPAQCFCxeGpaUlVq1ape6nRYsWmDdvHu7evYthw4bBzMwMoaGhiI+PT/G4+s+E0NBQzJ49G+3bt8fUqVPRoEEDREZGwtvb+0ueNiHxGiiKgj/++APXr1/H77///lHb66cKy5UrF9q1a4cTJ05g3rx5ABI7mfXBD39/f5ibm6Nq1apYtGgR7t27Z7AfBrS/DWwn6FugCD+RiIiIiIiI0pXQ0FDUrl0btra28PPzQ+nSpSEiDEj8B9y7dw+lSpVClixZsGbNGhQrVgzr1q2Dp6cnnj9/DltbW4gIXr9+jVy5cmHmzJlwd3dP7Wr/5/3d+1On0+GXX37BkiVL8N133+HgwYPo1q0bFixYYLDdjz/+iHXr1qFWrVqYNGkS8uXLhwoVKsDJyQlr166FjY2Nus99+/ahZcuWauDj1KlTKFWqVLJjP378GEFBQVi8eDH279+P8uXLY968eShRosTnfxEoRQkJCTAyMsK9e/dw9uxZNGrUSF2n0+k+Ku/QtWvXUL9+fdy+fRve3t746aefYGJign379mH69Olo27YtqlSpgowZM8LFxeVLnA6lAWwnKL1jwIKIiIiIiCidERH4+vqiX79+6NOnD3x8fGBlZZViOQYxvj0zZszAgAED4OXlhSlTpsDIyAhXr17Frl27EBYWBhMTExQrVgwdOnRQt/nYjk/6fPQd0inRv0eXLFmCIUOGYNKkSfDx8UF4eDguXLiAokWLIiYmBubm5rh37x7GjBmD3377DeXLl8f27dsxceJErFq1Cvv374ezs7PBvmfNmoVdu3ahY8eOaNOmTbJjX79+HUOGDMG+ffuQMWNGTJ8+Ha1bt/4irwEl+rt7Qe/u3bvYtWsXevTo8UnHOHjwINq2bYsHDx7A3t4e1tbWuH//PlxcXBAQEICCBQsC4GfCt47tBKVnDFgQERERERGlQ0+ePEGVKlVgaWmJnTt3Ilu2bKldJfpKoqOjUbFiRURERGDp0qWoV6+ewfqknU5arfaj5sOnL0On02HkyJGoXr063NzcYGRkZHCdrl27BhcXF+zYsQPPnj1D+/btUa1aNezfvx/A28DGvXv3MG7cOCxcuBCurq7o1q0b2rZti71796JmzZpISEiAoijQaDSIj4+HiYmJWod3A5jR0dHInj07evbsiQkTJnzdF+Q/7v79+8iRI0eyaxQfH4/ixYvj6tWrCA4Ohqur6wcFOd51/fp1rFmzBmfOnMHLly9Rr149DB069HOfBqVhbCcoPWPAgoiIiIiIKJ26du1asqeq6b9h+/btaNy4Mdzd3bF06VLY29sbJFBO+jOlroMHD6JWrVrQarVwdHRE586d4ePjY1Dmzz//hKurK9q1a4cZM2agcuXKOHbsGAICAtCsWTODjm2dTodGjRph9+7dKFiwIG7cuAEPDw8sX748xeOn1OGt76CMjo6GhYXFlzlxMiAiuHPnDtzc3GBvb4/jx4+rncSbNm1CwYIF8f3332PZsmXo3LkzatSogX379qnbfup7OTY2FmZmZgDYMf1fw3aC0iuO8yEiIiIiIkqn9MEKrVabyjWhr61Ro0aoXLkyzp07h5cvXwJ4m7z33Z/p60npmdBcuXJBq9XC2toaJiYmmD9/Prp06YLIyEi1TJEiRWBnZ4fw8HAoioKBAwcCAPr37w8AMDExgYggISEBGo0GU6dORYcOHXDjxg0AiTkqwsPDU6xTSk/n6zutGaz4sk6fPo3jx48DSHxP2tjYoFSpUjhz5gwOHjyI06dPo3jx4mjVqhUOHDgAAOjYsSNq166NoKAgLFu2DEBikOpTmZmZQafTQUQYrPiPYTtB6RVHWBARERERERGlQ5GRkciaNWtqV4NgOIoh6WgI/RPtw4cPx8SJE1G7dm24ublh6NChqFGjBqZPn47vv/8eANCmTRv88ccfCA0NBQC0atUKGzZswLhx4zBs2LBkIyXu3r0LT09P7Ny5Exs3bkTTpk2/8lnT37lw4QJKlCiBSpUqYd++fTA3NweQOJqmdu3aePPmDaKiolCsWDF07doVjRs3hqOjIzQaDY4ePQo3NzfkyZMHJ0+ehLW1NfML0CdhO0HpET/piIiIiIiIiNIhfScUR9ikHv0zoPpAwpAhQ9C/f3919IS+g3ns2LHInDkz9u7di8qVK2PNmjU4ffo0GjdujMDAQACAo6Mjnj17hlOnTgEAhg4dCisrK3h7e+Px48cwMjJCQkKCeuzcuXNjw4YNSEhIYLAiDSpWrBjq1q2LI0eOYMWKFeryPXv24OHDh4iKikK1atWwZs0a9OrVCzlz5lTvl4oVK6JTp064fv06Jk+eDODDp+3hc8mUFNsJSo8YsCAiIiIiIiJKxzjNy9cnItDpdGon8tq1a5EzZ05MmTIFRkZGasezRqOBVquFkZERpk2bBgAYM2YMWrdujU2bNsHExAQtW7bE0qVLUbVqVURFRalP4pcsWRK9e/dGQkIChgwZAiB5p7WZmRkURWFnZBqjDyzNmjULADB//nzcvXsXQOI90aBBAxQoUABnzpyBnZ0dFEVRp33SbztixAhkz54dvr6+uHr1KhRFMQhYvY/+Hnn69Kl6X/ybKaXo28B2gtITBiyIiIiIiIiIiD6CoijQaDQ4f/48KlSogLZt28LFxQVr167FiBEj4ODgoJbVdxR6eHigbNmy2LdvH5YsWYJq1aphy5YtKFOmDLp06YLZs2dDRHDy5El12379+sHFxQXLli3D4cOHk00JpO+cZmdk2qIfDVOwYEH07dsX58+fx4IFCwAAXl5e8Pf3R79+/RAVFYURI0YAeDsax8jICDqdDjlz5kS/fv3w4sULjB07Vl2XkqSjKl69eoUdO3agf//+mDt3rsG+iYjSA35iERERERERERF9BK1Wi549e6JkyZJ49uwZ5syZg7lz56JVq1ZqsELfiSwi6pPu+ifuJ0+ejMjISLi4uGDp0qUYNGgQgoODYWlpqW6n0+ng4OCArl27Akh8Yp7StqQjIPTBpIkTJ8LGxga//fabGoyysLBA48aNUa9ePSxbtgyHDh0y2I/+HvDy8kKpUqWwceNG/P7778mOoS+nH31x4sQJ/PLLL2jXrh02btxoEDgjIkovGLAgIiIiIiIiIvoIL168QFhYGACgU6dO8PT0hLOzc7IyQGJnsrGxMXQ6HcqVK4d27drhxo0bmDlzJgAgV65cmDRpEubPn48VK1ao+Sj0Hd5eXl6IjY1F48aNv8q50afTj4C4dOmSGlgwNzfHpEmTEBkZCV9fX7Wso6MjOnXqhIwZM8Lb2xtardYgJ0pCQgKMjY0xbNgwxMXFwdvb2+AYwNt75Pr165g5cyY8PDwwY8YMtGrVCo8ePULbtm2/ynkTEX1OijAbDxERERERERHRRwkJCUGjRo1QvXp1+Pr6wtraGrt370ZISAiCg4NhbW2NihUrok2bNihTpgwSEhJgZGSER48ewdHRERkyZEBISAiKFSsGIHFERUpT94iImqeCUz+lba9evcKPP/6Is2fPYvv27ShZsqS6rnjx4rhy5QrWr1+vBqWio6Px888/Y/HixViyZAk6deoEAHj06BFu3bqF8uXLAwB++eUXtG7dGoUKFTI4XmRkJAIDA7Fo0SIcOnQIVapUwfz581G4cOGvdMZERJ8fR1gQERERERERESXxIcmNy5Qpg06dOmHnzp1YvHgxhg4dig4dOmD9+vVISEhAWFgYZsyYgSZNmuDEiRNqMCJLlizw8fHBq1evMHHiRHV/78szwDwV6YeJiQmqVKmCx48fY8uWLXj16pW6bvbs2dBqtfD19VWXW1hYoH379ihYsCB8fHywe/dubNu2DUOGDMH//vc/7Ny5E0BiwKJQoUJq8mwRwYkTJ+Dp6YmffvoJt27dQkBAAA4ePMhgBRGlexxhQURERERERESEt6MZACA2Nhb+/v6oW7cuHBwcUhwBceXKFTRq1Ai3bt2ChYUFBgwYAC8vLyiKAktLSwwZMgQLFixA9erVMW/ePOTNm1fdNk+ePLh79y62bNkCd3d3dQQGpW+hoaHo0aMHLl++jFWrVqF69erquubNm2Pz5s2YOXMm+vbtqy6fO3cuhg8fjtevX8PMzAwiglGjRqkJuQHDezM+Ph5Lly5Fv379MHToUHW6KCKibwEDFkRERERERERESfj7+6Nr16548+YNZs+ejV69eqVYLj4+Hn5+fpg7dy4WLlyIqlWrAnjbuXz//n0MHz4cq1evxsaNG9G4cWPExsbCzMwMmzZtQosWLVCyZEmcPHnyvSMsKG1asmQJYmNj0bVrV5iYmKjXXESwYcMGdOrUCS1btsTEiRORLVs2AEB4eDicnJxQqFAhbN++Hfnz5wcA/PXXXzh27Bh27doFW1tb9O7dG3Z2dgAMAxVJPXjwABkzZoSVldXXO2kioq+ArSEREREREREREYCoqChMnz4dXbp0gVarhYmJCdavX4/r168DgDolj56JiQmaNm0KX19flC1bVk2arO9gzpEjBypVqgSdToc9e/YAAExNTQEAzZo1Q9++fbFo0SIGK9KZa9euYfz48fD29lbvDX2wQlEUuLq64n//+x82bNiAQ4cOqfdFrly5MHz4cFy9ehV+fn7q/iwsLFCjRg1MmjQJo0aNgp2dHRISEt4brAASk3YzWEFE3yK2iEREREREREREAA4dOoRx48bBysoKAQEB6Nq1K0JCQrB27VoAKeeZcHR0hJubG8zNzQ06l+Pi4gAAmTNnNvhfURQ1R8bMmTNRqlSpZIEQShu0Wq3B7/rr5OzsjIEDB+Kvv/7CggUL8NdffxmUy5o1Kzw8PGBjY4PFixfj5s2b6rpff/0VOXLkgK+vL4KCggy20+cp0el0MDIyem+wgojoW8aABRERERERERERACsrK3h4eODYsWOoV68eunbtiuzZs2PNmjU4cuQIgOSjLPT0T9Hr1+tHUmzevBkAULZsWbVs0lwVIsIRFmmM/hrqAwinTp1CdHS0QZl69eqhdu3a+O2333DixAkAicEo/bbFixdH7dq1ERwcjN9//91ge29vb/z111948eKFul1SvB+I6L+Mn4BERERERERERACqVauG0aNHw8nJCQDg4uKCvn374saNG1i5ciViY2Oh0WiQUjpQ/ZRA+s7mmzdvYvDgwfD394eHhwcaNmyY4jH5FH3ao7+G69atQ8GCBVGjRg3UrFkTU6dOVcvkyZMH7dq1g5mZGWbMmIGnT5+q2+p0OmTKlAmOjo5ISEiAv78/Ll26pG7btWtXPH78GM2bN/+6J0ZElA4wYEFERERERERE9P/0yY6BxCfs27Vrh9KlSyMgIAA7duz4221jY2MRGhqKadOmoVevXpg6dSpq1qwJb2/vL11t+hdERA1C6f9ft24d+vbtC3t7e1SrVg1XrlzB0KFDDXJPVK9eHa1atcKOHTuwc+dOxMfHA3gb8NBoNChTpgyOHDmCxYsX4/Xr1+q2mTJlUvNUEBHRWwxYEBERERERERG9R44cOTBgwAA8e/YMy5cvR0REhMHUP0kNGDAAhQsXxpgxYxAaGorFixdj586dyJ8/fyrUnD6EVquFoihqbhFFURAbG4sZM2bA1dUVK1euxNatW7Fz506ULFkSw4cPx4kTJyAiyJQpE/73v//hu+++w5QpU9Rpw+Lj4xEQEIC5c+fif//7Hzw8PFCtWrVkSbKZp4KIKDlFGMolIiIiIiIiInqvly9folOnTti+fTtmzJiB3r17p1ju+PHjWL9+PUqWLIm2bduquSoSEhIM8lZQ2jNv3jycOHECpUqVQs6cObFixQr4+fkha9asapmVK1eid+/eqFu3LubPnw97e3vExcVh8eLFGDRoEDJmzIhWrVohKioKhw4dgouLC9auXZssUEFERO/HgAURERERERER0T8ICQlBvXr1ULhwYaxduxb58+fH5cuXceHCBbRu3VotFx8fDxMTEwAMVKRVOp1OnbbpypUraNOmDS5cuABjY2NotVpYWFjAysoKly9fRqZMmdRr+ujRIwwbNgzLly/HunXr0LRpUxgZGeH169dYvnw5Bg8eDBFBTEwMGjRoAF9fX+TOnTvZMYmI6P0YsCAiIiIiIiIi+gd//fUXRo8ejWnTpsHLywuFChXCsmXLcPz4cfz++++oXbu2Wlbf1cLpftKuW7duIT4+Hps3b8aGDRvQrVs3VK9eHcuXL8dvv/0GIyMjrFq1Cq6urgbbBQYGokuXLsiePTs2bNiAnDlzGuzz9u3bsLW1RenSpQEwUEFE9LEYsCAiIiIiIiIieg8RUQMPly5dQt26dfH06VPExsbCysoKPj4+8PLySt1K0kc5ceIEKlSogGbNmuHgwYP49ddf0b17dwCJ03/Nnz8fI0aMwLBhwzBkyBBYW1uro2Wio6Mxfvx4jBs3DtOnT0fv3r1hbGxscJ/ocYQNEdHHY4iXiIiIiIiIiL4ZCQkJn3V/+k7oEydOwM/PDw8ePEBsbCw8PT0RERGhBiv4PGj6kSdPHtSpUwebNm2Cvb09OnfuDCAxAbeNjQ2aNWsGV1dXLF++HKdPnwaQmCBbp9PBwsICzZs3R9myZTFixAhcuXIFQMqjaRisICL6eAxYEBEREREREVG6JyIGT7SHhYXh8ePHePPmjbr+U/d79OhRtG3bFnPnzoWbmxsuX76MOXPmwNLSElqtNsWn6+nL+9RrmjVrVgwcOBA2NjZ48OABrl27BuBt0KFAgQLo1q0bnj17hhUrViAyMtJg+xIlSqBly5aoWrUqsmTJ8u9OgoiIDDBgQURERERERETpmj5gYGRkhJs3b6Jly5aoUaMGypYtC1dXVwQGBkKr1aplP4aiKDA3N8cPP/wAf39/BAYGolChQtDpdNDpdDA2NmawIpXoX/eYmJiP3rZs2bJo37493rx5g3379gF4O4pCo9GgWrVqaNGiBfz9/RESEgIRgUajUUfw9OrVC7t370bWrFk/3wkRERFzWBARERERERFR+qfT6TB16lSMHTsWtra2KFq0KCwtLXHixAlER0dj+vTp6NChwyfvO2niZOYmSBtEBCNGjEBMTAwmTJgAMzOzj9r+woULqF+/PnLnzo0FCxagWLFiBtd6//796NixI5ydnTF37lw4Ozsn2wfvBSKiz4sjLIiIiIiIiIgoXYuPj8eCBQswc+ZMNG3aFEuWLMH27duxceNGhISEICEhAX5+fjh8+DCAxADEx9B3YOu3Ywd12nDixAlMmjQJ+/bt++hgBQC4uLigb9++OH78ODZt2oSYmBiDURRlypRBs2bNEBQUhPDw8BT3wXuBiOjz4ggLIiIiIiIiIkrXHj16hM6dO8PIyAizZ8+Gk5MTAGDfvn3o378//vzzTxgZGaFLly6YOXMmzMzMmHciHXl3hIteQkICypcvj9OnT+PQoUOoXLnyR1/X8PBwNGvWDM+ePcOiRYvg5uZmsP7GjRvQarVwcXH51+dBRET/jCMsiIiIiIiIiCjN0+egSEmWLFkwePBgbN26FU5OToiMjESrVq1Qp04dmJmZYc6cOShSpAgCAgKwc+fODzpe0uc7tVot4uLi/vU50MfRXwONRqMmT9fTT8XUunVrAMDBgwcB4KODUDlz5sSAAQNw584dBAQE4MmTJwDejqYpWLAgXFxcoNPpPjnJNxERfTgGLIiIiIiIiIgozdJ3HBsbGwMAtm3bhqCgIFy4cMGgE7ty5coAgD///BOtW7fG7t27MXjwYCxZsgSenp7w9PTE06dPsXr1akREREBRlBSnhtJ3Sus7vs+fP48ZM2Zg165dHz2VFP07+mswYcIEFCtWDBs2bACQeI30UzGVLl0aGTNmxNWrVxEbG/tJx6hTpw4aN26MBQsWICgoCACSjejQaDQckUNE9BUwYEFEREREREREqe7o0aN4/PgxAMMcE/qO43Xr1iFPnjxo0aIFatWqhRIlSqBJkyZ4+PChQbndu3cjJCQEw4cPx8iRI1G8eHEAQExMDADg1KlT2Lhxo8E2Sek7pcPDw+Hn54du3bphyJAhuHTpEp+wTwUHDx7EiBEjcPv2bfTs2RPHjh0zuD+yZcuGbNmyYc+ePYiPjweAj75OdnZ28PT0RPv27VGrVq3PWn8iIvo4DFgQERERERERUaqaNGkSKleuDD8/PwCGSa61Wi3GjRuHTp06IV++fBg/fjyCgoLQq1cvHDlyBB06dMC5c+cAJCbfXrt2Lezs7NCtWzdYWVmpx4iJiUHJkiURHh6O6dOnIywsTF2XtIP75cuX2Lp1K/r06YMePXogOjoaQUFBGDlyJBMsf0HvG73i6uqKQoUK4bvvvkPWrFnRrl07bNu2TV1fqFAhFC1aFE+ePDFY/rGqV6+OZcuWwd7enoEpIqJUxIAFEREREREREaUqd3d35MqVCw4ODslGV4SHh2P+/PkoV64cZs6ciYEDB6J69eoYM2YMevbsicDAQMyePRuPHz+GiYkJihQpgvj4eJw8eRJAYv6JzZs3Y+zYsejRowfmzJmDoUOHIk+ePOpxFEWBVqvF0aNHMXLkSHh4eODAgQPw9fXFhQsXUL169a/9kvznaDQagzwhIoKEhAQAQLNmzfDixQts3LgRGo0GgwcPxv79+9Wybdu2BQAcO3YMcXFxnzR1k34bnU7HqZ+IiFKRcWpXgIiIiIiIiIj+21xcXHDq1Ck4ODgkW7d69Wo8ePAA/v7+KFasGADg0qVL2LVrFwICAtTtHRwcICJwd3fH5s2b4eXlhSZNmuD58+cIDAxEkSJFULNmTeTNmzfZMUJDQ7Fhwwb4+fkhLCwMnp6emD59OkxMTL7sif+HiYhBYGD+/PlYsmQJvL294e7ubpCnomTJknj8+DHCw8OxYcMGdOrUCe3atcPOnTtRokQJuLi4IGfOnGoeC1NT00+uR0rThBER0dfDT2EiIiIiIiIiSnUODg4IDg5G5cqVsXv3bgBAQkIC7t69i4wZMyJv3rx4/vw5lixZgu7du2Po0KFwdnbGjRs3MGjQIACJT8k3aNAA48ePR1hYGGbNmoWVK1eicOHCWLduXYrBCgDYtWsXRo4ciXz58uH69euYM2cOgxVfiIgkG8Xw6NEj3Lx5E2fOnIGnpyeuX79uEDhwdnZGtmzZEBAQgBIlSsDX1xdWVlZo37499u/fj3z58sHJyQlBQUEp5kH5O/p6RERE4MmTJ5/xTImI6FMwYEFEREREREREacLdu3dx9OhRBAQEICoqCkZGRjA1NUVUVBTmzJmDXr16oVu3boiIiMD27duxd+9e5M+fHwDw5MkTxMfHw8LCAn369MGFCxewY8cOHD58GNu2bYOTk1OyTmx9rgJ3d3cEBwcjMDAQBQoU+Orn/V+iKAo0Gg2uXr2Krl27AgCyZMmCadOmoU+fPrh//z46duyIQ4cOqdsULVoU3333Hc6ePYunT5+iYsWKWL9+PR49eoRevXohMjISderUAZCYnB34+5ESSXNUvH79Gnv27MFPP/2Ejh07qtNQERFR6mDAgoiIiIiIiIjShPbt26N+/fpYv349tm7dCgBo2rQpjI2NMXXqVGzbtg3Tpk1DaGgoGjRooG6n1WrRokULzJ8/H0Bih3TBggXh5uaGkiVLAkgcrfFuJ7b+6XonJydUqVLla5wiARg5ciQKFy6MJUuWYNasWepyHx8feHp64syZMxg0aBCOHDmirvvxxx9x5swZPHv2DEDiNFFz585FXFwcmjdvjty5cwNInC7s+fPnKR5XH6hQFAU6nQ6nTp2Cj48P2rVrh/3796Ns2bJMrE5ElMoYsCAiIiIiIiKiNEFRFIwaNQrR0dFYuXIlHjx4gOLFi6N+/frQarUYN24cvLy8DLY5e/Ys2rVrh9OnT8POzk7dz7vYEZ126KdtsrGxwfDhwxEVFaX+PmzYMPTr1w8nT55Ely5d8PDhQwBA4cKFYWlpiVWrVqn7adGiBebNm4e7d+9i2LBhMDMzQ2hoKOLj41M8rv6+CA0NxezZs9G+fXtMnToVDRo0QGRkJLy9vb/kaRMR0QdgwIKIiIiIiIiI0oxy5cqhR48eCAwMhL+/PzJnzoxu3brBxsYGEyZMgK+vLyIiInDjxg3MnTsXXl5e2LNnD/r27YsmTZqkdvUJhlMuvUun0yFr1qzInj07SpQogejoaAwePFjdztHRERMmTEDr1q1x7do1dOzYEefOncP333+PXLly4eTJk3j58iWAxABEvXr1sHLlSrx58waxsbE4efIk7t27l+KxHz9+jHXr1qF79+7o378/bG1tcebMGSxbtgwZM2b8/C8EERF9NAYsiIiIiIiIiChNGTZsGDJnzozFixfjwoULqF+/PubPnw+tVos+ffqgcOHCKFu2LPr164fw8HAsX74c48aNg7W1dWpX/T8vISEhxREuQGJAQqPRwMnJCbGxsWjXrh1y5coFPz8/XLp0CYqiICYmBgAwefJk/PTTTwgKCkLv3r2RkJCAhg0b4vz584iIiDDYb61atTBmzBjUqlULq1evRqlSpZId+/r16+jWrRu6dOmCy5cvY82aNTh69ChKlCjx2V8DIiL6dIr8XdibiIiIiIiIiCgVzJgxAwMGDICXlxemTJkCIyMjXL16Fbt27UJYWBhMTExQrFgxdOjQQd1Gp9P9bbJl+jp0Oh1GjhyJ6tWrw83NDUZGRgbX5tq1a3BxccGOHTvw7NkztG/fHtWqVcP+/fsBJAY2FEXBvXv3MG7cOCxcuBCurq7o1q0b2rZti71796JmzZpqcESj0SA+Ph4mJiZqHfT70IuOjkb27NnRs2dPTJgw4eu+IERE9MEYsCAiIiIiIiKiNCc6OhoVK1ZEREQEli5dinr16hmsT9oBrtVqYWxsnBrVpHccPHgQtWrVglarhaOjIzp37gwfHx+DMn/++SdcXV3Rrl07zJgxA5UrV8axY8cQEBCAZs2aGQQfdDodGjVqhN27d6NgwYK4ceMGPDw8sHz58hSPn5CQkCxfif7+iI6OhoWFxZc5cSIi+iz42AERERERERERpTkWFhbw8fFBZGQkFi5ciGfPngFIfHJeP7WQ/mcGK1JHSs/A5sqVC1qtFtbW1jAxMcH8+fPRpUsXREZGqmWKFCkCOzs7hIeHQ1EUDBw4EADQv39/AICJiQlEBAkJCdBoNJg6dSo6dOiAGzduAABOnTqF8PDwFOuUUnJ1/f3BYAURUdrHgAURERERERERpUmNGjVC5cqVce7cOYNEy/qpfpL+TF9PQkICgMTXPz4+Xl2u1WqRL18+DB06FK9evYKzszMGDRqEpUuXol27drh48aJatkyZMjh37hwAoGnTpmjZsiXu3r2rTtek0+nU4IOLiwvGjBmDBg0aAAB+/fVX5MqV62ucKhERfWWcEoqIiIiIiIiI0qzIyEhkzZo1tatBSJ4XYsiQIfjrr78wcuRIZM2aVZ2mKyEhAdmzZ8eTJ09w+PBh3L17F7169YKtrS38/PxQs2ZNDBgwAEuXLsW+fftQpkwZnD17Fq6uroiOjsaDBw/g4OCQbHqnmJgYmJmZMUhFRPQN4wgLIiIiIiIiIkqz9MEKrVabyjX57xIR6HQ6NVCwdu1a5MyZU02Grs8lotFooNVqYWRkhGnTpgEAxowZg9atW2PTpk0wMTFBy5YtsXTpUlStWhVRUVEwNzcHAJQsWRK9e/dGQkIChgwZAgDJAhP6YAXvBSKibxdHWBARERERERER0T86f/48evTogRMnTqBGjRro0qUL3Nzc4ODgkGL58uXL448//sCiRYvw008/4cqVK+jbty+CgoJQvXp1BAcHY8mSJejUqRMA4PHjx6hWrRquXLmCQ4cOoXLlyl/z9IiIKA3gCAsiIiIiIiIiInovrVaLnj17omTJknj27BnmzJmDuXPnolWrVmqwQv88rIioIyBmzZoFAJg8eTIiIyPh4uKCpUuXYtCgQQgODoalpaW6nU6ng4ODA7p27QoAePr06dc+TSIiSgM4woKIiIiIiIiIiN7ryZMn8PDwwJ49ezB+/HgMHTo0WZnnz5/Dzs5O/V2fz6J9+/ZYtWoVhgwZoibUBoCFCxfCwcEB1atXh52dnUF+jPj4eJiYmHz5EyMiojSHAQsiIiIiIiIiIvpbISEhaNSoEapXrw5fX19YW1tj9+7dCAkJQXBwMKytrVGxYkW0adMGZcqUURNmP3r0CI6OjsiQIQNCQkJQrFgxAG8DGu/SBy60Wi2MjY2/9mkSEVEqY8CCiIiIiIiIiOg/TB9c+DvR0dEYPnw4fH19MXLkSERGRmLp0qWwtrZGpkyZ8OLFC0RGRsLR0REbN25E2bJl1RET48ePx8iRI9G6dWusWbPma5wSERGlUwxYEBERERERERH9ByWdhik2Nhb+/v6oW7cuHBwcUhwBceXKFTRq1Ai3bt2ChYUFBgwYAC8vLyiKAktLSwwZMgQLFixA9erVMW/ePOTNm1fdNk+ePLh79y62bNkCd3f3DwqSEBHRfw+TbhMRERERERER/QfpgxX+/v7IkiULOnXqhA0bNgBAitM1FShQAP369YOzszN2794NHx8f2Nvbw9bWFmZmZhg0aBBatWqFffv24cKFCwASAyEAMH36dADAmDFjoNPpGKwgIqIUMWBBRERERERERPQfFBUVhenTp6NLly7QarUwMTHB+vXrcf36dQCJeSaSMjExQdOmTeHr64uyZctCP2mHPvCRI0cOVKpUCTqdDnv27AEAmJqaAgCaNWuGvn37YtGiRSkGQ4iIiAAGLIiIiIiIiIiI/pMOHTqEcePGwcrKCgEBAejatStCQkKwdu1aACmPsnB0dISbmxvMzc3VQAUAxMXFAQAyZ85s8L+iKEhISAAAzJw5E6VKlUoWCCEiItJjwIKIiIiIiIiI6D/IysoKHh4eOHbsGOrVq4euXbsie/bsWLNmDY4cOQIg+SgLPf3oCv16/UiKzZs3AwDKli2rlk06/ZOIcIQFERG9F1sIIiIiIiIiIqL/oGrVqmH06NFwcnICALi4uKBv3764ceMGVq5cidjYWGg0GjU4kZSiKAbBh5s3b2Lw4MHw9/eHh4cHGjZsmOIxk47KICIiepciKbU6RERERERERET0n3P//n00adIEt2/fxsKFC9G8eXOISIqBhpiYGNy/fx9btmzBnj17EBgYiHr16mH27NnInz9/KtSeiIjSO46wICIiIiIiIiIiAImJswcMGIBnz55h+fLliIiIgKIoKU4NNWDAABQuXBhjxoxBaGgoFi9ejJ07dzJYQUREn8w4tStARERERERERERpR7169dCkSRNs374dAQEB6N27d4p5Jzw8PGBqaoqSJUuibdu2aq6KhIQEg7wVREREH4pTQhERERERERERkYGQkBDUq1cPhQsXxtq1a5E/f35cvnwZFy5cQOvWrdVy8fHxMDExAcBABRER/XscYUFERERERERERAZKly6Nnj17Ytq0afD19UWhQoWwbNkyHD9+HPb29qhduzYAwMTERE3KzWAFERH9WxxhQUREREREREREAGCQYPvSpUuoW7cunj59itjYWFhZWcHHxwdeXl6pW0kiIvpmcYQFEREREREREVE69bmnYdIHK06cOIHVq1fjwYMHAABPT09MmjQJlpaWAAwDG0RERJ8LAxZEREREREREROmMiECn06nBirCwMGTIkAGWlpbIkCHDJwcURATHjh1D+/btcevWLbi5uWHu3LkoVKgQAECr1cLIyIjBCiIi+iI0qV0BIiIiIiIiIiL6cPpghJGREW7evImWLVuiRo0aKFu2LFxdXREYGAitVquW/RiKosDc3Bw//PAD/P39ERgYiEKFCkGn00Gn08HY2JjBCiIi+mKYw4KIiIiIiIiIKJ3R6XSYOnUqxo4dC1tbWxQtWhSWlpY4ceIEoqOjMX36dHTo0OGT963RvH3G9XNPO0VERPQ+nBKKiIiIiIiIiCgdiY+Px6JFizBz5kw0bdoU7dq1g5ubG4yNjXH79m2ULFkSfn5+yJ8/PypXrpwsAPFP9GX12zFYQUREXwunhCIiIiIiIiIiSkeeP3+OXbt24YcffsDYsWNRu3ZtGBsbY9++fXB3d0dUVBT++OMPrF69GrGxsdBoNB89NRSAjwpyEBERfQ5seYiIiIiIiIiI0hh9DoqUZMmSBYMHD8bWrVvh5OSEyMhItGrVCnXq1IGZmRnmzJmDIkWKICAgADt37vyg4yUNaGi1WsTFxf3rcyAiIvpYnBKKiIiIiIiIiCiN0E/DZGyc2GWzbds2ZMiQAQ4ODsifPz8yZMgAAKhcuTIA4M8//0Tv3r1x+vRpDB48GG3atEHx4sVhamqK7t27Y/Xq1ahYsSKyZcuW4tRQ+gTe+kTa58+fx969e1GwYEG4u7tzlAUREX1VbHWIiIiIiIiIiL6yo0eP4vHjxwASgxR6+gDBunXrkCdPHrRo0QK1atVCiRIl0KRJEzx8+NCg3O7duxESEoLhw4dj5MiRKF68OAAgJiYGAHDq1Cls3LjRYJuk9IGK8PBw+Pn5oVu3bhgyZAguXbr0SdNIERER/RsMWBARERERERERfUWTJk1C5cqV4efnB8AwybVWq8W4cePQqVMn5MuXD+PHj0dQUBB69eqFI0eOoEOHDjh37hyAxOTba9euhZ2dHbp16wYrKyv1GDExMShZsiTCw8Mxffp0hIWFqeuSBiJevnyJrVu3ok+fPujRoweio6MRFBSEkSNHMtk2ERF9dZwSioiIiIiIiIjoK3J3d8e8efPg4OBgME2TRqPBnTt3MH/+fJQrVw4zZ85EsWLFAADFihWDmZkZZsyYgdmzZ2PSpElwcHBAkSJFEBoaipMnT6JOnTrQarXYvn07xo4di2nTpiEuLg6mpqbIkyePenxFUaDVavHHH39g7dq1WL58OTQaDXx9fdGzZ8/UeEmIiIgAMGBBRERERERERPRVubi44NSpU3BwcEi2bvXq1Xjw4AH8/f3VYMWlS5ewa9cuBAQEqNs7ODhARODu7o7NmzfDy8sLTZo0wfPnzxEYGIgiRYqgZs2ayJs3b7JjhIaGYsOGDfDz80NYWBg8PT0xffp0mJiYfNkTJyIi+gecEoqIiIiIiIiI6CtzcHBAcHAwKleujN27dwMAEhIScPfuXWTMmBF58+bF8+fPsWTJEnTv3h1Dhw6Fs7Mzbty4gUGDBgFIHCnRoEEDjB8/HmFhYZg1axZWrlyJwoULY926dSkGKwBg165dGDlyJPLly4fr169jzpw5DFYQEVGawBEWRERERERERESp4O7duzh69CgCAgJQqVIlZMyYEaampoiKisKcOXNw+/Zt+Pv7I0+ePNi+fTsaNGigbvvkyRPY2NjAwsICffr0Qd26dREeHg47OzuULFkSAAymmwISc1coigJ3d3eUKFECVapU+ernTERE9HcUSZppiYiIiIiIiIiIvgoRQaNGjXDgwAHMnz8fHh4eCAoKQr169QAAJiYmGDduHLy8vAy202q1qFmzJpo1a4a+ffuqgYikEhISmDSbiIjSHU4JRURERERERESUChRFwahRoxAdHY2VK1fiwYMHKF68OOrXrw+tVptisOLs2bNo164dTp8+DTs7O3U/72KwgoiI0iMGLIiIiIiIiIiIUkm5cuXQo0cPBAYGwt/fH5kzZ0a3bt1gY2ODCRMmwNfXFxEREbhx4wbmzp0LLy8v7NmzB3379kWTJk1Su/pERESfFaeEIiIiIiIiIiJKRffu3UOpUqWQJUsWrFmzBsWKFcO6devg6emJ58+fw9bWFiKC169fI1euXJg5cybc3d1Tu9pERESfHQMWRERERERERESpbMaMGRgwYAC8vLwwZcoUGBkZ4erVq9i1axfCwsJgYmKCYsWKoUOHDuo27ybVJiIiSu8YsCAiIiIiIiIiSmXR0dGoWLEiIiIisHTpUjXxtl7S4IRWq4WxsXFqVJOIiOiLYhieiIiIiIiIiCiVWVhYwMfHB5GRkVi4cCGePXsGABARiAg0Go36M4MVRET0reIICyIiIiIiIiKiNKJq1aq4e/cugoODkTdv3tSuDhER0VfFgAURERERERERURoRGRmJrFmzpnY1iIiIUgUDFkREREREREREaQzzVBAR0X8RAxZERERERERERERERJTqmHSbiIiIiIiIiIiIiIhSHQMWRERERERERERERESU6hiwICIiIiIiIiIiIiKiVMeABRERERERERERERERpToGLIiIiIiIiIiIiIiIKNUxYEFERERERERERERERKmOAQsiIiIiIiIiIiIiIkp1DFgQEREREREREREREVGqY8CCiIiIiIiIiIiIiIhSHQMWRERERERERERERESU6hiwICIiIiIiIiIiIiKiVMeABRERERERERERERERpToGLIiIiIiIiIiIiIiIKNUxYEFERERERERERERERKmOAQsiIiIiIiIiIiIiIkp1DFgQEREREREREREREVGqY8CCiIiIiIiIiIiIiIhSHQMWRERERERERERERESU6hiwICIiIiIiIiIiIiKiVMeABRERERERERERERERpToGLIiIiIiIiIiIiIiIKNUxYEFERERERERERERERKnu/wATHdaRpMuDtAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -387,20 +377,19 @@ "name": "stdout", "output_type": "stream", "text": [ - " Turbine | Efficiency | Rotor Diameter (m) | Hub Height (m) | TSR | Air Density (ρ) | Tilt (º)\n", - "------------------------------------------------------------------------------------------------------------------\n", - " nrel_5MW | 0.94 | 125.88 | 90.0 | 8.0 | 1.225 | 5.000\n", - " iea_10MW | 0.94 | 198.00 | 119.0 | 8.0 | 1.225 | 6.000\n", - " iea_15MW_multi_dim_cp_ct | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", - " iea_15MW_floating | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", - " iea_15MW | 1.00 | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n" + " Turbine | Rotor Diameter (m) | Hub Height (m) | TSR | Air Density (ρ) | Tilt (º)\n", + "-----------------------------------------------------------------------------------------------------\n", + " iea_15MW_floating | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", + " iea_15MW_multi_dim_cp_ct | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", + " nrel_5MW | 125.88 | 90.0 | 8.0 | 1.225 | 5.000\n", + " iea_10MW | 198.00 | 119.0 | 8.0 | 1.225 | 6.000\n", + " iea_15MW | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n" ] } ], "source": [ "header = f\"\\\n", "{'Turbine':>25} | \\\n", - "{'Efficiency':>10} | \\\n", "{'Rotor Diameter (m)':>18} | \\\n", "{'Hub Height (m)':>14} | \\\n", "{'TSR':>6} | \\\n", @@ -411,7 +400,6 @@ "print(\"-\" * len(header))\n", "for name, t in tl.turbine_map.items():\n", " print(f\"{name:>25}\", end=\" | \")\n", - " print(f\"{t.turbine.generator_efficiency:>10,.2f}\", end=\" | \")\n", " print(f\"{t.turbine.rotor_diameter:>18,.2f}\", end=\" | \")\n", " print(f\"{t.turbine.hub_height:>14,.1f}\", end=\" | \")\n", " print(f\"{t.turbine.TSR:>6,.1f}\", end=\" | \")\n", @@ -423,6 +411,14 @@ " print(f\"{t.turbine.power_thrust_table['ref_air_density']:>15,.3f}\", end=\" | \")\n", " print(f\"{t.turbine.power_thrust_table['ref_tilt']:>8,.3f}\")" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8bb4fa6", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -441,7 +437,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.1" } }, "nbformat": 4, diff --git a/docs/wake_models.ipynb b/docs/wake_models.ipynb index 5252f3f55..e1f37de4b 100644 --- a/docs/wake_models.ipynb +++ b/docs/wake_models.ipynb @@ -58,23 +58,25 @@ "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", - "from floris.tools import FlorisInterface\n", - "import floris.tools.visualization as wakeviz\n", + "from floris import FlorisModel\n", + "import floris.flow_visualization as flowviz\n", + "import floris.layout_visualization as layoutviz\n", "\n", "NREL5MW_D = 126.0\n", "\n", "def model_plot(inputfile):\n", " fig, axes = plt.subplots(1, 1, figsize=(10, 10))\n", - " fi = FlorisInterface(inputfile)\n", - " fi.reinitialize(layout_x=np.array([0.0, 2*NREL5MW_D]), layout_y=np.array([0.0, 2*NREL5MW_D]))\n", " yaw_angles = np.zeros((1, 2))\n", " yaw_angles[:,0] = 20.0\n", - " horizontal_plane = fi.calculate_horizontal_plane(\n", - " height=90.0,\n", - " yaw_angles=yaw_angles\n", + " fmodel = FlorisModel(inputfile)\n", + " fmodel.set(\n", + " layout_x=np.array([0.0, 2*NREL5MW_D]),\n", + " layout_y=np.array([0.0, 2*NREL5MW_D]),\n", + " yaw_angles=yaw_angles,\n", " )\n", - " wakeviz.visualize_cut_plane(horizontal_plane, ax=axes)\n", - " wakeviz.plot_turbines_with_fi(fi, ax=axes, yaw_angles=yaw_angles)" + " horizontal_plane = fmodel.calculate_horizontal_plane(height=90.0)\n", + " flowviz.visualize_cut_plane(horizontal_plane, ax=axes)\n", + " layoutviz.plot_turbine_rotors(fmodel, ax=axes,yaw_angles=yaw_angles)" ] }, { @@ -99,14 +101,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAERCAYAAACqx6miAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzDklEQVR4nO3deXRc533m+e+vFuwrN3ABxRUUTWolKWq1YovaLZt24kWxO1HcmqOZbmc6Pelz0nJ8ZnrmnEl33D0nTjzxJNGx0i2n7ciKbLdoW7YsyZIlS6EkitRCihtEiiYp7gsIEsRW9Zs/6gKoKtzCQhSqgKrncw6Ee9/73lvvRYmoB+9933vN3RERERGRyRcpdgNEREREyoWCl4iIiEiBKHiJiIiIFIiCl4iIiEiBKHiJiIiIFIiCl4iIiEiB5CV4mdkHZvaumb1lZluCshlm9qyZ7Q2+NwflZmbfNLN2M3vHzNbkow0iIiIiU10+e7w+7u7XuPu6YP1h4Hl3bwOeD9YB7gHagq+HgL/JYxtEREREpqzJvNS4EXgsWH4M+HRa+Xc8ZTPQZGbzJrEdIiIiIlNCLE/HceAXZubA37n7I0CLux8Jth8FWoLlBcDBtH0PBWVHyKHRoj6HeJ6aKiIiIjJ52uk56e6zw7blK3jd4u6HzWwO8KyZ7Urf6O4ehLIxM7OHSF2KZDYx/jK2KE9NFREREZk89/XvOZBrW14uNbr74eD7ceBHwHrg2MAlxOD78aD6YWBh2u6tQVn2MR9x93Xuvq6RaD6aKSIiIlJUEw5eZlZrZvUDy8CdwHZgE/BAUO0B4KlgeRPw+8HsxhuAjrRLkiIiIiIlKx+XGluAH5nZwPG+5+4/N7M3gCfM7EHgAPD5oP7TwL1AO9AFfDkPbRARERGZ8iYcvNx9H3B1SPkpYENIuQNfmejrioiIiEw3unO9iIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIEoeImIiIgUiIKXiIiISIHkLXiZWdTMtpnZT4L1JWb2mpm1m9n3zawiKK8M1tuD7Yvz1QYRERGRqSyfPV5/BOxMW/868A13Xw6cAR4Myh8EzgTl3wjqiYiIiJS8vAQvM2sFPgF8O1g34DbgyaDKY8Cng+WNwTrB9g1BfREREZGSlq8er78E/gRIBuszgbPu3h+sHwIWBMsLgIMAwfaOoL6IiIhISZtw8DKz+4Dj7v5mHtqTftyHzGyLmW3pIJHPQ4uIiIgURSwPx7gZ+JSZ3QtUAQ3AXwFNZhYLerVagcNB/cPAQuCQmcWARuBU9kHd/RHgEYA2q/I8tFNERESkqCbc4+XuX3X3VndfDNwP/NLdvwS8AHw2qPYA8FSwvClYJ9j+S3dXsBIREZGSN5n38fr3wB+bWTupMVyPBuWPAjOD8j8GHp7ENoiIiIhMGfm41DjI3V8EXgyW9wHrQ+p0A5/L5+uKiIiITAe6c72IiIhIgeS1x0tERERkutjtV9LjVfRQFbp9rDcZNbKHqu/JWVfBS0RERKa0pBtnmM1pn00i5GLdaAHJ8OHhyIyzPosr76oj6VHq4l3D9ss188/d0uqEvPpPcrdFwUtEREQm5Jw30UnjpBw74VE+ZDE9VPKR2xqIRfrDK3ru+JXM2jZwL4Ul1ee47p7ZNNX2ALV5ajEKXiIiIgLnvZ4+KkatN/zSWbhuajju8znNbJbcOpPI4ANswoX2Do3aFlhfd4zrPjGXhupe8htdZgE9eTze6BS8REREpoA+j19SMBmLs8zkgC/nPE1EGN5jlDtoDbQn50U3Vm+o46qqTj7+O2N5ysyl3rZzNtB7iftOLQpeIiIiReKeCkUf+ApOewtGP5aVvcba+5SrrmPE6WXZx2dyz2/XUFvZN3KbhrUxPAym3/q8IhY+OF2GU/ASEREZhTt0MIP9vnLCY5nSw1GCGFV0sfhjc5i37BoWzOjgqsuODb0u4WOTcrYzR4+ZO0TMaartvvSGS14oeImIyLSVdGMvV3DeG7NCx6U/iS4sunRRi2MsuHkuratXEI8OXVYLfaURBnqn1z+7vR2AxqsWURG7QH11bzDQW0qVgpeIiEyKHq/kqLfSS+WwbSMNwh7PpTXHOOVzmHXLIrr6q4gRNs4oRy9Qeo2giruF3HbAqQKikSSXXTePqz85m+bGHDPrxm3m4NL5rigHntudp+PKVKXgJSJS5s57A905biAZZqzDv895E0d9AbU3fIQL/VVESGJ4Ws9U5pHMMgNPql5mWdhr10Z7uW5DNUvvWEFN9ciz6sJkX74Lu5yXXhaN5it0STlS8BIRmQYSHg3tORrJWHuO9vnlnPQWTtMSsnXYUOuMVxi+NFTHgWXra7nljioW37GCyopkRoAJG7Q9UggKOxt3o7oyQTQKjHIrg1yGDWafnImFIoCCl4jIlHbRa3g/uZJdfk1o8MoOV4YTsWTG+vAAlrmeIMaVN8IXP1HNzJuvyKw5pt6g9Lt4Z2qq7ycWcwi9BHjp47BEpisFLxGRCTrmC3jPr+Wsz8TTHmeSCjwjh4vhwSmz16bTm+ilgpu/1MqC6xYMlg+EHWcoDLnD+Qsxrru6g3jMB8uG9sncd0BFRZK5s3qJRICQezyJSP4oeIlISftNcin7/HL6QnuLxi47EA0EKgMuUkvDtQtZvGwRddU9VMZS4SWZHP5MuXTJsBZ4xjdm1l7kmvvmc3HpqjFdAjuzeR8LWnqorFBvkshUpOAlIlNGn8c5kFxGJ02hl9ByD7TOKk8LKEd9IfVrF1PZejnVFb0Z25IeuvvwPirPHAyevb3B4SMLTtL8hXXMmJX/wNPN+EKiiExdCl4iMiYJj3DC5+V8ztvwHqHcskNVkggnmc/25FpOMYfm5fXD67phNjQjLh7ppzbWPXSkwRlxmY84iZiz/nqY/aVrmDFzsnuB1MskIiNT8BKZxnq9YoQglJ8QkCDGgeRS3vCPcZK5WHCBLLy3KXPGW2b/0ECPVXjfTZR+1m1s4dZr59K5fBWxkN9OAz1UnoT63nOsuW5oPFKu2W8Rg1g8u1REpDgUvESmsd1+FduSN3GSufRSAcF9j1LBaHgP1EAYiwyOLhoeRnKVr//UTG68ex3dVfUZ5QOvsrLlLMm0l/RgOeNInhbDkmnRzYe+qmucigqCgd65JY4MBCoRkelDwUukABIeZW/iI7zCXZxjxmC5ZfUWZY9jyu4bSg9TBvRRwbLVSS7/+FWcrpxPc7OnjpAcOsxAT9BAb1FvrzF7TpIZM5KZrx68dCKZdUemIBDF47CsrZ9DOR711knTiD+DseoERslcIiLTloKXSIidyWt4J3kd/8zTAFzD5yErFAFEc45rGprxBqlQcoE6Ftx0GXPXr8ys6ZBMQFPv0aE9BsJS2uGTua6UOVRV9jF3dS2HT54d9dzO9xktsxuJzxu16jC5QpeIiIyNgpdIiNPMoeHK+Zw91E0yCd1rPj2sjmO4D82gG3y4SfrlNIfmhj6ao87iugSLrp/Jvot9w44VAc6lPbNtvLoAxhC6RESkuCYcvMysCngJqAyO96S7/wczWwI8TuoJoG8Cv+fuvWZWCXwHWAucAr7g7h9MtB0i+VYR6aWiJkqfwanqPZkbc/Q+efrFQYf5bddQMTNJVY2TAPZdDLt7t4iIlIt8DKXoAW5z96uBa4C7zewG4OvAN9x9OXAGeDCo/yBwJij/RlBPZEqLRDzzKxr+FY0mh75iSWJxzaQTEZEhEw5ennI+WI0HXw7cBjwZlD8GfDpY3hisE2zfYKZHkoqIiEjpy8vkITOLmtlbwHHgWeB94Ky7D9xk5xAw8JCxBcBBgGB7B0xgcIuIiIjINJGX4OXuCXe/BmgF1gMrR95jdGb2kJltMbMtHaFPtRcRERGZXvJ6uxx3Pwu8ANwINJnZwOD9VuBwsHwYWAgQbG8kNcg++1iPuPs6d1/XSDSfzRQREREpigkHLzObbWZNwXI1cAewk1QA+2xQ7QHgqWB5U7BOsP2X7q4RyCIiIlLy8nEfr3nAY2YWJRXknnD3n5jZe8DjZvZ/A9uAR4P6jwL/YGbtwGng/jy0QURERGTKm3Dwcvd3gGtDyveRGu+VXd4NfG6irysiIiIy3eiRaCIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFMuHgZWYLzewFM3vPzHaY2R8F5TPM7Fkz2xt8bw7Kzcy+aWbtZvaOma2ZaBtEREREpoN89Hj1A//O3VcBNwBfMbNVwMPA8+7eBjwfrAPcA7QFXw8Bf5OHNoiIiIhMeRMOXu5+xN23BsudwE5gAbAReCyo9hjw6WB5I/AdT9kMNJnZvIm2Q0RERGSqy+sYLzNbDFwLvAa0uPuRYNNRoCVYXgAcTNvtUFAmIiIiUtLyFrzMrA74AfBv3f1c+jZ3d8DHebyHzGyLmW3pIJGvZoqIiIgUTV6Cl5nFSYWu77r7D4PiYwOXEIPvx4Pyw8DCtN1bg7IM7v6Iu69z93WNRPPRTJExS2K4R3DAHRKJCIlEBB/Xnw8iIiKZ8jGr0YBHgZ3u/hdpmzYBDwTLDwBPpZX/fjC78QagI+2SpMiUMJ8D7H4nyrnD50mc6aH1dCNXLV9LX2+82E0TEZFpLJaHY9wM/B7wrpm9FZT9KfDnwBNm9iBwAPh8sO1p4F6gHegCvpyHNojk1bLILv5n+490JPo51tXK0dcOcPLgBVquv5ZI2p8rDtT2nB7sCRvWI7bzPPWze4hFhzYkk5n7A8SjEFm9lDPdZ4kp24mIlKwJBy93/zVgOTZvCKnvwFcm+roiky1m/fxpDNwPcTT5DV7+8G4O/+hQ8D/7QGRyunGM9H8ESdKHNHaQ+Q/ESKYtp1yklobF+5h/UxsNy2cSTb+67qmjJdLDXdqoSXcbvCQK4MHhk8H6ZYsT7DiepKL6En4IIiKSV/no8RIpaWYwL3qYz/PopL3GW8kb2PbBjez8oJN+4hCEuZShEGcZc1Q8KMsMfZZWnsR4jWpWf2wmMzesooM6agxOHIG+3sw2DAS3FbPPDiuDoSDnWMZUGU9CXUOSkzRn9AaKiMhwCl4iU8AVtoWV0bdHqTX+kf3naOafk7dz+MVF7H7xBEkMw4mSyApxAz1xxi+HvU52veHtSGLcsrGZ5V9aw2kaB3cb7IULO5ugZy6jzlBHIk4q9DbPhph+U4lIidCvM5EpIGb9xOjP+3Hjfpwb7VmSNnDtcvTwFhasRuJEeNtv5PT7V/CThzfjbpgNfzXDB4/tWaMTbHDVs74brStquOkT9RyZfy3R4DeWO0Tz/+MSEZl0Cl4iJSxqCebY0Ul/ne7kW3TtaGdxdqDK7i3LNRo0w9A+p7wFb7yal3/8Ebp7NxONOE4q2MUjSY79+ELWbsNfIOPirNuwCRAOLJrVwQ2faaFn2UfG2EYRkUuj4CUiE7Y40j4pxz3pLezZliDOLrInexrOhVEui6bXzbWeJMLzvpRN3+5k9ZqdLLhqTugxUmPbLLtw8FuufkL31Ji4mXVdrPnUPLqXrlK4EyljCl4iMmXNsmPMih6b9Nfp9xi/SS5l57a1nNx2nJECXHpoG2t+cqDL69jx+jkW3DeDWU2pmQ3JZNoUisHDpnrl0nvmBmatRj7Yk3lch4pYkpV3tNK/YmXmbFgRmZIUvESk7MWsn6XRPSxlz+iVL0HCI7zmt3FyWwsfbv05ybR7V+fqjbOQfrTUXpkzW/uo5PVfd7P8mlMsvnk+Z85V0Do3RmVFMJ4u+9Kqh82Xza6Te31GYz+xmB7hIHKpFLxERCZZ1JJcx6/wCV5jDJv4cIAVHHp3MVvenssrj30AwHPWPcpxRj5mmCj93P6Hy1h9dyuzZ/RlbMvoncvqqQuTHv4q4kkq4gpyUj4UvERECiBufaNXugSt/j4z7SgjPdJ2vDNVs/UT47jP58W/7uPnf32A1rVNocf3kFcyG1aSsRazBDfeVs3Ke5bQWJ8YV7tyBb7sMjN0jzmZMhS8RESmsSrrpoqRe7jyYZYdp813cMwXkNg69sFko4W+gyxjV2Urr79wnqilglf27UYypB1ueAfi0G1ISAt8EZx1H2+g7a5l4w53Ivmm4CUiImMStz5a7YO8HtM9wrlXzmDEBx+mNdYeurBaYft2Uc0Tmxfi/+kIV9wSY+aVS4cd4+z29Jm5IbclCetRw7j8phZW3LWUGU26sZyMjYKXiIgUzSJrH/v00Ano8lp+48s48soCPnzlSEhAG//NhZ0Iu37dxZwXLjKn6jQLr7sMgKRnXtfMHPdmw7YNbE94hIbqSk6cq8moU1PZR23l5FyqlsJT8BIRkZJXYxdYae+wknfyetwur+XgliW0+zL2vrwdCO91y5xLOvyWJEP7OL/MCqJJolyzIc7lzQdYcedHUrWy7ylHeK9c6oi5k232PpXxBNGIJjtMJgUvERGRS1RjF7jcttPmO0imzXCY6ISGdOdp4DfPL+Mt5hN58vQIxx8p8I1u9W11tNSe4qOfmXdpDZUxUfASERGZoIg5kUl43ipAI2e40rbQ45X0UD2ufccaAC9Sw+FfLuQd5rD3TDxkNmqacWRKx5hdfYYb75vNrPqLY9+xhCl4iYiITAOV1kMlPZNy7Ho6mGNHuOB1dL7SlLfj9lHBPp/J6Z5GqmL9GbceCZPrculoopakItrPjZ+YxZyGrkttbkEoeImIiAgAtXaeWs7n7Xh9HqfPKuh76XV608JWrp64sd1jePi+Z30WcXro6Y8zs7ojqDXC2LawspBxc7FIgqvuvCyvvXUKXiIiIjIp4tbHUnZN+sxVZzcdzODwCwkOUDdYnjPg5X6uQsZaH5V09p6kPxljft2J0MQ24n3nQih4iYiIyLRmBk2cpslO5/W4x30++569jF6q2EU8L5MmFLxEREREQsyxD5ljH45/x2TuTXp6lYiIiEiBKHiJiIiIFIiCl4iIiEiB5CV4mdnfm9lxM9ueVjbDzJ41s73B9+ag3Mzsm2bWbmbvmNmafLRBREREZKrLV4/XfwPuzip7GHje3duA54N1gHuAtuDrIeBv8tQGERERkSktL8HL3V8CsudwbgQeC5YfAz6dVv4dT9kMNJmZHgwlIiIiJW8yx3i1uPuRYPko0BIsLwAOptU7FJRlMLOHzGyLmW3pIDGJzRQREREpjIIMrnd3Z1yP1QR3f8Td17n7usa0J76LiIiITFeTGbyODVxCDL4fD8oPAwvT6rUGZSIiIiIlbTKD1ybggWD5AeCptPLfD2Y33gB0pF2SFBERESlZeXlkkJn9I/AxYJaZHQL+A/DnwBNm9iBwAPh8UP1p4F6gHegCvpyPNoiIiIhMdXkJXu7+uzk2bQip68BX8vG6IiIiItOJ7lwvIiIiUiAKXiIiIiIFouAlIiIiUiAKXiIiIiIFouAlIiIiUiB5mdUoU1PCI3R4M8lR7vxvozxUoMlOEzU9tklERGSiFLxKwDHv4zU/zyetCTMbLO+kiV/6pznoS+mkAcdIbc0MWkPdnpnlhpPEaOQ01/MCV0S2UGk9k3IOUfpJa7qIiEhJUvAqAVv9Ao8kT7AqWs1yqjK2VdDDHb9bx5aGO7lsKbinvgAIlgdWk8mh8gHNsU46X9rGaz/fwK+Td6cCUkgPWXpZdrjLrO9Y2vLA9gbOsM5eZllkJ3HrG9f5i4hIaev1Co6zgLPMLHZTxmhPzi0KXiXgo1bP33GCXybPsTxaNWx7NOLMaoEuOwvj7FVqWtxEMrmGtlVGMrjaOJjb0h593tx7FIC+fmPV8vNDB3BwT71oMi2CuQPJoNxh7+bT/OpnDWxObKCa1P7ZTTWSZMsdAj0kAIZJEsGpsF4W2V5WRbaF1hIRmaq6vJZDLM3rMUcbglKoYwAkiHDBG5jHAWZ+rI26+MUJHa/fo9w07528tC2Xhx/LvU3BqwTUWZT1VstL3smDPptoHq/Z7f3gLFQAc4dvS3+Vgb9CGuJNcFV4vZFGmq2rf5sZdfO50BMHhsLaAA8pS5dMRrLqDq8zEMXSfzyehJ5ElMqTu9m9rYpz3jRCKyGSM/yldSNmbAurG/ILyS79l5ThGftW0cUi20uVdV/S8USmoi6v5RQtxW7GoHyFinwc7yK1uDstt7fRnagkbv0TaouP9y/0sGPk98dDSzRBxOZQGz/D7Z+dWK/Xpn+8kKdWXRoFrxJxmzXwqp9nq1/gOqsrdnPGrfvqq5l/df6PO/CPf9gvgWA96TDHzrD3uWY6e97lTGRJsHnoF09Gjh04kGUcZvg+oY3J3iObpVcMf/2sA2ZeuI3QED/PqW27MJwaPz9sj8yQmKsVubaHl4c1L/sYI32o5OfvhDz/lh9Fvj90C/Mahf0ZDZjo29tHBWeYzWmfReut84jlcaJPPsPBeMJK+P/zw/8YC9035H2sdmNW9Rmuu3cmM+suMvKfudNP5vtUU6xm5I2CV4lYa7U0EOEF7+Q6pl/wmiwDv+ByfbhHgNM0U3F9M3d+bC5LlmX2aKX/gw/tRQsLdp6jTo7jZqznKh9pOfg+5+R7vPPjQ/y67xp2JdcP722z8EZa1kLc+qmK9WbsH/b5lHm8YUcL1obquA9/H8J+poP7hLxnx7eeyNmiXL2LuT4Qs8cejiRzDOPwn91YPr9Hez3Lsexp/x0QJUGNDQ/Wly5XaLj0sD10BAvZluu4w8sdo5ZOPrKhkd/+YmIKT8IZe4rL+e9/2BFz/KSzM5pBNNIMTOwS3FQ1dd/zS6PgVSLiZnzU6nnWz9HlCWqstP7iKZb0f/BT/R9/V90qlv+vq5j3ZTh9KnXpdWHXzsHtnpYp08Og+9Av8qTDidMVXH/1uRE/HHL2iaVdDh7Lh8vwMhul7orw9oRcmh7ra4ddwh7W9hGPM/ZzHqhbseuNrJ9nVvuHvX7maxw42cRtq/cPb0yeje09S9sWEhRGrB/2sw+t10LEHLPhl/qno+zfJSP1akvpUfAqIR+PNPDTRAe/9vPcaY3Fbo4USW0d1NYNfEBdPlieq0clXTIJFa/up6qyND7gpqz5V05o9yP/9Js8NWRkYYFg5D9AxhsUFCyk/OjO9SXkcqqYT5wX/FyxmyIiIiIhFLxKiJnx8UgD7/pFjrvuhSUiIjLVKHiVmI9bPQAvemeRWyIiIiLZFLxKzFyrYBXVvJA8h+f7RioiIiIyIQpeJei2SD0H6eUDinuTOBEREcmk4FWCbrF6Yhgv+8liN0VERETSKHiVoIFHCG32kyQ9f3d5FhERkYlR8CpRt1kD5+jnEO3FboqIiIgEiha8zOxuM9ttZu1m9nCx2lGq1lotdcTYw9vFboqIiIgEihK8zCwKfAu4B1gF/K6ZrSpGW0pV3IwbbSYH2MXFXg2yFxERmQqK1eO1Hmh3933u3gs8DmwsUltK1s02iwT9vHvwlWI3RURERChe8FoAHExbPxSUSR4to45GZvLmvueL3RQRERFhCg+uN7OHzGyLmW3pQDPzLoWZ0cbV7Dv+Lp1nDxS7OSIiImWvWMHrMLAwbb01KBvk7o+4+zp3X9dItKCNKyXLuRqAve9+t8gtERERkWIFrzeANjNbYmYVwP3ApiK1paQ1WDNLZq9mz7v/oEcIiYiIFFlRgpe79wN/CDwD7ASecPcdxWhLOVi7dANnT+7ixKG3it0UERGRsla0MV7u/rS7r3D3Ze7+Z8VqRzm46rJbiEYr2bP18WI3RUREpKxN2cH1kj/VFXUsWvFJ2t/6IYlEX7GbIyIiUrYUvMrEiqt+j+4LJzm0W7eWEBERKRYFrzKxcPndVNXOZM/WJ4rdFBERkbKl4FUmotEKll/923zw3tP0XOwodnNERETKkoJXGWlb8wUS/T3se1d37hARESkGBa8yMmfhGhpnLWfPm5rdKCIiUgwKXmXEzFix9gsc2f8q507/ptjNERERKTsKXmWm7drPA7B3mwbZi4iIFJqCV5lpmHEZ85bcxN6tT+gRQiIiIgWm4FWGVqz5AmdP7OXEoW3FboqIiEhZUfAqQ0uv2kg0Vsmerd8vdlNERETKioJXGaqsbmTRqntof+sHeoSQiIhIASl4lakVaz5P94VTHNz9XLGbIiIiUjYUvMrUwstv1yOERERECixW7AbI5DGci9SyY+tFWurauVi5nIGJjLEkXH/b/87c1priNlJERKSMKHiVsAbOcCs/5tWdd/CrnTUk2Q84YCxcmuTG2++je+EyPjya+exGd6ipg+p63W5CREQknxS8SpgZzIt+yO/wGBeST9JLJQB7uJpTtbfyzjOVdPcdB4NUIEv1koFxNpJk/SfnULFmBfsOdgwer7LaMSvO+YiIiEx3Cl5lojZygVouAHB58i1ObD/GUqKhdQ2n3Vfx0v+3noscZMGaliCcweIra6lZs4QTnWeJRAbiGoMLrlGDIiIiOSl4laGmyBmaODNincvZzseTP2GnX8v5bY0AnPQWOrvaOHUqjgOR6EDsslQwczhxei8zjjaw8Ka59DQ2Tup5iIiITDcKXpJTTaSLtbwyuH4guYy3d/XSvfMgjpFk4NJkSoI4CaLEFl7G3hcjzJ9zCABPDh2zsiLBqcVX0Ty7UGchIiIydSh4yZgtirzPIt7Puf2C1/FS8h5e/W6Mbs6QdiFyUB9VzF3xAWs/t5yala1EIml1PLVHMgmRCCxYmORof3P+T0RERKRIFLwkb2rtPHdGfsDggLAMqYD1pn+UvXtW8/Sf9dDHboxkVm3DSHDjZ5o5dev1MDP7CKkFd4jGYMYciIYPVRMREZlyFLwkr6KWHHH7lbzB5ZG3B9ezZ0gmiHIwuYQ3f3QrJ390nhlLaoOKQ5c1I+bMqupg9Wev4ExkFTW1w19n4H5l8QqoqLzk0xEREcmrCQUvM/sc8H8CHwHWu/uWtG1fBR4EEsC/cfdngvK7gb8CosC33f3PJ9IGmV6qrYtq6xqxTnP0FKt9G0d8Ib0HhqemPVxFw7WX8cb3d9OT+IBIetgLAldlpJdlV9XRsvEGki0NGduc1KVM3RZDREQKbaI9XtuB3wb+Lr3QzFYB9wOrgfnAc2a2Itj8LeAO4BDwhpltcvf3JtgOKTFRS9BqH4RuSySjnNp6kgU5boeRJMqHLOaN3U3MP7ODqnhiMGQN9IQ11XSz5P7r6K5vJBafhBMQEREJMaHg5e47AWx418FG4HF37wH2m1k7sD7Y1u7u+4L9Hg/qKnjJmLVF3qNtlP9l+jzO/mQbu547SGfa/+aGkyTCYZo4e7GS6oXzqalJkExCvLkP9vemKnpqpFpTQx8N1y0novuTiYhIHkzWGK8FwOa09UNBGcDBrPLrJ6kNUsbi1seK6HusCAlovV7Bq34Hx56+SBeZA8QGxpElibJyrbPo2hZWxqAiPnQ5c6DXzB3cjUjE6V++InSsmYiISLpRg5eZPQfMDdn0NXd/Kv9NGnzdh4CHAGZrDoDkUYX1citP49Hcg7x2+1Xs3no1u96M8NNvnwnuWhbOiTB71WFu+aizduNcjjWvztyeFtTicWho1DMwRUTK1aiJxt1vv4TjHgYWpq23BmWMUJ79uo8AjwC0WZU+qSSvIuaE3WdswFJ2sdD2j+lYCY/QvnMVP3tvLT/8u/PMXnkss4JBNJJgds1Zrvji9VRuWJix2dObkdWkyipNAhARKSWT1ZW0Cfiemf0FqcH1bcDrpIbNtJnZElKB637gi5PUBpFLVmXdVNE9tsoG63iFq/11jvl8Ensy/1kliPEBl1OzfiEvP/oev350x9COIeHPzKmLX2TV9Y0s/PLt6iETESkhE72dxGeA/xeYDfzUzN5y97vcfYeZPUFq0Hw/8BV3TwT7/CHwDKnbSfy9u+/IcXiRaSVufbTagWHlSTcSHqPz9ZPMy8pQZsND1QXqOeYL6Oqr5uCpN4hFh+oM9I4tbzlF4xfuYcZMhTIRkelkorMafwT8KMe2PwP+LKT8aeDpibyuyHQSMafNxvf3xYVkLXu3r+bY9suGbeuhglPXXEbzkTdoqummMt4HpAb6e9rTM4fGlhnxWIJZa5Yw/7cWa4amiEgRadS6yBRUG7nANbxO6gp9phM+lx1vr2XfW0fo89jgI5fSH1ieutM/QRAzll9fRTIZwZOpWZjpA/4hdcHT3WioS9DTq2cwiYhMFgUvkWlmth3lVp4OfyRmiDM+k52vXcuLm5MkOYTheLBzRlgjSR+VXH1DH9f09VJ13brMgf9kTgSIxZyKuC51ioiMh4KXyDQUCRkblstMO8ktPEu3v0w/FSPW3e7rwFfxrf86k+h/ez+kRtqEAHPaGg9y65/ezuwZfWNvvIhIGVPwEikTVdYNo8zUXM52et9oZw6W1RuWHfScLhrY6lfywgtvsPy6qswHpHvqMueCuuMKZiIiaRS8RGTQLDs+5kuYAEt9Jyd8Hse3zB+2rZsadno9vuwk0UiSqorE4DYPMpr70IvNaTzPiruX0lifyD6UiEjJUPASkUsWMafFPqSFD4dtO+/17OYq9nz7V4NjytJ7zizte5IIXdSx9OVTLL1uHvXVqWdmZk8CYPAoqUkCM+susvTulfk9KRGRSaTgJSKTos46WWuvjKluv8fY5jdx8JVe2l85n7HNQm4y6xiX3dDM4rVzqXh2e6osuLw5WMcz6w/0rhlOLOYs2LBaTwUQkYJT8BKRootZP+t4acyXObup4cBrbby8eRXPp00YCAtp6Qxn+Y01LL++hejJisGb02aENB/eiBmNfcQ1g1NE8kDBS0SmhPH0PlXTxUp7m+W+g26qx7xfF3V8sHkFP//nC7z58oWsW2sE7QjCm+HUxi+y+uZZLPjoclpm9WQca9h0gyCwVcaTCmkikpOCl4hMWzHrp47OMdevo5M5doTzXk/XtvoR6/ZQxYd+GU9vbqHlpU6ikf7Bbe6WFRSNimgvMyvPsfLWBaz+1LJxnomIlAsFLxEpO3XWOabA1so+zjCL41vmMfw66FCvVj8VdNLIEa/n2MUuXn9uS1o9GzY5YGhvY9XNs2m7aymzmnXLDZFyoOAlIpKDGcywk8zg5Kh1Ex7lOPM4+FoHXQx/7FLYldReKjjx6m/Y+eoJZl25mIpY+K00PG0hFk1SW6kHbopMVwpeIiJ5ELUE8+wQ8zg05n06vJl2VvPhq0f48NUjo78G/Sz7rRms/0wtXT1Dv749x6yEgZ62moo+PRxdZIpQ8BIRKZJGO8Na+/WY63d4Mwd+1cY3fzWXCImMuBV2040UI04vGz7Vy42fbp1Yg0VkwhS8RESmiUY7w1X2Or1eQT/xMe2TIMZeX83zm2r5xaZTaVvCe8ni9LBhYy9rPrGEeCwZWkdELp2Cl4jINFNhvVTQO+b6l9FOMnTc2fB+sk5v5GdPLeNnT53i8o81hh4vbLJAxJyaeDc33TeLWfUXx9w2kXKj4CUiUuJm2fEx151tR1nk7ZxkLhdfrMldMavDrJMm+ryCjt465taeDJ0DGnZz2ppYD2vuvYyayv5h20RKkYKXiIhkiFqCFg6P64HpAF3UcvhXZ3mH8J6y8H3qOXGxk7qKLhorhh4XlR3SwiYQOMaMyg4uv3v1+BoqUkQKXiIikhc1doE22zGuffb6Fex/rp4u6mEcTyHoJ84sjrDkzoXMODfUMxf2zIBhIc6hrqqXuirdO00KT8FLRESKps22j7tnDaDHKznqrWz9RQ/bfvHBiHUzZ38aa++qwDFu+0zzYFku2Q9bj0cTVGjSgUyAgpeIiEw7ldbDInufVt9PL1Vj3u8itex/Zj4nmcfWZz4EwnNf2MSDa++qJonxiS80XGqzRRS8RERk+opakmq6xly/mi5m2Am6vJ0uase834e+mNnV3bx7ajn//bHxXaKsi18kFkly3/1149pPSpOCl4iIlJ0au0ANF8ZcP0qCHU81EeEo4Q92CnfKW7j2cz1sPb6S//G98ICYfalz4PJmLJIkHu3nns+PfbKCTH0TCl5m9l+ATwK9wPvAl939bLDtq8CDQAL4N+7+TFB+N/BXQBT4trv/+UTaICIiMtma7RTNnBq9YpYquvjVky24v8e5EeqlLm0OXd7sppZ666DptlW88IMTGXXHMoEgVS9VVhXt4ZbPzB9322VyTLTH61ngq+7eb2ZfB74K/HszWwXcD6wG5gPPmdmKYJ9vAXcAh4A3zGyTu783wXaIiIhMOXPsCHM4Mu4JBO7QwQw+fL6C/dSTHrfGeqheKvmdz5/krRMreX3TgVFv0ZG9HrUE6z+1aHwNl1FNKHi5+y/SVjcDnw2WNwKPu3sPsN/M2oH1wbZ2d98HYGaPB3UVvERERAJm0MRpmuz0JR9jr1/Bi/8U4bwf5EDIkwsgO8Q5hpMkykc/5fzm/DwWp9+qI6xXLaz7DWio7tFNcXPI5xivfwl8P1heQCqIDTgUlAEczCq/PuxgZvYQ8BDAbA1FExERGZel7KSf2CXcCLeOt3/cSqcn2f/80YxtYbM9w8r6iXH1XXWsvWc+tZWZj7cKvRlu1iEi5iUb3EZNNGb2HDA3ZNPX3P2poM7XgH7gu/lqmLs/AjwC0GZVOTK1iIiIhIlagui4pgKkVNJDM6e4SA3djPDYqBF00My7z8zlnWc6WXxby7DtlpW9jFT4iliSxsoLnO5u5LNfjBGJXNLLT2mjBi93v32k7Wb2B8B9wAb3wcx6GFiYVq01KGOEchEREZkiqq1rXLfqSNfMSRayj1O00PPCwdF3CJxlJifoYd6Gan7wvWRob9pIHKM2fpGF9ce44p4VwwLeVDDRWY13A38C/Ja7p787m4DvmdlfkBpc3wa8TirUtpnZElKB637gixNpg4iIiEw9UUswhw/HtU8r++nyWo4930svFYPlY81PjvGhV1F3XwM//F4P8cjwy5V9yeIOX5roq/81UAk8a6lYudnd/xd332FmT5AaNN8PfMXdEwBm9ofAM6RuJ/H37j6+B3uJiIhIyaqxCyxh9yXvv5NrefunHUBHzjr/lPUgd8eo5Ryf+BeT/zgo81xTEqaQNqvyv4xpSquIiIhMjneS66mwnkve33Bmc4Sb/0UTyx776Zvuvi6snqYLioiISNlbbW+SZPyj+QfGoSWIssPXceG/HxmxvoKXiIiIlL1LnQU6IEY/bWwfNbwpeImIiIjkQb3lHlc2oATvkCEiIiIyNSl4iYiIiBSIgpeIiIhIgSh4iYiIiBSIgpeIiIhIgSh4iYiIiBSIgpeIiIhIgSh4iYiIiBTItHhWo5mdAA5M8DCzgJN5aM50pHMvX+V8/jr38lTO5w7lff5T6dwXufvssA3TInjlg5ltyfXAylKncy/Pc4fyPn+du869HJXz+U+Xc9elRhEREZECUfASERERKZByCl6PFLsBRaRzL1/lfP469/JUzucO5X3+0+Lcy2aMl4iIiEixlVOPl4iIiEhRlVzwMrP/Yma7zOwdM/uRmTWlbfuqmbWb2W4zuyut/O6grN3MHi5KwydJKZ8bgJktNLMXzOw9M9thZn8UlM8ws2fNbG/wvTkoNzP7ZvDzeMfM1hT3DCbOzKJmts3MfhKsLzGz14Jz/L6ZVQTllcF6e7B9cVEbPkFm1mRmTwb/3nea2Y3l8r6b2f8W/P++3cz+0cyqSvl9N7O/N7PjZrY9rWzc77WZPRDU32tmDxTjXMYrx7mXzedc2Pmnbft3ZuZmNitYnx7vvbuX1BdwJxALlr8OfD1YXgW8DVQCS4D3gWjw9T6wFKgI6qwq9nnk6WdRsueWdo7zgDXBcj2wJ3iv/zPwcFD+cNr/B/cCPwMMuAF4rdjnkIefwR8D3wN+Eqw/AdwfLP8t8K+C5X8N/G2wfD/w/WK3fYLn/RjwPwXLFUBTObzvwAJgP1Cd9n7/QSm/78CtwBpge1rZuN5rYAawL/jeHCw3F/vcLvHcy+ZzLuz8g/KFwDOk7vE5azq99yXX4+Xuv3D3/mB1M9AaLG8EHnf3HnffD7QD64Ovdnff5+69wONB3VJQyucGgLsfcfetwXInsJPUB9NGUh/MBN8/HSxvBL7jKZuBJjObV9hW54+ZtQKfAL4drBtwG/BkUCX73Ad+Jk8CG4L6046ZNZL6hfwogLv3uvtZyuR9B2JAtZnFgBrgCCX8vrv7S8DprOLxvtd3Ac+6+2l3PwM8C9w96Y2foLBzL6fPuRzvPcA3gD8B0geqT4v3vuSCV5Z/SSr9QurD+GDatkNBWa7yUlDK5zZMcAnlWuA1oMXdjwSbjgItwXKp/Uz+ktQvn2SwPhM4m/ZLOf38Bs892N4R1J+OlgAngP8aXGb9tpnVUgbvu7sfBv4f4DekAlcH8Cbl8b6nG+97XTL/D2Qpu885M9sIHHb3t7M2TYvzn5bBy8yeC8Y2ZH9tTKvzNaAf+G7xWiqFYmZ1wA+Af+vu59K3eaqvueSm75rZfcBxd3+z2G0pghipyw9/4+7XAhdIXW4aVMLvezOpv+yXAPOBWqZBz81kKtX3ejTl+DlnZjXAnwL/R7HbcqlixW7ApXD320fabmZ/ANwHbAj+QQIcJnVNeEBrUMYI5dPdSOdcMswsTip0fdfdfxgUHzOzee5+JOhqPh6Ul9LP5GbgU2Z2L1AFNAB/Rap7PRb0bqSf38C5HwouUTUCpwrf7Lw4BBxy99eC9SdJBa9yeN9vB/a7+wkAM/shqf8XyuF9Tzfe9/ow8LGs8hcL0M5JUcafc8tI/dHxdnDFvBXYambrmSbv/bTs8RqJmd1N6tLLp9y9K23TJuD+YIbPEqANeB14A2gLZgRVkBp8uqnQ7Z4kpXxuwOCYpkeBne7+F2mbNgEDM1ceAJ5KK//9YPbLDUBH2uWKacXdv+rure6+mNR7+0t3/xLwAvDZoFr2uQ/8TD4b1J+WvQTufhQ4aGaXB0UbgPcog/ed1CXGG8ysJvj/f+DcS/59zzLe9/oZ4E4zaw56De8Myqadcv6cc/d33X2Ouy8OfvcdIjXB6ijT5b0vxoj+yfwiNZjwIPBW8PW3adu+Rmpmx27gnrTye0nNhnsf+FqxzyHPP4+SPbfg/G4hdYnhnbT3/F5SY1ieB/YCzwEzgvoGfCv4ebwLrCv2OeTp5/AxhmY1LiX1y7Yd+CegMiivCtbbg+1Li93uCZ7zNcCW4L3/H6RmK5XF+w78X8AuYDvwD6RmsZXs+w78I6nxbH2kPmgfvJT3mtR4qPbg68vFPq8JnHvZfM6FnX/W9g8YmtU4Ld573bleREREpEBK7lKjiIiIyFSl4CUiIiJSIApeIiIiIgWi4CUiIiJSIApeIiIiIgWi4CUiIiJSIApeIiIiIgWi4CUiIiJSIP8/vmE9otLIWh4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAF7CAYAAADsY3vMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcDUlEQVR4nO3deXyb1YHv/+8jyZJXebcVx3birI6zk0BitrKkBJrS6ZDbhcvQ0HLpkBs6hTCUckuhlNsGmE6ZtpdC29sBXndKKcyvpdNAgRAoq0kgEMi+74nsbF7i2LItnd8ftmVJlmQnsbx+3q+XiPWc85znPE9dW1+f85zHMsYYAQAAAACCbAPdAQAAAAAYbAhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABAhoUHpBz/4gSzLCnuVl5cHy5ubm7Vs2TLl5uYqPT1dixcvVnV1dVgb+/fv16JFi5SamqqCggLdddddamtrS2S3AQAAAIxwjkQfYOrUqXrttde6DujoOuQdd9yhF198Uc8//7wyMzN122236brrrtO7774rSfL7/Vq0aJE8Ho/ee+89HTlyRF/72teUlJSkH//4x73uQyAQ0OHDh5WRkSHLsvru5AAAAAAMKcYYNTQ0qKioSDZbnHEjk0D333+/mTlzZtSy2tpak5SUZJ5//vngti1bthhJpqqqyhhjzEsvvWRsNpvxer3BOo8//rhxu93G5/P1uh8HDhwwknjx4sWLFy9evHjx4sXLSDIHDhyImyESPqK0Y8cOFRUVKTk5WZWVlVqxYoVKS0u1bt06tba2asGCBcG65eXlKi0tVVVVlebPn6+qqipNnz5dhYWFwToLFy7U0qVLtWnTJs2ePTvqMX0+n3w+X/C9MUaS9JStTKkWt2UBAAAAI9VpE9BNgT3KyMiIWy+hQWnevHl66qmnNHnyZB05ckQPPPCALrnkEm3cuFFer1dOp1NZWVlh+xQWFsrr9UqSvF5vWEjqLO8si2XFihV64IEHum1PtWxKtezneFYAAAAAhrqebslJaFC65pprgl/PmDFD8+bN05gxY/Tcc88pJSUlYce95557tHz58uD7+vp6lZSUJOx4AAAAAIaXfp2HlpWVpUmTJmnnzp3yeDxqaWlRbW1tWJ3q6mp5PB5Jksfj6bYKXuf7zjrRuFwuud3usBcAAAAA9Fa/BqVTp05p165dGjVqlObMmaOkpCStXr06WL5t2zbt379flZWVkqTKykpt2LBBNTU1wTqrVq2S2+1WRUVFf3YdAAAAwAiS0Kl3//zP/6xrr71WY8aM0eHDh3X//ffLbrfr+uuvV2Zmpm6++WYtX75cOTk5crvd+ta3vqXKykrNnz9fknTVVVepoqJCN954ox555BF5vV7de++9WrZsmVwuVyK7DgAAAGAES2hQOnjwoK6//nodP35c+fn5uvjii/X+++8rPz9fkvToo4/KZrNp8eLF8vl8WrhwoX75y18G97fb7Vq5cqWWLl2qyspKpaWlacmSJfrhD3+YyG4DAAAAGOEs07l29jBWX1+vzMxMPWcfz6p3AAAAwAh22vj1Zf8u1dXVxV3LgIcKAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAEAEghIAAAAARCAoAQAAAECEfgtKDz30kCzL0u233x7c1tzcrGXLlik3N1fp6elavHixqqurw/bbv3+/Fi1apNTUVBUUFOiuu+5SW1tbf3UbAAAAwAjUL0Hpgw8+0K9+9SvNmDEjbPsdd9yhv/zlL3r++ef15ptv6vDhw7ruuuuC5X6/X4sWLVJLS4vee+89Pf3003rqqad033339Ue3AQAAAIxQCQ9Kp06d0g033KDf/OY3ys7ODm6vq6vTb3/7W/30pz/VFVdcoTlz5ujJJ5/Ue++9p/fff1+S9Oqrr2rz5s36j//4D82aNUvXXHONHnzwQT322GNqaWlJdNcBAAAAjFAJD0rLli3TokWLtGDBgrDt69atU2tra9j28vJylZaWqqqqSpJUVVWl6dOnq7CwMFhn4cKFqq+v16ZNm2Ie0+fzqb6+PuwFAAAAAL3lSGTjzz77rD766CN98MEH3cq8Xq+cTqeysrLCthcWFsrr9QbrhIakzvLOslhWrFihBx544Bx7DwAAAGCkStiI0oEDB/Ttb39bv/vd75ScnJyow0R1zz33qK6uLvg6cOBAvx4fAAAAwNCWsKC0bt061dTU6LzzzpPD4ZDD4dCbb76pn//853I4HCosLFRLS4tqa2vD9quurpbH45EkeTyebqvgdb7vrBONy+WS2+0OewEAAABAbyUsKF155ZXasGGD1q9fH3zNnTtXN9xwQ/DrpKQkrV69OrjPtm3btH//flVWVkqSKisrtWHDBtXU1ATrrFq1Sm63WxUVFYnqOgAAAIARLmH3KGVkZGjatGlh29LS0pSbmxvcfvPNN2v58uXKycmR2+3Wt771LVVWVmr+/PmSpKuuukoVFRW68cYb9cgjj8jr9eree+/VsmXL5HK5EtV1AAAAACNcQhdz6Mmjjz4qm82mxYsXy+fzaeHChfrlL38ZLLfb7Vq5cqWWLl2qyspKpaWlacmSJfrhD384gL0GAAAAMNxZxhgz0J1ItPr6emVmZuo5+3ilWvaB7g4AAACAAXLa+PVl/y7V1dXFXcsg4c9RAgAAAIChZkCn3gEAAABAq0mSkSVLiZ/s1masXtUjKAEAAADod8ZItcqT1xTrqEbJqHuA6YvgFNlGsvFK2tbjfgQlAAAAYARqNimqVe6AHLtFLh0zHvllV4PJ0oRL0uWytYTV6QxOJsoIULRQ1asyIyU7WqTXe+4jQQkAAAAYgY6rUEfNKEkmbmCKF0liCy+L1oZTzZr1WZcaWpz6b9cHZLP11aJr8Ueh6pvcBCUAAABgMPIZl2o0WnUmu3th726hiam3u582abIpoFGXjNbsuWUqyq7vVifaaE779tjtRhvRiVa/Zs0mST5NvbpUNltdL3vdfwhKAAAAGFHajENtSjrDvfpmkQGfUnRURTpkxsinFI06P1c2K6TtHg5jxUxB0XeMt0BCuiWNTqvWBVeny5O5J07biVFxXUHHV4MvJEkEJQAAAIwwOzRdDSZT9cqUUU/TvbqHjJ5WZ4tXZiRl6qQmXZqugpQTuvDzKbLZohyjh8AUOdLTU4yLNjJktwWU4kyVdKqHvUcmghIAAAAS7rgpULNS49RI/LLQnepNlq689rS2nhylbFe9bFZAsSasxb0Lp4dlpkOnoIVPR3NLatIFnytSqsvX636jfxGUAAAAkHAHzDjZFNBhUyojS/6OkZyu0RdLnbEkdEQm3riJFfa1CSk3slld2yPDjiVpb0P7vUHXfClD9igjOv2DkDSYEZQAAACGqW1mhk6bVLUoOWp55BSxc31mTbT9O7edUJ7KL06WvylHo2aMViBgybJMj6MyneLVi9brWWMOKyetOW6bdntAdhvTzhAdQQkAACCBmk2KArINyLFrTa4mXp4pb2OuTvoyFTCx+9FTRGofmQkPK1bIIgTGRI7wWGHtplgBBcoKddGoGo29PEt52eHPzAlt58zeh05va/fBn44oL6NJo7Ia4p0SEBdBCQAAIEF8xqVPzHw1Kl1NSg9u7/3IjYl4F38Rgfa2uzSbZKk2U+lJTbrwcpcKzh8XXNksMnBY2z8NP1acQNK9Z/HLjbGUktSq0ZclKzW5WFL0kCR1X9Wt55XYul8Phy3Q005AjwhKAABgWGkzDnlVEvVZLv2tRS75lKwpl6TINnGqGprap8CFhpDQUZn29+qoE9l/E/xv9zDRXla7dX9Htfb3eVNLNXV0tcZePlM5ma2Ku7rZ+HG9P7GzRoDB0EFQAgAAw0qT0uQ1JTpmCnRKmfKF3J8TvnCAFGvCmRWyKED88vDWuvbpKs+Zlq8Djad0aW6txl5Wpoy0tm7t9Tg6Y6J/3b3u5LD2kp0BuZwlklqjngeA2AhKAAAgYdqMQzVmlPZq8lk84DO+WAsR+JQih1o07ZIkec4r1GlfkvLdpxWIMpgRbYEAE9pylJzUuU/Y0s8RzwsNbTcv45TKrpyg9FS/4k05AzC4EJQAABimTpu0AVtEwMgmrynWDjNNx+RR/tRMOe2+Xk2G6+39O6HTz0KDik2W7FabDje2Ktdv04yrPSodFX/1s8TKl+QfwOMDOBsEJQAAhpGAsXTUeLTTTNMBjY/y/JjYd+5ETkqLJvz5NuFTzML6IbsajFvF01xa/Bmbpi0cpdTk7mEh3hSzM94WY4QnL5tn1QA4cwQlAAD60EmTq1qT24tpZr0cNemhni3k5nifUnRUo3TYjJGrvFj5pYVKTmrrbCjOMUJ70/Vcm267hC06EKtOe2NGUpqzVZMvytbCi49JGsgRHQA4cwQlAAD60FEVqfn8i3SkMVd1rRlq89uDZVEfxmlJJ3fUdZR3Fz6C0/0mGxMMLO31PFNSNCblhCbP9Su5PEWFF5a21wtbqzmijRgLBcR7fk2se3hCR4iam6XUQzu79RkAhgKCEgBg2GgyqdprJmqvmaxA5IMxg//GGqHpvspZZHDpzfNrTitNGU1ZKphcqMLRpcp2tyg12S9jukKNMREPyTSRR+7cbnXUjR1a/N261P6Yz9YUv4qzTys3d+CWYz5yZGDujwKAvkBQAgCcs4Cx1Cj3GT+3pvcP3YzPZ1zaaaZqq5mlk8pT7rgU2WM8cDJ6D+P3I9pza9rbihymsWQCUuGYdFVckq68eTnKzeO5MQAwFBGUAABnrcU4tc9M1IbA+apWcUhJ7FGZzvLuIan7c2miB6lARB2pRU41KFOZY1J14TXFmr84V05XtHli3UdyIqeaBUd3opTF01nfZpMKPQGlphrxcE0AGLoISgAwDLSvdDZKNSrqse7ZjuJE7tekNO025fKaYjnH5Cu/JEMOe3swMMHlASxZVng4sSwjY8IDVLeRqIipaJEP8wyGlpBhnvMq3Bp9fr6SkqQxY3lWDQDg3BCUAGAIazVJ2huYoPXmQu1VuZyjcySr+wQ4K3QEJ+oUMgVXNIs3NS2yjRS7T/NnOJQ3JU+1Y2eocHTkHrEXEehptCbefp1lgY5/7TYpK086fUrS8RNRzwAAgDNBUAKAs2CMdMLka0PgfB1SWbfnycRbMMBS7EASLLN6HvWxZNSkVDUqQxnjszW5NE+Fl0+Rwy6ZiBlfRh2hIqSbkUcIGKt98YCQfSMDTFbjwa72Au1nYLcHlJrSKuVJ7uweuw0AwJBAUAIw5ASMpQZlxb1nJNqN933lZCBHH5lLtE0zVKcc5VfkyJIUtr5X1ON3hqCOd6ZzfbLIfbpGhEJHcExHbavjITVOh192u19uZ5uKyzOUXZGvkguyZE/oT/aKmCVpiTwsAAD9jKAEYMhpUJbeDHxOe0y5GpUhv0KfU9P5366lniPvbwn/t2s/K2KRgMh9Orc1KVVWfo4KRiVp5meKlV7qDpaFDdqEThfraDoQOdJjwv/t7EIgfIAq+GXA3/5vY4OUky95irvKU9OV4JAEAMDIwa9UAH2i3mRpd2CymkyqWtUmSUqSo1dTyKTQZ9zEXiWs4wk0Oq101Zocjb+iWMccJTpemxQxShPRqKRkl19pKYGwZ9mExilLXfe7RNXxPBvLklxJAU26KF1HlKy0XEm25rDY1bkSWzT2GNvPlO+IJU+JS6Xj+6hBAAAQhqAEoE+cMPnaW36t9tS5tfrw1ZKkqVkfyG6lBlNDe5jpPpITHlcil5UOeR+ySEFrwKHsQ0555mQre5JDez7dINlM9+l4RvI1J2vmnEkqHGtiPi7HRBloCqsacl+P3SE1JUtZ0ZsCAADDAEEJQJ9x2Vs0a0arVh9uf196Vbls9o47VzpXKQv+p4sJyS8mcrqaif48m8wcKbXQp90b1spWb5Tqjt0vuyOgpGTJlXz25wYAAEYWghKAhDlZ/47sjpQ+aStypKj5qGQda3+4JwAAQF8jKAEYEhK5ih0AAECkhP4t9vHHH9eMGTPkdrvldrtVWVmpv/71r8Hy5uZmLVu2TLm5uUpPT9fixYtVXV0d1sb+/fu1aNEipaamqqCgQHfddZfa2toS2W0AAAAAI1xCg1JxcbEeeughrVu3Th9++KGuuOIK/d3f/Z02bdokSbrjjjv0l7/8Rc8//7zefPNNHT58WNddd11wf7/fr0WLFqmlpUXvvfeenn76aT311FO67777EtltAAAAACNcQqfeXXvttWHvf/SjH+nxxx/X+++/r+LiYv32t7/VM888oyuuuEKS9OSTT2rKlCl6//33NX/+fL366qvavHmzXnvtNRUWFmrWrFl68MEHdffdd+sHP/iBnE5nIrsPAAAAYITqt9ug/X6/nn32WTU2NqqyslLr1q1Ta2urFixYEKxTXl6u0tJSVVVVSZKqqqo0ffp0FRYWBussXLhQ9fX1wVGpaHw+n+rr68NeAAAAANBbCQ9KGzZsUHp6ulwul2699Vb96U9/UkVFhbxer5xOp7KyssLqFxYWyuv1SpK8Xm9YSOos7yyLZcWKFcrMzAy+SkpK+vakAAAAAAxrCQ9KkydP1vr167VmzRotXbpUS5Ys0ebNmxN6zHvuuUd1dXXB14EDBxJ6PAAAAADDS8KXB3c6nZowYYIkac6cOfrggw/0s5/9TF/5ylfU0tKi2trasFGl6upqeTweSZLH49HatWvD2utcFa+zTjQul0sul6uPzwQAAADASNHvj2oMBALy+XyaM2eOkpKStHr16mDZtm3btH//flVWVkqSKisrtWHDBtXU1ATrrFq1Sm63WxUVFf3ddQAAAAAjREJHlO655x5dc801Ki0tVUNDg5555hn97W9/0yuvvKLMzEzdfPPNWr58uXJycuR2u/Wtb31LlZWVmj9/viTpqquuUkVFhW688UY98sgj8nq9uvfee7Vs2TJGjAAAAAAkTEKDUk1Njb72ta/pyJEjyszM1IwZM/TKK6/os5/9rCTp0Ucflc1m0+LFi+Xz+bRw4UL98pe/DO5vt9u1cuVKLV26VJWVlUpLS9OSJUv0wx/+MJHdBgAAADDCJTQo/fa3v41bnpycrMcee0yPPfZYzDpjxozRSy+91NddAwAAAICY+v0eJQAAAAAY7AhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAERIalFasWKHzzz9fGRkZKigo0Be/+EVt27YtrE5zc7OWLVum3Nxcpaena/Hixaqurg6rs3//fi1atEipqakqKCjQXXfdpba2tkR2HQAAAMAIltCg9Oabb2rZsmV6//33tWrVKrW2tuqqq65SY2NjsM4dd9yhv/zlL3r++ef15ptv6vDhw7ruuuuC5X6/X4sWLVJLS4vee+89Pf3003rqqad03333JbLrAAAAAEYwRyIbf/nll8PeP/XUUyooKNC6det06aWXqq6uTr/97W/1zDPP6IorrpAkPfnkk5oyZYref/99zZ8/X6+++qo2b96s1157TYWFhZo1a5YefPBB3X333frBD34gp9OZyFMAAAAAMAL16z1KdXV1kqScnBxJ0rp169Ta2qoFCxYE65SXl6u0tFRVVVWSpKqqKk2fPl2FhYXBOgsXLlR9fb02bdoU9Tg+n0/19fVhLwAAAADorX4LSoFAQLfffrsuuugiTZs2TZLk9XrldDqVlZUVVrewsFBerzdYJzQkdZZ3lkWzYsUKZWZmBl8lJSV9fDYAAAAAhrN+C0rLli3Txo0b9eyzzyb8WPfcc4/q6uqCrwMHDiT8mAAAAACGj4Teo9Tptttu08qVK/XWW2+puLg4uN3j8ailpUW1tbVho0rV1dXyeDzBOmvXrg1rr3NVvM46kVwul1wuVx+fBYAz1dZmk71ffsoAAAD0rYSOKBljdNttt+lPf/qTXn/9dZWVlYWVz5kzR0lJSVq9enVw27Zt27R//35VVlZKkiorK7VhwwbV1NQE66xatUput1sVFRWJ7D6As1DXnBL82q1ZmjbjUvmaWHQFAAAMLQn9W++yZcv0zDPP6M9//rMyMjKC9xRlZmYqJSVFmZmZuvnmm7V8+XLl5OTI7XbrW9/6liorKzV//nxJ0lVXXaWKigrdeOONeuSRR+T1enXvvfdq2bJljBoBg4hNfh3fdFJHTNe2hk92aHej0ehRM3SiLUlJKRE7GckEurdVVJikgELKjGRM8MuO/3Tf3x9av/NLI7W5pdYTUnOqlJwsjZko7atuPvuTBQAAw15Cg9Ljjz8uSbrsssvCtj/55JO66aabJEmPPvqobDabFi9eLJ/Pp4ULF+qXv/xlsK7dbtfKlSu1dOlSVVZWKi0tTUuWLNEPf/jDRHYdwBkqsXbry9avZIzRP6pC2810Hcg9oCMHW3RwR558/iRZMuqKMO0sKWybkXQivDBYYkmyrK7aVkRboa12tdteJ8nWJtsEo/RZk5SRld4evCJ2NxFfdGu9c3uMw0Zu73yflCRZ/brGKAAAOFcJDUom1qeJEMnJyXrsscf02GOPxawzZswYvfTSS33ZNQB9zLIkp1okS3JJGh04qtptH8tm0lXUEVsig40tSnAKa1NRhptC2rGC/4m/b6ucOqwx2nc0X7Y9rarbM1r2/GxJEeEmIiB1+xEWGZRMeFEgon6675ganHnyePwqmOpWXWuzkpiFCADAkMBt1gASYpTtoEbp4EB3I6gpkKLtmqG13ku18+WmjvEpSRFhzFL3Ua7wMhN3RKtz3866AW3XbiWrZHaOxk9Nln/aeNXU+aKPSnV0JVpQm1jmCm4zRspKlk7VS3Unu9eN7L4JCXih9VzJUro7Sj8AAABBCcDIkGJr0kyt0TTzobxmtFqUHLNu7Cl9sepHH/mSpFrlaXdgsnJGXajqPek69ukWWZYUeqNVe3jpGnWzrM6SLuvChs6MZCyluFq129HWXjFsZC1G1DPtI3/JSW0qLM9S2YV5kjvnjM4VAICRgqAEYESxW36Ntvb32/HSzCkdso3Vzpd2ydcRzkIDjCUTPpUwoixSaATydbwiR8WitdHZtk1+zfhKsWzuVB08YFe+72TYiFNn86EjT6FTCk1Ivc6FNALRDh/SZiCgrhG8kLbz8v2yPLnKyIzZfQAABgxBCQASKM+q1mf1Rxl7jJupdOYjWGfruAr1iZmvg5uSdWitTadaT3Ycv117mDFho1rRtY9oWVaUm7UiRLYT+jZgLJVMcKp04RSll2XJnR2ltRhTCKP2ykin6qQMf7y+AwDQOwQlAEiwJKt1oLsgSXKbkyrUITVsatB42aPW6R7a4i22ES/gmR5HyA6aMu08MEb7drSpYEyqssqyZDoDWJRFNiyrfXQqMnyFVg34LaWn+eXb0dS1zVghdbuWTbRklJri16Sxjcq9cHyccwEAjEQEJQAYIVKtRs2yqga6G0F+Y9cRU6KNh87X7oOTVf1u6JKAXaNVobko3pLwoZHp05B2uu9jySaj0qk2TZ6VriNpRbKfDAlTYaNY3YfWoq6KGKVbJspoWLf9Qt4bSTZLKigM9DCiBwDoDwQlAMCAsFt+FVt7NdrsVZ3J1mmlxa1vO4cpipFhqVa52rZ5hl7bNEbJVU4Vr2qUzYoxftY1NzHk31hJpnsLJmSaYrCp0KXoLUsOu1FueqOKzytU2lWjlZ7RP9MxAQCxEZQAAAPKsqQs66SydLLfjlmowxpvtuiwKdWWPbN1dE9BeJ96CGXRF9qItU/P0xdtCsgxM0s2y8hhN3Imdd1o1Tmm1jm6FWsky8iKeh9XIKJ+V0iz5HIGlHleqTyegOzRZ2MCwIhFUAIAjEgOq02l1m6VmN3yD+Cvwyalaa+ZqG2fzNSG9SnK/qgtZLXC8JAVuhJ812IasXSV2zoXHTThY2Gtxq78cadVVnBScxbmyFYxSXZbD1MF1b0sVng73WjrYZwQAAYvghIAYESzLMmhtgE7fobqNN36UJPNpzpoynRiV0Gc2uc2Ja/zQcidTpkMHdg5XjtMlj5aG1DplBbZrK713tunBppubajz3q3OstB7uUKmGhpJWalNqv+0LvwsOuuHNO10+DX+8lIVFTTLZjvrUwSAPkNQAgBgEHBaLRpnbdM4bevX49abLO01E7Vj+zRt3Z4R5V6w3kwzDH/qsRV+Q5c+iHn0rnb8SlLuqsOacX6KZo85rOLLJsluM1FqdryPttBG3EUzot9XFjlCZrMkd/rABWcAgwdBCQCAEcxt1WqG9YEmm09Vr+xuC7v313O+fCZZuzZN0Vubxuo1OVX2wn7ZIx+m3C3rxApx0UNR7CU4jOxWQCmOFk28oEAX/bc8pafyQC5gpCMoAQAAuSyf8uUduA5Y0mizV7XK0x4zWd5PS6I8jau3we3swt2YC9w6cSpZ21/dq9QZU7q3GtKsbfsnYf2LHMEKBML7Hm0MzoQ946uzna5tNksq+cx4ZbsZ4QIGAkEJAAAMCpYlZeuYsq1jChgralDqdVtnEJb8cqhGRdq5dqo2rzF6Q8kqmLo3Spvt2se5MnvxvKsoI14R+0Q2YYyU7PApw9Gk2Ze6lXzC1augFOv5XLHfxw9ykfsYYynJEeD+MYwoBCUAADDo2Cyjc128otfHUqtGa5+KtE8nrXxVm9Hyb469XnrPISzekvDx+ZSsJqXpkMlXq7Err6ZWH9rDpwEGYtxvFb0rPd+bFbesY3GO3PTTKshs1Ny/H937YwNDHEEJAABA7aM9OTqqHOvogPbDZ1zyqli7Ppqiw+tqO4JZV3zpzWhZrCXmQ8tN1AU4ut4HZClZTZp4cboKLx6lk6dTtPdQSrBO9FGoiJGqOAtsRKsfKtvdqtysll6M3AGJQVACAAAYRFyWT2OsXSo2e1Rv5civs5/vdi4Zo1VOnVS+tr07Vp+841X2LI8+eXdjsLwzaIUeI7g0vOl+/M6c1P35YFa37UaWbDKqqMzW5CuKVVzYLIejf0YYgU4EJQAAgEHIbgWUrWMD2gePDmqMtsurYu37ZKKaQj469hTCznTSn6XQZ3jZ5Dd27Xa0qLYxVesdbUp2tspmtY+ERXvwsYwVHKHytWUoz31K9U2u7vWi9ir+cvMZyS1y2APd6mB4IygBAAAgplSrsd+f8dVo0rVJczUqLaB9G5LU4nfIr/b7xqwo0xC7jUpZ0sH1kpQa1m68aYuW1b3MUnu0c9ltmpi1Xxd8rkjpyS1ne1oYYghKAAAAGFSS1aRcq1on/nZUGdoRo1b/TcWrNqO1WznacDxV49wnNP7ismBZzZpNPa7QGFnebRXCOPunOZo0Z9EYOR0826u/EZQAAAAwqNgtv8Zry0B3I6hMW3VCBTr4QZne0yi9v/pASKk7xr1Y56Zz9Msvt3bUGRWnH9Plf5/Xr4tbxFqAw7LMiFhkg6AEAAAAxGG3AsqXV/mWV6dMhlrl6mGPvhvt2m0qVJZhaVvtWO1+SrLb2u+VMibKSFXceBb/PqyOBuKzJJetRZZladF1LuWkN/XY/6GMoAQAAAD0UrrVIKmh346XokZV/TVdrTqkgLqe7xUtEp3NM76i7ROrHb/suvraOu1tKNa+44Vqbm2PErGWee+Ww+IsBx+r5537OB1tKnQ3ymbrvymXBCUAAABgkKqwPjr3eXx9ZKOZq+O+XPn8Sap6raHjwdDtoi2yESnaghmdjKw4p2nUFnDI7QyoNMOr8xeVKDmp7SzO4MwQlAAAAAD0qECHdXBV+2haT5MP+5rfpGm7RmmbMrX1pEOFqfVx68daDt7IUpJ1olfHJCgBAAAA6FGBdVgFA3VwSzpt0uRVsbxVpTocjDExRq/iNJVsejd1kqAEAAAAYNBLtRo1TttUot06rfSzbqdVTb1ab4OgBAAAAGDISLJalamTZ73/afXumVS2sz4CAAAAAAxTBCUAAAAAiEBQAgAAAIAIBCUAAAAAiEBQAgAAAIAICQ1Kb731lq699loVFRXJsiy98MILYeXGGN13330aNWqUUlJStGDBAu3YsSOszokTJ3TDDTfI7XYrKytLN998s06dOpXIbgMAAAAY4RIalBobGzVz5kw99thjUcsfeeQR/fznP9cTTzyhNWvWKC0tTQsXLlRzc3Owzg033KBNmzZp1apVWrlypd566y1985vfTGS3AQAAAIxwljGmF49b6oMDWZb+9Kc/6Ytf/KKk9tGkoqIi3Xnnnfrnf/5nSVJdXZ0KCwv11FNP6atf/aq2bNmiiooKffDBB5o7d64k6eWXX9bnPvc5HTx4UEVFRb06dn19vTIzM/WcfbxSLXtCzg8AAADA4Hfa+PVl/y7V1dXJ7XbHrDdg9yjt2bNHXq9XCxYsCG7LzMzUvHnzVFVVJUmqqqpSVlZWMCRJ0oIFC2Sz2bRmzZqYbft8PtXX14e9AAAAAKC3Biwoeb1eSVJhYWHY9sLCwmCZ1+tVQUFBWLnD4VBOTk6wTjQrVqxQZmZm8FVSUtLHvQcAAAAwnA3LVe/uuece1dXVBV8HDhwY6C4BAAAAGEIGLCh5PB5JUnV1ddj26urqYJnH41FNTU1YeVtbm06cOBGsE43L5ZLb7Q57AQAAAEBvDVhQKisrk8fj0erVq4Pb6uvrtWbNGlVWVkqSKisrVVtbq3Xr1gXrvP766woEApo3b16/9xkAAADAyOBIZOOnTp3Szp07g+/37Nmj9evXKycnR6Wlpbr99tv1v//3/9bEiRNVVlam73//+yoqKgqujDdlyhRdffXVuuWWW/TEE0+otbVVt912m7761a/2esU7AAAAADhTCQ1KH374oS6//PLg++XLl0uSlixZoqeeekrf+c531NjYqG9+85uqra3VxRdfrJdfflnJycnBfX73u9/ptttu05VXXimbzabFixfr5z//eSK7DQAAAGCE67fnKA0knqMEAAAAQBoCz1ECAAAAgMGKoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAEQhKAAAAABCBoAQAAAAAERwD3QEgHmOkY8ajLWaWmpUqqev5yFZXrW77WTIh5WEthr2zyS+3Vacp1sdKtRr7ptMAAAAY8ghK6HdNJqB3TYOOqk3X23Kj1vEbu/YFxutD8xlt0Uw1yq2MAmew3JLaM0+3NNQRhCwjK1gYGa6MLBmlJjXLk3pcjTvWa7S1V07j64vTO2MOq21AjgsAAIDYCErod0fUqn8LVMshS9daWUq37N3qHNYYvaurFRg3VhPKJ6mgPFv+jIyuyGPaR5tMyACRUcf7kFfnts56ne/rj0vpJ/br1EG39hqbDvgnSApI6gpToayO99FHqULrh9ezopR1bndYLcq3vDpP78pjHYzZMgAAANr5jEs1Gq1TyjyLvds/i9nMCUm7eqxNUEK/G2e5NFZO7VWL3jYNusbK6lbHL4dGz0hR3iRL3uIseaZn6GRLc5/1IadMOnakUKWTstTqzpfvaG1XCLK6T+8LyJIipvOFhabIwStb1/vOvZKTWuWy+2VkKdXlU0FGk+peqlGNimRM7AjWdYjuUwy7xC+Lv28Xp3zKsk7I6rk7AAAgwQLGUotcZ7RPb3/nD7X2mpSmahXrpMmVXW0quyxfwT9Qh3xucSc1Kju5vtv+oZ+12gJu6S89H5OghAFxhc2tfw8c0xuBel1jy+r349vsUkGxkTFOjcpx6nR9TrAsEIioHDIgFBy1CjGxrP0HWNjIVeg+Rmo6LaWkSMXjpNOnpLRtn2jtG5Y2m/naaObKJn9ECIv8IdLzCJelOB0P1u38b/QfUna1aay1Q9OtNRpt7WNaIAAAA6DFOFWtYtWYIrUpKU7NyM8HkaXD5y+flowcalXxJR45bH65XXXdPs+cbktRs98lT+rxuG2dam3t1TEJShgQn7HcekrHtFnN8poWeSxnzzslgGVJ7mzJnX32fy1pUs8jXfV1lgpGuZSVK2XlSqZ0ps6bJU38wkmd2HxMJiTjhI5nhU0ZjNZwoLPc6hbgjKxos/4U6Ah8ltW9xYZ9J7V7b7G2HpqhIu3TOGtrWL1o0xI7ehr1vHsqiy/aj/dzP45Drcq2jqvE2n2W/QKAkanNOORVyTl9+D7X0Ym+Ht0INzhGThqUpVqTq2zrmAovHq1zXaQ6+iyR3v8+Dd0/tCzyc0f3/aJ9Xoh2QNPRo9h/zLUktfgdcrtOa+5VGfJknpLNltOt3qETbn286nC0o5wVghIGRK7l0EwrVR+b03rDNOh6K/qiDsOVZUm5BVJuQbbGVmZLirjfKkrA6R6Ewr+Iun+EbiNeEW2cqpea9p/UnpVbtHd7tj62ZoT1ub2eifihGzEl0Qq91yu4U7COzeaXLbgtzg/qmD9gu//1zIQcJ9jXiDo2y68sV4M8qSd07MP1KlZigxLTFwEMN43KkNeUKEfV8qpYRt3vMQ79WRz62yH6h9/osyV6I7Ju7A/Z0dvsPvISffuZ9Su03pn1J7IXsz+bpLyUFG0+YdPnFzuV6uw+AhIvsIZ/Juj9nx0j60arF7W9KBUj+9ftc0yM2w66XbGOeq6kNmUkS1JD1P0SgaCEAXO55dbH5rReD9Trq1aOrBH+yTLsLzYDdCmSUyV5spVbcaFmHz6uQwfbfwl25KOoC2Oo4wdYZAhr36d9VCur6aBkJH/AUra7VeVlpxQI+QEZ+sMzEDa6Fv4rxgSi/9A1JmTwzHT/4dvaZqnmuEtHN1Xr4Da7TgbO026rPOLsw8byerFwR/i26L9cI6dDRpb3/Nc2K/Z4Ysy2ooXM6O3Hbzfi6vfYB0nBEHx2+rrfvfuAFCpZTUrVKc20qmSLcx37mjFSrXJ10JTphApi1juXD5IRR+xlGz1fz7M7fnidcx8l6GrnbNs602t7ZscJ//kS7/iJGDHpq18pbXKoTQ7lXF4uZ2uq5i7Ijdrfnj4g16zZFPOnbE/7dtWJtb8tckOPx4i3/VxCRrQ+xv1/Zcj+rQHpcGOBcpPr5E5xy27rv59H6EJQwoCptNKVLEtH1KqtatYUpQx0l9AhNV3SpFyVT+qrFiskSUe9UnbguApn9W5ucF8a75N8n9Zp7Utp2l1c3LFAR4fIPGN1/cIKXaej+weC0F+CJmxTw/5q9faDuhW6JWK0TsaKOQ0i2seTYCMRUyZT7M1KTQpfAj/etAkjK+Z0i87ybttNeP8jzzMQ9sfWyCmdscULSVa8g4Z1Lf6ooyR5Uo8pxyVte6NVJ5Uvuzn7e/TO5MNug7JUY4p0RKXymWSNmp0Zvn9IXyPPo/tx472P+N+3N30M/uHD6jYN12VvUaarIcYHyZ4/mrdPD+5dBI7fXvQ/1iRW//01qzenE/uPa9F+ZvX8B5qu7ZH/v5dykut13mfzNTq7Xg770V70rruK62L/MQDREJIGCkEJAybFsqnSStcbpkFvBOo1xU5QQuI4XZLz/Im6fI4087hNrZ2fgeNMBYg2nTHqXzej1AsEJketF3XRD3XuE/aJuGt7yNej6rcGR/NMyGhe9z50TVRsOOVQWqpf0yeFrwIU61yjn1fvxtjiX6feTdc4+z5G61vs/UPfb3jZq5wMm3a826pjJlXVpihkNKXbRBBJsaeCRqsbLLc663VtD8imKRc6NTqpSXkzy5Q+Y4Ky3eF/TIg5RSXOOXWbQhNSZtv+SQ/XJqQs4jyMseRrdaipNVWfKT8ZtV+DWW+/N6Xe//W/p/bb2+q5fk8B81z7fq51LcsoIzlJUm3MPgLDCUEJA+oKy603TIPeNg26xRQoaYRPv0Pi2WxSXn78KXGD24Qz3sO3zy7X4e1KTR7K551Y+1ObdeSkW21jCzR1bEjBWX2Ajnek8PY6R2mMkQLOVrW0+TS2qEn5OS296fbZGz/+nHY/dtKprasO9FFn+le0XzPxpqvGxl/5geGOoIQBNcNKVY7sOiG/PjSNqrTSB7pLAEageYtHxRwN6+nm5lijOD0tqhLZljHJsqx0pSYnOCQBAHqFoIQBZbcsXWa59UdzUm+YelWKoASg/1nWmdznEQ+jDAAwXJzbwuxAH7jc5pYkrTWNajD+Ae4NAAAAQFDCIFBmuVQml9pk9Lbpv7XxAQAAgFgIShgULrdlSJLeCNT3UBMAAABIPIISBoXLLLdskraoWUcMNzIDAABgYBGUMCjkWA7NtFIlSW8w/Q4AAAADjKCEQeMKq31RhzcC9TL982h1AAAAICqCEgaNSitdybJ0RK3ao6H3tHcAAAAMHwQlDBrJlk0XWu2LOqw1hwa4NwAAABjJCEoYVK7oCEofmcNqC7QOcG8AAAAwUhGUMKhMt1KVI7tOq1V7GjYMdHcAAAAwQhGUMKjYLUuXdSzqsOVk1QD3BgAAACMVQQmDzhW29qC0u/4TnfbxAFoAAAD0vyETlB577DGNHTtWycnJmjdvntauXTvQXUKCjLVcKpZbAePXpwffHujuAAAAYAQaEkHpD3/4g5YvX677779fH330kWbOnKmFCxeqpqZmoLuGBDnfKpYkrd/3+gD3BAAAACPRkAhKP/3pT3XLLbfo61//uioqKvTEE08oNTVV//7v/z7QXUOCzLWKZMnS/uNbVVu7e6C7AwAAgBFm0AellpYWrVu3TgsWLAhus9lsWrBggaqqot/s7/P5VF9fH/bC0JJpJas0Y6okaeuWPwxwbwAAADDSDPqgdOzYMfn9fhUWFoZtLywslNfrjbrPihUrlJmZGXyVlJT0R1fRxyqyKyW1ByVjzAD3BgAAACPJoA9KZ+Oee+5RXV1d8HXgwIGB7hLOwgT3bDkdKaqv26t9O98b6O4AAABgBBn0QSkvL092u13V1dVh26urq+XxeKLu43K55Ha7w14YepLsLk0bfaEk6eP3/t8A9wYAAAAjyaAPSk6nU3PmzNHq1auD2wKBgFavXq3KysoB7Bn6w6wxV0iSNnzwvNpafQPcGwAAAIwUgz4oSdLy5cv1m9/8Rk8//bS2bNmipUuXqrGxUV//+tcHumtIsHEF05WWXqSmxpPaveGvA90dAAAAjBBDIih95Stf0U9+8hPdd999mjVrltavX6+XX3652wIPGH5sll3l5V+SJG1a8/sB7g0AAABGiiERlCTptttu0759++Tz+bRmzRrNmzdvoLuEflI+5SuSpF0bXlbTqeMD3BsAAACMBEMmKGHkys2rUFHpbAX8rdr64X8OdHcAAAAwAhCUMCTMvvAfJEmb3mf6HQAAABKPoIQhYeb862VZNh3es1YnqncOdHcAAAAwzBGUMCRkZHo0tuJKSdJmFnUAAABAghGUMGRMnf/fJbWvfmeMGeDeAAAAYDgjKGHImDjrWiW50lV3bK8O7aoa6O4AAABgGCMoYchIcqZq8nlflCRtev+Zge0MAAAAhjWCEoaUzul3W9f9UW2tzQPcGwAAAAxXBCUMKaWTLlVG9mj5Ttdq14aXB7o7AAAAGKYIShhSLJtNFRd8VRLT7wAAAJA4BCUMOVPnXy9J2r3hZZ0+dWyAewMAAIDhiKCEISevqEKFpbMUCLRp6wf/OdDdAQAAwDBEUMKQNHVe1zOVAAAAgL5GUMKQNOWCL8my2XVkzwc6Ub1joLsDAACAYYaghCEpzV2osoorJTGqBAAAgL5HUMKQVdEx/W7z+7+XCQQGuDcAAAAYTghKGLImzvq8nMkZqju+Twd3VQ10dwAAADCMEJQwZCU5UzX5vC9K4plKAAAA6FsEJQxpFfPbp99tW/dHtbU2D3BvAAAAMFw4BroDQG8c3i+dbLIkI5mQ7Xb7pRpVtkBlUy9VwN8mJQ1YFwEAADCMEJQwaPkDdh0+mak92w+q0ZckS5IsyZJkjJRkDyjf3agv//1/6lSmS85k00OLAAAAQO8QlDAoOdWs5o17VbvhlFJkV0rHdqtjPKlNSWpQlmpLs+V7e4+yZo9TS4OR6chKKSnSEbmUV2Rktw/MOQAAAGDoIihhUCqy9qvIHnuBBr+x6VBgjNbtv0Rb9s/W9g8alVbQEacso7aATbmeZGXNciht/gQdP90sW8gdeabbFwqGLMuSUtLb/wUAAMDIRFDCkGS3Aiq171Gp9uiywIvaaybJf7Rr6GiPmaSU/FI1NFbq8J8Pyh/omLMXjZEkS3Z7QHlZrWobWya7o1mulBj1AQAAMOwRlDDkZduOK1vhz1E6FcjUri25OrF5vdo6VniIl5McalPB+CSlXDJRvqYGWQ0ZMq0KWzzChDzTtq7Fp6x8EzZKBQAAgOGDoIRhaa71lmZZ4eHJUvTFHgKy65jxaN2ui/TeLptUUK+MvPQoycoE/0l2tspx0Rh5pmWorq1ZDkdYjdCqkiR/W9fUPgAAAAx+BCUMS+lWwxnVz7aOaZy1WUdMiT6pma/amryw8q6QZdQmpw6rVPvX18kzPVdFE1JlcrLD73fqSFmd4cgY6VizT56kViWV5MrO//MAAAAGNT6uAR3sVkDF1j4V2/bFrWeMdNR49GlgnjZumKtPN+QrY1Ry1wBUyEhUe8AyynLVK32mQwcyz5cnR3IlR29XkpKSJBsr9QEAAAwoghJwhixLKrC8WmD7syoDr2mvJqu12inFmNp3WGOVPWuUUlxjtP3DWh365ES3OqHT8rLcrSq/LFeWJ1fJqQk6CQAAAMRFUALOQZqtUVP1Udw6LYFkbf84X7Uf1alVH3ZsbZ+cF22BiVPK0EcvH9O4iXZN/OIktWVmh03h68xjll3KzJZy8vvoZAAAABBEUAISbJr1oSZbn/a6fk1glNYfmq9th8q1Y3tAOaPSuhKVZWS3AspIbtXoqZkqrMyX8nMS03EAAIARjKAEJFiq1Sipsdf1M+0nNd5sUbUZrU1H5urEkbzgYhIB2dWoDFUblxz2STrdbFPy7vY1yo0JWUSiYylzE/ZAXUtJSQHNmNWmJneenK4+OT0AAIBhiaAEDEI2y2iUdVCjdLBbWW0gW1s1SxveaNNGeeQuOdxRYiRZsqzo90pZVkD+QJI+sVpU8dkSTbosV80ZuXIkhewe8aUx4RsyMsWKfQAAYERI2EeeH/3oR3rxxRe1fv16OZ1O1dbWdquzf/9+LV26VG+88YbS09O1ZMkSrVixQg5HV7f+9re/afny5dq0aZNKSkp077336qabbkpUt4FBL8t2UvP1hmaZKh0w49V0qPcrPhwxJXJOnyBbjaV1LybJ19ogy1LXfU8dX1qWpKPVkiSHPaD0sfnKnJQv/6RM5Rb29RkBAAAMPgkLSi0tLfrSl76kyspK/fa3v+1W7vf7tWjRInk8Hr333ns6cuSIvva1rykpKUk//vGPJUl79uzRokWLdOutt+p3v/udVq9erf/xP/6HRo0apYULFyaq68CQkGw1a6K16cx2CkjbNuSo9lNLrfJGFJqwh/K2f2Vp9JQkZefWyl7jU2t6QKfq2+f1dY42BUzXkhSdU/4kKTPTyJ8fMmIFAAAwhCQsKD3wwAOSpKeeeipq+auvvqrNmzfrtddeU2FhoWbNmqUHH3xQd999t37wgx/I6XTqiSeeUFlZmf71X/9VkjRlyhS98847evTRRwlKwFmYaG3SGGtnr+vXmhxt2jpXb2+ZLKs0VRmjWrvWlbC65uWZjrDksBtlpjZr9LQs1RYXKS9dSrV11DJSoE2Src9OBwAAIGEG7G6DqqoqTZ8+XYWFXfN4Fi5cqKVLl2rTpk2aPXu2qqqqtGDBgrD9Fi5cqNtvvz1u2z6fTz6fL/i+vr6+T/sODFUp1mml6HSv62daJ1ViduuYKdC2A7N17EChYj0vysimRmXoqGzyH85U2vlJOrWjprMw+E+bu1UpR07Lbg8ofVaZ8vMD7VP9AAAABpEBC0perzcsJEkKvvd6vXHr1NfXq6mpSSkpKVHbXrFiRXBEC8C5sVlGBVa1CvRy3HrGSHUmW9vMTG3ZPFs7Nn+qrLL0ztJgPbtltNaS/AGb0pPe1fyLjC78Qo6sivKwtiK/tttFoAIAAP3mjILSd7/7XT388MNx62zZskXl5eVx6yTaPffco+XLlwff19fXq6SkZAB7BAx/liVlWSc1T3/TTLNGB02ZfPsi/5jR9cTcalOs9Nljdbxhgn7/W6Nkx8ZgrUCUQauMFJ8uuDpLqeeNV4y/kQAAAPSZMwpKd955Z48rzo0bN65XbXk8Hq1duzZsW3V1dbCs89/ObaF13G53zNEkSXK5XHK5eEgMMFCSrSZNsDbHrWMzRrvWp+vkx5ZajFNdT9XtjFIm7Ham00rTmrV2TazYrDkLMpQ+Y2y3EaZAyGISnSNRnf/m5gaUnhF92iAAAECkMwpK+fn5ys/P75MDV1ZW6kc/+pFqampUUFAgSVq1apXcbrcqKiqCdV566aWw/VatWqXKyso+6QOAgVOmrSqy9oXmo7jqTLa27JmlTbsn6YOV6Sqc0LlqX3j4iXyOVHtQsjR6klszL0tX4fxSFRQGZGNRCQAAEEfC7lHav3+/Tpw4of3798vv92v9+vWSpAkTJig9PV1XXXWVKioqdOONN+qRRx6R1+vVvffeq2XLlgVHg2699Vb9n//zf/Sd73xH3/jGN/T666/rueee04svvpiobgPoJ8lWs5LV3Ov6nQtLnDR52m6m69guT6/2s2TUpiQd2pmmtoNZyl57QjnlHmWktoXVMx2JzUhKshtlnVei0cV+OXjALgAAI1LCPgLcd999evrpp4PvZ8+eLUl64403dNlll8lut2vlypVaunSpKisrlZaWpiVLluiHP/xhcJ+ysjK9+OKLuuOOO/Szn/1MxcXF+r//9/+yNDgwQlmWlGMd03y9cUb7HTJjtMNMl82WoV0bTmnLJ/vCnhkVyR+wyWXfo+lzkjXvc5mylU+U3R5eJ3TvyGl+qSlGSc4z6iIAABhkLGPMsJ+0X19fr8zMTD1nH69Uy97zDgCGlUaTLq8ZrRb1bhWIao1W9vklcoyZrJOnU2TJyGYLhIUjq3POoAn+JyjN1arzrspSxnllyswc+B+x+/fZlX54u2aV86gE9I1jJ53auuqAPlO+Z6C7AgBBh0649fGqw5qdvzVuvVOtrTrv+ddUV1cnt9sdsx6TSgAMe2nWKY23tvW6vjE2HfggRXVrA2pR6MIwsUNP6AjVKePWxvUtKp3SpGkXuVUyqqljb6v94bwmfBQq9M9VdrtkmzJBOTk8XwoAgIFEUAKACOO0WaOtPb1eaCLSSZOnrbtmatvOsdq/xSOnrVWRa/lZ6lqiz8jqWoTCSAUTWzTxgiyNqhyt0cV+JSWdy9kAAICzQVACgAhnutBEpEzrpErNTh0zhdq1e6pOKTOiRsRKfSHvfcalPdtH6dD2IiX/fofKZ6bJOa4kuPS5kRW2e7LLr1nl9XLOmKjk5LPuMgAAiEBQAoAEsFlGBZZXBfL2XDlEwFg6YfK1c9dU7TGT9c5Wt3LLm4Ll4YNcRm3GrnVWmybPbNDMK7OliRPkcHSMXnUEqoYGS+nndjoAAIw4BCUAGERsllGeVaM81Wia+VDVZrQC27svQtM5CnVA41Q0P1/2pCl696VG+QOfylLXcuftX0sH0pq06+3T3e6yKs6u06TPjlVOZmtCzwsAgKGGoAQAg1S61aB0q4eVewKZ2v9+khqqNkcsPNEeproCVee2LkbSaaWr+K8HNe8Sl6Yv9Cg91R/WRrx1UY3pas2ZFJA7vS12ZQAAhhiCEgAMYZOtTzROW85q4QkjS0eNRzs2TtMLG0fpnbeMUhzNwdJI7etNhB/IaW9RdnK9Js3z6LLr88+8EwAADFIEJQAYwlKs00rR6bPeP9M6qTKzXdVmlPZunqJmxV8RInThiTY5VXxhhrKc9WpsLtEn/7VPUnvE6hxtMqZ75AqWyZIlI6c9oKLseuVdMv2szwMAgL5GUAKAEc5u+VVkHVSRDp7RftvMdDmsGdpZV6qTbwdklHFmx1VAOcl1mn5hliybUV5EebRpf53bLEs8ZwoAkFAEJQDAWSnQEdW916x8Y1O0SXdWnAf0BmSpVvk6qlH6y7rTKpyVrfV7W9r3MLETUGeLNstooueYJlw5VnnZLedyGgAAREVQAgCclWzrmLJ17KwfzCttU53J1gGN1571E3Vs/bGQcGViNmvJyC+H3la6xry6R7MuTFPFZ0cpyREezEJHpCJHp0IXonA5A/Lk+c72JAAAwxRBCQAwYDKtk8q0PtREs0EtPdwfFapNDh02pdr7yST95ZNcffCOTw5b+6p70UeyrIh3RskOn/KTT6pw9jh5bsw5l9MAAAxDBCUAwIBzWT65dGajOtnWcU0wm+U1xTqwcbwCan/eVOwJf10lLXLKJ0sZ83JUXZ+uN39fE17TdI9bXYtQtL9sllGKs02jMhs09rOTzqjvAIDBj6AEABiyXJZPY6xdGqNdZ7Rfi3HKa4q1e02Fjr1vaef0grByywq0/xttmXRLctpa5U46pVmXZslbl6H8pu4PBe6c7hdv2p/UPdi509pYqAIABgGCEgBgxHFaLSq1dqvY7NEJq0CNm3q/Yl+rnKo1eTqoQp1qS5WMpS2Ho42GdUWg3gSfNFeLMlN8mvU5jwpyWaACAAYaQQkAMGLZLKM8VStP1We0X0CWTihf+z+eKK+KdXL9kTi1o00G7NoWkF3zL2uWw2aUNqtc2/el60RdeFDqHJWybf+kY2+rW5kkOR1+jb9q4hmdCwAgOoISAABnqD1g1SjPqlGTSZX/HH6dbjGzlWJP1cFGj3b/rUGnX1/fXhASgLpiUVLHhq5Ch+WX096m8y51q7HZpbKAZLOddXcAAB0ISgAAnIMU6/Q57Z+to9q6Oks+tcoofH2++DP2jNrkUKvs8img/cmZCpTN1p+fbOheM+S+qEAgsrSrLMXZqvKioxr9mclKdnWrCAAjCkEJAIABNMHafA7PopJOGbcOm1JteSdVp9/eKCvGM6hCF6awFBqCurb7lKKt52WoeHejpoyuUfb5k4PPpwqd4tfQyMcHAMMfP+kAABjC0q16TbI2aqzZrqPWqDOeBhgaoI6YUpXnpKtme53Wbbd06tVPotaTkdKTmtSy8URYW5MuG6fR2fVy2BmNAjD0EZQAABgGnFaLRmvfObVxWunaujqgOjk6nkt1KsYDfKVqSbsUvlrgqldPavz8NE3O2qvzF41Wmqv1jI4fOmrFEukABhpBCQAASJLGaYt8VnKv64eGKCObTipP+96fqF3K0yfH0+Syhwel8GdKxU9CLnuLxrkPnlXgAoC+QFACAACSpCSrVUk6+1CSrnoVaa+Oq1DeD0pUp/DQZSnGQ3yjbPMqU8mX5uuPf/Br3lW5SndFLpkePWiZKHUsyyg7rYnABeCMEJQAAECfsVsBFeiICqx4z5bq2U5ToRNvp6jW5GjrO00xpwB2F17PkpGRTYUXFKgs46QuuKZQ+RmNTO0D0COCEgAAGHQKdFh1ypHbOnnObRlZOrp2lN5Vgd59rVYzPmOX29kYXifmCFX49vmfy1d+xrktCQ9gaCAoAQCAQcdt1cqt2j5rr0S7VKtcHVGJtrxVokDnw3tDRB+1MvLLoSwd17jLcvXRK4d16RfyZLNC78+KPTxlojSZnNTGiBYwBBCUAADAsGdZUraOK9s6rvFmyxkto+5TimpUpM1/S1WzUrWzNuUMpgJ2l5XcoLEZhzV3UamcDv9ZtwMgsQhKAABgRHFZPkm+XtdPVaOydUxjtEPVGq2Ta/PCymOFpmiDRgFZ2qY8pV6Roz88Y1S5MCesXrz4FW16YJLdr6LsBgIXkAAEJQAAgF5Itpo0Rjs1xtp51m34jV0fmkt19HWvjqhUu96pV7QFKKIxsiLKjAJyaOxFWSpOP6qLPl+oVFb2A/oMQQkAAKCf2C2/xmiH2pSkMm2PWudMpvWdVK48qW1qbE3R//cHv1KTWrrViTYSFf1urK56Nhkt+m8pSnG29bovwHBDUAIAAOhHHutgn7UVMDZ9uipDAfnk09mHms5l1I2kK69p0MFTHnnrMpSV2hRWL9bqgMHykK+dDr8ykrsHN2CoICgBAAAMUaO1R3mW96z3jxy9OqpR+uCvo3RKDapvTZe9Wy4ynTvGbENqX+3PGJs8aac196pCeTJPyWY7+wUwgIFAUAIAABiibJZRivruuU4l2q3R2qMTKtDRNUVqOYePik0mTbmXZ+mtF+vkNzZ5Uo+FlUdbVj3mUuuRGcuSpi8oVaH7FEutI2ESFpT27t2rBx98UK+//rq8Xq+Kior0D//wD/re974np9MZrPfpp59q2bJl+uCDD5Sfn69vfetb+s53vhPW1vPPP6/vf//72rt3ryZOnKiHH35Yn/vc5xLVdQAAgBHLZhnlqVp5qj6ndvZpgg6+0SSnmnRChdorW5RanQnI6vhvrFEnE/HOpn0NrXI721ScVq3KL4w+o8AU+XwrwhaiSVhQ2rp1qwKBgH71q19pwoQJ2rhxo2655RY1NjbqJz/5iSSpvr5eV111lRYsWKAnnnhCGzZs0De+8Q1lZWXpm9/8piTpvffe0/XXX68VK1bo85//vJ555hl98Ytf1EcffaRp06YlqvsAAAA4B/k6IofVvgpfhup6rH8mi1i0yKWj7/k05+9Oa+Pxidr1/6KHnWgP/I3G5WjR6NQanf/5EpZaR5BlTG+/hc7dv/zLv+jxxx/X7t27JUmPP/64vve978nr9QZHmb773e/qhRde0NatWyVJX/nKV9TY2KiVK1cG25k/f75mzZqlJ554olfHra+vV2Zmpp6zj1eqZe/jswIAAEB/8hmX1psLZcnIL7v8iv75LjR8hX4dOcXPyNLkSzPUYpKUm1yrGVeWRJSHi7eohWUZFbgbCVwD4NAJtz5edViz87fGrXeqtVXnPf+a6urq5Ha7Y9br13uU6urqlJOTE3xfVVWlSy+9NGwq3sKFC/Xwww/r5MmTys7OVlVVlZYvXx7WzsKFC/XCCy/EPI7P55PP1/Ugufr6+r47CQAAAAwol+XTbL2rQNTpfL3TGZyMLO3VZGUnGzmsNu1vHKXVK0/Frm8sWVbshwz7jU2ypKK0E7rgmlHKTO39w40xuPRbUNq5c6d+8YtfBKfdSZLX61VZWVlYvcLCwmBZdna2vF5vcFtoHa839govK1as0AMPPNCHvQcAAMBg4rT6bunxLHNcW1d1fiyO/wf2nm5najNJ8ilZJVfb9V//2SqX3a9UR/sy671dwCLafK/u9Swl2326+kuZPfQIZ+uMg9J3v/tdPfzww3HrbNmyReXl5cH3hw4d0tVXX60vfelLuuWWW868l2fonnvuCRuFqq+vV0lJSZw9AAAAMFJ5rIPyqG+eb9WkVG0wF2jnK9VqNnVqUlqwrPt9WLFHprozwZILrrHksrdpR+0YnfbZ47TUfZpgaD2HLcBDheM446B055136qabbopbZ9y4ccGvDx8+rMsvv1wXXnihfv3rX4fV83g8qq4OX1Gl873H44lbp7M8GpfLJZfL1eO5AAAAAH0pWac1xtohI0sZCVhN77gK9f5fM5Slerkusun/+4NfsWNSu/YHCnesLBjSJ2MsZbpO6/yFhSp086yrSGcclPLz85Wfn9+ruocOHdLll1+uOXPm6Mknn5TNFj6PtLKyUt/73vfU2tqqpKQkSdKqVas0efJkZWdnB+usXr1at99+e3C/VatWqbKy8ky7DgAAACSUZUmFOpSw9j06qCalqlrFOvrugZgLWfSGkaWjOi2fP0nG2DTpktFKSeo+whQ5FbDbYhgR5TVrNqlg3lTlpDcN6WddJewepUOHDumyyy7TmDFj9JOf/ERHjx4NlnWOBv33//7f9cADD+jmm2/W3XffrY0bN+pnP/uZHn300WDdb3/72/rMZz6jf/3Xf9WiRYv07LPP6sMPP+w2OgUAAACMBCnWaY3VdpVop/xxPs73tOR6nXK0z0zUuIyDqm7K1da3DkXdJzLoRK0Tti1LNX87Ip/fqWRHq+YsKFBJTp2SHIG4/RlsEhaUVq1apZ07d2rnzp0qLi4OK+tckTwzM1Ovvvqqli1bpjlz5igvL0/33Xdf8BlKknThhRfqmWee0b333qv/9b/+lyZOnKgXXniBZygBAABgRLNbAdl19otaZJhapVqntGalJSn2Qmm9F7oEu00Nxq2Lr/Fr4xuteteXriRbQJZloi6vfqYLXSQ7WjRnQYGKc+rlsCcmgPXrc5QGCs9RAgAAAPrXp4F5slltSlKLfCYl7nLuvX3gcGc9v+wa/Zki+Y1DntRjKr+8TLWnk7X7nT1D8zlKAAAAAEaGMdZ2NSu1/U0vpu/1rGufEypQ3VvbVPl3Dh085dG7L52QJaPc5NNqC8R/vpa/h/JOBCUAAAAAfS7TOqlMnUxM40baY8r14guS5Ot4STslrVFx7P0kuVQdt7wTQQkAAADAkFJgHVGOjvZcMYom09qregQlAAAAAEOOwzq7h+Xa1bvFH3o3QQ8AAAAARhCCEgAAAABEICgBAAAAQASCEgAAAABEICgBAAAAQASCEgAAAABEICgBAAAAQASCEgAAAABEICgBAAAAQASCEgAAAABEcAx0B/qDMUaSdNoEBrgnAAAAAAZSZybozAixjIig1NDQIEm6KbBngHsCAAAAYDBoaGhQZmZmzHLL9BSlhoFAIKDDhw8rIyNDlmX1Wbv19fUqKSnRgQMH5Ha7+6xdtOP6JhbXN7G4vonF9U0srm9icX0Ti+ubWMPh+hpj1NDQoKKiItlsse9EGhEjSjabTcXFxQlr3+12D9lvlKGA65tYXN/E4vomFtc3sbi+icX1TSyub2IN9esbbySpE4s5AAAAAEAEghIAAAAARCAonQOXy6X7779fLpdroLsyLHF9E4vrm1hc38Ti+iYW1zexuL6JxfVNrJF0fUfEYg4AAAAAcCYYUQIAAACACAQlAAAAAIhAUAIAAACACAQlAAAAAIhAUAIAAACACASlXti7d69uvvlmlZWVKSUlRePHj9f999+vlpaWsHqffvqpLrnkEiUnJ6ukpESPPPJIt7aef/55lZeXKzk5WdOnT9dLL73UX6cx5Dz22GMaO3askpOTNW/ePK1du3aguzTorVixQueff74yMjJUUFCgL37xi9q2bVtYnebmZi1btky5ublKT0/X4sWLVV1dHVZn//79WrRokVJTU1VQUKC77rpLbW1t/XkqQ8JDDz0ky7J0++23B7dxfc/NoUOH9A//8A/Kzc1VSkqKpk+frg8//DBYbozRfffdp1GjRiklJUULFizQjh07wto4ceKEbrjhBrndbmVlZenmm2/WqVOn+vtUBh2/36/vf//7Yb/LHnzwQYUufsv17b233npL1157rYqKimRZll544YWw8r66lr35bDEcxbu+ra2tuvvuuzV9+nSlpaWpqKhIX/va13T48OGwNri+sfX0/Rvq1ltvlWVZ+rd/+7ew7SPi+hr06K9//au56aabzCuvvGJ27dpl/vznP5uCggJz5513BuvU1dWZwsJCc8MNN5iNGzea3//+9yYlJcX86le/CtZ59913jd1uN4888ojZvHmzuffee01SUpLZsGHDQJzWoPbss88ap9Np/v3f/91s2rTJ3HLLLSYrK8tUV1cPdNcGtYULF5onn3zSbNy40axfv9587nOfM6WlpebUqVPBOrfeeqspKSkxq1evNh9++KGZP3++ufDCC4PlbW1tZtq0aWbBggXm448/Ni+99JLJy8sz99xzz0Cc0qC1du1aM3bsWDNjxgzz7W9/O7id63v2Tpw4YcaMGWNuuukms2bNGrN7927zyiuvmJ07dwbrPPTQQyYzM9O88MIL5pNPPjFf+MIXTFlZmWlqagrWufrqq83MmTPN+++/b95++20zYcIEc/311w/EKQ0qP/rRj0xubq5ZuXKl2bNnj3n++edNenq6+dnPfhasw/XtvZdeesl873vfM3/84x+NJPOnP/0prLwvrmVvPlsMV/Gub21trVmwYIH5wx/+YLZu3WqqqqrMBRdcYObMmRPWBtc3tp6+fzv98Y9/NDNnzjRFRUXm0UcfDSsbCdeXoHSWHnnkEVNWVhZ8/8tf/tJkZ2cbn88X3Hb33XebyZMnB99/+ctfNosWLQprZ968eeYf//EfE9/hIeaCCy4wy5YtC773+/2mqKjIrFixYgB7NfTU1NQYSebNN980xrT/cklKSjLPP/98sM6WLVuMJFNVVWWMaf/habPZjNfrDdZ5/PHHjdvtDvv+HskaGhrMxIkTzapVq8xnPvOZYFDi+p6bu+++21x88cUxywOBgPF4POZf/uVfgttqa2uNy+Uyv//9740xxmzevNlIMh988EGwzl//+ldjWZY5dOhQ4jo/BCxatMh84xvfCNt23XXXmRtuuMEYw/U9F5EfNPvqWvbms8VIEO+DfKe1a9caSWbfvn3GGK7vmYh1fQ8ePGhGjx5tNm7caMaMGRMWlEbK9WXq3Vmqq6tTTk5O8H1VVZUuvfRSOZ3O4LaFCxdq27ZtOnnyZLDOggULwtpZuHChqqqq+qfTQ0RLS4vWrVsXdq1sNpsWLFjAtTpDdXV1khT8Xl23bp1aW1vDrm15eblKS0uD17aqqkrTp09XYWFhsM7ChQtVX1+vTZs29WPvB69ly5Zp0aJF3f7/zPU9N//1X/+luXPn6ktf+pIKCgo0e/Zs/eY3vwmW79mzR16vN+z6ZmZmat68eWHXNysrS3Pnzg3WWbBggWw2m9asWdN/JzMIXXjhhVq9erW2b98uSfrkk0/0zjvv6JprrpHE9e1LfXUte/PZAu3q6upkWZaysrIkcX3PVSAQ0I033qi77rpLU6dO7VY+Uq4vQeks7Ny5U7/4xS/0j//4j8FtXq837IOPpOB7r9cbt05nOdodO3ZMfr+fa3WOAoGAbr/9dl100UWaNm2apPbvQafTGfxF0in02vbme3kke/bZZ/XRRx9pxYoV3cq4vudm9+7devzxxzVx4kS98sorWrp0qf7pn/5JTz/9tKSu6xPvZ4PX61VBQUFYucPhUE5Ozoi/vt/97nf11a9+VeXl5UpKStLs2bN1++2364YbbpDE9e1LfXUt+XnRO83Nzbr77rt1/fXXy+12S+L6nquHH35YDodD//RP/xS1fKRcX8dAd2Agffe739XDDz8ct86WLVtUXl4efH/o0CFdffXV+tKXvqRbbrkl0V0EztqyZcu0ceNGvfPOOwPdlWHjwIED+va3v61Vq1YpOTl5oLsz7AQCAc2dO1c//vGPJUmzZ8/Wxo0b9cQTT2jJkiUD3Luh77nnntPvfvc7PfPMM5o6darWr1+v22+/XUVFRVxfDFmtra368pe/LGOMHn/88YHuzrCwbt06/exnP9NHH30ky7IGujsDakSPKN15553asmVL3Ne4ceOC9Q8fPqzLL79cF154oX7961+HteXxeLqtbNX53uPxxK3TWY52eXl5stvtXKtzcNttt2nlypV64403VFxcHNzu8XjU0tKi2trasPqh17Y338sj1bp161RTU6PzzjtPDodDDodDb775pn7+85/L4XCosLCQ63sORo0apYqKirBtU6ZM0f79+yV1XZ94Pxs8Ho9qamrCytva2nTixIkRf33vuuuu4KjS9OnTdeONN+qOO+4Ijo5yfftOX11Lfl7E1xmS9u3bp1WrVgVHkySu77l4++23VVNTo9LS0uDvun379unOO+/U2LFjJY2c6zuig1J+fr7Ky8vjvjrnVR46dEiXXXaZ5syZoyeffFI2W/ilq6ys1FtvvaXW1tbgtlWrVmny5MnKzs4O1lm9enXYfqtWrVJlZWWCz3RocTqdmjNnTti1CgQCWr16NdeqB8YY3XbbbfrTn/6k119/XWVlZWHlc+bMUVJSUti13bZtm/bv3x+8tpWVldqwYUPYD8DOX0CRH2JHmiuvvFIbNmzQ+vXrg6+5c+fqhhtuCH7N9T17F110Ubfl7Ldv364xY8ZIksrKyuTxeMKub319vdasWRN2fWtra7Vu3bpgnddff12BQEDz5s3rh7MYvE6fPt3td5fdblcgEJDE9e1LfXUte/PZYqTqDEk7duzQa6+9ptzc3LByru/Zu/HGG/Xpp5+G/a4rKirSXXfdpVdeeUXSCLq+A72axFBw8OBBM2HCBHPllVeagwcPmiNHjgRfnWpra01hYaG58cYbzcaNG82zzz5rUlNTuy0P7nA4zE9+8hOzZcsWc//997M8eAzPPvuscblc5qmnnjKbN2823/zmN01WVlbYSmHobunSpSYzM9P87W9/C/s+PX36dLDOrbfeakpLS83rr79uPvzwQ1NZWWkqKyuD5Z3LV1911VVm/fr15uWXXzb5+fksXx1D6Kp3xnB9z8XatWuNw+EwP/rRj8yOHTvM7373O5Oammr+4z/+I1jnoYceMllZWebPf/6z+fTTT83f/d3fRV1yefbs2WbNmjXmnXfeMRMnThyRy1dHWrJkiRk9enRwefA//vGPJi8vz3znO98J1uH69l5DQ4P5+OOPzccff2wkmZ/+9Kfm448/Dq661hfXsjefLYareNe3paXFfOELXzDFxcVm/fr1Yb/vQldY4/rG1tP3b6TIVe+MGRnXl6DUC08++aSRFPUV6pNPPjEXX3yxcblcZvTo0eahhx7q1tZzzz1nJk2aZJxOp5k6dap58cUX++s0hpxf/OIXprS01DidTnPBBReY999/f6C7NOjF+j598skng3WamprM//yf/9NkZ2eb1NRU8/d///dhod8YY/bu3WuuueYak5KSYvLy8sydd95pWltb+/lshobIoMT1PTd/+ctfzLRp04zL5TLl5eXm17/+dVh5IBAw3//+901hYaFxuVzmyiuvNNu2bQurc/z4cXP99deb9PR043a7zde//nXT0NDQn6cxKNXX15tvf/vbprS01CQnJ5tx48aZ733ve2EfLLm+vffGG29E/Xm7ZMkSY0zfXcvefLYYjuJd3z179sT8fffGG28E2+D6xtbT92+kaEFpJFxfy5iQR3IDAAAAAEb2PUoAAAAAEA1BCQAAAAAiEJQAAAAAIAJBCQAAAAAiEJQAAAAAIAJBCQAAAAAiEJQAAAAAIAJBCQAAAAAiEJQAAAAAIAJBCQAAAAAiEJQAAAAAIML/D55HFEWVAosLAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -139,14 +139,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAERCAYAAACqx6miAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABc6ElEQVR4nO29eZAk2V3n+fn5FUdmVmVdXdVdVX2ou9RS60ASrZY0wAASOulBDEiMYHaQQLs9OwPGAsIYAXPJdseWQxcsDEwbYlaMAUKjgZGMY4UACSFafVTfp9TV6q4+1GcdWZWZEeHHe/vHe+7hERmZdUVGXr+PmZu7P3/u8TwiMvybv+uJtRZFURRFURRl9QnWegCKoiiKoihbBRVeiqIoiqIoE0KFl6IoiqIoyoRQ4aUoiqIoijIhVHgpiqIoiqJMCBVeiqIoiqIoE2IswktEHhORe0XkLhE57Nt2isgXRORhv97h20VEfkNEjojIPSLymnGMQVEURVEUZb0zTovXd1trX2WtvdbvfxD4G2vtIeBv/D7A24FDfrkB+O0xjkFRFEVRFGXdspquxncCn/TbnwS+v9b++9ZxMzArIhev4jgURVEURVHWBdGYrmOBvxIRC/wXa+2NwF5r7dP++DPAXr+9H3iidu6Tvu1plmG7hPYi4jENVVEURVEUZfU4Qu8Fa+2eUcfGJby+3Vr7lIhcBHxBRB6qH7TWWi/KzhoRuQHnimQPER+PLhvTUBVFURRFUVaP6/OvH13u2Fhcjdbap/z6OeBPgeuAZ0sXol8/57s/BRysnX7Atw1f80Zr7bXW2mu3E45jmIqiKIqiKGvKBQsvEZkSkZlyG3gLcB/wOeC9vtt7gc/67c8BP+qzG18PzNVckoqiKIqiKJuWcbga9wJ/KiLl9f7QWvv/ichtwKdF5P3AUeCHfP+/AN4BHAEWgR8bwxgURVEURVHWPRcsvKy13wC+ZUT7MeBNI9ot8BMX+rqKoiiKoigbDa1cryiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTYmzCS0RCEblTRP7M718hIreIyBER+WMRSXx7w+8f8ccvH9cYFEVRFEVR1jPjtHj9H8CDtf1fAT5mrb0KOAG837e/Hzjh2z/m+ymKoiiKomx6xiK8ROQA8L3A7/p9Ad4IfMZ3+STw/X77nX4ff/xNvr+iKIqiKMqmZlwWr48DPw8Yv78LOGmtzf3+k8B+v70feALAH5/z/RVFURRFUTY1Fyy8ROR64Dlr7e1jGE/9ujeIyGEROTxHMc5LK4qiKIqirAnRGK7xbcD3icg7gCawDfh1YFZEIm/VOgA85fs/BRwEnhSRCNgOHBu+qLX2RuBGgEPStGMYp6IoiqIoyppywRYva+0vWGsPWGsvB94D/K219p8DXwTe5bu9F/is3/6c38cf/1trrQorRVEURVE2PatZx+vfAD8rIkdwMVyf8O2fAHb59p8FPriKY1AURVEURVk3jMPVWGGt/RLwJb/9DeC6EX26wLvH+bqKoiiKoigbAa1cryiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhIjWegCKsp7p2QZHeDkhOSEFITkBploLhsAvUu3bql2wfhncB7vkuGAJxK71LSuKoiiriAovRVmBZzjIXp7gbf/uW8hMSGECt9hyLRgTcPhjX6UgqiSWrcmvcs3QupRfTno5GYaV8xhl/ypUQq7chgAzsr3e3/VhqE/9nNHH6tdaeowznMuKx5aey+C4zuetUhRFWWNUeCnKCpxmO+/+95cThQUJxbL9DnzoJRMc1SDGOAVirJcv1ksTW7aJb3PHqPUx1vUb7rNkXTvv8Me/6kQig/KMgW2WbLNEVvWP1/eXSrL+uf3rcp4i9UzURemgOC23XTsj2obPGTwfhkXk6GucbR9Y+u4t7bN0e3g8o8d+duJZxa+inDsqvBRlGTIbE2KIQrPWQ1mRIHAPxqD2sF5NDn7o6om8zlpg7VLhCX2hWvVhULACA8K2fo71FznTOcuJ3fJahz/+1ZrUGha9sFTMnkn8jjpntJ1z6fmrIX5HC8kzCc1R1tdRFlsYZf0dvqOzt+aWoQLuGmbJ9erhBIOvY1S0bnFUeCnKMpxgN39pvsrDf7adX77+29Z6OMoEEAGp4uzWV7zdZha80Be9MEKEriBgR1lyR4njUdZcAGP6OWa3fezmc7Lm1p38oyy0wws16XW+YQWDVxn1KqXYs7WAhr4ALMVnsOT8Mk516fX7fUfEpY5oU1G5Miq8FGUZFtjGqf3wlUc73PToVVW7CERhQRQUhGKIAkMQuHUohjAwBGIJAkMottoPxfWrtsUF04eB0R8qZcszKHphLYTvgXUubktxOhxWUA8ZMDVrqbHBkpCD8tyyX7nc9vGb3Tm1uNO+nCpjU4V+jGrAoOQLqnPP5qOTgavXRdxgktKg+DMDInDpecv36/ct1vz39oKFl4g0gS8DDX+9z1hr/4OIXAF8CtgF3A78C2ttKiIN4PeBbwWOAf/MWvvYhY5DUcZNTkxmQqaSHm9692zVbgzkRUBeCHkRUJj+ulwW77qPrAhrQfgB1rpjxvqgfOvOsf7HcTlKsSZCTbD1hZv4ddkeBv6HqjwW1PrCknMHz++f68Tj+rL6KMpWphSnqxFWcPBDLx77NVfCmL4ANDbw675wrIvGUcdv+9jN5ISVCKwnMtmhbSfFwmp7JWvjsHgbFIODbSFFTdwV/tWKAff2KMZh8eoBb7TWzotIDHxFRP4S+FngY9baT4nI7wDvB37br09Ya68SkfcAvwL8szGMQ1HGSpcWhREau9oD7UEASWBIYmC5gPu3XDG2cRiDF2juR6cwgjGCsbV2L/jKH6qyvXP3vWRFWP141X/obO2HrP9j535GCuN+nMxZukMCsTAk4IZFoXNBLH9slBA8U59+W19QCqhgVJR1Tvk3GrpfpXM+f7Wsk+631f/W1gSf+8c5GGgvTFCJwIzIS7LQWwiX54KFl7XWAvN+N/aLBd4I/Ihv/yTwH3HC651+G+AzwG+KiPjrKMq6oBQnAAudiPse3UEjLkgiQxQZksgQl0voAvCDVSpHHATlj9R5/ImMUQCuhDGl62Lwh2twn0okmrrLpCYgO3ffW4m/UYLQWhn4L7juMin7n4tghEHRuETASd/aKEPWwJVEYV8YUlki3bXddvm6y12jfE1FUSZLENQtistnstcZJQJ/4t8u338sMV4iEuLciVcBvwU8Apy01ua+y5PAfr+9H3gCwFqbi8gczh35wjjGoijjwBmMnaUoCCytb72aNA3oZML0o/dwejEmywOyIiDLA/IiGMhCA+ciDANLFFqi0BCFLp7LrS1h6I5XS2iIAktYHvfnr5agGydBUM+qvID/oSYkFEtczEwpAkv3h2CMj5cZEImjhWPZ11qccDThsuKwLiJHCcsqVucM7uc6ThT2hd0ocTjaWsgSQVgW8O3HIvrvoY9dDAPjYxvVDa0o58tYhJe1tgBeJSKzwJ8CF1zUSERuAG4A2KM5AMqESWmQkWCtINNtZrcbKnP4JS89q2sUBeSFYPw6z91DOs2FwsC2x+6hl/Zjw4bjxIoiqCxBS5C+YAvK7XB4vxRu/bagLvT8OVWQvz9/K1lanGgBsIS49QXx5hdd8JjOFWtr8TKmbhGUJcdM3WJY61uuu97iWLqnqxjFWtHg3AQY73KpI4JPMnHCLAqKSqyVSSjuH49iIBEl9Ikprr+KOWXzM1ZFY609KSJfBN4AzIpI5K1eB4CnfLengIPAkyISAdtxQfbD17oRuBHgkDT1r1GZKBmJ89M32ywuBtx9b4tGw9BoWBqJJUkMSWKJY0sSW8Jw6TXCEMJwBSvQvmvOe3zWOmFXGCfsXIwXFIUTd8YImW/f9tjdZDaga/rxYXWBV98vXXWjkCHxVhdrw8IuGBJ8o84bPmcrCb5xIlL7noVrJxytdf9gOKEmS5JP8kJYuOt+enlEbsIBIVcXdHVEIAyKSpiV4i0MDLEXdnUhV26XffU7paxHxpHVuAfIvOhqAW/GBcx/EXgXLrPxvcBn/Smf8/tf9cf/VuO7lPVGQUhmY4wVWrEluHQ/8z043oMD+VEWFyPSTEhTIcuc6CkJA4gqQWaJI0sUW+IIosi7HmO/9m3n6k4UwZ17Nu69i89f4NUxpi/2bCny7KDYyw0UBqwRth29m8w/hI0ViqIv7s5F8JXxVyMF3JDYW87C1z+HmtVv47hyNwIiEEeWeKW4mLdcfk7XLBNLnHDrZxLnhZCbgIU77+sLOS/echOSmRBjBt21pYiLh8RZ5NvCwBCHRV/QBQVJWKhLVRk747B4XQx80sd5BcCnrbV/JiIPAJ8Skf8LuBP4hO//CeC/icgR4DjwnjGMQVHGjGCIsBbSoEmzBc2WO9LjMqCfSTJMUUCRQ5ZBJ3fbRe4EW7cbkOVOhOQ5bjt3AqZ6ZfHiLbJEkRNvUeSsGlF9uzwWQhj1j63Wf/kuyB/is43lumQ8gq+07pVWPesfxsaA8eLPWVpqgq9wFj5jBsWeE4ulYAx8XNfyysvFOnHBVr7B7f411SKzMmViSRwVjAx0PoeYwNIiV8ZkZjUhN3/nffTShNyEfgnIipDcu1yr8Yhz4ceVgCsqsRaFg9tJmKvVTRnJOLIa7wFePaL9G8B1I9q7wLsv9HUVZTXJiOnQdgHTC3DXbQFRDM2mJUmg0YIksSQNSBoQ1xSYczG69jqlYAv8EgOtEa9tLZjCx4jlkOZezBXOunQwf4xuL6jEW+Hjx4pCyAuWBGWXwiwMBgVcGEEUWgIv3lybJQwmI+TOltK6Nyj0Vt/CB6XgOzcrX2qCvuCrrHql5e/sBd8S4VaL5auLOxmK2xslEtW6V7PIjRJxZ+liNQYn3IxLqikTbObvuI9OlnCq64RbWoSVcKu/finISuHmlpxkYFsF22ZHo9YVZSTC5de/FHP7n9NoQnhRQp7D8RSyU3Blo8fpOSFNIe1BlrlfySCAOLHEMcQJfm1r25xRzIhAGLllWLyBrQQcuD/gCFe9eBR1EVcU0Cv6FrmigEs5SpYJ3Y5UCQClwFtOyA0LM/dw77e5dV/UxRFe3LlYuI308C9F9CStfC4gvi/yTDFo4SsMZIXQs25/29G7yfNgRMxeUNV6O5PYk6GEjHJJIuPKqMQFjaSgEbv96EJjyTYoQQCNxNAYrjt1FsLNWkgzJ9TSvC/cTt/5AAtpg6yIRgq2MDQkXpwlYU4jyohLARcWNCIn1lSobRxUeCnKCAwBWRFRRE3y1D2swghaEbTa8HzegBBnsmpRlcszBhYyyDPIO07gXHlRj9OnIEt9e96fdy4IneUsivpCLYoHhVsUn79YqYu4UXRqIk5Y3n1ap6iJt563COWZtw4VwkH72AULudIiF0eDFrko9qLAW+tGJTVsdFywfD0xA1YUfGMQe/X4vVLoFQVkWYA8cjcL3Zjjp5v0soBuGlYCLggMzaSgGRc0EyfOmuUSF0P3sLURWUa0nSHuLcuFNA9JMyfYTt1+P4tpwsmiTVaEpEVEVkTV31VUE2ONyAm1ah3mJNHZ1aZSVg8VXooygsL2a3N1O/Dwvc5S1Ww7N2O5Hn7wBwGV+7HkuG0MKBrxC7iH3XzmXIp1obYw78RMlkGeOWsHlG43SxTXLGgxxLEdEGqr6SIsrUAko45aUi/mzlfIDVjkrIuLK3In2kq3al70rT91AqGyuMWx7cfFxV681eLm4mhQ8G1llo/fM7D7ZUwtc16eQ5oKvV7AYirYI/cyN5/QzcIBgRZHToy1koJmI6eVFLT8WsXZyjj3aM5U0+3v/Z4rV+yf5ULPv/+9LOTUHQ9wutckzSO6eVxZ00SgEWU0o8yt43I7pxWnWtpjFdniPzeKMhpL4KeFgKQJC9kLFB3IXhAOHdrFieeg13XiIIpcn6QJDb/EjbOzUlXxYLW247bR9yH6ILDyUtZCL4fFHPIe5PNw1d4enUXh1MlSqC21qsVxX6xFMSSlUBuDVe1CWUnI1S1yoV9G6j1PabnJM0iNEwZlcsNBc5SFxX5snBNwQp4tFXClFS6OnFUtHspQLUVcP2N1c1rfzkSZldtueyvK3tE17tJU6KVCtxtgH76HY6caLPam6KYhRREggaUZF7QbOa2GE2VTzZx2I1dhdo6UQm265eqX71/GomYMlUDrpBFztzuB1s0SunlUieZGnNHy4qyVpLTjjFac0ojykddVzowKL0UZQUrDPRAA8Q/U0FtInvjm4CQLRQfy4+4BftWVOzl5DLIuGOuETdLoi7FGy+2frzVKxFu04n5c1/OZ30qoVEndqmYKWMi9O7AHReasaouLzv2Zps6qVgq1MPIWtGXi1JLGUkvfeqGy3Iwws3VHxMYtR93q1svd++eSHYQD5iiLPiM1z8Wth8RbaZmMI+9GXlJaxFnektjVglsPSQyrSZJYksQyM21g9zVMDx03Bno9J8yih+/h1ELC08faLPYijBGiyFRCrN3MmWpmTDdVlF0IQYAXuQU7SLlkhECz1omzTs+JsxOHH+TE4jSLWUKWux+BRpzRjlPaceqFmVu0DMfyqPBSlGUwfhKchdMZpnCWo1GUgqzRsjz9/KAoyxedqHnxi3fRmYeTL7hgfOgLsqTVt5QtF4t1IQQhJENZlsfMYIxaXajlBXQzJ9DyRSfSSotamjrrhfEGDheb5rM7k8HtJFmd+5kElRVuCZaMS10fv4xKbKhb3krhludwaeBcpwu5kGa+pEgWkNWMB4F4oRtZL4D720nshdsKhXs3IkEArZal1SrgupfRxs0jV5Jl0OkGLC4GyJF7ef5kk/lOjDFCs5Ez3cyZbmfMtNyigmw8iFDF7O0g5ZK3XjZw3FropiGLvYjjtz7AyU6bb87toJMlWOtE2XTSYyrpMd3oMZV0icNznxB7s7FBfxYVZXUxhOTW1YzK04BnH49pThlmZguilXxdQ0Q+WP7xJwcFmbXOTZinwqEX7+LE8951mTvB0mz3l6Q5WWvIsOgYZVErvZJZDosp5AuQnYQr9/SYP11a0oTCC4pG09JoeHdsw227khwTuqkJs5zlbbFmdSvj34ZLipTJClkGXW+pPChH6XQDTp12Vrbhwr2lWGskTpAliXH7sa2sTXG8ceuGxTHEsWHbjIG9L2W2dqzTFRYXA/KH7uPx56Y5vRhjrTDdytg+lbJ9usf2toqx1UCkbzXbNRR7Voqy+U7MC7c+xFNzO5hPG+RFSCtO2dbsMNPosr25SDPeWm5LFV6KMgJDANbNcRdGlrnn7mb7NS/n+LPuT2b77oJG6/x/yEW8Gy+xPDnkupxbhOxZ4cordzF3AtKue4hPzUB7G0xNL299mzTDGZMDiQRTTqBZCwspnOy5UhxX7O4xdwJ6PchS5+JsNC2tNrSnvOWj7UTrVmRUgsbiGRIWSrHWS2E+deVNLuke5fRpqeKrypIn4Fx/zYal2TRu3TA0m25KrI1mRWs1La1mAf/opWzzbdbC/EJAcP+9fPOFKR5cSLDAzukeu7Z32bWtt2VLYkyKuijbU3NjWgudXsjcQsJzt36dJ07upJfHNOOUna0FdrYX2NbsbNh/Es4GFV6Ksgy2rHnkJ1J+4sH7AMizEJGXIQI79+VjF0Glleybz/YFmSngmeeFKy7fxXNPgASwbSfs2LN+461KRGpCYgZO0IAm0OxbzhZ7cGIBLk96PDcndDpCnjlLR3vasn3Wsm371hVjZ2KpWLPkXIrgXKF1d6i1ziLZ7cKpFC7Oj3J6PqLXc9mJeSGEgaXVMuzalbPvonxD1V4D952bmTbwOpeReTHO9XtyLuTEvQ9w5KntiFj27uhwya5FWg0tsTApRKDdLGg3O1z89oNV+2I35KmvfJ3HT+7iVLdFEuVcNHWKvTNzm84ipsJLUZbBWshshAzV3YniguPfvIeDL3k5zz8VcdGBHFnlB1MQQnvG8uwxJ8ZMAdt27uYbD8DMLOw9sLGDs0vRcMz0RVkIpJmzAAZBj6eeELAws92y92JnFVPOnQEhDKRcRkAV7gc4C1q3A4vHn+CWww327c24/NJ0Q3/HwhB27SzgO69mD84Vnt15H3c/sgsRy6UXzXPxrs5aD3PL0m4WHKq5Kzu9kMe/PMc9Tx/EWOHimTkOzB7fFGUuVHgpyjKYMtx8mYfNEw/dx+y+V2Ltsl1WjSCEJ7/5gnPTdXfTWYD2cKrYJiCKYWY7nKIBO53V4qlTMHciZe/Fln37N/6P8HokCJzb104dZMclYJ95nDvubvGKa7okyeZ4z5PEkrzuZRwCOh3h+Zse5vHnpnn5FSeYam4uC8tGpNUouPrNL+JqoJcGPPLFU9x89Cou2XaCy3Yc29BZkxvMgKwokyMoi0iO+Pu2FvZe8QoXRL1Grj5jYP++3fS669/dOC7CELbtgIv2WZ57RpZUwVfGTxhCsf9S9u7JeeLJzenrbbUs+990Fbu/7UrufHh3VbBYWR80EsM1b72c7/6BWYwV7njqMozZuOZXFV6Ksgyl+3Bg4hYL+69+ObN7vwUR2L1/cv8ZWwtpV9i/bzfb27uZaewmCOHKl7kMwc1M2oN9jS6tTo/iuZSFBXjZq3Qi4UkSBK522WZmdruhmeTMLWzSdNsNThhaXv62y9jW7PDNU7NrPZzzRl2NirIcYoglJzcBRRFwyVUvozMfUGSGPQeyVa1RZQqX8Xfo0C56HeguujpQzVnnftt/xagJtDc21kLWc9mOV+zs0e1ApwNpT2g1LGlT2HeJZWpm45ZF2IgUBTSee5wnn495zasW13o4q4a1sHjr/aT5FDtm0rUejrICWRERNLprPYzzRoWXoowgJCcS94AvcmH3gZcTNwzbd2VjC6S3fkqbPHUFVtOeq+WVpRA2obHb9ZmZhT2XbOyMPmvLe3X3d9XeHmmP6p7TVBCBqaZlty+XsXOPpdWCpKH+xEmTpi64fsf847zwfMwlF1uufc3ihstuPBuKAvI77+OxZ6bZMR1z3UueX+shKcuw2A2556++SRxYLp6ZW+vhnDcqvBRlJBa88EqahosOnp9Lschd5foiEw5dvZO02y+UGgjETWg0fHmIHa7AaLxBvBzG+PvLXZX7IveCyk9DlKX9Ol0AzbKq/TYnKKemLbM7ykKqKq5WmyL3c3nm/QKt+zlKmgZ0u66URJYLIq7YartlaM0aXvuahU03iXiWwcm5iN5dD3FqIeGiHTHfcuVxDapfh1gLx083ePhLj9PJYq7YOcfemVNrPawLYpP9OSnKeIi8xQsL7anlTU2mcBaxLIUXX72LtOvcZVnmrzPFwGTUUzOrNzXQ+WJteR/lfIRgvIgqJ90eOfl24CbkTRII264KvQQwPePakoarR7YZrSRrRX0qonI+yTyHAxwly12R1FGV7QEiP9l3I7ZMl1MRxTA9ldNILI2GGTnH5WaglwqnToXY+x7g+OkGIpZd23ocvKjDjumNXSZjM5JmAU995SGeO72N070Ws61FLp09wY725nB1r6Off0VZPwiWICiQoDaFS0+46qpdfatV4VyCsa+JFEawfVcpOCZbV6t8IJu8NsFzDof29ZyFI+9bOorczRFYJ46gFVvCCKKGE4kSOKtUGDlRFcVu4md9SJ079Um3q7XfPhg40WQKIfcTcVfLUF3PcvLtKIRGOfF2bCGGVtOwbWZwbsfNZqk6E9a60hCnTodEX7ufuYWEXhqSxAXbp1J2be9x6MCcVq1fR1gL852YZ256iJOdNqe6LcLQsKPV4rIdx9je2ny11bbYn6WinB0RGXFgECxpD3bP7qbVdparqW3OPTbOEg6mGP1wfvGQcCoFVd3yBH3rUxR5gdSC0IunVtu1h5Gb1DqKnJhSAdXH2pp4Lfpu1KrNgDHCQXmMwghF7qxJRSFeRLl9UwxamUrCwE09FYWWRuSys6LQVhbBdsu4zyX0wsr3jfRzGkkvdfMzNr5+D4vdiPlOTKfnHmftZsa2dsbMdMple+dpJlqVfr2Q5cKpxYQXbnmQ070Wp3sNChMylfSYbYUcnD3OTKO7oWt0nQ0qvBRlBIFY4shZvJpNuPzqM59TBpCbIZF01d6ed9PVBZQM1AoKQkj8gzduQDjlRFIpnMLQCar+evO78EoxZIyLCasEUNEXRJWb1AiXho9hjFT77vjZCSNw4igInTUpDC1x4EVqYAlCCAMnhJLAuM8htAShrURV6Ptv9s9lEqSp0O0JnU5A68i9dHohi72IbhZijZDEBVPNnLAZsGOmx4E9C7QbuYrUdYAxsNCNWehGHL/tQRazBgtpQlZERGHBTKPLTAL7t59gOukShVuvaJoKL0UZgWAJsERZl3A6ptdxAeN5Ci/a4zLyssxNRlx4t50INCNLFA+Kpzj2kz5HdfG0cR7QpQCyZqngMbYvhKo+Vrg0cJYha5wIMt46ZK236Pm2lYQQ9MVQGEAQWOLQrYOgdiy0hLHbDsSJ1DCwSCmEpH+NUrDqA3ptMMZZq9LUBfO3j9xDNwvpZSGdXkiaOTNyHBnazZxWkhM1DHunUlpJTjMpNszfzWbFGOikEZ1eyInbHqCbx3SzmIWsQV6EhGJoJSntOKWd5OxoLzKVdIm3oMBaDhVeijICwfDYn99PsN+SZTBT9GhO44PGLdtm3Xbs46ImxfIWn2Fh5MSPsU7wmEL8dt8KZEzfCmSME1HL4YRPKW76FqG+CHJCpxQ2YQhxYPpix4ufsm8QUl1HhdDGxhhIMxfMn6ZCmglTj9xLLwvoZSHdNCTLvV9eLI24oBEbmnEBCcxO92gmBa2kIIn14byWZLnQ80K4m4bM3f4AnTyhm8X08hhrnTegEWe04pRmFDLT6HLR9Clacari6ixR4aUoIwgpSEgJBFotuPplZxdzUA+aLkVQf9uJobwYdIcZvy6ME0hFsbwIqgugMHBWnLgueEoBVBNEzUZd8DiLUCBONJV9wxC1JGwBjKlZMK1gfRu2bHcC3VkvhbxwgmrqG/eQ5gFpHpJmAWkeYIz7wohYkrggiQxJZGjHBXFcMN3KvMhygkrF9dqQF0LqRXAvCzl9x31085g0j+gVEb08qj7LMDQ0o4wkzGlGGY04Y7a1SCPKaEb5po+9mhQXLLxE5CDw+8Be3OwqN1prf11EdgJ/DFwOPAb8kLX2hIgI8OvAO4BF4H3W2jsudByKMk5iUposYizEeY/nn4FLeLxK0y/T9oezzupB1EnkxE0UlrFDTgA1Y+PiiGpCqB5HpCJosljbX+qCxFpnRXTHnJu0FCpVm6Hqa4z0r1Wd79q2P373wDWsFdef2nk4y6NFquubobW1zpVbrrHnqGbEuWNFWH4duD6BuO/sdGRIkoKZthNSsRdYoWYGTpyiELIiqMRvmjshlRYRWRGSFpHbzvuZP0FgaEQ5SViQhDmNSJhpdGlM5SRhRiPKCVVQTZRxWLxy4APW2jtEZAa4XUS+ALwP+Btr7S+LyAeBDwL/Bng7cMgvrwN+268VZd0QUBBJQRi6h9F+OUqSWGamLUniss7KLMLNQF18VCKkFAo1oWEGRIpUlpKzER+zj9/dFx0jhERfmIxuN0PCZVicWDh3IQKuUC7OclMXICLORSrV8aV93Npth3grYq1/IBYEJLAEYvw1Bs9b6fWCwPrSJi7usN/m+6tA31BY6yzbWR6Q5QF5bXv+zvvJTEhWuCU3IZkJKYr+hxwEhjgsSMKCOCzFlGWm0SX2bY0wJw4LtTCuYy74sWGtfRp42m+fFpEHgf3AO4Hv8t0+CXwJJ7zeCfy+tdYCN4vIrIhc7K+jKOuCiJyAArqLJDsbXHYwO6fzyyDyMo7Kmr4bpyjEB6H7Nr9tjbD96N0DFo26VWRJe7ldCpC6BQXOWYTICDEQiPtPuP+w74uBYdGwnPgojznxQV+AMEJw1IRH/TWrY0MiZOm553TLinJWlIIpLwLyYul64a77yIqQwgbkhRNMuQnIh4QTOHdeFBTEQUEcFkReTEWBoRlnftsdi4NiS2b9bXbG+v+6iFwOvBq4BdhbE1PP4FyR4ETZE7XTnvRtKryUdUNCl5AMAbJTHeb+4UHS8r/Uwv2nmhcBhRnt7nHWCJ9lF5TbTkyEXriEoSWS2jGxSODbyiXoC4tSiNSvVRciTvDUxdDE3zZFWVNKgeTKhwiFccKoqP29FkZYuOt+t229ODKB6+uXMuapxP3D4QRTFBiiwBDWtqPA0k7SSkCFXli5bY1vUwYZm/ASkWngfwA/ba09JbVvmrXWisg5OZFF5AbgBoA9mgOgTBjBEmIIxLgA4aRgup0Rh4Y4MkShJQzcWn9UFWU09YD9wgQuycQEfl8ovBgy1gmizl33UtigEkWFCVwWrt8urPjrBC7GbYhSIIXiBE8oThgFpVjy7XFoaMaGUCxRULi+Q33071pZLcaiaEQkxomuP7DW/olvfrZ0IYrIxcBzvv0p4GDt9AO+bQBr7Y3AjQCHpKmRf8pEEYEA9+ObRIb9uzfHHGEXSlktv1413/oHoGX5YwPnMvhEG77mcseXu179tYf7rNRvyfjt6Pblzl1uXKNfd/S4z9R3pXH17rlnybgG3p8VXvNsjlVZj1YqoeMWt134tTHByHsqCQJTWXBDvx2KcdZfMVW724Y4zCtRFIhxFuOakHJrqxl2yoZlHFmNAnwCeNBa+9Haoc8B7wV+2a8/W2v/SRH5FC6ofk7ju5T1SIsFQjF0TnbI8jKeo/wPHYoi6MdplQ8lI3TuvtdlqNkyLqv/AHPbsiSQvGqDoXVfFFT/4Q+1T5oy1srt2IH2atsfH9Xm2mvbA9e2y7aNvs7StuHXXXJ8mTGNfq2zOzZ8fPi6w2M6p/Ey+n0p2wfahsdYnjfC4bDcvUmtTXAxeaU4AirxVAkoFUGKck6Mw+L1bcC/AO4Vkbt82y/iBNenReT9wFHgh/yxv8CVkjiCKyfxY2MYg6KMnQZdXrZvN6d7LW763AtVvMbwf+uB9B9EZUyX1Pb7geZ+vwpM7wfN9vv1g8j76/5Dt34t0DguRVGUjcY4shq/wtJ/xEreNKK/BX7iQl9XUVabFgt8592zvOtDVwGPrvVwFEVRlE2AVoFRlGWY5hSn2LHWw1AURVE2EZouqCjL0JQOWFhMY9rJudXxUhRFUTYmVU3EWjJJGaNbXw8fL4/d9rGbV7y+Ci9FWYHtHOd//qcOb/y5a2oZXMJtH3d/WIbAB7pLtV+nCoIfWg9754cz2c6XUUHdw/l4IwO/WTkwfPjYYJ/R547uO3js2p9+g9sfFfw9IjBcho8N7ZdtowLdhwPxl+4vH9De317+WsPXWWmsGpunbBTKGSKgNmsE1BKFlk8SAjA2OGMiUZV45M+57WM3D/xmut9V/3oDS+DX1LaDJX3c7zQsHxU1SP9s47Lb/VXw61HH6vvCykVvxa5FWtQ5ckia9uPRZWs9DGULUtiQZzgIWELcxIxL/wDLP31gyb5jWIScjUA6d0aUNDiLtjOJvqWicfC17Ijt0VJr1Dmjzl1+zCuNxQ69xpnPHW5f6XqjrzEo7850/fo5a6G8akJyiUBe7vu5TDblimJ+hSzUc/jeL/cOrfSPwThY6e/hbEY6+nu+tO+o7+uo7+DgtdbiO2UHvjPl96X/O9c/vvwxU50feFEy3H+w3dT6+uzaanu4/+DvsAwIJSpRVCYsTYrr86/fbq29dtQxtXgpygqEUrCfx9Z6GIpywZTWhmq/JhBHCdqzEbHl+aP6LHeN5a453CbYZc6fxNPzXK2+K/cdvb/8P2MrnbeSUFZL6sZAhZeiKMoWYKD+GnDhFlZFUc4HzWpUFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZEGMRXiLyeyLynIjcV2vbKSJfEJGH/XqHbxcR+Q0ROSIi94jIa8YxBkVRFEVRlPXOuCxe/y/wtqG2DwJ/Y609BPyN3wd4O3DILzcAvz2mMSiKoiiKoqxrxiK8rLVfBo4PNb8T+KTf/iTw/bX237eOm4FZEbl4HONQFEVRFEVZz6xmjNdea+3TfvsZYK/f3g88Uev3pG8bQERuEJHDInJ4jmIVh6koiqIoijIZJhJcb621gD3Hc2601l5rrb12O+EqjUxRFEVRFGVyrKbwerZ0Ifr1c779KeBgrd8B36YoiqIoirKpWU3h9TngvX77vcBna+0/6rMbXw/M1VySiqIoiqIom5ZoHBcRkT8CvgvYLSJPAv8B+GXg0yLyfuAo8EO++18A7wCOAIvAj41jDIqiKIqiKOudsQgva+0PL3PoTSP6WuAnxvG6iqIoiqIoGwmtXK8oiqIoijIhVHgpiqIoiqJMCBVeiqIoiqIoE2IsMV7K+ucpezmn2U5Cl5iMmJSEHgk9YnrEpARyTqXWFEVRFEU5R1R4bQEyG3OC3fzov91JWkR085ibfu1WOrSZYycZCSkJ1gYIlpjUi7HMC7O0WhK6KtAURVEU5TxR4bUFOMEedvEszXgbzThnG12+/0MvHdnXWujl0RKBdopZMhqkNLBWAAgpiL3VrC7QEnpEZESST/I2FUVRFGXdo8JrE/CszbjFzvNPZBYRWXL8JLv4wV88APTOeC0RaMb5GQUaQFYE9PKYbh7TyyNu+ujtnGY7OQkZCYV1Uz0FmJoVLR1yc6ZEZIwYtqIoiqJsOlR4bQLusAvcaJ7nmrDFVTSXHE9pMBWnY3/dODTEYY/phhN07/7QlSP7FUbo5RG9PKZXRNz04cOcZpaUBhkJObGfydNW8WfDAi3y+6GYsd+HoiiKokwKFV6bgO+QGf4Lz/O35hRXhYPCK7MxguXIsYs4vjhFM8ppxinNKKcRZbTijGaU0ojyVbM6hYGlnWS0kwyAH/jQi0f2sxbSIqpcnV/51du8m3NHJdIG3ZzOihYNxaKVrk61oimKoijrDRVem4BpCblOpviyPc377R7CmuLo0aRl53nu9Da++wdn6WUhnV5INw05efuDHF+cpptH9LIYixAGRSXKmlFGI85oRZnfzwmC1QusF4FGlNOIXGzYSm7OvAjoFd6Klkd89SO30aXtEwUalRWtTBaISElqlrT6EkqxavekKIqiKHVUeG0S3ijbuMnOc4dd4LUyXbXnPjdxptklCi1RmDPVdMLmwNsuW3KdohC6NXE2d8eDnOxM0c1i0jzCWPECyQuzKKMZl9s5zSgjClffHRiFhihMmUqcC3U5K5oxQlqEfTdnLVkg9yLN2ACLEJEviUUrLWgai6YoiqKMAxVem4RvlSm2EfBFe5rX0hdeC8zw0h9/HTtaJ0izi0nilUVRGFqm6uLsrUvFmTE4y1ka0k0j5m5/gNO9ZhVoXxSuLm8cFZU4a3nrWSnQknD1XJt1gsDSDFyyAJzZitbNY5/RGXHzEitaBN7VOcq9qVY0RVEU5Uyo8NokxCJ8h8zwBXuKRVvQltAfEbIi5Imd38GJh3NyL4qSuKCV5LQaBa1GTquR024UNOLijIIoCPDnFUDKJW+5fGS/NAvopk6gzR1+gJOdduUaTPPIX8sMuDb71rPVd20OE4WG6bBHmf157rFog1Y0cBmdUa1gbWlNq1vRtC6aoijK1kGF1ybiu4Nt/Hkxx1fsPG+R7QB0adHNYraFhkPfeznghUMmdDpCtxsQHLmXE6cbdNKQXhZijRBFhlbSF2XVdlIQhmcnFJLYkMSGbVMZe9/8opF9StdmN+3HnZ0Ycm0CJN6N2YhyWnHqY8GcSEuiyVqXziUWrczoTAtfcuPDt7HANk74khsZSWVFCytX51ILWkxKLNlE7k9RFEVZPVR4bSKupsklxHzRnuItOOGVE9EzEdun+g9tEWgklkZiYbuBvS/1vftkGXR7Ad1ugH34Ho6darDYm6LTizBGkMA6MeatZs3SepbkNJKzj/Eadm3uH+HadEIxqATaycMPcKLTpps512ZehGueGLAcVUYn7v3/px+6etm+ZV20Xh7RK5yrc5HpytVZ2PLP1dYEWTZCqPW07IaiKMo6RYXXJkJE+O5gG39gjvGczbhIYnIbU5iA5+eaPHdHm6mpgnbb0G5ZWk1Dq2UIw6XXimOIY8PMtIHd19SixhzGQK/nLGbzPaE4ch/Pz7Xo9EKy3F0wjopKjDUbBc24oN3MaSU5wTlMz+6EoqGRGLavYD3LC6myNnuZs56d7Ew5IZPFI61nzVrsWTPKiMMzu1pXi+G6aGdKGFhudoGMZEnCQDRsPauV3VBXp6IoyuRQ4bXJ+G6Z4Q84xpfsaX5IdpLjLFQL3YidV13CYg+250c5dSrgmWcjOp2AwghRaGm3jRNjbUO7ZWg1LUky+qEcBNBqWVqtgh0A+17i1jXSVOh6cVYcuYcXFpt0ng/HbjUrGc7aXM561qu5Nuduv7+KPevmMVm+vPWsvh+ugfWspJ4wcKbZBcqyG6m3on3VuzrTEa7OqFa8tl+0tt+mWZ2KoigXjgqvTcY+SbiGFl80p3i37CCjgYjQveQqGk1oNGEBJ0iafgEocuh24XQH9nYf58QJJ8rSTNyDvlETZi0nzJpNu+KDOEmccNs2Y2DPNcwMHS+tZp1OwHwvID9y74DVzFqfBFCJsYJW4qxmzfjsY83qiEAzKWgmLi5s3xliz8qyGqfueIC5TruaHsmYlTM3kzBf1aK0Z8tw2Y3lXJ3WQlaEA7XRbv7obXSYXmaGgb6rs+7mLMWbztOpKIoyGhVem5A3BjP8pnmOR+iRkdDJI/ZMF+QZRPHoc8IIpqbdknMpMVB2NQZ6XTjZhWZ+lGPHI55YDOj2BGuFJPEWspb1ayfQojN8u+pWMyjg4pcs6VO3msVH7uGFuaVWs2Zc0G6Mx2pWvR9DsWe89fIlfYZjz8rMzTR3LsAqc1Ns5d5sxtlABmcjzCdS9+xMiEASFSRRwYx3df7ghw6N7Ft3dfbymH8Yqo1WztNpEQQ7YEkrxVk0ZEnTmDRFUbYKYu36j+84JE378Wip20gZzbwt+F+Kb/B22c4r5EfY+32vw7zhu2DPXsBZolpTTmS125ZW2wmv8yVNoduBXgf2FY+z2AnodALywrkwKwuZd1+228YF9o+BeqxZpye0jtzHYi8asJrFkakyMpvnmaF5oWPspqEXaK7uWSeLvXuzbz2LwmJE7Fm+6lM6rSZ1S1paSxpwbs6Y3FvSDMGAUIvIBwRauV1fVKwpirJeuT7/+u3W2mtHHVOL1yakPoXQ1UBuQpIQit0JQQDdFE4uwuWNHs88LXQWhSKHRtMyNQWtKUt7ClptzioIPkncwnYouJQG0PDHShfm813Ymz7O3Jyw2AlI0wCRvguztJSdjQuzztnGmvVS59K0pdXMx3gVRbCi1SyJzQULniCAdrOg3Ty7umfdLGTu8P3M95ocW3DiLM1jrGXJrAGNKB+wosXrwHpWp25J4wxJA9AXapkJyXyttKwIufljt7HADDlRX6zZvlgL/ZGQjLgUZn7ehv52SkiuyQSKoqwpKrw2KeUUQo/yJAcOXs5zZi97vIiKE7ccM40q0CsEFntw4jRcFvU4cQy6HcFaaLass45NuXWjudIrD1J3YWZcSgRs88esdS7MuQ60i74Ls5cKxvRdmC62rO/GHJWFuRJlrNnMtIs1O5sMTSfOItLMvVgYurpm7Ua+alazqu4ZGRd9z5Uj+9RnDej5umfHFhp0a7MGWKRmPcuWFKhthGtTWuNsqIQaTqSWvOtDVy17jrWQm8AJtiIiMyFpEXLLR2715Thicr8URNVE62C9ZS33wi2r1sNtMRkBa5fxqijK5mHNXI0i8jbg13HP/N+11v7ycn3V1XjuZNby3uIRLuEqbvhXv8epq65l59XJOV/HWki70F2ES2d7LCxArytEsbM0Tc3A9LRzXZ6rIDrjPWTudbsd2Jv3XZgDWZitvjhrt84cV3ZBY+m5128fuce5M9OlsWalpazVGE+s2XmPNxe6adS3oN3+QJW5WZ9zMxkSZmtZmHbS1K1ruV+Xgi0noqhkWUJBRIH7glukmpGgtLRFNcvaUiGX6xRSirLFWMnVuCbCS0RC4OvAm4EngduAH7bWPjCqvwqv8+O3i2f5vJ3nP/zYX8CrvpPtV5678FqOIneC6PIdPebnobMgGOOsYu1pmJqyTM8sH8w/jtfvdJzFbG/+OJ1OwMLCYFxZvTRGu7V8aYxxYAz0UqHbOftYs3ZNnJ1LXbNxUZbWKOuezd1+v8/ajOlkrjAtuGmdWrHL1GzV3JprWZh2rSkTDHIT1lyjIbd89NZKsBW+iloZw9ZnOUvb6H11jyrKxmM9Cq83AP/RWvtWv/8LANba/3tUfxVe58fXbIcPFE/w7u/8RV79Q/+e6cvGJ7xGUWY/9hbh4GyP06dc7Fh7ylnGpvw6XiUxVlIUbhyVpWwxqEpjhEE/2L/VHn+w/0rUrWatI/fQqVnNrBUX8+brmrWbudv2Qu1Mk5uvJnkhVd2zbhoyd8eDVVmNXhZT2ADBDpTWcBaznGaUk4RbV6CN4kyWNuMj1UwlzyKg7+MMfI++UDuDeFNrm6JMnPUYXL8feKK2/yTwujUay6blxTSZZQe3f/0vuTb4d6v+ekHgAvJbbThNA3ZCYF0M1464y4njwpOPOzE2NWOZ2QYz21xW5ThjZ8IQ2lNuyUaUxuh24IXO0mD/MKgF+leWMjM2oTgwG8Aydc26XRdrdroXkB25l+dOtljsRitObt7ydclWK/4oCi3TrZzpliutcWCFaZ162WBywPGFaMC96a5X0IhykrCfvdnwdc9acbqmxWknwWAcW5+VppOqkxcBuQlIi6iyuOUm4JaP3kpKc8DaVhBR2MEYgJDirCxt5b5mjyrKeFm3wfUicgNwA8Ce9TvMdY2IcA0v5aanb+LEsaO0Di6fTbZ6Y4BmG57pNZ362QEYOLYI7bzHk0eFxQUhSSzbd8D2WWcVWy0REQSDoqwe7F9ayp7vwEW+iOziYkCWO/fl1JSLKZtq9+PKxukiDAJX3qPdHl3XrJzcvNt1GZrBkXs5Od9wRV795OZhaGh7UdZMykzN1S+dUZ/WaaXkAOjHn/W8UJu73RWnLctrFCYkEEszTmlGGa04oxWntcnRt3ZxVlcU19CMB9+HlbJFS8pEhL5g867SIuTWj91ChykKwpq71GWP1q7ghVlRZZCGtf1RLlR1kyrKIGulaJ4CDtb2D/i2CmvtjcCN4FyNkxva5uIaXspN3MSdt/4xl7xq9a1eZ0MQQHvaZ1VOQTjlSlzsSbo8/ZSwMC8kDcuuPbBzt11112RJ3VJWFpEtJw8vY8pOLsK++cd59rn+dEtJ4sRYubSnDM3G+L+y9cnNt28bPbl5nuNqmnUDqE1uPqp0RunOLMVZHE3mzyyOLHGUVRa//SOK05a1zxZ7ESdue4DTvSbPz8/QyZNqWqckymlFKU0/W0ArdtutKFO35jKIlHOCuri9OgfOQrgZIy6DtOYmzYqQWz5yMylNOpWlLaysbv0s0uXdpAFFlTnar9WmblJlc7JWMV4RLrj+TTjBdRvwI9ba+0f11xiv8+eL5nr+5KK/Yd52+be/+wCyQfLh0y7sa/U4fsxl3+3eY7noYrsmQehnIsugswh706MsLAYsdgK63YAgsJW7sj1lmJ5ywmwt76E+TVPzyD10uv04s9Kd2Uhq5TJ88H+7sTbZmSvRSwM6qUtgOHn7g3Qyl7XZzRKMFUIxTpTFKS1fSqMVp7TjdF3MFrAVKYwsiW/LipBbP3qLT0QYcpNSd5OeffmPcn+D/Nwpm5B1F1wPICLvAD6OKyfxe9ba/7RcXxVe58+Xzdt59Dsa/Pe/+1V+7mO3cumhkd+DdU2WwUVxjxeeEy4+YNl78cawZpTJBp1F2JO6IP+FxcDVRvOFY6fazmU5M12sWimMc8Fan53ZFTrdgNaRe1nsRiz2IrLcPQTjyJXNaDdymj4RYLXjzM6Hcr7NxW7EycP308kSOllMJ08oypi5KKftLWXNOKUdZxt6poDNzHBxXbcdrFj+oyyw2xdtfZFWFtSti7ZyUfeocqGsS+F1LqjwOn++bN7O7I+9jX/3ye/n297+v/Guf/kbaz2k86bIIX065bpv39jWCmsh7XkrWXaU+YWwKoXRbNZclm3D9FQxMVfr2VIKs243oPnwvXTSiEVfkmJUnFmrkfsaZ5NzZ54NZTmNxZ6z+DmrWULXZ2tahNiX0Gj5eLN2ktKMUs3S3GDUXaSlaEtr5T8yb2ErhZutZZH2kxHSKqZteForTURQhlHhtYX5e/NWdr/jdfzh43/Iw0dv4//85JOEq1Vca8wY4wqoXrajx+I8zJ8WpmcsL3rx+v/Oni9pDxYXnCBbWAxYWAjJcqHV9K7K6YKZqfEH9o+TMs6s2xOaD99L17syOz7ODJZmZ7YbOdOtbF0JM3CJAK4eW8SJw86d2ckSenmMsW6GgHaVBJDWlkwtZpuEvAgql2jqRdvN3spWukSdcBus1zZcXLdvYetPa1UKNv2ubD7WYzkJZUIEGMLQcu23/lPuvOcvuOfmz3PNt14P0q8MZPHbvkGEetkg14GlbUs0e63NWLDGL9ZdotwvCnjxxb2qT567pcghz4Q8749j17Q7efdey2Uvshc0mfdGIGm4pcdlRLjg/nJqpWMLEHQe54UXIhY77gd+ZtpZxWZm1o+7MopgetowPQ3sWjpFU+nOLGPN5Mi9HD/VYL4bk+cBrUbO7HTKTDtldipd09iyOLJsjzK2T2XsGzHHZpYLnZ5zxZ48/ADPzW8bEGZx6FyZrTillbhYs3aSbvnMzI1EmUVaT0Y4U+mPMnvUCbVBC1uX9pBgi6rf2HJGhNK6Vk4Q35931FvdNOlgQ7MOfqaV1STAkAQ51776O/ijz+zmnr/7JK9/9ZuXiKb6frldrsv/xqo+FiRYWvJBasItCCCIXb+qTdzcjWEIQQiRuGD5KHLtUQRR5MSV/gfYRwSaLbcUXFpOr0lRQGcBtqdHeebZiCOPNMgLod0yzM7m7JgtmJ5af5YxERfj1mz0szNna8cXF4VTp0Pyh+7nsWdmSLOQRlKwY7rH9mknxtayoGydMkNz21TGvrdcseR4aTFb7DqL2cnFKRayBmkeIVgacUbbB/y3k5R20tOszE1AP3s0pT7n6JlKfhRGKqta6ieJv+Wjt9JhqpoFISceqM1Wd3fGQ4KtXEeiQn89ocJrkyMYGnHGzEzMm69/F3/2P/4rlxw8yfTMcCECZaMRhjC9DRa5jGg3zOLEcbcD0eJRnngy4fR8QCDOArVjhxNjq1HqYpy4WmY57L2aPb6t0xVOnQo5/uD9fOOb28jygKlWxuxUyuxMj9mpdN0JTBi0mF08VDbD2n7JjOO3PsCJTpsn53ZUWZmltaydpEwlPdpJj6k4VVG2iQkDSyvIBqxrK4m1MuEgLSK/hNz84XJy+MTbyWIK23/U9wVaOrBdb9PkgtVFY7w2OXeaN7D/3f+I/NvfSr7rKP/6R76Tn/vQf+Z7f+B9az00ZUIUBSzOw+zC45w4GZJlwvZtBbOzBRftzsc+ufkksBYWFwPk/ns5eTphbqFBEBhmp1J2zPTYta23bqxi50uWCwvdmIVuxPHDD7GQNuikCYUNiMOcqbogS3q041QtxcqKWEsl0NI8oldE3PyR28hIfORZQkZCGVdSZn/Wl4TegEjT79xoNLh+C3O3eR0HfugNtK6+it3XXcp7/+Xb2LVzNx/88N8TBNa5/YK++6/cLvf1j2rzYQycPgU7Fx7n2edjZqYL9u3N2DFbbEgRVpJlcOp0iNx/Py+calIYYcd0ys6Z7qYQYnXSLGChG/HCLQ+ymCWVKANoeUE23egy7QWZ1i1TzoesCOjlMWkR0c3rIi0hpUFeTcZmvSgbFGYxvWp/qz1LNLh+C5PQBYQDexZozRq+963fx+984jdInv8HLrroAEXXxRUUhUu5LgroFYIphMKMCKCnjNWyhAGEYSneLFEIQWgJQ8sT5vIBYReUYk6F3ZoTBLB9ForZS9m9H07NwfETT/DIow2+5RWdde+KXI44hl07C/iOl7ATZ+mbmws5fd8DPPbsDNbCnu1d9sx22T61sR8ESWxI4pQdQ1MzWQuLvYj5TsSxWx/i+MI082mDwoQ045TppMdMs8N00mM66anbUlkRF6fWA3rA8m5Pa6GXR37ar5ibPnwbC8yQsqtvRbOuplrfatajQbfaT+htmaQBtXhtco7Ya7joh9/Enm+5jJd+3+U88eRTvOFNb+fnf/on+al/dcN5XbMoXHHKSqyZ/n7hBVuRixN0ORgrA+e49uWFXRh4ARdQE29uHQbWibjA8vgK4k7E7wcq8M6GXhfSR59iYSHgO/7RwloPZ1XIMijuuo8X5prMzSfs3Nbjkt0L7Jje2CLsbOn0Qk53Yl645SFO95ospE2shalGj5lGl23NDtsaHZJoazz8lMljjLg6eV6gffUjt9GjSUaDlAYF4YA4S+jSoFttJ/Q2TPyZuhq3MI/bK9n3L95CdNVLuPodB4liy4/82Pt44dgxvvSXn12XUwjVBZw1TqjluVTbdetcYQRT9NuLQjCmf35puRuFSF/kBeKsd6VoK7cDsYi37AUCj5vLEen3CwKXuRmIX/v2KrOzzP6U2vYEKQpfpiMHU7h1lsFBOeomq+4GLlZK4OJ9GRftydZFSYrVxlo4fiKkc8fXOLWQcNGODpfvPb3upkVabayF+U7Mczc/wKlui1PdFlkR0YgyZluLbG922N5cVDGmTIzSetbNXTHjmz58mB5NUpqkNKrZCBp0adAhoUeDTrW/XoSZCq8tzDP2APve93Z2vOoqwBUD/Ow/fIGP/vff5Dd/6qNcfdCZjkM/cW4UWqLQEEfG16+xnL7ilcSRsyzFkSWMbLW/DnXbWWOMWwrjxJopBGMZ2vZCz4Kttvv9rb9OUUh1TWv7lkBrxNUxsywrAFeTMIAotkTeJRzHltjvx7Gl0TC0Wm7i7a2KMdA7fB+PPTvDTCvj6oNzNJOtLTQ6vZCT8wnP3vIwJ7tt8iJkutFltrnIjvYCM43uhv7bVzY2xgid3BUz/sqvOmHmlhaGgABTibEmi9U6kfTMFx8TKry2MM/YA8zZHfzjn7qGl7/NvYcn5xe5/Id/lh9/+z/mo//6R7woEFehOXdT12RFMLCfD+1nRVBVIS8JAi/YAkscrSzeorgv3hRlvWDuvIeHHp/l8otPc3DP5nS5ng+lZezpf/gaxztTzPeatOKUne0Fdrbn2dbsrvUQFaWiMMJiljhh9mu306VFj5bP2ISEHk0WadLx6/GLMhVeW5h5O8M37WW85P2v57t/cGfV/s//0+/w5Xse4ht/8GHiMfmWSoGW5QHZCLFWHcsDciNkeYAxNfEmlijoW9xKC1wcGU5f/kqiyFZL7AutxpFdl/WblI1LnsNjf/UoV15yit3be2s9nHXLQjfim1/5GscWp5nvNZltLbJn+hS72vOEGrSvrFOshU4Ws5g1+PtfdaKsS5uUBgGmEmJtFry17Pzcl5rVuIVp0KUQl/J7/+ePMvPqa4hDw/Vv+A7+5O8P82dffZDr3/DKscyR59yUxXm7aawdFG+lOMuLgO1H7ybz7d3CW938MWtrPg+xLhMn8qKtJuJOXfFK4siPM/YiLrREWilfqRFFsP26Qzx994MqvFZgqplz6Huu5BDOXXti/iIe/8ojPPz8PrY3F9m//QQ72otrPUxFGUAE2klGO8mWTP1UGGEh3ctC2uArH7mTY+ylSwuspUmHNvPVciEWMhVem5xYMgob8oqLn2Su26Jz972cKkKuTGfY3mzzO3/0t+x4fv+A29BNd5ETh4VbgoIkzJl+9cuII0MS9cVMHI1vShqRcgqWglbj/MSbMX5SWy/O0iysXKPT37iXLA9IC2GhsswFFEagJt5WcpnOX/HKmtWNgXg3ZXNwej7g2Fcf4aWXqavxbAkC2LWtx653HHCJC6cv4pG/Ex589hKu2PU8+2bm9J8bZd0TBpZtzS7bml3e/aEXVe3GCPPpXubTBn//kbt5lgOktkFExhSnq6UpnbN6HRVeW4AAQyiGS7bNDbT/mze+ilYc8bpLvzHQboyQmZCs8ItxVY5P3/kAaRGS+zZ3PBooCRHVxFoc9gVbEhmSuCAOLUlUjFWwDdxrAElgasUysxX7j2LA6uZFW2ldax65l7wI6OQBp/K+wBtwmdKfWLfuMo1CMyDcnMVtMPhdWRuKAo6fiOjd9RCLvYhXXHGCbVPn/t1R/OT223rs+if76KUB931hkaPHd/OKS55gKplccLOijIugJsj+2Ycur9rTPGSuexlf+rW7OMZeerZJTMo0p4CvL3s9jfHaAjxjDyDYJWbVcWMt5CaoBFlmQtIiJMujASGXFhF5EWJqVqZhwRaHBTOvvqayrvXXxbqP6VrJZZrXxFrZNlK8DcW7lW7TUryFPisxDPuWt1K8qWXhzGQZzC+EhA/cx7FTDTq9iN3bu+zdubhl6npNklMLMbf+xQu8av9RFV/KpqaXR5zstHnpr/yqxnhtZaY4zbPsX/XXcS5KZ+E5F0vTcoKtc/e9zBXRGQVbUoq2MCcOiola2EYxDpfpSuItPHp3tZ8WzvI2MlkB5zati7YyWSEKDaeveCVRrURIFG6uhAVjoNt1tcqSr9/LQidivhvTS0PC0LCtnbFtyvDSy04y1czXeribmm1TGS/5rot59o6TvGjX82s9HEVZNRpRzt6ZUyv2UeG1BZiROR63V/Hp//AoERmv/8BriQNDEubEYU4SFms6l9uFCrZSkKVFRGYCFu+6jznj94ulLlGRUrDlSy1ssRtHuY4jsybWj3GIN3D1xYYtbKNi3nLT7+Pqmg0qr7AUbt4KVwq4MLCVBS6KnAUuCvtTSkVjFHHGuImjixx6aUCWucK67W/cQy8NSfOQbhqS+3hFEUurkdNKCpImXLSjw4tap7d8ja61wFo4+g9H2a/JCoqiwmurcIh7WWAbORFf/chhcuKBpaAfYBSREZFVs89H5Lz+A9fRiPLKqpSExZrP89YXbOfmurCWyoK2XAxb6i1veRFWgi0Q2xdsYT2G7eU1C5sTbVG4Plz4bi7NCxMa9Tpvw/FvuQmYeezu6lgvDyhMv19hZDDr1BMETrSFgSUILAJYyhkIAl+8dlCxifRdr4lfWnFBnBhmp1OSyNCIi001GfZGx1p47Etf57Fje9i3beGMlgBF2Qqo8NoiJJKS8MIZ+1kLOTEZSU2YRXzlI3csEWvucQmCJapmo3eC7XU/ex1JJVJyGlG+bmr7iEASFec8DYox4mLWjLOglSLt5O0PDrhDMxMOZIkGganei9I1Wgm2moVtvcavOQuhE53josw+LYxgrKvu76ZwsoSBqaZwUjYexsDx0w2e+IdHOLYww872FN+y/3FasSYrKAqo8FKGEMGLp7P/kTRWBsRaRsItH73Vz0ofk/t2Q19VhL5nXbC9/ueuoxHmJFHuBdv6slwEgaUZ5DTJgbN3mRRGKuta3f35wm1fG8gczfLIiRA/F1lUWdX68Wszr3lZFbOW1JIONloweJl9qmx8umnI3ELMszc/zFy3RS+P2dFeYM/UAi/e/eyaW8YVZb2hwku5YAKxJKQknJ3Lz1ooiCqRVgq2v//wnX7bCbai9vUMKSoXaOkGff0HXkvDu/0aXqytRwESBpZWkJ3Tf/yj4tfSImThzvs4UXeR+uMj49dqNdhmXvOymlgrfH0yfSAqZ4cxTmAtdGOO3/YA82mT070meRGSRDnbm4tsa3Y4MHtcLVuKcgZUeCkTRwQiciJympxdwbncRpWLM/Prmz5y+5B4i3COT/HXXyrUSjdf4pMK1ut/4+cbvzZcg620sM3d/sCAizQtoiXu0NK6FgVF9f5Mv+blSyxs6gLcXBjj6hH1soBuGnLy8AN0/QTE3TwmL0ICsTTjlFacMhXDvpk5Du1+Zt1ZpRVlI3BBwktE3g38R+ClwHXW2sO1Y78AvB8ogJ+y1n7et78N+HUgBH7XWvvLFzIGZWsQiRNqnKVQK2xYCbSMhKKWVJBVbtGkilMLMAMJBfU4tUaUVYH06yVObTmCwNIIXEzduVAYWZJwkBchJw4/OJBwkBbhQNB7GJrKqhbV6rCVCQdRmWwQjHeWA2Up9SSINAuqwr9pHjB/5/3LCu9ALHGUV27+VgQ7WotcvO0krShb04xnRdmMXKjF6z7gB4D/Um8UkWuA9wAvAy4B/lpEXuwP/xbwZuBJ4DYR+Zy19oELHIeiDBBKQUgBdM+qf2GDM8apZTWhtlxCQaOKTytohPm6tagN44Lac5rxuQm2vAiWzHJQTzjITVi5TF224uDUTFG1FD6o3lbrQCyhGFqvekW1XwbgB4FFxBIIVbvLjvTbvq3sI34fVrfArLVUbt8yacBal0BgDFgEY8RnbZbtg/uFERbvus9t24DcuPpshfUZo37bmIDh+telEI5qZVLioKAR50wHvXVTQkZRtjIXJLystQ8CyNJfsncCn7LW9oBHReQIcJ0/dsRa+w1/3qd8XxVeypoSiiGkR+Msg+aNlQGRlhMvK9RcsLzxIm20UFvvrs/lKKdGOp+4ntLKVtiA3K+d8HBrJ0oCFu68r79vA192InDvrRc39WOl0HHHqcSetUuFymrgBJ9LeOgLQYOAF5CmJiRttV1vDwNDHBhCvx2KcevadhRsvKQKRVFWL8ZrP3Bzbf9J3wbwxFD761ZpDIqyagRiaZyjUFvJojbs+gRbCbRy2QxCrU5pZVMURdlKnFF4ichfA/tGHPola+1nxz+k6nVvAG4A2KM5AMoG51wzP0uhVk8e6Au1vlVtqeuzH6f2+p997aYSaoqiKJuBMyoaa+33nMd1nwIO1vYP+DZWaB9+3RuBG8FNkn0eY1CUDcugUFs4Y/+lQi0eaVEra6n1y3MsLXrbiDIVaoqiKOdJVqycRbRapqTPAX8oIh/FBdcfAm4FBDgkIlfgBNd7gB9ZpTEoypbhXIVamUywXIzaqKzP/hRSG688h6IoyrjJioD5XpO/+5Xb6TBFhykyEp/YtTwXWk7inwL/D7AH+HMRucta+1Zr7f0i8mlc0HwO/IS1tvDn/CTweVw5id+z1t5/IWNQFOXcOddkgsIGS5IJ+uU5+q5PQ4C4EHc/M0G9llrG6z7wuirrs1yv9xIdiqJsTayFThbTzRO+/CuH6dHySxNDQERGkw4tQmY5xiUcJZYzJxqJnUSazwVySJr249Flaz0MRVHOkrrrs75kA/sRxZKppJwLNPRCLSTn9T/z2oEaYWWJBC2HoCjK+WIt9PKIbp7QzSNu+vBhMhJ6NEm9sALnSWjQoUGXBh2adGjQIZCVtdP1+ddvt9ZeO+qYRq0rijJ2zjWZoKQsfNufUirmto/d7Oc56LcXRBSEtTMtETkhBSGZ33Znve4D1xH7WmGlgIsCo8JNUTYZxkhVILgs+HzzR26rJSW5xWGJ/W9UQpeEnBYLxKQ06BLKyu7CC0GFl6Io64Z+4dtzw1oGBFlfpPVnLCj33SsMWtrAxbGFXrCF/irl+rqfeV1VO8u5R4t+4VexGtumKGOknKu2LMKcFhG5Cbj5w7cu+cdsuTI8/ZlIcposepHVIyJb8/p3KrwURdnwiFBNBnW+FDbwwq0UZxHGS69bP3YLBaHf7x8v2/o//H48WEJyAgyB711fB5hKzJVFUaPAEFQFUm1VKHWtHxKKcra4aav6syu4bTd7RW4Cbv3ILf6fn8G/s3zEP0KlxbpuwY6BJp2B6d0isjO6/dYbKrwURVEoEw5SOEf36CiMlUq0lWsn5IIBMVffN4TVfr89AJYqL8FWAq4Ud1I7y9Xt72+/9mde70Xd0ir5QW2KpqWV9S/4rVDWAdX0VH4aqvrMEPUZIwrfVn43be1fB+NntC2q7+jSfzgA/63N/Rl59e13FmScG2/AquwF1iq69tYbKrwURVHGTCCWgHJi9/FTCjtTSa+wklpL29yDtH68bC8frP11vV0YJfqGkWpiLPeqYP2VXFuZ5eondPKi0QycO9xeHrv2p9+A1KwZ4qdZkvp+bZvaiGXICuJep7YvLDuF1Khj5RRV/X2/LqekGtouj1VtVjj88a9WYsXW3rnyHRvdXn9HA/+ODu6f6XPq9+x/OwIvypcKeNcWkfpvS8Gw5bbc32iWpvWCCi9FUZQNRins1gNuXsxgQDAYb6kr3UeWpX3KpexXiZWaCLn94zfV+lG7Vl+kOGRJv2GGj9VnfXDzqdol/epibYlwW3LMVttS2x4cXf9doLr7YZE6SswysD/4DhoVQBsMFV6KoijKeeMe+lvHTaQoF8rKde0VRVEURVGUsaHCS1EURVEUZUKo8FIURVEURZkQKrwURVEURVEmhAovRVEURVGUCaHCS1EURVEUZUKo8FIURVEURZkQKrwURVEURVEmhAovRVEURVGUCaHCS1EURVEUZUKo8FIURVEURZkQKrwURVEURVEmhAovRVEURVGUCaHCS1EURVEUZUKo8FIURVEURZkQKrwURVEURVEmxAUJLxH5NRF5SETuEZE/FZHZ2rFfEJEjIvI1EXlrrf1tvu2IiHzwQl5fURRFURRlI3GhFq8vAC+31r4S+DrwCwAicg3wHuBlwNuA/ywioYiEwG8BbweuAX7Y91UURVEURdn0XJDwstb+lbU297s3Awf89juBT1lre9baR4EjwHV+OWKt/Ya1NgU+5fsqiqIoiqJsesYZ4/XjwF/67f3AE7VjT/q25dqXICI3iMhhETk8RzHGYSqKoiiKoqwN0Zk6iMhfA/tGHPola+1nfZ9fAnLgD8Y1MGvtjcCNAIekacd1XUVRFEVRlLXijMLLWvs9Kx0XkfcB1wNvstaWAukp4GCt2wHfxgrtiqIoiqIom5oLzWp8G/DzwPdZaxdrhz4HvEdEGiJyBXAIuBW4DTgkIleISIILwP/chYxBURRFURRlo3BGi9cZ+E2gAXxBRAButtb+79ba+0Xk08ADOBfkT1hrCwAR+Ung80AI/J619v4LHIOiKIqiKMqGQPrewfXLIWnaj0eXrfUwFEVRFEVRzsj1+ddvt9ZeO+qYVq5XFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmhwktRFEVRFGVCqPBSFEVRFEWZECq8FEVRFEVRJoQKL0VRFEVRlAmxIeZqFJHngaMXeJndwAtjGM5GRO9967KV71/vfWuyle8dtvb9r6d7v8xau2fUgQ0hvMaBiBxebsLKzY7e+9a8d9ja96/3rve+FdnK979R7l1djYqiKIqiKBNChZeiKIqiKMqE2ErC68a1HsAaove+ddnK96/3vjXZyvcOW/v+N8S9b5kYL0VRFEVRlLVmK1m8FEVRFEVR1pRNJ7xE5NdE5CERuUdE/lREZmvHfkFEjojI10TkrbX2t/m2IyLywTUZ+Cqxme8NQEQOisgXReQBEblfRP4P375TRL4gIg/79Q7fLiLyG/79uEdEXrO2d3DhiEgoIneKyJ/5/StE5BZ/j38sIolvb/j9I/745Ws68AtERGZF5DP+7/1BEXnDVvncReRn/Pf9PhH5IxFpbubPXUR+T0SeE5H7am3n/FmLyHt9/4dF5L1rcS/nyjL3vmWec6Puv3bsAyJiRWS3398Yn721dlMtwFuAyG//CvArfvsa4G6gAVwBPAKEfnkEeBGQ+D7XrPV9jOm92LT3VrvHi4HX+O0Z4Ov+s/5V4IO+/YO178E7gL8EBHg9cMta38MY3oOfBf4Q+DO//2ngPX77d4B/5bf/NfA7fvs9wB+v9dgv8L4/CfyvfjsBZrfC5w7sBx4FWrXP+32b+XMH/jHwGuC+Wts5fdbATuAbfr3Db+9Y63s7z3vfMs+5Uffv2w8Cn8fV+Ny9kT77TWfxstb+lbU297s3Awf89juBT1lre9baR4EjwHV+OWKt/Ya1NgU+5ftuBjbzvQFgrX3aWnuH3z4NPIh7ML0T92DGr7/fb78T+H3ruBmYFZGLJzvq8SEiB4DvBX7X7wvwRuAzvsvwvZfvyWeAN/n+Gw4R2Y77Qf4EgLU2tdaeZIt87kAEtEQkAtrA02ziz91a+2Xg+FDzuX7WbwW+YK09bq09AXwBeNuqD/4CGXXvW+k5t8xnD/Ax4OeBeqD6hvjsN53wGuLHceoX3MP4idqxJ33bcu2bgc18b0vwLpRXA7cAe621T/tDzwB7/fZme08+jvvxMX5/F3Cy9qNcv7/q3v3xOd9/I3IF8DzwX72b9XdFZIot8Llba58CPgw8jhNcc8DtbI3Pvc65ftab5jswxJZ7zonIO4GnrLV3Dx3aEPe/IYWXiPy1j20YXt5Z6/NLQA78wdqNVJkUIjIN/A/gp621p+rHrLM1b7r0XRG5HnjOWnv7Wo9lDYhw7offtta+GljAuZsqNvHnvgP3n/0VwCXAFBvAcrOabNbP+kxsxeeciLSBXwT+/VqP5XyJ1noA54O19ntWOi4i7wOuB97k/yABnsL5hEsO+DZWaN/orHTPmwYRiXGi6w+stX/im58VkYuttU97U/Nzvn0zvSffBnyfiLwDaALbgF/Hmdcjb92o31957096F9V24Njkhz0WngSetNbe4vc/gxNeW+Fz/x7gUWvt8wAi8ie478JW+NzrnOtn/RTwXUPtX5rAOFeFLfycuxL3T8fd3mN+ALhDRK5jg3z2G9LitRIi8jac6+X7rLWLtUOfA97jM3yuAA4BtwK3AYd8RlCCCz793KTHvUps5nsDqpimTwAPWms/Wjv0OaDMXHkv8Nla+4/67JfXA3M1d8WGwlr7C9baA9bay3Gf7d9aa/858EXgXb7b8L2X78m7fP8NaSWw1j4DPCEiV/umNwEPsAU+d5yL8fUi0vbf//LeN/3nPsS5ftafB94iIju81fAtvm3DsZWfc9bae621F1lrL/e/fU/iEqyeYaN89msR0b+aCy6Y8AngLr/8Tu3YL+EyO74GvL3W/g5cNtwjwC+t9T2M+f3YtPfm7+/bcS6Ge2qf+TtwMSx/AzwM/DWw0/cX4Lf8+3EvcO1a38OY3ofvop/V+CLcj+0R4L8DDd/e9PtH/PEXrfW4L/CeXwUc9p/9/8RlK22Jzx34EPAQcB/w33BZbJv2cwf+CBfPluEetO8/n88aFw91xC8/ttb3dQH3vmWec6Puf+j4Y/SzGjfEZ6+V6xVFURRFUSbEpnM1KoqiKIqirFdUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhFDhpSiKoiiKMiFUeCmKoiiKokwIFV6KoiiKoigTQoWXoiiKoijKhPj/AczBAH+Ks/2TAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAF7CAYAAADsY3vMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfXUlEQVR4nOz9ebRcV33nf7/3GWu4k65mWZJHbGNjCJjByvTL4MYhhu40TiekWWC6SbLi2KwGZyDuH6F/TgeckPV0EmwTemUlIf0LdAL9hO6nISFNiIGAhWeDLVnCNjaSbU2WdMeqOuN+/tjnnDqnqq50Jd2rO31fa9WqqnNODfdK997zqe/e36201hohhBBCCCGEEAVrqd+AEEIIIYQQQiw3EpSEEEIIIYQQoocEJSGEEEIIIYToIUFJCCGEEEIIIXpIUBJCCCGEEEKIHhKUhBBCCCGEEKKHBCUhhBBCCCGE6CFBSQghhBBCCCF6SFASQgghhBBCiB4SlIQQQgghhBCix6IGpf/n//l/UEpVLldeeWWxv9PpcOutt7J+/XqGhoa46aabOHLkSOU5Dhw4wI033kij0WDTpk38xm/8BnEcL+bbFkIIIYQQQqxxzmK/wNVXX80//uM/dl/Q6b7kBz7wAb74xS/yuc99jtHRUW677Tbe/va3881vfhOAJEm48cYb2bJlC/fffz+HDh3i3e9+N67r8tGPfnTe7yFNU1566SWGh4dRSi3cFyeEEEIIIYRYUbTWTE9Ps23bNizrFHUjvYj+03/6T/o1r3nNwH0TExPadV39uc99rtj21FNPaUDv3r1ba6313/3d32nLsvThw4eLY/7kT/5Ej4yM6CAI5v0+Dh48qAG5yEUucpGLXOQiF7nIRS5y0YA+ePDgKTPEoleUnn76abZt20atVmPXrl3cdddd7Ny5k0ceeYQoirj++uuLY6+88kp27tzJ7t27ue6669i9ezfXXHMNmzdvLo654YYbuOWWW9izZw+vfe1rB75mEAQEQVDc11oD8CnrYhpKpmUJIYQQQgixVrV0ynvS5xgeHj7lcYsalN70pjfxqU99iiuuuIJDhw5x55138iM/8iM8+eSTHD58GM/zGBsbqzxm8+bNHD58GIDDhw9XQlK+P983l7vuuos777yzb3tDWTSUfY5flRBCCCGEEGKlO92UnEUNSm95y1uK269+9at505vexIUXXshnP/tZ6vX6or3uHXfcwe23317cn5qaYseOHYv2ekIIIYQQQojV5byOQxsbG+Pyyy/nmWeeYcuWLYRhyMTEROWYI0eOsGXLFgC2bNnS1wUvv58fM4jv+4yMjFQuQgghhBBCCDFf5zUozczM8Oyzz7J161auvfZaXNflK1/5SrF///79HDhwgF27dgGwa9cunnjiCY4ePVoc8+Uvf5mRkRGuuuqq8/nWhRBCCCGEEGvIog69+/Vf/3Xe9ra3ceGFF/LSSy/xn/7Tf8K2bX7hF36B0dFR3vve93L77bczPj7OyMgI73vf+9i1axfXXXcdAG9+85u56qqreNe73sXHPvYxDh8+zIc+9CFuvfVWfN9fzLcuhBBCCCGEWMMWNSi98MIL/MIv/ALHjx9n48aN/PAP/zDf+ta32LhxIwB/+Id/iGVZ3HTTTQRBwA033MAnPvGJ4vG2bfOFL3yBW265hV27dtFsNrn55pv5nd/5ncV820IIIYQQQog1Tum8d/YqNjU1xejoKJ+1L5Wud0IIIYQQQqxhLZ3wc8mzTE5OnrKXgSwqJIQQQgghhBA9JCgJIYQQQgghRA8JSkIIIYQQQgjRQ4KSEEIIIYQQQvSQoCSEEEIIIYQQPSQoCSGEEEIIIUQPCUpCCCGEEEII0UOCkhBCCCGEEEL0kKAkhBBCCCGEED0kKAkhhBBCCCFEDwlKQgghhBBCCNFDgpIQQgghhBBC9JCgJIQQQgghhBA9JCgJIYQQQgghRA8JSkIIIYQQQgjRQ4KSEEIIIYQQQvSQoCSEEEIIIYQQPSQoCSGEEEIIIUQPCUpCCCGEEEII0UOCkhBCCCGEEEL0kKAkhBBCCCGEED0kKAkhhBBCCCFEDwlKQgghhBBCCNFDgpIQQgghhBBC9JCgJIQQQgghhBA9JCgJIYQQQgghRA8JSkIIIYQQQgjRQ4KSEEIIIYQQQvSQoCSEEEIIIYQQPSQoCSGEEEIIIUQPCUpCCCGEEEII0UOCkhBCCCGEEEL0kKAkhBBCCCGEED3OW1D6vd/7PZRSvP/97y+2dTodbr31VtavX8/Q0BA33XQTR44cqTzuwIED3HjjjTQaDTZt2sRv/MZvEMfx+XrbQgghhBBCiDXovASlhx56iP/6X/8rr371qyvbP/CBD/C///f/5nOf+xxf+9rXeOmll3j7299e7E+ShBtvvJEwDLn//vv5y7/8Sz71qU/x4Q9/+Hy8bSGEEEIIIcQatehBaWZmhne+85386Z/+KevWrSu2T05O8md/9mf8l//yX/iJn/gJrr32Wv7iL/6C+++/n29961sA/J//83/Yu3cvf/VXf8UP/MAP8Ja3vIX//J//M/feey9hGC72WxdCCCGEEEKsUYselG699VZuvPFGrr/++sr2Rx55hCiKKtuvvPJKdu7cye7duwHYvXs311xzDZs3by6OueGGG5iammLPnj1zvmYQBExNTVUuQgghhBBCCDFfzmI++V//9V/z6KOP8tBDD/XtO3z4MJ7nMTY2Vtm+efNmDh8+XBxTDkn5/nzfXO666y7uvPPOc3z3QgghhBBCiLVq0SpKBw8e5D/8h//Apz/9aWq12mK9zEB33HEHk5OTxeXgwYPn9fWFEEIIIYQQK9uiBaVHHnmEo0eP8rrXvQ7HcXAch6997Wt8/OMfx3EcNm/eTBiGTExMVB535MgRtmzZAsCWLVv6uuDl9/NjBvF9n5GRkcpFCCGEEEIIIeZr0YLST/7kT/LEE0/w+OOPF5fXv/71vPOd7yxuu67LV77yleIx+/fv58CBA+zatQuAXbt28cQTT3D06NHimC9/+cuMjIxw1VVXLdZbF0IIIYQQQqxxizZHaXh4mFe96lWVbc1mk/Xr1xfb3/ve93L77bczPj7OyMgI73vf+9i1axfXXXcdAG9+85u56qqreNe73sXHPvYxDh8+zIc+9CFuvfVWfN9frLcuhBBCCCGEWOMWtZnD6fzhH/4hlmVx0003EQQBN9xwA5/4xCeK/bZt84UvfIFbbrmFXbt20Ww2ufnmm/md3/mdJXzXQgghhBBCiNVOaa31Ur+JxTY1NcXo6CiftS+loeylfjtCCCGEEEKIJdLSCT+XPMvk5OQpexks+jpKQgghhBBCCLHSSFASQgghhBBCiB4SlIQQQgghhBCihwQlIYQQQgghhOghQUkIIYQQQgghekhQEkIIIYQQQogeEpSEEEIIIYQQoocEJSGEEEIIIYToIUFJCCGEEEIIIXpIUBJCCCGEEEKIHhKUhBBCCCGEEKKHBCUhhBBCCCGE6CFBSQghhBBCCCF6SFASQgghhBBCiB4SlIQQQgghhBCihwQlIYQQQgghhOghQUkIIYQQQgghekhQEkIIIYQQQogeEpSEEEIIIYQQoocEJSGEEEIIIYToIUFJCCGEEEIIIXpIUBJCCCGEEEKIHs5SvwEhxOr0gr6YDg0sYmwSLFJsYixSLJLsorPrFIsU1XNd2aaW+isSQgghxFoiQUkIseBauskhvYO3/YetxKnFI/c8RIRLQI0UO4s+2bU2kUjTe92TjDRZcNI9gUqjVOl2tl8Vt8v3UxQM2G8uZK/eu6362OpzUtnWfY7ydga8Vt92CYJCCCHEsiJBSQix4E6ygRE1wSXrza+Yy+/cecbPoTWkWpFqRZJapDqLJ1qhs235/fyiS9e6vL30OA3F7cc+8SAaq4g7KRbMEYt0EcNMFNK6vJ85jy1vP/UX3BusGBiy+vapyrsqvpLyq+ePMQGu+lzmmLlea+6wN9e+6vvrf97e71TvvjN9zWKbBE0hhBALTIKSEGJBaQ3H9Fbe/htbgKmzfh6lwFYaG41rpwv3BkteeeeORXneuWhNX1jTKLO9cp1FAa2yx5mgB/3HdbdTCYq5071O+bEaeOzeB4vKXn906Q2P89uXfw1zB8v+fcXXerqAWXxzq8/QG9gGhbWBx5SCZ/5O5gpnlN5df/gcHBwHhb/q8fM5pv81Tv9eq9eDn2f+76P6PSg9XgKrEGIVkaAkhFhQU6wjxWbz0NmHpNVKKVDKnFDapRPP5eTKs6j+LbY8YEIW/Irt/QEQBofN3uO7x3XjTvkx1degqFIyaHvx+LnfR+9jHvvEg1QDIfRXH6v3+8JnKRoNfJ4snPbu697vhtTqMYPeyzydpjJafuZTVUd7q5KqNJy1+pXPHWB7g9xcoXOu6H+q6uugkFj9rs1dSc2/Uad73WKbhE8hlowEJSHEgkqxcVWIUv5SvxWxSpQDZrnOtZKd72rmuSgH1Uqlk1OHz0GV0f5jzHWqTxNWB+7vf57TBdP5hNK5KqXFey/v1737e59roaulpwqBpw+egwJgeVgulIfozh02e4fx9obaQe+pvI8B20713OXnk+Y+4nySoCSEWFATeh0OJ5gJajQ9ByV/0YRY0cpB1Vh5YXW5BtPycNy+YHmKIFgNjqc+TkM1iA4InWnf8/S/pzxs9s7f7M7v7K9U9kac6hDc8qXbwKf6HHN94wbNJu1v0gMaS6X5q1fCVm9IrAbENHtXppJZPqb6Gmn5q+t7H9Xnnut5stdSK+/nai2QoCSEWFCH9Tgf0f8vv/Gf4S/e8f9hyHdwrRTXTnDsBMdKcKwU20qxVYpjJdiWzq7NdifbZ2XXtqWza/kkUQixelRD6PI+UV6KsJmm/YFtUIMeXdxWRSOg3mPKjX56w2H3tiqG9z5274MkOKU409/sp3dbHgbzOZ7d+GT1PM8ApfDXfXRvd9dqSOsNXHPf7wa/3n35a6jK6839PGutoidBSQixYBJtkZR+rfzEzwzhuzWi2DKXxCJJLOJEEScWrSf2EsQOcWoTpxZpapFoizi1SLLb5g9l97eyQmNlwclS5lM428puZ9fdffn27u3ex6nsdveS9u3LP+0rv9Za+kMhhBBLwbKWLkQu5nzNIpz1BL++7q2l7dXjIU2tSndXc7GKUJgHvSLAlZbe6Na78u6xeQOfPJZZpcf1/7FTuntkX5BSvQGsfFwy+DF9aynm7y7pu32+11mUoCSEWDBtmtjExf1mLaZZi+Z+wIXb5vW8aQpJmrUJTzEhKlWkGpLEItXmk0fTSlyZ2z33W0/sJS79MUm1MkFMK3Ra/UOTlP/olDrLleXhSWUXa8BFlUJZbxCzSo+bK6wNeu5yaCvv793evX3G/4xCCCEWUd7VdTED4EIFvXx4aDoglJXDW3lbb7Ar/uZmS308OiDE5UvQV27rPA7ZpwxvSlerYcVtVQ5U3UXuFSmWngCePe3XL0FJCLGg1CL84rcs88miS5JtSU55/EDzDGVz0UUYowhsqVbF0JA8mKWpCWf5J4bmtio9XhXPk6aK9pN7+z5RrP4RwvyxGPjHpzpcZBCFLob3mE/6GByo0CirGrrmCmG9jxsU/LqPpQh/SnVvk20/1XNJyBNCiKVV/P1YwL/tV5xjiOv+fbUGhLT8g9T8A1FFmvbvS9JpuPufT/taixqU/uRP/oQ/+ZM/4fnnnwfg6quv5sMf/jBvectbAOh0Ovzar/0af/3Xf00QBNxwww184hOfYPPmzcVzHDhwgFtuuYX77ruPoaEhbr75Zu666y4cRzKeEMtNSK1SUZqY9gAHz0lwneU9/v50lALb1thQCmwL4KJzC3Bl5TBXhKk06ypW2Z6N/S/fRhXhTxcBrfSYnnCXDBoqAn0Br7twcHdISGWuAPMLeb3hrTdYUaqgVQNhN6CZ5xv8HOXHqWwYZ/4cqgh8pw57/QGzPHRICCHEQijWWbTO/m/xVCec13GLmja2b9/O7/3e7/GKV7wCrTV/+Zd/yb/6V/+Kxx57jKuvvpoPfOADfPGLX+Rzn/sco6Oj3Hbbbbz97W/nm9/8JgBJknDjjTeyZcsW7r//fg4dOsS73/1uXNflox/96GK+dSHEWZhmtPKp02PPbMC2GqQaLAWem+DaKY6T4jopjqVxs9uunWLbGsfO9tlmv21rHCvFsc1tMbdymFvUMf0LGO5yacrA4JaHvG7gqga37nj+boWPYvz/gOueoGf2dUNcuVrHHBPHzyTsQXeYJlkYK1fa1DwDX1/1r69ql1Yel3fQ6g18g8Ihc7yGVPeEEGud0lqf1zOP8fFx/uAP/oCf/dmfZePGjXzmM5/hZ3/2ZwHYt28fr3zlK9m9ezfXXXcdf//3f89b3/pWXnrppaLK9MlPfpIPfvCDHDt2DM/z5vWaU1NTjI6O8ln7UhrKXrSvTYi17vv6Msbf8aP8wqd/C4D9j36LZrNBHEMYKsJIEUUWcQJRqIgTRZIoms8/SZRYxIlp+pBkzR7i1Fznv6WUAsfOuuBZGsc2n/znt811d7+d3bby+1bPMXa+LT9uCb95YsXTRcgr365W6tLSMeWqXm/g05pi7tycgW/P3u6wzjkmhM8V+LpDN01QpPQcc5k7pPXOi8t+nlSafeqbFl0ry10urVKHS/NzmGSdMNPiZ1IIIRbDVCfkot/9cyYnJxkZGZnzuPM2fi1JEj73uc8xOzvLrl27eOSRR4iiiOuvv7445sorr2Tnzp1FUNq9ezfXXHNNZSjeDTfcwC233MKePXt47WtfO/C1giAgCILi/tTU1OJ9YUKIgsYiTLofRuSfQjsOOI6mYU7L+h946StO+bxpCnGsSBKyEGWuk0SRpJDE5jpKFJ1EMXzgSaLIIuk4WROI7JJYfffT0rmYUmQneLoSpPIwll96g5dVuU4HbNN9z2u68S3AN10sG3lFr2uRT/QXobIH1ereoADXOy+vd18xN6/0sxYnFrNPPFV0uUx0/rNoZx0uFXFqV7pc5h0uHSvpBq7ycgKVUFUKXbY5Pg9ldrYkQf48MhxSCDFfix6UnnjiCXbt2kWn02FoaIjPf/7zXHXVVTz++ON4nsfY2Fjl+M2bN3P48GEADh8+XAlJ+f5831zuuusu7rzzzoX9QoQQp9ViCD/t/lpptRW+D/Y5FnItCzzvDNrEniZ4lWmNCWCpIs0DWJqd8KWl+4kqjosSc2JYBLIk666nuyeG5ZPEtHS7LJ/v0hu4VE+wsuYIWvk+a9CxxWMohbW0uC9DqcRcTIBfhCGcF26d12H5z1OcmMnacdINW70fesSJYvY7TxEmTrGsgLmuBrAk7X4qodBFsCqHqUrYytd+GxC+HKtbHctvy8+TEKvTogelK664gscff5zJyUn+x//4H9x888187WtfW9TXvOOOO7j99tuL+1NTU+zYsTxX5RZiNUmwiUsVpW89OITvN3Acje9rfE/jeSmuq/E8jetoc9vVuJ657Tr6nIPVmVAqq3hxBkEsdwaBLGfCVzbPJQtmps25Qmdt0M1QrW44S7UiTEx4Gz7wBGFkZd1+KELYoE/xe7vslVkKbDsLTqpc5eoPZnMFsW4IS01nwkHBLn9eVX7sGX/bxBpiZ/MRPRfm1eFy5/wqa/lQ3zjNhvdmgSvOtqXZtjixmPnOU7QjrxK+0tQq1nzL13kr3rNKq+HL7gYpJ6uEOZVwZoKYrdJsIe7u8RK6hFg+Fj0oeZ7HZZddBsC1117LQw89xB//8R/z8z//84RhyMTERKWqdOTIEbZs2QLAli1bePDBByvPd+TIkWLfXHzfx/f9Bf5KhBCnE2qPTuQW9y940yZ8v0kYQNCBTqyYDmEbB2i1LMJIEUeKKDLzl+LYnCFYlhmq59gmPDlZgHIcjeuA7WSByulud2xw3Gyuks2yPdkwrc6BswlmAJdeflava4ZFdYNZmpRCWenaBDMzPyavoMX5vhRGDj5JEKlKQEv7glm3NXrv8Mbi+1AKauWgdTZBrbx/0PH9jz2rb6FY4Rzb/H7wBw3/7bXj9OFLa4rFs/OKV37fhDKrJ3iZqlecmg+U4iyA9Va8quGpHLKSrMlNgptvK4es7LabBbHl+jtQiJXkvPfYTtOUIAi49tprcV2Xr3zlK9x0000A7N+/nwMHDrBr1y4Adu3axUc+8hGOHj3Kpk2bAPjyl7/MyMgIV1111fl+60KI01JEabccZFvguubSHIJuKNiBD/R+nKE1xDHEESRxdjuGIFZmWwLbooPEbTPkJo6y61gRxyYEFK9t62JulGObUOXY2f1iG9V9xW2Nld9fxqHrTJj5Mwswh+YVZ15FA7Ig1g1clepZqapWDW7doJYfe6qgprUqVeSqwx57zbeiNji0lR57mmBXrqjJ3LTVRSlMVdyZR9VrHsGrHLKi2OoGr7Tb4CaKTehqpT5RamdhzCJK7b7AlVeoXNuEKBOuTNhyrSQbWlgNWPlxrp2sit97QpyrRQ1Kd9xxB295y1vYuXMn09PTfOYzn+GrX/0q//AP/8Do6Cjvfe97uf322xkfH2dkZIT3ve997Nq1i+uuuw6AN7/5zVx11VW8613v4mMf+xiHDx/mQx/6ELfeeqtUjIRYhlLMJ6i5qQlzMuHX5hc2lOoGq6ryCf12+nbnR2kTsEzTBxOy8vthoorwtZ0DBKFF3MqG48R5B768aYQ52c7loctca2yLIlDl4aMcvCy7G7zy2+Xj1+KJcn8lrff2PC1iUJuropbPWRs+8ERRPUhTpy+MlStq+dDIs6monWr44pnOT8ufW+anLX+m4jWP0HWKuV7lKlcUm9/HYWSXQlg3bM2EflHdiooKl120urfz8JQFKM/uhis3D17ZNi/b7tkxjpVKwwyxaixqUDp69Cjvfve7OXToEKOjo7z61a/mH/7hH/gX/+JfAPCHf/iHWJbFTTfdVFlwNmfbNl/4whe45ZZb2LVrF81mk5tvvpnf+Z3fWcy3LYQ4C1rDLMPUSidh+/ZYeJ5JBX4NPN80Zajlt32N65rbrnfuAUIpcFxzGfAOS7d3YMGcgSv/esqhq3w7LLrume2DglfejS8PYOVql2V152HYpcpVZVtPZascvuxSWLOzYYprMXydiQUJamc57BF65qaVglqS5G3A+ytqSVptHjKSzU/rC2g989P6tp9iftp8Q9qgDo5WaV95v2ObddFk7bPzr1zlqvunCF2nCFt5qAojE7Si2CoqXFFsMf1tM39rKrEJkyxoZYErn7eVhyzPjnGdpLhdrlh5Tty9bcdSxRLL0nlfR2kpyDpKQiy+VCvu0/+STT91OXf83S8B8Pt/M02t0SQKIAggDiEK4aL1AUEAYaCIIrMNTMDxvKyq5Gnc4jam0YPbPcY+7wOHz00xR6gUuMr301R1bydwgXXADLcpha7udf9Qw2Kx2VLgyitZttWtiA2shmVBy8mOtR2Kx4iVrzw/La+m5ZW1QcMe86pamnWCzDs89nZwzJuEpKlVVOeS1JxM51U029L4boLrpvhugl9cJ3jZbc9Ji/tiZUtTCGObKLYIYxO2oixgmZC1jyg1FawocYqglQcsU5XKA1acVbHiYpvn5LcjU8Wy5f+MODvLbh0lIcTaUP7kxcrm93g1c8m18KEGNubiZYEhjqAVmeu4DRdvDGjNQjwBYWgRRxBF5sRPWeA6eXDSONmQve61rty3nXNvU34uunOE5jqi9zOrHeZ7c5rnLUJXUr1tTli6J8dJDEkE262DJB1VrEMVZ8MNu2tVdSsQKhuq5WTBaVAlKw9klt0fvsqhbLXN+VpJFmR+2hl2eMz/P0WRIgwVQWiuO5FCPbeH6ZZLENmEkUUQ2SSpwlLg5WHKi/HdlFoWqnwvKQKW76ZSqVqmLAtqXkLNm6OatXNwJStJFGEWpoLINuEqMmFr6tv7mA5cgtghjB3CxCFKbDQKS+lukHJiE6bsGD+/7cT4doybbZNFjMWZkqAkhFgQCY65lCYThx0z5O50LAssz1SOymbwi/Fxeajy6YYq0+gBJkOIZ+HSzQFBB6anIIktoqh7XP463fDUH65spxuuHKcbsJazU4cv6D8hnnuOVy4fJpbEvVUviBLolIYdpglckB4kDarVr/KQw945X3loqgSoLFANrHxlzTZ6K2Vrec7XcpevfeZ5mmazZ+cl/aErjskClWWuA0U7tOD5PUzMeoSRTZCFKq3BdUyI8tw0OzGPixP0/OI5ifzfWCFsW1O38+GCUXXn9sGNMKJYEcbdsG0qWDZTjz/FdFAjiB2ixMmuTbCyrRTfjvGcCN8x4cm3S7edqAha8oGOAAlKQogFkmIR41TWUXr6CajVodYwF68Gft1s6w1FZ8J2zKW3pcs0vvmtVjf33exSzDeKIYqhE5thgEkLLtlkwtXMNMRRFq6yY/PKlemeVwpYTjdM9W7Lg9ZKPkHL5/P0N9XI9Ycv6P/3KDNNE6ohLK+A9Yav7RwgjBRJR5Wabcw97HDgnK9Sl8PykMRyGMuHHOat5vN9coJ0/uUdKhuNnkrEpZdV7moNYV6lChRBYBGECvvZPUy3XYLQoROaUAWmuuF7SVGZqvvmft2LqfvmeiX/rK5lZi5WTLP3w7gLLug7VmuKalUeuIPQZuKxfcyENY63TLUqSEy4UuiiGuW7kbl2YmpOhOfE1N2wCFdidZOgJIRYEBpzthGn3V8roTpOEgecPKq45JJ1zE7CiSNmTSXbAd8Hr15q9JBdD27GcPbKTR7OJFylpc557byD3qzZdummbFhgBHGpepVk53m2PXgYYF6p6t3muEs7NHCxdZspzOXMm22Uhxv2DkHMuxzm2y9IDxLkVa/SkEMzD6wneJUqXna+dlc+nLActOZoQV+udknoWlhKge+ZxauHh6BYkPaiapUqTSEoh6lAMRtaJN/by7HJGp3AphM6pBozxM+PqWVBquHH1POLJ3OnVgOlwHNTPDdluLxjW3+oSlMIIptOaC5hZNOJbKYe38dkp04Qu7Qjlzi1sZTGdyJqbkTNMZc8RNXdMAtW8+hkKJYtCUpCiAWjUejN24v7tms623k1zdETx4vtqQudUDExq4hDuPjidUxPQBiYsGHb4Prd8ORnFzfrjnc+Tj6V6lauBpnBLyYQKcxNj+5QtTirXrVjSAKIZ0z1qtPuqV6VhgaW512VK1V5Q4s8XOVNLlZ65epcnO7f50yrXr3BKw+9SV7tKoeu+ABBYBVBK4q7ww3jxDRAyJWDVbdyVV3PyyyUXNpWLKhsPjVfq//G58KyoF7T1GsaygvMXnppcTOvTnU6ik7HohMo1DN7OD7l0wmbtALTlMCxNTUvoe7HNPyYZs2EqGbN3Jf5UquLZWGqjb1dA3dU51cliaIT2bSDPFQ5TDy2n2Ozw3QirwhTtkpNNcoNqbsmSDW8gIbbDVVi+ZKgJIRYUFpXO7ENYlng1UyAAjgxnYUoC1IHOpEibkMcKS69ZB2TJ8x8pyjM2t/mIco3t/MQtRy64c013wqqc65g7upVkC24mwSmAcNFGwNaLYgiiyishqvykD93UFMLpxqulvr7s1ydOnj1N9pwOHXoyoNVXOpkGMfVStcFWVv5mdls0eSEyiLK+byuvCNhb6hyXV0JYK7Te1y34iVhq1+5OjU6kn2zd1RbwMcxRYhqty3sZ/ZwYtqndazJbMchSVURopq1LDzVYpq1iIYf4zoSolYr29Y0bfNvXrigGqbiRNEJbdqBQzu06QQOJx/bz8uzQ7RCnzBxsFVKrQhQIQ03LIWpUBpQLDH5kymEWBApFom2SfS5lXssGzxbZ13yNMcmupUo7ZgTl+kpZULUpetoz8DEyxAF5uTTdrIKVN0EKb+eVaV889zL0emqI+2sSyB0w1W5chVEMBt1hwVestFUrqLIfJ/yylU+58or1q7qhijP665r5WZBbzUPBVxMpxrqeSZDDE3nuO78ujx0tePq4sntjmX+rUtzuaKehZMtO5vT4ZpglQctp7wtu+4eY6qaa3n4oOPA0FDKUD7Mb3s1SAWhotWyaLct2m1F+sxTHD5Zp9VxiGIL300ZqkcMNyKG6uYyXI9kON8a4diaoXrMUL0UpnZsKW4miaId2rQCh3bH4fgj+znRatKO1tEKPRJt4TsRQ35A0w1oegFNP2DI61BzpRJ1PkhQEkIsCI0ixSbV3Y+uDz/nMrbRojGSLkglQ1n5SbwGqsP5cCBVpho1MauIAsUlF48xddJUo5IkO3EtDeMrAlVt5Q1hO1Xlaha/OEPPuwVCaUhgBO2sU2CcVaxmpiEKTcUqb8Fu293Q5HnVEOV52gTR2qmaPohzYTrHMaBHfDVsDTwkU14wOQ/MYQyt2AToC/QBWi2LKDahOswDV6miZdtZeHK7Vav8fj5M0HE0nqup1VLq9bUTrkxFKmHdWDZM65Lu0L4ogtmWxeysjdq/h8Mn6sy2R2iHNp6TMtQwoWm4HjHcDBlpRDgyjG9NsXuC1IU3VudMBaHFTGeE2Y7D8Yf383JriOdPbqAdedhWypAXMOR3TIDyAkZqbepuNOilxFmSoCSEWBAac2ak0+4f+kPfexavfg0nj9k0R1KGRlO8RTyJ6lajsiF9M1mQcsyU73ZHcXJaEYUmRE2fhE7bHOLVuh36is58/uqajF90C+zpEpVXrCxMvvJ0twV7Xq2KZ8z9izcETE+ada3CwAQvZZmKne+bqpRfDI3URaMOCVNLo2gf7xX9SjL5z+mOou1+r0rAypuaRFnziwi2xQfodEzIiiJz6XQslIJaLaXRSBkdThgbTRgdTdZchdJ1YWw0ZWw0hW2XsznbHscwM2sClLV/D4dP1nn6xVGCyGKoHjM2FDDWDBkdChlphCvuQxyxcHwvxfcC1o8E7Pzp7vzfJFHMdhym2y6zbZfjjz7NS5NjzIY+tpUyUmsz7HcYqbUZrbVpesGq+lt2PklQEkIsmBSrCEwAtXqbky99mzi2GRq9mmMvOCgLhsYShtel53UonAkJGp9qiNKOCQBTE4roiOKii9Zx8mVThVKqG57qQ9Acmd+6UCtdeehYrzY+1E2Vqo6ZexOF0AlhJoSoBReuD5iZgTDohinLyoZC+uDXNLU61BvmulaXYX7LUR6yvEqKqlazHIpRoWavNh8+dNow1VI4rYO88JJHGCpGhhPG1yVs2BAxOpKu2RM3xxkcoDqBYmrKxnrKhKf9L4ySJBbDjYjRZsD60YANIx0Ztiewbc1IM2KkmVWPdmwCTICabrtMtTZy7MGnOXhyPXuCOgrNcBaaxhuzrKvPSje+eZKgJIRYUOXTKKXMPcdJOPr8d8xaFoGL417F9Emb4XXnPzD1Uqo0nG9Yc7IUoKJIMXlCccnoOiZehkPfN1Wr5jA0hqExZELUWv7E17JNBc4vlSvyClUeppLErFtVhKkTsGMs4Pgxi07b7Pc8qDegVtcmmNY19YYJpmv5+7vSKGX+HesNWLdeA9vZiglO05PQnn6Bx77dwLJg44aYjRti1o/LWkYANV9T2xjDxivYkG1rtxWTUzZq716efXGEx59Zz0gjYv1Ih/WjHdYPB9J1TxRsWzM2FDI2FLLzrWahXq1hpu0yObueIw88w9PHNjMT1hjyOiY0ZcFJ5jwNJkFJCLFAlJmnlJa73lX/gCsFXi3i5KFvEwYurn8V0ydsNm6P8RvL64+9srLW5r7myPEsPNkQdhTHTigu3LGOoy8CGsY2wPgmE5pEP9sGuydMBfhYTWhghnaFHXi5DReNmKF9xw5btNuANifdI6Oa4VHNyOjaqOqtNnnlkC3bueAymJoEa+Ig+77rE0U1LtgWsXN7SL2+vH4PLLV6XVOvx7DZVJ6CUHHipE305D6e/N44QWSzaV2bCzbMsmmsLYFT9FEKhhumocj2LDyFkcXxqTEOfesZnju+ke8EOxjyAzYPT7J5eJJhP1jid718SFASQiwgharenZPnR5x86dtsv/Iajr7gsGkZhqVeygK/ofEbmon2cbRlgtNwMs6ze8zwvA1bYGTdUr/TlcXNWpk3h2EKH4bBHoamNsP6ZmZgVAUcesHimX3m2OFRzdAIjK83lSexcigFo2PA2A62XGQqTeHRF7j/gSHWj8dcdGFghqWJPr6n2bo5hs2XcQEwO2vRfuQp9j6/jifScbaub7Fz00x3SJYQA3huytb1bbZmzSOiWHF0YpznvxHyveObqLshW4Yn2TZ6kqYXLvG7XVoSlIQQS+qFfU8wO9Wk1ryMjY2VVfpXCvy65sT0cRIFm8bWc/AZeMU1ZO3NxblQqrte1gw+agM01kF7Fl6YhG1pwIHnLDZv0Wy/SJsOcWLFGR4FRrezeQf4xw7yyONNLrko4OIL1/YJ2nw0mynNH72C9RomJmxaj+7n/j2b2bahxZU7JmQ+k5gX19FcsKHFBT+zkTjJQ1OHbz53OZuHJ7l0/VGG1miVSYq0Qogld+HVl+Ks8IUZbQdeOHQcpWB6Yqnfzepl2aapxqYLIB7xcTd5hCE8fL/Fy0eX+t2Jc+HXgB07GL96My+86LLnKfm0Yb6UgnXrEi74ycu4+m0XEEYWX/32Vo5OyPdQnBnH1mxb3+IH/9Um/sVNTRwr5f7nX8F3XtpOkq69DiwSlIQQC+jMwk6aKtZvfw1B22JobOV24NEpTJ+0qKv1eDVojCz1O1o7/Docj01bNkfGSKwKQyOw7lVbOXTYJQjX3onZuWo0NBf/1CVs+aGL+PYz64li+R6Ks9OoJbz+rVt58882aUUej7xw0ZoLSxKUhBALRlWag4PWg3+hJonF5otfzciG1wCw9eIId9BCLsuU1mZu0vRJi3XN9fh6PZvWr2PrhXDZq5A5M4ssScy8ltEkgBMh9lTIla9KGRtf6ncmForrmYVtp6flNOVsXbAtouYlHDw6tNRvRaxwdT/hR39mPWlqsf/Y1qV+O+eVfP4mhFhY5U535Zsa4shhy6VX055RJHHKhgtias3lP+QuiSEKFWFbsWP7Oloz4NqwYavpdLd+i2kVvlbXhVlMaQpRAEEHLhgOmJpQtGfA9yBwYdMWzdgrtXTCW0W0huT5F2jULcbXrdxK81KLImgFDuuG1+bcErGwbFtz4Q/u5PBDzy71WzmvJCgJIRaEypebLYUFrRVx6LDt8qtoTVmgwHFTtl0c4yyzifcmyEEcKqJAccnF6+i0zQm6lUCzAbUN3fkx9aYEo4WSJKY9eNiBMICd4wFBW5nvf2C6DTbrZuHardtTaRG+ik2cgPjAIZLE5trXtqTd9Vk6edLmha8+z/hIxLphaYohzl0YWTzzjRfZNLS2/j9JUBJCLAgz7C7BtroVouEN1+B4DbRO2bg9xqvrJQ0XOjUn23GkSCJFHCkuuXiMTtucpDuAN2LWe3FcWD+SLaZaY0kXxV3J4shcoqh7++INAWEAQUfR6ZhtjgMjdaiNajwXhkc0tbqmXjfDsCSUrl5JAiePg3fsJWamLS65OGTHBZGEpLMwOWUx/eB3OXS8wRU7Zrhoy/RSvyWxCpyc9nj4748x7AdcvvHwUr+d80qCkhBiYZVOaMe3xAyPn78THq0hiUwQyi+XXDJGFJhKRRSBa4E7BK4PnmeuR8ZNOHJ95ORsHpI4D5wQh90AdNFGE4CiUBGFEMUmnFoW1HwTeLxhE6SHhmH9xpRazYRR113iL0qcV2lqqkeNky9w9GWXmp+ybnPMq18Vyv+FM9QJFIePuMw++gzt0GHrevjRVx+iUZNhi+LcHJ/y2fOVl5hoNbhwfIpXbDiy5j60kqAkhFgwNgmqNDGpMZIuWPDQGtIkqwZlVaHLLltnTsiDbtXCAYaa3fV3XN+s0+LVsgnirlQncmnaDT1pbD7ZjyNzncRw8cbAzM+KVLcylIUfZYHnQsMDt6FNCHJhaAhcL8X1TPjxPNM6XaxtaQqz0zA1qRiZfYGJCRvP09Q3ad547SzDQ7Lez3ylKUxO2iRP7OXlyRqTsx7jwwGXbJth63gb217+8z7F8jXdcnn+689yZHqUduRy4boWr9l6AM9Zm8Fb/nwJIRbU2WYQrc3JeRIp4lgRh3DpJesIsyAUReYEoe6BO2xCj05Nh7mRMROIXNdcr6UglKYmQCZJdh13g05+Ow88caSIoqw5Rfb9BLBt872rO+B6Gtsx9x0H7Aa4rsZxNI6bfY9dEziFGCRJTAW304aZacVo6wUmJ22z1s9Ywvh4zCsuDSQczVMcw/S0zckJm3jvd5mY9vHchPFhh52bZ9g42qHmrc2TWHHu0hQmZj0O/PP3ODI9ShA7bBiqcfH6o2xqTuPYa/vnVIKSEGJBWCRYKkUdPVBsS3t+v+Yn63FoKhSXXLLODNXKgpCtwa1nlaCs+lMvD5PzVtdcobxKlvQEnWJbbL6Hl2wMiIvgo4rKTxx3v8fKMoHHd7Lg42mcpgk7jgtOA5xS4Cm2OzLcUBi9/x+L0J1U/+8lMVxgHSBJFFGkSBJFnEAcK8LQfNBhhlumbBxJGNuQcPllAUPNdE19iHE2wlAxPWMxNW1j7X+KqVmP2Y5DzUtYNxywaX3Aqy85QbMWL/VbFStUFCtOTPsc2v0MJ9sNpjoNbGuWjU2HKzYdYkNzujLXeK2ToCSEWBAWKQqNb3X/gE8es7n6mvV02tBpme5xdR/80lC45nApGHkr56Q9TSDJqjlpKdQkSXcYW5rCpZuykJOdSJYrPXHpXMe2wXWg5pihao6nse0s0DimDbnjgG2n3e2ueZydhSOxNhSBJu3+vyuqivn/wVRVKo3b7QPdkJ0oktiEmyRWJKnK/o92U4xlmXWMHFtjOxrPBju/b5v9npsyNKRxHdM62HE0rqup+RrPkxOtU4ljmG1ZzLYsvO/uYarlMjXr0QltGn7MSDNipBmxfeMso40Q31vbn+qLsxMniqmWy/Ssx9GHnmay02A6qNFwp1jXcNg+epKxLS8y5EsL+blIUBJCLAiLFJsEq/RJ1IU7x1AKxtZDbYeZtL/UJ/TFSWacBZ3Sp+blgHPJxqAIM0lSDThJYp4HupUcLwsvtgN2KeTYjgmC5nYWcrKA4zjdoCOftK8OeWjJA0s+pLQbYMyQ0SQLMvn2HaUgkyQqC+GKOMkCT6q6Aah0zqyUCSm2DbalsWxwLBNubKu7D8BzNXa9G34cO9+f3e4JQuLcpCl0OorZls1sy8J9ei8zbYdWxyWILDwnpVmPGKrbbBgJuGTrNCONENeRkCnOjNZmzazpLHAfe+QZpoMa7cjDs2cYrnUY8RMu3XCEdfUWviMVyfmSoCSEWDAKjWd3fwFfeMXCr3dTHhJUnpNTDjyXbApKwUaVhq2ZC+QnmGbh2FpenfF0EV4cx3TCM0EmLQJNOdzICeXypXU3FKfpgEtpex5cdFoNONutA0UwSRJFqk14SRJIdbYtNeElDzG6dI5rWWBZGsvqCTMWWHY3yFiW+f+YBxnbysJKzzGOo4swVBwj//+WjNYQhIp226LdUXQ6Fv6ze2l1HNqBTTt0UECzFtGsx/j1hPHhDs1aTLMW47lSJRJnJowsZjtOdnE58ejTzIY+rdBDo2h6AcN+m/FGhwvXvcyw31mzTRgWigQlIcSCUvM8cctPSOPItPTOu68lcXdOTr7mUZw1H0jibiWnPFTNccHxuyHHtk0TAhN40kp1pxx0xOKpBBVNEULyYJKWQkz3OFUcnyZ5gDHVFq271RbzfHMHFq2rVRcwQaQcWixFETgsC5RVrcAopYvwYmVVFysL1+Vj8zBU3LfBUhJiVoMogiCwCEITgtptC/97e2mHNu2OQyey0RrqXkLNj6l7CX4tYWwooOGbMFTzEqkWi3nTGoLIphXYWeB2OP7o07RCn9nQI05tPDum4QUMeQGjtYCtIxM0vYCGG1ZGdIiFIacKQogFYRPj0SFJumeHE8fBsU3XtaCTra8TmY5Y+fwc2zZtpT0PnLo2a6go080uH66Wd1nL5+vIULW5ad0fRvJtvaGlHFD0gKrLDvtAUSUpV1XKISXNKzGlwDIoqEC1wmJZ1bDilMJK9xiw3ey2SivBprdaY54ru29pMyQyDzG2/H8RXXFsmiZ0OhadUBGGFvVnnySIbDqRTRDadEKbJFU4tqbmJdS8mLqfUK/FrB/t0PBj6p4JQhKIxXylKbTDbsWxE9hMPLafVuTRiTw6sUuqFb4TUXdDml7IkBewaWiqCENrvQvd+SZBSQixIJQCV4coq/tLfDgNGRl2SGJoNMEbN5O9XS8LRu7q+tS9O4yrv4IyaFseUMr7ykO+BgWUNDs+DyhJqkrhpjr0C8y/i7JMlSMPFaa6YkKEWwoYlioNBbNKFZUseFhFkDH7i+NVPlcrCyxWXlmphh4hFksefoLQIopM970wUjSe20MQWXRCmzCyCSKbOFFYCmpejO8l1LwE7SpGmiEb3LQIQL6byHwhMW9RrEzYzoJ2EJkQFMQOncijFblEiYOlOvhORM2NqDshdTdmrN6i7obZtkgqQ8uIBCUhxIIqf3D/6tel1Bvn/xd+uStYMRclqQaSYk5J77yVLKjkQ73SVGWPy4Z+9QST8nWv3qpHHlDKw736AkoWaBy7G1DKVZRK1UUCililosgsdBxGiigy4ScITTvyxvN7CKI8+FiEkU2qzf97z03w3RTXMdeWqxlrhnhjSRZ+Unw3kflBYl60NvOCgixkB9nticf2E8YOQeIQRC5B7JBoC1ul+E6M50TUnBjf0ayrt6iNTFDPwpFnx1LhXkEkKAkhFoxPB/cMhwUUc5N6121JVGU9oQuyKksc5x3DSsElu47j/mFfeUUlDx55eHBtPbCSYuVdv1RahBC7J6SU56bkj89Dii0BRYhCkphP2qNImQWPY7POkglAJvSEkUUYW8SxRRjbRLFVCT6uneJmAWfETXG91IQfN8HPwo/nSPVHnJ7WpmV2GNvF/7s8dE89/hRh4phL7BAmNmHsoFHYVkrNifCcGN82AWik1sZ3InwnNhUiJzrjv39i+ZOgJIRYMHXVYri0HsNLLyo8V7FVHyDMhsSYEyWKhSpzZh2WbL6Kq6llXb8cuzvHxPdS6nVKLYzLbZGrLZKlK5hYbvIGF9AdZqm1Qpf36dJ2TbEvn/tV7KfnuPL2tGdbtr0Ymqn7X3v04BNosjlmqMpzp5X30rMtew6y+0mqupfEBB4A10lN4HE0jp3iuQlDTornpgzXI1zHVHk8J8V1TChybAk+4tTiRBFGFlFiKothbBHF5vb0t/PgYxMlDkHsECU2GoWlNK4d49kJnhPj2TGeDUNeB9+Jce3EVIZsE4RkAda1a1GD0l133cXf/u3fsm/fPur1Oj/4gz/I7//+73PFFVcUx3Q6HX7t136Nv/7rvyYIAm644QY+8YlPsHnz5uKYAwcOcMstt3DfffcxNDTEzTffzF133YXjSM4TYrlRqvsHZWTmRUZH6tgujI4meG53UUrH0cWClo40Z1jR+k7KzyAAlI9HZ80mSsflz58WzzM4BJQDw6AgoDWMvvBkcZIP1Tldg0IA2bZ0QCAwr6vo/3pVEQ50KUzk205HKTN8Ne+6p5RGQTFnIb9tjsuPAZTGyn72LNX/eKXMPLVBj+8+znxI0fv6VvazaSkNxbbua3ffR9baPL/YOgtHqfx8izkliSJKTMCJEkUY2USJqTBGscX0d54iSmyixCZObKLUJsxuaxQKjWMneHbSDT92jGOnjLotXDupBB/PTqQhgpi3RU0aX/va17j11lt5wxveQBzH/Mf/+B9585vfzN69e2k2mwB84AMf4Itf/CKf+9znGB0d5bbbbuPtb3873/zmNwFIkoQbb7yRLVu2cP/993Po0CHe/e5347ouH/3oRxfz7QshzpBCY1vdNRt+4Jo2jcbqPkPqVgayE+9sGz3byseUqwJp6dP/QWHAfMLfHwR6n7ccAvoDiaq8HsxdEegNAOa4Ac9VCiHzMVcAGBgG5ggBp3uOvHg4KEgUt63TP4/CHAfMGQjm9Ryq+zV13/+pnuPM//8JsZS0hii2iLOwE2eBJ04UcXY/ThQz39lnwk5qkyQWUZoFn9QuPriwVVqEGteOcay0CDxDXoRrJ91AZJljXDvBsSSIi8WjtJ7vn7lzd+zYMTZt2sTXvvY1fvRHf5TJyUk2btzIZz7zGX72Z38WgH379vHKV76S3bt3c9111/H3f//3vPWtb+Wll14qqkyf/OQn+eAHP8ixY8fwPO+0rzs1NcXo6CiftS+loexF/RqFWMu+ry/jxXQDH9X/DYDvPvYtGo3GGT9Pb7e3tNRUodyOumimoLsd4Sotq1Pz+NGDT5g1evKKQaqy+3lQUd3QQvZcpWPL+8rHn+q3Z34SbE7ae07oSyfG+e1TVQSsASffg0JA30n5HAFgzhBxigBgXtMYWNEoXlcCgBDLWT5EMg8xebgx26oBZ/Y7TxGnFom2iBKbJLWJU8tcEptEm48nzIdkaRFcHDvBscxt1zIBx7W6+9z8fmm7dHoT59NUJ+Si3/1zJicnGRkZmfO48zp2bXJyEoDx8XEAHnnkEaIo4vrrry+OufLKK9m5c2cRlHbv3s0111xTGYp3ww03cMstt7Bnzx5e+9rX9r1OEAQEQXeexNTU1GJ9SUKIEocYl7C4/+JLLo2GSxiZCdxD33+y8sfZdJAzf5yTtHu/d5hS3izBtnTW5jq/zrvElbeD3XMMgGOnRTAp1vDJhhKVg4edBZt8uJFtp5WgMGjYUm+gkXlRQohzlX9QY34/mt+R3dvd36FJ0t0++52nSHQWZFI7O9Y2j00t83tWd39B2SrFtlITYKwE206LgONYZl/DiYv9jt3dZ44zoUfm8IjV6rwFpTRNef/7388P/dAP8apXvQqAw4cP43keY2NjlWM3b97M4cOHi2PKISnfn+8b5K677uLOO+9c4K9ACHE6Pi0U48X96cefw2q6uHZKzUlx7JSaZ8aHW1bWqMFK++Y1mNtpEZCkIiGEWE6KxhWlEJNkH/IkeYDJLmmpuUWSKlpP7C2qNHlwSbPH5yEn7Qk0CvMBj626Aca2kmyxZhNe8tDjWd1gY1kptiodkweiLOzI71YhTu28BaVbb72VJ598km984xuL/lp33HEHt99+e3F/amqKHTt2LPrrCrHWKcBWiZnMAvzg1Udo1vwlfU9CiNUrr7ok2XDZcjDJQ0uqIUmtbLFmq6ha50NwZ7+zl1R3g4oZlptXuK1iWzfUKLoDUashxlLZhz8qNSEl297dZvb7TlTss/Lgkz3WsRLTWCMLNHmFXAhx/p2XoHTbbbfxhS98ga9//ets37692L5lyxbCMGRiYqJSVTpy5AhbtmwpjnnwwQcrz3fkyJFi3yC+7+P7cnImxPlmExNp6UYpFsegOWFzzRPTuv+j8t5Dz+Sxg44vnyzP73nn9/g5jx/0Nc3j/Ln/657/88z19Kd6jvIcvu58QLP2WXluYKpNRab95N7imHJQSbUJKsXjy5dse+/3MJ8nZ6lu8LCUCSSqJ8xY2bxAS4Frx9ScNBvem+2z+p/DygNPEYgkxAixmi3qGY3Wmve97318/vOf56tf/SoXX3xxZf+1116L67p85Stf4aabbgJg//79HDhwgF27dgGwa9cuPvKRj3D06FE2bdoEwJe//GVGRka46qqrFvPtCyHOUI0WAfWzfny10xrFJ7f52i5FhzjKXd8GrOtS6twG/e2eKbWIzp+P0nMVneDoOfnT0Nmzx5yc5dtLr5OftOWvT+l5zf7qCWb//e7jy9sqJ7HzOL78/ezdVn4/+XsYtL13X+/X0av/sap8Z+59Pe/1VMesdKrnG3G6YU+9x8/1Lek7rvIag/cNeqozOXbQ8aq0vTqHrxtKqgElCzSWxlWlgJIdp0rHVR+XVq7L+2QomRBiIS1qULr11lv5zGc+w//6X/+L4eHhYk7R6Ogo9Xqd0dFR3vve93L77bczPj7OyMgI73vf+9i1axfXXXcdAG9+85u56qqreNe73sXHPvYxDh8+zIc+9CFuvfVWqRoJscx4BDjExf2H/+4IdderTCzWPUNcktTK1pnp/3Q4V+nKhi4+NS46q1E9OcuPQXXbTecd5cwx/Y+tvA7VNtXZzuLKUqlZT6by2Orz5I8/9f3uY8v3K1979rVWvx/V43u/a+Xj53ru3vdU3tZ9np7nLe2f66T6VO9hrv1n+tpnety5hIVTnXfP+bxysi6EEKvCorYHV3P8tfiLv/gL3vOe9wDdBWf/+3//75UFZ8vD6r7//e9zyy238NWvfpVms8nNN9/M7/3e7817wVlpDy7E+fNsegWaNm+89bWkuonnpN2JxnaSDWEpfwqcFsHHVnlnurRYHDNvMS2EEEIIsRDm2x78vK6jtFQkKAlx/ryoL2SWEd5z58alfitCCCGEEH3mG5RktQ8hxIIa4zhTet1Svw0hhBBCiHMiQUkIsaAcIhJsokR+vQghhBBi5ZI+vkKIBeWrgCGmODR1MTvXnVjqtyOEEEKINaKyJEGpUZTpfps1kELRjuY3+VmCkhBiwY1zlH/4I/ilO0cr2/OW3vk6KXkb7fwXWF+77OwX3KD22+X75eMr9xfyi5rDfFsnm2Pn7uw2331zdcbrfS/VrnODu+4N2jbXcw16bmmyIYQQK1++LEZa+juclv7+ptoqLcdRDh7Vv+H549PUyp53cFjJzwMevfchNNlzYwJM91qRYlXum/djkWbHpViAKu6bv1T9HVVV5RlTFCkuR+f1vZGgJIRYcJt4iRf0Jdz94Qgg+7VkU/0FlhS3LFKg+wvN0JX72a/v7HZXNWDMv331QphrYdJB8Wng2kFzPEbP4/ag4wc939yPX1jVf7vuu1Gl/dXtg69P9bj+8Df42N7/Q2f6mP6vZ9Bjusf9wK++ac5W76drG3+qoNrXqlz1fg8Gt5jvfw/97e6r76H/dU713s+03f1c7eslaIu5VNaGG7DuW3Wtu+7vukFrynXX1Ru8nl33+XqP7z5P7wd5RWgoP77nQ770FM+ZaqvyPKlWPP6JB0qhAMqn+ObYufZVo0D3a+39C6qKYNF7fPW7W9V/dFq6zn+HpMXvRatyzKkeZ+7bRJX9+flAHmjy48120ym3P/hUH1/ZN8fvmZZOBu/oIUFJCLHgbJXwar5FSA2bOPvllZR+gZV+aa7kk6UV+t4HVeRKp9d92/oqd3MeM//Hnur4waGy/3G9r1GNRL3PXb0/6H31v+fBr9P7GHOCM+h9cZrn6X9NfVbHD3hM6UTpdO9l7q/39N+DhdYfXHNzr291qmP7KrWnOBmc67UGveapHz8fC/lBzvz/TU717zf3O5r7w5ZTfxAz189N//Pmxw1+f2f/vRr84cmpP0zp/UAlv1/90KD6PL0fnvQec7r9+W2LpPKc3X164AeK+d/R7uOzY4rg0l9RybfnwWNAzGJV/H1eIBKUhBCLwlcBPsFSvw0xwKAheAt74iaW3CKf4OSfkBf3TxFg+x57yvAMg06gT/ccc+2rHndm72c+x54Njar87C3Ec555UJv/408fNgeH29OF0kHPM2jfXM/bGz4q13KCLxaIBCUhhBBCnJHyEDxDgrYQYvWR/r1CCCGEEEII0UOCkhBCCCGEEEL0kKAkhBBCCCGEED0kKAkhhBBCCCFEDwlKQgghhBBCCNFDgpIQQgghhBBC9JCgJIQQQgghhBA9JCgJIYQQQgghRA8JSkIIIYQQQgjRQ4KSEEIIIYQQQvSQoCSEEEIIIYQQPSQoCSGEEEIIIUQPCUpCCCGEEEII0UOCkhBCCCGEEEL0kKAkhBBCCCGEED0kKAkhhBBCCCFEDwlKQgghhBBCCNFDgpIQQgghhBBC9JCgJIQQQgghhBA9JCgJIYQQQgghRA8JSkIIIYQQQgjRQ4KSEEIIIYQQQvSQoCSEEEIIIYQQPSQoCSGEEEIIIUQPCUpCCCGEEEII0WNRg9LXv/513va2t7Ft2zaUUvzP//k/K/u11nz4wx9m69at1Ot1rr/+ep5++unKMSdOnOCd73wnIyMjjI2N8d73vpeZmZnFfNtCCCGEEEKINW5Rg9Ls7Cyvec1ruPfeewfu/9jHPsbHP/5xPvnJT/LAAw/QbDa54YYb6HQ6xTHvfOc72bNnD1/+8pf5whe+wNe//nV++Zd/eTHfthBCCCGEEGKNU1prfV5eSCk+//nP8zM/8zOAqSZt27aNX/u1X+PXf/3XAZicnGTz5s186lOf4h3veAdPPfUUV111FQ899BCvf/3rAfjSl77ET//0T/PCCy+wbdu2eb321NQUo6OjfNa+lIayF+XrE0IIIYQQQix/LZ3wc8mzTE5OMjIyMudxSzZH6bnnnuPw4cNcf/31xbbR0VHe9KY3sXv3bgB2797N2NhYEZIArr/+eizL4oEHHpjzuYMgYGpqqnIRQgghhBBCiPlasqB0+PBhADZv3lzZvnnz5mLf4cOH2bRpU2W/4ziMj48Xxwxy1113MTo6Wlx27NixwO9eCCGEEEIIsZqtyq53d9xxB5OTk8Xl4MGDS/2WhBBCCCGEECvIkgWlLVu2AHDkyJHK9iNHjhT7tmzZwtGjRyv74zjmxIkTxTGD+L7PyMhI5SKEEEIIIYQQ87VkQeniiy9my5YtfOUrXym2TU1N8cADD7Br1y4Adu3axcTEBI888khxzD/90z+RpilvetObzvt7FkIIIYQQQqwNzmI++czMDM8880xx/7nnnuPxxx9nfHycnTt38v73v5/f/d3f5RWveAUXX3wxv/3bv822bduKznivfOUr+amf+il+6Zd+iU9+8pNEUcRtt93GO97xjnl3vBNCCCGEEEKIM7WoQenhhx/mx3/8x4v7t99+OwA333wzn/rUp/jN3/xNZmdn+eVf/mUmJib44R/+Yb70pS9Rq9WKx3z605/mtttu4yd/8iexLIubbrqJj3/844v5toUQQgghhBBr3HlbR2kpyTpKQgghhBBCCFgB6ygJIYQQQgghxHIlQUkIIYQQQgghekhQEkIIIYQQQogeEpSEEEIIIYQQoseidr0TYqEc1JeQ4OAS4NPBI8AjwCXEVslSvz0hhBBCCLHKSFASy96MHuYlfSGb1Qu0aTLJekLtE+GRYmHpBI8QT3VwCSshylzngSpd6i9FCCGEEEKsEBKUxLJ3lAvYrF7k3965o29flFh04hpBPEYncglihwfufpRpxgjxi0ClUTg6xiXAUwEeHROushDlZuHKIcJSq75jvhBCCCGEOA0JSmJZS7XipN7AL3xwHJjp2+/aKa4dMOwHxbZLewKV1hAmDkFcJ4jH6UQu7djlwXseY5bhIlDFuAA4OsrCVF6NikpVqm61SqlF/dKFEEIIIcQSkqAklrUODVIsNjT7Q9J8KQW+E+M7MdAptl9+57bKcWmqCBObIG7QiU11qhO7PHjPo7RoEpUqVAqNq0NcFeARZlWpsDTcLyyG/EmFSgghhBBi5ZGgJM67tk75pp7mGDG/YK0/5bEBNVxCzsd/VcvS1KyYmhszSrvYfvmdF1SOS1NFJ3YI4iE6sUsYOwSJw4P3PFpUqCLtEeOiUVmgCksVqTAb+tetTjlEUqESQgghhFhGJCiJ8+4QEX+UHsFB8TY1xpCy5zx2mjFG1Umgcf7e4GlYlqbhRTS8qLK9N1BpDUHsFBWqMHaKIX8zjGTVKZ8YB4XG0VEWqDpFlap3DpUM+RNCCCGEOD8kKInz7hLlcxEezxPyz3qat6ixOY9tMcRP/Icr2H/UIU5tak5IzY2oOVFxbVvLc2ibUlBzB1Wo+of8BYmpUJlg1R3yN585VH4RprrD/WTInxBCCCHEuZGgJJbET1gj/Hn6MvelU7zFGpvzuI5u4NoR+45u5RU/tIWZJ/bxcms463DnkmqFa8fUnBjfiai7URGmittOjLVMwxSYClXdMu+3bNCQvyBxCPvmUD3GNKNEeETaI8ID6Ovy5xL1tE+XOVRCCCGEEHORoCSWxP+lRvgUL7OXDod1yBbl9R0TaZcQn3bosa4xy6suPgkXby72aw1hZNGJbNqBQxDadCKbicf2c2x2mCB26URmnpBnx5UqVM2NqLlhEbCWc2UqVw5Up6pQlbv8deJxgsidsykFdCtU1aF+/RdHxef16xVCCCGEWEoSlMSSWK8cXqMaPKZb3Ken+QXV39RhhlHqapYT7SEu3HUhMF3ZrxT4XorvpYw2S9WYHVuKm1pDENm0A5tOaNMJHSYee4qpTp2jMyZM5ZUpx0pMFSoLUOXK1EoJU1Dt8jdS6vL3ijnmUIVJnXbkEZaG/LVpVipU1YV9u23SzdpTYWVNKlsl5/tLFkIIIYRYcBKUxJL5cTXCY7rFP6VTvEONo3q6FGgUipR25DHSDM/qNZSCmpdQ80on71u3V1+nVJnqhDadwKEd2kw8/l2OzQ7TiTzCxBkYpvIAVVSqnAjHTs/qvZ5v5TlUI7W5AxWcfmHf3kDlEuKpsDJ3qtzlzyOQCpUQQgghljUJSmLJ7FJD1FAcImIfHV5JvbI/wUZri07kMjnrMtN2qfsxDT+m7iXY9sJUd+asTO089TC/dmgz+fh+TrSadCKPTlaZsq20CE/1UvMJv5hHFeKukDCVm8/CvtANVGE8ahpURC5B4vDQvY8xxToi7RPik2Bj6RSHqFiLysyjqg7/MxUraZ0uhBBCiPNPgpJYMnVlsUsNcZ+e5r50ilfa1aA0wygaRc0Neer76xgbCokTi1bHIdXgOSl1P6Hux9S9mEYtpuYlJkj5Ma6zcMPk5g5TWyrHhZFlqlJZoOqEZs7UyXaTTjZXKEktbJXiO3FWmYr6Ovl1F8hdWfJARSlQAVx559bK/TixCBKfMB7OGlO47P5jM+TPBCpvztbpJkRFlaYUeaCSxhRCCCGEWCgSlMSS+gk1wn16mn/W0/yS3oRbKh1oFFe++1oAGn7MlW+7sNgXhIpOR9HpWHQChX5mLy9P1mgHDq3AIU4UrpNS97Ig5SfUvZianwUpL8b3Fr6q47kpnpsywuA5UwBxoooQ1YlsOoGpTE116gSxSztyiVMbS2kztK8IT5GZO9Uz7G8lVlscO8WxQ5ped0jlRXfu7DvuVK3TWwwR4Q1sTNHblMIhLLVRD7DVyqroCSGEEOL8k6AkltSrVYNxbE6Q8LCeZZcaKvZpFHFqESc2GxrV1tm+p/E9zehIdsK74xWV/VEEncCi3bbodBTqmT2cnPFpnzBzkILIwrY0dT+h5pkg1fDjntvJooQQx9YMNyKGy1/T9mrFJUlUVpXqNqGYfGwfJ1pNgniMduQSJubHt9LRr6hMhdRL4Wo5t0c/lTNpnR4mdmVx3yBxePDuamOKEB+Nwi7mUXXbpLvF8L8IP6tcSWMKIYQQYu2SoCSWlK0UP6ZG+Ft9kvv0FLvoBqWAOkHiUrvsUnjlhcD8Gzq4LrhuyvBQHqQur+xPEuh0LNpZVardsUie3cvRiRqdwKET2QDU3IRaNicqH9pXz+/78YLNk+pl25qmHdOslYbfXdC7UK3p6GeCVH9Hv07kEcQOmv61pvJq1EqeN1VmWZqa1b+472V39jfuiBKbIOlvTNFimAk2EGbD/sqNKVwVVeZN9TankHlUQgghxOojQUksuR+3Rvjb5CQP6lmmdcKwMiEl1g5xYhHFFoePOExN2TQaKfVaSqOeUm+k1Hx9Vieotg3NZkqzCZBVDS69tNivNXQCVQlTwbN7mZjx6IQO7cAmSVUxT6rmZU0m8ts1E6Y8d/HCh2WRzdGaX0e/3rWmTHWqOm+qloWoPEzVnQi/NG/Ks+MVHQiUAs9J8JxkXo0pgrhGmIzSiR3CbJHfB+99jCnGBs6j6rZO712Tqntb5lEJIYQQK4MEJbHkLlY+F+PzHAH/rKf5aTUGQIxDnNio2GLqhMPsRZvZFh1katrJhtRZpsV1LaVez8JTPaVR19SzbbZ9du9JKajXNPVawrp840WXVY7pnSfFM3s4PuXTCZu0A5sw7h/e1ztPquYlWNZZf+vm9XWcbq0p6M6bamfVqSBrQpHPm+rEDlFiAoHvmKF+fqkluu+aUFVzI3x75Q71KysaU1BtTHFFT2OK8jyqTux0F/i99zGmGS2G/cWYxY8dHZvgpLoVqv71qGQelRBCCLHUJCiJZeHHrWGeSwPuS6f4aWsMAI1FEDuQKIaHUrZdooHtuMAI2dCzDnTaMNtRNOMDnDzp8OJLZihdmoDvm9DUaJjgVASqmsbzzu1kvn+e1ODhfUVlqm2Rfm8vxyarw/t8tzucL7+ule4vZPe+ucx33lRQrDfl0AlsJh7bx2SnQWfapZ3NDdIoPDvuGeJnKlJ1NyyC1kpZb+p05ppH1RuotIYwcQjiOkE8XjSneODux5hmrNKYIsXKAlWIq4KeYX9h9aKqryuEEEKIhSFBSSwLP6ZG+BQv8xQdDumQrcpDA6m2SBKLRr3/pNqyoN4wF9DADppAM9sfhiZEBW043FZsmj3Iyy87tNoWUaRwHG3CU01Xh/TVU2q1sxvSV3Ymw/vy6+iZPUy1PDqBTTvsdu+ruQn1Wjc85XOlGn6C7y5O04n+r0fTsBMatYRivti2alMFrc28qbwJRT6HavLx/bzcGi6qLeX1puYa6ldzIjxn9TRTUIpS2/fuAr+XzjGPqhObal43UD3KLCNFhSrCI8bB0mkWmKoByit1+ZNhf0IIIcSZk6AkloVx5fAa1eAx3eI+Pc2/VesJqRGniqZtKkJnyvPMhVEwQWo7NWAdkMTQyapRJ9sKNxvS12mbapRSUPNTalkFygQpXQSpsx3SV1Ye3le4cHD3vk7HdO+zn9nD5KzH4RNO0cTBUlDLhvTlTSZqPRWqxWo6MehrqnkJNa8n4PSsNxXFZqhfEJmFe8tD/fL1psot0udqjb7Su/oNUp5HVQ1U/fOoklTRic16VKaiZ4LVQ/c+ykwWqkLtE+MClKpUpgFF3ogiv52vR+US4qiVt46XEEIIsZAkKIll4yfUiAlK6RS/oMZJsQGFRvH4oZ1sQtNoQqOpqTc4p7BiO9AcMpc8ROVD+rTuDulrtRXDiRnS91LHotU2Q/o8rxua6jXTWCKvTPnnOKSvrK973/bq8L40hU5HEQQm4HU6is739nJi2qcTmgYO5cV5e5tO5POmFmNNqVN+XY7GdSLg9C3Su139bCYeLTehcCpD/aoL9lYX711NQ/3KbEvT9Mx6VOtK26+4s9ohsTzsz1ybOWd5qJrN1qSKs0qV6fiXZoEpqlSq8mBlAlWEky0ALK3UhRBCrDYSlMSysUsNUUNxiIg9OiTAx7ETtIaXj8HQMMxMK1ozijiGWt2EpkYD6ll4OtcABVlVpG4ucw3pC9qmIjXdVmwODnLipEO7YxEECtvW1OvduVHlQFWr6QVt3mBZ0GhoGo2EdfnwvovPvOmEpcgW5q02naiXwtRiNp0YZGCL9G39AaB3qN/JR/cxE9Y4NjucDV2b31C/1dDVby7VYX9VvaEKIE4sgsRUqoLEISqtSxVQJ8Ilxq00qVBam/BUVKsibOJK5ao3aEnDCiGEEMuZBCWxbNSUxQ+qYf5JT/FVPcUrlYXWiuOjl+E6EI34Zl7SOoiy+UeTs7DDDZh80aLdgjgGv5YFqGb3ut5gwU708yF9w6UhfR4wRtbAoW0qUpNthR8f4MgxM6SvE1honXXpq5n5UcXcqOzaWYSfyLNtOvHyVI1OYBo3pLo7pK7ceKKWDfU7X00neg0a6nfRT2/vOy6MLFOVyitUgcPk4/tOOdSv24xidQ/1G8SxUxzbVKrKetelykWJRZg4RMkQYWITxg5RYhOlNg/d8ygdGlnFyi1CFoClUxOaVDRnuDKXuBuuWJ1hVgghxPIjQUksKz+RBaVv6CkuxZzYx5HCG64GHdczl+FRaONDDerrTYAK2jDdgu1ewOEXLVqzZoiaqTiZylMeoGr1hQtQkDVwqAzp28EI3SF9YWCCVLujGIkPMDlpc+iwS7utSBI155C+et2sGbUY5tN0Iq9KmaqZRfLMnqJ7Xzu0iWILx9b9lai8SpWFmaU6wfXcFM9NGSkP9dsxeKhfuTpVXW/q1EP9VmtXv/kwrdRDBi0KffmdF/RtyxtWmHDVve4NV6Zq5ZLgEOOSYqHQ2DrJKlLVEOUWYaoauhximXMlhBDijElQEsvKNarBODYnSHieZ7mcVxHFUPPn9/g8QA2VA9Q4RAHMtuHEFOywAiZOmAClgUYenIbMMLbmEHjzfL0zoZSpdvk1GM1CVANoZPujCDqtuYf0WTamsUS5ErWAXfpO9b5rvqbma8ZGs5P/nYObTgSBot22mA0s4mf3cnSi2gq95prW5w2/2r0vr1A556npxCBnO9RvIhvq93LLHdjVrzJvqidQrdahfqdTbVjRb1C4AtO8ojdUxYltFgK++xECaswwTIxHok10SnCKoYE23YDVF6SK++Xb5lqGCAohxNokQUksK7ZS/Jga4W/1SfbpPVyf/uus0nL2z6kUeDVzYR108FENaKw3FZ7pFrx8EranAUdesui0wXGg3szm/zShOaxpNk0TiMXiuuCOzj2kLxjQpa+y8G6pS1+9bipTzWz9qMWeX9RtOgGDqlJpCkE+tC+7tp7dy8SMRyd0aAc2SWpaoRfd+gYs0Hu+m070GtjVb8BQv7yrXz7UL8hapOcL+LajwV39qkP+1s5Qv/my51izCuDSO3fO+bg4sQgTmzjtBqwodgiz2w/f+whtmiTYxLjE2gwPTDAB39JJVpUyocruGQpotuWBqxq01mIQFkKI1UKCklh2fsIa4W+TkzzHM0yFswB4vmahTxXLFR6AEB93COwslJxsw4gbcPIEvHjAIgzNUL3mkKk65cP3/BqLfjJk22RzrqC3S1+adof0tTqK4WxI30uH3GLh3VotpVHX1UV3s+vFmBfVy7IwDS7qSbc720XVphNhqLrzpDoK9cweTs74tE+YOUVBtDybTgySd/WrDPWbT1e/0wz1M40nYmpONsSvtObUWhrqd6bMnKuUSpfFkivnqGB1hwjWugErsYmyqtZD9zxMSJMExwwP1C5xdjvF/Ee0tYlfdjb8r3dYYFHlKoWs/L6seyWEEEtrxQSle++9lz/4gz/g8OHDvOY1r+Huu+/mjW9841K/LbEILlI+F1PjOTo8/sKDvPKaf4nrDpr9sDgs21ST6k2YwodR8EfByobGTUzBdhXw8lHTQEIpE2CGhjVDIyZILWTziNO+X6u/S195SF8Y5GtGKSZasHH6IEeOmmpUHCtcVxehqdkw86LyIX6ue36+BjAt1z1PMzI8v6YTnY4iffapeTWdKN9eiqYTg5ztUL/eBXyD2CHR1sChfr4dF+HKs6U6daZON0TwFQPWtsolqcrCVY04r2alFlHsmHlYdz+czcNySLLqVR600qKSlXZDlOpWrUzw6gascvCyshld0vRCCCHO3YoISn/zN3/D7bffzic/+Une9KY38Ud/9EfccMMN7N+/n02bNi312xOL4EfVGM/pwzz64jd4pV78is18lIfGBfjYTWikEHZgsgXDVsCRQ6Z9eaqhXjfhqTkEjSEzdM85j8Ej5/nmMjKanyBvp57diiLT/KLdhmNthWof5OXjDq22RRQpHEcXw/fydaLyqtRiNZeYy8CmE5cMbjphqlIWybPdphOtwCFOVNF0ol6rdu+rZ3OnfHfpmk70OpMFfDuhaaxRHuo3HdRMmEq61SnXjothfn5+LYFqwdmWxrZiagxuInHZKYYKpqkiTk0nwe5wQYu4NDfr4XsfKVq1m2pWN3BpzH9gR2fhSsV9QwTL9+1SuJJ5WUII0aW01sv+r+Gb3vQm3vCGN3DPPfcAkKYpO3bs4H3vex+/9Vu/ddrHT01NMTo6ymftS2moc1xkR5wXh1KbX073odH86i9+g9fecC3t+iJ0WFgEWpvmEe0W7BwLmJ2B1owiCEznveERU3kaHjm/laczFUdZh742BB3Fpvgg7bZZdDdfL6pRVJ80jWayKIvuLqS86YRpg66oPbuHdrYwbz78zVJ0F+PNO/b53YV6l8vwvjOVV6eCvFV66BCENlPf3kcndvoClWMlRZAqL9zru2b9qbobzllpEUsrTqximGARtEq3H7rn4SwamXBlQpZTrWaRdsNUJWh1Ly4RVjFksBq0ZNigEGI5a+mEn0ueZXJykpGRkTmPW/YVpTAMeeSRR7jjjjuKbZZlcf3117N79+6BjwmCgCAIivtTU1OL/j7FwlqnXHZwMQf4Hk/u/Vte+1PXLvVbmrdy84hJfBgBb8QM3WvNwHov4OWjiu8/aypPjYZpFjE0DKNjJjwtB44LQy4MjUC5ucQo3fWiOm040VY40UEmXvIGhqi8sUSjYYb2eUsYorpNJwYP70tTSovzmjDF9/ZyYtrPhr+Z4X2+m/YN6VvqNaVOp1ydGm3O3SZda7PuVBB1150KI5vJx/ZxvDVEJ3Jpxy5R4mBbKXUnpOZGNFxzXXPDIkj5jgz/Wgr5nKxBTS/g1EMG82pW3lGwCFyJXWx/+J5HCPGZydq2J9qutHCHbgMMmwRHRd15WkXICivDBKuNMeT/jRBieVj2Qenll18mSRI2b95c2b5582b27ds38DF33XUXd9555/l4e2IRXa6u4YD+Hk/s/f+i9e8u9ds5Z44LI+uy8LQO6mNZ171ZGHMDjh9VPPeMwnHMMLnhERgaMUP37GVWCO1fL2o7owwIUR3Fpuggh6dcZlsmRDlOuRJVnhOllzREganuNRqaRiOhO7yv23Sid3hfp2dNqXx4X969r2iFXmo60fBjPDddtieCSoHvpfhez7pTF1TnT8WJ6ezXCkyzjZOPmgV8j06P0I5dgthFobOmEyENN6TumgBVy6+dCFuG+C0rlqXxrASPuauFl8+x8DCYoBVmc7OSUwwb7M7PsklKTTDyYYPdtbL6K1lztXPvVsCk0imEWBjLPiidjTvuuIPbb7+9uD81NcWOHXN/giaWp0u4As+ucXLi+zy7bzcXvPbHl/otLahy172pLDw1RqE9Cy9MwrY04MWDFnFkmkWsW69ZN26G7S3Xk2wYHKLyDn1JbIbyddrwcluxKVsrqtW2CMNuiGo2uhWo/PZyGO5WXlOK06wpZVq3K6xn5+7eV/MSGrU469pnhvY1su3L+d8YwLE1w42I4YYJUxf2tElPU+iENu2s/Xs7cJh4bD8n2w06kVesN+XasalAeSY41UshquaaIX9i5bAsTe0Uc7Ng7i6D0N8Ew8zTsirVrUc+8TAthrrDB7VTaedu1szKQ1M0cGjgXPdl2KAQomzZB6UNGzZg2zZHjhypbD9y5AhbtmwZ+Bjf9/H9lTGfRczNUy6v2vpGHn3h6+z+2n/nZ1dZUBrEsqA5bC4xPrURU3WamoZaK+DwiyYtjK7TjIzC8KipOC33k+qc7cDQsLn0rRVVClFHW4qNswc5esxhtmV3W5w3ugvuNrIhfedjnagzcbrhfUli1pRqd/K5Uhbp9/by8lSNdmfuxXkrXfy8BHsJF+edD8uCRi2hUSt9ut/TIj0IrSJIdUKHE4+a9uidaKwY3mcpbQKUFxbD/GrZ0D4TqKTxxGpyuiYYAK88RTv3OLWy+ViNyqLERTXrHrMwcVIMG3SKalbvsMHedbOsIpr1rqElTTCEWK1WTDOHN77xjdx9992Aaeawc+dObrvtNmnmsEoF2uc+/S8J3pjyp9+6i0ZzHf/5r17Cddd2ANbaVJxmJmFrM2B6SuH5sPUCzfpN+ry28z6fwsCEqHZLsSU5wOys6WrXalvoFOpZa/NmM69AJctiKN/Z0BrTAr3dXZzXf3ZvESZane48qaLJRDY/qhysnGUepOYjX2uq1ck6+gUOE4/vpxV5dCKXTuSiUWah3kpVqhqoXFljSsxDmqrSWlnV+Vl5S/ciYOV1qt6W7j1NMMqLD/cuRty7eLFUsoQ4f1ZNMweA22+/nZtvvpnXv/71vPGNb+SP/uiPmJ2d5d/9u3+31G9NLBKFRqG5YsMVDA9tZXrmEHsf+iKv+cG3L/VbW1JKQWPIXJKs4jR5AuzDIc89oxgehQ2bNJu36hVTZZqPvMX56JhZJ6oJNMkaDwTQmoXJlsKLDvLSIZfZlt8/lK9ugtRQc/lVocqUgnpNU6/NvThvPk+q3e62QT8yUacTmKFu5XlSvtddkLdWWpi35iXL9nuQG7jW1I7uSIK8k18rG9qXD+87OjNiglTsEqc2tpVmzSZMo4l8jlTdjYrFe1fTz4s4O5al8a14zuGe82npnlewwsQZODerTZMYtwhZSTZPC8oNMKrrZlVDVVgMJSyHLvn/K8TiWBFB6ed//uc5duwYH/7whzl8+DA/8AM/wJe+9KW+Bg9i9XEsxTVX/2vuf+ATPPRPf7Xmg1Ivy4J1GwA8vGF4+SSEB0OOH1VccXW6JOs2nU/leV7r1vc0legZyrepfZCjLzvMztpo3VOFaibFgrsroSrnexrf04yOZJWSCwfPk8oX5p0NLOJn93J0wjSdyIf3+W53cd6amxRhymxbXmtKDVJZZ2o4W5L6gurwvijOm06YFvCDmk7MNbyv4YXUHBOolvP3QSy9+TTBmGtuVnfdrFrfullh4mSLE9cHtHPvdhnMm1/kHQbLQwS7l96KllSxhDidFTH07lzJ0LuVJ9Iu9+m3ccm/fCXf3XgBn/jT67Edl9/9by/RHFm/1G9vWUsS4HiIUvCa18uQo15aQ9Ax61y1W4qN0UFmZ62ioYTr6iJADQ8lDDXN7ZU4jG8uxfC+jlVc17+3pxje1wnNektKUVSjGrWYZs00bxhpRP2L4K5QaQrtbEhjvqbWxGP7acce7dAjiM3niZ4TU8+69+Xt0IsOfk4k86TEkug2v7CJEqc7bDAfLnjPo90KVjEnq9v4wiLBLboLRqcNWC6hVLDEqrCqht6JtccyTWNBw/ZtV7B52w9w5KXHefSf/4YfufFXl/rtLUtaQ6cFzTCkFcFFl0pIGkQpqNXNJa9CjWEaShSL7LbACU0F6rnv2wSBwvN0txtfMyk68tVqK2+YY3l4X6GnKpWmWdOJbHhfu20RPfMULxwbYrbj4NppFppCRpohI42IoXq07Ifz9bIsaNZOPbzPdO8zc6U6ocPJR/cz0dO9rzxPqp6vJVW6LUFKLIZq84ugb//lp6hiRaltqlj5UMGegJW3cM8DVoRbzMVydDY0UFXDlVtUrELcnsAljS7ESiRBSSxjGktp1k09y9Wv+bcceelxHvqnv1pzQUlriGNIY1MtShJzOwzhovGATgeCjqLTMcc3tmmuuFqv+mF3i6G6yO4ORui2NW/NQqulGI0PcPKkwwsvmvBgWZrhoZShoYThoW5DiZVegbIsqNc19XppTalLLwHM/8GZWYvpaZt0/14OHB1iuuWRpoqhesRIM2S02Q1QK7mxhFKYeV1+wviA4X2D5kmdfHQ/k50G7bAbpEy78+p6Ug0vLFqhr7SwLVa2083HOlXAChObMKl3K1mxQ5jYPHi36SgY4Zo6lfYq62NZOi2GB+ahqlqpknAllh8JSmLZstBoFK6tueo1P8d9X/otnt//LQ4/sZeNmy9DKXMypyxQgFIasm1gTnDKF5Q5zrLg6UO+uZ9ty2/n8uOL2/n2vhsZPfiu1uZOPsBV6+7lFVsC0pTikiSgU0WSZMEoMdvj7O+YZZn22p4DjgPesMayYXw91OppMVdnpX2ivxLYDgxn7djLzSTS1FSfWjNgBQc5csxh9vlqBarZNMP3RkZMkFoN/z62DaMjqZkjdcEryGNDq6WYnrGx9+3h6ESdZ14cJYgsmrW4CE/5xXVWbngqO908qXKQanWyIPXYdznRbhZD+5SimCOVD+mruyFNL5CufWJZKdbJcvsD1qVzNLvI27aHiU8YD1eqV2Hi8FC5yYV2iTABC0yDC7cUrrqVq2qoyocEyrBAsdAkKIllyVYprg6ItTmrfMvrQ+5/40/y6ANf5pl9n+ba634bMCeqOsX0yMtDSDo4mOShJdXwim1BEWDSItWUjqN73Xu7l9b96xj1hq5BYU1Z4Npg2ea+udbYtsa2zcmoZZtQ5HoSgJYjyyovrtutQMVRNgeqrRgJD3D0ZYdnn/OJY0WjYeY+5R34hocT6rXVERoaDU2jEcOmK9iQbQtCxfS0xdS0zcT+fRw4MkQrcGjWYkabIWNDYRGiVnLlaS7lIFVUpLZ3h/aV50i1ArOm1MnHnubI9CityKwl5VgJzaz61PCCIkw1PKlGieVPKXDtFNcOaXph3/4rBlSvtCYLUjWixCZIHOLEJogdHrz7ETo0mCELVdothgUqNI7OwpPqBqi5riVYidORZg5i2fpW+hNseNsuhl+xk81v2s7uZ7/BR37r37H1gov49N/vQclvN7HCdNrZEL5ZxYbwINMzNq1Wd/je6GjCyLC51Osrb+7TfIWhYmraYmrKRu3fx+SsRye0GarHjA0FjA2FrBsKGG7ISUwUK1qBw2zHpR3YnHjku7Rjj1Zo1pLKq1ENL6DhhTRdc93wApkbJdaUJFUEsUOUOISJk902Ievhex8lwiPCJdZeNVjlVSkVZpWqsFS1qm6ToYCrhzRzEKuAxlJg2ZpOoPjhn3gb9cYQh158nicf2801r/vBpX6DQpyRvInE+AbTRKJGd/je7Iwibh3k+QMes7M2SmlGhrMhe8MJw1n3vdUQHDxPs2F9wob1CVxs5j11AsX0tI3au4dDxxvsOzAGwGgzZN1wYK6HAnxvbZ2ouI5m1IkYbUYAXLqtO6yvUo3qOBx/ZD8vt4ZoTfi0I8+0wXdNiGpmlag8RDXccFX8XxIiZ1uahhcBUd++K+/c1rctSRVh4hDGTYLEIYxNwHrg42Yo4BTrsnlWLjFmcWtbJyY4qbAvSHUDVoBLKKFqlZCgJJYtnw6eExHHislJm/Fag//rX/wMX/pff8X/+d+fkaAkVoXu8D0TntYD67LwNDOtaLQPcvCgx/SsbZqbjCWsWxezbszMfVotQzJrvqbmx/CjZtie1qZhxNSUTWfvUxw5Mcp026VZixkfCRgf7jA+HNCorY425Wejt2PfhTd2hzBpDe3AZrbjVkLU7Mkandh0emlk1admFqSaXsCQ35E5UWJNsC1N3Yqou9VgdcmAuVb5UMAgqRHGo1mwcglih4fufZQZRkzFSntEeH2hyiPAwVznoSq/LcP/ljcZeieWrSf169n2cz+CuugVTG24jG1bY/buu5//+3fezVBzhP/yF9+nVq+Z+TxOPr/H3Lazxge23W2CIL+IxEqmNcxMwdSUYmTmBSYmbLRWDA2ZoXrrxhI2boixV/GvuCiCiUkH/eRejk/7TM16+G7C+HDA+EjAxtH2mg5O86U1tAKHmbZDq+Ny/JHvMhP6tEKPIHZx7diEpmw435DfYcjryMK7QsxDN1SZKlUndgljh299PB/+5xFpv2haodClKlWQhahyqAqK2/Lzt3Bk6J1YFRQaz9FceUXA8FDKxg3XsnHDFo69fJgXHv1/+aHrfoo4UMQJpIkiThRRAnGsSFJFWjpnsiwTphxH4zjg2BrL1jg22LbGsuBFvQPH6YarorFCT+jKmy0Icb4oVe68dwFD2sx5mpkGq3OQZ5/z2bOvzthozKYNMePrTMOI1cR1YeOGGH7scjZhOkVOTtqwZw8vHW+w5/l1NPyYDaMdNox2WD/SWTXd9RaSUuVKVIeL39odzhfFitmOy0zbzIs6/ujTvDQ5xmzoYyltKk9+wJDXYcg3FSgZxidEl1LgOQmek4DfXdvq4gGVqnxeVRAPVYLVg/c8yizDhPiE2ifGNYFKh7gqKAUpE6K8ImAFOGpwy3dxdiQoiWXLIsWyUxwnZd2LT7Dpxy4H4N/865/mE3/65zzw0Of55X/3Y6d8Dq3NyVScmNAUJ4okUcRxOVxBkgWr7fEBkig7JtseJ4ogD1+JqnTAs20Tusy1CV0mfOWd6zQvpDu74crSWfWLSgCzS93vhJgPpaDeMBfYwaYLzXC9k8cV+uiLfPeZGrat2bQx5pKLA2r+6gsMtg3j4wn8yJWMY1rpn5xwSJ54iv0Hx5jtOIw2Q7aOt9g83q4uKisGch3N2JDpRgjAjk2AmQ+VB6iZtsvLjzzDoakxWpEPQNMLGPbbDPsdhmsdhv3OnGv0CCGMfF6VmVvV1buOVZoqOlmgyitUndjlwXsfY4pxQu0T4pFiY+nEBCnVKUKUuXTMlAYJU2dEht6JZes5fQVb3nk9cWqz6bU7ueKtFwGw/+ln+Mm3vh3HcXj0n7/C+Pi68/q+8jWP4kSRxIooVtl6R3kIM58SmfBFsc2EtSyAZYEtyQJYTqlSFasUvsw2s/2FdEc1ZM0Rviy7WwUTa0+awuw0uEdf4OjLLls3R2zdErFubO0MTWt3FCdOOHS+/V2OT9YYqkdsXtdm83iraI4gzk2ammF80y2X6ZbHsUeeYTqo0Y48PDvOQlMWoPwOQ14gnfiEWCRRYtGJXYLYpRO5dGKXb939GBF+Vp2qEeNgkeATFGHKJcSnjU8nu93BVqv7b8V8h95JUBLL1vf1ZZzUG7jiXddiX3Ilr/+5rcVJ/1ve/vM8secpfvfD/5H3vPMdS/tGF0A3XGXXCUXla66gFWdBrLcqFsdmf64SviyzSG152KHjaCwrq3zlAcvKg5buq3jlgUwqYCvHzBT4L7/AS4dcXvealqnCrDFRBC+fcAi/vZ9jE3XqXsyOTbNs3zgjw/MWQZwoplou07Mexx5+mulOjemwhtaKEb/NSM1cRusthrxAhu4JcZ7EiUU7dulEZsHrduTxwD2PElIj1DUCfFJsHCL8LEjlIcpc2quiKiVzlMSK59PBISZObHw74aHPHsKxU1w75Ycu+WGe2PMUn/nL/8H1m1+Pa6fMXPgqHFfjOubk33U0jptXZcwQueX6x9hxwEGDB3DuJ21am096TdWrGr6SZHDA2h4fIE0USditiMUJhKXqV5qa6lnOhCZdzPGyrP65X/nww2J+V7bYbt58o7vYrglgSlXD2nL9N1sptDbf9xP1HcBhhofXXkgCM79p6+YY3nwp2xM4ctTl0CNPs+/AGFvGW1y8dbo73EycM8fWjA+HjA+HXJjNgcqbSEzMjHPkgad5YXIdTx0xbZuHa21Gah1Gay3W1Wf7hiIJIRaGY6cM2wHDpflTr+gZ6hfGNp24TivaQCfy2P3HjzLFOgJqBLpOgo2jYzyVD+frUCvCVBuf9qppjy5BSSxrNjEaxY9cc5hUK+LEIkosNoy9lj/9osXe73+XoycPcMGG7dSe20sYWcwmljkuVkSJRRR3yx6uY4KW62gTuhxzmdl5tdmWhavesOU6ekU1bzBVJBNUFip85eaa95VmwwwHhbAdyQGzr03WZCMLbqkiTik9VqFTKvPA8iYcxXUWpPJAZlf2m6GJlgWKLJDZpXCmdBG+8pCmsscpVbqvqtuXqzSFKIQwMFXJODaLuW6KDtLuKILAot02//+HhhJ2Xhbhukv8ppcB24ZtWyN460XMzlrMPLiPb+3dxMaxDlfsmGCovrI/KV2uyk0kLshamWsNM22XidkNHH3waQ6c3MCTh7bjOTHr6iY0jdVbjNTay/pnUYjVJG9GMVLrAHBRTyOKKLFoR3Xa0Xo6kcv9f/xYX5BydUhNtYtqVI1WFqbauGrlfBAiQUksWw4RqbJpegETs2NsGW8D5tPw9SMe1197Ff/w0JPs3vuPfPjdPzPn82htTubjLDRFpes4NrftF54kii3iRNGOLZLEIsz2Jan562wpinDlFIHLXM9e9KpusHI0rptdnG6XvdXyR16prAJWDFda+GFL5XlgOs3CVdqtaJUDWZJAqrvbL0wPkKagtSKNIQ27j9fZdZyYgNZ93uz4AR+AKZX926ksaBWhSnfDmKXNcaXjzWN09Tny5+x5jeI7qUvX2jQO0Rrztabd70W5uqeUWcA1///X9DRuQzM6kuD7KfWaptFYHQvVLoZmM6X545czGihOfOO7/PN3tnLptiku3zG51G9tTVAKhhsRw42IHTea6lKSKE7OeEzMbOPQg9/j6Zc3o7VitN5iQ3OGDc1phv2O/J8WYom4doprd4ogdWFPkApjm1bUZDbcTDvy+NbdjzPFOjq6ToSHrRN81aZGmxot6swWt5fbkD6ZoySWrUm9juf0lfzILa/AtWNe+9PbK/v/5r4HeM/v/ykXbt7A3r/4KNYiTZgxJ9algJWHrER1788RwKLEKk5+HVt3w5WT4tgpnlutZrleKWw5FNUsmQt0/uTBKU0VqaaocGlt7uf70Jj9Ogsx+e0i9XS3Qf91WX7CV77Og5ZSFFUzUxmrzjfzPS0njAtoZsbimX84wKaxNq+6+KR8b5eBvOp0YsrnhW89x/HWEJZK2dCcYX1jhvXNmb5FQ4UQy1OSKmZDn3bkMRv63P/xx+nQLEKUQ0RdtbIKVIt6du3TxlILF1lkjpJY8RrMEOIzWpvluROb+va/bdcPMNyo8f0jL3P/3mf44Vddvijvw7LAs0yoORt5NSuMTl3NirJqVlwKXXk1y7Z0Ub1ynLySZbbNXnh1dbigu3KHDC4H+RC+/krZqv9MSQBDQylX3LiDp//uAC+83GTHxtmlfktrXrnqdOHPbCRNYWLW44VvnOCFiXH2HL6A0VqbLSOTbB6elNAkxDJmW5qRWrcadUlpflSUWLTCBjPhJmZDn2/d8x2Os5mOrqOxqOkWdWUqUHVmaTCz4AGqlwQlsWy5KqLBNLYaJ0wc/vFzk3hOjGsluHbC8Guu5PrXXcfnv/FV/uyLD3HVha/Cc1K8LEgsl0+CHVvj2Ak178wn0acpfdWqvIKVh6/ac3uJYouZuFrJipP+IYPFJbs/WzTA6A7dckvDuBz5DSHWoHpNs340YKYlE7qWI8vCNIp4yw4Awsji8Mn1PP/NlP1HtxSh6YLRE7j26phQLsRa4Nopo/U2o/U2AJffuRkwVeV25DITjjIT1Pjmx7/DBOtp6yYAvm7TUDNFeGoyjacWpjmPnAaJZc1CoyzND170NDNBjSixiRKbMHGY/vY+fmj8Uj7PV/nf39zNv7rgp1GqTqpNQHCsBM82ocq1Yzw7zgLWK/GyeUaek+K5CW42DM6xl1fVwLLA91J8zvyPvdZUQlMY2UXQyocN1p/fU8zLimK7rwGGUhShqjwvy7E1rYuu7puXVYQtd3XNyxJrSydQvDxR48It00v9VsQ8eG7Kzk2z7PzX64vQ9L1vaJ4+tpkLRk9y4fjLND3paCjESqUUxcK8m4amueTOUifNyGMmWMdM4PPNu5/guN5Mhwa2jmmqaRrM0GCaJjPUaJ3xeYnMURLL2vP6cjSKd/a0rsylqebf/Lcv8iMXX8AvXvcqhnyXJFWEiVMJVXFiE+a3U3M7ih2i7Hac2GgUCp0FqzxcJWbRxNdcWVRj8nC1HKtXCyVvgNFbxSqGDCYD5mbNY15WuaI1c9GrKkMEZV6WWGpaw9FjDke+8RzrRwOuufjEqvvZXksmZ12e+soLHJkeZUNzmqs2v0jNXV4TxYUQCy9JFdNBnelOja//0RPMMkRbDwGappqhyRSuPsYvpw/JgrMgQWklO6q38jJb+cU7xxb1dbSGOLWycOWYoJVaRLFThK4wcUzAKoWwRJuz+bx65dkxTnZdrl65bppVrboBy15m1auFVGl0MUeTi3xeVlSalxVGdtEMIZ+X5dga10nMbUvjuQPmZeWBS+ZlibPQCRSdh/dy8OgQSaq4dNsUF26ekZC0SnRCm29/6UWOzoxw5aZDbB87udRvSQhxnmkNM6HPZLvB1//wCULd4fb0HyUogQSllSzSLo/rH+S9/3eDodLiaMtFkqoiRJWve7fFpaAVp+b/oK3SonqVz70y1atXmuGAPdWrPDSsdnPNy4p7tuXNMQbNy5pryOBcrdzLc7JcV7rIrXZhqJiYtGHPXo5P1Zhquawf6bBj0yxb1rWkmrlKHTlZ4+EvHefi8WNcvP7lpX47QoglNNUJueh3/1y63omVzVURYxznix89yM/fedFSv50+tqWxrfiMhnNozcBwlQepicf3F0MDi8pWYn5ULaWLIYF55crLGlu4tqlc+UXVKlmW865O51znZcWJIoztUtMLVRkyqL5vugx2SlWufI2ttDRk0LG7XQa9LKR6TlIErXJFy3GkAcZy1QkUrVmLmVkLtW8fk7MeM22H4XrE2LDFxVun2DDSwfdk0v9qt3ldh11vXcc3/n8Wm4cnaXjSHU8IcWryJ10se2O8zGF2LPXbWDBKdVe9nq88XEVpPjTQJoydYtv0t/cVc7CiuBu+NApL6WxoYIzrVMOVqVSZQJU3tPCcBNdZWeEqpxSmmYRzdvMQkkT1DQuMSkEqii28Z02Xwc5pqlmm06CudBxsXXQ1tt0dKujYJmh5rpa5WWcpTaHTUbQ7Fp2ORbtt4T67l1bHpRWYwNzwY4YaEaONmK3rZ1k3FJ51u3+xso0Ph7h2wkxYk6AkhDgtCUpi2RvnGN/Xl/PJD8/iqAiHCJeQN972OnwnwrUTfCfGtWP8bG7Qahs6VYQrEmD+3ZuixKoM/QvibjOLU4Urhc4qVv1NLXx3dYWrMtvW2GfZyn1QA4w4sQhLwwatrJoVpYrWHGtmWYrKosTF+llzDBs0wQtsZ/XMz0oSiGJFHCmiWBGG3Uv9uT0EkU0nsukEDkFkYSmo+zE1L6Huxww1I7aOt2jWYpq1eFXPBxRn5sjJGmHSYV1d1scSQpyeBCWx7Nkq4RoeoEODCJcYjwiPB+55lCi7HWuXCI8Uc5ZowlRUCVZvuO115oTfiYoTfze7tq3VeSLl2imufWZtcePEKppW5EP/wtglTGxmvrOPE6cIV/n3c1DlysmHAzrdcOXYq2c+ULealQBnv2ZWnPZ3FMwXLeb5J4kTM2wwTvKLGhi0HNsMF7TzIYTZAsUzO1+F7WgzvDCvatm62GY72f0zDFxpai5JqkgTU51LUkhiRZIq4gTiSBEniiRWDB14slK5S7JQ2dvQw3NSPC/BdxNqrvm/M9yI8NyUhh9T92I8d/V1nhQLK03h2196gYMT67l6y4uyvpIQYl4kKIkVwVcBPqdo5pCdJCXaIsYtLuVg9eA9jxLjmX3a7Etw0ChsElxCHGVClZNVrHqDVX7yb63SYAVkJ9gpMP9hKXFiEfQ0rciHCJYrV3mb9ihxSPXpw1VeuVrJc67m61zmZoE5EYyTart202zEIsmCVhRbNLKwFSYWrUSRJKV5XKXW7ipbqNhSZm6cZWkspUm1Ik2VudYUt8ttgZTK5++ZoYe2ZR6fV8d8O8WyNUP1qJgHllfPfLdbQZNhiOJczXYcnrnvOV6cXIdvD7HrwmeWZWMgIcTyJEFJrCq2SrE5TaiCIlhpTRaovOzSDVYPZRWrGJdIZwEr+5FxiHGyilUerN5w67XmRN8xJ/u+E62JYAV5uDq3ylVvuApip1jj6mzmXK2FcFVmWeBZ6TnPvckDV17F6g1E3dAESpkwZOXXVn69QF+UEGeh1bE5Nlnne984wFSnwcYhn1dteZENzWmpPAohzogEJbGmKUVWd4qAU4xZz/64plqVqlXVYPXwvY909+lsSGApWLmEuCrszrF63+uK4X/5HKu8crUW/pifTeUqn3MVFcFqcOVqUEOL/PtbnXPV34o9n3e1FsLVIN3ABWczhFCI822243B8yufQt57leGuIKHEYqR1jy/AUr7vg+2fUOEcIIcokKAlxBiyl8QjxCDmTYNWtWHnF/d13f7s7PFCbwJUMmGPlEhbBys8qVuXmFc4aGmvfnXM1v+pVvpBwOVzl3QLDxGHy8X191az4LMLVWlhEWIillqYw03aZbrsce/C7TAc1Jjt1ktRmpHaU8UbEq7ceZKzeWrXzToUQ55cEJSEWUTVYncKcc6y8rBbls/vub1eGAkZ45oSe1AQrFRah6vW3vq47r8rpnuyvtWBVLDy7yOEqX+cqX0S4PCzQtRNGXnNl0clOwpUQp9YJbWY7DjNtl+MP72c29JkNfdqRh221GfY6DPk2G5vTXLbhKCN+e9UPbxZCLA0JSkIsI2c6xyrWTiVQ5VWrR+99KBsS6JaaV+TBKsmGAXbnV73ptmwYoNNtse478ZoZBlh2tuHqVIsIn3zsu8VQwTB2K4sInypceY5ZRLi3W6DMARIrVRQrgsimHTi0Q5sgtJl4bD/t2KMdenRil1QrfCdiyA9oeopNQ1M0vYCmF5zR4t5CCHGuJCgJsYI5KsYhpkb71AeWglV5GGB+eSDrCFhutZ5gm/WUyFqsV1qtdxtX5IHKrGm1dqpVZeeyiHBvuDJNLJxuuIq7zS7i1AzNtK3UBCorGRiuHJlzJc6jKFaEsU0QmfbueZv3ycdNUxZzcQmyEGSrFN+JqbkhNSei5saM1VvU3IiaE1F3Qxk6J4RYFhYtKH3kIx/hi1/8Io8//jie5zExMdF3zIEDB7jlllu47777GBoa4uabb+auu+7Ccbpv66tf/Sq33347e/bsYceOHXzoQx/iPe95z2K9bSFWtTxY1WnNfVBpflV5XlW5clVdw8rL1rCysEizNuthNvsq5A23vq47p8rJW6yvjW6Ap3I24SpNFVFqV4f9Zd0BB4WrcuUq7xboZsMwXTsxQctOGH7NK4uhgXkL7/K1VLBWN9M+XvWt4RVn7eOj2GL6O09lnSqrzVSS1Bo4p8/8rGvGai18N8LPtq3lD1SEECvPogWlMAz5N//m37Br1y7+7M/+rG9/kiTceOONbNmyhfvvv59Dhw7x7ne/G9d1+ehHPwrAc889x4033siv/Mqv8OlPf5qvfOUr/OIv/iJbt27lhhtuWKy3LoTAnFj7ZzAMMNH2wGrVqboBzrV+Vc2JKsP/5OTKsCyNb5kTTk7375LpnXMVJbYJULFDlJqT3fLQwDixiVJznWiTkEz77wTHSs3wUEujsmtzPzXHqJT6q67Ctqstw/M1mCyruiZT3ma8us3cVyrbZ62eRYnnK00p1qvSGjSq2Jak5pKWrvPtac++2SeeMre1Wcg4SS2S1DYLAKd2sU2TL1ZcCtNWgm2n5r6VYFuaphewzm7hOnERsk2r/mRNzX0UQqwdSmu9qB/pfupTn+L9739/X0Xp7//+73nrW9/KSy+9xObNmwH45Cc/yQc/+EGOHTuG53l88IMf5Itf/CJPPvlk8bh3vOMdTExM8KUvfWne72FqaorR0VE+a19KQ53hcvNCiAXXu35V71pWUc8wwBS70rSiGA5IyBvfd60JVE7emS6SE7cFklew8hPqODUVhEQrktQiTc06S4nOrtN83aXq/Xy/Tru384vuvWZwKlKYwGSu8yBlLvkjlNKV4yylQelsX/c5Bj03pecw26o0oLXq2dZzX3e3F7e1WcQ3/9q0VsVz5dfz/fpNkMxDqS4Cajm0Wtl2W6VYVloclwda20pxLBOA7Ozaybat5QqvEGJtmeqEXPS7f87k5CQjIyNzHrdkc5R2797NNddcU4QkgBtuuIFbbrmFPXv28NrXvpbdu3dz/fXXVx53ww038P73v/+Uzx0EAUHQ/bR1ampqQd+7EOLcnOn6VeVqVXUNK5dv3v2Eua+7QwTnalrxxtsGt1h37WTNVS3mo6hgncfXLEJFOUzRrawMChb5PvN4E0DyY3TxvKov6FDeRzccDQpFqhTI8mPzUNUrD3JAEeTyKln+jsphrhv60mJ7EYKK5zvz76UQQohzs2RB6fDhw5WQBBT3Dx8+fMpjpqamaLfb1Ov1gc991113ceeddy7CuxZCLAVbJdi0T920IjuR1BoSTNOKEL+yKPCDWdOKMKtWxaWmFfkQwLxS5RDxpvdlbdaLphURvhPLRPNFpBTYSgPyPRZCCLG0zigo/dZv/Ra///u/f8pjnnrqKa688spzelPn6o477uD2228v7k9NTbFjx44lfEdCiPNFKXCYf9OKRFtZpcqrVKoiPO6/+zt9wwDzapVHWAwDNJ0ApVolhBBCrCZnFJR+7dd+7bQd5y655JJ5PdeWLVt48MEHK9uOHDlS7Muv823lY0ZGRuasJgH4vo/vn8/BIkKIlcqsXdUBOqc+UPXPrRpUrTLDALtzqxQaO1s2uLJ21fteV8ytKgKWHcs8ESGEEGKZOKOgtHHjRjZu3LggL7xr1y4+8pGPcPToUTZt2gTAl7/8ZUZGRrjqqquKY/7u7/6u8rgvf/nL7Nq1a0HegxBCnIkzn1tlDVwQOMLjm3c/YeKT9ov9MHcnQL+0IHC3ccXaWxBYCCGEOF8WbY7SgQMHOHHiBAcOHCBJEh5//HEALrvsMoaGhnjzm9/MVVddxbve9S4+9rGPcfjwYT70oQ9x6623FtWgX/mVX+Gee+7hN3/zN/n3//7f80//9E989rOf5Ytf/OJivW0hhFgwplp1mhbrpblV86lWlRcEBoqhf64KzXWpE2DeYj0fBiidAIUQQqw1QewwE/jMhj7f+KNv06FBoqfn9dhFaw/+nve8h7/8y7/s237ffffxYz/2YwB8//vf55ZbbuGrX/0qzWaTm2++md/7vd/rW3D2Ax/4AHv37mX79u389m//9hkvOCvtwYUQq015QeDypa+ClXUDNHOrTIv1vGmFmcsV8YbbXlcsFJpXqvLbEq6EEEIsd0Hs0I48WpFLK/S5/+7v0KFOoBvEOPh0qKtZarTM/GU9wb9PHz9te/BFX0dpOZCgJIRY62LtdBf+za4HXSLdvT0oXLlE2MR94cotbsc4VipDAoUQQiwIrSFMHDqRSzt2aYceuz/+OAE1Al0nwCfFxiXEVx1qtKjRzkLRLD5tbFX90K+lE34ueXb5rqMkhBDi/HGU6QTIqVqsQ1+b9XKFKqYbtvLhgAlOEa4SHFIs83pZtcpW3cqVQ8wbbru2CFWunZiqlZUFLSuRZhZCCLGGaG2qQUHs0oldgtihE7s8cM/jhPiEukaIT4rGoYWv2vgE+CSMcTy738Gj0xeGFoIEJSGEEH3KbdZPuX4VdFdqxSwOHOMUa1klxbOYMPVAFrBiXGLtFGEsD1h29kg7C3Z2HriIecP7Xo9rJTh2gmOluFnIyoOWVLKEEGJ5iBKLMDEBKIgdwtghSBwevOexbI1DMzQ8wgMiXGZxVYhHgGtqRQwzga86+HRwCRYlCJ2OBCUhhBALxiwOnAABp+wMCD0ByypCUx6ueu9/6+7Hq/u16RGYYKOzJ+sNWhbdwPX627KgZaXYdoJrpSZoZSHLsSRsCSFErzRVhIlNlNpEiWNux+b6wbsfKY06cIuGQykaiwiXyUqzIZ+AIaZwCYpg5BBhqeU5mkCCkhBCiCVnOgSGeITzf1BPJSvJVqwqB63y7QfveZQUp3uctotj8i6CYMKWTYxNgqXi7H5327W3vh7HSrAtXQlatkqxS4HLsVIZSiiEWDbixMrCjk2cXZdvP3TPI6URAA6xdrMh1jZg1hx0iuUr8qZAUGc2C0JRaWmLCEfFS/0lnzMJSkIIIVa8vJJ1tkErn5OVYmVDAfN45FSuU2weuffhnn02qa4el7NIsUixibFIsFVirulev+5XX2+CVhayLKVx7ARbaewsgFlZ8MrDmC0BTIg1I0kVcWoTpxZJahW349QizoJOnFo8fM/DpQ9/BlXeNfnsU5u4qLyb4c35ohSdYk6preJu6FnGVZ/FJEFJCCHEmpfPyQLOLGwVT1C9m2grC1smfJUDV34/v37sEw9mccohwSpCWqrtImblIa3MKh1tkWKp7Jrytbl97a1vKEKXbaVYSmNZaRHGLKWLQGar7H6+XUKZEKeVpopEK5LUMj//WpFmYSbR5jrNgk6i88Bj8egnHi5+votrbVd+f5g5nGnxc21CTrnSHRe/VVxa3SHIxXH5fE9zLcOL50+CkhBCCLHAzFDCFJfo7J9kwMlMHsDKAUqX6lZ5dMqPSXDQKB659+G+Y4rHaZsUVXmc7nnx/BVUca1Lway7Pb+tsmd57a++wYQypbGUqYRZWRBT2cUaeEnNfiiOt0rHK5BhjaKgtVlbzlwsUyHOwooesK24pFbxmCTNrrXi0XsfQmc/B70/Vxp1mp+ZxPx8lD6ssFX+DHF1exZuPDpF6LFIsYshv3HxOJt4TVZ0lpoEJSGEEGKFyAPYghoQyLSmFMisUhir3i5OHOe4/fgnHsiOV6VwprKTUKs4wcxPPjWUtlvF/d7glrNIiyMoPXtxUeZ+91m6x5E9qyptVz0X0Lz2V99YhDaVnajmJ6zmNbrX3W35/u5jim+30pVtvV9Z/lpz/nPN42RZ61OXDHTPceVn1Fm46H2+vmNQ5Ctx5rf//+3dfXAUdx3H8c+FPCJNAoQkDSQQWiQKsWIQGvrIkGmojBV1qCIiaIZCDVOiGYSWtnTGqVCoVmRqKM4YnbEtLTOUKtJiDNgWTUHSBAgPKSnPwYBK81BpS+C+/kFvk11ICCWXEO79mrmZu/19b++3n1vu9jvLbS68jz7Xcyqe3e5K/0J9mJO+/5N3L3A/8I74A+MW9slY6/pW+80nV8xs2Yrzn6yt9d523nlPw3znW62l5b7PdTbWL98n91v26HNOa+TztZzdaTnL03KfMzbXDxolAADg4vMFLmpxvgtftO2hwEF4oImSdNEBc2C89cHzpQ68W9cFWhL3GYGW57c0ez5ngv5W91vW0bKu1g2Bd7lc93WJ++2H0X4L5RaYhcknd5vjfjVfq9qW51mr+63H3c9pvbx1cxnmWi71UsuP+lvejUs3pq2bX59M8nkbYP8nNWp1BrNl7/DJz5kXdBoaJQAAcE0LnLVRVzdvAEJa2OVLAAAAACC00CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB40CgBAAAAgAeNEgAAAAB4BK1ROnz4sPLy8pSenq6YmBjddNNNWrx4sc6ePeuq27Vrl+644w5FR0crNTVVy5Ytu2hda9euVUZGhqKjo5WZmamNGzcGa9oAAAAAELxGaf/+/fL7/Xruuee0Z88ePfPMM1q1apUeeeQRp6axsVH33HOPBg8erPLyci1fvlxPPPGEVq9e7dT84x//0NSpU5WXl6eKigpNnjxZkydPVlVVVbCmDgAAACDE+czMuurFli9frqKiIh08eFCSVFRUpEWLFqmurk6RkZGSpIULF2r9+vXav3+/JOlb3/qW/ve//2nDhg3Oem699VZ98Ytf1KpVqzr0uo2NjYqLi9PLvW5Sb1+vTt4qAAAAAD3FGTuv+8+/p4aGBsXGxrZZ16W/UWpoaFC/fv2cx2VlZbrzzjudJkmScnNzVV1drffff9+pycnJca0nNzdXZWVlbb7Oxx9/rMbGRtcNAAAAADqqyxqlmpoarVy5UrNnz3aW1dXVKSkpyVUXeFxXV9duTWD8UpYsWaK4uDjnlpqa2lmbAQAAACAEXHGjtHDhQvl8vnZvgf82F1BbW6uJEydqypQpmjVrVqdNvi0PP/ywGhoanNuxY8eC/poAAAAArh/hV/qEwsJCzZw5s92aoUOHOvdPnDih8ePHa9y4ca6LNEhScnKyTp486VoWeJycnNxuTWD8UqKiohQVFXXZbQEAAACAS7niRmnAgAEaMGBAh2pra2s1fvx4ZWVlqbi4WGFh7hNY2dnZWrRokZqbmxURESFJKikp0fDhw9W3b1+nprS0VAUFBc7zSkpKlJ2dfaVTBwAAAIAOCdpvlGpra3X33XcrLS1NTz/9tP7973+rrq7O9dui73znO4qMjFReXp727Nmjl156SStWrNCPf/xjp2bevHl6/fXX9fOf/1z79+/XE088oR07dmju3LnBmjoAAACAEHfFZ5Q6qqSkRDU1NaqpqdGgQYNcY4ErksfFxekvf/mL8vPzlZWVpYSEBD3++ON64IEHnNpx48bphRde0KOPPqpHHnlEw4YN0/r16zVy5MhgTR0AAABAiOvSv6PUXfg7SgAAAACka/TvKAEAAABAT0CjBAAAAAAeNEoAAAAA4EGjBAAAAAAeNEoAAAAA4EGjBAAAAAAeNEoAAAAA4EGjBAAAAAAeNEoAAAAA4EGjBAAAAAAeNEoAAAAA4EGjBAAAAAAeNEoAAAAA4EGjBAAAAAAe4d09ga5gZpKkM+bv5pkAAAAA6E6BniDQI7QlJBqlpqYmSdJM/6FungkAAACAa0FTU5Pi4uLaHPfZ5Vqp64Df79eJEyd0ww03yOfzddp6GxsblZqaqmPHjik2NrbT1osLyDe4yDe4yDe4yDe4yDe4yDe4yDe4rod8zUxNTU1KSUlRWFjbv0QKiTNKYWFhGjRoUNDWHxsb22N3lJ6AfIOLfIOLfIOLfIOLfIOLfIOLfIOrp+fb3pmkAC7mAAAAAAAeNEoAAAAA4EGjdBWioqK0ePFiRUVFdfdUrkvkG1zkG1zkG1zkG1zkG1zkG1zkG1yhlG9IXMwBAAAAAK4EZ5QAAAAAwINGCQAAAAA8aJQAAAAAwINGCQAAAAA8aJQAAAAAwINGqQMOHz6svLw8paenKyYmRjfddJMWL16ss2fPuup27dqlO+64Q9HR0UpNTdWyZcsuWtfatWuVkZGh6OhoZWZmauPGjV21GT3Os88+qyFDhig6Olpjx47V9u3bu3tK17wlS5boy1/+sm644QYlJiZq8uTJqq6udtV89NFHys/PV//+/dWnTx9985vf1MmTJ101R48e1aRJk9S7d28lJiZq/vz5OnfuXFduSo+wdOlS+Xw+FRQUOMvI9+rU1tbqu9/9rvr376+YmBhlZmZqx44dzriZ6fHHH9eNN96omJgY5eTk6MCBA651nD59WtOmTVNsbKzi4+OVl5enDz74oKs35Zpz/vx5PfbYY67vsp/+9KdqffFb8u24N998U1/96leVkpIin8+n9evXu8Y7K8uOHFtcj9rLt7m5WQsWLFBmZqY+85nPKCUlRd/73vd04sQJ1zrIt22X239bmzNnjnw+n375y1+6lodEvobLeu2112zmzJm2adMme++99+zVV1+1xMREKywsdGoaGhosKSnJpk2bZlVVVfbiiy9aTEyMPffcc07N3//+d+vVq5ctW7bM9u7da48++qhFRETY7t27u2Ozrmlr1qyxyMhI++1vf2t79uyxWbNmWXx8vJ08ebK7p3ZNy83NteLiYquqqrLKykr7yle+YmlpafbBBx84NXPmzLHU1FQrLS21HTt22K233mrjxo1zxs+dO2cjR460nJwcq6iosI0bN1pCQoI9/PDD3bFJ16zt27fbkCFD7Atf+ILNmzfPWU6+n97p06dt8ODBNnPmTNu2bZsdPHjQNm3aZDU1NU7N0qVLLS4uztavX287d+60++67z9LT0+3DDz90aiZOnGi33HKLvf322/bWW2/ZzTffbFOnTu2OTbqmPPnkk9a/f3/bsGGDHTp0yNauXWt9+vSxFStWODXk23EbN260RYsW2bp160ySvfLKK67xzsiyI8cW16v28q2vr7ecnBx76aWXbP/+/VZWVmZjxoyxrKws1zrIt22X238D1q1bZ7fccoulpKTYM8884xoLhXxplD6lZcuWWXp6uvP417/+tfXt29c+/vhjZ9mCBQts+PDhzuP777/fJk2a5FrP2LFjbfbs2cGfcA8zZswYy8/Pdx6fP3/eUlJSbMmSJd04q57n1KlTJsneeOMNM7vw5RIREWFr1651avbt22eSrKyszMwufHiGhYVZXV2dU1NUVGSxsbGu/TuUNTU12bBhw6ykpMTuuusup1Ei36uzYMECu/3229sc9/v9lpycbMuXL3eW1dfXW1RUlL344otmZrZ3716TZP/85z+dmtdee818Pp/V1tYGb/I9wKRJk+wHP/iBa9k3vvENmzZtmpmR79XwHmh2VpYdObYIBe0dyAds377dJNmRI0fMjHyvRFv5Hj9+3AYOHGhVVVU2ePBgV6MUKvnyX+8+pYaGBvXr1895XFZWpjvvvFORkZHOstzcXFVXV+v99993anJyclzryc3NVVlZWddMuoc4e/asysvLXVmFhYUpJyeHrK5QQ0ODJDn7anl5uZqbm13ZZmRkKC0tzcm2rKxMmZmZSkpKcmpyc3PV2NioPXv2dOHsr135+fmaNGnSRf+eyffq/PGPf9To0aM1ZcoUJSYmatSoUfrNb37jjB86dEh1dXWufOPi4jR27FhXvvHx8Ro9erRTk5OTo7CwMG3btq3rNuYaNG7cOJWWlurdd9+VJO3cuVNbt27VvffeK4l8O1NnZdmRYwtc0NDQIJ/Pp/j4eEnke7X8fr+mT5+u+fPna8SIEReNh0q+NEqfQk1NjVauXKnZs2c7y+rq6lwHPpKcx3V1de3WBMZxwX/+8x+dP3+erK6S3+9XQUGBbrvtNo0cOVLShX0wMjLS+SIJaJ1tR/blULZmzRq98847WrJkyUVj5Ht1Dh48qKKiIg0bNkybNm3Sgw8+qIceeki///3vJbXk095nQ11dnRITE13j4eHh6tevX8jnu3DhQn37299WRkaGIiIiNGrUKBUUFGjatGmSyLczdVaWfF50zEcffaQFCxZo6tSpio2NlUS+V+upp55SeHi4HnrooUuOh0q+4d09ge60cOFCPfXUU+3W7Nu3TxkZGc7j2tpaTZw4UVOmTNGsWbOCPUXgU8vPz1dVVZW2bt3a3VO5bhw7dkzz5s1TSUmJoqOju3s61x2/36/Ro0frZz/7mSRp1KhRqqqq0qpVqzRjxoxunl3P9/LLL+v555/XCy+8oBEjRqiyslIFBQVKSUkhX/RYzc3Nuv/++2VmKioq6u7pXBfKy8u1YsUKvfPOO/L5fN09nW4V0meUCgsLtW/fvnZvQ4cOdepPnDih8ePHa9y4cVq9erVrXcnJyRdd2SrwODk5ud2awDguSEhIUK9evcjqKsydO1cbNmzQli1bNGjQIGd5cnKyzp49q/r6eld962w7si+HqvLycp06dUpf+tKXFB4ervDwcL3xxhv61a9+pfDwcCUlJZHvVbjxxhv1+c9/3rXsc5/7nI4ePSqpJZ/2PhuSk5N16tQp1/i5c+d0+vTpkM93/vz5zlmlzMxMTZ8+XT/60Y+cs6Pk23k6K0s+L9oXaJKOHDmikpIS52ySRL5X46233tKpU6eUlpbmfNcdOXJEhYWFGjJkiKTQyTekG6UBAwYoIyOj3Vvg/1XW1tbq7rvvVlZWloqLixUW5o4uOztbb775ppqbm51lJSUlGj58uPr27evUlJaWup5XUlKi7OzsIG9pzxIZGamsrCxXVn6/X6WlpWR1GWamuXPn6pVXXtHmzZuVnp7uGs/KylJERIQr2+rqah09etTJNjs7W7t373Z9AAa+gLwHsaFmwoQJ2r17tyorK53b6NGjNW3aNOc++X56t91220WXs3/33Xc1ePBgSVJ6erqSk5Nd+TY2Nmrbtm2ufOvr61VeXu7UbN68WX6/X2PHju2Crbh2nTlz5qLvrl69esnv90si387UWVl25NgiVAWapAMHDuivf/2r+vfv7xon309v+vTp2rVrl+u7LiUlRfPnz9emTZskhVC+3X01iZ7g+PHjdvPNN9uECRPs+PHj9q9//cu5BdTX11tSUpJNnz7dqqqqbM2aNda7d++LLg8eHh5uTz/9tO3bt88WL17M5cHbsGbNGouKirLf/e53tnfvXnvggQcsPj7edaUwXOzBBx+0uLg4+9vf/ubaT8+cOePUzJkzx9LS0mzz5s22Y8cOy87OtuzsbGc8cPnqe+65xyorK+3111+3AQMGcPnqNrS+6p0Z+V6N7du3W3h4uD355JN24MABe/7556137972hz/8walZunSpxcfH26uvvmq7du2yr33ta5e85PKoUaNs27ZttnXrVhs2bFhIXr7aa8aMGTZw4EDn8uDr1q2zhIQE+8lPfuLUkG/HNTU1WUVFhVVUVJgk+8UvfmEVFRXOVdc6I8uOHFtcr9rL9+zZs3bffffZoEGDrLKy0vV91/oKa+Tbtsvtv17eq96ZhUa+NEodUFxcbJIueWtt586ddvvtt1tUVJQNHDjQli5detG6Xn75ZfvsZz9rkZGRNmLECPvzn//cVZvR46xcudLS0tIsMjLSxowZY2+//XZ3T+ma19Z+Wlxc7NR8+OGH9sMf/tD69u1rvXv3tq9//euupt/M7PDhw3bvvfdaTEyMJSQkWGFhoTU3N3fx1vQM3kaJfK/On/70Jxs5cqRFRUVZRkaGrV692jXu9/vtscces6SkJIuKirIJEyZYdXW1q+a///2vTZ061fr06WOxsbH2/e9/35qamrpyM65JjY2NNm/ePEtLS7Po6GgbOnSoLVq0yHVgSb4dt2XLlkt+3s6YMcPMOi/LjhxbXI/ay/fQoUNtft9t2bLFWQf5tu1y+6/XpRqlUMjXZ9bqT3IDAAAAAEL7N0oAAAAAcCk0SgAAAADgQaMEAAAAAB40SgAAAADgQaMEAAAAAB40SgAAAADgQaMEAAAAAB40SgAAAADgQaMEAAAAAB40SgAAAADgQaMEAAAAAB7/BwKzTusT1AR7AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -175,14 +173,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAERCAYAAACqx6miAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABIx0lEQVR4nO3debxkZ33f+c/vLFV119671VrQ2gJJCAQIzBI7ZjF7LI/HEDmZBBxmeE3GfmWx5+WAHTsOSl6xxzPBOHGw9QLPQEIMhJigOLYxSCKODQKpWyuLoZEQaiGpW1Kr+65VZ3nmj+c5Vafq1u3t3q67fd+vV/U553lOnTp1q+49336e55xjzjlERERE5PyL1noHRERERLYKBS8RERGREVHwEhERERkRBS8RERGREVHwEhERERkRBS8RERGREVmV4GVm3zOzB83sPjO7J5TtNLMvmNl3wnRHKDcz+20zO2xmD5jZS1djH0RERETWu9Vs8Xqtc+4G59yNYfl9wO3OuQPA7WEZ4C3AgfB4L/DhVdwHERERkXXrfHY13gR8LMx/DPiJWvnHnXcXsN3M9p/H/RARERFZF5JV2o4D/szMHPB7zrlbgX3OuSdC/ZPAvjB/EfBY7blHQtkTLGObxW4v6SrtqoiIiMj5c5j20865PcPqVit4/TXn3ONmthf4gpl9q17pnHMhlJ0xM3svviuSPST8VnLpKu2qiIiIyPnz9vzbjy5Xtypdjc65x8P0KPBZ4BXAU1UXYpgeDas/DlxSe/rFoWxwm7c65250zt24jXg1dlNERERkTa04eJnZhJlNVfPAG4GHgNuAd4XV3gV8LszfBvzdcHbjK4ETtS5JERERkU1rNboa9wGfNbNqe//ROfenZnY38Gkzew/wKPDOsP4fA28FDgPzwM+swj6IiIiIrHsrDl7OuYeBFw8pfwZ4/ZByB/zsSl9XREREZKPRletFRERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERkTBS0RERGREFLxERERERmTVgpeZxWZ2r5n9UVi+3My+amaHzexTZtYI5c2wfDjUX7Za+yAiIiKynq1mi9c/BL5ZW/4N4IPOuauA48B7Qvl7gOOh/INhPREREZFNb1WCl5ldDLwN+EhYNuB1wGfCKh8DfiLM3xSWCfWvD+uLiIiIbGqr1eL1W8AvAmVY3gU855zLw/IR4KIwfxHwGECoPxHWFxEREdnUVhy8zOztwFHn3MFV2J/6dt9rZveY2T0nKFZz0yIiIiJrIlmFbbwG+HEzeyvQAqaBDwHbzSwJrVoXA4+H9R8HLgGOmFkCbAOeGdyoc+5W4FaAA9Zyq7CfIiIiImtqxS1ezrn3O+cuds5dBtwM3OGc+9vAncBPhdXeBXwuzN8Wlgn1dzjnFKxERERk0zuf1/H6J8DPm9lh/Biuj4byjwK7QvnPA+87j/sgIiIism6sRldjl3PuS8CXwvzDwCuGrLMIvGM1X1dERERkI9CV60VERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZESStd4BETk/nAtTrG/KwHKvfPj6fmrL1g8+t7/81M8bto1TrzP8NU+1PTf0FeqGv/+zcS7P6b366fdw+fWWf+6wPapvY+n2htcNe92qbPn13LLrVcuD6w+uO2zbvbIh65/7RyAyUgpeIqeQuZTvcxUlMcDA4aIXMuqhZmlw8eWj1//Kpzp4DZaf7nn9y9V8fXlwm8OfN3w7Sy13AK9vd7ltnG6bq2HYthzWLT/T+ZU4fQAdLDt14D7Vawx/rWHfe5apW/73pffc5f8D4PqeF9ZdvY9zQPXK1e+LG5ivv5Ph9fXyiHLJ+gARZd/3vKrz6/fvg9XW7d/eYLkbsl2/HNl5+4HJaSh4iZzCvylniDjIf/jNv7Pkf9aG681b71AxbL7+PBHZGJwD5/wvbul6Qc8583X0T3299dWXrlbnQl01P/D8et1Xb/kijoicuBblfPwqwyiherkj6sYrX9+LWSxZz7rv60wNhr5qy4MBr6qrAuGp66u9KYfW9/a4WFq3gf+eKniJnMIjbpELr2wy3sjWeldEZMTMev95qmLNqFzywRtH+nqnU5Y+FJYhPFaBsgwBsiytN+8M110/6q5XPfeuW27vBsqSqC9+VVNqdVV47Fs+bXBcGup6Aa5eVs3Xw15/vQ3M10Pl0NB4mtbEFQcvM2sBfw40w/Y+45z7Z2Z2OfBJYBdwEPg7zrmOmTWBjwMvA54B/qZz7nsr3Q+R1dZ2zdCqpSZ5Ednaosj/HYxXIYBe8sGXrXgbp9MLglCUUTf4VeX1AFm6qK+uCoa9oBcNhEQoiXuthwMB0rcmfnvZfVuNFq828Drn3KyZpcBfmNmfAD8PfNA590kz+13gPcCHw/S4c+4qM7sZ+A3gb67CfoisqmfYR8r3KcoxZhabtS5E38XY19VYlQ10M3anG7hZXERko4miXudrGpdn9dzVCIbv+wfL1604eDnnHDAbFtPwcMDrgL8Vyj8G/Bo+eN0U5gE+A/xbM7OwHZF1Y55Jpi7dycxiwsPHdvUG8y43tsP1BvyyzDorVQ98hoPucn8YjMz1hcFeEKzVh3Jq9VV51Peceh3dgblm/a9b1UdW9u1DFC3dhojIVrUqY7zMLMZ3J14F/A7wXeA551weVjkCXBTmLwIeA3DO5WZ2At8d+fRq7IvIaslJycuIiV0tbvjJK9d6d4BqsC99A3HLsh7+woDeciAgVus7us9hoL4aw1HNl/ff3R0MXA4OCh4c3zEw7qM+qLg3oLh/oPHp9AfIKsDVA54LDz+mYjDgRVFZW6f/YdFgWW3dyBHXQqWIyGpaleDlnCuAG8xsO/BZ4AUr3aaZvRd4L8AenQMgayCjQV5ETMTrpzHWt2BVS25gusr2v/D8bPcM+QBIbxBvabX5XsDsli8p89P8/rspwxiP3pgOGzrmoyijvoHCp9INceaIQ8iLQ6CrlqNueS/YxZEjtsF6v05sZTf4VWNqRGRzWdVE45x7zszuBF4FbDezJLR6XQw8HlZ7HLgEOGJmCbANP8h+cFu3ArcCHLCW/gLJSBUuonAxZnBiNuUv7t3ZVx9F4cAb4Q+2VQtKbdkM4nhpeWSOOCYcsENZVW+OOK7Kt/YlKPzPrz6Y9xz/DJynAFmWUJQhpIWAWJS94FfVFYUPgcV9d5MVMe3cKMvI1zujcJFfz4Wy2kDgYfz3pApoZV9oi+OSOAQ9/3C1cr+cREXvOQp3IiO3Gmc17gGyELrGgB/DD5i/E/gp/JmN7wI+F55yW1j+Sqi/Q+O7ZL3JaFCQUDoYbxZc/GNX9dX7gyu4EopwoK3ms7LWUlNCUfjlC5+5nzyLegdnZ5RFOPgWdFtfitrBernfjCqoVcEtjnyY6y7H/SGuqu+tWy93JLG61c5WFFVnep3hn683Xb8qr1uWkBe170r4vnSnYT6/727aeURR1h9GHubLEPQGVcEujkqSqCSJe6EuCWW9uqK7nIZ6tdSJnNpqtHjtBz4WxnlFwKedc39kZt8APmlm/wK4F/hoWP+jwL83s8PAs8DNq7APIquuIKYsI/LWxJI6f9D18ykw/ODbX+YuvB5jdX7pylqgK0soC6MoIS98K0w98O1/+gHaHV9fFFG3paY6UOfhQD0s5MUR3ZCWxGU33MVxSRxBkpQkcX+YSxIf5JLY10W6I+yqiiJonEnge/O5tfQV4TuUFxFFAXkRdYNeXhjZoXvoZClFGfm6MiYP89Vp+3U+4BfdEJdGRTfEpXERAlvhvy+RX07jQv8RkE1rNc5qfAB4yZDyh4FXDClfBN6x0tcVOZ/ajFGQUrYmmJ2NuOdraV99FIVusNiRJBAnvfkowoePUBYnkCT4gJL4561UPfh5S2/N03XhC4mBc3nZooCy8C15RW7kBWThwFzkPthdcOyBcKC2sI51D9z+gN2/zXpgS7phrbecxI40KYnDNIl7YU4H4/Ov+l430iKUFP0rnGWgq4e3LK8CnZ/P7r2HhSylKCKyMiYr4m6Yq/9HoGpdq0KZny9ohGkSyqtlfU9kPdOodZEhHEYRBnK3Wo7ool199WUJeRlCSR4CSqcXVF6w+xiLi3SDSJ77+aLw61TMfGhLYt8VmKS90JamvfBWL0+S0Y398gfhYa16tfkLX0jCmf8xKcLPLC/8z6OTw3zhg9z+Y/ez0I6ZmU/Iq59dEYUDdv+bTpNeMEsTH96qskZSkiSORlqShnIdjNeG/w6VNIdVnmGIKwroZBFZ9V3IIzpZxOKhg8y2m2SFD22dPO4LbZE50qQXyNK4oJnkNJKCNM5r82d3nSeRlVDwEhmiIGGRcQAW8hTn+sNOt8UpgWFHlGPs8U1MjaV19YYq56BTwGItwBVtP1+FtzyPyDPIQ1jJa3cvMvNBLG040rQX1tLU+UejV5ask9/2Ksw1hgS58oLru61zQw/U1drO/zyKAvLMaOcwm/mAu+/oA8yG4NbJI7LcH6yrg7GZD22NtKSZlqSpD2qNMN9Mw7zC2roRxzAWl4wxEJDeeu0pn1eWPrB1QlDLMqN98CAnF1p0QlDrFAl50futrMJZK81pJD6cNVM/bSU5iUKarNA6+VMssr6UROSkOGcszMG3H+wNdI+iqmXKT9OGfyQppKmfxmf4m1UFp2EB7ih7fHAbCG/14FaWsJjDXB6C2WIIbbuOMTdrZJmRZZBl1tfSlqY+rDUa0Gg4Gg0f0pq1+fUcOszCe0iB7knPYXrhC2nif5xLR+eF0JZBp2O0Mx/Y9j11P7MLCdnJiHYW0e74sFapglqr4UNZq1mE5YJW04c0WX+iCFrNklazFpZO0crmnA9q1Xegk0Us3HOIEwtjtPOEdpaQl/43MI4czSSjlea00oyxNOtOG4m6O2V5Cl4iQzgsDK6HxjicyE5068oSyrnQQpUb118zzeI8ZBnkHT8tS8CFbsRaOEsb0Gj6x2qEmyiCKGy37hh7/G/3WG3d6r05QgsRFBl05nxQm5+HTjui3fZhDXoBp9l0pA1Hq+VoNKHVdDRbvpVtozGrPoteYCv3Xt/tLh0b8pwsg6xjtDtwsm3sfeoBZuYSFjsxi20/fglnxLGj1SxoNXw4G2sWjLX8tJEqnK13ZtBslDQbZS+1L9OqludGO4tYaPvvwMw993JsdpLFLKGTJzhnpEnBeKNDK80YTzPGmx0mGh0aSTF0m7I1KHiJDFESc/lP3kB2zx20F/r/SFbdjEkK4PjukRNDtwF+3FeeQ5n7brDrrp5mbgY6bcg6gIMo7oWxZgvSMG00z0+rk1losauFpqPsgRb+QX9Im+/AyQyyeXh+6ygnTxjHFnsBzQyaTWi2HGMtH8haY47xcbduujdXqurGHZ8AcHDBC+s/rq48h07bWGzDibax64kHOXa8yfxiTJZFYI6xZsl4ywey8VbBxFjOeEstJBuNH3NZMDEW/j687Zol63QyC8EsZvar93J8fpy5ToMsj4mjkvFGh4mmf0w220w22/oebAGb5M+iyPlRXSV9YdZIm64vrJyJKIZGDDR9a8ejTy0NaWUG+Uk/Vum6508z8xw8vejDGYRQMwatsd70TLsyV8qsFwoBnmRvX0CL8T+juQ4cb0PnOBzYfozjz0bMz/uwmaYwPuGD2Ph4ycSko3mqAVwbmB9LVwto+68jBaZCvXPQbsPigjH1g/s5fjLl8aMt5hb8OacTYwWT4zlT4zmT4zkTYwpkG1kjdTTSnG2TOfsGWs6KAuYWE+YXYma+eh9PnZxirt3ADKZai0y3Fpke81Nd6HZzUfASGSJ3ve6CIvfB68QzEUXuW4qaY677iFZ4eYgogkYLGi3HIz/oD2bOQT7nu7muOTDN7ElYXPBhcGwcxidhYgpa44OXlxidwXD2DHv8aZDTPph1cjg5Dwfiozz7bMyRx4x2G1otmJoumZ4umZremN2WZ8vMv+9Wy5HveFF3LNoOwni9BeO5OYMjD/LE0y3m5hPStGTHdIcd0xnbpzKNJ9sk4himJ3KmJ3IuqLWWFQXMzCec+PK9PH58O99cbBGZY9fEHDsn59gxtqCL1G5wCl4iQ1T36wNHnBjf/+ahbl1RRDz/5S9mfsY4ftSnnfEpx8S2cslYq5Uy812PadPx6JO9UOZKODYDL5jcxrEnYGHet7bs2A3bdq2fMxjB78vkNDzh9sI4MO4D2Vwbjp6Ey/JjPPo9f2HXXbtL9u4rGR/fegeWKAotgxMO9l7HDnwg67Th5MmI8nsPcfj7kzhg/+5FLtyz6MciyaYSx7B9Kmd77U4HWW4881yDJ//yIb71xD7GGx2et/M4uybn13BP5Vytoz/PIuuJUbLM1dzjksOH7u0ul6Vx4KU38MwTMa6E7XtKxibPb3CwyHc71lvIsnmY2raNh7/huyIvusy3hK1XVSvZCfbAOJQ5tBpH+e53ErIMnndZwe7dChaNJuzeU8Kea9mPHxsY/dWDHPrmdpKk5NorZnrjjGRTShPHBbvbXHDTAQCem0n4/u3f4ltP7uP5+46ye2pujfdQzoaCl8gQJdXAGjvtGJsocnz3Ph/EiiLC7CVk7ZLpXaNttUkbvTFk7ZOQZdvYfwls23maJ64TcQI/KPfCbn+5hycef4bZGeOyyxUq6tIGuOuvZz9w8qRx712Hue6qk+yYzk77XNkctk/lbP+Jq2h3Ig591lG4iH3TM2u9W3KGdBc1kVUUxyWPf+deFubW9lerOQZPPHOS2ZNruhvnLElhYdsunj6mP1GnMj3tuPiCBU7MboEBcrJEs1FyxRuu4vjcsIugyHqlFi+RIYzqJsQOOLPTypyDK294CTPHI6Z3rl0XWVnApRds40QCO/eu2W6cM+fgovgojz0Vc6lau5aV51Dc9w2efq7Fy655bq13R9bA41+4n4eP7eb6izfo/7C2KAUvkWVY+GfYOK9KWRpX33gDCzNGp20UuWP/ZcWKz3Q8W1kHrr5sGzMn/GDstAFXX792ZzqerTyHy8eO8szTETMzxtxO44aXZKt+ssJGl2Uw8Z0HeOrZJnPzCZfsL3j1i5/VJSe2kLmFmB/c8RBHZ6aYak3wQ1d8T/ea3GAUvESGiCiJzIevKng5B0Ue8/yXv4jOotFe8OO/8o5jeldJozWa2+wUBXQW/OUl5mdhcR7S7b7uokt9N+N6VpbQXoArp44yMxMxO2MkDmZ3GvsvKnj+tO6RCP77trBgbP/e/ZyYTXluJvXtrztjrrxkjumJfK13UUZgsR3x3EzKs19+kOPz46Rxzv5tGa+47FHdN3KDUvASGSK2gigqwPx1vPZe+jJw/rIOrnRMbHPs2Fuet5YtH/Ig7/iLqrYX/SUjsjbETRjb4wej77vIn7m4HoNKWUB70T+u2naM+Tljbs7Awc4JR5YZe/YUXH7F5rnC/bnqtGF+3th55AHmFhJOziVkWcT4WM7CZMyenW2uet6sruG1yS22I2bmE05+5T5mFpvMLLZoJDk7JubZM7nAgb3HFLY2gS3+505kebFBZI60aVxwWbHq3XZF4e+VWF2xvtP2IaW6Yn067m8dVJYwuQ12X9C7SOl6UJbhZtNt/ziw/RiLC8bCgr+VUBzDzjHH2JSj2XTs2FkyMeE2TPfnaqquWN9e9D+fXU88yNxCwvxiTFkYjUbJ5FiOG4c9O9tcecms7u24STkH84sx84sxc189xGzbB6y8iGimGVPNNlOtnN27Z5lq6RZCm5GCl8gQESVpXJAUbaamJ84qLLgyhKrch6oXvmCarEP3kWeAQdLq3TjbDKa2w+7zeI/Gs5Hn/obfeQadDly94xjttvkWrLa/vpkZTDYdzRY0d/gbaO/cVdLaoDfPPlfO+c+10zEW28aeJ+7v3p9vYTGmKMP9LFN/j8apZsHERMEFuxaZGFv9QC9rr7pH48JizOzX7mWh02C+k9LJE6LI0UozJhodxhuO/dtOcPW+oxqntYUoeIkMYfhxRpE5isK37hS57z4rct/9eN0Lpn04yX1AycOQm8ggTsONlRt+gPvElA9UaYOzvt/janAu7GPmB2jnGTx/5zGyzN+OKMt8cCjD3/5GAhMNf0/F5oSj0XRs21bSaPqyrRAWsgyyzMg6PmzufeoB2p2IThbR7kS0s6g7/q/ZKGmmJVONEmvCrukOrWbBWLMkUffgpuEctDsRi52Ididm/u6DtLOUxSxhMUvJS/+LkcYFY42MsTRjvJGxc2KeiUaHRqKzdEXBS2SoiIJHPnMQu8TR6cDO1jaS1IemtJo2IJkON0ZujOY2PdXYryIPlxMI0xfsOkaeh6AQui/znG6QMoOxFBoNR9pwNCYhTf3NnBuNkjR1NBqbN1BlIRj7n4+RZ7Dv6AN0MiPLIjq5D1RZ3mtqTGLXDVQTjZI4deyYzmg2CpppSbNRrnnLpKycc/gwHQJ1lkUsHjxIJ09o5wntPCYrkm7IbiQ5rTSnlWa0EsfOibnuslqt5EwoeIkMEVHSZNEHlnF/aYbV0NdyFrojizBfhaeisG4LWp5btyUNQpdVAknqu/OSMUeaQBw7Wi1I09KXJ44k3TxBqmqxy8LPo6j9bPYdfYAsj/xyYWR5RJZHFLVjYBI7GmlJmjgm05I0KYkTx7bJgjQpaYQglcQ6o3Kjy3L/HaiH6vbBg+RFTKeIaecJWRGTFxHOGVHkSKKCZpLTTHIaSUEzKZhqtml0l3N9L2TVKHiJDGE4EjIMaMUZWceHpTKM36qCU1nAC3Yf643pKizM+2k+cMZ/FPluvDhxJDEkDR+Q4tiHpbFxSOLSt6KlLpSv/Zivc1X/uZTh55EXvqt2/7H7yQsLP7OoO5/lfr6sBSczf7+6JPbhaSzxXXhpUpI0HJPjRajz9WlSEo/4WmqyOpzz35E8N7IiCmHbTzuHfIDKioisiMnKmCyPKV29pdKPz2zEBY0kJ40L0rhgotEhTQoasQ9Tap2StaLgJTJETE5sORb5lpaxE88QJ4448pdxiBu9UBTHjrExP41ifAtU4uvjeP2HJudqYbKEsjCK0DJXlNYNmfuffsC3xhVGWYbAVFq3pSkvlr7ROPI/lyowNWPHWOSDETG0Gj5AxbFvbUriEKbirXn240ZXliE0hSCd5SFU50Z2793kRUxeRuQhOPn5uDs2qpJEJUnsw1EaF7XlgvFGRhrn3bpGXBBFGkcnG4eCl8gQCRkxBdHiLM2dTV50w2hvQFwPQ6XzYagsq2DkA1F19qRzvVBUlFA68y1upfn5EJCq+mGqgBRHPiTFMaSRD0T18NRMfTiKQkjy64d5ddNtKP775INzUYYQHVofiwIfnu7zYakoo25gKpyfli6iKPs/8MgccVR2W52SqCSJylBGGAdVEEclaVySRD5c6dpUspWsOHiZ2SXAx4F9+Bvb3eqc+5CZ7QQ+BVwGfA94p3PuuJkZ8CHgrcA88G7n3KGV7ofIamqySEKOATY3z+yMUTp/qYgyhJuq69E5P73wmQe6dUVhITz58FMvr5aL0pa9HZEZxJFv9YkjH2oicyRRL+BUQSkKZc3QNWnWC0Jx5J/XW3f9t8BJ6KItfctiFYqqAF2W1q3P772HoowonFGWPggVLvJlpVGUwwMS+JAURSEoVeEoTKv5NCppJbkvj/vXS6JSLU0i52A1Wrxy4Becc4fMbAo4aGZfAN4N3O6c+3Uzex/wPuCfAG8BDoTHDwEfDlORdSO2gsR1MHO+xenBb2IGSQg6ZoSDluuFpNgRha7HyBwW0Q1G/iBXX0YtROtYFYzLshaaq/nQkujq6zgo7rs7BB0fgrrPCcGndD4UlbWy5fjA7INNbKUP31HZnY+qgGSONM18vZWhvLduEvt1FJBE1o8VBy/n3BPAE2F+xsy+CVwE3AT8aFjtY8CX8MHrJuDjzjkH3GVm281sf9iOyLph5luPJsYKXnT1ybXenQ3Nuapl0HD05ktn3RZDRy/YOMK0Vu8DjVHe/7W+cOO3Z93tlS6EH1fbfih3tbJTiawKy2VvvmohsrI7X18vNrrjjap1rDYfR9W0N6/gLbL1rOoYLzO7DHgJ8FVgXy1MPYnvigQfyh6rPe1IKFPwknVljHmSyNF5bvasn1sFDf/wR1dHb7mq8+X94aP/+WFdfBCpNlSdxVVfr6ytX95/dzeQdMMGQC2o+O1WQaQWYGp1VWjx9dZ97arubFQhBfNnjUaR89NQXgXd2MruxWstPOrhx7c8lkRx0V2OQrghPC8OrUX17deDkgKPiKyVVQteZjYJ/GfgHznnTlrtL5tzzpnZWf2ZNrP3Au8F2KNzAGQNROTEUcFCJ+Uv/uDIWT3XrHf1+xB5uoHDrL98cN0qgBjV1PUFkbApqK0ThfKoG1T6t1EPG5GVvW33Pa8/EFWvWd+u1ecVXkREztqqJBozS/Gh6xPOuT8MxU9VXYhmth84GsofBy6pPf3iUNbHOXcrcCvAAWtpgIKM3CQznHz0OfZeNclrrnpkrXdHRETWsd6whlP/r3Q1zmo04KPAN51z/7pWdRvwLuDXw/RztfKfM7NP4gfVn9D4LlmPdnCMjMZa74aIiAS9sZz94ziLMuoOnRgc71nV33XL7X4dIhxRmPaW++sslPXWO71qK6duK1qNFq/XAH8HeNDM7gtlv4QPXJ82s/cAjwLvDHV/jL+UxGH85SR+ZhX2QWTVpZZxkW3nuv1Ta70rIiIr1h03ytLxnL0TUaLe2M5QzsBYz/6TVoy7brkDoBtQevGjHmrqsaQebHrLnEG46a1ddrduYWvWF6XqZWX3eXFt3gbml3tOd/urNLxiNc5q/AuW/2m9fsj6DvjZlb6uyCj8THQRM1/ezmOv3w70xk1V835K3y9lNY7Lz9fW7avvzde3Uc33XmugbLnn1oZQ1l9zcF/r2xLZiLonpbheu8KSeTdwokrtZJBeuQ2t6z534MSY0kVLtlcPMUC3RaW7r+EQHn5ze6/dt1zNA0PWr8p7y1Ff+dmyvlcvw5bqW/Vho1dWDn2OX4due9Byz+kLLn3rlX3bjNg6N53XqHWRU9jDDzBK7rrldqD3R7uar/8xhf4/rHWDf3Sh/geY7vMH16Vvfvn1h223f9r/nPVr+J4ONt0Pb8p3p6lfvpxl1197Z7Nnw7pDlu8iGf5drZcN/tTXh17kqMeSqq6/bPA3ydWeP7hcf05/7Blcf/n6knqUWrpeL7D01w1ffzD0LClbLx+JnBUFL5FTiMyxV1c6GYn65SmGBdee04cLh2G4U4SO5Z+72uufq9ONEzld/anWW1o2GGCWrquDvMjqUPASkXWhfmBfLhiIiGx00elXEREREZHVoOAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiKrErzM7PfN7KiZPVQr22lmXzCz74TpjlBuZvbbZnbYzB4ws5euxj6IiIiIrHer1eL1/wFvHih7H3C7c+4AcHtYBngLcCA83gt8eJX2QURERGRdW5Xg5Zz7c+DZgeKbgI+F+Y8BP1Er/7jz7gK2m9n+1dgPERERkfXsfI7x2ueceyLMPwnsC/MXAY/V1jsSyvqY2XvN7B4zu+cExXncTREREZHRGMngeuecA9xZPudW59yNzrkbtxGfpz0TERERGZ3zGbyeqroQw/RoKH8cuKS23sWhTERERGRTO5/B6zbgXWH+XcDnauV/N5zd+ErgRK1LUkRERGTTSlZjI2b2B8CPArvN7Ajwz4BfBz5tZu8BHgXeGVb/Y+CtwGFgHviZ1dgHERERkfVuVYKXc+6nl6l6/ZB1HfCzq/G6IiIiIhuJrlwvIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjouAlIiIiMiIKXiIiIiIjsiqXk5C19ZTL+Kqb5W/Ydsxs6DrPuL3MMk1ESUxORElEQUxBRBHKq/mqvMQoieys7vYkIiIiy1Dw2gQOuTluLY9xbTzGVbSW1JfOOOKu4G/9i8sonZGXMUVpfOUDd9AmpSQOMSyhDBGsrEUx3LAw57rPik459UHPcH2BbjDgRRQskxlFREQ2DQWvTeCHbYrf4xh3lCe5Kl4avJ5lLzvtKLsm9/aVv+ODLzvn13QOijKiKI3CRX3zZWkUZUTp/PQrt9xRC3JxX7A7k4AXhdA2GOiiWqtcfAYBsK9MrXgiIrIGFLw2gUmLeYVN8Oduhve4PcQDTUfPsZt3/KtrgfaqvaYZJHFJEgMUp1z3kg++9Jxfxzm6Aa4v2NUCng9+xl0fuJ2cdEm4c33RzNe5oSGPXutbrR3QBoJfHMqsu9wfAvu7cdVdKyIiPQpem8TrbJovu1kOuTlebpN9dYuM0YxzytKIoo0VAMwgNkccnTrcAfzUB29c0WvVQ56f9oJd6WxoS15BQrsbvfzUDbTmlUSnDHrDAlw98MVLwt/y6ynoiYisbwpem8TLbIJpIu50M7ycXvBadGM0aHP/4xeSFzFlLQCYQRIVpHFBEpekUZjGoSwqScK0WieJyk07FutsQh6srCUPekGvr0WvCnplvdyHva/ccgdZrRXvXIPembToDYa6od21tbLN+p0QEVltCl6bRGrGD9sUX3AnmXcF4xYDUBJhzpEVCa+5+eK+5zgHWW5kedSdFoWfLh46SFFGZEVEVsTkZUQepnVx5PrCWToQ1HyYq5eXG67V7XzpBj0caVyedv2VBj2AsjTyWote6aLeclFrzat127paxOqFu17oW358HqcMa0unPkrakHX6Wv3UmiciG5iC1yby2mia/1ac4C/cLG+0bQDMsJ2CmD2Ts0vWN4NG6mikQ1p43nrtGb1mnht54R9ZHpGHANc5dA/znZS8aJEVMVkRdcPbYKtbXAttaVQQh5a1RhXe4nzLtLqdb1HkaIyg2xaWjs+r5vPSt8jVW/e+/IE7yEhoD2m9O9vWvLMJeac6Kze204dhEZGzpeC1iTyfFheScqc7yRvxwatDk2t/7kfpvOAavn4Y0rSkkTqaaUGaOhppSSMpaaQl0TlcTjdJHElStUDUDuhvfuEZPd85yAujk/lWt7yoWt2MzqGDzHca5GXUC2+naHVLQ7dpGpf9Ya4b2HxdGqtrbBTOput2JWfYVrpdtbWTL/IyoqydgFE6fxmVbMjYvHpLXklM6Yb/QvS6X+vXwRt25m3/JVPq18zTGbYiW5eC1yZiZrw2muYT5TMcdRl7LfWDv7OEY8822fnqK1nIjCyDvU89SGcmopMZnTyik0W48Pc/jvCBLDyajRDOGmE5LUmTcwtqS/cZ0sSRJkMOzm+57oy24VvZaq1uhW956xy6h9l2s9tVmhWxryvj7nsFloxlS+PB5aVj3xTc1p84Gk3IG2y9qwJevRWvuk5ep3advMHLp5zqDNv+cFcShYseD142pX4x5OXK1XInsr4oeG0yr7UpPsEzfMnN8E7bSUlEJ4/ZlpZs2+6AkDguvI4xYGzINooCOh3IMmOmYxzPYM+TD3JyLqHdiXpBrfQHjDh2NBuFD2QhqHXnw3KanL//1a+01a3qLu2ErtK8iEKL2z0stpvdVrasiMnypS1u9VA2eIJCFdoace4DXaQxbhtdHJ3ZuLyVBDx/yZT+ky4GW+/yMuKuW+5YcvmUJdfKG9py57otcMPuXtF/F4vBu1z05hXqRM6egtcmc4E1uJYx7ixP8g7bQU7KYp6wM3E8fSyi1XI0W440XX4bcQxjYzA2Vgtq+68jhiHXxYc8hyyDTsdY6Bj7nrqf2YWE7GREO4tod3yQqVRdnc1GrUWtFtga6WhblKrg1moOHETOILhVXaXVCQqdzHeVdg7ew0KWMttu0smT2kkKw1vbGkl/C1saF2GMW5hP1NK2lUSRv3Dw6cLd887xhIt6sMvLqP+s2vCoxt0t1u5oUQ91BcnQUGe4botbfToY6oaHvMI/R92vsokpeG1Cr4um+LflUb5Lmzk3yW5zPPV0i4nnIvIMFttG1gndfCndMNZs+kerBc2WI47P7PWSxD+qoFbsuZ4E/+UabFFzDvJuSIMTHWPvUw8wM5/Q6fSCWqURxqG1GkWY9lrVWo2CNHFrGkaW7Sp90/Vn9Pw89y1t1Vmled4LbTOLvRMTOkVCXvR+LtWlQBrJkJAW5huJn9eYNhl0JsHuXFvsqq5X3yoX11rs/PyX/7k/Y7bN2JIg110eEuh8QMu7Xa/xQHgbHu7ybp1+B2S9UPDahP6aTfG7HOP28iQvtwhzxtPbrqQY39ldp8pU7Qxm2tCZgauTYzx33FhYNNqLRllCFPkQ1mo6WmPQGqvmzzyY1ZlB2oC04ZgAwMEFL6TF0ta0ekibb8OJzNjz5APdLs92FtPJ/F/TKKLbrVl1e7aavflmY322FvnWtrMPbWVJXytb1T3aPniQhU6DThGTFTGdvL+VzQzS0O3ZTHIf0GqBLU0KGnFOIymI1SUq56D/zNl8Sf1PffDlZ73N6hZl9UCXlxFF0Wux+8otd3TDXD3EVbFs8JIn/S1xeW3NpWVJ9wp6uVrkZMUUvDah+i2EricmK2PGxof/oUhS/xifhKPsoT7wK8If4E+24Vgbrh4/yonnjKcWI9qLRp77bsnWmGMsPFotx9i4o9FgxUGnL6RNwqlCWln6cWmdjnGibex98n6em0lod5ohpPkxaRY5WqG1rNkM07Dcap7fsWirKYoIIRP6xrWd5oSEKrBVJ1XkYbze4qGDzCy26ISwlhUJRdn7AKtxat1WtCSnGUJaWmtd0/g1OR96tyirWuiyJeuc7XXuitLCyTbRkiD35X9+BxlNFkOA84+0G8MGT4ioh7J4oKXtlPMaI7clKXhtUtUthA7zAy7JY9IEFuahNXZ2gSiKoDnmH0+yl3rqiYGygONteGoOrkqOMTMTsbhgtMNtIZtNGB8vGZ9wjI/7cNZorva79fvZavluU3CUe66nATSAqdp6VUBrt435tm9Bmz2RsNiOWWz7IAL+shtVGBtrFow1C1rNgrFmWRvIv/EsG9hOcd22+iU/2h3futbuRMwfOsiJvEU7T8hKf+JBUUaYOSLz3a/NJKcRFzSSvG9eQU3WWnUWbJOCwSB3ttexq4e4rIjDxad9mPvyB+6kQzNEs7TWIrd0jJwPcFlYI+8GtIScKEz9vG+FiymI7czutCHrx5oFLzN7M/Ah/PH7I865X1+rfdmMqlsIPei+zQ8XMSeORszPQtaGKIbxCZjc5h/JCr4FUQxj4/5xjD0wAUz41jLnYK4DzyzAVa1jHD0aMT9ndDrVAH7H+IRjYtIxOVnSGjZyf5UNBjT2Dm9ByzJoLxozbaP1xP08e7LBYjtifjGhKAzM0WyUjDVLWs2C8WbBWKtgvOVb0DaT+ji2ibEzC2tliQ9qmW9R62QRi/ccYmbRBzXfspZ0u0CTqOwFtRDSmklRm8/V9Snr1qlC3DvPoiWuHt6yIuqOjfvLX7uDDi0WQmDLuy1x6ZLwVu8mrYc339LWH+p0QsPaMOdG/8M2sxj4NvBjwBHgbuCnnXPfGLb+AWu530ouHeEebg4fLp7i826WW37io8R//cd5JIuI4nC5iAXjwGXTzJ4EHIxPwfR2H8RW4/pcp1MW0F6ExQW4fPIYc7MRi4s+BI5POCZDGJuadiPZn7PlXK/lbHHB2PWDB1lox8wvxnQ6EZjv0hxv+Zay8VbB+FjBRCs/p7Fxm111kkG7U4W0e3xAy5PutCgN5yx0bYYWtKSglWbdcNZKfZnIVlUPb/5uIaErtYj48i13dlvdytpYuIIER39XyLCTGYadoTp4Bmv9WnLrcVztqLw9//ZB59zQptO1Cl6vAn7NOfemsPx+AOfcvxq2voLXufkrt8AvFI9x841/nxf/9L/kCMMTTFnA4rxx1aXTzJ7w4WvXXhibGPEOA0Xuw9iVU0eZmYmYnTHMYHLKMT1dMj3tW8nWuyqYLS4YCwvGriceZH4hZm4xoSyMNC2ZGCsYb+VMjBVMjOWMt4p1GTLXmzy37tmv7U7E4sGDtLOUxcyHtKzwFyVN4pJmkoUwljNWBbTUz6sFTWS4U53MUDgf5r5Su4Zc7+4PSYhdfgpLk9fZ3tpr+F0h1v/dH04VvNaqq/Ei4LHa8hHgh9ZoXzatq2mxg+3c/eh/5yVG95Jcg6IYxqccP3j2BK6EC6a38fj3/ID7Cy4ZTQtYJU5gYiqMJ5sCm/LB8MlZGOsc45GHI+bnjeltjl27SrZtL095TbK1YubHtzWbzl+4dv91bINwIyfIOjC/YBydN3b+4EF+cKzF/KJvCpsYK5gcz5kaz5kc94FsK//PcVB1Jmi323OZ660VBSx2YhY7Ee12zMI9hzixMBYCWkpe+PFoVRBrpVl32kpzWkmuMWiyJZ2Pkxkq1Z0f8iLqu7XXsDs/5N1QN3C/1lq72nJ3f4BhIe90t/cqsSHBLqbo3U1iFULeuh1cb2bvBd4LsGf97ua6ZmZcZy/gL47dxfHjj8H207caWgTf/t4JnIM43sbRx334WktR7FvhjrEHdkK0A546CenJY3z/0ZRm03Hx8wq2bds4B8m0Adsazu/z/utoADvwY6MW5o1n54zyyIM8ftQHsjiCbZMZ26cytk1lCmNnII4JrYlh3M2QMWnOwWI7YqEd+xMG7r6X5+bHWMhS2nlKWfqWs7G0w3gjY6zRYayRMZ52aKVbuytF5FyM4s4P4H+3S9d//9ZqviwjX1cLef7+rdGSkDd4q6/By5KEV+teja4Ka3401XDqatzk/mvxSn7PfZw3veWfctUb/s8zeo5zsDhnXLBjmudduTZdjmdjbgZ25k+TdYwXvihb0ckC61Wew8xJY/rRhzgxmzC/kNBolOza1mHPzjbTE0uvlySrI8+N+XbMwmLM3NcOsdBJmc8atDN/WYFGkjPZbDPe7DDZ6DDRbCuUiWwhVddsPeBd9Iv/ct11Nd4NHDCzy4HHgZuBv7VG+7KpbbdtXLHrGg4d/BRXvPYXiOKlR4Oy8F1f1129jdmTPshceMnajfM6WxNT0GY3++0o3/1OwvOv2XwhJElgx04HO69jJ7ATaLehefgBHj4ywexcwuREzkV7Fti9o6OD/ipKEsd0kvtwO+Q6ae1OxOxCzNxdh3h6doJHn93BYub7v8caGZPNNlOtNlOtRSYa+mxENpte1yz0XaZnGWsSvJxzuZn9HPB5/OUkft859/W12JfNLqLk5Zf/MJ+6+1Ye+8597L7wpVz3/Gnai9Be8FeGjxrQ2ulbVXbuhUuuXPnFT0dtYQ6eOBlz0cVb54y2ZhPy617EdmCbg9lZ46mvf5O/enSSi/ctcun++Q33OW5E/rpoJbsG7jjgHMwvxswtJJz4yn08eWKK+U7DnyzS9EFsemyR7WMLGugvsoWsWaeMc+6PgT9eq9ffKgzHjc97Bf/53o/x9Hf/kB/+kR8lTmDnHmi2/FXrN6JOG+Zn4aLG05w8YWwfd1x8VeEHsm9BZjA15eCVL6CZwcK93+Rbj0xxzRUza71rW5ZZb4zZ3rdd0y0vCphdSDj55UM8dWKKbz+5F4BtYwtsH19gx/g8Y43N12orIt4mHA0jdTE528dbvPglb+Lrhz7J//ZL/w/JBkhbzvnuz/YCXL3jKIuL1r00Q1HAWAP2bSvZubPkwNXr81pfayVNgRuu4bEvPsLzL5vRz2adiWPYNpmz7Y0v6pYVBRyfaXD8L+/n8ee2kRUJuydn2Ts1w7axRbVcimwiCl6bXIK/TctLXvZODt59Gw997fPc8Oq3j3QfytKPIyty351ZTa/ZfYw8hyzzV7PPOkYWzlr23TGO3WNQFMbUlGPPnpKx8XO7OfdWMT9vpN96iCefbnH9VQpdG0Ucw+7tHXaHlrE8N45+6T4efWYnM4stLtl5nEt2PKfLW4hsAgpem1xCBzPH81/wBiand/M//vTfc81L3o5zdG/XUs07B64Mp+GWtWXgur1HKQrzZ28UvrwozQeqKlgVRln6+roogjQO119KIR1zpAlEkWN83N8XMU2h0fD1+t/9mclzmJszdj72ACdnE47PpLQaJfv3FLzqRc9u6HtKbnVJ4rjwDS/mQnwIe+TzJ/nydy/nxZc8zlSrvda7JyIroOC1ycWUmDmuSw7z6tfcxJ1f/A8kzzzMxOQ0hg85Zv76XRZBlDg/DY9uvUGaum55FPmWJ4sgjiCKHXHkL4CqFqnVUXW3LraNTtvY/cQDLLYjZuf9Tb3j2DE5nlNMGPv3LPKCy2f0s9+EksRx4G3XsG8u4Rv/reCHLn90rXdJRFZAwWuTG7M5YnO0WgXvfs//zJ/9yUd57Pv/hZ98h67eMWrOha7WAvLMd6tmmbHv6P3h9jf+Ip6dPKIMN+JupI6xZsG2ZkHccOza3uHS/fOMtTbXjbjl1MoSHr/960y31BwsstEpeG1yhr8lyvxCzAt/5AYuu/xKbvvsf1LwOo2qy9R3qYIrjaL049O6XawF7H/6forCyAujLI0sD/c2y6v53jb9tV4cSexIk5JW4phKS6IUtk/lNNI2zdRfmkBjswTgxGzCkdu/wbNzE+zbVnLVnqfXepdEZIUUvDa5hIw0LkjikiNfeJgfeeFr+fh//Qj3fup/sH/PBbWuREcUplUZQDSwbAwsV/etsr5JdzvD1MuH3TihXla/B5cL/1Rl3XFpWHe+HKgrw33BeuPYjNINf926KPLvPYrCLS5iRxw5GtV8WI5iSBtlt8xfRM91H3G8/M9BpK6TGSdmUo5/5X6emx+jnaVMttpctH2Wa/Y/pe+RyCah4LXJNWjzrQ9/iTf90+Nc8ZbreN7+V/Dx//oRvv39z/E3/vrfxNELKIMhZulyLdTQv9xVDdgPzxumKj+TYGa4vhvc1wOf1cqiKATCWjA0q8JTVRcCZqQB/LI2stxYCLcfmv3qvcx3Gsx1GmR5TJoUbB9bYHqswyU7nqOV6lpeIpuRgtcmN84sM0xzbGaSK4BL9+/jNTdcx6f+9Ev84rvfgXUTiM6AEzlXZelvHdTOIrIsYuHug7TzpPtYzPwNt9O4YCzcbHs8zdkxMc9ks33aGwaLyOah4LXJjTFHbg2yIub7T4yRJiVv+5E38Eu//SH++z3f46XXHvBdaaELLTJdJ0u2LucgL/z4PD818jwiy43OoYNkRUwnT+gUMVkekxVxt1u9keQ0w6ORGJPNNjsn5milOa0k1zW4RARQ8Nr0IgoKEq678Ameu/85OmXEq9MdNOKEj3/sM+x4/U/23VHdOaMoh/fDdbvurCSOSh/SIlcrC/OhLjJH8pIbiUJXYHUZiqr7rxo/VY2limrz6gqU0/HXlPNj9orCf2+L0nrzYZoduoe89N/vvIjIy5g8zJcuWvJ9T+KSJCpI4zKMjyxI44JGXIbWqYJGUtAIYydFRM6GgtcmF1tJw7WJzHHZruPd8rddfwV3fOsgv/u/vJz0DJu4qsHrRekPVtV86fx8GeYLF3UHtWf33tMt9+uEqetto/eIwuD35ceHVaoQ6Md0uV5o65b1QmJ33epBdTKB606jF7+id2IBtTFj1htnVp2E0Lv+We9WRYNjy+pl1NbvH79W1Q2UD4TOlYTQ+kVyh5dbt5O5r2xgjF9VXz95oTcu0M9TW99fgNeHorI0yvvvDp+r9U37HrXvQ/WfgGp5GDP//TZzxFEZWm5LYqvNRyVJ5BhvZCRRQRQ50qgI5SVJXOoG1SIyUgpeW8B2nuFPf+krvPODL+2W3fzy6/jsfd/mi9/4Hm+5/soz2o4/0DniqDj9yudZFQKGHcSr4NC/7AOGD3f0yglh8r67a6EiPA8gTF0tAPjnR7XAMnBiQj2s9AUXw9XPFAjrVtvsFdfO5FxhJlhyosIyZVi9vneiQrV+FM5eNVy3y8ygG2yrcus+34UAW7V+QhKVvaBbBd+BwLy0JdWpi05ENhUFry1gB8f4Dtf3lb3h2svYNTHGJ+/++hkHr/WkGwJ1UoCIiGwgCl5bQGoZLTfPv/vHPwAgpiAi50fKK2ndb3ziHz9EQsarf+W1JHHpu2Ji3xWTxgVJ6LLRuCsREZGVUfDaIq6wbwGhm4yYgphLopSChJwTFMTcdcvtFMQUJKE8oSCmDNM6wxGThy3lROGZUXjmq3/1deFioj64JVGhMTUiIrLlKXhtMWaEsFTQoHPO2ymdhYAWhyCXUBKRk1IQ85cfuLM7Xw9v1Xr9XHefqjAX1ZZf+SuvC61ujqQaGB1a5KpB0mqNExGRjUDBS85JZI6IjJRsxdsqnXVb4Xwwi2uBLuZrt3yxL7TlfeskFET0Xd4eiCj7WuEiytAy15u+6ldf1w1vUeS689VZcUkoFxERWS0KXrLmfIjLSciB9qpsc7BFrhfUom7Zlz9wZ60+6lu3DJ2mjqVNaVU3axXuegGv7Jt/1a++vntJgyhyxFadsVe/9IHO2hMR2UoUvGRTWs0WuUFVqCtD+1kV0urLZehurQe7/ql1Q96wcAe+1c5qkbBqubOwlSrkGY5X/errupdhiK3EwtRflqHsuzyDTpQQEVk7Cl4iZ6kKdedb4aJuMKuHtmJJWcSXP3AnJREuLNeDnguRzdXmB7tm+95fLdxZ9xlL56sOYsPxyl95fe+OBNYLf1HfdbvKvmtzda/fpRAoIluIgpfIOhWbj06jVF0Athf4loa5/nK/7l233I7DQiiMlqzjatsZrDtVCKxY7dV86PPL1F7Buq/kf2aD69cDotVCX2RhL6L+ux70LgrbX9a9a4HVLxh7Pj8V2YrKsnfx5uruEGW4CHN1EefeRaLDxZrL4ReKri4IfdctdwB0fwfp++3oPXrl9K3TP09ffaU3bwPL/fO9suVs3l8qBS8R6epehZ58rXelq3tQCcEN6AuE9eXqoFAdVHw53boqIA6u09tGFRKp1fW20zvw9F5rua7iM3x3A4c5NzBP36tC/+Gwd+gbXB5cj7752o2iTlPfb3DdV/zKG7qvvxyzMx/D6Ja5PVS3vjb/tVu+eAYH9XpIqNcPL6+XLQ0gcLoQUn0v6ts/0/9cDHu39W90fzSq/2eDof/p6P9PSe9bW9XZwHr9727wu9j/HexfPt13jL7nDLNs+SbNXisKXmb2DuDXgGuAVzjn7qnVvR94D1AA/8A59/lQ/mbgQ0AMfMQ59+sr2QcR2dx6ty/yY9o2k16oHHYgHwwHS4Ne//Lw5/ae39vOsOcvPfQt15LRq//aLV88Rb0vqw6qZxpQhx2Ehx+Y+yNRPRrX1/Fl/dsZFjyHxate+XIhhL66Yc+L0JhK6bfSFq+HgJ8Efq9eaGbXAjcD1wEXAl80s6tD9e8APwYcAe42s9ucc99Y4X6IiGw4vVCpM1tFtooVBS/n3DcBbGmcvwn4pHOuDTxiZoeBV4S6w865h8PzPhnWVfASERGRTW/wEuKr5SLgsdrykVC2XLmIiIjIpnfaFi8z+yJwwZCqX3bOfW71d6n7uu8F3guwR+cAiIiIyCZw2kTjnHvDOWz3ceCS2vLFoYxTlA++7q3ArQAHrKUBECIiIrLhna+uxtuAm82saWaXAweArwF3AwfM7HIza+AH4N92nvZBREREZF1Z6eUk/ifg3wB7gP9mZvc5597knPu6mX0aP2g+B37WOVeE5/wc8Hn85SR+3zn39RW9AxEREZENwpxb/714B6zlfiu5dK13Q0REROS03p5/+6Bz7sZhdeerq1FEREREBih4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiCh4iYiIiIyIgpeIiIjIiKwoeJnZb5rZt8zsATP7rJltr9W938wOm9lfmdmbauVvDmWHzex9K3l9ERERkY1kpS1eXwBe6Jx7EfBt4P0AZnYtcDNwHfBm4N+ZWWxmMfA7wFuAa4GfDuuKiIiIbHorCl7OuT9zzuVh8S7g4jB/E/BJ51zbOfcIcBh4RXgcds497JzrAJ8M64qIiIhseqs5xuvvAX8S5i8CHqvVHQlly5UvYWbvNbN7zOyeExSruJsiIiIiayM53Qpm9kXggiFVv+yc+1xY55eBHPjEau2Yc+5W4FaAA9Zyq7VdERERkbVy2uDlnHvDqerN7N3A24HXO+eqgPQ4cElttYtDGacoFxEREdnUVnpW45uBXwR+3Dk3X6u6DbjZzJpmdjlwAPgacDdwwMwuN7MGfgD+bSvZBxEREZGN4rQtXqfxb4Em8AUzA7jLOfe/O+e+bmafBr6B74L8WedcAWBmPwd8HoiB33fOfX2F+yAiIiKyIVivd3D9OmAt91vJpWu9GyIiIiKn9fb82wedczcOq9OV60VERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGRMFLREREZEQUvERERERGZEPcq9HMjgGPrnAzu4GnV2F3NiK9961rK79/vfetaSu/d9ja7389vfdLnXN7hlVsiOC1GszsnuVuWLnZ6b1vzfcOW/v9673rvW9FW/n9b5T3rq5GERERkRFR8BIREREZka0UvG5d6x1YQ3rvW9dWfv9671vTVn7vsLXf/4Z471tmjJeIiIjIWttKLV4iIiIia2rTBS8z+00z+5aZPWBmnzWz7bW695vZYTP7KzN7U638zaHssJm9b012/DzZzO8NwMwuMbM7zewbZvZ1M/uHoXynmX3BzL4TpjtCuZnZb4efxwNm9tK1fQcrZ2axmd1rZn8Uli83s6+G9/gpM2uE8mZYPhzqL1vTHV8hM9tuZp8Jv+/fNLNXbZXP3cz+cfi+P2Rmf2Bmrc38uZvZ75vZUTN7qFZ21p+1mb0rrP8dM3vXWryXs7XMe98yx7lh779W9wtm5sxsd1jeGJ+9c25TPYA3AkmY/w3gN8L8tcD9QBO4HPguEIfHd4ErgEZY59q1fh+r9LPYtO+t9h73Ay8N81PAt8Nn/X8B7wvl76t9D94K/AlgwCuBr671e1iFn8HPA/8R+KOw/Gng5jD/u8DfD/P/B/C7Yf5m4FNrve8rfN8fA/7XMN8Atm+Fzx24CHgEGKt93u/ezJ878CPAS4GHamVn9VkDO4GHw3RHmN+x1u/tHN/7ljnODXv/ofwS4PP4a3zu3kif/aZr8XLO/ZlzLg+LdwEXh/mbgE8659rOuUeAw8ArwuOwc+5h51wH+GRYdzPYzO8NAOfcE865Q2F+Bvgm/sB0E/7ATJj+RJi/Cfi48+4CtpvZ/tHu9eoxs4uBtwEfCcsGvA74TFhl8L1XP5PPAK8P6284ZrYN/wf5owDOuY5z7jm2yOcOJMCYmSXAOPAEm/hzd879OfDsQPHZftZvAr7gnHvWOXcc+ALw5vO+8ys07L1vpePcMp89wAeBXwTqA9U3xGe/6YLXgL+HT7/gD8aP1eqOhLLlyjeDzfzelghdKC8Bvgrsc849EaqeBPaF+c32M/kt/B+fMizvAp6r/VGuv7/uew/1J8L6G9HlwDHg/w3drB8xswm2wOfunHsc+L+B7+MD1wngIFvjc687289603wHBmy545yZ3QQ87py7f6BqQ7z/DRm8zOyLYWzD4OOm2jq/DOTAJ9ZuT2VUzGwS+M/AP3LOnazXOd/WvOlO3zWztwNHnXMH13pf1kCC7374sHPuJcAcvrupaxN/7jvw/7O/HLgQmGADtNycT5v1sz6drXicM7Nx4JeAX13rfTlXyVrvwLlwzr3hVPVm9m7g7cDrwy8kwOP4PuHKxaGMU5RvdKd6z5uGmaX40PUJ59wfhuKnzGy/c+6J0NR8NJRvpp/Ja4AfN7O3Ai1gGvgQvnk9Ca0b9fdXvfcjoYtqG/DM6Hd7VRwBjjjnvhqWP4MPXlvhc38D8Ihz7hiAmf0h/ruwFT73urP9rB8HfnSg/Esj2M/zYgsf567E/6fj/tBjfjFwyMxewQb57Ddki9epmNmb8V0vP+6cm69V3QbcHM7wuRw4AHwNuBs4EM4IauAHn9426v0+TzbzewO6Y5o+CnzTOfeva1W3AdWZK+8CPlcr/7vh7JdXAidq3RUbinPu/c65i51zl+E/2zucc38buBP4qbDa4HuvfiY/FdbfkK0EzrkngcfM7Pmh6PXAN9gCnzu+i/GVZjYevv/Ve9/0n/uAs/2sPw+80cx2hFbDN4ayDWcrH+eccw865/Y65y4Lf/uO4E+wepKN8tmvxYj+8/nADyZ8DLgvPH63VvfL+DM7/gp4S638rfiz4b4L/PJav4dV/nls2vcW3t9fw3cxPFD7zN+KH8NyO/Ad4IvAzrC+Ab8Tfh4PAjeu9XtYpZ/Dj9I7q/EK/B/bw8B/ApqhvBWWD4f6K9Z6v1f4nm8A7gmf/X/Bn620JT534J8D3wIeAv49/iy2Tfu5A3+AH8+W4Q+07zmXzxo/HupwePzMWr+vFbz3LXOcG/b+B+q/R++sxg3x2evK9SIiIiIjsum6GkVERETWKwUvERERkRFR8BIREREZEQUvERERkRFR8BIREREZEQUvERERkRFR8BIREREZEQUvERERkRH5/wEUNExYrTAjRgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAF7CAYAAADsY3vMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACATUlEQVR4nO39eZjc1IEu/r9HW23d1e21G2Mb22zGbCEmQBOSCRMPDnEWJmTjcomZ4WbxGCZgJiFMyDo3MUMSst0EJvObC3m+CUPg3ix3gMB4HJYAZnMwXsBsMRiwu22w3dVbVUk65/fHkVSSurrdtnt1v5/n0VPS0ZFKrd701jk6EkopBSIiIiIiIooYY30ARERERERE4w2DEhERERERUQqDEhERERERUQqDEhERERERUQqDEhERERERUQqDEhERERERUQqDEhERERERUQqDEhERERERUQqDEhERERERUQqDEhERERERUcqIBqWvf/3rEEIkpoULF0bry+UyVq5ciWnTpqGhoQEXXnghOjo6EvvYvn07li1bhnw+j5kzZ+ILX/gCPM8bycMmIiIiIqJJzhrpNzjxxBPxX//1X7U3tGpvedVVV+Huu+/GnXfeiaamJlx++eX4yEc+gkceeQQA4Ps+li1bhtbWVjz66KPYuXMnPvWpT8G2bXz7298e8jFIKbFjxw40NjZCCDF8XxwREREREU0oSil0dXVh1qxZMIxB2o3UCPra176mTj311Lrr9u3bp2zbVnfeeWdU9txzzykAat26dUoppe655x5lGIZqb2+P6tx0002qWCyqSqUy5ON47bXXFABOnDhx4sSJEydOnDhxUgDUa6+9NmiGGPEWpRdffBGzZs1CNptFW1sbVq9ejblz52L9+vVwXRdLliyJ6i5cuBBz587FunXrcNZZZ2HdunU4+eST0dLSEtVZunQpVqxYgS1btuC0006r+56VSgWVSiVaVkoBAG415iMveFsWEREREdFk1askLpXb0NjYOGi9EQ1KZ555Jm699VYcf/zx2LlzJ77xjW/gXe96FzZv3oz29nY4joPm5ubENi0tLWhvbwcAtLe3J0JSuD5cN5DVq1fjG9/4Rr/yvDCQF+YhflVERERERDTR7e+WnBENSueff340f8opp+DMM8/EUUcdhTvuuAO5XG7E3vfaa6/FqlWrouVSqYQ5c+aM2PsREREREdHhZVT7oTU3N+O4447DSy+9hNbWVlSrVezbty9Rp6OjA62trQCA1tbWfqPghcthnXoymQyKxWJiIiIiIiIiGqpRDUrd3d14+eWXccQRR2Dx4sWwbRtr166N1j///PPYvn072traAABtbW3YtGkTdu3aFdVZs2YNisUiFi1aNJqHTkREREREk8iIdr37h3/4B3zwgx/EUUcdhR07duBrX/saTNPERRddhKamJlx22WVYtWoVpk6dimKxiCuuuAJtbW0466yzAADnnXceFi1ahEsuuQQ33HAD2tvbcd1112HlypXIZDIjeehERERERDSJjWhQev3113HRRRfhrbfewowZM3DOOefgsccew4wZMwAA3//+92EYBi688EJUKhUsXboUP/3pT6PtTdPEXXfdhRUrVqCtrQ2FQgHLly/HN7/5zZE8bCIiIiIimuSECsfOPoyVSiU0NTXhDvNojnpHRERERDSJ9SofH/dfRmdn56BjGfChQkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCkMSkRERERERCmjFpSuv/56CCFw5ZVXRmXlchkrV67EtGnT0NDQgAsvvBAdHR2J7bZv345ly5Yhn89j5syZ+MIXvgDP80brsImIiIiIaBIalaD05JNP4l/+5V9wyimnJMqvuuoq/Md//AfuvPNOPPjgg9ixYwc+8pGPROt938eyZctQrVbx6KOP4uc//zluvfVWfPWrXx2NwyYiIiIioklqxINSd3c3Lr74Yvzrv/4rpkyZEpV3dnbi3/7t33DjjTfiL//yL7F48WLccsstePTRR/HYY48BAP7zP/8Tzz77LH7xi1/gbW97G84//3z80z/9E37yk5+gWq2O9KETEREREdEkNeJBaeXKlVi2bBmWLFmSKF+/fj1c102UL1y4EHPnzsW6desAAOvWrcPJJ5+MlpaWqM7SpUtRKpWwZcuWAd+zUqmgVColJiIiIiIioqGyRnLnt99+O/70pz/hySef7Leuvb0djuOgubk5Ud7S0oL29vaoTjwkhevDdQNZvXo1vvGNbxzi0RMRERER0WQ1Yi1Kr732Gj7/+c/jl7/8JbLZ7Ei9TV3XXnstOjs7o+m1114b1fcnIiIiIqKJbcSC0vr167Fr1y68/e1vh2VZsCwLDz74IH70ox/Bsiy0tLSgWq1i3759ie06OjrQ2toKAGhtbe03Cl64HNapJ5PJoFgsJiYiIiIiIqKhGrGg9N73vhebNm3Chg0boun000/HxRdfHM3bto21a9dG2zz//PPYvn072traAABtbW3YtGkTdu3aFdVZs2YNisUiFi1aNFKHTkREREREk9yI3aPU2NiIk046KVFWKBQwbdq0qPyyyy7DqlWrMHXqVBSLRVxxxRVoa2vDWWedBQA477zzsGjRIlxyySW44YYb0N7ejuuuuw4rV65EJpMZqUMnIiIiIqJJbkQHc9if73//+zAMAxdeeCEqlQqWLl2Kn/70p9F60zRx1113YcWKFWhra0OhUMDy5cvxzW9+cwyPmoiIiIiIDndCKaXG+iBGWqlUQlNTE+4wj0ZemGN9OERERERENEZ6lY+P+y+js7Nz0LEMRvw5SkRERERERBMNgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVEKgxIREREREVGKNdYHQERE44tSwStErSw2j2B+4PWDb9+/7tD2N9C+B9vnUPa3/30dmAPdvl59ATXg+vi6AyGghm1f9batt6+B96+GvI9662rz9bevX3egevXrRnUO7ceBiCYwBiUiGhGusuHCiS7M9GvyglhB1L1IrZX1r5e8jKm/7/QFt0L6QlzUrdf/Nb7P2vse2nEmywbbPwAo1f+8DbT/gY4r+XXVL0/Pj6SBL47T5fXrp+ul6+zv4n+w/Q3lDOw/XBx4+BAiuY1Sol9Zen29bePlQ3znQdcOHjAH39dA2+4vgA+0fb3v0qj8/KrwXdMhLH308XJVZ5v0b1+tPPwepuultx9sfyJaP3C9+Pp6x5j+GtL1kvuLv1//90//Tg60vl55vfoAYAzyO0E0EhiUiGjY+crAJnUGFAwMfNEApKNDVCb619PLQ79wqP9equ4+9asEAJy+6pxoOyH6f6qcOLawLF0n2LY2n3ovoRKfUqfrJ98n/b7J5XrHkN5Hv/euvXWyjoifr/7vOdg+02WJ7fmJPI0ypeLz/T9gCMsUkvXSy7pO+KFF/20H2nd8m+g3Tu3/fQfaVqn69dKtv9E2sXKlkvXCOk/d+DD6fxiU/hCpflyqvecAcUolo1N6OxXc+SFR+yBIDuVukODrMCATR9A/2CkYYblIlvUPa3o/4T7r7duArBvejOD/hi6Xsdf4MaYnOYQyvcxgOPYYlIhoWCmlsENNh1R9uPI7MyEm3FVy+1gfABEdosQHEXUvNnkBesINx4z1IdQVD4UyCJZSiShkhvNhUK29ikRQTNeT8TqDltfCpYJe/9SND0fRKxkOjVTkSS8LKBWPZ0aqnt7fgCFRpUOh7BfahOgfsmqhLxngDNQLful9HtiyAb//uon2b38QDEpENKzKSmGFfBgA8Jnq36GQscf4iIiIaKIQohZuzXESaEcjVKpYuJOxACdlMtRFwU7WwqRK1U9sr8LgaETlteAXhrRkjNJRKraswmhUC3rx5TSh6gUzvRwPdmF5tC4V6pKhTCbeOb4u2RqI2Psll+OB0ldD+9liUCKiYVVGbqwPgYiIaEIRAjBFrQv5SBrO4Be2xMnUpJSAH70aUSufnoLQFoQ9XxpRqFNRucCT33sYPqxYKDP2G+hUImoll+My6ADw4n6/PgYlIhpWezFjrA+BiIiIRkHYAmiMQMA7/oZjh3V/8VBXKs/CdV/d/zYMSkQ0rOKf2lR9E45v6L7VsYEB0oMZEBEREY2keKizTDmkbUY0KN1000246aab8MorrwAATjzxRHz1q1/F+eefDwAol8u4+uqrcfvtt6NSqWDp0qX46U9/ipaWlmgf27dvx4oVK3D//fejoaEBy5cvx+rVq2FZzHhE41EXpkTzD7xwHLJ2ZtD64ShsYZAyEqOwhTerpkaGi21Td31Yltj3/uoNsj5VD6LOOqjkcQ22LjymYJ0h+q8HAMNQA65n2CQiIhpZI5o2Zs+ejeuvvx7HHnsslFL4+c9/jg9/+MN4+umnceKJJ+Kqq67C3XffjTvvvBNNTU24/PLL8ZGPfASPPPIIAMD3fSxbtgytra149NFHsXPnTnzqU5+Cbdv49re/PZKHTkQHoaoc9KiGaPm8TzShkMtGDfLRSEL9hr2Nj0IUG0JX1YbgjW9XG6Y3NmTuELdL7D++j1Q9f8uGxE2yieOHSB1LahSmOnXUIHWkMmr7T73ujxBBkEI8bMo6Aa9WbsSDoQiHoFWJdWFIS5SJ2P5iZfEgFw93YbkRhEJdFgydG1sXvhqxfRAREY01odQQh30YJlOnTsV3vvMdfPSjH8WMGTNw22234aMf/SgAYOvWrTjhhBOwbt06nHXWWfj973+PD3zgA9ixY0fUynTzzTfjmmuuwe7du+E4zpDes1QqoampCXeYRyMvzBH72ogmu7LKYb08DavVrQCAXff+HIVcdmwPaoILA1x85KN0qKutC/tf968nZSyAyTCoBfVlsk56e6kEvM0bYsPoxm/YRXADLaIbcMNtwht2o9GcwrAYjcg0cBhMhCzokGeIMMDFlmNlIhYEw1AWhjtTSF0vFfDC7eP10+GtVkcmytiiR0Q0MZXKFcz58s3o7OxEsVgcsN6o9V/zfR933nknenp60NbWhvXr18N1XSxZsiSqs3DhQsydOzcKSuvWrcPJJ5+c6Iq3dOlSrFixAlu2bMFpp51W970qlQoqlUq0XCqVRu4LI6KIDxPhkyFoeOgWnHgryxid3/kLRmS38SAYD1Xp0CbTdWQyJKbXxeu7mzagKk1Iz+gX8NIjNYUjMYVBLx4K05KhSqZCl55MQyaCV7hsxoNfbDlcn5gPQpoZzMfrMqwREY2cEQ9KmzZtQltbG8rlMhoaGvCb3/wGixYtwoYNG+A4DpqbmxP1W1pa0N6uH/jY3t6eCEnh+nDdQFavXo1vfOMbw/uFENF+7cM0ZNEbLW98qRmFXAZGcKEffbpvhp/SI7jgCy8Ydb1w2TRUYtuwvmHoeZr4kkFwhELgvOEJeVLWwpeUgC/jwSq5Tir9nBNf1pb1vF52Nz+Dqm9Aeka0nzC4+VIPp6vnw1a52nxcsuVLwjR0gKqFKf3ckrA8DGn6dyy+HNSJAlxQFgSycJ7dIoloMhnxoHT88cdjw4YN6OzsxP/5P/8Hy5cvx4MPPjii73nttddi1apV0XKpVMKcOXNG9D2JCPBgw0Ote2v33EWoZvL6+QlSYEb7Rn1BWRFRi8BAF5u+r5d9KaKuYnFCACIIUmGwCsNUMmgFAStWxzSS9QyhgvBWqzdQWDPN2vY0uYQ/R8MS6A4hvEUhTcbCV/C74vvxQCai36/w98nzDd3C5lpRKFPKiMJZGMb0dka/cKZbv4IglQpmYfiKBy/LkIkyy6i9GoaCZfhRQAvLiIjGixEPSo7j4Jhj9IOtFi9ejCeffBI//OEP8YlPfALVahX79u1LtCp1dHSgtbUVANDa2oonnngisb+Ojo5o3UAymQwymcFH2iKi4VdFFsd/6kzg57cDAI6a5yGf92oVjjvhoPcddtHyfUBFF4rhfNAFKzUvFVD1AekHD7ULtp2+cxOkVwth6WAWvwD1wwDn1+l6ZdaCVNhKZhoqMR/WiSazVt+MB7I69cxYOGMXKwodcmA7wJCmf++Clq5wSi3LOusrG59B2bPgyyCISRO+FPCC1zCY+bL2qUM8iFmGjIJUPHBZZm1dPGxZhp8IYvFX/v4Q0cEY9TG2pZSoVCpYvHgxbNvG2rVrceGFFwIAnn/+eWzfvh1tbW0AgLa2NnzrW9/Crl27MHPmTADAmjVrUCwWsWjRotE+dCLaDwUBT43MgCm1Llq1d0u/+5Ade3CBTXe9AqQfdKXyg0/3fVFbJ3WoCkOa74tEQKu4teCVuNCUAp6fvPCMCy+O4yHKMmUtbEVl6TrJMBbfxjKD9SY/xaeBCQFYloJ1oMHsqKEHsnjw8nwdtDxfwPONxO9GuK6yaSPKrgVPGpDKgOcb8INXHcSSLWE6MOlAZZt+tGwZyeBlGjJabxkSpilhGz4s04fNFi+iSWdEg9K1116L888/H3PnzkVXVxduu+02PPDAA7jvvvvQ1NSEyy67DKtWrcLUqVNRLBZxxRVXoK2tDWeddRYA4LzzzsOiRYtwySWX4IYbbkB7ezuuu+46rFy5ki1GROOQgu7aE3r6aQcNBQempWCZgGEiuFjXrTGWCZiWgmkCpgl90W4FdSyMu+5tOqwg+MsZv2Aa4sXTAQY0HcJiYcwHvFgo8z0BX9ZazXwJTN+xERXXgF/p/ym/5xuprlm19zLNZLiKByozFqgsU9YClqFgxpYT6xi+6ACYB/ozM2/+fquEXRQ93whCV23e9wXc4P4wz0sGL8834QZhy/WToSscREOHKR+2WQtcUcAy/WjeNn1YQdiyg3K2bhFNHCMalHbt2oVPfepT2LlzJ5qamnDKKafgvvvuw1/91V8BAL7//e/DMAxceOGFiQfOhkzTxF133YUVK1agra0NhUIBy5cvxze/+c2RPGwiOkh9qoCsa0fLe8wZKJsF+B7gV/SFy9GNHSj3QXe58WotLp6nX32/NmS0ELEQZSlYtoJpAKalQ5VlJQOXbcWDl361rTB8jdVZOXhRMANQC2P7uZhcMPTW9jCI+b6A5+llzxPJEBZ0UfQ9YNqOTahUregTfs83ok/59cWnEYWvcNAOq06QMk0F29Lz4atlyiiQ2ZaEHavLC0s6GGErrG35+6+8n+AlJeB6RvRz73q10BUvL2/ciJ6qA0+aup404fp6Cv+u9Q9THhzLj8KUZeqAZRs+7Fg5QxbR6Bv15yiNBT5HiWh0rJfnoPDhd+IffnMZAOD/u7+EbK5wwPuJWlKC4OR7ej68mA/Lj27oiMKV/oQ4uMBPXPwHnwQbKgpcZjxYmQqWHQQxE7BsHcDsMJhN8LA12nTYCgKwhyBAxYKwB7iewPQdG/Un+vFP9mMXnX6s66H+3kj9PUm81sKWbYWvsrYchC9eXNJ4oH/WBVzfgOsFYcszUPX0cvmZZ1D1LXi+CU8aqAYBy/PNqEUrDEzxyQmDVjhv+nAsT08MV0R1jbvnKBHR5FDveTMHKmpJsQev14fk4wPsOptErSZeLXxVg+Dle4BfBfw+YEHQ0uWFFzCuvrhPhy3L0hfuttM/aDlByEqGreBCf5L8tTUMQD8LfD8tYPtp+VKqFrg8VwcuLwjCrgeUg+/R1B2b0NNnwQ0uOKOw5YWtkoAVC062JWHbEnYQsBxbwrFkVMcJymyLAwDQ8Aq7F2Yh61eYO/A9Xb4vgkAlUHUNHbZc/TPft2EjeqsOXN9E1TNR8SxUfSsaJCMZqHSoypgebMtHxvLgmB5sM5z3eR8WUcwk+ddNRCNNKaAPeTixEayeXgc0FBGEh9hkJedtpzY/3MLQZe8ndFWD0CUAOMEUSoQtD3BdoM9LBa2GDvT2GomA5boiumAPQ5Zt65BlWYBjK9i2guMo2LYOWLYdzFv6dbJerAuhv2e2rYAsMGDgGuC+rzBoRd+LqoDn6+9JryvgxkJW+Im+vgCtDaShw69ExvbhBAErY9fClR28ZhxdZ7zdU0eHD9NUyJk+cvVuz55dP2BJCVSDMFV19c94xTVRqRroe2YjuioZuL6Fqm+i6llwfd1kHoamTNAqlbVc/Wp7yJgeMraLrOXBMgcIfESHEQYlIhoWCgIV5GAYtX+efcKF77rw+xDdj3T8fAt9PTpseG4teCgJCKN/qLKDybIBywmWHT2N1oXpUMJWGLTMYAqvZ8IhzcOvteoCvZ5e9nqA+Q0d6O0z4LrBxbynL+KlFBBCRWHBdmqBSr/W5p3YOtISQQtA3aA1QMjyg26eblWg6gr9WgW6XYGpb9TCVdU1UHH1J/uAvph1gjCVsX04TjJIObZE1vGRdSQHu6ARZxhANiORzdQJNEf1vycrDFYV10TFNVCp6tfepzeisy+HXV02yq6FimdDKgHTkFGgyliuDlLBa9ZykQ0CFVuoaCJjUCKiYaFgQEIgnl3yRcDJJGu92efq2VjTjQAgPcDzgbKrW2j8Lh0sjl9go9wHuCUdLtyqflVKD+oQhibbBuxMMkiFZWPZ7U13/Rr4GMKAZSH5B9n3wot13VWwN5j3+oD5hQ50lQxUgwv4alWPYmcYCpmMgpNRcBzo+ViQymQUMo6C7UzelqqhCAcQyWTqPKvo6P7hSikd9vX3IwhWLtBdFZjy+iZ09dqougbKVQNV14SUOlRlHImc4yPj+DpAZWRtnq1UNMoGDFZ1WqxcT6Bc1a1TYaDqeXpTFKj6XBsVT/9Fc0wPOdtFznGRs3WAytlVXWa7bJmicY1BiYiGhYKAgglfHdyVnWnpCamuJbt73NpCeBOS0sHK9YDuCuD3AJ4rcNw8Cz1dOlC4QaiSvh6WPB6cnNSUyY5tmKonPB+ZbP91bhCu4l0Ew1DlVoFSECbni3b09gjs22ugUhGoVHSLlRCxIJVRyGYVshmFTFYhm5XIZvV6hqmhEULfl+U4QwtW1SpQrehQVakIdFUEzNc2oXufjXJw4Vl1DSgFZJywFcpHLusjl9FTPushl/FhW/y0nkafHjzFQ2M+VnhkMlApBZSrJvoqJsoV/dr1p03oKjeiz9VhypcGbNPXwclxkberKGQqKDj6NTOUEQuJRtA4uzQgoolOxq7b9nQI5BuClp7gPqThIESta14mF5bGWqvC/m9ZAH7Q3c0FvF4dII49ykZpL1Ct6Mn3dAuCkwGcrA4nYYBygvnx3q0tbLXKxS5cetEKADAA5IIp7AZYrQDdQbCaL9pR6hIo7zJRLusLeMPQwSmXDYJUTs9nsgq5nGSQOgR1Q9X8ZKBSSgeqclmHqUpZILd9E/Z0OuitWOirmPA8ActSKGQ95LM6POWzPrIZH4UgSPF7RGNFCETBPjI72eWv6hroq5jorZjoK5sord+MnZ3N6Kk6KLs2LEMi71RQyFTRkKmg4FSiIGWySx+NAgYlIhoWEgZ8mKjEnqPUWwK8iu4e5rsChgk4GQU7q1/DIGKN4EW3YQKOqd8n9FY5CFRBk4zydJe/7jLgdukg1dMF7NkNVMq1IJXNA9lcMAXzmdz4ezDuYKJuZbHzEQaqsIVKSh2kKmXgrQpQ7QHm+h146y0D5T7dOmUYCvm8Qr4gkc8rFPIKhYJELq84jPowEALIZFLd/+YuQnwQW9fVQaq310Bvn4D56iZ0dts6SJVNCAHksx4a8x4a8i4a8h4acx4KOY8BisYFJxgcpakh+Jt8ZC1I+b5AT9lET9lCT5+Fzqe2YFdXYzTCX96pojFbRlO2D8VsGcVcH1ugaNgxKBHRsJAwoCDgydpV8rYtT8AOrsiVAnzPhO+bkJ6JU855G7r26i5IQgBOVsVadBSyhaAr3iiIurkFrVNRd7+wq58PlKtAqRuovilw9GwLe98Cyn16EIpMTrfkhAEq36DnJ+rFqGHUAmHIR0t0OgpSh6i+PmBvLzC33IE9e0z09uiufblcEJ4KEoWCQmOjRKGBzzMabuFgFY2NwcXhvFqrlFJAX59Ab69AT7cBsW0zOvZk0d2rP8go5Dw05l005j00FlxMaayyGx+NK6apUCx4KBY8XTD7qGhdpWqg1Guj1G1jz5PP4vV9U9BbdZCxXDTlyihmy2jK9WJqvpf3QNEhYVAiomEi9H1KsecoiVjXCN1dzodl64u6FzesA6Av6KRvwPcs+J6JU9/1NnTtFaiWBeyM0i03BYVcQYeosbjYNkwdhnSQUtjnuYANKAvwqkBvBejoBI6eY6O0A+jt0WGjoREoFIFCo57G231QB8swdDDM5QFM0/dMha1R1YoOkLt6gTl+B3bsNND9og0ooFiUKDZJNDdLFIty3HdnnMiEgG7xyytMny6BeQsxHbUA1dMj0NVtQG3bgtd25dHbZ6Kx4KG5sYqpjVVMbaomu0wRjSMZR2KGU8GM5gqOnj0XgH4UQKnXRme3jT1PPIsdnUegz7XRnOvDtEIPpjV0oznbx1H46IAcJv+2iWisKegEI4+YG5UNJdQIAZiWhGlVAQAvPK0DlJQCvmvBcy2c1PY2vLVT7yybVygUFRqah++ep4MlRHD/VUYHoj0VV/9VbQT6ysDe3cA8y8Zbu4BKn25taiwCU2YAjU0Tt8VpMOEAGcVmPaKfPR1oVkBfL7CnBGTKHXjhBRt9vQbyeYnmKRIzZ/qYMoUPeB0N8QA1Y4YE5h+PGdABd1+nAfOFzXhlZwEbX2pGxvExramKWTP6ML2pwu8PjWuWpTC1WMXUYhXzL9CtT30VE291Omh/9Hlsf20OpDQwtdCDI5v3oaWxxJ9p2i8GJSIalwxDwci4sDMuXt60Luq657k2Fr3jNOzeIZBvUGicotDQpFt9xgthBPcw5aFbn7KANIE9vUCx2ca25/Un+1OmA9Nm6ofyHs6EAPIFPXloQaEFcFygpwQYogPPbnEgBDBzpo/WIzw0NvIT39HmZICZMyUwU98H5XlAqdOA9dxmPPNiMwSAI2f0Yk5LLwo5tjTRxJDL+Jg9sw+zL9Af4JV6LOx8aDeea2/FsztbcdTUPZg9ZS/vbaIBMSgR0bAIu91JOTIf0cW77v15yzr4voFq2cEJp5+G3W8IzJwj0dg8Im89LCwbaGgC3uxzofJAXzfQrGy8uEXfC7RgYf2hwA9Xtg00TwPKaEHjFKC0D/DcDvzpTxkUGyVOPLGaegYXjSbLAqZOk8A5i9CogD17DPRueA5/3DATs2b04qQFnRNqEBMiAPqep/OPw3EK6NiTxbYHKnhp90yccuTrOKKpNNaHR+MQ/8wR0bBR0IMbjAbTlMgVynjluXXYtuVJ7Hpd4M0dE6MfhRBAvlF31fMLLnIF4LkNQFfnWB/Z2BACaJoCuDNbUDx+OhxH4ckns+jumhjfz8OdEMC0aRIz33s8jvnAPJR6bDzx7DS4Hr8/NDEJAbROK6PtwiNx+gdasGnHkXhjX9NYHxaNQwxKRDThOVkXrz73BPbuEvC9sT6aA2MYOjC17/PQ/vpYH83YMy3Ab21BPi/x+hvs9DDeZLMKc5Yeg+4+C291ssmPJr6WqRUcf+4cbHtr+lgfCo1DDEpENOEpBVQrDjI5NWpDig8nzwWOarXQyA80Aeihx8tlgSnNHNZ3POruFnBdA1Maq2N9KESHTClg71PPoinXN9aHQuPQBLykIKLxSmD0R3KrVmwce+rpUAqYPmtiDQLge8CsZhu7dgB2MzCtZayPaGy5LlDs6sCeN0zMnCkxfQZvsB5PKhWg69GtaN+TxXFzu5FxGGRpYiv1WNhw9+vwZBanzX5trA+HxiEGJSIaFgL6gaJCjGxYUQrwXAunnvMO9JR02GiaptA0TY82N955LtDbBcyZaaNUAroN4NiTDv+R7wbiVoHOvcAMuQvdewyYRYHTT6+ggSPfjQvVKvDWmyaMZ5/F7n1ZtEwD/uK03XzGEk1Yvi/QsSeL1/74It7qKWDe1G4cM2M3n69EdTEoEdHwGuYWpfCBtJ5r46S2t6O3W7daeR4wtVWh0Di+hgZP8z39DKV5rTY69wKqF2gp6pHuWk/WD6KdTHxPP5C3Fe3Y85aJ7m6BYqNCw3SJ+fNcBqQxJiXQ0yOw5y0TxtbnsK/LQbHgomWai+OP6kJDfoLdBEgEwPUE3uzM4I0/voBdXY3I2S5mNfXihNadyDvuWB8ejWMMSkQ0LIQeIByi/eC7L0ShyLNw2rsXo9ynQ4aSApmcgpMFpsxUyOTG58NaPVcfb6UPmH+kjd5uQPYBxYxuOWmdDRSn6KGxJwPPA3q6gN5u4Ei7A11dBvp6DWQyCuVmgTlzPEyd6nMY8DGiFNDbK9DdZSD30ibs63JQ6rEhhMK0pipmzijjtOP2IpthFzuaWPoqJvaWHOxa9yz29hbQXcmgkKmgtbGKs+b/GcVsZawPkSYIBiUiGiYKgIJt1LrkDDRUuFKAlAakb8D3TJz2F28PAoaAUoCTVZA+0NisMP0IIJNV46pbnecC1QrgVoBj5too9+hWElkFmnNAfiqQzwPTZ+phwA/3YOR5QLkXUbA90tmF7i6BctlALicxq1GhoUHhiCNcNDZIBqMxUK0APb0GensFGrdtQlePjX3dNpQSKBZcZAoCR7X2oKnBRSHnjcsPIojqKVcMlHptdPXY2PPks9jXl0fFs1DMljElr3DczA5MyffC4UNl6SAwKBHRiPE9C4AF3zfg+yZOPedtcKtAtawDke0o2MFFc+MUhRlHKjiZsb/XSN8HpYOQWwWOnWujUg5GY+sDDB9oygKZaYD0geJUoHUOkC9gQo66NxRu2FoWnIO5mQ709ekLb88TcByF5oJEvqCQzyvMni3R2CgP+5A4nkipW4h6ewX6eg00vLIZPX0WuvsseJ5ANuOjIedB5YBZM/qwcF4JjXmXD46lCcH1BEo9Nrp7Lex7agu6yll0VzLwpIG8U0VDpoKmbBlzp+xFU64PlsmWUDp0h+m/dCIabQYkBBSsWIvS7GNPRzafh+0AdlYHo8ZmwM4qOM7YBSLf00GoNgkcM9dCtYJoshSQzwCZRl2/0AhMnQlks0Amh8Pq4tL3dSB0q8HXXwaOynegUhaoVAT6ygJ+EIaKeYnWnEIurzB9hod8XiKXU7D432TE+b4eNj2a+gSKr21GuWKir2KiXDFhmgqFnIdCzkMu62NGcwUNeReFrA/T5P1fNL65nkBPn4XesoXeionS+i3orTroqTqoehYylotitoKGjMTs5r1ozJbRkKnA5EAMNEL4r42IhkV4j5Jl1oLS/BMlsvnR+wemVC0E+a7uEuZVBY45ytJBIAhBwgeyJuBkALsYvDp65DknA2Sy+vVwCEOuC3hVPXqZ5+oQNK/QgUpFoBJccLuugGEoZDIKTVmFjKNgW3qAhUxGIZdVyDIMjSjfB6pVHUzD703T9o06BFV1EHJdA4YB5DIechkfU7M+cnkfM5sryGV95DMe7yeicc33BcpVA30VE30VC71lE6U/bUGf66C36sD1Tdimj4JTQc5xUXBcTCt0Ry1GNluJaJTx3x4RDQsDPiy4ieHBh2M0ukT48Wrzx8+3dfgJgoDn6RYRA0DeDlqwMqkQ5NTKJupFv1JhANRfuxsEILcKzC90oFrVwadSEXBdQEoB01JwHIVCRocg01CY0iyRySpkswrZjILtjM8BMiY6160FILcqUK0Cza9tQrlqoFo1Ua4aqLgmPE9ACMCxJbKOj1zGh8gAU5uqyGZ85IIyPruIxisp9SAK5aqJShDuu5/ehLJro8+1UXZtuL4JQyhkLBd5x0XOqaKYq6K1WELeqSLvVBmGaFyZoJcKRDTemELCVD6M2MV2vcEclNSfnoehJ5p8gePmWVEI8NwgBLk6/OQsHXLsRsCydWDI5fWIcratyyxbh6KJ1BLk+0EI9Guhx/d0GFrQ0IFqFcEFtg5ArgsoJWCaOvzkMrobo1PUy41FCccJyhzdSmSO4+HTJxrPQ/R9cF2BaqX2fZnyxiZUXROVqoGKa6DqmpASMEyFjC2RCUKQdIDGvIdscyUKRhlbwrElwyqNO74vUHH1z3SlaqLqGihXTfRu2IiKlwxBQihkLA8520XGcpGzJaYVuvWy7SFnV+GYPn/OacJgUCKiYeOgDKlq/wGLhg1L2YnWIOnr4GNbQbDJ61fTAkxTd3uz7CD8OLrlZyKEnzDcRMEnWPaCLoBHN3Sg6oqgrHZxLaU+X5alYDsKORtwbAU7q2AIhcYGwHEknIyCbesAZNsMP8PBdQHPq4UetxrMewJTX98E1zNQdQ1Ug1fXF5C+bvmxbQnH0uEma0k02hIZR6Kp4MJxZBCMdACyLN4/QeNLPPxUg1BfcQ30Pr0RFc9C1bNQ8fVrGIAc04Nj+chaHhzLQ8aSaMjoEJQNJoYgOtwwKBHRsDHgwxS1ZqSGJj0IgmnpwGNZtVA0noKPUrFWLr8W6LxEixewoLEjCjqeJ+AG876fCjy2QsbSgcayFZyCLi80yCAg6vt9bFsFE7u9HYyoG6InopaeaNnV359pb2yC6wt4ngHXM+B6AlXPgOcZUApR6LFNHXocS6JgS1iWRD7rwbElLFNF6xxbwrbY8kPjh5TQoT4W7N3gtW/DRlQ9E65voeqb0bwnDQihYJs+MpaHjOUF80BTri8qcywP2WAdf+ZpMmJQIqJhIwAYsdGHWo4EsrmRez/9gNog3PjJ+TDcyFjICbv4uR7ge7GLak9fAQihW2osS8ExgbytYFuA6Sjdtc9SyOcAK2glCMOODoH6lRcTQxOGHN8XutXN14EzDD2+lww6vq9DjhsEHl0//L4BliVhWwq2qYNM1lRosHTgyWUUbEuXW5aCE8zbwTZE44FSSIR5Nwj01aCsb8NGVH3dwlP1TFR9C55vwpP6UyfTkHDMMPD4sE0PjgUUMlU4pn6OUG09ww/RUDAoEdGwyaMbmdhD/WTqHqV4sJGyFm4SYUfqcOP5wNFhuJEietX38wh4vr6YDhmGDiqmpZAJwo5pAVYmeLUUclnAtHSrjhkEG8ushaCJOsDDaAkDqOcL3eIWvcaCp6+/V9N2bgrCjA41ejJ0UA26sIVMU8EydZixTAXLlMhZCo2WhGVKPdiEqUONFdQJ69omu7bR+KCU/vkPg3w81Ifz5Weegeub8KQJ1w8nA76sBR5D6NFDbdOHE7zqeYXGTFnPx0JPWM/gENlEw46XBUQ0bCzhIW9XouWeF9+EyvfCD1oLfD8ZbAyj1npjBqHFMJPhJpsFTFPCMvUoeralYFphy09wkc2WnEjUjTA431Lq8Ol5QRdBX8CXqAVQH5i+Y2MwH7TUSBG12Hi+EazTDwkGdLdJw9CBxjL1KHqWqeCYEnkrKLf0QBN2WCeYLFPCNmPbmorfOxpzfhTma0GnFuyDZU+gvHEjPGlGLTlu8Bpv2RFCwTIkLMOHZUo4ph8FH8vQLTyWUQtAlilhx5b5TCCi8YNBiYiGVfyi97jjXTQ0uMFFsg4+OhxNvmCjVKwVTQYBxocOLUEI8YOWGV/WAo2UsSAjRVAem+LLvpFoxTOMsDuhigUaCdNQyJgKhqHX6QAqYZleVC8ebMIgFLb2jKf7y2hyCoNNGOq9WMj348u+QGXjM0ELTq3lxpMG/GDypAEVDEITtuZEQceQsILwooOMRM5xYRkyCD7JoKPrc3hrosMFgxIRDRsLLuzYA2enTZPI58ffRUMtsNRCi5KAVLVWGN8HlKyFlXhwURKYvnOTrh+EF6n6BxcZe013QwxbZcJQYojafBhWjHAKgkxYFl9vhsHGiAWhaP3YnF8iIPg9kzq0xOej35N462VQVtm0MQovUuq6njTgK0PvRyWDTdh6YwgdUHTAkTANHW502FHIO1WYQfixTakfZ2DGwlAwsfsaEcUxKBHRsCmgCy/+f49Hy/FwELao1KZaQPGD5TCs6PJkMJHBcjg/o31jUFdAqTCQQAeWWHAJy6QUur6fbMoSAhCGgiFiwSUMIWH4MADTUFHrjCF0eHHq1DVSocdM7BNR/cnWokbjRxha/EECfhjy0+uqm54JWmIEpDKieV8ZyYCjRBRmAD3QgP69kHoSYaBRUagxg7CSsbyojhkFn9pkJcoYbIho5IxoUFq9ejV+/etfY+vWrcjlcjj77LPxz//8zzj++OOjOuVyGVdffTVuv/12VCoVLF26FD/96U/R0tIS1dm+fTtWrFiB+++/Hw0NDVi+fDlWr14Ni3deE40zCha8aOm5321HLpuFkrX7W0LxgBK1nggdJvRrbJ0IA0isrqmiVpkwmETbmnXKwv2lggwDC40FpRBrcQxaJgcK+amyeGulu/mZYJ0OLEoZtX0F4SVcH77GCaFgCgUjCCaGoYKAooJwU5vX4UYha7l6u6huGH4UTFP2LzM4nDoRTUwjmjQefPBBrFy5Eu94xzvgeR7+8R//Eeeddx6effZZFAoFAMBVV12Fu+++G3feeSeamppw+eWX4yMf+QgeeeQRAIDv+1i2bBlaW1vx6KOPYufOnfjUpz4F27bx7W9/eyQPn4gOkAkfJmpd79pOfhMNuWwiBLFFhUaTUrVQohC0ZKo6LY2pcjVAedgS6m5+JmpVkUrXUUokQolMLatYWby1BQjCfBBYwnmz33xyWbd2JrcLQ0pURyiIRKBROvwwwBAR7ZdQKv0578jZvXs3Zs6ciQcffBDvfve70dnZiRkzZuC2227DRz/6UQDA1q1bccIJJ2DdunU466yz8Pvf/x4f+MAHsGPHjqiV6eabb8Y111yD3bt3w3Gc/b5vqVRCU1MT7jCPRl7wcfZEI6VP5fEn+TasVrcCAHbd+3MUctmxPSg6ZPGwoS/yg+VgPnoNwohKBQsFAPtZL2VtX97mDbWgEb4ndLiIh43a+xuDLNdPAmHgEELVAkgYOlKTiAWUeJ2wBUYk6staK2i/7WRiv/EgxMBCRDR6SuUK5nz5ZnR2dqJYLA5Yb1T7rnV2dgIApk6dCgBYv349XNfFkiVLojoLFy7E3Llzo6C0bt06nHzyyYmueEuXLsWKFSuwZcsWnHbaaf3ep1KpoFKpDVFcKpVG6ksiohgHZUgcPiMIhIFAX5wjuFCPrYPoV0evC8pRCwXpumF4SNeNB4943TBIhO8bhonacYjUMgDUwkK033hZeHyxgIF4WTA/ECGUfshwEDgAwBC6laIWQoIggFogEImQEqwzknWsKERI/T7hPlELHtF8uJ86ZfGAEh4rb9gnIqKhGLWgJKXElVdeiXe+85046aSTAADt7e1wHAfNzc2Jui0tLWhvb4/qxENSuD5cV8/q1avxjW98Y5i/AiLaH1NI5EWPvuoHsPXVIhpyGQBIXcAD3uYN0JeuSFzsh/P9t6m1DsRDRb26tTLRr278vUKJehg8HKTVCwu1cpUIDSJV3u81qiMT5bXtk/UtQ6a2VUAqUMTfNwoq6XVG/Fhl4utJ1zfiXwdbQYiI6DA2akFp5cqV2Lx5Mx5++OERf69rr70Wq1atipZLpRLmzJkz4u9LREgM5lDZshmG7fS7wAeSF/8A+l3sA8n6yX30v1iPrw/3DyBRF/3CSRip0G+f8f0kQ06sPoMCERHRYWtUgtLll1+Ou+66Cw899BBmz54dlbe2tqJarWLfvn2JVqWOjg60trZGdZ544onE/jo6OqJ19WQyGWQymWH+KohoKBz0RvMntu5EIWOP4dEQERERHZwRDUpKKVxxxRX4zW9+gwceeADz589PrF+8eDFs28batWtx4YUXAgCef/55bN++HW1tbQCAtrY2fOtb38KuXbswc+ZMAMCaNWtQLBaxaNGikTx8IjoIRewb60MgIiKiCS68tzY9smht0gP3IFHPSGxXu+dWxOoa8GXXkI5hRIPSypUrcdttt+F3v/sdGhsbo3uKmpqakMvl0NTUhMsuuwyrVq3C1KlTUSwWccUVV6CtrQ1nnXUWAOC8887DokWLcMkll+CGG25Ae3s7rrvuOqxcuZKtRkTjUBP2jvUhEBER0QCixx6EgwUpozYCaTxc1AkltRBSW1axZakEnrrxEeg7aA0Ed8zGlg3IoFwqIyhDrDxYN8DAUCJaq18Ty0IGZQjeMVyvonrRq+oc0rka0aB00003AQDe8573JMpvueUWXHrppQCA73//+zAMAxdeeGHigbMh0zRx1113YcWKFWhra0OhUMDy5cvxzW9+cyQPnYgOUkH4uNE4Dy4c5B0+FJqIiCauxOijsRFDw5aL9Cih0eMMZP+y5CMV4o8+CN8jfGRCGDgeTgQJlQgfIrEcBRGVrKMDRxgfBg4gBmT0LmFsSQaQWtwRqBdIauHFhISVOALZb96ABIRKLIsB52MhZ5juDe6NPfNxMKP6HKWxwucoEY2uXlXAFrUYn/jyLABIDI6QnA9eB5gfeFCH+tsl9pl6n37rY8scoIGIJpt4AOg3oihqF+61RyIkRwcFYmEBIhrtVIb7qrOfZCgYeJ0+luRIqGFwCNsUwr/k4eV4GALqlYeX2VG5Mmqjo9YJHeE+9ve4C5Haun8Lhg4d+v+MjO1dJYJJ/bKBWkNqbTT19hOv179VpX74CAc/mkx6lY+P+y+Pr+coEdHkkBc9mIkduPvbug9w/F9GGFFq8ST8xyhQ+8cVipfFX+P/4Gr7jL/XcIgfNWLv1L+s/mv8q+y3jehfN/6V1NvX4OXJ4669qgHKkVrXf/tw/emrzum/D5Gui0TI7P/1Jd8kvZ/+753aX6I8+U89/d3ut77Oj0PiuAapN1Ddwd6v//Zjb6iXQfsbGr/e71a9j1sH+h2MX3Qn6w98HMm/FfX3X7dcxWdrF+/pY06Egdj2+qIcSP/NSv/WpP9GJf8+DWWb/mV1/wbW/TtZ773q1+t/nEOXuOhH/G+JTKwLj0hA6nnRf7va8oGtq7VyqDrH1H+qt58wVMRHXK3tMwwd8QAU//pi20/ScDEZMSgR0Yg4Srw09MojdCUZf6YSMPBFSXJ9OmwNrX5YN72+3wXdIBdVyVf0W5/c18DHNdD7D/Seg20PAOtv/GOdOgMd71D2P8BFcGK+//72d5zpugPVH3g/AxnaPgdyIM/lGgnpIKeUGDTc7S8YDhSwB9tH/X32D/H1lwd+v8HC//7WD/ghRnRRXCfsD7LPgT8wGehDlME/WEmfg/jFfXqf8WBQ772TQaZ/vfrBZ+APD4gmCwYlIjpsxbvfafwEkMbAeLvYHG/HQ0Q0Tg3e+ZKIiIiIiGgSYlAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKYVAiIiIiIiJKGdGg9NBDD+GDH/wgZs2aBSEEfvvb3ybWK6Xw1a9+FUcccQRyuRyWLFmCF198MVFnz549uPjii1EsFtHc3IzLLrsM3d3dI3nYREREREQ0yY1oUOrp6cGpp56Kn/zkJ3XX33DDDfjRj36Em2++GY8//jgKhQKWLl2Kcrkc1bn44ouxZcsWrFmzBnfddRceeughfOYznxnJwyYiIiIioklOKKXUqLyREPjNb36DCy64AIBuTZo1axauvvpq/MM//AMAoLOzEy0tLbj11lvxyU9+Es899xwWLVqEJ598EqeffjoA4N5778X73/9+vP7665g1a9aQ3rtUKqGpqQl3mEcjL8wR+fqIiIiIiGj861U+Pu6/jM7OThSLxQHrjdk9Stu2bUN7ezuWLFkSlTU1NeHMM8/EunXrAADr1q1Dc3NzFJIAYMmSJTAMA48//viA+65UKiiVSomJiIiIiIhoqMYsKLW3twMAWlpaEuUtLS3Ruvb2dsycOTOx3rIsTJ06NapTz+rVq9HU1BRNc+bMGeajJyIiIiKiw9lhOerdtddei87Ozmh67bXXxvqQiIiIiIhoAhmzoNTa2goA6OjoSJR3dHRE61pbW7Fr167Ees/zsGfPnqhOPZlMBsViMTEREREREREN1ZgFpfnz56O1tRVr166NykqlEh5//HG0tbUBANra2rBv3z6sX78+qvOHP/wBUkqceeaZo37MREREREQ0OVgjufPu7m689NJL0fK2bduwYcMGTJ06FXPnzsWVV16J//k//yeOPfZYzJ8/H1/5ylcwa9asaGS8E044Ae973/vw6U9/GjfffDNc18Xll1+OT37yk0Me8Y6IiIiIiOhAjWhQeuqpp3DuuedGy6tWrQIALF++HLfeeiu++MUvoqenB5/5zGewb98+nHPOObj33nuRzWajbX75y1/i8ssvx3vf+14YhoELL7wQP/rRj0bysImIiIiIaJIbtecojSU+R4mIiIiIiIAJ8BwlIiIiIiKi8YpBiYiIiIiIKIVBiYiIiIiIKIVBiYiIiIiIKIVBiYiIiIiIKIVBiYiIiIiIKIVBiYiIiIiIKIVBiYiIiIiIKIVBiSYEqQSkEmN9GEREREQ0SVhjfQA0+fQpiUdUF3bDw0XGtP3W95WBTepMVJCFoSQMSBjw9avwYcKHCMpM+LFXCRNerH683E+UCSi9LNQonAEiIiIiGu8YlGjU7YSLH8gOWBD4oGhGgzAHrb8X0yGgcMXqAjzfhK8EfGlASgOeNOArA74UkEovS2ng8e8+Ag82KshCwoSM4pEJqcwgOlmQMKBQa6kSSiWClQEFQ3gw4+EsCmYyEczCsBWWCahEUKuFMwnBxjEiIiKicY1BiUbdApHBPDh4BVX8UXXhfNE8aP3dmIUZYgcy1hRkLH9I73HsDccO+XikFPCDrn2+NPSkDF0ezHu+odfHyqUSeOLGdZDIpMKYAQUDUgXBLFgXD2T1Wsb6B6p461etbq31LB3eVGxZsoWMiIiI6BAwKNGY+EujiP8t38T9soTzjeYB6/nKQLdqwkX/NA9AZUSOxTAUDISBYmhBLLTwhgVDrhsGsloYq7WMhfNeIqjplrInb3wUbjqEhcEsah0zEbaF7b+FLBm8jFTgCrss1oJXLZQlw5ifCHFsJSMiIqLDCYMSjYm/EEXcijfxLMpoV1W0Cqduvb2YgQzKaMyOTEgaTWEgs015QNstvOHoA6ovZdA6NkgLmS9rLWh6oAxd74nvPQoPNiTyUYQKuywqZSTKhtJKJqKafiJ4GbHAJVKtZvEwVuu6mGxRM8WBnUMiIiKiA8WgRGNimrBwqsjjadWL+1UXLhL1B3XYjSPw/i8dC+Ct0T3ACSwMZPqX+8BayI4/iFC2v1ayqEujCkJZ2G3xe4/AgxVEKRMqFqskDPgqLK9FpYhC/9Ywke6iGG8RG7j1rF7LWjy8CUh2YSQiIpqEGJRozJwrinha9eIPsoRPiqkQdfpu+TCRs108vm0eyp4N2/RhGRK26cE2fdimhGX4MA0ZW+fDMn04wbJ1gC04NHQH20oGAMffcMwB1VcKteAVtpDVCWbpOuEgH0/d+EiiC6OM3T8mlQ5qfuxes7iwC2MiQIl4uEq2ktULYfu7t4zBjIiIaHxhUKIx0yYakIXATrjYijJOQC6xXimgonLoq1roqmSx+ANHwPMFPM+A6wm4noHyxo0ouxY8acLzDbjShOub8HwTntQtEEIoWIaMwpRj+jANHbJ02PJhGbGQZUhYZnLZMHjhOtaEQCz0HlhLGQCccIitZVH4UiIxoEeytay2/OSNj0IiE8Wnge4tk8G6eveWJbol9ru3bLCA1j+MJUZdTLeg8f4yIiKifhiUaMzkhIE20YD7VRfulyWcYCaDUheaIaDQU82gpVjCjOap/Xdy1PwB968U4Pk6UIWv8XnPFyg/sxE9FScYRMGE6xs6aEkdtFTwkFsdtGrhqrZca9WywuBl6BatWgiTMBm0JpxDaS0DgBMOYKAPIBnMEgEsFsq8fuvCAT+S3RhlPD6pePfFWtfGxNe6n/vL4i1i8TvV0qHNrBPCOOgHERFNVAxKNKb+UhRxv+rCH1UXPq1mwo5dRfmw4IgK9vQWsOiv5gIoH9C+hQBsS8EebEjxOYNfzPq+0K1Xfi1keeGr379Vy/XDyYAnTfhBq5YhVNSiVa/VyjaD7oNGcn28Pi8wD2+HEswWHmA3RmD/95fJYNCPeGALy2rBzOo3wEe6tSzdjTEeyqJQJeqFrOTw+Ol1++vCyFBGRESHikGJxtQpIo+pMLEHPp5SPWgTDdE6CQNKAWXXhpJAZ7eNjO3DsSUMY5CdDiPTVDBNhSwGuXgdpFVLSugugZ6A5xuopsKW6xmobHwGvVUHrl9r1QpD12CtWlGXQVOmWrFkopzdB6me0QxmBxzKlIAfPLusNjx+vEVsaMPjD/y8sniXRA+DtYAN9Bp/yDTvKSMiOjwxKNGYMoXAe0QRv1Z7cb8qoQ21oNSNIhQETCHx9AtTYBg6eAA6wDi2hGNJZBwJ25JRiHLscFlGdSxrbC5kDANwDAnHBga8r2bu4K1aXtCiVes+qC8ia6FLoLxxI3qqTqJVy5MGPN+EDIKWIVQtTAWBy4wFqSh8xYJXssWLF4N0cA4tlA3fSIz1uy+KYGj8R4Kh8fs/QDoMZMmujYM9r6zWSpZs9UoOhb+/QJYeHp8tZEREo4tBicbcuUYRv/b34gnVgy7lo1HorjouHCz69NkQkLAzPo778AIoBbguUK0KVKsCrivgukBvVWDq65vQV7FQdQ1UXB0kXFe3ShkGYFs6OMUDVSYerBwfjhUuj59QYFkK1mDdBwFg3sCtWn6sm6AbvPqpe7bKGzeiXLHhBd0G3WBwjHT3wXR4suL3aUUBrNaV0AlGILTZokWj5GBD2XE3HHtA9esFMlnneWUDBTIf2cS9Y/FA5kddGgfutlgLY34qYPn7DWP9t+HAHkRE9TAo0ZibLzKYjwy2oYI/qi68XzQD0EHJ9QwYhkJLsQpA33fkOIDjKACpC+8FJ/Tbt1KA5wGuGwYrPd9dFZj6+kaUei24roGKa6Lq6uAgZf1glXFkLEjVglXGHrsWq6EIuw9mnIPrPqgUopYsHbYM3coV6z5Y3rgRfW4yaIWjDw7WohVfTocwm/do0Tg2loHMk+aAgcz3k6Mu9m8ds/ZzD1mqNSvVMjZwV8X6rWHx+nxQNBFNNAxKNC6cazRim6zgflnC+41mAICCbtGwjl6I8jELcDBDQgsB2DZg2wr5fCrMzFtUd5swTIUtV2Gwsl/biFKPjWrQWlV19RS2WDm2X+vuFwSsKFwFr6N9j9VwEALB1wQM+D3Yz31aiREHY0GrGpTX6zqYvkcrGvAifEaW2b/bYL1RB9maRRPZwQayAxl1MQxjugV5P0EsCGxPfO/RoKti2GZl1QarDx4W7QddFSMKiWBlinotYfFBPOItYh7MfsEsvi+GMCIafgxKNC68RxRxK97Ecyhjp6riCOEAAKQSqLgGnn/exhuvW8hmFTIZBSejXzMZVStzhudYwmClxS6w6wSrsMUqDFTVqp4vuQJTXtuE3pKluwHGugLq90jeQ6VbrOoErXHeWjUUhgFkHDl4i9a8eQOu8qJRB/sP8R4OhqGHeB941EHT0ANcOFay9cqxal0I4+sYsmgyOZgwdvwB3DsWBi0vahXTXRGj5XBdMOS9J5MtYmHgkjDgKyvWQmbW7hULQliiNUv4yRatdLga4itbs4kmLwYlGhemCgunijyeVr24X3Xhv4lp8JSNqm/Cr5pwqwKVOdPR4wJuGZgnOtDdZaBSESiX9YAGhqGQySpkwxCVrQWpbLBs28N73PEWq35dAef37wooZeoeq6pAuSqQe30jevos7C3pQFWpmrVugKbSAcqSyDo+HEeHrIydnD8cQlU94T1aucwAFQYZDCPemlUNug96QfdB19PP0dIjDiZDlutbUZfBxFDtQZByrFqrlmN60UiDthkPXPyEmwgATEPBNHw4B9ArYKgtYlHgird8xUJZPIyF94hV4UQDc/hhEEt0SdShLKTvDfMTAcyItkx2MYy/9g9etTKOlEg0MTAo0bjxl6Kog5Is4SIxFRICfa4N4Qo0NkoUp9XqVtECASAbTL4PVCt62lvVr/MMHabKZYFyRcD3hL5XJwxP2VqwyuZqLVMj2S3OMIBMBshkUsHqqEVorFM/Hqr0BHRXBZpf24zObrvWWuWaiVCVDlJZR3f5yzq6O2DG9idU97+Dtd/WrEGeo5V+hlbVrbVkVd3afVnJkFXrLhi/J8sxUy1XsVYrHbT8WJdCBiyioTIMBcfwMdSu2UO9R0wpDBi2vGiqdVF8/HuPBs8Wy0dhSwewMIxZ8GPdEIVSySAlvCi21QthutwL9uzVDWRs+SIafgxKNG60iQZkIbATLraijB4U0SQN5B2FYnHwT99ME8jl9RQKw1QumHyvFqZ6KkC1BzhKdmDvXgOVsm6ZAhC1RsUDVC4MVVkF06x3BCMjbK0qFFJf/9EL+9V1XaBSqbVURaHqdR2qylVTB6tqsvtfGKIyjp5PhKrDtJVqKPb7DK0B7stSCvB8EQ0OUvUM3YrlCVQ9A+VnNkZdBaueiapvJQKWECoRruygxSoRqCwdsKygnmP67CJINIyEQPDMuqF9cHHcEJ8t5se6HMbDlheNNFoLZI8H94H5KESjIfow4SszGBkx3fLlR2HLFPFwFQ9fPiy4/boYhoFLBzDe80UUYlCicSMrDJwtGvEHVcIfZAknCzO4kV8hl1PoO8T9mxaQs4BcoVbmoQUW9C9CXtWCVKkCvFkGjjI70FXSrVKVioDvC9i2Pp5sTiKXVcjldYDK53WL1Fh9qjdgF8BjkqFKKUT3UoXBqrsqYG3fhD2dDiquiXK1fyuVDlH6XqpwPpvxo0BlmrxQB4ILLEvBtgb4lHuAVqx4wAoHufBiXQb7NmxEVyUbtVxVPROub8GL3YcVtlCFrVbx+dqyx3BFNEbCbohDaQEbSvgKW77CoOUrQ7/Ggpgn9WiIutthBn0o1Fq5EkPS14JX2OJVC07JMJWcrwUyK2rtirWKsZshTWAMSjSu/GUQlP6ounAcAAEFJQXW/qkFxSlAoQHIBi1HuQKQyQ7fewuh9xffZxUtMADkg8kNuvV1l4G3ysBRVgdK7UH3vqBFKpvTLVCJ15xELjf890gdDCFq3f8aG+ODVfS/pyrs+lepCFQrAr0VAee1jdjX5aBc1YGqUjWhlL6XKGyRirdOpefZPaS+eMAqHEDACu/DikZiDAOWa6BvwzPRPVjx1ivX182iesRAL7rnqjZfC1RhyMpYukWL3z+i8SPR8rWf/y9D6XYY3vMV717o+7Vl1zfhSxOPfze81yuf6FroKyuaDwfaCO/xsuBFLV1hmIoHKysWwIyg5SsezBi4aCwwKNG4crLIYypM7IGPbdiGY9SZ8KVAuQ/oM13IvQILjrSwZxdQLut7UPINeioEr5ksRuxiznb0VAhuKKqiBSaAAoCc1EGq3Ae8VQHmWe3o6hbYvdtEX58eFc+2FfIFiUJet0rl8hL5YH40u/QNVd2uf6nR/5TSX3cluI+qUhEoVQTE9k0o9dhRoHJdQ4c0x0cu4wetUVLPh2VBmKKhG/Q+rNn1RyZTCslh7j3dJdP1jVrLVW8yXPnSgBAqGC3QQyYIUxmr1mqVsbx+IYvBimjiCO/52t/AG8cOIXSF3Qy9oGtx9BoFLh3Envjeo6ggG9zbZcELWrrSrVyGqt2TpQNX/xauMFylW7g4kAYdLAYlGldMIfAeUcSv1V48q57De6GHBzcdoGEaIAyFTt8FMgBsoK8M7NsDLMja6HgD6O0BDKFbm/INOtA0FIe35WkghpFskepBKwDACSbPAyp9QKkP2NUDzPE7sGuXjd5e3aUvm5VBeFIo5CUKBYVCg0RmoNHexgkhACcDOOkBKlKj/kmJqAtjpSzQUxGwt2/Cm/sy6KvUwpRhoNalz/GRc3zkszpY5TM6ULGb36HRgXWgcFW/5cr3RTAiY22o+4proPdpPXJg1bNQjbVchcEqvN9KByodpMLWqbAsE0wmuwISHTbCboYZa/DQtb+h5qUUcOsErvDeTj+Yf/zGdaggF7VwecoKBtVIt3Cl7+VKdiNMdx1MdjHk6IWTDYMSjTt/aRTxa38v/oyX0VftRE/D0XAygEiN0iYM3Q0vmwfeqrj6p7kRKFeAzk5gQYONXTuAV17QF/INRaChSb/GB30YLZYFWI211iiJFmSgM1+1AlTKwJ4+3RK1d5+J198Q6Os1YFk6MBUKCoWCfm0oSDjjPEClGQaQz6ce/Jvq7uf7iIZ8r5QFeoJ7pzr22Ogtm+irWJAScBwZhaZcxtOvWb2cZ5AaEaapkDP1OU44sv5Fju+LxDPEqq7uptm34Rl0VzKo+hYqnp5cX9+PGLVWpQJUGK4YqogmH8NQyAwhcC3cz5Dynp/sUhjeyxUPXGELVxWZWndCmPCVnRhQIzq2OkPHDzZkfPw1/ZDlxHPAGMDGDaGUmhDfjZ/85Cf4zne+g/b2dpx66qn48Y9/jDPOOGNI25ZKJTQ1NeEO82jkxTjs30T9XOFtxzaU8bG3/w2OPf+7kFOaIZrdg9qX9IFyLzD/CBvdJaC7S4+S19gMTJ0OFKdgXHZ7A3RwKPcCfb3AXKcdPT0GenoEymVDd4lrkCg2SjQWFRobZTKEHKaqFaCvrM9BuU+guH0TyhVTB6mqCekL2LYOUvmch3zGRyHnIZ/1Uch67No3DoVdASuugYprRq1VlaqB3mc2o+pZKA8SqjKWi6ytXzOWh6zlIWO7QcsVv99ENHyUQt1ndQ00muET33sk9twuAxKWfk08u0tHpLhkkFIwRDJQGbGQZaL/OlF7THNinUjVn6zdo3uVj4/7L6OzsxPFYnHAehOiRelXv/oVVq1ahZtvvhlnnnkmfvCDH2Dp0qV4/vnnMXPmzLE+PBoBfyGasE2V8eSrD+NopVsjDjYCGCaQbwQ6ul3AANAI9PQBM7I2Xn8FcF8AmqYCzVP1qzWOfitMU7dAFRqBXrRCTAEaAOQ8fS/U3h4g73dg+6smenoEDANobJR6OkzDU9jNr6kp+HQx1SpVreoufn19Bnr7BMxXN2FvVx49fRYqVQOGqVAIQlM+qwNUPuuhkKvTWkKjItkV0EuunHdUYjEdqqpVA+Wqid4NG9HZl0PFs6OWKl8aMA0ZtUKFgcqxPGQtNwpUWcvj86uIaEiEACxTDvlvxvFDHDpeKUAqEYWtcN5XetRCX+mycHRDKQWk0nWfuvERuInIVHtwslS62+FAgUwolQpZMgplIhHlfAiofsFroGAmYuvM+LYTrLVsQrQonXnmmXjHO96B//W//hcAQEqJOXPm4IorrsCXvvSl/W7PFqWJp0MC/0O+CAWFT3/2SbSc+Hb4+YNrUdqfSh8wd6aNfW/p1opZc4EZR2DCPZBVSqCvB+jtBo609cN2u7sFbBuYMsXHlCkSU6ZKZLPj/ld+xPg+0Ncn9NRroPjqJvSWTfSULZQrJgxDoSHnoZDz0JgPX13ks5P3U7eJzPWEfn5YMDpjxTXQ8/QmlF2rX6CyDIms7dYmy0PWrkZhKme7bJ0iosOClAJ+EMTigUyHr1hAC8JY+CqliLWQhYFMJIKZUrX4FJWh9g9UB6ZUy5YYvCUsDFlmnRBWi4f1g9xA/7sPmxalarWK9evX49prr43KDMPAkiVLsG7durrbVCoVVCqVaLlUKo34cdLwmiIczME8bMc2PLvlTrSe9PYRe69MDujocgEH6K0Au9tt7NoJHHUMUGwesbcddoZRa32qogXOdKBZAt0lICPa8cYOC1u3CmRzCs1NEtOm+5g+XU64QHgoTBNoaFBoaFAAJHDUCWgO1kkJ9PYK9PQYKPUIqFe24I3dOfSW9Z/JfDYWngoumgo6QNH4pYdb99AYvyfxyP73MbieCAYUMfV9VBUTPRs2YV9fDn2ujYprwwvCVBiaMkGrVM6pIheU5WyXz6YionHPMBQMqIP68Gcow8ynRQEsDGGxgJYOZmGZDmhGEMwMKGRSAc2IWszSZYmvVSVbvcJgZqk3Aby832Mf90HpzTffhO/7aGlpSZS3tLRg69atdbdZvXo1vvGNb4zG4dEIWihOwna1DVs234FzP/7tUXnPfCNQUS7e2ingbLcmVFCqxzB02OtBK5wmoNnTwckx2vHyyzae3yows8VHa6uHpqbJfYFnGGGICsLPguMxA7o7RF+fQE+PQG+PAbFtMzr2ZNHda8E0FZoKLooNOjgVCy4KOY+tTxNMGKiKhVi3v7nzEnXC1qm+SjJMdZZy6K06KLs2pBLIWC7yjm6VyttV/ero15ztchAKIpp0wmCmQ8eBfcA41K6LcX68ZUwaUUBTsVBWrs4CVq/Z777GfVA6GNdeey1WrVoVLZdKJcyZM2cMj4gOxtE4Dhkri337XsH2lx7FkacMbfCOQyWEnrq7RuXtRpVp6fuwetCKQjPQ1Qmoagee2ZCB4yicsKg66QNTmhCx0fpmSGDeQkyHboHq7hbo6jLgvbwZ23YU0NVrA0KHpymNVUxrrmJKQxWWxXM60dVap+qHKaWgB5+o6G6cvRUTXX/ajM5yMkg5loe8XUXeqaKQ0a95p4qCU2HXPiKiYWAaCuZ+WsxK5cqA6+LGfVCaPn06TNNER0dHoryjowOtra11t8lkMsiM94fP0KAEFGxh49Qj34EnXv0jNj75ixEPSkrpe3ym52yYRWD2/BF9u3GhsUl30ytOA6b2tWPD0xksWOBizlx2KdsfwwCKRYVi0QeOPAFToH+GenoEukoGKi9sweaXm1CumGhqcDG1WMGUYhXTigxOhyMhgGxGIpup1gpnz4tmw0Eoeism+soWesomSuu34M3uBnRXMnB9E7bpo+BUkHNcFJwq8k4FeaeKhgxDFBHRWBj3QclxHCxevBhr167FBRdcAEAP5rB27VpcfvnlY3twNGIEFAQk3jH3XXji1T9i64Y78Vfud2DZwxeAPVcPvV3pE5jXaqG7GyhADxt+7JG69WWyMAxgX6EV1hzgxRffQlNzGcUiL+YPlBCx7nuzFmIa9Ah8+/YaqL6wGc+9ooPTzCllzJrRh5lTypPqHrHJLD6y35TGYGCaObUR/VxPoKfP0l36yhZK67fgrZ4CeoKH+WYsFw2ZKhqzZTRkyihkqmjMlBmgiIhG0IS4FFy1ahWWL1+O008/HWeccQZ+8IMfoKenB3/zN38z1odGI0SPXKJwXMsJaCwega7STry08fdYuPiCA9qPkjoQudXgtSIw/0gLPV2AcoFpOSA/Xd+bNGsekC9g0t5fopQeMa8hL9HYyJA0XLJZhdYjfOCIEzAVusUJz2zGs9uK2PhSM1qn9WHeET3J+2No0rEtheZGF81hiJqdDFFdvTZ6+izsfWIz2ktN6CpnUPFsZCwXjdkKGjIVNGTKaMr1oTFTmbR/x4iIhtOECEqf+MQnsHv3bnz1q19Fe3s73va2t+Hee+/tN8ADHX5Mw8Db3vZR/PGhH2Pzo7dFQUn6gOcBfjB5LuC7AsccZcGrAm4QjtwqYAkgnwGcAuBkgVweaDlSh6LJ1Go0kEoZmO62o32niawnsOB4DkYwkgoFBZx9Io4D0NkpoJ55Fo9umo5jZnfj6CO7ee6pH9tSmFqsYmqxijkfrI3aFw9Q+57cjB37mrG1/QgoAI1BaAqnglPlzxYR0QGaEM9ROlR8jtLE4ysDD6llOOrCt2NPE/D1/9/FMEwbV/7TG3Ay06AkIAz9cFjLBhwHsDP6YaS2rcssO3w46eRtJUqTUj+otq8HmG11oNSl76eZOlWi9Qhv0g0XPl6USgLt97+M5gYXb1+4d6wPhyYwpYCePgud3TbeenwLOvty6KpkIQAUs32Y3tCNqYUeNOf6+HeRiCatUrmCOV++eeI/R4kmJ1NI2KoCXxqYNWM+5s0/Ca9s24zdO+7AeReu0EGIP70D8n398Nxyn74Pa26mA93dBnp6BIQBFBskVCNwxBE+TjqpCo59MraKRYW+M49F75+eH+tDoQlOCKAh76Eh7+HIoPVJKaCr18K+Lgft657HtremAwCm5HswrdCD6Q3daIgPQkFERAAYlGgc0w8FUzBNhXPP/Shu2bYZjz3wC3zov68Y60MbM76nuxx6LlCtAm5Fdy+cl+9ApSJQrQpUKgKuK2AYekjraQWJTFZh6jQPjY0SuZziJ8njiFLA7t0Gup98AcUG3qdEw08IoFjQz4ma+9dzoBR0i1NnBh2PvYDnO1rRkCljzpS9mNXUCYsDRBARAWBQonFMQAVPuVc4/R0fwa23fhMvbn4MO7e/iCPmHviToccL39MtPr6v77UK58NyzwWObuzQ91i5Ovy4roDr6qdbC6Fg20DOUWjOKGQKCk5Godgk4TgK2axCxlGwHXY5HM/KZYE9ewxUnn4BVdfAMbN7MKeld6wPiyYBIRANHHH0R2fB8wR2vJnDtgf/jK0drWhpLOHoGbvZykREkx6DEo1befQgZ3lwXQNKteDUM/4KGx67Dw/d90t84tNfP+j9KhVMElCIzSt9D09ifVAmpQ41YbkMX4Pyo4sdOvRIHWZ06BE6DClA+gKeD/heLbmYpoJp6teMBZiWgmUBdk7BEAoNDYDtSNi2DkaOo2Dbug4D0MQiJdDVJVDqNJB9eQv2dTnR85XmtPRhzsxemOZhf7sojVOWpTC3tRdzP9GKUo+Fl9d24rFtC3DKka9jZmP3WB8eEdGYYVCiccsQPhzbRTbnYbcr0Pb2D2PDY/fhwf/3c3zo3L8DoNOCUjrwIAg4ukzUAk9sknLghCGEgmHoECIEgnkF2wBMEzBMBSMsNwDDUjANwDABy1QwHMA0AGFIWGZQbulubmEosiw9z7BzeHJdoK9PoK/XQG+fQOMrm9HTZ6Gr14Zp6ufnNDR4mD2zD1Ma+OBZGn+KBQ+nfWgedr6Zxfp7DJx65Os4oqk01odFRDQmGJRoXBMALEviuOOrOPmUJbj11gJ2796O7u5H8bbTzoCIVQyDhw46Kgo8AjrYxMNP/zIGFxqclDoIlcsC5bKBSlmg+bWN6Cub6K3oB4V6noBtSxSyPhqzHgo5DzOnVNDUUEUh54/1l0A0ZEdML2NGQzfKnj3Wh0JENGYYlGjcclCBbUqIbc9h+qxeNL/7BJx//vvx6/97Jx584P/ivUtOH+tDpAlKqeBZW67Qg2N4AtVgEAzXA6a+sQnVqoGqZ6Dimqi6Bryg26TjSOQcH7mMD2SAqU1VHJnpQz7rIZfxYbOViCY4KYGX1zyPt3pmYv60N8f6cIiIxgyDEo1bGZSRtV1UPRNvdTpoBvChC/4av/6/d+L399yFL3/la8hksmN9mDSKlNKj/kmpw034qgfEENGgGJ4vMO2NjfB8Ac8z4PkCVc+A5xuJ0GMYgG1J2JaEY0tkLYlGW8KxJBpyHjK2hB0sZ2wfjs3nTNHhq+oa6NiTxQt/eBVCTMHiOdsxtcABRoho8mJQonHNFD5ytkRv2cKrr1iYdcQ5mDHjCOzevRO//fUDeM+5yyAMVetCh1qXuuieIyDqmlev+x1QWxefKH5vV20ewT1hUupgAhUMbhHcAxYOkiFlbVkqPaKfkkIPbhEMgjF95yb4YZkvIJWAlAKeL+DL2OQLKKWDUcgwANOUsEwF01CwTAXLlHAMhbylAAvIOhJWzoNtKdiWhGVK2JaCE4QfDqBAk5mUwL5uBx0PP4s3uwvoLOfQmCljwfQ9mN28j38HiWjSY1CiccuEh2d/9igW/O17MH9WN8p/3gIpgb96+7tx232/wr13/hxnTzkaUuoL7OiiPpoXwQW8iA34kLzYHkwUmMJQFbv3CQhCWXw5Ku9fhqBuuF38PZLvObQLd6VEbD5WnlpfG9wiXB8f5EJE26iDOE9CAMIIB7jQ58gIQ6vQQ7ubsWXHUFFIDdeZph7KPNyHaSTXmbF5Q9QCkWnyWVBEB0JKoLvPQlePjb1PbEZXJYu9vXmYhsS0goPZU/bitIbXkLX5LC8iohCDEo1bRezFW2hBxvIwpdFF67wuAMBV2Xfgtvt+hSe2PI5j52zD9ObiAe87HhZkvZHyUoEiHSaAMGCIumEk/h7hvqP3ThxI/JiGduXfL0yJ/rNRKBsgxNXK+4fAeAA0hEq2wIlaGCKi8cfzBHrKFrp7LXQ+uQldlQx6qhn0Vh2YQqExW0Zj1sDMxi4c39KOYrYy1odMRDRuMSjRuGWjCg82mvM9eHPdFrR+4GgAwKL5c/C24+Zjwwvb8H/vX4fP/vXSA953LSwomFEpu2ER0filFFCumuirmKhUDfRVTHT/aRP6XBt9roOya8P1Tdimj4ZMBYWMhamFXsydsheFTAV5xx3rL4GIaEJhUKJxK4ceKAg0ZKp4fe8UnBRbd9F578KGF7bh3//zoYMKSkRE44FSevCRqlsbYdH1DJSrBnqe3oSKZ6Hs2qh4Fqq+/pftmB6ytoes7SJvK0wr9CBn70POqSJnu7DNIfYvJiKiQTEo0bglBCCUwtRcD17oaMEDv+qAbfgwDYVjKvNhCgNPPvsSfr+uhAWzjozuaQlv7jdS97ak583gnhkiouHg+wKup0dYrLoGXN+A5xlwPQHXM9D3zEZUfQuuZ6LiW6h6FjxpQCkBQyjYpgfH8pGxvCAMSTRkepC1PWQsV4cjy2XXVyKiUcKgRONaVvSgu3okzjn6JfRUM8EoaAamNZg4a/7ReOTPL+Ke3/07/vbspfClAV8KKGXAkwakElGZrwxIacBXInEvkBA6POkAJaNXU0gdpISCESwbhoIpJJyTTw1CFxIDDggjHcoQBTZD1Mp4jw/R+CEl4EsBz9fDyPt+bNTFoExPBiobn4EnDbi+CV8Gw837Oux4vgkZ/G2xDAnb9GCbPhzLh2X4et70UchU4ZgeHNOHbfnRvMVWICKicYdBica1BnThgdVP4ZIbjkFj6qbjv23TQem/nn8K3/vISTCMoaUPKQV8JWJBKghVyohG0KtX7ksDvjJQ3rgRUhnBsNYCMlyvkuFMBssyFc4AROFMB7VYKAvmBcIR42RUNwxc9kmnxgIYonLDQLBPRKEtLIvXDUeniw/UwABH40k4EIovRfC7F3tVuuVG/66JaFh5z6/V8aVAZeMzsd9THWp8pX+vveD3O/wdD5mGhGlIWLFXPa+DjGUAOdtFwanANv0gEOl1dhCGLEN/qEJERBMfgxKNa9PQgRfUKfClgJm6+Hj/SQvQmHGwfU8Jj72yA2cvOHJI+zQMBSMauMEf5iOuLxy23I+1dIUhyldG8Hwh0S+wxYNWeNHnbd6AquofxMJnECnE9iWN6L2lMqIR/OqFN6A2ul0Y4sIWNwFVC1lBeAtHxQvrALGyqL5eZ530tmBEvdqoe/HQpt87tT4+9LqhEqPxpeuGxw6g7ih+ifWx7cPl5DmonYd66+P7wiB1wnI1hGvmdJ308O/1dhHWCYdxj4+2GG2XGrExvr/0iI0KInhelkhsHw6xL2VyNMj4MPzhsrtpQ+xnDdHPYvznM/qZRbrMqNWr87MZtvjGP1gwY629YXlYZpsKpuFF5VbQbdcUUj9/y/BhCgXL1K+mIflBARERJTAo0bjWKDrhoIydnbMxe8q+xLq8Y+PDpxyDXzz5LG5fv3XIQWksCIHgYmx0gtlQ1C6E64UyfYHtS0NfHMtkwIoudKPy5IWxfghtLaT5WzYkh11HMtTVgkLtIjlcn96udvGfXAfEw0LtVcWWdZ2hD8U+USVDYxhka+uikJl45lcsjEINEIaBeCA20mFaqKBFxdNBNFbPEDIKxqaQiW6v8fl4N9h4ayoREdFoY1Cica8BJaxd/Scsv2FBv3WfOH0hfvHks/jthhdwwwV/gazNH+mhCltOjLrtFZNDvKUlKkPyYbz9t+n/TKxDDV79WqgGKEvXj7eWsTWEiIhoePGqksa9FryOTeoM3PLF7bDg4syr22CZ+n6AY2Y04l1HP42zF8xFqc+CIUzeI0BDFobF/vjzQ0RENNkJpYbSg35iK5VKaGpqwh3m0cgLc/8b0LizV01DLxrgw4IHCz5s+DD1vLLhwYKECQk93rcBCRMeTPgwhQsrnIcHAz7O+oez9Q3ahoxuxA7vW4hu0OY9C0RERESHnVK5gjlfvhmdnZ0oFosD1mOLEk0IU8RbmIK36q+MhRlfhRFJBykfVhSuZLDswcKj330MElYQnWz4yozW+zCje12MYAsduLwgmnkw4OGMVWfDNn2Yhg5aVniDeDhaVix4MXARERERTSwMSnRYMYVuV7LhHtiGqSDjKzMKUTJsuQpClI5ONp668eFUKDMhlRULaLXWSyOqEQYuH0bUyuXjjFVtwYhdfjJkxcJWOLFbIREREdHIY1AiqsMUOsA4qB7YhrHApRSCVqpa4PJhRq/x4PXkjY8EXQdT65RVp5VLBl0LXf0q/Fo3w6Br4ZlXn133mTCmqYdOtlLr2OJFRERElMSgRDRChEAUew44cEU7qc1KJaKuhPEwlQxguuyx7z3Wf12se6EM4lbIgB/d1xWGr1ormC47Y1UbLFNGz6mxYqHLSAcyQ/Z77hURERHRRMKgRDRBGELBgHvg3QpDqVYjqUQ0AEYYnuq9hkFroFYvqZL7CFu+BFQQx3RtQyTDmA5nQdfDq9+pn52TfjBoUBbOm6l5IiIiopHCoEQ0Seng5QVLB9niBdS5v8tItGTFQ9RA5Y9977F+9SSMWAgzo/La26pk4AqCWC2AhfMS71h1NkxDwQhaw9Kha6AwZvD5RERERJMWgxIRDauDHlCjnjohZaAgpiD6B63g9ckbH4WESGyngjilVDyIJcMYULsnzIAPEc4LvYWIrQvrvWPV2TCEigKYIZLBKx7MwuVonVAcrIOIiGicYFAiogllWIMYMGAYU7HglGwNq7euVqa7KIbLZhTQ4q1kOtTV9qViByGgggCmogAmgnAWlonYnkUU0N6pW81ELaAZQgZlQXkQxKJ10XItqAm2ohEREQFgUCIi6scUEoAcmZ3XCSFSiVj4MoIWr1oLmEpEI7Nu3TCg1daLRFhTsZCWDHtGnUNUtYAWvSoIEZuPHUGtng5yp686J2otC4OXmQpqAirWvVElXutNDHBERDTaGJSIiMaYIRQQDGwxogYIGvGgVgtler5+OaJAVi94xVvVVBTu4vX0fpWKBzoDCNrI0q1stcNXiaAWXwZ0y5gIjjoe3uLLiB1VGOiEAAwhAYEoxCUDXP1yCPSvC8AwgveMlYnYOiIaW0oBSgn9l6Puq4CU+m9QvXVKofY3KrYvoP+8riKi9623HK/b71iH4wseQfGjPtRjHegc1Pbff70a5E0Hqy9V95COiUGJiGiSG7WgljbI/0T9HLIwPCUDWTifXodYbNL3moXlSIS5cPnJGx8J9leLT2GQQ519AgJSGdE28fcPQ178PQf+svU7Ifbu8UAnwjpCRu8iUtv1q5vaD6Kj0vOnrzon2Cdqr0H4Q6wsOr6oLPxKEbXqxddHX1MqEIZl8e/zQPtN1E2VxY8Jg9SNl9crq1cfg9SrlQ+wwQEY9EIudmE4ULX4hff+yvR+UhflUflA87X66Yv/eN34NjK2bTx01I6tFiai/UbL/dc9dePDid+r8Cc5/ftX+wkPf191uVRGbH2tbvg7nKi7n9/P0EC/S+l3iV+Oh8tA7PcrOotI1UvPp39Wx3tEGn4Df80Dn4vBfkUH2p+AAtS+IR0TgxIREY07+jlkOiiMeoAbzBAvnKMLwdhFHYA6F2/1Lv5iF6GxsoEuFmt1axeX6f2sv/GPqXVA+oI0uU1tfbiP5HvXTkbtQluktknWSe8rOlf9Lmf6b0MHR/Q7u/GLfr2crlf/4h+x4J4MD/EAsb/1AwUP/bvu160vUtuGLcOJn8igNTn+tdQ+TEiXS6S/3n7vyR+7w17vEP+vjFhQ+ta3voW7774bGzZsgOM42LdvX78627dvx4oVK3D//fejoaEBy5cvx+rVq2FZtcN64IEHsGrVKmzZsgVz5szBddddh0svvXSkDpuIiOiQ1VpcdPvWpDDCF5eJbkqpoBU/gHS4GkrYGqiOgoguqPe3n4NtAai3Xf/omAw7A9XhBT7R8BqxoFStVvGxj30MbW1t+Ld/+7d+633fx7Jly9Da2opHH30UO3fuxKc+9SnYto1vf/vbAIBt27Zh2bJl+NznPodf/vKXWLt2Lf7H//gfOOKII7B06dKROnQiIiIaZ+IhoF5wICIabkKpwXrPHrpbb70VV155Zb8Wpd///vf4wAc+gB07dqClpQUAcPPNN+Oaa67B7t274TgOrrnmGtx9993YvHlztN0nP/lJ7Nu3D/fee++Qj6FUKqGpqQl3mEcjL8z9b0BERERERIelXuXj4/7L6OzsRLFYHLDe0O5oGwHr1q3DySefHIUkAFi6dClKpRK2bNkS1VmyZEliu6VLl2LdunWD7rtSqaBUKiUmIiIiIiKioRqzoNTe3p4ISQCi5fb29kHrlEol9PX1Dbjv1atXo6mpKZrmzJkzzEdPRERERESHswMKSl/60pcghBh02rp160gd65Bde+216OzsjKbXXnttrA+JiIiIiIgmkAMazOHqq6/e74hzCxYsGNK+Wltb8cQTTyTKOjo6onXha1gWr1MsFpHL5QbcdyaTQSaTGdJxEBERERERpR1QUJoxYwZmzJgxLG/c1taGb33rW9i1axdmzpwJAFizZg2KxSIWLVoU1bnnnnsS261ZswZtbW3DcgxERERERET1jNg9Stu3b8eGDRuwfft2+L6PDRs2YMOGDeju7gYAnHfeeVi0aBEuueQSPPPMM7jvvvtw3XXXYeXKlVFr0Oc+9zn8+c9/xhe/+EVs3boVP/3pT3HHHXfgqquuGqnDJiIiIiIiGrnhwS+99FL8/Oc/71d+//334z3veQ8A4NVXX8WKFSvwwAMPoFAoYPny5bj++uv7PXD2qquuwrPPPovZs2fjK1/5ygE/cJbDgxMRERERETD04cFH/DlK4wGDEhERERERARPgOUpERERERETjFYMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRCoMSERERERFRyogFpVdeeQWXXXYZ5s+fj1wuh6OPPhpf+9rXUK1WE/U2btyId73rXchms5gzZw5uuOGGfvu68847sXDhQmSzWZx88sm45557RuqwiYiIiIiIRi4obd26FVJK/Mu//Au2bNmC73//+7j55pvxj//4j1GdUqmE8847D0cddRTWr1+P73znO/j617+On/3sZ1GdRx99FBdddBEuu+wyPP3007jgggtwwQUXYPPmzSN16ERERERENMkJpZQarTf7zne+g5tuugl//vOfAQA33XQTvvzlL6O9vR2O4wAAvvSlL+G3v/0ttm7dCgD4xCc+gZ6eHtx1113Rfs466yy87W1vw8033zyk9y2VSmhqasId5tHIC3OYvyoiIiIiIpooepWPj/svo7OzE8ViccB6o3qPUmdnJ6ZOnRotr1u3Du9+97ujkAQAS5cuxfPPP4+9e/dGdZYsWZLYz9KlS7Fu3boB36dSqaBUKiUmIiIiIiKioRq1oPTSSy/hxz/+MT772c9GZe3t7WhpaUnUC5fb29sHrROur2f16tVoamqKpjlz5gzXl0FERERERJPAAQelL33pSxBCDDqF3eZCb7zxBt73vvfhYx/7GD796U8P28EP5Nprr0VnZ2c0vfbaayP+nkREREREdPiwDnSDq6++GpdeeumgdRYsWBDN79ixA+eeey7OPvvsxCANANDa2oqOjo5EWbjc2to6aJ1wfT2ZTAaZTGa/XwsREREREVE9BxyUZsyYgRkzZgyp7htvvIFzzz0Xixcvxi233ALDSDZgtbW14ctf/jJc14Vt2wCANWvW4Pjjj8eUKVOiOmvXrsWVV14ZbbdmzRq0tbUd6KETERERERENyYjdo/TGG2/gPe95D+bOnYvvfve72L17N9rb2xP3Fv23//bf4DgOLrvsMmzZsgW/+tWv8MMf/hCrVq2K6nz+85/Hvffei+9973vYunUrvv71r+Opp57C5ZdfPlKHTkREREREk9wBtygN1Zo1a/DSSy/hpZdewuzZsxPrwhHJm5qa8J//+Z9YuXIlFi9ejOnTp+OrX/0qPvOZz0R1zz77bNx222247rrr8I//+I849thj8dvf/hYnnXTSSB06ERERERFNcqP6HKWxwucoERERERERME6fo0RERERERDQRMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlMCgRERERERGlWGN9AKNBKQUA6FVyjI+EiIiIiIjGUpgJwowwkEkRlLq6ugAAl8ptY3wkREREREQ0HnR1daGpqWnA9ULtL0odBqSU2LFjBxobGyGEGLb9lkolzJkzB6+99hqKxeKw7Zc0nt+RxfM7snh+RxbP78ji+R1ZPL8ji+d3ZB0O51cpha6uLsyaNQuGMfCdSJOiRckwDMyePXvE9l8sFifsD8pEwPM7snh+RxbP78ji+R1ZPL8ji+d3ZPH8jqyJfn4Ha0kKcTAHIiIiIiKiFAYlIiIiIiKiFAalQ5DJZPC1r30NmUxmrA/lsMTzO7J4fkcWz+/I4vkdWTy/I4vnd2Tx/I6syXR+J8VgDkRERERERAeCLUpEREREREQpDEpEREREREQpDEpEREREREQpDEpEREREREQpDEpEREREREQpDEpD8Morr+Cyyy7D/PnzkcvlcPTRR+NrX/saqtVqot7GjRvxrne9C9lsFnPmzMENN9zQb1933nknFi5ciGw2i5NPPhn33HPPaH0ZE85PfvITzJs3D9lsFmeeeSaeeOKJsT6kcW/16tV4xzvegcbGRsycORMXXHABnn/++USdcrmMlStXYtq0aWhoaMCFF16Ijo6ORJ3t27dj2bJlyOfzmDlzJr7whS/A87zR/FImhOuvvx5CCFx55ZVRGc/voXnjjTfw3//7f8e0adOQy+Vw8skn46mnnorWK6Xw1a9+FUcccQRyuRyWLFmCF198MbGPPXv24OKLL0axWERzczMuu+wydHd3j/aXMu74vo+vfOUrif9l//RP/4T44Lc8v0P30EMP4YMf/CBmzZoFIQR++9vfJtYP17kcyrXF4Wiw8+u6Lq655hqcfPLJKBQKmDVrFj71qU9hx44diX3w/A5sfz+/cZ/73OcghMAPfvCDRPmkOL+K9uv3v/+9uvTSS9V9992nXn75ZfW73/1OzZw5U1199dVRnc7OTtXS0qIuvvhitXnzZvXv//7vKpfLqX/5l3+J6jzyyCPKNE11ww03qGeffVZdd911yrZttWnTprH4ssa122+/XTmOo/73//7fasuWLerTn/60am5uVh0dHWN9aOPa0qVL1S233KI2b96sNmzYoN7//veruXPnqu7u7qjO5z73OTVnzhy1du1a9dRTT6mzzjpLnX322dF6z/PUSSedpJYsWaKefvppdc8996jp06era6+9diy+pHHriSeeUPPmzVOnnHKK+vznPx+V8/wevD179qijjjpKXXrpperxxx9Xf/7zn9V9992nXnrppajO9ddfr5qamtRvf/tb9cwzz6gPfehDav78+aqvry+q8773vU+deuqp6rHHHlN//OMf1THHHKMuuuiisfiSxpVvfetbatq0aequu+5S27ZtU3feeadqaGhQP/zhD6M6PL9Dd88996gvf/nL6te//rUCoH7zm98k1g/HuRzKtcXharDzu2/fPrVkyRL1q1/9Sm3dulWtW7dOnXHGGWrx4sWJffD8Dmx/P7+hX//61+rUU09Vs2bNUt///vcT6ybD+WVQOkg33HCDmj9/frT805/+VE2ZMkVVKpWo7JprrlHHH398tPzxj39cLVu2LLGfM888U332s58d+QOeYM444wy1cuXKaNn3fTVr1iy1evXqMTyqiWfXrl0KgHrwwQeVUvqfi23b6s4774zqPPfccwqAWrdunVJK//E0DEO1t7dHdW666SZVLBYTP9+TWVdXlzr22GPVmjVr1F/8xV9EQYnn99Bcc8016pxzzhlwvZRStba2qu985ztR2b59+1Qmk1H//u//rpRS6tlnn1UA1JNPPhnV+f3vf6+EEOqNN94YuYOfAJYtW6b+9m//NlH2kY98RF188cVKKZ7fQ5G+0ByuczmUa4vJYLAL+dATTzyhAKhXX31VKcXzeyAGOr+vv/66OvLII9XmzZvVUUcdlQhKk+X8suvdQers7MTUqVOj5XXr1uHd7343HMeJypYuXYrnn38ee/fujeosWbIksZ+lS5di3bp1o3PQE0S1WsX69esT58owDCxZsoTn6gB1dnYCQPSzun79eriumzi3CxcuxNy5c6Nzu27dOpx88sloaWmJ6ixduhSlUglbtmwZxaMfv1auXIlly5b1+33m+T00/+///T+cfvrp+NjHPoaZM2fitNNOw7/+679G67dt24b29vbE+W1qasKZZ56ZOL/Nzc04/fTTozpLliyBYRh4/PHHR++LGYfOPvtsrF27Fi+88AIA4JlnnsHDDz+M888/HwDP73AarnM5lGsL0jo7OyGEQHNzMwCe30MlpcQll1yCL3zhCzjxxBP7rZ8s55dB6SC89NJL+PGPf4zPfvazUVl7e3viwgdAtNze3j5onXA9aW+++SZ83+e5OkRSSlx55ZV45zvfiZNOOgmA/hl0HCf6RxKKn9uh/CxPZrfffjv+9Kc/YfXq1f3W8fwemj//+c+46aabcOyxx+K+++7DihUr8Pd///f4+c9/DqB2fgb729De3o6ZM2cm1luWhalTp0768/ulL30Jn/zkJ7Fw4ULYto3TTjsNV155JS6++GIAPL/DabjOJf9eDE25XMY111yDiy66CMViEQDP76H653/+Z1iWhb//+7+vu36ynF9rrA9gLH3pS1/CP//zPw9a57nnnsPChQuj5TfeeAPve9/78LGPfQyf/vSnR/oQiQ7aypUrsXnzZjz88MNjfSiHjddeew2f//znsWbNGmSz2bE+nMOOlBKnn346vv3tbwMATjvtNGzevBk333wzli9fPsZHN/Hdcccd+OUvf4nbbrsNJ554IjZs2IArr7wSs2bN4vmlCct1XXz84x+HUgo33XTTWB/OYWH9+vX44Q9/iD/96U8QQoz14YypSd2idPXVV+O5554bdFqwYEFUf8eOHTj33HNx9tln42c/+1liX62trf1GtgqXW1tbB60Tridt+vTpME2T5+oQXH755bjrrrtw//33Y/bs2VF5a2srqtUq9u3bl6gfP7dD+VmerNavX49du3bh7W9/OyzLgmVZePDBB/GjH/0IlmWhpaWF5/cQHHHEEVi0aFGi7IQTTsD27dsB1M7PYH8bWltbsWvXrsR6z/OwZ8+eSX9+v/CFL0StSieffDIuueQSXHXVVVHrKM/v8Bmuc8m/F4MLQ9Krr76KNWvWRK1JAM/vofjjH/+IXbt2Ye7cudH/uldffRVXX3015s2bB2DynN9JHZRmzJiBhQsXDjqF/SrfeOMNvOc978HixYtxyy23wDCSp66trQ0PPfQQXNeNytasWYPjjz8eU6ZMieqsXbs2sd2aNWvQ1tY2wl/pxOI4DhYvXpw4V1JKrF27ludqP5RSuPzyy/Gb3/wGf/jDHzB//vzE+sWLF8O27cS5ff7557F9+/bo3La1tWHTpk2JP4DhP6D0Rexk8973vhebNm3Chg0boun000/HxRdfHM3z/B68d77znf2Gs3/hhRdw1FFHAQDmz5+P1tbWxPktlUp4/PHHE+d33759WL9+fVTnD3/4A6SUOPPMM0fhqxi/ent7+/3vMk0TUkoAPL/DabjO5VCuLSarMCS9+OKL+K//+i9MmzYtsZ7n9+Bdcskl2LhxY+J/3axZs/CFL3wB9913H4BJdH7HejSJieD1119XxxxzjHrve9+rXn/9dbVz585oCu3bt0+1tLSoSy65RG3evFndfvvtKp/P9xse3LIs9d3vflc999xz6mtf+xqHBx/A7bffrjKZjLr11lvVs88+qz7zmc+o5ubmxEhh1N+KFStUU1OTeuCBBxI/p729vVGdz33uc2ru3LnqD3/4g3rqqadUW1ubamtri9aHw1efd955asOGDeree+9VM2bM4PDVA4iPeqcUz++heOKJJ5RlWepb3/qWevHFF9Uvf/lLlc/n1S9+8YuozvXXX6+am5vV7373O7Vx40b14Q9/uO6Qy6eddpp6/PHH1cMPP6yOPfbYSTl8ddry5cvVkUceGQ0P/utf/1pNnz5dffGLX4zq8PwOXVdXl3r66afV008/rQCoG2+8UT399NPRqGvDcS6Hcm1xuBrs/FarVfWhD31IzZ49W23YsCHx/y4+whrP78D29/Oblh71TqnJcX4ZlIbglltuUQDqTnHPPPOMOuecc1Qmk1FHHnmkuv766/vt64477lDHHXecchxHnXjiieruu+8erS9jwvnxj3+s5s6dqxzHUWeccYZ67LHHxvqQxr2Bfk5vueWWqE5fX5/6u7/7OzVlyhSVz+fVX//1XydCv1JKvfLKK+r8889XuVxOTZ8+XV199dXKdd1R/momhnRQ4vk9NP/xH/+hTjrpJJXJZNTChQvVz372s8R6KaX6yle+olpaWlQmk1Hvfe971fPPP5+o89Zbb6mLLrpINTQ0qGKxqP7mb/5GdXV1jeaXMS6VSiX1+c9/Xs2dO1dls1m1YMEC9eUvfzlxYcnzO3T3339/3b+3y5cvV0oN37kcyrXF4Wiw87tt27YB/9/df//90T54fge2v5/ftHpBaTKcX6FU7JHcRERERERENLnvUSIiIiIiIqqHQYmIiIiIiCiFQYmIiIiIiCiFQYmIiIiIiCiFQYmIiIiIiCiFQYmIiIiIiCiFQYmIiIiIiCiFQYmIiIiIiCiFQYmIiIiIiCiFQYmIiIiIiCiFQYmIiIiIiCjl/w/wXy2oaDDpzQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -209,14 +205,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAERCAYAAACqx6miAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABh7UlEQVR4nO29ebwk2VXf+T2x5Pbeq7Wrl1p6k0ot9aqWhBYQMkiy1BIaiTEgZPszCEbzkbHx2B7jsQWSmBnADB77w2KjAdrAjOTBCIwNkjFIai0gBOqlWuquai3dXb0v1V171VtyiYh75497Y8l8+bZ6+fJt5/v5xIuIe29E3ojMl/HLc849V6y1KIqiKIqiKGtPsN4dUBRFURRF2S6o8FIURVEURRkTKrwURVEURVHGhAovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkTIxFeIvKkiBwTkQdE5Igv2yMid4nIo36925eLiPxbETkuIkdF5FWj6IOiKIqiKMpGZ5QWr++11r7SWvsav/8h4AvW2sPAF/w+wDuAw375IPDrI+yDoiiKoijKhmUtXY3vAT7utz8OfH+l/BPWcTewS0SuWsN+KIqiKIqibAiiEZ3HAp8TEQv8prX2TuAKa+0JX/8CcIXfPgA8Uzn2WV92ggXYKaG9nHhEXVUURVEURVk7jtM9ba3dN6xuVMLrjdba50TkcuAuEfl2tdJaa70oWzYi8kGcK5J9RPxKdM2IuqooiqIoirJ2vCt95KmF6kbiarTWPufXJ4E/Al4LvJi7EP36pG/+HHCocvhBXzZ4zjutta+x1r5mJ+EouqkoiqIoirKurFp4iciEiEzl28DbgIeATwPv983eD3zKb38a+BE/uvH1wIWKS1JRFEVRFGXLMgpX4xXAH4lIfr7/aK39jIjcB/yBiHwAeAp4r2//p8A7gePAHPBjI+iDoiiKoijKhmfVwsta+zhw25DyM8BbhpRb4CdW+7qKoiiKoiibDc1cryiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjYmTCS0RCEfm6iPyJ379ORO4RkeMi8vsiUvPldb9/3NdfO6o+KIqiKIqibGRGafH6x8C3Kvv/Cvhla+1LgXPAB3z5B4BzvvyXfTtFURRFUZQtz0iEl4gcBL4P+C2/L8CbgT/0TT4OfL/ffo/fx9e/xbdXFEVRFEXZ0ozK4vUrwD8HjN/fC5y31qZ+/1nggN8+ADwD4Osv+PaKoiiKoihbmlULLxF5F3DSWnv/CPpTPe8HReSIiBy5QDbKUyuKoiiKoqwL0QjO8V3Au0XknUAD2AH8KrBLRCJv1ToIPOfbPwccAp4VkQjYCZwZPKm19k7gToDD0rAj6KeiKIqiKMq6smqLl7X2p6y1B6211wLvA75orf27wJeAH/TN3g98ym9/2u/j679orVVhpSiKoijKlmct83j9C+CfishxXAzXb/vy3wb2+vJ/CnxoDfugKIqiKIqyYRiFq7HAWvvnwJ/77ceB1w5p0wF+aJSvqyiKoiiKshnQzPWKoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiiKoijKmFDhpSiKoiiKMiZUeCmKoiiKoowJFV6KoiiKoihjQoWXoiyBtevdA0VRFGWrEK13BxRlI3PR7uK4vYka3YEaS4AlICPA+LXbDsmQeXVmoMwgfl3dFmy5LetyyYqiKMoaosJLURbhWa7n7/3y1UzUk75yayEzAcYKmREyE5BZvzaCMUFR/9cf/TNSYi+nQixCRuilm2AIMcW2k3OGAJZhaXNCrRRrYBGobLslLy+3q3X0bTOkbvD18nbV+vnlLFFv+849/DWWd9xCrzHYfqHjyu3h1wyoEFYUZSSo8FKUBZi2O6nTnie6wD2Eo9As6zzv/dh3jrprgBN/1grGOmlgjJcYFlfmy/vWlqJNsfb1WKcsquVuP3896dv+6s/8GQCGfkVikaFrFiyff1x/Xf9+VdYNP5cM6UNZt5Lj+l5vy7qch1/YYjpzmGBeDaM+31pT/XzkfR/8PFdZ7PoGj1vofGtzjy7tnCvty/D2K//cLXS++edf6NzDf4ANO2awH/3HLP5Dzq0fGdoHUOGlKAtykV3ssGc5O9sEIAwMoViCwBKK8Wu3vx6IgIizm7kOjvf1r/7YG8b7gsrIWSh+MRfdyzrHil9TELF9+5sRETuv79XrGqR63QttV9tWz1d9nWFll4KlFBer+QZbqh/DPmOLidTFjht27HI/w/Ok2SL18+pstd3wur4faxb4Xz8zvGOo8FKUBcmIuO1nvp9vPDfFnok5jA363IvGuxbNEl88uUgLpFxEnJATcfadwAu4wTZu3V8m4mxMQVAeW21brRNxv77cPkW9+GOU7c1Cn4HFBMTqWZ51YnOwkr7Pt5gsfI7l3KPNfN+2Nyq8FGUBOrToJBHXv/0Grrisd0nncC47yDLBWOcOLNbGuworZc5NWG6nVggf+CqpDQr34aBr0VjnBjM2KFyIxpbuQjPE1biUWFyKqqjLLW/DhF1eX4pCC0PLmScaS6Hpy8UWdQyK04q4HC5W+/cVRVHWCxVeirIAPWr8m8/8MXsf/Qv+9b/4+5d0DvfQp+KOvIRfqVfdfkmvvZbkgrKIEbN4cVfZL8pykenN8ZXjzMA5THXbuPbhA1/14lG82KzEsPXFs1WEqS+vxroZI8V5lsMwa+JwsTe/blj7QUG4kHgMKkK0sIAOiEoVj4qyeVHhpSgLIjz64nO8yJn17siGIxeUjjV2Ha2T8CzEn51vkewTk4VQrFgih1gugwfu7hOKZlAQ9onL+QLSGHfDVyIeh1kDqxbFqnCcJzBhSFuGHNcvLgdd3vPKVDwq25xVCy8RaQBfBur+fH9orf3fROQ64JPAXuB+4H+w1vZEpA58Ang1cAb4YWvtk6vth6KMmjxo0hjh3IWIXhKQpEKaunVmhDQT50Y0uTvRb5ut/1TpdzWWwf7ugeva5Ja+3OpXPtwpH+RBbt0BCSxBkD/cy3L3APfHVOqLdaU+GFFaaBEIQ6iM61zdCa965eqOvwRycVgVhc6SWN0WrOm3QObu71xgGgs8cHchCActj/2u7X6Xd2lpLF3fK3F1Dwq6YVZEGdJmMWtj1eK4VLtBwakoq2UUFq8u8GZr7YyIxMBXROTPgH8K/LK19pMi8hvAB4Bf9+tz1tqXisj7gH8F/PAI+qEoI8NYl18LYHom5PmTdWqxJY4NT+24hTCEKIIgtAQhhAHEIV485GJinS9ijel3N1K6EPM6Q8WVWC7G5DFpQ9oZJxZe0j5KmvbHwxk7sDbSJxJy4bvYTAO5UAuDimALyrKwsi0D+0WbcOCY0Im+MNx4VpxchIbhCMTjOlgeq5+ZhURhIfgWabNQrGR1sQMislqeVeMpl2ChwTKlwDOluBtoEwbzhZ9U2oWBmXfOfqviGN4UZdWsWnhZay0w43djv1jgzcDf8eUfB/53nPB6j98G+EPg10RE/HkUZUPgHSxYC3FsCW67kRRIgct1NBEw6G5cCUvfvzluGf6auKwZl5o5wxgwWe4GhCyD1Lq1NUJmnPjL19fNHiVLhE7Fopll+CS5bsm8CMzMwqJvUKAFA6IuDC1h4IT8oAAs2vs2Zdkl3oRNxPwYSbhk8Tgm4Zi7qPsG0tj5FsZh9ZmB4IG7Sf0I6tyqmI+ethULYt+yjPjFQcFWiLjAEki5vVDKHPFt3OfT9InF6r6Kv6UZSYyXiIQ4d+JLgY8BjwHnrbWpb/IscMBvHwCeAbDWpiJyAeeOPD2KvijKaChT4230LxJrIUshTb2QSP0v9gzSzAuN/Iveiw6K+KVybU0ZDF/kplnEUGLtwL3x21JZ565Higeo36a0CjrXoSvPLUl527wuCPN1bqlydWG+Dpf3PuXHLnAn55UME4ABK5/kNssqgi+D1Iu+wpqXlULw+tljdCpirir0sqwsG2Z9yV1mYWiJ/L0KK2KuKvCi0D0ooygXevn29hJ3oyZ3UV+ylXGNBOKgGMx/MBTl/vOWW5WzDKiIwKxP9AWuvV8XM3jYhT8woRj3OfOiz33mTLlfKS/qC/HXX17NqbgZGYnwstZmwCtFZBfwR8DLV3tOEfkg8EGAfToGQBkzucUL1jqn0cKkCXS70J4Tej3o9YReF3pdIakk0y++6COIotL1GYROZESR5ejTU30u0MJaVRVEOBGTn3PY/lIUbkdK9yOVMmMG2lVcjeVoR7jtmmmSBIxPw5G7IMsHRSkkc+vUMGtTfm+CkEJIuIdiXm7L+sDdwyCwhJGrj8LyPq6G/PWG3LF5JW1u7ttfidDLhXQu9BID3czdx6wQ4M6S1+0GGEsRp5jlwm4Jcdcn4IJS5EWhLw9LkRflVrrQ+PtZttvoP2i2Grlr3bHM77QRicDic1mxErvYWClS7eSfO75+N7007JuGzVn1gnnTsw398UFphYsKoZb1CTdX7uqDvnZuOwrNmlrvRqporLXnReRLwBuAXSISeavXQeA53+w54BDwrIhEwE6YP2zMWnsncCfAYWlsTlmrbFpKk73QCSbX/PU6bbh4Qbh4UZidEbIUohgaDUujAbW65fiZSeIaRDUIW0uIIYvziwL0YPe+Nb+EkfL03NTwihWam4ypijYwSVnm3Itw69XT9LpSiJXMi5Qsc+9Dls0XdYWAi7xFqRC+fj9yoi0Xw2VM4OpF3GKU1pbBmv4LmB2w5AnuYbCcB4IxzsKaGWdR7VWEXebrrps9Si8JSAcGoWSZ3x7ilnWWOrylzlnfoj5RZ/rKCsEXldY9ZWPSbwVc4nF+x+rEXv6jzH3OGPgx4cXd1+6mm0bMeSGXmgDj1+7zGgy13uWWtyjMxVpGFDrrWxQa4jBz5UtMJzeKUY37gMSLribwN3EB818CfhA3svH9wKf8IZ/2+1/19V/U+C5lo9EXK7FGv3rOnxNOvShMXxTqDdix0/L0zCSNlvuSSoA2kAeXTe1am35sZQIv1BaLCZsn8nJxFy98TNU9aHpURBvcesgJuXbmrJaF4Ejmi7iqgKsKtDCyRF7IRbGvy/fX2QEQBBDUBm9P/1d4e0DYLUfU5fc09Us39VYRf1+vnTlKu+PEXJqVYi7NxA/E6P9HdQ9I7z4NLXFVyEWGyJeFkSWOTFGvAm5zk1v2omgRWXGJ4i53++efweLz5z+Dva/fw5yJSbPFP0Sj+Be+Cvi4j/MKgD+w1v6JiHwT+KSI/DzwdeC3ffvfBv6DiBwHzgLvG0EfFGVNsIxed50+KTz7dEBrwvJse5LWLkgEZnowsYChZ5wY4wRD0vPCIaWw/Ji0tB7lFiO7vLnCL43cLRqU8VlF/FdYlgUV12q+HUa5i9GtR+k2WCxWrE/IVU1J9fltc7GRZWA65XaWwi2Hpul0nGBLU/fFntdV+xHloi0uhVkUWeJ8v1Zub2RRkd/TqE/RlQ/ParydUI7kWojM38s0cVa52UyKOMhrpo/S7QUkaVA8NJN0voDLY+DiKF+bYjsKLbXY9JXHkbpQtzK51a4WLyDqqiljfnbh84xiVONRYJ58tNY+Drx2SHkH+KHVvq6irDWF1WtEX6RZBse/HSABzLYm6EbrK7R6XejOQbcDvY5bZ5kTKHHNLVHsRMtDDz7vc2y5PFrFSDNZ24f5vFQVPn9UnneqyD9l4JWv3k+aVIRhWhE1GX1GGQko4rgKgVa4CiHIt/2yVg/T4WLD8WzHfzgWURmFcEsh65UC+ZaD08zOOKGRJEKauLhAY8r4vjiGKHaibN52rdzerEIid7nWanlJ+QFoX1mKuHyU7BBdXHyO0hTm0lwAw7XTR+l0A6ZnQyfeUnGu1ax0oQZSCrZa7IVZbKjFpWCrRW5/UeuMsuXQqHVFWQBb/BnBuSx8+xshey8zPDU7tS7/eFkG0+dh5ryLKYtr0GjBN44+TxQbotgF5g+jufZhbkOZn7Ji4bQCjz76zLLPW8Z+CSYrh/ff+qr9dL3lKU0h8+7B/KXEi6Qo9kItzl2B/eXjYiHh9ky7ouiHiDZjYDZ3hbbdtd5ycJr2nHAxcWIt6TmRkQuJKIJazRaiPN8u15tXpC1E4VYdEG+zly8t3Ixx9zVN4GLiLJdJAtdOH2N6Nixi4HLBBl4QezFWrxnqsaFWM9Rit9RrTrRtZMulsjQqvBRlMUb0IDn1otBsWp6aHb+Jq9uBU89Dtw2TO+Hxx58lrpcukdYGcG+OmzL2qz/Y9/gS4s1ZmHzcUSq88jUH6HVgLsG7BJ07FkqRllsO47qzIMV1b0lcx4fnMMHW5yIdItbaXkQkF9365gPTtNtOoOUjbXORVqu5ASH1ul/7ASL12nDr3lYkCPx9qEH1M9bxo1ZzD3Sjcoy1TpwlPZjtuXt6zYVjzM6FdJOAXi+gmwTFfY4jJ9Aa9cyta4ZG3S31mtlyQniroMJLURZglN9ZJ54PmK5PVH45rz3GwIvPQnsGLj8ADx19hlNnodZY+lhlOMWQ/BjA8vC3FxZqLr+aFMutt++nPVPGzuVuv8KCVPdLw4mzjWbVyN2u9abbL1yhIdAq21kLswkkbUgvOoF24ZzQ7QjdnhQxanEMdT9qt960NBqWZpOx/o9sNERKsTbhxVr7in6hVrnVLuVMD2a7LtXMoQvHOH2+RrdbCjQRaNQMzUZGs+7XjYxWw6iLc51Q4aUoa0zqc26N84FiLTz7GDQn4OSZZzip83yPHREXNxX5QNzjx+eLtKo4u/X2A8zNwvkzLv7OWid0ckHWaEK95bY3MlUxCRVLWs0vnrkEkg70zsMrrprh4nmh03Y564IA6g2XTqXZsjRbMDFht421bLnk7u2JCfcZ6111c6GDc4FmjPs8XegIJ7uw/+xDvHC67kaIZkIQQKsQYxmTLbfECwWQK6tGhZeirDHtNrRals4YX/PMi84y8dhjy497UsZPVZwNs56ZDNJESJOAm27dz7nT7iEaBKUQa7ScwN5oFrKlyEVDcwKe7026MfETbjEGphMnym5sTnPqpPDUbECaOGtQa8LSmrBMTFomJjfftY+T/LPSaDohlV55U58GNsaFI5zpCPUzR3n+ZJ3ZdkQvEeLIMtlKmWhlTLUydkymKshGgAovRVljkp64X//Z+F7z/Gln6doMDyRjIPMj71zeJukftejbCfgRldanl7B+uiBL4HM1jTptxHoThFALLbVGxhNPlMLMGEh7ws23HeTCaXjhaXfdrSmYmHTrcQb5j5ogKC19T89NuTffD/BoJ/DiRXhFc5oXng+YmRaCEKamLFM7LTt2utgyZXkEATRb0GxZ2ntuIQDyaL80gelZYceZBzl5tsajT7VIM2FqImPnVMKuqZQdk+mm+J7ZSGzif01F2RxkxmcSH5Pw6rbdA2sjfxkaA3PTIZ2ZEGOFODaEsRNPp556EgnyOR5tMWWTtQJWyvkkjXDl9VfTS4JCsGWpeCuSIa4bag3TN5BgqxAEUGtYHnm4IsYy6D0d8PKbDnDqhGuzYw/s2L21AtqjGCZjP3IzBHa5lA+nL8DhaIYXnw9IEti9x7LnMsPUjq0lxsdJFMPOXZaZXbcCbpoZa2FuFsIXj/LMCw0uzkTUY8Nle3rs29NjormWif22Biq8FGWNmTeZ9BrT65YB0BuR9kzI9LmI5mTG7LlHCEJLt1K/kuD/cyeOzytzcVMhl19zHbMXI5JeQBBYJnakNCa27kivIITGhOHJJ50YSxPh5TsP8vSjLt7q8oMubmorEkZuxO6JdNK5KjN49Axcm8xw/GFh7z7LVQdMJaeXcqmIOKvqzOStRMAeXHqa4PljPPz4JO1uwP59XQ5c2Vk40eg2R4WXooyBcU60nWULTci8/nTbAbMXQjoXv013hgXzhq0GZ/HKOPt8KcqyNCCuvZTpczE79ybUW1v/V3kU2yKgv9sOSHoHaE3BlYfWuWNjIAidpe8sk5id0GhM840HQ3bttlxzvebBGjWNJsy+5BaaL4E4heDJYxx5aCc7JlNuuHZW48IG0I+fomw11mKeoxHRmQ25eOpxZMzfPGFkuHjqEdoXHubCmZikt0Fv0BpRbxpOnnkGa12Kke1EEMCTM1N0d7p0Lt88GrqkuMqaEEUw99Jb2P1dh9m7q8c9R3dy/qLaeKqo8FIUZWxkqRBE6/fUC0LLxVOP05ndoCbBNebJJ59h+ryLsdtuiMBz3Ul27ra88Pz2Et7rxflrbmPiOw7z0KOTpKne8xwVXoqijBE7smmYLplt/P0v4gZe5LnltiNPzUxy/qw++sZFowGX7+lx+twWGuGxSvTTpyhbDWH9xc0CRLHl8muvX7fXN0bYue866s3t6Wuy1g2+iLax5ydN0IztYyaKLMZu4188A6jwUpQxYMf4pRMEG9eVNLEzZfpcRNob75PfZMLuq15Kc8cNTO5KqTW234PXGDh04BC79q7NoIbNQJbBXjvLlfu33/u/XqQpnDhVZ8/ObWxmHWAb/+5RlPEgUk4ePA6i2M0HuBEJI9h7ZY8weglhaDn7/BNEtdTNfzgirAWTBWRpxL5rriHpBF6IZuy9qrupE4teCtbCK246xJkTMLEDdu9b7x6tD4f3TPP0EwFXXm3YuVuF1zhoz0Hy4CNcd7BDo75Bfw2uA9vsK0hRxk8YMNZRVI0WtGfH93orJapZLtvfo9sOCKNr6XUCjBGi2BDFljC2nHjsaZehvpKGo+pBzROognDFdVeTJX4y6sxZFqPYEtUMcc3QmsqK+RK3C9ZCrxPwshsOMDvtkuoeOrzx53kcNWkCL9nlMtyfNcINN2Y0W0sfp6yO2VloHP8WvdmQG66bZffOdL27tKFQ4aUoa0xcsy59wZjcO0EArUl4xVWH+NY3N+5cjfWmoe6zXFvrEn5miZCmwhXXXlNOG1TRTC75qfVTB7lpg4LQUm9mhNHWmzJouRgDSTfgxpsPMHvRZXJvTsLkDrjy6u1zT4yBzhy8ZNcM584KEkCaCjfemmny1DVmdhZ2P/MQL56p06gZ9l3R4+bDG9T0vs6o8FKUNabZhLk5KSdAGwOXH4AnH4ZeV6jVN761R8QJ1Li28fu63qSJkPaEm249QGcOeh03h2Wj6TLUH7jerbc61jpL3iuumGb6ojAzLRgDl01ZmhOW/QfNlpoqaSNhLczOwL4TD3H2QsxcJ2CyldHYY/iOmy9owtQlUOGlKGtM/uWf9Mb3QIxiuPowCAfZuRceffSZbWP12OxYW04afsvtB+h1IfGLxX2GGi3nNtyx202xtJXfW5O5kZjdNtxwxQztOei0nSV0V8vS6wmX7XMZ6bfzaM21IunB7Kxw1aljXJwNmZmLsBamJlLCHYYbrp/R+RlXiH5MFWUM7D9ouHB+hjNMju01a3W47kY48wLs23OIHbvhkW8/S6RWpXXDGDA+Fi1LhVtv30+SQNpzDzhjylxbsZ/ofGqX369tTYFlMnftSQ9u2j9Ntyt02tDtCmnipr/a27I0d0JrwrLvckujubEngd9spAl0Ok7QHjh3jNl2yFw7JEmFWmzZNZEStgzX7O8x2co27JRkmwUVXooyBvZdbjl9MuDQrmmeaY/P5xgEsG8/7L0CLp6DgwcPkqUwMQXf+sbzxHWz7QLPR4kbQenyg5lMMBnc9uoDpImLs0pTJ6pM5qxVQeAEVFRzubSiGBoTriyOt1aaBzdZuXuoJz23vmn/DL2eE1W9rhOaYQj1hqW+y+1PTlou22ep11FX4QiwFno9bzXsCIcuHKXTDel0A9qdgMwIcWRpNjL2NDOazYw9uxImGpm6DNcIFV6KshQj+u552SsyHn80YFc2w2mZHOtDJQhh12VuyTKYm4abb9tPe9Z9IbuHH9SacOzrzxFGdtsEqxuDC+Q34rfd2hjhtlfvJ0udgMgyyBI/QjX/TIhLkRFFEMZlYtJGqyyPYrZECotcZKb5/Ujc9s0HZ0h67uGe9ISkkq6pVnOxe7UpqNUstRrs2AX1uqFWV6vVajAGEi9qez0h6cHVF4/R6QZ0ewGdrhNVQQD12NCqG/bWMzeqeHePRt3QamT6HqwDW+DrQFHWBhlx+vcwhMMvN5w+KbSfnmVi0vJse5LmxHjFTRg699XUrrIsS6HbcXE0N916oLBQpAmFyAhygRG67TB0gu7B+593qR/8SEMJrFsDCC4lhFRm6lnqWvNZhfzrWit9ZdZWyir71sBtr9mPNd6lZ3JrlBNWWeb2B99WCdx1hJETAmF1O4J6vXLtftnMYjS/L1nm3nfj17ccmiZNnHBKEjcaMPX1OVHkhFTU8pa7yBLXYHLKC6zYCc3NfH/Wiyxz9z1LIUmEXg+uuXiUJAnoJgFJInR7AWkm7v9LnKBq1Aw7Y0MtttTqht07Euo1Q71m1CW4QVm18BKRQ8AngCtwX2l3Wmt/VUT2AL8PXAs8CbzXWntORAT4VeCdwBzwo9bar622H4oySgSL9Qph1Mb2yy63XHZ5xvlzgjkxw+x5YWLCsmOX5ZHTU9Sb439whZFLQdFaIARt0NqRP6yNgVtftb8QOCbzQshURZHfL062cEJZcam5KqKtXKr7QSHy/HZQlgU1t52Xh2H/ejP/ws/vc1a5//l7cevV02ReLGX+vUoTcYKzEvssklviLGHTuThzMdlsWXbEPg9aXAptZXkYk993J57y9+Gai0dJ04AkFZJUSNOAXiJkpvxHDwNLHFlqsWEydusotrQaKbXYEMeGemx1uqMtwCgsXinwk9bar4nIFHC/iNwF/CjwBWvtL4rIh4APAf8CeAdw2C+vA37drxVlQyFeejWymTU5/67dll27LdbC3CxcvCBcGTkhFgTuIVhvQKNh+eaJKeJ1DLAWKa09ytJY229pq65zsXTr1dMuyD7rt0BlRgrX5qBADUKIQggjZ3UKw9xCZwlD585zLk7rxFVUWu+UhckFUvk+eNGUwXUzR731z4umLCDLhNQv1fcoECeeosjSiAxx5PdjS7OeEoWWOK6Uq4jalqz6a9RaewI44benReRbwAHgPcD3+GYfB/4cJ7zeA3zCWmuBu0Vkl4hc5c+jKBsC52Z0X4prPd2PCExMwsSk5aoD7sWMgXYbum2h04Frd8zQbgvJRVcXBN7tE1vv8nEP32PPTDmB5N1luYUnCEuL0HaliOXKRZEthVDVPZmX33r1tA+aL61MhYUpL7ella+KiHdf5m7Mmi1Ek3NhWj960RJ6l2YYujZhIa629/s1iLWD70EulNx7kXoBe93sUS9onUUpzbcr+4PvVxhYotAJoTj0234hgmYjK8si27et75GyUkb6+1VErgVuB+4BrqiIqRdwrkhwoqyaTvtZX6bCS9kwCLlvpnQ5jpMggIkJmJgoJsnpq3eZ3qGX+ISaPtD51qtdnE7qR9QZ43+994YLhPy1gj6Xne1351WXvIyKKPBrKdYLK9XqZOG21LZO7FTK7EKLAeOz2ReiiXJ7qXsqAQSFKLJI5EWp9K/D0N2DKLaFeHLxX7ZPyOYxYdv14VvE0dlSDDnrnlRGfJbC9frZY04wGSeCssy9n1kmvoxCIA0i4ixKUWgJQ0vs348otIVwCnxdo2YIQy9qQ+PFrG+nYklZZ0YmvERkEvjPwD+x1l4UqX7BWiuLfRsPP98HgQ8C7NMxAMo6EOQWrw2YG9Bles8Tsg7+a63MRFe4wCruMVMVNpXgdmPoE0bVV+sTdcO6IGVF9cGXi7jBOK48zisXgoMCMPAiCilF0Hagz1pXfc+KRfpcndX38rrZo27Upi3Fj/FiNj/WVMpyYbQQgTghGgZO8ESCFzxleRDk4tXNw1n3+/kxIk4MBZVjNa5MGQemIvQL0Z/vZ+WPA3ngHuditkJmgsoipCYgzYIV/UAfiaIRkRgnun7XWvtffPGLuQtRRK4CTvry54BDlcMP+rI+rLV3AncCHJaGOsKVsRLgFIYIJKlw9iuP+rgMQxRZ6n4U0ZNTtxRuvTB08TWlRaW0jGxkwpAl5pHc+v9+VfcjthQ0VMpzYZLXV8VP1YV5/VwpbqwdEDY2F0Xlelj9YuSWHyc8/TqwhF6k5qKnWhf40aZB4MRP33GB9ZbAfrGUC6GN/vlVtgb5/1duETXWu5Gtz5FnS5FkDMjX73Y/DkwpiNxxThAVdUbI7PAPcSCWMDCE+TqwBIEhFOOtqOV2PUp9G+PLfb0/PgiW/z05ilGNAvw28C1r7S9Vqj4NvB/4Rb/+VKX8H4rIJ3FB9Rc0vkvZaIhAiBtHv3NHynfefr4Irk1SoZcE9JKAa2eOloG2PvDWGBcD1DNLWwyqrxdIadmpbgPFP7X49AzVOmFgP29TOXf/uvyCKCxLA30pd1YouoZca1VI2MH93G1oq/XS716kFCO5WMm3+9pSChprl3ffi8us3PMgcPfOuVpLQdMneCptcpFCXhdaAi9uiom883MEDC0Pqq+hQkdZQ6o/IvIfB5np/5Fgc8spFbext4CGD95NZtzQI2OEzHorqRV3Dhs4sWSdSLJ+bawsahUKxBZLGBi/tgRi/P/IQHlgicQQBmnRJhdJ1Xa5oNpIjMLi9V3A/wAcE5EHfNlP4wTXH4jIB4CngPf6uj/FpZI4jksn8WMj6IOijBzBcv2+Q1z1sh3OtRfbSibnbNFjV0qfRQWKL8RccJhBkeEFiTu4IlzyNswvq75WsU1/3BV9x13SlcyLn+lzK3ohVxWFuVAs9plf5lJMVGPPbJ+LshCjqIBRVk/1/ywXIEsJfYt4y6cMrS+tna5t+MBXnXixUqkv98s6Kc5prPS3y1/Dt10OQm7xdP9DYWDKHxXihI5I+cMhDEzxfxWIRQI3AKE4hxc7VeGU11XFUn4+ZTSjGr/CwikR3zKkvQV+YrWvqyhrjUX4J2/7AV7+7hugCLZfG0Ty1ABLBUop24E+K6AtxXG/ZXD+YIX8ge/2+y2FRRtknlgv6/pfs/+4BV7PtwkfvHu+hRIpz1XtV6V/Rb68at+QBeur5xt2rr4fJZdIYUXOxb7Yitgvy6BaZys/AEphUz2uEDNewOQiKK+j0qaso69NMPAagdhCGCmbA41aV5QFiEiYqPWY/vJ9NN/26mUd0/cr2Q6xVFE+vIog6SEPwqUegjD8QThs3de/ygMpfOCrC1/HAg+u5VrBBo8fPG6elW1IuR3SvvpAn7c/r06Gtp937BBRsJzj15K8F/kDttjucyH3b+dt8uMHjy2PsXmjol31mL7zDXmd+a/hX6dw09r5x1f6QkWIVK+xbz3kOqvnGWwLFAKk2kdF2Yio8FKUBdjBeeIo5eEX9vH4f3xiWcdUHwrVX7zBwEMD+n8pM/CQHHwI9j2oKMvz9vlrF/2oPhArZX19XeQX8mLTJS01QHmhZ97gccP67QqGX+fgMf0jIxcWDYPnWvC4gQf54PGD91tRFOVSUOGlKAsQkvK1n/1v/PDH3rDeXVEURVG2CBp+qigLsJcXOcVVlxhkriiKoijzUYuXoixALAlNO8up6Ql2T7RdnpjK0Ol8iHQ50igo6owV/vpnPgOAIcASYPzvHLfvHIGmcAjmS0AZhVOWU6zpq9+YzO9d9Yr629h5begrW/ocS9cNP//gaw9zry7V78WOEyyv/9l3Lun6dOv5MVDD6gfds4vFQw2ed1i8WLVfC7ljFUUZLSq8FGURDvAk//mn6gAEZF4WGQKMl0lZsd1fXsqtfJ9iTVE+WJbLquoDvf/hXqnfoA/HwYD0/m1ZpG7h4/rbXMo5Fj5mWLD8/DqZVz5MHpZC2ZXf/TN/OvR1+s8z/zUW6+d8Ib7QsdK3P7zdQte1Vh+uitgrXm3wcz7/Coa1qZ4nP/fg/8389fz/qcH1G372HcuK86sK5cXqlxLLLPIag8cNO09xjsq5hp57g35fbEdUeCnKIjSkzSt4YL27sakYHjSv/lplYFTpPAE5TAT2i8OlReh80brwOXL6BepiYnmYIB98zaXaDnvtwXbD78f8uuo9GF4+zP68WVi454NW5vlW5+HfN4sOGlr0O2r531/LudMqvBRFUZSx0GcpUjGuLEB/kueFLdIly2lzaalgLuWYpVDhpSiKoijKhmEw5ct8Nrdo11GNiqIoiqIoY0KFl6IoiqIoyphQ4aUoiqIoijImVHgpiqIoiqKMCRVeiqIoiqIoY0KFl6IoiqIoyphQ4aUoiqIoijImVHgpiqIoiqKMCRVeiqIoiqIoY0KFl6IoiqIoyphQ4aUoiqIoijImVHgpiqIoiqKMCRVeiqIoiqIoY0KFl6IoiqIoypgYifASkd8RkZMi8lClbI+I3CUij/r1bl8uIvJvReS4iBwVkVeNog+KoiiKoigbnVFZvP5f4I6Bsg8BX7DWHga+4PcB3gEc9ssHgV8fUR8URVEURVE2NCMRXtbaLwNnB4rfA3zcb38c+P5K+Ses425gl4hcNYp+KIqiKIqibGTWMsbrCmvtCb/9AnCF3z4APFNp96wv60NEPigiR0TkyAWyNeymoiiKoijKeBhLcL211gJ2hcfcaa19jbX2NTsJ16hniqIoiqIo42MthdeLuQvRr0/68ueAQ5V2B32ZoiiKoijKlmYthdengff77fcDn6qU/4gf3fh64ELFJakoiqIoirJliUZxEhH5PeB7gMtE5FngfwN+EfgDEfkA8BTwXt/8T4F3AseBOeDHRtEHRVEURVGUjc5IhJe19m8vUPWWIW0t8BOjeF1FURRFUZTNhGauVwqMlfXugqIoiqJsaUZi8VI2Py/Yg7xgDxKRApYaPWp0qNOhRtevO8T0ENVniqIoinJJqPBSADhp9/OPfu0QQWCxFjpJRDuJ6fRivvSRL3CR3fSok1DDWiEipeZFWUyvEGY1usSSrPflKIqiKMqGRIWXwoydoilzBIFLtSYCzVpKs5bCRJu/+7HvmHdMkgV0kohOEvGlD93FHJOcYy89GqQ2xiJEJNToFuKs3Hb7gawotZuiKIqibHpUeCmcYx/v/oXXADPLPiYODXHYY6rR470f+66hbarirJvE/MVHP88F9pB4RyZWqLo1+8VZzy1qPVMURVG2ECq8tjnGCjPsYK4X8+WHryMOMxpxSj1OacQpjSilHic04pRmnBZWseVQFWfAUMuZMUInzcVZxF98+C4u0vLirF5YzwKMF2WlQCvEGT0iEo09UxRFUTY8Kry2AC/ahHvsDP+d7EKWqT4SG/O8vZonuYGMiLOzLW77geupx5ZuInS7IZ1eQOfIvZxvN+gkMZ0kIjNCIJZ6lNGIk0Kg1SMv1OKUWrT8uTWDwNKqJbRqzrL1vo+9fmi7zEi/9ewjzr2ZUCOhRkrsJ6WyhRirFevSvakuTkVRFGU9UeG1BfianeVOc4obwyYvpbGsYx7n5cwxyXs/cjXXvPNWarEFDABRZJloum3eedu8Y42BXhLQ6QZ0ewHJffdydrZFN4nopBFJ5ubWjALjRVlSiLKqJW0l1rMwsEzUEybqCdDmb3/sdUPbWQvdqgXtpz/HHJP02EuPGqkfHAAQYLwY67ee5WItIlGRpiiKoowUFV5bgO+WKX6TU3zRXOSl4fKElyHiO//Z6zjwthuoxWZFrxcE0KgbGnV/3DteObRdmgptL8463YDZI/dxxgu0bhoVecNya1mx9q7NepRRj9IVuRBFKEQewHs/9p0Ltk2zgG4a0k1LN+csO+h5K1pSxKFBSFq4NGOSeYItIiGUld1HRVEUZfuhwmsLMCkhr5UJvmyn+YDdR7gMpZIRkGRhKZ7WgCiyTEUZUxPe9fiuW+e1sRa6vYBuT+h0Q7Ij93BhrsnJ3GqVuo+oc296i5lfX6p7s+hfaIhC461oC7s5wQ0U6CYRvSwkSUP+/KdLkZZ6kWYLkZZVRFpv6HYk6Yr7qyiKomx+VHhtEd4sO/hrO8PX7CzfIZPLOEIAIVjnuQtEcusZ7JzK4I7bh7YzJhdoznqWHrmXc3NNOr2YbuoEkbXOJZm7N10cWmlBa8QpcXhpQjMfKJDzwx97w4Jtkyyg5y1pSRryFz/9OdpMcJHdpMQk1Mhs6Ftbb0HrFpa0iB4xSSHW1OWpKIqydVDhtUV4tUywg4Av2Wm+g+UIL4cxMNcJmZ1zwfRJEtBLBGtdQLsxzopjLVgrfXFZQWARgSi0hIElDP0SWKLIEkf52hD7/UsdeRgE0GwYmo3F3ZtZVhFoPv5spjsxL/4sFEM9zvriz2oVC9qlCjTIRVppSVvM3ZnHpHXTkG7i+vflj9xFuxg4EBdxaRYprGmDS+SFWr7oCE9FUZSNiQqvLUIswnfLFHfZi8zZjJaESx5jjfCXR3azcyplopnRqGe8cNnNRDGIWMKQwiIm4hbj9Yi1kFq3bzIhM2AyJ3yumz1KuxNwMRWSNCBNhcRvW1ueLwqdKIsiSz324iw21GJLLTbEsaEeO/G2XMIQWk1Dqxgc8Mqh7bIMOr2Abjekmwi9++7lYrtON43ppmGfQBsUZVV352oEWn4fipi0ZhdgwYEDUI7u7KUhvbQcPOAEWrngb1kem9bv7uy3rIWycjetoiiKcmmo8NpCfG+wg/+WXeArdoa3yc559dbCWbuPJ3kZ0+wis0KrmVF/9ctJcelT93IpLq3+Y+a4pdgO/VIf0pcshTSFdgIXEyFN4ZoLx5hrO6HWSwJ6SUCa+VGIYqnXLFFkqNecKKvVDLXYLfWaE23LsfaEIUw0TWX05iuHtssFWs9b0KoCrZNEpMaJyTg0ZQyaF2Y1v27EKdEqBVrR777RnUtb05Is9G5PJ9S+/OHPMctUkYIjJe5ze0akfS7OeDA2TePTFEVRVoVYu/FjRw5Lw/5KdM16d2PDY63l72VPslci/s/w0Lz64/ZGnrHXc+h9b2Sy0aVVS3nJW6/H3HTTOvR25RgDvR6kCSSJkPTg6gvH6KUuML+XOLEGzpJUjw21minWjZobiZmLtHBpo+CySVPpy3+WHrnXW6aieQKtz4IWpTRqSTFQIFxBio1RYy3OkubFWi7UqiItoUZGeeMCjBdk3npGSkTq16WAC0l11KeiKNuGd6WP3G+tfc2wOrV4bSFEhO8NdvC75gwnbcLlEvfVp8R8zz+6keCmQ+x542Egz9y1OQgCaDTApSpzAqVz5c0A1PySY60TaZ0eXOwJ11x4kNl2yJnzMb3ExYBlPn4tCi11L8oaNUO9nrm1L1vOAITIx7Mtlv8MnGDsJgHdrrOgtY/cy7m5Rp9AE4FamBUWtHrk5s2sRSnN2A0aWEkOtOXixGpGPS5dj4sNIgDn+qyKtTQL+csPf5YOTVJ2kHn5lRFjbHkjQ7JCnFXF2qBwK/bVHaooyhZBhdcW43tlit/lDH9up3mv7Fnv7qwbIlCvuwUs03tdKosAp9uq2c7SxIm0s11nRTt04RjnLsTFCMo831huKXPiLLegZd6KtjwXZxxb4jhjsuWFxPcNF2i9ROh0gyJR7cyR++ikZQ60zIi7xhHmQLsUwsC6CdUp3Y+LuT9z0iwgyVxKkyQLSDMXV/eVj36WLk0yQjKiwtJWFW1gvXDLiOgVLcNiyYZvq8VNUZQNgAqvLcaVUuNGmnzJXOSHZPeypxDazkSxW1oTzorUvfJmhH6BZm0p0Ka7wtXnH+TiTMTJszW63YBu4lyJUWhp1EuB1mhkhYuzUTfLFkJugEEGLJ4DLRdo3V5Iel9/DrReGmIRhHKKp3KAwOpTbKyGPIdaVbDB4rnUcqyF1DjRlmYBvSwkywJSE/CXH/kcPepkRH4Ji+1+8ebcpLk4C/w6F3CBP7Iq3vKygExFnKIol4wKry3Im4Mpfs2c5DG6y55CSFkcEYhrbpmYtMx4C1rklwnfLsug14ULXeFk11nPzp6P6fZc7Je1bpBALsRWI85EoF6z1GteoC2SAy23nOU50GZm+lNsWFuZ4mnIBOn1KBvZAIHVIlKm7BhkOcItJzNC6gVbagK3nYWkJuArH/ksXeJCvJlCwLntQRFXtcIFuTgbEG99wq1YpwQYFXOKso1Q4bUFeaNM8Ruc4gsrmEJoI2ItdLvQaQtJ4kZBJomQJk7gWJ/OAguIiwGTwKWGzVNhiLiyMLSEEUShq4tiv++XURGG0GxBs1VazwKg6RfwyWA7C4szY0rLmVsymvm6Yfy8mstnJVM85QME2l0Xf3a+3XACLYnIvNjIBVotci7OepT1CbQ4zDZFHrEwsIRBRp358WNLxbYNklvh0iwg80IuM+LWWchXPvIZUuLCjWoqzlLjbW/zxRwItk+claLNLFKezSsL2BzviaJsB1R4bUEGpxCKKt+4cknpIsZHew7OnA44f1bo9aDRhEbDEtdcAPu3TkwSxhVR5ReX4LWSZ8y47bz81kPT9LpCOysFXJa5FBZZxdsVRhDHENcscQy1mqVWc67IWs1Sq7Pq0ZBBsLQ4yzInzs52hUPnnFvzxTM1ur2gGLlZi52YatYNzUYpzpY7IGCQeQMEFog/qwq0biJ9SWrzWQTAfdZqfvaAWpT6AQMZtbgUbJcy1dNGZDErHCwv7m0YJhdvRshMQGalEHf58lcf/QwJEV0v5kxl7SRXhEGKeUerlMKtFHCleBusMwP1Q+p0hgVFWRIVXluUfAqhr/sphC6YXZy0V7J3epJ9G/C7cXYGnjgeIgJ79xnOx5PEE5AA0wA9t+zce2nnf3puqr8g9ssAWeZiudIZJ8huPjDN7IzQSyDpBfS6pbgLI+fqq9Wh3rDU61CrW+oNJ95WY2EIQ2hNuLizmT23Du1y0oN2B853hEPnj3FxJqLd6Xdpumz/Toy1KuvViMf5IzhfObRddR7OPCdbbkXrpVExGhJKkeYsZin1OHNCzY/irEVufy1Gc25kgsBSCxYXpyu1zlUpBF1F2OX7Jhd3Vvirj36WnhdzFilEnanY2QxhMV9pP5YAO0TgDZZV195K51241Xrxx6lrVtmsrFseLxG5A/hVXH7N37LW/uJCbTWP18pJrOX92WPcJDt5q/wQz9truPG9N3L7912F3PxyGs2lzzEuzp4Wnn4y4EI8QaO13r1ZPlkGac8JoJsPTNPtOCtd7hq11gmoWh3qdUujaWk0vEhrjNbFuVD/uh3odoWD547S6QTMdUIX55W5eTobtdJa1mxkNBsZrYZZ0WwBoyAfKJBb9HpJQHbkHmdB8yKt6wcLgJtRoOZHbtYqwqwWp0Uqjlqk7rWNgLVg7HCBZ6yQZUFR/1cf/QwW6bPYVcVeLtfyugVesbD1BRhkwFInQwVf3q605vW38/Vq0VOWyWJ5vNZFeIlICDwC/E3gWeA+4G9ba785rL0Kr0vj17MX+Zyd5hM//is0b/1OJr/jpUwsfxrHsZD04NgDIZ2pCcItaH81GSSJF2f7p+l0hE4bOh3BZM4qVqs7d2q94YRZo2lpNFfv0lyyb8YNBOh2hIPnHqTdCQthlqTzhZmLMbu0OLNRk8/JmYu0XiJk999LLw1Jsshn6p8v1NzixFmxnYu2KFvXBLbKaDBGvJATMhtgjMyz5C0k9PqteaXAyyUYDFfygyLNCTezpNirWvWkUtZXrz8eNiUbMYHqa4Hj1trHAUTkk8B7gKHCS7k03uynELrn8SO85fY3XFLcz1rzwomA/QcNT82ud0/WhiCEegj1Bjw5492dFZ+hMTCdQHIRktPwiitnOH1K6HSELHXuzEbd0mhBs+ksZY2m9fnJVtm3wMfQNS3Tu507s5qINhdmFzpuEMCBcw9x6lyNdsfNEpDPDtBolG7Mpo8xW8nozEth3pycsGBMGlSEWhqQ+BkOuvffy3SnXkyr1EvDYgCBYIlDM0SoOVdoVazpg3FjEQTOtRmFUKRjWYDVuGmrzBN3VYveELGXVuLwSrGXr/stfMNi8yAXe4tb9sqz9Ltpg3kiTy1742S9hNcB4JnK/rPAwjMDK5fEy2hwOS2+8M27ecsP/M/r3Z2hTF8UzsgktREIic1IEDiLV379J9LJPmHWzeB8F3qn4Marppm+KHTaAb2es5Y1m5ZmCxotS6NhabXcQIBR9S0XZgDJlTcRAXm0XD47wGwxCOAY5y5EdLplnFkc2QGLmY85G/GUTUtRCLXqXA0LzC4ApeuzlwQk3qJm7r+H6U6NXtokySJvXQuGWtWiIOtzgcYVt2gUrK0oVcZPLvaWkxNvLcSesTJU/OWC76/8qNqMsJBr/Va9fmvf8Fi9+Za9QbFXddkuJfCqgnG7xettWOeOiHwQ+CDAvo3bzQ2NiPA62c9/ffYRTp45wXUcXu8uzaPXhXjHevdi4xKE0Gi55dnOlPN0tNxiDFzsQveUs5RdPC+051x8WRhBq+VEWWvC0mo5a9koH/iDswN0LnejM333ADdQoduFi23h4PmjnD5Xo9MNaHfcAyHPadZslGkzcqEWr6M7c16ONFgwT1pOllG4PZPUx6ndfw8XejFJFtDzOdN6Pm+aSL9Yi8OqUOu3sqlYUwZZidi71FG1gwyKvap1rzogw1gpRttWXbaDrluTC8EhqVRgvlVvKQEXeDviwu1923X+X1ovRfMcUJ3F+aAvK7DW3gncCS7Ga3xd21q8VvbzX+1x/vyez3Dd29+03t2ZR/4AUlZOEEC96ZbnupNuPiQfw9fJ4FwHbtw1zcXzwgvPB3Q7rq7RhIkJy8SkpTXh4snW6j3IZwWYmLS0990CQN0vUOY0O9vpT5uRT3o+zJ2Zr+u19f8CrRKG0AwNzQYUYm2BnGk5uQs0SUuxlhy5h9le002n5Ed+JllpHhyMV4tDM1SsrceMBMrWZtyWvTxeL60IvUGLXnXkbUo8IPJK921V+A3LqlRa85Yj3hZvEw7MyDHvtdYpuD7CBde/BSe47gP+jrX2G8Paa3D9pWGs8CQv4zev/DYXsoSP/8nXaU1soCcV8PX7Qnq7JpZuqIwEa52VsTMHL798htlZF+yfuy1bE04kTUyNJo5sJP3tOXHW8Wkz5johnU45TVMttjTqbjRmdYTmWseZrRfDxJq5/x66qRNquVWtKtaiwIu1MCX2VrV65MWaDi5QlHmu2mJt+615f/XRz/SJuKxP1JW58/5F9nsba1QjgIi8E/gVXDqJ37HW/suF2qrwWhmZDXnGXs/D9lbmmKL7+if5/756J7/+H77EK1+zuLtk3Kjw2hgYA70OdNvwsstnmJ0Wul1vrfLWMbew4QZpJD2KNB4Hzx1jrhP05TOrCrOqQNuqwmwYaSouZq0yuCC7/97CBbrY4IJ8MEG9MrigXnGPbpd7qCgrYfLHf2HDjWrEWvunwJ+u1+tvZS6ym1Ncxd/4By+j9cqbiKOz/MGR/5cv/NnvbTjhpWwMgqCMJXsxmywCtTopnJ6Gl7emeeH5gNkZ5/5rTVgmp0oL2VrnJFuM6hya7X03V8PggIE4s3PHePFMxFy7FGb1mosxazXKdBmtRrbuKTNGSZ70dqWDCxIv1Lo9Z1Wb6dToZc15CXCh36qWuzvrUdXCprnVFAU2cHC9sjrqtJmoJ/QO38DuKyzf9eZ38IXP/Bf+8Yf+JVE8omFvypYnjGBiBzzTnnK26Z0uN9nZNrx8appTJ4UnHw+wBiannBib2uEE2UZ5wPbHmd0M9AuzXg9m23Cm44TZmfM12p2Abi9w0zvVM1rNjJZPLttqbn1rWf/gAs8SgwsKq1olt9rc/ffSm/MzFWT9udUKoVad89MLtVykaZyashVR4bVNeMe7f5gvffZT3P2VL/DG771jvbtTkM+zuJUfYluNIITWpJ+GSYAp56o8Ows3tKZ59umAuVkhimDnLsvOXZbJHXas6SNWQq3mlh07Lb0rbibEjVGYpAz+P9122f9PnnV5zNpd55Jr1JwQm2hlTDSybSHKFqKwqi0zt1o+52evV85UcLFT925PN+9nakrXZ3Xez3ohzvJJ2lMVacqmQYXXFqbqKHn9G9/Krt17+cynf39DCa+4BtM9tm0er61CEMDElE95EQO7YC6BKyemOXVKeOKxABHYuduye49lx067KcRJdULzub1uVGY+mXke+H9+TmidcaIsd2ECNOuGyVbK5ETGRDNlsrW6OTK3GvPm/FzEomaMS9WRz/vZ7QXMHrmPc3PNYnL2qkirRxmNOKEep4VYa8SlYNsMnz1l66LCa4siA+Nl41qNt77zb/Hp//QJZqYvMDm1c5161s+OHZZ9jWmemJ5aurGyqYhiePyCt4rtdKPxDkxOc/IF4bFHAloTToTtvcyOLOnrOCnzmFnmdjtRlrswrYVOG07NCfGZY5w+12R2LiQzQr1mmGxlTLZSpiYzplqpCrIlCAL8jAhQpOp4161D2xrjJ2dPArrdgPS+e7gw1+RkGnmR5tydVStaPRdmcUKzEGuLZ71XlEtFhdcWJB/O2ktCrjj5EGbfTQQB3PHu9/GHv/vv+eJnP8W7f/BH1rubAOy70vDwN0LslLobtzphCI9d8LFiu+HFOZjoznDsgYBGE/Zdbti7b3NYwpZCpLSUdS67OTcCAs5KdmFWaJ4+yjMnGszOhaSZ0GoYpiZSJidSdk6m/S47ZdkEAX6GBOOmWXjHcEuatV6g9YRuLyS97x7OzzV5MYnpJFGR6DYOjRdnCc2aE2WNOKEZJ9RjFWfKylHhtUVIbMwx+1rO2b1cZDcBGVdc8Rp29eaY+atHmWxlHL75VVx97Uv5s099csMIr0YDdu+xTCYznGaDzeCtrCmNFjyfTMIuuDgHjYszPP1kwFUHDJdfuXFjwlaLiymztHffQgTspLSQvTgrBGeOceJkg7lOQL1m2DmZssMvKsZGh8iAFW0BV2eaCu2uc292ugEzR+7j1PQE7V5ciLN6lNGsJV6QpTRrPSfSopRAc6MpA6jw2iJkhIQkvP7Hb0FecTP7didMNGd42XVzADx/ss4LRx/h7e/+Yf79v/2XnHjuKa46sDFyo119neHxRwOmOrOcCyc2pdtJWR2NFpy0k2RTkCYzHP1awEtelrFjY3jE15yqhay37+YijqzbhVPTQnDqIZ57sUG7GzDZyti9M2H3joSpCU3PsNZEkWUqypiaWNjF2UuEts8fl9x3LxcvTtFJYtq9CGOFWpTRqiW0aj23rru1DgjYnqjw2iLkMV1TzS4XsoBabDh87VxRv//yLrNzIW+5/tX8e+Cz//U/8aM//s/Wqbfzuf6w4expofP4LHv3WZ5tT6oA24aEkbOC9ZrwxPFZrr7OsHvP9rUY5DFkyWU30QKaFuZmgReO8fgzLWbmQiaaGfv29Ni3p0e9tn3v1XpSiy21OGPnVAbvfOW8+l4izHVC5tohs/fex+mZCeZ6Mb00JAwsE7UeE/Vymaz31FK2hVHhtUUQnx1nopbwitvOs3vn/LmiDl87R7NxGTe/7HY+958/wY988CcJgo3zc3nPZZZdezJOvShMnJml2bTs3Wd55OzUlnU7KcOp1WEmmOCJ47PsfE224bLlrxciMDEJcy+9pZjzcnYWes8+xIPf3kGWwRWX9ThwRUdF2AbCCbOUXVPpPItZlsFsO3TLPUc4eXGS2V7NDcSIMqYaHaYaPaaaHaZUkG0JVHhtEZzFywUmDxNdOQev7PJjf+t7+clf/CXu/d1P8eY3vITzV99CrTa+vi5GEMAVV1muuCpj+iKcOR3QmpklimD3XsMjp6dotDbetDXK6MmnK2q3YUJnlVqQiQno3nAzU7gs/dHTx/j6N3cQhZZrDrTZtydZ7y4qixCGsGMyY8dkNk+UdXvC9GxE+6v38dTpPUx3aliEiVqPqUaXna02u1oddVluMlR4bSEEizFLW7B+4I7v5qd/6d/x0KN/zPe+7p/RPvIIHYHL9/Q4c/BmWq2NMcJwagdM7TBwPXQ6cP6scLDp5hEUociS/s0Xpqg3XGJPZWthgQ1klN3wRDHMvuQWdr4E2nNw4uFv8fgzLW64bpZdOxb+QaZsTNzsAUmf+9JaZyGbng05/ddf47GTl5FkAVONHjubbXZPtNnZ7GyI73BlOCq8tgjO1WiLJIKLsWtqkne86Q388V1f4hd/8u9x7cGITjfg1NmY6Nvf5uxcSC227JpKOHXFzUzusOtuEWs04Mr9liv3OzN7msLstDA9Leyvz9CeFbLMjRhrTViaLcs3T0xRa7gkrfoltPloz0I9FRrN9e7J5qTZAm5/BcksfPvBRzhwRYdDV3XXu1vKKhHB54HL4D1uCixrYXo2ZPav7uPpM7u50K7TqiXsmZhj7+QcO5r6vm8kVHhtEQIyEJYlvAB++Pveyh9//st8/qv38Y43vYFG3XDoqm7xxdztCecvxvDiQ1x4LGK6FxCFlolWxlQr47m9t9BqWeqN9RE1UeSyoO/c3R/v0OtBe1aYm4Prd80wNyf0Lri6MPK/IBtQb1i+8dwUcb2cy0/ZGGQZHGrOcOqccMPNOmpvtbQmIHvdy3jhyMO0Goa9u9X1uNUQ8e7Kt7+Kq3zZbDvgwl/cz2Mn9zLTrXHZ5CxX7ZpmV6uzrn1VVHhtembsFHM+/1XHTmCXGXf51jd8B3t37eT3/9vneceb3jCvvl6zXHFZjysu6xVlSSLMdkJm50Iue+EhZucizvk56+qxodnIaDYMz+6+hXrdCZzamK1NeY6knbuBgez9aeqG53c7Qq8Lh/fN0O1Arysks65NEDgLWRzbYv3Qc1NEkRNuYeREmsaYjZZuBw7vmebCeWFuVggnLbe92uigihERhiA338BT33xYhdc2YaJpmLjjdvbjsvmfOlvjqb84yrFOnYO7L3BozwUijQ1bF1R4bXJOcA1t2+SUvYqGtEmzkDQVomhxBRbHEf/sA3+HVqOx7NeKY8uufGROhTwDdLsT0O6GHDx3jLlOSKcTMJsEWOtG9dRrhkY9o14zPLPzVuKaGyof1xjLAzaK3DIxkd+b+ffIGGc1SxPo9YQ0gZv2z5AmkORls2B8Sh8Rd844tk6U5eIsshx9xo3GDELmrbejFccYf1+7cNNV03Tawtyc0GnDVNPVH7rWaCD9GlGvw0xvG37wFDdo6bIeV/zAy0lT4cTnvs5XH7ua/bsucv2+s9vy+2g9EbtcE8k6clga9leijZHsc6PxmH0Fb/zI3yAKDdd8323r3Z0FSRKX/bmXuOzPeRbofN9Y958fR06g1WuGRs3w1M5biGNnxXIWqI0lWqx1gixLnUUtTYU0dftJ4uLOstS5z9JUiu3Bf7swgjCAMHIZ24PAibQwBAkgDC0PPjWFBK5OxJWLzN+vLgzuXyLG+D5btzbGiU9r3dpkkBm49dA0WSZ9QjXpufZB4NJENBqWRtO6hKFNqzFcY+LsaWH389/gxpfOrndXlA2AMfDUnx7l9PQEt1/zPI1YB1+Mkskf/4X7rbWvGVanwmuT84I9SGpDDvzP76MRJwSBy+cViEXEEgaWMDCEgSEOM2phhrz69dRiQxRaosgSR4Y4shvCfdZLxM+f5paen+y2lwi9XkAvDQrREoVOpMWRoV6z1GqGp6ZuLV2FPnZrIwm1YVjrxJgxpUjLMin2TS5uDBgjbjsvs2BNKYysdcfZfJ+yfjUEgRd2fjsI3Wcst+KFUS4UneUvjqvuWnXNrjcXL0By9FFedeNFnXZI6eP8l+7h0Rcu43XXP6M5wkbIYsJLXY2bnIgeRhp8z8sfw1jBWHEP33wxQmaFNAtIs5BeFpIcuZd2FpCkIUnmltSUVieAUAxx6MRaHGVuHRqCV7+uEGpx7NfR6CY2zjNAF9NzLEKaCt1ckCVOoO0/e8wJtiSgmwozFaEWBrbot3sdw1NTtxQCLcrFWjReoZC7KwEoRo8u9AWoX4zK8pmZhujhbxNmwi03zqjoUuax63tfx85PfYPTMy0u36HW0HGgwmuTs5NzPMKtiEAolnBED+bMCEkW0ktDEi/akiwkOXIP7Xy7EG6BS2ZhnYjIRVocZkRBRi1y+/Lq11GLLFHkhE8c2SVj0RYj8sdPLPNhkmXQSwKSVIr19XNHSfx2txfQS4XZilgD5/6sxYYostS86Hxy6hYf2+UEWx7fFel/lLKOGAMXLwi7n/sGp8/FTDQzrj3QXjSpsqJMvuFVzBy5l8tR4TUO9DGxyYklIbAZ7V5Esza6L1fnokxX7Pe31qW0yAVZVaB17znCTBaQmlzQhX3pL3IrWy3KiLxbNA4zgte8zlvWjBdBlybYwhCaocGFFC1tUcuvJ0nFLwFJ4tbXzx0lrQi4NA2YTYSsksA2kNyV2+/SjSLLk1O3Eoa5ePQWtzFb2pTNTZrA7Kyw/8xRZmZDLs5EZEbYvSNh754eh6+Z1VGhyrLo3XvfSJ8fyuKo8NoCXM7z/D//S8AU5wnICMkIMHzXz99BGFgCMUShIfKxXlHg9sM18Oc7i5e5pCksBq1sSRaRZAG9e+9jJg0XFWy5VS0OU2qRs7LJq17vRVrpWlypsBHJ3Z8WWNk1GQNpVoq2tCLgDp471refpEI76xduIhBHZSxeFLoljixPTN5SjqL0cVVOyPmA/A0e16YsTZZB0oNuV+h24dB5N1q43XHxj3FkmWql2Am48rIeL7t2blUWZGV7MtsOOHFhiu986VPr3ZVtgwbXbxFm7BQZEYaQjBBDiPEyrFrm2gTFuh/rW2aEpMXatU757p9/O2HFjZiv10LArYTMSCHIet7CNrifb1fj2OKKVS2O/MCDV72uEGlrEcO2EqylEGdp5qxquZBLMyHLt714yzLfLuvvrAiFaAtDW4i50C9PTt5aCZC35QhLX6ZWuNWTD6DIMmepShM3+jVJ4NrpY/RSodMN3SCSxN3wQCyNuh/hW/d58vxaJ8BWVou1cOqu+3ns1B5uO3RCs9uPGB3VqCwLY6UQaRmRX8K+dUpc2Y7IiAcEnCUqRFvit93+m37+bYSF2MmtVOuTmTx3ifYqIi23tvUGYth6WVjErwViS8Hm+18dKbpad+haMCjgqgItTYUsC8i8dS5N3UCMLBMyg1/Pf4NEnDs6CCxhAEGx7dNhiBN1gYAElicmbi1SXgRSjpIMfMqLILB9KTCCgXQYUM7Z2Pd5WSJNRt/Xmy3LbKXe2soo0Eq6DGul3DblCNLrZo9iKvfH2PJeGlPe28Gv1lz8Rj5mMI76rbG12Ams9RL6yvYgSYRTX/gaT5/dxZ6JOV56+Rlq0fJCL5Tls2bCS0R+CPjfgVcAr7XWHqnU/RTwAVwwzT+y1n7Wl98B/CoQAr9lrf3FpV5HhdfmwVoqoiwXam7fEJJQK/ZTYlIiXJICyEVbROIXt/3dP/82b2HLKi7F9RFsxogXZk60FSNFs4qVbRF3aC0qBxwMc4fG0ebI1u4sOIKxpTgzuRAxZbnx6S0yI1hfbowXNH3bUhE9UryGrZSXYqmsr66HIUIhmqUQbu6APDUGUAyjl4oIDMSlWCnWgROSQZinaXHlYWAJvSvYCU+3rZZCZaMw2w44+6WvcXJ6kswEXLFjmkN7LqjgWkPWMp3EQ8DfAn6zWigiNwLvA24C9gOfF5GX+eqPAX8TeBa4T0Q+ba395ir7oWwQRChk1UqxFi/GqkvEX37kcxXBFheiLcfZ35Jiienx3T//NqIwox5lhWXtUuLOBgkCSyNIaaxwbsc0C5xY88IszQXaPUe4mFX2s4DMlk/svN+1MCXyVkK5/bWFlSQP3r+U+LXV4FJgeMUTbwzLnqIozqJ1YSZi5q/u50K7wVwvplVLuHyH4bZDJzRR6gZgVcLLWvstAJlvengP8ElrbRd4QkSOA6/1dcettY/74z7p26rwUlwwOQkxK5tLLrMhyYBgy8VatSwjxHrrWi7QIv96MT3e9Atvpxal1MJs5G7QKHQDGporEKTVEaLFgIM0ovfAPcxlAee9gKvGrw2m9KiFqXeJmg0h2BRFGQ2dbsBcO6R7zz1Md+rMdmt0kog4NOxodtjVTNi/+yKtms7NudFYq1GNB4C7K/vP+jKAZwbKX7dGfVC2CaG4qDPoLPuY1EZ9wiyhxhd++otFWW5hywkwFaHWI6bH3/iFtxVCrR6nRIEZqfuzOkJ0JV+elyLYcqJ8hgPvEs1j8eTVr+tLi5GPrlTRpiijxxiKadU6vYD0vntpJzGdJGau58zt9SilVesxWRcu3zHDZL2n1qxNwpLCS0Q+D1w5pOrD1tpPjb5Lxet+EPggwD7NeqGMmEhW5g4trWo1EmokxBWh5varQi0knWdRy4VaPXYB+dEIXJ/DuFTBBs4lOhjDlmQhvXvvYzYLvct0+GwHgdhCuLl0JXkSXYO86nV9aTHyOKi8TIPJla2OMS6Bcy8RksQlazZH7qGbRm5JIrqp+yEUiKURpzTixK8zdjQ7NGspzTjR/5dNzpKKxlr71ks473PAocr+QV/GIuWDr3sncCe44PpL6IOijIyVWNXyAQZV61lCjbt++i/6yvLRoIIl8la0uBKjVotS6lFGPXK5ycbxZZu7RC8FY8TNcmCCwuKW+f3k6/fQqdSlWUhmxG8HhQs4J5Qy15zLP5cV845GgcHe/vq+YPZiHbpRlvm+WuSUUZGPDs6MVEYAu9HCfO3uclBN5cdJUvlsB2IrYQx5vkHLzlabepTRiFPqUaqiahuwVqakTwP/UUR+CRdcfxi4FzeQ6LCIXIcTXO8D/s4a9UFR1oWVDjAwVua5Pb/8kbv6RFtCDJX4tKrL800/9zeJvUireaG2HrnVgsBSDzLqy5wVYDHcw82JtMzka8Hk2w9+ldQEdI0U9ca3yUxQzE86KOjACd3ATyDv1qZINBxUyvI25pWvL0Y25ik0gnz0Y1CmzigmEK/Uq/AbD8UE8gOjbY0VzMDo2ywDeeCe8rNihMwG5WfLf/aqg1xyokoC6ijIisTUtUhoxik7mp15eQ5VSCmDrEp4ich/D/w7YB/w30TkAWvt26213xCRP8AFzafAT1hrM3/MPwQ+i0sn8TvW2m+s6goUZZMTiKVOlzpLJzCsjvzMRdlXPvrZvv3U51azCCFZIdCqsWmxF2j1aO1cnqvBWbdGI+IGydNXZN5VWn0Al5PLB0W9efCrLleXFXp+0nljqhPSB32T0hvbvyyXQCxCmcqiKBOf44yBtW9PpQzcNlC0cWW+TkpBXi2zlX7m+9W25b3zqTyGlNtKfX6fc+Gbb1t/z6CSQgQpU4cU5Su7f4HYYslFc7HtxXTkt0MvsGuhJfQJoEMxfRbVtZrZQ1FAE6gqypbGxabV+kTZ4H6GSxwm2Hki7U3/snR5rmfC261OLjzACw8oxEcuFKFf4BTrIQKnes6+b/iqMBpiDcyPy/OfVenLiTYovcSdrU/YyYAIxFkL81fNRWW53d+mKjoVZbOxlnm8FEXZwLjYtDYN2ku2zV2e1eWLH/5iIdZyS1tx7kr+tKpQy6dfqvl1oJaDJalap4J59iRFUbYSKrwURQFW5vKE4SM9v/jhLxaJbnOxVto4LDEJYTE7gVu/6effRuwHEOTTSW1E96eiKMooUOGlKMolsdL8acZKMdqzFGcxf/GRu7xIi0gHYtQES+AnmypFm5v/M5+dwCWKLWcnUAuboigbGRVeiqKMhUAswSXNTBBU5vyMvXiLB6aSKuuqsUtusva0sLLl7tE3/tzbfeqMrMg15nKQqXBTFGVtUeGlKMqGJhRDSBeW6QKtktmwmLC9FG4hX/noZ8m8DHMTuJcTu1eFm2ALK1tQWNucmHvjz72dOMwIfUqBMs2AukoVRVkYFV6KomxZSnfoykUblO7RrCLM3JKLt6gQcJmXZJl3lfZj+0RbULR2ZW/8+be7RLGhKZLHFmkNxKoVTlG2ECq8FEVRFuBS3aODlAIuxPQJNbf+y498bl6Z8dLMVCZ3L7GEGAIv3HIh5+LhUgIMb/y5t/vksKZIEhv5bRV0irJ+qPBSFEVZY0Yl4HLyaakMQd86F2qGgK989LMD9XndYoLO59IqxJzx2/PX3/VzbycskpSWmf5zkZcnKlWBpyj9qPBSFEXZZOTTUjl6Iz23sVKIt+o6Gyj7649+pm+/Wm+9RMvrFkrWWoo811oKYefKB+u/8+fuKISciOmb+mkwa72KPmWjosJLURRFKXDWueXNM7pacpFnkT4rXFWwuW23/uuPfqZoW4o7J9OGH7ew6MvJU5ZIIfysXxs3FVNlO8BA0d7ynT97RyH0pLLOt/OM/INtikz9A/vK9kCFl6IoirIuVEXeqNywK6GYK7IQcDIg5IK+urLcbd/9M3/adxwV6WYrko5F6vPzsYRAHOi5m1bJC0HpO4ufw7MiFPPy6tXm9J8jP7ase8PPvQN876QyNVTf1FELlFfnDy22pZTCg9sU2/3TUg3OQ9pXNmRO0WF3crntFmMh22nfHKXLOI8KL0VRFGVbUj7g89Gvm4OqYOyXTFKRWUuXzS+nbx+Er370zyr7DD02L6/Wl2XV8pz5xy1WPji1e3/doHyaL6eWsnrmbfIeLrS9EPPrF2+vwktRFEVRNhFVwahsPgaTzSiKoiiKoihrhAovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkTKrwURVEURVHGhAovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkTKrwURVEURVHGhAovRVEURVGUMbEq4SUi/1pEvi0iR0Xkj0RkV6Xup0TkuIg8LCJvr5Tf4cuOi8iHVvP6iqIoiqIom4nVWrzuAm621t4KPAL8FICI3Ai8D7gJuAP4v0UkFJEQ+BjwDuBG4G/7toqiKIqiKFueVQkva+3nrLWp370bOOi33wN80lrbtdY+ARwHXuuX49bax621PeCTvq2iKIqiKMqWZ5QxXv8j8Gd++wDwTKXuWV+2UPk8ROSDInJERI5c0BnYFUVRFEXZAkRLNRCRzwNXDqn6sLX2U77Nh4EU+N1RdcxaeydwJ8BhadhRnVdRFEVRFGW9WFJ4WWvfuli9iPwo8C7gLdbaXCA9BxyqNDvoy1ikXFEURVEUZUuz2lGNdwD/HHi3tXauUvVp4H0iUheR64DDwL3AfcBhEblORGq4APxPr6YPiqIoiqIom4UlLV5L8GtAHbhLRADuttb+uLX2GyLyB8A3cS7In7DWZgAi8g+BzwIh8DvW2m+ssg+KoiiKoiibAim9gxuXw9KwvxJds97dUBRFURRFWZJ3pY/cb619zbA6zVyvKIqiKIoyJlR4KYqiKIqijAkVXoqiKIqiKGNChZeiKIqiKMqYUOGlKIqiKIoyJlR4KYqiKIqijAkVXoqiKIqiKGNChZeiKIqiKMqYUOGlKIqiKIoyJlR4KYqiKIqijAkVXoqiKIqiKGNiU8zVKCKngKdWeZrLgNMj6M5mRK99+7Kdr1+vfXuyna8dtvf1b6Rrv8Zau29YxaYQXqNARI4sNGHlVkevfXteO2zv69dr12vfjmzn698s166uRkVRFEVRlDGhwktRFEVRFGVMbCfhded6d2Ad0Wvfvmzn69dr355s52uH7X39m+Lat02Ml6IoiqIoynqznSxeiqIoiqIo68qWE14i8q9F5NsiclRE/khEdlXqfkpEjovIwyLy9kr5Hb7suIh8aF06vkZs5WsDEJFDIvIlEfmmiHxDRP6xL98jIneJyKN+vduXi4j8W38/jorIq9b3ClaPiIQi8nUR+RO/f52I3OOv8fdFpObL637/uK+/dl07vkpEZJeI/KH/f/+WiLxhu7zvIvK/+M/7QyLyeyLS2Mrvu4j8joicFJGHKmUrfq9F5P2+/aMi8v71uJaVssC1b5vn3LDrr9T9pIhYEbnM72+O995au6UW4G1A5Lf/FfCv/PaNwINAHbgOeAwI/fIYcD1Q821uXO/rGNG92LLXVrnGq4BX+e0p4BH/Xv9fwId8+Ycqn4N3An8GCPB64J71voYR3IN/CvxH4E/8/h8A7/PbvwH8fb/9D4Df8NvvA35/vfu+yuv+OPA/+e0asGs7vO/AAeAJoFl5v390K7/vwJuAVwEPVcpW9F4De4DH/Xq339693td2ide+bZ5zw67flx8CPovL8XnZZnrvt5zFy1r7OWtt6nfvBg767fcAn7TWdq21TwDHgdf65bi19nFrbQ/4pG+7FdjK1waAtfaEtfZrfnsa+BbuwfQe3IMZv/5+v/0e4BPWcTewS0SuGm+vR4eIHAS+D/gtvy/Am4E/9E0Grz2/J38IvMW333SIyE7cF/JvA1hre9ba82yT9x2IgKaIREALOMEWft+ttV8Gzg4Ur/S9fjtwl7X2rLX2HHAXcMead36VDLv27fScW+C9B/hl4J8D1UD1TfHebznhNcD/iFO/4B7Gz1TqnvVlC5VvBbbytc3Du1BuB+4BrrDWnvBVLwBX+O2tdk9+BfflY/z+XuB85Uu5en3Ftfv6C779ZuQ64BTw/3g362+JyATb4H231j4H/BvgaZzgugDcz/Z436us9L3eMp+BAbbdc05E3gM8Z619cKBqU1z/phReIvJ5H9swuLyn0ubDQAr87vr1VBkXIjIJ/Gfgn1hrL1brrLM1b7nhuyLyLuCktfb+9e7LOhDh3A+/bq29HZjFuZsKtvD7vhv3y/46YD8wwSaw3KwlW/W9Xort+JwTkRbw08DPrHdfLpVovTtwKVhr37pYvYj8KPAu4C3+HxLgOZxPOOegL2OR8s3OYte8ZRCRGCe6ftda+1988YsicpW19oQ3NZ/05VvpnnwX8G4ReSfQAHYAv4ozr0feulG9vvzan/Uuqp3AmfF3eyQ8Czxrrb3H7/8hTnhth/f9rcAT1tpTACLyX3Cfhe3wvldZ6Xv9HPA9A+V/PoZ+rgnb+Dn3EtyPjge9x/wg8DUReS2b5L3flBavxRCRO3Cul3dba+cqVZ8G3udH+FwHHAbuBe4DDvsRQTVc8Omnx93vNWIrXxtQxDT9NvAta+0vVao+DeQjV94PfKpS/iN+9MvrgQsVd8Wmwlr7U9bag9baa3Hv7RettX8X+BLwg77Z4LXn9+QHfftNaSWw1r4APCMiN/iitwDfZBu87zgX4+tFpOU///m1b/n3fYCVvtefBd4mIru91fBtvmzTsZ2fc9baY9bay6211/rvvmdxA6xeYLO89+sR0b+WCy6Y8BngAb/8RqXuw7iRHQ8D76iUvxM3Gu4x4MPrfQ0jvh9b9tr89b0R52I4WnnP34mLYfkC8CjweWCPby/Ax/z9OAa8Zr2vYUT34XsoRzVej/uyPQ78J6Duyxt+/7ivv369+73Ka34lcMS/93+MG620Ld534P8Avg08BPwH3Ci2Lfu+A7+Hi2dLcA/aD1zKe42Lhzrulx9b7+taxbVvm+fcsOsfqH+SclTjpnjvNXO9oiiKoijKmNhyrkZFURRFUZSNigovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkTKrwURVEURVHGhAovRVEURVGUMaHCS1EURVEUZUyo8FIURVEURRkT/z+sTKmBqqXwsgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAF7CAYAAADsY3vMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACly0lEQVR4nOz9ebhc1XngC//Wnmo8g+YjgQSYSRKTCR6Qk3RshzZxyNTGmdqfjbud5AsX+7aNkzgkjhOIMYnzPO3E7alvP7lx7tdxJ3bfDN2eEoIBO1hmEAYjCQjGgADpaD5zVe1pfX+sPdapc3Qkzqz39zylPa29a1edOkfrV++73qW01hpBEARBEARBEAQhw1rqGxAEQRAEQRAEQVhuiCgJgiAIgiAIgiB0IaIkCIIgCIIgCILQhYiSIAiCIAiCIAhCFyJKgiAIgiAIgiAIXYgoCYIgCIIgCIIgdCGiJAiCIAiCIAiC0IWIkiAIgiAIgiAIQhciSoIgCIIgCIIgCF2IKAmCIAiCIAiCIHSxoKL0B3/wByilSo/t27dnx9vtNrfccgvr1q2j2Wxy4403cvjw4dI1Dhw4wA033EC9Xmfjxo385m/+JmEYLuRtC4IgCIIgCIJwluMs9BNcdtll/PM//3P+hE7+lB/4wAf4yle+wpe+9CUGBgZ473vfy9ve9jYeeOABAKIo4oYbbmBoaIhvf/vbHDp0iHe96124rsvHPvaxOd9DHMccPHiQvr4+lFLz9+IEQRAEQRAEQVhRaK0ZHx9ny5YtWNYscSO9gPz+7/++vuqqq3oeGxkZ0a7r6i996UvZvieffFIDevfu3Vprrb/61a9qy7L08PBw1uazn/2s7u/v151OZ8738eKLL2pAHvKQhzzkIQ95yEMe8pCHPDSgX3zxxVkdYsEjSs888wxbtmyhWq2ya9cu7rrrLrZt28aePXsIgoDrrrsua7t9+3a2bdvG7t27ufbaa9m9ezdXXHEFmzZtytpcf/313Hzzzezbt4+rr76653N2Oh06nU62rbUG4PPWBdSVDMsSBEEQBEEQhLOVKR3z7vg5+vr6Zm23oKL0+te/ns9//vNceumlHDp0iNtvv50f/dEfZe/evQwPD+N5HoODg6VzNm3axPDwMADDw8MlSUqPp8dm4q677uL222+ftr+uLOrKfoWvShAEQRAEQRCElc6phuQsqCi99a1vzdavvPJKXv/613PeeefxxS9+kVqttmDPe9ttt3Hrrbdm22NjY2zdunXBnk8QBEEQBEEQhNXFouahDQ4Ocskll/D973+foaEhfN9nZGSk1Obw4cMMDQ0BMDQ0NK0KXrqdtulFpVKhv7+/9BAEQRAEQRAEQZgriypKExMTPPvss2zevJlrrrkG13W55557suNPP/00Bw4cYNeuXQDs2rWLJ554giNHjmRt7r77bvr7+9m5c+di3rogCIIgCIIgCGcRC5p69xu/8Rv89E//NOeddx4HDx7k93//97Ftm1/+5V9mYGCA97znPdx6662sXbuW/v5+3ve+97Fr1y6uvfZaAN7ylrewc+dO3vnOd/Lxj3+c4eFhPvzhD3PLLbdQqVQW8tYFQRAEQRAEQTiLWVBReumll/jlX/5ljh8/zoYNG/iRH/kRvvOd77BhwwYAPvGJT2BZFjfeeCOdTofrr7+ez3zmM9n5tm3z5S9/mZtvvpldu3bRaDS46aabuOOOOxbytgVBEARBEARBOMtROq2dvYoZGxtjYGCAL9oXStU7QRAEQRAEQTiLmdIRvxA9y+jo6Ky1DGRSIUEQBEEQBEEQhC5ElARBEARBEARBELoQURIEQRAEQRAEQehCREkQBEEQBEEQBKELESVBEARBEARBEIQuRJQEQRAEQRAEQRC6EFESBEEQBEEQBEHoQkRJEARBEARBEAShCxElQRAEQRAEQRCELkSUBEEQBEEQBEEQuhBREgRBEARBEARB6EJESRAEQRAEQRAEoQsRJUEQBEEQBEEQhC5ElARBEARBEARBELoQURIEQRAEQRAEQehCREkQBEEQBEEQBKELESVBEARBEARBEIQuRJQEQRAEQRAEQRC6EFESBEEQBEEQBEHoQkRJEARBEARBEAShCxElQRAEQRAEQRCELkSUBEEQBEEQBEEQuhBREgRBEARBEARB6EJESRAEQRAEQRAEoQsRJUEQBEEQBEEQhC5ElARBEARBEARBELoQURIEQRAEQRAEQehCREkQBEEQBEEQBKELESVBEARBEARBEIQuRJQEQRAEQRAEQRC6EFESBEEQBEEQBEHoQkRJEARBEARBEAShCxElQRAEQRAEQRCELhZNlP7oj/4IpRTvf//7s33tdptbbrmFdevW0Ww2ufHGGzl8+HDpvAMHDnDDDTdQr9fZuHEjv/mbv0kYhot124IgCIIgCIIgnIUsiig9/PDD/Nf/+l+58sorS/s/8IEP8L//9//mS1/6Evfffz8HDx7kbW97W3Y8iiJuuOEGfN/n29/+Nn/5l3/J5z//eT7ykY8sxm0LgiAIgiAIgnCWsuCiNDExwTve8Q7+23/7b6xZsybbPzo6yp//+Z/zn//zf+bNb34z11xzDX/xF3/Bt7/9bb7zne8A8E//9E/s37+f//7f/zuvfvWreetb38of/uEf8ulPfxrf9xf61gVBEARBEARBOEtZcFG65ZZbuOGGG7juuutK+/fs2UMQBKX927dvZ9u2bezevRuA3bt3c8UVV7Bp06aszfXXX8/Y2Bj79u2b8Tk7nQ5jY2OlhyAIgiAIgiAIwlxxFvLif/3Xf82jjz7Kww8/PO3Y8PAwnucxODhY2r9p0yaGh4ezNkVJSo+nx2birrvu4vbbb3+Fdy8IgiAIgiAIwtnKgkWUXnzxRf7Tf/pP/NVf/RXVanWhnqYnt912G6Ojo9njxRdfXNTnFwRBEARBEARhZbNgorRnzx6OHDnCD/3QD+E4Do7jcP/99/PJT34Sx3HYtGkTvu8zMjJSOu/w4cMMDQ0BMDQ0NK0KXrqdtulFpVKhv7+/9BAEQRAEQRAEQZgrCyZKP/7jP84TTzzBY489lj1e85rX8I53vCNbd12Xe+65Jzvn6aef5sCBA+zatQuAXbt28cQTT3DkyJGszd13301/fz87d+5cqFsXBEEQBEEQBOEsZ8HGKPX19XH55ZeX9jUaDdatW5ftf8973sOtt97K2rVr6e/v533vex+7du3i2muvBeAtb3kLO3fu5J3vfCcf//jHGR4e5sMf/jC33HILlUploW5dEARBEARBEISznAUt5nAqPvGJT2BZFjfeeCOdTofrr7+ez3zmM9lx27b58pe/zM0338yuXbtoNBrcdNNN3HHHHUt414IgCIIgCIIgrHaU1lov9U0sNGNjYwwMDPBF+0Lqyl7q2xEEQRAEQRAEYYmY0hG/ED3L6OjorLUMFnweJUEQBEEQBEEQhJWGiJIgCIIgCIIgCEIXIkqCIAiCIAiCIAhdiCgJgiAIgiAIgiB0IaIkCIIgCIIgCILQhYiSIAiCIAiCIAhCFyJKgiAIgiAIgiAIXYgoCYIgCIIgCIIgdCGiJAiCIAiCIAiC0IWIkiAIgiAIgiAIQhciSoIgCIIgCIIgCF2IKAmCIAiCIAiCIHQhoiQIgiAIgiAIgtCFiJIgCIIgCIIgCEIXIkqCIAiCIAiCIAhdiCgJgiAIgiAIgiB0IaIkCIIgCIIgCILQhYiSIAiCIAiCIAhCFyJKgiAIgiAIgiAIXThLfQOCIKxOntcX06GGRYxNiEWETVTYjlHEyb7y/nQ7XSq11K9GEARBEISzDRElQRDmnZN6Hcf1Jt5+xyWEsUWUPB688xsEWEQ4xIkaRVjE2k7W7Wx/EUvHKHRBoGKUSkXLLLP907Z1tt8iNtdLBQydPIrH8rbF4/l6vm0pvejvrSAIgiAIi4OIkiAI884hzmNIvci2dRtL+7d/6vI5XyOKFbFWiWSZZazzfXFyvLSvsK614sE770FjZSoEiggr2WdUKtMfbdSIpG2qV2Tn9kCTyRPJVZkmVGTHlcrbpvvTdhTbUb4uPbeZ4TjZsnv/XNqW901vX3z+3ufMdN7M7YvX7n293vc2+7V6rc/ymiVqKQiCIHQhoiQIwrxyUq+jpev86idfBYkAnAm2pbHRuPaZX2P7p64443O70RpirdCJjGltuurZerqfwnphm+R8SLr4urAstMuW2fH0nPL+9J4orD/0sXuSu1V5GwptCvsprRe1o9w+X5b3lY/3OEfnzzO97UzPwSz3N/284vFXjM6ftbgsHuyWw/Jddb+D088/1TUAlOotit330P0809sXz+kd+ZzxHmZs13u7+/lmfp65XGP2a80F1ePspfDgmV5jr89tse28fq6FEqf+3M2F07vGfDznbNc4k+uf/u/k3Nqf2e/6qf7GzP73Z/a2vdspNL5un/K+QERJEIR5Zow1rFOHceyNp268glAKbJVHJZYjO+ZRDFcaWqfLslim68VjpfYF0SyJWeHHPNN1pm0Xzyldqyx8xe3Shcjledrr41TP0eMc3S2ncz/e6zX1et5e5+Tt5s609yTbfxrXWADB0PrMo43d557qWq/kuebj/LOF4meq++dzaooafnpv9ul8lh/+2D+XtmfMapjhPmb7XZhNuWaj15dkp3sfvc6b6euV2c9Rp922W6Fsjvd85m5ElARBmFcibHb97pt48USHKd/DtmIsZcbz2FaMbels2+o6lq8X2yxfMRGWD2mHR5XGjclnRxCElceOT1251Lew6hlrbeI3b/3HU7YTURIEYd7QGkb1OvqrLR578Rw2D4xhWToZT5SMNdJmfJHWKhuHlB5Lxxh1UxInlcuWSkQqP2aOd+9TBelSMK2NUpglSYGGZNtScX6s0DZtpxT5fsy6fKMrCIIgCKsDESVBEOaNAA+fClFsMVBrc9XPbz/ta5gxOxBFilhDHCdCFZsxPnFs9sWFfVFkso/TY1qX2/O9hwgK44uyR5yOK1LZeeY6qjD+KB+HlLadLYUiFamiYGUS1SVYCqBLwErLwrlphb3p1ywKWkHkrEL7HtdTkIjj9OemJIDlc7Pnn+F1Fo8LgiAIwkpGREkQhHkjzQWeCjz6a3MbKNmN6ZRTSLmbh/SpCy975dcokMqc1qlUpdtGzLKCDjEF+UrO7WqfF4kwx7vPKY4VyYo5pA/S80F976FM7kifv6soRHdBiGIhCg3Q1SYXw+4iFTOPpSlSjNRNi8wV9hVlMYvsWWVJ7JYxy8qrCBYjhek1SpHEopz2ijR2PX93BFEQBEE4OxFREgRh3gjwsHXA8Ihi/Y/sQGuNWoU9zVTmAGx7mYyJmWcZnCslYUykLRetstxlEb5MtornJcs4FbKCfOpEMIvtHn+IWFs9Kw3GuhwFjLWCafus7PlnSvlM6ZYoS8VlseshZTOmbsI0ybOmrefRvvSadF9nBsnrfh5BEAThzBFREgRh3mjRwFWj/NSf3Qp/Bgf/5R9o1GpLfVvCAjI9AgiLIoyvmn8xTEWtGCU0IlUWulT20v0miqhK55au093me2XJS8fwTU/7LJSknyUddK6SV4zmTdtvzbC/p5TNcM0u0Ss91ymift3Xk2ieIAjLARElQRDmDY2FPkU+VhxDECrCSBGGFlGcdCQ1hJGVRBQKY4+SyEMahUivEcX59vRyzdPLO3ffVnGzV39Md+2fqdOWzXvT47gZx5O3K7bJq7Sl96Cn7c/ap8+R7dfZ8e7r5/uL2zprq5S5XiY4qtzO6rFuIiCrv/SwUmDbixAlXIDoXzGyVxa7chpoFqlLJC79HcsjeuW0z+5oXhybNM+oME9YUeKmrc8y7q8oezMxF9FDnSK6VoyyqXT83vQCL8XiLN3XUxjZO2X0z8qfR8bqCcLKR0RJEIR5I8RBF+Z7ePDxQWyrThBahW/eDZYyHVLbTjsYybZV6OhYFMaq5FJiWeb4C43LgV7SAUXL6dXJn2n+jHQuEqWm7+9Ftl+XFtOOd8vb+VN7u+bXUdOeryh4uQQm+wrjlKAwBqow5mi2cU1pp7j7ueJTeIFVEqfkZ2WR/QxTwbIsne1XVt5BVSqpYlg8xyqck3wu0mPpPqv4ObF0ue1sU4ycJSzI2L6ZWCDRK0fkpoteNj6uZ5rn9IheKnp0nR8/bsbzBbo7QleM8BVSMnsUdOkuBjPT34fucXezRfS6x+cVq3PONDav+9q9xtr1lr/Cdpf0CYKQI6IkCMK8oguGMr75YoY212k6aacXLBsch3np3L6K+JVfZMnYudQ3MCO5SAFZhxR0nO8vpZQV2msNUQxB0j7r8Mb58TiG8yb3Emorr2KolWmvFVFE3hFNoodZxzdWRD1+7Kk0qZJM5VJlWxrLNh1II2Jk+207FTvd4zwjacXtbN1e7J/M6mV6NG8BO+wLlLbZa6xeSdDicoQuk7IebdLr5NHApM33HiSMbHNuJmvl8Xa6UMWzHLmz5hTJm22sXbfYzVQYpSh1pbF9XUJnp+P9rOnXsq3e1xSExWRBRemzn/0sn/3sZ3n++ecBuOyyy/jIRz7CW9/6VgDa7TYf/OAH+eu//ms6nQ7XX389n/nMZ9i0aVN2jQMHDnDzzTdz77330mw2uemmm7jrrrtwHHE8QVhuaCwi8t7j5i0xA4PyH9tKI49OnKrlXH62M7XZySvxjEy8YpL0TfI0zuRYFOXSFkeFTmlkOrLnTe7FDy2ijilBrxMpS0vTm2UibmlJ+q6XY1s9JCsRq245S6XMtkzH0E7Fq0vErML5qdRJ5Gx5s2hj9V51+bxeLo7LcpfJXEHyimPy0t+J7MuPrrTOuJDKWSy40mtahlzaytG5KC4LXTfdkbBpwmZpI2BJZK570nPV4/xim/KxwiTphevKOLqzhwW1jXPPPZc/+qM/4uKLL0ZrzV/+5V/ysz/7s3z3u9/lsssu4wMf+ABf+cpX+NKXvsTAwADvfe97edvb3sYDDzwAQBRF3HDDDQwNDfHtb3+bQ4cO8a53vQvXdfnYxz62kLcuCMIZEHb9SXHdJbqRVUQ5pS7ZOYeUwCKl/8xVj1TFFTj+KI1QApQ/ZrO9Id3HdmJNO392zBxfuZil0hVHuaDFEXTiXM6K7bdN7KOTzQ2msuPpdhQrwlCRziVWvGNFKkx51KsoYFZBrhw7FzfLmi5qRuJ04Rr59UTIzh7Sz0fOPMrdPETuiimZRZErfnGhS/vy8a0l8StEp9N59YpCVpK3wv6otD79j2QaaUtFqyRSPcTKtmLsQrTNbOdt7PScTNZyUcuew0qF7xW/vcIcUPpUI6/nmbVr1/Inf/InvP3tb2fDhg184Qtf4O1vfzsATz31FDt27GD37t1ce+21fO1rX+OnfuqnOHjwYBZl+tznPseHPvQhjh49iud5c3rOsbExBgYG+KJ9IXUluRKCsFC8oC9iw6/9JL/w2fcCcP+jL1GrN5b4ruaPOIYwhDBI1xVhCFFo1mfqQJuIRDkKkg+Uz1PSulPeFh01PZqUFXqw0k5BMjYpEZX0eJqGlgqMyjrpyTmWaaPSFDkrb5unZaYRlWQslJ0/x9lK8XMTR2TRrShKpC1MP2dJNCw0n6kwgm2T+/IOY2QKqKQyVpKzqBwpKwpZJlaJVDl2QbCSaJiTtZ1ZxhxbF9qe3T9TYeUyTdri4pccubTl0egusUtl7XFTEKUkY7Ei0lZSqCjfH8VmX3eqZJa6mMiV+WKkl1jFOFYuX0U5s1NZS89NrpPuK4rdamOs1eGcWz/B6Ogo/f39M7ZbtPy1KIr40pe+xOTkJLt27WLPnj0EQcB1112Xtdm+fTvbtm3LRGn37t1cccUVpVS866+/nptvvpl9+/Zx9dVX93yuTqdDp9PJtsfGxhbuhQmCUGKl/TkNfGi3Fe0W+IEi8CEIIPAVYQBBYGQoDE1nFPJOv+2A42gcJx93lXb29x3sy2XAzuUjFQ5llwWk+KB7PbnXvApeaZHTvUP3WC0WlyjsSwtExMl2oMv7SwUhUrELeoxnSiJgqRBefs54kvqWj7VIK60ZsVRZ6lyaLqe7xiCl77eVLm1d3rbyfcX9tq0z2XIc8qiLA46di9hyphg5y5npt6x7/445R8vSn0cvIStGyaaSaFcYmv3bJvYyFSQduUhlqYtRnIqZ+Xl3R8fSlMVMwJxyuqJjx+W0xEKUzO4+XjjmOJIOJSwc5QjcK/jf7gyjbdnvU0G60vW48LuXHSt8OcLjD+KHNrF2EvmyskhZnMiYEbXpYjablNkqTn4f40y8ikJmjuXRtVTcUhlL15fr7+2Ci9ITTzzBrl27aLfbNJtN/u7v/o6dO3fy2GOP4Xkeg4ODpfabNm1ieHgYgOHh4ZIkpcfTYzNx1113cfvtt8/vCxEE4ZTE2MvSlOIYpiZhYlzRailaU0aM2m3zDbzjQrWmqVTA9TT7D/WZzrSbdLArRoqsRI7SjqsGguTRzdC2RXyBy5jj9JmVOfTYreSRylgxmhIWI3IRxEE50pKK2WXnjGdRvCjtqIfJt76JAERh/pyZ9Nq5hKVSlcqW7RTEOJW09Lijcez8+HIXr5lQynzWy/T6ZZ6evjjXPI30ZxVG+c+s+DMqpisWRczvErEwEa902V3gIx/TVY5kpetFsTI/vy4BS77scJy4cN6c30pBWDBSUXPP5D/aC05vfFv6pVZUkLNuKUuj1Fm0OgL9+EMEoU1bO4SRTawVYSpfsZWsT5cxS2nz+5fIVRYNK+xzEglL5aq4NL/vEU62f35SFBdclC699FIee+wxRkdH+Z//839y0003cf/99y/oc952223ceuut2fbY2Bhbt25d0OcUBCGphNZzVqLFJfDh5EnFyAmLsVFFq2U6gY2Gpt7Q/GC0aaRoDXgV0+n1MQ+AIflzsaSkETfrDDqnJ+ib9X82O3kUIyVh2kFPHlEr78jHEVy2ZRy/YzoBaYplFObRljAk84dStDGVLieXKjup+mj2F7ZdI1xp++X67eorIY2OOSVpPpWMzU3E0jTENO21W5Q7EUxlAm0ErBNYRO38W/i045cKWHdKoolgxZk4Oem6k4tYmpro2Bo3iZK5TiJnjomCuU4s4iUse8yXJzr5c3oaYnYaQlaMkBV/71I5C4tR6kgRP/YQfmjTil2iTLpUFiELY8vMx1gQsDRq5VhR8oVInGyfnNM9LrgoeZ7HRRddBMA111zDww8/zJ/92Z/xi7/4i/i+z8jISCmqdPjwYYaGhgAYGhrioYceKl3v8OHD2bGZqFQqVCqVeX4lgiDMhaUKKLXbcPSwxbGjiolxRaOhWbNOc9JpUt0EVgVamMeGzUt0k8KyIY0YzSXSdXwW+bIAj3SMUDliEoUQBRC38877ZZvHmerkshWGmM5AWBauNGKVSpRt53KVi1Y59TM7Zq9e2ZoJpZIIcGlv91+jsoDNZZRzHpFMf4apMEMQQztM9oWwdWIvbd9Kfp6pdFnJ5Npl8VKYn10x2pVuu6VIltnvJPvtgoSl55xNP2dhdXHaEbLz5yZh3QKW/k4WtwN/fE7XWvQa23Ec0+l0uOaaa3Bdl3vuuYcbb7wRgKeffpoDBw6wa9cuAHbt2sWdd97JkSNH2LhxIwB33303/f397Ny5fOcgEYSzmcX+P7vdgud/YHP0iGJwjeZw2KS5GQIXjgD9axb5hhYYnQzcD5NOeJpKlnXoCpGR4rxFpaIR2TxI5TFIMLPolsZJdVXO6y74UCr+YE1ftwrb6Tghy0qiSMV9Nllxh+WOlUbATiFeM0lXSbiSh5920EOI/PxnffmWcVpTpsMeBKpUTCRM80BVLlOum8uUU1jP9ruJcLl5tEswWBZYXvHHOlsEzMjXbAJW/D0NC5HJKAQ/EbEwyKUrCK1MzoIwl64wyv/SpkLlOgXJcszDdUwky3Xy48W2riNVDoXVx1wEbGzCn/FYkQX9c3jbbbfx1re+lW3btjE+Ps4XvvAF7rvvPv7xH/+RgYEB3vOe93Drrbeydu1a+vv7ed/73seuXbu49tprAXjLW97Czp07eec738nHP/5xhoeH+fCHP8wtt9wiESNBWJaYaj2LQRjCC89ZHHrZYuMmDZsaTFVgTd+iPP2CoDV0WuC3wfch9E0aYRjkyygtKKHSiELeSU9TvvY+fhRl6S5x0SW5Ia1e11UqfC73WFySzLlS2l/Yl5U1T/ZdcdUGgrA8Bilbj8rLYk3W9PUVxxQVX3cmVk75vciWK2T8UCZcs3CMPnrlo1mAq/NoVicuyHQrF62dm8dpt1RWtTEMTec8i2ipVKSMWLlul2S5RrLcZGm2kXSyOXBq8ZqbdKXFN1I5TkU5CE2UK90+d2wfrbZDGCqC0CJIJCsIrCy6ZSmmyZQzw7rnGvHyXC0phMJZwYKK0pEjR3jXu97FoUOHGBgY4Morr+Qf//Ef+bf/9t8C8IlPfALLsrjxxhtLE86m2LbNl7/8ZW6++WZ27dpFo9Hgpptu4o477ljI2xYE4RWwGKl3vg97H7NxHAjXNTjpzf4t7nIk8KE1YSJinVa+VAq8KrieGT/15JNHsrEsVjL+IavW1quKBDCwYVFfCqfzUz/w8qG5X7UQDUvnQdGxKuzP911x1QYCP4+opVKQRtsgqYbnTBeobBxR1/pKEqyUVKDtWf537zWOa5pkRTCZRi07uWB12orJCRPJCnxFUBAsZTFNnjwvX3ddjevl8uW6K+u9XU6kxTccB8z3xjMJ144ZO3rp+Lo0IplOfdApbJ87vo/JtiJMJMsPrES6zDcrlgLXNZLlubH5GRdEynPLcuUlbSVdUFgpLPo8SkuBzKMkCIvDD/R21v/KT/Dv/+v/ASzMPEphCI894tDs04xUmivmP9wogokRGDsJk+NGlKo1qNaNDLmexvU0tiudiPkmTVeMk8p3caTMfFfJ8vIrN2ZjhKKs45iXg7fsLpnKIizJwyusn2Vjg2B6Omja4U7lKgyMUAVpuf0gTxFM37csQuVpPC/5osDVeBUjW67bXQRCWEq0TiLdSTQryH7uZv3csX34oYlc+YFlpl4oRLGKESojWDEVz6xXvFSw8uMi1MJ8MzYxydYf+3fLZx4lQRCE+eCFH1h43sqQJK1hfARGjhlBqlShbw0M/+AwXi1mMgTGoX/tUt/p6iaLslDIFywwU5QrE6xIZaIVJeuXX7GR1iRZp7+YFuk4XfKUyUBh3Zs96rOSKEWxquVjR+mjO4fMApy0Gl0IU4lUBW2z3DE0ztSkotMxUSvfN1FFZZFIVF7K33PT6KsRLM8zciUd64VFKfO+ux6Uf59mj2RlhTACI1W+D61AEfqwZWwfky0X31eJXFlZ5Mp1NBUvlyizLIiVF1NJ1uVnL8wnq+TPtCAIy4GFLg0+NQmHDlrE6xtUlrkkjY/CwedNB29wPZycHMYNNMfHoTq/QTZhgcgFYLpg9ZKrtER1nFRYSudzuvyKjbQmYDz9Bt43aU/FzqZbKawn294qkqlusrE6PXJms9TAutl2SaJ8AUyEydi9MbO9Y9ME4+PgdxRB0vFGGxmtVDSVqpGoSsVse5V8v4yvWXzS8YXldMFcrlyg+OcxjtMJwMH3FW0fxnzFOaN7GZ+0CUKXjm/RSeQKcqmqVmKqlYiqF1OpxGbpmX2eRO6FObJK/wQLgrAaOXLYYt16zVhtqe9kZoIADj1vRGnTufDM9w8xMtW7QyisLtIS1bhJ9YqEXlIVxxCHinBUJel+issu30h70nQK0/FWllUWKa9insOr5GPZzoYOXxqx6i7jdJKmiVY1zbarTcSi48NEB4IJCI7DpRsnGDmh6PiKTtt8gdFTpqqaatVMQO2dJe/tcsaySCQXymK1kxpQ/K9Aa/P31+9Ap6OY7MDJjmLz6D5Gxl3aHYuOb6JUliKRpygRKiNRtUpErRpTr0a47qofmSLMARElQRBWDCdPKI5ETQaXqSiFATy3Hyo1GJk8xPiz0tESemMiKhrHyztjLx4sC1UcQxQk83+ERqh2XLaRiVHTGQx88/mqVI00edVk/SyTqCJKkRWKqBVCE6M0s7RAl6RoQSJT/jiEiUydPKHotI1MWTaZNJkHVKuaWrIuKV7LC6VI0i+h2VeUqh14QDoKJYpymep0YKKj2HxyHydGXdqdCq22TRAqXEdTrcTUqhH1akS9FlGrxNRrZlt+/mcHIkqCIKwItIapSUVt3VLfSW+0huefNsUZXj58aNWmTAmLh2WBVdG4lVymXh7OZcoMqFeEJxVhYCJSoydMefkgmSIklahKDWp18/n0qmefQHWTjhXrKVMDZgxV0IETbSNS22vjjJxQtFsWrZaJSFUSiarVNY0G1BuaRkNL9HiZY9vmd6FWL8jUeTtokgUmCQNod6DdUoy2FbUTezl2wmOqbTPVsok1VLw4E6hm3Twa9ZB6NT7rf79WE/JfuSAIKwLfNwPr3WU6hdrIMfNN5cuHD501/0lm43GSAgdZuW5t1jN0njSTz9uUzPOUTAyYTlJrWWn583weKKE3ZoyTqZYI5RS/bonasXMjRw9BeyqJQiUVF6v1XKBE7nMsy7xHlSR6fYw+M3imAY42IjrRgeNtuLRvnBPHFS++YOF3TCQvlaZGU1NPJEom8l05OC40XWg2kzTarTszkdLa/H/UbinabRidUmw4/iQvH64y1TID35qNMJOnZj2k2RCBWqnIr60gCCuCwDf/eS3XdIcjL8PLw4epr+AJb2cjDKAzZeO3FUHHIvDNfEbKAjuVGzuVG7NMUdk/+ZxGWiszJ1JsqslpDTot4R3n59qOTkpyaxw3xnFNCXXH1dKxn4VuiXrpkJGoVKCC44qdl21iYgSOHTK/X14VGn3Q6DdLb5l+KbHUKJWkN1bMe3WUPtJetB3CVAtOtuCSxjhHDltMTpiS6LU69A9o+gdi+vqNQEnHeeWhFFlxkAEANLzqUhqYv2/tlsl+ODypiI/v5+CRClMtG6Wgvxkw0Bcy0Bcy2BdQr8WzP5mw5Mh/M4IgrAiiSGHbizOh7enSaZmOZq25uv7T67QU7Qmb9pQRI6+qqdRiTh56BtuNsO0IpWac9/YVYQTKMo/IIo5sNl14Pu0p24zbSQodOF4iUIkUVGoxllQzm5GiQD1/II9ARRH4Ixbb12zixGF4+Qfmi4lUmvoGpSDJXLCdRDb7kihUP1j9oAI4OQHrK+McGbZ49hmFZZmxNP0DmoFBs1yuXwQJc8OyyCKI69FwwXbqpKnjMDGuiA/v57mXaoxP9OE4mjX9Rp7W9AesGQjkM7DMEFESBGFFECfzqCxHUZqahHoTJk4u9Z3MD3EMo8ccpsZt6s2I0cPP4HgBYUszdTJPR1pITKQqxiaXz7HDT2brphS3TRTaRqJedQFTYybNzKtoKvXYPGqS7jIXbNuI/gsvGnmK40Sc1m9i5Jgpdd/og4F10L9GJn89XVwX3DVwWPfBANj9Jg3yxDhc6E4wfNAijmHNWs269TFr1kmq3mpCKWg0odHUsHkH64E1EUxOKEbHFPbh/Rw4VCUMLdYN+mxY57NhjU+turq+fFuJyK+hIAgrAq1Z4Fmazpygs3q+bQ99xbGXXWxX0x7bTzAZ41VPfd5iY0pxRziumeV17Mh+wIyZmjzhsuH8Czk57BLHUKnHNAciqg3pdMwVy4JqI86iTlEIh47YvCreyMHnoTkAG7YYeRJOH6VMIYlawxSR0JugPQnV2jgHnrd5+kkYXKMZ2hKzbr3M+bMase00FVPD1u2cA0xMwMnjFuHLT7H/mSaNesTQ+g5bN7epVuTv11IgoiQIwophuXYWomj1DIQ/ecShUo8ZGX5yRU7IadmaSs3Pok9hYNO39mJOHHZxvZj+dSGV2nKMSy5vbAf61kQcHTlEGCjWbx7i+adMSt6mraYCnHDmKGWi0od1H6yHuA39jXGe/Veb55+FredFbNgkqXmrnWYTms0YzruEZmCmxBh7/inuf2gtG9b5nL+lxdrBhUh2FmZCfuUEQRBeITqGJx47utS38YrptBSBb3Hy0FPLVkpPF8eNOPHSU7TH9uFVNccOeoyfWIEGuIxwXDO+aWTqEJYNz3wPRk8s9V2tLipVOBT1EW9scFQ3ePEFmz0POUxNLvWdCYuF48KGTZrm6y9l6McuoFGLeHR/Pw8+PsBUS7rvi4W804IgCPPBKhALv21RqcZY1uqLuFiW5uTBJ2mNPMnYCYf2pPz390qxHVNN7+jJw7z0LIyPLvUdrT4sC9ZuhHB9gw0bYx5/1OHkiVXwx0Y4Lao14PKdbHnzq2jWIx54dA0vH5aylIuB/E8hCIIgABCFCttZfZJUxHEjxo48y8SIRJXmi1oz5tCRIwwfWOo7Wb0oZdLyRpwGT+2zCcOlviNhKbBtcF69g+Y1F7L/+02On5SqKguNiJIgCIJg0HDwmReW+i4WHNsNCQP5Vn4+qfVFpky+DJ9YUNZuhGpNc/iQdN/OZtau01x8/iRPPNNXmndOmH/kN00QBEEATEnuzReft9S3sfBoVZoQV3jlpIU/4mhp7+Ns4MBEk6mppb4LYalpX3wFnY5FqyN/zBYSeXcFQRDmg1WQsWbZmjhc/ZGW9dsuwpVSu/NKFJoS/jL3z8Jz+TnjS30LwjJAKXCcGD+QrvxCIu+uIAjCK0RZcMWrNyz1bbxiqvWY9pSFXqUOoTWsPWc7nZZF/1oZ5DGfnLd1MwNrV0+Z/OVKHMPRwxbr1q+Cb2aEV0S7DUFg0VeXMO5CIqIkCMKKQCnT0V2OWNbqSDlyKxqvGtO3ceeyfa/PBK2h06pQG7iMyTGb9Vt8HBkDPS/EMZy7eTNjJ8x8SsLCEUXQNzWBV9GsWbuKfkGF00ZrCL/3NBvW+jirvADPUiOiJAjCikCp5Zvd5nqrZxD7us0BcajoW7+TKFq5/0XoGPyOy5rNO6j2X87ApovoWxMxdL6PW1mun6SVg9bQmrDYMLAZvw0XXSGTzi4kk2NQHZkgjuHKV0erZp4z4fQJfGjteYqpls2Vl0oa5kIjQXJBEFYESi3fqE21BsMTpvO40jswlg3rz/EZOepQ7dtJpR5z4qVncCvBsn5tUWgRBg4bL7gQv2UR+Iqaq4njmMENAdVGvKzvf6UQhXDxRZs5cQRowOAGWD+08j/3y5Wxk7DRmiCeVKw7R7P1/Bhr5X5/IbwC4hiqz+zlxQN11vQrXnvFKK4rX/osNCJKgiCsCGxHE0WwHGe/qTZMtMtvKyq1lf8fl2XD2qGQMAiZGrPp23AJOlZ4tRjX0wz/4FlsO8J2Fuebba1Bx4o4togjmziyGLroAqJAEQaKMFS42qQOKhXTvy7Eq8YyXmYe0BqCjqI9ZXHRhRuZmoCpcdhyHvStEUGab7Q27+/5feMcP2bRF8LarZrLroykUMZZysQENJ7bz6EjFVynyqt3jLF+zSpJYVgByK+dIAgrAs8z32aryHTklxOWZeY3afQNMXzs0FLfzrzhuNC/LqJvbYTfVvhti9BXrBm6mCBQ6Nj8LGxbY7sa29Ec+v7zKKWxLA1Ko9CgIO1PZxqpQaNAKyNCWqFji80Xn0ccKeKIZKmIkkiibRthth0NWuPVYur9GsfVOJ6WTvs8oDWEvqLTsrjkko1MjAJVaG6D5gCceyF4laW+y9VF4Bs5Oq85wYnjihoQVhUXXBixdp2WCNJZyOQEDLy4j4NHKrTaNvY6iysuGWf9muUd2V+NiCgJgrAicF3TKe90oFZf6ruZzvrN8MzjMDVmUe9fXWXjlIJKTVOplXMfoxCiUJUemy88nzg2EhXHRoJSO+pOTVQKlKVRlpFNZZlOoeOa9CLLNlJklhK9mG/i2ESLAt9ix46NtCahPQWqAvXNUK2bz3WtIe/9fBFH0JqCqQm4cHCC8TGFbsP6psaraHZeEdM/INJ/NqE1TE3C6IjF4PB+jp/0zN/OQYcLt02xUQo2LCkiSoIgrAiUgr4+zcsTy1OUXBe2Xgxab+Lw8cPU+1aXLPXCdkyEZ/mW2RDAdM4DX2Wpitt3bKQ9BX4H7LpJHbVsM9ao1gCvKmI0HwQ+tFvQmYKL148zMa6YnFDUXRga0DSams3nxDT7tKTVnUV0OmSfhbVHnuTkqEscK9YMBPT1R5y3ZZTBvlAiicsE+dUUBGHFsG6DRh+doE1zqW+lJ30DsPUisKxNNPrhxYOHZJyMsChEIYRBLkM7dm6k0wa/bcpKO01Tlc6tmOWaDSZi5HpLfecrG63Ne9xpGSm6ZP0EU1PQmlLoEAbqUO/X5ouUbTF9/ZpqbanvWlgM4thEiiYnFBuO7mN80mFswiEIFY1axIZmSF9/yAXnTokYLWPkv3BBEFYMGzfFPPesQ+iYb76XI/1roH4lHHoB1jQ2s2YjPPvsMI4nURfhzIgiiEMjQFFkZOiyyzcQ+GSP2AG334wf8iomKtS/xiy9qhnfJZw+WkMYmOhb0DHLSzeO02kr2m1Fp23mWVlX19TWQrWmWbtOU2toajV531c7cQydNrRailZLMXR8L1Mtm8mWTatt4ziavkaIbsDmDR0uPn+S/kYon4sVhIiSIAgrBtcz38oeOzqJX20su6IOKY5rIkuTY3D8MAw2hmj0wQ+eO0K1EUmUSUBr08mKQ1O4IorMGK/Lr9hI4JvOeSpB2jEpcq4HjmeWXgXqfWY93V6uvw/LGROJoySdl26YoN2GdlsRdMycXI0KVKqaatMUlunvj6lUoVbTVCRVcVUT+NDxod1SdNqKTcf3MdU2MtRuWygFtWrEQC1C1WDDOp/zaxGNWkStuvpTsFc78t+1IAjzhlqEsSpbz48ZHVE4ExNMNprLWjoa/eYRBDB6DM7bZgbMe1Vo9MHTTx/Gq0jFttWA1hQq9RnxSdcvv3IjYZB3ysPQrGsNVs2IteuZpdYmWpoKkOPlhUyEuaG1eX+DIHm/E/HcMTSO31H4Pvi+wu+Yn5ltQ60ClYqmOmCW/QMmRa5SMSIkaVGrkzAwY4Y6HfN56LQVQyP76Pg2Uy2Ljm8TxeA6mmolZqAaYdc0m9Z3aFQj6rWIakXmaFvNLOMuhiAIwnQsCy67KuKpfTbeyUlGvQbNgaW+q9lxXVM9bP1m04GbHDfRpgvO20Rr0rSpNcyYkX17j2Tlrh1XBGoxMWXKTedZx0mJ8kIFvziCK67amIlOFCbSE5j0OBKhcRxT6MJxzbqyzM/XcZP96TERoDkTReZ9Tt/7TDgD2LE5F6DAVwQ+oKHiQtMFr6Lx+sx1mn2mulylAp6n8SpIIYVVhtZGktPPQ3G5ZXQ/Hd+i1c4lyLGNBNUrMWu8iFolZk1/SK1qJKjqxVJ17ixG/jwIgjCvLEa/3rZh5xURL79oEbwwSU1pjqsm9b5FePJXiO2YsSP9a8y21mYgeGvKlGa+5JKN+G0zFiKOTSfOTcadOC7sfeKImUvINuWzzePs/sbbTEhr3i8zMa1ZpultxX2XX7khifiQLaMwiQbF5lqQztmUzhOVVPhLpKZSzYXHdsB28/Wz+ecwF1IRTSUnDMsStHPzOIGvTDpcoAiTyJCOAQU113zx4HoatwmuawolNJsaz9MmDTERIBkHsnqIoiQ1MlAESaqk7yvOGd1Lx7cIQouOb9HxFUFgoTEC5LkxFS+m6Wkqbky1HrNu0DcCJBIkzAERJUEQ5hEzyehioBScuy1maHPMSy9ajL84iRto1q3XPD/RR3UZlhDvhVImktTrfoPADCAP/GQZwI4dJo2rO4VLqSRCYeWdeyt9WPDE40eTSWCT+YvSOYxUPr4ii14pUMnPsXveo5lIBUMXf/zZpLJdx9MJZtM26SM2ba949YZMWnScRHjSMT2ZEE2XG8hfu7ISwSm8D3byXqTjedJjmRBZ+bpE8mamKJeZcIb5/igywhMmomMeKosEgfk5VBLBdF2NUwcnkZ56PZlE2EmkKNnvuEv7uoVXTlocwwiwkZ4wqdgYBHDu2D6CUBGEFn6g8AOLILCIYvMlnOvGeK6Rnn4vBg/6GhGeG1DxYlw3ppLIkYiyMB+IKAmCMK8sdv/SceH8V8WcuzXm+HHF8aMWzolJrElYuzbm2dE+MzdMZZFvbB5wk2/PZyMdj5E9UoEodGLjGK7slo9ENrKoSyYwZlYkHefXNytdEtRFJltW1z5lPhPKKghaSdbKSzPxLDiJ1KTiVzyWLe38uGVJBOFUpD/z7s9JFllLROfyLeNGbKKkUxsVRCckmzbLdaBqp6mEGqeWrDtGcup1bdbdQptEfuRntXKJ40LaafLZSOUnDBPhGTfCEybCE4SWORaaPxSWMtLjOkZ6mq7GdWJsR1OtRniOiQa5jjby45l1+QJDWGwWVJTuuusu/vZv/5annnqKWq3GG97wBv74j/+YSy+9NGvTbrf54Ac/yF//9V/T6XS4/vrr+cxnPsOmTZuyNgcOHODmm2/m3nvvpdlsctNNN3HXXXfhSGKxICwrlvL/MMeFTUOaTUMRUQQnTyhGTyrW6wkmDytiBxpNM8nj00f78KpQqZi0tpX8n28aSZJv21cfqeTGUUFsukRYx2Z5+TnjidiYNMNUesJIZVGeVH5RUHFyuXRcje2l6YPajKmqa5NeaOt8XFUiQGma4Ur+vTlbyeQmSCotFqKAYZhHALdO7COMjOgY4TGSE0UmugNGdmzbCI7rauqOxnGM0HhOTL2qjeg4ufB4qRCJKAsrhAU1jfvvv59bbrmF1772tYRhyO/8zu/wlre8hf3799NomElQPvCBD/CVr3yFL33pSwwMDPDe976Xt73tbTzwwAMARFHEDTfcwNDQEN/+9rc5dOgQ73rXu3Bdl4997GMLefuCIJwBapFS72bDtmH9Bs36DeZeogimJhUT42a5rTFBq6Voj0KooFYzHcNKRbN/uA/XKwzGd/OUNkEoUkwH1FFXWmBRbLrSBS/bMk4cm05pJjVZpbx8Oysi2SU2tqOxkyIElmW2ASqeieLYidykqYe2bSSnuE9Y/midfxbSz0UYqlyeo1yE4xi2ju81chNZRJGRmzBKBcc80o+UbYHjxDi2ifpVbZ1Jj2Ob1MdGzYiOk8iO42hzzBbZEc4elNazJVPML0ePHmXjxo3cf//9/Jt/828YHR1lw4YNfOELX+Dtb387AE899RQ7duxg9+7dXHvttXzta1/jp37qpzh48GAWZfrc5z7Hhz70IY4ePYrnnXpa8bGxMQYGBviifSF1Jb/ZgrBQvKAv4nA8wB36fwBw/6MvUasv05lhyScLnJpSZo6MDqXqWb6fj6lIhcl1ddLxNN/E7z/UV+qAdo8PSsfLiGgtPHExlbC4HpX3Z+LSte/yc8aTTqj5pj3tqOZRHZXJTylCA6DyMVDpeCfL1smy8PmwdFb0wezTpeNpkQ6nUERCPjvLl+7PSJiWiI+7CoYkn6k4hm0TqdCYEvJRnIhMrJIojiKOVRa5gTx6YyeiUlzali5JTHrM7IuzbdfJ90s0UDjbGZuYZOuP/TtGR0fp7++fsd2i5q6Njo4CsHbtWgD27NlDEARcd911WZvt27ezbdu2TJR2797NFVdcUUrFu/7667n55pvZt28fV1999bTn6XQ6dDqdbHtsbGyhXpIgCAUUelHmUpovLAtqdRNNYob71jopMxuQVeMy6Ssqq9KVDlpPU5/CVp7HHyXXSYsL5B1pk+JkF8bdWNn4G42lYO/LfdPH8QCovPNcHO+TjgciaZPuSzZL24VmvV/3DDuyogzd+zTl4gzFdU15DFTX44pzx42s6K5qdUWRKVawK46z0j2kJcG2wS2OaVKJvLjl99vIrHkxrgtWxciwSjqnpQIZ3QJUGCMlLA+yaF46t1Wcyq3KxSbK9xWjflEE2yb3ZeJirpOLTJQKcyI3cbGQSPZ5MfJiJ7/nFcfsSyUGC6penAhxuW0mP6kAidgIwpKyaKIUxzHvf//7+eEf/mEuv/xyAIaHh/E8j8HBwVLbTZs2MTw8nLUpSlJ6PD3Wi7vuuovbb799nl+BIAinwiIuiVIUzdJ4haCUGctUqUBZH04thMVvm9MB9FHY1VnLOv3lDlscG4GICxXhsmIM3QUYmC4kWWU5nd9pdixdn+PrNyvlbVU4rlShml4qdUmjrAhDcoKVSZ/p/FnJftsBt7g/K+6gS4UeMplUuVSWZFOJuCw1WUpi4fMdZVG98udclz7z5WPbJvZmkhJn5ybRmkIUJj+3HIVJsa0kkmdrLJVLiZfIiGWbLyYymUlSG3udk7a3rVRmyNblMycIy4P0C41ipDZOorhRbKK2fhDM6VqLJkq33HILe/fu5V/+5V8W/Lluu+02br311mx7bGyMrVu3LvjzCoJQZo5/h1YtShUms8yyhGcylJUTiROWDyXhKETa4h5ynUbeinJelBqdXO+8SSMomYBoM+luJiWpvCTr5jlyien+JCtMpCUVXyO0SYpYYVsl0pG2URZ4doxdMTJuJVKcRmystL3dtZ1EZEVeBGF5kf69KUqMWZJFaYv7TFTX7NOPP0QUW4SxRRRbpl1smb9HhX1hXP6lty2NY8XYVoxjxVjJ0rFPzumeF0WU3vve9/LlL3+Zb37zm5x77rnZ/qGhIXzfZ2RkpBRVOnz4MENDQ1mbhx56qHS9w4cPZ8d6UalUqFRWYC1gQVjhKGJs8jDS5KPP4g1U8NyYl/ouy8ZcOMmEqWkqk+3ImAxh+dCd8peWVC9G8rTOJSSVFXS3rJh5obrHRJ0/tTcREEpLHYOmKCiFKItWhYhMst7DrRVp1E2jlJETuxClsy2N2yUnltIlgbEscFRcSgMtyknaxrKmn5cuS8IjaWOCsOzIUk8Lf4fMtpGT4nYUFb8gyaO6PP4Qke4WFrPUOpEenUtMrMt/DEyUNjZfnKgY247NPhVnx2wrxlZm3XOibJ+TnldsZ8UlMbKtmb+AHGt1ZjxWZEFFSWvN+973Pv7u7/6O++67jwsuuKB0/JprrsF1Xe655x5uvPFGAJ5++mkOHDjArl27ANi1axd33nknR44cYePGjQDcfffd9Pf3s3PnzoW8fUEQThMjSfkfpvPOaWFbFkGg2Dq+LxvAnFZj8tNQeFdFJiDrnKXjRNIBy5YqpGaRdPSSzlyxY/h8/fJs7I6l8vl9SildxXSywsSrxfa9JmQtLoupZylqhrbpwZkmcVU99k0bU9Sj0znXjuhM6XbFuZJ6tdWF7V7zKunienZMldMBC+f2nLepsB3H0yejLUZG0sd5k/uyc9P/6LPnLUiHkYqiaJSFhK5rzETxM6m6xCD9TLmqLCHm86ez8ywFWGSfZcsCVC4j2dLqOq9wflFalCqfI1IiCMsTXfj7FiVR2DSSkv396vEFSSolpTbpFzGJqMQFWUmjwKmsxIXHTMICZNJhqVxerIKMFPen8mJZGkdF5m9SQW6yc6y4S3rK564EFlSUbrnlFr7whS/wD//wD/T19WVjigYGBqjVagwMDPCe97yHW2+9lbVr19Lf38/73vc+du3axbXXXgvAW97yFnbu3Mk73/lOPv7xjzM8PMyHP/xhbrnlFokaCcIywyak2LPfvKFDozb38FBa7rb8bXoSgo/SdVXqTKedXa0LaURacUFrb9ZBTlOD0k558dt76O6Aq6xN8Vi2jpomCLrrP53ivm5JWBn/NZya8hildF1PWy8dp7zPsjRWj7ZWccyT0kmURJeOKwWWk1+zKBypxBTPywU7Fw7VJdi5cBejMLr0GgRBWB7kUdr8b3YaaU3XjSgUisDoYrvp0dpitDjdz+MPlWTD7C9vZ/8HkaerxtrqOmf6a8j+LhXlRKVfCKZppLrncauHqBTbp7Kisu24hwjpFSUtS8GCitJnP/tZAN74xjeW9v/FX/wF7373uwH4xCc+gWVZ3HjjjaUJZ1Ns2+bLX/4yN998M7t27aLRaHDTTTdxxx13LOStC4JwBlRpoWnw9+/7M7b9+KXUq6fXu0zLJa8enZiZaRGa0j41bd+0809x3SIzdfJ77S6KTve5IgyCsHwpfuGTykP25U8peptvx4V1dC4TM7XJZaDYphw9Ttur7xnBSJ+zKBnT96XXKUgPqdBYPfbN/IcoFw0KkmAqslqWTiL+uYQU91sF2VCAbcVm7JwqSkqcR4rTqC+F5+mSFavwXN0iJH9Plz8Lnnp3KqrVKp/+9Kf59Kc/PWOb8847j69+9avzeWuCICwANiGRclnbUOi4iVJTS31Ly5ZpKXklVr8oCmcHM0VfixHW7v3lSo29IrtFCQB6VXck78BD3rHujh6X76F8jkn/VF3PnUeVUxlIO/3pOZkMZG2Lz6PK16AgCenzzdhutmOn/lmYapTFCGsuDVm0tyANFKO5PY6rHvJhZCMVBiMYeSS5K1rS4/qpuKgZnqN4bi4piHgIC8aizqMkCMLqpkKLGJtmtcPIdx6H8y5e6lsSljnTUhO7omozdaih0LktXa/csc32dT9HsePc9bwzpVqWnrNHJ3va+XQ9T7FdVwqn+t5Dheup2ddL1zjV8Xw9v4/CeMDC+aX3j+nXKr+XvZ+r+7wzIe2Qp+tAqbNttssd/JnamJVCp7vQ1ipETbulodf+8vPm49CY4R6mSUhpXyHllOlLTvMa1hzaCIJw+ogoCYIw7zQrHV44vjaZOyXPG88qhdE1gLXwrXC5XbG8cflb5DT3vPiN72zf9pY6gnR9U30GHU6y63V13rOV3j2T7v5j9/imae1fQYfTPN+pe0jdzzHTObqrU929v/tavTrN89GRLlLsVHdvl8ZLUVzXpba92tHdQe66bq/OdPH601IYe6yn5xTHZDHH5zDXOdXxwj11d+R7iEh60uk+17S2pxCdudynIAjCckBESRCEecNWMRXdzsp73v0XB6e1KX77WcwR75nWUcw1TzpepRzzaekjp/dtL1n76Z3ltBNnzit3AkuvZ6YOZ4+23cdLTzAHivd0yrbzcL3uey2PVyq/P937e+0rXmOmjnSv6/Rclw61IAiCsMCIKAmCMK9UVIsp3+NHL3mOKFalgbHyjbEgCIIgCCsFmdZREIR5ZQ3H+Kc/eBjHjqm4EW4ygVxx3iJBEARBEITljoiSIAjzSj8nGdODTPnuUt+KIAiCIAjCGSOpd4IgzCt1NUmTcf7fW1/mnZ+6atpxrTEzhpMsNdMm7ksn6qP7WGGiv7QIQ/c+UDx05z+jsSgM2yc2U5sm+4pFCYr7isdKo41KBQ7y4gV52/x63ZxOGO1UY4a6t4vti+OAdI82PcYOFd6BcpuZzy9eY/r5068xl/Pper7X/s51hehj7zFfvQo2dF8/3d9r3FivQgK9zi2d0z2OapaCCPlzd1+/XBRhpnuY7blnuoYURxAEQZhfRJQEQZh3zuNf2atfy5/dcsjIDDZmNg2rZ0U1KzlqdCZOlhqVzsGRPcxxShqkC+ebNmDmdIJcg1L1sZLjvY6l6+ZY8XhKst2jcEPxmrNtz4UZq87NIl1FwSs+e/e+8nrvdrNdo9c9dB870/PT9Yc/9s+nuAazHJvb6z/T1z7rc/cQ6FM9TyroM93bbO/b6VD+LBcErvSZL361oHu2y8Uz/2qh3H7m82drU7y31/3Oj2cVAOdSHhxyaexV/GO2in+9qv0VpfZUVf5mvfYMVQ5FYAVh5SCiJAjCvFNXk1zJg/hUsIixiEqiY2XaFEmHQVg9LMJnuTRXUU/JKkvh9P295WvmqGpvsZs9Mttru/h1RN4mLowASPfnonx6z1Fs032v+fN3tdEzP0/3+9J9jZne99Ohl8CWt6dL7Iyiq2aW1GltZ73e7G3TV999n6/9neuS+yi06xUR7RX57G7fI1I67ZzCW95Tfru3i+1njObOfB/Fc7vP636txe3ivl7X7n0fZaTa59IhoiQIwoJQVS2qtJb6NgRhVVHuCJ5+tFLoYh47nr0kdjYpLepJcX93u7RNL4EtXnsmce6OUM5Fmk/1/KXXXRDcXvdx6uhtL6nO2892TvH4TM8DuRBPf635OTO/p9PvpVei7yuV5tOl+ydbZoZU5FnbzXa9uT/H7OeUz4OyMJ7pNaafc2psfWwOrUSUBEEQBEEQXjEiscuYJYrE9JqoXE9Tl5mO0XN/byHrfY1TSdts9zXbNU7nOWY6b+Zj83293gRz/CJXREkQBEEQBEEQ5pleE5GLRC8Ppojm1E7KgwuCIAiCIAiCIHQhoiQIgiAIgiAIgtCFiJIgCIIgCIIgCEIXIkqCIAiCIAiCIAhdiCgJgiAIgiAIgiB0IaIkCIIgCIIgCILQhYiSIAiCIAiCIAhCFyJKgiAIgiAIgiAIXYgoCYIgCIIgCIIgdCGiJAiCIAiCIAiC0IWIkiAIgiAIgiAIQhciSoIgCIIgCIIgCF2IKAmCIAiCIAiCIHQhoiQIgiAIgiAIgtCFiJIgCIIgCIIgCEIXIkqCIAiCIAiCIAhdiCgJgiAIgiAIgiB0IaIkCIIgCIIgCILQhYiSIAiCIAiCIAhCFyJKgiAIgiAIgiAIXYgoCYIgCIIgCIIgdLGgovTNb36Tn/7pn2bLli0opfj7v//70nGtNR/5yEfYvHkztVqN6667jmeeeabU5sSJE7zjHe+gv7+fwcFB3vOe9zAxMbGQty0IgiAIgiAIwlnOgorS5OQkV111FZ/+9Kd7Hv/4xz/OJz/5ST73uc/x4IMP0mg0uP7662m321mbd7zjHezbt4+7776bL3/5y3zzm9/k137t1xbytgVBEARBEARBOMtRWmu9KE+kFH/3d3/Hz/3czwEmmrRlyxY++MEP8hu/8RsAjI6OsmnTJj7/+c/zS7/0Szz55JPs3LmThx9+mNe85jUAfP3rX+cnf/Ineemll9iyZcucnntsbIyBgQG+aF9IXdkL8voEQRAEQRAEQVj+TOmIX4ieZXR0lP7+/hnbLdkYpeeee47h4WGuu+66bN/AwACvf/3r2b17NwC7d+9mcHAwkySA6667DsuyePDBB2e8dqfTYWxsrPQQBEEQBEEQBEGYK0smSsPDwwBs2rSptH/Tpk3ZseHhYTZu3Fg67jgOa9euzdr04q677mJgYCB7bN26dZ7vXhAEQRAEQRCE1cyqrHp32223MTo6mj1efPHFpb4lQRAEQRAEQRBWEEsmSkNDQwAcPny4tP/w4cPZsaGhIY4cOVI6HoYhJ06cyNr0olKp0N/fX3oIgiAIgiAIgiDMlSUTpQsuuIChoSHuueeebN/Y2BgPPvggu3btAmDXrl2MjIywZ8+erM03vvEN4jjm9a9//aLfsyAIgiAIgiAIZwfOQl58YmKC73//+9n2c889x2OPPcbatWvZtm0b73//+/noRz/KxRdfzAUXXMDv/d7vsWXLlqwy3o4dO/iJn/gJfvVXf5XPfe5zBEHAe9/7Xn7pl35pzhXvBEEQBEEQBEEQTpcFFaVHHnmEN73pTdn2rbfeCsBNN93E5z//eX7rt36LyclJfu3Xfo2RkRF+5Ed+hK9//etUq9XsnL/6q7/ive99Lz/+4z+OZVnceOONfPKTn1zI2xYEQRAEQRAE4Sxn0eZRWkpkHiVBEARBEARBEGAFzKMkCIIgCIIgCIKwXFnQ1DtBWArausaLXIhDgEebCi0qdKjQwsVHqaW+Q0EQBEEQBGG5I6IkrCq0hufYDmh+9MM/zL989FuMso6OruJTQaHxdAdPdRKJSh8tPMw+W8VL/TIEQRAEQRCEJUZESVhVtKkzoft5/yc34NhHufRT27Njcaxohw4t36UdOLQCl3+545tM0oevq3SoEmPhah9PtfHwM5ny6FChjUsHj45EpQRBEARBEFY5IkrCqmKcAapqCseeHhWyLE3dC6h7Qbbvok9dVmrTCWymfJd2YGTqW7ffzwQD+FTwdSWLSrnax1WdLKXPSwQqXXcIRKYEQRAEQRBWMCJKwqriMOfys3dcDoye0fkVN6LiRkAbgAs+dWXpeBwrOqFNO3BoBy6twOVbt9/PGGvwqdDRVUJcLOIkMmUEys0iUn627dHBUqu+6KQgCIIgCMKKRERJWDUE2mVKNxkaGEdrFiSiY1mamhdS80JSmXrVp64otYlilYlUJ3SyyNQ4g1lkKsBDozKZMiJlxkgZkfLzhwp63IkgCIIgCIKwkIgoCauGFg1cfMZbHg8+dz4VJ6TqBlTdkKoTUnFDal5AxTHLqhNiWfMf0bEtTaMS0KjkgtMtU1pDJ3Ro+Q6dMEnz+4P7mKKPUdZlMhVhY+kIDx9X5dGoNDKVPlw6UoRCEARBEARhHhFRElYsWhs5AghxOai3EeDyxEtb2Dwwxrn/9nLaHZuOb+E/8jBjrQpHxpu0fYd26KI1VJyIihtQc0NqbkDVM2KVSlbNXRiZUgojcG4emTr/U1dNaxdGVlZ4wg9t2oHLA3fcyxRNRlifjZvSKBwd4ql2KRrlFaQq3WeraN5fjyAIgiAIwmpDRElYdFo65gE9zlFCftlad8bXOcoWnteXMEEfHWrE2uKN/98L2Dx4nG1vvQrPDYHQND738tK5WkPHt2j7Fu22Ratj4z/yMCNTNdqBQycoy1QWmXIDE5kqLKtuiL0AMgXg2DFN26dZ9bN9F3aNm9IaI1GhQydw6YQ2ndDhgTvSsVMeofYI8IixsHRk5EmZqn7lcVN+VozCUeGCvCZBEARBEISVgIiSsOgcIuBP48M4KH5aDdJU9hldJ8ZiUB3n6v/j9dQ9n4vfup21gwFKnQPMLi5KQbUSU63E0JfsnEGmWh2LTsfIVLDnYSbaFY6NN7LKeLFWuHacR6ScMFtW3Dz9z+1RiW8+UKpQhKLWyfZf9KnLp7UNIotO4NAJnST1z+Vf7rgvq+wXaJeASiJUsUnzU0FXhCqNTgXZuhSlEARBEARhtSGiJCw6r1IVzsfjeXy+pcd5qxo8o+vEWKA1QWRz1dsuplad36IHJZlK6SFTfqBod2zaHSNVvm8x+egejo03sshUFCtsS1N1AqpeWIpQFcXKc6IFLSvu2jGu7dOkGKG6Ylq7bqHqBCZKtfvO+xlngACPQHuEuEnaXyJTyi+Mm/JxMqHyk20pmy4IgiAIwspARElYEt5s9fN/x8e4Nx7jrdbgGV2jTY3X/NYbOTymyzKziCgFFU9T8UIG+goHLthRahcEirZvmQhV24yb6ux5hLFWNZEpBz+0jZw5QRKJylP8iuOmFjLVL6WXUAFs/9TO0nZalKIdOPihk6X9/csd36RFgxCXIEn7i7CxiI1UKb80lqrXuCoZSyUIgiAIwlIioiQsCT+m+vk8x9hPm2HtM6S8M7iKIowtqm647KMUrqtx3Yi+RgQkka/zytIRRYVxU0mEKtjzMKNTVQ6HrhGqQqpf1c0r+BmJSoTKXZzoFHQXpcjpnsgX8rLpndAhSISqHTg88NH7adHIolS9xlI5hahUMTqV7ZcS6oIgCIIgzDMiSsKSsE45XKXqfFdPca8e55fV6Rd10CjiWK2a8TG2DfVaTL0WkxWh2Do91S8IFe1OIlO+GT/VefQRRls1OkmFvCCypkWnimOmFqMQxbTX16NsOsAlPaQqTf0zkbZi6t99TNIkwCPUbiJVdjKeys8iVcWUv+55qSRSJQiCIAjCXBBREpaMN6l+vqun+EY8xi+ptajTDH9EOGit8JyQoydc2h2bMFImKtOxCENFrBVak01AqxTZtm1jJEsBGpRlOvOOrbFtjaU0tqNxHY3nxLiO2baUaeM4ZmlZC/P+9EIp8FyN50b0Nwsd/vPnFp1KS6R3R6eKaX2VJM2v5gZ4Tpr2Fy1ImfSZmDn1b/ZIVfq6/Mhh90fvo0UDH4+gMMmviVQFOMrIlENQGFPVFbmSSJUgCIIgnLWIKAlLxi7VpIriEAFP0WYHtdM6P8Yi1oBWPLJ3gPVrAmxbU/Uijq7fiesmElMQJHS+3YlMJxsSV9IQhkYyzpvcSxBbhG1FGFoEocIPLKII4lgRRSqrq5dKk+toXCc2aXZOjOdqHCfGczQVL8bz4ky4HEcvaFrcXKJTkBaisBK5TOac2vMI4+1KUibdlBuH8pxTaVRqsSr7zcZMkapLu6RKawjjvEhFENn4aSn1P7yfNnVC3K7JfmMjTz3GVEmhCkEQBEFY3YgoCUtGTVnsUk3u1ePcG4+xwz49UUqJtIXraPqvvSTbt425dthnipLsxAZmGzkVRUaswgDCUBGG0AlhMlAEAZw7to+ptkMQWPiBRcdXBIGVuhquG1PxNJ4b47ploaok+ypeTMU1YrUQpNEpmHnsVBzn0alOJ1n6NhN79nA8bGRRnDC2ssp+WbqfG1Jx8khVmgK4mNGpFKVmjlRd3CNSFUZWVpyiOKbq28mYqrRQRYhLiINCY+vQyJPys9LpJkoVlATLo7NqUkYFQRAEYbUioiQsKW9W/dyrx/mWHudX9UbcOXwlrzWMM8ik7iPSNhqw7cXvdNq2eVQqUBaudH1Hz1+wVK6CQOH70PJhPFScM7qXyZbNyTEXPzARLN83UTNLYQQqkahUpiqVmKpnlhU3xnNj7DOblmpGLAtq1ZhatUs+L9je9bpUkupnZWIVPPIIJyYbeWpc6KA1eE5UHjO1RMUoZsOxYxw7ntOYqjhWdEIbP7LxC6/1gTvupU2dcbxSBUBTUj0sRavStL/upUSrBEEQBGFpEFESlpQrVZ212Jwg4hE9yS7VnLFtqB2O6M18n8s5qofQWGw+0cfaZovKEkQozhTHMY9qrVuudlIFql3twwB834hV4MOYbwRry+g+xiedTE78wAyWcmwTpaoUBMqUMI/MPs/MDeXOc/qf42iaTkSzXhg7tXV6+ltx3qksSvXoHkamavhhXirdUtoIlJeURk/EKq/yt7jFKGbDsjQ1L6RGWJr098JPXTmtrdZkKX+d5LWm22mxirBQrCLCRqFxdFLlTwXYJklwRsFyCCRiJQiCIAivEBElYUmxleKNqp+/1Se5V4+xi5lF6UUu5CDnse3f/wibt+6g2TARh6gRMtjfmfG8lY7jmkceqcojVh5k75jWZanyfZjsKLaM7GV80ub4iJsJVRCqLEpV9WKq1agkVNVKIlSeGXM1X8x13qk4hlbHopNU9kuLUYy3exejKEalsjFTTliag2q5RGSUgoobUXEjoPy5nalYhV9IAfSTsVV+5PDtj/YWK6BQtCIVq1ywUpmyCXEIs22JXAmCIAhCjoiSsOS8yernb6OTPKQnGdcRfap37liEzY/+n1egOcHUkM9511+wyHe6vFEKXM88SlK1bSc1oAYMJHujCPwOdDpGqE70EKqObxFGCtsij0alqX5JVKpaiYxoVeJ5rf5nWdCoxTRqhXS/WUqldwrV/fxHk4l8QzsrRqEUpSjUco5OdWOn0SovnHasu2AFmDTAILJMsYrIJgjtbN0PbXbfeR9TNM3YKu0QJaoUJ4KVpgQ6qihTQSZaRcEqbttqaSZ9FgRBEISFQkRJWHIuUBUuoMJzdPiWHucn1eDMjZUGrVCSVvSKsG2o1aFWn12owtAIlZ+k+020zViqkXGXzrE8dU4DrqONPHkRlUpMLY1KVaJk//xHp3oWozh/ejGKdqEIRbtj4T/Su1S6Y8XJWKliQQoTnap6y2Ps1KmwLE3FSiNW0+kVtYI8cuVHRqyCwvruO75BhyohbiZWkXaS7TSCFecCpQoCRVSSK6sQ3UplyyaUVEFBEARh2SGiJCwL3mT18Vzc4d54jJ+0BmdopQCF1mpZd1RXE+l4qnqjmPa3kwbQSPdok+7ndxSdDox3FMd9GDq5nxOjvaNTtaqRqFololo1S7M9vzIFJjo1rVT6uXMvlT7WqhYmv83HTqUiVStI1XKPTs2GXRxn1cVFn7pqxvPiWBHGVhbFCiKbsLgeW3zno/fSoZpIlptIlolmxZhQpKWjPEqlwkyyrEyookIEK8JKtu1sKVEtQRAEYX4RURKWBW9U/XyeYzxJm0PaZ7OapTC3fPO8rFDKVP6rVDRm2FH689lOlUJ0KoBOEp1qtWGko9g8so/RCSNT7c50mcpS+xZYpmBupdKjiCSKVh47NTJVS+adcmiHLlqTjZ2qFuaZKo6dqnnBksw7Nd9YlsazIjyn8L51cemnpotpShSrRKqMXEWRRRAb2TICZvOdj36DAC9JEXSIsIl0ssTO0gaV1smeAFtFWQTLzlqGXVGuXLhM26Sd6h2NEwRBEM4uRJSEZcFa5XCVqvNdPcW9epx/r9Yt9S0J80xalKJRKkphClL0J3vSVL9OZ7pMtdp5ZMqxTZpfHpEqSlVEbZ7HTKXY9umNnWqnQtW2aD26h5OTNdqBm807ZSldikil807VvML8U060JPNOLRa2pbGtkKo7c5tLP3XFrNdIo1phbGXRrKJopfsfvPPepOCFkzzsLLoVY2fRLTQFsYqwVJRFt3K5isptCkJmTTu2vNM1BUEQhN6IKAnLhjerfiNK8Ri/rNaipGdB4EO7rQoT25pOYRSBjntPl6sAZZmUM6XMN/62Y7Zt2ywdx+xLU+uWC71T/bpkKolMtduKiQ4cayuGTu7n2EmXVsem3TZjpjw3TqJSiVAVxKpejfAWICoF5bFT/c1CZKKrsl8671Q6iW9p3qkRh3ZSiALyeafycVKFVD8voOJEy6qy32KTRbWYPRK0fZbIFiS/W1plkmWWNlFsEaUylojXgx+9Bx+PmHqiRal4mQhXMdIFZgxXli6opguV1SVZVraen2dl65GM6xIEQVgEllEXSTjb2aWaVFEcIuAp2uygNq2N1iRjlFZXB6HdgtERxeSkot1StNvQaSvCwERhXBccV2eT3FqpCPWINGgNOlbEsVlPxSqKII7M/jCEKB2Kosz1bcd8u+84afRH4yVV9BxHZxLjeXmbpeiYZ5GpZlGmtlMDBsnHTHXaik4bRnxF7eTeZLxUhVbbzsqjVysR9ZqJRqVRqVolplaN5r2S37TXMcd5p9LJezunmHdKKfDsiIqbi1M+oW9ExQlMWXJn5Y2fWiwsS2Oh55QSeWmPObK60RrC2JomWlFcFLH8+IN33otPJRu7lQmXzsUrKsiX0jqTJ/OIsVUv2YpKklU+Hvdoa/afreItCIKQIqIkLBuqyuINqo9v6DG+EY+xw54uSquJwIeDL1kcHrbwfejr1zQamudGm7gVcPuhUgXLMaNm5nPUhA1YGuLISFMrNOtxBFEAUctEbnYMjTM1qQgCRRiYyFYQmGhWKliep3E98DzwKhovGa9UPLaYUavimCkzQErD1p00yeeciiLotE2K31QbTiRRqeMj5ahUOiaqWo2oV41A1Spm/FStEmH3rmQ/r6/FlGGP4RTzTqVC5fsWncAIlf/oI4y3K7QDBz+Z4DYdP1Xpikx5Bbkqbktn+cxRyrzXcx2LdqqIV0oUq5J8RckjLmwXl3GsePBj9xIXJCyTMW2XpEyT/8At3SVSKo9wWTMsewtYr7axpCQKgrDsEVESlhVvTkTpW3qcX9MbcFX5K32FRikTVVqp+D68dMDi0MsW/QOasUqDxnpo29AG1m9enPtQKokizfJX4CR90DV2xCURrABaAYyHELYgHIPtm4xYdTqKwFeZVNmOEalKVVOpGKFyPTP5rJdsVyqLF6Gybag3ulP8TPGJQcpRqXYbjrcV7sl9jB/zmGrbtDs2UWxKotdrUSm9r16NEqFamKITvbAsjLxVuzrkXaXStTbV/Tq+mXjYVPmzCR99iPF2haNBIxOqIDK/e6kwZSKVrFfdYNox6fQuDmZc1+l9dbJjhrLw3eSylciYVoSRnaQlWiVJi7SJij105z0EuMRUs7Fe2VLnyYPp/iJFGVNoLNVLuorilQgWelp64kzyJtExQRDOFBElYVlxhaqzFpsTRDysJ3mD6qOl67ysz+cZvZP2S5tpVn1eddnKrEo1MQ5PPObQP6DxBxtMNcuBgpWCZYNng1ct7z9Bn/mrktQOdzEpfr4PUz4ELQhG80hVp6Pwk0lvwchUtWakqVLVVKuaas1EpioVk3K3GBSjUv1pVOq8HbjkP690/FinDSfbimqS3vfy4aqphheqbG6pWjUqCVQtiVA5zuKmwCll5LTidcUot02PZKRRKj+wktLpNn5g5VI1PrtUebYpROGWBCuk4kZ4doSzCir+rUbS8V6nw/Y5pCEWKY4FS2WsGBWLk+1iWmKsLR688xsEBWXSBSGLtJPFqXoLmdmrihJViJAVxaskbiXhMu1V6Zl6iNkqSw0XhLMZpbVe9b/RY2NjDAwM8EX7QupqgXNlhFfM/x0d5W/1SV7HAG+3foJn2cmoHmT7z1zMq354M/0/dAGbNusFT3uab1pT8Ngeh63nxbwcrEQ9Wjji2ESoAh+Cjql8t33TOO2WotM2IhWFRpTSyJRX0VSrRqzSpTdLVfnFJgyg3SF7DZtP7mWqbdNq27Tapnqf6+hsPFQqUmmKX7268Kl980Ucgx9YiViZiFUnsIgefZhOaCdCZZfS/2xL49lJNMoN8ewIrxCd8uwIL9sfybgq4bSJCtLVHQmLYys5Vt4fxRZaKx688xuJEtk9omS5jOmCMhWxMpXLpaw79bAobWm0TE0TsFzkSuPHumRNImaCcHpM6YhfiJ5ldHSU/v7+GduJKAnLjud1h/dGL2Cj+E/qXVz7629kYtvVbNh1Phs36RX7H8LT+22UpTnpiiSdCWlkKugYCfE7cOmGCTodaE0pAt9EunJ50lSqJFEpE5laThX+wgDa7TQqpRg6sZdW285kqpjaV4xEpUUnliIiNR+k5dPTSFU6psr3LcLvPkwnKU7hhw5+ZOMnlf8cy4yrcp0oiVhNF6v0mBSsEBYbrSlEv4x8ZSKWiFkxnTHuKWYFGcvWFbEuCpk9g5jFXREwI2fT9vUYKzZThCyVsxnlbYX+XywIMHdRWkbdhtn59Kc/zZ/8yZ8wPDzMVVddxX/5L/+F173udUt9W8ICcL6q8Coq/IAOz7KfN3s/TFyNGVyzciWp3YKjRxTxhiaVRUofW23YDtQcqNXzfaM0oQpqAJzIRKROdqAzDjvq44yNKo4cVqUKgpWqplaDWl2bR21polGOC00Xmn2aXgUn0tS+dgtOdBRDJ/Zx7EQ6RiqPSBVT+5ZqjNTpUCyfPo3zp4+jScWqUyhU4QeKIDBiNTLlZWIVRDZ+ZJciVib1L5EqO08FLK070aqY/FdYOpQCx45xzvC72LkW8kjRGmJdjpjFxRTGgozl6Yy5nMWx4qGPpamMaXRM5bGtaXKmpqUzplUX07O6x5hNj5zl0lZ4pp6iNpOcSVqjsNisCFH6m7/5G2699VY+97nP8frXv54//dM/5frrr+fpp59m48aNS317wgLwJqufH8RH+a5+bqlvZV44eULRP6BpVU/dVjgzLBsqNfPoA47SB3WgDhZgh2b+pfEO+CfhEmecsRGLqa5oVK1uIlC1JApVq5nI1GJLuuuB62n6+gE0bNtREqliat9oW1HvMUaqODFvrZpPxptGpCre8h/kXhKrRpdczSJWfhKl8gOFH5r16LsPMdGucCKslyJWsVZJhbpypKq07kTmuCPpgMLSoxTYSmPPsZx9L3acppxBPr6sGDGLZxhjVo6opePM7skmeO4VJdPaKmhTKm+F6JkupzVmQqVmTlmcVtijqxDIbBE1KQYirIjUu9e//vW89rWv5VOf+hQAcRyzdetW3ve+9/Hbv/3bpzxfUu9WHid0yE3RD9DA/3XTR+l/9U9yzpsvoFJZ6js7M77/tIVlw1ElaXfLkTgyqXx+B/w2XLphnFZLZREdpciiUPWGiUTV60aiFqvAxOkShmTzcXXaii0je5lqW7TbNq2OGU9kKagkUahUnrI5pRKpWsi5pJYLYagyoQqCNC3QPMLvPpxJVRDapXTAYtQqlac8BdAUs3Ds8jFL5EoQTos0rbE4piyXtIKclaoy5m0euvOeTMZ0QbNOb8xZ3FXwoxw9S0ezzTbGrHTurCmQImeLwapJvfN9nz179nDbbbdl+yzL4rrrrmP37t09z+l0OnQ6nWx7bGxswe9TmF/WKocdrGc/x7j3qe/ws6/+yaW+pVeE7yueG20uWulv4fSwbKjWzQPgOH0mLNUHTmzS4E60oDMKl7jjjI5YTE3m6XypOFVrmnomU0szIW+K40CzCc1mktp37s40wAYkVe2SuaTabRhpKYZG9mVzSXU6FrEuzyXVPSnvck3vO13MhMqaOj2+mb9g57Rd3eOsgsCkBAZJVcAp300mBLZNOmBoE8am4+VYMV4iUN0pgalQFSNXrh2LXAlnNWla45lyulUZIU9t7C1o0+Ws3NbK5i4rpjPmcqaItZMlIM4oZzouiVheFKS3aM2e1lie26xnpE3ErCfLXpSOHTtGFEVs2rSptH/Tpk089dRTPc+56667uP322xfj9oQF5PVqC/u1EaWfWf6Bz1mJItMZF1YelmUm/q0kaZMn6YMBsAZMOl+7DaNt8I/AJesnOHZEMTVl/sep1036XikKVdfLoqiEZZnxXrV6cS6pHVSYPpdUp52Pkzp+0qPVKVfuK84jVasmaX6JUK2E9L7TZdZxVj1KrUNeGdAPFGFoFSJYRq4mOx4nk0IW3XJlJq1NBUrkShAWmiy18TRL5ReZ69xlKTPJWZq+qNM0xtKxXNQevPMbWVpj95gznYw7m23MWVHMMslS3emJp1tCv3tetPS6K+fv0zL473r+ue2227j11luz7bGxMbZu3bqEdyScCVepjXjaYXj0GP/63OOcy6uW+pbOGB2DOgtSmM42bAfqTfOAvLiEs9ak8R2fgs7I9ChUJRkL1WiaR71uZGo5lQMvziVFOpfUbOOkOorGyb2MTjgMHzMi5Qd5ep8ZJ1WORqWl0c+G9D7LgmolplqB0hxWcFpy1QkswjCXqxOBKWIxU+RqrnLlOVLFTBCWklcqZ9s/dcVpn1McczaTmHWPQyvOa1au0FhMZ8xlLE97zP/ApIVAiuI1k5TZPaJmvSJqNuH0Y/MgZMtelNavX49t2xw+fLi0//DhwwwNDfU8p1KpUFmpg1mEjIpyuJytPMpzfOuRr/DmX/l3S31LZ4wGpA9y9qDUzFEoFcBEC45NwcW1cYYP5gJVrUOjYVL36o00jY9lKxJZ5b5Z0vv8Tj4x72iS3ndi1KT3tdsWGpPel1btK0ajVnIZ9PnglcpVEFgmahWqLHI10a5kUhVENp3QIYrNXyfXjvHsEMeORa4E4SzAsjTWGRYEOd1KjamUxXGP8WRdUhZG1rTy+cXJpkvzm+kuSSukME4XsnxsmaOPAc+e8r6XvSh5nsc111zDPffcw8/93M8BppjDPffcw3vf+96lvTlhQfC1x1G9mYNs49Uq4FH9HLsfvxvf74gACyse1zWPRj+cKAqUD6MtODIKFxcjUCHU66aMeKOZS1R1BVRQtCyoJuXXDb3T+9otZSoSthSbR/YxPmHS+4pl0NOUvjQylRaeOJtFqhfzJVdZCfZHH2aiXTEl2LOCFtPlynPzKoFuoXiFkati5UApwy4IZyOplJmMv9OLmp2OlBXnNOtd4MPs6wST8Pv/fMrrLXtRArj11lu56aabeM1rXsPrXvc6/vRP/5TJyUn+w3/4D0t9a8I8EmiX5/UlPMPljOq1bH3r5VxQmWTNP36Xk1Mn2P3Nf+ItN/z0Ut+mICwIphw49A2UI1C04cQUvHwULoomOHTQot0yxRpSaWo0jEg1+/SyjT71opTeB6Qi5WJqaUBhYt6W4mRbUT25l+MnPV7qNU6qGmWl0Jf7fFLLiVnl6rze4yyKcpVXCczntxqdcvEjp1QpMC3D3kuoTNQqpOLmUauKVAoUBOE0Kc9pNrOQjbU6Mx4rsiJE6Rd/8Rc5evQoH/nIRxgeHubVr341X//616cVeBBWNifYyAk2sus9lxBfeDlrB0OajSb7g7fyP778V9z91b8RURLOOryqefSvhXGaUDeV+DptGJ2CS+xxjh9TvPCclUWf0rFPzT5Ns6lxF3ky3flk2sS823bOOk6qfmIvJ8dcDh6p0GrbBGE5IlUUqHSi3uU0NmylMKtc9ZjfCspl2NM5roKkJHvw3UdM5KpHGfbieKuKG86QBihRK0EQ5p8VMY/SK0XmUVoZHNbncERv5uKb/y32zivoe81F9A9onv3X/fzyz/wwjuvy1W8+xeCatUt9q6fN44/aDAdNBtcv9Z0Iqxm/A+1JaLfgwjUTTEwoOi3wKkae+vqTR9/KlqfToRiRardN5b52x2KqbdNq20QxuI6mXjPSVE+EqlGLqNeiVVm1b6WgNVnEKi3B7gcqmTz4YTpJGmB31MpSuhSpqjghFSfM1kWsBEEYa3U459ZPrPx5lAThwkt2cunOK3l6//f456/9LW//97+y1Ld02ihl/tMXhIXEq5hHP3n0yY5gcgqOjcOFzgRHDlu0p0yhiWafEadmn5Gn5Tp57ithekSqXLkv8MkmFj7aUgyd3MfJMZepthkjZSmyyFO9Vo5KyfiohUUpqHiaihcx16hVECj8dI4rP0kJDBXhHjPW6kRYzyYQLopVpSBO+bqRqqJkVRxJBRSEswkRJWFF8Naf+UWe3v89vvoPX1yRomTbJqdfEBYb24ZGn3mk5cvtEMYn4fBJuBAz7qnTSqJOA5r+Ac3AgJkDarVjxoZp+voBNJy/Aw9TbCKdlLfVUoy3FM2TJq3v5cPVbHxUxcujT/VaRCMRqkZNUvqWAtfVuK6mUev6g7u192DwVKw6fiJWSVpg+OjDjE5V8SMzt1UnNGXYtTapgBXHFLBIo1WeU1w3Y608O3pFE6UKgrD0iCgJK4K33HAjn/z477H38Yc58PyzbDv/wqW+pdPC9TSBv9R3IQgG24HmgHmkkScVmKjToD3OoZctnnlK4TjQn4jT4JqYRpOzKg2tPCmvKX/eABrJ8cCHqSkTjRppKTae2M/w0QpTLXu6RFVjGrWQRt1I1EoqurGamVGsehSxSFMBO0mkKl36gcXUo49wcrKWRas6oYPWYFs6l6csWhVScUOqBamqOqFEqgRhGSKiJCwr9AyzDa3fsInX//Cb2P2te/j6//oiv/Z/3rbId/bKqNXg4nUTplMqCMsQ14WBtXCUPhgEuw+mJuHYCLyKCQ4876AUrFmrWbM2ZmDw7Ig4zYbrwYCnGRgE0PCq7dkcUr4PrYJEbTqxn+FjHpNTDnFs0vma9SgTp0Y9pFGLqHjSWV6uzJoKeMGOae2DZILgTseMr+r4pnBF57uPMNqq0QltOoGLn0SqXNtEqiquiUxV3ZCKE5jolGPEquKGMqZKEBYRESVh2dI9puetP/OL7P7WPXz1f/0Nv/q+30atoK+2+wc0Lx2wULWz6xt5YeVi2Waup0a/iTqpKrQmYUttnOFDFs88rfA8WLMuZsNGzcCgls92Ac8Dr0uiasA6DZ2OkajRSUX1+D4OHa0wMVWn41u4jqZRi2g2Qpr1iP5GSLMRikCtQEy0yghxiQt2ljaLkaqOb9Hu2CZStedhTk7V6YQOncDJJge2lKbqmmhU1Q2puQGeE1F1AyrJdtUNsSVCJQivGBElYVmhMP9p9OpwvfG6G6jXmxx86QUef/Q7vPqaXYt+f2dK/4DGduDkcaTynbAisSwzzmlYmzme7CaMTcBaxnlyrxmMs3adZt36mMG1Gkf+d+mJUlCtQrWqWbNWw9YdDAADQBiaioVTU4rK0b2cGHV54WCNVtsIVF8iT81GSF+y9GSOqBXP9EhVYA5sm57+F4aKdjKequ1btDsWwZ6HGWtVODLepBM4tAOHWCscK6bmBXl0yg2pukEWmaomkSv5gkMQZkb+KxOWnFA7HNZb+D6XMaLXUTkxyJaOxWBXB6Baq/Pm63+GL//dF/jaP/zNihIlpeDcrTG8OEkYNrDlN09Y4Vi2mRz3OH2ozTA1AV5lnOd/YOM/BZuGYoa2mHFNwtxwHGj2mQp9etNlWXW+MDQRqKlJ6D+6j6PHPX7wokO7Y1GtxPQ3QwaaIf3Jo1qR1KzViuNomk4ExShVj0IVfqBod/IIVce36Ox5hLFW1chUaIpUpNGpqhtQ84J8vbBPUv2EsxmZR0lYMiJt8wIX8X19Ocf1Rra99TLOec1mXr19nGj7Dmr16ec8/J1vcsu7f5a+/gG++q2nqFSqi3/jZ4jWsP8Jk4s+Xm/KYG5h1TI1Dlu8CY4eUTT7NJvPidm4SVLz5pswgIkJxcS4Yt2R/YxNOEy1bBxHM9AX0tcIGegLWdMfiDwJ04hjaHUs2m07iU7ZdB55hFbg0g4cWr5LGFtZZKooVLVkWU8iVvK7Law0ZB4lYdkzylpO6I1c/R8ux9m+E3Xxq7jw4njWkrrXvO5H2Di0hSPDB3ngvn/izdf/zOLd8CtEKbh0R8QTj9tURyeYqDfxKkt9V4Iw/9T7YIQm1mY4eBz8H0xy6GXNBReaIhDC/OC4MLhGM7hGwzYzBiqKYHJCMTkBtaP7+cGLNcYn+vC8mDUDAYN9IYP9AQPNUL6sOcuxLGjU4nLFv23l8VNBoGglkalWx6bdtph8dA9Hx5u0fCNUltIlcTJLP9v2nK4xWoKwghBREpYUlw51L6DeF2Cv06ecd8SyLH7ip3+e/+e//Rlf/V9/s6JECUzH5qofinj2GYv2kUmO2w3WbEA6LMKqxHZg3SaIogZr3HH2Pm6zYaPm4u2RfAO9QNh2WtIdOGcH64HBECbGFcdGFfHhJ3n2QJ0oUvQ3Q9YN+qxfEzDYH8jfIWEaaUGK0tipQoW/NCrVattmkuaHzHip4dE+WoGLH9rYlqbu+dS9gEbFN+sVn2bFp+qGS/K6BGGuiCgJS4YihqwcuEInX2rFMQwftNAa6g1Nra6pVPICD2/9mV/k//lvf8YD9/8TIyePM7hm3VLc/hljWXDxpTFr1mpe+MEk0VE4rhoMrhdhElYnlg3DcR96I4yPTfLkXpvtl8lcQouF4xQiT+dfShNoTcHYmKL18pN898kqUWSxdsBn7WDAusGA/qakUwmnphyVCuBnrygdD0OVidRky6b98CMMj/Yx2fFoBS62pWkk4tSo+Pm651NxJRIlLD0iSsKSojBpOJalmZpUqL17OXS4iuto6rWIiUmbkbaNUnDOUJt4xw4uvHgH23dexVP7H+fur/4tP/+OX13iV3FmrN+gWbc+5NgRhf38JP4wrNkQ8+JUH41+KSMurD5cD9oDDdTYBC88Z3HBhTJuZqnIJtId2s65wOQEjJy0UAdNxMm2NZs3dNi8scNgn3zrL5wZjqPpcyL6Gon0nJtX8otjmGzZTLWMRLUe3sPJyQGmfI924OA5Ec1Kh75qh2a1Q7Pi01ftSCqfsKiIKAlLTC5K8dPPMrHe4YpLxlm/JshEIY5hYsrm+wcaHLvvObZubvHjb/1Fntr/OF/7X19csaIERoY2bNKs3xgyNqo4eljRmJqEKVi3Ieb5iT7qfZwyJVEQVgqOCyedJp2Dk2w7f/YxicLi0WhCoxnD1kupxzByUuE//ySPPDGAbWuG1nc4d6idd3gF4RViWdDXKEjU1nx8VBgqJlo2E5M2Uw/u4chYHz9omyhUt0D1V9v01zoyb5SwIIgoCUuGRQxYWEpz6QWTNOu9Z6W3LOhvRvzQzjFGxx1+8FKNqwZfi2XZ7H38EZ55+vtcfOlFi/8C5hGlYGDQTNp54SUxoyOKo0cU/f4knZeh1meOPXvSiJPjLvUdC8KZ0xyAaAJaLWhK+fBlh2WZObFYt51zCtL07UfXsG7Q54JzW6xbEyz1bQqrGMfRpvBIXwg/m5c/D0PF+JTN5JTN5Hf2cHi0j2cObyCIbPoqHfpr7fxR7eBIaXPhFSKiJCwpGoVjxzg2c5p5fqAv5Ood41x+keL/9/ev4Vt7HuRvP/1/8au/8KusG/Q5seVyM7nrCv6WWqnCeAJi2m0YG1WMjijWRJO0DoLTMHOtPHOiSbUO1Tq4Ik/CCkIp0LEijSoLy5OiNG3uQPWZfXz3yX6qlZjLLh5nTb+k5QmLh+No1vSH5nP3c7lAtdoWYxMOYxMORx98nGePrKcT2jQrPoP1FmsaU6xtTNGoiOALp4eIkrBkWMRoFLaKiaLTG5Djupp3v+3NfGvPgzz8xP/m99/7DkbGK7Qe+z4jHYu+ZsjagYATQ5fRN2CKQaxUqlWoVjUbNxlxCnwYHVVMjiteNTDBxISiMwKxC42mptHQ/OvxPqo1qNSQyW2FZUd7Cpw4GSMjrBgqFdCXX8aWHVB5Zi8Pf2+Q885pcfF5k1KYQ1hSatWYWtVn03ofzr8YgHbHyNPoA3t46eQg+14ewrVj1jSmWFOfYm1ziv5qR8YDC7MiXShhybAJCTH5xp3g9P+X/ckf20Vfo86BQ8O8fGQPb7jaVNtptS1OjrmcHHXRTz3Dy5M2rqPpa5gJGI9uuIx6A+p1vSJT2FzPFIJYvyHvZIYhTE0qpibNHCrnVCeYmlAEJ0C5UK1pajV4+qiZu8mrgFc115L/JITFJAhgwJ+gtsFUYxNWHrYN4fbLWX8uHPvuM4xNDPCay0flb4mwrKhWYqoVn40/Y/oGcQwj4w4nRz2O7X6cZw5vwLI0G/om2Ng3wYa+SUnVE6Yh/00JS4ZDQIRN1Q1otU9flOq1Kj/74z/Kf/9f/8hff+WfM1Ey3yx12LKxA+Q5zROTDhNTNrUXnmZs0uZYYFHx4mQwacjhdZdRrRmpKJYjXwk4TmHulEIqUxhAq6Vot8xyhz1Ou6VotxWdUTMrRiWJWFVrmqeP9OFWTBqf64HjSSEJYf6YHIfm1CTVAbjoUikKsNJpNKFy7cUc+5fv88zzdS65YGqpb0kQZsSyYO1AyNqBELZdjNZwcszh2H3f5ftH1vP4i1tY02ixsW+cLYNjUp5cAEBprVd97sPY2BgDAwN80b6QupJe31LyvL6YFg1ibRHiMEk/P/Fb26m6IZcW8o3nyjcffoyf/vXfYqDZ4F//6W+oVrw5n+sHiolJJ5OoyVYyYV7bQimoViIatYhaNebQmssSmYBabWVGorqJY/A70G4bkTJLhd+Bjm+WcWTmwPEqZgyZ64FX0Tw53IfjmaISjmvEajW8J8L8EwYwcgw2exO024pzt8VsO1++tV1NTIzDsQee47o3HJMvVoQVy1TL4sgJj6Pf2svJyRob+yfYunaE9c3JFfXFqTA3xlodzrn1E4yOjtLf3z9jO4koCYvKSb2BXR98LU8PbwBgrdIcGm2xde3IGV3vR665kjdfew0/+pqrCKPT+/bHczVrBwPWDpYHdxZnGp9s2bQ7NuuO7qfVthlp2RwNFY6tTeSqElGtxBwcvIxK1USiPE/jVZZ/WpFlkUXQWAO9BtWHAXQ64PsK34fAV3Q6cNHaiWx/MAFRCIEFngeup01EyjXr+w/1YTtmrJTjgJUsbUcm2F2NRCFMTUJrAi4YmGDkpGJrv2bT5ph1G/Sy/70QTp9mH4w4MaMTjvm2XhBWIPVazPnntDn/ly5ismXx8j89zvde3IKlYi7ceJyta0dEmM5C5L8sYdHZ0DfB6FSNN75ra7bPtrec0bUsy+LvPn3XfN1acs18pvH1PUrghqFiqm1EqtWx6Pg2G47tp+NbtDo2Ix2LWINj6yRHOqbiRRwavIxKxUhUunTd5Z3il0aMGplE9Q5AR5GJTvm+IvCTZWBE66K1EwSBGZsSthVRaPaH5PLkuEau0vVMrmzypQu2lQiWvbzft7MBrSHoQLsFnZb5OY+PK/wpGKjDues0ff2aiy6JqNaW+m6FhUZ+H4XVRKMWc8nPXsFFMRw+XuH7X3uaF46vYfvQETb0Ty717QmLiIiSsKhUVBvXiom0hR8o6rWVl4LjOJr+ZkR/c+YIlh8o2h2Ljm/R7ti0OxZbRvfR6RiZOulbBKFCAZ4XU/FiKm6M58UcHLgMzzORKTdZet7yTm2zbajVi1XMZs/ojWNTgCLwIQgUYSpPoVnfuXmcMN0fQugrwknTJsI8MoGywXZMSXgniVI5jmbfoT4sy0iVbZv9ykrW04eVL6WjZ4hjI75RKreBEaKdQ+NZZLHTNqmZAGvrUBvU1OqajUMxfX3mcyucPbRbEAQW9erK+3suCLNhWbB5Q4dN/5/zefFr3+WxF89h69oRtm8+stS3JiwSIkrCouIQEMQ2g/UWT/6gSV89RKm0o6qxLG22Fdi2xrE1tqWxHY3rxLiOxnX0su/Ueq7Gc9Mufe95G6IIOr5FJ7DwC8tzx/fR8c16K7CyCJWlClLlxXhuzKGBy3A9Uy49XaZStZzfIytJ0/M8KEvV7IKltUntCiOzjCJlOvWheT/DSGXrOzePE4Uqk7I4NmOuwiBvo+NcvDKJSuVJGQGzkv1KpZJl9u19qS+LbCkrl63ig/RYul7cT2Fddf28VHk1e1cKb4/WZlsn+2NtXo/usYzj/BGFcPmWcaKoIKLJexn45jiA60DdM2PTvKa5kWafzlJM06iopE+e3WgNweNPc86QiZ4LwmrEsuC8G65mfcvikS9GBJHFFecOL/VtCYuAFHMQFpXD+hyOs4lf+KOdHB7tI9YKDUSxZTp02jL7NETaIoosolgRxjZBZI4BOFaMa0e4dozrRMl6hP3q1xqZcmO8RKwcR+O5+fpKJAgUfqjodGw6gWWKLXRLVrIexaZz7Tg6EyrPi/Eczcv9K1OsFopUnqLCMgqTz19k9pkIS2FfnEtWHKuShMQFMTGiopLPdUFeko9gup4KzRlRkKyiqKWipywjdVZBAm3HjBNKI3BOGo1z8xRI1xUBEk5Nawpajz5DECquffUInrsy/74KwunQ7lh8+3+8wJXnHmJj/8RS345whkgxB2FZ0scIB/SFrG1Msa55+qVko1gRREaagsgmCO3Sdvj4Q0xGZp8f2oSRRRCbba1NJ9JLpKooWJ4dYV/9OhwnxnNN9KooWEsdxXJdjetqGnNIVYwi8AMjT0GgTHQqEamhkX0EybFWYDGaiBWAm7zeiheb53NMGqDjmOdPq9u5SWfadla+XKUSUf5D2KuztzgdwKJIddP9Xq/0915YubSmoPaD/Rw9WGXLxpDtr5qQanfCWUO1EnPB+hP84OhaEaWzABElYVGpMoVFzPHJOuvPQJRsS2NbIdXTHK+jNYSxhZ+KVWgnAmXhhw5hZNF+ZI8RrCgRrES20iiWa8eZWLl2hJeIlnP1azOp8txcsLwkgrXYHVrbhpodU5vjeIFusUqlKggU54zty9b9wKIdKoLApAKmUav0dbuuWX+p77JMqExxhjyC5Uilu1mZloInCMuEMITjxxSVHzzNyJjLxvUW11w2Nq1qqCCcDaz5sWt4/v99bqlvQ1gERJSERcVSmj5GGWtVz0iUzhSlUtGJmWnM0EykUaxMsqJcsILIxn/0ESZCJ4tq+cl6UbA8O8R1crlKI1ium0ew3IJ0LOa3s6crVmCKLviBIghNUQojV0aizpvca+QqNPtaocVYoAgj837YFrhZpC6PXr3cf1mWCpbOy+SksuUs/3LrgrCaCHwYHVWsG97HyVGX0XGHZiNi4yafq3eOSZqdcFajMH0DYfUjXQ9h0ennJF/5gye45b+ci2Ut//9s8yjW6c0PYqJSFn4iT2Gynka0Wo/sYSwVsNDGj4xggRFKzzFC5STRK8+OcK5+TRa5ycZiJdErdxE7Lk423mvuchXHEIQqE6ggsLLtIFBsHd+Xb4eKdkHEII9g5XKlTaqko3mpIFlpFCtbd1ZHmqAgLBRhAJOTiqlJWHt4PydHXabaNo1aRDCg2LalxZr+YEVWKRWEheDkmMNgvbXUtyEsAiJKwqKziZc4qjbz6fe9iKt8LCIsdLKMef3vvAnL0thWjGPF2dKxYmw7WbfzfctVthzb3GeNEOjM6RytKUSsbILIwQ/tTLD87z7CVCG6VYxemaiZESo3ESvPCXGufi2uE3fJVS5biyUQlmUqqFW805sYWGsTwUolKl33E4kKQ1N6vXislayHocpGF7mOxrZ1FslybJ2J10t9l2dylc7tZIodaJkcV1gVhAG0Wop2C6amFBuP788m1Q5CRcWL6WtEVJsxOy+aYLAvXNQvXwRhpdBqWzx39zNs3zy61LciLAIiSsKioxRcqh9nXA0SYxFjo1FE2MTYPPyxfybGzrZjLCIcIm0n+x2i5BwAK2lhE2KrKDkzSFqGXPvhNxWq5EWJZEWFMUfLR7aUwkSPnIhGZe4pgmEWuUqjU4VUwcceYjyNWBWOdacGem6eFmgiVyZaY8YfLY1cQZI26aYRs9P/RjuXLCNVYZRvR5GRrc1dotVOpCyKFHHy0bAtcBLBSisoptsv9V02rYpcLlw6kTCRLWH+0Rp836TKdTr5hM9bRvbR9i3aHTM5dhAqXEdTr0VsqkU06hEb1/nUaxGNaiRSJAhzYGzC5om//z6b+lucs2ZsqW9HWARElIQlwVM+6zjNCdu6OueRtkrilC9tIlxCHGJsdn/0vuxYiEukHUIcIhxiklQ3YmxCHEJsFebrhFz7u28sFXJwSkUdzPpSp3Wl0au6N3e5imKVRauy8VZhIliPP8REQa6CyKITOmckV25SSXCp3qM0TbBmXvVpnx9FGImKUtlSJq0yXQ8V503uTY4buQpCRSdUTEZGzlLZStMHHcfMEWZ+bjrb92IzFy7bzoXLTKybbxfndhJWD+k8V2ZuKzPPVRBA4CuCgGnFVfxkCSZiWvFial7MoBdje5q1AwG1SkS9FlGrxCJDgnCGhKHi2S8/wYETazhv3QSXDh1d6lsSFgkRJWHFYisTb3JPszhDUbhirZK4k1uWqSwe5fKdO+8rbfcSLbMnwFYBLkEiWgG7PvymLEI0rVqeFS9pR9e2NDUvPK3UwFPJ1WRkczJNFUxEKx3w2l3UYjnLVREjKa9sbEY6PitMxCmVqTDKH1Go2Daxjyg2EUIzIaw51o5UMrluHuECE+WyLJNSaJeWyf7CvgPNy7HSOZZs8/NPJ8NNJ8zNHzqbYLe7zdlcmS+bvDcyc2Olc2/pWGVzbJWPKbOMYOv4XjMnXKSII2WKxIT5z9jMGWeex1ImepkWeKm7eaGXejVK1rWZgDop6S/RSkGYf0bGHQ798+McHBmgr1rlDRc9R1/VX+rbEhYRESXhrMZSGovg9GSr0EmMtJUJVICXCVeQLB/46DcJcc1x7WWCpVEodBa5clSAg58J1xs+8qYsUmNEK6SSCNZKlKtMqBKB6iSSNVe5cuw4ex88O8L5oddllfM8p5wauBw7jNn4LM4sfbBIOgFu2uk262by23R/ui+KjYBFsSmWkbWLVWGyXCNfYbbf7DMT7KoZZ5CyVC5UVjKxbdo6FSrL0lhKZ3KllGmjFKXfI3PMJNOmn2+lNForlNJZm3SOqe7fgXwSX1Wah0on+7I26QS/qPKEv9q89nQ71uX3IV12vxeWMpE+pZJoXyKmbrJtqURUbY2yoerF2bZtJSmctjaTANs6Setc3KqXgiCUmZiyOXrC49B9+5nyXTYPKq45/0XWNqR4w9nIgonSnXfeyVe+8hUee+wxPM9jZGRkWpsDBw5w8803c++999JsNrnpppu46667cAp1gO+77z5uvfVW9u3bx9atW/nwhz/Mu9/97oW6bUE4LUxUy8fDByZnb1wSLDuTqVSkMqHC5Zt3/Eu2HmojYTGm9+QkYmfkygjWrt99I54TUUlEIp1Mt+KYVMGl5EyqBsaxysZS5QKVVwycengPfugUilrYhHES3bPiaRE8I1evXRbl2F8pacTHXcRJcItClcpInIqUTvYXZKIoF7FWJSFJjxflJn0eDVDYLspRul28r1kn4e0hXqlEq2S7KHCp0FmWOc+ydVkGk/PTSF0qg4IgrGxabYvjIy4nH3iM4xMN/NBmbWOK89ePsXlwDHuZjGEWloYFEyXf9/n5n/95du3axZ//+Z9POx5FETfccANDQ0N8+9vf5tChQ7zrXe/CdV0+9rGPAfDcc89xww038Ou//uv81V/9Fffccw+/8iu/wubNm7n++usX6tYFYcFJi07MiaQzFmmrS6i8bP07d95XiFzlbTQKi9gIVSJWbiJXP/yRN2Zi5TkhFTctR770JYAtS1M9A7kqlmPvjmK151iO3XW6x12VJ9V1ncUvx76UpCl4tp2+3rPjdQuCsPro+IrxSYexCYeJB7/LyFSNVuDSX22zvi/kyq0HWVtvLZsCT8LSo7TWC/pp+PznP8/73//+aRGlr33ta/zUT/0UBw8eZNOmTQB87nOf40Mf+hBHjx7F8zw+9KEP8ZWvfIW9e/dm5/3SL/0SIyMjfP3rX5/zPYyNjTEwMMAX7QupqxX01bEgvEJC7ZQiVUXBCvDyh/YKYhUlESs/kSrz+OGPvMmIlRPh2mFh7NXSi9WZkpZj95OCFdPKsYd5Cfa0HLsf2Vk0o7scu9s17ioda+U4yzs1UBAEYTURxyaFbmLKYWL3I4y3q4y3K7QDh7oX0Fft0F9rM1hrsabRWhZfEAqLy1irwzm3foLR0VH6+/tnbLdkY5R2797NFVdckUkSwPXXX8/NN9/Mvn37uPrqq9m9ezfXXXdd6bzrr7+e97///bNeu9Pp0Onk4yfGxqSEo3B24igzBgpOkVudRK1C7WTyVBSsAI/77ngg359ErWIsLGJcOrjJOCsXnzd82ESrKo4p3lBZJmOsuimWYz8dSuXYS1I1fdxV2CM10C3NdZWnBqZClU+qa4TLWeSS7IIgCMsdP1BMtW2mWjattk37kUeY8j2mOi6twMWxYvpqHZoVmw19E1y48Rj91Y5IkXBaLJkoDQ8PlyQJyLaHh4dnbTM2Nkar1aJWq/W89l133cXtt9++AHctCKubVKxqTM3esIdYFR/f/uh9hFm0Kh9jpdC4+IU0QD+JVr0xkykvEayKEy3b9IczKcfenRoYdqUJth/ZY4QrSRVM19PolWPlhS2K5entq1+bVUjLJtN18nFYjq0liiUIwooiiqDjW7R9i45v02pb+I88QitwaflGhILIwnMi6p5P3QuoeRGD9VHqXkCj4p9W6rYgzMRpidJv//Zv88d//MeztnnyySfZvn37K7qpV8ptt93Grbfemm2PjY2xdevWJbwjQVidzEmsCmOsAiqlKFWaAvjNO/6llAYY4JnrE2bRKiNVPm/4vTdRdYPS2KqKEy77AbeWpalYERU3AuZeXjaMrEywgiRClaYCBpFN8N2H6cRWFrUKQpswNm3Sea9sS2dyZVtxNv+XY8VYr34trqOx7Vys8rmd4mx7JRW8EARh+aG1kZ+On88BZtYt/Ef30AkdOoGTVEW1UIosM6HmBdRczbrmJDU3oOYF1L1AokPCgnNaovTBD37wlBXnXvWqV83pWkNDQzz00EOlfYcPH86Opct0X7FNf3//jNEkgEqlQqVSmdN9CIKwOJgKgS3mkgaoNZlI+VRK6YDf+sNv5dtJtCofW2WiVW6SAvjDH/4xKm5ItZACWHWXv1QVSaNXpiT76ZGWZk9lK4xsgjjdNmIVPf4QU7GVCVgYW0SRlbVLZSuNajmWKfhhW7HZtpNlIl3FUteOnZfHdpKS2I5EuQRhRaO1mYA1CM0k28V1PzRzxYXffZggSqaCyObeM9+2uHacjHfNswea1ZB1ziRVJzR/s91w2aVqC2cnpyVKGzZsYMOGDfPyxLt27eLOO+/kyJEjbNy4EYC7776b/v5+du7cmbX56le/Wjrv7rvvZteuXfNyD4IgLE+UAi8pu16frex6IlUzFal44KP3J+uVLFKlUdiJVLnKpP55dHjD770xK1aR/ge+0otVpKXZcc/8GnGsTKQqsoji6SIVxpaZIDe2CL77CO0435e2jXTSRluluZBsFRt5sqJkDqIYW8WZiNlKo656rRGrpFy3Y5cn2DXlupk26a6U7xaE6aTzsKUTXQehSrZz4QlDRfzYw8nvvZ39/odpFDupFpp+eZKnAudTMlSciGalk40BTefAW84p1YLQiwUbo3TgwAFOnDjBgQMHiKKIxx57DICLLrqIZrPJW97yFnbu3Mk73/lOPv7xjzM8PMyHP/xhbrnlliwa9Ou//ut86lOf4rd+67f4j//xP/KNb3yDL37xi3zlK19ZqNsWBGGFoRRZMt/sDctSZR5uNpbqW3/4rfxYUgWwWKzCU34WqUqlqpJ8+7ncx1S9EixL41mnX/BiJqJY5cJVXE9Eykykm65bRN97CF+bdlF6TtIuLmwXo1/ZvatEniwjYOkEuJalTQRMmWPpkitfl0uWpbMJZa2uCWQtBSTzKpn2RtayOZhE1ITTJJ2vLCpMHJ1u61iVJotORcdMMp3MVfb4Q4Xfq/z3K/0dCWPbbBd+R9KIcJqSW9x2bU3NCeiz2rhJVNux8+qe6T5BWO0sWHnwd7/73fzlX/7ltP333nsvb3zjGwF44YUXuPnmm7nvvvtoNBrcdNNN/NEf/dG0CWc/8IEPsH//fs4991x+7/d+77QnnJXy4IIgnAlpsQqT/mekqpgK2F1aPY1UeapTGlN1tkjVciCVr7RTWJQrXZCsKLay42ZpOpWxVtmjdExPP2725evdZBPVZo84n9hW6WQSXI0iFzgFWCout0kmz+Wq15UmxzUPXVpaavpkuooe7ZP7Q+nsXvP9eZXF9JzsNUHpWPn1Tq/OeCau2P2b0d1L0YX3ujghsS4cL+1PJjrOtwFdniA5n0i5OEEy2YTKcXFC5cJkynEM6nsPlT4T5piVrUfaSs4vfJZ0/tnSqGmv0U6kvijyKhX/NBJrR+aY0lhWV3Q2TYctrOdLLZIjnPXMtTz4gs+jtBwQURIEYSGZHqma4VEqVBEUhMqMq/qR38/T/yqF9D+JTCx/8k71zCKVdaSTznG5Y523T4/pwnFIjzHtmOloJ8cKHe9smbSHVAy6jic6k14ja1s6Rs8O/XIgEzcK0ldcT0WTdF13CWRyPJXS4jFOLbCWVdguiXEuwEZoYlCUBKh0vLBPfucFYWFZ9vMoCYIgrBbK6X+zj6mKtZpWpCJ93Hv7brM/EaoI88VOKlLF6n+9Sqp7TrSiClWsJtIOtzUtHrJ66RXpmR4NOv0ef3cEa6bjIhOCICw0IkqCIAiLiKV0VqhiRgol1fOJf/PKf71Kqqfpf6b6X4Cj/ETeTMTqDR95czagOq0AmJYJlw6ncCb0Sr2bztkjjoIgrD5ElARBEJYppqR6hwqd2Rv2qP5XrgToct8dD+THtJsVq1BoHJIJgBO5cgjY9eE3ZhWrXDuvWiVRK0EQBOFsQURJEARhFTDn6n9QiFjZSZGKsmCFuDzw0fsJC2KVtgOwiI1cqQCHEIcAm4Bdv/vGLEqVCla67tlSwEIQBEFYWYgoCYIgnKXYKsImAtqzN0zEKo1aRThZpKq4/eCd9xIm60awHMLCWKs0LdBWYRLFMstrC4LlJqmBaQli145wrFjSAwVBEIRFR0RJEARBmBPlqFVrDieYRawVUTK1b5ToUSpYAV4iWG6y3yHSZj3CyaquOYTYBDgqxCbEJsLBZ9fvvgmnMLeLa0XJdpztk0iWIAiCcCaIKAmCIAgLiqU01lzTAqFU6izSdiZNefTKKUSx7sn2RzjJ+CuzHmOZ509a20RZNCuVrWt/943ZJJuOFePaZr4Z147MJJuWFLwQBEE4WxFREgRBEJYteXrgKQpapBSEJo1k5SJlT5OtNF0wwibOIlpO1j6NaHXLlp3EvyxCdv3um5LJPE0Ey7FjnES8HCvOREyKYAiCIKwsRJQEQRCEVclpR7JSShEtK5OtmDy6VRSvB++8p7QvymTLTgTMTi6rsYn+/+3de3BUZ/3H8c/ZhFyQJuGaNEAgUCQKsWKQNPRikUxDZayoQxURQRkKFaagDEKbtnTGH4VCtSKjUJwRnbEtLTOUKtJiGugFTUNJuYVbodyDAZXm0tKWkP3+/kj2ZM/mQiBZQsj7NXMme57n2bPP+bJk9zPP7ol8tfesCYGXPG23Pfr12tBVF7ICISywwhX4ySoXAIQXQQkAgEbUXKL9Mn/3qiEhK1uBkOUPBKmgn8FtBf/3RlBbXejy165pBS6MIak2XNVsPidwuy54+VRdL3gFbkdEBN32mXub8AUAdQhKAACEUc3KVs1H9a5KUHgxkzdE1f7018Yjv6fN10DwipDf6vb9inC/yyXVXPrdVxvrfPLL51yqHVHtCWCZuV+vWe1yAqtepgin5sIZkb5qT/gK3CaEAWhvCEoAALQTjiM38uhKV7ncg3h3g8NXQz8Dq1nBPwsXbfUEMr8nhNXtW9CDBUKYrzbSBVbB3P2g25m5X3cDVoTPL59jnjAWaI9wzNtPIAPQighKAAB0YN7w1dKDeXcDHzsMhKfgsFW3ChZRb0zhoq0NjjE5bhirDrpPMJ/8cmSe4OVzquVz24LCWm0oc2oDlxvEggKYz2e1Qcwf8rOmPTAGwI2HoAQAAMIi8LHDVtXAilFDgcx7u+E2k6PCRfny18aomj5HweHNrG4tzILWxbxTMjlBj+Dedrz7gQDn1B7JkV+ZuaNrxgUHL8cbznyOyfHVbwsOau44VtSAVkNQAgAA7VpYAllAI8EjEM5MTu3HDOuHqcAaljXQXvPTUeGiLW6EamyM3+r3BaJZ/ekGeswT0Bz55Th1R3HcTZ59n0ySKTN3dM14d6v5WGNwOHNUF84cN6gFh7a6fp9TO7421DmquQ/BDtczghIAAMAVCg5nV3wJ+ivVRJjwm+MNVSFBKrivsXEN3a9wUX694zQ01t3MVxu7HM/jBY9p+NQsZAsKdoF+x9/oOAU9imrPULWP5sivEY+Mrg1jQYEtOKg11u7I7QsEwsApBAJgYP41obGur7FjBAJl4J80MFYiNF6vCEoAAADtVM0b9lb6jllLXOZNvpkaDE81q2J1q2OhISzQVhfAFDS+fnwKve+7T77uxqbgOOVt827e9trxVtcuqcH71LXLc4wrL2XdIwdKGziqPDMLbVdQW22/U/f9udBjBt8/+Djefe+86niP0/CYho+jBttay+XrbXLkWFmzjkZQAgAAQFgFVlXU1oHuarVgtScQEqW6ta7gEBUavtRAu3uskDDX1DhvW0OPVf8EGzpW6BjvPJqnobk1NbbhgHX5/qbuF9xXrY+bnEMAQQkAAAAIk7qQKIV3NQXNdaGZgb3+twABAAAAoIMjKAEAAABACIISAAAAAIQgKAEAAABACIISAAAAAIQgKAEAAABACIISAAAAAIQgKAEAAABACIISAAAAAIQgKAEAAABACIISAAAAAIQgKAEAAABACIISAAAAAIQgKAEAAABAiLAFpePHj2vq1KlKTU1VbGysBg4cqIULF+rixYuecXv27NGdd96pmJgY9e3bV0uXLq13rHXr1iktLU0xMTFKT0/Xpk2bwjVtAAAAAAhfUDp48KD8fr+effZZ7du3T88884xWrVqlRx55xB1TUVGhe+65R/369VNRUZGWLVumJ554QqtXr3bH/Otf/9KECRM0depU7dy5U+PGjdO4ceNUXFwcrqkDAAAA6OAcM7Nr9WDLli3TypUrdfToUUnSypUrlZubq9LSUkVFRUmSFixYoA0bNujgwYOSpO9973v6+OOPtXHjRvc4t912m7785S9r1apVzXrciooKxcfH66WIgersRLTyWQEAAABoLy5Yte6v/kDl5eWKi4trdNw1/Y5SeXm5unXr5u4XFBTorrvuckOSJOXk5OjQoUP68MMP3THZ2dme4+Tk5KigoKDRx/nss89UUVHh2QAAAACgua5ZUDpy5IhWrFih6dOnu22lpaVKTEz0jAvsl5aWNjkm0N+QxYsXKz4+3t369u3bWqcBAAAAoAO44qC0YMECOY7T5Bb42FxASUmJxowZo/Hjx2vatGmtNvnGPPzwwyovL3e3U6dOhf0xAQAAANw4Iq/0DnPnztWUKVOaHDNgwAD39pkzZzRq1CiNHDnSc5EGSUpKStLZs2c9bYH9pKSkJscE+hsSHR2t6Ojoy54LAAAAADTkioNSz5491bNnz2aNLSkp0ahRo5SRkaE1a9bI5/MuYGVlZSk3N1dVVVXq1KmTJCkvL0+DBw9W165d3TH5+fmaM2eOe7+8vDxlZWVd6dQBAAAAoFnC9h2lkpIS3X333UpJSdHTTz+t//znPyotLfV8t+gHP/iBoqKiNHXqVO3bt08vvviili9frp///OfumNmzZ+u1117Tr371Kx08eFBPPPGEduzYoVmzZoVr6gAAAAA6uCteUWquvLw8HTlyREeOHFGfPn08fYErksfHx+sf//iHZs6cqYyMDPXo0UOPP/64HnjgAXfsyJEj9fzzz+vRRx/VI488okGDBmnDhg0aOnRouKYOAAAAoIO7pn9Hqa3wd5QAAAAASNfp31ECAAAAgPaAoAQAAAAAIQhKAAAAABCCoAQAAAAAIQhKAAAAABCCoAQAAAAAIQhKAAAAABCCoAQAAAAAIQhKAAAAABCCoAQAAAAAIQhKAAAAABCCoAQAAAAAIQhKAAAAABCCoAQAAAAAISLbegLXgplJki6Yv41nAgAAAKAtBTJBICM0pkMEpcrKSknSFP+xNp4JAAAAgOtBZWWl4uPjG+137HJR6gbg9/t15swZ3XTTTXIcp9WOW1FRob59++rUqVOKi4trteOiBvUNL+obXtQ3vKhveFHf8KK+4UV9w+tGqK+ZqbKyUsnJyfL5Gv8mUodYUfL5fOrTp0/Yjh8XF9dunyjtAfUNL+obXtQ3vKhveFHf8KK+4UV9w6u917eplaQALuYAAAAAACEISgAAAAAQgqDUAtHR0Vq4cKGio6Pbeio3JOobXtQ3vKhveFHf8KK+4UV9w4v6hldHqm+HuJgDAAAAAFwJVpQAAAAAIARBCQAAAABCEJQAAAAAIARBCQAAAABCEJQAAAAAIARBqRmOHz+uqVOnKjU1VbGxsRo4cKAWLlyoixcvesbt2bNHd955p2JiYtS3b18tXbq03rHWrVuntLQ0xcTEKD09XZs2bbpWp9Hu/O53v1P//v0VExOjzMxMbd++va2ndN1bvHixvvrVr+qmm25Sr169NG7cOB06dMgz5tNPP9XMmTPVvXt3denSRd/97nd19uxZz5iTJ09q7Nix6ty5s3r16qV58+bp0qVL1/JU2oUlS5bIcRzNmTPHbaO+LVNSUqIf/vCH6t69u2JjY5Wenq4dO3a4/Wamxx9/XDfffLNiY2OVnZ2tw4cPe45x/vx5TZw4UXFxcUpISNDUqVP10UcfXetTue5UV1frscce87yW/fKXv1TwxW+pb/O99dZb+uY3v6nk5GQ5jqMNGzZ4+lurls15b3Ejaqq+VVVVmj9/vtLT0/W5z31OycnJ+tGPfqQzZ854jkF9G3e552+wGTNmyHEc/eY3v/G0d4j6Gi7r1VdftSlTptjmzZvtgw8+sFdeecV69eplc+fOdceUl5dbYmKiTZw40YqLi+2FF16w2NhYe/bZZ90x//znPy0iIsKWLl1q+/fvt0cffdQ6depke/fubYvTuq6tXbvWoqKi7I9//KPt27fPpk2bZgkJCXb27Nm2ntp1LScnx9asWWPFxcW2a9cu+8Y3vmEpKSn20UcfuWNmzJhhffv2tfz8fNuxY4fddtttNnLkSLf/0qVLNnToUMvOzradO3fapk2brEePHvbwww+3xSldt7Zv3279+/e3L33pSzZ79my3nfpevfPnz1u/fv1sypQpVlhYaEePHrXNmzfbkSNH3DFLliyx+Ph427Bhg+3evdvuu+8+S01NtU8++cQdM2bMGLv11lvtnXfesbfffttuueUWmzBhQluc0nVl0aJF1r17d9u4caMdO3bM1q1bZ126dLHly5e7Y6hv823atMlyc3Nt/fr1JslefvllT39r1LI57y1uVE3Vt6yszLKzs+3FF1+0gwcPWkFBgY0YMcIyMjI8x6C+jbvc8zdg/fr1duutt1pycrI988wznr6OUF+C0lVaunSppaamuvu///3vrWvXrvbZZ5+5bfPnz7fBgwe7+/fff7+NHTvWc5zMzEybPn16+CfczowYMcJmzpzp7ldXV1tycrItXry4DWfV/pw7d84k2ZtvvmlmNS8unTp1snXr1rljDhw4YJKsoKDAzGp+efp8PistLXXHrFy50uLi4jzP746ssrLSBg0aZHl5efa1r33NDUrUt2Xmz59vd9xxR6P9fr/fkpKSbNmyZW5bWVmZRUdH2wsvvGBmZvv37zdJ9u6777pjXn31VXMcx0pKSsI3+XZg7Nix9pOf/MTT9p3vfMcmTpxoZtS3JULfaLZWLZvz3qIjaOqNfMD27dtNkp04ccLMqO+VaKy+p0+ftt69e1txcbH169fPE5Q6Sn356N1VKi8vV7du3dz9goIC3XXXXYqKinLbcnJydOjQIX344YfumOzsbM9xcnJyVFBQcG0m3U5cvHhRRUVFnlr5fD5lZ2dTqytUXl4uSe5ztaioSFVVVZ7apqWlKSUlxa1tQUGB0tPTlZiY6I7JyclRRUWF9u3bdw1nf/2aOXOmxo4dW+//M/Vtmb/+9a8aPny4xo8fr169emnYsGH6wx/+4PYfO3ZMpaWlnvrGx8crMzPTU9+EhAQNHz7cHZOdnS2fz6fCwsJrdzLXoZEjRyo/P1/vv/++JGn37t3atm2b7r33XknUtzW1Vi2b894CNcrLy+U4jhISEiRR35by+/2aNGmS5s2bpyFDhtTr7yj1JShdhSNHjmjFihWaPn2621ZaWup54yPJ3S8tLW1yTKAfNf773/+qurqaWrWQ3+/XnDlzdPvtt2vo0KGSap6DUVFR7gtJQHBtm/Nc7sjWrl2r9957T4sXL67XR31b5ujRo1q5cqUGDRqkzZs368EHH9RDDz2kP//5z5Lq6tPU74bS0lL16tXL0x8ZGalu3bp1+PouWLBA3//+95WWlqZOnTpp2LBhmjNnjiZOnCiJ+ram1qolvy+a59NPP9X8+fM1YcIExcXFSaK+LfXUU08pMjJSDz30UIP9HaW+kW09gba0YMECPfXUU02OOXDggNLS0tz9kpISjRkzRuPHj9e0adPCPUXgqs2cOVPFxcXatm1bW0/lhnHq1CnNnj1beXl5iomJaevp3HD8fr+GDx+uJ598UpI0bNgwFRcXa9WqVZo8eXIbz679e+mll/Tcc8/p+eef15AhQ7Rr1y7NmTNHycnJ1BftVlVVle6//36ZmVauXNnW07khFBUVafny5XrvvffkOE5bT6dNdegVpblz5+rAgQNNbgMGDHDHnzlzRqNGjdLIkSO1evVqz7GSkpLqXdkqsJ+UlNTkmEA/avTo0UMRERHUqgVmzZqljRs3auvWrerTp4/bnpSUpIsXL6qsrMwzPri2zXkud1RFRUU6d+6cvvKVrygyMlKRkZF688039dvf/laRkZFKTEykvi1w880364tf/KKn7Qtf+IJOnjwpqa4+Tf1uSEpK0rlz5zz9ly5d0vnz5zt8fefNm+euKqWnp2vSpEn62c9+5q6OUt/W01q15PdF0wIh6cSJE8rLy3NXkyTq2xJvv/22zp07p5SUFPe17sSJE5o7d6769+8vqePUt0MHpZ49eyotLa3JLfC5ypKSEt19993KyMjQmjVr5PN5S5eVlaW33npLVVVVblteXp4GDx6srl27umPy8/M998vLy1NWVlaYz7R9iYqKUkZGhqdWfr9f+fn51OoyzEyzZs3Syy+/rC1btig1NdXTn5GRoU6dOnlqe+jQIZ08edKtbVZWlvbu3ev5BRh4AQp9E9vRjB49Wnv37tWuXbvcbfjw4Zo4caJ7m/pevdtvv73e5ezff/999evXT5KUmpqqpKQkT30rKipUWFjoqW9ZWZmKiorcMVu2bJHf71dmZuY1OIvr14ULF+q9dkVERMjv90uivq2ptWrZnPcWHVUgJB0+fFivv/66unfv7umnvldv0qRJ2rNnj+e1Ljk5WfPmzdPmzZsldaD6tvXVJNqD06dP2y233GKjR4+206dP27///W93CygrK7PExESbNGmSFRcX29q1a61z5871Lg8eGRlpTz/9tB04cMAWLlzI5cEbsXbtWouOjrY//elPtn//fnvggQcsISHBc6Uw1Pfggw9afHy8vfHGG57n6YULF9wxM2bMsJSUFNuyZYvt2LHDsrKyLCsry+0PXL76nnvusV27dtlrr71mPXv25PLVjQi+6p0Z9W2J7du3W2RkpC1atMgOHz5szz33nHXu3Nn+8pe/uGOWLFliCQkJ9sorr9iePXvsW9/6VoOXXB42bJgVFhbatm3bbNCgQR3y8tWhJk+ebL1793YvD75+/Xrr0aOH/eIXv3DHUN/mq6ystJ07d9rOnTtNkv3617+2nTt3uldda41aNue9xY2qqfpevHjR7rvvPuvTp4/t2rXL83oXfIU16tu4yz1/Q4Ve9c6sY9SXoNQMa9asMUkNbsF2795td9xxh0VHR1vv3r1tyZIl9Y710ksv2ec//3mLioqyIUOG2N///vdrdRrtzooVKywlJcWioqJsxIgR9s4777T1lK57jT1P16xZ44755JNP7Kc//al17drVOnfubN/+9rc9od/M7Pjx43bvvfdabGys9ejRw+bOnWtVVVXX+Gzah9CgRH1b5m9/+5sNHTrUoqOjLS0tzVavXu3p9/v99thjj1liYqJFR0fb6NGj7dChQ54x//vf/2zChAnWpUsXi4uLsx//+MdWWVl5LU/julRRUWGzZ8+2lJQUi4mJsQEDBlhubq7njSX1bb6tW7c2+Pt28uTJZtZ6tWzOe4sbUVP1PXbsWKOvd1u3bnWPQX0bd7nnb6iGglJHqK9jFvQnuQEAAAAAHfs7SgAAAADQEIISAAAAAIQgKAEAAABACIISAAAAAIQgKAEAAABACIISAAAAAIQgKAEAAABACIISAAAAAIQgKAEAAABACIISAAAAAIQgKAEAAABAiP8HRxsG+05DV/oAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -286,43 +280,52 @@ " X1_BOUND = 1500\n", "\n", " # Set the combination method\n", - " fi = FlorisInterface(\"../examples/inputs/jensen.yaml\")\n", - " settings = fi.floris.as_dict()\n", + " fmodel = FlorisModel(\"../examples/inputs/jensen.yaml\")\n", + " settings = fmodel.core.as_dict()\n", " settings[\"wake\"][\"model_strings\"][\"combination_model\"] = method\n", - " fi = FlorisInterface(settings)\n", + " fmodel = FlorisModel(settings)\n", "\n", " # Plot two turbines individually\n", " fig, axes = plt.subplots(1, 2, figsize=(10, 10))\n", - " fi.reinitialize(layout_x=np.array([X_UPSTREAM]), layout_y=np.zeros(1))\n", - " horizontal_plane = fi.calculate_horizontal_plane(\n", + " fmodel.set(\n", + " layout_x=np.array([X_UPSTREAM]),\n", + " layout_y=np.zeros(1),\n", + " yaw_angles=np.array([[20.0]]),\n", + " )\n", + " horizontal_plane = fmodel.calculate_horizontal_plane(\n", " height=90.0,\n", " x_bounds=(X0_BOUND, X1_BOUND),\n", - " yaw_angles=np.array([[20.0]])\n", " )\n", - " wakeviz.visualize_cut_plane(horizontal_plane, ax=axes[0])\n", - " wakeviz.plot_turbines_with_fi(fi, ax=axes[0])\n", - " wakeviz.plot_turbines_with_fi(fi, ax=axes[1])\n", + " layoutviz.plot_turbine_rotors(fmodel, ax=axes[0])\n", + " flowviz.visualize_cut_plane(horizontal_plane, ax=axes[0])\n", + " layoutviz.plot_turbine_rotors(fmodel, ax=axes[1])\n", "\n", - " fi.reinitialize(layout_x=np.array([X_DOWNSTREAM]), layout_y=np.zeros(1))\n", - " horizontal_plane = fi.calculate_horizontal_plane(\n", + " fmodel.set(\n", + " layout_x=np.array([X_DOWNSTREAM]),\n", + " layout_y=np.zeros(1),\n", + " yaw_angles=np.array([[0.0]]),\n", + " )\n", + " horizontal_plane = fmodel.calculate_horizontal_plane(\n", " height=90.0,\n", " x_bounds=(X0_BOUND, X1_BOUND),\n", - " yaw_angles=np.array([[0.0]])\n", " )\n", - " wakeviz.visualize_cut_plane(horizontal_plane, ax=axes[1])\n", - " wakeviz.plot_turbines_with_fi(fi, ax=axes[0])\n", - " wakeviz.plot_turbines_with_fi(fi, ax=axes[1])\n", + " flowviz.visualize_cut_plane(horizontal_plane, ax=axes[1])\n", + " layoutviz.plot_turbine_rotors(fmodel, ax=axes[0])\n", + " layoutviz.plot_turbine_rotors(fmodel, ax=axes[1])\n", "\n", " # Plot the combination of turbines\n", " fig, axes = plt.subplots(1, 1, figsize=(10, 10))\n", - " fi.reinitialize(layout_x=np.array([X_UPSTREAM, X_DOWNSTREAM]), layout_y=np.zeros(2))\n", - " horizontal_plane = fi.calculate_horizontal_plane(\n", + " fmodel.set(\n", + " layout_x=np.array([X_UPSTREAM, X_DOWNSTREAM]),\n", + " layout_y=np.zeros(2),\n", + " yaw_angles=np.array([[20.0, 0.0]]),\n", + " )\n", + " horizontal_plane = fmodel.calculate_horizontal_plane(\n", " height=90.0,\n", " x_bounds=(X0_BOUND, X1_BOUND),\n", - " yaw_angles=np.array([[20.0, 0.0]])\n", " )\n", - " wakeviz.visualize_cut_plane(horizontal_plane, ax=axes)\n", - " wakeviz.plot_turbines_with_fi(fi, ax=axes)" + " flowviz.visualize_cut_plane(horizontal_plane, ax=axes)\n", + " layoutviz.plot_turbine_rotors(fmodel, ax=axes)" ] }, { @@ -345,26 +348,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAABqCAYAAADjjxZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZlklEQVR4nO3dfZAc9X3n8fe352EftM/SSki7ktATSAs2SBYg2+DEBvMU29iOkyNnztihCqfKrrPr7HN4qLtLVSpx7ORctsuuOOTgDp/JcT6THFQFHw8+ykdSQYB5FiCxEggk9ICeV1pp56G/98f07vZoZ1e72tmZXunzqtrant+ve/o7PTvf/U53/7rN3RERERGRZArqHYCIiIiIjE/FmoiIiEiCqVgTERERSTAVayIiIiIJpmJNREREJMFUrImIiIgkWLreAUxGu6V8Ppl6hyEiNdTP0D537653HNWgHCZydql2/poVxdp8Mnw/vbTeYYhIDX2isGV7vWOoFuUwkbNLtfOXDoOKiIiIJJiKNREREZEEm3axZmaLzewJM3vVzDaZ2dei9i4ze8zM3oh+d0btZmY/NLN+M3vJzNZNNwYRkdOlHCYiSVeNPWsF4Bvu3gdsAL5iZn3AbcCv3H0V8KvoMcB1wKro51bgr6sQg4jI6VIOE5FEm3ax5u673P25aHoAeA3oAW4A7o1muxf4dDR9A/BTL3kK6DCzhdONQ0TkdCiHiUjSVfWcNTM7F1gLbAQWuPuuqGs3sCCa7gHeiS22I2o7+bluNbNnzezZwxSrGaaISEXKYSKSRFUr1sysBXgA+Lq7H4n3ubsDPpXnc/e73H29u69vJ1WtMEVEKlIOE5GkqkqxZmYZSknuPnf/+6h5z/Chgej33qh9J7A4tnhv1CYiUhfKYSKSZNUYDWrA3cBr7v69WNdDwM3R9M3Ag7H2L0QjqjYAh2OHGkREako5TESSrhp3MPgw8G+Al83shajtDuAvgJ+b2S3AduD3o76HgeuBfmAQ+FIVYhAROV3KYSKSaNMu1tz9nwAbp/vKCvM78JXprldEpBqUw0Qk6XQHAxEREZEEU7EmIiIikmAq1kREREQSTMWaiIiISIKpWBMRERFJMBVrIiIiIgmmYk1EREQkwapxUVwRERGRs9IJb2LIG2Z0HSrWRERE5IxW9ICQVOU+UuwMz2WA9or9IQE7WDHSX34FbWeAdlJeJGu5WPvTVYl7mIo1ERERmRWKHrAn7GGIxjF9BTL0c2FZn+EA7GcBQ95I2vJjlnOMgme46AODtDccw728HEvj/P7HOljw4dUVY8pkQrq78gSxE8t+vvZ0Xt34VKyJiIhI1RwPmzhBU8U+A/aEi+jnAoqkMBxjtKg6ShvbWUUzR2mwEyct6+RooMGP02n7Rto9tq+rnf18+t4bSKfDsqKrKessX3KcbNan8cqGprHs9KhYExEROctUOiw4XDABHCp2spn3Vzx0eIxWtnBR2fxxA7RjONlxiptGjnHVF7rIpovEn8IdzOAzl/TS2VGkb+Wxsr5h6ZSTSq2a4NUdnaBvdlKxJiIiMgsNFTNs89XkyZQVToYTErCFi3iXJSPtQbwYYx6HmEeGXGxZxwlo4ihNDLKI7fSsbR1ZJvTScb4s8OWPhoQfv44ggDAcjcmBTAYW9XjZYcGpOHTQaNi5hWxmOnvBziwq1kRERGaIOxwsdpGjYaQoGj4458Am1rGVC2Ito/I0sp3zyJMd09fIICEpWjlMmtHzsDw2Z1/fcS7/0nUEdvLSJfMXOIWuNiwYXfjAe3Bhz2F6esMKS4x5dZOYR6pBxdo4flQ4xKuso5k/JcsJLuA52nmPgOLIBy5NkQt4lnNS745ZPjD9EZ+Ou4p7Abg1Nb/OkYjMbvos1ce3CvN4l6V08+8ByNFIngwBIY6RZYhMVFw50MpBNty0glTgY0qfMDSuWHiCF30+QapU+LnD3NZOlqyCOa2QneYVIzInPU6rKkgkvS3j2Azszx6E5W0sv2Qd+za2sD3XwPyWAQDcjT2b9vGPfJ5isXRMP/5tKU2RRbw58o3HcBo4gREy/G1kEdtZwwukKFQ49u8ElL7ZtHCEuen9M/uCE2Kb1+8EzjNZzrOE0TWwxzvPpJL4vEM0cYSOKa03vrwT8J4vrDgaq7ItU1qXlNNnqT52sx/awFaVPm8tDUdp6xgkCCCfS7NkzYV0nVOMLbGUAlAY5/nepJW2kz6z7a3VKdRk9lCxNoGUhXR2H+bwwSfhPGhu66N5SdtI//JPLmKZQxh97oY/TmHBsMI5HD38PhZ15cGNQwdhYa+TiT5cxbzx3J89yot8iPJdyVb2XE7AYebSXDhatqvbcOYwQKXd0MPPUCDNMjbTxXtly8V/jyrf5W2x+VMURv7BBrHlV9krtNiRitvudA2P6il4df40p1KYDNvrizhKa7T86axz7OGDieIY7svRyA6W4diY6/hUVn6OygJ2VtyjWyBNhhwpimWjpqaqSIprvrGSdFA89cwwZl2G09k8SEN6vH9L5W67Y8ohitSdUToBft45h7DT/7iJlFGxNk1mkDp5K6Yd2EVnCxyPmnqXLKRrPjQ2j87W84vrT/n87nDkABQKlJ2MkBkscPGlXjZCZnj+4Z+DB+DEk93kC6mRvtzb2+PRR+1jM4r7aCkwMNTEqgU7R5ZxjL0DrTzwy8tOecrCVIuD3XwXgP8afmNS8xc9xSLbTsomKiCmFsOQN3HVTa00ZXIV+0/e5mV9Fdc1vJ1HW1796fNj5nGMq25ZwPuu7iWVCqNlbNz3J+6Zh3dz2ZJ8aXTVSQJzgqBah+UPVul5RERkslSsJZwZtM8d2546DO2dEy87txs4f91JrRdNOYZDm3Zx2SXLxrTf9P0pP9Up/aubSnsuf/izD05q/nce28aapWmaGye3tycpfuemj07QO/XDVy0NQ6RTIenUZE4KFhGR2UQ3chcRERFJMBVrIiIiIglWt2LNzK41s81m1m9mt9UrDhGRqVL+EpFaqkuxZmYp4MfAdUAf8Adm1lePWEREpkL5S0RqrV571i4F+t19m7vngPuBG+oUi4jIVCh/iUhN1atY6wHeiT3eEbWNMLNbzexZM3v2MLNrpJ+InNFOmb9AOUxEqiexAwzc/S53X+/u69tJ1TscEZEpUQ4TkWqpV7G2E1gce9wbtYmIJJ3yl4jUVL2KtWeAVWa2zMyywI3AQ3WKRURkKpS/RKSm6nIHA3cvmNlXgUeAFHCPu2+qRywiIlOh/CUitVa32025+8PAw/Vav4jI6VL+EpFaSuwAAxERERFRsSYiIiKSaCrWRERERBKsbuesJV2aArkhZ8+T85j30S4yHU00G5wY3Ec646Qz9Y5QRESSJkWBgwdDdvzjgpHHaz61guZmZygP4S4o5kr/et2hudVZcEELW/oPgI8+TxhNpwJoaAazWr8SSRIVa+NYYyHn+Zus5ds888Rvc4ImtnIuIWlyZOlgHykKLFzdyt7epTS3hSxcllMRN019a1bXOwSRM8Jya6h3CGelDbaf4z7IZ/kaDmzkY+x4aAVDgBGSJ88gIQY4AbtZzACdGOGY5wpJUSSgk/1l/QWydLKHNg6x4a9+l3ePtQKl4s9jBV/DHFi5BjLZyrEGOrY2a6hYG8etqfnR1K/ZwK/L+rYWVnGAeeRpZNPr62l8fRcDtPE281ixssi8lgGWrWniaV9EOut0dhdq/wJmqf905+31DkHkjDCaw6SWRrf7WwAs4Z7Tfq5iaLwZnscBugEIYgWbY7zEB3nim4+MtAwznJCAfSzkcVIEFW53ZsBc9nLu6rD0rG44xlAxy/bGI7z/sma6P/dbZGM1f7wY7O72sj6ZWSrWTsOK9Bus4A0APsQTI+07Ckt4vv+D5Gnk/75wKYMcJ08jm2kiwz5aOQQErLoow3nXLaWpp4tCa4YgDQ2N9XktIiKSTKnAWRlsBjZX7L+Ef55weXcY8soVVd6zvOzrOfJ6Z3wJADLk2fjKfHbcPYSPObXdydPAEE20cJiyY7cjc6RY1ldk/Y19o6/lnS1Rp5FJF1n98V5OLDmvLFZ3He4dj4q1KupNv00vbwPwWe4FYCjMcijswjECnEGbw7MvXsHrL3bSz4XRbu4UDRyPijnjI3dcwrYTC2jrgCXnQRDdVlB/xCIiMllm0GhDFfsaGSrb2TAVec9wMOyitH8urlS4DdHEq6+u5Zn/2H9SnwPGIeZxz08aMPaMee4iacBZyNt02b4x/SHGNV9bQe/lK8b0uUNXR575c/Nn3P9LFWszrCHIsSDYXdZ2LlvLHh8ptrHdV1Ikwy56eebPB8mT4UUWYxTJk2VVH/S0HwRg+cWt7Jq/jp7FTle3ijgREamdjOWZnxpbaMUtjg4DT9XxsIl3fUlUtJXYSKEHx2nhsR+E5H7wTmypUl+RNPtYSNaHMIsf+i39k1x76XFaM8dLS3j5P850KscV13XSvP79Zef9jfY7XR2Fup3np2ItAdpSR3gfzwFwMRuBBwAI3Sh4mv5wDe+8ugInICTFL//lA5zgCf6FAiEpWhigiaNc/mdX0dDgONDUAF0XzqelBQ16EBGRWaEpOM6KcQ77Dns/z4zbl/PKoyn2+CL2Pt3DkbLDuqWqrECGtziff3rSCXgRYsUhQI4Ghmim2QdIWfwc9FLBlybHZVecoHf90gnjng4VawkWmJO1PH3BS/Tx0kj79fwcgFyY4bB34gS87Jfx2p3De/CM3SzmCB2A0cIRmjhKB/tY8zdfJxV9oehZCvMW1PQliYiIzJis5Sq2L7a3Jtzbt2GCQ8J5z3DU2/BxjmId9zlse3INbz25fyqhTomKtVksG+TpZi8AV/JgxXlCN7YXl3OMNnaxhKe/fC8O0SHXxWTIEeCsvSJNZ9MxoPR94sIPtTO47nIAbFDju0VE5OyUsTydNlEhtp+e6Hz1Yd+r8kUgVKyd4QJzlqVL58hdyPNlfXkvHR/dGy5k25OrOR7tHh6gg7sfXYPzv3GMIhketncBmOMD/N531wLQkC2w6LdX0NBQ2l0cBDp/TkREpNpUrJ3FMpYHoCf19phvBXGhG4fCLnJkectW83/++BAAB5jPfg6RobTbOe9Zum0XDZzgozd10fV71xAEjju0tDg9iwoq5kRERKZIxZqcUmBOV6q0C/gcdo0734FwLvu9mxxNPP6zi/Gf/QKAIineY1E0QiekSIpGH+Rjn2saef7VV5xD66WjQ7HnzHEaGyoMyRERETnLqFiTqukK9tNFqai74KRDrqHbyFDsImm2hqvZ/UALAHvo5ZFfFElFJ38epwVzp8mOAuAe8Dt39NHZkiMwp+PSZcyfX8QM8kXtqhMRkTObijWpicCcgNJh1wx5Lkg9P+68oRtHvIPS1XWMvZzDC9/eBkCeBt7mXQJCDKdAhvm8S6+9CZSGUH/2v32SOY2lszsNp7M1TzYz9r57IiIis4GKNUmcwJwOOzjyuJP9nM+mivPmPMteX0gYDY7I0cjPvvgEBUrX2jlKGwVPjwznLniaq7/YTlO69PjcK5azaN4gULpIYmBOQ1aFnYiIJIeKNZnVspaj17aXta3ktbLHBU/j0cULj9HKW/cuxjFCAh6++wghRkBISIpj3sJc20v8goid7OPan3wGw0mlnMXdx2hpHntjZBERkZmgYk3OeOnYFac77AAdHBh5fEF054hhQ2GW48wZeVwkzdus5OE/eggoXcl6N4tJR4d0Q1IEXqQ7urTJsEZOcON91wOl+9W1NRdob8lX94WJiMhZQcWaSExDkKOB8itgz+W9cecP3djPfHI0jrQVyLCHXv728/8MwCAtHPYuWu3w6HIEpLzANbd0AuAY81sGWHnlypF50qmQRh2SFRE5602rWDOzvwQ+CeSArcCX3P1Q1Hc7cAtQBP6tuz8StV8L/ABIAf/F3f9iOjGI1FNgTreNvaHxUvpHpkM3ilb+UQsJ2EMv/feULl+So4HHWQ4/HD03b4hGAg/JWunGw40McvWXF5FJjR6CdTfamwYJvaOaL+usoRwmIrPBdPesPQbc7u4FM/sOcDvwx2bWB9wIXAAsAh43s/OiZX4MfBzYATxjZg+5+6vTjEMkseIjYeOW2Nayxxfym7LHRU9xnKaRxwO0s/FvDo5cAgVKlznZQw9pBnmeQ2QsTwuHCSgyfJNhgI/fcSEN6fL7nzSm87pIsXKYiMwC0yrW3P3R2MOngM9F0zcA97v7EPCmmfUDl0Z9/e6+DcDM7o/mVaITOUnKirRE15oDaOEoC9k54TJ5z3CUNuKF2hCNPPjnb40MsgDIkaXgGRrsBAAZcrRxiEu++cGReTJBke6WgTO6oFMOE5HZoJrnrP0h8D+j6R5KiW/YjqgN4J2T2i+r9GRmditwK0C3Tq0TmZSM5elk7A2Hz2HHmLYiAR5d8mSIRo7Szsa/2jjSP0gLA95BKjZAI+9ZMpajmdEiMiCklUN8+PYNQGlARWBOe+NxgmBW3YVCOUxEEumUGcTMHgfOqdB1p7s/GM1zJ1AA7qtWYO5+F3AXwCprnFUZX2Q2SFkIlAYwpDnKnFgBNuLkvWoGJ7xp5Lp2UBoxe4ROHvn26M6lkBTHaB3zdAVPMy92jp9jBBS5/j/0lc3XlK7eyFnlMBGZ7U5ZrLn7VRP1m9kXgU8AV7r7cELaCSyOzdYbtTFBu4jMAo3RgIe4Vg5XmHOsQeYwFBs5C3CETn7xp6WdVYbjDN/BojqUw0RktpvuaNBrgW8Bv+Xug7Guh4C/M7PvUTo5dxXwNKXv6avMbBmlBHcj8K+nE4OIzB7NdoxmjpW1VTpsW6vdUMphIjIbTPdEih8BDcBjVjoL+Sl3/yN332RmP6d00m0B+Iq7FwHM7KvAI5SGvd/j7pXvIyQiZ60aDmpQDhORxLPRvf7Jtcoa/fvppfUOQ0Rq6BOFLb9x9/X1jqMalMNEzi7Vzl/BqWcRERERkXpRsSYiIiKSYLPiMKiZvQdsr8Oq5wH76rDeU0liXIppcpIYEyQzrvPdfez1P2Yh5bAyimnykhiXYpqcquavWXGlRnfvrsd6zezZJJ4zk8S4FNPkJDEmSGZcZvZsvWOoFuWwUYpp8pIYl2KanGrnLx0GFREREUkwFWsiIiIiCaZibWJ31TuAcSQxLsU0OUmMCZIZVxJjmm2SuA0V0+QlMS7FNDlVjWlWDDAQEREROVtpz5qIiIhIgqlYG4eZXWtmm82s38xuq+F6F5vZE2b2qpltMrOvRe1/YmY7zeyF6Of62DK3R3FuNrNrZiiut8zs5Wjdz0ZtXWb2mJm9Ef3ujNrNzH4YxfSSma2boZjOj22PF8zsiJl9vdbbyszuMbO9ZvZKrG3K28bMbo7mf8PMbp6BmP7SzF6P1vsPZtYRtZ9rZsdj2+snsWU+EL3v/VHc07oR1DhxTfn9qtfnc7ZQ/qoYW6JymPLXacVV1xxW1/zl7vo56YfSPf+2AsuBLPAi0FejdS8E1kXTrcAWoA/4E+CbFebvi+JrAJZFcadmIK63gHkntX0XuC2avg34TjR9PfBLSje93gBsrNF7thtYWuttBXwEWAe8crrbBugCtkW/O6PpzirHdDWQjqa/E4vp3Ph8Jz3P01GcFsV93Qxsqym9X/X8fM6GH+WvcWNLbA5T/pp0XHXNYfXMX9qzVtmlQL+7b3P3HHA/cEMtVuzuu9z9uWh6AHgN6JlgkRuA+919yN3fBPopxV8LNwD3RtP3Ap+Otf/US54COsxs4QzHciWw1d0nuvDojGwrd/9/wIEK65rKtrkGeMzdD7j7QeAx4NpqxuTuj7p7IXr4FNA70XNEcbW5+1Neyj4/jb2OqsU1gfHer7p9PmcJ5a/JS0oOU/6aRFz1zmH1zF8q1irrAd6JPd7BxAlnRpjZucBaYGPU9NVo9+89w7ulqV2sDjxqZr8xs1ujtgXuviua3g0sqHFMcTcC/yP2uJ7bCqa+bWq9zf6Q0rfMYcvM7Hkz+7WZXRGLdUeNYprK+5WIz2eCJWL7JCx/QbJzmPLX1CUph814/lKxllBm1gI8AHzd3Y8Afw2sAC4GdgH/ucYhXe7u64DrgK+Y2UfindG3lroMLTazLPAp4H9FTfXeVmXquW0qMbM7gQJwX9S0C1ji7muBfwf8nZm11TCkRL1fMn0JzF+Q0Bym/DV1CcthNXm/VKxVthNYHHvcG7XVhJllKCW6+9z97wHcfY+7F909BP6W0d3fNYnV3XdGv/cC/xCtf8/woYHo995axhRzHfCcu++JYqzrtopMddvUJDYz+yLwCeDzURIm2k2/P5r+DaXzKc6L1h8/zDBTf1tTfb/q+vmcBZS/KkhwDlP+moKk5bBa5S8Va5U9A6wys2XRt54bgYdqseJopMrdwGvu/r1Ye/x8ic8Aw6NRHgJuNLMGM1sGrKJ0QmU1Y5pjZq3D05RO8nwlWvfwqJ+bgQdjMX0hGjm0ATgc26U+E/6A2CGEem6rmKlum0eAq82sM9qNfnXUVjVmdi3wLeBT7j4Ya+82s1Q0vZzSdtkWxXXEzDZEf5dfiL2OasY11ferbp/PWUL5a2xcSc5hyl+TlMQcVrP85TM4wmU2/1Aa9bKFUoV+Zw3XezmlXc4vAS9EP9cD/x14OWp/CFgYW+bOKM7NTHO03jgxLac0YuVFYNPw9gDmAr8C3gAeB7qidgN+HMX0MrB+BrfXHGA/0B5rq+m2opRodwF5Sucf3HI624bSORj90c+XZiCmfkrnSgz/Xf0kmvd3o/f1BeA54JOx51lPKflsBX5EdCHtKsc15ferXp/P2fKj/DUmrkTmMOWvKcdV1xxWz/ylOxiIiIiIJJgOg4qIiIgkmIo1ERERkQRTsSYiIiKSYCrWRERERBJMxZqIiIhIgqlYExEREUkwFWsiIiIiCaZiTURERCTB/j/wFnAyLO058wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAACUCAYAAACHtiiAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAst0lEQVR4nO3deXBc1Zn38e/tVWpJrda+WJJX4QXLNhjbyCYmDMIGnElISEIYJmFJzITImTAwjOOQQJKpNzZhXph6UwlkaiYmqQw4YQrMO7xkMV5IGMRmY2yDbWzjDcuSvGnfejnvH7JaarU2E7e6Jf0+VSp3n3vu7XPqtvvpp8+551rGGIOIiIiIiIhcdLZ4N0BERERERGSsUsIlIiIiIiISI0q4REREREREYkQJl4iIiIiISIwo4RIREREREYkRJVwiIiIiIiIxooRLREREREQkRpRwiYiIiIiIxIgj3g0YCaFQiOrqatLS0rAsK97NEREZN4wxNDU1UVhYiM2m3/i6KS6JiMTPSMemcZFwVVdXU1xcHO9miIiMW8ePH6eoqCjezUgYiksiIvE3UrFpXCRcaWlpADxlm4zH0i+sIiIjpdWEuCN0OPw5LF0Ul0RE4mekY9O4SLi6p2t4LBseyx7n1oiIjD+aNhdJcUlEJP5GKjbpZzUREREREZEYUcIlIiIiIiISI0q4REREREREYiSmCdfatWtZsGABaWlp5ObmctNNN7F///6IOu3t7VRWVpKVlUVqaio333wztbW1EXWOHTvGihUr8Hg85Obm8sADDxAIBGLZdBERGYMUl0REZKTFNOF65ZVXqKys5PXXX2fTpk34/X6WLVtGS0tLuM4//MM/8N///d88++yzvPLKK1RXV/O5z30uvD0YDLJixQo6Ozt57bXX+OUvf8lTTz3FQw89FMumi4jIGKS4JCIiI80yxpiRerFTp06Rm5vLK6+8wtKlS2loaCAnJ4enn36az3/+8wDs27ePmTNnUlVVxZVXXsnvfvc7PvWpT1FdXU1eXh4ATz75JKtXr+bUqVO4XK4hX7exsZH09HR+a5+q1aBEREZQqwnyxeAhGhoa8Hq98W5OFMUlEZHxZ6Rj04hew9XQ0ABAZmYmANu3b8fv91NRURGuM2PGDEpKSqiqqgKgqqqKsrKycFADWL58OY2Njbz33nsj2HoRERlrFJdERCTWRuw+XKFQiHvvvZclS5Ywe/ZsAGpqanC5XPh8voi6eXl51NTUhOv0Dmrd27u39aejo4OOjo7w88bGxovVDRERGSMUl0REZCSM2AhXZWUle/bsYcOGDTF/rbVr15Kenh7+Ky4ujvlriojI6KK4JCIiI2FEEq5Vq1bx4osvsnXrVoqKisLl+fn5dHZ2Ul9fH1G/traW/Pz8cJ2+q0N1P++u09eaNWtoaGgI/x0/fvwi9kZEREY7xSURERkpMU24jDGsWrWK559/ni1btjB58uSI7fPnz8fpdLJ58+Zw2f79+zl27Bjl5eUAlJeXs3v3burq6sJ1Nm3ahNfrZdasWf2+rtvtxuv1RvyJiIgoLomIyEiL6TVclZWVPP3007zwwgukpaWF57anp6eTnJxMeno6X/3qV7nvvvvIzMzE6/XyzW9+k/Lycq688koAli1bxqxZs/jyl7/Mj3/8Y2pqavjud79LZWUlbrc7ls0XEZExRnFJRERGWkyXhbcsq9/y9evXc8cddwBdN5i8//77eeaZZ+jo6GD58uX87Gc/i5iWcfToUe655x62bdtGSkoKt99+O+vWrcPhGF6+qOV3RUTiI9GWhVdcEhGRkY5NI3ofrnhRYBMRiY9ES7gSheKSiEj8jOn7cImIiIiIiIwnSrhERERERERiRAmXiIiIiIhIjCjhEhERERERiRElXCIiIiIiIjGihEtERERERCRGlHCJiIiIiIjEiBIuERERERGRGFHCJSIiIiIiEiNKuERERERERGJECZeIiIiIiEiMKOESERERERGJEUe8GyAiIiIiIjJcfuMkOEQaU2sKOWEm0UoqADZC4W3p5jBwKJZNjKCES0REREREYsJvnBisQet8aGZwyhQQxD5ovSAOzpHDCSZBv8c05/8ghJ2sqSlkJ9XjtnVigND5fVJS3fDaBXflY1PCJSIiIiIiABjTlaz0uw2LZuPloJlJG2nhcqvX6FF3whPAyQmmcJo8epIj0+9x/cbFhFIb6e4WbFZwgJZ1HcNrGZYssHHZ9bn9Hs4YK1zssBtysxx4UyOP2dicwj9eM8DLxIASLhERERGRUcb0n7tECWGnOlTMUVMaNdLUnZpYGELYaCSDj6ypdJAUVaeb37jx0EjJbFd0m3o9tmGYk1bL4nsKSXaHItpsTGQ73O4QJQXtOB3RxxxY6wXUjS8lXCIiIiIicWYMHDPTqAkVhq9P6pvsdJVBM2m8zxU04etVp/8MLISddjy4aMeBP+pokUlSkM9+ybDoxgywerYYgPNJUravk8LcZGzDWnovE2geTsUxTQmXiIiIiMgF8Bsnh0PTqTcZDDRdrjuVqaGE/czDjzNqW19tpBDChpv2IdtQPDXIdTdPgMIJUUfrGUnqap0nxTCtNEjBhMiRpt71m5ssTlUd47rFp4GmIV9fhk8Jl4iIiIiMWc2hVI6GptFB8qD1LAyN+NjPXKqZ2GdbpBA2mvARwo6NruuDunMYJ35SaYjY85JLWpj/2WI6cot6jtH7sqfzPClQNtdPVnb/CVnvRMkevsyqc9B+DZfNDjbbMOcpygVRwiUiIiIiCaMpmMYRMw3Tz8IN3SNDnbh4g7/iJJPCK88BOAjgIHD+WVddP27OkY2NUJ/FHaIZbGTmhJi2fCoZmZF1w9cdnc9JsnMDZF7iw5vRkwg11YOnrZ4rF3eGyyyLXtPvLk5yJKOLEq4EYIyh4/z/XjcWljX40pkydum9ICKJQp9HAoO/D04GJ3DOZIWfDzRNroEs/syNnCMrfC+kyHeTCe/bgYezZBPCFpUc9X0HWhguucJL2gQPdoehvcOG223Izw8SCvVZlCEvlVmXQ1Jy5MhSxNS67scWJCV1jfhcqEAnOPxmmNc3yXihhCsBdGD4fHAx8CnmkosNmMgHLGET6Zymb4zzcZpke0c8miox1vVeOAjAf9mnkTTEfStERGJFn0cCke+DBTxPO7lAV4pUTzYtpGGwBky2oDtRClE4J5NJpQH6rvHQO+kxxmKO11AyN4VzHW0RxzEm8ioppws8qT2v0njWYkJ2MqWXfszOisSIEq4E0PVBcxUwFzMrn5Dd4k+7S9nGp7s+wPp8htkJUBg4QianiF6RxmA7X2YnwFyqKLO9jTO8Kk3/q924aMdt0zC3iIiI9K82dSYFZSXY7F3fJnJchiN1R0jztWCzhcBY0YsxAGCBZZh5RSZFpcMZ+rEI0Eaa56J3QSQulHAlDAPUEkg9izezkyKvh2DAovt3oe7Pr+zCUjgZoqnuEpyZRUQNsId66p4+GeBXJxdjhUx4WH6g3yftBJgQOkw+x3AS6DpQH1ZEfT9lvEmp7X0cViCqbs8+/f/iZWEG3U9EhidgHDSSQSfuC953sF+kAdpJpt5kE+i1stbABrjAmybg0AW3TUQSz7TyTFrs27E5uhaJ6AQKJw1v38724XyOiIxNSrgSkN1hSMto6Xdb0L+DYIaNvOmXMXHm4B9e+Y0WE+qsyCF4c35EzYSf0tlukVLvp2YPnLKXkOlpor/Z1dAz7P/RvnaqWIYz1DnIJJPBphcYJnCEEj7AE75xnYnY3vc41gDlvXloZqbtXbKs2gFfeyhDfQkdcn/NuomrcyaLepNFqJ+Lrbv0N8obvZTvhb0PIt+7flwcoIxOksLb7ATI56NhTsoa/msHcZBEK0lW29CVL/jVLNKts6z49pSPfezmTifff/Rj7y4iIjLqKeEaw1K8hhTvcL+42fDNzyHL62Na2dC1m85B9XEIdkbe66G3iNQoFLnBHK3lg1ddHLOmkZfWOODrhKd5m+ivqX17Vv3uORrJ5OXQzeEb+1kD1h58rrkDPx6rZdB6XXUHTyr7N/AX/oBpB74GwM+D38ZhJYWniA51jIHbEF03hWaSrdZhH6frWBf2+v23e7D9h5fkDJ7gW7SaFOwE8NAcVdsMund/24ZfP/LGkYaFX8jhkvI8klxBAkGL9149zTVTGrDbB18h60I57UGSnR4glnNvhr4fzMA0VVlERMY3JVzysaRlwPSMv+AA5XlMvTEPd0sbly+6eF9AG+rhg/ctAr1upN41ohc5NTO8rc9LGwMtrZDScor586JHDCIv7I0ui95hgH3pZ567gfb2VjZ15Vvc9e/zSUry9Ps6EbsO1A7Tfxura91M9O9lelF99LH6HsIMnLAM2u8+dfr2faj6gx9z8DGijNQO8jPbsNl8Qx8s5k4D4A9YHH7DT1pSO46LnHCJiIhIYlPCJWNKug8WLP74I0IAjQ3Qsq+TubM//hStj6u1tec1F1zWhicGgxYHPgySfLSVKYXNF//gIiIiIhJBdwkQERERERGJESVcIiIiIiIiMaKES0REREREJEZGTcL105/+lEmTJpGUlMSiRYt48803490kEREZ5xSbRERkKKMi4frNb37Dfffdx8MPP8yOHTuYO3cuy5cvp66uLt5NExGRcUqxSUREhmNUJFyPPfYYK1eu5M4772TWrFk8+eSTeDwefvGLX8S7aSIiMk4pNomIyHAkfMLV2dnJ9u3bqaioCJfZbDYqKiqoqqrqd5+Ojg4aGxsj/kRERC6WC41NiksiIuNXwidcp0+fJhgMkpeXF1Gel5dHTU1Nv/usXbuW9PT08F9xcfFINFVERMaJC41NiksiIuNXwidcH8eaNWtoaGgI/x0/fjzeTRIRkXFMcUlEZPxyxLsBQ8nOzsZut1NbWxtRXltbS35+fr/7uN1u3G73SDRPRETGoQuNTYpLIiLjV8KPcLlcLubPn8/mzZvDZaFQiM2bN1NeXh7HlomIyHil2CQiIsOV8CNcAPfddx+33347V1xxBQsXLuRf//VfaWlp4c4774x300REZJxSbBIRkeEYFQnXLbfcwqlTp3jooYeoqalh3rx5/P73v4+6WFlERGSkKDaJiMhwjIqEC2DVqlWsWrUq3s0QEREJU2wSEZGhJPw1XCIiIiIiIqOVEi4REREREZEYUcIlIiIiIiISI0q4REREREREYkQJl4iIiIiISIyMmlUKx4dsztS4SE6pwZ0cAMBgYVkGy4pz00RERGRcO1lt51xzMTYrBEBhaSHeTEPjmR24XP5wPUN/X1r0RUbGLyVcCaArmdoITKPj2Ew+PDYZB37AwuNzkzY9j3N1h3EkdZKdfxqnO4QxcW2yiIiIjDNn3zuBjVQMXV9Cjh2powMXSUwA+n4xiUywfOmdNLiD1J2wRx23755JyVA0LUR6Vv/t6P4OpB+jZbRQwpUA3Fj8l/0AQfMN9oSW8BFTCGKnjVQO1c/i5BstgEUTXpr2enHSQe7lbtpaDDYbTCgNkOqNdy/kYkhOTuLg9tfCj0VE4qUrNk0LP5bxqft9YAy4uRmrV5bTHnLzjinnQ2bSO22yMNh6jXM14eW9hoXs+n81OAier9v/L8cGGx0ksZdmUjNs54/WV9eRPfZ2Zv71ZI43O3E4oK0ZmoqhqaHn8KHz/xZNhNwJYNPFNBIHSrgSgGVZJGGBZVhke5VFvBqx3Ziu4fntwSXsZw7HKOXEjjbO7nAQwsFhXwo+TwsOK4jBorDMR4vXBYDTZcgpDpGariGx0cCyLDye5Hg3Q0SkJzbJuNbzHSV6W7K9g8VsYzHbhjxO0ESPbPXHbxwcCF3KHhYSPNdV1jtHsuiazujHzQfM4ZX1JzH0NO8EAZx0Rh3X5vOS6WogydHRJ4Hr2rMnPTQUljiZeuMU/J708yU9DOe/lxnwZUDxVHA6h9U1GceUcI0CltX1+84Cx6ssOJ+MhUzX70cfhqbzdv1VtNenEMJGDUXsOjGVwPlTG8BJfkEQj7OTEBY5M7JoyXCSlGzImRDCkxbPnomIiMh4YLeCw65XZttBGTuGrOs3zgGuF4t0xuSyo76cBrKgV2LV/W/vI5xgEjuqJ/LW68d6ja31/dG6K8UL4CQrO0iaq6XXNgu7Lcg2z+neRcybb2PCF8pJ7vObanfy1vtSkeRkQ35BCIe+pY8ZOpWjlM0yQJBS+/uU8n7EtkDITgAHflzsDl3B7pMLMDg5TR7vHoMgDgw23D4PuXkhPK4AWIaMIg8theDxgs2C9GxI9sSnfyIiIiKDcVr+oSsBBdZHrLA9O6y6fuPEb4YesmonmXdDV3LydDEhHPROyhwEsAhi0fWDeRAHL+6fQv3T+xhoKmUXixAWLjqYe3UKbkf/SWp3cpbkCjAt9wyFt34C+/lhwFA/hw+FwG6H7OwQaV7NeIoHJVxjkMMWxEGQJDpYbNvKYraGt3WGnHSSxElTxGv119FU78Ngo5qJHNiVD9Sz4987MUBpqZ+8EhfGwITsVqyrLifJA74scLnj1j0RERGRmHBa/mElch5aucb2/4Z9XGOg2aRiiJ5a2fsqtWa8vB+6jLpXimjv2rPf47WRwikK2Ewe9l/t7ftqUa8AIaZObaNgamp4c9/RwU6/jSRXgJL8ZApyOwdcoC3JHcLpUOJ2IZRwjTMumx8XfkrZSyk9/0FbQil0mK4sKoCTA2Y2uw8s4swBOw1kUUUJ/LZrJM1JB2Vz2km6ZFp4/4yMAPapBWTkgd0G3gyw690lIiIigmVBmtU8ZL00GimwfTRkvaCx0WR8hIYxpbITN0dC0/nw0ExOHeq5Iq7vciQWhjpSeOCPmeEtfY9usHDg56qbfeSmtZwv61PHdN/WCDI9rcy6bgK5Wf0ncL3LLAtSPcObejra6CuxAJBiayGFnjnIudSyhM3h563BJJrIJIidvWYu7++6nPpdx89vtdhJMS2cC9dPpYkrlqdBVjYYKCzoxLqkiFQvpKSBbXjXzoqIiIhIH3YrhM86O+z6+bZqruw142kwzaFUWkkFopOyNlLYa+bx4XNZHKJ3QhadTbWSyhny4Gdnwoud9M8ihI3SWX5mXZaEJ6nPCGOfQxdmNDJreQnJST3H7C+ZsyxISU6MBE4JlwyLx96Oh2oACjnOtbwYsf1sKIsW07UCR6dxsYtFHP7DTELYacLHNnKx2IMFeGii/IY0Onw5GGPRdKgdmwWXTOsgc14hFuDQij8iIiIiIy7V1kwqA4/GlfDhsI7TbpJpMD5CVn+/svdkSCHsHGAOp/fm8dbeyC+AfRO+TtycI5fQ/67HxuDJlAVkUMe1dxVgt0cmfDmpJ4fVh4tFCZdcFJm2M2RyJvx8Kh+EHxsDZ0I51JtMgjh4jyv44HezCHIEBwFO4qeBTNpIwUU1FoYZl9uYWjGF5qQsChx1TCruxDe3MOr+GVrBR0RERCTxJFltJFltw6o7gWPDquc3Ts6YXPyWK6K8vxG0TuPiQy5l6/robflmz7Be72LR11WJOcuCbPspsjkFwHTei6oTNDY+Ck6kGS91FPHujnKqd5zBAC146SAJF8fD9UNYFMz0UnzDpfgyDTY7FJUYZsw2UXee100ORUREREY/p+Un3zox7PpTONBveasJ8vgIzjZUwiUJwW6FmOg4DMClvMs19Kz881GwhNMmj963PmwmjUN7L+X9vdUYLFpJwY+LZFp73TXDRnFZKsWfnovXayiaZJhaanBG/igiIiIiIhIzSrgk4RXZj1HUz1DzVbwcftwaSuZQaBatpJ6f72toJJMPdpfx1u4zGCyayMBNGy46wkuhJtHKDXfn03rJPGx2cLkg3QeZI9Q3ERERERnblHDJmOCxtVFm2x5VXsELQNec34OhWZwxOXRdRtk1Drafy3ju31KAP2PD0IaHrjuVtfLc+SmMs5dnMfPWy8jKDPSsgmNBarJhQqFfUxZFREREZEBKuGRccFp+ZtrfjSpfYnpGyQwWNaEJHDSXAmCzQoSw884fy9j6xz3Ye12QGcKGMTD3E0k47cHz+0Oyo5OrrnOROmcqAMnJIfJyA1HXlYmIiIjI+KCES8a13omQhaHQ/hGFRN5wcIn5I31v/ddh3BxiJmdezT8/VmZowsdupvPnlx3YrH1dNwc0fi67JgmHrSspc9qClC1OY8KSIuz2nqVOszKDJCfpru0iIiIiY40SLpEh2K3o5UQ9VitlRE5hNAb89KzI0WJSOcBsGrdl0tlVgw6S+dXLk2k2reF6IWxYhJi31InX3R4u9yW3Muv2hWRnBsL5nsNhyMoIahqjiIiIyCihhEvkIrEscJ1PrQBc1lkW8qeoesZAB8nh5+0mib3mMhr+3PtOZrCLybzwf/dhYcI3/gthY/KCdIp8Z3D3mspot0KULUmn+Ori8P6pKSE8yRo1ExEREYknJVwiI8yyIImeGwEmWW2UsyWqXqdx0Wl6RswsDKdMPvvfvoxT9NyJPYiDOgr5w+88OHrdbyIEzP+kk7xLsrDZuic+gkULi2dD6PzAnTEWlmU0aiYiIiISA0q4RBKUy+rEZXVGlKVwiEkciqobMhbNJg2DPVy218yj9pUJ1L/Sc/1ZK2k04uMtGnEQALruV+agk4pbPeTNKwnXzU5vZ2pBEy5n9JRKERERERkeJVwiY4DNMnitxoiyK9kaVa/TuGgxaYR63UQ6gIM6JrBjwwTMhp77nZ02+V3H7rM646U35LPwr1KwWV2jZnY7lOQ2ketr12qMIiIiIn0o4RIZR7pGzc5EledxEng7oqzZeGk1KfS+CqwdD8d+X8rG36fSfS+zDjw0mAySaMXWq3ay1cx1X/GRM29yuKz7htM2C/KzWijMakNERERkLFPCJSL9SrUaSe0zagYwsc+UxqCxc5Zs/LjDZQaLD5jDH39lw/rVO1HHaMFLwDhJojVinxkrSlhwTQrJ7gDGdCVnLkeI4twW0jz+i9U1ERERkRGjhEtE/iJ2K0iOVRtVPoGjA+4TMA7OkBOxWmMbKZx46TQbXvL21MNJs/GSQhP289ec9bAIYVFxWxqlSwrCpRmpHeRntmkREBEREUkIMUm4jhw5wj//8z+zZcsWampqKCws5G//9m958MEHcbl6Vl3btWsXlZWVvPXWW+Tk5PDNb36Tf/qnf4o41rPPPsv3vvc9jhw5QmlpKY888gg33nhjLJotIiPEYQXIs05GlU9nd8TzoLFRRyHtvRKzbgGcHGYGm582bHm6ZySu1aTgIEAyzVH7GGyUfbaYBdd6cTmD4XKXI0RBZhvJ7mDUPjJ2KDaJiEg8xCTh2rdvH6FQiJ///OdMmzaNPXv2sHLlSlpaWviXf/kXABobG1m2bBkVFRU8+eST7N69m7vuugufz8fdd98NwGuvvcatt97K2rVr+dSnPsXTTz/NTTfdxI4dO5g9e3Ysmi4iCcRuhSiwPhpweynvR5WdM9mcNdnh68W6WdC1OMhGFzs21tF1DZrBYKPVpJJGPW56bjxtzu9lJ8h1d2QwZUnR+fKuZfTTPAFyfe3I6KHYJCIi8WAZY0bkzqiPPvooTzzxBB9++CEATzzxBA8++CA1NTXhXxa//e1vs3HjRvbt2wfALbfcQktLCy+++GL4OFdeeSXz5s3jySefHPZrNzY2kp6ezm/tU/FY9qF3EJFxI2QsTps8zpETUW5haCWVaibSjBdbrxtQB4wDFx14IkbRuhK8BV8q5NKrc0lJ6rrmzGARCFq8u/k0112yB4d9fC2z39jeyeT/9RQNDQ14vd6hdxhh8YpNiksiIvHTaoJ8MXhoxGLTiF3D1dDQQGZmZvh5VVUVS5cujZjGsXz5ch555BHOnTtHRkYGVVVV3HfffRHHWb58ORs3bhypZovIGGezDLlWDbnU9Lt9Hq9HldWaCZwzWRgiLxQzWLzxG4vNv2k9f5Pp7nJw08Gkb+TRd+V8hz1IXloDHmcnfVkQvmm1xIZik4iIxNqIJFwHDx7kJz/5SXjKBkBNTQ2TJ0+OqJeXlxfelpGRQU1NTbisd52amv6/GHXr6Oigo6Mj/LyxMXqlNRGRjyvPOkGedaLfbTPNOxH3OYOuVRnPkc27T0TXb8JHi0nr91gWBo/VzNWVU6O2Tck8Ne5Gyy62kYxNiksiIuPXBSVc3/72t3nkkUcGrbN3715mzJgRfn7ixAmuv/56vvCFL7By5cqP18oLtHbtWn7wgx+MyGuJiPRmWWAnMhHyUo+X+gH38eOMPs75KY1nyeXtn+6M2FZnCsO1+kqijau/MQWXo2dVx+6J45YFBWnn8LjG1hL7oyE2KS6JiIxfF5Rw3X///dxxxx2D1pkyZUr4cXV1Nddccw2LFy/m3/7t3yLq5efnU1sbuZR09/P8/PxB63RvH8iaNWsipns0NjZSXFw86D4iIvHitPpPgAZK1CZb++k0rq4FPHrdbDqEjVqK2P5EQ0T97jpnTS5B7BE3qO69b4Z1mqV/Pz1qm8fZSZanOWFH1EZDbFJcEhEZvy4o4crJySEnJ2foinT9enjNNdcwf/581q9fj63PTXHKy8t58MEH8fv9OJ1dv+5u2rSJ6dOnk5GREa6zefNm7r333vB+mzZtory8fNDXdrvduN3uQeuIiIxmLiv6mi+AiRwccJ8p1j46jDvq2jOAFtJoIJNX/8/e6G0mjQ6SsBO9bH4AB2lWA9d9a3I/aRxAQ7+lF9NoiE2KSyIi41dMVik8ceIEn/zkJ5k4cSK//OUvsdt7VmDq/gWwoaGB6dOns2zZMlavXs2ePXu46667ePzxxyOW3r366qtZt24dK1asYMOGDfzoRz+64KV3tRqUiMhfpsO4CfbzG10HyZwjGz/OqAmObSaFRmPjEZMYqxQmUmxSXBIRiZ8xsUrhpk2bOHjwIAcPHqSoqChiW3d+l56ezh//+EcqKyuZP38+2dnZPPTQQ+GABrB48WKefvppvvvd7/Kd73yH0tJSNm7cqPuciIiMMLfVAXRElXtoIYPT/e9kQWPIYoChrxGn2CQiIvEwYvfhiif9kigiEh8j/SviaKG4JCISPyMdm6In8ouIiIiIiMhFoYRLREREREQkRpRwiYiIiIiIxEhMFs1INN2XqbWaxLyHjIjIWNX9uTsOLhe+IIpLIiLxM9KxaVwkXE1NTQDcEToc55aIiIxPZ86cIT09Pd7NSBiKSyIi8TdSsWlcrFIYCoWorq4mLS0Ny+p7p5jE0NjYSHFxMcePHx8TK3mpP4lrLPUF1J9E19DQQElJCefOncPn88W7OQljNMQlGHvvx7HUn7HUF1B/Et1Y689Ix6ZxMcJls9mi7rmSqLxe75h4I3dTfxLXWOoLqD+JzmbTJcO9jaa4BGPv/TiW+jOW+gLqT6Iba/0ZqdikCCgiIiIiIhIjSrhERERERERiRAlXgnC73Tz88MO43e54N+WiUH8S11jqC6g/iW6s9We8GWvnbyz1Zyz1BdSfRKf+/GXGxaIZIiIiIiIi8aARLhERERERkRhRwiUiIiIiIhIjSrhERERERERiRAmXiIiIiIhIjCjhShA//elPmTRpEklJSSxatIg333wz3k2KsnbtWhYsWEBaWhq5ubncdNNN7N+/P6LOJz/5SSzLivj7+te/HlHn2LFjrFixAo/HQ25uLg888ACBQGAkuwLA97///ai2zpgxI7y9vb2dyspKsrKySE1N5eabb6a2tjbiGInSl0mTJkX1xbIsKisrgcQ/L3/605/467/+awoLC7Esi40bN0ZsN8bw0EMPUVBQQHJyMhUVFRw4cCCiztmzZ7ntttvwer34fD6++tWv0tzcHFFn165dfOITnyApKYni4mJ+/OMfj3h//H4/q1evpqysjJSUFAoLC/nKV75CdXV1xDH6O6fr1q1LuP4A3HHHHVFtvf766yPqJNL5keFRXFJc+kspNiXWZ59iUxxjk5G427Bhg3G5XOYXv/iFee+998zKlSuNz+cztbW18W5ahOXLl5v169ebPXv2mJ07d5obb7zRlJSUmObm5nCdq6++2qxcudKcPHky/NfQ0BDeHggEzOzZs01FRYV55513zEsvvWSys7PNmjVrRrw/Dz/8sLn00ksj2nrq1Knw9q9//eumuLjYbN682bz99tvmyiuvNIsXL07IvtTV1UX0Y9OmTQYwW7duNcYk/nl56aWXzIMPPmiee+45A5jnn38+Yvu6detMenq62bhxo3n33XfNpz/9aTN58mTT1tYWrnP99debuXPnmtdff938+c9/NtOmTTO33npreHtDQ4PJy8szt912m9mzZ4955plnTHJysvn5z38+ov2pr683FRUV5je/+Y3Zt2+fqaqqMgsXLjTz58+POMbEiRPND3/4w4hz1vv/WqL0xxhjbr/9dnP99ddHtPXs2bMRdRLp/MjQFJcUly4GxabE+uxTbIpfbFLClQAWLlxoKisrw8+DwaApLCw0a9eujWOrhlZXV2cA88orr4TLrr76avOtb31rwH1eeuklY7PZTE1NTbjsiSeeMF6v13R0dMSyuVEefvhhM3fu3H631dfXG6fTaZ599tlw2d69ew1gqqqqjDGJ1Ze+vvWtb5mpU6eaUChkjBld56Xvh2YoFDL5+fnm0UcfDZfV19cbt9ttnnnmGWOMMe+//74BzFtvvRWu87vf/c5YlmVOnDhhjDHmZz/7mcnIyIjoz+rVq8306dNHtD/9efPNNw1gjh49Gi6bOHGiefzxxwfcJ5H6c/vtt5vPfOYzA+6TyOdH+qe4pLgUC4pNifPZp9g0sudHUwrjrLOzk+3bt1NRUREus9lsVFRUUFVVFceWDa2hoQGAzMzMiPL//M//JDs7m9mzZ7NmzRpaW1vD26qqqigrKyMvLy9ctnz5chobG3nvvfdGpuG9HDhwgMLCQqZMmcJtt93GsWPHANi+fTt+vz/ivMyYMYOSkpLweUm0vnTr7Ozk17/+NXfddReWZYXLR9N56e3w4cPU1NREnIv09HQWLVoUcS58Ph9XXHFFuE5FRQU2m4033ngjXGfp0qW4XK5wneXLl7N//37OnTs3Qr3pX0NDA5Zl4fP5IsrXrVtHVlYWl112GY8++mjENJpE68+2bdvIzc1l+vTp3HPPPZw5cyairaP5/Iw3ikuKS7Gg2NRlNH32KTZdvP44LkJf5C9w+vRpgsFgxIcJQF5eHvv27YtTq4YWCoW49957WbJkCbNnzw6X/83f/A0TJ06ksLCQXbt2sXr1avbv389zzz0HQE1NTb997d42khYtWsRTTz3F9OnTOXnyJD/4wQ/4xCc+wZ49e6ipqcHlckV9yOTl5YXbmUh96W3jxo3U19dzxx13hMtG03npq/v1+2tf73ORm5sbsd3hcJCZmRlRZ/LkyVHH6N6WkZERk/YPpb29ndWrV3Prrbfi9XrD5X//93/P5ZdfTmZmJq+99hpr1qzh5MmTPPbYY+E2J0p/rr/+ej73uc8xefJkDh06xHe+8x1uuOEGqqqqsNvto/r8jEeKS4pLsaDY1GW0fPYpNl3c86OESz6WyspK9uzZw6uvvhpRfvfdd4cfl5WVUVBQwLXXXsuhQ4eYOnXqSDdzUDfccEP48Zw5c1i0aBETJ07kt7/9LcnJyXFs2V/mP/7jP7jhhhsoLCwMl42m8zKe+P1+vvjFL2KM4YknnojYdt9994Ufz5kzB5fLxd/93d+xdu1a3G73SDd1UF/60pfCj8vKypgzZw5Tp05l27ZtXHvttXFsmYwnikuJTbFp9FBsuvg0pTDOsrOzsdvtUasM1dbWkp+fH6dWDW7VqlW8+OKLbN26laKiokHrLlq0CICDBw8CkJ+f329fu7fFk8/n45JLLuHgwYPk5+fT2dlJfX19RJ3e5yUR+3L06FFefvllvva1rw1abzSdl+7XH+z/SH5+PnV1dRHbA4EAZ8+eTdjz1R3Qjh49yqZNmyJ+QezPokWLCAQCHDlyBEi8/vQ2ZcoUsrOzI95fo+38jGeKS4nz3hsLcQkUm3pL9M8+xabYnB8lXHHmcrmYP38+mzdvDpeFQiE2b95MeXl5HFsWzRjDqlWreP7559myZUvUEGt/du7cCUBBQQEA5eXl7N69O+IN3v0fetasWTFp93A1Nzdz6NAhCgoKmD9/Pk6nM+K87N+/n2PHjoXPSyL2Zf369eTm5rJixYpB642m8zJ58mTy8/MjzkVjYyNvvPFGxLmor69n+/bt4TpbtmwhFAqFA3h5eTl/+tOf8Pv94TqbNm1i+vTpIz5lozugHThwgJdffpmsrKwh99m5cyc2my08/SGR+tPXRx99xJkzZyLeX6Pp/Ix3ikuJ8/k3FuISKDaNls8+xaYYnp8LWmJDYmLDhg3G7Xabp556yrz//vvm7rvvNj6fL2JVnkRwzz33mPT0dLNt27aIJTZbW1uNMcYcPHjQ/PCHPzRvv/22OXz4sHnhhRfMlClTzNKlS8PH6F7iddmyZWbnzp3m97//vcnJyYnLkrX333+/2bZtmzl8+LD5n//5H1NRUWGys7NNXV2dMaZr+d2SkhKzZcsW8/bbb5vy8nJTXl6ekH0xpmsVsZKSErN69eqI8tFwXpqamsw777xj3nnnHQOYxx57zLzzzjvhlZHWrVtnfD6feeGFF8yuXbvMZz7zmX6X3r3sssvMG2+8YV599VVTWloasbRrfX29ycvLM1/+8pfNnj17zIYNG4zH44nJUrWD9aezs9N8+tOfNkVFRWbnzp0R/5e6V0F67bXXzOOPP2527txpDh06ZH7961+bnJwc85WvfCXh+tPU1GT+8R//0VRVVZnDhw+bl19+2Vx++eWmtLTUtLe3h4+RSOdHhqa4pLh0sSg2Jc5nn2JT/GKTEq4E8ZOf/MSUlJQYl8tlFi5caF5//fV4NykK0O/f+vXrjTHGHDt2zCxdutRkZmYat9ttpk2bZh544IGIe2oYY8yRI0fMDTfcYJKTk012dra5//77jd/vH/H+3HLLLaagoMC4XC4zYcIEc8stt5iDBw+Gt7e1tZlvfOMbJiMjw3g8HvPZz37WnDx5MuIYidIXY4z5wx/+YACzf//+iPLRcF62bt3a73vr9ttvN8Z0Lb/7ve99z+Tl5Rm3222uvfbaqH6eOXPG3HrrrSY1NdV4vV5z5513mqampog67777rrnqqquM2+02EyZMMOvWrRvx/hw+fHjA/0vd96bZvn27WbRokUlPTzdJSUlm5syZ5kc/+lFEkEiU/rS2tpply5aZnJwc43Q6zcSJE83KlSujvpgn0vmR4VFcUly6GBSbEuezT7EpfrHJMsaY4Y+HiYiIiIiIyHDpGi4REREREZEYUcIlIiIiIiISI0q4REREREREYkQJl4iIiIiISIwo4RIREREREYkRJVwiIiIiIiIxooRLREREREQkRpRwiYiIiIiIxIgSLhERERERkRhRwiUiIiIiIhIjSrhERERERERiRAmXiIiIiIhIjPx/jUVZJCYz4SkAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADECAYAAABOQy+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAApiUlEQVR4nO3deZgc9X3n8fe3j5menvvQMZJGF4wEAgPikLEhNgYCAmOTZB0bexMbxxt2s/hJnM1ubMyuN+sn3thJHsd2TJwQ21mcmGCvj4BjAgZsr2/MIRshQCCBAN3XaCTN3V3f/aOqZ7p7ukcjzah7js/reaTu/tWvqn9VXdP17d9V5u6IiIiIyOkXq3YBREREROYLBV4iIiIiFaLAS0RERKRCFHiJiIiIVIgCLxEREZEKSVS7AJPRbHFfSLLaxRARERE5oW0MHXT3BaWWzYrAayFJPpVYUe1iiIiIiJzQDZnnXy63TE2NIiIiIhWiwEtERESkQhR4iYiIiFSIAi8RERGRClHgJSIiIlIhCrxEREREKkSBl4iIiEiFKPASERERqRAFXiIiIiIVosBLREREpEIUeImIiIhUiAIvERERkQqZcuBlZl1m9j0ze8bMtpjZH0TpbWb2kJm9ED22RulmZp8xs21m9pSZXTjVMoiIiIjMBtNR45UB/sjd1wGXArea2TrgQ8Aj7t4NPBK9BrgO6I7+3QJ8bhrKICIiIjLjTTnwcvc97v5k9PwY8CywFLgRuCvKdhfwa9HzG4EveehnQIuZdU61HCIiIiIz3bT28TKzlcB64FFgkbvviRbtBRZFz5cCr+attjNKK97WLWb2uJk93kt2OospIiIiUhXTFniZWQPwdeAD7n40f5m7O+Ansz13v9PdL3b3i5uJT1cxRURERKpmWgIvM0sSBl1fdvdvRMn7ck2I0eP+KH0X0JW3+rIoTURERGROm45RjQZ8AXjW3T+Zt+g+4D3R8/cA9+alvzsa3Xgp0JvXJCkiIiIyZyWmYRuXAb8NbDazX0RpHwY+DnzVzN4HvAy8PVp2P3A9sA3oB947DWUQERERmfGmHHi5+48AK7P4qhL5Hbh1qu8rIiIiMtto5noRERGRClHgJSIiIlIhCrxEREREKkSBl4iIiEiFKPASERERqRAFXiIiIiIVosBLREREpEIUeImIiIhUiAIvERERkQpR4CUiIiJSIQq8RERERCpEgZeIiIhIhSjwEhEREakQBV4iIiIiFaLAS0RERKRCFHiJiIiIVIgCLxEREZEKUeAlIiIiUiEKvEREREQqRIGXiIiISIUo8BIRERGpEAVeIiIiIhWiwEtERESkQhR4iYiIiFRIYjo2YmZfBG4A9rv7uVFaG/AVYCWwA3i7u/eYmQGfBq4H+oGb3f3J6SiHiIiIyOky4GlGqClIM/yktjEtgRfwf4DPAl/KS/sQ8Ii7f9zMPhS9/iBwHdAd/Xst8LnoUUREROS0cIfjNHPMm3Mp5XICYEWp/dSznXOpYZARryFmQZm1DXisbDmmJfBy9x+Y2cqi5BuBK6LndwHfJwy8bgS+5O4O/MzMWsys0933TEdZREREZG7p8Q4O+GIGSANjtUzFwVG52qdhajjMQgJirP/NrnHr5XMvvZWFyREubd/HGW88l/pUZsLyfurN5ZdNV41XKYvygqm9wKLo+VLg1bx8O6O0gsDLzG4BbgFYcFqLKSIiIqeDO+ylix2+luGiJrp8J2qu66eBN7yrnUwQp73+eNn3ci8dUiViAWvf1EV74yCxU+7dHgdWABMHXSdSkYjG3d3MTqoR1N3vBO4E6LbUyTWgioiIyDhDXkv2FC/9O3wNu1hJhiSxgkDpxJfoa29uZHHjUVouXFc2j0f1UF60udxrM2hvHCSdSp1s0SODp7je9Dqdgde+XBOimXUC+6P0XUBXXr5lUZqIiIgUyXiCI7ST8fKX7Bil+huNRTADpNnLcg6zkDjZoqUnEgZE9RzjnbcmWPkrq0nEx9YuDpTG0qP1UiNRLVMb4Zi6+e10Bl73Ae8BPh493puX/n4zu4ewU32v+neJiMhcNew17PMlHKV1wnzl+isdoZ0jtFPrg9RYqVqbsTV9gt5LG35rBWcv2sWqK9ZOtuhljExx/fltuqaT+GfCjvQdZrYT+J+EAddXzex9wMvA26Ps9xNOJbGNMPR973SUQUREZDplPcZWP5+Dvni0f9Jkpg7I5YkREFiMAepp4RCX39xVdp3irea/bqod5Owrl9OYno6AZ6pBl0zVdI1qfGeZRVeVyOvArdPxviIiMrdlPEFQNNf3ZIKfgBibfQOv+upx8y6F2yje3vhtjpDEibHhLc10rV9IPFaYJ4ha94o7dOdyHemr5bJz9rGso49EfOkJyzwx1TLNFRouKCIi02rA0/R7Gp/g5igT9UlyYuz1Lrazjh46GJtXyRnfIFeaAykG2PjOJGsvW8zgirPD9LzYKT9gati9BYpGxcVjAU2XrCFdd2rju55/4BUWtw4U9IcSUeAlIiIFMp5gb7CUY7RMonYpPygKH/exjAMs4Zg3E7dSQ+9LB0+jo9qAZnp4+8dfw5LLVlBb62U7cEOpUXCGmdNQH+RNHTA88W6ceWa5rU+8nshJUuAlIjKHHAsaeSlYy97RweOlu1sbQclJKHvoYDcrcIxVr20bDWoyHmdxYy+NtYNlt5rL2wScUX+MN7y5gZZLp9qnKDvF9UVmFgVeIiLTaKKaGZuglcwd9nsnzwQX8jLdFIZDhRuNlaiFMZwB6uijmTqOcfn71oA5Hox/08BzWx2/bHX9EL99VQesXEFt7Vj63t1Gl7/E8qUnqDkSkQkp8BIRifQHaTJlvhZL90kKZYnzSnAmT7GBnZwx2hOploESUwSMKZyC0gDj7NenufrfraGlKazpCYre1r0wYPJgLD2dDkiduZSWtomDPBGpHgVes8RnM72MUMM7YmPV9jEytNsBkqbRLiLlfC57mH5P82t2QdGSXNhjvOhreJaLo47cpfIU5g//99GmuoAYSYZ54zsXcNGb1pFKwYG9xtnnBsTzvmW9ROxW8A4OiSQsWOgk9O0sMifpT3uWeJYYA9RAcMvorMMBMQxjMS9zJs8QzwvASjdFBHnLszTaUZbZS8RO7m5OIrPKC56hhxqG/D+SJZH3d2AQ1U2tXp/i+t/s4tiS1dSlo+bC4g7b+c89r0nRwWLQ2EJBsLQk2cfiJU6y/O3pRGQeUuA1i7QuiHHzRy9g5a8sBiDIQmLnDrY83M5TPz+H3PXES4xDym+ayHqMoZEEPU+8TBfbSDIU/Xofyz26lhE1gIRpCUZot32ssc0K2GTWaGhLcsPvnUPiNStoyp88PDqFY/HwMV3xkolItQyNxMhkY2ODTKKL4Nhj4eCT0de55XlpJ3PjbQVes4zZ2AcciwGrVnLO767knN+d/DbcofcIHHt2CS/9tJugqPNtNprHZmg4zvozDo1OLRhkY7y06RCPPdDD034Jsajmrfxw88IQcGygeChNH932NEtth5pLpSLy/35EpHIO9tZy6GiKbBAbDVagMHgZF/iMC4iKA6GxNMquU3iNMguvbft76+gbSNLSMASEV6bcHG652uxx/SlH08e26A69fbW88bzd1KdKTZ0yngKvecgMWlqh5fVL6Hr9krL59j++m9ddHC9Iu+K3Ojj6JzF6H99GNjv+hMwJimdy9sK87vDLH/Xwk3/pJONJEuRO2FJBXPE8QUX7U7SO4SxhB932NK12cNzWJjPr9anI326MrGoERea5TDbG7kNpapPRj1QrHTyEj8W1KV42ECneVjaIcehoigO9KbLZwsCm0szGyg3hfmYDY2gkzoo3LKMm4QUBTPgYZc4LeGC0EadkQJR7LN5W46ubw3WDsXUKuwkYyUSWFW9aTl1qeo7Tjod3jKvAmIgCLzlpTY0BTW9aPeXtLHnDKi57f6zgj6pk2JUXtAUlMhSP+urdtIPNP17Mg/efjXlhrZuP9uspeIdx27S8//PzNHGERMGEkMXrhttv5QBn+ybiVn4k3Pj3nMyXwOS/KE4mwCyXN0ZAygYmvR2ZXYIARqLK5tFuBaMRQe7iHr50h117ahgasoL0UrUPZmMLctsNnxcGE4XPSwQkJZp+CrdXuL6VeE+K1x0XzIy9908fayRZM7m/m3I1NfnPM/0J9h5uLxxhatG3UDTJq3tuHcPwsNehEaU7eHi880sVjzldC46PbdKgrXGQNdecSTI5qeJPu4J+j4wPkmIxiMUmVyM0JUsnO29c9YJTBV5SNQ31AQ31kw9MJmtkyRJWX9nFjf8jfF3qy6BYccfpgmVR4Hfw0ZdY3dnMgubBCbf10vef5+ufHOQJ3jD2C+6Etzk58a+lk/2aOPF7TlyOwGPELOAs30Tajp8gd7mtlS/11GseJ14/t/0MPWQD41hfjP4XoecAYBCPURBcWCz6x9jrmI3lIT8wyQ86bPwFFwM/Ck8+GiMWj7YVy2vqjLYVi+W9D9H7W/jaonwxg1h0j8BYvEQZ8vdhbOdLlqk4aNm31zh+1EjX+9gR9dxFNO8HkUM2A/39XWw9Ov4iG+azvPN9bDv5n9Yi3x12QCgaLFrQ9GS5oCQKPnACjDWrB4jH87Y/+h4lmofyfsS527ggIL+GJb88LS0Z6teVv5F14f6WrnnJr7Xxs5fSWCq9oCkrf18m2B5j+3r82d0s3XBsRo18zT/fZGIz6GMTmR7JJDQnp3+265F04cSR5b5kVr9pDf/tTdP+9hXXPxhn63d3cP/nVjLkqXHLTy2wm9jktzlxvvzr+gB7SSRT7B5YwL7n+qhJBaNBwuhFN3exzpsTqzhwWL68vuiCPfY8HodlZ+StB2S9nmwGfHhsmx6MXWxHnwfFAU9hWq5GNwjy3neCCzZAV9sADgwPwRndWeobi/JFeevqYCCVhrrCo1rq6CaB8WfByTpj3LZHg4yobAGFr90hcbQPXx6QnEGjH6oTaIQHJaib/h+sUjkKvESkpHQqy/rru1h//eRqAGaqH/xhHYcGkwwlUhza/RNqak9tIMczPeWXLVx+EcmeUwj2DYifMBfABLebHm9f9Li4s5mDWchM8B615RdVxGQCmESVms9ETgeN7xERERGpEAVeIiIiIhWiwEtERESkQhR4iYiIiFSIAi8RERGRClHgJSIiIlIhCrxEREREKkSBl4iIiEiFKPASERERqRAFXiIiIiIVUrXAy8w2mtlWM9tmZh+qVjlEREREKqUqgZeZxYE7gOuAdcA7zWxdNcoiIiIiUinVqvHaAGxz9xfdfRi4B7ixSmURERERqYhqBV5LgVfzXu+M0kaZ2S1m9riZPd5LtqKFExERETkdZmznene/090vdveLm4lXuzgiIiIiU1atwGsX0JX3elmUJiIiIjJnVSvwegzoNrNVZlYD3ATcV6WyiIiIiFREohpv6u4ZM3s/8CAQB77o7luqURYRERGRSqlK4AXg7vcD91fr/UVEREQqbcZ2rhcRERGZaxR4iYiIiFSIAi8RERGRClHgJSIiIlIhCrxEREREKkSBl4iIiEiFKPASERERqRAFXiIiIiIVosBLREREpEIUeImIiIhUiAIvERERkQpR4CUiIiJSIQq8RERERCpEgZeIiIhIhSSqXQCZvMFMku9+4VUu3rKLdVd34CtWEI+PLXcPHxP6VEVGxWJOdnCEwU3bWLWgm3jCCQIIHPDw76ZleSOHyLD7hV8Qi3vpDZVIdgyItiUiMgm6RM8S3cTo78my4vF/4uePreVf/noVWZ4lTnY0T9clCznvkgQd111IS6vjDvWNUFNTxYKLVNkla5cQBMb7Nj7Bc6+2AvDET4ZIJ4cA6BtOceD4mfQdqaPBlxOPOe5hQGUTbNc9zODA0IEDHN/WT905Z3A8PUy6IYzECuIxL7F+7nmQt8CgphZicURkDlLgNUt8IFFP+M39Yy7ix2Q8wWFfQDb6CEeoYefjq/jeYxdy/G/2R2sFGM4VGwPOesd6GhvDIM0d3I1k0ulcNEJPyxlV2SeRSvjLW94RPevlnJW9ADTt6+X1K18AoKc/zZa9z3J8US34WKhlFhRsx/KisHjRsqzHePHQIn7x3aMcG0wRszJVYJb/NMqTF8A1LmwgddYKGlan2Lvv6Nj2x35fsXZN01jQFhXDPVy/phb2Hu4lqR9bIjOWAq9ZKmEZFtqegrTlbOdSf4Qh6kbTngnW89QDF/HjBx4bTXNiBMRYe1kTK85tovmsMFBraMzQsGYJLe2FFxmRuaw13c/lq1+Yhi1tYSQbZ3dvC1kf6z5bHMAVy/2pDWcTPLt/KT/d1M32HzSPC9Jyf5Obv1O8vkfvA0EAC1bWEzvrDBYsDDj0wgBLuwJy1W35ARxEyXnxX048Dm0d0GMNJ9xrETk5CrzmmJg5dfSPvr4oHtaQFesJ2tn2k3Vs+vHZBNEYi36aOE4TaY5x8bvXkUg4lySfJ3H+uRUrv8hsloxnWdF26JTXX7NgH29d9yQDIydXZWVRDdtPdnTz1O7l7P3RPl7OxsCcY7EsMcvlA0rUxhljAdxQNkHMnJYVrXRd0IJZYcAWFMWRudo3z6stXLRwhD2ta2hph5iGcIkUUOA1T7XGDnEJP+QSfjia5g5HvZkdvpY9X3qRAyzig1/Mcs51zwMQtyznXdbEiiuW09Za/NNZRKaDGaRrhk9p3au6n+Gq7mem9P4j2Tgv97TxxM5VHPh+U1gmvKAGLmY+1lQasZiPZnmst5Wewb2kE8O0rmopaMLFw0EJPvYyfMzv8+bQvradRee1c7y2gfSpHQ6RGUmBl4wyg2br5Xx+zvn8nGGvYU/QxcAD9QAMU8tX/u08jrOHuI+M9mNxYN01C9lwRR1rrlk2ur38X8A56bpAzZgiM1gynuXMjgOc2XHglLfhDj0Dabbu7+T4UGq0ls1K9XGjsLnUCEeJPv/kEn760EIyQYy4Bexo6iVmHuYsrrQr8V3jGGdd0kD3lYsYWLASs8LgLlfOCV/nPU+n1QVDpocCLymrxoZZEd9ekLY82MYINWBjX5YH6eSlh9by+e8sxT68uyC/EX5RBsS4eGMjF/3OBbQ0ZwBIpQI62rJqihCZY8ygLd3P61ZuP3HmMq7sfo7hTJzdR1sYCcaGeFrxY8mm04DeoTSbnlnFL386SOCvYLGgYD0Ig7Pi7eULgEQsy9Krz6P1nIWk68feKzcStVyNXcFzDwc+LFjoJJIT77fMfQq85KS0xHrGpbX5AVbx3LhvrvxftD3ewdYHzuOuB/aNzn00Qi1xMrzh1+tYc2nH6JeVOdTWBnQt6CN14brTti8iMrPVJLKsPMU+c0FwmDPaJlFrV24EKpANwsESmx47zDMPtxU2t1LU2a1oOxb9ywRxkvEsC9a2M3DuEurqCrtpBNmxjRbXuAVRTV5TYwZb3kVTi2rd5gIFXjJlMXNqGZowzyLbzSIKa8MynuCgL2T7N9fx1Dc7wm3hDFDPMDWsvWYJ7V/fBBjukIwHLGg4ymtuvZLGholHionI/BaLOY2pwSlvp6Wun3WLd584YxnZwNjd28qW/UvZe/8rQOFvVMOx2PigLbcMYOtgPYklvaRqstQmA44PJmjasxfLtRYU1LCNj8wCDMNpTI/Q/rozSdVqxt9qmlLgZWa/CfwJcDawwd0fz1t2G/A+IAv8vrs/GKVvBD4NxIHPu/vHp1IGmb0SlmGx7WZxUUAWuNHjHez8zir2kwrTMA6xmGO08M27vseqq5eHmR0aagdZ97oWzn9rZ5iU98WTSLiaMkWkauIxp6v1MF2th095Gwf7Gnilp52+oVpyv3EPb45q1Ypr7Eq0PBhwbChFz0AD9vAm6pNhQOrjGljHXpe6G8PqDZ0seN1K2jW4akqmWuP1NPAbwN/lJ5rZOuAm4BxgCfCwma2JFt8B/CqwE3jMzO5z96kNw5E5JWZOux2gncJmAnc45k0ctoXw3TBtiDp2sYpN/9bFP37k5TAfECfLa9/SzLmXt9B52Yq8bYRfLHW1AfX1qjUTkZmvo/44HfXHp7ydkWyc/ccbGcoUXvpLNV/mTzEC4Y/fpx41nvphDyNBnESs9PdncY2bA02pAS6+soW69WvHbnM3wUCG4ibX/LT6dFBwq7zZaEqBl7s/C2DjP7UbgXvcfQh4ycy2ARuiZdvc/cVovXuivAq85ITMoMmO0sTRgvS1bGbQ68JO/5Gtfh5bvrWSn3zrGMar47YVEOOSNzdxweVNNNeHPyENqF/fTVtrVv0oRGTOScazLG0+csrrdzYeYTg78eiA4mlGHOO5/Z388IEaBr+9mRhlbsU1ro9c4etMkGDd65uxM85k0YKRcNs+9q+UIBh7p8adm8HDeeVqLziLulT1mltPVx+vpcDP8l7vjNKAgqvgTuC1pTZgZrcAtwAsUFc0OYGUDZBiYPT1en7MBfbTsvkP+GK2fvs8vvLtBQS5Gx0TZ4B9XHBtGyvXt1OTCEdk1teO0Pn65WQDRWMiMn+lkhlSycxJr7dh+YtsWP7ilN77hYOLeGnLAo4/uWc0iMifhqSUWN5dIww4OphmzaVtDNy7j+b6wsnhRicCLkizgmXp2gytG86grSUzpS4sJ4xozOxhYHGJRbe7+72n/tYTc/c7gTsBuq2KoanMSuG99Mo3JXbaTjrZOS59h69h73eW8uSD6dH+D/000Mt2uq9exrpFh6ivGR43jVDMnLa6fs7fuEy1ZSIi06y7Yx/dHfumtI2dR9o4uKOBzEgNAxZ+w3/rHwZyt0sdFYVbeSnh8ww1DLONddctZel5CxncHgaTx4drySx7iXRyZFLlOGHg5e5XT2pLhXYBXXmvl0VpTJAuUnUr7XlW2vMFaRlPsNNX0vdIIzuitOL+D0dppZc2vv43z5Eg/OOrYZjrb13A2itXkapRZ1QRkWpa1nKYZS2Fgxw2x/o41x4vs0ahEU/S4+3sfmAlmx9oIT84+9ZJlON0teHdB9xtZp8k7FzfDfyc8HrVbWarCAOum4B3naYyiEyLhGVYadtOmC/3R+nRvS8HqOfeO5L03vEyCcaq5+voY+Mtbay7ajm1yTAgy++QGo8FJBOq5BURmUmSNsJC28tC9p4w7ycmGLs11ekkfh34a2AB8G0z+4W7X+vuW8zsq4Sd5jPAre6ejdZ5P/Ag4XQSX3T3LVMpg8hMkfujzLeSF8h6nKFoWgyAXm/j+3eu4ut3jow2Z+aHWYbRwkHecmsbnZeuGU1vSI2QTqnmTERkNpvqqMZvAt8ss+xjwMdKpN8P3D+V9xWZTeKWJU3f6Ou09dEZdQ/NH42T6xs24kl+6Zfy1TuG4I7No8uHSHHR25awrPkwtYnCvgSO4W4kYlkaaoc46+rVp2+HRETklGm4oEgVleqIn7QRLrYfjks/5s28+rXVvEL92Pr528LpIbwDwKUH+jHG30u4s/EIZ125gsb05DqBiojI9FLgJTJLNFov62zThHmyHuOIt7Pv7vZx8+AEGJvp5Kt/lyXBMHHGmi1jZLn8PUu58tebiZW4d51m/xcRmR4KvETmkLgFJWf9zzmD58h6jOM0EzAWTR2kkx/dBQ/ddaTkerUM8NZbmlj5K6uoSQTjJiysSQbUp05+fh8RkflGgZfIPBO3gGZ6CtJaOcSZPM0QqZIzT+/2Fdx3Zzcjdz477ga+AFni1HGcjb/bzqIN3WPbrR+ipWFYc5uJiEQUeIkIEPY3SzFYctlq28pqtpZdN+MJtvhFPPL3IwR/H9a2OcZxmqjzfi5991JS8UyUXigWC6hPDrN+4xJNoyEic54CLxGZsoRlON8eHZfe7/XsZRnb/nFPUU3a2PODLMZwntvfSTJeOF1GbrqN1ro+ljUf5jXXrkBEZDZT4CUip03a+lht5WvKAAI3jtFC/ze3EBTVhxlOH43sZAHf88XEP7u9xBaMGga46F2ref31LQV3CcifmBagNpmlJjnBzIYiIqeZAi8RqaqYOc300Gw9ZfME/jz91jB6VwAY62PmGM/4hfzy7uf58d3NWIl7dAbE+ZV3LSCVHGHdFZ30j5RuUhUROd0UeInIjBczp4FjZZdfzP+jcFazfE4fTbx6dxd76eKHd+0mRsAOG5vUNusJ4jbCO/64g+RoX7Sx7SViwbhmUBGRU6HAS0RmvbhN3HzYxBGa7Ahr2Vw6g8FBX8i9fz5AQHzc4gxJssS54QOdxGPl36uhZoh0zfBJlV1E5hcFXiIiQIftp4P9ZZf3eAc/+tQhgHFTbkB4U/Q+b2SB7S65fg1DXPPhc6hNaL4zkflMgZeIyCS02kFaOVh2edZj9Fo7jpUMzAap4+7/fRjHqCmYtmOsSTNLjIXs4bqPnDOdRReRGUSBl4jINIhbQFuZOwbkLOEVMp4gQ7Lk8iFS7GIVf//R/pLBG0DGk9z84XTZmjNNVisysynwEhGpoIRlSFA6aEoxMO6uAsUOsoh7/mwxmbyv71ysFRCjhkGu/cNVpJPj+5rlbvWUjGfVF02kShR4iYjMIh22jw72lV3e4+088leZktNqQBikHfRFdNmLXPIHF49bnj/3WbpmiNa6PtWiiUwjBV4iInNIqx2ilUMT5unkZY7SymOffrzkcsNxjAHqOewLabP9xAin08ifZiNOlqv+61m0pPqJxXS7J5HJUOAlIjLPpGyQFHsmlbeTlxkucfN0CKfZ+PZfvsJRbyFtx6PU8dVjATHe+98bFZyJoMBLREQmEAZp5Wf6b+VgQX8zGD/dxj6W8sU/nVx75aCn+Y0PtNKWPj6a5kXBnCa0ldlMgZeIiExJwiaem2wJr7CEVya1rQHSfP/Ty8uO/HSg3xt52x+1jb4umS/qqxaPBXTUHy+TS6TyFHiJiMiMUWf9rOa5ssvdYbet5Puf3AuUnsw2x3AO+uKCPmqlcrVwkKs+ctFUii0yaQq8RERk1jCDpeyYdP6F7OI4zQXNlfnB2hAptvs57Plo6clxc+slGKGZw1xz+7kk4hPfokpkIgq8RERkzkrayIR3HADoYG/Zps2QM0ItR2jnc3+apc76S+Qw6jk2Gpzl7h96ouEEMXNN1zHPKPASEZF5baJJbXNSDNJIL132Ysnl7tBHE0do558+1jNuQEApGU+QtuPc8N9WjC9TLEtD7dDkdkBmFQVeIiIiU2QGDRylgaOTXmeQFLtZwQN/sX3csgxJBkjTwFEu//11Bcs2febRsoHd9bev1YjPGW5KgZeZ/QXwFmAY2A68192PRMtuA94HZIHfd/cHo/SNwKeBOPB5d//4VMogIiIyG6VskNVsLbs8cOM4zWz6zLGiJV5yUMEROvinjx2mjv7RXMXy12pnP9d+5LxTKbpMwVRrvB4CbnP3jJl9ArgN+KCZrQNuAs4BlgAPm9maaJ07gF8FdgKPmdl97v7MFMshIiIyp8TMaeIITRyZVP4O30s/DYST2E482nOQNNv8HHZ+dPxUG0mGaeEQ19x2NqnkxE2wcvKmFHi5+3fyXv4MeFv0/EbgHncfAl4ys23AhmjZNnd/EcDM7onyKvASERGZgpg5DRTXjpVWz3Ha2F+yVmyYFEdo554/O3iCQQdhrVodfbRwiCs+eD5mXnC/z8K8Y1KJzLxtEp3OPl6/A3wler6UMBDL2RmlAbxalP7aUhszs1uAWwAWqCuaiIjItDIrPQ9aigEWs5PF7JzUdvq9nkMs4huf2DPBfGnRe+KMUINjbPzA8oIlxRprB+bkAIMTRjRm9jCwuMSi29393ijP7UAG+PJ0Fczd7wTuBOi2lG7wJSIiMgOlrY80pUd7lpL1GPtZyk8/dbggPT8IdML+bUOkaKSX+AlGndYyyK/eto665MjJFb4KThh4ufvVEy03s5uBG4Cr3D131HYBXXnZlkVpTJAuIiIic1zcAjoLGr/KC9zoo4mA2IT5BqjnK392gAwJkoTB12Sm9OjztlKVbafVVEc1bgT+GHiju+fPKHcfcLeZfZKwc3038HPC3es2s1WEAddNwLumUgYRERGZm2LmNNJ7wnzN9LCYnWQ9RkD8hPkNp5c2+micjmKelKl2nvosUAs8ZOHUuz9z9//k7lvM7KuEneYzwK3ungUws/cDDxJOJ/FFd98yxTKIiIiIELeAOJO7pVM7+2m3/ae5ROPZWOvgzNVtKf9UYvzMviIiIiIzzQ2Z559w94tLLZu40VREREREpo0CLxEREZEKUeAlIiIiUiEKvEREREQqRIGXiIiISIUo8BIRERGpEAVeIiIiIhWiwEtERESkQhR4iYiIiFSIAi8RERGRClHgJSIiIlIhs+JejWZ2DNha7XLMAB3AwWoXYgbQcdAxyNFxCOk46Bjk6DiEqn0cVrj7glILEpUuySnaWu5mk/OJmT2u46DjADoGOToOIR0HHYMcHYfQTD4OamoUERERqRAFXiIiIiIVMlsCrzurXYAZQschpOOgY5Cj4xDScdAxyNFxCM3Y4zArOteLiIiIzAWzpcZLREREZNZT4CUiIiJSITMu8DKzvzCz58zsKTP7ppm15C27zcy2mdlWM7s2L31jlLbNzD5UlYKfZvNhHwHMrMvMvmdmz5jZFjP7gyi9zcweMrMXosfWKN3M7DPRcXnKzC6s7h5MHzOLm9kmM/vX6PUqM3s02tevmFlNlF4bvd4WLV9Z1YJPIzNrMbOvRd8Jz5rZ6+bpufCH0d/D02b2z2aWmg/ng5l90cz2m9nTeWkn/fmb2Xui/C+Y2XuqsS+nqswxmHfXyVLHIW/ZH5mZm1lH9HpmnwvuPqP+AdcAiej5J4BPRM/XAb8EaoFVwHYgHv3bDqwGaqI866q9H9N8TOb8PubtaydwYfS8EXg++uz/HPhQlP6hvPPieuDfAAMuBR6t9j5M47H4L8DdwL9Gr78K3BQ9/1vg96Ln/xn42+j5TcBXql32aTwGdwH/IXpeA7TMt3MBWAq8BNTlnQc3z4fzAXgDcCHwdF7aSX3+QBvwYvTYGj1vrfa+TfEYzLvrZKnjEKV3AQ8CLwMds+FcmHE1Xu7+HXfPRC9/BiyLnt8I3OPuQ+7+ErAN2BD92+buL7r7MHBPlHcumQ/7CIC773H3J6Pnx4BnCS88NxJehIkefy16fiPwJQ/9DGgxs87Klnr6mdky4M3A56PXBlwJfC3KUnwMcsfma8BVUf5ZzcyaCb9svwDg7sPufoR5di5EEkCdmSWANLCHeXA+uPsPgMNFySf7+V8LPOTuh929B3gI2HjaCz9NSh2D+XidLHMuAPwV8MdA/kjBGX0uzLjAq8jvEEatEF58X81btjNKK5c+l8yHfRwnaiJZDzwKLHL3PdGivcCi6PlcPTafIvwyCaLX7cCRvC/b/P0cPQbR8t4o/2y3CjgA/EPU5Pp5M6tnnp0L7r4L+EvgFcKAqxd4gvl3PuSc7Oc/J8+LPPP2OmlmNwK73P2XRYtm9HGoSuBlZg9HfRWK/92Yl+d2IAN8uRpllOoyswbg68AH3P1o/jIP64zn7DwoZnYDsN/dn6h2WaosQdi08Dl3Xw/0ETYtjZrr5wJA1IfpRsJAdAlQzyyqsTmd5sPnP5H5fJ00szTwYeAj1S7LyarKvRrd/eqJlpvZzcANwFXRHxbALsK23JxlURoTpM8VE+37nGNmScKg68vu/o0oeZ+Zdbr7nqjKeH+UPhePzWXAW83seiAFNAGfJqwuT0S1GPn7mTsGO6OmqGbgUOWLPe12Ajvd/dHo9dcIA6/5dC4AXA285O4HAMzsG4TnyHw7H3JO9vPfBVxRlP79CpTztNJ1kjMIf4z8MmpJXwY8aWYbmOHnwoxrajSzjYRNLG919/68RfcBN0UjdlYB3cDPgceA7miETw1hZ9L7Kl3u02w+7CMw2pfpC8Cz7v7JvEX3AbkRKO8B7s1Lf3c0iuVSoDevGWJWcvfb3H2Zu68k/Ky/6+7/Hvge8LYoW/ExyB2bt0X5Z30tgLvvBV41s7VR0lXAM8yjcyHyCnCpmaWjv4/ccZhX50Oek/38HwSuMbPWqPbwmiht1tJ1Etx9s7svdPeV0XflTsKBWXuZ6edCpXvzn+gfYWfAV4FfRP/+Nm/Z7YQjM7YC1+WlX084+m07cHu19+E0HZc5v4/Rfl5O2HTwVN45cD1hH5VHgBeAh4G2KL8Bd0THZTNwcbX3YZqPxxWMjWpcTfglug34v0BtlJ6KXm+Llq+udrmncf8vAB6Pzod/IRyJNO/OBeB/Ac8BTwP/SDhqbc6fD8A/E/ZrGyG8sL7vVD5/wn5Q26J/7632fk3DMZh318lSx6Fo+Q7GRjXO6HNBtwwSERERqZAZ19QoIiIiMlcp8BIRERGpEAVeIiIiIhWiwEtERESkQhR4iYiIiFSIAi8RERGRClHgJSIiIlIh/x+uO2sus9hkzQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAERCAYAAABFDFfwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDA0lEQVR4nO3deXxU9aH///eZNetM9g0SdkGWKgXBqLVSU7HFWqtXq9daXIrVC61U6la39vZa1Hrb2k1re6v+HldrtV+X1rVc3GsURVFAQBAEJCQBQjLZyDLz+f0RMpk5M5MEzM7r+XjEzJzzOZ/5nA9x5rznc87nWMYYIwAAAABAmGOwGwAAAAAAQw1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALBxDXYDBkIoFFJFRYXS09NlWdZgNwcAAADAIDHGqL6+XkVFRXI4Eo8bHRFBqaKiQsXFxYPdDAAAAABDxM6dOzV69OiE64+IoJSeni5JesAxTikWZxsCAAAAR6omE9LFoW3hjJDIERGUOk+3S7EcSrGcg9waAAAAAIOtp0tyGF4BAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYNOvQWn58uU67rjjlJ6erry8PJ111lnatGlTVJkDBw5o8eLFys7OVlpams455xxVVVVFldmxY4cWLFiglJQU5eXl6ZprrlF7e3t/Nh0AAADAEaxfg9Irr7yixYsX680339SKFSvU1tam0047TY2NjeEyP/jBD/SPf/xDjz32mF555RVVVFTo7LPPDq8PBoNasGCBWltb9cYbb+jBBx/UAw88oFtuuaU/mw4AAADgCGYZY8xAvdiePXuUl5enV155RSeffLLq6uqUm5urhx9+WP/2b/8mSdq4caOOPvpolZeX6/jjj9dzzz2nM844QxUVFcrPz5ck3Xvvvbruuuu0Z88eeTyeHl83EAjI7/frUecEpVjOft1HAAAAAENXkwnqvODHqqurk8/nS1huQK9RqqurkyRlZWVJklavXq22tjaVlZWFy0yZMkUlJSUqLy+XJJWXl2vGjBnhkCRJ8+fPVyAQ0Pr16+O+TktLiwKBQNQPAAAAAPTWgAWlUCikpUuX6sQTT9T06dMlSZWVlfJ4PMrIyIgqm5+fr8rKynCZyJDUub5zXTzLly+X3+8P/xQXF/fx3gAAAAAYyQYsKC1evFjr1q3TI4880u+vdcMNN6iuri78s3Pnzn5/TQAAAAAjh2sgXmTJkiV6+umn9eqrr2r06NHh5QUFBWptbVVtbW3UqFJVVZUKCgrCZVatWhVVX+eseJ1l7Lxer7xebx/vBQAAAIAjRb+OKBljtGTJEj3xxBN68cUXNW7cuKj1s2bNktvt1sqVK8PLNm3apB07dqi0tFSSVFpaqrVr16q6ujpcZsWKFfL5fJo6dWp/Nh8AAADAEapfR5QWL16shx9+WE899ZTS09PD1xT5/X4lJyfL7/frsssu09VXX62srCz5fD5973vfU2lpqY4//nhJ0mmnnaapU6fqoosu0p133qnKykrddNNNWrx4MaNGAAAAAPpFv04PbllW3OX333+/Lr74YkkdN5xdtmyZ/vKXv6ilpUXz58/X73//+6jT6rZv364rr7xSL7/8slJTU7Vw4ULdfvvtcrl6l/OYHhwAAACA1PvpwQf0PkqDhaAEAAAAQBqi91ECAAAAgOGAoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsOnXoPTqq6/qa1/7moqKimRZlp588smo9cYY3XLLLSosLFRycrLKysq0efPmqDI1NTW68MIL5fP5lJGRocsuu0wNDQ392WwAAAAAQ1zIWKo2haoyo7r9qTZFUT+1JqtX9bv6s/GNjY065phjdOmll+rss8+OWX/nnXfq17/+tR588EGNGzdON998s+bPn68PP/xQSUlJkqQLL7xQu3fv1ooVK9TW1qZLLrlEl19+uR5++OH+bDoAAACAPhAylhrkV1BOSZIl0235ntZ3alaqtptJyrD29lDSsj3rXQSyjDG9a8lnZFmWnnjiCZ111lmSOkaTioqKtGzZMv3whz+UJNXV1Sk/P18PPPCAzj//fG3YsEFTp07V22+/rdmzZ0uSnn/+eX31q1/Vp59+qqKiol69diAQkN/v16POCUqxnP2yfwAAAMBwdMAkK9TDiWa9CS/xylRplKrNKDnVLrfVKmOsOFtG19JbITmUbDVq0S/H9nobSQo0t2j0db9RXV2dfD5fwnL9OqLUnW3btqmyslJlZWXhZX6/X3PnzlV5ebnOP/98lZeXKyMjIxySJKmsrEwOh0NvvfWWvvGNb8Stu6WlRS0tLeHngUCg/3YEAAAAGADGSCHZv/Q//NGZoFzaqwLtMBPlVLD37ejhFSOF5NA3fjROE/N6GvU5XLn9VO8gBqXKykpJUn5+ftTy/Pz88LrKykrl5eVFrXe5XMrKygqXiWf58uX6yU9+0sctBgAAAAZWu3GpVlnaawpUobE6oOSo9ZFByJJRpg4tkKRaAZVYW/TNX87sk/bG118hqX8NWlDqTzfccIOuvvrq8PNAIKDi4uJBbBEAAABGqnbjUp2ytMcUqFKjFYo6xI4df4kON/HLdGpWmtrkksu0a97lY5ST2jWpmbGN3uyu9emkSZZSvW1RyxNdaONwGLmd6ZJGJXz9I9mgBaWCggJJUlVVlQoLC8PLq6qqdOyxx4bLVFdXR23X3t6umpqa8PbxeL1eeb3evm80AAAARoSgcWq/srXHFKlOmZK6P00tOpJ0lQvJoRrlq01uuUyb5i0qkdfVFlHSdu2P7SWMiQ08kUXTkw6o+JTJys1sldcTUnenmj33wB55XEF5XL0/jQ6JDVpQGjdunAoKCrRy5cpwMAoEAnrrrbd05ZVXSpJKS0tVW1ur1atXa9asWZKkF198UaFQSHPnzh2spgMAAGAABI0zPFLTqo4vwXueCiBkex4//NQoTw61q8H4NeNb05XkbpOMFRVaIreMHJWJLGNJGpVRq+J5k5Wb2SKPuz/mSTvQD3WiJ/0alBoaGrRly5bw823btmnNmjXKyspSSUmJli5dqv/6r//SpEmTwtODFxUVhWfGO/roo3X66adr0aJFuvfee9XW1qYlS5bo/PPP7/WMdwAAAOgfDSZdNcpT0DgTjopIicOK/fqaDh2/g3KpSqPUKq/qTaZmXDAldjTGVp99RrXuIkuhsZSR0qwUT5tOOi9DaSmfZRTGL8LMyNOvQemdd97RvHnzws87rxtauHChHnjgAV177bVqbGzU5ZdfrtraWp100kl6/vnnw/dQkqSHHnpIS5Ys0amnniqHw6FzzjlHv/71r/uz2QAAACNGjclVmzzdluntfWsitRmXtmuS9itXIdPz7Vd6M7m0nUNBzftOiYoy6nTs2clxtvmsOi/V4FQ1xBqw+ygNJu6jBAAAhqp241KDEt/Lxe5QQk2TSdVGzVST0tRikuKO4CQeCYp+ndhSRrP/fbwmF1SreN4U5Wa2RK+NuRYn8XU4MctsC11OI0f3t/mBOq5R+sLEj2Mmc0C0IX8fJQAAgOGizbjVLne3ZQ5nVMbIUoUp0SearP0mRw7b9TWdpeK/XuI6I0PQnH8foxmjdqvwi1OVGnF6WXdflceGnNgyDoeUmhyUNE5SS2yBOC0DhhOCEgAAGFG6m0UsUm+DTbvcWmNKVWVGqU7Zao84fPLqgNxWm3ofZuzlLBkjfXFhkcbn7tOYUycnbEeP1+PEaYLXE5IvtV3SREmtCesGEIugBAAAhr2QsVSjXH1qxusTc5SalB6x1ij+aWT2e9nYdaxvk1fNStGM0wt11LRC5WW2yu0J6UCLQ+kp7Zo2oT5huxJFschQ40trPxhm/JI4ZQoYKghKAABgQGw1U7TLjFHAZKhN0fc7jD/7WSd7yDEHf3etb5NH7XLLpTaN+doMZU8fLZcr2DHqEufamJhTy2zrIkdrPO6QJpU0yjljsvwZXdfK7NzuVNrOD1WUx2xnwEhEUAIAAJKkFuPVFjNNNcpVu3ErZL9RpiRFhZTYUZrYe9h0BJs2ubRbY1V82lFKLRgjf1q7vO5gzClyoe1bu17JRL5itFCc8ONyhpTqaVXx3ByNLitUxCS6fYRrbIAjCUEJAIBhJmQs1ZlMfWrG6YBSItYkPpDvDCydZRz2kGNJtSZDOzVRJV+eLLcVkuWIrc8Y23hPOMx0f02QW9IXZ+do2sSAnJ/LUHq6kRV3k9xu6wGAgUJQAgCgDxkjVZgSNcrXywkFpAQTJEeUMeHTzeqUpQqNVaUpVtA4NX5eca/b1WOYcQU17/hM5cwp1ujikFLTDm8EJfK0tsjHHaesFYmRGQDDAUEJAHDEaTFe7TfZCib4GEwcXuKLnNL5gJL1njlB+0yBapSndjkP1hlbn23OsjhL47eh+Lg8HV+arGO+XqCCwgQ3yuxheud4NTscktstfdabb0aOFMUfNQKAoY+ghD5jjFHLwY9et3Go1UqJWu9Wq1xW+2A0DcAIFvne45WlkJxqVlrUvWTsdprx+sDMVaUZrXplxFxXk0j8ABU9c5qRJaeCmvPtSfrinDzVuTPl9tjbHP076nHEBG2xc7VJCkn79khFE/Zp1Og2bsIJAP2EoIQ+02yk80JbJEnn6Q41W3lR34t6dEDF+ljjrE0qsD5VitU4OA0FMKK0yOjfgh3vPd/XEm3VbO2Puc7FRFyjI7XJreJZ2Tp+doqyP1egGitLltU521nEVhGBJt49aqLCzcHnDqeUWyhlZHU8zuqzPe2SlCKlphlCEgD0I4IS+kyT0sKPp59Zojmnjw4feEjS7r1erX99gp7/57FyWW1KVmdQ6pxBKd70r10XHRdop8Zam1Rg7VKy1dTfuwNgGHKc+mVNyJ+ivGNz5Us3UQEn/I5ipPT0kBrTcuTL7DjdLHMQ2wwAGJoISugzkRcJTyjN16gvT4xaP0rSsecWa+8ehxpWb1FNwN2xnVH4HhfR3+RaCh2ss7HJqT3rK/XWC6OVZJrk1QHFC1iObk+fMTFhrLO8QyE5raCyVK0J1gaCGDBMTczdq8Dn85Q+MUO+jO7L9rAaAHCEIyhhQLlcUkFhSDpj/CFtFwhYqnipWXnpJWpo8SgY6jrfpOvbYivujE5RMz11cw/DkCy9/8ImVZnRyrKq4xTuusQ60XUP0WU7QphLbcrXLmVYNXJan+0CaQAAgOGk/oBX1fVp2teQGj5+65zkJXw8ZX8uybJM/LJxlkVNIGNb1llPxMtIVm2v2k5QwrDg8xn5vj5WU74+ts/rNkZqarS0a5dDk0qztfGN/drb5owKXR3/03X+N3pb+4xOkc9DRtrx0sfyq1Y5qlS2qVKG9sZtR6LwlTiUxY6oWQrJZwWUqgAzTQEAcIQxIUtvfDxeXlfH5FnhsBFRJlEAiRc2ZMUPL53luwsvRpaq6tJlOYxy0hpV8IUp8rg6vkQ2JnpqHPsZRZHLTILlUWUS1Gdf31nGhALqDYISjniW1XFR9FGTg9Lk0Zr5b6PV0hL9P1SkmCl2I5/b1rW0WNrzrxRVvrtDu/Z/Tm+u2CVJ8qlWSerN6X3dp53YATKHjCwVabvyVKFsVR2spX/uWdJdvZaMUtTAKBoAAAPkpG8WqKU1YpYX2w2hE01W0/E79tgnJogcYnjJchiNKWySw5Erqfkw96rvBRoP9KocQQmwcXskt6evgoWROWGcMuaM02Qjfen6Y9X03scaU9SkicXRs/5FvkFF19BN7baVoZClVX/bqR37T9aqhz/p+pbos+yCor9Bim1dvNqNjCx51KrxZoPyrAr5tL/n1znEQHdo5bsvG/8eN4aROQD9qrXNUuXeJEmxpwp1fGMfZ1m43MHfMl2nLkXU0bVtN3VEvM9F/o49fSneSEScZRF197WWVoe2fpqqbbtS5HCYmPbG24+OdpqYdlmWidqPjgfG1jdxytr7Mt6yQ+zf8HKH0YTRjXK7Dv8YxJfaLqUe9uawISgB/Sy/IHqCicDOFjkcktNpL9kX4czouHOKNb3Fqa9cdEzX0kQhLN5LxpsCOcG1XwlbYaRgyNKqJ3erue0ovf7wNlvF3Y1ExVt26CEn3mv19rPbklGSmpSqek3Vu0q36nq5JQZbxykVUmMg4gAm3oFl5/IEZcIHVHHKDJXwvG+fQ5W7u745th9Ax+yX7WAx7n7b67ISHCRGbB9Z3hpifTQQ9u73aGdlctwD7/gH2BHvWZZUuTdJlXu9yvC1qaXFoUCjW9n+VsnqnJbedspQ5FT1puvdL/Jb/JiRgojRhHjr4o0sdPce31vxAoS9D+L9fxcvXEhS0wGnfGltmjy2QS1HTbe1uXN/7H1k37f4/aJ46yOXHawulKCv7GeXRP67xKsvXM50taN13cfKzWxRtr9NGBoISsAIk5wUUnJS726e2d8+/7UitbU7NPuM/JgPsUiJglynUOT6OHnLvr1Z/+7B5bZ64ga+rmWdr9NwwKOGVq9e/FOFqjRKPlMrhzpOIYy+Jiz25Md44k99n/h5vO3tZVxqk8dqOaR6DjWgHlrdh7pd96dtHkrdLaZdUsd9lHbsy1LDTofqd0qeJNsrdn7pbvtzsiLX2w/yOw/8bc+ljt8ut+RNUuLQFVmH/cDPkhxxwoZs9UTW0bmusV4Ktju0d68n+rrJg/+x70PXygQiy1jdle06uHU6peTkbuqUfX9MzEFx5L9HvKDX8Tz+AXVkmIvcha51Jqqv4wbByHXxDtS7a5uk+npLrc0urd6Q0REGDvZ95PWrHe9DHTc/juxW62A/h2QpLbld25OnqTHokPFJo2a1yu/vqzMbPpt49xZLdMB/8GGcclbUSvu0/VHLugk2hWlGHm/H45Q++nJxKPlkC6eqDzUEJQD9ZkzhIJ2PfNTEnsv0wBip9JxCVby0XhV1hTJxsmf428g45353PI8TzGJeJ/qb28SxwgrXd6DVJbcrpJMnfRzTlt7q6dviRPUdyrfMh3M6aXfbJaqnqbVVP/rZk5KktmPnqL7Fp0BLg3Z+sEGSNPm4KQfrPbhdSLaDsa5/g1Dnv7PpKNc5QtVZNvJgLthuKRiUxhzdHvfgLnyU3dM3yhE7lHB958hB1AGrM2J9x+8ZR6d37Ie62hn3prkm4kuLQygTuf8HGqWpkyWPJ6INcQ6qY/Yt4nmom7LGvl28g/Ue+i/e/kS9Rpw6p+bvVchYHf/+tgP3yJGFznXuo8eFR34i6wzFaVNsyDg4kpAWUm1btnzjpfadNUPqRsJ9M0I4tAIJ0FsEJQCIw7KkbH+bss86SjMGuzE2NXVurfnHTuX5Gga7KUNCY0tr+HFqmlGzR1r//galpHdMmLJz47v98rrBoEPZRZ8Pf8Mdqy8PDntXV8X+uj58zW5Yktvhl9MpOUfYkURAOf1Wd8QgVZQDkrIOPm7vt1cHcKiG0HcWAAAAADA0EJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABshk1Q+t3vfqexY8cqKSlJc+fO1apVqwa7SQAAAABGqGERlP7617/q6quv1q233qp3331XxxxzjObPn6/q6urBbhoAAACAEWhYBKVf/OIXWrRokS655BJNnTpV9957r1JSUvTnP/95sJsGAAAAYAQa8kGptbVVq1evVllZWXiZw+FQWVmZysvLB7FlAAAAAEYq12A3oCd79+5VMBhUfn5+1PL8/Hxt3Lgx7jYtLS1qaWkJPw8EAv3aRgAAAAAjy5AfUTocy5cvl9/vD/8UFxcPdpMAAAAADCNDPijl5OTI6XSqqqoqanlVVZUKCgribnPDDTeorq4u/LNz586BaCoAAACAEWLIByWPx6NZs2Zp5cqV4WWhUEgrV65UaWlp3G28Xq98Pl/UDwAAAAD01pC/RkmSrr76ai1cuFCzZ8/WnDlz9Ktf/UqNjY265JJLBrtpAAAAAEagYRGUvvnNb2rPnj265ZZbVFlZqWOPPVbPP/98zAQPAAAAANAXhkVQkqQlS5ZoyZIlg90MAAAAAEeAIX+NEgAAAAAMNIISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsHENdgMwclgy4cdbdyar+PWNch1ztNLTTTdbAUDfaWuV9u+VUjOnKSnVyHS+/US+DRmFlztcUkq6UdW2NXK5gwPdXADAEEZQQp9JUUP48Qe/f03lVpE85mOden66jvpioVrGT5HUcYBiIg5aXC4pIyMkfwaBCsBns+25j1XfUit3u1NBSbKMLCk6KMmSJSkp36fU0T4F29Pky5mppJSOQka296mDv+3PQyFLDbWW9ldbUW2wLCnVZ+T29v3+AQAGDkEJfSbZkv7mnChJcpn/UaXGaL1m6dW/Fuu5v7ZI+uRgSSv826tmzT4zT9Pm5aj9+I5tje2bX0lKSw8pKWkAdgLAsJPicWv9T67X/oYUuV1vyrI632Oiv3zpHPU2slTblKIPd+drzbbR2lXrV3vQEfFVj7repiIfWp2JqSMMSZLHMmrc3BpRuGOFe2y6cmdmy1Xg1/bdATlsJ7qHQradMFG/ot8H7WUO/rYcktujcMADAPQtghL6jGVZSuo8pLCMCs0OpVoNChkrpqzDMmqQT1WmSBv+Pl2v/71eDrPlYD1S5yHN9NPyNX5OjiYUN8p7yqTwwQkAdLIsS8WZ7SrODBzSdseP364Dc97V9n0Z2lOf1lFXuM7osg5HdBhxKHE42bE/Q9u8s7T9nf1qbgkoGJIcjo6AY1my57e4wkUiyne1yZI/rU1p47Mlj0+NzXUd29hGzeJXmCCEHVzucBp5k2P3HwCORAQl9BunFVKm9sZ8XnfK1F4VW1t1jHlLe02+DlgpUet3aayKs0/Urvfatfa1VOX8fbU+96VMpc6cqNy8kJwRf72WxQc7gEOX5G7X5IK9mlywt8/qLKnbr/zqBk0rSFK7feRIkqz4MylZMrI6R62s6LfOju+PjIIhh2qaUvXJ3ixV/atKTWmjleRplwl/SWWrNFEoStB2h8MoaWKW3Hk+7WsMdIxWWfE3dPOeC2CEIyhh0LmtNhVan8Ys95v92vtIhbxKUZ5xaqcm6t1nRimorTrq1EK5nV0XXjsdIU06PluZs8eqaFRIKamcigJgcBT461Xgr+/X12hqdWv7vkytryhQY4u3K2DF0TVKZsK/YzNOx7qqQLpqqqdoV5VTklMHFD1RT2SlATXIXR+U5YitLathe1fNESNiaVNHqTktS5m5HacNAsBQRlDCkJVl7VGWtSf8/PMqV5NJVZUZpV0rxyp48M/XklGjkvXc82M0fn6NnKNLlOINyu3u+nBPSWrX0eMb5JpxlDKzTMz1AgAwnKR42nR0YbWOLqzu03o/qsrV+l21Km5IVXObW1L8oBQOWxsk6+BpifEGmKyI5e0hh7as26P0iYXan1+klFQjp/PgdWO2lzC267E6H8eeNhj9qk6nlO4zKiwMqsmf09PuAkC3CEoYVlKsRo2zPtI4fRSzbr2Zpep/bladSVe1PIo8R6RZqVohv46e36TcqQVKT22X29U1w5XUcd2Ux22Um9mq7JMmysOMVQCOMEfl79FR+Xt6LngYmlrdemXTRG2rrldg53bVB7u+sYo9ddrEv17MNnLmiDhd0RhLvsmj5A4Etal2nDKzasLLO353bRdKdEqi7VRJYzrKut1SgzdTWflSckr8bQGMPAQljBjTrNWaluCc+Rbj1RpTqsp/lmjnC+kKRlwhEDkT1jFnFWvPpDEqrP9Eyd7oT8xQSEryhORLa1fa8VO4JgoADkGKp02nT98QDi6Suj1lsGN97+tfs3OUNlXu16eb/QocqNG+RHWq4wuyzvf+7l6j47oxqS3kUHvQqdYpeUo5qlBp6UZeT8f2UZ8U9lGviJGxqMVGUkQ/5OYHVa1cpaT1alcBDBCCEo4IXqtFx+kVGTninB9iFJRLVWaUtj01RWvNBLWoYy5yS0ZGUkhOudWquefkK3N6iZJSXHK5uj5kc/OMsrJCnNIHAN3omHinf64hnTGqQpPyuk5F7CkAdce+bf0Br8o/Hqcdu+tUuXm3gib2y7bYOiLmfLeil9nnx1jb6lZySaGK8prUVjRWjY2W7Jd+xZutMCZ89VA+PZ1Tz4FDQVDCEcNhGUnBuOucalWxtU3F2qY241arus6767gGKl3VpkgfPT5V1f9vv0JaG14XkkMOE9Kcs7I1Y16uNGWSvN7oT6jOe6Y4HFJLrUejC5r7ZR8B4EjldBiletv6pe4kd7tOmvSx4k2D0amn8CXFD2/GSNWBdG2uztHGjfkKvFejN15uktM2JX3CV44XPDtHqywjYyy5HCGNnlMg/6zxGjWq63Owp/AVr0zs847XcjkNp6xjxCEoATZuq01uRX/YpqhRuValppg1arD8apc7vC5oHPrYmqZNT03Qmqd2qUWbYuq0ZHTsgnyNOS5fqcnOft8HAEDfykrtvy+4slKbNaWwWqdP36iaxlS1Bx29HnmLF74iQ1tb0KlP9mVp6wct2vZmtdY54s1Zf1A3Lxl1b6/OZcaSZRkVzCxSekpQk88cG9OenoNW4ueRj10ubgOCgUdQAg6B0wrJr/3RCy0pyRxQibVFbcYdd7sKjVWh/yRVvd+mXTUZ2pZVrzeTW8LrHQopN71RM88crdzM1v7cBQDAEOV2hpTv6/up5YuzanX8+E9UHUhTY6u349orWxnLEZuSYsrECW+bq3Ol1Hxtr0jWjj9UdbN14psdS5K2b+kqF1GHyxFU0XHFGlPYpNTjj+6mAqDvEZSAPuCzauVTbcJzI7ymRfV/qZRRsorUcfFvXXgSCYdqlKt3lKMX/7BdJ31nfNeGBz8tPK52+ZJbdMyZY5Wc1M23gQAAxOF2hjQqM9Dn9aZ5W1S9p065lkOhyIk6FGcEyJIcVvRnWLjMhNggFgw69en+DDWu36x/rUpW6qaK8Dr7BBnSwbkS40wtL8XOdJjsDWnC6EZp6hRlZIbkjv89J45w/RaUbrvtNj3zzDNas2aNPB6PamtrY8rs2LFDV155pV566SWlpaVp4cKFWr58uVyurma9/PLLuvrqq7V+/XoVFxfrpptu0sUXX9xfzQb6RaG1U4XWzoTrg8apWpOlCmuM1v5Px5S2nadOtChJbfKo1Xi1J5CqrLSm8HaWZVRw4mQV5LQqJSn+9VcAAPSX3PRG5aY39lv900bt1p76NO2sydCB2q6p662IqeG7lnXkpL/9tuHgmJmJKh/5vF0erVCyJn2lUZkpTcqfWRxeZ4wVO1GGiU594Xt9yZIlo8K8ZjmnTVZWVohrtUaQfgtKra2tOvfcc1VaWqr/+Z//iVkfDAa1YMECFRQU6I033tDu3bv17W9/W263Wz/72c8kSdu2bdOCBQt0xRVX6KGHHtLKlSv1ne98R4WFhZo/f35/NR0YcE4rqGxrj7IV//4l9cavahVqzf11OqCum3iE5FDTrxskI51wUbEm5u5V2uwZHR8HcU5xcDlCystulS+1nXO9AQBDntsZUlFGQEUZvRsNaw869KZVp2nWajnVnrBcq7zaZ/L06fPjtN4U6oP/t63beq2Y0NUlKKemfWO8gi/sV97nRik5KajU5PaOwGUf2Yq6yCt6XaDBo9pA7NBW54QZacntSvJyVslAsozp9ozRz+yBBx7Q0qVLY0aUnnvuOZ1xxhmqqKhQfn6+JOnee+/Vddddpz179sjj8ei6667TM888o3Xr1oW3O//881VbW6vnn3++120IBALy+/161DlBKRYX0mNkOWCStdfka5fGqlqjFFTX37jt+y+F5FTIOHTqJQUalVmropOjz/d2u0LK8rfKyf8mQ1pNnVtr/rFT8yZvHuymAMCQ0h506JfL6jTLek0uK3FQitRsUg5+CXl4h8RbzVR5dEA7zES1yKNWJUesTTB9fJzlloyS1WhbZylV9ZrznanKTG3WzLPGJLzWK96sjN0d5UeusywpNfnIOTMl0NikUWUXqK6uTj6fL2G5QbtGqby8XDNmzAiHJEmaP3++rrzySq1fv14zZ85UeXm5ysrKorabP3++li5d2m3dLS0tamnpulA+EOj7c3KBoSLJatZo6xON1icKGUuhqKAU+63XFk3T2w+M0YvKlPXL1VHrQ8ZSkg6o7LujNKlsrDLS43/IGCOlp7bL7erX71kAAOh3yVaTktXUc8EEJmqdmpWqXGt3H7aqw37lqsmkKtXborWfFmrtb7uZ8MmKDUbxJuDY8rcPwo+POneGCv0BWZJOOLdA/rToz/2EoSze1PImNqi5hvlxwqAFpcrKyqiQJCn8vLKystsygUBAzc3NSk5OVjzLly/XT37yk35oNTC0OSwjRzenGjgV1FFaqzGKPxLRanlVZUbr9fua9Mx9+2SZzpsjdk480fHsS5cVqCSzVlO/NjFqe7fLcEofAOCI4rf2x86I20cyzR7ttkr0yT3PyBtx8+JIvbmHV6TpETcdrvxblU66foLe3TFKT/65oeeNDzH35PnqVZJdq9FfOjrhl69D2SEFpeuvv1533HFHt2U2bNigKVOmfKZGfVY33HCDrr766vDzQCCg4uLibrYAjhwuq10uxX8zTFWDMq19mqL31WRS1WylRq03kj41E/TOn2u10mTKcdcHUes/f8EETczbq3GnTlJORuuw/yYJAIDB5LVaNLbzy81++CLSktGrd+xVyDgVksO2tucp4yPrsauXX9WSrEVztfb/q5XbGYxTa1eN8UakYibViJDqadXYnBrlnzxd2f6Wfrls4JCC0rJly3qccW78+PHdru9UUFCgVatWRS2rqqoKr+v83bkssozP50s4miRJXq9XXi9TjgCfRYrVqBTFzmSUY1Wrzbi1X9lqUXL4zTEkh/Y+skVrVaKWuxvkVoumfTP6GqjIN8HO0SlfUrN8yS068dxCpaUcOedHAwAw2Eqsjzse9EMIqzVZ2mEmassfX9YBJYdnCLTrbqKM7jQqXa8rXbrzdR1z4VTlpHZ8CRyvhpCJDoFJ7n29eo1DCkq5ubnKzc09lE0SKi0t1W233abq6mrl5eVJklasWCGfz6epU6eGyzz77LNR261YsUKlpaV90gYAh8dttSnPqoxZXqKtCpo3FbAytdcU6MCjGw6uif/GV69MVcqjeuNXXVOS3M5QuGSSq11jc/apaN40+dOYpQ8AgOEkw6pRhrWq54KHyRipQX7VWtna/fBufSS/pK6w1V3oSjIVCddF6rdrlHbs2KGamhrt2LFDwWBQa9askSRNnDhRaWlpOu200zR16lRddNFFuvPOO1VZWambbrpJixcvDo8GXXHFFfrtb3+ra6+9VpdeeqlefPFFPfroo3rmmWf6q9kAPiOnFVKm9inT6vnbms43uX3K0/b/rTr4bVOHZiVrhfI0fWuTfN4Dyk5rkMMy0bP6WB1D7ymeNk3/+qT+2SEAADDkWJaUrjqlq07F1tZD2rbJBKVenMTSb0Hplltu0YMPPhh+PnPmTEnSSy+9pFNOOUVOp1NPP/20rrzySpWWlio1NVULFy7Uf/7nf4a3GTdunJ555hn94Ac/0N13363Ro0frT3/6E/dQAkaI8JucVdd1DnaE7WaiKh/brh1Kl4k5d1pql1sLlhRpa126zEcd03ua9e92/I74IqnjNoOWHJaR02GUmdKkUV8+pl/2CQAAjAz9fh+loYD7KAEj03ozS/XGr33Kj3v/iOi7snf40qLRMsbSlNPGxJY+WDwns+OmvEMV91ECgPgO5z5KOPI0maDOC348dO+jBACf1dF6V8aKHWmK1TGn6k6N19o/VqhSxVrxp91R5y8H5VKSmlX23dGqcLdr0mkTYmtJ8LVSdkYr95QCAGCEISgBGLYcllGvTjI+aKw2a6y1WQdMcsw0qC1K0k4zQa//oVH1ypD1270Jauma5S9D+zT38ukq+cIEjcpvDpdI8gTlcROcAAAYzghKAI44SVZzzLIUNSrT2qc241aD/OEglWjWnBrlap/J12v3fazmP1TKUii8zqGgvnR5scbn7FP+KTOUmtQV5uLVxmgUAABDD0EJACK4rTZlKtFoUpcs7dE4bVJAmWq2UqLWBUyGXvtjq3adO0vmo6Ye68pOb9SEnL0qPGWasv2tcvTmbEIAANCvCEoAcJicVlCZ2qtM2/Iia4dyTaXq/vahjJFC6ppExj5CFZJDH6pIrytPM3fVyoQklzMUsb5jGgq3Myh/8gGle1s05Su9u7E3AAA4fAQlAOgH2Va1slXdq7udH6V12mKmqv6RD9VqvFFRypLUJrealaocVSnzwjNU8cheWUpWTWNyTF1eV7tSvW19th8AABypCEoAMARMtD7seJAgWO01edpvcrTlobdk5JBbrdqp5oObdEWrNnnkVovyrAqd/fNZkhLP1hc5pbrX1S6rF6EOAIAjBUEJAIaBHKtaOVa1JunDbssFjUMVGqudZoLu/mFtr+v/8rIpmla0W+6I0/4AADiSEZQAYARxWiEVa6tGaVvCMvbrpGqUp3/9okH/Z1LlODh7X+J5+CyF5NB/3JHFKX4AgBGNoAQAI1DHPaZ6J1sd11O1yqN2uSUlnhbdktH75nj94bo98saZZt0YhxxWUFf89yg5HEx7DgAYvghKAABJksdqlUetPZabrrfVKm/cdcZyaLOZrruv3qd0qy4qcBnbBVheNesr/3mcslKbCFUAgCGHoAQAOCSpVoNS1ZBw/XF6WQ3yq0lp3dbTrFQ9dPN2tcslv7VfX7hubsKJJyTJn3JAOWkNXEcFABgQBCUAQJ9yWEY+1cqn2p4LW1KTSdV+5eitO149uDA2LRk5VG/8alaqTlk6Vfm++uj1Jnq0yuUIKTutUUnu9sPcCwDAkY6gBAAYVClWo1LU2HNBS6o2hXrv7poE11B1LWuXR40mXR4d0DduOUrJ7u4nnvC625We1HKILQcAjGQEJQDAsJFn7VaedveqbLtc2qJpevw/t4Rn80s0SUWLvHKrTT6rRufdMT28vLtTASXJ4wpyKiAAjFAEJQDAiOSy2jVF7ye8iW+kkLFUqxxtNtP1u2u7RqwSBStJCsmhFKtBi34+Wh5XMG4ZY8SNfAFgmCIoAQCOeA7LKEt7NNd6qdfbNJlUbdXRPd7Y16GQ0q1anXbTsSryBxKGKgDA0EJQAgDgMKRYjZqud9Qmt0JyJBx9apdbAWXqiZ9+rHa55VXs/ac6RA89BeXUd24v5NopABgkBCUAAD4Dt9X9RBEetSpFjcpWlZqV2m3ZyLD1ofm8/nT9bqVa9TH3oIq3pUttuuyX43vbbABADwhKAAAMALfVJndvpkw/6Gi9pwNKltT9tVKWjEJyapuZrD/9YJvctpsGR27pkNGXfzyH+1EBQC8QlAAAGIJ8Vi/vRXVQmupUq2wF43y0dwatoJz6f7d+pGalKsVq0Ok/mh5TVoq9L5UkFfgDSvO2xikNACMTQQkAgBHgUO5HFTAZqlaRXvnZW90U6xqLajB+ea1mnfnjjmCV6FTANG8L11QBGDEISgAAHGEOdbSqUWnarRI9/uONkhLPuN5kUg/ej2q/vvbTY+WKOL3Pfk8qh2WUntTC9OkAhiyCEgAA6Faq1aCJ+rDHciFZCihTO8wk3X9TpZxqD6+zX2cVklOWjPxWjU6/daZy0xvi1hnvNMCO5V2P3c6QHI4e7g4MAIeIoAQAAPqEwzLKUI0yrMSn9HUyRmqUT/uVo4d+vOszvW62VaVLfznxM9UBAHYEJQAAMOAsS0pTQGkKaJS2ycgRsTb+6FC82f/qlK3NZrp+uXR/wmun7Ftd8OMSFWUEDrPlAI4UBCUAADCoHJaRFDysbTO1V5/X62qVN2GZyIC1S+P06I+D8lgdk050d48qYyw5rJAuvbNESe72hOUAjEwEJQAAMKy5rHa51LsgM958qHorQyE5I5bGjlRZMpIlfWQ+pz9ds0tJVlOv2xNZW4oadeEv40/DDmBoIygBAIAjhsMy8mt/r8tP0jq1KKlXZe2nBrYoSRVmjDbszo8p+86dL0mSZl87T76kA8pNb5DHdXijagD6B0EJAAAggUxr72Fv225ckiW9c+fOhGXevvNlNcivJpOmVKteX/jhbKUnHUhwlVbiWQA7jc6slTtiWnYAh4+gBAAA0A9cVrtK9HGvyrbKoz0qVPld5er+yqn4k1pIUq3J0pd/OFUFvq6JKrqryWmFlJPei5sUA0coghIAAMAg81itGqXtn6mO7ZqoV+5qlcOKfwqfPWA1mnRddltezAiU/ebAdp3hK8nVJq+b0wUxchGUAAAARoAx1haNsbb0qqwx0lrN0f03VkYFqESjVRFbHvyvQylWgxb9d3HimwLbnnNKIIYbghIAAMARxrKkz1mrDnv7WpOlTeYY/eLq3t+P6uwbx2pC7r7Dfk1goPVbUPrkk0/005/+VC+++KIqKytVVFSkb33rW7rxxhvl8XjC5T744AMtXrxYb7/9tnJzc/W9731P1157bVRdjz32mG6++WZ98sknmjRpku644w599atf7a+mAwAAoBsZVo1m6bUey3WOUO3UBD1+m+RWa4LrpmKXJVuN+vKPjlFuWoN8yS2ftcnAIeu3oLRx40aFQiH94Q9/0MSJE7Vu3TotWrRIjY2NuuuuuyRJgUBAp512msrKynTvvfdq7dq1uvTSS5WRkaHLL79ckvTGG2/oggsu0PLly3XGGWfo4Ycf1llnnaV3331X06dzXwIAAIDB4LJ6fxPeYvOxcqzdCU/tsy83stQon176WZvqTKYsSR4diLj+Kv7pfiHjlJTSi1MIgZ5ZxvR0yV7f+fnPf6577rlHW7dulSTdc889uvHGG1VZWRkeZbr++uv15JNPauPGjZKkb37zm2psbNTTTz8druf444/Xscceq3vvvbdXrxsIBOT3+/Woc4JSLGfPGwAAAGBICBlLAWWGbxLcUwhyql0+q3YAWobhqskEdV7wY9XV1cnn8yUs5xjANqmurk5ZWVnh5+Xl5Tr55JOjTsWbP3++Nm3apP3794fLlJWVRdUzf/58lZeXD0yjAQAAMGgcllGGVaMsa4+yrD3KtPZ2+0NIQl8ZsKC0ZcsW/eY3v9F3v/vd8LLKykrl50ffrbrzeWVlZbdlOtfH09LSokAgEPUDAAAAAL11yEHp+uuvl2VZ3f50njbXadeuXTr99NN17rnnatGiRX3W+ESWL18uv98f/ikuLu731wQAAAAwchzyZA7Lli3TxRdf3G2Z8ePHhx9XVFRo3rx5OuGEE3TfffdFlSsoKFBVVVXUss7nBQUF3ZbpXB/PDTfcoKuvvjr8PBAIEJYAAAAA9NohB6Xc3Fzl5ub2quyuXbs0b948zZo1S/fff78cjugBrNLSUt14441qa2uT2+2WJK1YsUKTJ09WZmZmuMzKlSu1dOnS8HYrVqxQaWlpwtf1er3yer2HuGcAAAAA0KHfrlHatWuXTjnlFJWUlOiuu+7Snj17VFlZGXVt0b//+7/L4/Hosssu0/r16/XXv/5Vd999d9Ro0FVXXaXnn39e//3f/62NGzfqxz/+sd555x0tWbKkv5oOAAAA4AjXb/dRWrFihbZs2aItW7Zo9OjRUes6ZyT3+/365z//qcWLF2vWrFnKycnRLbfcEr6HkiSdcMIJevjhh3XTTTfpRz/6kSZNmqQnn3ySeygBAAAA6DcDeh+lwcJ9lAAAAABIQ/Q+SgAAAAAwHBCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG9dgN2AgGGMkSU0mNMgtAQAAADCYOjNBZ0ZI5IgISvv27ZMkXRzaNsgtAQAAADAU1NfXy+/3J1x/RASlrKwsSdKOHTu67Qx8doFAQMXFxdq5c6d8Pt9gN2dEo68HDn09cOjrgUV/Dxz6euDQ1wNnuPa1MUb19fUqKirqttwREZQcjo5Lsfx+/7D6RxzOfD4ffT1A6OuBQ18PHPp6YNHfA4e+Hjj09cAZjn3dm8ETJnMAAAAAABuCEgAAAADYHBFByev16tZbb5XX6x3spox49PXAoa8HDn09cOjrgUV/Dxz6euDQ1wNnpPe1ZXqaFw8AAAAAjjBHxIgSAAAAABwKghIAAAAA2BCUAAAAAMCGoAQAAAAANiMmKH3yySe67LLLNG7cOCUnJ2vChAm69dZb1draGlXugw8+0Be+8AUlJSWpuLhYd955Z0xdjz32mKZMmaKkpCTNmDFDzz777EDtxrD2u9/9TmPHjlVSUpLmzp2rVatWDXaThp3ly5fruOOOU3p6uvLy8nTWWWdp06ZNUWUOHDigxYsXKzs7W2lpaTrnnHNUVVUVVWbHjh1asGCBUlJSlJeXp2uuuUbt7e0DuSvDzu233y7LsrR06dLwMvq67+zatUvf+ta3lJ2dreTkZM2YMUPvvPNOeL0xRrfccosKCwuVnJyssrIybd68OaqOmpoaXXjhhfL5fMrIyNBll12mhoaGgd6VIS0YDOrmm2+O+iz86U9/qsh5m+jrw/fqq6/qa1/7moqKimRZlp588smo9X3Vt705VhnpuuvrtrY2XXfddZoxY4ZSU1NVVFSkb3/726qoqIiqg77unZ7+riNdccUVsixLv/rVr6KWj9i+NiPEc889Zy6++GLzwgsvmI8//tg89dRTJi8vzyxbtixcpq6uzuTn55sLL7zQrFu3zvzlL38xycnJ5g9/+EO4zL/+9S/jdDrNnXfeaT788ENz0003GbfbbdauXTsYuzVsPPLII8bj8Zg///nPZv369WbRokUmIyPDVFVVDXbThpX58+eb+++/36xbt86sWbPGfPWrXzUlJSWmoaEhXOaKK64wxcXFZuXKleadd94xxx9/vDnhhBPC69vb28306dNNWVmZee+998yzzz5rcnJyzA033DAYuzQsrFq1yowdO9Z87nOfM1dddVV4OX3dN2pqasyYMWPMxRdfbN566y2zdetW88ILL5gtW7aEy9x+++3G7/ebJ5980rz//vvmzDPPNOPGjTPNzc3hMqeffro55phjzJtvvmlee+01M3HiRHPBBRcMxi4NWbfddpvJzs42Tz/9tNm2bZt57LHHTFpamrn77rvDZejrw/fss8+aG2+80Tz++ONGknniiSei1vdF3/bmWOVI0F1f19bWmrKyMvPXv/7VbNy40ZSXl5s5c+aYWbNmRdVBX/dOT3/XnR5//HFzzDHHmKKiIvPLX/4yat1I7esRE5TiufPOO824cePCz3//+9+bzMxM09LSEl523XXXmcmTJ4efn3feeWbBggVR9cydO9d897vf7f8GD2Nz5swxixcvDj8PBoOmqKjILF++fBBbNfxVV1cbSeaVV14xxnR8OLjdbvPYY4+Fy2zYsMFIMuXl5caYjjc8h8NhKisrw2Xuuece4/P5ov720aG+vt5MmjTJrFixwnzxi18MByX6uu9cd9115qSTTkq4PhQKmYKCAvPzn/88vKy2ttZ4vV7zl7/8xRhjzIcffmgkmbfffjtc5rnnnjOWZZldu3b1X+OHmQULFphLL700atnZZ59tLrzwQmMMfd2X7AeUfdW3vTlWOdJ0d/DeadWqVUaS2b59uzGGvj5cifr6008/NaNGjTLr1q0zY8aMiQpKI7mvR8ypd/HU1dUpKysr/Ly8vFwnn3yyPB5PeNn8+fO1adMm7d+/P1ymrKwsqp758+ervLx8YBo9DLW2tmr16tVR/eZwOFRWVka/fUZ1dXWSFP47Xr16tdra2qL6esqUKSopKQn3dXl5uWbMmKH8/Pxwmfnz5ysQCGj9+vUD2PrhYfHixVqwYEHM//f0dd/5+9//rtmzZ+vcc89VXl6eZs6cqT/+8Y/h9du2bVNlZWVUX/v9fs2dOzeqrzMyMjR79uxwmbKyMjkcDr311lsDtzND3AknnKCVK1fqo48+kiS9//77ev311/WVr3xFEn3dn/qqb3tzrIJYdXV1sixLGRkZkujrvhQKhXTRRRfpmmuu0bRp02LWj+S+HrFBacuWLfrNb36j7373u+FllZWVUQc0ksLPKysruy3TuR6x9u7dq2AwSL/1sVAopKVLl+rEE0/U9OnTJXX8fXo8nvAHQafIvu7N3zk6PPLII3r33Xe1fPnymHX0dd/ZunWr7rnnHk2aNEkvvPCCrrzySn3/+9/Xgw8+KKmrr7p7D6msrFReXl7UepfLpaysLPo6wvXXX6/zzz9fU6ZMkdvt1syZM7V06VJdeOGFkujr/tRXfcv7yqE7cOCArrvuOl1wwQXy+XyS6Ou+dMcdd8jlcun73/9+3PUjua9dg92Anlx//fW64447ui2zYcMGTZkyJfx8165dOv3003Xuuedq0aJF/d1EoF8sXrxY69at0+uvvz7YTRmRdu7cqauuukorVqxQUlLSYDdnRAuFQpo9e7Z+9rOfSZJmzpypdevW6d5779XChQsHuXUjy6OPPqqHHnpIDz/8sKZNm6Y1a9Zo6dKlKioqoq8xIrW1tem8886TMUb33HPPYDdnxFm9erXuvvtuvfvuu7Isa7CbM+CG/IjSsmXLtGHDhm5/xo8fHy5fUVGhefPm6YQTTtB9990XVVdBQUHMjFWdzwsKCrot07kesXJycuR0Oum3PrRkyRI9/fTTeumllzR69Ojw8oKCArW2tqq2tjaqfGRf9+bvHB1v/tXV1fr85z8vl8sll8ulV155Rb/+9a/lcrmUn59PX/eRwsJCTZ06NWrZ0UcfrR07dkjq6qvu3kMKCgpUXV0dtb69vV01NTX0dYRrrrkmPKo0Y8YMXXTRRfrBD34QHjWlr/tPX/Ut7yu91xmStm/frhUrVoRHkyT6uq+89tprqq6uVklJSfizcvv27Vq2bJnGjh0raWT39ZAPSrm5uZoyZUq3P53nO+7atUunnHKKZs2apfvvv18OR/TulZaW6tVXX1VbW1t42YoVKzR58mRlZmaGy6xcuTJquxUrVqi0tLSf93T48ng8mjVrVlS/hUIhrVy5kn47RMYYLVmyRE888YRefPFFjRs3Lmr9rFmz5Ha7o/p606ZN2rFjR7ivS0tLtXbt2qg3rc4PEPvB6pHs1FNP1dq1a7VmzZrwz+zZs3XhhReGH9PXfePEE0+Mmeb+o48+0pgxYyRJ48aNU0FBQVRfBwIBvfXWW1F9XVtbq9WrV4fLvPjiiwqFQpo7d+4A7MXw0NTUFPPZ53Q6FQqFJNHX/amv+rY3xyroCkmbN2/W//3f/yk7OztqPX3dNy666CJ98MEHUZ+VRUVFuuaaa/TCCy9IGuF9PdizSfSVTz/91EycONGceuqp5tNPPzW7d+8O/3Sqra01+fn55qKLLjLr1q0zjzzyiElJSYmZHtzlcpm77rrLbNiwwdx6661MD94LjzzyiPF6veaBBx4wH374obn88stNRkZG1Gxg6NmVV15p/H6/efnll6P+hpuamsJlrrjiClNSUmJefPFF884775jS0lJTWloaXt85ZfVpp51m1qxZY55//nmTm5vLlNW9EDnrnTH0dV9ZtWqVcblc5rbbbjObN282Dz30kElJSTH/+7//Gy5z++23m4yMDPPUU0+ZDz74wHz961+PO63yzJkzzVtvvWVef/11M2nSJKastlm4cKEZNWpUeHrwxx9/3OTk5Jhrr702XIa+Pnz19fXmvffeM++9956RZH7xi1+Y9957LzzTWl/0bW+OVY4E3fV1a2urOfPMM83o0aPNmjVroj4vI2dVo697p6e/azv7rHfGjNy+HjFB6f777zeS4v5Eev/9981JJ51kvF6vGTVqlLn99ttj6nr00UfNUUcdZTwej5k2bZp55plnBmo3hrXf/OY3pqSkxHg8HjNnzhzz5ptvDnaThp1Ef8P3339/uExzc7P5j//4D5OZmWlSUlLMN77xjagvBIwx5pNPPjFf+cpXTHJyssnJyTHLli0zbW1tA7w3w489KNHXfecf//iHmT59uvF6vWbKlCnmvvvui1ofCoXMzTffbPLz843X6zWnnnqq2bRpU1SZffv2mQsuuMCkpaUZn89nLrnkElNfXz+QuzHkBQIBc9VVV5mSkhKTlJRkxo8fb2688caog0f6+vC99NJLcd+jFy5caIzpu77tzbHKSNddX2/bti3h5+VLL70UroO+7p2e/q7t4gWlkdrXljERt+sGAAAAAAz9a5QAAAAAYKARlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALD5/wEpWqt8k2mnzgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -390,26 +389,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAABqCAYAAADjjxZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZlklEQVR4nO3dfZAc9X3n8fe352EftM/SSki7ktATSAs2SBYg2+DEBvMU29iOkyNnztihCqfKrrPr7HN4qLtLVSpx7ORctsuuOOTgDp/JcT6THFQFHw8+ykdSQYB5FiCxEggk9ICeV1pp56G/98f07vZoZ1e72tmZXunzqtrant+ve/o7PTvf/U53/7rN3RERERGRZArqHYCIiIiIjE/FmoiIiEiCqVgTERERSTAVayIiIiIJpmJNREREJMFUrImIiIgkWLreAUxGu6V8Ppl6hyEiNdTP0D537653HNWgHCZydql2/poVxdp8Mnw/vbTeYYhIDX2isGV7vWOoFuUwkbNLtfOXDoOKiIiIJJiKNREREZEEm3axZmaLzewJM3vVzDaZ2dei9i4ze8zM3oh+d0btZmY/NLN+M3vJzNZNNwYRkdOlHCYiSVeNPWsF4Bvu3gdsAL5iZn3AbcCv3H0V8KvoMcB1wKro51bgr6sQg4jI6VIOE5FEm3ax5u673P25aHoAeA3oAW4A7o1muxf4dDR9A/BTL3kK6DCzhdONQ0TkdCiHiUjSVfWcNTM7F1gLbAQWuPuuqGs3sCCa7gHeiS22I2o7+bluNbNnzezZwxSrGaaISEXKYSKSRFUr1sysBXgA+Lq7H4n3ubsDPpXnc/e73H29u69vJ1WtMEVEKlIOE5GkqkqxZmYZSknuPnf/+6h5z/Chgej33qh9J7A4tnhv1CYiUhfKYSKSZNUYDWrA3cBr7v69WNdDwM3R9M3Ag7H2L0QjqjYAh2OHGkREako5TESSrhp3MPgw8G+Al83shajtDuAvgJ+b2S3AduD3o76HgeuBfmAQ+FIVYhAROV3KYSKSaNMu1tz9nwAbp/vKCvM78JXprldEpBqUw0Qk6XQHAxEREZEEU7EmIiIikmAq1kREREQSTMWaiIiISIKpWBMRERFJMBVrIiIiIgmmYk1EREQkwapxUVwRERGRs9IJb2LIG2Z0HSrWRERE5IxW9ICQVOU+UuwMz2WA9or9IQE7WDHSX34FbWeAdlJeJGu5WPvTVYl7mIo1ERERmRWKHrAn7GGIxjF9BTL0c2FZn+EA7GcBQ95I2vJjlnOMgme46AODtDccw728HEvj/P7HOljw4dUVY8pkQrq78gSxE8t+vvZ0Xt34VKyJiIhI1RwPmzhBU8U+A/aEi+jnAoqkMBxjtKg6ShvbWUUzR2mwEyct6+RooMGP02n7Rto9tq+rnf18+t4bSKfDsqKrKessX3KcbNan8cqGprHs9KhYExEROctUOiw4XDABHCp2spn3Vzx0eIxWtnBR2fxxA7RjONlxiptGjnHVF7rIpovEn8IdzOAzl/TS2VGkb+Wxsr5h6ZSTSq2a4NUdnaBvdlKxJiIiMgsNFTNs89XkyZQVToYTErCFi3iXJSPtQbwYYx6HmEeGXGxZxwlo4ihNDLKI7fSsbR1ZJvTScb4s8OWPhoQfv44ggDAcjcmBTAYW9XjZYcGpOHTQaNi5hWxmOnvBziwq1kRERGaIOxwsdpGjYaQoGj4458Am1rGVC2Ito/I0sp3zyJMd09fIICEpWjlMmtHzsDw2Z1/fcS7/0nUEdvLSJfMXOIWuNiwYXfjAe3Bhz2F6esMKS4x5dZOYR6pBxdo4flQ4xKuso5k/JcsJLuA52nmPgOLIBy5NkQt4lnNS745ZPjD9EZ+Ou4p7Abg1Nb/OkYjMbvos1ce3CvN4l6V08+8ByNFIngwBIY6RZYhMVFw50MpBNty0glTgY0qfMDSuWHiCF30+QapU+LnD3NZOlqyCOa2QneYVIzInPU6rKkgkvS3j2Azszx6E5W0sv2Qd+za2sD3XwPyWAQDcjT2b9vGPfJ5isXRMP/5tKU2RRbw58o3HcBo4gREy/G1kEdtZwwukKFQ49u8ElL7ZtHCEuen9M/uCE2Kb1+8EzjNZzrOE0TWwxzvPpJL4vEM0cYSOKa03vrwT8J4vrDgaq7ItU1qXlNNnqT52sx/awFaVPm8tDUdp6xgkCCCfS7NkzYV0nVOMLbGUAlAY5/nepJW2kz6z7a3VKdRk9lCxNoGUhXR2H+bwwSfhPGhu66N5SdtI//JPLmKZQxh97oY/TmHBsMI5HD38PhZ15cGNQwdhYa+TiT5cxbzx3J89yot8iPJdyVb2XE7AYebSXDhatqvbcOYwQKXd0MPPUCDNMjbTxXtly8V/jyrf5W2x+VMURv7BBrHlV9krtNiRitvudA2P6il4df40p1KYDNvrizhKa7T86axz7OGDieIY7svRyA6W4diY6/hUVn6OygJ2VtyjWyBNhhwpimWjpqaqSIprvrGSdFA89cwwZl2G09k8SEN6vH9L5W67Y8ohitSdUToBft45h7DT/7iJlFGxNk1mkDp5K6Yd2EVnCxyPmnqXLKRrPjQ2j87W84vrT/n87nDkABQKlJ2MkBkscPGlXjZCZnj+4Z+DB+DEk93kC6mRvtzb2+PRR+1jM4r7aCkwMNTEqgU7R5ZxjL0DrTzwy8tOecrCVIuD3XwXgP8afmNS8xc9xSLbTsomKiCmFsOQN3HVTa00ZXIV+0/e5mV9Fdc1vJ1HW1796fNj5nGMq25ZwPuu7iWVCqNlbNz3J+6Zh3dz2ZJ8aXTVSQJzgqBah+UPVul5RERkslSsJZwZtM8d2546DO2dEy87txs4f91JrRdNOYZDm3Zx2SXLxrTf9P0pP9Up/aubSnsuf/izD05q/nce28aapWmaGye3tycpfuemj07QO/XDVy0NQ6RTIenUZE4KFhGR2UQ3chcRERFJMBVrIiIiIglWt2LNzK41s81m1m9mt9UrDhGRqVL+EpFaqkuxZmYp4MfAdUAf8Adm1lePWEREpkL5S0RqrV571i4F+t19m7vngPuBG+oUi4jIVCh/iUhN1atY6wHeiT3eEbWNMLNbzexZM3v2MLNrpJ+InNFOmb9AOUxEqiexAwzc/S53X+/u69tJ1TscEZEpUQ4TkWqpV7G2E1gce9wbtYmIJJ3yl4jUVL2KtWeAVWa2zMyywI3AQ3WKRURkKpS/RKSm6nIHA3cvmNlXgUeAFHCPu2+qRywiIlOh/CUitVa32025+8PAw/Vav4jI6VL+EpFaSuwAAxERERFRsSYiIiKSaCrWRERERBKsbuesJV2aArkhZ8+T85j30S4yHU00G5wY3Ec646Qz9Y5QRESSJkWBgwdDdvzjgpHHaz61guZmZygP4S4o5kr/et2hudVZcEELW/oPgI8+TxhNpwJoaAazWr8SSRIVa+NYYyHn+Zus5ds888Rvc4ImtnIuIWlyZOlgHykKLFzdyt7epTS3hSxcllMRN019a1bXOwSRM8Jya6h3CGelDbaf4z7IZ/kaDmzkY+x4aAVDgBGSJ88gIQY4AbtZzACdGOGY5wpJUSSgk/1l/QWydLKHNg6x4a9+l3ePtQKl4s9jBV/DHFi5BjLZyrEGOrY2a6hYG8etqfnR1K/ZwK/L+rYWVnGAeeRpZNPr62l8fRcDtPE281ixssi8lgGWrWniaV9EOut0dhdq/wJmqf905+31DkHkjDCaw6SWRrf7WwAs4Z7Tfq5iaLwZnscBugEIYgWbY7zEB3nim4+MtAwznJCAfSzkcVIEFW53ZsBc9nLu6rD0rG44xlAxy/bGI7z/sma6P/dbZGM1f7wY7O72sj6ZWSrWTsOK9Bus4A0APsQTI+07Ckt4vv+D5Gnk/75wKYMcJ08jm2kiwz5aOQQErLoow3nXLaWpp4tCa4YgDQ2N9XktIiKSTKnAWRlsBjZX7L+Ef55weXcY8soVVd6zvOzrOfJ6Z3wJADLk2fjKfHbcPYSPObXdydPAEE20cJiyY7cjc6RY1ldk/Y19o6/lnS1Rp5FJF1n98V5OLDmvLFZ3He4dj4q1KupNv00vbwPwWe4FYCjMcijswjECnEGbw7MvXsHrL3bSz4XRbu4UDRyPijnjI3dcwrYTC2jrgCXnQRDdVlB/xCIiMllm0GhDFfsaGSrb2TAVec9wMOyitH8urlS4DdHEq6+u5Zn/2H9SnwPGIeZxz08aMPaMee4iacBZyNt02b4x/SHGNV9bQe/lK8b0uUNXR575c/Nn3P9LFWszrCHIsSDYXdZ2LlvLHh8ptrHdV1Ikwy56eebPB8mT4UUWYxTJk2VVH/S0HwRg+cWt7Jq/jp7FTle3ijgREamdjOWZnxpbaMUtjg4DT9XxsIl3fUlUtJXYSKEHx2nhsR+E5H7wTmypUl+RNPtYSNaHMIsf+i39k1x76XFaM8dLS3j5P850KscV13XSvP79Zef9jfY7XR2Fup3np2ItAdpSR3gfzwFwMRuBBwAI3Sh4mv5wDe+8ugInICTFL//lA5zgCf6FAiEpWhigiaNc/mdX0dDgONDUAF0XzqelBQ16EBGRWaEpOM6KcQ77Dns/z4zbl/PKoyn2+CL2Pt3DkbLDuqWqrECGtziff3rSCXgRYsUhQI4Ghmim2QdIWfwc9FLBlybHZVecoHf90gnjng4VawkWmJO1PH3BS/Tx0kj79fwcgFyY4bB34gS87Jfx2p3De/CM3SzmCB2A0cIRmjhKB/tY8zdfJxV9oehZCvMW1PQliYiIzJis5Sq2L7a3Jtzbt2GCQ8J5z3DU2/BxjmId9zlse3INbz25fyqhTomKtVksG+TpZi8AV/JgxXlCN7YXl3OMNnaxhKe/fC8O0SHXxWTIEeCsvSJNZ9MxoPR94sIPtTO47nIAbFDju0VE5OyUsTydNlEhtp+e6Hz1Yd+r8kUgVKyd4QJzlqVL58hdyPNlfXkvHR/dGy5k25OrOR7tHh6gg7sfXYPzv3GMIhketncBmOMD/N531wLQkC2w6LdX0NBQ2l0cBDp/TkREpNpUrJ3FMpYHoCf19phvBXGhG4fCLnJkectW83/++BAAB5jPfg6RobTbOe9Zum0XDZzgozd10fV71xAEjju0tDg9iwoq5kRERKZIxZqcUmBOV6q0C/gcdo0734FwLvu9mxxNPP6zi/Gf/QKAIineY1E0QiekSIpGH+Rjn2saef7VV5xD66WjQ7HnzHEaGyoMyRERETnLqFiTqukK9tNFqai74KRDrqHbyFDsImm2hqvZ/UALAHvo5ZFfFElFJ38epwVzp8mOAuAe8Dt39NHZkiMwp+PSZcyfX8QM8kXtqhMRkTObijWpicCcgNJh1wx5Lkg9P+68oRtHvIPS1XWMvZzDC9/eBkCeBt7mXQJCDKdAhvm8S6+9CZSGUH/2v32SOY2lszsNp7M1TzYz9r57IiIis4GKNUmcwJwOOzjyuJP9nM+mivPmPMteX0gYDY7I0cjPvvgEBUrX2jlKGwVPjwznLniaq7/YTlO69PjcK5azaN4gULpIYmBOQ1aFnYiIJIeKNZnVspaj17aXta3ktbLHBU/j0cULj9HKW/cuxjFCAh6++wghRkBISIpj3sJc20v8goid7OPan3wGw0mlnMXdx2hpHntjZBERkZmgYk3OeOnYFac77AAdHBh5fEF054hhQ2GW48wZeVwkzdus5OE/eggoXcl6N4tJR4d0Q1IEXqQ7urTJsEZOcON91wOl+9W1NRdob8lX94WJiMhZQcWaSExDkKOB8itgz+W9cecP3djPfHI0jrQVyLCHXv728/8MwCAtHPYuWu3w6HIEpLzANbd0AuAY81sGWHnlypF50qmQRh2SFRE5602rWDOzvwQ+CeSArcCX3P1Q1Hc7cAtQBP6tuz8StV8L/ABIAf/F3f9iOjGI1FNgTreNvaHxUvpHpkM3ilb+UQsJ2EMv/feULl+So4HHWQ4/HD03b4hGAg/JWunGw40McvWXF5FJjR6CdTfamwYJvaOaL+usoRwmIrPBdPesPQbc7u4FM/sOcDvwx2bWB9wIXAAsAh43s/OiZX4MfBzYATxjZg+5+6vTjEMkseIjYeOW2Nayxxfym7LHRU9xnKaRxwO0s/FvDo5cAgVKlznZQw9pBnmeQ2QsTwuHCSgyfJNhgI/fcSEN6fL7nzSm87pIsXKYiMwC0yrW3P3R2MOngM9F0zcA97v7EPCmmfUDl0Z9/e6+DcDM7o/mVaITOUnKirRE15oDaOEoC9k54TJ5z3CUNuKF2hCNPPjnb40MsgDIkaXgGRrsBAAZcrRxiEu++cGReTJBke6WgTO6oFMOE5HZoJrnrP0h8D+j6R5KiW/YjqgN4J2T2i+r9GRmditwK0C3Tq0TmZSM5elk7A2Hz2HHmLYiAR5d8mSIRo7Szsa/2jjSP0gLA95BKjZAI+9ZMpajmdEiMiCklUN8+PYNQGlARWBOe+NxgmBW3YVCOUxEEumUGcTMHgfOqdB1p7s/GM1zJ1AA7qtWYO5+F3AXwCprnFUZX2Q2SFkIlAYwpDnKnFgBNuLkvWoGJ7xp5Lp2UBoxe4ROHvn26M6lkBTHaB3zdAVPMy92jp9jBBS5/j/0lc3XlK7eyFnlMBGZ7U5ZrLn7VRP1m9kXgU8AV7r7cELaCSyOzdYbtTFBu4jMAo3RgIe4Vg5XmHOsQeYwFBs5C3CETn7xp6WdVYbjDN/BojqUw0RktpvuaNBrgW8Bv+Xug7Guh4C/M7PvUTo5dxXwNKXv6avMbBmlBHcj8K+nE4OIzB7NdoxmjpW1VTpsW6vdUMphIjIbTPdEih8BDcBjVjoL+Sl3/yN332RmP6d00m0B+Iq7FwHM7KvAI5SGvd/j7pXvIyQiZ60aDmpQDhORxLPRvf7Jtcoa/fvppfUOQ0Rq6BOFLb9x9/X1jqMalMNEzi7Vzl/BqWcRERERkXpRsSYiIiKSYLPiMKiZvQdsr8Oq5wH76rDeU0liXIppcpIYEyQzrvPdfez1P2Yh5bAyimnykhiXYpqcquavWXGlRnfvrsd6zezZJJ4zk8S4FNPkJDEmSGZcZvZsvWOoFuWwUYpp8pIYl2KanGrnLx0GFREREUkwFWsiIiIiCaZibWJ31TuAcSQxLsU0OUmMCZIZVxJjmm2SuA0V0+QlMS7FNDlVjWlWDDAQEREROVtpz5qIiIhIgqlYG4eZXWtmm82s38xuq+F6F5vZE2b2qpltMrOvRe1/YmY7zeyF6Of62DK3R3FuNrNrZiiut8zs5Wjdz0ZtXWb2mJm9Ef3ujNrNzH4YxfSSma2boZjOj22PF8zsiJl9vdbbyszuMbO9ZvZKrG3K28bMbo7mf8PMbp6BmP7SzF6P1vsPZtYRtZ9rZsdj2+snsWU+EL3v/VHc07oR1DhxTfn9qtfnc7ZQ/qoYW6JymPLXacVV1xxW1/zl7vo56YfSPf+2AsuBLPAi0FejdS8E1kXTrcAWoA/4E+CbFebvi+JrAJZFcadmIK63gHkntX0XuC2avg34TjR9PfBLSje93gBsrNF7thtYWuttBXwEWAe8crrbBugCtkW/O6PpzirHdDWQjqa/E4vp3Ph8Jz3P01GcFsV93Qxsqym9X/X8fM6GH+WvcWNLbA5T/pp0XHXNYfXMX9qzVtmlQL+7b3P3HHA/cEMtVuzuu9z9uWh6AHgN6JlgkRuA+919yN3fBPopxV8LNwD3RtP3Ap+Otf/US54COsxs4QzHciWw1d0nuvDojGwrd/9/wIEK65rKtrkGeMzdD7j7QeAx4NpqxuTuj7p7IXr4FNA70XNEcbW5+1Neyj4/jb2OqsU1gfHer7p9PmcJ5a/JS0oOU/6aRFz1zmH1zF8q1irrAd6JPd7BxAlnRpjZucBaYGPU9NVo9+89w7ulqV2sDjxqZr8xs1ujtgXuviua3g0sqHFMcTcC/yP2uJ7bCqa+bWq9zf6Q0rfMYcvM7Hkz+7WZXRGLdUeNYprK+5WIz2eCJWL7JCx/QbJzmPLX1CUph814/lKxllBm1gI8AHzd3Y8Afw2sAC4GdgH/ucYhXe7u64DrgK+Y2UfindG3lroMLTazLPAp4H9FTfXeVmXquW0qMbM7gQJwX9S0C1ji7muBfwf8nZm11TCkRL1fMn0JzF+Q0Bym/DV1CcthNXm/VKxVthNYHHvcG7XVhJllKCW6+9z97wHcfY+7F909BP6W0d3fNYnV3XdGv/cC/xCtf8/woYHo995axhRzHfCcu++JYqzrtopMddvUJDYz+yLwCeDzURIm2k2/P5r+DaXzKc6L1h8/zDBTf1tTfb/q+vmcBZS/KkhwDlP+moKk5bBa5S8Va5U9A6wys2XRt54bgYdqseJopMrdwGvu/r1Ye/x8ic8Aw6NRHgJuNLMGM1sGrKJ0QmU1Y5pjZq3D05RO8nwlWvfwqJ+bgQdjMX0hGjm0ATgc26U+E/6A2CGEem6rmKlum0eAq82sM9qNfnXUVjVmdi3wLeBT7j4Ya+82s1Q0vZzSdtkWxXXEzDZEf5dfiL2OasY11ferbp/PWUL5a2xcSc5hyl+TlMQcVrP85TM4wmU2/1Aa9bKFUoV+Zw3XezmlXc4vAS9EP9cD/x14OWp/CFgYW+bOKM7NTHO03jgxLac0YuVFYNPw9gDmAr8C3gAeB7qidgN+HMX0MrB+BrfXHGA/0B5rq+m2opRodwF5Sucf3HI624bSORj90c+XZiCmfkrnSgz/Xf0kmvd3o/f1BeA54JOx51lPKflsBX5EdCHtKsc15ferXp/P2fKj/DUmrkTmMOWvKcdV1xxWz/ylOxiIiIiIJJgOg4qIiIgkmIo1ERERkQRTsSYiIiKSYCrWRERERBJMxZqIiIhIgqlYExEREUkwFWsiIiIiCaZiTURERCTB/j/wFnAyLO058wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAACUCAYAAACHtiiAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAst0lEQVR4nO3deXBc1Zn38e/tVWpJrda+WJJX4QXLNhjbyCYmDMIGnElISEIYJmFJzITImTAwjOOQQJKpNzZhXph6UwlkaiYmqQw4YQrMO7xkMV5IGMRmY2yDbWzjDcuSvGnfejnvH7JaarU2E7e6Jf0+VSp3n3vu7XPqtvvpp8+551rGGIOIiIiIiIhcdLZ4N0BERERERGSsUsIlIiIiIiISI0q4REREREREYkQJl4iIiIiISIwo4RIREREREYkRJVwiIiIiIiIxooRLREREREQkRpRwiYiIiIiIxIgj3g0YCaFQiOrqatLS0rAsK97NEREZN4wxNDU1UVhYiM2m3/i6KS6JiMTPSMemcZFwVVdXU1xcHO9miIiMW8ePH6eoqCjezUgYiksiIvE3UrFpXCRcaWlpADxlm4zH0i+sIiIjpdWEuCN0OPw5LF0Ul0RE4mekY9O4SLi6p2t4LBseyx7n1oiIjD+aNhdJcUlEJP5GKjbpZzUREREREZEYUcIlIiIiIiISI0q4REREREREYiSmCdfatWtZsGABaWlp5ObmctNNN7F///6IOu3t7VRWVpKVlUVqaio333wztbW1EXWOHTvGihUr8Hg85Obm8sADDxAIBGLZdBERGYMUl0REZKTFNOF65ZVXqKys5PXXX2fTpk34/X6WLVtGS0tLuM4//MM/8N///d88++yzvPLKK1RXV/O5z30uvD0YDLJixQo6Ozt57bXX+OUvf8lTTz3FQw89FMumi4jIGKS4JCIiI80yxpiRerFTp06Rm5vLK6+8wtKlS2loaCAnJ4enn36az3/+8wDs27ePmTNnUlVVxZVXXsnvfvc7PvWpT1FdXU1eXh4ATz75JKtXr+bUqVO4XK4hX7exsZH09HR+a5+q1aBEREZQqwnyxeAhGhoa8Hq98W5OFMUlEZHxZ6Rj04hew9XQ0ABAZmYmANu3b8fv91NRURGuM2PGDEpKSqiqqgKgqqqKsrKycFADWL58OY2Njbz33nsj2HoRERlrFJdERCTWRuw+XKFQiHvvvZclS5Ywe/ZsAGpqanC5XPh8voi6eXl51NTUhOv0Dmrd27u39aejo4OOjo7w88bGxovVDRERGSMUl0REZCSM2AhXZWUle/bsYcOGDTF/rbVr15Kenh7+Ky4ujvlriojI6KK4JCIiI2FEEq5Vq1bx4osvsnXrVoqKisLl+fn5dHZ2Ul9fH1G/traW/Pz8cJ2+q0N1P++u09eaNWtoaGgI/x0/fvwi9kZEREY7xSURERkpMU24jDGsWrWK559/ni1btjB58uSI7fPnz8fpdLJ58+Zw2f79+zl27Bjl5eUAlJeXs3v3burq6sJ1Nm3ahNfrZdasWf2+rtvtxuv1RvyJiIgoLomIyEiL6TVclZWVPP3007zwwgukpaWF57anp6eTnJxMeno6X/3qV7nvvvvIzMzE6/XyzW9+k/Lycq688koAli1bxqxZs/jyl7/Mj3/8Y2pqavjud79LZWUlbrc7ls0XEZExRnFJRERGWkyXhbcsq9/y9evXc8cddwBdN5i8//77eeaZZ+jo6GD58uX87Gc/i5iWcfToUe655x62bdtGSkoKt99+O+vWrcPhGF6+qOV3RUTiI9GWhVdcEhGRkY5NI3ofrnhRYBMRiY9ES7gSheKSiEj8jOn7cImIiIiIiIwnSrhERERERERiRAmXiIiIiIhIjCjhEhERERERiRElXCIiIiIiIjGihEtERERERCRGlHCJiIiIiIjEiBIuERERERGRGFHCJSIiIiIiEiNKuERERERERGJECZeIiIiIiEiMKOESERERERGJEUe8GyAiIiIiIjJcfuMkOEQaU2sKOWEm0UoqADZC4W3p5jBwKJZNjKCES0REREREYsJvnBisQet8aGZwyhQQxD5ovSAOzpHDCSZBv8c05/8ghJ2sqSlkJ9XjtnVigND5fVJS3fDaBXflY1PCJSIiIiIiABjTlaz0uw2LZuPloJlJG2nhcqvX6FF3whPAyQmmcJo8epIj0+9x/cbFhFIb6e4WbFZwgJZ1HcNrGZYssHHZ9bn9Hs4YK1zssBtysxx4UyOP2dicwj9eM8DLxIASLhERERGRUcb0n7tECWGnOlTMUVMaNdLUnZpYGELYaCSDj6ypdJAUVaeb37jx0EjJbFd0m3o9tmGYk1bL4nsKSXaHItpsTGQ73O4QJQXtOB3RxxxY6wXUjS8lXCIiIiIicWYMHDPTqAkVhq9P6pvsdJVBM2m8zxU04etVp/8MLISddjy4aMeBP+pokUlSkM9+ybDoxgywerYYgPNJUravk8LcZGzDWnovE2geTsUxTQmXiIiIiMgF8Bsnh0PTqTcZDDRdrjuVqaGE/czDjzNqW19tpBDChpv2IdtQPDXIdTdPgMIJUUfrGUnqap0nxTCtNEjBhMiRpt71m5ssTlUd47rFp4GmIV9fhk8Jl4iIiIiMWc2hVI6GptFB8qD1LAyN+NjPXKqZ2GdbpBA2mvARwo6NruuDunMYJ35SaYjY85JLWpj/2WI6cot6jtH7sqfzPClQNtdPVnb/CVnvRMkevsyqc9B+DZfNDjbbMOcpygVRwiUiIiIiCaMpmMYRMw3Tz8IN3SNDnbh4g7/iJJPCK88BOAjgIHD+WVddP27OkY2NUJ/FHaIZbGTmhJi2fCoZmZF1w9cdnc9JsnMDZF7iw5vRkwg11YOnrZ4rF3eGyyyLXtPvLk5yJKOLEq4EYIyh4/z/XjcWljX40pkydum9ICKJQp9HAoO/D04GJ3DOZIWfDzRNroEs/syNnCMrfC+kyHeTCe/bgYezZBPCFpUc9X0HWhguucJL2gQPdoehvcOG223Izw8SCvVZlCEvlVmXQ1Jy5MhSxNS67scWJCV1jfhcqEAnOPxmmNc3yXihhCsBdGD4fHAx8CnmkosNmMgHLGET6Zymb4zzcZpke0c8miox1vVeOAjAf9mnkTTEfStERGJFn0cCke+DBTxPO7lAV4pUTzYtpGGwBky2oDtRClE4J5NJpQH6rvHQO+kxxmKO11AyN4VzHW0RxzEm8ioppws8qT2v0njWYkJ2MqWXfszOisSIEq4E0PVBcxUwFzMrn5Dd4k+7S9nGp7s+wPp8htkJUBg4QianiF6RxmA7X2YnwFyqKLO9jTO8Kk3/q924aMdt0zC3iIiI9K82dSYFZSXY7F3fJnJchiN1R0jztWCzhcBY0YsxAGCBZZh5RSZFpcMZ+rEI0Eaa56J3QSQulHAlDAPUEkg9izezkyKvh2DAovt3oe7Pr+zCUjgZoqnuEpyZRUQNsId66p4+GeBXJxdjhUx4WH6g3yftBJgQOkw+x3AS6DpQH1ZEfT9lvEmp7X0cViCqbs8+/f/iZWEG3U9EhidgHDSSQSfuC953sF+kAdpJpt5kE+i1stbABrjAmybg0AW3TUQSz7TyTFrs27E5uhaJ6AQKJw1v38724XyOiIxNSrgSkN1hSMto6Xdb0L+DYIaNvOmXMXHm4B9e+Y0WE+qsyCF4c35EzYSf0tlukVLvp2YPnLKXkOlpor/Z1dAz7P/RvnaqWIYz1DnIJJPBphcYJnCEEj7AE75xnYnY3vc41gDlvXloZqbtXbKs2gFfeyhDfQkdcn/NuomrcyaLepNFqJ+Lrbv0N8obvZTvhb0PIt+7flwcoIxOksLb7ATI56NhTsoa/msHcZBEK0lW29CVL/jVLNKts6z49pSPfezmTifff/Rj7y4iIjLqKeEaw1K8hhTvcL+42fDNzyHL62Na2dC1m85B9XEIdkbe66G3iNQoFLnBHK3lg1ddHLOmkZfWOODrhKd5m+ivqX17Vv3uORrJ5OXQzeEb+1kD1h58rrkDPx6rZdB6XXUHTyr7N/AX/oBpB74GwM+D38ZhJYWniA51jIHbEF03hWaSrdZhH6frWBf2+v23e7D9h5fkDJ7gW7SaFOwE8NAcVdsMund/24ZfP/LGkYaFX8jhkvI8klxBAkGL9149zTVTGrDbB18h60I57UGSnR4glnNvhr4fzMA0VVlERMY3JVzysaRlwPSMv+AA5XlMvTEPd0sbly+6eF9AG+rhg/ctAr1upN41ohc5NTO8rc9LGwMtrZDScor586JHDCIv7I0ui95hgH3pZ567gfb2VjZ15Vvc9e/zSUry9Ps6EbsO1A7Tfxura91M9O9lelF99LH6HsIMnLAM2u8+dfr2faj6gx9z8DGijNQO8jPbsNl8Qx8s5k4D4A9YHH7DT1pSO46LnHCJiIhIYlPCJWNKug8WLP74I0IAjQ3Qsq+TubM//hStj6u1tec1F1zWhicGgxYHPgySfLSVKYXNF//gIiIiIhJBdwkQERERERGJESVcIiIiIiIiMaKES0REREREJEZGTcL105/+lEmTJpGUlMSiRYt48803490kEREZ5xSbRERkKKMi4frNb37Dfffdx8MPP8yOHTuYO3cuy5cvp66uLt5NExGRcUqxSUREhmNUJFyPPfYYK1eu5M4772TWrFk8+eSTeDwefvGLX8S7aSIiMk4pNomIyHAkfMLV2dnJ9u3bqaioCJfZbDYqKiqoqqrqd5+Ojg4aGxsj/kRERC6WC41NiksiIuNXwidcp0+fJhgMkpeXF1Gel5dHTU1Nv/usXbuW9PT08F9xcfFINFVERMaJC41NiksiIuNXwidcH8eaNWtoaGgI/x0/fjzeTRIRkXFMcUlEZPxyxLsBQ8nOzsZut1NbWxtRXltbS35+fr/7uN1u3G73SDRPRETGoQuNTYpLIiLjV8KPcLlcLubPn8/mzZvDZaFQiM2bN1NeXh7HlomIyHil2CQiIsOV8CNcAPfddx+33347V1xxBQsXLuRf//VfaWlp4c4774x300REZJxSbBIRkeEYFQnXLbfcwqlTp3jooYeoqalh3rx5/P73v4+6WFlERGSkKDaJiMhwjIqEC2DVqlWsWrUq3s0QEREJU2wSEZGhJPw1XCIiIiIiIqOVEi4REREREZEYUcIlIiIiIiISI0q4REREREREYkQJl4iIiIiISIyMmlUKx4dsztS4SE6pwZ0cAMBgYVkGy4pz00RERGRcO1lt51xzMTYrBEBhaSHeTEPjmR24XP5wPUN/X1r0RUbGLyVcCaArmdoITKPj2Ew+PDYZB37AwuNzkzY9j3N1h3EkdZKdfxqnO4QxcW2yiIiIjDNn3zuBjVQMXV9Cjh2powMXSUwA+n4xiUywfOmdNLiD1J2wRx23755JyVA0LUR6Vv/t6P4OpB+jZbRQwpUA3Fj8l/0AQfMN9oSW8BFTCGKnjVQO1c/i5BstgEUTXpr2enHSQe7lbtpaDDYbTCgNkOqNdy/kYkhOTuLg9tfCj0VE4qUrNk0LP5bxqft9YAy4uRmrV5bTHnLzjinnQ2bSO22yMNh6jXM14eW9hoXs+n81OAier9v/L8cGGx0ksZdmUjNs54/WV9eRPfZ2Zv71ZI43O3E4oK0ZmoqhqaHn8KHz/xZNhNwJYNPFNBIHSrgSgGVZJGGBZVhke5VFvBqx3Ziu4fntwSXsZw7HKOXEjjbO7nAQwsFhXwo+TwsOK4jBorDMR4vXBYDTZcgpDpGariGx0cCyLDye5Hg3Q0SkJzbJuNbzHSV6W7K9g8VsYzHbhjxO0ESPbPXHbxwcCF3KHhYSPNdV1jtHsuiazujHzQfM4ZX1JzH0NO8EAZx0Rh3X5vOS6WogydHRJ4Hr2rMnPTQUljiZeuMU/J708yU9DOe/lxnwZUDxVHA6h9U1GceUcI0CltX1+84Cx6ssOJ+MhUzX70cfhqbzdv1VtNenEMJGDUXsOjGVwPlTG8BJfkEQj7OTEBY5M7JoyXCSlGzImRDCkxbPnomIiMh4YLeCw65XZttBGTuGrOs3zgGuF4t0xuSyo76cBrKgV2LV/W/vI5xgEjuqJ/LW68d6ja31/dG6K8UL4CQrO0iaq6XXNgu7Lcg2z+neRcybb2PCF8pJ7vObanfy1vtSkeRkQ35BCIe+pY8ZOpWjlM0yQJBS+/uU8n7EtkDITgAHflzsDl3B7pMLMDg5TR7vHoMgDgw23D4PuXkhPK4AWIaMIg8theDxgs2C9GxI9sSnfyIiIiKDcVr+oSsBBdZHrLA9O6y6fuPEb4YesmonmXdDV3LydDEhHPROyhwEsAhi0fWDeRAHL+6fQv3T+xhoKmUXixAWLjqYe3UKbkf/SWp3cpbkCjAt9wyFt34C+/lhwFA/hw+FwG6H7OwQaV7NeIoHJVxjkMMWxEGQJDpYbNvKYraGt3WGnHSSxElTxGv119FU78Ngo5qJHNiVD9Sz4987MUBpqZ+8EhfGwITsVqyrLifJA74scLnj1j0RERGRmHBa/mElch5aucb2/4Z9XGOg2aRiiJ5a2fsqtWa8vB+6jLpXimjv2rPf47WRwikK2Ewe9l/t7ftqUa8AIaZObaNgamp4c9/RwU6/jSRXgJL8ZApyOwdcoC3JHcLpUOJ2IZRwjTMumx8XfkrZSyk9/0FbQil0mK4sKoCTA2Y2uw8s4swBOw1kUUUJ/LZrJM1JB2Vz2km6ZFp4/4yMAPapBWTkgd0G3gyw690lIiIigmVBmtU8ZL00GimwfTRkvaCx0WR8hIYxpbITN0dC0/nw0ExOHeq5Iq7vciQWhjpSeOCPmeEtfY9usHDg56qbfeSmtZwv61PHdN/WCDI9rcy6bgK5Wf0ncL3LLAtSPcObejra6CuxAJBiayGFnjnIudSyhM3h563BJJrIJIidvWYu7++6nPpdx89vtdhJMS2cC9dPpYkrlqdBVjYYKCzoxLqkiFQvpKSBbXjXzoqIiIhIH3YrhM86O+z6+bZqruw142kwzaFUWkkFopOyNlLYa+bx4XNZHKJ3QhadTbWSyhny4Gdnwoud9M8ihI3SWX5mXZaEJ6nPCGOfQxdmNDJreQnJST3H7C+ZsyxISU6MBE4JlwyLx96Oh2oACjnOtbwYsf1sKIsW07UCR6dxsYtFHP7DTELYacLHNnKx2IMFeGii/IY0Onw5GGPRdKgdmwWXTOsgc14hFuDQij8iIiIiIy7V1kwqA4/GlfDhsI7TbpJpMD5CVn+/svdkSCHsHGAOp/fm8dbeyC+AfRO+TtycI5fQ/67HxuDJlAVkUMe1dxVgt0cmfDmpJ4fVh4tFCZdcFJm2M2RyJvx8Kh+EHxsDZ0I51JtMgjh4jyv44HezCHIEBwFO4qeBTNpIwUU1FoYZl9uYWjGF5qQsChx1TCruxDe3MOr+GVrBR0RERCTxJFltJFltw6o7gWPDquc3Ts6YXPyWK6K8vxG0TuPiQy5l6/robflmz7Be72LR11WJOcuCbPspsjkFwHTei6oTNDY+Ck6kGS91FPHujnKqd5zBAC146SAJF8fD9UNYFMz0UnzDpfgyDTY7FJUYZsw2UXee100ORUREREY/p+Un3zox7PpTONBveasJ8vgIzjZUwiUJwW6FmOg4DMClvMs19Kz881GwhNMmj963PmwmjUN7L+X9vdUYLFpJwY+LZFp73TXDRnFZKsWfnovXayiaZJhaanBG/igiIiIiIhIzSrgk4RXZj1HUz1DzVbwcftwaSuZQaBatpJ6f72toJJMPdpfx1u4zGCyayMBNGy46wkuhJtHKDXfn03rJPGx2cLkg3QeZI9Q3ERERERnblHDJmOCxtVFm2x5VXsELQNec34OhWZwxOXRdRtk1Drafy3ju31KAP2PD0IaHrjuVtfLc+SmMs5dnMfPWy8jKDPSsgmNBarJhQqFfUxZFREREZEBKuGRccFp+ZtrfjSpfYnpGyQwWNaEJHDSXAmCzQoSw884fy9j6xz3Ye12QGcKGMTD3E0k47cHz+0Oyo5OrrnOROmcqAMnJIfJyA1HXlYmIiIjI+KCES8a13omQhaHQ/hGFRN5wcIn5I31v/ddh3BxiJmdezT8/VmZowsdupvPnlx3YrH1dNwc0fi67JgmHrSspc9qClC1OY8KSIuz2nqVOszKDJCfpru0iIiIiY40SLpEh2K3o5UQ9VitlRE5hNAb89KzI0WJSOcBsGrdl0tlVgw6S+dXLk2k2reF6IWxYhJi31InX3R4u9yW3Muv2hWRnBsL5nsNhyMoIahqjiIiIyCihhEvkIrEscJ1PrQBc1lkW8qeoesZAB8nh5+0mib3mMhr+3PtOZrCLybzwf/dhYcI3/gthY/KCdIp8Z3D3mspot0KULUmn+Ori8P6pKSE8yRo1ExEREYknJVwiI8yyIImeGwEmWW2UsyWqXqdx0Wl6RswsDKdMPvvfvoxT9NyJPYiDOgr5w+88OHrdbyIEzP+kk7xLsrDZuic+gkULi2dD6PzAnTEWlmU0aiYiIiISA0q4RBKUy+rEZXVGlKVwiEkciqobMhbNJg2DPVy218yj9pUJ1L/Sc/1ZK2k04uMtGnEQALruV+agk4pbPeTNKwnXzU5vZ2pBEy5n9JRKERERERkeJVwiY4DNMnitxoiyK9kaVa/TuGgxaYR63UQ6gIM6JrBjwwTMhp77nZ02+V3H7rM646U35LPwr1KwWV2jZnY7lOQ2ketr12qMIiIiIn0o4RIZR7pGzc5EledxEng7oqzZeGk1KfS+CqwdD8d+X8rG36fSfS+zDjw0mAySaMXWq3ay1cx1X/GRM29yuKz7htM2C/KzWijMakNERERkLFPCJSL9SrUaSe0zagYwsc+UxqCxc5Zs/LjDZQaLD5jDH39lw/rVO1HHaMFLwDhJojVinxkrSlhwTQrJ7gDGdCVnLkeI4twW0jz+i9U1ERERkRGjhEtE/iJ2K0iOVRtVPoGjA+4TMA7OkBOxWmMbKZx46TQbXvL21MNJs/GSQhP289ec9bAIYVFxWxqlSwrCpRmpHeRntmkREBEREUkIMUm4jhw5wj//8z+zZcsWampqKCws5G//9m958MEHcbl6Vl3btWsXlZWVvPXWW+Tk5PDNb36Tf/qnf4o41rPPPsv3vvc9jhw5QmlpKY888gg33nhjLJotIiPEYQXIs05GlU9nd8TzoLFRRyHtvRKzbgGcHGYGm582bHm6ZySu1aTgIEAyzVH7GGyUfbaYBdd6cTmD4XKXI0RBZhvJ7mDUPjJ2KDaJiEg8xCTh2rdvH6FQiJ///OdMmzaNPXv2sHLlSlpaWviXf/kXABobG1m2bBkVFRU8+eST7N69m7vuugufz8fdd98NwGuvvcatt97K2rVr+dSnPsXTTz/NTTfdxI4dO5g9e3Ysmi4iCcRuhSiwPhpweynvR5WdM9mcNdnh68W6WdC1OMhGFzs21tF1DZrBYKPVpJJGPW56bjxtzu9lJ8h1d2QwZUnR+fKuZfTTPAFyfe3I6KHYJCIi8WAZY0bkzqiPPvooTzzxBB9++CEATzzxBA8++CA1NTXhXxa//e1vs3HjRvbt2wfALbfcQktLCy+++GL4OFdeeSXz5s3jySefHPZrNzY2kp6ezm/tU/FY9qF3EJFxI2QsTps8zpETUW5haCWVaibSjBdbrxtQB4wDFx14IkbRuhK8BV8q5NKrc0lJ6rrmzGARCFq8u/k0112yB4d9fC2z39jeyeT/9RQNDQ14vd6hdxhh8YpNiksiIvHTaoJ8MXhoxGLTiF3D1dDQQGZmZvh5VVUVS5cujZjGsXz5ch555BHOnTtHRkYGVVVV3HfffRHHWb58ORs3bhypZovIGGezDLlWDbnU9Lt9Hq9HldWaCZwzWRgiLxQzWLzxG4vNv2k9f5Pp7nJw08Gkb+TRd+V8hz1IXloDHmcnfVkQvmm1xIZik4iIxNqIJFwHDx7kJz/5SXjKBkBNTQ2TJ0+OqJeXlxfelpGRQU1NTbisd52amv6/GHXr6Oigo6Mj/LyxMXqlNRGRjyvPOkGedaLfbTPNOxH3OYOuVRnPkc27T0TXb8JHi0nr91gWBo/VzNWVU6O2Tck8Ne5Gyy62kYxNiksiIuPXBSVc3/72t3nkkUcGrbN3715mzJgRfn7ixAmuv/56vvCFL7By5cqP18oLtHbtWn7wgx+MyGuJiPRmWWAnMhHyUo+X+gH38eOMPs75KY1nyeXtn+6M2FZnCsO1+kqijau/MQWXo2dVx+6J45YFBWnn8LjG1hL7oyE2KS6JiIxfF5Rw3X///dxxxx2D1pkyZUr4cXV1Nddccw2LFy/m3/7t3yLq5efnU1sbuZR09/P8/PxB63RvH8iaNWsipns0NjZSXFw86D4iIvHitPpPgAZK1CZb++k0rq4FPHrdbDqEjVqK2P5EQ0T97jpnTS5B7BE3qO69b4Z1mqV/Pz1qm8fZSZanOWFH1EZDbFJcEhEZvy4o4crJySEnJ2foinT9enjNNdcwf/581q9fj63PTXHKy8t58MEH8fv9OJ1dv+5u2rSJ6dOnk5GREa6zefNm7r333vB+mzZtory8fNDXdrvduN3uQeuIiIxmLiv6mi+AiRwccJ8p1j46jDvq2jOAFtJoIJNX/8/e6G0mjQ6SsBO9bH4AB2lWA9d9a3I/aRxAQ7+lF9NoiE2KSyIi41dMVik8ceIEn/zkJ5k4cSK//OUvsdt7VmDq/gWwoaGB6dOns2zZMlavXs2ePXu46667ePzxxyOW3r366qtZt24dK1asYMOGDfzoRz+64KV3tRqUiMhfpsO4CfbzG10HyZwjGz/OqAmObSaFRmPjEZMYqxQmUmxSXBIRiZ8xsUrhpk2bOHjwIAcPHqSoqChiW3d+l56ezh//+EcqKyuZP38+2dnZPPTQQ+GABrB48WKefvppvvvd7/Kd73yH0tJSNm7cqPuciIiMMLfVAXRElXtoIYPT/e9kQWPIYoChrxGn2CQiIvEwYvfhiif9kigiEh8j/SviaKG4JCISPyMdm6In8ouIiIiIiMhFoYRLREREREQkRpRwiYiIiIiIxEhMFs1INN2XqbWaxLyHjIjIWNX9uTsOLhe+IIpLIiLxM9KxaVwkXE1NTQDcEToc55aIiIxPZ86cIT09Pd7NSBiKSyIi8TdSsWlcrFIYCoWorq4mLS0Ny+p7p5jE0NjYSHFxMcePHx8TK3mpP4lrLPUF1J9E19DQQElJCefOncPn88W7OQljNMQlGHvvx7HUn7HUF1B/Et1Y689Ix6ZxMcJls9mi7rmSqLxe75h4I3dTfxLXWOoLqD+JzmbTJcO9jaa4BGPv/TiW+jOW+gLqT6Iba/0ZqdikCCgiIiIiIhIjSrhERERERERiRAlXgnC73Tz88MO43e54N+WiUH8S11jqC6g/iW6s9We8GWvnbyz1Zyz1BdSfRKf+/GXGxaIZIiIiIiIi8aARLhERERERkRhRwiUiIiIiIhIjSrhERERERERiRAmXiIiIiIhIjCjhShA//elPmTRpEklJSSxatIg333wz3k2KsnbtWhYsWEBaWhq5ubncdNNN7N+/P6LOJz/5SSzLivj7+te/HlHn2LFjrFixAo/HQ25uLg888ACBQGAkuwLA97///ai2zpgxI7y9vb2dyspKsrKySE1N5eabb6a2tjbiGInSl0mTJkX1xbIsKisrgcQ/L3/605/467/+awoLC7Esi40bN0ZsN8bw0EMPUVBQQHJyMhUVFRw4cCCiztmzZ7ntttvwer34fD6++tWv0tzcHFFn165dfOITnyApKYni4mJ+/OMfj3h//H4/q1evpqysjJSUFAoLC/nKV75CdXV1xDH6O6fr1q1LuP4A3HHHHVFtvf766yPqJNL5keFRXFJc+kspNiXWZ59iUxxjk5G427Bhg3G5XOYXv/iFee+998zKlSuNz+cztbW18W5ahOXLl5v169ebPXv2mJ07d5obb7zRlJSUmObm5nCdq6++2qxcudKcPHky/NfQ0BDeHggEzOzZs01FRYV55513zEsvvWSys7PNmjVrRrw/Dz/8sLn00ksj2nrq1Knw9q9//eumuLjYbN682bz99tvmyiuvNIsXL07IvtTV1UX0Y9OmTQYwW7duNcYk/nl56aWXzIMPPmiee+45A5jnn38+Yvu6detMenq62bhxo3n33XfNpz/9aTN58mTT1tYWrnP99debuXPnmtdff938+c9/NtOmTTO33npreHtDQ4PJy8szt912m9mzZ4955plnTHJysvn5z38+ov2pr683FRUV5je/+Y3Zt2+fqaqqMgsXLjTz58+POMbEiRPND3/4w4hz1vv/WqL0xxhjbr/9dnP99ddHtPXs2bMRdRLp/MjQFJcUly4GxabE+uxTbIpfbFLClQAWLlxoKisrw8+DwaApLCw0a9eujWOrhlZXV2cA88orr4TLrr76avOtb31rwH1eeuklY7PZTE1NTbjsiSeeMF6v13R0dMSyuVEefvhhM3fu3H631dfXG6fTaZ599tlw2d69ew1gqqqqjDGJ1Ze+vvWtb5mpU6eaUChkjBld56Xvh2YoFDL5+fnm0UcfDZfV19cbt9ttnnnmGWOMMe+//74BzFtvvRWu87vf/c5YlmVOnDhhjDHmZz/7mcnIyIjoz+rVq8306dNHtD/9efPNNw1gjh49Gi6bOHGiefzxxwfcJ5H6c/vtt5vPfOYzA+6TyOdH+qe4pLgUC4pNifPZp9g0sudHUwrjrLOzk+3bt1NRUREus9lsVFRUUFVVFceWDa2hoQGAzMzMiPL//M//JDs7m9mzZ7NmzRpaW1vD26qqqigrKyMvLy9ctnz5chobG3nvvfdGpuG9HDhwgMLCQqZMmcJtt93GsWPHANi+fTt+vz/ivMyYMYOSkpLweUm0vnTr7Ozk17/+NXfddReWZYXLR9N56e3w4cPU1NREnIv09HQWLVoUcS58Ph9XXHFFuE5FRQU2m4033ngjXGfp0qW4XK5wneXLl7N//37OnTs3Qr3pX0NDA5Zl4fP5IsrXrVtHVlYWl112GY8++mjENJpE68+2bdvIzc1l+vTp3HPPPZw5cyairaP5/Iw3ikuKS7Gg2NRlNH32KTZdvP44LkJf5C9w+vRpgsFgxIcJQF5eHvv27YtTq4YWCoW49957WbJkCbNnzw6X/83f/A0TJ06ksLCQXbt2sXr1avbv389zzz0HQE1NTb997d42khYtWsRTTz3F9OnTOXnyJD/4wQ/4xCc+wZ49e6ipqcHlckV9yOTl5YXbmUh96W3jxo3U19dzxx13hMtG03npq/v1+2tf73ORm5sbsd3hcJCZmRlRZ/LkyVHH6N6WkZERk/YPpb29ndWrV3Prrbfi9XrD5X//93/P5ZdfTmZmJq+99hpr1qzh5MmTPPbYY+E2J0p/rr/+ej73uc8xefJkDh06xHe+8x1uuOEGqqqqsNvto/r8jEeKS4pLsaDY1GW0fPYpNl3c86OESz6WyspK9uzZw6uvvhpRfvfdd4cfl5WVUVBQwLXXXsuhQ4eYOnXqSDdzUDfccEP48Zw5c1i0aBETJ07kt7/9LcnJyXFs2V/mP/7jP7jhhhsoLCwMl42m8zKe+P1+vvjFL2KM4YknnojYdt9994Ufz5kzB5fLxd/93d+xdu1a3G73SDd1UF/60pfCj8vKypgzZw5Tp05l27ZtXHvttXFsmYwnikuJTbFp9FBsuvg0pTDOsrOzsdvtUasM1dbWkp+fH6dWDW7VqlW8+OKLbN26laKiokHrLlq0CICDBw8CkJ+f329fu7fFk8/n45JLLuHgwYPk5+fT2dlJfX19RJ3e5yUR+3L06FFefvllvva1rw1abzSdl+7XH+z/SH5+PnV1dRHbA4EAZ8+eTdjz1R3Qjh49yqZNmyJ+QezPokWLCAQCHDlyBEi8/vQ2ZcoUsrOzI95fo+38jGeKS4nz3hsLcQkUm3pL9M8+xabYnB8lXHHmcrmYP38+mzdvDpeFQiE2b95MeXl5HFsWzRjDqlWreP7559myZUvUEGt/du7cCUBBQQEA5eXl7N69O+IN3v0fetasWTFp93A1Nzdz6NAhCgoKmD9/Pk6nM+K87N+/n2PHjoXPSyL2Zf369eTm5rJixYpB642m8zJ58mTy8/MjzkVjYyNvvPFGxLmor69n+/bt4TpbtmwhFAqFA3h5eTl/+tOf8Pv94TqbNm1i+vTpIz5lozugHThwgJdffpmsrKwh99m5cyc2my08/SGR+tPXRx99xJkzZyLeX6Pp/Ix3ikuJ8/k3FuISKDaNls8+xaYYnp8LWmJDYmLDhg3G7Xabp556yrz//vvm7rvvNj6fL2JVnkRwzz33mPT0dLNt27aIJTZbW1uNMcYcPHjQ/PCHPzRvv/22OXz4sHnhhRfMlClTzNKlS8PH6F7iddmyZWbnzp3m97//vcnJyYnLkrX333+/2bZtmzl8+LD5n//5H1NRUWGys7NNXV2dMaZr+d2SkhKzZcsW8/bbb5vy8nJTXl6ekH0xpmsVsZKSErN69eqI8tFwXpqamsw777xj3nnnHQOYxx57zLzzzjvhlZHWrVtnfD6feeGFF8yuXbvMZz7zmX6X3r3sssvMG2+8YV599VVTWloasbRrfX29ycvLM1/+8pfNnj17zIYNG4zH44nJUrWD9aezs9N8+tOfNkVFRWbnzp0R/5e6V0F67bXXzOOPP2527txpDh06ZH7961+bnJwc85WvfCXh+tPU1GT+8R//0VRVVZnDhw+bl19+2Vx++eWmtLTUtLe3h4+RSOdHhqa4pLh0sSg2Jc5nn2JT/GKTEq4E8ZOf/MSUlJQYl8tlFi5caF5//fV4NykK0O/f+vXrjTHGHDt2zCxdutRkZmYat9ttpk2bZh544IGIe2oYY8yRI0fMDTfcYJKTk012dra5//77jd/vH/H+3HLLLaagoMC4XC4zYcIEc8stt5iDBw+Gt7e1tZlvfOMbJiMjw3g8HvPZz37WnDx5MuIYidIXY4z5wx/+YACzf//+iPLRcF62bt3a73vr9ttvN8Z0Lb/7ve99z+Tl5Rm3222uvfbaqH6eOXPG3HrrrSY1NdV4vV5z5513mqampog67777rrnqqquM2+02EyZMMOvWrRvx/hw+fHjA/0vd96bZvn27WbRokUlPTzdJSUlm5syZ5kc/+lFEkEiU/rS2tpply5aZnJwc43Q6zcSJE83KlSujvpgn0vmR4VFcUly6GBSbEuezT7EpfrHJMsaY4Y+HiYiIiIiIyHDpGi4REREREZEYUcIlIiIiIiISI0q4REREREREYkQJl4iIiIiISIwo4RIREREREYkRJVwiIiIiIiIxooRLREREREQkRpRwiYiIiIiIxIgSLhERERERkRhRwiUiIiIiIhIjSrhERERERERiRAmXiIiIiIhIjPx/jUVZJCYz4SkAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADECAYAAABOQy+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAApXUlEQVR4nO3deXAc533m8e+v58DgPgiQBMGbBMXLkkhRp6VIlmRLVhTLSeVwTtvxliobu5LsJpvYcVV2U7XZctZbTpzE5azKR+zYjux1fMi2YtmSfMiWREnWQZ2USPG2eIMAiXumf/vH9AAzmBkAJMDB9XyqQPa8/XajpzGYedDv0ebuiIiIiMjFF8z0AYiIiIgsFApeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIfGZPoDJaLSYLyYx04chIiIiMqE9DJ5097ZS6+ZE8FpMgr+Pr5rpwxARERGZ0J3pVw+UW6emRhEREZEKUfASERERqRAFLxEREZEKUfASERERqRAFLxEREZEKUfASERERqRAFLxEREZEKUfASERERqRAFLxEREZEKUfASERERqRAFLxEREZEKUfASERERqZApBy8zW2FmPzCzl8zsRTP746i8xcy+b2avRf83R+VmZv9gZnvMbJeZbZ/qMYiIiIjMBdNxxSsN/Km7bwauAd5vZpuBDwIPuXsn8FD0GODtQGf0dTfwyWk4BhEREZFZb8rBy93fcPeno+WzwMtAB3AX8Lmo2ueAd0bLdwGf96zHgSYza5/qcYiIiIjMdtPax8vMVgPbgJ3AEnd/I1p1FFgSLXcAh/I2OxyVjd3X3Wb2lJk91U1mOg9TREREZEZMW/Ayszrg34E/cfee/HXu7oCfz/7c/R533+HuOxqJTddhioiIiMyYaQleZpYgG7q+6O5fi4qP5ZoQo/+PR+VHgBV5my+PykRERETmtekY1WjAp4GX3f1jeavuA94dLb8b+GZe+e9FoxuvAbrzmiRFRERE5q34NOzjzcDvAs+b2bNR2V8CHwG+YmbvAw4Avx6tux+4A9gD9AHvnYZjEBEREZn1phy83P0ngJVZfUuJ+g68f6rfV0RERGSu0cz1IiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIQpeIiIiIhWi4CUiIiJSIfHp2ImZfQa4Ezju7lujshbgy8BqYD/w6+7eZWYGfBy4A+gD3uPuT0/HcYiIiIhcDMd9GWe8hTSJgnLDS9R+tex+piV4Af8C/BPw+byyDwIPuftHzOyD0eO/AN4OdEZfVwOfjP4XERERmXbucNYbOexrOM6ySW1jeEGoOkMrjZcuJWZpEpYp/70weOYrZddPS/By9x+b2eoxxXcBN0XLnwN+SDZ43QV83t0deNzMmsys3d3fmI5jERERkdkj7VOLGsdZxn6/hJO+mOExV5uCklebig2TZIgUqy+Ls+3KaszGVPDih05hpbrkEJcsPU77DRtJxMf/vv/z+vLrpuuKVylL8sLUUWBJtNwBHMqrdzgqKwheZnY3cDdA20U9TBERERlPxmP0UXfe23X5Il7zrRxlBRkCxuadnOLy0WATEmPtZQHXbmtgZUsXqcRwVKNwK/ei/DQiGQtZdeMKGmrT5/0cRtUCzZT/LpNTkUTj7m5m53Wk7n4PcA9Ap6Wm9ixFREQWuGFPcMKXMkTVpLfJRZsemtgfdnKM5QySIsEQ1dZfULf0B7XRzAnu/rOAVTesJhYU1/KxV5uKrj5ljyIwp7Wpqvhq1aRNJXRNn4sZvI7lmhDNrB04HpUfAVbk1VselYmIiEged9jnl9DlrWQKPrInfz3CMXpo4Tgd9HgjTZ310ZqJE4zh0ZWkgJaqM/zWDRnW39DG0VMprrv0VNljzpdM5Bq8Bid9zPPZxQxe9wHvBj4S/f/NvPIPmNm9ZDvVd6t/l4iIzEcZj3HSF/NquJUTUafu0bjjBctjGSFOQDeLqN3QRmAhVbGh8SOXW9GeAeKW4dJNjWy6rpn1t68oteWEV55SKccMhoeh+kf7J+znJKVN13QS/0a2I32rmR0G/jvZwPUVM3sfcAD49aj6/WSnkthDdjqJ907HMYiIiOSEbkXD/s/X676Rl30bp30xYZlpLwunEigOIoOkGKaKzk2DbN9eRYCPhqIxfZIKlqMHYWi01vfR8TtXsXRphvj0DImbjp3IBZquUY2/WWbVLSXqOvD+6fi+IiIyf4VudHsL6TEfVaXnTSr0Bit5MbyCN1jBIKmy2xsQJ02c4eLvT0DnpkHu+o31dCzuH9kuF5zyrwi5W8k8U51KU3/leurqphp2yk9fIHOLhguKiMi0SXucw76Gc17HeH2IjLDsOifgdd/IHrZyjgaCMXVL79XJTz5OwIo1w/zS1YO0veMK4lGzWBgWbjIwaAwPGxs3DhXtMRaDRYtCYrGyhzpJusIkoxS8RERkhDt0h8284pfRRVupGgWPxl59GqKK0ywhsXYZJwebiJeZaNJLbJu/15bUGd7zu+0MbttBqnoSI98KcxcWQGMTxCb4lIv1QfLUMdrbywdBkemk4CUiMk9kPMbhcBXP+rUcYU3emmwiKWxiKx16umnhDG0EDLP68oaRZrUwNBbV9lFTFc2hVGbOJAMWB86S+nNsefc6kquWFKwfG5iKyqLliQKTyFyll7aIyDQaDJPlO2KPM3o/7XH2hJt5khuj0JRfebyrTKPLw1QxTJKOjgHedNMSzCD04l0UtLaNudDT0jRM7bWbOYuRzJvu6cxJuGSVs2Ryd1sp68LnYBKZHxS8RETIduQ+Fi4r6oidM96tSTIe40W28wxv5lR0k47coP5RRvEgf8jFoABIMMjmKxP88i+v5Gx8UfaqUi4Y+dheTLnjHl2uTkG62qhvnlrAGQSSF765iIxDwWsOGPIkf5cZYIgkt3PNSHmMYdbYazQFp/VXpEgZH0v3c5Ymbhq5dWyOj0ShV7mM3VzKIDVkg1C5ObhH/y3cE7QsCrnm5irOrOqkKpW3h/wmuRLdiMIMDEXzSrYth3gCMm1QP+UO3SIyGyl4zQG9NPAqfaSr4jzQ8IfEguy799ljg6Q9QVPmFOt5nmTRcOjCv4+NXBOFExBSbz1stqdpC45V6qmIVNxuYKAKBmr+gP50FVg4phHPaGqOseOOFZzJnCBZFeatK6hYsn9STlWNczoAeIP+4pkJyjMYxli2bClLS89rKSLziILXHBEQ0lif4cY/u4y6FVEjRghNcefcIy/wzM7F9GN5sxYXyo9gYTpgMJ1gsKuLp39+Pamwj+zHT/YDJ/9DaWwH3ARDLLIT7LAfsSw4hMhcUFNjvPk3lvJaT5q+rlcK1jlGeijOmUyK+mbNlSQiF5eC1xxjBkGu324AZzG44U1cfsPk9+EO57qhI32CA4+3kAkLm05yjweHAjat7RnZJswEHDxWw75HD/AvB7YTDzMl59OxEk01YwOc4VTRz2aeZkvwMxrszOSfwAQMp8p0TzApFgROECv+s2R23DpXRBYCBa8FyAzqm6CHNprvLDVPT1Zw1lm3vbCs06Hr3esJThwnk9dfJdcE4x7N4BwJw1zZmJ07HHriJC8+1Mqj+99G6U7H+crPsWPkN6NmLeYIW+wplts+4mM+VouH0U/P5Ib5+w3IUG89JOx82pxERGS+U/CS82IGLW1A2+Ip7yu1uo322zdlr6blj9wqNc9P3vLq2qMFAa/wth2wf1+cn3+3mqd2d/LTQ6eIFdxqIxfv8me4Hm927bGPJw5pRoZWjrLGdtPMybLbFQ+ImMy+Jx8Sp6NuQEit9dBqxye9LxERKU/BS2ZMS2v26/wtHXftysXQuvVGru45RkdHmubmcEyYK3PDkcnMjD3Bdum0MfDsHu7/xzPsO3cH+/Lu7ZYfbtxtvLupjB6p5afKcrXKrMhLdrnvbThLa06O9x1HlgbDBIE7/S8eZAmHx6ldPuCNd1uYkmF0kmUw5tyMs/8Mj07mVIuIVISCl8w71TXZr5g7iQQkiyYkupj3TXMab1zLe29cW1g6iRB3IXUmX5aNHocfPsAN24rrlzKcNg796DV+3ARnhzaUqJGLXaVjTbnIld8UXbSuzFQNY39koZeeoLSU+CtPYkCyygn6dc88EZlZCl4iFTC2WbHy8675eX/fRNxZe8t61t5ykQ6pQr7xvhRnhuo41N9EPHFipg9HRBa4yf/ZKCIiIiJTouAlIiIiUiEKXiIiIiIVouAlIiIiUiEKXiIiIiIVouAlIiIiUiEKXiIiIiIVouAlIiIiUiEKXiIiIiIVouAlIiIiUiEzFrzM7HYz221me8zsgzN1HCIiIiKVMiPBy8xiwCeAtwObgd80s80zcSwiIiIilTJTV7yuAva4++vuPgTcC9w1Q8ciIiIiUhEzFbw6gEN5jw9HZSPM7G4ze8rMnuomU9GDExEREbkYZm3nene/x913uPuORmIzfTgiIiIiUzZTwesIsCLv8fKoTERERGTemqng9STQaWZrzCwJvAu4b4aORURERKQi4jPxTd09bWYfAB4AYsBn3P3FmTgWERERkUqZkeAF4O73A/fP1PcXERERqbRZ27leREREZL5R8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpEAUvERERkQpR8BIRERGpkPhMH4BMjmP0DSV58QsvcsU10HDDFnrciOX9BN2z/8diM3OMIrNRLHDC/iFSBw7hNS20V28Dot+X6Hcm3VhLT89J6poymE1uv7nft7FlZkx6HyKy8Ch4zQEp+lhJLX09SVp2/QcP7drC6XsGCBimYUkVAO5OS3sVa29cDsubqGmItq2BRHIGD15khl21dSWZDLz3l15l98F6YPRSvwXOcDpg16uNHO+uIvmyE4tlE5V7YXoKfWya8oLFeCykb+laatrh1Kmj0T7yq1l2MXqcH9yGBwKGhyE9nA1tMb0zi8xb+vWeA6qtj7+KAwwBnwWgJ2zk9fAS0seyP8IBatlzfAuPPLeZIarIfUQk6efW29J0/tpWTgdtAHiYXReLQ/tyOHBSf57L/PXRP35vtHSWN3WeLVofhrBjcxe9fYVvh0EQQt6vRmxMx4z8q1qhG4ePVfPEi0Mc3FlDrTse1R8JeRREtdErY7nC7r30vBwysKqT2g4Iog3dC7cjCnPOaHjL/Z9IQG3j6LYiMvsoeM1RDUE3lwdPFJRdz/fpD1N0eSsAvTTwhL+FHz9wCd99YC+wF8g2W8YI2bCjmiXXrmXp0jQAjY0hB4M2GprVVCILRxDA2o6+Ke9n0+qz3HrVcXr7YyNXx8b+HhnF7ZO5OqEbB49Ws/OFcxzeWUPuAlv3/lP0DydGMmDZfZoTGFRtrKd/7SYaW7J1c39ouRdeZcstjqzPjJZbDOoboMeNZNV5nQYRmYCC1zxTHQxQzWEg+ya7gteL6oTEOBiu5Zmn3szPnjqOE2A4A9QwxD46lg9wyfXtxGNO7fpaehuWVfppiMxJZlBXk7ng7besPcuWtYVX5XZ+4yirFnVRnRwq/33JBrcf7l7H6ycXMbTvJEfD0cteI2HNsnErKAiA2eVYkF3KhAGBhfjqNoZal0JVFM76jb4wTXdPOLLZyBW33J6iVS2LQvobl1Jdc96nQGTeU/Cax8wgxUDJdRtjz7OR5wvKhsIEh8I1PHf4Wl66dx0D1LHnkQTtaw4AEDNnxw1JuHYHrYtH38zz/4rWlTKR6RULQupSg9Qkhyes+47LX5ry9xscjnHwdBPPHVrGqT17R8qbLSRzEE6MqR8EXnQlb9+5WnqHdtPSuYiGmuwV9dz7RJTNslcFCzYrfPPoWNxP69Ur6EotIx4vHsww8rhEnzmP9hZPTOIJi1SYgpeMSAbDrAteZR2vErpxKmzj5YOX0xt1SO6ile/s30T3Zx4jZiFB9BYaM2f52gTbr09Rf2veiLHIyLJBTY3eDEVms6pEhs4lp+hccuqC9+EOp87VsPf4Inr7kxheEKsCyz62oHTTaxjCvl2LeOZHvWAvE7PCevld48w8u/e8q2+5vnPtWxex9OplnK1eUnIEOMDQICy64Gcqcv4UvKSkwJy22HHa+N5I2Vlv5PCBVaQpHCa5m0s5dKid5360hPBvHi6xN6NxeZKNG0K2/MZGBuqznfyra2Bxu0Zwicw3ZtBa30dr/YX3nbthw34Gh2Mc66lnOBMU93GzwittBcEucLr7U7z8xhKe/+wJhjIxzHKjVQvrmsHx5DCHUsVNuZnQSCXSrLl6MW1vXl32WMeOgB076AGgqsqpri4xB4ksOPrIk0mrt242xXYVla8I9zJkxT1wc2+KGeIcPrKG5w5fw1MPD4w0A2SIkWCQt9wZp+227JWy3GitVMpZtSrNcGv7xXtCIjKrVSUyrFx05oK27Qh7WNlSeluzElfaStTLuHG8p44XnhnitUdPFg+OyNsov5tFfr10GKM+NUB15xo2renByF6hGw1nVtyMmvs/WqhNZchs3kRSUwPNCwpeMmVNQdeEdZZyhB38hGFPjDQ69Hkde8JNvPDtK3n829kOxY6RJkGcIdbe0M7SjWfwMFs/kQhZ1jbAJbct5Uy1OvyLSHlB4DRUD055P43Vg1Nqdg1D48TZWl47dpZde2sKA9rIshddhQOiJlqne6Ca2Hceo7pzNfU16ZFkFuZtQ95Vt7EjWMNoua46Q3PDEE3XdV7w85Gpm1LwMrNfA/4HsAm4yt2fylv3IeB9QAb4I3d/ICq/Hfg4EAM+5e4fmcoxyNySsNEOwkk7zY7gp+zgpwV1esNa9oUbeOWRy3ntkWoA0sQ5RyNDVNHwr13ULzsCZF9ETXV9bL2mnqpf2E5VanQ/VWn19BeRmRUEzpLGcyxpPHfB+zg7kOTQ6WYGzpyCM4WXx/LnbMtdaQuK+sQ5vUNJevpTvH62nvhDj5f8PgXxr0SraNPmFXSuPMvg+k0X9kQEmPoVrxeAXwH+b36hmW0G3gVsAZYBD5rZhmj1J4C3AoeBJ83sPnef+lAcmTdqg162Bs+wlWcKygfDJId9DYf3r4X92TeJczSyh1U89b1Walf8BMMJ3aiO97N1S8At/20T1dXFASyRcOK63isic0B9aojNy45NeT+Z0DjdW0MmLJxhd7z55XLcYe/RLp7e3cjwdx+nrmqQJ/b2jKmTd9Utr7yxeoBVN66jJnXhU63MJ1P66HH3lwGseA6Bu4B73X0Q2Gdme4CronV73P31aLt7o7oKXjKhqmCIdexmHbsLytMe51i4jN7D2dGXp1jKYVbz9P5lPPadnjFzFmXfZBIMcOfvVHPF25roXRH99WZOW1tIVZU6wIrI/BMLnLb63gvevq2+l8F09mbA5aYOKhjwYNnA9kZ3A4987TTVk5gSpZyhdIzWul423LqqoLzkCPrcY6xoXSqZIZmY2ff4i/U3fweQfy3zcFQGcGhM+dWldmBmdwN3A7SpK5qMI25pOmIHRx4P+Wts9GdwK33flGGSPOfX8L0vrOHrXwgxfgo4ITHaO2NceaWzcsdiEvFsD4raVEjdjrU0NCiQicjCFQROdTJ93tutbu1idevEfYHHMzAc5/nD7bz0vUMF5eUGNZRa3zeUYDgTY8NNHWVHoo5dhtEAl4iHtDYNkohP7bNgwkRjZg8CS0us+rC7f3NK330c7n4PcA9Ap6X0iSeTlrQhknZ63Dpv8W8VlR1nGc/vuYofv7aM9JfOjJQPUkX7xhOsuqSOlrq+kdm5c5zsX5KLG3rZfnsb4ZYt0/AsREQkJ5VIc+WaQxNXHEc6E3Coq4m+586MBLKHvpsu1Z2tcJRr1GcuE8YwC1l3RRtL6s+NGRLByK3CJjJh8HL3Wye1p0JHgBV5j5dHZYxTLlIx+Z38czo4QEfsQFH5q+FWDuxez6FXajlILCqN7lRM9hZMvTTQRx33P9RPKpYdLJAMhrj5ppDW334rzc2jaS0e1wz/IiKVFo+FrGkt/KO8rTrNlYtfmNT2Q5k4XYONvPFKG7uGsl1b8q+yBYTlNi08jkke7/m6D/iSmX2MbOf6TuAJsiGy08zWkA1c7wJ+6yIdg8i02BC8wAbG/8XMeMBpX8zB19aRiX6tznoDn31xI72feJzW9amRv41qY33ceP0w225r4+yqzSP7yF3eTiad+npXOBMRmUWSsTRLak6xpObCpxeBqU8n8cvAPwJtwHfM7Fl3v83dXzSzr5DtNJ8G3u/umWibDwAPkJ0J4DPu/uKUnoHILBCzkDY7ShtHC8rdv8UZb6Hn9ZaRsiPhSr61eyuf/3QSeKygvgFGyOZL+7n+emPxFSsJogAWXtJJa2tILIaIiMxRUx3V+HXg62XW/Q3wNyXK7wfun8r3FZkrzKDZTtPM6OXtVcEeruNh+ryWtMcL6gLs9kvZu2sjn9vVQoafk7vlr3GYS3+xndXbmqmtzjaV5vdNcIeYGY31w2xZ28PQxq0X/wmKiMh50XBBkRlSY70l71OynZ9weazwStgA1TzvV3H0/uXs+07tSKfOgluTECckxtLNNTy6ZjGpRLZ5NL9ubWqYKzcHVCUn1xdBRESml4KXyCwTmBNQOGS7jrNcaw+Nu13oRrc3s//lTk68vIz8qQ0NCD3gOB089mVjw2VOIpa9ambm1MX7uP6Wara8fVXJfYuIyPRQ8BKZJwLzqFlzZ9k6uXD2xnMrGSZ7x91hkrzKcnbubCLxvw4UzYXjGG+6apib3xpn1Y3rCAIvmgMnEQ+nPLeNiMhCoOAlsoCMhrPCIdXu0Ot1nGFRUfDqoZlDT6zjY0+0k/mbn2OERS2kcYa58tpzXHdzDY3bLxkpb25I6zYhIiJ5FLxEBDOos3PUUXwj33Y/xAp7fdztX/Zt7HpsNY8/lgCydZ2AKvq59Oo0l17XSCJWGMBy8S4eC2mt62PlTRsQEZnvFLxEZFyBOXWcHbfOFTzCdvtJQdk5GrMjNHcu4eWdYcnbeWQHBMTpuLyJzft7i2aCdodELGRRXS9vuq2Dhtrzv12JiMhsouAlIlMW2OhM/jmNdHGV/Wjc7XJ9zg49u5Zdz7YWhbMMMc7RwAA1LHn4KHErDl6JIE1j8hzbbmhk2x3LRspL9ThTPzQRmWkKXiIyY8r1OcuXC2cndi0jZPTG5xbd2PwkSzjpDTz1eA320bG3fHIcY/llNWzdUctlt7bSVF94u6j8G+KmkhnqatQnTUQuHgUvEZnVJgpnp72NNDFKTooGDJPg+K4OfvzcOv7j0ycpvhYWECPD+isCNmxvZv3ikwAFzZ6pxDAd128gVaX5z0RkahS8RGROa7ET5TLXiA4Ocpk/zgA1Resco5cG9j+9nu//bC3fJc7YcJYhwZptR7hkeyP1qYGR2zgxpmZNcpj2xh5W39x54U9IROY1BS8RWRACc2roLbmulnMstp9zFT8uaHrM2cdGjj3bwZPPNJAhXtQXbYgq6jhDxzWL+MFAE7Xf2le0j/qqXq57Sy0rb1xfcoqN/O+rG6SLzF8KXiIieUqFnrW8wlp7pew2fV7LQV9Lz85uEhhDecHMyF4V2+uLeOKndfA/99J+Wd3oxj5aryo2RFt1F5uuaWXL2zoAGM7orugi84mCl4jIFNVYLxvt+QnrDXmSU76E/l3FTZ7DJOmilZd8CTsf7Sf42Gsj61rpJ7CQGBk6r6/jrl8xquKlp9bQ1TKR2U3BS0SkQpI2RLsdGrfOkCfppaF4TjOMXurZ+5O1/PVPGrGCEZ6jta67uY8rbl5MdXKoaN+5Wz0l4xlqksNF60Xk4lPwEhGZRZI2RJKTJdct4jgrbS/DniBNYqQ81+fsIOvZ9fASfvpwb8kJa0MCqhjEHW57+ylWXld8t4D8vmY1yWFaavt0FU1kGil4iYjMMQkbJkHxFasNPM+GCZo8z3kDx1jGD767kvC7x8rWc4wMcdZcW0drdRcxy06lkR/MkrFhtt3cTnNNP0GgyWlFJkPBS0RkAamzHuqsh3WUHyyQs88vof+xavaRpNS9AM7Qys97Q/rTjdQk+qFErWQwTE18kDvfmVQ4E0HBS0REylhju8edI+2sN3L2sUYCH/0oMUabPkOMLhrZzTKe/EF2cACUvp0TQEDImuvqueX2KhbV9Y2Uj53iIx4LScQ0ma3MTQpeIiJyQeqtm3q6J5zA9hJ/jnM0Ft3yaaxeGjjxaDuffHRp2T5qO24cJu0Jbrq9FhgdMDBWLqwFgdNWX3r+NpGZoOAlIiIXVcxCGumasF4Tp+mw/WQ8RrrEx9NxOjj4o8V00coLP85Op1EqoEH2Busp+nGHN982SCIoM/0G0Jrq4pJbigcaiFwMCl4iIjKrxCwz0iyZbwWvs8Jen/R+znkDJ1jKk99bRkjVSHkurA1QQy09tFyzjZe+2l1yHx41nlbHB2ivOcnWW1YTVzOnTIGCl4iIzEu5gQRreLXkevds8+bJx9/geIn7eObVpIs2zv7CSn76hWaq4wMl6hhLqk+yrO44W29ZTcw82nJ8gbmm61hgFLxERGRBMoM6suFsIue8gXOPNNBaZn3oxl46eJJlfONbw2WbQHMSDLH5xhR1iT52vLWteH2QoS5VPAmuzH0KXiIiIhOosx7qGCegGSzjEKEbvTQUDCQo5VW/lMM/Os1JlvLogz1FdyoAiDPMlbeGbLq+o6D82JMvlR1UsO1tHRrxOctNKXiZ2UeBXwKGgL3Ae939TLTuQ8D7gAzwR+7+QFR+O/BxIAZ8yt0/MpVjEBERmS0C8+xIzwls5yfjhrNhknT5Il54cBVPPvjGmLVNBY8yxKligARD/LxviNp4diqOUmEOzx5jYM7i6tNsfeuaCY9VptdUr3h9H/iQu6fN7G+BDwF/YWabgXcBW4BlwINmlhsy8gngrcBh4Ekzu8/dX5ricYiIiMwZ5QYQ5CQYpsZ66eDgpPZ3zhs47a3s/2EaJ6Bc7zLHGKCGOrqpvvoydn25r6hOTXyAjtrjvOmWlaQSpUeDyoWbUvBy9+/lPXwc+NVo+S7gXncfBPaZ2R7gqmjdHnd/HcDM7o3qKniJiIhcoNxAgpVMPOozdOMsTXTvPMkwsaL1R2hkF4u5/zt9BOOEQ4AA54pbnMXVXWy4cS1mXn5utbzlVCK9YJtEp7OP1+8DX46WO8gGsZzDURnAoTHlV5famZndDdwN0KauaCIiItMiMKeRLhqt/NxquXA2SGrcffXQzO6HGniOer717XPjBjUnIEU/m26qIQic7W9pzVtXHNYaUgPzcoDBhInGzB4ElpZY9WF3/2ZU58NAGvjidB2Yu98D3APQaSnd4EtERKRCcuFsIov8OP1WO6l9hgR008KBH7bQRRtPP3yiYP3YkaAhAauva6Sj9hjJMhPg5qTig2y9eSXVydnfNDph8HL3W8dbb2bvAe4EbnEfuaPWEWBFXrXlURnjlIuIiMgcErPM+KM9x2jgDCvsdTI+/qhPMM7RwOlH23iaZYQlmkTzDdPMd79zlvVvrh+9YXuZJk+ARJDGDM4ON0762KfLVEc13g78OXCju+f30LsP+JKZfYxs5/pO4Amyd2foNLM1ZAPXu4DfmsoxiIiIyNwSs4n7d+WaQ8tNgJsv4zG6aeH0T1vpKtM8mothg6QwnCQDxK9ezOmB0fBVqnmtNt5PKj59TZ5T7Tz1T0AV8H3LTr37uLv/gbu/aGZfIdtpPg28390zAGb2AeABstNJfMbdX5ziMYiIiMgCFrMMLZygxU5MXBkY8iRnWMTgE4/w7Dj1MsTp9haqrZc6usedGNdwtr2zgbroilvZeqOtg7NXp6X87+OrZvowREREZAEa8GrOUT9uHSfgkK+jyU7xR5n7fubuO0rV03BBERERkXGkrJ8U41/JAqine8K7Fih4iYiIiEyDlE0cziYaViAiIiIi00TBS0RERKRCFLxEREREKkTBS0RERKRCFLxEREREKkTBS0RERKRCFLxEREREKkTBS0RERKRCFLxEREREKmRO3KvRzM4Cu2f6OGaBVuDkTB/ELKDzoHOQo/OQpfOgc5Cj85A10+dhlbu3lVoxV24ZtLvczSYXEjN7SudB5wF0DnJ0HrJ0HnQOcnQesmbzeVBTo4iIiEiFKHiJiIiIVMhcCV73zPQBzBI6D1k6DzoHOToPWToPOgc5Og9Zs/Y8zInO9SIiIiLzwVy54iUiIiIy5yl4iYiIiFTIrAteZvZRM3vFzHaZ2dfNrClv3YfMbI+Z7Taz2/LKb4/K9pjZB2fkwC+yhfAcAcxshZn9wMxeMrMXzeyPo/IWM/u+mb0W/d8clZuZ/UN0XnaZ2faZfQbTx8xiZvaMmX07erzGzHZGz/XLZpaMyquix3ui9atn9MCnkZk1mdlXo/eEl83s2gX6Wvgv0e/DC2b2b2aWWgivBzP7jJkdN7MX8srO++dvZu+O6r9mZu+eiedyocqcgwX3OVnqPOSt+1MzczNrjR7P7teCu8+qL+BtQDxa/lvgb6PlzcBzQBWwBtgLxKKvvcBaIBnV2TzTz2Oaz8m8f455z7Ud2B4t1wOvRj/7/w18MCr/YN7r4g7gPwADrgF2zvRzmMZz8V+BLwHfjh5/BXhXtPzPwH+Olv8Q+Odo+V3Al2f62KfxHHwO+E/RchJoWmivBaAD2AdU570O3rMQXg/ALwDbgRfyys7r5w+0AK9H/zdHy80z/dymeA4W3OdkqfMQla8AHgAOAK1z4bUw6654ufv33D0dPXwcWB4t3wXc6+6D7r4P2ANcFX3tcffX3X0IuDeqO58shOcIgLu/4e5PR8tngZfJfvDcRfZDmOj/d0bLdwGf96zHgSYza6/sUU8/M1sO/CLwqeixATcDX42qjD0HuXPzVeCWqP6cZmaNZN9sPw3g7kPufoYF9lqIxIFqM4sDNcAbLIDXg7v/GDg9pvh8f/63Ad9399Pu3gV8H7j9oh/8NCl1Dhbi52SZ1wLA3wF/DuSPFJzVr4VZF7zG+H2yqRWyH76H8tYdjsrKlc8nC+E5FomaSLYBO4El7v5GtOoosCRanq/n5u/JvpmE0eNFwJm8N9v85zlyDqL13VH9uW4NcAL4bNTk+ikzq2WBvRbc/Qjwf4CDZANXN/AzFt7rIed8f/7z8nWRZ8F+TprZXcARd39uzKpZfR5mJHiZ2YNRX4WxX3fl1fkwkAa+OBPHKDPLzOqAfwf+xN178td59prxvJ0HxczuBI67+89m+lhmWJxs08In3X0b0Eu2aWnEfH8tAER9mO4iG0SXAbXMoSs2F9NC+PmPZyF/TppZDfCXwF/N9LGcrxm5V6O73zreejN7D3AncEv0iwVwhGxbbs7yqIxxyueL8Z77vGNmCbKh64vu/rWo+JiZtbv7G9El4+NR+Xw8N28G3mFmdwApoAH4ONnL5fHoKkb+88ydg8NRU1QjcKryhz3tDgOH3X1n9PirZIPXQnotANwK7HP3EwBm9jWyr5GF9nrIOd+f/xHgpjHlP6zAcV5U+pxkHdk/Rp6LWtKXA0+b2VXM8tfCrGtqNLPbyTaxvMPd+/JW3Qe8KxqxswboBJ4AngQ6oxE+SbKdSe+r9HFfZAvhOQIjfZk+Dbzs7h/LW3UfkBuB8m7gm3nlvxeNYrkG6M5rhpiT3P1D7r7c3VeT/Vk/7O6/DfwA+NWo2thzkDs3vxrVn/NXAdz9KHDIzC6Jim4BXmIBvRYiB4FrzKwm+v3InYcF9XrIc74//weAt5lZc3T18G1R2Zylz0lw9+fdfbG7r47eKw+THZh1lNn+Wqh0b/6Jvsh2BjwEPBt9/XPeug+THZmxG3h7XvkdZEe/7QU+PNPP4SKdl3n/HKPneT3ZpoNdea+BO8j2UXkIeA14EGiJ6hvwiei8PA/smOnnMM3n4yZGRzWuJfsmugf4f0BVVJ6KHu+J1q+d6eOexud/OfBU9Hr4BtmRSAvutQD8NfAK8ALwr2RHrc371wPwb2T7tQ2T/WB934X8/Mn2g9oTfb13pp/XNJyDBfc5Weo8jFm/n9FRjbP6taBbBomIiIhUyKxrahQRERGZrxS8RERERCpEwUtERESkQhS8RERERCpEwUtERESkQhS8RERERCpEwUtERESkQv4/md4tCFgV+akAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAERCAYAAABFDFfwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCaElEQVR4nO3deXzU1aH///dnlkzWmewbSSDsIqgIikHrcuWCLba19trqtRaXq9ULvVL5Knq1+rWtRa23rd203rbq93u1Vr+/qq1rKbjUNoKCqCgiCLJngZBM9kxmzu+PJJOZT2aSgNl5PR+NznzO+Xw+Z07jzLxzPp9zLGOMEQAAAAAgzDHcDQAAAACAkYagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANi4hrsBQyEUCmn//v1KS0uTZVnD3RwAAAAAw8QYo/r6ehUWFsrhiD9udEwEpf3796u4uHi4mwEAAABghNizZ4+Kiorilh8TQSktLU2S9IijVMkWVxsCAAAAx6omE9LloZ3hjBDPMRGUui63S7YcSracw9waAAAAAMOtr1tyGF4BAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYDOoQWnVqlU65ZRTlJaWptzcXF1wwQXaunVrVJ2WlhYtXbpUWVlZSk1N1Ve/+lVVVlZG1dm9e7cWL16s5ORk5ebm6sYbb1R7e/tgNh0AAADAMWxQg9Jrr72mpUuX6s0339Tq1asVCAS0cOFCNTY2hut85zvf0Z///Gc99dRTeu2117R//35deOGF4fJgMKjFixerra1N//jHP/Too4/qkUce0e233z6YTQcAAABwDLOMMWaoTlZdXa3c3Fy99tprOvPMM1VXV6ecnBw9/vjj+pd/+RdJ0kcffaTjjjtO5eXlOu200/Tiiy/q/PPP1/79+5WXlydJevDBB7Vy5UpVV1crISGhz/P6/X75fD496ZykZMs5qK8RAAAAwMjVZIL6WvAT1dXVyev1xq03pPco1dXVSZIyMzMlSRs2bFAgENCCBQvCdaZPn66SkhKVl5dLksrLyzVr1qxwSJKkRYsWye/364MPPoh5ntbWVvn9/qgfAAAAAOivIQtKoVBIy5cv1+mnn66ZM2dKkioqKpSQkKD09PSounl5eaqoqAjXiQxJXeVdZbGsWrVKPp8v/FNcXDzArwYAAADAWDZkQWnp0qXavHmznnjiiUE/1y233KK6urrwz549ewb9nAAAAADGDtdQnGTZsmV67rnn9Prrr6uoqCi8PT8/X21tbaqtrY0aVaqsrFR+fn64zvr166OO1zUrXlcdO4/HI4/HM8CvAgAAAMCxYlBHlIwxWrZsmZ5++mmtXbtWpaWlUeVz5syR2+3WmjVrwtu2bt2q3bt3q6ysTJJUVlam999/X1VVVeE6q1evltfr1YwZMwaz+QAAAACOUYM6orR06VI9/vjjevbZZ5WWlha+p8jn8ykpKUk+n09XXXWVbrjhBmVmZsrr9erb3/62ysrKdNppp0mSFi5cqBkzZuiyyy7Tvffeq4qKCt12221aunQpo0YAAAAABsWgTg9uWVbM7Q8//LAuv/xySR0Lzq5YsUK///3v1draqkWLFulXv/pV1GV1u3bt0nXXXadXX31VKSkpWrJkie6++265XP3LeUwPDgAAAEDq//TgQ7qO0nAhKAEAAACQRug6SgAAAAAwGhCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2gxqUXn/9dX3xi19UYWGhLMvSM888E1VujNHtt9+ugoICJSUlacGCBdq2bVtUnZqaGl166aXyer1KT0/XVVddpYaGhsFsNgAAAIARrs5kaLeZpF2hSfo0NFmfhiZrV2hSj5/dJvqn2uT36/iuwWx8Y2OjTjzxRF155ZW68MILe5Tfe++9+tnPfqZHH31UpaWl+u53v6tFixbpww8/VGJioiTp0ksv1YEDB7R69WoFAgFdccUVuuaaa/T4448PZtMBAAAADIA2kyC/MhTsZ/SwZPpVb4+ZJEk6rEw1m9T4FW2HS9UeSX/vux3GmP615DOyLEtPP/20LrjgAkkdo0mFhYVasWKF/tf/+l+SpLq6OuXl5emRRx7RxRdfrC1btmjGjBl66623NHfuXEnSSy+9pC984Qvau3evCgsL+3Vuv98vn8+nJ52TlGw5B+X1AQAAAKNNwLjVqLSj2revQBOSQ7vMVNUpU4dNlhwKyciKu58lIyPrCM5l6XPXlCrBaTTzy6XK8Lb32p6u1NPY3KAp535RdXV18nq9cesP6ohSb3bu3KmKigotWLAgvM3n82nevHkqLy/XxRdfrPLycqWnp4dDkiQtWLBADodD69at01e+8pWYx25tbVVra2v4ud/vH7wXAgAAAAyBduNSQAlHtE9vYaZdLu0w01WtQjUpVUHjlGWZqL17DMeERW+3YgQc03mEz//7OCW4gzr+gim2Y8c4qun9eawyy5LSvW2yYh+yh0B7/8aJhi0oVVRUSJLy8vKitufl5YXLKioqlJubG1XucrmUmZkZrhPLqlWrdOeddw5wiwEAAIDehUw/v63bxAs0zUpRjcnVPk1QlQo7L187kgvCItsTvZ+RJYcxOvdbJSrJqlP6mSfJ6TAyfbyGWOElbpzqLEhLCSotJdj/Zo8AwxaUBtMtt9yiG264Ifzc7/eruLh4GFsEAACAsarFJOlQZ5ip1DiFIuZLs0eO/t5/06VdblnGaP4Vk7Qwv1re+SfHrRtv9CXedodDyspoU0pSSNI4SW1H1LaxbtiCUn5+x2wTlZWVKigoCG+vrKzUSSedFK5TVVUVtV97e7tqamrC+8fi8Xjk8XgGvtEAAAAYE1pMkg6aXO3VJNXLF7dedLCxX24mheRUvbyyjFR2+UT9U+5BuWbPjblHvMASihtwLHlT2pWX0xVmciS19PayMICGLSiVlpYqPz9fa9asCQcjv9+vdevW6brrrpMklZWVqba2Vhs2bNCcOXMkSWvXrlUoFNK8efOGq+kAAAAYAi0mUYdMng6oRG3q/iN436MyfY/aNMqrdrl10pITNC69TpYV4/6YOPfRhMtNx/0xuWfOUH5uZJhp7PP8GPkGNSg1NDRo+/bt4ec7d+7Upk2blJmZqZKSEi1fvlw/+MEPNGXKlPD04IWFheGZ8Y477jidd955uvrqq/Xggw8qEAho2bJluvjii/s94x0AAAAGR4UpUp3JUIuS+7lHRxKJFXSscFmHBnnVpFQdNtk64/IJSkmMc1lYnJv/ews5RpYcllFmSpNKFhYqPye7n+2Ph1GesWhQg9Lbb7+tc845J/y8676hJUuW6JFHHtFNN92kxsZGXXPNNaqtrdUZZ5yhl156KbyGkiQ99thjWrZsmc4991w5HA599atf1c9+9rPBbDYAAMCY0G5cqlSRWo0n6r6ZLg6Fjv7Ycmu7OV7ZXzxD/haPjLFkhY9nCyn2+QQsI8WZMMBIcjqMpuQeVIqnTVlpTSr7Rk6/ZzQ7ctyXg9iGbB2l4cQ6SgAAYKRqMilqNKkxg4xdb+vPxCqrVqF2mOmqVZYalSZjHB0hRd3ZxUQ8inXkbj3LZ3y+WNPOzNVxkxp1KO94udw9rl2LK3LEJ/LbaCAgNb6zQwvPOCQnX9swCPwNjRp/5pdG7jpKAAAAo0WDSZPpR5CJpbf7aYwsfWxmabeZrBrl9LgPx/QSVPo3wGLphC8UqOycXLmmTVSqN/YFabFa2ONP6bbnlkPy+owSEjqKMo9wNrd4Kao9wB0+GBkISgAAYEwJGkfnWjPRjnRa5i7NStE7Zr72mElqUOy/Ph/JsTuCiun8p6WgceqUL+Xon8/NU0vRZCWnmO77bHobkbFdNdd9b063pCQpK9vInSDpM1xmBxyLCEoAAGDUCxi3qkyhPjHHabs5Xk1KDYcXt9okq+dkAR36GqUxapdLIePSaV/J0pSzCtRUNLlnrRgZxJjeR2VM5/mycoyyc4xcbokwA4wcBCUAADDojJE2mtO120xWvUlXQO4edWJNLNBzpCZ61rSuf4fkUKuSNHnRBE0sLlGCO6QEd0htbQ6NL2pRblZb595WuD09G2nb3vnY7Q4pNGWqsnKMXK6OswEY+whKAABAklRrMrXFzNYhk6tWkxjz/piuLbFGZWLPoGYkGQWVoL0qVf78UqWNy1dyYrscTiMTMfNZrEU3TSj2+E+soONySkmp7XKPz5fJTlJaluRrbVRGplHeuM86d9WYn/sKgA1BCQCAUabduHTQ5OkTc5yalSJLXSMrcYZJbGKvYSMdNlnarwnynX+OLGOUkBjqcYi4ccFIgTjTPTuq98vkFKqsqFmZJxXqsDNZqT7JcXRzI/Q8ten5eKCODeDYRVACAGAABYxbuzovLwsqcm7j+CMS9jET+2VlkfvWKVufapoqTaHa5VLxKfmdR4gdfiLPHmu+s8iQkeAM6pRTvco92aeDjmSlpPZsa4+zxBoF6rFtnCTJ5ZaCUpzpEI5e5Po6g7fWDoBjDUEJAHDMaTBeHTS5Cpq+ZkYz/ZqDOXINmzqToffNqWqdfZZqmpIVMlZnmIixVk3nptqPq+IcNxajgpkZOvXURM1YlKtqpdiP2l2zHwNMkU+dTsmdILVKSot5bgA4dhCUMGCMMWrt/Mh1GrdarZSocrda5bFah6NpAMawyPcejywF5ZbfpMdcvLMrzGwzx2uTma9KFalRaT3DUWftqKe2Y8Rtj6Tc6ZkqnZykWXOy9Ma7tXI6o/exB5i8U8Z3jPhEDiCZ+Geqq3eqcUKuDjokd885EQAAA4CghAHTaJy6OPSRJGmBfqsW5UV9oXCrTSXapmnWeyqxtivFauj1ePYvLk6LWYYA9NQqo38JbpckLdHt2qZ5qlGuJEsuBWIGm3Y5NW6GV6fNSVR15ngd2HegOxdFhJWoS9XipBYTUWZMx70xSZkB+VOD2lJVpayCgXiV0eprXEpJU+d00gCAwUBQwoA5pDxJHUFp6qXzlDe7VG5396J51p49+qi8WM/+4yS5TEDJUetuR34d6f424oi4Tj9fuzXVelcl1g55HXWD/XIAjEKh+WerKH2aQu0F8iRJ6dlSSsQ1ZF3THSSnSFXVe3QgJSTL2qXckuFqMQBgpCIoYVCkTcuVuyhJnsSIjROm6fjTpIJ/lTyNTTpc0x2Nctv2RB+gMysFO6eFbWhyqnH7BL3+arFcpk2JoWa51C4pcqan2Dcyd6+Abr85ujuISUYeq0WZ1kFNtd5TjlVxlK8cwHAqPjFTTb4M7Xq/Ss6kkNqtdgUcwR716pulpBgTFQAA0IWghCHlcku5RZKULF9UydRe92urlEoKW5U6uUD1TU4Fg7Y5onq5Ki/Uy6UzXU8DAYcCRtr9p1e1XyXKsQ70rKye9ybEnmI3OrS51aYia6dyrQNKsNriNxQAAAAjBkEJo0JWnhTIO075J0t59rATe9H22E/j7NvSJOVYjTo8Za4+ftOvPQFnuH6CK6jC9ProdTpiH05SVzDrDmfN7U69sGa7MnRIhWaXMlQdN2D1fpN47LLIfSwZZapS6VYN93QBAAB8BgQljDr2NTIGYs2MVJ/UrBQlfm6qpp0itbd1xJLWZim9vVlnnNN+RMeLDFUHqy1VnJ2hT8sr9cHzWTHXMYknOjjZ9+sZnEJyymkFlK99Gm+2KU97+pyhy6EYgaqfTeytmiWjZNUr0Wrp38EAAABGEIISYONJVPjeKpdbch7FvBGR4S07xyh5UYkmLizRP91xSlQ9+2hYX8/jz7rVccKDVZYa39ulfW/v09//PKG7PUfQ9u7z9L54ZfeimDHWhuks9apW463tGmftVI4OHGkrYpy/78shj17s43jUwgKWAAAcgwhKwCCzLCklpe96n03Hl/yUFKODqSXKOKVEx1/bXRRr0UljoqNBVJ0Yc2MYY8Wsa6/aVebcsUMNTQ5Vbpyuv/5pr5zqeUN9rNcg9Qw/LgUiRqbiB6P4eaY/ibPn3jk6oPHWNhWZHXJYAxXIAADAaEBQAsYQl1vKLxysL/RHdlxfil8HKj3Kzc7TrIV5cQObJIWiQlh0YKlvcMqyjObPqYu7f7x9u7f3tk/sY+xb86Fe/mmt3jJn6V3rNDlMSL31gaNf/RP/PrTPfn9a/+od2XnjXJoZ51w9e7/nTJP9OWff9aOft5mApI51lIIhS+19ZXIAAPqBoARgUNSVnKDkEin5Mx6n9rClwPvbVZAztDMGllw2UXMvnqTqw25VHvTIuXm9pDijczEuSux80Hu9yJG5foS8vu5vixX64u1jH1HstQ191IsabYx5Llt5b8HV1t5QjJwWveqapZZAq/SbX0uSWjILVFmXKJeLtdYAAJ8NQQkA4nC7jQpz21SY2ybNOG64m4M4Gpubpd90PM7IMKoNSQ7n8LYJADD6OYa7AQAAAAAw0hCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbEZNUPrlL3+pCRMmKDExUfPmzdP69euHu0kAAAAAxqhREZT+8Ic/6IYbbtAdd9yhjRs36sQTT9SiRYtUVVU13E0DAAAAMAaNiqD04x//WFdffbWuuOIKzZgxQw8++KCSk5P1u9/9bribBgAAAGAMGvFBqa2tTRs2bNCCBQvC2xwOhxYsWKDy8vJhbBkAAACAsco13A3oy8GDBxUMBpWXlxe1PS8vTx999FHMfVpbW9Xa2hp+7vf7B7WNAAAAAMaWET+idDRWrVoln88X/ikuLh7uJgEAAAAYRUZ8UMrOzpbT6VRlZWXU9srKSuXn58fc55ZbblFdXV34Z8+ePUPRVAAAAABjxIgPSgkJCZozZ47WrFkT3hYKhbRmzRqVlZXF3Mfj8cjr9Ub9AAAAAEB/jfh7lCTphhtu0JIlSzR37lydeuqp+ulPf6rGxkZdccUVw900AAAAAGPQqAhKX//611VdXa3bb79dFRUVOumkk/TSSy/1mOABAAAAAAbCqAhKkrRs2TItW7ZsuJsBAAAA4Bgw4u9RAgAAAIChRlACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANq7hbgDGpvqtVcrJSZY/KVmpXslBJAcwBAIBS82Nkv+QW5KUmmGppbHjDcjIUucDmc76TpdRYnJISanBYWgtAGAkIyhhwGSqKvz448fWaeNjezX+lBxNOsUn33EF2t+cpK7vKTLq/qbikNLSpYycIW4wgDGn+ZMK+RpbNDO9IxwlukNyhIwkq/N/HW88waAlt9somJGrZo9H1Yf2dr4vWT2OaUzks45yE+osi9OOpNSgPEkhWT0PBwAYJQhKGDCpVrv+n3OyJMlp7tN2zdS7b52m9W8VqUHpshTqsU/JKXkqmOmTNSVfh4JJ4e1dX0yMkSxLSk6VktOG5GUAGGWSExO19+/Pqb7BqURPjSzrcIxa0ZGmpdWpvRUebfygSds/Tda4UEeiseJFH0tqaXUoEHB0vD9Zxl7cfSZjKT0QUkpGntpSE/XJtn1yukzUH4gi/1YUFc46N4bszQhFV2mqd6m9PXZTAQADg6CEAWNZlhK7vi5YQU00HynDUa12uWPWr1e69myYpI/fOl41ypEjRpCaMj9bRSdlKmlWgULJSXI4B/MVABiNLMtSSlKSUpIkqX+X0PnSgsrLbtOcmfWqq3eqockpy4oOPB3HVnhUaPMzn6i+xaPstMa4QcmStKcmXXX5M3XgQLsa/W5lBhyyOi/8iwpItvOE2SpYEXVCRnI6jNJSW5Xa1qyW5iQlJimuyNGwqJExE+OhkSwHl0oDQBeCEgaNx2pVvrW/lxq7dJze1ZnWizpgitVoUiR1fCmwZFRhlSi34Czt3tKqrevrlTU5UzknZqs1OUkZeZIzIjRZluTktxnAUfClBeVL6ztgHUhr0oxxVSrJqu213qbdhTpQ26h8Z4KCvu4E1BGGTGcQ6Ygn9mDmcHRv7xnaQmprd6mh1aMKf5pq1uxR685CJScGw2HH2FNY52iViRjJiiq2XWro8YSUPHWcaqwkpWdJbk+vL7VfItvEpYgARhO+WmLYJVrNKrU+7rE9zfhV+fRheU2SkuTWrren6sMnxqldCSqdly1XQZ6s6o4gZuUVaNrEJvlOHKfqUIpSvHwgAxgeJ5Xs10klg3d8Y6TapkTtOpShj/bvU8MhjxyWiboHS1LXbVkR2zr+bR8x6ip3WNKhg8kKuUOqDZaoeXfH6FXHnt2BK3y0iIsActt2S7Y69tBmSXJMKNL40pB2NaQoMWXw3qe7LtsGgM+CoIQRq9jaoWJrR/i5Mc/Lb9K120zUrnXT1C6Xuj6yW5Wsv2q88k+rV0JRvlKTArIc4WKlJoeUcUK+al3J8mUy+gRg9LIsKSOlRRkpB3RSyYEBPfYrWyap4lCjnI0fq7W9e9jeYUUHsPD2rpEx+zar5/ZA0Cmzd5t27Z6imuRiuVyS222i7scKh6uIyTIiR71CsSbRiHxiSYmJki/dqDE5Sd6Mfr1sAIiJr4sYNSxL8lm1mqWNmqWNUWWtxqON5gztWzdeDW+mqbbzvqiuv5Q2K0XNStakMwrVNDVHgcx8OTtvncoP7JExloyRkhKDCowrUXNKstLSh/LVAcDwO+e4Twbt2LsOpuuD/fnas/8jZQW2q6XdJUum44tIRKCyZLoDltW9LbKaFRHcIsNYSVmRgiFLB4KT1La3RfXVRgdbnSopjX1pZY9LFRX7vi6nsyN8Jaf0++UCGAMIShgTPFaryqw1ccsPmly9Y+Zr398n6sAbqWqXK/zB+1FnHYeCmr5wnLz1LjWkF0lpRqGgdLjJ0ifbOj6JExOlvHwjV+z5KQAAcZRk1SrP1xC1Le4sg4p96Zxlxa//6keT1LytRvtr0hUM7pGr3amQJLekuncD8vf7eBH3lcl0/CFNUnJCQEVnTFDTuClK83XvFw5WvYSueJNqdF0imJpmlJLK5YLASENQwjEh26rSmXqx593RnVqUrAOmWNtWz9KHf5mqVn0gqeND0qGgNlttmr6gUHknFKihbJxycqMvQ0lLM3InDMELAYBRyrKkRPfgzWl++pRP1RZxuWBvoSrWR0Fv9Svr0rStMlsV5Z/I37wv6lLEcLiJNTxldf0j9rEtq/OeLmPJd8JETRrfpIbi6XLZvp3FCmNRgauPul3bExONvOkxmwIgBoISjhkeqzV+mVrlsw5rut5Ts0lWm6KnevIrQ3vWlGrjX2epXulRU5kbI0375yIdf3aWkmZNUF5+9yKT9uvonU71OpUvAODoJCcElJwQGJRjJ7kPKy2pJXrNq17W0rKzh7DIkSNjpJqGFH2y77De3exTyFRIMtGXF8Y9cNdB7Ofr3miMpQRnUONOL1WjsaSTJ0acPPJh91l6GwHrsV/E49Q0I09ivMYCow9BCbBJspqUpKaobT4dVrG1Q6eY11VjctSmhPAlI0HLrS1/PUk7Es7Rob/Uy2EZOazuILX3le0q+adJyvM1auLnClR8bml4Pages0JZrGECACONyxlSnrdx0I6fk9akaQXVagm4VNOQrPaQ44hGxHoEsYjHLe0u7anxqfbdZlXUpcnxxq7w51fU7IBWd/7pcXwZmc7txljR57OkvFMmyu02aktuV/vMqfFHvmJcihgrrAUGJ+8CR4ygBBwBtxVQXoy1oTymRXUvblV6jMV1Cx0JOvTqFqVfPE8bXz6sd/5yWFL0B4XbGVSOt1GTzy5WzpmTBq39AICRK9HdrsIM/4Afd2JOjVoDTlXXp6o50P3Vrz+XIMa8Vywi3WytyJUjISSHZfTe1lQ5t+/rDFSR+0cfxP3ph5LiBDOrI4w5HUFtO7hfLmdIk758AvdvYVgQlIABkG/tVb61N2ZZ0Di0U8ep+onD8hhX1OUNktSqJB2ST3uUpt2H0pX7l791lnTXS3S3KyOlSZMWTJT7pOmD9TIAAGOUxx1UUWbdgB832dOm6gO1kqT8iL8VRoapHiFnUv/qhYylnQezVPl/dyrPWy/X3FN7LJIc716tWHUi901wh5SVEVBqct+LTePYNWhB6a677tLzzz+vTZs2KSEhQbW1tT3q7N69W9ddd51eeeUVpaamasmSJVq1apVcEXcxvvrqq7rhhhv0wQcfqLi4WLfddpsuv/zywWo2MOCcVkiT9UGvF7C3Go+qTb52/XWb9ii384Oja42oRDUpVQ6FtKcmQ3mf7JY6Sy1J4/JaZaZNVUamkdMZ9xQAAAy4PG/joF6WOCXvoA7Wp+hgQ4payt+JKutrtCtWva4Rs5o2t7Y3JivRHVCut0HJZXPDdWJeIij1CGmRfGkBeVODjHyNMYMWlNra2nTRRReprKxMv/3tb3uUB4NBLV68WPn5+frHP/6hAwcO6Jvf/Kbcbrd++MMfSpJ27typxYsX69prr9Vjjz2mNWvW6N/+7d9UUFCgRYsWDVbTgSHnsVpVZO1SkXb1KAsZS4dNtvaYUn3ybLO2PPtx+IMgJEtN8ipkPtSJ5xdo2lm58qa2h9eFsnM5jQITpyg71yiBWfoAACOc2xlSQXq9CtLrB/zYwZClgw3JqvanqmLt5vD2rjDVr0sT1fE5/UlTx0xN4xdMlTete3bHnmGr6989j96jrq3M4zbKyuAGrqFkGRPr69TAeeSRR7R8+fIeI0ovvviizj//fO3fv195eXmSpAcffFArV65UdXW1EhIStHLlSj3//PPavLn7l/fiiy9WbW2tXnrppX63we/3y+fz6UnnJCVb/MkdY4cxUr3xqULF2mGm64DGK6TI2SCiZ00KyqmgXJr7pVxNPrNA/pxJSoiYoSjRY5RX0LGex0hRe9hS4P3tOvPUw8PdFBzjNv1hq/K8DSrJqh3upgAYYUIhS+/tLdDhxiQ5HN0TOvU28UZfI2KR5a3tTjW3JejUr5fEOGpvo2D25xGzG9qOkZocVKInpGOBv6FR48/8kurq6uT1euPWG7Z7lMrLyzVr1qxwSJKkRYsW6brrrtMHH3yg2bNnq7y8XAsWLIjab9GiRVq+fHmvx25tbVVra/dU0H7/wN8YCYwEliV5rTp5Vaep2qyAcSvY4z/r7rfCoFx615ymXX8q0Tt/2q+Q3ol6uw3JIZcJ6Iyv5Wj6P49Tc8nU6CNF3JzrdEq5+YZZ+gAAxzyHw+ikkp6TPQ2UQNChV7ZM1qb/t6NHwIq3cHP3jIbxp5rvCm6Bdqe8Sa2a9uXpvdzrdQRTyHdKTQ6O6tsChi0oVVRURIUkSeHnFRUVvdbx+/1qbm5WUlLsBWlWrVqlO++8cxBaDYxsbisgt3oflj9Rb2qGtTH8PPINtsmkaq8m6L2npun1p2oU0geK/puTJbfadPJXCjV+/jgFZ02MGn1KTuGSPgAABprbGdLCmR8P2vH31Pj0/t4CHXqs4z7oIxnt6nhuetQxshQMOZSZ0qSMM05Qfk6bnI7Oqekj9o0OWn2PlnVVT3AZud2DemHckQWlm2++Wffcc0+vdbZs2aLp04d3Vq5bbrlFN9xwQ/i53+9XcXHxMLYIGDlSrIa4ZT7rsAq0R3PMG/KbdDXIJ6n7ja9ZyTqoAm1/ulYbnq5Q0Tn+qD9PJbsDmjg/T8dNblRz6fSo0BTrIt+oKdLdkpuQBQDAkCvOrFPxIMyK2NjqVpU/VVtf3q5tvUyG0R/2oGaMlJ7crIwzTlBOZpvSUqJnMIw/6mUp1M/JDo8oKK1YsaLPGecmTpzYa3mX/Px8rV+/PmpbZWVluKzr313bIut4vd64o0mS5PF45PF4+tUOAD05LKN067DS1fO+oMnaohPMOlWZAjW/2j2cZGSp0ozTKy9P1PNKVem5LXI7u9+Jolei73hiySjF06aC9HoVnj5RWWdMjjoXswcBADB6pXgCKs05rPFZtQpFBCUrzuWAfd3DFakl4FJ1fYqq3nxHu+pTFDSx7wUwJmIEq7MNSQnV/Wr/EQWlnJwc5eTkHMkucZWVlemuu+5SVVWVcnNzJUmrV6+W1+vVjBkzwnVeeOGFqP1Wr16tsrKyAWkDgKOTbDVqgrW9x/YZekcB49Yhk6f9a0sUUOwhoq73Pr/StVfp2m+C2lvjk+P57jcuj6tdU84ulD93inwBEhMAAKOVw2HkiHv309FJdLeHR8JCIUttweibobpGoB66/hPVKz16X1PRr3MM2j1Ku3fvVk1NjXbv3q1gMKhNmzZJkiZPnqzU1FQtXLhQM2bM0GWXXaZ7771XFRUVuu2227R06dLwaNC1116rX/ziF7rpppt05ZVXau3atXryySf1/PPPD1azAXxGbivQsQCvYi/AGylonKo1mdpnTVDF841Rq7Q3KVVvPV2hqefVKPvEcfpgW7Kk7tEoYySXU3K7QyopbFHCIF+nDAAARiaHwyjR0R670LI0WR8oQwfDm1oUiL9CcYRBC0q33367Hn300fDz2bNnS5JeeeUVnX322XI6nXruued03XXXqaysTCkpKVqyZIm+973vhfcpLS3V888/r+985zu6//77VVRUpN/85jesoQSMEU4rqCyrWlmq1gl6K6rMGGmj+ZwOvbxd215O0bbo0vCjRdeNV+P86crOjD2Jhf3eKJfTKD+nbWBeAAAAGNEsGbkVkNvq/p4QUP9uUhr0dZRGAtZRAsaeVuPRJjNfNcpVo1J7GdLvmmHHUpKadOqVx+nUi4qUmBC9VkTXO2FCglFqcj/v8sQxhXWUAGD0+cXSTzVOnyrD6h5RajJBfS34ychdRwkAPguP1aqT9A+F1PHHj3jrSHRpVrKqVaj1vzN67be7etQ3snTKNyapIL1ep15cKqfTxJymNFy/c3dPQoi1pAAAGIMISgBGLY/V2nelTolqVoYOabI2q8HyKaTodFOrbFU+tl1vabL+/ItKWQop1urnkc76twkqza7RzIuOO5rmAwCAEYygBOCY4rCMvKrtsT1dNZpgfazjzQb5la6QHD1GnSKnKj1gSvTOb2v0qsnSrE/ro+qlJbZoan61ChacqExfgBEnAABGIYISAERIthqVbDX2WS/f2qtW41GNcuT/w9vhUGVkaZeytF5FOmFPtRyWUXJCW2eZ1HOUyqjQV6+ihTOUkxEY9FXGAQBA/xCUAOAoeaxWFVh7VWCbCt0YabtmquHxLWpRsm0vExWVQnLobeWr9afVKrt8slIS2pSUEOhxf1SiO6CkhHbNuPA4uVyEKQAABhtBCQAGmGVJU7S5r1ucwhpMmj42J2j7IwfUpo515Cx1T1DRqkS51KYp3yhT25Mfy+PunuI0ZAtUye6Acs49Wb609j5XNQcAAPERlABgmKVa9TrZ+nvc8oBxq1oF2vs/fr2vAoVsCSzyWbvcCv3g7/rnbxUp19uojDNOCJfZR6nsi0Nk+ALK8MVZsA8AgGMMQQkARji3FVChdqvQ2t1n3Vbj0WadovUP1civdOm+V8JlsQaYurLSwm8VKdEd1NTzp3ZsNz3r2GX6AvIkcBkgAGBsIigBwBjisVp1ot5Uu9z93mePJmnTrw+oSoWyfrG/c2tXALIi/tlxT1WaanXW0uOUftrxmlDUbDuaFd7fmxrk8j8AwKhFUAKAMcZltcul/l9CN0WbNVmb1Siv2m0fC/Yp0muUqypTqHW/3KiqX1TIGXGermkqvDqs0647UdPPn6S8rLb47XQZghQAYMQiKAEAZFlSqvx91ksx9Uq2GmRkaZL1YY/yw8qW32To9Qe36q8P7NS0r88Ol9kv0ktJaNPEnEMqXDBTOZltSmBqdADACEJQAgD0m8tqV572xS3P114F5FatslQvn/TkhnBZ9+BRRyCqVpbeV4naflItp2nX7G8e313D9BxqKkj3q/jc6crJCig1OTgQLwcAgLgISgCAAeW2AspRhXKsij7rBs16+ZWhauXr4P/dEd5uv+QvJIc+VKEaflGl0745SU5HKLyQb5TOgOV2BTU+q0ZZ58xRupep0gEAR46gBAAYNk4rqAwdVIZ1sM+6QePQB+YUHfg/H6tZKeHt9lBlyahNifqL0uX8/lqd9a1JSkpoU6I7ehQqFOpOT2lJLco+e7ayM9rkdH7GFwUAGBMISgCAUcFphXSCta7f9atMgXZqut56qF5tSuxRbikUftSmBJlVa3XalVM1PqtWzpNOVtJH5VHTpFfXZyrP2/AZXwUAYLQgKAEAxqRc64ByrQP9qttiErXDmqGtDx/U2/IpqAp13FXVnZQsHdZG1cit7kv+/vUHE1WUUcelfQAwBhGUAADHvESrRdPNO2qzPFHb7Zf1RW7fp1L94bagLIV6nY7dUkhe67C+eM9pykq1rzsFABipCEoAAEhyWEaJaul3/VJt1QRtVaO8Cir+jU0hOXVIufrNTXvls2rihi8TNS+gpXQd0iW/nNf/FwAAGFAEJQAAjlJ/15/K0EGl66BCUR+78deNOqQ87TaT9cjSdxU5sXosXQHrwvvmypfU2p9mAwD6gaAEAMAQyLaq+l3XZ2pUZY0Lh6B4o1BdKk2R/nvFHuVZe3XG/z43bj2HZZSZ2qS0xBhTqwMAohCUAAAYYTxWq4q1o++KnQq1S4eVJb8y9df/XR63XlBO1RufLEkXfW+qEhMC4bWnepPgaldGSv8vSwSAsYCgBADAKOe0gspWlbLV96hVSJa2aZaeuX2zHFYwZp3IEaw241FACbrsrlKlJfUelpITAnI6eh/9AoDRgqAEAMAxxGEZTdN7fd36FBaSpf2aoP/vtga1mqRe6xpZ8lqHdcGq2cpJbYpR3s2S5CBUARjBCEoAACAuh2VUpJ0q0s4+w1WzSdZeTdQjN+/u17FTLb8W3T5XJVm1SnDFHt0CgOFCUAIAAAMiyWrSFG1WQO4+6wbllF8ZevbOD9UulxLU+4x9JkZK69p2/c8L5XKGjq7RABAHQQkAAAwotxXou44CStQBZeigWpQc3t77DH89y7aYk3X/t/cryep5qZ9dSA6lqVZLfnlSn3UBgKAEAACGjdsKyK26o95/rl5Tg3xqlafXepakevlUYYr166Ufy63oKdLjjVh9+e65yknrO4QBGHsISgAAYNSyLClNdUrrR90sVSlP+1SnTAVjfgWKHrGqNEX6Pyt36kt3zOjz2CbGNOsOy2hC9mEuCwRGKYISAAA4ZiRZTUpS/0aI0lSnahXo9e+93ueiv7EuC6w2hVp86wxlJjf3urc3qYVFgIERiKAEAAAQg9eqlVe1R72/Q0av/dAvh+KPKBlZajSpcqtNXqtWX7l3bo/yvpjOFJbqaZPHzeyBwEAhKAEAAAyCCdbH/aoXlEOHla2dZroeuXFHj/L+jGYF5VaaVaslP+15mWC8sJXobu9X+4BjFUEJAABgGDmtkLJVpWyr6qiPUWUKtdNM00+v7/8xvnFXqcZl+I/6nMBYR1ACAAAY5XKt/crWgbjl9lGp3Zqsx241smJeFtj35X5OtWv5LwrlcPQ12gWMXgQlAACAMcBh9T+0jNd2FWqX2m2LA/d9mV/HelTvm1P182V7YgSt2CHLa9Xo8l+e2O/2ASPBoAWlTz/9VN///ve1du1aVVRUqLCwUN/4xjd06623KiEhIVzvvffe09KlS/XWW28pJydH3/72t3XTTTdFHeupp57Sd7/7XX366aeaMmWK7rnnHn3hC18YrKYDAACMeR1rWPW9OHAsM7RRQTl7bI8VtOqVrn1mgh5aulVSrPkBo4/QJUmNWnzPfGUktzByhWExaEHpo48+UigU0q9//WtNnjxZmzdv1tVXX63Gxkbdd999kiS/36+FCxdqwYIFevDBB/X+++/ryiuvVHp6uq655hpJ0j/+8Q9dcsklWrVqlc4//3w9/vjjuuCCC7Rx40bNnDlzsJoPAACAONKs/i8SnGLq5bbawpNKxBu1itxuZKlRaXr0ph0KyqVUq07JauhlFkAr4lFIl/7sZNavwmdmGWOGLKL/6Ec/0gMPPKAdOzpmdHnggQd06623qqKiIjzKdPPNN+uZZ57RRx99JEn6+te/rsbGRj333HPh45x22mk66aST9OCDD/brvH6/Xz6fT086JynZ6vnXDwAAAIw8xkgHla8mpfZ5WWBX+X4zXp+/ZabSElv6fR6PK6jstEYluJhefaz5xdJPNU6fKsM6GN7WZIL6WvAT1dXVyev1xt13SO9RqqurU2ZmZvh5eXm5zjzzzKhL8RYtWqR77rlHhw8fVkZGhsrLy3XDDTdEHWfRokV65plnhqrZAAAAGAaWJeWo4oj2MbJUfvfBmGNP8cJWi5LUbFKUavl1zq3zlJnauSix6XtiC0nyJbcw3foYNGRBafv27fr5z38evuxOkioqKlRaWhpVLy8vL1yWkZGhioqK8LbIOhUV8f+jaW1tVWtra/i538/UlwAAAMeCEuuTo9qvTQmqVoFW/2CjLKvnZXuxQ5aRkUPNJkVJVqPSdUjn3X2GPP0YmTLquGAwLbFVVv/yGIbYEQelm2++Wffcc0+vdbZs2aLp06eHn+/bt0/nnXeeLrroIl199dVH3sojtGrVKt15552Dfh4AAACMDQlWm8Zpl8ZZu45434DcqlOGKlWs363cI6eCfVwq2FHWLrcuXzVe2WmN3SUxRrEij+RyhAhWQ+SIg9KKFSt0+eWX91pn4sSJ4cf79+/XOeeco/nz5+uhhx6Kqpefn6/KysqobV3P8/Pze63TVR7LLbfcEnW5nt/vV3Fxca9tBgAAAI6G2wp0LBqsqv4sQxW21czSI7cc4bnUpnTrkD5/V5my0xrlZtKKQXPEQSknJ0c5OTn9qrtv3z6dc845mjNnjh5++GE5HI6o8rKyMt16660KBAJyuzvm8V+9erWmTZumjIyMcJ01a9Zo+fLl4f1Wr16tsrKyuOf1eDzyeDxH+MoAAACAoTPNel/t/fw6bsnIyFKTUlWnTP3hP7eoVUlyxZzivX9pLd/ao0t/OfcIWnxsGbR7lPbt26ezzz5b48eP13333afq6upwWddo0L/+67/qzjvv1FVXXaWVK1dq8+bNuv/++/WTn/wkXPf666/XWWedpf/6r//S4sWL9cQTT+jtt9/uMToFAAAAjDYu68gmgfCqVl7VqtjaoSaTEnfK9L5mCaxSofaaUv1i6c6Ye8dioqZhN7r8v6YqNbGt320fbQYtKK1evVrbt2/X9u3bVVRUFFXWNSO5z+fTX/7yFy1dulRz5sxRdna2br/99vAaSpI0f/58Pf7447rtttv0n//5n5oyZYqeeeYZ1lACAADAMS3Zauy7UhzFZod81uEeQauvgNV1x9QuM1W/u+ETJVsNESWx7q/qXj/rn+6Yr1xvg9JGSbga0nWUhgvrKAEAAAADp85kqEmp4ed9BayQHKqXT36TIbcC8lk1KrvtnxQvicQKXW/d9Zfw4y/cPV85aU19tnPUrKMEAAAAYPTzWYfl0+Ej3i8oh+qVLr8y9OYP/tpr3Xjhq1Fe/c/K7brwezOitscKV43m0BFNsBGJoAQAAABgSDitkNJVo3TVHPUx/CZdB6wSvXTHuqjtsfJQhiUl6eguUSQoAQAAABg1vFbHhBaDzdF3FQAAAAA4thCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAICNa7gbMBSMMZKkJhMa5pYAAAAAGE5dmaArI8RzTASlQ4cOSZIuD+0c5pYAAAAAGAnq6+vl8/nilh8TQSkzM1OStHv37l47A5+d3+9XcXGx9uzZI6/XO9zNGdPo66FDXw8d+npo0d9Dh74eOvT10BmtfW2MUX19vQoLC3utd0wEJYej41Ysn883qv5PHM28Xi99PUTo66FDXw8d+npo0d9Dh74eOvT10BmNfd2fwRMmcwAAAAAAG4ISAAAAANgcE0HJ4/HojjvukMfjGe6mjHn09dChr4cOfT106OuhRX8PHfp66NDXQ2es97Vl+poXDwAAAACOMcfEiBIAAAAAHAmCEgAAAADYEJQAAAAAwIagBAAAAAA2YyYoffrpp7rqqqtUWlqqpKQkTZo0SXfccYfa2tqi6r333nv63Oc+p8TERBUXF+vee+/tcaynnnpK06dPV2JiombNmqUXXnhhqF7GqPbLX/5SEyZMUGJioubNm6f169cPd5NGnVWrVumUU05RWlqacnNzdcEFF2jr1q1RdVpaWrR06VJlZWUpNTVVX/3qV1VZWRlVZ/fu3Vq8eLGSk5OVm5urG2+8Ue3t7UP5Ukadu+++W5Zlafny5eFt9PXA2bdvn77xjW8oKytLSUlJmjVrlt5+++1wuTFGt99+uwoKCpSUlKQFCxZo27ZtUceoqanRpZdeKq/Xq/T0dF111VVqaGgY6pcyogWDQX33u9+N+iz8/ve/r8h5m+jro/f666/ri1/8ogoLC2VZlp555pmo8oHq2/58VxnreuvrQCCglStXatasWUpJSVFhYaG++c1vav/+/VHHoK/7p6/f60jXXnutLMvST3/606jtY7avzRjx4osvmssvv9y8/PLL5pNPPjHPPvusyc3NNStWrAjXqaurM3l5eebSSy81mzdvNr///e9NUlKS+fWvfx2u8/e//904nU5z7733mg8//NDcdtttxu12m/fff384Xtao8cQTT5iEhATzu9/9znzwwQfm6quvNunp6aaysnK4mzaqLFq0yDz88MNm8+bNZtOmTeYLX/iCKSkpMQ0NDeE61157rSkuLjZr1qwxb7/9tjnttNPM/Pnzw+Xt7e1m5syZZsGCBeadd94xL7zwgsnOzja33HLLcLykUWH9+vVmwoQJ5oQTTjDXX399eDt9PTBqamrM+PHjzeWXX27WrVtnduzYYV5++WWzffv2cJ27777b+Hw+88wzz5h3333XfOlLXzKlpaWmubk5XOe8884zJ554onnzzTfN3/72NzN58mRzySWXDMdLGrHuuusuk5WVZZ577jmzc+dO89RTT5nU1FRz//33h+vQ10fvhRdeMLfeeqv54x//aCSZp59+Oqp8IPq2P99VjgW99XVtba1ZsGCB+cMf/mA++ugjU15ebk499VQzZ86cqGPQ1/3T1+91lz/+8Y/mxBNPNIWFheYnP/lJVNlY7esxE5Riuffee01paWn4+a9+9SuTkZFhWltbw9tWrlxppk2bFn7+ta99zSxevDjqOPPmzTPf+ta3Br/Bo9ipp55qli5dGn4eDAZNYWGhWbVq1TC2avSrqqoyksxrr71mjOn4cHC73eapp54K19myZYuRZMrLy40xHW94DofDVFRUhOs88MADxuv1Rv3uo0N9fb2ZMmWKWb16tTnrrLPCQYm+HjgrV640Z5xxRtzyUChk8vPzzY9+9KPwttraWuPxeMzvf/97Y4wxH374oZFk3nrrrXCdF1980ViWZfbt2zd4jR9lFi9ebK688sqobRdeeKG59NJLjTH09UCyf6EcqL7tz3eVY01vX967rF+/3kgyu3btMsbQ10crXl/v3bvXjBs3zmzevNmMHz8+KiiN5b4eM5fexVJXV6fMzMzw8/Lycp155plKSEgIb1u0aJG2bt2qw4cPh+ssWLAg6jiLFi1SeXn50DR6FGpra9OGDRui+s3hcGjBggX022dUV1cnSeHf4w0bNigQCET19fTp01VSUhLu6/Lycs2aNUt5eXnhOosWLZLf79cHH3wwhK0fHZYuXarFixf3+O+evh44f/rTnzR37lxddNFFys3N1ezZs/Xf//3f4fKdO3eqoqIiqq99Pp/mzZsX1dfp6emaO3duuM6CBQvkcDi0bt26oXsxI9z8+fO1Zs0affzxx5Kkd999V2+88YY+//nPS6KvB9NA9W1/vqugp7q6OlmWpfT0dEn09UAKhUK67LLLdOONN+r444/vUT6W+3rMBqXt27fr5z//ub71rW+Ft1VUVER9oZEUfl5RUdFrna5y9HTw4EEFg0H6bYCFQiEtX75cp59+umbOnCmp4/czISEh/EHQJbKv+/N7jg5PPPGENm7cqFWrVvUoo68Hzo4dO/TAAw9oypQpevnll3XdddfpP/7jP/Too49K6u6r3t5DKioqlJubG1XucrmUmZlJX0e4+eabdfHFF2v69Olyu92aPXu2li9frksvvVQSfT2YBqpveV85ci0tLVq5cqUuueQSeb1eSfT1QLrnnnvkcrn0H//xHzHLx3Jfu4a7AX25+eabdc899/RaZ8uWLZo+fXr4+b59+3Teeefpoosu0tVXXz3YTQQGxdKlS7V582a98cYbw92UMWnPnj26/vrrtXr1aiUmJg53c8a0UCikuXPn6oc//KEkafbs2dq8ebMefPBBLVmyZJhbN7Y8+eSTeuyxx/T444/r+OOP16ZNm7R8+XIVFhbS1xiTAoGAvva1r8kYowceeGC4mzPmbNiwQffff782btwoy7KGuzlDbsSPKK1YsUJbtmzp9WfixInh+vv379c555yj+fPn66GHHoo6Vn5+fo8Zq7qe5+fn91qnqxw9ZWdny+l00m8DaNmyZXruuef0yiuvqKioKLw9Pz9fbW1tqq2tjaof2df9+T1Hx5t/VVWVTj75ZLlcLrlcLr322mv62c9+JpfLpby8PPp6gBQUFGjGjBlR24477jjt3r1bUndf9fYekp+fr6qqqqjy9vZ21dTU0NcRbrzxxvCo0qxZs3TZZZfpO9/5TnjUlL4ePAPVt7yv9F9XSNq1a5dWr14dHk2S6OuB8re//U1VVVUqKSkJf1bu2rVLK1as0IQJEySN7b4e8UEpJydH06dP7/Wn63rHffv26eyzz9acOXP08MMPy+GIfnllZWV6/fXXFQgEwttWr16tadOmKSMjI1xnzZo1UfutXr1aZWVlg/xKR6+EhATNmTMnqt9CoZDWrFlDvx0hY4yWLVump59+WmvXrlVpaWlU+Zw5c+R2u6P6euvWrdq9e3e4r8vKyvT+++9HvWl1fYDYv6wey84991y9//772rRpU/hn7ty5uvTSS8OP6euBcfrpp/eY5v7jjz/W+PHjJUmlpaXKz8+P6mu/369169ZF9XVtba02bNgQrrN27VqFQiHNmzdvCF7F6NDU1NTjs8/pdCoUCkmirwfTQPVtf76roDskbdu2TX/961+VlZUVVU5fD4zLLrtM7733XtRnZWFhoW688Ua9/PLLksZ4Xw/3bBIDZe/evWby5Mnm3HPPNXv37jUHDhwI/3Spra01eXl55rLLLjObN282TzzxhElOTu4xPbjL5TL33Xef2bJli7njjjuYHrwfnnjiCePxeMwjjzxiPvzwQ3PNNdeY9PT0qNnA0LfrrrvO+Hw+8+qrr0b9Djc1NYXrXHvttaakpMSsXbvWvP3226asrMyUlZWFy7umrF64cKHZtGmTeemll0xOTg5TVvdD5Kx3xtDXA2X9+vXG5XKZu+66y2zbts089thjJjk52fzP//xPuM7dd99t0tPTzbPPPmvee+898+UvfznmtMqzZ88269atM2+88YaZMmUKU1bbLFmyxIwbNy48Pfgf//hHk52dbW666aZwHfr66NXX15t33nnHvPPOO0aS+fGPf2zeeeed8ExrA9G3/fmucizora/b2trMl770JVNUVGQ2bdoU9XkZOasafd0/ff1e29lnvTNm7Pb1mAlKDz/8sJEU8yfSu+++a8444wzj8XjMuHHjzN13393jWE8++aSZOnWqSUhIMMcff7x5/vnnh+pljGo///nPTUlJiUlISDCnnnqqefPNN4e7SaNOvN/hhx9+OFynubnZ/Pu//7vJyMgwycnJ5itf+UrUHwSMMebTTz81n//8501SUpLJzs42K1asMIFAYIhfzehjD0r09cD585//bGbOnGk8Ho+ZPn26eeihh6LKQ6GQ+e53v2vy8vKMx+Mx5557rtm6dWtUnUOHDplLLrnEpKamGq/Xa6644gpTX18/lC9jxPP7/eb66683JSUlJjEx0UycONHceuutUV8e6euj98orr8R8j16yZIkxZuD6tj/fVca63vp6586dcT8vX3nllfAx6Ov+6ev32i5WUBqrfW0ZE7FcNwAAAABg5N+jBAAAAABDjaAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACAzf8PddmZpaLascgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -435,26 +430,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAABqCAYAAADjjxZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZlklEQVR4nO3dfZAc9X3n8fe352EftM/SSki7ktATSAs2SBYg2+DEBvMU29iOkyNnztihCqfKrrPr7HN4qLtLVSpx7ORctsuuOOTgDp/JcT6THFQFHw8+ykdSQYB5FiCxEggk9ICeV1pp56G/98f07vZoZ1e72tmZXunzqtrant+ve/o7PTvf/U53/7rN3RERERGRZArqHYCIiIiIjE/FmoiIiEiCqVgTERERSTAVayIiIiIJpmJNREREJMFUrImIiIgkWLreAUxGu6V8Ppl6hyEiNdTP0D537653HNWgHCZydql2/poVxdp8Mnw/vbTeYYhIDX2isGV7vWOoFuUwkbNLtfOXDoOKiIiIJJiKNREREZEEm3axZmaLzewJM3vVzDaZ2dei9i4ze8zM3oh+d0btZmY/NLN+M3vJzNZNNwYRkdOlHCYiSVeNPWsF4Bvu3gdsAL5iZn3AbcCv3H0V8KvoMcB1wKro51bgr6sQg4jI6VIOE5FEm3ax5u673P25aHoAeA3oAW4A7o1muxf4dDR9A/BTL3kK6DCzhdONQ0TkdCiHiUjSVfWcNTM7F1gLbAQWuPuuqGs3sCCa7gHeiS22I2o7+bluNbNnzezZwxSrGaaISEXKYSKSRFUr1sysBXgA+Lq7H4n3ubsDPpXnc/e73H29u69vJ1WtMEVEKlIOE5GkqkqxZmYZSknuPnf/+6h5z/Chgej33qh9J7A4tnhv1CYiUhfKYSKSZNUYDWrA3cBr7v69WNdDwM3R9M3Ag7H2L0QjqjYAh2OHGkREako5TESSrhp3MPgw8G+Al83shajtDuAvgJ+b2S3AduD3o76HgeuBfmAQ+FIVYhAROV3KYSKSaNMu1tz9nwAbp/vKCvM78JXprldEpBqUw0Qk6XQHAxEREZEEU7EmIiIikmAq1kREREQSTMWaiIiISIKpWBMRERFJMBVrIiIiIgmmYk1EREQkwapxUVwRERGRs9IJb2LIG2Z0HSrWRERE5IxW9ICQVOU+UuwMz2WA9or9IQE7WDHSX34FbWeAdlJeJGu5WPvTVYl7mIo1ERERmRWKHrAn7GGIxjF9BTL0c2FZn+EA7GcBQ95I2vJjlnOMgme46AODtDccw728HEvj/P7HOljw4dUVY8pkQrq78gSxE8t+vvZ0Xt34VKyJiIhI1RwPmzhBU8U+A/aEi+jnAoqkMBxjtKg6ShvbWUUzR2mwEyct6+RooMGP02n7Rto9tq+rnf18+t4bSKfDsqKrKessX3KcbNan8cqGprHs9KhYExEROctUOiw4XDABHCp2spn3Vzx0eIxWtnBR2fxxA7RjONlxiptGjnHVF7rIpovEn8IdzOAzl/TS2VGkb+Wxsr5h6ZSTSq2a4NUdnaBvdlKxJiIiMgsNFTNs89XkyZQVToYTErCFi3iXJSPtQbwYYx6HmEeGXGxZxwlo4ihNDLKI7fSsbR1ZJvTScb4s8OWPhoQfv44ggDAcjcmBTAYW9XjZYcGpOHTQaNi5hWxmOnvBziwq1kRERGaIOxwsdpGjYaQoGj4458Am1rGVC2Ito/I0sp3zyJMd09fIICEpWjlMmtHzsDw2Z1/fcS7/0nUEdvLSJfMXOIWuNiwYXfjAe3Bhz2F6esMKS4x5dZOYR6pBxdo4flQ4xKuso5k/JcsJLuA52nmPgOLIBy5NkQt4lnNS745ZPjD9EZ+Ou4p7Abg1Nb/OkYjMbvos1ce3CvN4l6V08+8ByNFIngwBIY6RZYhMVFw50MpBNty0glTgY0qfMDSuWHiCF30+QapU+LnD3NZOlqyCOa2QneYVIzInPU6rKkgkvS3j2Azszx6E5W0sv2Qd+za2sD3XwPyWAQDcjT2b9vGPfJ5isXRMP/5tKU2RRbw58o3HcBo4gREy/G1kEdtZwwukKFQ49u8ElL7ZtHCEuen9M/uCE2Kb1+8EzjNZzrOE0TWwxzvPpJL4vEM0cYSOKa03vrwT8J4vrDgaq7ItU1qXlNNnqT52sx/awFaVPm8tDUdp6xgkCCCfS7NkzYV0nVOMLbGUAlAY5/nepJW2kz6z7a3VKdRk9lCxNoGUhXR2H+bwwSfhPGhu66N5SdtI//JPLmKZQxh97oY/TmHBsMI5HD38PhZ15cGNQwdhYa+TiT5cxbzx3J89yot8iPJdyVb2XE7AYebSXDhatqvbcOYwQKXd0MPPUCDNMjbTxXtly8V/jyrf5W2x+VMURv7BBrHlV9krtNiRitvudA2P6il4df40p1KYDNvrizhKa7T86axz7OGDieIY7svRyA6W4diY6/hUVn6OygJ2VtyjWyBNhhwpimWjpqaqSIprvrGSdFA89cwwZl2G09k8SEN6vH9L5W67Y8ohitSdUToBft45h7DT/7iJlFGxNk1mkDp5K6Yd2EVnCxyPmnqXLKRrPjQ2j87W84vrT/n87nDkABQKlJ2MkBkscPGlXjZCZnj+4Z+DB+DEk93kC6mRvtzb2+PRR+1jM4r7aCkwMNTEqgU7R5ZxjL0DrTzwy8tOecrCVIuD3XwXgP8afmNS8xc9xSLbTsomKiCmFsOQN3HVTa00ZXIV+0/e5mV9Fdc1vJ1HW1796fNj5nGMq25ZwPuu7iWVCqNlbNz3J+6Zh3dz2ZJ8aXTVSQJzgqBah+UPVul5RERkslSsJZwZtM8d2546DO2dEy87txs4f91JrRdNOYZDm3Zx2SXLxrTf9P0pP9Up/aubSnsuf/izD05q/nce28aapWmaGye3tycpfuemj07QO/XDVy0NQ6RTIenUZE4KFhGR2UQ3chcRERFJMBVrIiIiIglWt2LNzK41s81m1m9mt9UrDhGRqVL+EpFaqkuxZmYp4MfAdUAf8Adm1lePWEREpkL5S0RqrV571i4F+t19m7vngPuBG+oUi4jIVCh/iUhN1atY6wHeiT3eEbWNMLNbzexZM3v2MLNrpJ+InNFOmb9AOUxEqiexAwzc/S53X+/u69tJ1TscEZEpUQ4TkWqpV7G2E1gce9wbtYmIJJ3yl4jUVL2KtWeAVWa2zMyywI3AQ3WKRURkKpS/RKSm6nIHA3cvmNlXgUeAFHCPu2+qRywiIlOh/CUitVa32025+8PAw/Vav4jI6VL+EpFaSuwAAxERERFRsSYiIiKSaCrWRERERBKsbuesJV2aArkhZ8+T85j30S4yHU00G5wY3Ec646Qz9Y5QRESSJkWBgwdDdvzjgpHHaz61guZmZygP4S4o5kr/et2hudVZcEELW/oPgI8+TxhNpwJoaAazWr8SSRIVa+NYYyHn+Zus5ds888Rvc4ImtnIuIWlyZOlgHykKLFzdyt7epTS3hSxcllMRN019a1bXOwSRM8Jya6h3CGelDbaf4z7IZ/kaDmzkY+x4aAVDgBGSJ88gIQY4AbtZzACdGOGY5wpJUSSgk/1l/QWydLKHNg6x4a9+l3ePtQKl4s9jBV/DHFi5BjLZyrEGOrY2a6hYG8etqfnR1K/ZwK/L+rYWVnGAeeRpZNPr62l8fRcDtPE281ixssi8lgGWrWniaV9EOut0dhdq/wJmqf905+31DkHkjDCaw6SWRrf7WwAs4Z7Tfq5iaLwZnscBugEIYgWbY7zEB3nim4+MtAwznJCAfSzkcVIEFW53ZsBc9nLu6rD0rG44xlAxy/bGI7z/sma6P/dbZGM1f7wY7O72sj6ZWSrWTsOK9Bus4A0APsQTI+07Ckt4vv+D5Gnk/75wKYMcJ08jm2kiwz5aOQQErLoow3nXLaWpp4tCa4YgDQ2N9XktIiKSTKnAWRlsBjZX7L+Ef55weXcY8soVVd6zvOzrOfJ6Z3wJADLk2fjKfHbcPYSPObXdydPAEE20cJiyY7cjc6RY1ldk/Y19o6/lnS1Rp5FJF1n98V5OLDmvLFZ3He4dj4q1KupNv00vbwPwWe4FYCjMcijswjECnEGbw7MvXsHrL3bSz4XRbu4UDRyPijnjI3dcwrYTC2jrgCXnQRDdVlB/xCIiMllm0GhDFfsaGSrb2TAVec9wMOyitH8urlS4DdHEq6+u5Zn/2H9SnwPGIeZxz08aMPaMee4iacBZyNt02b4x/SHGNV9bQe/lK8b0uUNXR575c/Nn3P9LFWszrCHIsSDYXdZ2LlvLHh8ptrHdV1Ikwy56eebPB8mT4UUWYxTJk2VVH/S0HwRg+cWt7Jq/jp7FTle3ijgREamdjOWZnxpbaMUtjg4DT9XxsIl3fUlUtJXYSKEHx2nhsR+E5H7wTmypUl+RNPtYSNaHMIsf+i39k1x76XFaM8dLS3j5P850KscV13XSvP79Zef9jfY7XR2Fup3np2ItAdpSR3gfzwFwMRuBBwAI3Sh4mv5wDe+8ugInICTFL//lA5zgCf6FAiEpWhigiaNc/mdX0dDgONDUAF0XzqelBQ16EBGRWaEpOM6KcQ77Dns/z4zbl/PKoyn2+CL2Pt3DkbLDuqWqrECGtziff3rSCXgRYsUhQI4Ghmim2QdIWfwc9FLBlybHZVecoHf90gnjng4VawkWmJO1PH3BS/Tx0kj79fwcgFyY4bB34gS87Jfx2p3De/CM3SzmCB2A0cIRmjhKB/tY8zdfJxV9oehZCvMW1PQliYiIzJis5Sq2L7a3Jtzbt2GCQ8J5z3DU2/BxjmId9zlse3INbz25fyqhTomKtVksG+TpZi8AV/JgxXlCN7YXl3OMNnaxhKe/fC8O0SHXxWTIEeCsvSJNZ9MxoPR94sIPtTO47nIAbFDju0VE5OyUsTydNlEhtp+e6Hz1Yd+r8kUgVKyd4QJzlqVL58hdyPNlfXkvHR/dGy5k25OrOR7tHh6gg7sfXYPzv3GMIhketncBmOMD/N531wLQkC2w6LdX0NBQ2l0cBDp/TkREpNpUrJ3FMpYHoCf19phvBXGhG4fCLnJkectW83/++BAAB5jPfg6RobTbOe9Zum0XDZzgozd10fV71xAEjju0tDg9iwoq5kRERKZIxZqcUmBOV6q0C/gcdo0734FwLvu9mxxNPP6zi/Gf/QKAIineY1E0QiekSIpGH+Rjn2saef7VV5xD66WjQ7HnzHEaGyoMyRERETnLqFiTqukK9tNFqai74KRDrqHbyFDsImm2hqvZ/UALAHvo5ZFfFElFJ38epwVzp8mOAuAe8Dt39NHZkiMwp+PSZcyfX8QM8kXtqhMRkTObijWpicCcgNJh1wx5Lkg9P+68oRtHvIPS1XWMvZzDC9/eBkCeBt7mXQJCDKdAhvm8S6+9CZSGUH/2v32SOY2lszsNp7M1TzYz9r57IiIis4GKNUmcwJwOOzjyuJP9nM+mivPmPMteX0gYDY7I0cjPvvgEBUrX2jlKGwVPjwznLniaq7/YTlO69PjcK5azaN4gULpIYmBOQ1aFnYiIJIeKNZnVspaj17aXta3ktbLHBU/j0cULj9HKW/cuxjFCAh6++wghRkBISIpj3sJc20v8goid7OPan3wGw0mlnMXdx2hpHntjZBERkZmgYk3OeOnYFac77AAdHBh5fEF054hhQ2GW48wZeVwkzdus5OE/eggoXcl6N4tJR4d0Q1IEXqQ7urTJsEZOcON91wOl+9W1NRdob8lX94WJiMhZQcWaSExDkKOB8itgz+W9cecP3djPfHI0jrQVyLCHXv728/8MwCAtHPYuWu3w6HIEpLzANbd0AuAY81sGWHnlypF50qmQRh2SFRE5602rWDOzvwQ+CeSArcCX3P1Q1Hc7cAtQBP6tuz8StV8L/ABIAf/F3f9iOjGI1FNgTreNvaHxUvpHpkM3ilb+UQsJ2EMv/feULl+So4HHWQ4/HD03b4hGAg/JWunGw40McvWXF5FJjR6CdTfamwYJvaOaL+usoRwmIrPBdPesPQbc7u4FM/sOcDvwx2bWB9wIXAAsAh43s/OiZX4MfBzYATxjZg+5+6vTjEMkseIjYeOW2Nayxxfym7LHRU9xnKaRxwO0s/FvDo5cAgVKlznZQw9pBnmeQ2QsTwuHCSgyfJNhgI/fcSEN6fL7nzSm87pIsXKYiMwC0yrW3P3R2MOngM9F0zcA97v7EPCmmfUDl0Z9/e6+DcDM7o/mVaITOUnKirRE15oDaOEoC9k54TJ5z3CUNuKF2hCNPPjnb40MsgDIkaXgGRrsBAAZcrRxiEu++cGReTJBke6WgTO6oFMOE5HZoJrnrP0h8D+j6R5KiW/YjqgN4J2T2i+r9GRmditwK0C3Tq0TmZSM5elk7A2Hz2HHmLYiAR5d8mSIRo7Szsa/2jjSP0gLA95BKjZAI+9ZMpajmdEiMiCklUN8+PYNQGlARWBOe+NxgmBW3YVCOUxEEumUGcTMHgfOqdB1p7s/GM1zJ1AA7qtWYO5+F3AXwCprnFUZX2Q2SFkIlAYwpDnKnFgBNuLkvWoGJ7xp5Lp2UBoxe4ROHvn26M6lkBTHaB3zdAVPMy92jp9jBBS5/j/0lc3XlK7eyFnlMBGZ7U5ZrLn7VRP1m9kXgU8AV7r7cELaCSyOzdYbtTFBu4jMAo3RgIe4Vg5XmHOsQeYwFBs5C3CETn7xp6WdVYbjDN/BojqUw0RktpvuaNBrgW8Bv+Xug7Guh4C/M7PvUTo5dxXwNKXv6avMbBmlBHcj8K+nE4OIzB7NdoxmjpW1VTpsW6vdUMphIjIbTPdEih8BDcBjVjoL+Sl3/yN332RmP6d00m0B+Iq7FwHM7KvAI5SGvd/j7pXvIyQiZ60aDmpQDhORxLPRvf7Jtcoa/fvppfUOQ0Rq6BOFLb9x9/X1jqMalMNEzi7Vzl/BqWcRERERkXpRsSYiIiKSYLPiMKiZvQdsr8Oq5wH76rDeU0liXIppcpIYEyQzrvPdfez1P2Yh5bAyimnykhiXYpqcquavWXGlRnfvrsd6zezZJJ4zk8S4FNPkJDEmSGZcZvZsvWOoFuWwUYpp8pIYl2KanGrnLx0GFREREUkwFWsiIiIiCaZibWJ31TuAcSQxLsU0OUmMCZIZVxJjmm2SuA0V0+QlMS7FNDlVjWlWDDAQEREROVtpz5qIiIhIgqlYG4eZXWtmm82s38xuq+F6F5vZE2b2qpltMrOvRe1/YmY7zeyF6Of62DK3R3FuNrNrZiiut8zs5Wjdz0ZtXWb2mJm9Ef3ujNrNzH4YxfSSma2boZjOj22PF8zsiJl9vdbbyszuMbO9ZvZKrG3K28bMbo7mf8PMbp6BmP7SzF6P1vsPZtYRtZ9rZsdj2+snsWU+EL3v/VHc07oR1DhxTfn9qtfnc7ZQ/qoYW6JymPLXacVV1xxW1/zl7vo56YfSPf+2AsuBLPAi0FejdS8E1kXTrcAWoA/4E+CbFebvi+JrAJZFcadmIK63gHkntX0XuC2avg34TjR9PfBLSje93gBsrNF7thtYWuttBXwEWAe8crrbBugCtkW/O6PpzirHdDWQjqa/E4vp3Ph8Jz3P01GcFsV93Qxsqym9X/X8fM6GH+WvcWNLbA5T/pp0XHXNYfXMX9qzVtmlQL+7b3P3HHA/cEMtVuzuu9z9uWh6AHgN6JlgkRuA+919yN3fBPopxV8LNwD3RtP3Ap+Otf/US54COsxs4QzHciWw1d0nuvDojGwrd/9/wIEK65rKtrkGeMzdD7j7QeAx4NpqxuTuj7p7IXr4FNA70XNEcbW5+1Neyj4/jb2OqsU1gfHer7p9PmcJ5a/JS0oOU/6aRFz1zmH1zF8q1irrAd6JPd7BxAlnRpjZucBaYGPU9NVo9+89w7ulqV2sDjxqZr8xs1ujtgXuviua3g0sqHFMcTcC/yP2uJ7bCqa+bWq9zf6Q0rfMYcvM7Hkz+7WZXRGLdUeNYprK+5WIz2eCJWL7JCx/QbJzmPLX1CUph814/lKxllBm1gI8AHzd3Y8Afw2sAC4GdgH/ucYhXe7u64DrgK+Y2UfindG3lroMLTazLPAp4H9FTfXeVmXquW0qMbM7gQJwX9S0C1ji7muBfwf8nZm11TCkRL1fMn0JzF+Q0Bym/DV1CcthNXm/VKxVthNYHHvcG7XVhJllKCW6+9z97wHcfY+7F909BP6W0d3fNYnV3XdGv/cC/xCtf8/woYHo995axhRzHfCcu++JYqzrtopMddvUJDYz+yLwCeDzURIm2k2/P5r+DaXzKc6L1h8/zDBTf1tTfb/q+vmcBZS/KkhwDlP+moKk5bBa5S8Va5U9A6wys2XRt54bgYdqseJopMrdwGvu/r1Ye/x8ic8Aw6NRHgJuNLMGM1sGrKJ0QmU1Y5pjZq3D05RO8nwlWvfwqJ+bgQdjMX0hGjm0ATgc26U+E/6A2CGEem6rmKlum0eAq82sM9qNfnXUVjVmdi3wLeBT7j4Ya+82s1Q0vZzSdtkWxXXEzDZEf5dfiL2OasY11ferbp/PWUL5a2xcSc5hyl+TlMQcVrP85TM4wmU2/1Aa9bKFUoV+Zw3XezmlXc4vAS9EP9cD/x14OWp/CFgYW+bOKM7NTHO03jgxLac0YuVFYNPw9gDmAr8C3gAeB7qidgN+HMX0MrB+BrfXHGA/0B5rq+m2opRodwF5Sucf3HI624bSORj90c+XZiCmfkrnSgz/Xf0kmvd3o/f1BeA54JOx51lPKflsBX5EdCHtKsc15ferXp/P2fKj/DUmrkTmMOWvKcdV1xxWz/ylOxiIiIiIJJgOg4qIiIgkmIo1ERERkQRTsSYiIiKSYCrWRERERBJMxZqIiIhIgqlYExEREUkwFWsiIiIiCaZiTURERCTB/j/wFnAyLO058wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAACUCAYAAACHtiiAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAst0lEQVR4nO3deXBc1Zn38e/tVWpJrda+WJJX4QXLNhjbyCYmDMIGnElISEIYJmFJzITImTAwjOOQQJKpNzZhXph6UwlkaiYmqQw4YQrMO7xkMV5IGMRmY2yDbWzjDcuSvGnfejnvH7JaarU2E7e6Jf0+VSp3n3vu7XPqtvvpp8+551rGGIOIiIiIiIhcdLZ4N0BERERERGSsUsIlIiIiIiISI0q4REREREREYkQJl4iIiIiISIwo4RIREREREYkRJVwiIiIiIiIxooRLREREREQkRpRwiYiIiIiIxIgj3g0YCaFQiOrqatLS0rAsK97NEREZN4wxNDU1UVhYiM2m3/i6KS6JiMTPSMemcZFwVVdXU1xcHO9miIiMW8ePH6eoqCjezUgYiksiIvE3UrFpXCRcaWlpADxlm4zH0i+sIiIjpdWEuCN0OPw5LF0Ul0RE4mekY9O4SLi6p2t4LBseyx7n1oiIjD+aNhdJcUlEJP5GKjbpZzUREREREZEYUcIlIiIiIiISI0q4REREREREYiSmCdfatWtZsGABaWlp5ObmctNNN7F///6IOu3t7VRWVpKVlUVqaio333wztbW1EXWOHTvGihUr8Hg85Obm8sADDxAIBGLZdBERGYMUl0REZKTFNOF65ZVXqKys5PXXX2fTpk34/X6WLVtGS0tLuM4//MM/8N///d88++yzvPLKK1RXV/O5z30uvD0YDLJixQo6Ozt57bXX+OUvf8lTTz3FQw89FMumi4jIGKS4JCIiI80yxpiRerFTp06Rm5vLK6+8wtKlS2loaCAnJ4enn36az3/+8wDs27ePmTNnUlVVxZVXXsnvfvc7PvWpT1FdXU1eXh4ATz75JKtXr+bUqVO4XK4hX7exsZH09HR+a5+q1aBEREZQqwnyxeAhGhoa8Hq98W5OFMUlEZHxZ6Rj04hew9XQ0ABAZmYmANu3b8fv91NRURGuM2PGDEpKSqiqqgKgqqqKsrKycFADWL58OY2Njbz33nsj2HoRERlrFJdERCTWRuw+XKFQiHvvvZclS5Ywe/ZsAGpqanC5XPh8voi6eXl51NTUhOv0Dmrd27u39aejo4OOjo7w88bGxovVDRERGSMUl0REZCSM2AhXZWUle/bsYcOGDTF/rbVr15Kenh7+Ky4ujvlriojI6KK4JCIiI2FEEq5Vq1bx4osvsnXrVoqKisLl+fn5dHZ2Ul9fH1G/traW/Pz8cJ2+q0N1P++u09eaNWtoaGgI/x0/fvwi9kZEREY7xSURERkpMU24jDGsWrWK559/ni1btjB58uSI7fPnz8fpdLJ58+Zw2f79+zl27Bjl5eUAlJeXs3v3burq6sJ1Nm3ahNfrZdasWf2+rtvtxuv1RvyJiIgoLomIyEiL6TVclZWVPP3007zwwgukpaWF57anp6eTnJxMeno6X/3qV7nvvvvIzMzE6/XyzW9+k/Lycq688koAli1bxqxZs/jyl7/Mj3/8Y2pqavjud79LZWUlbrc7ls0XEZExRnFJRERGWkyXhbcsq9/y9evXc8cddwBdN5i8//77eeaZZ+jo6GD58uX87Gc/i5iWcfToUe655x62bdtGSkoKt99+O+vWrcPhGF6+qOV3RUTiI9GWhVdcEhGRkY5NI3ofrnhRYBMRiY9ES7gSheKSiEj8jOn7cImIiIiIiIwnSrhERERERERiRAmXiIiIiIhIjCjhEhERERERiRElXCIiIiIiIjGihEtERERERCRGlHCJiIiIiIjEiBIuERERERGRGFHCJSIiIiIiEiNKuERERERERGJECZeIiIiIiEiMKOESERERERGJEUe8GyAiIiIiIjJcfuMkOEQaU2sKOWEm0UoqADZC4W3p5jBwKJZNjKCES0REREREYsJvnBisQet8aGZwyhQQxD5ovSAOzpHDCSZBv8c05/8ghJ2sqSlkJ9XjtnVigND5fVJS3fDaBXflY1PCJSIiIiIiABjTlaz0uw2LZuPloJlJG2nhcqvX6FF3whPAyQmmcJo8epIj0+9x/cbFhFIb6e4WbFZwgJZ1HcNrGZYssHHZ9bn9Hs4YK1zssBtysxx4UyOP2dicwj9eM8DLxIASLhERERGRUcb0n7tECWGnOlTMUVMaNdLUnZpYGELYaCSDj6ypdJAUVaeb37jx0EjJbFd0m3o9tmGYk1bL4nsKSXaHItpsTGQ73O4QJQXtOB3RxxxY6wXUjS8lXCIiIiIicWYMHDPTqAkVhq9P6pvsdJVBM2m8zxU04etVp/8MLISddjy4aMeBP+pokUlSkM9+ybDoxgywerYYgPNJUravk8LcZGzDWnovE2geTsUxTQmXiIiIiMgF8Bsnh0PTqTcZDDRdrjuVqaGE/czDjzNqW19tpBDChpv2IdtQPDXIdTdPgMIJUUfrGUnqap0nxTCtNEjBhMiRpt71m5ssTlUd47rFp4GmIV9fhk8Jl4iIiIiMWc2hVI6GptFB8qD1LAyN+NjPXKqZ2GdbpBA2mvARwo6NruuDunMYJ35SaYjY85JLWpj/2WI6cot6jtH7sqfzPClQNtdPVnb/CVnvRMkevsyqc9B+DZfNDjbbMOcpygVRwiUiIiIiCaMpmMYRMw3Tz8IN3SNDnbh4g7/iJJPCK88BOAjgIHD+WVddP27OkY2NUJ/FHaIZbGTmhJi2fCoZmZF1w9cdnc9JsnMDZF7iw5vRkwg11YOnrZ4rF3eGyyyLXtPvLk5yJKOLEq4EYIyh4/z/XjcWljX40pkydum9ICKJQp9HAoO/D04GJ3DOZIWfDzRNroEs/syNnCMrfC+kyHeTCe/bgYezZBPCFpUc9X0HWhguucJL2gQPdoehvcOG223Izw8SCvVZlCEvlVmXQ1Jy5MhSxNS67scWJCV1jfhcqEAnOPxmmNc3yXihhCsBdGD4fHAx8CnmkosNmMgHLGET6Zymb4zzcZpke0c8miox1vVeOAjAf9mnkTTEfStERGJFn0cCke+DBTxPO7lAV4pUTzYtpGGwBky2oDtRClE4J5NJpQH6rvHQO+kxxmKO11AyN4VzHW0RxzEm8ioppws8qT2v0njWYkJ2MqWXfszOisSIEq4E0PVBcxUwFzMrn5Dd4k+7S9nGp7s+wPp8htkJUBg4QianiF6RxmA7X2YnwFyqKLO9jTO8Kk3/q924aMdt0zC3iIiI9K82dSYFZSXY7F3fJnJchiN1R0jztWCzhcBY0YsxAGCBZZh5RSZFpcMZ+rEI0Eaa56J3QSQulHAlDAPUEkg9izezkyKvh2DAovt3oe7Pr+zCUjgZoqnuEpyZRUQNsId66p4+GeBXJxdjhUx4WH6g3yftBJgQOkw+x3AS6DpQH1ZEfT9lvEmp7X0cViCqbs8+/f/iZWEG3U9EhidgHDSSQSfuC953sF+kAdpJpt5kE+i1stbABrjAmybg0AW3TUQSz7TyTFrs27E5uhaJ6AQKJw1v38724XyOiIxNSrgSkN1hSMto6Xdb0L+DYIaNvOmXMXHm4B9e+Y0WE+qsyCF4c35EzYSf0tlukVLvp2YPnLKXkOlpor/Z1dAz7P/RvnaqWIYz1DnIJJPBphcYJnCEEj7AE75xnYnY3vc41gDlvXloZqbtXbKs2gFfeyhDfQkdcn/NuomrcyaLepNFqJ+Lrbv0N8obvZTvhb0PIt+7flwcoIxOksLb7ATI56NhTsoa/msHcZBEK0lW29CVL/jVLNKts6z49pSPfezmTifff/Rj7y4iIjLqKeEaw1K8hhTvcL+42fDNzyHL62Na2dC1m85B9XEIdkbe66G3iNQoFLnBHK3lg1ddHLOmkZfWOODrhKd5m+ivqX17Vv3uORrJ5OXQzeEb+1kD1h58rrkDPx6rZdB6XXUHTyr7N/AX/oBpB74GwM+D38ZhJYWniA51jIHbEF03hWaSrdZhH6frWBf2+v23e7D9h5fkDJ7gW7SaFOwE8NAcVdsMund/24ZfP/LGkYaFX8jhkvI8klxBAkGL9149zTVTGrDbB18h60I57UGSnR4glnNvhr4fzMA0VVlERMY3JVzysaRlwPSMv+AA5XlMvTEPd0sbly+6eF9AG+rhg/ctAr1upN41ohc5NTO8rc9LGwMtrZDScor586JHDCIv7I0ui95hgH3pZ567gfb2VjZ15Vvc9e/zSUry9Ps6EbsO1A7Tfxura91M9O9lelF99LH6HsIMnLAM2u8+dfr2faj6gx9z8DGijNQO8jPbsNl8Qx8s5k4D4A9YHH7DT1pSO46LnHCJiIhIYlPCJWNKug8WLP74I0IAjQ3Qsq+TubM//hStj6u1tec1F1zWhicGgxYHPgySfLSVKYXNF//gIiIiIhJBdwkQERERERGJESVcIiIiIiIiMaKES0REREREJEZGTcL105/+lEmTJpGUlMSiRYt48803490kEREZ5xSbRERkKKMi4frNb37Dfffdx8MPP8yOHTuYO3cuy5cvp66uLt5NExGRcUqxSUREhmNUJFyPPfYYK1eu5M4772TWrFk8+eSTeDwefvGLX8S7aSIiMk4pNomIyHAkfMLV2dnJ9u3bqaioCJfZbDYqKiqoqqrqd5+Ojg4aGxsj/kRERC6WC41NiksiIuNXwidcp0+fJhgMkpeXF1Gel5dHTU1Nv/usXbuW9PT08F9xcfFINFVERMaJC41NiksiIuNXwidcH8eaNWtoaGgI/x0/fjzeTRIRkXFMcUlEZPxyxLsBQ8nOzsZut1NbWxtRXltbS35+fr/7uN1u3G73SDRPRETGoQuNTYpLIiLjV8KPcLlcLubPn8/mzZvDZaFQiM2bN1NeXh7HlomIyHil2CQiIsOV8CNcAPfddx+33347V1xxBQsXLuRf//VfaWlp4c4774x300REZJxSbBIRkeEYFQnXLbfcwqlTp3jooYeoqalh3rx5/P73v4+6WFlERGSkKDaJiMhwjIqEC2DVqlWsWrUq3s0QEREJU2wSEZGhJPw1XCIiIiIiIqOVEi4REREREZEYUcIlIiIiIiISI0q4REREREREYkQJl4iIiIiISIyMmlUKx4dsztS4SE6pwZ0cAMBgYVkGy4pz00RERGRcO1lt51xzMTYrBEBhaSHeTEPjmR24XP5wPUN/X1r0RUbGLyVcCaArmdoITKPj2Ew+PDYZB37AwuNzkzY9j3N1h3EkdZKdfxqnO4QxcW2yiIiIjDNn3zuBjVQMXV9Cjh2powMXSUwA+n4xiUywfOmdNLiD1J2wRx23755JyVA0LUR6Vv/t6P4OpB+jZbRQwpUA3Fj8l/0AQfMN9oSW8BFTCGKnjVQO1c/i5BstgEUTXpr2enHSQe7lbtpaDDYbTCgNkOqNdy/kYkhOTuLg9tfCj0VE4qUrNk0LP5bxqft9YAy4uRmrV5bTHnLzjinnQ2bSO22yMNh6jXM14eW9hoXs+n81OAier9v/L8cGGx0ksZdmUjNs54/WV9eRPfZ2Zv71ZI43O3E4oK0ZmoqhqaHn8KHz/xZNhNwJYNPFNBIHSrgSgGVZJGGBZVhke5VFvBqx3Ziu4fntwSXsZw7HKOXEjjbO7nAQwsFhXwo+TwsOK4jBorDMR4vXBYDTZcgpDpGariGx0cCyLDye5Hg3Q0SkJzbJuNbzHSV6W7K9g8VsYzHbhjxO0ESPbPXHbxwcCF3KHhYSPNdV1jtHsuiazujHzQfM4ZX1JzH0NO8EAZx0Rh3X5vOS6WogydHRJ4Hr2rMnPTQUljiZeuMU/J708yU9DOe/lxnwZUDxVHA6h9U1GceUcI0CltX1+84Cx6ssOJ+MhUzX70cfhqbzdv1VtNenEMJGDUXsOjGVwPlTG8BJfkEQj7OTEBY5M7JoyXCSlGzImRDCkxbPnomIiMh4YLeCw65XZttBGTuGrOs3zgGuF4t0xuSyo76cBrKgV2LV/W/vI5xgEjuqJ/LW68d6ja31/dG6K8UL4CQrO0iaq6XXNgu7Lcg2z+neRcybb2PCF8pJ7vObanfy1vtSkeRkQ35BCIe+pY8ZOpWjlM0yQJBS+/uU8n7EtkDITgAHflzsDl3B7pMLMDg5TR7vHoMgDgw23D4PuXkhPK4AWIaMIg8theDxgs2C9GxI9sSnfyIiIiKDcVr+oSsBBdZHrLA9O6y6fuPEb4YesmonmXdDV3LydDEhHPROyhwEsAhi0fWDeRAHL+6fQv3T+xhoKmUXixAWLjqYe3UKbkf/SWp3cpbkCjAt9wyFt34C+/lhwFA/hw+FwG6H7OwQaV7NeIoHJVxjkMMWxEGQJDpYbNvKYraGt3WGnHSSxElTxGv119FU78Ngo5qJHNiVD9Sz4987MUBpqZ+8EhfGwITsVqyrLifJA74scLnj1j0RERGRmHBa/mElch5aucb2/4Z9XGOg2aRiiJ5a2fsqtWa8vB+6jLpXimjv2rPf47WRwikK2Ewe9l/t7ftqUa8AIaZObaNgamp4c9/RwU6/jSRXgJL8ZApyOwdcoC3JHcLpUOJ2IZRwjTMumx8XfkrZSyk9/0FbQil0mK4sKoCTA2Y2uw8s4swBOw1kUUUJ/LZrJM1JB2Vz2km6ZFp4/4yMAPapBWTkgd0G3gyw690lIiIigmVBmtU8ZL00GimwfTRkvaCx0WR8hIYxpbITN0dC0/nw0ExOHeq5Iq7vciQWhjpSeOCPmeEtfY9usHDg56qbfeSmtZwv61PHdN/WCDI9rcy6bgK5Wf0ncL3LLAtSPcObejra6CuxAJBiayGFnjnIudSyhM3h563BJJrIJIidvWYu7++6nPpdx89vtdhJMS2cC9dPpYkrlqdBVjYYKCzoxLqkiFQvpKSBbXjXzoqIiIhIH3YrhM86O+z6+bZqruw142kwzaFUWkkFopOyNlLYa+bx4XNZHKJ3QhadTbWSyhny4Gdnwoud9M8ihI3SWX5mXZaEJ6nPCGOfQxdmNDJreQnJST3H7C+ZsyxISU6MBE4JlwyLx96Oh2oACjnOtbwYsf1sKIsW07UCR6dxsYtFHP7DTELYacLHNnKx2IMFeGii/IY0Onw5GGPRdKgdmwWXTOsgc14hFuDQij8iIiIiIy7V1kwqA4/GlfDhsI7TbpJpMD5CVn+/svdkSCHsHGAOp/fm8dbeyC+AfRO+TtycI5fQ/67HxuDJlAVkUMe1dxVgt0cmfDmpJ4fVh4tFCZdcFJm2M2RyJvx8Kh+EHxsDZ0I51JtMgjh4jyv44HezCHIEBwFO4qeBTNpIwUU1FoYZl9uYWjGF5qQsChx1TCruxDe3MOr+GVrBR0RERCTxJFltJFltw6o7gWPDquc3Ts6YXPyWK6K8vxG0TuPiQy5l6/robflmz7Be72LR11WJOcuCbPspsjkFwHTei6oTNDY+Ck6kGS91FPHujnKqd5zBAC146SAJF8fD9UNYFMz0UnzDpfgyDTY7FJUYZsw2UXee100ORUREREY/p+Un3zox7PpTONBveasJ8vgIzjZUwiUJwW6FmOg4DMClvMs19Kz881GwhNMmj963PmwmjUN7L+X9vdUYLFpJwY+LZFp73TXDRnFZKsWfnovXayiaZJhaanBG/igiIiIiIhIzSrgk4RXZj1HUz1DzVbwcftwaSuZQaBatpJ6f72toJJMPdpfx1u4zGCyayMBNGy46wkuhJtHKDXfn03rJPGx2cLkg3QeZI9Q3ERERERnblHDJmOCxtVFm2x5VXsELQNec34OhWZwxOXRdRtk1Drafy3ju31KAP2PD0IaHrjuVtfLc+SmMs5dnMfPWy8jKDPSsgmNBarJhQqFfUxZFREREZEBKuGRccFp+ZtrfjSpfYnpGyQwWNaEJHDSXAmCzQoSw884fy9j6xz3Ye12QGcKGMTD3E0k47cHz+0Oyo5OrrnOROmcqAMnJIfJyA1HXlYmIiIjI+KCES8a13omQhaHQ/hGFRN5wcIn5I31v/ddh3BxiJmdezT8/VmZowsdupvPnlx3YrH1dNwc0fi67JgmHrSspc9qClC1OY8KSIuz2nqVOszKDJCfpru0iIiIiY40SLpEh2K3o5UQ9VitlRE5hNAb89KzI0WJSOcBsGrdl0tlVgw6S+dXLk2k2reF6IWxYhJi31InX3R4u9yW3Muv2hWRnBsL5nsNhyMoIahqjiIiIyCihhEvkIrEscJ1PrQBc1lkW8qeoesZAB8nh5+0mib3mMhr+3PtOZrCLybzwf/dhYcI3/gthY/KCdIp8Z3D3mspot0KULUmn+Ori8P6pKSE8yRo1ExEREYknJVwiI8yyIImeGwEmWW2UsyWqXqdx0Wl6RswsDKdMPvvfvoxT9NyJPYiDOgr5w+88OHrdbyIEzP+kk7xLsrDZuic+gkULi2dD6PzAnTEWlmU0aiYiIiISA0q4RBKUy+rEZXVGlKVwiEkciqobMhbNJg2DPVy218yj9pUJ1L/Sc/1ZK2k04uMtGnEQALruV+agk4pbPeTNKwnXzU5vZ2pBEy5n9JRKERERERkeJVwiY4DNMnitxoiyK9kaVa/TuGgxaYR63UQ6gIM6JrBjwwTMhp77nZ02+V3H7rM646U35LPwr1KwWV2jZnY7lOQ2ketr12qMIiIiIn0o4RIZR7pGzc5EledxEng7oqzZeGk1KfS+CqwdD8d+X8rG36fSfS+zDjw0mAySaMXWq3ay1cx1X/GRM29yuKz7htM2C/KzWijMakNERERkLFPCJSL9SrUaSe0zagYwsc+UxqCxc5Zs/LjDZQaLD5jDH39lw/rVO1HHaMFLwDhJojVinxkrSlhwTQrJ7gDGdCVnLkeI4twW0jz+i9U1ERERkRGjhEtE/iJ2K0iOVRtVPoGjA+4TMA7OkBOxWmMbKZx46TQbXvL21MNJs/GSQhP289ec9bAIYVFxWxqlSwrCpRmpHeRntmkREBEREUkIMUm4jhw5wj//8z+zZcsWampqKCws5G//9m958MEHcbl6Vl3btWsXlZWVvPXWW+Tk5PDNb36Tf/qnf4o41rPPPsv3vvc9jhw5QmlpKY888gg33nhjLJotIiPEYQXIs05GlU9nd8TzoLFRRyHtvRKzbgGcHGYGm582bHm6ZySu1aTgIEAyzVH7GGyUfbaYBdd6cTmD4XKXI0RBZhvJ7mDUPjJ2KDaJiEg8xCTh2rdvH6FQiJ///OdMmzaNPXv2sHLlSlpaWviXf/kXABobG1m2bBkVFRU8+eST7N69m7vuugufz8fdd98NwGuvvcatt97K2rVr+dSnPsXTTz/NTTfdxI4dO5g9e3Ysmi4iCcRuhSiwPhpweynvR5WdM9mcNdnh68W6WdC1OMhGFzs21tF1DZrBYKPVpJJGPW56bjxtzu9lJ8h1d2QwZUnR+fKuZfTTPAFyfe3I6KHYJCIi8WAZY0bkzqiPPvooTzzxBB9++CEATzzxBA8++CA1NTXhXxa//e1vs3HjRvbt2wfALbfcQktLCy+++GL4OFdeeSXz5s3jySefHPZrNzY2kp6ezm/tU/FY9qF3EJFxI2QsTps8zpETUW5haCWVaibSjBdbrxtQB4wDFx14IkbRuhK8BV8q5NKrc0lJ6rrmzGARCFq8u/k0112yB4d9fC2z39jeyeT/9RQNDQ14vd6hdxhh8YpNiksiIvHTaoJ8MXhoxGLTiF3D1dDQQGZmZvh5VVUVS5cujZjGsXz5ch555BHOnTtHRkYGVVVV3HfffRHHWb58ORs3bhypZovIGGezDLlWDbnU9Lt9Hq9HldWaCZwzWRgiLxQzWLzxG4vNv2k9f5Pp7nJw08Gkb+TRd+V8hz1IXloDHmcnfVkQvmm1xIZik4iIxNqIJFwHDx7kJz/5SXjKBkBNTQ2TJ0+OqJeXlxfelpGRQU1NTbisd52amv6/GHXr6Oigo6Mj/LyxMXqlNRGRjyvPOkGedaLfbTPNOxH3OYOuVRnPkc27T0TXb8JHi0nr91gWBo/VzNWVU6O2Tck8Ne5Gyy62kYxNiksiIuPXBSVc3/72t3nkkUcGrbN3715mzJgRfn7ixAmuv/56vvCFL7By5cqP18oLtHbtWn7wgx+MyGuJiPRmWWAnMhHyUo+X+gH38eOMPs75KY1nyeXtn+6M2FZnCsO1+kqijau/MQWXo2dVx+6J45YFBWnn8LjG1hL7oyE2KS6JiIxfF5Rw3X///dxxxx2D1pkyZUr4cXV1Nddccw2LFy/m3/7t3yLq5efnU1sbuZR09/P8/PxB63RvH8iaNWsipns0NjZSXFw86D4iIvHitPpPgAZK1CZb++k0rq4FPHrdbDqEjVqK2P5EQ0T97jpnTS5B7BE3qO69b4Z1mqV/Pz1qm8fZSZanOWFH1EZDbFJcEhEZvy4o4crJySEnJ2foinT9enjNNdcwf/581q9fj63PTXHKy8t58MEH8fv9OJ1dv+5u2rSJ6dOnk5GREa6zefNm7r333vB+mzZtory8fNDXdrvduN3uQeuIiIxmLiv6mi+AiRwccJ8p1j46jDvq2jOAFtJoIJNX/8/e6G0mjQ6SsBO9bH4AB2lWA9d9a3I/aRxAQ7+lF9NoiE2KSyIi41dMVik8ceIEn/zkJ5k4cSK//OUvsdt7VmDq/gWwoaGB6dOns2zZMlavXs2ePXu46667ePzxxyOW3r366qtZt24dK1asYMOGDfzoRz+64KV3tRqUiMhfpsO4CfbzG10HyZwjGz/OqAmObSaFRmPjEZMYqxQmUmxSXBIRiZ8xsUrhpk2bOHjwIAcPHqSoqChiW3d+l56ezh//+EcqKyuZP38+2dnZPPTQQ+GABrB48WKefvppvvvd7/Kd73yH0tJSNm7cqPuciIiMMLfVAXRElXtoIYPT/e9kQWPIYoChrxGn2CQiIvEwYvfhiif9kigiEh8j/SviaKG4JCISPyMdm6In8ouIiIiIiMhFoYRLREREREQkRpRwiYiIiIiIxEhMFs1INN2XqbWaxLyHjIjIWNX9uTsOLhe+IIpLIiLxM9KxaVwkXE1NTQDcEToc55aIiIxPZ86cIT09Pd7NSBiKSyIi8TdSsWlcrFIYCoWorq4mLS0Ny+p7p5jE0NjYSHFxMcePHx8TK3mpP4lrLPUF1J9E19DQQElJCefOncPn88W7OQljNMQlGHvvx7HUn7HUF1B/Et1Y689Ix6ZxMcJls9mi7rmSqLxe75h4I3dTfxLXWOoLqD+JzmbTJcO9jaa4BGPv/TiW+jOW+gLqT6Iba/0ZqdikCCgiIiIiIhIjSrhERERERERiRAlXgnC73Tz88MO43e54N+WiUH8S11jqC6g/iW6s9We8GWvnbyz1Zyz1BdSfRKf+/GXGxaIZIiIiIiIi8aARLhERERERkRhRwiUiIiIiIhIjSrhERERERERiRAmXiIiIiIhIjCjhShA//elPmTRpEklJSSxatIg333wz3k2KsnbtWhYsWEBaWhq5ubncdNNN7N+/P6LOJz/5SSzLivj7+te/HlHn2LFjrFixAo/HQ25uLg888ACBQGAkuwLA97///ai2zpgxI7y9vb2dyspKsrKySE1N5eabb6a2tjbiGInSl0mTJkX1xbIsKisrgcQ/L3/605/467/+awoLC7Esi40bN0ZsN8bw0EMPUVBQQHJyMhUVFRw4cCCiztmzZ7ntttvwer34fD6++tWv0tzcHFFn165dfOITnyApKYni4mJ+/OMfj3h//H4/q1evpqysjJSUFAoLC/nKV75CdXV1xDH6O6fr1q1LuP4A3HHHHVFtvf766yPqJNL5keFRXFJc+kspNiXWZ59iUxxjk5G427Bhg3G5XOYXv/iFee+998zKlSuNz+cztbW18W5ahOXLl5v169ebPXv2mJ07d5obb7zRlJSUmObm5nCdq6++2qxcudKcPHky/NfQ0BDeHggEzOzZs01FRYV55513zEsvvWSys7PNmjVrRrw/Dz/8sLn00ksj2nrq1Knw9q9//eumuLjYbN682bz99tvmyiuvNIsXL07IvtTV1UX0Y9OmTQYwW7duNcYk/nl56aWXzIMPPmiee+45A5jnn38+Yvu6detMenq62bhxo3n33XfNpz/9aTN58mTT1tYWrnP99debuXPnmtdff938+c9/NtOmTTO33npreHtDQ4PJy8szt912m9mzZ4955plnTHJysvn5z38+ov2pr683FRUV5je/+Y3Zt2+fqaqqMgsXLjTz58+POMbEiRPND3/4w4hz1vv/WqL0xxhjbr/9dnP99ddHtPXs2bMRdRLp/MjQFJcUly4GxabE+uxTbIpfbFLClQAWLlxoKisrw8+DwaApLCw0a9eujWOrhlZXV2cA88orr4TLrr76avOtb31rwH1eeuklY7PZTE1NTbjsiSeeMF6v13R0dMSyuVEefvhhM3fu3H631dfXG6fTaZ599tlw2d69ew1gqqqqjDGJ1Ze+vvWtb5mpU6eaUChkjBld56Xvh2YoFDL5+fnm0UcfDZfV19cbt9ttnnnmGWOMMe+//74BzFtvvRWu87vf/c5YlmVOnDhhjDHmZz/7mcnIyIjoz+rVq8306dNHtD/9efPNNw1gjh49Gi6bOHGiefzxxwfcJ5H6c/vtt5vPfOYzA+6TyOdH+qe4pLgUC4pNifPZp9g0sudHUwrjrLOzk+3bt1NRUREus9lsVFRUUFVVFceWDa2hoQGAzMzMiPL//M//JDs7m9mzZ7NmzRpaW1vD26qqqigrKyMvLy9ctnz5chobG3nvvfdGpuG9HDhwgMLCQqZMmcJtt93GsWPHANi+fTt+vz/ivMyYMYOSkpLweUm0vnTr7Ozk17/+NXfddReWZYXLR9N56e3w4cPU1NREnIv09HQWLVoUcS58Ph9XXHFFuE5FRQU2m4033ngjXGfp0qW4XK5wneXLl7N//37OnTs3Qr3pX0NDA5Zl4fP5IsrXrVtHVlYWl112GY8++mjENJpE68+2bdvIzc1l+vTp3HPPPZw5cyairaP5/Iw3ikuKS7Gg2NRlNH32KTZdvP44LkJf5C9w+vRpgsFgxIcJQF5eHvv27YtTq4YWCoW49957WbJkCbNnzw6X/83f/A0TJ06ksLCQXbt2sXr1avbv389zzz0HQE1NTb997d42khYtWsRTTz3F9OnTOXnyJD/4wQ/4xCc+wZ49e6ipqcHlckV9yOTl5YXbmUh96W3jxo3U19dzxx13hMtG03npq/v1+2tf73ORm5sbsd3hcJCZmRlRZ/LkyVHH6N6WkZERk/YPpb29ndWrV3Prrbfi9XrD5X//93/P5ZdfTmZmJq+99hpr1qzh5MmTPPbYY+E2J0p/rr/+ej73uc8xefJkDh06xHe+8x1uuOEGqqqqsNvto/r8jEeKS4pLsaDY1GW0fPYpNl3c86OESz6WyspK9uzZw6uvvhpRfvfdd4cfl5WVUVBQwLXXXsuhQ4eYOnXqSDdzUDfccEP48Zw5c1i0aBETJ07kt7/9LcnJyXFs2V/mP/7jP7jhhhsoLCwMl42m8zKe+P1+vvjFL2KM4YknnojYdt9994Ufz5kzB5fLxd/93d+xdu1a3G73SDd1UF/60pfCj8vKypgzZw5Tp05l27ZtXHvttXFsmYwnikuJTbFp9FBsuvg0pTDOsrOzsdvtUasM1dbWkp+fH6dWDW7VqlW8+OKLbN26laKiokHrLlq0CICDBw8CkJ+f329fu7fFk8/n45JLLuHgwYPk5+fT2dlJfX19RJ3e5yUR+3L06FFefvllvva1rw1abzSdl+7XH+z/SH5+PnV1dRHbA4EAZ8+eTdjz1R3Qjh49yqZNmyJ+QezPokWLCAQCHDlyBEi8/vQ2ZcoUsrOzI95fo+38jGeKS4nz3hsLcQkUm3pL9M8+xabYnB8lXHHmcrmYP38+mzdvDpeFQiE2b95MeXl5HFsWzRjDqlWreP7559myZUvUEGt/du7cCUBBQQEA5eXl7N69O+IN3v0fetasWTFp93A1Nzdz6NAhCgoKmD9/Pk6nM+K87N+/n2PHjoXPSyL2Zf369eTm5rJixYpB642m8zJ58mTy8/MjzkVjYyNvvPFGxLmor69n+/bt4TpbtmwhFAqFA3h5eTl/+tOf8Pv94TqbNm1i+vTpIz5lozugHThwgJdffpmsrKwh99m5cyc2my08/SGR+tPXRx99xJkzZyLeX6Pp/Ix3ikuJ8/k3FuISKDaNls8+xaYYnp8LWmJDYmLDhg3G7Xabp556yrz//vvm7rvvNj6fL2JVnkRwzz33mPT0dLNt27aIJTZbW1uNMcYcPHjQ/PCHPzRvv/22OXz4sHnhhRfMlClTzNKlS8PH6F7iddmyZWbnzp3m97//vcnJyYnLkrX333+/2bZtmzl8+LD5n//5H1NRUWGys7NNXV2dMaZr+d2SkhKzZcsW8/bbb5vy8nJTXl6ekH0xpmsVsZKSErN69eqI8tFwXpqamsw777xj3nnnHQOYxx57zLzzzjvhlZHWrVtnfD6feeGFF8yuXbvMZz7zmX6X3r3sssvMG2+8YV599VVTWloasbRrfX29ycvLM1/+8pfNnj17zIYNG4zH44nJUrWD9aezs9N8+tOfNkVFRWbnzp0R/5e6V0F67bXXzOOPP2527txpDh06ZH7961+bnJwc85WvfCXh+tPU1GT+8R//0VRVVZnDhw+bl19+2Vx++eWmtLTUtLe3h4+RSOdHhqa4pLh0sSg2Jc5nn2JT/GKTEq4E8ZOf/MSUlJQYl8tlFi5caF5//fV4NykK0O/f+vXrjTHGHDt2zCxdutRkZmYat9ttpk2bZh544IGIe2oYY8yRI0fMDTfcYJKTk012dra5//77jd/vH/H+3HLLLaagoMC4XC4zYcIEc8stt5iDBw+Gt7e1tZlvfOMbJiMjw3g8HvPZz37WnDx5MuIYidIXY4z5wx/+YACzf//+iPLRcF62bt3a73vr9ttvN8Z0Lb/7ve99z+Tl5Rm3222uvfbaqH6eOXPG3HrrrSY1NdV4vV5z5513mqampog67777rrnqqquM2+02EyZMMOvWrRvx/hw+fHjA/0vd96bZvn27WbRokUlPTzdJSUlm5syZ5kc/+lFEkEiU/rS2tpply5aZnJwc43Q6zcSJE83KlSujvpgn0vmR4VFcUly6GBSbEuezT7EpfrHJMsaY4Y+HiYiIiIiIyHDpGi4REREREZEYUcIlIiIiIiISI0q4REREREREYkQJl4iIiIiISIwo4RIREREREYkRJVwiIiIiIiIxooRLREREREQkRpRwiYiIiIiIxIgSLhERERERkRhRwiUiIiIiIhIjSrhERERERERiRAmXiIiIiIhIjPx/jUVZJCYz4SkAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADECAYAAABOQy+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnYklEQVR4nO3deZRc5X3m8e+vtt671d3aWlJrQ0JILGIRi4NjY8BmiW1hD/aQ+EzAcQ6TBMch8UwCIUMS5zjGWWzsmDjDwR7bObYxOPbASchgIE68zLCaVQgJCUmotbeWVqsXdVfd3/xxb3dXVVf1om5V9fJ8zml11Xvfe+ut26Wqp9773veauyMiIiIip1+s3A0QERERmS0UvERERERKRMFLREREpEQUvERERERKRMFLREREpEQS5W7AWDRY3OeTLHczREREREa1jZPt7j6v0LJpEbzmk+TexLJyN0NERERkVO9Pb91VbJkONYqIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIkoeImIiIiUiIKXiIiISIlMOHiZWauZ/djMXjezTWb2e1F5k5k9YWZvRr8bo3Izsy+b2TYze8XMLpxoG0RERESmg8no8UoDn3b3dcBlwG1mtg64A3jK3VcDT0X3Aa4DVkc/twJfnYQ2iIiIiEx5Ew5e7r7P3X8R3e4ENgOLgY3AN6Nq3wRuiG5vBL7loaeBOWbWMtF2iIiIiEx1kzrGy8yWAxcAzwAL3H1ftGg/sCC6vRjYnbVaW1SWv61bzex5M3u+g8xkNlNERESkLCYteJlZLfBPwO3ufjx7mbs74OPZnrvf7+4b3H1DA/HJaqaIiIhI2UxK8DKzJGHo+ra7/yAqPjBwCDH6fTAq3wO0Zq2+JCoTERERmdEm46xGA74GbHb3L2QtehS4Obp9M/BIVvmvR2c3XgZ0ZB2SFBEREZmxEpOwjcuB/wK8amYvRWV/DNwDPGRmnwB2AR+Nlj0GXA9sA7qBj09CG0RERESmvAkHL3f/GWBFFl9VoL4Dt030cUVERESmG81cLyIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJaLgJSIiIlIiCl4iIiIiJZKYjI2Y2deB9wMH3f2cqKwJ+B6wHNgJfNTdj5qZAV8Crge6gVvc/ReT0Q4RERGR06XHq+knlVNm+Li2MSnBC/gG8BXgW1lldwBPufs9ZnZHdP+PgOuA1dHPpcBXo98iIiIip4U7nKCBTm8YKClWEwDLK+2mhu2cQ4pe+j1FzIIiaxvwXNF2TErwcvefmNnyvOKNwBXR7W8C/04YvDYC33J3B542szlm1uLu+yajLSIiIjKzHPW5HPKF9FANDPUy5YejYr1PfaQ4wnwCYlz6m+dQPHQNBKfhmpL9vHv+YeZefRE1VYVD14B7L/yrossmq8erkAVZYWo/sCC6vRjYnVWvLSrLCV5mditwK8C809pMEREROR3cYT+t7PQ19OUdoss22uG6bmq5+rYzSGdiNNV1F3mw8PEKScQDFr33PJoa+olNaHT7UmDk0DWakiQad3czG9dBUHe/H7gfYLVVju8AqoiIiAxz0ivInOJH/04/kz0sJ02SWE5QGv0j+gN/sJSWhk5iF19WtI67Rb/zy8PfZtDU0E/1KL1NxfWf4nqT63QGrwMDhxDNrAU4GJXvAVqz6i2JykRERCRP2hMco5m0F//IjhXshRlKMD1Us5+lHGE+cTJ5S0cTBqIaOrnl7nk0vmcDicTQ2gOBadijR1VqqjJZvUx9Y37Umep0Bq9HgZuBe6Lfj2SVf9LMHiQcVN+h8V0iIjJT9XmKA76I4zSOWK/YeKVjNHOMZiq8l5T1jrhmsfFJAJd/8jzOXnKApquL9zqNTWaC689ukzWdxHcJB9LPNbM24E8JA9dDZvYJYBfw0aj6Y4RTSWwjnE7i45PRBhERkcmU8RhbfD3tvnBwfNJYpg4YqBMjILAYPdQwh8Nc+QfnFF0nPzBl9yI1VPWy6Jr11NVMRuBZMQnbkImYrLMaf7XIoqsK1HXgtsl4XBERmdnSniDIm+t7LOEnIMarfgm7feWweZfCbeRvb/g2+0nixLj8Y0tovnjlsEHZwUA4KjIm6djxJO84/yiLF/bnHJo7Neplmil0uqCIiEyqHq+m26vxES6OMtKYJCfGfm9lO+s4ylyG5lVyhh+QK8yBSnr44O/MY9G71/B29bqwPCv/ZN9e2bcpuwlhG2NO1/Kzqawa00MOM+/5LSyYl56E0CUziYKXiIjkSHuC/cFiOpkzht6l7FAU/j7AEg6xiE5vIG7pAusUGYwdlTvQwFFuuP86bO1qkhWMOBK80FlwZlBdw2Av1bJRnoezblhZBqgccS2R8VPwEhGZQTqDOnYEa9g/ePJ44eHWRlBwEsqjzGUvy3CMM65cMhh4MkGMhQ2d1Ff2Ftxq4EMRrdngrLoTXPihZXStLD6uSWQ2UvASEZlExSZwhLAXZqT1DnoLrwcXsovV5Mah3I3GCvTeGE4PVXTRQBWdXHr7OzCDoEB7Bg/yOZA3FUBrfZr3XNTK3v5akllDo44egvXLT9CyeOyHzbrGXFNk9lDwEhGJdAfVpIu8LRYekxTKEOftYBWvcAltnDE4EqmCngJTBAzJnYLSAOOc983jvGs2UFcflgf5D5uXewaWu0NlNRyJVVNbP3LIG0kAHIKc0CUik0fBa5r4SrqDflL859iawbIYaZrtEEmbGrPxikxFX80codurucHOz1sykGCMt/xMNrMhGshdqE5u/fBfHzxUFxAjSR+X/+YaahetJJmCjsPQugpiWe+yBXvD8h4inoDKZgjiY3t+2cPX+4G6sa0mImWi4DVNbCZGDykIbh2cdTgghmEsZBereJ14VgArfCgiyFqeoc6Os8R2EBvf1ZxEppU3Pc1RUpz0/0qGRNb/A4Oob+rMd8zh4g+cwwtvHiGZiv4/5A/Yzi/yrN8xqKwK2BkHTuwCoGXhMhrnQyJ5ep6XiExPCl7TSFNLiuvuvh5fEF6d3QNorTrBkWffZuv/3QBZZwTlj9vwwX/CSQF7+5K0/2wzrWwjycno23tObcAxIzoAEpYl6KfZDnCmvarAJtNG3bwKLrv1CrYeOkxl9iSU0Uu4JwZb2w9RN/LE4iIiE6bgNd3Y0OnRxGBvfy1csI6lF4x9E+7Q3Qnn3nIOXa+1kc4LaUH0udTXF+e8tSfw6IrvAcbBZ3bw3MNtvOYXE4t63oqfbu45y7JiIQDVdLHaXmOx7dThUikJs7yxT6c4DkpE5FQpeM1CZlBTDwHVVF1xZtF6lce7Wb4hd7bkVdct59xPQ83OzTmDfvPHrgRBLO9+bl0H3npqJ//xjy2kPUmCgbl+ig+CKXTqe3Z59v1F7GS1vUajtQ/b2lhmvT4V2duNkVGPoMgsl8kYB9pTVFWGF4mOx5xYLJyYNRZz4oNlYfmpnhAh04uCl4xbXR1w7toR5qQem5Xr1rDgZhs63d2LxK4iM00PyD/rq/LtN9n+47d5/HtrMc/tdfPBcT05jzBsm5b1b3adeo6RyJkQMn/dcPuNHGKtv0jcip8JN/wxxxLUxh7mxhMwi9WNEVBpPWPejsxsB/fHyKQD4omw5z0Wh/jgTxgeBu7H4gy7xM5ss3JpDx2dCTo6kwQBZAIjCCAIbPB2JmMEHt52L5y8BoJazKL9HP02c+JxqK7MsGxxoYtny1Sk4CVlU1MDNTWT3yuUXrSKs9ev4uzbw/s5Ya3Iw+WMcCty3bXkti2saO1hbmN/wXoDjj75DN++s5cXeNfg4xWewjLb6F91x7unRn/MkdsReIyYBZzlL1JtJ0apXWxrxVs98Z7Hkdcf2H6GI4CV/LBi4LBnRzgtQywvjMQTUVksPOsxHh8KMlNVfSMcOFHNvr3hl53zl52g76SRCcLhCZnMQJCIbmcKzyEWj8JYy+KAeQtmdq/woZb10DJ034B49DOecy7CsBb+ePQ7PVhm7H9pm4LXNKLgJTNOIgl14z6TbPQPgFht7qVPih0WaHrvpfzuey8dbwOmnO6eGPt/9CI//IvlnPThF045tWA3srFvc+R62X/NXvZSQdgbc2hPivqmNA1zT/+Ywn37dxGkjSCw6MPScIf1Fy0h3R8GlCDNYFgJMkO9t+k+WHVuGNCmingC6uYM3d/VXZtbIRb9jNLmIAMnjkNNR9eMD16TJTw8WWypk0lqP04nU+i/tYhMJdVVASs3rufTG9eXuykT8rNbnqKzK86B7iqqajoIMqXp+orFIJYaNgkFb27dNeq6ixYuIwjCnpGZJhaHRAKd2CCz1iw/Ai8iIiJSOgpeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIgpeIiIiIiVStuBlZtea2RYz22Zmd5SrHSIiIiKlUpbgZWZx4D7gOmAd8Ktmtq4cbREREREplXL1eF0CbHP3t9y9D3gQ2FimtoiIiIiURLmC12Jgd9b9tqhskJndambPm9nzHWRK2jgRERGR02HKDq539/vdfYO7b2ggXu7miIiIiExYuYLXHqA16/6SqExERERkxipX8HoOWG1mK8wsBdwEPFqmtoiIiIiURKIcD+ruaTP7JPA4EAe+7u6bytEWERERkVIpS/ACcPfHgMfK9fgiIiIipTZlB9eLiIiIzDQKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlouAlIiIiUiIKXiIiIiIlkih3A2TsevsTbPnuy5z9zjnMvaSVPX21xLKis0e/4/GyNE9kSorFnEzGmHNgF5200FATMCflBIEN1lncGvDTlw9TVRdgNsLGCnAfXjbebYjI7KHgNU2sJkZ3ex9LfvIAL/3HGvayggxGnMxgnWXvWsqaX2rkwOKzqKkPyyqrIZEsU6NFpoDz156BA7/1sTZ27WnHDF751/3UVJwkZs7xnkqOHF3L4q4E1mXE848DOLgbBfLVYAV3SKWcimUL6K+rZOfO3YWqFboZBre8ZSd7x/88RWR6UPCaJm5P1BC+Jf+ci/g5aU9wxOeRif6E/aRo++kKfvaTCznBpmitAMO5+iPV1Fx/JTV1ARC+0btDMgnzFsDrB2vL8pxESuFz//226FYfi+b3AWCb9vHO1TsBONJVxY72XfTUJ3E3zHIjlgGxKBkNLrOwfEAmiLH7SAObn53H8e4a5pKVpgYqOuC5Kzpg+GBRsnURFcvnc+go9HRBum+oXs5K2Xd9qDgeD79sqcdNZOpS8JqmEpZmvu3LKVvKdi7zpzhJ1WDZ68EF/OLhi+h8+AeDZU6MgBhnv28h89a3kFnUCkBNHXQkqqlt0Bu3zB5NNT001fRMyrb6MzHaO2tIB2G3WX4/WcyG95vFYmFZXzrOjkNNvPjGIvqP1dHzRh+DHV85/x8L9b0ZBjhG7YUtJFa3Ut/geJC1VvbtvPQ3sMUgqmMGdfXO7l59KROZbApeM0zMnCq6B+9fFA97yPIdDZrZ9sQ6Nv1oLUF0jkU39Zygnmo6Of+T7+RE3FiwZB8HFp5fquaLTGvJeEDLnM5TXn9pcwfvPmsHvf2JnLFjo30RGgh4L+9exNa3D3Nk81scDWLDgl5Ob17U+WY5ywP6MnE8MCrOXEF6cfiljIDBQ64Ai/q3D/acQxTcsm53L1jJspUBbx6t1ZhTkTwKXrNUY+wwF/NTLuang2XucNwb2Olr2PeVtzjEAu7+UobzP3oMCL+Zr7qileS5q5jTWKaGi8wClcn0Ka13ycrdXLKywPiycUhnYhw8XsMb+/Zy5JXqwfKBnrmBkGdkBcIo0MXMceDEq9t57kQNyUSG1BkrwzoDwcwhkzFOzO3jwN6TOSc5ZNdbMK+PnhVrqVGnm8wwCl4yyAwarIP1PMt6nqXPU+wLWul5uAaAk1Tww++dxwmeI+79g9+mHTjvwys5+30t1G1YNbi9Qmd7VVbpMKbIVJaIByxq7GRR46n33AGc6E2x+0gD3X3bB8uy/+9bj8Pb4e3snjkzCAJj76Z6Djy6h2Q8IBHPOk5K4YOthQoX/tIZrFzaw+GW88IqPrxqofep7JAIYDGoqCj0oCLjp+AlRaWsj2Xx7TllS4Nt9JOKDlOE70rttLDjhwf5xQ8WYzybU98IvwEHxHjHRxbS/JGrqGsI16uohMYmz5kSQ0RmhtrKPtYuOnTK65+/bB+ZwDjSVUUQFHiTKHASRLbAYzz7Qj8//XkF6czB3C98nru+MXQYNftwrLuRSmSoPm8NtResKDh9T1iPggvyDxc3z9P7nSh4yTjNiR0dVtbkh1jBG8Pe+bIHFh/1uWx5+DxefPitwYG9/VQQJ81Vtyxg8TtX5rxJVaacJS29HF68/rQ8DxGZ+uIxZ15d9+gVi7j23C0EXriLPf/Eh2I98fs76ti+6zj7X30jZ53csXG5Y+eybwZBuFbFOWupbDpJKpkV7LCc970g+wSIrPK6mgzHW9dRW6cjBjOBgpdMWMycCk6OWGeB7WUBe3PK0p6g3eez/RvreOEb4RQYMZweaugjxTkfPpPm2v/DwFtkMp5mfn0XFb/2UY37EJFRpRKZ0SuNYmnzMZY2H5vQNo50VdF25ACHdtXSS27os6gHbGjsXO5hVzPYfqKanr63SaxdSywWBj3PCpR9/Sn2HkwNe9zsOu5QV5OmoW7i+0QmZkLBy8w+AvwZsBa4xN2fz1p2J/AJIAN8yt0fj8qvBb4ExIEH3P2eibRBpq+EpVloe1mYF8gCN476XNp+sII9VIZlGIdZSCdz4N4HWP2htUDYq19X2cfyX25l7uXh+LLsb4rxBOraF5GyGpqy5MAprR8Exo72RoLeNiArpGX1fmWeG7pdaLrfdBDjpfZG5tV1kUqEJ2/4sAO0hce8DdRrqOql6aqLc3rtZPwm2uP1GvBh4H9mF5rZOuAm4GxgEfCkmZ0ZLb4PeC/QBjxnZo+6++sTbIfMIDFzmu0QzeSOD3GHTq/niM2HR54C4CRVtLGC5x5sJeD/hfWAOBku/9hiVr5nOZx1Zs42ACoqnOqaUjwbEZGJicWcM+YfmfB2Vs0/zPHeCvoz4RwfhQLaSIcyDx6vZdO3dtNQlTvvXX6Ayw9vDVW9zL/qfBobxne2rueNlxvoAZzuJhS83H0zgA3fExuBB939JLDDzLYBl0TLtrn7W9F6D0Z1FbxkVGZQb8ep53hO+RpepderwkH/kS1+Hi9/+zg/+fY+LApk2QJi/NJNLay+cin1tZlo+07nkrU0NM6M/9wiItnMoKFq5GEhI2mq6WH1gvbh2y34WNFZ724c66nkpR9uI5Uc32HO/GDYdbKCCz+yvOCj54e9gj13DsmkU1dT3sOtp2uM12Lg6az7bVEZwO688ksLbcDMbgVuBZinoWgyikrroZKhb2EX8HPOt+GBa8AhX8iWB8/jtQfnEUT/cQPi9PAcG25cxoJLlpGMB7hDTXUGW3Mmc/PnGxIRmWXisfEdZjRzmmp6uHLd9tErj+K1PQvY98QrudvPvzRXoWUMfZl++3Aja1sO5PTSFZxShKGevIHlqUSGhisuoaoyKLzCGI2aaMzsSWBhgUV3ufsjE3r0Ebj7/cD9AKutUgeUZVziFhBOt11Yi7XRQtuw8p1+Jvv/aTEHv189+J+um1o6aOSsG9Zw7uL91FT0DetaN3Oaa7tZ8YH16i0TETkNzll8amPksjVW90SX9Arfxb/5J7uja6bmGx47HMNp49LfuWDY2bZDc8SN/gEwavBy96tH3cpwe4DWrPtLojJGKBcpu+W2leW2Nacs7QnafDldjzzNwJLwUitD/zGP00gHTaQ+888k6AcgRR8funsNC6+5kMqKiX1DEhGRicu/pFeDHeEce75I7Vz9nqSDJnb8/V5epSHrMyA/pI3cV3S6juE9CnzHzL5AOLh+NfAs4efVajNbQRi4bgJ+7TS1QWRSJCzNcts2ar1+T3LUm/Ho2pc91PDQZ5J0fOYYCYYGlVbRxcY7z2DxNeupSIWBLPu073jMSeqsIRGRKSVp/czlAHNtDD1vI3zXnuh0Eh8C/g6YB/yLmb3k7te4+yYze4hw0HwauM3dM9E6nwQeJ5xO4uvuvmkibRCZKpLWz3zbn1O2nDfJeJyT0bQYAB3exOOf6+bw5w4OjSHIWscw5tDOjX+6iprLLx4sr6nKUF2lnjMRkelsomc1/hD4YZFlnwU+W6D8MeCxiTyuyHQStwzVdA3er7YuWqJzTPIvKQJhz9nLfhn/+Of7CDuPQyep5LJPrKW16SgV+RdRdsPdSMQDaiv7aLnuotP1dEREZAJ0uqBIGRUaiJ+0fjbYT4eVd3oDu7/2JtsZmoAs57IlOEeZC8C79u/CbPjZOi0Nx1l0zfllP51aRGS2UvASmSbqrIN19uKIdTIe45g3s/u+LcPmwAkwXqCFY3/ZToI+4gyFrxgZrrx9HRtuWkWswOnimv1fRGRyKHiJzCBxCwrO+j/gDN4g4zFO0EDAUJpqp4V/uxf+5d5dBderoIcb71xG83suIJX0YT1pyWRAjcafiYiMSsFLZJaJW0ADR3PKGjnMKl7jJJXDesocY68v4/ufg/7P7Rs8vJldL0OcKk6w8Y5VVF06NL6ssSFNQ11ac5uJiEQUvEQECMebVdJbcNlK28JKthRdN+0JNvlFPHbPZoJotjPHOEE9Vd7Nu3/v7MEL8+ZPcROPOzWpPlZ+4FxNoyEiM56Cl4hMWMLSrLdnhpV3ew37WcKmL+/L60kbut3OQgxnzd75pBK5g/6DaH6zxupuljZ3sPT9F5yW9ouIlIqCl4icNtXWxUor3lMGYbjqZA7d39hEb153mOF0UccO5vEjX0j8zx4vsAUjRQ/vuO0Czr3hDCqyrhKQPxatIhWQUq+aiJSRgpeIlFXMnAaO0mBHi9YJfCvdVjt4VQAYGmPmGK/7hTx333P8+L6tWIEpowPiXHXbKipTaVrfu5buk6nJfyIiImOg4CUiU17MnFo6iy7fwH9Q6DK3IaeLerbft4X9tMIXXydGwFZrH6yR8QRx6+fX/+aswcOd2b1liXhAMq6zNkVk4hS8RGTai9vIoaieY9TbMdbwauEKBu0+n4f+Ww8B8WGL0yTJEOfGz55DLFb8seoq+6hO9Y+r7SIyuyh4iYgAc+0gczlYdPlRn8uTdx0GGDblBoQXRe/yOubZ3oLrpzjJB+99NxVJXTVAZDZT8BIRGYNGa6eR9qLLMx6jw5pxrGAw66WKr9++FcdI5UzbMXSINEOM+ezjQ/ddMYktF5GpRMFLRGQSxC2gqcgVAwYs4m3SniBNsuDyk1SyhxX83W27CoY3gLQn+a0vLaMikS64XJPVikxtCl4iIiWUsDQJCoemSnqGXVUgXzsL+Mbt3aSz3r4HslZAjBS9bPzLDVSl+oat69G8aKlERmPRRMpEwUtEZBqZaweYy4Giy496M//yx08XnFYDwpDW7gtotbd4519cM2x5dj9bdaqPppoe9aKJTCIFLxGRGaTRDtPI4RHrtLCL4zTys/9RaELa8OQBx+ihhiM+nyY7SIxomo2sMWlxMlz/+ctprO4lFtPEtCJjoeAlIjLLVFovlewbU90WdtFX4OLpEE6z8YM/epHjPodqOxGVDu8eC4jx23+3UuFMBAUvEREZQRjSCl88HaCR9pzxZjB8uo0DLObvf3dsxyt7vZpf/ewqmmu7B8vyL/2kCW1lOlPwEhGRCUlY4ZMFBizibRbx9pi21UM1j//JwaJnfjrQ7XV87J7Vg/cLVwyDXiwWMK+uu1gtkZJT8BIRkSmjyrpZyRtFl7vDXlvO43fuBwpPZjvAcNp9Yc4YtUK15tDOr9x37USaLTJmCl4iIjJtmMFido65/nz2cIKGnJMCssPaSSrZ7mfzwG2bC64/sF6Cfho4wge//B4SOswpE6DgJSIiM1bS+ke84gDAXPYXPbQZcvqp4BjNfPF391Nlww9dOkYNnVE4u4K4eVQ+spi5puuYZRS8RERkVhtpUtsBlfRSRwet9lbB5e7QRT3HaOaBT72Z08NWTNoTVNsJ/tNfXThsWTIeUFs5fBJcmf4UvERERCbIDGo5Ti3Hx7xOL5XsZRmP/OGzw5alSdJDNbUc56rP/HLOsqfvfqxosPvwly/XGZ9T3ISCl5n9NfABoA/YDnzc3Y9Fy+4EPgFkgE+5++NR+bXAl4A48IC73zORNoiIiExHldbLSrYUXR64cYIGnr77sbwlXvCkgmPM5YFPbaWK7sFa+bLXauYgG++76lSaLhMw0R6vJ4A73T1tZp8H7gT+yMzWATcBZwOLgCfN7MxonfuA9wJtwHNm9qi7vz7BdoiIiMwoMXPqOUY9x8ZUf67vp5tawklsRz7bs5dqtvnZ3HfbjmHLk/Qxh8N88N53UZkc+RCsjN+Egpe7/yjr7tPAjdHtjcCD7n4S2GFm24BLomXb3P0tADN7MKqr4CUiIjIBMXNq6RxT3RpO0MTBgr1ifVRyjGa+cfvmUU46CHvVquhiDoe59m+vwswHL8Y+vO6QymR61h4SncwxXr8BfC+6vZgwiA1oi8oAdueVX1poY2Z2K3ArwDwNRRMREZlUZoXnQaukh4W0sZC2MW2n22s4zAK+8+lXR5gvLXpMnH5SOMYNn71gsLxQWKuv6p2RJxiMmmjM7ElgYYFFd7n7I1Gdu4A08O3Japi73w/cD7DaKnWBLxERkSmo2rqopvDZnoVkPMZBFvPju57KKc8OgU44vu0kldTRQXyUs04r6OUDX3wXVampf2h01ODl7lePtNzMbgHeD1zlPnhFrT1Aa1a1JVEZI5SLiIjIDBe3gJacg1/FBW50UU9AbMR6PdTwzd/fTJoESfqBwicX5OvypkLXdT+tJnpW47XAHwLvdvfsGeUeBb5jZl8gHFy/GniW8OmtNrMVhIHrJuDXJtIGERERmZli5tTRMWq9Bo6ykDYyHiMgPmp9w+mgiS7qJqOZ4zLRwVNfASqAJyycevdpd/8td99kZg8RDppPA7e5ewbAzD4JPE44ncTX3X3TBNsgIiIiQtwC4oxt0H4zB2m2g6e5RcPZ0NHBqWu1Vfq9iWXlboaIiIjIqN6f3vqCu28otGzkg6YiIiIiMmkUvERERERKRMFLREREpEQUvERERERKRMFLREREpEQUvERERERKRMFLREREpEQUvERERERKRMFLREREpEQUvERERERKRMFLREREpESmxbUazawT2FLudkwBc4H2cjdiCtB+0D4YoP0Q0n7QPhig/RAq935Y5u7zCi1IlLolp2hLsYtNziZm9rz2g/YDaB8M0H4IaT9oHwzQfghN5f2gQ40iIiIiJaLgJSIiIlIi0yV43V/uBkwR2g8h7QftgwHaDyHtB+2DAdoPoSm7H6bF4HoRERGRmWC69HiJiIiITHsKXiIiIiIlMuWCl5n9tZm9YWavmNkPzWxO1rI7zWybmW0xs2uyyq+NyraZ2R1lafhpNhueI4CZtZrZj83sdTPbZGa/F5U3mdkTZvZm9LsxKjcz+3K0X14xswvL+wwmj5nFzexFM/vn6P4KM3smeq7fM7NUVF4R3d8WLV9e1oZPIjObY2bfj94TNpvZO2bpa+H3o/8Pr5nZd82scja8Hszs62Z20Mxeyyob99/fzG6O6r9pZjeX47mcqiL7YNZ9ThbaD1nLPm1mbmZzo/tT+7Xg7lPqB3gfkIhufx74fHR7HfAyUAGsALYD8ehnO7ASSEV11pX7eUzyPpnxzzHrubYAF0a364Ct0d/+r4A7ovI7sl4X1wP/ChhwGfBMuZ/DJO6LPwC+A/xzdP8h4Kbo9j8Avx3d/h3gH6LbNwHfK3fbJ3EffBP4zeh2Cpgz214LwGJgB1CV9Tq4ZTa8HoB3ARcCr2WVjevvDzQBb0W/G6PbjeV+bhPcB7Puc7LQfojKW4HHgV3A3OnwWphyPV7u/iN3T0d3nwaWRLc3Ag+6+0l33wFsAy6Jfra5+1vu3gc8GNWdSWbDcwTA3fe5+y+i253AZsIPno2EH8JEv2+Ibm8EvuWhp4E5ZtZS2lZPPjNbAvwK8EB034Arge9HVfL3wcC++T5wVVR/WjOzBsI3268BuHufux9jlr0WIgmgyswSQDWwj1nwenD3nwBH8orH+/e/BnjC3Y+4+1HgCeDa0974SVJoH8zGz8kirwWALwJ/CGSfKTilXwtTLnjl+Q3C1Arhh+/urGVtUVmx8plkNjzHYaJDJBcAzwAL3H1ftGg/sCC6PVP3zb2EbyZBdL8ZOJb1Zpv9PAf3QbS8I6o/3a0ADgH/Kzrk+oCZ1TDLXgvuvgf4G+BtwsDVAbzA7Hs9DBjv339Gvi6yzNrPSTPbCOxx95fzFk3p/VCW4GVmT0ZjFfJ/NmbVuQtIA98uRxulvMysFvgn4HZ3P569zMM+4xk7D4qZvR846O4vlLstZZYgPLTwVXe/AOgiPLQ0aKa/FgCiMUwbCYPoIqCGadRjczrNhr//SGbz56SZVQN/DNxd7raMV1mu1ejuV4+03MxuAd4PXBX9xwLYQ3gsd8CSqIwRymeKkZ77jGNmScLQ9W13/0FUfMDMWtx9X9RlfDAqn4n75nLgg2Z2PVAJ1ANfIuwuT0S9GNnPc2AftEWHohqAw6Vv9qRrA9rc/Zno/vcJg9dsei0AXA3scPdDAGb2A8LXyGx7PQwY799/D3BFXvm/l6Cdp5U+JzmD8MvIy9GR9CXAL8zsEqb4a2HKHWo0s2sJD7F80N27sxY9CtwUnbGzAlgNPAs8B6yOzvBJEQ4mfbTU7T7NZsNzBAbHMn0N2OzuX8ha9CgwcAbKzcAjWeW/Hp3FchnQkXUYYlpy9zvdfYm7Lyf8W/+bu38M+DFwY1Qtfx8M7Jsbo/rTvhfA3fcDu81sTVR0FfA6s+i1EHkbuMzMqqP/HwP7YVa9HrKM9+//OPA+M2uMeg/fF5VNW/qcBHd/1d3nu/vy6L2yjfDErP1M9ddCqUfzj/ZDOBhwN/BS9PMPWcvuIjwzYwtwXVb59YRnv20H7ir3czhN+2XGP8foeb6T8NDBK1mvgesJx6g8BbwJPAk0RfUNuC/aL68CG8r9HCZ5f1zB0FmNKwnfRLcBDwMVUXlldH9btHxluds9ic//fOD56PXwvwnPRJp1rwXgz4E3gNeAfyQ8a23Gvx6A7xKOa+sn/GD9xKn8/QnHQW2Lfj5e7uc1Cftg1n1OFtoPect3MnRW45R+LeiSQSIiIiIlMuUONYqIiIjMVApeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIgpeIiIiIiWi4CUiIiJSIv8f6N5UC05h4/gAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAERCAYAAABFDFfwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFIUlEQVR4nO3deXyb1YHu8edosbzve2wnzk5ISNIEgoFCGTKENm2HLrQwlAbKwMANLSlcCAzbZVoaoJ22tNOBaacD3HtZCnNbmEKBpglLWwIhgQCBEBIS4myOnXiRd8vSuX/YlqXXku0E7/l9Px9h633P++ro4Eh6dM57jrHWWgEAAAAAwlyjXQEAAAAAGGsISgAAAADgQFACAAAAAAeCEgAAAAA4EJQAAAAAwIGgBAAAAAAOBCUAAAAAcCAoAQAAAICDZ7QrMBJCoZAOHDigtLQ0GWNGuzoAAAAARom1Vo2NjSouLpbLFb/f6LgISgcOHFBpaeloVwMAAADAGLF3716VlJTE3X9cBKW0tDRJ0kOuciUbRhsCAAAAx6sWG9Klod3hjBDPcRGUeobbJRuXko17lGsDAAAAYLQNdEkO3SsAAAAA4EBQAgAAAAAHghIAAAAAOBCUAAAAAMCBoAQAAAAADgQlAAAAAHAgKAEAAACAA0EJAAAAABwISgAAAADgQFACAAAAAAeCEgAAAAA4EJQAAAAAwIGgBAAAAAAOBCUAAAAAcCAoAQAAAIADQQkAAAAAHIY1KK1Zs0Ynn3yy0tLSlJ+fr/PPP1/bt2+PKtPW1qaVK1cqJydHqamp+spXvqJDhw5FlamsrNTy5cuVnJys/Px83XDDDers7BzOqgMAAAA4jg1rUHr55Ze1cuVKvfbaa1q7dq0CgYDOPfdcNTc3h8t897vf1e9//3s9+eSTevnll3XgwAF9+ctfDu8PBoNavny5Ojo69Oqrr+rhhx/WQw89pNtvv304qw4AAADgOGastXakHqympkb5+fl6+eWXdeaZZ6qhoUF5eXl69NFH9dWvflWS9MEHH+iEE07Qhg0bdOqpp+q5557T5z//eR04cEAFBQWSpAceeECrV69WTU2NEhISBnxcv9+vjIwMPeGepmTjHtbnCAAAAGDsarFBfS34kRoaGpSenh633Iheo9TQ0CBJys7OliRt3rxZgUBAS5cuDZeZPXu2ysrKtGHDBknShg0bNG/evHBIkqRly5bJ7/frvffei/k47e3t8vv9UTcAAAAAGKwRC0qhUEirVq3S6aefrrlz50qSqqqqlJCQoMzMzKiyBQUFqqqqCpeJDEk9+3v2xbJmzRplZGSEb6WlpUP8bAAAAABMZCMWlFauXKmtW7fq8ccfH/bHuvnmm9XQ0BC+7d27d9gfEwAAAMDE4RmJB7nmmmv0zDPP6JVXXlFJSUl4e2FhoTo6OlRfXx/Vq3To0CEVFhaGy2zcuDHqfD2z4vWUcfL5fPL5fEP8LAAAAAAcL4a1R8laq2uuuUa/+93vtH79epWXl0ftX7Rokbxer9atWxfetn37dlVWVqqiokKSVFFRoXfffVfV1dXhMmvXrlV6errmzJkznNUHAAAAcJwa1h6llStX6tFHH9XTTz+ttLS08DVFGRkZSkpKUkZGhi6//HJdd911ys7OVnp6ur797W+roqJCp556qiTp3HPP1Zw5c3TJJZfo3nvvVVVVlW699VatXLmSXiMAAAAAw2JYpwc3xsTc/uCDD+rSSy+V1LXg7PXXX6/HHntM7e3tWrZsmf7t3/4taljdnj17dPXVV+ull15SSkqKVqxYobvvvlsez+ByHtODAwAAAJAGPz34iK6jNFoISgAAAACkMbqOEgAAAACMBwQlAAAAAHAgKAEAAACAA0EJAAAAABwISgAAAADgQFACAAAAAAeCEgAAAAA4EJQAAAAAwIGgBAAAAAAOBCUAAAAAcCAoAQAAAIADQQkAAAAAHAhKAAAAAOBAUAIAAAAAB4ISAAAAADgQlAAAAADAgaAEAAAAAA4EJQAAAABwICgBAAAAgANBCQAAAAAcCEoAAAAA4EBQAgAAAAAHghIAAAAAOBCUAAAAAMCBoAQAAAAADgQlAAAAAHAgKAEAAACAA0EJAAAAABwISgAAAADgQFACAAAAAAeCEgAAAAA4EJQAAAAAwIGgBAAAAAAOBCUAAAAAcCAoAQAAAIDDsAalV155RV/4whdUXFwsY4yeeuqpqP3WWt1+++0qKipSUlKSli5dqh07dkSVqa2t1cUXX6z09HRlZmbq8ssvV1NT03BWGwAAAMAY12CzVGmnaU9omj4OTdfHoenaE5rW51Zpo281tnBQ5/cMZ+Wbm5s1f/58fetb39KXv/zlPvvvvfde/exnP9PDDz+s8vJy3XbbbVq2bJnef/99JSYmSpIuvvhiHTx4UGvXrlUgENBll12mK6+8Uo8++uhwVh0AAADAEOiwCfIrS8FBRg8jO6hye+00SVKdstVqU+MXdJwuVXsl/XXgelhrB1eTT8gYo9/97nc6//zzJXX1JhUXF+v666/X//yf/1OS1NDQoIKCAj300EO68MILtW3bNs2ZM0dvvPGGFi9eLEl6/vnn9bnPfU779u1TcXHxoB7b7/crIyNDT7inKdm4h+X5AQAAAONNwHrVrLRjOnagQBOSS3vsTDUoW3U2Ry6FZGXiHmdkZWWO4rGMPn15mbzukBZ8oVRZ6YF+69OTeppbWzT1vK+qoaFB6enpccsPa49Sf3bv3q2qqiotXbo0vC0jI0NLlizRhg0bdOGFF2rDhg3KzMwMhyRJWrp0qVwul15//XV96Utfinnu9vZ2tbe3h+/7/f7heyIAAADACOi0HgWUcFTH9BdmOuXRLjtbNSpWi1IVtG4ZY6OO7tMdExa93cQIOLb7DJ+9qkAJnpBO+rspvfvinNa53drYwSmyBkZSVnq7TPyiUQKdoUGVG7WgVFVVJUkqKCiI2l5QUBDeV1VVpfz8/Kj9Ho9H2dnZ4TKxrFmzRnfeeecQ1xgAAADoX6ifD/b9iRdoWpWiWpuv/ZqiahV3D187mgFhkfWJPs7KyGWtzrmiWKXZ9co9Y57crvi9OuHjYjz8QMEnLaVTaSmdR1Hv0TdqQWk43XzzzbruuuvC9/1+v0pLS0exRgAAAJio2mySjnSHmUOapFDEfGnOyDHY6296dMorY61O++ZknVtYo8xTT5IxccJKnHPECzFul5ST2aGUpKCkfEntsQsep0YtKBUWds02cejQIRUVFYW3Hzp0SAsWLAiXqa6ujjqus7NTtbW14eNj8fl88vl8Q19pAAAATAhtNkmHbb72aZoalRG3XHSwcQ43k0Jyq1HpMlaquGSy/ia/Rr6FC3qPiDgk3jCyUJyRYFZdPTGFuT1hJlNSaz/PCkNp1IJSeXm5CgsLtW7dunAw8vv9ev3113X11VdLkioqKlRfX6/Nmzdr0aJFkqT169crFAppyZIlo1V1AAAAjIA2m6gjtkAHVaYO9X4JPnCvzMC9Ns1KV6e8mv+NOZqU1SBjbIwg03s/3nAzl0sqPGOmivJ6wkyGJJaymQiGNSg1NTVp586d4fu7d+/Wli1blJ2drbKyMq1atUrf//73NWPGjPD04MXFxeGZ8U444QSdd955uuKKK/TAAw8oEAjommuu0YUXXjjoGe8AAAAwPKpsiRpsltqUPMgjutJGrKBjwvu6NCldLUpVnc3VGd8sUUpCR5wzGsf97p/9ZCUrI5exyk5p0dS/zVdhbvwepcGhl2ciGtagtGnTJp199tnh+z3XDa1YsUIPPfSQbrzxRjU3N+vKK69UfX29zjjjDD3//PPhNZQk6ZFHHtE111yjc845Ry6XS1/5ylf0s5/9bDirDQAAMCF0Wo8OqUTt1hd13UwPlwY3+1fMc8urnfZE5SyvUGNbokJWMR6hm3M+AWfHTeTwNBm5XUFNzz+sFF+HclNbdMbfZw56RrOjx3U5iG3E1lEaTayjBAAAxqoWm6JmmxozyDj1t/5MrH01KtYuO1v1ylGz0mStSzLRPTc24rdYZ+7Vd/8J507SnE9na/a0JjVNPlFeb/T+fnt1bOzfAwGj+td36dzTquXmYxuGgb+pRSXnfG3srqMEAAAwXjTZNNlBBJlY+ruexsroQztPlXa6apXX5zoc209QGVwHi9G88/J1+lk5SjppqtLSrWOdnO4zx5hkoE/Icdw3LikjM6SE7mV9fEc5m1s8gYBV/ZCcCfhkCEoAAGBCCVpX91oz0Y52WuYerUrRW/Y07bXT1KTY3z4fzbm7Iont/q9R0Lq1+PM5Ou9vchScNl3JKTYcUqLCinMhTseoufAxEduSkqTcvJC8CZIU7KdWE36AEXDUCEoAAGDcC1ivqm2xPrInaKc9US1KDYcXrzok03eygC4D9dJYdcqjkPVoyd9lafan89U5dVqfUrEWGbW2z+n7DDczpivI5OaHuoet9RdmAIwkghIAABh21kpv2tNVaaer0WYqIG+fMrEmFujbUxM9a1rPz5BcaleSpi0t07SySUr0huT1WHUEXJo8qUUF2e3hekT+jD6zY8Wc7jsJHivP3JnKzQ/J45EIM8DxgaAEAAAkSfU2W9vsQh2x+Wq3iTGvj+nZEqtXJvYMal3dKkElaJ/KVXjqZKVNyldKYlAul43qcYnZK6PYw89iDRTzuq3SUjqVOKNIvpJ0ZeVJvro6ZWWHVFxy7LO7ddfuEx4PYLwhKAEAMM50Wo8O2wJ9ZE9Qq1Jk1NOzEis+xF+vJnqbVGdzdEBTlPm5T8tISvR1hYNYvS+hGNuCcaYXsDUHZfIKddqkFhWcXKS2lCylZXUt1DkUYs2eNlTnBnD8IigBADCEAtarPd3Dy4KKnNs4/sXyzt4Z57CyyGMblKuPNUuHbLE65VHJ4nxJJl5Eib4XvmscJbqv5XGFtOTkFBVXpKk5OUupaQOdMc70z32uy5ksYyRP92g7X98jPpHI9XWGb60dAMcbghIA4LjTZNN12OYraAeaGc0Oag7myDVsGmyW3rWnqH3hp1XbnKJgyHSX6T5RjKmZ63fUxDlvLFZFJ2bq1JM9WvCFfPmTsrq2Dq4zqd+g4/Goe3Y0xZnbDQCOHwQlDBlrrdq734Ld1qt2kxK136t2+QyrXwMYWpGvPT4ZBeWV32bGXLyzJ8zssCdqiz1Nh1SiZqX1DUfdpaPuOs4Rtz6S8mdlamq5T4sqsrVpl5Xba/pdeDPvvHzZUP8TDfSc3EpqbnDJzk1TY7LCa9gAAIYWQQlDptm6dWHoA0nSUv1abSqI+kDhVYfKtEOzzDsqMzuVYpr6PZ/zg4vbcCEtgL7aZfXV4E5J0grdrh1aolp1DUfzKBAz2HTKrUknpKniU161lEzXwdqGrh0Rl/lYKUb3S4xOmsjrY2RkjFVmXkgmw6qyM6j8sk/8FPuor7FKTe/t/QEADD2CEobMERVI6gpKsy9apEmnTFaCt/czRPCjvdq6YZKefm2BPDagZDVHHG37jJiXJFfEOP1CVWqmeVtlZpfSXQ3D/GwAjEfBU89UWdYMed1lSkiUcguklMgxZLartyYlTTrSXKfWVCuXq1aTMkerxgCAsYqghGGRdWK+MmZkypcUsfGETJ1+rjSrSjKHG1Rb1zUsxlopp2VPuFgo8hvd7rH9Ta0e+T8q1Ssvl8pjO5QYapVHnZIiZ3qKPYtT7wrozouje4OYZOUzbco2hzXTvKM8U/UJWwDAaJh8Uoba87JUvatJyZlBmVQrV3rf3ug2OQIUAAAOBCWMKG+CVFQmqSxDhVF75vZ7XM1BaXJRmzKmn6KmZrc6g9GXOMdaeyNKjHH/kcNqOjpdarZGlc/8WQdUpjxzULGDl3MF93hloocclpjdyjcHlWA6+q8nAAAAxgSCEsaFvCJJRfM1U30vcu5z0bNz/wBlrZXaWqTUtjpVT5uv7RunaW+g95+G1xNUcaZf1vZdXjHmJFOOHS1Bj955cbeydETFdo+yVBM3YPV/kXjsfZHHGFll65AyTS3XdAEAAHwCBCWMO841MoZizYyuC6KzVPDFLGX+rRTo6IolbS1SYlODzvqbo+sJigxkNdUuVZ6VoY821Oi953McK933Lzo4OY/rG5xCcsttAirUfk22O1SgvQPO0OWKtdr8IKvYXzEjq2Q1KtG0De5kAADE0d7h0p4DSTJGMsbK7bZyGcnlsnK7rNxuyWWsXK6em+Tu+d1Ibrftvj/azwTjCUEJcPAlKXxtlccr2dajP0dkeMvLDynlC6Wa/YVSLf/Bp6LKDdgbNlDvmWN7TbVL9Zv3qHJTsf767JTe+gy+6hH1iH3NV2ShrhBmwvede9NVr8lmpyaZ3crTwaOtRYzHH3g45LGLfR6f2ljAEgBGwYd7UuX1hORySXV+r2obElSY06aQNQqGjEIhKRQyCoUi7lujYDD6fp8p/iMCVlSoMl2BqzeIRQeu3MwO5ecwhP54QlAChpkxUkrqUH2Y719KalCH08pUcHqZFn+7e6ONHbCsY5pj5xDFviHNxCkce3hj8INdamx2q2rLTP3pmQNyKzhA7aOHEEbyKBDRMxW/LePnmQESaZyj83RQk80OldhdcsVYJBRjnDVq8Utuj5HLLbncXR96XC7JTIBvlRvrpYZayeWW3N03V8RP9Gr0G9VUu7p6FXrayWXl9nT9PbjdoqdhDPF4pGmlzWrvcKkj4FGoe+DD7PJGdZxw0lGfz1opGJRsSAqGen4a2ZAUitjWFbi6toWCXZNLhUJGoaBUfcil6QfeIygdZwhKwATi9UpFxWPj2qQkd732V/tUkJuj+Utz+l1sMxRRZee1YI3NHhkjnb6wtt9zxDo2vL3fY2Kfo3L9h3rh5/V6w56lt82pctlQv2dyDapnK/51aJ/8+rTBlTu6x40zNDPOY/Vt/b4zTQ7mMQcuH32/wwYkda2j1Bl0qaND8nhCSkoLqcXvUl21W6HOrg88Pf+/jSsiOLm7vl12uZ2/d+33+uyYW6/Il2Tl9UlV+7o+0AWDUrCz68Oe1P2NeWR4iggEbk/0vq7Q0PXTmyAlp47ucxtqWdkhVVe7tHePq6udgt0fjjtN1yyr3UzP8Kzu0ORySx63jWofl8vK4+nd3xO23D1/T24pOdkqMXH0nu9EYIzkXniikh3bjzWiGNMVviTJG94a8yrjuOfwJVqZXcdYAYxbBCUAw6J11nxlz5KyP+F56mqNmjfvVFFe+5DUa7DKLi7Vkq+XqaY2QYeO+KT33pQUr3eu76DErp8DlHPOwhiDta6IMv2PAewT+mI8ZvQ+58bYZUPOQZf9PY9Y7dPn+JgPE7NsrBkto1Zds1JboF16sOt+R16RalvTlJTaoL3b3u57rO1adiBkXbIhI2tN18+QS9YaTV0wS50Bo1CbFAq51NFm5DJWJTM741d6FCSlWtW21EZvdPX+fw0FpVCgOxz2fDse8Q363BMzFejoDg0RQautRZp7ctew44miyuZIeV2/u7tvPayN6D3o/hmI7FEIqjtk926bnV+rQEAKtRsFO7t7IIJdPRRNjUaZWSHNXzi2/l4AHBuCEgDE4fVYFee3qzi/XTph+mhXB3E0t7aFg1J2llWrV2rzxy5rjGTcVq44Q0EP7twSdT/Q4VFuybwhrO3wMq6unr3eoXexB9juq3aELHX1RiUqe8Ce24mkqxep6zZYDXG+/jGSAm7J2rqhqRyAUceIXAAAAABwICgBAAAAgANBCQAAAAAcCEoAAAAA4EBQAgAAAAAHghIAAAAAOBCUAAAAAMCBoAQAAAAADgQlAAAAAHAgKAEAAACAA0EJAAAAABwISgAAAADgQFACAAAAAAeCEgAAAAA4jJug9Itf/EJTpkxRYmKilixZoo0bN452lQAAAABMUOMiKP3mN7/RddddpzvuuENvvvmm5s+fr2XLlqm6unq0qwYAAABgAhoXQenHP/6xrrjiCl122WWaM2eOHnjgASUnJ+s///M/R7tqAAAAACagMR+UOjo6tHnzZi1dujS8zeVyaenSpdqwYcMo1gwAAADAROUZ7QoM5PDhwwoGgyooKIjaXlBQoA8++CDmMe3t7Wpvbw/f9/v9w1pHAAAAABPLmO9ROhZr1qxRRkZG+FZaWjraVQIAAAAwjoz5oJSbmyu3261Dhw5FbT906JAKCwtjHnPzzTeroaEhfNu7d+9IVBUAAADABDHmg1JCQoIWLVqkdevWhbeFQiGtW7dOFRUVMY/x+XxKT0+PugEAAADAYI35a5Qk6brrrtOKFSu0ePFinXLKKfrpT3+q5uZmXXbZZaNdNQAAAAAT0LgISl//+tdVU1Oj22+/XVVVVVqwYIGef/75PhM8AAAAAMBQGBdBSZKuueYaXXPNNaNdDQAAAADHgTF/jRIAAAAAjDSCEgAAAAA4EJQAAAAAwIGgBAAAAAAOBCUAAAAAcCAoAQAAAIADQQkAAAAAHAhKAAAAAOBAUAIAAAAAB4ISAAAAADgQlAAAAADAgaAEAAAAAA4EJQAAAABwICgBAAAAgANBCQAAAAAcCEoAAAAA4EBQAgAAAAAHghIAAAAAOBCUAAAAAMCBoAQAAAAADgQlAAAAAHDwjHYFMDHVvVetvPwktWVlKi1TchHJAYyAQECqr5UO7nUrIWVh10bbu99KkjVdv1vJ5ZaSUq0OV26V1xcY8foCAMYughKGTLaqw79/8NhmbXqsSmWLcjVzcYpy5hfqcChTpuvziWzEBxdjpPQsKadghCsMYMKpf79G3saAitvdMu0RO0zPDysjKWSNfAkhmfxstXrT1Jo1T4kpVtZGvz6FOqWWRqPGWhPOW+GwFVGuh7WScUnJaSF5E4blKQIARghBCUMm1XTqv9zTJUlu+yPt1Fy9vflUvba5RE2qlFGozzGli/NUMiddCScWqCaYLqnrg0bk5w+XkZJSpdT0kXgWAMab5ESfDrz4X2po9CjRVyVjDvUpY0x0qmlp9WjPgSRtfK9JH+5OVXabW6rre24jye0JKmlnSO0dLrUHXFLEa5SJUR9jJF9Wh/Ln5Uq56dq1p07G0atuY4Ssrh2O10BHb5i1CveIGSO5PVbJafFOBgD4JAhKGDLGGCWGv7YNaqr9QFmuGnXKG7N8ozK1981p+mDTiapVnlwxgtT0U7M1eX6GkhcVKZSSIZd7OJ8BgPHIGKPU5ESlJktS56COyUrv1KSCNlUsqFOd3yN/k1fGFTtwmO7bO89Wqqndp5zU5vC2voWt9tVlqi7nRFVtrVFDY706Q0YuV3TiiXoka3p3xHpwx1232yojNaCk8gK1+tLU2Bwj4Sl2GBsooCWmxNkPAMchghKGjc+0q9Ac6KfEHp2gt3WmeU4Hbamabdc7dNcHEKsqU6a84jO0d3u73n+jVXnTM1S8KEfKzVBugaJCk3FJHv6aARwlY6TsjE5lZwwcsA5lNOmk9IMqy67vt9xblZO0r65FRb4EBb1945SRDfcwGUc46iltjGRM3y+POjvdamhNUnVtqur2HVJLeqkSvKHwsObwSaLGCfb5NVYkk7VSu7dOweJsNSZnKiNHcvPlFIDjGB8tMeoSTavKzYd9tqdZvw49Vad0m6QkebXnzZl674lJ6lSCyk/JlrcwTzpcJUlyFxRo1pQm5Z1cogZfltIyFP3BAQBGyMKy/VpYtn/Yzm+tVNeSpN2Hc/Te/n1q7vCF9xmjqGHORuoTooxsn6GIPUXqWpLU+O5k7Xd5lJRslZhkw4/prIO1knVkOWcA6znO2q5h1MWTQmpKzlRWjriGC8CYR1DCmFVqdqnU7Arft/ZZ+W2mKu1U7dk4S53yqOdtuV3J+qMmq2BJmxKLc5WaHJTL2O7LtqXUpIAKFheqNTVLmbn0PgEYv4yRslNalZ2yT4sm7xvSc//p/ZnaX92igpbdau/0OoJP1z1Xn5DVe7+rJyzWdqtA0KXqzW55Jk/WwUmTlJBg5fVGh6meR7HdwxFDIUX3ijnKOn83RkpLCykzyyqUn3V0Tx4AHPi4iHHDGCnD1Gue3tQ8vRm1r9369KY9Q/s3TlajTVNd93VRPW/UrUpR66+SNe30QmVOz1WwoFDe7r/+nJY94UCVlBiUppTJ5mYqnfdYAMeZpXP69u4PlY9qcvT+gUJ9tL9T7bsr1Rp0S929W7FGAPQOQ+zTT9VbxijqerFJnypUY1K59la6lO6vD197FXV0RC9Yb/DqrUDPpBmRx3k9VpNKQ6oKZisljRELwPGCoIQJwWfaVWHWxd1/2ObrLXua9r86VQf/mqpOefpcG+BSULOXFinT71ZbvkutaVahoNTcYrRze9cFBYlJUkFRSN7Y81MAAOKYmntExRkNWnpC77aBAofzdbrP/ojj/7Rtphora9X2zj41t/vUFHWe6PP1fDnW0ztmbUQgM445NKzUGXKp2iUlTi1R89RipaRKvgQbNUOhtVKg3qXGVKO6WtNzaNR5FFE2Umqalc8nAGMMQQnHhVxTrTP1XJxpqqQ2JeugLdWOdfP0/p9mql07JHW9qboU1FumQ7PPKVLRvDw1nVWsvPyIawCMlJZmGW8PAP0wRkpKGNyshMfizJkfqaPTHX6sPo9/FKHLaX9dhj4+kq2Pq1rUsLtSdUFX12yFpjdg9fxs93Rq4wu9z9OY7iDmfPyIyQ6NkYpPnqTpZc1qm35i1PDweBNvOAvEuo7MeT81zTL0HDgK/HPBccMXtfqkY5/alWHqNFvvqNUmq0PRX+35laW968u1ad08vfjTzKipzK2VZp5TrJPOylDGoikqKApFfEsZPZzD7bZKShra5wUAkFJ9HdIw9cokeQPKSm7VwtLeSTr6TIjRZ4hgtHg5zEo65E/TRx/69dIbGZL9qyO0Oc8bfSZjnPPNR++z1igpIaDcT02Rd840lU4Odp11MAGrn3193t9cVknJsesBjFcEJcAhybQoSS1R2zJUp1KzSyfbV1Rr89ShhPC3g0Hj1bb1C7TDe5aOrG2RyxV5sbPV/pd2qezscuWnN2nmGfma+rkp4Sl3nW9Qxkgux8KUAIDRleAJqijTP2znL0hv0kklB9XS4dWRphR1hlz99oA5e79ihbSeIo1tPtU0pqry7ZAaXzug3a7uL/ocQSfWsbEet3exZRsuO2lJiYyk0qVT5EuMP9lGn3W8bNSPmGV67ns8TMSEkcefHHAUvCagghhrQ/lsmxr+uF1ZMRbXneRK0JGXtynzaydr4x/9euOPb0vqHSMvSV53UHlpzZr1mSKV/O204XsCAIAxKzkhoOQB1uk6NofU2uFRdWOamtsSumcn7L0mq+tHnAWXBxjGuKM6TyUFOXpja6YOPnawT9k+Z7WxY1i8IYbJiUFlZwSUkRpQwd/MiHms85jB/O5y8cUkBkZQAoZAodmnQhN7mt6gdWm3TtDhJ+qUaD1RAUmS2pWkWmVon9K090im8tdukNT9ptH9hpLo7VRWSotmnlOm1FNnD+dTAQBMQEkJnZqcUzfk53W7QvJv9WtB0CgYMlGzGBoT3fPU80u8dbzCZbv3N3f4VFudLM+RoD5IO0W7/nfXF5WxJsno0xMVq7KRMxl6QyovaVHnjNnKzgkpMXGwzxjHk2ELSnfddZeeffZZbdmyRQkJCaqvr+9TprKyUldffbVefPFFpaamasWKFVqzZo08EX2rL730kq677jq99957Ki0t1a233qpLL710uKoNDDm3CWm63os/lkFd05vX2ELteXGH9iq/+82iZ42oRLUoVS6FtLcuU5N27ZXUM0uTNKmgTd6TZior24aH9AEAMBKm5tUO6/nbAh7VNKYqve4VdbT2/dgaGa6cvV+uyGTkWOOroT5R23dkqvNPh+R2WaXNnRIu2nP9lbUmHMBCQSk326NDR3wR5brPZ6T0lICSEh0rMGPcG7ag1NHRoQsuuEAVFRX69a9/3Wd/MBjU8uXLVVhYqFdffVUHDx7UN7/5TXm9Xv3gBz+QJO3evVvLly/XVVddpUceeUTr1q3TP/zDP6ioqEjLli0brqoDI85n2lVi9qhEe/rsC1mjOpurvbZcH/2+VR/8flf4jSEkoxalK2Q/0vzP5mv2mTnKSO3sswZID49bMifMUF5BSAnM0gcAGOMSvZ0qza5X6TAMSWwPuFXTlKoD9ek6srch/IVmZMCKDFcJdUHt/Dg6DBlZWeuSv82n5ISAFpw/Oep70T6XZfV3zVZ4e99vVq2k1KSgfAmEsZFkrI33v2loPPTQQ1q1alWfHqXnnntOn//853XgwAEVFBRIkh544AGtXr1aNTU1SkhI0OrVq/Xss89q69at4eMuvPBC1dfX6/nnnx90Hfx+vzIyMvSEe5qSDV+5Y+KwVmq0GapSqXbZ2TqoyQopctB1xIu9pKDcCsqjRZ/P1exP56l50nQl+nrL+JKsCousUlOH9WXhqNTVGjVv3qmzFh8Z7argOLfpyV0qSG9U2bBcQwJgPGsLePTS9ulyGRs1tDDWYJKB9jvLSFJrwKv8tCad+MXpcevQ3/DDWOEr8hhjpJSkYNxzTzT+phaVnPM1NTQ0KD09PW65UbtGacOGDZo3b144JEnSsmXLdPXVV+u9997TwoULtWHDBi1dujTquGXLlmnVqlX9nru9vV3t7b1TQfv9wzdTDTCajJHSTYPS1aCZ2qqA9SrY559170tlUB69bU9V5TNl2vJMnkJ6L+pFOiSXPDag07+arbnnFKhz5qzoM0W8oLrdUkFhiIthAQDHvURvp86b+8Gwnb+yNlNb9xep+pGqQR8T+f4eb/r6nh6zYMio4oJiZaR2rQHWXzdK35kJ48+g6PWMnS9ej8WoBaWqqqqokCQpfL+qqqrfMn6/X62trUqKsyDNmjVrdOeddw5DrYGxzWsC8irQb5n5ek1zzJvh+5GzF7XYVO3TFL37/2bpz/+vQSHtVPTLnpFXHVr4dwWaVlGk4KJypUT0PqWkWob0AQAwxMqy61WS2SAp1hpen/z867fN0IYn+87q+0kleQPKS2tS0dlzlZ3R/+eTseiogtJNN92ke+65p98y27Zt0+zZozsr180336zrrrsufN/v96u0tHQUawSMHSmmKe6+DFOnIu3VIvsX+W2mmpQhqTdMtSpZh1Wkj56epjefrtGkzzRHfWOVlBDQjFNzNGdao4InzJE3IXIwdt/Hi/xWyuuVvIQsAABicrmGr3fmzJkfqTPUO0Qk1nTxR7N+l9T1tl/fkqSPj2Tr9f+3X15336F90b1RMa7N6qf3yufpVF5ak3I/PU+5mR3yDEPv1VEFpeuvv37AGeemTp06qHMVFhZq48aNUdsOHToU3tfzs2dbZJn09PS4vUmS5PP55PMN0/LcwHHAZawyTZ0y1Xcq2enappPs66q2RWp9OTW83crokJ2kdX+cqt8rVeVnB+Vx9150Gvmia7uvozLGKsXXoaIMv0orJqt4afQaUkPxLRkAAOifxx2Kes8eKnlpzcpNbVZTuy/mcL6BwpczsEWWb+nw6nBjqna88JHe7vAqydu3x8qqa+bCUHga+a4T+LyDm63xqIJSXl6e8vLyjuaQuCoqKnTXXXepurpa+fn5kqS1a9cqPT1dc+bMCZf5wx/+EHXc2rVrVVFRMSR1AHBskk2zppidfbbP0VsKWK+O2AIdeKlMAcXuIup5nfMrU/uVqYM2qH21GXI990a4hM/Tqdln5au1ZKaSA1wIBQDAeGSMlJbYPnDBo5ScEFBuaotmF1WrpcOr5vaEmL1cD//TXjUqMyp0Jdq+iyPHMmzXKFVWVqq2tlaVlZUKBoPasmWLJGn69OlKTU3Vueeeqzlz5uiSSy7Rvffeq6qqKt16661auXJluDfoqquu0r/+67/qxhtv1Le+9S2tX79eTzzxhJ599tnhqjaAT8hrAl0L8Cr2AryRgtateput/WaKqp5rDr+EGUktStWmpws181y/8ucVauvOtK6dtveH22Xl9VpNLmpRgnd8XzAKAACOTXJCQMkJsa+B8pl2lWmzsnQ4vK1VnXFWJY42bEHp9ttv18MPPxy+v3DhQknSiy++qM985jNyu9165plndPXVV6uiokIpKSlasWKF/vmf/zl8THl5uZ599ll997vf1X333aeSkhL9x3/8B2soAROE2wSVY2qUoxqdpDei9lkrvWk/rSNrd2r72hRtj94b/u3cKyepuWKG8rI6Yj6G83XQ47YqzB36b7YAAMDYY2TlVUBe0xukAhrcVOjDvo7SWMA6SsDE02592mJPU63y1azU6BXYo9ju/xolqUUnr5ih075S2GfRvp6jfd6QUpOPn7UkMHisowQA488vrt2vSfpYWaa3R6nFBvW14Edjdx0lAPgkfKZdC/SqQur68iPWDD2RWpWsGhXrjYetXnlof5/yVkaLLypXUWaDTvt6idyuwa0j4UtgLSkAACYighKAcctnBj+ELlGtytIRTddWNZkMhRSdbuqVq+rHd2qTpuuZ+4/IKKT4a6Z3OfOyEpXn1mrBV+KvlA4AAMYnghKA44rLWKWrvs/2TNVqivlQJ9rN8itTIbn6nZb0oC3Tlodq9bLN0dyPowNbemKbZhbWqORv5ig7o4MeJwAAxiGCEgBESDbNSjbNA5YrNPvUbn2qVZ78/7UpHKqsjPYoRxtVopP21ofXiurZ12eEoJGKMho05ZyZysvukHcYFswDAABHj6AEAMfIZ9pVZPapyDEVurXSTs1V02+2qU3JqoneGzWgLySXNqlQ7T+r06mXlCs1oV2JCZ19ro9K9AaUlNCpk86fPiyrjwMAgGgEJQAYYsZIM7R1oEucwppsmj60J+mj/3NQHepaR86od4KKdiXKow5Nv+hkdfzXbiVGrD4eCkWP60vydajwM/OUmdbZZ8VzAAAweAQlABhlqaZRnzJ/jbs/YL2qUZH2PebXVhUp5Ehgkfc65VXoB29q6T8UKT+9Sbmnzwnvszb6OGevVVZ6QNkZsRfsAwDgeENQAoAxzmsCKlalik3lgGXbrU9bdbLe+HWt/MqUfrIhvC9WB1NPVvrbK4qU6OnUnOVTu7ZHhKh406RnZwT6rEcFAMBEQVACgAnEZ9o1X6+pU95BH7NX0/T2r4pUrWI9c39199aedGQi/tt1TVWa6nXmVTOVs2SWyktaos7VE6qMkdJTGP4HABi/CEoAMMF4TKc86hx0+Rnaqunaqmalq9PxtuCcIr1W+aq2xdr4wNuqvr9G7ojH6ZmmIl11WnLlXM1dXqaCnPhrXXncliAFABizCEoAABkjpco/YLkU26hk0yQro2nm/T7765Qrv83Sn3+1U+t+WamZF8wL73NeI5Xia9fU3CMq+5vZystuV4KX2fwAAGMHQQkAMGge06kC7Y+7v1D7FJBX9cpRozKk/9oc3tcbk7oC0WHlaKvK1PGzOrltpxZ8Y3ZviZCjq8lIRekNmnLOdOVndyg1OThEzwgAgNgISgCAIeU1AeWpSnmmasCyQbtRfmWpRoU68siu8HbnkL+QXNqmYjU9UKslF0+W22WVktDR94Tdh3m8QU3OrlX+WfOVlR5giB8A4KgRlAAAo8ZtgsrSYWWZwwOWDVqX3rMnq+qRD9WqlPB2Z6gysupQotYqU+4fvKoz/2GykhICSvRGX7cViui1SktqU+FZ85Sb2S63+xM+KQDAhEBQAgCMC24T0knm9UGXr7ZF2q3Z2vTrRnUosc9+o1D4tw4lyN77qpasmKrJOfVKmD9fvu0bo6ZGr2nMVkF64yd8FgCA8YKgBACYkPLNQeWbg4Mq22YTtcvM0Yf/+7A2K0NBrVPXVVW9ScmoUW+pVl71Dvm76H+VqSSrnqF9ADABEZQAAMe9RNOm2fYtdRhf1HbnsL7I7ftVrif+V1BGoX6nYzcKKd3U6fN3LVZOakvccgCAsYWgBACAJJexSlTboMuXa7umaLuala6g4l/YFJJbR5SvX/9TlTJMbdzwZaPmBTTK1BFdeN+nBv8EAABDiqAEAMAxGuz6U1k6rEwdVijqbTf+ulFHVKBKO10PX/u+IidWj6UnYH3p7gXKSBp80AMA9I+gBADACMg11YMum2FrVW0mhUNQvF6oHodsif5j9UEVmH06/baz4pZzGavslBalJbYPui4AcLwiKAEAMMb4TLtKtWvggt2KtUd1ypFf2Vr3vTfilgvKrUabISPpq3dMVZI3MEAE65LgCSoruXXQ9QGAiYCgBADAOOc2QeWqWrkauNcqJKMdmqen7/xALhOMWSayB6vD+hRQgr7xzyUD9kQlJ3TI7RpM9AKAsY+gBADAccRlrGbpnYEufQoLyeiApui3dzSp3Sb1W9bKKN3U6fzvzVNuanOM/b2MJBehCsAYRlACAABxuYxViXarRLsHDFetNln7NFUP3XpgUOdONX6de8sClWXXKcETu3cLAEYLQQkAAAyJJNOiGdqqgLwDlg3KLb+y9N/fT1anPEpQ/8P6bIyU1rPtOz/Jk8cdOrZKA0AcBCUAADCkvCYwcBkFlKiDytJhtSk5vL3/Gf767ttmP6WffbdGSWbgxXxDcilN9frmfScOWBYACEoAAGDUeE1AXjUc8/GL9bKalKF2+fotZyQ1KkNVtlS/vHa3vOqI2h+vx+qL31+gvLS+11sBmPgISgAAYNwyRkpTg9IGUTZH1SrQfjUoW8GYH4Gie6wO2RL9n1v26gu3zBzw3LGClstYTcmpZVggME4RlAAAwHEjybQoSQMP05O6AliNivTnHxwecNHfWMMCa2yxlq+eqayUFlkbfyaM9KQ2FgEGxiCCEgAAQAzppl7pqj/m412yevlev1yK36NkZdRsU+VVh9JNvc5fsyB6/yBmUO8JYam+dvm8zB4IDBWCEgAAwDCYYj4cVLmgXKpTrnbb2Xr4pso++wfTmxWUV2mmXt/80YwYe2P3ZiV6OwdVP+B4RVACAAAYRW4TUq6qlWuqj/kc1bZYu+0s3Xd93aCPufjOUk3KOvaJNICJjqAEAAAwzuWbA8rVwbj7nb1SlZquR++wMjGHBQ6wsrAktzp17U/z5HINYmwgME4RlAAAACYAlxl8aJmsnSrWHnU6FgceeJhf13pU79pT9K+rqmIErdghK93UasV9cwZdP2AsGLag9PHHH+t73/ue1q9fr6qqKhUXF+sb3/iGbrnlFiUkJITLvfPOO1q5cqXeeOMN5eXl6dvf/rZuvPHGqHM9+eSTuu222/Txxx9rxowZuueee/S5z31uuKoOAAAw4XWtYTXw4sCxzNGbCsrdZ3usoNWoTO23U/Sra3dJijU/YPQZeiSpWZ+76xRlJbfSc4VRMWxB6YMPPlAoFNK///u/a/r06dq6dauuuOIKNTc360c/+pEkye/369xzz9XSpUv1wAMP6N1339W3vvUtZWZm6sorr5Qkvfrqq7rooou0Zs0aff7zn9ejjz6q888/X2+++abmzp07XNUHAABAHGlm8Nc2pdhGeU1HeFKJeL1WkdutjJqVpv/9T5UKyqNU06BkNcWdmCIyYBmF9Pc/nsf6VfjEjLWDmXhyaPzwhz/U/fffr127ur5RuP/++3XLLbeoqqoq3Mt000036amnntIHH3wgSfr617+u5uZmPfPMM+HznHrqqVqwYIEeeOCBQT2u3+9XRkaGnnBPU7Lp++0HAAAAxh5rpcMqVItSBxwW2LP/gJ2s826cdVRrU/k8ncpNbVaCh+nVJ5pfXLtfk/Sxsszh8LYWG9TXgh+poaFB6enpcY8d0WuUGhoalJ2dHb6/YcMGnXnmmVFD8ZYtW6Z77rlHdXV1ysrK0oYNG3TddddFnWfZsmV66qmnRqraAAAAGAXGSHmqOqpjrIxe++HhmH1P8cJWm5LUalOUavw6+6ZFyk5p6T7X4GQktTHd+gQ0YkFp586d+vnPfx4edidJVVVVKi8vjypXUFAQ3peVlaWqqqrwtsgyVVXx/9G0t7ervb33WwS/3z8UTwEAAABjXJn56JiO61CCalSktWvekTF9h+3FDllWVi612hQlmWZl6oiWff9U+TwDhyYrIyOrtMR2mYEnGsQoOOqgdNNNN+mee+7pt8y2bds0e/bs8P39+/frvPPO0wUXXKArrrji6Gt5lNasWaM777xz2B8HAAAAE0OC6dAk7dEks+eojw3IqwZl6ZBK9eAtB+VWcIChgl37OuXViu8XKze1uXeP7ZuaIs/kcYUIViPkqIPS9ddfr0svvbTfMlOnTg3/fuDAAZ199tk67bTT9Mtf/jKqXGFhoQ4dOhS1red+YWFhv2V69sdy8803Rw3X8/v9Ki0t7bfOAAAAwLHwmkDXosGqHswyVGHb7Tw9fOtRPpY6lGmO6Lw7T1ZuWpO8TFoxbI46KOXl5SkvL29QZffv36+zzz5bixYt0oMPPiiXyxW1v6KiQrfccosCgYC83q55/NeuXatZs2YpKysrXGbdunVatWpV+Li1a9eqoqIi7uP6fD75fL6jfGYAAADAyJll3lXnID+OG1lZGbUoVQ3K1hO371C7kuSJOcX74NJaodmrv79v/lHU+PgybNco7d+/X5/5zGc0efJk/ehHP1JNTU14X09v0N///d/rzjvv1OWXX67Vq1dr69atuu+++/STn/wkXPbaa6/VWWedpX/5l3/R8uXL9fjjj2vTpk19eqcAAACA8cZjjm4SiHTVK131KjW71GJT4k6ZPtAsgdUq1j5brl9cuy/m0bHYqGnYrVbcW65UX8eg6z7eDFtQWrt2rXbu3KmdO3eqpKQkal/PjOQZGRn64x//qJUrV2rRokXKzc3V7bffHl5DSZJOO+00Pfroo7r11lv1T//0T5oxY4aeeuop1lACAADAcS3ZNA9cKI5Su0sZpq5P0BooYPVcMbXHztSDN1Qq2TRF7Il1fVXv+lln33qK8tOajmrq9tE0ousojRbWUQIAAACGToPNUotSw/cHClghudSoDPltlrwKKMPU6tSbz4w7B3us0PXG3evDv3/2+6coL23goDhu1lECAAAAMP5lmDplqO6ojwvKpUZlyq8svb7mpX7LxgtfzUrXI7d8rC/dMTNqe6zun2brP6oJNiIRlAAAAACMCLcJKVO1ylTtMZ/DbzN10JTphX/eHLU9Vh7KMlKSjm2IIkEJAAAAwLiRbromtBhuroGLAAAAAMDxhaAEAAAAAA4EJQAAAABwICgBAAAAgANBCQAAAAAcCEoAAAAA4EBQAgAAAAAHghIAAAAAOBCUAAAAAMCBoAQAAAAADgQlAAAAAHAgKAEAAACAA0EJAAAAABw8o12BkWCtlSS12NAo1wQAAADAaOrJBD0ZIZ7jIigdOXJEknRpaPco1wQAAADAWNDY2KiMjIy4+4+LoJSdnS1Jqqys7Lcx8Mn5/X6VlpZq7969Sk9PH+3qTGi09cihrUcObT2yaO+RQ1uPHNp65IzXtrbWqrGxUcXFxf2WOy6CksvVdSlWRkbGuPqfOJ6lp6fT1iOEth45tPXIoa1HFu09cmjrkUNbj5zx2NaD6TxhMgcAAAAAcCAoAQAAAIDDcRGUfD6f7rjjDvl8vtGuyoRHW48c2nrk0NYjh7YeWbT3yKGtRw5tPXImelsbO9C8eAAAAABwnDkuepQAAAAA4GgQlAAAAADAgaAEAAAAAA4EJQAAAABwmDBB6eOPP9bll1+u8vJyJSUladq0abrjjjvU0dERVe6dd97Rpz/9aSUmJqq0tFT33ntvn3M9+eSTmj17thITEzVv3jz94Q9/GKmnMa794he/0JQpU5SYmKglS5Zo48aNo12lcWfNmjU6+eSTlZaWpvz8fJ1//vnavn17VJm2tjatXLlSOTk5Sk1N1Ve+8hUdOnQoqkxlZaWWL1+u5ORk5efn64YbblBnZ+dIPpVx5+6775YxRqtWrQpvo62Hzv79+/WNb3xDOTk5SkpK0rx587Rp06bwfmutbr/9dhUVFSkpKUlLly7Vjh07os5RW1uriy++WOnp6crMzNTll1+upqamkX4qY1owGNRtt90W9V74ve99T5HzNtHWx+6VV17RF77wBRUXF8sYo6eeeipq/1C17WA+q0x0/bV1IBDQ6tWrNW/ePKWkpKi4uFjf/OY3deDAgahz0NaDM9DfdaSrrrpKxhj99Kc/jdo+YdvaThDPPfecvfTSS+0LL7xgP/roI/v000/b/Px8e/3114fLNDQ02IKCAnvxxRfbrVu32scee8wmJSXZf//3fw+X+etf/2rdbre999577fvvv29vvfVW6/V67bvvvjsaT2vcePzxx21CQoL9z//8T/vee+/ZK664wmZmZtpDhw6NdtXGlWXLltkHH3zQbt261W7ZssV+7nOfs2VlZbapqSlc5qqrrrKlpaV23bp1dtOmTfbUU0+1p512Wnh/Z2ennTt3rl26dKl966237B/+8Aebm5trb7755tF4SuPCxo0b7ZQpU+xJJ51kr7322vB22npo1NbW2smTJ9tLL73Uvv7663bXrl32hRdesDt37gyXufvuu21GRoZ96qmn7Ntvv22/+MUv2vLyctva2houc95559n58+fb1157zf75z3+206dPtxdddNFoPKUx66677rI5OTn2mWeesbt377ZPPvmkTU1Ntffdd1+4DG197P7whz/YW265xf72t7+1kuzvfve7qP1D0baD+axyPOivrevr6+3SpUvtb37zG/vBBx/YDRs22FNOOcUuWrQo6hy09eAM9Hfd47e//a2dP3++LS4utj/5yU+i9k3Utp4wQSmWe++915aXl4fv/9u//ZvNysqy7e3t4W2rV6+2s2bNCt//2te+ZpcvXx51niVLlth//Md/HP4Kj2OnnHKKXblyZfh+MBi0xcXFds2aNaNYq/GvurraSrIvv/yytbbrzcHr9donn3wyXGbbtm1Wkt2wYYO1tusFz+Vy2aqqqnCZ+++/36anp0f97aNLY2OjnTFjhl27dq0966yzwkGJth46q1evtmeccUbc/aFQyBYWFtof/vCH4W319fXW5/PZxx57zFpr7fvvv28l2TfeeCNc5rnnnrPGGLt///7hq/w4s3z5cvutb30ratuXv/xle/HFF1traeuh5PxAOVRtO5jPKseb/j6899i4caOVZPfs2WOtpa2PVby23rdvn500aZLdunWrnTx5clRQmshtPWGG3sXS0NCg7Ozs8P0NGzbozDPPVEJCQnjbsmXLtH37dtXV1YXLLF26NOo8y5Yt04YNG0am0uNQR0eHNm/eHNVuLpdLS5cupd0+oYaGBkkK/x1v3rxZgUAgqq1nz56tsrKycFtv2LBB8+bNU0FBQbjMsmXL5Pf79d57741g7ceHlStXavny5X3+3dPWQ+e///u/tXjxYl1wwQXKz8/XwoUL9atf/Sq8f/fu3aqqqopq64yMDC1ZsiSqrTMzM7V48eJwmaVLl8rlcun1118fuSczxp122mlat26dPvzwQ0nS22+/rb/85S/67Gc/K4m2Hk5D1baD+ayCvhoaGmSMUWZmpiTaeiiFQiFdcskluuGGG3TiiSf22T+R23rCBqWdO3fq5z//uf7xH/8xvK2qqirqA42k8P2qqqp+y/TsR1+HDx9WMBik3YZYKBTSqlWrdPrpp2vu3LmSuv4+ExISwm8EPSLbejB/5+jy+OOP680339SaNWv67KOth86uXbt0//33a8aMGXrhhRd09dVX6zvf+Y4efvhhSb1t1d9rSFVVlfLz86P2ezweZWdn09YRbrrpJl144YWaPXu2vF6vFi5cqFWrVuniiy+WRFsPp6FqW15Xjl5bW5tWr16tiy66SOnp6ZJo66F0zz33yOPx6Dvf+U7M/RO5rT2jXYGB3HTTTbrnnnv6LbNt2zbNnj07fH///v0677zzdMEFF+iKK64Y7ioCw2LlypXaunWr/vKXv4x2VSakvXv36tprr9XatWuVmJg42tWZ0EKhkBYvXqwf/OAHkqSFCxdq69ateuCBB7RixYpRrt3E8sQTT+iRRx7Ro48+qhNPPFFbtmzRqlWrVFxcTFtjQgoEAvra174ma63uv//+0a7OhLN582bdd999evPNN2WMGe3qjLgx36N0/fXXa9u2bf3epk6dGi5/4MABnX322TrttNP0y1/+MupchYWFfWas6rlfWFjYb5me/egrNzdXbrebdhtC11xzjZ555hm9+OKLKikpCW8vLCxUR0eH6uvro8pHtvVg/s7R9eJfXV2tT33qU/J4PPJ4PHr55Zf1s5/9TB6PRwUFBbT1ECkqKtKcOXOitp1wwgmqrKyU1NtW/b2GFBYWqrq6Omp/Z2enamtraesIN9xwQ7hXad68ebrkkkv03e9+N9xrSlsPn6FqW15XBq8nJO3Zs0dr164N9yZJtPVQ+fOf/6zq6mqVlZWF3yv37Nmj66+/XlOmTJE0sdt6zAelvLw8zZ49u99bz3jH/fv36zOf+YwWLVqkBx98UC5X9NOrqKjQK6+8okAgEN62du1azZo1S1lZWeEy69atizpu7dq1qqioGOZnOn4lJCRo0aJFUe0WCoW0bt062u0oWWt1zTXX6He/+53Wr1+v8vLyqP2LFi2S1+uNauvt27ersrIy3NYVFRV69913o160et5AnB9Wj2fnnHOO3n33XW3ZsiV8W7x4sS6++OLw77T10Dj99NP7THP/4YcfavLkyZKk8vJyFRYWRrW13+/X66+/HtXW9fX12rx5c7jM+vXrFQqFtGTJkhF4FuNDS0tLn/c+t9utUCgkibYeTkPVtoP5rILekLRjxw796U9/Uk5OTtR+2npoXHLJJXrnnXei3iuLi4t1ww036IUXXpA0wdt6tGeTGCr79u2z06dPt+ecc47dt2+fPXjwYPjWo76+3hYUFNhLLrnEbt261T7++OM2OTm5z/TgHo/H/uhHP7Lbtm2zd9xxB9ODD8Ljjz9ufT6ffeihh+z7779vr7zySpuZmRk1GxgGdvXVV9uMjAz70ksvRf0Nt7S0hMtcddVVtqyszK5fv95u2rTJVlRU2IqKivD+nimrzz33XLtlyxb7/PPP27y8PKasHoTIWe+spa2HysaNG63H47F33XWX3bFjh33kkUdscnKy/b//9/+Gy9x99902MzPTPv300/add96xf/d3fxdzWuWFCxfa119/3f7lL3+xM2bMYMpqhxUrVthJkyaFpwf/7W9/a3Nzc+2NN94YLkNbH7vGxkb71ltv2bfeestKsj/+8Y/tW2+9FZ5pbSjadjCfVY4H/bV1R0eH/eIXv2hLSkrsli1bot4vI2dVo60HZ6C/ayfnrHfWTty2njBB6cEHH7SSYt4ivf322/aMM86wPp/PTpo0yd599919zvXEE0/YmTNn2oSEBHviiSfaZ599dqSexrj285//3JaVldmEhAR7yimn2Ndee220qzTuxPsbfvDBB8NlWltb7f/4H//DZmVl2eTkZPulL30p6gsBa639+OOP7Wc/+1mblJRkc3Nz7fXXX28DgcAIP5vxxxmUaOuh8/vf/97OnTvX+nw+O3v2bPvLX/4yan8oFLK33XabLSgosD6fz55zzjl2+/btUWWOHDliL7roIpuammrT09PtZZddZhsbG0fyaYx5fr/fXnvttbasrMwmJibaqVOn2ltuuSXqwyNtfexefPHFmK/RK1assNYOXdsO5rPKRNdfW+/evTvu++WLL74YPgdtPTgD/V07xQpKE7WtjbURy3UDAAAAAMb+NUoAAAAAMNIISgAAAADgQFACAAAAAAeCEgAAAAA4EJQAAAAAwIGgBAAAAAAOBCUAAAAAcCAoAQAAAIADQQkAAAAAHAhKAAAAAOBAUAIAAAAAB4ISAAAAADj8fwjR1N97QthBAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -485,7 +476,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.12.1" }, "orig_nbformat": 4 }, diff --git a/examples/01_opening_floris_computing_power.py b/examples/01_opening_floris_computing_power.py index 59372a866..dcb1987c1 100644 --- a/examples/01_opening_floris_computing_power.py +++ b/examples/01_opening_floris_computing_power.py @@ -1,79 +1,62 @@ +"""Example 1: Opening FLORIS and Computing Power -import numpy as np - -from floris.tools import FlorisInterface +This first example illustrates several of the key concepts in FLORIS. It: - -""" -This example creates a FLORIS instance -1) Makes a two-turbine layout -2) Demonstrates single ws/wd simulations -3) Demonstrates mulitple ws/wd simulations + 1) Initializing FLORIS + 2) Changing the wind farm layout + 3) Changing the incoming wind speed, wind direction and turbulence intensity + 4) Running the FLORIS simulation + 5) Getting the power output of the turbines Main concept is introduce FLORIS and illustrate essential structure of most-used FLORIS calls """ -# Initialize FLORIS with the given input file via FlorisInterface. -# For basic usage, FlorisInterface provides a simplified and expressive -# entry point to the simulation routines. -fi = FlorisInterface("inputs/gch.yaml") -# Convert to a simple two turbine layout -fi.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) +import numpy as np -# Single wind speed and wind direction -print("\n========================= Single Wind Direction and Wind Speed =========================") +from floris import FlorisModel -# Get the turbine powers assuming 1 wind direction and speed -# Set the yaw angles to 0 with 1 wind direction and speed -fi.set(wind_directions=[270.0], wind_speeds=[8.0], yaw_angles=np.zeros([1, 2])) -fi.run() +# Initialize FLORIS with the given input file. +# The Floris class is the entry point for most usage. +fmodel = FlorisModel("inputs/gch.yaml") -# Get the turbine powers -turbine_powers = fi.get_turbine_powers() / 1000.0 +# Changing the wind farm layout uses FLORIS' set method to a two-turbine layout +fmodel.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) -print("The turbine power matrix should be of dimensions 1 findex X 2 Turbines") -print(turbine_powers) -print("Shape: ", turbine_powers.shape) +# Changing wind speed, wind direction, and turbulence intensity using the set method +# as well. Note that the wind_speeds, wind_directions, and turbulence_intensities +# are all specified as arrays of the same length. +fmodel.set(wind_directions=np.array([270.0]), + wind_speeds=[8.0], + turbulence_intensities=np.array([0.06])) -# Single wind speed and multiple wind directions -print("\n========================= Single Wind Direction and Multiple Wind Speeds ===============") - -wind_speeds = np.array([8.0, 9.0, 10.0]) -wind_directions = np.array([270.0, 270.0, 270.0]) -turbulence_intensities = np.array([0.06, 0.06, 0.06]) - -# 3 wind directions/ speeds -fi.set( - wind_speeds=wind_speeds, - wind_directions=wind_directions, - turbulence_intensities=turbulence_intensities, - yaw_angles=np.zeros([3, 2]) -) -fi.run() -turbine_powers = fi.get_turbine_powers() / 1000.0 -print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") -print(turbine_powers) -print("Shape: ", turbine_powers.shape) +# Note that typically all 3, wind_directions, wind_speeds and turbulence_intensities +# must be supplied to set. However, the exception is if not changing the lenght +# of the arrays, then only one or two may be supplied. +fmodel.set(turbulence_intensities=np.array([0.07])) -# Multiple wind speeds and multiple wind directions -print("\n========================= Multiple Wind Directions and Multiple Wind Speeds ============") +# The number of elements in the wind_speeds, wind_directions, and turbulence_intensities +# corresponds to the number of conditions to be simulated. In FLORIS, each of these are +# tracked by a simple index called a findex. There is no requirement that the values +# be unique. Internally in FLORIS, most data structures will have the findex as their +# 0th dimension. The value n_findex is the total number of conditions to be simulated. +# This command would simulate 4 conditions (n_findex = 4). +fmodel.set(wind_directions=np.array([270.0, 270.0, 270.0, 270.0]), + wind_speeds=[8.0, 8.0, 10.0, 10.0], + turbulence_intensities=np.array([0.06, 0.06, 0.06, 0.06])) -# To consider each combination, this needs to be broadcast out in advance +# After the set method, the run method is called to perform the simulation +fmodel.run() -wind_speeds = np.tile([8.0, 9.0, 10.0], 3) -wind_directions = np.repeat([260.0, 270.0, 280.0], 3) -turbulence_intensities = np.tile([0.06, 0.06, 0.06], 3) +# There are functions to get either the power of each turbine, or the farm power +turbine_powers = fmodel.get_turbine_powers() / 1000.0 +farm_power = fmodel.get_farm_power() / 1000.0 -fi.set( - wind_directions=wind_directions, - wind_speeds=wind_speeds, - turbulence_intensities=turbulence_intensities, - yaw_angles=np.zeros([9, 2]) -) -fi.run() -turbine_powers = fi.get_turbine_powers() / 1000.0 -print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") +print("The turbine power matrix should be of dimensions 4 (n_findex) X 2 (n_turbines)") print(turbine_powers) print("Shape: ", turbine_powers.shape) + +print("The farm power should be a 1D array of length 4 (n_findex)") +print(farm_power) +print("Shape: ", farm_power.shape) diff --git a/examples/02_visualizations.py b/examples/02_visualizations.py index f7e8c8ea6..de526328f 100644 --- a/examples/02_visualizations.py +++ b/examples/02_visualizations.py @@ -2,8 +2,8 @@ import matplotlib.pyplot as plt import numpy as np -import floris.tools.flow_visualization as flowviz -from floris.tools import FlorisInterface +import floris.flow_visualization as flowviz +from floris import FlorisModel """ @@ -12,7 +12,7 @@ we are plotting three slices of the resulting flow field: 1. Horizontal slice parallel to the ground and located at the hub height 2. Vertical slice of parallel with the direction of the wind -3. Veritical slice parallel to to the turbine disc plane +3. Vertical slice parallel to to the turbine disc plane Additionally, an alternative method of plotting a horizontal slice is shown. Rather than calculating points in the domain behind a turbine, @@ -21,36 +21,36 @@ rotor. """ -# Initialize FLORIS with the given input file via FlorisInterface. -# For basic usage, FlorisInterface provides a simplified and expressive +# Initialize FLORIS with the given input file via FlorisModel. +# For basic usage, FlorisModel provides a simplified and expressive # entry point to the simulation routines. -fi = FlorisInterface("inputs/gch.yaml") +fmodel = FlorisModel("inputs/gch.yaml") # The rotor plots show what is happening at each turbine, but we do not # see what is happening between each turbine. For this, we use a # grid that has points regularly distributed throughout the fluid domain. -# The FlorisInterface contains functions for configuring the new grid, +# The FlorisModel contains functions for configuring the new grid, # running the simulation, and generating plots of 2D slices of the # flow field. # Note this visualization grid created within the calculate_horizontal_plane function will be reset # to what existed previously at the end of the function -# Using the FlorisInterface functions, get 2D slices. -horizontal_plane = fi.calculate_horizontal_plane( +# Using the FlorisModel functions, get 2D slices. +horizontal_plane = fmodel.calculate_horizontal_plane( x_resolution=200, y_resolution=100, height=90.0, yaw_angles=np.array([[25.,0.,0.]]), ) -y_plane = fi.calculate_y_plane( +y_plane = fmodel.calculate_y_plane( x_resolution=200, z_resolution=100, crossstream_dist=0.0, yaw_angles=np.array([[25.,0.,0.]]), ) -cross_plane = fi.calculate_cross_plane( +cross_plane = fmodel.calculate_cross_plane( y_resolution=100, z_resolution=100, downstream_dist=630.0, @@ -82,7 +82,7 @@ # Some wake models may not yet have a visualization method included, for these cases can use # a slower version which scans a turbine model to produce the horizontal flow horizontal_plane_scan_turbine = flowviz.calculate_horizontal_plane_with_turbines( - fi, + fmodel, x_resolution=20, y_resolution=10, yaw_angles=np.array([[25.,0.,0.]]), @@ -101,11 +101,11 @@ # Run the wake calculation to get the turbine-turbine interfactions # on the turbine grids -fi.run() +fmodel.run() # Plot the values at each rotor fig, axes, _ , _ = flowviz.plot_rotor_values( - fi.floris.flow_field.u, + fmodel.core.flow_field.u, findex=0, n_rows=1, n_cols=3, @@ -125,15 +125,15 @@ "type": "turbine_grid", "turbine_grid_points": 10 } -fi.set(solver_settings=solver_settings) +fmodel.set(solver_settings=solver_settings) # Run the wake calculation to get the turbine-turbine interfactions # on the turbine grids -fi.run() +fmodel.run() # Plot the values at each rotor fig, axes, _ , _ = flowviz.plot_rotor_values( - fi.floris.flow_field.u, + fmodel.core.flow_field.u, findex=0, n_rows=1, n_cols=3, diff --git a/examples/03_making_adjustments.py b/examples/03_making_adjustments.py index a17eb3396..0bac6e98b 100644 --- a/examples/03_making_adjustments.py +++ b/examples/03_making_adjustments.py @@ -2,9 +2,9 @@ import matplotlib.pyplot as plt import numpy as np -import floris.tools.flow_visualization as flowviz -import floris.tools.layout_visualization as layoutviz -from floris.tools import FlorisInterface +import floris.flow_visualization as flowviz +import floris.layout_visualization as layoutviz +from floris import FlorisModel """ @@ -20,12 +20,12 @@ MIN_WS = 1.0 MAX_WS = 8.0 -# Initialize FLORIS with the given input file via FlorisInterface -fi = FlorisInterface("inputs/gch.yaml") +# Initialize FLORIS with the given input file via FlorisModel +fmodel = FlorisModel("inputs/gch.yaml") # Plot a horizatonal slice of the initial configuration -horizontal_plane = fi.calculate_horizontal_plane(height=90.0) +horizontal_plane = fmodel.calculate_horizontal_plane(height=90.0) flowviz.visualize_cut_plane( horizontal_plane, ax=axarr[0], @@ -35,7 +35,7 @@ ) # Change the wind speed -horizontal_plane = fi.calculate_horizontal_plane(ws=[7.0], height=90.0) +horizontal_plane = fmodel.calculate_horizontal_plane(ws=[7.0], height=90.0) flowviz.visualize_cut_plane( horizontal_plane, ax=axarr[1], @@ -46,8 +46,8 @@ # Change the wind shear, reset the wind speed, and plot a vertical slice -fi.set(wind_shear=0.2, wind_speeds=[8.0]) -y_plane = fi.calculate_y_plane(crossstream_dist=0.0) +fmodel.set(wind_shear=0.2, wind_speeds=[8.0]) +y_plane = fmodel.calculate_y_plane(crossstream_dist=0.0) flowviz.visualize_cut_plane( y_plane, ax=axarr[2], @@ -59,11 +59,11 @@ # # Change the farm layout N = 3 # Number of turbines per row and per column X, Y = np.meshgrid( - 5.0 * fi.floris.farm.rotor_diameters[0,0] * np.arange(0, N, 1), - 5.0 * fi.floris.farm.rotor_diameters[0,0] * np.arange(0, N, 1), + 5.0 * fmodel.core.farm.rotor_diameters[0,0] * np.arange(0, N, 1), + 5.0 * fmodel.core.farm.rotor_diameters[0,0] * np.arange(0, N, 1), ) -fi.set(layout_x=X.flatten(), layout_y=Y.flatten(), wind_directions=[270.0]) -horizontal_plane = fi.calculate_horizontal_plane(height=90.0) +fmodel.set(layout_x=X.flatten(), layout_y=Y.flatten(), wind_directions=[270.0]) +horizontal_plane = fmodel.calculate_horizontal_plane(height=90.0) flowviz.visualize_cut_plane( horizontal_plane, ax=axarr[3], @@ -71,8 +71,8 @@ min_speed=MIN_WS, max_speed=MAX_WS ) -layoutviz.plot_turbine_labels(fi, axarr[3],plotting_dict={'color':"w"})#, backgroundcolor="k") -layoutviz.plot_turbine_rotors(fi, axarr[3]) +layoutviz.plot_turbine_labels(fmodel, axarr[3], plotting_dict={'color':"w"}) #, backgroundcolor="k") +layoutviz.plot_turbine_rotors(fmodel, axarr[3]) # Change the yaw angles and configure the plot differently yaw_angles = np.zeros((1, N * N)) @@ -87,7 +87,7 @@ yaw_angles[:,4] = 30.0 yaw_angles[:,7] = -30.0 -horizontal_plane = fi.calculate_horizontal_plane(yaw_angles=yaw_angles, height=90.0) +horizontal_plane = fmodel.calculate_horizontal_plane(yaw_angles=yaw_angles, height=90.0) flowviz.visualize_cut_plane( horizontal_plane, ax=axarr[4], @@ -96,11 +96,11 @@ min_speed=MIN_WS, max_speed=MAX_WS ) -layoutviz.plot_turbine_rotors(fi, axarr[4], yaw_angles=yaw_angles, color="c") +layoutviz.plot_turbine_rotors(fmodel, axarr[4], yaw_angles=yaw_angles, color="c") # Plot the cross-plane of the 3x3 configuration -cross_plane = fi.calculate_cross_plane(yaw_angles=yaw_angles, downstream_dist=610.0) +cross_plane = fmodel.calculate_cross_plane(yaw_angles=yaw_angles, downstream_dist=610.0) flowviz.visualize_cut_plane( cross_plane, ax=axarr[5], diff --git a/examples/04_sweep_wind_directions.py b/examples/04_sweep_wind_directions.py index a06892e16..d049a0772 100644 --- a/examples/04_sweep_wind_directions.py +++ b/examples/04_sweep_wind_directions.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -16,19 +16,19 @@ """ # Instantiate FLORIS using either the GCH or CC model -fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 +fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 # Define a two turbine farm D = 126. layout_x = np.array([0, D*6]) layout_y = [0, 0] -fi.set(layout_x=layout_x, layout_y=layout_y) +fmodel.set(layout_x=layout_x, layout_y=layout_y) # Sweep wind speeds but keep wind direction fixed wd_array = np.arange(250,291,1.) ws_array = 8.0 * np.ones_like(wd_array) ti_array = 0.06 * np.ones_like(wd_array) -fi.set(wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=ti_array) +fmodel.set(wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=ti_array) # Define a matrix of yaw angles to be all 0 # Note that yaw angles is now specified as a matrix whose dimensions are @@ -38,13 +38,13 @@ n_findex = num_wd # Could be either num_wd or num_ws num_turbine = len(layout_x) # Number of turbines yaw_angles = np.zeros((n_findex, num_turbine)) -fi.set(yaw_angles=yaw_angles) +fmodel.set(yaw_angles=yaw_angles) # Calculate -fi.run() +fmodel.run() # Collect the turbine powers -turbine_powers = fi.get_turbine_powers() / 1E3 # In kW +turbine_powers = fmodel.get_turbine_powers() / 1E3 # In kW # Pull out the power values per turbine pow_t0 = turbine_powers[:,0].flatten() diff --git a/examples/05_sweep_wind_speeds.py b/examples/05_sweep_wind_speeds.py index a9dbc979c..e5cd07c3a 100644 --- a/examples/05_sweep_wind_speeds.py +++ b/examples/05_sweep_wind_speeds.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -16,19 +16,19 @@ # Instantiate FLORIS using either the GCH or CC model -fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 +fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 # Define a two turbine farm D = 126. layout_x = np.array([0, D*6]) layout_y = [0, 0] -fi.set(layout_x=layout_x, layout_y=layout_y) +fmodel.set(layout_x=layout_x, layout_y=layout_y) # Sweep wind speeds but keep wind direction fixed ws_array = np.arange(5,25,0.5) wd_array = 270.0 * np.ones_like(ws_array) ti_array = 0.06 * np.ones_like(ws_array) -fi.set(wind_directions=wd_array,wind_speeds=ws_array, turbulence_intensities=ti_array) +fmodel.set(wind_directions=wd_array,wind_speeds=ws_array, turbulence_intensities=ti_array) # Define a matrix of yaw angles to be all 0 # Note that yaw angles is now specified as a matrix whose dimensions are @@ -38,13 +38,13 @@ n_findex = num_wd # Could be either num_wd or num_ws num_turbine = len(layout_x) yaw_angles = np.zeros((n_findex, num_turbine)) -fi.set(yaw_angles=yaw_angles) +fmodel.set(yaw_angles=yaw_angles) # Calculate -fi.run() +fmodel.run() # Collect the turbine powers -turbine_powers = fi.get_turbine_powers() / 1E3 # In kW +turbine_powers = fmodel.get_turbine_powers() / 1E3 # In kW # Pull out the power values per turbine pow_t0 = turbine_powers[:,0].flatten() diff --git a/examples/06_sweep_wind_conditions.py b/examples/06_sweep_wind_conditions.py index dd1756685..e9f42487b 100644 --- a/examples/06_sweep_wind_conditions.py +++ b/examples/06_sweep_wind_conditions.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -20,14 +20,14 @@ """ # Instantiate FLORIS using either the GCH or CC model -fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 -# fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model +fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 +# fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model # Define a 5 turbine farm D = 126.0 layout_x = np.array([0, D*6, D*12, D*18, D*24]) layout_y = [0, 0, 0, 0, 0] -fi.set(layout_x=layout_x, layout_y=layout_y) +fmodel.set(layout_x=layout_x, layout_y=layout_y) # In this case we want to check a grid of wind speed and direction combinations wind_speeds_to_expand = np.arange(6, 9, 1.0) @@ -47,7 +47,7 @@ turbulence_intensities = 0.06 * np.ones_like(wd_array) # Now reinitialize FLORIS -fi.set( +fmodel.set( wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=turbulence_intensities @@ -61,13 +61,13 @@ n_findex = num_wd # Could be either num_wd or num_ws num_turbine = len(layout_x) yaw_angles = np.zeros((n_findex, num_turbine)) -fi.set(yaw_angles=yaw_angles) +fmodel.set(yaw_angles=yaw_angles) # Calculate -fi.run() +fmodel.run() # Collect the turbine powers -turbine_powers = fi.get_turbine_powers() / 1e3 # In kW +turbine_powers = fmodel.get_turbine_powers() / 1e3 # In kW # Show results by ws and wd fig, axarr = plt.subplots(num_unique_ws, 1, sharex=True, sharey=True, figsize=(6, 10)) diff --git a/examples/07_calc_aep_from_rose.py b/examples/07_calc_aep_from_rose.py index 116f6f1cd..cc2de88d4 100644 --- a/examples/07_calc_aep_from_rose.py +++ b/examples/07_calc_aep_from_rose.py @@ -3,15 +3,15 @@ import pandas as pd from scipy.interpolate import NearestNDInterpolator -from floris.tools import FlorisInterface +from floris import FlorisModel """ This example demonstrates how to calculate the Annual Energy Production (AEP) of a wind farm using wind rose information stored in a .csv file. -The wind rose information is first loaded, after which we initialize our Floris -Interface. A 3 turbine farm is generated, and then the turbine wakes and powers +The wind rose information is first loaded, after which we initialize our FlorisModel. +A 3 turbine farm is generated, and then the turbine wakes and powers are calculated across all the wind directions. Finally, the farm power is converted to AEP and reported out. """ @@ -42,13 +42,13 @@ freq = freq / np.sum(freq) # Load the FLORIS object -fi = FlorisInterface("inputs/gch.yaml") # GCH model -# fi = FlorisInterface("inputs/cc.yaml") # CumulativeCurl model +fmodel = FlorisModel("inputs/gch.yaml") # GCH model +# fmodel = FlorisModel("inputs/cc.yaml") # CumulativeCurl model # Assume a three-turbine wind farm with 5D spacing. We reinitialize the # floris object and assign the layout, wind speed and wind direction arrays. -D = fi.floris.farm.rotor_diameters[0] # Rotor diameter for the NREL 5 MW -fi.set( +D = fmodel.core.farm.rotor_diameters[0] # Rotor diameter for the NREL 5 MW +fmodel.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wind_directions, @@ -57,7 +57,7 @@ ) # Compute the AEP using the default settings -aep = fi.get_farm_AEP(freq=freq) +aep = fmodel.get_farm_AEP(freq=freq) print("Farm AEP (default options): {:.3f} GWh".format(aep / 1.0e9)) # Compute the AEP again while specifying a cut-in and cut-out wind speed. @@ -66,7 +66,7 @@ # prevent unexpected behavior for zero/negative and very high wind speeds. # In this example, the results should not change between this and the default # call to 'get_farm_AEP()'. -aep = fi.get_farm_AEP( +aep = fmodel.get_farm_AEP( freq=freq, cut_in_wind_speed=3.0, # Wakes are not evaluated below this wind speed cut_out_wind_speed=25.0, # Wakes are not evaluated above this wind speed @@ -76,5 +76,5 @@ # Finally, we can also compute the AEP while ignoring all wake calculations. # This can be useful to quantity the annual wake losses in the farm. Such # calculations can be facilitated by enabling the 'no_wake' handle. -aep_no_wake = fi.get_farm_AEP(freq, no_wake=True) +aep_no_wake = fmodel.get_farm_AEP(freq, no_wake=True) print("Farm AEP (no_wake=True): {:.3f} GWh".format(aep_no_wake / 1.0e9)) diff --git a/examples/09_compare_farm_power_with_neighbor.py b/examples/09_compare_farm_power_with_neighbor.py index 48c02ff8d..59e16f841 100644 --- a/examples/09_compare_farm_power_with_neighbor.py +++ b/examples/09_compare_farm_power_with_neighbor.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -18,19 +18,19 @@ # Instantiate FLORIS using either the GCH or CC model -fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 +fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 # Define a 4 turbine farm turbine farm D = 126. layout_x = np.array([0, D*6, 0, D*6]) layout_y = [0, 0, D*3, D*3] -fi.set(layout_x=layout_x, layout_y=layout_y) +fmodel.set(layout_x=layout_x, layout_y=layout_y) # Define a simple wind rose with just 1 wind speed wd_array = np.arange(0,360,4.) ws_array = 8.0 * np.ones_like(wd_array) turbulence_intensities = 0.06 * np.ones_like(wd_array) -fi.set( +fmodel.set( wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=turbulence_intensities @@ -38,25 +38,25 @@ # Calculate -fi.run() +fmodel.run() # Collect the farm power -farm_power_base = fi.get_farm_power() / 1E3 # In kW +farm_power_base = fmodel.get_farm_power() / 1E3 # In kW # Add a neighbor to the east layout_x = np.array([0, D*6, 0, D*6, D*12, D*15, D*12, D*15]) layout_y = np.array([0, 0, D*3, D*3, 0, 0, D*3, D*3]) -fi.set(layout_x=layout_x, layout_y=layout_y) +fmodel.set(layout_x=layout_x, layout_y=layout_y) # Define the weights to exclude the neighboring farm from calcuations of power turbine_weights = np.zeros(len(layout_x), dtype=int) turbine_weights[0:4] = 1.0 # Calculate -fi.run() +fmodel.run() # Collect the farm power with the neightbor -farm_power_neighbor = fi.get_farm_power(turbine_weights=turbine_weights) / 1E3 # In kW +farm_power_neighbor = fmodel.get_farm_power(turbine_weights=turbine_weights) / 1E3 # In kW # Show the farms fig, ax = plt.subplots() diff --git a/examples/10_opt_yaw_single_ws.py b/examples/10_opt_yaw_single_ws.py index fb3b534b0..f33878c9e 100644 --- a/examples/10_opt_yaw_single_ws.py +++ b/examples/10_opt_yaw_single_ws.py @@ -2,8 +2,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface -from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR +from floris import FlorisModel +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR """ @@ -16,25 +16,25 @@ """ # Load the default example floris object -fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 -# fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model +fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 +# fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model # Reinitialize as a 3-turbine farm with range of WDs and 1 WS wd_array = np.arange(0.0, 360.0, 3.0) ws_array = 8.0 * np.ones_like(wd_array) turbulence_intensities = 0.06 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW -fi.set( +fmodel.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=turbulence_intensities, ) -print(fi.floris.farm.rotor_diameters) +print(fmodel.core.farm.rotor_diameters) # Initialize optimizer object and run optimization using the Serial-Refine method -yaw_opt = YawOptimizationSR(fi) +yaw_opt = YawOptimizationSR(fmodel) df_opt = yaw_opt.optimize() print("Optimization results:") diff --git a/examples/11_opt_yaw_multiple_ws.py b/examples/11_opt_yaw_multiple_ws.py index f0ee51e14..0a7d9668a 100644 --- a/examples/11_opt_yaw_multiple_ws.py +++ b/examples/11_opt_yaw_multiple_ws.py @@ -2,8 +2,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface -from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR +from floris import FlorisModel +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR """ @@ -16,8 +16,8 @@ """ # Load the default example floris object -fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 -# fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model +fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 +# fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model # Define arrays of ws/wd wind_speeds_to_expand = np.arange(2.0, 18.0, 1.0) @@ -36,7 +36,7 @@ # Reinitialize as a 3-turbine farm with range of WDs and WSs D = 126.0 # Rotor diameter for the NREL 5 MW -fi.set( +fmodel.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, @@ -55,7 +55,7 @@ # but has no effect on the predicted power uplift from wake steering. # Hence, it should mostly be used when actually synthesizing a practicable # wind farm controller. -yaw_opt = YawOptimizationSR(fi) +yaw_opt = YawOptimizationSR(fmodel) df_opt = yaw_opt.optimize() print("Optimization results:") @@ -74,7 +74,7 @@ figsize=(10, 8) ) jj = 0 -for ii, ws in enumerate(np.unique(fi.floris.flow_field.wind_speeds)): +for ii, ws in enumerate(np.unique(fmodel.core.flow_field.wind_speeds)): xi = np.remainder(ii, 4) if ((ii > 0) & (xi == 0)): jj += 1 @@ -104,7 +104,7 @@ figsize=(10, 8) ) jj = 0 -for ii, ws in enumerate(np.unique(fi.floris.flow_field.wind_speeds)): +for ii, ws in enumerate(np.unique(fmodel.core.flow_field.wind_speeds)): xi = np.remainder(ii, 4) if ((ii > 0) & (xi == 0)): jj += 1 diff --git a/examples/12_optimize_yaw.py b/examples/12_optimize_yaw.py index 41d7f23e2..d631d5437 100644 --- a/examples/12_optimize_yaw.py +++ b/examples/12_optimize_yaw.py @@ -5,8 +5,8 @@ import numpy as np import pandas as pd -from floris.tools import FlorisInterface -from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR +from floris import FlorisModel +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR """ @@ -26,18 +26,18 @@ def load_floris(): # Load the default example floris object - fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 - # fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model + fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 + # fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model # Specify wind farm layout and update in the floris object N = 5 # number of turbines per row and per column X, Y = np.meshgrid( - 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), - 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), + 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), + 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), ) - fi.set(layout_x=X.flatten(), layout_y=Y.flatten()) + fmodel.set(layout_x=X.flatten(), layout_y=Y.flatten()) - return fi + return fmodel def load_windrose(): @@ -49,11 +49,11 @@ def load_windrose(): return df -def calculate_aep(fi, df_windrose, column_name="farm_power"): +def calculate_aep(fmodel, df_windrose, column_name="farm_power"): from scipy.interpolate import NearestNDInterpolator # Define columns - nturbs = len(fi.layout_x) + nturbs = len(fmodel.layout_x) yaw_cols = ["yaw_{:03d}".format(ti) for ti in range(nturbs)] if "yaw_000" not in df_windrose.columns: @@ -64,7 +64,7 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): ws_array = np.array(df_windrose["ws"], dtype=float) turbulence_intensities = 0.06 * np.ones_like(wd_array) yaw_angles = np.array(df_windrose[yaw_cols], dtype=float) - fi.set( + fmodel.set( wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=turbulence_intensities, @@ -72,8 +72,8 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): ) # Calculate FLORIS for every WD and WS combination and get the farm power - fi.run() - farm_power_array = fi.get_farm_power() + fmodel.run() + farm_power_array = fmodel.get_farm_power() # Now map FLORIS solutions to dataframe interpolant = NearestNDInterpolator( @@ -94,17 +94,17 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): df_windrose = load_windrose() # Load FLORIS - fi = load_floris() - ws_array = 8.0 * np.ones_like(fi.floris.flow_field.wind_directions) - fi.set(wind_speeds=ws_array) - nturbs = len(fi.layout_x) + fmodel = load_floris() + ws_array = 8.0 * np.ones_like(fmodel.core.flow_field.wind_directions) + fmodel.set(wind_speeds=ws_array) + nturbs = len(fmodel.layout_x) # First, get baseline AEP, without wake steering start_time = timerpc() print(" ") print("===========================================================") print("Calculating baseline annual energy production (AEP)...") - aep_bl = calculate_aep(fi, df_windrose, "farm_power_baseline") + aep_bl = calculate_aep(fmodel, df_windrose, "farm_power_baseline") t = timerpc() - start_time print("Baseline AEP: {:.3f} GWh. Time spent: {:.1f} s.".format(aep_bl, t)) print("===========================================================") @@ -116,13 +116,13 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): wd_array = np.arange(0.0, 360.0, 5.0) ws_array = 8.0 * np.ones_like(wd_array) turbulence_intensities = 0.06 * np.ones_like(wd_array) - fi.set( + fmodel.set( wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=turbulence_intensities, ) yaw_opt = YawOptimizationSR( - fi=fi, + fmodel=fmodel, minimum_yaw_angle=0.0, # Allowable yaw angles lower bound maximum_yaw_angle=20.0, # Allowable yaw angles upper bound Ny_passes=[5, 4], @@ -132,7 +132,7 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): df_opt = yaw_opt.optimize() end_time = timerpc() t_tot = end_time - start_time - t_fi = yaw_opt.time_spent_in_floris + t_fmodel = yaw_opt.time_spent_in_floris print("Optimization finished in {:.2f} seconds.".format(t_tot)) print(" ") @@ -171,7 +171,7 @@ def calculate_aep(fi, df_windrose, column_name="farm_power"): start_time = timerpc() print("==================================================================") print("Calculating annual energy production (AEP) with wake steering...") - aep_opt = calculate_aep(fi, df_windrose, "farm_power_opt") + aep_opt = calculate_aep(fmodel, df_windrose, "farm_power_opt") aep_uplift = 100.0 * (aep_opt / aep_bl - 1) t = timerpc() - start_time print("Optimal AEP: {:.3f} GWh. Time spent: {:.1f} s.".format(aep_opt, t)) diff --git a/examples/12_optimize_yaw_in_parallel.py b/examples/12_optimize_yaw_in_parallel.py index 74461ce94..8050a8764 100644 --- a/examples/12_optimize_yaw_in_parallel.py +++ b/examples/12_optimize_yaw_in_parallel.py @@ -4,7 +4,7 @@ import pandas as pd from scipy.interpolate import LinearNDInterpolator -from floris.tools import FlorisInterface, ParallelComputingInterface +from floris import FlorisModel, ParallelFlorisModel """ @@ -14,18 +14,18 @@ def load_floris(): # Load the default example floris object - fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 - # fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model + fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 + # fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model # Specify wind farm layout and update in the floris object N = 4 # number of turbines per row and per column X, Y = np.meshgrid( - 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), - 5.0 * fi.floris.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), + 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), + 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), ) - fi.set(layout_x=X.flatten(), layout_y=Y.flatten()) + fmodel.set(layout_x=X.flatten(), layout_y=Y.flatten()) - return fi + return fmodel def load_windrose(): @@ -43,7 +43,7 @@ def load_windrose(): df_windrose, windrose_interpolant = load_windrose() # Load a FLORIS object for AEP calculations - fi_aep = load_floris() + fmodel_aep = load_floris() # Define arrays of wd/ws wind_directions_to_expand = np.arange(0.0, 360.0, 1.0) @@ -60,7 +60,7 @@ def load_windrose(): ws_array = wind_speeds_grid.flatten() turbulence_intensities = 0.08 * np.ones_like(wd_array) - fi_aep.set( + fmodel_aep.set( wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=turbulence_intensities, @@ -68,8 +68,8 @@ def load_windrose(): # Pour this into a parallel computing interface parallel_interface = "concurrent" - fi_aep_parallel = ParallelComputingInterface( - fi=fi_aep, + pfmodel_aep = ParallelFlorisModel( + fmodel=fmodel_aep, max_workers=max_workers, n_wind_condition_splits=max_workers, interface=parallel_interface, @@ -81,11 +81,11 @@ def load_windrose(): freq_grid = freq_grid / np.sum(freq_grid) # Normalize to 1.0 # Calculate farm power baseline - farm_power_bl = fi_aep_parallel.get_farm_power() + farm_power_bl = pfmodel_aep.get_farm_power() aep_bl = np.sum(24 * 365 * np.multiply(farm_power_bl, freq_grid)) # Alternatively to above code, we could calculate AEP using - # 'fi_aep_parallel.get_farm_AEP(...)' but then we would not have the + # 'pfmodel_aep.get_farm_AEP(...)' but then we would not have the # farm power productions, which we use later on for plotting. # First, get baseline AEP, without wake steering @@ -97,7 +97,7 @@ def load_windrose(): print(" ") # Load a FLORIS object for yaw optimization - fi_opt = load_floris() + fmodel_opt = load_floris() # Define arrays of wd/ws wind_directions_to_expand = np.arange(0.0, 360.0, 3.0) @@ -114,15 +114,15 @@ def load_windrose(): ws_array_opt = wind_speeds_grid.flatten() turbulence_intensities = 0.08 * np.ones_like(wd_array_opt) - fi_opt.set( + fmodel_opt.set( wind_directions=wd_array_opt, wind_speeds=ws_array_opt, turbulence_intensities=turbulence_intensities, ) # Pour this into a parallel computing interface - fi_opt_parallel = ParallelComputingInterface( - fi=fi_opt, + pfmodel_opt = ParallelFlorisModel( + fmodel=fmodel_opt, max_workers=max_workers, n_wind_condition_splits=max_workers, interface=parallel_interface, @@ -130,7 +130,7 @@ def load_windrose(): ) # Now optimize the yaw angles using the Serial Refine method - df_opt = fi_opt_parallel.optimize_yaw_angles( + df_opt = pfmodel_opt.optimize_yaw_angles( minimum_yaw_angle=-25.0, maximum_yaw_angle=25.0, Ny_passes=[5, 4], @@ -163,12 +163,12 @@ def load_windrose(): # Get optimized AEP, with wake steering yaw_grid = yaw_angles_interpolant(wd_array, ws_array) - farm_power_opt = fi_aep_parallel.get_farm_power(yaw_angles=yaw_grid) + farm_power_opt = pfmodel_aep.get_farm_power(yaw_angles=yaw_grid) aep_opt = np.sum(24 * 365 * np.multiply(farm_power_opt, freq_grid)) aep_uplift = 100.0 * (aep_opt / aep_bl - 1) # Alternatively to above code, we could calculate AEP using - # 'fi_aep_parallel.get_farm_AEP(...)' but then we would not have the + # 'pfmodel_aep.get_farm_AEP(...)' but then we would not have the # farm power productions, which we use later on for plotting. print(" ") @@ -196,7 +196,7 @@ def load_windrose(): }) # Plot power and AEP uplift across wind direction - wd_step = np.diff(fi_aep.floris.flow_field.wind_directions)[0] # Useful variable for plotting + wd_step = np.diff(fmodel_aep.core.flow_field.wind_directions)[0] # Useful variable for plotting fig, ax = plt.subplots(nrows=3, sharex=True) df_8ms = df[df["ws"] == 8.0].reset_index(drop=True) @@ -276,7 +276,7 @@ def load_windrose(): # Now plot yaw angle distributions over wind direction up to first three turbines wd_plot = np.arange(0.0, 360.001, 1.0) - for ti in range(np.min([fi_aep.floris.farm.n_turbines, 3])): + for tindex in range(np.min([fmodel_aep.core.farm.n_turbines, 3])): fig, ax = plt.subplots(figsize=(6, 3.5)) ws_to_plot = [6.0, 9.0, 12.0] colors = ["maroon", "dodgerblue", "grey"] @@ -284,7 +284,7 @@ def load_windrose(): for ii, ws in enumerate(ws_to_plot): ax.plot( wd_plot, - yaw_angles_interpolant(wd_plot, ws * np.ones_like(wd_plot))[:, ti], + yaw_angles_interpolant(wd_plot, ws * np.ones_like(wd_plot))[:, tindex], styles[ii], color=colors[ii], markersize=3, @@ -292,7 +292,7 @@ def load_windrose(): ) ax.set_ylabel("Assigned yaw offsets (deg)") ax.set_xlabel("Wind direction (deg)") - ax.set_title("Turbine {:d}".format(ti)) + ax.set_title("Turbine {:d}".format(tindex)) ax.grid(True) ax.legend() plt.tight_layout() diff --git a/examples/13_optimize_yaw_with_neighboring_farm.py b/examples/13_optimize_yaw_with_neighboring_farm.py index bab42aaf3..18d5e1b26 100644 --- a/examples/13_optimize_yaw_with_neighboring_farm.py +++ b/examples/13_optimize_yaw_with_neighboring_farm.py @@ -4,8 +4,8 @@ import pandas as pd from scipy.interpolate import NearestNDInterpolator -from floris.tools import FlorisInterface -from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR +from floris import FlorisModel +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR """ @@ -25,8 +25,8 @@ def load_floris(): # Load the default example floris object - fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 - # fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model + fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 + # fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model # Specify the full wind farm layout: nominal and neighboring wind farms X = np.array( @@ -51,7 +51,7 @@ def load_floris(): turbine_weights[0:10] = 1.0 # Now reinitialize FLORIS layout - fi.set(layout_x = X, layout_y = Y) + fmodel.set(layout_x = X, layout_y = Y) # And visualize the floris layout fig, ax = plt.subplots() @@ -62,7 +62,7 @@ def load_floris(): ax.set_ylabel("y coordinate (m)") ax.legend() - return fi, turbine_weights + return fmodel, turbine_weights def load_windrose(): @@ -89,32 +89,32 @@ def load_windrose(): return ws_windrose, wd_windrose, freq_windrose -def optimize_yaw_angles(fi_opt): +def optimize_yaw_angles(fmodel_opt): # Specify turbines to optimize - turbs_to_opt = np.zeros(len(fi_opt.layout_x), dtype=bool) + turbs_to_opt = np.zeros(len(fmodel_opt.layout_x), dtype=bool) turbs_to_opt[0:10] = True # Specify turbine weights - turbine_weights = np.zeros(len(fi_opt.layout_x)) + turbine_weights = np.zeros(len(fmodel_opt.layout_x)) turbine_weights[turbs_to_opt] = 1.0 # Specify minimum and maximum allowable yaw angle limits minimum_yaw_angle = np.zeros( ( - fi_opt.floris.flow_field.n_findex, - fi_opt.floris.farm.n_turbines, + fmodel_opt.core.flow_field.n_findex, + fmodel_opt.core.farm.n_turbines, ) ) maximum_yaw_angle = np.zeros( ( - fi_opt.floris.flow_field.n_findex, - fi_opt.floris.farm.n_turbines, + fmodel_opt.core.flow_field.n_findex, + fmodel_opt.core.farm.n_turbines, ) ) maximum_yaw_angle[:, turbs_to_opt] = 30.0 yaw_opt = YawOptimizationSR( - fi=fi_opt, + fmodel=fmodel_opt, minimum_yaw_angle=minimum_yaw_angle, maximum_yaw_angle=maximum_yaw_angle, turbine_weights=turbine_weights, @@ -136,8 +136,8 @@ def yaw_opt_interpolant(wd, ws): ws = np.array(ws, dtype=float) # Interpolate optimal yaw angles - x = yaw_opt.fi.floris.flow_field.wind_directions - nturbs = fi_opt.floris.farm.n_turbines + x = yaw_opt.fmodel.core.flow_field.wind_directions + nturbs = fmodel_opt.core.farm.n_turbines y = np.stack( [np.interp(wd, x, yaw_angles_opt[:, ti]) for ti in range(nturbs)], axis=np.ndim(wd) @@ -171,8 +171,8 @@ def yaw_opt_interpolant(wd, ws): if __name__ == "__main__": # Load FLORIS: full farm including neighboring wind farms - fi, turbine_weights = load_floris() - nturbs = len(fi.layout_x) + fmodel, turbine_weights = load_floris() + nturbs = len(fmodel.layout_x) # Load a dataframe containing the wind rose information ws_windrose, wd_windrose, freq_windrose = load_windrose() @@ -180,19 +180,19 @@ def yaw_opt_interpolant(wd, ws): turbulence_intensities_windrose = 0.06 * np.ones_like(wd_windrose) # Create a FLORIS object for AEP calculations - fi_AEP = fi.copy() - fi_AEP.set( + fmodel_aep = fmodel.copy() + fmodel_aep.set( wind_speeds=ws_windrose, wind_directions=wd_windrose, turbulence_intensities=turbulence_intensities_windrose ) # And create a separate FLORIS object for optimization - fi_opt = fi.copy() + fmodel_opt = fmodel.copy() wd_array = np.arange(0.0, 360.0, 3.0) ws_array = 8.0 * np.ones_like(wd_array) turbulence_intensities = 0.06 * np.ones_like(wd_array) - fi_opt.set( + fmodel_opt.set( wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=turbulence_intensities, @@ -202,7 +202,7 @@ def yaw_opt_interpolant(wd, ws): print(" ") print("===========================================================") print("Calculating baseline annual energy production (AEP)...") - aep_bl_subset = 1.0e-9 * fi_AEP.get_farm_AEP( + aep_bl_subset = 1.0e-9 * fmodel_aep.get_farm_AEP( freq=freq_windrose, turbine_weights=turbine_weights ) @@ -225,19 +225,19 @@ def yaw_opt_interpolant(wd, ws): turbs_to_opt = (turbine_weights > 0.0001) # Optimize yaw angles while including neighboring farm - yaw_opt_interpolant = optimize_yaw_angles(fi_opt=fi_opt) + yaw_opt_interpolant = optimize_yaw_angles(fmodel_opt=fmodel_opt) # Optimize yaw angles while ignoring neighboring farm - fi_opt_subset = fi_opt.copy() - fi_opt_subset.set( - layout_x = fi.layout_x[turbs_to_opt], - layout_y = fi.layout_y[turbs_to_opt] + fmodel_opt_subset = fmodel_opt.copy() + fmodel_opt_subset.set( + layout_x = fmodel.layout_x[turbs_to_opt], + layout_y = fmodel.layout_y[turbs_to_opt] ) - yaw_opt_interpolant_nonb = optimize_yaw_angles(fi_opt=fi_opt_subset) + yaw_opt_interpolant_nonb = optimize_yaw_angles(fmodel_opt=fmodel_opt_subset) - # Use interpolant to get optimal yaw angles for fi_AEP object - wd = fi_AEP.floris.flow_field.wind_directions - ws = fi_AEP.floris.flow_field.wind_speeds + # Use interpolant to get optimal yaw angles for fmodel_aep object + wd = fmodel_aep.core.flow_field.wind_directions + ws = fmodel_aep.core.flow_field.wind_speeds yaw_angles_opt_AEP = yaw_opt_interpolant(wd, ws) yaw_angles_opt_nonb_AEP = np.zeros_like(yaw_angles_opt_AEP) # nonb = no neighbor yaw_angles_opt_nonb_AEP[:, turbs_to_opt] = yaw_opt_interpolant_nonb(wd, ws) @@ -246,13 +246,13 @@ def yaw_opt_interpolant(wd, ws): print(" ") print("===========================================================") print("Calculating annual energy production with wake steering (AEP)...") - fi_AEP.set(yaw_angles=yaw_angles_opt_nonb_AEP) - aep_opt_subset_nonb = 1.0e-9 * fi_AEP.get_farm_AEP( + fmodel_aep.set(yaw_angles=yaw_angles_opt_nonb_AEP) + aep_opt_subset_nonb = 1.0e-9 * fmodel_aep.get_farm_AEP( freq=freq_windrose, turbine_weights=turbine_weights, ) - fi_AEP.set(yaw_angles=yaw_angles_opt_AEP) - aep_opt_subset = 1.0e-9 * fi_AEP.get_farm_AEP( + fmodel_aep.set(yaw_angles=yaw_angles_opt_AEP) + aep_opt_subset = 1.0e-9 * fmodel_aep.get_farm_AEP( freq=freq_windrose, turbine_weights=turbine_weights, ) @@ -270,38 +270,38 @@ def yaw_opt_interpolant(wd, ws): print(" ") # Plot power and AEP uplift across wind direction at wind_speed of 8 m/s - wd = fi_opt.floris.flow_field.wind_directions - ws = fi_opt.floris.flow_field.wind_speeds + wd = fmodel_opt.core.flow_field.wind_directions + ws = fmodel_opt.core.flow_field.wind_speeds yaw_angles_opt = yaw_opt_interpolant(wd, ws) yaw_angles_opt_nonb = np.zeros_like(yaw_angles_opt) # nonb = no neighbor yaw_angles_opt_nonb[:, turbs_to_opt] = yaw_opt_interpolant_nonb(wd, ws) - fi_opt = fi_opt.copy() - fi_opt.set(yaw_angles=np.zeros_like(yaw_angles_opt)) - fi_opt.run() - farm_power_bl_subset = fi_opt.get_farm_power(turbine_weights).flatten() + fmodel_opt = fmodel_opt.copy() + fmodel_opt.set(yaw_angles=np.zeros_like(yaw_angles_opt)) + fmodel_opt.run() + farm_power_bl_subset = fmodel_opt.get_farm_power(turbine_weights).flatten() - fi_opt = fi_opt.copy() - fi_opt.set(yaw_angles=yaw_angles_opt) - fi_opt.run() - farm_power_opt_subset = fi_opt.get_farm_power(turbine_weights).flatten() + fmodel_opt = fmodel_opt.copy() + fmodel_opt.set(yaw_angles=yaw_angles_opt) + fmodel_opt.run() + farm_power_opt_subset = fmodel_opt.get_farm_power(turbine_weights).flatten() - fi_opt = fi_opt.copy() - fi_opt.set(yaw_angles=yaw_angles_opt_nonb) - fi_opt.run() - farm_power_opt_subset_nonb = fi_opt.get_farm_power(turbine_weights).flatten() + fmodel_opt = fmodel_opt.copy() + fmodel_opt.set(yaw_angles=yaw_angles_opt_nonb) + fmodel_opt.run() + farm_power_opt_subset_nonb = fmodel_opt.get_farm_power(turbine_weights).flatten() fig, ax = plt.subplots() ax.bar( - x=fi_opt.floris.flow_field.wind_directions - 0.65, + x=fmodel_opt.core.flow_field.wind_directions - 0.65, height=100.0 * (farm_power_opt_subset / farm_power_bl_subset - 1.0), edgecolor="black", width=1.3, label="Including wake effects of neighboring farms" ) ax.bar( - x=fi_opt.floris.flow_field.wind_directions + 0.65, + x=fmodel_opt.core.flow_field.wind_directions + 0.65, height=100.0 * (farm_power_opt_subset_nonb / farm_power_bl_subset - 1.0), edgecolor="black", width=1.3, diff --git a/examples/14_compare_yaw_optimizers.py b/examples/14_compare_yaw_optimizers.py index ea4e100ee..4e0fa1d99 100644 --- a/examples/14_compare_yaw_optimizers.py +++ b/examples/14_compare_yaw_optimizers.py @@ -4,18 +4,18 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface -from floris.tools.optimization.yaw_optimization.yaw_optimizer_geometric import ( +from floris import FlorisModel +from floris.optimization.yaw_optimization.yaw_optimizer_geometric import ( YawOptimizationGeometric, ) -from floris.tools.optimization.yaw_optimization.yaw_optimizer_scipy import YawOptimizationScipy -from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR +from floris.optimization.yaw_optimization.yaw_optimizer_scipy import YawOptimizationScipy +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR """ This example compares the SciPy-based yaw optimizer with the new Serial-Refine optimizer. -First, we initialize our Floris Interface, and then generate a 3 turbine wind farm. +First, we initialize Floris, and then generate a 3 turbine wind farm. Next, we create two yaw optimization objects, `yaw_opt_sr` and `yaw_opt_scipy` for the Serial-Refine and SciPy methods, respectively. We then perform the optimization using both methods. @@ -25,21 +25,21 @@ The example now also compares the Geometric Yaw optimizer, which is fast a method to find approximately optimal yaw angles based on the wind farm geometry. Its main use case is for coupled layout and yaw optimization. -see floris.tools.optimization.yaw_optimization.yaw_optimizer_geometric.py and the paper online +see floris.optimization.yaw_optimization.yaw_optimizer_geometric.py and the paper online at https://wes.copernicus.org/preprints/wes-2023-1/. See also example 16c. """ # Load the default example floris object -fi = FlorisInterface("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 -# fi = FlorisInterface("inputs/cc.yaml") # New CumulativeCurl model +fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 +# fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model # Reinitialize as a 3-turbine farm with range of WDs and 1 WS D = 126.0 # Rotor diameter for the NREL 5 MW wd_array = np.arange(0.0, 360.0, 3.0) ws_array = 8.0 * np.ones_like(wd_array) turbulence_intensities = 0.06 * np.ones_like(wd_array) -fi.set( +fmodel.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, @@ -49,19 +49,19 @@ print("Performing optimizations with SciPy...") start_time = timerpc() -yaw_opt_scipy = YawOptimizationScipy(fi) +yaw_opt_scipy = YawOptimizationScipy(fmodel) df_opt_scipy = yaw_opt_scipy.optimize() time_scipy = timerpc() - start_time print("Performing optimizations with Serial Refine...") start_time = timerpc() -yaw_opt_sr = YawOptimizationSR(fi) +yaw_opt_sr = YawOptimizationSR(fmodel) df_opt_sr = yaw_opt_sr.optimize() time_sr = timerpc() - start_time print("Performing optimizations with Geometric Yaw...") start_time = timerpc() -yaw_opt_geo = YawOptimizationGeometric(fi) +yaw_opt_geo = YawOptimizationGeometric(fmodel) df_opt_geo = yaw_opt_geo.optimize() time_geo = timerpc() - start_time @@ -94,9 +94,9 @@ # Before plotting results, need to compute values for GEOOPT since it doesn't compute # power within the optimization -fi.set(yaw_angles=yaw_angles_opt_geo) -fi.run() -geo_farm_power = fi.get_farm_power().squeeze() +fmodel.set(yaw_angles=yaw_angles_opt_geo) +fmodel.run() +geo_farm_power = fmodel.get_farm_power().squeeze() fig, ax = plt.subplots() diff --git a/examples/15_optimize_layout.py b/examples/15_optimize_layout.py index 8049b0e6c..071a62b87 100644 --- a/examples/15_optimize_layout.py +++ b/examples/15_optimize_layout.py @@ -4,8 +4,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface, WindRose -from floris.tools.optimization.layout_optimization.layout_optimization_scipy import ( +from floris import FlorisModel, WindRose +from floris.optimization.layout_optimization.layout_optimization_scipy import ( LayoutOptimizationScipy, ) @@ -22,7 +22,7 @@ # Initialize the FLORIS interface fi file_dir = os.path.dirname(os.path.abspath(__file__)) -fi = FlorisInterface('inputs/gch.yaml') +fmodel = FlorisModel('inputs/gch.yaml') # Setup 72 wind directions with a 1 wind speed and frequency distribution wind_directions = np.arange(0, 360.0, 5.0) @@ -42,7 +42,7 @@ ti_table=0.06 ) -fi.set(wind_data=wind_rose) +fmodel.set(wind_data=wind_rose) # The boundaries for the turbines, specified as vertices boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] @@ -51,21 +51,21 @@ D = 126.0 # rotor diameter for the NREL 5MW layout_x = [0, 0, 6 * D, 6 * D] layout_y = [0, 4 * D, 0, 4 * D] -fi.set(layout_x=layout_x, layout_y=layout_y) +fmodel.set(layout_x=layout_x, layout_y=layout_y) # Setup the optimization problem -layout_opt = LayoutOptimizationScipy(fi, boundaries, wind_data=wind_rose) +layout_opt = LayoutOptimizationScipy(fmodel, boundaries, wind_data=wind_rose) # Run the optimization sol = layout_opt.optimize() # Get the resulting improvement in AEP print('... calcuating improvement in AEP') -fi.run() -base_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 -fi.set(layout_x=sol[0], layout_y=sol[1]) -fi.run() -opt_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +fmodel.run() +base_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +fmodel.set(layout_x=sol[0], layout_y=sol[1]) +fmodel.run() +opt_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 percent_gain = 100 * (opt_aep - base_aep) / base_aep diff --git a/examples/16_heterogeneous_inflow.py b/examples/16_heterogeneous_inflow.py index 335a8043a..26451ffa5 100644 --- a/examples/16_heterogeneous_inflow.py +++ b/examples/16_heterogeneous_inflow.py @@ -1,8 +1,8 @@ import matplotlib.pyplot as plt -from floris.tools import FlorisInterface -from floris.tools.flow_visualization import visualize_cut_plane +from floris import FlorisModel +from floris.flow_visualization import visualize_cut_plane """ @@ -22,7 +22,7 @@ """ -# Initialize FLORIS with the given input file via FlorisInterface. +# Initialize FLORIS with the given input file via FlorisModel. # Note that the heterogeneous flow is defined in the input file. The heterogenous_inflow_config # dictionary is defined as below. The speed ups are multipliers of the ambient wind speed, # and the x and y are the locations of the speed ups. @@ -34,20 +34,20 @@ # } -fi_2d = FlorisInterface("inputs/gch_heterogeneous_inflow.yaml") +fmodel_2d = FlorisModel("inputs/gch_heterogeneous_inflow.yaml") # Set shear to 0.0 to highlight the heterogeneous inflow -fi_2d.set(wind_shear=0.0) +fmodel_2d.set(wind_shear=0.0) -# Using the FlorisInterface functions for generating plots, run FLORIS +# Using the FlorisModel functions for generating plots, run FLORIS # and extract 2D planes of data. -horizontal_plane_2d = fi_2d.calculate_horizontal_plane( +horizontal_plane_2d = fmodel_2d.calculate_horizontal_plane( x_resolution=200, y_resolution=100, height=90.0 ) -y_plane_2d = fi_2d.calculate_y_plane(x_resolution=200, z_resolution=100, crossstream_dist=0.0) -cross_plane_2d = fi_2d.calculate_cross_plane( +y_plane_2d = fmodel_2d.calculate_y_plane(x_resolution=200, z_resolution=100, crossstream_dist=0.0) +cross_plane_2d = fmodel_2d.calculate_cross_plane( y_resolution=100, z_resolution=100, downstream_dist=500.0 @@ -101,28 +101,28 @@ 'z': z_locs, } -# Initialize FLORIS with the given input file via FlorisInterface. +# Initialize FLORIS with the given input file. # Note that we initialize FLORIS with a homogenous flow input file, but # then configure the heterogeneous inflow via the reinitialize method. -fi_3d = FlorisInterface("inputs/gch.yaml") -fi_3d.set(heterogenous_inflow_config=heterogenous_inflow_config) +fmodel_3d = FlorisModel("inputs/gch.yaml") +fmodel_3d.set(heterogenous_inflow_config=heterogenous_inflow_config) # Set shear to 0.0 to highlight the heterogeneous inflow -fi_3d.set(wind_shear=0.0) +fmodel_3d.set(wind_shear=0.0) -# Using the FlorisInterface functions for generating plots, run FLORIS +# Using the FlorisModel functions for generating plots, run FLORIS # and extract 2D planes of data. -horizontal_plane_3d = fi_3d.calculate_horizontal_plane( +horizontal_plane_3d = fmodel_3d.calculate_horizontal_plane( x_resolution=200, y_resolution=100, height=90.0 ) -y_plane_3d = fi_3d.calculate_y_plane( +y_plane_3d = fmodel_3d.calculate_y_plane( x_resolution=200, z_resolution=100, crossstream_dist=0.0 ) -cross_plane_3d = fi_3d.calculate_cross_plane( +cross_plane_3d = fmodel_3d.calculate_cross_plane( y_resolution=100, z_resolution=100, downstream_dist=500.0 diff --git a/examples/16b_heterogeneity_multiple_ws_wd.py b/examples/16b_heterogeneity_multiple_ws_wd.py index 56dbd3e9b..c183c4a26 100644 --- a/examples/16b_heterogeneity_multiple_ws_wd.py +++ b/examples/16b_heterogeneity_multiple_ws_wd.py @@ -2,8 +2,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface -from floris.tools.flow_visualization import visualize_cut_plane +from floris import FlorisModel +from floris.flow_visualization import visualize_cut_plane """ @@ -19,12 +19,12 @@ x_locs = [-300.0, -300.0, 2600.0, 2600.0] y_locs = [ -300.0, 300.0, -300.0, 300.0] -# Initialize FLORIS with the given input file via FlorisInterface. +# Initialize FLORIS with the given input. # Note the heterogeneous inflow is defined in the input file. -fi = FlorisInterface("inputs/gch_heterogeneous_inflow.yaml") +fmodel = FlorisModel("inputs/gch_heterogeneous_inflow.yaml") # Set shear to 0.0 to highlight the heterogeneous inflow -fi.set( +fmodel.set( wind_shear=0.0, wind_speeds=[8.0], wind_directions=[270.], @@ -32,8 +32,8 @@ layout_x=[0, 0], layout_y=[-299., 299.], ) -fi.run() -turbine_powers = fi.get_turbine_powers().flatten() / 1000. +fmodel.run() +turbine_powers = fmodel.get_turbine_powers().flatten() / 1000. # Show the initial results print('------------------------------------------') @@ -53,14 +53,14 @@ 'x': x_locs, 'y': y_locs, } -fi.set( +fmodel.set( wind_directions=[270.0, 275.0], wind_speeds=[8.0, 8.0], turbulence_intensities=[0.06, 0.06], heterogenous_inflow_config=heterogenous_inflow_config ) -fi.run() -turbine_powers = np.round(fi.get_turbine_powers() / 1000.) +fmodel.run() +turbine_powers = np.round(fmodel.get_turbine_powers() / 1000.) print('With wind directions now set to 270 and 275 deg') print(f'T0: {turbine_powers[:, 0].flatten()} kW') print(f'T1: {turbine_powers[:, 1].flatten()} kW') @@ -71,6 +71,6 @@ # print() # print('~~ Now forcing an error by not matching wd and het_map') -# fi.set(wind_directions=[270, 275, 280], wind_speeds=3*[8.0]) -# fi.run() -# turbine_powers = np.round(fi.get_turbine_powers() / 1000.) +# fmodel.set(wind_directions=[270, 275, 280], wind_speeds=3*[8.0]) +# fmodel.run() +# turbine_powers = np.round(fmodel.get_turbine_powers() / 1000.) diff --git a/examples/16c_optimize_layout_with_heterogeneity.py b/examples/16c_optimize_layout_with_heterogeneity.py index d41ac70a0..616b60e68 100644 --- a/examples/16c_optimize_layout_with_heterogeneity.py +++ b/examples/16c_optimize_layout_with_heterogeneity.py @@ -4,8 +4,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface, WindRose -from floris.tools.optimization.layout_optimization.layout_optimization_scipy import ( +from floris import FlorisModel, WindRose +from floris.optimization.layout_optimization.layout_optimization_scipy import ( LayoutOptimizationScipy, ) @@ -22,9 +22,9 @@ show the benefits of coupled optimization when flows are heterogeneous. """ -# Initialize the FLORIS interface fi +# Initialize FLORIS file_dir = os.path.dirname(os.path.abspath(__file__)) -fi = FlorisInterface('inputs/gch.yaml') +fmodel = FlorisModel('inputs/gch.yaml') # Setup 2 wind directions (due east and due west) # and 1 wind speed with uniform probability @@ -76,7 +76,7 @@ ) -fi.set( +fmodel.set( layout_x=layout_x, layout_y=layout_y, wind_data=wind_rose, @@ -85,7 +85,7 @@ # Setup and solve the layout optimization problem without heterogeneity maxiter = 100 layout_opt = LayoutOptimizationScipy( - fi, + fmodel, boundaries, wind_data=wind_rose, min_dist=2*D, @@ -99,11 +99,11 @@ # Get the resulting improvement in AEP print('... calcuating improvement in AEP') -fi.run() -base_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 -fi.set(layout_x=sol[0], layout_y=sol[1]) -fi.run() -opt_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +fmodel.run() +base_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +fmodel.set(layout_x=sol[0], layout_y=sol[1]) +fmodel.run() +opt_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 percent_gain = 100 * (opt_aep - base_aep) / base_aep @@ -124,9 +124,9 @@ # Rerun the layout optimization with geometric yaw enabled print("\nReoptimizing with geometric yaw enabled.") -fi.set(layout_x=layout_x, layout_y=layout_y) +fmodel.set(layout_x=layout_x, layout_y=layout_y) layout_opt = LayoutOptimizationScipy( - fi, + fmodel, boundaries, wind_data=wind_rose, min_dist=2*D, @@ -141,11 +141,11 @@ # Get the resulting improvement in AEP print('... calcuating improvement in AEP') -fi.set(yaw_angles=np.zeros_like(layout_opt.yaw_angles)) -base_aep = fi.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 -fi.set(layout_x=sol[0], layout_y=sol[1], yaw_angles=layout_opt.yaw_angles) -fi.run() -opt_aep = fi.get_farm_AEP_with_wind_data( +fmodel.set(yaw_angles=np.zeros_like(layout_opt.yaw_angles)) +base_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +fmodel.set(layout_x=sol[0], layout_y=sol[1], yaw_angles=layout_opt.yaw_angles) +fmodel.run() +opt_aep = fmodel.get_farm_AEP_with_wind_data( wind_data=wind_rose ) / 1e6 diff --git a/examples/17_multiple_turbine_types.py b/examples/17_multiple_turbine_types.py index cd913b832..b7d1c4173 100644 --- a/examples/17_multiple_turbine_types.py +++ b/examples/17_multiple_turbine_types.py @@ -1,8 +1,8 @@ import matplotlib.pyplot as plt -import floris.tools.flow_visualization as flowviz -from floris.tools import FlorisInterface +import floris.flow_visualization as flowviz +from floris import FlorisModel """ @@ -10,16 +10,20 @@ The first two turbines are the NREL 5MW, and the third turbine is the IEA 10MW. """ -# Initialize FLORIS with the given input file via FlorisInterface. -# For basic usage, FlorisInterface provides a simplified and expressive +# Initialize FLORIS with the given input file. +# For basic usage, FlorisModel provides a simplified and expressive # entry point to the simulation routines. -fi = FlorisInterface("inputs/gch_multiple_turbine_types.yaml") +fmodel = FlorisModel("inputs/gch_multiple_turbine_types.yaml") -# Using the FlorisInterface functions for generating plots, run FLORIS +# Using the FlorisModel functions for generating plots, run FLORIS # and extract 2D planes of data. -horizontal_plane = fi.calculate_horizontal_plane(x_resolution=200, y_resolution=100, height=90) -y_plane = fi.calculate_y_plane(x_resolution=200, z_resolution=100, crossstream_dist=0.0) -cross_plane = fi.calculate_cross_plane(y_resolution=100, z_resolution=100, downstream_dist=500.0) +horizontal_plane = fmodel.calculate_horizontal_plane(x_resolution=200, y_resolution=100, height=90) +y_plane = fmodel.calculate_y_plane(x_resolution=200, z_resolution=100, crossstream_dist=0.0) +cross_plane = fmodel.calculate_cross_plane( + y_resolution=100, + z_resolution=100, + downstream_dist=500.0 +) # Create the plots fig, ax_list = plt.subplots(3, 1, figsize=(10, 8)) diff --git a/examples/18_check_turbine.py b/examples/18_check_turbine.py index da526e7da..258525340 100644 --- a/examples/18_check_turbine.py +++ b/examples/18_check_turbine.py @@ -4,7 +4,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -18,13 +18,13 @@ wind_speed_to_test_yaw = 11 # Grab the gch model -fi = FlorisInterface("inputs/gch.yaml") +fmodel = FlorisModel("inputs/gch.yaml") # Make one turbine simulation -fi.set(layout_x=[0], layout_y=[0]) +fmodel.set(layout_x=[0], layout_y=[0]) # Apply wind directions and wind speeds -fi.set( +fmodel.set( wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=turbulence_intensities @@ -34,7 +34,7 @@ # multi-dimensional Cp/Ct turbine definitions as they require different handling turbines = [ t.stem - for t in fi.floris.farm.internal_turbine_library.iterdir() + for t in fmodel.core.farm.internal_turbine_library.iterdir() if t.suffix == ".yaml" and ("multi_dim" not in t.stem) ] @@ -45,22 +45,22 @@ for t in turbines: # Set t as the turbine - fi.set(turbine_type=[t]) + fmodel.set(turbine_type=[t]) # Since we are changing the turbine type, make a matching change to the reference wind height - fi.assign_hub_height_to_ref_height() + fmodel.assign_hub_height_to_ref_height() # Plot power and ct onto the fig_pow_ct plot axarr_pow_ct[0].plot( - fi.floris.farm.turbine_map[0].power_thrust_table["wind_speed"], - fi.floris.farm.turbine_map[0].power_thrust_table["power"],label=t + fmodel.core.farm.turbine_map[0].power_thrust_table["wind_speed"], + fmodel.core.farm.turbine_map[0].power_thrust_table["power"],label=t ) axarr_pow_ct[0].grid(True) axarr_pow_ct[0].legend() axarr_pow_ct[0].set_ylabel('Power (kW)') axarr_pow_ct[1].plot( - fi.floris.farm.turbine_map[0].power_thrust_table["wind_speed"], - fi.floris.farm.turbine_map[0].power_thrust_table["thrust_coefficient"],label=t + fmodel.core.farm.turbine_map[0].power_thrust_table["wind_speed"], + fmodel.core.farm.turbine_map[0].power_thrust_table["thrust_coefficient"],label=t ) axarr_pow_ct[1].grid(True) axarr_pow_ct[1].legend() @@ -73,17 +73,17 @@ # Try a few density for density in [1.15,1.225,1.3]: - fi.set(air_density=density) + fmodel.set(air_density=density) # POWER CURVE ax = axarr[0] - fi.set( + fmodel.set( wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=turbulence_intensities ) - fi.run() - turbine_powers = fi.get_turbine_powers().flatten() / 1e3 + fmodel.run() + turbine_powers = fmodel.get_turbine_powers().flatten() / 1e3 if density == 1.225: ax.plot(ws_array,turbine_powers,label='Air Density = %.3f' % density, lw=2, color='k') else: @@ -96,16 +96,16 @@ # Power loss to yaw, try a range of yaw angles ax = axarr[1] - fi.set( + fmodel.set( wind_speeds=[wind_speed_to_test_yaw], wind_directions=[270.0], turbulence_intensities=[0.06] ) yaw_result = [] for yaw in yaw_angles: - fi.set(yaw_angles=np.array([[yaw]])) - fi.run() - turbine_powers = fi.get_turbine_powers().flatten() / 1e3 + fmodel.set(yaw_angles=np.array([[yaw]])) + fmodel.run() + turbine_powers = fmodel.get_turbine_powers().flatten() / 1e3 yaw_result.append(turbine_powers[0]) if density == 1.225: ax.plot(yaw_angles,yaw_result,label='Air Density = %.3f' % density, lw=2, color='k') diff --git a/examples/20_calculate_farm_power_with_uncertainty.py b/examples/20_calculate_farm_power_with_uncertainty.py index 21aa18286..f15313c8f 100644 --- a/examples/20_calculate_farm_power_with_uncertainty.py +++ b/examples/20_calculate_farm_power_with_uncertainty.py @@ -1,25 +1,25 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface, UncertaintyInterface +from floris import FlorisModel, UncertainFlorisModel """ -This example demonstrates how one can create an "UncertaintyInterface" object, -which adds uncertainty on the inflow wind direction on the FlorisInterface -class. The UncertaintyInterface class is interacted with in the exact same -manner as the FlorisInterface class is. This example demonstrates how the +This example demonstrates how one can create an "UncertainFlorisModel" object, +which adds uncertainty on the inflow wind direction on the FlorisModel +class. The UncertainFlorisModel class is interacted with in the exact same +manner as the FlorisModel class is. This example demonstrates how the wind farm power production is calculated with and without uncertainty. -Other use cases of UncertaintyInterface are, e.g., comparing FLORIS to +Other use cases of UncertainFlorisModel are, e.g., comparing FLORIS to historical SCADA data and robust optimization. """ # Instantiate FLORIS using either the GCH or CC model -fi = FlorisInterface("inputs/gch.yaml") # GCH model -fi_unc_3 = UncertaintyInterface( +fmodel = FlorisModel("inputs/gch.yaml") # GCH model +ufmodel_3 = UncertainFlorisModel( "inputs/gch.yaml", verbose=True, wd_std=3 ) -fi_unc_5 = UncertaintyInterface( +ufmodel_5 = UncertainFlorisModel( "inputs/gch.yaml", verbose=True, wd_std=5 ) @@ -29,27 +29,42 @@ layout_y = [0, 0] wd_array = np.arange(240.0, 300.0, 1.0) wind_speeds = 8.0 * np.ones_like(wd_array) -fi.set(layout_x=layout_x, layout_y=layout_y, wind_directions=wd_array, wind_speeds=wind_speeds) -fi_unc_3.set( - layout_x=layout_x, layout_y=layout_y, wind_directions=wd_array, wind_speeds=wind_speeds +ti_array = 0.06 * np.ones_like(wd_array) +fmodel.set( + layout_x=layout_x, + layout_y=layout_y, + wind_directions=wd_array, + wind_speeds=wind_speeds, + turbulence_intensities=ti_array, ) -fi_unc_5.set( - layout_x=layout_x, layout_y=layout_y, wind_directions=wd_array, wind_speeds=wind_speeds +ufmodel_3.set( + layout_x=layout_x, + layout_y=layout_y, + wind_directions=wd_array, + wind_speeds=wind_speeds, + turbulence_intensities=ti_array, +) +ufmodel_5.set( + layout_x=layout_x, + layout_y=layout_y, + wind_directions=wd_array, + wind_speeds=wind_speeds, + turbulence_intensities=ti_array, ) # Run both models -fi.run() -fi_unc_3.run() -fi_unc_5.run() +fmodel.run() +ufmodel_3.run() +ufmodel_5.run() # Collect the nominal and uncertain farm power -turbine_powers_nom = fi.get_turbine_powers() / 1e3 -turbine_powers_unc_3 = fi_unc_3.get_turbine_powers() / 1e3 -turbine_powers_unc_5 = fi_unc_5.get_turbine_powers() / 1e3 -farm_powers_nom = fi.get_farm_power() / 1e3 -farm_powers_unc_3 = fi_unc_3.get_farm_power() / 1e3 -farm_powers_unc_5 = fi_unc_5.get_farm_power() / 1e3 +turbine_powers_nom = fmodel.get_turbine_powers() / 1e3 +turbine_powers_unc_3 = ufmodel_3.get_turbine_powers() / 1e3 +turbine_powers_unc_5 = ufmodel_5.get_turbine_powers() / 1e3 +farm_powers_nom = fmodel.get_farm_power() / 1e3 +farm_powers_unc_3 = ufmodel_3.get_farm_power() / 1e3 +farm_powers_unc_5 = ufmodel_5.get_farm_power() / 1e3 # Plot results fig, axarr = plt.subplots(1, 3, figsize=(15, 5)) @@ -108,9 +123,9 @@ freq = np.ones_like(wd_array) freq = freq / freq.sum() -aep_nom = fi.get_farm_AEP(freq=freq) -aep_unc_3 = fi_unc_3.get_farm_AEP(freq=freq) -aep_unc_5 = fi_unc_5.get_farm_AEP(freq=freq) +aep_nom = fmodel.get_farm_AEP(freq=freq) +aep_unc_3 = ufmodel_3.get_farm_AEP(freq=freq) +aep_unc_5 = ufmodel_5.get_farm_AEP(freq=freq) print(f"AEP without uncertainty {aep_nom}") print(f"AEP without uncertainty (3 deg) {aep_unc_3} ({100*aep_unc_3/aep_nom:.2f}%)") diff --git a/examples/21_demo_time_series.py b/examples/21_demo_time_series.py index 61f9b7995..8afa28f2f 100644 --- a/examples/21_demo_time_series.py +++ b/examples/21_demo_time_series.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -11,10 +11,10 @@ """ # Initialize FLORIS to simple 4 turbine farm -fi = FlorisInterface("inputs/gch.yaml") +fmodel = FlorisModel("inputs/gch.yaml") # Convert to a simple two turbine layout -fi.set(layout_x=[0, 500.], layout_y=[0., 0.]) +fmodel.set(layout_x=[0, 500.], layout_y=[0., 0.]) # Create a fake time history where wind speed steps in the middle while wind direction # Walks randomly @@ -29,14 +29,14 @@ # Now intiialize FLORIS object to this history using time_series flag -fi.set(wind_directions=wd, wind_speeds=ws, turbulence_intensities=turbulence_intensities) +fmodel.set(wind_directions=wd, wind_speeds=ws, turbulence_intensities=turbulence_intensities) # Collect the powers -fi.run() -turbine_powers = fi.get_turbine_powers() / 1000. +fmodel.run() +turbine_powers = fmodel.get_turbine_powers() / 1000. # Show the dimensions -num_turbines = len(fi.layout_x) +num_turbines = len(fmodel.layout_x) print( f'There are {len(time)} time samples, and {num_turbines} turbines and ' f'so the resulting turbine power matrix has the shape {turbine_powers.shape}.' diff --git a/examples/22_get_wind_speed_at_turbines.py b/examples/22_get_wind_speed_at_turbines.py index b5dfeb7d4..7f15a4100 100644 --- a/examples/22_get_wind_speed_at_turbines.py +++ b/examples/22_get_wind_speed_at_turbines.py @@ -1,33 +1,33 @@ import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel -# Initialize FLORIS with the given input file via FlorisInterface. -# For basic usage, FlorisInterface provides a simplified and expressive +# Initialize FLORIS with the given input file. +# For basic usage, FlorisModel provides a simplified and expressive # entry point to the simulation routines. -fi = FlorisInterface("inputs/gch.yaml") +fmodel = FlorisModel("inputs/gch.yaml") # Create a 4-turbine layouts -fi.set(layout_x=[0, 0., 500., 500.], layout_y=[0., 300., 0., 300.]) +fmodel.set(layout_x=[0, 0., 500., 500.], layout_y=[0., 300., 0., 300.]) # Calculate wake -fi.run() +fmodel.run() # Collect the wind speed at all the turbine points -u_points = fi.floris.flow_field.u +u_points = fmodel.core.flow_field.u print('U points is 1 findex x 4 turbines x 3 x 3 points (turbine_grid_points=3)') print(u_points.shape) print('turbine_average_velocities is 1 findex x 4 turbines') -print(fi.turbine_average_velocities) +print(fmodel.turbine_average_velocities) # Show that one is equivalent to the other following averaging print( 'turbine_average_velocities is determined by taking the cube root of mean ' 'of the cubed value across the points ' ) -print(f'turbine_average_velocities: {fi.turbine_average_velocities}') +print(f'turbine_average_velocities: {fmodel.turbine_average_velocities}') print(f'Recomputed: {np.cbrt(np.mean(u_points**3, axis=(2,3)))}') diff --git a/examples/23_layout_visualizations.py b/examples/23_layout_visualizations.py index 1b84f602a..465490e6e 100644 --- a/examples/23_layout_visualizations.py +++ b/examples/23_layout_visualizations.py @@ -2,9 +2,9 @@ import matplotlib.pyplot as plt import numpy as np -import floris.tools.layout_visualization as layoutviz -from floris.tools import FlorisInterface -from floris.tools.flow_visualization import visualize_cut_plane +import floris.layout_visualization as layoutviz +from floris import FlorisModel +from floris.flow_visualization import visualize_cut_plane """ @@ -18,18 +18,18 @@ MIN_WS = 1.0 MAX_WS = 8.0 -# Initialize FLORIS with the given input file via FlorisInterface -fi = FlorisInterface("inputs/gch.yaml") +# Initialize FLORIS with the given input file. +fmodel = FlorisModel("inputs/gch.yaml") # Change to 5-turbine layout with a wind direction from northwest -fi.set( +fmodel.set( layout_x=[0, 0, 1000, 1000, 1000], layout_y=[0, 500, 0, 500, 1000], wind_directions=[300] ) # Plot 1: Visualize the flow ax = axarr[0] # Plot a horizatonal slice of the initial configuration -horizontal_plane = fi.calculate_horizontal_plane(height=90.0) +horizontal_plane = fmodel.calculate_horizontal_plane(height=90.0) visualize_cut_plane( horizontal_plane, ax=ax, @@ -37,14 +37,14 @@ max_speed=MAX_WS, ) # Plot the turbine points, setting the color to white -layoutviz.plot_turbine_points(fi, ax=ax, plotting_dict={"color": "w"}) +layoutviz.plot_turbine_points(fmodel, ax=ax, plotting_dict={"color": "w"}) ax.set_title('Flow visualization and turbine points') # Plot 2: Show a particular flow case ax = axarr[1] turbine_names = [f"T{i}" for i in [10, 11, 12, 13, 22]] -layoutviz.plot_turbine_points(fi, ax=ax) -layoutviz.plot_turbine_labels(fi, +layoutviz.plot_turbine_points(fmodel, ax=ax) +layoutviz.plot_turbine_labels(fmodel, ax=ax, turbine_names=turbine_names, show_bbox=True, @@ -54,7 +54,7 @@ # Plot 2: Show turbine rotors on flow ax = axarr[2] -horizontal_plane = fi.calculate_horizontal_plane(height=90.0, +horizontal_plane = fmodel.calculate_horizontal_plane(height=90.0, yaw_angles=np.array([[0., 30., 0., 0., 0.]])) visualize_cut_plane( horizontal_plane, @@ -62,32 +62,32 @@ min_speed=MIN_WS, max_speed=MAX_WS ) -layoutviz.plot_turbine_rotors(fi,ax=ax,yaw_angles=np.array([[0., 30., 0., 0., 0.]])) +layoutviz.plot_turbine_rotors(fmodel,ax=ax,yaw_angles=np.array([[0., 30., 0., 0., 0.]])) ax.set_title("Flow visualization with yawed turbine") # Plot 3: Show the layout, including wake directions ax = axarr[3] -layoutviz.plot_turbine_points(fi, ax=ax) -layoutviz.plot_turbine_labels(fi, ax=ax, turbine_names=turbine_names) -layoutviz.plot_waking_directions(fi, ax=ax) +layoutviz.plot_turbine_points(fmodel, ax=ax) +layoutviz.plot_turbine_labels(fmodel, ax=ax, turbine_names=turbine_names) +layoutviz.plot_waking_directions(fmodel, ax=ax) ax.set_title("Show turbine names and wake direction") # Plot 4: Plot a subset of the layout, and limit directions less than 7D ax = axarr[4] -layoutviz.plot_turbine_points(fi, ax=ax, turbine_indices=[0,1,2,3]) -layoutviz.plot_turbine_labels(fi, ax=ax, turbine_names=turbine_names, turbine_indices=[0,1,2,3]) -layoutviz.plot_waking_directions(fi, ax=ax, turbine_indices=[0,1,2,3], limit_dist_D=7) +layoutviz.plot_turbine_points(fmodel, ax=ax, turbine_indices=[0,1,2,3]) +layoutviz.plot_turbine_labels(fmodel, ax=ax, turbine_names=turbine_names, turbine_indices=[0,1,2,3]) +layoutviz.plot_waking_directions(fmodel, ax=ax, turbine_indices=[0,1,2,3], limit_dist_D=7) ax.set_title("Plot a subset and limit wake line distance") # Plot with a shaded region ax = axarr[5] -layoutviz.plot_turbine_points(fi, ax=ax) +layoutviz.plot_turbine_points(fmodel, ax=ax) layoutviz.shade_region(np.array([[0,0],[300,0],[300,1000],[0,700]]),ax=ax) ax.set_title("Plot with a shaded region") # Change hub heights and plot as a proxy for terrain ax = axarr[6] -fi.floris.farm.hub_heights = np.array([110, 90, 100, 100, 95]) -layoutviz.plot_farm_terrain(fi, ax=ax) +fmodel.core.farm.hub_heights = np.array([110, 90, 100, 100, 95]) +layoutviz.plot_farm_terrain(fmodel, ax=ax) plt.show() diff --git a/examples/24_floating_turbine_models.py b/examples/24_floating_turbine_models.py index 63aecc4c0..76822a76f 100644 --- a/examples/24_floating_turbine_models.py +++ b/examples/24_floating_turbine_models.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -25,59 +25,61 @@ In the example below, three single-turbine simulations are run to show the different behaviors. -fi_fixed: Fixed bottom turbine (no tilt variation with wind speed) -fi_floating: Floating turbine (tilt varies with wind speed) -fi_floating_defined_floating: Floating turbine (tilt varies with wind speed, but +fmodel_fixed: Fixed bottom turbine (no tilt variation with wind speed) +fmodel_floating: Floating turbine (tilt varies with wind speed) +fmodel_floating_defined_floating: Floating turbine (tilt varies with wind speed, but tilt does not scale cp/ct) """ -# Declare the Floris Interfaces -fi_fixed = FlorisInterface("inputs_floating/gch_fixed.yaml") -fi_floating = FlorisInterface("inputs_floating/gch_floating.yaml") -fi_floating_defined_floating = FlorisInterface("inputs_floating/gch_floating_defined_floating.yaml") +# Create the Floris instances +fmodel_fixed = FlorisModel("inputs_floating/gch_fixed.yaml") +fmodel_floating = FlorisModel("inputs_floating/gch_floating.yaml") +fmodel_floating_defined_floating = FlorisModel("inputs_floating/gch_floating_defined_floating.yaml") # Calculate across wind speeds ws_array = np.arange(3., 25., 1.) wd_array = 270.0 * np.ones_like(ws_array) ti_array = 0.06 * np.ones_like(ws_array) -fi_fixed.set(wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=ti_array) -fi_floating.set(wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=ti_array) -fi_floating_defined_floating.set( +fmodel_fixed.set(wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=ti_array) +fmodel_floating.set(wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=ti_array) +fmodel_floating_defined_floating.set( wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=ti_array ) -fi_fixed.run() -fi_floating.run() -fi_floating_defined_floating.run() +fmodel_fixed.run() +fmodel_floating.run() +fmodel_floating_defined_floating.run() # Grab power -power_fixed = fi_fixed.get_turbine_powers().flatten()/1000. -power_floating = fi_floating.get_turbine_powers().flatten()/1000. -power_floating_defined_floating = fi_floating_defined_floating.get_turbine_powers().flatten()/1000. +power_fixed = fmodel_fixed.get_turbine_powers().flatten()/1000. +power_floating = fmodel_floating.get_turbine_powers().flatten()/1000. +power_floating_defined_floating = ( + fmodel_floating_defined_floating.get_turbine_powers().flatten()/1000. +) # Grab Ct -ct_fixed = fi_fixed.get_turbine_thrust_coefficients().flatten() -ct_floating = fi_floating.get_turbine_thrust_coefficients().flatten() +ct_fixed = fmodel_fixed.get_turbine_thrust_coefficients().flatten() +ct_floating = fmodel_floating.get_turbine_thrust_coefficients().flatten() ct_floating_defined_floating = ( - fi_floating_defined_floating.get_turbine_thrust_coefficients().flatten() + fmodel_floating_defined_floating.get_turbine_thrust_coefficients().flatten() ) # Grab turbine tilt angles -eff_vels = fi_fixed.turbine_average_velocities +eff_vels = fmodel_fixed.turbine_average_velocities tilt_angles_fixed = np.squeeze( - fi_fixed.floris.farm.calculate_tilt_for_eff_velocities(eff_vels) + fmodel_fixed.core.farm.calculate_tilt_for_eff_velocities(eff_vels) ) -eff_vels = fi_floating.turbine_average_velocities +eff_vels = fmodel_floating.turbine_average_velocities tilt_angles_floating = np.squeeze( - fi_floating.floris.farm.calculate_tilt_for_eff_velocities(eff_vels) + fmodel_floating.core.farm.calculate_tilt_for_eff_velocities(eff_vels) ) -eff_vels = fi_floating_defined_floating.turbine_average_velocities +eff_vels = fmodel_floating_defined_floating.turbine_average_velocities tilt_angles_floating_defined_floating = np.squeeze( - fi_floating_defined_floating.floris.farm.calculate_tilt_for_eff_velocities(eff_vels) + fmodel_floating_defined_floating.core.farm.calculate_tilt_for_eff_velocities(eff_vels) ) # Plot results diff --git a/examples/25_tilt_driven_vertical_wake_deflection.py b/examples/25_tilt_driven_vertical_wake_deflection.py index 1efd5aa8a..b8d6ffbf5 100644 --- a/examples/25_tilt_driven_vertical_wake_deflection.py +++ b/examples/25_tilt_driven_vertical_wake_deflection.py @@ -2,8 +2,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface -from floris.tools.flow_visualization import visualize_cut_plane +from floris import FlorisModel +from floris.flow_visualization import visualize_cut_plane """ @@ -17,10 +17,10 @@ # Initialize two FLORIS objects: one with 5 degrees of tilt (fixed across all # wind speeds) and one with 15 degrees of tilt (fixed across all wind speeds). -fi_5 = FlorisInterface("inputs_floating/emgauss_floating_fixedtilt5.yaml") -fi_15 = FlorisInterface("inputs_floating/emgauss_floating_fixedtilt15.yaml") +fmodel_5 = FlorisModel("inputs_floating/emgauss_floating_fixedtilt5.yaml") +fmodel_15 = FlorisModel("inputs_floating/emgauss_floating_fixedtilt15.yaml") -D = fi_5.floris.farm.rotor_diameters[0] +D = fmodel_5.core.farm.rotor_diameters[0] num_in_row = 5 @@ -46,10 +46,10 @@ powers = np.zeros((2, num_in_row)) # Calculate wakes, powers, plot -for i, (fi, tilt) in enumerate(zip([fi_5, fi_15], [5, 15])): +for i, (fmodel, tilt) in enumerate(zip([fmodel_5, fmodel_15], [5, 15])): # Farm layout and wind conditions - fi.set( + fmodel.set( layout_x=[x * 5.0 * D for x in range(num_in_row)], layout_y=[0.0]*num_in_row, wind_speeds=[8.0], @@ -57,11 +57,11 @@ ) # Flow solve and power computation - fi.run() - powers[i,:] = fi.get_turbine_powers().flatten() + fmodel.run() + powers[i,:] = fmodel.get_turbine_powers().flatten() # Compute flow slices - y_plane = fi.calculate_y_plane( + y_plane = fmodel.calculate_y_plane( x_resolution=200, z_resolution=100, crossstream_dist=streamwise_plane_location, diff --git a/examples/26_empirical_gauss_velocity_deficit_parameters.py b/examples/26_empirical_gauss_velocity_deficit_parameters.py index 8d7d73857..a3c43343a 100644 --- a/examples/26_empirical_gauss_velocity_deficit_parameters.py +++ b/examples/26_empirical_gauss_velocity_deficit_parameters.py @@ -4,8 +4,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface -from floris.tools.flow_visualization import plot_rotor_values, visualize_cut_plane +from floris import FlorisModel +from floris.flow_visualization import plot_rotor_values, visualize_cut_plane """ @@ -13,10 +13,6 @@ velocity deficit model and their effects on the wind turbine wake. """ -# Initialize FLORIS with the given input file via FlorisInterface. -# For basic usage, FlorisInterface provides a simplified and expressive -# entry point to the simulation routines. - # Options show_flow_cuts = True num_in_row = 5 @@ -24,8 +20,8 @@ yaw_angles = np.zeros((1, num_in_row)) # Define function for visualizing wakes -def generate_wake_visualization(fi: FlorisInterface, title=None): - # Using the FlorisInterface functions, get 2D slices. +def generate_wake_visualization(fmodel: FlorisModel, title=None): + # Using the FlorisModel functions, get 2D slices. x_bounds = [-500, 3000] y_bounds = [-250, 250] z_bounds = [0.001, 500] @@ -36,7 +32,7 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): min_ws = 4 max_ws = 10 - horizontal_plane = fi.calculate_horizontal_plane( + horizontal_plane = fmodel.calculate_horizontal_plane( x_resolution=200, y_resolution=100, height=horizontal_plane_location, @@ -44,7 +40,7 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): y_bounds=y_bounds, yaw_angles=yaw_angles ) - y_plane = fi.calculate_y_plane( + y_plane = fmodel.calculate_y_plane( x_resolution=200, z_resolution=100, crossstream_dist=streamwise_plane_location, @@ -55,7 +51,7 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): cross_planes = [] for cpl in cross_plane_locations: cross_planes.append( - fi.calculate_cross_plane( + fmodel.calculate_cross_plane( y_resolution=100, z_resolution=100, downstream_dist=cpl @@ -101,9 +97,9 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): ## Main script # Load input yaml and define farm layout -fi = FlorisInterface("inputs/emgauss.yaml") -D = fi.floris.farm.rotor_diameters[0] -fi.set( +fmodel = FlorisModel("inputs/emgauss.yaml") +D = fmodel.core.farm.rotor_diameters[0] +fmodel.set( layout_x=[x*5.0*D for x in range(num_in_row)], layout_y=[0.0]*num_in_row, wind_speeds=[8.0], @@ -111,13 +107,13 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): ) # Save dictionary to modify later -fi_dict = fi.floris.as_dict() +fmodel_dict = fmodel.core.as_dict() # Run wake calculation -fi.run() +fmodel.run() # Look at the powers of each turbine -turbine_powers = fi.get_turbine_powers().flatten()/1e6 +turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 fig0, ax0 = plt.subplots(1,1) width = 0.1 @@ -131,20 +127,20 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): # Visualize wakes if show_flow_cuts: - generate_wake_visualization(fi, title) + generate_wake_visualization(fmodel, title) # Increase the base recovery rate -fi_dict_mod = copy.deepcopy(fi_dict) -fi_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ +fmodel_dict_mod = copy.deepcopy(fmodel_dict) +fmodel_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ ['wake_expansion_rates'] = [0.03, 0.015] -fi = FlorisInterface(fi_dict_mod) -fi.set( +fmodel = FlorisModel(fmodel_dict_mod) +fmodel.set( wind_speeds=[8.0], wind_directions=[270.0] ) -fi.run() -turbine_powers = fi.get_turbine_powers().flatten()/1e6 +fmodel.run() +turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw nw += 1 @@ -153,25 +149,25 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): ax0.bar(x, turbine_powers, width=width, label=title) if show_flow_cuts: - generate_wake_visualization(fi, title) + generate_wake_visualization(fmodel, title) # Add new expansion rate -fi_dict_mod = copy.deepcopy(fi_dict) -fi_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ +fmodel_dict_mod = copy.deepcopy(fmodel_dict) +fmodel_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ ['wake_expansion_rates'] = \ - fi_dict['wake']['wake_velocity_parameters']['empirical_gauss']\ + fmodel_dict['wake']['wake_velocity_parameters']['empirical_gauss']\ ['wake_expansion_rates'] + [0.0] -fi_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ +fmodel_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ ['breakpoints_D'] = [5, 10] -fi = FlorisInterface(fi_dict_mod) -fi.set( +fmodel = FlorisModel(fmodel_dict_mod) +fmodel.set( wind_speeds=[8.0], wind_directions=[270.0] ) -fi.run() -turbine_powers = fi.get_turbine_powers().flatten()/1e6 +fmodel.run() +turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw nw += 1 @@ -180,20 +176,20 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): ax0.bar(x, turbine_powers, width=width, label=title) if show_flow_cuts: - generate_wake_visualization(fi, title) + generate_wake_visualization(fmodel, title) # Increase the wake-induced mixing gain -fi_dict_mod = copy.deepcopy(fi_dict) -fi_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ +fmodel_dict_mod = copy.deepcopy(fmodel_dict) +fmodel_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ ['mixing_gain_velocity'] = 3.0 -fi = FlorisInterface(fi_dict_mod) -fi.set( +fmodel = FlorisModel(fmodel_dict_mod) +fmodel.set( wind_speeds=[8.0], wind_directions=[270.0] ) -fi.run() -turbine_powers = fi.get_turbine_powers().flatten()/1e6 +fmodel.run() +turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw nw += 1 @@ -202,7 +198,7 @@ def generate_wake_visualization(fi: FlorisInterface, title=None): ax0.bar(x, turbine_powers, width=width, label=title) if show_flow_cuts: - generate_wake_visualization(fi, title) + generate_wake_visualization(fmodel, title) # Power plot aesthetics ax0.set_xticks(range(num_in_row)) diff --git a/examples/27_empirical_gauss_deflection_parameters.py b/examples/27_empirical_gauss_deflection_parameters.py index cb59ee821..79bdee9f8 100644 --- a/examples/27_empirical_gauss_deflection_parameters.py +++ b/examples/27_empirical_gauss_deflection_parameters.py @@ -4,8 +4,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface -from floris.tools.flow_visualization import plot_rotor_values, visualize_cut_plane +from floris import FlorisModel +from floris.flow_visualization import plot_rotor_values, visualize_cut_plane """ @@ -13,8 +13,8 @@ deflection model and their effects on the wind turbine wake. """ -# Initialize FLORIS with the given input file via FlorisInterface. -# For basic usage, FlorisInterface provides a simplified and expressive +# Initialize FLORIS with the given input file. +# For basic usage, FlorisModel provides a simplified and expressive # entry point to the simulation routines. # Options @@ -27,8 +27,8 @@ print("Turbine yaw angles (degrees): ", yaw_angles[0]) # Define function for visualizing wakes -def generate_wake_visualization(fi, title=None): - # Using the FlorisInterface functions, get 2D slices. +def generate_wake_visualization(fmodel, title=None): + # Using the FlorisModel functions, get 2D slices. x_bounds = [-500, 3000] y_bounds = [-250, 250] z_bounds = [0.001, 500] @@ -39,7 +39,7 @@ def generate_wake_visualization(fi, title=None): min_ws = 4 max_ws = 10 - horizontal_plane = fi.calculate_horizontal_plane( + horizontal_plane = fmodel.calculate_horizontal_plane( x_resolution=200, y_resolution=100, height=horizontal_plane_location, @@ -47,7 +47,7 @@ def generate_wake_visualization(fi, title=None): y_bounds=y_bounds, yaw_angles=yaw_angles ) - y_plane = fi.calculate_y_plane( + y_plane = fmodel.calculate_y_plane( x_resolution=200, z_resolution=100, crossstream_dist=streamwise_plane_location, @@ -58,7 +58,7 @@ def generate_wake_visualization(fi, title=None): cross_planes = [] for cpl in cross_plane_locations: cross_planes.append( - fi.calculate_cross_plane( + fmodel.calculate_cross_plane( y_resolution=100, z_resolution=100, downstream_dist=cpl @@ -105,9 +105,9 @@ def generate_wake_visualization(fi, title=None): ## Main script # Load input yaml and define farm layout -fi = FlorisInterface("inputs/emgauss.yaml") -D = fi.floris.farm.rotor_diameters[0] -fi.set( +fmodel = FlorisModel("inputs/emgauss.yaml") +D = fmodel.core.farm.rotor_diameters[0] +fmodel.set( layout_x=[x*5.0*D for x in range(num_in_row)], layout_y=[0.0]*num_in_row, wind_speeds=[8.0], @@ -116,13 +116,13 @@ def generate_wake_visualization(fi, title=None): ) # Save dictionary to modify later -fi_dict = fi.floris.as_dict() +fmodel_dict = fmodel.core.as_dict() # Run wake calculation -fi.run() +fmodel.run() # Look at the powers of each turbine -turbine_powers = fi.get_turbine_powers().flatten()/1e6 +turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 fig0, ax0 = plt.subplots(1,1) width = 0.1 @@ -136,23 +136,23 @@ def generate_wake_visualization(fi, title=None): # Visualize wakes if show_flow_cuts: - generate_wake_visualization(fi, title) + generate_wake_visualization(fmodel, title) # Increase the maximum deflection attained -fi_dict_mod = copy.deepcopy(fi_dict) +fmodel_dict_mod = copy.deepcopy(fmodel_dict) -fi_dict_mod['wake']['wake_deflection_parameters']['empirical_gauss']\ +fmodel_dict_mod['wake']['wake_deflection_parameters']['empirical_gauss']\ ['horizontal_deflection_gain_D'] = 5.0 -fi = FlorisInterface(fi_dict_mod) -fi.set( +fmodel = FlorisModel(fmodel_dict_mod) +fmodel.set( wind_speeds=[8.0], wind_directions=[270.0], yaw_angles=yaw_angles, ) -fi.run() -turbine_powers = fi.get_turbine_powers().flatten()/1e6 +fmodel.run() +turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw nw += 1 @@ -161,22 +161,22 @@ def generate_wake_visualization(fi, title=None): ax0.bar(x, turbine_powers, width=width, label=title) if show_flow_cuts: - generate_wake_visualization(fi, title) + generate_wake_visualization(fmodel, title) # Add (increase) influence of wake added mixing -fi_dict_mod = copy.deepcopy(fi_dict) -fi_dict_mod['wake']['wake_deflection_parameters']['empirical_gauss']\ +fmodel_dict_mod = copy.deepcopy(fmodel_dict) +fmodel_dict_mod['wake']['wake_deflection_parameters']['empirical_gauss']\ ['mixing_gain_deflection'] = 100.0 -fi = FlorisInterface(fi_dict_mod) -fi.set( +fmodel = FlorisModel(fmodel_dict_mod) +fmodel.set( wind_speeds=[8.0], wind_directions=[270.0], yaw_angles=yaw_angles, ) -fi.run() -turbine_powers = fi.get_turbine_powers().flatten()/1e6 +fmodel.run() +turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw nw += 1 @@ -185,25 +185,25 @@ def generate_wake_visualization(fi, title=None): ax0.bar(x, turbine_powers, width=width, label=title) if show_flow_cuts: - generate_wake_visualization(fi, title) + generate_wake_visualization(fmodel, title) # Add (increase) the yaw-added mixing contribution -fi_dict_mod = copy.deepcopy(fi_dict) +fmodel_dict_mod = copy.deepcopy(fmodel_dict) # Include a WIM gain so that YAM is reflected in deflection as well # as deficit -fi_dict_mod['wake']['wake_deflection_parameters']['empirical_gauss']\ +fmodel_dict_mod['wake']['wake_deflection_parameters']['empirical_gauss']\ ['mixing_gain_deflection'] = 100.0 -fi_dict_mod['wake']['wake_deflection_parameters']['empirical_gauss']\ +fmodel_dict_mod['wake']['wake_deflection_parameters']['empirical_gauss']\ ['yaw_added_mixing_gain'] = 1.0 -fi = FlorisInterface(fi_dict_mod) -fi.set( +fmodel = FlorisModel(fmodel_dict_mod) +fmodel.set( wind_speeds=[8.0], wind_directions=[270.0], yaw_angles=yaw_angles, ) -fi.run() -turbine_powers = fi.get_turbine_powers().flatten()/1e6 +fmodel.run() +turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 x = np.array(range(num_in_row))+width*nw nw += 1 @@ -212,7 +212,7 @@ def generate_wake_visualization(fi, title=None): ax0.bar(x, turbine_powers, width=width, label=title) if show_flow_cuts: - generate_wake_visualization(fi, title) + generate_wake_visualization(fmodel, title) # Power plot aesthetics ax0.set_xticks(range(num_in_row)) diff --git a/examples/28_extract_wind_speed_at_points.py b/examples/28_extract_wind_speed_at_points.py index 52c28c9ca..7c9b9adbc 100644 --- a/examples/28_extract_wind_speed_at_points.py +++ b/examples/28_extract_wind_speed_at_points.py @@ -2,12 +2,12 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ This example demonstrates the use of the sample_flow_at_points method of -FlorisInterface. sample_flow_at_points extracts the wind speed +FlorisModel. sample_flow_at_points extracts the wind speed information at user-specified locations in the flow. Specifically, this example returns the wind speed at a single x, y @@ -26,21 +26,21 @@ met_mast_option = 0 # Try 0, 1, 2, 3 # Instantiate FLORIS model -fi = FlorisInterface("inputs/"+floris_model+".yaml") +fmodel = FlorisModel("inputs/"+floris_model+".yaml") # Set up a two-turbine farm D = 126 -fi.set(layout_x=[0, 3 * D], layout_y=[0, 3 * D]) +fmodel.set(layout_x=[0, 3 * D], layout_y=[0, 3 * D]) fig, ax = plt.subplots(1,2) fig.set_size_inches(10,4) -ax[0].scatter(fi.layout_x, fi.layout_y, color="black", label="Turbine") +ax[0].scatter(fmodel.layout_x, fmodel.layout_y, color="black", label="Turbine") # Set the wind direction to run 360 degrees wd_array = np.arange(0, 360, 1) ws_array = 8.0 * np.ones_like(wd_array) ti_array = 0.06 * np.ones_like(wd_array) -fi.set(wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=ti_array) +fmodel.set(wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=ti_array) # Simulate a met mast in between the turbines if met_mast_option == 0: @@ -59,7 +59,7 @@ points_z = [30, 90, 150, 250] # Collect the points -u_at_points = fi.sample_flow_at_points(points_x, points_y, points_z) +u_at_points = fmodel.sample_flow_at_points(points_x, points_y, points_z) ax[0].scatter(points_x, points_y, color="red", marker="x", label="Met mast") ax[0].grid() diff --git a/examples/29_floating_vs_fixedbottom_farm.py b/examples/29_floating_vs_fixedbottom_farm.py index 044d24342..e04ac3f98 100644 --- a/examples/29_floating_vs_fixedbottom_farm.py +++ b/examples/29_floating_vs_fixedbottom_farm.py @@ -4,8 +4,8 @@ import pandas as pd from scipy.interpolate import NearestNDInterpolator -import floris.tools.flow_visualization as flowviz -from floris.tools import FlorisInterface +import floris.flow_visualization as flowviz +from floris import FlorisModel """ @@ -27,32 +27,32 @@ the Empirical Gaussian wake model to show the effects of floating turbines on both turbine power and wake development. -fi_fixed: Fixed bottom turbine (no tilt variation with wind speed) -fi_floating: Floating turbine (tilt varies with wind speed) +fmodel_fixed: Fixed bottom turbine (no tilt variation with wind speed) +fmodel_floating: Floating turbine (tilt varies with wind speed) """ # Declare the Floris Interface for fixed bottom, provide layout -fi_fixed = FlorisInterface("inputs_floating/emgauss_fixed.yaml") -fi_floating = FlorisInterface("inputs_floating/emgauss_floating.yaml") +fmodel_fixed = FlorisModel("inputs_floating/emgauss_fixed.yaml") +fmodel_floating = FlorisModel("inputs_floating/emgauss_floating.yaml") x, y = np.meshgrid(np.linspace(0, 4*630., 5), np.linspace(0, 3*630., 4)) x = x.flatten() y = y.flatten() -for fi in [fi_fixed, fi_floating]: - fi.set(layout_x=x, layout_y=y) +for fmodel in [fmodel_fixed, fmodel_floating]: + fmodel.set(layout_x=x, layout_y=y) # Compute a single wind speed and direction, power and wakes -for fi in [fi_fixed, fi_floating]: - fi.set( +for fmodel in [fmodel_fixed, fmodel_floating]: + fmodel.set( layout_x=x, layout_y=y, wind_speeds=[10], wind_directions=[270], turbulence_intensities=[0.06], ) - fi.run() + fmodel.run() -powers_fixed = fi_fixed.get_turbine_powers() -powers_floating = fi_floating.get_turbine_powers() +powers_fixed = fmodel_fixed.get_turbine_powers() +powers_floating = fmodel_floating.get_turbine_powers() power_difference = powers_floating - powers_fixed # Show the power differences @@ -78,16 +78,16 @@ # Visualize flows (see also 02_visualizations.py) horizontal_planes = [] y_planes = [] -for fi in [fi_fixed, fi_floating]: +for fmodel in [fmodel_fixed, fmodel_floating]: horizontal_planes.append( - fi.calculate_horizontal_plane( + fmodel.calculate_horizontal_plane( x_resolution=200, y_resolution=100, height=90.0, ) ) y_planes.append( - fi.calculate_y_plane( + fmodel.calculate_y_plane( x_resolution=200, z_resolution=100, crossstream_dist=0.0, @@ -118,16 +118,16 @@ freq = freq_interp(wd_grid, ws_grid).flatten() freq = freq / np.sum(freq) -for fi in [fi_fixed, fi_floating]: - fi.set( +for fmodel in [fmodel_fixed, fmodel_floating]: + fmodel.set( wind_directions=wd_grid.flatten(), wind_speeds= ws_grid.flatten(), turbulence_intensities=0.06 * np.ones_like(wd_grid.flatten()) ) # Compute the AEP -aep_fixed = fi_fixed.get_farm_AEP(freq=freq) -aep_floating = fi_floating.get_farm_AEP(freq=freq) +aep_fixed = fmodel_fixed.get_farm_AEP(freq=freq) +aep_floating = fmodel_floating.get_farm_AEP(freq=freq) print("Farm AEP (fixed bottom): {:.3f} GWh".format(aep_fixed / 1.0e9)) print("Farm AEP (floating): {:.3f} GWh".format(aep_floating / 1.0e9)) print( diff --git a/examples/30_multi_dimensional_cp_ct.py b/examples/30_multi_dimensional_cp_ct.py index 3eebf0854..e33ca31d2 100644 --- a/examples/30_multi_dimensional_cp_ct.py +++ b/examples/30_multi_dimensional_cp_ct.py @@ -1,7 +1,7 @@ import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -36,31 +36,31 @@ and used to select the interpolant at each turbine. Also note in the example below that there is a specific method for computing powers when -using turbines with multi-dimensional Cp/Ct data under FlorisInterface, called +using turbines with multi-dimensional Cp/Ct data under FlorisModel, called 'get_turbine_powers_multidim'. The normal 'get_turbine_powers' method will not work. """ -# Initialize FLORIS with the given input file via FlorisInterface. -fi = FlorisInterface("inputs/gch_multi_dim_cp_ct.yaml") +# Initialize FLORIS with the given input file. +fmodel = FlorisModel("inputs/gch_multi_dim_cp_ct.yaml") # Convert to a simple two turbine layout -fi.set(layout_x=[0., 500.], layout_y=[0., 0.]) +fmodel.set(layout_x=[0., 500.], layout_y=[0., 0.]) # Single wind speed and wind direction print('\n========================= Single Wind Direction and Wind Speed =========================') # Get the turbine powers assuming 1 wind speed and 1 wind direction -fi.set(wind_directions=[270.0], wind_speeds=[8.0], turbulence_intensities=[0.06]) +fmodel.set(wind_directions=[270.0], wind_speeds=[8.0], turbulence_intensities=[0.06]) # Set the yaw angles to 0 yaw_angles = np.zeros([1, 2]) # 1 wind direction and wind speed, 2 turbines -fi.set(yaw_angles=yaw_angles) +fmodel.set(yaw_angles=yaw_angles) # Calculate -fi.run() +fmodel.run() # Get the turbine powers -turbine_powers = fi.get_turbine_powers() / 1000.0 +turbine_powers = fmodel.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 1 findex X 2 Turbines") print(turbine_powers) print("Shape: ",turbine_powers.shape) @@ -73,14 +73,14 @@ turbulence_intensities = np.array([0.06, 0.06, 0.06]) yaw_angles = np.zeros([3, 2]) # 3 wind directions/ speeds, 2 turbines -fi.set( +fmodel.set( wind_speeds=wind_speeds, wind_directions=wind_directions, turbulence_intensities=turbulence_intensities, yaw_angles=yaw_angles ) -fi.run() -turbine_powers = fi.get_turbine_powers() / 1000.0 +fmodel.run() +turbine_powers = fmodel.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") print(turbine_powers) print("Shape: ",turbine_powers.shape) @@ -93,14 +93,14 @@ turbulence_intensities = 0.06 * np.ones_like(wind_speeds) yaw_angles = np.zeros([9, 2]) # 9 wind directions/ speeds, 2 turbines -fi.set( +fmodel.set( wind_directions=wind_directions, wind_speeds=wind_speeds, turbulence_intensities=turbulence_intensities, yaw_angles=yaw_angles ) -fi.run() -turbine_powers = fi.get_turbine_powers()/1000. +fmodel.run() +turbine_powers = fmodel.get_turbine_powers()/1000. print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") print(turbine_powers) print("Shape: ",turbine_powers.shape) diff --git a/examples/31_multi_dimensional_cp_ct_2Hs.py b/examples/31_multi_dimensional_cp_ct_2Hs.py index df5d4d171..56bb6fc20 100644 --- a/examples/31_multi_dimensional_cp_ct_2Hs.py +++ b/examples/31_multi_dimensional_cp_ct_2Hs.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -13,46 +13,46 @@ values of the original Cp/Ct data for the IEA 15MW turbine. """ -# Initialize FLORIS with the given input file via FlorisInterface. -fi = FlorisInterface("inputs/gch_multi_dim_cp_ct.yaml") +# Initialize FLORIS with the given input file. +fmodel = FlorisModel("inputs/gch_multi_dim_cp_ct.yaml") -# Make a second FLORIS interface with a different setting for Hs. +# Make a second Floris instance with a different setting for Hs. # Note the multi-cp-ct file (iea_15MW_multi_dim_Tp_Hs.csv) # for the turbine model iea_15MW_floating_multi_dim_cp_ct.yaml # Defines Hs at 1 and 5. # The value in gch_multi_dim_cp_ct.yaml is 3.01 which will map # to 5 as the nearer value, so we set the other case to 1 # for contrast. -fi_dict_mod = fi.floris.as_dict() -fi_dict_mod['flow_field']['multidim_conditions']['Hs'] = 1.0 -fi_hs_1 = FlorisInterface(fi_dict_mod) +fmodel_dict_mod = fmodel.core.as_dict() +fmodel_dict_mod['flow_field']['multidim_conditions']['Hs'] = 1.0 +fmodel_hs_1 = FlorisModel(fmodel_dict_mod) # Set both cases to 3 turbine layout -fi.set(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) -fi_hs_1.set(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) +fmodel.set(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) +fmodel_hs_1.set(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) # Use a sweep of wind speeds wind_speeds = np.arange(5, 20, 1.0) wind_directions = 270.0 * np.ones_like(wind_speeds) turbulence_intensities = 0.06 * np.ones_like(wind_speeds) -fi.set( +fmodel.set( wind_directions=wind_directions, wind_speeds=wind_speeds, turbulence_intensities=turbulence_intensities ) -fi_hs_1.set( +fmodel_hs_1.set( wind_directions=wind_directions, wind_speeds=wind_speeds, turbulence_intensities=turbulence_intensities ) # Calculate wakes with baseline yaw -fi.run() -fi_hs_1.run() +fmodel.run() +fmodel_hs_1.run() # Collect the turbine powers in kW -turbine_powers = fi.get_turbine_powers()/1000. -turbine_powers_hs_1 = fi_hs_1.get_turbine_powers()/1000. +turbine_powers = fmodel.get_turbine_powers()/1000. +turbine_powers_hs_1 = fmodel_hs_1.get_turbine_powers()/1000. # Plot the power in each case and the difference in power fig, axarr = plt.subplots(1,3,sharex=True,figsize=(12,4)) diff --git a/examples/32_plot_velocity_deficit_profiles.py b/examples/32_plot_velocity_deficit_profiles.py index 490809571..a0b2949e0 100644 --- a/examples/32_plot_velocity_deficit_profiles.py +++ b/examples/32_plot_velocity_deficit_profiles.py @@ -3,9 +3,9 @@ import numpy as np from matplotlib import ticker -import floris.tools.flow_visualization as flowviz -from floris.tools import cut_plane, FlorisInterface -from floris.tools.flow_visualization import VelocityProfilesFigure +import floris.flow_visualization as flowviz +from floris import cut_plane, FlorisModel +from floris.flow_visualization import VelocityProfilesFigure from floris.utilities import reverse_rotate_coordinates_rel_west @@ -37,7 +37,7 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): x2 = np.array([0.0, quiver_length + 0.35 * D]) x3 = np.array([90.0, 90.0]) x, y, _ = reverse_rotate_coordinates_rel_west( - fi.floris.flow_field.wind_directions, + fmodel.core.flow_field.wind_directions, x1[None, :], x2[None, :], x3[None, :], @@ -54,8 +54,8 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): hub_height = 90.0 homogeneous_wind_speed = 8.0 - fi = FlorisInterface("inputs/gch.yaml") - fi.set(layout_x=[0.0], layout_y=[0.0]) + fmodel = FlorisModel("inputs/gch.yaml") + fmodel.set(layout_x=[0.0], layout_y=[0.0]) # ------------------------------ Single-turbine layout ------------------------------ # We first show how to sample and plot velocity deficit profiles on a single-turbine layout. @@ -63,13 +63,13 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): downstream_dists = D * np.array([3, 5, 7]) # Sample three profiles along three corresponding lines that are all parallel to the y-axis # (cross-stream direction). The streamwise location of each line is given in `downstream_dists`. - profiles = fi.sample_velocity_deficit_profiles( + profiles = fmodel.sample_velocity_deficit_profiles( direction='cross-stream', downstream_dists=downstream_dists, homogeneous_wind_speed=homogeneous_wind_speed, ) - horizontal_plane = fi.calculate_horizontal_plane(height=hub_height) + horizontal_plane = fmodel.calculate_horizontal_plane(height=hub_height) fig, ax = plt.subplots(figsize=(6.4, 3)) flowviz.visualize_cut_plane(horizontal_plane, ax) colors = ['b', 'g', 'c'] @@ -95,10 +95,10 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): # Change velocity model to jensen, get the velocity deficit profiles, # and add them to the figure. - floris_dict = fi.floris.as_dict() + floris_dict = fmodel.core.as_dict() floris_dict['wake']['model_strings']['velocity_model'] = 'jensen' - fi = FlorisInterface(floris_dict) - profiles = fi.sample_velocity_deficit_profiles( + fmodel = FlorisModel(floris_dict) + profiles = fmodel.sample_velocity_deficit_profiles( direction='cross-stream', downstream_dists=downstream_dists, homogeneous_wind_speed=homogeneous_wind_speed, @@ -125,16 +125,16 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): # (i.e. where to start sampling the profiles). wind_direction = 315.0 # Try to change this downstream_dists = D * np.array([3, 5]) - floris_dict = fi.floris.as_dict() + floris_dict = fmodel.core.as_dict() floris_dict['wake']['model_strings']['velocity_model'] = 'gauss' - fi = FlorisInterface(floris_dict) + fmodel = FlorisModel(floris_dict) # Let (x_t1, y_t1) be the location of the second turbine x_t1 = 2 * D y_t1 = -2 * D - fi.set(wind_directions=[wind_direction], layout_x=[0.0, x_t1], layout_y=[0.0, y_t1]) + fmodel.set(wind_directions=[wind_direction], layout_x=[0.0, x_t1], layout_y=[0.0, y_t1]) # Extract profiles at a set of downstream distances from the starting point (x_start, y_start) - cross_profiles = fi.sample_velocity_deficit_profiles( + cross_profiles = fmodel.sample_velocity_deficit_profiles( direction='cross-stream', downstream_dists=downstream_dists, homogeneous_wind_speed=homogeneous_wind_speed, @@ -142,7 +142,10 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): y_start=y_t1, ) - horizontal_plane = fi.calculate_horizontal_plane(height=hub_height, x_bounds=[-2 * D, 9 * D]) + horizontal_plane = fmodel.calculate_horizontal_plane( + height=hub_height, + x_bounds=[-2 * D, 9 * D] + ) ax = flowviz.visualize_cut_plane(horizontal_plane) colors = ['b', 'g', 'c'] for i, profile in enumerate(cross_profiles): @@ -162,7 +165,7 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): # locations as before. We stay directly downstream of the turbine (i.e. x2 = 0). These # profiles are almost identical to the cross-stream profiles. However, we now explicitly # set the profile range. The default range is [-2 * D, 2 * D]. - vertical_profiles = fi.sample_velocity_deficit_profiles( + vertical_profiles = fmodel.sample_velocity_deficit_profiles( direction='vertical', profile_range=[-1.5 * D, 1.5 * D], downstream_dists=downstream_dists, diff --git a/examples/33_specify_turbine_power_curve.py b/examples/33_specify_turbine_power_curve.py index f10e4f7cd..420f5aeab 100644 --- a/examples/33_specify_turbine_power_curve.py +++ b/examples/33_specify_turbine_power_curve.py @@ -2,7 +2,7 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import FlorisInterface +from floris import FlorisModel from floris.turbine_library import build_cosine_loss_turbine_dict @@ -39,12 +39,12 @@ ref_tilt=5 ) -fi = FlorisInterface("inputs/gch.yaml") +fmodel = FlorisModel("inputs/gch.yaml") wind_speeds = np.linspace(1, 15, 100) wind_directions = 270 * np.ones_like(wind_speeds) turbulence_intensities = 0.06 * np.ones_like(wind_speeds) # Replace the turbine(s) in the FLORIS model with the created one -fi.set( +fmodel.set( layout_x=[0], layout_y=[0], wind_directions=wind_directions, @@ -52,9 +52,9 @@ turbulence_intensities=turbulence_intensities, turbine_type=[turbine_dict] ) -fi.run() +fmodel.run() -powers = fi.get_farm_power() +powers = fmodel.get_farm_power() specified_powers = ( np.array(turbine_data_dict["power_coefficient"]) diff --git a/examples/34_wind_data.py b/examples/34_wind_data.py index 79469c988..3a4d56fe5 100644 --- a/examples/34_wind_data.py +++ b/examples/34_wind_data.py @@ -1,8 +1,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import ( - FlorisInterface, +from floris import ( + FlorisModel, TimeSeries, WindRose, ) @@ -59,28 +59,28 @@ plt.tight_layout() # Now set up a FLORIS model and initialize it using the time series and wind rose -fi = FlorisInterface("inputs/gch.yaml") -fi.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) +fmodel = FlorisModel("inputs/gch.yaml") +fmodel.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) -fi_time_series = fi.copy() -fi_wind_rose = fi.copy() -fi_wind_ti_rose = fi.copy() +fmodel_time_series = fmodel.copy() +fmodel_wind_rose = fmodel.copy() +fmodel_wind_ti_rose = fmodel.copy() -fi_time_series.set(wind_data=time_series) -fi_wind_rose.set(wind_data=wind_rose) -fi_wind_ti_rose.set(wind_data=wind_ti_rose) +fmodel_time_series.set(wind_data=time_series) +fmodel_wind_rose.set(wind_data=wind_rose) +fmodel_wind_ti_rose.set(wind_data=wind_ti_rose) -fi_time_series.run() -fi_wind_rose.run() -fi_wind_ti_rose.run() +fmodel_time_series.run() +fmodel_wind_rose.run() +fmodel_wind_ti_rose.run() -time_series_power = fi_time_series.get_farm_power() -wind_rose_power = fi_wind_rose.get_farm_power() -wind_ti_rose_power = fi_wind_ti_rose.get_farm_power() +time_series_power = fmodel_time_series.get_farm_power() +wind_rose_power = fmodel_wind_rose.get_farm_power() +wind_ti_rose_power = fmodel_wind_ti_rose.get_farm_power() -time_series_aep = fi_time_series.get_farm_AEP_with_wind_data(time_series) -wind_rose_aep = fi_wind_rose.get_farm_AEP_with_wind_data(wind_rose) -wind_ti_rose_aep = fi_wind_ti_rose.get_farm_AEP_with_wind_data(wind_ti_rose) +time_series_aep = fmodel_time_series.get_farm_AEP_with_wind_data(time_series) +wind_rose_aep = fmodel_wind_rose.get_farm_AEP_with_wind_data(wind_rose) +wind_ti_rose_aep = fmodel_wind_ti_rose.get_farm_AEP_with_wind_data(wind_ti_rose) print(f"AEP from TimeSeries {time_series_aep / 1e9:.2f} GWh") print(f"AEP from WindRose {wind_rose_aep / 1e9:.2f} GWh") diff --git a/examples/35_sweep_ti.py b/examples/35_sweep_ti.py index 23942150e..5bf2ffa34 100644 --- a/examples/35_sweep_ti.py +++ b/examples/35_sweep_ti.py @@ -2,8 +2,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import ( - FlorisInterface, +from floris import ( + FlorisModel, TimeSeries, WindRose, ) @@ -29,10 +29,10 @@ # Now set up a FLORIS model and initialize it using the time -fi = FlorisInterface("inputs/gch.yaml") -fi.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0], wind_data=time_series) -fi.run() -turbine_power = fi.get_turbine_powers() +fmodel = FlorisModel("inputs/gch.yaml") +fmodel.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0], wind_data=time_series) +fmodel.run() +turbine_power = fmodel.get_turbine_powers() fig, axarr = plt.subplots(2, 1, sharex=True, figsize=(6, 6)) ax = axarr[0] diff --git a/examples/36_generate_ti.py b/examples/36_generate_ti.py index 3c6d8a9bf..317bc8dbe 100644 --- a/examples/36_generate_ti.py +++ b/examples/36_generate_ti.py @@ -2,8 +2,8 @@ import matplotlib.pyplot as plt import numpy as np -from floris.tools import ( - FlorisInterface, +from floris import ( + FlorisModel, TimeSeries, WindRose, ) diff --git a/examples/40_test_derating.py b/examples/40_test_derating.py index 4385ff4a0..2a7260167 100644 --- a/examples/40_test_derating.py +++ b/examples/40_test_derating.py @@ -3,7 +3,7 @@ import numpy as np import yaml -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -12,39 +12,39 @@ """ # Grab model of FLORIS and update to deratable turbines -fi = FlorisInterface("inputs/gch.yaml") +fmodel = FlorisModel("inputs/gch.yaml") with open(str( - fi.floris.as_dict()["farm"]["turbine_library_path"] / - (fi.floris.as_dict()["farm"]["turbine_type"][0] + ".yaml") + fmodel.core.as_dict()["farm"]["turbine_library_path"] / + (fmodel.core.as_dict()["farm"]["turbine_type"][0] + ".yaml") )) as t: turbine_type = yaml.safe_load(t) turbine_type["power_thrust_model"] = "simple-derating" # Convert to a simple two turbine layout with derating turbines -fi.set(layout_x=[0, 1000.0], layout_y=[0.0, 0.0], turbine_type=[turbine_type]) +fmodel.set(layout_x=[0, 1000.0], layout_y=[0.0, 0.0], turbine_type=[turbine_type]) # Set the wind directions and speeds to be constant over n_findex = N time steps N = 50 -fi.set( +fmodel.set( wind_directions=270 * np.ones(N), wind_speeds=10.0 * np.ones(N), turbulence_intensities=0.06 * np.ones(N) ) -fi.run() -turbine_powers_orig = fi.get_turbine_powers() +fmodel.run() +turbine_powers_orig = fmodel.get_turbine_powers() # Add derating power_setpoints = np.tile(np.linspace(1, 6e6, N), 2).reshape(2, N).T -fi.set(power_setpoints=power_setpoints) -fi.run() -turbine_powers_derated = fi.get_turbine_powers() +fmodel.set(power_setpoints=power_setpoints) +fmodel.run() +turbine_powers_derated = fmodel.get_turbine_powers() # Compute available power at downstream turbine power_setpoints_2 = np.array([np.linspace(1, 6e6, N), np.full(N, None)]).T -fi.set(power_setpoints=power_setpoints_2) -fi.run() -turbine_powers_avail_ds = fi.get_turbine_powers()[:,1] +fmodel.set(power_setpoints=power_setpoints_2) +fmodel.run() +turbine_powers_avail_ds = fmodel.get_turbine_powers()[:,1] # Plot the results fig, ax = plt.subplots(1, 1) @@ -97,7 +97,7 @@ [2e6, None,], [None, 1e6] ]) -fi.set( +fmodel.set( wind_directions=270 * np.ones(len(yaw_angles)), wind_speeds=10.0 * np.ones(len(yaw_angles)), turbulence_intensities=0.06 * np.ones(len(yaw_angles)), @@ -105,8 +105,8 @@ yaw_angles=yaw_angles, power_setpoints=power_setpoints, ) -fi.run() -turbine_powers = fi.get_turbine_powers() +fmodel.run() +turbine_powers = fmodel.get_turbine_powers() print(turbine_powers) plt.show() diff --git a/examples/41_test_disable_turbines.py b/examples/41_test_disable_turbines.py index 717bb02e5..3dadc1e0d 100644 --- a/examples/41_test_disable_turbines.py +++ b/examples/41_test_disable_turbines.py @@ -3,7 +3,7 @@ import numpy as np import yaml -from floris.tools import FlorisInterface +from floris import FlorisModel """ @@ -12,19 +12,19 @@ during a simulation. """ -# Initialize the FLORIS interface -fi = FlorisInterface("inputs/gch.yaml") +# Initialize FLORIS +fmodel = FlorisModel("inputs/gch.yaml") # Change to the mixed model turbine with open( str( - fi.floris.as_dict()["farm"]["turbine_library_path"] - / (fi.floris.as_dict()["farm"]["turbine_type"][0] + ".yaml") + fmodel.core.as_dict()["farm"]["turbine_library_path"] + / (fmodel.core.as_dict()["farm"]["turbine_type"][0] + ".yaml") ) ) as t: turbine_type = yaml.safe_load(t) turbine_type["power_thrust_model"] = "mixed" -fi.set(turbine_type=[turbine_type]) +fmodel.set(turbine_type=[turbine_type]) # Consider a wind farm of 3 aligned wind turbines layout = np.array([[0.0, 0.0], [500.0, 0.0], [1000.0, 0.0]]) @@ -43,7 +43,7 @@ # ------------------------------------------ # Reinitialize flow field -fi.set( +fmodel.set( layout_x=layout[:, 0], layout_y=layout[:, 1], wind_directions=wind_directions, @@ -53,15 +53,15 @@ ) # # Compute wakes -fi.run() +fmodel.run() # Results # ------------------------------------------ # Get powers and effective wind speeds -turbine_powers = fi.get_turbine_powers() +turbine_powers = fmodel.get_turbine_powers() turbine_powers = np.round(turbine_powers * 1e-3, decimals=2) -effective_wind_speeds = fi.turbine_average_velocities +effective_wind_speeds = fmodel.turbine_average_velocities # Plot the results diff --git a/floris/__init__.py b/floris/__init__.py index 64c9e8c9a..79c437d33 100644 --- a/floris/__init__.py +++ b/floris/__init__.py @@ -4,3 +4,18 @@ with open(Path(__file__).parent / "version.py") as _version_file: __version__ = _version_file.read().strip() + + +from .floris_model import FlorisModel +from .flow_visualization import ( + plot_rotor_values, + visualize_cut_plane, + visualize_quiver, +) +from .parallel_floris_model import ParallelFlorisModel +from .uncertain_floris_model import UncertainFlorisModel +from .wind_data import ( + TimeSeries, + WindRose, + WindTIRose, +) diff --git a/floris/tools/convert_floris_input_v3_to_v4.py b/floris/convert_floris_input_v3_to_v4.py similarity index 100% rename from floris/tools/convert_floris_input_v3_to_v4.py rename to floris/convert_floris_input_v3_to_v4.py diff --git a/floris/tools/convert_turbine_v3_to_v4.py b/floris/convert_turbine_v3_to_v4.py similarity index 100% rename from floris/tools/convert_turbine_v3_to_v4.py rename to floris/convert_turbine_v3_to_v4.py diff --git a/floris/simulation/__init__.py b/floris/core/__init__.py similarity index 98% rename from floris/simulation/__init__.py rename to floris/core/__init__.py index 68da31838..e37f9c113 100644 --- a/floris/simulation/__init__.py +++ b/floris/core/__init__.py @@ -55,7 +55,7 @@ sequential_solver, turbopark_solver, ) -from .floris import Floris +from .core import Core # initialize the logger floris.logging_manager._setup_logger() diff --git a/floris/simulation/base.py b/floris/core/base.py similarity index 100% rename from floris/simulation/base.py rename to floris/core/base.py diff --git a/floris/simulation/floris.py b/floris/core/core.py similarity index 98% rename from floris/simulation/floris.py rename to floris/core/core.py index 5e1379dcd..a31583567 100644 --- a/floris/simulation/floris.py +++ b/floris/core/core.py @@ -9,7 +9,7 @@ from attrs import define, field from floris import logging_manager -from floris.simulation import ( +from floris.core import ( BaseClass, cc_solver, empirical_gauss_solver, @@ -38,7 +38,7 @@ @define -class Floris(BaseClass): +class Core(BaseClass): """ Top-level class that describes a Floris model and initializes the simulation. Use the :py:class:`~.simulation.farm.Farm` attribute to @@ -265,7 +265,7 @@ def solve_for_velocity_deficit_profiles( ) -> list[pd.DataFrame]: """ Extract velocity deficit profiles. See - :py:meth:`~floris.tools.floris_interface.FlorisInterface.sample_velocity_deficit_profiles` + :py:meth:`~floris.floris_model.FlorisModel.sample_velocity_deficit_profiles` for more details. """ @@ -336,7 +336,7 @@ def finalize(self): ## I/O @classmethod - def from_file(cls, input_file_path: str | Path) -> Floris: + def from_file(cls, input_file_path: str | Path) -> Core: """Creates a `Floris` instance from an input file. Must be filetype YAML. Args: @@ -348,7 +348,7 @@ def from_file(cls, input_file_path: str | Path) -> Floris: """ input_dict = load_yaml(Path(input_file_path).resolve()) check_input_file_for_v3_keys(input_dict) - return Floris.from_dict(input_dict) + return Core.from_dict(input_dict) def to_file(self, output_file_path: str) -> None: """Converts the `Floris` object to an input-ready YAML file at `output_file_path`. diff --git a/floris/simulation/farm.py b/floris/core/farm.py similarity index 98% rename from floris/simulation/farm.py rename to floris/core/farm.py index 678b47e3e..26cec1bec 100644 --- a/floris/simulation/farm.py +++ b/floris/core/farm.py @@ -15,13 +15,13 @@ from attrs import define, field from scipy.interpolate import interp1d -from floris.simulation import ( +from floris.core import ( BaseClass, State, Turbine, ) -from floris.simulation.rotor_velocity import compute_tilt_angles_for_floating_turbines_map -from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT +from floris.core.rotor_velocity import compute_tilt_angles_for_floating_turbines_map +from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT from floris.type_dec import ( convert_to_path, floris_array_converter, diff --git a/floris/simulation/flow_field.py b/floris/core/flow_field.py similarity index 99% rename from floris/simulation/flow_field.py rename to floris/core/flow_field.py index ad9c54693..655f771a9 100644 --- a/floris/simulation/flow_field.py +++ b/floris/core/flow_field.py @@ -9,7 +9,7 @@ from scipy.spatial import ConvexHull from shapely.geometry import Polygon -from floris.simulation import ( +from floris.core import ( BaseClass, Grid, ) diff --git a/floris/simulation/grid.py b/floris/core/grid.py similarity index 99% rename from floris/simulation/grid.py rename to floris/core/grid.py index 926896821..3dc6280ae 100644 --- a/floris/simulation/grid.py +++ b/floris/core/grid.py @@ -8,7 +8,7 @@ import numpy as np from attrs import define, field -from floris.simulation import BaseClass +from floris.core import BaseClass from floris.type_dec import ( floris_array_converter, floris_float_type, diff --git a/floris/simulation/rotor_velocity.py b/floris/core/rotor_velocity.py similarity index 100% rename from floris/simulation/rotor_velocity.py rename to floris/core/rotor_velocity.py diff --git a/floris/simulation/solver.py b/floris/core/solver.py similarity index 99% rename from floris/simulation/solver.py rename to floris/core/solver.py index 011f41985..00abcc129 100644 --- a/floris/simulation/solver.py +++ b/floris/core/solver.py @@ -5,7 +5,7 @@ import numpy as np -from floris.simulation import ( +from floris.core import ( axial_induction, Farm, FlowField, @@ -15,10 +15,10 @@ thrust_coefficient, TurbineGrid, ) -from floris.simulation.rotor_velocity import average_velocity -from floris.simulation.wake import WakeModelManager -from floris.simulation.wake_deflection.empirical_gauss import yaw_added_wake_mixing -from floris.simulation.wake_deflection.gauss import ( +from floris.core.rotor_velocity import average_velocity +from floris.core.wake import WakeModelManager +from floris.core.wake_deflection.empirical_gauss import yaw_added_wake_mixing +from floris.core.wake_deflection.gauss import ( calculate_transverse_velocity, wake_added_yaw, yaw_added_turbulence_mixing, diff --git a/floris/simulation/turbine/__init__.py b/floris/core/turbine/__init__.py similarity index 63% rename from floris/simulation/turbine/__init__.py rename to floris/core/turbine/__init__.py index 8f447dbee..5f361f463 100644 --- a/floris/simulation/turbine/__init__.py +++ b/floris/core/turbine/__init__.py @@ -1,5 +1,5 @@ -from floris.simulation.turbine.operation_models import ( +from floris.core.turbine.operation_models import ( CosineLossTurbine, MixedOperationTurbine, SimpleDeratingTurbine, diff --git a/floris/simulation/turbine/operation_models.py b/floris/core/turbine/operation_models.py similarity index 99% rename from floris/simulation/turbine/operation_models.py rename to floris/core/turbine/operation_models.py index 3d7a2b8e6..88f0f4fac 100644 --- a/floris/simulation/turbine/operation_models.py +++ b/floris/core/turbine/operation_models.py @@ -13,8 +13,8 @@ from attrs import define, field from scipy.interpolate import interp1d -from floris.simulation import BaseClass -from floris.simulation.rotor_velocity import ( +from floris.core import BaseClass +from floris.core.rotor_velocity import ( average_velocity, compute_tilt_angles_for_floating_turbines, rotor_velocity_tilt_correction, diff --git a/floris/simulation/turbine/turbine.py b/floris/core/turbine/turbine.py similarity index 99% rename from floris/simulation/turbine/turbine.py rename to floris/core/turbine/turbine.py index 191072ce6..dbc588093 100644 --- a/floris/simulation/turbine/turbine.py +++ b/floris/core/turbine/turbine.py @@ -11,8 +11,8 @@ from attrs import define, field from scipy.interpolate import interp1d -from floris.simulation import BaseClass -from floris.simulation.turbine import ( +from floris.core import BaseClass +from floris.core.turbine import ( CosineLossTurbine, MixedOperationTurbine, SimpleDeratingTurbine, diff --git a/floris/simulation/wake.py b/floris/core/wake.py similarity index 95% rename from floris/simulation/wake.py rename to floris/core/wake.py index 28560151a..2f9907c99 100644 --- a/floris/simulation/wake.py +++ b/floris/core/wake.py @@ -2,24 +2,24 @@ import attrs from attrs import define, field -from floris.simulation import BaseClass, BaseModel -from floris.simulation.wake_combination import ( +from floris.core import BaseClass, BaseModel +from floris.core.wake_combination import ( FLS, MAX, SOSFS, ) -from floris.simulation.wake_deflection import ( +from floris.core.wake_deflection import ( EmpiricalGaussVelocityDeflection, GaussVelocityDeflection, JimenezVelocityDeflection, NoneVelocityDeflection, ) -from floris.simulation.wake_turbulence import ( +from floris.core.wake_turbulence import ( CrespoHernandez, NoneWakeTurbulence, WakeInducedMixing, ) -from floris.simulation.wake_velocity import ( +from floris.core.wake_velocity import ( CumulativeGaussCurlVelocityDeficit, EmpiricalGaussVelocityDeficit, GaussVelocityDeficit, diff --git a/floris/core/wake_combination/__init__.py b/floris/core/wake_combination/__init__.py new file mode 100644 index 000000000..246aab65c --- /dev/null +++ b/floris/core/wake_combination/__init__.py @@ -0,0 +1,4 @@ + +from floris.core.wake_combination.fls import FLS +from floris.core.wake_combination.max import MAX +from floris.core.wake_combination.sosfs import SOSFS diff --git a/floris/simulation/wake_combination/fls.py b/floris/core/wake_combination/fls.py similarity index 95% rename from floris/simulation/wake_combination/fls.py rename to floris/core/wake_combination/fls.py index fa2d88326..42e68045f 100644 --- a/floris/simulation/wake_combination/fls.py +++ b/floris/core/wake_combination/fls.py @@ -2,7 +2,7 @@ import numpy as np from attrs import define -from floris.simulation import BaseModel +from floris.core import BaseModel @define diff --git a/floris/simulation/wake_combination/max.py b/floris/core/wake_combination/max.py similarity index 96% rename from floris/simulation/wake_combination/max.py rename to floris/core/wake_combination/max.py index f4beda1c8..0898cc842 100644 --- a/floris/simulation/wake_combination/max.py +++ b/floris/core/wake_combination/max.py @@ -2,7 +2,7 @@ import numpy as np from attrs import define -from floris.simulation import BaseModel +from floris.core import BaseModel @define diff --git a/floris/simulation/wake_combination/sosfs.py b/floris/core/wake_combination/sosfs.py similarity index 95% rename from floris/simulation/wake_combination/sosfs.py rename to floris/core/wake_combination/sosfs.py index 6598faf2b..c277e21bb 100644 --- a/floris/simulation/wake_combination/sosfs.py +++ b/floris/core/wake_combination/sosfs.py @@ -2,7 +2,7 @@ import numpy as np from attrs import define -from floris.simulation import BaseModel +from floris.core import BaseModel @define diff --git a/floris/core/wake_deflection/__init__.py b/floris/core/wake_deflection/__init__.py new file mode 100644 index 000000000..ba5e63788 --- /dev/null +++ b/floris/core/wake_deflection/__init__.py @@ -0,0 +1,5 @@ + +from floris.core.wake_deflection.empirical_gauss import EmpiricalGaussVelocityDeflection +from floris.core.wake_deflection.gauss import GaussVelocityDeflection +from floris.core.wake_deflection.jimenez import JimenezVelocityDeflection +from floris.core.wake_deflection.none import NoneVelocityDeflection diff --git a/floris/simulation/wake_deflection/empirical_gauss.py b/floris/core/wake_deflection/empirical_gauss.py similarity index 99% rename from floris/simulation/wake_deflection/empirical_gauss.py rename to floris/core/wake_deflection/empirical_gauss.py index 85681544c..00a506b3c 100644 --- a/floris/simulation/wake_deflection/empirical_gauss.py +++ b/floris/core/wake_deflection/empirical_gauss.py @@ -4,7 +4,7 @@ import numpy as np from attrs import define, field -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, diff --git a/floris/simulation/wake_deflection/gauss.py b/floris/core/wake_deflection/gauss.py similarity index 99% rename from floris/simulation/wake_deflection/gauss.py rename to floris/core/wake_deflection/gauss.py index fc1cedfc4..e19fd147b 100644 --- a/floris/simulation/wake_deflection/gauss.py +++ b/floris/core/wake_deflection/gauss.py @@ -12,7 +12,7 @@ ) from numpy import pi -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, diff --git a/floris/simulation/wake_deflection/jimenez.py b/floris/core/wake_deflection/jimenez.py similarity index 93% rename from floris/simulation/wake_deflection/jimenez.py rename to floris/core/wake_deflection/jimenez.py index 6f0a8ccf6..daca6e9c5 100644 --- a/floris/simulation/wake_deflection/jimenez.py +++ b/floris/core/wake_deflection/jimenez.py @@ -5,7 +5,7 @@ import numpy as np from attrs import define, field -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, @@ -64,13 +64,13 @@ def function( y_locations (np.array): spanwise locations in wake z_locations (np.array): vertical locations in wake (not used in Jiménez) - turbine (:py:class:`floris.simulation.turbine.Turbine`): + turbine (:py:class:`floris.core.turbine.Turbine`): Turbine object coord - (:py:meth:`floris.simulation.turbine_map.TurbineMap.coords`): + (:py:meth:`floris.core.turbine_map.TurbineMap.coords`): Spatial coordinates of wind turbine. flow_field - (:py:class:`floris.simulation.flow_field.FlowField`): + (:py:class:`floris.core.flow_field.FlowField`): Flow field object. Returns: diff --git a/floris/simulation/wake_deflection/none.py b/floris/core/wake_deflection/none.py similarity index 97% rename from floris/simulation/wake_deflection/none.py rename to floris/core/wake_deflection/none.py index 44e466651..b428c8af9 100644 --- a/floris/simulation/wake_deflection/none.py +++ b/floris/core/wake_deflection/none.py @@ -4,7 +4,7 @@ import numpy as np from attrs import define -from floris.simulation import ( +from floris.core import ( BaseModel, FlowField, Grid, diff --git a/floris/core/wake_turbulence/__init__.py b/floris/core/wake_turbulence/__init__.py new file mode 100644 index 000000000..8bec72939 --- /dev/null +++ b/floris/core/wake_turbulence/__init__.py @@ -0,0 +1,4 @@ + +from floris.core.wake_turbulence.crespo_hernandez import CrespoHernandez +from floris.core.wake_turbulence.none import NoneWakeTurbulence +from floris.core.wake_turbulence.wake_induced_mixing import WakeInducedMixing diff --git a/floris/simulation/wake_turbulence/crespo_hernandez.py b/floris/core/wake_turbulence/crespo_hernandez.py similarity index 98% rename from floris/simulation/wake_turbulence/crespo_hernandez.py rename to floris/core/wake_turbulence/crespo_hernandez.py index 09d045986..b5c623fe0 100644 --- a/floris/simulation/wake_turbulence/crespo_hernandez.py +++ b/floris/core/wake_turbulence/crespo_hernandez.py @@ -5,7 +5,7 @@ import numpy as np from attrs import define, field -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, diff --git a/floris/simulation/wake_turbulence/none.py b/floris/core/wake_turbulence/none.py similarity index 95% rename from floris/simulation/wake_turbulence/none.py rename to floris/core/wake_turbulence/none.py index 3975c2581..146ca970b 100644 --- a/floris/simulation/wake_turbulence/none.py +++ b/floris/core/wake_turbulence/none.py @@ -4,7 +4,7 @@ import numpy as np from attrs import define, field -from floris.simulation import BaseModel +from floris.core import BaseModel @define diff --git a/floris/simulation/wake_turbulence/wake_induced_mixing.py b/floris/core/wake_turbulence/wake_induced_mixing.py similarity index 98% rename from floris/simulation/wake_turbulence/wake_induced_mixing.py rename to floris/core/wake_turbulence/wake_induced_mixing.py index f39e6a8a6..64306ff75 100644 --- a/floris/simulation/wake_turbulence/wake_induced_mixing.py +++ b/floris/core/wake_turbulence/wake_induced_mixing.py @@ -4,7 +4,7 @@ import numpy as np from attrs import define, field -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, diff --git a/floris/core/wake_velocity/__init__.py b/floris/core/wake_velocity/__init__.py new file mode 100644 index 000000000..dc1342f8a --- /dev/null +++ b/floris/core/wake_velocity/__init__.py @@ -0,0 +1,7 @@ + +from floris.core.wake_velocity.cumulative_gauss_curl import CumulativeGaussCurlVelocityDeficit +from floris.core.wake_velocity.empirical_gauss import EmpiricalGaussVelocityDeficit +from floris.core.wake_velocity.gauss import GaussVelocityDeficit +from floris.core.wake_velocity.jensen import JensenVelocityDeficit +from floris.core.wake_velocity.none import NoneVelocityDeficit +from floris.core.wake_velocity.turbopark import TurbOParkVelocityDeficit diff --git a/floris/simulation/wake_velocity/cumulative_gauss_curl.py b/floris/core/wake_velocity/cumulative_gauss_curl.py similarity index 99% rename from floris/simulation/wake_velocity/cumulative_gauss_curl.py rename to floris/core/wake_velocity/cumulative_gauss_curl.py index 902b085b5..86d8c982e 100644 --- a/floris/simulation/wake_velocity/cumulative_gauss_curl.py +++ b/floris/core/wake_velocity/cumulative_gauss_curl.py @@ -5,7 +5,7 @@ from attrs import define, field from scipy.special import gamma -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, diff --git a/floris/simulation/wake_velocity/empirical_gauss.py b/floris/core/wake_velocity/empirical_gauss.py similarity index 99% rename from floris/simulation/wake_velocity/empirical_gauss.py rename to floris/core/wake_velocity/empirical_gauss.py index cfeb261fb..722771012 100644 --- a/floris/simulation/wake_velocity/empirical_gauss.py +++ b/floris/core/wake_velocity/empirical_gauss.py @@ -5,14 +5,14 @@ import numpy as np from attrs import define, field -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, Grid, Turbine, ) -from floris.simulation.wake_velocity.gauss import gaussian_function +from floris.core.wake_velocity.gauss import gaussian_function from floris.utilities import ( cosd, sind, diff --git a/floris/simulation/wake_velocity/gauss.py b/floris/core/wake_velocity/gauss.py similarity index 99% rename from floris/simulation/wake_velocity/gauss.py rename to floris/core/wake_velocity/gauss.py index 4cf5cbdf9..5c73786ae 100644 --- a/floris/simulation/wake_velocity/gauss.py +++ b/floris/core/wake_velocity/gauss.py @@ -5,7 +5,7 @@ import numpy as np from attrs import define, field -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, diff --git a/floris/simulation/wake_velocity/jensen.py b/floris/core/wake_velocity/jensen.py similarity index 99% rename from floris/simulation/wake_velocity/jensen.py rename to floris/core/wake_velocity/jensen.py index f84461502..7d6b09c31 100644 --- a/floris/simulation/wake_velocity/jensen.py +++ b/floris/core/wake_velocity/jensen.py @@ -9,7 +9,7 @@ fields, ) -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, diff --git a/floris/simulation/wake_velocity/none.py b/floris/core/wake_velocity/none.py similarity index 97% rename from floris/simulation/wake_velocity/none.py rename to floris/core/wake_velocity/none.py index 37b4e09bc..af1ea448a 100644 --- a/floris/simulation/wake_velocity/none.py +++ b/floris/core/wake_velocity/none.py @@ -4,7 +4,7 @@ import numpy as np from attrs import define, field -from floris.simulation import ( +from floris.core import ( BaseModel, FlowField, Grid, diff --git a/floris/simulation/wake_velocity/turbopark.py b/floris/core/wake_velocity/turbopark.py similarity index 99% rename from floris/simulation/wake_velocity/turbopark.py rename to floris/core/wake_velocity/turbopark.py index 33071f9a1..63ad6e06c 100644 --- a/floris/simulation/wake_velocity/turbopark.py +++ b/floris/core/wake_velocity/turbopark.py @@ -9,7 +9,7 @@ from scipy import integrate from scipy.interpolate import RegularGridInterpolator -from floris.simulation import ( +from floris.core import ( BaseModel, Farm, FlowField, diff --git a/floris/simulation/wake_velocity/turbopark_lookup_table.mat b/floris/core/wake_velocity/turbopark_lookup_table.mat similarity index 100% rename from floris/simulation/wake_velocity/turbopark_lookup_table.mat rename to floris/core/wake_velocity/turbopark_lookup_table.mat diff --git a/floris/tools/cut_plane.py b/floris/cut_plane.py similarity index 99% rename from floris/tools/cut_plane.py rename to floris/cut_plane.py index 64c24458b..10c573353 100644 --- a/floris/tools/cut_plane.py +++ b/floris/cut_plane.py @@ -338,7 +338,7 @@ def calculate_wind_speed(cross_plane, x1_loc, x2_loc, R): Calculate effective wind speed within specified range of a point. Args: - cross_plane (:py:class:`floris.tools.cut_plane.CrossPlane`): + cross_plane (:py:class:`floris.cut_plane.CrossPlane`): plane of data. x1_loc (float): x1-coordinate of point of interest. x2_loc (float): x2-coordinate of point of interest. @@ -377,7 +377,7 @@ def calculate_power( Calculate maximum power available in a given cross plane. Args: - cross_plane (:py:class:`floris.tools.cut_plane.CrossPlane`): + cross_plane (:py:class:`floris.cut_plane.CrossPlane`): plane of data. x1_loc (float): x1-coordinate of point of interest. x2_loc (float): x2-coordinate of point of interest. diff --git a/floris/tools/floris_interface.py b/floris/floris_model.py similarity index 84% rename from floris/tools/floris_interface.py rename to floris/floris_model.py index 4cd8dc888..8ca0c1a96 100644 --- a/floris/tools/floris_interface.py +++ b/floris/floris_model.py @@ -7,30 +7,30 @@ import numpy as np import pandas as pd -from floris.logging_manager import LoggingManager -from floris.simulation import Floris, State -from floris.simulation.rotor_velocity import average_velocity -from floris.simulation.turbine.operation_models import ( +from floris.core import Core, State +from floris.core.rotor_velocity import average_velocity +from floris.core.turbine.operation_models import ( POWER_SETPOINT_DEFAULT, POWER_SETPOINT_DISABLED, ) -from floris.simulation.turbine.turbine import ( +from floris.core.turbine.turbine import ( axial_induction, power, thrust_coefficient, ) -from floris.tools.cut_plane import CutPlane -from floris.tools.wind_data import WindDataBase +from floris.cut_plane import CutPlane +from floris.logging_manager import LoggingManager from floris.type_dec import ( floris_array_converter, NDArrayBool, NDArrayFloat, ) +from floris.wind_data import WindDataBase -class FlorisInterface(LoggingManager): +class FlorisModel(LoggingManager): """ - FlorisInterface provides a high-level user interface to many of the + FlorisModel provides a high-level user interface to many of the underlying methods within the FLORIS framework. It is meant to act as a single entry-point for the majority of users, simplifying the calls to methods on objects within FLORIS. @@ -42,7 +42,7 @@ class FlorisInterface(LoggingManager): - **farm**: See `floris.simulation.farm.Farm` for more details. - **turbine**: See `floris.simulation.turbine.Turbine` for more details. - **wake**: See `floris.simulation.wake.WakeManager` for more details. - - **logging**: See `floris.simulation.floris.Floris` for more details. + - **logging**: See `floris.simulation.core.Core` for more details. """ def __init__(self, configuration: dict | str | Path): @@ -50,31 +50,31 @@ def __init__(self, configuration: dict | str | Path): if isinstance(self.configuration, (str, Path)): try: - self.floris = Floris.from_file(self.configuration) + self.core = Core.from_file(self.configuration) except FileNotFoundError: # If the file cannot be found, then attempt the configuration path relative to the - # file location from which FlorisInterface was attempted to be run. If successful, + # file location from which FlorisModel was attempted to be run. If successful, # update self.configuration to an absolute, working file path and name. base_fn = Path(inspect.stack()[-1].filename).resolve().parent config = (base_fn / self.configuration).resolve() - self.floris = Floris.from_file(config) + self.core = Core.from_file(config) self.configuration = config elif isinstance(self.configuration, dict): - self.floris = Floris.from_dict(self.configuration) + self.core = Core.from_dict(self.configuration) else: raise TypeError("The Floris `configuration` must be of type 'dict', 'str', or 'Path'.") # If ref height is -1, assign the hub height - if np.abs(self.floris.flow_field.reference_wind_height + 1.0) < 1.0e-6: + if np.abs(self.core.flow_field.reference_wind_height + 1.0) < 1.0e-6: self.assign_hub_height_to_ref_height() # Make a check on reference height and provide a helpful warning - unique_heights = np.unique(np.round(self.floris.farm.hub_heights, decimals=6)) + unique_heights = np.unique(np.round(self.core.farm.hub_heights, decimals=6)) if (( len(unique_heights) == 1) and - (np.abs(self.floris.flow_field.reference_wind_height - unique_heights[0]) > 1.0e-6 + (np.abs(self.core.flow_field.reference_wind_height - unique_heights[0]) > 1.0e-6 )): err_msg = ( "The only unique hub-height is not the equal to the specified reference " @@ -84,10 +84,10 @@ def __init__(self, configuration: dict | str | Path): self.logger.warning(err_msg, stack_info=True) # Check the turbine_grid_points is reasonable - if self.floris.solver["type"] == "turbine_grid": - if self.floris.solver["turbine_grid_points"] > 3: + if self.core.solver["type"] == "turbine_grid": + if self.core.solver["turbine_grid_points"] > 3: self.logger.error( - f"turbine_grid_points value is {self.floris.solver['turbine_grid_points']} " + f"turbine_grid_points value is {self.core.solver['turbine_grid_points']} " "which is larger than the recommended value of less than or equal to 3. " "High amounts of turbine grid points reduce the computational performance " "but have a small change on accuracy." @@ -97,7 +97,7 @@ def __init__(self, configuration: dict | str | Path): def assign_hub_height_to_ref_height(self): # Confirm can do this operation - unique_heights = np.unique(self.floris.farm.hub_heights) + unique_heights = np.unique(self.core.farm.hub_heights) if len(unique_heights) > 1: raise ValueError( "To assign hub heights to reference height, can not have more than one " @@ -105,11 +105,11 @@ def assign_hub_height_to_ref_height(self): f"Current length is {unique_heights}." ) - self.floris.flow_field.reference_wind_height = unique_heights[0] + self.core.flow_field.reference_wind_height = unique_heights[0] def copy(self): - """Create an independent copy of the current FlorisInterface object""" - return FlorisInterface(self.floris.as_dict()) + """Create an independent copy of the current FlorisModel object""" + return FlorisModel(self.core.as_dict()) def set( self, @@ -165,8 +165,8 @@ def set( and the power setpoint at that position is set to 0. Defaults to None. """ # Initialize a new Floris object after saving the setpoints - _yaw_angles = self.floris.farm.yaw_angles - _power_setpoints = self.floris.farm.power_setpoints + _yaw_angles = self.core.farm.yaw_angles + _power_setpoints = self.core.farm.power_setpoints self._reinitialize( wind_speeds=wind_speeds, wind_directions=wind_directions, @@ -187,12 +187,12 @@ def set( # If the yaw angles or power setpoints are not the default, set them back to the # previous setting if not (_yaw_angles == 0).all(): - self.floris.farm.set_yaw_angles(_yaw_angles) + self.core.farm.set_yaw_angles(_yaw_angles) if not ( (_power_setpoints == POWER_SETPOINT_DEFAULT) | (_power_setpoints == POWER_SETPOINT_DISABLED) ).all(): - self.floris.farm.set_power_setpoints(_power_setpoints) + self.core.farm.set_power_setpoints(_power_setpoints) # Set the operation self._set_operation( @@ -252,7 +252,7 @@ def _reinitialize( wind_data (type[WindDataBase] | None, optional): Wind data. Defaults to None. """ # Export the floris object recursively as a dictionary - floris_dict = self.floris.as_dict() + floris_dict = self.core.as_dict() flow_field_dict = floris_dict["flow_field"] farm_dict = floris_dict["farm"] @@ -316,7 +316,7 @@ def _reinitialize( floris_dict["farm"] = farm_dict # Create a new instance of floris and attach to self - self.floris = Floris.from_dict(floris_dict) + self.core = Core.from_dict(floris_dict) def _set_operation( self, @@ -337,7 +337,7 @@ def _set_operation( """ # Add operating conditions to the floris object if yaw_angles is not None: - self.floris.farm.set_yaw_angles(yaw_angles) + self.core.farm.set_yaw_angles(yaw_angles) if power_setpoints is not None: power_setpoints = np.array(power_setpoints) @@ -348,7 +348,7 @@ def _set_operation( ] = POWER_SETPOINT_DEFAULT power_setpoints = floris_array_converter(power_setpoints) - self.floris.farm.set_power_setpoints(power_setpoints) + self.core.farm.set_power_setpoints(power_setpoints) # Check for turbines to disable if disable_turbines is not None: @@ -357,25 +357,25 @@ def _set_operation( disable_turbines = np.array(disable_turbines) # Must have first dimension = n_findex - if disable_turbines.shape[0] != self.floris.flow_field.n_findex: + if disable_turbines.shape[0] != self.core.flow_field.n_findex: raise ValueError( f"disable_turbines has a size of {disable_turbines.shape[0]} " f"in the 0th dimension, must be equal to " - f"n_findex={self.floris.flow_field.n_findex}" + f"n_findex={self.core.flow_field.n_findex}" ) # Must have first dimension = n_turbines - if disable_turbines.shape[1] != self.floris.farm.n_turbines: + if disable_turbines.shape[1] != self.core.farm.n_turbines: raise ValueError( f"disable_turbines has a size of {disable_turbines.shape[1]} " f"in the 1th dimension, must be equal to " - f"n_turbines={self.floris.farm.n_turbines}" + f"n_turbines={self.core.farm.n_turbines}" ) # Set power setpoints to small value (non zero to avoid numerical issues) and # yaw_angles to 0 in all locations where disable_turbines is True - self.floris.farm.yaw_angles[disable_turbines] = 0.0 - self.floris.farm.power_setpoints[disable_turbines] = POWER_SETPOINT_DISABLED + self.core.farm.yaw_angles[disable_turbines] = 0.0 + self.core.farm.power_setpoints[disable_turbines] = POWER_SETPOINT_DISABLED def run(self) -> None: """ @@ -383,10 +383,10 @@ def run(self) -> None: """ # Initialize solution space - self.floris.initialize_domain() + self.core.initialize_domain() # Perform the wake calculations - self.floris.steady_state_atmospheric_condition() + self.core.steady_state_atmospheric_condition() def run_no_wake(self) -> None: """ @@ -396,10 +396,10 @@ def run_no_wake(self) -> None: """ # Initialize solution space - self.floris.initialize_domain() + self.core.initialize_domain() # Finalize values to user-supplied order - self.floris.finalize() + self.core.finalize() def get_plane_of_points( self, @@ -408,7 +408,7 @@ def get_plane_of_points( ): """ Calculates velocity values through the - :py:meth:`FlorisInterface.calculate_wake` method at points in plane + :py:meth:`FlorisModel.calculate_wake` method at points in plane specified by inputs. Args: @@ -422,16 +422,16 @@ def get_plane_of_points( """ # Get results vectors if normal_vector == "z": - x_flat = self.floris.grid.x_sorted_inertial_frame[0].flatten() - y_flat = self.floris.grid.y_sorted_inertial_frame[0].flatten() - z_flat = self.floris.grid.z_sorted_inertial_frame[0].flatten() + x_flat = self.core.grid.x_sorted_inertial_frame[0].flatten() + y_flat = self.core.grid.y_sorted_inertial_frame[0].flatten() + z_flat = self.core.grid.z_sorted_inertial_frame[0].flatten() else: - x_flat = self.floris.grid.x_sorted[0].flatten() - y_flat = self.floris.grid.y_sorted[0].flatten() - z_flat = self.floris.grid.z_sorted[0].flatten() - u_flat = self.floris.flow_field.u_sorted[0].flatten() - v_flat = self.floris.flow_field.v_sorted[0].flatten() - w_flat = self.floris.flow_field.w_sorted[0].flatten() + x_flat = self.core.grid.x_sorted[0].flatten() + y_flat = self.core.grid.y_sorted[0].flatten() + z_flat = self.core.grid.z_sorted[0].flatten() + u_flat = self.core.flow_field.u_sorted[0].flatten() + v_flat = self.core.flow_field.v_sorted[0].flatten() + w_flat = self.core.flow_field.w_sorted[0].flatten() # Create a df of these if normal_vector == "z": @@ -527,15 +527,15 @@ def calculate_horizontal_plane( """ # TODO update docstring if wd is None: - wd = self.floris.flow_field.wind_directions + wd = self.core.flow_field.wind_directions if ws is None: - ws = self.floris.flow_field.wind_speeds + ws = self.core.flow_field.wind_speeds if ti is None: - ti = self.floris.flow_field.turbulence_intensities + ti = self.core.flow_field.turbulence_intensities self.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) # Store the current state for reinitialization - floris_dict = self.floris.as_dict() + floris_dict = self.core.as_dict() # Set the solver to a flow field planar grid solver_settings = { "type": "flow_field_planar_grid", @@ -555,7 +555,7 @@ def calculate_horizontal_plane( ) # Calculate wake - self.floris.solve_for_viz() + self.core.solve_for_viz() # Get the points of data in a dataframe # TODO this just seems to be flattening and storing the data in a df; is this necessary? @@ -568,13 +568,13 @@ def calculate_horizontal_plane( # Compute the cutplane horizontal_plane = CutPlane( df, - self.floris.grid.grid_resolution[0], - self.floris.grid.grid_resolution[1], + self.core.grid.grid_resolution[0], + self.core.grid.grid_resolution[1], "z", ) - # Reset the fi object back to the turbine grid configuration - self.floris = Floris.from_dict(floris_dict) + # Reset the fmodel object back to the turbine grid configuration + self.core = Core.from_dict(floris_dict) # Run the simulation again for futher postprocessing (i.e. now we can get farm power) self.run() @@ -617,15 +617,15 @@ def calculate_cross_plane( """ # TODO update docstring if wd is None: - wd = self.floris.flow_field.wind_directions + wd = self.core.flow_field.wind_directions if ws is None: - ws = self.floris.flow_field.wind_speeds + ws = self.core.flow_field.wind_speeds if ti is None: - ti = self.floris.flow_field.turbulence_intensities + ti = self.core.flow_field.turbulence_intensities self.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) # Store the current state for reinitialization - floris_dict = self.floris.as_dict() + floris_dict = self.core.as_dict() # Set the solver to a flow field planar grid solver_settings = { @@ -646,7 +646,7 @@ def calculate_cross_plane( ) # Calculate wake - self.floris.solve_for_viz() + self.core.solve_for_viz() # Get the points of data in a dataframe # TODO this just seems to be flattening and storing the data in a df; is this necessary? @@ -659,8 +659,8 @@ def calculate_cross_plane( # Compute the cutplane cross_plane = CutPlane(df, y_resolution, z_resolution, "x") - # Reset the fi object back to the turbine grid configuration - self.floris = Floris.from_dict(floris_dict) + # Reset the fmodel object back to the turbine grid configuration + self.core = Core.from_dict(floris_dict) # Run the simulation again for futher postprocessing (i.e. now we can get farm power) self.run() @@ -716,15 +716,15 @@ def calculate_y_plane( """ # TODO update docstring if wd is None: - wd = self.floris.flow_field.wind_directions + wd = self.core.flow_field.wind_directions if ws is None: - ws = self.floris.flow_field.wind_speeds + ws = self.core.flow_field.wind_speeds if ti is None: - ti = self.floris.flow_field.turbulence_intensities + ti = self.core.flow_field.turbulence_intensities self.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) # Store the current state for reinitialization - floris_dict = self.floris.as_dict() + floris_dict = self.core.as_dict() # Set the solver to a flow field planar grid solver_settings = { @@ -745,7 +745,7 @@ def calculate_y_plane( ) # Calculate wake - self.floris.solve_for_viz() + self.core.solve_for_viz() # Get the points of data in a dataframe # TODO this just seems to be flattening and storing the data in a df; is this necessary? @@ -758,8 +758,8 @@ def calculate_y_plane( # Compute the cutplane y_plane = CutPlane(df, x_resolution, z_resolution, "y") - # Reset the fi object back to the turbine grid configuration - self.floris = Floris.from_dict(floris_dict) + # Reset the fmodel object back to the turbine grid configuration + self.core = Core.from_dict(floris_dict) # Run the simulation again for futher postprocessing (i.e. now we can get farm power) self.run() @@ -793,77 +793,77 @@ def get_turbine_powers(self) -> NDArrayFloat: """ # Confirm calculate wake has been run - if self.floris.state is not State.USED: + if self.core.state is not State.USED: raise RuntimeError( - "Can't run function `FlorisInterface.get_turbine_powers` without " - "first running `FlorisInterface.run`." + "Can't run function `FlorisModel.get_turbine_powers` without " + "first running `FlorisModel.run`." ) # Check for negative velocities, which could indicate bad model # parameters or turbines very closely spaced. - if (self.floris.flow_field.u < 0.0).any(): + if (self.core.flow_field.u < 0.0).any(): self.logger.warning("Some velocities at the rotor are negative.") turbine_powers = power( - velocities=self.floris.flow_field.u, - air_density=self.floris.flow_field.air_density, - power_functions=self.floris.farm.turbine_power_functions, - yaw_angles=self.floris.farm.yaw_angles, - tilt_angles=self.floris.farm.tilt_angles, - power_setpoints=self.floris.farm.power_setpoints, - tilt_interps=self.floris.farm.turbine_tilt_interps, - turbine_type_map=self.floris.farm.turbine_type_map, - turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, - correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, - multidim_condition=self.floris.flow_field.multidim_conditions, + velocities=self.core.flow_field.u, + air_density=self.core.flow_field.air_density, + power_functions=self.core.farm.turbine_power_functions, + yaw_angles=self.core.farm.yaw_angles, + tilt_angles=self.core.farm.tilt_angles, + power_setpoints=self.core.farm.power_setpoints, + tilt_interps=self.core.farm.turbine_tilt_interps, + turbine_type_map=self.core.farm.turbine_type_map, + turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, + correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, + multidim_condition=self.core.flow_field.multidim_conditions, ) return turbine_powers def get_turbine_thrust_coefficients(self) -> NDArrayFloat: turbine_thrust_coefficients = thrust_coefficient( - velocities=self.floris.flow_field.u, - air_density=self.floris.flow_field.air_density, - yaw_angles=self.floris.farm.yaw_angles, - tilt_angles=self.floris.farm.tilt_angles, - power_setpoints=self.floris.farm.power_setpoints, - thrust_coefficient_functions=self.floris.farm.turbine_thrust_coefficient_functions, - tilt_interps=self.floris.farm.turbine_tilt_interps, - correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, - turbine_type_map=self.floris.farm.turbine_type_map, - turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, - average_method=self.floris.grid.average_method, - cubature_weights=self.floris.grid.cubature_weights, - multidim_condition=self.floris.flow_field.multidim_conditions, + velocities=self.core.flow_field.u, + air_density=self.core.flow_field.air_density, + yaw_angles=self.core.farm.yaw_angles, + tilt_angles=self.core.farm.tilt_angles, + power_setpoints=self.core.farm.power_setpoints, + thrust_coefficient_functions=self.core.farm.turbine_thrust_coefficient_functions, + tilt_interps=self.core.farm.turbine_tilt_interps, + correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, + turbine_type_map=self.core.farm.turbine_type_map, + turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, + average_method=self.core.grid.average_method, + cubature_weights=self.core.grid.cubature_weights, + multidim_condition=self.core.flow_field.multidim_conditions, ) return turbine_thrust_coefficients def get_turbine_ais(self) -> NDArrayFloat: turbine_ais = axial_induction( - velocities=self.floris.flow_field.u, - air_density=self.floris.flow_field.air_density, - yaw_angles=self.floris.farm.yaw_angles, - tilt_angles=self.floris.farm.tilt_angles, - power_setpoints=self.floris.farm.power_setpoints, - axial_induction_functions=self.floris.farm.turbine_axial_induction_functions, - tilt_interps=self.floris.farm.turbine_tilt_interps, - correct_cp_ct_for_tilt=self.floris.farm.correct_cp_ct_for_tilt, - turbine_type_map=self.floris.farm.turbine_type_map, - turbine_power_thrust_tables=self.floris.farm.turbine_power_thrust_tables, - average_method=self.floris.grid.average_method, - cubature_weights=self.floris.grid.cubature_weights, - multidim_condition=self.floris.flow_field.multidim_conditions, + velocities=self.core.flow_field.u, + air_density=self.core.flow_field.air_density, + yaw_angles=self.core.farm.yaw_angles, + tilt_angles=self.core.farm.tilt_angles, + power_setpoints=self.core.farm.power_setpoints, + axial_induction_functions=self.core.farm.turbine_axial_induction_functions, + tilt_interps=self.core.farm.turbine_tilt_interps, + correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, + turbine_type_map=self.core.farm.turbine_type_map, + turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, + average_method=self.core.grid.average_method, + cubature_weights=self.core.grid.cubature_weights, + multidim_condition=self.core.flow_field.multidim_conditions, ) return turbine_ais @property def turbine_average_velocities(self) -> NDArrayFloat: return average_velocity( - velocities=self.floris.flow_field.u, - method=self.floris.grid.average_method, - cubature_weights=self.floris.grid.cubature_weights, + velocities=self.core.flow_field.u, + method=self.core.grid.average_method, + cubature_weights=self.core.grid.cubature_weights, ) def get_turbine_TIs(self) -> NDArrayFloat: - return self.floris.flow_field.turbulence_intensity_field + return self.core.flow_field.turbulence_intensity_field def get_farm_power( self, @@ -902,29 +902,29 @@ def get_farm_power( # the model yet # TODO: Turbines need a switch for using turbulence correction # TODO: Uncomment out the following two lines once the above are resolved - # for turbine in self.floris.farm.turbines: + # for turbine in self.core.farm.turbines: # turbine.use_turbulence_correction = use_turbulence_correction # Confirm calculate wake has been run - if self.floris.state is not State.USED: + if self.core.state is not State.USED: raise RuntimeError( - "Can't run function `FlorisInterface.get_turbine_powers` without " - "first running `FlorisInterface.calculate_wake`." + "Can't run function `FlorisModel.get_turbine_powers` without " + "first running `FlorisModel.calculate_wake`." ) if turbine_weights is None: # Default to equal weighing of all turbines when turbine_weights is None turbine_weights = np.ones( ( - self.floris.flow_field.n_findex, - self.floris.farm.n_turbines, + self.core.flow_field.n_findex, + self.core.farm.n_turbines, ) ) elif len(np.shape(turbine_weights)) == 1: # Deal with situation when 1D array is provided turbine_weights = np.tile( turbine_weights, - (self.floris.flow_field.n_findex, 1), + (self.core.flow_field.n_findex, 1), ) # Calculate all turbine powers and apply weights @@ -986,7 +986,7 @@ def get_farm_AEP( """ # Verify dimensions of the variable "freq" - if np.shape(freq)[0] != self.floris.flow_field.n_findex: + if np.shape(freq)[0] != self.core.flow_field.n_findex: raise UserWarning( "'freq' should be a one-dimensional array with dimensions (n_findex). " f"Given shape is {np.shape(freq)}" @@ -1000,12 +1000,10 @@ def get_farm_AEP( # Copy the full wind speed array from the floris object and initialize # the the farm_power variable as an empty array. - wind_speeds = np.array(self.floris.flow_field.wind_speeds, copy=True) - wind_directions = np.array(self.floris.flow_field.wind_directions, copy=True) - turbulence_intensities = np.array( - self.floris.flow_field.turbulence_intensities, copy=True - ) - farm_power = np.zeros(self.floris.flow_field.n_findex) + wind_speeds = np.array(self.core.flow_field.wind_speeds, copy=True) + wind_directions = np.array(self.core.flow_field.wind_directions, copy=True) + turbulence_intensities = np.array(self.core.flow_field.turbulence_intensities, copy=True) + farm_power = np.zeros(self.core.flow_field.n_findex) # Determine which wind speeds we must evaluate conditions_to_evaluate = wind_speeds >= cut_in_wind_speed @@ -1092,7 +1090,7 @@ def get_farm_AEP_with_wind_data( """ # Verify the wind_data object matches FLORIS' initialization - if wind_data.n_findex != self.floris.flow_field.n_findex: + if wind_data.n_findex != self.core.flow_field.n_findex: raise ValueError("WindData object and floris do not have same findex") # Get freq directly from wind_data @@ -1124,7 +1122,7 @@ def sample_flow_at_points(self, x: NDArrayFloat, y: NDArrayFloat, z: NDArrayFloa if not len(x) == len(y) == len(z): raise ValueError("x, y, and z must be the same size") - return self.floris.solve_for_points(x, y, z) + return self.core.solve_for_points(x, y, z) def sample_velocity_deficit_profiles( self, @@ -1175,7 +1173,7 @@ def sample_velocity_deficit_profiles( raise ValueError("`direction` must be either `cross-stream` or `vertical`.") if ref_rotor_diameter is None: - unique_rotor_diameters = np.unique(self.floris.farm.rotor_diameters) + unique_rotor_diameters = np.unique(self.core.farm.rotor_diameters) if len(unique_rotor_diameters) == 1: ref_rotor_diameter = unique_rotor_diameters[0] else: @@ -1192,9 +1190,9 @@ def sample_velocity_deficit_profiles( if profile_range is None: profile_range = ref_rotor_diameter * np.array([-2, 2]) - wind_directions_copy = np.array(self.floris.flow_field.wind_directions, copy=True) - wind_speeds_copy = np.array(self.floris.flow_field.wind_speeds, copy=True) - wind_shear_copy = self.floris.flow_field.wind_shear + wind_directions_copy = np.array(self.core.flow_field.wind_directions, copy=True) + wind_speeds_copy = np.array(self.core.flow_field.wind_speeds, copy=True) + wind_shear_copy = self.core.flow_field.wind_shear if wind_direction is None: if len(wind_directions_copy) == 1: @@ -1222,7 +1220,7 @@ def sample_velocity_deficit_profiles( ) if reference_height is None: - reference_height = self.floris.flow_field.reference_wind_height + reference_height = self.core.flow_field.reference_wind_height self.set( wind_directions=[wind_direction], @@ -1230,7 +1228,7 @@ def sample_velocity_deficit_profiles( wind_shear=0.0, ) - velocity_deficit_profiles = self.floris.solve_for_velocity_deficit_profiles( + velocity_deficit_profiles = self.core.solve_for_velocity_deficit_profiles( direction, downstream_dists, profile_range, @@ -1258,7 +1256,7 @@ def layout_x(self): Returns: np.array: Wind turbine x-coordinate. """ - return self.floris.farm.layout_x + return self.core.farm.layout_x @property def layout_y(self): @@ -1268,7 +1266,7 @@ def layout_y(self): Returns: np.array: Wind turbine y-coordinate. """ - return self.floris.farm.layout_y + return self.core.farm.layout_y def get_turbine_layout(self, z=False): """ @@ -1282,7 +1280,7 @@ def get_turbine_layout(self, z=False): np.array: lists of x, y, and (optionally) z coordinates of each turbine """ - xcoords, ycoords, zcoords = self.floris.farm.coordinates.T + xcoords, ycoords, zcoords = self.core.farm.coordinates.T if z: return xcoords, ycoords, zcoords else: diff --git a/floris/tools/flow_visualization.py b/floris/flow_visualization.py similarity index 93% rename from floris/tools/flow_visualization.py rename to floris/flow_visualization.py index 003c770c5..3afaf1a38 100644 --- a/floris/tools/flow_visualization.py +++ b/floris/flow_visualization.py @@ -15,10 +15,10 @@ from matplotlib import rcParams from scipy.spatial import ConvexHull -from floris.simulation import Floris -from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT -from floris.tools.cut_plane import CutPlane -from floris.tools.floris_interface import FlorisInterface +from floris import FlorisModel +from floris.core import Core +from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT +from floris.cut_plane import CutPlane from floris.type_dec import ( floris_array_converter, NDArrayFloat, @@ -195,7 +195,7 @@ def visualize_cut_plane( def visualize_heterogeneous_cut_plane( cut_plane, - fi, + fmodel, ax=None, vel_component='u', min_speed=None, @@ -215,7 +215,7 @@ def visualize_heterogeneous_cut_plane( Args: cut_plane (:py:class:`~.tools.cut_plane.CutPlane`): 2D plane through wind plant. - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): FlorisInterface object. + fmodel (:py:class:`~.floris_model.FlorisModel`): FlorisModel object. ax (:py:class:`matplotlib.pyplot.axes`): Figure axes. Defaults to None. vel_component (str, optional): The velocity component that the cut plane is @@ -297,8 +297,8 @@ def visualize_heterogeneous_cut_plane( points = np.array( list( zip( - fi.floris.flow_field.heterogenous_inflow_config['x'], - fi.floris.flow_field.heterogenous_inflow_config['y'], + fmodel.core.flow_field.heterogenous_inflow_config['x'], + fmodel.core.flow_field.heterogenous_inflow_config['y'], ) ) ) @@ -423,7 +423,7 @@ def plot_rotor_values( figure objects are returned for custom editing. Example: - from floris.tools.visualization import plot_rotor_values + from floris.visualization import plot_rotor_values plot_rotor_values(floris.flow_field.u, findex=0, n_rows=1, ncols=4) plot_rotor_values(floris.flow_field.v, findex=0, n_rows=1, ncols=4) plot_rotor_values(floris.flow_field.w, findex=0, n_rows=1, ncols=4, show=True) @@ -472,7 +472,7 @@ def plot_rotor_values( plt.show() def calculate_horizontal_plane_with_turbines( - fi_in, + fmodel_in, x_resolution=200, y_resolution=200, x_bounds=None, @@ -494,12 +494,12 @@ def calculate_horizontal_plane_with_turbines( and the flow field is reset to its initial state for every new location. Then, the local velocities are put into a DataFrame and then into a CutPlane. This method is much slower than - `FlorisInterface.calculate_horizontal_plane`, but it is helpful + `FlorisModel.calculate_horizontal_plane`, but it is helpful for models where the visualization capability is not yet available. Args: - fi_in (:py:class:`floris.tools.floris_interface.FlorisInterface`): - Preinitialized FlorisInterface object. + fmodel_in (:py:class:`floris.floris_model.FlorisModel`): + Preinitialized FlorisModel object. x_resolution (float, optional): Output array resolution. Defaults to 200 points. y_resolution (float, optional): Output array resolution. Defaults to 200 points. x_bounds (tuple, optional): Limits of output array (in m). Defaults to None. @@ -515,34 +515,34 @@ def calculate_horizontal_plane_with_turbines( :py:class:`~.tools.cut_plane.CutPlane`: containing values of x, y, u, v, w """ - # Make a local copy of fi to avoid editing passed in fi - fi = copy.deepcopy(fi_in) + # Make a local copy of fmodel to avoid editing passed in fmodel + fmodel = copy.deepcopy(fmodel_in) - # If wd/ws not provided, use what is set in fi + # If wd/ws not provided, use what is set in fmodel if wd is None: - wd = fi.floris.flow_field.wind_directions + wd = fmodel.core.flow_field.wind_directions if ws is None: - ws = fi.floris.flow_field.wind_speeds + ws = fmodel.core.flow_field.wind_speeds if ti is None: - ti = fi.floris.flow_field.turbulence_intensities - fi.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) + ti = fmodel.core.flow_field.turbulence_intensities + fmodel.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) # Set the ws and wd - fi.set( + fmodel.set( wind_directions=wd, wind_speeds=ws, yaw_angles=yaw_angles, power_setpoints=power_setpoints, disable_turbines=disable_turbines ) - yaw_angles = fi.floris.farm.yaw_angles - power_setpoints = fi.floris.farm.power_setpoints + yaw_angles = fmodel.core.farm.yaw_angles + power_setpoints = fmodel.core.farm.power_setpoints # Grab the turbine layout - layout_x = copy.deepcopy(fi.layout_x) - layout_y = copy.deepcopy(fi.layout_y) - turbine_types = copy.deepcopy(fi.floris.farm.turbine_type) - D = fi.floris.farm.rotor_diameters_sorted[0, 0] + layout_x = copy.deepcopy(fmodel.layout_x) + layout_y = copy.deepcopy(fmodel.layout_y) + turbine_types = copy.deepcopy(fmodel.core.farm.turbine_type) + D = fmodel.core.farm.rotor_diameters_sorted[0, 0] # Declare a new layout array with an extra turbine layout_x_test = np.append(layout_x,[0]) @@ -554,10 +554,10 @@ def calculate_horizontal_plane_with_turbines( turbine_types_test = [turbine_types[0] for i in range(len(layout_x))] + ['nrel_5MW'] else: turbine_types_test = np.append(turbine_types, 'nrel_5MW').tolist() - yaw_angles = np.append(yaw_angles, np.zeros([fi.floris.flow_field.n_findex, 1]), axis=1) + yaw_angles = np.append(yaw_angles, np.zeros([fmodel.core.flow_field.n_findex, 1]), axis=1) power_setpoints = np.append( power_setpoints, - POWER_SETPOINT_DEFAULT * np.ones([fi.floris.flow_field.n_findex, 1]), + POWER_SETPOINT_DEFAULT * np.ones([fmodel.core.flow_field.n_findex, 1]), axis=1 ) @@ -591,7 +591,7 @@ def calculate_horizontal_plane_with_turbines( # Place the test turbine at this location and calculate wake layout_x_test[-1] = x layout_y_test[-1] = y - fi.set( + fmodel.set( layout_x=layout_x_test, layout_y=layout_y_test, yaw_angles=yaw_angles, @@ -599,11 +599,11 @@ def calculate_horizontal_plane_with_turbines( disable_turbines=disable_turbines, turbine_type=turbine_types_test ) - fi.run() + fmodel.run() # Get the velocity of that test turbines central point - center_point = int(np.floor(fi.floris.flow_field.u[0,-1].shape[0] / 2.0)) - u_results[idx] = fi.floris.flow_field.u[0,-1,center_point,center_point] + center_point = int(np.floor(fmodel.core.flow_field.u[0,-1].shape[0] / 2.0)) + u_results[idx] = fmodel.core.flow_field.u[0,-1,center_point,center_point] # Increment index idx = idx + 1 diff --git a/floris/tools/layout_visualization.py b/floris/layout_visualization.py similarity index 87% rename from floris/tools/layout_visualization.py rename to floris/layout_visualization.py index 756fb35c9..c064059c6 100644 --- a/floris/tools/layout_visualization.py +++ b/floris/layout_visualization.py @@ -13,21 +13,21 @@ import pandas as pd from scipy.spatial.distance import pdist, squareform -from floris.tools import FlorisInterface +from floris import FlorisModel from floris.utilities import rotate_coordinates_rel_west, wind_delta def plot_turbine_points( - fi: FlorisInterface, + fmodel: FlorisModel, ax: plt.Axes = None, turbine_indices: List[int] = None, plotting_dict: Dict[str, Any] = {}, ) -> plt.Axes: """ - Plots turbine layout from a FlorisInterface object. + Plots turbine layout from a FlorisModel object. Args: - fi (FlorisInterface): The FlorisInterface object containing layout data. + fmodel (FlorisModel): The FlorisModel object containing layout data. ax (plt.Axes, optional): An existing axes object to plot on. If None, a new figure and axes will be created. Defaults to None. turbine_indices (List[int], optional): A list of turbine indices to plot. @@ -53,11 +53,11 @@ def plot_turbine_points( # If turbine_indices is not none, make sure all elements correspond to real indices if turbine_indices is not None: try: - fi.layout_x[turbine_indices] + fmodel.layout_x[turbine_indices] except IndexError: raise IndexError("turbine_indices does not correspond to turbine indices in fi") else: - turbine_indices = list(range(len(fi.layout_x))) + turbine_indices = list(range(len(fmodel.layout_x))) # Generate plotting dictionary default_plotting_dict = { @@ -70,8 +70,8 @@ def plot_turbine_points( # Plot ax.plot( - fi.layout_x[turbine_indices], - fi.layout_y[turbine_indices], + fmodel.layout_x[turbine_indices], + fmodel.layout_y[turbine_indices], linestyle="None", **plotting_dict, ) @@ -83,7 +83,7 @@ def plot_turbine_points( def plot_turbine_labels( - fi: FlorisInterface, + fmodel: FlorisModel, ax: plt.Axes = None, turbine_names: List[str] = None, turbine_indices: List[int] = None, @@ -96,7 +96,7 @@ def plot_turbine_labels( Adds turbine labels to a turbine layout plot. Args: - fi (FlorisInterface): The FlorisInterface object containing layout data. + fmodel (FlorisModel): The FlorisModel object containing layout data. ax (plt.Axes, optional): An existing axes object to plot on. If None, a new figure and axes will be created. Defaults to None. turbine_names (List[str], optional): Custom turbine labels. If None, @@ -132,26 +132,28 @@ def plot_turbine_labels( # If turbine names not none, confirm has correct number of turbines if turbine_names is not None: - if len(turbine_names) != len(fi.layout_x): - raise ValueError("Length of turbine_names not equal to number turbines in fi object") + if len(turbine_names) != len(fmodel.layout_x): + raise ValueError( + "Length of turbine_names not equal to number turbines in fmodel object" + ) else: # Assign simple default numbering - turbine_names = [f"{i:03d}" for i in range(len(fi.layout_x))] + turbine_names = [f"{i:03d}" for i in range(len(fmodel.layout_x))] # If label_offset is None, use default value of r/8 if label_offset is None: - rotor_diameters = fi.floris.farm.rotor_diameters.flatten() + rotor_diameters = fmodel.core.farm.rotor_diameters.flatten() r = rotor_diameters[0] / 2.0 label_offset = r / 8.0 # If turbine_indices is not none, make sure all elements correspond to real indices if turbine_indices is not None: try: - fi.layout_x[turbine_indices] + fmodel.layout_x[turbine_indices] except IndexError: raise IndexError("turbine_indices does not correspond to turbine indices in fi") else: - turbine_indices = list(range(len(fi.layout_x))) + turbine_indices = list(range(len(fmodel.layout_x))) # Generate plotting dictionary default_plotting_dict = { @@ -167,15 +169,15 @@ def plot_turbine_labels( for ti in turbine_indices: if not show_bbox: ax.text( - fi.layout_x[ti] + label_offset, - fi.layout_y[ti] + label_offset, + fmodel.layout_x[ti] + label_offset, + fmodel.layout_y[ti] + label_offset, turbine_names[ti], **plotting_dict, ) else: ax.text( - fi.layout_x[ti] + label_offset, - fi.layout_y[ti] + label_offset, + fmodel.layout_x[ti] + label_offset, + fmodel.layout_y[ti] + label_offset, turbine_names[ti], bbox=bbox_dict, **plotting_dict, @@ -188,7 +190,7 @@ def plot_turbine_labels( def plot_turbine_rotors( - fi: FlorisInterface, + fmodel: FlorisModel, ax: plt.Axes = None, color: str = "k", wd: float = None, @@ -198,15 +200,15 @@ def plot_turbine_rotors( Plots wind turbine rotors on an existing axes, visually representing their yaw angles. Args: - fi (FlorisInterface): The FlorisInterface object containing layout and turbine data. + fmodel (FlorisModel): The FlorisModel object containing layout and turbine data. ax (plt.Axes, optional): An existing axes object to plot on. If None, a new figure and axes will be created. Defaults to None. color (str, optional): Color of the turbine rotor lines. Defaults to 'k' (black). wd (float, optional): Wind direction (in degrees) relative to global reference. - If None, the first wind direction in `fi.floris.flow_field.wind_directions` is used. + If None, the first wind direction in `fmodel.core.flow_field.wind_directions` is used. Defaults to None. yaw_angles (np.ndarray, optional): Array of turbine yaw angles (in degrees). If None, - the values from `fi.floris.farm.yaw_angles` are used. Defaults to None. + the values from `fmodel.core.farm.yaw_angles` are used. Defaults to None. Returns: plt.Axes: The axes object used for the plot. @@ -214,9 +216,9 @@ def plot_turbine_rotors( if not ax: _, ax = plt.subplots() if yaw_angles is None: - yaw_angles = fi.floris.farm.yaw_angles + yaw_angles = fmodel.core.farm.yaw_angles if wd is None: - wd = fi.floris.flow_field.wind_directions[0] + wd = fmodel.core.flow_field.wind_directions[0] # Rotate yaw angles to inertial frame for plotting turbines relative to wind direction yaw_angles = yaw_angles - wind_delta(np.array(wd)) @@ -229,8 +231,8 @@ def plot_turbine_rotors( if yaw_angles.ndim == 2: yaw_angles = yaw_angles[0, :] - rotor_diameters = fi.floris.farm.rotor_diameters.flatten() - for x, y, yaw, d in zip(fi.layout_x, fi.layout_y, yaw_angles, rotor_diameters): + rotor_diameters = fmodel.core.farm.rotor_diameters.flatten() + for x, y, yaw, d in zip(fmodel.layout_x, fmodel.layout_y, yaw_angles, rotor_diameters): R = d / 2.0 x_0 = x + np.sin(np.deg2rad(yaw)) * R x_1 = x - np.sin(np.deg2rad(yaw)) * R @@ -359,7 +361,7 @@ def put_label(i: int) -> None: def plot_waking_directions( - fi: FlorisInterface, + fmodel: FlorisModel, ax: plt.Axes = None, turbine_indices: List[int] = None, wake_plotting_dict: Dict[str, Any] = {}, @@ -373,7 +375,7 @@ def plot_waking_directions( Plots lines representing potential waking directions between wind turbines in a layout. Args: - fi (FlorisInterface): Instantiated FlorisInterface object containing layout data. + fmodel (FlorisModel): Instantiated FlorisModel object containing layout data. ax (plt.Axes, optional): An existing axes object to plot on. If None, a new figure and axes will be created. Defaults to None. turbine_indices (List[int], optional): Indices of turbines to include in the plot. @@ -408,14 +410,14 @@ def plot_waking_directions( # If turbine_indices is not none, make sure all elements correspond to real indices if turbine_indices is not None: try: - fi.layout_x[turbine_indices] + fmodel.layout_x[turbine_indices] except IndexError: raise IndexError("turbine_indices does not correspond to turbine indices in fi") else: - turbine_indices = list(range(len(fi.layout_x))) + turbine_indices = list(range(len(fmodel.layout_x))) - layout_x = fi.layout_x[turbine_indices] - layout_y = fi.layout_y[turbine_indices] + layout_x = fmodel.layout_x[turbine_indices] + layout_y = fmodel.layout_y[turbine_indices] N_turbs = len(layout_x) # Combine default plotting options @@ -426,13 +428,13 @@ def plot_waking_directions( } wake_plotting_dict = {**def_wake_plotting_dict, **wake_plotting_dict} - # N_turbs = len(fi.floris.farm.turbine_definitions) + # N_turbs = len(fmodel.core.farm.turbine_definitions) if D is None: - D = fi.floris.farm.turbine_definitions[0]["rotor_diameter"] + D = fmodel.core.farm.turbine_definitions[0]["rotor_diameter"] # TODO: build out capability to use multiple diameters, if of interest. # D = np.array([turb['rotor_diameter'] for turb in - # fi.floris.farm.turbine_definitions]) + # fmodel.core.farm.turbine_definitions]) # else: # D = D*np.ones(N_turbs) @@ -468,7 +470,11 @@ def plot_waking_directions( # and i in layout_plotting_dict["turbine_indices"] # and j in layout_plotting_dict["turbine_indices"] ): - (h,) = ax.plot(fi.layout_x[[i, j]], fi.layout_y[[i, j]], **wake_plotting_dict) + (h,) = ax.plot( + fmodel.layout_x[[i, j]], + fmodel.layout_y[[i, j]], + **wake_plotting_dict + ) # Only label in one direction if ~label_exists[i, j]: @@ -495,20 +501,20 @@ def plot_waking_directions( return ax -def plot_farm_terrain(fi: FlorisInterface, ax: plt.Axes = None) -> None: +def plot_farm_terrain(fmodel: FlorisModel, ax: plt.Axes = None) -> None: """ Creates a filled contour plot visualizing terrain-corrected wind turbine hub heights. Args: - fi (FlorisInterface): The FlorisInterface object containing layout data. + fmodel (FlorisModel): The FlorisModel object containing layout data. ax (plt.Axes, optional): An existing axes object to plot on. If None, a new figure and axes will be created. Defaults to None. """ if not ax: _, ax = plt.subplots() - hub_heights = fi.floris.farm.hub_heights.flatten() - cntr = ax.tricontourf(fi.layout_x, fi.layout_y, hub_heights, levels=14, cmap="RdBu_r") + hub_heights = fmodel.core.farm.hub_heights.flatten() + cntr = ax.tricontourf(fmodel.layout_x, fmodel.layout_y, hub_heights, levels=14, cmap="RdBu_r") ax.get_figure().colorbar( cntr, diff --git a/floris/tools/optimization/__init__.py b/floris/optimization/__init__.py similarity index 100% rename from floris/tools/optimization/__init__.py rename to floris/optimization/__init__.py diff --git a/floris/tools/optimization/layout_optimization/__init__.py b/floris/optimization/layout_optimization/__init__.py similarity index 100% rename from floris/tools/optimization/layout_optimization/__init__.py rename to floris/optimization/layout_optimization/__init__.py diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_base.py b/floris/optimization/layout_optimization/layout_optimization_base.py similarity index 86% rename from floris/tools/optimization/layout_optimization/layout_optimization_base.py rename to floris/optimization/layout_optimization/layout_optimization_base.py index ba5a86751..c8e192d1a 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_base.py +++ b/floris/optimization/layout_optimization/layout_optimization_base.py @@ -3,13 +3,13 @@ import numpy as np from shapely.geometry import LineString, Polygon -from floris.tools import TimeSeries -from floris.tools.optimization.yaw_optimization.yaw_optimizer_geometric import ( +from floris import TimeSeries +from floris.optimization.yaw_optimization.yaw_optimizer_geometric import ( YawOptimizationGeometric, ) -from floris.tools.wind_data import WindDataBase +from floris.wind_data import WindDataBase -from ....logging_manager import LoggingManager +from ...logging_manager import LoggingManager class LayoutOptimization(LoggingManager): @@ -18,7 +18,7 @@ class LayoutOptimization(LoggingManager): but should be subclassed by a specific optimization method. Args: - fi (FlorisInterface): A FlorisInterface object. + fmodel (FlorisModel): A FlorisModel object. boundaries (iterable(float, float)): Pairs of x- and y-coordinates that represent the boundary's vertices (m). wind_data (TimeSeries | WindRose): A TimeSeries or WindRose object @@ -29,8 +29,8 @@ class LayoutOptimization(LoggingManager): enable_geometric_yaw (bool, optional): If True, enables geometric yaw optimization. Defaults to False. """ - def __init__(self, fi, boundaries, wind_data, min_dist=None, enable_geometric_yaw=False): - self.fi = fi.copy() + def __init__(self, fmodel, boundaries, wind_data, min_dist=None, enable_geometric_yaw=False): + self.fmodel = fmodel.copy() self.boundaries = boundaries self.enable_geometric_yaw = enable_geometric_yaw @@ -59,12 +59,12 @@ def __init__(self, fi, boundaries, wind_data, min_dist=None, enable_geometric_ya # Establish geometric yaw class if self.enable_geometric_yaw: self.yaw_opt = YawOptimizationGeometric( - fi, + fmodel, minimum_yaw_angle=-30.0, maximum_yaw_angle=30.0, ) - self.initial_AEP = fi.get_farm_AEP_with_wind_data(self.wind_data) + self.initial_AEP = fmodel.get_farm_AEP_with_wind_data(self.wind_data) def __str__(self): return "layout" @@ -79,7 +79,7 @@ def _get_geoyaw_angles(self): # NOTE: requires that child class saves x and y locations # as self.x and self.y and updates them during optimization. if self.enable_geometric_yaw: - self.yaw_opt.fi_subset.set(layout_x=self.x, layout_y=self.y) + self.yaw_opt.fmodel_subset.set(layout_x=self.x, layout_y=self.y) df_opt = self.yaw_opt.optimize() self.yaw_angles = np.vstack(df_opt['yaw_angles_opt'])[:, :] else: @@ -137,9 +137,9 @@ def nturbs(self): Returns: nturbs (int): The number of turbines in the FLORIS object. """ - self._nturbs = self.fi.floris.farm.n_turbines + self._nturbs = self.fmodel.core.farm.n_turbines return self._nturbs @property def rotor_diameter(self): - return self.fi.floris.farm.rotor_diameters_sorted[0][0] + return self.fmodel.core.farm.rotor_diameters_sorted[0][0] diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py b/floris/optimization/layout_optimization/layout_optimization_boundary_grid.py similarity index 99% rename from floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py rename to floris/optimization/layout_optimization/layout_optimization_boundary_grid.py index a17b3e220..c43310017 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_boundary_grid.py +++ b/floris/optimization/layout_optimization/layout_optimization_boundary_grid.py @@ -14,7 +14,7 @@ class LayoutOptimizationBoundaryGrid(LayoutOptimization): def __init__( self, - fi, + fmodel, boundaries, start, x_spacing, @@ -27,7 +27,7 @@ def __init__( n_boundary_turbines=None, boundary_spacing=None, ): - self.fi = fi + self.fmodel = fmodel self.boundary_x = np.array([val[0] for val in boundaries]) self.boundary_y = np.array([val[1] for val in boundaries]) @@ -612,13 +612,13 @@ def reinitialize_xy(self): self.boundary_spacing, ) - self.fi.set(layout=(layout_x, layout_y)) + self.fmodel.set(layout=(layout_x, layout_y)) def plot_layout(self): plt.figure(figsize=(9, 6)) fontsize = 16 - plt.plot(self.fi.layout_x, self.fi.layout_y, "ob") + plt.plot(self.fmodel.layout_x, self.fmodel.layout_y, "ob") # plt.plot(locsx, locsy, "or") plt.xlabel("x (m)", fontsize=fontsize) diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py similarity index 93% rename from floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py rename to floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py index f0b519254..9d26bc616 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse.py +++ b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py @@ -10,7 +10,7 @@ class LayoutOptimizationPyOptSparse(LayoutOptimization): def __init__( self, - fi, + fmodel, boundaries, wind_data, min_dist=None, @@ -21,11 +21,11 @@ def __init__( hotStart=None, enable_geometric_yaw=False, ): - super().__init__(fi, boundaries, wind_data=wind_data, min_dist=min_dist, + super().__init__(fmodel, boundaries, wind_data=wind_data, min_dist=min_dist, enable_geometric_yaw=enable_geometric_yaw) - self.x0 = self._norm(self.fi.layout_x, self.xmin, self.xmax) - self.y0 = self._norm(self.fi.layout_y, self.ymin, self.ymax) + self.x0 = self._norm(self.fmodel.layout_x, self.xmin, self.xmax) + self.y0 = self._norm(self.fmodel.layout_y, self.ymin, self.ymax) self.storeHistory = storeHistory self.timeLimit = timeLimit @@ -94,13 +94,13 @@ def _obj_func(self, varDict): # Compute turbine yaw angles using PJ's geometric code (if enabled) yaw_angles = self._get_geoyaw_angles() # Update turbine map with turbine locations and yaw angles - self.fi.set(layout_x=self.x, layout_y=self.y, yaw_angles=yaw_angles) + self.fmodel.set(layout_x=self.x, layout_y=self.y, yaw_angles=yaw_angles) # Compute the objective function funcs = {} funcs["obj"] = ( - -1 * self.fi.get_farm_AEP_with_wind_data(self.wind_data) + -1 * self.fmodel.get_farm_AEP_with_wind_data(self.wind_data) / self.initial_AEP ) diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py similarity index 97% rename from floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py rename to floris/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py index 7b0ccbe03..aa8d9f54e 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py +++ b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py @@ -10,7 +10,7 @@ class LayoutOptimizationPyOptSparse(LayoutOptimization): def __init__( self, - fi, + fmodel, boundaries, wind_data, min_dist=None, @@ -20,7 +20,7 @@ def __init__( storeHistory='hist.hist', hotStart=None ): - super().__init__(fi, boundaries, wind_data=wind_data, min_dist=min_dist) + super().__init__(fmodel, boundaries, wind_data=wind_data, min_dist=min_dist) self._reinitialize(solver=solver, optOptions=optOptions) self.storeHistory = storeHistory @@ -88,8 +88,8 @@ def _obj_func(self, varDict): self.parse_opt_vars(varDict) # Update turbine map with turbince locations - # self.fi.reinitialize(layout=[self.x, self.y]) - # self.fi.calculate_wake() + # self.fmodel.reinitialize(layout=[self.x, self.y]) + # self.fmodel.calculate_wake() # Compute the objective function funcs = {} diff --git a/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py b/floris/optimization/layout_optimization/layout_optimization_scipy.py similarity index 94% rename from floris/tools/optimization/layout_optimization/layout_optimization_scipy.py rename to floris/optimization/layout_optimization/layout_optimization_scipy.py index a2a8bef6f..23c866071 100644 --- a/floris/tools/optimization/layout_optimization/layout_optimization_scipy.py +++ b/floris/optimization/layout_optimization/layout_optimization_scipy.py @@ -11,7 +11,7 @@ class LayoutOptimizationScipy(LayoutOptimization): def __init__( self, - fi, + fmodel, boundaries, wind_data, bnds=None, @@ -24,7 +24,7 @@ def __init__( _summary_ Args: - fi (_type_): _description_ + fmodel (FlorisModel): A FlorisModel object. boundaries (iterable(float, float)): Pairs of x- and y-coordinates that represent the boundary's vertices (m). wind_data (TimeSeries | WindRose): A TimeSeries or WindRose object @@ -39,7 +39,7 @@ def __init__( optOptions (dict, optional): Dicitonary for setting the optimization options. Defaults to None. """ - super().__init__(fi, boundaries, min_dist=min_dist, wind_data=wind_data, + super().__init__(fmodel, boundaries, min_dist=min_dist, wind_data=wind_data, enable_geometric_yaw=enable_geometric_yaw) self.boundaries_norm = [ @@ -51,10 +51,10 @@ def __init__( ] self.x0 = [ self._norm(x, self.xmin, self.xmax) - for x in self.fi.layout_x + for x in self.fmodel.layout_x ] + [ self._norm(y, self.ymin, self.ymax) - for y in self.fi.layout_y + for y in self.fmodel.layout_y ] if bnds is not None: self.bnds = bnds @@ -97,9 +97,9 @@ def _obj_func(self, locs): self._change_coordinates(locs_unnorm) # Compute turbine yaw angles using PJ's geometric code (if enabled) yaw_angles = self._get_geoyaw_angles() - self.fi.set(yaw_angles=yaw_angles) + self.fmodel.set(yaw_angles=yaw_angles) - return (-1 * self.fi.get_farm_AEP_with_wind_data(self.wind_data) / + return (-1 * self.fmodel.get_farm_AEP_with_wind_data(self.wind_data) / self.initial_AEP) @@ -113,7 +113,7 @@ def _change_coordinates(self, locs): self.y = layout_y # Update the turbine map in floris - self.fi.set(layout_x=layout_x, layout_y=layout_y) + self.fmodel.set(layout_x=layout_x, layout_y=layout_y) def _generate_constraints(self): tmp1 = { diff --git a/floris/tools/optimization/other/__init__.py b/floris/optimization/other/__init__.py similarity index 100% rename from floris/tools/optimization/other/__init__.py rename to floris/optimization/other/__init__.py diff --git a/floris/tools/optimization/other/boundary_grid.py b/floris/optimization/other/boundary_grid.py similarity index 97% rename from floris/tools/optimization/other/boundary_grid.py rename to floris/optimization/other/boundary_grid.py index 38b9816e5..9d160b8a6 100644 --- a/floris/tools/optimization/other/boundary_grid.py +++ b/floris/optimization/other/boundary_grid.py @@ -243,13 +243,12 @@ class BoundaryGrid: def __init__(self, fi): """ Initializes a BoundaryGrid object by assigning a - FlorisInterface object. + FlorisModel object. Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. + fmodel (FlorisModel): A FlorisModel object. """ - self.fi = fi + self.fmodel = fi self.n_boundary_turbs = 0 self.start = 0.0 @@ -332,7 +331,7 @@ def reinitialize_xy(self): eps=self.eps, ) - self.fi.reinitialize_flow_field(layout_array=(layout_x, layout_y)) + self.fmodel.reinitialize_flow_field(layout_array=(layout_x, layout_y)) if __name__ == "__main__": diff --git a/floris/tools/optimization/yaw_optimization/__init__.py b/floris/optimization/yaw_optimization/__init__.py similarity index 100% rename from floris/tools/optimization/yaw_optimization/__init__.py rename to floris/optimization/yaw_optimization/__init__.py diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py b/floris/optimization/yaw_optimization/yaw_optimization_base.py similarity index 93% rename from floris/tools/optimization/yaw_optimization/yaw_optimization_base.py rename to floris/optimization/yaw_optimization/yaw_optimization_base.py index 5964c2ae1..5608f58f4 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimization_base.py +++ b/floris/optimization/yaw_optimization/yaw_optimization_base.py @@ -12,14 +12,14 @@ class YawOptimization(LoggingManager): """ - YawOptimization is a subclass of :py:class:`floris.tools.optimization.scipy. + YawOptimization is a subclass of :py:class:`floris.optimization.scipy. Optimization` that is used to optimize the yaw angles of all turbines in a Floris Farm for a single set of inflow conditions using the SciPy optimize package. """ def __init__( self, - fi, + fmodel, minimum_yaw_angle=0.0, maximum_yaw_angle=25.0, yaw_angles_baseline=None, @@ -31,12 +31,11 @@ def __init__( verify_convergence=False, ): """ - Instantiate YawOptimization object with a FlorisInterface object + Instantiate YawOptimization object with a FlorisModel object and assign parameter values. Args: - fi (:py:class:`~.tools.floris_interface.FlorisInterface`): - Interface used to interact with the Floris object. + fmodel (:py:class:`~.floris_model.FlorisModel`): A FlorisModel object. minimum_yaw_angle (float or ndarray): Minimum constraint on yaw angle (deg). If a single value specified, assumes this value for all turbines. If a 1D array is specified, assumes these @@ -100,11 +99,11 @@ def __init__( """ # Save turbine object to self - self.fi = fi.copy() - self.nturbs = len(self.fi.layout_x) + self.fmodel = fmodel.copy() + self.nturbs = len(self.fmodel.layout_x) # # Check floris options - # if self.fi.floris.flow_field.n_wind_speeds > 1: + # if self.fmodel.core.flow_field.n_wind_speeds > 1: # raise NotImplementedError( # "Optimizer currently does not support more than one wind" + # " speed. Please assign FLORIS a single wind speed." @@ -116,7 +115,7 @@ def __init__( yaw_angles_baseline = self._unpack_variable(yaw_angles_baseline) self.yaw_angles_baseline = yaw_angles_baseline else: - b = self.fi.floris.farm.yaw_angles + b = self.fmodel.core.farm.yaw_angles self.yaw_angles_baseline = self._unpack_variable(b) if np.any(np.abs(b) > 0.0): print( @@ -206,7 +205,7 @@ def _unpack_variable(self, variable, subset=False): # If one-dimensional array, copy over to all atmos. conditions variable = np.tile( variable, - (self.fi.floris.flow_field.n_findex, 1) + (self.fmodel.core.flow_field.n_findex, 1) ) @@ -225,8 +224,8 @@ def _reduce_control_problem(self): self.turbs_to_opt = (self.maximum_yaw_angle - self.minimum_yaw_angle >= 0.001) # Initialize subset variables as full set - self.fi_subset = self.fi.copy() - n_findex_subset = copy.deepcopy(self.fi.floris.flow_field.n_findex) + self.fmodel_subset = self.fmodel.copy() + n_findex_subset = copy.deepcopy(self.fmodel.core.flow_field.n_findex) minimum_yaw_angle_subset = copy.deepcopy(self.minimum_yaw_angle) maximum_yaw_angle_subset = copy.deepcopy(self.maximum_yaw_angle) x0_subset = copy.deepcopy(self.x0) @@ -237,9 +236,9 @@ def _reduce_control_problem(self): # Define which turbines to optimize for if self.exclude_downstream_turbines: - for iw, wd in enumerate(self.fi.floris.flow_field.wind_directions): + for iw, wd in enumerate(self.fmodel.core.flow_field.wind_directions): # Remove turbines from turbs_to_opt that are downstream - downstream_turbines = derive_downstream_turbines(self.fi, wd) + downstream_turbines = derive_downstream_turbines(self.fmodel, wd) downstream_turbines = np.array(downstream_turbines, dtype=int) self.turbs_to_opt[iw, downstream_turbines] = False turbs_to_opt_subset = copy.deepcopy(self.turbs_to_opt) # Update @@ -326,19 +325,19 @@ def _calculate_farm_power( farm_power (float): Weighted wind farm power. """ # Unpack all variables, whichever are defined. - fi_subset = copy.deepcopy(self.fi_subset) + fmodel_subset = copy.deepcopy(self.fmodel_subset) if wd_array is None: - wd_array = fi_subset.floris.flow_field.wind_directions + wd_array = fmodel_subset.core.flow_field.wind_directions if ws_array is None: - ws_array = fi_subset.floris.flow_field.wind_speeds + ws_array = fmodel_subset.core.flow_field.wind_speeds if ti_array is None: - ti_array = fi_subset.floris.flow_field.turbulence_intensities + ti_array = fmodel_subset.core.flow_field.turbulence_intensities if yaw_angles is None: yaw_angles = self._yaw_angles_baseline_subset if turbine_weights is None: turbine_weights = self._turbine_weights_subset if heterogeneous_speed_multipliers is not None: - fi_subset.floris.flow_field.\ + fmodel_subset.core.flow_field.\ heterogenous_inflow_config['speed_multipliers'] = heterogeneous_speed_multipliers # Ensure format [incompatible with _subset notation] @@ -349,14 +348,14 @@ def _calculate_farm_power( # Calculate solutions turbine_power = np.zeros_like(self._minimum_yaw_angle_subset[:, :]) - fi_subset.set( + fmodel_subset.set( wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=ti_array, yaw_angles=yaw_angles, ) - fi_subset.run() - turbine_power = fi_subset.get_turbine_powers() + fmodel_subset.run() + turbine_power = fmodel_subset.get_turbine_powers() # Multiply with turbine weighing terms turbine_power_weighted = np.multiply(turbine_weights, turbine_power) @@ -401,9 +400,9 @@ def _finalize(self, farm_power_opt_subset=None, yaw_angles_opt_subset=None): df_list.append( pd.DataFrame( { - "wind_direction": self.fi.floris.flow_field.wind_directions, - "wind_speed": self.fi.floris.flow_field.wind_speeds, - "turbulence_intensity": self.fi.floris.flow_field.turbulence_intensities, + "wind_direction": self.fmodel.core.flow_field.wind_directions, + "wind_speed": self.fmodel.core.flow_field.wind_speeds, + "turbulence_intensity": self.fmodel.core.flow_field.turbulence_intensities, "yaw_angles_opt": list(self.yaw_angles_opt[:, :]), "farm_power_opt": None if self.farm_power_opt is None @@ -493,11 +492,11 @@ def _verify_solutions_for_convergence( # we copy the atmospheric conditions n_turbs times and for each # copy of atmospheric conditions, we reset that turbine's yaw angle # to its baseline value for all conditions. - n_turbs = len(self.fi.layout_x) + n_turbs = len(self.fmodel.layout_x) sp = (n_turbs, 1) # Tile shape for matrix expansion - wd_array_nominal = self.fi_subset.floris.flow_field.wind_directions - ws_array_nominal = self.fi_subset.floris.flow_field.wind_speeds - ti_array_nominal = self.fi_subset.floris.flow_field.turbulence_intensities + wd_array_nominal = self.fmodel_subset.core.flow_field.wind_directions + ws_array_nominal = self.fmodel_subset.core.flow_field.wind_speeds + ti_array_nominal = self.fmodel_subset.core.flow_field.turbulence_intensities n_wind_directions = len(wd_array_nominal) yaw_angles_verify = np.tile(yaw_angles_opt_subset, sp) yaw_angles_bl_verify = np.tile(yaw_angles_baseline_subset, sp) @@ -565,7 +564,7 @@ def _verify_solutions_for_convergence( diff_uplift = dP_old - dP_new ids_max_loss = np.where(np.nanmax(diff_uplift) == diff_uplift) jj = (ids_max_loss[0][0], ids_max_loss[1][0]) - ws_array_nominal = self.fi_subset.floris.flow_field.wind_speeds + ws_array_nominal = self.fmodel_subset.core.flow_field.wind_speeds print( "Nullified the optimal yaw offset for {:d}".format(n) + " conditions and turbines." diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py b/floris/optimization/yaw_optimization/yaw_optimization_tools.py similarity index 94% rename from floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py rename to floris/optimization/yaw_optimization/yaw_optimization_tools.py index 7b13ece91..dedf8f057 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimization_tools.py +++ b/floris/optimization/yaw_optimization/yaw_optimization_tools.py @@ -4,7 +4,7 @@ import pandas as pd -def derive_downstream_turbines(fi, wind_direction, wake_slope=0.30, plot_lines=False): +def derive_downstream_turbines(fmodel, wind_direction, wake_slope=0.30, plot_lines=False): """Determine which turbines have no effect on other turbines in the farm, i.e., which turbines have wakes that do not impact the other turbines in the farm. This allows the user to exclude these turbines @@ -23,7 +23,7 @@ def derive_downstream_turbines(fi, wind_direction, wake_slope=0.30, plot_lines=F time compared to FLORIS. Args: - fi ([floris object]): FLORIS object of the farm of interest. + fmodel (FlorisModel): A FlorisModel object. wind_direction (float): The wind direction in the FLORIS frame of reference for which the downstream turbines are to be determined. wake_slope (float, optional): linear slope of the wake (dy/dx) @@ -37,9 +37,9 @@ def derive_downstream_turbines(fi, wind_direction, wake_slope=0.30, plot_lines=F """ # Get farm layout - x = fi.layout_x - y = fi.layout_y - D = np.ones_like(x) * fi.floris.farm.rotor_diameters_sorted[0][0] + x = fmodel.layout_x + y = fmodel.layout_y + D = np.ones_like(x) * fmodel.core.farm.rotor_diameters_sorted[0][0] n_turbs = len(x) # Rotate farm and determine freestream/waked turbines diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py b/floris/optimization/yaw_optimization/yaw_optimizer_geometric.py similarity index 96% rename from floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py rename to floris/optimization/yaw_optimization/yaw_optimizer_geometric.py index 8607ee596..e78d48c9d 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_geometric.py +++ b/floris/optimization/yaw_optimization/yaw_optimizer_geometric.py @@ -9,24 +9,24 @@ class YawOptimizationGeometric(YawOptimization): """ YawOptimizationGeometric is a subclass of - :py:class:`floris.tools.optimization.general_library.YawOptimization` that is + :py:class:`floris.optimization.general_library.YawOptimization` that is used to provide a rough estimate of optimal yaw angles based purely on the wind farm geometry. Main use case is for coupled layout and yaw optimization. """ def __init__( self, - fi, + fmodel, minimum_yaw_angle=0.0, maximum_yaw_angle=25.0, ): """ - Instantiate YawOptimizationGeometric object with a FlorisInterface + Instantiate YawOptimizationGeometric object with a FlorisModel object assign parameter values. """ super().__init__( - fi=fi, + fmodel=fmodel, minimum_yaw_angle=minimum_yaw_angle, maximum_yaw_angle=maximum_yaw_angle, calc_baseline_power=False @@ -42,14 +42,14 @@ def optimize(self): array is equal in length to the number of turbines in the farm. """ # Loop through every WD individually. WS ignored! - wd_array = self.fi_subset.floris.flow_field.wind_directions + wd_array = self.fmodel_subset.core.flow_field.wind_directions for nwdi, wd in enumerate(wd_array): self._yaw_angles_opt_subset[nwdi, :] = geometric_yaw( - self.fi_subset.layout_x, - self.fi_subset.layout_y, + self.fmodel_subset.layout_x, + self.fmodel_subset.layout_y, wd, - self.fi.floris.farm.turbine_definitions[0]["rotor_diameter"], + self.fmodel.core.farm.turbine_definitions[0]["rotor_diameter"], top_left_yaw_upper=self.maximum_yaw_angle[0, 0], bottom_left_yaw_upper=self.maximum_yaw_angle[0, 0], top_left_yaw_lower=self.minimum_yaw_angle[0, 0], diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py b/floris/optimization/yaw_optimization/yaw_optimizer_scipy.py similarity index 86% rename from floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py rename to floris/optimization/yaw_optimization/yaw_optimizer_scipy.py index 735296b58..b62649117 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_scipy.py +++ b/floris/optimization/yaw_optimization/yaw_optimizer_scipy.py @@ -8,14 +8,14 @@ class YawOptimizationScipy(YawOptimization): """ YawOptimizationScipy is a subclass of - :py:class:`floris.tools.optimization.general_library.YawOptimization` that is + :py:class:`floris.optimization.general_library.YawOptimization` that is used to optimize the yaw angles of all turbines in a Floris Farm for a single set of inflow conditions using the SciPy optimize package. """ def __init__( self, - fi, + fmodel, minimum_yaw_angle=0.0, maximum_yaw_angle=25.0, yaw_angles_baseline=None, @@ -27,7 +27,7 @@ def __init__( verify_convergence=False, ): """ - Instantiate YawOptimizationScipy object with a FlorisInterface object + Instantiate YawOptimizationScipy object with a FlorisModel object and assign parameter values. """ if opt_options is None: @@ -41,7 +41,7 @@ def __init__( } super().__init__( - fi=fi, + fmodel=fmodel, minimum_yaw_angle=minimum_yaw_angle, maximum_yaw_angle=maximum_yaw_angle, yaw_angles_baseline=yaw_angles_baseline, @@ -68,12 +68,12 @@ def optimize(self): array is equal in length to the number of turbines in the farm. """ # Loop through every wind condition individually - wd_array = self.fi_subset.floris.flow_field.wind_directions - ws_array = self.fi_subset.floris.flow_field.wind_speeds - ti_array = self.fi_subset.floris.flow_field.turbulence_intensities + wd_array = self.fmodel_subset.core.flow_field.wind_directions + ws_array = self.fmodel_subset.core.flow_field.wind_speeds + ti_array = self.fmodel_subset.core.flow_field.turbulence_intensities for i, (wd, ws, ti) in enumerate(zip(wd_array, ws_array, ti_array)): - self.fi_subset.set( + self.fmodel_subset.set( wind_directions=[wd], wind_speeds=[ws], turbulence_intensities=[ti] @@ -98,10 +98,10 @@ def optimize(self): turbine_weights = np.tile(turbine_weights, (1, 1)) # Handle heterogeneous inflow, if there is one - if (hasattr(self.fi.floris.flow_field, 'heterogenous_inflow_config') and - self.fi.floris.flow_field.heterogenous_inflow_config is not None): + if (hasattr(self.fmodel.core.flow_field, 'heterogenous_inflow_config') and + self.fmodel.core.flow_field.heterogenous_inflow_config is not None): het_sm_orig = np.array( - self.fi.floris.flow_field.heterogenous_inflow_config['speed_multipliers'] + self.fmodel.core.flow_field.heterogenous_inflow_config['speed_multipliers'] ) het_sm = het_sm_orig[i, :].reshape(1, -1) else: diff --git a/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py b/floris/optimization/yaw_optimization/yaw_optimizer_sr.py similarity index 92% rename from floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py rename to floris/optimization/yaw_optimization/yaw_optimizer_sr.py index 2175a6fe2..c6d76b04e 100644 --- a/floris/tools/optimization/yaw_optimization/yaw_optimizer_sr.py +++ b/floris/optimization/yaw_optimization/yaw_optimizer_sr.py @@ -15,7 +15,7 @@ class YawOptimizationSR(YawOptimization, LoggingManager): def __init__( self, - fi, + fmodel, minimum_yaw_angle=0.0, maximum_yaw_angle=25.0, yaw_angles_baseline=None, @@ -26,13 +26,13 @@ def __init__( verify_convergence=False, ): """ - Instantiate YawOptimizationSR object with a FlorisInterface object + Instantiate YawOptimizationSR object with a FlorisModel object and assign parameter values. """ # Initialize base class super().__init__( - fi=fi, + fmodel=fmodel, minimum_yaw_angle=minimum_yaw_angle, maximum_yaw_angle=maximum_yaw_angle, yaw_angles_baseline=yaw_angles_baseline, @@ -62,8 +62,8 @@ def __init__( # if reduce_ngrid: # for ti in range(self.nturbs): # # Force number of grid points to 2 - # self.fi.floris.farm.turbines[ti].ngrid = 2 - # self.fi.floris.farm.turbines[ti].initialize_turbine() + # self.fmodel.core.farm.turbines[ti].ngrid = 2 + # self.fmodel.core.farm.turbines[ti].initialize_turbine() # print("Reducing ngrid. Unsure if this functionality works!") # Save optimization choices to self @@ -73,10 +73,10 @@ def __init__( self._get_turbine_orders() def _get_turbine_orders(self): - layout_x = self.fi.layout_x - layout_y = self.fi.layout_y + layout_x = self.fmodel.layout_x + layout_y = self.fmodel.layout_y turbines_ordered_array = [] - for wd in self.fi_subset.floris.flow_field.wind_directions: + for wd in self.fmodel_subset.core.flow_field.wind_directions: layout_x_rot = ( np.cos((wd - 270.0) * np.pi / 180.0) * layout_x - np.sin((wd - 270.0) * np.pi / 180.0) * layout_y @@ -90,9 +90,9 @@ def _calc_powers_with_memory(self, yaw_angles_subset, use_memory=True): # Define current optimal solutions and floris wind directions locally yaw_angles_opt_subset = self._yaw_angles_opt_subset farm_power_opt_subset = self._farm_power_opt_subset - wd_array_subset = self.fi_subset.floris.flow_field.wind_directions - ws_array_subset = self.fi_subset.floris.flow_field.wind_speeds - ti_array_subset = self.fi_subset.floris.flow_field.turbulence_intensities + wd_array_subset = self.fmodel_subset.core.flow_field.wind_directions + ws_array_subset = self.fmodel_subset.core.flow_field.wind_speeds + ti_array_subset = self.fmodel_subset.core.flow_field.turbulence_intensities turbine_weights_subset = self._turbine_weights_subset # Reformat yaw_angles_subset, if necessary @@ -129,10 +129,10 @@ def _calc_powers_with_memory(self, yaw_angles_subset, use_memory=True): if not np.all(idx): # Now calculate farm powers for conditions we haven't yet evaluated previously start_time = timerpc() - if (hasattr(self.fi.floris.flow_field, 'heterogenous_inflow_config') and - self.fi.floris.flow_field.heterogenous_inflow_config is not None): + if (hasattr(self.fmodel.core.flow_field, 'heterogenous_inflow_config') and + self.fmodel.core.flow_field.heterogenous_inflow_config is not None): het_sm_orig = np.array( - self.fi.floris.flow_field.heterogenous_inflow_config['speed_multipliers'] + self.fmodel.core.flow_field.heterogenous_inflow_config['speed_multipliers'] ) het_sm = np.tile(het_sm_orig, (Ny, 1))[~idx, :] else: @@ -153,7 +153,7 @@ def _calc_powers_with_memory(self, yaw_angles_subset, use_memory=True): farm_powers, ( Ny, - self.fi_subset.floris.flow_field.n_findex + self.fmodel_subset.core.flow_field.n_findex ) ) diff --git a/floris/tools/parallel_computing_interface.py b/floris/parallel_floris_model.py similarity index 71% rename from floris/tools/parallel_computing_interface.py rename to floris/parallel_floris_model.py index 7260b0305..86fc3ea08 100644 --- a/floris/tools/parallel_computing_interface.py +++ b/floris/parallel_floris_model.py @@ -6,37 +6,21 @@ import numpy as np import pandas as pd +from floris.floris_model import FlorisModel from floris.logging_manager import LoggingManager -from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR -from floris.tools.uncertainty_interface import FlorisInterface, UncertaintyInterface +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR +from floris.uncertain_floris_model import map_turbine_powers_uncertain, UncertainFlorisModel -def _load_local_floris_object( - fi_dict, - unc_pmfs=None, - fix_yaw_in_relative_frame=False -): - # Load local FLORIS object - if unc_pmfs is None: - fi = FlorisInterface(fi_dict) - else: - fi = UncertaintyInterface( - fi_dict, - unc_pmfs=unc_pmfs, - fix_yaw_in_relative_frame=fix_yaw_in_relative_frame, - ) - return fi - - -def _get_turbine_powers_serial(fi_information, yaw_angles=None): - fi = _load_local_floris_object(*fi_information) - fi.set(yaw_angles=yaw_angles) - fi.run() - return (fi.get_turbine_powers(), fi.floris.flow_field) +def _get_turbine_powers_serial(fmodel_information, yaw_angles=None): + fmodel = FlorisModel(fmodel_information) + fmodel.set(yaw_angles=yaw_angles) + fmodel.run() + return (fmodel.get_turbine_powers(), fmodel.core.flow_field) def _optimize_yaw_angles_serial( - fi_information, + fmodel_information, minimum_yaw_angle, maximum_yaw_angle, yaw_angles_baseline, @@ -47,9 +31,9 @@ def _optimize_yaw_angles_serial( verify_convergence, print_progress, ): - fi_opt = _load_local_floris_object(*fi_information) + fmodel_opt = FlorisModel(fmodel_information) yaw_opt = YawOptimizationSR( - fi=fi_opt, + fmodel=fmodel_opt, minimum_yaw_angle=minimum_yaw_angle, maximum_yaw_angle=maximum_yaw_angle, yaw_angles_baseline=yaw_angles_baseline, @@ -65,10 +49,10 @@ def _optimize_yaw_angles_serial( return df_opt -class ParallelComputingInterface(LoggingManager): +class ParallelFlorisModel(LoggingManager): def __init__( self, - fi, + fmodel, max_workers, n_wind_condition_splits, interface="multiprocessing", # Options are 'multiprocessing', 'mpi4py' or 'concurrent' @@ -77,12 +61,12 @@ def __init__( print_timings=False ): """A wrapper around the nominal floris_interface class that adds - parallel computing to common FlorisInterface properties. + parallel computing to common FlorisModel properties. Args: - fi (FlorisInterface or UncertaintyInterface object): Interactive FLORIS object used to - perform the wake and turbine calculations. Can either be a regular FlorisInterface - object or can be an UncertaintyInterface object. + fmodel (FlorisModel or UncertainFlorisModel object): Interactive FLORIS object used to + perform the wake and turbine calculations. Can either be a regular FlorisModel + object or can be an UncertainFlorisModel object. max_workers (int): Number of parallel workers, typically equal to the number of cores you have on your system or HPC. n_wind_condition_splits (int): Number of sectors to split the wind findex array over. @@ -128,15 +112,24 @@ def __init__( ) # Initialize floris object and copy common properties - self.fi = fi.copy() - self.floris = self.fi.floris # Static copy as a placeholder + if isinstance(fmodel, FlorisModel): + self.fmodel = fmodel.copy() + self._is_uncertain = False + elif isinstance(fmodel, UncertainFlorisModel): + self.fmodel = fmodel.fmodel_expanded.copy() + self._is_uncertain = True + self._weights = fmodel.weights + self._n_unexpanded = fmodel.n_unexpanded + self._n_sample_points = fmodel.n_sample_points + self._map_to_expanded_inputs = fmodel.map_to_expanded_inputs + self.core = self.fmodel.core # Static copy as a placeholder # Save to self self._n_wind_condition_splits = n_wind_condition_splits # Save initial user input self._max_workers = max_workers # Save initial user input self.n_wind_condition_splits = int( - np.min([n_wind_condition_splits, self.fi.floris.flow_field.n_findex]) + np.min([n_wind_condition_splits, self.fmodel.core.flow_field.n_findex]) ) self.max_workers = int( np.min([max_workers, self.n_wind_condition_splits]) @@ -148,7 +141,7 @@ def __init__( def copy(self): # Make an independent copy self_copy = copy.deepcopy(self) - self_copy.fi = self.fi.copy() + self_copy.fmodel = self.fmodel.copy() return self_copy def set( @@ -166,9 +159,9 @@ def set( turbine_type=None, solver_settings=None, ): - """Pass to the FlorisInterface set function. To allow users - to directly replace a FlorisInterface object with this - UncertaintyInterface object, this function is required.""" + """Pass to the FlorisModel set function. To allow users + to directly replace a FlorisModel object with this + UncertainFlorisModel object, this function is required.""" if layout is not None: msg = "Use the `layout_x` and `layout_y` parameters in place of `layout` " @@ -178,8 +171,8 @@ def set( layout_y = layout[1] # Just passes arguments to the floris object - fi = self.fi.copy() - fi.set( + fmodel = self.fmodel.copy() + fmodel.set( wind_speeds=wind_speeds, wind_directions=wind_directions, wind_shear=wind_shear, @@ -195,7 +188,7 @@ def set( # Reinitialize settings self.__init__( - fi=fi, + fmodel=fmodel, max_workers=self._max_workers, n_wind_condition_splits=self._n_wind_condition_splits, interface=self.interface, @@ -207,45 +200,36 @@ def _preprocessing(self, yaw_angles=None): # Format yaw angles if yaw_angles is None: yaw_angles = np.zeros(( - self.fi.floris.flow_field.n_findex, - self.fi.floris.farm.n_turbines + self.fmodel.core.flow_field.n_findex, + self.fmodel.core.farm.n_turbines )) # Prepare settings n_wind_condition_splits = self.n_wind_condition_splits n_wind_condition_splits = np.min( - [n_wind_condition_splits, self.fi.floris.flow_field.n_findex] + [n_wind_condition_splits, self.fmodel.core.flow_field.n_findex] ) # Prepare the input arguments for parallel execution - fi_dict = self.fi.floris.as_dict() + fmodel_dict = self.fmodel.core.as_dict() wind_condition_id_splits = np.array_split( - np.arange(self.fi.floris.flow_field.n_findex), + np.arange(self.fmodel.core.flow_field.n_findex), n_wind_condition_splits, ) multiargs = [] for wc_id_split in wind_condition_id_splits: # for ws_id_split in wind_speed_id_splits: - fi_dict_split = copy.deepcopy(fi_dict) - wind_directions = self.fi.floris.flow_field.wind_directions[wc_id_split] - wind_speeds = self.fi.floris.flow_field.wind_speeds[wc_id_split] - turbulence_intensities = self.fi.floris.flow_field.turbulence_intensities[wc_id_split] + fmodel_dict_split = copy.deepcopy(fmodel_dict) + wind_directions = self.fmodel.core.flow_field.wind_directions[wc_id_split] + wind_speeds = self.fmodel.core.flow_field.wind_speeds[wc_id_split] + turbulence_intensities = self.fmodel.core.flow_field.turbulence_intensities[wc_id_split] yaw_angles_subset = yaw_angles[wc_id_split[0]:wc_id_split[-1]+1, :] - fi_dict_split["flow_field"]["wind_directions"] = wind_directions - fi_dict_split["flow_field"]["wind_speeds"] = wind_speeds - fi_dict_split["flow_field"]["turbulence_intensities"] = turbulence_intensities + fmodel_dict_split["flow_field"]["wind_directions"] = wind_directions + fmodel_dict_split["flow_field"]["wind_speeds"] = wind_speeds + fmodel_dict_split["flow_field"]["turbulence_intensities"] = turbulence_intensities # Prepare lightweight data to pass along - if isinstance(self.fi, FlorisInterface): - fi_information = (fi_dict_split, None, None) - else: - fi_information = ( - fi_dict_split, - self.fi.fi.het_map, - self.fi.unc_pmfs, - self.fi.fix_yaw_in_relative_frame - ) - multiargs.append((fi_information, yaw_angles_subset)) + multiargs.append((fmodel_dict_split, yaw_angles_subset)) return multiargs @@ -266,14 +250,14 @@ def _postprocessing(self, output): # Optionally, also merge flow field dictionaries from individual floris solutions if self.propagate_flowfield_from_workers: - self.floris = self.fi.floris # Refresh static copy of underlying floris class - # self.floris.flow_field.u_initial = self._merge_subsets("u_initial", flowfield_subsets) - # self.floris.flow_field.v_initial = self._merge_subsets("v_initial", flowfield_subsets) - # self.floris.flow_field.w_initial = self._merge_subsets("w_initial", flowfield_subsets) - self.floris.flow_field.u = self._merge_subsets("u", flowfield_subsets) - self.floris.flow_field.v = self._merge_subsets("v", flowfield_subsets) - self.floris.flow_field.w = self._merge_subsets("w", flowfield_subsets) - self.floris.flow_field.turbulence_intensity_field = self._merge_subsets( + self.core = self.fmodel.core # Refresh static copy of underlying floris class + # self.core.flow_field.u_initial = self._merge_subsets("u_initial", flowfield_subsets) + # self.core.flow_field.v_initial = self._merge_subsets("v_initial", flowfield_subsets) + # self.core.flow_field.w_initial = self._merge_subsets("w_initial", flowfield_subsets) + self.core.flow_field.u = self._merge_subsets("u", flowfield_subsets) + self.core.flow_field.v = self._merge_subsets("v", flowfield_subsets) + self.core.flow_field.w = self._merge_subsets("w", flowfield_subsets) + self.core.flow_field.turbulence_intensity_field = self._merge_subsets( "turbulence_intensity_field", flowfield_subsets ) @@ -282,7 +266,7 @@ def _postprocessing(self, output): def run(self): # TODO: Remove or update this function? raise UserWarning( - "'run' not supported on ParallelComputingInterface. Please use " + "'run' not supported on ParallelFlorisModel. Please use " "'get_turbine_powers' or 'get_farm_power' directly." ) @@ -309,6 +293,15 @@ def get_turbine_powers(self, yaw_angles=None): # Postprocessing: merge power production (and opt. flow field) from individual runs t2 = timerpc() turbine_powers = self._postprocessing(out) + if self._is_uncertain: + turbine_powers = map_turbine_powers_uncertain( + unique_turbine_powers=turbine_powers, + map_to_expanded_inputs=self._map_to_expanded_inputs, + weights=self._weights, + n_unexpanded=self._n_unexpanded, + n_sample_points=self._n_sample_points, + n_turbines=self.fmodel.core.farm.n_turbines, + ) t_postprocessing = timerpc() - t2 t_total = timerpc() - t0 @@ -329,8 +322,9 @@ def get_farm_power(self, yaw_angles=None, turbine_weights=None): # Default to equal weighing of all turbines when turbine_weights is None turbine_weights = np.ones( ( - self.fi.floris.flow_field.n_findex, - self.fi.floris.farm.n_turbines + (self._n_unexpanded if self._is_uncertain + else self.fmodel.core.flow_field.n_findex), + self.fmodel.core.farm.n_turbines ) ) elif len(np.shape(turbine_weights)) == 1: @@ -338,7 +332,8 @@ def get_farm_power(self, yaw_angles=None, turbine_weights=None): turbine_weights = np.tile( turbine_weights, ( - self.fi.floris.flow_field.n_findex, + (self._n_unexpanded if self._is_uncertain + else self.fmodel.core.flow_field.n_findex), 1 ) ) @@ -352,7 +347,7 @@ def get_farm_power(self, yaw_angles=None, turbine_weights=None): def get_farm_AEP( self, freq, - cut_in_wind_speed=0.001, + cut_in_wind_speed=None, cut_out_wind_speed=None, yaw_angles=None, turbine_weights=None, @@ -368,15 +363,8 @@ def get_farm_AEP( wind speed combination. These frequencies should typically sum up to 1.0 and are used to weigh the wind farm power for every condition in calculating the wind farm's AEP. - cut_in_wind_speed (float, optional): Wind speed in m/s below which - any calculations are ignored and the wind farm is known to - produce 0.0 W of power. Note that to prevent problems with the - wake models at negative / zero wind speeds, this variable must - always have a positive value. Defaults to 0.001 [m/s]. - cut_out_wind_speed (float, optional): Wind speed above which the - wind farm is known to produce 0.0 W of power. If None is - specified, will assume that the wind farm does not cut out - at high wind speeds. Defaults to None. + cut_in_wind_speed (float, optional): No longer supported. + cut_out_wind_speed (float, optional): No longer supported. yaw_angles (NDArrayFloat | list[float] | None, optional): The relative turbine yaw angles in degrees. If None is specified, will assume that the turbine yaw angles are all @@ -407,7 +395,7 @@ def get_farm_AEP( # If no_wake==True, ignore parallelization because it's fast enough if no_wake: - return self.fi.get_farm_AEP( + return self.fmodel.get_farm_AEP( freq=freq, cut_in_wind_speed=cut_in_wind_speed, cut_out_wind_speed=cut_out_wind_speed, @@ -417,62 +405,51 @@ def get_farm_AEP( ) # Verify dimensions of the variable "freq" - if not ( - (np.shape(freq)[0] == self.fi.floris.flow_field.n_wind_directions) - & (np.shape(freq)[1] == self.fi.floris.flow_field.n_wind_speeds) - & (len(np.shape(freq)) == 2) - ): + if ((self._is_uncertain and np.shape(freq)[0] != self._n_unexpanded) or + (not self._is_uncertain and np.shape(freq)[0] != self.fmodel.core.flow_field.n_findex)): raise UserWarning( - "'freq' should be a two-dimensional array with dimensions " - + "(n_wind_directions, n_wind_speeds)." + "'freq' should be a one-dimensional array with dimensions (n_findex). " + f"Given shape is {np.shape(freq)}" ) # Check if frequency vector sums to 1.0. If not, raise a warning if np.abs(np.sum(freq) - 1.0) > 0.001: self.logger.warning( - "WARNING: The frequency array provided to get_farm_AEP() does not sum to 1.0. " + "WARNING: The frequency array provided to get_farm_AEP() does not sum to 1.0." ) # Copy the full wind speed array from the floris object and initialize # the the farm_power variable as an empty array. - wind_speeds = np.array(self.fi.floris.flow_field.wind_speeds, copy=True) - wind_directions = np.array(self.fi.floris.flow_field.wind_directions, copy=True) + wind_speeds = np.array(self.fmodel.core.flow_field.wind_speeds, copy=True) + wind_directions = np.array(self.fmodel.core.flow_field.wind_directions, copy=True) turbulence_intensities = np.array( - self.fi.floris.flow_field.turbulence_intensities, + self.fmodel.core.flow_field.turbulence_intensities, copy=True, ) - farm_power = np.zeros((self.fi.floris.flow_field.n_wind_directions, len(wind_speeds))) + farm_power = np.zeros( + self._n_unexpanded if self._is_uncertain else self.core.flow_field.n_findex + ) # Determine which wind speeds we must evaluate in floris - conditions_to_evaluate = wind_speeds >= cut_in_wind_speed - if cut_out_wind_speed is not None: - conditions_to_evaluate = conditions_to_evaluate & (wind_speeds < cut_out_wind_speed) - - # Evaluate the conditions in floris - if np.any(conditions_to_evaluate): - wind_speeds_subset = wind_speeds[conditions_to_evaluate] - wind_direction_subset = wind_directions[conditions_to_evaluate] - turbulence_intensities_subset = turbulence_intensities[conditions_to_evaluate] - yaw_angles_subset = None - if yaw_angles is not None: - yaw_angles_subset = yaw_angles[:, conditions_to_evaluate] - self.fi.set( - wind_directions=wind_direction_subset, - wind_speeds=wind_speeds_subset, - turbulence_intensities=turbulence_intensities_subset, - ) - farm_power[:, conditions_to_evaluate] = ( - self.get_farm_power(yaw_angles=yaw_angles_subset, turbine_weights=turbine_weights) + if cut_in_wind_speed is not None or cut_out_wind_speed is not None: + raise NotImplementedError( + "WARNING: The 'cut_in_wind_speed' and 'cut_out_wind_speed' " + "parameters are no longer supported in the 'ParallelFlorisModel.get_farm_AEP' " + "method." ) + farm_power = ( + self.get_farm_power(yaw_angles=yaw_angles, turbine_weights=turbine_weights) + ) + # Finally, calculate AEP in GWh aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) # Reset the FLORIS object to the full wind speed array - self.fi.set( + self.fmodel.set( wind_directions=wind_directions, wind_speeds=wind_speeds, - turbulence_intensities=turbulence_intensities_subset, + turbulence_intensities=turbulence_intensities, ) return aep @@ -549,12 +526,12 @@ def optimize_yaw_angles( @property def layout_x(self): - return self.fi.layout_x + return self.fmodel.layout_x @property def layout_y(self): - return self.fi.layout_y + return self.fmodel.layout_y # @property # def floris(self): - # return self.fi.floris + # return self.fmodel.core diff --git a/floris/simulation/wake_combination/__init__.py b/floris/simulation/wake_combination/__init__.py deleted file mode 100644 index 9d8c70ea8..000000000 --- a/floris/simulation/wake_combination/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ - -from floris.simulation.wake_combination.fls import FLS -from floris.simulation.wake_combination.max import MAX -from floris.simulation.wake_combination.sosfs import SOSFS diff --git a/floris/simulation/wake_deflection/__init__.py b/floris/simulation/wake_deflection/__init__.py deleted file mode 100644 index 9c5937913..000000000 --- a/floris/simulation/wake_deflection/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ - -from floris.simulation.wake_deflection.empirical_gauss import EmpiricalGaussVelocityDeflection -from floris.simulation.wake_deflection.gauss import GaussVelocityDeflection -from floris.simulation.wake_deflection.jimenez import JimenezVelocityDeflection -from floris.simulation.wake_deflection.none import NoneVelocityDeflection diff --git a/floris/simulation/wake_turbulence/__init__.py b/floris/simulation/wake_turbulence/__init__.py deleted file mode 100644 index 51bee5f74..000000000 --- a/floris/simulation/wake_turbulence/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ - -from floris.simulation.wake_turbulence.crespo_hernandez import CrespoHernandez -from floris.simulation.wake_turbulence.none import NoneWakeTurbulence -from floris.simulation.wake_turbulence.wake_induced_mixing import WakeInducedMixing diff --git a/floris/simulation/wake_velocity/__init__.py b/floris/simulation/wake_velocity/__init__.py deleted file mode 100644 index f0d3b4c99..000000000 --- a/floris/simulation/wake_velocity/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ - -from floris.simulation.wake_velocity.cumulative_gauss_curl import CumulativeGaussCurlVelocityDeficit -from floris.simulation.wake_velocity.empirical_gauss import EmpiricalGaussVelocityDeficit -from floris.simulation.wake_velocity.gauss import GaussVelocityDeficit -from floris.simulation.wake_velocity.jensen import JensenVelocityDeficit -from floris.simulation.wake_velocity.none import NoneVelocityDeficit -from floris.simulation.wake_velocity.turbopark import TurbOParkVelocityDeficit diff --git a/floris/tools/__init__.py b/floris/tools/__init__.py deleted file mode 100644 index 94160d697..000000000 --- a/floris/tools/__init__.py +++ /dev/null @@ -1,48 +0,0 @@ - -""" -The :py:obj:`floris.tools` package contains the modules used to drive -FLORIS simulations and perform studies in various areas of research and -analysis. - -All modules can be imported with - - >>> import floris.tools - -The ``__init__.py`` file enables the import of all modules in this -package so any additional modules should be included there. - -Examples: - >>> import floris.tools - - >>> dir(floris.tools) - ['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', - '__name__', '__package__', '__path__', '__spec__', 'cut_plane', - 'floris_interface', - 'layout_visualization', 'optimization', 'plotting', 'power_rose', - 'visualization'] -""" - -from .floris_interface import FlorisInterface -from .flow_visualization import ( - plot_rotor_values, - visualize_cut_plane, - visualize_quiver, -) -from .parallel_computing_interface import ParallelComputingInterface -from .uncertainty_interface import UncertaintyInterface -from .wind_data import ( - TimeSeries, - WindRose, - WindTIRose, -) - - -# from floris.tools import ( -# cut_plane, -# floris_interface, -# layout_visualization, -# optimization, -# plotting, -# power_rose, -# visualization, -# ) diff --git a/floris/turbine_library/turbine_previewer.py b/floris/turbine_library/turbine_previewer.py index 2324b51e2..9050bc5f5 100644 --- a/floris/turbine_library/turbine_previewer.py +++ b/floris/turbine_library/turbine_previewer.py @@ -8,7 +8,8 @@ import numpy as np from attrs import define, field -from floris.simulation.turbine.turbine import ( +from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT +from floris.core.turbine.turbine import ( power, thrust_coefficient, Turbine, @@ -107,6 +108,7 @@ def power_curve( power_functions={self.turbine.turbine_type: self.turbine.power_function}, yaw_angles=np.zeros(shape), tilt_angles=np.full(shape, v["ref_tilt"]), + power_setpoints=np.full(shape, POWER_SETPOINT_DEFAULT), tilt_interps={self.turbine.turbine_type: self.turbine.tilt_interp}, turbine_type_map=np.full(shape, self.turbine.turbine_type), turbine_power_thrust_tables={self.turbine.turbine_type: v}, @@ -120,6 +122,7 @@ def power_curve( power_functions={self.turbine.turbine_type: self.turbine.power_function}, yaw_angles=np.zeros(shape), tilt_angles=np.full(shape, self.turbine.power_thrust_table["ref_tilt"]), + power_setpoints=np.full(shape, POWER_SETPOINT_DEFAULT), tilt_interps={self.turbine.turbine_type: self.turbine.tilt_interp}, turbine_type_map=np.full(shape, self.turbine.turbine_type), turbine_power_thrust_tables={ @@ -148,8 +151,10 @@ def thrust_coefficient_curve( ct_curve = { k: thrust_coefficient( velocities=wind_speeds.reshape(shape), + air_density=np.full(shape, v["ref_air_density"]), yaw_angles=np.zeros(shape), tilt_angles=np.full(shape, v["ref_tilt"]), + power_setpoints=np.full(shape, POWER_SETPOINT_DEFAULT), thrust_coefficient_functions={ self.turbine.turbine_type: self.turbine.thrust_coefficient_function }, @@ -163,8 +168,10 @@ def thrust_coefficient_curve( else: ct_curve = thrust_coefficient( velocities=wind_speeds.reshape(shape), + air_density=np.full(shape, self.turbine.power_thrust_table["ref_air_density"]), yaw_angles=np.zeros(shape), tilt_angles=np.full(shape, self.turbine.power_thrust_table["ref_tilt"]), + power_setpoints=np.full(shape, POWER_SETPOINT_DEFAULT), thrust_coefficient_functions={ self.turbine.turbine_type: self.turbine.thrust_coefficient_function }, diff --git a/floris/tools/uncertainty_interface.py b/floris/uncertain_floris_model.py similarity index 83% rename from floris/tools/uncertainty_interface.py rename to floris/uncertain_floris_model.py index f2be5c02c..b91b482a3 100644 --- a/floris/tools/uncertainty_interface.py +++ b/floris/uncertain_floris_model.py @@ -4,21 +4,22 @@ import numpy as np +from floris import FlorisModel from floris.logging_manager import LoggingManager -from floris.tools import FlorisInterface -from floris.tools.wind_data import WindDataBase from floris.type_dec import ( floris_array_converter, NDArrayBool, NDArrayFloat, ) +from floris.utilities import wrap_360 +from floris.wind_data import WindDataBase -class UncertaintyInterface(LoggingManager): +class UncertainFlorisModel(LoggingManager): """ An interface for handling uncertainty in wind farm simulations. - This class contains a FlorisInterface object and adds functionality to handle + This class contains a FlorisModel object and adds functionality to handle uncertainty in wind direction. Args: @@ -28,7 +29,7 @@ class UncertaintyInterface(LoggingManager): - **farm**: See `floris.simulation.farm.Farm` for more details. - **turbine**: See `floris.simulation.turbine.Turbine` for more details. - **wake**: See `floris.simulation.wake.WakeManager` for more details. - - **logging**: See `floris.simulation.floris.Floris` for more details. + - **logging**: See `floris.core.Core` for more details. wd_resolution (float, optional): The resolution of wind direction, in degrees. Defaults to 1.0. ws_resolution (float, optional): The resolution of wind speed, in m/s. Defaults to 1.0. @@ -55,7 +56,7 @@ def __init__( verbose=False, ): """ - Instantiate the UncertaintyInterface. + Instantiate the UncertainFlorisModel. Args: configuration (:py:obj:`dict`): The Floris configuration dictionary or YAML file. @@ -64,7 +65,7 @@ def __init__( - **farm**: See `floris.simulation.farm.Farm` for more details. - **turbine**: See `floris.simulation.turbine.Turbine` for more details. - **wake**: See `floris.simulation.wake.WakeManager` for more details. - - **logging**: See `floris.simulation.floris.Floris` for more details. + - **logging**: See `floris.simulation.core.Core` for more details. wd_resolution (float, optional): The resolution of wind direction for generating gaussian blends, in degrees. Defaults to 1.0. ws_resolution (float, optional): The resolution of wind speed, in m/s. Defaults to 1.0. @@ -98,14 +99,14 @@ def __init__( # Get the weights self.weights = self._get_weights(self.wd_std, self.wd_sample_points) - # Instantiate the un-expanded FlorisInterface - self.fi_unexpanded = FlorisInterface(configuration) + # Instantiate the un-expanded FlorisModel + self.fmodel_unexpanded = FlorisModel(configuration) # Call set at this point with no arguments so ready to run self.set() - # Instantiate the expanded FlorisInterface - # self.floris_interface = FlorisInterface(configuration) + # Instantiate the expanded FlorisModel + # self.core_interface = FlorisModel(configuration) def set( @@ -113,7 +114,7 @@ def set( **kwargs, ): """ - Set the wind farm conditions in the UncertaintyInterface. + Set the wind farm conditions in the UncertainFlorisModel. See FlorisInterace.set() for details of the contents of kwargs. @@ -121,7 +122,7 @@ def set( **kwargs: The wind farm conditions to set. """ # Call the nominal set function - self.fi_unexpanded.set( + self.fmodel_unexpanded.set( **kwargs ) @@ -138,13 +139,13 @@ def _set_uncertain( # Grab the unexpanded values of all arrays # These original dimensions are what is returned - self.wind_directions_unexpanded = self.fi_unexpanded.floris.flow_field.wind_directions - self.wind_speeds_unexpanded = self.fi_unexpanded.floris.flow_field.wind_speeds + self.wind_directions_unexpanded = self.fmodel_unexpanded.core.flow_field.wind_directions + self.wind_speeds_unexpanded = self.fmodel_unexpanded.core.flow_field.wind_speeds self.turbulence_intensities_unexpanded = ( - self.fi_unexpanded.floris.flow_field.turbulence_intensities + self.fmodel_unexpanded.core.flow_field.turbulence_intensities ) - self.yaw_angles_unexpanded = self.fi_unexpanded.floris.farm.yaw_angles - self.power_setpoints_unexpanded = self.fi_unexpanded.floris.farm.power_setpoints + self.yaw_angles_unexpanded = self.fmodel_unexpanded.core.farm.yaw_angles + self.power_setpoints_unexpanded = self.fmodel_unexpanded.core.farm.power_setpoints self.n_unexpanded = len(self.wind_directions_unexpanded) # Combine into the complete unexpanded_inputs @@ -186,44 +187,44 @@ def _set_uncertain( print(f"Expanded num rows: {self.n_expanded}") print(f"Unique num rows: {self.n_unique}") - # Initiate the expanded FlorisInterface - self.fi_expanded = self.fi_unexpanded.copy() + # Initiate the expanded FlorisModel + self.fmodel_expanded = self.fmodel_unexpanded.copy() # Now set the underlying wd/ws/ti/yaw/setpoint to check only the unique conditions - self.fi_expanded.set( + self.fmodel_expanded.set( wind_directions=self.unique_inputs[:, 0], wind_speeds=self.unique_inputs[:, 1], turbulence_intensities=self.unique_inputs[:, 2], - yaw_angles=self.unique_inputs[:, 3 : 3 + self.fi_unexpanded.floris.farm.n_turbines], - power_setpoints=self.unique_inputs[:, 3 + self.fi_unexpanded.floris.farm.n_turbines:] + yaw_angles=self.unique_inputs[:, 3 : 3 + self.fmodel_unexpanded.core.farm.n_turbines], + power_setpoints=self.unique_inputs[:, 3 + self.fmodel_unexpanded.core.farm.n_turbines:] ) def run(self): """ - Run the simulation in the underlying FlorisInterface object. + Run the simulation in the underlying FlorisModel object. """ - self.fi_expanded.run() + self.fmodel_expanded.run() def run_no_wake(self): """ - Run the simulation in the underlying FlorisInterface object without wakes. + Run the simulation in the underlying FlorisModel object without wakes. """ - self.fi_expanded.run_no_wake() + self.fmodel_expanded.run_no_wake() def reset_operation(self): """ - Reset the operation of the underlying FlorisInterface object. + Reset the operation of the underlying FlorisModel object. """ - self.fi_unexpanded.set( + self.fmodel_unexpanded.set( wind_directions=self.wind_directions_unexpanded, wind_speeds=self.wind_speeds_unexpanded, turbulence_intensities=self.turbulence_intensities_unexpanded, ) - self.fi_unexpanded.reset_operation() + self.fmodel_unexpanded.reset_operation() - # Calling set_uncertain again to reset the expanded FlorisInterface + # Calling set_uncertain again to reset the expanded FlorisModel self._set_uncertain() def get_turbine_powers(self): @@ -233,32 +234,20 @@ def get_turbine_powers(self): the underlying turbine powers and applying a weighted sum to handle uncertainty. Returns: - NDArrayFloat: An array containing the powers at each turbine for each finde. + NDArrayFloat: An array containing the powers at each turbine for each findex. """ - # First call the underlying function - unique_turbine_powers = self.fi_expanded.get_turbine_powers() - - # Expand back to the expanded value - expanded_turbine_powers = unique_turbine_powers[self.map_to_expanded_inputs] - - # Reshape the weights array to make it compatible with broadcasting - weights_reshaped = self.weights[:, np.newaxis] - - # Reshape expanded_turbine_powers into blocks - blocks = np.reshape( - expanded_turbine_powers, - (self.n_unexpanded, self.n_sample_points, self.fi_unexpanded.floris.farm.n_turbines), - order="F", + # Pass to off-class function + result = map_turbine_powers_uncertain( + unique_turbine_powers=self.fmodel_expanded.get_turbine_powers(), + map_to_expanded_inputs=self.map_to_expanded_inputs, + weights=self.weights, + n_unexpanded=self.n_unexpanded, + n_sample_points=self.n_sample_points, + n_turbines=self.fmodel_unexpanded.core.farm.n_turbines ) - # Multiply each block by the corresponding weight - weighted_blocks = blocks * weights_reshaped - - # Sum the blocks along the second axis - result = np.sum(weighted_blocks, axis=1) - return result def get_farm_power( @@ -292,7 +281,7 @@ def get_farm_power( turbine_weights = np.ones( ( self.n_unexpanded, - self.fi_unexpanded.floris.farm.n_turbines, + self.fmodel_unexpanded.core.farm.n_turbines, ) ) elif len(np.shape(turbine_weights)) == 1: @@ -473,6 +462,25 @@ def get_farm_AEP_with_wind_data( no_wake=no_wake, ) + # def copy(self): + # """Create an independent copy of the current UncertainFlorisModel object""" + # return UncertainFlorisModel( + # self.fmodel_unexpanded.core.as_dict(), + # wd_resolution=self.wd_resolution, + # ws_resolution=self.ws_resolution, + # ti_resolution=self.ti_resolution, + # yaw_resolution=self.yaw_resolution, + # power_setpoint_resolution=self.power_setpoint_resolution, + # wd_std=self.wd_std, + # wd_sample_points=self.wd_sample_points, + # verbose=self.verbose, + # ) + + # @property + # def core(self): + # """Return core of underlying expanded FlorisModel object""" + # return self.fmodel_expanded.core + def _get_rounded_inputs( self, input_array, @@ -636,7 +644,7 @@ def layout_x(self): Returns: np.array: Wind turbine x-coordinate. """ - return self.floris_interface.floris.farm.layout_x + return self.core_interface.core.farm.layout_x @property def layout_y(self): @@ -646,4 +654,53 @@ def layout_y(self): Returns: np.array: Wind turbine y-coordinate. """ - return self.floris_interface.floris.farm.layout_y + return self.core_interface.core.farm.layout_y + +def map_turbine_powers_uncertain( + unique_turbine_powers, + map_to_expanded_inputs, + weights, + n_unexpanded, + n_sample_points, + n_turbines +): + """Calculates the power at each turbine in the wind farm based on uncertainty weights. + + This function calculates the power at each turbine in the wind farm, considering + the underlying turbine powers and applying a weighted sum to handle uncertainty. + + Args: + unique_turbine_powers (NDArrayFloat): An array of unique turbine powers from the + underlying FlorisModel + map_to_expanded_inputs (NDArrayFloat): An array of indices mapping the unique powers to + the expanded powers + weights (NDArrayFloat): An array of weights for each wind direction sample point + n_unexpanded (int): The number of unexpanded conditions + n_sample_points (int): The number of wind direction sample points + n_turbines (int): The number of turbines in the wind farm + + Returns: + NDArrayFloat: An array containing the powers at each turbine for each findex. + + """ + + # Expand back to the expanded value + expanded_turbine_powers = unique_turbine_powers[map_to_expanded_inputs] + + # Reshape the weights array to make it compatible with broadcasting + weights_reshaped = weights[:, np.newaxis] + + # Reshape expanded_turbine_powers into blocks + blocks = np.reshape( + expanded_turbine_powers, + (n_unexpanded, n_sample_points, n_turbines), + order="F", + ) + + # Multiply each block by the corresponding weight + weighted_blocks = blocks * weights_reshaped + + # Sum the blocks along the second axis + result = np.sum(weighted_blocks, axis=1) + + return result diff --git a/floris/tools/wind_data.py b/floris/wind_data.py similarity index 99% rename from floris/tools/wind_data.py rename to floris/wind_data.py index 8f2dd78df..ab202e670 100644 --- a/floris/tools/wind_data.py +++ b/floris/wind_data.py @@ -28,7 +28,7 @@ def unpack(self): def unpack_for_reinitialize(self): """ - Return only the variables need for FlorisInterface.reinitialize + Return only the variables need for FlorisModel.reinitialize """ ( wind_directions_unpack, diff --git a/profiling/profiling.py b/profiling/profiling.py index 272f75730..a4fcc769d 100644 --- a/profiling/profiling.py +++ b/profiling/profiling.py @@ -9,12 +9,12 @@ from conftest import SampleInputs -from floris.simulation import Floris +from floris.core import Core def run_floris(): - floris = Floris.from_file("examples/example_input.yaml") - return floris + core = Core.from_file("examples/example_input.yaml") + return core if __name__=="__main__": # if len(sys.argv) > 1: @@ -30,24 +30,25 @@ def run_floris(): sample_inputs = SampleInputs() - sample_inputs.floris["wake"]["model_strings"]["velocity_model"] = "gauss" - sample_inputs.floris["wake"]["model_strings"]["deflection_model"] = "gauss" - sample_inputs.floris["wake"]["enable_secondary_steering"] = True - sample_inputs.floris["wake"]["enable_yaw_added_recovery"] = True - sample_inputs.floris["wake"]["enable_transverse_velocities"] = True + sample_inputs.core["wake"]["model_strings"]["velocity_model"] = "gauss" + sample_inputs.core["wake"]["model_strings"]["deflection_model"] = "gauss" + sample_inputs.core["wake"]["enable_secondary_steering"] = True + sample_inputs.core["wake"]["enable_yaw_added_recovery"] = True + sample_inputs.core["wake"]["enable_transverse_velocities"] = True N_TURBINES = 100 N_FINDEX = 72 * 25 # Size of a characteristic wind rose - TURBINE_DIAMETER = sample_inputs.floris["farm"]["turbine_type"][0]["rotor_diameter"] - sample_inputs.floris["farm"]["layout_x"] = [5 * TURBINE_DIAMETER * i for i in range(N_TURBINES)] - sample_inputs.floris["farm"]["layout_y"] = [0.0 for i in range(N_TURBINES)] + TURBINE_DIAMETER = sample_inputs.core["farm"]["turbine_type"][0]["rotor_diameter"] + sample_inputs.core["farm"]["layout_x"] = [5 * TURBINE_DIAMETER * i for i in range(N_TURBINES)] + sample_inputs.core["farm"]["layout_y"] = [0.0 for i in range(N_TURBINES)] - sample_inputs.floris["flow_field"]["wind_directions"] = N_FINDEX * [270.0] - sample_inputs.floris["flow_field"]["wind_speeds"] = N_FINDEX * [8.0] + sample_inputs.core["flow_field"]["wind_directions"] = N_FINDEX * [270.0] + sample_inputs.core["flow_field"]["wind_speeds"] = N_FINDEX * [8.0] + sample_inputs.core["flow_field"]["turbulence_intensities"] = N_FINDEX * [0.06] N = 1 for i in range(N): - floris = Floris.from_dict(copy.deepcopy(sample_inputs.floris)) - floris.initialize_domain() - floris.steady_state_atmospheric_condition() + core = Core.from_dict(copy.deepcopy(sample_inputs.core)) + core.initialize_domain() + core.steady_state_atmospheric_condition() diff --git a/profiling/quality_metrics.py b/profiling/quality_metrics.py index 27d7c5aca..142480550 100644 --- a/profiling/quality_metrics.py +++ b/profiling/quality_metrics.py @@ -6,7 +6,7 @@ import numpy as np from linux_perf import perf -from floris.simulation import Floris +from floris.core import Core wd_grid, ws_grid = np.meshgrid( @@ -33,9 +33,9 @@ def run_floris(input_dict): try: start = time.perf_counter() - floris = Floris.from_dict(copy.deepcopy(input_dict.floris)) - floris.initialize_domain() - floris.steady_state_atmospheric_condition() + core = Core.from_dict(copy.deepcopy(input_dict.core)) + core.initialize_domain() + core.steady_state_atmospheric_condition() end = time.perf_counter() return end - start except KeyError: @@ -57,43 +57,43 @@ def time_profile(input_dict): def test_time_jensen_jimenez(sample_inputs_fixture): - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = "jensen" - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = "jimenez" + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = "jensen" + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = "jimenez" return time_profile(sample_inputs_fixture) def test_time_gauss(sample_inputs_fixture): - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = "gauss" - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = "gauss" + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = "gauss" + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = "gauss" return time_profile(sample_inputs_fixture) def test_time_gch(sample_inputs_fixture): - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = "gauss" - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = "gauss" - sample_inputs_fixture.floris["wake"]["enable_transverse_velocities"] = True - sample_inputs_fixture.floris["wake"]["enable_secondary_steering"] = True - sample_inputs_fixture.floris["wake"]["enable_yaw_added_recovery"] = True + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = "gauss" + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = "gauss" + sample_inputs_fixture.core["wake"]["enable_transverse_velocities"] = True + sample_inputs_fixture.core["wake"]["enable_secondary_steering"] = True + sample_inputs_fixture.core["wake"]["enable_yaw_added_recovery"] = True return time_profile(sample_inputs_fixture) def test_time_cumulative(sample_inputs_fixture): - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = "cc" - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = "gauss" + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = "cc" + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = "gauss" return time_profile(sample_inputs_fixture) def memory_profile(input_dict): # Run once to initialize Python and memory - floris = Floris.from_dict(copy.deepcopy(input_dict.floris)) - floris.initialize_domain() - floris.steady_state_atmospheric_condition() + core = Core.from_dict(copy.deepcopy(input_dict.core)) + core.initialize_domain() + core.steady_state_atmospheric_condition() with perf(): for i in range(N_ITERATIONS): - floris = Floris.from_dict(copy.deepcopy(input_dict.floris)) - floris.initialize_domain() - floris.steady_state_atmospheric_condition() + core = Core.from_dict(copy.deepcopy(input_dict.core)) + core.initialize_domain() + core.steady_state_atmospheric_condition() print( "Size of one data array: " @@ -102,8 +102,8 @@ def memory_profile(input_dict): def test_mem_jensen_jimenez(sample_inputs_fixture): - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = "jensen" - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = "jimenez" + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = "jensen" + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = "jimenez" memory_profile(sample_inputs_fixture) @@ -113,11 +113,11 @@ def test_mem_jensen_jimenez(sample_inputs_fixture): from conftest import SampleInputs sample_inputs = SampleInputs() - sample_inputs.floris["farm"]["layout_x"] = X_COORDS - sample_inputs.floris["farm"]["layout_y"] = Y_COORDS - sample_inputs.floris["flow_field"]["wind_directions"] = WIND_DIRECTIONS - sample_inputs.floris["flow_field"]["wind_speeds"] = WIND_SPEEDS - sample_inputs.floris["flow_field"]["turbulence_intensities"] = TURBULENCE_INTENSITIES + sample_inputs.core["farm"]["layout_x"] = X_COORDS + sample_inputs.core["farm"]["layout_y"] = Y_COORDS + sample_inputs.core["flow_field"]["wind_directions"] = WIND_DIRECTIONS + sample_inputs.core["flow_field"]["wind_speeds"] = WIND_SPEEDS + sample_inputs.core["flow_field"]["turbulence_intensities"] = TURBULENCE_INTENSITIES print() print("### Memory profiling") diff --git a/profiling/serial_vectorize.py b/profiling/serial_vectorize.py index 7c6c33207..fb66a1652 100644 --- a/profiling/serial_vectorize.py +++ b/profiling/serial_vectorize.py @@ -11,7 +11,7 @@ def time_vec(input_dict): start = time.time() - floris = Floris(input_dict=input_dict.floris) + floris = Floris(input_dict=input_dict.core) end = time.time() init_time = end - start @@ -29,11 +29,11 @@ def time_serial(input_dict, wd, ws): for i, (d, s) in enumerate(zip(wd, ws)): - input_dict.floris["flow_field"]["wind_directions"] = [d] - input_dict.floris["flow_field"]["wind_speeds"] = [s] + input_dict.core["flow_field"]["wind_directions"] = [d] + input_dict.core["flow_field"]["wind_speeds"] = [s] start = time.time() - floris = Floris(input_dict=input_dict.floris) + floris = Floris(input_dict=input_dict.core) end = time.time() init_times[i] = end - start @@ -48,9 +48,9 @@ def time_serial(input_dict, wd, ws): plt.figure() sample_inputs = SampleInputs() - sample_inputs.floris["flow_field"]["wind_directions"] = [270.0] - sample_inputs.floris["flow_field"]["wind_speeds"] = [8.0] - TURBINE_DIAMETER = sample_inputs.floris["turbine"]["rotor_diameter"] + sample_inputs.core["flow_field"]["wind_directions"] = [270.0] + sample_inputs.core["flow_field"]["wind_speeds"] = [8.0] + TURBINE_DIAMETER = sample_inputs.core["turbine"]["rotor_diameter"] N = 5 simulation_size = np.arange(N) @@ -61,8 +61,8 @@ def time_serial(input_dict, wd, ws): vectorize_scaling_inputs = copy.deepcopy(sample_inputs) factor = (i+1) * 50 - vectorize_scaling_inputs.floris["flow_field"]["wind_directions"] = [270.0] - vectorize_scaling_inputs.floris["flow_field"]["wind_speeds"] = factor * [8.0] + vectorize_scaling_inputs.core["flow_field"]["wind_directions"] = [270.0] + vectorize_scaling_inputs.core["flow_field"]["wind_speeds"] = factor * [8.0] vectorize_init[i], vectorize_calc[i] = time_vec(copy.deepcopy(vectorize_scaling_inputs)) print("vectorize", i, vectorize_calc[i]) @@ -90,16 +90,16 @@ def time_serial(input_dict, wd, ws): # More than 1 turbine n_turbines = 10 - sample_inputs.floris["farm"]["layout_x"] = [5 * TURBINE_DIAMETER * j for j in range(n_turbines)] - sample_inputs.floris["farm"]["layout_y"] = n_turbines * [0.0] + sample_inputs.core["farm"]["layout_x"] = [5 * TURBINE_DIAMETER * j for j in range(n_turbines)] + sample_inputs.core["farm"]["layout_y"] = n_turbines * [0.0] vectorize_init, vectorize_calc = np.zeros(N), np.zeros(N) for i in range(N): vectorize_scaling_inputs = copy.deepcopy(sample_inputs) factor = (i+1) * 50 - vectorize_scaling_inputs.floris["flow_field"]["wind_speeds"] = factor * [8.0] - vectorize_scaling_inputs.floris["flow_field"]["wind_directions"] = [270.0] + vectorize_scaling_inputs.core["flow_field"]["wind_speeds"] = factor * [8.0] + vectorize_scaling_inputs.core["flow_field"]["wind_directions"] = [270.0] vectorize_init[i], vectorize_calc[i] = time_vec(copy.deepcopy(vectorize_scaling_inputs)) print("vectorize", i, vectorize_calc[i]) diff --git a/profiling/timing.py b/profiling/timing.py index 3083403da..b03cd23db 100644 --- a/profiling/timing.py +++ b/profiling/timing.py @@ -11,19 +11,19 @@ def time_profile(input_dict): - floris = Floris.from_dict(input_dict.floris) + floris = Floris.from_dict(input_dict.core) start = time.perf_counter() floris.steady_state_atmospheric_condition() end = time.perf_counter() return end - start def internal_probe(input_dict): - floris = Floris(input_dict=input_dict.floris) + floris = Floris(input_dict=input_dict.core) internal_quantity = floris.steady_state_atmospheric_condition() return internal_quantity def memory_profile(input_dict): - floris = Floris(input_dict=input_dict.floris) + floris = Floris(input_dict=input_dict.core) mem_usage = memory_profiler.memory_usage( (floris.steady_state_atmospheric_condition, (), {}), max_usage=True @@ -32,10 +32,10 @@ def memory_profile(input_dict): if __name__=="__main__": sample_inputs = SampleInputs() - TURBINE_DIAMETER = sample_inputs.floris["turbine"]["rotor_diameter"] + TURBINE_DIAMETER = sample_inputs.core["turbine"]["rotor_diameter"] # Use Gauss models - sample_inputs.floris["wake"]["model_strings"] = { + sample_inputs.core["wake"]["model_strings"] = { "velocity_model": "gauss", "deflection_model": "gauss", "combination_model": None, @@ -51,8 +51,8 @@ def memory_profile(input_dict): # wind_direction_scaling_inputs = copy.deepcopy(sample_inputs) # for i in range(N): # factor = (i+1) * 50 - # wind_direction_scaling_inputs.floris["flow_field"]["wind_directions"] = factor * [270.0] - # wind_direction_scaling_inputs.floris["flow_field"]["wind_speeds"] = [8.0] + # wind_direction_scaling_inputs.core["flow_field"]["wind_directions"] = factor * [270.0] + # wind_direction_scaling_inputs.core["flow_field"]["wind_speeds"] = [8.0] # wd_calc_time[i] = time_profile(copy.deepcopy(wind_direction_scaling_inputs)) # wd_size[i] = factor @@ -64,8 +64,8 @@ def memory_profile(input_dict): # wind_speed_scaling_inputs = copy.deepcopy(sample_inputs) # for i in range(N): # factor = (i+1) * 50 - # wind_speed_scaling_inputs.floris["flow_field"]["wind_directions"] = [270.0] - # wind_speed_scaling_inputs.floris["flow_field"]["wind_speeds"] = factor * [8.0] + # wind_speed_scaling_inputs.core["flow_field"]["wind_directions"] = [270.0] + # wind_speed_scaling_inputs.core["flow_field"]["wind_speeds"] = factor * [8.0] # ws_calc_time[i] = time_profile(copy.deepcopy(wind_speed_scaling_inputs)) # ws_size[i] = factor @@ -77,11 +77,11 @@ def memory_profile(input_dict): # turbine_scaling_inputs = copy.deepcopy(sample_inputs) # for i in range(N): # factor = (i+1) * 3 - # turbine_scaling_inputs.floris["farm"]["layout_x"] = [ + # turbine_scaling_inputs.core["farm"]["layout_x"] = [ # 5 * TURBINE_DIAMETER * j # for j in range(factor) # ] - # turbine_scaling_inputs.floris["farm"]["layout_y"] = factor * [0.0] + # turbine_scaling_inputs.core["farm"]["layout_y"] = factor * [0.0] # turb_calc_time[i] = time_profile(copy.deepcopy(turbine_scaling_inputs)) # turb_size[i] = factor @@ -92,14 +92,14 @@ def memory_profile(input_dict): # scaling_inputs = copy.deepcopy(sample_inputs) # for i in range(5): # factor = (i+1) * 2 - # scaling_inputs.floris["farm"]["layout_x"] = [ + # scaling_inputs.core["farm"]["layout_x"] = [ # 5 * TURBINE_DIAMETER * j # for j in range(factor) # ] - # scaling_inputs.floris["farm"]["layout_y"] = factor * [0.0] + # scaling_inputs.core["farm"]["layout_y"] = factor * [0.0] # factor = (i+1) * 20 - # scaling_inputs.floris["flow_field"]["wind_directions"] = factor * [270.0] - # scaling_inputs.floris["flow_field"]["wind_speeds"] = factor * [8.0] + # scaling_inputs.core["flow_field"]["wind_directions"] = factor * [270.0] + # scaling_inputs.core["flow_field"]["wind_speeds"] = factor * [8.0] # internal_quantity[i] = time_profile(scaling_inputs) # print("n turbine", i, internal_quantity[i]) @@ -118,7 +118,7 @@ def memory_profile(input_dict): n_wind_directions = 1 n_wind_speeds = 1 n_turbines = 3 - sample_inputs.floris["wake"]["model_strings"] = { + sample_inputs.core["wake"]["model_strings"] = { # "velocity_model": "jensen", # "deflection_model": "jimenez", "velocity_model": "cc", @@ -126,18 +126,18 @@ def memory_profile(input_dict): "combination_model": None, "turbulence_model": None, } - sample_inputs.floris["solver"] = { + sample_inputs.core["solver"] = { "type": "turbine_grid", "turbine_grid_points": 5 } - # sample_inputs.floris["wake"]["enable_transverse_velocities"] = False - # sample_inputs.floris["wake"]["enable_secondary_steering"] = False - # sample_inputs.floris["wake"]["enable_yaw_added_recovery"] = False - sample_inputs.floris["flow_field"]["wind_directions"] = n_wind_directions * [270.0] - sample_inputs.floris["flow_field"]["wind_speeds"] = n_wind_speeds * [8.0] - sample_inputs.floris["farm"]["layout_x"] = [5 * TURBINE_DIAMETER * j for j in range(n_turbines)] - sample_inputs.floris["farm"]["layout_y"] = n_turbines * [0.0] + # sample_inputs.core["wake"]["enable_transverse_velocities"] = False + # sample_inputs.core["wake"]["enable_secondary_steering"] = False + # sample_inputs.core["wake"]["enable_yaw_added_recovery"] = False + sample_inputs.core["flow_field"]["wind_directions"] = n_wind_directions * [270.0] + sample_inputs.core["flow_field"]["wind_speeds"] = n_wind_speeds * [8.0] + sample_inputs.core["farm"]["layout_x"] = [5 * TURBINE_DIAMETER * j for j in range(n_turbines)] + sample_inputs.core["farm"]["layout_y"] = n_turbines * [0.0] N = 1 times = np.zeros(N) @@ -158,8 +158,8 @@ def memory_profile(input_dict): # wind_direction_scaling_inputs = copy.deepcopy(sample_inputs) # for i in range(N): # factor = (i+1) * 50 - # wind_direction_scaling_inputs.floris["farm"]["wind_directions"] = factor * [270.0] - # wind_direction_scaling_inputs.floris["farm"]["wind_speeds"] = [8.0] + # wind_direction_scaling_inputs.core["farm"]["wind_directions"] = factor * [270.0] + # wind_direction_scaling_inputs.core["farm"]["wind_speeds"] = [8.0] # wd_space[i] = memory_profile(wind_direction_scaling_inputs) # print("wind direction", i, wd_space[i]) @@ -169,8 +169,8 @@ def memory_profile(input_dict): # wind_speed_scaling_inputs = copy.deepcopy(sample_inputs) # for i in range(N): # factor = (i+1) * 50 - # wind_speed_scaling_inputs.floris["farm"]["wind_directions"] = [270.0] - # wind_speed_scaling_inputs.floris["farm"]["wind_speeds"] = factor * [8.0] + # wind_speed_scaling_inputs.core["farm"]["wind_directions"] = [270.0] + # wind_speed_scaling_inputs.core["farm"]["wind_speeds"] = factor * [8.0] # ws_space[i] = memory_profile(wind_speed_scaling_inputs) # print("wind speed", i, ws_space[i]) @@ -180,11 +180,11 @@ def memory_profile(input_dict): # turbine_scaling_inputs = copy.deepcopy(sample_inputs) # for i in range(N): # factor = (i+1) * 50 - # turbine_scaling_inputs.floris["farm"]["layout_x"] = [ + # turbine_scaling_inputs.core["farm"]["layout_x"] = [ # 5 * TURBINE_DIAMETER * j # for j in range(factor) # ] - # turbine_scaling_inputs.floris["farm"]["layout_y"] = factor * [0.0] + # turbine_scaling_inputs.core["farm"]["layout_y"] = factor * [0.0] # turb_space[i] = memory_profile(turbine_scaling_inputs) # print("n turbine", turb_space[i]) diff --git a/pyproject.toml b/pyproject.toml index 5610ba9f3..330c5a2d8 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -116,18 +116,18 @@ dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$" [tool.ruff.per-file-ignores] # F841 unused-variable: ignore since this file uses numexpr and many variables look unused -"floris/simulation/wake_deflection/jimenez.py" = ["F841"] -"floris/simulation/wake_turbulence/crespo_hernandez.py" = ["F841"] -"floris/simulation/wake_deflection/gauss.py" = ["F841"] -"floris/simulation/wake_velocity/jensen.py" = ["F841"] -"floris/simulation/wake_velocity/gauss.py" = ["F841"] -"floris/simulation/wake_velocity/empirical_gauss.py" = ["F841"] +"floris/core/wake_deflection/jimenez.py" = ["F841"] +"floris/core/wake_turbulence/crespo_hernandez.py" = ["F841"] +"floris/core/wake_deflection/gauss.py" = ["F841"] +"floris/core/wake_velocity/jensen.py" = ["F841"] +"floris/core/wake_velocity/gauss.py" = ["F841"] +"floris/core/wake_velocity/empirical_gauss.py" = ["F841"] # Ignore `F401` (import violations) in all `__init__.py` files, and in `path/to/file.py`. "__init__.py" = ["F401"] # I001 unsorted-imports: ignore because the import order is meaningful to navigate # import dependencies -"floris/simulation/__init__.py" = ["I001"] +"floris/core/__init__.py" = ["I001"] [tool.ruff.isort] combine-as-imports = true diff --git a/setup.py b/setup.py index a50eb738e..54da3219c 100644 --- a/setup.py +++ b/setup.py @@ -67,7 +67,7 @@ url=URL, packages=find_packages(exclude=["tests", "*.tests", "*.tests.*", "tests.*"]), package_data={ - 'floris': ['turbine_library/*.yaml', 'simulation/wake_velocity/turbopark_lookup_table.mat'] + 'floris': ['turbine_library/*.yaml', 'core/wake_velocity/turbopark_lookup_table.mat'] }, install_requires=REQUIRED, extras_require=EXTRAS, diff --git a/tests/base_unit_test.py b/tests/base_unit_test.py index 89a608041..fadae3523 100644 --- a/tests/base_unit_test.py +++ b/tests/base_unit_test.py @@ -3,7 +3,7 @@ from attr import define, field from attrs.exceptions import FrozenAttributeError -from floris.simulation import BaseClass, BaseModel +from floris.core import BaseClass, BaseModel @define diff --git a/tests/conftest.py b/tests/conftest.py index a8dd8fabb..70e1d2ca9 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -6,8 +6,8 @@ import numpy as np import pytest -from floris.simulation import ( - Floris, +from floris.core import ( + Core, FlowField, FlowFieldGrid, PointsGrid, @@ -191,7 +191,7 @@ def points_grid_fixture(sample_inputs_fixture) -> PointsGrid: @pytest.fixture def floris_fixture(): sample_inputs = SampleInputs() - return Floris(sample_inputs.floris) + return Core(sample_inputs.core) @pytest.fixture def sample_inputs_fixture(): @@ -510,7 +510,7 @@ def __init__(self): "enable_transverse_velocities": False, } - self.floris = { + self.core = { "farm": self.farm, "flow_field": self.flow_field, "wake": self.wake, diff --git a/tests/floris_unit_test.py b/tests/core_unit_test.py similarity index 58% rename from tests/floris_unit_test.py rename to tests/core_unit_test.py index ef7d140e5..5e9108354 100644 --- a/tests/floris_unit_test.py +++ b/tests/core_unit_test.py @@ -3,9 +3,9 @@ import yaml -from floris.simulation import ( +from floris.core import ( + Core, Farm, - Floris, FlowField, TurbineGrid, WakeModelManager, @@ -18,29 +18,29 @@ def test_read_yaml(): - fi = Floris.from_file(YAML_INPUT) - assert isinstance(fi, Floris) + fmodel = Core.from_file(YAML_INPUT) + assert isinstance(fmodel, Core) def test_read_dict(): - fi = Floris.from_dict(DICT_INPUT) - assert isinstance(fi, Floris) + fmodel = Core.from_dict(DICT_INPUT) + assert isinstance(fmodel, Core) def test_init(): - fi = Floris.from_dict(DICT_INPUT) - assert isinstance(fi.farm, Farm) - assert isinstance(fi.wake, WakeModelManager) - assert isinstance(fi.flow_field, FlowField) + fmodel = Core.from_dict(DICT_INPUT) + assert isinstance(fmodel.farm, Farm) + assert isinstance(fmodel.wake, WakeModelManager) + assert isinstance(fmodel.flow_field, FlowField) def test_asdict(turbine_grid_fixture: TurbineGrid): - floris = Floris.from_dict(DICT_INPUT) + floris = Core.from_dict(DICT_INPUT) floris.flow_field.initialize_velocity_field(turbine_grid_fixture) dict1 = floris.as_dict() - new_floris = Floris.from_dict(dict1) + new_floris = Core.from_dict(dict1) new_floris.flow_field.initialize_velocity_field(turbine_grid_fixture) dict2 = new_floris.as_dict() diff --git a/tests/farm_unit_test.py b/tests/farm_unit_test.py index 767ba3c0b..38d2b91a7 100644 --- a/tests/farm_unit_test.py +++ b/tests/farm_unit_test.py @@ -5,7 +5,7 @@ import numpy as np import pytest -from floris.simulation import Farm +from floris.core import Farm from floris.utilities import load_yaml from tests.conftest import ( N_FINDEX, diff --git a/tests/floris_interface_integration_test.py b/tests/floris_model_integration_test.py similarity index 55% rename from tests/floris_interface_integration_test.py rename to tests/floris_model_integration_test.py index 0696bea3c..397cbef9d 100644 --- a/tests/floris_interface_integration_test.py +++ b/tests/floris_model_integration_test.py @@ -4,8 +4,8 @@ import pytest import yaml -from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT -from floris.tools.floris_interface import FlorisInterface +from floris import FlorisModel +from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT TEST_DATA = Path(__file__).resolve().parent / "data" @@ -13,33 +13,33 @@ def test_read_yaml(): - fi = FlorisInterface(configuration=YAML_INPUT) - assert isinstance(fi, FlorisInterface) + fmodel = FlorisModel(configuration=YAML_INPUT) + assert isinstance(fmodel, FlorisModel) def test_assign_setpoints(): - fi = FlorisInterface(configuration=YAML_INPUT) - fi.set(layout_x=[0, 0], layout_y=[0, 1000]) + fmodel = FlorisModel(configuration=YAML_INPUT) + fmodel.set(layout_x=[0, 0], layout_y=[0, 1000]) # Test setting yaw angles via a list, integers, numpy array - fi.set(yaw_angles=[[20.0, 30.0]]) - fi.set(yaw_angles=[[20, 30]]) - fi.set(yaw_angles=np.array([[20.0, 30.0]])) + fmodel.set(yaw_angles=[[20.0, 30.0]]) + fmodel.set(yaw_angles=[[20, 30]]) + fmodel.set(yaw_angles=np.array([[20.0, 30.0]])) # Test setting power setpoints in various ways - fi.set(power_setpoints=[[1e6, 2e6]]) - fi.set(power_setpoints=np.array([[1e6, 2e6]])) + fmodel.set(power_setpoints=[[1e6, 2e6]]) + fmodel.set(power_setpoints=np.array([[1e6, 2e6]])) # Disable turbines - fi.set(disable_turbines=[[True, False]]) - fi.set(disable_turbines=np.array([[True, False]])) + fmodel.set(disable_turbines=[[True, False]]) + fmodel.set(disable_turbines=np.array([[True, False]])) # Combination - fi.set(yaw_angles=[[0, 30]], power_setpoints=np.array([[1e6, None]])) + fmodel.set(yaw_angles=[[0, 30]], power_setpoints=np.array([[1e6, None]])) # power_setpoints and disable_turbines (disable_turbines overrides power_setpoints) - fi.set(power_setpoints=[[1e6, 2e6]], disable_turbines=[[True, False]]) - assert np.allclose(fi.floris.farm.power_setpoints, np.array([[0.001, 2e6]])) + fmodel.set(power_setpoints=[[1e6, 2e6]], disable_turbines=[[True, False]]) + assert np.allclose(fmodel.core.farm.power_setpoints, np.array([[0.001, 2e6]])) def test_set_run(): """ @@ -51,129 +51,131 @@ def test_set_run(): # In FLORIS v3.2, running calculate_wake twice incorrectly set the yaw angles when the # first time has non-zero yaw settings but the second run had all-zero yaw settings. # The test below asserts that the yaw angles are correctly set in subsequent calls to run. - fi = FlorisInterface(configuration=YAML_INPUT) - yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.set(yaw_angles=yaw_angles) - fi.run() - assert fi.floris.farm.yaw_angles == yaw_angles + fmodel = FlorisModel(configuration=YAML_INPUT) + yaw_angles = 20 * np.ones((fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines)) + fmodel.set(yaw_angles=yaw_angles) + fmodel.run() + assert fmodel.core.farm.yaw_angles == yaw_angles - yaw_angles = np.zeros((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.set(yaw_angles=yaw_angles) - fi.run() - assert fi.floris.farm.yaw_angles == yaw_angles + yaw_angles = np.zeros((fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines)) + fmodel.set(yaw_angles=yaw_angles) + fmodel.run() + assert fmodel.core.farm.yaw_angles == yaw_angles # Verify making changes to the layout, wind speed, wind direction and # turbulence intensity both before and after running the calculation - fi.reset_operation() - fi.set( + fmodel.reset_operation() + fmodel.set( layout_x=[0, 0], layout_y=[0, 1000], wind_speeds=[8, 8], wind_directions=[270, 270], turbulence_intensities=[0.06, 0.06] ) - assert np.array_equal(fi.floris.farm.layout_x, np.array([0, 0])) - assert np.array_equal(fi.floris.farm.layout_y, np.array([0, 1000])) - assert np.array_equal(fi.floris.flow_field.wind_speeds, np.array([8, 8])) - assert np.array_equal(fi.floris.flow_field.wind_directions, np.array([270, 270])) + assert np.array_equal(fmodel.core.farm.layout_x, np.array([0, 0])) + assert np.array_equal(fmodel.core.farm.layout_y, np.array([0, 1000])) + assert np.array_equal(fmodel.core.flow_field.wind_speeds, np.array([8, 8])) + assert np.array_equal(fmodel.core.flow_field.wind_directions, np.array([270, 270])) # Double check that nothing has changed after running the calculation - fi.run() - assert np.array_equal(fi.floris.farm.layout_x, np.array([0, 0])) - assert np.array_equal(fi.floris.farm.layout_y, np.array([0, 1000])) - assert np.array_equal(fi.floris.flow_field.wind_speeds, np.array([8, 8])) - assert np.array_equal(fi.floris.flow_field.wind_directions, np.array([270, 270])) + fmodel.run() + assert np.array_equal(fmodel.core.farm.layout_x, np.array([0, 0])) + assert np.array_equal(fmodel.core.farm.layout_y, np.array([0, 1000])) + assert np.array_equal(fmodel.core.flow_field.wind_speeds, np.array([8, 8])) + assert np.array_equal(fmodel.core.flow_field.wind_directions, np.array([270, 270])) # Verify that changing wind shear doesn't change the other settings above - fi.set(wind_shear=0.1) - assert fi.floris.flow_field.wind_shear == 0.1 - assert np.array_equal(fi.floris.farm.layout_x, np.array([0, 0])) - assert np.array_equal(fi.floris.farm.layout_y, np.array([0, 1000])) - assert np.array_equal(fi.floris.flow_field.wind_speeds, np.array([8, 8])) - assert np.array_equal(fi.floris.flow_field.wind_directions, np.array([270, 270])) + fmodel.set(wind_shear=0.1) + assert fmodel.core.flow_field.wind_shear == 0.1 + assert np.array_equal(fmodel.core.farm.layout_x, np.array([0, 0])) + assert np.array_equal(fmodel.core.farm.layout_y, np.array([0, 1000])) + assert np.array_equal(fmodel.core.flow_field.wind_speeds, np.array([8, 8])) + assert np.array_equal(fmodel.core.flow_field.wind_directions, np.array([270, 270])) # Verify that operation set-points are retained after changing other settings - yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.set(yaw_angles=yaw_angles) - assert np.array_equal(fi.floris.farm.yaw_angles, yaw_angles) - fi.set() - assert np.array_equal(fi.floris.farm.yaw_angles, yaw_angles) - fi.set(wind_speeds=[10, 10]) - assert np.array_equal(fi.floris.farm.yaw_angles, yaw_angles) - power_setpoints = 1e6 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.set(power_setpoints=power_setpoints) - assert np.array_equal(fi.floris.farm.yaw_angles, yaw_angles) - assert np.array_equal(fi.floris.farm.power_setpoints, power_setpoints) + yaw_angles = 20 * np.ones((fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines)) + fmodel.set(yaw_angles=yaw_angles) + assert np.array_equal(fmodel.core.farm.yaw_angles, yaw_angles) + fmodel.set() + assert np.array_equal(fmodel.core.farm.yaw_angles, yaw_angles) + fmodel.set(wind_speeds=[10, 10]) + assert np.array_equal(fmodel.core.farm.yaw_angles, yaw_angles) + power_setpoints = 1e6 * np.ones((fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines)) + fmodel.set(power_setpoints=power_setpoints) + assert np.array_equal(fmodel.core.farm.yaw_angles, yaw_angles) + assert np.array_equal(fmodel.core.farm.power_setpoints, power_setpoints) # Test that setting power setpoints through the .set() function actually sets the # power setpoints in the floris object - fi.reset_operation() - power_setpoints = 1e6 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.set(power_setpoints=power_setpoints) - fi.run() - assert np.array_equal(fi.floris.farm.power_setpoints, power_setpoints) + fmodel.reset_operation() + power_setpoints = 1e6 * np.ones((fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines)) + fmodel.set(power_setpoints=power_setpoints) + fmodel.run() + assert np.array_equal(fmodel.core.farm.power_setpoints, power_setpoints) # Similar to above, any "None" set-points should be set to the default value power_setpoints = np.array([[1e6, None]]) - fi.set(layout_x=[0, 0], layout_y=[0, 1000], power_setpoints=power_setpoints) - fi.run() + fmodel.set(layout_x=[0, 0], layout_y=[0, 1000], power_setpoints=power_setpoints) + fmodel.run() assert np.array_equal( - fi.floris.farm.power_setpoints, + fmodel.core.farm.power_setpoints, np.array([[power_setpoints[0, 0], POWER_SETPOINT_DEFAULT]]) ) def test_reset_operation(): # Calling the reset function should reset the power setpoints to the default values - fi = FlorisInterface(configuration=YAML_INPUT) - yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - power_setpoints = 1e6 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.set(power_setpoints=power_setpoints, yaw_angles=yaw_angles) - fi.run() - fi.reset_operation() - assert fi.floris.farm.yaw_angles == np.zeros( - (fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines) + fmodel = FlorisModel(configuration=YAML_INPUT) + yaw_angles = 20 * np.ones((fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines)) + power_setpoints = 1e6 * np.ones((fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines)) + fmodel.set(power_setpoints=power_setpoints, yaw_angles=yaw_angles) + fmodel.run() + fmodel.reset_operation() + assert fmodel.core.farm.yaw_angles == np.zeros( + (fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines) ) - assert fi.floris.farm.power_setpoints == ( - POWER_SETPOINT_DEFAULT * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) + assert fmodel.core.farm.power_setpoints == ( + POWER_SETPOINT_DEFAULT * np.ones((fmodel.core.flow_field.n_findex, + fmodel.core.farm.n_turbines)) ) # Double check that running the calculate also doesn't change the operating set points - fi.run() - assert fi.floris.farm.yaw_angles == np.zeros( - (fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines) + fmodel.run() + assert fmodel.core.farm.yaw_angles == np.zeros( + (fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines) ) - assert fi.floris.farm.power_setpoints == ( - POWER_SETPOINT_DEFAULT * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) + assert fmodel.core.farm.power_setpoints == ( + POWER_SETPOINT_DEFAULT * np.ones((fmodel.core.flow_field.n_findex, + fmodel.core.farm.n_turbines)) ) def test_run_no_wake(): # In FLORIS v3.2, running calculate_no_wake twice incorrectly set the yaw angles when the first # time has non-zero yaw settings but the second run had all-zero yaw settings. The test below # asserts that the yaw angles are correctly set in subsequent calls to run_no_wake. - fi = FlorisInterface(configuration=YAML_INPUT) - yaw_angles = 20 * np.ones((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.set(yaw_angles=yaw_angles) - fi.run_no_wake() - assert fi.floris.farm.yaw_angles == yaw_angles + fmodel = FlorisModel(configuration=YAML_INPUT) + yaw_angles = 20 * np.ones((fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines)) + fmodel.set(yaw_angles=yaw_angles) + fmodel.run_no_wake() + assert fmodel.core.farm.yaw_angles == yaw_angles - yaw_angles = np.zeros((fi.floris.flow_field.n_findex, fi.floris.farm.n_turbines)) - fi.set(yaw_angles=yaw_angles) - fi.run_no_wake() - assert fi.floris.farm.yaw_angles == yaw_angles + yaw_angles = np.zeros((fmodel.core.flow_field.n_findex, fmodel.core.farm.n_turbines)) + fmodel.set(yaw_angles=yaw_angles) + fmodel.run_no_wake() + assert fmodel.core.farm.yaw_angles == yaw_angles # With no wake and three turbines in a line, the power for all turbines with zero yaw # should be the same - fi.reset_operation() - fi.set(layout_x=[0, 200, 4000], layout_y=[0, 0, 0]) - fi.run_no_wake() - power_no_wake = fi.get_turbine_powers() + fmodel.reset_operation() + fmodel.set(layout_x=[0, 200, 4000], layout_y=[0, 0, 0]) + fmodel.run_no_wake() + power_no_wake = fmodel.get_turbine_powers() assert len(np.unique(power_no_wake)) == 1 def test_get_turbine_powers(): # Get turbine powers should return n_findex x n_turbine powers # Apply the same wind speed and direction multiple times and confirm all equal - fi = FlorisInterface(configuration=YAML_INPUT) + fmodel = FlorisModel(configuration=YAML_INPUT) wind_speeds = np.array([8.0, 8.0, 8.0]) wind_directions = np.array([270.0, 270.0, 270.0]) @@ -184,7 +186,7 @@ def test_get_turbine_powers(): layout_y = np.array([0, 1000]) n_turbines = len(layout_x) - fi.set( + fmodel.set( wind_speeds=wind_speeds, wind_directions=wind_directions, turbulence_intensities=turbulence_intensities, @@ -192,16 +194,16 @@ def test_get_turbine_powers(): layout_y=layout_y, ) - fi.run() + fmodel.run() - turbine_powers = fi.get_turbine_powers() + turbine_powers = fmodel.get_turbine_powers() assert turbine_powers.shape[0] == n_findex assert turbine_powers.shape[1] == n_turbines assert turbine_powers[0, 0] == turbine_powers[1, 0] def test_get_farm_power(): - fi = FlorisInterface(configuration=YAML_INPUT) + fmodel = FlorisModel(configuration=YAML_INPUT) wind_speeds = np.array([8.0, 8.0, 8.0]) wind_directions = np.array([270.0, 270.0, 270.0]) @@ -212,7 +214,7 @@ def test_get_farm_power(): layout_y = np.array([0, 1000]) # n_turbines = len(layout_x) - fi.set( + fmodel.set( wind_speeds=wind_speeds, wind_directions=wind_directions, turbulence_intensities=turbulence_intensities, @@ -220,10 +222,10 @@ def test_get_farm_power(): layout_y=layout_y, ) - fi.run() + fmodel.run() - turbine_powers = fi.get_turbine_powers() - farm_powers = fi.get_farm_power() + turbine_powers = fmodel.get_turbine_powers() + farm_powers = fmodel.get_farm_power() assert farm_powers.shape[0] == n_findex @@ -234,7 +236,7 @@ def test_get_farm_power(): # Test using weights to disable the second turbine turbine_weights = np.array([1.0, 0.0]) - farm_powers = fi.get_farm_power(turbine_weights=turbine_weights) + farm_powers = fmodel.get_farm_power(turbine_weights=turbine_weights) # Assert farm power is now equal to the 0th turbine since 1st is # disabled @@ -245,28 +247,28 @@ def test_get_farm_power(): # findex values turbine_weights = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 0.0]]) - farm_powers = fi.get_farm_power(turbine_weights=turbine_weights) + farm_powers = fmodel.get_farm_power(turbine_weights=turbine_weights) turbine_powers[-1, 1] = 0 farm_power_from_turbine = turbine_powers.sum(axis=1) np.testing.assert_almost_equal(farm_power_from_turbine, farm_powers) def test_disable_turbines(): - fi = FlorisInterface(configuration=YAML_INPUT) + fmodel = FlorisModel(configuration=YAML_INPUT) # Set to mixed turbine model with open( str( - fi.floris.as_dict()["farm"]["turbine_library_path"] - / (fi.floris.as_dict()["farm"]["turbine_type"][0] + ".yaml") + fmodel.core.as_dict()["farm"]["turbine_library_path"] + / (fmodel.core.as_dict()["farm"]["turbine_type"][0] + ".yaml") ) ) as t: turbine_type = yaml.safe_load(t) turbine_type["power_thrust_model"] = "mixed" - fi.set(turbine_type=[turbine_type]) + fmodel.set(turbine_type=[turbine_type]) # Init to n-findex = 2, n_turbines = 3 - fi.set( + fmodel.set( wind_speeds=np.array([8.,8.,]), wind_directions=np.array([270.,270.]), turbulence_intensities=np.array([0.06,0.06]), @@ -276,71 +278,71 @@ def test_disable_turbines(): # Confirm that using a disable value with wrong n_findex raises error with pytest.raises(ValueError): - fi.set(disable_turbines=np.zeros((10, 3), dtype=bool)) - fi.run() + fmodel.set(disable_turbines=np.zeros((10, 3), dtype=bool)) + fmodel.run() # Confirm that using a disable value with wrong n_turbines raises error with pytest.raises(ValueError): - fi.set(disable_turbines=np.zeros((2, 10), dtype=bool)) - fi.run() + fmodel.set(disable_turbines=np.zeros((2, 10), dtype=bool)) + fmodel.run() # Confirm that if all turbines are disabled, power is near 0 for all turbines - fi.set(disable_turbines=np.ones((2, 3), dtype=bool)) - fi.run() - turbines_powers = fi.get_turbine_powers() + fmodel.set(disable_turbines=np.ones((2, 3), dtype=bool)) + fmodel.run() + turbines_powers = fmodel.get_turbine_powers() np.testing.assert_allclose(turbines_powers, 0, atol=0.1) # Confirm the same for run_no_wake - fi.run_no_wake() - turbines_powers = fi.get_turbine_powers() + fmodel.run_no_wake() + turbines_powers = fmodel.get_turbine_powers() np.testing.assert_allclose(turbines_powers, 0, atol=0.1) # Confirm that if all disabled values set to false, equivalent to running normally - fi.reset_operation() - fi.run() - turbines_powers_normal = fi.get_turbine_powers() - fi.set(disable_turbines=np.zeros((2, 3), dtype=bool)) - fi.run() - turbines_powers_false_disable = fi.get_turbine_powers() + fmodel.reset_operation() + fmodel.run() + turbines_powers_normal = fmodel.get_turbine_powers() + fmodel.set(disable_turbines=np.zeros((2, 3), dtype=bool)) + fmodel.run() + turbines_powers_false_disable = fmodel.get_turbine_powers() np.testing.assert_allclose(turbines_powers_normal,turbines_powers_false_disable,atol=0.1) # Confirm the same for run_no_wake - fi.run_no_wake() - turbines_powers_normal = fi.get_turbine_powers() - fi.set(disable_turbines=np.zeros((2, 3), dtype=bool)) - fi.run_no_wake() - turbines_powers_false_disable = fi.get_turbine_powers() + fmodel.run_no_wake() + turbines_powers_normal = fmodel.get_turbine_powers() + fmodel.set(disable_turbines=np.zeros((2, 3), dtype=bool)) + fmodel.run_no_wake() + turbines_powers_false_disable = fmodel.get_turbine_powers() np.testing.assert_allclose(turbines_powers_normal,turbines_powers_false_disable,atol=0.1) # Confirm the shutting off the middle turbine is like removing from the layout # In terms of impact on third turbine disable_turbines = np.zeros((2, 3), dtype=bool) disable_turbines[:,1] = [True, True] - fi.set(disable_turbines=disable_turbines) - fi.run() - power_with_middle_disabled = fi.get_turbine_powers() + fmodel.set(disable_turbines=disable_turbines) + fmodel.run() + power_with_middle_disabled = fmodel.get_turbine_powers() # Two turbine case to compare against above - fi_remove_middle = fi.copy() - fi_remove_middle.set(layout_x=[0,2000], layout_y=[0, 0]) - fi_remove_middle.run() - power_with_middle_removed = fi_remove_middle.get_turbine_powers() + fmodel_remove_middle = fmodel.copy() + fmodel_remove_middle.set(layout_x=[0,2000], layout_y=[0, 0]) + fmodel_remove_middle.run() + power_with_middle_removed = fmodel_remove_middle.get_turbine_powers() np.testing.assert_almost_equal(power_with_middle_disabled[0,2], power_with_middle_removed[0,1]) np.testing.assert_almost_equal(power_with_middle_disabled[1,2], power_with_middle_removed[1,1]) # Check that yaw angles are correctly set when turbines are disabled - fi.set( + fmodel.set( layout_x=[0, 1000, 2000], layout_y=[0, 0, 0], disable_turbines=disable_turbines, yaw_angles=np.ones((2, 3)) ) - fi.run() - assert (fi.floris.farm.yaw_angles == np.array([[1.0, 0.0, 1.0], [1.0, 0.0, 1.0]])).all() + fmodel.run() + assert (fmodel.core.farm.yaw_angles == np.array([[1.0, 0.0, 1.0], [1.0, 0.0, 1.0]])).all() def test_get_farm_aep(): - fi = FlorisInterface(configuration=YAML_INPUT) + fmodel = FlorisModel(configuration=YAML_INPUT) wind_speeds = np.array([8.0, 8.0, 8.0]) wind_directions = np.array([270.0, 270.0, 270.0]) @@ -351,7 +353,7 @@ def test_get_farm_aep(): layout_y = np.array([0, 1000]) # n_turbines = len(layout_x) - fi.set( + fmodel.set( wind_speeds=wind_speeds, wind_directions=wind_directions, turbulence_intensities=turbulence_intensities, @@ -359,15 +361,15 @@ def test_get_farm_aep(): layout_y=layout_y, ) - fi.run() + fmodel.run() - farm_powers = fi.get_farm_power() + farm_powers = fmodel.get_farm_power() # Start with uniform frequency freq = np.ones(n_findex) freq = freq / np.sum(freq) - farm_aep = fi.get_farm_AEP(freq=freq) + farm_aep = fmodel.get_farm_AEP(freq=freq) aep = np.sum(np.multiply(freq, farm_powers) * 365 * 24) @@ -375,7 +377,7 @@ def test_get_farm_aep(): np.testing.assert_allclose(farm_aep, aep) def test_get_farm_aep_with_conditions(): - fi = FlorisInterface(configuration=YAML_INPUT) + fmodel = FlorisModel(configuration=YAML_INPUT) wind_speeds = np.array([5.0, 8.0, 8.0, 8.0, 20.0]) wind_directions = np.array([270.0, 270.0, 270.0, 270.0, 270.0]) @@ -386,7 +388,7 @@ def test_get_farm_aep_with_conditions(): layout_y = np.array([0, 1000]) # n_turbines = len(layout_x) - fi.set( + fmodel.set( wind_speeds=wind_speeds, wind_directions=wind_directions, turbulence_intensities=turbulence_intensities, @@ -394,9 +396,9 @@ def test_get_farm_aep_with_conditions(): layout_y=layout_y, ) - fi.run() + fmodel.run() - farm_powers = fi.get_farm_power() + farm_powers = fmodel.get_farm_power() # Start with uniform frequency freq = np.ones(n_findex) @@ -404,7 +406,7 @@ def test_get_farm_aep_with_conditions(): # Get farm AEP with conditions on minimun and max wind speed # which exclude the first and last findex - farm_aep = fi.get_farm_AEP(freq=freq, cut_in_wind_speed=6.0, cut_out_wind_speed=15.0) + farm_aep = fmodel.get_farm_AEP(freq=freq, cut_in_wind_speed=6.0, cut_out_wind_speed=15.0) # In this case the aep should be computed assuming 0 power # for the 0th and last findex @@ -416,63 +418,62 @@ def test_get_farm_aep_with_conditions(): np.testing.assert_allclose(farm_aep, aep) #Confirm n_findex reset after the operation - assert n_findex == fi.floris.flow_field.n_findex + assert n_findex == fmodel.core.flow_field.n_findex def test_set_ti(): - fi = FlorisInterface(configuration=YAML_INPUT) + fmodel = FlorisModel(configuration=YAML_INPUT) # Set wind directions, wind speeds and turbulence intensities with n_findex = 3 - fi.set( + fmodel.set( wind_speeds=[8.0, 8.0, 8.0], wind_directions=[240.0, 250.0, 260.0], turbulence_intensities=[0.1, 0.1, 0.1], ) # Confirm can change turbulence intensities if not changing the length of the array - fi.set(turbulence_intensities=[0.12, 0.12, 0.12]) + fmodel.set(turbulence_intensities=[0.12, 0.12, 0.12]) # Confirm that changes to wind speeds and directions without changing turbulence intensities # raises an error with pytest.raises(ValueError): - fi.set( + fmodel.set( wind_speeds=[8.0, 8.0, 8.0, 8.0], wind_directions=[240.0, 250.0, 260.0, 270.0], ) - # Changing the length of TI alone is not allowed with pytest.raises(ValueError): - fi.set(turbulence_intensities=[0.12]) + fmodel.set(turbulence_intensities=[0.12]) # Test that applying a float however raises an error with pytest.raises(TypeError): - fi.set(turbulence_intensities=0.12) + fmodel.set(turbulence_intensities=0.12) def test_calculate_planes(): - fi = FlorisInterface(configuration=YAML_INPUT) + fmodel = FlorisModel(configuration=YAML_INPUT) # The calculate_plane functions should run directly with the inputs as given - fi.calculate_horizontal_plane(90.0) - fi.calculate_y_plane(0.0) - fi.calculate_cross_plane(500.0) + fmodel.calculate_horizontal_plane(90.0) + fmodel.calculate_y_plane(0.0) + fmodel.calculate_cross_plane(500.0) # They should also support setting new wind conditions, but they all have to set at once wind_speeds = [8.0, 8.0, 8.0] wind_directions = [270.0, 270.0, 270.0] turbulence_intensities = [0.1, 0.1, 0.1] - fi.calculate_horizontal_plane( + fmodel.calculate_horizontal_plane( 90.0, ws=[wind_speeds[0]], wd=[wind_directions[0]], ti=[turbulence_intensities[0]] ) - fi.calculate_y_plane( + fmodel.calculate_y_plane( 0.0, ws=[wind_speeds[0]], wd=[wind_directions[0]], ti=[turbulence_intensities[0]] ) - fi.calculate_cross_plane( + fmodel.calculate_cross_plane( 500.0, ws=[wind_speeds[0]], wd=[wind_directions[0]], @@ -481,14 +482,14 @@ def test_calculate_planes(): # If Floris is configured with multiple wind conditions prior to this, then all of the # components must be changed together. - fi.set( + fmodel.set( wind_speeds=wind_speeds, wind_directions=wind_directions, turbulence_intensities=turbulence_intensities ) with pytest.raises(ValueError): - fi.calculate_horizontal_plane(90.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) + fmodel.calculate_horizontal_plane(90.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) with pytest.raises(ValueError): - fi.calculate_y_plane(0.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) + fmodel.calculate_y_plane(0.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) with pytest.raises(ValueError): - fi.calculate_cross_plane(500.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) + fmodel.calculate_cross_plane(500.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) diff --git a/tests/flow_field_unit_test.py b/tests/flow_field_unit_test.py index 3c5001506..260c1f8df 100644 --- a/tests/flow_field_unit_test.py +++ b/tests/flow_field_unit_test.py @@ -2,7 +2,7 @@ import numpy as np import pytest -from floris.simulation import FlowField, TurbineGrid +from floris.core import FlowField, TurbineGrid from tests.conftest import N_FINDEX, N_TURBINES diff --git a/tests/layout_optimization_integration_test.py b/tests/layout_optimization_integration_test.py index 7e61311a4..dafd5e0d6 100644 --- a/tests/layout_optimization_integration_test.py +++ b/tests/layout_optimization_integration_test.py @@ -3,18 +3,18 @@ import numpy as np import pytest -from floris.tools import ( +from floris import ( + FlorisModel, TimeSeries, WindRose, ) -from floris.tools.floris_interface import FlorisInterface -from floris.tools.optimization.layout_optimization.layout_optimization_base import ( +from floris.optimization.layout_optimization.layout_optimization_base import ( LayoutOptimization, ) -from floris.tools.optimization.layout_optimization.layout_optimization_scipy import ( +from floris.optimization.layout_optimization.layout_optimization_scipy import ( LayoutOptimizationScipy, ) -from floris.tools.wind_data import WindDataBase +from floris.wind_data import WindDataBase TEST_DATA = Path(__file__).resolve().parent / "data" @@ -23,7 +23,7 @@ def test_base_class(): # Get a test fi - fi = FlorisInterface(configuration=YAML_INPUT) + fmodel = FlorisModel(configuration=YAML_INPUT) # Set up a sample boundary boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] @@ -33,23 +33,23 @@ def test_base_class(): freq = np.ones((5, 5)) freq = freq / freq.sum() with pytest.raises(ValueError): - LayoutOptimization(fi, boundaries, freq, 5) + LayoutOptimization(fmodel, boundaries, freq, 5) # Passing as a keyword freq to wind_data should also fail with pytest.raises(ValueError): - LayoutOptimization(fi=fi, boundaries=boundaries, wind_data=freq, min_dist=5,) + LayoutOptimization(fmodel=fmodel, boundaries=boundaries, wind_data=freq, min_dist=5,) time_series = TimeSeries( - wind_directions=fi.floris.flow_field.wind_directions, - wind_speeds=fi.floris.flow_field.wind_speeds, - turbulence_intensities=fi.floris.flow_field.turbulence_intensities, + wind_directions=fmodel.core.flow_field.wind_directions, + wind_speeds=fmodel.core.flow_field.wind_speeds, + turbulence_intensities=fmodel.core.flow_field.turbulence_intensities, ) wind_rose = time_series.to_wind_rose() # Passing wind_data objects in the 3rd position should not fail - LayoutOptimization(fi, boundaries, time_series, 5) - LayoutOptimization(fi, boundaries, wind_rose, 5) + LayoutOptimization(fmodel, boundaries, time_series, 5) + LayoutOptimization(fmodel, boundaries, wind_rose, 5) # Passing wind_data objects by keyword should not fail - LayoutOptimization(fi=fi, boundaries=boundaries, wind_data=time_series, min_dist=5) - LayoutOptimization(fi=fi, boundaries=boundaries, wind_data=wind_rose, min_dist=5) + LayoutOptimization(fmodel=fmodel, boundaries=boundaries, wind_data=time_series, min_dist=5) + LayoutOptimization(fmodel=fmodel, boundaries=boundaries, wind_data=wind_rose, min_dist=5) diff --git a/tests/layout_visualization_test.py b/tests/layout_visualization_test.py index f23340c56..055b15b1b 100644 --- a/tests/layout_visualization_test.py +++ b/tests/layout_visualization_test.py @@ -4,8 +4,8 @@ import matplotlib.pyplot as plt import numpy as np -import floris.tools.layout_visualization as layoutviz -from floris.tools.floris_interface import FlorisInterface +import floris.layout_visualization as layoutviz +from floris import FlorisModel TEST_DATA = Path(__file__).resolve().parent / "data" @@ -24,24 +24,24 @@ def test_get_wake_direction(): def test_plotting_functions(): - fi = FlorisInterface(configuration=YAML_INPUT) + fmodel = FlorisModel(configuration=YAML_INPUT) - ax = layoutviz.plot_turbine_points(fi=fi) + ax = layoutviz.plot_turbine_points(fmodel=fmodel) assert isinstance(ax, plt.Axes) - ax = layoutviz.plot_turbine_labels(fi=fi) + ax = layoutviz.plot_turbine_labels(fmodel=fmodel) assert isinstance(ax, plt.Axes) - ax = layoutviz.plot_turbine_rotors(fi=fi) + ax = layoutviz.plot_turbine_rotors(fmodel=fmodel) assert isinstance(ax, plt.Axes) - ax = layoutviz.plot_waking_directions(fi=fi) + ax = layoutviz.plot_waking_directions(fmodel=fmodel) assert isinstance(ax, plt.Axes) # Add additional turbines to test plot farm terrain - fi.set( + fmodel.set( layout_x=[0, 1000, 0, 1000, 3000], layout_y=[0, 0, 2000, 2000, 3000], ) - ax = layoutviz.plot_farm_terrain(fi=fi) + ax = layoutviz.plot_farm_terrain(fmodel=fmodel) assert isinstance(ax, plt.Axes) diff --git a/tests/parallel_computing_interface_integration_test.py b/tests/parallel_computing_interface_integration_test.py deleted file mode 100644 index 6b31297d5..000000000 --- a/tests/parallel_computing_interface_integration_test.py +++ /dev/null @@ -1,48 +0,0 @@ - -import copy - -import numpy as np - -from floris.tools import FlorisInterface, ParallelComputingInterface -from tests.conftest import ( - assert_results_arrays, -) - - -DEBUG = True -VELOCITY_MODEL = "gauss" -DEFLECTION_MODEL = "gauss" - - -def test_parallel_turbine_powers(sample_inputs_fixture): - """ - The parallel computing interface behaves like the floris interface, but distributes - calculations among available cores to speep up the necessary computations. This test compares - the individual turbine powers computed with the parallel interface to those computed with - the serial floris interface. The expected result is that the turbine powers should be - exactly the same. - """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - - fi_serial = FlorisInterface(sample_inputs_fixture.floris) - fi_parallel_input = copy.deepcopy(fi_serial) - fi_serial.run() - - serial_turbine_powers = fi_serial.get_turbine_powers() - - fi_parallel = ParallelComputingInterface( - fi=fi_parallel_input, - max_workers=2, - n_wind_condition_splits=2, - interface="concurrent", - print_timings=False, - ) - - parallel_turbine_powers = fi_parallel.get_turbine_powers() - - if DEBUG: - print(serial_turbine_powers) - print(parallel_turbine_powers) - - assert_results_arrays(parallel_turbine_powers, serial_turbine_powers) diff --git a/tests/parallel_floris_model_integration_test.py b/tests/parallel_floris_model_integration_test.py new file mode 100644 index 000000000..e5d603adf --- /dev/null +++ b/tests/parallel_floris_model_integration_test.py @@ -0,0 +1,137 @@ + +import copy + +import numpy as np + +from floris import ( + FlorisModel, + ParallelFlorisModel, + UncertainFlorisModel, +) +from tests.conftest import ( + assert_results_arrays, +) + + +DEBUG = False +VELOCITY_MODEL = "gauss" +DEFLECTION_MODEL = "gauss" + + +def test_parallel_turbine_powers(sample_inputs_fixture): + """ + The parallel computing interface behaves like the floris interface, but distributes + calculations among available cores to speep up the necessary computations. This test compares + the individual turbine powers computed with the parallel interface to those computed with + the serial floris interface. The expected result is that the turbine powers should be + exactly the same. + """ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + fmodel = FlorisModel(sample_inputs_fixture.core) + pfmodel_input = copy.deepcopy(fmodel) + fmodel.run() + + serial_turbine_powers = fmodel.get_turbine_powers() + + pfmodel = ParallelFlorisModel( + fmodel=pfmodel_input, + max_workers=2, + n_wind_condition_splits=2, + interface="concurrent", + print_timings=False, + ) + + parallel_turbine_powers = pfmodel.get_turbine_powers() + + if DEBUG: + print(serial_turbine_powers) + print(parallel_turbine_powers) + + assert_results_arrays(parallel_turbine_powers, serial_turbine_powers) + +def test_parallel_get_AEP(sample_inputs_fixture): + + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + freq=np.linspace(0, 1, 16)/8 + + fmodel = FlorisModel(sample_inputs_fixture.core) + pfmodel_input = copy.deepcopy(fmodel) + serial_farm_AEP = fmodel.get_farm_AEP(freq=freq) + + pfmodel = ParallelFlorisModel( + fmodel=pfmodel_input, + max_workers=2, + n_wind_condition_splits=2, + interface="concurrent", + print_timings=False, + ) + + parallel_farm_AEP = pfmodel.get_farm_AEP(freq=freq) + + assert np.allclose(parallel_farm_AEP, serial_farm_AEP) + +def test_parallel_uncertain_turbine_powers(sample_inputs_fixture): + """ + + """ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + ufmodel = UncertainFlorisModel( + sample_inputs_fixture.core, + wd_sample_points=[-3, 0, 3], + wd_std=3 + ) + pfmodel_input = copy.deepcopy(ufmodel) + ufmodel.run() + + serial_turbine_powers = ufmodel.get_turbine_powers() + + pfmodel = ParallelFlorisModel( + fmodel=pfmodel_input, + max_workers=2, + n_wind_condition_splits=2, + interface="multiprocessing", + print_timings=False, + ) + + parallel_turbine_powers = pfmodel.get_turbine_powers() + + if DEBUG: + print(serial_turbine_powers) + print(parallel_turbine_powers) + + assert_results_arrays(parallel_turbine_powers, serial_turbine_powers) + +def test_parallel_uncertain_get_AEP(sample_inputs_fixture): + """ + + """ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + freq=np.linspace(0, 1, 16)/8 + + ufmodel = UncertainFlorisModel( + sample_inputs_fixture.core, + wd_sample_points=[-3, 0, 3], + wd_std=3 + ) + pfmodel_input = copy.deepcopy(ufmodel) + serial_farm_AEP = ufmodel.get_farm_AEP(freq=freq) + + pfmodel = ParallelFlorisModel( + fmodel=pfmodel_input, + max_workers=2, + n_wind_condition_splits=2, + interface="multiprocessing", + print_timings=False, + ) + + parallel_farm_AEP = pfmodel.get_farm_AEP(freq=freq) + + assert np.allclose(parallel_farm_AEP, serial_farm_AEP) diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index 8eba6eac7..8d47d0ebd 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -1,10 +1,10 @@ import numpy as np -from floris.simulation import ( +from floris.core import ( average_velocity, axial_induction, - Floris, + Core, power, rotor_effective_velocity, thrust_coefficient, @@ -189,10 +189,10 @@ def test_regression_tandem(sample_inputs_fixture): """ Tandem turbines """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -302,25 +302,25 @@ def test_regression_rotation(sample_inputs_fixture): """ TURBINE_DIAMETER = 126.0 - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["farm"]["layout_x"] = [ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["farm"]["layout_x"] = [ 0.0, 0.0, 5 * TURBINE_DIAMETER, 5 * TURBINE_DIAMETER, ] - sample_inputs_fixture.floris["farm"]["layout_y"] = [ + sample_inputs_fixture.core["farm"]["layout_y"] = [ 0.0, 5 * TURBINE_DIAMETER, 0.0, 5 * TURBINE_DIAMETER ] - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0, 360.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1, 0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -346,10 +346,10 @@ def test_regression_yaw(sample_inputs_fixture): """ Tandem turbines with the upstream turbine yawed """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -431,14 +431,14 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): correction enabled """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["enable_transverse_velocities"] = True - sample_inputs_fixture.floris["wake"]["enable_secondary_steering"] = False - sample_inputs_fixture.floris["wake"]["enable_yaw_added_recovery"] = True + sample_inputs_fixture.core["wake"]["enable_transverse_velocities"] = True + sample_inputs_fixture.core["wake"]["enable_secondary_steering"] = False + sample_inputs_fixture.core["wake"]["enable_yaw_added_recovery"] = True - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -519,14 +519,14 @@ def test_regression_secondary_steering(sample_inputs_fixture): Tandem turbines with the upstream turbine yawed and secondary steering enabled """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["enable_transverse_velocities"] = True - sample_inputs_fixture.floris["wake"]["enable_secondary_steering"] = True - sample_inputs_fixture.floris["wake"]["enable_yaw_added_recovery"] = False + sample_inputs_fixture.core["wake"]["enable_transverse_velocities"] = True + sample_inputs_fixture.core["wake"]["enable_secondary_steering"] = True + sample_inputs_fixture.core["wake"]["enable_yaw_added_recovery"] = False - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -623,8 +623,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): turbine to be affected by its own wake. This test requires that at least in this particular configuration the masking correctly filters grid points. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL X, Y = np.meshgrid( 6.0 * 126.0 * np.arange(0, 5, 1), 6.0 * 126.0 * np.arange(0, 5, 1) @@ -632,10 +632,10 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): X = X.flatten() Y = Y.flatten() - sample_inputs_fixture.floris["farm"]["layout_x"] = X - sample_inputs_fixture.floris["farm"]["layout_y"] = Y + sample_inputs_fixture.core["farm"]["layout_x"] = X + sample_inputs_fixture.core["farm"]["layout_y"] = Y - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -678,20 +678,20 @@ def test_full_flow_solver(sample_inputs_fixture): (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["solver"] = { + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["solver"] = { "type": "flow_field_planar_grid", "normal_vector": "z", - "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "planar_coordinate": sample_inputs_fixture.core["farm"]["turbine_type"][0]["hub_height"], "flow_field_grid_points": [5, 5], "flow_field_bounds": [None, None], } - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.solve_for_viz() velocities = floris.flow_field.u_sorted diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index fce5e96be..224eb66de 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -1,10 +1,10 @@ import numpy as np -from floris.simulation import ( +from floris.core import ( average_velocity, axial_induction, - Floris, + Core, power, rotor_effective_velocity, thrust_coefficient, @@ -162,11 +162,11 @@ def test_regression_tandem(sample_inputs_fixture): """ Tandem turbines """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -276,26 +276,26 @@ def test_regression_rotation(sample_inputs_fixture): """ TURBINE_DIAMETER = 126.0 - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL - sample_inputs_fixture.floris["farm"]["layout_x"] = [ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL + sample_inputs_fixture.core["farm"]["layout_x"] = [ 0.0, 0.0, 5 * TURBINE_DIAMETER, 5 * TURBINE_DIAMETER, ] - sample_inputs_fixture.floris["farm"]["layout_y"] = [ + sample_inputs_fixture.core["farm"]["layout_y"] = [ 0.0, 5 * TURBINE_DIAMETER, 0.0, 5 * TURBINE_DIAMETER ] - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0, 360.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1, 0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -321,11 +321,11 @@ def test_regression_yaw(sample_inputs_fixture): """ Tandem turbines with the upstream turbine yawed """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -406,15 +406,15 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): correction enabled """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL # Turn on yaw added recovery - sample_inputs_fixture.floris["wake"]["enable_yaw_added_recovery"] = True + sample_inputs_fixture.core["wake"]["enable_yaw_added_recovery"] = True # First pass, leave at default value of 0; should then do nothing - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -483,10 +483,10 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): assert_results_arrays(test_results[0:4], yawed_baseline) # Second pass, use nonzero gain - sample_inputs_fixture.floris["wake"]["wake_deflection_parameters"]\ + sample_inputs_fixture.core["wake"]["wake_deflection_parameters"]\ ["empirical_gauss"]["yaw_added_mixing_gain"] = 0.1 - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -583,9 +583,9 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): turbine to be affected by its own wake. This test requires that at least in this particular configuration the masking correctly filters grid points. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL X, Y = np.meshgrid( 6.0 * 126.0 * np.arange(0, 5, 1), 6.0 * 126.0 * np.arange(0, 5, 1) @@ -593,10 +593,10 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): X = X.flatten() Y = Y.flatten() - sample_inputs_fixture.floris["farm"]["layout_x"] = X - sample_inputs_fixture.floris["farm"]["layout_y"] = Y + sample_inputs_fixture.core["farm"]["layout_x"] = X + sample_inputs_fixture.core["farm"]["layout_y"] = Y - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -647,21 +647,21 @@ def test_full_flow_solver(sample_inputs_fixture): (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL - sample_inputs_fixture.floris["solver"] = { + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL + sample_inputs_fixture.core["solver"] = { "type": "flow_field_planar_grid", "normal_vector": "z", - "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "planar_coordinate": sample_inputs_fixture.core["farm"]["turbine_type"][0]["hub_height"], "flow_field_grid_points": [5, 5], "flow_field_bounds": [None, None], } - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.solve_for_viz() velocities = floris.flow_field.u_sorted diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index 561323f72..bc876006b 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -1,10 +1,10 @@ import numpy as np -from floris.simulation import ( +from floris.core import ( average_velocity, axial_induction, - Floris, + Core, power, rotor_effective_velocity, thrust_coefficient, @@ -281,10 +281,10 @@ def test_regression_tandem(sample_inputs_fixture): """ Tandem turbines """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -394,26 +394,26 @@ def test_regression_rotation(sample_inputs_fixture): """ TURBINE_DIAMETER = 126.0 - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["farm"]["layout_x"] = [ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["farm"]["layout_x"] = [ 0.0, 0.0, 5 * TURBINE_DIAMETER, 5 * TURBINE_DIAMETER, ] - sample_inputs_fixture.floris["farm"]["layout_y"] = [ + sample_inputs_fixture.core["farm"]["layout_y"] = [ 0.0, 5 * TURBINE_DIAMETER, 0.0, 5 * TURBINE_DIAMETER ] - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0, 360.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1, 0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -439,10 +439,10 @@ def test_regression_yaw(sample_inputs_fixture): """ Tandem turbines with the upstream turbine yawed """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -523,12 +523,12 @@ def test_regression_gch(sample_inputs_fixture): Tandem turbines with the upstream turbine yawed, yaw added recovery correction enabled, and secondary steering enabled """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL ### With GCH off (via conftest), GCH should be same as Gauss - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -605,11 +605,11 @@ def test_regression_gch(sample_inputs_fixture): ### With GCH on, the results should change - sample_inputs_fixture.floris["wake"]["enable_transverse_velocities"] = True - sample_inputs_fixture.floris["wake"]["enable_secondary_steering"] = True - sample_inputs_fixture.floris["wake"]["enable_yaw_added_recovery"] = True + sample_inputs_fixture.core["wake"]["enable_transverse_velocities"] = True + sample_inputs_fixture.core["wake"]["enable_secondary_steering"] = True + sample_inputs_fixture.core["wake"]["enable_yaw_added_recovery"] = True - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -691,14 +691,14 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): correction enabled """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["enable_transverse_velocities"] = True - sample_inputs_fixture.floris["wake"]["enable_secondary_steering"] = False - sample_inputs_fixture.floris["wake"]["enable_yaw_added_recovery"] = True + sample_inputs_fixture.core["wake"]["enable_transverse_velocities"] = True + sample_inputs_fixture.core["wake"]["enable_secondary_steering"] = False + sample_inputs_fixture.core["wake"]["enable_yaw_added_recovery"] = True - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -779,14 +779,14 @@ def test_regression_secondary_steering(sample_inputs_fixture): Tandem turbines with the upstream turbine yawed and secondary steering enabled """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["enable_transverse_velocities"] = True - sample_inputs_fixture.floris["wake"]["enable_secondary_steering"] = True - sample_inputs_fixture.floris["wake"]["enable_yaw_added_recovery"] = False + sample_inputs_fixture.core["wake"]["enable_transverse_velocities"] = True + sample_inputs_fixture.core["wake"]["enable_secondary_steering"] = True + sample_inputs_fixture.core["wake"]["enable_yaw_added_recovery"] = False - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -883,8 +883,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): turbine to be affected by its own wake. This test requires that at least in this particular configuration the masking correctly filters grid points. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL X, Y = np.meshgrid( 6.0 * 126.0 * np.arange(0, 5, 1), 6.0 * 126.0 * np.arange(0, 5, 1) @@ -892,10 +892,10 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): X = X.flatten() Y = Y.flatten() - sample_inputs_fixture.floris["farm"]["layout_x"] = X - sample_inputs_fixture.floris["farm"]["layout_y"] = Y + sample_inputs_fixture.core["farm"]["layout_x"] = X + sample_inputs_fixture.core["farm"]["layout_y"] = Y - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -937,20 +937,20 @@ def test_full_flow_solver(sample_inputs_fixture): (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["solver"] = { + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["solver"] = { "type": "flow_field_planar_grid", "normal_vector": "z", - "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "planar_coordinate": sample_inputs_fixture.core["farm"]["turbine_type"][0]["hub_height"], "flow_field_grid_points": [5, 5], "flow_field_bounds": [None, None], } - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.solve_for_viz() velocities = floris.flow_field.u_sorted diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index ecb915fbc..775687077 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -1,10 +1,10 @@ import numpy as np -from floris.simulation import ( +from floris.core import ( average_velocity, axial_induction, - Floris, + Core, power, rotor_effective_velocity, thrust_coefficient, @@ -131,10 +131,10 @@ def test_regression_tandem(sample_inputs_fixture): """ Tandem turbines """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -244,25 +244,25 @@ def test_regression_rotation(sample_inputs_fixture): """ TURBINE_DIAMETER = 126.0 - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["farm"]["layout_x"] = [ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["farm"]["layout_x"] = [ 0.0, 0.0, 5 * TURBINE_DIAMETER, 5 * TURBINE_DIAMETER, ] - sample_inputs_fixture.floris["farm"]["layout_y"] = [ + sample_inputs_fixture.core["farm"]["layout_y"] = [ 0.0, 5 * TURBINE_DIAMETER, 0.0, 5 * TURBINE_DIAMETER ] - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0, 360.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1, 0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -288,10 +288,10 @@ def test_regression_yaw(sample_inputs_fixture): """ Tandem turbines with the upstream turbine yawed """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -388,8 +388,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): turbine to be affected by its own wake. This test requires that at least in this particular configuration the masking correctly filters grid points. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL X, Y = np.meshgrid( 6.0 * 126.0 * np.arange(0, 5, 1), 6.0 * 126.0 * np.arange(0, 5, 1) @@ -397,10 +397,10 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): X = X.flatten() Y = Y.flatten() - sample_inputs_fixture.floris["farm"]["layout_x"] = X - sample_inputs_fixture.floris["farm"]["layout_y"] = Y + sample_inputs_fixture.core["farm"]["layout_x"] = X + sample_inputs_fixture.core["farm"]["layout_y"] = Y - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -454,20 +454,20 @@ def test_full_flow_solver(sample_inputs_fixture): (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["solver"] = { + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["solver"] = { "type": "flow_field_planar_grid", "normal_vector": "z", - "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "planar_coordinate": sample_inputs_fixture.core["farm"]["turbine_type"][0]["hub_height"], "flow_field_grid_points": [5, 5], "flow_field_bounds": [None, None], } - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.solve_for_viz() velocities = floris.flow_field.u_sorted diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index 5b98fa1a4..aff811938 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -2,10 +2,10 @@ import numpy as np import pytest -from floris.simulation import ( +from floris.core import ( average_velocity, axial_induction, - Floris, + Core, power, rotor_effective_velocity, thrust_coefficient, @@ -132,10 +132,10 @@ def test_regression_tandem(sample_inputs_fixture): """ Tandem turbines """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -245,25 +245,25 @@ def test_regression_rotation(sample_inputs_fixture): """ TURBINE_DIAMETER = 126.0 - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["farm"]["layout_x"] = [ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["farm"]["layout_x"] = [ 0.0, 0.0, 5 * TURBINE_DIAMETER, 5 * TURBINE_DIAMETER, ] - sample_inputs_fixture.floris["farm"]["layout_y"] = [ + sample_inputs_fixture.core["farm"]["layout_y"] = [ 0.0, 5 * TURBINE_DIAMETER, 0.0, 5 * TURBINE_DIAMETER ] - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0, 360.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1, 0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -289,10 +289,10 @@ def test_regression_yaw(sample_inputs_fixture): """ Tandem turbines with the upstream turbine yawed """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -324,8 +324,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): turbine to be affected by its own wake. This test requires that at least in this particular configuration the masking correctly filters grid points. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL X, Y = np.meshgrid( 6.0 * 126.0 * np.arange(0, 5, 1), 6.0 * 126.0 * np.arange(0, 5, 1) @@ -333,10 +333,10 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): X = X.flatten() Y = Y.flatten() - sample_inputs_fixture.floris["farm"]["layout_x"] = X - sample_inputs_fixture.floris["farm"]["layout_y"] = Y + sample_inputs_fixture.core["farm"]["layout_x"] = X + sample_inputs_fixture.core["farm"]["layout_y"] = Y - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -379,20 +379,20 @@ def test_full_flow_solver(sample_inputs_fixture): (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["solver"] = { + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["solver"] = { "type": "flow_field_planar_grid", "normal_vector": "z", - "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "planar_coordinate": sample_inputs_fixture.core["farm"]["turbine_type"][0]["hub_height"], "flow_field_grid_points": [5, 5], "flow_field_bounds": [None, None], } - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.solve_for_viz() velocities = floris.flow_field.u_sorted diff --git a/tests/reg_tests/scipy_layout_opt_regression.py b/tests/reg_tests/scipy_layout_opt_regression.py index 570cb964c..049b1b841 100644 --- a/tests/reg_tests/scipy_layout_opt_regression.py +++ b/tests/reg_tests/scipy_layout_opt_regression.py @@ -2,8 +2,8 @@ import numpy as np import pandas as pd -from floris.tools import FlorisInterface -from floris.tools.optimization.layout_optimization.layout_optimization_scipy import ( +from floris import FlorisModel +from floris.optimization.layout_optimization.layout_optimization_scipy import ( LayoutOptimizationScipy, ) from tests.conftest import ( @@ -29,8 +29,8 @@ def test_scipy_layout_opt(sample_inputs_fixture): compares the optimization results from the SciPy layout optimizaiton for a simple farm with a simple wind rose to stored baseline results. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL opt_options = { "maxiter": 5, @@ -42,18 +42,18 @@ def test_scipy_layout_opt(sample_inputs_fixture): boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] - fi = FlorisInterface(sample_inputs_fixture.floris) + fmodel = FlorisModel(sample_inputs_fixture.core) wd_array = np.arange(0, 360.0, 5.0) ws_array = 8.0 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW - fi.reinitialize( + fmodel.reinitialize( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, ) - layout_opt = LayoutOptimizationScipy(fi, boundaries, optOptions=opt_options) + layout_opt = LayoutOptimizationScipy(fmodel, boundaries, optOptions=opt_options) sol = layout_opt.optimize() locations_opt = np.array([sol[0], sol[1]]) diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index 16be779e4..d4ee6febe 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -1,10 +1,10 @@ import numpy as np -from floris.simulation import ( +from floris.core import ( average_velocity, axial_induction, - Floris, + Core, power, rotor_effective_velocity, thrust_coefficient, @@ -90,11 +90,11 @@ def test_regression_tandem(sample_inputs_fixture): """ Tandem turbines """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["combination_model"] = COMBINATION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["combination_model"] = COMBINATION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -204,26 +204,26 @@ def test_regression_rotation(sample_inputs_fixture): """ TURBINE_DIAMETER = 126.0 - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["combination_model"] = COMBINATION_MODEL - sample_inputs_fixture.floris["farm"]["layout_x"] = [ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["combination_model"] = COMBINATION_MODEL + sample_inputs_fixture.core["farm"]["layout_x"] = [ 0.0, 0.0, 5 * TURBINE_DIAMETER, 5 * TURBINE_DIAMETER, ] - sample_inputs_fixture.floris["farm"]["layout_y"] = [ + sample_inputs_fixture.core["farm"]["layout_y"] = [ 0.0, 5 * TURBINE_DIAMETER, 0.0, 5 * TURBINE_DIAMETER ] - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0, 360.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0, 8.0] - sample_inputs_fixture.floris["flow_field"]["turbulence_intensities"] = [0.1, 0.1] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0, 360.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0, 8.0] + sample_inputs_fixture.core["flow_field"]["turbulence_intensities"] = [0.1, 0.1] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -249,10 +249,10 @@ def test_regression_yaw(sample_inputs_fixture): """ Tandem turbines with the upstream turbine yawed """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) yaw_angles = np.zeros((N_FINDEX, N_TURBINES)) yaw_angles[:,0] = 5.0 @@ -343,9 +343,9 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): turbine to be affected by its own wake. This test requires that at least in this particular configuration the masking correctly filters grid points. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["combination_model"] = COMBINATION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["combination_model"] = COMBINATION_MODEL X, Y = np.meshgrid( 6.0 * 126.0 * np.arange(0, 5, 1), 6.0 * 126.0 * np.arange(0, 5, 1) @@ -353,10 +353,10 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): X = X.flatten() Y = Y.flatten() - sample_inputs_fixture.floris["farm"]["layout_x"] = X - sample_inputs_fixture.floris["farm"]["layout_y"] = Y + sample_inputs_fixture.core["farm"]["layout_x"] = X + sample_inputs_fixture.core["farm"]["layout_y"] = Y - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.initialize_domain() floris.steady_state_atmospheric_condition() @@ -399,19 +399,19 @@ def test_full_flow_solver(sample_inputs_fixture): (n_findex, n_turbines, n grid points in x, n grid points in y, 3 grid points in z). """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - sample_inputs_fixture.floris["solver"] = { + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["solver"] = { "type": "flow_field_planar_grid", "normal_vector": "z", - "planar_coordinate": sample_inputs_fixture.floris["farm"]["turbine_type"][0]["hub_height"], + "planar_coordinate": sample_inputs_fixture.core["farm"]["turbine_type"][0]["hub_height"], "flow_field_grid_points": [5, 5], "flow_field_bounds": [None, None], } - sample_inputs_fixture.floris["flow_field"]["wind_directions"] = [270.0] - sample_inputs_fixture.floris["flow_field"]["wind_speeds"] = [8.0] + sample_inputs_fixture.core["flow_field"]["wind_directions"] = [270.0] + sample_inputs_fixture.core["flow_field"]["wind_speeds"] = [8.0] - floris = Floris.from_dict(sample_inputs_fixture.floris) + floris = Core.from_dict(sample_inputs_fixture.core) floris.solve_for_viz() velocities = floris.flow_field.u_sorted diff --git a/tests/reg_tests/yaw_optimization_regression_test.py b/tests/reg_tests/yaw_optimization_regression_test.py index ea353eadc..203856646 100644 --- a/tests/reg_tests/yaw_optimization_regression_test.py +++ b/tests/reg_tests/yaw_optimization_regression_test.py @@ -2,12 +2,12 @@ import numpy as np import pandas as pd -from floris.tools import FlorisInterface -from floris.tools.optimization.yaw_optimization.yaw_optimizer_geometric import ( +from floris import FlorisModel +from floris.optimization.yaw_optimization.yaw_optimizer_geometric import ( YawOptimizationGeometric, ) -from floris.tools.optimization.yaw_optimization.yaw_optimizer_scipy import YawOptimizationScipy -from floris.tools.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR +from floris.optimization.yaw_optimization.yaw_optimizer_scipy import YawOptimizationScipy +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR DEBUG = False @@ -77,16 +77,16 @@ def test_serial_refine(sample_inputs_fixture): optimization scheme. This test compares the optimization results from the SR method for a simple farm with a simple wind rose to stored baseline results. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - fi = FlorisInterface(sample_inputs_fixture.floris) + fmodel = FlorisModel(sample_inputs_fixture.core) wd_array = np.arange(0.0, 360.0, 90.0) ws_array = 8.0 * np.ones_like(wd_array) ti_array = 0.1 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW - fi.set( + fmodel.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, @@ -94,7 +94,7 @@ def test_serial_refine(sample_inputs_fixture): turbulence_intensities=ti_array, ) - yaw_opt = YawOptimizationSR(fi) + yaw_opt = YawOptimizationSR(fmodel) df_opt = yaw_opt.optimize() if DEBUG: @@ -110,31 +110,31 @@ def test_geometric_yaw(sample_inputs_fixture): optimal yaw relationships. This test compares the optimization results from the Geometric Yaw optimization for a simple farm with a simple wind rose to stored baseline results. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - fi = FlorisInterface(sample_inputs_fixture.floris) + fmodel = FlorisModel(sample_inputs_fixture.core) wd_array = np.arange(0.0, 360.0, 90.0) ws_array = 8.0 * np.ones_like(wd_array) ti_array = 0.1 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW - fi.set( + fmodel.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=ti_array, ) - fi.run() - baseline_farm_power = fi.get_farm_power().squeeze() + fmodel.run() + baseline_farm_power = fmodel.get_farm_power().squeeze() - yaw_opt = YawOptimizationGeometric(fi) + yaw_opt = YawOptimizationGeometric(fmodel) df_opt = yaw_opt.optimize() yaw_angles_opt_geo = np.vstack(yaw_opt.yaw_angles_opt) - fi.set(yaw_angles=yaw_angles_opt_geo) - fi.run() - geo_farm_power = fi.get_farm_power().squeeze() + fmodel.set(yaw_angles=yaw_angles_opt_geo) + fmodel.run() + geo_farm_power = fmodel.get_farm_power().squeeze() df_opt['farm_power_baseline'] = baseline_farm_power df_opt['farm_power_opt'] = geo_farm_power @@ -152,8 +152,8 @@ def test_scipy_yaw_opt(sample_inputs_fixture): compares the optimization results from the SciPy yaw optimization for a simple farm with a simple wind rose to stored baseline results. """ - sample_inputs_fixture.floris["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.floris["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL opt_options = { "maxiter": 5, @@ -163,12 +163,12 @@ def test_scipy_yaw_opt(sample_inputs_fixture): "eps": 0.5, } - fi = FlorisInterface(sample_inputs_fixture.floris) + fmodel = FlorisModel(sample_inputs_fixture.core) wd_array = np.arange(0.0, 360.0, 90.0) ws_array = 8.0 * np.ones_like(wd_array) ti_array = 0.1 * np.ones_like(wd_array) D = 126.0 # Rotor diameter for the NREL 5 MW - fi.set( + fmodel.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], wind_directions=wd_array, @@ -176,7 +176,7 @@ def test_scipy_yaw_opt(sample_inputs_fixture): turbulence_intensities=ti_array, ) - yaw_opt = YawOptimizationScipy(fi, opt_options=opt_options) + yaw_opt = YawOptimizationScipy(fmodel, opt_options=opt_options) df_opt = yaw_opt.optimize() if DEBUG: diff --git a/tests/rotor_velocity_unit_test.py b/tests/rotor_velocity_unit_test.py index 30b19f346..468b7a887 100644 --- a/tests/rotor_velocity_unit_test.py +++ b/tests/rotor_velocity_unit_test.py @@ -1,7 +1,7 @@ import numpy as np -from floris.simulation import Turbine -from floris.simulation.rotor_velocity import ( +from floris.core import Turbine +from floris.core.rotor_velocity import ( average_velocity, compute_tilt_angles_for_floating_turbines, compute_tilt_angles_for_floating_turbines_map, diff --git a/tests/turbine_grid_unit_test.py b/tests/turbine_grid_unit_test.py index c65a90a29..3d9b01961 100644 --- a/tests/turbine_grid_unit_test.py +++ b/tests/turbine_grid_unit_test.py @@ -1,7 +1,7 @@ import numpy as np -from floris.simulation import TurbineGrid +from floris.core import TurbineGrid from tests.conftest import ( N_FINDEX, N_TURBINES, diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index 39f1b1f1a..55b582e41 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -5,11 +5,11 @@ import pandas as pd import pytest -from floris.simulation import ( +from floris.core import ( Turbine, ) -from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT -from floris.simulation.turbine.turbine import ( +from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT +from floris.core.turbine.turbine import ( axial_induction, power, thrust_coefficient, diff --git a/tests/turbine_operation_models_integration_test.py b/tests/turbine_operation_models_integration_test.py index 446695855..4732bd555 100644 --- a/tests/turbine_operation_models_integration_test.py +++ b/tests/turbine_operation_models_integration_test.py @@ -1,7 +1,7 @@ import numpy as np import pytest -from floris.simulation.turbine.operation_models import ( +from floris.core.turbine.operation_models import ( CosineLossTurbine, MixedOperationTurbine, POWER_SETPOINT_DEFAULT, diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index e366aeb11..2ef7a7d97 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -7,14 +7,14 @@ import pytest import yaml -from floris.simulation import ( +from floris.core import ( average_velocity, axial_induction, power, thrust_coefficient, Turbine, ) -from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT +from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT from tests.conftest import SampleInputs, WIND_SPEEDS diff --git a/tests/uncertainty_interface_integration_test.py b/tests/uncertain_floris_model_integration_test.py similarity index 58% rename from tests/uncertainty_interface_integration_test.py rename to tests/uncertain_floris_model_integration_test.py index 74bf956b0..186c5dd8f 100644 --- a/tests/uncertainty_interface_integration_test.py +++ b/tests/uncertain_floris_model_integration_test.py @@ -4,9 +4,9 @@ import pytest import yaml -from floris.simulation.turbine.operation_models import POWER_SETPOINT_DEFAULT -from floris.tools.floris_interface import FlorisInterface -from floris.tools.uncertainty_interface import UncertaintyInterface +from floris import FlorisModel +from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT +from floris.uncertain_floris_model import UncertainFlorisModel TEST_DATA = Path(__file__).resolve().parent / "data" @@ -14,12 +14,12 @@ def test_read_yaml(): - fi = UncertaintyInterface(configuration=YAML_INPUT) - assert isinstance(fi, UncertaintyInterface) + ufmodel = UncertainFlorisModel(configuration=YAML_INPUT) + assert isinstance(ufmodel, UncertainFlorisModel) def test_rounded_inputs(): - fi = UncertaintyInterface(configuration=YAML_INPUT) + ufmodel = UncertainFlorisModel(configuration=YAML_INPUT) # Using defaults # Example input array @@ -29,13 +29,13 @@ def test_rounded_inputs(): expected_output = np.array([[45.0, 8.0, 0.25, 91.0, 700.0], [60.0, 8.0, 0.3, 95.0, 800.0]]) # Call the function - rounded_inputs = fi._get_rounded_inputs(input_array) + rounded_inputs = ufmodel._get_rounded_inputs(input_array) np.testing.assert_almost_equal(rounded_inputs, expected_output) def test_expand_wind_directions(): - fi = UncertaintyInterface(configuration=YAML_INPUT) + ufmodel = UncertainFlorisModel(configuration=YAML_INPUT) input_array = np.array( [[1, 20, 30], [40, 50, 60], [70, 80, 90], [100, 110, 120], [359, 140, 150]] @@ -44,16 +44,16 @@ def test_expand_wind_directions(): # Test even length with pytest.raises(ValueError): wd_sample_points = [-15, -10, -5, 5, 10, 15] # Even lenght - fi._expand_wind_directions(input_array, wd_sample_points) + ufmodel._expand_wind_directions(input_array, wd_sample_points) # Test middle element not 0 with pytest.raises(ValueError): wd_sample_points = [-15, -10, -5, 1, 5, 10, 15] # Odd length, not 0 at the middle - fi._expand_wind_directions(input_array, wd_sample_points) + ufmodel._expand_wind_directions(input_array, wd_sample_points) # Test correction operations wd_sample_points = [-15, -10, -5, 0, 5, 10, 15] # Odd length, 0 at the middle - output_array = fi._expand_wind_directions(input_array, wd_sample_points) + output_array = ufmodel._expand_wind_directions(input_array, wd_sample_points) # Check if output shape is correct assert output_array.shape[0] == 35 @@ -68,7 +68,7 @@ def test_expand_wind_directions(): def test_get_unique_inputs(): - fi = UncertaintyInterface(configuration=YAML_INPUT) + ufmodel = UncertainFlorisModel(configuration=YAML_INPUT) input_array = np.array( [ @@ -82,7 +82,7 @@ def test_get_unique_inputs(): expected_unique_inputs = np.array([[0, 1], [0, 2], [1, 1]]) - unique_inputs, map_to_expanded_inputs = fi._get_unique_inputs(input_array) + unique_inputs, map_to_expanded_inputs = ufmodel._get_unique_inputs(input_array) # test expected result assert np.array_equal(unique_inputs, expected_unique_inputs) @@ -92,20 +92,20 @@ def test_get_unique_inputs(): def test_get_weights(): - fi = UncertaintyInterface(configuration=YAML_INPUT) - weights = fi._get_weights(3.0, [-6, -3, 0, 3, 6]) + ufmodel = UncertainFlorisModel(configuration=YAML_INPUT) + weights = ufmodel._get_weights(3.0, [-6, -3, 0, 3, 6]) np.testing.assert_allclose( weights, np.array([0.05448868, 0.24420134, 0.40261995, 0.24420134, 0.05448868]) ) -def test_uncertainty_interface(): +def test_uncertain_floris_model(): # Recompute uncertain result using certain result with 1 deg - fi_nom = FlorisInterface(configuration=YAML_INPUT) - fi_unc = UncertaintyInterface(configuration=YAML_INPUT, wd_sample_points=[-3, 0, 3], wd_std=3) + fmodel = FlorisModel(configuration=YAML_INPUT) + ufmodel = UncertainFlorisModel(configuration=YAML_INPUT, wd_sample_points=[-3, 0, 3], wd_std=3) - fi_nom.set( + fmodel.set( layout_x=[0, 300], layout_y=[0, 0], wind_speeds=[8.0, 8.0, 8.0], @@ -113,7 +113,7 @@ def test_uncertainty_interface(): turbulence_intensities=[0.06, 0.06, 0.06], ) - fi_unc.set( + ufmodel.set( layout_x=[0, 300], layout_y=[0, 0], wind_speeds=[8.0], @@ -121,22 +121,22 @@ def test_uncertainty_interface(): turbulence_intensities=[0.06], ) - fi_nom.run() - fi_unc.run() + fmodel.run() + ufmodel.run() - nom_powers = fi_nom.get_turbine_powers()[:, 1].flatten() - unc_powers = fi_unc.get_turbine_powers()[:, 1].flatten() + nom_powers = fmodel.get_turbine_powers()[:, 1].flatten() + unc_powers = ufmodel.get_turbine_powers()[:, 1].flatten() - weights = fi_unc.weights + weights = ufmodel.weights np.testing.assert_allclose(np.sum(nom_powers * weights), unc_powers) -def test_uncertainty_interface_setpoints(): +def test_uncertain_floris_model_setpoints(): - fi_nom = FlorisInterface(configuration=YAML_INPUT) - fi_unc = UncertaintyInterface(configuration=YAML_INPUT, wd_sample_points=[-3, 0, 3], wd_std=3) + fmodel = FlorisModel(configuration=YAML_INPUT) + ufmodel = UncertainFlorisModel(configuration=YAML_INPUT, wd_sample_points=[-3, 0, 3], wd_std=3) - fi_nom.set( + fmodel.set( layout_x=[0, 300], layout_y=[0, 0], wind_speeds=[8.0, 8.0, 8.0], @@ -144,41 +144,41 @@ def test_uncertainty_interface_setpoints(): turbulence_intensities=[0.06, 0.06, 0.06], ) - fi_unc.set( + ufmodel.set( layout_x=[0, 300], layout_y=[0, 0], wind_speeds=[8.0], wind_directions=[270.0], turbulence_intensities=[0.06], ) - weights = fi_unc.weights + weights = ufmodel.weights # Check setpoints dimensions are respected and reset_operation works - # Note that fi_nom.set() does NOT raise ValueError---an AttributeError is raised only at - # fi_nom.run()---whereas fi_unc.set raises ValueError immediately. - # fi_nom.set(yaw_angles=np.array([[0.0, 0.0]])) + # Note that fmodel.set() does NOT raise ValueError---an AttributeError is raised only at + # fmodel.run()---whereas ufmodel.set raises ValueError immediately. + # fmodel.set(yaw_angles=np.array([[0.0, 0.0]])) # with pytest.raises(AttributeError): - # fi_nom.run() + # fmodel.run() # with pytest.raises(ValueError): - # fi_unc.set(yaw_angles=np.array([[0.0, 0.0]])) + # ufmodel.set(yaw_angles=np.array([[0.0, 0.0]])) - fi_nom.set(yaw_angles=np.array([[20.0, 0.0], [20.0, 0.0], [20.0, 0.0]])) - fi_nom.run() - nom_powers = fi_nom.get_turbine_powers()[:, 1].flatten() + fmodel.set(yaw_angles=np.array([[20.0, 0.0], [20.0, 0.0], [20.0, 0.0]])) + fmodel.run() + nom_powers = fmodel.get_turbine_powers()[:, 1].flatten() - fi_unc.set(yaw_angles=np.array([[20.0, 0.0]])) - fi_unc.run() - unc_powers = fi_unc.get_turbine_powers()[:, 1].flatten() + ufmodel.set(yaw_angles=np.array([[20.0, 0.0]])) + ufmodel.run() + unc_powers = ufmodel.get_turbine_powers()[:, 1].flatten() np.testing.assert_allclose(np.sum(nom_powers * weights), unc_powers) # Drop yaw setpoints and rerun - fi_nom.reset_operation() - fi_nom.run() - nom_powers = fi_nom.get_turbine_powers()[:, 1].flatten() + fmodel.reset_operation() + fmodel.run() + nom_powers = fmodel.get_turbine_powers()[:, 1].flatten() - fi_unc.reset_operation() - fi_unc.run() - unc_powers = fi_unc.get_turbine_powers()[:, 1].flatten() + ufmodel.reset_operation() + ufmodel.run() + unc_powers = ufmodel.get_turbine_powers()[:, 1].flatten() np.testing.assert_allclose(np.sum(nom_powers * weights), unc_powers) diff --git a/tests/wake_unit_tests.py b/tests/wake_unit_tests.py index 09e66787c..90f66057e 100644 --- a/tests/wake_unit_tests.py +++ b/tests/wake_unit_tests.py @@ -1,5 +1,5 @@ -from floris.simulation import WakeModelManager +from floris.core import WakeModelManager from tests.conftest import SampleInputs diff --git a/tests/wind_data_integration_test.py b/tests/wind_data_integration_test.py index 66782733a..ecc8281b3 100644 --- a/tests/wind_data_integration_test.py +++ b/tests/wind_data_integration_test.py @@ -1,12 +1,12 @@ import numpy as np import pytest -from floris.tools import ( +from floris import ( TimeSeries, WindRose, WindTIRose, ) -from floris.tools.wind_data import WindDataBase +from floris.wind_data import WindDataBase class ChildClassTest(WindDataBase): From b43c9c57318f492700f839e8c167f71832e21e21 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Wed, 20 Mar 2024 09:43:41 -0600 Subject: [PATCH 54/78] Add utilities for floris models (#840) --- floris/floris_model.py | 1205 +++++++++++++----------- floris/utilities.py | 74 +- tests/floris_model_integration_test.py | 27 + tests/utilities_unit_test.py | 33 + 4 files changed, 781 insertions(+), 558 deletions(-) diff --git a/floris/floris_model.py b/floris/floris_model.py index 8ca0c1a96..2b0f6cb9a 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -3,6 +3,11 @@ import inspect from pathlib import Path +from typing import ( + Any, + List, + Optional, +) import numpy as np import pandas as pd @@ -25,6 +30,11 @@ NDArrayBool, NDArrayFloat, ) +from floris.utilities import ( + nested_get, + nested_set, + print_nested_dict, +) from floris.wind_data import WindDataBase @@ -94,118 +104,8 @@ def __init__(self, configuration: dict | str | Path): ) raise ValueError("turbine_grid_points must be less than or equal to 3.") - def assign_hub_height_to_ref_height(self): - - # Confirm can do this operation - unique_heights = np.unique(self.core.farm.hub_heights) - if len(unique_heights) > 1: - raise ValueError( - "To assign hub heights to reference height, can not have more than one " - "specified height. " - f"Current length is {unique_heights}." - ) - - self.core.flow_field.reference_wind_height = unique_heights[0] - - def copy(self): - """Create an independent copy of the current FlorisModel object""" - return FlorisModel(self.core.as_dict()) - - def set( - self, - wind_speeds: list[float] | NDArrayFloat | None = None, - wind_directions: list[float] | NDArrayFloat | None = None, - wind_shear: float | None = None, - wind_veer: float | None = None, - reference_wind_height: float | None = None, - turbulence_intensities: list[float] | NDArrayFloat | None = None, - air_density: float | None = None, - layout_x: list[float] | NDArrayFloat | None = None, - layout_y: list[float] | NDArrayFloat | None = None, - turbine_type: list | None = None, - turbine_library_path: str | Path | None = None, - solver_settings: dict | None = None, - heterogenous_inflow_config=None, - wind_data: type[WindDataBase] | None = None, - yaw_angles: NDArrayFloat | list[float] | None = None, - power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, - disable_turbines: NDArrayBool | list[bool] | None = None, - ): - """ - Set the wind conditions and operation setpoints for the wind farm. - - Args: - wind_speeds (NDArrayFloat | list[float] | None, optional): Wind speeds at each findex. - Defaults to None. - wind_directions (NDArrayFloat | list[float] | None, optional): Wind directions at each - findex. Defaults to None. - wind_shear (float | None, optional): Wind shear exponent. Defaults to None. - wind_veer (float | None, optional): Wind veer. Defaults to None. - reference_wind_height (float | None, optional): Reference wind height. Defaults to None. - turbulence_intensities (NDArrayFloat | list[float] | None, optional): Turbulence - intensities at each findex. Defaults to None. - air_density (float | None, optional): Air density. Defaults to None. - layout_x (NDArrayFloat | list[float] | None, optional): X-coordinates of the turbines. - Defaults to None. - layout_y (NDArrayFloat | list[float] | None, optional): Y-coordinates of the turbines. - Defaults to None. - turbine_type (list | None, optional): Turbine type. Defaults to None. - turbine_library_path (str | Path | None, optional): Path to the turbine library. - Defaults to None. - solver_settings (dict | None, optional): Solver settings. Defaults to None. - heterogenous_inflow_config (None, optional): Heterogenous inflow configuration. Defaults - to None. - wind_data (type[WindDataBase] | None, optional): Wind data. Defaults to None. - yaw_angles (NDArrayFloat | list[float] | None, optional): Turbine yaw angles. - Defaults to None. - power_setpoints (NDArrayFloat | list[float] | list[float, None] | None, optional): - Turbine power setpoints. - disable_turbines (NDArrayBool | list[bool] | None, optional): NDArray with dimensions - n_findex x n_turbines. True values indicate the turbine is disabled at that findex - and the power setpoint at that position is set to 0. Defaults to None. - """ - # Initialize a new Floris object after saving the setpoints - _yaw_angles = self.core.farm.yaw_angles - _power_setpoints = self.core.farm.power_setpoints - self._reinitialize( - wind_speeds=wind_speeds, - wind_directions=wind_directions, - wind_shear=wind_shear, - wind_veer=wind_veer, - reference_wind_height=reference_wind_height, - turbulence_intensities=turbulence_intensities, - air_density=air_density, - layout_x=layout_x, - layout_y=layout_y, - turbine_type=turbine_type, - turbine_library_path=turbine_library_path, - solver_settings=solver_settings, - heterogenous_inflow_config=heterogenous_inflow_config, - wind_data=wind_data, - ) - - # If the yaw angles or power setpoints are not the default, set them back to the - # previous setting - if not (_yaw_angles == 0).all(): - self.core.farm.set_yaw_angles(_yaw_angles) - if not ( - (_power_setpoints == POWER_SETPOINT_DEFAULT) - | (_power_setpoints == POWER_SETPOINT_DISABLED) - ).all(): - self.core.farm.set_power_setpoints(_power_setpoints) - - # Set the operation - self._set_operation( - yaw_angles=yaw_angles, - power_setpoints=power_setpoints, - disable_turbines=disable_turbines, - ) - def reset_operation(self): - """ - Instantiate a new Floris object to set all operation setpoints to their default values. - """ - self._reinitialize() + ### Methods for setting and running the FlorisModel def _reinitialize( self, @@ -227,6 +127,9 @@ def _reinitialize( """ Instantiate a new Floris object with updated conditions set by arguments. Any parameters in Floris that aren't changed by arguments to this function retain their values. + Note that, although it's name is similar to the reinitialize() method from Floris v3, + this function is not meant to be called directly by the user---users should instead call + the set() method. Args: wind_speeds (NDArrayFloat | list[float] | None, optional): Wind speeds at each findex. @@ -377,6 +280,102 @@ def _set_operation( self.core.farm.yaw_angles[disable_turbines] = 0.0 self.core.farm.power_setpoints[disable_turbines] = POWER_SETPOINT_DISABLED + def set( + self, + wind_speeds: list[float] | NDArrayFloat | None = None, + wind_directions: list[float] | NDArrayFloat | None = None, + wind_shear: float | None = None, + wind_veer: float | None = None, + reference_wind_height: float | None = None, + turbulence_intensities: list[float] | NDArrayFloat | None = None, + air_density: float | None = None, + layout_x: list[float] | NDArrayFloat | None = None, + layout_y: list[float] | NDArrayFloat | None = None, + turbine_type: list | None = None, + turbine_library_path: str | Path | None = None, + solver_settings: dict | None = None, + heterogenous_inflow_config=None, + wind_data: type[WindDataBase] | None = None, + yaw_angles: NDArrayFloat | list[float] | None = None, + power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, + disable_turbines: NDArrayBool | list[bool] | None = None, + ): + """ + Set the wind conditions and operation setpoints for the wind farm. + + Args: + wind_speeds (NDArrayFloat | list[float] | None, optional): Wind speeds at each findex. + Defaults to None. + wind_directions (NDArrayFloat | list[float] | None, optional): Wind directions at each + findex. Defaults to None. + wind_shear (float | None, optional): Wind shear exponent. Defaults to None. + wind_veer (float | None, optional): Wind veer. Defaults to None. + reference_wind_height (float | None, optional): Reference wind height. Defaults to None. + turbulence_intensities (NDArrayFloat | list[float] | None, optional): Turbulence + intensities at each findex. Defaults to None. + air_density (float | None, optional): Air density. Defaults to None. + layout_x (NDArrayFloat | list[float] | None, optional): X-coordinates of the turbines. + Defaults to None. + layout_y (NDArrayFloat | list[float] | None, optional): Y-coordinates of the turbines. + Defaults to None. + turbine_type (list | None, optional): Turbine type. Defaults to None. + turbine_library_path (str | Path | None, optional): Path to the turbine library. + Defaults to None. + solver_settings (dict | None, optional): Solver settings. Defaults to None. + heterogenous_inflow_config (None, optional): Heterogenous inflow configuration. Defaults + to None. + wind_data (type[WindDataBase] | None, optional): Wind data. Defaults to None. + yaw_angles (NDArrayFloat | list[float] | None, optional): Turbine yaw angles. + Defaults to None. + power_setpoints (NDArrayFloat | list[float] | list[float, None] | None, optional): + Turbine power setpoints. + disable_turbines (NDArrayBool | list[bool] | None, optional): NDArray with dimensions + n_findex x n_turbines. True values indicate the turbine is disabled at that findex + and the power setpoint at that position is set to 0. Defaults to None. + """ + # Initialize a new Floris object after saving the setpoints + _yaw_angles = self.core.farm.yaw_angles + _power_setpoints = self.core.farm.power_setpoints + self._reinitialize( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + wind_shear=wind_shear, + wind_veer=wind_veer, + reference_wind_height=reference_wind_height, + turbulence_intensities=turbulence_intensities, + air_density=air_density, + layout_x=layout_x, + layout_y=layout_y, + turbine_type=turbine_type, + turbine_library_path=turbine_library_path, + solver_settings=solver_settings, + heterogenous_inflow_config=heterogenous_inflow_config, + wind_data=wind_data, + ) + + # If the yaw angles or power setpoints are not the default, set them back to the + # previous setting + if not (_yaw_angles == 0).all(): + self.core.farm.set_yaw_angles(_yaw_angles) + if not ( + (_power_setpoints == POWER_SETPOINT_DEFAULT) + | (_power_setpoints == POWER_SETPOINT_DISABLED) + ).all(): + self.core.farm.set_power_setpoints(_power_setpoints) + + # Set the operation + self._set_operation( + yaw_angles=yaw_angles, + power_setpoints=power_setpoints, + disable_turbines=disable_turbines, + ) + + def reset_operation(self): + """ + Instantiate a new Floris object to set all operation setpoints to their default values. + """ + self._reinitialize() + def run(self) -> None: """ Run the FLORIS solve to compute the velocity field and wake effects. @@ -401,94 +400,330 @@ def run_no_wake(self) -> None: # Finalize values to user-supplied order self.core.finalize() - def get_plane_of_points( - self, - normal_vector="z", - planar_coordinate=None, - ): - """ - Calculates velocity values through the - :py:meth:`FlorisModel.calculate_wake` method at points in plane - specified by inputs. - Args: - normal_vector (string, optional): Vector normal to plane. - Defaults to z. - planar_coordinate (float, optional): Value of normal vector - to slice through. Defaults to None. + ### Methods for extracting turbine performance after running + + def get_turbine_powers(self) -> NDArrayFloat: + """Calculates the power at each turbine in the wind farm. Returns: - :py:class:`pandas.DataFrame`: containing values of x1, x2, x3, u, v, w + NDArrayFloat: Powers at each turbine. """ - # Get results vectors - if normal_vector == "z": - x_flat = self.core.grid.x_sorted_inertial_frame[0].flatten() - y_flat = self.core.grid.y_sorted_inertial_frame[0].flatten() - z_flat = self.core.grid.z_sorted_inertial_frame[0].flatten() - else: - x_flat = self.core.grid.x_sorted[0].flatten() - y_flat = self.core.grid.y_sorted[0].flatten() - z_flat = self.core.grid.z_sorted[0].flatten() - u_flat = self.core.flow_field.u_sorted[0].flatten() - v_flat = self.core.flow_field.v_sorted[0].flatten() - w_flat = self.core.flow_field.w_sorted[0].flatten() - # Create a df of these - if normal_vector == "z": - df = pd.DataFrame( - { - "x1": x_flat, - "x2": y_flat, - "x3": z_flat, - "u": u_flat, - "v": v_flat, - "w": w_flat, - } + # Confirm calculate wake has been run + if self.core.state is not State.USED: + raise RuntimeError( + "Can't run function `FlorisModel.get_turbine_powers` without " + "first running `FlorisModel.run`." ) - if normal_vector == "x": - df = pd.DataFrame( - { - "x1": y_flat, - "x2": z_flat, - "x3": x_flat, - "u": u_flat, - "v": v_flat, - "w": w_flat, - } + # Check for negative velocities, which could indicate bad model + # parameters or turbines very closely spaced. + if (self.core.flow_field.u < 0.0).any(): + self.logger.warning("Some velocities at the rotor are negative.") + + turbine_powers = power( + velocities=self.core.flow_field.u, + air_density=self.core.flow_field.air_density, + power_functions=self.core.farm.turbine_power_functions, + yaw_angles=self.core.farm.yaw_angles, + tilt_angles=self.core.farm.tilt_angles, + power_setpoints=self.core.farm.power_setpoints, + tilt_interps=self.core.farm.turbine_tilt_interps, + turbine_type_map=self.core.farm.turbine_type_map, + turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, + correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, + multidim_condition=self.core.flow_field.multidim_conditions, + ) + return turbine_powers + + def get_farm_power( + self, + turbine_weights=None, + use_turbulence_correction=False, + ): + """ + Report wind plant power from instance of floris. Optionally includes + uncertainty in wind direction and yaw position when determining power. + Uncertainty is included by computing the mean wind farm power for a + distribution of wind direction and yaw position deviations from the + original wind direction and yaw angles. + + Args: + turbine_weights (NDArrayFloat | list[float] | None, optional): + weighing terms that allow the user to emphasize power at + particular turbines and/or completely ignore the power + from other turbines. This is useful when, for example, you are + modeling multiple wind farms in a single floris object. If you + only want to calculate the power production for one of those + farms and include the wake effects of the neighboring farms, + you can set the turbine_weights for the neighboring farms' + turbines to 0.0. The array of turbine powers from floris + is multiplied with this array in the calculation of the + objective function. If None, this is an array with all values + 1.0 and with shape equal to (n_findex, n_turbines). + Defaults to None. + use_turbulence_correction: (bool, optional): When *True* uses a + turbulence parameter to adjust power output calculations. + Defaults to *False*. + + Returns: + float: Sum of wind turbine powers in W. + """ + # TODO: Turbulence correction used in the power calculation, but may not be in + # the model yet + # TODO: Turbines need a switch for using turbulence correction + # TODO: Uncomment out the following two lines once the above are resolved + # for turbine in self.core.farm.turbines: + # turbine.use_turbulence_correction = use_turbulence_correction + + # Confirm calculate wake has been run + if self.core.state is not State.USED: + raise RuntimeError( + "Can't run function `FlorisModel.get_turbine_powers` without " + "first running `FlorisModel.calculate_wake`." ) - if normal_vector == "y": - df = pd.DataFrame( - { - "x1": x_flat, - "x2": z_flat, - "x3": y_flat, - "u": u_flat, - "v": v_flat, - "w": w_flat, - } + + if turbine_weights is None: + # Default to equal weighing of all turbines when turbine_weights is None + turbine_weights = np.ones( + ( + self.core.flow_field.n_findex, + self.core.farm.n_turbines, + ) + ) + elif len(np.shape(turbine_weights)) == 1: + # Deal with situation when 1D array is provided + turbine_weights = np.tile( + turbine_weights, + (self.core.flow_field.n_findex, 1), ) - # Subset to plane - # TODO: Seems sloppy as need more than one plane in the z-direction for GCH - if planar_coordinate is not None: - df = df[np.isclose(df.x3, planar_coordinate)] # , atol=0.1, rtol=0.0)] + # Calculate all turbine powers and apply weights + turbine_powers = self.get_turbine_powers() + turbine_powers = np.multiply(turbine_weights, turbine_powers) - # Drop duplicates - # TODO is this still needed now that we setup a grid for just this plane? - df = df.drop_duplicates() + return np.sum(turbine_powers, axis=1) - # Sort values of df to make sure plotting is acceptable - df = df.sort_values(["x2", "x1"]).reset_index(drop=True) + def get_farm_AEP( + self, + freq, + cut_in_wind_speed=0.001, + cut_out_wind_speed=None, + turbine_weights=None, + no_wake=False, + ) -> float: + """ + Estimate annual energy production (AEP) for distributions of wind speed, wind + direction, frequency of occurrence, and yaw offset. - return df + Args: + freq (NDArrayFloat): NumPy array with shape (n_findex) + with the frequencies of each wind direction and + wind speed combination. These frequencies should typically sum + up to 1.0 and are used to weigh the wind farm power for every + condition in calculating the wind farm's AEP. + cut_in_wind_speed (float, optional): Wind speed in m/s below which + any calculations are ignored and the wind farm is known to + produce 0.0 W of power. Note that to prevent problems with the + wake models at negative / zero wind speeds, this variable must + always have a positive value. Defaults to 0.001 [m/s]. + cut_out_wind_speed (float, optional): Wind speed above which the + wind farm is known to produce 0.0 W of power. If None is + specified, will assume that the wind farm does not cut out + at high wind speeds. Defaults to None. + turbine_weights (NDArrayFloat | list[float] | None, optional): + weighing terms that allow the user to emphasize power at + particular turbines and/or completely ignore the power + from other turbines. This is useful when, for example, you are + modeling multiple wind farms in a single floris object. If you + only want to calculate the power production for one of those + farms and include the wake effects of the neighboring farms, + you can set the turbine_weights for the neighboring farms' + turbines to 0.0. The array of turbine powers from floris + is multiplied with this array in the calculation of the + objective function. If None, this is an array with all values + 1.0 and with shape equal to (n_findex, + n_turbines). Defaults to None. + no_wake: (bool, optional): When *True* updates the turbine + quantities without calculating the wake or adding the wake to + the flow field. This can be useful when quantifying the loss + in AEP due to wakes. Defaults to *False*. - def calculate_horizontal_plane( + + Returns: + float: + The Annual Energy Production (AEP) for the wind farm in + watt-hours. + """ + + # Verify dimensions of the variable "freq" + if np.shape(freq)[0] != self.core.flow_field.n_findex: + raise UserWarning( + "'freq' should be a one-dimensional array with dimensions (n_findex). " + f"Given shape is {np.shape(freq)}" + ) + + # Check if frequency vector sums to 1.0. If not, raise a warning + if np.abs(np.sum(freq) - 1.0) > 0.001: + self.logger.warning( + "WARNING: The frequency array provided to get_farm_AEP() does not sum to 1.0." + ) + + # Copy the full wind speed array from the floris object and initialize + # the the farm_power variable as an empty array. + wind_speeds = np.array(self.core.flow_field.wind_speeds, copy=True) + wind_directions = np.array(self.core.flow_field.wind_directions, copy=True) + turbulence_intensities = np.array(self.core.flow_field.turbulence_intensities, copy=True) + farm_power = np.zeros(self.core.flow_field.n_findex) + + # Determine which wind speeds we must evaluate + conditions_to_evaluate = wind_speeds >= cut_in_wind_speed + if cut_out_wind_speed is not None: + conditions_to_evaluate = conditions_to_evaluate & (wind_speeds < cut_out_wind_speed) + + # Evaluate the conditions in floris + if np.any(conditions_to_evaluate): + wind_speeds_subset = wind_speeds[conditions_to_evaluate] + wind_directions_subset = wind_directions[conditions_to_evaluate] + turbulence_intensities_subset = turbulence_intensities[conditions_to_evaluate] + self.set( + wind_speeds=wind_speeds_subset, + wind_directions=wind_directions_subset, + turbulence_intensities=turbulence_intensities_subset, + ) + if no_wake: + self.run_no_wake() + else: + self.run() + farm_power[conditions_to_evaluate] = self.get_farm_power( + turbine_weights=turbine_weights + ) + + # Finally, calculate AEP in GWh + aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) + + # Reset the FLORIS object to the full wind speed array + self.set( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities + ) + + return aep + + def get_farm_AEP_with_wind_data( self, - height, - x_resolution=200, + wind_data, + cut_in_wind_speed=0.001, + cut_out_wind_speed=None, + turbine_weights=None, + no_wake=False, + ) -> float: + """ + Estimate annual energy production (AEP) for distributions of wind speed, wind + direction, frequency of occurrence, and yaw offset. + + Args: + wind_data: (type(WindDataBase)): TimeSeries or WindRose object containing + the wind conditions over which to calculate the AEP. Should match the wind_data + object passed to reinitialize(). + cut_in_wind_speed (float, optional): Wind speed in m/s below which + any calculations are ignored and the wind farm is known to + produce 0.0 W of power. Note that to prevent problems with the + wake models at negative / zero wind speeds, this variable must + always have a positive value. Defaults to 0.001 [m/s]. + cut_out_wind_speed (float, optional): Wind speed above which the + wind farm is known to produce 0.0 W of power. If None is + specified, will assume that the wind farm does not cut out + at high wind speeds. Defaults to None. + turbine_weights (NDArrayFloat | list[float] | None, optional): + weighing terms that allow the user to emphasize power at + particular turbines and/or completely ignore the power + from other turbines. This is useful when, for example, you are + modeling multiple wind farms in a single floris object. If you + only want to calculate the power production for one of those + farms and include the wake effects of the neighboring farms, + you can set the turbine_weights for the neighboring farms' + turbines to 0.0. The array of turbine powers from floris + is multiplied with this array in the calculation of the + objective function. If None, this is an array with all values + 1.0 and with shape equal to (n_findex, + n_turbines). Defaults to None. + no_wake: (bool, optional): When *True* updates the turbine + quantities without calculating the wake or adding the wake to + the flow field. This can be useful when quantifying the loss + in AEP due to wakes. Defaults to *False*. + + Returns: + float: + The Annual Energy Production (AEP) for the wind farm in + watt-hours. + """ + + # Verify the wind_data object matches FLORIS' initialization + if wind_data.n_findex != self.core.flow_field.n_findex: + raise ValueError("WindData object and floris do not have same findex") + + # Get freq directly from wind_data + freq = wind_data.unpack_freq() + + return self.get_farm_AEP( + freq, + cut_in_wind_speed=cut_in_wind_speed, + cut_out_wind_speed=cut_out_wind_speed, + turbine_weights=turbine_weights, + no_wake=no_wake, + ) + + def get_turbine_ais(self) -> NDArrayFloat: + turbine_ais = axial_induction( + velocities=self.core.flow_field.u, + air_density=self.core.flow_field.air_density, + yaw_angles=self.core.farm.yaw_angles, + tilt_angles=self.core.farm.tilt_angles, + power_setpoints=self.core.farm.power_setpoints, + axial_induction_functions=self.core.farm.turbine_axial_induction_functions, + tilt_interps=self.core.farm.turbine_tilt_interps, + correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, + turbine_type_map=self.core.farm.turbine_type_map, + turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, + average_method=self.core.grid.average_method, + cubature_weights=self.core.grid.cubature_weights, + multidim_condition=self.core.flow_field.multidim_conditions, + ) + return turbine_ais + + def get_turbine_thrust_coefficients(self) -> NDArrayFloat: + turbine_thrust_coefficients = thrust_coefficient( + velocities=self.core.flow_field.u, + air_density=self.core.flow_field.air_density, + yaw_angles=self.core.farm.yaw_angles, + tilt_angles=self.core.farm.tilt_angles, + power_setpoints=self.core.farm.power_setpoints, + thrust_coefficient_functions=self.core.farm.turbine_thrust_coefficient_functions, + tilt_interps=self.core.farm.turbine_tilt_interps, + correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, + turbine_type_map=self.core.farm.turbine_type_map, + turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, + average_method=self.core.grid.average_method, + cubature_weights=self.core.grid.cubature_weights, + multidim_condition=self.core.flow_field.multidim_conditions, + ) + return turbine_thrust_coefficients + + def get_turbine_TIs(self) -> NDArrayFloat: + return self.core.flow_field.turbulence_intensity_field + + + ### Methods for sampling and visualization + + def calculate_cross_plane( + self, + downstream_dist, y_resolution=200, - x_bounds=None, + z_resolution=200, y_bounds=None, + z_bounds=None, wd=None, ws=None, ti=None, @@ -511,15 +746,6 @@ def calculate_horizontal_plane( Defaults to None. y_bounds (tuple, optional): Limits of output array (in m). Defaults to None. - wd (float, optional): Wind direction. Defaults to None. - ws (float, optional): Wind speed. Defaults to None. - ti (float, optional): Turbulence intensity. Defaults to None. - yaw_angles (NDArrayFloat, optional): Turbine yaw angles. Defaults - to None. - power_setpoints (NDArrayFloat, optional): - Turbine power setpoints. Defaults to None. - disable_turbines (NDArrayBool, optional): Boolean array on whether - to disable turbines. Defaults to None. Returns: :py:class:`~.tools.cut_plane.CutPlane`: containing values @@ -536,13 +762,14 @@ def calculate_horizontal_plane( # Store the current state for reinitialization floris_dict = self.core.as_dict() + # Set the solver to a flow field planar grid solver_settings = { "type": "flow_field_planar_grid", - "normal_vector": "z", - "planar_coordinate": height, - "flow_field_grid_points": [x_resolution, y_resolution], - "flow_field_bounds": [x_bounds, y_bounds], + "normal_vector": "x", + "planar_coordinate": downstream_dist, + "flow_field_grid_points": [y_resolution, z_resolution], + "flow_field_bounds": [y_bounds, z_bounds], } self.set( wind_directions=wd, @@ -561,17 +788,12 @@ def calculate_horizontal_plane( # TODO this just seems to be flattening and storing the data in a df; is this necessary? # It seems the biggest depenedcy is on CutPlane and the subsequent visualization tools. df = self.get_plane_of_points( - normal_vector="z", - planar_coordinate=height, + normal_vector="x", + planar_coordinate=downstream_dist, ) # Compute the cutplane - horizontal_plane = CutPlane( - df, - self.core.grid.grid_resolution[0], - self.core.grid.grid_resolution[1], - "z", - ) + cross_plane = CutPlane(df, y_resolution, z_resolution, "x") # Reset the fmodel object back to the turbine grid configuration self.core = Core.from_dict(floris_dict) @@ -579,15 +801,15 @@ def calculate_horizontal_plane( # Run the simulation again for futher postprocessing (i.e. now we can get farm power) self.run() - return horizontal_plane + return cross_plane - def calculate_cross_plane( + def calculate_horizontal_plane( self, - downstream_dist, + height, + x_resolution=200, y_resolution=200, - z_resolution=200, + x_bounds=None, y_bounds=None, - z_bounds=None, wd=None, ws=None, ti=None, @@ -610,6 +832,15 @@ def calculate_cross_plane( Defaults to None. y_bounds (tuple, optional): Limits of output array (in m). Defaults to None. + wd (float, optional): Wind direction. Defaults to None. + ws (float, optional): Wind speed. Defaults to None. + ti (float, optional): Turbulence intensity. Defaults to None. + yaw_angles (NDArrayFloat, optional): Turbine yaw angles. Defaults + to None. + power_setpoints (NDArrayFloat, optional): + Turbine power setpoints. Defaults to None. + disable_turbines (NDArrayBool, optional): Boolean array on whether + to disable turbines. Defaults to None. Returns: :py:class:`~.tools.cut_plane.CutPlane`: containing values @@ -626,14 +857,13 @@ def calculate_cross_plane( # Store the current state for reinitialization floris_dict = self.core.as_dict() - # Set the solver to a flow field planar grid solver_settings = { "type": "flow_field_planar_grid", - "normal_vector": "x", - "planar_coordinate": downstream_dist, - "flow_field_grid_points": [y_resolution, z_resolution], - "flow_field_bounds": [y_bounds, z_bounds], + "normal_vector": "z", + "planar_coordinate": height, + "flow_field_grid_points": [x_resolution, y_resolution], + "flow_field_bounds": [x_bounds, y_bounds], } self.set( wind_directions=wd, @@ -652,12 +882,17 @@ def calculate_cross_plane( # TODO this just seems to be flattening and storing the data in a df; is this necessary? # It seems the biggest depenedcy is on CutPlane and the subsequent visualization tools. df = self.get_plane_of_points( - normal_vector="x", - planar_coordinate=downstream_dist, + normal_vector="z", + planar_coordinate=height, ) # Compute the cutplane - cross_plane = CutPlane(df, y_resolution, z_resolution, "x") + horizontal_plane = CutPlane( + df, + self.core.grid.grid_resolution[0], + self.core.grid.grid_resolution[1], + "z", + ) # Reset the fmodel object back to the turbine grid configuration self.core = Core.from_dict(floris_dict) @@ -665,7 +900,7 @@ def calculate_cross_plane( # Run the simulation again for futher postprocessing (i.e. now we can get farm power) self.run() - return cross_plane + return horizontal_plane def calculate_y_plane( self, @@ -758,351 +993,113 @@ def calculate_y_plane( # Compute the cutplane y_plane = CutPlane(df, x_resolution, z_resolution, "y") - # Reset the fmodel object back to the turbine grid configuration - self.core = Core.from_dict(floris_dict) - - # Run the simulation again for futher postprocessing (i.e. now we can get farm power) - self.run() - - return y_plane - - def check_wind_condition_for_viz(self, wd=None, ws=None, ti=None): - if len(wd) > 1 or len(wd) < 1: - raise ValueError( - "Wind direction input must be of length 1 for visualization. " - f"Current length is {len(wd)}." - ) - - if len(ws) > 1 or len(ws) < 1: - raise ValueError( - "Wind speed input must be of length 1 for visualization. " - f"Current length is {len(ws)}." - ) - - if len(ti) != 1: - raise ValueError( - "Turbulence intensity input must be of length 1 for visualization. " - f"Current length is {len(ti)}." - ) - - def get_turbine_powers(self) -> NDArrayFloat: - """Calculates the power at each turbine in the wind farm. - - Returns: - NDArrayFloat: Powers at each turbine. - """ - - # Confirm calculate wake has been run - if self.core.state is not State.USED: - raise RuntimeError( - "Can't run function `FlorisModel.get_turbine_powers` without " - "first running `FlorisModel.run`." - ) - # Check for negative velocities, which could indicate bad model - # parameters or turbines very closely spaced. - if (self.core.flow_field.u < 0.0).any(): - self.logger.warning("Some velocities at the rotor are negative.") - - turbine_powers = power( - velocities=self.core.flow_field.u, - air_density=self.core.flow_field.air_density, - power_functions=self.core.farm.turbine_power_functions, - yaw_angles=self.core.farm.yaw_angles, - tilt_angles=self.core.farm.tilt_angles, - power_setpoints=self.core.farm.power_setpoints, - tilt_interps=self.core.farm.turbine_tilt_interps, - turbine_type_map=self.core.farm.turbine_type_map, - turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, - correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, - multidim_condition=self.core.flow_field.multidim_conditions, - ) - return turbine_powers - - def get_turbine_thrust_coefficients(self) -> NDArrayFloat: - turbine_thrust_coefficients = thrust_coefficient( - velocities=self.core.flow_field.u, - air_density=self.core.flow_field.air_density, - yaw_angles=self.core.farm.yaw_angles, - tilt_angles=self.core.farm.tilt_angles, - power_setpoints=self.core.farm.power_setpoints, - thrust_coefficient_functions=self.core.farm.turbine_thrust_coefficient_functions, - tilt_interps=self.core.farm.turbine_tilt_interps, - correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, - turbine_type_map=self.core.farm.turbine_type_map, - turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, - average_method=self.core.grid.average_method, - cubature_weights=self.core.grid.cubature_weights, - multidim_condition=self.core.flow_field.multidim_conditions, - ) - return turbine_thrust_coefficients - - def get_turbine_ais(self) -> NDArrayFloat: - turbine_ais = axial_induction( - velocities=self.core.flow_field.u, - air_density=self.core.flow_field.air_density, - yaw_angles=self.core.farm.yaw_angles, - tilt_angles=self.core.farm.tilt_angles, - power_setpoints=self.core.farm.power_setpoints, - axial_induction_functions=self.core.farm.turbine_axial_induction_functions, - tilt_interps=self.core.farm.turbine_tilt_interps, - correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, - turbine_type_map=self.core.farm.turbine_type_map, - turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, - average_method=self.core.grid.average_method, - cubature_weights=self.core.grid.cubature_weights, - multidim_condition=self.core.flow_field.multidim_conditions, - ) - return turbine_ais - - @property - def turbine_average_velocities(self) -> NDArrayFloat: - return average_velocity( - velocities=self.core.flow_field.u, - method=self.core.grid.average_method, - cubature_weights=self.core.grid.cubature_weights, - ) - - def get_turbine_TIs(self) -> NDArrayFloat: - return self.core.flow_field.turbulence_intensity_field - - def get_farm_power( - self, - turbine_weights=None, - use_turbulence_correction=False, - ): - """ - Report wind plant power from instance of floris. Optionally includes - uncertainty in wind direction and yaw position when determining power. - Uncertainty is included by computing the mean wind farm power for a - distribution of wind direction and yaw position deviations from the - original wind direction and yaw angles. - - Args: - turbine_weights (NDArrayFloat | list[float] | None, optional): - weighing terms that allow the user to emphasize power at - particular turbines and/or completely ignore the power - from other turbines. This is useful when, for example, you are - modeling multiple wind farms in a single floris object. If you - only want to calculate the power production for one of those - farms and include the wake effects of the neighboring farms, - you can set the turbine_weights for the neighboring farms' - turbines to 0.0. The array of turbine powers from floris - is multiplied with this array in the calculation of the - objective function. If None, this is an array with all values - 1.0 and with shape equal to (n_findex, n_turbines). - Defaults to None. - use_turbulence_correction: (bool, optional): When *True* uses a - turbulence parameter to adjust power output calculations. - Defaults to *False*. - - Returns: - float: Sum of wind turbine powers in W. - """ - # TODO: Turbulence correction used in the power calculation, but may not be in - # the model yet - # TODO: Turbines need a switch for using turbulence correction - # TODO: Uncomment out the following two lines once the above are resolved - # for turbine in self.core.farm.turbines: - # turbine.use_turbulence_correction = use_turbulence_correction - - # Confirm calculate wake has been run - if self.core.state is not State.USED: - raise RuntimeError( - "Can't run function `FlorisModel.get_turbine_powers` without " - "first running `FlorisModel.calculate_wake`." - ) - - if turbine_weights is None: - # Default to equal weighing of all turbines when turbine_weights is None - turbine_weights = np.ones( - ( - self.core.flow_field.n_findex, - self.core.farm.n_turbines, - ) - ) - elif len(np.shape(turbine_weights)) == 1: - # Deal with situation when 1D array is provided - turbine_weights = np.tile( - turbine_weights, - (self.core.flow_field.n_findex, 1), - ) - - # Calculate all turbine powers and apply weights - turbine_powers = self.get_turbine_powers() - turbine_powers = np.multiply(turbine_weights, turbine_powers) - - return np.sum(turbine_powers, axis=1) - - def get_farm_AEP( - self, - freq, - cut_in_wind_speed=0.001, - cut_out_wind_speed=None, - turbine_weights=None, - no_wake=False, - ) -> float: - """ - Estimate annual energy production (AEP) for distributions of wind speed, wind - direction, frequency of occurrence, and yaw offset. - - Args: - freq (NDArrayFloat): NumPy array with shape (n_findex) - with the frequencies of each wind direction and - wind speed combination. These frequencies should typically sum - up to 1.0 and are used to weigh the wind farm power for every - condition in calculating the wind farm's AEP. - cut_in_wind_speed (float, optional): Wind speed in m/s below which - any calculations are ignored and the wind farm is known to - produce 0.0 W of power. Note that to prevent problems with the - wake models at negative / zero wind speeds, this variable must - always have a positive value. Defaults to 0.001 [m/s]. - cut_out_wind_speed (float, optional): Wind speed above which the - wind farm is known to produce 0.0 W of power. If None is - specified, will assume that the wind farm does not cut out - at high wind speeds. Defaults to None. - turbine_weights (NDArrayFloat | list[float] | None, optional): - weighing terms that allow the user to emphasize power at - particular turbines and/or completely ignore the power - from other turbines. This is useful when, for example, you are - modeling multiple wind farms in a single floris object. If you - only want to calculate the power production for one of those - farms and include the wake effects of the neighboring farms, - you can set the turbine_weights for the neighboring farms' - turbines to 0.0. The array of turbine powers from floris - is multiplied with this array in the calculation of the - objective function. If None, this is an array with all values - 1.0 and with shape equal to (n_findex, - n_turbines). Defaults to None. - no_wake: (bool, optional): When *True* updates the turbine - quantities without calculating the wake or adding the wake to - the flow field. This can be useful when quantifying the loss - in AEP due to wakes. Defaults to *False*. - - - Returns: - float: - The Annual Energy Production (AEP) for the wind farm in - watt-hours. - """ - - # Verify dimensions of the variable "freq" - if np.shape(freq)[0] != self.core.flow_field.n_findex: - raise UserWarning( - "'freq' should be a one-dimensional array with dimensions (n_findex). " - f"Given shape is {np.shape(freq)}" - ) - - # Check if frequency vector sums to 1.0. If not, raise a warning - if np.abs(np.sum(freq) - 1.0) > 0.001: - self.logger.warning( - "WARNING: The frequency array provided to get_farm_AEP() does not sum to 1.0." - ) + # Reset the fmodel object back to the turbine grid configuration + self.core = Core.from_dict(floris_dict) - # Copy the full wind speed array from the floris object and initialize - # the the farm_power variable as an empty array. - wind_speeds = np.array(self.core.flow_field.wind_speeds, copy=True) - wind_directions = np.array(self.core.flow_field.wind_directions, copy=True) - turbulence_intensities = np.array(self.core.flow_field.turbulence_intensities, copy=True) - farm_power = np.zeros(self.core.flow_field.n_findex) + # Run the simulation again for futher postprocessing (i.e. now we can get farm power) + self.run() - # Determine which wind speeds we must evaluate - conditions_to_evaluate = wind_speeds >= cut_in_wind_speed - if cut_out_wind_speed is not None: - conditions_to_evaluate = conditions_to_evaluate & (wind_speeds < cut_out_wind_speed) + return y_plane - # Evaluate the conditions in floris - if np.any(conditions_to_evaluate): - wind_speeds_subset = wind_speeds[conditions_to_evaluate] - wind_directions_subset = wind_directions[conditions_to_evaluate] - turbulence_intensities_subset = turbulence_intensities[conditions_to_evaluate] - self.set( - wind_speeds=wind_speeds_subset, - wind_directions=wind_directions_subset, - turbulence_intensities=turbulence_intensities_subset, - ) - if no_wake: - self.run_no_wake() - else: - self.run() - farm_power[conditions_to_evaluate] = self.get_farm_power( - turbine_weights=turbine_weights + def check_wind_condition_for_viz(self, wd=None, ws=None, ti=None): + if len(wd) > 1 or len(wd) < 1: + raise ValueError( + "Wind direction input must be of length 1 for visualization. " + f"Current length is {len(wd)}." ) - # Finally, calculate AEP in GWh - aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) - - # Reset the FLORIS object to the full wind speed array - self.set( - wind_speeds=wind_speeds, - wind_directions=wind_directions, - turbulence_intensities=turbulence_intensities - ) + if len(ws) > 1 or len(ws) < 1: + raise ValueError( + "Wind speed input must be of length 1 for visualization. " + f"Current length is {len(ws)}." + ) - return aep + if len(ti) != 1: + raise ValueError( + "Turbulence intensity input must be of length 1 for visualization. " + f"Current length is {len(ti)}." + ) - def get_farm_AEP_with_wind_data( + def get_plane_of_points( self, - wind_data, - cut_in_wind_speed=0.001, - cut_out_wind_speed=None, - turbine_weights=None, - no_wake=False, - ) -> float: + normal_vector="z", + planar_coordinate=None, + ): """ - Estimate annual energy production (AEP) for distributions of wind speed, wind - direction, frequency of occurrence, and yaw offset. + Calculates velocity values through the + :py:meth:`FlorisModel.calculate_wake` method at points in plane + specified by inputs. Args: - wind_data: (type(WindDataBase)): TimeSeries or WindRose object containing - the wind conditions over which to calculate the AEP. Should match the wind_data - object passed to reinitialize(). - cut_in_wind_speed (float, optional): Wind speed in m/s below which - any calculations are ignored and the wind farm is known to - produce 0.0 W of power. Note that to prevent problems with the - wake models at negative / zero wind speeds, this variable must - always have a positive value. Defaults to 0.001 [m/s]. - cut_out_wind_speed (float, optional): Wind speed above which the - wind farm is known to produce 0.0 W of power. If None is - specified, will assume that the wind farm does not cut out - at high wind speeds. Defaults to None. - turbine_weights (NDArrayFloat | list[float] | None, optional): - weighing terms that allow the user to emphasize power at - particular turbines and/or completely ignore the power - from other turbines. This is useful when, for example, you are - modeling multiple wind farms in a single floris object. If you - only want to calculate the power production for one of those - farms and include the wake effects of the neighboring farms, - you can set the turbine_weights for the neighboring farms' - turbines to 0.0. The array of turbine powers from floris - is multiplied with this array in the calculation of the - objective function. If None, this is an array with all values - 1.0 and with shape equal to (n_findex, - n_turbines). Defaults to None. - no_wake: (bool, optional): When *True* updates the turbine - quantities without calculating the wake or adding the wake to - the flow field. This can be useful when quantifying the loss - in AEP due to wakes. Defaults to *False*. + normal_vector (string, optional): Vector normal to plane. + Defaults to z. + planar_coordinate (float, optional): Value of normal vector + to slice through. Defaults to None. Returns: - float: - The Annual Energy Production (AEP) for the wind farm in - watt-hours. + :py:class:`pandas.DataFrame`: containing values of x1, x2, x3, u, v, w """ + # Get results vectors + if normal_vector == "z": + x_flat = self.core.grid.x_sorted_inertial_frame[0].flatten() + y_flat = self.core.grid.y_sorted_inertial_frame[0].flatten() + z_flat = self.core.grid.z_sorted_inertial_frame[0].flatten() + else: + x_flat = self.core.grid.x_sorted[0].flatten() + y_flat = self.core.grid.y_sorted[0].flatten() + z_flat = self.core.grid.z_sorted[0].flatten() + u_flat = self.core.flow_field.u_sorted[0].flatten() + v_flat = self.core.flow_field.v_sorted[0].flatten() + w_flat = self.core.flow_field.w_sorted[0].flatten() - # Verify the wind_data object matches FLORIS' initialization - if wind_data.n_findex != self.core.flow_field.n_findex: - raise ValueError("WindData object and floris do not have same findex") + # Create a df of these + if normal_vector == "z": + df = pd.DataFrame( + { + "x1": x_flat, + "x2": y_flat, + "x3": z_flat, + "u": u_flat, + "v": v_flat, + "w": w_flat, + } + ) + if normal_vector == "x": + df = pd.DataFrame( + { + "x1": y_flat, + "x2": z_flat, + "x3": x_flat, + "u": u_flat, + "v": v_flat, + "w": w_flat, + } + ) + if normal_vector == "y": + df = pd.DataFrame( + { + "x1": x_flat, + "x2": z_flat, + "x3": y_flat, + "u": u_flat, + "v": v_flat, + "w": w_flat, + } + ) - # Get freq directly from wind_data - freq = wind_data.unpack_freq() + # Subset to plane + # TODO: Seems sloppy as need more than one plane in the z-direction for GCH + if planar_coordinate is not None: + df = df[np.isclose(df.x3, planar_coordinate)] # , atol=0.1, rtol=0.0)] - return self.get_farm_AEP( - freq, - cut_in_wind_speed=cut_in_wind_speed, - cut_out_wind_speed=cut_out_wind_speed, - turbine_weights=turbine_weights, - no_wake=no_wake, - ) + # Drop duplicates + # TODO is this still needed now that we setup a grid for just this plane? + df = df.drop_duplicates() + + # Sort values of df to make sure plotting is acceptable + df = df.sort_values(["x2", "x1"]).reset_index(drop=True) + + return df def sample_flow_at_points(self, x: NDArrayFloat, y: NDArrayFloat, z: NDArrayFloat): """ @@ -1248,25 +1245,82 @@ def sample_velocity_deficit_profiles( return velocity_deficit_profiles - @property - def layout_x(self): - """ - Wind turbine coordinate information. + + ### Utility methods + + def assign_hub_height_to_ref_height(self): + + # Confirm can do this operation + unique_heights = np.unique(self.core.farm.hub_heights) + if len(unique_heights) > 1: + raise ValueError( + "To assign hub heights to reference height, can not have more than one " + "specified height. " + f"Current length is {unique_heights}." + ) + + self.core.flow_field.reference_wind_height = unique_heights[0] + + def get_power_thrust_model(self) -> str: + """Get the power thrust model of a FlorisModel. Returns: - np.array: Wind turbine x-coordinate. + str: The power_thrust_model. """ - return self.core.farm.layout_x + return self.core.farm.turbine_definitions[0]["power_thrust_model"] - @property - def layout_y(self): + def set_power_thrust_model(self, power_thrust_model: str): + """Set the power thrust model of a FlorisModel. + + Args: + power_thrust_model (str): The power thrust model to set. """ - Wind turbine coordinate information. + turbine_type = self.core.farm.turbine_definitions[0] + turbine_type["power_thrust_model"] = power_thrust_model + self.set(turbine_type=[turbine_type]) + + def copy(self): + """Create an independent copy of the current FlorisModel object""" + return FlorisModel(self.core.as_dict()) + + def get_param( + self, + param: List[str], + param_idx: Optional[int] = None + ) -> Any: + """Get a parameter from a FlorisModel object. + + Args: + param (List[str]): A list of keys to traverse the FlorisModel dictionary. + param_idx (Optional[int], optional): The index to get the value at. Defaults to None. + If None, the entire parameter is returned. Returns: - np.array: Wind turbine y-coordinate. + Any: The value of the parameter. """ - return self.core.farm.layout_y + fm_dict = self.core.as_dict() + + if param_idx is None: + return nested_get(fm_dict, param) + else: + return nested_get(fm_dict, param)[param_idx] + + def set_param( + self, + param: List[str], + value: Any, + param_idx: Optional[int] = None + ): + """Set a parameter in a FlorisModel object. + + Args: + param (List[str]): A list of keys to traverse the FlorisModel dictionary. + value (Any): The value to set. + param_idx (Optional[int], optional): The index to set the value at. Defaults to None. + """ + fm_dict_mod = self.core.as_dict() + nested_set(fm_dict_mod, param, value, param_idx) + self.__init__(fm_dict_mod) def get_turbine_layout(self, z=False): """ @@ -1286,6 +1340,43 @@ def get_turbine_layout(self, z=False): else: return xcoords, ycoords + def print_dict(self) -> None: + """Print the FlorisModel dictionary. + """ + print_nested_dict(self.core.as_dict()) + + + ### Properties + + @property + def layout_x(self): + """ + Wind turbine coordinate information. + + Returns: + np.array: Wind turbine x-coordinate. + """ + return self.core.farm.layout_x + + @property + def layout_y(self): + """ + Wind turbine coordinate information. + + Returns: + np.array: Wind turbine y-coordinate. + """ + return self.core.farm.layout_y + + @property + def turbine_average_velocities(self) -> NDArrayFloat: + return average_velocity( + velocities=self.core.flow_field.u, + method=self.core.grid.average_method, + cubature_weights=self.core.grid.cubature_weights, + ) + + ### v3 functions that are removed - raise an error if used def calculate_wake(self, **_): diff --git a/floris/utilities.py b/floris/utilities.py index 117726362..074d9a1b3 100644 --- a/floris/utilities.py +++ b/floris/utilities.py @@ -3,7 +3,13 @@ import os from math import ceil -from typing import Tuple +from typing import ( + Any, + Dict, + List, + Optional, + Tuple, +) import numpy as np import yaml @@ -266,3 +272,69 @@ def round_nearest(x: int | float, base: int = 5) -> int: int: The rounded number. """ return base * ceil((x + 0.5) / base) + + +def nested_get( + d: Dict[str, Any], + keys: List[str] +) -> Any: + """Get a value from a nested dictionary using a list of keys. + Based on: + https://stackoverflow.com/questions/14692690/access-nested-dictionary-items-via-a-list-of-keys + + Args: + d (Dict[str, Any]): The dictionary to get the value from. + keys (List[str]): A list of keys to traverse the dictionary. + + Returns: + Any: The value at the end of the key traversal. + """ + for key in keys: + d = d[key] + return d + +def nested_set( + d: Dict[str, Any], + keys: List[str], + value: Any, + idx: Optional[int] = None +) -> None: + """Set a value in a nested dictionary using a list of keys. + Based on: + https://stackoverflow.com/questions/14692690/access-nested-dictionary-items-via-a-list-of-keys + + Args: + dic (Dict[str, Any]): The dictionary to set the value in. + keys (List[str]): A list of keys to traverse the dictionary. + value (Any): The value to set. + idx (Optional[int], optional): If the value is an list, the index to change. + Defaults to None. + """ + d_in = d.copy() + + for key in keys[:-1]: + d = d.setdefault(key, {}) + if idx is None: + # Parameter is a scalar, set directly + d[keys[-1]] = value + else: + # Parameter is a list, need to first get the list, change the values at idx + + # # Get the underlying list + par_list = nested_get(d_in, keys) + par_list[idx] = value + d[keys[-1]] = par_list + +def print_nested_dict(dictionary: Dict[str, Any], indent: int = 0) -> None: + """Print a nested dictionary with indentation. + + Args: + dictionary (Dict[str, Any]): The dictionary to print. + indent (int, optional): The number of spaces to indent. Defaults to 0. + """ + for key, value in dictionary.items(): + print(" " * indent + str(key)) + if isinstance(value, dict): + print_nested_dict(value, indent + 4) + else: + print(" " * (indent + 4) + str(value)) diff --git a/tests/floris_model_integration_test.py b/tests/floris_model_integration_test.py index 397cbef9d..3bb210cda 100644 --- a/tests/floris_model_integration_test.py +++ b/tests/floris_model_integration_test.py @@ -493,3 +493,30 @@ def test_calculate_planes(): fmodel.calculate_y_plane(0.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) with pytest.raises(ValueError): fmodel.calculate_cross_plane(500.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) + +def test_get_and_set_param(): + fmodel = FlorisModel(configuration=YAML_INPUT) + + # Get the wind speed + wind_speeds = fmodel.get_param(['flow_field', 'wind_speeds']) + assert wind_speeds[0] == 8.0 + + # Set the wind speed + fmodel.set_param(['flow_field', 'wind_speeds'], 10.0, param_idx=0) + wind_speed = fmodel.get_param(['flow_field', 'wind_speeds'], param_idx=0 ) + assert wind_speed == 10.0 + + # Repeat with wake parameter + fmodel.set_param(['wake', 'wake_velocity_parameters', 'gauss', 'alpha'], 0.1) + alpha = fmodel.get_param(['wake', 'wake_velocity_parameters', 'gauss', 'alpha']) + assert alpha == 0.1 + +def test_get_power_thrust_model(): + fmodel = FlorisModel(configuration=YAML_INPUT) + assert fmodel.get_power_thrust_model() == "cosine-loss" + +def test_set_power_thrust_model(): + + fmodel = FlorisModel(configuration=YAML_INPUT) + fmodel.set_power_thrust_model("simple-derating") + assert fmodel.get_power_thrust_model() == "simple-derating" diff --git a/tests/utilities_unit_test.py b/tests/utilities_unit_test.py index 3048e7fb0..f58ca5c64 100644 --- a/tests/utilities_unit_test.py +++ b/tests/utilities_unit_test.py @@ -1,10 +1,14 @@ +from pathlib import Path + import attr import numpy as np import pytest from floris.utilities import ( cosd, + nested_get, + nested_set, reverse_rotate_coordinates_rel_west, rotate_coordinates_rel_west, sind, @@ -20,6 +24,10 @@ ) +TEST_DATA = Path(__file__).resolve().parent / "data" +YAML_INPUT = TEST_DATA / "input_full.yaml" + + def test_cosd(): assert pytest.approx(cosd(0.0)) == 1.0 assert pytest.approx(cosd(90.0)) == 0.0 @@ -154,3 +162,28 @@ def test_reverse_rotate_coordinates_rel_west(): np.testing.assert_almost_equal(grid_x_reversed.squeeze(), coordinates[:,0].squeeze()) np.testing.assert_almost_equal(grid_y_reversed.squeeze(), coordinates[:,1].squeeze()) np.testing.assert_almost_equal(grid_z_reversed.squeeze(), coordinates[:,2].squeeze()) + + +def test_nested_get(): + example_dict = { + 'a': { + 'b': { + 'c': 10 + } + } + } + + assert nested_get(example_dict, ['a', 'b', 'c']) == 10 + + +def test_nested_set(): + example_dict = { + 'a': { + 'b': { + 'c': 10 + } + } + } + + nested_set(example_dict, ['a', 'b', 'c'], 20) + assert nested_get(example_dict, ['a', 'b', 'c']) == 20 From ecfe9f808e6a1e108a46d4a4d88faf9d7da8da11 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Thu, 21 Mar 2024 13:26:55 -0600 Subject: [PATCH 55/78] Allow to fix yaw to nominal wind direction (#850) --- floris/uncertain_floris_model.py | 151 ++++++++++++------ ...uncertain_floris_model_integration_test.py | 35 +++- 2 files changed, 132 insertions(+), 54 deletions(-) diff --git a/floris/uncertain_floris_model.py b/floris/uncertain_floris_model.py index b91b482a3..2cfc85b0b 100644 --- a/floris/uncertain_floris_model.py +++ b/floris/uncertain_floris_model.py @@ -11,7 +11,7 @@ NDArrayBool, NDArrayFloat, ) -from floris.utilities import wrap_360 +from floris.utilities import wrap_180 from floris.wind_data import WindDataBase @@ -20,7 +20,14 @@ class UncertainFlorisModel(LoggingManager): An interface for handling uncertainty in wind farm simulations. This class contains a FlorisModel object and adds functionality to handle - uncertainty in wind direction. + uncertainty in wind direction. It is designed to be used similarly to FlorisModel. + In the model, the turbine powers are computed for a set of expanded wind conditions, + given by wd_sample_points, and then the powers are computed as a gaussian blend + of these expanded conditions. + + To reduce computational costs, the wind directions, wind speeds, turbulence intensities, + yaw angles, and power setpoints are rounded to specified resolutions. Only unique + conditions from within the expanded set of conditions are run. Args: configuration (:py:obj:`dict`): The Floris configuration dictionary or YAML file. @@ -29,20 +36,27 @@ class UncertainFlorisModel(LoggingManager): - **farm**: See `floris.simulation.farm.Farm` for more details. - **turbine**: See `floris.simulation.turbine.Turbine` for more details. - **wake**: See `floris.simulation.wake.WakeManager` for more details. - - **logging**: See `floris.core.Core` for more details. - wd_resolution (float, optional): The resolution of wind direction, in degrees. - Defaults to 1.0. + - **logging**: See `floris.simulation.core.Core` for more details. + wd_resolution (float, optional): The resolution of wind direction for generating + gaussian blends, in degrees. Defaults to 1.0. ws_resolution (float, optional): The resolution of wind speed, in m/s. Defaults to 1.0. - ti_resolution (float, optional): The resolution of turbulence intensity. Defaults to 0.01. - yaw_resolution (float, optional): The resolution of yaw angle, in degrees. Defaults to 1.0. + ti_resolution (float, optional): The resolution of turbulence intensity. + Defaults to 0.01. + yaw_resolution (float, optional): The resolution of yaw angle, in degrees. + Defaults to 1.0. power_setpoint_resolution (int, optional): The resolution of power setpoints, in kW. Defaults to 100. wd_std (float, optional): The standard deviation of wind direction. Defaults to 3.0. wd_sample_points (list[float], optional): The sample points for wind direction. If not provided, defaults to [-2 * wd_std, -1 * wd_std, 0, wd_std, 2 * wd_std]. + fix_yaw_to_nominal_direction (bool, optional): Fix the yaw angle to the nominal + direction? When False, the yaw misalignment is the same across the sampled wind + directions. When True, the turbine orientation is fixed to the nominal wind + direction such that the yaw misalignment changes depending on the sampled wind + direction. Defaults to False. verbose (bool, optional): Verbosity flag for printing messages. Defaults to False. - """ + def __init__( self, configuration: dict | str | Path, @@ -53,33 +67,9 @@ def __init__( power_setpoint_resolution=100, # kW wd_std=3.0, wd_sample_points=None, + fix_yaw_to_nominal_direction=False, verbose=False, ): - """ - Instantiate the UncertainFlorisModel. - - Args: - configuration (:py:obj:`dict`): The Floris configuration dictionary or YAML file. - The configuration should have the following inputs specified. - - **flow_field**: See `floris.simulation.flow_field.FlowField` for more details. - - **farm**: See `floris.simulation.farm.Farm` for more details. - - **turbine**: See `floris.simulation.turbine.Turbine` for more details. - - **wake**: See `floris.simulation.wake.WakeManager` for more details. - - **logging**: See `floris.simulation.core.Core` for more details. - wd_resolution (float, optional): The resolution of wind direction for generating - gaussian blends, in degrees. Defaults to 1.0. - ws_resolution (float, optional): The resolution of wind speed, in m/s. Defaults to 1.0. - ti_resolution (float, optional): The resolution of turbulence intensity. - efaults to 0.01. - yaw_resolution (float, optional): The resolution of yaw angle, in degrees. - Defaults to 1.0. - power_setpoint_resolution (int, optional): The resolution of power setpoints, in kW. - Defaults to 100. - wd_std (float, optional): The standard deviation of wind direction. Defaults to 3.0. - wd_sample_points (list[float], optional): The sample points for wind direction. - If not provided, defaults to [-2 * wd_std, -1 * wd_std, 0, wd_std, 2 * wd_std]. - verbose (bool, optional): Verbosity flag for printing messages. Defaults to False. - """ # Save these inputs self.wd_resolution = wd_resolution self.ws_resolution = ws_resolution @@ -87,6 +77,7 @@ def __init__( self.yaw_resolution = yaw_resolution self.power_setpoint_resolution = power_setpoint_resolution self.wd_std = wd_std + self.fix_yaw_to_nominal_direction = fix_yaw_to_nominal_direction self.verbose = verbose # If wd_sample_points, default to 1 and 2 std @@ -108,6 +99,20 @@ def __init__( # Instantiate the expanded FlorisModel # self.core_interface = FlorisModel(configuration) + def copy(self): + """Create an independent copy of the current UncertainFlorisModel object""" + return UncertainFlorisModel( + self.fmodel_unexpanded.core.as_dict(), + wd_resolution=self.wd_resolution, + ws_resolution=self.ws_resolution, + ti_resolution=self.ti_resolution, + yaw_resolution=self.yaw_resolution, + power_setpoint_resolution=self.power_setpoint_resolution, + wd_std=self.wd_std, + wd_sample_points=self.wd_sample_points, + fix_yaw_to_nominal_direction=self.fix_yaw_to_nominal_direction, + verbose=self.verbose, + ) def set( self, @@ -116,15 +121,13 @@ def set( """ Set the wind farm conditions in the UncertainFlorisModel. - See FlorisInterace.set() for details of the contents of kwargs. + See FlorisModel.set() for details of the contents of kwargs. Args: **kwargs: The wind farm conditions to set. """ # Call the nominal set function - self.fmodel_unexpanded.set( - **kwargs - ) + self.fmodel_unexpanded.set(**kwargs) self._set_uncertain() @@ -171,7 +174,10 @@ def _set_uncertain( # Get the expanded inputs self._expanded_wind_directions = self._expand_wind_directions( - self.rounded_inputs, self.wd_sample_points + self.rounded_inputs, + self.wd_sample_points, + self.fix_yaw_to_nominal_direction, + self.fmodel_unexpanded.core.farm.n_turbines, ) self.n_expanded = self._expanded_wind_directions.shape[0] @@ -196,7 +202,9 @@ def _set_uncertain( wind_speeds=self.unique_inputs[:, 1], turbulence_intensities=self.unique_inputs[:, 2], yaw_angles=self.unique_inputs[:, 3 : 3 + self.fmodel_unexpanded.core.farm.n_turbines], - power_setpoints=self.unique_inputs[:, 3 + self.fmodel_unexpanded.core.farm.n_turbines:] + power_setpoints=self.unique_inputs[ + :, 3 + self.fmodel_unexpanded.core.farm.n_turbines : + ], ) def run(self): @@ -245,7 +253,7 @@ def get_turbine_powers(self): weights=self.weights, n_unexpanded=self.n_unexpanded, n_sample_points=self.n_sample_points, - n_turbines=self.fmodel_unexpanded.core.farm.n_turbines + n_turbines=self.fmodel_unexpanded.core.farm.n_turbines, ) return result @@ -525,17 +533,26 @@ def _get_rounded_inputs( rounded_input_array[:, 2] = ( np.round(rounded_input_array[:, 2] / ti_resolution) * ti_resolution ) - rounded_input_array[:, 3] = ( - np.round(rounded_input_array[:, 3] / yaw_resolution) * yaw_resolution + rounded_input_array[:, 3 : 3 + self.fmodel_unexpanded.core.farm.n_turbines] = ( + np.round( + rounded_input_array[:, 3 : 3 + self.fmodel_unexpanded.core.farm.n_turbines] + / yaw_resolution + ) + * yaw_resolution ) - rounded_input_array[:, 4] = ( - np.round(rounded_input_array[:, 4] / power_setpoint_resolution) + rounded_input_array[:, 3 + self.fmodel_unexpanded.core.farm.n_turbines :] = ( + np.round( + rounded_input_array[:, 3 + self.fmodel_unexpanded.core.farm.n_turbines :] + / power_setpoint_resolution + ) * power_setpoint_resolution ) return rounded_input_array - def _expand_wind_directions(self, input_array, wd_sample_points): + def _expand_wind_directions( + self, input_array, wd_sample_points, fix_yaw_to_nominal_direction=False, n_turbines=None + ): """ Expand wind direction data. @@ -547,6 +564,10 @@ def _expand_wind_directions(self, input_array, wd_sample_points): represents wind direction. wd_sample_points (list): List of integers representing wind direction sample points. + fix_yaw_to_nominal_direction (bool): Fix the yaw angle to the nominal + direction? Defaults to False + n_turbines (int): The number of turbines in the wind farm. Must be supplied + if fix_yaw_to_nominal_direction is True. Returns: numpy.ndarray: Expanded wind direction data as a 2D numpy array @@ -572,6 +593,10 @@ def _expand_wind_directions(self, input_array, wd_sample_points): if wd_sample_points[len(wd_sample_points) // 2] != 0: raise ValueError("The middle element of wd_sample_points must be 0.") + # If fix_yaw_to_nominal_direction is True, n_turbines must be supplied + if fix_yaw_to_nominal_direction and n_turbines is None: + raise ValueError("The number of turbines in the wind farm must be supplied") + num_samples = len(wd_sample_points) num_rows = input_array.shape[0] @@ -589,6 +614,15 @@ def _expand_wind_directions(self, input_array, wd_sample_points): output_array[start_idx:end_idx, 0] + wd_sample_points[i] ) % 360 + # If fix_yaw_to_nominal_direction is True, set the yaw angle to relative + # to the nominal wind direction + if fix_yaw_to_nominal_direction: + + # Wrap between -180 and 180 + output_array[start_idx:end_idx, 3 : 3 + n_turbines] = wrap_180( + output_array[start_idx:end_idx, 3 : 3 + n_turbines] + wd_sample_points[i] + ) + return output_array def _get_unique_inputs(self, input_array): @@ -644,7 +678,7 @@ def layout_x(self): Returns: np.array: Wind turbine x-coordinate. """ - return self.core_interface.core.farm.layout_x + return self.fmodel_unexpanded.core.farm.layout_x @property def layout_y(self): @@ -654,15 +688,26 @@ def layout_y(self): Returns: np.array: Wind turbine y-coordinate. """ - return self.core_interface.core.farm.layout_y + return self.fmodel_unexpanded.core.farm.layout_y + + @property + def core(self): + """ + Returns the core of the unexpanded model. + + Returns: + Floris: The core of the unexpanded model. + """ + return self.fmodel_unexpanded.core + def map_turbine_powers_uncertain( - unique_turbine_powers, - map_to_expanded_inputs, - weights, - n_unexpanded, - n_sample_points, - n_turbines + unique_turbine_powers, + map_to_expanded_inputs, + weights, + n_unexpanded, + n_sample_points, + n_turbines, ): """Calculates the power at each turbine in the wind farm based on uncertainty weights. diff --git a/tests/uncertain_floris_model_integration_test.py b/tests/uncertain_floris_model_integration_test.py index 186c5dd8f..c6bfb0f8e 100644 --- a/tests/uncertain_floris_model_integration_test.py +++ b/tests/uncertain_floris_model_integration_test.py @@ -67,6 +67,39 @@ def test_expand_wind_directions(): np.testing.assert_almost_equal(output_array[-1, 0], 14.0) +def test_expand_wind_directions_with_yaw_nom(): + ufmodel = UncertainFlorisModel(configuration=YAML_INPUT) + + # Assume 2 turbine + n_turbines = 2 + + # Assume n_findex = 2 + input_array = np.array( + [[270.0, 8.0, 0.6, 0.0, 0.0, 0.0, 0.0], [270.0, 8.0, 0.6, 0.0, 2.0, 0.0, 0.0]] + ) + + # 3 sample points + wd_sample_points = [-3, 0, 3] + + # Test correction operations + output_array = ufmodel._expand_wind_directions(input_array, wd_sample_points, True, n_turbines) + + # Check the first direction + np.testing.assert_almost_equal(output_array[0, 0], 267) + + # Check the first yaw + np.testing.assert_almost_equal(output_array[0, 4], -3) + + # Rerun with fix_yaw_to_nominal_direction = False, and now the yaw should be 0 + output_array = ufmodel._expand_wind_directions(input_array, wd_sample_points, False, n_turbines) + + # Check the first direction + np.testing.assert_almost_equal(output_array[0, 0], 267) + + # Check the first yaw + np.testing.assert_almost_equal(output_array[0, 4], 0) + + def test_get_unique_inputs(): ufmodel = UncertainFlorisModel(configuration=YAML_INPUT) @@ -131,8 +164,8 @@ def test_uncertain_floris_model(): np.testing.assert_allclose(np.sum(nom_powers * weights), unc_powers) -def test_uncertain_floris_model_setpoints(): +def test_uncertain_floris_model_setpoints(): fmodel = FlorisModel(configuration=YAML_INPUT) ufmodel = UncertainFlorisModel(configuration=YAML_INPUT, wd_sample_points=[-3, 0, 3], wd_std=3) From ddadefa9b9555bd9f5fe4163566f2005dce69924 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Fri, 22 Mar 2024 13:57:33 -0600 Subject: [PATCH 56/78] Add CSV reader for WindRose (#848) --- floris/wind_data.py | 161 ++++++++++++++++++++++++++++ tests/data/wind_rose.csv | 4 + tests/data/wind_ti_rose.csv | 4 + tests/wind_data_integration_test.py | 156 ++++++++++++++++++--------- 4 files changed, 276 insertions(+), 49 deletions(-) create mode 100644 tests/data/wind_rose.csv create mode 100644 tests/data/wind_ti_rose.csv diff --git a/floris/wind_data.py b/floris/wind_data.py index ab202e670..2ecac6fac 100644 --- a/floris/wind_data.py +++ b/floris/wind_data.py @@ -538,6 +538,90 @@ def plot_ti_over_ws( ax.set_ylabel("Turbulence Intensity (%)") ax.grid(True) + @staticmethod + def read_csv_long(file_path: str, + ws_col: str = 'wind_speeds', + wd_col: str = 'wind_directions', + ti_col_or_value: str | float = 'turbulence_intensities', + freq_col: str | None = None, + sep: str = ",", + ) -> WindRose: + """ + Read a long-formatted CSV file into the wind rose object. By long, what is meant + is that the wind speed, wind direction combination is given for each row in the + CSV file. The wind speed, wind direction, are + given in separate columns, and the frequency of occurrence of each combination + is given in a separate column. The frequency column is optional, and if not + provided, uniform frequency of all bins is assumed. + + The value of ti_col_or_value can be either a string or a float. If it is a string, + it is assumed to be the name of the column in the CSV file that contains the + turbulence intensity values. If it is a float, it is assumed to be a constant + turbulence intensity value for all wind speed and direction combinations. + + Args: + file_path (str): Path to the CSV file. + ws_col (str): Name of the column in the CSV file that contains the wind speed + values. Defaults to 'wind_speeds'. + wd_col (str): Name of the column in the CSV file that contains the wind direction + values. Defaults to 'wind_directions'. + ti_col_or_value (str or float): Name of the column in the CSV file that contains + the turbulence intensity values, or a constant turbulence intensity value. + freq_col (str): Name of the column in the CSV file that contains the frequency + values. Defaults to None in which case constant frequency assumed. + sep (str): Delimiter to use. Defaults to ','. + + Returns: + WindRose: Wind rose object created from the CSV file. + """ + + # Read in the CSV file + df = pd.read_csv(file_path, sep=sep) + + # Check that ti_col_or_value is a string or a float + if not isinstance(ti_col_or_value, (str, float)): + raise TypeError("ti_col_or_value must be a string or a float") + + # Check that the required columns are present + if ws_col not in df.columns: + raise ValueError(f"Column {ws_col} not found in CSV file") + if wd_col not in df.columns: + raise ValueError(f"Column {wd_col} not found in CSV file") + if ti_col_or_value not in df.columns and isinstance(ti_col_or_value, str): + raise ValueError(f"Column {ti_col_or_value} not found in CSV file") + if freq_col not in df.columns and freq_col is not None: + raise ValueError(f"Column {freq_col} not found in CSV file") + + # Get the wind speed, wind direction, and turbulence intensity values + wind_directions = df[wd_col].values + wind_speeds = df[ws_col].values + if isinstance(ti_col_or_value, str): + turbulence_intensities = df[ti_col_or_value].values + else: + turbulence_intensities = ti_col_or_value * np.ones(len(wind_speeds)) + if freq_col is not None: + freq_values = df[freq_col].values + else: + freq_values = np.ones(len(wind_speeds)) + + # Normalize freq_values + freq_values = freq_values / np.sum(freq_values) + + # Get the unique values of wind directions and wind speeds + unique_wd = np.unique(wind_directions) + unique_ws = np.unique(wind_speeds) + + # Get the step side for wind direction and wind speed + wd_step = unique_wd[1] - unique_wd[0] + ws_step = unique_ws[1] - unique_ws[0] + + # Now use TimeSeries to create a wind rose + time_series = TimeSeries(wind_directions, wind_speeds, turbulence_intensities) + + # Now build a new wind rose using the new steps + return time_series.to_wind_rose( + wd_step=wd_step, ws_step=ws_step, bin_weights=freq_values + ) class WindTIRose(WindDataBase): """ @@ -901,6 +985,83 @@ def plot_ti_over_ws( ax.set_ylabel("Mean Turbulence Intensity (%)") ax.grid(True) + @staticmethod + def read_csv_long(file_path: str, + ws_col: str = 'wind_speeds', + wd_col: str = 'wind_directions', + ti_col: str = 'turbulence_intensities', + freq_col: str | None = None, + sep: str = ",", + ) -> WindTIRose: + """ + Read a long-formatted CSV file into the WindTIRose object. By long, what is meant + is that the wind speed, wind direction and turbulence intensities + combination is given for each row in the + CSV file. The wind speed, wind direction, and turbulence intensity are + given in separate columns, and the frequency of occurrence of each combination + is given in a separate column. The frequency column is optional, and if not + provided, uniform frequency of all bins is assumed. + + Args: + file_path (str): Path to the CSV file. + ws_col (str): Name of the column in the CSV file that contains the wind speed + values. Defaults to 'wind_speeds'. + wd_col (str): Name of the column in the CSV file that contains the wind direction + values. Defaults to 'wind_directions'. + ti_col (str): Name of the column in the CSV file that contains + the turbulence intensity values. + freq_col (str): Name of the column in the CSV file that contains the frequency + values. Defaults to None in which case constant frequency assumed. + sep (str): Delimiter to use. Defaults to ','. + + Returns: + WindRose: Wind rose object created from the CSV file. + """ + + # Read in the CSV file + df = pd.read_csv(file_path, sep=sep) + + + # Check that the required columns are present + if ws_col not in df.columns: + raise ValueError(f"Column {ws_col} not found in CSV file") + if wd_col not in df.columns: + raise ValueError(f"Column {wd_col} not found in CSV file") + if ti_col not in df.columns: + raise ValueError(f"Column {ti_col} not found in CSV file") + if freq_col not in df.columns and freq_col is not None: + raise ValueError(f"Column {freq_col} not found in CSV file") + + # Get the wind speed, wind direction, and turbulence intensity values + wind_directions = df[wd_col].values + wind_speeds = df[ws_col].values + turbulence_intensities = df[ti_col].values + if freq_col is not None: + freq_values = df[freq_col].values + else: + freq_values = np.ones(len(wind_speeds)) + + # Normalize freq_values + freq_values = freq_values / np.sum(freq_values) + + # Get the unique values of wind directions and wind speeds + unique_wd = np.unique(wind_directions) + unique_ws = np.unique(wind_speeds) + unique_ti = np.unique(turbulence_intensities) + + # Get the step side for wind direction and wind speed + wd_step = unique_wd[1] - unique_wd[0] + ws_step = unique_ws[1] - unique_ws[0] + ti_step = unique_ti[1] - unique_ti[0] + + # Now use TimeSeries to create a wind rose + time_series = TimeSeries(wind_directions, wind_speeds, turbulence_intensities) + + # Now build a new wind rose using the new steps + return time_series.to_wind_ti_rose( + wd_step=wd_step, ws_step=ws_step, ti_step=ti_step,bin_weights=freq_values + ) + class TimeSeries(WindDataBase): """ diff --git a/tests/data/wind_rose.csv b/tests/data/wind_rose.csv new file mode 100644 index 000000000..fd7279d49 --- /dev/null +++ b/tests/data/wind_rose.csv @@ -0,0 +1,4 @@ +ws,wd,freq_val +8,270,0.25 +9,270,0.25 +8,280,0.5 diff --git a/tests/data/wind_ti_rose.csv b/tests/data/wind_ti_rose.csv new file mode 100644 index 000000000..e293c3e63 --- /dev/null +++ b/tests/data/wind_ti_rose.csv @@ -0,0 +1,4 @@ +ws,wd,ti,freq_val +8,270,0.06,0.25 +9,270,0.06,0.25 +8,280,0.07,0.5 diff --git a/tests/wind_data_integration_test.py b/tests/wind_data_integration_test.py index ecc8281b3..778c35403 100644 --- a/tests/wind_data_integration_test.py +++ b/tests/wind_data_integration_test.py @@ -1,3 +1,5 @@ +from pathlib import Path + import numpy as np import pytest @@ -9,6 +11,9 @@ from floris.wind_data import WindDataBase +TEST_DATA = Path(__file__).resolve().parent / "data" + + class ChildClassTest(WindDataBase): def __init__(self): pass @@ -37,13 +42,13 @@ def test_time_series_instantiation(): # Test that passing floats to wind directions and wind speeds returns a list of # length turbulence intensities - time_series = TimeSeries(270., 8.0, turbulence_intensities=np.array([0.06, 0.07, 0.08])) + time_series = TimeSeries(270.0, 8.0, turbulence_intensities=np.array([0.06, 0.07, 0.08])) np.testing.assert_allclose(time_series.wind_directions, [270, 270, 270]) np.testing.assert_allclose(time_series.wind_speeds, [8, 8, 8]) # Test that passing in all floats raises a type error with pytest.raises(TypeError): - TimeSeries(270., 8.0, 0.06) + TimeSeries(270.0, 8.0, 0.06) # Test casting of both wind speeds and TI time_series = TimeSeries(wind_directions, 8.0, 0.06) @@ -54,9 +59,7 @@ def test_time_series_instantiation(): # wind directions and wind speeds raises an error with pytest.raises(ValueError): TimeSeries( - wind_directions, - wind_speeds, - turbulence_intensities=np.array([0.06, 0.07, 0.08, 0.09]) + wind_directions, wind_speeds, turbulence_intensities=np.array([0.06, 0.07, 0.08, 0.09]) ) @@ -71,8 +74,7 @@ def test_wind_rose_init(): # Pass ti_table in as a single float and confirm it is broadcast to the correct shape wind_rose = WindRose(wind_directions, wind_speeds, ti_table=0.06) np.testing.assert_allclose( - wind_rose.ti_table, - np.array([[0.06, 0.06], [0.06, 0.06], [0.06, 0.06]]) + wind_rose.ti_table, np.array([[0.06, 0.06], [0.06, 0.06], [0.06, 0.06]]) ) # Pass ti_table in as a 2D array and confirm it is used as is @@ -83,9 +85,7 @@ def test_wind_rose_init(): # Confirm passing in a ti_table that is 1D raises an error with pytest.raises(ValueError): WindRose( - wind_directions, - wind_speeds, - ti_table=np.array([0.06, 0.06, 0.06, 0.06, 0.06, 0.06]) + wind_directions, wind_speeds, ti_table=np.array([0.06, 0.06, 0.06, 0.06, 0.06, 0.06]) ) # Confirm passing in a ti_table that is wrong dimensions raises an error @@ -94,12 +94,12 @@ def test_wind_rose_init(): # This should be ok since the frequency array shape matches the wind directions # and wind speeds - _ = WindRose(wind_directions, wind_speeds, ti_table= .06 ,freq_table=np.ones((3, 2))) + _ = WindRose(wind_directions, wind_speeds, ti_table=0.06, freq_table=np.ones((3, 2))) # This should raise an error since the frequency array shape does not # match the wind directions and wind speeds with pytest.raises(ValueError): - WindRose(wind_directions, wind_speeds, 0.06, np.ones((3, 3))) + WindRose(wind_directions, wind_speeds, 0.06, np.ones((3, 3))) def test_wind_rose_grid(): @@ -171,7 +171,7 @@ def test_unpack_for_reinitialize(): freq_table = np.array([[1.0, 0.0], [0, 1.0], [0, 0]]) # First test using default assumption only non-zero frequency cases computed - wind_rose = WindRose(wind_directions, wind_speeds, 0.06, freq_table) + wind_rose = WindRose(wind_directions, wind_speeds, 0.06, freq_table) ( wind_directions_unpack, @@ -479,88 +479,146 @@ def test_time_series_to_wind_ti_rose(): freq_table = wind_rose.freq_table np.testing.assert_almost_equal(freq_table[0, 1, :], [0, 0]) -def test_get_speed_multipliers_by_wd(): +def test_get_speed_multipliers_by_wd(): heterogenous_inflow_config_by_wd = { - 'speed_multipliers': np.array( + "speed_multipliers": np.array( [ [1.0, 1.1, 1.2], [1.1, 1.1, 1.1], [1.3, 1.4, 1.5], ] ), - 'wind_directions': np.array([0, 90, 270]) + "wind_directions": np.array([0, 90, 270]), } # Check for correctness - wind_directions = np.array([240, 80,15]) - expected_output = np.array( - [ - [1.3, 1.4, 1.5], - [1.1, 1.1, 1.1], - [1.0, 1.1, 1.2] - ] - ) + wind_directions = np.array([240, 80, 15]) + expected_output = np.array([[1.3, 1.4, 1.5], [1.1, 1.1, 1.1], [1.0, 1.1, 1.2]]) wind_data = WindDataBase() result = wind_data.get_speed_multipliers_by_wd( - heterogenous_inflow_config_by_wd, - wind_directions + heterogenous_inflow_config_by_wd, wind_directions ) assert np.allclose(result, expected_output) # Confirm wrapping behavior wind_directions = np.array([350, 10]) - expected_output = np.array([[1.0, 1.1, 1.2], - [1.0, 1.1, 1.2]]) + expected_output = np.array([[1.0, 1.1, 1.2], [1.0, 1.1, 1.2]]) result = wind_data.get_speed_multipliers_by_wd( - heterogenous_inflow_config_by_wd, - wind_directions + heterogenous_inflow_config_by_wd, wind_directions ) assert np.allclose(result, expected_output) # Confirm can expand the result to match wind directions - wind_directions = np.arange(0.0,360.0,10.0) + wind_directions = np.arange(0.0, 360.0, 10.0) num_wd = len(wind_directions) - result = wind_data.get_speed_multipliers_by_wd(heterogenous_inflow_config_by_wd, - wind_directions) + result = wind_data.get_speed_multipliers_by_wd( + heterogenous_inflow_config_by_wd, wind_directions + ) assert result.shape[0] == num_wd -def test_gen_heterogenous_inflow_config(): +def test_gen_heterogenous_inflow_config(): wind_directions = np.array([259.8, 260.2, 260.3, 260.1, 270.0]) wind_speeds = 8 turbulence_intensities = 0.06 heterogenous_inflow_config_by_wd = { - 'speed_multipliers': np.array( + "speed_multipliers": np.array( [ [0.9, 0.9], [1.0, 1.0], [1.1, 1.2], ] ), - 'wind_directions' : np.array([250, 260, 270]), - 'x' : np.array([0, 1000]), - 'y' : np.array([0, 0]), + "wind_directions": np.array([250, 260, 270]), + "x": np.array([0, 1000]), + "y": np.array([0, 0]), } time_series = TimeSeries( wind_directions, wind_speeds, turbulence_intensities=turbulence_intensities, - heterogenous_inflow_config_by_wd=heterogenous_inflow_config_by_wd + heterogenous_inflow_config_by_wd=heterogenous_inflow_config_by_wd, ) (_, _, _, _, _, heterogenous_inflow_config) = time_series.unpack() - expected_result = np.array( - [ - [1.0, 1.0], - [1.0, 1.0], - [1.0, 1.0], - [1.0, 1.0], - [1.1, 1.2] - ] + expected_result = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.1, 1.2]]) + np.testing.assert_allclose(heterogenous_inflow_config["speed_multipliers"], expected_result) + np.testing.assert_allclose( + heterogenous_inflow_config["x"], heterogenous_inflow_config_by_wd["x"] ) - np.testing.assert_allclose(heterogenous_inflow_config['speed_multipliers'], expected_result) - np.testing.assert_allclose(heterogenous_inflow_config['x'],heterogenous_inflow_config_by_wd['x']) + + +def test_read_csv_long(): + # Read in the wind rose data from the csv file + + # First confirm that the data raises value error when wrong columns passed + with pytest.raises(ValueError): + wind_rose = WindRose.read_csv_long(TEST_DATA / "wind_rose.csv") + + # Since TI not specified in table, not giving a fixed TI should raise an error + with pytest.raises(ValueError): + wind_rose = WindRose.read_csv_long( + TEST_DATA / "wind_rose.csv", wd_col="wd", ws_col="ws", freq_col="freq_val" + ) + + # Now read in with correct columns + wind_rose = WindRose.read_csv_long( + TEST_DATA / "wind_rose.csv", + wd_col="wd", + ws_col="ws", + freq_col="freq_val", + ti_col_or_value=0.06, + ) + + # Confirm that data read in correctly, and the missing wd/ws bins are filled with zeros + expected_result = np.array([[0.25, 0.25], [0.5, 0]]) + np.testing.assert_allclose(wind_rose.freq_table, expected_result) + + # Confirm expected wind direction and wind speed values + expected_result = np.array([270, 280]) + np.testing.assert_allclose(wind_rose.wind_directions, expected_result) + + expected_result = np.array([8, 9]) + np.testing.assert_allclose(wind_rose.wind_speeds, expected_result) + + # Confirm expected TI values + expected_result = np.array([[0.06, 0.06], [0.06, np.nan]]) + + # Confirm all elements which aren't nan are close + np.testing.assert_allclose( + wind_rose.ti_table[~np.isnan(wind_rose.ti_table)], + expected_result[~np.isnan(expected_result)], + ) + + +def test_read_csv_long_ti(): + # Read in the wind rose data from the csv file + + + + # Now read in with correct columns + wind_ti_rose = WindTIRose.read_csv_long( + TEST_DATA / "wind_ti_rose.csv", + wd_col="wd", + ws_col="ws", + ti_col="ti", + freq_col="freq_val", + + ) + + # Confirm the shape of the frequency table + assert wind_ti_rose.freq_table.shape == (2, 2, 2) + + # Confirm expected wind direction and wind speed values + expected_result = np.array([270, 280]) + np.testing.assert_allclose(wind_ti_rose.wind_directions, expected_result) + + expected_result = np.array([8, 9]) + np.testing.assert_allclose(wind_ti_rose.wind_speeds, expected_result) + + expected_result = np.array([0.06, 0.07]) + np.testing.assert_allclose(wind_ti_rose.turbulence_intensities, expected_result) From 724f452a97a2a848a842307df63e4ef430f04a4c Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Fri, 22 Mar 2024 17:09:48 -0400 Subject: [PATCH 57/78] Save WindData onto FlorisModel and simplify post-`run()` calls (#849) * Add functions to reshape turbine and farm power to wd x ws * Add tests of new wind rose functions * wind_data saved onto FlorisModel; functions partially built. * Update tests; rename _wind_data to wind_data since optimizers may need access. * 07 example updated (waked and no_wake match previous output). * Remove wind_data need from layout optimizers. * Bugfix; copy did not bring over wind_data." * Update examples 13, 15 * Removing unneeded methods. * Group hidden and outer get_turbine_powers methods. * Ruff and isort. * Add getter for wind_data. * Rename converters to be more explicit about output. * Updating tests. * Copy up docstring from hidden version. * Fix a couple more examples. * Fix scaling on uniform frequency. * ruff and isort. * Log warnings when freq not provided and test. * Update uncertain model for new paradigm * Add test of wind rose setting * bufgix * change _expanded suffix to _rose to avoid confusion in UncertainFlorisModel. * to_ methods specify class rather than suggested instantiation. --------- Co-authored-by: Paul --- examples/07_calc_aep_from_rose.py | 23 +- .../13_optimize_yaw_with_neighboring_farm.py | 3 + examples/15_optimize_layout.py | 6 +- .../16c_optimize_layout_with_heterogeneity.py | 13 +- examples/29_floating_vs_fixedbottom_farm.py | 1 + examples/34_wind_data.py | 10 +- floris/floris_model.py | 316 +++++++++------- .../layout_optimization_base.py | 25 +- .../layout_optimization_pyoptsparse.py | 11 +- .../layout_optimization_pyoptsparse_spread.py | 3 +- .../layout_optimization_scipy.py | 15 +- floris/uncertain_floris_model.py | 355 ++++++++++-------- floris/wind_data.py | 23 +- tests/floris_model_integration_test.py | 156 +++++--- tests/layout_optimization_integration_test.py | 43 ++- .../parallel_floris_model_integration_test.py | 3 + ...uncertain_floris_model_integration_test.py | 49 ++- tests/wind_data_integration_test.py | 18 +- 18 files changed, 625 insertions(+), 448 deletions(-) diff --git a/examples/07_calc_aep_from_rose.py b/examples/07_calc_aep_from_rose.py index cc2de88d4..135a4c119 100644 --- a/examples/07_calc_aep_from_rose.py +++ b/examples/07_calc_aep_from_rose.py @@ -55,26 +55,15 @@ wind_speeds=wind_speeds, turbulence_intensities=turbulence_intensities, ) +fmodel.run() # Compute the AEP using the default settings aep = fmodel.get_farm_AEP(freq=freq) -print("Farm AEP (default options): {:.3f} GWh".format(aep / 1.0e9)) - -# Compute the AEP again while specifying a cut-in and cut-out wind speed. -# The wake calculations are skipped for any wind speed below respectively -# above the cut-in and cut-out wind speed. This can speed up computation and -# prevent unexpected behavior for zero/negative and very high wind speeds. -# In this example, the results should not change between this and the default -# call to 'get_farm_AEP()'. -aep = fmodel.get_farm_AEP( - freq=freq, - cut_in_wind_speed=3.0, # Wakes are not evaluated below this wind speed - cut_out_wind_speed=25.0, # Wakes are not evaluated above this wind speed -) -print("Farm AEP (with cut_in/out specified): {:.3f} GWh".format(aep / 1.0e9)) +print("Farm AEP: {:.3f} GWh".format(aep / 1.0e9)) # Finally, we can also compute the AEP while ignoring all wake calculations. # This can be useful to quantity the annual wake losses in the farm. Such -# calculations can be facilitated by enabling the 'no_wake' handle. -aep_no_wake = fmodel.get_farm_AEP(freq, no_wake=True) -print("Farm AEP (no_wake=True): {:.3f} GWh".format(aep_no_wake / 1.0e9)) +# calculations can be facilitated by first running with run_no_wake(). +fmodel.run_no_wake() +aep_no_wake = fmodel.get_farm_AEP(freq=freq) +print("Farm AEP (no wakes): {:.3f} GWh".format(aep_no_wake / 1.0e9)) diff --git a/examples/13_optimize_yaw_with_neighboring_farm.py b/examples/13_optimize_yaw_with_neighboring_farm.py index 18d5e1b26..300748341 100644 --- a/examples/13_optimize_yaw_with_neighboring_farm.py +++ b/examples/13_optimize_yaw_with_neighboring_farm.py @@ -202,6 +202,7 @@ def yaw_opt_interpolant(wd, ws): print(" ") print("===========================================================") print("Calculating baseline annual energy production (AEP)...") + fmodel_aep.run() aep_bl_subset = 1.0e-9 * fmodel_aep.get_farm_AEP( freq=freq_windrose, turbine_weights=turbine_weights @@ -247,11 +248,13 @@ def yaw_opt_interpolant(wd, ws): print("===========================================================") print("Calculating annual energy production with wake steering (AEP)...") fmodel_aep.set(yaw_angles=yaw_angles_opt_nonb_AEP) + fmodel_aep.run() aep_opt_subset_nonb = 1.0e-9 * fmodel_aep.get_farm_AEP( freq=freq_windrose, turbine_weights=turbine_weights, ) fmodel_aep.set(yaw_angles=yaw_angles_opt_AEP) + fmodel_aep.run() aep_opt_subset = 1.0e-9 * fmodel_aep.get_farm_AEP( freq=freq_windrose, turbine_weights=turbine_weights, diff --git a/examples/15_optimize_layout.py b/examples/15_optimize_layout.py index 071a62b87..df0f1d460 100644 --- a/examples/15_optimize_layout.py +++ b/examples/15_optimize_layout.py @@ -54,7 +54,7 @@ fmodel.set(layout_x=layout_x, layout_y=layout_y) # Setup the optimization problem -layout_opt = LayoutOptimizationScipy(fmodel, boundaries, wind_data=wind_rose) +layout_opt = LayoutOptimizationScipy(fmodel, boundaries) # Run the optimization sol = layout_opt.optimize() @@ -62,10 +62,10 @@ # Get the resulting improvement in AEP print('... calcuating improvement in AEP') fmodel.run() -base_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +base_aep = fmodel.get_farm_AEP() / 1e6 fmodel.set(layout_x=sol[0], layout_y=sol[1]) fmodel.run() -opt_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +opt_aep = fmodel.get_farm_AEP() / 1e6 percent_gain = 100 * (opt_aep - base_aep) / base_aep diff --git a/examples/16c_optimize_layout_with_heterogeneity.py b/examples/16c_optimize_layout_with_heterogeneity.py index 616b60e68..069511cd8 100644 --- a/examples/16c_optimize_layout_with_heterogeneity.py +++ b/examples/16c_optimize_layout_with_heterogeneity.py @@ -87,7 +87,6 @@ layout_opt = LayoutOptimizationScipy( fmodel, boundaries, - wind_data=wind_rose, min_dist=2*D, optOptions={"maxiter":maxiter} ) @@ -100,10 +99,10 @@ print('... calcuating improvement in AEP') fmodel.run() -base_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +base_aep = fmodel.get_farm_AEP() / 1e6 fmodel.set(layout_x=sol[0], layout_y=sol[1]) fmodel.run() -opt_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +opt_aep = fmodel.get_farm_AEP() / 1e6 percent_gain = 100 * (opt_aep - base_aep) / base_aep @@ -128,7 +127,6 @@ layout_opt = LayoutOptimizationScipy( fmodel, boundaries, - wind_data=wind_rose, min_dist=2*D, enable_geometric_yaw=True, optOptions={"maxiter":maxiter} @@ -142,12 +140,11 @@ print('... calcuating improvement in AEP') fmodel.set(yaw_angles=np.zeros_like(layout_opt.yaw_angles)) -base_aep = fmodel.get_farm_AEP_with_wind_data(wind_data=wind_rose) / 1e6 +fmodel.run() +base_aep = fmodel.get_farm_AEP() / 1e6 fmodel.set(layout_x=sol[0], layout_y=sol[1], yaw_angles=layout_opt.yaw_angles) fmodel.run() -opt_aep = fmodel.get_farm_AEP_with_wind_data( - wind_data=wind_rose -) / 1e6 +opt_aep = fmodel.get_farm_AEP() / 1e6 percent_gain = 100 * (opt_aep - base_aep) / base_aep diff --git a/examples/29_floating_vs_fixedbottom_farm.py b/examples/29_floating_vs_fixedbottom_farm.py index e04ac3f98..ef9745621 100644 --- a/examples/29_floating_vs_fixedbottom_farm.py +++ b/examples/29_floating_vs_fixedbottom_farm.py @@ -124,6 +124,7 @@ wind_speeds= ws_grid.flatten(), turbulence_intensities=0.06 * np.ones_like(wd_grid.flatten()) ) + fmodel.run() # Compute the AEP aep_fixed = fmodel_fixed.get_farm_AEP(freq=freq) diff --git a/examples/34_wind_data.py b/examples/34_wind_data.py index 3a4d56fe5..0d17e7924 100644 --- a/examples/34_wind_data.py +++ b/examples/34_wind_data.py @@ -39,7 +39,7 @@ time_series = TimeSeries(wd_array, ws_array, turbulence_intensities=ti_array) # Now build the wind rose -wind_rose = time_series.to_wind_rose() +wind_rose = time_series.to_WindRose() # Plot the wind rose fig, ax = plt.subplots(subplot_kw={"polar": True}) @@ -47,7 +47,7 @@ fig.suptitle("WindRose Plot") # Now build a wind rose with turbulence intensity -wind_ti_rose = time_series.to_wind_ti_rose() +wind_ti_rose = time_series.to_WindTIRose() # Plot the wind rose with TI fig, axs = plt.subplots(2, 1, figsize=(6,8), subplot_kw={"polar": True}) @@ -78,9 +78,9 @@ wind_rose_power = fmodel_wind_rose.get_farm_power() wind_ti_rose_power = fmodel_wind_ti_rose.get_farm_power() -time_series_aep = fmodel_time_series.get_farm_AEP_with_wind_data(time_series) -wind_rose_aep = fmodel_wind_rose.get_farm_AEP_with_wind_data(wind_rose) -wind_ti_rose_aep = fmodel_wind_ti_rose.get_farm_AEP_with_wind_data(wind_ti_rose) +time_series_aep = fmodel_time_series.get_farm_AEP() +wind_rose_aep = fmodel_wind_rose.get_farm_AEP() +wind_ti_rose_aep = fmodel_wind_ti_rose.get_farm_AEP() print(f"AEP from TimeSeries {time_series_aep / 1e9:.2f} GWh") print(f"AEP from WindRose {wind_rose_aep / 1e9:.2f} GWh") diff --git a/floris/floris_model.py b/floris/floris_model.py index 2b0f6cb9a..548f2e9f6 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -35,7 +35,12 @@ nested_set, print_nested_dict, ) -from floris.wind_data import WindDataBase +from floris.wind_data import ( + TimeSeries, + WindDataBase, + WindRose, + WindTIRose, +) class FlorisModel(LoggingManager): @@ -104,6 +109,8 @@ def __init__(self, configuration: dict | str | Path): ) raise ValueError("turbine_grid_points must be less than or equal to 3.") + # Initialize stored wind_data object to None + self._wind_data = None ### Methods for setting and running the FlorisModel @@ -159,30 +166,31 @@ def _reinitialize( flow_field_dict = floris_dict["flow_field"] farm_dict = floris_dict["farm"] - # Make the given changes - - # First check if wind data is not None, - # if not, get wind speeds, wind direction and - # turbulence intensity using the unpack_for_reinitialize - # method - if wind_data is not None: - if ( - (wind_directions is not None) - or (wind_speeds is not None) - or (turbulence_intensities is not None) - or (heterogenous_inflow_config is not None) - ): + # + if ( + (wind_directions is not None) + or (wind_speeds is not None) + or (turbulence_intensities is not None) + or (heterogenous_inflow_config is not None) + ): + if wind_data is not None: raise ValueError( "If wind_data is passed to reinitialize, then do not pass wind_directions, " "wind_speeds, turbulence_intensities or " "heterogenous_inflow_config as this is redundant" ) - ( - wind_directions, - wind_speeds, - turbulence_intensities, - heterogenous_inflow_config, - ) = wind_data.unpack_for_reinitialize() + elif self.wind_data is not None: + self.logger.warning("Deleting stored wind_data information.") + self._wind_data = None + if wind_data is not None: + # Unpack wind data for reinitialization and save wind_data for use in output + ( + wind_directions, + wind_speeds, + turbulence_intensities, + heterogenous_inflow_config, + ) = wind_data.unpack_for_reinitialize() + self._wind_data = wind_data ## FlowField if wind_speeds is not None: @@ -403,7 +411,7 @@ def run_no_wake(self) -> None: ### Methods for extracting turbine performance after running - def get_turbine_powers(self) -> NDArrayFloat: + def _get_turbine_powers(self) -> NDArrayFloat: """Calculates the power at each turbine in the wind farm. Returns: @@ -413,8 +421,7 @@ def get_turbine_powers(self) -> NDArrayFloat: # Confirm calculate wake has been run if self.core.state is not State.USED: raise RuntimeError( - "Can't run function `FlorisModel.get_turbine_powers` without " - "first running `FlorisModel.run`." + "Can't compute turbine powers without first running `FlorisModel.run()`." ) # Check for negative velocities, which could indicate bad model # parameters or turbines very closely spaced. @@ -436,7 +443,44 @@ def get_turbine_powers(self) -> NDArrayFloat: ) return turbine_powers - def get_farm_power( + + def get_turbine_powers(self): + """ + Calculates the power at each turbine in the wind farm. + + Returns: + NDArrayFloat: Powers at each turbine. + """ + turbine_powers = self._get_turbine_powers() + + if self.wind_data is not None: + if type(self.wind_data) is WindRose: + turbine_powers_rose = np.full( + (len(self.wind_data.wd_flat), self.core.farm.n_turbines), + np.nan + ) + turbine_powers_rose[self.wind_data.non_zero_freq_mask, :] = turbine_powers + turbine_powers = turbine_powers_rose.reshape( + len(self.wind_data.wind_directions), + len(self.wind_data.wind_speeds), + self.core.farm.n_turbines + ) + elif type(self.wind_data) is WindTIRose: + turbine_powers_rose = np.full( + (len(self.wind_data.wd_flat), self.core.farm.n_turbines), + np.nan + ) + turbine_powers_rose[self.wind_data.non_zero_freq_mask, :] = turbine_powers + turbine_powers = turbine_powers_rose.reshape( + len(self.wind_data.wind_directions), + len(self.wind_data.wind_speeds), + len(self.wind_data.turbulence_intensities), + self.core.farm.n_turbines + ) + + return turbine_powers + + def _get_farm_power( self, turbine_weights=None, use_turbulence_correction=False, @@ -462,9 +506,9 @@ def get_farm_power( objective function. If None, this is an array with all values 1.0 and with shape equal to (n_findex, n_turbines). Defaults to None. - use_turbulence_correction: (bool, optional): When *True* uses a + use_turbulence_correction: (bool, optional): When True uses a turbulence parameter to adjust power output calculations. - Defaults to *False*. + Defaults to False. Not currently implemented. Returns: float: Sum of wind turbine powers in W. @@ -475,12 +519,16 @@ def get_farm_power( # TODO: Uncomment out the following two lines once the above are resolved # for turbine in self.core.farm.turbines: # turbine.use_turbulence_correction = use_turbulence_correction + if use_turbulence_correction: + raise NotImplementedError( + "Turbulence correction is not yet implemented in the power calculation." + ) - # Confirm calculate wake has been run + # Confirm run() has been run if self.core.state is not State.USED: raise RuntimeError( - "Can't run function `FlorisModel.get_turbine_powers` without " - "first running `FlorisModel.calculate_wake`." + "Can't run function `FlorisModel.get_farm_power` without " + "first running `FlorisModel.run`." ) if turbine_weights is None: @@ -499,38 +547,82 @@ def get_farm_power( ) # Calculate all turbine powers and apply weights - turbine_powers = self.get_turbine_powers() + turbine_powers = self._get_turbine_powers() turbine_powers = np.multiply(turbine_weights, turbine_powers) return np.sum(turbine_powers, axis=1) - def get_farm_AEP( + def get_farm_power( self, - freq, - cut_in_wind_speed=0.001, - cut_out_wind_speed=None, turbine_weights=None, - no_wake=False, + use_turbulence_correction=False, + ): + """ + Report wind plant power from instance of floris. Optionally includes + uncertainty in wind direction and yaw position when determining power. + Uncertainty is included by computing the mean wind farm power for a + distribution of wind direction and yaw position deviations from the + original wind direction and yaw angles. + + Args: + turbine_weights (NDArrayFloat | list[float] | None, optional): + weighing terms that allow the user to emphasize power at + particular turbines and/or completely ignore the power + from other turbines. This is useful when, for example, you are + modeling multiple wind farms in a single floris object. If you + only want to calculate the power production for one of those + farms and include the wake effects of the neighboring farms, + you can set the turbine_weights for the neighboring farms' + turbines to 0.0. The array of turbine powers from floris + is multiplied with this array in the calculation of the + objective function. If None, this is an array with all values + 1.0 and with shape equal to (n_findex, n_turbines). + Defaults to None. + use_turbulence_correction: (bool, optional): When True uses a + turbulence parameter to adjust power output calculations. + Defaults to False. Not currently implemented. + + Returns: + float: Sum of wind turbine powers in W. + """ + farm_power = self._get_farm_power(turbine_weights, use_turbulence_correction) + + if self.wind_data is not None: + if type(self.wind_data) is WindRose: + farm_power_rose = np.full(len(self.wind_data.wd_flat), np.nan) + farm_power_rose[self.wind_data.non_zero_freq_mask] = farm_power + farm_power = farm_power_rose.reshape( + len(self.wind_data.wind_directions), + len(self.wind_data.wind_speeds) + ) + elif type(self.wind_data) is WindTIRose: + farm_power_rose = np.full(len(self.wind_data.wd_flat), np.nan) + farm_power_rose[self.wind_data.non_zero_freq_mask] = farm_power + farm_power = farm_power_rose.reshape( + len(self.wind_data.wind_directions), + len(self.wind_data.wind_speeds), + len(self.wind_data.turbulence_intensities) + ) + + return farm_power + + def get_expected_farm_power( + self, + freq=None, + turbine_weights=None, ) -> float: """ - Estimate annual energy production (AEP) for distributions of wind speed, wind - direction, frequency of occurrence, and yaw offset. + Compute the expected (mean) power of the wind farm. Args: freq (NDArrayFloat): NumPy array with shape (n_findex) with the frequencies of each wind direction and wind speed combination. These frequencies should typically sum up to 1.0 and are used to weigh the wind farm power for every - condition in calculating the wind farm's AEP. - cut_in_wind_speed (float, optional): Wind speed in m/s below which - any calculations are ignored and the wind farm is known to - produce 0.0 W of power. Note that to prevent problems with the - wake models at negative / zero wind speeds, this variable must - always have a positive value. Defaults to 0.001 [m/s]. - cut_out_wind_speed (float, optional): Wind speed above which the - wind farm is known to produce 0.0 W of power. If None is - specified, will assume that the wind farm does not cut out - at high wind speeds. Defaults to None. + condition in calculating the wind farm's AEP. Defaults to None. + If None and a WindData object was supplied, the WindData object's + frequencies will be used. Otherwise, uniform frequencies are assumed + (i.e., a simple mean over the findices is computed). turbine_weights (NDArrayFloat | list[float] | None, optional): weighing terms that allow the user to emphasize power at particular turbines and/or completely ignore the power @@ -544,98 +636,36 @@ def get_farm_AEP( objective function. If None, this is an array with all values 1.0 and with shape equal to (n_findex, n_turbines). Defaults to None. - no_wake: (bool, optional): When *True* updates the turbine - quantities without calculating the wake or adding the wake to - the flow field. This can be useful when quantifying the loss - in AEP due to wakes. Defaults to *False*. - - - Returns: - float: - The Annual Energy Production (AEP) for the wind farm in - watt-hours. """ - # Verify dimensions of the variable "freq" - if np.shape(freq)[0] != self.core.flow_field.n_findex: - raise UserWarning( - "'freq' should be a one-dimensional array with dimensions (n_findex). " - f"Given shape is {np.shape(freq)}" - ) + farm_power = self._get_farm_power(turbine_weights=turbine_weights) - # Check if frequency vector sums to 1.0. If not, raise a warning - if np.abs(np.sum(freq) - 1.0) > 0.001: - self.logger.warning( - "WARNING: The frequency array provided to get_farm_AEP() does not sum to 1.0." - ) - - # Copy the full wind speed array from the floris object and initialize - # the the farm_power variable as an empty array. - wind_speeds = np.array(self.core.flow_field.wind_speeds, copy=True) - wind_directions = np.array(self.core.flow_field.wind_directions, copy=True) - turbulence_intensities = np.array(self.core.flow_field.turbulence_intensities, copy=True) - farm_power = np.zeros(self.core.flow_field.n_findex) - - # Determine which wind speeds we must evaluate - conditions_to_evaluate = wind_speeds >= cut_in_wind_speed - if cut_out_wind_speed is not None: - conditions_to_evaluate = conditions_to_evaluate & (wind_speeds < cut_out_wind_speed) - - # Evaluate the conditions in floris - if np.any(conditions_to_evaluate): - wind_speeds_subset = wind_speeds[conditions_to_evaluate] - wind_directions_subset = wind_directions[conditions_to_evaluate] - turbulence_intensities_subset = turbulence_intensities[conditions_to_evaluate] - self.set( - wind_speeds=wind_speeds_subset, - wind_directions=wind_directions_subset, - turbulence_intensities=turbulence_intensities_subset, - ) - if no_wake: - self.run_no_wake() + if freq is None: + if self.wind_data is None: + freq = np.array([1.0/self.core.flow_field.n_findex]) else: - self.run() - farm_power[conditions_to_evaluate] = self.get_farm_power( - turbine_weights=turbine_weights - ) + freq = self.wind_data.unpack_freq() - # Finally, calculate AEP in GWh - aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) + return np.nansum(np.multiply(freq, farm_power)) - # Reset the FLORIS object to the full wind speed array - self.set( - wind_speeds=wind_speeds, - wind_directions=wind_directions, - turbulence_intensities=turbulence_intensities - ) - - return aep - - def get_farm_AEP_with_wind_data( + def get_farm_AEP( self, - wind_data, - cut_in_wind_speed=0.001, - cut_out_wind_speed=None, + freq=None, turbine_weights=None, - no_wake=False, + hours_per_year=8760, ) -> float: """ Estimate annual energy production (AEP) for distributions of wind speed, wind direction, frequency of occurrence, and yaw offset. Args: - wind_data: (type(WindDataBase)): TimeSeries or WindRose object containing - the wind conditions over which to calculate the AEP. Should match the wind_data - object passed to reinitialize(). - cut_in_wind_speed (float, optional): Wind speed in m/s below which - any calculations are ignored and the wind farm is known to - produce 0.0 W of power. Note that to prevent problems with the - wake models at negative / zero wind speeds, this variable must - always have a positive value. Defaults to 0.001 [m/s]. - cut_out_wind_speed (float, optional): Wind speed above which the - wind farm is known to produce 0.0 W of power. If None is - specified, will assume that the wind farm does not cut out - at high wind speeds. Defaults to None. + freq (NDArrayFloat): NumPy array with shape (n_findex) + with the frequencies of each wind direction and + wind speed combination. These frequencies should typically sum + up to 1.0 and are used to weigh the wind farm power for every + condition in calculating the wind farm's AEP. Defaults to None. + If None and a WindData object was supplied, the WindData object's + frequencies will be used. Otherwise, uniform frequencies are assumed. turbine_weights (NDArrayFloat | list[float] | None, optional): weighing terms that allow the user to emphasize power at particular turbines and/or completely ignore the power @@ -649,31 +679,27 @@ def get_farm_AEP_with_wind_data( objective function. If None, this is an array with all values 1.0 and with shape equal to (n_findex, n_turbines). Defaults to None. - no_wake: (bool, optional): When *True* updates the turbine - quantities without calculating the wake or adding the wake to - the flow field. This can be useful when quantifying the loss - in AEP due to wakes. Defaults to *False*. + hours_per_year (float, optional): Number of hours in a year. Defaults to 365 * 24. Returns: float: The Annual Energy Production (AEP) for the wind farm in watt-hours. """ + if ( + freq is None + and not isinstance(self.wind_data, WindRose) + and not isinstance(self.wind_data, WindTIRose) + ): + self.logger.warning( + "Computing AEP with uniform frequencies. Results results may not reflect annual " + "operation." + ) - # Verify the wind_data object matches FLORIS' initialization - if wind_data.n_findex != self.core.flow_field.n_findex: - raise ValueError("WindData object and floris do not have same findex") - - # Get freq directly from wind_data - freq = wind_data.unpack_freq() - - return self.get_farm_AEP( - freq, - cut_in_wind_speed=cut_in_wind_speed, - cut_out_wind_speed=cut_out_wind_speed, - turbine_weights=turbine_weights, - no_wake=no_wake, - ) + return self.get_expected_farm_power( + freq=freq, + turbine_weights=turbine_weights + ) * hours_per_year def get_turbine_ais(self) -> NDArrayFloat: turbine_ais = axial_induction( @@ -1376,6 +1402,10 @@ def turbine_average_velocities(self) -> NDArrayFloat: cubature_weights=self.core.grid.cubature_weights, ) + @property + def wind_data(self): + return self._wind_data + ### v3 functions that are removed - raise an error if used diff --git a/floris/optimization/layout_optimization/layout_optimization_base.py b/floris/optimization/layout_optimization/layout_optimization_base.py index c8e192d1a..d52e6b1f2 100644 --- a/floris/optimization/layout_optimization/layout_optimization_base.py +++ b/floris/optimization/layout_optimization/layout_optimization_base.py @@ -21,16 +21,15 @@ class LayoutOptimization(LoggingManager): fmodel (FlorisModel): A FlorisModel object. boundaries (iterable(float, float)): Pairs of x- and y-coordinates that represent the boundary's vertices (m). - wind_data (TimeSeries | WindRose): A TimeSeries or WindRose object - values. min_dist (float, optional): The minimum distance to be maintained between turbines during the optimization (m). If not specified, initializes to 2 rotor diameters. Defaults to None. enable_geometric_yaw (bool, optional): If True, enables geometric yaw optimization. Defaults to False. """ - def __init__(self, fmodel, boundaries, wind_data, min_dist=None, enable_geometric_yaw=False): - self.fmodel = fmodel.copy() + def __init__(self, fmodel, boundaries, min_dist=None, enable_geometric_yaw=False): + self.fmodel = fmodel.copy() # Does not copy over the wind_data object + self.fmodel.set(wind_data=fmodel.wind_data) self.boundaries = boundaries self.enable_geometric_yaw = enable_geometric_yaw @@ -49,12 +48,15 @@ def __init__(self, fmodel, boundaries, wind_data, min_dist=None, enable_geometri self.min_dist = min_dist # Check that wind_data is a WindDataBase object - if (not isinstance(wind_data, WindDataBase)): - raise ValueError( - "wind_data entry is not an object of WindDataBase" - " (eg TimeSeries, WindRose, WindTIRose)" + if (not isinstance(self.fmodel.wind_data, WindDataBase)): + # NOTE: it is no longer strictly necessary that fmodel use + # a WindData object, but it is still recommended. + self.logger.warning( + "Running layout optimization without a WindData object (e.g. TimeSeries, WindRose, " + "WindTIRose). We suggest that the user set the wind conditions on the FlorisModel " + " using the wind_data keyword argument for layout optimizations to capture " + "frequencies accurately." ) - self.wind_data = wind_data # Establish geometric yaw class if self.enable_geometric_yaw: @@ -63,8 +65,9 @@ def __init__(self, fmodel, boundaries, wind_data, min_dist=None, enable_geometri minimum_yaw_angle=-30.0, maximum_yaw_angle=30.0, ) - - self.initial_AEP = fmodel.get_farm_AEP_with_wind_data(self.wind_data) + # TODO: is this being used? + fmodel.run() + self.initial_AEP = fmodel.get_farm_AEP() def __str__(self): return "layout" diff --git a/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py index 9d26bc616..959b152a3 100644 --- a/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py +++ b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py @@ -12,7 +12,6 @@ def __init__( self, fmodel, boundaries, - wind_data, min_dist=None, solver=None, optOptions=None, @@ -21,7 +20,7 @@ def __init__( hotStart=None, enable_geometric_yaw=False, ): - super().__init__(fmodel, boundaries, wind_data=wind_data, min_dist=min_dist, + super().__init__(fmodel, boundaries, min_dist=min_dist, enable_geometric_yaw=enable_geometric_yaw) self.x0 = self._norm(self.fmodel.layout_x, self.xmin, self.xmax) @@ -95,15 +94,11 @@ def _obj_func(self, varDict): yaw_angles = self._get_geoyaw_angles() # Update turbine map with turbine locations and yaw angles self.fmodel.set(layout_x=self.x, layout_y=self.y, yaw_angles=yaw_angles) + self.fmodel.run() # Compute the objective function funcs = {} - funcs["obj"] = ( - - -1 * self.fmodel.get_farm_AEP_with_wind_data(self.wind_data) - / self.initial_AEP - - ) + funcs["obj"] = -1 * self.fmodel.get_farm_AEP() / self.initial_AEP # Compute constraints, if any are defined for the optimization funcs = self.compute_cons(funcs, self.x, self.y) diff --git a/floris/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py index aa8d9f54e..ac568d4de 100644 --- a/floris/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py +++ b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse_spread.py @@ -12,7 +12,6 @@ def __init__( self, fmodel, boundaries, - wind_data, min_dist=None, solver=None, optOptions=None, @@ -20,7 +19,7 @@ def __init__( storeHistory='hist.hist', hotStart=None ): - super().__init__(fmodel, boundaries, wind_data=wind_data, min_dist=min_dist) + super().__init__(fmodel, boundaries, min_dist=min_dist) self._reinitialize(solver=solver, optOptions=optOptions) self.storeHistory = storeHistory diff --git a/floris/optimization/layout_optimization/layout_optimization_scipy.py b/floris/optimization/layout_optimization/layout_optimization_scipy.py index 23c866071..ff3048cae 100644 --- a/floris/optimization/layout_optimization/layout_optimization_scipy.py +++ b/floris/optimization/layout_optimization/layout_optimization_scipy.py @@ -13,7 +13,6 @@ def __init__( self, fmodel, boundaries, - wind_data, bnds=None, min_dist=None, solver='SLSQP', @@ -27,8 +26,6 @@ def __init__( fmodel (FlorisModel): A FlorisModel object. boundaries (iterable(float, float)): Pairs of x- and y-coordinates that represent the boundary's vertices (m). - wind_data (TimeSeries | WindRose): A TimeSeries or WindRose object - values. If None, equal weight is given to each pair of wind conditions bnds (iterable, optional): Bounds for the optimization variables (pairs of min/max values for each variable (m)). If none are specified, they are set to 0 and 1. Defaults to None. @@ -39,8 +36,12 @@ def __init__( optOptions (dict, optional): Dicitonary for setting the optimization options. Defaults to None. """ - super().__init__(fmodel, boundaries, min_dist=min_dist, wind_data=wind_data, - enable_geometric_yaw=enable_geometric_yaw) + super().__init__( + fmodel, + boundaries, + min_dist=min_dist, + enable_geometric_yaw=enable_geometric_yaw + ) self.boundaries_norm = [ [ @@ -98,9 +99,9 @@ def _obj_func(self, locs): # Compute turbine yaw angles using PJ's geometric code (if enabled) yaw_angles = self._get_geoyaw_angles() self.fmodel.set(yaw_angles=yaw_angles) + self.fmodel.run() - return (-1 * self.fmodel.get_farm_AEP_with_wind_data(self.wind_data) / - self.initial_AEP) + return -1 * self.fmodel.get_farm_AEP() / self.initial_AEP def _change_coordinates(self, locs): diff --git a/floris/uncertain_floris_model.py b/floris/uncertain_floris_model.py index 2cfc85b0b..2242f4075 100644 --- a/floris/uncertain_floris_model.py +++ b/floris/uncertain_floris_model.py @@ -12,7 +12,12 @@ NDArrayFloat, ) from floris.utilities import wrap_180 -from floris.wind_data import WindDataBase +from floris.wind_data import ( + TimeSeries, + WindDataBase, + WindRose, + WindTIRose, +) class UncertainFlorisModel(LoggingManager): @@ -99,21 +104,6 @@ def __init__( # Instantiate the expanded FlorisModel # self.core_interface = FlorisModel(configuration) - def copy(self): - """Create an independent copy of the current UncertainFlorisModel object""" - return UncertainFlorisModel( - self.fmodel_unexpanded.core.as_dict(), - wd_resolution=self.wd_resolution, - ws_resolution=self.ws_resolution, - ti_resolution=self.ti_resolution, - yaw_resolution=self.yaw_resolution, - power_setpoint_resolution=self.power_setpoint_resolution, - wd_std=self.wd_std, - wd_sample_points=self.wd_sample_points, - fix_yaw_to_nominal_direction=self.fix_yaw_to_nominal_direction, - verbose=self.verbose, - ) - def set( self, **kwargs, @@ -207,20 +197,6 @@ def _set_uncertain( ], ) - def run(self): - """ - Run the simulation in the underlying FlorisModel object. - """ - - self.fmodel_expanded.run() - - def run_no_wake(self): - """ - Run the simulation in the underlying FlorisModel object without wakes. - """ - - self.fmodel_expanded.run_no_wake() - def reset_operation(self): """ Reset the operation of the underlying FlorisModel object. @@ -235,7 +211,21 @@ def reset_operation(self): # Calling set_uncertain again to reset the expanded FlorisModel self._set_uncertain() - def get_turbine_powers(self): + def run(self): + """ + Run the simulation in the underlying FlorisModel object. + """ + + self.fmodel_expanded.run() + + def run_no_wake(self): + """ + Run the simulation in the underlying FlorisModel object without wakes. + """ + + self.fmodel_expanded.run_no_wake() + + def _get_turbine_powers(self): """Calculates the power at each turbine in the wind farm. This method calculates the power at each turbine in the wind farm, considering @@ -248,7 +238,7 @@ def get_turbine_powers(self): # Pass to off-class function result = map_turbine_powers_uncertain( - unique_turbine_powers=self.fmodel_expanded.get_turbine_powers(), + unique_turbine_powers=self.fmodel_expanded._get_turbine_powers(), map_to_expanded_inputs=self.map_to_expanded_inputs, weights=self.weights, n_unexpanded=self.n_unexpanded, @@ -258,9 +248,58 @@ def get_turbine_powers(self): return result - def get_farm_power( + def get_turbine_powers(self): + """ + Calculate the power at each turbine in the wind farm. If WindRose or + WindTIRose is passed in, result is reshaped to match + + Returns: + NDArrayFloat: An array containing the powers at each turbine for each findex. + """ + + turbine_powers = self._get_turbine_powers() + + if self.fmodel_unexpanded.wind_data is not None: + if type(self.fmodel_unexpanded.wind_data) is WindRose: + turbine_powers_rose = np.full( + ( + len(self.fmodel_unexpanded.wind_data.wd_flat), + self.fmodel_unexpanded.core.farm.n_turbines, + ), + np.nan, + ) + turbine_powers_rose[ + self.fmodel_unexpanded.wind_data.non_zero_freq_mask, : + ] = turbine_powers + turbine_powers = turbine_powers_rose.reshape( + len(self.fmodel_unexpanded.wind_data.wind_directions), + len(self.fmodel_unexpanded.wind_data.wind_speeds), + self.fmodel_unexpanded.core.farm.n_turbines, + ) + elif type(self.fmodel_unexpanded.wind_data) is WindTIRose: + turbine_powers_rose = np.full( + ( + len(self.fmodel_unexpanded.wind_data.wd_flat), + self.fmodel_unexpanded.core.farm.n_turbines, + ), + np.nan, + ) + turbine_powers_rose[ + self.fmodel_unexpanded.wind_data.non_zero_freq_mask, : + ] = turbine_powers + turbine_powers = turbine_powers_rose.reshape( + len(self.fmodel_unexpanded.wind_data.wind_directions), + len(self.fmodel_unexpanded.wind_data.wind_speeds), + len(self.fmodel_unexpanded.wind_data.turbulence_intensities), + self.fmodel_unexpanded.core.farm.n_turbines, + ) + + return turbine_powers + + def _get_farm_power( self, turbine_weights=None, + use_turbulence_correction=False, ): """ Report wind plant power from instance of floris with uncertainty. @@ -279,10 +318,23 @@ def get_farm_power( objective function. If None, this is an array with all values 1.0 and with shape equal to (n_findex, n_turbines). Defaults to None. + use_turbulence_correction: (bool, optional): When True uses a + turbulence parameter to adjust power output calculations. + Defaults to False. Not currently implemented. Returns: float: Sum of wind turbine powers in W. """ + # TODO: Turbulence correction used in the power calculation, but may not be in + # the model yet + # TODO: Turbines need a switch for using turbulence correction + # TODO: Uncomment out the following two lines once the above are resolved + # for turbine in self.core.farm.turbines: + # turbine.use_turbulence_correction = use_turbulence_correction + if use_turbulence_correction: + raise NotImplementedError( + "Turbulence correction is not yet implemented in the power calculation." + ) if turbine_weights is None: # Default to equal weighing of all turbines when turbine_weights is None @@ -300,38 +352,86 @@ def get_farm_power( ) # Calculate all turbine powers and apply weights - turbine_powers = self.get_turbine_powers() + turbine_powers = self._get_turbine_powers() turbine_powers = np.multiply(turbine_weights, turbine_powers) return np.sum(turbine_powers, axis=1) - def get_farm_AEP( + def get_farm_power( self, - freq, - cut_in_wind_speed=0.001, - cut_out_wind_speed=None, turbine_weights=None, - no_wake=False, + use_turbulence_correction=False, + ): + """ + Report wind plant power from instance of floris. Optionally includes + uncertainty in wind direction and yaw position when determining power. + Uncertainty is included by computing the mean wind farm power for a + distribution of wind direction and yaw position deviations from the + original wind direction and yaw angles. + + Args: + turbine_weights (NDArrayFloat | list[float] | None, optional): + weighing terms that allow the user to emphasize power at + particular turbines and/or completely ignore the power + from other turbines. This is useful when, for example, you are + modeling multiple wind farms in a single floris object. If you + only want to calculate the power production for one of those + farms and include the wake effects of the neighboring farms, + you can set the turbine_weights for the neighboring farms' + turbines to 0.0. The array of turbine powers from floris + is multiplied with this array in the calculation of the + objective function. If None, this is an array with all values + 1.0 and with shape equal to (n_findex, n_turbines). + Defaults to None. + use_turbulence_correction: (bool, optional): When True uses a + turbulence parameter to adjust power output calculations. + Defaults to False. Not currently implemented. + + Returns: + float: Sum of wind turbine powers in W. + """ + farm_power = self._get_farm_power(turbine_weights, use_turbulence_correction) + + if self.fmodel_unexpanded.wind_data is not None: + if type(self.fmodel_unexpanded.wind_data) is WindRose: + farm_power_rose = np.full(len(self.fmodel_unexpanded.wind_data.wd_flat), np.nan) + farm_power_rose[ + self.fmodel_unexpanded.wind_data.non_zero_freq_mask + ] = farm_power + farm_power = farm_power_rose.reshape( + len(self.fmodel_unexpanded.wind_data.wind_directions), + len(self.fmodel_unexpanded.wind_data.wind_speeds), + ) + elif type(self.fmodel_unexpanded.wind_data) is WindTIRose: + farm_power_rose = np.full(len(self.fmodel_unexpanded.wind_data.wd_flat), np.nan) + farm_power_rose[ + self.fmodel_unexpanded.wind_data.non_zero_freq_mask + ] = farm_power + farm_power = farm_power_rose.reshape( + len(self.fmodel_unexpanded.wind_data.wind_directions), + len(self.fmodel_unexpanded.wind_data.wind_speeds), + len(self.fmodel_unexpanded.wind_data.turbulence_intensities), + ) + + return farm_power + + def get_expected_farm_power( + self, + freq=None, + turbine_weights=None, ) -> float: """ - Estimate annual energy production (AEP) for distributions of wind speed, wind - direction, frequency of occurrence, and yaw offset. + Compute the expected (mean) power of the wind farm. Args: freq (NDArrayFloat): NumPy array with shape (n_findex) with the frequencies of each wind direction and wind speed combination. These frequencies should typically sum up to 1.0 and are used to weigh the wind farm power for every - condition in calculating the wind farm's AEP. - cut_in_wind_speed (float, optional): Wind speed in m/s below which - any calculations are ignored and the wind farm is known to - produce 0.0 W of power. Note that to prevent problems with the - wake models at negative / zero wind speeds, this variable must - always have a positive value. Defaults to 0.001 [m/s]. - cut_out_wind_speed (float, optional): Wind speed above which the - wind farm is known to produce 0.0 W of power. If None is - specified, will assume that the wind farm does not cut out - at high wind speeds. Defaults to None. + condition in calculating the wind farm's AEP. Defaults to None. + If None and a WindData object was supplied, the WindData object's + frequencies will be used. Otherwise, uniform frequencies are assumed + (i.e., a simple mean over the findices is computed). turbine_weights (NDArrayFloat | list[float] | None, optional): weighing terms that allow the user to emphasize power at particular turbines and/or completely ignore the power @@ -345,92 +445,36 @@ def get_farm_AEP( objective function. If None, this is an array with all values 1.0 and with shape equal to (n_findex, n_turbines). Defaults to None. - no_wake: (bool, optional): When *True* updates the turbine - quantities without calculating the wake or adding the wake to - the flow field. This can be useful when quantifying the loss - in AEP due to wakes. Defaults to *False*. - - - Returns: - float: - The Annual Energy Production (AEP) for the wind farm in - watt-hours. """ - # Verify dimensions of the variable "freq" - if np.shape(freq)[0] != self.n_unexpanded: - raise UserWarning( - "'freq' should be a one-dimensional array with dimensions (self.n_unexpanded). " - f"Given shape is {np.shape(freq)}" - ) + farm_power = self._get_farm_power(turbine_weights=turbine_weights) - # Check if frequency vector sums to 1.0. If not, raise a warning - if np.abs(np.sum(freq) - 1.0) > 0.001: - self.logger.warning( - "WARNING: The frequency array provided to get_farm_AEP() does not sum to 1.0." - ) - - # Copy the full wind speed array from the floris object and initialize - # the the farm_power variable as an empty array. - wind_directions = np.array(self.wind_directions_unexpanded, copy=True) - wind_speeds = np.array(self.wind_speeds_unexpanded, copy=True) - farm_power = np.zeros_like(wind_directions) - - # Determine which wind speeds we must evaluate - conditions_to_evaluate = wind_speeds >= cut_in_wind_speed - if cut_out_wind_speed is not None: - conditions_to_evaluate = conditions_to_evaluate & (wind_speeds < cut_out_wind_speed) - - # Evaluate the conditions in floris - if np.any(conditions_to_evaluate): - wind_speeds_subset = wind_speeds[conditions_to_evaluate] - wind_directions_subset = wind_directions[conditions_to_evaluate] - self.set( - wind_speeds=wind_speeds_subset, - wind_directions=wind_directions_subset, - ) - - if no_wake: - self.run_no_wake() + if freq is None: + if self.fmodel_unexpanded.wind_data is None: + freq = np.array([1.0 / self.core.flow_field.n_findex]) else: - self.run() - farm_power[conditions_to_evaluate] = self.get_farm_power( - turbine_weights=turbine_weights - ) + freq = self.fmodel_unexpanded.wind_data.unpack_freq() - # Finally, calculate AEP in GWh - aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) + return np.nansum(np.multiply(freq, farm_power)) - # Reset the FLORIS object to the full wind speed array - self.set(wind_speeds=wind_speeds, wind_directions=wind_directions) - - return aep - - def get_farm_AEP_with_wind_data( + def get_farm_AEP( self, - wind_data, - cut_in_wind_speed=0.001, - cut_out_wind_speed=None, + freq=None, turbine_weights=None, - no_wake=False, + hours_per_year=8760, ) -> float: """ Estimate annual energy production (AEP) for distributions of wind speed, wind direction, frequency of occurrence, and yaw offset. Args: - wind_data: (type(WindDataBase)): TimeSeries or WindRose object containing - the wind conditions over which to calculate the AEP. Should match the wind_data - object passed to reinitialize(). - cut_in_wind_speed (float, optional): Wind speed in m/s below which - any calculations are ignored and the wind farm is known to - produce 0.0 W of power. Note that to prevent problems with the - wake models at negative / zero wind speeds, this variable must - always have a positive value. Defaults to 0.001 [m/s]. - cut_out_wind_speed (float, optional): Wind speed above which the - wind farm is known to produce 0.0 W of power. If None is - specified, will assume that the wind farm does not cut out - at high wind speeds. Defaults to None. + freq (NDArrayFloat): NumPy array with shape (n_findex) + with the frequencies of each wind direction and + wind speed combination. These frequencies should typically sum + up to 1.0 and are used to weigh the wind farm power for every + condition in calculating the wind farm's AEP. Defaults to None. + If None and a WindData object was supplied, the WindData object's + frequencies will be used. Otherwise, uniform frequencies are assumed. turbine_weights (NDArrayFloat | list[float] | None, optional): weighing terms that allow the user to emphasize power at particular turbines and/or completely ignore the power @@ -444,51 +488,28 @@ def get_farm_AEP_with_wind_data( objective function. If None, this is an array with all values 1.0 and with shape equal to (n_findex, n_turbines). Defaults to None. - no_wake: (bool, optional): When *True* updates the turbine - quantities without calculating the wake or adding the wake to - the flow field. This can be useful when quantifying the loss - in AEP due to wakes. Defaults to *False*. + hours_per_year (float, optional): Number of hours in a year. Defaults to 365 * 24. Returns: float: The Annual Energy Production (AEP) for the wind farm in watt-hours. """ + if ( + freq is None + and not isinstance(self.fmodel_unexpanded.wind_data, WindRose) + and not isinstance(self.fmodel_unexpanded.wind_data, WindTIRose) + ): + self.logger.warning( + "Computing AEP with uniform frequencies. Results results may not reflect annual " + "operation." + ) - # Verify the wind_data object matches FLORIS' initialization - if wind_data.n_findex != self.n_unexpanded: - raise ValueError("WindData object findex not length n_unexpanded") - - # Get freq directly from wind_data - freq = wind_data.unpack_freq() - - return self.get_farm_AEP( - freq, - cut_in_wind_speed=cut_in_wind_speed, - cut_out_wind_speed=cut_out_wind_speed, - turbine_weights=turbine_weights, - no_wake=no_wake, + return ( + self.get_expected_farm_power(freq=freq, turbine_weights=turbine_weights) + * hours_per_year ) - # def copy(self): - # """Create an independent copy of the current UncertainFlorisModel object""" - # return UncertainFlorisModel( - # self.fmodel_unexpanded.core.as_dict(), - # wd_resolution=self.wd_resolution, - # ws_resolution=self.ws_resolution, - # ti_resolution=self.ti_resolution, - # yaw_resolution=self.yaw_resolution, - # power_setpoint_resolution=self.power_setpoint_resolution, - # wd_std=self.wd_std, - # wd_sample_points=self.wd_sample_points, - # verbose=self.verbose, - # ) - - # @property - # def core(self): - # """Return core of underlying expanded FlorisModel object""" - # return self.fmodel_expanded.core - def _get_rounded_inputs( self, input_array, @@ -617,7 +638,6 @@ def _expand_wind_directions( # If fix_yaw_to_nominal_direction is True, set the yaw angle to relative # to the nominal wind direction if fix_yaw_to_nominal_direction: - # Wrap between -180 and 180 output_array[start_idx:end_idx, 3 : 3 + n_turbines] = wrap_180( output_array[start_idx:end_idx, 3 : 3 + n_turbines] + wd_sample_points[i] @@ -670,6 +690,21 @@ def _get_weights(self, wd_std, wd_sample_points): return weights + def copy(self): + """Create an independent copy of the current UncertainFlorisModel object""" + return UncertainFlorisModel( + self.fmodel_unexpanded.core.as_dict(), + wd_resolution=self.wd_resolution, + ws_resolution=self.ws_resolution, + ti_resolution=self.ti_resolution, + yaw_resolution=self.yaw_resolution, + power_setpoint_resolution=self.power_setpoint_resolution, + wd_std=self.wd_std, + wd_sample_points=self.wd_sample_points, + fix_yaw_to_nominal_direction=self.fix_yaw_to_nominal_direction, + verbose=self.verbose, + ) + @property def layout_x(self): """ diff --git a/floris/wind_data.py b/floris/wind_data.py index 2ecac6fac..2b8952e9f 100644 --- a/floris/wind_data.py +++ b/floris/wind_data.py @@ -49,16 +49,7 @@ def unpack_for_reinitialize(self): def unpack_freq(self): """Unpack frequency weighting""" - ( - _, - _, - _, - freq_table_unpack, - _, - _, - ) = self.unpack() - - return freq_table_unpack + return self.unpack()[3] def check_heterogenous_inflow_config_by_wd(self, heterogenous_inflow_config_by_wd): """ @@ -398,7 +389,7 @@ def resample_wind_rose(self, wd_step=None, ws_step=None): ) # Now build a new wind rose using the new steps - return time_series.to_wind_rose( + return time_series.to_WindRose( wd_step=wd_step, ws_step=ws_step, bin_weights=self.freq_table_flat ) @@ -619,7 +610,7 @@ def read_csv_long(file_path: str, time_series = TimeSeries(wind_directions, wind_speeds, turbulence_intensities) # Now build a new wind rose using the new steps - return time_series.to_wind_rose( + return time_series.to_WindRose( wd_step=wd_step, ws_step=ws_step, bin_weights=freq_values ) @@ -851,7 +842,7 @@ def resample_wind_rose(self, wd_step=None, ws_step=None, ti_step=None): ) # Now build a new wind rose using the new steps - return time_series.to_wind_ti_rose( + return time_series.to_WindTIRose( wd_step=wd_step, ws_step=ws_step, ti_step=ti_step, bin_weights=self.freq_table_flat ) @@ -1058,7 +1049,7 @@ def read_csv_long(file_path: str, time_series = TimeSeries(wind_directions, wind_speeds, turbulence_intensities) # Now build a new wind rose using the new steps - return time_series.to_wind_ti_rose( + return time_series.to_WindTIRose( wd_step=wd_step, ws_step=ws_step, ti_step=ti_step,bin_weights=freq_values ) @@ -1285,7 +1276,7 @@ def iref_func(wind_directions, wind_speeds): self.assign_ti_using_wd_ws_function(iref_func) - def to_wind_rose( + def to_WindRose( self, wd_step=2.0, ws_step=1.0, wd_edges=None, ws_edges=None, bin_weights=None ): """ @@ -1425,7 +1416,7 @@ def to_wind_rose( self.heterogenous_inflow_config_by_wd, ) - def to_wind_ti_rose( + def to_WindTIRose( self, wd_step=2.0, ws_step=1.0, diff --git a/tests/floris_model_integration_test.py b/tests/floris_model_integration_test.py index 3bb210cda..ae5f07558 100644 --- a/tests/floris_model_integration_test.py +++ b/tests/floris_model_integration_test.py @@ -1,10 +1,11 @@ +import logging from pathlib import Path import numpy as np import pytest import yaml -from floris import FlorisModel +from floris import FlorisModel, WindRose from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT @@ -341,7 +342,7 @@ def test_disable_turbines(): fmodel.run() assert (fmodel.core.farm.yaw_angles == np.array([[1.0, 0.0, 1.0], [1.0, 0.0, 1.0]])).all() -def test_get_farm_aep(): +def test_get_farm_aep(caplog): fmodel = FlorisModel(configuration=YAML_INPUT) wind_speeds = np.array([8.0, 8.0, 8.0]) @@ -369,56 +370,25 @@ def test_get_farm_aep(): freq = np.ones(n_findex) freq = freq / np.sum(freq) - farm_aep = fmodel.get_farm_AEP(freq=freq) - - aep = np.sum(np.multiply(freq, farm_powers) * 365 * 24) + # Check warning raised if freq not passed; no warning if freq passed + with caplog.at_level(logging.WARNING): + fmodel.get_farm_AEP() + assert caplog.text != "" # Checking not empty + caplog.clear() + with caplog.at_level(logging.WARNING): + fmodel.get_farm_AEP(freq=freq) + assert caplog.text == "" # Checking empty - # In this case farm_aep should match farm powers - np.testing.assert_allclose(farm_aep, aep) - -def test_get_farm_aep_with_conditions(): - fmodel = FlorisModel(configuration=YAML_INPUT) - - wind_speeds = np.array([5.0, 8.0, 8.0, 8.0, 20.0]) - wind_directions = np.array([270.0, 270.0, 270.0, 270.0, 270.0]) - turbulence_intensities = np.array([0.06, 0.06, 0.06, 0.06, 0.06]) - n_findex = len(wind_directions) - - layout_x = np.array([0, 0]) - layout_y = np.array([0, 1000]) - # n_turbines = len(layout_x) - - fmodel.set( - wind_speeds=wind_speeds, - wind_directions=wind_directions, - turbulence_intensities=turbulence_intensities, - layout_x=layout_x, - layout_y=layout_y, - ) - - fmodel.run() - - farm_powers = fmodel.get_farm_power() - - # Start with uniform frequency - freq = np.ones(n_findex) - freq = freq / np.sum(freq) - - # Get farm AEP with conditions on minimun and max wind speed - # which exclude the first and last findex - farm_aep = fmodel.get_farm_AEP(freq=freq, cut_in_wind_speed=6.0, cut_out_wind_speed=15.0) + farm_aep = fmodel.get_farm_AEP(freq=freq) - # In this case the aep should be computed assuming 0 power - # for the 0th and last findex - farm_powers[0] = 0 - farm_powers[-1] = 0 aep = np.sum(np.multiply(freq, farm_powers) * 365 * 24) # In this case farm_aep should match farm powers np.testing.assert_allclose(farm_aep, aep) - #Confirm n_findex reset after the operation - assert n_findex == fmodel.core.flow_field.n_findex + # Also check get_expected_farm_power + expected_farm_power = fmodel.get_expected_farm_power(freq=freq) + np.testing.assert_allclose(expected_farm_power, aep / (365 * 24)) def test_set_ti(): fmodel = FlorisModel(configuration=YAML_INPUT) @@ -494,6 +464,102 @@ def test_calculate_planes(): with pytest.raises(ValueError): fmodel.calculate_cross_plane(500.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) +def test_get_turbine_powers_with_WindRose(): + fmodel = FlorisModel(configuration=YAML_INPUT) + + wind_speeds = np.array([8.0, 10.0, 12.0, 8.0, 10.0, 12.0]) + wind_directions = np.array([270.0, 270.0, 270.0, 280.0, 280.0, 280.0]) + turbulence_intensities = 0.06 * np.ones_like(wind_speeds) + + fmodel.set( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, + layout_x=[0, 1000, 2000, 3000], + layout_y=[0, 0, 0, 0] + ) + fmodel.run() + turbine_powers_simple = fmodel.get_turbine_powers() + + # Now declare a WindRose with 2 wind directions and 3 wind speeds + # uniform TI and frequency + wind_rose = WindRose( + wind_directions=np.unique(wind_directions), + wind_speeds=np.unique(wind_speeds), + ti_table=0.06 + ) + + # Set this wind rose, run + fmodel.set(wind_data=wind_rose) + fmodel.run() + + # Get the turbine powers in the wind rose + turbine_powers_windrose = fmodel.get_turbine_powers() + + # Turbine power should have shape (n_wind_directions, n_wind_speeds, n_turbines) + assert turbine_powers_windrose.shape == (2, 3, 4) + assert np.allclose(turbine_powers_simple.reshape(2, 3, 4), turbine_powers_windrose) + assert np.allclose(turbine_powers_simple, turbine_powers_windrose.reshape(2*3, 4)) + + # Test that if certain combinations in the wind rose have 0 frequency, the power in + # those locations is nan + wind_rose = WindRose( + wind_directions = np.array([270.0, 280.0]), + wind_speeds = np.array([8.0, 10.0, 12.0]), + ti_table=0.06, + freq_table=np.array([[0.25, 0.25, 0.0], [0.0, 0.0, 0.5]]) + ) + fmodel.set(wind_data=wind_rose) + fmodel.run() + turbine_powers = fmodel.get_turbine_powers() + assert np.isnan(turbine_powers[0, 2, 0]) + +def test_get_powers_with_wind_data(): + fmodel = FlorisModel(configuration=YAML_INPUT) + + wind_speeds = np.array([8.0, 10.0, 12.0, 8.0, 10.0, 12.0]) + wind_directions = np.array([270.0, 270.0, 270.0, 280.0, 280.0, 280.0]) + turbulence_intensities = 0.06 * np.ones_like(wind_speeds) + + fmodel.set( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, + layout_x=[0, 1000, 2000, 3000], + layout_y=[0, 0, 0, 0] + ) + fmodel.run() + farm_power_simple = fmodel.get_farm_power() + + # Now declare a WindRose with 2 wind directions and 3 wind speeds + # uniform TI and frequency + wind_rose = WindRose( + wind_directions=np.unique(wind_directions), + wind_speeds=np.unique(wind_speeds), + ti_table=0.06 + ) + + # Set this wind rose, run + fmodel.set(wind_data=wind_rose) + fmodel.run() + + farm_power_windrose = fmodel.get_farm_power() + + # Check dimensions and that the farm power is the sum of the turbine powers + assert farm_power_windrose.shape == (2, 3) + assert np.allclose(farm_power_windrose, fmodel.get_turbine_powers().sum(axis=2)) + + # Check that simple and windrose powers are consistent + assert np.allclose(farm_power_simple.reshape(2, 3), farm_power_windrose) + assert np.allclose(farm_power_simple, farm_power_windrose.flatten()) + + # Test that if the last turbine's weight is set to 0, the farm power is the same as the + # sum of the first 3 turbines + turbine_weights = np.array([1.0, 1.0, 1.0, 0.0]) + farm_power_weighted = fmodel.get_farm_power(turbine_weights=turbine_weights) + + assert np.allclose(farm_power_weighted, fmodel.get_turbine_powers()[:,:,:-1].sum(axis=2)) + def test_get_and_set_param(): fmodel = FlorisModel(configuration=YAML_INPUT) diff --git a/tests/layout_optimization_integration_test.py b/tests/layout_optimization_integration_test.py index dafd5e0d6..0732b969c 100644 --- a/tests/layout_optimization_integration_test.py +++ b/tests/layout_optimization_integration_test.py @@ -1,3 +1,4 @@ +import logging from pathlib import Path import numpy as np @@ -21,7 +22,7 @@ YAML_INPUT = TEST_DATA / "input_full.yaml" -def test_base_class(): +def test_base_class(caplog): # Get a test fi fmodel = FlorisModel(configuration=YAML_INPUT) @@ -32,24 +33,40 @@ def test_base_class(): # (this should fail) freq = np.ones((5, 5)) freq = freq / freq.sum() - with pytest.raises(ValueError): - LayoutOptimization(fmodel, boundaries, freq, 5) - # Passing as a keyword freq to wind_data should also fail - with pytest.raises(ValueError): - LayoutOptimization(fmodel=fmodel, boundaries=boundaries, wind_data=freq, min_dist=5,) + # Check that warning is raised if fmodel does not contain wind_data + with caplog.at_level(logging.WARNING): + LayoutOptimization(fmodel, boundaries, 5) + assert caplog.text != "" # Checking not empty + + caplog.clear() + with caplog.at_level(logging.WARNING): + LayoutOptimization(fmodel=fmodel, boundaries=boundaries, min_dist=5,) + assert caplog.text != "" # Checking not empty time_series = TimeSeries( wind_directions=fmodel.core.flow_field.wind_directions, wind_speeds=fmodel.core.flow_field.wind_speeds, turbulence_intensities=fmodel.core.flow_field.turbulence_intensities, ) - wind_rose = time_series.to_wind_rose() + fmodel.set(wind_data=time_series) + + caplog.clear() + with caplog.at_level(logging.WARNING): + LayoutOptimization(fmodel, boundaries, 5) + assert caplog.text != "" # Not empty, because get_farm_AEP called on TimeSeries + + # Passing without keyword arguments should work, or with keyword arguments + LayoutOptimization(fmodel, boundaries, 5) + LayoutOptimization(fmodel=fmodel, boundaries=boundaries, min_dist=5) + + # Check with WindRose on fmodel + fmodel.set(wind_data=time_series.to_WindRose()) - # Passing wind_data objects in the 3rd position should not fail - LayoutOptimization(fmodel, boundaries, time_series, 5) - LayoutOptimization(fmodel, boundaries, wind_rose, 5) + caplog.clear() + with caplog.at_level(logging.WARNING): + LayoutOptimization(fmodel, boundaries, 5) + assert caplog.text == "" # Empty - # Passing wind_data objects by keyword should not fail - LayoutOptimization(fmodel=fmodel, boundaries=boundaries, wind_data=time_series, min_dist=5) - LayoutOptimization(fmodel=fmodel, boundaries=boundaries, wind_data=wind_rose, min_dist=5) + LayoutOptimization(fmodel, boundaries, 5) + LayoutOptimization(fmodel=fmodel, boundaries=boundaries, min_dist=5) diff --git a/tests/parallel_floris_model_integration_test.py b/tests/parallel_floris_model_integration_test.py index e5d603adf..4b4d5aeec 100644 --- a/tests/parallel_floris_model_integration_test.py +++ b/tests/parallel_floris_model_integration_test.py @@ -60,6 +60,8 @@ def test_parallel_get_AEP(sample_inputs_fixture): fmodel = FlorisModel(sample_inputs_fixture.core) pfmodel_input = copy.deepcopy(fmodel) + + fmodel.run() serial_farm_AEP = fmodel.get_farm_AEP(freq=freq) pfmodel = ParallelFlorisModel( @@ -122,6 +124,7 @@ def test_parallel_uncertain_get_AEP(sample_inputs_fixture): wd_std=3 ) pfmodel_input = copy.deepcopy(ufmodel) + ufmodel.run() serial_farm_AEP = ufmodel.get_farm_AEP(freq=freq) pfmodel = ParallelFlorisModel( diff --git a/tests/uncertain_floris_model_integration_test.py b/tests/uncertain_floris_model_integration_test.py index c6bfb0f8e..42ac9ec8a 100644 --- a/tests/uncertain_floris_model_integration_test.py +++ b/tests/uncertain_floris_model_integration_test.py @@ -6,7 +6,7 @@ from floris import FlorisModel from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT -from floris.uncertain_floris_model import UncertainFlorisModel +from floris.uncertain_floris_model import UncertainFlorisModel, WindRose TEST_DATA = Path(__file__).resolve().parent / "data" @@ -215,3 +215,50 @@ def test_uncertain_floris_model_setpoints(): unc_powers = ufmodel.get_turbine_powers()[:, 1].flatten() np.testing.assert_allclose(np.sum(nom_powers * weights), unc_powers) + + +def test_get_powers_with_wind_data(): + ufmodel = UncertainFlorisModel(configuration=YAML_INPUT) + + wind_speeds = np.array([8.0, 10.0, 12.0, 8.0, 10.0, 12.0]) + wind_directions = np.array([270.0, 270.0, 270.0, 280.0, 280.0, 280.0]) + turbulence_intensities = 0.06 * np.ones_like(wind_speeds) + + ufmodel.set( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, + layout_x=[0, 1000, 2000, 3000], + layout_y=[0, 0, 0, 0] + ) + ufmodel.run() + farm_power_simple = ufmodel.get_farm_power() + + # Now declare a WindRose with 2 wind directions and 3 wind speeds + # uniform TI and frequency + wind_rose = WindRose( + wind_directions=np.unique(wind_directions), + wind_speeds=np.unique(wind_speeds), + ti_table=0.06 + ) + + # Set this wind rose, run + ufmodel.set(wind_data=wind_rose) + ufmodel.run() + + farm_power_windrose = ufmodel.get_farm_power() + + # Check dimensions and that the farm power is the sum of the turbine powers + assert farm_power_windrose.shape == (2, 3) + assert np.allclose(farm_power_windrose, ufmodel.get_turbine_powers().sum(axis=2)) + + # Check that simple and windrose powers are consistent + assert np.allclose(farm_power_simple.reshape(2, 3), farm_power_windrose) + assert np.allclose(farm_power_simple, farm_power_windrose.flatten()) + + # Test that if the last turbine's weight is set to 0, the farm power is the same as the + # sum of the first 3 turbines + turbine_weights = np.array([1.0, 1.0, 1.0, 0.0]) + farm_power_weighted = ufmodel.get_farm_power(turbine_weights=turbine_weights) + + assert np.allclose(farm_power_weighted, ufmodel.get_turbine_powers()[:,:,:-1].sum(axis=2)) diff --git a/tests/wind_data_integration_test.py b/tests/wind_data_integration_test.py index 778c35403..c6398a1fa 100644 --- a/tests/wind_data_integration_test.py +++ b/tests/wind_data_integration_test.py @@ -218,12 +218,12 @@ def test_wrap_wind_directions_near_360(): assert np.allclose(wd_wrapped, expected_result) -def test_time_series_to_wind_rose(): +def test_time_series_to_WindRose(): # Test just 1 wind speed wind_directions = np.array([259.8, 260.2, 264.3]) wind_speeds = np.array([5.0, 5.0, 5.1]) time_series = TimeSeries(wind_directions, wind_speeds, 0.06) - wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) + wind_rose = time_series.to_WindRose(wd_step=2.0, ws_step=1.0) # The wind directions should be 260, 262 and 264 because they're binned # to the nearest 2 deg increment @@ -243,7 +243,7 @@ def test_time_series_to_wind_rose(): wind_directions = np.array([259.8, 260.2, 264.3]) wind_speeds = np.array([5.0, 5.0, 6.1]) time_series = TimeSeries(wind_directions, wind_speeds, 0.06) - wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) + wind_rose = time_series.to_WindRose(wd_step=2.0, ws_step=1.0) # The wind directions should be 260, 262 and 264 assert np.allclose(wind_rose.wind_directions, [260, 262, 264]) @@ -267,11 +267,11 @@ def test_time_series_to_wind_rose(): assert np.allclose(ti_table[~np.isnan(ti_table)], 0.06) -def test_time_series_to_wind_rose_wrapping(): +def test_time_series_to_WindRose_wrapping(): wind_directions = np.arange(0.0, 360.0, 0.25) wind_speeds = 8.0 * np.ones_like(wind_directions) time_series = TimeSeries(wind_directions, wind_speeds, 0.06) - wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) + wind_rose = time_series.to_WindRose(wd_step=2.0, ws_step=1.0) # Expert for the first bin in this case to be 0, and the final to be 358 # and both to have equal numbers of points @@ -280,7 +280,7 @@ def test_time_series_to_wind_rose_wrapping(): np.testing.assert_almost_equal(wind_rose.freq_table[0, 0], wind_rose.freq_table[-1, 0]) -def test_time_series_to_wind_rose_with_ti(): +def test_time_series_to_WindRose_with_ti(): wind_directions = np.array([259.8, 260.2, 260.3, 260.1]) wind_speeds = np.array([5.0, 5.0, 5.1, 7.2]) turbulence_intensities = np.array([0.5, 1.0, 1.5, 2.0]) @@ -289,7 +289,7 @@ def test_time_series_to_wind_rose_with_ti(): wind_speeds, turbulence_intensities=turbulence_intensities, ) - wind_rose = time_series.to_wind_rose(wd_step=2.0, ws_step=1.0) + wind_rose = time_series.to_WindRose(wd_step=2.0, ws_step=1.0) # Turbulence intensity should average to 1 in the 5 m/s bin and 2 in the 7 m/s bin ti_table = wind_rose.ti_table @@ -460,7 +460,7 @@ def test_wind_ti_rose_resample(): ) -def test_time_series_to_wind_ti_rose(): +def test_time_series_to_WindTIRose(): wind_directions = np.array([259.8, 260.2, 260.3, 260.1]) wind_speeds = np.array([5.0, 5.0, 5.1, 7.2]) turbulence_intensities = np.array([0.05, 0.1, 0.15, 0.2]) @@ -469,7 +469,7 @@ def test_time_series_to_wind_ti_rose(): wind_speeds, turbulence_intensities=turbulence_intensities, ) - wind_rose = time_series.to_wind_ti_rose(wd_step=2.0, ws_step=1.0, ti_step=0.1) + wind_rose = time_series.to_WindTIRose(wd_step=2.0, ws_step=1.0, ti_step=0.1) # The binning should result in turbulence intensity bins of 0.1 and 0.2 tis_windrose = wind_rose.turbulence_intensities From 614cffeadae404c2baddb95b0a730553d78723b7 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Tue, 2 Apr 2024 11:10:15 -0400 Subject: [PATCH 58/78] power_thrust_model -> operation_model. (#859) --- examples/40_test_derating.py | 4 ++-- examples/41_test_disable_turbines.py | 2 +- floris/core/turbine/turbine.py | 6 +++--- floris/floris_model.py | 12 ++++++------ floris/turbine_library/iea_10MW.yaml | 2 +- floris/turbine_library/iea_15MW.yaml | 2 +- floris/turbine_library/nrel_5MW.yaml | 2 +- floris/turbine_library/turbine_utilities.py | 2 +- tests/conftest.py | 4 ++-- tests/floris_model_integration_test.py | 12 ++++++------ 10 files changed, 24 insertions(+), 24 deletions(-) diff --git a/examples/40_test_derating.py b/examples/40_test_derating.py index 2a7260167..7d72252b6 100644 --- a/examples/40_test_derating.py +++ b/examples/40_test_derating.py @@ -19,7 +19,7 @@ (fmodel.core.as_dict()["farm"]["turbine_type"][0] + ".yaml") )) as t: turbine_type = yaml.safe_load(t) -turbine_type["power_thrust_model"] = "simple-derating" +turbine_type["operation_model"] = "simple-derating" # Convert to a simple two turbine layout with derating turbines fmodel.set(layout_x=[0, 1000.0], layout_y=[0.0, 0.0], turbine_type=[turbine_type]) @@ -82,7 +82,7 @@ ax.set_ylabel("Power produced (kW)") # Second example showing mixed model use. -turbine_type["power_thrust_model"] = "mixed" +turbine_type["operation_model"] = "mixed" yaw_angles = np.array([ [0.0, 0.0], [0.0, 0.0], diff --git a/examples/41_test_disable_turbines.py b/examples/41_test_disable_turbines.py index 3dadc1e0d..9dfb2620b 100644 --- a/examples/41_test_disable_turbines.py +++ b/examples/41_test_disable_turbines.py @@ -23,7 +23,7 @@ ) ) as t: turbine_type = yaml.safe_load(t) -turbine_type["power_thrust_model"] = "mixed" +turbine_type["operation_model"] = "mixed" fmodel.set(turbine_type=[turbine_type]) # Consider a wind farm of 3 aligned wind turbines diff --git a/floris/core/turbine/turbine.py b/floris/core/turbine/turbine.py index dbc588093..315eaabb9 100644 --- a/floris/core/turbine/turbine.py +++ b/floris/core/turbine/turbine.py @@ -31,7 +31,7 @@ TURBINE_MODEL_MAP = { - "power_thrust_model": { + "operation_model": { "simple": SimpleTurbine, "cosine-loss": CosineLossTurbine, "simple-derating": SimpleDeratingTurbine, @@ -427,7 +427,7 @@ class Turbine(BaseClass): hub_height: float = field() TSR: float = field() power_thrust_table: dict = field(default={}) # conversion to numpy in __post_init__ - power_thrust_model: str = field(default="cosine-loss") + operation_model: str = field(default="cosine-loss") correct_cp_ct_for_tilt: bool = field(default=False) floating_tilt_table: dict[str, NDArrayFloat] | None = field(default=None) @@ -469,7 +469,7 @@ def __post_init__(self) -> None: self.power_thrust_table = floris_numeric_dict_converter(self.power_thrust_table) def _initialize_power_thrust_functions(self) -> None: - turbine_function_model = TURBINE_MODEL_MAP["power_thrust_model"][self.power_thrust_model] + turbine_function_model = TURBINE_MODEL_MAP["operation_model"][self.operation_model] self.thrust_coefficient_function = turbine_function_model.thrust_coefficient self.axial_induction_function = turbine_function_model.axial_induction self.power_function = turbine_function_model.power diff --git a/floris/floris_model.py b/floris/floris_model.py index 548f2e9f6..7d964b84e 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -1287,22 +1287,22 @@ def assign_hub_height_to_ref_height(self): self.core.flow_field.reference_wind_height = unique_heights[0] - def get_power_thrust_model(self) -> str: + def get_operation_model(self) -> str: """Get the power thrust model of a FlorisModel. Returns: - str: The power_thrust_model. + str: The operation_model. """ - return self.core.farm.turbine_definitions[0]["power_thrust_model"] + return self.core.farm.turbine_definitions[0]["operation_model"] - def set_power_thrust_model(self, power_thrust_model: str): + def set_operation_model(self, operation_model: str): """Set the power thrust model of a FlorisModel. Args: - power_thrust_model (str): The power thrust model to set. + operation_model (str): The power thrust model to set. """ turbine_type = self.core.farm.turbine_definitions[0] - turbine_type["power_thrust_model"] = power_thrust_model + turbine_type["operation_model"] = operation_model self.set(turbine_type=[turbine_type]) def copy(self): diff --git a/floris/turbine_library/iea_10MW.yaml b/floris/turbine_library/iea_10MW.yaml index 82aa899fa..28e504e6c 100644 --- a/floris/turbine_library/iea_10MW.yaml +++ b/floris/turbine_library/iea_10MW.yaml @@ -5,7 +5,7 @@ turbine_type: 'iea_10MW' hub_height: 119.0 rotor_diameter: 198.0 TSR: 8.0 -power_thrust_model: cosine-loss +operation_model: cosine-loss power_thrust_table: ref_air_density: 1.225 ref_tilt: 6.0 diff --git a/floris/turbine_library/iea_15MW.yaml b/floris/turbine_library/iea_15MW.yaml index 456b40398..f72003404 100644 --- a/floris/turbine_library/iea_15MW.yaml +++ b/floris/turbine_library/iea_15MW.yaml @@ -7,7 +7,7 @@ turbine_type: 'iea_15MW' hub_height: 150.0 rotor_diameter: 242.24 TSR: 8.0 -power_thrust_model: cosine-loss +operation_model: cosine-loss power_thrust_table: ref_air_density: 1.225 ref_tilt: 6.0 diff --git a/floris/turbine_library/nrel_5MW.yaml b/floris/turbine_library/nrel_5MW.yaml index 9a93245eb..ce0c788f7 100644 --- a/floris/turbine_library/nrel_5MW.yaml +++ b/floris/turbine_library/nrel_5MW.yaml @@ -24,7 +24,7 @@ TSR: 8.0 ### # Model for power and thrust curve interpretation. -power_thrust_model: 'cosine-loss' +operation_model: 'cosine-loss' ### # Cp and Ct as a function of wind speed for the turbine's full range of operating conditions. diff --git a/floris/turbine_library/turbine_utilities.py b/floris/turbine_library/turbine_utilities.py index eff9df63e..f5bee158d 100644 --- a/floris/turbine_library/turbine_utilities.py +++ b/floris/turbine_library/turbine_utilities.py @@ -158,7 +158,7 @@ def build_cosine_loss_turbine_dict( "hub_height": hub_height, "rotor_diameter": rotor_diameter, "TSR": TSR, - "power_thrust_model": "cosine-loss", + "operation_model": "cosine-loss", "power_thrust_table": power_thrust_dict } diff --git a/tests/conftest.py b/tests/conftest.py index 70e1d2ca9..26210c963 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -208,7 +208,7 @@ def __init__(self): "turbine_type": "nrel_5mw", "rotor_diameter": 125.88, "hub_height": 90.0, - "power_thrust_model": "cosine-loss", + "operation_model": "cosine-loss", "power_thrust_table": { "cosine_loss_exponent_yaw": 1.88, "cosine_loss_exponent_tilt": 1.88, @@ -532,7 +532,7 @@ def __init__(self): "rotor_diameter": 125.88, "hub_height": 90.0, "generator_efficiency": 0.944, - "power_thrust_model": "cosine-loss", + "operation_model": "cosine-loss", "pP": 1.88, "pT": 1.88, "ref_density_cp_ct": 1.225, diff --git a/tests/floris_model_integration_test.py b/tests/floris_model_integration_test.py index ae5f07558..8975cdd07 100644 --- a/tests/floris_model_integration_test.py +++ b/tests/floris_model_integration_test.py @@ -265,7 +265,7 @@ def test_disable_turbines(): ) ) as t: turbine_type = yaml.safe_load(t) - turbine_type["power_thrust_model"] = "mixed" + turbine_type["operation_model"] = "mixed" fmodel.set(turbine_type=[turbine_type]) # Init to n-findex = 2, n_turbines = 3 @@ -577,12 +577,12 @@ def test_get_and_set_param(): alpha = fmodel.get_param(['wake', 'wake_velocity_parameters', 'gauss', 'alpha']) assert alpha == 0.1 -def test_get_power_thrust_model(): +def test_get_operation_model(): fmodel = FlorisModel(configuration=YAML_INPUT) - assert fmodel.get_power_thrust_model() == "cosine-loss" + assert fmodel.get_operation_model() == "cosine-loss" -def test_set_power_thrust_model(): +def test_set_operation_model(): fmodel = FlorisModel(configuration=YAML_INPUT) - fmodel.set_power_thrust_model("simple-derating") - assert fmodel.get_power_thrust_model() == "simple-derating" + fmodel.set_operation_model("simple-derating") + assert fmodel.get_operation_model() == "simple-derating" From 397d93c38942a9b7630d05e413051742b28af1a4 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Thu, 4 Apr 2024 11:39:37 -0400 Subject: [PATCH 59/78] Allow different turbine models as well as different power_thrust_models for each turbine. (#856) --- floris/floris_model.py | 35 ++++++++++++++++++++------ tests/floris_model_integration_test.py | 5 ++++ 2 files changed, 32 insertions(+), 8 deletions(-) diff --git a/floris/floris_model.py b/floris/floris_model.py index 7d964b84e..157c99ac2 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -1288,22 +1288,41 @@ def assign_hub_height_to_ref_height(self): self.core.flow_field.reference_wind_height = unique_heights[0] def get_operation_model(self) -> str: - """Get the power thrust model of a FlorisModel. + """Get the operation model of a FlorisModel. Returns: str: The operation_model. """ - return self.core.farm.turbine_definitions[0]["operation_model"] + operation_models = [ + self.core.farm.turbine_definitions[tindex]["operation_model"] + for tindex in range(self.core.farm.n_turbines) + ] + if len(set(operation_models)) == 1: + return operation_models[0] + else: + return operation_models - def set_operation_model(self, operation_model: str): - """Set the power thrust model of a FlorisModel. + def set_operation_model(self, operation_model: str | List[str]): + """Set the turbine operation model(s). Args: - operation_model (str): The power thrust model to set. + operation_model (str): The operation model to set. """ - turbine_type = self.core.farm.turbine_definitions[0] - turbine_type["operation_model"] = operation_model - self.set(turbine_type=[turbine_type]) + if isinstance(operation_model, str): + operation_model = [operation_model]*self.core.farm.n_turbines + elif len(operation_model) != self.core.farm.n_turbines: + raise ValueError( + "The length of the operation_model list must be equal to the number of turbines." + ) + + turbine_type_list = self.core.farm.turbine_definitions + for tindex in range(self.core.farm.n_turbines): + turbine_type_list[tindex]["turbine_type"] = ( + turbine_type_list[tindex]["turbine_type"]+"_"+operation_model[tindex] + ) + turbine_type_list[tindex]["operation_model"] = operation_model[tindex] + + self.set(turbine_type=turbine_type_list) def copy(self): """Create an independent copy of the current FlorisModel object""" diff --git a/tests/floris_model_integration_test.py b/tests/floris_model_integration_test.py index 8975cdd07..7d4fcbc12 100644 --- a/tests/floris_model_integration_test.py +++ b/tests/floris_model_integration_test.py @@ -586,3 +586,8 @@ def test_set_operation_model(): fmodel = FlorisModel(configuration=YAML_INPUT) fmodel.set_operation_model("simple-derating") assert fmodel.get_operation_model() == "simple-derating" + + # Check multiple turbine types works + fmodel.set(layout_x=[0, 0], layout_y=[0, 1000]) + fmodel.set_operation_model(["simple-derating", "cosine-loss"]) + assert fmodel.get_operation_model() == ["simple-derating", "cosine-loss"] From 27fe153ceaf81411a38d88dec21e67fe1c94f752 Mon Sep 17 00:00:00 2001 From: ejsimley <40040961+ejsimley@users.noreply.github.com> Date: Thu, 4 Apr 2024 11:40:49 -0600 Subject: [PATCH 60/78] Enabling layout optimization for value (#862) * adding value functions to wind_data * adding functions to get expected and annual value in floris_model * including value objective in layout optimization * updating floris model integration tests for AVP * reg test for scipy layout opt with value * Fix docstring and a few spelling errors * Update docstring * updating scipy layout opt reg test results * typo fix * updating pyOptSparse layout optimization docstring --------- Co-authored-by: Paul --- floris/floris_model.py | 142 ++++++++ .../layout_optimization_base.py | 32 +- .../layout_optimization_pyoptsparse.py | 51 ++- .../layout_optimization_scipy.py | 55 ++-- floris/wind_data.py | 311 +++++++++++++++++- tests/floris_model_integration_test.py | 56 ++++ .../reg_tests/scipy_layout_opt_regression.py | 64 ---- .../scipy_layout_opt_regression_test.py | 137 ++++++++ 8 files changed, 742 insertions(+), 106 deletions(-) delete mode 100644 tests/reg_tests/scipy_layout_opt_regression.py create mode 100644 tests/reg_tests/scipy_layout_opt_regression_test.py diff --git a/floris/floris_model.py b/floris/floris_model.py index 157c99ac2..95e8ca2cf 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -701,6 +701,148 @@ def get_farm_AEP( turbine_weights=turbine_weights ) * hours_per_year + def get_expected_farm_value( + self, + freq=None, + values=None, + turbine_weights=None, + ) -> float: + """ + Compute the expected (mean) value produced by the wind farm. This is + computed by multiplying the wind farm power for each wind condition by + the corresponding value of the power generated (e.g., electricity + market price per unit of energy), then weighting by frequency and + summing over all conditions. + + Args: + freq (NDArrayFloat): NumPy array with shape (n_findex) + with the frequencies of each wind condition combination. + These frequencies should typically sum up to 1.0 and are used + to weigh the wind farm value for every condition in calculating + the wind farm's expected value. Defaults to None. If None and a + WindData object is supplied, the WindData object's frequencies + will be used. Otherwise, uniform frequencies are assumed (i.e., + a simple mean over the findices is computed). + values (NDArrayFloat): NumPy array with shape (n_findex) + with the values corresponding to the power generated for each + wind condition combination. The wind farm power is multiplied + by the value for every condition in calculating the wind farm's + expected value. Defaults to None. If None and a WindData object + is supplied, the WindData object's values will be used. + Otherwise, a value of 1 for all conditions is assumed (i.e., + the expected farm value will be equivalent to the expected farm + power). + turbine_weights (NDArrayFloat | list[float] | None, optional): + weighing terms that allow the user to emphasize power at + particular turbines and/or completely ignore the power + from other turbines. This is useful when, for example, you are + modeling multiple wind farms in a single floris object. If you + only want to calculate the value production for one of those + farms and include the wake effects of the neighboring farms, + you can set the turbine_weights for the neighboring farms' + turbines to 0.0. The array of turbine powers from floris + is multiplied with this array in the calculation of the + expected value. If None, this is an array with all values 1.0 + and with shape equal to (n_findex, n_turbines). Defaults to None. + + Returns: + float: + The expected value produced by the wind farm in units of value. + """ + + farm_power = self._get_farm_power(turbine_weights=turbine_weights) + + if freq is None: + if self.wind_data is None: + freq = np.array([1.0/self.core.flow_field.n_findex]) + else: + freq = self.wind_data.unpack_freq() + + if values is None: + if self.wind_data is None: + values = np.array([1.0]) + else: + values = self.wind_data.unpack_value() + + farm_value = np.multiply(values, farm_power) + + return np.nansum(np.multiply(freq, farm_value)) + + def get_farm_AVP( + self, + freq=None, + values=None, + turbine_weights=None, + hours_per_year=8760, + ) -> float: + """ + Estimate annual value production (AVP) for distribution of wind + conditions, frequencies of occurrence, and corresponding values of + power generated (e.g., electricity price per unit of energy). + + Args: + freq (NDArrayFloat): NumPy array with shape (n_findex) + with the frequencies of each wind condition combination. + These frequencies should typically sum up to 1.0 and are used + to weigh the wind farm value for every condition in calculating + the wind farm's AVP. Defaults to None. If None and a + WindData object is supplied, the WindData object's frequencies + will be used. Otherwise, uniform frequencies are assumed (i.e., + a simple mean over the findices is computed). + values (NDArrayFloat): NumPy array with shape (n_findex) + with the values corresponding to the power generated for each + wind condition combination. The wind farm power is multiplied + by the value for every condition in calculating the wind farm's + AVP. Defaults to None. If None and a WindData object is + supplied, the WindData object's values will be used. Otherwise, + a value of 1 for all conditions is assumed (i.e., the AVP will + be equivalent to the AEP). + turbine_weights (NDArrayFloat | list[float] | None, optional): + weighing terms that allow the user to emphasize power at + particular turbines and/or completely ignore the power + from other turbines. This is useful when, for example, you are + modeling multiple wind farms in a single floris object. If you + only want to calculate the value production for one of those + farms and include the wake effects of the neighboring farms, + you can set the turbine_weights for the neighboring farms' + turbines to 0.0. The array of turbine powers from floris is + multiplied with this array in the calculation of the AVP. If + None, this is an array with all values 1.0 and with shape equal + to (n_findex, n_turbines). Defaults to None. + hours_per_year (float, optional): Number of hours in a year. + Defaults to 365 * 24. + + Returns: + float: + The Annual Value Production (AVP) for the wind farm in units + of value. + """ + if ( + freq is None + and not isinstance(self.wind_data, WindRose) + and not isinstance(self.wind_data, WindTIRose) + ): + self.logger.warning( + "Computing AVP with uniform frequencies. Results results may not reflect annual " + "operation." + ) + + if ( + values is None + and not isinstance(self.wind_data, WindRose) + and not isinstance(self.wind_data, WindTIRose) + ): + self.logger.warning( + "Computing AVP with uniform value equal to 1. Results will be equivalent to " + "annual energy production." + ) + + return self.get_expected_farm_value( + freq=freq, + values=values, + turbine_weights=turbine_weights + ) * hours_per_year + def get_turbine_ais(self) -> NDArrayFloat: turbine_ais = axial_induction( velocities=self.core.flow_field.u, diff --git a/floris/optimization/layout_optimization/layout_optimization_base.py b/floris/optimization/layout_optimization/layout_optimization_base.py index d52e6b1f2..99016d902 100644 --- a/floris/optimization/layout_optimization/layout_optimization_base.py +++ b/floris/optimization/layout_optimization/layout_optimization_base.py @@ -26,12 +26,24 @@ class LayoutOptimization(LoggingManager): initializes to 2 rotor diameters. Defaults to None. enable_geometric_yaw (bool, optional): If True, enables geometric yaw optimization. Defaults to False. + use_value (bool, optional): If True, the layout optimization objective + is to maximize annual value production using the value array in the + FLORIS model's WindData object. If False, the optimization + objective is to maximize AEP. Defaults to False. """ - def __init__(self, fmodel, boundaries, min_dist=None, enable_geometric_yaw=False): + def __init__( + self, + fmodel, + boundaries, + min_dist=None, + enable_geometric_yaw=False, + use_value=False, + ): self.fmodel = fmodel.copy() # Does not copy over the wind_data object self.fmodel.set(wind_data=fmodel.wind_data) self.boundaries = boundaries self.enable_geometric_yaw = enable_geometric_yaw + self.use_value = use_value self._boundary_polygon = Polygon(self.boundaries) self._boundary_line = LineString(self.boundaries) @@ -41,7 +53,7 @@ def __init__(self, fmodel, boundaries, min_dist=None, enable_geometric_yaw=False self.ymin = np.min([tup[1] for tup in boundaries]) self.ymax = np.max([tup[1] for tup in boundaries]) - # If no minimum distance is provided, assume a value of 2 rotor diamters + # If no minimum distance is provided, assume a value of 2 rotor diameters if min_dist is None: self.min_dist = 2 * self.rotor_diameter else: @@ -53,9 +65,13 @@ def __init__(self, fmodel, boundaries, min_dist=None, enable_geometric_yaw=False # a WindData object, but it is still recommended. self.logger.warning( "Running layout optimization without a WindData object (e.g. TimeSeries, WindRose, " - "WindTIRose). We suggest that the user set the wind conditions on the FlorisModel " - " using the wind_data keyword argument for layout optimizations to capture " - "frequencies accurately." + "WindTIRose). We suggest that the user set the wind conditions (and if applicable, " + "frequencies and values) on the FlorisModel using the wind_data keyword argument " + "for layout optimizations to capture frequencies and the value of the energy " + "production accurately. If a WindData object is not defined, uniform frequencies " + "will be assumed. If use_value is True and a WindData object is not defined, a " + "value of 1 will be used for each wind condition and layout optimization will " + "simply be performed to maximize AEP." ) # Establish geometric yaw class @@ -67,7 +83,11 @@ def __init__(self, fmodel, boundaries, min_dist=None, enable_geometric_yaw=False ) # TODO: is this being used? fmodel.run() - self.initial_AEP = fmodel.get_farm_AEP() + + if self.use_value: + self.initial_AEP_or_AVP = fmodel.get_farm_AVP() + else: + self.initial_AEP_or_AVP = fmodel.get_farm_AEP() def __str__(self): return "layout" diff --git a/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py index 959b152a3..3a87dff70 100644 --- a/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py +++ b/floris/optimization/layout_optimization/layout_optimization_pyoptsparse.py @@ -8,6 +8,39 @@ class LayoutOptimizationPyOptSparse(LayoutOptimization): + """ + This class provides an interface for optimizing the layout of wind turbines + using the pyOptSparse optimization library. The optimization objective is to + maximize annual energy production (AEP) or annual value production (AVP). + + Args: + fmodel (FlorisModel): A FlorisModel object. + boundaries (iterable(float, float)): Pairs of x- and y-coordinates + that represent the boundary's vertices (m). + min_dist (float, optional): The minimum distance to be maintained + between turbines during the optimization (m). If not specified, + initializes to 2 rotor diameters. Defaults to None. + solver (str, optional): Sets the solver used by pyOptSparse. Defaults + to 'SLSQP'. + optOptions (dict, optional): Dictionary for setting the + optimization options. Defaults to None. + timeLimit (float, optional): Variable passed to pyOptSparse optimizer. + The maximum amount of time for optimizer to run (seconds). If None, + no time limit is imposed. Defaults to None. + storeHistory (str, optional): Variable passed to pyOptSparse optimizer. + File name of the history file into which the history of the + pyOptSparse optimization will be stored. Defaults to "hist.hist". + hotStart (str, optional): Variable passed to pyOptSparse optimizer. + File name of the history file to “replay” for the optimization. + If None, pyOptSparse initializes the optimization from scratch. + Defaults to None. + enable_geometric_yaw (bool, optional): If True, enables geometric yaw + optimization. Defaults to False. + use_value (bool, optional): If True, the layout optimization objective + is to maximize annual value production using the value array in the + FLORIS model's WindData object. If False, the optimization + objective is to maximize AEP. Defaults to False. + """ def __init__( self, fmodel, @@ -19,9 +52,16 @@ def __init__( storeHistory='hist.hist', hotStart=None, enable_geometric_yaw=False, + use_value=False, ): - super().__init__(fmodel, boundaries, min_dist=min_dist, - enable_geometric_yaw=enable_geometric_yaw) + + super().__init__( + fmodel, + boundaries, + min_dist=min_dist, + enable_geometric_yaw=enable_geometric_yaw, + use_value=use_value + ) self.x0 = self._norm(self.fmodel.layout_x, self.xmin, self.xmax) self.y0 = self._norm(self.fmodel.layout_y, self.ymin, self.ymax) @@ -42,7 +82,7 @@ def __init__( self.logger.error(err_msg, stack_info=True) raise ImportError(err_msg) - # Insantiate ptOptSparse optimization object with name and objective function + # Instantiate pyOptSparse optimization object with name and objective function self.optProb = pyoptsparse.Optimization('layout', self._obj_func) self.optProb = self.add_var_group(self.optProb) @@ -98,7 +138,10 @@ def _obj_func(self, varDict): # Compute the objective function funcs = {} - funcs["obj"] = -1 * self.fmodel.get_farm_AEP() / self.initial_AEP + if self.use_value: + funcs["obj"] = -1 * self.fmodel.get_farm_AVP() / self.initial_AEP_or_AVP + else: + funcs["obj"] = -1 * self.fmodel.get_farm_AEP() / self.initial_AEP_or_AVP # Compute constraints, if any are defined for the optimization funcs = self.compute_cons(funcs, self.x, self.y) diff --git a/floris/optimization/layout_optimization/layout_optimization_scipy.py b/floris/optimization/layout_optimization/layout_optimization_scipy.py index ff3048cae..5cb3a816e 100644 --- a/floris/optimization/layout_optimization/layout_optimization_scipy.py +++ b/floris/optimization/layout_optimization/layout_optimization_scipy.py @@ -9,6 +9,32 @@ class LayoutOptimizationScipy(LayoutOptimization): + """ + This class provides an interface for optimizing the layout of wind turbines + using the Scipy optimization library. The optimization objective is to + maximize annual energy production (AEP) or annual value production (AVP). + + + Args: + fmodel (FlorisModel): A FlorisModel object. + boundaries (iterable(float, float)): Pairs of x- and y-coordinates + that represent the boundary's vertices (m). + bnds (iterable, optional): Bounds for the optimization + variables (pairs of min/max values for each variable (m)). If + none are specified, they are set to 0 and 1. Defaults to None. + min_dist (float, optional): The minimum distance to be maintained + between turbines during the optimization (m). If not specified, + initializes to 2 rotor diameters. Defaults to None. + solver (str, optional): Sets the solver used by Scipy. Defaults to 'SLSQP'. + optOptions (dict, optional): Dictionary for setting the + optimization options. Defaults to None. + enable_geometric_yaw (bool, optional): If True, enables geometric yaw + optimization. Defaults to False. + use_value (bool, optional): If True, the layout optimization objective + is to maximize annual value production using the value array in the + FLORIS model's WindData object. If False, the optimization + objective is to maximize AEP. Defaults to False. + """ def __init__( self, fmodel, @@ -18,29 +44,15 @@ def __init__( solver='SLSQP', optOptions=None, enable_geometric_yaw=False, + use_value=False, ): - """ - _summary_ - - Args: - fmodel (FlorisModel): A FlorisModel object. - boundaries (iterable(float, float)): Pairs of x- and y-coordinates - that represent the boundary's vertices (m). - bnds (iterable, optional): Bounds for the optimization - variables (pairs of min/max values for each variable (m)). If - none are specified, they are set to 0 and 1. Defaults to None. - min_dist (float, optional): The minimum distance to be maintained - between turbines during the optimization (m). If not specified, - initializes to 2 rotor diameters. Defaults to None. - solver (str, optional): Sets the solver used by Scipy. Defaults to 'SLSQP'. - optOptions (dict, optional): Dicitonary for setting the - optimization options. Defaults to None. - """ + super().__init__( fmodel, boundaries, min_dist=min_dist, - enable_geometric_yaw=enable_geometric_yaw + enable_geometric_yaw=enable_geometric_yaw, + use_value=use_value ) self.boundaries_norm = [ @@ -101,7 +113,10 @@ def _obj_func(self, locs): self.fmodel.set(yaw_angles=yaw_angles) self.fmodel.run() - return -1 * self.fmodel.get_farm_AEP() / self.initial_AEP + if self.use_value: + return -1 * self.fmodel.get_farm_AVP() / self.initial_AEP_or_AVP + else: + return -1 * self.fmodel.get_farm_AEP() / self.initial_AEP_or_AVP def _change_coordinates(self, locs): @@ -205,7 +220,7 @@ def _get_initial_and_final_locs(self): def optimize(self): """ This method finds the optimized layout of wind turbines for power - production given the provided frequencies of occurance of wind + production given the provided frequencies of occurrence of wind conditions (wind speed, direction). Returns: diff --git a/floris/wind_data.py b/floris/wind_data.py index 2b8952e9f..808edc1ee 100644 --- a/floris/wind_data.py +++ b/floris/wind_data.py @@ -51,6 +51,11 @@ def unpack_freq(self): return self.unpack()[3] + def unpack_value(self): + """Unpack values of power generated""" + + return self.unpack()[4] + def check_heterogenous_inflow_config_by_wd(self, heterogenous_inflow_config_by_wd): """ Check that the heterogenous_inflow_config_by_wd dictionary is properly formatted @@ -511,15 +516,19 @@ def plot_ti_over_ws( Args: ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes - on which the wind rose is plotted. Defaults to None. - plot_kwargs (dict, optional): Keyword arguments to be passed to - ax.plot(). + on which the turbulence intensity is plotted. Defaults to None. + marker (str, optional): Scatter plot marker style. Defaults to ".". + ls (str, optional): Scatter plot line style. Defaults to "None". + color (str, optional): Scatter plot color. Defaults to "k". Returns: :py:class:`matplotlib.pyplot.axes`: A figure axes object containing - the plotted wind rose. + the plotted turbulence intensities as a function of wind speed. """ + # TODO: Plot mean and std. devs. of TI in each ws bin in addition to + # individual points + # Set up figure if ax is None: _, ax = plt.subplots() @@ -529,6 +538,110 @@ def plot_ti_over_ws( ax.set_ylabel("Turbulence Intensity (%)") ax.grid(True) + def assign_value_using_wd_ws_function(self, func, normalize=False): + """ + Use the passed in function to assign new values to the value table. + + Args: + func (function): Function which accepts wind_directions as its + first argument and wind_speeds as second argument and returns + values. + normalize (bool, optional): If True, the value array will be + normalized by the mean value. Defaults to False. + + """ + self.value_table = func(self.wd_grid, self.ws_grid) + + if normalize: + self.value_table /= np.sum(self.freq_table * self.value_table) + + self._build_gridded_and_flattened_version() + + def assign_value_piecewise_linear( + self, + value_zero_ws=1.425, + ws_knee=4.5, + slope_1=0.0, + slope_2=-0.135, + limit_to_zero=False, + normalize=False, + ): + """ + Define value as a continuous piecewise linear function of wind speed + with two line segments. The default parameters yield a value function + that approximates the normalized mean electricity price vs. wind speed + curve for the SPP market in the U.S. for years 2018-2020 from figure 7 + in Simley et al. "The value of wake steering wind farm flow control in + US energy markets," Wind Energy Science, 2024. + https://doi.org/10.5194/wes-9-219-2024. This default value function is + constant at low wind speeds, then linearly decreases above 4.5 m/s. + + Args: + value_zero_ws (float, optional): The value when wind speed is zero. + Defaults to 1.425. + ws_knee (float, optional): The wind speed separating line segments + 1 and 2. Default = 4.5 m/s. + slope_1 (float, optional): The slope of the first line segment + (unit of value per m/s). Defaults to zero. + slope_2 (float, optional): The slope of the second line segment + (unit of value per m/s). Defaults to -0.135. + limit_to_zero (bool, optional): If True, negative values will be + set to zero. Defaults to False. + normalize (bool, optional): If True, the value array will be + normalized by the mean value. Defaults to False. + """ + + def piecewise_linear_value_func(wind_directions, wind_speeds): + value = np.zeros_like(wind_speeds) + value[wind_speeds < ws_knee] = ( + slope_1 * wind_speeds[wind_speeds < ws_knee] + value_zero_ws + ) + + offset_2 = (slope_1 - slope_2) * ws_knee + value_zero_ws + + value[wind_speeds >= ws_knee] = slope_2 * wind_speeds[wind_speeds >= ws_knee] + offset_2 + + if limit_to_zero: + value[value < 0] = 0.0 + + return value + + self.assign_value_using_wd_ws_function(piecewise_linear_value_func, normalize) + + def plot_value_over_ws( + self, + ax=None, + marker=".", + ls="None", + color="k", + ): + """ + Scatter plot the value of the energy generated against wind speed. + + Args: + ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes + on which the value is plotted. Defaults to None. + marker (str, optional): Scatter plot marker style. Defaults to ".". + ls (str, optional): Scatter plot line style. Defaults to "None". + color (str, optional): Scatter plot color. Defaults to "k". + + Returns: + :py:class:`matplotlib.pyplot.axes`: A figure axes object containing + the plotted value as a function of wind speed. + """ + + # TODO: Plot mean and std. devs. of value in each ws bin in addition to + # individual points + + # Set up figure + if ax is None: + _, ax = plt.subplots() + + ax.plot(self.ws_flat, self.value_table_flat, marker=marker, ls=ls, color=color) + ax.set_xlabel("Wind Speed (m/s)") + ax.set_ylabel("Value") + ax.grid(True) + @staticmethod def read_csv_long(file_path: str, ws_col: str = 'wind_speeds', @@ -952,16 +1065,18 @@ def plot_ti_over_ws( Args: ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes - on which the wind rose is plotted. Defaults to None. - plot_kwargs (dict, optional): Keyword arguments to be passed to - ax.plot(). + on which the mean turbulence intensity is plotted. Defaults to None. + marker (str, optional): Scatter plot marker style. Defaults to ".". + ls (str, optional): Scatter plot line style. Defaults to "None". + color (str, optional): Scatter plot color. Defaults to "k". Returns: :py:class:`matplotlib.pyplot.axes`: A figure axes object containing - the plotted wind rose. + the plotted mean turbulence intensities as a function of wind speed. """ - # TODO: Plot std. devs. of TI in addition to mean values + # TODO: Plot individual points and std. devs. of TI in addition to mean + # values # Set up figure if ax is None: @@ -976,6 +1091,111 @@ def plot_ti_over_ws( ax.set_ylabel("Mean Turbulence Intensity (%)") ax.grid(True) + def assign_value_using_wd_ws_ti_function(self, func, normalize=False): + """ + Use the passed in function to assign new values to the value table. + + Args: + func (function): Function which accepts wind_directions as its + first argument, wind_speeds as its second argument, and + turbulence_intensities as its third argument and returns + values. + normalize (bool, optional): If True, the value array will be + normalized by the mean value. Defaults to False. + + """ + self.value_table = func(self.wd_grid, self.ws_grid, self.ti_grid) + + if normalize: + self.value_table /= np.sum(self.freq_table * self.value_table) + + self._build_gridded_and_flattened_version() + + def assign_value_piecewise_linear( + self, + value_zero_ws=1.425, + ws_knee=4.5, + slope_1=0.0, + slope_2=-0.135, + limit_to_zero=False, + normalize=False, + ): + """ + Define value as a continuous piecewise linear function of wind speed + with two line segments. The default parameters yield a value function + that approximates the normalized mean electricity price vs. wind speed + curve for the SPP market in the U.S. for years 2018-2020 from figure 7 + in Simley et al. "The value of wake steering wind farm flow control in + US energy markets," Wind Energy Science, 2024. + https://doi.org/10.5194/wes-9-219-2024. This default value function is + constant at low wind speeds, then linearly decreases above 4.5 m/s. + + Args: + value_zero_ws (float, optional): The value when wind speed is zero. + Defaults to 1.425. + ws_knee (float, optional): The wind speed separating line segments + 1 and 2. Default = 4.5 m/s. + slope_1 (float, optional): The slope of the first line segment + (unit of value per m/s). Defaults to zero. + slope_2 (float, optional): The slope of the second line segment + (unit of value per m/s). Defaults to -0.135. + limit_to_zero (bool, optional): If True, negative values will be + set to zero. Defaults to False. + normalize (bool, optional): If True, the value array will be + normalized by the mean value. Defaults to False. + """ + + def piecewise_linear_value_func(wind_directions, wind_speeds, turbulence_intensities): + value = np.zeros_like(wind_speeds) + value[wind_speeds < ws_knee] = ( + slope_1 * wind_speeds[wind_speeds < ws_knee] + value_zero_ws + ) + + offset_2 = (slope_1 - slope_2) * ws_knee + value_zero_ws + + value[wind_speeds >= ws_knee] = slope_2 * wind_speeds[wind_speeds >= ws_knee] + offset_2 + + if limit_to_zero: + value[value < 0] = 0.0 + + return value + + self.assign_value_using_wd_ws_ti_function(piecewise_linear_value_func, normalize) + + def plot_value_over_ws( + self, + ax=None, + marker=".", + ls="None", + color="k", + ): + """ + Scatter plot the value of the energy generated against wind speed. + + Args: + ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes + on which the value is plotted. Defaults to None. + marker (str, optional): Scatter plot marker style. Defaults to ".". + ls (str, optional): Scatter plot line style. Defaults to "None". + color (str, optional): Scatter plot color. Defaults to "k". + + Returns: + :py:class:`matplotlib.pyplot.axes`: A figure axes object containing + the plotted value as a function of wind speed. + """ + + # TODO: Plot mean and std. devs. of value in each ws bin in addition to + # individual points + + # Set up figure + if ax is None: + _, ax = plt.subplots() + + ax.plot(self.ws_flat, self.value_table_flat, marker=marker, ls=ls, color=color) + ax.set_xlabel("Wind Speed (m/s)") + ax.set_ylabel("Value") + ax.grid(True) + @staticmethod def read_csv_long(file_path: str, ws_col: str = 'wind_speeds', @@ -1118,9 +1338,8 @@ def __init__( "wind_directions and wind_speeds must be the same length if provided as arrays" ) - if ( - isinstance(wind_directions, np.ndarray) - and isinstance(turbulence_intensities, np.ndarray) + if isinstance(wind_directions, np.ndarray) and isinstance( + turbulence_intensities, np.ndarray ): if len(wind_directions) != len(turbulence_intensities): raise ValueError( @@ -1276,6 +1495,74 @@ def iref_func(wind_directions, wind_speeds): self.assign_ti_using_wd_ws_function(iref_func) + def assign_value_using_wd_ws_function(self, func, normalize=False): + """ + Use the passed in function to assign new values to the value table. + + Args: + func (function): Function which accepts wind_directions as its + first argument and wind_speeds as second argument and returns + values. + normalize (bool, optional): If True, the value array will be + normalized by the mean value. Defaults to False. + + """ + self.values = func(self.wind_directions, self.wind_speeds) + + if normalize: + self.values /= np.mean(self.values) + + def assign_value_piecewise_linear( + self, + value_zero_ws=1.425, + ws_knee=4.5, + slope_1=0.0, + slope_2=-0.135, + limit_to_zero=False, + normalize=False, + ): + """ + Define value as a continuous piecewise linear function of wind speed + with two line segments. The default parameters yield a value function + that approximates the normalized mean electricity price vs. wind speed + curve for the SPP market in the U.S. for years 2018-2020 from figure 7 + in Simley et al. "The value of wake steering wind farm flow control in + US energy markets," Wind Energy Science, 2024. + https://doi.org/10.5194/wes-9-219-2024. This default value function is + constant at low wind speeds, then linearly decreases above 4.5 m/s. + + Args: + value_zero_ws (float, optional): The value when wind speed is zero. + Defaults to 1.425. + ws_knee (float, optional): The wind speed separating line segments + 1 and 2. Default = 4.5 m/s. + slope_1 (float, optional): The slope of the first line segment + (unit of value per m/s). Defaults to zero. + slope_2 (float, optional): The slope of the second line segment + (unit of value per m/s). Defaults to -0.135. + limit_to_zero (bool, optional): If True, negative values will be + set to zero. Defaults to False. + normalize (bool, optional): If True, the value array will be + normalized by the mean value. Defaults to False. + """ + + def piecewise_linear_value_func(wind_directions, wind_speeds): + value = np.zeros_like(wind_speeds) + value[wind_speeds < ws_knee] = ( + slope_1 * wind_speeds[wind_speeds < ws_knee] + value_zero_ws + ) + + offset_2 = (slope_1 - slope_2) * ws_knee + value_zero_ws + + value[wind_speeds >= ws_knee] = slope_2 * wind_speeds[wind_speeds >= ws_knee] + offset_2 + + if limit_to_zero: + value[value < 0] = 0.0 + + return value + + self.assign_value_using_wd_ws_function(piecewise_linear_value_func, normalize) + def to_WindRose( self, wd_step=2.0, ws_step=1.0, wd_edges=None, ws_edges=None, bin_weights=None ): diff --git a/tests/floris_model_integration_test.py b/tests/floris_model_integration_test.py index 7d4fcbc12..144af4f01 100644 --- a/tests/floris_model_integration_test.py +++ b/tests/floris_model_integration_test.py @@ -390,6 +390,62 @@ def test_get_farm_aep(caplog): expected_farm_power = fmodel.get_expected_farm_power(freq=freq) np.testing.assert_allclose(expected_farm_power, aep / (365 * 24)) +def test_get_farm_avp(caplog): + fmodel = FlorisModel(configuration=YAML_INPUT) + + wind_speeds = np.array([7.0, 8.0, 9.0]) + wind_directions = np.array([260.0, 270.0, 280.0]) + turbulence_intensities = np.array([0.07, 0.06, 0.05]) + + layout_x = np.array([0, 0]) + layout_y = np.array([0, 1000]) + # n_turbines = len(layout_x) + + fmodel.set( + wind_speeds=wind_speeds, + wind_directions=wind_directions, + turbulence_intensities=turbulence_intensities, + layout_x=layout_x, + layout_y=layout_y, + ) + + fmodel.run() + + farm_powers = fmodel.get_farm_power() + + # Define frequencies + freq = np.array([0.25, 0.5, 0.25]) + + # Define values of energy produced (e.g., price per MWh) + values = np.array([30.0, 20.0, 10.0]) + + # Check warning raised if values not passed; no warning if values passed + with caplog.at_level(logging.WARNING): + fmodel.get_farm_AVP(freq=freq) + assert caplog.text != "" # Checking not empty + caplog.clear() + with caplog.at_level(logging.WARNING): + fmodel.get_farm_AVP(freq=freq, values=values) + assert caplog.text == "" # Checking empty + + # Check that AVP is equivalent to AEP when values not passed + farm_aep = fmodel.get_farm_AEP(freq=freq) + farm_avp = fmodel.get_farm_AVP(freq=freq) + + np.testing.assert_allclose(farm_avp, farm_aep) + + # Now check that AVP is what we expect when values passed + farm_avp = fmodel.get_farm_AVP(freq=freq,values=values) + + farm_values = np.multiply(values, farm_powers) + avp = np.sum(np.multiply(freq, farm_values) * 365 * 24) + + np.testing.assert_allclose(farm_avp, avp) + + # Also check get_expected_farm_value + expected_farm_power = fmodel.get_expected_farm_value(freq=freq, values=values) + np.testing.assert_allclose(expected_farm_power, avp / (365 * 24)) + def test_set_ti(): fmodel = FlorisModel(configuration=YAML_INPUT) diff --git a/tests/reg_tests/scipy_layout_opt_regression.py b/tests/reg_tests/scipy_layout_opt_regression.py deleted file mode 100644 index 049b1b841..000000000 --- a/tests/reg_tests/scipy_layout_opt_regression.py +++ /dev/null @@ -1,64 +0,0 @@ - -import numpy as np -import pandas as pd - -from floris import FlorisModel -from floris.optimization.layout_optimization.layout_optimization_scipy import ( - LayoutOptimizationScipy, -) -from tests.conftest import ( - assert_results_arrays, -) - - -DEBUG = False -VELOCITY_MODEL = "gauss" -DEFLECTION_MODEL = "gauss" - -baseline = np.array( - [ - [0.00000000e+00, 4.96470529e+02, 1.00000000e+03], - [4.58108861e-15, 1.09603647e+01, 2.47721427e+01], - ] -) - - -def test_scipy_layout_opt(sample_inputs_fixture): - """ - The SciPy optimization method optimizes turbine layout using SciPy's minimize method. This test - compares the optimization results from the SciPy layout optimizaiton for a simple farm with a - simple wind rose to stored baseline results. - """ - sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL - sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL - - opt_options = { - "maxiter": 5, - "disp": True, - "iprint": 2, - "ftol": 1e-12, - "eps": 0.01, - } - - boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] - - fmodel = FlorisModel(sample_inputs_fixture.core) - wd_array = np.arange(0, 360.0, 5.0) - ws_array = 8.0 * np.ones_like(wd_array) - D = 126.0 # Rotor diameter for the NREL 5 MW - fmodel.reinitialize( - layout_x=[0.0, 5 * D, 10 * D], - layout_y=[0.0, 0.0, 0.0], - wind_directions=wd_array, - wind_speeds=ws_array, - ) - - layout_opt = LayoutOptimizationScipy(fmodel, boundaries, optOptions=opt_options) - sol = layout_opt.optimize() - locations_opt = np.array([sol[0], sol[1]]) - - if DEBUG: - print(baseline) - print(locations_opt) - - assert_results_arrays(locations_opt, baseline) diff --git a/tests/reg_tests/scipy_layout_opt_regression_test.py b/tests/reg_tests/scipy_layout_opt_regression_test.py new file mode 100644 index 000000000..1029dfd76 --- /dev/null +++ b/tests/reg_tests/scipy_layout_opt_regression_test.py @@ -0,0 +1,137 @@ + +import numpy as np +import pandas as pd + +from floris import FlorisModel, WindRose +from floris.optimization.layout_optimization.layout_optimization_scipy import ( + LayoutOptimizationScipy, +) +from tests.conftest import ( + assert_results_arrays, +) + + +DEBUG = False +VELOCITY_MODEL = "gauss" +DEFLECTION_MODEL = "gauss" + +baseline = np.array( + [ + [0.0, 495.37587653, 1000.0], + [5.0, 11.40800868, 24.93196392], + ] +) + +baseline_value = np.array( + [ + [8.68262334e+01, 1.04360964e-12, 4.00000000e+02, 2.36100415e+02], + [1.69954798e-14, 4.00000000e+02, 0.00000000e+00, 4.00000000e+02], + ] +) + + +def test_scipy_layout_opt(sample_inputs_fixture): + """ + The SciPy optimization method optimizes turbine layout using SciPy's minimize method. This test + compares the optimization results from the SciPy layout optimization for a simple farm with a + simple wind rose to stored baseline results. + """ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + opt_options = { + "maxiter": 5, + "disp": True, + "iprint": 2, + "ftol": 1e-12, + "eps": 0.01, + } + + boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] + + fmodel = FlorisModel(sample_inputs_fixture.core) + wd_array = np.arange(0, 360.0, 5.0) + ws_array = 8.0 * np.ones_like(wd_array) + ti_array = 0.1 * np.ones_like(wd_array) + D = 126.0 # Rotor diameter for the NREL 5 MW + fmodel.set( + layout_x=[0.0, 5 * D, 10 * D], + layout_y=[0.0, 0.0, 0.0], + wind_directions=wd_array, + wind_speeds=ws_array, + turbulence_intensities=ti_array, + ) + + layout_opt = LayoutOptimizationScipy(fmodel, boundaries, optOptions=opt_options) + sol = layout_opt.optimize() + locations_opt = np.array([sol[0], sol[1]]) + + if DEBUG: + print(baseline) + print(locations_opt) + + assert_results_arrays(locations_opt, baseline) + +def test_scipy_layout_opt_value(sample_inputs_fixture): + """ + This test compares the optimization results from the SciPy layout optimization for a simple + farm with a simple wind rose to stored baseline results, optimizing for annual value production + instead of AEP. The value of the energy produced depends on the wind direction, causing the + optimal layout to differ from the case where the objective is maximum AEP. In this case, because + the value is much higher when the wind is from the north or south, the turbines are staggered to + avoid wake interactions for northerly and southerly winds. + """ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + + opt_options = { + "maxiter": 5, + "disp": True, + "iprint": 2, + "ftol": 1e-12, + "eps": 0.1, + } + + boundaries = [(0.0, 0.0), (0.0, 400.0), (400.0, 400.0), (400.0, 0.0), (0.0, 0.0)] + + fmodel = FlorisModel(sample_inputs_fixture.core) + + # set wind conditions and values using a WindData object with the default uniform frequency + wd_array = np.arange(0, 360.0, 5.0) + ws_array = np.array([8.0]) + + # Define the value table such that the value of the energy produced is + # significantly higher when the wind direction is close to the north or + # south, and zero when the wind is from the east or west. + value_table = (0.5 + 0.5*np.cos(2*np.radians(wd_array)))**10 + value_table = value_table.reshape((len(wd_array),1)) + + wind_rose = WindRose( + wind_directions=wd_array, + wind_speeds=ws_array, + ti_table=0.1, + value_table=value_table + ) + + # Start with a rectangular 4-turbine array with 2D spacing + D = 126.0 # Rotor diameter for the NREL 5 MW + fmodel.set( + layout_x=200 + np.array([-1 * D, -1 * D, 1 * D, 1 * D]), + layout_y=200 + np.array([-1* D, 1 * D, -1 * D, 1 * D]), + wind_data=wind_rose, + ) + + layout_opt = LayoutOptimizationScipy( + fmodel, + boundaries, + optOptions=opt_options, + use_value=True + ) + sol = layout_opt.optimize() + locations_opt = np.array([sol[0], sol[1]]) + + if DEBUG: + print(baseline) + print(locations_opt) + + assert_results_arrays(locations_opt, baseline_value) From 99161f24d887c1e5d0c4f26dba0666f9d7007ed0 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Thu, 4 Apr 2024 20:36:52 -0400 Subject: [PATCH 61/78] [BUGFIX] set_operation_model ordering with layout (#867) * Handling for order of set_operation model and setting layout. * ruff. * One more test added. --- floris/core/farm.py | 3 ++- floris/floris_model.py | 18 ++++++++++--- tests/floris_model_integration_test.py | 35 ++++++++++++++++++++++++++ 3 files changed, 51 insertions(+), 5 deletions(-) diff --git a/floris/core/farm.py b/floris/core/farm.py index 5c009c253..c92078be6 100644 --- a/floris/core/farm.py +++ b/floris/core/farm.py @@ -209,7 +209,8 @@ def check_turbine_type(self, attribute: attrs.Attribute, value: Any) -> None: if len(value) != 1 and len(value) != self.n_turbines: raise ValueError( "turbine_type must have the same number of entries as layout_x/layout_y or have " - "a single turbine_type value." + "a single turbine_type value. This error can arise if you set the turbine_type or " + "alter the operation model before setting the layout." ) @turbine_library_path.validator diff --git a/floris/floris_model.py b/floris/floris_model.py index 95e8ca2cf..d9a7ba7e3 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -1451,13 +1451,23 @@ def set_operation_model(self, operation_model: str | List[str]): operation_model (str): The operation model to set. """ if isinstance(operation_model, str): - operation_model = [operation_model]*self.core.farm.n_turbines - elif len(operation_model) != self.core.farm.n_turbines: + if len(self.core.farm.turbine_type) == 1: + # Set a single one here, then, and return + turbine_type = self.core.farm.turbine_definitions[0] + turbine_type["operation_model"] = operation_model + self.set(turbine_type=[turbine_type]) + return + else: + operation_model = [operation_model]*self.core.farm.n_turbines + + if len(operation_model) != self.core.farm.n_turbines: raise ValueError( - "The length of the operation_model list must be equal to the number of turbines." - ) + "The length of the operation_model list must be " + "equal to the number of turbines." + ) turbine_type_list = self.core.farm.turbine_definitions + for tindex in range(self.core.farm.n_turbines): turbine_type_list[tindex]["turbine_type"] = ( turbine_type_list[tindex]["turbine_type"]+"_"+operation_model[tindex] diff --git a/tests/floris_model_integration_test.py b/tests/floris_model_integration_test.py index 144af4f01..fb5871939 100644 --- a/tests/floris_model_integration_test.py +++ b/tests/floris_model_integration_test.py @@ -647,3 +647,38 @@ def test_set_operation_model(): fmodel.set(layout_x=[0, 0], layout_y=[0, 1000]) fmodel.set_operation_model(["simple-derating", "cosine-loss"]) assert fmodel.get_operation_model() == ["simple-derating", "cosine-loss"] + + # Check that setting a single turbine type, and then altering the operation model works + fmodel.set(layout_x=[0, 0], layout_y=[0, 1000]) + fmodel.set(turbine_type=["nrel_5MW"]) + fmodel.set_operation_model("simple-derating") + assert fmodel.get_operation_model() == "simple-derating" + + # Check that setting over mutliple turbine types works + fmodel.set(turbine_type=["nrel_5MW", "iea_15MW"]) + fmodel.set_operation_model("simple-derating") + assert fmodel.get_operation_model() == "simple-derating" + fmodel.set_operation_model(["simple-derating", "cosine-loss"]) + assert fmodel.get_operation_model() == ["simple-derating", "cosine-loss"] + + # Check setting over single turbine type; then updating layout works + fmodel.set(turbine_type=["nrel_5MW"]) + fmodel.set_operation_model("simple-derating") + fmodel.set(layout_x=[0, 0, 0], layout_y=[0, 1000, 2000]) + assert fmodel.get_operation_model() == "simple-derating" + + # Check that setting for multiple turbine types and then updating layout breaks + fmodel.set(layout_x=[0, 0], layout_y=[0, 1000]) + fmodel.set(turbine_type=["nrel_5MW"]) + fmodel.set_operation_model(["simple-derating", "cosine-loss"]) + assert fmodel.get_operation_model() == ["simple-derating", "cosine-loss"] + with pytest.raises(ValueError): + fmodel.set(layout_x=[0, 0, 0], layout_y=[0, 1000, 2000]) + + # Check one more variation + fmodel.set(layout_x=[0, 0], layout_y=[0, 1000]) + fmodel.set(turbine_type=["nrel_5MW", "iea_15MW"]) + fmodel.set_operation_model("simple-derating") + fmodel.set(layout_x=[0, 0], layout_y=[0, 1000]) + with pytest.raises(ValueError): + fmodel.set(layout_x=[0, 0, 0], layout_y=[0, 1000, 2000]) From 53c1de28676462ad25be14cb865aec913062d43e Mon Sep 17 00:00:00 2001 From: paulf81 Date: Thu, 4 Apr 2024 22:39:46 -0600 Subject: [PATCH 62/78] Refactor examples (#843) --- .github/workflows/check-working-examples.yaml | 25 +- ... => 001_opening_floris_computing_power.py} | 26 +- examples/002_visualizations.py | 94 ++++++ examples/003_wind_data_objects.py | 239 +++++++++++++ examples/004_set.py | 105 ++++++ examples/005_getting_power.py | 144 ++++++++ examples/006_get_farm_aep.py | 103 ++++++ examples/007_sweeping_variables.py | 217 ++++++++++++ examples/008_uncertain_models.py | 160 +++++++++ .../009_compare_farm_power_with_neighbor.py | 76 +++++ examples/02_visualizations.py | 149 -------- examples/03_making_adjustments.py | 114 ------- examples/04_sweep_wind_directions.py | 62 ---- examples/05_sweep_wind_speeds.py | 61 ---- examples/06_sweep_wind_conditions.py | 92 ----- examples/07_calc_aep_from_rose.py | 69 ---- .../09_compare_farm_power_with_neighbor.py | 85 ----- examples/12_optimize_yaw.py | 304 ----------------- examples/12_optimize_yaw_in_parallel.py | 300 ----------------- .../13_optimize_yaw_with_neighboring_farm.py | 318 ------------------ examples/15_optimize_layout.py | 80 ----- examples/16b_heterogeneity_multiple_ws_wd.py | 76 ----- ...0_calculate_farm_power_with_uncertainty.py | 135 -------- examples/21_demo_time_series.py | 66 ---- examples/22_get_wind_speed_at_turbines.py | 33 -- examples/31_multi_dimensional_cp_ct_2Hs.py | 72 ---- examples/35_sweep_ti.py | 49 --- examples/40_test_derating.py | 112 ------ .../001_opt_yaw_single_ws.py} | 39 ++- .../002_opt_yaw_single_ws_uncertain.py | 112 ++++++ .../003_opt_yaw_multiple_ws.py} | 48 ++- .../004_optimize_yaw_aep.py | 156 +++++++++ .../005_optimize_yaw_aep_parallel.py | 149 ++++++++ .../006_compare_yaw_optimizers.py} | 34 +- .../007_optimize_yaw_with_neighbor_farms.py | 317 +++++++++++++++++ .../001_derating_control.py | 95 ++++++ .../002_disable_turbines.py} | 28 +- .../003_setting_yaw_and_disabling.py | 83 +++++ ...ical_gauss_velocity_deficit_parameters.py} | 126 ++++--- ..._empirical_gauss_deflection_parameters.py} | 13 +- ...3_tilt_driven_vertical_wake_deflection.py} | 48 +-- .../001_floating_turbine_models.py} | 123 ++++--- .../002_floating_vs_fixedbottom_farm.py} | 50 ++- .../001_extract_wind_speed_at_turbines.py | 39 +++ .../002_extract_wind_speed_at_points.py} | 34 +- .../003_plot_velocity_deficit_profiles.py} | 109 +++--- .../001_heterogeneous_inflow_single.py | 79 +++++ .../002_heterogeneous_inflow_multi.py | 123 +++++++ .../003_heterogeneous_2d_and_3d.py} | 118 +++---- .../001_optimize_layout.py | 139 ++++++++ ...002_optimize_layout_with_heterogeneity.py} | 86 ++--- .../001_multi_dimensional_cp_ct.py} | 43 ++- .../002_multi_dimensional_cp_ct_2Hs.py | 65 ++++ .../001_check_turbine.py} | 62 ++-- .../002_multiple_turbine_types.py} | 17 +- .../003_specify_turbine_power_curve.py} | 50 +-- .../001_uncertain_model_params.py | 170 ++++++++++ .../002_yaw_inertial_frame.py | 1 + .../001_layout_visualizations.py} | 43 ++- .../002_visualize_y_cut_plane.py | 33 ++ .../003_visualize_cross_plane.py | 37 ++ .../004_visualize_rotor_values.py | 33 ++ ...005_visualize_flow_by_sweeping_turbines.py | 43 +++ .../001_wind_data_comparisons.py} | 55 ++- .../002_generate_ti.py} | 15 +- .../examples_wind_data/003_generate_value.py | 81 +++++ examples/inputs/cc.yaml | 2 +- examples/inputs/emgauss.yaml | 2 +- examples/inputs/gch.yaml | 2 +- examples/inputs/gch_heterogeneous_inflow.yaml | 4 +- examples/inputs/gch_multi_dim_cp_ct.yaml | 2 +- .../inputs/gch_multiple_turbine_types.yaml | 2 +- examples/inputs/jensen.yaml | 2 +- examples/inputs/turbopark.yaml | 2 +- examples/inputs_floating/emgauss_fixed.yaml | 2 +- .../inputs_floating/emgauss_floating.yaml | 2 +- .../emgauss_floating_fixedtilt15.yaml | 2 +- .../emgauss_floating_fixedtilt5.yaml | 2 +- examples/inputs_floating/gch_fixed.yaml | 2 +- examples/inputs_floating/gch_floating.yaml | 2 +- .../gch_floating_defined_floating.yaml | 2 +- floris/core/core.py | 5 - floris/core/farm.py | 2 +- floris/core/flow_field.py | 29 +- floris/core/grid.py | 13 - floris/core/solver.py | 3 - floris/core/turbine/operation_models.py | 7 +- floris/floris_model.py | 74 +++- floris/flow_visualization.py | 6 +- .../yaw_optimization/yaw_optimization_base.py | 4 +- .../yaw_optimization/yaw_optimizer_scipy.py | 6 +- .../yaw_optimization/yaw_optimizer_sr.py | 6 +- floris/parallel_floris_model.py | 26 +- floris/uncertain_floris_model.py | 50 +++ floris/wind_data.py | 189 ++++++----- tests/conftest.py | 5 +- tests/data/input_full.yaml | 2 +- ...test.py => scipy_layout_opt_regression.py} | 0 tests/wind_data_integration_test.py | 32 +- 99 files changed, 3774 insertions(+), 2979 deletions(-) rename examples/{01_opening_floris_computing_power.py => 001_opening_floris_computing_power.py} (79%) create mode 100644 examples/002_visualizations.py create mode 100644 examples/003_wind_data_objects.py create mode 100644 examples/004_set.py create mode 100644 examples/005_getting_power.py create mode 100644 examples/006_get_farm_aep.py create mode 100644 examples/007_sweeping_variables.py create mode 100644 examples/008_uncertain_models.py create mode 100644 examples/009_compare_farm_power_with_neighbor.py delete mode 100644 examples/02_visualizations.py delete mode 100644 examples/03_making_adjustments.py delete mode 100644 examples/04_sweep_wind_directions.py delete mode 100644 examples/05_sweep_wind_speeds.py delete mode 100644 examples/06_sweep_wind_conditions.py delete mode 100644 examples/07_calc_aep_from_rose.py delete mode 100644 examples/09_compare_farm_power_with_neighbor.py delete mode 100644 examples/12_optimize_yaw.py delete mode 100644 examples/12_optimize_yaw_in_parallel.py delete mode 100644 examples/13_optimize_yaw_with_neighboring_farm.py delete mode 100644 examples/15_optimize_layout.py delete mode 100644 examples/16b_heterogeneity_multiple_ws_wd.py delete mode 100644 examples/20_calculate_farm_power_with_uncertainty.py delete mode 100644 examples/21_demo_time_series.py delete mode 100644 examples/22_get_wind_speed_at_turbines.py delete mode 100644 examples/31_multi_dimensional_cp_ct_2Hs.py delete mode 100644 examples/35_sweep_ti.py delete mode 100644 examples/40_test_derating.py rename examples/{10_opt_yaw_single_ws.py => examples_control_optimization/001_opt_yaw_single_ws.py} (58%) create mode 100644 examples/examples_control_optimization/002_opt_yaw_single_ws_uncertain.py rename examples/{11_opt_yaw_multiple_ws.py => examples_control_optimization/003_opt_yaw_multiple_ws.py} (78%) create mode 100644 examples/examples_control_optimization/004_optimize_yaw_aep.py create mode 100644 examples/examples_control_optimization/005_optimize_yaw_aep_parallel.py rename examples/{14_compare_yaw_optimizers.py => examples_control_optimization/006_compare_yaw_optimizers.py} (95%) create mode 100644 examples/examples_control_optimization/007_optimize_yaw_with_neighbor_farms.py create mode 100644 examples/examples_control_types/001_derating_control.py rename examples/{41_test_disable_turbines.py => examples_control_types/002_disable_turbines.py} (81%) create mode 100644 examples/examples_control_types/003_setting_yaw_and_disabling.py rename examples/{26_empirical_gauss_velocity_deficit_parameters.py => examples_emgauss/001_empirical_gauss_velocity_deficit_parameters.py} (57%) rename examples/{27_empirical_gauss_deflection_parameters.py => examples_emgauss/002_empirical_gauss_deflection_parameters.py} (98%) rename examples/{25_tilt_driven_vertical_wake_deflection.py => examples_emgauss/003_tilt_driven_vertical_wake_deflection.py} (70%) rename examples/{24_floating_turbine_models.py => examples_floating/001_floating_turbine_models.py} (53%) rename examples/{29_floating_vs_fixedbottom_farm.py => examples_floating/002_floating_vs_fixedbottom_farm.py} (82%) create mode 100644 examples/examples_get_flow/001_extract_wind_speed_at_turbines.py rename examples/{28_extract_wind_speed_at_points.py => examples_get_flow/002_extract_wind_speed_at_points.py} (84%) rename examples/{32_plot_velocity_deficit_profiles.py => examples_get_flow/003_plot_velocity_deficit_profiles.py} (75%) create mode 100644 examples/examples_heterogeneous/001_heterogeneous_inflow_single.py create mode 100644 examples/examples_heterogeneous/002_heterogeneous_inflow_multi.py rename examples/{16_heterogeneous_inflow.py => examples_heterogeneous/003_heterogeneous_2d_and_3d.py} (62%) create mode 100644 examples/examples_layout_optimization/001_optimize_layout.py rename examples/{16c_optimize_layout_with_heterogeneity.py => examples_layout_optimization/002_optimize_layout_with_heterogeneity.py} (71%) rename examples/{30_multi_dimensional_cp_ct.py => examples_multidim/001_multi_dimensional_cp_ct.py} (79%) create mode 100644 examples/examples_multidim/002_multi_dimensional_cp_ct_2Hs.py rename examples/{18_check_turbine.py => examples_turbine/001_check_turbine.py} (66%) rename examples/{17_multiple_turbine_types.py => examples_turbine/002_multiple_turbine_types.py} (87%) rename examples/{33_specify_turbine_power_curve.py => examples_turbine/003_specify_turbine_power_curve.py} (66%) create mode 100644 examples/examples_uncertain/001_uncertain_model_params.py create mode 100644 examples/examples_uncertain/002_yaw_inertial_frame.py rename examples/{23_layout_visualizations.py => examples_visualizations/001_layout_visualizations.py} (69%) create mode 100644 examples/examples_visualizations/002_visualize_y_cut_plane.py create mode 100644 examples/examples_visualizations/003_visualize_cross_plane.py create mode 100644 examples/examples_visualizations/004_visualize_rotor_values.py create mode 100644 examples/examples_visualizations/005_visualize_flow_by_sweeping_turbines.py rename examples/{34_wind_data.py => examples_wind_data/001_wind_data_comparisons.py} (53%) rename examples/{36_generate_ti.py => examples_wind_data/002_generate_ti.py} (97%) create mode 100644 examples/examples_wind_data/003_generate_value.py rename tests/reg_tests/{scipy_layout_opt_regression_test.py => scipy_layout_opt_regression.py} (100%) diff --git a/.github/workflows/check-working-examples.yaml b/.github/workflows/check-working-examples.yaml index 26483a4d6..138e70de8 100644 --- a/.github/workflows/check-working-examples.yaml +++ b/.github/workflows/check-working-examples.yaml @@ -36,19 +36,22 @@ jobs: error_found=0 # 0 is false error_results="Error in example:" - # Run each Python script example - for i in *.py; do - - # Skip these examples until the wind rose, optimization package, and - # uncertainty interface are update to v4 - if [[ $i == *20* ]]; then - continue + # Now run the examples in root and subdirectories + echo "Running examples" + for d in . $(find . -type d -name "*examples*"); do + cd $d + echo "========================= Example directory- $d" + for i in *.py; do + echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Running example- $i" + if ! python $i; then + error_results="${error_results}"$'\n'" - ${i}" + error_found=1 + fi + done + if [ "$d" != "." ]; then + cd .. fi - if ! python $i; then - error_results="${error_results}"$'\n'" - ${i}" - error_found=1 - fi done if [[ $error_found ]]; then diff --git a/examples/01_opening_floris_computing_power.py b/examples/001_opening_floris_computing_power.py similarity index 79% rename from examples/01_opening_floris_computing_power.py rename to examples/001_opening_floris_computing_power.py index dcb1987c1..52950c922 100644 --- a/examples/01_opening_floris_computing_power.py +++ b/examples/001_opening_floris_computing_power.py @@ -1,8 +1,8 @@ """Example 1: Opening FLORIS and Computing Power -This first example illustrates several of the key concepts in FLORIS. It: +This example illustrates several of the key concepts in FLORIS. It demonstrates: - 1) Initializing FLORIS + 1) Initializing a FLORIS model 2) Changing the wind farm layout 3) Changing the incoming wind speed, wind direction and turbulence intensity 4) Running the FLORIS simulation @@ -17,22 +17,22 @@ from floris import FlorisModel -# Initialize FLORIS with the given input file. -# The Floris class is the entry point for most usage. +# The FlorisModel class is the entry point for most usage. +# Initialize using an input yaml file fmodel = FlorisModel("inputs/gch.yaml") # Changing the wind farm layout uses FLORIS' set method to a two-turbine layout fmodel.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) -# Changing wind speed, wind direction, and turbulence intensity using the set method +# Changing wind speed, wind direction, and turbulence intensity uses the set method # as well. Note that the wind_speeds, wind_directions, and turbulence_intensities # are all specified as arrays of the same length. -fmodel.set(wind_directions=np.array([270.0]), - wind_speeds=[8.0], - turbulence_intensities=np.array([0.06])) +fmodel.set( + wind_directions=np.array([270.0]), wind_speeds=[8.0], turbulence_intensities=np.array([0.06]) +) # Note that typically all 3, wind_directions, wind_speeds and turbulence_intensities -# must be supplied to set. However, the exception is if not changing the lenght +# must be supplied to set. However, the exception is if not changing the length # of the arrays, then only one or two may be supplied. fmodel.set(turbulence_intensities=np.array([0.07])) @@ -42,9 +42,11 @@ # be unique. Internally in FLORIS, most data structures will have the findex as their # 0th dimension. The value n_findex is the total number of conditions to be simulated. # This command would simulate 4 conditions (n_findex = 4). -fmodel.set(wind_directions=np.array([270.0, 270.0, 270.0, 270.0]), - wind_speeds=[8.0, 8.0, 10.0, 10.0], - turbulence_intensities=np.array([0.06, 0.06, 0.06, 0.06])) +fmodel.set( + wind_directions=np.array([270.0, 270.0, 270.0, 270.0]), + wind_speeds=[8.0, 8.0, 10.0, 10.0], + turbulence_intensities=np.array([0.06, 0.06, 0.06, 0.06]), +) # After the set method, the run method is called to perform the simulation fmodel.run() diff --git a/examples/002_visualizations.py b/examples/002_visualizations.py new file mode 100644 index 000000000..f8c946324 --- /dev/null +++ b/examples/002_visualizations.py @@ -0,0 +1,94 @@ +"""Example 2: Visualizations + +This example demonstrates the use of the flow and layout visualizations in FLORIS. +First, an example wind farm layout is plotted, with the turbine names and the directions +and distances between turbines shown in different configurations by subplot. +Next, the horizontal flow field at hub height is plotted for a single wind condition. + +FLORIS includes two modules for visualization: + 1) flow_visualization: for visualizing the flow field + 2) layout_visualization: for visualizing the layout of the wind farm +The two modules can be used together to visualize the flow field and the layout +of the wind farm. + +""" + + +import matplotlib.pyplot as plt + +import floris.layout_visualization as layoutviz +from floris import FlorisModel +from floris.flow_visualization import visualize_cut_plane + + +fmodel = FlorisModel("inputs/gch.yaml") + +# Set the farm layout to have 8 turbines irregularly placed +layout_x = [0, 500, 0, 128, 1000, 900, 1500, 1250] +layout_y = [0, 300, 750, 1400, 0, 567, 888, 1450] +fmodel.set(layout_x=layout_x, layout_y=layout_y) + + +# Layout visualization contains the functions for visualizing the layout: +# plot_turbine_points +# plot_turbine_labels +# plot_turbine_rotors +# plot_waking_directions +# Each of which can be overlaid to provide further information about the layout +# This series of 4 subplots shows the different ways to visualize the layout + +# Create the plotting objects using matplotlib +fig, axarr = plt.subplots(2, 2, figsize=(15, 10), sharex=False) +axarr = axarr.flatten() + +ax = axarr[0] +layoutviz.plot_turbine_points(fmodel, ax=ax) +ax.set_title("Turbine Points") + +ax = axarr[1] +layoutviz.plot_turbine_points(fmodel, ax=ax) +layoutviz.plot_turbine_labels(fmodel, ax=ax) +ax.set_title("Turbine Points and Labels") + +ax = axarr[2] +layoutviz.plot_turbine_points(fmodel, ax=ax) +layoutviz.plot_turbine_labels(fmodel, ax=ax) +layoutviz.plot_waking_directions(fmodel, ax=ax, limit_num=2) +ax.set_title("Turbine Points, Labels, and Waking Directions") + +# In the final subplot, use provided turbine names in place of the t_index +ax = axarr[3] +turbine_names = ["T1", "T2", "T3", "T4", "T9", "T10", "T75", "T78"] +layoutviz.plot_turbine_points(fmodel, ax=ax) +layoutviz.plot_turbine_labels(fmodel, ax=ax, turbine_names=turbine_names) +layoutviz.plot_waking_directions(fmodel, ax=ax, limit_num=2) +ax.set_title("Use Provided Turbine Names") + + +# Visualizations of the flow field are made by using calculate plane methods. In this example +# we show the horizontal plane at hub height, further examples are provided within +# the examples_visualizations folder + +# For flow visualizations, the FlorisModel must be set to run a single condition +# (n_findex = 1) +fmodel.set(wind_speeds=[8.0], wind_directions=[290.0], turbulence_intensities=[0.06]) +horizontal_plane = fmodel.calculate_horizontal_plane( + x_resolution=200, + y_resolution=100, + height=90.0, +) + +# Plot the flow field with rotors +fig, ax = plt.subplots() +visualize_cut_plane( + horizontal_plane, + ax=ax, + label_contours=False, + title="Horizontal Flow with Turbine Rotors and labels", +) + +# Plot the turbine rotors +layoutviz.plot_turbine_rotors(fmodel, ax=ax) +layoutviz.plot_turbine_labels(fmodel, ax=ax, turbine_names=turbine_names) + +plt.show() diff --git a/examples/003_wind_data_objects.py b/examples/003_wind_data_objects.py new file mode 100644 index 000000000..d382d9a29 --- /dev/null +++ b/examples/003_wind_data_objects.py @@ -0,0 +1,239 @@ +"""Example 3: Wind Data Objects + +This example demonstrates the use of wind data objects in FLORIS: + TimeSeries, WindRose, and WindTIRose. + + For each of the WindData objects, examples are shown of: + + 1) Initializing the object + 2) Broadcasting values + 3) Converting between objects + 4) Setting TI and value + 5) Plotting + 6) Setting the FLORIS model using the object + +""" + + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + FlorisModel, + TimeSeries, + WindRose, + WindTIRose, +) + + +################################################## +# Initializing +################################################## + +# FLORIS provides a set of wind data objects to hold the ambient wind conditions in a +# convenient classes that include capabilities and methods to manipulate and visualize +# the data. + +# The TimeSeries class is used to hold time series data, such as wind speed, wind direction, +# and turbulence intensity. + +# There is also a "value" wind data variable, which represents the value of the power +# generated at each time step or wind condition (e.g., the price of electricity). This can +# then be used in later optimization methods to optimize for quantities besides AEP. + +# Generate wind speeds, directions, turbulence intensities, and values via random signals +N = 100 +wind_speeds = 8 + 2 * np.random.randn(N) +wind_directions = 270 + 30 * np.random.randn(N) +turbulence_intensities = 0.06 + 0.02 * np.random.randn(N) +values = 25 + 10 * np.random.randn(N) + +time_series = TimeSeries( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities, + values=values, +) + +# The WindRose class is used to hold wind rose data, such as wind speed, wind direction, +# and frequency. TI and value are represented as bin averages per wind direction and +# speed bin. +wind_directions = np.arange(0, 360, 3.0) +wind_speeds = np.arange(4, 20, 2.0) + +# Make TI table 6% TI for all wind directions and speeds +ti_table = 0.06 * np.ones((len(wind_directions), len(wind_speeds))) + +# Make value table 25 for all wind directions and speeds +value_table =25 * np.ones((len(wind_directions), len(wind_speeds))) + +# Uniform frequency +freq_table = np.ones((len(wind_directions), len(wind_speeds))) +freq_table = freq_table / np.sum(freq_table) + +wind_rose = WindRose( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + ti_table=ti_table, + freq_table=freq_table, + value_table=value_table, +) + +# The WindTIRose class is similar to the WindRose table except that TI is also binned +# making the frequency table a 3D array. +turbulence_intensities = np.arange(0.05, 0.15, 0.01) + +# Uniform frequency +freq_table = np.ones((len(wind_directions), len(wind_speeds), len(turbulence_intensities))) + +# Uniform value +value_table = 25* np.ones((len(wind_directions), len(wind_speeds), len(turbulence_intensities))) + +wind_ti_rose = WindTIRose( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities, + freq_table=freq_table, + value_table=value_table, +) + +################################################## +# Broadcasting +################################################## + +# A convenience method of the wind data objects is that, unlike the lower-level +# FlorisModel.set() method, the wind data objects can broadcast upward data provided +# as a scalar to the full array. This is useful for setting the same wind conditions +# for all turbines in a wind farm. + +# For TimeSeries, as long as one condition is given as an array, the other 2 +# conditions can be given as scalars. The TimeSeries object will broadcast the +# scalars to the full array (uniform) +wind_directions = 270 + 30 * np.random.randn(N) +time_series = TimeSeries( + wind_directions=wind_directions, wind_speeds=8.0, turbulence_intensities=0.06 +) + + +# For WindRose, wind directions and wind speeds must be given as arrays, but the +# ti_table can be supplied as a scalar which will apply uniformly to all wind +# directions and speeds. Not supplying a freq table will similarly generate +# a uniform frequency table. +wind_directions = np.arange(0, 360, 3.0) +wind_speeds = np.arange(4, 20, 2.0) +wind_rose = WindRose(wind_directions=wind_directions, wind_speeds=wind_speeds, ti_table=0.06) + + +################################################## +# Wind Rose from Time Series +################################################## + +# The TimeSeries class has a method to generate a wind rose from a time series based on binning +wind_rose = time_series.to_WindRose(wd_edges=np.arange(0, 360, 3.0), ws_edges=np.arange(2, 20, 2.0)) + +################################################## +# Wind Rose from long CSV FILE +################################################## + +# The WindRose class can also be initialized from a long CSV file. By long what is meant is +# that the file has a column for each wind direction, wind speed combination. The file can +# also specify the mean TI per bin and the frequency of each bin as seperate columns. + +# If the TI is not provided, can specify a fixed TI for all bins using the ti_col_or_value +# input +wind_rose_from_csv = WindRose.read_csv_long( + "inputs/wind_rose.csv", wd_col="wd", ws_col="ws", freq_col="freq_val", ti_col_or_value=0.06 +) + +################################################## +# Setting turbulence intensity +################################################## + +# Each of the wind data objects also has the ability to set the turbulence intensity +# according to a function of wind speed and direction. This can be done using a custom +# function by using the assign_ti_using_wd_ws_function method. There is also a method +# called assign_ti_using_IEC_method which assigns TI based on the IEC 61400-1 standard. +wind_rose.assign_ti_using_IEC_method() # Assign using default settings for Iref and offset + +################################################## +# Setting value +################################################## + +# Similarly, each of the wind data objects also has the ability to set the value according to +# a function of wind speed and direction. This can be done using a custom function by using +# the assign_value_using_wd_ws_function method. There is also a method called +# assign_value_piecewise_linear which assigns value based on a linear piecewise function of +# wind speed. + +# Assign value using default settings. This produces a value vs. wind speed that approximates +# the normalized mean electricity price vs. wind speed curve for the SPP market in the U.S. +# for years 2018-2020 from figure 7 in "The value of wake steering wind farm flow control in +# US energy markets," Wind Energy Science, 2024. https://doi.org/10.5194/wes-9-219-2024. +wind_rose.assign_value_piecewise_linear() + +################################################## +# Plotting Wind Data Objects +################################################## + +# Certain plotting methods are included to enable visualization of the wind data objects +# Plotting a wind rose +wind_rose.plot_wind_rose() + +# Showing TI over wind speed for a WindRose +wind_rose.plot_ti_over_ws() + +# Showing value over wind speed for a WindRose +wind_rose.plot_value_over_ws() + +################################################## +# Setting the FLORIS model via wind data +################################################## + +# Each of the wind data objects can be used to set the FLORIS model by passing +# them in as is to the set method. The FLORIS model will then use the member functions +# of the wind data to extract the wind conditions for the simulation. Frequency tables +# are also extracted for expected power and AEP-like calculations. +# Similarly the value data is extracted and maintained. + +fmodel = FlorisModel("inputs/gch.yaml") + +# Set the wind conditions using the TimeSeries object +fmodel.set(wind_data=time_series) + +# Set the wind conditions using the WindRose object +fmodel.set(wind_data=wind_rose) + +# Note that in the case of the wind_rose, under the default settings, wind direction and wind speed +# bins for which frequency is zero are not simulated. This can be changed by setting the +# compute_zero_freq_occurrence parameter to True. +wind_directions = np.array([200.0, 300.0]) +wind_speeds = np.array([5.0, 1.00]) +freq_table = np.array([[0.5, 0], [0.5, 0]]) +wind_rose = WindRose( + wind_directions=wind_directions, wind_speeds=wind_speeds, ti_table=0.06, freq_table=freq_table +) +fmodel.set(wind_data=wind_rose) + +print( + f"Number of conditions to simulate with compute_zero_freq_occurrence = False: " + f"{fmodel.n_findex}" +) + +wind_rose = WindRose( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + ti_table=0.06, + freq_table=freq_table, + compute_zero_freq_occurrence=True, +) +fmodel.set(wind_data=wind_rose) + +print( + f"Number of conditions to simulate with compute_zero_freq_occurrence = " + f"True: {fmodel.n_findex}" +) + +# Set the wind conditions using the WindTIRose object +fmodel.set(wind_data=wind_ti_rose) + +plt.show() diff --git a/examples/004_set.py b/examples/004_set.py new file mode 100644 index 000000000..ab103098a --- /dev/null +++ b/examples/004_set.py @@ -0,0 +1,105 @@ +"""Example 4: Set + +This example illustrates the use of the set method. The set method is used to +change the wind conditions, the wind farm layout, the turbine type, +and the controls settings. + +This example demonstrates setting each of the following: + 1) Wind conditions + 2) Wind farm layout + 3) Controls settings + +""" + + +import numpy as np + +from floris import ( + FlorisModel, + TimeSeries, + WindRose, +) + + +fmodel = FlorisModel("inputs/gch.yaml") + +###################################################### +# Atmospheric Conditions +###################################################### + + +# Change the wind directions, wind speeds, and turbulence intensities using numpy arrays +fmodel.set( + wind_directions=np.array([270.0, 270.0, 270.0]), + wind_speeds=[8.0, 9.0, 10.0], + turbulence_intensities=np.array([0.06, 0.06, 0.06]), +) + +# Set the wind conditions as above using the TimeSeries object +fmodel.set( + wind_data=TimeSeries( + wind_directions=270.0, wind_speeds=np.array([8.0, 9.0, 10.0]), turbulence_intensities=0.06 + ) +) + +# Set the wind conditions as above using the WindRose object +fmodel.set( + wind_data=WindRose( + wind_directions=np.array([270.0]), + wind_speeds=np.array([8.0, 9.0, 10.0]), + ti_table=0.06, + ) +) + +# Set the wind shear +fmodel.set(wind_shear=0.2) + + +# Set the air density +fmodel.set(air_density=1.1) + +# Set the reference wind height (which is the height at which the wind speed is given) +fmodel.set(reference_wind_height=92.0) + + +###################################################### +# Array Settings +###################################################### + +# Changing the wind farm layout uses FLORIS' set method to a two-turbine layout +fmodel.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) + +###################################################### +# Controls Settings +###################################################### + +# Changes to controls settings can be made using the set method +# Note the dimension must match (n_findex, n_turbines) or (number of conditions, number of turbines) +# Above we n_findex = 3 and n_turbines = 2 so the matrix of yaw angles must be 3x2 +yaw_angles = np.array([[0.0, 0.0], [25.0, 0.0], [0.0, 0.0]]) +fmodel.set(yaw_angles=yaw_angles) + +# By default for the turbines in the turbine_library, the power +# thrust model is set to "cosine-loss" which adjusts +# power and thrust according to cos^cosine_loss_exponent(yaw | tilt) +# where the default exponent is 1.88. For other +# control capabilities, the power thrust model can be set to "mixed" +# which provides the same cosine loss model, and +# additionally methods for specifying derating levels for power and disabling turbines. + +# Use the reset operation method to clear out control signals +fmodel.reset_operation() + +# Change to the mixed model turbine +fmodel.set_operation_model("mixed") + +# Shut down the front turbine for the first two findex +disable_turbines = np.array([[True, False], [True, False], [False, False]]) +fmodel.set(disable_turbines=disable_turbines) + +# Derate the front turbine for the first two findex +RATED_POWER = 5e6 # 5MW (Anything above true rated power will still result in rated power) +power_setpoints = np.array( + [[RATED_POWER * 0.3, RATED_POWER], [RATED_POWER * 0.3, RATED_POWER], [RATED_POWER, RATED_POWER]] +) +fmodel.set(power_setpoints=power_setpoints) diff --git a/examples/005_getting_power.py b/examples/005_getting_power.py new file mode 100644 index 000000000..2f4ddd9d2 --- /dev/null +++ b/examples/005_getting_power.py @@ -0,0 +1,144 @@ +"""Example 5: Getting Turbine and Farm Power + +After setting the FlorisModel and running, the next step is typically to get the power output +of the turbines. FLORIS has several methods for getting power: + +1. `get_turbine_powers()`: Returns the power output of each turbine in the farm for each findex + (n_findex, n_turbines) +2. `get_farm_power()`: Returns the total power output of the farm for each findex (n_findex) +3. `get_expected_farm_power()`: Returns the combination of the farm power over each findex + with the frequency of each findex to get the expected farm power +4. `get_farm_AEP()`: Multiplies the expected farm power by the number of hours in a year to get + the expected annual energy production (AEP) of the farm + + +""" + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + FlorisModel, + TimeSeries, + WindRose, +) + + +fmodel = FlorisModel("inputs/gch.yaml") + +# Set to a 3-turbine layout +fmodel.set(layout_x=[0, 126 * 5, 126 * 10], layout_y=[0, 0, 0]) + +###################################################### +# Using TimeSeries +###################################################### + +# Set up a time series in which the wind speed and TI are constant but the wind direction +# sweeps the range from 250 to 290 degrees +wind_directions = np.arange(250, 290, 1.0) +time_series = TimeSeries( + wind_directions=wind_directions, wind_speeds=9.9, turbulence_intensities=0.06 +) +fmodel.set(wind_data=time_series) + +# Run the model +fmodel.run() + +# Get the turbine powers +turbine_powers = fmodel.get_turbine_powers() + +# Turbines powers will have shape (n_findex, n_turbines) where n_findex is the number of unique +# wind conditions and n_turbines is the number of turbines in the farm +print(f"Turbine power has shape {turbine_powers.shape}") + +# It is also possible to get the farm power directly +farm_power = fmodel.get_farm_power() + +# Farm power has length n_findex, and is the sum of the turbine powers +print(f"Farm power has shape {farm_power.shape}") + +# It's possible to get these powers with wake losses disabled, this can be useful +# for computing total wake losses +fmodel.run_no_wake() +farm_power_no_wake = fmodel.get_farm_power() + +# Plot the results +fig, axarr = plt.subplots(1, 3, figsize=(15, 5)) + +# Plot the turbine powers +ax = axarr[0] +for i in range(turbine_powers.shape[1]): + ax.plot(wind_directions, turbine_powers[:, i] / 1e3, label=f"Turbine {i+1} ") +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") +ax.grid(True) +ax.legend() +ax.set_title("Turbine Powers") + +# Plot the farm power +ax = axarr[1] +ax.plot(wind_directions, farm_power / 1e3, label="Farm Power With Wakes", color="k") +ax.plot(wind_directions, farm_power_no_wake / 1e3, label="Farm Power No Wakes", color="r") +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") +ax.grid(True) +ax.legend() +ax.set_title("Farm Power") + +# Plot the percent wake losses +ax = axarr[2] +percent_wake_losses = 100 * (farm_power_no_wake - farm_power) / farm_power_no_wake +ax.plot(wind_directions, percent_wake_losses, label="Percent Wake Losses", color="k") +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Percent Wake Losses") +ax.grid(True) +ax.legend() +ax.set_title("Percent Wake Losses") + + +###################################################### +# Using WindRose +###################################################### + +# When running FLORIS using a wind rose, that is when a WindRose or WindTIRose object is +# passed into the set function. The functions get_expected_farm_power and get_farm_AEP +# will operate the same as above, however the functions get_turbine_powers and get_farm_power +# will be reshaped from (n_findex, n_turbines) and +# (n_findex) to (n_wind_dir, n_wind_speed, n_turbines) +# and (n_wind_dir, n_wind_speed) respectively. This is make the powers align more easily with the +# provided wind rose. + +# Declare a WindRose object of 2 wind directions and 3 wind speeds and constant turbulence intensity +wind_rose = WindRose( + wind_directions=np.array([270.0, 280.0]), wind_speeds=np.array([8.0, 9.0, 10.0]), ti_table=0.06 +) + +fmodel.set(wind_data=wind_rose) + +print("==========Wind Rose==========") +print(f"Number of conditions to simulate (2 x 3): {fmodel.n_findex}") + +fmodel.run() + +turbine_powers = fmodel.get_turbine_powers() + +print(f"Shape of turbine powers: {turbine_powers.shape}") + +farm_power = fmodel.get_farm_power() + +print(f"Shape of farm power: {farm_power.shape}") + + +# Plot the farm power +fig, ax = plt.subplots() + +for w_idx, wd in enumerate(wind_rose.wind_directions): + ax.plot(wind_rose.wind_speeds, farm_power[w_idx, :] / 1e3, label=f"WD: {wd}") + +ax.set_xlabel("Wind Speed (m/s)") +ax.set_ylabel("Power (kW)") +ax.grid(True) +ax.legend() +ax.set_title("Farm Power (from Wind Rose)") + +plt.show() diff --git a/examples/006_get_farm_aep.py b/examples/006_get_farm_aep.py new file mode 100644 index 000000000..2d9121be9 --- /dev/null +++ b/examples/006_get_farm_aep.py @@ -0,0 +1,103 @@ +"""Example 6: Getting Expected Power and AEP + +The expected power of a farm is computed by multiplying the power output of the farm by the +frequency of each findex. This is done by the `get_expected_farm_power` method. The expected +AEP is annual energy production is computed by multiplying the expected power by the number of +hours in a year. + +If a wind_data object is provided to the model, the expected power and AEP + can be computed directly by the`get_farm_AEP_with_wind_data` using the frequency table + of the wind data object. If not, a frequency table must be passed into these functions + + +""" + +import numpy as np +import pandas as pd + +from floris import ( + FlorisModel, + TimeSeries, + WindRose, +) + + +fmodel = FlorisModel("inputs/gch.yaml") + + +# Set to a 3-turbine layout +D = 126. +fmodel.set(layout_x=[0.0, 5 * D, 10 * D], + layout_y=[0.0, 0.0, 0.0]) + +# Using TimeSeries + +# Randomly generated a time series with time steps = 365 * 24 +N = 365 * 24 +wind_directions = np.random.uniform(0, 360, N) +wind_speeds = np.random.uniform(5, 25, N) + +# Set up a time series +time_series = TimeSeries( + wind_directions=wind_directions, wind_speeds=wind_speeds, turbulence_intensities=0.06 +) + +# Set the wind data +fmodel.set(wind_data=time_series) + +# Run the model +fmodel.run() + +expected_farm_power = fmodel.get_expected_farm_power() +aep = fmodel.get_farm_AEP() + +# Note this is equivalent to the following +aep_b = fmodel.get_farm_AEP(freq=time_series.unpack_freq()) + +print(f"AEP from time series: {aep}, and re-computed AEP: {aep_b}") + +# Using WindRose============================================== + +# Load the wind rose from csv as in example 003 +wind_rose = WindRose.read_csv_long( + "inputs/wind_rose.csv", wd_col="wd", ws_col="ws", freq_col="freq_val", ti_col_or_value=0.06 +) + + +# Store some values +n_wd = len(wind_rose.wind_directions) +n_ws = len(wind_rose.wind_speeds) + +# Store the number of elements of the freq_table which are 0 +n_zeros = np.sum(wind_rose.freq_table == 0) + +# Set the wind rose +fmodel.set(wind_data=wind_rose) + +# Run the model +fmodel.run() + +# Note that the frequency table contains 0 frequency for some wind directions and wind speeds +# and we've not selected to compute 0 frequency bins, therefore the n_findex will be less than +# the total number of wind directions and wind speed combinations +print(f"Total number of wind direction and wind speed combination: {n_wd * n_ws}") +print(f"Number of 0 frequency bins: {n_zeros}") +print(f"n_findex: {fmodel.n_findex}") + +# Get the AEP +aep = fmodel.get_farm_AEP() + +# Print the AEP +print(f"AEP from wind rose: {aep/1E9:.3f} (GWh)") + +# Run the model again, without wakes, and use the result to compute the wake losses +fmodel.run_no_wake() + +# Get the AEP without wake +aep_no_wake = fmodel.get_farm_AEP() + +# Compute the wake losses +wake_losses = 100 * (aep_no_wake - aep) / aep_no_wake + +# Print the wake losses +print(f"Wake losses: {wake_losses:.2f}%") diff --git a/examples/007_sweeping_variables.py b/examples/007_sweeping_variables.py new file mode 100644 index 000000000..502d961a4 --- /dev/null +++ b/examples/007_sweeping_variables.py @@ -0,0 +1,217 @@ +"""Example 7: Sweeping Variables + +Demonstrate methods for sweeping across variables. Wind directions, wind speeds, +turbulence intensities, as well as control inputs are passed to set() as arrays +and so can be swept and run in one call to run(). + +The example includes demonstrations of sweeping: + + 1) Wind speeds + 2) Wind directions + 3) Turbulence intensities + 4) Yaw angles + 5) Power setpoints + 6) Disabling turbines + +""" + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + FlorisModel, + TimeSeries, +) + + +fmodel = FlorisModel("inputs/gch.yaml") + +# Set to a 2 turbine layout +fmodel.set(layout_x=[0.0, 126 * 5], layout_y=[0.0, 0.0]) + +# Start a figure for the results +fig, axarr = plt.subplots(2, 3, figsize=(15, 10), sharey=True) +axarr = axarr.flatten() + +###################################################### +# Sweep wind speeds +###################################################### + + +# The TimeSeries object is the most convenient for sweeping +# wind speeds while keeping the wind direction and turbulence +# intensity constant +wind_speeds = np.arange(5, 10, 0.1) +fmodel.set( + wind_data=TimeSeries( + wind_speeds=wind_speeds, wind_directions=270.0, turbulence_intensities=0.06 + ) +) +fmodel.run() +turbine_powers = fmodel.get_turbine_powers() / 1e3 + +# Plot the results +ax = axarr[0] +ax.plot(wind_speeds, turbine_powers[:, 0], label="Upstream Turbine", color="k") +ax.plot(wind_speeds, turbine_powers[:, 1], label="Downstream Turbine", color="r") +ax.set_ylabel("Power (kW)") +ax.set_xlabel("Wind Speed (m/s)") +ax.legend() + +###################################################### +# Sweep wind directions +###################################################### + + +wind_directions = np.arange(250, 290, 1.0) +fmodel.set( + wind_data=TimeSeries( + wind_speeds=8.0, wind_directions=wind_directions, turbulence_intensities=0.06 + ) +) +fmodel.run() +turbine_powers = fmodel.get_turbine_powers() / 1e3 + +# Plot the results +ax = axarr[1] +ax.plot(wind_directions, turbine_powers[:, 0], label="Upstream Turbine", color="k") +ax.plot(wind_directions, turbine_powers[:, 1], label="Downstream Turbine", color="r") +ax.set_xlabel("Wind Direction (deg)") + +###################################################### +# Sweep turbulence intensities +###################################################### + +turbulence_intensities = np.arange(0.03, 0.2, 0.01) +fmodel.set( + wind_data=TimeSeries( + wind_speeds=8.0, wind_directions=270.0, turbulence_intensities=turbulence_intensities + ) +) +fmodel.run() + +turbine_powers = fmodel.get_turbine_powers() / 1e3 + +# Plot the results +ax = axarr[2] +ax.plot(turbulence_intensities, turbine_powers[:, 0], label="Upstream Turbine", color="k") +ax.plot(turbulence_intensities, turbine_powers[:, 1], label="Downstream Turbine", color="r") +ax.set_xlabel("Turbulence Intensity") + +###################################################### +# Sweep the upstream yaw angle +###################################################### + +# First set the conditions to uniform for N yaw_angles +n_yaw = 100 +wind_directions = np.ones(n_yaw) * 270.0 +fmodel.set( + wind_data=TimeSeries( + wind_speeds=8.0, wind_directions=wind_directions, turbulence_intensities=0.06 + ) +) + +yaw_angles_upstream = np.linspace(-30, 30, n_yaw) +yaw_angles = np.zeros((n_yaw, 2)) +yaw_angles[:, 0] = yaw_angles_upstream + +fmodel.set(yaw_angles=yaw_angles) +fmodel.run() +turbine_powers = fmodel.get_turbine_powers() / 1e3 + +# Plot the results +ax = axarr[3] +ax.plot(yaw_angles_upstream, turbine_powers[:, 0], label="Upstream Turbine", color="k") +ax.plot(yaw_angles_upstream, turbine_powers[:, 1], label="Downstream Turbine", color="r") +ax.set_xlabel("Upstream Yaw Angle (deg)") +ax.set_ylabel("Power (kW)") + +###################################################### +# Sweep the upstream power rating +###################################################### + +# Since we're changing control modes, need to reset the operation +fmodel.reset_operation() + +# To the de-rating need to change the power_thrust_mode to mixed or simple de-rating +fmodel.set_operation_model("simple-derating") + +# Sweep the de-rating levels +RATED_POWER = 5e6 # For NREL 5MW +n_derating_levels = 150 +upstream_power_setpoint = np.linspace(0.0, RATED_POWER * 0.5, n_derating_levels) +power_setpoints = np.ones((n_derating_levels, 2)) * RATED_POWER +power_setpoints[:, 0] = upstream_power_setpoint + +# Set the wind conditions to fixed +wind_directions = np.ones(n_derating_levels) * 270.0 +fmodel.set( + wind_data=TimeSeries( + wind_speeds=8.0, wind_directions=wind_directions, turbulence_intensities=0.06 + ) +) + +# Set the de-rating levels +fmodel.set(power_setpoints=power_setpoints) +fmodel.run() + +# Get the turbine powers +turbine_powers = fmodel.get_turbine_powers() / 1e3 + +# Plot the results +ax = axarr[4] +ax.plot(upstream_power_setpoint / 1e3, turbine_powers[:, 0], label="Upstream Turbine", color="k") +ax.plot(upstream_power_setpoint / 1e3, turbine_powers[:, 1], label="Downstream Turbine", color="r") +ax.plot( + upstream_power_setpoint / 1e3, + upstream_power_setpoint / 1e3, + label="De-Rating Level", + color="b", + linestyle="--", +) +ax.set_xlabel("Upstream Power Setpoint (kW)") +ax.legend() + +###################################################### +# Sweep through disabling turbine combinations +###################################################### + +# Reset the control settings +fmodel.reset_operation() + +# Make a list of possible turbine disable combinations +disable_combinations = np.array([[False, False], [True, False], [False, True], [True, True]]) +n_combinations = disable_combinations.shape[0] + +# Make a list of strings representing the combinations +disable_combination_strings = ["None", "T0", "T1", "T0 & T1"] + +# Set the wind conditions to fixed +wind_directions = np.ones(n_combinations) * 270.0 +fmodel.set( + wind_data=TimeSeries( + wind_speeds=8.0, wind_directions=wind_directions, turbulence_intensities=0.06 + ) +) + +# Assign the disable settings +fmodel.set(disable_turbines=disable_combinations) + +# Run the model +fmodel.run() + +# Get the turbine powers +turbine_powers = fmodel.get_turbine_powers() / 1e3 + +# Plot the results +ax = axarr[5] +ax.plot(disable_combination_strings, turbine_powers[:, 0], "ks-", label="Upstream Turbine") +ax.plot(disable_combination_strings, turbine_powers[:, 1], "ro-", label="Downstream Turbine") +ax.set_xlabel("Turbine Disable Combination") + + +for ax in axarr: + ax.grid(True) + + +plt.show() diff --git a/examples/008_uncertain_models.py b/examples/008_uncertain_models.py new file mode 100644 index 000000000..9d151d687 --- /dev/null +++ b/examples/008_uncertain_models.py @@ -0,0 +1,160 @@ +"""Example 8: Uncertain Models + +UncertainFlorisModel is a class that adds uncertainty to the inflow wind direction +on the FlorisModel class. The UncertainFlorisModel class is interacted with in the +same manner as the FlorisModel class is. This example demonstrates how the +wind farm power production is calculated with and without uncertainty. +Other use cases of UncertainFlorisModel are, e.g., comparing FLORIS to +historical SCADA data and robust optimization. + +For more details on using uncertain models, see further examples within the +examples_uncertain directory. + +""" + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + FlorisModel, + TimeSeries, + UncertainFlorisModel, +) + + +# Instantiate FLORIS FLORIS and UncertainFLORIS models +fmodel = FlorisModel("inputs/gch.yaml") # GCH model + +# The instantiation of the UncertainFlorisModel class is similar to the FlorisModel class +# with the addition of the wind direction standard deviation (wd_std) parameter +# and certain resolution parameters. Internally, the UncertainFlorisModel class +# expands the wind direction time series to include the uncertainty but then +# only runs the unique cases. The final result is computed via a gaussian weighting +# of the cases according to wd_std. Here we use the default resolution parameters. +# wd_resolution=1.0, # Degree +# ws_resolution=1.0, # m/s +# ti_resolution=0.01, + +ufmodel_3 = UncertainFlorisModel("inputs/gch.yaml", wd_std=3) +ufmodel_5 = UncertainFlorisModel("inputs/gch.yaml", wd_std=5) + +# Define an inflow where wind direction is swept while +# wind speed and turbulence intensity are held constant +wind_directions = np.arange(240.0, 300.0, 1.0) +time_series = TimeSeries( + wind_directions=wind_directions, + wind_speeds=8.0, + turbulence_intensities=0.06, +) + +# Define a two turbine farm and apply the inflow +D = 126.0 +layout_x = np.array([0, D * 6]) +layout_y = [0, 0] + +fmodel.set( + layout_x=layout_x, + layout_y=layout_y, + wind_data=time_series, +) +ufmodel_3.set( + layout_x=layout_x, + layout_y=layout_y, + wind_data=time_series, +) +ufmodel_5.set( + layout_x=layout_x, + layout_y=layout_y, + wind_data=time_series, +) + + +# Run both models +fmodel.run() +ufmodel_3.run() +ufmodel_5.run() + +# Collect the nominal and uncertain farm power +turbine_powers_nom = fmodel.get_turbine_powers() / 1e3 +turbine_powers_unc_3 = ufmodel_3.get_turbine_powers() / 1e3 +turbine_powers_unc_5 = ufmodel_5.get_turbine_powers() / 1e3 +farm_powers_nom = fmodel.get_farm_power() / 1e3 +farm_powers_unc_3 = ufmodel_3.get_farm_power() / 1e3 +farm_powers_unc_5 = ufmodel_5.get_farm_power() / 1e3 + +# Plot results +fig, axarr = plt.subplots(1, 3, figsize=(15, 5)) +ax = axarr[0] +ax.plot(wind_directions, turbine_powers_nom[:, 0].flatten(), color="k", label="Nominal power") +ax.plot( + wind_directions, + turbine_powers_unc_3[:, 0].flatten(), + color="r", + label="Power with uncertainty = 3 deg", +) +ax.plot( + wind_directions, + turbine_powers_unc_5[:, 0].flatten(), + color="m", + label="Power with uncertainty = 5deg", +) +ax.grid(True) +ax.legend() +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") +ax.set_title("Upstream Turbine") + +ax = axarr[1] +ax.plot(wind_directions, turbine_powers_nom[:, 1].flatten(), color="k", label="Nominal power") +ax.plot( + wind_directions, + turbine_powers_unc_3[:, 1].flatten(), + color="r", + label="Power with uncertainty = 3 deg", +) +ax.plot( + wind_directions, + turbine_powers_unc_5[:, 1].flatten(), + color="m", + label="Power with uncertainty = 5 deg", +) +ax.set_title("Downstream Turbine") +ax.grid(True) +ax.legend() +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") + +ax = axarr[2] +ax.plot(wind_directions, farm_powers_nom.flatten(), color="k", label="Nominal farm power") +ax.plot( + wind_directions, + farm_powers_unc_3.flatten(), + color="r", + label="Farm power with uncertainty = 3 deg", +) +ax.plot( + wind_directions, + farm_powers_unc_5.flatten(), + color="m", + label="Farm power with uncertainty = 5 deg", +) +ax.set_title("Farm Power") +ax.grid(True) +ax.legend() +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") + +# Compare the AEP calculation +freq = np.ones_like(wind_directions) +freq = freq / freq.sum() + +aep_nom = fmodel.get_farm_AEP(freq=freq) +aep_unc_3 = ufmodel_3.get_farm_AEP(freq=freq) +aep_unc_5 = ufmodel_5.get_farm_AEP(freq=freq) + +print(f"AEP without uncertainty {aep_nom}") +print(f"AEP without uncertainty (3 deg) {aep_unc_3} ({100*aep_unc_3/aep_nom:.2f}%)") +print(f"AEP without uncertainty (5 deg) {aep_unc_5} ({100*aep_unc_5/aep_nom:.2f}%)") + + +plt.show() diff --git a/examples/009_compare_farm_power_with_neighbor.py b/examples/009_compare_farm_power_with_neighbor.py new file mode 100644 index 000000000..c67465f31 --- /dev/null +++ b/examples/009_compare_farm_power_with_neighbor.py @@ -0,0 +1,76 @@ +"""Example 9: Compare farm power with neighboring farm + +This example demonstrates how to use turbine_weights to define a set of turbines belonging +to a neighboring farm which impacts the power production of the farm under consideration +via wake losses, but whose own power production is not considered in farm power / aep production + +""" + + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel + + +# Instantiate FLORIS using either the GCH or CC model +fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 + +# Define a 4 turbine farm turbine farm +D = 126.0 +layout_x = np.array([0, D * 6, 0, D * 6]) +layout_y = [0, 0, D * 3, D * 3] +fmodel.set(layout_x=layout_x, layout_y=layout_y) + +# Define a simple inflow with just 1 wind speed +wd_array = np.arange(0, 360, 4.0) +ws_array = 8.0 * np.ones_like(wd_array) +turbulence_intensities = 0.06 * np.ones_like(wd_array) +fmodel.set( + wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=turbulence_intensities +) + + +# Calculate +fmodel.run() + +# Collect the farm power +farm_power_base = fmodel.get_farm_power() / 1e3 # In kW + +# Add a neighbor to the east +layout_x = np.array([0, D * 6, 0, D * 6, D * 12, D * 15, D * 12, D * 15]) +layout_y = np.array([0, 0, D * 3, D * 3, 0, 0, D * 3, D * 3]) +fmodel.set(layout_x=layout_x, layout_y=layout_y) + +# Define the weights to exclude the neighboring farm from calculations of power +turbine_weights = np.zeros(len(layout_x), dtype=int) +turbine_weights[0:4] = 1.0 + +# Calculate +fmodel.run() + +# Collect the farm power with the neighbor +farm_power_neighbor = fmodel.get_farm_power(turbine_weights=turbine_weights) / 1e3 # In kW + +# Show the farms +fig, ax = plt.subplots() +ax.scatter( + layout_x[turbine_weights == 1], layout_y[turbine_weights == 1], color="k", label="Base Farm" +) +ax.scatter( + layout_x[turbine_weights == 0], + layout_y[turbine_weights == 0], + color="r", + label="Neighboring Farm", +) +ax.legend() + +# Plot the power difference +fig, ax = plt.subplots() +ax.plot(wd_array, farm_power_base, color="k", label="Farm Power (no neighbor)") +ax.plot(wd_array, farm_power_neighbor, color="r", label="Farm Power (neighboring farm due east)") +ax.grid(True) +ax.legend() +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") +plt.show() diff --git a/examples/02_visualizations.py b/examples/02_visualizations.py deleted file mode 100644 index de526328f..000000000 --- a/examples/02_visualizations.py +++ /dev/null @@ -1,149 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -import floris.flow_visualization as flowviz -from floris import FlorisModel - - -""" -This example initializes the FLORIS software, and then uses internal -functions to run a simulation and plot the results. In this case, -we are plotting three slices of the resulting flow field: -1. Horizontal slice parallel to the ground and located at the hub height -2. Vertical slice of parallel with the direction of the wind -3. Vertical slice parallel to to the turbine disc plane - -Additionally, an alternative method of plotting a horizontal slice -is shown. Rather than calculating points in the domain behind a turbine, -this method adds an additional turbine to the farm and moves it to -locations throughout the farm while calculating the velocity at it's -rotor. -""" - -# Initialize FLORIS with the given input file via FlorisModel. -# For basic usage, FlorisModel provides a simplified and expressive -# entry point to the simulation routines. -fmodel = FlorisModel("inputs/gch.yaml") - -# The rotor plots show what is happening at each turbine, but we do not -# see what is happening between each turbine. For this, we use a -# grid that has points regularly distributed throughout the fluid domain. -# The FlorisModel contains functions for configuring the new grid, -# running the simulation, and generating plots of 2D slices of the -# flow field. - -# Note this visualization grid created within the calculate_horizontal_plane function will be reset -# to what existed previously at the end of the function - -# Using the FlorisModel functions, get 2D slices. -horizontal_plane = fmodel.calculate_horizontal_plane( - x_resolution=200, - y_resolution=100, - height=90.0, - yaw_angles=np.array([[25.,0.,0.]]), -) - -y_plane = fmodel.calculate_y_plane( - x_resolution=200, - z_resolution=100, - crossstream_dist=0.0, - yaw_angles=np.array([[25.,0.,0.]]), -) -cross_plane = fmodel.calculate_cross_plane( - y_resolution=100, - z_resolution=100, - downstream_dist=630.0, - yaw_angles=np.array([[25.,0.,0.]]), -) - -# Create the plots -fig, ax_list = plt.subplots(3, 1, figsize=(10, 8)) -ax_list = ax_list.flatten() -flowviz.visualize_cut_plane( - horizontal_plane, - ax=ax_list[0], - label_contours=True, - title="Horizontal" -) -flowviz.visualize_cut_plane( - y_plane, - ax=ax_list[1], - label_contours=True, - title="Streamwise profile" -) -flowviz.visualize_cut_plane( - cross_plane, - ax=ax_list[2], - label_contours=True, - title="Spanwise profile" -) - -# Some wake models may not yet have a visualization method included, for these cases can use -# a slower version which scans a turbine model to produce the horizontal flow -horizontal_plane_scan_turbine = flowviz.calculate_horizontal_plane_with_turbines( - fmodel, - x_resolution=20, - y_resolution=10, - yaw_angles=np.array([[25.,0.,0.]]), -) - -fig, ax = plt.subplots() -flowviz.visualize_cut_plane( - horizontal_plane_scan_turbine, - ax=ax, - label_contours=True, - title="Horizontal (coarse turbine scan method)", -) - -# FLORIS further includes visualization methods for visualing the rotor plane of each -# Turbine in the simulation - -# Run the wake calculation to get the turbine-turbine interfactions -# on the turbine grids -fmodel.run() - -# Plot the values at each rotor -fig, axes, _ , _ = flowviz.plot_rotor_values( - fmodel.core.flow_field.u, - findex=0, - n_rows=1, - n_cols=3, - return_fig_objects=True -) -fig.suptitle("Rotor Plane Visualization, Original Resolution") - -# FLORIS supports multiple types of grids for capturing wind speed -# information. The current input file is configured with a square grid -# placed on each rotor plane with 9 points in a 3x3 layout. For visualization, -# this resolution can be increased. Note this operation, unlike the -# calc_x_plane above operations does not automatically reset the grid to -# the initial status as definied by the input file - -# Increase the resolution of points on each turbien plane -solver_settings = { - "type": "turbine_grid", - "turbine_grid_points": 10 -} -fmodel.set(solver_settings=solver_settings) - -# Run the wake calculation to get the turbine-turbine interfactions -# on the turbine grids -fmodel.run() - -# Plot the values at each rotor -fig, axes, _ , _ = flowviz.plot_rotor_values( - fmodel.core.flow_field.u, - findex=0, - n_rows=1, - n_cols=3, - return_fig_objects=True -) -fig.suptitle("Rotor Plane Visualization, 10x10 Resolution") - -# Show plots -plt.show() - -# Note if the user doesn't import matplotlib.pyplot as plt, the user can -# use the following to show the plots: -# flowviz.show() diff --git a/examples/03_making_adjustments.py b/examples/03_making_adjustments.py deleted file mode 100644 index 0bac6e98b..000000000 --- a/examples/03_making_adjustments.py +++ /dev/null @@ -1,114 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -import floris.flow_visualization as flowviz -import floris.layout_visualization as layoutviz -from floris import FlorisModel - - -""" -This example makes changes to the given input file through the script. -First, we plot simulation from the input file as given. Then, we make a series -of changes and generate plots from those simulations. -""" - -# Create the plotting objects using matplotlib -fig, axarr = plt.subplots(2, 3, figsize=(12, 5)) -axarr = axarr.flatten() - -MIN_WS = 1.0 -MAX_WS = 8.0 - -# Initialize FLORIS with the given input file via FlorisModel -fmodel = FlorisModel("inputs/gch.yaml") - - -# Plot a horizatonal slice of the initial configuration -horizontal_plane = fmodel.calculate_horizontal_plane(height=90.0) -flowviz.visualize_cut_plane( - horizontal_plane, - ax=axarr[0], - title="Initial setup", - min_speed=MIN_WS, - max_speed=MAX_WS -) - -# Change the wind speed -horizontal_plane = fmodel.calculate_horizontal_plane(ws=[7.0], height=90.0) -flowviz.visualize_cut_plane( - horizontal_plane, - ax=axarr[1], - title="Wind speed at 7 m/s", - min_speed=MIN_WS, - max_speed=MAX_WS -) - - -# Change the wind shear, reset the wind speed, and plot a vertical slice -fmodel.set(wind_shear=0.2, wind_speeds=[8.0]) -y_plane = fmodel.calculate_y_plane(crossstream_dist=0.0) -flowviz.visualize_cut_plane( - y_plane, - ax=axarr[2], - title="Wind shear at 0.2", - min_speed=MIN_WS, - max_speed=MAX_WS -) - -# # Change the farm layout -N = 3 # Number of turbines per row and per column -X, Y = np.meshgrid( - 5.0 * fmodel.core.farm.rotor_diameters[0,0] * np.arange(0, N, 1), - 5.0 * fmodel.core.farm.rotor_diameters[0,0] * np.arange(0, N, 1), -) -fmodel.set(layout_x=X.flatten(), layout_y=Y.flatten(), wind_directions=[270.0]) -horizontal_plane = fmodel.calculate_horizontal_plane(height=90.0) -flowviz.visualize_cut_plane( - horizontal_plane, - ax=axarr[3], - title="3x3 Farm", - min_speed=MIN_WS, - max_speed=MAX_WS -) -layoutviz.plot_turbine_labels(fmodel, axarr[3], plotting_dict={'color':"w"}) #, backgroundcolor="k") -layoutviz.plot_turbine_rotors(fmodel, axarr[3]) - -# Change the yaw angles and configure the plot differently -yaw_angles = np.zeros((1, N * N)) - -## First row -yaw_angles[:,0] = 30.0 -yaw_angles[:,3] = -30.0 -yaw_angles[:,6] = 30.0 - -## Second row -yaw_angles[:,1] = -30.0 -yaw_angles[:,4] = 30.0 -yaw_angles[:,7] = -30.0 - -horizontal_plane = fmodel.calculate_horizontal_plane(yaw_angles=yaw_angles, height=90.0) -flowviz.visualize_cut_plane( - horizontal_plane, - ax=axarr[4], - title="Yawesome art", - cmap="PuOr", - min_speed=MIN_WS, - max_speed=MAX_WS -) - -layoutviz.plot_turbine_rotors(fmodel, axarr[4], yaw_angles=yaw_angles, color="c") - -# Plot the cross-plane of the 3x3 configuration -cross_plane = fmodel.calculate_cross_plane(yaw_angles=yaw_angles, downstream_dist=610.0) -flowviz.visualize_cut_plane( - cross_plane, - ax=axarr[5], - title="Cross section at 610 m", - min_speed=MIN_WS, - max_speed=MAX_WS -) -axarr[5].invert_xaxis() - - -plt.show() diff --git a/examples/04_sweep_wind_directions.py b/examples/04_sweep_wind_directions.py deleted file mode 100644 index d049a0772..000000000 --- a/examples/04_sweep_wind_directions.py +++ /dev/null @@ -1,62 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel - - -""" -04_sweep_wind_directions - -This example sweeps across wind directions while holding wind speed -constant via an array of constant wind speed - -The power of both turbines for each wind direction is then plotted - -""" - -# Instantiate FLORIS using either the GCH or CC model -fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 - -# Define a two turbine farm -D = 126. -layout_x = np.array([0, D*6]) -layout_y = [0, 0] -fmodel.set(layout_x=layout_x, layout_y=layout_y) - -# Sweep wind speeds but keep wind direction fixed -wd_array = np.arange(250,291,1.) -ws_array = 8.0 * np.ones_like(wd_array) -ti_array = 0.06 * np.ones_like(wd_array) -fmodel.set(wind_directions=wd_array, wind_speeds=ws_array, turbulence_intensities=ti_array) - -# Define a matrix of yaw angles to be all 0 -# Note that yaw angles is now specified as a matrix whose dimensions are -# wd/ws/turbine -num_wd = len(wd_array) # Number of wind directions -num_ws = len(ws_array) # Number of wind speeds -n_findex = num_wd # Could be either num_wd or num_ws -num_turbine = len(layout_x) # Number of turbines -yaw_angles = np.zeros((n_findex, num_turbine)) -fmodel.set(yaw_angles=yaw_angles) - -# Calculate -fmodel.run() - -# Collect the turbine powers -turbine_powers = fmodel.get_turbine_powers() / 1E3 # In kW - -# Pull out the power values per turbine -pow_t0 = turbine_powers[:,0].flatten() -pow_t1 = turbine_powers[:,1].flatten() - -# Plot -fig, ax = plt.subplots() -ax.plot(wd_array,pow_t0,color='k',label='Upstream Turbine') -ax.plot(wd_array,pow_t1,color='r',label='Downstream Turbine') -ax.grid(True) -ax.legend() -ax.set_xlabel('Wind Direction (deg)') -ax.set_ylabel('Power (kW)') - -plt.show() diff --git a/examples/05_sweep_wind_speeds.py b/examples/05_sweep_wind_speeds.py deleted file mode 100644 index e5cd07c3a..000000000 --- a/examples/05_sweep_wind_speeds.py +++ /dev/null @@ -1,61 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel - - -""" -05_sweep_wind_speeds - -This example sweeps wind speeds while holding wind direction constant - -The power of both turbines for each wind speed is then plotted - -""" - - -# Instantiate FLORIS using either the GCH or CC model -fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 - -# Define a two turbine farm -D = 126. -layout_x = np.array([0, D*6]) -layout_y = [0, 0] -fmodel.set(layout_x=layout_x, layout_y=layout_y) - -# Sweep wind speeds but keep wind direction fixed -ws_array = np.arange(5,25,0.5) -wd_array = 270.0 * np.ones_like(ws_array) -ti_array = 0.06 * np.ones_like(ws_array) -fmodel.set(wind_directions=wd_array,wind_speeds=ws_array, turbulence_intensities=ti_array) - -# Define a matrix of yaw angles to be all 0 -# Note that yaw angles is now specified as a matrix whose dimensions are -# wd/ws/turbine -num_wd = len(wd_array) -num_ws = len(ws_array) -n_findex = num_wd # Could be either num_wd or num_ws -num_turbine = len(layout_x) -yaw_angles = np.zeros((n_findex, num_turbine)) -fmodel.set(yaw_angles=yaw_angles) - -# Calculate -fmodel.run() - -# Collect the turbine powers -turbine_powers = fmodel.get_turbine_powers() / 1E3 # In kW - -# Pull out the power values per turbine -pow_t0 = turbine_powers[:,0].flatten() -pow_t1 = turbine_powers[:,1].flatten() - -# Plot -fig, ax = plt.subplots() -ax.plot(ws_array,pow_t0,color='k',label='Upstream Turbine') -ax.plot(ws_array,pow_t1,color='r',label='Downstream Turbine') -ax.grid(True) -ax.legend() -ax.set_xlabel('Wind Speed (m/s)') -ax.set_ylabel('Power (kW)') -plt.show() diff --git a/examples/06_sweep_wind_conditions.py b/examples/06_sweep_wind_conditions.py deleted file mode 100644 index e9f42487b..000000000 --- a/examples/06_sweep_wind_conditions.py +++ /dev/null @@ -1,92 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel - - -""" -This example demonstrates the vectorized wake calculation for -a set of wind speeds and directions combinations. When given -a list of conditions, FLORIS leverages features of the CPU -to perform chunks of the computations at once rather than -looping over each condition. - -This calculation is performed for a single-row 5 turbine farm. In addition -to plotting the powers of the individual turbines, an energy by turbine -calculation is made and plotted by summing over the wind speed and wind direction -axes of the power matrix returned by get_turbine_powers() - -""" - -# Instantiate FLORIS using either the GCH or CC model -fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 -# fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model - -# Define a 5 turbine farm -D = 126.0 -layout_x = np.array([0, D*6, D*12, D*18, D*24]) -layout_y = [0, 0, 0, 0, 0] -fmodel.set(layout_x=layout_x, layout_y=layout_y) - -# In this case we want to check a grid of wind speed and direction combinations -wind_speeds_to_expand = np.arange(6, 9, 1.0) -wind_directions_to_expand = np.arange(250, 295, 1.0) -num_unique_ws = len(wind_speeds_to_expand) -num_unique_wd = len(wind_directions_to_expand) - -# Create grids to make combinations of ws/wd -wind_speeds_grid, wind_directions_grid = np.meshgrid( - wind_speeds_to_expand, - wind_directions_to_expand -) - -# Flatten the grids back to 1D arrays -ws_array = wind_speeds_grid.flatten() -wd_array = wind_directions_grid.flatten() -turbulence_intensities = 0.06 * np.ones_like(wd_array) - -# Now reinitialize FLORIS -fmodel.set( - wind_speeds=ws_array, - wind_directions=wd_array, - turbulence_intensities=turbulence_intensities -) - -# Define a matrix of yaw angles to be all 0 -# Note that yaw angles is now specified as a matrix whose dimensions are -# (findex, turbine) -num_wd = len(wd_array) -num_ws = len(ws_array) -n_findex = num_wd # Could be either num_wd or num_ws -num_turbine = len(layout_x) -yaw_angles = np.zeros((n_findex, num_turbine)) -fmodel.set(yaw_angles=yaw_angles) - -# Calculate -fmodel.run() - -# Collect the turbine powers -turbine_powers = fmodel.get_turbine_powers() / 1e3 # In kW - -# Show results by ws and wd -fig, axarr = plt.subplots(num_unique_ws, 1, sharex=True, sharey=True, figsize=(6, 10)) -for ws_idx, ws in enumerate(wind_speeds_to_expand): - indices = ws_array == ws - ax = axarr[ws_idx] - for t in range(num_turbine): - ax.plot(wd_array[indices], turbine_powers[indices, t].flatten(), label="T%d" % t) - ax.legend() - ax.grid(True) - ax.set_title("Wind Speed = %.1f" % ws) - ax.set_ylabel("Power (kW)") -ax.set_xlabel("Wind Direction (deg)") - -# Sum across wind speeds and directions to show energy produced by turbine as bar plot -# Sum over wind directions and speeds -energy_by_turbine = np.sum(turbine_powers, axis=0) -fig, ax = plt.subplots() -ax.bar(["T%d" % t for t in range(num_turbine)], energy_by_turbine) -ax.set_title("Energy Produced by Turbine") - -plt.show() diff --git a/examples/07_calc_aep_from_rose.py b/examples/07_calc_aep_from_rose.py deleted file mode 100644 index 135a4c119..000000000 --- a/examples/07_calc_aep_from_rose.py +++ /dev/null @@ -1,69 +0,0 @@ - -import numpy as np -import pandas as pd -from scipy.interpolate import NearestNDInterpolator - -from floris import FlorisModel - - -""" -This example demonstrates how to calculate the Annual Energy Production (AEP) -of a wind farm using wind rose information stored in a .csv file. - -The wind rose information is first loaded, after which we initialize our FlorisModel. -A 3 turbine farm is generated, and then the turbine wakes and powers -are calculated across all the wind directions. Finally, the farm power is -converted to AEP and reported out. -""" - -# Read the windrose information file and display -df_wr = pd.read_csv("inputs/wind_rose.csv") -print("The wind rose dataframe looks as follows: \n\n {} \n".format(df_wr)) - -# Derive the wind directions and speeds we need to evaluate in FLORIS -wd_grid, ws_grid = np.meshgrid( - np.array(df_wr["wd"].unique(), dtype=float), # wind directions - np.array(df_wr["ws"].unique(), dtype=float), # wind speeds - indexing="ij" -) -wind_directions = wd_grid.flatten() -wind_speeds = ws_grid.flatten() -turbulence_intensities = np.ones_like(wind_directions) * 0.06 - -# Format the frequency array into the conventional FLORIS v3 format, which is -# an np.array with shape (n_wind_directions, n_wind_speeds). To avoid having -# to manually derive how the variables are sorted and how to reshape the -# one-dimensional frequency array, we use a nearest neighbor interpolant. This -# ensures the frequency values are mapped appropriately to the new 2D array. -freq_interp = NearestNDInterpolator(df_wr[["wd", "ws"]], df_wr["freq_val"]) -freq = freq_interp(wd_grid, ws_grid).flatten() - -# Normalize the frequency array to sum to exactly 1.0 -freq = freq / np.sum(freq) - -# Load the FLORIS object -fmodel = FlorisModel("inputs/gch.yaml") # GCH model -# fmodel = FlorisModel("inputs/cc.yaml") # CumulativeCurl model - -# Assume a three-turbine wind farm with 5D spacing. We reinitialize the -# floris object and assign the layout, wind speed and wind direction arrays. -D = fmodel.core.farm.rotor_diameters[0] # Rotor diameter for the NREL 5 MW -fmodel.set( - layout_x=[0.0, 5 * D, 10 * D], - layout_y=[0.0, 0.0, 0.0], - wind_directions=wind_directions, - wind_speeds=wind_speeds, - turbulence_intensities=turbulence_intensities, -) -fmodel.run() - -# Compute the AEP using the default settings -aep = fmodel.get_farm_AEP(freq=freq) -print("Farm AEP: {:.3f} GWh".format(aep / 1.0e9)) - -# Finally, we can also compute the AEP while ignoring all wake calculations. -# This can be useful to quantity the annual wake losses in the farm. Such -# calculations can be facilitated by first running with run_no_wake(). -fmodel.run_no_wake() -aep_no_wake = fmodel.get_farm_AEP(freq=freq) -print("Farm AEP (no wakes): {:.3f} GWh".format(aep_no_wake / 1.0e9)) diff --git a/examples/09_compare_farm_power_with_neighbor.py b/examples/09_compare_farm_power_with_neighbor.py deleted file mode 100644 index 59e16f841..000000000 --- a/examples/09_compare_farm_power_with_neighbor.py +++ /dev/null @@ -1,85 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel - - -""" -This example demonstrates how to use turbine_wieghts to define a set of turbines belonging -to a neighboring farm which -impacts the power production of the farm under consideration via wake losses, but whose own -power production is not -considered in farm power / aep production - -The use of neighboring farms in the context of wake steering design is considered in example -examples/10_optimize_yaw_with_neighboring_farm.py -""" - - -# Instantiate FLORIS using either the GCH or CC model -fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 - -# Define a 4 turbine farm turbine farm -D = 126. -layout_x = np.array([0, D*6, 0, D*6]) -layout_y = [0, 0, D*3, D*3] -fmodel.set(layout_x=layout_x, layout_y=layout_y) - -# Define a simple wind rose with just 1 wind speed -wd_array = np.arange(0,360,4.) -ws_array = 8.0 * np.ones_like(wd_array) -turbulence_intensities = 0.06 * np.ones_like(wd_array) -fmodel.set( - wind_directions=wd_array, - wind_speeds=ws_array, - turbulence_intensities=turbulence_intensities -) - - -# Calculate -fmodel.run() - -# Collect the farm power -farm_power_base = fmodel.get_farm_power() / 1E3 # In kW - -# Add a neighbor to the east -layout_x = np.array([0, D*6, 0, D*6, D*12, D*15, D*12, D*15]) -layout_y = np.array([0, 0, D*3, D*3, 0, 0, D*3, D*3]) -fmodel.set(layout_x=layout_x, layout_y=layout_y) - -# Define the weights to exclude the neighboring farm from calcuations of power -turbine_weights = np.zeros(len(layout_x), dtype=int) -turbine_weights[0:4] = 1.0 - -# Calculate -fmodel.run() - -# Collect the farm power with the neightbor -farm_power_neighbor = fmodel.get_farm_power(turbine_weights=turbine_weights) / 1E3 # In kW - -# Show the farms -fig, ax = plt.subplots() -ax.scatter( - layout_x[turbine_weights==1], - layout_y[turbine_weights==1], - color='k', - label='Base Farm' -) -ax.scatter( - layout_x[turbine_weights==0], - layout_y[turbine_weights==0], - color='r', - label='Neighboring Farm' -) -ax.legend() - -# Plot the power difference -fig, ax = plt.subplots() -ax.plot(wd_array,farm_power_base,color='k',label='Farm Power (no neighbor)') -ax.plot(wd_array,farm_power_neighbor,color='r',label='Farm Power (neighboring farm due east)') -ax.grid(True) -ax.legend() -ax.set_xlabel('Wind Direction (deg)') -ax.set_ylabel('Power (kW)') -plt.show() diff --git a/examples/12_optimize_yaw.py b/examples/12_optimize_yaw.py deleted file mode 100644 index d631d5437..000000000 --- a/examples/12_optimize_yaw.py +++ /dev/null @@ -1,304 +0,0 @@ - -from time import perf_counter as timerpc - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd - -from floris import FlorisModel -from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR - - -""" -This example demonstrates how to perform a yaw optimization and evaluate the performance -over a full wind rose. - -The beginning of the file contains the definition of several functions used in the main part -of the script. - -Within the main part of the script, we first load the wind rose information. We then initialize -our Floris Interface object. We determine the baseline AEP using the wind rose information, and -then perform the yaw optimization over 72 wind directions with 1 wind speed per direction. The -optimal yaw angles are then used to determine yaw angles across all the wind speeds included in -the wind rose. Lastly, the final AEP is calculated and analysis of the results are -shown in several plots. -""" - -def load_floris(): - # Load the default example floris object - fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 - # fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model - - # Specify wind farm layout and update in the floris object - N = 5 # number of turbines per row and per column - X, Y = np.meshgrid( - 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), - 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), - ) - fmodel.set(layout_x=X.flatten(), layout_y=Y.flatten()) - - return fmodel - - -def load_windrose(): - fn = "inputs/wind_rose.csv" - df = pd.read_csv(fn) - df = df[(df["ws"] < 22)].reset_index(drop=True) # Reduce size - df["freq_val"] = df["freq_val"] / df["freq_val"].sum() # Normalize wind rose frequencies - - return df - - -def calculate_aep(fmodel, df_windrose, column_name="farm_power"): - from scipy.interpolate import NearestNDInterpolator - - # Define columns - nturbs = len(fmodel.layout_x) - yaw_cols = ["yaw_{:03d}".format(ti) for ti in range(nturbs)] - - if "yaw_000" not in df_windrose.columns: - df_windrose[yaw_cols] = 0.0 # Add zeros - - # Derive the wind directions and speeds we need to evaluate in FLORIS - wd_array = np.array(df_windrose["wd"], dtype=float) - ws_array = np.array(df_windrose["ws"], dtype=float) - turbulence_intensities = 0.06 * np.ones_like(wd_array) - yaw_angles = np.array(df_windrose[yaw_cols], dtype=float) - fmodel.set( - wind_directions=wd_array, - wind_speeds=ws_array, - turbulence_intensities=turbulence_intensities, - yaw_angles=yaw_angles - ) - - # Calculate FLORIS for every WD and WS combination and get the farm power - fmodel.run() - farm_power_array = fmodel.get_farm_power() - - # Now map FLORIS solutions to dataframe - interpolant = NearestNDInterpolator( - np.vstack([wd_array, ws_array]).T, - farm_power_array.flatten() - ) - df_windrose[column_name] = interpolant(df_windrose[["wd", "ws"]]) # Save to dataframe - df_windrose[column_name] = df_windrose[column_name].fillna(0.0) # Replace NaNs with 0.0 - - # Calculate AEP in GWh - aep = np.dot(df_windrose["freq_val"], df_windrose[column_name]) * 365 * 24 / 1e9 - - return aep - - -if __name__ == "__main__": - # Load a dataframe containing the wind rose information - df_windrose = load_windrose() - - # Load FLORIS - fmodel = load_floris() - ws_array = 8.0 * np.ones_like(fmodel.core.flow_field.wind_directions) - fmodel.set(wind_speeds=ws_array) - nturbs = len(fmodel.layout_x) - - # First, get baseline AEP, without wake steering - start_time = timerpc() - print(" ") - print("===========================================================") - print("Calculating baseline annual energy production (AEP)...") - aep_bl = calculate_aep(fmodel, df_windrose, "farm_power_baseline") - t = timerpc() - start_time - print("Baseline AEP: {:.3f} GWh. Time spent: {:.1f} s.".format(aep_bl, t)) - print("===========================================================") - print(" ") - - # Now optimize the yaw angles using the Serial Refine method - print("Now starting yaw optimization for the entire wind rose...") - start_time = timerpc() - wd_array = np.arange(0.0, 360.0, 5.0) - ws_array = 8.0 * np.ones_like(wd_array) - turbulence_intensities = 0.06 * np.ones_like(wd_array) - fmodel.set( - wind_directions=wd_array, - wind_speeds=ws_array, - turbulence_intensities=turbulence_intensities, - ) - yaw_opt = YawOptimizationSR( - fmodel=fmodel, - minimum_yaw_angle=0.0, # Allowable yaw angles lower bound - maximum_yaw_angle=20.0, # Allowable yaw angles upper bound - Ny_passes=[5, 4], - exclude_downstream_turbines=True, - ) - - df_opt = yaw_opt.optimize() - end_time = timerpc() - t_tot = end_time - start_time - t_fmodel = yaw_opt.time_spent_in_floris - - print("Optimization finished in {:.2f} seconds.".format(t_tot)) - print(" ") - print(df_opt) - print(" ") - - # Now define how the optimal yaw angles for 8 m/s are applied over the other wind speeds - yaw_angles_opt = np.vstack(df_opt["yaw_angles_opt"]) - yaw_angles_wind_rose = np.zeros((df_windrose.shape[0], nturbs)) - for ii, idx in enumerate(df_windrose.index): - wind_speed = df_windrose.loc[idx, "ws"] - wind_direction = df_windrose.loc[idx, "wd"] - - # Interpolate the optimal yaw angles for this wind direction from df_opt - id_opt = df_opt["wind_direction"] == wind_direction - yaw_opt_full = np.array(df_opt.loc[id_opt, "yaw_angles_opt"])[0] - - # Now decide what to do for different wind speeds - if (wind_speed < 4.0) | (wind_speed > 14.0): - yaw_opt = np.zeros(nturbs) # do nothing for very low/high speeds - elif wind_speed < 6.0: - yaw_opt = yaw_opt_full * (6.0 - wind_speed) / 2.0 # Linear ramp up - elif wind_speed > 12.0: - yaw_opt = yaw_opt_full * (14.0 - wind_speed) / 2.0 # Linear ramp down - else: - yaw_opt = yaw_opt_full # Apply full offsets between 6.0 and 12.0 m/s - - # Save to collective array - yaw_angles_wind_rose[ii, :] = yaw_opt - - # Add optimal and interpolated angles to the wind rose dataframe - yaw_cols = ["yaw_{:03d}".format(ti) for ti in range(nturbs)] - df_windrose[yaw_cols] = yaw_angles_wind_rose - - # Now get AEP with optimized yaw angles - start_time = timerpc() - print("==================================================================") - print("Calculating annual energy production (AEP) with wake steering...") - aep_opt = calculate_aep(fmodel, df_windrose, "farm_power_opt") - aep_uplift = 100.0 * (aep_opt / aep_bl - 1) - t = timerpc() - start_time - print("Optimal AEP: {:.3f} GWh. Time spent: {:.1f} s.".format(aep_opt, t)) - print("Relative AEP uplift by wake steering: {:.3f} %.".format(aep_uplift)) - print("==================================================================") - print(" ") - - # Now calculate helpful variables and then plot wind rose information - df = df_windrose.copy() - df["farm_power_relative"] = ( - df["farm_power_opt"] / df["farm_power_baseline"] - ) - df["farm_energy_baseline"] = df["freq_val"] * df["farm_power_baseline"] - df["farm_energy_opt"] = df["freq_val"] * df["farm_power_opt"] - df["energy_uplift"] = df["farm_energy_opt"] - df["farm_energy_baseline"] - df["rel_energy_uplift"] = df["energy_uplift"] / df["energy_uplift"].sum() - - # Plot power and AEP uplift across wind direction - fig, ax = plt.subplots(nrows=3, sharex=True) - - df_8ms = df[df["ws"] == 8.0].reset_index(drop=True) - pow_uplift = 100 * ( - df_8ms["farm_power_opt"] / df_8ms["farm_power_baseline"] - 1 - ) - ax[0].bar( - x=df_8ms["wd"], - height=pow_uplift, - color="darkgray", - edgecolor="black", - width=4.5, - ) - ax[0].set_ylabel("Power uplift \n at 8 m/s (%)") - ax[0].grid(True) - - dist = df.groupby("wd").sum().reset_index() - ax[1].bar( - x=dist["wd"], - height=100 * dist["rel_energy_uplift"], - color="darkgray", - edgecolor="black", - width=4.5, - ) - ax[1].set_ylabel("Contribution to \n AEP uplift (%)") - ax[1].grid(True) - - ax[2].bar( - x=dist["wd"], - height=dist["freq_val"], - color="darkgray", - edgecolor="black", - width=4.5, - ) - ax[2].set_xlabel("Wind direction (deg)") - ax[2].set_ylabel("Frequency of \n occurrence (-)") - ax[2].grid(True) - plt.tight_layout() - - # Plot power and AEP uplift across wind direction - fig, ax = plt.subplots(nrows=3, sharex=True) - - df_avg = df.groupby("ws").mean().reset_index(drop=False) - mean_power_uplift = 100.0 * (df_avg["farm_power_relative"] - 1.0) - ax[0].bar( - x=df_avg["ws"], - height=mean_power_uplift, - color="darkgray", - edgecolor="black", - width=0.95, - ) - ax[0].set_ylabel("Mean power \n uplift (%)") - ax[0].grid(True) - - dist = df.groupby("ws").sum().reset_index() - ax[1].bar( - x=dist["ws"], - height=100 * dist["rel_energy_uplift"], - color="darkgray", - edgecolor="black", - width=0.95, - ) - ax[1].set_ylabel("Contribution to \n AEP uplift (%)") - ax[1].grid(True) - - ax[2].bar( - x=dist["ws"], - height=dist["freq_val"], - color="darkgray", - edgecolor="black", - width=0.95, - ) - ax[2].set_xlabel("Wind speed (m/s)") - ax[2].set_ylabel("Frequency of \n occurrence (-)") - ax[2].grid(True) - plt.tight_layout() - - # Now plot yaw angle distributions over wind direction up to first three turbines - for ti in range(np.min([nturbs, 3])): - fig, ax = plt.subplots(figsize=(6, 3.5)) - ax.plot( - df_opt["wind_direction"], - yaw_angles_opt[:, ti], - "-o", - color="maroon", - markersize=3, - label="For wind speeds between 6 and 12 m/s", - ) - ax.plot( - df_opt["wind_direction"], - 0.5 * yaw_angles_opt[:, ti], - "-v", - color="dodgerblue", - markersize=3, - label="For wind speeds of 5 and 13 m/s", - ) - ax.plot( - df_opt["wind_direction"], - 0.0 * yaw_angles_opt[:, ti], - "-o", - color="grey", - markersize=3, - label="For wind speeds below 4 and above 14 m/s", - ) - ax.set_ylabel("Assigned yaw offsets (deg)") - ax.set_xlabel("Wind direction (deg)") - ax.set_title("Turbine {:d}".format(ti)) - ax.grid(True) - ax.legend() - plt.tight_layout() - - plt.show() diff --git a/examples/12_optimize_yaw_in_parallel.py b/examples/12_optimize_yaw_in_parallel.py deleted file mode 100644 index 8050a8764..000000000 --- a/examples/12_optimize_yaw_in_parallel.py +++ /dev/null @@ -1,300 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -from scipy.interpolate import LinearNDInterpolator - -from floris import FlorisModel, ParallelFlorisModel - - -""" -This example demonstrates how to perform a yaw optimization using parallel computing. -... -""" - -def load_floris(): - # Load the default example floris object - fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 - # fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model - - # Specify wind farm layout and update in the floris object - N = 4 # number of turbines per row and per column - X, Y = np.meshgrid( - 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), - 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), - ) - fmodel.set(layout_x=X.flatten(), layout_y=Y.flatten()) - - return fmodel - - -def load_windrose(): - # Grab a linear interpolant from this wind rose - df = pd.read_csv("inputs/wind_rose.csv") - interp = LinearNDInterpolator(points=df[["wd", "ws"]], values=df["freq_val"], fill_value=0.0) - return df, interp - - -if __name__ == "__main__": - # Parallel options - max_workers = 16 - - # Load a dataframe containing the wind rose information - df_windrose, windrose_interpolant = load_windrose() - - # Load a FLORIS object for AEP calculations - fmodel_aep = load_floris() - - # Define arrays of wd/ws - wind_directions_to_expand = np.arange(0.0, 360.0, 1.0) - wind_speeds_to_expand = np.arange(1.0, 25.0, 1.0) - - # Create grids to make combinations of ws/wd - wind_directions_grid, wind_speeds_grid = np.meshgrid( - wind_directions_to_expand, - wind_speeds_to_expand, - ) - - # Flatten the grids back to 1D arrays - wd_array = wind_directions_grid.flatten() - ws_array = wind_speeds_grid.flatten() - turbulence_intensities = 0.08 * np.ones_like(wd_array) - - fmodel_aep.set( - wind_directions=wd_array, - wind_speeds=ws_array, - turbulence_intensities=turbulence_intensities, - ) - - # Pour this into a parallel computing interface - parallel_interface = "concurrent" - pfmodel_aep = ParallelFlorisModel( - fmodel=fmodel_aep, - max_workers=max_workers, - n_wind_condition_splits=max_workers, - interface=parallel_interface, - print_timings=True, - ) - - # Calculate frequency of occurrence for each bin and normalize sum to 1.0 - freq_grid = windrose_interpolant(wd_array, ws_array) - freq_grid = freq_grid / np.sum(freq_grid) # Normalize to 1.0 - - # Calculate farm power baseline - farm_power_bl = pfmodel_aep.get_farm_power() - aep_bl = np.sum(24 * 365 * np.multiply(farm_power_bl, freq_grid)) - - # Alternatively to above code, we could calculate AEP using - # 'pfmodel_aep.get_farm_AEP(...)' but then we would not have the - # farm power productions, which we use later on for plotting. - - # First, get baseline AEP, without wake steering - print(" ") - print("===========================================================") - print("Calculating baseline annual energy production (AEP)...") - print("Baseline AEP: {:.3f} GWh.".format(aep_bl / 1.0e9)) - print("===========================================================") - print(" ") - - # Load a FLORIS object for yaw optimization - fmodel_opt = load_floris() - - # Define arrays of wd/ws - wind_directions_to_expand = np.arange(0.0, 360.0, 3.0) - wind_speeds_to_expand = np.arange(6.0, 14.0, 2.0) - - # Create grids to make combinations of ws/wd - wind_directions_grid, wind_speeds_grid = np.meshgrid( - wind_directions_to_expand, - wind_speeds_to_expand, - ) - - # Flatten the grids back to 1D arrays - wd_array_opt = wind_directions_grid.flatten() - ws_array_opt = wind_speeds_grid.flatten() - turbulence_intensities = 0.08 * np.ones_like(wd_array_opt) - - fmodel_opt.set( - wind_directions=wd_array_opt, - wind_speeds=ws_array_opt, - turbulence_intensities=turbulence_intensities, - ) - - # Pour this into a parallel computing interface - pfmodel_opt = ParallelFlorisModel( - fmodel=fmodel_opt, - max_workers=max_workers, - n_wind_condition_splits=max_workers, - interface=parallel_interface, - print_timings=True, - ) - - # Now optimize the yaw angles using the Serial Refine method - df_opt = pfmodel_opt.optimize_yaw_angles( - minimum_yaw_angle=-25.0, - maximum_yaw_angle=25.0, - Ny_passes=[5, 4], - exclude_downstream_turbines=False, - ) - - - - # Assume linear ramp up at 5-6 m/s and ramp down at 13-14 m/s, - # add to table for linear interpolant - df_copy_lb = df_opt[df_opt["wind_speed"] == 6.0].copy() - df_copy_ub = df_opt[df_opt["wind_speed"] == 13.0].copy() - df_copy_lb["wind_speed"] = 5.0 - df_copy_ub["wind_speed"] = 14.0 - df_copy_lb["yaw_angles_opt"] *= 0.0 - df_copy_ub["yaw_angles_opt"] *= 0.0 - df_opt = pd.concat([df_copy_lb, df_opt, df_copy_ub], axis=0).reset_index(drop=True) - - # Deal with 360 deg wrapping: solutions at 0 deg are also solutions at 360 deg - df_copy_360deg = df_opt[df_opt["wind_direction"] == 0.0].copy() - df_copy_360deg["wind_direction"] = 360.0 - df_opt = pd.concat([df_opt, df_copy_360deg], axis=0).reset_index(drop=True) - - # Derive linear interpolant from solution space - yaw_angles_interpolant = LinearNDInterpolator( - points=df_opt[["wind_direction", "wind_speed"]], - values=np.vstack(df_opt["yaw_angles_opt"]), - fill_value=0.0, - ) - - # Get optimized AEP, with wake steering - yaw_grid = yaw_angles_interpolant(wd_array, ws_array) - farm_power_opt = pfmodel_aep.get_farm_power(yaw_angles=yaw_grid) - aep_opt = np.sum(24 * 365 * np.multiply(farm_power_opt, freq_grid)) - aep_uplift = 100.0 * (aep_opt / aep_bl - 1) - - # Alternatively to above code, we could calculate AEP using - # 'pfmodel_aep.get_farm_AEP(...)' but then we would not have the - # farm power productions, which we use later on for plotting. - - print(" ") - print("===========================================================") - print("Calculating optimized annual energy production (AEP)...") - print("Optimized AEP: {:.3f} GWh.".format(aep_opt / 1.0e9)) - print("Relative AEP uplift by wake steering: {:.3f} %.".format(aep_uplift)) - print("===========================================================") - print(" ") - - # Now calculate helpful variables and then plot wind rose information - farm_energy_bl = np.multiply(freq_grid, farm_power_bl) - farm_energy_opt = np.multiply(freq_grid, farm_power_opt) - df = pd.DataFrame({ - "wd": wd_array.flatten(), - "ws": ws_array.flatten(), - "freq_val": freq_grid.flatten(), - "farm_power_baseline": farm_power_bl.flatten(), - "farm_power_opt": farm_power_opt.flatten(), - "farm_power_relative": farm_power_opt.flatten() / farm_power_bl.flatten(), - "farm_energy_baseline": farm_energy_bl.flatten(), - "farm_energy_opt": farm_energy_opt.flatten(), - "energy_uplift": (farm_energy_opt - farm_energy_bl).flatten(), - "rel_energy_uplift": farm_energy_opt.flatten() / np.sum(farm_energy_bl) - }) - - # Plot power and AEP uplift across wind direction - wd_step = np.diff(fmodel_aep.core.flow_field.wind_directions)[0] # Useful variable for plotting - fig, ax = plt.subplots(nrows=3, sharex=True) - - df_8ms = df[df["ws"] == 8.0].reset_index(drop=True) - pow_uplift = 100 * ( - df_8ms["farm_power_opt"] / df_8ms["farm_power_baseline"] - 1 - ) - ax[0].bar( - x=df_8ms["wd"], - height=pow_uplift, - color="darkgray", - edgecolor="black", - width=wd_step, - ) - ax[0].set_ylabel("Power uplift \n at 8 m/s (%)") - ax[0].grid(True) - - dist = df.groupby("wd").sum().reset_index() - ax[1].bar( - x=dist["wd"], - height=100 * dist["rel_energy_uplift"], - color="darkgray", - edgecolor="black", - width=wd_step, - ) - ax[1].set_ylabel("Contribution to \n AEP uplift (%)") - ax[1].grid(True) - - ax[2].bar( - x=dist["wd"], - height=dist["freq_val"], - color="darkgray", - edgecolor="black", - width=wd_step, - ) - ax[2].set_xlabel("Wind direction (deg)") - ax[2].set_ylabel("Frequency of \n occurrence (-)") - ax[2].grid(True) - plt.tight_layout() - - # Plot power and AEP uplift across wind direction - fig, ax = plt.subplots(nrows=3, sharex=True) - - df_avg = df.groupby("ws").mean().reset_index(drop=False) - mean_power_uplift = 100.0 * (df_avg["farm_power_relative"] - 1.0) - ax[0].bar( - x=df_avg["ws"], - height=mean_power_uplift, - color="darkgray", - edgecolor="black", - width=0.95, - ) - ax[0].set_ylabel("Mean power \n uplift (%)") - ax[0].grid(True) - - dist = df.groupby("ws").sum().reset_index() - ax[1].bar( - x=dist["ws"], - height=100 * dist["rel_energy_uplift"], - color="darkgray", - edgecolor="black", - width=0.95, - ) - ax[1].set_ylabel("Contribution to \n AEP uplift (%)") - ax[1].grid(True) - - ax[2].bar( - x=dist["ws"], - height=dist["freq_val"], - color="darkgray", - edgecolor="black", - width=0.95, - ) - ax[2].set_xlabel("Wind speed (m/s)") - ax[2].set_ylabel("Frequency of \n occurrence (-)") - ax[2].grid(True) - plt.tight_layout() - - # Now plot yaw angle distributions over wind direction up to first three turbines - wd_plot = np.arange(0.0, 360.001, 1.0) - for tindex in range(np.min([fmodel_aep.core.farm.n_turbines, 3])): - fig, ax = plt.subplots(figsize=(6, 3.5)) - ws_to_plot = [6.0, 9.0, 12.0] - colors = ["maroon", "dodgerblue", "grey"] - styles = ["-o", "-v", "-o"] - for ii, ws in enumerate(ws_to_plot): - ax.plot( - wd_plot, - yaw_angles_interpolant(wd_plot, ws * np.ones_like(wd_plot))[:, tindex], - styles[ii], - color=colors[ii], - markersize=3, - label="For wind speed of {:.1f} m/s".format(ws), - ) - ax.set_ylabel("Assigned yaw offsets (deg)") - ax.set_xlabel("Wind direction (deg)") - ax.set_title("Turbine {:d}".format(tindex)) - ax.grid(True) - ax.legend() - plt.tight_layout() - - plt.show() diff --git a/examples/13_optimize_yaw_with_neighboring_farm.py b/examples/13_optimize_yaw_with_neighboring_farm.py deleted file mode 100644 index 300748341..000000000 --- a/examples/13_optimize_yaw_with_neighboring_farm.py +++ /dev/null @@ -1,318 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -from scipy.interpolate import NearestNDInterpolator - -from floris import FlorisModel -from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR - - -""" -This example demonstrates how to perform a yaw optimization and evaluate the performance over a -full wind rose. - -The beginning of the file contains the definition of several functions used in the main part of -the script. - -Within the main part of the script, we first load the wind rose information. -We then initialize our Floris Interface object. We determine the baseline AEP using the -wind rose information, and then perform the yaw optimization over 72 wind directions with 1 -wind speed per direction. The optimal yaw angles are then used to determine yaw angles across -all the wind speeds included in the wind rose. Lastly, the final AEP is calculated and analysis -of the results are shown in several plots. -""" - -def load_floris(): - # Load the default example floris object - fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 - # fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model - - # Specify the full wind farm layout: nominal and neighboring wind farms - X = np.array( - [ - 0., 756., 1512., 2268., 3024., 0., 756., 1512., - 2268., 3024., 0., 756., 1512., 2268., 3024., 0., - 756., 1512., 2268., 3024., 4500., 5264., 6028., 4878., - 0., 756., 1512., 2268., 3024., - ] - ) / 1.5 - Y = np.array( - [ - 0., 0., 0., 0., 0., 504., 504., 504., - 504., 504., 1008., 1008., 1008., 1008., 1008., 1512., - 1512., 1512., 1512., 1512., 4500., 4059., 3618., 5155., - -504., -504., -504., -504., -504., - ] - ) / 1.5 - - # Turbine weights: we want to only optimize for the first 10 turbines - turbine_weights = np.zeros(len(X), dtype=int) - turbine_weights[0:10] = 1.0 - - # Now reinitialize FLORIS layout - fmodel.set(layout_x = X, layout_y = Y) - - # And visualize the floris layout - fig, ax = plt.subplots() - ax.plot(X[turbine_weights == 0], Y[turbine_weights == 0], 'ro', label="Neighboring farms") - ax.plot(X[turbine_weights == 1], Y[turbine_weights == 1], 'go', label='Farm subset') - ax.grid(True) - ax.set_xlabel("x coordinate (m)") - ax.set_ylabel("y coordinate (m)") - ax.legend() - - return fmodel, turbine_weights - - -def load_windrose(): - # Load the wind rose information from an external file - df = pd.read_csv("inputs/wind_rose.csv") - df = df[(df["ws"] < 22)].reset_index(drop=True) # Reduce size - df["freq_val"] = df["freq_val"] / df["freq_val"].sum() # Normalize wind rose frequencies - - # Now put the wind rose information in FLORIS format - ws_windrose = df["ws"].unique() - wd_windrose = df["wd"].unique() - - # Use an interpolant to shape the 'freq_val' vector appropriately. You can - # also use np.reshape(), but NearestNDInterpolator is more fool-proof. - freq_interpolant = NearestNDInterpolator( - df[["ws", "wd"]], df["freq_val"] - ) - freq = freq_interpolant(df["wd"], df["ws"]) - freq_windrose = freq / freq.sum() # Normalize to sum to 1.0 - - ws_windrose = df["ws"] - wd_windrose = df["wd"] - - return ws_windrose, wd_windrose, freq_windrose - - -def optimize_yaw_angles(fmodel_opt): - # Specify turbines to optimize - turbs_to_opt = np.zeros(len(fmodel_opt.layout_x), dtype=bool) - turbs_to_opt[0:10] = True - - # Specify turbine weights - turbine_weights = np.zeros(len(fmodel_opt.layout_x)) - turbine_weights[turbs_to_opt] = 1.0 - - # Specify minimum and maximum allowable yaw angle limits - minimum_yaw_angle = np.zeros( - ( - fmodel_opt.core.flow_field.n_findex, - fmodel_opt.core.farm.n_turbines, - ) - ) - maximum_yaw_angle = np.zeros( - ( - fmodel_opt.core.flow_field.n_findex, - fmodel_opt.core.farm.n_turbines, - ) - ) - maximum_yaw_angle[:, turbs_to_opt] = 30.0 - - yaw_opt = YawOptimizationSR( - fmodel=fmodel_opt, - minimum_yaw_angle=minimum_yaw_angle, - maximum_yaw_angle=maximum_yaw_angle, - turbine_weights=turbine_weights, - Ny_passes=[5], - exclude_downstream_turbines=True, - ) - - df_opt = yaw_opt.optimize() - yaw_angles_opt = yaw_opt.yaw_angles_opt - print("Optimization finished.") - print(" ") - print(df_opt) - print(" ") - - # Now create an interpolant from the optimal yaw angles - def yaw_opt_interpolant(wd, ws): - # Format the wind directions and wind speeds accordingly - wd = np.array(wd, dtype=float) - ws = np.array(ws, dtype=float) - - # Interpolate optimal yaw angles - x = yaw_opt.fmodel.core.flow_field.wind_directions - nturbs = fmodel_opt.core.farm.n_turbines - y = np.stack( - [np.interp(wd, x, yaw_angles_opt[:, ti]) for ti in range(nturbs)], - axis=np.ndim(wd) - ) - - # Now, we want to apply a ramp-up region near cut-in and ramp-down - # region near cut-out wind speed for the yaw offsets. - lim = np.ones(np.shape(wd), dtype=float) # Introduce a multiplication factor - - # Dont do wake steering under 4 m/s or above 14 m/s - lim[(ws <= 4.0) | (ws >= 14.0)] = 0.0 - - # Linear ramp up for the maximum yaw offset between 4.0 and 6.0 m/s - ids = (ws > 4.0) & (ws < 6.0) - lim[ids] = (ws[ids] - 4.0) / 2.0 - - # Linear ramp down for the maximum yaw offset between 12.0 and 14.0 m/s - ids = (ws > 12.0) & (ws < 14.0) - lim[ids] = (ws[ids] - 12.0) / 2.0 - - # Copy over multiplication factor to every turbine - lim = np.expand_dims(lim, axis=np.ndim(wd)).repeat(nturbs, axis=np.ndim(wd)) - lim = lim * 30.0 # These are the limits - - # Finally, Return clipped yaw offsets to the limits - return np.clip(a=y, a_min=0.0, a_max=lim) - - # Return the yaw interpolant - return yaw_opt_interpolant - - -if __name__ == "__main__": - # Load FLORIS: full farm including neighboring wind farms - fmodel, turbine_weights = load_floris() - nturbs = len(fmodel.layout_x) - - # Load a dataframe containing the wind rose information - ws_windrose, wd_windrose, freq_windrose = load_windrose() - ws_windrose = ws_windrose + 0.001 # Deal with 0.0 m/s discrepancy - turbulence_intensities_windrose = 0.06 * np.ones_like(wd_windrose) - - # Create a FLORIS object for AEP calculations - fmodel_aep = fmodel.copy() - fmodel_aep.set( - wind_speeds=ws_windrose, - wind_directions=wd_windrose, - turbulence_intensities=turbulence_intensities_windrose - ) - - # And create a separate FLORIS object for optimization - fmodel_opt = fmodel.copy() - wd_array = np.arange(0.0, 360.0, 3.0) - ws_array = 8.0 * np.ones_like(wd_array) - turbulence_intensities = 0.06 * np.ones_like(wd_array) - fmodel_opt.set( - wind_directions=wd_array, - wind_speeds=ws_array, - turbulence_intensities=turbulence_intensities, - ) - - # First, get baseline AEP, without wake steering - print(" ") - print("===========================================================") - print("Calculating baseline annual energy production (AEP)...") - fmodel_aep.run() - aep_bl_subset = 1.0e-9 * fmodel_aep.get_farm_AEP( - freq=freq_windrose, - turbine_weights=turbine_weights - ) - print("Baseline AEP for subset farm: {:.3f} GWh.".format(aep_bl_subset)) - print("===========================================================") - print(" ") - - # Now optimize the yaw angles using the Serial Refine method. We first - # create a copy of the floris object for optimization purposes and assign - # it the atmospheric conditions for which we want to optimize. Typically, - # the optimal yaw angles are very insensitive to the actual wind speed, - # and hence we only optimize for a single wind speed of 8.0 m/s. We assume - # that the optimal yaw angles at 8.0 m/s are also optimal at other wind - # speeds between 4 and 12 m/s. - print("Now starting yaw optimization for the entire wind rose for farm subset...") - - # In this hypothetical case, we can only control the yaw angles of the - # turbines of the wind farm subset (i.e., the first 10 wind turbines). - # Hence, we constrain the yaw angles of the neighboring wind farms to 0.0. - turbs_to_opt = (turbine_weights > 0.0001) - - # Optimize yaw angles while including neighboring farm - yaw_opt_interpolant = optimize_yaw_angles(fmodel_opt=fmodel_opt) - - # Optimize yaw angles while ignoring neighboring farm - fmodel_opt_subset = fmodel_opt.copy() - fmodel_opt_subset.set( - layout_x = fmodel.layout_x[turbs_to_opt], - layout_y = fmodel.layout_y[turbs_to_opt] - ) - yaw_opt_interpolant_nonb = optimize_yaw_angles(fmodel_opt=fmodel_opt_subset) - - # Use interpolant to get optimal yaw angles for fmodel_aep object - wd = fmodel_aep.core.flow_field.wind_directions - ws = fmodel_aep.core.flow_field.wind_speeds - yaw_angles_opt_AEP = yaw_opt_interpolant(wd, ws) - yaw_angles_opt_nonb_AEP = np.zeros_like(yaw_angles_opt_AEP) # nonb = no neighbor - yaw_angles_opt_nonb_AEP[:, turbs_to_opt] = yaw_opt_interpolant_nonb(wd, ws) - - # Now get AEP with optimized yaw angles - print(" ") - print("===========================================================") - print("Calculating annual energy production with wake steering (AEP)...") - fmodel_aep.set(yaw_angles=yaw_angles_opt_nonb_AEP) - fmodel_aep.run() - aep_opt_subset_nonb = 1.0e-9 * fmodel_aep.get_farm_AEP( - freq=freq_windrose, - turbine_weights=turbine_weights, - ) - fmodel_aep.set(yaw_angles=yaw_angles_opt_AEP) - fmodel_aep.run() - aep_opt_subset = 1.0e-9 * fmodel_aep.get_farm_AEP( - freq=freq_windrose, - turbine_weights=turbine_weights, - ) - uplift_subset_nonb = 100.0 * (aep_opt_subset_nonb - aep_bl_subset) / aep_bl_subset - uplift_subset = 100.0 * (aep_opt_subset - aep_bl_subset) / aep_bl_subset - print( - "Optimized AEP for subset farm (including neighbor farms' wakes): " - f"{aep_opt_subset_nonb:.3f} GWh (+{uplift_subset_nonb:.2f}%)." - ) - print( - "Optimized AEP for subset farm (ignoring neighbor farms' wakes): " - f"{aep_opt_subset:.3f} GWh (+{uplift_subset:.2f}%)." - ) - print("===========================================================") - print(" ") - - # Plot power and AEP uplift across wind direction at wind_speed of 8 m/s - wd = fmodel_opt.core.flow_field.wind_directions - ws = fmodel_opt.core.flow_field.wind_speeds - yaw_angles_opt = yaw_opt_interpolant(wd, ws) - - yaw_angles_opt_nonb = np.zeros_like(yaw_angles_opt) # nonb = no neighbor - yaw_angles_opt_nonb[:, turbs_to_opt] = yaw_opt_interpolant_nonb(wd, ws) - - fmodel_opt = fmodel_opt.copy() - fmodel_opt.set(yaw_angles=np.zeros_like(yaw_angles_opt)) - fmodel_opt.run() - farm_power_bl_subset = fmodel_opt.get_farm_power(turbine_weights).flatten() - - fmodel_opt = fmodel_opt.copy() - fmodel_opt.set(yaw_angles=yaw_angles_opt) - fmodel_opt.run() - farm_power_opt_subset = fmodel_opt.get_farm_power(turbine_weights).flatten() - - fmodel_opt = fmodel_opt.copy() - fmodel_opt.set(yaw_angles=yaw_angles_opt_nonb) - fmodel_opt.run() - farm_power_opt_subset_nonb = fmodel_opt.get_farm_power(turbine_weights).flatten() - - fig, ax = plt.subplots() - ax.bar( - x=fmodel_opt.core.flow_field.wind_directions - 0.65, - height=100.0 * (farm_power_opt_subset / farm_power_bl_subset - 1.0), - edgecolor="black", - width=1.3, - label="Including wake effects of neighboring farms" - ) - ax.bar( - x=fmodel_opt.core.flow_field.wind_directions + 0.65, - height=100.0 * (farm_power_opt_subset_nonb / farm_power_bl_subset - 1.0), - edgecolor="black", - width=1.3, - label="Ignoring neighboring farms" - ) - ax.set_ylabel("Power uplift \n at 8 m/s (%)") - ax.legend() - ax.grid(True) - ax.set_xlabel("Wind direction (deg)") - - plt.show() diff --git a/examples/15_optimize_layout.py b/examples/15_optimize_layout.py deleted file mode 100644 index df0f1d460..000000000 --- a/examples/15_optimize_layout.py +++ /dev/null @@ -1,80 +0,0 @@ - -import os - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel, WindRose -from floris.optimization.layout_optimization.layout_optimization_scipy import ( - LayoutOptimizationScipy, -) - - -""" -This example shows a simple layout optimization using the python module Scipy. - -A 4 turbine array is optimized such that the layout of the turbine produces the -highest annual energy production (AEP) based on the given wind resource. The turbines -are constrained to a square boundary and a random wind resource is supplied. The results -of the optimization show that the turbines are pushed to the outer corners of the boundary, -which makes sense in order to maximize the energy production by minimizing wake interactions. -""" - -# Initialize the FLORIS interface fi -file_dir = os.path.dirname(os.path.abspath(__file__)) -fmodel = FlorisModel('inputs/gch.yaml') - -# Setup 72 wind directions with a 1 wind speed and frequency distribution -wind_directions = np.arange(0, 360.0, 5.0) -wind_speeds = np.array([8.0]) - -# Shape frequency distribution to match number of wind directions and wind speeds -freq_table = np.zeros((len(wind_directions), len(wind_speeds))) -np.random.seed(1) -freq_table[:,0] = (np.abs(np.sort(np.random.randn(len(wind_directions))))) -freq_table = freq_table / freq_table.sum() - -# Establish a TimeSeries object -wind_rose = WindRose( - wind_directions=wind_directions, - wind_speeds=wind_speeds, - freq_table=freq_table, - ti_table=0.06 -) - -fmodel.set(wind_data=wind_rose) - -# The boundaries for the turbines, specified as vertices -boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] - -# Set turbine locations to 4 turbines in a rectangle -D = 126.0 # rotor diameter for the NREL 5MW -layout_x = [0, 0, 6 * D, 6 * D] -layout_y = [0, 4 * D, 0, 4 * D] -fmodel.set(layout_x=layout_x, layout_y=layout_y) - -# Setup the optimization problem -layout_opt = LayoutOptimizationScipy(fmodel, boundaries) - -# Run the optimization -sol = layout_opt.optimize() - -# Get the resulting improvement in AEP -print('... calcuating improvement in AEP') -fmodel.run() -base_aep = fmodel.get_farm_AEP() / 1e6 -fmodel.set(layout_x=sol[0], layout_y=sol[1]) -fmodel.run() -opt_aep = fmodel.get_farm_AEP() / 1e6 - -percent_gain = 100 * (opt_aep - base_aep) / base_aep - -# Print and plot the results -print(f'Optimal layout: {sol}') -print( - f'Optimal layout improves AEP by {percent_gain:.1f}% ' - f'from {base_aep:.1f} MWh to {opt_aep:.1f} MWh' -) -layout_opt.plot_layout_opt_results() - -plt.show() diff --git a/examples/16b_heterogeneity_multiple_ws_wd.py b/examples/16b_heterogeneity_multiple_ws_wd.py deleted file mode 100644 index c183c4a26..000000000 --- a/examples/16b_heterogeneity_multiple_ws_wd.py +++ /dev/null @@ -1,76 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel -from floris.flow_visualization import visualize_cut_plane - - -""" -This example showcases the heterogeneous inflow capabilities of FLORIS -when multiple wind speeds and direction are considered. -""" - - -# Define the speed ups of the heterogeneous inflow, and their locations. -# For the 2-dimensional case, this requires x and y locations. -# The speed ups are multipliers of the ambient wind speed. -speed_ups = [[2.0, 1.0, 2.0, 1.0]] -x_locs = [-300.0, -300.0, 2600.0, 2600.0] -y_locs = [ -300.0, 300.0, -300.0, 300.0] - -# Initialize FLORIS with the given input. -# Note the heterogeneous inflow is defined in the input file. -fmodel = FlorisModel("inputs/gch_heterogeneous_inflow.yaml") - -# Set shear to 0.0 to highlight the heterogeneous inflow -fmodel.set( - wind_shear=0.0, - wind_speeds=[8.0], - wind_directions=[270.], - turbulence_intensities=[0.06], - layout_x=[0, 0], - layout_y=[-299., 299.], -) -fmodel.run() -turbine_powers = fmodel.get_turbine_powers().flatten() / 1000. - -# Show the initial results -print('------------------------------------------') -print('Given the speedups and turbine locations, ') -print(' the first turbine has an inflow wind speed') -print(' twice that of the second') -print(' Wind Speed = 8., Wind Direction = 270.') -print(f'T0: {turbine_powers[0]:.1f} kW') -print(f'T1: {turbine_powers[1]:.1f} kW') -print() - -# If the number of conditions in the calculation changes, a new heterogeneous map -# must be provided. -speed_multipliers = [[2.0, 1.0, 2.0, 1.0], [2.0, 1.0, 2.0, 1.0]] # Expand to two wind conditions -heterogenous_inflow_config = { - 'speed_multipliers': speed_multipliers, - 'x': x_locs, - 'y': y_locs, -} -fmodel.set( - wind_directions=[270.0, 275.0], - wind_speeds=[8.0, 8.0], - turbulence_intensities=[0.06, 0.06], - heterogenous_inflow_config=heterogenous_inflow_config -) -fmodel.run() -turbine_powers = np.round(fmodel.get_turbine_powers() / 1000.) -print('With wind directions now set to 270 and 275 deg') -print(f'T0: {turbine_powers[:, 0].flatten()} kW') -print(f'T1: {turbine_powers[:, 1].flatten()} kW') - -# # Uncomment if want to see example of error output -# # Note if we change wind directions to 3 without a matching change to het map we get an error -# print() -# print() -# print('~~ Now forcing an error by not matching wd and het_map') - -# fmodel.set(wind_directions=[270, 275, 280], wind_speeds=3*[8.0]) -# fmodel.run() -# turbine_powers = np.round(fmodel.get_turbine_powers() / 1000.) diff --git a/examples/20_calculate_farm_power_with_uncertainty.py b/examples/20_calculate_farm_power_with_uncertainty.py deleted file mode 100644 index f15313c8f..000000000 --- a/examples/20_calculate_farm_power_with_uncertainty.py +++ /dev/null @@ -1,135 +0,0 @@ -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel, UncertainFlorisModel - - -""" -This example demonstrates how one can create an "UncertainFlorisModel" object, -which adds uncertainty on the inflow wind direction on the FlorisModel -class. The UncertainFlorisModel class is interacted with in the exact same -manner as the FlorisModel class is. This example demonstrates how the -wind farm power production is calculated with and without uncertainty. -Other use cases of UncertainFlorisModel are, e.g., comparing FLORIS to -historical SCADA data and robust optimization. -""" - -# Instantiate FLORIS using either the GCH or CC model -fmodel = FlorisModel("inputs/gch.yaml") # GCH model -ufmodel_3 = UncertainFlorisModel( - "inputs/gch.yaml", verbose=True, wd_std=3 -) -ufmodel_5 = UncertainFlorisModel( - "inputs/gch.yaml", verbose=True, wd_std=5 -) - -# Define a two turbine farm -D = 126.0 -layout_x = np.array([0, D * 6]) -layout_y = [0, 0] -wd_array = np.arange(240.0, 300.0, 1.0) -wind_speeds = 8.0 * np.ones_like(wd_array) -ti_array = 0.06 * np.ones_like(wd_array) -fmodel.set( - layout_x=layout_x, - layout_y=layout_y, - wind_directions=wd_array, - wind_speeds=wind_speeds, - turbulence_intensities=ti_array, -) -ufmodel_3.set( - layout_x=layout_x, - layout_y=layout_y, - wind_directions=wd_array, - wind_speeds=wind_speeds, - turbulence_intensities=ti_array, -) -ufmodel_5.set( - layout_x=layout_x, - layout_y=layout_y, - wind_directions=wd_array, - wind_speeds=wind_speeds, - turbulence_intensities=ti_array, -) - - -# Run both models -fmodel.run() -ufmodel_3.run() -ufmodel_5.run() - -# Collect the nominal and uncertain farm power -turbine_powers_nom = fmodel.get_turbine_powers() / 1e3 -turbine_powers_unc_3 = ufmodel_3.get_turbine_powers() / 1e3 -turbine_powers_unc_5 = ufmodel_5.get_turbine_powers() / 1e3 -farm_powers_nom = fmodel.get_farm_power() / 1e3 -farm_powers_unc_3 = ufmodel_3.get_farm_power() / 1e3 -farm_powers_unc_5 = ufmodel_5.get_farm_power() / 1e3 - -# Plot results -fig, axarr = plt.subplots(1, 3, figsize=(15, 5)) -ax = axarr[0] -ax.plot(wd_array, turbine_powers_nom[:, 0].flatten(), color="k", label="Nominal power") -ax.plot( - wd_array, - turbine_powers_unc_3[:, 0].flatten(), - color="r", - label="Power with uncertainty = 3 deg", -) -ax.plot( - wd_array, turbine_powers_unc_5[:, 0].flatten(), color="m", label="Power with uncertainty = 5deg" -) -ax.grid(True) -ax.legend() -ax.set_xlabel("Wind Direction (deg)") -ax.set_ylabel("Power (kW)") -ax.set_title("Upstream Turbine") - -ax = axarr[1] -ax.plot(wd_array, turbine_powers_nom[:, 1].flatten(), color="k", label="Nominal power") -ax.plot( - wd_array, - turbine_powers_unc_3[:, 1].flatten(), - color="r", - label="Power with uncertainty = 3 deg", -) -ax.plot( - wd_array, - turbine_powers_unc_5[:, 1].flatten(), - color="m", - label="Power with uncertainty = 5 deg", -) -ax.set_title("Downstream Turbine") -ax.grid(True) -ax.legend() -ax.set_xlabel("Wind Direction (deg)") -ax.set_ylabel("Power (kW)") - -ax = axarr[2] -ax.plot(wd_array, farm_powers_nom.flatten(), color="k", label="Nominal farm power") -ax.plot( - wd_array, farm_powers_unc_3.flatten(), color="r", label="Farm power with uncertainty = 3 deg" -) -ax.plot( - wd_array, farm_powers_unc_5.flatten(), color="m", label="Farm power with uncertainty = 5 deg" -) -ax.set_title("Farm Power") -ax.grid(True) -ax.legend() -ax.set_xlabel("Wind Direction (deg)") -ax.set_ylabel("Power (kW)") - -# Compare the AEP calculation -freq = np.ones_like(wd_array) -freq = freq / freq.sum() - -aep_nom = fmodel.get_farm_AEP(freq=freq) -aep_unc_3 = ufmodel_3.get_farm_AEP(freq=freq) -aep_unc_5 = ufmodel_5.get_farm_AEP(freq=freq) - -print(f"AEP without uncertainty {aep_nom}") -print(f"AEP without uncertainty (3 deg) {aep_unc_3} ({100*aep_unc_3/aep_nom:.2f}%)") -print(f"AEP without uncertainty (5 deg) {aep_unc_5} ({100*aep_unc_5/aep_nom:.2f}%)") - - -plt.show() diff --git a/examples/21_demo_time_series.py b/examples/21_demo_time_series.py deleted file mode 100644 index 8afa28f2f..000000000 --- a/examples/21_demo_time_series.py +++ /dev/null @@ -1,66 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel - - -""" -This example demonstrates running FLORIS given a time series -of wind direction and wind speed combinations. -""" - -# Initialize FLORIS to simple 4 turbine farm -fmodel = FlorisModel("inputs/gch.yaml") - -# Convert to a simple two turbine layout -fmodel.set(layout_x=[0, 500.], layout_y=[0., 0.]) - -# Create a fake time history where wind speed steps in the middle while wind direction -# Walks randomly -time = np.arange(0, 120, 10.) # Each time step represents a 10-minute average -ws = np.ones_like(time) * 8. -ws[int(len(ws) / 2):] = 9. -wd = np.ones_like(time) * 270. -turbulence_intensities = np.ones_like(time) * 0.06 - -for idx in range(1, len(time)): - wd[idx] = wd[idx - 1] + np.random.randn() * 2. - - -# Now intiialize FLORIS object to this history using time_series flag -fmodel.set(wind_directions=wd, wind_speeds=ws, turbulence_intensities=turbulence_intensities) - -# Collect the powers -fmodel.run() -turbine_powers = fmodel.get_turbine_powers() / 1000. - -# Show the dimensions -num_turbines = len(fmodel.layout_x) -print( - f'There are {len(time)} time samples, and {num_turbines} turbines and ' - f'so the resulting turbine power matrix has the shape {turbine_powers.shape}.' -) - - -fig, axarr = plt.subplots(3, 1, sharex=True, figsize=(7,8)) - -ax = axarr[0] -ax.plot(time, ws, 'o-') -ax.set_ylabel('Wind Speed (m/s)') -ax.grid(True) - -ax = axarr[1] -ax.plot(time, wd, 'o-') -ax.set_ylabel('Wind Direction (Deg)') -ax.grid(True) - -ax = axarr[2] -for t in range(num_turbines): - ax.plot(time,turbine_powers[:, t], 'o-', label='Turbine %d' % t) -ax.legend() -ax.set_ylabel('Turbine Power (kW)') -ax.set_xlabel('Time (minutes)') -ax.grid(True) - -plt.show() diff --git a/examples/22_get_wind_speed_at_turbines.py b/examples/22_get_wind_speed_at_turbines.py deleted file mode 100644 index 7f15a4100..000000000 --- a/examples/22_get_wind_speed_at_turbines.py +++ /dev/null @@ -1,33 +0,0 @@ - -import numpy as np - -from floris import FlorisModel - - -# Initialize FLORIS with the given input file. -# For basic usage, FlorisModel provides a simplified and expressive -# entry point to the simulation routines. -fmodel = FlorisModel("inputs/gch.yaml") - -# Create a 4-turbine layouts -fmodel.set(layout_x=[0, 0., 500., 500.], layout_y=[0., 300., 0., 300.]) - -# Calculate wake -fmodel.run() - -# Collect the wind speed at all the turbine points -u_points = fmodel.core.flow_field.u - -print('U points is 1 findex x 4 turbines x 3 x 3 points (turbine_grid_points=3)') -print(u_points.shape) - -print('turbine_average_velocities is 1 findex x 4 turbines') -print(fmodel.turbine_average_velocities) - -# Show that one is equivalent to the other following averaging -print( - 'turbine_average_velocities is determined by taking the cube root of mean ' - 'of the cubed value across the points ' -) -print(f'turbine_average_velocities: {fmodel.turbine_average_velocities}') -print(f'Recomputed: {np.cbrt(np.mean(u_points**3, axis=(2,3)))}') diff --git a/examples/31_multi_dimensional_cp_ct_2Hs.py b/examples/31_multi_dimensional_cp_ct_2Hs.py deleted file mode 100644 index 56bb6fc20..000000000 --- a/examples/31_multi_dimensional_cp_ct_2Hs.py +++ /dev/null @@ -1,72 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel - - -""" -This example follows after example 30 but shows the effect of changing the Hs setting. - -NOTE: The multi-dimensional Cp/Ct data used in this example is fictional for the purposes of -facilitating this example. The Cp/Ct values for the different wave conditions are scaled -values of the original Cp/Ct data for the IEA 15MW turbine. -""" - -# Initialize FLORIS with the given input file. -fmodel = FlorisModel("inputs/gch_multi_dim_cp_ct.yaml") - -# Make a second Floris instance with a different setting for Hs. -# Note the multi-cp-ct file (iea_15MW_multi_dim_Tp_Hs.csv) -# for the turbine model iea_15MW_floating_multi_dim_cp_ct.yaml -# Defines Hs at 1 and 5. -# The value in gch_multi_dim_cp_ct.yaml is 3.01 which will map -# to 5 as the nearer value, so we set the other case to 1 -# for contrast. -fmodel_dict_mod = fmodel.core.as_dict() -fmodel_dict_mod['flow_field']['multidim_conditions']['Hs'] = 1.0 -fmodel_hs_1 = FlorisModel(fmodel_dict_mod) - -# Set both cases to 3 turbine layout -fmodel.set(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) -fmodel_hs_1.set(layout_x=[0., 500., 1000.], layout_y=[0., 0., 0.]) - -# Use a sweep of wind speeds -wind_speeds = np.arange(5, 20, 1.0) -wind_directions = 270.0 * np.ones_like(wind_speeds) -turbulence_intensities = 0.06 * np.ones_like(wind_speeds) -fmodel.set( - wind_directions=wind_directions, - wind_speeds=wind_speeds, - turbulence_intensities=turbulence_intensities -) -fmodel_hs_1.set( - wind_directions=wind_directions, - wind_speeds=wind_speeds, - turbulence_intensities=turbulence_intensities -) - -# Calculate wakes with baseline yaw -fmodel.run() -fmodel_hs_1.run() - -# Collect the turbine powers in kW -turbine_powers = fmodel.get_turbine_powers()/1000. -turbine_powers_hs_1 = fmodel_hs_1.get_turbine_powers()/1000. - -# Plot the power in each case and the difference in power -fig, axarr = plt.subplots(1,3,sharex=True,figsize=(12,4)) - -for t_idx in range(3): - ax = axarr[t_idx] - ax.plot(wind_speeds, turbine_powers[:,t_idx], color='k', label='Hs=3.1 (5)') - ax.plot(wind_speeds, turbine_powers_hs_1[:,t_idx], color='r', label='Hs=1.0') - ax.grid(True) - ax.set_xlabel('Wind Speed (m/s)') - ax.set_title(f'Turbine {t_idx}') - -axarr[0].set_ylabel('Power (kW)') -axarr[0].legend() -fig.suptitle('Power of each turbine') - -plt.show() diff --git a/examples/35_sweep_ti.py b/examples/35_sweep_ti.py deleted file mode 100644 index 5bf2ffa34..000000000 --- a/examples/35_sweep_ti.py +++ /dev/null @@ -1,49 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import ( - FlorisModel, - TimeSeries, - WindRose, -) -from floris.utilities import wrap_360 - - -""" -Demonstrate the new behavior in V4 where TI is an array rather than a float. -Set up an array of two turbines and sweep TI while holding wd/ws constant. -Use the TimeSeries object to drive the FLORIS calculations. -""" - - -# Generate a random time series of wind speeds, wind directions and turbulence intensities -N = 50 -wd_array = 270.0 * np.ones(N) -ws_array = 8.0 * np.ones(N) -ti_array = np.linspace(0.03, 0.2, N) - - -# Build the time series -time_series = TimeSeries(wd_array, ws_array, turbulence_intensities=ti_array) - - -# Now set up a FLORIS model and initialize it using the time -fmodel = FlorisModel("inputs/gch.yaml") -fmodel.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0], wind_data=time_series) -fmodel.run() -turbine_power = fmodel.get_turbine_powers() - -fig, axarr = plt.subplots(2, 1, sharex=True, figsize=(6, 6)) -ax = axarr[0] -ax.plot(ti_array*100, turbine_power[:, 0]/1000, color="k") -ax.set_ylabel("Front turbine power [kW]") -ax = axarr[1] -ax.plot(ti_array*100, turbine_power[:, 1]/1000, color="k") -ax.set_ylabel("Rear turbine power [kW]") -ax.set_xlabel("Turbulence intensity [%]") - -for ax in axarr: - ax.grid(True) - -plt.show() diff --git a/examples/40_test_derating.py b/examples/40_test_derating.py deleted file mode 100644 index 7d72252b6..000000000 --- a/examples/40_test_derating.py +++ /dev/null @@ -1,112 +0,0 @@ - -import matplotlib.pyplot as plt -import numpy as np -import yaml - -from floris import FlorisModel - - -""" -Example to test out derating of turbines and mixed derating and yawing. Will be refined before -release. TODO: Demonstrate shutting off turbines also, once developed. -""" - -# Grab model of FLORIS and update to deratable turbines -fmodel = FlorisModel("inputs/gch.yaml") - -with open(str( - fmodel.core.as_dict()["farm"]["turbine_library_path"] / - (fmodel.core.as_dict()["farm"]["turbine_type"][0] + ".yaml") -)) as t: - turbine_type = yaml.safe_load(t) -turbine_type["operation_model"] = "simple-derating" - -# Convert to a simple two turbine layout with derating turbines -fmodel.set(layout_x=[0, 1000.0], layout_y=[0.0, 0.0], turbine_type=[turbine_type]) - -# Set the wind directions and speeds to be constant over n_findex = N time steps -N = 50 -fmodel.set( - wind_directions=270 * np.ones(N), - wind_speeds=10.0 * np.ones(N), - turbulence_intensities=0.06 * np.ones(N) -) -fmodel.run() -turbine_powers_orig = fmodel.get_turbine_powers() - -# Add derating -power_setpoints = np.tile(np.linspace(1, 6e6, N), 2).reshape(2, N).T -fmodel.set(power_setpoints=power_setpoints) -fmodel.run() -turbine_powers_derated = fmodel.get_turbine_powers() - -# Compute available power at downstream turbine -power_setpoints_2 = np.array([np.linspace(1, 6e6, N), np.full(N, None)]).T -fmodel.set(power_setpoints=power_setpoints_2) -fmodel.run() -turbine_powers_avail_ds = fmodel.get_turbine_powers()[:,1] - -# Plot the results -fig, ax = plt.subplots(1, 1) -ax.plot(power_setpoints[:, 0]/1000, turbine_powers_derated[:, 0]/1000, color="C0", label="Upstream") -ax.plot( - power_setpoints[:, 1]/1000, - turbine_powers_derated[:, 1]/1000, - color="C1", - label="Downstream" -) -ax.plot( - power_setpoints[:, 0]/1000, - turbine_powers_orig[:, 0]/1000, - color="C0", - linestyle="dotted", - label="Upstream available" -) -ax.plot( - power_setpoints[:, 1]/1000, - turbine_powers_avail_ds/1000, - color="C1", - linestyle="dotted", label="Downstream available" -) -ax.plot( - power_setpoints[:, 1]/1000, - np.ones(N)*np.max(turbine_type["power_thrust_table"]["power"]), - color="k", - linestyle="dashed", - label="Rated power" -) -ax.grid() -ax.legend() -ax.set_xlim([0, 6e3]) -ax.set_xlabel("Power setpoint (kW)") -ax.set_ylabel("Power produced (kW)") - -# Second example showing mixed model use. -turbine_type["operation_model"] = "mixed" -yaw_angles = np.array([ - [0.0, 0.0], - [0.0, 0.0], - [20.0, 10.0], - [0.0, 10.0], - [20.0, 0.0] -]) -power_setpoints = np.array([ - [None, None], - [2e6, 1e6], - [None, None], - [2e6, None,], - [None, 1e6] -]) -fmodel.set( - wind_directions=270 * np.ones(len(yaw_angles)), - wind_speeds=10.0 * np.ones(len(yaw_angles)), - turbulence_intensities=0.06 * np.ones(len(yaw_angles)), - turbine_type=[turbine_type]*2, - yaw_angles=yaw_angles, - power_setpoints=power_setpoints, -) -fmodel.run() -turbine_powers = fmodel.get_turbine_powers() -print(turbine_powers) - -plt.show() diff --git a/examples/10_opt_yaw_single_ws.py b/examples/examples_control_optimization/001_opt_yaw_single_ws.py similarity index 58% rename from examples/10_opt_yaw_single_ws.py rename to examples/examples_control_optimization/001_opt_yaw_single_ws.py index f33878c9e..533347a78 100644 --- a/examples/10_opt_yaw_single_ws.py +++ b/examples/examples_control_optimization/001_opt_yaw_single_ws.py @@ -1,37 +1,36 @@ +"""Example: Optimize yaw for a single wind speed and multiple wind directions + +Use the serial-refine method to optimize the yaw angles for a 3-turbine wind farm + +""" + import matplotlib.pyplot as plt import numpy as np -from floris import FlorisModel +from floris import FlorisModel, TimeSeries from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR -""" -This example demonstrates how to perform a yaw optimization for multiple wind directions -and 1 wind speed. - -First, we initialize our Floris Interface, and then generate a 3 turbine wind farm. -Next, we create the yaw optimization object `yaw_opt` and perform the optimization using the -SerialRefine method. Finally, we plot the results. -""" - # Load the default example floris object -fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 -# fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model +fmodel = FlorisModel("../inputs/gch.yaml") + +# Define an inflow that +# keeps wind speed and TI constant while sweeping the wind directions +wind_directions = np.arange(0.0, 360.0, 3.0) +time_series = TimeSeries( + wind_directions=wind_directions, + wind_speeds=8.0, + turbulence_intensities=0.06, +) -# Reinitialize as a 3-turbine farm with range of WDs and 1 WS -wd_array = np.arange(0.0, 360.0, 3.0) -ws_array = 8.0 * np.ones_like(wd_array) -turbulence_intensities = 0.06 * np.ones_like(wd_array) +# Reinitialize as a 3-turbine using the above inflow D = 126.0 # Rotor diameter for the NREL 5 MW fmodel.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], - wind_directions=wd_array, - wind_speeds=ws_array, - turbulence_intensities=turbulence_intensities, + wind_data=time_series, ) -print(fmodel.core.farm.rotor_diameters) # Initialize optimizer object and run optimization using the Serial-Refine method yaw_opt = YawOptimizationSR(fmodel) diff --git a/examples/examples_control_optimization/002_opt_yaw_single_ws_uncertain.py b/examples/examples_control_optimization/002_opt_yaw_single_ws_uncertain.py new file mode 100644 index 000000000..4b9ceda1e --- /dev/null +++ b/examples/examples_control_optimization/002_opt_yaw_single_ws_uncertain.py @@ -0,0 +1,112 @@ +"""Example: Optimize yaw for a single wind speed and multiple wind directions. +Compare certain and uncertain results. + +Use the serial-refine method to optimize the yaw angles for a 3-turbine wind farm. In one +case use the FlorisModel without uncertainty and in the other use the UncertainFlorisModel +with a wind direction standard deviation of 3 degrees. Compare the results. + +""" + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + FlorisModel, + TimeSeries, + UncertainFlorisModel, +) +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR + + +# Load the floris model and uncertain floris model +fmodel = FlorisModel("../inputs/gch.yaml") +ufmodel = UncertainFlorisModel("../inputs/gch.yaml", wd_std=3) + + +# Define an inflow that +# keeps wind speed and TI constant while sweeping the wind directions +wind_directions = np.arange(250, 290.0, 1.0) +time_series = TimeSeries( + wind_directions=wind_directions, + wind_speeds=8.0, + turbulence_intensities=0.06, +) + +# Reinitialize as a 3-turbine using the above inflow +D = 126.0 # Rotor diameter for the NREL 5 MW +fmodel.set( + layout_x=[0.0, 5 * D, 10 * D], + layout_y=[0.0, 0.0, 0.0], + wind_data=time_series, +) +ufmodel.set( + layout_x=[0.0, 5 * D, 10 * D], + layout_y=[0.0, 0.0, 0.0], + wind_data=time_series, +) + +# Initialize optimizer object and run optimization using the Serial-Refine method +print("++++++++++CERTAIN++++++++++++") +yaw_opt = YawOptimizationSR(fmodel) +df_opt = yaw_opt.optimize() + +# Repeat with uncertain model +print("++++++++++UNCERTAIN++++++++++++") +yaw_opt_u = YawOptimizationSR(ufmodel) +df_opt_uncertain = yaw_opt_u.optimize() + +# Split out the turbine results +for t in range(3): + df_opt["t%d" % t] = df_opt.yaw_angles_opt.apply(lambda x: x[t]) + df_opt_uncertain["t%d" % t] = df_opt_uncertain.yaw_angles_opt.apply(lambda x: x[t]) + +# Show the yaw and turbine results +fig, axarr = plt.subplots(3, sharex=True, sharey=False, figsize=(15, 8)) + +# Yaw results +for tindex in range(3): + ax = axarr[tindex] + ax.plot( + df_opt.wind_direction, df_opt["t%d" % tindex], label="FlorisModel", color="k", marker="o" + ) + ax.plot( + df_opt_uncertain.wind_direction, + df_opt_uncertain["t%d" % tindex], + label="UncertainFlorisModel", + color="r", + marker="x", + ) + ax.set_ylabel("Yaw Offset (deg") + ax.legend() + ax.grid(True) + + +# Power results +fig, axarr = plt.subplots(1, 2, figsize=(15, 5), sharex=True, sharey=True) +ax = axarr[0] +ax.plot(df_opt.wind_direction, df_opt.farm_power_baseline, color="k", label="Baseline Farm Power") +ax.plot(df_opt.wind_direction, df_opt.farm_power_opt, color="r", label="Optimized Farm Power") +ax.set_ylabel("Power (W)") +ax.set_xlabel("Wind Direction (deg)") +ax.legend() +ax.grid(True) +ax.set_title("Certain") +ax = axarr[1] +ax.plot( + df_opt_uncertain.wind_direction, + df_opt_uncertain.farm_power_baseline, + color="k", + label="Baseline Farm Power", +) +ax.plot( + df_opt_uncertain.wind_direction, + df_opt_uncertain.farm_power_opt, + color="r", + label="Optimized Farm Power", +) +ax.set_xlabel("Wind Direction (deg)") +ax.grid(True) +ax.set_title("Uncertain") + + +plt.show() diff --git a/examples/11_opt_yaw_multiple_ws.py b/examples/examples_control_optimization/003_opt_yaw_multiple_ws.py similarity index 78% rename from examples/11_opt_yaw_multiple_ws.py rename to examples/examples_control_optimization/003_opt_yaw_multiple_ws.py index 0a7d9668a..1a2d7e0a0 100644 --- a/examples/11_opt_yaw_multiple_ws.py +++ b/examples/examples_control_optimization/003_opt_yaw_multiple_ws.py @@ -1,47 +1,39 @@ -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel -from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR - - -""" +"""Example: Optimize yaw for multiple wind directions and multiple wind speeds. This example demonstrates how to perform a yaw optimization for multiple wind directions -and multiple wind speeds. +and multiple wind speeds using the WindRose object First, we initialize our Floris Interface, and then generate a 3 turbine wind farm. Next, we create the yaw optimization object `yaw_opt` and perform the optimization using the SerialRefine method. Finally, we plot the results. """ +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel, WindRose +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR + + # Load the default example floris object -fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 +fmodel = FlorisModel("../inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 # fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model -# Define arrays of ws/wd -wind_speeds_to_expand = np.arange(2.0, 18.0, 1.0) -wind_directions_to_expand = np.arange(0.0, 360.0, 3.0) - -# Create grids to make combinations of ws/wd -wind_speeds_grid, wind_directions_grid = np.meshgrid( - wind_speeds_to_expand, - wind_directions_to_expand +# Define a WindRose object with uniform TI and frequency table +wind_rose = WindRose( + wind_directions=np.arange(0.0, 360.0, 3.0), + wind_speeds=np.arange(2.0, 18.0, 1.0), + ti_table=0.06, ) -# Flatten the grids back to 1D arrays -wd_array = wind_directions_grid.flatten() -ws_array = wind_speeds_grid.flatten() -turbulence_intensities = 0.06 * np.ones_like(wd_array) + # Reinitialize as a 3-turbine farm with range of WDs and WSs D = 126.0 # Rotor diameter for the NREL 5 MW fmodel.set( layout_x=[0.0, 5 * D, 10 * D], layout_y=[0.0, 0.0, 0.0], - wind_directions=wd_array, - wind_speeds=ws_array, - turbulence_intensities=turbulence_intensities, + wind_data=wind_rose, ) # Initialize optimizer object and run optimization using the Serial-Refine method @@ -49,7 +41,7 @@ # yaw misalignment that increases the wind farm power production by a negligible # amount. For example, at high wind speeds (e.g., 16 m/s), a turbine might yaw # by a substantial amount to increase the power production by less than 1 W. This -# is typically the result of numerical inprecision of the power coefficient curve, +# is typically the result of numerical imprecision of the power coefficient curve, # which slightly differs for different above-rated wind speeds. The option # verify_convergence therefore refines and validates the yaw angle choices # but has no effect on the predicted power uplift from wake steering. @@ -74,7 +66,7 @@ figsize=(10, 8) ) jj = 0 -for ii, ws in enumerate(np.unique(fmodel.core.flow_field.wind_speeds)): +for ii, ws in enumerate(np.unique(fmodel.wind_speeds)): xi = np.remainder(ii, 4) if ((ii > 0) & (xi == 0)): jj += 1 @@ -104,7 +96,7 @@ figsize=(10, 8) ) jj = 0 -for ii, ws in enumerate(np.unique(fmodel.core.flow_field.wind_speeds)): +for ii, ws in enumerate(np.unique(fmodel.wind_speeds)): xi = np.remainder(ii, 4) if ((ii > 0) & (xi == 0)): jj += 1 diff --git a/examples/examples_control_optimization/004_optimize_yaw_aep.py b/examples/examples_control_optimization/004_optimize_yaw_aep.py new file mode 100644 index 000000000..00269e6fe --- /dev/null +++ b/examples/examples_control_optimization/004_optimize_yaw_aep.py @@ -0,0 +1,156 @@ +"""Example: Optimize yaw and compare AEP + +This example demonstrates how to perform a yaw optimization and evaluate the performance +over a full wind rose. + +The script performs the following steps: + 1. Load a wind rose from a csv file + 2. Calculates the optimal yaw angles for a wind speed of 8 m/s across the directions + 3. Applies the optimal yaw angles to the wind rose and calculates the AEP + +""" + +from time import perf_counter as timerpc + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + FlorisModel, + TimeSeries, + WindRose, +) +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR + + +# Load the wind rose from csv +wind_rose = WindRose.read_csv_long( + "../inputs/wind_rose.csv", wd_col="wd", ws_col="ws", freq_col="freq_val", ti_col_or_value=0.06 +) + +# Load FLORIS +fmodel = FlorisModel("../inputs/gch.yaml") + +# Specify wind farm layout and update in the floris object +N = 2 # number of turbines per row and per column +X, Y = np.meshgrid( + 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), + 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), +) +fmodel.set(layout_x=X.flatten(), layout_y=Y.flatten()) + +# Get the number of turbines +n_turbines = len(fmodel.layout_x) + +# Optimize the yaw angles. This could be done for every wind direction and wind speed +# but in practice it is much faster to optimize only for one speed and infer the rest +# using a rule of thumb +time_series = TimeSeries( + wind_directions=wind_rose.wind_directions, wind_speeds=8.0, turbulence_intensities=0.06 +) +fmodel.set(wind_data=time_series) + +# Get the optimal angles +start_time = timerpc() +yaw_opt = YawOptimizationSR( + fmodel=fmodel, + minimum_yaw_angle=0.0, # Allowable yaw angles lower bound + maximum_yaw_angle=20.0, # Allowable yaw angles upper bound + Ny_passes=[5, 4], + exclude_downstream_turbines=True, +) +df_opt = yaw_opt.optimize() +end_time = timerpc() +t_tot = end_time - start_time +print("Optimization finished in {:.2f} seconds.".format(t_tot)) + + +# Calculate the AEP in the baseline case +fmodel.set(wind_data=wind_rose) +fmodel.run() +farm_power_baseline = fmodel.get_farm_power() +aep_baseline = fmodel.get_farm_AEP() + + +# Now need to apply the optimal yaw angles to the wind rose to get the optimized AEP +# do this by applying a rule of thumb where the optimal yaw is applied between 6 and 12 m/s +# and ramped down to 0 above and below this range + +# Grab wind speeds and wind directions from the fmodel. Note that we do this because the +# yaw angles will need to be n_findex long, and accounting for the fact that some wind +# directions and wind speeds may not be present in the wind rose (0 frequency) and aren't +# included in the fmodel +wind_directions = fmodel.wind_directions +wind_speeds = fmodel.wind_speeds +n_findex = fmodel.n_findex + + +# Now define how the optimal yaw angles for 8 m/s are applied over the other wind speeds +yaw_angles_opt = np.vstack(df_opt["yaw_angles_opt"]) +yaw_angles_wind_rose = np.zeros((n_findex, n_turbines)) +for i in range(n_findex): + wind_speed = wind_speeds[i] + wind_direction = wind_directions[i] + + # Interpolate the optimal yaw angles for this wind direction from df_opt + id_opt = df_opt["wind_direction"] == wind_direction + yaw_opt_full = np.array(df_opt.loc[id_opt, "yaw_angles_opt"])[0] + + # Now decide what to do for different wind speeds + if (wind_speed < 4.0) | (wind_speed > 14.0): + yaw_opt = np.zeros(n_turbines) # do nothing for very low/high speeds + elif wind_speed < 6.0: + yaw_opt = yaw_opt_full * (6.0 - wind_speed) / 2.0 # Linear ramp up + elif wind_speed > 12.0: + yaw_opt = yaw_opt_full * (14.0 - wind_speed) / 2.0 # Linear ramp down + else: + yaw_opt = yaw_opt_full # Apply full offsets between 6.0 and 12.0 m/s + + # Save to collective array + yaw_angles_wind_rose[i, :] = yaw_opt + + +# Now apply the optimal yaw angles and get the AEP +fmodel.set(yaw_angles=yaw_angles_wind_rose) +fmodel.run() +aep_opt = fmodel.get_farm_AEP() +aep_uplift = 100.0 * (aep_opt / aep_baseline - 1) +farm_power_opt = fmodel.get_farm_power() + +print("Baseline AEP: {:.2f} GWh.".format(aep_baseline/1E9)) +print("Optimal AEP: {:.2f} GWh.".format(aep_opt/1E9)) +print("Relative AEP uplift by wake steering: {:.3f} %.".format(aep_uplift)) + +# Use farm_power_baseline, farm_power_opt and wind_data to make a heat map of uplift by +# wind direction and wind speed +wind_directions = wind_rose.wind_directions +wind_speeds = wind_rose.wind_speeds +relative_gain = farm_power_opt - farm_power_baseline + +# Plot the heatmap with wind speeds on x, wind directions on y and relative gain as the color +fig, ax = plt.subplots(figsize=(10, 12)) +cax = ax.imshow(relative_gain, cmap='viridis', aspect='auto') +fig.colorbar(cax, ax=ax, label="Relative gain (%)") + +ax.set_yticks(np.arange(len(wind_directions))) +ax.set_yticklabels(wind_directions) +ax.set_xticks(np.arange(len(wind_speeds))) +ax.set_xticklabels(wind_speeds) +ax.set_ylabel("Wind direction (deg)") +ax.set_xlabel("Wind speed (m/s)") + +# Reduce x and y tick font size +for tick in ax.yaxis.get_major_ticks(): + tick.label1.set_fontsize(8) + +for tick in ax.xaxis.get_major_ticks(): + tick.label1.set_fontsize(8) + +# Set y ticks to be horizontal +for tick in ax.get_yticklabels(): + tick.set_rotation(0) + +ax.set_title("Uplift in farm power by wind direction and wind speed", fontsize=12) + +plt.tight_layout() +plt.show() diff --git a/examples/examples_control_optimization/005_optimize_yaw_aep_parallel.py b/examples/examples_control_optimization/005_optimize_yaw_aep_parallel.py new file mode 100644 index 000000000..17e02412b --- /dev/null +++ b/examples/examples_control_optimization/005_optimize_yaw_aep_parallel.py @@ -0,0 +1,149 @@ +"""Example: Optimize yaw and compare AEP in parallel + +This example demonstrates how to perform a yaw optimization and evaluate the performance +over a full wind rose. The example repeats the steps in 04 except using parallel +optimization and evaluation. + +Note that constraints on parallelized operations mean that some syntax is different and +not all operations are possible. Also, rather passing the ParallelFlorisModel +object to a YawOptimizationSR object, the optimization is performed +directly by member functions + +""" + +from time import perf_counter as timerpc + +import numpy as np + +from floris import ( + FlorisModel, + ParallelFlorisModel, + TimeSeries, + WindRose, +) + + +# When using parallel optimization it is importat the "root" script include this +# if __name__ == "__main__": block to avoid problems +if __name__ == "__main__": + + # Load the wind rose from csv + wind_rose = WindRose.read_csv_long( + "../inputs/wind_rose.csv", wd_col="wd", ws_col="ws", freq_col="freq_val", + ti_col_or_value=0.06 + ) + + # Load FLORIS + fmodel = FlorisModel("../inputs/gch.yaml") + + # Specify wind farm layout and update in the floris object + N = 2 # number of turbines per row and per column + X, Y = np.meshgrid( + 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), + 5.0 * fmodel.core.farm.rotor_diameters_sorted[0][0] * np.arange(0, N, 1), + ) + fmodel.set(layout_x=X.flatten(), layout_y=Y.flatten()) + + # Get the number of turbines + n_turbines = len(fmodel.layout_x) + + # Optimize the yaw angles. This could be done for every wind direction and wind speed + # but in practice it is much faster to optimize only for one speed and infer the rest + # using a rule of thumb + time_series = TimeSeries( + wind_directions=wind_rose.wind_directions, wind_speeds=8.0, turbulence_intensities=0.06 + ) + fmodel.set(wind_data=time_series) + + # Set up the parallel model + parallel_interface = "concurrent" + max_workers = 16 + pfmodel = ParallelFlorisModel( + fmodel=fmodel, + max_workers=max_workers, + n_wind_condition_splits=max_workers, + interface=parallel_interface, + print_timings=True, + ) + + # Get the optimal angles using the parallel interface + start_time = timerpc() + # Now optimize the yaw angles using the Serial Refine method + df_opt = pfmodel.optimize_yaw_angles( + minimum_yaw_angle=0.0, + maximum_yaw_angle=20.0, + Ny_passes=[5, 4], + exclude_downstream_turbines=False, + ) + end_time = timerpc() + t_tot = end_time - start_time + print("Optimization finished in {:.2f} seconds.".format(t_tot)) + + + # Calculate the AEP in the baseline case, using the parallel interface + fmodel.set(wind_data=wind_rose) + pfmodel = ParallelFlorisModel( + fmodel=fmodel, + max_workers=max_workers, + n_wind_condition_splits=max_workers, + interface=parallel_interface, + print_timings=True, + ) + + # Note the pfmodel does not use run() but instead uses the get_farm_power() and get_farm_AEP() + # directly, this is necessary for the parallel interface + aep_baseline = pfmodel.get_farm_AEP(freq=wind_rose.unpack_freq()) + + # Now need to apply the optimal yaw angles to the wind rose to get the optimized AEP + # do this by applying a rule of thumb where the optimal yaw is applied between 6 and 12 m/s + # and ramped down to 0 above and below this range + + # Grab wind speeds and wind directions from the fmodel. Note that we do this because the + # yaw angles will need to be n_findex long, and accounting for the fact that some wind + # directions and wind speeds may not be present in the wind rose (0 frequency) and aren't + # included in the fmodel + wind_directions = fmodel.wind_directions + wind_speeds = fmodel.wind_speeds + n_findex = fmodel.n_findex + + + # Now define how the optimal yaw angles for 8 m/s are applied over the other wind speeds + yaw_angles_opt = np.vstack(df_opt["yaw_angles_opt"]) + yaw_angles_wind_rose = np.zeros((n_findex, n_turbines)) + for i in range(n_findex): + wind_speed = wind_speeds[i] + wind_direction = wind_directions[i] + + # Interpolate the optimal yaw angles for this wind direction from df_opt + id_opt = df_opt["wind_direction"] == wind_direction + yaw_opt_full = np.array(df_opt.loc[id_opt, "yaw_angles_opt"])[0] + + # Now decide what to do for different wind speeds + if (wind_speed < 4.0) | (wind_speed > 14.0): + yaw_opt = np.zeros(n_turbines) # do nothing for very low/high speeds + elif wind_speed < 6.0: + yaw_opt = yaw_opt_full * (6.0 - wind_speed) / 2.0 # Linear ramp up + elif wind_speed > 12.0: + yaw_opt = yaw_opt_full * (14.0 - wind_speed) / 2.0 # Linear ramp down + else: + yaw_opt = yaw_opt_full # Apply full offsets between 6.0 and 12.0 m/s + + # Save to collective array + yaw_angles_wind_rose[i, :] = yaw_opt + + + # Now apply the optimal yaw angles and get the AEP + fmodel.set(yaw_angles=yaw_angles_wind_rose) + pfmodel = ParallelFlorisModel( + fmodel=fmodel, + max_workers=max_workers, + n_wind_condition_splits=max_workers, + interface=parallel_interface, + print_timings=True, + ) + aep_opt = pfmodel.get_farm_AEP(freq=wind_rose.unpack_freq(), yaw_angles=yaw_angles_wind_rose) + aep_uplift = 100.0 * (aep_opt / aep_baseline - 1) + + print("Baseline AEP: {:.2f} GWh.".format(aep_baseline/1E9)) + print("Optimal AEP: {:.2f} GWh.".format(aep_opt/1E9)) + print("Relative AEP uplift by wake steering: {:.3f} %.".format(aep_uplift)) diff --git a/examples/14_compare_yaw_optimizers.py b/examples/examples_control_optimization/006_compare_yaw_optimizers.py similarity index 95% rename from examples/14_compare_yaw_optimizers.py rename to examples/examples_control_optimization/006_compare_yaw_optimizers.py index 4e0fa1d99..e0c39bbba 100644 --- a/examples/14_compare_yaw_optimizers.py +++ b/examples/examples_control_optimization/006_compare_yaw_optimizers.py @@ -1,19 +1,7 @@ -from time import perf_counter as timerpc - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel -from floris.optimization.yaw_optimization.yaw_optimizer_geometric import ( - YawOptimizationGeometric, -) -from floris.optimization.yaw_optimization.yaw_optimizer_scipy import YawOptimizationScipy -from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR - - -""" -This example compares the SciPy-based yaw optimizer with the new Serial-Refine optimizer. +"""Example: Compare yaw optimizers +This example compares the SciPy-based yaw optimizer with the Serial-Refine optimizer +and geometric optimizer. First, we initialize Floris, and then generate a 3 turbine wind farm. Next, we create two yaw optimization objects, `yaw_opt_sr` and `yaw_opt_scipy` for the @@ -30,9 +18,21 @@ """ +from time import perf_counter as timerpc + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel +from floris.optimization.yaw_optimization.yaw_optimizer_geometric import ( + YawOptimizationGeometric, +) +from floris.optimization.yaw_optimization.yaw_optimizer_scipy import YawOptimizationScipy +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR + + # Load the default example floris object -fmodel = FlorisModel("inputs/gch.yaml") # GCH model matched to the default "legacy_gauss" of V2 -# fmodel = FlorisModel("inputs/cc.yaml") # New CumulativeCurl model +fmodel = FlorisModel("../inputs/gch.yaml") # Reinitialize as a 3-turbine farm with range of WDs and 1 WS D = 126.0 # Rotor diameter for the NREL 5 MW diff --git a/examples/examples_control_optimization/007_optimize_yaw_with_neighbor_farms.py b/examples/examples_control_optimization/007_optimize_yaw_with_neighbor_farms.py new file mode 100644 index 000000000..04b6b65ba --- /dev/null +++ b/examples/examples_control_optimization/007_optimize_yaw_with_neighbor_farms.py @@ -0,0 +1,317 @@ +"""Example: Optimize yaw with neighbor farm + +This example demonstrates how to optimize the yaw angles of a subset of turbines +in order to maximize the annual energy production (AEP) of a wind farm. In this +case, the wind farm is part of a larger collection of turbines, some of which are +part of a neighboring farm. The optimization is performed in two ways: first by +accounting for the wakes of the neighboring farm (while not including those turbines) +in the optimization as a target of yaw angle changes or including their power +in the objective function. In th second method the neighboring farms are removed +from FLORIS for the optimization. The AEP is then calculated for the optimized +yaw angles (accounting for and not accounting for the neighboring farm) and compared +to the baseline AEP. +""" + + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + FlorisModel, + TimeSeries, + WindRose, +) +from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR + + +# Load the wind rose from csv +wind_rose = WindRose.read_csv_long( + "../inputs/wind_rose.csv", wd_col="wd", ws_col="ws", freq_col="freq_val", ti_col_or_value=0.06 +) + +# Load FLORIS +fmodel = FlorisModel("../inputs/gch.yaml") + +# Specify a layout of turbines in which only the first 10 turbines are part +# of the farm to be optimized, while the others belong to a neighboring farm +X = ( + np.array( + [ + 0.0, + 756.0, + 1512.0, + 2268.0, + 3024.0, + 0.0, + 756.0, + 1512.0, + 2268.0, + 3024.0, + 0.0, + 756.0, + 1512.0, + 2268.0, + 3024.0, + 0.0, + 756.0, + 1512.0, + 2268.0, + 3024.0, + 4500.0, + 5264.0, + 6028.0, + 4878.0, + 0.0, + 756.0, + 1512.0, + 2268.0, + 3024.0, + ] + ) + / 1.5 +) +Y = ( + np.array( + [ + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 504.0, + 504.0, + 504.0, + 504.0, + 504.0, + 1008.0, + 1008.0, + 1008.0, + 1008.0, + 1008.0, + 1512.0, + 1512.0, + 1512.0, + 1512.0, + 1512.0, + 4500.0, + 4059.0, + 3618.0, + 5155.0, + -504.0, + -504.0, + -504.0, + -504.0, + -504.0, + ] + ) + / 1.5 +) + +# Turbine weights: we want to only optimize for the first 10 turbines +turbine_weights = np.zeros(len(X), dtype=int) +turbine_weights[0:10] = 1.0 + +# Now reinitialize FLORIS layout +fmodel.set(layout_x=X, layout_y=Y) + +# And visualize the floris layout +fig, ax = plt.subplots() +ax.plot(X[turbine_weights == 0], Y[turbine_weights == 0], "ro", label="Neighboring farms") +ax.plot(X[turbine_weights == 1], Y[turbine_weights == 1], "go", label="Farm subset") +ax.grid(True) +ax.set_xlabel("x coordinate (m)") +ax.set_ylabel("y coordinate (m)") +ax.legend() + +# Indicate turbine 0 in the plot above with an annotation arrow +ax.annotate( + "Turbine 0", + (X[0], Y[0]), + xytext=(X[0] + 100, Y[0] + 100), + arrowprops={'facecolor':"black", 'shrink':0.05}, +) + + +# Optimize the yaw angles. This could be done for every wind direction and wind speed +# but in practice it is much faster to optimize only for one speed and infer the rest +# using a rule of thumb +time_series = TimeSeries( + wind_directions=wind_rose.wind_directions, wind_speeds=8.0, turbulence_intensities=0.06 +) +fmodel.set(wind_data=time_series) + +# CASE 1: Optimize the yaw angles of the included farm while accounting for the +# wake effects of the neighboring farm by using turbine weights + +# It's important here to do two things: +# 1. Exclude the downstream turbines from the power optimization goal via +# turbine_weights +# 2. Prevent the optimizer from changing the yaw angles of the turbines in the +# neighboring farm by limiting the yaw angles min max both to 0 + +# Set the yaw angles max min according to point(2) above +minimum_yaw_angle = np.zeros( + ( + fmodel.n_findex, + fmodel.n_turbines, + ) +) +maximum_yaw_angle = np.zeros( + ( + fmodel.n_findex, + fmodel.n_turbines, + ) +) +maximum_yaw_angle[:, :10] = 30.0 + + +yaw_opt = YawOptimizationSR( + fmodel=fmodel, + minimum_yaw_angle=minimum_yaw_angle, # Allowable yaw angles lower bound + maximum_yaw_angle=maximum_yaw_angle, # Allowable yaw angles upper bound + Ny_passes=[5, 4], + exclude_downstream_turbines=True, + turbine_weights=turbine_weights, +) +df_opt_with_neighbor = yaw_opt.optimize() + +# CASE 2: Repeat the optimization, this time ignoring the wakes of the neighboring farm +# by limiting the FLORIS model to only the turbines in the farm to be optimized +f_model_subset = fmodel.copy() +f_model_subset.set( + layout_x=X[:10], + layout_y=Y[:10], +) +yaw_opt = YawOptimizationSR( + fmodel=f_model_subset, + minimum_yaw_angle=0, # Allowable yaw angles lower bound + maximum_yaw_angle=30, # Allowable yaw angles upper bound + Ny_passes=[5, 4], + exclude_downstream_turbines=True, +) +df_opt_without_neighbor = yaw_opt.optimize() + + +# Calculate the AEP in the baseline case +# Use turbine weights again to only consider the first 10 turbines power +fmodel.set(wind_data=wind_rose) +fmodel.run() +farm_power_baseline = fmodel.get_farm_power(turbine_weights=turbine_weights) +aep_baseline = fmodel.get_farm_AEP(turbine_weights=turbine_weights) + + +# Now need to apply the optimal yaw angles to the wind rose to get the optimized AEP +# do this by applying a rule of thumb where the optimal yaw is applied between 6 and 12 m/s +# and ramped down to 0 above and below this range + +# Grab wind speeds and wind directions from the fmodel. Note that we do this because the +# yaw angles will need to be n_findex long, and accounting for the fact that some wind +# directions and wind speeds may not be present in the wind rose (0 frequency) and aren't +# included in the fmodel +wind_directions = fmodel.wind_directions +wind_speeds = fmodel.wind_speeds +n_findex = fmodel.n_findex + +yaw_angles_wind_rose_with_neighbor = np.zeros((n_findex, fmodel.n_turbines)) +yaw_angles_wind_rose_without_neighbor = np.zeros((n_findex, fmodel.n_turbines)) +for i in range(n_findex): + wind_speed = wind_speeds[i] + wind_direction = wind_directions[i] + + # Interpolate the optimal yaw angles for this wind direction from df_opt + id_opt_with_neighbor = df_opt_with_neighbor["wind_direction"] == wind_direction + id_opt_without_neighbor = df_opt_without_neighbor["wind_direction"] == wind_direction + + # Get the yaw angles for this wind direction + yaw_opt_full_with_neighbor = np.array( + df_opt_with_neighbor.loc[id_opt_with_neighbor, "yaw_angles_opt"] + )[0] + yaw_opt_full_without_neighbor = np.array( + df_opt_without_neighbor.loc[id_opt_without_neighbor, "yaw_angles_opt"] + )[0] + + # Extend the yaw angles from 10 turbine to n_turbine by filling with 0s + # in the case of the removed neighboring farms + yaw_opt_full_without_neighbor = np.concatenate( + (yaw_opt_full_without_neighbor, np.zeros(fmodel.n_turbines - 10)) + ) + + # Now decide what to do for different wind speeds + if (wind_speed < 4.0) | (wind_speed > 14.0): + yaw_opt_with_neighbor = np.zeros(fmodel.n_turbines) # do nothing for very low/high speeds + yaw_opt_without_neighbor = np.zeros( + fmodel.n_turbines + ) # do nothing for very low/high speeds + elif wind_speed < 6.0: + yaw_opt_with_neighbor = ( + yaw_opt_full_with_neighbor * (6.0 - wind_speed) / 2.0 + ) # Linear ramp up + yaw_opt_without_neighbor = ( + yaw_opt_full_without_neighbor * (6.0 - wind_speed) / 2.0 + ) # Linear ramp up + elif wind_speed > 12.0: + yaw_opt_with_neighbor = ( + yaw_opt_full_with_neighbor * (14.0 - wind_speed) / 2.0 + ) # Linear ramp down + yaw_opt_without_neighbor = ( + yaw_opt_full_without_neighbor * (14.0 - wind_speed) / 2.0 + ) # Linear ramp down + else: + yaw_opt_with_neighbor = ( + yaw_opt_full_with_neighbor # Apply full offsets between 6.0 and 12.0 m/s + ) + yaw_opt_without_neighbor = ( + yaw_opt_full_without_neighbor # Apply full offsets between 6.0 and 12.0 m/s + ) + + # Save to collective array + yaw_angles_wind_rose_with_neighbor[i, :] = yaw_opt_with_neighbor + yaw_angles_wind_rose_without_neighbor[i, :] = yaw_opt_without_neighbor + + +# Now apply the optimal yaw angles and get the AEP, first accounting for the neighboring farm +fmodel.set(yaw_angles=yaw_angles_wind_rose_with_neighbor) +fmodel.run() +aep_opt_with_neighbor = fmodel.get_farm_AEP(turbine_weights=turbine_weights) +aep_uplift_with_neighbor = 100.0 * (aep_opt_with_neighbor / aep_baseline - 1) +farm_power_opt_with_neighbor = fmodel.get_farm_power(turbine_weights=turbine_weights) + +# Repeat without accounting for neighboring farm +fmodel.set(yaw_angles=yaw_angles_wind_rose_without_neighbor) +fmodel.run() +aep_opt_without_neighbor = fmodel.get_farm_AEP(turbine_weights=turbine_weights) +aep_uplift_without_neighbor = 100.0 * (aep_opt_without_neighbor / aep_baseline - 1) +farm_power_opt_without_neighbor = fmodel.get_farm_power(turbine_weights=turbine_weights) + +print("Baseline AEP: {:.2f} GWh.".format(aep_baseline / 1e9)) +print( + "Optimal AEP (Not accounting for neighboring farm): {:.2f} GWh.".format( + aep_opt_without_neighbor / 1e9 + ) +) +print( + "Optimal AEP (Accounting for neighboring farm): {:.2f} GWh.".format(aep_opt_with_neighbor / 1e9) +) + +# Plot the optimal yaw angles for turbine 0 with and without accounting for the neighboring farm +yaw_angles_0_with_neighbor = np.vstack(df_opt_with_neighbor["yaw_angles_opt"])[:, 0] +yaw_angles_0_without_neighbor = np.vstack(df_opt_without_neighbor["yaw_angles_opt"])[:, 0] + +fig, ax = plt.subplots() +ax.plot( + df_opt_with_neighbor["wind_direction"], + yaw_angles_0_with_neighbor, + label="Accounting for neighboring farm", +) +ax.plot( + df_opt_without_neighbor["wind_direction"], + yaw_angles_0_without_neighbor, + label="Not accounting for neighboring farm", +) +ax.set_xlabel("Wind direction (deg)") +ax.set_ylabel("Yaw angle (deg)") +ax.legend() +ax.grid(True) +ax.set_title("Optimal yaw angles for turbine 0") + +plt.show() diff --git a/examples/examples_control_types/001_derating_control.py b/examples/examples_control_types/001_derating_control.py new file mode 100644 index 000000000..41bf3ea2a --- /dev/null +++ b/examples/examples_control_types/001_derating_control.py @@ -0,0 +1,95 @@ +"""Example of using the simple-derating control model in FLORIS. + +This example demonstrates how to use the simple-derating control model in FLORIS. +The simple-derating control model allows the user to specify a power setpoint for each turbine +in the farm. The power setpoint is used to derate the turbine power output to be at most the +power setpoint. + +In this example: + +1. A simple two-turbine layout is created. +2. The wind conditions are set to be constant. +3. The power setpoint is varied, and set the same for each turbine +4. The power produced by each turbine is computed and plotted +""" + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel + + +fmodel = FlorisModel("../inputs/gch.yaml") + +# Change to the simple-derating model turbine +# (Note this could also be done with the mixed model) +fmodel.set_operation_model("simple-derating") + +# Convert to a simple two turbine layout with derating turbines +fmodel.set(layout_x=[0, 1000.0], layout_y=[0.0, 0.0]) + +# For reference, load the turbine type +turbine_type = fmodel.core.farm.turbine_definitions[0] + +# Set the wind directions and speeds to be constant over n_findex = N time steps +N = 50 +fmodel.set( + wind_directions=270 * np.ones(N), + wind_speeds=10.0 * np.ones(N), + turbulence_intensities=0.06 * np.ones(N), +) +fmodel.run() +turbine_powers_orig = fmodel.get_turbine_powers() + +# Add derating level to both turbines +power_setpoints = np.tile(np.linspace(1, 6e6, N), 2).reshape(2, N).T +fmodel.set(power_setpoints=power_setpoints) +fmodel.run() +turbine_powers_derated = fmodel.get_turbine_powers() + +# Compute available power at downstream turbine +power_setpoints_2 = np.array([np.linspace(1, 6e6, N), np.full(N, None)]).T +fmodel.set(power_setpoints=power_setpoints_2) +fmodel.run() +turbine_powers_avail_ds = fmodel.get_turbine_powers()[:, 1] + +# Plot the results +fig, ax = plt.subplots(1, 1) +ax.plot( + power_setpoints[:, 0] / 1000, turbine_powers_derated[:, 0] / 1000, color="C0", label="Upstream" +) +ax.plot( + power_setpoints[:, 1] / 1000, + turbine_powers_derated[:, 1] / 1000, + color="C1", + label="Downstream", +) +ax.plot( + power_setpoints[:, 0] / 1000, + turbine_powers_orig[:, 0] / 1000, + color="C0", + linestyle="dotted", + label="Upstream available", +) +ax.plot( + power_setpoints[:, 1] / 1000, + turbine_powers_avail_ds / 1000, + color="C1", + linestyle="dotted", + label="Downstream available", +) +ax.plot( + power_setpoints[:, 1] / 1000, + np.ones(N) * np.max(turbine_type["power_thrust_table"]["power"]), + color="k", + linestyle="dashed", + label="Rated power", +) +ax.grid() +ax.legend() +ax.set_xlim([0, 6e3]) +ax.set_xlabel("Power setpoint (kW) [Applied to both turbines]") +ax.set_ylabel("Power produced (kW)") + + +plt.show() diff --git a/examples/41_test_disable_turbines.py b/examples/examples_control_types/002_disable_turbines.py similarity index 81% rename from examples/41_test_disable_turbines.py rename to examples/examples_control_types/002_disable_turbines.py index 9dfb2620b..e8cd4b94c 100644 --- a/examples/41_test_disable_turbines.py +++ b/examples/examples_control_types/002_disable_turbines.py @@ -1,30 +1,24 @@ +"""Example 001: Disable turbines + +This example is adapted from https://github.com/NREL/floris/pull/693 +contributed by Elie Kadoche. + +This example demonstrates the ability of FLORIS to shut down some turbines +during a simulation. +""" import matplotlib.pyplot as plt import numpy as np -import yaml from floris import FlorisModel -""" -Adapted from https://github.com/NREL/floris/pull/693 contributed by Elie Kadoche -This example demonstrates the ability of FLORIS to shut down some turbines -during a simulation. -""" - # Initialize FLORIS -fmodel = FlorisModel("inputs/gch.yaml") +fmodel = FlorisModel("../inputs/gch.yaml") # Change to the mixed model turbine -with open( - str( - fmodel.core.as_dict()["farm"]["turbine_library_path"] - / (fmodel.core.as_dict()["farm"]["turbine_type"][0] + ".yaml") - ) -) as t: - turbine_type = yaml.safe_load(t) -turbine_type["operation_model"] = "mixed" -fmodel.set(turbine_type=[turbine_type]) +# (Note this could also be done with the simple-derating model) +fmodel.set_operation_model("mixed") # Consider a wind farm of 3 aligned wind turbines layout = np.array([[0.0, 0.0], [500.0, 0.0], [1000.0, 0.0]]) diff --git a/examples/examples_control_types/003_setting_yaw_and_disabling.py b/examples/examples_control_types/003_setting_yaw_and_disabling.py new file mode 100644 index 000000000..fb526009f --- /dev/null +++ b/examples/examples_control_types/003_setting_yaw_and_disabling.py @@ -0,0 +1,83 @@ +"""Example: Setting yaw angles and disabling turbine + +This example demonstrates how to set yaw angles and disable turbines in FLORIS. +The yaw angles are set to sweep from -20 to 20 degrees for the upstream-most turbine +and to 0 degrees for the downstream-most turbine(s). A two-turbine case is compared +to a three-turbine case where the middle turbine is disabled making the two cases +functionally equivalent. +""" + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel, TimeSeries + + +# Initialize 2 FLORIS models, a two-turbine layout +# and three-turbine layout +fmodel_2 = FlorisModel("../inputs/gch.yaml") +fmodel_3 = FlorisModel("../inputs/gch.yaml") + +# Change to the mixed model turbine +# This example sets both yaw angle and power setpoints +fmodel_2.set_operation_model("mixed") +fmodel_3.set_operation_model("mixed") + +# Set the layouts, f_model_3 has an extra turbine in-between the two +# turbines of f_model_2 +fmodel_2.set(layout_x=[0, 1000.0], layout_y=[0.0, 0.0]) +fmodel_3.set(layout_x=[0, 500.0, 1000.0], layout_y=[0.0, 0.0, 0.0]) + +# Set bo + +# Set both to have constant wind conditions +N = 50 +time_series = TimeSeries( + wind_directions=270.0 * np.ones(N), + wind_speeds = 8., + turbulence_intensities=0.06 + ) +fmodel_2.set(wind_data=time_series) +fmodel_3.set(wind_data=time_series) + +# In both cases, set the yaw angles of the upstream-most turbine +# to sweep from -20 to 20 degrees, while other turbines are set to 0 +upstream_yaw_angles = np.linspace(-20, 20, N) +yaw_angles_2 = np.array([upstream_yaw_angles, np.zeros(N)]).T +yaw_angles_3 = np.array([upstream_yaw_angles, np.zeros(N), np.zeros(N)]).T + +# In the three turbine case, also disable the middle turbine +# Declare a np array of booleans that is Nx3 and whose middle column is True +disable_turbines = np.array([np.zeros(N), np.ones(N), np.zeros(N)]).T.astype(bool) + +# Set the yaw angles for both and disable the middle turbine for the +# three turbine case +fmodel_2.set(yaw_angles=yaw_angles_2) +fmodel_3.set(yaw_angles=yaw_angles_3, disable_turbines=disable_turbines) + +# Run both models +fmodel_2.run() +fmodel_3.run() + +# Collect the turbine powers from both +turbine_powers_2 = fmodel_2.get_turbine_powers() +turbine_powers_3 = fmodel_3.get_turbine_powers() + +# Make a 2-panel plot of the turbine powers. For the three-turbine case, +# only plot the first and last turbine +fig, axarr = plt.subplots(2, 1, sharex=True) +axarr[0].plot(upstream_yaw_angles, turbine_powers_2[:, 0] / 1000, label="Two-Turbine", marker='s') +axarr[0].plot(upstream_yaw_angles, turbine_powers_3[:, 0] / 1000, label="Three-Turbine", marker='.') +axarr[0].set_ylabel("Power (kW)") +axarr[0].legend() +axarr[0].grid(True) +axarr[0].set_title("Upstream Turbine") + +axarr[1].plot(upstream_yaw_angles, turbine_powers_2[:, 1] / 1000, label="Two-Turbine", marker='s') +axarr[1].plot(upstream_yaw_angles, turbine_powers_3[:, 2] / 1000, label="Three-Turbine", marker='.') +axarr[1].set_ylabel("Power (kW)") +axarr[1].legend() +axarr[1].grid(True) +axarr[1].set_title("Downstream-most Turbine") + +plt.show() diff --git a/examples/26_empirical_gauss_velocity_deficit_parameters.py b/examples/examples_emgauss/001_empirical_gauss_velocity_deficit_parameters.py similarity index 57% rename from examples/26_empirical_gauss_velocity_deficit_parameters.py rename to examples/examples_emgauss/001_empirical_gauss_velocity_deficit_parameters.py index a3c43343a..4cdf37bea 100644 --- a/examples/26_empirical_gauss_velocity_deficit_parameters.py +++ b/examples/examples_emgauss/001_empirical_gauss_velocity_deficit_parameters.py @@ -1,3 +1,7 @@ +"""Example: Empirical Gaussian velocity deficit parameters +This example illustrates the main parameters of the Empirical Gaussian +velocity deficit model and their effects on the wind turbine wake. +""" import copy @@ -5,20 +9,16 @@ import numpy as np from floris import FlorisModel -from floris.flow_visualization import plot_rotor_values, visualize_cut_plane +from floris.flow_visualization import visualize_cut_plane -""" -This example illustrates the main parameters of the Empirical Gaussian -velocity deficit model and their effects on the wind turbine wake. -""" - # Options show_flow_cuts = True num_in_row = 5 yaw_angles = np.zeros((1, num_in_row)) + # Define function for visualizing wakes def generate_wake_visualization(fmodel: FlorisModel, title=None): # Using the FlorisModel functions, get 2D slices. @@ -38,7 +38,7 @@ def generate_wake_visualization(fmodel: FlorisModel, title=None): height=horizontal_plane_location, x_bounds=x_bounds, y_bounds=y_bounds, - yaw_angles=yaw_angles + yaw_angles=yaw_angles, ) y_plane = fmodel.calculate_y_plane( x_resolution=200, @@ -46,64 +46,67 @@ def generate_wake_visualization(fmodel: FlorisModel, title=None): crossstream_dist=streamwise_plane_location, x_bounds=x_bounds, z_bounds=z_bounds, - yaw_angles=yaw_angles + yaw_angles=yaw_angles, ) cross_planes = [] for cpl in cross_plane_locations: cross_planes.append( - fmodel.calculate_cross_plane( - y_resolution=100, - z_resolution=100, - downstream_dist=cpl - ) + fmodel.calculate_cross_plane(y_resolution=100, z_resolution=100, downstream_dist=cpl) ) # Create the plots # Cutplane settings - cp_ls = "solid" # line style - cp_lw = 0.5 # line width - cp_clr = "black" # line color + cp_ls = "solid" # line style + cp_lw = 0.5 # line width + cp_clr = "black" # line color fig = plt.figure() fig.set_size_inches(12, 12) # Horizontal profile ax = fig.add_subplot(311) - visualize_cut_plane(horizontal_plane, ax=ax, title="Top-down profile", - min_speed=min_ws, max_speed=max_ws) - ax.plot(x_bounds, [streamwise_plane_location]*2, color=cp_clr, - linewidth=cp_lw, linestyle=cp_ls) + visualize_cut_plane( + horizontal_plane, ax=ax, title="Top-down profile", min_speed=min_ws, max_speed=max_ws + ) + ax.plot( + x_bounds, [streamwise_plane_location] * 2, color=cp_clr, linewidth=cp_lw, linestyle=cp_ls + ) for cpl in cross_plane_locations: - ax.plot([cpl]*2, y_bounds, color=cp_clr, linewidth=cp_lw, - linestyle=cp_ls) + ax.plot([cpl] * 2, y_bounds, color=cp_clr, linewidth=cp_lw, linestyle=cp_ls) ax = fig.add_subplot(312) - visualize_cut_plane(y_plane, ax=ax, title="Streamwise profile", - min_speed=min_ws, max_speed=max_ws) - ax.plot(x_bounds, [horizontal_plane_location]*2, color=cp_clr, - linewidth=cp_lw, linestyle=cp_ls) + visualize_cut_plane( + y_plane, ax=ax, title="Streamwise profile", min_speed=min_ws, max_speed=max_ws + ) + ax.plot( + x_bounds, [horizontal_plane_location] * 2, color=cp_clr, linewidth=cp_lw, linestyle=cp_ls + ) for cpl in cross_plane_locations: - ax.plot([cpl, cpl], z_bounds, color=cp_clr, linewidth=cp_lw, - linestyle=cp_ls) + ax.plot([cpl, cpl], z_bounds, color=cp_clr, linewidth=cp_lw, linestyle=cp_ls) # Spanwise profiles for i, (cp, cpl) in enumerate(zip(cross_planes, cross_plane_locations)): - visualize_cut_plane(cp, ax=fig.add_subplot(3, len(cross_planes), i+7), - title="Loc: {:.0f}m".format(cpl), min_speed=min_ws, - max_speed=max_ws) + visualize_cut_plane( + cp, + ax=fig.add_subplot(3, len(cross_planes), i + 7), + title="Loc: {:.0f}m".format(cpl), + min_speed=min_ws, + max_speed=max_ws, + ) # Add overall figure title if title is not None: fig.suptitle(title, fontsize=16) + ## Main script # Load input yaml and define farm layout -fmodel = FlorisModel("inputs/emgauss.yaml") +fmodel = FlorisModel("../inputs/emgauss.yaml") D = fmodel.core.farm.rotor_diameters[0] fmodel.set( - layout_x=[x*5.0*D for x in range(num_in_row)], - layout_y=[0.0]*num_in_row, + layout_x=[x * 5.0 * D for x in range(num_in_row)], + layout_y=[0.0] * num_in_row, wind_speeds=[8.0], - wind_directions=[270.0] + wind_directions=[270.0], ) # Save dictionary to modify later @@ -113,12 +116,12 @@ def generate_wake_visualization(fmodel: FlorisModel, title=None): fmodel.run() # Look at the powers of each turbine -turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 +turbine_powers = fmodel.get_turbine_powers().flatten() / 1e6 -fig0, ax0 = plt.subplots(1,1) +fig0, ax0 = plt.subplots(1, 1) width = 0.1 nw = -2 -x = np.array(range(num_in_row))+width*nw +x = np.array(range(num_in_row)) + width * nw nw += 1 title = "Original" @@ -131,18 +134,17 @@ def generate_wake_visualization(fmodel: FlorisModel, title=None): # Increase the base recovery rate fmodel_dict_mod = copy.deepcopy(fmodel_dict) -fmodel_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ - ['wake_expansion_rates'] = [0.03, 0.015] +fmodel_dict_mod["wake"]["wake_velocity_parameters"]["empirical_gauss"]["wake_expansion_rates"] = [ + 0.03, + 0.015, +] fmodel = FlorisModel(fmodel_dict_mod) -fmodel.set( - wind_speeds=[8.0], - wind_directions=[270.0] -) +fmodel.set(wind_speeds=[8.0], wind_directions=[270.0]) fmodel.run() -turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 +turbine_powers = fmodel.get_turbine_powers().flatten() / 1e6 -x = np.array(range(num_in_row))+width*nw +x = np.array(range(num_in_row)) + width * nw nw += 1 title = "Increase base recovery" @@ -153,23 +155,19 @@ def generate_wake_visualization(fmodel: FlorisModel, title=None): # Add new expansion rate fmodel_dict_mod = copy.deepcopy(fmodel_dict) -fmodel_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ - ['wake_expansion_rates'] = \ - fmodel_dict['wake']['wake_velocity_parameters']['empirical_gauss']\ - ['wake_expansion_rates'] + [0.0] -fmodel_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ - ['breakpoints_D'] = [5, 10] +fmodel_dict_mod["wake"]["wake_velocity_parameters"]["empirical_gauss"]["wake_expansion_rates"] = ( + fmodel_dict["wake"]["wake_velocity_parameters"]["empirical_gauss"]["wake_expansion_rates"] + + [0.0] +) +fmodel_dict_mod["wake"]["wake_velocity_parameters"]["empirical_gauss"]["breakpoints_D"] = [5, 10] fmodel = FlorisModel(fmodel_dict_mod) -fmodel.set( - wind_speeds=[8.0], - wind_directions=[270.0] -) +fmodel.set(wind_speeds=[8.0], wind_directions=[270.0]) fmodel.run() -turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 +turbine_powers = fmodel.get_turbine_powers().flatten() / 1e6 -x = np.array(range(num_in_row))+width*nw +x = np.array(range(num_in_row)) + width * nw nw += 1 title = "Add rate, change breakpoints" @@ -180,18 +178,14 @@ def generate_wake_visualization(fmodel: FlorisModel, title=None): # Increase the wake-induced mixing gain fmodel_dict_mod = copy.deepcopy(fmodel_dict) -fmodel_dict_mod['wake']['wake_velocity_parameters']['empirical_gauss']\ - ['mixing_gain_velocity'] = 3.0 +fmodel_dict_mod["wake"]["wake_velocity_parameters"]["empirical_gauss"]["mixing_gain_velocity"] = 3.0 fmodel = FlorisModel(fmodel_dict_mod) -fmodel.set( - wind_speeds=[8.0], - wind_directions=[270.0] -) +fmodel.set(wind_speeds=[8.0], wind_directions=[270.0]) fmodel.run() -turbine_powers = fmodel.get_turbine_powers().flatten()/1e6 +turbine_powers = fmodel.get_turbine_powers().flatten() / 1e6 -x = np.array(range(num_in_row))+width*nw +x = np.array(range(num_in_row)) + width * nw nw += 1 title = "Increase mixing gain" diff --git a/examples/27_empirical_gauss_deflection_parameters.py b/examples/examples_emgauss/002_empirical_gauss_deflection_parameters.py similarity index 98% rename from examples/27_empirical_gauss_deflection_parameters.py rename to examples/examples_emgauss/002_empirical_gauss_deflection_parameters.py index 79bdee9f8..b945ad8dc 100644 --- a/examples/27_empirical_gauss_deflection_parameters.py +++ b/examples/examples_emgauss/002_empirical_gauss_deflection_parameters.py @@ -1,3 +1,9 @@ +"""Example: Empirical Gaussian deflection parameters + +This example illustrates the main parameters of the Empirical Gaussian +deflection model and their effects on the wind turbine wake. +""" + import copy @@ -8,11 +14,6 @@ from floris.flow_visualization import plot_rotor_values, visualize_cut_plane -""" -This example illustrates the main parameters of the Empirical Gaussian -deflection model and their effects on the wind turbine wake. -""" - # Initialize FLORIS with the given input file. # For basic usage, FlorisModel provides a simplified and expressive # entry point to the simulation routines. @@ -105,7 +106,7 @@ def generate_wake_visualization(fmodel, title=None): ## Main script # Load input yaml and define farm layout -fmodel = FlorisModel("inputs/emgauss.yaml") +fmodel = FlorisModel("../inputs/emgauss.yaml") D = fmodel.core.farm.rotor_diameters[0] fmodel.set( layout_x=[x*5.0*D for x in range(num_in_row)], diff --git a/examples/25_tilt_driven_vertical_wake_deflection.py b/examples/examples_emgauss/003_tilt_driven_vertical_wake_deflection.py similarity index 70% rename from examples/25_tilt_driven_vertical_wake_deflection.py rename to examples/examples_emgauss/003_tilt_driven_vertical_wake_deflection.py index b8d6ffbf5..88049cc7f 100644 --- a/examples/25_tilt_driven_vertical_wake_deflection.py +++ b/examples/examples_emgauss/003_tilt_driven_vertical_wake_deflection.py @@ -1,3 +1,10 @@ +"""Example: Tilt-driven vertical wake deflection +This example demonstrates vertical wake deflections due to the tilt angle when running +with the Empirical Gauss model. Note that only the Empirical Gauss model implements +vertical deflections at this time. Also be aware that this example uses a potentially +unrealistic tilt angle, 15 degrees, to highlight the wake deflection. Moreover, the magnitude +of vertical deflections due to tilt has not been validated. +""" import matplotlib.pyplot as plt import numpy as np @@ -6,19 +13,11 @@ from floris.flow_visualization import visualize_cut_plane -""" -This example demonstrates vertical wake deflections due to the tilt angle when running -with the Empirical Gauss model. Note that only the Empirical Gauss model implements -vertical deflections at this time. Also be aware that this example uses a potentially -unrealistic tilt angle, 15 degrees, to highlight the wake deflection. Moreover, the magnitude -of vertical deflections due to tilt has not been validated. -""" - # Initialize two FLORIS objects: one with 5 degrees of tilt (fixed across all # wind speeds) and one with 15 degrees of tilt (fixed across all wind speeds). -fmodel_5 = FlorisModel("inputs_floating/emgauss_floating_fixedtilt5.yaml") -fmodel_15 = FlorisModel("inputs_floating/emgauss_floating_fixedtilt15.yaml") +fmodel_5 = FlorisModel("../inputs_floating/emgauss_floating_fixedtilt5.yaml") +fmodel_15 = FlorisModel("../inputs_floating/emgauss_floating_fixedtilt15.yaml") D = fmodel_5.core.farm.rotor_diameters[0] @@ -30,14 +29,14 @@ z_bounds = [0.001, 500] cross_plane_locations = [10, 1200, 2500] -horizontal_plane_location=90.0 -streamwise_plane_location=0.0 +horizontal_plane_location = 90.0 +streamwise_plane_location = 0.0 # Create the plots # Cutplane settings -cp_ls = "solid" # line style -cp_lw = 0.5 # line width -cp_clr = "black" # line color +cp_ls = "solid" # line style +cp_lw = 0.5 # line width +cp_clr = "black" # line color min_ws = 4 max_ws = 10 fig = plt.figure() @@ -47,18 +46,17 @@ # Calculate wakes, powers, plot for i, (fmodel, tilt) in enumerate(zip([fmodel_5, fmodel_15], [5, 15])): - # Farm layout and wind conditions fmodel.set( layout_x=[x * 5.0 * D for x in range(num_in_row)], - layout_y=[0.0]*num_in_row, + layout_y=[0.0] * num_in_row, wind_speeds=[8.0], - wind_directions=[270.0] + wind_directions=[270.0], ) # Flow solve and power computation fmodel.run() - powers[i,:] = fmodel.get_turbine_powers().flatten() + powers[i, :] = fmodel.get_turbine_powers().flatten() # Compute flow slices y_plane = fmodel.calculate_y_plane( @@ -66,13 +64,15 @@ z_resolution=100, crossstream_dist=streamwise_plane_location, x_bounds=x_bounds, - z_bounds=z_bounds + z_bounds=z_bounds, ) # Horizontal profile - ax = fig.add_subplot(2, 1, i+1) + ax = fig.add_subplot(2, 1, i + 1) visualize_cut_plane(y_plane, ax=ax, min_speed=min_ws, max_speed=max_ws) - ax.plot(x_bounds, [horizontal_plane_location]*2, color=cp_clr, linewidth=cp_lw, linestyle=cp_ls) + ax.plot( + x_bounds, [horizontal_plane_location] * 2, color=cp_clr, linewidth=cp_lw, linestyle=cp_ls + ) ax.set_title("Tilt angle: {0} degrees".format(tilt)) fig = plt.figure() @@ -80,8 +80,8 @@ ax = fig.add_subplot(1, 1, 1) x_locs = np.arange(num_in_row) width = 0.25 -ax.bar(x_locs-width/2, powers[0,:]/1000, width=width, label="5 degree tilt") -ax.bar(x_locs+width/2, powers[1,:]/1000, width=width, label="15 degree tilt") +ax.bar(x_locs - width / 2, powers[0, :] / 1000, width=width, label="5 degree tilt") +ax.bar(x_locs + width / 2, powers[1, :] / 1000, width=width, label="15 degree tilt") ax.set_xticks(x_locs) ax.set_xticklabels(["T{0}".format(i) for i in range(num_in_row)]) ax.set_xlabel("Turbine number in row") diff --git a/examples/24_floating_turbine_models.py b/examples/examples_floating/001_floating_turbine_models.py similarity index 53% rename from examples/24_floating_turbine_models.py rename to examples/examples_floating/001_floating_turbine_models.py index 76822a76f..75936b09a 100644 --- a/examples/24_floating_turbine_models.py +++ b/examples/examples_floating/001_floating_turbine_models.py @@ -1,11 +1,4 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel - - -""" +"""Example: Floating turbines This example demonstrates the impact of floating on turbine power and thrust (not wake behavior). A floating turbine in FLORIS is defined by including a `floating_tilt_table` in the turbine input yaml which sets the steady tilt angle of the turbine based on wind speed. This tilt angle @@ -31,32 +24,36 @@ tilt does not scale cp/ct) """ + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel, TimeSeries + + # Create the Floris instances -fmodel_fixed = FlorisModel("inputs_floating/gch_fixed.yaml") -fmodel_floating = FlorisModel("inputs_floating/gch_floating.yaml") -fmodel_floating_defined_floating = FlorisModel("inputs_floating/gch_floating_defined_floating.yaml") - -# Calculate across wind speeds -ws_array = np.arange(3., 25., 1.) -wd_array = 270.0 * np.ones_like(ws_array) -ti_array = 0.06 * np.ones_like(ws_array) -fmodel_fixed.set(wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=ti_array) -fmodel_floating.set(wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=ti_array) -fmodel_floating_defined_floating.set( - wind_speeds=ws_array, - wind_directions=wd_array, - turbulence_intensities=ti_array +fmodel_fixed = FlorisModel("../inputs_floating/gch_fixed.yaml") +fmodel_floating = FlorisModel("../inputs_floating/gch_floating.yaml") +fmodel_floating_defined_floating = FlorisModel( + "../inputs_floating/gch_floating_defined_floating.yaml" ) +# Calculate across wind speeds, while holding win directions constant +ws_array = np.arange(3.0, 25.0, 1.0) +time_series = TimeSeries(wind_directions=270.0, wind_speeds=ws_array, turbulence_intensities=0.06) +fmodel_fixed.set(wind_data=time_series) +fmodel_floating.set(wind_data=time_series) +fmodel_floating_defined_floating.set(wind_data=time_series) + fmodel_fixed.run() fmodel_floating.run() fmodel_floating_defined_floating.run() # Grab power -power_fixed = fmodel_fixed.get_turbine_powers().flatten()/1000. -power_floating = fmodel_floating.get_turbine_powers().flatten()/1000. +power_fixed = fmodel_fixed.get_turbine_powers().flatten() / 1000.0 +power_floating = fmodel_floating.get_turbine_powers().flatten() / 1000.0 power_floating_defined_floating = ( - fmodel_floating_defined_floating.get_turbine_powers().flatten()/1000. + fmodel_floating_defined_floating.get_turbine_powers().flatten() / 1000.0 ) # Grab Ct @@ -68,62 +65,80 @@ # Grab turbine tilt angles eff_vels = fmodel_fixed.turbine_average_velocities -tilt_angles_fixed = np.squeeze( - fmodel_fixed.core.farm.calculate_tilt_for_eff_velocities(eff_vels) - ) +tilt_angles_fixed = np.squeeze(fmodel_fixed.core.farm.calculate_tilt_for_eff_velocities(eff_vels)) eff_vels = fmodel_floating.turbine_average_velocities tilt_angles_floating = np.squeeze( fmodel_floating.core.farm.calculate_tilt_for_eff_velocities(eff_vels) - ) +) eff_vels = fmodel_floating_defined_floating.turbine_average_velocities tilt_angles_floating_defined_floating = np.squeeze( fmodel_floating_defined_floating.core.farm.calculate_tilt_for_eff_velocities(eff_vels) - ) +) # Plot results -fig, axarr = plt.subplots(4,1, figsize=(8,10), sharex=True) +fig, axarr = plt.subplots(4, 1, figsize=(8, 10), sharex=True) ax = axarr[0] -ax.plot(ws_array, tilt_angles_fixed, color='k',lw=2,label='Fixed Bottom') -ax.plot(ws_array, tilt_angles_floating, color='b',label='Floating') -ax.plot(ws_array, tilt_angles_floating_defined_floating, color='m',ls='--', - label='Floating (cp/ct not scaled by tilt)') +ax.plot(ws_array, tilt_angles_fixed, color="k", lw=2, label="Fixed Bottom") +ax.plot(ws_array, tilt_angles_floating, color="b", label="Floating") +ax.plot( + ws_array, + tilt_angles_floating_defined_floating, + color="m", + ls="--", + label="Floating (cp/ct not scaled by tilt)", +) ax.grid(True) ax.legend() -ax.set_title('Tilt angle (deg)') -ax.set_ylabel('Tlit (deg)') +ax.set_title("Tilt angle (deg)") +ax.set_ylabel("Tlit (deg)") ax = axarr[1] -ax.plot(ws_array, power_fixed, color='k',lw=2,label='Fixed Bottom') -ax.plot(ws_array, power_floating, color='b',label='Floating') -ax.plot(ws_array, power_floating_defined_floating, color='m',ls='--', - label='Floating (cp/ct not scaled by tilt)') +ax.plot(ws_array, power_fixed, color="k", lw=2, label="Fixed Bottom") +ax.plot(ws_array, power_floating, color="b", label="Floating") +ax.plot( + ws_array, + power_floating_defined_floating, + color="m", + ls="--", + label="Floating (cp/ct not scaled by tilt)", +) ax.grid(True) ax.legend() -ax.set_title('Power') -ax.set_ylabel('Power (kW)') +ax.set_title("Power") +ax.set_ylabel("Power (kW)") ax = axarr[2] # ax.plot(ws_array, power_fixed, color='k',label='Fixed Bottom') -ax.plot(ws_array, power_floating - power_fixed, color='b',label='Floating') -ax.plot(ws_array, power_floating_defined_floating - power_fixed, color='m',ls='--', - label='Floating (cp/ct not scaled by tilt)') +ax.plot(ws_array, power_floating - power_fixed, color="b", label="Floating") +ax.plot( + ws_array, + power_floating_defined_floating - power_fixed, + color="m", + ls="--", + label="Floating (cp/ct not scaled by tilt)", +) ax.grid(True) ax.legend() -ax.set_title('Difference from fixed bottom power') -ax.set_ylabel('Power (kW)') +ax.set_title("Difference from fixed bottom power") +ax.set_ylabel("Power (kW)") ax = axarr[3] -ax.plot(ws_array, ct_fixed, color='k',lw=2,label='Fixed Bottom') -ax.plot(ws_array, ct_floating, color='b',label='Floating') -ax.plot(ws_array, ct_floating_defined_floating, color='m',ls='--', - label='Floating (cp/ct not scaled by tilt)') +ax.plot(ws_array, ct_fixed, color="k", lw=2, label="Fixed Bottom") +ax.plot(ws_array, ct_floating, color="b", label="Floating") +ax.plot( + ws_array, + ct_floating_defined_floating, + color="m", + ls="--", + label="Floating (cp/ct not scaled by tilt)", +) ax.grid(True) ax.legend() -ax.set_title('Coefficient of thrust') -ax.set_ylabel('Ct (-)') +ax.set_title("Coefficient of thrust") +ax.set_ylabel("Ct (-)") plt.show() diff --git a/examples/29_floating_vs_fixedbottom_farm.py b/examples/examples_floating/002_floating_vs_fixedbottom_farm.py similarity index 82% rename from examples/29_floating_vs_fixedbottom_farm.py rename to examples/examples_floating/002_floating_vs_fixedbottom_farm.py index ef9745621..0400ac7f1 100644 --- a/examples/29_floating_vs_fixedbottom_farm.py +++ b/examples/examples_floating/002_floating_vs_fixedbottom_farm.py @@ -1,15 +1,5 @@ - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -from scipy.interpolate import NearestNDInterpolator - -import floris.flow_visualization as flowviz -from floris import FlorisModel - - -""" -This example demonstrates the impact of floating on turbine power and thurst +"""Example: Floating vs fixed-bottom farm +This example demonstrates the impact of floating on turbine power and thrust and wake behavior. A floating turbine in FLORIS is defined by including a `floating_tilt_table` in the turbine input yaml which sets the steady tilt angle of the turbine based on wind speed. This tilt angle is computed for each @@ -31,9 +21,19 @@ fmodel_floating: Floating turbine (tilt varies with wind speed) """ + +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +from scipy.interpolate import NearestNDInterpolator + +import floris.flow_visualization as flowviz +from floris import FlorisModel, WindRose + + # Declare the Floris Interface for fixed bottom, provide layout -fmodel_fixed = FlorisModel("inputs_floating/emgauss_fixed.yaml") -fmodel_floating = FlorisModel("inputs_floating/emgauss_floating.yaml") +fmodel_fixed = FlorisModel("../inputs_floating/emgauss_fixed.yaml") +fmodel_floating = FlorisModel("../inputs_floating/emgauss_floating.yaml") x, y = np.meshgrid(np.linspace(0, 4*630., 5), np.linspace(0, 3*630., 4)) x = x.flatten() y = y.flatten() @@ -107,28 +107,22 @@ flowviz.visualize_cut_plane(y_planes[1], ax=ax_list[1], title="Streamwise profile") fig.suptitle("Floating farm") -# Compute AEP (see 07_calc_aep_from_rose.py for details) -df_wr = pd.read_csv("inputs/wind_rose.csv") -wd_grid, ws_grid = np.meshgrid( - np.array(df_wr["wd"].unique(), dtype=float), - np.array(df_wr["ws"].unique(), dtype=float), - indexing="ij" +# Compute AEP +# Load the wind rose from csv as in example 003 +wind_rose = WindRose.read_csv_long( + "../inputs/wind_rose.csv", wd_col="wd", ws_col="ws", freq_col="freq_val", ti_col_or_value=0.06 ) -freq_interp = NearestNDInterpolator(df_wr[["wd", "ws"]], df_wr["freq_val"]) -freq = freq_interp(wd_grid, ws_grid).flatten() -freq = freq / np.sum(freq) + for fmodel in [fmodel_fixed, fmodel_floating]: fmodel.set( - wind_directions=wd_grid.flatten(), - wind_speeds= ws_grid.flatten(), - turbulence_intensities=0.06 * np.ones_like(wd_grid.flatten()) + wind_data=wind_rose, ) fmodel.run() # Compute the AEP -aep_fixed = fmodel_fixed.get_farm_AEP(freq=freq) -aep_floating = fmodel_floating.get_farm_AEP(freq=freq) +aep_fixed = fmodel_fixed.get_farm_AEP() +aep_floating = fmodel_floating.get_farm_AEP() print("Farm AEP (fixed bottom): {:.3f} GWh".format(aep_fixed / 1.0e9)) print("Farm AEP (floating): {:.3f} GWh".format(aep_floating / 1.0e9)) print( diff --git a/examples/examples_get_flow/001_extract_wind_speed_at_turbines.py b/examples/examples_get_flow/001_extract_wind_speed_at_turbines.py new file mode 100644 index 000000000..1eed14e75 --- /dev/null +++ b/examples/examples_get_flow/001_extract_wind_speed_at_turbines.py @@ -0,0 +1,39 @@ +"""Example: Extract wind speed at turbines + +This example demonstrates how to extract the wind speed at the turbine points +from the FLORIS model. Both the u velocities and the turbine average +velocities are grabbed from the model, then the turbine average is +recalculated from the u velocities to show that they are equivalent. +""" + + +import numpy as np + +from floris import FlorisModel + + +# Initialize the FLORIS model +fmodel = FlorisModel("../inputs/gch.yaml") + +# Create a 4-turbine layouts +fmodel.set(layout_x=[0, 0.0, 500.0, 500.0], layout_y=[0.0, 300.0, 0.0, 300.0]) + +# Calculate wake +fmodel.run() + +# Collect the wind speed at all the turbine points +u_points = fmodel.core.flow_field.u + +print("U points is 1 findex x 4 turbines x 3 x 3 points (turbine_grid_points=3)") +print(u_points.shape) + +print("turbine_average_velocities is 1 findex x 4 turbines") +print(fmodel.turbine_average_velocities) + +# Show that one is equivalent to the other following averaging +print( + "turbine_average_velocities is determined by taking the cube root of mean " + "of the cubed value across the points " +) +print(f"turbine_average_velocities: {fmodel.turbine_average_velocities}") +print(f"Recomputed: {np.cbrt(np.mean(u_points**3, axis=(2,3)))}") diff --git a/examples/28_extract_wind_speed_at_points.py b/examples/examples_get_flow/002_extract_wind_speed_at_points.py similarity index 84% rename from examples/28_extract_wind_speed_at_points.py rename to examples/examples_get_flow/002_extract_wind_speed_at_points.py index 7c9b9adbc..aaf086f4b 100644 --- a/examples/28_extract_wind_speed_at_points.py +++ b/examples/examples_get_flow/002_extract_wind_speed_at_points.py @@ -1,11 +1,4 @@ - -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel - - -""" +"""Example: Extract wind speed at points This example demonstrates the use of the sample_flow_at_points method of FlorisModel. sample_flow_at_points extracts the wind speed information at user-specified locations in the flow. @@ -19,21 +12,28 @@ met mast within the two-turbine farm. """ + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel + + # User options # FLORIS model to use (limited to Gauss/GCH, Jensen, and empirical Gauss) -floris_model = "gch" # Try "gch", "jensen", "emgauss" +floris_model = "gch" # Try "gch", "jensen", "emgauss" # Option to try different met mast locations -met_mast_option = 0 # Try 0, 1, 2, 3 +met_mast_option = 0 # Try 0, 1, 2, 3 # Instantiate FLORIS model -fmodel = FlorisModel("inputs/"+floris_model+".yaml") +fmodel = FlorisModel("../inputs/" + floris_model + ".yaml") # Set up a two-turbine farm D = 126 fmodel.set(layout_x=[0, 3 * D], layout_y=[0, 3 * D]) -fig, ax = plt.subplots(1,2) -fig.set_size_inches(10,4) +fig, ax = plt.subplots(1, 2) +fig.set_size_inches(10, 4) ax[0].scatter(fmodel.layout_x, fmodel.layout_y, color="black", label="Turbine") # Set the wind direction to run 360 degrees @@ -44,7 +44,7 @@ # Simulate a met mast in between the turbines if met_mast_option == 0: - points_x = 4 * [3*D] + points_x = 4 * [3 * D] points_y = 4 * [0] elif met_mast_option == 1: points_x = 4 * [200.0] @@ -69,10 +69,10 @@ # Plot the velocities for z_idx, z in enumerate(points_z): - ax[1].plot(wd_array, u_at_points[:, z_idx].flatten(), label=f'Speed at z={z} m') + ax[1].plot(wd_array, u_at_points[:, z_idx].flatten(), label=f"Speed at z={z} m") ax[1].grid() ax[1].legend() -ax[1].set_xlabel('Wind Direction (deg)') -ax[1].set_ylabel('Wind Speed (m/s)') +ax[1].set_xlabel("Wind Direction (deg)") +ax[1].set_ylabel("Wind Speed (m/s)") plt.show() diff --git a/examples/32_plot_velocity_deficit_profiles.py b/examples/examples_get_flow/003_plot_velocity_deficit_profiles.py similarity index 75% rename from examples/32_plot_velocity_deficit_profiles.py rename to examples/examples_get_flow/003_plot_velocity_deficit_profiles.py index a0b2949e0..1b8cabc77 100644 --- a/examples/32_plot_velocity_deficit_profiles.py +++ b/examples/examples_get_flow/003_plot_velocity_deficit_profiles.py @@ -1,22 +1,23 @@ +"""Example: Plot velocity deficit profiles + +This example illustrates how to plot velocity deficit profiles at several locations +downstream of a turbine. Here we use the following definition: + velocity_deficit = (homogeneous_wind_speed - u) / homogeneous_wind_speed + , where u is the wake velocity obtained when the incoming wind speed is the + same at all heights and equal to `homogeneous_wind_speed`. +""" + import matplotlib.pyplot as plt import numpy as np from matplotlib import ticker import floris.flow_visualization as flowviz -from floris import cut_plane, FlorisModel +from floris import FlorisModel from floris.flow_visualization import VelocityProfilesFigure from floris.utilities import reverse_rotate_coordinates_rel_west -""" -This example illustrates how to plot velocity deficit profiles at several locations -downstream of a turbine. Here we use the following definition: - velocity_deficit = (homogeneous_wind_speed - u) / homogeneous_wind_speed - , where u is the wake velocity obtained when the incoming wind speed is the - same at all heights and equal to `homogeneous_wind_speed`. -""" - # The first two functions are just used to plot the coordinate system in which the # profiles are sampled. Please go to the main function to begin the example. def plot_coordinate_system(x_origin, y_origin, wind_direction): @@ -27,34 +28,36 @@ def plot_coordinate_system(x_origin, y_origin, wind_direction): [quiver_length, quiver_length], [0, 0], angles=[270 - wind_direction, 360 - wind_direction], - scale_units='x', + scale_units="x", scale=1, ) annotate_coordinate_system(x_origin, y_origin, quiver_length) + def annotate_coordinate_system(x_origin, y_origin, quiver_length): x1 = np.array([quiver_length + 0.35 * D, 0.0]) x2 = np.array([0.0, quiver_length + 0.35 * D]) x3 = np.array([90.0, 90.0]) x, y, _ = reverse_rotate_coordinates_rel_west( - fmodel.core.flow_field.wind_directions, - x1[None, :], - x2[None, :], - x3[None, :], - x_center_of_rotation=0.0, - y_center_of_rotation=0.0, + fmodel.wind_directions, + x1[None, :], + x2[None, :], + x3[None, :], + x_center_of_rotation=0.0, + y_center_of_rotation=0.0, ) x = np.squeeze(x, axis=0) + x_origin y = np.squeeze(y, axis=0) + y_origin - plt.text(x[0], y[0], '$x_1$', bbox={'facecolor': 'white'}) - plt.text(x[1], y[1], '$x_2$', bbox={'facecolor': 'white'}) + plt.text(x[0], y[0], "$x_1$", bbox={"facecolor": "white"}) + plt.text(x[1], y[1], "$x_2$", bbox={"facecolor": "white"}) -if __name__ == '__main__': - D = 125.88 # Turbine diameter + +if __name__ == "__main__": + D = 125.88 # Turbine diameter hub_height = 90.0 homogeneous_wind_speed = 8.0 - fmodel = FlorisModel("inputs/gch.yaml") + fmodel = FlorisModel("../inputs/gch.yaml") fmodel.set(layout_x=[0.0], layout_y=[0.0]) # ------------------------------ Single-turbine layout ------------------------------ @@ -64,7 +67,7 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): # Sample three profiles along three corresponding lines that are all parallel to the y-axis # (cross-stream direction). The streamwise location of each line is given in `downstream_dists`. profiles = fmodel.sample_velocity_deficit_profiles( - direction='cross-stream', + direction="cross-stream", downstream_dists=downstream_dists, homogeneous_wind_speed=homogeneous_wind_speed, ) @@ -72,13 +75,13 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): horizontal_plane = fmodel.calculate_horizontal_plane(height=hub_height) fig, ax = plt.subplots(figsize=(6.4, 3)) flowviz.visualize_cut_plane(horizontal_plane, ax) - colors = ['b', 'g', 'c'] + colors = ["b", "g", "c"] for i, profile in enumerate(profiles): # Plot profile coordinates on the horizontal plane - ax.plot(profile['x'], profile['y'], colors[i], label=f'x/D={downstream_dists[i] / D:.1f}') - ax.set_xlabel('x [m]') - ax.set_ylabel('y [m]') - ax.set_title('Streamwise velocity in a horizontal plane: gauss velocity model') + ax.plot(profile["x"], profile["y"], colors[i], label=f"x/D={downstream_dists[i] / D:.1f}") + ax.set_xlabel("x [m]") + ax.set_ylabel("y [m]") + ax.set_title("Streamwise velocity in a horizontal plane: gauss velocity model") fig.tight_layout(rect=[0, 0, 0.82, 1]) ax.legend(bbox_to_anchor=[1.29, 1.04]) @@ -86,34 +89,34 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): # Initialize it, plot data, and then customize it further if needed. profiles_fig = VelocityProfilesFigure( downstream_dists_D=downstream_dists / D, - layout=['cross-stream'], - coordinate_labels=['x/D', 'y/D'], + layout=["cross-stream"], + coordinate_labels=["x/D", "y/D"], ) # Add profiles to the VelocityProfilesFigure. This method automatically matches the supplied # profiles to the initialized axes in the figure. - profiles_fig.add_profiles(profiles, color='k') + profiles_fig.add_profiles(profiles, color="k") # Change velocity model to jensen, get the velocity deficit profiles, # and add them to the figure. floris_dict = fmodel.core.as_dict() - floris_dict['wake']['model_strings']['velocity_model'] = 'jensen' + floris_dict["wake"]["model_strings"]["velocity_model"] = "jensen" fmodel = FlorisModel(floris_dict) profiles = fmodel.sample_velocity_deficit_profiles( - direction='cross-stream', + direction="cross-stream", downstream_dists=downstream_dists, homogeneous_wind_speed=homogeneous_wind_speed, resolution=400, ) - profiles_fig.add_profiles(profiles, color='r') + profiles_fig.add_profiles(profiles, color="r") # The dashed reference lines show the extent of the rotor profiles_fig.add_ref_lines_x2([-0.5, 0.5]) for ax in profiles_fig.axs[0]: ax.xaxis.set_major_locator(ticker.MultipleLocator(0.2)) - profiles_fig.axs[0,0].legend(['gauss', 'jensen'], fontsize=11) + profiles_fig.axs[0, 0].legend(["gauss", "jensen"], fontsize=11) profiles_fig.fig.suptitle( - 'Velocity deficit profiles from different velocity models', + "Velocity deficit profiles from different velocity models", fontsize=14, ) @@ -123,19 +126,19 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): # sampling-coordinate-system (x1, x2, x3) that is rotated such that x1 is always in the # streamwise direction. The user may define the origin of this coordinate system # (i.e. where to start sampling the profiles). - wind_direction = 315.0 # Try to change this + wind_direction = 315.0 # Try to change this downstream_dists = D * np.array([3, 5]) floris_dict = fmodel.core.as_dict() - floris_dict['wake']['model_strings']['velocity_model'] = 'gauss' + floris_dict["wake"]["model_strings"]["velocity_model"] = "gauss" fmodel = FlorisModel(floris_dict) # Let (x_t1, y_t1) be the location of the second turbine - x_t1 = 2 * D + x_t1 = 2 * D y_t1 = -2 * D fmodel.set(wind_directions=[wind_direction], layout_x=[0.0, x_t1], layout_y=[0.0, y_t1]) # Extract profiles at a set of downstream distances from the starting point (x_start, y_start) cross_profiles = fmodel.sample_velocity_deficit_profiles( - direction='cross-stream', + direction="cross-stream", downstream_dists=downstream_dists, homogeneous_wind_speed=homogeneous_wind_speed, x_start=x_t1, @@ -143,21 +146,20 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): ) horizontal_plane = fmodel.calculate_horizontal_plane( - height=hub_height, - x_bounds=[-2 * D, 9 * D] + height=hub_height, x_bounds=[-2 * D, 9 * D] ) ax = flowviz.visualize_cut_plane(horizontal_plane) - colors = ['b', 'g', 'c'] + colors = ["b", "g", "c"] for i, profile in enumerate(cross_profiles): ax.plot( - profile['x'], - profile['y'], + profile["x"], + profile["y"], colors[i], - label=f'$x_1/D={downstream_dists[i] / D:.1f}$', + label=f"$x_1/D={downstream_dists[i] / D:.1f}$", ) - ax.set_xlabel('x [m]') - ax.set_ylabel('y [m]') - ax.set_title('Streamwise velocity in a horizontal plane') + ax.set_xlabel("x [m]") + ax.set_ylabel("y [m]") + ax.set_title("Streamwise velocity in a horizontal plane") ax.legend() plot_coordinate_system(x_origin=x_t1, y_origin=y_t1, wind_direction=wind_direction) @@ -166,7 +168,7 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): # profiles are almost identical to the cross-stream profiles. However, we now explicitly # set the profile range. The default range is [-2 * D, 2 * D]. vertical_profiles = fmodel.sample_velocity_deficit_profiles( - direction='vertical', + direction="vertical", profile_range=[-1.5 * D, 1.5 * D], downstream_dists=downstream_dists, homogeneous_wind_speed=homogeneous_wind_speed, @@ -176,19 +178,18 @@ def annotate_coordinate_system(x_origin, y_origin, quiver_length): profiles_fig = VelocityProfilesFigure( downstream_dists_D=downstream_dists / D, - layout=['cross-stream', 'vertical'], + layout=["cross-stream", "vertical"], ) - profiles_fig.add_profiles(cross_profiles + vertical_profiles, color='k') + profiles_fig.add_profiles(cross_profiles + vertical_profiles, color="k") profiles_fig.set_xlim([-0.05, 0.85]) - profiles_fig.axs[1,0].set_ylim([-2.2, 2.2]) + profiles_fig.axs[1, 0].set_ylim([-2.2, 2.2]) for ax in profiles_fig.axs[0]: ax.xaxis.set_major_locator(ticker.MultipleLocator(0.4)) profiles_fig.fig.suptitle( - 'Cross-stream profiles at hub-height, and\nvertical profiles at $x_2 = 0$', + "Cross-stream profiles at hub-height, and\nvertical profiles at $x_2 = 0$", fontsize=14, ) - plt.show() diff --git a/examples/examples_heterogeneous/001_heterogeneous_inflow_single.py b/examples/examples_heterogeneous/001_heterogeneous_inflow_single.py new file mode 100644 index 000000000..28f92d238 --- /dev/null +++ b/examples/examples_heterogeneous/001_heterogeneous_inflow_single.py @@ -0,0 +1,79 @@ +"""Example: Heterogeneous Inflow for single case + +This example illustrates how to set up a heterogeneous inflow condition in FLORIS. It: + + 1) Initializes FLORIS + 2) Changes the wind farm layout + 3) Changes the incoming wind speed, wind direction and turbulence intensity + to a single condition + 4) Sets up a heterogeneous inflow condition for that single condition + 5) Runs the FLORIS simulation + 6) Gets the power output of the turbines + 7) Visualizes the horizontal plane at hub height + +""" + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel, TimeSeries +from floris.flow_visualization import visualize_cut_plane +from floris.layout_visualization import plot_turbine_labels + + +# Initialize FlorisModel +fmodel = FlorisModel("../inputs/gch.yaml") + +# Change the layout to a 4 turbine layout in a box +fmodel.set(layout_x=[0, 0, 500.0, 500.0], layout_y=[0, 500.0, 0, 500.0]) + +# Set FLORIS to run for a single condition +fmodel.set(wind_speeds=[8.0], wind_directions=[270.0], turbulence_intensities=[0.06]) + +# Define the speed-ups of the heterogeneous inflow, and their locations. +# Note that heterogeneity is only applied within the bounds of the points defined in the +# heterogeneous_inflow_config dictionary. In this case, set the inflow to be 1.25x the ambient +# wind speed for the upper turbines at y = 500m. +speed_ups = [[1.0, 1.25, 1.0, 1.25]] # Note speed-ups has dimensions of n_findex X n_points +x_locs = [-500.0, -500.0, 1000.0, 1000.0] +y_locs = [-500.0, 1000.0, -500.0, 1000.0] + +# Create the configuration dictionary to be used for the heterogeneous inflow. +heterogeneous_inflow_config = { + "speed_multipliers": speed_ups, + "x": x_locs, + "y": y_locs, +} + +# Set the heterogeneous inflow configuration +fmodel.set(heterogeneous_inflow_config=heterogeneous_inflow_config) + +# Run the FLORIS simulation +fmodel.run() + +# Get the power output of the turbines +turbine_powers = fmodel.get_turbine_powers() / 1000.0 + +# Print the turbine powers +print(f"Turbine 0 power = {turbine_powers[0, 0]:.1f} kW") +print(f"Turbine 1 power = {turbine_powers[0, 1]:.1f} kW") +print(f"Turbine 2 power = {turbine_powers[0, 2]:.1f} kW") +print(f"Turbine 3 power = {turbine_powers[0, 3]:.1f} kW") + +# Extract the horizontal plane at hub height +horizontal_plane = fmodel.calculate_horizontal_plane( + x_resolution=200, y_resolution=100, height=90.0 +) + +# Plot the horizontal plane +fig, ax = plt.subplots() +visualize_cut_plane( + horizontal_plane, + ax=ax, + title="Horizontal plane at hub height", + color_bar=True, + label_contours=True, +) +plot_turbine_labels(fmodel, ax) + +plt.show() diff --git a/examples/examples_heterogeneous/002_heterogeneous_inflow_multi.py b/examples/examples_heterogeneous/002_heterogeneous_inflow_multi.py new file mode 100644 index 000000000..fa8b9cfe4 --- /dev/null +++ b/examples/examples_heterogeneous/002_heterogeneous_inflow_multi.py @@ -0,0 +1,123 @@ +"""Example: Heterogeneous Inflow for multiple conditions + +When multiple cases are considered, the heterogeneous inflow conditions can be defined in two ways: + + 1. Passing heterogeneous_inflow_config to the set method, with P points, + and speedups of size n_findex X P + 2. Assigning heterogeneous_inflow_config_by_wd to the wind_data object + used to drive FLORIS. This object includes + n_wd wind_directions, and speedups is of size n_wd X P. When applied + to set, the heterogeneous_inflow_config + is automatically generated by using the nearest wind direction + defined in heterogeneous_inflow_config_by_wd + for each findex. + +This example: + + 1) Implements heterogeneous inflow for a 4 turbine layout using both of the above methods + 2) Compares the results of the two methods and shows that they are equivalent + +""" + + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel, TimeSeries + + +# Initialize FlorisModel +fmodel = FlorisModel("../inputs/gch.yaml") + +# Change the layout to a 4 turbine layout in a box +fmodel.set(layout_x=[0, 0, 500.0, 500.0], layout_y=[0, 500.0, 0, 500.0]) + +# Define a TimeSeries object with 4 wind directions and constant wind speed +# and turbulence intensity + +time_series = TimeSeries( + wind_directions=np.array([269.0, 270.0, 271.0, 282.0]), + wind_speeds=8.0, + turbulence_intensities=0.06, +) + +# Apply the time series to the FlorisModel +fmodel.set(wind_data=time_series) + +# Define the x_locs to be used in the heterogeneous inflow configuration that form +# a box around the turbines +x_locs = [-500.0, -500.0, 1000.0, 1000.0] +y_locs = [-500.0, 1000.0, -500.0, 1000.0] + +# Assume the speed-ups are defined such that they are the same 265-275 degrees and 275-285 degrees + +# If defining heterogeneous_inflow_config directly, then the speedups are of size n_findex X P +# where the first 3 rows are identical, and the last row is different +speed_ups = [ + [1.0, 1.25, 1.0, 1.25], + [1.0, 1.25, 1.0, 1.25], + [1.0, 1.25, 1.0, 1.25], + [1.0, 1.35, 1.0, 1.35], +] + +heterogeneous_inflow_config = { + "speed_multipliers": speed_ups, + "x": x_locs, + "y": y_locs, +} + +# Set the heterogeneous inflow configuration +fmodel.set(heterogeneous_inflow_config=heterogeneous_inflow_config) + +# Run the FLORIS simulation +fmodel.run() + +# Get the power output of the turbines +turbine_powers = fmodel.get_turbine_powers() / 1000.0 + +# Now repeat using the wind_data object and heterogeneous_inflow_config_by_wd +# First, create the speedups for the two wind directions +speed_ups = [[1.0, 1.25, 1.0, 1.25], [1.0, 1.35, 1.0, 1.35]] + +# Create the heterogeneous_inflow_config_by_wd dictionary +heterogeneous_inflow_config_by_wd = { + "speed_multipliers": speed_ups, + "x": x_locs, + "y": y_locs, + "wind_directions": [270.0, 280.0], +} + +# Now create a new TimeSeries object including the heterogeneous_inflow_config_by_wd +time_series = TimeSeries( + wind_directions=np.array([269.0, 270.0, 271.0, 282.0]), + wind_speeds=8.0, + turbulence_intensities=0.06, + heterogeneous_inflow_config_by_wd=heterogeneous_inflow_config_by_wd, +) + +# Apply the time series to the FlorisModel +fmodel.set(wind_data=time_series) + +# Run the FLORIS simulation +fmodel.run() + +# Get the power output of the turbines +turbine_powers_by_wd = fmodel.get_turbine_powers() / 1000.0 + +# Plot the results +wind_directions = fmodel.wind_directions +fig, axarr = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(10, 10)) +axarr = axarr.flatten() + +for tindex in range(4): + ax = axarr[tindex] + ax.plot(wind_directions, turbine_powers[:, tindex], "ks-", label="Heterogeneous Inflow") + ax.plot( + wind_directions, turbine_powers_by_wd[:, tindex], ".--", label="Heterogeneous Inflow by WD" + ) + ax.set_title(f"Turbine {tindex}") + ax.set_xlabel("Wind Direction (deg)") + ax.set_ylabel("Power (kW)") + ax.legend() + +plt.show() diff --git a/examples/16_heterogeneous_inflow.py b/examples/examples_heterogeneous/003_heterogeneous_2d_and_3d.py similarity index 62% rename from examples/16_heterogeneous_inflow.py rename to examples/examples_heterogeneous/003_heterogeneous_2d_and_3d.py index 26451ffa5..1d1f3b791 100644 --- a/examples/16_heterogeneous_inflow.py +++ b/examples/examples_heterogeneous/003_heterogeneous_2d_and_3d.py @@ -1,13 +1,8 @@ +"""Example: Heterogeneous Inflow in 2D and 3D -import matplotlib.pyplot as plt - -from floris import FlorisModel -from floris.flow_visualization import visualize_cut_plane - - -""" This example showcases the heterogeneous inflow capabilities of FLORIS. -Heterogeneous flow can be defined in either 2- or 3-dimensions. +Heterogeneous flow can be defined in either 2- or 3-dimensions for a single +condition. For the 2-dimensional case, it can be seen that the freestream velocity only varies in the x direction. For the 3-dimensional case, it can be @@ -18,23 +13,34 @@ For each case, we are plotting three slices of the resulting flow field: 1. Horizontal slice parallel to the ground and located at the hub height 2. Vertical slice parallel with the direction of the wind -3. Veritical slice parallel to to the turbine disc plane +3. Vertical slice parallel to to the turbine disc plane + +Since the intention is for plotting, only a single condition is run and in +this case the heterogeneous_inflow_config is more convenient to use than +heterogeneous_inflow_config_by_wd. However, the latter is more convenient +when running multiple conditions. """ +import matplotlib.pyplot as plt + +from floris import FlorisModel +from floris.flow_visualization import visualize_cut_plane + + # Initialize FLORIS with the given input file via FlorisModel. -# Note that the heterogeneous flow is defined in the input file. The heterogenous_inflow_config +# Note that the heterogeneous flow is defined in the input file. The heterogeneous_inflow_config # dictionary is defined as below. The speed ups are multipliers of the ambient wind speed, # and the x and y are the locations of the speed ups. # -# heterogenous_inflow_config = { +# heterogeneous_inflow_config = { # 'speed_multipliers': [[2.0, 1.0, 2.0, 1.0]], # 'x': [-300.0, -300.0, 2600.0, 2600.0], # 'y': [ -300.0, 300.0, -300.0, 300.0], # } -fmodel_2d = FlorisModel("inputs/gch_heterogeneous_inflow.yaml") +fmodel_2d = FlorisModel("../inputs/gch_heterogeneous_inflow.yaml") # Set shear to 0.0 to highlight the heterogeneous inflow fmodel_2d.set(wind_shear=0.0) @@ -42,47 +48,35 @@ # Using the FlorisModel functions for generating plots, run FLORIS # and extract 2D planes of data. horizontal_plane_2d = fmodel_2d.calculate_horizontal_plane( - x_resolution=200, - y_resolution=100, - height=90.0 + x_resolution=200, y_resolution=100, height=90.0 ) y_plane_2d = fmodel_2d.calculate_y_plane(x_resolution=200, z_resolution=100, crossstream_dist=0.0) cross_plane_2d = fmodel_2d.calculate_cross_plane( - y_resolution=100, - z_resolution=100, - downstream_dist=500.0 + y_resolution=100, z_resolution=100, downstream_dist=500.0 ) # Create the plots fig, ax_list = plt.subplots(3, 1, figsize=(10, 8)) ax_list = ax_list.flatten() visualize_cut_plane( - horizontal_plane_2d, - ax=ax_list[0], - title="Horizontal", - color_bar=True, - label_contours=True + horizontal_plane_2d, ax=ax_list[0], title="Horizontal", color_bar=True, label_contours=True ) -ax_list[0].set_xlabel('x') -ax_list[0].set_ylabel('y') +ax_list[0].set_xlabel("x") +ax_list[0].set_ylabel("y") visualize_cut_plane( - y_plane_2d, - ax=ax_list[1], - title="Streamwise profile", - color_bar=True, - label_contours=True + y_plane_2d, ax=ax_list[1], title="Streamwise profile", color_bar=True, label_contours=True ) -ax_list[1].set_xlabel('x') -ax_list[1].set_ylabel('z') +ax_list[1].set_xlabel("x") +ax_list[1].set_ylabel("z") visualize_cut_plane( cross_plane_2d, ax=ax_list[2], title="Spanwise profile at 500m downstream", color_bar=True, - label_contours=True + label_contours=True, ) -ax_list[2].set_xlabel('y') -ax_list[2].set_ylabel('z') +ax_list[2].set_xlabel("y") +ax_list[2].set_ylabel("z") # Define the speed ups of the heterogeneous inflow, and their locations. @@ -94,18 +88,18 @@ z_locs = [540.0, 540.0, 0.0, 0.0, 540.0, 540.0, 0.0, 0.0] # Create the configuration dictionary to be used for the heterogeneous inflow. -heterogenous_inflow_config = { - 'speed_multipliers': speed_multipliers, - 'x': x_locs, - 'y': y_locs, - 'z': z_locs, +heterogeneous_inflow_config = { + "speed_multipliers": speed_multipliers, + "x": x_locs, + "y": y_locs, + "z": z_locs, } # Initialize FLORIS with the given input file. # Note that we initialize FLORIS with a homogenous flow input file, but # then configure the heterogeneous inflow via the reinitialize method. -fmodel_3d = FlorisModel("inputs/gch.yaml") -fmodel_3d.set(heterogenous_inflow_config=heterogenous_inflow_config) +fmodel_3d = FlorisModel("../inputs/gch.yaml") +fmodel_3d.set(heterogeneous_inflow_config=heterogeneous_inflow_config) # Set shear to 0.0 to highlight the heterogeneous inflow fmodel_3d.set(wind_shear=0.0) @@ -113,50 +107,34 @@ # Using the FlorisModel functions for generating plots, run FLORIS # and extract 2D planes of data. horizontal_plane_3d = fmodel_3d.calculate_horizontal_plane( - x_resolution=200, - y_resolution=100, - height=90.0 -) -y_plane_3d = fmodel_3d.calculate_y_plane( - x_resolution=200, - z_resolution=100, - crossstream_dist=0.0 + x_resolution=200, y_resolution=100, height=90.0 ) +y_plane_3d = fmodel_3d.calculate_y_plane(x_resolution=200, z_resolution=100, crossstream_dist=0.0) cross_plane_3d = fmodel_3d.calculate_cross_plane( - y_resolution=100, - z_resolution=100, - downstream_dist=500.0 + y_resolution=100, z_resolution=100, downstream_dist=500.0 ) # Create the plots fig, ax_list = plt.subplots(3, 1, figsize=(10, 8)) ax_list = ax_list.flatten() visualize_cut_plane( - horizontal_plane_3d, - ax=ax_list[0], - title="Horizontal", - color_bar=True, - label_contours=True + horizontal_plane_3d, ax=ax_list[0], title="Horizontal", color_bar=True, label_contours=True ) -ax_list[0].set_xlabel('x') -ax_list[0].set_ylabel('y') +ax_list[0].set_xlabel("x") +ax_list[0].set_ylabel("y") visualize_cut_plane( - y_plane_3d, - ax=ax_list[1], - title="Streamwise profile", - color_bar=True, - label_contours=True + y_plane_3d, ax=ax_list[1], title="Streamwise profile", color_bar=True, label_contours=True ) -ax_list[1].set_xlabel('x') -ax_list[1].set_ylabel('z') +ax_list[1].set_xlabel("x") +ax_list[1].set_ylabel("z") visualize_cut_plane( cross_plane_3d, ax=ax_list[2], title="Spanwise profile at 500m downstream", color_bar=True, - label_contours=True + label_contours=True, ) -ax_list[2].set_xlabel('y') -ax_list[2].set_ylabel('z') +ax_list[2].set_xlabel("y") +ax_list[2].set_ylabel("z") plt.show() diff --git a/examples/examples_layout_optimization/001_optimize_layout.py b/examples/examples_layout_optimization/001_optimize_layout.py new file mode 100644 index 000000000..809c346d7 --- /dev/null +++ b/examples/examples_layout_optimization/001_optimize_layout.py @@ -0,0 +1,139 @@ + +"""Example: Optimize Layout +This example shows a simple layout optimization using the python module Scipy, optimizing for both +annual energy production (AEP) and annual value production (AVP). + +First, a 4 turbine array is optimized such that the layout of the turbine produces the +highest AEP based on the given wind resource. The turbines +are constrained to a square boundary and a random wind resource is supplied. The results +of the optimization show that the turbines are pushed to near the outer corners of the boundary, +which, given the generally uniform wind rose, makes sense in order to maximize the energy +production by minimizing wake interactions. + +Next, with the same boundary, the same 4 turbine array is optimized to maximize AVP instead of AEP, +using the value table defined in the WindRose object, where value represents the value of the +energy produced for a given wind condition (e.g., the price of electricity). In this example, value +is defined to be significantly higher for northerly and southerly wind directions, and zero when +the wind is from the east or west. Because the value is much higher when the wind is from the north +or south, the turbines are spaced apart roughly evenly in the x direction while being relatively +close in the y direction to avoid wake interactions for northerly and southerly winds. Although the +layout results in large wake losses when the wind is from the east or west, these losses do not +significantly impact the objective function because of the low value for those wind directions. +""" + + +import os + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel, WindRose +from floris.optimization.layout_optimization.layout_optimization_scipy import ( + LayoutOptimizationScipy, +) + + +# Define scipy optimization parameters +opt_options = { + "maxiter": 20, + "disp": True, + "iprint": 2, + "ftol": 1e-12, + "eps": 0.05, +} + +# Initialize the FLORIS interface fi +file_dir = os.path.dirname(os.path.abspath(__file__)) +fmodel = FlorisModel('../inputs/gch.yaml') + +# Setup 72 wind directions with a 1 wind speed and frequency distribution +wind_directions = np.arange(0, 360.0, 5.0) +wind_speeds = np.array([8.0]) + +# Shape random frequency distribution to match number of wind directions and wind speeds +freq_table = np.zeros((len(wind_directions), len(wind_speeds))) +np.random.seed(1) +freq_table[:,0] = (np.abs(np.sort(np.random.randn(len(wind_directions))))) +freq_table = freq_table / freq_table.sum() + +# Define the value table such that the value of the energy produced is +# significantly higher when the wind direction is close to the north or +# south, and zero when the wind is from the east or west. Here, value is +# given a mean value of 25 USD/MWh. +value_table = (0.5 + 0.5*np.cos(2*np.radians(wind_directions)))**10 +value_table = 25*value_table/np.mean(value_table) +value_table = value_table.reshape((len(wind_directions),1)) + +# Establish a WindRose object +wind_rose = WindRose( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + freq_table=freq_table, + ti_table=0.06, + value_table=value_table +) + +fmodel.set(wind_data=wind_rose) + +# The boundaries for the turbines, specified as vertices +boundaries = [(0.0, 0.0), (0.0, 1000.0), (1000.0, 1000.0), (1000.0, 0.0), (0.0, 0.0)] + +# Set turbine locations to 4 turbines in a rectangle +D = 126.0 # rotor diameter for the NREL 5MW +layout_x = [0, 0, 6 * D, 6 * D] +layout_y = [0, 4 * D, 0, 4 * D] +fmodel.set(layout_x=layout_x, layout_y=layout_y) + +# Setup the optimization problem to maximize AEP instead of value +layout_opt = LayoutOptimizationScipy(fmodel, boundaries, optOptions=opt_options) + +# Run the optimization +sol = layout_opt.optimize() + +# Get the resulting improvement in AEP +print('... calculating improvement in AEP') +fmodel.run() +base_aep = fmodel.get_farm_AEP() / 1e6 +fmodel.set(layout_x=sol[0], layout_y=sol[1]) +fmodel.run() +opt_aep = fmodel.get_farm_AEP() / 1e6 + +percent_gain = 100 * (opt_aep - base_aep) / base_aep + +# Print and plot the results +print(f'Optimal layout: {sol}') +print( + f'Optimal layout improves AEP by {percent_gain:.1f}% ' + f'from {base_aep:.1f} MWh to {opt_aep:.1f} MWh' +) +layout_opt.plot_layout_opt_results() + +# reset to the original layout +fmodel.set(layout_x=layout_x, layout_y=layout_y) + +# Now set up the optimization problem to maximize annual value production (AVP) +# using the value table provided in the WindRose object. +layout_opt = LayoutOptimizationScipy(fmodel, boundaries, optOptions=opt_options, use_value=True) + +# Run the optimization +sol = layout_opt.optimize() + +# Get the resulting improvement in AVP +print('... calculating improvement in annual value production (AVP)') +fmodel.run() +base_avp = fmodel.get_farm_AVP() / 1e6 +fmodel.set(layout_x=sol[0], layout_y=sol[1]) +fmodel.run() +opt_avp = fmodel.get_farm_AVP() / 1e6 + +percent_gain = 100 * (opt_avp - base_avp) / base_avp + +# Print and plot the results +print(f'Optimal layout: {sol}') +print( + f'Optimal layout improves AVP by {percent_gain:.1f}% ' + f'from {base_avp:.1f} dollars to {opt_avp:.1f} dollars' +) +layout_opt.plot_layout_opt_results() + +plt.show() diff --git a/examples/16c_optimize_layout_with_heterogeneity.py b/examples/examples_layout_optimization/002_optimize_layout_with_heterogeneity.py similarity index 71% rename from examples/16c_optimize_layout_with_heterogeneity.py rename to examples/examples_layout_optimization/002_optimize_layout_with_heterogeneity.py index 069511cd8..e0879b38c 100644 --- a/examples/16c_optimize_layout_with_heterogeneity.py +++ b/examples/examples_layout_optimization/002_optimize_layout_with_heterogeneity.py @@ -1,3 +1,14 @@ +"""Example: Layout optimization with heterogeneous inflow +This example shows a layout optimization using the geometric yaw option. It +combines elements of layout optimization and heterogeneous +inflow for demonstrative purposes. + +Heterogeneity in the inflow provides the necessary driver for coupled yaw +and layout optimization to be worthwhile. First, a layout optimization is +run without coupled yaw optimization; then a coupled optimization is run to +show the benefits of coupled optimization when flows are heterogeneous. +""" + import os @@ -10,25 +21,13 @@ ) -""" -This example shows a layout optimization using the geometric yaw option. It -combines elements of examples 15 (layout optimization) and 16 (heterogeneous -inflow) for demonstrative purposes. If you haven't yet run those examples, -we recommend you try them first. - -Heterogeneity in the inflow provides the necessary driver for coupled yaw -and layout optimization to be worthwhile. First, a layout optimization is -run without coupled yaw optimization; then a coupled optimization is run to -show the benefits of coupled optimization when flows are heterogeneous. -""" - # Initialize FLORIS file_dir = os.path.dirname(os.path.abspath(__file__)) -fmodel = FlorisModel('inputs/gch.yaml') +fmodel = FlorisModel("../inputs/gch.yaml") # Setup 2 wind directions (due east and due west) # and 1 wind speed with uniform probability -wind_directions = np.array([270., 90.]) +wind_directions = np.array([270.0, 90.0]) n_wds = len(wind_directions) wind_speeds = [8.0] * np.ones_like(wind_directions) turbulence_intensities = 0.06 * np.ones_like(wind_directions) @@ -38,32 +37,26 @@ # The boundaries for the turbines, specified as vertices -D = 126.0 # rotor diameter for the NREL 5MW +D = 126.0 # rotor diameter for the NREL 5MW size_D = 12 -boundaries = [ - (0.0, 0.0), - (size_D * D, 0.0), - (size_D * D, 0.1), - (0.0, 0.1), - (0.0, 0.0) -] +boundaries = [(0.0, 0.0), (size_D * D, 0.0), (size_D * D, 0.1), (0.0, 0.1), (0.0, 0.0)] # Set turbine locations to 4 turbines at corners of the rectangle # (optimal without flow heterogeneity) -layout_x = [0.1, 0.3*size_D*D, 0.6*size_D*D] +layout_x = [0.1, 0.3 * size_D * D, 0.6 * size_D * D] layout_y = [0, 0, 0] # Generate exaggerated heterogeneous inflow (same for all wind directions) -speed_multipliers = np.repeat(np.array([0.5, 1.0, 0.5, 1.0])[None,:], n_wds, axis=0) +speed_multipliers = np.repeat(np.array([0.5, 1.0, 0.5, 1.0])[None, :], n_wds, axis=0) x_locs = [0, size_D * D, 0, size_D * D] y_locs = [-D, -D, D, D] # Create the configuration dictionary to be used for the heterogeneous inflow. -heterogenous_inflow_config_by_wd = { - 'speed_multipliers': speed_multipliers, - 'wind_directions': wind_directions, - 'x': x_locs, - 'y': y_locs, +heterogeneous_inflow_config_by_wd = { + "speed_multipliers": speed_multipliers, + "wind_directions": wind_directions, + "x": x_locs, + "y": y_locs, } # Establish a WindRose object @@ -72,7 +65,7 @@ wind_speeds=wind_speeds, freq_table=freq_table, ti_table=0.06, - heterogenous_inflow_config_by_wd=heterogenous_inflow_config_by_wd + heterogeneous_inflow_config_by_wd=heterogeneous_inflow_config_by_wd, ) @@ -85,10 +78,7 @@ # Setup and solve the layout optimization problem without heterogeneity maxiter = 100 layout_opt = LayoutOptimizationScipy( - fmodel, - boundaries, - min_dist=2*D, - optOptions={"maxiter":maxiter} + fmodel, boundaries, min_dist=2 * D, optOptions={"maxiter": maxiter} ) # Run the optimization @@ -96,7 +86,7 @@ sol = layout_opt.optimize() # Get the resulting improvement in AEP -print('... calcuating improvement in AEP') +print("... calcuating improvement in AEP") fmodel.run() base_aep = fmodel.get_farm_AEP() / 1e6 @@ -107,10 +97,10 @@ percent_gain = 100 * (opt_aep - base_aep) / base_aep # Print and plot the results -print(f'Optimal layout: {sol}') +print(f"Optimal layout: {sol}") print( - f'Optimal layout improves AEP by {percent_gain:.1f}% ' - f'from {base_aep:.1f} MWh to {opt_aep:.1f} MWh' + f"Optimal layout improves AEP by {percent_gain:.1f}% " + f"from {base_aep:.1f} MWh to {opt_aep:.1f} MWh" ) layout_opt.plot_layout_opt_results() ax = plt.gca() @@ -125,11 +115,7 @@ print("\nReoptimizing with geometric yaw enabled.") fmodel.set(layout_x=layout_x, layout_y=layout_y) layout_opt = LayoutOptimizationScipy( - fmodel, - boundaries, - min_dist=2*D, - enable_geometric_yaw=True, - optOptions={"maxiter":maxiter} + fmodel, boundaries, min_dist=2 * D, enable_geometric_yaw=True, optOptions={"maxiter": maxiter} ) # Run the optimization @@ -137,7 +123,7 @@ sol = layout_opt.optimize() # Get the resulting improvement in AEP -print('... calcuating improvement in AEP') +print("... calcuating improvement in AEP") fmodel.set(yaw_angles=np.zeros_like(layout_opt.yaw_angles)) fmodel.run() @@ -149,10 +135,10 @@ percent_gain = 100 * (opt_aep - base_aep) / base_aep # Print and plot the results -print(f'Optimal layout: {sol}') +print(f"Optimal layout: {sol}") print( - f'Optimal layout improves AEP by {percent_gain:.1f}% ' - f'from {base_aep:.1f} MWh to {opt_aep:.1f} MWh' + f"Optimal layout improves AEP by {percent_gain:.1f}% " + f"from {base_aep:.1f} MWh to {opt_aep:.1f} MWh" ) layout_opt.plot_layout_opt_results() ax = plt.gca() @@ -163,9 +149,9 @@ ax.set_title("Geometric yaw enabled") print( - 'Turbine geometric yaw angles for wind direction {0:.2f}'.format(wind_directions[1])\ - +' and wind speed {0:.2f} m/s:'.format(wind_speeds[0]), - f'{layout_opt.yaw_angles[1, :]}' + "Turbine geometric yaw angles for wind direction {0:.2f}".format(wind_directions[1]) + + " and wind speed {0:.2f} m/s:".format(wind_speeds[0]), + f"{layout_opt.yaw_angles[1, :]}", ) plt.show() diff --git a/examples/30_multi_dimensional_cp_ct.py b/examples/examples_multidim/001_multi_dimensional_cp_ct.py similarity index 79% rename from examples/30_multi_dimensional_cp_ct.py rename to examples/examples_multidim/001_multi_dimensional_cp_ct.py index e33ca31d2..b1bf0441b 100644 --- a/examples/30_multi_dimensional_cp_ct.py +++ b/examples/examples_multidim/001_multi_dimensional_cp_ct.py @@ -1,14 +1,8 @@ - -import numpy as np - -from floris import FlorisModel - - -""" -This example follows the same setup as example 01 to createa a FLORIS instance and: +"""Example: Multi-dimensional Cp/Ct data +This example creates a FLORIS instance and: 1) Makes a two-turbine layout 2) Demonstrates single ws/wd simulations -3) Demonstrates mulitple ws/wd simulations +3) Demonstrates multiple ws/wd simulations with the modification of using a turbine definition that has a multi-dimensional Cp/Ct table. @@ -19,7 +13,7 @@ height. For every combination of Tp and Hs defined, a Cp/Ct/Wind speed table of values is also defined. It is required for this .csv file to have the last 3 columns be ws, Cp, and Ct. In order for this table to be used, the flag 'multi_dimensional_cp_ct' must be present and set to true in -the turbine definition. With this flag enabled, the solver will downselect to use the +the turbine definition. With this flag enabled, the solver will down-select to use the interpolant defined at the closest conditions. The user must supply these conditions in the main input file under the 'flow_field' section, e.g.: @@ -40,20 +34,25 @@ 'get_turbine_powers_multidim'. The normal 'get_turbine_powers' method will not work. """ +import numpy as np + +from floris import FlorisModel + + # Initialize FLORIS with the given input file. -fmodel = FlorisModel("inputs/gch_multi_dim_cp_ct.yaml") +fmodel = FlorisModel("../inputs/gch_multi_dim_cp_ct.yaml") # Convert to a simple two turbine layout -fmodel.set(layout_x=[0., 500.], layout_y=[0., 0.]) +fmodel.set(layout_x=[0.0, 500.0], layout_y=[0.0, 0.0]) # Single wind speed and wind direction -print('\n========================= Single Wind Direction and Wind Speed =========================') +print("\n========================= Single Wind Direction and Wind Speed =========================") # Get the turbine powers assuming 1 wind speed and 1 wind direction fmodel.set(wind_directions=[270.0], wind_speeds=[8.0], turbulence_intensities=[0.06]) # Set the yaw angles to 0 -yaw_angles = np.zeros([1, 2]) # 1 wind direction and wind speed, 2 turbines +yaw_angles = np.zeros([1, 2]) # 1 wind direction and wind speed, 2 turbines fmodel.set(yaw_angles=yaw_angles) # Calculate @@ -63,10 +62,10 @@ turbine_powers = fmodel.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 1 findex X 2 Turbines") print(turbine_powers) -print("Shape: ",turbine_powers.shape) +print("Shape: ", turbine_powers.shape) # Single wind speed and multiple wind directions -print('\n========================= Single Wind Direction and Multiple Wind Speeds ===============') +print("\n========================= Single Wind Direction and Multiple Wind Speeds ===============") wind_speeds = np.array([8.0, 9.0, 10.0]) wind_directions = np.array([270.0, 270.0, 270.0]) @@ -77,16 +76,16 @@ wind_speeds=wind_speeds, wind_directions=wind_directions, turbulence_intensities=turbulence_intensities, - yaw_angles=yaw_angles + yaw_angles=yaw_angles, ) fmodel.run() turbine_powers = fmodel.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 3 findex X 2 Turbines") print(turbine_powers) -print("Shape: ",turbine_powers.shape) +print("Shape: ", turbine_powers.shape) # Multiple wind speeds and multiple wind directions -print('\n========================= Multiple Wind Directions and Multiple Wind Speeds ============') +print("\n========================= Multiple Wind Directions and Multiple Wind Speeds ============") wind_speeds = np.tile([8.0, 9.0, 10.0], 3) wind_directions = np.repeat([260.0, 270.0, 280.0], 3) @@ -97,10 +96,10 @@ wind_directions=wind_directions, wind_speeds=wind_speeds, turbulence_intensities=turbulence_intensities, - yaw_angles=yaw_angles + yaw_angles=yaw_angles, ) fmodel.run() -turbine_powers = fmodel.get_turbine_powers()/1000. +turbine_powers = fmodel.get_turbine_powers() / 1000.0 print("The turbine power matrix should be of dimensions 9 WD/WS X 2 Turbines") print(turbine_powers) -print("Shape: ",turbine_powers.shape) +print("Shape: ", turbine_powers.shape) diff --git a/examples/examples_multidim/002_multi_dimensional_cp_ct_2Hs.py b/examples/examples_multidim/002_multi_dimensional_cp_ct_2Hs.py new file mode 100644 index 000000000..8cf206f07 --- /dev/null +++ b/examples/examples_multidim/002_multi_dimensional_cp_ct_2Hs.py @@ -0,0 +1,65 @@ +"""Example: Multi-dimensional Cp/Ct with 2 Hs values +This example follows the previous example but shows the effect of changing the Hs setting. + +NOTE: The multi-dimensional Cp/Ct data used in this example is fictional for the purposes of +facilitating this example. The Cp/Ct values for the different wave conditions are scaled +values of the original Cp/Ct data for the IEA 15MW turbine. +""" + + +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel, TimeSeries + + +# Initialize FLORIS with the given input file. +fmodel = FlorisModel("../inputs/gch_multi_dim_cp_ct.yaml") + +# Make a second Floris instance with a different setting for Hs. +# Note the multi-cp-ct file (iea_15MW_multi_dim_Tp_Hs.csv) +# for the turbine model iea_15MW_floating_multi_dim_cp_ct.yaml +# Defines Hs at 1 and 5. +# The value in gch_multi_dim_cp_ct.yaml is 3.01 which will map +# to 5 as the nearer value, so we set the other case to 1 +# for contrast. +fmodel_dict_mod = fmodel.core.as_dict() +fmodel_dict_mod["flow_field"]["multidim_conditions"]["Hs"] = 1.0 +fmodel_hs_1 = FlorisModel(fmodel_dict_mod) + +# Set both cases to 3 turbine layout +fmodel.set(layout_x=[0.0, 500.0, 1000.0], layout_y=[0.0, 0.0, 0.0]) +fmodel_hs_1.set(layout_x=[0.0, 500.0, 1000.0], layout_y=[0.0, 0.0, 0.0]) + +# Use a sweep of wind speeds +wind_speeds = np.arange(5, 20, 1.0) +time_series = TimeSeries( + wind_directions=270.0, wind_speeds=wind_speeds, turbulence_intensities=0.06 +) +fmodel.set(wind_data=time_series) +fmodel_hs_1.set(wind_data=time_series) + +# Calculate wakes with baseline yaw +fmodel.run() +fmodel_hs_1.run() + +# Collect the turbine powers in kW +turbine_powers = fmodel.get_turbine_powers() / 1000.0 +turbine_powers_hs_1 = fmodel_hs_1.get_turbine_powers() / 1000.0 + +# Plot the power in each case and the difference in power +fig, axarr = plt.subplots(1, 3, sharex=True, figsize=(12, 4)) + +for t_idx in range(3): + ax = axarr[t_idx] + ax.plot(wind_speeds, turbine_powers[:, t_idx], color="k", label="Hs=3.1 (5)") + ax.plot(wind_speeds, turbine_powers_hs_1[:, t_idx], color="r", label="Hs=1.0") + ax.grid(True) + ax.set_xlabel("Wind Speed (m/s)") + ax.set_title(f"Turbine {t_idx}") + +axarr[0].set_ylabel("Power (kW)") +axarr[0].legend() +fig.suptitle("Power of each turbine") + +plt.show() diff --git a/examples/18_check_turbine.py b/examples/examples_turbine/001_check_turbine.py similarity index 66% rename from examples/18_check_turbine.py rename to examples/examples_turbine/001_check_turbine.py index 258525340..7291ca60c 100644 --- a/examples/18_check_turbine.py +++ b/examples/examples_turbine/001_check_turbine.py @@ -1,5 +1,9 @@ +"""Example: Check turbine power curves + +For each turbine in the turbine library, make a small figure showing that its power +curve and power loss to yaw are reasonable and reasonably smooth +""" -from pathlib import Path import matplotlib.pyplot as plt import numpy as np @@ -7,27 +11,21 @@ from floris import FlorisModel -""" -For each turbine in the turbine library, make a small figure showing that its power -curve and power loss to yaw are reasonable and reasonably smooth -""" -ws_array = np.arange(0.1,30,0.2) +ws_array = np.arange(0.1, 30, 0.2) wd_array = 270.0 * np.ones_like(ws_array) turbulence_intensities = 0.06 * np.ones_like(ws_array) -yaw_angles = np.linspace(-30,30,60) +yaw_angles = np.linspace(-30, 30, 60) wind_speed_to_test_yaw = 11 # Grab the gch model -fmodel = FlorisModel("inputs/gch.yaml") +fmodel = FlorisModel("../inputs/gch.yaml") # Make one turbine simulation fmodel.set(layout_x=[0], layout_y=[0]) # Apply wind directions and wind speeds fmodel.set( - wind_speeds=ws_array, - wind_directions=wd_array, - turbulence_intensities=turbulence_intensities + wind_speeds=ws_array, wind_directions=wd_array, turbulence_intensities=turbulence_intensities ) # Get a list of available turbine models provided through FLORIS, and remove @@ -39,11 +37,10 @@ ] # Declare a set of figures for comparing cp and ct across models -fig_pow_ct, axarr_pow_ct = plt.subplots(2,1,sharex=True,figsize=(10,10)) +fig_pow_ct, axarr_pow_ct = plt.subplots(2, 1, sharex=True, figsize=(10, 10)) # For each turbine model available plot the basic info for t in turbines: - # Set t as the turbine fmodel.set(turbine_type=[t]) @@ -53,26 +50,27 @@ # Plot power and ct onto the fig_pow_ct plot axarr_pow_ct[0].plot( fmodel.core.farm.turbine_map[0].power_thrust_table["wind_speed"], - fmodel.core.farm.turbine_map[0].power_thrust_table["power"],label=t + fmodel.core.farm.turbine_map[0].power_thrust_table["power"], + label=t, ) axarr_pow_ct[0].grid(True) axarr_pow_ct[0].legend() - axarr_pow_ct[0].set_ylabel('Power (kW)') + axarr_pow_ct[0].set_ylabel("Power (kW)") axarr_pow_ct[1].plot( fmodel.core.farm.turbine_map[0].power_thrust_table["wind_speed"], - fmodel.core.farm.turbine_map[0].power_thrust_table["thrust_coefficient"],label=t + fmodel.core.farm.turbine_map[0].power_thrust_table["thrust_coefficient"], + label=t, ) axarr_pow_ct[1].grid(True) axarr_pow_ct[1].legend() - axarr_pow_ct[1].set_ylabel('Ct (-)') - axarr_pow_ct[1].set_xlabel('Wind Speed (m/s)') + axarr_pow_ct[1].set_ylabel("Ct (-)") + axarr_pow_ct[1].set_xlabel("Wind Speed (m/s)") # Create a figure - fig, axarr = plt.subplots(1,2,figsize=(10,5)) + fig, axarr = plt.subplots(1, 2, figsize=(10, 5)) # Try a few density - for density in [1.15,1.225,1.3]: - + for density in [1.15, 1.225, 1.3]: fmodel.set(air_density=density) # POWER CURVE @@ -80,18 +78,18 @@ fmodel.set( wind_speeds=ws_array, wind_directions=wd_array, - turbulence_intensities=turbulence_intensities + turbulence_intensities=turbulence_intensities, ) fmodel.run() turbine_powers = fmodel.get_turbine_powers().flatten() / 1e3 if density == 1.225: - ax.plot(ws_array,turbine_powers,label='Air Density = %.3f' % density, lw=2, color='k') + ax.plot(ws_array, turbine_powers, label="Air Density = %.3f" % density, lw=2, color="k") else: - ax.plot(ws_array,turbine_powers,label='Air Density = %.3f' % density, lw=1) + ax.plot(ws_array, turbine_powers, label="Air Density = %.3f" % density, lw=1) ax.grid(True) ax.legend() - ax.set_xlabel('Wind Speed (m/s)') - ax.set_ylabel('Power (kW)') + ax.set_xlabel("Wind Speed (m/s)") + ax.set_ylabel("Power (kW)") # Power loss to yaw, try a range of yaw angles ax = axarr[1] @@ -99,7 +97,7 @@ fmodel.set( wind_speeds=[wind_speed_to_test_yaw], wind_directions=[270.0], - turbulence_intensities=[0.06] + turbulence_intensities=[0.06], ) yaw_result = [] for yaw in yaw_angles: @@ -108,15 +106,15 @@ turbine_powers = fmodel.get_turbine_powers().flatten() / 1e3 yaw_result.append(turbine_powers[0]) if density == 1.225: - ax.plot(yaw_angles,yaw_result,label='Air Density = %.3f' % density, lw=2, color='k') + ax.plot(yaw_angles, yaw_result, label="Air Density = %.3f" % density, lw=2, color="k") else: - ax.plot(yaw_angles,yaw_result,label='Air Density = %.3f' % density, lw=1) + ax.plot(yaw_angles, yaw_result, label="Air Density = %.3f" % density, lw=1) # ax.plot(yaw_angles,yaw_result,label='Air Density = %.3f' % density) ax.grid(True) ax.legend() - ax.set_xlabel('Yaw Error (deg)') - ax.set_ylabel('Power (kW)') - ax.set_title('Wind Speed = %.1f' % wind_speed_to_test_yaw ) + ax.set_xlabel("Yaw Error (deg)") + ax.set_ylabel("Power (kW)") + ax.set_title("Wind Speed = %.1f" % wind_speed_to_test_yaw) # Give a suptitle fig.suptitle(t) diff --git a/examples/17_multiple_turbine_types.py b/examples/examples_turbine/002_multiple_turbine_types.py similarity index 87% rename from examples/17_multiple_turbine_types.py rename to examples/examples_turbine/002_multiple_turbine_types.py index b7d1c4173..b945d5a0a 100644 --- a/examples/17_multiple_turbine_types.py +++ b/examples/examples_turbine/002_multiple_turbine_types.py @@ -1,3 +1,9 @@ +"""Example: Multiple turbine types + +This example uses an input file where multiple turbine types are defined. +The first two turbines are the NREL 5MW, and the third turbine is the IEA 10MW. +""" + import matplotlib.pyplot as plt @@ -5,24 +11,17 @@ from floris import FlorisModel -""" -This example uses an input file where multiple turbine types are defined. -The first two turbines are the NREL 5MW, and the third turbine is the IEA 10MW. -""" - # Initialize FLORIS with the given input file. # For basic usage, FlorisModel provides a simplified and expressive # entry point to the simulation routines. -fmodel = FlorisModel("inputs/gch_multiple_turbine_types.yaml") +fmodel = FlorisModel("../inputs/gch_multiple_turbine_types.yaml") # Using the FlorisModel functions for generating plots, run FLORIS # and extract 2D planes of data. horizontal_plane = fmodel.calculate_horizontal_plane(x_resolution=200, y_resolution=100, height=90) y_plane = fmodel.calculate_y_plane(x_resolution=200, z_resolution=100, crossstream_dist=0.0) cross_plane = fmodel.calculate_cross_plane( - y_resolution=100, - z_resolution=100, - downstream_dist=500.0 + y_resolution=100, z_resolution=100, downstream_dist=500.0 ) # Create the plots diff --git a/examples/33_specify_turbine_power_curve.py b/examples/examples_turbine/003_specify_turbine_power_curve.py similarity index 66% rename from examples/33_specify_turbine_power_curve.py rename to examples/examples_turbine/003_specify_turbine_power_curve.py index 420f5aeab..1c1b59707 100644 --- a/examples/33_specify_turbine_power_curve.py +++ b/examples/examples_turbine/003_specify_turbine_power_curve.py @@ -1,12 +1,5 @@ +"""Example: Specify turbine power curve -import matplotlib.pyplot as plt -import numpy as np - -from floris import FlorisModel -from floris.turbine_library import build_cosine_loss_turbine_dict - - -""" This example demonstrates how to specify a turbine model based on a power and thrust curve for the wind turbine, as well as possible physical parameters (which default to the parameters of the NREL 5MW reference turbine). @@ -15,14 +8,21 @@ argument to build_turbine_dict is set. """ +import matplotlib.pyplot as plt +import numpy as np + +from floris import FlorisModel +from floris.turbine_library import build_cosine_loss_turbine_dict + + # Generate an example turbine power and thrust curve for use in the FLORIS model powers_orig = np.array([0, 30, 200, 500, 1000, 2000, 4000, 4000, 4000, 4000, 4000]) wind_speeds = np.array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) -power_coeffs = powers_orig[1:]/(0.5*126.**2*np.pi/4*1.225*wind_speeds[1:]**3) +power_coeffs = powers_orig[1:] / (0.5 * 126.0**2 * np.pi / 4 * 1.225 * wind_speeds[1:] ** 3) turbine_data_dict = { - "wind_speed":list(wind_speeds), - "power_coefficient":[0]+list(power_coeffs), - "thrust_coefficient":[0, 0.9, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2] + "wind_speed": list(wind_speeds), + "power_coefficient": [0] + list(power_coeffs), + "thrust_coefficient": [0, 0.9, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2], } turbine_dict = build_cosine_loss_turbine_dict( @@ -36,10 +36,10 @@ rotor_diameter=126, TSR=8, ref_air_density=1.225, - ref_tilt=5 + ref_tilt=5, ) -fmodel = FlorisModel("inputs/gch.yaml") +fmodel = FlorisModel("../inputs/gch.yaml") wind_speeds = np.linspace(1, 15, 100) wind_directions = 270 * np.ones_like(wind_speeds) turbulence_intensities = 0.06 * np.ones_like(wind_speeds) @@ -50,7 +50,7 @@ wind_directions=wind_directions, wind_speeds=wind_speeds, turbulence_intensities=turbulence_intensities, - turbine_type=[turbine_dict] + turbine_type=[turbine_dict], ) fmodel.run() @@ -58,16 +58,20 @@ specified_powers = ( np.array(turbine_data_dict["power_coefficient"]) - *0.5*turbine_dict["power_thrust_table"]["ref_air_density"] - *turbine_dict["rotor_diameter"]**2*np.pi/4 - *np.array(turbine_data_dict["wind_speed"])**3 -)/1000 + * 0.5 + * turbine_dict["power_thrust_table"]["ref_air_density"] + * turbine_dict["rotor_diameter"] ** 2 + * np.pi + / 4 + * np.array(turbine_data_dict["wind_speed"]) ** 3 +) / 1000 -fig, ax = plt.subplots(1,1,sharex=True) +fig, ax = plt.subplots(1, 1, sharex=True) -ax.scatter(wind_speeds, powers/1000, color="C0", s=5, label="Test points") -ax.scatter(turbine_data_dict["wind_speed"], specified_powers, - color="red", s=20, label="Specified points") +ax.scatter(wind_speeds, powers / 1000, color="C0", s=5, label="Test points") +ax.scatter( + turbine_data_dict["wind_speed"], specified_powers, color="red", s=20, label="Specified points" +) ax.grid() ax.set_xlabel("Wind speed [m/s]") diff --git a/examples/examples_uncertain/001_uncertain_model_params.py b/examples/examples_uncertain/001_uncertain_model_params.py new file mode 100644 index 000000000..b03d91500 --- /dev/null +++ b/examples/examples_uncertain/001_uncertain_model_params.py @@ -0,0 +1,170 @@ +"""Example 8: Uncertain Model Parameters + +""" + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + FlorisModel, + TimeSeries, + UncertainFlorisModel, +) + + +# Instantiate FlorisModel for comparison +fmodel = FlorisModel("../inputs/gch.yaml") # GCH model + +################################################ +# Resolution parameters +################################################ + +# The resolution parameters are used to define the precision of the wind direction, +# wind speed, and turbulence intensity and control parameters. All the inputs +# passed into the UncertainFlorisModel class are rounded to this resolution. Then +# following expansion, non-unique cases are removed. Here we apply the default +# resolution parameters. +wd_resolution = 1.0 # Degree +ws_resolution = 1.0 # m/s +ti_resolution = 0.01 # Decimal fraction +yaw_resolution = 1.0 # Degree +power_setpoint_resolution = 100.0 # kW + +################################################ +# wd_sample_points +################################################ + +# The wind direction sample points (wd_sample_points) parameter is used to define +# the number of points to sample the wind direction uncertainty. For example, +# if the the single condition to analyze is 270 degrees, and the wd_sample_points +# is [-2, -1, 0, 1 ,2], then the cases to be run and weighted +# will be 268, 269, 270, 271, 272. If not supplied default is +# [-2 * wd_std, -1 * wd_std, 0, wd_std, 2 * wd_std] +wd_sample_points = [-6, -3, 0, 3, 6] + + +################################################ +# WT_STD +################################################ + +# The wind direction standard deviation (wd_std) parameter is the primary input +# to the UncertainFlorisModel class. This parameter is used to weight the points +# following expansion by the wd_sample_points. The smaller the value, the closer +# the weighting will be to the nominal case. +wd_std = 3 # Default is 3 degrees + +################################################ +# Verbosity +################################################ + +# Setting verbose = True will print out the sizes of teh cases run +verbose = True + +################################################ +# Define the UncertainFlorisModel +################################################ +print('*** Instantiating UncertainFlorisModel ***') +ufmodel = UncertainFlorisModel("../inputs/gch.yaml", + wd_resolution=wd_resolution, + ws_resolution=ws_resolution, + ti_resolution=ti_resolution, + yaw_resolution=yaw_resolution, + power_setpoint_resolution=power_setpoint_resolution, + wd_std=wd_std, + wd_sample_points=wd_sample_points, + verbose=verbose) + + +################################################ +# Run the models +################################################ + +# Define an inflow where wind direction is swept while +# wind speed and turbulence intensity are held constant +wind_directions = np.arange(240.0, 300.0, 1.0) +time_series = TimeSeries( + wind_directions=wind_directions, + wind_speeds=8.0, + turbulence_intensities=0.06, +) + +# Define a two turbine farm and apply the inflow +D = 126.0 +layout_x = np.array([0, D * 6]) +layout_y = [0, 0] + +fmodel.set( + layout_x=layout_x, + layout_y=layout_y, + wind_data=time_series, +) +print('*** Setting UncertainFlorisModel to 60 Wind Direction Inflow ***') +ufmodel.set( + layout_x=layout_x, + layout_y=layout_y, + wind_data=time_series, +) + +# Run both models +fmodel.run() +ufmodel.run() + + +# Collect the nominal and uncertain farm power +turbine_powers_nom = fmodel.get_turbine_powers() / 1e3 +turbine_powers_unc = ufmodel.get_turbine_powers() / 1e3 + +farm_powers_nom = fmodel.get_farm_power() / 1e3 +farm_powers_unc_3 = ufmodel.get_farm_power() / 1e3 + + +# Plot results +fig, axarr = plt.subplots(1, 3, figsize=(15, 5)) +ax = axarr[0] +ax.plot(wind_directions, turbine_powers_nom[:, 0].flatten(), color="k", label="Nominal power") +ax.plot( + wind_directions, + turbine_powers_unc[:, 0].flatten(), + color="r", + label="Power with uncertainty", +) + +ax.grid(True) +ax.legend() +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") +ax.set_title("Upstream Turbine") + +ax = axarr[1] +ax.plot(wind_directions, turbine_powers_nom[:, 1].flatten(), color="k", label="Nominal power") +ax.plot( + wind_directions, + turbine_powers_unc[:, 1].flatten(), + color="r", + label="Power with uncertainty", +) + +ax.set_title("Downstream Turbine") +ax.grid(True) +ax.legend() +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") + +ax = axarr[2] +ax.plot(wind_directions, farm_powers_nom.flatten(), color="k", label="Nominal farm power") +ax.plot( + wind_directions, + farm_powers_unc_3.flatten(), + color="r", + label="Farm power with uncertainty", +) + + +ax.set_title("Farm Power") +ax.grid(True) +ax.legend() +ax.set_xlabel("Wind Direction (deg)") +ax.set_ylabel("Power (kW)") + + +plt.show() diff --git a/examples/examples_uncertain/002_yaw_inertial_frame.py b/examples/examples_uncertain/002_yaw_inertial_frame.py new file mode 100644 index 000000000..613c0348d --- /dev/null +++ b/examples/examples_uncertain/002_yaw_inertial_frame.py @@ -0,0 +1 @@ +#TODO add example here diff --git a/examples/23_layout_visualizations.py b/examples/examples_visualizations/001_layout_visualizations.py similarity index 69% rename from examples/23_layout_visualizations.py rename to examples/examples_visualizations/001_layout_visualizations.py index 465490e6e..cbf46a52a 100644 --- a/examples/23_layout_visualizations.py +++ b/examples/examples_visualizations/001_layout_visualizations.py @@ -1,3 +1,8 @@ +"""Example: Layout Visualizations + +Demonstrate the use of all the functions within the layout_visualization module + +""" import matplotlib.pyplot as plt import numpy as np @@ -7,10 +12,6 @@ from floris.flow_visualization import visualize_cut_plane -""" -This example shows a number of different ways to visualize a farm layout using FLORIS -""" - # Create the plotting objects using matplotlib fig, axarr = plt.subplots(3, 3, figsize=(16, 10), sharex=False) axarr = axarr.flatten() @@ -19,7 +20,7 @@ MAX_WS = 8.0 # Initialize FLORIS with the given input file. -fmodel = FlorisModel("inputs/gch.yaml") +fmodel = FlorisModel("../inputs/gch.yaml") # Change to 5-turbine layout with a wind direction from northwest fmodel.set( @@ -38,31 +39,25 @@ ) # Plot the turbine points, setting the color to white layoutviz.plot_turbine_points(fmodel, ax=ax, plotting_dict={"color": "w"}) -ax.set_title('Flow visualization and turbine points') +ax.set_title("Flow visualization and turbine points") # Plot 2: Show a particular flow case ax = axarr[1] turbine_names = [f"T{i}" for i in [10, 11, 12, 13, 22]] layoutviz.plot_turbine_points(fmodel, ax=ax) -layoutviz.plot_turbine_labels(fmodel, - ax=ax, - turbine_names=turbine_names, - show_bbox=True, - bbox_dict={'facecolor':'r'}) +layoutviz.plot_turbine_labels( + fmodel, ax=ax, turbine_names=turbine_names, show_bbox=True, bbox_dict={"facecolor": "r"} +) ax.set_title("Show turbine names with a red bounding box") # Plot 2: Show turbine rotors on flow ax = axarr[2] -horizontal_plane = fmodel.calculate_horizontal_plane(height=90.0, - yaw_angles=np.array([[0., 30., 0., 0., 0.]])) -visualize_cut_plane( - horizontal_plane, - ax=ax, - min_speed=MIN_WS, - max_speed=MAX_WS +horizontal_plane = fmodel.calculate_horizontal_plane( + height=90.0, yaw_angles=np.array([[0.0, 30.0, 0.0, 0.0, 0.0]]) ) -layoutviz.plot_turbine_rotors(fmodel,ax=ax,yaw_angles=np.array([[0., 30., 0., 0., 0.]])) +visualize_cut_plane(horizontal_plane, ax=ax, min_speed=MIN_WS, max_speed=MAX_WS) +layoutviz.plot_turbine_rotors(fmodel, ax=ax, yaw_angles=np.array([[0.0, 30.0, 0.0, 0.0, 0.0]])) ax.set_title("Flow visualization with yawed turbine") # Plot 3: Show the layout, including wake directions @@ -74,15 +69,17 @@ # Plot 4: Plot a subset of the layout, and limit directions less than 7D ax = axarr[4] -layoutviz.plot_turbine_points(fmodel, ax=ax, turbine_indices=[0,1,2,3]) -layoutviz.plot_turbine_labels(fmodel, ax=ax, turbine_names=turbine_names, turbine_indices=[0,1,2,3]) -layoutviz.plot_waking_directions(fmodel, ax=ax, turbine_indices=[0,1,2,3], limit_dist_D=7) +layoutviz.plot_turbine_points(fmodel, ax=ax, turbine_indices=[0, 1, 2, 3]) +layoutviz.plot_turbine_labels( + fmodel, ax=ax, turbine_names=turbine_names, turbine_indices=[0, 1, 2, 3] +) +layoutviz.plot_waking_directions(fmodel, ax=ax, turbine_indices=[0, 1, 2, 3], limit_dist_D=7) ax.set_title("Plot a subset and limit wake line distance") # Plot with a shaded region ax = axarr[5] layoutviz.plot_turbine_points(fmodel, ax=ax) -layoutviz.shade_region(np.array([[0,0],[300,0],[300,1000],[0,700]]),ax=ax) +layoutviz.shade_region(np.array([[0, 0], [300, 0], [300, 1000], [0, 700]]), ax=ax) ax.set_title("Plot with a shaded region") # Change hub heights and plot as a proxy for terrain diff --git a/examples/examples_visualizations/002_visualize_y_cut_plane.py b/examples/examples_visualizations/002_visualize_y_cut_plane.py new file mode 100644 index 000000000..7e9ef8cd4 --- /dev/null +++ b/examples/examples_visualizations/002_visualize_y_cut_plane.py @@ -0,0 +1,33 @@ +"""Example: Visualize y cut plane + +Demonstrate visualizing a plane cut vertically through the flow field along the wind direction. + +""" + +import matplotlib.pyplot as plt + +from floris import FlorisModel +from floris.flow_visualization import visualize_cut_plane + + +fmodel = FlorisModel("../inputs/gch.yaml") + +# Set a 3 turbine layout with wind direction along the row +fmodel.set( + layout_x=[0, 500, 1000], + layout_y=[0, 0, 0], + wind_directions=[270], + wind_speeds=[8], + turbulence_intensities=[0.06], +) + +# Collect the yplane +y_plane = fmodel.calculate_y_plane(x_resolution=200, z_resolution=100, crossstream_dist=0.0) + +# Plot the flow field +fig, ax = plt.subplots(figsize=(10, 4)) +visualize_cut_plane( + y_plane, ax=ax, min_speed=3, max_speed=9, label_contours=True, title="Y Cut Plane" +) + +plt.show() diff --git a/examples/examples_visualizations/003_visualize_cross_plane.py b/examples/examples_visualizations/003_visualize_cross_plane.py new file mode 100644 index 000000000..1aa00006e --- /dev/null +++ b/examples/examples_visualizations/003_visualize_cross_plane.py @@ -0,0 +1,37 @@ +"""Example: Visualize cross plane + +Demonstrate visualizing a plane cut vertically through the flow field across the wind direction. + +""" + +import matplotlib.pyplot as plt + +from floris import FlorisModel +from floris.flow_visualization import visualize_cut_plane + + +fmodel = FlorisModel("../inputs/gch.yaml") + +# Set a 1 turbine layout +fmodel.set( + layout_x=[0], + layout_y=[0], + wind_directions=[270], + wind_speeds=[8], + turbulence_intensities=[0.06], +) + +# Collect the cross plane downstream of the turbine +cross_plane = fmodel.calculate_cross_plane( + y_resolution=100, + z_resolution=100, + downstream_dist=500.0, +) + +# Plot the flow field +fig, ax = plt.subplots(figsize=(4, 6)) +visualize_cut_plane( + cross_plane, ax=ax, min_speed=3, max_speed=9, label_contours=True, title="Cross Plane" +) + +plt.show() diff --git a/examples/examples_visualizations/004_visualize_rotor_values.py b/examples/examples_visualizations/004_visualize_rotor_values.py new file mode 100644 index 000000000..e1d40c14b --- /dev/null +++ b/examples/examples_visualizations/004_visualize_rotor_values.py @@ -0,0 +1,33 @@ +"""Example: Visualize rotor velocities + +Demonstrate visualizing the flow velocities at the rotor using plot_rotor_values + +""" + +import matplotlib.pyplot as plt + +import floris.flow_visualization as flowviz +from floris import FlorisModel + + +fmodel = FlorisModel("../inputs/gch.yaml") + +# Set a 2 turbine layout +fmodel.set( + layout_x=[0, 500], + layout_y=[0, 0], + wind_directions=[270], + wind_speeds=[8], + turbulence_intensities=[0.06], +) + +# Run the model +fmodel.run() + +# Plot the values at each rotor +fig, axes, _, _ = flowviz.plot_rotor_values( + fmodel.core.flow_field.u, findex=0, n_rows=1, n_cols=2, return_fig_objects=True +) +fig.suptitle("Rotor Plane Visualization, Original Resolution") + +plt.show() diff --git a/examples/examples_visualizations/005_visualize_flow_by_sweeping_turbines.py b/examples/examples_visualizations/005_visualize_flow_by_sweeping_turbines.py new file mode 100644 index 000000000..3614e74bc --- /dev/null +++ b/examples/examples_visualizations/005_visualize_flow_by_sweeping_turbines.py @@ -0,0 +1,43 @@ +"""Example: Visualize flow by sweeping turbines + +Demonstrate the use calculate_horizontal_plane_with_turbines + +""" + +import matplotlib.pyplot as plt + +import floris.flow_visualization as flowviz +from floris import FlorisModel + + +fmodel = FlorisModel("../inputs/gch.yaml") + +# # Some wake models may not yet have a visualization method included, for these cases can use +# # a slower version which scans a turbine model to produce the horizontal flow + + +# Set a 2 turbine layout +fmodel.set( + layout_x=[0, 500], + layout_y=[0, 0], + wind_directions=[270], + wind_speeds=[8], + turbulence_intensities=[0.06], +) + +horizontal_plane_scan_turbine = flowviz.calculate_horizontal_plane_with_turbines( + fmodel, + x_resolution=20, + y_resolution=10, +) + +fig, ax = plt.subplots(figsize=(10, 4)) +flowviz.visualize_cut_plane( + horizontal_plane_scan_turbine, + ax=ax, + label_contours=True, + title="Horizontal (coarse turbine scan method)", +) + + +plt.show() diff --git a/examples/34_wind_data.py b/examples/examples_wind_data/001_wind_data_comparisons.py similarity index 53% rename from examples/34_wind_data.py rename to examples/examples_wind_data/001_wind_data_comparisons.py index 0d17e7924..9dbbe07c7 100644 --- a/examples/34_wind_data.py +++ b/examples/examples_wind_data/001_wind_data_comparisons.py @@ -1,3 +1,19 @@ +"""Example: Wind Data Comparisons + +In this example, a random time series of wind speeds, wind directions, turbulence +intensities, and values is generated. Value represents the value of the power +generated at each time step or wind condition (e.g., the price of electricity). This +can then be used in later optimization methods to optimize for total value instead of +energy. This time series is then used to instantiate a TimeSeries object. The TimeSeries +object is then used to instantiate a WindRose object and WindTIRose object based on the +same data. The three objects are then each used to drive a FLORIS model of a simple +two-turbine wind farm. The annual energy production (AEP) and annual value production +(AVP) outputs are then compared and printed to the console. + +""" + + + import matplotlib.pyplot as plt import numpy as np @@ -9,21 +25,15 @@ from floris.utilities import wrap_360 -""" -This example is meant to be temporary and may be updated by a later pull request. Before we -release v4, we intend to propagate the TimeSeries and WindRose objects through the other relevant -examples, and change this example to demonstrate more advanced (as yet, not implemented) -functionality of the WindData objects (such as electricity pricing etc). -""" - - -# Generate a random time series of wind speeds, wind directions and turbulence intensities +# Generate a random time series of wind speeds, wind directions, turbulence +# intensities, and values. In this case let's treat value as the dollars per MWh. N = 500 wd_array = wrap_360(270 * np.ones(N) + np.random.randn(N) * 20) ws_array = np.clip(8 * np.ones(N) + np.random.randn(N) * 8, 3, 50) ti_array = np.clip(0.1 * np.ones(N) + np.random.randn(N) * 0.05, 0, 0.25) +value_array = np.clip(25 * np.ones(N) + np.random.randn(N) * 10, 0, 100) -fig, axarr = plt.subplots(3, 1, sharex=True, figsize=(7, 4)) +fig, axarr = plt.subplots(4, 1, sharex=True, figsize=(7, 6)) ax = axarr[0] ax.plot(wd_array, marker=".", ls="None") ax.set_ylabel("Wind Direction") @@ -33,10 +43,13 @@ ax = axarr[2] ax.plot(ti_array, marker=".", ls="None") ax.set_ylabel("Turbulence Intensity") +ax = axarr[3] +ax.plot(value_array, marker=".", ls="None") +ax.set_ylabel("Value") # Build the time series -time_series = TimeSeries(wd_array, ws_array, turbulence_intensities=ti_array) +time_series = TimeSeries(wd_array, ws_array, turbulence_intensities=ti_array, values=value_array) # Now build the wind rose wind_rose = time_series.to_WindRose() @@ -59,7 +72,7 @@ plt.tight_layout() # Now set up a FLORIS model and initialize it using the time series and wind rose -fmodel = FlorisModel("inputs/gch.yaml") +fmodel = FlorisModel("../inputs/gch.yaml") fmodel.set(layout_x=[0, 500.0], layout_y=[0.0, 0.0]) fmodel_time_series = fmodel.copy() @@ -74,9 +87,9 @@ fmodel_wind_rose.run() fmodel_wind_ti_rose.run() -time_series_power = fmodel_time_series.get_farm_power() -wind_rose_power = fmodel_wind_rose.get_farm_power() -wind_ti_rose_power = fmodel_wind_ti_rose.get_farm_power() +# Now, compute AEP using the FLORIS models initialized with the three types of +# WindData objects. The AEP values are very similar but not exactly the same +# because of the effects of binning in the wind roses. time_series_aep = fmodel_time_series.get_farm_AEP() wind_rose_aep = fmodel_wind_rose.get_farm_AEP() @@ -86,4 +99,16 @@ print(f"AEP from WindRose {wind_rose_aep / 1e9:.2f} GWh") print(f"AEP from WindTIRose {wind_ti_rose_aep / 1e9:.2f} GWh") +# Now, compute annual value production (AVP) using the FLORIS models initialized +# with the three types of WindData objects. The AVP values are very similar but +# not exactly the same because of the effects of binning in the wind roses. + +time_series_avp = fmodel_time_series.get_farm_AVP() +wind_rose_avp = fmodel_wind_rose.get_farm_AVP() +wind_ti_rose_avp = fmodel_wind_ti_rose.get_farm_AVP() + +print(f"Annual Value Production (AVP) from TimeSeries {time_series_avp / 1e6:.2f} dollars") +print(f"AVP from WindRose {wind_rose_avp / 1e6:.2f} dollars") +print(f"AVP from WindTIRose {wind_ti_rose_avp / 1e6:.2f} dollars") + plt.show() diff --git a/examples/36_generate_ti.py b/examples/examples_wind_data/002_generate_ti.py similarity index 97% rename from examples/36_generate_ti.py rename to examples/examples_wind_data/002_generate_ti.py index 317bc8dbe..55bf09e4d 100644 --- a/examples/36_generate_ti.py +++ b/examples/examples_wind_data/002_generate_ti.py @@ -1,19 +1,18 @@ +"""Example: Generate TI + +Demonstrate usage of TI generating and plotting functionality in the WindRose +and TimeSeries classes + +""" + import matplotlib.pyplot as plt import numpy as np from floris import ( - FlorisModel, TimeSeries, WindRose, ) -from floris.utilities import wrap_360 - - -""" -Demonstrate usage of TI generating and plotting functionality in the WindRose -and TimeSeries classes -""" # Generate a random time series of wind speeds, wind directions and turbulence intensities diff --git a/examples/examples_wind_data/003_generate_value.py b/examples/examples_wind_data/003_generate_value.py new file mode 100644 index 000000000..af23c5522 --- /dev/null +++ b/examples/examples_wind_data/003_generate_value.py @@ -0,0 +1,81 @@ +"""Example: Generate value + +Demonstrate usage of value generating and plotting functionality in the WindRose +and TimeSeries classes. Value represents the value of the power or energy generated +at each time step or wind condition (e.g., the price of electricity in dollars/MWh). +This can then be used to compute the annual value production (AVP) instead of AEP, +or in later optimization methods to optimize for total value instead of energy. + +""" + + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + TimeSeries, + WindRose, +) + + +# Generate a random time series of wind speeds, wind directions and turbulence intensities +wind_directions = np.array([250, 260, 270]) +wind_speeds = np.arange(3.0, 11.0, 1.0) +ti_table = 0.06 + +# Declare a WindRose object +wind_rose = WindRose(wind_directions=wind_directions, wind_speeds=wind_speeds, ti_table=ti_table) + + +# Define a custom function where value = 100 / wind_speed +def custom_value_func(wind_directions, wind_speeds): + return 100 / wind_speeds + + +wind_rose.assign_value_using_wd_ws_function(custom_value_func) + +fig, ax = plt.subplots() +wind_rose.plot_value_over_ws(ax) +ax.set_title("Value defined by custom function") + +# Now assign value using the provided assign_value_piecewise_linear method with the default +# settings. This method assigns value based on a linear piecewise function of wind speed +# (with two line segments). The default arguments produce a value vs. wind speed that +# approximates the normalized mean electricity price vs. wind speed curve for the SPP market +# in the U.S. for years 2018-2020 from figure 7 in "The value of wake steering wind farm flow +# control in US energy markets," Wind Energy Science, 2024. https://doi.org/10.5194/wes-9-219-2024. +wind_rose.assign_value_piecewise_linear( + value_zero_ws=1.425, + ws_knee=4.5, + slope_1=0.0, + slope_2=-0.135 +) +fig, ax = plt.subplots() +wind_rose.plot_value_over_ws(ax) +ax.set_title("Value defined by default piecewise linear function") + +# Demonstrate equivalent usage in time series +N = 100 +wind_directions = 270 * np.ones(N) +wind_speeds = np.linspace(3, 15, N) +turbulence_intensities = 0.06 * np.ones(N) +time_series = TimeSeries( + wind_directions=wind_directions, + wind_speeds=wind_speeds, + turbulence_intensities=turbulence_intensities +) +time_series.assign_value_piecewise_linear() + +fig, axarr = plt.subplots(2, 1, sharex=True, figsize=(7, 8)) +ax = axarr[0] +ax.plot(wind_speeds) +ax.set_ylabel("Wind Speeds (m/s)") +ax.grid(True) +ax = axarr[1] +ax.plot(time_series.values) +ax.set_ylabel("Value (normalized price/MWh)") +ax.grid(True) +fig.suptitle("Generating value in TimeSeries") + + +plt.show() diff --git a/examples/inputs/cc.yaml b/examples/inputs/cc.yaml index af62b0021..de626ff8f 100644 --- a/examples/inputs/cc.yaml +++ b/examples/inputs/cc.yaml @@ -1,7 +1,7 @@ name: CC description: Three turbines using Cumulative Gauss Curl model -floris_version: v3.0.0 +floris_version: v4 logging: console: diff --git a/examples/inputs/emgauss.yaml b/examples/inputs/emgauss.yaml index 73344d5ea..89caef95b 100644 --- a/examples/inputs/emgauss.yaml +++ b/examples/inputs/emgauss.yaml @@ -1,7 +1,7 @@ name: Emperical Gaussian description: Three turbines using emperical Gaussian model -floris_version: v3.x +floris_version: v4 logging: console: diff --git a/examples/inputs/gch.yaml b/examples/inputs/gch.yaml index 3397839da..79b0b8629 100644 --- a/examples/inputs/gch.yaml +++ b/examples/inputs/gch.yaml @@ -12,7 +12,7 @@ description: Three turbines using Gauss Curl Hybrid model ### # The earliest verion of FLORIS this input file supports. # This is not currently only for the user's reference. -floris_version: v3.0.0 +floris_version: v4 ### # Configure the logging level and where to show the logs. diff --git a/examples/inputs/gch_heterogeneous_inflow.yaml b/examples/inputs/gch_heterogeneous_inflow.yaml index 86507e287..121457f15 100644 --- a/examples/inputs/gch_heterogeneous_inflow.yaml +++ b/examples/inputs/gch_heterogeneous_inflow.yaml @@ -1,6 +1,6 @@ name: GCH description: Three turbines using Gauss Curl Hybrid model -floris_version: v3.0.0 +floris_version: v4 logging: console: @@ -27,7 +27,7 @@ farm: flow_field: air_density: 1.225 - heterogenous_inflow_config: + heterogeneous_inflow_config: speed_multipliers: - - 2.0 - 1.0 diff --git a/examples/inputs/gch_multi_dim_cp_ct.yaml b/examples/inputs/gch_multi_dim_cp_ct.yaml index 581dd1f37..236bb63f8 100644 --- a/examples/inputs/gch_multi_dim_cp_ct.yaml +++ b/examples/inputs/gch_multi_dim_cp_ct.yaml @@ -1,7 +1,7 @@ name: GCH multi dimensional Cp/Ct description: Three turbines using GCH model -floris_version: v3.0.0 +floris_version: v4 logging: console: diff --git a/examples/inputs/gch_multiple_turbine_types.yaml b/examples/inputs/gch_multiple_turbine_types.yaml index 0ead479a1..366f4e9c0 100644 --- a/examples/inputs/gch_multiple_turbine_types.yaml +++ b/examples/inputs/gch_multiple_turbine_types.yaml @@ -1,7 +1,7 @@ name: GCH description: Three turbines using Gauss Curl Hybrid model -floris_version: v3.0.0 +floris_version: v4 logging: console: diff --git a/examples/inputs/jensen.yaml b/examples/inputs/jensen.yaml index 6b4ac0dd6..c0f95de6e 100644 --- a/examples/inputs/jensen.yaml +++ b/examples/inputs/jensen.yaml @@ -1,7 +1,7 @@ name: Jensen-Jimenez description: Three turbines using Jensen / Jimenez models -floris_version: v3.0.0 +floris_version: v4 logging: console: diff --git a/examples/inputs/turbopark.yaml b/examples/inputs/turbopark.yaml index 682b1e801..598ed87a0 100644 --- a/examples/inputs/turbopark.yaml +++ b/examples/inputs/turbopark.yaml @@ -1,7 +1,7 @@ name: TurbOPark description: Three turbines using TurbOPark model -floris_version: v3.0.0 +floris_version: v4 logging: console: diff --git a/examples/inputs_floating/emgauss_fixed.yaml b/examples/inputs_floating/emgauss_fixed.yaml index 76c3c4513..026710481 100644 --- a/examples/inputs_floating/emgauss_fixed.yaml +++ b/examples/inputs_floating/emgauss_fixed.yaml @@ -1,7 +1,7 @@ name: Emperical Gaussian description: Example of single fixed-bottom turbine -floris_version: v3.x +floris_version: v4 logging: console: diff --git a/examples/inputs_floating/emgauss_floating.yaml b/examples/inputs_floating/emgauss_floating.yaml index 965ef7549..253944aaf 100644 --- a/examples/inputs_floating/emgauss_floating.yaml +++ b/examples/inputs_floating/emgauss_floating.yaml @@ -1,7 +1,7 @@ name: Emperical Gaussian description: Example of single floating turbine -floris_version: v3.x +floris_version: v4 logging: console: diff --git a/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml b/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml index e8a452325..c34b38250 100644 --- a/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml +++ b/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml @@ -1,7 +1,7 @@ name: Emperical Gaussian floating description: Single turbine using emperical Gaussian model for floating -floris_version: v3.x +floris_version: v4 logging: console: diff --git a/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml b/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml index 7732b6213..398c6eb29 100644 --- a/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml +++ b/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml @@ -1,7 +1,7 @@ name: Emperical Gaussian floating description: Single turbine using emperical Gaussian model for floating -floris_version: v3.x +floris_version: v4 logging: console: diff --git a/examples/inputs_floating/gch_fixed.yaml b/examples/inputs_floating/gch_fixed.yaml index be03460e1..3290d6fa1 100644 --- a/examples/inputs_floating/gch_fixed.yaml +++ b/examples/inputs_floating/gch_fixed.yaml @@ -1,7 +1,7 @@ name: GCH description: Example of single fixed-bottom turbine -floris_version: v3.0.0 +floris_version: v4 logging: console: diff --git a/examples/inputs_floating/gch_floating.yaml b/examples/inputs_floating/gch_floating.yaml index 09aaa5604..c342473f6 100644 --- a/examples/inputs_floating/gch_floating.yaml +++ b/examples/inputs_floating/gch_floating.yaml @@ -2,7 +2,7 @@ name: GCH description: Example of single floating turbine -floris_version: v3.0.0 +floris_version: v4 logging: console: diff --git a/examples/inputs_floating/gch_floating_defined_floating.yaml b/examples/inputs_floating/gch_floating_defined_floating.yaml index d540c8d47..47288c718 100644 --- a/examples/inputs_floating/gch_floating_defined_floating.yaml +++ b/examples/inputs_floating/gch_floating_defined_floating.yaml @@ -1,7 +1,7 @@ name: GCH description: Example of single floating turbine where the cp/ct is calculated with floating tilt included -floris_version: v3.0.0 +floris_version: v4 logging: console: diff --git a/floris/core/core.py b/floris/core/core.py index a31583567..084f0a717 100644 --- a/floris/core/core.py +++ b/floris/core/core.py @@ -93,14 +93,12 @@ def __attrs_post_init__(self) -> None: turbine_diameters=self.farm.rotor_diameters, wind_directions=self.flow_field.wind_directions, grid_resolution=self.solver["turbine_grid_points"], - time_series=self.flow_field.time_series, ) elif self.solver["type"] == "turbine_cubature_grid": self.grid = TurbineCubatureGrid( turbine_coordinates=self.farm.coordinates, turbine_diameters=self.farm.rotor_diameters, wind_directions=self.flow_field.wind_directions, - time_series=self.flow_field.time_series, grid_resolution=self.solver["turbine_grid_points"], ) elif self.solver["type"] == "flow_field_grid": @@ -109,7 +107,6 @@ def __attrs_post_init__(self) -> None: turbine_diameters=self.farm.rotor_diameters, wind_directions=self.flow_field.wind_directions, grid_resolution=self.solver["flow_field_grid_points"], - time_series=self.flow_field.time_series, ) elif self.solver["type"] == "flow_field_planar_grid": self.grid = FlowFieldPlanarGrid( @@ -119,7 +116,6 @@ def __attrs_post_init__(self) -> None: normal_vector=self.solver["normal_vector"], planar_coordinate=self.solver["planar_coordinate"], grid_resolution=self.solver["flow_field_grid_points"], - time_series=self.flow_field.time_series, x1_bounds=self.solver["flow_field_bounds"][0], x2_bounds=self.solver["flow_field_bounds"][1], ) @@ -230,7 +226,6 @@ def solve_for_points(self, x, y, z): turbine_diameters=self.farm.rotor_diameters, wind_directions=self.flow_field.wind_directions, grid_resolution=1, - time_series=self.flow_field.time_series, x_center_of_rotation=self.grid.x_center_of_rotation, y_center_of_rotation=self.grid.y_center_of_rotation ) diff --git a/floris/core/farm.py b/floris/core/farm.py index c92078be6..93bd246b6 100644 --- a/floris/core/farm.py +++ b/floris/core/farm.py @@ -38,7 +38,7 @@ @define class Farm(BaseClass): """Farm is where wind power plants should be instantiated from a YAML configuration - file. The Farm will create a heterogenous set of turbines that compose a wind farm, + file. The Farm will create a heterogeneous set of turbines that compose a wind farm, validate the inputs, and then create a vectorized representation of the the turbine data. diff --git a/floris/core/flow_field.py b/floris/core/flow_field.py index 655f771a9..d28c47f27 100644 --- a/floris/core/flow_field.py +++ b/floris/core/flow_field.py @@ -28,8 +28,7 @@ class FlowField(BaseClass): air_density: float = field(converter=float) turbulence_intensities: NDArrayFloat = field(converter=floris_array_converter) reference_wind_height: float = field(converter=float) - time_series: bool = field(default=False) - heterogenous_inflow_config: dict = field(default=None) + heterogeneous_inflow_config: dict = field(default=None) multidim_conditions: dict = field(default=None) n_findex: int = field(init=False) @@ -97,19 +96,19 @@ def wind_speeds_validator(self, instance: attrs.Attribute, value: NDArrayFloat) f"wind_speeds (length = {len(self.wind_speeds)}) must have the same length" ) - @heterogenous_inflow_config.validator - def heterogenous_config_validator(self, instance: attrs.Attribute, value: dict | None) -> None: - """Using the validator method to check that the heterogenous_inflow_config dictionary has + @heterogeneous_inflow_config.validator + def heterogeneous_config_validator(self, instance: attrs.Attribute, value: dict | None) -> None: + """Using the validator method to check that the heterogeneous_inflow_config dictionary has the correct key-value pairs. """ if value is None: return - # Check that the correct keys are supplied for the heterogenous_inflow_config dict + # Check that the correct keys are supplied for the heterogeneous_inflow_config dict for k in ["speed_multipliers", "x", "y"]: if k not in value.keys(): raise ValueError( - "heterogenous_inflow_config must contain entries for 'speed_multipliers'," + "heterogeneous_inflow_config must contain entries for 'speed_multipliers'," f"'x', and 'y', with 'z' optional. Missing '{k}'." ) if "z" not in value: @@ -131,7 +130,7 @@ def het_map_validator(self, instance: attrs.Attribute, value: list | None) -> No def __attrs_post_init__(self) -> None: - if self.heterogenous_inflow_config is not None: + if self.heterogeneous_inflow_config is not None: self.generate_heterogeneous_wind_map() @@ -165,8 +164,8 @@ def initialize_velocity_field(self, grid: Grid) -> None: # grid locations are determined in either 2 or 3 dimensions. else: bounds = np.array(list(zip( - self.heterogenous_inflow_config['x'], - self.heterogenous_inflow_config['y'] + self.heterogeneous_inflow_config['x'], + self.heterogeneous_inflow_config['y'] ))) hull = ConvexHull(bounds) polygon = Polygon(bounds[hull.vertices]) @@ -273,7 +272,7 @@ def generate_heterogeneous_wind_map(self): map bounds. Args: - heterogenous_inflow_config (dict): The heterogeneous inflow configuration dictionary. + heterogeneous_inflow_config (dict): The heterogeneous inflow configuration dictionary. The configuration should have the following inputs specified. - **speed_multipliers** (list): A list of speed up factors that will multiply the specified freestream wind speed. This 2-dimensional array should have an @@ -282,10 +281,10 @@ def generate_heterogeneous_wind_map(self): - **y**: A list of y locations at which the speed up factors are defined. - **z** (optional): A list of z locations at which the speed up factors are defined. """ - speed_multipliers = self.heterogenous_inflow_config['speed_multipliers'] - x = self.heterogenous_inflow_config['x'] - y = self.heterogenous_inflow_config['y'] - z = self.heterogenous_inflow_config['z'] + speed_multipliers = self.heterogeneous_inflow_config['speed_multipliers'] + x = self.heterogeneous_inflow_config['x'] + y = self.heterogeneous_inflow_config['y'] + z = self.heterogeneous_inflow_config['z'] if z is not None: # Compute the 3-dimensional interpolants for each wind direction diff --git a/floris/core/grid.py b/floris/core/grid.py index 3dc6280ae..9076e01e2 100644 --- a/floris/core/grid.py +++ b/floris/core/grid.py @@ -45,15 +45,12 @@ class Grid(ABC, BaseClass): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time - series. grid_resolution (:py:obj:`int` | :py:obj:`Iterable(int,)`): Grid resolution with values specific to each grid type. """ turbine_coordinates: NDArrayFloat = field(converter=floris_array_converter) turbine_diameters: NDArrayFloat = field(converter=floris_array_converter) wind_directions: NDArrayFloat = field(converter=floris_array_converter) - time_series: bool = field() grid_resolution: int | Iterable = field() n_turbines: int = field(init=False) @@ -116,8 +113,6 @@ class TurbineGrid(Grid): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time - series. grid_resolution (:py:obj:`int`): The number of points in each direction of the square grid on the rotor plane. For example, grid_resolution=3 creates a 3x3 grid within the rotor swept area. @@ -275,8 +270,6 @@ class TurbineCubatureGrid(Grid): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time - series. grid_resolution (:py:obj:`int`): The number of points to include in the cubature method. This value must be in the range [1, 10], and the corresponding cubature weights are set automatically. @@ -438,8 +431,6 @@ class FlowFieldGrid(Grid): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time - series. grid_resolution (:py:obj:`Iterable(int,)`): The number of grid points to create in each planar direction. Must be 3 components for resolution in the x, y, and z directions. """ @@ -509,8 +500,6 @@ class FlowFieldPlanarGrid(Grid): arrays with shape (N coordinates, 3). turbine_diameters (:py:obj:`NDArrayFloat`): The rotor diameters of each turbine. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - time_series (:py:obj:`bool`): Flag to indicate whether the supplied wind data is a time - series. grid_resolution (:py:obj:`Iterable(int,)`): The number of grid points to create in each planar direction. Must be 2 components for resolution in the x and y directions. The z direction is set to 3 planes at -10.0, 0.0, and +10.0 relative to the @@ -626,8 +615,6 @@ class PointsGrid(Grid): turbine_diameters (:py:obj:`NDArrayFloat`): Not used for PointsGrid, but required for the `Grid` super-class. wind_directions (:py:obj:`NDArrayFloat`): Wind directions supplied by the user. - time_series (:py:obj:`bool`): Not used for PointsGrid, but - required for the `Grid` super-class. grid_resolution (:py:obj:`int` | :py:obj:`Iterable(int,)`): Not used for PointsGrid, but required for the `Grid` super-class. diff --git a/floris/core/solver.py b/floris/core/solver.py index 00abcc129..a21978156 100644 --- a/floris/core/solver.py +++ b/floris/core/solver.py @@ -281,7 +281,6 @@ def full_flow_sequential_solver( turbine_diameters=turbine_grid_farm.rotor_diameters, wind_directions=turbine_grid_flow_field.wind_directions, grid_resolution=3, - time_series=turbine_grid_flow_field.time_series, ) turbine_grid_farm.expand_farm_properties( turbine_grid_flow_field.n_findex, @@ -703,7 +702,6 @@ def full_flow_cc_solver( turbine_diameters=turbine_grid_farm.rotor_diameters, wind_directions=turbine_grid_flow_field.wind_directions, grid_resolution=3, - time_series=turbine_grid_flow_field.time_series, ) turbine_grid_farm.expand_farm_properties( turbine_grid_flow_field.n_findex, @@ -1326,7 +1324,6 @@ def full_flow_empirical_gauss_solver( turbine_diameters=turbine_grid_farm.rotor_diameters, wind_directions=turbine_grid_flow_field.wind_directions, grid_resolution=3, - time_series=turbine_grid_flow_field.time_series, ) turbine_grid_farm.expand_farm_properties( turbine_grid_flow_field.n_findex, diff --git a/floris/core/turbine/operation_models.py b/floris/core/turbine/operation_models.py index 88f0f4fac..a4ddfddfe 100644 --- a/floris/core/turbine/operation_models.py +++ b/floris/core/turbine/operation_models.py @@ -396,7 +396,8 @@ def power( power_setpoints: NDArrayFloat, **kwargs ): - yaw_angles_mask = yaw_angles > 0 + # Yaw angles mask all yaw_angles not equal to zero + yaw_angles_mask = yaw_angles != 0.0 power_setpoints_mask = power_setpoints < POWER_SETPOINT_DEFAULT neither_mask = np.logical_not(yaw_angles_mask) & np.logical_not(power_setpoints_mask) @@ -427,7 +428,7 @@ def thrust_coefficient( power_setpoints: NDArrayFloat, **kwargs ): - yaw_angles_mask = yaw_angles > 0 + yaw_angles_mask = yaw_angles != 0.0 power_setpoints_mask = power_setpoints < POWER_SETPOINT_DEFAULT neither_mask = np.logical_not(yaw_angles_mask) & np.logical_not(power_setpoints_mask) @@ -458,7 +459,7 @@ def axial_induction( power_setpoints: NDArrayFloat, **kwargs ): - yaw_angles_mask = yaw_angles > 0 + yaw_angles_mask = yaw_angles != 0.0 power_setpoints_mask = power_setpoints < POWER_SETPOINT_DEFAULT neither_mask = np.logical_not(yaw_angles_mask) & np.logical_not(power_setpoints_mask) diff --git a/floris/floris_model.py b/floris/floris_model.py index d9a7ba7e3..2018a4255 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -128,7 +128,7 @@ def _reinitialize( turbine_type: list | None = None, turbine_library_path: str | Path | None = None, solver_settings: dict | None = None, - heterogenous_inflow_config=None, + heterogeneous_inflow_config=None, wind_data: type[WindDataBase] | None = None, ): """ @@ -157,8 +157,8 @@ def _reinitialize( turbine_library_path (str | Path | None, optional): Path to the turbine library. Defaults to None. solver_settings (dict | None, optional): Solver settings. Defaults to None. - heterogenous_inflow_config (None, optional): Heterogenous inflow configuration. Defaults - to None. + heterogeneous_inflow_config (None, optional): heterogeneous inflow configuration. + Defaults to None. wind_data (type[WindDataBase] | None, optional): Wind data. Defaults to None. """ # Export the floris object recursively as a dictionary @@ -171,13 +171,13 @@ def _reinitialize( (wind_directions is not None) or (wind_speeds is not None) or (turbulence_intensities is not None) - or (heterogenous_inflow_config is not None) + or (heterogeneous_inflow_config is not None) ): if wind_data is not None: raise ValueError( "If wind_data is passed to reinitialize, then do not pass wind_directions, " "wind_speeds, turbulence_intensities or " - "heterogenous_inflow_config as this is redundant" + "heterogeneous_inflow_config as this is redundant" ) elif self.wind_data is not None: self.logger.warning("Deleting stored wind_data information.") @@ -188,7 +188,7 @@ def _reinitialize( wind_directions, wind_speeds, turbulence_intensities, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) = wind_data.unpack_for_reinitialize() self._wind_data = wind_data @@ -207,8 +207,8 @@ def _reinitialize( flow_field_dict["turbulence_intensities"] = turbulence_intensities if air_density is not None: flow_field_dict["air_density"] = air_density - if heterogenous_inflow_config is not None: - flow_field_dict["heterogenous_inflow_config"] = heterogenous_inflow_config + if heterogeneous_inflow_config is not None: + flow_field_dict["heterogeneous_inflow_config"] = heterogeneous_inflow_config ## Farm if layout_x is not None: @@ -302,7 +302,7 @@ def set( turbine_type: list | None = None, turbine_library_path: str | Path | None = None, solver_settings: dict | None = None, - heterogenous_inflow_config=None, + heterogeneous_inflow_config=None, wind_data: type[WindDataBase] | None = None, yaw_angles: NDArrayFloat | list[float] | None = None, power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, @@ -330,8 +330,8 @@ def set( turbine_library_path (str | Path | None, optional): Path to the turbine library. Defaults to None. solver_settings (dict | None, optional): Solver settings. Defaults to None. - heterogenous_inflow_config (None, optional): Heterogenous inflow configuration. Defaults - to None. + heterogeneous_inflow_config (None, optional): heterogeneous inflow configuration. + Defaults to None. wind_data (type[WindDataBase] | None, optional): Wind data. Defaults to None. yaw_angles (NDArrayFloat | list[float] | None, optional): Turbine yaw angles. Defaults to None. @@ -357,7 +357,7 @@ def set( turbine_type=turbine_type, turbine_library_path=turbine_library_path, solver_settings=solver_settings, - heterogenous_inflow_config=heterogenous_inflow_config, + heterogeneous_inflow_config=heterogeneous_inflow_config, wind_data=wind_data, ) @@ -1565,6 +1565,56 @@ def layout_y(self): """ return self.core.farm.layout_y + @property + def wind_directions(self): + """ + Wind direction information. + + Returns: + np.array: Wind direction. + """ + return self.core.flow_field.wind_directions + + @property + def wind_speeds(self): + """ + Wind speed information. + + Returns: + np.array: Wind speed. + """ + return self.core.flow_field.wind_speeds + + @property + def turbulence_intensities(self): + """ + Turbulence intensity information. + + Returns: + np.array: Turbulence intensity. + """ + return self.core.flow_field.turbulence_intensities + + @property + def n_findex(self): + """ + Number of floris indices (findex). + + Returns: + int: Number of flow indices. + """ + return self.core.flow_field.n_findex + + @property + def n_turbines(self): + """ + Number of turbines. + + Returns: + int: Number of turbines. + """ + return self.core.farm.n_turbines + @property def turbine_average_velocities(self) -> NDArrayFloat: return average_velocity( diff --git a/floris/flow_visualization.py b/floris/flow_visualization.py index 3afaf1a38..8152be3df 100644 --- a/floris/flow_visualization.py +++ b/floris/flow_visualization.py @@ -297,8 +297,8 @@ def visualize_heterogeneous_cut_plane( points = np.array( list( zip( - fmodel.core.flow_field.heterogenous_inflow_config['x'], - fmodel.core.flow_field.heterogenous_inflow_config['y'], + fmodel.core.flow_field.heterogeneous_inflow_config['x'], + fmodel.core.flow_field.heterogeneous_inflow_config['y'], ) ) ) @@ -442,7 +442,7 @@ def plot_rotor_values( if n_rows == 1 and n_cols == 1: axes = np.array([axes]) - titles = np.array([f"T{i}" for i in t_range]) + titles = np.array([f"tindex: {i}" for i in t_range]) for ax, t, i in zip(axes.flatten(), titles, t_range): diff --git a/floris/optimization/yaw_optimization/yaw_optimization_base.py b/floris/optimization/yaw_optimization/yaw_optimization_base.py index 5608f58f4..07a2f7e11 100644 --- a/floris/optimization/yaw_optimization/yaw_optimization_base.py +++ b/floris/optimization/yaw_optimization/yaw_optimization_base.py @@ -318,7 +318,7 @@ def _calculate_farm_power( turbine_weights (iterable, optional): Array or list of weights to apply to the turbine powers. Defaults to None. heterogeneous_speed_multipliers (iterable, optional): Array or list of speed up factors - for heterogenous inflow. Defaults to None. + for heterogeneous inflow. Defaults to None. Returns: @@ -338,7 +338,7 @@ def _calculate_farm_power( turbine_weights = self._turbine_weights_subset if heterogeneous_speed_multipliers is not None: fmodel_subset.core.flow_field.\ - heterogenous_inflow_config['speed_multipliers'] = heterogeneous_speed_multipliers + heterogeneous_inflow_config['speed_multipliers'] = heterogeneous_speed_multipliers # Ensure format [incompatible with _subset notation] yaw_angles = self._unpack_variable(yaw_angles, subset=True) diff --git a/floris/optimization/yaw_optimization/yaw_optimizer_scipy.py b/floris/optimization/yaw_optimization/yaw_optimizer_scipy.py index b62649117..cdde87656 100644 --- a/floris/optimization/yaw_optimization/yaw_optimizer_scipy.py +++ b/floris/optimization/yaw_optimization/yaw_optimizer_scipy.py @@ -98,10 +98,10 @@ def optimize(self): turbine_weights = np.tile(turbine_weights, (1, 1)) # Handle heterogeneous inflow, if there is one - if (hasattr(self.fmodel.core.flow_field, 'heterogenous_inflow_config') and - self.fmodel.core.flow_field.heterogenous_inflow_config is not None): + if (hasattr(self.fmodel.core.flow_field, 'heterogeneous_inflow_config') and + self.fmodel.core.flow_field.heterogeneous_inflow_config is not None): het_sm_orig = np.array( - self.fmodel.core.flow_field.heterogenous_inflow_config['speed_multipliers'] + self.fmodel.core.flow_field.heterogeneous_inflow_config['speed_multipliers'] ) het_sm = het_sm_orig[i, :].reshape(1, -1) else: diff --git a/floris/optimization/yaw_optimization/yaw_optimizer_sr.py b/floris/optimization/yaw_optimization/yaw_optimizer_sr.py index c6d76b04e..2b5b7ad1b 100644 --- a/floris/optimization/yaw_optimization/yaw_optimizer_sr.py +++ b/floris/optimization/yaw_optimization/yaw_optimizer_sr.py @@ -129,10 +129,10 @@ def _calc_powers_with_memory(self, yaw_angles_subset, use_memory=True): if not np.all(idx): # Now calculate farm powers for conditions we haven't yet evaluated previously start_time = timerpc() - if (hasattr(self.fmodel.core.flow_field, 'heterogenous_inflow_config') and - self.fmodel.core.flow_field.heterogenous_inflow_config is not None): + if (hasattr(self.fmodel.core.flow_field, 'heterogeneous_inflow_config') and + self.fmodel.core.flow_field.heterogeneous_inflow_config is not None): het_sm_orig = np.array( - self.fmodel.core.flow_field.heterogenous_inflow_config['speed_multipliers'] + self.fmodel.core.flow_field.heterogeneous_inflow_config['speed_multipliers'] ) het_sm = np.tile(het_sm_orig, (Ny, 1))[~idx, :] else: diff --git a/floris/parallel_floris_model.py b/floris/parallel_floris_model.py index 86fc3ea08..4de5015df 100644 --- a/floris/parallel_floris_model.py +++ b/floris/parallel_floris_model.py @@ -245,8 +245,7 @@ def _postprocessing(self, output): flowfield_subsets = [p[1] for p in output] # Retrieve and merge turbine power productions - i, j, k = np.shape(power_subsets) - turbine_powers = np.reshape(power_subsets, (i*j, k)) + turbine_powers = np.concatenate(power_subsets, axis=0) # Optionally, also merge flow field dictionaries from individual floris solutions if self.propagate_flowfield_from_workers: @@ -443,7 +442,7 @@ def get_farm_AEP( ) # Finally, calculate AEP in GWh - aep = np.sum(np.multiply(freq, farm_power) * 365 * 24) + aep = np.nansum(np.multiply(freq, farm_power) * 365 * 24) # Reset the FLORIS object to the full wind speed array self.fmodel.set( @@ -532,6 +531,27 @@ def layout_x(self): def layout_y(self): return self.fmodel.layout_y + @property + def wind_speeds(self): + return self.fmodel.wind_speeds + + @property + def wind_directions(self): + return self.fmodel.wind_directions + + @property + def turbulence_intensities(self): + return self.fmodel.turbulence_intensities + + @property + def n_findex(self): + return self.fmodel.n_findex + + @property + def n_turbines(self): + return self.fmodel.n_turbines + + # @property # def floris(self): # return self.fmodel.core diff --git a/floris/uncertain_floris_model.py b/floris/uncertain_floris_model.py index 2242f4075..217dab2e5 100644 --- a/floris/uncertain_floris_model.py +++ b/floris/uncertain_floris_model.py @@ -725,6 +725,56 @@ def layout_y(self): """ return self.fmodel_unexpanded.core.farm.layout_y + @property + def wind_directions(self): + """ + Wind direction information. + + Returns: + np.array: Wind direction. + """ + return self.fmodel_unexpanded.core.flow_field.wind_directions + + @property + def wind_speeds(self): + """ + Wind speed information. + + Returns: + np.array: Wind speed. + """ + return self.fmodel_unexpanded.core.flow_field.wind_speeds + + @property + def turbulence_intensities(self): + """ + Turbulence intensity information. + + Returns: + np.array: Turbulence intensity. + """ + return self.fmodel_unexpanded.core.flow_field.turbulence_intensities + + @property + def n_findex(self): + """ + Number of unique wind conditions. + + Returns: + int: Number of unique wind conditions. + """ + return self.fmodel_unexpanded.core.flow_field.n_findex + + @property + def n_turbines(self): + """ + Number of turbines in the wind farm. + + Returns: + int: Number of turbines in the wind farm. + """ + return self.fmodel_unexpanded.core.farm.n_turbines + @property def core(self): """ diff --git a/floris/wind_data.py b/floris/wind_data.py index 808edc1ee..6ac81f7aa 100644 --- a/floris/wind_data.py +++ b/floris/wind_data.py @@ -36,14 +36,14 @@ def unpack_for_reinitialize(self): ti_table_unpack, _, _, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) = self.unpack() return ( wind_directions_unpack, wind_speeds_unpack, ti_table_unpack, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) def unpack_freq(self): @@ -56,63 +56,63 @@ def unpack_value(self): return self.unpack()[4] - def check_heterogenous_inflow_config_by_wd(self, heterogenous_inflow_config_by_wd): + def check_heterogeneous_inflow_config_by_wd(self, heterogeneous_inflow_config_by_wd): """ - Check that the heterogenous_inflow_config_by_wd dictionary is properly formatted + Check that the heterogeneous_inflow_config_by_wd dictionary is properly formatted Args: - heterogenous_inflow_config_by_wd (dict): A dictionary containing the following keys: + heterogeneous_inflow_config_by_wd (dict): A dictionary containing the following keys: * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) of speed multipliers. * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). """ - if heterogenous_inflow_config_by_wd is not None: - if not isinstance(heterogenous_inflow_config_by_wd, dict): - raise TypeError("heterogenous_inflow_config_by_wd must be a dictionary") - if "speed_multipliers" not in heterogenous_inflow_config_by_wd: + if heterogeneous_inflow_config_by_wd is not None: + if not isinstance(heterogeneous_inflow_config_by_wd, dict): + raise TypeError("heterogeneous_inflow_config_by_wd must be a dictionary") + if "speed_multipliers" not in heterogeneous_inflow_config_by_wd: raise ValueError( - "heterogenous_inflow_config_by_wd must contain a key 'speed_multipliers'" + "heterogeneous_inflow_config_by_wd must contain a key 'speed_multipliers'" ) - if "wind_directions" not in heterogenous_inflow_config_by_wd: + if "wind_directions" not in heterogeneous_inflow_config_by_wd: raise ValueError( - "heterogenous_inflow_config_by_wd must contain a key 'wind_directions'" + "heterogeneous_inflow_config_by_wd must contain a key 'wind_directions'" ) - if "x" not in heterogenous_inflow_config_by_wd: - raise ValueError("heterogenous_inflow_config_by_wd must contain a key 'x'") - if "y" not in heterogenous_inflow_config_by_wd: - raise ValueError("heterogenous_inflow_config_by_wd must contain a key 'y'") + if "x" not in heterogeneous_inflow_config_by_wd: + raise ValueError("heterogeneous_inflow_config_by_wd must contain a key 'x'") + if "y" not in heterogeneous_inflow_config_by_wd: + raise ValueError("heterogeneous_inflow_config_by_wd must contain a key 'y'") - def check_heterogenous_inflow_config(self, heterogenous_inflow_config): + def check_heterogeneous_inflow_config(self, heterogeneous_inflow_config): """ - Check that the heterogenous_inflow_config dictionary is properly formatted + Check that the heterogeneous_inflow_config dictionary is properly formatted Args: - heterogenous_inflow_config (dict): A dictionary containing the following keys: + heterogeneous_inflow_config (dict): A dictionary containing the following keys: * 'speed_multipliers': A 2D NumPy array (size n_findex x num_points) of speed multipliers. * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). """ - if heterogenous_inflow_config is not None: - if not isinstance(heterogenous_inflow_config, dict): - raise TypeError("heterogenous_inflow_config_by_wd must be a dictionary") - if "speed_multipliers" not in heterogenous_inflow_config: + if heterogeneous_inflow_config is not None: + if not isinstance(heterogeneous_inflow_config, dict): + raise TypeError("heterogeneous_inflow_config_by_wd must be a dictionary") + if "speed_multipliers" not in heterogeneous_inflow_config: raise ValueError( - "heterogenous_inflow_config must contain a key 'speed_multipliers'" + "heterogeneous_inflow_config must contain a key 'speed_multipliers'" ) - if "x" not in heterogenous_inflow_config: - raise ValueError("heterogenous_inflow_config must contain a key 'x'") - if "y" not in heterogenous_inflow_config: - raise ValueError("heterogenous_inflow_config must contain a key 'y'") + if "x" not in heterogeneous_inflow_config: + raise ValueError("heterogeneous_inflow_config must contain a key 'x'") + if "y" not in heterogeneous_inflow_config: + raise ValueError("heterogeneous_inflow_config must contain a key 'y'") - def get_speed_multipliers_by_wd(self, heterogenous_inflow_config_by_wd, wind_directions): + def get_speed_multipliers_by_wd(self, heterogeneous_inflow_config_by_wd, wind_directions): """ - Processes heterogenous inflow configuration data to generate a speed multiplier array + Processes heterogeneous inflow configuration data to generate a speed multiplier array aligned with the wind directions. Accounts for the cyclical nature of wind directions. Args: - heterogenous_inflow_config_by_wd (dict): A dictionary containing the following keys: + heterogeneous_inflow_config_by_wd (dict): A dictionary containing the following keys: * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) of speed multipliers. * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). @@ -128,14 +128,14 @@ def get_speed_multipliers_by_wd(self, heterogenous_inflow_config_by_wd, wind_dir """ # Extract data from the configuration dictionary - speed_multipliers = np.array(heterogenous_inflow_config_by_wd["speed_multipliers"]) - het_wd = np.array(heterogenous_inflow_config_by_wd["wind_directions"]) + speed_multipliers = np.array(heterogeneous_inflow_config_by_wd["speed_multipliers"]) + het_wd = np.array(heterogeneous_inflow_config_by_wd["wind_directions"]) # Confirm 0th dimension of speed_multipliers == len(het_wd) if len(het_wd) != speed_multipliers.shape[0]: raise ValueError( "The legnth of het_wd must equal the number of rows speed_multipliers" - "Within the heterogenous_inflow_config_by_wd dictionary" + "Within the heterogeneous_inflow_config_by_wd dictionary" ) # Calculate closest wind direction indices (accounting for angles) @@ -146,21 +146,21 @@ def get_speed_multipliers_by_wd(self, heterogenous_inflow_config_by_wd, wind_dir # Construct the output array using the calculated indices return speed_multipliers[closest_wd_indices] - def get_heterogenous_inflow_config(self, heterogenous_inflow_config_by_wd, wind_directions): - # If heterogenous_inflow_config_by_wd is None, return None - if heterogenous_inflow_config_by_wd is None: + def get_heterogeneous_inflow_config(self, heterogeneous_inflow_config_by_wd, wind_directions): + # If heterogeneous_inflow_config_by_wd is None, return None + if heterogeneous_inflow_config_by_wd is None: return None - # If heterogenous_inflow_config_by_wd is not None, then process it + # If heterogeneous_inflow_config_by_wd is not None, then process it # Build the n-findex version of the het map speed_multipliers = self.get_speed_multipliers_by_wd( - heterogenous_inflow_config_by_wd, wind_directions + heterogeneous_inflow_config_by_wd, wind_directions ) - # Return heterogenous_inflow_config + # Return heterogeneous_inflow_config return { "speed_multipliers": speed_multipliers, - "x": heterogenous_inflow_config_by_wd["x"], - "y": heterogenous_inflow_config_by_wd["y"], + "x": heterogeneous_inflow_config_by_wd["x"], + "y": heterogeneous_inflow_config_by_wd["y"], } @@ -190,7 +190,7 @@ class WindRose(WindDataBase): each bin to compute the total value of the energy produced compute_zero_freq_occurrence: Flag indicating whether to compute zero frequency occurrences (bool, optional). Defaults to False. - heterogenous_inflow_config_by_wd (dict, optional): A dictionary containing the following + heterogeneous_inflow_config_by_wd (dict, optional): A dictionary containing the following keys. Defaults to None. * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) of speed multipliers. @@ -208,7 +208,7 @@ def __init__( freq_table: NDArrayFloat | None = None, value_table: NDArrayFloat | None = None, compute_zero_freq_occurrence: bool = False, - heterogenous_inflow_config_by_wd: dict | None = None, + heterogeneous_inflow_config_by_wd: dict | None = None, ): if not isinstance(wind_directions, np.ndarray): raise TypeError("wind_directions must be a NumPy array") @@ -268,12 +268,12 @@ def __init__( ) self.compute_zero_freq_occurrence = compute_zero_freq_occurrence - # Check that heterogenous_inflow_config_by_wd is a dictionary with keys: + # Check that heterogeneous_inflow_config_by_wd is a dictionary with keys: # speed_multipliers, wind_directions, x and y - self.check_heterogenous_inflow_config_by_wd(heterogenous_inflow_config_by_wd) + self.check_heterogeneous_inflow_config_by_wd(heterogeneous_inflow_config_by_wd) # Then save - self.heterogenous_inflow_config_by_wd = heterogenous_inflow_config_by_wd + self.heterogeneous_inflow_config_by_wd = heterogeneous_inflow_config_by_wd # Build the gridded and flatten versions self._build_gridded_and_flattened_version() @@ -339,14 +339,14 @@ def unpack(self): else: value_table_unpack = None - # If heterogenous_inflow_config_by_wd is not None, then update - # heterogenous_inflow_config to match wind_directions_unpack - if self.heterogenous_inflow_config_by_wd is not None: - heterogenous_inflow_config = self.get_heterogenous_inflow_config( - self.heterogenous_inflow_config_by_wd, wind_directions_unpack + # If heterogeneous_inflow_config_by_wd is not None, then update + # heterogeneous_inflow_config to match wind_directions_unpack + if self.heterogeneous_inflow_config_by_wd is not None: + heterogeneous_inflow_config = self.get_heterogeneous_inflow_config( + self.heterogeneous_inflow_config_by_wd, wind_directions_unpack ) else: - heterogenous_inflow_config = None + heterogeneous_inflow_config = None return ( wind_directions_unpack, @@ -354,7 +354,7 @@ def unpack(self): ti_table_unpack, freq_table_unpack, value_table_unpack, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) def resample_wind_rose(self, wd_step=None, ws_step=None): @@ -390,7 +390,7 @@ def resample_wind_rose(self, wd_step=None, ws_step=None): self.ws_flat, self.ti_table_flat, self.value_table_flat, - self.heterogenous_inflow_config_by_wd, + self.heterogeneous_inflow_config_by_wd, ) # Now build a new wind rose using the new steps @@ -753,7 +753,7 @@ class WindTIRose(WindDataBase): to compute the total value of the energy produced. compute_zero_freq_occurrence: Flag indicating whether to compute zero frequency occurrences (bool, optional). Defaults to False. - heterogenous_inflow_config_by_wd (dict, optional): A dictionary containing the following + heterogeneous_inflow_config_by_wd (dict, optional): A dictionary containing the following keys. Defaults to None. * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) of speed multipliers. @@ -771,7 +771,7 @@ def __init__( freq_table: NDArrayFloat | None = None, value_table: NDArrayFloat | None = None, compute_zero_freq_occurrence: bool = False, - heterogenous_inflow_config_by_wd: dict | None = None, + heterogeneous_inflow_config_by_wd: dict | None = None, ): if not isinstance(wind_directions, np.ndarray): raise TypeError("wind_directions must be a NumPy array") @@ -820,12 +820,12 @@ def __init__( ) self.value_table = value_table - # Check that heterogenous_inflow_config_by_wd is a dictionary with keys: + # Check that heterogeneous_inflow_config_by_wd is a dictionary with keys: # speed_multipliers, wind_directions, x and y - self.check_heterogenous_inflow_config_by_wd(heterogenous_inflow_config_by_wd) + self.check_heterogeneous_inflow_config_by_wd(heterogeneous_inflow_config_by_wd) # Then save - self.heterogenous_inflow_config_by_wd = heterogenous_inflow_config_by_wd + self.heterogeneous_inflow_config_by_wd = heterogeneous_inflow_config_by_wd # Save whether zero occurrence cases should be computed self.compute_zero_freq_occurrence = compute_zero_freq_occurrence @@ -892,14 +892,14 @@ def unpack(self): else: value_table_unpack = None - # If heterogenous_inflow_config_by_wd is not None, then update - # heterogenous_inflow_config to match wind_directions_unpack - if self.heterogenous_inflow_config_by_wd is not None: - heterogenous_inflow_config = self.get_heterogenous_inflow_config( - self.heterogenous_inflow_config_by_wd, wind_directions_unpack + # If heterogeneous_inflow_config_by_wd is not None, then update + # heterogeneous_inflow_config to match wind_directions_unpack + if self.heterogeneous_inflow_config_by_wd is not None: + heterogeneous_inflow_config = self.get_heterogeneous_inflow_config( + self.heterogeneous_inflow_config_by_wd, wind_directions_unpack ) else: - heterogenous_inflow_config = None + heterogeneous_inflow_config = None return ( wind_directions_unpack, @@ -907,7 +907,7 @@ def unpack(self): turbulence_intensities_unpack, freq_table_unpack, value_table_unpack, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) def resample_wind_rose(self, wd_step=None, ws_step=None, ti_step=None): @@ -951,7 +951,7 @@ def resample_wind_rose(self, wd_step=None, ws_step=None, ti_step=None): self.ws_flat, self.ti_flat, self.value_table_flat, - self.heterogenous_inflow_config_by_wd, + self.heterogeneous_inflow_config_by_wd, ) # Now build a new wind rose using the new steps @@ -1295,14 +1295,14 @@ class TimeSeries(WindDataBase): a single value or an array of values. values (NDArrayFloat, optional): Values associated with each wind direction, wind speed, and turbulence intensity. Defaults to None. - heterogenous_inflow_config_by_wd (dict, optional): A dictionary containing the following + heterogeneous_inflow_config_by_wd (dict, optional): A dictionary containing the following keys. Defaults to None. * 'speed_multipliers': A 2D NumPy array (size num_wd x num_points) of speed multipliers. * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). - heterogenous_inflow_config (dict, optional): A dictionary containing the following keys. + heterogeneous_inflow_config (dict, optional): A dictionary containing the following keys. Defaults to None. * 'speed_multipliers': A 2D NumPy array (size n_findex x num_points) of speed multipliers. @@ -1316,8 +1316,8 @@ def __init__( wind_speeds: float | NDArrayFloat, turbulence_intensities: float | NDArrayFloat, values: NDArrayFloat | None = None, - heterogenous_inflow_config_by_wd: dict | None = None, - heterogenous_inflow_config: dict | None = None, + heterogeneous_inflow_config_by_wd: dict | None = None, + heterogeneous_inflow_config: dict | None = None, ): # At least one of wind_directions, wind_speeds, or turbulence_intensities must be an array if ( @@ -1385,29 +1385,32 @@ def __init__( self.turbulence_intensities = turbulence_intensities self.values = values - # Only one of heterogenous_inflow_config_by_wd and - # heterogenous_inflow_config can be not None - if heterogenous_inflow_config_by_wd is not None and heterogenous_inflow_config is not None: + # Only one of heterogeneous_inflow_config_by_wd and + # heterogeneous_inflow_config can be not None + if ( + heterogeneous_inflow_config_by_wd is not None + and heterogeneous_inflow_config is not None + ): raise ValueError( - "Only one of heterogenous_inflow_config_by_wd and heterogenous_inflow_config " + "Only one of heterogeneous_inflow_config_by_wd and heterogeneous_inflow_config " "can be not None" ) - # if heterogenous_inflow_config is not None, then the speed_multipliers + # if heterogeneous_inflow_config is not None, then the speed_multipliers # must be the same length as wind_directions # in the 0th dimension - if heterogenous_inflow_config is not None: - if len(heterogenous_inflow_config["speed_multipliers"]) != len(wind_directions): + if heterogeneous_inflow_config is not None: + if len(heterogeneous_inflow_config["speed_multipliers"]) != len(wind_directions): raise ValueError("speed_multipliers must be the same length as wind_directions") - # Check that heterogenous_inflow_config_by_wd is a dictionary with keys: + # Check that heterogeneous_inflow_config_by_wd is a dictionary with keys: # speed_multipliers, wind_directions, x and y - self.check_heterogenous_inflow_config_by_wd(heterogenous_inflow_config_by_wd) - self.check_heterogenous_inflow_config(heterogenous_inflow_config) + self.check_heterogeneous_inflow_config_by_wd(heterogeneous_inflow_config_by_wd) + self.check_heterogeneous_inflow_config(heterogeneous_inflow_config) # Then save - self.heterogenous_inflow_config_by_wd = heterogenous_inflow_config_by_wd - self.heterogenous_inflow_config = heterogenous_inflow_config + self.heterogeneous_inflow_config_by_wd = heterogeneous_inflow_config_by_wd + self.heterogeneous_inflow_config = heterogeneous_inflow_config # Record findex self.n_findex = len(self.wind_directions) @@ -1421,14 +1424,14 @@ def unpack(self): uniform_frequency = np.ones_like(self.wind_directions) uniform_frequency = uniform_frequency / uniform_frequency.sum() - # If heterogenous_inflow_config_by_wd is not None, then update - # heterogenous_inflow_config to match wind_directions_unpack - if self.heterogenous_inflow_config_by_wd is not None: - heterogenous_inflow_config = self.get_heterogenous_inflow_config( - self.heterogenous_inflow_config_by_wd, self.wind_directions + # If heterogeneous_inflow_config_by_wd is not None, then update + # heterogeneous_inflow_config to match wind_directions_unpack + if self.heterogeneous_inflow_config_by_wd is not None: + heterogeneous_inflow_config = self.get_heterogeneous_inflow_config( + self.heterogeneous_inflow_config_by_wd, self.wind_directions ) else: - heterogenous_inflow_config = self.heterogenous_inflow_config + heterogeneous_inflow_config = self.heterogeneous_inflow_config return ( self.wind_directions, @@ -1436,7 +1439,7 @@ def unpack(self): self.turbulence_intensities, uniform_frequency, self.values, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) def _wrap_wind_directions_near_360(self, wind_directions, wd_step): @@ -1700,7 +1703,7 @@ def to_WindRose( ti_table, freq_table, value_table, - self.heterogenous_inflow_config_by_wd, + self.heterogeneous_inflow_config_by_wd, ) def to_WindTIRose( @@ -1867,5 +1870,5 @@ def to_WindTIRose( ti_centers, freq_table, value_table, - self.heterogenous_inflow_config_by_wd, + self.heterogeneous_inflow_config_by_wd, ) diff --git a/tests/conftest.py b/tests/conftest.py index 26210c963..b8b70dc7d 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -137,7 +137,6 @@ def print_test_values( N_TURBINES = len(X_COORDS) ROTOR_DIAMETER = 126.0 TURBINE_GRID_RESOLUTION = 2 -TIME_SERIES = False ## Unit test fixtures @@ -156,7 +155,6 @@ def turbine_grid_fixture(sample_inputs_fixture) -> TurbineGrid: turbine_diameters=rotor_diameters, wind_directions=np.array(WIND_DIRECTIONS), grid_resolution=TURBINE_GRID_RESOLUTION, - time_series=TIME_SERIES ) @pytest.fixture @@ -182,7 +180,6 @@ def points_grid_fixture(sample_inputs_fixture) -> PointsGrid: turbine_diameters=rotor_diameters, wind_directions=np.array(WIND_DIRECTIONS), grid_resolution=None, - time_series=False, points_x=points_x, points_y=points_y, points_z=points_z, @@ -524,7 +521,7 @@ def __init__(self): }, "name": "conftest", "description": "Inputs used for testing", - "floris_version": "v3.0.0", + "floris_version": "v4", } self.v3type_turbine = { diff --git a/tests/data/input_full.yaml b/tests/data/input_full.yaml index 36a150bdd..d9415db1f 100644 --- a/tests/data/input_full.yaml +++ b/tests/data/input_full.yaml @@ -1,7 +1,7 @@ name: test_input description: Single turbine for testing -floris_version: v3.0.0 +floris_version: v4 logging: console: diff --git a/tests/reg_tests/scipy_layout_opt_regression_test.py b/tests/reg_tests/scipy_layout_opt_regression.py similarity index 100% rename from tests/reg_tests/scipy_layout_opt_regression_test.py rename to tests/reg_tests/scipy_layout_opt_regression.py diff --git a/tests/wind_data_integration_test.py b/tests/wind_data_integration_test.py index c6398a1fa..4cec2eb0c 100644 --- a/tests/wind_data_integration_test.py +++ b/tests/wind_data_integration_test.py @@ -130,7 +130,7 @@ def test_wind_rose_unpack(): ti_table_unpack, freq_table_unpack, value_table_unpack, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) = wind_rose.unpack() # Given the above frequency table with zeros for a few elements, @@ -155,7 +155,7 @@ def test_wind_rose_unpack(): ti_table_unpack, freq_table_unpack, value_table_unpack, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) = wind_rose.unpack() # Expect now to compute all combinations @@ -177,7 +177,7 @@ def test_unpack_for_reinitialize(): wind_directions_unpack, wind_speeds_unpack, ti_table_unpack, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) = wind_rose.unpack_for_reinitialize() # Given the above frequency table, would only expect the @@ -361,7 +361,7 @@ def test_wind_ti_rose_unpack(): turbulence_intensities_unpack, freq_table_unpack, value_table_unpack, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) = wind_rose.unpack() # Given the above frequency table with zeros for a few elements, @@ -391,7 +391,7 @@ def test_wind_ti_rose_unpack(): turbulence_intensities_unpack, freq_table_unpack, value_table_unpack, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) = wind_rose.unpack() # Expect now to compute all combinations @@ -423,7 +423,7 @@ def test_wind_ti_rose_unpack_for_reinitialize(): wind_directions_unpack, wind_speeds_unpack, turbulence_intensities_unpack, - heterogenous_inflow_config, + heterogeneous_inflow_config, ) = wind_rose.unpack_for_reinitialize() # Given the above frequency table with zeros for a few elements, @@ -481,7 +481,7 @@ def test_time_series_to_WindTIRose(): def test_get_speed_multipliers_by_wd(): - heterogenous_inflow_config_by_wd = { + heterogeneous_inflow_config_by_wd = { "speed_multipliers": np.array( [ [1.0, 1.1, 1.2], @@ -497,7 +497,7 @@ def test_get_speed_multipliers_by_wd(): expected_output = np.array([[1.3, 1.4, 1.5], [1.1, 1.1, 1.1], [1.0, 1.1, 1.2]]) wind_data = WindDataBase() result = wind_data.get_speed_multipliers_by_wd( - heterogenous_inflow_config_by_wd, wind_directions + heterogeneous_inflow_config_by_wd, wind_directions ) assert np.allclose(result, expected_output) @@ -505,7 +505,7 @@ def test_get_speed_multipliers_by_wd(): wind_directions = np.array([350, 10]) expected_output = np.array([[1.0, 1.1, 1.2], [1.0, 1.1, 1.2]]) result = wind_data.get_speed_multipliers_by_wd( - heterogenous_inflow_config_by_wd, wind_directions + heterogeneous_inflow_config_by_wd, wind_directions ) assert np.allclose(result, expected_output) @@ -513,17 +513,17 @@ def test_get_speed_multipliers_by_wd(): wind_directions = np.arange(0.0, 360.0, 10.0) num_wd = len(wind_directions) result = wind_data.get_speed_multipliers_by_wd( - heterogenous_inflow_config_by_wd, wind_directions + heterogeneous_inflow_config_by_wd, wind_directions ) assert result.shape[0] == num_wd -def test_gen_heterogenous_inflow_config(): +def test_gen_heterogeneous_inflow_config(): wind_directions = np.array([259.8, 260.2, 260.3, 260.1, 270.0]) wind_speeds = 8 turbulence_intensities = 0.06 - heterogenous_inflow_config_by_wd = { + heterogeneous_inflow_config_by_wd = { "speed_multipliers": np.array( [ [0.9, 0.9], @@ -540,15 +540,15 @@ def test_gen_heterogenous_inflow_config(): wind_directions, wind_speeds, turbulence_intensities=turbulence_intensities, - heterogenous_inflow_config_by_wd=heterogenous_inflow_config_by_wd, + heterogeneous_inflow_config_by_wd=heterogeneous_inflow_config_by_wd, ) - (_, _, _, _, _, heterogenous_inflow_config) = time_series.unpack() + (_, _, _, _, _, heterogeneous_inflow_config) = time_series.unpack() expected_result = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.1, 1.2]]) - np.testing.assert_allclose(heterogenous_inflow_config["speed_multipliers"], expected_result) + np.testing.assert_allclose(heterogeneous_inflow_config["speed_multipliers"], expected_result) np.testing.assert_allclose( - heterogenous_inflow_config["x"], heterogenous_inflow_config_by_wd["x"] + heterogeneous_inflow_config["x"], heterogeneous_inflow_config_by_wd["x"] ) From f1e5324a2bb73ecacee6ae42fa3de303244a24f6 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Fri, 5 Apr 2024 14:01:28 -0400 Subject: [PATCH 63/78] Make set_operation method public (#869) * Make set_operation public. * Add checks for valid setpoint lengths, tests. --- floris/floris_model.py | 20 ++++++++++++++-- .../layout_optimization_scipy.py | 2 +- tests/floris_model_integration_test.py | 23 +++++++++++++++++++ 3 files changed, 42 insertions(+), 3 deletions(-) diff --git a/floris/floris_model.py b/floris/floris_model.py index 2018a4255..3745eeb19 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -229,7 +229,7 @@ def _reinitialize( # Create a new instance of floris and attach to self self.core = Core.from_dict(floris_dict) - def _set_operation( + def set_operation( self, yaw_angles: NDArrayFloat | list[float] | None = None, power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, @@ -238,6 +238,9 @@ def _set_operation( """ Apply operating setpoints to the floris object. + This function is not meant to be called directly by most users---users should instead call + the set() method. + Args: yaw_angles (NDArrayFloat | list[float] | None, optional): Turbine yaw angles. Defaults to None. @@ -248,9 +251,19 @@ def _set_operation( """ # Add operating conditions to the floris object if yaw_angles is not None: + if np.array(yaw_angles).shape[1] != self.core.farm.n_turbines: + raise ValueError( + f"yaw_angles has a size of {np.array(yaw_angles).shape[1]} in the 1st " + f"dimension, must be equal to n_turbines={self.core.farm.n_turbines}" + ) self.core.farm.set_yaw_angles(yaw_angles) if power_setpoints is not None: + if np.array(power_setpoints).shape[1] != self.core.farm.n_turbines: + raise ValueError( + f"power_setpoints has a size of {np.array(power_setpoints).shape[1]} in the 1st" + f" dimension, must be equal to n_turbines={self.core.farm.n_turbines}" + ) power_setpoints = np.array(power_setpoints) # Convert any None values to the default power setpoint @@ -288,6 +301,9 @@ def _set_operation( self.core.farm.yaw_angles[disable_turbines] = 0.0 self.core.farm.power_setpoints[disable_turbines] = POWER_SETPOINT_DISABLED + if any([yaw_angles is not None, power_setpoints is not None, disable_turbines is not None]): + self.core.state = State.UNINITIALIZED + def set( self, wind_speeds: list[float] | NDArrayFloat | None = None, @@ -372,7 +388,7 @@ def set( self.core.farm.set_power_setpoints(_power_setpoints) # Set the operation - self._set_operation( + self.set_operation( yaw_angles=yaw_angles, power_setpoints=power_setpoints, disable_turbines=disable_turbines, diff --git a/floris/optimization/layout_optimization/layout_optimization_scipy.py b/floris/optimization/layout_optimization/layout_optimization_scipy.py index 5cb3a816e..f7ca643b1 100644 --- a/floris/optimization/layout_optimization/layout_optimization_scipy.py +++ b/floris/optimization/layout_optimization/layout_optimization_scipy.py @@ -110,7 +110,7 @@ def _obj_func(self, locs): self._change_coordinates(locs_unnorm) # Compute turbine yaw angles using PJ's geometric code (if enabled) yaw_angles = self._get_geoyaw_angles() - self.fmodel.set(yaw_angles=yaw_angles) + self.fmodel.set_operation(yaw_angles=yaw_angles) self.fmodel.run() if self.use_value: diff --git a/tests/floris_model_integration_test.py b/tests/floris_model_integration_test.py index fb5871939..e36125c55 100644 --- a/tests/floris_model_integration_test.py +++ b/tests/floris_model_integration_test.py @@ -682,3 +682,26 @@ def test_set_operation_model(): fmodel.set(layout_x=[0, 0], layout_y=[0, 1000]) with pytest.raises(ValueError): fmodel.set(layout_x=[0, 0, 0], layout_y=[0, 1000, 2000]) + +def test_set_operation(): + fmodel = FlorisModel(configuration=YAML_INPUT) + fmodel.set(layout_x=[0, 0], layout_y=[0, 1000]) + + # Check that not allowed to run(), then set_operation, then collect powers + fmodel.run() + fmodel.set_operation(yaw_angles=np.array([[25.0, 0.0]])) + with pytest.raises(RuntimeError): + fmodel.get_turbine_powers() + + # Check that no issue if run is called first + fmodel.run() + fmodel.get_turbine_powers() + + # Check that if arguments do not match number of turbines, raises error + with pytest.raises(ValueError): + fmodel.set_operation(yaw_angles=np.array([[25.0, 0.0, 20.0]])) + + # Check that if arguments do not match n_findex, raises error + with pytest.raises(ValueError): + fmodel.set_operation(yaw_angles=np.array([[25.0, 0.0], [25.0, 0.0]])) + fmodel.run() From 3c24a9cfe07364a32eb7213d8c8664024c814669 Mon Sep 17 00:00:00 2001 From: ejsimley <40040961+ejsimley@users.noreply.github.com> Date: Fri, 5 Apr 2024 14:17:08 -0600 Subject: [PATCH 64/78] fixing datatype of value in wind_data; removing unnecessary AVP warning (#872) --- floris/floris_model.py | 6 +----- floris/wind_data.py | 6 +++--- 2 files changed, 4 insertions(+), 8 deletions(-) diff --git a/floris/floris_model.py b/floris/floris_model.py index 3745eeb19..78f60ae5f 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -843,11 +843,7 @@ def get_farm_AVP( "operation." ) - if ( - values is None - and not isinstance(self.wind_data, WindRose) - and not isinstance(self.wind_data, WindTIRose) - ): + if values is None and self.wind_data is None: self.logger.warning( "Computing AVP with uniform value equal to 1. Results will be equivalent to " "annual energy production." diff --git a/floris/wind_data.py b/floris/wind_data.py index 6ac81f7aa..2579fd3e0 100644 --- a/floris/wind_data.py +++ b/floris/wind_data.py @@ -592,7 +592,7 @@ def assign_value_piecewise_linear( """ def piecewise_linear_value_func(wind_directions, wind_speeds): - value = np.zeros_like(wind_speeds) + value = np.zeros_like(wind_speeds, dtype=float) value[wind_speeds < ws_knee] = ( slope_1 * wind_speeds[wind_speeds < ws_knee] + value_zero_ws ) @@ -1146,7 +1146,7 @@ def assign_value_piecewise_linear( """ def piecewise_linear_value_func(wind_directions, wind_speeds, turbulence_intensities): - value = np.zeros_like(wind_speeds) + value = np.zeros_like(wind_speeds, dtype=float) value[wind_speeds < ws_knee] = ( slope_1 * wind_speeds[wind_speeds < ws_knee] + value_zero_ws ) @@ -1550,7 +1550,7 @@ def assign_value_piecewise_linear( """ def piecewise_linear_value_func(wind_directions, wind_speeds): - value = np.zeros_like(wind_speeds) + value = np.zeros_like(wind_speeds, dtype=float) value[wind_speeds < ws_knee] = ( slope_1 * wind_speeds[wind_speeds < ws_knee] + value_zero_ws ) From 9da4cbb39d06a7c7d2fb6af1c8f2c5b5192bacc2 Mon Sep 17 00:00:00 2001 From: Rafael M Mudafort Date: Fri, 5 Apr 2024 15:54:57 -0500 Subject: [PATCH 65/78] Add helix model operation mode (#842) --- .../004_helix_active_wake_mixing.py | 160 ++++++++++++++++++ ...03_tilt_driven_vertical_wake_deflection.py | 0 examples/inputs/cc.yaml | 1 + examples/inputs/emgauss.yaml | 1 + examples/inputs/emgauss_helix.yaml | 109 ++++++++++++ examples/inputs/gch.yaml | 4 + examples/inputs/gch_heterogeneous_inflow.yaml | 1 + examples/inputs/gch_multi_dim_cp_ct.yaml | 1 + .../inputs/gch_multiple_turbine_types.yaml | 1 + examples/inputs/jensen.yaml | 1 + examples/inputs/turbopark.yaml | 1 + examples/inputs_floating/emgauss_fixed.yaml | 1 + .../inputs_floating/emgauss_floating.yaml | 1 + .../emgauss_floating_fixedtilt15.yaml | 1 + .../emgauss_floating_fixedtilt5.yaml | 1 + examples/inputs_floating/gch_fixed.yaml | 1 + examples/inputs_floating/gch_floating.yaml | 1 + .../gch_floating_defined_floating.yaml | 1 + floris/core/core.py | 14 ++ floris/core/farm.py | 51 ++++++ floris/core/solver.py | 49 ++++++ floris/core/turbine/__init__.py | 1 + floris/core/turbine/operation_models.py | 106 ++++++++++++ floris/core/turbine/turbine.py | 33 ++++ floris/core/wake.py | 1 + floris/core/wake_velocity/empirical_gauss.py | 22 +++ floris/floris_model.py | 71 +++++++- floris/turbine_library/iea_10MW.yaml | 5 + floris/turbine_library/iea_15MW.yaml | 5 + floris/turbine_library/nrel_5MW.yaml | 6 + floris/type_dec.py | 1 + tests/conftest.py | 10 +- tests/data/input_full.yaml | 1 + tests/farm_unit_test.py | 6 + .../cumulative_curl_regression_test.py | 36 ++++ .../empirical_gauss_regression_test.py | 155 +++++++++++++++++ tests/reg_tests/gauss_regression_test.py | 52 ++++++ .../jensen_jimenez_regression_test.py | 20 +++ tests/reg_tests/none_regression_test.py | 12 ++ tests/reg_tests/turbopark_regression_test.py | 20 +++ tests/turbine_multi_dim_unit_test.py | 14 +- ...rbine_operation_models_integration_test.py | 83 +++++++++ tests/turbine_unit_test.py | 22 +++ 43 files changed, 1080 insertions(+), 3 deletions(-) create mode 100644 examples/examples_control_types/004_helix_active_wake_mixing.py rename examples/{examples_emgauss => examples_floating}/003_tilt_driven_vertical_wake_deflection.py (100%) create mode 100644 examples/inputs/emgauss_helix.yaml diff --git a/examples/examples_control_types/004_helix_active_wake_mixing.py b/examples/examples_control_types/004_helix_active_wake_mixing.py new file mode 100644 index 000000000..456766ba6 --- /dev/null +++ b/examples/examples_control_types/004_helix_active_wake_mixing.py @@ -0,0 +1,160 @@ +# Copyright 2024 NREL + +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# See https://floris.readthedocs.io for documentation + +import matplotlib.pyplot as plt +import numpy as np +import yaml + +import floris.flow_visualization as flowviz +from floris import FlorisModel + + +""" +Example to test out using helix wake mixing of upstream turbines. +Helix wake mixing is turned on at turbine 1, off at turbines 2 to 4; +Turbine 2 is in wake turbine 1, turbine 4 in wake of turbine 3. +""" + +# Grab model of FLORIS and update to awc-enabled turbines +fmodel = FlorisModel("../inputs/emgauss_helix.yaml") +fmodel.set_operation_model("awc") + +# Set the wind directions and speeds to be constant over N different helix amplitudes +N = 1 +awc_modes = np.array(["helix", "baseline", "baseline", "baseline"]).reshape(4, N).T +awc_amplitudes = np.array([2.5, 0, 0, 0]).reshape(4, N).T + +# Create 4 WT WF layout with lateral offset of 3D and streamwise offset of 4D +D = 240 +fmodel.set( + layout_x=[0.0, 4*D, 0.0, 4*D], + layout_y=[0.0, 0.0, -3*D, -3*D], + wind_directions=270 * np.ones(N), + wind_speeds=8.0 * np.ones(N), + turbulence_intensities=0.06*np.ones(N), + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes +) +fmodel.run() +turbine_powers = fmodel.get_turbine_powers() + +# Plot the flow fields for T1 awc_amplitude = 2.5 +horizontal_plane = fmodel.calculate_horizontal_plane( + x_resolution=200, + y_resolution=100, + height=150.0, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes +) + +y_plane_baseline = fmodel.calculate_y_plane( + x_resolution=200, + z_resolution=100, + crossstream_dist=0.0, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes +) +y_plane_helix = fmodel.calculate_y_plane( + x_resolution=200, + z_resolution=100, + crossstream_dist=-3*D, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes +) + +cross_plane = fmodel.calculate_cross_plane( + y_resolution=100, + z_resolution=100, + downstream_dist=720.0, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes +) + +# Create the plots +fig, ax_list = plt.subplots(2, 2, figsize=(10, 8), tight_layout=True) +ax_list = ax_list.flatten() +flowviz.visualize_cut_plane( + horizontal_plane, + ax=ax_list[0], + label_contours=True, + title="Horizontal" +) +flowviz.visualize_cut_plane( + cross_plane, + ax=ax_list[2], + label_contours=True, + title="Spanwise profile at 3D" +) + +# fig2, ax_list2 = plt.subplots(2, 1, figsize=(10, 8), tight_layout=True) +# ax_list2 = ax_list2.flatten() +flowviz.visualize_cut_plane( + y_plane_baseline, + ax=ax_list[1], + label_contours=True, + title="Streamwise profile, helix" +) +flowviz.visualize_cut_plane( + y_plane_helix, + ax=ax_list[3], + label_contours=True, + title="Streamwise profile, baseline" +) + +# Calculate the effect of changing awc_amplitudes +N = 50 +awc_amplitudes = np.array([ + np.linspace(0, 5, N), + np.zeros(N), np.zeros(N), np.zeros(N) + ]).reshape(4, N).T + +# Reset FlorisModel for different helix amplitudes +fmodel.set( + wind_directions=270 * np.ones(N), + wind_speeds=8 * np.ones(N), + turbulence_intensities=0.06*np.ones(N), + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes + ) +fmodel.run() +turbine_powers = fmodel.get_turbine_powers() + +# Plot the power as a function of helix amplitude +fig_power, ax_power = plt.subplots() +ax_power.fill_between( + awc_amplitudes[:, 0], + 0, + turbine_powers[:, 0]/1000, + color='C0', + label='Turbine 1' + ) +ax_power.fill_between( + awc_amplitudes[:, 0], + turbine_powers[:, 0]/1000, + turbine_powers[:, :2].sum(axis=1)/1000, + color='C1', + label='Turbine 2' + ) +ax_power.plot( + awc_amplitudes[:, 0], + turbine_powers[:,:2].sum(axis=1)/1000, + color='k', + label='Farm' + ) + +ax_power.set_xlabel("Upstream turbine helix amplitude [deg]") +ax_power.set_ylabel("Power [kW]") +ax_power.legend() + +flowviz.show() diff --git a/examples/examples_emgauss/003_tilt_driven_vertical_wake_deflection.py b/examples/examples_floating/003_tilt_driven_vertical_wake_deflection.py similarity index 100% rename from examples/examples_emgauss/003_tilt_driven_vertical_wake_deflection.py rename to examples/examples_floating/003_tilt_driven_vertical_wake_deflection.py diff --git a/examples/inputs/cc.yaml b/examples/inputs/cc.yaml index de626ff8f..1935c004f 100644 --- a/examples/inputs/cc.yaml +++ b/examples/inputs/cc.yaml @@ -49,6 +49,7 @@ wake: enable_secondary_steering: true enable_yaw_added_recovery: true enable_transverse_velocities: true + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs/emgauss.yaml b/examples/inputs/emgauss.yaml index 89caef95b..8f8340a1b 100644 --- a/examples/inputs/emgauss.yaml +++ b/examples/inputs/emgauss.yaml @@ -48,6 +48,7 @@ wake: enable_secondary_steering: false enable_yaw_added_recovery: true + enable_active_wake_mixing: false enable_transverse_velocities: false wake_deflection_parameters: diff --git a/examples/inputs/emgauss_helix.yaml b/examples/inputs/emgauss_helix.yaml new file mode 100644 index 000000000..48a6add0d --- /dev/null +++ b/examples/inputs/emgauss_helix.yaml @@ -0,0 +1,109 @@ + +name: Emperical Gaussian +description: Three turbines using empirical Gaussian model +floris_version: v4.0 + +logging: + console: + enable: true + level: WARNING + file: + enable: false + level: WARNING + +solver: + type: turbine_grid + turbine_grid_points: 3 + +farm: + layout_x: + - 0.0 + - 630.0 + - 1260.0 + layout_y: + - 0.0 + - 0.0 + - 0.0 + turbine_type: + - iea_15MW + +flow_field: + air_density: 1.225 + reference_wind_height: -1 # -1 is code for use the hub height + turbulence_intensities: + - 0.06 + wind_directions: + - 270.0 + wind_shear: 0.12 + wind_speeds: + - 8.0 + wind_veer: 0.0 + +wake: + model_strings: + combination_model: sosfs + deflection_model: empirical_gauss + turbulence_model: wake_induced_mixing + velocity_model: empirical_gauss + + enable_secondary_steering: false + enable_yaw_added_recovery: false + enable_active_wake_mixing: true + enable_transverse_velocities: false + + wake_deflection_parameters: + gauss: + ad: 0.0 + alpha: 0.58 + bd: 0.0 + beta: 0.077 + dm: 1.0 + ka: 0.38 + kb: 0.004 + jimenez: + ad: 0.0 + bd: 0.0 + kd: 0.05 + empirical_gauss: + horizontal_deflection_gain_D: 3.0 + vertical_deflection_gain_D: -1 + deflection_rate: 30 + mixing_gain_deflection: 0.0 + yaw_added_mixing_gain: 0.0 + + wake_velocity_parameters: + cc: + a_s: 0.179367259 + b_s: 0.0118889215 + c_s1: 0.0563691592 + c_s2: 0.13290157 + a_f: 3.11 + b_f: -0.68 + c_f: 2.41 + alpha_mod: 1.0 + gauss: + alpha: 0.58 + beta: 0.077 + ka: 0.38 + kb: 0.004 + jensen: + we: 0.05 + empirical_gauss: + wake_expansion_rates: + - 0.023 + - 0.008 + breakpoints_D: + - 10 + sigma_0_D: 0.28 + smoothing_length_D: 2.0 + mixing_gain_velocity: 2.0 + awc_wake_exp: 1.2 + awc_wake_denominator: 400 + wake_turbulence_parameters: + crespo_hernandez: + initial: 0.1 + constant: 0.5 + ai: 0.8 + downstream: -0.32 + wake_induced_mixing: + atmospheric_ti_gain: 0.0 diff --git a/examples/inputs/gch.yaml b/examples/inputs/gch.yaml index 79b0b8629..ced8eb38f 100644 --- a/examples/inputs/gch.yaml +++ b/examples/inputs/gch.yaml @@ -178,6 +178,10 @@ wake: # Can be "true" or "false". enable_yaw_added_recovery: true + ### + # Can be "true" or "false". + enable_active_wake_mixing: false + ### # Can be "true" or "false". enable_transverse_velocities: true diff --git a/examples/inputs/gch_heterogeneous_inflow.yaml b/examples/inputs/gch_heterogeneous_inflow.yaml index 121457f15..28f9bf6f5 100644 --- a/examples/inputs/gch_heterogeneous_inflow.yaml +++ b/examples/inputs/gch_heterogeneous_inflow.yaml @@ -62,6 +62,7 @@ wake: enable_secondary_steering: true enable_yaw_added_recovery: true enable_transverse_velocities: true + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs/gch_multi_dim_cp_ct.yaml b/examples/inputs/gch_multi_dim_cp_ct.yaml index 236bb63f8..592b6172f 100644 --- a/examples/inputs/gch_multi_dim_cp_ct.yaml +++ b/examples/inputs/gch_multi_dim_cp_ct.yaml @@ -52,6 +52,7 @@ wake: enable_secondary_steering: true enable_yaw_added_recovery: true enable_transverse_velocities: true + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs/gch_multiple_turbine_types.yaml b/examples/inputs/gch_multiple_turbine_types.yaml index 366f4e9c0..80682aa28 100644 --- a/examples/inputs/gch_multiple_turbine_types.yaml +++ b/examples/inputs/gch_multiple_turbine_types.yaml @@ -48,6 +48,7 @@ wake: enable_secondary_steering: false enable_yaw_added_recovery: false enable_transverse_velocities: false + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs/jensen.yaml b/examples/inputs/jensen.yaml index c0f95de6e..f3b81747d 100644 --- a/examples/inputs/jensen.yaml +++ b/examples/inputs/jensen.yaml @@ -49,6 +49,7 @@ wake: enable_secondary_steering: false enable_yaw_added_recovery: false enable_transverse_velocities: false + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs/turbopark.yaml b/examples/inputs/turbopark.yaml index 598ed87a0..c4ffbfa43 100644 --- a/examples/inputs/turbopark.yaml +++ b/examples/inputs/turbopark.yaml @@ -49,6 +49,7 @@ wake: enable_secondary_steering: false enable_yaw_added_recovery: false enable_transverse_velocities: false + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs_floating/emgauss_fixed.yaml b/examples/inputs_floating/emgauss_fixed.yaml index 026710481..2daf9e2a3 100644 --- a/examples/inputs_floating/emgauss_fixed.yaml +++ b/examples/inputs_floating/emgauss_fixed.yaml @@ -49,6 +49,7 @@ wake: enable_secondary_steering: false enable_yaw_added_recovery: true enable_transverse_velocities: false + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs_floating/emgauss_floating.yaml b/examples/inputs_floating/emgauss_floating.yaml index 253944aaf..28dc0a747 100644 --- a/examples/inputs_floating/emgauss_floating.yaml +++ b/examples/inputs_floating/emgauss_floating.yaml @@ -49,6 +49,7 @@ wake: enable_secondary_steering: false enable_yaw_added_recovery: true enable_transverse_velocities: false + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml b/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml index c34b38250..0160d9605 100644 --- a/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml +++ b/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml @@ -45,6 +45,7 @@ wake: enable_secondary_steering: false enable_yaw_added_recovery: true enable_transverse_velocities: false + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml b/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml index 398c6eb29..7477d5132 100644 --- a/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml +++ b/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml @@ -45,6 +45,7 @@ wake: enable_secondary_steering: false enable_yaw_added_recovery: true enable_transverse_velocities: false + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs_floating/gch_fixed.yaml b/examples/inputs_floating/gch_fixed.yaml index 3290d6fa1..d9f961701 100644 --- a/examples/inputs_floating/gch_fixed.yaml +++ b/examples/inputs_floating/gch_fixed.yaml @@ -45,6 +45,7 @@ wake: enable_secondary_steering: true enable_yaw_added_recovery: true enable_transverse_velocities: true + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs_floating/gch_floating.yaml b/examples/inputs_floating/gch_floating.yaml index c342473f6..4af183aca 100644 --- a/examples/inputs_floating/gch_floating.yaml +++ b/examples/inputs_floating/gch_floating.yaml @@ -46,6 +46,7 @@ wake: enable_secondary_steering: true enable_yaw_added_recovery: true enable_transverse_velocities: true + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/examples/inputs_floating/gch_floating_defined_floating.yaml b/examples/inputs_floating/gch_floating_defined_floating.yaml index 47288c718..ecb5b3b0a 100644 --- a/examples/inputs_floating/gch_floating_defined_floating.yaml +++ b/examples/inputs_floating/gch_floating_defined_floating.yaml @@ -45,6 +45,7 @@ wake: enable_secondary_steering: true enable_yaw_added_recovery: true enable_transverse_velocities: true + enable_active_wake_mixing: false wake_deflection_parameters: gauss: diff --git a/floris/core/core.py b/floris/core/core.py index 084f0a717..89af93bcf 100644 --- a/floris/core/core.py +++ b/floris/core/core.py @@ -86,6 +86,9 @@ def __attrs_post_init__(self) -> None: self.farm.set_yaw_angles_to_ref_yaw(self.flow_field.n_findex) self.farm.set_tilt_to_ref_tilt(self.flow_field.n_findex) self.farm.set_power_setpoints_to_ref_power(self.flow_field.n_findex) + self.farm.set_awc_modes_to_ref_mode(self.flow_field.n_findex) + self.farm.set_awc_amplitudes_to_ref_amp(self.flow_field.n_findex) + self.farm.set_awc_frequencies_to_ref_freq(self.flow_field.n_findex) if self.solver["type"] == "turbine_grid": self.grid = TurbineGrid( @@ -159,6 +162,17 @@ def steady_state_atmospheric_condition(self): "vertical wake deflection will occur." ) + operation_model_awc = False + for td in self.farm.turbine_definitions: + if "operation_model" in td and td["operation_model"] == "awc": + operation_model_awc = True + if vel_model != "empirical_gauss" and operation_model_awc: + self.logger.warning( + f"The current model `{vel_model}` does not account for additional wake mixing " + + "due to active wake control. Corrections to power and thrust coefficient can " + + "be included, but no enhanced wake recovery will occur." + ) + if vel_model=="cc": cc_solver( self.farm, diff --git a/floris/core/farm.py b/floris/core/farm.py index 93bd246b6..d1d2ea0ed 100644 --- a/floris/core/farm.py +++ b/floris/core/farm.py @@ -28,6 +28,7 @@ iter_validator, NDArrayFloat, NDArrayObject, + NDArrayStr, ) from floris.utilities import load_yaml @@ -85,6 +86,15 @@ class Farm(BaseClass): power_setpoints: NDArrayFloat = field(init=False) power_setpoints_sorted: NDArrayFloat = field(init=False) + awc_modes: NDArrayStr = field(init=False) + awc_modes_sorted: NDArrayStr = field(init=False) + + awc_amplitudes: NDArrayFloat = field(init=False) + awc_amplitudes_sorted: NDArrayFloat = field(init=False) + + awc_frequencies: NDArrayFloat = field(init=False) + awc_frequencies_sorted: NDArrayFloat = field(init=False) + hub_heights: NDArrayFloat = field(init=False) hub_heights_sorted: NDArrayFloat = field(init=False, factory=list) @@ -236,6 +246,21 @@ def initialize(self, sorted_indices): sorted_indices[:, :, 0, 0], axis=1, ) + self.awc_modes_sorted = np.take_along_axis( + self.awc_modes, + sorted_indices[:, :, 0, 0], + axis=1, + ) + self.awc_amplitudes_sorted = np.take_along_axis( + self.awc_amplitudes, + sorted_indices[:, :, 0, 0], + axis=1, + ) + self.awc_frequencies_sorted = np.take_along_axis( + self.awc_frequencies, + sorted_indices[:, :, 0, 0], + axis=1, + ) self.state = State.INITIALIZED def construct_hub_heights(self): @@ -356,6 +381,32 @@ def set_power_setpoints_to_ref_power(self, n_findex: int): self.set_power_setpoints(power_setpoints) self.power_setpoints_sorted = POWER_SETPOINT_DEFAULT * np.ones((n_findex, self.n_turbines)) + def set_awc_modes(self, awc_modes: NDArrayStr): + self.awc_modes = np.array(awc_modes) + + def set_awc_modes_to_ref_mode(self, n_findex: int): + # awc_modes = np.empty((n_findex, self.n_turbines))\ + awc_modes = np.array([["baseline"]*self.n_turbines]*n_findex) + self.set_awc_modes(awc_modes) + # self.awc_modes_sorted = np.empty((n_findex, self.n_turbines)) + self.awc_modes_sorted = np.array([["baseline"]*self.n_turbines]*n_findex) + + def set_awc_amplitudes(self, awc_amplitudes: NDArrayFloat): + self.awc_amplitudes = np.array(awc_amplitudes) + + def set_awc_amplitudes_to_ref_amp(self, n_findex: int): + awc_amplitudes = np.zeros((n_findex, self.n_turbines)) + self.set_awc_amplitudes(awc_amplitudes) + self.awc_amplitudes_sorted = np.zeros((n_findex, self.n_turbines)) + + def set_awc_frequencies(self, awc_frequencies: NDArrayFloat): + self.awc_frequencies = np.array(awc_frequencies) + + def set_awc_frequencies_to_ref_freq(self, n_findex: int): + awc_frequencies = np.zeros((n_findex, self.n_turbines)) + self.set_awc_frequencies(awc_frequencies) + self.awc_frequencies_sorted = np.zeros((n_findex, self.n_turbines)) + def calculate_tilt_for_eff_velocities(self, rotor_effective_velocities): tilt_angles = compute_tilt_angles_for_floating_turbines_map( self.turbine_type_map_sorted, diff --git a/floris/core/solver.py b/floris/core/solver.py index a21978156..8307b27c8 100644 --- a/floris/core/solver.py +++ b/floris/core/solver.py @@ -23,6 +23,7 @@ wake_added_yaw, yaw_added_turbulence_mixing, ) +from floris.core.wake_velocity.empirical_gauss import awc_added_wake_mixing from floris.type_dec import NDArrayFloat from floris.utilities import cosd @@ -94,6 +95,8 @@ def sequential_solver( yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, power_setpoints=farm.power_setpoints_sorted, + awc_modes=farm.awc_modes_sorted, + awc_amplitudes=farm.awc_amplitudes_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -113,6 +116,8 @@ def sequential_solver( yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, power_setpoints=farm.power_setpoints_sorted, + awc_modes=farm.awc_modes_sorted, + awc_amplitudes=farm.awc_amplitudes_sorted, axial_induction_functions=farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -326,6 +331,8 @@ def full_flow_sequential_solver( yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, power_setpoints=turbine_grid_farm.power_setpoints_sorted, + awc_modes=turbine_grid_farm.awc_modes_sorted, + awc_amplitudes=turbine_grid_farm.awc_amplitudes_sorted, thrust_coefficient_functions=turbine_grid_farm.turbine_thrust_coefficient_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -345,6 +352,8 @@ def full_flow_sequential_solver( yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, power_setpoints=turbine_grid_farm.power_setpoints_sorted, + awc_modes=turbine_grid_farm.awc_modes_sorted, + awc_amplitudes=turbine_grid_farm.awc_amplitudes_sorted, axial_induction_functions=turbine_grid_farm.turbine_axial_induction_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -501,6 +510,8 @@ def cc_solver( farm.yaw_angles_sorted, farm.tilt_angles_sorted, farm.power_setpoints_sorted, + farm.awc_modes_sorted, + farm.awc_amplitudes_sorted, farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -517,6 +528,8 @@ def cc_solver( farm.yaw_angles_sorted, farm.tilt_angles_sorted, farm.power_setpoints_sorted, + farm.awc_modes_sorted, + farm.awc_amplitudes_sorted, farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -538,6 +551,8 @@ def cc_solver( yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, power_setpoints=farm.power_setpoints_sorted, + awc_modes=farm.awc_modes_sorted, + awc_amplitudes=farm.awc_amplitudes_sorted, axial_induction_functions=farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -751,6 +766,8 @@ def full_flow_cc_solver( yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, power_setpoints=turbine_grid_farm.power_setpoints_sorted, + awc_modes=turbine_grid_farm.awc_modes, + awc_amplitudes=turbine_grid_farm.awc_amplitudes_sorted, thrust_coefficient_functions=turbine_grid_farm.turbine_thrust_coefficient_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -768,6 +785,8 @@ def full_flow_cc_solver( yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, power_setpoints=turbine_grid_farm.power_setpoints_sorted, + awc_modes=turbine_grid_farm.awc_modes, + awc_amplitudes=turbine_grid_farm.awc_amplitudes_sorted, axial_induction_functions=turbine_grid_farm.turbine_axial_induction_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -908,6 +927,8 @@ def turbopark_solver( yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, power_setpoints=farm.power_setpoints_sorted, + awc_modes=farm.awc_modes, + awc_amplitudes=farm.awc_amplitudes_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -924,6 +945,8 @@ def turbopark_solver( yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, power_setpoints=farm.power_setpoints_sorted, + awc_modes=farm.awc_modes, + awc_amplitudes=farm.awc_amplitudes_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -943,6 +966,8 @@ def turbopark_solver( yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, power_setpoints=farm.power_setpoints_sorted, + awc_modes=farm.awc_modes, + awc_amplitudes=farm.awc_amplitudes_sorted, axial_induction_functions=farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -989,6 +1014,8 @@ def turbopark_solver( yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, power_setpoints=farm.power_setpoints_sorted, + awc_modes=farm.awc_modes, + awc_amplitudes=farm.awc_amplitudes_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1164,6 +1191,8 @@ def empirical_gauss_solver( yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, power_setpoints=farm.power_setpoints_sorted, + awc_modes=farm.awc_modes_sorted, + awc_amplitudes=farm.awc_amplitudes_sorted, thrust_coefficient_functions=farm.turbine_thrust_coefficient_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1183,6 +1212,8 @@ def empirical_gauss_solver( yaw_angles=farm.yaw_angles_sorted, tilt_angles=farm.tilt_angles_sorted, power_setpoints=farm.power_setpoints_sorted, + awc_modes=farm.awc_modes_sorted, + awc_amplitudes=farm.awc_amplitudes_sorted, axial_induction_functions=farm.turbine_axial_induction_functions, tilt_interps=farm.turbine_tilt_interps, correct_cp_ct_for_tilt=farm.correct_cp_ct_for_tilt_sorted, @@ -1197,6 +1228,9 @@ def empirical_gauss_solver( # get the first index here (0:1) axial_induction_i = axial_induction_i[:, 0:1, None, None] yaw_angle_i = farm.yaw_angles_sorted[:, i:i+1, None, None] + awc_mode_i = farm.awc_modes_sorted[:, i:i+1, None, None] + awc_amplitude_i = farm.awc_amplitudes_sorted[:, i:i+1, None, None] + awc_frequency_i = farm.awc_frequencies_sorted[:, i:i+1, None, None] hub_height_i = farm.hub_heights_sorted[:, i:i+1, None, None] rotor_diameter_i = farm.rotor_diameters_sorted[:, i:i+1, None, None] @@ -1230,6 +1264,17 @@ def empirical_gauss_solver( model_manager.deflection_model.yaw_added_mixing_gain ) + if model_manager.enable_active_wake_mixing: + # Influence of awc on turbine's own wake + mixing_factor[:, i:i+1, i] += \ + awc_added_wake_mixing( + awc_mode_i, + awc_amplitude_i, + awc_frequency_i, + model_manager.velocity_model.awc_wake_exp, + model_manager.velocity_model.awc_wake_denominator + ) + # Extract total wake induced mixing for turbine i mixing_i = np.linalg.norm( mixing_factor[:, i:i+1, :, None], @@ -1367,6 +1412,8 @@ def full_flow_empirical_gauss_solver( yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, power_setpoints=turbine_grid_farm.power_setpoints_sorted, + awc_modes=turbine_grid_farm.awc_modes_sorted, + awc_amplitudes=turbine_grid_farm.awc_amplitudes_sorted, thrust_coefficient_functions=turbine_grid_farm.turbine_thrust_coefficient_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, @@ -1386,6 +1433,8 @@ def full_flow_empirical_gauss_solver( yaw_angles=turbine_grid_farm.yaw_angles_sorted, tilt_angles=turbine_grid_farm.tilt_angles_sorted, power_setpoints=turbine_grid_farm.power_setpoints_sorted, + awc_modes=turbine_grid_farm.awc_modes_sorted, + awc_amplitudes=turbine_grid_farm.awc_amplitudes_sorted, axial_induction_functions=turbine_grid_farm.turbine_axial_induction_functions, tilt_interps=turbine_grid_farm.turbine_tilt_interps, correct_cp_ct_for_tilt=turbine_grid_farm.correct_cp_ct_for_tilt_sorted, diff --git a/floris/core/turbine/__init__.py b/floris/core/turbine/__init__.py index 5f361f463..6216fe2b0 100644 --- a/floris/core/turbine/__init__.py +++ b/floris/core/turbine/__init__.py @@ -1,5 +1,6 @@ from floris.core.turbine.operation_models import ( + AWCTurbine, CosineLossTurbine, MixedOperationTurbine, SimpleDeratingTurbine, diff --git a/floris/core/turbine/operation_models.py b/floris/core/turbine/operation_models.py index a4ddfddfe..8fcbdb540 100644 --- a/floris/core/turbine/operation_models.py +++ b/floris/core/turbine/operation_models.py @@ -484,3 +484,109 @@ def axial_induction( )[neither_mask] return axial_inductions + +@define +class AWCTurbine(BaseOperationModel): + """ + power_thrust_table is a dictionary (normally defined on the turbine input yaml) + that contains the parameters necessary to evaluate power(), thrust(), and axial_induction(). + + Feel free to put any Helix tuning parameters into here (they can be added to the turbine yaml). + Also, feel free to add any commanded inputs to power(), thrust_coefficient(), or + axial_induction(). For this operation model to receive those arguments, they'll need to be + added to the kwargs dictionaries in the respective functions on turbine.py. They won't affect + the other operation models. + """ + + def power( + power_thrust_table: dict, + velocities: NDArrayFloat, + air_density: float, + awc_modes: str, + awc_amplitudes: NDArrayFloat | None, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + **_ # <- Allows other models to accept other keyword arguments + ): + base_powers = SimpleTurbine.power( + power_thrust_table=power_thrust_table, + velocities=velocities, + air_density=air_density, + average_method=average_method, + cubature_weights=cubature_weights + ) + + if (awc_modes == 'helix').any(): + if np.any(np.isclose( + base_powers/1000, + np.max(power_thrust_table['power']) + )): + raise UserWarning( + 'The selected wind speed is above or near rated wind speed. ' + '`AWCTurbine` operation model is not designed ' + 'or verified for above-rated conditions.' + ) + return base_powers * (1 - ( + power_thrust_table['helix_power_b'] + + power_thrust_table['helix_power_c']*base_powers + ) + *awc_amplitudes**power_thrust_table['helix_a'] + ) ## TODO: Should probably add max function here + if (awc_modes == 'baseline').any(): + return base_powers + else: + raise UserWarning( + 'Active wake mixing strategies other than the `helix` strategy ' + 'have not yet been implemented in FLORIS. Returning baseline power.' + ) + + + def thrust_coefficient( + power_thrust_table: dict, + velocities: NDArrayFloat, + awc_modes: str, + awc_amplitudes: NDArrayFloat | None, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + **_ # <- Allows other models to accept other keyword arguments + ): + base_thrust_coefficients = SimpleTurbine.thrust_coefficient( + power_thrust_table=power_thrust_table, + velocities=velocities, + average_method=average_method, + cubature_weights=cubature_weights + ) + if (awc_modes == 'helix').any(): + return base_thrust_coefficients * (1 - ( + power_thrust_table['helix_thrust_b'] + + power_thrust_table['helix_thrust_c']*base_thrust_coefficients + ) + *awc_amplitudes**power_thrust_table['helix_a'] + ) + if (awc_modes == 'baseline').any(): + return base_thrust_coefficients + else: + raise UserWarning( + 'Active wake mixing strategies other than the `helix` strategy ' + 'have not yet been implemented in FLORIS. Returning baseline power.' + ) + + def axial_induction( + power_thrust_table: dict, + velocities: NDArrayFloat, + awc_modes: str, + awc_amplitudes: NDArrayFloat, + average_method: str = "cubic-mean", + cubature_weights: NDArrayFloat | None = None, + **_ # <- Allows other models to accept other keyword arguments + ): + thrust_coefficient = AWCTurbine.thrust_coefficient( + power_thrust_table=power_thrust_table, + velocities=velocities, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes, + average_method=average_method, + cubature_weights=cubature_weights, + ) + + return (1 - np.sqrt(1 - thrust_coefficient))/2 diff --git a/floris/core/turbine/turbine.py b/floris/core/turbine/turbine.py index 315eaabb9..e176e6a05 100644 --- a/floris/core/turbine/turbine.py +++ b/floris/core/turbine/turbine.py @@ -13,6 +13,7 @@ from floris.core import BaseClass from floris.core.turbine import ( + AWCTurbine, CosineLossTurbine, MixedOperationTurbine, SimpleDeratingTurbine, @@ -26,6 +27,7 @@ NDArrayFloat, NDArrayInt, NDArrayObject, + NDArrayStr, ) from floris.utilities import cosd @@ -36,6 +38,7 @@ "cosine-loss": CosineLossTurbine, "simple-derating": SimpleDeratingTurbine, "mixed": MixedOperationTurbine, + "awc": AWCTurbine, }, } @@ -75,6 +78,8 @@ def power( yaw_angles: NDArrayFloat, tilt_angles: NDArrayFloat, power_setpoints: NDArrayFloat, + awc_modes: NDArrayStr, + awc_amplitudes: NDArrayFloat, tilt_interps: dict[str, interp1d], turbine_type_map: NDArrayObject, turbine_power_thrust_tables: dict, @@ -97,6 +102,12 @@ def power( tilt_angles (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. power_setpoints: (NDArrayFloat[findex, turbines]): Maximum power setpoint for each turbine [W]. + awc_modes: (NDArrayStr[findex, turbines]): awc excitation mode (currently, only "baseline" + and "helix" are implemented). + awc_modes: (NDArrayStr[findex, turbines]): awc excitation mode (currently, only "baseline" + and "helix" are implemented). + awc_amplitudes: (NDArrayFloat[findex, turbines]): awc excitation amplitude for each + turbine [deg]. tilt_interps (Iterable[tuple]): The tilt interpolation functions for each turbine. turbine_type_map: (NDArrayObject[wd, ws, turbines]): The Turbine type definition for @@ -131,6 +142,8 @@ def power( yaw_angles = yaw_angles[:, ix_filter] tilt_angles = tilt_angles[:, ix_filter] power_setpoints = power_setpoints[:, ix_filter] + awc_modes = awc_modes[:, ix_filter] + awc_amplitudes = awc_amplitudes[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] if type(correct_cp_ct_for_tilt) is bool: pass @@ -161,6 +174,8 @@ def power( "yaw_angles": yaw_angles, "tilt_angles": tilt_angles, "power_setpoints": power_setpoints, + "awc_modes": awc_modes, + "awc_amplitudes": awc_amplitudes, "tilt_interp": tilt_interps[turb_type], "average_method": average_method, "cubature_weights": cubature_weights, @@ -180,6 +195,8 @@ def thrust_coefficient( yaw_angles: NDArrayFloat, tilt_angles: NDArrayFloat, power_setpoints: NDArrayFloat, + awc_modes: NDArrayStr, + awc_amplitudes: NDArrayFloat, thrust_coefficient_functions: dict[str, Callable], tilt_interps: dict[str, interp1d], correct_cp_ct_for_tilt: NDArrayBool, @@ -203,6 +220,10 @@ def thrust_coefficient( tilt_angles (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. power_setpoints: (NDArrayFloat[findex, turbines]): Maximum power setpoint for each turbine [W]. + awc_modes: (NDArrayStr[findex, turbines]): awc excitation mode (currently, only "baseline" + and "helix" are implemented). + awc_amplitudes: (NDArrayFloat[findex, turbines]): awc excitation amplitude for each + turbine [deg]. thrust_coefficient_functions (dict): The thrust coefficient functions for each turbine. Keys are the turbine type string and values are the callable functions. tilt_interps (Iterable[tuple]): The tilt interpolation functions for each @@ -232,6 +253,8 @@ def thrust_coefficient( yaw_angles = yaw_angles[:, ix_filter] tilt_angles = tilt_angles[:, ix_filter] power_setpoints = power_setpoints[:, ix_filter] + awc_modes = awc_modes[:, ix_filter] + awc_amplitudes = awc_amplitudes[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] if type(correct_cp_ct_for_tilt) is bool: pass @@ -262,6 +285,8 @@ def thrust_coefficient( "yaw_angles": yaw_angles, "tilt_angles": tilt_angles, "power_setpoints": power_setpoints, + "awc_modes": awc_modes, + "awc_amplitudes": awc_amplitudes, "tilt_interp": tilt_interps[turb_type], "average_method": average_method, "cubature_weights": cubature_weights, @@ -284,6 +309,8 @@ def axial_induction( yaw_angles: NDArrayFloat, tilt_angles: NDArrayFloat, power_setpoints: NDArrayFloat, + awc_modes: NDArrayStr, + awc_amplitudes: NDArrayFloat, axial_induction_functions: dict, tilt_interps: NDArrayObject, correct_cp_ct_for_tilt: NDArrayBool, @@ -304,6 +331,8 @@ def axial_induction( tilt_angles (NDArrayFloat[findex, turbines]): The tilt angle for each turbine. power_setpoints: (NDArrayFloat[findex, turbines]): Maximum power setpoint for each turbine [W]. + awc_amplitudes: (NDArrayFloat[findex, turbines]): awc excitation amplitude for each + turbine [deg]. axial_induction_functions (dict): The axial induction functions for each turbine. Keys are the turbine type string and values are the callable functions. tilt_interps (Iterable[tuple]): The tilt interpolation functions for each @@ -333,6 +362,8 @@ def axial_induction( yaw_angles = yaw_angles[:, ix_filter] tilt_angles = tilt_angles[:, ix_filter] power_setpoints = power_setpoints[:, ix_filter] + awc_modes = awc_modes[:, ix_filter] + awc_amplitudes = awc_amplitudes[:, ix_filter] turbine_type_map = turbine_type_map[:, ix_filter] if type(correct_cp_ct_for_tilt) is bool: pass @@ -363,6 +394,8 @@ def axial_induction( "yaw_angles": yaw_angles, "tilt_angles": tilt_angles, "power_setpoints": power_setpoints, + "awc_modes": awc_modes, + "awc_amplitudes": awc_amplitudes, "tilt_interp": tilt_interps[turb_type], "average_method": average_method, "cubature_weights": cubature_weights, diff --git a/floris/core/wake.py b/floris/core/wake.py index 2f9907c99..fe2fa9c50 100644 --- a/floris/core/wake.py +++ b/floris/core/wake.py @@ -73,6 +73,7 @@ class WakeModelManager(BaseClass): model_strings: dict = field(converter=dict) enable_secondary_steering: bool = field(converter=bool) enable_yaw_added_recovery: bool = field(converter=bool) + enable_active_wake_mixing: bool = field(converter=bool) enable_transverse_velocities: bool = field(converter=bool) wake_deflection_parameters: dict = field(converter=dict) diff --git a/floris/core/wake_velocity/empirical_gauss.py b/floris/core/wake_velocity/empirical_gauss.py index 722771012..4d8005056 100644 --- a/floris/core/wake_velocity/empirical_gauss.py +++ b/floris/core/wake_velocity/empirical_gauss.py @@ -59,6 +59,9 @@ class EmpiricalGaussVelocityDeficit(BaseModel): sigma_0_D: float = field(default=0.28) smoothing_length_D: float = field(default=2.0) mixing_gain_velocity: float = field(default=2.0) + awc_mode: str = field(default="baseline") + awc_wake_exp: float = field(default=1.2) + awc_wake_denominator: float = field(default=400) def prepare_function( self, @@ -281,3 +284,22 @@ def empirical_gauss_model_wake_width( sigmoid_integral(x, center=b, width=smoothing_length) return sigma + +def awc_added_wake_mixing( + awc_mode_i, + awc_amplitude_i, + awc_frequency_i, + awc_wake_exp, + awc_wake_denominator +): + + ## TODO: Add TI in the mix, finetune amplitude/freq effect + if (awc_mode_i == "helix").any(): + return awc_amplitude_i[:,:,0,0]**awc_wake_exp/awc_wake_denominator + elif (awc_mode_i == "baseline").any(): + return 0 + else: + raise NotImplementedError( + 'Active wake mixing strategies other than the `helix` mode ' + 'have not yet been implemented in FLORIS.' + ) diff --git a/floris/floris_model.py b/floris/floris_model.py index 78f60ae5f..709c06884 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -29,6 +29,7 @@ floris_array_converter, NDArrayBool, NDArrayFloat, + NDArrayStr, ) from floris.utilities import ( nested_get, @@ -233,6 +234,9 @@ def set_operation( self, yaw_angles: NDArrayFloat | list[float] | None = None, power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, + awc_modes: NDArrayStr | list[str] | list[str, None] | None = None, + awc_amplitudes: NDArrayFloat | list[float] | list[float, None] | None = None, + awc_frequencies: NDArrayFloat | list[float] | list[float, None] | None = None, disable_turbines: NDArrayBool | list[bool] | None = None, ): """ @@ -274,6 +278,32 @@ def set_operation( self.core.farm.set_power_setpoints(power_setpoints) + if awc_modes is None: + awc_modes = np.array( + [["baseline"] + *self.core.farm.n_turbines] + *self.core.flow_field.n_findex + ) + self.core.farm.awc_modes = awc_modes + + if awc_amplitudes is None: + awc_amplitudes = np.zeros( + ( + self.core.flow_field.n_findex, + self.core.farm.n_turbines, + ) + ) + self.core.farm.awc_amplitudes = awc_amplitudes + + if awc_frequencies is None: + awc_frequencies = np.zeros( + ( + self.core.flow_field.n_findex, + self.core.farm.n_turbines, + ) + ) + self.core.farm.awc_frequencies = awc_frequencies + # Check for turbines to disable if disable_turbines is not None: @@ -322,6 +352,9 @@ def set( wind_data: type[WindDataBase] | None = None, yaw_angles: NDArrayFloat | list[float] | None = None, power_setpoints: NDArrayFloat | list[float] | list[float, None] | None = None, + awc_modes: NDArrayStr | list[str] | list[str, None] | None = None, + awc_amplitudes: NDArrayFloat | list[float] | list[float, None] | None = None, + awc_frequencies: NDArrayFloat | list[float] | list[float, None] | None = None, disable_turbines: NDArrayBool | list[bool] | None = None, ): """ @@ -360,6 +393,9 @@ def set( # Initialize a new Floris object after saving the setpoints _yaw_angles = self.core.farm.yaw_angles _power_setpoints = self.core.farm.power_setpoints + _awc_modes = self.core.farm.awc_modes + _awc_amplitudes = self.core.farm.awc_amplitudes + _awc_frequencies = self.core.farm.awc_frequencies self._reinitialize( wind_speeds=wind_speeds, wind_directions=wind_directions, @@ -386,11 +422,20 @@ def set( | (_power_setpoints == POWER_SETPOINT_DISABLED) ).all(): self.core.farm.set_power_setpoints(_power_setpoints) + if _awc_modes is not None: + self.core.farm.set_awc_modes(_awc_modes) + if not (_awc_amplitudes == 0).all(): + self.core.farm.set_awc_amplitudes(_awc_amplitudes) + if not (_awc_frequencies == 0).all(): + self.core.farm.set_awc_frequencies(_awc_frequencies) # Set the operation self.set_operation( yaw_angles=yaw_angles, power_setpoints=power_setpoints, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes, + awc_frequencies=awc_frequencies, disable_turbines=disable_turbines, ) @@ -451,6 +496,8 @@ def _get_turbine_powers(self) -> NDArrayFloat: yaw_angles=self.core.farm.yaw_angles, tilt_angles=self.core.farm.tilt_angles, power_setpoints=self.core.farm.power_setpoints, + awc_modes = self.core.farm.awc_modes, + awc_amplitudes=self.core.farm.awc_amplitudes, tilt_interps=self.core.farm.turbine_tilt_interps, turbine_type_map=self.core.farm.turbine_type_map, turbine_power_thrust_tables=self.core.farm.turbine_power_thrust_tables, @@ -862,6 +909,8 @@ def get_turbine_ais(self) -> NDArrayFloat: yaw_angles=self.core.farm.yaw_angles, tilt_angles=self.core.farm.tilt_angles, power_setpoints=self.core.farm.power_setpoints, + awc_modes = self.core.farm.awc_modes, + awc_amplitudes=self.core.farm.awc_amplitudes, axial_induction_functions=self.core.farm.turbine_axial_induction_functions, tilt_interps=self.core.farm.turbine_tilt_interps, correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, @@ -880,6 +929,8 @@ def get_turbine_thrust_coefficients(self) -> NDArrayFloat: yaw_angles=self.core.farm.yaw_angles, tilt_angles=self.core.farm.tilt_angles, power_setpoints=self.core.farm.power_setpoints, + awc_modes = self.core.farm.awc_modes, + awc_amplitudes=self.core.farm.awc_amplitudes, thrust_coefficient_functions=self.core.farm.turbine_thrust_coefficient_functions, tilt_interps=self.core.farm.turbine_tilt_interps, correct_cp_ct_for_tilt=self.core.farm.correct_cp_ct_for_tilt, @@ -909,6 +960,9 @@ def calculate_cross_plane( ti=None, yaw_angles=None, power_setpoints=None, + awc_modes=None, + awc_amplitudes=None, + awc_frequencies=None, disable_turbines=None, ): """ @@ -958,6 +1012,9 @@ def calculate_cross_plane( solver_settings=solver_settings, yaw_angles=yaw_angles, power_setpoints=power_setpoints, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes, + awc_frequencies=awc_frequencies, disable_turbines=disable_turbines, ) @@ -966,7 +1023,7 @@ def calculate_cross_plane( # Get the points of data in a dataframe # TODO this just seems to be flattening and storing the data in a df; is this necessary? - # It seems the biggest depenedcy is on CutPlane and the subsequent visualization tools. + # It seems the biggest dependency is on CutPlane and the subsequent visualization tools. df = self.get_plane_of_points( normal_vector="x", planar_coordinate=downstream_dist, @@ -995,6 +1052,9 @@ def calculate_horizontal_plane( ti=None, yaw_angles=None, power_setpoints=None, + awc_modes=None, + awc_amplitudes=None, + awc_frequencies=None, disable_turbines=None, ): """ @@ -1052,6 +1112,9 @@ def calculate_horizontal_plane( solver_settings=solver_settings, yaw_angles=yaw_angles, power_setpoints=power_setpoints, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes, + awc_frequencies=awc_frequencies, disable_turbines=disable_turbines, ) @@ -1094,6 +1157,9 @@ def calculate_y_plane( ti=None, yaw_angles=None, power_setpoints=None, + awc_modes=None, + awc_amplitudes=None, + awc_frequencies=None, disable_turbines=None, ): """ @@ -1156,6 +1222,9 @@ def calculate_y_plane( solver_settings=solver_settings, yaw_angles=yaw_angles, power_setpoints=power_setpoints, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes, + awc_frequencies=awc_frequencies, disable_turbines=disable_turbines, ) diff --git a/floris/turbine_library/iea_10MW.yaml b/floris/turbine_library/iea_10MW.yaml index 28e504e6c..f68278a70 100644 --- a/floris/turbine_library/iea_10MW.yaml +++ b/floris/turbine_library/iea_10MW.yaml @@ -11,6 +11,11 @@ power_thrust_table: ref_tilt: 6.0 cosine_loss_exponent_yaw: 1.88 cosine_loss_exponent_tilt: 1.88 + helix_a: 1.719 + helix_power_b: 4.823e-03 + helix_power_c: 2.314e-10 + helix_thrust_b: 1.157e-03 + helix_thrust_c: 1.167e-04 power: - 0.0 - 0.0 diff --git a/floris/turbine_library/iea_15MW.yaml b/floris/turbine_library/iea_15MW.yaml index f72003404..6274b5f49 100644 --- a/floris/turbine_library/iea_15MW.yaml +++ b/floris/turbine_library/iea_15MW.yaml @@ -13,6 +13,11 @@ power_thrust_table: ref_tilt: 6.0 cosine_loss_exponent_yaw: 1.88 cosine_loss_exponent_tilt: 1.88 + helix_a: 1.809 + helix_power_b: 4.828e-03 + helix_power_c: 4.017e-11 + helix_thrust_b: 1.390e-03 + helix_thrust_c: 5.084e-04 power: - 0.000000 - 0.000000 diff --git a/floris/turbine_library/nrel_5MW.yaml b/floris/turbine_library/nrel_5MW.yaml index ce0c788f7..951441a61 100644 --- a/floris/turbine_library/nrel_5MW.yaml +++ b/floris/turbine_library/nrel_5MW.yaml @@ -39,6 +39,12 @@ power_thrust_table: cosine_loss_exponent_tilt: 1.88 # Cosine exponent for power loss due to yaw misalignment. cosine_loss_exponent_yaw: 1.88 + # Helix parameters + helix_a: 1.802 + helix_power_b: 4.568e-03 + helix_power_c: 1.629e-10 + helix_thrust_b: 1.027e-03 + helix_thrust_c: 1.378e-06 ### Power thrust table data wind_speed: - 0.0 diff --git a/floris/type_dec.py b/floris/type_dec.py index 2afbf7c9c..319a09917 100644 --- a/floris/type_dec.py +++ b/floris/type_dec.py @@ -27,6 +27,7 @@ NDArrayFilter = Union[npt.NDArray[np.int_], npt.NDArray[np.bool_]] NDArrayObject = npt.NDArray[np.object_] NDArrayBool = npt.NDArray[np.bool_] +NDArrayStr = npt.NDArray[np.str_] ### Custom callables for attrs objects and functions diff --git a/tests/conftest.py b/tests/conftest.py index b8b70dc7d..8a647dbd5 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -211,6 +211,11 @@ def __init__(self): "cosine_loss_exponent_tilt": 1.88, "ref_air_density": 1.225, "ref_tilt": 5.0, + "helix_a": 1.802, + "helix_power_b": 4.568e-03, + "helix_power_c": 1.629e-10, + "helix_thrust_b": 1.027e-03, + "helix_thrust_c": 1.378e-06, "power": [ 0.0, 0.0, @@ -488,7 +493,9 @@ def __init__(self): "breakpoints_D": [10], "sigma_0_D": 0.28, "smoothing_length_D": 2.0, - "mixing_gain_velocity": 2.0 + "mixing_gain_velocity": 2.0, + "awc_wake_exp": 1.2, + "awc_wake_denominator": 400 }, }, "wake_turbulence_parameters": { @@ -504,6 +511,7 @@ def __init__(self): }, "enable_secondary_steering": False, "enable_yaw_added_recovery": False, + "enable_active_wake_mixing": False, "enable_transverse_velocities": False, } diff --git a/tests/data/input_full.yaml b/tests/data/input_full.yaml index d9415db1f..f3235b581 100644 --- a/tests/data/input_full.yaml +++ b/tests/data/input_full.yaml @@ -44,6 +44,7 @@ wake: enable_secondary_steering: true enable_yaw_added_recovery: true + enable_active_wake_mixing: true enable_transverse_velocities: true wake_deflection_parameters: diff --git a/tests/farm_unit_test.py b/tests/farm_unit_test.py index 38d2b91a7..3c8893998 100644 --- a/tests/farm_unit_test.py +++ b/tests/farm_unit_test.py @@ -50,6 +50,9 @@ def test_asdict(sample_inputs_fixture: SampleInputs): farm.set_yaw_angles_to_ref_yaw(N_FINDEX) farm.set_tilt_to_ref_tilt(N_FINDEX) farm.set_power_setpoints_to_ref_power(N_FINDEX) + farm.set_awc_modes_to_ref_mode(N_FINDEX) + farm.set_awc_amplitudes_to_ref_amp(N_FINDEX) + farm.set_awc_frequencies_to_ref_freq(N_FINDEX) dict1 = farm.as_dict() new_farm = farm.from_dict(dict1) @@ -58,6 +61,9 @@ def test_asdict(sample_inputs_fixture: SampleInputs): new_farm.set_yaw_angles_to_ref_yaw(N_FINDEX) new_farm.set_tilt_to_ref_tilt(N_FINDEX) new_farm.set_power_setpoints_to_ref_power(N_FINDEX) + new_farm.set_awc_modes_to_ref_mode(N_FINDEX) + new_farm.set_awc_amplitudes_to_ref_amp(N_FINDEX) + new_farm.set_awc_frequencies_to_ref_freq(N_FINDEX) dict2 = new_farm.as_dict() assert dict1 == dict2 diff --git a/tests/reg_tests/cumulative_curl_regression_test.py b/tests/reg_tests/cumulative_curl_regression_test.py index 8d47d0ebd..6de08a83b 100644 --- a/tests/reg_tests/cumulative_curl_regression_test.py +++ b/tests/reg_tests/cumulative_curl_regression_test.py @@ -204,6 +204,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -215,6 +217,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -228,6 +232,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -238,6 +244,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -366,6 +374,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -377,6 +387,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -390,6 +402,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -400,6 +414,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -455,6 +471,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -466,6 +484,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -479,6 +499,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -489,6 +511,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -543,6 +567,8 @@ def test_regression_secondary_steering(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -554,6 +580,8 @@ def test_regression_secondary_steering(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -567,6 +595,8 @@ def test_regression_secondary_steering(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -577,6 +607,8 @@ def test_regression_secondary_steering(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -645,6 +677,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes farm_powers = power( velocities, @@ -653,6 +687,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index 224eb66de..c614fa633 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -110,6 +110,35 @@ ] ) +helix_added_recovery_baseline = np.array( + [ + # 8 m/s + [ + [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], + [5.8181628, 0.8711866, 676912.0380737, 0.3205471], + [5.8941747, 0.8668654, 702276.3178047, 0.3175620], + ], + # 9 m/s + [ + [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], + [6.5498312, 0.8358441, 984786.7218587, 0.2974192], + [6.6883370, 0.8295451, 1047057.3206209, 0.2935691], + ], + # 10 m/s + [ + [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], + [7.2852518, 0.8049506, 1339238.8882972, 0.2791780], + [7.4865891, 0.7981254, 1452997.4778680, 0.2753477], + ], + # 11 m/s + [ + [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], + [8.1286243, 0.7869622, 1867298.1260108, 0.2692199], + [8.2872457, 0.7867578, 1985849.6635654, 0.2691092], + ], + ] +) + full_flow_baseline = np.array( [ [ @@ -178,6 +207,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -189,6 +220,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -202,6 +235,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -212,6 +247,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -342,6 +379,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -353,6 +392,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -366,6 +407,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -376,6 +419,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -431,6 +476,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -442,6 +489,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -455,6 +504,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -465,6 +516,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -503,6 +556,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -514,6 +569,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -527,6 +584,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -537,6 +596,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -561,6 +622,98 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): assert_results_arrays(test_results[0:4], yaw_added_recovery_baseline) +def test_regression_helix(sample_inputs_fixture): + """ + Tandem turbines with the upstream turbine applying the helix + """ + sample_inputs_fixture.core["wake"]["model_strings"]["velocity_model"] = VELOCITY_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["deflection_model"] = DEFLECTION_MODEL + sample_inputs_fixture.core["wake"]["model_strings"]["turbulence_model"] = TURBULENCE_MODEL + + floris = Core.from_dict(sample_inputs_fixture.core) + + awc_modes = np.array([["helix"]*N_TURBINES]*N_FINDEX) + awc_amplitudes = np.zeros((N_FINDEX, N_TURBINES)) + awc_amplitudes[:,0] = 5.0 + floris.farm.awc_amplitudes = awc_amplitudes + + floris.initialize_domain() + floris.steady_state_atmospheric_condition() + + n_turbines = floris.farm.n_turbines + n_findex = floris.flow_field.n_findex + + velocities = floris.flow_field.u + air_density = floris.flow_field.air_density + yaw_angles = floris.farm.yaw_angles + tilt_angles = floris.farm.tilt_angles + power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes + test_results = np.zeros((n_findex, n_turbines, 4)) + + farm_avg_velocities = average_velocity( + velocities, + ) + farm_cts = thrust_coefficient( + velocities, + air_density, + yaw_angles, + tilt_angles, + power_setpoints, + awc_modes, + awc_amplitudes, + floris.farm.turbine_thrust_coefficient_functions, + floris.farm.turbine_tilt_interps, + floris.farm.correct_cp_ct_for_tilt, + floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, + ) + farm_powers = power( + velocities, + air_density, + floris.farm.turbine_power_functions, + yaw_angles, + tilt_angles, + power_setpoints, + awc_modes, + awc_amplitudes, + floris.farm.turbine_tilt_interps, + floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, + ) + farm_axial_inductions = axial_induction( + velocities, + air_density, + yaw_angles, + tilt_angles, + power_setpoints, + awc_modes, + awc_amplitudes, + floris.farm.turbine_axial_induction_functions, + floris.farm.turbine_tilt_interps, + floris.farm.correct_cp_ct_for_tilt, + floris.farm.turbine_type_map, + floris.farm.turbine_power_thrust_tables, + ) + for i in range(n_findex): + for j in range(n_turbines): + test_results[i, j, 0] = farm_avg_velocities[i, j] + test_results[i, j, 1] = farm_cts[i, j] + test_results[i, j, 2] = farm_powers[i, j] + test_results[i, j, 3] = farm_axial_inductions[i, j] + + if DEBUG: + print_test_values( + farm_avg_velocities, + farm_cts, + farm_powers, + farm_axial_inductions, + max_findex_print=4 + ) + + assert_results_arrays(test_results[0:4], helix_added_recovery_baseline) + def test_regression_small_grid_rotation(sample_inputs_fixture): """ @@ -623,6 +776,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): floris.farm.yaw_angles, floris.farm.tilt_angles, floris.farm.power_setpoints, + floris.farm.awc_modes, + floris.farm.awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/gauss_regression_test.py b/tests/reg_tests/gauss_regression_test.py index bc876006b..cd3dcce0b 100644 --- a/tests/reg_tests/gauss_regression_test.py +++ b/tests/reg_tests/gauss_regression_test.py @@ -296,6 +296,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -307,6 +309,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -320,6 +324,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -330,6 +336,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -459,6 +467,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -470,6 +480,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -483,6 +495,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -493,6 +507,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -545,6 +561,8 @@ def test_regression_gch(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -556,6 +574,8 @@ def test_regression_gch(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -569,6 +589,8 @@ def test_regression_gch(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -579,6 +601,8 @@ def test_regression_gch(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -626,6 +650,8 @@ def test_regression_gch(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -637,6 +663,8 @@ def test_regression_gch(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -650,6 +678,8 @@ def test_regression_gch(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -660,6 +690,8 @@ def test_regression_gch(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -715,6 +747,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -726,6 +760,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -739,6 +775,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -749,6 +787,8 @@ def test_regression_yaw_added_recovery(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -803,6 +843,8 @@ def test_regression_secondary_steering(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -814,6 +856,8 @@ def test_regression_secondary_steering(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -827,6 +871,8 @@ def test_regression_secondary_steering(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -837,6 +883,8 @@ def test_regression_secondary_steering(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -904,6 +952,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes farm_powers = power( velocities, @@ -912,6 +962,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/jensen_jimenez_regression_test.py b/tests/reg_tests/jensen_jimenez_regression_test.py index 775687077..8c6a2accd 100644 --- a/tests/reg_tests/jensen_jimenez_regression_test.py +++ b/tests/reg_tests/jensen_jimenez_regression_test.py @@ -146,6 +146,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -157,6 +159,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -170,6 +174,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -180,6 +186,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -308,6 +316,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -319,6 +329,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -332,6 +344,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -342,6 +356,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -410,6 +426,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes # farm_eff_velocities = rotor_effective_velocity( # floris.flow_field.air_density, @@ -431,6 +449,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/none_regression_test.py b/tests/reg_tests/none_regression_test.py index aff811938..d8b7e87f3 100644 --- a/tests/reg_tests/none_regression_test.py +++ b/tests/reg_tests/none_regression_test.py @@ -147,6 +147,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -158,6 +160,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -171,6 +175,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -181,6 +187,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -346,6 +354,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes farm_powers = power( velocities, @@ -354,6 +364,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/reg_tests/turbopark_regression_test.py b/tests/reg_tests/turbopark_regression_test.py index d4ee6febe..397a8586c 100644 --- a/tests/reg_tests/turbopark_regression_test.py +++ b/tests/reg_tests/turbopark_regression_test.py @@ -106,6 +106,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -117,6 +119,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -130,6 +134,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -140,6 +146,8 @@ def test_regression_tandem(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -269,6 +277,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes test_results = np.zeros((n_findex, n_turbines, 4)) farm_avg_velocities = average_velocity( @@ -280,6 +290,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_thrust_coefficient_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -293,6 +305,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, @@ -303,6 +317,8 @@ def test_regression_yaw(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_axial_induction_functions, floris.farm.turbine_tilt_interps, floris.farm.correct_cp_ct_for_tilt, @@ -365,6 +381,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles = floris.farm.yaw_angles tilt_angles = floris.farm.tilt_angles power_setpoints = floris.farm.power_setpoints + awc_modes = floris.farm.awc_modes + awc_amplitudes = floris.farm.awc_amplitudes farm_powers = power( velocities, @@ -373,6 +391,8 @@ def test_regression_small_grid_rotation(sample_inputs_fixture): yaw_angles, tilt_angles, power_setpoints, + awc_modes, + awc_amplitudes, floris.farm.turbine_tilt_interps, floris.farm.turbine_type_map, floris.farm.turbine_power_thrust_tables, diff --git a/tests/turbine_multi_dim_unit_test.py b/tests/turbine_multi_dim_unit_test.py index 55b582e41..8a429a74c 100644 --- a/tests/turbine_multi_dim_unit_test.py +++ b/tests/turbine_multi_dim_unit_test.py @@ -85,7 +85,9 @@ def test_ct(): air_density=None, yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, - power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT,\ + awc_modes=np.array([["baseline"]*N_TURBINES]*1), + awc_amplitudes=np.zeros((1, 1)), thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -104,6 +106,8 @@ def test_ct(): yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array([["baseline"]*N_TURBINES]*1), + awc_amplitudes=np.zeros((1, N_TURBINES)), thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), @@ -156,6 +160,8 @@ def test_power(): yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine tilt_angles=turbine.power_thrust_table[condition]["ref_tilt"] * np.ones((1, 1)), power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array([["baseline"]*N_TURBINES]*1), + awc_amplitudes=np.zeros((1, 1)), tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map[:,0], turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -175,6 +181,8 @@ def test_power(): yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array([["baseline"]*N_TURBINES]*1), + awc_amplitudes=np.zeros((1, N_TURBINES)), tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map, ix_filter=INDEX_FILTER, @@ -214,6 +222,8 @@ def test_axial_induction(): yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, power_setpoints = np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array([["baseline"]*N_TURBINES]*1), + awc_amplitudes=np.zeros((1, 1)), axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -230,6 +240,8 @@ def test_axial_induction(): yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array([["baseline"]*N_TURBINES]*1), + awc_amplitudes=np.zeros((1, N_TURBINES)), axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), diff --git a/tests/turbine_operation_models_integration_test.py b/tests/turbine_operation_models_integration_test.py index 4732bd555..bd9dc3930 100644 --- a/tests/turbine_operation_models_integration_test.py +++ b/tests/turbine_operation_models_integration_test.py @@ -2,6 +2,7 @@ import pytest from floris.core.turbine.operation_models import ( + AWCTurbine, CosineLossTurbine, MixedOperationTurbine, POWER_SETPOINT_DEFAULT, @@ -49,6 +50,10 @@ def test_submodel_attributes(): assert hasattr(MixedOperationTurbine, "thrust_coefficient") assert hasattr(MixedOperationTurbine, "axial_induction") + assert hasattr(AWCTurbine, "power") + assert hasattr(AWCTurbine, "thrust_coefficient") + assert hasattr(AWCTurbine, "axial_induction") + def test_SimpleTurbine(): n_turbines = 1 @@ -228,12 +233,14 @@ def test_CosineLossTurbine(): absolute_tilt = tilt_angles_test - turbine_data["power_thrust_table"]["ref_tilt"] assert test_Ct == baseline_Ct * cosd(yaw_angles_test) * cosd(absolute_tilt) + def test_SimpleDeratingTurbine(): n_turbines = 1 wind_speed = 10.0 turbine_data = SampleInputs().turbine + # Check that for no specified derating, matches SimpleTurbine test_Ct = SimpleDeratingTurbine.thrust_coefficient( power_thrust_table=turbine_data["power_thrust_table"], @@ -498,3 +505,79 @@ def test_MixedOperationTurbine(): tilt_angles=tilt_angles_nom, tilt_interp=None ) + +def test_AWCTurbine(): + + n_turbines = 1 + wind_speed = 10.0 + turbine_data = SampleInputs().turbine + + # Baseline + base_Ct = SimpleTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + ) + base_power = SimpleTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + ) + base_ai = SimpleTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + ) + + # Test no change to Ct, power, or ai when helix amplitudes are 0 + test_Ct = AWCTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + awc_modes=np.array([["helix"]*n_turbines]*1), + awc_amplitudes=np.zeros((1, n_turbines)), + ) + assert np.allclose(test_Ct, base_Ct) + + test_power = AWCTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + awc_modes=np.array([["helix"]*n_turbines]*1), + awc_amplitudes=np.zeros((1, n_turbines)), + ) + assert np.allclose(test_power, base_power) + + test_ai = AWCTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + awc_modes=np.array([["helix"]*n_turbines]*1), + awc_amplitudes=np.zeros((1, n_turbines)), + ) + assert np.allclose(test_ai, base_ai) + + # Test that Ct, power, and ai all decrease when helix amplitudes are non-zero + test_Ct = AWCTurbine.thrust_coefficient( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + awc_modes=np.array([["helix"]*n_turbines]*1), + awc_amplitudes=2*np.ones((1, n_turbines)), + ) + assert test_Ct < base_Ct + assert test_Ct > 0 + + test_power = AWCTurbine.power( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + air_density=turbine_data["power_thrust_table"]["ref_air_density"], + awc_modes=np.array([["helix"]*n_turbines]*1), + awc_amplitudes=2*np.ones((1, n_turbines)), + ) + assert test_power < base_power + assert test_power > 0 + + test_ai = AWCTurbine.axial_induction( + power_thrust_table=turbine_data["power_thrust_table"], + velocities=wind_speed * np.ones((1, n_turbines, 3, 3)), # 1 findex, 1 turbine, 3x3 grid + awc_modes=np.array([["helix"]*n_turbines]*1), + awc_amplitudes=2*np.ones((1, n_turbines)), + ) + assert test_ai < base_ai + assert test_ai > 0 diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index 2ef7a7d97..2161a7309 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -183,6 +183,8 @@ def test_ct(): yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array("baseline"), + awc_amplitudes=np.zeros((1, 1)), thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -204,6 +206,8 @@ def test_ct(): yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array([["baseline"]*N_TURBINES]*1), + awc_amplitudes=np.zeros((1, N_TURBINES)), thrust_coefficient_functions={turbine.turbine_type: turbine.thrust_coefficient_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), @@ -227,6 +231,8 @@ def test_ct(): yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array("baseline"), + awc_amplitudes=np.zeros((1, 1)), thrust_coefficient_functions={ turbine.turbine_type: turbine_floating.thrust_coefficient_function }, @@ -259,6 +265,8 @@ def test_power(): power_functions={turbine.turbine_type: turbine.power_function}, yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array("baseline"), + awc_amplitudes=np.zeros((1, 1)), tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, 1)), tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map[:,0], @@ -280,6 +288,8 @@ def test_power(): yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, 1)), power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array("baseline"), + awc_amplitudes=np.zeros((1, 1)), tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map[:,0], turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -296,6 +306,8 @@ def test_power(): yaw_angles=np.zeros((1, 1)), # 1 findex, 1 turbine tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, 1)), power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array("baseline"), + awc_amplitudes=np.zeros((1, 1)), tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map[:,0], turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -317,6 +329,8 @@ def test_power(): yaw_angles=np.zeros((1, n_turbines)), tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, n_turbines)), power_setpoints=np.ones((1, n_turbines)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array([["baseline"]*n_turbines]*1), + awc_amplitudes=np.zeros((1, n_turbines)), tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map, turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -338,6 +352,8 @@ def test_power(): yaw_angles=np.zeros((1, n_turbines)), tilt_angles=turbine.power_thrust_table["ref_tilt"] * np.ones((1, n_turbines)), power_setpoints=np.ones((1, n_turbines)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array([["baseline"]*n_turbines]*1), + awc_amplitudes=np.zeros((1, n_turbines)), tilt_interps={turbine.turbine_type: turbine.tilt_interp}, turbine_type_map=turbine_type_map, turbine_power_thrust_tables={turbine.turbine_type: turbine.power_thrust_table}, @@ -368,6 +384,8 @@ def test_axial_induction(): yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array("baseline"), + awc_amplitudes=np.zeros((1, 1)), axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False]]), @@ -383,6 +401,8 @@ def test_axial_induction(): yaw_angles=np.zeros((1, N_TURBINES)), tilt_angles=np.ones((1, N_TURBINES)) * 5.0, power_setpoints=np.ones((1, N_TURBINES)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array([["baseline"]*N_TURBINES]*1), + awc_amplitudes=np.zeros((1, N_TURBINES)), axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine.turbine_type: None}, correct_cp_ct_for_tilt=np.array([[False] * N_TURBINES]), @@ -403,6 +423,8 @@ def test_axial_induction(): yaw_angles=np.zeros((1, 1)), tilt_angles=np.ones((1, 1)) * 5.0, power_setpoints=np.ones((1, 1)) * POWER_SETPOINT_DEFAULT, + awc_modes=np.array("baseline"), + awc_amplitudes=np.zeros((1, 1)), axial_induction_functions={turbine.turbine_type: turbine.axial_induction_function}, tilt_interps={turbine_floating.turbine_type: turbine_floating.tilt_interp}, correct_cp_ct_for_tilt=np.array([[True]]), From 0eb5f0a93c3c398e3fb3b414eac198e7685cf211 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Fri, 5 Apr 2024 15:08:29 -0600 Subject: [PATCH 66/78] Update _config.yml/g--analytic tag --- docs/_config.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/_config.yml b/docs/_config.yml index 9a3c991d0..229977898 100644 --- a/docs/_config.yml +++ b/docs/_config.yml @@ -33,7 +33,7 @@ html: use_issues_button: true use_repository_button: true use_edit_page_button: true - google_analytics_id: G-L8RGXZCW3F + google_analytics_id: G-JV2SK7CNPR # Sphinx for API doc generation From a6029c5c57bfa85240abaedf6a576b57f09b3dbf Mon Sep 17 00:00:00 2001 From: Paul Date: Fri, 5 Apr 2024 15:18:56 -0600 Subject: [PATCH 67/78] Fix header for helix example --- .../004_helix_active_wake_mixing.py | 23 ++++--------------- 1 file changed, 5 insertions(+), 18 deletions(-) diff --git a/examples/examples_control_types/004_helix_active_wake_mixing.py b/examples/examples_control_types/004_helix_active_wake_mixing.py index 456766ba6..aae41a4b0 100644 --- a/examples/examples_control_types/004_helix_active_wake_mixing.py +++ b/examples/examples_control_types/004_helix_active_wake_mixing.py @@ -1,16 +1,9 @@ -# Copyright 2024 NREL +"""Example: Helix active wake mixing -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -# See https://floris.readthedocs.io for documentation +Example to test out using helix wake mixing of upstream turbines. +Helix wake mixing is turned on at turbine 1, off at turbines 2 to 4; +Turbine 2 is in wake turbine 1, turbine 4 in wake of turbine 3. +""" import matplotlib.pyplot as plt import numpy as np @@ -20,12 +13,6 @@ from floris import FlorisModel -""" -Example to test out using helix wake mixing of upstream turbines. -Helix wake mixing is turned on at turbine 1, off at turbines 2 to 4; -Turbine 2 is in wake turbine 1, turbine 4 in wake of turbine 3. -""" - # Grab model of FLORIS and update to awc-enabled turbines fmodel = FlorisModel("../inputs/emgauss_helix.yaml") fmodel.set_operation_model("awc") From c06ab6c994c0d736cf82d5ebcc88123a5db4058e Mon Sep 17 00:00:00 2001 From: paulf81 Date: Fri, 5 Apr 2024 15:28:56 -0600 Subject: [PATCH 68/78] Add try/except to wind rose loader (#874) --- floris/wind_data.py | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/floris/wind_data.py b/floris/wind_data.py index 2579fd3e0..35aaa1bad 100644 --- a/floris/wind_data.py +++ b/floris/wind_data.py @@ -1,6 +1,8 @@ from __future__ import annotations +import inspect from abc import abstractmethod +from pathlib import Path import matplotlib.cm as cm import matplotlib.pyplot as plt @@ -680,7 +682,13 @@ def read_csv_long(file_path: str, """ # Read in the CSV file - df = pd.read_csv(file_path, sep=sep) + try: + df = pd.read_csv(file_path, sep=sep) + except FileNotFoundError: + # If the file cannot be found, then attempt the level above + base_fn = Path(inspect.stack()[-1].filename).resolve().parent + file_path = base_fn / file_path + df = pd.read_csv(file_path, sep=sep) # Check that ti_col_or_value is a string or a float if not isinstance(ti_col_or_value, (str, float)): From c0d457faa0c9003bf6a1eff40f63561f22bc2fcd Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Sun, 7 Apr 2024 12:39:53 -0400 Subject: [PATCH 69/78] Clean up TODOs prior to v4 release (#876) * remove unneeded TODOs * Move rotor_velocity_air_density_correction to rotor_velocity.py' * explicit about cosine term in velocity corrections for yaw and tilt. * self.yaw_opt is being used. --- floris/core/rotor_velocity.py | 19 +++++--- floris/core/turbine/operation_models.py | 27 ++++-------- floris/core/turbine/turbine.py | 9 ---- floris/core/wake_deflection/gauss.py | 7 ++- floris/core/wake_velocity/empirical_gauss.py | 4 +- floris/core/wake_velocity/gauss.py | 2 +- floris/floris_model.py | 6 --- .../layout_optimization_base.py | 1 - floris/parallel_floris_model.py | 2 +- floris/uncertain_floris_model.py | 6 --- tests/rotor_velocity_unit_test.py | 44 ++++++++++++++----- ...rbine_operation_models_integration_test.py | 19 -------- tests/turbine_unit_test.py | 6 --- 13 files changed, 64 insertions(+), 88 deletions(-) diff --git a/floris/core/rotor_velocity.py b/floris/core/rotor_velocity.py index 1dbbeb1ed..43d4e3077 100644 --- a/floris/core/rotor_velocity.py +++ b/floris/core/rotor_velocity.py @@ -17,19 +17,18 @@ from floris.utilities import cosd -def rotor_velocity_yaw_correction( +def rotor_velocity_yaw_cosine_correction( cosine_loss_exponent_yaw: float, yaw_angles: NDArrayFloat, rotor_effective_velocities: NDArrayFloat, ) -> NDArrayFloat: # Compute the rotor effective velocity adjusting for yaw settings pW = cosine_loss_exponent_yaw / 3.0 # Convert from cosine_loss_exponent_yaw to w - # TODO: cosine loss hard coded rotor_effective_velocities = rotor_effective_velocities * cosd(yaw_angles) ** pW return rotor_effective_velocities -def rotor_velocity_tilt_correction( +def rotor_velocity_tilt_cosine_correction( tilt_angles: NDArrayFloat, ref_tilt: NDArrayFloat, cosine_loss_exponent_tilt: float, @@ -48,7 +47,6 @@ def rotor_velocity_tilt_correction( tilt_angles = np.where(correct_cp_ct_for_tilt, tilt_angles, old_tilt_angle) # Compute the rotor effective velocity adjusting for tilt - # TODO: cosine loss hard coded relative_tilt = tilt_angles - ref_tilt rotor_effective_velocities = ( rotor_effective_velocities @@ -214,14 +212,14 @@ def rotor_effective_velocity( rotor_effective_velocities = (air_density/ref_air_density)**(1/3) * average_velocities # Compute the rotor effective velocity adjusting for yaw settings - rotor_effective_velocities = rotor_velocity_yaw_correction( + rotor_effective_velocities = rotor_velocity_yaw_cosine_correction( cosine_loss_exponent_yaw, yaw_angle, rotor_effective_velocities ) # Compute the tilt, if using floating turbines - rotor_effective_velocities = rotor_velocity_tilt_correction( + rotor_effective_velocities = rotor_velocity_tilt_cosine_correction( turbine_type_map, tilt_angle, ref_tilt, @@ -232,3 +230,12 @@ def rotor_effective_velocity( ) return rotor_effective_velocities + +def rotor_velocity_air_density_correction( + velocities: NDArrayFloat, + air_density: float, + ref_air_density: float, +) -> NDArrayFloat: + # Produce equivalent velocities at the reference air density + + return (air_density/ref_air_density)**(1/3) * velocities diff --git a/floris/core/turbine/operation_models.py b/floris/core/turbine/operation_models.py index 8fcbdb540..bd592343c 100644 --- a/floris/core/turbine/operation_models.py +++ b/floris/core/turbine/operation_models.py @@ -17,8 +17,9 @@ from floris.core.rotor_velocity import ( average_velocity, compute_tilt_angles_for_floating_turbines, - rotor_velocity_tilt_correction, - rotor_velocity_yaw_correction, + rotor_velocity_air_density_correction, + rotor_velocity_tilt_cosine_correction, + rotor_velocity_yaw_cosine_correction, ) from floris.type_dec import ( NDArrayFloat, @@ -30,15 +31,6 @@ POWER_SETPOINT_DEFAULT = 1e12 POWER_SETPOINT_DISABLED = 0.001 -def rotor_velocity_air_density_correction( - velocities: NDArrayFloat, - air_density: float, - ref_air_density: float, -) -> NDArrayFloat: - # Produce equivalent velocities at the reference air density - # TODO: This could go on BaseTurbineModel - return (air_density/ref_air_density)**(1/3) * velocities - @define class BaseOperationModel(BaseClass): @@ -67,6 +59,9 @@ def thrust_coefficient() -> None: @staticmethod @abstractmethod def axial_induction() -> None: + # TODO: Consider whether we can make a generic axial_induction method + # based purely on thrust_coefficient so that we don't need to implement + # axial_induciton() in individual operation models. raise NotImplementedError("BaseOperationModel.axial_induction") @define @@ -78,8 +73,6 @@ class SimpleTurbine(BaseOperationModel): As with all turbine submodules, implements only static power() and thrust_coefficient() methods, which are called by power() and thrust_coefficient() on turbine.py, respectively. This class is not intended to be instantiated; it simply defines a library of static methods. - - TODO: Should the turbine submodels each implement axial_induction()? """ def power( @@ -174,8 +167,6 @@ class CosineLossTurbine(BaseOperationModel): As with all turbine submodules, implements only static power() and thrust_coefficient() methods, which are called by power() and thrust_coefficient() on turbine.py, respectively. This class is not intended to be instantiated; it simply defines a library of static methods. - - TODO: Should the turbine submodels each implement axial_induction()? """ def power( @@ -211,13 +202,13 @@ def power( ref_air_density=power_thrust_table["ref_air_density"] ) - rotor_effective_velocities = rotor_velocity_yaw_correction( + rotor_effective_velocities = rotor_velocity_yaw_cosine_correction( cosine_loss_exponent_yaw=power_thrust_table["cosine_loss_exponent_yaw"], yaw_angles=yaw_angles, rotor_effective_velocities=rotor_effective_velocities, ) - rotor_effective_velocities = rotor_velocity_tilt_correction( + rotor_effective_velocities = rotor_velocity_tilt_cosine_correction( tilt_angles=tilt_angles, ref_tilt=power_thrust_table["ref_tilt"], cosine_loss_exponent_tilt=power_thrust_table["cosine_loss_exponent_tilt"], @@ -531,7 +522,7 @@ def power( + power_thrust_table['helix_power_c']*base_powers ) *awc_amplitudes**power_thrust_table['helix_a'] - ) ## TODO: Should probably add max function here + ) # TODO: Should probably add max function here if (awc_modes == 'baseline').any(): return base_powers else: diff --git a/floris/core/turbine/turbine.py b/floris/core/turbine/turbine.py index e176e6a05..17fd956e3 100644 --- a/floris/core/turbine/turbine.py +++ b/floris/core/turbine/turbine.py @@ -126,15 +126,6 @@ def power( Returns: NDArrayFloat: The power, in Watts, for each turbine after adjusting for yaw and tilt. """ - # TODO: Change the order of input arguments to be consistent with the other - # utility functions - velocities first... - # Update to power calculation which replaces the fixed cosine_loss_exponent_yaw exponent - # (which applies to the cosine of the yaw misalignment) with an exponent pW, that changes the - # effective wind speed input to the power calculation, rather than scaling the power. This - # better handles power loss to yaw in above rated conditions - # - # Based on the paper "Optimising yaw control at wind farm level" by - # Ervin Bossanyi # Down-select inputs if ix_filter is given if ix_filter is not None: diff --git a/floris/core/wake_deflection/gauss.py b/floris/core/wake_deflection/gauss.py index e19fd147b..8e1f7378f 100644 --- a/floris/core/wake_deflection/gauss.py +++ b/floris/core/wake_deflection/gauss.py @@ -119,7 +119,12 @@ def function( for details on the methods used. Args: - # TODO + x_i (np.array): x-coordinates of turbine i. + y_i (np.array): y-coordinates of turbine i. + yaw_i (np.array): Yaw angle of turbine i. + turbulence_intensity_i (np.array): Turbulence intensity at turbine i. + ct_i (np.array): Thrust coefficient of turbine i. + rotor_diameter_i (float): Rotor diameter of turbine i. Returns: np.array: Deflection field for the wake. diff --git a/floris/core/wake_velocity/empirical_gauss.py b/floris/core/wake_velocity/empirical_gauss.py index 4d8005056..2e22db525 100644 --- a/floris/core/wake_velocity/empirical_gauss.py +++ b/floris/core/wake_velocity/empirical_gauss.py @@ -257,7 +257,7 @@ def rCalt(wind_veer, sigma_y, sigma_z, y, y_i, delta_y, delta_z, z, HH, Ct, def sigmoid_integral(x, center=0, width=1): y = np.zeros_like(x) - #TODO: Can this be made faster? + # TODO: Can this be made faster? above_smoothing_zone = (x-center) > width/2 y[above_smoothing_zone] = (x-center)[above_smoothing_zone] in_smoothing_zone = ((x-center) >= -width/2) & ((x-center) <= width/2) @@ -293,7 +293,7 @@ def awc_added_wake_mixing( awc_wake_denominator ): - ## TODO: Add TI in the mix, finetune amplitude/freq effect + # TODO: Add TI in the mix, finetune amplitude/freq effect if (awc_mode_i == "helix").any(): return awc_amplitude_i[:,:,0,0]**awc_wake_exp/awc_wake_denominator elif (awc_mode_i == "baseline").any(): diff --git a/floris/core/wake_velocity/gauss.py b/floris/core/wake_velocity/gauss.py index 5c73786ae..bac3cf415 100644 --- a/floris/core/wake_velocity/gauss.py +++ b/floris/core/wake_velocity/gauss.py @@ -120,7 +120,7 @@ def function( # Another linear ramp, but positive upstream of the far wake and negative in the # far wake; 0 at the start of the far wake near_wake_ramp_down = (x0 - x) / (x0 - xR) - # near_wake_ramp_down = -1 * (near_wake_ramp_up - 1) # TODO: this is equivalent, right? + # near_wake_ramp_down = -1 * (near_wake_ramp_up - 1) # : this is equivalent, right? sigma_y = near_wake_ramp_down * 0.501 * rotor_diameter_i * np.sqrt(ct_i / 2.0) sigma_y += near_wake_ramp_up * sigma_y0 diff --git a/floris/floris_model.py b/floris/floris_model.py index 709c06884..65d1e1d4b 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -576,12 +576,6 @@ def _get_farm_power( Returns: float: Sum of wind turbine powers in W. """ - # TODO: Turbulence correction used in the power calculation, but may not be in - # the model yet - # TODO: Turbines need a switch for using turbulence correction - # TODO: Uncomment out the following two lines once the above are resolved - # for turbine in self.core.farm.turbines: - # turbine.use_turbulence_correction = use_turbulence_correction if use_turbulence_correction: raise NotImplementedError( "Turbulence correction is not yet implemented in the power calculation." diff --git a/floris/optimization/layout_optimization/layout_optimization_base.py b/floris/optimization/layout_optimization/layout_optimization_base.py index 99016d902..dd9afaae3 100644 --- a/floris/optimization/layout_optimization/layout_optimization_base.py +++ b/floris/optimization/layout_optimization/layout_optimization_base.py @@ -81,7 +81,6 @@ def __init__( minimum_yaw_angle=-30.0, maximum_yaw_angle=30.0, ) - # TODO: is this being used? fmodel.run() if self.use_value: diff --git a/floris/parallel_floris_model.py b/floris/parallel_floris_model.py index 4de5015df..ea235aaae 100644 --- a/floris/parallel_floris_model.py +++ b/floris/parallel_floris_model.py @@ -263,7 +263,7 @@ def _postprocessing(self, output): return turbine_powers - def run(self): # TODO: Remove or update this function? + def run(self): raise UserWarning( "'run' not supported on ParallelFlorisModel. Please use " "'get_turbine_powers' or 'get_farm_power' directly." diff --git a/floris/uncertain_floris_model.py b/floris/uncertain_floris_model.py index 217dab2e5..be37d902c 100644 --- a/floris/uncertain_floris_model.py +++ b/floris/uncertain_floris_model.py @@ -325,12 +325,6 @@ def _get_farm_power( Returns: float: Sum of wind turbine powers in W. """ - # TODO: Turbulence correction used in the power calculation, but may not be in - # the model yet - # TODO: Turbines need a switch for using turbulence correction - # TODO: Uncomment out the following two lines once the above are resolved - # for turbine in self.core.farm.turbines: - # turbine.use_turbulence_correction = use_turbulence_correction if use_turbulence_correction: raise NotImplementedError( "Turbulence correction is not yet implemented in the power calculation." diff --git a/tests/rotor_velocity_unit_test.py b/tests/rotor_velocity_unit_test.py index 468b7a887..a83ed219e 100644 --- a/tests/rotor_velocity_unit_test.py +++ b/tests/rotor_velocity_unit_test.py @@ -6,21 +6,41 @@ compute_tilt_angles_for_floating_turbines, compute_tilt_angles_for_floating_turbines_map, cubic_cubature, - rotor_velocity_tilt_correction, - rotor_velocity_yaw_correction, + rotor_velocity_air_density_correction, + rotor_velocity_tilt_cosine_correction, + rotor_velocity_yaw_cosine_correction, simple_cubature, ) from tests.conftest import SampleInputs, WIND_SPEEDS -def test_rotor_velocity_yaw_correction(): +def test_rotor_velocity_air_density_correction(): + + wind_speed = 10. + ref_air_density = 1.225 + test_density = 1.2 + + test_speed = rotor_velocity_air_density_correction(wind_speed, ref_air_density, ref_air_density) + assert test_speed == wind_speed + + test_speed = rotor_velocity_air_density_correction(wind_speed, test_density, test_density) + assert test_speed == wind_speed + + test_speed = rotor_velocity_air_density_correction(0., test_density, ref_air_density) + assert test_speed == 0. + + test_speed = rotor_velocity_air_density_correction(wind_speed, test_density, ref_air_density) + assert np.allclose((test_speed/wind_speed)**3, test_density/ref_air_density) + + +def test_rotor_velocity_yaw_cosine_correction(): N_TURBINES = 4 wind_speed = average_velocity(10.0 * np.ones((1, 1, 3, 3))) wind_speed_N_TURBINES = average_velocity(10.0 * np.ones((1, N_TURBINES, 3, 3))) # Test a single turbine for zero yaw - yaw_corrected_velocities = rotor_velocity_yaw_correction( + yaw_corrected_velocities = rotor_velocity_yaw_cosine_correction( cosine_loss_exponent_yaw=3.0, yaw_angles=0.0, rotor_effective_velocities=wind_speed, @@ -28,7 +48,7 @@ def test_rotor_velocity_yaw_correction(): np.testing.assert_allclose(yaw_corrected_velocities, wind_speed) # Test a single turbine for non-zero yaw - yaw_corrected_velocities = rotor_velocity_yaw_correction( + yaw_corrected_velocities = rotor_velocity_yaw_cosine_correction( cosine_loss_exponent_yaw=3.0, yaw_angles=60.0, rotor_effective_velocities=wind_speed, @@ -36,7 +56,7 @@ def test_rotor_velocity_yaw_correction(): np.testing.assert_allclose(yaw_corrected_velocities, 0.5 * wind_speed) # Test multiple turbines for zero yaw - yaw_corrected_velocities = rotor_velocity_yaw_correction( + yaw_corrected_velocities = rotor_velocity_yaw_cosine_correction( cosine_loss_exponent_yaw=3.0, yaw_angles=np.zeros((1, N_TURBINES)), rotor_effective_velocities=wind_speed_N_TURBINES, @@ -44,7 +64,7 @@ def test_rotor_velocity_yaw_correction(): np.testing.assert_allclose(yaw_corrected_velocities, wind_speed_N_TURBINES) # Test multiple turbines for non-zero yaw - yaw_corrected_velocities = rotor_velocity_yaw_correction( + yaw_corrected_velocities = rotor_velocity_yaw_cosine_correction( cosine_loss_exponent_yaw=3.0, yaw_angles=np.ones((1, N_TURBINES)) * 60.0, rotor_effective_velocities=wind_speed_N_TURBINES, @@ -52,7 +72,7 @@ def test_rotor_velocity_yaw_correction(): np.testing.assert_allclose(yaw_corrected_velocities, 0.5 * wind_speed_N_TURBINES) -def test_rotor_velocity_tilt_correction(): +def test_rotor_velocity_tilt_cosine_correction(): N_TURBINES = 4 wind_speed = average_velocity(10.0 * np.ones((1, 1, 3, 3))) @@ -66,7 +86,7 @@ def test_rotor_velocity_tilt_correction(): turbine_type_map = turbine_type_map[None, :] # Test single non-floating turbine - tilt_corrected_velocities = rotor_velocity_tilt_correction( + tilt_corrected_velocities = rotor_velocity_tilt_cosine_correction( #turbine_type_map=np.array([turbine_type_map[:, 0]]), tilt_angles=5.0*np.ones((1, 1)), ref_tilt=np.array([turbine.power_thrust_table["ref_tilt"]]), @@ -81,7 +101,7 @@ def test_rotor_velocity_tilt_correction(): np.testing.assert_allclose(tilt_corrected_velocities, wind_speed) # Test multiple non-floating turbines - tilt_corrected_velocities = rotor_velocity_tilt_correction( + tilt_corrected_velocities = rotor_velocity_tilt_cosine_correction( #turbine_type_map=turbine_type_map, tilt_angles=5.0*np.ones((1, N_TURBINES)), ref_tilt=np.array([turbine.power_thrust_table["ref_tilt"]] * N_TURBINES), @@ -96,7 +116,7 @@ def test_rotor_velocity_tilt_correction(): np.testing.assert_allclose(tilt_corrected_velocities, wind_speed_N_TURBINES) # Test single floating turbine - tilt_corrected_velocities = rotor_velocity_tilt_correction( + tilt_corrected_velocities = rotor_velocity_tilt_cosine_correction( #turbine_type_map=np.array([turbine_type_map[:, 0]]), tilt_angles=5.0*np.ones((1, 1)), ref_tilt=np.array([turbine_floating.power_thrust_table["ref_tilt"]]), @@ -111,7 +131,7 @@ def test_rotor_velocity_tilt_correction(): np.testing.assert_allclose(tilt_corrected_velocities, wind_speed) # Test multiple floating turbines - tilt_corrected_velocities = rotor_velocity_tilt_correction( + tilt_corrected_velocities = rotor_velocity_tilt_cosine_correction( #turbine_type_map, tilt_angles=5.0*np.ones((1, N_TURBINES)), ref_tilt=np.array([turbine_floating.power_thrust_table["ref_tilt"]] * N_TURBINES), diff --git a/tests/turbine_operation_models_integration_test.py b/tests/turbine_operation_models_integration_test.py index bd9dc3930..db4f0cc41 100644 --- a/tests/turbine_operation_models_integration_test.py +++ b/tests/turbine_operation_models_integration_test.py @@ -6,7 +6,6 @@ CosineLossTurbine, MixedOperationTurbine, POWER_SETPOINT_DEFAULT, - rotor_velocity_air_density_correction, SimpleDeratingTurbine, SimpleTurbine, ) @@ -14,24 +13,6 @@ from tests.conftest import SampleInputs, WIND_SPEEDS -def test_rotor_velocity_air_density_correction(): - - wind_speed = 10. - ref_air_density = 1.225 - test_density = 1.2 - - test_speed = rotor_velocity_air_density_correction(wind_speed, ref_air_density, ref_air_density) - assert test_speed == wind_speed - - test_speed = rotor_velocity_air_density_correction(wind_speed, test_density, test_density) - assert test_speed == wind_speed - - test_speed = rotor_velocity_air_density_correction(0., test_density, ref_air_density) - assert test_speed == 0. - - test_speed = rotor_velocity_air_density_correction(wind_speed, test_density, ref_air_density) - assert np.allclose((test_speed/wind_speed)**3, test_density/ref_air_density) - def test_submodel_attributes(): assert hasattr(SimpleTurbine, "power") diff --git a/tests/turbine_unit_test.py b/tests/turbine_unit_test.py index 2161a7309..ca5e73777 100644 --- a/tests/turbine_unit_test.py +++ b/tests/turbine_unit_test.py @@ -60,12 +60,6 @@ def test_turbine_init(): assert turbine.rotor_radius == turbine.rotor_diameter / 2.0 assert turbine.rotor_area == np.pi * turbine.rotor_radius ** 2.0 - # TODO: test these explicitly. - # Test create a simpler interpolator and test that you get the values you expect - # fCt_interp: interp1d = field(init=False) - # power_function: interp1d = field(init=False) - # tilt_interp: interp1d = field(init=False, default=None) - assert callable(turbine.thrust_coefficient_function) assert callable(turbine.power_function) From 0073dba6e071a25318fab8c3770b7a3b561ebbf3 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Sun, 7 Apr 2024 16:57:55 -0400 Subject: [PATCH 70/78] Build out v4 documentation (#860) * Placeholder for Helix turbine operation model with test. * Ruff. * Placeholder for wake effect of Helix. * Added helix wake mixing and created two examples. * Added examples * Latest file updates * Updated v4 to work with helix * Make helix parameters tunable * Enabling helix tuning parameters * Conform with ruff formatting reqs. * Isort, end of file fixes. * helix_amplitudes into tests. * Take out actual tests of Helix to allow testing to pass; still to do to test Helix model." * Update example input files with enable_helix_added_recovery flag. * Added helix turbine tests * Added helix flow regression test * Minor reorganize and cleanup of Helix tests. * Added helix mixing to visualization tools * Added example showcasing helix functionality * Updated helix example * Deleted old helix examples * Added default helix tuning parameters for 5, 10 and 15MW turbine * Update floris_model.py Solve merge conflict between v4 and helix branch * Formatting. * Final tweaks to helix example * Fix merge error. * Remove carry-over from old package structure. * Name change from `helix` to `awc`, addition of `awc_modes`. * bug fix * Sort imports. * Remove extra mixing from awc in downstream turbines' wakes. * test build docs from branch. * test again. * Typo * test. * operation models user reference. * save * Placeholder for WindData documentation. * Ruff. * Updates to helix example, tests, and input files based on feedback * set_operation_model name switch * Started v3 to v4 conversion; described set run. * Start of explanation on conversion. * Minor changes to helix example * input files info. * Wind data, op models. * Trailing white space. * Minor improvements. * Typos * Added documentation on helix turbine model * Added documentation on helix added wake mixing * Finalize text on active wake mixing * Remove trailing whitespace. * Minor updates to Helix docs * save * remove comma after math * Add wind data notebook * Bug fix * Minor changes * Ignore examples within docs * Add jobs to automatically build out examples * Add script to convert examples to notebooks * Resolving final comments * trigger * Try to fix copy * Deleted commented code * Update example to use new set_operation_model method. * Minor improvements. * Fix headings * Helix example moved to examples_control_types * Force doc rebuild * More version updates * Fixed to autobuild * Don't test example converting script * Increase jupyter book timeout * Remove filedir lines * force book * Give more time * Added warnings when models other than EmGauss are used * Improve formatting * bugfix * more value discussion in wind_data docs notebook * Bugfix in check of awc and vel_model. * Handling for case when operation_model not specified; move tilt deflection examples to floating examples folder. * Fix whitespace issue * resave wind_data * Update _config.yml/g-tag * force build * fix turbine previewer * update landing page and installation. * Comments formatted in gch and nrel_5mw for docs printing. * Remove examples index in favor of automatic building. * floris.tools -> floris, floris.simulation -> floris.core * Point trigger back to develop. --------- Co-authored-by: Joeri Frederik Co-authored-by: Frederik Co-authored-by: jfrederik-nrel <120053750+jfrederik-nrel@users.noreply.github.com> Co-authored-by: Paul Co-authored-by: Eric Simley --- .github/workflows/check-working-examples.yaml | 6 + .github/workflows/deploy-pages.yaml | 19 + .gitignore | 6 + README.md | 2 +- docs/_config.yml | 1 + docs/_toc.yml | 3 + docs/architecture.md | 38 +- docs/empirical_gauss_model.md | 21 +- docs/examples.md | 234 ------ docs/floating_wind_turbine.md | 9 +- docs/index.md | 28 +- docs/installation.md | 34 +- docs/operation_models_user.ipynb | 523 ++++++++++++ docs/powerthrust_helix.png | Bin 0 -> 652089 bytes docs/turbine_interaction.ipynb | 28 +- docs/v3_to_v4.md | 193 +++++ docs/wind_data_user.ipynb | 787 ++++++++++++++++++ examples/_convert_examples_to_notebooks.py | 127 +++ .../001_optimize_layout.py | 1 - .../002_optimize_layout_with_heterogeneity.py | 1 - .../002_yaw_inertial_frame.py | 1 - examples/inputs/gch.yaml | 2 +- floris/turbine_library/nrel_5MW.yaml | 13 +- floris/turbine_library/turbine_previewer.py | 8 + floris/version.py | 2 +- 25 files changed, 1776 insertions(+), 311 deletions(-) delete mode 100644 docs/examples.md create mode 100644 docs/operation_models_user.ipynb create mode 100644 docs/powerthrust_helix.png create mode 100644 docs/v3_to_v4.md create mode 100644 docs/wind_data_user.ipynb create mode 100644 examples/_convert_examples_to_notebooks.py delete mode 100644 examples/examples_uncertain/002_yaw_inertial_frame.py diff --git a/.github/workflows/check-working-examples.yaml b/.github/workflows/check-working-examples.yaml index 138e70de8..032f77fc0 100644 --- a/.github/workflows/check-working-examples.yaml +++ b/.github/workflows/check-working-examples.yaml @@ -43,6 +43,12 @@ jobs: echo "========================= Example directory- $d" for i in *.py; do echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Running example- $i" + + # If "convert_examples" is in i, skip this script + if [[ $i == *"convert_examples"* ]]; then + continue + fi + if ! python $i; then error_results="${error_results}"$'\n'" - ${i}" error_found=1 diff --git a/.github/workflows/deploy-pages.yaml b/.github/workflows/deploy-pages.yaml index 077487294..3da057988 100644 --- a/.github/workflows/deploy-pages.yaml +++ b/.github/workflows/deploy-pages.yaml @@ -24,6 +24,25 @@ jobs: run: | pip install -e ".[docs]" + # Make a copy of the examples folder within the docs folder + - name: Copy examples to docs + working-directory: ${{runner.workspace}}/floris/ + run: | + rsync -av examples/ docs/examples + ls docs/examples + + # Run the script examples/_convert_examples_to_notebooks.py + - name: Convert examples to notebooks + working-directory: ${{runner.workspace}}/floris/docs/examples/ + run: | + # Print the working directory + pwd + + # Show the contents + ls + + python _convert_examples_to_notebooks.py + # Build the book - name: Build the book working-directory: ${{runner.workspace}}/floris/docs/ diff --git a/.gitignore b/.gitignore index 840e5ab71..33188a17a 100644 --- a/.gitignore +++ b/.gitignore @@ -21,6 +21,12 @@ pip-wheel-metadata .idea .vscode +# Documentation notebooks +!docs/*.ipynb + +# The examples folder within docs +docs/examples + # Documentation output _site/ .jekyll-cache/ diff --git a/README.md b/README.md index d2b851194..a81c3b2a4 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,7 @@ FLORIS is a controls-focused wind farm simulation software incorporating steady-state engineering wake models into a performance-focused Python framework. It has been in active development at NREL since 2013 and the latest -release is [FLORIS v3.5](https://github.com/NREL/floris/releases/latest). +release is [FLORIS v4.0](https://github.com/NREL/floris/releases/latest). Online documentation is available at https://nrel.github.io/floris. The software is in active development and engagement with the development team diff --git a/docs/_config.yml b/docs/_config.yml index 229977898..70c886992 100644 --- a/docs/_config.yml +++ b/docs/_config.yml @@ -11,6 +11,7 @@ only_build_toc_files: false # See https://jupyterbook.org/content/execute.html execute: execute_notebooks: auto + timeout: 360 # Give each notebook cell 6 minutes to execute # Define the name of the latex output file for PDF builds latex: diff --git a/docs/_toc.yml b/docs/_toc.yml index 91199ffc0..d0d63ed72 100644 --- a/docs/_toc.yml +++ b/docs/_toc.yml @@ -7,13 +7,16 @@ parts: - caption: Getting Started chapters: - file: installation + - file: v3_to_v4 - caption: User Reference chapters: - file: intro_concepts - file: advanced_concepts + - file: wind_data_user - file: floating_wind_turbine - file: turbine_interaction + - file: operation_models_user - file: input_reference_main - file: input_reference_turbine - file: examples diff --git a/docs/architecture.md b/docs/architecture.md index 1c7b76012..bd7687404 100644 --- a/docs/architecture.md +++ b/docs/architecture.md @@ -32,12 +32,12 @@ packages. The internal structure and hierarchy is described below. ```{mermaid} classDiagram - class simulation["floris.simulation"] { - +Floris + class core["floris.core"] { + +Core } - class tools["floris.tools"] { - +FlorisInterface + class floris["floris"] { + +FlorisModel } class logging_manager @@ -51,25 +51,25 @@ classDiagram tools <-- simulation ``` -## floris.tools +## floris -This is the user interface. Most operations at the user level will happen through `floris.tools`. +This is the user interface. Most operations at the user level will happen through `floris`. This package contains a wide variety of functionality including but not limited to: -- Initializing and driving a simulation with `tools.floris_interface` -- Wake field visualization through `tools.visualization` -- Yaw and layout optimization in `tools.optimization` -- Parallelizing work load with `tools.parallel_floris_model` +- Initializing and driving a simulation with `floris_model` +- Wake field visualization through `flow_visualization` +- Yaw and layout optimization in `optimization` +- Wind data handling in `wind_data` -## floris.simulation +## floris.core -This is the core simulation package. This should primarily be used within `floris.simulation` and -`floris.tools`, and user scripts generally won't interact directly with this package. +This is the core simulation package. This should primarily be used within `floris.core` and +`floris`, and user scripts generally won't interact directly with this package. ```{mermaid} classDiagram - class Floris + class Core class Farm @@ -115,11 +115,11 @@ classDiagram parameters: dict } - Floris *-- Farm - Floris *-- FlowField - Floris *-- Grid - Floris *-- WakeModelManager - Floris --> Solver + Core *-- Farm + Core *-- FlowField + Core *-- Grid + Core *-- WakeModelManager + Core --> Solver WakeModelManager *-- WakeCombination WakeModelManager *-- WakeDeflection WakeModelManager *-- WakeTurbulence diff --git a/docs/empirical_gauss_model.md b/docs/empirical_gauss_model.md index c1c9fddf5..5edb7f4af 100644 --- a/docs/empirical_gauss_model.md +++ b/docs/empirical_gauss_model.md @@ -152,7 +152,6 @@ $$ \text{WIM}_j = \sum_{i \in T^{\text{up}}(j)} \frac{A_{ij} a_i (1 + g_\text{YA Note that the second term means that, unlike when `enable_yaw_added_recovery` is `false`, a turbine may affect the recovery of its own wake by yawing. - ## Mirror wakes Mirror wakes are also enabled by default in the empirical model to model the @@ -160,3 +159,23 @@ ground effect. Essentially, turbines are placed below the ground so that the vertical expansion of their (mirror) wakes appears in the above-ground flow some distance downstream, to model the reflection of the true turbine wakes as they bounce off of the ground/sea surface. + +## Added mixing by active wake control + +As the name suggests, active wake control (AWC) aims to enhance mixing to the +wake of the controlled turbine. This effect is activated by setting +`enable_active_wake_mixing` to `true`, and `awc_modes` to `"helix"` (other AWC +strategies are yet to be implemented). The wake can then be controlled by +setting the amplitude of the AWC excitation using `awc_amplitudes` (see the +[AWC operation model](operation_models_user.ipynb#awc-model)). +The effect of AWC is represented by updating the +wake-induced mixing term as follows: + +$$ \text{WIM}_j = \sum_{i \in T^{\text{up}}(j)} \frac{A_{ij} a_i} {(x_j - x_i)/D_i} + +\frac{A_{\text{AWC},j}^{p_\text{AWC}}}{d_\text{AWC}}$$ + +where $A_{\text{AWC},j}$ is the AWC amplitude of turbine $j$, and the exponent $p_\text{AWC}$ and +denominator $d_\text{AWC}$ are tuning parameters that can be set in the `emgauss.yaml` file with +the fields `awc_wake_exp` and `awc_wake_denominator`, respectively. +Note that, in contrast to the yaw added mixing case, a turbine currently affects _only_ its own +wake by applying AWC. diff --git a/docs/examples.md b/docs/examples.md deleted file mode 100644 index a50f88d53..000000000 --- a/docs/examples.md +++ /dev/null @@ -1,234 +0,0 @@ -(examples)= -# Examples Index - -The FLORIS software repository includes a set of -[examples/](https://github.com/NREL/floris/tree/main/examples) -intended to describe most features as well as provide a starting point -for various analysis methods. These are generally ordered from simplest -to most complex. The examples and their content are described below. -Prior to exploring the examples, it is highly recommended to review -[](concepts_intro). - - -## Basic setup and pre and post processing - -These examples are primarily for demonstration and explanation purposes. -They build up data for a simulation, execute the calculations, and do various -post processing steps to analyse the results. - -### 01_opening_floris_computing_power.py -This example script loads an input file and makes changes to the turbine layout -and atmospheric conditions. It then configures wind turbine yaw settings and -executes the simulation. Finally, individual turbine powers are reported. -It demonstrates the vectorization capabilities of FLORIS by first creating -a simulation with a single wind condition, and then creating another -simulation with multiple wind conditions. - -### 02_visualizations.py -Create visualizations for x, y, and z planes in the whole farm as well as plots of the grid points -on each turbine rotor. - -### 03_making_adjustments.py -Make various changes to an initial configuration and plot results on a single figure. -- Change atmospheric conditions including wind speed, wind direction, and shear -- Create a new layout -- Configure yaw settings - -### 04_sweep_wind_directions.py -Simulate a wind farm over multiple wind directions and one wind speed. -Evaluate the individual turbine powers. -- Setting up a problem considering the vectorization of the calculations - - Data structures - - Broadcasted mathematical operations - -### 05_sweep_wind_speeds.py -Same as above except multiple wind speeds and one wind direction. -Evaluate the individual turbine powers. -- Setting up a problem considering the vectorization of the calculations - - Data structures - - Broadcasted mathematical operations - -### 06_sweep_wind_conditions.py -Simulate a wind farm with multiple wind speeds and wind directions. -- Setting up a problem considering the vectorization of the calculations - - Data structures - - Broadcasted mathematical operations - -### 07_calc_aep_from_rose.py -Load wind rose information from a .csv file and calculate the AEP of -a wind farm. -- Create a new layout -- Arrange the wind rose data into arrays -- Create the frequency information from the wind condition data - -### 09_compare_farm_power_with_neighbor.py -Consider the affects of one wind farm on another wind farm's AEP. - -### 20_calculate_farm_power_with_uncertainty.py -Calculate the farm power with a consideration of uncertainty -with the default gaussian probability distribution. - -### 21_demo_time_series.py -Simulate a time-series of wind condition data and generate plots -of turbine power over time. - -### 22_get_wind_speed_at_turbines.py -Similar to the "Getting Started" tutorial. Sets up a simulation and -prints the wind speeds at all turbines. - -### 16_heterogeneous_inflow.py -Define non-uniform (heterogeneous) atmospheric conditions by specifying -speedups at locations throughout the farm. Show plots of the -impact on wind turbine wakes. - -### 16b_heterogeneity_multiple_ws_wd.py -Illustrate usage of heterogeneity with multiple wind speeds and directions. - -## 16c_optimize_layout_with_heterogeneity.py -This example shows a layout optimization using the geometric yaw option. It -combines elements of examples 15 (layout optimization) and 16 (heterogeneous -inflow) for demonstrative purposes. If you haven't yet run those examples, -we recommend you try them first. - -Heterogeneity in the inflow provides the necessary driver for coupled yaw -and layout optimization to be worthwhile. First, a layout optimization is -run without coupled yaw optimization; then a coupled optimization is run to -show the benefits of coupled optimization when flows are heterogeneous. - -### 17_multiple_turbine_types.py -Load an input file that describes a wind farm with two turbines -of different types and plot the wake profiles. - -### 23_visualize_layout.py -Use the visualize_layout function to provide diagram visualization -of a turbine layout within FLORIS. - -### 24_floating_turbine_models.py -Demonstrates the definition of a floating turbine and how to enable the effects of tilt -on Cp and Ct. - -For further examples on floating wind turbines, see also examples -25 (vertical wake deflection by a forced tilt angle) and 29 (comparison between -a fixed-bottom and floating wind farm). - -### 25_tilt_driven_vertical_wake_deflection.py - -This example demonstrates vertical wake deflections due to the tilt angle when running -with the Empirical Gauss model. Note that only the Empirical Gauss model implements -vertical deflections at this time. Also be aware that this example uses a potentially -unrealistic tilt angle, 15 degrees, to highlight the wake deflection. Moreover, the magnitude -of vertical deflections due to tilt has not been validated. - -For further examples on floating wind turbines, see also examples -24 (effects of tilt on turbine power and thrust coefficients) and 29 -(comparison between a fixed-bottom and floating wind farm). - -### 26_empirical_gauss_velocity_deficit_parameters.py - -This example illustrates the main parameters of the Empirical Gaussian -velocity deficit model and their effects on the wind turbine wake. - -### 27_empirical_gauss_deflection_parameters.py -This example illustrates the main parameters of the Empirical Gaussian -deflection model and their effects on the wind turbine wake. - -### 28_extract_wind_speed_at_points.py -This example demonstrates the use of the `FlorisInterface.sample_flow_at_points` method -to extract the wind speed information at user-specified locations in the flow. - -Specifically, this example gets the wind speed at a single x, y location and four different -heights over a sweep of wind directions. This mimics the wind speed measurements of a met -mast across all wind directions (at a fixed free stream wind speed). - -Try different values for met_mast_option to vary the location of the met mast within -the two-turbine farm. - -### 32_plot_velocity_deficit_profiles.py -This example illustrates how to plot velocity deficit profiles at several locations -downstream of a turbine. Here we use the following definition: - - velocity_deficit = (homogeneous_wind_speed - u) / homogeneous_wind_speed - , where u is the wake velocity obtained when the incoming wind speed is the - same at all heights and equal to `homogeneous_wind_speed`. - -### 29_floating_vs_fixedbottom_farm.py - -Compares a fixed-bottom wind farm (with a gridded layout) to a floating -wind farm with the same layout. Includes: -- Turbine-by-turbine power comparison for a single wind speed and direction -- Flow visualizations for a single wind speed and direction -- AEP calculations based on an example wind rose. - -For further examples on floating wind turbines, see also examples -24 (effects of tilt on turbine power and thrust coefficients) and 25 -(vertical wake deflection by a forced tilt angle). - -### 30_multi_dimensional_cp_ct.py - -This example showcases the capability of using multi-dimensional Cp/Ct data in turbine defintions -dependent on external conditions. Specifically, fictional data for varying Cp/Ct values based on -wave period, Ts, and wave height, Hs, is used, showing the user how to setup the turbine -definition and input file. Also demonstrated is the different method for getting turbine -powers when using multi-dimensional Cp/Ct data. - -### 31_multi_dimensional_cp_ct_2Hs.py - -This example builds on example 30. Specifically, fictional data for varying Cp/Ct values based on -wave period, Ts, and wave height, Hs, is used to show the difference in power performance for -different wave heights. - -### 32_specify_turbine_power_curve.py - -This example demonstrates how to generate a turbine dictionary or yaml input file based on -a specified power and thrust curve. The power and thrust curves may be specified as power -and thrust coefficients or as absolute values. - -## Optimization - -These examples demonstrate use of the optimization routines -included in FLORIS through {py:mod}`floris.optimization`. These -focus on yaw settings and wind farm layout, but the concepts -are general and can be used for other optimizations. - -### 10_opt_yaw_single_ws.py -Using included yaw optimization routines, run a yaw optimization for a single wind speed -and plot yaw settings and performance. - -### 11_opt_yaw_multiple_ws.py -Using included yaw optimization routines, run a yaw optimization for multiple wind -conditions including multiple wind speeds and wind directions. -Similar to above but with extra steps for post processing. - -### 12_optimize_yaw.py -Construct wind farm yaw settings for a full wind rose based on the -optimized yaw settings at a single wind speed. Then, compare -results to the baseline no-yaw configuration. - -### 12_optimize_yaw_in_parallel.py -Comparable to the above but perform all the computations using -parallel processing. In the current example, use 16 cores -simultaneously to calculate the AEP and perform a wake steering -yaw angle optimization for multiple wind speeds. - -### 13_optimize_yaw_with_neighboring_farm.py -Same as above but considering the effects of a nearby wind farm. - -### 14_compare_yaw_optimizers.py -Show the difference in optimization results for -- SerialRefine -- SciPy - -### 15_optimize_layout.py -Optimize a wind farm layout for AEP within a square boundary and a -random wind resource using the SciPy optimization routines. - - -## Gallery - -The examples listed here are fun and interesting. If you're doing something -cool with FLORIS and want to share, create a pull request with your example -listed here! - -### 18_check_turbine.py -Plot power and thrust curves for each turbine type included in the -turbine library. Additionally, plot the losses due to yaw. diff --git a/docs/floating_wind_turbine.md b/docs/floating_wind_turbine.md index e8def2df9..c4dabe90e 100644 --- a/docs/floating_wind_turbine.md +++ b/docs/floating_wind_turbine.md @@ -2,7 +2,8 @@ # Floating Wind Turbine Modeling The FLORIS wind turbine description includes a definition of the performance curves -(Cp and Ct) as a function of wind speed, and this lookup table is used directly in +(`power` and `thrust_coefficient`) as a function of wind speed, and this lookup table is used +directly in the calculation of power production for a steady-state atmospheric condition (wind speed and wind direction). The power curve definition typically assumes a fixed-bottom wind turbine with no active or controllable tilt. However, floating @@ -19,7 +20,5 @@ an additional input, `floating_tilt_table`, in the turbine definition which sets steady tilt angle of the turbine based on wind speed. An interpolation is created and the tilt angle is computed for each turbine based on effective velocity. Taking into account the turbine rotor's built-in tilt, the absolute tilt change can then be used -to correct Cp and Ct. This tilt angle is then used directly in the selected wake models. - -**NOTE** No wake models currently use the tilt for vertical wake deflection, -but it will be available with the inclusion of an upcoming wake model. +to correct the power and thrust coefficient. +This tilt angle is then used directly in the selected wake models. diff --git a/docs/index.md b/docs/index.md index 12ce55392..202627695 100644 --- a/docs/index.md +++ b/docs/index.md @@ -13,25 +13,29 @@ the conversation in [GitHub Discussions](https://github.com/NREL/floris/discussi FLORIS is a Python package run on the command line typically by providing an input file with an initial configuration. It can be installed with ```pip install floris``` (see {ref}`installation`). The typical entry point is -{py:class}`.FlorisInterface` which accepts the path to the +{py:class}`.FlorisModel` which accepts the path to the input file as an argument. From there, changes can be made to the initial -configuration through the {py:meth}`.FlorisInterface.reinitialize` +configuration through the {py:meth}`.FlorisModel.set` routine, and the simulation is executed with -{py:meth}`.FlorisInterface.calculate_wake`. +{py:meth}`.FlorisModel.run`. ```python -from floris.tools import FlorisInterface -fi = FlorisInterface("path/to/input.yaml") -fi.reinitialize(wind_directions=[i for i in range(10)]) -fi.calculate_wake() +from floris import FlorisModel +fmodel = FlorisModel("path/to/input.yaml") +fmodel.set( + wind_directions=[i for i in range(10)], + wind_speeds=[8.0]*10, + turbulence_intensities=[0.06]*10 +) +fmodel.run() ``` Finally, results can be analyzed via post-processing functions available within -{py:class}`.FlorisInterface` such as -{py:meth}`.FlorisInterface.get_turbine_layout`, -{py:meth}`.FlorisInterface.get_turbine_powers` and -{py:meth}`.FlorisInterface.get_farm_AEP`, and -a visualization package is available in {py:mod}`floris.tools.visualization`. +{py:class}`.FlorisModel` such as +{py:meth}`.FlorisModel.get_turbine_layout`, +{py:meth}`.FlorisModel.get_turbine_powers` and +{py:meth}`.FlorisModel.get_farm_AEP`, and +a visualization package is available in {py:mod}`floris.flow_visualization`. A collection of examples are included in the [repository](https://github.com/NREL/floris/tree/main/examples) and described in detail in {ref}`examples`. diff --git a/docs/installation.md b/docs/installation.md index 2e9fdd0ed..4a06260e6 100644 --- a/docs/installation.md +++ b/docs/installation.md @@ -7,18 +7,18 @@ The following sections detail how download and install FLORIS for each use case. (requirements)= ## Requirements -FLORIS is intended to be used with Python 3.8, 3.9, or 3.10, and it is highly recommended that users +FLORIS is intended to be used with Python 3.8 and up, and it is highly recommended that users work within a virtual environment for both working with and working on FLORIS, to maintain a clean and sandboxed environment. The simplest way to get started with virtual environments is through [conda](https://docs.conda.io/en/latest/miniconda.html). -Installing into a Python environment that contains FLORIS v2 may cause conflicts. +Installing into a Python environment that contains a previous version of FLORIS may cause conflicts. If you intend to use [pyOptSparse](https://mdolab-pyoptsparse.readthedocs-hosted.com/en/latest/) with FLORIS, it is recommended to install that package first before installing FLORIS. ```{note} -If upgrading from v2, it is highly recommended to install FLORIS V3 into a new virtual environment. +If upgrading, it is highly recommended to install FLORIS v4 into a new virtual environment. ``` (pip)= @@ -33,7 +33,7 @@ pip install floris (source)= ## Source Code Installation -Developers and anyone who intends to inspect the source code can install FLORIS by downloading the +Developers and anyone who intends to inspect the source code or wants to run examples can install FLORIS by downloading the git repository from GitHub with ``git`` and use ``pip`` to locally install it. The following commands in a terminal or shell will download and install FLORIS. ```bash @@ -60,22 +60,28 @@ and importing FLORIS: Help on package floris: NAME - floris - # Copyright 2021 NREL + floris - # Copyright 2024 NREL PACKAGE CONTENTS + convert_floris_input_v3_to_v4 + convert_turbine_v3_to_v4 + core (package) + cut_plane + floris_model + flow_visualization + layout_visualization logging_manager - simulation (package) - tools (package) + optimization (package) + parallel_floris_model + turbine_library (package) type_dec + uncertain_floris_model utilities - -DATA - ROOT = PosixPath('/Users/rmudafor/Development/floris') - VERSION = '3.2' - version_file = <_io.TextIOWrapper name='/Users/rmudafor/Development/fl... + version + wind_data VERSION - 3.2 + 4.0 FILE ~/floris/floris/__init__.py @@ -84,7 +90,7 @@ FILE (developers)= ## Developer Installation -For users that will also be contributing to the FLORIS code repoistory, the process is similar to +For users that will also be contributing to the FLORIS code repository, the process is similar to the source code installation, but with a few extra considerations. The steps are laid out in our [developer's guide](dev_guide.md). diff --git a/docs/operation_models_user.ipynb b/docs/operation_models_user.ipynb new file mode 100644 index 000000000..aaaae3f87 --- /dev/null +++ b/docs/operation_models_user.ipynb @@ -0,0 +1,523 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "ac224ce9-bd4f-4f5c-88b7-f0e9e49ee498", + "metadata": {}, + "source": [ + "# Turbine Operation Models\n", + "\n", + "Separate from the turbine models, which define the physical characterstics of the turbines, FLORIS\n", + "allows users to specify how the turbine behaves in terms of producing power and thurst. We refer to \n", + "different models for turbine behavior as \"operation models\". A key feature of operation models is\n", + "the ability for users to specify control setpoints at which the operation model will be evaluated. \n", + "For instance, some operation models allow users to specify `yaw_angles`, which alter the power \n", + "being produced by the turbine along with it's thrust force on flow.\n", + "\n", + "Operation models are specified by the `operation_model` key on the turbine yaml file, or by using\n", + "the `set_operation_model()` method on `FlorisModel`. Each operation model available in FLORIS is\n", + "described and demonstrated below. The simplest operation model is the `\"simple\"` operation model,\n", + "which takes no control setpoints and simply evaluates the power and thrust coefficient curves for \n", + "the turbine at the current wind condition. The default operation model is the `\"cosine-loss\"`\n", + "operation model, which models the loss in power of a turbine under yaw misalignment using a cosine\n", + "term with an exponent.\n", + "\n", + "We first provide a quick demonstration of how to switch between different operation models. Then, \n", + "each operation model available in FLORIS is described, along with its relevant control setpoints.\n", + "We also describe the different parameters that must be specified in the turbine \n", + "`\"power_thrust_table\"` dictionary in order to use that operation model." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "71788b47-6641-4080-bb3f-eb799d969e0b", + "metadata": {}, + "source": [ + "## Selecting the operation model\n", + "\n", + "There are two options for selecting the operation model:\n", + "1. Manually changing the `\"operation_model\"` field of the turbine input yaml \n", + "(see [Turbine Input File Reference](input_reference_turbine))\n", + "\n", + "2. Using `set_operation_model()` on an instantiated `FlorisModel` object.\n", + "\n", + "The following code demonstrates the use of the second option." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2275840e-48a3-41d2-ace9-fad05da0dc02", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "simple operation model powers [kW]: [[1753.95445918 436.4427005 506.66815478]]\n", + "cosine-loss operation model powers [kW]: [[1561.31837381 778.04338242 651.77709894]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGwCAYAAAC0HlECAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAp20lEQVR4nO3df3RU5Z3H8c+E/CKEJBBIIk0CaCmISY0GgUHFumRJMdZSqKuUUihZEE2UX4cCovijK+FgK4hV0J4VPFaEplW6skiNoFia8CsmEEAiriAcwgS6ygw/JAnk2T88mWUkpE9CksmQ9+uce2Tu89w73+c5XObjnXvvOIwxRgAAAGhQkL8LAAAACASEJgAAAAuEJgAAAAuEJgAAAAuEJgAAAAuEJgAAAAuEJgAAAAvB/i4g0NTW1qqiokKdO3eWw+HwdzkAAMCCMUanTp1Sjx49FBTUtHNGhKZGqqioUFJSkr/LAAAATXDkyBElJiY2aVtCUyN17txZ0jeTHhUV5edqAACADY/Ho6SkJO/neFMQmhqp7iu5qKgoQhMAAAHmSi6t4UJwAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAACwEbmhYuXCiHw6Fp06Z51507d045OTmKjY1VZGSkRo8ercrKSp/tDh8+rKysLEVERCguLk6zZs3S+fPnW7l6AAAQaAIyNO3YsUMvv/yyvv/97/usnz59ut555x3l5+dr8+bNqqio0KhRo7ztFy5cUFZWlqqrq1VYWKjXXntNK1eu1Pz581t7CAAAIMAEXGg6ffq0xo4dq9///vfq0qWLd73b7dZ//ud/6rnnntO//Mu/KD09XStWrFBhYaG2bt0qSXrvvfe0b98+/eEPf1BaWppGjBihX//613rxxRdVXV3tryEBAIAAEHChKScnR1lZWcrIyPBZX1xcrJqaGp/1/fr1U3JysoqKiiRJRUVFSk1NVXx8vLdPZmamPB6P9u7dW+/7VVVVyePx+CwAAKD9CfZ3AY2xevVqffzxx9qxY8clbS6XS6GhoYqJifFZHx8fL5fL5e1zcWCqa69rq09eXp6eeuqpZqgeAAAEsoA503TkyBFNnTpVb7zxhsLDw1vtfefOnSu32+1djhw50mrvDQAA2o6ACU3FxcU6fvy4br75ZgUHBys4OFibN2/W0qVLFRwcrPj4eFVXV+vkyZM+21VWViohIUGSlJCQcMnddHWv6/p8W1hYmKKionwWAADQ/gRMaBo2bJjKyspUWlrqXQYMGKCxY8d6/xwSEqKNGzd6tykvL9fhw4fldDolSU6nU2VlZTp+/Li3T0FBgaKiotS/f/9WHxMAAAgcAXNNU+fOnZWSkuKzrlOnToqNjfWuz87O1owZM9S1a1dFRUXp4YcfltPp1ODBgyVJw4cPV//+/TVu3DgtWrRILpdLjz32mHJychQWFtbqYwIAAIEjYEKTjcWLFysoKEijR49WVVWVMjMz9dJLL3nbO3TooHXr1unBBx+U0+lUp06dNH78eD399NN+rBoAAAQChzHG+LuIQOLxeBQdHS232831TQAABIjm+PwOmGuaAAAA/InQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYCFgQlNeXp5uueUWde7cWXFxcRo5cqTKy8t9+pw7d045OTmKjY1VZGSkRo8ercrKSp8+hw8fVlZWliIiIhQXF6dZs2bp/PnzrTkUAAAQgAImNG3evFk5OTnaunWrCgoKVFNTo+HDh+vMmTPePtOnT9c777yj/Px8bd68WRUVFRo1apS3/cKFC8rKylJ1dbUKCwv12muvaeXKlZo/f74/hgQAAAKIwxhj/F1EU5w4cUJxcXHavHmzhg4dKrfbre7du2vVqlX66U9/Kknav3+/rr/+ehUVFWnw4MF69913dffdd6uiokLx8fGSpOXLl2v27Nk6ceKEQkNDL3mfqqoqVVVVeV97PB4lJSXJ7XYrKiqqdQYLAACuiMfjUXR09BV9fgfMmaZvc7vdkqSuXbtKkoqLi1VTU6OMjAxvn379+ik5OVlFRUWSpKKiIqWmpnoDkyRlZmbK4/Fo79699b5PXl6eoqOjvUtSUlJLDQkAALRhARmaamtrNW3aNN16661KSUmRJLlcLoWGhiomJsanb3x8vFwul7fPxYGprr2urT5z586V2+32LkeOHGnm0QAAgEAQ7O8CmiInJ0d79uzRli1bWvy9wsLCFBYW1uLvAwAA2raAO9OUm5urdevW6YMPPlBiYqJ3fUJCgqqrq3Xy5Emf/pWVlUpISPD2+fbddHWv6/oAAADUJ2BCkzFGubm5evvtt7Vp0yb17t3bpz09PV0hISHauHGjd115ebkOHz4sp9MpSXI6nSorK9Px48e9fQoKChQVFaX+/fu3zkAAAEBACpiv53JycrRq1Sr95S9/UefOnb3XIEVHR6tjx46Kjo5Wdna2ZsyYoa5duyoqKkoPP/ywnE6nBg8eLEkaPny4+vfvr3HjxmnRokVyuVx67LHHlJOTw1dwAACgQQHzyAGHw1Hv+hUrVmjChAmSvnm45cyZM/Xmm2+qqqpKmZmZeumll3y+evviiy/04IMP6sMPP1SnTp00fvx4LVy4UMHBdvmxOW5ZBAAAras5Pr8DJjS1FYQmAAACT7t+ThMAAEBrIjQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYIDQBAABYCPZ3AfiGMUZnz56VJEVERMjhcPi5IqB94RgE/K+tH4ecaWojzp49q8jISEVGRnr/wgBoPRyDgP+19eOQ0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGDB6uGWXbt2bdROHQ6HPv74Y/Xs2bNJRQEAALQ1VqHp5MmTWrJkiaKjo/9pX2OMHnroIV24cOGKiwMAAGgrrH9G5f7771dcXJxV34cffrjJBQEAALRFVqGptra2UTs9depUk4oBAABoq7gQPAC8+OKL6tWrl8LDwzVo0CBt377d23bu3Dnl5OQoNjZWkZGRGj16tCorK322P3z4sLKyshQREaG4uDjNmjVL58+fb+1hAAHtSo/DRx55ROnp6QoLC1NaWlorVw8Evis5Bnft2qWJEydKkuLj43X99dfr+eefb3QN1l/PXayiokJbtmzR8ePHLzkL9cgjjzRll7iMNWvWaMaMGVq+fLkGDRqkJUuWKDMzU+Xl5YqLi9P06dP13//938rPz1d0dLRyc3M1atQo/f3vf5ckXbhwQVlZWUpISFBhYaGOHTumX/ziFwoJCdGCBQv8PDogMFzpcVhn4sSJ2rZtm3bv3u2nkQCB6UqPweLiYnXv3l2StHXrVpWVlWny5Mnq0KGDcnNz7QsxjbRixQoTGhpqIiMjTc+ePU2vXr28S+/evRu7u4DjdruNJON2u5t1v6dPnzaSjCRz+vRp7/qBAweanJwc7+sLFy6YHj16mLy8PHPy5EkTEhJi8vPzve2ffPKJkWSKioqMMcasX7/eBAUFGZfL5e2zbNkyExUVZaqqqpp1DEAgu9wxaMyVH4cXe+KJJ8yNN97YYuMAAllLfRYac+nn90MPPWTuvPPORtXX6K/nHn/8cc2fP19ut1uHDh3SwYMHvcvnn3/e2N2hAdXV1SouLlZGRoZ3XVBQkDIyMlRUVKTi4mLV1NT4tPfr10/JyckqKiqSJBUVFSk1NVXx8fHePpmZmfJ4PNq7d2/rDQYIUM1xHAJoupY6Bt1ud6MfqdTo0HT27Fndf//9CgricqiW9o9//EMXLlzwCTzSN9/HulwuuVwuhYaGKiYmpt52SXK5XPVuX9cGoGHNcRwCaLqWOAYLCwu1Zs0aTZ48uVG1NDr5ZGdnKz8/v7GbAQAA+N2+ffv04x//WE888YSGDx/eqG0bfSF4Xl6e7r77bm3YsEGpqakKCQnxaX/uuecau0tcRrdu3dShQ4dL7sKprKxUQkKCEhISVF1drZMnT/ok7Lp2SUpISPC5w6Cuva4NQMOa4zgE0HTNfQzec889mjx5sh577LFG19LoM015eXn661//qsrKSpWVlamkpMS7lJaWNroAXF5oaKjS09O1ceNG77ra2lpt3LhRTqdT6enpCgkJ8WkvLy/X4cOH5XQ6JUlOp1NlZWU6fvy4t09BQYGioqLUv3//1hsMEKCa4zgE0HTNdQx+8sknkqQxY8bomWeeaVoxjb2yPSYmxqxYsaKxm7U5v/vd70zPnj1NWFiYGThwoNm2bZvVdq1999zq1atNWFiYWblypdm3b5+ZPHmyiYmJ8d4NN2XKFJOcnGw2bdpkdu7caZxOp3E6nd7tz58/b1JSUszw4cNNaWmp2bBhg+nevbuZO3dus9YPBLqG7p670uPQGGMOHDhgSkpKzAMPPGC+973vmZKSElNSUsJdrMBFWuqzsKyszHTr1s1IMp9++qk5duyYOXbsmDl+/Hij6mt0aIqPjzeffvppYzdrU1avXm1CQ0PNq6++avbu3WsmTZpkYmJiTGVl5T/dtrVDkzHGvPDCCyY5OdmEhoaagQMHmq1bt3rbvv76a/PQQw+ZLl26mIiICPOTn/zEHDt2zGf7Q4cOmREjRpiOHTuabt26mZkzZ5qamppmrR8IdA0dg8Zc+XF4xx13ePd/8XLw4MGWHhoQMFrqs/CJJ56o9/jr2bNno+pzGGNMY85M5eXl6dixY1q6dGnTTm21AYMGDdItt9yi3/3ud5K+Oc2XlJSkhx9+WHPmzGlwW4/Ho+joaLndbkVFRTVbTWfOnFFkZKQk6fTp0+rUqVOz7RvAP8cxCPhfSx6HzfH53egLwbdv365NmzZp3bp1uuGGGy65EPytt95qUiGtpe55D3PnzvWuu/h5D99WVVWlqqoq72uPx9MqdQIAgLal0aEpJiZGo0aNaolaWkVDz3vYv3//Jf3z8vL01FNPtVZ5AACgjWp0aFqxYkVL1NFmzZ07VzNmzPC+9ng8SkpK8mNFAADAH5r0g72B7J897+HbwsLCFBYW1lrlAQCANsrqOU0333yzvvrqK+ud3nbbbTp69GiTi2pJ/+x5DwAAAPWxOtNUWlqqXbt2Wf+wXWlpqc/F023NjBkzNH78eA0YMEADBw7UkiVLdObMGf3yl7/0d2kAAKCNsv56btiwYbJ9OoHD4WhyQa3hvvvu04kTJzR//ny5XC6lpaVpw4YNl1wcDgAAUMcqNB08eLDRO05MTGz0Nq0pNzdXubm5/i4DAAAECKvQ1LNnz5auAwAAoE1r9A/2AgAAtEeEJgAAAAuEJgAAAAuEJgAAAAuNDk3jx4/XRx991BK1AAAAtFmNDk1ut1sZGRnq06ePFixY0Gaf/A0AANCcGh2a1q5dq6NHj+rBBx/UmjVr1KtXL40YMUJ/+tOfVFNT0xI1AgAA+F2Trmnq3r27ZsyYoV27dmnbtm367ne/q3HjxqlHjx6aPn26Dhw40Nx1AgAA+NUVXQh+7NgxFRQUqKCgQB06dNBdd92lsrIy9e/fX4sXL26uGgEAAPyu0aGppqZGf/7zn3X33XerZ8+eys/P17Rp01RRUaHXXntN77//vv74xz/q6aefbol6AQAA/ML6B3vrXHPNNaqtrdWYMWO0fft2paWlXdLnzjvvVExMTDOUBwAA0DY0OjQtXrxY9957r8LDwy/bJyYmpkk/8gsAANBWNTo0jRs3riXqAAAAaNN4IjgAAIAFQhMAAICFRn89h5YRERGh06dPe/8MoHVxDAL+19aPQ0JTG+FwONSpUyd/lwG0WxyDgP+19eOQr+cAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsBERoOnTokLKzs9W7d2917NhR1113nZ544glVV1f79Nu9e7duv/12hYeHKykpSYsWLbpkX/n5+erXr5/Cw8OVmpqq9evXt9YwAABAAAuI0LR//37V1tbq5Zdf1t69e7V48WItX75cjz76qLePx+PR8OHD1bNnTxUXF+vZZ5/Vk08+qVdeecXbp7CwUGPGjFF2drZKSko0cuRIjRw5Unv27PHHsAAAQABxGGOMv4toimeffVbLli3T559/LklatmyZ5s2bJ5fLpdDQUEnSnDlztHbtWu3fv1+SdN999+nMmTNat26ddz+DBw9WWlqali9fXu/7VFVVqaqqyvva4/EoKSlJbrdbUVFRLTU8AADQjDwej6Kjo6/o8zsgzjTVx+12q2vXrt7XRUVFGjp0qDcwSVJmZqbKy8v11VdfeftkZGT47CczM1NFRUWXfZ+8vDxFR0d7l6SkpGYeCQAACAQBGZo+++wzvfDCC3rggQe861wul+Lj43361b12uVwN9qlrr8/cuXPldru9y5EjR5prGAAAIID4NTTNmTNHDoejwaXuq7U6R48e1Q9/+EPde++9mjRpUovXGBYWpqioKJ8FAAC0P8H+fPOZM2dqwoQJDfa59tprvX+uqKjQnXfeqSFDhvhc4C1JCQkJqqys9FlX9zohIaHBPnXtAAAAl+PX0NS9e3d1797dqu/Ro0d15513Kj09XStWrFBQkO9JMqfTqXnz5qmmpkYhISGSpIKCAvXt21ddunTx9tm4caOmTZvm3a6goEBOp7N5BgQAAK5aAXFN09GjR/WDH/xAycnJ+s1vfqMTJ07I5XL5XIv0s5/9TKGhocrOztbevXu1Zs0aPf/885oxY4a3z9SpU7Vhwwb99re/1f79+/Xkk09q586dys3N9cewAABAAPHrmSZbBQUF+uyzz/TZZ58pMTHRp63uiQnR0dF67733lJOTo/T0dHXr1k3z58/X5MmTvX2HDBmiVatW6bHHHtOjjz6qPn36aO3atUpJSWnV8QAAgMATsM9p8pfmeM4DAABoXe36OU0AAACtidAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABgIeBCU1VVldLS0uRwOFRaWurTtnv3bt1+++0KDw9XUlKSFi1adMn2+fn56tevn8LDw5Wamqr169e3UuUAACCQBVxo+tWvfqUePXpcst7j8Wj48OHq2bOniouL9eyzz+rJJ5/UK6+84u1TWFioMWPGKDs7WyUlJRo5cqRGjhypPXv2tOYQAABAAHIYY4y/i7D17rvvasaMGfrzn/+sG264QSUlJUpLS5MkLVu2TPPmzZPL5VJoaKgkac6cOVq7dq32798vSbrvvvt05swZrVu3zrvPwYMHKy0tTcuXL7eqwePxKDo6Wm63W1FRUc07QAAA0CKa4/M7YM40VVZWatKkSXr99dcVERFxSXtRUZGGDh3qDUySlJmZqfLycn311VfePhkZGT7bZWZmqqio6LLvW1VVJY/H47MAAID2JyBCkzFGEyZM0JQpUzRgwIB6+7hcLsXHx/usq3vtcrka7FPXXp+8vDxFR0d7l6SkpCsZCgAACFB+DU1z5syRw+FocNm/f79eeOEFnTp1SnPnzm31GufOnSu32+1djhw50uo1AAAA/wv255vPnDlTEyZMaLDPtddeq02bNqmoqEhhYWE+bQMGDNDYsWP12muvKSEhQZWVlT7tda8TEhK8/62vT117fcLCwi55XwAA0P74NTR1795d3bt3/6f9li5dqv/4j//wvq6oqFBmZqbWrFmjQYMGSZKcTqfmzZunmpoahYSESJIKCgrUt29fdenSxdtn48aNmjZtmndfBQUFcjqdzTgqAABwNfJraLKVnJzs8zoyMlKSdN111ykxMVGS9LOf/UxPPfWUsrOzNXv2bO3Zs0fPP/+8Fi9e7N1u6tSpuuOOO/Tb3/5WWVlZWr16tXbu3OnzWAIAAID6BMSF4Daio6P13nvv6eDBg0pPT9fMmTM1f/58TZ482dtnyJAhWrVqlV555RXdeOON+tOf/qS1a9cqJSXFj5UDAIBAEFDPaWoLeE4TAACBp109pwkAAMCfCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWgv1dQKAxxkiSPB6PnysBAAC26j636z7Hm4LQ1EinTp2SJCUlJfm5EgAA0FinTp1SdHR0k7Z1mCuJXO1QbW2tKioq1LlzZzkcjmbdt8fjUVJSko4cOaKoqKhm3XegY24axvxcHnPTMOanYczP5QXa3BhjdOrUKfXo0UNBQU27OokzTY0UFBSkxMTEFn2PqKiogPgL6A/MTcOYn8tjbhrG/DSM+bm8QJqbpp5hqsOF4AAAABYITQAAABYITW1IWFiYnnjiCYWFhfm7lDaHuWkY83N5zE3DmJ+GMT+X1x7nhgvBAQAALHCmCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhqY148cUX1atXL4WHh2vQoEHavn27v0tqcXl5ebrlllvUuXNnxcXFaeTIkSovL/fpc+7cOeXk5Cg2NlaRkZEaPXq0KisrffocPnxYWVlZioiIUFxcnGbNmqXz58+35lBa3MKFC+VwODRt2jTvuvY+N0ePHtXPf/5zxcbGqmPHjkpNTdXOnTu97cYYzZ8/X9dcc406duyojIwMHThwwGcfX375pcaOHauoqCjFxMQoOztbp0+fbu2hNLsLFy7o8ccfV+/evdWxY0ddd911+vWvf+3zm1vtaX4++ugj/ehHP1KPHj3kcDi0du1an/bmmovdu3fr9ttvV3h4uJKSkrRo0aKWHtoVa2huampqNHv2bKWmpqpTp07q0aOHfvGLX6iiosJnH1fr3NTLwO9Wr15tQkNDzauvvmr27t1rJk2aZGJiYkxlZaW/S2tRmZmZZsWKFWbPnj2mtLTU3HXXXSY5OdmcPn3a22fKlCkmKSnJbNy40ezcudMMHjzYDBkyxNt+/vx5k5KSYjIyMkxJSYlZv3696datm5k7d64/htQitm/fbnr16mW+//3vm6lTp3rXt+e5+fLLL03Pnj3NhAkTzLZt28znn39u/vrXv5rPPvvM22fhwoUmOjrarF271uzatcvcc889pnfv3ubrr7/29vnhD39obrzxRrN161bzt7/9zXz3u981Y8aM8ceQmtUzzzxjYmNjzbp168zBgwdNfn6+iYyMNM8//7y3T3uan/Xr15t58+aZt956y0gyb7/9tk97c8yF2+028fHxZuzYsWbPnj3mzTffNB07djQvv/xyaw2zSRqam5MnT5qMjAyzZs0as3//flNUVGQGDhxo0tPTffZxtc5NfQhNbcDAgQNNTk6O9/WFCxdMjx49TF5enh+ran3Hjx83kszmzZuNMd8csCEhISY/P9/b55NPPjGSTFFRkTHmmwM+KCjIuFwub59ly5aZqKgoU1VV1boDaAGnTp0yffr0MQUFBeaOO+7whqb2PjezZ882t91222Xba2trTUJCgnn22We9606ePGnCwsLMm2++aYwxZt++fUaS2bFjh7fPu+++axwOhzl69GjLFd8KsrKyzMSJE33WjRo1yowdO9YY077n59vBoLnm4qWXXjJdunTxObZmz55t+vbt28Ijaj71Bcpv2759u5FkvvjiC2NM+5mbOnw952fV1dUqLi5WRkaGd11QUJAyMjJUVFTkx8pan9vtliR17dpVklRcXKyamhqfuenXr5+Sk5O9c1NUVKTU1FTFx8d7+2RmZsrj8Wjv3r2tWH3LyMnJUVZWls8cSMzNf/3Xf2nAgAG69957FRcXp5tuukm///3vve0HDx6Uy+XymZ/o6GgNGjTIZ35iYmI0YMAAb5+MjAwFBQVp27ZtrTeYFjBkyBBt3LhRn376qSRp165d2rJli0aMGCGJ+blYc81FUVGRhg4dqtDQUG+fzMxMlZeX66uvvmql0bQ8t9sth8OhmJgYSe1vbvjBXj/7xz/+oQsXLvh8sElSfHy89u/f76eqWl9tba2mTZumW2+9VSkpKZIkl8ul0NBQ78FZJz4+Xi6Xy9unvrmrawtkq1ev1scff6wdO3Zc0tbe5+bzzz/XsmXLNGPGDD366KPasWOHHnnkEYWGhmr8+PHe8dU3/ovnJy4uzqc9ODhYXbt2Dfj5mTNnjjwej/r166cOHTrowoULeuaZZzR27FhJavfzc7HmmguXy6XevXtfso+6ti5durRI/a3p3Llzmj17tsaMGeP9gd72NjeEJrQJOTk52rNnj7Zs2eLvUtqEI0eOaOrUqSooKFB4eLi/y2lzamtrNWDAAC1YsECSdNNNN2nPnj1avny5xo8f7+fq/O+Pf/yj3njjDa1atUo33HCDSktLNW3aNPXo0YP5QZPU1NTo3/7t32SM0bJly/xdjt/w9ZyfdevWTR06dLjkrqfKykolJCT4qarWlZubq3Xr1umDDz5QYmKid31CQoKqq6t18uRJn/4Xz01CQkK9c1fXFqiKi4t1/Phx3XzzzQoODlZwcLA2b96spUuXKjg4WPHx8e12biTpmmuuUf/+/X3WXX/99Tp8+LCk/x9fQ8dVQkKCjh8/7tN+/vx5ffnllwE/P7NmzdKcOXN0//33KzU1VePGjdP06dOVl5cnifm5WHPNxdV8vNUFpi+++EIFBQXes0xS+5sbQpOfhYaGKj09XRs3bvSuq62t1caNG+V0Ov1YWcszxig3N1dvv/22Nm3adMnp2/T0dIWEhPjMTXl5uQ4fPuydG6fTqbKyMp+Dtu6g/vaHaiAZNmyYysrKVFpa6l0GDBigsWPHev/cXudGkm699dZLHk/x6aefqmfPnpKk3r17KyEhwWd+PB6Ptm3b5jM/J0+eVHFxsbfPpk2bVFtbq0GDBrXCKFrO2bNnFRTk+897hw4dVFtbK4n5uVhzzYXT6dRHH32kmpoab5+CggL17ds3oL5++ra6wHTgwAG9//77io2N9Wlvd3Pj7yvR8c0jB8LCwszKlSvNvn37zOTJk01MTIzPXU9XowcffNBER0ebDz/80Bw7dsy7nD171ttnypQpJjk52WzatMns3LnTOJ1O43Q6ve11t9UPHz7clJaWmg0bNpju3btfFbfVf9vFd88Z077nZvv27SY4ONg888wz5sCBA+aNN94wERER5g9/+IO3z8KFC01MTIz5y1/+Ynbv3m1+/OMf13sb+U033WS2bdtmtmzZYvr06ROQt9R/2/jx4813vvMd7yMH3nrrLdOtWzfzq1/9ytunPc3PqVOnTElJiSkpKTGSzHPPPWdKSkq8d4A1x1ycPHnSxMfHm3Hjxpk9e/aY1atXm4iIiDZ/W31Dc1NdXW3uuecek5iYaEpLS33+nb74TrirdW7qQ2hqI1544QWTnJxsQkNDzcCBA83WrVv9XVKLk1TvsmLFCm+fr7/+2jz00EOmS5cuJiIiwvzkJz8xx44d89nPoUOHzIgRI0zHjh1Nt27dzMyZM01NTU0rj6blfTs0tfe5eeedd0xKSooJCwsz/fr1M6+88opPe21trXn88cdNfHy8CQsLM8OGDTPl5eU+ff73f//XjBkzxkRGRpqoqCjzy1/+0pw6dao1h9EiPB6PmTp1qklOTjbh4eHm2muvNfPmzfP5oGtP8/PBBx/U+2/N+PHjjTHNNxe7du0yt912mwkLCzPf+c53zMKFC1triE3W0NwcPHjwsv9Of/DBB959XK1zUx+HMRc9IhYAAAD14pomAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAAAAC4QmAO3WoUOH5HA45HA4lJaWdsX7q9tXTEzMFe8LQNtDaALQ7r3//vs+P9jaVMeOHdOSJUuuvCAAbRKhCUC7Fxsbe8mvtzdFQkKCoqOjm6EiAG0RoQnAVeHEiRNKSEjQggULvOsKCwsVGhra6LNIEyZM0MiRI7VgwQLFx8crJiZGTz/9tM6fP69Zs2apa9euSkxM1IoVK5p7GADasGB/FwAAzaF79+569dVXNXLkSA0fPlx9+/bVuHHjlJubq2HDhjV6f5s2bVJiYqI++ugj/f3vf1d2drYKCws1dOhQbdu2TWvWrNEDDzygf/3Xf1ViYmILjAhAW8OZJgBXjbvuukuTJk3S2LFjNWXKFHXq1El5eXlN2lfXrl21dOlS9e3bVxMnTlTfvn119uxZPfroo+rTp4/mzp2r0NBQbdmypZlHAaCt4kwTgKvKb37zG6WkpCg/P1/FxcUKCwtr0n5uuOEGBQX9//9XxsfHKyUlxfu6Q4cOio2N1fHjx6+4ZgCBgTNNAK4q//M//6OKigrV1tbq0KFDTd5PSEiIz2uHw1Hvutra2ia/B4DAwpkmAFeN6upq/fznP9d9992nvn376t///d9VVlamuLg4f5cG4CrAmSYAV4158+bJ7XZr6dKlmj17tr73ve9p4sSJ/i4LwFWC0ATgqvDhhx9qyZIlev311xUVFaWgoCC9/vrr+tvf/qZly5b5uzwAVwG+ngNwVfjBD36gmpoan3W9evWS2+1u9L5Wrlx5yboPP/zwknVXcs0UgMBDaALQ7g0ZMkRpaWkqLCy8ov1ERkbq/PnzCg8Pb6bKALQlhCYA7VZiYqIOHDggSU1+NMHFSktLJX3zOAIAVx+HMcb4uwgAAIC2jgvBAQAALBCaAAAALBCaAAAALBCaAAAALBCaAAAALBCaAAAALBCaAAAALBCaAAAALPwfvXpQxODDiK8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGwCAYAAAC0HlECAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsk0lEQVR4nO3de3RU5b3G8ScXkpCESSDkYkwCaBHERKNBYPBe0qQaa1HaKqYRKkdEgwXhUIgoeOzRsLD1ghfUriNYb0BapUeK1giKtQkgMUFAuaggLMIEqmQGRJJA3vOHK3MYCfgGkkwm+X7W2qvMft+95/e+qzvzuGfvPUHGGCMAAACcVLC/CwAAAAgEhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALof4uINA0NjaqurpaPXr0UFBQkL/LAQAAFowxOnDggJKTkxUcfGrnjAhNLVRdXa3U1FR/lwEAAE7Brl27lJKSckrbEppaqEePHpK+m3SHw+HnagAAgA2Px6PU1FTv5/ipIDS1UNNXcg6Hg9AEAECAOZ1La7gQHAAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwELAhqY5c+YoKChIkydP9q47fPiwCgsLFRcXp+joaI0aNUo1NTU+2+3cuVN5eXmKjIxUQkKCpk2bpiNHjrRz9QAAINAEZGj68MMP9eyzz+r888/3WX/33XfrjTfeUElJiVatWqXq6mrdcMMN3vajR48qLy9P9fX1Kisr0wsvvKCFCxdq1qxZ7T0EAAAQYAIuNB08eFD5+fn605/+pJ49e3rXu91u/c///I8eeeQR/fjHP1ZWVpYWLFigsrIyrV69WpL09ttv65NPPtFLL72kzMxMXX311fr973+vp556SvX19c2+X11dnTwej88CAAC6noALTYWFhcrLy1N2drbP+oqKCjU0NPisHzhwoNLS0lReXi5JKi8vV0ZGhhITE719cnNz5fF4tGnTpmbfr7i4WDExMd4lNTW1DUYFAAA6uoAKTYsWLdJHH32k4uLi49pcLpfCwsIUGxvrsz4xMVEul8vb59jA1NTe1NacoqIiud1u77Jr165WGAkAAAg0of4uwNauXbs0adIklZaWKiIiot3eNzw8XOHh4e32fgAAoGMKmDNNFRUV2rt3ry666CKFhoYqNDRUq1at0rx58xQaGqrExETV19ertrbWZ7uamholJSVJkpKSko67m67pdVMfAACA5gRMaBoxYoQ2bNigqqoq7zJ48GDl5+d7/92tWzetWLHCu82WLVu0c+dOOZ1OSZLT6dSGDRu0d+9eb5/S0lI5HA4NGjSo3ccEAAACR8B8PdejRw+lp6f7rIuKilJcXJx3/bhx4zRlyhT16tVLDodDd911l5xOp4YNGyZJysnJ0aBBg1RQUKC5c+fK5XLp3nvvVWFhIV/BAQCAkwqY0GTj0UcfVXBwsEaNGqW6ujrl5ubq6aef9raHhIRo2bJluuOOO+R0OhUVFaUxY8bogQce8GPVAAAgEAQZY4y/iwgkHo9HMTExcrvdcjgc/i4HAABYaI3P74C5pgkAAMCfCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWAiY0FRcX6+KLL1aPHj2UkJCgkSNHasuWLT59Dh8+rMLCQsXFxSk6OlqjRo1STU2NT5+dO3cqLy9PkZGRSkhI0LRp03TkyJH2HAoAAAhAAROaVq1apcLCQq1evVqlpaVqaGhQTk6OvvnmG2+fu+++W2+88YZKSkq0atUqVVdX64YbbvC2Hz16VHl5eaqvr1dZWZleeOEFLVy4ULNmzfLHkAAAQAAJMsYYfxdxKvbt26eEhAStWrVKl19+udxut+Lj4/XKK6/oF7/4hSRp8+bNOvfcc1VeXq5hw4bpzTff1LXXXqvq6molJiZKkp555hlNnz5d+/btU1hY2A++r8fjUUxMjNxutxwOR5uOEQAAtI7W+PwOmDNN3+d2uyVJvXr1kiRVVFSooaFB2dnZ3j4DBw5UWlqaysvLJUnl5eXKyMjwBiZJys3Nlcfj0aZNm5p9n7q6Onk8Hp8FAAB0PQEZmhobGzV58mRdcsklSk9PlyS5XC6FhYUpNjbWp29iYqJcLpe3z7GBqam9qa05xcXFiomJ8S6pqamtPBoAABAIAjI0FRYWauPGjVq0aFGbv1dRUZHcbrd32bVrV5u/JwAA6HhC/V1AS02cOFHLli3T+++/r5SUFO/6pKQk1dfXq7a21udsU01NjZKSkrx91q5d67O/prvrmvp8X3h4uMLDw1t5FAAAINAEzJkmY4wmTpyo119/XStXrlS/fv182rOystStWzetWLHCu27Lli3auXOnnE6nJMnpdGrDhg3au3evt09paakcDocGDRrUPgMBAAABKWDONBUWFuqVV17R3/72N/Xo0cN7DVJMTIy6d++umJgYjRs3TlOmTFGvXr3kcDh01113yel0atiwYZKknJwcDRo0SAUFBZo7d65cLpfuvfdeFRYWcjYJAACcVMA8ciAoKKjZ9QsWLNDYsWMlffdwy6lTp+rVV19VXV2dcnNz9fTTT/t89fbll1/qjjvu0HvvvaeoqCiNGTNGc+bMUWioXX7kkQMAAASe1vj8DpjQ1FEQmgAACDxd+jlNAAAA7YnQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYCHU3wUAQEdkjNGhQ4ckSZGRkQoKCvJzRUDn19GPO840dSANDQ2qra31dxkAJB06dEjR0dGKjo72/hEH0LY6+nFHaOogXn75ZZ155pmaOXOmv0sBAADNIDR1EPHx8dq3b58WLVqk+vp6f5cDAAC+h9DUQYwYMUJnnHGGvv76ay1fvtzf5QAAgO8hNHUQISEhys/PlyS9+OKLfq4GAAB8H6GpAykoKJAkLVu2TPv37/dzNQAA4FiEpg7k/PPP1/nnn6/6+notWbLE3+UAAIBjWIWmXr16tWiJi4vTl19+2da1d0pNZ5v4ig4AgI7F6uGWtbW1euyxxxQTE/ODfY0xuvPOO3X06NHTLq4ruvnmmzV9+nT961//0ueff66zzz7b3yUBAAC14IngN910kxISEqz63nXXXadcUFeXnJys7Oxsvf3223rppZc0e/Zsf5cEAABk+fVcY2OjdWCSpAMHDuiss8465aK6umO/ojPG+LkaAAAgcSF4h3T99dcrKipKn3/+uVavXv2D/Z966in17dtXERERGjp0qNauXettO3z4sAoLCxUXF6fo6GiNGjVKNTU1Ptvv3LlTeXl5ioyMVEJCgqZNm6YjR460+riAzuR0j7vf/va3ysrKUnh4uDIzM9u5eiDwnM4xt379et16662SpMTERJ177rl6/PHHW1zDKYWm6upqLVmyRE8++aTmzZvns+D0RUVF6YYbbpD0wxeEL168WFOmTNHs2bP10Ucf6YILLlBubq727t0rSbr77rv1xhtvqKSkRKtWrVJ1dbV335J09OhR5eXlqb6+XmVlZXrhhRe0cOFCzZo1q+0GCAS40z3umtx666268cYb27t8IOCc7jFXUVGh+Ph4SdLq1as1c+ZMFRUV6cknn2xZIaaFFixYYMLCwkx0dLTp06eP6du3r3fp169fS3cXcNxut5Fk3G53m77P22+/bSSZnj17msOHD5+w35AhQ0xhYaH39dGjR01ycrIpLi42tbW1plu3bqakpMTb/umnnxpJpry83BhjzPLly01wcLBxuVzePvPnzzcOh8PU1dW1wciAwHDw4EEjyUgyBw8e9Gk73ePuWLNnzzYXXHBBm40DCCQnOu5a45j7/uf3nXfeaa666qoW1dfiM0333XefZs2aJbfbrR07dmj79u3e5Ysvvmjp7nACP/7xj5WcnKz9+/ef8GdV6uvrVVFRoezsbO+64OBgZWdnq7y8XBUVFWpoaPBpHzhwoNLS0lReXi5JKi8vV0ZGhhITE719cnNz5fF4tGnTpjYaHRC4WuO4A2CvrY45t9utXr16taiWFoemQ4cO6aabblJwMJdDtaWQkBDdfPPNkk78Fd2///1vHT161CfwSN99X+tyueRyuRQWFqbY2Nhm2yXJ5XI1u31TGwBfrXHcAbDXFsdcWVmZFi9erPHjx7eolhYnn3HjxqmkpKSlm+EU3HLLLZK++1mVr7/+2s/VAAAQ+D755BP9/Oc/1+zZs5WTk9Oiba2f09SkuLhY1157rd566y1lZGSoW7duPu2PPPJIS3eJE8jIyNAFF1yg9evXa8mSJZowYYJPe+/evRUSEnLcXTk1NTVKSkpSUlKS6uvrVVtb65PAm9olKSkpyecOhKb2pjYAvlrjuANgr7WPueuuu07jx4/Xvffe2+JaWnymqbi4WP/4xz9UU1OjDRs2qLKy0rtUVVW1uACc3Ml+ViUsLExZWVlasWKFd11jY6NWrFghp9OprKwsdevWzad9y5Yt2rlzp5xOpyTJ6XRqw4YN3jsQJKm0tFQOh0ODBg1qq2EBAas1jjsA9lrrmPv0008lSaNHj9aDDz54asW09Mr22NhYs2DBgpZu1uE8+eSTpk+fPiY8PNwMGTLErFmzxmq79rp7rkl1dbUJDg42ksy2bduOa1+0aJEJDw83CxcuNJ988okZP368iY2N9d4NN2HCBJOWlmZWrlxp1q1bZ5xOp3E6nd7tjxw5YtLT001OTo6pqqoyb731lomPjzdFRUXtMj6gozrZ3XOne9wZY8y2bdtMZWWluf32280555xjKisrTWVlJXetoks70XF3usfchg0bTO/evY0ks3XrVrNnzx6zZ88es3fv3hbV1+LQlJiYaLZu3drSzTqURYsWmbCwMPP888+bTZs2mdtuu83ExsaampqaH9y2vUOTMcbk5OQYSWb27NnNtj/xxBMmLS3NhIWFmSFDhpjVq1d727799ltz5513mp49e5rIyEhz/fXXmz179vhsv2PHDnP11Veb7t27m969e5upU6eahoaGthwS0OGdLDQZc/rH3RVXXOHd/7HL9u3b23poQId1suPudI652bNnN3u89enTp0X1BRnTst/pKC4u1p49ewL6QZZDhw7VxRdf7H2oVWNjo1JTU3XXXXdpxowZJ93W4/EoJiZGbrdbDoejPcrVSy+9pIKCAp199tnatm2bgoKC2uV9ga7sm2++UXR0tCTp4MGDioqK8nNFQOfXlsdda3x+t/hC8LVr12rlypVatmyZzjvvvOMuBH/ttddOqZD20vS8h6KiIu+6Y5/38H11dXWqq6vzvvZ4PO1S57GO/VmV8vJyDR8+vN1rAACgq2vxheCxsbG64YYbdMUVV6h3796KiYnxWTq6H3rew/cVFxf7jC81NbW9SvWKiorSqFGjJP3wz6oAAIC20eIzTQsWLGiLOjqsoqIiTZkyxfva4/H4JTgVFBToz3/+sxYvXqzHHntM4eHh7V4DAABdWZd7rPcPPe/h+8LDw+VwOHwWf7jqqqu8P6vy97//3S81AADQlVmFposuukj79++33umll16q3bt3n3JRbemHnvfQUYWEhCg/P18SX9EBAOAPVl/PVVVVaf369dY/bFdVVeVz8XRHM2XKFI0ZM0aDBw/WkCFD9Nhjj+mbb77Rb37zG3+XdlIFBQV6+OGH9fe//11fffWV4uLi/F0SAABdhvU1TSNGjJDt0wk6+i3xN954o/bt26dZs2bJ5XIpMzNTb7311nEXh3c0GRkZyszMVFVVlZYsWaI77rjD3yUBANBlWD2n6csvv2zxjlNSUhQSEnJKRXVk/nhO07EeeeQRTZ06VcOGDWv2EQkAWgfPaQLaX0d/TlOLH27Z1fk7NO3Zs0cpKSlqbGzU1q1b1b9//3avAegKCE1A++vooanL3T0X6M444wz95Cc/kfTdk8IBAED7IDQFoIKCAknfhSZOFAIA0D4ITQFo5MiRioqK0hdffKGysjJ/lwMAQJdAaApAUVFR+sUvfiGJZzYBANBeWhyaxowZo/fff78takELNH1Ft3jxYh0+fNjP1QAA0Pm1ODS53W5lZ2erf//+euihhzrsk787uyuvvFJnnnmmamtr+VkVAADaQYtD09KlS7V7927dcccdWrx4sfr27aurr75af/nLX9TQ0NAWNaIZ/KwKAADt65SuaYqPj9eUKVO0fv16rVmzRj/60Y9UUFCg5ORk3X333dq2bVtr14lmNH1Ft3z5cn311Vd+rgYAgM7ttC4E37Nnj0pLS1VaWqqQkBBdc8012rBhgwYNGqRHH320tWrECaSnpyszM1MNDQ1avHixv8sBAKBTa3Foamho0F//+ldde+216tOnj0pKSjR58mRVV1frhRde0DvvvKMlS5bogQceaIt68T233HKLJOnPf/6znysBAKBzs/7B3iZnnHGGGhsbNXr0aK1du1aZmZnH9bnqqqsUGxvbCuXhh4wePVr/+Z//qTVr1mjr1q0655xz/F0SAACdUovPND366KOqrq7WU0891WxgkqTY2Fht3779dGuDhaSkJOXk5EjiZ1UAAGhLLQ5NBQUFioiIaItacIr4WRUAANoeTwTvBEaOHKnU1FRlZ2fr4MGD/i4HAIBOqcXXNKHjiYyM1I4dOxQcTAYGAKCtEJo6CQIT0LoiIyO9Z24jIyP9XA3QNXT0447QBADNCAoKUlRUlL/LALqUjn7ccXoCAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAQkCEph07dmjcuHHq16+funfvrrPPPluzZ89WfX29T7+PP/5Yl112mSIiIpSamqq5c+cet6+SkhINHDhQERERysjI0PLly9trGAAAIIAFRGjavHmzGhsb9eyzz2rTpk169NFH9cwzz+iee+7x9vF4PMrJyVGfPn1UUVGhhx9+WPfff7+ee+45b5+ysjKNHj1a48aNU2VlpUaOHKmRI0dq48aN/hgWAAAIIEHGGOPvIk7Fww8/rPnz5+uLL76QJM2fP18zZ86Uy+VSWFiYJGnGjBlaunSpNm/eLEm68cYb9c0332jZsmXe/QwbNkyZmZl65plnmn2furo61dXVeV97PB6lpqbK7XbL4XC01fAAAEAr8ng8iomJOa3P74A409Qct9utXr16eV+Xl5fr8ssv9wYmScrNzdWWLVu0f/9+b5/s7Gyf/eTm5qq8vPyE71NcXKyYmBjvkpqa2sojAQAAgSAgQ9Nnn32mJ554Qrfffrt3ncvlUmJiok+/ptcul+ukfZram1NUVCS32+1ddu3a1VrDAAAAAcSvoWnGjBkKCgo66dL01VqT3bt366c//al++ctf6rbbbmvzGsPDw+VwOHwWAADQ9YT6882nTp2qsWPHnrTPWWed5f13dXW1rrrqKg0fPtznAm9JSkpKUk1Njc+6ptdJSUkn7dPUDgAAcCJ+DU3x8fGKj4+36rt7925dddVVysrK0oIFCxQc7HuSzOl0aubMmWpoaFC3bt0kSaWlpRowYIB69uzp7bNixQpNnjzZu11paamcTmfrDAgAAHRaAXFN0+7du3XllVcqLS1Nf/jDH7Rv3z65XC6fa5FuvvlmhYWFady4cdq0aZMWL16sxx9/XFOmTPH2mTRpkt566y398Y9/1ObNm3X//fdr3bp1mjhxoj+GBQAAAohfzzTZKi0t1WeffabPPvtMKSkpPm1NT0yIiYnR22+/rcLCQmVlZal3796aNWuWxo8f7+07fPhwvfLKK7r33nt1zz33qH///lq6dKnS09PbdTwAACDwBOxzmvylNZ7zAAAA2leXfk4TAABAeyI0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWAi40FRXV6fMzEwFBQWpqqrKp+3jjz/WZZddpoiICKWmpmru3LnHbV9SUqKBAwcqIiJCGRkZWr58eTtVDgAAAlnAhabf/e53Sk5OPm69x+NRTk6O+vTpo4qKCj388MO6//779dxzz3n7lJWVafTo0Ro3bpwqKys1cuRIjRw5Uhs3bmzPIQAAgAAUZIwx/i7C1ptvvqkpU6bor3/9q8477zxVVlYqMzNTkjR//nzNnDlTLpdLYWFhkqQZM2Zo6dKl2rx5syTpxhtv1DfffKNly5Z59zls2DBlZmbqmWeesarB4/EoJiZGbrdbDoejdQcIAADaRGt8fgfMmaaamhrddtttevHFFxUZGXlce3l5uS6//HJvYJKk3NxcbdmyRfv37/f2yc7O9tkuNzdX5eXlJ3zfuro6eTwenwUAAHQ9ARGajDEaO3asJkyYoMGDBzfbx+VyKTEx0Wdd02uXy3XSPk3tzSkuLlZMTIx3SU1NPZ2hAACAAOXX0DRjxgwFBQWddNm8ebOeeOIJHThwQEVFRe1eY1FRkdxut3fZtWtXu9cAAAD8L9Sfbz516lSNHTv2pH3OOussrVy5UuXl5QoPD/dpGzx4sPLz8/XCCy8oKSlJNTU1Pu1Nr5OSkrz/21yfpvbmhIeHH/e+AACg6/FraIqPj1d8fPwP9ps3b57++7//2/u6urpaubm5Wrx4sYYOHSpJcjqdmjlzphoaGtStWzdJUmlpqQYMGKCePXt6+6xYsUKTJ0/27qu0tFROp7MVRwUAADojv4YmW2lpaT6vo6OjJUlnn322UlJSJEk333yz/uu//kvjxo3T9OnTtXHjRj3++ON69NFHvdtNmjRJV1xxhf74xz8qLy9PixYt0rp163weSwAAANCcgLgQ3EZMTIzefvttbd++XVlZWZo6dapmzZql8ePHe/sMHz5cr7zyip577jldcMEF+stf/qKlS5cqPT3dj5UDAIBAEFDPaeoIeE4TAACBp0s9pwkAAMCfCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWQv1dQKAxxkiSPB6PnysBAAC2mj63mz7HTwWhqYUOHDggSUpNTfVzJQAAoKUOHDigmJiYU9o2yJxO5OqCGhsbVV1drR49eigoKKjd3tfj8Sg1NVW7du2Sw+Fot/cNBMxN85iX5jEvJ8bcNI95aV6gzYsxRgcOHFBycrKCg0/t6iTONLVQcHCwUlJS/Pb+DocjIP7P6Q/MTfOYl+YxLyfG3DSPeWleIM3LqZ5hasKF4AAAABYITQAAABYITQEiPDxcs2fPVnh4uL9L6XCYm+YxL81jXk6MuWke89K8rjgvXAgOAABggTNNAAAAFghNAAAAFghNAAAAFghNAAAAFghNAeKpp55S3759FRERoaFDh2rt2rX+LqlNFRcX6+KLL1aPHj2UkJCgkSNHasuWLT59Dh8+rMLCQsXFxSk6OlqjRo1STU2NT5+dO3cqLy9PkZGRSkhI0LRp03TkyJH2HEqbmjNnjoKCgjR58mTvuq46L7t379avf/1rxcXFqXv37srIyNC6deu87cYYzZo1S2eccYa6d++u7Oxsbdu2zWcfX3/9tfLz8+VwOBQbG6tx48bp4MGD7T2UVnX06FHdd9996tevn7p3766zzz5bv//9731+f6srzM3777+vn/3sZ0pOTlZQUJCWLl3q095ac/Dxxx/rsssuU0REhFJTUzV37ty2HtppOdm8NDQ0aPr06crIyFBUVJSSk5N1yy23qLq62mcfnXFeTsigw1u0aJEJCwszzz//vNm0aZO57bbbTGxsrKmpqfF3aW0mNzfXLFiwwGzcuNFUVVWZa665xqSlpZmDBw96+0yYMMGkpqaaFStWmHXr1plhw4aZ4cOHe9uPHDli0tPTTXZ2tqmsrDTLly83vXv3NkVFRf4YUqtbu3at6du3rzn//PPNpEmTvOu74rx8/fXXpk+fPmbs2LFmzZo15osvvjD/+Mc/zGeffebtM2fOHBMTE2OWLl1q1q9fb6677jrTr18/8+2333r7/PSnPzUXXHCBWb16tfnnP/9pfvSjH5nRo0f7Y0it5sEHHzRxcXFm2bJlZvv27aakpMRER0ebxx9/3NunK8zN8uXLzcyZM81rr71mJJnXX3/dp7015sDtdpvExESTn59vNm7caF599VXTvXt38+yzz7bXMFvsZPNSW1trsrOzzeLFi83mzZtNeXm5GTJkiMnKyvLZR2eclxMhNAWAIUOGmMLCQu/ro0ePmuTkZFNcXOzHqtrX3r17jSSzatUqY8x3B3O3bt1MSUmJt8+nn35qJJny8nJjzHd/DIKDg43L5fL2mT9/vnE4HKaurq59B9DKDhw4YPr3729KS0vNFVdc4Q1NXXVepk+fbi699NITtjc2NpqkpCTz8MMPe9fV1taa8PBw8+qrrxpjjPnkk0+MJPPhhx96+7z55psmKCjI7N69u+2Kb2N5eXnm1ltv9Vl3ww03mPz8fGNM15yb74eD1pqDp59+2vTs2dPnOJo+fboZMGBAG4+odTQXJr9v7dq1RpL58ssvjTFdY16OxddzHVx9fb0qKiqUnZ3tXRccHKzs7GyVl5f7sbL25Xa7JUm9evWSJFVUVKihocFnXgYOHKi0tDTvvJSXlysjI0OJiYnePrm5ufJ4PNq0aVM7Vt/6CgsLlZeX5zN+qevOy//+7/9q8ODB+uUvf6mEhARdeOGF+tOf/uRt3759u1wul8+8xMTEaOjQoT7zEhsbq8GDB3v7ZGdnKzg4WGvWrGm/wbSy4cOHa8WKFdq6daskaf369frggw909dVXS+rac9OkteagvLxcl19+ucLCwrx9cnNztWXLFu3fv7+dRtO23G63goKCFBsbK6nrzQs/2NvB/fvf/9bRo0d9PuAkKTExUZs3b/ZTVe2rsbFRkydP1iWXXKL09HRJksvlUlhYmPfAbZKYmCiXy+Xt09y8NbUFqkWLFumjjz7Shx9+eFxbV52XL774QvPnz9eUKVN0zz336MMPP9Rvf/tbhYWFacyYMd5xNTfuY+clISHBpz00NFS9evUK2HmRpBkzZsjj8WjgwIEKCQnR0aNH9eCDDyo/P1+SuvTcNGmtOXC5XOrXr99x+2hq69mzZ5vU314OHz6s6dOna/To0d4f6O1q80JoQodXWFiojRs36oMPPvB3KX63a9cuTZo0SaWlpYqIiPB3OR1GY2OjBg8erIceekiSdOGFF2rjxo165plnNGbMGD9X519LlizRyy+/rFdeeUXnnXeeqqqqNHnyZCUnJ3f5uYG9hoYG/epXv5IxRvPnz/d3OX7D13MdXO/evRUSEnLc3U81NTVKSkryU1XtZ+LEiVq2bJneffddpaSkeNcnJSWpvr5etbW1Pv2PnZekpKRm562pLRBVVFRo7969uuiiixQaGqrQ0FCtWrVK8+bNU2hoqBITE7vkvJxxxhkaNGiQz7pzzz1XO3fulPT/4zrZcZSUlKS9e/f6tB85ckRff/11wM6LJE2bNk0zZszQTTfdpIyMDBUUFOjuu+9WcXGxpK49N01aaw4647El/X9g+vLLL1VaWuo9yyR1vXkhNHVwYWFhysrK0ooVK7zrGhsbtWLFCjmdTj9W1raMMZo4caJef/11rVy58rhTu1lZWerWrZvPvGzZskU7d+70zovT6dSGDRt8DuimA/77H7CBYsSIEdqwYYOqqqq8y+DBg5Wfn+/9d1ecl0suueS4R1Js3bpVffr0kST169dPSUlJPvPi8Xi0Zs0an3mpra1VRUWFt8/KlSvV2NiooUOHtsMo2sahQ4cUHOz7pz4kJESNjY2SuvbcNGmtOXA6nXr//ffV0NDg7VNaWqoBAwYE1FdQx2oKTNu2bdM777yjuLg4n/YuNy/+vhIdP2zRokUmPDzcLFy40HzyySdm/PjxJjY21ufup87mjjvuMDExMea9994ze/bs8S6HDh3y9pkwYYJJS0szK1euNOvWrTNOp9M4nU5ve9Ot9Tk5Oaaqqsq89dZbJj4+PqBvrW/OsXfPGdM152Xt2rUmNDTUPPjgg2bbtm3m5ZdfNpGRkeall17y9pkzZ46JjY01f/vb38zHH39sfv7znzd7S/mFF15o1qxZYz744APTv3//gLqtvjljxowxZ555pveRA6+99prp3bu3+d3vfuft0xXm5sCBA6aystJUVlYaSeaRRx4xlZWV3rvAWmMOamtrTWJioikoKDAbN240ixYtMpGRkR361vqTzUt9fb257rrrTEpKiqmqqvL5W3zsnXCdcV5OhNAUIJ544gmTlpZmwsLCzJAhQ8zq1av9XVKbktTssmDBAm+fb7/91tx5552mZ8+eJjIy0lx//fVmz549PvvZsWOHufrqq0337t1N7969zdSpU01DQ0M7j6ZtfT80ddV5eeONN0x6eroJDw83AwcONM8995xPe2Njo7nvvvtMYmKiCQ8PNyNGjDBbtmzx6fPVV1+Z0aNHm+joaONwOMxvfvMbc+DAgfYcRqvzeDxm0qRJJi0tzURERJizzjrLzJw50+dDryvMzbvvvtvs35QxY8YYY1pvDtavX28uvfRSEx4ebs4880wzZ86c9hriKTnZvGzfvv2Ef4vfffdd7z4647ycSJAxxzwWFgAAAM3imiYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAXdaOHTsUFBSkoKAgZWZmnvb+mvYVGxt72vsC0PEQmgB0ee+8847Pj7Weqj179uixxx47/YIAdEiEJgBdXlxc3HG/3n4qkpKSFBMT0woVAeiICE0AOoV9+/YpKSlJDz30kHddWVmZwsLCWnwWaezYsRo5cqQeeughJSYmKjY2Vg888ICOHDmiadOmqVevXkpJSdGCBQtaexgAOrBQfxcAAK0hPj5ezz//vEaOHKmcnBwNGDBABQUFmjhxokaMGNHi/a1cuVIpKSl6//339a9//Uvjxo1TWVmZLr/8cq1Zs0aLFy/W7bffrp/85CdKSUlpgxEB6Gg40wSg07jmmmt02223KT8/XxMmTFBUVJSKi4tPaV+9evXSvHnzNGDAAN16660aMGCADh06pHvuuUf9+/dXUVGRwsLC9MEHH7TyKAB0VJxpAtCp/OEPf1B6erpKSkpUUVGh8PDwU9rPeeedp+Dg///vysTERKWnp3tfh4SEKC4uTnv37j3tmgEEBs40AehUPv/8c1VXV6uxsVE7duw45f1069bN53VQUFCz6xobG0/5PQAEFs40Aeg06uvr9etf/1o33nijBgwYoP/4j//Qhg0blJCQ4O/SAHQCnGkC0GnMnDlTbrdb8+bN0/Tp03XOOefo1ltv9XdZADoJQhOATuG9997TY489phdffFEOh0PBwcF68cUX9c9//lPz58/3d3kAOgG+ngPQKVx55ZVqaGjwWde3b1+53e4W72vhwoXHrXvvvfeOW3c610wBCDyEJgBd3vDhw5WZmamysrLT2k90dLSOHDmiiIiIVqoMQEdCaALQZaWkpGjbtm2SdMqPJjhWVVWVpO8eRwCg8wkyxhh/FwEAANDRcSE4AACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAACAhf8DQ5FnPZ+vKjEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from floris import FlorisModel\n", + "from floris import layout_visualization as layoutviz\n", + "\n", + "fmodel = FlorisModel(\"../examples/inputs/gch.yaml\")\n", + "\n", + "# Look at layout\n", + "ax = layoutviz.plot_turbine_rotors(fmodel)\n", + "layoutviz.plot_turbine_labels(fmodel, ax=ax)\n", + "ax.set_xlabel(\"x [m]\")\n", + "ax.set_ylabel(\"y [m]\")\n", + "\n", + "# Set simple operation model\n", + "fmodel.set_operation_model(\"simple\")\n", + "\n", + "# Evalaute the model and extract the power output\n", + "fmodel.run()\n", + "print(\"simple operation model powers [kW]: \", fmodel.get_turbine_powers() / 1000)\n", + "\n", + "# Set the yaw angles (which the \"simple\" operation model does not use\n", + "# and change the operation model to \"cosine-loss\"\n", + "fmodel.set(yaw_angles=[[20., 0., 0.]])\n", + "fmodel.set_operation_model(\"cosine-loss\")\n", + "ax = layoutviz.plot_turbine_rotors(fmodel)\n", + "layoutviz.plot_turbine_labels(fmodel, ax=ax)\n", + "ax.set_xlabel(\"x [m]\")\n", + "ax.set_ylabel(\"y [m]\")\n", + "\n", + "# Evaluate again\n", + "fmodel.run()\n", + "powers_cosine_loss = fmodel.get_turbine_powers()\n", + "print(\"cosine-loss operation model powers [kW]: \", fmodel.get_turbine_powers() / 1000)\n" + ] + }, + { + "cell_type": "markdown", + "id": "5d22f376", + "metadata": {}, + "source": [ + "## Operation model library" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "f2576e8a-47ee-48b5-8707-aca0dc76929c", + "metadata": {}, + "source": [ + "### Simple model\n", + "User-level name: `\"simple\"`\n", + "\n", + "Underlying class: `SimpleTurbine`\n", + "\n", + "Required data on `power_thrust_table`:\n", + "- `ref_air_density` (scalar)\n", + "- `ref_tilt` (scalar)\n", + "- `wind_speed` (list)\n", + "- `power` (list)\n", + "- `thrust_coefficient` (list)\n", + "\n", + "The `\"simple\"` operation model describes the \"normal\" function of a wind turbine, as described by\n", + "its power curve and thrust coefficient. It does not respond to any control setpoints, and is most \n", + "often used as a baseline or for users wanting to evaluate wind farms in nominal operation." + ] + }, + { + "cell_type": "markdown", + "id": "ced1e091", + "metadata": {}, + "source": [ + "### Cosine loss model\n", + "User-level name: `\"cosine-loss\"`\n", + "\n", + "Underlying class: `CosineLossTurbine`\n", + "\n", + "Required data on `power_thrust_table`:\n", + "- `ref_air_density` (scalar)\n", + "- `ref_tilt` (scalar)\n", + "- `wind_speed` (list)\n", + "- `power` (list)\n", + "- `thrust_coefficient` (list)\n", + "- `cosine_loss_exponent_yaw` (scalar)\n", + "- `cosine_loss_exponent_tilt` (scalar)\n", + "\n", + "The `\"cosine-loss\"` operation model describes the decrease in power and thrust produced by a \n", + "wind turbine as it yaws (or tilts) away from the incoming wind. The thrust is reduced by a factor of \n", + "$\\cos \\gamma$, where $\\gamma$ is the yaw misalignment angle, while the power is reduced by a factor \n", + "of $(\\cos\\gamma)^{p_P}$, where $p_P$ is the cosine loss exponent, specified by `cosine_loss_exponent_yaw`\n", + "(or `cosine_loss_exponent_tilt` for tilt angles). The power and thrust produced by the turbine\n", + "thus vary as a function of the turbine's yaw angle, set using the `yaw_angles` argument to \n", + "`FlorisModel.set()`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b9a5f00a-0ead-4759-b911-3a1161e55791", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power [kW]')" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrZklEQVR4nO3deXhMZ/8G8HtmMjORPRHJJCQRQhASxBb7mgi1t7+q1lJKtcpbWlW0irYvjW7a6qveLrSldLHUUhIqKBGEiDWEELIism+TzPn9Mcn0nRISkjmz3J/rylVzzjMz9zydzHxzznOeRyIIggAiIiIiCyYVOwARERGR2FgQERERkcVjQUREREQWjwURERERWTwWRERERGTxWBARERGRxWNBRERERBbPSuwApkKj0SAtLQ329vaQSCRixyEiIqIaEAQB+fn58PT0hFRa/XEgFkQ1lJaWBi8vL7FjEBER0SO4ceMGmjRpUu1+FkQ1ZG9vD0DboQ4ODiKnEZdarUZkZCRCQ0Mhl8vFjmO22M+Gw742DPazYbCf9eXl5cHLy0v3PV4dFkQ1VHWazMHBgQWRWg0bGxs4ODjwl60esZ8Nh31tGOxnw2A/39/DhrtwUDURERFZPBZEREREZPFYEBEREZHFY0FEREREFo8FEREREVk8FkRERERk8VgQERERkcVjQUREREQWjwURERERWTwWRERERGTxWBARERGRxWNBRERERBaPi7sSkcUpr9Agr6QcRWXl2tvl5cguBVJzimHfQAOHBnLIZfx7kciSsCAiIrOi0QhIvlOIK1kFuHm3GDfuFuHm3WKk3i3G3aIy5BWrUVhWcZ97WmHJyUO6WzYKGRwbyOHYQI4mzg3QxNkGTZwbwMvFBs0b2cLX1Q4y6YNXzyYi08GCiIhMliAIuHanCMeS7+BcWh7OpeXhQnoeiu5b8NxLYSVFVUmjqaiARCZDWbkGAFBUVoGisgqk55bgYkb+Pfe1lkvRSuWAAE8HtG3siM5NndG8kR0kEhZJRKZI1ILo4MGDWLFiBeLi4pCeno4tW7Zg5MiRuv3VfbBERERg7ty5AICmTZvi+vXrevuXLVuGN998U3c7ISEBM2bMwPHjx9GoUSPMnDkTb7zxRt2/ICKqd2k5xfjr8m3EXL2DmCt3kJFXck8ba7kUfm528HaxgVflkZ0mzjZoaKeAg7UcDg3ksLe20p0WU6vV2LVrF4YMCYNEKkN+STnyStTIKy7H7cJSpP7PkaYb2UW4nFmAYnUF4m/kIP5Gju55G9kr0a1ZQ4Q0a4heLVzh5WJjqG4hosckakFUWFiIoKAgTJ48GaNHj75nf3p6ut7tP/74A1OmTMGYMWP0ti9duhRTp07V3ba3t9f9Oy8vD6GhoRg4cCBWr16NM2fOYPLkyXBycsK0adPq+BURUX1IysrHnnOZ2H02A2dSc/X2KWRStPdyQntvJ7Tx0B6x8XW1hdUjjgGykknhbKuAs62i2jYVGgHX7hRWHpXKxekbOTiZkoNb+aXYfjoN20+nAQBaezggLMAdg9uq4O9uz6NHREZM1IIoPDwc4eHh1e5XqVR6t7dt24Z+/fqhWbNmetvt7e3vaVtl/fr1KCsrw7fffguFQoGAgADEx8fj448/fmBBVFpaitLSUt3tvLw8ANq/JNVq9UNfmzmrev2W3g/1zdL7OT23BJtPpeH30+m4ertQt10iAdo3cUS3Zi7o5uuCDl5OaKCQ6d1X0FRAranZaTPg0fra20kJb6dGCG/TCABQqq5A/M1cHL2ajaPJ2Th1IxcX0rWn8D7dexneLg0wPNADozt6wsvZMo8cWfp72lDYz/pq2g8SQRCEes5SIxKJ5J5TZv8rMzMTTZo0wbp16zBu3Djd9qZNm6KkpARqtRre3t4YN24cZs+eDSsrba03YcIE5OXlYevWrbr77N+/H/3790d2djacnZ3v+3yLFy/GkiVL7tm+YcMG2NhY5ocZUX1Ta4Az2RLEZkmQmCuBUDnCRyYR0NJRQKCLgLbOAhyqP3hjNArVwNm7EiRkS3AxR4Jy4e+jQy0cNOjqJiDIRcA/ajkiqmNFRUUYN24ccnNz4eDgUG07kxlUvW7dOtjb299zam3WrFno2LEjXFxccOTIEcyfPx/p6en4+OOPAQAZGRnw9fXVu4+7u7tuX3UF0fz58zFnzhzd7by8PHh5eSE0NPSBHWoJ1Go1oqKiMGjQIMjlcrHjmC1L6udb+aX4MfYGfjp+A3eL/v5rrquvM0Z38MSg1m6wt66/Pqivvn6q8r+FpeXYd/EWNp9Kw5Grd3A5T4rLecDv1lZ4ulMTjO/mDQ9H6zp7XmNlSe9pMbGf9VWd4XkYkymIvv32Wzz77LOwttb/0PjfoiUwMBAKhQIvvvgili1bBqVS+cjPp1Qq73t/uVzON1gl9oVhmHM/X0jPwzd/JeP3+DSUVWiv7vJ0tMaY4CZ4MrgJfBraGjRPffW1k1yOMZ28MaaTN1JzivFb3E38EncDN7KL8d+/ruG7I9cxNNADU3r6IrCJU50/v7Ex5/e0MWE/a9W0D0yiIDp06BASExOxadOmh7bt2rUrysvLce3aNfj7+0OlUiEzM1OvTdXt6sYdEVH9SriZg0+iLmF/4i3dtmAfZ7zQ0xehASqznt+nsVMDzBrQAq/088OfF7Pw9V9XcfRqNrbFp2FbfBp6+DXEnEEtEezjInZUIotiEgXRN998g+DgYAQFBT20bXx8PKRSKdzc3AAAISEhWLhwIdRqta5KjIqKgr+/f7Wny4iofpxNzcWney9j7wXtHyVSCRDeTntkpKO3Zf0+SqUSDGzjjoFt3HE2NRff/JWM7afTcDjpDg4nxaB3y0aYPbAFOlhYvxCJRdSCqKCgAElJSbrbycnJiI+Ph4uLC7y9vQFoz/398ssv+Oijj+65f0xMDGJjY9GvXz/Y29sjJiYGs2fPxnPPPacrdsaNG4clS5ZgypQpmDdvHs6ePYuVK1fik08+McyLJCIk3y5ExO6L+ONsBgBtITSyfWPMHNACvq6GPS1mjNo2dsQnT7fHnEEtsWp/En6Ju4mDl27h4KVb6N/KDfPDW6GFu/3DH4iIHpmoBdGJEyfQr18/3e2q8UATJ07E2rVrAQAbN26EIAh45pln7rm/UqnExo0bsXjxYpSWlsLX1xezZ8/WG1fk6OiIyMhIzJgxA8HBwXB1dcWiRYs4BxGRAeSVqPHFn0n47nAy1BUCJBJgWKAnZg1oAT83O7HjGR0vFxssHxOIl/o2x+d/JmHzyZv482IWDly6hee6euPVgS0fOD8SET06UQuivn374mFX/U+bNq3a4qVjx444evToQ58nMDAQhw4demg7IqobFRoBG4+n4OPIS7hTWAYA6NOyERYMaQ1/FY90PIxPQ1t8+FQQXu7bHMv/uIjI85lYF3MdW06l4tWBLTE+xIeLzxLVMZMYQ0REpuNsai7m/ZaAc2naS12bN7LFW0+0QT9/N5GTmZ5mjeywZkInHEm6jaU7zuNiRj6W7jiPjcdTsGx0IIJ9OL6IqK6wICKiOlFUVo5Poi7hm7+SoREAB2srzB7UEs9149GMx9XdzxU7Z/XCpuM38GFkIi5lFuDJ1UcwvpsP5ob51+scTUSWggURET22g5duYcGWM7h5txgA8ESgB94ZFoBG9o8+Fxjpk0klGNfVG+FtVXh/1wX8GncT38dcR+S5TCwdEYDQAE4jQvQ4WBAR0SMrLC3Hezsv4KdjKQC0c+y8OzIA/Vu5i5zMfDnbKvDhU0EY1aExFmw5g+t3ijDthziM6tAYS0YEwIFHi4geCY9jE9EjOZlyF0M/O4SfjqVAIgGe79EUkbN7sxgykB5+rtjzam+81Lc5pBJgy6lUhH96CEev3hE7GpFJYkFERLWirtDg46hLeGp1DK7dKYKnozXWv9AV7wwLgK2SB50NyVouw7zBrfDL9O7waWiD1JxiPPPfo1i26wJKyyvEjkdkUlgQEVGNpeYU4/++isFn+y6jQiNgRHtP/PFqb3Rv7ip2NIsW7OOMXbN6YWxnLwgC8NXBqxi16giu3S4UOxqRyWBBREQ1sj8xC0M/O4RTKTmwt7bCZ890wMqxHeDYgGNWjIGt0grLxwRizfhguNgqcD49D8M+/wu7z6aLHY3IJLAgIqIHKq/QYMWei3j+u+PIKVKjXWNH7JrVC8ODPMWORvcRGqDCrlm90MnHGfml5Zj+40ks3X4eZeUasaMRGTUWRERUrdsFpRj/zTGs2n8FADC+mw9+fSkEXi42IiejB1E5WuOnad0wrXczAMC3h5Mxdk0MMnJLRE5GZLxYEBHRfZ1Py8OILw4j5uod2ChkWDm2Pd4d2RZKK5nY0agG5DIpFgxpja/GB8Pe2gonU3Iw7Iu/cCrlrtjRiIwSCyIiusfusxkY858jSM0phq+rLX5/pQdGtG8sdix6BGEBKuyc2Qv+7va4lV+Kp9ccxdZTqWLHIjI6LIiISEcQBHy+7zKm/xiHYnUFevq5YuvLPeDnxgVZTZl3Qxv89nJ3DGzthrJyDV7dFI8Pdl+ERvPgxbWJLAkLIiICAJSWV+BfG+PxUdQlAMCk7k2x9vnOcLThVWTmwE5phTXjO+Glvs0BAP+JvoJpP8ShqKxc5GRExoEFEREht1iNCd8cw++n02AlleDfo9ph8fAAWHFRVrMilUowb3ArfPJ0EBRWUuy9kIln/huLOwWlYkcjEh0/7YgsXFpOMZ5afQSxydmwU1ph3eQuGNfVW+xYVI9GdWiCn6Z2hZONHKdv5GDMf47g+h1O4kiWjQURkQVLzMjH6C+P4FJmAdzslfj5xRD08OOs05Yg2McFv07vjsZODXDtThFGf3kECTdzxI5FJBoWREQW6lhyNp5cfQQZeSXwc7PD5pe7o42ng9ixyID83Oyw5eXuaOPhgDuFZRi75igOXLoldiwiUbAgIrJABy7dwoRvY5FfUo7OTZ3x6/QQNHHmZIuWyM3BGpte7IZeLVxRVFaBF9Ydx+6zGWLHIjI4FkREFmbPuQxMXXcCJWoN+rdyww9TusLJRiF2LBKRvbUc30zsjKHtPKCuEDBjw0lsOXVT7FhEBsWCiMiCbD2VipfXn0RZhQZD23lg9XPBsJZz5mkCFFZSrBzbHmM6NkGFRsCcn09jQ2yK2LGIDIYFEZGF+OlYCmb/HI8KjYAxHZtg5dj2UFjxI4D+ZiWTYsWTgZgQ4gNBABZsOYOvD10VOxaRQfDTkMgCrI+9jvmbz0AQgAkhPljxZCDnGKL7kkolWDI8ANP7aCdwfG/nBfz3IIsiMn/8RCQyc5uOp2DhlrMAgKm9fLFkeACkUonIqciYSSQSzBvsj1cHtgAAvL/rAr79K1nkVET1iwURkRn7Ne4m3tx8BgDwfI+mWDCkNSQSFkP0cBKJBK8ObImZ/f0AAEt3nMf3MdfEDUVUj1gQEZmpLaduYu6vp3WnyRY90YbFENXanEEtdeufLdp2Dutjr4uciKh+sCAiMkM7EtLw2s/aYujZrt5YMjyAxRA9EolEgjfC/DGtdzMAwMItZ/Hz8RsipyKqeyyIiMxMdGIWXt0YD40AjO3shXdHtGUxRI9FIpFgfngrTO7hCwB4c3MCdp9NFzkVUd1iQURkRuKuZ2P6j3Eo1wgYFuSJf49qxwHUVCckEgnefqI1xnb2gkYAZv0Uj78u3xY7FlGdYUFEZCYupOfh+e+Oo0StQZ+WjfDRU0EshqhOSSQSvD+qHcLbqlBWocG0H04g/kaO2LGI6gQLIiIzcP1OISZ8ewx5JeUI9nHG6ueCOeki1QuZVIJPx7ZHTz/t2meTvjuGy5n5Ysciemz8xCQycbfySzH+m2O4lV+KVip7fDuxMxoouBwH1R+llQxfjQ9GkJcTcorUGP/NMaTmFIsdi+ixsCAiMmFFZeWYsu44UrKL4O1ig+8nd4GjjVzsWGQBbJVWWDupM1q42SEjrwTPf3cMucVqsWMRPTIWREQmqrxCg5kbTiHhZi6cbeRYN7kL3BysxY5FFsTZVoF1k7vA3UGJS5kFeOnHOJSVa8SORfRIWBARmSBBELB4+znsu5gFpZUUX0/sDF9XW7FjkQXydGqAbyd1hq1ChiNX7uDN3xIgCILYsYhqjQURkQlac/AqfjyaAokE+PTp9gj2cRY7ElmwAE9HfPlcMGRSCTafSsUnUZfEjkRUayyIiEzMjoQ0LPvjIgDgraFtEN7OQ+RERECflo3w/si2AIDP/kzCpuMpIiciqh0WREQmJP5GDl77+TQA7WKtU3r6ipyI6G9ju3jrFoNduOUsjl69I3IioppjQURkIjJySzDt+xMoLddgQCs3vDW0jdiRiO4xZ1BLDAvyRLlGwEs/xiHlTpHYkYhqhAURkQkoLqvAtB9OICu/FC3d7fDp2PaQcRZqMkISiQQrngxEYBNH3C1S44XvjyO/hJfjk/FjQURk5ARBwNxfT+sur/96QmfYW3OuITJe1nIZ1ozvBDd77eX4r26MR4WGV56RcWNBRGTkvjyQjB0J6bCSSvCf54Lh3dBG7EhED6VytMZ/J3SC0kqKfRezELHnotiRiB6IBRGREUvIluDTfUkAgHdHtkW3Zg1FTkRUc0FeTljxVBAA4KsDV7E1Pk3kRETVY0FEZKQuZxbgx8vaX9FJ3ZvimS7eIiciqr3hQZ54pV/llWfbziOlQORARNVgQURkhHKKyjB9wymUaiTo5uuMhUNbix2J6JHNGdQSA1u7oaxcg28SZbhdUCp2JKJ7sCAiMjLlFRrM/OkUUrKL4aIUsPLpIMhl/FUl0yWVSvDJ0+3RzNUWOWUSvPLTaa55RkZH1E/ZgwcPYtiwYfD09IREIsHWrVv19kskkvv+rFixQtcmOzsbzz77LBwcHODk5IQpU6agoED/mGxCQgJ69eoFa2treHl5ISIiwhAvj+iRROxJxKHLt9FALsUL/hVwsVWIHYnosdlby7H62fawlgmIS8nB4u3nxI5EpEfUgqiwsBBBQUFYtWrVffenp6fr/Xz77beQSCQYM2aMrs2zzz6Lc+fOISoqCjt27MDBgwcxbdo03f68vDyEhobCx8cHcXFxWLFiBRYvXow1a9bU++sjqq1t8alYc/AqAGD5qLZozPVayYz4utpiQgsNJBJgQ2wK1sdeFzsSkY6VmE8eHh6O8PDwaverVCq929u2bUO/fv3QrFkzAMCFCxewe/duHD9+HJ06dQIAfP755xgyZAg+/PBDeHp6Yv369SgrK8O3334LhUKBgIAAxMfH4+OPP9YrnP6ptLQUpaV/n+fOy8sDAKjVaqjVlj3JWNXrt/R+qGuJGfmY91sCAGB6b18MatUQUTfYz4bA97RhqNVqBDgL+Fe/Zvj0z6tY/Ps5tGxkg/ZeTmJHMyt8P+uraT+IWhDVRmZmJnbu3Il169bptsXExMDJyUlXDAHAwIEDIZVKERsbi1GjRiEmJga9e/eGQvH3aYewsDB88MEHuHv3Lpyd779K+LJly7BkyZJ7tkdGRsLGhvPAAEBUVJTYEcxGcTnw0RkZStQStHLUwL/sMqKiLgNgPxsS+9owmhZdQpCLFKezpZi6NhZzAytgx7lG6xzfz1pFRTVbPsZkCqJ169bB3t4eo0eP1m3LyMiAm5ubXjsrKyu4uLggIyND18bXV38BTHd3d92+6gqi+fPnY86cObrbeXl58PLyQmhoKBwcHOrkNZkqtVqNqKgoDBo0CHI5P8UelyAIeGXjadwqyYKHozXWvdQNLrYK9rMBsa8No6qfQ0MHofcACUavPoprd4qwO8cd/x3fkcvR1BG+n/VVneF5GJMpiL799ls8++yzsLa2NsjzKZVKKJXKe7bL5XK+wSqxL+rG14euIvJ8FuQy7UzU7k76A4fYz4bDvjYMuVwOGxs5Vo8PxshVh3Eo6Q5WH7qGVwe2FDuaWeH7WaumfWAS1/IeOnQIiYmJeOGFF/S2q1QqZGVl6W0rLy9Hdna2bvyRSqVCZmamXpuq2/8co0RkaMeSs7HsD+2SBm8/0YZjKciitFI54N+j2gEAVu67jOjErIfcg6j+mERB9M033yA4OBhBQUF620NCQpCTk4O4uDjdtj///BMajQZdu3bVtTl48KDeoKqoqCj4+/tXe7qMyBBu5ZfilQ0nUaERMDzIE+O7+YgdicjgRndsgnFdvSEIwKub4pGaUyx2JLJQohZEBQUFiI+PR3x8PAAgOTkZ8fHxSElJ0bXJy8vDL7/8cs/RIQBo3bo1Bg8ejKlTp+LYsWM4fPgwXnnlFYwdOxaenp4AgHHjxkGhUGDKlCk4d+4cNm3ahJUrV+qNDyIyNI1GwJyf45GVXwo/NzssG90OEgnHT5BlWvREG7Rr7IicIjVm/XQK5RWctJEMT9SC6MSJE+jQoQM6dOgAAJgzZw46dOiARYsW6dps3LgRgiDgmWeeue9jrF+/Hq1atcKAAQMwZMgQ9OzZU2+OIUdHR0RGRiI5ORnBwcF47bXXsGjRogdeck9U3746eBWHLt+GtVyK/zzbEbZKkxnOR1TnrOUyfPlsR9grrRB3/S4+3XtZ7EhkgUT9FO7bty8EQXhgm2nTpj2weHFxccGGDRse+BiBgYE4dOjQI2Ukqmtx1+/iw8hEAMCS4QFo4W4vciIi8Xm52GD5mEDM2HASq6KTENK8IXr4uYodiyyISYwhIjIXucXaUwIVGgHDgjzxf528xI5EZDSGBnrgmS5/jyfiIrBkSCyIiAxEEAS8+VsCUnOK4e1ig/dHteW4IaJ/WPREG7R0t8Ot/FK89vNpaDQPPotAVFdYEBEZyIZjKfjjbAbkMgk+f6YDHKw5PwjRPzVQyPDFuI6wlktx4NItfP3XVbEjkYVgQURkAElZ+Vi6/TwAYN7gVgjifENE1Wrpbo93hgUAACJ2J+LMzVyRE5ElYEFEVM/KyjX418Z4lJZr0LtlI0zu4fvwOxFZuLGdvTCknQrlGgH/2nQKxWUVYkciM8eCiKiefbL3Es6l5cHZRo4PnwyElOs1ET2URCLB+yPbwd1Biau3CvHvXRfEjkRmjgURUT2KvXoHqw9cAQAsGx0INwfDrMVHZA6cbRX48CntCgU/HL2O/Re5tAfVHxZERPUkr0SNOT+fhiAAT3fywuC2XDuPqLZ6tfj7NPPcX0/zUnyqNyyIiOrJO9vOITWnGD4NbbBoWBux4xCZrDcG+6Olux1uF5Thzd/OPHRCX6JHwYKIqB5sP52GLadSIZNK8MnT7bk0B9FjsJbL8OnTHaCQSbH3QiY2Hr8hdiQyQyyIiOpYVn4J3t52FgAwo58fOno7i5yIyPS18XTA62EtAQDv7TiPG9lFIicic8OCiKgOCYKABZvPIqdIjQBPB8zs7yd2JCKzMaVnM3Ru6ozCsgrM+y2Bs1hTnWJBRFSHtpxKxd4LmZDLJPjo/4Igl/FXjKiuyKQSrHgyCNZyKY5cuYMfY6+LHYnMCD+tiepIRm4J3vn9HADg1YEt0UrlIHIiIvPT1NUWbw5uBQBYtusirt8pFDkRmQsWRER1QBAEvLk5Afkl5Qhq4ogXezcTOxKR2ZoQ0hTdmrmgWF2Bub/w1BnVDRZERHXg5xM3EJ14CworKT76vyBY8VQZUb2RVp46s1XIcOxaNr47ck3sSGQG+KlN9JjSc4vx7g7tsgKvh7aEn5u9yImIzJ+Xiw0WDG0NAIjYfRHJt3nqjB4PCyKixyAIAhZuOYuC0nJ08HbClJ48VUZkKOO6eKOnnytKyzV4k1ed0WNiQUT0GH4/nYY/L2ZBIZMiYkwgZFy4lchgJBIJlo1uhwZyGWKTszlhIz0WFkREjyi7sAxLtp8HALzS3w8t3HmqjMjQvFxs8HqYPwBg2a4LyMgtETkRmSoWRESPaOn2c8guLIO/uz2m92kudhwiizWpe1O093JCfmk53tp6lmud0SNhQUT0CPZfzMLW+DRIJcAHTwZCYcVfJSKxyKQSRDwZCLlMgr0XMrHzTLrYkcgE8VOcqJYKSsuxcMsZAMDkHr5o7+UkbiAiQkt3e8zop10q551t53C3sEzkRGRqWBAR1dKK3ReRllsCbxcbzAltKXYcIqr0cl8/+Lvb405hGd7deV7sOGRiWBAR1UL8jRx8f1S7ftK/R7WDjcJK5EREVEVhJcXyMe0gkQCbT6biyJXbYkciE8KCiKiGyis0WLD5DAQBGNWhMXq2cBU7EhH9QwdvZzzX1QcA8NaWsygtrxA5EZkKFkRENbT2yDWcT8+DYwM5FlbOkEtExmfuYH80slfi6u1CrI6+KnYcMhEsiIhqIC2nGB9HXQIAvBneCq52SpETEVF1HKzlWPREGwDAqugkLutBNcKCiKgGFv9+DkVlFejk44ynO3mJHYeIHuKJQA/0btkIZeUavLX1DOcmoodiQUT0EFHnMxF5PhNWUgn+PbodpFyeg8joSSQSvDeiLZRWUhxOuoNt8WliRyIjx4KI6AEKS8vxzrazAICpvZuhJZfnIDIZ3g1tMGtACwDAezvPI7dILXIiMmYsiIge4PM/k5CWW4Imzg0wq38LseMQUS1N7dUMLdzscLugDB9GJoodh4wYCyKialy5VYBv/tJeobJ4WAAaKGQiJyKi2lJYSbF0RFsAwPrY6zibmityIjJWLIiI7kMQBCz+/RzUFQL6t3LDwDbuYkciokcU0rwhhgV5QiMAi7adhUbDAdZ0LxZERPex+2wGDl2+DYWVFO8MayN2HCJ6TAuHtIatQoaTKTn49eRNseOQEWJBRPQPRWXleHeHdh2k6X2aw6ehrciJiOhxqRyt8a+B2nGAH/xxkQOs6R4siIj+4Yv/GUj9ct/mYschojryfA9f+LnZ4U5hGT6K4gBr0seCiOh/XL1VgP8e0g6kXvREG1jLOZCayFzIZVIsHR4AAPjx6HWcS+MAa/obCyKiSoIgYMn281BXCOjr3wiDOJCayOx093PF0ECPygHW5ziDNemwICKqtD8xCwcu3YJcJsE7wwIgkXBGaiJz9NbQ1mgglyHu+l38fpozWJMWCyIiAGXlGry74wIAYHJPX/i6ciA1kbnycPx7fODyPy6iqKxc5ERkDFgQEQH4PuYakm8XwtVOiVf6+Ykdh4jq2dTezdDYqQHSc0vw1YGrYschI8CCiCze7YJSrNx7GQDwxmB/2FvLRU5ERPXNWi7DwqGtAQCrD1xBak6xyIlIbCyIyOJ9FJmI/NJytGvsiCc7NhE7DhEZSHhbFbr6uqC0XINluy6IHYdExoKILNrZ1FxsPH4DAPDOsDaQSjmQmshSSCQSLBrWBhIJsCMhHceSs8WORCJiQUQWSxAELN1xHoIADA/yRKemLmJHIiIDC/B0xNjO3gCAJdvPoYLrnFksUQuigwcPYtiwYfD09IREIsHWrVvvaXPhwgUMHz4cjo6OsLW1RefOnZGSkqLb37dvX0gkEr2f6dOn6z1GSkoKhg4dChsbG7i5uWHu3LkoL+dVBZbuj7MZOJacDWu5FG+GtxI7DhGJ5PXQlrC3tsK5tDz8Fsd1ziyVqAVRYWEhgoKCsGrVqvvuv3LlCnr27IlWrVohOjoaCQkJePvtt2Ftba3XburUqUhPT9f9RERE6PZVVFRg6NChKCsrw5EjR7Bu3TqsXbsWixYtqtfXRsattLwCy/+4CAB4sXdzeDo1EDkREYmloZ0Ss/pr1zn7MDKRl+FbKCsxnzw8PBzh4eHV7l+4cCGGDBmiV+A0b37v2lI2NjZQqVT3fYzIyEicP38ee/fuhbu7O9q3b493330X8+bNw+LFi6FQKO57v9LSUpSWlupu5+XlAQDUajXUasteFLDq9ZtyP6w7ch0p2UVws1dicncvo3wt5tDPpoJ9bRjG3M/PdG6M72Ou4cbdYqzen4SZ/U13HUNj7mcx1LQfJIKRzFsukUiwZcsWjBw5EgCg0Wjg6OiIN954A3/99RdOnToFX19fzJ8/X9cG0J4yO3dOO/26SqXCsGHD8Pbbb8PGxgYAsGjRIvz++++Ij4/X3Sc5ORnNmjXDyZMn0aFDh/vmWbx4MZYsWXLP9g0bNugem0xToRp475QMRRUSPNO8At3cjOJXgIhEduqOBGsvyaCQCnirQwUc7//3MpmYoqIijBs3Drm5uXBwcKi2nahHiB4kKysLBQUFWL58Od577z188MEH2L17N0aPHo39+/ejT58+AIBx48bBx8cHnp6eSEhIwLx585CYmIjNmzcDADIyMuDurr8mVdXtjIyMap9//vz5mDNnju52Xl4evLy8EBoa+sAOtQRqtRpRUVEYNGgQ5HLTm7Pn/V0XUVSRglbudnhnQghkRnplman3sylhXxuGsfdzuCDg9H+P4dSNXJyBD/49JEDsSI/E2PvZ0KrO8DyM0RZEGo0GADBixAjMnj0bANC+fXscOXIEq1ev1hVE06ZN092nXbt28PDwwIABA3DlypX7nl6rKaVSCaVSec92uVzON1glU+yLa7cLsf6Y9jL7hU+0gbXS+P8ENMV+NlXsa8Mw5n5+64kAjPnPEfx6MhWTezZDaw/T/QPYmPvZkGraB0Z72b2rqyusrKzQpk0bve2tW7fWu8rsn7p27QoASEpKAgCoVCpkZmbqtam6Xd24IzJfH+y+CHWFgD4tG6FXi0ZixyEiIxPs44yh7TwgCMC/OVmjRTHagkihUKBz585ITEzU237p0iX4+PhUe7+qsUIeHh4AgJCQEJw5cwZZWVm6NlFRUXBwcLin2CLzdvxaNv44mwGpBFgwpLXYcYjISM0b3ApymQSHLt9GdGLWw+9AZkHUU2YFBQW6IzmAdrBzfHw8XFxc4O3tjblz5+Lpp59G79690a9fP+zevRvbt29HdHQ0AO1l+Rs2bMCQIUPQsGFDJCQkYPbs2ejduzcCAwMBAKGhoWjTpg3Gjx+PiIgIZGRk4K233sKMGTPue0qMzJMgCHh/p/avvac7e8FfZS9yIiIyVt4NbTAxpCm+/isZ/951Ab1aNDLasYZUd0Q9QnTixAl06NBBd6XXnDlz0KFDB90cQaNGjcLq1asRERGBdu3a4euvv8Zvv/2Gnj17AtAeRdq7dy9CQ0PRqlUrvPbaaxgzZgy2b9+uew6ZTIYdO3ZAJpMhJCQEzz33HCZMmIClS5ca/gWTaHadyUD8jRzYKGSYPail2HGIyMjN7N8Cjg3kuJRZwMkaLYSoR4j69u2Lh131P3nyZEyePPm++7y8vHDgwIGHPo+Pjw927dr1SBnJ9JWVaxCxRzsJ47TezeBmb/2QexCRpXO0kWNmfz+8t/MCPopKxLAgTzRQyMSORfXIaMcQEdWVDbHXcf1OEVztlJjaq5nYcYjIRIwP8UET5wbIzCvFt4eTxY5D9YwFEZm1vBI1PvtTO05t9qAWsFUa7UwTRGRklFYyzA3zBwD8J/oK7hSUPuQeZMpYEJFZWx19BdmFZWjWyBZPd/ISOw4RmZhhgZ5o29gBBaXl+GzfZbHjUD1iQURmKz23GN/8pT3M/ebgVrCS8e1ORLUjlUqwIFw7Tcf62BQk3y4UORHVlxqdP6jptNf/y9KXtyDxfRx5CaXlGnRp6oJBbdwffgciovvo7ueKfv6NsD/xFlbsuYgvnw0WOxLVgxoVRE5OTpBIaj4Hg0QiwaVLl9CsGQewkjguZuTh15PaS2XnD2lVq/cvEdE/vRneGgcu3cKuMxk4mXIXHb2dxY5EdazGI0x//fVXuLi4PLSdIAgYMmTIY4UielwRuxMhCMCQdip04AcXET0mf5U9ngxugp9P3MTyPy5i07Ru/EPLzNSoIPLx8UHv3r3RsGHDGj1os2bNuKAcieZYcjb+vJgFmVSC10P9xY5DRGbi1YEtsTU+DceSsxGdeAv9WrmJHYnqUI1GmSYnJ9e4GAKAs2fPwsuLV/SQ4QmCgOV/aJfoGNvZC80a2YmciIjMhadTAzzfvSkA7ULRFZoHTyxMpqXGl90kJ3NSKjJ+UeczcTIlBw3kMvxrQAux4xCRmXmpb3M4WFvhYkY+tsWnih2H6lCNC6LmzZvD19cXkydPxg8//ICbN7m2CxmXCo2AFXsSAQCTezaFmwOX6CCiuuVko8D0vs0BAB9FXkJpeYXIiaiu1Lgg+vPPPzFx4kRcvXoV06ZNg4+PD1q0aIEXX3wRGzduRGZmZn3mJHqo307exOWsAjjZyPFin+ZixyEiM/V8d1+4OyiRmlOM9UdTxI5DdaTGBVHfvn2xePFiREdH4+7du4iKisIzzzyDCxcuYNKkSfD09ERAQEB9ZiWqVom6Ap9GXQIAzOjrBwdrDuonovrRQCHDvwa0BAB8sT8J+SVqkRNRXXikqXutra3Rv39/vPXWW1iyZAlmzZoFOzs7XLx4sa7zEdXIDzHXkZZbAk9Ha4wP8RE7DhGZuf/r1ATNXG2RXViG/x7iGFtzUKuCqKysDAcPHsSSJUvQr18/ODk5Yfr06bh79y6++OILDrwmUeSVqLEqumoB15awlstETkRE5s5KJtUt/Pr1oau4zYVfTV6NJ2bs378/YmNj4evriz59+uDFF1/Ehg0b4OHhUZ/5iB7qm0PJyClSw8/NDqM7NhE7DhFZiMFtVQhq4ojTN3Pxn+grePuJNmJHosdQ4yNEhw4dQsOGDdG/f38MGDAAgwYNYjFEortbWKZbwPW1QS0hk3LmWCIyDIlEgtcqJ3/94eh1pOcWi5yIHkeNC6KcnBysWbMGNjY2+OCDD+Dp6Yl27drhlVdewa+//opbt27VZ06i+1p94AoKSssR4OmAsACV2HGIyML0auGKLk1dUFauwed/Jokdhx5DjQsiW1tbDB48GMuXL0dsbCxu376NiIgI2NjYICIiAk2aNEHbtm3rMyuRnqy8EqyLuQYAeD3UH1IeHSIiA5NIJHi9cizRz8dvIOVOkciJ6FE90lVmgLZAcnFxgYuLC5ydnWFlZYULFy7UZTaiB/pifxJK1BoE+zijr38jseMQkYXq4uuC3i0boVwj4NN9l8SOQ4+oxgWRRqPBsWPHEBERgfDwcDg5OaF79+748ssvoVKpsGrVKly9erU+sxLp3LxbhJ+OaSdEey20JVedJiJRvTZIOy/R1lOpSMrKFzkNPYoaX2Xm5OSEwsJCqFQq9OvXD5988gn69u2L5s05IzAZ3mf7LkNdIaCHX0N0b+4qdhwisnBBXk4IbeOOyPOZ+CTqMlY921HsSFRLNS6IVqxYgX79+qFly5b1mYfooa7eKsBvJ7WLKr5eeYUHEZHYXgv1R9SFTOw8k46XUnPRtrGj2JGoFmp8yuzFF19Ey5YtsX///mrbrFq1qk5CET3Iyn2XUaERMLC1Gzp4O4sdh4gIAOCvssfwIE8AwKd7OZbI1NR6UPXo0aMRFxd3z/aVK1di/vz5dRKKqDpJWfn4/XQaAODVgTxaSUTG5V8DWkAqAfZeyELCzRyx41At1LogWrFiBcLDw/XWLfvoo4+waNEi7Ny5s07DEf3Tyn1JEAQgtI07D0cTkdFp1sgOI9s3BgB8uveyyGmoNmo8hqjKCy+8gOzsbAwcOBB//fUXNm3ahH//+9/YtWsXevToUR8ZiQAAlzPzsSOBR4eIyLjNHNAC206n4c+LWYi/kYP2Xk5iR6IaqHVBBABvvPEG7ty5g06dOqGiogJ79uxBt27d6jobkZ6V+y5DEIDBASq08XQQOw4R0X35utpiZPvG+O3kTXy69xLWPt9F7EhUAzUqiD777LN7tjVu3Bg2Njbo3bs3jh07hmPHjgEAZs2aVbcJiQBcyszHzjPpAIB/DWwhchoiogeb2d8PW+NTEZ14C6dS7vICEBNQo4Lok08+ue92mUyGw4cP4/DhwwC0U5izIKL6UHV0KLytCq09eHSIiIxbU1dbjOrQGL/G3cSney9j3WQeJTJ2NSqIkpOT6zsHUbUSM/Kxi0eHiMjEzOzvhy2nUnHg0i3EXb+LYB8eJTJmj7yWGZGhrNx3CYIADG3ngVYqHh0iItPg09AWYzpWXXHGeYmMXY0Kojlz5qCwsLDGDzp//nxkZ2c/ciiiKtqjQxmQSIBZA3h0iIhMyyv9WsBKKsGhy7cRd/2u2HHoAWpUEK1cuRJFRUU1ftBVq1YhJyfnUTMR6XyxPwkAMKStB/xV9iKnISKqHe+GNhhdeZToiz85L5Exq9EYIkEQ0LJlzVcUr83RJKLqXLlVoJt36JX+fiKnISJ6NC/39cOvcTexP/EWztzMRbsmnFTWGNWoIPruu+9q/cDu7u61vg/R/1q1Xzsr9cDW7ryyjIhMVlNXWwwP8sTW+DR8/udlrJnQSexIdB81KogmTpxY3zmI9KTcKcK2eO3RoVkDeHSIiEzbK/39sO10GiLPZ+JCeh7/yDNCvMqMjNKX0Umo0Ajo07IRAps4iR2HiOix+LnZY0hbDwB/j40k48KCiIxOak4xfjt5EwCPDhGR+agaC7nrTDqSsvJFTkP/xIKIjM7q6CtQVwjo3rwhgn1cxI5DRFQnWns4YFAbdwgCsGr/FbHj0D+wICKjkplXgk0nbgAAZvbnvENEZF5mVX6ubYtPxfU7vCLbmNSqIFKr1bCyssLZs2frKw9ZuK8OXEVZuQadmzqjWzMeHSIi89KuiSP6+jeCRgC+5FEio1Krgkgul8Pb2xsVFRX1lYcsWHZhGX46lgIAeKV/ixrPe0VEZEpmVo4l2nzqJtJzi0VOQ1Vqfcps4cKFWLBgAZfmoDq39nAyitUVaNvYAb1buIodh4ioXgT7uKCrrwvUFQL+e5CLpxuLGs1D9L+++OILJCUlwdPTEz4+PrC1tdXbf/LkyToLR5ajoLQca49cA6Cd1ZVHh4jInL3czw+xycfw07EUvNLfDy62CrEjWbxaF0QjR46shxhk6dYfvY68knI0a2SLsACV2HGIiOpV7xauaNvYAWdT87D2cDLmhPqLHcni1bogeuedd+rsyQ8ePIgVK1YgLi4O6enp2LJlyz0F14ULFzBv3jwcOHAA5eXlaNOmDX777Td4e3sDAEpKSvDaa69h48aNKC0tRVhYGL788ku9pUNSUlLw0ksvYf/+/bCzs8PEiROxbNkyWFnV+uVTPShRV+Drv7SHjaf3aQ6ZlEeHiMi8SSQSvNzXDy+vP4m1R65hWp/msFPyO0lMj3TZfU5ODr7++mvMnz9fN5bo5MmTSE1NrdXjFBYWIigoCKtWrbrv/itXrqBnz55o1aoVoqOjkZCQgLfffhvW1ta6NrNnz8b27dvxyy+/4MCBA0hLS8Po0aN1+ysqKjB06FCUlZXhyJEjWLduHdauXYtFixY9wiun+vDbyZu4lV8KD0drjGzfWOw4REQGERagQjNXW+SVlGND7HWx41i8WpejCQkJGDhwIBwdHXHt2jVMnToVLi4u2Lx5M1JSUvD999/X+LHCw8MRHh5e7f6FCxdiyJAhiIiI0G1r3ry57t+5ubn45ptvsGHDBvTv3x+AdiHa1q1b4+jRo+jWrRsiIyNx/vx57N27F+7u7mjfvj3effddzJs3D4sXL4ZCcf/ztqWlpSgtLdXdzsvLA6CdekCtVtf4NZqjqtdfF/1QXqHBf6K1l55O6eEDiVABtZpXMQJ128/0YOxrw2A/32tqr6aYv+Uc/nvwKsZ1agylXPbYj8l+1lfTfqh1QTRnzhxMmjQJERERsLe3120fMmQIxo0bV9uHq5ZGo8HOnTvxxhtvICwsDKdOnYKvry/mz5+vO60WFxcHtVqNgQMH6u7XqlUreHt7IyYmBt26dUNMTAzatWundwotLCwML730Es6dO4cOHTrc9/mXLVuGJUuW3LM9MjISNjY2dfY6TVlUVNRjP8aJWxLcvCuDrZUAx9vnsGvXuTpIZl7qop+pZtjXhsF+/ptCAzgpZLhVUIalP0aih7tQZ4/NftYqKiqqUbtaF0THjx/HV199dc/2xo0bIyMjo7YPV62srCwUFBRg+fLleO+99/DBBx9g9+7dGD16NPbv348+ffogIyMDCoUCTk5Oevd1d3fXZcnIyNArhqr2V+2rzvz58zFnzhzd7by8PHh5eSE0NBQODpa9SrFarUZUVBQGDRoEuVz+yI+j0QhYtSoGQAGm9mmBkX2b1V1IM1BX/UwPx742DPbz/WU3vI73dyUi5q4dlkzoASvZ4y0iwX7WV3WG52FqXRAplcr7PvilS5fQqFGj2j5ctTQaDQBgxIgRmD17NgCgffv2OHLkCFavXo0+ffrU2XPdj1KphFKpvGe7XC7nG6zS4/bFnxczcSmrAHZKKzzfoxn7tRp8zxkO+9ow2M/6nu3WFP85kIwbd4sRefE2RtTRWEr2s1ZN+6DWZejw4cOxdOlS3Tk5iUSClJQUzJs3D2PGjKntw1XL1dUVVlZWaNOmjd721q1bIyVFO5uxSqVCWVkZcnJy9NpkZmZCpVLp2mRmZt6zv2ofiWf1gasAgGe7esPRhr+0RGSZbBRWmNS9KQBgzcGrEIS6O21GNVfrguijjz5CQUEB3NzcUFxcjD59+sDPzw/29vZ4//336yyYQqFA586dkZiYqLf90qVL8PHxAQAEBwdDLpdj3759uv2JiYlISUlBSEgIACAkJARnzpxBVlaWrk1UVBQcHBzuKbbIcE6m3MWx5GzIZRI838NX7DhERKIa380HDeQynEvLw+GkO2LHsUi1PmXm6OiIqKgo/PXXX0hISEBBQQE6duyoN7C5pgoKCpCUlKS7nZycjPj4eLi4uMDb2xtz587F008/jd69e6Nfv37YvXs3tm/fjujoaF2WKVOmYM6cOXBxcYGDgwNmzpyJkJAQdOvWDQAQGhqKNm3aYPz48YiIiEBGRgbeeustzJgx476nxMgw1lQeHRrZvjFUjtYPaU1EZN6cbRV4urMX1h65hq8OXkFPLl9kcLUuiEpKSmBtbY2ePXuiZ8+ej/XkJ06cQL9+/XS3qwYxT5w4EWvXrsWoUaOwevVqLFu2DLNmzYK/vz9+++03vef95JNPIJVKMWbMGL2JGavIZDLs2LEDL730EkJCQmBra4uJEydi6dKlj5WdHt3VWwXYc147oH1abw6kJiICgCk9ffHD0es4dPk2zqbmom1jR7EjWZRaF0ROTk7o0qUL+vTpg379+iEkJAQNGjR4pCfv27fvQ8+VTp48GZMnT652v7W1NVatWlXt5I4A4OPjg127dj1SRqp7/z2UDEEABrZ2Qwt3+4ffgYjIAni52OCJQA9si0/DmoNX8dkz958WhupHrccQ7d27F4MHD0ZsbCyGDx8OZ2dn9OzZEwsXLuScB/RQWfkl+O3kTQDAi32aP6Q1EZFlqTpqvvNMOm5k12z+HKobtS6IevbsiQULFiAyMhI5OTnYv38//Pz8EBERgcGDB9dHRjIj645cQ1m5Bh29ndDJx1nsOERERiXA0xG9WriiQiPgm8o1HskwHmkluUuXLiE6Olr3U1paiieeeAJ9+/at43hkTgpKy/FDjHa9nhf7NIdEwkVciYj+aXqf5jh0+TY2Hb+Bfw1oAWfb+y8xRXWr1gVR48aNUVxcjL59+6Jv376YN28eAgMD+eVGD7Xp+A3klZSjmastBrV2f/gdiIgsUPfmDdG2sQPOpubh+5jr+NfAFmJHsgi1PmXWqFEjFBUVISMjAxkZGcjMzERxcXF9ZCMzUl6hwbeVh3+n9m4GqZQFNBHR/UgkEkzrrR1j+X3MNZRwwWuDqHVBFB8fj4yMDLz55psoLS3FggUL4Orqiu7du2PhwoX1kZHMwK6zGUjNKYarnQKjOtTNtPREROZqSFsVGjs1wJ3CMmw5lSp2HIvwSCvIOTk5Yfjw4ViwYAHmz5+PJ598EsePH8fy5cvrOh+ZAUEQ8PUh7USM47s1hbVcJnIiIiLjZiWT4vkeTQEAXx+6Co2Gy3nUt1oXRJs3b8asWbMQGBgId3d3vPTSSygoKMBHH32EkydP1kdGMnHHkrORcDMXSispnuvmLXYcIiKT8HRnL9grrXDlViGiL2U9/A70WGo9qHr69Ono3bs3pk2bhj59+qBdu3b1kYvMyNeVY4dGd2yChnZcLoWIqCbsreUY28UL/z2UjK8PJaN/K16MUp9qXRD97yKpRA+TfLsQey9kAtBOS09ERDU3qYcvvj18DUeu3MG5tFwEeHI5j/rySPMQVVRUYOvWrbhw4QIAoE2bNhgxYgRkMo4NIX3f/HUVggAMaOUGPzc7seMQEZmUxk4NMLSdB34/nYavDyXjk6fbix3JbNV6DFFSUhJat26NCRMmYPPmzdi8eTPGjx+PgIAAXLlypT4ykom6W1iGX+O0y3S80IuLuBIRPYoXemmPrm8/nYb0XE5zU19qXRDNmjULzZs3x40bN3Dy5EmcPHkSKSkp8PX1xaxZs+ojI5moH49eR4lagwBPB3Rr5iJ2HCIikxTYxAldfF1QrhGw9sg1seOYrVoXRAcOHEBERARcXP7+gmvYsCGWL1+OAwcO1Gk4Ml0l6gqsq1ymY2qvZpzJnIjoMUytPMq+ITYFBaXlIqcxT7UuiJRKJfLz8+/ZXlBQAIWC662Q1u+n03C7oBQejtYYGughdhwiIpM2oJUbmrnaIr+kHD8fvyF2HLNU64LoiSeewLRp0xAbGwtBECAIAo4ePYrp06dj+PDh9ZGRTIwgCPjmkPZS+4ndm0Iue6T5P4mIqJJUKsHkyit1vzuSjApO1Fjnav1N9dlnn6F58+YICQmBtbU1rK2t0aNHD/j5+WHlypX1kZFMzF9Jt5GYmQ8bhQzPdOFEjEREdWFMxyZwspHjRnYxIs9liB3H7NT6snsnJyds27YNSUlJusvuW7duDT8/vzoPR6bp68qjQ//XyQuODeQipyEiMg8NFDI819UHX+xPwtd/JSO8HYcj1KUaF0QajQYrVqzA77//jrKyMgwYMADvvPMOGjRoUJ/5yMRcyszHgUu3IJUAk3twIkYioro0obsP1hy8irjrd3Ey5S46ejuLHcls1PiU2fvvv48FCxbAzs4OjRs3xsqVKzFjxoz6zEYmqGrsUFiACt4NbUROQ0RkXtzsrTG8vScA4JvKZZGobtS4IPr+++/x5ZdfYs+ePdi6dSu2b9+O9evXQ6PR1Gc+MiG38kuxJT4VwN8TiRERUd2qWgbpjzPpuJFdJHIa81HjgiglJQVDhgzR3R44cCAkEgnS0tLqJRiZnh+PXkdZuQbtvZx4GJeIqJ609nBArxau0AjgRI11qMYFUXl5OaytrfW2yeVyqNXqOg9FpqdEXYEfj2onYnyhly8nYiQiqkdVR4k2Hb+BvBJ+D9eFGg+qFgQBkyZNglKp1G0rKSnB9OnTYWtrq9u2efPmuk1IJmHLqVTcKSxDY6cGGBygEjsOEZFZ69OyEVq42eFyVgE2HbuBqb25XuTjqvERookTJ8LNzQ2Ojo66n+eeew6enp5628jyCIKgG9z3fI+msOJEjERE9UoikejGaq49cg3lFRzP+7hqfITou+++q88cZMIOXb6NpKwC2Cmt8H+dvcSOQ0RkEUa0b4yI3YlIzSlG5PlMDOG8RI+Ff8rTY/vusPbo0JPBTeBgzYkYiYgMwVouw7iu2tUAqj6H6dGxIKLHcuVWAfYn3oJEAkzq3lTsOEREFuW5bj6QyyQ4fu0uztzMFTuOSWNBRI9lXeUlnwNauaGpq+2DGxMRUZ1yd7DG0MpTZTxK9HhYENEjyytW49e4mwCA57lMBxGRKKo+f7cnpCErv0TkNKaLBRE9sl9OpqKorAL+7vbo3ryh2HGIiCxSkJcTgn2coa4Q8OPRFLHjmCwWRPRINAJ0v3jP92jKiRiJiET0fI+mAIANsddRWs5L8B8FCyJ6JGeyJbiZUwJnGzlGdmgsdhwiIosWFqCCh6M1bheUYeeZdLHjmCQWRPRIDqRr3zrjunrDWi4TOQ0RkWWTy6SYENIUALD2SAoEQdw8pogFEdXa+fQ8XMmXwEoqwfhuTcWOQ0REAJ7p4gVruRQXMvJxJV/sNKaHBRHV2veVY4fCAtyhcrR+SGsiIjIEJxsFRnVoAgA4mM6v99pij1Gt3C0sw/aEDADAxG7eIqchIqL/VTVB7plsCdJzeQl+bbAgolrZePwGyso1aGIroL0XF/MlIjIm/ip7dPV1hgYS/HTshthxTAoLIqqxCo2AH49eBwD0Vml4qT0RkREaX7m+2cYTN1GirhA5jelgQUQ1tvdCJlJziuFsI0eHhryEgYjIGA1o1QhOCgF3i9TYmcBL8GuKBRHVWNW6Zf8X3AQKXmlPRGSUrGRS9FRpJ2dcF3MNAq/BrxEWRFQjlzPzceTKHUglwDNdmogdh4iIHiDETYDCSoqEm7mIv5EjdhyTwIKIamRdzDUAwKA27mjs1EDcMERE9EB2cmBoOxWAv4/u04OxIKKHyitRY/PJVADAxMpLOomIyLhNqBxcvfNMOm7ll4qcxvixIKKH+vXETRSVVaClux1CmnFVeyIiU9C2sQM6eDtBXSHgp2MpYscxeiyI6IE0GgE/VF5qPyGEq9oTEZmSqoka18deh7pCI24YIydqQXTw4EEMGzYMnp6ekEgk2Lp1q97+SZMmQSKR6P0MHjxYr03Tpk3vabN8+XK9NgkJCejVqxesra3h5eWFiIiI+n5pZuOvpNtIvl0Ie6UVRnFVeyIikxLe1gOudkpk5pVi7/lMseMYNVELosLCQgQFBWHVqlXVthk8eDDS09N1Pz/99NM9bZYuXarXZubMmbp9eXl5CA0NhY+PD+Li4rBixQosXrwYa9asqZfXZG6qJmIcE9wEtkorkdMQEVFtKKykGNvZCwB0R/vp/kT9hgsPD0d4ePgD2yiVSqhUqge2sbe3r7bN+vXrUVZWhm+//RYKhQIBAQGIj4/Hxx9/jGnTplX7mKWlpSgt/XsQWl5eHgBArVZDrVY/MI+5SM8twd4L2r8ong721L3uf/6X6gf72XDY14bBfjaMf/bzUx098GV0Eo5cuYMLqXfh52YnZjyDq+n7TSIYyYxNEokEW7ZswciRI3XbJk2ahK1bt0KhUMDZ2Rn9+/fHe++9h4YN/x7Y27RpU5SUlECtVsPb2xvjxo3D7NmzYWWlrfUmTJiAvLw8vdNx+/fvR//+/ZGdnQ1nZ+f75lm8eDGWLFlyz/YNGzbAxsambl60kduZIkVkqhQtHDR4JYDnnomITNXXF6U4c1eK3ioNxvha1ud5UVERxo0bh9zcXDg4OFTbzqjPgQwePBijR4+Gr68vrly5ggULFiA8PBwxMTGQybRTJc+aNQsdO3aEi4sLjhw5gvnz5yM9PR0ff/wxACAjIwO+vr56j+vu7q7bV11BNH/+fMyZM0d3Oy8vD15eXggNDX1gh5qLsnIN3v3oIIAyzAxvj/C2fx+BU6vViIqKwqBBgyCXy8ULaebYz4bDvjYM9rNh3K+f7VvexuR1J3HyrgKfT+0NG4VRf/3XqaozPA9j1D0yduxY3b/btWuHwMBANG/eHNHR0RgwYAAA6BUtgYGBUCgUePHFF7Fs2TIolcpHfm6lUnnf+8vlcov4Rd59Pg23C8rgZq9EeGBjyGX3DjezlL4QG/vZcNjXhsF+Noz/7ee+/io0bWiDa3eKsOvcLTzTxVvkdIZT0/eaSV1236xZM7i6uiIpKanaNl27dkV5eTmuXbsGAFCpVMjM1B9ZX3X7YWOTLFnV4LtnunjftxgiIiLTIZVK8GxXHwDADzHXub7ZfZjUN93Nmzdx584deHh4VNsmPj4eUqkUbm5uAICQkBAcPHhQb1BVVFQU/P39qz1dZukSM/JxLDkbMqnEov6KICIyZ08GN4HSSorz6Xk4xfXN7iFqQVRQUID4+HjEx8cDAJKTkxEfH4+UlBQUFBRg7ty5OHr0KK5du4Z9+/ZhxIgR8PPzQ1hYGAAgJiYGn376KU6fPo2rV69i/fr1mD17Np577jldsTNu3DgoFApMmTIF586dw6ZNm7By5Uq9U22kr+pS+9A27lA5WouchoiI6oKzrQLDgjwBAD/G8BL8fxK1IDpx4gQ6dOiADh06ANCOB+rQoQMWLVoEmUyGhIQEDB8+HC1btsSUKVMQHByMQ4cO6cb2KJVKbNy4EX369EFAQADef/99zJ49W2+OIUdHR0RGRiI5ORnBwcF47bXXsGjRogdecm/JCkrLsfnkTQDA+G4+IqchIqK6VPW5viMhHdmFZSKnMS6iDqru27fvA89j7tmz54H379ixI44ePfrQ5wkMDMShQ4dqnc8SbTmVisKyCjRrZIuQ5ly3jIjInAR5OSGwiSMSbubi5xM3ML1Pc7EjGQ2TGkNE9UsQBGyI1S4A+FxXH65bRkRkhp6rHFz907EUaDQcXF2FBRHpnLqRgwvpeVBaSTGmYxOx4xARUT14IsgD9tZWuH6nCIev3BY7jtFgQUQ6VUeHngj0hKMN5wghIjJHNgorjK5crLvqc59YEFGl3CI1tp9OAwCM68pL7YmIzNm4ytNmkeczkZVXInIa48CCiAAAm0/dRGm5Bq1U9ujo7SR2HCIiqkf+Knt08nFGhUbAzyduiB3HKLAgIr3B1M929eZgaiIiC1B1NuCnYzdQwcHVLIgIOH7tLi5nFaCBXIYRleeViYjIvA1p5wHHBnKk5hTj4KVbYscRHQsiwoZY7YylI9p7wsGag6mJiCyBtVyGJ4O1VxSv5+BqFkSWLruwDLvOZgDgYGoiIktTtV7lnxczkZ5bLHIacbEgsnC/xd1EWbkGbRs7ILCJk9hxiIjIgPzc7NDV1wUaAdh4zLIHV7MgsmCCIOCnY1WDqbluGRGRJXq2cn2zTcdvoLxCI3Ia8bAgsmBHr2bj6u1C2CpkGF65AjIREVmWsAB3uNgqkJFXguhEyx1czYLIgm08rj06NLx9Y9gqRV3nl4iIRKK0kmFMR+0VxlXfC5aIBZGFyikqwx+Vg6mf6eIlchoiIhLT052rBldnISPXMmeuZkFkoTafTEVZuQZtPBzQrrGj2HGIiEhEfm526NJUO7j6FwuduZoFkQUSBEF3WPSZLl6cmZqIiDC28mzBphM3oLHAmatZEFmgkyk5uJRZAGu5lDNTExERAO3M1Q7WVrh5txh/Jd0WO47BsSCyQBsrL7Uf2o4zUxMRkZa1XIZRHSx3cDULIguTX6LGjoR0ABxMTURE+sZWzlwddT4TtwtKRU5jWCyILMy2+DQUqyvg52aHYB9nseMQEZERae3hgCAvJ6grBPwWd1PsOAbFgsjCVB0GHduZg6mJiOhez3SuHFx9/AYEwXIGV7MgsiBnU3NxNjUPCpkUozs2ETsOEREZoWFBnrBVyHD1diFik7PFjmMwLIgsSNW6ZaGV07QTERH9k63SCsMql3OqugjHErAgshBFZeX4PT4NAPBM5aA5IiKi+6kaXL3rbAZyi9QipzEMFkQWYmdCOvJLy+HtYoOQZg3FjkNEREYsqIkjWqnsUVauwZZTljG4mgWRhdh0XDsV+9OdvSCVcjA1ERFVTyKRYGzl4OqNFjK4mgWRBUjKyseJ63chk0rwZDAHUxMR0cON6tAECispLmbkI+Fmrthx6h0LIguw8Zj26FA/fze4O1iLnIaIiEyBo40cQ9qqAFjGzNUsiMxcaXkFNp9KBcCZqYmIqHaqBlf/Hp+GwtJykdPULxZEZm7v+SxkF5bB3UGJPi0biR2HiIhMSFdfFzRtaIPCsgrsrFz2yVyxIDJzVYc5nwr2gpWM/7uJiKjmJBIJnu6sPUr0k5mfNuM3pBm7kV2EQ5dvA9BeXUZERFRbY4Ibw0oqwamUHCRm5Isdp96wIDJjv5zQDqbu6ecKLxcbkdMQEZEpcrO3xoDWbgD+nsLFHLEgMlPlFRr8fEI7mdZYDqYmIqLHUDW4evOpmyhRV4icpn6wIDJTBy/fQkZeCZxt5BjUxl3sOEREZMJ6t2gET0dr5BSpEXk+U+w49YIFkZmqOqw5qkMTKK1kIqchIiJT9r8T+/5spqfNWBCZoVv5pdh3IQsAB1MTEVHdeKqT9vvkr6TbuJFdJHKauseCyAxtOXUT5RoBQV5O8FfZix2HiIjMgJeLDXr4aRcH/yXO/BZ8ZUFkZgRB+Hsh1048OkRERHXn/yq/V349cQMVGvNa8JUFkZk5mXIXV24VooFchmFBHmLHISIiMxIWoIJjAznSckvwV9JtsePUKRZEZqbq6NCQdh6wt5aLnIaIiMyJtVyGke09AZjf4GoWRGakoLQcOyrXmuFgaiIiqg//V/n9Enk+A9mFZSKnqTssiMzIzoQ0FJVVoJmrLTo3dRY7DhERmaEAT0e0bewAdYWALadSxY5TZ1gQmZGqmamf6uQFiUQichoiIjJXVRft/Hz8BgTBPAZXsyAyE0lZ+Yi7fhcyqQRjghuLHYeIiMzY8PaNobSSIjEzH6dv5oodp06wIDITVUeH+vm7wc3eWuQ0RERkzhwbyBHeVgXAfBZ8FbUgOnjwIIYNGwZPT09IJBJs3bpVb/+kSZMgkUj0fgYPHqzXJjs7G88++ywcHBzg5OSEKVOmoKCgQK9NQkICevXqBWtra3h5eSEiIqK+X5pBqSs02HxSWxBxMDURERlC1eDq7afTUFxm+gu+iloQFRYWIigoCKtWraq2zeDBg5Genq77+emnn/T2P/vsszh37hyioqKwY8cOHDx4ENOmTdPtz8vLQ2hoKHx8fBAXF4cVK1Zg8eLFWLNmTb29LkOLTryF2wVlcLVToK9/I7HjEBGRBejm2xBNnBugoLQcu8+lix3nsVmJ+eTh4eEIDw9/YBulUgmVSnXffRcuXMDu3btx/PhxdOrUCQDw+eefY8iQIfjwww/h6emJ9evXo6ysDN9++y0UCgUCAgIQHx+Pjz/+WK9w+qfS0lKUlpbqbufl5QEA1Go11Gp1bV9qvfr5eAoAYESQB6CpgFpTv5V61es3tn4wN+xnw2FfGwb72TAM2c+j23vis/1X8PPxG3iirXu9P9+jqGk/iFoQ1UR0dDTc3Nzg7OyM/v3747333kPDhtq1VGJiYuDk5KQrhgBg4MCBkEqliI2NxahRoxATE4PevXtDoVDo2oSFheGDDz7A3bt34ex8/8vTly1bhiVLltyzPTIyEjY2NnX8Kh9dvhrYd1EGQIJGBVewa9cVgz13VFSUwZ7LkrGfDYd9bRjsZ8MwRD87lQCAFWKuZuPHLbvgoqz3p6y1oqKaLURr1AXR4MGDMXr0aPj6+uLKlStYsGABwsPDERMTA5lMhoyMDLi5uendx8rKCi4uLsjIyAAAZGRkwNfXV6+Nu7u7bl91BdH8+fMxZ84c3e28vDx4eXkhNDQUDg4OdfkyH8t3R65DIyQisLEDpjzZzSDPqVarERUVhUGDBkEu52zY9YX9bDjsa8NgPxuGofs5KvcEYq5m466TP57r17zen6+2qs7wPIxRF0Rjx47V/btdu3YIDAxE8+bNER0djQEDBtTrcyuVSiiV95a6crncaH6RBUHA5lNpAICnOnsbPJcx9YU5Yz8bDvvaMNjPhmGofv6/zl6IuZqNLfFpeHWgP6RS45oHr6Z9YFKX3Tdr1gyurq5ISkoCAKhUKmRlZem1KS8vR3Z2tm7ckUqlQmZmpl6bqtvVjU0yFefS8nAxIx8KKymGB3qKHYeIiCzQ4AAP2CutcCO7GLHJ2WLHeWQmVRDdvHkTd+7cgYeHdhX3kJAQ5OTkIC4uTtfmzz//hEajQdeuXXVtDh48qDeoKioqCv7+/tWeLjMVv5zQzv0QFqCCow3/2iIiIsNroJDhiSDt9/IvcaY7J5GoBVFBQQHi4+MRHx8PAEhOTkZ8fDxSUlJQUFCAuXPn4ujRo7h27Rr27duHESNGwM/PD2FhYQCA1q1bY/DgwZg6dSqOHTuGw4cP45VXXsHYsWPh6ak9YjJu3DgoFApMmTIF586dw6ZNm7By5Uq98UGmqLS8AttOV54uC24ichoiIrJkTwZr5yT640wGCkrLRU7zaEQtiE6cOIEOHTqgQ4cOAIA5c+agQ4cOWLRoEWQyGRISEjB8+HC0bNkSU6ZMQXBwMA4dOqQ3tmf9+vVo1aoVBgwYgCFDhqBnz556cww5OjoiMjISycnJCA4OxmuvvYZFixY98JJ7U7D3fBZyitTwcLRGDz9XseMQEZEF6+jthGaNbFGsrsCuBNOck0jUQdV9+/Z94KJwe/bseehjuLi4YMOGDQ9sExgYiEOHDtU6nzGrOiw5umNjyIxsABsREVkWiUSCJ4ObIGJ3In6Ju6GbxdqUmNQYItLKzCvBwUu3APx9mJKIiEhMYzo2gVQCHL92F8m3C8WOU2ssiEzQ5pOp0AhA56bO8HW1FTsOERER3B2s0buldvmo3+Juipym9lgQmRhBEHQLuY7pyMHURERkPKq+l7acSoVGU/2QGGPEgsjEnEnNxeWsAiitpBgS6CF2HCIiIp1Bbdxhb22F1JxiHE2+I3acWmFBZGKqDkOGBajgYM25h4iIyHhYy2V4onKi4N/iUkVOUzssiExIWbkGv1fOPTSGcw8REZERejK4MQDgj7PpKDShOYlYEJmQ/YlZuFukhpu9Ej059xARERmhjt7OaNrQBkVlFdhzLkPsODXGgsiEVJ0uG9WBcw8REZFxkkgkGF05uPq3k6ZztRkLIhORXViG/YnahWxH8+oyIiIyYqM6aE+bHblyB2k5xSKnqRkWRCbi9/hUqCsEtG3sAH+VvdhxiIiIquXlYoOuvi4QBO0l+KaABZGJ+O2k9g3FuYeIiMgUVF3881vczQcu02UsWBCZgEuZ+TiTmgsrqQTDgzzFjkNERPRQQ9p5oIFchqu3CxF/I0fsOA/FgsgEVA1K69fKDQ3tlCKnISIiejg7pRUGt1UBMI3B1SyIjFyFRsDWU1WnyxqLnIaIiKjmRld+b20/nY7S8gqR0zwYCyIjF3PlDjLzSuHYQI5+rdzEjkNERFRj3Zu7wt1BidxiNfZfvCV2nAdiQWTkNp/SHmZ8ItADSiuZyGmIiIhqTiaVYGR77VGiLaeM+7QZCyIjVlRWjj1ntbN8Vs3pQEREZEpGVZ4223/xFnKKykROUz0WREYs6nwmCssq4O1ig2AfZ7HjEBER1VorlQNaqexRVqHBzjPpYsepFgsiI7a5cu6hkR0aQyLhUh1ERGSaqgZXbzlpvJM0siAyUln5JTh0WTsAjafLiIjIlI1o3xhSCXDi+l2k3CkSO859sSAyUttPp0MjAO29nODrait2HCIiokfm7mCNHn6uAICt8cZ5lIgFkZGqGo0/mnMPERGRGag627HlVKpRLuXBgsgIXc7Mx9nUPFhJJXgikEt1EBGR6QsLUKGBXIZkI13KgwWREdpcOTN1X383uNgqRE5DRET0+GyVVggLcAegPUpkbFgQGRmNRsC2yjcKB1MTEZE5GdWxCQBg++k0qCs0IqfRx4LIyMQmZyMttwT21lYY0JpLdRARkfno0bwhGtkrcbdIjQOJxrWUBwsiI1O1kOuQth6wlnOpDiIiMh9WMilGBGnHxm4xsqvNWBAZkRJ1BXad1c7iOZKny4iIyAxVfb/tPZ+J/BK1yGn+xoLIiEQnZiG/pBwejtbo6usidhwiIqI6F+DpgOaNbFFarsGec5lix9FhQWREtp5KAwAMb+8JqZRLdRARkfmRSCQY2V57lGibEZ02Y0FkJHKL1PjzYhYA6N4oRERE5mhE5ffc4aTbyMorETmNFgsiI/HH2XSUVWjg726P1h4OYschIiKqN94NbRDs4wyNAPx+Ok3sOABYEBmNqrVdRnTgzNRERGT+RrbXft9ti2dBRJXScooRm5wN4O/DiEREROZsaKAnrKQSnEnNRVJWgdhxWBAZg99Pp0EQgC6+Lmjs1EDsOERERPXOxVaB3i0bATCOwdUsiIxA1WSMHExNRESWpGpOom3xaRAEQdQsLIhElpiRj4sZ+VDIpBjazkPsOERERAYzqLU7bBUypGQX4WRKjqhZWBCJrGowdV//RnC0kYuchoiIyHAaKGQIC1ABEP+0GQsiEf3vyvZcqoOIiCzRiMrvvx0J6VBXaETLwYJIRLcKSmFnbQV7pRX6t+LK9kREZHl6NG8IVzsFnGzkSMspFi2HlWjPTHB3sMaeV3sjM6+UK9sTEZFFspJJsXNWL7jZKyGRiLdsFQsikUkkEqgcrcWOQUREJBp3B/G/B3nKjIiIiCweCyIiIiKyeCyIiIiIyOKxICIiIiKLJ2pBdPDgQQwbNgyenp6QSCTYunVrtW2nT58OiUSCTz/9VG9706ZNIZFI9H6WL1+u1yYhIQG9evWCtbU1vLy8EBERUQ+vhoiIiEyVqAVRYWEhgoKCsGrVqge227JlC44ePQpPT8/77l+6dCnS09N1PzNnztTty8vLQ2hoKHx8fBAXF4cVK1Zg8eLFWLNmTZ2+FiIiIjJdol52Hx4ejvDw8Ae2SU1NxcyZM7Fnzx4MHTr0vm3s7e2hUqnuu2/9+vUoKyvDt99+C4VCgYCAAMTHx+Pjjz/GtGnTqn3e0tJSlJaW6m7n5eUBANRqNdRq9cNemlmrev2W3g/1jf1sOOxrw2A/Gwb7WV9N+8Go5yHSaDQYP3485s6di4CAgGrbLV++HO+++y68vb0xbtw4zJ49G1ZW2pcWExOD3r17Q6FQ6NqHhYXhgw8+wN27d+Hs7Hzfx1y2bBmWLFlyz/bIyEjY2Ng85iszD1FRUWJHsAjsZ8NhXxsG+9kw2M9aRUVFNWpn1AXRBx98ACsrK8yaNavaNrNmzULHjh3h4uKCI0eOYP78+UhPT8fHH38MAMjIyICvr6/efdzd3XX7qiuI5s+fjzlz5uhu5+XlwcvLC6GhoXBwcHjcl2bS1Go1oqKiMGjQIMjlXJC2vrCfDYd9bRjsZ8NgP+urOsPzMEZbEMXFxWHlypU4efLkA6fy/t+iJTAwEAqFAi+++CKWLVsGpVL5yM+vVCrve3+5XM43WCX2hWGwnw2HfW0Y7GfDYD9r1bQPjPay+0OHDiErKwve3t6wsrKClZUVrl+/jtdeew1Nmzat9n5du3ZFeXk5rl27BgBQqVTIzMzUa1N1u7pxR0RERGRZjPYI0fjx4zFw4EC9bWFhYRg/fjyef/75au8XHx8PqVQKNzft6vEhISFYuHAh1Gq1rkqMioqCv79/tafLiIiIyLKIWhAVFBQgKSlJdzs5ORnx8fFwcXGBt7c3GjZsqNdeLpdDpVLB398fgHbAdGxsLPr16wd7e3vExMRg9uzZeO6553TFzrhx47BkyRJMmTIF8+bNw9mzZ7Fy5Up88sknhnuhREREZNRELYhOnDiBfv366W5XjQeaOHEi1q5d+9D7K5VKbNy4EYsXL0ZpaSl8fX0xe/ZsvXFFjo6OiIyMxIwZMxAcHAxXV1csWrTogZfc348gCABqPjjLnKnVahQVFSEvL4/np+sR+9lw2NeGwX42DPazvqrv7arv8epIhIe1IADAzZs34eXlJXYMIiIiegQ3btxAkyZNqt3PgqiGNBoN0tLSYG9v/8Cr3ixB1RQEN27csPgpCOoT+9lw2NeGwX42DPazPkEQkJ+fD09PT0il1V9LZrSDqo2NVCp9YGVpiRwcHPjLZgDsZ8NhXxsG+9kw2M9/c3R0fGgbo73snoiIiMhQWBARERGRxWNBRLWmVCrxzjvvPNZM4PRw7GfDYV8bBvvZMNjPj4aDqomIiMji8QgRERERWTwWRERERGTxWBARERGRxWNBRERERBaPBRHV2LVr1zBlyhT4+vqiQYMGaN68Od555x2UlZXptUtISECvXr1gbW0NLy8vREREiJTYdL3//vvo3r07bGxs4OTkdN82KSkpGDp0KGxsbODm5oa5c+eivLzcsEHNwKpVq9C0aVNYW1uja9euOHbsmNiRTNrBgwcxbNgweHp6QiKRYOvWrXr7BUHAokWL4OHhgQYNGmDgwIG4fPmyOGFN2LJly9C5c2fY29vDzc0NI0eORGJiol6bkpISzJgxAw0bNoSdnR3GjBmDzMxMkRIbPxZEVGMXL16ERqPBV199hXPnzuGTTz7B6tWrsWDBAl2bvLw8hIaGwsfHB3FxcVixYgUWL16MNWvWiJjc9JSVleGpp57CSy+9dN/9FRUVGDp0KMrKynDkyBGsW7cOa9euxaJFiwyc1LRt2rQJc+bMwTvvvIOTJ08iKCgIYWFhyMrKEjuaySosLERQUBBWrVp13/0RERH47LPPsHr1asTGxsLW1hZhYWEoKSkxcFLTduDAAcyYMQNHjx5FVFQU1Go1QkNDUVhYqGsze/ZsbN++Hb/88gsOHDiAtLQ0jB49WsTURk4gegwRERGCr6+v7vaXX34pODs7C6Wlpbpt8+bNE/z9/cWIZ/K+++47wdHR8Z7tu3btEqRSqZCRkaHb9p///EdwcHDQ63t6sC5duggzZszQ3a6oqBA8PT2FZcuWiZjKfAAQtmzZorut0WgElUolrFixQrctJydHUCqVwk8//SRCQvORlZUlABAOHDggCIK2X+VyufDLL7/o2ly4cEEAIMTExIgV06jxCBE9ltzcXLi4uOhux8TEoHfv3lAoFLptYWFhSExMxN27d8WIaJZiYmLQrl07uLu767aFhYUhLy8P586dEzGZ6SgrK0NcXBwGDhyo2yaVSjFw4EDExMSImMx8JScnIyMjQ6/PHR0d0bVrV/b5Y8rNzQUA3edxXFwc1Gq1Xl+3atUK3t7e7OtqsCCiR5aUlITPP/8cL774om5bRkaG3pc0AN3tjIwMg+YzZ+znx3f79m1UVFTctx/Zh/Wjql/Z53VLo9Hg1VdfRY8ePdC2bVsA2r5WKBT3jEFkX1ePBRHhzTffhEQieeDPxYsX9e6TmpqKwYMH46mnnsLUqVNFSm5aHqWfiYgeZsaMGTh79iw2btwodhSTZiV2ABLfa6+9hkmTJj2wTbNmzXT/TktLQ79+/dC9e/d7BkurVKp7rmKouq1SqeomsImqbT8/iEqluudqKPZz7bi6ukImk933/co+rB9V/ZqZmQkPDw/d9szMTLRv316kVKbtlVdewY4dO3Dw4EE0adJEt12lUqGsrAw5OTl6R4n4/q4eCyJCo0aN0KhRoxq1TU1NRb9+/RAcHIzvvvsOUqn+QcaQkBAsXLgQarUacrkcABAVFQV/f384OzvXeXZTUpt+fpiQkBC8//77yMrKgpubGwBtPzs4OKBNmzZ18hzmTqFQIDg4GPv27cPIkSMBaE897Nu3D6+88oq44cyUr68vVCoV9u3bpyuA8vLyEBsbW+0VlXR/giBg5syZ2LJlC6Kjo+Hr66u3Pzg4GHK5HPv27cOYMWMAAImJiUhJSUFISIgYkY2f2KO6yXTcvHlT8PPzEwYMGCDcvHlTSE9P1/1UycnJEdzd3YXx48cLZ8+eFTZu3CjY2NgIX331lYjJTc/169eFU6dOCUuWLBHs7OyEU6dOCadOnRLy8/MFQRCE8vJyoW3btkJoaKgQHx8v7N69W2jUqJEwf/58kZOblo0bNwpKpVJYu3atcP78eWHatGmCk5OT3tV7VDv5+fm69ysA4eOPPxZOnTolXL9+XRAEQVi+fLng5OQkbNu2TUhISBBGjBgh+Pr6CsXFxSInNy0vvfSS4OjoKERHR+t9FhcVFenaTJ8+XfD29hb+/PNP4cSJE0JISIgQEhIiYmrjxoKIauy7774TANz353+dPn1a6Nmzp6BUKoXGjRsLy5cvFymx6Zo4ceJ9+3n//v26NteuXRPCw8OFBg0aCK6ursJrr70mqNVq8UKbqM8//1zw9vYWFAqF0KVLF+Ho0aNiRzJp+/fvv+97d+LEiYIgaC+9f/vttwV3d3dBqVQKAwYMEBITE8UNbYKq+yz+7rvvdG2Ki4uFl19+WXB2dhZsbGyEUaNG6f0BS/okgiAIBjwgRURERGR0eJUZERERWTwWRERERGTxWBARERGRxWNBRERERBaPBRERERFZPBZEREREZPFYEBEREZHFY0FEREREFo8FERHR/5g0aZJubbNH1bRpU0gkEkgkEuTk5FTbbu3atXoLb9aVqueuj8cmMlcsiIioRgRBwMCBAxEWFnbPvi+//BJOTk64efOmCMmM09KlS5Geng5HR0eDP3d6ejo+/fRTgz8vkSljQURENSKRSPDdd98hNjYWX331lW57cnIy3njjDXz++edo0qSJiAmNi729PVQqFSQSicGfW6VSiVKIEZkyFkREVGNeXl5YuXIlXn/9dSQnJ0MQBEyZMgWDBg1CdHQ0fH190aBBA/j7+2PlypW6+509exZSqRS3bt0CAGRnZ0MqlWLs2LG6Nu+99x569uxZ7XP/8MMP6NSpk67QGDduHLKysnT7o6OjIZFIsG/fPnTq1Ak2Njbo3r07EhMT9R7nvffeg5ubG+zt7fHCCy/gzTffRPv27at9Xo1Gg2XLluleW1BQEH799dfadh0A7Skyb29v2NjYYNSoUbhz5849bbZt24aOHTvC2toazZo1w5IlS1BeXq7bf/HiRfTs2RPW1tZo06YN9u7dC4lEgq1btz5SJiLSYkFERLUyceJEDBgwAJMnT8YXX3yBs2fPYs2aNWjSpAl++eUXnD9/HosWLcKCBQvw888/AwACAgLQsGFDHDhwAABw6NAhvdsAcODAAfTt27fa51Wr1Xj33Xdx+vRpbN26FdeuXcOkSZPuabdw4UJ89NFHOHHiBKysrDB58mTdvvXr1+P999/HBx98gLi4OHh7e+M///nPA1/vsmXL8P3332P16tU4d+4cZs+ejeeee04ve03ExsZiypQpeOWVVxAfH49+/frhvffe02tz6NAhTJgwAf/6179w/vx5fPXVV1i7di3ef/99AEBFRQVGjhwJGxsbxMbGYs2aNVi4cGGtchBRNQQiolrKzMwUXF1dBalUKmzZsuW+bWbMmCGMGTNGd3v06NHCjBkzBEEQhFdffVWYO3eu4OzsLFy4cEEoKysTbGxshMjIyBpnOH78uABAyM/PFwRBEPbv3y8AEPbu3atrs3PnTgGAUFxcLAiCIHTt2lWXoUqPHj2EoKAg3e2JEycKI0aMEARBEEpKSgQbGxvhyJEjeveZMmWK8Mwzz1SbzcfHR/jkk0/0tj3zzDPCkCFD9LY9/fTTgqOjo+72gAEDhH//+996bX744QfBw8NDEARB+OOPPwQrKyshPT1dtz8qKkoAcM//h++++07vsYnowXiEiIhqzc3NDS+++CJat26tuyJr1apVCA4ORqNGjWBnZ4c1a9YgJSVFd58+ffogOjoagPZoUP/+/dG7d29ER0fj+PHjUKvV6NGjR7XPGRcXh2HDhsHb2xv29vbo06cPAOg9BwAEBgbq/u3h4QEAulNriYmJ6NKli177f97+X0lJSSgqKsKgQYNgZ2en+/n+++9x5cqVh/SSvgsXLqBr165620JCQvRunz59GkuXLtV7rqlTpyI9PR1FRUVITEyEl5cXVCpVjfITUc1ZiR2AiEyTlZUVrKy0HyEbN27E66+/jo8++gghISGwt7fHihUrEBsbq2vft29fvPrqq7h8+TLOnz+Pnj174uLFi4iOjsbdu3d1437up7CwEGFhYQgLC8P69evRqFEjpKSkICwsDGVlZXpt5XK57t9VA5o1Gs0jvcaCggIAwM6dO9G4cWO9fUql8pEe82HPt2TJEowePfqefdbW1nX+fET0NxZERPTYDh8+jO7du+Pll1/WbfvnEZR27drB2dkZ7733Htq3bw87Ozv07dsXH3zwAe7evfvA8UMXL17EnTt3sHz5cnh5eQEATpw4Ueuc/v7+OH78OCZMmKDbdvz48Wrbt2nTBkqlEikpKbojUo+qdevWegUiABw9elTvdseOHZGYmAg/P7/7Poa/vz9u3LiBzMxMuLu7PzQ/EdUcCyIiemwtWrTA999/jz179sDX1xc//PADjh8/Dl9fX10biUSC3r17Y/369Xj99dcBaE9vlZaWYt++fZgzZ061j+/t7Q2FQoHPP/8c06dPx9mzZ/Huu+/WOufMmTMxdepUdOrUCd27d8emTZuQkJCAZs2a3be9vb09Xn/9dcyePRsajQY9e/ZEbm4uDh8+DAcHB0ycOLHGzz1r1iz06NEDH374IUaMGIE9e/Zg9+7dem0WLVqEJ554At7e3njyySchlUpx+vRpnD17Fu+99x4GDRqE5s2bY+LEiYiIiEB+fj7eeustABDl8n4ic8IxRET02F588UWMHj0aTz/9NLp27Yo7d+7oHS2q0qdPH1RUVOiOBkmlUvTu3RsSieSB44caNWqEtWvX4pdffkGbNm2wfPlyfPjhh7XO+eyzz2L+/Pl4/fXX0bFjRyQnJ2PSpEkPPB317rvv4u2338ayZcvQunVrDB48GDt37tQr9mqiW7du+O9//4uVK1ciKCgIkZGRumKmSlhYGHbs2IHIyEh07twZ3bp1wyeffAIfHx8AgEwmw9atW1FQUIDOnTvjhRde0F1lxlNqRI9HIgiCIHYIIiKxDBo0CCqVCj/88EOdPWbTpk3x6quv4tVXX62zx6zO4cOH0bNnTyQlJaF58+a67WvXrsWrr776wKVDiOhvLIiIyGIUFRVh9erVCAsLg0wmw08//YSlS5ciKioKAwcOrLPnadq0KdLT0yGXy5Gamlqns0Zv2bIFdnZ2aNGiBZKSkvCvf/0Lzs7O+Ouvv3Rt7OzsUF5eDmtraxZERDXEMUREZDEkEgl27dqF999/HyUlJfD398dvv/1Wp8UQoJ1WQK1WA9COQ6pL+fn5mDdvHlJSUuDq6oqBAwfio48+0msTHx8PQHuKjYhqhkeIiIiIyOJxUDURERFZPBZEREREZPFYEBEREZHFY0FEREREFo8FEREREVk8FkRERERk8VgQERERkcVjQUREREQW7/8BAvFk3+CDT50AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from floris import TimeSeries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Set up the FlorisModel\n", + "fmodel.set_operation_model(\"cosine-loss\")\n", + "fmodel.set(layout_x=[0.0], layout_y=[0.0])\n", + "fmodel.set(\n", + " wind_data=TimeSeries(\n", + " wind_speeds=np.ones(100) * 8.0,\n", + " wind_directions=np.ones(100) * 270.0,\n", + " turbulence_intensities=0.06\n", + " )\n", + ")\n", + "fmodel.reset_operation()\n", + "\n", + "# Sweep the yaw angles\n", + "yaw_angles = np.linspace(-25, 25, 100)\n", + "fmodel.set(yaw_angles=yaw_angles.reshape(-1,1))\n", + "fmodel.run()\n", + "\n", + "powers = fmodel.get_turbine_powers()/1000\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.plot(yaw_angles, powers)\n", + "ax.grid()\n", + "ax.set_xlabel(\"Yaw angle [deg]\")\n", + "ax.set_ylabel(\"Power [kW]\")" + ] + }, + { + "cell_type": "markdown", + "id": "019abca6", + "metadata": {}, + "source": [ + "### Simple derating model\n", + "User-level name: `\"simple-derating\"`\n", + "\n", + "Underlying class: `SimpleDeratingTurbine`\n", + "\n", + "Required data on `power_thrust_table`:\n", + "- `ref_air_density` (scalar)\n", + "- `ref_tilt` (scalar)\n", + "- `wind_speed` (list)\n", + "- `power` (list)\n", + "- `thrust_coefficient` (list)\n", + "\n", + "The `\"simple-derating\"` operation model enables users to derate turbines by setting a new power \n", + "rating. It does not require any extra parameters on the `power_thrust_table`, but adescribes the \n", + "decrease in power and thrust produced by providing the `power_setpoints` argument to\n", + "`FlorisModel.set()`. The default power rating for the turbine can be acheived by setting the\n", + "appropriate entries of `power_setpoints` to `None`." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "722be425-9231-451a-bd84-7824db6a5098", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/msinner/floris3/floris/core/turbine/operation_models.py:367: RuntimeWarning: divide by zero encountered in divide\n", + " power_fractions = power_setpoints / base_powers\n", + "/Users/msinner/floris3/floris/core/wake_deflection/gauss.py:323: RuntimeWarning: invalid value encountered in divide\n", + " val = 2 * (avg_v - v_core) / (v_top + v_bottom)\n", + "/Users/msinner/floris3/floris/core/wake_deflection/gauss.py:158: RuntimeWarning: invalid value encountered in divide\n", + " C0 = 1 - u0 / freestream_velocity\n", + "/Users/msinner/floris3/floris/core/wake_velocity/gauss.py:80: RuntimeWarning: invalid value encountered in divide\n", + " sigma_z0 = rotor_diameter_i * 0.5 * np.sqrt(uR / (u_initial + u0))\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power [kW]')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRXUlEQVR4nOzdeVzU1f748dcwMMMmmyKIImq471uCKyjhnqa3buZX07TSS4vZarcM7ZYt18qbttxrZf2u1k1TKzXXAFNxLc19S8UUMBdA1hlmPr8/Rj4xshf4mYH38/HgoXzmzPm85zB85s0553OOTlEUBSGEEEKIOsxF6wCEEEIIIbQmCZEQQggh6jxJiIQQQghR50lCJIQQQog6TxIiIYQQQtR5khAJIYQQos6ThEgIIYQQdZ6r1gE4A6vVysWLF6lXrx46nU7rcIQQQghRCYqicP36dUJCQnBxKb8PSBKiSrh48SKhoaFahyGEEEKIP+D8+fM0adKk3DKSEFVCvXr1AFuD+vj4VGvdZrOZjRs3Ehsbi5ubW7XWXdtIW1WetFXlSVtVjbRX5UlbVV5NtVVWVhahoaHq53h5JCGqhKJhMh8fnxpJiDw9PfHx8ZFfmApIW1WetFXlSVtVjbRX5UlbVV5Nt1VlprvIpGohhBBC1HmSEAkhhBCizpOESAghhBB1niREQgghhKjzJCESQgghRJ0nCZEQQggh6jxJiIQQQghR50lCJIQQQog6TxIiIYQQQtR5khAJIYQQos7TNCGKj49Hp9PZfbVp00Z9PD8/n7i4OOrXr4+3tzdjx44lPT3dro6UlBSGDx+Op6cnDRs25Omnn6awsNCuTGJiIt26dcNoNBIeHs6SJUtuxcsTQgghhJPQvIeoffv2pKamql/btm1TH3viiSf49ttvWb58OUlJSVy8eJExY8aoj1ssFoYPH47JZGLHjh18+umnLFmyhNmzZ6tlzpw5w/Dhw4mOjmb//v3MmDGDqVOnsmHDhlv6OoUQQgjhuDTf3NXV1ZXg4OASxzMzM/noo49YtmwZAwcOBOCTTz6hbdu27Ny5k4iICDZu3MiRI0fYvHkzQUFBdOnShZdffplnn32W+Ph4DAYDH3zwAc2bN2f+/PkAtG3blm3btvH2228zePDgW/pahagNzBYr6Vn5WodRbQoLC7laABcy8nB1NWsdjsOT9qqYt9EVP0+D1mGIKtI8ITp58iQhISG4u7sTGRnJvHnzaNq0Kfv27cNsNhMTE6OWbdOmDU2bNiU5OZmIiAiSk5Pp2LEjQUFBapnBgwczffp0Dh8+TNeuXUlOTraro6jMjBkzyoypoKCAgoIC9fusrCzAthuv2Vy9F4Ci+qq73tpI2qryaqqtCi1Whi9M5pfLOdVar/ZcmfPjD1oH4USkvcqjd9Hxn//rSkQzX0CuWZVRU9esqtSnaULUq1cvlixZQuvWrUlNTWXOnDn069ePQ4cOkZaWhsFgwM/Pz+45QUFBpKWlAZCWlmaXDBU9XvRYeWWysrLIy8vDw8OjRFzz5s1jzpw5JY5v3LgRT0/PP/x6y7Np06Yaqbc2kraqvOpuq1NZ8Mtl22XDTadUa91C1AaFClis8FXCHq43sf2OyDWr8qq7rXJzcytdVtOEaOjQoer/O3XqRK9evQgLC+PLL78sNVG5VWbNmsXMmTPV77OysggNDSU2NhYfH59qPZfZbGbTpk3ccccduLm5VWvdtY20VeXVVFu9tv44cI7RnRvx5l86Vlu9WpL3VdVIe5XvpW+PsGz3r7QIb8kd/cKkrSqppt5XRSM8laH5kFlxfn5+tGrVilOnTnHHHXdgMpnIyMiw6yVKT09X5xwFBweze/duuzqK7kIrXubmO9PS09Px8fEpM+kyGo0YjcYSx93c3GrsTV2Tddc20laVV91tlXD8MgB3tG9U634G8r6qGmmv0hlcbR+rVnRq+0hbVV51t1VV6tL8LrPisrOzOX36NI0aNaJ79+64ubmxZcsW9fHjx4+TkpJCZGQkAJGRkRw8eJBLly6pZTZt2oSPjw/t2rVTyxSvo6hMUR1CiMr55bdsfrmcg5teR/9WDbQORwiH5KbXAVBokSFlZ6NpQvTUU0+RlJTE2bNn2bFjB3fddRd6vZ5x48bh6+vLlClTmDlzJgkJCezbt4/JkycTGRlJREQEALGxsbRr144JEyZw4MABNmzYwAsvvEBcXJzawzNt2jR++eUXnnnmGY4dO8Z7773Hl19+yRNPPKHlSxfC6Ww5avvDI6JFfeq5y1+7QpTGVW/7WDVLQuR0NB0y+/XXXxk3bhxXrlwhMDCQvn37snPnTgIDAwF4++23cXFxYezYsRQUFDB48GDee+899fl6vZ41a9Ywffp0IiMj8fLy4v7772fu3LlqmebNm7N27VqeeOIJFixYQJMmTVi8eLHcci9EFW06aht6HtSmocaRCOG43Fxu9BBZrRpHIqpK04Toiy++KPdxd3d3Fi1axKJFi8osExYWxrp168qtJyoqip9++ukPxSiEgGs5JvaduwbAoLZBFZQWou6SHiLn5VBziIQQjinxxCUsVoU2wfUIDaiZpSeEqA1c1TlE0kPkbCQhEkJUaPON+UOD2spwmRDlcXOxfawWWqWHyNlIQiSEKJep0MrW478BMlwmREWKeojM0kPkdCQhEkKUa/eZq1wvKKSBt4EuTfy0DkcIh1Y0h0huu3c+khAJIcq1+cbdZQPbNMTlxh00QojSyV1mzksSIiFEmRRFURMiGS4TomJFPUQm6SFyOpIQCSHKdCI9m1+v5WFwdaFfS1mdWoiKuMldZk5LEiIhRJm2HLP1DvW5rT6eBofa+lAIh+TqInOInJUkREKIMv2UkgFAn3DpHRKiMtS7zGQOkdORhEgIUaYjF7MA6NDYV+NIhHAOsrmr85KESAhRqsw8Mxcy8gBoG+yjcTRCOIeiITNZh8j5SEIkhCjV0VRb71BjPw98PWV3eyEqQ926Q1aqdjqSEAkhSlU0XNYuRHqHhKgsg7owo/QQORtJiIQQpTpyo4eobSNJiISoLNnt3nlJQiSEKFXRkFk7SYiEqDRXWanaaUlCJIQowVRo5WR6NgDtZchMiEpzk73MnJYkREKIEk7/lo3JYqWe0ZUm/h5ahyOE05Dd7p2XJERCiBKOFps/pNPJhq5CVJZb0UrVcpeZ05GESAhRgtxhJsQf4yoLMzotSYiEECUckQnVQvwhsnWH85KESAhhR1EUuyEzIUTlFQ2ZKQpYZNjMqUhCJISwk5aVz7VcM3oXHS2DvLUORwinUtRDBLI4o7ORhEgIYado/lB4oDfubnqNoxHCuRTddg9glh4ipyIJkRDCjkyoFuKPK1qYEWRitbORhEgIYedoWtH8oXoaRyKE89EXT4hkYrVTkYRICGFH7SFq5KtxJEI4H51Oh5u6OKP0EDkTSYiEEKrsgkLOXskFpIdIiD/KVV2cUXqInIkkREII1fEbw2VBPkbqexs1jkYI56SuRVQoPUTORBIiIYTq9+EymVAtxB+lbvAqPURORRIiIYRKXaFa7jAT4g8rutNM5hA5F0mIhBAqmVAtxJ/3ew+RJETORBIiIQRgW1X3WNp1QCZUC/Fn/L7BqwyZORNJiIQQAJy5nENBoRVPg56w+l5ahyOE0yoaMpMeIuciCZEQAoDDxSZUF19cTghRNUVDZjKHyLlIQiSEAODQhUwAOjSW+UNC/Blyl5lzkoRICAHAoYu2hEjuMBPiz/l9DpH0EDkTSYiEEFitCocv2IbMOoRID5EQf4abS9GQmfQQORNJiIQQnL+Wy/WCQgx6F1oGeWsdjhBOTe0hkknVTkUSIiEEh270DrVpVE+d/yCE+GNci+YQyZCZU5ErnxBCnT/UXobLhPjT3NTb7mXIzJlIQiSEUG+579BYJlQL8Wepm7tKD5FTkYRIiDpOURQOF91yLz1EQvxprrJ1h1OShEiIOi4tK58rOSb0LjpaB8uWHUL8WeqQmdxl5lQkIRKijiuaUN2yoTfubnqNoxHC+bnKStVOSRIiIeq4ohWqZUK1ENXDTW67d0qSEAlRxx2+WLRlh0yoFqI6uLoU3XYvQ2bORBIiIeq4oiEz2cNMiOohCzM6J0mIhKjDLmcXkJaVj04HbRtJD5EQ1eH33e6lh8iZSEIkRB1WtP5Q8wZeeBtdNY5GiNrB1UV6iJyRJERC1GGHZP0hIaqdq/QQOSVJiISow2RCtRDV7/d1iKSHyJlIQiREHaZOqJYeIiGqjdpDJENmTkUSIiHqqMxcMylXcwFoFyI9REJUF3UdIhkycyqSEAlRRx1OtQ2XNfH3wM/ToHE0QtQerjJk5pQkIRKijjosw2VC1AjZ3NU5SUIkRB11SCZUC1EjiobM5C4z5yIJkRB11MFfb+xhJitUC1Gt3KSHyCk5TEL02muvodPpmDFjhnosPz+fuLg46tevj7e3N2PHjiU9Pd3ueSkpKQwfPhxPT08aNmzI008/TWFhoV2ZxMREunXrhtFoJDw8nCVLltyCVySE48rKN/PL5RwAOjfx0zYYIWoZdchMeoicikMkRHv27OHDDz+kU6dOdsefeOIJvv32W5YvX05SUhIXL15kzJgx6uMWi4Xhw4djMpnYsWMHn376KUuWLGH27NlqmTNnzjB8+HCio6PZv38/M2bMYOrUqWzYsOGWvT4hHE3RgoxN/D0I8JIJ1UJUJzdZqdopab5Wf3Z2NuPHj+c///kP//jHP9TjmZmZfPTRRyxbtoyBAwcC8Mknn9C2bVt27txJREQEGzdu5MiRI2zevJmgoCC6dOnCyy+/zLPPPkt8fDwGg4EPPviA5s2bM3/+fADatm3Ltm3bePvttxk8eHCpMRUUFFBQUKB+n5Vlm3xqNpsxm83V+vqL6qvuemsjaavKq6it9qdcZYzLVmablqO8cSsjczyuisIQsxnXY24oOp3W4Tg8aa+K9dd50U43DVOh7Y98uWZVrKau71WpT/OEKC4ujuHDhxMTE2OXEO3btw+z2UxMTIx6rE2bNjRt2pTk5GQiIiJITk6mY8eOBAUFqWUGDx7M9OnTOXz4MF27diU5OdmujqIyxYfmbjZv3jzmzJlT4vjGjRvx9PT8E6+2bJs2baqRemsjaavKK6utNp5w4VXX7/CzXIHcWxyUAzICFFZUShSR9iqfF1eIdtnP1xlh0FSuWVVR3W2Vm1v5C5ymCdEXX3zBjz/+yJ49e0o8lpaWhsFgwM/Pz+54UFAQaWlpapniyVDR40WPlVcmKyuLvLw8PDw8Spx71qxZzJw5U/0+KyuL0NBQYmNj8fGp3jtyzGYzmzZt4o477sDNza1a665tpK0qr6K2+vDoWtq5nAOg8P7vUIx1906zwkIzyTuSiewdiaurvK8qIu1VPv32+bgcXolBZ8bTyxvIlGtWJdTU9b1ohKcyNEuIzp8/z+OPP86mTZtwd3fXKoxSGY1GjEZjieNubm419qauybprG2mryiutra7lmAjN2g8GsNRvjWvz3toE5yjMZq57pODaqIO8rypD2qt8PiEAGCmk8MacarlmVV51t1VV6tJsUvW+ffu4dOkS3bp1w9XVFVdXV5KSkvjXv/6Fq6srQUFBmEwmMjIy7J6Xnp5OcHAwAMHBwSXuOiv6vqIyPj4+pfYOCVHbHbyQSYTLEQD0LfppHI0QtYzedpOCATOFVrnLzJlolhANGjSIgwcPsn//fvWrR48ejB8/Xv2/m5sbW7ZsUZ9z/PhxUlJSiIyMBCAyMpKDBw9y6dIltcymTZvw8fGhXbt2apnidRSVKapDiLrm518ziLyRENFMEiIhqpWrbXTBgFm27nAymg2Z1atXjw4dOtgd8/Lyon79+urxKVOmMHPmTAICAvDx8eHRRx8lMjKSiIgIAGJjY2nXrh0TJkzgjTfeIC0tjRdeeIG4uDh1yGvatGksXLiQZ555hgceeIDvv/+eL7/8krVr197aFyyEg/jl3DnauJy3fSMJkRDVS+0hKpTb7p2M5neZleftt9/GxcWFsWPHUlBQwODBg3nvvffUx/V6PWvWrGH69OlERkbi5eXF/fffz9y5c9UyzZs3Z+3atTzxxBMsWLCAJk2asHjx4jJvuReitnO/kAxArn9rPL3qaxyNELXMjR4io84sW3c4GYdKiBITE+2+d3d3Z9GiRSxatKjM54SFhbFu3bpy642KiuKnn36qjhCFcGqXrufTJv8AuIJbi/5ahyNE7WM3h0h6iJyJQ6xULYS4NQ7+mqnOH3ILH6BxNELUQuocokLZusPJSEIkRB1y6pfTtHS5gBUdhPXROhwhah99sUnV0kPkVCQhEqIOsZ7dBsC1eq3AM0DjaISohVxvDJnpCjFbFBTJiZyGJERC1BGKotDwsm1V+MKm0jskRI1wtS00bMS2h5Z0EjkPSYiEqCNSM/PpYjkIgH+7QRpHI0QtVey2ewBZish5SEIkRB1x/OQJbnNJxYILhhZ9tQ5HiNqp2MKMIAmRM5GESIg6Iud4IgCpHi3Bw0/TWISotfSSEDkrSYiEqCO8Um0LMmYF99I4EiFqsRuTqo06SYicjSREQtQBiqJwW86PAHi2jNY4GiFqMf3v6xCBJETORBIiIeqAi+dO0ZR0ChUXQjoP1DocIWqvoh4iucvM6UhCJEQdkHo4EYCzbi0wePlpGosQtdqNHiI3nfQQORtJiISoAwrP2dYfuuLXWeNIhKjlbqxD5IYFHVZk9w7nIQmREHWA39WfAdA37alxJELUcjeGzMA2j0h6iJyHJERC1HKmgnyam08BENRO1h8SokbdGDID2zwiSYichyREQtRyZw/vwqgzk4E3TVq01zocIWo3vZv6X+khci6SEAlRy107sQOAc+5t0bnIr7wQNUqns1uc0aroNA5IVJZcHYWo5fQX9wGQ27CrxpEIUUfc2L7DqJMhM2ciCZEQtVzQ9cMAeDWXFaqFuCXUDV4lIXImkhAJUYtlXEkjVLkIQFinfhpHI0Qd4fr7atWSEDkPSYiEqMV+PbQdgPO6EHzrB2kcjRB1hPQQOSVJiISoxfLO7gYgzaeDxpEIUYfcWJzRoCuUhRmdiCREQtRiXr8dAMAa0l3jSISoQ4rtZyZ7mTkPSYiEqKUUq0KzgqMABLTqrXE0QtQhxW67lyEz5yEJkRC1lOl6Gr7kkK+4Edbudq3DEaLukEnVTkkSIiFqKZdrvwBw1tASg9Fd42iEqENkUrVTkoRIiFrKN8eWEGUEdNI4EiHqGFmY0SlJQiRELdXEdBoAN9nhXohbS+0hkiEzZyIJkRC1UH5uNuHKOQBCOsiCjELcUq7FJlXLbfdOQxIiIWqhlCO7cdNZuIwfwaEttQ5HiLrFrodINnd1FpIQCVELZZ3eCcB5D9nhXohbTl2YUeYQORO5UgpRC7ml/QRAXsMu2gYiRF1UNKla5hA5FUmIhKhlFKuV0OyfAfBuITvcC3HLFbvtXlaqdh6SEAlRy6SmnCSIK5gVPc06D9A6HCHqHldZqdoZSUIkRC1zYf9mAE7omuPhVU/jaISog+S2e6ckCZEQtYxybjsAKe5tNI5EiDpKFmZ0SpIQCVHLNMqwTajO8mmtcSRC1FHFt+6QdYichiREQtQil9NSCFUuYlV06BuEax2OEHVTsc1dZVK185CESIha5NyPWwA4o2+Gm9FL42iEqKP0MqnaGUlCJEQtUvjLDwBcCuiucSRC1GFFPUQ6mVTtTCQhEqIWCby6DwDX5r01jkSIOkxdmFF6iJyJJERC1BKZV3+jmcW2oWvTzgM1jkaIOkxuu3dKkhAJUUuc+WkLLjqF87oQAoKaaB2OEHWX3cKMsrmrs5CESIhaIv/kVgBS/bppHIkQdZz+9yEzucvMeUhCJEQt4X95LwC6Zn00jkSIOs71xpCZLMzoVCQhEqIWyM3OpIX5FACNOw/SOBoh6jj97+sQycKMzkMSIiFqgV9+SsRNZyGNBjRq2lLrcISo21yLrVQtPUROQxIiIWqB6yds84d+9emCzkV+rYXQVPEeIkmInIZcOYWoBXzSdwNgCZX1h4TQnKs7AG46C1ZFxsychSREQji5gvxcbis4CkBwx2iNoxFCFA2ZAeiVQg0DEVUhCZEQTu7Mz9tx15m5hg9NW3XROhwhxI0hMwC9YtYwEFEVkhAJ4eSuHU0E4KxXJ5k/JIQj0Lv9/l/pIXIacvUUwsl5pu4CoKBxpMaRCCEA0OlQbvQSuVlNGgcjKksSIiGcmKWwkNvyDgHQoH2UtsEIIVTKjf3MXJEeImchCZEQTuzM4Z146/LIVjxo3j5C63CEEEVu9BC5UoiiyL33zkASIiGc2OXDiQCc9uiA3tVV22CEEL9z/X3He7MsRuQUKnUFzcrKqnLFPj4+VX6OEKJqDBd2ApDbqJfGkQgh7NxYi8iAmUKrrEXkDCrVQ+Tn54e/v3+lvwICAvjll18qrPf999+nU6dO+Pj44OPjQ2RkJN999536eH5+PnFxcdSvXx9vb2/Gjh1Lenq6XR0pKSkMHz4cT09PGjZsyNNPP01hof2YbWJiIt26dcNoNBIeHs6SJUsq87KFcGiK1UrznAMA+LeN0jYYIYQ9dYPXQgqlh8gpVLqPfcWKFQQEBFRYTlEUhg0bVqk6mzRpwmuvvUbLli1RFIVPP/2UUaNG8dNPP9G+fXueeOIJ1q5dy/Lly/H19eWRRx5hzJgxbN++HQCLxcLw4cMJDg5mx44dpKamMnHiRNzc3Hj11VcBOHPmDMOHD2fatGksXbqULVu2MHXqVBo1asTgwYMr+/KFcDgpJ/YTRhb5ihstOvfTOhwhRDE6V9scIiNmzFZJiJxBpRKisLAw+vfvT/369StVaYsWLXBzc6uw3MiRI+2+f+WVV3j//ffZuXMnTZo04aOPPmLZsmUMHDgQgE8++YS2bduyc+dOIiIi2LhxI0eOHGHz5s0EBQXRpUsXXn75ZZ599lni4+MxGAx88MEHNG/enPnz5wPQtm1btm3bxttvv11mQlRQUEBBQYH6fdGQodlsxmyu3kW2iuqr7nprI2krexcPbCYMOODemq+SZ5NhylAfU6wKV7KvsGbLGnQuOs1idAbSVlUj7VWxem71eNJFTwi2IbP8AhNms6HC59VlNXV9r0p9lUqIzpw5U6UADh06VKXyYOvtWb58OTk5OURGRrJv3z7MZjMxMTFqmTZt2tC0aVOSk5OJiIggOTmZjh07EhQUpJYZPHgw06dP5/Dhw3Tt2pXk5GS7OorKzJgxo8xY5s2bx5w5c0oc37hxI56enlV+bZWxadOmGqm3NpK2svE7mQDAp74e/HDuu1LLnEw/eStDcmrSVlUj7VW+MJMbj2GbVJ2QtJUAY4VPEVT/9T03N7fSZSs9ZHbmzBmaN2/+hwIqz8GDB4mMjCQ/Px9vb29WrVpFu3bt2L9/PwaDAT8/P7vyQUFBpKWlAZCWlmaXDBU9XvRYeWWysrLIy8vDw8OjREyzZs1i5syZ6vdZWVmEhoYSGxtb7ZPFzWYzmzZt4o477qhUr1pdJm31O8Vq5dpPT5DpomOP9zVQ4OGOD9PYuzFg+wPj0KFDdOjQAb1er3G0jk3aqmqkvcr33dnvSE5NxurtDb/ZhswievchPMhX69AcWk1d36tyU1ilE6LbbruNsLAwoqOj1a8mTZr8oQCLa926Nfv37yczM5MVK1Zw//33k5SU9Kfr/TOMRiNGY8l03s3NrcY+iGuy7tpG2gounj1OCFd4v54f+YqJVv6tiOsah05nG8Iwm824nXBjWPiwOt9WFZG2qhppr/Kdzz5PcmoyeTeGEw06M+j00laVVN3X96rUVemE6PvvvycxMZHExEQ+//xzTCYTLVq0YODAgWqCdHNPTGUYDAbCw8MB6N69O3v27GHBggX89a9/xWQykZGRYddLlJ6eTnBwMADBwcHs3r3brr6iu9CKl7n5zrT09HR8fHxK7R0Swhlc2L8Zf52O//raeiyndJiiJkNCCO14utmmVeTe+H00UEihTKp2CpVemDEqKor4+HgSExO5du0amzZtYty4cRw9epRJkyYREhJC+/bt/3RAVquVgoICunfvjpubG1u2bFEfO378OCkpKURG2vZsioyM5ODBg1y6dEkts2nTJnx8fGjXrp1apngdRWWK6hDCGSnndrCynhdZemji3YTYZrFahySEADxdixIi2/cGzHLbvZP4Q0vburu7M3DgQPr27Ut0dDTfffcdH374IceOHatSPbNmzWLo0KE0bdqU69evs2zZMhITE9mwYQO+vr5MmTKFmTNnEhAQgI+PD48++iiRkZFERNi2KIiNjaVdu3ZMmDCBN954g7S0NF544QXi4uLUIa9p06axcOFCnnnmGR544AG+//57vvzyS9auXftHXroQDiEw40deaGLrHZrcYTKuLrJKtRCOoKiHKAdbEmSgELMszOgUqnQVNZlM7Ny5k4SEBBITE9m1axehoaH079+fhQsXMmDAgCqd/NKlS0ycOJHU1FR8fX3p1KkTGzZs4I477gDg7bffxsXFhbFjx1JQUMDgwYN577331Ofr9XrWrFnD9OnTiYyMxMvLi/vvv5+5c+eqZZo3b87atWt54oknWLBgAU2aNGHx4sWyBpFwWpfTUjjolUmqa30CjP6MCh+ldUhCiBuKeojysCVBBp30EDmLSidEAwcOZNeuXTRv3pwBAwbw8MMPs2zZMho1avSHT/7RRx+V+7i7uzuLFi1i0aJFZZYJCwtj3bp15dYTFRXFTz/99IdiFMLRnNm3mY9uzB2a2P5+jHq5n1cIR6HOIbqREBkplK07nESlE6IffviBRo0aMXDgQKKiohgwYEClF2oUQlSffee/5RcPNzwUPfe0vkfrcIQQxXi5eQGQq9zoIZI5RE6j0pOqMzIy+Pe//42npyevv/46ISEhdOzYkUceeYQVK1bw22+/1WScQogbvtedAmCQZ3fqGeppHI0Qojh1UjW2PTUNsnWH06h0D5GXlxdDhgxhyJAhAFy/fp1t27aRkJDAG2+8wfjx42nZsuUfWqVaCFE559N+4ZhRAXRMvD1O63CEEDdREyKrLSEyYsZcKENmzqDSPUQ38/LyIiAggICAAPz9/XF1deXo0aPVGZsQ4iab9y5F0elobFZo26yb1uEIIW7i4WZb3y5PKcTKjd3upYfIKVS6h8hqtbJ3714SExNJSEhg+/bt5OTk0LhxY6Kjo1m0aBHR0dE1GasQdd7htB3gBi2sAVqHIoQoRVEPkQLk63QYMJNjkR4iZ1DphMjPz4+cnByCg4OJjo7m7bffJioqittuu60m4xNCFPOL9QIArf26ahyJEKI07q7u6NChoJCr02GgkAzpIXIKlU6I3nzzTaKjo2nVqlVNxiOEKMOVjDTOGKyAjn6d/qJ1OEKIUrjoXPBw9SC3MJc8Fxe5y8yJVHoO0cMPP0yrVq1ISEgos0x56wUJIf6cTbuXUajTEVhopUvL3lqHI4Qog7oWkYvuxhwiGTJzBlWeVD1mzBj27dtX4viCBQuYNWtWtQQlhCjpwIUkAG6z+OKi12scjRCiLL/vZ6az3WUmPUROocoJ0ZtvvsnQoUPt9i2bP38+s2fPlv3BhKhBv5hTAGhZr4PGkQghyvN7D5HLjd3upYfIGVR5R8ipU6dy9epVYmJi2LZtG//73/949dVXWbduHX369KmJGIWo867nZHDazQzo6N3mTq3DEUKUo3gPUZDMIXIaf2iL7GeeeYYrV67Qo0cPLBYLGzZsUHegF0JUv+/3fEmBiw4/i5XenYZqHY4QohxFaxHlurhglITIaVQqIfrXv/5V4ljjxo3x9PSkf//+7N69m927dwPw2GOPVW+EQgj2ndsMQLjZW+YPCeHgivcQGXRmzDJk5hQqlRC9/fbbpR7X6/Vs376d7du3A6DT6SQhEqIG/JJ/GtzhNs/WWocihKiAmhC52NYhkh4i51CphOjMmTM1HYcQogwmUwEnDfmAC7eHy3CZEI5OnVStc8FAvmzd4ST+8F5mQohbI2HfV+S6uOBltRLVfYzW4QghKlCyh0iGzJxBpRKimTNnkpOTU+lKZ82axdWrV/9wUEKI3+05tR6AcJM7BoNR42iEEBUpftu9m85CocWicUSiMiqVEC1YsIDc3NxKV7po0SIyMjL+aExCiGJO5x4HoIW77BsohDMoPqkaQCk0aRmOqKRKzSFSFIVWrVqhu/HDrUhVepOEEGWzWiycdMsGXOgeFqN1OEKISvBy8wJsPUQAusICLcMRlVSphOiTTz6pcsVBQUFVfo4Qwt6On78jU++C0aoQc/s4rcMRQlSCug5RUSeCRRIiZ1CphOj++++v6TiEEKXYfnQ1AOFmN7w862kbjBCiUn6fVH1jzTDpIXIKcpeZEA7s6PWfAbjNrbnGkQghKqsoIcopGjKzyhwiZyAJkRAOKif3OkcNtvl4/VqP1TgaIURlFd1lludiGzLTyaRqpyAJkRAOas32j8h1ccHfYiXm9nu0DkcIUUk332WGVYbMnIEkREI4qN3nbOsPtS30x9XVTeNohBCVpfYQ6XQogM4iPUTOoEoJkdlsxtXVlUOHDtVUPEKIG44pFwDo1CBS40iEEFVR1ENk0YFJBy6SEDmFKiVEbm5uNG3aFIusuilEjfr55E5SDOCiKNwZ+ZDW4QghqsDD1UP9f67OBReZVO0Uqjxk9ve//53nn39etuYQogat3/sxAC1NekIbtdQ4GiFEVehd9Ljr3QHbfmYyZOYcKrUOUXELFy7k1KlThISEEBYWhpeXl93jP/74Y7UFJ0RddTjrJ3CHNm7hWocihPgDPN08ybfkk6tzQS+Tqp1ClROi0aNH10AYQogiObnXOWbIBVzo21p2txfCGRUNm+W66NBbzRpHIyqjygnRSy+9VBNxCCFu+HbbYtvt9oVyu70Qzkrd8V6nQy9DZk7hD912n5GRweLFi5k1a5Y6l+jHH3/kwoUL1RqcEHXRnpQNALSzyO32Qjir37fvcMFFkR4iZ1DlHqKff/6ZmJgYfH19OXv2LA8++CABAQGsXLmSlJQUPvvss5qIU4g646jyK6CjU4PeWocihPiDii/O6Cp3mTmFKvcQzZw5k0mTJnHy5Enc3d3V48OGDWPr1q3VGpwQdc3PJ3Zw3qDDRVEYGfmg1uEIIf4gdcjMxQW99BA5hSonRHv27OHhhx8ucbxx48akpaVVS1BC1FXr934CyO32Qji734fMdLhKQuQUqpwQGY1GsrKyShw/ceIEgYGB1RKUEHXV4ev7AWhjkNvthXBmv0+qdkGvyJCZM6hyQnTnnXcyd+5czGZbxqvT6UhJSeHZZ59l7FjZkVuIP+p6TgZHDbmA7G4vhLP7fchMh5vcdu8UqpwQzZ8/n+zsbBo2bEheXh4DBgwgPDycevXq8corr9REjELUCV9v/ZA8FxfqF1oZ1PNurcMRQvwJxSdVGzBjtSoaRyQqUuW7zHx9fdm0aRPbtm3j559/Jjs7m27duhETE1MT8QlRZ+z5dSMYoL21gdxuL4STK37bvQEzZqsVo4te46hEeaqcEOXn5+Pu7k7fvn3p27dvTcQkRJ1jtVg4rEsDXOgePFDrcIQQf1LxhRkNukIKLQrGKn/iilupyj8ePz8/br/9dgYMGEB0dDSRkZF4eHhU/EQhRJmSflxNupsLRqvCXf3/pnU4Qog/qaiHKO9GD1GhRYbMHF2V5xBt3ryZIUOGsGvXLu688078/f3p27cvf//739m0aVNNxChErff94S8AaGtyx99X7tYUwtnZ9RBRiNlq1TgiUZEqJ0R9+/bl+eefZ+PGjWRkZJCQkEB4eDhvvPEGQ4YMqYkYhaj1jphOANCxXleNIxFCVIfi6xBJD5Fz+EMjmidOnCAxMVH9KigoYMSIEURFRVVzeELUfqdSDnHSYAF0DO9VctFTIYTzKb5StUFXiNkiPUSOrsoJUePGjcnLyyMqKoqoqCieffZZOnXqhE6nq4n4hKj1vkn+AEWno4UJ2t/WQ+twhBDVoPht90bMFMpt9w6vykNmgYGB5ObmkpaWRlpaGunp6eTl5dVEbELUCQcz9gDQzrWFxpEIIaqLXQ8RhRRKD5HDq3JCtH//ftLS0njuuecoKCjg+eefp0GDBvTu3Zu///3vNRGjELXW9ZwMjhiyAejf6i8aRyOEqC4erra7r806HS6YMElC5PD+0BwiPz8/7rzzTvr06UPv3r35+uuv+fzzz9m1a5esVi1EFXy99UNyb6xOfUeve7UORwhRTYqGzACsLoUyqdoJVDkhWrlypTqZ+siRIwQEBNC3b1/mz5/PgAEDaiJGIWqt3b9ukNWphaiF3PRuuOlcMSuFWFwKKZTb7h1elROiadOm0b9/fx566CEGDBhAx44dayIuIWo9q8XCYZd0bKtTD9I6HCFENfN0dSfTnE2hiwWz9BA5vConRJcuXaqJOISoc5J+XM0l16LVqadrHY4Qopp56H9PiGTIzPH9oTlEFouF1atXc/ToUQDatWvHqFGj0Otl4zohKuv7w1+ATlanFqK2KppHZNJZZaVqJ1DlhOjUqVMMGzaMCxcu0Lp1awDmzZtHaGgoa9eu5bbbbqv2IIWojY6YToBRVqcWorYquvXepIfCQovG0YiKVPm2+8cee4zbbruN8+fP8+OPP/Ljjz+SkpJC8+bNeeyxx2oiRiFqnd9Xp0ZWpxailvIotjij1ZyvcTSiIlXuIUpKSmLnzp0EBASox+rXr89rr71Gnz59qjU4IWqrb5Lfl9WphajlvAzegG0/My9zgcbRiIpUuYfIaDRy/fr1Esezs7MxGAzVEpQQtd3P6urUMsQsRG3l4eoFQK7OBcUsOzo4uionRCNGjOChhx5i165dKIqCoijs3LmTadOmceedd1aprnnz5tGzZ0/q1atHw4YNGT16NMePH7crk5+fT1xcHPXr18fb25uxY8eSnp5uVyYlJYXhw4fj6elJw4YNefrppyksLLQrk5iYSLdu3TAajYSHh7NkyZKqvnQhqoVtdeocAAa0vlvjaIQQNeX37Tt0KGaTxtGIilQ5IfrXv/7FbbfdRmRkJO7u7ri7u9OnTx/Cw8NZsGBBlepKSkoiLi6OnTt3smnTJsxmM7GxseTk5KhlnnjiCb799luWL19OUlISFy9eZMyYMerjFouF4cOHYzKZ2LFjB59++ilLlixh9uzZapkzZ84wfPhwoqOj2b9/PzNmzGDq1Kls2LChqi9fiD/t660fkndjdepYWZ1aiFqr6C6zPJ0LVovMIXJ0VZ5D5Ofnx9dff82pU6fU2+7btm1LeHh4lU++fv16u++XLFlCw4YN2bdvH/379yczM5OPPvqIZcuWMXDgQAA++eQT2rZty86dO4mIiGDjxo0cOXKEzZs3ExQURJcuXXj55Zd59tlniY+Px2Aw8MEHH9C8eXPmz5+vxrtt2zbefvttBg8eXOW4hfgzilan7pEVwJUPPkAxmav9HFarhfqnTnPl1ClcXGQ5jPJIW1WNtFfF9PW88bt3nLqfmfQQOYdKJ0RWq5U333yTb775BpPJxKBBg3jppZfw8PCotmAyMzMB1Anb+/btw2w2ExMTo5Zp06YNTZs2JTk5mYiICJKTk+nYsSNBQUFqmcGDBzN9+nQOHz5M165dSU5OtqujqMyMGTNKjaOgoICCgt8nwGVlZQFgNpsxm6v3w6uovuqutzaqDW2lrk6t6BjzvSuXTy6ssXPVB64lJNRY/bWJtFXVSHtVzKIoGHsYAdscIospz6mvXTWtpq7vVamv0gnRK6+8Qnx8PDExMXh4eLBgwQIuXbrExx9//IeCvJnVamXGjBn06dOHDh06AJCWlobBYMDPz8+ubFBQEGlpaWqZ4slQ0eNFj5VXJisri7y8vBJJ3bx585gzZ06JGDdu3Iinp2eJ49Vh06ZNNVJvbeTMbXXu6k9ccnWhz1Er/ifTsLq6ktnrdkCndWhCiGpgvHgRzzNnOJOQwDnf5oCth+jc6ROsWyerVVekuq/vubm5lS5b6YTos88+47333uPhh21rpmzevJnhw4ezePFiXFyqPBWphLi4OA4dOsS2bdv+dF1/1qxZs5g5c6b6fVZWFqGhocTGxuLj41Ot5zKbzWzatIk77rgDNzfZ3LM8taGt5vz3M4wmhUlbbBfG+lOn0CourtrPUxva6laRtqoaaa/yZW/aRNrMJwk0m+nWsRvf7P6GXBcdTRsHM2zYMK3Dc1g19b4qGuGpjEonRCkpKXY/zJiYGHQ6HRcvXqRJkyZVi/AmjzzyCGvWrGHr1q12dQUHB2MymcjIyLDrJUpPTyc4OFgts3v3brv6iu5CK17m5jvT0tPT8fHxKXXIz2g0YjQaSxx3c3OrsQtATdZd2zhzWx0xn2RMshXf6wpujRvTcNo0XGrwtThzW91q0lZVI+1VOs+WLQEwnzlLvaJ1iHQuuChmaa9KqO73VVXqqnTXTmFhIe7u7iVO9GfG+xRF4ZFHHmHVqlV8//33NG/e3O7x7t274+bmxpYtW9Rjx48fJyUlhcjISAAiIyM5ePCg3aazmzZtwsfHh3bt2qllitdRVKaoDiFuhRPnfiYn28LIXbbeoaC/P4/LTb9TQgjn5hYWBi4uWLOz8cq2Lf+S66JDVygLMzq6SvcQKYrCpEmT7HpO8vPzmTZtGl5eXuqxlStXVvrkcXFxLFu2jK+//pp69eqpc358fX3x8PDA19eXKVOmMHPmTAICAvDx8eHRRx8lMjKSiIgIAGJjY2nXrh0TJkzgjTfeIC0tjRdeeIG4uDg11mnTprFw4UKeeeYZHnjgAb7//nu+/PJL1q5dW+lYhfiz1iR/wKRNCq5W8BrQH+/oaK1DEkJUMxeDAbcmTTCnpOB58Spg6yHCIneZObpKJ0T3339/iWP/93//96dO/v777wMQFRVld/yTTz5h0qRJALz99tu4uLgwduxYCgoKGDx4MO+9955aVq/Xs2bNGqZPn05kZCReXl7cf//9zJ07Vy3TvHlz1q5dyxNPPMGCBQto0qQJixcvllvuxS2VvzeZLmcULHodwX//OzqdTKQWojYyNG+GOSUF9wtXwA3yXHRgkR4iR1fphOiTTz6p9pMrSsUz7t3d3Vm0aBGLFi0qs0xYWBjr1q0rt56oqCh++umnKscoRHXIuJpGv622hdmyh/fF0LSpxhEJIWqKsXkLcpK24nr+ErSwbe6qkx4ih/fnbw8TQlQo8aN4GmRBphf0mP2W1uEIIWqQ4cZ8WN35iwDku7igSA+Rw5OESIhboHDnTgBSWnrh6u2tcTRCiJpkbGFLiKznzqvHzJacsooLByEJkRA1LC8ni7DTtr8OPfsP1DgaIURNK+ohslxMxWi2TQ0xW2W3e0cnCZEQNWzLJ3PxzofrHjDo/he0DkcIUcP09evj4uMDikLTq7abJ8yKbO7q6CQhEqKG5f1g2/Mp5TZ3PLyqd6VzIYTj0el0GJo3AyD0ii0hKpSEyOFJQiREDTKbCmhyyraXjmuELAQqRF1hbN4CgCZXbN+brTKp2tFJQiREDUpY+gZ+OZBngIFT4rUORwhxixTNIwq2rc2IWScJkaOThEiIGnRtyxoAzjZ3w8e/ocbRCCFuFcONO82Cr1gBMCuyDpGjk4RIiBpiKSwk5KRtp2WlexdtgxFC3FLGGz1EDa5ZQVEw88f3/RS3hiREQtSQH1a9T4NMMLnCgAfnaB2OEOIWcmvaFPR63E0K/tlg1klC5OgkIRKihqR99wUAZ8NcadCoucbRCCFuJReDAbfGjQEIuapgolDjiERFJCESooY0PGGbTVnQpY3GkQghtOB249b7kCtg0lm0DUZUSBIiIWrArvWf0egyFLpAxCRZjFGIusjQrBkAIVcUzJIQOTxJiISoAb+s/hiAc6EuNG3ZWeNohBBacLsxsbrxFSiQhMjhSUIkRA1oeDgdgJwOMndIiLpK7SG6qmDSWbUNRlRIEiIhqlni8ncJ+c02XBb50FytwxFCaKRoccYGmWCxSA+Ro5OESIhqlv71/wPgdAtXmrbupnE0QgituPj7Y3J3xQXwytQ6GlERSYiEqEZ5OVmEHb0OgLVPL42jEUJoSafTkV2/HgB+1xSNoxEVkYRIiGq06d8v4JsD1z0g9m9vaB2OEEJjuQE+APhlaBuHqJgkREJUo8KkJADOtvbE2zdA42iEEFrLb2C7DtS/qnEgokKSEAlRTdJSTtLilG0Dx4BhYzWORgjhCEwNAgEIvKZxIKJCkhAJUU2S3nsWYyGkB0D0fc9oHY4QwgEUNgwGoNEVMJllx3tHJgmRENWk3r7jAKR2CETv6qpxNEIIhxAQBIC7GTIundc4GFEeSYiEqAY/b/+W5udtC6+1nfCkxtEIIRyFq7Ge+v9rv13QMBJREUmIhKgGRz6bD8CZJi506TdK42iEEI7C1c1AgZvt/9lX0rUNRpRLEiIh/iRLYSHBB20XuuzurTSORgjhaIoSotzMS9oGIsolCZEQf1LCsjcIugomV+j3t3lahyOEcDCmGwlRXpbce+/IJCES4k/K+GY5AKfDDTQKa6NxNEIIR2O+kRCZrmdoGoconyREQvwJaSknue14PgDuQ4ZrHI0QwhGZXXW2f3OuaxyJKI8kREL8CYn/mom72bb20OCpsrO9EKKkQjdbQlSYKwmRI5OESIg/of6e0wCkdQmRtYeEEKWy3EiILHm5GkciyiMJkRB/UMIXb9EkXaHQBXpOf1nrcIQQDsriduOjNj9P20BEuSQhEuIPurzqvwCcCnfjto69NY5GCOGoLG56AJSCfI0jEeWRhEiIP+By6hlaHLX9tecaE6NxNEIIR2a9kRDpCswaRyLKIwmREH/AlgVP4mmCy74wZJqsPSSEKJvVYLvv3sUkCZEjk4RIiD/Ad/cxAH7t3BA3g1HjaIQQjkwx3kiIzBaNIxHlkYRIiCra9vW/CbuoYNFB14df0jocIYSDU2780aSXhMihSUIkRBVd/N9/ADjdwpU23QdqHI0QwtG5uHsAoDdbNY5ElEcSIiGq4NKF09x2OBsAJbqfxtEIIZyBi4cnAHqzonEkojySEAlRBd//81E8C+A3Pxj+2NtahyOEcAKuHt4AuElC5NAkIRKiksymAhrtPAPAhV5hMplaCFEprl4+gCREjk4SIiEqad27M2l4DXINEP3ku1qHI4RwEoZ6vgC4yV33Dk0SIiEqSb8xEYBTHb0JbtpS22CEEE7DvV59ANwKNQ5ElEsSIiEqYcfaT7jtnBUrEP7AM1qHI4RwIp7+DQAwSg+RQ5OESIhKuPCZbYjs1G16ug+6W+NohBDOpJ5/EGBLiMymAo2jEWWRhEiICqScPEDLI7Z9y/TDhmocjRDC2fg0aKz+P/PKRQ0jEeWRhEiICux4eyZGM1wMhKEPy75lQoiq8W8Qov7/2iVJiByVJERClCMvJ4vQvbYL2JXebdC7umockRDC2bgZjBTYtjPj+pVUbYMRZZKruxDlWPvm32ifBdc9IPaZ9yosb7FYMJu1nzlpNptxdXUlPz8fi0X2TyqPtFXVOFp7ubm5odfrtQ6jQgVutjlEORnpWociyiAJkRBlMJsKqL9pHwC/dG/A7fUblVlWURTS0tLIyMi4RdGVT1EUgoODOX/+PDqdTutwHJq0VdU4Ynv5+fkRHBzsMPGUxnzj0zYv66q2gYgySUIkRBm+fu1B2l+BHCP0mfV+uWWLkqGGDRvi6emp+YXZarWSnZ2Nt7c3Li4yMl4eaauqcaT2UhSF3NxcLl26BECjRmX/0aI1840hM9P1DE3jEGWThEiIUphNBdTfsAeAUz0a0OO2DmWWtVgsajJUv379WxViuaxWKyaTCXd3d80/tBydtFXVOFp7eXjYdpK/dOkSDRs2dNjhM7ObDlAw51zXOhRRBu3fzUI4oK9fe5DgK5BrhD7Pl987VDRnyNPT81aEJoS4SdHvniPM3ytLoZut17gwVxIiRyUJkRA3Kd47dLJHA0LL6R0qTuthMiHqKmf43TPfSIisebkaRyLKIgmREDepSu+QEEJUhsXN9nGr5OdpHIkoiyREQhRjNhUQsLGod6h+pXuHhABo1qwZ77zzTo3VP2HCBF599dUaq780ly9fpmHDhvz666+39Ly1jdXNNrdJKZCtOxyVpgnR1q1bGTlyJCEhIeh0OlavXm33uKIozJ49m0aNGuHh4UFMTAwnT560K3P16lXGjx+Pj48Pfn5+TJkyhezsbLsyP//8M/369cPd3Z3Q0FDeeOONmn5pwkl989qDNLpc1Dv0gdbh1KhJkyah0+nQ6XQYDAbCw8OZO3cuhYW1e0vuqKgoZsyYUSN179mzh4ceeqjS5RMTE9HpdJVaruHAgQOsW7eOxx57TD0WFRWFTqfjtddeK1F++PDh6HQ64uPjAXjuuedo06aNXZljx46h0+mYNGmS3fElS5ZgNBrJy8ujQYMGTJw4kZdeeqnSr6tIfHy8+h4r+ro5htIsX76cNm3a4O7uTseOHVm3bl2Vz+1oihIincmkcSSiLJomRDk5OXTu3JlFixaV+vgbb7zBv/71Lz744AN27dqFl5cXgwcPJj8/Xy0zfvx4Dh8+zKZNm1izZg1bt261uyBlZWURGxtLWFgY+/bt48033yQ+Pp5///vfNf76hHMxmwrwr2O9Q0OGDCE1NZWTJ0/y5JNPEh8fz5tvvql1WACYnPCDIzAwsMYm17/77rvcfffdeHt72x0PDQ1lyZIldscuXLjAli1b7G5Dj46O5vjx46SlpanHEhISCA0NJTEx0e75CQkJREREqHdwTZ48maVLl3L1atXX0Gnfvj2pqanq17Zt28otv2PHDsaNG8eUKVP46aefGD16NKNHj+bQoUNVPrcjsRps9927FDjuxO+6TtOEaOjQofzjH//grrvuKvGYoii88847vPDCC4waNYpOnTrx2WefcfHiRbUn6ejRo6xfv57FixfTq1cv+vbty7vvvssXX3zBxYu27RaWLl2KyWTi448/pn379tx777089thjvPXWW7fypQonoPYOGaD3c6Un6bWN0WgkODiYsLAwpk+fTkxMDN988w0A165dY+LEifj7++Pp6cnQoUPVHlpFUQgMDGTFihVqXV26dLH7AN62bRtGo5HcXNsk0oyMDKZOnUpgYCA+Pj4MHDiQAwcOqOXj4+Pp0qULixcvpnnz5ri7u5ca87lz5xg5ciT+/v54eXnRvn17ux6EQ4cOMXToULy9vQkKCmLChAlcvnwZsPWKJSUlsWDBArXH4uzZs2zbtg29Xs/atWvp1KkT7u7uRERElPgQ/uqrr2jfvj1Go5FmzZoxf/58u8dvHjLT6XQsXryYu+66C09PT1q2bKm279mzZ4mOjgbA39+/1J6aIhaLhRUrVjBy5MgSj40YMYLLly+zfft29dinn35KbGwsDRs2VI/17dsXNzc3u+QnMTGRuLg4rl69ytmzZ+2OF8UGtqQmJCSEVatWlRpfeVxdXQkODla/GjRoUG75BQsWMGTIEJ5++mnatm3Lyy+/TLdu3Vi4cGGVz+1IFOONhMis/ereonQOO4fozJkzpKWlERMTox7z9fWlV69eJCcnA5CcnIyfnx89evRQy8TExODi4sKuXbvUMv3798dgMKhlBg8ezPHjx7l27Vqp5y4oKCArK8vuC2y3dNbEV03WXdu+aqqtcnOy1d6hEz0CaNSsXZWerygKVqtV/bJYLGTnm275l8ViwWq1oigKQIm4in8pilLicXd3d0wmE1arlfvvv5+9e/eyevVqtm/fjtVqZdiwYRQUFKAoCv369SMhIQGr1cqVK1c4evQoeXl5HDlyBKvVSmJiIj179sTd3R2r1cpf/vIX0tPTWbt2LXv27KFr164MGjSIy5cvq/GcOnWKFStWsGLFCn788cdS4/7b3/5Gfn4+iYmJHDhwgHnz5uHp6YnVauXq1asMHDiQLl26sHv3btatW0daWhr33HMPVquVt99+m8jISKZOncqFCxe4cOECTZo0UX/3n376ad5880127dpFgwYNGDlyJAUFBVitVvbs2cM999zDX//6Vw4cOMDs2bN58cUX+fjjj9XYbm5zgDlz5vCXv/yF/fv3M3ToUMaPH8/ly5dp3Lgxy5cvB2x/3F24cIG333671Ne8f/9+MjMz6datm91xsG1dcd9999nFsWTJEjW5KorHw8ODnj178v3336vlihKf3r17s2XLFqxWK6dOnSIlJYUBAwbYnatnz55s3bpVfW8tWbIEnU5X5vur6Gd68uRJQkJCaNGiBffddx9nz54t9znJyckMGjTI7lhsbCzJyckVnkvr61N51ywMRgD0ZovmMTnqV01d3yvLYRdmLOrWDQoKsjseFBSkPpaWlmb3FxDY/hoJCAiwK9O8efMSdRQ95u/vX+Lc8+bNY86cOSWOb9y4sca6wzdt2lQj9dZGNdFWv239mD43eoeU/vdVac5C0V/A2dnZ6jBPnslC5Fs7qz3OiiTPjMDD8PvCdNevl73midlsprCwkKysLBRFISkpiY0bN/Lggw/y008/8e2337J+/Xo6d+4MwPvvv0+HDh34/PPPGT16NBEREXzyySdkZWWxYcMGOnXqRMOGDVm/fj0hISFs2bKFXr16kZWVRXJyMrt37+bkyZMYjbYPhhdffJFVq1bx3//+l0mTJlFQUIDJZGLhwoVqL0LRHyPFnT17ljvvvJOwsDAA+vfvr5Z966236NixI88++6xa/p133qFDhw78+OOPhIeH4+Ligqurq/q7XNSDBfDUU0/Rq1cvwDZE1b59e5YtW8Zdd93FG2+8wYABA9Q5PGPGjGH//v28+eabjBkzBrAtWpifn28X97333svw4cMBePbZZ3n33XdJTEwkJiZG7QXz8PBQ4yntNR87dgy9Xo+7u7vd44WFhZhMJu677z6GDx/O3Llz2b9/PxkZGfTv3x+LxaL+gQcQGRnJ119/TVZWFseOHSMvL4/bbruN22+/nc2bNzN27FjWr1+Pu7s77dq1sztXgwYN+Pnnn9X3lMFgoGXLlqXGW6RDhw4sWrSI8PBw0tPTef311+nXrx87duygXr16pT4nLS2NevXq2dXr4+NDampqmecymUzk5eWxdetWh5wDt2nTJvKstkTSxWSpFXOiakp1X9+L/35XxGETIi3NmjWLmTNnqt9nZWURGhpKbGwsPj4+1Xous9nMpk2buOOOO3Bzc6vWumubmmors6mAnW8+B9h6h+4eX/lJsQD5+fmcP38eb29v9QPO1aTNRbmeTz08Da4oisL169epV69emWu0uLm5sWHDBpo0aYLZbMZqtTJu3DheffVVtmzZgqurKwMHDlRX/vXx8aF169acO3cOHx8fYmNjee655ygoKGDPnj0MHDiQ4OBgdu7cSVxcHLt37+a5557Dx8eH06dPk5OTw2233WYXQ15eHhcvXsTHxwej0UhYWBgtWrQo9zU+/vjjxMXFsXXrVgYNGsSYMWPo1KkTYEscfvjhB7tenyLp6el069YNV1dXDAaD+rtc1OMBMHDgQPX4za/39OnT3HnnnXbXgOjoaD744AO8vLzQ6/W4uLjg7u5uV6ZHjx52dfr4+JCdnY2Pj4+aBNWrV6/Ca4vRaMTX19fuWNFr6dOnDy1btmTjxo0kJiYyYcIEAgIC0Ov1GI1Gte7Y2Fjmz59PTk4O+/bto2/fvvj7+xMbG8unn36Kj48Pu3btonfv3gQGBtqdy9fXF5PJRL169bh+/Trjxo3jvvvuKzfmsWPH2n0fHR1N8+bNWb9+PVOmTCnzeR4eHnbt4eHhgU6nK7ON8vPz8fDwoH///mUOtWqh+DVrzZ5lwAVcCyF22DCtQ3M4NXV9Ly9hv5nDJkTBwcGA7SJWfF5Ceno6Xbp0UcsU7WFTpLCwkKtXr6rPDw4OJj3dfnfhou+LytzMaDSqf8UW5+bmVmNJS03WXdtUd1t989pU2t3oHeoz670q122xWNDpdLi4uKhbGXgZ3Tgyd3C1xVhZHm56dRgDUOMqjU6nIzo6mvfffx+DwUBISAiurrZLQtFzir+m4s9zcXGhc+fOBAQE8MMPP7B161ZeeeUVgoODeeONN9i3bx9ms5m+ffvi4uJCTk4OjRo1KjF5F2wbc7q4uKDT6fDy8qpwO4iHHnqIoUOHsnbtWjZu3Mhrr73G/PnzefTRR8nJyWHkyJG8/vrrJZ7XqFEjte7i7VLUVhW93tLas7R2urmM0Wi0+74oQS3+nNLOW1zDhg3Jzc2lsLDQbvi/+PkeeOAB3n//fY4cOcLu3btLjadfv34YDAaSkpJITEwkKioKFxcXevXqxeXLlzl79ixJSUk8/PDDJeK5du0agYGBavzlvbfKEhAQQKtWrfjll1/KfG5wcDC//fab3eOXLl0iODi4zOcUvX8c9Trq5uaGq5etR8zVrDhkjI6iun+GVanLYecQNW/enODgYLZs2aIey8rKYteuXURGRgK27t+MjAz27dunlikaHy/q9o6MjGTr1q1244ibNm2idevWpQ6XibrFbCrAb+NuAE52D6Bpy87VUq9Op8PT4HrLv6q6Yq+Xlxfh4eE0bdpUTYYA2rZtS2FhoToXD+DKlSscP36cdu3aqa+xX79+fP311xw+fJi+ffvSqVMnCgoK+PDDD+nRowdeXl4AdOvWjbS0NFxdXQkPD7f7qmiSbWlCQ0OZNm0aK1eu5Mknn+Q///mPep7Dhw/TrFmzEucpisVgMGCxlD6xdefO34c5r127xokTJ2jbtq3aJsUnLgNs376dVq1a/eH9s4qSm7LiKVL0R+CRI0fKLHPfffdx8OBBOnTooP6Mbubh4UGvXr1ITEwkKSmJqKgowPahERERwUcffcT58+ftJlQXOXToEF27dq3EqypbdnY2p0+fLncT1sjISLvrPtiu2UXXfWfl5mXr3XIrVCooKbSiaUKUnZ3N/v372b9/P2CbSL1//35SUlLQ6XTMmDGDf/zjH3zzzTccPHiQiRMnEhISwujRowHbBWrIkCE8+OCD7N69m+3bt/PII49w7733EhISAtguEgaDgSlTpnD48GH+97//sWDBArshMVF3ffPmw4T8VnRn2btah+MwWrZsyahRo3jwwQfZtm0bBw4c4P/+7/9o3Lgxo0aNUstFRUXx+eef06VLF3X38/79+7N06VIGDBiglouJiSEyMpLRo0ezceNGzp49y44dO/j73//O3r17qxTbjBkz2LBhA2fOnOHHH38kISFBTVqK7pgaN24ce/bs4fTp02zYsIHJkyerSUezZs3YtWsXZ8+eVSd0F5k7dy5btmzh0KFDTJo0iQYNGqjXmyeffJItW7bw8ssvc+LECT799FMWLlzIU0899UebmbCwMHQ6HWvWrOG3334rsYZakcDAQLp161buLev+/v6kpqaWSCZuFh0dzRdffEF+fj7dunVTjw8YMIB3330XLy8vevbsafec3Nxc9u3bR2xsrHps1apVFa4p9NRTT5GUlKT+vO+66y70ej3jxo1Ty0ycOJFZs2ap3z/++OOsX7+e+fPnc+zYMeLj49m7dy+PPPJIuedydEYf2x/gBudbTaLO0DQh2rt3L127dlX/6pg5cyZdu3Zl9uzZADzzzDM8+uijPPTQQ/Ts2ZPs7Gx1wl+RpUuX0qZNGwYNGsSwYcPo27ev3RpDvr6+bNy4kTNnztC9e3eefPJJZs+eXaXF00TtZDYV4Lfe1gNysnsATVt3q+AZdcsnn3xC9+7dGTFiBJGRkSiKwrp16+y6oAcMGIDFYlF7GsCWJN18TKfTsW7dOvr378/kyZNp1aoV9957L+fOnStx40RFLBYLcXFx6h9ErVq14r333gMgJCSE7du3Y7FYiI2NpWPHjsyYMUMdlgPbh7Rer6ddu3YEBgaSkpKi1v3aa6/x+OOP0717d9LS0vj222/VXpxu3brx5Zdf8sUXX9ChQwdmz57N3Llzy7xVvjIaN27MnDlzeO655wgKCir3Q3/q1KksXbq03Pr8/PzUnrCyREdHc/36dfr06WPXKzhgwACuX7+u3p5f3Ndff03Tpk3p16+feiwzM5Pjx4+Xe65ff/2VcePG0bp1a+655x7q16/Pzp077eYnpaSkkJqaqn7fu3dvli1bxr///W86d+7MihUrWL16NR06OPe6YB4+AQC4Od6cb1FEERXKzMxUACUzM7Pa6zaZTMrq1asVk8lU7XXXNtXdViv+cb9ypHUbZW/HNsq5Y/v+cD15eXnKkSNHlLy8vGqJqzpYLBbl2rVrisVi0ToUh2exWJRvv/1WAZRr165pHU6ZcnNzldDQUGXHjh23/Ny9evVSli5dqiiKY763HPF3UFHsr1l7N3+pHGndRvmpQxutw3JINfVZWJXPb4edQyRETZLeIeFsPDw8+Oyzz9RFJm+Vy5cvM2bMGLthLlF13vVtPaFGs+36IxyPw95lJkRN+ubN6bT7DfJk7pBwIsWHIW+VBg0a8Mwzz9zy89Y2/oGNuXLj/5lXLtKgUfNyy4tbT3qIRJ1j6x2yrXZ+QnqHBLZtLSwWC35+flqHImop/8Df18a6dumihpGIskhCJOqcb96cToj0DgkhbiE3g5GCG2My2VfTyi8sNCEJkahTpHdICKGVghtramZnXCq/oNCEJESiTpHeISGEVsw3eojyMq+UX1BoQhIiUWdYCgvxVXuH/KV3SAhxS5lvLO9kun5N20BEqSQhEnXG1288TOMbvUMRz/xL63CEEHWM2c22tY4557rGkYjSSEIk6oSCvFx8v9sB2HqHmrXtoXFEQoi6pvBGQlSYKwmRI5KESNQJq54Zre5ZJr1DoqY0a9aMd955p8bqnzBhAq+++mqN1V+ay5cv07BhQ3799ddbet7aqNDVlhBZ83I1jkSURhIiUev9lPAVbRLPA3AyNlx6h26YNGkSOp0OnU6HwWAgPDycuXPnUlhYuzdbioqKYsaMGTVS9549e6q0T2JiYiI6nY6MjIwKyx44cIB169bx2GOPqceioqLQ6XS89tprJcoPHz4cnU5HfHw8AM8991yJzViPHTuGTqcrsR/bkiVLMBqN5OXl0aBBAyZOnMhLL71U6ddVmtdee03dtLsiy5cvp02bNri7u9OxY0fWrVv3p87tKCwG20eukp+ncSSiNJIQiVrNUljIhddmYzTDmSY6xr66QuuQHMqQIUNITU3l5MmTPPnkk8THx/Pmm29qHRYAJpPzbQseGBiIp6dnjdT97rvvcvfdd+Pt7W13PDQ0lCVLltgdu3DhAlu2bKFRo0bqsejoaI4fP05a2u9r4CQkJBAaGkpiYqLd8xMSEoiIiMDDwwOAyZMns3TpUq5evfqHYt+zZw8ffvghnTp1qrDsjh07GDduHFOmTOGnn35i9OjRjB49mkOHDv2hczsSi+uNhKhAtu5wRJIQiVrtq9n3cts5KyY91H/qOdwMxltzYkUBU86t/1KUKoVpNBoJDg4mLCyM6dOnExMTwzfffAPAtWvXmDhxIv7+/nh6ejJ06FBOnjx54+UpBAYGsmLF7wlmly5d7D6At23bhtFoJDfXNjyQkZHB1KlTCQwMxMfHh4EDB3LgwAG1fHx8PF26dGHx4sU0b94cd3f3UmM+d+4cI0eOxN/fHy8vL9q3b2/Xg3Do0CGGDh2Kt7c3QUFBTJgwQd3/a9KkSSQlJbFgwQK1d+zs2bNs27YNvV7P2rVr6dSpE+7u7kRERJT4EP7qq69o3749RqORZs2aMX/+fLvHbx4y0+l0LF68mLvuugtPT09atmyptu/Zs2eJjo4GwN/fv9SemiIWi4UVK1YwcuTIEo+NGDGCy5cvs337dvXYp59+SmxsLA0bNlSPFe1iXzz5SUxMJC4ujqtXr3L27Fm740WxAbRv356QkBBWrVpVanzlyc7OZvz48fznP//B39+/wvILFixgyJAhPP3007Rt25aXX36Zbt26sXDhwiqf29FYDbb77nVOmOzXBZIQiVrr5IHtNF93GIAj/YLoNWTirTu5ORdeDbn1X+Y/NzfBw8ND7ZmZNGkSe/fu5ZtvviE5ORlFURg2bBhmsxmdTkf//v3VD9dr165x9OhR8vLyOHbsGABJSUn07NlT7TG5++67uXTpEt999x379u2jW7duDBo0yK7X4dSpU3z11VesXLmS/fv3lxpjXFwcBQUFbN26lYMHD/L666+rvSYZGRkMHDiQrl27snfvXtavX096ejr33HMPYPuwjYyM5MEHHyQ1NZXU1FRCQ0PVup9++mnmz5/Pnj17CAwMZOTIkZjNZgD27dvHPffcw7333svBgweJj4/nxRdfLNE7c7M5c+Zwzz338PPPPzNs2DDGjx/P1atXCQ0N5auvvgLg+PHjpKamsmDBglLr+Pnnn8nMzKRHj5LDvQaDgfHjx/PJJ5+ox5YsWcIDDzxgV87Ly4uePXuSkJCgHktMTGTQoEH06dNHPf7LL7+QkpJilxAB3H777fzwww9259DpdOW+drD9vIYPH05MTEyFZQGSk5NLlB08eDDJycmVer4jsxps9927mGr3sLSzkoRI1FqHZk/HOx8uBMKdb36tdTgOTVEUNm/ezIYNGxg4cCAnT57km2++YfHixfTr14/OnTuzdOlSLly4wOrVqwHb/JWihGjr1q107drV7lhiYiIDBgwAbL1Fu3fvZvny5fTo0YOWLVvyz3/+Ez8/P7teJpPJxGeffUbXrl3LHF5JSUmhT58+dOzYkRYtWjBixAj69+8PwMKFC+natSuvvvoqbdq0oWvXrnz88cckJCRw4sQJfH19MRgMeHp6EhwcTHBwMHq9Xq37pZde4o477qBjx458+umnpKenq70ib731FoMGDeLFF1+kVatWTJo0iUceeaTCIcZJkyYxbtw4wsPDefXVV8nOzmb37t3o9XoCAgIAaNiwIcHBwfj6+pZax7lz59Dr9XY9PsU98MADfPnll+Tk5LB161YyMzMZMWJEiXLR0dHqz+fIkSPk5+fTtWtXu+Q2MTFR7SErLiQkhHPnzqnf+/r60rp163Jf+xdffMGPP/7IvHnzyi1XXFpaGkFBQXbHgoKC7Ib6nJVilITIkclu96JWWvXGNNocN2PVgcv0KXjVK/2Dpsa4ecLzGmzg6Fa1+Str1qzB29sbs9mM1WrlvvvuIz4+ni1btuDq6kqvXr3UsvXr16d169YcPXoUgAEDBvD444/z22+/kZSURFRUFMHBwSQmJjJlyhR27Nih7pJ+4MABsrOzqV+/vt358/LyOH36tPp9WFgYgYGB5cb82GOPMX36dDZu3EhMTAxjx45Vk6cDBw6QkJBQYp4NwOnTp2nVqlW5dUdGRqr/DwgIsHu9R48eZdSoUXbl+/TpwzvvvIPFYrFLrIornth5eXnh4+PDpUtV27ohLy8Po9FYZo9M586dadmyJStWrCAhIYEJEybg6lry8h4VFcUrr7xCamoqiYmJ9O3bF71ez4ABA/jggw8AW0LUu3dvjEb74WUPDw91+BPgrrvuYuzYsWXGfP78eR5//HE2bdpU5vBnXaMz2tpBb7ZoHIkojSREotZJOXmA4P8lAXCohw9/ve+pWx+ETgcGr1t/3iqKjo7m/fffx2AwEBISUuqHaFk6duxIQEAASUlJJCUl8corrxAcHMzrr7/Onj17MJvN9O7dG7DNI2nUqFGJybuA3Q7zXl4Vt9nUqVMZPHgwa9euZePGjcybN4/58+fz6KOPkp2dzciRI3n99ddLPK/4/KZbyc3Nze57nU6H1WqtUh0NGjQgNzcXk8mEwWAotcwDDzzAokWLOHLkCLt37y61TJ8+fTAYDCQkJJCQkKD24PXs2ZPLly/zyy+/kJiYyMMPP1ziuVevXq0wWS1u3759XLp0iW7dfl8R3mKxsHXrVhYuXEhBQUGpSWRwcDDp6el2x9LT0wkODq70uR3V7wlR1X7+4taQITNR6+x5ZiJ+OZAeALFvrdQ6HIfm5eVFeHg4TZs2tUuG2rZtS2FhIbt27VKPXblyhePHj9OuXTvA9sHer18/vv76aw4fPkzfvn3p1KkTBQUFfPjhh/To0UNNcLp160ZaWhqurq6Eh4fbfTVo0KDKcYeGhjJt2jRWrlzJk08+yX/+8x/1PIcPH6ZZs2YlzlMUi8FgwGIp/S/0nTt3qv+/du0aJ06coG3btmqbFJ+4DLB9+3ZatWpVZu9QRYqSm7LiKdKlSxfANsxVlvvuu4+DBw/SoUMH9Wd0Mw8PD3r16kViYqLaqwe2pC0iIoKPPvqI8+fPl5g/BLbJ6l27dq3Eq7IZNGgQBw8eZP/+/epXjx49GD9+PPv37y+zzSIjI9myZYvdsU2bNtn13jkrnYetB1dvrtrND+LWkIRI1Cor502l3VETVh2YHroP/8DGWofklFq2bMmoUaN48MEH2bZtGwcOHOD//u//aNy4sd2wUVRUFJ9//jldunTB29sbFxcX+vfvz9KlS9XeB4CYmBgiIyMZPXo0Gzdu5OzZs+zYsYO///3v7N27t0qxzZgxgw0bNnDmzBl+/PFHEhIS1KSl6I6pcePGsWfPHk6fPs2GDRuYPHmymnQ0a9aMXbt2cfbsWS5fvmzXWzN37ly2bNnCoUOHmDRpEg0aNGD06NEAPPnkk2zZsoWXX36ZEydO8Omnn7Jw4UKeeuqP90CGhYWh0+lYs2YNv/32G9nZ2aWWCwwMpFu3bmzbtq3Muvz9/UlNTS2RTNwsOjqaL774gvz8fLvemwEDBvDuu++qk6+Ly83NZd++fcTGxqrHVq1aVWJdo+Lq1atHhw4d7L68vLyoX78+HTp0UMtNnDiRWbNmqd8//vjjrF+/nvnz53Ps2DHi4+PZu3cvjzzySLmvyxm4etqGcl0lIXJIkhCJWuPs0b2ELLf9BX+opy+xk17UOCLn9sknn9C9e3dGjBhBZGQkiqKwbt06uyGgAQMGYLFY1J4GsCVJNx/T6XSsW7eO/v37M3nyZFq1asW9997LuXPnSkygrYjFYiEuLo62bdsyZMgQWrVqxXvvvQfYJv5u374di8VCbGwsHTt2ZMaMGfj5+eHiYrvcPfXUU+j1etq1a0dgYCApKSlq3a+99hqPP/443bt3Jy0tjW+//VbtxenWrRtffvklX3zxBR06dGD27NnMnTu3zFvlK6Nx48bMmTOH5557jqCgoHI/9KdOncrSpUvLrc/Pz6/CYcfo6GiuX79Onz597HoFBwwYwPXr19Xb84v7+uuvadq0Kf369VOPZWZmcvz48XLPVRkpKSmkpqaq3/fu3Ztly5bx73//m86dO7NixQpWr15tl0Q5KzcvH9u/hZIQOSRFVCgzM1MBlMzMzGqv22QyKatXr1ZMJlO1113bVNRWK+/sqBxp3Ub5vncb5drli7csrry8POXIkSNKXl7eLTtnRSwWi3Lt2jXFYrFoHYrDs1gsyrfffqsAyrVr17QOp0y5ublKaGiosmPHjlt+7l69eilLly5VFMUx31uO+DuoKCWvWes/mqMcad1G2Xp7G40jczw19VlYlc9v6SEStcJXcyfS5rgZiw4s0+7Hr742E2iFqCkeHh589tln6iKTt8rly5cZM2YM48aNu6XnrY08fG3LLBjMGgciSiV3mQmnd/rgDpqs3gPAoQh/7p3wnMYRCVEzig9D3ioNGjRQl08Qf46Xn214WBIixyQ9RMKpWQoLOTjrYXxyIbUBDHtrtdYhCSfUt29fLBaL3RIAQlQ37/q2hMjdDGaT7GfmaCQhEk5t1T/up/WpQgpdQPfIg/j4l76SrxBCaK34Xa+ZVzRYuFWUSxIi4bSO/5RI2OofATgc2YDoe2dqHJEQQpTNP7CJ+v9rlyQhcjSSEAmnZCks5NgLj6h7lY18Z43WIQkhRLncDEYKbszczb7q/Huz1TaSEAmn9NVL99HqtIVCFzA8Hnfr9yoTQog/wHRjiafsjKrtZydqniREwukc27uFFmsOAnCobyD9/+L8K9gKIeqGooQoL/OKtoGIEiQhEk7FXJDL+dlP4lUAvwbpGP22DJUJIZyH+UZCZMrO0DQOUZIkRMKpFC5/g+bnreQZwPvpJ/G4sRS+EI6gWbNmvPPOOzVW/4QJE3j11VdrrP7SXL58mYYNG/Lrr7/e0vPWVmY3ne3fnOsaRyJuJgmRcBpfPTeGzgfzATg7rg+RI6ZoHJFzmzRpEjqdDp1Oh8FgIDw8nLlz51JYWKh1aDUqKiqKGTNm1Ejde/bs4aGHHqp0+cTERHQ6HRkZGRWWPXDgAOvWreOxxx5Tj0VFRaHT6XjttddKlB8+fDg6nY74+HgAnnvuuRKbsR47dgydTldiP7YlS5ZgNBrJy8ujQYMGTJw4kZdeeqnSr6vI+++/T6dOnfDx8cHHx4fIyEi+++67Cp+3fPly2rRpg7u7Ox07dmTdunVVPrejKryREFlysjSORNxMEiLhFL77999p/90pAPb3C2TMrMUaR1Q7DBkyhNTUVE6ePMmTTz5JfHw8b775ptZhAWAymbQOocoCAwPx9PSskbrfffdd7r77bry9ve2Oh4aGsmTJErtjFy5cYMuWLTRq9PsWNtHR0Rw/fpy0tN/vbkpISCA0NJTExES75yckJBAREYGHhwcAkydPZunSpVy9erVKMTdp0oTXXnuNffv2sXfvXgYOHMioUaM4fPhwmc/ZsWMH48aNY8qUKfz000+MHj2a0aNHc+jQoSqd21EVut5IiPJyNY5E3EwSIuHw9v/wNQEfrMTVCkdbunLXvzZoHVKFFEUh15x7y78UpWq7aBuNRoKDgwkLC2P69OnExMTwzTffAHDt2jUmTpyIv78/np6eDB06lJMnT6qvLzAwkBUrVqh1denSxe4DeNu2bRiNRnJzbRf+jIwMpk6dSmBgID4+PgwcOJADBw6o5ePj4+nSpQuLFy+mefPmuLu7lxrzuXPnGDlyJP7+/nh5edG+fXu7HoRDhw4xdOhQvL29CQoKYsKECer+X5MmTSIpKYkFCxaovWNnz55l27Zt6PV61q5dS6dOnXB3dyciIqLEh/BXX31F+/btMRqNNGvWjPnz59s9fvOQmU6nY/Hixdx11114enrSsmVLtX3Pnj1LdHQ0AP7+/qX21BSxWCysWLGCkSNHlnhsxIgRXL58me3bt6vHPv30U2JjY2nY8PeFSot2sS+e/CQmJhIXF8fVq1c5e/as3fGi2ADat29PSEgIq1atKjW+sowcOZJhw4bRsmVLWrVqxSuvvIK3tzc7d+4s8zkLFixgyJAhPP3007Rt25aXX36Zbt26sXDhwiqd21FZDLaPXSU/T+NIxM1kLzPh0FLPHePy88/ROBcuNATzvU+id3X8t21eYR69lvW65efddd8uPN3+eA+Fh4cHV67Y7n6ZNGkSJ0+e5JtvvsHHx4dnn32WYcOGceTIEdzc3Ojfvz+JiYn85S9/4dq1axw9ehQPDw+OHTtGmzZtSEpKomfPnmqPyd13342Hhwffffcdvr6+fPjhhwwaNIgTJ04QEGDb9PLUqVN89dVXrFy5Er1eX2qMcXFxmEwmtm7dipeXF0eOHFF7TTIyMhg4cCBTp07l7bffJi8vj2effZZ77rmH77//ngULFnDixAk6dOjA3LlzAahfvz5HjhwB4Omnn2bBggUEBwfz/PPPM3LkSE6cOIGbmxv79u3jnnvuIT4+nr/+9a/s2LGDv/3tb9SvX7/MRAZgzpw5vPHGG7z55pu8++67jB8/nnPnzhEaGspXX33F2LFjOX78OD4+PmqPzM1+/vlnMjMz6dGjR4nHDAYD48eP55NPPqFPnz6AbcjrjTfeUIfLALy8vOjZsycJCQnce++9gC3xefrpp0lMTCQhIYHJkyfzyy+/kJKSYpcQAdx+++388MMPTJ48WT3HlClTKp2EWywWli9fTk5ODpGRkWWWS05OZuZM+0VWBw8ezOrVqyt1Hkdncb2REBXI1h2ORnqIhMNKSznJz5PG0Pg3yPKE+i/Pw93bX+uwaiVFUdi8eTMbNmxg4MCBaiK0ePFi+vXrR+fOnVm6dCkXLlxQP5iioqLU3oatW7fStWtXu2OJiYkMGDAAsPUW7d69m+XLl9OjRw9atmzJP//5T/z8/Ox6mUwmE5999hldu3alU6dOpcaakpJCnz596NixIy1atGDEiBH0798fgIULF9K1a1deffVV2rRpQ9euXfn4449JSEjgxIkT+Pr6YjAY8PT0JDg4mODgYLvE66WXXuKOO+6gY8eOfPrpp6Snp6u9Im+99RaDBg3ixRdfpFWrVkyaNIlHHnmkwiHGSZMmMW7cOMLDw3n11VfJzs5m9+7d6PV6NRFs2LAhwcHB+PqWvp7WuXPn0Ov1dj0+xT3wwAN8+eWX5OTksHXrVjIzMxkxYkSJctHR0erP58iRI+Tn59O1a1c1uQXbz62oh6y4kJAQzp07p37v6+tL69aty33tAAcPHsTb2xuj0ci0adNYtWoV7dq1K7N8WloaQUFBdseCgoLshvqcmdVg+4NO54RDwrWd4/+pLeqktJST7J80irBUhRwj5Dw9lW69h5PiJJMrPVw92HXfLk3OWxVr1qzB29sbs9mM1WrlvvvuIz4+ni1btuDq6kqvXr/3ctWvX5/WrVtz9OhRAAYMGMDjjz/Ob7/9RlJSElFRUQQHB5OYmMiUKVPYsWOHukv6gQMHyM7Opn79+nbnz8vL4/Tp0+r3YWFhBAYGlhvzY489xvTp09m4cSMxMTGMHTtWTZ4OHDhAQkJCiXk2AKdPn6ZVq1bl1l285yIgIMDu9R49epRRo0bZle/Tpw/vvPMOFoulzB6t4omdl5cXPj4+XLpUtUX58vLyMBqN6HS6Uh/v3LkzLVu2ZMWKFSQkJDBhwgRcS+lJjYqK4pVXXiE1NZXExET69u2LXq9nwIABfPDBB4AtIerduzdGo9HuuR4eHurwJ8Bdd93F2LFjK4y9devW7N+/n8zMTFasWMH9999PUlJSuUlRbWY12O67dzHV7psXnJEkRMLhXLpwmv2TRxF20ZYMZT07hYHjnsRsNmsdWqXpdLo/NXR1q0RHR/P+++9jMBgICQkp9UO0LB07diQgIICkpCSSkpJ45ZVXCA4O5vXXX2fPnj2YzWZ69+4NQHZ2No0aNSoxeRew22Hey8urwvNOnTqVwYMHs3btWjZu3Mi8efOYP38+jz76KNnZ2YwcOZLXX3+9xPOKz2+6ldzc3Oy+1+l0WK3WKtXRoEEDcnNzMZlMGAyGUss88MADLFq0iCNHjrB79+5Sy/Tp0weDwUBCQgIJCQlqD17Pnj25fPkyv/zyC4mJiTz88MMlnnv16tUKk9XSFN3BCNC9e3f27NnDggUL+PDDD0stHxwcTHp6ut2x9PR0goODq3xuhyQJkcOSITPhUC5dOM2+iSMJu6CQa4SMp+5n4H1PaR1WreXl5UV4eDhNmza1S4batm1LYWEhu3b93st15coVjh8/rv5lr9Pp6NevH19//TWHDx+mb9++dOrUiYKCAj788EN69OihJjjdunUjLS0NV1dXwsPD7b4aNGhQ5bhDQ0OZNm0aK1eu5Mknn+Q///mPep7Dhw/TrFmzEucpisVgMGCxWEqtt/hk32vXrnHixAnatm2rtknxicsA27dvp1WrVmX2DlWkKLkpK54iXbp0AVDnOpXmvvvu4+DBg3To0KHM3hcPDw969epFYmKi2qsHtqQtIiKCjz76iPPnz5eYPwS2yepdu3atxKsqn9VqpaCc+TORkZFs2bLF7timTZvKnXfkVG70vLmYy/+Zi1tPEiLhMC6nnmHv/SNpdkEh1wDXnpxAzITntA6rTmrZsiWjRo3iwQcfZNu2bRw4cID/+7//o3HjxnbDRlFRUXz++ed06dIFb29vXFxc6N+/P0uXLlV7HwBiYmKIjIxk9OjRbNy4kbNnz7Jjxw7+/ve/s3fv3irFNmPGDDZs2MCZM2f48ccfSUhIUJOWojumxo0bx549ezh9+jQbNmxg8uTJatLRrFkzdu3axdmzZ7l8+bJdb83cuXPZsmULhw4dYtKkSTRo0IDRo0cD8OSTT7JlyxZefvllTpw4waeffsrChQt56qk/nrCHhYWh0+lYs2YNv/32G9nZ2aWWCwwMpFu3bmzbtq3Muvz9/UlNTS2RTNwsOjqaL774gvz8fLp166YeHzBgAO+++646+bq43Nxc9u3bR2xsrHps1apVJdY1utmsWbPYunUrZ8+e5eDBg8yaNYvExETGjx+vlpk4cSKzZs1Sv3/88cdZv3498+fP59ixY8THx7N3714eeaR2bNGjc7cNa+vNVeslFDVPEiLhEK6mn2f3hBE0/1UhzwBXZo4nZuLzWodVp33yySd0796dESNGEBkZiaIorFu3zm4IaMCAAVgsFrWnAWxJ0s3HdDod69ato3///kyePJlWrVpx7733cu7cuRITaCtisViIi4ujbdu2DBkyhFatWvHee+8Btom/27dvx2KxEBsbS8eOHZkxYwZ+fn64uNgud0899RR6vZ527doRGBhISkqKWvdrr73G448/Tvfu3UlLS+Pbb79Ve3G6devGl19+yRdffEGHDh2YPXs2c+fOLfcOs4o0btyYOXPm8NxzzxEUFFTuh/7UqVNZunRpufX5+flVOOwYHR3N9evX6dOnj12v4IABA7h+/bp6e35xX3/9NU2bNqVfv37qsczMTI4fP17uuS5dusTEiRNp3bo1gwYNYs+ePWzYsIE77rhDLZOSkkJqaqr6fe/evVm2bBn//ve/6dy5MytWrGD16tV06NCh3HM5C52HbSjd1Vy1JTLELaCICmVmZiqAkpmZWe11m0wmZfXq1YrJZKr2up3FlbQUZU1MO+VI6zbKvo5tlPUfzSm1nKO2VV5ennLkyBElLy9P61BUFotFuXbtmmKxWLQOxeFZLBbl22+/VQDl2rVrWodTptzcXCU0NFTZsWPHLT93r169lKVLlyqK4pjvLUf8HVSU0q9ZX706RTnSuo2yfkBbDSNzPDV1fa/K57f0EAlNXfvtAskThtDixv5kvz3+VwY/MFvrsIRwOB4eHnz22WfqIpO3yuXLlxkzZgzjxo27peetrdxu7L/oVig9RI5G7jITmrn22wW2j4/lthQr+W7w22P3MHhKvNZhCeGwig9D3ioNGjRQl08Qf57B2w8AN+e5abbOkIRIaCLl5AGOTBvHbRcU8t0g7dExDJ06R+uwRB3Vt29fLBaLOs9IiJri4WNbjNMgCZHDkd9+ccsd3bOZU5PvVW+tT3/sLwx96BWtwxJCiBrn6W9bZkISIscjPUTiltq1/jPMs+fRKAsyvKDw748wZEyc1mEJIcQtUS8gGCu2hMhSWOgUezPWFdJDJG6ZzZ+9im7WPOpnwSV/cH/rVfpJMiSEqEN86zcGbB++mVdSyy8sbilJTUWNS0s5SdKs8bT/8Tp6BX4N0tHsX/+hZec+WocmhBC3lH9gY67d+P+VtBQCgkI1jUf8ThIiUWMshYWsfvUBGn2zh043FuA93tKViEUrCW7aUtvghBBCA0YPTwpcwVgI2VfTtA5HFCMJkagRezZ+Ttpb/6DdWdvy9Jd94eo9Axn95CKNIxNCCG2Z3G4kRBmXtA5FFCNziES1yriSyhdT+2F4Yi7hZ62Y9XAgMoAOazYzSpIhUcs1a9aMd955p8bqnzBhAq+++mqN1V+ay5cv07BhQ3799ddbet7azHRjZ5S8zCvaBiLsSEIkqs23C2bw8/CBdN52GYMFfmnqQt78Wdz7yXb8AxtrHZ64yaRJk9DpdOh0OgwGA+Hh4cydO5fCwkKtQ6tRUVFRzJgxo0bq3rNnDw899FClyycmJqLT6cjIyKiw7IEDB1i3bh2PPfaYeiwqKgqdTsdrr71Wovzw4cPR6XTEx8cD8Nxzz5XYjPXYsWPodLoS+7EtWbIEo9FIXl4eDRo0YOLEibz00kuVfl1F5s2bR8+ePalXrx4NGzZk9OjRFe5/BrB8+XLatGmDu7s7HTt2ZN26dVU+tyMz30iITNkZmsYh7ElCJP60o3s2s+rOToS/v4HADNvt9Ifv7c6QdQfoNWSi1uGJcgwZMoTU1FROnjzJk08+SXx8PG+++abWYQFgMpm0DqHKAgMD8fT0rJG63333Xe6++268vb3tjoeGhrJkyRK7YxcuXGDLli00atRIPRYdHc3x48dJS/t93kpCQgKhoaEkJibaPT8hIYGIiAg8PGw7s0+ePJmlS5dy9erVKsWclJREXFwcO3fuZNOmTZjNZmJjY8nJySnzOTt27GDcuHFMmTKFn376idGjRzN69GgOHTpUpXM7MrOrzvZvznWNIxHFSUIk/rC8nCy+eDSWvCmP0uaEGasODnbzptnKVfwl/r91en0NRVGw5ube8i9Fqdr+SEajkeDgYMLCwpg+fToxMTF88803AFy7do2JEyfi7++Pp6cnQ4cO5eTJk+rrCwwMZMWKFWpdXbp0sfsA3rZtG0ajkdzcXAAyMjKYOnUqgYGB+Pj4MHDgQA4cOKCWj4+Pp0uXLixevJjmzZvj7u5easznzp1j5MiR+Pv74+XlRfv27e16EA4dOsTQoUPx9vYmKCiICRMmqPt/TZo0iaSkJBYsWKD2jp09e5Zt27ah1+tZu3YtnTp1wt3dnYiIiBIfwl999RXt27fHaDTSrFkz5s+fb/f4zUNmOp2OxYsXc9ddd+Hp6UnLli3V9j179izR0dEA+Pv7l9pTU8RisbBixQpGjhxZ4rERI0Zw+fJltm/frh779NNPiY2NpWHDhuqxol3siyc/iYmJxMXFcfXqVc6ePWt3vCg2gPbt2xMSEsKqVatKja8s69evZ9KkSbRv357OnTuzZMkSUlJS2LdvX5nPWbBgAUOGDOHpp5+mbdu2vPzyy3Tr1o2FCxdW6dyOrNDNlhAV5kpC5EgkIRJ/yIaP57JjSC86bzqPhwlSGun4Lf5h7lm2h0ZhbSquoJZT8vI43q37Lf9S8vL+VNweHh5qz8ykSZPYu3cv33zzDcnJySiKwrBhwzCbzeh0Ovr3769+uF67do2jR4+Sl5fHsWPHAFvvQM+ePdUek7vvvptLly7x3XffsW/fPrp168agQYPseh1OnTrFV199xcqVK9m/f3+pMcbFxVFQUMDWrVs5ePAgr7/+utprkpGRwcCBA+natSt79+5l/fr1pKenc8899wC2D9vIyEgefPBBUlNTSU1NJTT099uen376aebPn8+ePXsIDAxk5MiRmM22JYX37dvHPffcw7333svBgweJj4/nxRdfLNE7c7M5c+Zwzz338PPPPzNs2DDGjx/P1atXCQ0N5auvvgLg+PHjpKamsmDBglLr+Pnnn8nMzKRHjx4lHjMYDIwfP55PPvlEPbZkyRIeeOABu3JeXl707NmThIQE9VhiYiKDBg2iT58+6vFffvmFlJQUu4QI4Pbbb+eHH36wO4dOpyv3td8sMzMTgICAgDLLJCcnExMTY3ds8ODBJCcnV+lcjqwoIbLm5WociSiuTiVEixYtolmzZri7u9OrVy92796tdUhO58KZIyy/pxtN3/ickN8gxx1+HtGSgRt+IuqvM7QOT/xBiqKwefNmNmzYwMCBAzl58iTffPMNixcvpl+/fnTu3JmlS5dy4cIFVq9eDdjmrxQlRFu3bqVr1652xxITExkwYABg6y3avXs3y5cvp0ePHrRs2ZJ//vOf+Pn52fUymUwmPvvsM7p27UqnTp1KjTUlJYU+ffrQsWNHWrRowYgRI+jfvz8ACxcupGvXrrz66qu0adOGrl278vHHH5OQkMCJEyfw9fXFYDDg6elJcHAwwcHB6PV6te6XXnqJO+64g44dO/Lpp5+Snp6u9oq89dZbDBo0iBdffJFWrVoxadIkHnnkkQqHGCdNmsS4ceMIDw/n1VdfJTs7m927d6PX69XEoGHDhgQHB+Pr61tqHefOnUOv19v1+BT3wAMP8OWXX5KTk8PWrVvJzMxkxIgRJcpFR0erP58jR46Qn59P165d7ZLbxMREtYesuJCQEM6dO6d+7+vrS+vWrct97cVZrVZmzJhBnz596NChQ5nl0tLSCAoKsjsWFBRkN9Tn7Cxuto9eJf/P/QEjqledGdP43//+x8yZM/nggw/o1asX77zzDoMHD+b48eNlXmSEva9eeYCQlcl0uDH8f7i9ka7x7/HXjr21DcwB6Tw8aP1j2cMCNXneqlizZg3e3t6YzWasViv33Xcf8fHxbNmyBVdXV3r16qWWrV+/Pq1bt+bo0aMADBgwgMcff5zffvuNpKQkoqKiCA4OJjExkSlTprBjxw51l/QDBw6QnZ1N/fr17c6fl5fH6dOn1e/DwsIIDAwsN+bHHnuM6dOns3HjRmJiYhg7dqyaPB04cICEhIQS82wATp8+TatWrcqtOzIyUv1/QECA3es9evQoo0aNsivfp08f3nnnHSwWi11iVVzxxM7LywsfHx8uXara7dZ5eXkYjcYye2Q6d+5My5YtWbFiBQkJCUyYMAHXUoaso6KieOWVV0hNTSUxMZG+ffui1+sZMGAAH3zwAWBLiHr37o3RaLR7roeHhzr8CXDXXXcxduzYSr+GuLg4Dh06xLZt2yr9nNrq94QoX+NIRHF1JiF66623ePDBB5k8eTIAH3zwAWvXruXjjz/mueee0ySmgrxcDu1cT8b5Q/y8zYLetfQLqtZyr13i0r//RbtTtruPLvlD9oQ7+cvfXtc4Msel0+nQ1dDk2uoUHR3N+++/j8FgICQkpNQP0bJ07NiRgIAAkpKSSEpK4pVXXiE4OJjXX3+dPXv2YDab6d3blixnZ2fTqFGjEpN3Afz8/NT/e3l5VXjeqVOnMnjwYNauXcvGjRuZN28e8+fP59FHHyU7O5uRI0fy+usl35vF5zfdSm5ubnbf63Q6rFZrlepo0KABubm5mEwmDAZDqWUeeOABFi1axJEjR8rs/e7Tpw8Gg4GEhAQSEhLUHryePXty+fJlfvnlFxITE3n44YdLPPfq1asVJqtleeSRR1izZg1bt26lSZMm5ZYNDg4mPT3d7lh6ejrBwcF/6NyOyGpwBQrQZ2Wz/4evtQ7HIVgKLWRdOAYM0yyGOpEQmUwm9u3bx6xZs9RjLi4uxMTElDouXVBQQEFBgfp9VlYWAGazWZ1PUB1OH0rGc/rfub3aaqwZRsAfKHSBw7f7MWjeF/g1CKnWtqiMovPd6vNWxGw22yZRW61V/qCrKUWTq4viKquMp6cnLVq0UI8VlW3dujWFhYUkJyerSc2VK1c4fvw4bdq0Ucv17duX1atXc/jwYXr37o2npycFBQV88MEH9OjRAw8PD6xWK126dCEtLQ0XFxeaNWtWIhar1arGXJk2bNy4MQ899BAPPfQQzz//PP/5z3+Ii4uja9eurFy5kqZNm5aa3FmtVtzc3CgsLFTPU3wi+o4dO9QP7GvXrnHixAlat26N1WqlTZs2bNu2zS6+bdu20apVK7sk5+Y2L+19UXSsKMaiHrqyFPUyHTp0iC5dutg9VnS+e++9l6eeeorOnTvb/YyKx2M0GunVqxcJCQkkJSXx5JNPYrVa0ev1REREsHjxYs6fP8+AAQNKxHPo0CEGDBhQqfdW8dgee+wxVq9ezffff09YWFiFz4mIiGDz5s12ywts2rSJiIiIMp9b9P4xm81l9tRpoaxrltXN9nPvuD8XHtTmD3JHFO4F5kkzqrXOqnxe1ImE6PLly1gsllLHpYsmgBY3b9485syZU+L4xo0bq/WW2utpJ+joJD+Bi0E6UmPvoH6bgezYvR/Yr1ksmzZt0uzcpXF1dSU4OJjs7GyHu1X8+vWy72Ixm80UFhaqCX9xQUFBDBs2jAcffJC33noLb29v5syZQ6NGjYiOjlafExERwQsvvEDXrl2xWq1kZ2cTGRnJsmXLePTRR9Vyt99+Oz179mTUqFHMmTOH8PBwUlNT2bhxIyNGjKBr164UFBRgsVhKjae4WbNmERMTQ3h4OBkZGWzZsoXw8HCysrKYMGEC//nPf7jnnnt47LHH8Pf355dffmHlypX861//Qq/X07hxY5KTkzl06BBeXl74+/urdc+ZMwcPDw8CAwP5xz/+QUBAAAMHDiQrK4uHH36YgQMH8uKLL3LXXXexZ88eFi1axD//+U81ZqvVSn5+vt1ryMvLs/teURS1TEBAADqdjhUrVnDHHXfg7u5e6nCf0Wikc+fObN682S6BLSwsxGQykZWVhV6v59ixY7i6uqrns1gsFBQU2J0/MjKS999/H0BtN4BevXqxcOFCvLy8aN26td1zcnNz1T8qi95Tn3/+OXPnzi13LuaTTz7JihUrWLZsGYB6l6KPj496S/+0adNo1KiRus7RlClTGDFiBK+++iqxsbGsXLmSvXv32rXzzUwmE3l5eWzdutUh19G6+ZqV07wtmYd24uFYlwvNFbpW//W9+DBvRZzk4/jWmjVrFjNnzlS/z8rKIjQ0lNjYWHx8fKrxTMMwT4hj06ZN3HHHHSW61h1JO60DwPYB7ohtlZ+fz/nz5/H29i7zVvFbTVEUrl+/Tr169cqcd+Lm5oarq2uZ7+nPPvuMGTNmMG7cOEwmE/369WPdunV284BiY2OZNWsWAwcOVOuJiYlh3bp1JX5f1q9fzwsvvMCjjz7Kb7/9RnBwMP369aNFixb4+PhgNBrR6/UV/o7p9XqeffZZfv31V3x8fBg8eDBvvfUWPj4++Pj4sG3bNp577jnGjh1LQUEBYWFhDB48GD8/P3Q6Hc899xyTJ08mIiKCvLw8Tp06pdb9+uuv8/zzz3Py5Em6dOnCt99+S4MGDQDo168fX3zxhbpWU6NGjZgzZw7Tpk1Tn+/i4oK7u7vda/Dw8LD7XqfTqWV8fHyIj49n7ty5xMXFMWHCBLu7xYp78MEH+e9//8tTTz2lHnN1dcVgMKj139x2er0eo9Fod3zw4MG88cYbDB482O5urzvuuIN58+YRGxtbYq7X2rVradq0KUOGDFHfWyaTiZMnT5b78/r4448BSkzw/uijj9QlBtLS0uxivOOOO/jvf//L7Nmzefnll2nZsiUrV64sMcm7uPz8fDw8POjfv7/D/A5COdesYcPgBe3ickQ1dX2v6A8sO0odUFBQoOj1emXVqlV2xydOnKjceeedFT4/MzNTAZTMzMxqj81kMimrV69WTCZTtddd2zhqW+Xl5SlHjhxR8vLytA5FZbFYlGvXrikWi0XrUByexWJRvv32WwVQrl27pnU4ZcrNzVVCQ0OVHTt23PJz9+rVS1m6dKmiKI753nLE30FFcdxrliOqqbaqyud3nbjt3mAw0L17d7Zs2aIes1qtbNmyxe6uEiGEcFQeHh589tln6iKTt8rly5cZM2YM48aNu6XnFeJWqzNDZjNnzuT++++nR48e3H777bzzzjvk5OSod50JIYSji4qKuuXnbNCggbp8ghC1WZ1JiP7617/y22+/MXv2bNLS0ujSpQvr168vMdFaCFH39O3bF4vFgotLneg0F0KUos4kRGBbC+ORRx7ROgwhhBBCOBj5c0iIaqJUcWNVIUT1kN89UR0kIRLiTyq6RbQq610IIapP0e+eIy3HIZxPnRoyE6Im6PV6/Pz81P2pPD09q7wLeHWzWq2YTCby8/NlXkwFpK2qxpHaS1EUcnNzuXTpEn5+fg61SrVwPpIQCVENivZZquqmnTVFURTy8vLw8PDQPDlzdNJWVeOI7eXn51er9joT2pCESIhqoNPpaNSoEQ0bNnSIvdbMZjNbt26lf//+MoxQAWmrqnG09nJzc5OeIVEtJCESohrp9XqHuDjr9XoKCwtxd3d3iA8tRyZtVTXSXqK2kgFzIYQQQtR5khAJIYQQos6ThEgIIYQQdZ7MIaqEokW/srKyqr1us9lMbm4uWVlZMh5fAWmrypO2qjxpq6qR9qo8aavKq6m2KvrcrszinZIQVcL169cBCA0N1TgSIYQQQlTV9evX8fX1LbeMTpE1zytktVq5ePEi9erVq/Z1N7KysggNDeX8+fP4+PhUa921jbRV5UlbVZ60VdVIe1WetFXl1VRbKYrC9evXCQkJqXAhUekhqgQXFxeaNGlSo+fw8fGRX5hKkraqPGmrypO2qhppr8qTtqq8mmirinqGisikaiGEEELUeZIQCSGEEKLOk4RIY0ajkZdeegmj0ah1KA5P2qrypK0qT9qqaqS9Kk/aqvIcoa1kUrUQQggh6jzpIRJCCCFEnScJkRBCCCHqPEmIhBBCCFHnSUIkhBBCiDpPEiINLVq0iGbNmuHu7k6vXr3YvXu31iE5pPj4eHQ6nd1XmzZttA7LIWzdupWRI0cSEhKCTqdj9erVdo8risLs2bNp1KgRHh4exMTEcPLkSW2C1VhFbTVp0qQS77MhQ4ZoE6zG5s2bR8+ePalXrx4NGzZk9OjRHD9+3K5Mfn4+cXFx1K9fH29vb8aOHUt6erpGEWunMm0VFRVV4r01bdo0jSLWzvvvv0+nTp3UxRcjIyP57rvv1Me1fk9JQqSR//3vf8ycOZOXXnqJH3/8kc6dOzN48GAuXbqkdWgOqX379qSmpqpf27Zt0zokh5CTk0Pnzp1ZtGhRqY+/8cYb/Otf/+KDDz5g165deHl5MXjwYPLz829xpNqrqK0AhgwZYvc++/zzz29hhI4jKSmJuLg4du7cyaZNmzCbzcTGxpKTk6OWeeKJJ/j2229Zvnw5SUlJXLx4kTFjxmgYtTYq01YADz74oN1764033tAoYu00adKE1157jX379rF3714GDhzIqFGjOHz4MOAA7ylFaOL2229X4uLi1O8tFosSEhKizJs3T8OoHNNLL72kdO7cWeswHB6grFq1Sv3earUqwcHByptvvqkey8jIUIxGo/L5559rEKHjuLmtFEVR7r//fmXUqFGaxOPoLl26pABKUlKSoii295Gbm5uyfPlytczRo0cVQElOTtYqTIdwc1spiqIMGDBAefzxx7ULyoH5+/srixcvdoj3lPQQacBkMrFv3z5iYmLUYy4uLsTExJCcnKxhZI7r5MmThISE0KJFC8aPH09KSorWITm8M2fOkJaWZvc+8/X1pVevXvI+K0NiYiINGzakdevWTJ8+nStXrmgdkkPIzMwEICAgAIB9+/ZhNpvt3ltt2rShadOmdf69dXNbFVm6dCkNGjSgQ4cOzJo1i9zcXC3CcxgWi4UvvviCnJwcIiMjHeI9JZu7auDy5ctYLBaCgoLsjgcFBXHs2DGNonJcvXr1YsmSJbRu3ZrU1FTmzJlDv379OHToEPXq1dM6PIeVlpYGUOr7rOgx8bshQ4YwZswYmjdvzunTp3n++ecZOnQoycnJ6PV6rcPTjNVqZcaMGfTp04cOHToAtveWwWDAz8/Prmxdf2+V1lYA9913H2FhYYSEhPDzzz/z7LPPcvz4cVauXKlhtNo4ePAgkZGR5Ofn4+3tzapVq2jXrh379+/X/D0lCZFweEOHDlX/36lTJ3r16kVYWBhffvklU6ZM0TAyUZvce++96v87duxIp06duO2220hMTGTQoEEaRqatuLg4Dh06JPP2KqGstnrooYfU/3fs2JFGjRoxaNAgTp8+zW233Xarw9RU69at2b9/P5mZmaxYsYL777+fpKQkrcMCZFK1Jho0aIBery8xez49PZ3g4GCNonIefn5+tGrVilOnTmkdikMrei/J++yPadGiBQ0aNKjT77NHHnmENWvWkJCQQJMmTdTjwcHBmEwmMjIy7MrX5fdWWW1Vml69egHUyfeWwWAgPDyc7t27M2/ePDp37syCBQsc4j0lCZEGDAYD3bt3Z8uWLeoxq9XKli1biIyM1DAy55Cdnc3p06dp1KiR1qE4tObNmxMcHGz3PsvKymLXrl3yPquEX3/9lStXrtTJ95miKDzyyCOsWrWK77//nubNm9s93r17d9zc3OzeW8ePHyclJaXOvbcqaqvS7N+/H6BOvrduZrVaKSgocIj3lAyZaWTmzJncf//99OjRg9tvv5133nmHnJwcJk+erHVoDuepp55i5MiRhIWFcfHiRV566SX0ej3jxo3TOjTNZWdn2/2VeebMGfbv309AQABNmzZlxowZ/OMf/6Bly5Y0b96cF198kZCQEEaPHq1d0Bopr60CAgKYM2cOY8eOJTg4mNOnT/PMM88QHh7O4MGDNYxaG3FxcSxbtoyvv/6aevXqqXM4fH198fDwwNfXlylTpjBz5kwCAgLw8fHh0UcfJTIykoiICI2jv7UqaqvTp0+zbNkyhg0bRv369fn555954okn6N+/P506ddI4+ltr1qxZDB06lKZNm3L9+nWWLVtGYmIiGzZscIz31C25l02U6t1331WaNm2qGAwG5fbbb1d27typdUgO6a9//avSqFEjxWAwKI0bN1b++te/KqdOndI6LIeQkJCgACW+7r//fkVRbLfev/jii0pQUJBiNBqVQYMGKcePH9c2aI2U11a5ublKbGysEhgYqLi5uSlhYWHKgw8+qKSlpWkdtiZKaydA+eSTT9QyeXl5yt/+9jfF399f8fT0VO666y4lNTVVu6A1UlFbpaSkKP3791cCAgIUo9GohIeHK08//bSSmZmpbeAaeOCBB5SwsDDFYDAogYGByqBBg5SNGzeqj2v9ntIpiqLcmtRLCCGEEMIxyRwiIYQQQtR5khAJIYQQos6ThEgIIYQQdZ4kREIIIYSo8yQhEkIIIUSdJwmREEIIIeo8SYiEEEIIUedJQiSEEEKIOk8SIiFEtUhMTESn05XYnLGqJk2a5JRbiyxZsgQ/P78yHz979iw6nQ6dTkeXLl1uWVzw+89Gp9M5ZdsKcStIQiSEsPPBBx9Qr149CgsL1WPZ2dm4ubkRFRVlV7bog/b06dP07t2b1NRUfH19b3HEzmXz5s12G1j+GXl5eXh5eVW4a3rRz+aee+6plvMKURtJQiSEsBMdHU12djZ79+5Vj/3www8EBweza9cu8vPz1eMJCQk0bdqU2267DYPBQHBwMDqdTouwnUb9+vWpX79+tdS1adMmwsLCCA8PL7dc0c/Gw8OjWs4rRG0kCZEQwk7r1q1p1KgRiYmJ6rHExERGjRpF8+bN2blzp93x6Oho9f/Fh8yKhpA2bNhA27Zt8fb2ZsiQIaSmpqrPt1gszJw5Ez8/P+rXr88zzzxDRdsrnjt3jpEjR+Lv74+Xlxft27dn3bp1djGsXbuWTp064e7uTkREBIcOHbKr4/+3d68hUXVdHMD/pRnesiybxkajlCN2MUzBFHScMrCyzMQixEsoaTlopVJBlEmUhQrSBUJIQSr9YtqFTNCZdDTGwRy1MpxymrALkk4XzUzH/X4Qz9M0XnqUt+d531k/GHDvffY52/1pMWudPQqFAoGBgbC2toaLiwtSU1MxMDDAjw8NDSEjIwPLly+Hra0t/Pz8jPZj/P9zdXWFjY0NIiIi0Nvb+9t7/LPxFOG5c+cgEAiwcOFCZGdnY2RkBJmZmXB0dIRIJEJRUZHJ3MrKSuzcuRMA0NraColEAnt7eyxYsAA+Pj5GQS0hZGoUEBFCTEgkEshkMr4tk8kQHBwMsVjM9w8ODkKpVPIB0US+ffuG3NxclJSUoK6uDm/evEFGRgY/npeXh+LiYly/fh0KhQJ9fX24ffv2lGtLSUnB0NAQ6urq0N7ejgsXLsDOzs7omszMTOTl5UGlUsHJyQk7duzA8PAwAODVq1cIDQ1FZGQk2traUFZWBoVCAalUys+XSqV4/PgxSktL0dbWhqioKISGhkKj0QAAlEolEhISIJVKoVarIZFIcPbs2d/cXVO1tbV49+4d6urqkJ+fj9OnTyMsLAyLFi2CUqlEcnIykpKS0N3dzc8ZHR3FvXv3EB4eDgCIjo6GSCSCSqVCc3Mzjh8/jnnz5s14TYSYHUYIIb8oLCxktra2bHh4mH358oVZWlqynp4edvPmTRYUFMQYY6ympoYBYDqdjjHGmEwmYwCYXq9njDFWVFTEALCXL1/y971y5QoTCAR8WygUsosXL/Lt4eFhJhKJWHh4+KRrW7duHcvKyppwbHwNpaWlfF9vby+ztrZmZWVljDHGEhIS2IEDB4zm1dfXs7lz57LBwUGm0+mYhYUFe/v2rdE1mzdvZidOnGCMMbZv3z62bds2o/G9e/cyBweHSdet1WoZANbS0mLUHxcXx1asWMEMBgPf5+HhwQIDA/n2yMgIs7W1Zbdu3eL7Ghoa2NKlS/l59vb2rLi4eNLnjz9rqr0lxJxZ/qPRGCHkXyk4OBgDAwNQqVTQ6/XgOA5OTk4Qi8XYv38/vn//DrlcjlWrVsHV1XXS+9jY2MDNzY1vC4VC9PT0AAA+f/6M9+/fw8/Pjx+3tLSEr6/vlGmz1NRUHDx4ENXV1QgJCUFkZCS8vLyMrvH39+f/dnR0hIeHBzo6OgCMpZba2tpw48YN/hrGGEZHR6HVatHV1QWDwQCO44zuOTQ0xNf+dHR0ICIiwuSZVVVVk657KmvWrMHcuX99YS8QCLB27Vq+bWFhgcWLF/N7B4yly8LCwvh5R48eRWJiIkpKShASEoKoqCijvSeETI1SZoQQE+7u7hCJRJDJZJDJZBCLxQAAZ2dnuLi4oLGxETKZDJs2bZryPr+mbObMmTNtjdB0EhMT0dXVhZiYGLS3t8PX1xeXLl367fn9/f1ISkqCWq3mP62trdBoNHBzc0N/fz8sLCzQ3NxsdE1HRwcKCgpmtfbJTLRPE/WNjo7y7Tt37vD1QwCQlZWFZ8+eYfv27aitrcXq1aunTT8SQv5CAREhZEISiQRyuRxyudzodfugoCA8ePAATU1NU9YPTcfBwQFCoRBKpZLvGxkZQXNz87RzXVxckJycjPLycqSnp6OwsNBo/OfCb71ej87OTnh6egIANmzYgOfPn8Pd3d3kY2VlBW9vbxgMBvT09JiML1u2DADg6elptO5fn/nfptFooNPpsGXLFqN+juNw5MgRVFdXY/fu3RMWYhNCJkYBESFkQhKJBAqFAmq1mv+GCADEYjGuXbuGHz9+zCogAoC0tDTk5OSgoqICL168wKFDh6Y92PHw4cN4+PAhtFotnjx5AplMxgc747Kzs1FTU4OnT58iPj4eS5Ys4Q8kPHbsGBobG/mCaI1Gg8rKSr6omuM4REdHIzY2FuXl5dBqtWhqasL58+dx//59AGNpu6qqKuTm5kKj0eDy5cszTpfNRGVlJUJCQmBjYwNgrMBdKpVCLpdDp9OhoaEBKpXKZF8IIZOjgIgQMiGJRILBwUG4u7tDIBDw/WKxGF+/fuVfz5+N9PR0xMTEIC4uDv7+/rC3tzepzfmVwWBASkoKPD09ERoaCo7jcPXqVaNrcnJykJaWBh8fH3z48AF3796FlZUVAMDLywuPHj1CZ2cnAgMD4e3tjVOnTsHZ2ZmfX1RUhNjYWKSnp8PDwwO7du2CSqXi66U2btyIwsJCFBQUYP369aiursbJkydntRd/x8+v2wNjNUa9vb2IjY0Fx3HYs2cPtm7dijNnzvyxNRHyv24Om21CnxBC/iXGz0XS6/VT/ozGP+H169dYuXIlWlpaZvXTHR8/foRQKER3d7dRoPo74uPj8enTJ1RUVMz4+YT8v6JviAgh5A8KCAhAQEDAjOf39fUhPz//bwVD9fX1sLOzM3qzjhBijF67J4SQP0AkEvEHO86fP3/G9+E4zuRIgOn4+vpCrVYDgMkhloSQMZQyI4QQQojZo5QZIYQQQsweBUSEEEIIMXsUEBFCCCHE7FFARAghhBCzRwERIYQQQsweBUSEEEIIMXsUEBFCCCHE7FFARAghhBCz9x9gwnvuQ3uI4AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Set up the FlorisModel\n", + "fmodel.set_operation_model(\"simple-derating\")\n", + "fmodel.reset_operation()\n", + "wind_speeds = np.linspace(0, 30, 100)\n", + "fmodel.set(\n", + " wind_data=TimeSeries(\n", + " wind_speeds=wind_speeds,\n", + " wind_directions=np.ones(100) * 270.0,\n", + " turbulence_intensities=0.06\n", + " )\n", + ")\n", + "\n", + "fig, ax = plt.subplots()\n", + "for power_setpoint in [5.0, 4.0, 3.0, 2.0]:\n", + " fmodel.set(power_setpoints=np.array([[power_setpoint*1e6]]*100))\n", + " fmodel.run()\n", + " powers = fmodel.get_turbine_powers()/1000\n", + " ax.plot(wind_speeds, powers[:,0], label=f\"Power setpoint (MW): {power_setpoint}\")\n", + "\n", + "ax.grid()\n", + "ax.legend()\n", + "ax.set_xlabel(\"Wind speed [m/s]\")\n", + "ax.set_ylabel(\"Power [kW]\")" + ] + }, + { + "cell_type": "markdown", + "id": "4caca5fa", + "metadata": {}, + "source": [ + "### Mixed operation model\n", + "User-level name: `\"mixed\"`\n", + "\n", + "Underlying class: `MixedOperationTurbine`\n", + "\n", + "Required data on `power_thrust_table`:\n", + "- `ref_air_density` (scalar)\n", + "- `ref_tilt` (scalar)\n", + "- `wind_speed` (list)\n", + "- `power` (list)\n", + "- `thrust_coefficient` (list)\n", + "- `cosine_loss_exponent_yaw` (scalar)\n", + "- `cosine_loss_exponent_tilt` (scalar)\n", + "\n", + "The `\"mixed\"` operation model allows users to specify _either_ `yaw_angles` (evaluated using the \n", + "`\"cosine-loss\"` operation model) _or_ `power_setpoints` (evaluated using the `\"simple-derating\"`\n", + "operation model). That is, for each turbine, and at each `findex`, a non-zero yaw angle or a \n", + "non-`None` power setpoint may be specified. However, specifying both a non-zero yaw angle and a \n", + "finite power setpoint for the same turbine and at the same `findex` will produce an error." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "5e3cda81", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Powers [kW]: [[3063.49046772 2000. ]]\n" + ] + } + ], + "source": [ + "fmodel.set_operation_model(\"mixed\")\n", + "fmodel.set(layout_x=[0.0, 0.0], layout_y=[0.0, 500.0])\n", + "fmodel.reset_operation()\n", + "fmodel.set(\n", + " wind_data=TimeSeries(\n", + " wind_speeds=np.array([10.0]),\n", + " wind_directions=np.array([270.0]),\n", + " turbulence_intensities=0.06\n", + " )\n", + ")\n", + "fmodel.set(\n", + " yaw_angles=np.array([[20.0, 0.0]]),\n", + " power_setpoints=np.array([[None, 2e6]])\n", + ")\n", + "fmodel.run()\n", + "print(\"Powers [kW]: \", fmodel.get_turbine_powers()/1000)" + ] + }, + { + "cell_type": "markdown", + "id": "c036feda", + "metadata": {}, + "source": [ + "### AWC model\n", + "\n", + "User-level name: `\"awc\"`\n", + "\n", + "Underlying class: `AWCTurbine`\n", + "\n", + "Required data on `power_thrust_table`:\n", + "- `ref_air_density` (scalar)\n", + "- `ref_tilt` (scalar)\n", + "- `wind_speed` (list)\n", + "- `power` (list)\n", + "- `thrust_coefficient` (list)\n", + "- `helix_a` (scalar)\n", + "- `helix_power_b` (scalar)\n", + "- `helix_power_c` (scalar)\n", + "- `helix_thrust_b` (scalar)\n", + "- `helix_thrust_c` (scalar)\n", + "\n", + "The `\"awc\"` operation model allows for users to define _active wake control_ strategies. These strategies \n", + "use pitch control to actively enhance wake mixing and subsequently decrease wake velocity deficits. As a \n", + "result, downstream turbines can increase their power production, with limited power loss for the controlled \n", + "upstream turbine. The `AWCTurbine` class models this power loss at the turbine applying AWC. For each \n", + "turbine, the user can define an AWC strategy to implement through the `awc_modes` array. Note that currently, \n", + "only `\"baseline\"`, i.e., no AWC, and `\"helix\"`, i.e., the \n", + "[counterclockwise helix method](https://doi.org/10.1002/we.2513) have been implemented. \n", + "\n", + "The user then defines the exact AWC implementation through setting the variable `awc_amplitudes` for \n", + "each turbine. This variable defines the mean-to-peak amplitude of the sinusoidal AWC pitch excitation,\n", + "i.e., for a turbine that under `awc_modes = \"baseline\"` has a constant pitch angle of 0 degrees, setting \n", + "`awc_amplitude = 2` results in a pitch signal varying from -2 to 2 degrees over the desired Strouhal\n", + "frequency. This Strouhal frequency is not used as an input here, since it has minimal influence on turbine \n", + "power production. Note that setting `awc_amplitudes = 0` effectively disables AWC and is therefore the same \n", + "as running a turbine at `awc_modes = \"baseline\"`.\n", + "\n", + "Each example turbine input file `floris/turbine_library/*.yaml` has its own `helix_*` parameter data. These \n", + "parameters are determined by fitting data from `OpenFAST` simulations in region II to the following equation:\n", + "\n", + "$$\n", + " P_\\text{AWC} = P_\\text{baseline} \\cdot (1 - (b + c \\cdot P_\\text{baseline} ) \\cdot A_\\text{AWC}^a)\n", + "$$\n", + "\n", + "where $a$ is `\"helix_a\"`, $b$ is `\"helix_power_b\"`, $c$ is `\"helix_power_c\"`, and $A_\\text{AWC}$ is `awc_amplitudes`. \n", + "The thrust coefficient follows the same equation, but with the respective thrust parameters. When AWC is \n", + "turned on while $P_\\text{baseline} > P_\\text{rated}$, a warning is given as the model is not yet tuned for region III.\n", + "\n", + "The figure below shows the fit between the turbine power and thrust in OpenFAST helix AWC simulations (x) \n", + "and FLORIS simulations (--) at different region II wind speeds for the NREL 5MW reference turbine.\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "40e9bcda", + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'awc'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[5], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mfmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_operation_model\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mawc\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2\u001b[0m fmodel\u001b[38;5;241m.\u001b[39mset(layout_x\u001b[38;5;241m=\u001b[39m[\u001b[38;5;241m0.0\u001b[39m, \u001b[38;5;241m0.0\u001b[39m], layout_y\u001b[38;5;241m=\u001b[39m[\u001b[38;5;241m0.0\u001b[39m, \u001b[38;5;241m500.0\u001b[39m])\n\u001b[0;32m 3\u001b[0m fmodel\u001b[38;5;241m.\u001b[39mreset_operation()\n", + "File \u001b[1;32m~\\projects\\floris\\floris\\floris_model.py:1306\u001b[0m, in \u001b[0;36mFlorisModel.set_operation_model\u001b[1;34m(self, operation_model)\u001b[0m\n\u001b[0;32m 1304\u001b[0m turbine_type \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcore\u001b[38;5;241m.\u001b[39mfarm\u001b[38;5;241m.\u001b[39mturbine_definitions[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m 1305\u001b[0m turbine_type[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moperation_model\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m operation_model\n\u001b[1;32m-> 1306\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mturbine_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mturbine_type\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m~\\projects\\floris\\floris\\floris_model.py:347\u001b[0m, in \u001b[0;36mFlorisModel.set\u001b[1;34m(self, wind_speeds, wind_directions, wind_shear, wind_veer, reference_wind_height, turbulence_intensities, air_density, layout_x, layout_y, turbine_type, turbine_library_path, solver_settings, heterogenous_inflow_config, wind_data, yaw_angles, power_setpoints, disable_turbines)\u001b[0m\n\u001b[0;32m 345\u001b[0m _yaw_angles \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcore\u001b[38;5;241m.\u001b[39mfarm\u001b[38;5;241m.\u001b[39myaw_angles\n\u001b[0;32m 346\u001b[0m _power_setpoints \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcore\u001b[38;5;241m.\u001b[39mfarm\u001b[38;5;241m.\u001b[39mpower_setpoints\n\u001b[1;32m--> 347\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_reinitialize\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 348\u001b[0m \u001b[43m \u001b[49m\u001b[43mwind_speeds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwind_speeds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 349\u001b[0m \u001b[43m \u001b[49m\u001b[43mwind_directions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwind_directions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 350\u001b[0m \u001b[43m \u001b[49m\u001b[43mwind_shear\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwind_shear\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 351\u001b[0m \u001b[43m \u001b[49m\u001b[43mwind_veer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwind_veer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 352\u001b[0m \u001b[43m \u001b[49m\u001b[43mreference_wind_height\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreference_wind_height\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 353\u001b[0m \u001b[43m \u001b[49m\u001b[43mturbulence_intensities\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mturbulence_intensities\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 354\u001b[0m \u001b[43m \u001b[49m\u001b[43mair_density\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mair_density\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 355\u001b[0m \u001b[43m \u001b[49m\u001b[43mlayout_x\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlayout_x\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 356\u001b[0m \u001b[43m \u001b[49m\u001b[43mlayout_y\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlayout_y\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 357\u001b[0m \u001b[43m \u001b[49m\u001b[43mturbine_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mturbine_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 358\u001b[0m \u001b[43m \u001b[49m\u001b[43mturbine_library_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mturbine_library_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 359\u001b[0m \u001b[43m \u001b[49m\u001b[43msolver_settings\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msolver_settings\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 360\u001b[0m \u001b[43m \u001b[49m\u001b[43mheterogenous_inflow_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheterogenous_inflow_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 361\u001b[0m \u001b[43m \u001b[49m\u001b[43mwind_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwind_data\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 362\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 364\u001b[0m \u001b[38;5;66;03m# If the yaw angles or power setpoints are not the default, set them back to the\u001b[39;00m\n\u001b[0;32m 365\u001b[0m \u001b[38;5;66;03m# previous setting\u001b[39;00m\n\u001b[0;32m 366\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (_yaw_angles \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m)\u001b[38;5;241m.\u001b[39mall():\n", + "File \u001b[1;32m~\\projects\\floris\\floris\\floris_model.py:230\u001b[0m, in \u001b[0;36mFlorisModel._reinitialize\u001b[1;34m(self, wind_speeds, wind_directions, wind_shear, wind_veer, reference_wind_height, turbulence_intensities, air_density, layout_x, layout_y, turbine_type, turbine_library_path, solver_settings, heterogenous_inflow_config, wind_data)\u001b[0m\n\u001b[0;32m 227\u001b[0m floris_dict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfarm\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m farm_dict\n\u001b[0;32m 229\u001b[0m \u001b[38;5;66;03m# Create a new instance of floris and attach to self\u001b[39;00m\n\u001b[1;32m--> 230\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcore \u001b[38;5;241m=\u001b[39m \u001b[43mCore\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_dict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfloris_dict\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m~\\projects\\floris\\floris\\type_dec.py:226\u001b[0m, in \u001b[0;36mFromDictMixin.from_dict\u001b[1;34m(cls, data)\u001b[0m\n\u001b[0;32m 221\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m undefined:\n\u001b[0;32m 222\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m 223\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe class definition for \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 224\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mis missing the following inputs: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mundefined\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 225\u001b[0m )\n\u001b[1;32m--> 226\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m:13\u001b[0m, in \u001b[0;36m__init__\u001b[1;34m(self, logging, solver, wake, farm, flow_field, name, description, floris_version)\u001b[0m\n\u001b[0;32m 11\u001b[0m _setattr(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdescription\u001b[39m\u001b[38;5;124m'\u001b[39m, __attr_converter_description(description))\n\u001b[0;32m 12\u001b[0m _setattr(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfloris_version\u001b[39m\u001b[38;5;124m'\u001b[39m, __attr_converter_floris_version(floris_version))\n\u001b[1;32m---> 13\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__attrs_post_init__\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m~\\projects\\floris\\floris\\core\\core.py:75\u001b[0m, in \u001b[0;36mCore.__attrs_post_init__\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 69\u001b[0m logging_manager\u001b[38;5;241m.\u001b[39mconfigure_file_log(\n\u001b[0;32m 70\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlogging[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfile\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124menable\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[0;32m 71\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlogging[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfile\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlevel\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[0;32m 72\u001b[0m )\n\u001b[0;32m 74\u001b[0m \u001b[38;5;66;03m# Initialize farm quantities that depend on other objects\u001b[39;00m\n\u001b[1;32m---> 75\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfarm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconstruct_turbine_map\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfarm\u001b[38;5;241m.\u001b[39mconstruct_turbine_thrust_coefficient_functions()\n\u001b[0;32m 77\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfarm\u001b[38;5;241m.\u001b[39mconstruct_turbine_axial_induction_functions()\n", + "File \u001b[1;32m~\\projects\\floris\\floris\\core\\farm.py:262\u001b[0m, in \u001b[0;36mFarm.construct_turbine_map\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 261\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mconstruct_turbine_map\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m--> 262\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mturbine_map \u001b[38;5;241m=\u001b[39m [\u001b[43mTurbine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_dict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mturb\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m turb \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mturbine_definitions]\n", + "File \u001b[1;32m~\\projects\\floris\\floris\\type_dec.py:226\u001b[0m, in \u001b[0;36mFromDictMixin.from_dict\u001b[1;34m(cls, data)\u001b[0m\n\u001b[0;32m 221\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m undefined:\n\u001b[0;32m 222\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m 223\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe class definition for \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 224\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mis missing the following inputs: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mundefined\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 225\u001b[0m )\n\u001b[1;32m--> 226\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m:24\u001b[0m, in \u001b[0;36m__init__\u001b[1;34m(self, turbine_type, rotor_diameter, hub_height, TSR, power_thrust_table, operation_model, correct_cp_ct_for_tilt, floating_tilt_table, multi_dimensional_cp_ct, power_thrust_data_file, turbine_library_path)\u001b[0m\n\u001b[0;32m 22\u001b[0m __attr_validator_floating_tilt_table(\u001b[38;5;28mself\u001b[39m, __attr_floating_tilt_table, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfloating_tilt_table)\n\u001b[0;32m 23\u001b[0m __attr_validator_turbine_library_path(\u001b[38;5;28mself\u001b[39m, __attr_turbine_library_path, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mturbine_library_path)\n\u001b[1;32m---> 24\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__attrs_post_init__\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m~\\projects\\floris\\floris\\core\\turbine\\turbine.py:461\u001b[0m, in \u001b[0;36mTurbine.__attrs_post_init__\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 460\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__attrs_post_init__\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 461\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initialize_power_thrust_functions\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 462\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m__post_init__()\n", + "File \u001b[1;32m~\\projects\\floris\\floris\\core\\turbine\\turbine.py:472\u001b[0m, in \u001b[0;36mTurbine._initialize_power_thrust_functions\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 471\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_initialize_power_thrust_functions\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 472\u001b[0m turbine_function_model \u001b[38;5;241m=\u001b[39m \u001b[43mTURBINE_MODEL_MAP\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43moperation_model\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moperation_model\u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m 473\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mthrust_coefficient_function \u001b[38;5;241m=\u001b[39m turbine_function_model\u001b[38;5;241m.\u001b[39mthrust_coefficient\n\u001b[0;32m 474\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxial_induction_function \u001b[38;5;241m=\u001b[39m turbine_function_model\u001b[38;5;241m.\u001b[39maxial_induction\n", + "\u001b[1;31mKeyError\u001b[0m: 'awc'" + ] + } + ], + "source": [ + "fmodel.set_operation_model(\"awc\")\n", + "fmodel.set(layout_x=[0.0, 0.0], layout_y=[0.0, 500.0])\n", + "fmodel.reset_operation()\n", + "fmodel.set(\n", + " wind_data=TimeSeries(\n", + " wind_speeds=np.array([10.0]),\n", + " wind_directions=np.array([270.0]),\n", + " turbulence_intensities=0.06\n", + " )\n", + ")\n", + "fmodel.set(\n", + " awc_modes=np.array([\"helix\", \"baseline\"]),\n", + " awc_amplitudes=np.array([2.5, 0])\n", + ")\n", + "fmodel.run()\n", + "print(\"Powers [kW]: \", fmodel.get_turbine_powers()/1000)" + ] + }, + { + "cell_type": "markdown", + "id": "25f9c86c", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/powerthrust_helix.png b/docs/powerthrust_helix.png new file mode 100644 index 0000000000000000000000000000000000000000..36cf1184b3db40bb9a201f316f2446a335181201 GIT binary patch literal 652089 zcmeFaXH=G1vIdInsMBUtL=?nCQUM7{60j8{gMf)3w4ekfNDz>y-L3MG6$C+qmS_YK zBq+hQNrHfYk_G*UN|GQs+^4?jp0n-Z%Z#IX?TR6hD8se7gSn?7`lqUiFUs zZ6lG5;@xlGPHLL`g#Yjm|M4H!v2FEujQ{xWXO-XCR{zIm+1Q>PSg_^)`1F}8KOFc! zK3)35qRaosr$ZJkrFZ|||7}^ej_rs4{Yf^q1M3CZ{_&rmzP$Sg8`kna{xkURga5~x zu>E(%{~Id*J1YKrIRBef{&!6LH;@0f0R8Wn_;1PoZ?E#dW8(jhO;+hslRS526BCnr z1yf`FcX~_vey5K;md{V5n&bp6XJb>e>L|Uz2(oR?unz4l{r5Y)T6u86mVf`R|M|!N zS2FxXFK6Zdd>7ldw&9Tx^SZ|dVjg3CwWO^bkU+ky7vxV9rQYu zY9c?@>M=Ozwb!O$k9zp-$lg1P+2j(c6zBIRY28_`pR65tX{4)&)6|n4Ki=sY+`nm` zjc?#4sbYLN?#!E;x=EUmf~Q_MAH9EM>&_D?+%E@SoImP{^)Qs4drj zG~*MSL8d&X^!o?;0$o+HvAr9_oO|AFkg_vYPZu`K@HG#X-&euN)Z+D-aR}HTw(W2b zH&?t$a8PG?1gHBxMMcGZ_O0CPZ3@Mrh8aBqS#6iP@0!z!6$fro!E42WAj-23~3 zv-5h1>dLiATCBGmtyU?~RpH^dwd;hohKtMo2Qyy%jp>%7{moJmS894{brb`$THSZC zUg~h5pJ>6%vv=u}lapy@%fo$rPv$tD^&BeVRLt>ee0J8n&1*dH*HsD=FU>m+t&*2? zX|~PU_K^VX7Wuy**3(n>jk4@^pM1KdcUl-h)t6DL-R9N*qBkXNdf=rB-W$s~=Ib@q zD6mn|YW0eZlD>w|&z+U$rNBSnaQw)T)#k+kjN};ioiRRhlS)Mg9-K_K&|1D}-|lNG zHmzr8f7$m;!@0j{?+e$#&9=>%fou5G&p6Ms*=!QY8?Cv$_xy47^d;OE4rtz$-HT1* zsZG`iwv4&NA9JZI^0vH(OWoK@i;Ad;Z-1_8|8te%%s{~{LEUXDr9WM^LTpIdx9$&; z>AHRY)JvB-@de-LyiY3@IVdLEeSEQ$OBgXEa0 zfr7!THt*`(OC$8u8P>J@W6kyjkIzz%F{ia)3qF8u_@k@hjyVoR8eSMXnd|1@iO5mR zw*Bz%SUh&u;k~Yka&x9_ymf6-V*n8qY)5Q7XTR4EjTg+zQ;G{+#uj37N6J3P zdv>ZQK3HMnS^@3120_9`nT3y1^EamEPo1M2^}_kfniIwj%G{pc{*Wop5N^t_*0*WO z5W*4QVP}s;)CAiZ6?o4|f4v{iydNLrhu^P+LzW(PlUKs7B|95|X#Vc^pKiqBtV_2= zB4*x3?cFu?y_b`nol=ZTf0Od{l|0Oe_TUrzKVn%7nA>-Q6PFX&fm}L)~)N1-N?4?4GsnKk0rbTbf78~=VzkB=V!C<62)tE_Ook6Niy`c zWfD)GZH{?+S59hbe2|yZ_`*-`ADs|gsW|hEwGuJsZS63GL zADe7jHQAS56=&a;PXSFKn_>4+mID1`mffk8cr3{)m%qcUqjY9+q=Clx(E?v4h7p3Uqow9u)R;i=##l>D`u+NM+J<0$gi4J+n_SyU2d+SSZ zqfi>sbD`7Zdth%WmyzmnxXllC*7- zJRGp$Mz6F`f1(i_{`J3@7Wwg*XXLw(M}b5MY& z-nn<^dhvoK+^bzbUOe&Gv_PTWVW}TMJ7k`xBP9^)DIT@Yb|Z43g(ns;Cn)2T`~2*9d&r@cjO)DKCvzn6a7P6HBG7){ z5V_~{!3>*5aqsVsOpBVHpLgO}LXW@YEb4P`dX<8lw)E%UZqtsoC-jX}DF%mX%L-{L z&W=vt5gd7zTweb5<4f13y06HvV^$U>gtepx4{1PsZ-4sdN`I;?^}01(S2<05|6D1j zDYW2~%el&E8LFunPsWi-OI}}HR-0*(Vv7aDC)r(FFIloq+)B2-r}>jzcX}Gq%#D3! zzo#MAj7!w~DfA38tk`uFXPr~x`&QRIG2--@_>-5J5UTBmKA~H-a^GOo`4onRXr3h6 zh3H;EJkqOuhZk(YN91aK35&PB>xB(%YGdE8pwINVEndE1b;TX2;2fv!E?M;^VU$$E zOdGB$`Elcvc(xD=uc=YB^J%BNy}hZH+xB+W;IGD?uTL35)OE=&W$SxK{U3#P?ojcj zoS>U7z4fWV10P?O96ND}10_BuDE-g|@iVF!R@K|^x5Ih`n;-j&=1UJ`w+9)Q&{JgU zCOY!aKiJqN98mliYqh1f(t$zRF1^T2pT8XITrQkd7&|wboUvYTwj5`fwN;B(Y%HXI zqwfg1>)I-_^Z4TpeClDoA0C}3`TF6Jd1u)zR$nXQWI@ejl1^+)-SB0c*CH;oL=jtf6L`d|%eU7+~cGNr<-;Fq)nc%))9f@Y|lX%{}fzAbz49A(E$ zyN^+I#%xE7^X8^{9j3k{mmtB{UwL1qLe#3)|^&v z;?ao+=|t!SU*GI5*xx&lH{M!(UpKx1-E|y}46A1_eE!w7q!f!dfrc4{Ck@q~Rn~Ey z#gGB1`>|=wmFdr+eHs0CDr&(~P+*9m_*uQbuba|N8^<>D`zE{Wt#iW>1qrr!r(7EO zv=t^hdfweTgzk6iSc7?RSe-$>=cU~5bw)#7ckGK1yX(rsg*7zt@7U+d?6YlJhbF|s zux{ZN*H+JwiV4(;n*0GYC1&^=)rh@})Vsnyv%RM6yz>((hILIyg6(u5OlO#!)O{-z z`EmGXw4#KWp@xgO^fkDRe{^lf?gbY4b0+icVp}JWnm1E6>ZCbL$4hL`MvCp5hSiX6`G&UeI-1E@&m4TFOP^s4-*fh$cX0m0R zx|EW&@0#^Bq!D^DE@|YaEbH*`VtwM-CmZ*kqp!x9mjn?|Xt2%t=$Fw-T~ycG$RXtL zqMqt_*5jdVPsHOPtC;+ic7ERU6d@qp8K!SGGclCboAR|d)bC%oD1)0GW-em<}tI7JNo;kHz- z5*}A2#u`3mosqrpupwI{`qW%%vs29186ge4X=p-yZnap(CZH3;jbO69QCC`C?ys*S zzgHxGf=O`}b<^t+>OnP{MJp`!%ve?dy08cO$;BaC4>50@Fkv8-DI=K}j!%l>6bAnC z%P#?s@1jS|i!&|oW>~n7^>KMkk5y=H`6MtoyZu4EsgFE5v76z;1*i@sRD%G#OtAIw zrM>-lnQ9zXE1;Jae2Lz}4M@cN)#U}smD7lG71{<=I(4@6pNBi%IH0R2Miq(e6)b8c zs7h_hjo?MV3Jnt<2faBb{mLmec7fSA;Pm{v)j+ySSW|N$!-;;!j>E-bNn)~ zGo>Lc_=m37x|twF$cr_9W9l4nvqE1%{8v*CWJdXCXtF!Dq>!<;9UYk;l_4r$4d_g3 zqs9pr?Mlhs_T)T^xLfx@OX}mgtQJR&8}-%*y4;!Ja zZ3+8*dhT5>zAa|Xq%J>*M=t64%wP#1zartV4GNxayA7W0m>UZAQM$9wHcsisy;Oxm zG%DY+x}e|xNef0;?)_r}32ID|qaD?aJ^G&ywK!E3MVNYX@p^vy$ryx%Zle0FjJ{Mf z%9J589xuZ0VLNh^O6|;Km5)fxMr@@&K$IdsqW`Y!MRlF02Pxz=Z|~U(6tf9Sv$Mt! zd*|=pu^>~IelSii65TZaP9p;}virwdoE|8ZKk%6wi50W1NeHt*mfM8LJDH18@9^o$ zk|e2&_yt{XO^F}O!&TixE zJp*WH8*pU(Gf3N=nHw+A(U+xfyZqh@C)lC&Qa6V+kpR-@*?yfsNN&Ogsp~&`U5=C! zBkxfRnj(&P4a44FmWlWRWbe^>!&Vv&N@GXU+*^sN07R`o)E9Jzas5uV2;-rMf*HQV zM#498gSq-0=D#@u&dxHaY%2S&SDv4nZTHElNV3wM=eZ@`_~7z$gQhVgqExJsL1VNNz=TTq6f1sb(Rd~IeZ`5s6^!B8@ApZyJTlAhH5%(ZvQS;x) zA~I;xPzIC449*c+LQ>J5>5?i?yA%k(qS9S?w;cdj-CUea+#1Pp2!L-#)R*dbmC?RN ziR!ngtDK+*H6=qePz@NUodPkBz~HgMx8d~lvs;e26A$B1Dbrn;?a&yD)3FF zD4HNYpP6>vA?(uO{-)>t8Fkx(_vIR) zm=l=;khl&JQ1xcXMJ&pzpuaoeGrH)e+9^vpRmo?m_97d|TdT7KwGiX+fsf{Y{IW=> zYJR}Az+WK7Z5xtWvSiZEC>)<6?D+;%C9ksc6vyC)Vv3KlozVk#vBtIyWyuOuD!0>H zG2KVUp9Bo-ir9=MBCLxt1aPvN{q5zT8;>pL65l~>GoMEITQs=7zP@q;+1pJnb>0f= z4wn6TpUO)da3>{9*s0hb5&1{vU zE}>LnCr@VD7;MyMrP6iUctbPPB%vx({8ko>1X;aNKe3AP0b!T25o(P_2R_OLGT2Ig zL&+%#)lrDF>WX%%Wcd10>S(l#y=yhb5Qy=8VwA-n_2w$I21|H7L)=n4#s?hAgpv~! zkF1xpX?WVOIfCt}d8C;6;TBXhp{gwVHU*;QkY?4*ACAfl6|QZkv;>fsBv}A{d17|Z zC${Tob1WTjeZ8Zk=b6HrMOul6Rxe~iL&D7)Vs9ene&$#hw1*T zWX0udeFq4>&WuzAW3Q4Vect`Fq==e%WE^Yla1$(95Jh9>@JD=zQ{`2E8h;-lNwB>v zLNvB!rsGYhIV!WY_Va%C{^#{(U}qWK#H1`wpcl;K{Hu-JqJr<|4cs;pxPXBqW z`msTJz<>lN`jSYuB&Y65-Ip%?qt_Q)<|!p^X)u4_UX$ShR{cr#u+1N_&#Rtjm z>|CbWhU_GnOfLxtX`lD~c<#5?%Y-WG?(1$Rf|qJql>S+5YHvYp`hmRZuq-00J^eM%RVV0Ws>yk{)1jID5@HnQj4h4*yC}Ve(YQWw6RXth`lW_%=h6G$6z9EA zK>Z2aaeZ{%=LG=Gumt|$q%M!OE1yvpf(qtm2Zbs&gXJ6|!6Wa=v-`-qLtr11C0_zU z5hqz2jYz|x3hP=gYQpW$DXQ%hWm|=&Djs}YHJJ3XamXQDtg>Jus@}=!Pr#YO(S>+pIbwRTT7h?6nuO}5EU#x^H_`hZ){IqCB5po&Vgi6)Q- zX$Yute)zp5$hzA^MMa5!;n;ON06U_Blo^M-z*40^$MfKAD!yx#zPP%KvzVF*1o_m! z&`5!g>+tY!{&e1C{h&7fVm#V_>fe9*)d~$OaVzywi`F!Q0;PpjnECeS;N6A0jWTzG zh8q7k_!CZa+`+3$X-ON-Mw}uRqiuF2i{762e0~1s#@9h9*iLHNNu!LEuq;NNGQ$d_ zId+y2nS%e>_0s7v4we#*r`cfMc+la%jmk(~)L-W0|CnG!dLkMv>_xF_urOHlsR56C z@b`du6Ri%7MBU(pTnU!|bQX|YLhD~I#n(<89r#7RFSW@fZzCnl2U>E{5CSJ(I9u;F z&7XPc)IfC-0^vFkc)`P+6dwa|8OD=k2H9 zht5_q`Az;EyB9(P;le~b=SO1axd{g^*6R!!dHo&@h9ClnGZtTVEh%BWe6|}}u{5mC z{H5jd^-jB1Y}!W|V_bKr|?kEdc0d`Am zfBJZ@Aa=w(Ot(_+@#5 zS^@sfmc=W%H&83B87(cg&!*v9x&-mfSdv2QW;-}#f2@S}V4EwNNNNt9`x?Y5rP~AU zL)TAY4t_(M$3cJ?!Bt2!0eU6|vH*wsoN3~A_O@_dFAC&zEp)8$sLa(scZ8YE>rc6A zo$y@K)0|}=4gKqCYd%U=HTtBti{egFNG#v5XG^Pl?~@G@7Mh-uoe@`~rt6hIu(PLI zRt4SIu7XDb57s8#b=#adTB{R`1V;2v4bNT4GEkwP|GZuT(vutDMCg6dR?0Ehq#|TH z+THnqf{0xwM8NT^MQLTESIX|97UWHjOgfIQ8vXt?082BL34ZddgdjdkU5Y+Gn=o5Y*ia4g2MLx4DcOwEp+|K3s?1J(s zXKc+Af7D$ zXR|XiGgQ9_6Czh|@Oq8vqAVsJNhji$#3dkvQ}_ER%CB=fs&YG)ZY8eI3a1)~DN%4p z!U8#E2t7v$s?}y}zwl_9SK)Z@ppW*On|$$B}OY<{2J#JA6F zaw$5@q&s$gejK|{qQ`EDnkv}kbcRoSNcFzuHio^Sty7sE>z4@GEf>w1WC!A+jprrw z)1-G*ysovCJ5`?MD5(uZ)zq)gNR{*(Gh+{%B2t-p=!mh&2jzZ**%$$67 zmIrmHoV55LGU(uUnxPd624Iw$12IHA#F|_49Cg^hpJo667H@0Wrar6Rpsiv{L4Gi?iyQ}+K&Zp*W zgYCoek`zijIMG0Ih>((BFj--528xrh^q_ZTa;*18=t5Q*=j%nN-k&hJbapoohHdYl z6+kEaLwx}fm4feI&;bUiy?f(6n+?>w><6!+tT0EdU@j>UL~#-*CiIOaBUknOdI9K# z{+s393jw}2;}5y-|NdUzTHfLgdJ;mJzR)@qSWg7OjEa%9ks=3#d+oT`0!|aRt-W0J zkWfTC31J-ldT?Zgsk@Y2in0kFb*5XjYL$(v**;_9BxkAiy;@iQ9 z`PpbXqm&YnF#>S}1Xu3=_9`3Nh&hg=wSnT@n{&||WBaX(1GpUC@I@$5hExgOJOq5q z@o*;Cwi$Bd8qQPBx_y8^lsDa=crQCOcVfdxcU3S!sTVH&8($9Qdr$%;S5L;1SS|XR zBAQ^bA<%&(Zh+{xLe7-}X*lI>AXwW|UJm#XKlBhMob+!n@gl80c;uM+!=BSwPS~F6 zlv6Jo@U!g%=&meWlJvb{uE6%=i@izOcQ?*Xj|aES4!F{5lL8Qj7O}d(XFg2iHsAPW z!1J&!+NkbWAMdEz4sD!TCRh_~>wO=lpFWM|TrUbbMGX8d5jGrE8)1-lrph_MYoVHT|yo&jy!FlBW z+CTd4kOR4Tzyfhs?H|#!`S{|w>Uq7~$3|HqEYFMth?V&_;_ak)0U@t>GKnfeJn`C! zGlzC|f0J`uASAah)q$g`KKo~*5&9yUkhN8}z*Z6{TE3$!5VDl0H-KNVWOK3(Z%N

YLolt^g7CLxI0ihRQiFZ&>09TSu3+fvQe2@EFA&6AN=G6c# zi@XYNdx~b8<3a2dEnKyKHFy0xo2x~#W@4NCNjM~e)Xac+>?D=BvHoTiq7sP{K_6}D8H?H#NPP-)qICo{ z$z#+$J+l=VP$Od&0>Z6(I}`^%uBqj05#_v862KLD{~y1jK=A8__39n=g$RlN!_r1<`%D%M90Dc|fd#X_i-M;;?r1tnj)uDZ$r=@Y! zS-ro?=1V)!+l3E#0a=I>kHxYvTzLH>q2Yi*2_7Pp=t28{VOUA~CZC35cp|!Pg}I6L z?EcJVX6g3e04g&nfG#8x9Ct!E?ImjLK4hP0@T5a%oVznFpN3c`cHz^j9+<}{t{qQ3e=zb)zcNK_jnt&XUt*Bd)&kx-L&#qmD6mVcpeImjNiDQvZuPCFvG`cbwU zYx9|>S0N{kfzX5@Tn>b3319S}H769)KK(Wku;4Ixl(34#5(RJ!py%F8Y`Ans$RX0& zxEhxsOV3IB)#)i9525 zev}--G#-@$6r2%^6&J&x6AZPGQwQ`_)q%MF^0Cp@3>&8aI6T?T_*vGnNQ~b%5YMdc zRP@EH6po~w6z?R|5ahI6E1klm#irP-zBP6$C)Wn$Qu~$h=2XEL7(YJcv_(UGy52YnCj0q?^u(Kmo z4MDX%jB3(;Q$ys9`s61cbwf63WclTMlMc$0tsTtiDCbzUf+b&`p&N#yVQw|ysToju z)J=8oD8b5c5bG*=?!6$GM$n;Xl*uKz^pN>0$Ba8j5^jF3k9A{mftSH`3a zX|xF8Vo3fsY7gecl6PkU^=kv+7Nm=P$%|YSyU1MvVL$@8ChWOaKFUlrSZtEsmS!=A|~#*z5a;qOW^@b8g7Jzzzt2UZlW`y4>tcK#KvoD66E)-(piT z@>!Ap4wW(MU2|2WgaCMqkUx~>9|`h#!`F9-j3R;7-mRHO*rbt)s4F2&bl1MCPnNCU z?TgGn=8+rUx4qRQQ0x5lz0lmZ>xwpCi7pR6()IXQvGK^awLEob7HCII1h zgLDf@k1~Vv^8mr^IzChSWPL(}g!f9@sOSj`yy%JZj|1_9T;V|?QXAwMp$fZYSN~DD zEc6asP=p<|<-fn5Ku_VsBd{%Bxa=jIVeOX}uJj#hFTwg75)n`hVmABpwM}L?at3Wa z(A!BKcc@VlkWpy6hK&*hYPn^Vgha;GxNjTL`b7gd1Hh{SF+xF!wIM4^+NVq#y#tqJ zUVIQ^&kH%j0c3QdjMmTv2vSLs<7K;23u_WJYNIWtp9vR83D@h%95#WC1Ge#f3$2mK zF84EjIDn6AY=VpRgeA)_vNxdy#({$w>NTC0C3{n}#pG5P%pK59tB{iqMY;51v{`cY zy65Zaa9){!^ZxBYa+Qn1n;6f08Ugfsqe6J-Vym*;x&efLUr(bIC(O>d+;4s8J+>qTXSy1bx?L zfxFInB*Pi(daG)9;6&KL`~*DIdg35pe6VN*%~eR2ww``h7?ddtyMCCBAS{8k<^)m~ z-q*=L-;dVQpP1|3qQEcYs33BP8t$B+gW(-G{4hmu;hQTa&4*TDQS6zJDbGejPe}u6 zHZEb{J(Zypn}2=(ASX!AhSWT;MH$)nUUTH5oS;8l&VW=ByENQU=tQ~&vWenChTnC> zg(xYCZgvpCiJx7*Lw!~E)i*0}SjY+I28F+WAVO+Fpx50b_oITN5klRwRH|@J!lQzQlCg|GKdYf6})S{_B#0qwY)?<={@dn=GNm82%P7+(Ds){dWDYt^L&$|)yAPcvXE1F)QexG`bu~W& zB+~&PhBPHUgdgD^Oi8O+6Uw)E7=PZ)F60!?Xz*EF>Ld1q*hx=DKIevov2tS0&kTr} zD5DapF2*X2DP+|m{9tzM=@j}{l1j-MniDiE585~gaIXkL#;smK#Ruqm2#xpPaL`$3 zpVs(yr8C`rI6%;m-E7}T5M)|i2Ym$nc5tS@GUjYQzrIRF=_0Ij%&l3DqR}t4WN;3K zV$?0GZbo?r!M9VV;R=PQEFd*0=_&Cuk4dI#%Cy~tR9<0ljjWsa>dD<2Zcb-$`st}R zNMHClCH^Uo`tyJ>A`_?&uCVqCCXN;nq#q@mvZw$FhJ2<}f~t`n%`V2yhEOao;xt}O z9z#bSKEAd5n&ciVgay}$r&EqdD~Rlz)7>8?^1+A{R@GBSM^DilI#rD_w>^WhhREIyt$domN^T!vn3%f!I4#68t7Nx`-rhEP=V;g@2 zhsb|G0_utqbI9{op|;er(3hQp3XHb4_E@YR#Ay|@fMHfP0^}dSg9N_5-meM=%vxJT zxF|M2E5BBgPy$WW9J~?3Le_PFn-qj=YrM|W?!Of)QGy{r;zg|UPBcV{&?TCcgeo(w zz#+T59%G(}B`ruG`h+E_&>gOpw(yogwJ!HYIK9%3ef!}K*`>`7j?OD2x~I)$ z?)cDrl6$^OPE^wZdqf+ajdbC}!*_!k$D!u7xqbCwYa+?egC{8(zVr!csOWjU$(`N} zJH7#q7s0!_wgU4n+lRbwD%8)CgB(Emj+*pl^c)-`1Gmw2BC zC;?HSGr15{BS4yF^&RY@B9Aw<*qD(^0gbShzjH~KouVS2LQ z*NobaW;_kAq9lQVqcY9g^Y*|SWbvapoWtXxLe%lLp!duPN;@?PdM+LtQ#AGZSMs5e z$<4ULH&G+vFoK&bP;k38K=Nn83adRMCB*pX(kvV$X|31OPeu>?XvN8x`LLiLUZDc< zlXfAQFnOscjqMwbc@Unt7+FFhKh@djrHd^DtpZ={WtVJO6^?{HwH0JB>=iuo1}r(* z1)Dq48i~^AZ_WyaT3~4#OT-ybW=N0enN_xb0D)}+pnZFBd8R%HAI%5G&w!4q@yN?} z>@*=G-9!#aMaE~b?Pydtq8^a15j;p#_Uhzpc-@vT!2p$C3^-^2UYw-4A>fp5*|Oj% z)a{M-xkHCj%#Wy&EjYsqCxsS>F=XV;fAr%HK>}t|hkfBauok=?) z#EJ#*M|hMVYxreUQ8poCD#bw`7Qi}(M=lPmGWn=T1tc;EUR8NBQ0BpyGgBfr6%ZN; zuIQc)JqE2x?FIF;1S&D?b~AHLF@+7Nq8G3_%hf#FoTCpym)wf*raXQpLBY;)+mYb+ z>l?j@Q8S`QN?4+-Bs;MTz;lUDUOmKLA}~UpN`mhsTM#}B0|ie$MPzY*K-VH9W|CV7 zm`|YH_cw031REDo8|`=kjq?76>RA|ZH9gZ*5clzbE!5U2(>sD&Nh=q5sRU04RTx6r z1k}-t@{!RHe8^76O2UQk@Whh&!7umtPRJdr1)?t;B(+Ak7eL>RP9nA39T%Kf1Awb(WZh0a4pe$; zgWeLF4--S!{j0Pzz#t@XTacXhl&ce-bUaeOwUgyLZOL}%L#86_>pr52)(HBd8R!$T z6c$FyIGKSkBtua#{*Apyl2(ooIb{ZgnoK(xEkT;uUy|-HahNnD^)W6e-ShjeOjyHM z^JK*Nz=SfDVq-?;Xvm~w@gkCjUpxACk7dAHnhb!kQyymFyW!vGzE61KRIvgHx-8kb z1r45^p+zR8AC9U3vT*ydZ?DlykU(IQ>px)Q-ko^0&}&9Rwd8aR6V;p5q2`YK?lgEo z2ZRU}nvG*cg0Rs(@;U-*)3iWCwu3ntLI0K-$#||XJ6cOB2dTy@vL0HIbBt&d!@7rH z0%**MWd#TA90zou3mKBNd8Ajv-aa@GiofaO8VhoH;^p+2xtU3tYzp7MZWS_<)|W#E z=*-a(5f8cVM!8zju0^_9>_TDIq9U5LLtt148i-deTV{_ysK&fOn7{0t5wbUnW&-Z_ z8ozxM%Cq2!6k~EUf(_@TVSq);*3+i3G)2Z*f%Q2DAQlh!gVo!ES*Kjut_I4N(2*42 zX;pF}S5F3p4T#mGbwX$>UtP*Uz$y*N5;0NaT2c(ASY$ZoFkr2*+vlqkS%PRUZ`5r| zKmPb6yJ+61UR)%;J8`tdiGCRE6?uu)xp$Gnl6;^J4nOnv!JDoNK_@K8H5JF4Z0%_Z zp!V7{<c{tZ2p<&0Y#fjxm|6@wSdMRH zaIpllggRp}aljhyLnBGZ58bFvflAWLz(G@Mp08*M{&m`rb`tOOW+q-Sq8ybm~0TJrB* zQlM}$M1rP(YRH7`fUIw^=h!)H^{wnz$pD`;iyP2EgBK7GAC-3cAc+N%mIw}J9lER_ z)JK7+dHQ)G)S+#XmZ{E#8H$Z0JAtoOXiq%R{F3}o?-CcmP8UFYwg`YUHJ|qi#<8ai zfGGju0?15hhTs$G&I2tPho`ij_b}Z+!0(2S4>>U{?_NAU^Yui59}rvIyMjTQX+r8} zjR_)4?yT`5Mu2*yb{Z=yJ3kXfj2oti^?Ul;z(r@Hc!=NZR2;ui`JBj3O!}BltHz-e zaj6eKp(=w{JBpnmL_))*cycq62N~U1xbcrNufUw?mpz5{OfG+l9pUgIZgOrS*3*wP zcXf7>HGxT7F%N6CA*klc%;mcQ=iO%e1+PPuT2C>zE@Z=}PP{ppuwYk2Mu z-GsQ|CEqc{hO%rGFG`-V`2W)B!!6J8TLetV0jJ6|4jxCvN$^?fte*q zkkX?+l*aA^;}M!U0$51e-v-i;cvV(2L(1r+%uUEygp)TAdO#mqh=z$~S(FV!TcR-i zrS3#3Fkqc2aD%!r+Xi+LV$5{edUE$f5{<1aGT#hDP1G8JGEz3F@-n*WVXc5KKzlTA zdMo*eShm6S=EfI493#Gd-MMCDOC@*+;_#zndsdo;144a2NNJY6jpR1<_cUBK(>6bA zN}PaDMJUe$?(s47wVkuyVSCkG@Cne8Nkd%3kLFf6zk&Z4ezyHIj8d3R198+Ok%UY- zj(EsQKhac&vjclY8a5M+mDue}suktv#cMbe@s57fVl%p_T3nHAzD`rUi8(g;QctAi zaQ5_fvKgaGVKw;3(1qQPao%5zRY~-+PJW0vLQ>mV?3It~r^^d#qPwm?K{_X;hlbG0 z&eISJ=}@<^vg92XD)?!X96U64Koj9;UrfvF?Ytq-Gp{V!tZMC|g0}4{B?Y2TN#CLg zxfaxwYS6$%P$Gs0!RnD;;2BuG%SoL--I7nfLdll_9!=Rgh_#5n6$!P!$O##4aEU zBuQ3fDWAM5Y$AsYj8ekI5(toL;|9IRvr6NnAZ!$Q#$S zmDWQ+)w-0AbLCL2%t`R2oxHBZiC13@L4zEG2P&Z<1R@tnz3tr1&Q78j%}yyBwwGj_ z`>?aRss!QdcXUp7!JJ8?^F^pI&P8$_wkp(ZiRLZY9@pL?6@362ucM8Xo9)ZoHSA9i-q zyJpCohvQs~vDcV`hJIgZE&`5+9M$vAy>-IW*wXka(>xvSJ|c|cG0{NdXLSDkoNvsr z+|!QvuP16_=hlIJV|3GH3^d0{HVdFO9-3{?m^3ZSD$pQRrv=e81d_XuI59YlFA%T4 zD{%?0_rz%;RudaZmuAHr+!e;)<{e%wSd!4WaE%N66LbwiJ8)DmfE6G0JKI%)0zmYU zgC%%ds?He1Q=!Bho+oU3I3BcSed)lVN3zIPy_!Y6JpFNUI8DIB$3+ijJjcmSUN05} zk1o$2*B%sMTscH92HmVOxNrZny1f`ST6*lb7xb(W8Yd&a8cnzeaR_lczx&AnvB+xu zobzessSs_xUW~xV)aaK`t7(=&K*~O5c#cRFz#47IP)T$CyI>uKs^Ec^M+?4|Z1CpW z1m|*#Z{-lG>F}KH=79x5sDk7ANI%mGo#YTUh(BhR!Lx)PUd^WpmXwmHN=w(digh<% zrs=tb!~@Dr5i+;?kT^#;xr$w~6o}Qv5asN?7LZCt@J(%`Q4{KM+EF zq`;|ui}Pd->j{^7SQL;FURPjE1$9w0<`~d%38j;XAXT@{gxij_g5Y)H;W$bIRg)-u z0uaO;vCbOmPrO(X%*zW~mVMK3pB2Fex^3f)Etvypu#|XNf)U#W({VtDKn)gQ6kOli zhKA&cfl{v2I|<55(0Oa|sz$uMIRv<&cZXIflPfNou1OdI8B$CH3>-mf)`7?phoL!8 zldoJk(nhL9&xAAjbMpOUbWiAf*)3-brvq`Cw!O0<35zb{Tg#8!^rh)5YSe3N5ME4* zDAcHgz2-?|+khq%L$f{5%LE|8_=ftmND5#8>6D*_-ij-tb zH5&1FXKU@TCzL$k&tHRb5d;*mBc^~9AWV93sUAjbo4x++M;bRy_Ufm84n(Cn@}Rc$ z9Gt;^WT~il;N39jJ^qqzT~JRa2dF2Ehh#%bk~v1kw|3;80D@hKlZfWs7{yjhl=+Z# zGdzz^I9G#7zD2TCJUMS6K1jACy20mOmOa#2bsxE9?KBQlz_Mjidj*1I4N(VJMI-7n z>Ant{-SQ4-0u9aT!4bX|f~TfsX9IM zMPU;sijDey^${$jcFu+`-Q-we_*hm!$#;V=W{&WzQca3Yhc|$tcP)7#X=|g9^6S1! zVP<|J?jw4SV%T`^X8ZD=BCj|8f-ecT)HFc&daEwB{Q+9aQ*@ulkTF8qY3yahGV&3T zUwNp748{=S!LKP)E-QErJT8rMK$oO2EXR@eh-7MUEElHX;N=O^$AQ>rcgTZL$g-~H zB6o7B-r_>}38G1;6c8=}>&i^Pfv`+MepPdrm{S3EZIaM+28*Jd;RWL6#xl0;+u#(4 zw3^1irP;_&D)P{f5=t<-++U#2EiDhlHpjSqrvtd7_$D z&3^Eb{wNY>ca*aN`q>#ZW)2w^0HM}W7qwV#HWh69ZbB%m5`E~f}5bAsLz^M zCt{LF<6NGoo=R8NAOpnV!5|lIr1MB+Fj2A@NZk#?o8rf3xY%hvv2BiP`p&J`Z*dYA~EQ4)_bn!iQLfIhK_N zzR5UbSg4G_bb$c`OMw`T#LG5D5oNZmIH>fr3$1JZy!5%?Bh6{uTCo{@5bFv6G)lD2 zJ|AP%miEk%yyAC?GT%|F3zWWMq7yTYx5tisHcbNBHP0%^VlC=3sX-UKp!4P=D`b=6(*=IZQXLjt)x|we zEHdQ;sPD&lE=I-)Q`~<-KCF#C)9g}?3nc*h^`k0^J!&)gzD%u-#y%IJ1LTCu(~lAg zMxE!XmhfUY`_)SI1zQm2xK*ZqnoVcZZK~WCbq5`)u+aafJYzHb4FJTE@L8P zL}Kl^CFDFN9*1rqYoC6I60)2}RubIaO}8hg4;*K4qm>+_E ze$wQz5opcF+^#pHCP%uHCF^n8M;A9PPH?}YpBF4qfhg8Oi%)X|g-+Bxk?MsRiSR2& z6;nWpkukNf?IjdyR(-g4^a~NjH26$H!>;LN3H}#o!CDVaoSfWyT`;+tJWpcm(fC`EdrApS_ zMC9Q-3HP7jI5j})bpCFDmXIkD)=r(tT90O&D43+}qx8MnuvP7mmN9Dk>tDJKN`FZR z1?h_ zMgAE2j?gxEe=W&clUo2F;duv39iF8ec32z*ZuP>~TwrAUSK?Qc$VLDf`&uGDc{gQ_dy@a;T5c zL#Tj`_W2mFj4Iei#4&z?F7>mnSUuF=cJ1}%w&!@%cW2$z>a<{i-+~L7bbI>g5*XZr zqUI3<+91h!YXf8jZZc)p#3Vn3R2QD@c>#_Lx**3wP`CORE;*zb5fmRM@*@y%CIbkg zo47kS>`OYXb`YhSg}hLNmNLf81u`=k5i`z4q65b`?7er*=n`Z*hhN*i0Xe?LcK*8J z%+^C{4KXyIlSro{0fJgRT8OYNJ;d^xOP|L-0t_%T;vodm6vrC_h7;&@GxTG+*kdIp zA_=dp;Wz~;i|(cfjKbL>ce9Y&Nf4sg*bq8c6BsUj@G?5pGRREyy?w z(cyj^Yr0~}y6Wb83S$x*;v$)zD_NE3`KRCBYILUYZDYc-STV7LZ6<_P8iY@Hjg2g? zkwsO^U8`v{{xY`HB9%8=M6o^Rxp9F5m*$^iUtvVj0mSs2p;Dvn^q{pQvLp9f8%+={ zT)bRWQlIJ(BSgEt>t;1|O6ce?eb!A|5Q zbDwZ*SsD&;ml=m2ev-b5DL^0iG!sspr z@dU9%N8=jZPti1od*{^3z5QSA7}vmYkZ`R0W6T~#A)yLBnTTeSzv_Mwq>RW5s(%VhphEnkq(M!3O;?-)VW%jVcCj>TfSo}2Z0oz z_-6^kZaK2r%vT$Q@ZuDiK$4DK7ccGchc@#u8hyn+C)d*+jg3VZLh zlrFW$T{+x_4ngau;% z&@RC|bWc+58s%oXDImJv2OUNb&8;%JF;#Ju^liiR{pb@Imh=tTo#93`QQIHj+TLvZ z+O?c%q)+rOilW&ZxN@GnYt{kL+^_uhs_+*%So-Pgv$InYKUhKI)%}T#qI+yli7aQ? zgNP818@!lAwrbY&Xq1p$FfWzDq?30?FG0zq*{o_!luQ4js@JDnKXO1oh0L2`K7xX@ zqsbczo9e$JuRO>xHpKgZ$?k&fb8iz3Uw?ywoGhbOEiF2eMdRGpmUG>-Lg%rMOK7FW zG5p4M2%g%KwLr?$`obdJMNN%$+B;G2A^$?&+jL3TS-}-*-&xK&;>iyyT&6i!M%7*a z+8lC3(Y2UCND&>f>L9uJDCg334>adQDUa^wp??qIqMSnX0inIVtJ$f?j2h`@-LQkg zFA!sdAyTTpXf(5EK9;03$S6dzh1EX*TqHF@)BIV#K7kn)Ok{_oK%6NZW@5s~wL({V zl3%nMjU!#N;Kaj@kem4N?-Y0lh=WEfSbPEvF95lk!{?f>dcGB>lI1)W`n-xvQgoge z7IY^h(L5GEBnkq7Ib1qg<1hOr2F(eldovCp0eA7+*KA18Cz~h3f<^{1I8`~0gEAq& zQLRa=0r`|X!s$XLMy4omBI_m(kD$0Iv@Wx!gif3$LyC~;p7i)f5Y&m2D!UlKnoI$} zVOY?xD9m~8P2zMfEUDy$PJ{x}1b;dYNJkpdka10csiFWL5^91`PyaH!DGgbva=p&u;FHYdm!ozjRHm(JA(Hhx)!6oM>}RYzh4ULzcqc;M)mmt zfe+%jwgwORmgD9pRr`=_7fdF+ux)C_zq#V1CG9;V8;!f589@Sc*8uTVi`Vke&0#c@ zuPs57H?ZK{w(3Ide{*ExO*fzlbLbHa3)T%%C`nD}1W^c_DoL=eMSzj0-$0LAa5orJ z{FQ(FxmdI|fU_oF5l7&8xJwk^=-E(wo)?5gVWf4Hvrh=&tsdS|d)p0juaYvWO z)9GMWU;`i5&p;+&!F6SN~+c-Nr$R22p0! zZ;4vFC#hTu+L{`*ds)2l?#?tX_bWs77+jHSY!%TJF6Y~N2ZYWot7#e=5!s^^K@=ZU zg-|R0Fa5iyNe~bb?ZpQImHh^OLZ0j+?|Ur-8!pzLB0OMSabu+lw}TRyhOV}H zljV&3<^1YhEbrhyYHWbEse3JSqBeVRO+pvWy^iPOr?{6A4U&{!?jQ;YF6x35C^)Q; zwMcCsf~Qkq>#Uwo6fVv=LznVkw{z*5lf?Eo=FzS%=p2zJ;*g;k7GzzV$A7 zfRvg!le>?z{Fy4gzN#~yRd6$Aspjf6YEvHEL$*Jp)3<^HS9cB)~RgOTkPd5B#rLbWu51B!Sq zqVidz#Uz80mWqY+Bh~~MORvKV4fmmHz!b@ZRx!Ho12e&!F}+%TF^uN4pTF{B!|CU?&HK2G0gZ2erq=~dxy!OUJ)QBBBot%HFAG-$?Dy_|XnlI{0eX1$k z(XIu+q~)b|UYX*&De>vC7j>I`<#ntxumseRK9!LFL=Z_c?ZuHn=p1UsHe;B+SE9Qe z$70oWb;*VV*kj%3BTIJ~Co*Z0A#rbs&-z}DV)R3|GQBump8TEX24}NgcU3C4`lz|L ztv_7jbQuMx1h<}sk8yu-#0v8_&4CK3I&zaTTV(eBP^Rdul5o1R0K%3;2>)KHg4Apb z8Ov@qBK^;58dJR4rPD3zcjTB76ARpicy9*1OW2hi&DW0Fc{m7dr_4t&k5*YA zN~p5x$qxB_A|h2!=-zZ~bQo~_`r2z0hn@tBOw(l&rv<|RX9X0h)>;OMndUk80s=f#KkaGWL>=+65i$afBpY6xNMe!NTw?YEITW5LEibJN#u)? zfl?t6#xGAbR;f7{blM>`!G}bYyEkJ7?aZDZ|0XAK-31J@q018|Ptyzq4SZL>6-tg? zLsxWpgwrigpr1FpTTzxk6D&eQC4KOSUTtk{`_@7A853!uE2GZ` z=1_*E_hh+g(%H5zVP!=!4_d}zpCLGvaeBeifJromEN0#4dRp}O|HIaGhGlteSq#=B zN^DWOy`YFv1!)llDHe(#T?Oe?dbdTQQWOyt5JY-cklw7IA|U1Cql$`jL6ItT)+V`k z^5f=t#>r$5KHm47eb!!kt#!<+AH1Ahb!}C)-dD7ofoL{2SB}bEm7906=BGlG{(=*R z-6g3JtfUacHag3FQFy39O<2UD?$G0D{0+m;UN*m=c{TKzo(syQ=G6kr3ed7n@WNlV z0;5OxZcXl88NSBbu%=5hNh_U)vgT?szN$2k=MQ}=tS}g;^8J309Y^v`(Jn3u37!+L zk-_$I&9SxA7$FgO%Uqz|<(jEx@vd;l4M-72#~J1p`otU4lmqCVlnym{5&cnyO%cBVA6Jip2|-BeBp~%vf++cow5Fw3YlZRd#^zojoJ-z00Mmi8#l)8*WnV4qj2QYOE{}{D}gJ+b>04_Tr1SRleL4Lp}%+aUBpM;~ioP_sCsQV*)E2DA8KJ z93SZ~8q%AWVA=;4HahUzxw+=L!NcBp_zgFr7mzb=pir;u=#b?HVw{_=$-UOOH1upX zWZ3>Q(uny)4?4*Z#{cuZGxplcPtT7B$jprEDU4Iz$4Z&eU5Ja5GvDSnmtRRTB@#zt zZ{^SwVQ@%9(NzG0rL|1aa~6C-{ZNa$)w zd_VB%Y^8q7Tu?61_grrzV=`DmDMd6SAOQ~z&-?cNDTwor^yL(WO1i1JAo+9L0j9=S zGAu0j*Fq)yX4dFy@$=}UCXr<_avbL`U0SjD`26*bF-o=<9FOIn`>o*g*9(!0p@%=H z5&Yo7x`X*jwpSgOtkCH$TB);m{p%mkH(pgU>2LHf37Q({d*f8Ru}{D6u40De=suv# zbYaKtW9ib8;~)yz{nL*{U1*c3TglFDK5Q3JB0T%V=dN(rA!X(E_2nuLaBXDi(wO4u zQQg?MIEmoy5=aKDg^Tf@wX7sM5`mriASII*nHkWyK(fy)n&Dz}=8%SvMi%bP70g-S}H^Nz2NTK5VRwqSPSpT5J+`X&1o-o+o6 zg8UHUs9K~kUWr-1Kj#He2+gXitCww_(7mzYU>&;W=unWf)#+cIjM28D<_BimwxyvO zDec*_r#Qe-Ur|x9mzf@kYXDNP5GN#-35pNc&&yqr+;u^FB)qw|Z`9Yp#zzYtJAS>~ zV?eMu>Cwg#aHcTP*$CTzI)HeoR;GPgAJ8<1pz&W=T~X*w#wGr~dr150?DXn?0@ZNy z#R)sRhmbsM-@Iv4HyWwIi3uo%#5jv(3%Du5+0Zw%hui5?9kuw7Fe>5G8Q7&hp#>>h+qD|*L zprA^|wWNk+ceyhl1EgZw;`efm$|$e7xw*8@{X~4+pV`>P%ojEU zdR^<94EgZkB-UF+f(fE=aC$@lwtTK`nn}TAqErNfKMho9srN4H`yPHjSEOjv{)>`9RMp@_$*$bAKSinR#*zpfRbCb`RNFJ z18>I1av?fe7W*R|qE1f#64${8aC2Dt)--J0w(StTY9NCI^z(_By?8&0EC>P9(+fb6 z9eaMK9e+#vPv2}c$8OMDe)A*yGjCVR3?Cn#5=86A_4M>Ek3Wg`<3p>|+wdqF9dIJ7 zHGSay)lZzblWwH1?&(6A1+?z)s+@BogP zQTNNi!K%25 zbw`CuVJzxfsfe?f+cp42*e2RX$MHircmrp`3fNK*veTVZMoD~5mI1gNX05HqYy~d| zOK9=J%6Z{XAG$@Rv6()!ePr5Jlcv9~JrqNcWS9&{iRU=_MLSSvJPd$oJ0_H+PWZl> zILgTAy-00+=8~mLMbZ?H9C2Q!SbDM}OV=&1ztrtxhf1KoZSKc~c$QVsB1PwojH>Q> zM@~C=o)9X z4}eK~Am_u$5RAH#eEs@wh6)8_AnO78ss$GC1`1z zRlRxlkw+y_@y`ZdxpHMRjSiM9S%NDz0)Jv<_2S-Mo}ir>hejq1Yr-7DmENYTfrH1{%$TU5gWmdf(-$M&RuUjb72M-+BCM>K0kZ`lS z<9oLyX2$YAkP+VbZijEqpO-Hu!LuPRf*+`Q`t$?2D>Eh&ziC4ChbGEgAp_>zdK?ON z@G3oLE>C+Stn2Qc4?oj~>QJCrF%I6U^G0k?Ws=<%Qz!6t6mlpv#AK&GX#@&Ao@87GLzB1 zb7sTdy(iFJW@r>(H8B#^6`;AV$If^9_-sK~?fT4z-|xc#*2R4&XwM0^{+V}v=TJV* z)LZUQRaO0Y*)nI3!t_9Y5a_+NBk7wEnj_zyY2om@A%X>pA=EL~sD&^f-6jwaFA-0F zEd$O#Rn%dZZ8sb?Y~08waIwXnIE==n7U6><7;h#)3+g@cRJf}uQVaii1T+x+JFFN zQ`h%3+r4=4VqD_caqZWguLm_OERyg&&uFxNt;h#fJ=4O1xrcRj*EbW^C-_ARq_TlH zw5D^w)a12Vy|`Hj!Ru}bd5fBuEB$P*bj{zsoO#Y(Y_*WB>yC{UUYf;JW}kK3WC@B5 zovA#j)LCFW{r>DUJ{E?5wuxwP2zY=UE>fxf^&7U>Sb{g&q~4ai%m>lYPGG9cz%zv_ zvnq{XDPetYxAa?ICce)t-L%3%&Sd2!K@87qm-U531zYxp!?#rGLrQDi;1-O`rL z%N$`cr6QK!24JC@UikegQa_@w z9w&v{07n>k4yLIFMNRSI*WK&`e|aLKE#4NAF|a3&!R%+l5kofc2}mU!hr3k`6`sn> zU$iJ0b<7=P(c`lnN}IQAvA}Um|7TsXm&fYuYA=|}kqpaQ5iVXkckKnjfb0HUY+_?# z%rHbu(#cAKR&MskFq^Z>mxfcq(t?75&pr7b_wbJLNP9L!ZDOy&2adv&RtKUp4V+IS zXcH{Znm1*d2Bt^r-)0=W;Omp59v=Xj(ON^ueb~&m=0unbHV`s$!ZvEdI1rB$EIJh9 zil;YrIva5gaMiYLx6KIZhpah-xzDltx|+JWzr|FZYN;WP8zbQvtiEiqe(Sn~8yROD zW~Fz$r|D3eL&&anh`;WCvxPyyPvcIoS&m7!pAicE~OWlh24HvyX(yWZi^_xqk$zm*YEeX<<0&Yf@BmCLF%!=xLo z3_UA}jg4hD9D2L0tTd?c>oBx1Tqo}tv{=T^TEF~lWnB<#ft-QzcePqLA-AP zWGr_jEe)@ePv>!hY6Wg@6FQ#R3G77`9i8zzP&Em3n7}p?DtP89>__PUNeM{VG^n5> z)#*!v>Xj>34D{D%vySDmOx@;In*)MP;d~X!YYRaH{8OZYUF_q(Tk%=LIPjA#Y6cD5SQ!LYCl{Hwxv zuiL!&ASnKP(3#PgTup9z4ou}=8Y$_fw(Ir|IZqNZ$*1!RNgX(I5a$P`kLgg?B>(`@ ztyfuIlg@@^g7U0S-o}HslyAqNU5je@jh(Mwzox3ES^&mT(ezIm1OaI>4G7` z{=@kh6QV8p>({R*Dl6Sc?>IaUt9W>9G};xT7wsrB#60z3VMGpHUL@bHuBK*XJA55B zR6@G_gP@vgKtJ)PcG$>Cxp4I4HCqX6->wKLRkE(p9F);%^f@3eKjGQ-p^^!mj>&Mo zXVL7oWB1QtX-x<4NG0JYUdu2p^}1$kEi-8gT*5@aMaQ7zZ1DB#_d(>r8+3#ZUw``a zX-8;k`#_^;>FI^n)YMq%S1m!3YZ^`r>oEGUNMp(brWZ#;ppVwbqUmv>0lW~ffGOk5 z$h77kmr0h<^28~^k|(HY~+mx5E^buVqD(# zstFCesiy%Gpa4ys?+X2UP0d^%Jf>3F%{L!y%={T{?Frb+0 zX+$hyfQb}@z93NzLl1k$rN;UMd)HLvRGbj+a?aCZ?_@n()Pn=Pw=pvw(@1O2evabh zfCSj5-O$Ql@_F;IL)Q_oJt~mu)nlJC9vuAT&p-bZ4_&`!k1FNvU(Pj{>vd%153tJ4 zEiL>p^$K<}4amfyF01Ub)HR>Eq5UKOhp#}zojq~{!axgJm*S{A3K?*hAIA3Gopiu$y8e#w}#Ua5AiEp@GlJRI))^?iT+2`mg?h_e2;m73oN-WTZt;@Jd}W}M6X z*V37G+v4{=WC=q3$) z&XtVLXu9;Y*TZT}$Z3_gXr1TL!A)0pW z>Q%v+>v<`k(Ryn_Rpd9e;2RrE*krhs_|VkdnqM+a=4E z)x$J{G9%U~*fui7n6km9A`Tu3wP=i$yOF+7gOAr{s!nf`ZBEjftfP2i`26n=-b<3yr z_N>z{e~u2t6ivLI>p3?_35bZ|R4brIrhRAn)0y9*qN3j170D zn!pZpWMxgYf_3ubewrMzOFs$NzzqFXallV{T2@vm)#CtzwB)i)_5x#g&-^fr4h0Xa z+?XNm;t@hiqDizR36A1PiDyn7uWy!_d8(-eb!4T~g?0}8N!P|QUB62k90sgg#l`hy zbR3nZ2VX94ncI9!V9S=$e&4A4g{%N1~Oh2Mx>cQxK>J~3! zpj0Tp7#E9SKmr&Uoac(zzmJFQM5nGXd^<8vuN1)&v8Y{CU}xYe9^fy~)z@zH+qb1$~`1zhT=yr(PHVs{aZ7D-nV(S6Xd4Awk~9tDiA>M+por=xfH8CW}F;kUag zco-sJDrwC@V-{!4^jXFunE)Y2O9Ofx`a=LECpdI1#x1Bp7TprDihox7|`{}2jJoBah zuKizifBt=E0%~3YKumU}r3J=iL>dDQr=kLo3<%|JNIL?qr~^>L-^7=9XZ{KX5oAOV ztgI=h?0t~u)*@%iGh|W3qlt%8IKZuse40%uHc39r`z45dY+u9|hrOc3;pu^a^I*Dl zRfQ$eU-dAEK^%#l$2N?$!oVfZduQFWTWVNa)$G-PfO??ltTW}mW7)h85tl(B(CwTz zbHziCWm9F&VdJ_XYg-6iLa0Izv51TWHEiKnH@FSbF^p>Hbo{mmXO}ztX}17t@SjfX zx?SEb4lL4JYx!aBWg5#1|7~lb7rTDmym>@}tXQ$a5p2|nP)Y&I2imbZ;(SK(!<`X7 zPO&4(cJy>OTEWKV>p(Mw)m4ij826fd!*c&=xn?QZA3IJsm9sy|Y_%La=@fUdwpiZDB zR|?4RJ01qQ`z52i=NuYxrYf#@DT9tfryGlrT>>C@c9rd?bos|157a=Hj9`>H`DOhp zs3FXu1I&le)ynOD?Mj6Ju4-xn;MVDd47ncMu~+D#PS}?hDm!8Qif$eB(KO6tj5X{+ z#~5H_w9W|iDg<1Cu?EH`oHebC5UGagSoD3&!2?VK~kMAX7h3cuGo4EEwtHICtYU}E`>;P|pc|1N<#3m0%I z=5amv&ve#LxWi0u_4=xxfT(D_*%aatL_mM*)*BQ!ry^p&R>LTi`7>VgYFwt=x0rb* zbP#_rgqfih#@;6PI&*ALM}?E6GEA(h|IvVG8xEE*l%Ox8g?Lfw@B_4PSOzhTQ;cWc z-#s}yZ!eYH@TQzYYG624V+mmNqr2eeRd!a~F1SbbAP7B8jHpHcXC^kup>{zDYG{s8 zmj%WfM+K+Um6Wd1x`6s30mV+Z;f*XhjFX8sK4U|2A8Kz)DeS}~DG|iZvKV_qla{Zp z8C4$}*1oy}?fWS`2=xUP1)Zn`nbRJM1770#CWjtCWSo*QXy*bu?@GF5NS#0D^MPj# z%kA=ng+w|Q~GkuRnnqFh)rkQj|5hl?2Xuy)IJaSZW@Dd{FtsVHrZ_<(k zJS5^vVaRSSjg;kF(Z62jnq0kIL^ilX!n2c60y!`Ig2@$$yKaYsbaqdD;{~kKgbiHE zeVr)CL5z!Qu&)zv`1ZmEMf@B}Rt!Bgk_TWg`2gT02?PzF>Vr$)yQ zC=UHro>{D#K6JY_{!Tej2GF?r@lHAC{4fAXzKm<{hx!vf7A&u3SnZYpY>8*t{!lhE zOQ2SXmNRrZS~zOB^{co6NRDHlj=(tj7UC8F@kto3dO2gjf?HCOxohHXC3(DF@yP4e5h*hM!t z(^8#)iUIBXdXPct^ja}w8E}a0 zPxaxN96fjIa%&p|L`06`kahH^1fUSHYIxT_7}wy#QhBQFyO^!DB}$$XJb~uem9+Z6 zea1r=;BlsZha!3eDz|t(JvjHJ%aJ6snWW|tb|22c3>S?S*2A&ob0U=Q$uJm9fIjsK znKzKE7JD^T!X>au@FFHRI!T!m@0&o(l-pbVYAi`r7Pz*%Z><46G;l6IB;+q2gLbkA zPM(lHjD}M22%GLK9$yJ)Y**~%MT9O;fnOgu!qwc|{jv}I)*~~TI%g{V?M*4c@5ZsdK5Z$O0ytPxkd-@q}+4~=-##d z0(!X*!LAB*kohXy?dCKk-iRO+r#)ZN?Rz)%VIUH4GqJ&+zP|ge4>Sqx7y8xpC_#Jv zu*sZ#wY9Z$etA6Zgw59R^Q-02p_l;%);r$r5yjoo1j6WMeVOoZy8A&!M~{#kP0vv9`c`RHdd z#IMZi6uLf&mGCiRx$`$fO5x&UmZ|!u_rfm48;cR%V5m#vy^n>O)tB$@Z5mkjTx)?YVco2kIa6u zvDr5inr6LvlI@B37u}i8&&4mf0afd0#z;jA5K-ySAtF1SV0TYKqh;{=q4%^q@ers< z-`==0Z=z)+A`%{{YS3o4?%YYhRwwd^SdC}To)reQgPG1AUccZQPjbcC6w#OEf6?Dd_yIcu&*FYI8k|BlRgt?3B?bENwY>Sa7a(Bb-C6#*yG>xS_Wdu} zz%nk2Vb%x)+-sR&$CGfHFWVGElLp}k6I|eqB9n#rNOUOv6BJSh`LOTg5?g>C#SInC zMS?vN;V6NykY7K)u11Gy0NPxC3wR%QEto(5gicj3_S5No5e#w0v4$gnhI=?7;hQVB zq&_lt%f>=q94mrpkG>n^CWG(9KW9CrAQ#HQI=2k4$9V^4;T9fk4s&L!OW3!5w0dBA z@;cYnE<6{<_EXsD|Dc(coD-@L*S#z)?L`+|2m7zn__tHjh@)}`;5&}ewP4{wiHreU z)*1(4<@+0XQnxlLEF)?coGcTAe|m}-F6iJMo*OiQ#E~GLVWXoHdfLb+3v_`(r*9XH z>3i1l?b=mYGrA#K{Osqy@L^5$ZsR+ZS0wfaFCX3aUQ*yQpw0;-mh|*3mKMW^!%*SX zZjcbMMD45fV@PFngmnrXhHQNZ{vsnyzd3go##9)Y*{{1X`)ESK++ZSyW(hd#1=H~R z-ld*x(Tb;$8VSe#fL`aJM)@AWxuQ85HE-SAzu*sPLAwvKs|5^Na&0hY!C$`B?*qnir1r0YB8@(-p!r6;HCvU|QhH7pI_PM#xg z??@MREUC55-9*I4`Ax63sf2ACzhEwO6%>k&LAjE8nBTj1FVJnob4(oy0)2|E&fg-9 zvHL5UavL!*=bS5Tx1ijt>&KAO1LV{+4q2NjdZT5W&mYdRgg-|eJTjpBi?xTz8MQdFPZ@^>QHfi!wB6KN{ zX4QC^P1*IBnvOsV-XO~RWir!05p;&#uN7XfXAy=toS6mLFk`; zq`hZbQfO`6cpsg<0ny3~jaG!bpO7oS-w)645i4yh^w0_}|df6Ssj3$mR-Jv_egOfREJ$8WC zp~3Yej@n+#=WNn-qDUQ?!gv_UTB|MAL{V}P3MjT0TJkZxux7SFe5k)Ql2(zU>8&`p=c9~<&^f4 z(m147C0*{!0Zqeb#uhf`_QG#xxj0$b%izs-!e%xs`<92fRxgyy!%lv`(p|10z2kO# zd;dgppAunPg{fan_PULa+>2X5mnc^Z2xfw0q*W!9wh!L)W6=B z9O|Z!&4mq$n7HPeI4s}c`ecuTF7_NTZlmKsDcy(~vD1|VtreV{(ANO_(sa_# z0uq7yG$v!*>HNN`+3o}aV1GAM$mQG72-d^Qt>~u(KW~H3E5QV!uMp-?2qxz2{(%7j zA>|!sw^c-bv0~{S7_`Io#U?O$JW!JNA5l@kr;@uoCA#8AcfUkO5Ykh;U1&fT=CDpx zp)Eegpd2qkuR}B?{vyeNVYJbXumuB5)xv*CkpQS5Fh2K?tj~$MaEx{o7@Gd-aN3uL zdrpcaSM(C235?PhUh0Ei^8gCPV-3r!*B4j9i==!0rv=zer!}5G+Vg=EH1x33{E|KY z)Ii*GWRVCm!a;QFyqQv|UF$4ivdD;axC1O{0nmkQ$*al9GEw^@TLyAgtzdX9+w*bt zZ8s^CHeD!zZ2dv3W$XXiKSuNcG2tjNo<%-PRXrEZZ{f7YT>I!$_77aOi-Nx9wl4!8 zAQANPDlH0}<;4N>WHf*P(8au&(*p$ruz|~l=G@Oh5*Rj>peEztQePP{_KceD^;q)X z-9g?EudC``GP~@axI<|!`=7Vk|4^r&W+CB1h_>P3$E&lQHgZKMA-WRp>D(IRmhsj@ z16K5@x0K}?7;Ydr-x^oMcQb@BsR6UE3X(5N z@~DZ0&PpDhG@_S?1eEs7J=;}jZ61NK^B#4vYvr#nMAL{|5zLMx1X$2*rh#iU37sTYK#-ANFA2_7dNq6Ug?G z0Mg*?gGi!!9D^YX$arl048Y?1K+i^j@~M<7^_tQ}QC{XEWJxzaX$4y88#!<5-erz$rYbJuw(a?vRpdO^8D^g%m8@+^ArONaa2d=*?w| zoP}$I%s05k76QoA=4kE%kSADd6PQC$x20?)4$D|_s~p>cA|h#jS`^V?Xetm+?_WP#T#&XZ4RP_EBg*IpyRS@4=hT>mBdhr{@V&oN8Ys>>T_jOb~6TLC? z9z#*wcl9D9-TW-~$}gn%_C)$$O&J@~L7((r-Y`o{d_zbS@d7?|rZq3-7lZmdDO`*u zblK)do$#*>I?W${1OYd@wOnmY4Rvz4BF>noQCF%OF{ih5PE?J)Ts;nz61L3KDB)L& zaiVtiE!G;r8e;bs0DFVxA9}mTiZ?e+Bee?eY}1a$sjPV)P(o&h+AtpYF#3Emild0m zS0!wRRP+qFBBM%f5P%!kIc8zR41KPhN8xesX<{>thM6Wy*+yAxPPYZQak9+B!hG1< zR#IZ$ii_27P44fDR{SskN&ood)1PP?gBA zm>|4r0#G;a;dro#5(Y;v53&OCGB6R|$(Yc6?&Y(Riz@|;|LfcVASswNa<~r7_j&pc z>MK6@|C?z_7I~zO@Y``PAz+lpvdiT6?P0~`#WMvUYOI?*+lwDNEQG(n8E_fBaG z0Fo#7$Ez52q;Hf}1FpvpUKt&VsYkQKfB@21YG|IXVYFt4|2`yqm@W!h7Y(;;G_IWZ z)VFr_2AUhRX3=C%@hD8Ywea9fONIu;e=Pj_YD%_437wwW%&5 z|7cNyZr&7_v>oUa(Jx;XHyH>$VfE+vb}J`C-nOwE3xa0Dw#R9gVR6fO;h898)R6+h zzfW+;Bd8h#uPjjBBaKPOOgTjMkGc?OfH<0;k&T2!l(Y}Pb1^kpX0z=+?gs<* zJYkEVpc+Zb+}+(T{~!lewWS{pKp=U4i;Sc>j^z>>oMBMpY;cCAM{==`-G;Y!R>BDnF zI;?VYL_ILMZsOr%D9lmO4BbL|3rd zOG!zo2H;`Wr0q-#%eyyU+0Y+Lfdm!x{>=u9hNgMjZa5_-CKAhIua8y@BWS01jGHN@KP5@?^BV?qMbyvto4z0 zaZK&CVwF~d^I&I;w@)rI)_}g(txI?jEk=9(=g-C?{msnt2Z|p#^=T3<7Ghy!WVCwiS~G_SZy{xVRa2z`UI91U z@}s}v4VQ3wlY9Ap99dJ8)lc%X_Iz*+Yi9>%80b3Q=bE(S+GnRM?FyIjs5dJt@lqQC z2{)Z>Z-9|gwd;;ZO|~%vlKp|{gCLFH>O^L}@Ha{$ooyzrhur%aTGf`5?WmX4kOXln zUGh7LGqpJ28?UAyzW7zU(=V&}V(s`Jb^?a|)pbEws)bPe?Svg8;IF@q0d`tx zm%wONDgsH$!!y?VyzuBsMKlcxw*EcL`FeG>dB7=cGuk^?E}bpE$Ou(N%Cwo$^kJ?4 zmW*ZEU12eiz5+|Jt}KuPRA~{)pRu!2(I zCNJ(BR6^4tmLzWf=@NXPpH%Lv(A{8Y!oG(6q-huUi!87iT5Sux+Yu3I@F1PA2=6)y zOmODM35tDC1=8$a8hiz9At`iAoiN<}=VUW%D)uUf-O~8Kki7!#giZ%(g7Xb>>+z^p z$je)JcAu$nxrwtfscx5T-XrERphsWG+>^$)bLU$#N&jENSI@OyXd+Ok zCRWc{lkftpN_5}8r;ePv6fw(Sf~?~{bkT1es`6ad;-^eK(B{pX*%`3D>H+p=r?df+ zwufR;djy~`JH^%)Zni#b-aToV-+@fErdS!`fJ%qy7UeP&1~t-+mO8zEpEIrl1ma&BCi?L8 zUn*@Yw_6qpus33;l7{w8Cy8W5BBqsGVJqFLFbWyQv{fgm2q6|^`3_sz=nFcZ7)oFi zc@bP;Spxucv~9|``^iZN$MS~FGG@JSQFf8OB-5B4FO zEpyl(f81?AFR~NEJUubcm~bO_6wVN~Eu4Y9m98BQWL_4+UOpu}gBn5uQaSUt6mSJ$ z!eJckLL6TOzFL|b|988lHT4y4%dBciC>-;V2I+4RehgM3(xWAGVp&hX`V_w8(yym* zqk@v6;-J&7@OkN2@U`HYfo4IBpWeDQV>T|nlv|=M`_~9silCjf(o#TnieK;S1(3$* zPb8;o>(;H7FxUmP_^f@|YT~t}<(|;rMD-$ zcyu}J3@A%Mg-hvkIF41VErr+BMcJvM1RXbSBl z<)cSQoCBWU#$iL(J!vlpg+|msM#j1)f4wVaZ!n&NQ7LH_5;{S@aO^&L&YGP?&j!_> zW}<$5DZfd?UHKzrY?4?CzB;@z;A z$}X}=o8=|87zIk1cp9?#*o+yveq7L=52U`7N3!Akfp4q-7b9Xyj6IdU+yTVVGqD?` z3`#(i=Obp=&jPsbhlaJx@4x?!?Z;M3#r~~w zMat}~u!#z~Bn$Mk*wxvRgbG%fmK)iBZLqshM->a zw7xpvJEXD$^$ozW=4kEY{WB2R76m-0t758;%8Q6pbG38G$v)R*w_(D1x>W8{EUIN5<{Ge zBiG~|2B3ja2RBFZH02S5*!d1-X&O>h)=W$F#PLA#_*8M0DRTsXl#0NPs)}O-Xowre zJW~Cu9@f!mIv#fZj1viU!84uIbAjwG5&8VfHvL3z949GkFXjF(G2LNc^!F?C*Kwrk zQefat#_u~cRd8}-imTSsjf%<8PM132I?KG~v7QfYctO!%gkIW zZ4NGNj}rQ3h*6E#GqNxyNJ8Ui<9`ogQ_#Am!X-T(r?>7nd<5-j97u=e^TM*7HANmS zm~gCR=s{!zuTqK}%0RlI%st@1+{(y+z@nEiACouHm?LV_%=2NX8yTgOLF~A)>FwFf zQWCf#W9_l{4F_avDq;}ds%DKfg%EcOY ziMX+yQLydW=b=40uNi z;B)qez+J{*jevpUwu%u-wjhf{RlSQAtm}TI=_ejNi`q106{R!@u&le0m9c(u|DTaSNRy`pTLQq zDHT`%KxUJ8-WGByjr+3m7Ol`X{Lg%;EM31q6Ss@lSz2MpzIyrcQzA_wdCf7l7{<-I zu`tu}?j3_^uN8@RrA{<4Lb0*%S+{QG_7e~9(`wWc!}!^sSLXfs0|Urg%tq$Tj`n;! z6kYFQ;u{fH*ydMS_Tt4}D)l^^K+ekKrHws*50EtpC9d}DG^m0R%txBT`fkZ_=ODKAWk;c03`odTFKv%J#GdY;r<`G@CG{SLgJrD#EpU`|@ zy?J0V_p_ZpFS(ry-rdflu}^FZUqM$I|zF4 z!du;3sFDFHf*0|H6%nVq@&KzkHuK?Ibq za@K#~oWQ?`^LXm<6G;FZGJ9xL0CXfqrhC%%xqXizdH4F+cS1yKE$4DVYtQN5hE4!Z zt9_==^e73#FRWu+2}(r&Qd>}?*aA-5md?zv>(aY+9U;zRQx6Hnp&(NALL0dHx8F`` zv_A&yTPv0j90T?BQ`3^kh&NxF?QQ8UL=vH-r|$!1BovT40B@r@+HCGa#;MhEIBr4s z#nQ>a+buzcSHy^x=2mu`)pk#HCK(U3J+OVEx26GT>Z2o~H9~hipiHv~bjs7CdVK3p zwj16(WLw4>H-my6KK&tH@VlpXVIDIpVPQ@=i3EVP_xhZ$L>JtQctka&k!%))Wh z7_t#tFFP-s-elgHYX`ZW&Bv%f8R#;;^7ucg2-+ zePC100Ri=4^z~3r2KYk+7#g5iG%lkGuZL_7<%fTU#c>#msezO4+RsauG5{k@^<2;- z{Oa+(?+R$~UdYZU%4`H*)D4tV9ANw!)JGlgn{wGWYCCyGSrh+0gYy4%21R1h5IU#% z0hupBLtxY+*ucr@mTQ9rPM?$DhW$d@Lr_iNNj*URbp=zEizdbGp%BXSKAq@NETg*CCIOCuWDeecphZU4M#+lN<$FllC2Sw4WQge0c+ zt>Ak|-2d|BOY!S(yg}8F{^vO2H4GL0_+1U+6Sy8qa|b|LfLJdY+>^8wH}u?x81saM z0kmfLO2(V)ov2o|c-c;apAI&6IzB`8+uV#W5luu$Jq_{5g#o(fMABFYAO)H1=C_zse&RhQ@8@@Vr1OUvsFEc)U)&Ljl8WYI2x^R+VZ* z5XtC>ovUjzvu5qu1mKtVU1Ms3H)#NaUQsM<64m3e{;}Z02IBO%+u=7Xo_a>|} zD|U#($c$mM<&UQC+%7FqK+VtEYxO`y=;4lG8R4j+fa0kKs^Asn2>n=nKb^*-SQ9@-rgGPlw&StII!<$4%# ziV@gRA~sw@sQi7Tu-SZJQ^%_ta`3QJca<_5p~D$sd)Yu2oZ zM|E|NU2+m5Zt?=4Ib^66F{Zm1=)@1gf6J$z|5$qRi%`1gen$#97Dm~RrV_86|9-=? zTcPyX&xfEjkcarX4hJ`XMSBb^h*XSAot#AjFS)GZ(>MguN)6;*hd5Ei)Jb_iG6Z>- z112T``KdY)8#iq_fM3`-=G5aHLUPorTU_U#ZVdlMb);`gHsbP*!Ct44clHdTC10zp zlz*a#O`S^b!~*U|!16V|E8Gmx!UV&Q7adCTQCK#zJF!oF>8xl)b~;^<-~{QKZdVTa zlV*6(H@++@(@nx<^a%0n-5#bsZ{QW? z_``lgt|nHLe6&JUlF{I<7u9HIqQs1RZ8N0jkJCF94|7stMMeU+g&sV_9E}1@t8luu zR1f`y#R{IV^1IwqpxRm*;W#A8kPMg%@MLEMe4$&O9gMlvQ7Rt}OZB6AmRZKf#aaC0 zat3sZ$C<$?_R9Vl9kmFYY&Uuh;nE-2$`0FBhil+`4CLrk^f4$;!6A!|rS~S=_aE3)St|=iWH4MlK))qU4sPwTl`#Bh zzzoVSHhVJ${J>82X|DC{wE7iE+Yh$#0Zxn)5$!m|2+JVCRuy`;raP5h$R^MtHL~Zp zU0^2!ZCReytC{rxQt&i0b8QeJ<~@=#zxXU#%OYeC5GX?JiAEI2Wb2~HT_+yO;^i_S zl;f{LFrF5!-+WrCF$YOxAIw`f_b>Rv`|B+&gGU--P-yA$w9qu06yS-Y`1s@;ISw;t zq^P+BKrlsOfZ9(0b3zq=uBGi5yah*AxmqhJeSsso(aw%83?gG70V}NDDJLI;RN<(> z%LvbXo@)Y*2}D*na)tFd=1Ih05StIpt)E595AmsZ*jC8~6IWfxhnU|Gp5WeA8Uq)m8qQs^mri{C z*n#y(X&L0k$N1e$BMg-nXKQP{B&mHO+=I0R!!Q| zl8!9nU1twoQ3^41gyK5nV>EH$?Fr<{Un6B?V7eEEQex^Nsvir#9fj_T1LtwamUfi; z8l0Rdu)I~@=t~~Zd35?uTBxgWB`TN?CIDq;=FW5b0L^1jk~x`;Uf~^VDZ+sU@c73r zOrG=1k$W773;Ha1ici1=5o~4k4hk>}H09W)qt=m?Af#(Mgq+AgUch;CUgw;j74&pH zP8af*R7+ycGl#qJ`rP~F*b#XU1*n&ZAIu}td26Q7bdOcT?y#VbZP2w2&xuFx$@mzM zk&X3=U>w>Z($HgQq)vbcK?piC>%sb3?#bomIqRg?$@)(9P-;~!mj5I04Zatsm4)Wr%< z12j1eHLLbS(}13CYf#QY(K`mXGlJPsb5I91(L~$qOgwt3e8$NQm=mKr%Hg+c?nj1o zHF8+Noeg)Z;$Btm4HA`|vI*)l@n?gE79UH14bbZGw=`POkk+1-u_=m_SDC&-pMbS_1Z!s_nJY?&XI`aa zEx8RhHDmL`#<3mTYqT5DHE4O&Xxd4Sj~g*)(Ld5m&}#Pr5P-gm1_tnuGz7aSY*hLy z$vQ7P=7z$2KAg{7oMwzeF~IO<#b2WXt;v*(LzV678i6#z7r?5cO}@LJ;n2hXD;`_`TH0t-YDW!SB~P;?S- zuY+0!TTcP>$?gg2y{tXYup9nuE^){?0D%E_ShEe4-+_`@@4!x)X4ANJHNVcBmkiQw zi)Pk7Qgaa*f*Z$_mo6@3yx5#fz7O1j>XlP^1PKj9@8ic2B8~QSAu1dTISDwFWGt8g z8;fM1Tc7}tf4CLOEigzlVZtrE(|fEyGOFjs^hHC4CV2 zOt40pYaBO0xeiQOi>*xMF$pi6swEIOZWKCHdty8bd7#G;3YgR}@wY5W3DNA)7@s8K z9de4ef(T(kfJQeAQ!Fw0n-%;8X>33!C8SS^BJ`9iqOYN>!C`}I-gs&VYhJoEU-|IF zOi$#}VES#)r7^$Te?wuNW9gzL2gtI4OI(RYhScvUx%hB*Ruq0JT^YqwHOpKifctor z045kTWBSq6jjJiufz!+Ge()e82f7jSay<}Wb(mEqS0ab>fJm#hPvGg{l#l3x6L;&g;=Bfb+_iQ0|6uj!-dCTy zr{|Wi**jUVGsmD8lZ^O<`8zUadMfq%d8NQK z`Srpvn+}N{8ki$IrrSW!Q!&9lGsN|oBW7uM1r{h_B%%dBMGkZv3B5>d(15B50De8S z!N6s-^s(b8RD&2}3}*NsbW2w6B#_?5&BthDi7{QfX9vc}(@rws7z= za*00nZ5#KcSAbnhR7}5v0%Thlh-6pw#Q^y9km*vwDM?`{CMKpEV$V82fNhHCKO^b9 z1I9^0uqhEM$kZV}1m*xcL_|hvM5n+l-Om0<@t2rzJw{Q5_oC*q)?!M}tpOxLxti$7 zC$B%Qli38orHI$9hO>dd81W@E(ROvEXGyMR5-$8YG#a}W+9dd@$M-&-kS#n=S9*jv{`8G58oAh z`JD?x-FJwI5=H?gaWD=RI@=HYf_qVW4fYK>-9-cgJT_HvZAb7IO zki0J$r=BlFXY~h7Sz~0vKHlcn9jzI(z^$GdxG3mPUtdG#x9$kf!emhs-z?9u=oFrA z6V#Zo4vjv)fRDfrCIic$Ufhb6D+Tslz8wPwB>{>)K3p7)iWx(Ni;u6j#$&~*RWTrb z^xX|9=?WM_&)x8g#X^7y2W)n)?6(VMzkx8^0S3#qXe5Mxh!WEfHUK-xaBSaSbRI!$ zN(uB((nDSIrA8c*R#QiOJbWeJ`t_8eS3F$sMKQBB*$vN1X!znl_!`QBkAzqGKHC2m z(Qe3hqBwEz9EWIf3JyIMOO*UplKPPhs z4#-%`ewyH}^Y=kZ?@M#Q=uoh_7U%=$pqEQb>&FV86<>&C*@uK^Xz!rt(T|{g2s%J7 zUjPELgZjC4e*l9^pg5AT8J(74(|hZ-;?^65Xklt`f^gmCd`MLBOezWra$m#f@PZm5 zu&V&MsHCn$;W`vVj~f58ZOfL$zX|J?JrUmy6) z&Xg`?*=!D^NlC2Oz-8?8tk5|nfUm`;zFjt?2xfXBR!08P5LA4_xOS$GhGalR3J%cI zSfDM!jm7?lduIAj+_O_31>B@JibC0kvCXj4swrh)fsJemBVQWTNk)Zw1tmO%IiRts zitSW(rpy}3ouMd(?208{*}(x3{00x3tM35f1>+E+gdBD^cJR1lP-)&!pK)wxn#4D>On3>@vrRx756)7WfT`UxB;{NK!qH zmu#(crUafFia4=o%!u`#opx#NYz5b9T@iiG?^VZHa~M`FTJy7F9j1NAg!v*W0f3y3VpZ^v;=2f1hH$4ElRSe6sQayVM3{Q2^5+_yh0Nk`ek%E zM`wm49*E_*Xu&<61Y}`))kGbe<_F|mw~#*99IB_}Qye*KgBzC4%!y!MgVL(vXmum% z9xaGCXkShSjqTFk-$r+6j`dROUZx;q*6-_$YB9w3*vGS@UN_NBI_#sj1gRDx* zf)xHZpN`}wr=}RI=FVpP!F~V-#7?Pg#c;*Z&?cJ;)uS3PhyY@v=vG`7pli!e7AS(f zm3bUJCq=p8T>0*_DyPL~cG`Pn9rsKfoWu&=mtnxPj;!UxQy!+!k(aDP-`Frbr>+?e z0Wa>3Bua?{K%bDfj3nb^$Se3@)?upp5r(2!@P&&P>C5PZC`r0c%th3nv>2>6GNYiQ{@k}MyBrf} z5>BH#F4{X8x)YEz?Iaf2fw zY;*%qfX%4|#8B1R;aLGCv4LwGmnc0>()<5p^7L)9amdr-knxtR*fXsHgjWYuv~CwJ zugNE}yD$7bCfdVb=(|B0e5!3)-&3_vnxsGFzA@I7&;+LID*L>jAe)6u=q$Ob#sRKdnplz;dDr1IbvWQc|va$2=coeULp&SU;D zA#t^tqMHDTwgWm82L!FBtGx(8dvZTdr_l|7wK~o(1Q#!xOy2$n@SGR-OHoo;5v7LD z@k8Qj>RtiiG3-3Ld`Vbvft4s+SVS){&xFLKFiG~)UK)+6Oq`wE6~W@I5w80&?a{=8 z!1vAF0NqV)C{m~@?g}X&pew^LqD-428OZob|4x0;>{V5FIg~Cj106kGgZ@GqZmTFF#(t$^g`|}nkf>PNQORN<3F6C z#wx3bL$97v>VOM~UM>z`HRixsNT~&+H8fPnO9NSY2r#7Mqm0=61q;j(^)Ea-c^iE@ zUcvDsd~z+O6s*6D znRA{n<}X}`#L@p_@2#VvUZb|*Aw44K5m5mF3zQTjL_xx&1qtaA5e6irq`^WtN|&IN zG)Q-&96&|7TSamRX@;72-=m&$Jn^jek8geJTi<$EE@xn1=J&f}-+N#C+Sfj(1@b!y zM&up=P)&ej8qnqgZowq(wEtqeiXz9^v;9R#HMJGd_od0L9zTBE4E_jIm7lIG-$~R0 zmAv_TBBtI%c(p}K(EfuhU2JyW4m?=MaJX&es-ntp6)!a`Z6z!x$L6mmkU9thXZ4G#u4 zLC}K`Z2daSiFe>P4Z1EUfa`n-3ThVZUl5Q46S806{Nty$dZL3t+zwO=m(mt2^pRtW zz*1OXE}JGBFmGBpH@t5TKn}91I^z^7Qbpw>P~gqZ%KCfP?f!k>+am2S=seO633s?= z-{G=m9mpRdxEBX4TvU*{<*-H|w7G$SQAQGq_H;LHBhfjqA5U?pg(bE9X7wI$0fjSQ z75Mg4RLt;Z4_VOd*iptCj#`)`QFMfOsk5 zQ=<%Q=nSZm0;IlawrMkmHf==_MZgedp7wvcg1FU?LjojQ&)vzYdk^rSpoF^xZE?uf z;D2;DxKg{ZL+8ip$;krfRsr&k{26^&hWDYv;z!9NDHpwIQQ!x9WYLB!wA55o$^gdz zHIxoafgH-1W*)^~1de+kqB5 zf;N4q6T%z7CGX}BtAzZ$a;5tw5^x1Sfwx-F2Kh12dD;RP#_Di%tvK1<`+)o+ROX13 zK%!si!_qj%!E5R~pfT1xDK{{AM|QAm3VbwL0kCwM)}_N-OE0Dhz6S3lAUp2jNx z<&gjyQUCX-t_naFNbVdN4+J4*4u7OV$c0?j!Af8NA{rM|N&#gq24qJ}A?_1#UClz_ z4NP^@EO2U)U{h!n+a#bQ6U3OSKUS%7?P}UDKUS%A_%|B|;(kcU_sT*c%!WCnkCDFy zn_@<|focmyqAW6JaR(23s%{&|QYn zSiL)!E?q(~3(5tc(;qHR5o(&h+P~sXf&Eml;R-S!&MdWx$ZtW#9e`^rf^)Psa=Z(u zpIU%ewSkdZ0+eJN6a|TP!N^zyxs;$ah;9y0BxmCWh!K+^L_)DP9Nl9fLet7{Tp+^? zL?TpZFo1$L9nE;ow*t6qL5+6Ds%_Sro2sRD% zf(&KceVPN*J&-E6`07V8w1WU>Q2$=NrY}X7!3m|+`mS>iVV$C53qN%>1<+Yky8>gH z1UM3iNh7Ks5?6velQR&OP$?%=*sQbG=YIi`DU=cCAu0p3(5q>A3bq4*xkw*f0TQ<; zw*t`XXt#3|YJMu{wq}RU8Kj-xWb*+^jfxVXMiw$e_J?R#Q-GdL#3O;5j_4k6sN4p> z8Ct+QA&x<`>%2E$^piMg@z+kVLa@(>*dtg?G=}bYLkb8QI-n;K62-(qvWF24!J!!` z|NIwF-2kgwFayClur9wy9wDH79bz>USpqQuiZ@PX)Pt*sRy(l4kz|k-PF^J^CsLMgCKNNF97@$RFx3K#PAvc-H`f09y`ihpbR&Z)rjU? z1Lz9^rX_G{aL@?M<_3)iEz}aj7D$DG4~z%Q3`zO*<`_RIupCH*vkrAR5&?e;&?8V* zdj)z9<8a*SH88*-jy<@=0f}~SHeZ2btr>MxL_`Zb$*hwh9td4Rxr%aVyM!Qy3c?m* z40q!s`~vBq%mV?R@QG;n0H2>&qSn-e&4+~dAuiWK>fZ4AX6uZQl}Bk)Bw1H!wq|$< zB4%do79J+8It3b~nsEbgm@m3Rhz z3ycQDkw_hWXToai$^;Xec1*%Wv$xTO#n#_=U;>spkC(?JchJbr!d z3P&g;dqM00zyhS}2xXeF;MYSnDhRWH{X<-Fo=j9&4i*~aKTtX!@hcE>9E4F2*Z?bA zL{5Qn8daSjiEY@4>JW&5r}`Nut#=zNRvMsi&}FNgj;aepK?uO|J37qhPWYGyCm*U0 zaE6o*s?UL)kA(MnL4{A<798|cSpFzqIRnZbC;^s+s}?|jBFg>_4==)Lnhe%U^Yewh z0BnKRo{CU@55jshWX_Ym(^Qcefe`Sp|AlYZ#H4ku{5bebpmvpwm?uOVjDr$fT1H=^iJdW zt|zuo@d_u?vs!X%3eF8qfbY2?8|Pz%2$TS7?C_XfMttj0o9a2Uk02A#+nTQyKwrT zr32V7>J<5#pI;Zakj%P;08=Ac9AdzrMi8(|5$GIePKxorir6qP0chQVdK~Jc-6P@w zS}c|o_?uw*KDM5@18}~DZnZjCh7>3|tSYhuMs0z~Tq3H$0#Ccv9-uZA;Lb5i2WO-5 zC1@oV<{LnOa0W5Fmd$ku`#}5#K2=xbN(M+D1MbG8yN9^+HU6UF@^KF=H#9NGy#QJ$ z7K{WcQn9LBXRcL<0lRz84YcQ0fgNDF9%_uZ9?3 z0rn)y1m`&~nISnZ#8&~w-VUmkpcaV(N-p6vR{~99l&{&nI~EAr0P|f&SqVr+hBgs;zMyDNCfa&)FG`a*x%p_Ujc-+1R#63BgmM%1p9*W7y#a(YeVooa?DYH zY*{jKEQCk<8YBTL+_4OyZ9Xhp7BKTDr~z3KV!{TN9f}Ij0z>tg5WpeGA2L>OC?OCX zrQBenn}ORAx}gUwZEaXeZD@r;Z8_u@bWz3)CfpvD54tvZ1JF`ch0VAZPEQ~Pra@$f zMhPZA4eTrQPkZ0ROObU8{6mC8!0G9XC1gWG63D&i_1=^=gAj_k5bocJv#)tO; zfR={7gGCE*MPEWDWP$ZWe7A7VL_m}SM!xJ;X&9VQpxray+ND1h9X{vs!O5`J2Brtu z6UZ>sCEz&GtOK9rgxjz0_19B9^t7SYw8+kaO+;j^H9rK67}#o91uIK(WS(*W^1$vs z0i_Y9U~$8I8$fpR6{;2hYY$tyJ;A6Mc!yAWr6;nJ25c0P0@=IQej*Kg?XZk((EVHs z+@lKjaKQdGPzO2)lt7wbS#GQk?G8ALPn3GVz&w;2>-E?i0dfJ}mC1wbS zHUxSsozB7k(YEpX&oBmsz?6c9R-o#P4)y!kA1@FeKPvvoD*yh1WTFj_EaBLDGd&0G zf0O{?xc{vl^~YcS>mTLVO(;Xk?{#`MoGq&0kuqKR>$PDpf2AdTe<%JB;`Gy0yEchGQ^vBAjzCCJ^{8Y^W@R8ylGyU`L zRqgn*%bxN&a~Lua9M(|Cp4Yf6wv%fq?-2 z=c1kdqo3dSZ{Hottslkx?Pq`c_QwB?=(iF1-=+0^W&H0z{O>^gY$X0KRs^XVGyKh= zqo60KgcLRi10yyZATRXfXOH8r?|b7SWD~9ecSemM1}HBO;+L);IsGogJ$?2R{9Xo% zdPIIYvj6(mp4|6BZ-+~r(%<&ipZ??dA+8vbL;v{cUw`ob4Qqb40yQ)8-wn7Jpp^Qy z@_V zi0`vw>>zq9^S1pJJr2IX6NlOAGZT4H2{`b&xnVL8Xzp*T!uGhLng8!E&sYC%oQD7Z za0|}GWI|4yKN^4+)Mo~TFerkC03Y#dAzne@GsHlu5V`H;)zbmZy>z`ipaY{|6Uce4 z6Xh}r3Tm)+fcFyu1zM0fV;2$W?YjC87w(S<^K1Z*>ClBU5cZ(tAwb1IyeL&`Lw+sD zAM_Y#_5(i?A!vw!ge3M5p3&akj_U-BM;DIR^3 zsYU7_7OpsS^fVL{BA5sf`XCE~$d3qJMwl|Hi)`@z?{Op44Mx^UsST|k^oZ^;$&o*m zBiT*%QsZ1zXh{c!Mfwhn+g*BL1zP#(`T6PBv|T#V(wCAt0FP@gxRzE!WvP~}QNw)c zHK}ZOAuD%JS5M=t-)TBQe}OY5$NF%1$1l6zx;Cz?M_o81Z!;<;d9278s4vp35ST8$ z*}*#wOu|kmnn^_%ZhZVjeZpGT(i8oS^N=2!y^TNkVkOgKQw~+T0}&_<#$_dWBa^G4 zp#gQF%7gqe4#*iD5Kb^@3aik1KX8YZ66R3vz68qU0rZ_W)7IIUIJC7~ zNGyc{DX~ddSBf}y3}vV}OGLuh(~c6;VO+`l(^41FE4}^r-&Yn5a9kp{M~q5F-Z+&r z|K|zOUDMG=f}v)S*!Z+d2%_=5d-qPH>2IdGZ!JXQW<3a^BOaT-g8@cTNqJ#}>5TMr zh02W)ULja<0LAbattU>RYKt)VA$r{ss461EPX!h?XFc?@HMot|NyjTQoJ>Qb?9&6V z^v+pJdk5g^oJEzjSnCP$)y=sXLM5ZIn&r&f{~W)cpLIVZmBcVCfS#}^z-#5qWMW@o z$xl8$>e~!RnTs(&UEfU&a-|)Bra2oE%1hNK~e~9@1{X=3h zV;~mGLg|h+;Yz#$8?E=C?-3cKb?7U$tdXv{fIpHZzdq;Z@d_=XLZhj9V5#GP)1vC) z;$kI5()?&DeS;Sp6O5Tj+u-%4mHhiB{P=#6f)1{t1U0#a3O}dcYOZq}6g7N9zWI57 zWiwD;(trz^5*vH2#Z(oUF2K%~U{WtZVkm`b#|{;}(vlJ_5DiG}?d??-?*u0PLbN?( zW|CZA7}Br3SFd;pIEF3?xS{gnWoYO=dpo;i_!C5(fh~~Pc12Xdy;5Ri351v9xiX55 zj0|I_I}@VSec2U>YbwUfa9SC#7nSZWr1b) z5*0=E_v<*FWdVG2(vxgw^O><1aVYn%rly8+L{P&0HFy~h>&Fh1(vs|+svvZI)_tXv zgL&Ad*bc}S=3uPXx+=F4(lSb9fh~j-w^EhZS)-eh0t0Cg%{WZQ#v7?#q^5F0jgvjq z!}A=|NMvzyLeWEZf*wQW*D+rizokX`Oct+C%jWrG2LApyt^hMKu8uk|!6BgwqQ6tq z>}0)=giMEGB<-jbyel$RNGTTwW!{CZFS>9Y6#I1$NB-h|9qV(l3l$|71GL}#TTfyr zeJQLYGQfs#9PApB#keSMg)P3w*4i=XewHTX?-%{!dr!AG%&(HsA>8XIqlz@C(h3T$ zp>2?l_-G3c}YFSZTDhKnO4mI@z)moD- z!qzMSI6lUqW012#eIUnSkB`qq0S^xq;R(X|TVIz~P%!yOV#CmHg}k|vS$I=kmrg{> z3!CVA%Y%a?Pi4#GS>g#Q=Jesj=y0zaKQ8v~k5v^;#KR=g*aHm5z%Y-5L}j57jYuMP z5^hBONI;h0!C%N1foqOyzOc*w1_7;w0O^ZeI<`Iucvu5aDR0@zQ`rCc?bbRp_Kwrv znhy&d{qa5DX>FFKdQ7nQ{ z7*CSeOo1fbIlMlv6X?yL5;N^6!oaM15^#O`Tc{=0dz$Qeu}PXym5>Zp)zzIg^~&gX zU1%^fHO&${@C!N0{z6Avk%CHCY>27^DOC;e(c=<$ZzHgs9vNqcE&mwu9P+P?$1B3T zZiq?YiQe*$Oa1HPnkW^9@@B=Nk_xJX6RxgpNUl$u(5HJ;(IPS_6$H^^+QP#GjMcn%h-piy4=oRNj7Q#N)3Y z_t)q2zp!J-{ZGOiCroAT0;Ta-$hF?Wp8EBd__T+qgG!JMc-xDw~yOOm!`?m8NW%Vom z^&|g$UhYLIiSdkY3=~a6=L7(YoNk7!$o3*mYC=zK?PalzuhrOhyL~RB&TX1e1lY7Z zg?*8s+%iyXn7iR#na~3+hyvWPf;kJuP2b}LN&Lnx%$ldVWdOb^p!Jd8vP0nF+SiuG zb^Lpt^2mR8NUAWGNe*EoLBXsY_%Bx2PTbNYoTlw3A$8~Y#Ybv6P&edrZV#KRN(-u7{S{`9>8qMd2s)E6?)}r(W__q$8=9w%V8v3 zRY%L}7rmQ~mOFF(m)&b64hsv^ZeEJJDwhjo1)ZR?)A}O0E!-pumC$NMxB;mE$-jt3 zeF9D3?6d3l4{k_a-X)vr{28`>>_`tflD#h;@xfvi_iv_<`_D^Y#>vEa2&KZjuLQh8 zCnu(wtGG!v@-}8Cru-Y}wNhOc-u%}YEPVi$C&qd4Dvp9>Xk%2k?b!`Q7C$MINc+$c zJaTn>XNKC_<57Wp>#L#JF1X5x@vU_m7$8%~;f3A={jgM^PO&w3qpOMiel-qUgi>A! z?lwL`Ad21WStxE4bcs%mkKZ?U6JITMVMgN^}=2ab90ZXVE6?xL=GGkEp zP?w+r($(+fAo447i zY=yPY%3*kd32awM{~#CsxdY)@753Zb!Ftz-n#NIhDx0mC=p$AWFfKGBP;(JgJ-wN? z6)BTGwqynd6Fb;Eg9#*(2bJ>WN7E{23O0CChC(rkN?T#U+$4hfoB68w++>IUJtm^Q zLHw}J=4RBoM>_%(km6B;_7}(}7db(p9dTHG$c(lCo?o6?10 zoS&cPZrFlOdDjFP^UKE|@yOk@JX#zM4U*8@?eTn_BrJ>JAdq=hR5K^H_P!AU2f#`e zV*wwW&ZBemP7Ei_r$0XDrzh0Mh<6$)d$=Fcs;$rBU9QP3i-?FI>S*8kQkbpn$Gh9! z&#q__7f|a9N=c8fci(R_T#4_TFtbBkd^JdN8Pr)!o*Rl>g=X>qkQVaYci`g#yMxVOjt8mi^J!@;uKvFo2w&R^E z!I+Bj+e0;qR#vXT$V%M5dF=y}BYbEmq2blDiU0h#UBr(=BH{C|Is%LBWQ+-_GwSLu zTatnIdINh(LP8(deFe+8TtQ=$RUZus$*tY3Q}$UomDTs{w{p^1xG#qWR@_W7gt$BY zxRJj+iP`lMe1A%4JJ6{aH9bvQg{tkN6h_?bje(6U%Ss!1Q{`RAiSV<+7|LCxY@Ujb zLftaRt>;4Pmh4O!&=#npc}yJCzr5+6PZzI74Fd2r&J2zVRMq4QYOAWoE3pTUUR*x~ zLP_sr+WA}h?8V@y z1;TRS-iLE=0499F@}$++u@Gv9CK}Jz6Ym9PLZeorSZ=wojT~WX<5QiTk-@hnQC|@4 zhd-LeGjcdD_VncytXbd(4&%i%sT_0nejQ=2KX~ohA;q3p(vb&LA(6T<2G^qQ#WFoS ze-7V&f3S(I-FwkNli(SIdkR=6ggH#K3Ct+G>B-f_^ofPs*B8&nK1hkda{BvkBp&v7 z)7+%!s5&gA@ZP`-BOUF2l~np415No$o8VsWiw@HXNk^xWvm`pBG;x7X|YO%8Au${hE0JgUaZU)Md&RG^As zw;!yG+J{*#v<;G_1RK}gqRr+>B9Qy=KJ(4r=Wji)PdL>zCNZ;sXOhpeYT|K~CT!h^ zDx2|l&G083yhTxVhHAB%YVFN?s(tKqAHpPpx%AnkwhRhLHH)bz$f)pV=bcK5$S_|S z+)9W?HX7JJzZPv1vEWxj6Db8VGc#pD#_4Hk;;ZpBGc_yGd#N4Xg?nPs|ds8JzxEJ30anA3J3V6*5zEd${~o4A!<&2_{L z2OIuZtqwPtj2@-dd&S`vy)#vV5_ z$CIq0`Q=s4wW+cja^5&bC;yDnd_3l$IK_S`qY+P%wr`h}v|!|6-QL{IKgVPbJ$ z%K~jx(3ozbG01MpwFDFh(Dcnk?9^KEjLL?1iBUw%q~L6{<6{5u4d}tQ7N^18IX!*$ zGJ=dglCuzf>$j{dM3DXdePFEd(FZq;1=WvChEOLK&zj#?Xj8p#;euBy8Xo#_N9ucS zSW{CaHMJ1=HdXF@DpFF9;9zhTy;f_tB5l6l3LdN?2If?VPf|tgq@!bfnSx zo8s*c&)bv^KqNcRcuGi!gT=3Y+QH;d_yW8^3C|!-Zq-i+D4iFY{EKVa+hUCwI7k+c z>%ef)2~ABKKTFg}6gCQvySXxy#Yb}?-7EH57^~Zsc~y}ktC3UM9oJW0B@{N{?!`Wy zI#h2H{QECUvZzaYamme-2U~BuQM4IYcf5Ky?9*I5Zu#w4D5>SUknk-TO!Ucj0y1;2 zina#lgUe~F?02#6_A^)cv|Fr^-*xN=bKcypf_g$lfPLyQr(<&-!WjCGt9KC3MKba0 zDj?Yy$z!nQ;c>i@x?1Vlwa|O7W1cEz-k;7Oj}u-RxdpFaC|OwUO9q~0@q>S^;?WTi z5vx7)luYPc_m@o=IL*byY;6T70_gc54D&q4$(XOV@5|hx5AXhz zFOM%C5gRn&dx5;~(}z{qJjDfUjhzGOPJS-%-PMiTC9f$jMu-Tb`+6e-!xw7WH#VJU znB2kFJ{cIFL6}lBH@_p^t=BH3nwC9zyLcqXaBYPDz74}U2C8?~+l)&#ek&!DE!yB0 zBY8I+HZfN}vi$Dr+Q@B};Ng&aZo`$-o<`2O|F-L;ybRfSc@_0C3#IBxbTV`k?p|h$ zu7k4!=CR~iVlj>~hsz)=t5TrzUnK^p%!1@F`FzsDLT<5AR+Qr$4!uU*RF`cKjY?x6e-)CDvX%HKycG z_~yZ(3;gp-(&Glb*Zjf)kHo=-;kmc)Z`z@rkDBV+0Zpcy^9vt~9~Yw!XMpsS?I2_+ z;g*+{mVz-ahj0hdF9Agh=f`#@8tIJdqf6}BIb*MaX+D_%3RO|Zj3>DzY9r>8jJDFMuF4;`?0K& zCbxb*g@^Jgu@^tLtt8&NiT*zy@ZkJ(;`y8BX|lI-CKsJG3U478zx>x_c*?OtIqP%^jGdCtPYWUSBjb)^(_%ULTU2E6!z-zOEo> zScz#iUuA};Qm=~Z{hoWp?yFXMlD6K|R2|VL)H`9Y-n`fnIe$$4-J%@TTUE*3N0Xn` zXC~KY!v7Drn(>3gjb^uQTtdcw)}3NgoTlm1`LMyz#((ipoAn=7e=6U%&fpa*dC0$Y zp@(>j^wiYV{zJ22T{txtm(tI3j$r}-`v7bajJ>&hX2EmMs_(BDYGv{0CH{npR=XFn zJyDT?qKyheuopvug4+5{vO?-lVW9DAwJ^0Rc>ID!BOZZYLL`hlqF>G>A35Q&QqOhg zGGR*!Enn~?2zoU)2<9el4>oFyKI<`bp@|kv(;r!4ta$2vWn(tW!i8>6iM+~TIB5fv z;IK7~po)mB+{s28Sy&_g@MYvd0iz2e?+BM_=P&OGtn=qzR5YlZztpsU#Gx3Sy9II> zUCY7(I_4BZQN6Zv5avWi323X3si;Wo!!+}1;46OdYeA;v^xZn5Rps}tI|ScK688T> zzPzR*1TG)gnVhdjW{JZ?eGTZpu}ad@)6=?J8y}_}xP*n(d3bor{dZ)?HFggrr7|CgADc?wZMThoZG|u+v7xHmL^w;j{b-z1^wuV!TW{E0;EJ-$ zC%$d1c2+${J%Ypu_kQJI5Vk41vSD_!anANhft>ktdO%o6Say@QhG44s)_j|ocqkvW z&;hRq9=*3V)>7v^-hUkXI^^z_T9z&pxH}k2zSs52`yTq!yQo9uBtVinjzGRzVkIo6(O`LP@ z6?`=HfZeK3gyzZIZFQuWwI=|hTSgDXeL6|xlqUV{WFCUB4wVjEJYs0h3^>05AA4pO zS9H^H_#ggN^W8YT*zfD*ruMFXvcM1mhjFT|URyUVBNJZsw3HdHT(JEggY0Z0w)4}vm zjf(pJ9ud0i+-JTz;6k8$);7sl*taEIa~wywWBVqWiZj2W-M^hR49j^Vf{KlnicOv( zsPdEoMc*E({BZd0;fLQdRxIYS1hKG;I}0w}h)6sy?nkN@X0#taC6{xn$#VP04@*xL z?HoeO=PRor3M8(@KmL;(?PzabEZS%SJIl0_>-cdg_sXG9H=@UKzJ8vzEEJt4DsfTo zJWF}EX-tKku6Jqu;*nTL4+)(*l?tU#Qs&px)y<)foWY5O=OZ1_ob{^b&Y3_SE#aiM zeae^aO$p}|6rZv9rR8^MoeAihPK3;Z-{LiVG%LmC8HT>J3hbk4p^eLH9z_+U4$n8; z+>MJc&E4y1f!d!GpUva>@A!&-wg_yP-F@>Bzb2-8GcC&Q`1m^=5`zm1S76{=vh4&6 z>CH}23u&+3v~5j(Z08V>V?VMqq@Vh7&G@%t8)hm>%o(09Gh(jKz(4=bQ8Awf{pA&5 zbxO~hy!&cgKhhN17tLnHr)|RICjEZstKCcTuM<<;JUdqb1o&gDh)*OdTl@R_$AM<0E5NJv@?l=?c-VE2ywEr zXPxb9bGVU|5O_3X-DIr0!rD?9Z>Z$%E-tY_;?J)=;*pq=&Fs~=s*v)iPJL#TZ)w;$ zIVHbwnbBRn8P4cui7BU^6EfC6d=Te;3d$O*G2vPP&vco+clJ?ueo|^8=m(~DKHjwX z?8(~)zuqp~$2+jNl-sHh9p0lJiPttw5$AsV*0_M{MkiOWG&^{cf(?!Ovs)Dds>$gK z4$(dM!D#Dur*GQ&Ef;8$u3Cboq}xBo!ph84dh_AHg;@Xh_4OkTCd!Q_9PI z7QymY7u#AJ9vCL~@U>6LroZMBjcV?)n6gSD&ocSvcA1r7rR9(q8}mI`fE)YOatS6!zx zu(r(s+*TqOGito6C18)@mA5k>o}7cfzwEudO;&is{*bqQB!#ELR^yqVqtk4ji77{W zd+kkeXNBDR4>K>bjjjCUwunzlTDrTRwYp-l9N(cGyVrcwkXnOkSNl*u?5$hzm|r(3 zDFD`#4he&FuR?;s30>uP{_ov#T{eig*tXIU4}rd8*xoFGlCn*ILzDO2W~T1e*k~S- zDaBf!)q68-nH|kqNwuLc$HK`l$2@!!>ex<a&l?O(VnH(x}Kkx95?Ui|FNE zn$Y#1*c=A4pXZ9Sw6wUJ9-Ti7<}Lo@H{SfF_Mu;uEG;ue-fTi@zvlW$r?aYQv9rUu zbQsE%)>dVT`{(lW^X)~ob#)`}UTid`7jw=_FIPTO!Apm^Ip2?=U!4jipk(B*m#ac{ z_n=%`qTgw$hddNwy^m zSYM)xy=BpMfwwGf>ZKuPL;W>ucV?@#Qq386r-3qBE=+&6LCB1jMoQmJ#n!15vXx8Q zM=L5d)thuvXAcTokvMDVYV|Fs{IO=5KV2GT(zmrr?aXX{ zNQg=>=x;tXlJ=gvecR2usSTt;_}@AL)Q$<5fI#8MdrnSu89nKQ;&UMn$vA1Y(S0ou z2;Ga}pZ29lTP*dsCL5R$RjL|Dd1Jdl&PJ19K5k3-=Ts2&m4L@fxMG@Wr7KrPGagc+ zA&;qqlye|pS;S1g_r>6lkdRSTPd6eqh2)&%C_Dq9#&A-P2crY!iz7Xd1@G=nD=N~^ z)YJt2$%KOg>|y|_Y)V}+i;kikK-GvUUZ0blgvqtv($AOK<+`7r-?5j!9sj)Z*rZ-* zeQ^82y&TCS)fAq;_39m!xbqlH>%?Pw0wI0o1_l30Y8Xre_HR>~=wwLkr0TxDj8;b- zBct0Pmy9?E_Nl+?e5R8q*B6{*mMcj(wPPtqGsb!LS7z&Oc{jJ(rvM&!%6FG<%wmkn zuRV){@%uP4;_+@>X8WNZixNHZIVLD$=&2q$FP*^>f4;c?TNDCxxX@7*C)b^e$B;|% zE3khy5n)0*BK_5?_T5rU0gz`H97>%Vo|bs+3_a12E<{P>lgn|vAU&J852q<63{W+6 zI>ufhi;z=XOZD<;ao{U@sGi#udvA*Q{*zsww3!jmVU`8yzG!w70$OW zuRyq4@94*O{rGhA{+li|l}uZrE1%*ZgOCV`1TChoqNU48wZSvdq4uRY`5C!SOKV12 z8KV`=U0tGip4O=C^Go5rmKoT+Goj$=K}KZm9?lsFME*y6$%S8#k|)NhUe4AhnGr22)g>J&2gDx1MhsEQ#oJo%`6ob)jp-Y#WXl^ z+dQc*-NR!vSdY=PExS>Q%u{c!2MmvxM^~MArezzMvMO03c~;tdrJB26#?uYmzvqQ1 zQ&g!aT`Szm<^_qv(tUx`FOCCq(c>HmWTvmD(2byG-&pw^tMv4ABrB89^ZE02kTUtO z9ECd7p*E!0Wkj(As_m`Wo;^rFd_?p3Z@WpTx!q!kxo>Jgy+U=vJEw=&^#q4K^764y zv_u)(dm-eL4$?Z>05&g~tu-}NBTdU_+Dy(anP>Oa=L{keS12T57XkMtH zpi3*RQ;*?>{=EvOZGjqX-8$v~8K^|>VPJ=rB8TS|UzG~e1VEsnBKVTswni!BK*4xy zr3BYeoeas>e0#^nk_DNRu$Gd>pJHU+xZ}lUo{o_4W!b51-LcZsSQ#6ctYywGNyi!l zV;t1BR^+dYbrs6t4%i!uv3dTnX5dMc!6g_R^fmE`7*EEv2p%JOae)Ml7;0a@PN!^c zZeEys(DmzGV7BUo&f%j>RFaTL7eKl0U*HhG$ks(8Ou}sje!G0o>f|*x)pYD z`yqp&uFGybBSrw1Xc?uOJ;~>YcsnJW_nD<_nbGM?4LT%wdat|qaC?mYcKCVk)P4-* z3wF#0B?!f6{0d|bigPN6AGdIs$`Efcb@91fz02m1w-Al_U~2=7L_o_SY+T*|H5huO z5Y6O}Z?=B@x4rKeIgg%I-MVK3LzMcZ?Os)@wd4r?90hRqNxRzy-xFr)XE#djxLv)= zy0lJPAVD=L=V?GI-=xC8@c&l*}<2E#(PE%t3X|SFU-$+PXS)r|(0lG#B zCrO#PVS;b8#!K%D0tCVznl!|979JoA6I`s5A;?A?S%Z(CZVOT#A%>#ROlFun>@BE# z$EZ_b_H%0(I4u_q``X@Uf)EbYoDS%T*%apb`1m-3+_gP$Fhz0-)tH%?K~F0nq36{r zZZ~|r{uSFJn9XzgCkS#c$$zCkd-LgwScaqN`@Js>U(K)80)JM;Ja3`AX}`458!-m= z3zJ!Ym~=ZqI8Hylo5a6nI03t`kc>nulDU;&i>s?;ziP92?v0ZaqT0e7 zpHJnrjC9nxmGvrEp3P|0&@rAXLg%Nu7VYVi`@#%gL}Zs?)*g9Zs4lTsX0>piTsr|g z-Zk6pF^JRI6p9Irc0T%ZsBe)-|ox&3vtUNR&dPj>SFvy!Oyqo@dsjbQANEhhSJ&0mEzCvt2Z=&(#`yhTwLy>N z_Ldey>@v`EL+gh7!wP_+ctrwewLA^tpwo%84Vn7-egjRe{`o23hXDx$vvz;$o9Xhb z7=1f`)cyuOAoOP3oT&+iL7u(eO7)Xn(zfpjU&*Oc-VHLoj-taXU&9Y2eV`7(Wb`ct zAWWD?|L~($4Hc_i-iJ);;yv!aJ{fc;K*8~%PClh<$Xf=^JA-_CN5|5>8SjKop6}nB z3mK)PTbz?UE18+1b*y|1XNeYx%60=qcnlmH&QbT^Q8;~-Q!KI1A+(>G9)V>p9}I)D7BDSD)gQjOVQQVPbYZGP_-mCXTh{lc zofh`b{!kU8>fk>U>0U6C<}@&W7>IJsmcUVS!y97Xc$Yi{a?U@$s*+&MV8+3%ECfD) zjK^yALH=tP&?vf$)Wt$?UWirFlAQq|*|Uh<9D0*5OW0CGlBL58CHz2S1q@9yLhSS7 zqk`9ee+;?OX7#19Z=C-albsx57as+)v`&M2w3&A(Ysq$Y7pHjlnwMMr1~10|o2S~6 z`K`>W^z66c2m>-eBXii7nK{Pd+bZX*-WDqjXtb~TTGETF8fQO~1)sb2Gv|{U@WEqq z9P<-@|NLHoH4i6{p0bdBTSZ#C;k?>&id1~9m8$F4Mew{SCSK za~#lnIAHj2^HUV>XC?g5{@*HM?n&N_h->H_EK%s->G+NHrI>F>BW)Ekk2dRb=0|MB z;aroJrm0=0{OUUyA9{aq=gK}&qT6xKFICKCNcfrbMiMD+TGIUCb28oX!4Ieu&XrS-&ewkvt;`)hX5hnaiT~P zb)`wbKesI5n5OUqq4-z-jT-4 zGCuw>8bP&?72>D9@bLBdy_7qIvQ1we+jphi-b#nJhds<8@Zc-TXW;<(wHiKITw5pRpWiBLP|$Qs8t;FVr3WZan{oy zmss<3a%+};!l#&=O;?wFWKtfyM1JuTh0N-t>b;Hkn@hFlh zg>Edj&(?z|&JxT%klvyEVbalSAkuaIoybQ|vOG}tw>0VN>$8WB%9GG_*uN!iKFF;U z~go2cweqY(B3y7auISjZI9v45_aS`L^Dm z-=QYZBhsN4>pMNPx0-KpA)26rUQ56u?Kjk(DWiN@OUjlTWLS~D(Fh*xG^lH|6$FCl zEDXZr?;(B@nnnt;bxUDjMMc>>k4NkUvaF|WInZO<)nzfb-1Ew>5~S*6l?`>~9m~YT z#nt+>3#3mSED0I)wLA8d!hT6Kzrl#t+VF_&n0nwAgLb0JqtImTec!FbcUxLxE-0ec zv2^fUPgca(sKMtN6J zy$&kxs~^AmsV)l8UR0+aznA}w6PS|-8f z1_70#t#0($c4e7ACXCh2OQC;QbeN1aa>; zlfi-EDW(H8O3q&br1G$B$K)2!84Br2)Jlo{*IyPLhd_0VSPBU|TAqUfsK)i#$+$X~ z#5a7@1JG_e0@%WkiZ5J%+L)J5P5^r?2vsv^yYRv~0U6_xNgR&npe?jY!2<2DV40%1 zQWN0mOc;!mU?TN(=QtUBQ?5yBO7B%++k9tPr%kYf9^0?>iw2BEYAB~#zUuUvn}WH| z=bK~0-T`qt6*zKrX>JBh3)T9Z?gl9FRiL-$wnVU&Trf9+KZC&BhPfsiK{$mTp6n?#R1;YSE7n^b* zF>H5vWdjyQg8t^DdO?>HL@IW#DfV~oYOi~E{xIr&B7*-CWE{~M^V+bO5}5j%njA=q+OpMNSjY6eCwKTAFpSeAZ17 z6$~O-LI5+k6E*=Iw}Wz?NoXsWtt#?tafH`H6ZR!m)`f)rSqZGJSs24>M7B0&+hQy@ zX@gMUzzr0E1Rl)&pIlN9L? z0R=#_<8W+&4qh+L6;>8%E`jPP5mu=D-h|$3Yhz3zt*mTJad9REl$JG7kE}sw98Z1S z#pl$|7_WX&2cv!?_aWCb^UP){XLJ=zeD_6tx|a?Qbcm zxuPSZjGd7-d83h)>+q<+X^P^6{EcPp{D-1LU10-Oc23$-_oalE@TtnNsUJwyo)p!iQ)ycUXtq4O6g zu&KGbS0E*1XkMv=$K$Ce@0;Da1ub~{7NL_0YECjaK0bc6AbNAkWDTkq2jh&U=bg*Z z0N6o2u{o$UhWeRXSahI%;}E)EfDVbxU>H=dUX3j)I}7MYM^~3Q6r-YU&q%GfUQos5 zd>M-U^|&sRHy64UkXy$D)m))tTVhh_Q0>CDYphvY&5<)LiHE0b~`ovE=V4fAr}z zW9+nxn0V_{=%*fb09WlYGrw7pe_3EV&O5V85XwePX^6sk%)JE)UcB`qfr5`R2K!G zHLDyZTHxBQx3JF!eYTqu)Ux&~!+P|xYIU*@9y@`GHp4&?-J4b=)&(<?Y_rJsx%*8k zDVa2sEZVc}^(MJz9!?5u4SP>1RU>sAJdM@*H0bA6 zdfEAl{lAwNxDn4dH!!MkT}Vm56TYvZ1-z<_Vw8bD`5o{duIDmDw6u# zdVvV5B+BQa3oZ;NYO><`-d8n%voreDiZVxXfUw1+r z`PTq7<7n1}x^&`@TmXMVd(;aHDM*rU zeSIXc*mJKGdfpLx3ig;pr^5lm5$6J3(XWBz?T~%*xoyUF`mp4vtv8E^5a&8jme0jV zQrsm~;C}I}rMyquOwBy^MaH2Sdv+fo`?`{s0tWkr1 zs9MAqt@5tE;l$W!AE#6^_6>joBykPr%PsaL!|nTAjaRo4(YIV9tUa&`#)y~HvTZhRTZP}(q4YKf4rv)HJ4g~e|E!|PSi}1o4Vz|%vBu$VdXehYfD@C~@r9HXrwJy_8 z%&lVGp%11vr?gAtFa%)OD?xSKKflIRkok(g0ZoLo${e$|R_i1tq5icQJdrQsYfzX; zlwp7ym`slIwXvJFTL)!|6sW(O1iYgiBn`$KcN_50w}U!;8Z!5&+f1A}VjGdApvkLp ze{YQ|3aCpdNzj7my?3xcY=o_L-;Dz4iouTm!`FMjbJ@Ocz+Vatv@!|tB|@9Y2zX6brmf{t&XD|n?8~FDFImw?@WaM0>GVIIM3pS) zl{fdY$o_zddpM9Mpl)wNbsI{nm`Z*=N&8s5|JY?jQEY<}*9a`JoJr#wQcbU?qB-lL zAEAZ|NV*)EQGgaThz$f%rj1$`@8lI|vKS7z*pDA?dK^Qm;g=jp@*W=XZE=h^sec`* zIrjyAZQE(n&GMM7f%Jjf-;T8Bc1+UlO*KwZR1gnHR!O$rEaU1asUeR!v>_tGHe*S1 zX|ZH7jhV4f-FOt=N?X78WbF^@xS=EHWnXV3H=3X1GfnGFQz=lT+fW~vX1Pmo+zjV~ zt?LXp$GcRfp{kyeZ7K+LotVWYG_VCWodn|w@t~W1fT)z!e!*nA!q@v~MO}5Hh1ma@ zt3lf)k_nB8-LGeZx0qr{y*!-gEfu`k)DXbEAhJ91mFWc39(AP@8IUC_3u z?2WIZ(&UB{F+4`6Fy8e21JJKc?ah^7IYVv7Qu$g9kLZ}y49^+o)H9#+lGEv=t&F1b zLw6b+-uEJDbEFk$rM*I!D$gJ^!B4FmVYKc%o_HQ31Xhz<)MO1`-?sd}4KD30a0Xi7 zK^U=Ox0;X#(}TQ%m<2B9a!sW4@rsPi9tPM!4usk!QY<6D_%-`aXqZd}V#*YYZVVih z7d^mpjx>K{#oT|m{>%FfGqQo=vMp^mGsw3{OtBK;S7G(zwCK|mjI=q7ChE-}XlQDTh7tAudo|M_Bx~nVzqZOMDi*aj z(*=#X#_s)D{HClJw}FWmVO0y2<-LWDtB#_(ENp>ub|=Sgad^g`ne`r;>#V@_6+ zp!e`5yoWf&-ho=igFXmY=*>52ANY8_s_4qQ`WH0vm^U}#6 zCE1*E7zComu67XG^)Uu~C-gt_^V8T3>^r%zD|n9FJmQ{vod17Lv7K9g?Ju_f{xidilnT5bc6R%QOb}3j+rC>T)lSL9W#F_)P^PFRcZ_B8 zvKN^EZo9$hmWh#9iUOXSqj7-y9+Wou^{$q&pOwF73@1!u!IRfgj7n=__*1Yw&k!#> z)cil6hcE-$4bqU|=dknG&FO&H30<1q=zpp*zg0+kMFI31Lq668Z3LiF{z%-Q}ROcTB~e?)fo$CHeK! z7ezKgQ&Jqf(rJWjvG9twFB0^qC?Uj5fwox|e%XjhvxTjjR>%_(n$b@{95K z932w=-fOk`h4EwY&0k(#0wB(1W|z9xyC+@iercrS2bmo zP;se6l|t%flpzzy_8H#v;1|yf`u2-XQ$k0B^Skxp#)|yZqh5n`o*7-cm~g3jNFpb{aE7M{C)U_$4%mLT(h>BWmsSfxz5F46|OO)Gr(|7Q^sPsF=$DUST>IG#+OFJv8#tY^#PS+>pn}ZPdRS6oVly7m+1F9R7z`pT?Oc}H znf~7pQ}d3W)@j;(#}lcfBVV{3D-L^cIT}u1BPEvm*;h=Jmoi_CeAOtZTOwcWzlj3c z;LAI#_Kqbr>I#^X~n?ucyCHD`$$?Fr>B_<8Sc7= z>K_gb=oe;3|BhzlY`)E;HaGo>YYdP7LsCc_WD!-Am1C6hJ+Gj;xkScWXS~j(ZacPB zEn_@Ce{^AL=|L$RptcP{Jv<98Mor@eN`>zv&i)TO4pYHmL$4e+u$d$4N4T(vE!G?e zDk(=auR-43R#jwycH}uj6O&Fbs_UBi`Zw=pJ9a%T@AfgjGx182 zDI5|UJo(9ut@CIa=gtb0QadjI`9<+18>-q-r}T}cb=P;F8aj&c%G0b)5pCFCritw> zIW)%JX~^2p=t)0XR^A=;eP<3fYxZ+Jf zBHamINe(=OYgtIs%fQ&Ue^kQEEQ=I;Rfs{#{nCz9(ywo({^G5fu3b*sQKRu$@?&(Y z%X>c6d5HrNG=m=PjYy~M!<{c@D`|QU&5@}GZ1cT2*3#g%>ZjGE(#uW^JTfZLqO@_m ztF${5x$+j)-}kulm8z6qbw_5ypRjrn3xA!OdS?5O&zXoJc?`y}ADlWIcy0zED;5w+ zsGXef#GYa-TlvOL^HGo!d;^U2CAr5DQbi1^;*;L^g1^4GV1(uB_j)V%xBWO)cK5Bd zDcu2`l>u~q@IpDr(Eo(gXXSpcUPU02G^qm91~;Kb0fU-CDn8g`_NH#7V_#KQ2NrJ; zz^w28a@a7}brJNxCvLB)<_>UzkI6Ja&;qp5qoXf`o7Y{%NCMgMU~hloctMvUM`#|y!a4*@36(D=y2^C|_Iuo$zdZgM5Rw3e@~ z#2zz$XJu6LMRdU3n4xxsVZ)uz6lpkXs|MLY=Ey4O1Zna|FgZPD9xR=2+ zuP-zV13i(&CsmkWjZLUs`QVm|{$*HIHWKZ@M4k%;?W>V)kT=DFRNWnIa$-Wr%W&3u zut87+9s4)5!;E0$RYXqD8fk?zqoLY}&M3ooh9R?5!~}>paVdLEhl>oP56| zURXZhbdPQ+Sp4LkbXJd~>>{-Q)%wL`E(xo;_S!e@6Vo||rib`Yas1yETlr6vR^K%T zS)aPuHSztC;d26&uZ`dGy+C1=#QvV_@Ik0h{pr*H&m%sOIT3BlItC2KgWfKRl z=s{`Knq@bDTmcX=RxKBv*}Fl0>P0e@Zx`-s*-JbDZ#Alaqt~w+A2amp3?TXEs31+< z_S&~id`x7)2K0SFuOW~9Z9qUA;DKxnFPNJ_Vl$&R1W5)$J7E0Kp1;@j(!c4Pm0dA5 z)L`skmjYq1qh_BhLr{IdmsDe^G@Yrn$ED<lju6b{x(scVhQ{%$QRQ{3YRiw~ z@o}d!!7kvshyOk%PxgS#mOZd?!zl~;_Y+$883)JLX|pH@N5fJYd`%#Dd@&|VU7%vW z&&rdF%YTR8*OYs9wX`r{%V0q|210fDye_j2-+X!bJaaSYbnq8?qHBR8%a%jAWi^@J*XBp*6 zduvWv#rEcSA`SHvc%8iH8WnGun-1v=omRvQak!-XjBCv$e_F z*tUZU(e6=CU4`Z{C4qih4oQF$e$1b25r z4t91JZl~knQ3c8a(mW#N{V9k59&V7617(tycTJ*yq~a}ZFm8!pA|&exH1Rf&lJ)i` zg>jqJO=lRff$k<6LOsvUS9z5IFYKwS_hjF6#U0DDkeA9(z!~_-PP@5+kB*|Kd zFH)AL!*Aqbu^BZ%dWY^}%MlSzCjpM49;w`p(fqt}Eivu6njT;;LFwL7xy5QybW6{5mo;Grq*!w&CG4|9%JDMap^$!9orPGEtpivYG@w zZqpX|piT+HL@Hp}+iy2Yf#i+B=#Z347zGZ?My}B-JUk8&hOr+(iwwABYoL9X40eV| zWo6D8IY5(vsq3CBZ4a>DNdhT25yUP4)eEa?GW{`-eCz}jth4ojjDVW0jS6gc?__$d z@2F3DqA~+fT~XK42}pflswiHEJMA6?^G#?(7>Qeg-6rzY1YOC7FHNT~pVCJ`L1;qiL7y@=3}{e zBD9~4=%_`7UJ;U*agH%F3=A*vy~K;D%r($1+{)5wdQfqjam$bNoRWXm=YRJy`b~4^ zLc;FM{+$f)JW_tgHy-;&9?UDN*&9Jts0GoGHi2{o0<^_xdC0sDT%2$S)-`ciR}Hsl z0@dskaVAf8MvHN}*asDW9a zxT&^A! zwA~|qpFJ4X7cN=9Ka5~dcF8^Rx15UF^VLhXUa(j+qH+5(7zF@A-txlf(&o{faFE4+ zZ`S*uSHO*Ih~k0Cx+|#Kbl^5q z69e}y)BmLNs$yq6s!#8fsNB=qfl}(FD#@jFCWSeUkEp0c>IO7PWi#OX2he` zrFc>=x>^|s%GsM6U4P{Xf&;BVyF?T!Hn3STDLmZ3Oso!a+gM2*DVWqm9+B`;=vxl- z^r#^AojvH4%S%gVb`~OHBD~;+gm0{hri*aMO+MUdsT&}3x}AXa19+^jJ8@Pz@G9;hU^NQZ&tV$aEe_)uFf zgQFbD-b#k5j&DO7^h9NEX;e|x#O3V$Ss@+Xu{OE6ui8-TqWSGEh)r)fOVTbE)VDnP z$_!DfT_r+^X?kfkOE2X|9JPAq)?A|qgR)ExZds@j&x-*vfp3rrK=KbYz;S&#CY_Au ze|tbpPV6d3VqU}9`8kW%p-tvCGGfI_XiLF?DakeB{|YD*NX#F7J`F%q8BMlx*-~^1vT=oKLR|r0*RshS`62VE$UkZO#GDz=2C@q zd=46FUDF1giP#u+Uj3C(Z&9WFgNsB8DvYhYZ=+sB@}_^@JgsloCwujwiC4DZ3t(n& z8xE7KF`1;%Hkd1fj;OR>mk>WwmzT)u;8S>>%Nfd?{`^<@ud`x{Ul!KW|#Bc$t z!zF(O8#CLi5@&FK}Bw+dy=%~PLg(1SHhy{;A zDy!VaAvx%Om2FO$BrNE^BSq9KKns?+hUZrofZhdj4bTAQhL{BXE-eQJ%<0d+pE*VrkZ;73)aHdx)?EG%-;op`_oM6g^L_x zMM2ecYE{gSL+>5!u}W@nJXpbNhg#?2%}evFA-cX0vRM4O?1P4G{=CM#b_2(!R1Zq~ zJ1>Mkwmj0%cqhp-mCH^uQHZuZY@6=U&q#n66zs=A=O5uS%Up(`@raz*2kN0HIWbt} z6>R~zUTyS-)z#MeUP6wR+l!jpc}*Y7Kt=)y4Reo%S)k0qj(0s>1;y@j+bg$`>NZMc zMjoLP6o}w?8 zmSfVpi6i8WpyCTs??AIahTQ-Zbbt@K!o7P*sLg;T&_dt7H5wqojP0;>eyv3QLi?OR zN*E)aV+WfWe_Cb$_R)vEsx=9ae6<%%P!~Q*W3yX`^8TLnVE9J^xd}T^t6s=t9JO&O zsB-1s&Xo|}8JPUNtgd`I*}E!Ato7`7ksWa0XcO1ySpxjW?3X7BA=h>q3u_-MFR$~fvmW2v$mFq z$Onz;Bguj_H#x^64f!Gvu|+Jvs<|wnpQ&e@#56_-l=p^!8hUsCD4J3P zZFJuj78DB6qjQ=v)Rcn_4iw5|ZXAdqf{qc;OXudAwguRI?>q!8bQMtD)vz5RKn~i_ zk4@?)!HgZ7sbNCOo?}^c`n)*0t!9HRc~rs3mO%r~H%HIW#>|)I1+;JlpssguozQ9`j zCs#A^-=qBeCQEJRfD-uGn}+nIAFU{yG3g&Yi<&Gt{lLaZ1u`ixuR99L0?L@LwRdzF z0O3r%-x@M*EI4R~@;T%KDAvUN{k6~n*z#hLezH#?On9E~saXU?dP!h&jGOC$gEOK; zIB()K6XdrFilOljLj1zWjblWce`Rn_>DC&Kucs*;$XgR=PImN_)@kk$f4N69RuF6I za#zlMhA~mZ^+#=Tq<4Omj;?-b3r3fbBM4I1M_4D?t;m}IOrpCr&R|%*@CASGspgCI z1=on5qe@>4W3dNkq#tsf*Mh+Ht)fd}o<>F*$CLd+arfd#sVDja8D_>l`HpZKtS~zj zTRwM|d!3MwowHyPA(eJgVEO2+V=ZAv1*MQAfMn77qA`>7%nVWkpy}Hz0=PT5Am;ba zgs-j|e!F^Eg94222l2_=KlB=#fK%zjlt3V!A<{(G2W0U+ngPa2yrJa$YWfsWB%v1U zT~a|zM~H*$@OFyNBX3(Et)^*id^@Gy4|YhFrQm}Q3d-YCkNhm5u*8+jH|Fqe0}uFm zwn;Js@`0((Fc%6AHq5H)xw*MxK#I?0FNTMMRQ$Pzo*jEM)g2Cirn-48HF`YA*gf2; zP>tv{50EUW{h^L?wc+^ke0&U!=}MC0pv?A2vE z6CHRp6-!F)xRpj~o@{-8NB#uLSYyb~y?7|ho?mmQ`sN6c9(~3ozJgS-7|(2W zy*q*U8a5)!glnEWCsSKyw(ea`n#Z>i-7|M{u8%2Gs(;`dC1+WX-0zr*9z*}@l55d4 zx=tW5+t=xf$bXRqP&cDPGH?{UTD~o~iN1j;K1C!DPNALy3hB%J4jGVv>teT%Jwed9 z2v}bVt{V#DMJLXzXQXH_WOMUr=Zq^1Yy-`qO&6{Ol4L&Ehxt{QS?tO)>Ua&=y=Pi%rYK-_LQAQzh znZvTT%)F}ubPUzZ@~cmbK73>rc$44R(&K|6^c%1y^zEBn@T=K@ z((d~ah#bnHBzy5utTEo$LFT2K=dNqtI@<*ScY2k@%x)0l6Qygypeq;Wr@Bm(HCzh5%=N^A`R*ZiwndZnetH0Tsw z@Y|`_H&GE$Qc|+uW~K~F@Miutu>W5%Mf3!89&?2coC zdy9d{K}>|hG*{JwET_g-zzig!w2ho9MZ_R+i&Gl5QB$Ru`^?C*=GV0#(S0LSV9`>& zd_E0NVJqnSo&AH(GzNOzHypz27e@@lYLDN&8uEZHg~F>J_;qJ_f82ovMh>=K&uFe& zGa=ga=CTkeR&BkEajqn@rY5;zqmflGXG5UMb#Y`($?5IZV(k*2p18%HweJ1L*l~ke zWc9>4bzrWOzVNwyxld|*VvO3J)$F_LRlE&YFKl|J<=bVvz7qlpHr0A)n)vsP!dv~J z5uUE9q0Q1RFCxvI8F>liFP6sW#r`KvfR^jnyW8S zX38En@qKxH2lRPNL^)=?-LUlgO3u2Nrj~qyCLz9Xt`y6Od{!xZg zuD)N=R@Yo_bOj1YwmQD@y7yAbrt+}^tV-8{lIte%lVbEwIbXheg|91$y{|WWjn8PI zXZ?uM^&!O@krh$GeVz&#D_?8Gyto63aF)-uN^5FT8XVKa{0;NC0IQg5)Z`?UtH3qN zt5Ine(QX&F%-e{z81)myCK3woAB0hQHTS~*ot(eq0PTqzhVhj zb)_RU2YJz0^eg{Lu956|#y6d~hEE!h zX6T3!xDruVzDDeq1%jRikTTK2rpLwI0+w9|Wa6!1cU0b+Y8Ave-nw;*dor`~Y&R3g zaqDh#`Rei>3Un|Vg})0*4Kf$#-&;2LDJ z$7h?|tqk=SClN4ojBG~Sd3L8q4qjilVi4!lKCS&2SNB@QjGWvdrjDy*PLY*KuKhXC z_@7pJ4+d7TknX{zzl4QS@9Q$BK79%W>gS~|Y^W>QZ&`fkQ9nqR=V&MtAN{)t1~=!* zulFmDYiTDD-g)#PJT~d%NLaY2&lr*B$4S1UX-hz;1hm&7_ot3qHF2JQixry##X37g zHjV36NJ%YsEuq*g-DBTK`t?p(>y!&pHBWtpn(Zuzl@sov{Wq?eguayQ3S)Y#6oJ)H>Zk(OoCEzF!yUm>3k|8 z4e2)h6E*aAo#7-u*YmtDB;|ay#Z@F3vM@^8GI}a4EF)(8mtM&t=0*(;4 z{@yf_(bH0u*fTbx>b`9c98Al_dPkTyU-Q}laMR~9zk z-x02SVAj4@`~OA){84SYocFtbGd6Rt@#@m$ouKMs5yI|M}^AZZo%7tmPpkjJ^{ zsne$;Y3b+|!T1hLiB`UOwgy+*0rT?Hm@{f`Kr#fgQAObt*BzJsu+#Fl+84`=*(O4&yJ^dEb$LlazHVXBz zN-ljPcb9*-S-EJW8-JBa32AW9C~5E9p$EK;2#>>g9-%&D^A}}GscGY3Dg=*sR?!DUQ9I4Q9q{io9RB!C!xSt{ z^cG=%6x7&t_cwy$em{v-i$y#V!AyF=7h09CxML?hX2QKkC3!w>8=BAl9Op&^u{U z9CdvJz#cZf-D{u<6WsE?oQ=R1y>v9b?gEZFW`0>$B(3gi9=GhdDV895LN(pM6xMsh z4+9Og)7rWy0|ticl=T*bbcsZBrUQPcUmh12u|8$Jr)y1OjLipwwL+p>Onh(uzUbk zg)^G~A5Yu@gkG=>G5`k!&?!w@RD(D%#0hiDf!a4TDbdk4Q0oG!QCKP(`S5LFNp+YYg`C*yuOo{PZxOR)kiNWc%!0ym;h z(x{-cI@ULYPUUM+jN(W#5Ne7I4|UWy=)n5@8ZEju5NAve1~>s9+FeiTgDS2(z|o?4S`<^ zLwer&dtA4wksar+tD=HkS!@=3Mkf!_;(+jBW(t*YXz#_IA9*gb)mxQiV}j&{$sLZD zY)-}LDh80{(avAv3EsD-=etGhy=CWg2xs^3uM6e4Fah+uu%)iz z9N=16!Y+W#@V79lgDKQONd@W9NV^}I1P}@2048=@-#nQlwL=&7x!o+y&iGPg6{tS$ z<*1kwBDpzg#Iy?^fCg7f_A+&lTJ%t*M}ngoGy~AwH4bsiy0Wyb0GybBytx_rdnVAg zXTLJ5GH2C5h84%&~H-z$zJbgC~+o&gb1Sb-~|Y;RSU-ZOxq zP2z&iw@+y@4@JXf24>E$lpQVMK*`kQKZu6=7CQhL!wY z0?AG9k)@=JQSl%^N5|6&`X_b>UD$4c;|Ipe)~8!VX~NrvIbaq8so~Age)(Km`vviJ znVe@m5%7g(3}6zG%l|ZHjq$&79u&bHaR&!l%5An(A(*3>eukX$ik6B?oM5MYBqFjteK{s?udEp3_Fl zcs;M?U*2f% zO>b(y(k%g!4QY<1+v>fVF_CgI?0kup2rk02uY2*^eoGj4$|WRiNY-cP`LeKQ*1P zd2o4Pc$kEOq*x5^%?urmmV?nnO=O+`UqQC5pZo;DI@hske56g0E=QZ@b|fe&0EjPZ zPJY~P@mx;5!dlv2aBf_?duGvhTeZjFWFo6fx|l^Ua5ajZ`_3N3>MF!2DsoJlg>@P| zw3G>?eVMb^{vs}v%TC$-sE{9j`lj+SQzbdq_7?BBbE z`@I+$2zwBY^~mSVnK4HbYi$eT}-&7->H!I0hbq-*zkNMj(B47r{f+ zNB1Kn6RC+U=0t2t+&*jetZXsOWIQ#e(XVM#ytfSV+W3#0<-Xwl^~z8cRs}in`02G^ zpm+Hc=(E>^+5#c_ve#NRk~>UFQwrdWmp_0hW_A8_qj7Kc{hA(Kzt|{|H1{II#S;v@ z!%I3WgS0t0hfRSN%^R!0(V(KxnmR;q{s4yU(ajHg5%&IzRFKl{kh7N=4j6Z0^rwGK z>@a`ox(WjZ*tM~nfY|8Q)j%ALW%RwXVExPqnA)Wjc&9U=2;%_hqWXClU^F9dy`O0Z z3@m`s^P56|@;?D;1GUo8jZL#i5^Qa2xje&VWB43dx5Y1>NqXTA^3Ac^0xcs!nvCTG z5uj61A^PWXRKS444Jqar2gM%&VtH2i9oJ25e`w5FSd4h6;O2W&Dox1AL;2bOYcL#G zn{nzdD|k@Bpckb`dhqYXe7%cdyBOrt zHeHscdHIvqjJLO~^jJeC4_-Qd_+x0M(B;7=uHTH+sou+{sc;r0ruF5Prlcu&rsd}^ zB`g`{F|;$Pq@Brnc;t9e_Vaxq&%&RDXI?tLUng9Gb#$5NGJ)H73BB4Sdwxp0hmz1% zDZJdGTEbQMBlPN1o>HJ?2)=xtsZsu=t?l^7OONMiA}Wt`Sv(cgoCnK6VDt31q*e|! zLrcE>FwIR(zlex|q0f`uIl7kL$T|ddbals}Z}tULHy4nXI1IsSC^z)HrWHW)Vu07)9qxmML(Xwps+AD(QRsbcyOztj$>sE;| zrUl5b3{8#i_*9dUlFmy!EsF&l1MD6rO&OUoaPNfp0CvsOsXdBptr0@a%Ene{KAo;! zY>DKBpfrGHJV|{B<}mReI|y?lzd$d8m*JhOwN913`(odzWu>%3wl&RTKg-r_tmLx3 zHr{C`{OKe{F@8WJk~BE}Y7U!}!SaK?(%mNAzn|c+*a!M;!(02Qnz^=)4*}W7jahUM z$%!;Ax#3rU0j7ex)=#sqHDC`~w02J1M;<^mDS^$lxs9)d7DB;oW7K6wOl;Ia{`Be7>v!wG!x@K6W(ha&6w@4V;qT`+ znbDWAPxV=-Q$u*aFW=ZJs>>6~ZZdSAYE#ahtX7GGQ?Z#Z+>-Yh)3^_zdd$&AU|>$-=Y%PFda zwH%B7sIt-(o*UTDm-!7ZWNrq#)Nxc$v@V5jHmV1HXBXG$G@8p7$vA%SP+0`=Uo%Wp z{x@Z|I+GXe^_SMy;eo3P-&S>TO^?BkPgj(Y(X#7^=p5~yQbdWLQ8 zg#LPDWe8{wvVW&`*kUFY(hoCpZ@fNCjM}Bp!9l#ZK>B;p;9H3U&YTQTuB4mP02>7^ zatvZHX7^6r=p(^=5W%DR?*Zzxvc`|UIm7=YJ*HS*Rz3P#@;B{s?NzjC40*X1d9FHE zS%PrdM@5FKnI31=F6!;2_Br9OJl)zq{7$NS=6SR8?PptO=F2^fT$GTjEUBr( zCGBgAz0tssEz144S(v<(O1%nDr%}%?^~;sWVd|t z_dU+=Hf{OT9_xbL?)tyCD0sy!dn4lnwX3TOFaq>pd7hM}4@#A7ZLWJT?{9Xn<)z#l zKDP~wO=uL>>E*aFA6X0C*w`S|hYx;ijSA0{J3N#{+x@acFx7Y$+a#b4t()6wcV*MQ)RDv1D<1 zS%v6t6W{X9D`=ZuxS4j>4$)!!3vR^u@)M|FuG1RHn$9U_x~!8=nP2Y-$6g~25Ee=P zZZV@nHavedr8ecf$P-Eu-A_%TUss~v*_5Oh{kR_xOxE+`OzH!R%!w0mDpEOL9a2X6 zRh>TaeIYFtiLc5(f$zMU`$5dp=YaOa&vC|GH1ywva+N-CdsUN8413W|z5VuO&ds6Iay#dNRSxzu|4YxndkI9H+0ITNRPJ{dL)+F%KRCms80Exc<-#HTcWZSL9?MB`v0UljZ@awJ zZZIu89(t+0_Yv(&^W^S*GnGM`q#5nqOE<$4J|0V-VUv@etZ%+HuYCS~7E?^x>C6wk z(Ij!V^P(0KFOAQ=*b}#sSxuUfzU#33@3LT?$zHGDR)I`T8Rn~LJu1&O0hW28QF$!|^vXbMAk5LaMLV7?$+UKmRm) z?9YOd@Zt2=Lgei(56B-{2N?6;iiLM?J+B7LnE@8-fEaT&8XN+y|GAfpsi?VcUHx)3 zl-tyxtEqqdm8>{T{ep^a&&TzOPf?)^vTFBvME-GG9!hR=r=Th2?@DaG?{Leb%C-2F zgzjZca_>a-W4d<~@2^}bNawwq3JTfq7=`VF) zXtJs4#8`3`TTius>Y9n2GkgFPP_BS;dSwVSou2XE39hQCF@!%41t^(+ZR{eFk3#3l z$hxM(6bA*j<()l*#QU_wFk`%`N`FWqH0QnaQE|AR#h32ydjp0jb?YCy+DLo~KKtxa zhkQHx!{EZE3l`1GGol0W@@(e*)!?(reIRzu_2B;M$2 zgM7!_B@f*sH(Z+j8hxemOtW`(qSi#)u`WLO>*5%tsp}F5sQ>rc_hMRltMlbi!AK{d zS7r0AL%;qRv*;*b&DH32JvEjB%pKH$uAfJGiO~SJoZ9Ck>Fn(6!G^T62S0pR-F#r9 zSJ1l%Mcfz^X9bQ;komy>g~31mrTt$V0)w$k`<6^~97D>*`IGA86hmJEpYP*SL%NIS zD4wx*oc+3*v^C%=uWMIYXFNw+oFsa&q~Yb#aP9QkKa+x5mM1`jeVwfY{Fi3%3Ll5928#cY;3mhG73_tUc zeatiUIOfO5V)&>WNo6x)g`=Rx4SaErdBe_h5+Pd57&2V^y}Yjc#v;|kw{8okyiZnk zFj)GezqZlO!iv?|=NJBU`kPPQz>%(VR`L15S2~WIi4~^kRozNbtQIzmi|$P)i%&Y= z(16wgmm^#8C_^cv|HqrH8|h9JU71jYOIa%#v_6he(U3L!xVV+&TXO)9=%1@R3>s)< z$PXv9T~Bz`Si^zna(fcM2uEAKq=!S9F*NalXN_2V}4(sUm{X&3H>vR@^xO+`B{ z`j#hsQxlA7Ji`|GK>O|nh-%zasu4VdNY(W@@bIIQkKM5P{^8|rI%cr4&b$ZV?TdUM(+0B(e<+vM=MgC&KV>dvHiVqt`u49#J0ywz4{h6TM=p!oLe`jO@w1$p@~0C%!^1)$-HPVogG zfq`#rJ`Wol>&A;S(WZqkCctn4V_&KP7-))SxwF zGqiT3$@iEzUW%szgnn`$V7|$z49!Y4Hmu-rukqP;^C&J^-q7J1;1D} z_vO~|GCRd)R=4cErlC%)qBAjnl?^K?H2&Lp&>UTfhUD-cbG$(iRXK&&>b?zn2aT?H zB0>>Fu;Ev1{{H^QiB)}Rg!SR68*}O=H}LZSR@O1kmm8KYHCX1 zQMnrbHKRo#W_fucccIl%Wesc83Do$gHKDm&+mE4f*ZFTHlRT<<_94NF_xPpTxHAer z9{PVLe%O?FW2oNo{yHHEi=<;RPpe|OL;%jQQ0jeIXOMmB@#fFcStgnJAx{+^kjh%C zs5M)-CGY*I^S9H|)`aM8NRzY#Ik|B}z>e!yFSf=GeRKm7n)P!ztI6glA$y?Q&^Kv< zKH__u%M(Fjq?a>uS$7XIOSoO&!7J=_ee)ar$z|VOz;OXjcL9L zuAzL__$EhBu21agA0juCJPZ^E{hE_g&xt2}^o-)!dChEJAGJ!=o3XFYNvm=_l{oke zhchUr#y)uc#x3E0>Y~AncfVe97jr1f%?o#Ss{l-_6n%S1r<2ot^GxaS!D;d zflr_A^jWsvJukU;;Su2J9o1fE7@Ayw4|7n9eBlYu3XV4W%(*GJjx{aDZc z!qkw%vS^H>cm>b57I(t)wY4L^Be2U2O~d{7oz*5q%O(GcRX>%a7`F|r8vMZtB=oG+ zH{TceM=LrzrVlzZM;`nf&eJ*fNJhr@9q=y?$Bzg1PIW|VEzs1@1KutJcP$jWZ)|mU zS2onuwQ!9-oAFBe!ns@0K%S(wgo%)uPRcj#Gr%%(a43BF^5wkb9!&Tj^Jy4Y%9!Y= zo9*u=T&;=48~rM$_eoM6T=LH#vAwPL-4&fpamFbV-1F?qX0q<1d#^Usx<&t=$I`zW za0i27KudiOp|Xn}uHRv%9W)t)g2&pRaNk?~z4CV-|u`y}yJw>Exn8VKLys>ha2G6w->6!k%1bt-G z)X)C(p8P(EZZ=iRp@Jvd?>5nSq)lyLHi>taA}~pu@K8$uQS3zRci~csGciV_9;tkn zX{is9Z0=$Eusgx<`}<)qD=C}-JLkab2M-=BKn>J2=LmBcjHL^*Q@yA9HP_*VFPcbB zL9(Is%W5EC2|#VsL4pPRZJ5D<#8n&HVO)R%!OHz+7Zx}ooY#_;W(EePCFJG((O5P! zwO_yUx{HHI+c=}-!|thQyX(L_^0Q@Sp~cqQxYD!eWIyc(lSYVd>i~Gdwv&_$NH8Q_qDb$ zXDD^wt>Mou(a`1Oz)D+)_wqDTWRo;w^c|Jwe&~)QCF&GxS^bonDi+M zbJ@RSy6ACUaD=E>Sp8Upe1x)`Xzayw$-LwyAa0#YQyu*n>*eXbP%evj@Y&_i`uOZ{ z!W(EqTLN3n5LiWlGcR7f+NlRW$_viGR40U8P+LnPBq2YJl97}2%FRQcfhUvL)z#JP zvHA)did3ml1&+pnL1(2yK}nt3qw+{Tv7aTpt$n7IB!QzD@4vk~9FON(flLK{Uy(Kc zR+vlsJ8>meyRq1;SJM+#ab)$us)nMh;`?u6WhbXt$f*gIOzYo&&?ltvAy|LeNBe@; zs$Z{CT2v=i?83#xh~e~_6~{V*Ioe*Ff`GPb*|D`mqefm^;WxCTxX1p^&Os|7?om?F zG2B*+e}&kEyJwcqjpxCVJ(0n`ZhgO``j8m$4Q{H1Fv$dH4rRdPs8oE__7Om^h2#<> z+hMje9q~!ByB|>uwCzWXea^C3lKPQnX_WS3=K;jId@01W{{d+AAz`YK)k2F=cV?2c zS9wO2e=CT(4Z$ewG8`$qs81sHrBJ|XLb-<+7KUoCE;as7`aydvph_*neAJ~^t3mzlAt6?`uEZ(3=>gL z@Qmu?YL`7Xi!u@*{2l<&Blr`!Ee}c)I0K3R&|ZX@hkIoS>FJUXkAl!~hePcoC^N1W z_fh)uqN5#@Y7I+gtIs$OIH1A9+X8Dc(&m`bZWt%hug`(%s`-SH+7YzD#KgpMfq-VM z|LEFVV5Odj7f!H-ZL~QTRNltqvMP?){7Cs5Y5AheF>%yCC0VBA)wCU+xx<9V{XvI54K(^SZ zT?b03il^51ELb8O521cA6->XT=nJi$ReT-0Xz8bJ^k=FU_3L& zW*LKrno6;CnltEXKm0lP;r9Rqh=M6-*LW*f=DHlBQBqRE0kygvN!9^=kqDr2#=1UC zJt4*U3$*`Rr5vgc07%=@X~=J<1MoPLaIFn0|JB@nOIAjhKR4Aq)<& zO>0{>HSiybc@d?{%==zl8!~kBYa6Eg{6~$9`Jk1zH!~q{J8y0$U0AqA>LFxOGV6|@ zO~~R`oVLrH))&y+42b`Oq6>(<`HOg;O#-mt3N`gD$Y{*D!=cM;@bICul~o?9T2Vp- za!-K%;f?rsdbYyn3GhAA&uK+qAMJMV6!fe<&uzfG1SM>!l%4Wv#O=K3D2&!hF_kX( z!RQjTs9%F#E8w&2FwIFq&VHx1w)Ul$7bMUAud%|2Y_^ml&RK; zH^IS)P?wy4p0N*e^C`aIfBRvduV1pCtBuYfK2&Ok#3vna$cwG$ALp`Jc@+usAWi*! z#kKDc zy5mc-#nvyX;`g%w#&@_ydH%zk?wXOg-`wznysIry)lCPs=L~S{8PT#LGy|LS^Te%f zB`?Jql2TfSy+F^w3WU#*2o84AH=1dol#h;9p>EZQLUM)6EpSC_O_RDT{ zPC#2^afO46yL+8QcFUvRc(CFzipLy~T%~(IsC|82DA#e-9I4)=#9;V70x+8Q@XG~A zzD65KAc0f>LF@ANmX<~R*Z z&2!a4M9paGQZg?(+8aitty9gQg1C?8*0u|=juq>%UAg86-l z#_uEO&1ib#=NGM{>7)R_o-taM`ai1#*Tbt{#syk@B)5IZ-=4|a{A3*0(E=M zmP&_o$MoiA^cujKwsi}al7=2W4&8I5?oI3mkteS(Hp;U-Jx=IcSQGp9?pXRdu~6{^ zik=hW&3;{jVOI7r327S{3RKjt)1~cxu}%skJxcA7Znuaoi5|Hoq)k}uqIe*fUP;eS zB=(;=y@Q*e6!qV=H$89fOj2A`Dd6PovvBxwMa&5-FdR8@#C~PSV@FdH1*EUWHcGb* z-n@I44&%iVF#awMpV0pJuIzc$+=f!w+=;4c!g0J?gKUe7i!dN!=3#LhzK>)Ow;&cRQ=vDJ2 zKw=^DU&sJ;)?mIlmxs-CP%zx?M~Ie~Wi%3S1sR|(D0o26z%rQQtcVwR97qj}0|Rnu z;tG_Le>U3$Pl>)1Yr&2uj6)UOlMW~1Q!65r8{cuzQJz13=#yVvAVKa$PBzZ#T9QL6 zAoRpdevjsAuA6PV))-`Le#cGs5Bl0?=(Ud;hG`dEO6s>XDCJTkD0_5bMI;$kjFq~e zp_BcZp`EB(V9-X!n5m9IYM`S_{G)3Z$1+a*xkl+3{@)e@I`@aY)H=O3p;VrH#-v0B zY#;OAIW65|P|3Xmib3?F#cGTQ`z(Sq<;1B|rvlj?_a_z>-b3pa*Bu;uIvkiZ=Ov$& zJ^b*5fTHnpD2KTF7mg$(zV{mj z<_)}i?z!jev-jG2ua#Lc-2&Y3)Zh)Z=i*#`wQqBof4p(>)N|tGN0tYwT8 zPw{deMN3aF47nA4>uVeTGRyN0KmFYMC2k4ZknE(Xg-ca&%zg}9*n)&9)s#-HL*?m> zd^!2eB-aAAl@Etqnu^(no1jLo{qm&{zas_s3T8?d{E-L;87kmMcwL+jc!qP?rZQG+ zS|R9ZJUN2k$}Ujjs+w;cjOf*`udl~Mj@WSRHYE7aWi~+@ zJ`lhq$4nh|&lJMB{O`l#$0+QEkLf|j1jOcrqnUO}x|ZL#URq<19Qtyy#*rHT`MLLk zYDzWcc{|_LJuUAME>{&-maAe~b-VIwNN87J=TNjTo*b^*Q$>zKouP!ha`8}znhh{* zi(%|$`ZAzA5-IqB;Haz6B3fKR0y2pS2x-Z#-n%S#Eig+yK0b2bwLvr#54T0f%q&0f z*-svnfC0OpF5%^|cy%0gG#W|bjX5& zmWp&zuCEpq>LB^v$N<&mIH91bM%3glkp1NRMZ$~mLOa$u^A&LR7(KzBUCiY=XLu~8 z$lkBtK!k|FijaFSXR0YfH9a!li%R3nw-bB76qq9`7*`vhO{@kD5t;r#>y-E_`U?eL zgiQXiL18y^LMNoBrw6*06&Dv*k)qM)52p^Hde7_|Q?Nql!BPrtPGn8nq|V=dt)2Su z>^3fc$^w4IlIEVLJMF8>22xA$Tm%2Q6LbtlfsE_MCU}`IX>tdC46K5j{EBcLt4WN^ zju?-fOnPGynk+!wPs)nbiKS*hHlowjQ&p|>=lYRC!)#tPJhHZ)i+sT*Vi+stz`wt%1X%Hs>9G`k;V?H4{wegS(=^h#Eb@Dwd`8Ro z;b0~9(W%%27|N3RrdNv&MSK94lVak}(pctnKF2HAGqcF8!~_T9zK8Cw8=uloQOUE70E7`OyxKF6PzgrN4^ zd(#bR-iw5t(@|y(VrJGNsw2}*R>VX0Nmp{2PA$gAeo8Kg$GCOJ=Y-nB zM7HVMseT&)b-D}Fj}{4QwFmgeu;e6F%aJ~a@H|f0@ZJacQ@B^9QS=-%Col#m<54Y_Z|7Vl~PUBQZn1zsL=WP zK?UI##kjbIj{S9?&@{`M*n;kt9cIWNE)3kK zLYI)7<+@*JPivCKK_N$h5jmJwMb1!i``G938FTE-Bn7LdVOQBQ?-Ex4A>_rNbzKM*WcnoOcKCOTTKD#wX328b5Z;pg6z%{NQviKb&n&+E=- zVH1(i(V;}+VOt$!C_ZeGH6{ib;46-Ws)z2><4B(Q45Wk1;*jAxN|Z+w8NtlPpc z(rg#CR@LsP+6o_wF_~R_8$p3);FI_3yXwe2*Z5CB)f-+suRfmuEWcS((T4zg@naje zTY{GZZ1T4#&~jyCtxneOjz8?Ao%K_IeXl3JUFotBz+$|!{=~^(OF-&UkQmNoxbnW& z<@kLj$D{GlRih6YEoh$wr#q0Pe-MfqPK+j-XI2d+NmnvcD2n%RUmi@9IR<$bqB4fs z^lr+|ZF`2#v!jwaz72V1MkPwd%gT?KCUOHz%~-r@;>6GxZ87{K)Se7`;lkY^#8~`G zj0kU>;X6Q$X5NumpV6UKpGGo&l`6QS;?_@XcINEN)`f^;aor*=+c&jdj?dO#C_gTB z!_I~yRGUP}bL(y9+pG{u)-XG>TV6;o^kfeI{7fl*tL%R^uS-Nm+FrA<{%T=5P=EW~ z6c$O=(K6A=EF?AtUfIc23nqJ=x%h4I#nevev2rsjQO*N>_zf+Uysta1*UqlHXvH^Q z4K?#J_jOR#vT#%x|ClAPZ(foA*c8CIjC}v~y1dB;0$??8U$~6G27SuVoNuT%Q$g7v z&ekVuSYEMf3UYO9SA!yhNTCwJq${86J1Hwok$~7fUmf`@{*C=WO^iitBT3Sc<;BoW zZ|4#Tq_~0vycPb$imWd;6fT^7v(dQeeYpCxl7Pyi<8{Xs6=dT*hYy1X^x<@m|Ks^P zG+b{<@$p4#%ul2XHIaLJojA~UmUZ$uz+C3do(IHzyj$Zxc>8z{&izN)a+J>DG0Fe# z55AqTTccWw1|7;Q(3?ll@ur}~y0(f|unAggYN8D&`EuY$U^7$F6&8vV?U=I;1%1*qj ze<5<}ney}t%A#9=L4jfMlX(uEW+LC_{~gNzeyZGC^MK;Nx0SWoxU*g{tqKqO?KysV zn5Gyr84rd#klR1u^x6M>>*R3<(P?)q?&U11&F0*nB z59%J3m5vit(af4m`qmsTCX5$xso*Od^Qp;8Vwi`Cc|-sB6_BJi-@e^RhxYNyGx_;l z2nIS-%cFGiRn#Sdf`@;P)4geL!2#+Fn;LE5V%L0y(ueCfB)t}SpBIVoeH^B^x@;7> z(+ZE|RlQ)j$@);wX-G{u_5Ijp<&q1Y*D@!G>ZOZt!G$%JlxB+1Y6>vzfjm+^tN~jK zoafm^!p=giPN{aaW~8}kGnfjZrB9Q#QVi=3q6vI`vYmDeyjRBW5q^K6^VA)m`5eK- zVD{cR<=r8V8abTX`@Gq7*8Q4EIqgSJKXsd(D31c9lJ>>9_uN*~qZq(2RJF>><%gbE z*ZGsCuYOs*Of~*WrC5X*!_7F8mfx9o>zXQ^PAnCg4cnT0Ez63BOpj7;^a7Upwe|^H zIDTH%*Da!4X40ox43Q8QnQa;G-11jlQSio{vl8SUM{h&cD z7Ob))n?I3mV}E7ZI{vUkZKS(**Ws%c$El|$Sk1|=CrOX^fYz@0@0IuVDWOmrv2l>A z(cJE+1uYEw>(CXLz4bXYHCr5<7t#wCqQp5)pwwy$3?&r4e{#uup8NR4=kSb;G*($E z*WN%gI>mwvg^uwGOuUmY&F63QDOyL*{l`$<*;houAIhnC>>mr79g{XqxFQW)(OJ4g zbY+yRjit@dWzC5o=;9ZRVI^6|m*cM|xJz$CmE@Cw!(La$Zc^~RRy;Fw(m}>t)f~|F zT$4IgsT({vQ-;sQ6eRaoR_{)76aK!qV^l7h31=5BmWI~m$l4wMi{yk^Mub=v2Ay!q zlusQ{!+XD|u7~zI-Cb?RH{vD|6%V56+8|F>8M5%bZ;00S=w!2(SSM?7|0pctdsY4c z2l_1I-TW(6cI;=x;(o?mJwGvc^FPke(epC;drq5Tb(3R#xlbFHYhhk=kDXFUi1I1W2`AH8xoU3$^+Sec@7o2jvyjs7Dw?=Wa=DhF|}w;$Q3*NH>CDLR#*DwrPU z)FI{sh9f43Vbs*jRmPmhH|qHKT&T#Cl4b>p>mGSGYuEqBL*m_4%Kkl2ck{TU(4Q)8 z#99V6LaV<0J$lpb_Jepl6p&yt>&jLhYR*qBq#7R>HFP0ynRM2Fl?cWBaDo7y08j_Z zyCUJwXgddjH(x#!Y1gUS<;j9;6t!rwB*mawmMfQLuT-Ex{Nj7i?)2$`wPvw=5c@NN zC+a_oI>Vuo==Y%D`y$6upOaZy*M-@rh}H=3O%hEPjuQw8yZ$IfBv78WvKhp02cKa= ziyN79zB%(CJqi61Q+q!r_{UML&YzxBC5x_uyjHJOb_2HmA>X&hHs8dNm6goB=<9V5 z!{{={Gs)DnW@Uz*FW67=3fFIn+_%(GP7zB46K(ek4(90y{X9y=g^yJJ)H~mnm5s%= zmTxZ=Q-o@Qnt_aSs(tz3_-wl(SHB%Ug)P5w_iYSi+iU3z zcCR$>sBpDH+ShUvG6w_uW|$MUEw$)*|Ff*h_f~$xzy{6-5gaV73LZYr^Gp~z2vXkg zFVz%C_x9^D=P}ZXb5904eY;S8hgWSZ2_kGA2b;ufVS}!MJdJLH#4l5Iavu!HiR-oJ zNAF21>&w0S`S*k1FBHYO3={DCHEP*21WV$boCeO!+ti%)IL|LznEMC1m^p1RC##N1 zC*$Rf{vff*z0on72 zI!~=cU4xt+J@cuw-i{Q~Ocvz_g86Z7@+k!(hsvuVrT#wjUS8Z}^0m}=@+-U0V)syv zS?Et!{6XE{AN%`zll9+^uam;SWcf=cCf>*MIM^hs&?3dVnlVyd>?xfcJ=0t02Fg@RA*Nb;QJQ^b^;Vs?# zRFJ6^zJe$nRe8E>90K7Ogdi%7N0GW`K-{+G#`Cv&^xY-m3I6ZNu+Lsd>1+g?l8g0k zGuwf>=inMn@sk59YcpwfV>9G4A^&b3WB!P%lLc?}{u%+wefh81BuMH_>B&uvgt@1&Um28W@l?6n>FT|JxpcuEK_REdb= z60&b%D7}n~Ba+ZX(ZRUGEKWf`7hJSOeNBCcZc&+rrHzN%h%9xB-#iTIr8{K8QC0=% zpW~=r;~CW?3Ifpi0@|Q#+MjJZaai1Wca`F(QhkN8!PHiuu9*CB*Hl)yEP5PMhMio( z#D=a7>WpwE@x6F4GJL1&``jPYo#gBy+1Iq}hf1lbS*ed2rFT{sB|tq6^;USt4TVcX z3O_8h8W)|0j7>3h11|v%c&V9%C+ydB*+Bi>Rg#zJWq6~$c zawT7F(9}$>EKwyM|A zsp-BUHYQCAR~)!#!SlmPAow~`xV-;TF$TvP<=gkZ=hBJ<7Jb<1wnKu9cPo-zBfEZx z+a6+9aQ2^6eEH*;gOvH_#mgSq`u4(+pI?8%nL(2glz*L#ZiAVGs)7@)i5|lfpv1ukNXiO{#o77h^ z@P$$`&flP*Q5CtwY->P4Erksy4X{Zif!a6JVY%%Q=2IEs4J47Iez>B#Vh?nIahh2{?z>ABx9=t!qkQw(W&trBzp17qRTBIR^#IWn zhH~kt8@C#dTBR-*ttdgBAg&{cwInr9zhfse=_4l~q;dcO44ss2iT^4@C3Hxs;agxN z-$=JA#S-B4F+n@FRUL=+Pon#-3g^G?#SnYH6*e^8$tLP{OE14QOs9RjBBt~**w07M z(zC!)m|Ub6H(etZOsVJadI<4v7q52=$SMUY+nsQh`z(Fhtf{f{ZBl7fn2%~eU-v_? z88bdg^sSRdy2cT|3R%WdYY2V3C)EOWB2o`Nkcb!52``=M>(-D!ZPDy(Y)dQXvZ*>EC=O-(!1GRKp}(cYMNIZ+RB(z8z7fHa?0qif6>-kYqd`jD^{NlIK<2R|?BcWOUl%SiKbP&zhbM4#z(Y1^@vJZy@t=ahc z;MZ+~CdUn{W4;Lxo#DPL=FK(Sxs-i8E+S;a#q&)D00OrE%b?|qHPPiCVYy-cPxAe! ze|ACwSlbNODwm)tA?35aRKA&cNkOCJ%kI#G$Ble!;Z=jO@c>g-V)D7wn7<|(1W*>Z zm=lQv0DFxoSSo`+e7%#oV~ck^|2mrZ#rFG6C^V+zE9tC%L|(-EC#zSmMZ&>$&ivdw zY=Tg;g&3a@UK615XQO5Lrul|$l3W54E?L4BR@JIoBG}?_hH7#<%JO#H?ep6|PINc} z*Fy{(JE~ec8kr@JqyEOu-{?$?|GQ)0r%|%wb$}5f)|l+$=?x;^1ARAB`VBkH9t9s& z)eBEtSG3*UATi4OqSu}IaAaf$( z4-*T%IwR4VxmE_xu;V-fn&)40NK;yoV5GZF}wfrP9e|s z6#$~#r>`*HlExmE!sZE7*AA&ZWPl3omnB~_9?#<<*g*yZ@6Z+)G3XM;Q&vwgPC6bJ zcR+K1=mzIe?exwZTi*tD+5=t9|9rg8Wh)657&rrf2e7` zMSs5SP^~e7s8n^j!T$vAkoWz4#qRP1ZuaYf|+%+$fd;)?wHVg1;LIipb0wdT1d zHWkf8fFfoRTSro+l$NW*c?NF2!ab#Aso>YGlO`dQQsR;EN7YuzL^&~hnpAkOluWro zxYbjAl@FK3(QB7_cHuhrZauK8Mw?6CG|LR-1$%01jApwycER4yIY*QfBT>!jvsR0`_`x>5HhH0 zW%GUKEi!_vhEDyoRJ5U>!bZRZiT~S)Ey(zjL&o1{F^s5x@MT&ynv*QxmKuhYmW_(U zk_t_{5@hr^J8jC^t2q|^Sz0P*s+9rBx3fULU5}LR5KFG&C~*qWr@UTfNL1dB{NOB^ zQu0gCY40fh6M(vt8JM&wv9hoq%%foCQhaj%$RQfp>ceg6q1}XI9lTO(f`?>fX`lHR zmn^FeDfvyabA6kWHtrv04ZrWu9XV$38-vAAMjIu6B#DQF;PJ2Y2?>$Ji|QJ(xYw&^ z@$CQOAi4YRx909-)f&UQs4rC<{*Xyz@O|^Ujza$gOmGmqIg6%v3ZEY z+UsrCA>EF>HI+^m$U-;TS*d}$s=s4Fdw(=fzJb+z=dL{7ZP9&wTgU`-3FG|3RAA5; zmFe%^c#`l|d>X}`d1*?U`U0K-|Vyq_O&@w4Rp!pj(FU8j~PFQZt(~@X7!C!yH3e~IWHrd{yQ&c3MXtBsiA^koSEys z#A%Yw4rH=WZGbK2RdjM`#D@c8o-_+uE}n{p&{Y?P{q2~cR)L9y&;49+roh_OJ)_X5 zgK|r$OQ~;;33k_F{T=+1lS{?ys>s^ug@=Ua!^++5oP!Jj_=GgY*fACcR5jvU+9#i2O5sz7n+ZBC78>pG5}QPTNpw4>Znw?PQ=?%x54d*j|FJeYu^H|@i?!O4Ga z^yo;op=hUU8|P_pal?{!(@O~L#P!;gifd#gY~Ln=>#*@XP}D`lTRZQhciUWMK6zHp z+<2KL&isk4Sbs8I8!FCv$oT{9uCUOasf8b@1#vF#edo*_sM8_{z6ekUI|DmF9h{}u z3@O=Vyb(y4dXB4m{ggGnU>Z*~XMU7Ck{7McI76RvaL zj zZLep=&u%;Ljo7y86>(mcT{NT~bjXLy36u%yg7Vpkze?4evaB7*W2qx0rAncR0SC0< zI2bDbR_EZ}JQd@Sv;KEOkbv0$_@oMZQeB*@>!#A%A^*{7wmq}=e)tU)KqC!Q2#(;9 z+=W&Zpe=6&nL!Z#x6gWqtj`t5=hk;IETD&+M&%2apD+!NTUk zYM(c@roYUkM6*hX~@U$&$JAZuV)u=$Br%XEqLkh;>Uk zM02;AZTee=QNaPy256qW@nZgVm?zO`^|*Rb5fke&@1B6*Ua0^HLGs|btCWhbl&PVpTO01IK#%0%SOphK+<3WaS)o32#Y zagg94GJ5#b(yc%o2o#-?z`h)1z~7Xh&KP?9#EI_6wJP%M81CtJ6i~4jWAWF19>tw| zITs#sQwo@j&=|xu&twciT=N`UaDh_u3KSr}ABdeksg?!(YW8)U6tAB&&lOVc*KqQIVHL~QCZ#f`h*7Hsl z(d?l#`tsrmBA|unc$idr9Q*L>)V%^=R>G^>Ia$>NbY@i`#>$U#dGFS1I`z%W4ia@D zNalS>Co_~XxGgj#HJdh_lTE?&Zf+-lm2Vnc$1k=qAwg^RigzYqP$qqra^|j4ft*-Q z^nJcdRPGj^J{d~|fhOlZn(X(`6B9A9xMd` zFJ}0IVx)0){RRrPm&y+L;9e!jG`8GtsdUoUcHEd*G<`~^qY6H&PIzMY#PK{-l^QoK`8*#p``6-P0%X4$cOSCQA>o?$+UTm8+@_luFRK4CME)3(%=v zOIAoB?W@R*mFA`!U;H`FTWoCQ8TGEcEoDzF1E@C#gM1%oGNnQrC)403H|ku6x%&*7 zrN9Bu*bb6EZ(dS}dh#Av582baigIV$9}S=kmkTUIJ31Dbmn|tF@~#@B!idZwqV2*9qP{@oW3F5+ zz=Ra>Bl28TMMzz7JPs=FFXY3Wvc_Ot0kPy!J$XHl%)C}sq|hD96$JoFcf?C1omp}2 zCl#8eo&lnT;`jnh-=Fv6&xD|e5>ui>m5rM`%euO=GzW-JP;PiLQf*Mw_>~hC!wf5tH*1~4*Y%7!*mOe*jwuCAjmU?G zZnvfBiQ0sjS(mJQJ0;JkQ=(olRjhUbpr|Epi{~L5*9@OpJPuzEkcD>3VZlH5 zKzwH_m}P{p##T@{=@{vXM9brn_^=)7NP8{iBpg(XAR;9T1do{%qPWg%*A$Qr>-l-B zGGH3D;vgaIN8JOdH6S*Gevmul2T>1j_lI`?ul>$=<`5Pj=vuZx(elC7CTkC)asTl+ zqG_{sK;(k-wMvgy7la#Bkn{;mST!n%?b>}w?`4`18{tj{pA@!KZBjtaNqGG?( zWWn1T-?A&T9&}_^EPp=tz8#K%9p|zj;EXNK28q)#XjB<30MrOkM6HkH-tEaP<~r`= z4PD0wvnOc-(BnS6atig`0d~l!B@bCZfmwHAne$32ba#Lbm$9iSB1a0Gf59(a#K7J{ z2>5e4D_0I2dI6M2&~pNOOpK&JU34#_~+oWlGu1Kzl^xQ5!Pdw7p!9iUrYU;W%8=x5w zhy6&)#MA+5!bndL!bAt!y^&lqATwNoD5HV^saIq%IY%Fmb!ByREk_@akdVLvl|v;Q z3{5`Z)5l~HnA%d6cf3K!xe)>rhw=+UXuzRTq%1$2ZRvZ5k*}rq(sn-KR-x=EnNXwWE?@|!(9~-93&MW}u>yTXu{IfI|C_~H0D2>Pq zPnU0)`;qZ-9rWHf4E@Hy9-`(3JaKt&wmAB4Tsi6nT1O_m#kR<#!od1zu3Zz+TB}uF z1e#%qqM{#L+Asb|$;fB}hLm(@BU3?`U>@>m@o#{02y&b;(5bZr;)ubN2xDf4mRp&5 z`I`PIaz36**?;yk>idaFwh|GlfR^Mz*ZSEHUpDI;h!7zIoBpbfu63~g$(WY8A z`hPQJs|RjVH4Hw`WiR2=G;lK1`bEAJ}8dy)6m`)m@ zP|>0gU9%arP>PRMdLYjOS~vSQ`c{B<`ci8d$V9KZ?ab_qL7%29h%-hx{5*ENb@Mxj zNmia<8qKaIlee_AY+C7n`QP4L1M#175C zyw_qnTmp#W$y!Ps7k0TRs&8*+CrXB$YhnI(viUJ`vGO)QnoijMXwvy)9d#jqP02K< zr0176N??4q=kh0x`;{RnDG6u*HcvVP)M0HZN7gK}Rq=;T8jgftPl7gbLE!T@3{Y&1 zsS)URrWGYFQ!QI~3$>-C@poF3sDyqw;8DS`V=7y$w^;p041P~N2)k;-?jQpyf`s35 zKM1l}D<*u< zwqBnC!5)CZjxSye0TJVY&XEpoUW%qgQ*PPT0GLd z4T9PpOOp`!Ag3Xs9%c*f^=PvwxuTPk)4e^lh01E=(!`NAcY!ZqxY60>v4A9 zReW;1W>mb|xM_zrdK#@r%}m>WN_piuV6UKC+z%!t`bjqDy@dSz5h`IXhCeiZ{Go5v zA&c%6f?AjVl||=ghX&EZ$ifX7nX)UR;Uygyv?8Z*@BeV-Z3nCtnrXOtDl53)PDr5j%4_hnB)#WlkQ}_~*<8!UQ4eCz2G+!-Zuu*q8LGmETUZICW z%L|Y6xXQIf^Ai{7M;}}Rd$1?~fD81byECo;L-g2WZeu$zX%r7`A_o?tzvtt#>UNcE z=F3Zp;@Qd*plHpr_OP6>E*toTkr_g`^+NSlOF?Cx7L@6Lre%8kx*50+EFcDgu z9|L;{xLS{CTwYXFD>QEdl8o-i?Cz;>RuiRH=WtMbOi1;^X!rJ7quY3z)|PSTg|Fxq zm@-7x!Wbk=iP+86L-oh-5T}aCWlW+s@qF{Z+~{(*MJQ!0Y7pKQ zvs9<>Y|d7J2oM&81F&tfzn?dB0mVyV!2puZMyUr-BNZ;d>`7H)=R^L&IIlC0=bCCA zQU*@gr!Qq<*tF;=64}|5%(3vzh4tlu^U)YmOa!$&6l`LRFBlc*1XHH;NVZz_A4DRF z`H*8=$=jsUH>8a2i`-9+`xBUZgid(sxJ@ab`wXbut7pcf9|PSosn$hQOyhM121QHD z?4dPqXYS#7QFwT7k3iH{jGPa_K|%MzwSZs*Q7=4`bjRWs>uaJ+bmsOJx9jo|)EOeg zo4p0=uBo2Azh?+;rnasQAsjRWX;dOkD_!O4v0I3@c)3R^2beG#F74>xV__^=9@R|8MZ+&tF7`9<2ay08qHAYB4 z%D?SwmNNcN0`2hd!8t<_m$=UflI<$D^yCc}3RG3(G6@U(%%YQsL~RmWo@VA{y&#eE zws?VrDn%Bte9L}{8TZTIQb1vc;D+1WAMSJhfDU4bT@|85T=T;2c~jtj0YTl`rl)HW zNE5L0RQ@_BTpJmcCnsP3=-ov8tJN0zp_`82pd!v4az_<^1lw(km10jRD(akZu6|A! zhsbLpEY+U_$g_Z+1#xenwYwQe@PQ9+2@Lue2tBre(#Teq%j|anq%B;v%qc%ME^e!# z9Sc^^usvNRl5vNa#qb4CASL8B@~I&dCct=d{^G?X7#Jc@3;c56aJBmo(B%Q`Nro0M z_-rLY6vREk)bSM7)Ijr|Bitiv$U_va%S9II_-d3t-uMdilr2sh+p0*3aXTHl0GuDsoIWY|}2J zb>`KW=^H^X8B!<-l^O~9!iHU6wr^D~^8P9EJ6h7GunWh=gkEQ4EZ}hlkHw=*>nE7J ze09`lqX`b>81$&a1loF8J39Vw+=esT3RdjVlJ#{bgzZELdg`@Sq@wvW0(h5Sfjey3 zlC?6^ueG(Y((%r6zy@d`M}c~%1*8;{qqimvx=QS`hOFDOw6ZK*Ce+sJw6=dLm-l@~ zsLenFXS3V_5w;kUaZ3djN+Gt_Q}N8u_YSmGE%0H$MU@27T^+Ra^sR9Le5nYj3SV?% zi%NZceK8#C`R2V`r${)OX3`_I!xItg0%m^A#R3F*5E1YRa1S8j+oTz3!D54fvII`E zabSKAriAEm3_dtC%5~kyWxj^mHQEIPgN;8wCnSPZ(!cV@450Y!LnDJSxA) zc`co5hP9{YyPH9n&{m!;{;V7=Cq4T3&oylF`|kdFCKo#)2p#H#70T@aj1|B)A}1u| z0m|9j5xh=|$v~t;fRB&wsXKaVmo|`_2k6LS&QgeY0A}%B7fSrj*xlazaT>u0>lR+V ze7O!5J*i~6xGu|@1kVeZ9}VDe0e7tg@nG+juKPt)egA1aE=w~-0%Gn@at6Dq*PWCSU2RH{=@+0dLz){u=e&ALy zHBccTL?7V4ZOeyTwWGXsOAg^42BUZlo{Jk6Q6z>CSGBw%Cr56j->pKcV)IbG>;8N$qVW&Y-N?iv?0*74e*4zI|5>VA;O2)IV6jyT zB%kLd?Mme2SxV@Kj(^ zNk~dE0WcW2y)-ZvQM+w3+Q{xeXsAO*1_lNYGABS?GOz|BqM{SXb4Qfr8+ljmmCqcx zz4{2@d;IkIv)%e+)KB2LDjx9X-Yll(=2inYuN5pHE}t8+Q6Vlxs8kVd;gD%Zn3pAl z3@%^SwJpoY;1fqFhUg+x`uGy z4-XH=M3w+T1hH;uRS}#g#vPd&qzxdwKGA6q-3BafnU$55b_R5Gbcm2W@ST|~jkh7v z+LUMni!NWz&l>Y2HoprXR6>XLQ{Zj{Ic#K~Fx-2~4>}e}5lcX{1}GI|V%RKTk-}{| zfvgYk;UpoaTK{@`A&cYuV2s|0;I1xJ1V{J4*r>F3Ss;&z2UsiWQKm z2kMhk#B7qlCZY)2GEq7*6?E(wk}EWUa1QB^=kEtwh$!LIj4Y^x2l)83aL<(D-(BmU zbDe!cjzmEDJQemcn!NL0C2~UDs8V23d-qQ=jwN~j~RHSE$WX6F!bljuq%@Xe{CRGaw!M$slhKb#kYpV z36H0%H>C#k5@>UZV(`p1#hOLr`MJaW#EibQB0W@s^1kNVb=2!_&iHj4dFDO%xlfw*kj*gBt9WoL%HBBGt1fK!~M@C3E z9`M`uSbBM$B#cGQEm8=#4C=#K*FirrMK(@kEFtvq!bS}83=#Eogg|Z#5xBKs7dA7? z*akwy(LAg)HorqN4Is+HR9eZU0Aj+^H?`MC7zC&Cuy;bV+fo&arwY1*LP8P&$u!We9K-zA`$ou35fPw>@XEBMh2^`Aa|Ty0}IV+_ul zjN5u3BnXp$hb^-zhtmyt#BjpJF+!-Os9-ZKb;}-@imV$rMFBbr>7K$}wF^C_)xc zJ--Q%?GZf#121|RFz}i#ONx-Wl~`!xS&;nVik*Q3AmDy=3nLNM{vh!b{z8|t56tya zV3{`&`2M(}X+$!7bP^Kp39o_=+&B-*7FVYkP zNkEgu>#B)~=QlwV#{KnavNoggh6-lqv{%^|4_)!Ir4yHac)cPqTLp5NErL6J@xHDr zZyGj-HrD&<4y|`2IV-C6o@qDzea)DFv4&q222Mq-tqOIykqqG{g4%H31KMzgIyks(j6%UyN9^YK-@gu;gVH4?*q*2VE7(Yj18qI0Ldnz7YFViQ4TW~ zg75$zm>uGrItuWvfUg=3V%3O#IS3wHOD@^6T%FafkG`!1yoFOaCsE%|L(aqF69P}| zTw{Q6JU+o0@O+T#b=7m+M(jMC$#+7M=n$6>&a$|nwG&LGciDT+tnYYD!qnRKyR4{$ zXQZSwL%x|5Ljs%48%|~VMz4k2O$a~*G(jp+5b_y~R{ov>=&*nFv}BWssjf>f%TdMg z3Ik3=^Mmxa4f-DC2WPSM+`)R?2^|CXZJW$z7NbU+M~>W7tX49&*m<)F8Pp5!RwhKV z2#nTsBy9UELdK{qGCQ~@PA8{k(n!+$_LBIcn@Rt7w&6fkREU9uxcHq{gM-K(Sh*MB zx;}PATBjaZwSeGJ63(N`^drE=qyc^iHiSWqzWz2u+Qr-J6IJb}t>74+xLC0&e6JyA z9OhY0PfxFe877GfsLdWb4SO8Jhcps-UL>kX8L>R{2!>00zz4Z_Idq zvU@|1Q%Yl-6jCje?^4ctOU_M3vWXpwWziAyoWArTwSxMii5JDspxb0h?1rAYC;BOj z(+ZSF6TWCAzh9Hus+m*kz3-+>;U}lEg~Nso0#+J@oo`>74*xkFTx9J3XQ#aYqK|Z0 z?hMf{H1ACXVHr=3W^br$*txeWkt6sjUdPYR53srdNDFe9dit7M0}t>x9u53=YWYW(Kt@_AW92p?;}yAnB^6)F z!jNMu;7NWkN}S83q3{4-lH&Xa0#!$KobPiyY_F9*3YiE?=EdutGBt0{TNkM}G;9hx z<>$j5P}cWx?&4vF00K3(q9v+{+zlO|N?BVS!rf4q(vV!+R!Q$1#K&%Ga5S$zU^eEj4#AZaxYQCk7a#z%aaQBa%3vy9b& zyH9{@PjAcQ;ux0Iyyx8+YUBRGiY+t9BKEXQg2H`pU|<{smq>sETzwFDaKSqD@%3E- zdg!#$(w>=sLv0PqBapMkUzA$Cv=IBFr|*Mg#LRj9(W}Xs!EduP=D6| z5l~swGxI4>w`m0x$S3lyy*Exm-adMMVw6nNsb-zqr|029{S`^8SOjWv+gfr0sZsiR zL`givZJ-|?TrOh}GYZi+V^eEVE#125v}ou@%B}R8-D3K|GE9#WoSvW!b}?_k#KeT5 zF)=CW$W+hWh%vxKeorry@asD_*OEcY8^ZJgF2n@?YQ5?6*P|}uX-aNo zT|RB=w;^Gpo|SHEj>#VZ$pf zfKcpeszJH|JUA0j@I%lS0PXemWCZ;VH<^NYwG6vyU<-fHT9UYi5qDI z&jk{mmgMFo6NY;K?5VbntJ`rGuabv$ui2KJTeI#pa}x~oGYjXtN|Pt>XT_nL&m>Svk?KHV>8kY7;+oi-#8w7IuUjrP0%cKTQ`2#CcUwgPi~cCA zqB6=92u-kLkkhdgBT?0NQ;mEn8kMvjX-(h z9S`5`Lc93SwPZk5sSV61Q^j-`_;{M200s|#d~2n@LuMOvLAiNSZ@KNPy6E2;yAm&Z zPJEQ~j+cif{doalO9r|SMaz!qVm8xz?Ku_slbP!pwz3`m$7z$@TPcrT3SaCycTV-_ z72dG5tw)xMmpKE&m;*glCW_zLMLvugDWbme!h?Cmar6p;2qVK(Eig?1%1;^|9(BMO zN67pD4NifAb|jr+izJPqlBOLTMObY~aHx+W+v(X^3f;nPURP<9X0gbbB4I*AMTrd9Kya+rP8lST(?6jWymcclgL98C&Kg-6M?zl z`7~;2s_ylUzyS+~H=bh+mnl`pZVqQAC4=AR)0nw{?tdAl`+Cjf3hf~xf^m!PSZ5OE zC6y)}V^@ciLt}p|m}}L=Umi{jBCH9|nuWCl_=yoT+N#KS-risd;?Z~n4{Y7W!NG9? zSaeg>+z#$E*UnVkWvQ*}on;)9I4BI52(B+rr47}ELaIwMv13=>I61iqIS)X=F4__p z>DhK`t>D}zTA>#b5gD)8*~%h=104%4lS&+{O`^z=6qk) zgt5^SP|w){#IE^3OOBLrC2rhIy`S3&Vnp$X=*>DfTtShM86BF=^;u=tQFrCx`7}Hz zQop@(r}rjg=dihPB7QkHyhlc0&w~g2{wGU$F5n*6Tp+y9zkzNmwx2O~Y6mN!4}yHJ zq7dIzxsk2TlqP|@@sF`Zp^VdVgHi3n^A+OwUD8d9L1V0RI4mcneEr%dXR%C=mz>t3 z<8zirOrBOPxL^hXdHX-cyAZb!7@c>@^O9#vY5RwX>JKcD>2$DOk zOi#6)?3@3l6EFs7s-lC#yJ}~MeGMVV^a%)HXRWa4=PLtxTql5c8djHa4jleJuD$}S z%4}_Wi#3QbV_{+!h^VxbNtdLwiqeR5hdSU`pp?=euxU^!X%rKsHz187v1z3HzZZ^k z{C=+M=ox3+@xJR_>v`^a4BCtR0IdJu3))Kn0W#%FrmO%xfHr@v7CPW$8!Gx?N%6s6 zkMN~SmrkMomnpI7rb&>I69nq02⪑6XKLt3+(H7OIKvo@35DKi9pzgfg11k*EyJ_Q;6$O+ zo%jxmto6BOaqp+Md3En!D(0~35x>R@xvsE#HU=g6ntrN$&NfGWy=d&Y#Ggf}n~q^^ zatL;Rt*YpYI?khhSP#hnWKKd1#uAceKdc7@u{OajaoR{HW#Mvho7QuAm8KVCpSV}-?xvBNq^_jyz{ovF_0sMe)BcNx(d)zX$!Tiq^E(LdT2C8yUsRl`VA(gbvZ|DzZJ(K*KAhLOY^_ z8Gnamt@IWzds6U4aL=Bi*L(A=d%qm3O2yMg7WHLa-S+Ez(q$>?>BYwSIp_)Hs`Kua}giJd%{+w3S)lFJwbb*gI*&42v59iU$4iitxBj^RCZ~ZDqpx@;J_m&*!X&HH4_sP=jhNQ zSwAk>fa7o3I-z9#GSUlJG=Xp~Y@LClcvPN*Za;qIA9smg7l%SA9ACX^d!k`nOR@5; z+EbGWGbsw~Syh$PkL?}zQZP5>ox#-3;dyFba+-7*6Gd^YLhi#i!2_Aw%cC<)aWm@8 zeVHqtJkA*YP&O}8@KTeBr_6ODBbOwc47k_;Jh{atwTC0$0~AexO^pm&Y3krSGvbby!T02f&0GT-=0ZE3}dac>H}Vj#PDecryBHj z(j|nmVhLMH=_K;i3wprdsrrti-B&MpcaQcrX#k(mO1A_GLrx}dZ|}r4SD!=qTb26i z)vJyB< zS9wvwGXnB-$KrnEp13fl`VkG4VvkFfSLU`Of{9648bZwn_BGosbra(`tn%>usQc&Y zL+S1ZpQ-6^?2FgFWSCXcD=>ZT>+K&>T*jvUdPybTd-uKjJCt>?$-0CarkB@m-`JH9 z`)f%QstU3%YD`V^SWb+7e74e1*Emm&RB+d7MnaOAlg=X|(xSxSo`c;r!nVa(^^C{L zp{eHPAK0PUcz9|mImyw0cysJrS?Slh$|JIWNE#P-GUC<}bubb2)z_tQm6_$zJwd{# z3UFS!X`9SZpJ}F(&WZL6#7Br~>0-C3(vATNr8@<3s-Vz5TAUBI?b_$MVpXY_qmz2{ z&cMs6DQ!%b#+6sD<(ZShpZa`K_Q|OVuJb*lC|v?#qX%UCXnj_-1S}>F4%u;aWH1}} ziZq_z@;W9yl(oBFE9i4#-q^P9Ohq*hVuR0jMvSC{H-!WVup8Z2g&P$}k1YO| ztf958dE<^9DNwPU*Feo!-R_E=mqzyYN&Xu*Zft=Jw4sN^vG>@(ZT?%}lmi1bAUIGJ z;D`r#_>?qS_55ZVC>@=hssdGsYMd#-|1DlHOjLagk2b!vb|7@1bU41`^y$;mWgD59 zHJ-f5>15uxkxZ-77MNb+I&tfDQISlEFs994%lueNBg37lQppUC|FfCcc4HW7biE40 z6aV%}tq;q2wjaz%(mUtW&zf-E$Z0~Qz*GwQDA@bh@?The&kkG?!6b@dSs0o zpVc4d*g5`YN+xLZMw>*FQCKv~yVZ5yt&C@>w+@WxQq7Y8C&3Z!Km$S;l+GhTB~)zC z>RWlQ(TJcItsC3UorOOvx39hpdO?s3rXm|d|I4=3nb|vLzSd}%`4xQ~{HWHyaTi7d zXkpe+>i*AWE3sSBG*6wn0fEp(^FT$^)E7(->41~LRm`=}hTt}xGk-#m!ENd$14@fJ zpa*m{S7u6vac${HqCi;!57Vku+(M2cUFVs6l#$h;qiPO%9=M$7PBq?mc8`MM78`~C2x#pt8R&QN}ud7X0 zteBd7-gIO2EbogOR35`9-;E_!mTi1_O*>BuY+s~5+q916^0yhoe3Z%i)2q_VDxE#O zxCOfYN@C2GNI5Z=oX|JyXRyszdPZ2zaI3Df{I4g!b%*~?i?N$k{2$k`8xu|Oi_}z7 zXe?c}Ox;2S0~FHXP;f@Wp8eHh>-v#<#@mh9a0^I@uHT8x@Ke$x>G3!2<0n_PnkutZ zF%>H;m9OLw9(C8eatJA|WIA?=hGIjkF73q_Z#Ml!g;{Roq7p5Wii&?+-Ip&HGK;$s z%b%WOs!AP=rX0n-g37@wdILUAlXhDP!$}DTuuaw3*2apdL_)4DbnkcF=au4 z4>0QvXT8~{-xyuD6chf8=w|$!VP8km zRJHCS(TF2yDV08+^9JVSLXxYp&$zCd5P6Up&8B{!^rf7n#&E66uS@NA;=_xdD|jOM z{{59g7^Au6gjFn2W`S9iDkbyF$<%9=By~Db{b10`VgC0)sI!yM$xQX;VpLWRx5%|d zzI)!m0d-CR0RbBiJc79lGY;<=b?%oQZ01(fbC3jgk%p=8DItuM(alTUD2Jb;=KzPJ zn2Pyo&-otMa?&1yd@czJ3T=9>dmB5fijSV988gM>_HAQ8kuT~#&!$fj{teV}`A44v zdHxZg{z>gadWOfJ8ky9|$gND_(qCVVLXp?7zTY3K;n4VPEIV5P$Cc08Lj2QH&x-9r zCkkMV4$&24du_~IE&Jf~R#eU!HtY%x;{VWxg54<28~;jn-16Q~{GMKRwxMobO=6Nw z$Y9gx&QG>1=kJ=H@#8GHzbAY5#pl|LGq+Wiw>;&)v8L;W+c?*o4B1z#=QYnhtmj@a ze*W^WPt(e)%|Y0?!YqA!9q1xvrrxFqIgU+C7b&n|Sm((-qW9&)gq=qq0aV5&GV(FY zajdt3$kQP@c>wGJPrfjJ=6>|*?N!6jS*_o=QO}46j5O-RXM7bY@H!OJ8bR0}mffAC znWcc9BGF?1-o0nhtcKQ>a!t>KL2v!PJMhTIN7o?(KC5@{-mzktgfjaiY$RR)3Z(ccGg0YpxqG)YgnZy#-lwv62%+Thh z=;oRG@6uUfx>^k~$Hec*4e{L;2oBgRxrQ;hPQ9o+yLD%Ye1=NrM1N^p18=f|Zre)@ zZlzTqnfd1lb^hUZW z7D}W5NV2FMq$SOR9!Oh&nbOThYO!x$p6gQeaSu%{t+iZPbad9;28<6FQ+C-ad8pt5 zLoqy*bS0?cI>rKt;^*Pn?Aft~QLOJLp)GJ*V2MO}ZWrhVMN$cSk90~CBv8a;fdOO* zuJd#1nC4AS#}L&p!a7wA|N5r5(5g?^7bPaNyZSXAS~Q|E*~0Pm?>7dTJ?0L2gPiJC zle?V-`*oWtdRC7bHi|70t>(QTEiq`isI}%(b9n_N=l%4=ipw8|lN2(^buRd(~DwhcR-vlZ^*ntrR_q z+f-C{!m&l+9*u`C-n)N4?dTnQAfwc+6<#bt@c^^$ty4=tV@}n##MS~$&uCXg(d)A@ zY%u(26x{YRTNBZ{IE}8WXP+DZXu+?PH)5qNV7F0MwF3DTYak zzG%lVQ`j#kC;>fLl6tx%wzF&cOsiMdKzz0UDfXrReyNrGoAR>zt2y)Yk{@GDe->dk z4b-&245zz43R+%l=CQs@kCHtWVx^n8)%wLql!{)8l7mXN0;i&%{SVjq{OxQ1e5(Dx z$+2@ht#?4EInw%yG50F7Zg;NgPbajaJkM?Rz8&Je$W+Ykz(Wb+vG(GlE3Kve@oiFZ zKDO`Irx<*ZJ|N|&Ak?5M*B$3fqW6Mt!PjdI?9#Y7*Zx|{Dn`Z%z;#50iG5_>{{4hi z#PUV$f$rrIItwyD6@8ryIv0W-jgV*Fx)e`{HR)2}aHs_Y-ex1q2Fdp4PW@#|19Emf z6?w6A`SPGZwnK-WbG^qIkd6^utYn-fP>jxMOU!zsWteL8eR&>PPt3|QSfwKNdU{eO1rviIX5?t5G6u=eu4=n?X6%HOx?$ zQZT0uPWM_$>I;gz_ktY<53Z`VeKe?(ftq?^4ud*r%z=8XDVq)`bzDj+k3(qqGiQ3o z?G2bjr<|XM!Bl{Nht6*aw~6bQUFo!N4i4_mhtQTnDV1TbR@ie!v^(eNfXnF1U1xk= zA2@W;*sa54w11poZeniF$wh(dg(W!UN(GaaT)*-`JpHpt9Dl&vWN1u`1M8uK5@OrM z(vz%^VsT9|{IA%_me1pco*bU8Ux!#^qyndU9p7)LYtJrI8D08C&*a4BxFX>hm+>82 zqe`+A{?Rh3mGA!ZkhQ@Ah=P+{Ro)IXtPcJSTc zT5~+Le~Z?0cKg@hjxSt_5ySm{=KevV0iE8)HAzs1Dyel!Xn$NrJAkH+st=Ew@o3nC zQF<1oS^mO>SRA5k+|_x^;PFPJCXy4 zkblIGOuSa4m6Z+VyEN5E$Uq1PDs{btI#je%KkG5BS)&TiY}x$%qtn(F=$Fe4zLoZhpe->GSvn<8qpXc~*P2FHX<#xT3iHs4x!2D)a z|Myr9orBsSG{}%s>5_big-ESdHsQ5OiVaRKFtgO*u}^#S^iuf)clR(BntaYz`o zUXRm?lInAv+EDVK9&5!Zp2rCu4+^DqebLd<3y0;IKP{8bu}hg5Sbye-dufiU``UeO z6gSJ$V2a38+stAj)gHls*e-9WBagnm(i&R3Zrx~Cq*phr2n%Cwf$>$1)ZQk;OmVL? z&KWn`P%F>q9Gw;(7ZXmcOPmwF*x#5{U3!1JK#g~5jC8?o7ZlTO*y zwxK$vU<~-GQXvN=HWl4VfjZM5WJU=iVUUy}ER433=*H44J7x2L*mk!R6o|DH25s1~ zCH~I314Ok^iIS50YO$~7|B0t_F~-BYYR#58%SoM-LhU)vD|fVS)sI`P7y{xv1TH?Ft@;+_D?tHu2A?Clf-Y-btRx|_pcUPp2I!|xYkw1aNR2Dlzt}4NmDBT zHHLLBu2MS{6%>4-#s*VBGj3W0WXS<29?_|s6BP~A9w+LGmzJ-#-n?lvu0^?Z>(=b{ zR~)N%2oum*S%4Q_RH@Q6t5#J*fWqrF_Mxn-7A%1^L@dV8*%53JwM4vrn6nB{KnNQ{ zA6GJ*>=V`alOpBo7f^6BGh_YZET2fUi@;7T@yL%=cfLH zAYbR%Ax7X{g!2r#mMwuBXzM}UUw z^p8&*qd43GLwE3A3nt!b{%tjyVn;8(`NJ705isQhd$I@_8I^3eZH$24kQIHNx3uz* z%A%*rMvlS>;Lv%iZPcuKznq82JL7N>q{1nLZz1<6?}ZNBXK2)8F&9|U8yoWpo8DMZ z3uLq~nomWb-m0YxZuM_w{Ol>M%N7p2Md1Q1e^;aDX>GlTano-{oFH4h1`Ssa!|Zn; zkMomE!-0eE-|K($-bZAP+y>=42~p_}Y$&uU&(YSJUU_bf;Gi2etE(UR$)o@CNB(i} z{qO54$N?g8_LLG^v|VTMFqg4oR_9VT)5Y};yYBFd+CMr`XWQK``h1FSx8`z&Uhet> zDG_E&luw=mwL2TUR(Lzs>b|^kFtxn==`9{p5%X)>R=;3@lQI{y=2YWeEGd6(NR95q zhO-8&NH)Z3GG%Kv9X&~Ko~x)n$t6H{cJ|b%Q&ci#d=!+7S|FqKC#=eZkjD6S@VCvu7XLTYSg6=%D7Nno2C2I+g+!8W47}$vE#{j$y>=w_?Y8|Fn9T0OqMDdM^ zQ;aFT#_M`&67^gp2?X(PSHm!L0bD#= zfnuHPRpemPvaVL1!lvSE@gEn0>zMwk;%;QIb%#T)oPd}BN7S*H9OHW`%LTYZ4l7mZ zMp|DQUh+T=u+h`VG_JiD-1qlO>lpmqZD+u?BT6Vb>hzZLKSJiVPTa3qK6`53S}SOZ?Oukm^)zS4;o z`Lnx1z8`n8O)BwR=i&Wem3P$6NaTdfP)&Ny!vd8V?w>8UH9cI7~COI+3?%Nn86 zy+^oH$4;32TL0Zk<%;Juk1N%fglopnd7LRY$GEdKzkW`A7=4AS7-c3NMPN$)R6Koh z`3@)fp`oFT`%g4I;BAh@H+d46gs%k^x}N!N+ETJpVjuS71dF7cqMhgDE1umEXq;w6 zSHS8l*4ICRXaS=4fO?u3{u~<5Gf?JEFWO0wTC!xxlh7n~k&_46*f@oHuJaw1{^m$h zTuz@kBU2_2B1@=cQjO$|Esie}nb!n(eI6q|-#g-Ivfot^;OFn(O(xuh*izEVh%|b0KN?rEk=omG=e4d;)rhac-NU2^bz1eYqTWB5v zCV7ix2)xLw4`4d-vM{E$NL&Fx`Y8TI7gjb6#$P9!e&7s*iAm5YaG64VK?qE{dy^hV zDA&(iyckYbv%Nc>_+9p|OU~1$L{Fc-Nk;FI4Tf6#Qu7GW%S}NpxG<;~P-k*Q9ojpx zbBzKi%oOb@+sil6%lygl8|1Uutv8v{^h&m5){2UXVrcC7Ek`f9IgE5g03L~z@Y%nD zk?~Q}HC1#_Xc&o@oVZ}nK@p=cWC34m_z^f%jSoEnf~N~uueE@_Df9aEQRrM<-y>a_ zpx|w?n_1<>f zihl2_8X75dgOOUhZN(quiT_+Lx%t`JrbvjOTTG^knaV~Am^_viafRJDGeab3>?+148q<;}d4a z?2n=ddHeo7)Sn6Ub>MRWqsjo*8a#EJCW^7QRLOqe8f~|@^m%ZY5!3~MY*o%cegb&_ za4-DBazM|MT7x)?kq(gMP|J8LKBRAY$jyxcHZ>=C<=}?7bY{1GjfW^!F?MB={WCks z4yHOYY&qb`x5SxVxV{d&XLezJ`ptU6@YnI3T1bGmK}u z8p}%N>Win8LFoIo9J~BC&owUBOF4Uqp(L}(CI~!|PCGB-*RNlJC8$F7#SN)r)Ab^3 zPQ>Vs)4CQ7Q8WP<^iPDy&O+=1p(+t?YuFp-EN8JhNe=1)U2$(Hx#U4FpFHXI&U1TD z(b(>{@wCi*GFBVzQ`sp8dNB0Jy74t``3^$I=wXn6YZ zzMN@eQxB=82Tk4A8j^BF|GK-)@$vX#l%+IFr!}NHrLp4%)n}Ln(I>%})%9^tEJ|Fu zK=VqYf?+Q+FIAt;=NizC6Xg{=enoob@oVqonbD$;ypjp$7b*b-LjvXd>P*tf! z{jMXjoVfL8A%W%Mo<QRfpd4fm5!m=PP~D)k(VtW45ztvc8mW!4}kSPg40EXpIj(&a@*J zfU4hQ-+WT*A%diCEngEDXj&eAgAmfIlpX-A4m?8njDmu1l~F1thbs$M;*qV17e*KB za%8bn@ALPtCM{TnktL#z@{XX*Amvj+v#@GN-~z6=b;x1Y#n-Q4AepsC$`MU>+rQo2 z142v6$}#~O0tQHtDMQ!>Y~snp#t0&KOCL$t0A6W?d!hY_bCaK0Z2gmxk&m|X(x ze8F_nKpNbQRmNn%I4Ml8IkPCm;4@AkVPzDQUKcg!ngRg^jBziBi`2TOMrL+;d|dta z;k`zCf-Wh(@AB;4)O4QLD(BSFt4r1GuSZwDsPy#@pe{bJW=1f``{B1LldGl2lRl5l zsNX%sc#Bj^T3c0&g1^>T3(0PNkH>jk5_i+yt z9rU`AAYP3pOVXPVikA=)z-Rt+^pxPAIHe#ZiGxJZTh{ur34j?As09x=aaBStWA9Wt zGda9~72tFpvE!gTgGoJhon~_2%;1W-@1<+_2sCtQ?QrAAuO&CL>ZyPi)#3gpLKa-0 zX>KWCtt6ETBj{q$agJm|I%mgTM9k6Hzk@>Oks1^Q(QVy}d+!M8kbq!AqDO?`Q>o7h zU^+}bTi{0526yLwWHKHm%1xguLgu#ciJzu zz9G zPEJK!-SJb$$NL(yszywp&xRbJ1-9fT^tzWX`G6?3UFTcBd9xvF=BIWAz#mYAIX_&P z{xMN4H9llBD9_z{_9U&*eUAEWfnpRIZ;YIoaUxd2Dd>KaHn6F@OqavbV{x4^cb@oq zd*i;Plro6#)!BFLy76w}L~+PXLEHQrFBDM4qYz!Ox+fm5MbayXV}%%ki(>Rihs>#8 zI#b;_4}pM8%DBp+R-*Yr+LU4{kcArbfS2r{TmXR91H7V!pgD@euG0-IB*5tqD{Jw$ zD?gw0gTA;uo%f(^0+Ri$ctntQl5l_n1V0^wJ5zn`?4J!Y<$^c zD=+_0+rE7R384aAnl_UQxvOM~TQj zJG0x+*7It4JA8Y?NYob_5B#=KPztQmx?*{DH1rM$9~wFYd`VV*jMaTpG)v!ky(N+* z%k2)GAHDmDHBGN9VoOq!)!^TAc_x|3(`BqlBG(&pUj4cU4`(#yR1eXM6{kPMzWNp> zNvX{rP+J!6-&3ESK(7O}bm2))c?ZQrJ+iNq->jb8XoKIN8RQ)o) zWTu%i08hS;9-Z%NgtyG;;X79Xn?gxU!1-f&R8%Nou5(%Lag;*N1uO(NNxF3)`7e*72?eR`nZ;G*x~{R|lWgE6u6iS$ncI5r>0x z88tdujrq-Ds0^VC9O=SwTqr`MQ)Mh5)o>NRcXY&uhlBOMv}rvh^w#I~6xk<7UoDp~ zT3&Q?1cv5A$B$RioJ2)E-Xa*d!^!U4PB%-L%a@FWMtw77l5;%#=3uq_w8N_Ol*fCwn{&$trY0zaX!)sB zD68F_t#*7v2@T$4D2ucCoXu??BAjLY@A_v~?(U{V#2@$cmrO{er!dWW4~o zncf+|k5-ES5z=LFnA2W!r6bRWlS}vAO4s*pUVBL;(S%0KUE*_Hwly}9i3vL-V=z^P zXMFthsS4b7LWsa)fPTb&pN%_(($q{@0A44er>Qe({B!NezB5?(pRnH+D}e+D3tN=3 z)D4H>QK1I(7EC@gArjsRPT>1TA9ev)ly?$QhLfedO4NrC7z88ex^VRL8ZjS!+>4!VB?zgB+&B|q6GPo-KOvPhK z&w%&kPi($3ikn*tpI%BL3>nU_ktbb?Bf zQFY6?dQJ-QHtB(<{no9D%*XZW=vftYHM5HozD@V&* z*~-mm{H^_p^1)I?qqAo+{kJhb>$&&O_1Wn2i5?l^<)iFDT|Id%>OKQ2ReA;E*Ee`w zOEEV6R5P%+qi3|Rz*uHbrrT+E^-Zf^SIJUV>)?EXuT^{8u+hlCCJ{eMvU5vA9Hrm{ z9!Qz8d@L1Yp=_j@mytTdAp4@bh$EIGLixz*t4o>+m2013FoPv1EnEafEOQ<+#i`Ky_#a{RdUw_{`UaEIn+m zRDA?@^$*#jXap8ox}B2vP1XaA09udVuF#A^)gX0Bw{pkm+?Vlms~-wNBH!(03^-4j z?=q*3i%W<vgt52-AHfSkinW9%@=PE*dKVv zc;vBE`-b$+w-c@h-51C74*CHWp$CW+1<*`{BUonnG!mR<*5{(l#ue|_Ur+E7~ZkL$XSRWe7XQwp!=g8c?x7sn+OYR<% z?U6CNd%4e46ru)_nd)7-q8wzyQnt3to#L#tF?N*AN1K+5E&u0_yfN+V&mKmkr!F-{ zqx}-37d}<=`K=;CLvPl>TX>9n>!wYykha!;JL@*T_rQUm&{?o)>F{1KRRuSZo(;fy z)o{Nc2hI83M)pb&0rA1uUn(Hkb@q+5;kO$Mr`G}Z{NE)4iJ@d*5F1Adq=~-eThVF~ zhh&_ZneV4pLfFb`aIi?1cy2m&+9s!|jT3?d=`xSM|F*-!_1Ps zrR~bTmE7YH(#$uoDq8zdysPI-OmeSXv^tN$PX^C83Y?x~5}v&Dj? z+`r5m@-ejbe=l1Os$A)^WHh6|f3n>T<1=mg)MpW>$|EFV{_QNxN8oD)Q?Q=|g<78o zAqggjr7iVxZ2BtMQgSalaqRDWxag)QoVwS zfug^*6-Qh*M@~~R;slLA3s#qIT)!S3?lb7gM^C-b;q*zVbX&Ceu=Gt%By(iY>(I|R zwoBXQzcP|3Xf9s7`2VgjqusQ>;&+vJ7>K9t@{XFFoc0S1NY>r=e*LyT(J<2k z=qv+|fKRyZ?T8xqP;tFM)N9`7li!8uH{`S;O z7F4ENcubz?6lW1NQ?;^cfJ@%Cdmv#+v?5kt!Q(;QS;E8ER}h!^f1ANvu1yBio98*?cV} zmOrRqF(tM|)QiXUQZGObcIj^+mQD7;gPst-e4uH0ySu42z=pYJc;GA;oSn?OmDKHw;@p;Zy> z+E1>QXzGci;Kt(oS=-yt`f6Ex+y@D#51pIDH4}i2X(^2X=P9g&NgBpPZv|Cp<*uH3E`9y_Ga`83vCo@WS8#dDl3H?9)Bs#m zR+TihTA-ZR7_-PN5VI!Sq8kr=hSfaOU7|D*#pnpLHK5{dsDs|#8I;1VP>tJaW;FKn z-jN^bSz2i8=xRFiJNu=_23pKuQtbSnumJKc_JkLzai7&XDp+o0oP@mbJv?yCkFq|u z33-ZH``p}<2UKkb=diENErtS_<#JsupKN-v=MxoLVm8J`<-WdY)#*Vl?c@9goE}rd zpRGqTmR!e0p0)2dk)>HF)nXd+YrN`U#uV%?D7H@$`VYvOblE^tjw)(|YVgd5rAI{| zo!BDclAAv}rcq_guy`@au2z4tB37s$zH5lM0z-kUL>+nA%7ETl%|8y^9ibXXv`uCW zF?OPzNIDlMzZC^C_5{>=hYlb9JatsWJWG?1Oe9_kMKGNtlc)vg*FK@WL3wT6?$=S^ z!2­WziWq7rIyH0)Q6Y|w_Ez+U|Jj*BVC-G!|k85`G^E?IIR_>TfYixrLZlAxWG zkf4VTFFM#X@XYJ1&#~@NsY(U9lKHz!juQK+@`a%5t}`j`^450`mdb1^nQ-KbQ(cQ_koTRF*e;h<|l3wY;wD+4I%u1BQ|x*Ka6s7qmZyK?UI}I zW(%z(3`P}GJM|wSg$ixtY2t1nogjXn_}&Qfu5qE;qT07!b-#p}vW++jU1GdMT^Wv(rTyd%NTww2io&eK}U$x-9H# zh^X41{k^g#+EIrV4UY^I&c|?{;-yy=idm}`9_ThUd32_oIwpQ?tFC$R6g?AFP`3tS zYXJPC0E&OUmz_jae`R?A?c$~FhhTh!HoLqa*g<5G^%qc~!~~v|P7Mz~nc3`+K(2WJ zr+)m?*HsN_vt>Yqt&jm`^!>x5dgzuljHf}oAmOXbSj{c_BD`-#fD<*00qPL^$`F!1 z0tCO`j9q;cope0naL8(I=plhJ)_wKWZQEkesC*J?y6BuVgL#7B34t>?5dFS(S?eOi_=i*J3}=&g=n;N z{I|SSVcr-xfxItio18q+o*UV$Xz!6`I3EN5x_EN@+@ijfNF3#cG7SD4DRQik7&0U% z2dQhQtH+b!MUYu9fKr&F68J_HxBy`pY7E%BlYbiYz`JrA(LO9U{QT*|2YG-KEDl|} zh=7~OCnP2BE?c=N9N5gEy?fsz&4Rv6MkL$F0d0PDKg=z3@i&fM+gZL&^6f`v!a2=(l?ufk&R?z}>Qe zh2@(0Zlx(KV?rP)rUGQEKx}A7^{_^|Q8Z9z_(8wWX0UuZGZ_jA+cZ6vs`F$<1Nj1J zNB_%X#Qlj)sN}4I0Q|hco^;bMHB5%m_37eNzYuWR$ggXbysZ0uYQE6tgB9Y_TOOpPJleb6f?Fvbm<3xlYe}6l z|6LV>a4n%g?veA~rr?AukhIQQQZD_k_-J8`a2(TOxFCitI7^ZEl)E?IE{Y(x6X{eW z5U8PN4Kk}q6bhNL1dy0WgW;<}hURH>FGMU1C=4qDBu!M?d#@f$1|c92kI5I%6>GhI z+`fIAc$gI+%n+NVSXaY=H9`cZ*t`=erpN}1bwMIFX;Bi8qE?(i6M@XRJHY-n{P|}% z=yfV}*-XA&Lh4Z4e{%HfWY z#K`~&u>y*?o40NO{=-0nSRn7vVi?0vR-f;jg9P}-BmIdW3gRG9vm4sH$c_6TMQ}N7 zgoE>?*Z61vY`swHog==ZxJjfKSN>oq1e#6oWol;%sfDUqALCWX?5UtoSEvKovl`A? zSiFccyT6wX#h@4A51{CD5E8Q{nekNwvOrvQ>i@SO6jBw0n)mDzZoki~kp4OOtz<&S z>Y;Xzh#jYIj-C;Jrmb-1t*`3Atk?@5&z+Mz!m462KJ2`H%-0$tWK=Y$^hwco=31BK zs`rg4?g;BEUDD^-n{cxBs6@=;9p9|H)O$=Rq~el`b|)AQFEZuY@e=s}Kgig`;vz zAwKoqKmU|t(Zqr4yWq0X=rJY`92Cl%+R9fm#!%RTvz)jhiHLDhjU;QJ>z6ACmwg$%diDv6 z!TN+t>}yAIdd&#EaE?(FSp!jVb3lM*u4C( zc)K$<&fSq8ulwqs_;t?yYlJM!(wkTuQ#>H62t^y~J}vw1$*z?tk<^(rqnhZ_(;-6x zD@SWNFOA??cLha7ZWKtaVvA-{wRkSE*zcbl)wtglhcb@`3u`EW@ngczBxPF;4H2oPUf-}*l9@I z)jl<%cEuC&By=8mNtY#7&!|HJOLCVXB@7H)gV%$O`HEU7-~oiePcpsHApx)&8J}MW z7WjpQrQl?4P7*OA+&a^`-&!ZP>_jOOW*M2l_<7IC6n|OmcxI3M@Our~iJ}n?q?0l? z^Q))EB6(TE(5E*ebA4lt?9W{_3dpQ%b1qh2{m9AgR(+i@r*&I{ zNSBCVPCEO60$Hscwflq>%H+DuYiw2Zb<5OhYy8%p%2_unNP4GFSK_>tNxAdSKjD;L^b7gAPu6Z;A2+NG1?`z87A${(h8F2KR`-Z5%#)CawZ4u#@@1v})e z_tR%>gvyuYY+UaEbyHyTfe>BZfV$O{U2zGSe} zEntduaF>>mhC@wy`odw<5}grE{;X;9(P33DRsVUJ?xxS*e1G1LLjI1m zBrfLbwskla$aK6<{_GIXdl$6LNaBJLB%P#}-@W^zMCO@Wb_aACm8esVls{@iFGK>s z5JsASG7b_-5p-2FJRI>Mk(5Cz6hIL~_ln`VlXwnZlJFMcs(58K;v=JW7ND7Hf)rev zE&5YQNj1@c_x74p8Iy41I+M=Q9eyN7b;03%w_T7(_sJ=SHkLb2@6A7d5$Gq8Y1D^| z;kZ_!udi>6KO_L*xjRvaW{?RLRKrset>f}UO?fn5SsjwBa{1Pquug?SH>jP1PI|5(w-eX*pr*Imt1Ey2sYIq&d%# zNCb&^K)Wmz@?GMd4Ram~(CEP)(!|>GJMPUF^w90kRo8efxYEa&o$ZGnPmNWYjeaN; zvpV%{sc^|q+oK(RI{pI{EFLRY-QUp#Ay8_ccJB~N)?anhQ_k_o+^snnd1f# z!WXjSTpe5=5a@_WN1b}0pg!uH#_G86s75g)7O62@AkFs?e@ZrZYpD4DcmI|L+Kk&W zwD75h9=N^{w;|9txdM*75uBI?kdO=8ud>3_uf1e$5IjB$g9o5C4+~jEv&Mf-M3%4t zjzY~#n!Mwz0|)hwA_l#1 z6>-{+_BGTd4FmGSrx9vG4rp;n33nbTScsUY=|n=l8m6cc84b)Ahy^^2yH<;jgCsur zHX(q`q^u;y#YnKMiHV6V`qyjmSrYLm%Mw>z?f3R}Ll6oi5o`qUJ#qL7 zELZuUJ0ZiZ@<7jVvlcla`kVIBT-WRPZx1vjSi;FJ_lU7;Kv|hgiS($QSLv~k4coW% z5&I|q`NY-k3Hx&Nr@z#%9+%zeQ)%<0;JJQu$#OY^;aBS%_E={!n0OrNsnRUdtSq@{ z)gNT_P3utWNRXL|KP6szipKx_zA+o7!AzzLrcluh_OG0fK2f1vxwyvt*V=2{hW6UU zg?$W46mFuA#0?#Y z-`WjZDKmE%uvhci^j;u)HOZltPEo_`H{$k2DWXIo`$RprskJw)LCrV{D50C!$VfC@ zvHm6x@(6PqzuWG)54iCKY#`Mj2VJkV^y8hdJ5V8ra#Q7YM zV}zZ<7TEs!X&%-T|1XjIM>7`0+W zzz95D)K5rFVj4wcnIRS$nJ0iI>igKFH2t15sC! znZ3AnN*GN- zP`HbEDmmZE9~``nC;7G5oyID3k6KPcZ?n;(?+an&YD7W`*zC#S6zo3-4;&DK5fvN( zQRE`!2?mb{XxV|t5;zq(u8PRVqoJNlH*3*G_?Z@5CQ=+^6evTYUuln(#ABOL0{F^ zoTouVb!DYieA`IqXN&L=0y+goV$BR0oJ5Ff9W+ zTQ$kYhk44hIajT{JydI`2?Yxok)Z5<^>;3j#+~&xtKQBk^8NHm$xYwgxjOh(>m4k3 zDt^Obz0x@j4dvohw;9x@lGC0gzK$!MZmGTZDmCqGo#wxg(+d3q8(6=L2m^CEEN!U3 zjZMYKk}b4a*cqE$;Cx@%pEB=e9uBuBl;mNh8E-AZ~ znLq-?8Z!Dex46tq3>l3ZfQ`02v*;xI*+n}k1%IH80Kw0Vri_dp>Kg^9PS8R~M+d4k zaf(+!JJ((<^fdr?pG?RE5tOfENir8nKww8{NKb_@P>L!LX1TuIy_j)2iqf3z#EJSJ zspL8O_2Xn{Ut^J_RJ1WK>~DeB)$GYZkJkn~Gk!j|b#p}K?ya$M=69BD*l-Bl_MNNk z$EB}5+FGS(e&dq=yP4?G<(>&)#(7u7x0_B^S7hk$b{YF+^{V$7#iZR;ba(5~G*#L) zy?OkPv<6yCbXbbcF>?O$_){G6egnVB=V-NE2pja+twxD;1*qK0i$b1E`zB}CT+cs$ zonTS3!a~wHPx`n)a(A6?JQexNc!hGWvrKa`rXGa z@!Y-DFCtDelxeQ+TDQDbN-EUaQO%TfQCi|mN~O1cw5M(~waJ)e?f*WQ{GP2mCgq5_ zO9&<%Db5gQ3`cBbgFdM!xnRx#?kzH#3i~iQa>-X~v6zAHss;fCdxAZNZ)pJ#dFpaH6l@y0z#3yE2^?S-wQ&CVYsI zr~(ztLw~GJuJI}f3LT?Li@6D#pY8Hl_ScH*S+u;Uv$s~<^V3v{l8wGP)m|`u^CNiwvBa6U>cQ_>=3TMCaa zMO}ODKpSoP_OEK1T$90jKQT|>rHGmElRrMbxhc<`(v*a-L7eCQ2uV5T@Wdx{C4dL9Yt*jZ6n7DaOQP z<|^iG)jj?LPJSw)`tI$P`roag$eWpdYNGBrCq@)M%~1SAyHDk}9pq=?RpwW@wn=^a zw#4dJuN>4?ZO}R&apT-u$wRD_g?CTBeRp7Te@fKT$`#x~Q+ZcxT}>6+p6suCY~<}6 z=h@!t$5q}l+2{?Paz06SpPMk-e1a3wwEp{XDwST;x}Z5(LTNSTS`t#Ed4#zjcZ4Z4 zwP8VkOj-x1ZYIBfCO00rWDzq1%)58*p0Tk3TgU?IGQ?-8HU9Inm7p@xfmsu68Vp^J zS}+TGHNo=mmnxw4Ju|uEzqbVF7epL+e(LGBqBeGM z+l{LNS%o4Z8$Nl~^#!hDp)PN`%$+N-SZKP4Y2)7lsmhL?hw3IO+MIXi+#fr=Ww=?k zC2~HhuO=gSMn|XNF~08$fz8(j)YKU4;!Npk`m9nEeZ6h5r@E`oBkS(JpHUq>J*o@D z#zvjk5!|K@6}BvD6@kOg-Gq-*l9HznMv7<`k#%o6i+GJ%FA)cqzvvvBJt9b+mn#O7 zahZHMn$oYe15s4-6{eX@RGiUDyhbPox$Z%rFHy~UEpL^EYq#x}3<=b78T;#`7RZ?>gU zt5{Hbuf*MZe<)Z4ZHi92qioTzi96wNPLOrN-tpwggu{!J0!HF2Kd6<8C^HMRt>eNoP!n{u4R@I+@e@+MQ{XSUN~X zsjO@X$3c=@f+9453=Sj3FLRZHUa{{XQn?oB&Pbvtpe3ks5Qz+dxCt6YqbY&OHH4N< zn?Dkj&lY}*D8icnqDw1f_FlGpxiMrO3llv|>Yieds1g}=i24@p(QoONq-H`P-UF(; z5}oDM%pBL{j=x=A#NnK}xcI>}e)UKVPk&fJ`*WKlOQe;7#<+Z#Jhg8_j84v@ZDGAt z_XWHLXc4c^unhRD4f}?xsnmM`-Qt1MfeEL42PB!sS=eW?;PhGD`Pg8r{xF31`y`Au zL%6}y#FaH()%|EF{J#2ypFyR+-alC2H}w~uMB>Gctroq%DFR9OAKEPp0o;>FA~Mbi zM-{>7i_6MX0STg@0_{RYeF)4u9u65Ib%EOADIk_Z$h~Zli$Wm6V&!5gTP4L zNeEN4pCsCWG#UqFgGuU_^^floh*Ko>&%bUwwBI=2Vn}_C3@1rhSrtH|vooI)tB}x0 zCQp!f5e!66gj3HLRyGociRB*&;0E(#puv{Ix(65j2(!aLUyy-a;K-0+ z@`CKh;IE3)C0n`1PX~5y=QymKu#RotngJQL3ZqzCh5+A;VR1jR7RNMsN3Z^>ZSC;fk|7k-OUMbk}=Hi=v-VdMp{=HtJ@|Dl>^w|j;_a%Q%aEYl?krc3? zRJmL_F0h8JF5^|(|6}Vcz@p6BK0aWJ=!&9(0tTq0iXbJShzLk`tK^W<9j*cfC8=}` z4Ba4&prRlk-Jx_V-SgcCci)BGZ>|d+huxWH&U50<-`|PS`qvcu-7y~Tkcf?Dt~(5Y zCi@-4!fQl(xT{_QCbx!=w|j5Wz?)#ijokJyIDiUjc0QC+v9_|LSnJ`68_CB5Ptsqw zR5{?Zm+sIk>;#2-CKYqc8e@6GShaIzd)7KpxN78Reybyedd!yt;%tmeU#I3^x4e?e z%sX*k=RiMHzsOJPSgrI;{=BLl@$C+w(Ja4hyV;A$xa(TBtK8oG;WE#T*8$oXMw8_t zm6+We%S&uTG~N}L9!w^G<@@Lo)I6Q;5V{uKfU0$dCy&|3O$r6>}7% zep22MF8Z!!K(uFdW*}mV zdvVE0k$AM`cj4OhkILP($916{7z#9CV(obJhXtaYntIC`dL*NqDZ0qq7VzwoxyZPz zTFhX~BT@zindB^Uii?okx628nm$WdNdjuC#W}lL6oX*{~IDWBK`URr^Mcv}6o?KjO zm3BnwlXJXeCoc##?xqRAtp4sg+5Vxf1Zj+t4{DI#^xpnD)OB;wPiO}%hP4l%t_?mW zOgEuKVc$DBqihks#@m7cCn#e^$Z;2khD7O^6hx(8ubw=a{ABLyM@#a>2OXhHOUi?d z<_R$tjq>t54}GQ6a<9Erp|P4xxy~Ze^y3k&vMTX1_7jm)*&1GRhgY+85z8m{xbD0f zj7HFw8J&49(}1R>7qYh1o6^|mb9&CQ0#!2D`|(Ozto*c=)%Miv?++$`3%c_X z%4=E&Q-0a{K(LqME_tnWZ;)eXqxrDNrA0X|g@>n9j-5$ifB$|}FQ7Ri=Ju{vFD1!| z^G4G-`{Dv=Q#*3xIXV`@7p71;P#IFc<85-{msr-dv z@e;}fzn+Yu5@AutmwUd{u@s$EF^@c0i{7nN=%x|)25Sju6x30wHtt+5z-)K0Y(F8BKMJ1KAXWcXP_B@l`IGqsZ!8h?A@7Cy?GMQ3W26N(=#EEygaA8t9jR|$v+eat&{awIlp(13luN05Ce=DEFKA0YW!syEg@W0+?ceb9XY5%AUjX_Co{3Cx zuu9J&$!i;R35@fMnl!ee;oZ_q+1#Md$P%-+Tn2M~=lf#%`D>1_1UC&qap*T! zDY}nzP|QwIbiz==_RZ$e7O5u^!K=qlGD0ANUg)ENtb&5EWbZToJq$1JH8;J#H00+X zRt*Idw!=v9_xpY<_Qs~)4_VdRbYAjZa^zyKQLzz?yE>3Q- z`u&Yc_UMloktDkV4~#qq{VtxcE!+Lr+V&0g3$LJ8|N62T|Ie4TdN-O;9X27fDW>xYJNz`@Czzl<#+?sW7q)}OaYDgY8mk8QTB%B=r6NB$9e?o7#$_ys zR3*voj>Rjo2xS!o6|dHzj;Ym)H}Cu0ahu2_m)u-mewKHPjaR4eP=V$zsTekTAvVC_~|3F=Sb&?73t8_os9h-QFG~Mi;a2vNj`8_WmUVqC8#HgZIZ>%4K!H zHD))$v7YqR|E+wQq_^avbfYX}OBz`X6)?+UaMYKr&Qv!RW3f$xexYtQ&_*H(7S5lP zdP(A-G%;T{TN3iRR5BA?7~m^!q50Q%JgiOz0+0iHXbpgxs$ zl=-gyomWTEwisL{`P)BiN}7~sV7Ri{vL5y97GG`t+6NOVCeG2V=F9}%VeEna3uf0? z4`C}rmc%fIswoKKJ%IevEoB_xko3 z>1sjrpBc#sVUXsmTVlCJ-((c63uSQRI28;1+IlxvhuKBE~}K}XaO zMc=Tv6g``(kvydNNcm z-UOYMZU&+hFC_Z$pefowFN_7-5}}4b?+GI&(xLCJdQErVfe%)wA12kwE+B+$|CqmM z_S;{AXh-Pzr{|sQHO%ZXS+lM~goo=~LFZdIbVg&I6%CpfXg)%dkmqJfH5Y;_u?U`| z>(&ujiKMOV3!7RD3HKnG@AL~VoNuvQaIk;Er;=O$r}p+w5a_u}bawj-@O=DP3se0xl5+5-h=T5pAj; z{r(KC3wZdhn>#sc_hX&MzI9hF%SHYmb1PKSpeHcaPcVz1T5!KOC|f8fY3pEW4~xA- zWr~e5_7CE8(AN;6VYa+D_AJS{Y(plhCqA0$M{&^KJ(*iqg1_>gLsTH#cdL{3DcN56 zl||IlKAW@q=c}JrosJ%5@u*#b2J-(-LnZUE~1}1#4aeJyu`;E(=FE^c96ZOhW zmwQ{2HWMDsR^K5!$7s)}dQE=%T86l1#nX3kJ7(E3b6V2&B>)#BkQ%J+n@Uw>V_Pg~ z?l`O5XC05KLFru2iSxhio|;}uoJ{|EHHY!)x7v^VW@9i!?9_3WmxV~}9lfkiSL?gn_*`by{PxmDW+Kh83`Uvcr~B|C$_^q^1_3*U zA7B69xsYljRK>_vP^paqtT0n?I`PpwQk6Tzo4zRox7P>k_2moXTgvaL~Du zhD*5dghO59_r^ImdV}OS@)p zu(5hR9d)>Y$`XKY@=6ML`Ho}=%q4-}IaSlAIJDY#0@E4?6@lrZ7@w{wgP*cQQQF1_ z`m1}Y*zk^SRf?yA-KuIDay;}x-QALg(fCE;?B$&J+z=a?#o4!(D(i8cXuBZuN#~ z5GI0&z6}>`h?DX8k;HUW#yf~U!uW^#kF0~t9oEY^Rq8C*h0+0)l9_iA8@jJlKDuMk zXtX3|+UI-v_1vX6yZtlQpArjf|2I5ucDPZgD*_dY2QHD!3)#MbUS5Yc^DdNfa(GiS zv%u@U3`Cy$t@ZBzoEth%tgk_trJr!VYTEyESfyNKD)b2CX@;J(o~ zTIa?7PCe!Ju7Wtq?H^WJ*|K8?hu`6sQkV$-abPs741GjmdeTa?9xu4k12EJbEL0ui zw>l%UEGb8RQBS`qqpzA`uR18oetp1ISNDt*+A( zl|G2y6qIEd#F88ouU81dXrOYmw_vkFVWx!3KoA%Ei)BXgyt9e5`+b(K)r?tUzkgyv zd`TOI_J>O{=eK`Ils(brU&Vv}ysU&v3nJ{{38$2jn`{k%D*Zr_NN$fXvv}|={Vpz; zES7QDMq|FU=)OCCYWNqQ?#7$92{o_yTHlnDhm1_7+L1fuyl)Zp``*e2M|$4Hv;Vv^ z2J?9DzqUEB^fi(I{_Y1Mk+F%NS7FcSZ!M$@#0=|+?Nb=9eEyjEAZf#B#ci+4mt}IA z##%dw!mpSc_R7w242=@69U0f}O83s&DCB(*#HxNRM6*G)k9*A^F#BnBa)BE6MJ6fW zHmqE}w*49eh|X^RCp;gI_ENU9$^%y(#m2I7c4x>o?YE-uIp_9qY~rzC^3$h*)RZw} z*H{*qSsL(v-u41gwVDvSj;p)4fy)zBF5X;|N}s~Eyb(nox>LgJbPpop^&`BCD(1tp z6VMhfqh~`-znsH+*V2f#sP^YS8Vl$;T!{tX&+U(9LFhlUT6=D7KUOrQ=jdR3h2T#c zoWe|0>~x36>V;1L+dYqjc!S!6kqyhFLAFDw`wz6f^nJiP^-`wZkIakZawA+Ldm^6G zDf`4186{6u3f{~a{pe0=RVJ=FzNT-N!6B7XH;|OitcljCn?^TnhQWU94dp$*yEZ11 zq2=2zrd;yB2SABs+vuX7r3%Q7LHD+{{DFR|3tb!Qo3G<$4l@N!Fx6M<{4c+DbbR%!~w@8rnIi1tod(5FnV`Pe~ye|mEJJ(C*#AgclIPXn7 zeL8>pegJoHfWGCe*LOL@WW@6Q>~vS$jYA%Fsm116SK>B5omgl)fwl2F?htEJxntv% z&sh0)2nX{3S9CYO4ZiS7DhjY%l8tCqJn4dizf;~HCNLtOYk08})}xrQSiRDwP0I2c z$ah5FEx55~&lqmhoihKYu2b>C0Oi#8v;jBVOYRJ*MM}prl1&diM;zWgYz?_T6n1%W z?CtiOfLAA8-?2NOUuJZwoAG}pUoP~dlv}n_+2jEC>tas$SrLB1Oim8gyr4h}xXrX% zD@p~~ zy4u2pW*1uZmAQerr8*nK$m>{|77dh6v!%Iy!n8fPtkW5u3XhmU+_)DUC4K_IYTsJMHqUu+ujXMMzXvd_3$`!wc1d8Kswr+t0eDt-E%oE1 z!%rLDTjO-wXI8MiiCe&_lKkBEYk=qYNCPaKK@j?RcloB=P?|YMTjX?c(1=~JhqC|e zHoIbBY~_uEo`y5v&!6E^j`4H?9697xn)D1=7dk@j@98uaH8~wC9ZqQo$Dcv>+4g-R z+b84$_Wv#d!WlJ9NM|st6zzWO-1o~QjYoarbE`p5MsC&G8yRU9iQh`tMatQUyd4A5vLB&>jxRYvtKY^476MXbImi((8xEsd^56yw4G zhS$sy=X4pp#42UsOWupNN17gWeX*)ns3pwGkOvNpb%B?9nmYb$g6z|mFWC#Dqy$M` z9oJ~Fin~P`_u(AhE4A;I^bTSnloVC<-2U2KiL_l3JqbQJO&xM`;ZAJnG5M|UI;-hI zVVFif@rmw;7$t*~;sb?`fOE_4EP!f*%g_xmF){*t4pi@xXVj4{O8D9>l4o8DRf4F> zhj0C-AnLtBwSFZL$F>g*7_r1<^jmR~z+w&JWe5_AP&PO|)Af!_v~w82ZuYKphUa%p zc|v4o{7g^BlvPB#oc*1*I(Cq{`k>on^Dugqg-Pyku-F&=K%&EpOmcB^95Y4MBO*k- zW$_C}t<&}L1izv9^iC5k9{i2GD^_CV!Q6uec$jSL;FphBjcOT7ZNH-BLwj6*ent>) zq)aAX$EN>H0IJjG?1}oJbQ<~^FN5BR088*hP9wh}xs56Np#jA?C^1A;Z%~_#XzAjS zd_Bp^+xIYVu9$zx9_XF)R5UP#o0uMmSuCAW9CB$)G^FRbVc-bs&LoaEmT9gIbziB$sIvq|IIm)%cybKYEE(u-A1)|!<@svTtK78s zu~0qf65vYH{YL0qGiB!Ll30vG-Hq9DzsreFU6Y4Mo&NjMJt1W_r8lU0EL+)Qj|mqA zR>{K9%`JYt&Z}v1N|c0DT1EePe39C?tV~ivbsIh=_T>TKVvZ4vx_qN=P(AM3PJObQbP%;yN z4mgvOgm96e&g%055bTC>^ce$y<(L#r-ALEoyYu_yR!&l78_LCBS}BF^rbp+>0zvh~ zWTzzmQ*ZGoT#J5ot?bKrFhgA1$DuiKB%NRvZ>Fzh^=fKZ;e;d#7&xu0!Ck4insc7> z9wV!Ul#)J@&l(xBOz5&&j^iF;_CFIbCHwHm>yp~XGtXF~iz^b>bkh_yq~C@Jx#`O# zeBw^G&{{AiXZGkB&i<>BnGjjB=AE8Z+Q;wQGopRv?Cy%gvNv{1X;&YLa=k@i++&sF z-N|jBIu-mfJGV2bg?l{D`z3z&(ZFZ)vNwp`#oKv&pG}6XE$u6NO5_)|HrPF)T@v9V zOdV*^yR>FOC2X;OMD2HUA}SB0d;=Gu5F1cr{c6~V(6u%YUk6!j)Ha?v!Uwfluh+1^M!6EW7ez6PxUW zASm(H&fcbjx}?a+=TXIu@bXG3_bWBOl{k2M0aNEsvTAxz zS0qOSovm|)>-D@dV8+T(`h@ZFc6$InM!c38ikAmKo0&#tgr#$X1|V6X zD_(2jtt9V406HL}$b$CEGv_pkGyg+t-GtQaA&_l}J_dHErH& zKMznatXcVzn+0RyC-42@@~GTDS>tOH(U};Y;B=))O!QvXIWP7B!M2s+N*zwz;aH=4 zT3*-?(T!gjRRu9*vVF$BwHKZHOU5_6% z6g*{^NA;zl)Zb1+Gk;7VNaJ2tS|&jy=2kt^w=^v-=X=}3Z&Ey9Xow4Mc_5+dwH5nbE;2#toxfhdP`YzWd+GInCxd7#U`>nFPxy53zz?1A?e9DEJ&+t90Lt0FV!A|wM^P^V^!Me3=bI0S8uyi| z`)P;hl)d?^KDdOc`~Vc0TNRGFT9GO>2onWBU({+CFfk3F&xCKsrVpR;$Gz}JJY#hc zHug^H;`9WIIUF>`Mc5?C8eQU#%ThGBn^ezp#$B*dl{EjHm(Wh zbg3tGg?uu+lRO;KdR3vOqEc?KHbO#cBM_p}#+|Y6y~TBU+sZ#T+!?X4=N+_5CE3W` zJhpyB+?+*bmrgiGTe`7e3(1kgcht7cDpyKIeA2F{Vc;J~Lmlp+%FFp|GXSK|oGJ!p z7j~pBd?-RM1YVbd{(dqtG6t(pNInJ1%~gQhTsV4WDV+lfBB9byNLW~L^xmkpK(Ow7_8Q1%Dad8}!x2KymH{IQiw3?-Gm(MMD7w!f*~0b z?9(nE;yB1&U2r!x%utR@d(=TuuhwcoI%z_N&MI?B@WcP6pwvb{*Kr6O+ZscQGc^(?*XptZ*l5r&m^yi)kw<}} z4+WbO&^{ROaDDzu{jji=g3~h^X##re!sN!;Q#bQ$yRMP8F{GzkP{yzF#y zok{lo{rj#mM0k?Rm}hMgVL#UoB*E5{H&qNhhG}2Bpx5c+r%yx@9S;LM$?x2_sxqA`d**t5?bzcaNk^K67c;T^YK!|e9?R4wf*_^mQULy zI@&#FhgM{+-*mxPdsjwxNWTuDB2RoAoOlk{RdyE@pU%yaH(=GEC`h|EXjjO%(!^ZE z^NYdlzMl%oizM*)54f5xHo1Gg7ozn3I-l|Ch;mv*?eMj6vX-MyEmdsJph=4;sRBw; zb3sidRik9Jn*adXD48MyS)vEf+KyT@QJW+%Jq&TyXLzjdgU&5TG;Be5VX}>Jl&yFn z_!zXEb%dSDxJXC$ao{W9-yq=e0D82)=XQ6$;`f@r?M2zKM4t#eA>Q=Kbhaioom1|h z+i}ICGXLb18c2#jgACC6UmU9R#fF@$1*&~*!u1`)hY@Ho5AH9?`<|QmB5>NDT|XBkH6!ZKX86LLX~$I!);#I2AE-Kcn%^#K}t=qj~boyV%$ zBqStEpkYFK(-VO4ibbv>n3(PMd;7mYT!Xic_EKA28#xBAavW1(sBjQ-;lc%Dt_c7% zLR01CeBb&hDC?hJNr84);5VdI_?5xFz3jNdvx9J)ip{0o)bFY8$+AWXN!~vczfAeJ zT+7o+bqa&RGsDWX@y?87=e9MQ&Y%MEL<+qcj7@kioyhpnHbF3GceAy<6l4rg4^SVQ zm?Nb(p1G;swqk!;Hqg}SZv5WksXtc&hlE~>AMZ{H=8b0J3|EYUNp{aKi{vG{!@#-P zUfX-O4hsh7d&$d;*m_NprJo=@PyA1!T}~4!#5vPPO`#IKvnYS^$eRjf=-!3EN00o& zldq^GBKcAgp#=34qsC#7cKMnLNkepwFu? zJmvl{Y|Ri*IDla5FxP+un+s*^bBje_w82)^ZvLN9%FR7KbK7djjM6>YJCh1VDAu`Y zf}_*UAOUu~?rU0VG|ORn<$x9P|Jcjo7|f&G{cY%T-X zbmXaUpRS6_q6T?(Xs#|$OLGlJBsZ@!Trvn=Lk(ReuHml=8Ml@bk_LpP>^)~mT?^e| zPp=gvic-Jgsa)!4SFrSUxZ~s`)RPOs&}I)6KYR9!)s*9qU_5pl8np7lwwvZ?JrS^q zW#OGIrYC<|yiyYiDKjmtcetBFc`l(6D|o)1h4hQBsP|fN)hJu5J6kJm!?wAx+s7ko zeju7@0~99NQ%}af4j%|?rqkHyyaAg_W&LmSNI*T%nYBd1kyBXRE)3%uVhqsd0D@g~ zMurp!QI~)=vNYXD5vV)?oI?d5#waobOF&NKa5E|NXwGx`hlNcN&SJ)CH8L^j5OJ^r zy6vzhv!1*h=5jdm@M+k|ne{|uApGRE1Z;*b>+LEY=!+Qy%X=t}S-!_cF45A_ZutWp zeCd}DdcRgVl6B6L-R&a_^Zk4Uj8bQG)5_}1%R@c$i%a7hcalmwEI%I^LvMi*P+zKE zRb(5gp%?9VEz=^s&Y&awGTxC(C_TjmmlO;CMJTZPP}L8{u?aaB8d zbkHRzH?lT5_Db{Tl(HC`CxQtjN~j(o_x9GJ)yp7#n4(;;_AHCU(IHz=;#Owojilwu zzmhn`3vlW4T~SwrIk530S7i>q_X$KMA#MjnaS;rBot8EPg%)WW3LFi^OO zL2VuJSOxe3w-Je}>d!9_?MjAihDdaGR2r1(X^@bTE^zw$`wz@IAQS4)hYXttCKM6?~uSi3yCPjLc1bNl6Kb z!vbU&D|spTeFC+|jvX5?gXS4t1Bio5j)2g6)YmT3O3tM==-xy@4#|;#;l%!W(Uo)C zz8rcw9+4~DHmQe&j}9sF#@ zoowl8a7_)UxeM)-0L#*;d*hisnsCvXH|L|r@MW^iOZ-1g(bqIZHF^sHr-0rJ^8w?Bt z3kR#pWP6;$VCSW z_Y9#yz?4ye;mB}Q2crT(Pyw&2T)G$k8IhL!{bj%32j>O|3V%f1!Hk~=JB6K5vKZ+^ zHBrFZqo7umWXl<_gkS<#nF#$SD_riT77yXeAj0=H1yW-!x%YJsPLnA&PwcHVu_@4a z?$t8v+kddPQ2mL7)|7;NbThLsTXjL<*EM@C>rtQggr?$e9&A?zZ*80#brEH={`_sl zR4JL}Xo}b|%H8K#wni8~bQ6Z8Wu8oc5!{ae3^B%l+oq!rDULw;U<}x{i0FvY2C&`8 zS>5d71+*pVs~%bbml=sBk3;7bu70v1)S^rM9LA3JP;7%_hZFw1)v&3 zmfX91_X?<+3-s`dXmX9Q~VzqjwDs^J-)i->zh3xT}oCGpky&o@)8s2WulVw$`6%gZcc zy}okeruVo-@Ei9&zDJdQ=uV?Wt7&K48dVW*U9QEM#vX6wLLU7f?>7s9DviPx>cIvD z$;s|EMrmggs)T>XaHP&bL50aQ;1xwpA}7<8^5){fwBA@60_S>z94c;A(bRETo#&cK zzV){tRW53qgW!a6;V>M#jnI-gEW2{{ zK}dY*`mC6b#g{MaBV0VLA!uu71^_C83PP-lrLbPTJ^#0BaUUFuq-Khy1j#FN)({lf zumX3&$mOfX8T~Z?`wl>z191M%gS>s$JHe|%vI3%8LV_vq$DSs)l`tka* z8L&-8ihFPc^%Nk$H&mhc0NON%A{a%$Z_C;E_X*i-M5VkD$^NsfpSP`s>%D*1p+iZd% zia51=2Uq>eK=eS=l_3}RLny9_8V6b`kjNl(?6$6Cm60IY1EekUZW2IAA_*wCc_XkS z12sSm4ao^Nt|R6id_6pPM0t9*dLG~e%)y5QHM;!*lo%`Jw=^I2+cuWD5X@(Qj|#?I z!AOLE&Csm<5+E9r07oUFSF>4t9gI05%J@n<)H`a0|{{@$Vg_oso6lpfwa z?@Us{US6D#?1{0K*XiS(hue~z^__g$F4EDi@b~WltAh#Tm4_z$eaU)S*)%G<)MKy* zsB)QZ-WLk?T(qc|WA4gP59V>6xAV!a;e>$H(n{w>A;F(?d`>&Wc{6gz-tddb6wlk! z-+m_z%bmghSolzWN&EBK5z5CX=KNEQPlkLFlCpI}?jUN3lZ*t;c;NT9dJ%~kZMYop zLK(R_T>82$Nk*V%Th$PDaoPHtbDn)!QHv0rim#$@*<3q}F+l<5YKKO-)fei(7}c;J zqf1}Zg~%%;seB)PKgM3=ox5~Q&}I4iKA-E*otnS!pD82(`!%Tn-#s5v+xsN(Oy5q& z_I?Wxi^o4ys(hte`Lu!^zY^s-%=6mjcCt^(;%ec2#Zo?t!Lc@RN<;l|W|d->Oqxb@ zCdRUR4GtrWpMP%ds=m_rrMK;zgJ0p$q(?yTyZfo_Rx*-bdt=_aXht>EUum`IGih;m zN*FY^Bk0<1-5RL{1FZvRhoI)5*%^-CCP+H+i)90>32ybA#rZMBMIPz^MvW5uc20}3 zSpimsti8Rx+jWR70*mE{)Om~*1q$PVa7i*W_WH@`Do4V;4UWZfB@Lqfi1COwHKVB4 z*RNkK%2*5&XkqO}@bt0N1YcR=Yyur;)%w3qNRb%9dMZ!bGd+|Q_=uDZx`P>VO!u~&9eHlS+ij1Zs>qrcoLPI}X&KmU@DxV^}= zTBCc~wGjh)IUD*CZH{x6%_7YNbCQj)-<^Ez z(Eyl`0jz*P&#(9UXp|yKAh5K4a*!C<>SaU9rqsLoZvd*!=lYi~Hxu^!aq5;l6^6YH znSme!B@vI+kn2<|+b-!l14g4U?~Z~a7!9l7%Ey;8%^sE4^9H(zG9F2t zx2ylGaKRYz0cmc4;h1sY_L_ryz_3Xs^0D4lkU5o%Wt8?>DoJ=m7rEy&%?R7f3vzFb z>w`-+E9yF;^WAi=xTW1>TT1|9a+BXc3Y4i9cw%xFg!fL@KShFs(CR%g+7L^vrwGcD zkOD}8*e=n%;nR@3MaW)|FF}YtB;f@(UnQ{J080hBK8R%pYOYbhK}ZG~bm97J4ZH2n z2QBHEeKRYEY4}obV!;N$bw%++)Nc-_^~C&G6F2yraCm{VOe#Qr5&>R?@|g(ng0z8n zL&HIaJ_#|w!$Pk<{F6`_@Ex!f$nik0BiIx_za~Jn{E&{Yn}-J@D4v4S8j8;X1hFMf z#Q)W*AEx;XY+#K*9ZEG!E4T~XIc2xL{oO;ZuqN98I8YNtuYO9Y@ZQe~ipr~&kfdP* zwfm)gQq`a?nvjx`!dh<=*_E!z|DTnMNvinMiA3&E&~ovmL@N}1-*O$@7CISdr^!xN zDEZsPOC>Lb&0~dM)W{{b?++#WZPdFYzxdt7E|m}AsH)k?dgsOKkWJ!`=Zb6^YexS< zF~FeV5umIAe4;IHEF*B&XZb;W~`H-S}t@E~{B1!d@7aQo;y{RsxnVO79uFoPnc!kyDW9?AG-C=MRIYIVD)W8GX&NlFn8`LqSRs(U-W?);>># zh<+1AF>=SB1wF$FH1fyh-pRe-s4t>$XDhbQTD$#w*vrIBB2zBy0THVXR!E%?#GRWyM*W1r25z~V<6LlEb28LFE z@&hHxJ+A)@>DDv+SQbfk?qok}UDSBt5>vl6StpGMhG?0~sFOSA9UrnJ~? zmxQw2CF#!I%;wca9DEDd76CKqXlK#i%@pgni+^vevH-n?VNeP20^TvGu&kfPA3{S3 z=s;Wt`~rYxpX*JxjSF#W7?ywAjJyxrzFUc_Z=m_ z!ag&wM*V8`m8e{XQ}iRxo4HrLCt9OS=gWLAhp?jjm$D#g$vzGaDBp7b zuCj1x2#xcD{5C4HC}H5c37f4+*@iWu{6Kj4r)nvvDJHuRHqoZsSBFnQba0xy z``hVh-gqnn8=D;DpfkbUGwM+91QBx0X{YJi<$xat`bnqrjem{aANQ~nXmwLHsZfpE zWI%{R`WHiDUv)keRl47qCk`v?v*DN6J}hhqsFj&Kv7*K9pv+r6>y!RaYWds#%Y!_JO2kxCf)9<-7XuQrq3{~W` z0C71;88G$Jy#O9eqr9Rz4mQKR^WC$^wgHc6mNPiasD4fjtcHoSA_*keYSghWY7y$2 z^2UH4gd&NMHvPg@zxl07eYgI?9zL9&c$1uwQ3~?=5$wYG%Q_S%ggFoo)u{y`68F$= ztM#8jIxAJ$MF>Br?#4GGvQ4o}l{7^|;qqHQU-S*?K}p(4bAr*RLX! zacof9sy+AqU9;X55^h?NTjz*sihh-27nqfXo01obxEArt?UwYT>5F^j&gN$*(WG`K zL$U&zds!chY*h+MDZZa8SJ7}J~WC@N&t!E0ka#NoJtVZkpb5X&PGOXRp{Xr5YI(vz#O|d zT?9#TbL(~SZQFI^CgQXv0i=J#_|uT1 zo`T>l@(ut)q>SK|NNIstv$R`A)eN=`#4R5M+d%=OLNzU%;T-D(JW)Yb+3ZUUxLN~k z|I2Oub;|_KHj|_#7;>w{qMwusCg#rkdx;c@D)tW&530BJN(BV?YOg$fKjl|=DYs(H zMt7>AE``@#TxNpBiH$WW)h|mTajtGgdr(I-{L|ixqlDnRq33C4DT{VKu}y(~*B@V5 zA(*V0@vgM^*v}@@v_zW)+_iq8C=+Z;mxsUNaUp~7b<0}9rzXYx#vz{-fvjL|^Tv6g zB6ii;*Fu>KKjSrz-F>$M3klzci+hB(>D1rh?on@0a2R%K#2w3Fg(=}jW z>P0%m!;b<;T;+ugfR};rUl2~fS>*FBG|R36>YAZA4eWr`p(`$lunjYUO5gw&nDR|f z&K84wRM?=+OF=iH9+d!teaob&#R1BuU%r&`_W_<1?+iPQ!gwcCw*fUZ5iT4h8UTdt zlID30^jDxF4w1Nkb&7bTaIj&)w(A6W(L9r$BqX^3%w&y?Y$B-zxU+o_?w`o(GHHUK zWIU)^fZmr3RDyIC*`z}y2&(G`;xmNo5+M`-&@MR;%@}&jxgJr=Ce8~s?#O20c_^8m zbNE{&@9#x<*7wovM{K1%wqB+j8W4dTE!ybAntW1Y=E}HZ_t9=hBRIhKczJ-H=0s?S zv>DL@tV7n)c_YhGKp zlx*mG=h4(QB$L=ANn7IYTAQT6vSiP23aj`toTzpywkBYF>@(7}fDW-PaJ880tw+DT z_Yq0a%aDQmpOeuOCd@jl(p)gU%x55ngP4-B5O`JTrGT}H<~ri!Z31l)>7oOS{58%H zPDS~R??+su;D#Z41coKGyW`oj-GCFcKn#9G7wa1j$}yy%`dzj$Wr}3!P}xvWS{Do{ zN}|XWo~l*ci*4u-x0^WtO9Us^e$md2|CWKY&*GFJxMT6%DYNk-kU3p)P zJ3~wIW!k7eb4A%$93Ji2z}j1X&Zca#_pBXbQBeEQxUj$>!c{s&Z|44`!{i-rbV}F= zD?9&&{@W$08kTQWeKSq)BWs%>tEfhnfNoQaMe(Bxg2X{b(R6X`r2XT!tLWNTOph^w zkS2|Pd*u7jDqWA+Y66fQ=Rch`9R(*XdENw)@~D!29Kg7K{{BE{@BbA7N;3#ij!f8v zWX%mxSQR>Th@ia1G5q}bv*^eKc-%o(G}C}dTeHUt<@q4D)$8h{q=<#pOReV)WO@6A z@fAx6z!D?0V$B@#e4x%d6}HM1OA{>I{=X>I$*?mca}@5Vsag>Tm85nT~$yVL*`Vp^1QUi@y=nvLbh`X7mC;v zWP&dm98+B3c(t{wNu6BD-rCiczcA-_$AA)jdXknLBP9BOTPP`CCE#i&>(>UvWd4hp z{DM&=n3~3nhaf09l|K%)5%U^~kRW6}nufR)RJIBNeGpktf4jsFOMc6H{n83bjL0cR z|BLq-t{-O3(AI!Jy^!j7ShLdm28CAN4r=#BE;+A`C7>7xt^>wOlCWIGKlqr_kuU%J zUxLH{^u>)eB}{;UP^4MEtDpBj=?o0!yegWE*FZXZ|@)t3=hCWn2@tS!7q8>qVT(M&cqO{L`LHogT03T3b2y zyB9Dwm|qk_kN9;unKI483QY$wpiMAdMH>N!FLt`SU>q!=R0lw+-gN?9pCHjm6q7+) zvraDuq))pbe-XlAng&Zz86q`#Z2VfEJY7#>rXf5A+3p2SJz=7L@F5JbCZPL31Z)Xr zC;&r;E+ouX83?9(%2$Y&2>*(f!jhn*Z>LDHk6s|QAFh+-$(@^*_$MW7;i&Q5Pq0wi z6EgQ=$#;nQ-BdU{bIu*unsZi?f0t#m7MHee`Ts&&!LTSth=AwZJWWG0Q$@R|#|cU} zH2$`WV1Bl1Y>q7Emu-kkBxEzbCE=~12F9uPsP=BGQq4msPrkgt7^!$X zfAWgZht5Afg+O;e&YEo=lmZw2bU(NCzcAEzla+UsmTV!7q*zQvXUAJeCOvMighVrt zU_jYT7aA|Vn65#54-cnimQ35Hs;UW8B+b>ZLT%emBxZp$;z0LgBV_0{6hB?M|E7Nq zVnAFdu2xk5_-y3y@kN5UzEc!s>*J-S+NCkJc1<<%SJ(thWomfnKz(5@#5Zlgss4u> z;N+O-!O z6kv#rRnZQ;0;yb!dft&G3kVE+5>;P9!w(9<8C%aNa^@>n#oVHAOLu zPZ4Wr+#6&sl_PRhMu#PPwSNw0c5IdDL5zIexem-6sE-_MVMnoGOS32r(C=b5kIUuv zQO(x%ifmdRL?U3Yg}Pmb!&V-Q2q!*99-gj7HH2v8BN3RoO>}nKm)Lq5r6Pig@jWUZ z>)R%Ohj}w9=RSDom$9%vwakXX;$UXKlJ%1xhgp1^uGSZomAyd#@O=ntUoQ&rAyREluKJbKrC=PhBkSGG}(ODy?mihavISDG*ee1&(if!F+lgzny&3zXK(Va}T;E0In5n6r`5s_a|TLiveKgeN=S@Z^R65}_PUH;W& z2X!~Ok6``l{0gSO!33pGCrF*8)_8p62RCP09#q}NcBv&^?JA-Q|FlA zgL>SYhw)DbT&E9&;3{=@;ezHH^3!T^8e5cw4*E4c)K{wdL?o)lYs6=(q8{3kJbubq zQIYx*`gU@{(=w%rVhPm&V-GtWkRKwo1Wt!?MCxH7onGw>m2%w#IRDsT-+C~z0Kz4( zL*=qfSaMrI*lmrgK@w@0V@)8Y=`3Nc0A54s%J69)3u|(WyPKPG2+&z0nMa85yk{U; z@SjKiF0Oq!Lmy839bB6!ez(F*+O;g%b9A72{y_cca)1p^%rr12L`n4&q<>%`Mf8|QC**37*)FH!QxdY1Ds!qf46$}UY0#Fre$Z+JOiU+AWEXhQLn z!KaW7%B4m!-bl(f90ObD9ZOI*pR(j3$J_3QRF{4yJqE=^G^{RT4jn$6cT*KGG$^q( zYKMe5hdK~6+UxYb>B`U)T^=ZHxZkvCK0$(%nIO;)VIiY-DG1_a4Hbi$pO^(CIWmWC zVseFBT=M^OfBOll4%(^pJclSK8w{R7PfpF1y0(~&R}e1O{}@fKVy5pF5fIJy%ZY6^ zDUp(*QR!Dvu;^Ge?ide?#rn&LFAi2rKN{`Qq8tXj3sylh%e z@5_!*&uoaa_9<;eD>HnG;!MXI6Iq8Gln=sYG#&%-enrRynaEdRlGMZ*G4mG%p|{5S z3`P5q7=xyGuc3~k7l_yNw4oeX0Tu`NrLy1EpxgyqiSJ7;WzcePv(EE0hlE5zQ_$RB z$skm##<^5^gdee#8$j#8i0h<4t>QwTF%kb~2v$O|CAgz3V5{DTk}3%7p~7+~o=1$` zT%(SxB(3c&cW7$8D_^!Auu}G~2?%-}52^T6p2E5bj(1B2-C|znDOczpb_7wYB^CcD zo-?_wW3ceLMa4-wck?2BrgV&-J3-m6QFT1q{})DRAb*EJo>&cEkJdDmV44!}}6xHO*fu*ujy=QV9+5F3N;QP$c{=o5i{ zE-x|xbYXZE>%hMfYr{|~RNpD@IZR^8YCG3H`3Lw65NO*y{}m=qO*T04vs!*x;5ykc zVFHjiBBBdB*E|eCI+H_YELBOf4M2HA#W&`az$TlD6c{^my~763xLT`L#^7U&8w z4CA&Eg^*<)6gx(P@0JXz3Kc7Gt{H+t%a(2;q#-c4e;W|}BL1H*7Dm^Qq95)chx>Dj zb+TY`D$po12am0YtHrAL92BUY!|BA?g()lJ)s z3Zw?%Ma|pUY5^GngG9_@aCs@A(hB8)NY8M7YdwT9pca3t9k$bKeDcU zjqHRgX(*%6wvv|8-dXJuP3>@Tg(96&nzU1)r5z!aI!$RK?LAJr&j0y7?w9+!_kSLb zdpkUE&Uv5D=ly=YUe9GenclQ<#hwPweq?HrT+HB1^xwKZn0d;L{kJ-btpOZ}^Um z3_#x5@!Ay`Juw3E&bIz~+R4fyo^9hcdRR=|yJGFLb-FBvaKnd`#+ZWGM|BOXs9lxU zuI$h#M&6>z4IefxE!!(p1raqiy$Jl`00(X`L3t#U0Q)T(n?_LS=OJ@c{@TgEP2Xa< zaZ`)&! zf=2`YUecdGoNM-Eh3(YcC;gDmKfH2&RLYrVmI%Xe)7sYt+;%}Oe`t7}5UbkpQu?rU z{GsHdLXuSe09gtDgpr4xUDdDD^Iop-vy7PIt+KxS_%?Yb&~*cPrnm2Ic4%k`G?6je zw=ZSqAIff1!nzhM+X>tFkIc7m_HhfWgr8+MWj!0pow{b&kygq-qFA0t_wV+wZYMkH z4ilx2yxf>lb*!|!4ezI<*NNTw95o#`zDc)Vv}eq`lIZk4TtIF>cVQmF?BxsMR*r1{ zy7PD$6p_YVDdcj}qFqczMEj`?m;q z%ukY%nnjng9y5}%;T^hFamvB5A9iZe+GAFHSVzErT!-9&mk({;h+KC4QnzonIc?Ci zI=M7roJU~G4l>w*i3Q240XxVHz>{gkj_2%-3${MTbW8!1vdYD|FF@;OUa*`psE#TL z6aZ{rU*)@zYG-Xl4M;(^xWR%2f#jT-A$hz1e9W#~z3S;;?|U<65k}V8sO^#o+e?~7 zn%l+x(7JcO@@w+82lHfN@<%%9i$#Qp50Q+IKVC%?^c3&g@X6y zo0?b`G4MC3sx0G)6ZL|zW?2~r;y~0RFQ-`Z84TwWWVvjWadNlTLWD*_M7&I%89e7M zi?Ba?_Us%n+NNru$GHg3scezM9*IES^SOZ%2;3%7gwPh6MA-Kr z2?YbYoSJ9rOgy9FW5UwP+_rKwnMj~)^qAQ(8n+76dnP82M zb;7iQuy#YcY<}XDR{ov~IQ?*v0a5zw%Y57aTq)B;uGaMx692hFkiiB$KU~2Y9UgqO~8TRHMb|^%Dur z-3;qY{toNLbppq{Ve6Ol(2SP@h&~#FfCCl*1OY)! z1UZ3w-curWhafIGJp6ct!hGkx?P5%w(#}(X(F>Ms{Os6AxDG_cnl&UL@@hC!mV)tC zt{Doi)SdIQ-*e`D@NKyYu;8a@=8_mv(SG( zg&Vkg#=FPfS-60hBO;9WXCBQHd=0>X@V`hWTIgDGI#ExI42@tR?duEqa&oeO*y!i; zBxoDQbsP}_K2#7#w1%gC>AWuzgr34|DE1S|MZ8fTa+o` zeMW|sDA&IWZN(X%S26-_{mvm{ODzR;UVBogok5?u*c!hLZ!~JZeBjR)e73`9b^GNi zEsp4SKP=-Map`EBbSmrK*s1YUkyWd%Jj?Y}hQPfS&TZk(7-||&0z5=tt3BIphg~PY zhpsQNlevRu>{k4{UQx8aqU?=xPZ}$*6TH-+X9rtvMh6k#4#FCAX~^zCwKpy%OJaF1 z6s{r+%zh&Ri$PL9iJ5T%wwNx0&x3Q-KW07W^K};31t64^kGqm*rW^bplEaf4Jn{Lw zSIqN)o;&-&&DPZzRd>vJvOTZD8cgUas1tf+FZ}B&prlmQJvFo4*F1Lc^*wXJ3hcMN zBiYXtOBG{WzU+G(8N;Tn7I&}ZLwfzjjkN)*l22ORoIb`xkgtW*2zvIbCjylLgFOnpj~J^4N7kyntx)>39~_>ZNFe%#jQ z-#zTv@x_>KR!76C>Dp!5w68Mh$X9yUN3Acv_-M^W1IvWP<{%Yrsg*6xmUy$PY<)Yo z82eD{r$3uwR$LFMC@Hn9R^cptys1{GsqX5n12T7l2ZfDn`Q{|U%FLpCzY*hyrosHH z*+lc|xgllRPn#?7Gj!hX(c$3D6(@nv;41e`#BylB2e^Y7REnd&@T;`u+J2c85w4t}QfY zn@##Tg>#@~;O6G`wz=FH`Z%);b_p}z*5#Icdv}M#ser>HO#ml=B2<6>7>KEK(VU5@ zt6d4Jm>M1$8tIBltee#M$Ko-cR+;lvM!-jBBFji4?(AZ_1q1S_H^cfp6ihC5Hx*@D zB#dM(tLVs;S#*6z{x|KV!uRNw@0WyM6n}EMwA$D3`cl6I!Uwxwd>Km??a?b)Jdxzu zGJQ1r&GN3H1IwPVeNMh5@Rc=Y)s02fFXokv4oPew3MgXwKA!bbf?>=TBDhPVTXegnAi zrqJW31CyAt`($#t$dd>gWBrc&d_iu@M=d&)fqS=7|t8uv&sn=Vg-Nn;L|G zun~w>shXcSgLcm{xzpT8+9Culx09e*2S!iBL0mUn_EId9Y2_%HZ&DLUXdT7+WT{t;LFhi!D@2M*KAYpm6;@(p?|cH8h$C*@TsAy`uaU?|g&A&Ou#>$XaVN6e(9=+Y{Iw{-wJ| z9pGTxB>R$B_k$b`nRcpuMniT)6Vj@=n9`lvYNWV@~+c{8;)5dd5$=9 zfOypbEwnnSscFYP#JLKbeKRi`97$KPh3;e5VudNDk?03>ZL~Wrt$<-EIy+}sv=cCE zA+BQe59*)NBTb6%Z(`1@G;sz|UZfUnZErV2+TFTdKHa5PI?A@~)_9)xN$J=>7LoZ> zP~Glqs#Zbrr{HH|)TWgy*M!X}S@?Nf(X~H}JdGR6VdXsS?Hti7uM8)c`6AZ@pVuDd zNI6w;-%MXw?2nUmLi#9(>n2lt+`4+Msm+8(pSW85n3~uoweIBWoZibDP6^d5r}u5Q zFKqmn$-#eTJ&sOpZ*gngZJp+ezVu5pZj}zGin?L1$$j;QEq!#;^l8`^TSYY0ima+ps2w5T*}iJbK(CPeSx?YgI+FmSgx`Pcvc)37mYxqQ+wxs+4K)j z36mxRKV3tnr$qFC>sUI5Kxs7`E@ZBNQ9=~%eILy|9fm0y|0f58Ts6J+l6QCnUQL|o z6-`kFN+r|yIJVcnKD%yjcgZ%GQ9Y)Uc%`` zPX&64a${dt^Gk0iF7=&rpm$|iR*bf%vCsJwnv+iaf})j8c~eU)_~!VOB2NHqZ=XWO zakh<8K~rBGMgDf%uYN3nS_PGV)@m{Y`1JT%cI+4V92}omEBCH&NOTERaNmANo((Tt z09>sI0DR6#yBFXU_BLkLRG6cFnP9vWHpjwk$?Ye`3{$0{K+g#SCj-DChcw1glgQ~z z0baUWFG~aHyee=&TKn{5O)iO9s*cw_7-BzXAm}N$D~1qIM-NCY(9N)ULC-?xu#d*$ zqK$N7Fz;q*-Hm8Q2$!#T_pG%a3+zCoK}2 zW3A1NWNW-+*0;9*xlR_-??cKx+@C7u%F;VtN(q`z?r9Y7=ac6be$tXZyOo}?jl$(t zu`NSmCP-p3i!-`-yhuOrN@MMih=YC==qQ058qQ6<`j*1aPD3nE*1oo@uvRWPd(W--OrKG0jyMwA7P!o1+VSOnWk;UoFXMAmg zO#=2UJx1WS>gdx?Wr7BYGYSYBem1T#XF7-N5Z>c>Lc7ze>;ndR>R-7JK8#@y-D2 z-pyiV?Q`gVb)RlCzoPhR!2$O5WzGe|o@Tw}DSEof7~QspQ60~{TfI@-<<-TBwzU@G zFKQJQ@!L5JnhF`@KaLU6ZLO!f?waEhes^`cqjllMnP~|gn_6WP$1{_TE;IStTK!b` zb`t0Z6?^vlm(1Z|UI6%?p!0mLFb6RM8{U`pju^$cXbL$A$A!qIp}(F zQJywg#0?uZ{Br0BmN={AeGyzg87Mh!!eme7Vpv!`lvO+~|GqNaGoBjQ$j-d1=cj-D zyh70ao6gMFmlDzHEqd)u<`U5pTW>79u~49LI(xWvACG>dQBhUEA7*RVHd~zMUQv-d z;vjj}Ss_MmNpsS8%)GMQ`_oQ_B#MP*itEHl@cG#pIM^@v-@2$uGLIv7Bk)fpmvl=U z8;ZQZe}D0kB?#daFCK=BY2^GyED8WeUYeuw8>54kMGLto&oV)C`aU>y8NqD`>%*CT zm88DS&=cLNLDLy|vxGky@Qt1>W2l&aifaSK5{P6X7`2XpF>)f1=b?{>mi=ysYhKke z&HcdKK15l=G@}1<8`#Ywo&TnmQEU||qa!n36yI}X6pc|22+4ct%>L!tG}u0e_8{PF zZ+tjHDA)9!qY)KaZzX2M9MeciS&8TliMDAvRD4mbyjPuqWyyS_zHI2 zgT+ZWYKPBz7fpS=#jc{Hbj~CdY%Z8P+sdJ+<)!iInfDsi&OS%A_v1p~V`|#>gSE+2 z9B9VMV9#+K%WO8m24~uwlik{_q^wM(wzhJfp7Wdyj8!e1?*;xCN7t8XBY@Arz%7DV zSd$sZlyfO5!9ix1<{rz!6nXOB-Vf*k<1QaRKl7xLzbeh7**(~ao8g0rV(Z`POO0f+ zFqQ8U^zJRT8{4NmD_9g+KF3^L)0Le1@PDUZEPTR9&GF80q~ol^DA=)M_`upJMUym2 zwnG-h^cGe^n{N^B@H+^D?r1;0j?iRq5E`1KB1suxd;`|oRn!R~)$i1!J+B!@Vy}X1 zgDT)K*jdQ}`XDGF8+Jm7l>(RLKWm>^x%Y>+QY0 z^4Yk99SO|@tDC|Ry9E{TPEew?0vc1y{6Z=z1AqSQIuT`gUkzl!tT+3?G9At6_RMCOf@oh#^ZUk@2JC*qvVVWnq1Izn5=z|J2i);-7c^eUb;n zF8VRPShopY1+BGUo@j$i=w*^M48^EcFpkPZ%IUuSUrrUw1@lkYirK7l5JvR&=gBpY1dP8%mz zxp)gquyw8wiRhMiIN4y8T1AWXRF_#E)x15Jb5Pi#d+eh_gtMB^($4fRH3B6Q3EO@6 zrT1~bGWRl8WlU-rd8T(`-rvWJOI0`qeKM4*!!tcb5=o+&&{L4w8beVLtM7kd7J1g8 z>2U!_?de}{ZsMiQVgd!8!UOioK*D{5KA>=D8Z*BRq+gV_L8*jqda)6aSt0Cx!LHNv zRfMX+w`0d!nl$AKNDNFT8892#twA?)O`z63`=a_gd_^1`&97cL`fn_WVke|*a{{JT z!%T0pf)(~@^_w;|mz^(WuYCE`Or`4LUjnm|ov-67EMhA1nx$X#a_f~jIG?#T>&D(j zSNGk{Z5w~~WZFDh_02L7n;`4p9fdxZ^_b?w5;N9+2jj+i1z_TZ$?(8KoQx!ab!ZxC z_pmycUiaY%(e&W!@ijbl^k^10gGF)bE;xiBi}@Ok^*1NlH#rp0Zif>V7#KCF0*~+C z55=H-N@!(l9O(u{9zKj~bFj6&gx*Zn8i~}dr&#h<6OSgKzD|L)xYucaTVTlM8h?kC z+G$K$X-4S|lglh1l(8`Sce&=CySph@<3_^K|4|9L(cIj%*e`Ite(8)by=LP9mq!3u zV&5(Fi;mXh=jy!N*(6vY)-0PJB~#)UlDl<>jH$Kc;o&WxU&_(%>V%BW+r(iS^HidD zhQZ;^Z)rCkKW+K-(^H}>W-BQg<6_#=R~ZPVGwZZ3oN0}Ak6UYje|G_|8auy{M*OY7 zhsz(D#t66yR5^*AEQ*anL8rt9^5*)sqg;&z8Zfn60lKqU7=da8yJ0TedP(uI$~t0m z3p13_L+XA@D3~yqnv|L@+C^b}71@wQD0E)?MeO@VCIXX_lgYNO3@22$WQd0-Yq`3< zG&Wthz%F$!)kyo4dHL)83u!ZxaI7h5*sDDD zF;j{R5~OmRjt`IRR&>2SuhXMhHdkwFW3FUImrzXao|qO@B}L=Bp^M^=BAOgzEo$lA zq5Oj7FUA`Z*933+hj5bTS>Hv}SJ*zUEzb$hKW&i&DJXsRl+(n;;|94vc z?`K{JpUI`$ThgajM#!J4oKnw8+?3f6z4L*5R^49ivpxkicJ&q)-#1wG7xNW;^2^Mr z>R&s3iY%%G@8oq%6yqBHTAO;o{Y|?oFxT#*OV3MyVoTnB$kL3wdd| z6K#*--{ECW8^rXg69a-IQ3k@|i9z$|=I9NiNu$Aj?HLk~S?;$z)4rH4Nz99FQEIpc zX$Aw&su=2Fp8oUPSxHwBua%+%6nTg4$oAz-Fb9I6_R0;Q(C#ZqlIXBvSZXd|CbLKy3=a?aypnCZm)V)1c+Qt5YOoPgESn~+hcDOm`UxtyY%pz5TKIa zeaI%Ize}HVq}4cHD!;yQsPK2O=L2&}Y6Yc?JgjHDd#Ut9<03z0KJI7sCKXPG|W!X220u`Nav2WAKVk?SN zzh@p2b2?$_qJ;SsFU{z}1>+C*w?QxWkX?C(cp-qmQA3!V69M<{|DNb^6$1Meq66;4 z1kqs@V}4cB*p!fF?Ll1X-RilM)Yb|3COD{S{Z;o)Kprh#F&XEa2{{jE^A4iI$6tIZ z()a4vrUT}`bxd6B&l>h5stV>Mt%}ZIX47x(Qe@4S-#UhKJGW!BLed3zFX?i)UEbrn zQEKarSh8@Fps9-Ca(y3lN{4tR_V?6aCc;HN*#90^4cFhyIM|i2a8fi>sHU`ha3oza2{vufPC8@mZS`<)n|hh;Cg$iWodd=uy`X?Cc{Io zalo`zazSU3g_vvx6mWgm9Aq@z2F*IIcg3I9sNAq`sdCu8wwOJWW-h6AxfdO$oaj^C zqVkVZG|k2ggU7Zoc|Or*|F(nO@ca6(urMgh(@MJ!4P2;6&?V{BM0TF8Gds2Q#>8-Y z_se3w%7%37?2L;<#E3-k5cntF#&J9XMTJ%{|E^t%(9z&P|2kX?QYym+w?ypo=Ve2J zu<>~UKB9~GCc#QLrzQi&gqsK|HvC}u1(Iv@?hJW0{(Txz=letvffW3n^-qE zInPD=7+$}vnd(-On1?2?P;0SIkUAZ%-Cy9!__UVQu7;@_BXxK zS*si=e6Yv-SU^$(?6Ai|)L9tU;bQro&JPh(qfT+Vu z$c49%&OGM}3(0yX0wewDZ|fjlNpo)W;Zha=2PctstamTdssOL32waiO5TFhnRoYA-T0xWVA0AA$urrJ&grp!^%$j8Eqs*=*MnwCGCIj1>TX7a` z&r;|b*Xdn3LJSdVN(vbm^da=Hw3mwpE^BsOcOi^J0F@LjrddE-6K}-4a{qTj;pbsn zOj3jeIzpE(6YjtiFL`R@;tkaWA@*E14g_#YbBhMs^rgCR4v+ND7qK-+i!@b}$nu^bFC5yIAu@PT zntOQcu0ag!QZM#p5%*Xwvv(u*^sMfNX7j2ZeMZKd zf$keg^Uv$VRld9W_lX)=;0^EJVGWI0UzzBOuJ*RIdpgWin;=Gn=Hr zqqxs-#}R?{hp(5S?faWR=DH6IJRG}L3?|uDhc@f=%E5CSmg<7|$|1b3>XuWGm`PTr zNm0g$y25AWA18bqGU4|l-Z%&=LdTvL1vvzGHG+`h(bfe!R!VZG|V1Q&wbY<&|eGlL|Be&-PvF(%`V)hUH zoRe*Dohs(UOb4(KSH%{-IRZa?c=$4V_UT%e2yU@oi>O7AmXt4E?2{DXZxB0^M}c3! zTg1mll>4$ACilQU9|Ixj8?1lI3dH*dF^@5n3D~%fN4h$C-t%umxg+_SMWQd&Ti7Jv zgT-Z3>CcMso2~}SqlTn(Tp|2SZFbe+U}T{)ZG50gL7+ojZ5#aOqsdBv@n0l3Qh`+@nwss1g&Kb6hg98(uVvM1?@)BGZiZ z0?e(82v|`U&#=Eg0i*%lV-Ut(?PE!p$vwf%6CzPFCw3*+iHA$*5Qt@c^cFv8f4dnw z;0P=VRS!8qiOj*tX;$dX0saQnE`QlU6=8b^rn^ie>_k#S{;fEo9O4oDqq?2V?_jnL z{b=_@a=s}(pviiyPMlBl$&k_%sdq43_Caz$!ezel51;MVG>llw;u6R4&9$SiM^X7^!wJ#%&cCtb1rjE>PdrP=nMbZb7oWnt4RQgjIe0x>$vHtY+JeX3CbIDWV0 z%i}OYiR;=$F}+WURy0WJii(P=Ql~MuB|crS&xwqE8oKc$;nM%uA!5RWZM(wZVGx5k zs4Cn1!(4BMdDn1>Vg)mOnZHAsI?mIp0jLCA(lY-NeHP9EU!>}*@hm7~1msV+=wWC+6 z(Zw-lSFTVK6(UyyL$l$@j4nkMW362b>vXviEjLAaH-CB6D-Hkm?;@53|M|8=JxWaz zLM*n$D@aot>iFvUyyvMu2wNv7*t>O4WBxbpbFyGUX>@n3QgZG+l3RZ^FjGErM02yrN)x zOeV%QnDqFXAi>QI_H~s4WSUNNryv3bVpc(bEM13ID)gv+KK}j=P3DrBWQ8S9)J<)_ zI)BO9UHtt04MGM%vPn!X=|5LxT!9&*acJqSn<*RHDm_oV2twukyvuyinPU;hB{g#+ zr~SS=y))Q2=~A93`1HHS;`UE{B|iCb<#G2^VumCt1$^9$y?2g%5gaA|?4@n?NK*nu zi$|CEKXe6v9zh61llb<09zD{izFb-fky8R>L4L)^l#?f=%Miui!lxkK$|L zbdR{pq%rQqjR!uah0vdlj$`Vt3X=L)IU=IQuoRQW4Wvkf|Gz3O6G7S%cT*2oVO&5J z332rO9UEAuU+11(-(ECRG|BDardgALO}PX18!u-reCxT4h1>awF91^htvT|~F!8D2lh}(g$KB0n_V(NtvIpH-kU=9r}QOnpcHm#BA zVVYTM5tYo;ryQa|@dcG%jyY2=+6zsH*z`a?=zUUDgIy(imXcr_h*YaWW=A+du8H-W z7Yc`=H=H;GDk0cYHM|`1IP<&0WXx{^Z}`V_Bt@*Zy&d>O94{A~Opk<*Ke_On` zf_N+AT-Cnfk z?&3SsS*=Y*>u)-a_Qdq(GW6gYl-lbTPOK_G{9k9luPe76Zu`%k@iINX51=|EhER5P zcIjhMQc_4c;c>t1-qk`5EDTf9#})!XK*r7-Il^-bJxu3^@7Ta1)rla%bjjfs3jHNB=tLTEsmBTZuJeG*Nr_fxyRoVxeK}4( zGd*13OOuSzsM_sfpUTs>+m7PRY^C6`fv@I);$bLtq*J&K2-$Y|6!>G1I3>1_QnePh zbR`^|M}VA|%uY`TL&9j0nV+8zI81`r_oCiY#-FjMUq(^;jy4=#1A6=E%P1;43 zahLhYUk~Exk27~@V(gxg=oQb_F8OFSQb0@lAdqPi6ZbfhwfUL8aL!;llQJB`BvjiZ z%qtU!xMgU5f5-e9?ek_6Aza5!q}>)b82u!e$g5iEcvj|=dBWGAjXb=s+Okc4R1;OM zFf6KorT;Ucg!lG&@E{CDx(Pl#_zz{^1KR@1LiW}oB; z%?CuY>Iftnpj-lDBIbeQ0c=n>ksDpc8Z)rD+k%Tk@H`Ac2wgiFj^%6^-__REwim_0 z9F+K`p;Wd7xR1YonrJi3KkosOq&E2Ui2QwT?{Ak4r^g4YK{WP;XHkZIe*(Zi<_u;B zmxzcqp@E}QO##;4`}xJOO#A*%Xo{#0A6oa30@g}6h$xak&%uFP1v)e-b>Z@>h`Fu} zPRUplSgO;z=8RusIsAD$=!{F&@l~NmM5I%Ob@Lh??RgrLlc>tEG0GBi;N6M!n2(eG z#jE*kA{h7ew0~pllt9+5rPa^X@&%q%?_s5`F@aVLxkJ^{F2lANUy>u(pw1c67Ketk zxo*VwqxXt6t3sl`J-f(VXc2eYGa_K)^i>*4wN@%cTy)IhhT!9EwJK;OPdt9DB)4DW zoVK^?A=yo1A)nsQMA3WO{_t1~R$hX{xpjgn_bXRE=lyZ5HJv$u!#}-D3md(_~R;baUdMP?m|q~ zNH3p_`R%@?Em`Np6b#(g`3|7P#th5^+gev`Qk4EaNS>Lb#Ix&J+cx3O(J%eas49>j zy64xs7nohT^E#j_Ah!CJIx1OJP>d=IrysWJ9eh&#TW;G>%Dl2mYj=gemboFI5%cBS z8OiU4rY0AoCtF*2K1beN=Sx{ot^Kqt5?0F6-j35B$DZpwN}2uQkXs5jNh7nd?xd6{ z)^)5;E{g?pcD*(1s(v{u*)RX|{u88uaAJeqa<21O^=(#E;5QLTn zb6Kgz4BLn3L_O#YH{4rYq=gT%Z{GZD;g&0hvAqv#Pw1n6!|tDAZRAIl@`n3!3@*#5 zzx}y?z7{rP=hvQR=tw7e2@%z|^m5f^dSm8q3OQKw^z;hB+veZKM1MM;rg^77 z3Ef_D_jW}itV54!M9X)UTKQ2%;}{R#1eD%C`&oO|NcdPpX-n^4rneEbl^#lYp4=jI zgXEg&P8IFb9qeHdo3hA2nALI(@&CP(Gr3H?$p!$2N00T+Sg)o0<`Wvb+`Z1^1BT9E9+LJg}tdM_KSK#)Oo^sTsNwR1)msTyx5f&BPyFTb*inid5K*Y{)<(9Xw1QR zpk_Q+zWT|LKSPv%&TvFvE_@}>pSUevr!Y0^xf@YcBFBnPnvfk~^+z0yK<17Eoea7O zxF0E_+9Jj}JslegzwpZ+c4ED(Rfc zSnAJOI+;05TWY!Wsf%|_CQlqPO=>r-n8@P%a8~gLuLb|s;blLDbT~ZKpq`y(UqG4u zQzDxb8~^t)@TTEzdTNhDl-^yXC)i-Ha*cMJ!Ae`|Ok{O1R_`eWyR^XH=36)Y6j<8!wD-xtEK+$G^sN3=G< z1~VXUFh}oF>VPf~ z*tS{Q#B9r=`&?Y^t!{K}>D~NelXr`X__E?In^o4+%a|cK*NbwcPoGx?vmU8p)Y)%bo1+h3BOX|YI*e_qWhc9EoSn+<- z#ozxB)OfbmVUz9mDn(WU`u$FivST3@K0E1E;V&2i^sp-&xzWdkI9GHoE;tclzagkV zdK<>WFAZx;S7&tg_E+!Ocf7?>pt|~YNp+^G%Laq#>|fuoqW%Bxe*E(KuHY2C?C!FC zvh;rWDjBiIjEK$iBdwMllg-cf*|;H0a^=^el(3~`x-72}E(MLQ>5s9Q&<{81x_fI? zM&;M2HEYF{!v>R711lvZqa3@#HgI@{L$;-|(>3DH`6ASPBhhygb#wT;#orMfv8J1% zw++mKnzVz%#(a&UC9hx7ZA|j_Ui~=k{KF3SwqHxDDE9w*w~ANy6*D&9K||MVwcg0` z?jCuL);2D#g9`I+Ci9Bw#H?JYwSHxSc{_uDu7G^uv6aoZQtNcHGL_PoRaVh8YbQhX z?$XURzgz5C8~x?cJu6nJZrUBkPUBgAo3Xqj)FQuJ7HPULNfIVJzZ*7n@~d;R5dyU+i@;`=Kj@G$-8oUO4`Vr+&c8)Nnw z*tysYd^tj*N?`GVQMxj)2AtWX6TztZ227I=98e?kYtWggV6dPPivweC@$%&fUAO*o z=|_Kk=EKn4RpoQDwarB1Vz9@K_}^A2n_l>HJL=&zt9MrxugWXhBd4seSt17C9JT4| zZ$)Y+^WQnz7M!~w#E8?L;;38qT$IyJW}(^?>}3x~TP^6b*gst9#T^y;>W%+Meyt3{ zFm86XL`^rK>~P`j5*yXANYnMK8$*45UFWfL!QhX;AszuW5Uh?(L0^Y?pK*Fpq{HBn zKki!Tjr_i5O*o%!hB5GZ6eJZu>ep=1n^?Cy)RBa;fJK>%=^v^XSgmNIMf33RP=fOU z8rCY9w4;I1T7K(kY|AGu4E@Rc1C%D4@qx3gZEf68bmKQs?|XQ9s=>;j3L|`C)zHAW z+06o>9@xhucnAq@ad??XD6zWWbPb1PqW2>!&&q1s*W3%@1~DQe?G&h&1W2&$Z_ZTm)-$TuF8ihQQ4zX6d5<)+VW_RM%~0b9*M zf6zbGaeJ%#xoa%~F$zmIty24POQE;6^88CNCte`Zd2tif8~n9`9>gF&tNhFI%jj<- z!};Xbuoh{%{9I!9I!_7K<9V2z$-&ezjKtCb5*uvjHDI0A{h+(HEqHf-0Kv&VKR-fd zVaUP_1%N`(3aEP?lg2<;S6FRzkf?(asfsb1NCqnf>mmyavMq^AmMnp1PLKc?yJX%( z?5U3)o49aX1Yb!vvC1Ik+c5q%#%0XS%bRRtas2q(bT@J0JVw6DwQJkj->UN9yC66N zBwc0*X;Ia1?6T{s;tImBydlw#PuH<&2Fh__DGusIG;W1151xe3fi*urCi6+&0y`f@ z5bgfXtS8^!c89ag5OI304`t)N5yUC@z(IvQ(?iAP4ET6=PK`Y0!NO0%Xr;t)rrciVv}W77{+MG z(hXH|va+^LvFp_$aXvH&Miw!XBcg$^25T>(U$E|qCEdW9Q`??|&ttws z+{}=J>p{K_Fuw>IP4v|Np%8VkxKSBggThRyzx2!OdCzTt8b*9)A8?4OY*o3ec2IiA zZPAyjDHVmfIsKi3`wQ=k?Hcc@m%pW|@omU~_G*i~#mQfrP-up=iY?eBNd96Pd?1V{ z8}bOK`GnO!8m)hy&fghTA+Ddx*IOfy-0hdGH3wYsB!EOqg9IR{y*Xm`_3v z)H)9&>w|0TUC-Hl`>Mi+`(l!|>wFo#9~#0+I1fx^+4uPK$_uzU%ExBTyEJ@6BI|%% z3+HH0r+8to*xCs5fo$U!XD|GVjp21&$I!Ll86BecJ1XI(eesD?DWXnZGUL^E4kTRWj0Qpc?*fJ7kf;?p2b zXJut^i!fERzg8l2XII^`U{{f>{B-@PrvRH1R^`DaWrxY9Qcdw*8`;vra+ph)Jvl#^ zUXMR@9Rhdcu~^G^gv*Caz6AQ2+xnPN>pI4e;RWw zD68aGArif0{Na&tNw_#c_n}5aVX)8t?C{Rb+nj%TI6P|~upvRC(#>Qn2a@xg;_G)n z?vlX=CuOe6MB9-~WR5?=l@%6<0fQy6^g{;<(AmBbTaGFRS*LS!Slb z)2+`))z$5;W1Yvbb?ddQN^9<~72Z+xyYQo?_AIx71xJ)hFO9`R$K@kp6(0V zb$w_GGLP`TiN($~me=)1XlEFt zLU%rwrN*YC>bc)Fsp|{(JI?nZlhaW?AvQav{=zz#sGMkvSr>e0sWM}!tL)f;fy&2D zBAbZIxWiTDOhX5~DH+@#ZNa&v0Y z?!`F@W3M7(A})tkv7KHS)>SL|rup=*Qd4CWhJ|V%3T9yQMlNiCa;uxt#2to5(cF0F zD{;G&%jx9nhm!`tN(G1PC9PxNQ81HDv4!&pNP*l%b|M1W8haLfgCh#zKmhf<<>9$q z8s^>AplL^gt{nB`sZR&7lqP&4+=m{XzrLFvH=}<1lw82&%%u~#)BS@6Ud6mMLb-bl zy6`lFdrqLgKxLGRI##!IK`t^2he zp{7=df zy@<*}{DSS!6;W0;NpBlyTtJOwDi&>QY$OX}_7Ic=t3zCEJv^-z;5LViqtNE%ghd+L zaVYAF=oYdaOcK^q`RQNV6Z6@bTXPq2%J#*coX~&pWK~|nHJ#lJnPu%RV%Anw&q6~# zKNM)Oi#ct?^)imu9$0$b(Pl^YUmL59N9xxd>pm%#C^GRNfY;*DP7XQha!X;SBQ=Am zZCu44ZMin~>hRqlUYB(97h!@)~>g=SCgPRKx*NEfq_YO zAvw9pqPhHYrit4SP`@t3-SQ5LhdQU4*FJ%@iQ4>k;@iS)$gv6POEq|Xwp~@yKsdnr ze*_&BXiVFH@|}|P|+~2!Avh^5by|U)K2hb zR7ka(yJN<;mWUjasCznj!2R~0I*}gG}k16q!v`CT4?KD3An{iUDA%q=cu7I9q6}CO=m)XrE+Aj=HT7FuFHP=hW3xhR~!@$ba|zd`K@BVY|h}5 zTNeD_&Qceun^sIqcWtUwzg&KKW0mv$qdMDimsNRsPc~Z*wR|~Yl3(@khP%mB#FtAk zy#}d9+?X_b=;!JuiugI$1{Dt&hgxSZ5U$~=wCQgDGF;6UM>Xz0;v6 zD*3j$rFE~ER`5%mVr5?*(Oo(uSye|aFyml{>wB}6Rj-B%ysqK9 zD9>eLwWTrgRG(OD)9L&V)nBIB!+Uije6R9QrtMnh#4DUq)fwAq+Wfh$o5`^HaT$It z*i&q3I=ARKVG6;KO=+UJ{|*B@-$WvA2Y`p8FGWxt!e8j+;)pjrS}JNm%OLktlK|o} zOl*YrhwPw)5Q_!JmU{`ekLkX?LVTbr1D;7rz$$ra{8h`< z^<5&s1#z^M$3;TSExN!n8}94@w%bie0cc@)_4k9ZPTU2etX=lHOxh5ZjKSLAU_Qhx zkt3HdVWB$CAC)7mAaQvoV92c%Ak2HIsjI%VyhMIT0BwVb#;KXd7s zX**5T4qlq?fj3btkCKtF*c@_jfB+nImAlZGm^-W0CWp0~4kqPRUi#I7t-HKpr(e}? zvhfep-ptBIQPtMd3kI9Xrpr3+og>&I<-|Mt`}YfCjOk(Y3DP7L2ZCJ^EsMQSn&_5c z1AWSXE2gS{Wa>GL{74g)Y9!)EQVs}BcQ=i!A>@(V_UNZbv>4omLzu~Y3D_s6z+ckr zvyStI@eoNT(<3~zP4OBp-n0W6%J_0^2}yd=1=GnlaRLQ8y^u3x+}X~dr!iBVSX;w* z2yO~hP%zM;k(i7Cd`wJzNX$ARZV;?q_tNY6Yaacpd>B9Xjmq?O{oXl1hT_ z{yLpA#S>t2hXf;EtaupPB?%%rUtCLVB-Z&@PK{tMSR2D;h8$}3`=I@lB{nNSPIl`L zLwcfNI-2^hprstUuGxf6{vIYN3ET_QhF34#@@I09Mo-2oBrBH$>E8dx9GLkTW8+uJ zQsyep8hudYQRmq(G-%{AB^X__hA`z42lSjR&0Eyp_h#Y;{v} z`Ul<|T(s~z*H^!9AP=Od9NLd;p8G!Gmf zB95qtxDzpf!?P2ik4a)uCM3bY6y#A~!=O`9gnTK63@z7FsxK>MH~s3Se_TX&O1bAO z)tP91^nCB6@_2~APV>9*fUv&X9I|zNI85)kK{G8Mmz=Dh?^emSTdLS$QfSUDM!jE- zLfndYWLiGE##?eSFzoj5PSbJqe0pPF|MdNYd7C2ZlA>hKETOd2MEM9QckE5MGPSbt zpl$X!PFf9HNPKyg{6ea>;(GT#f4m9&|1e!@&ekG}A|I~0wEpjz)j@iX)ZY@;K3Amx z5$}>h0Qn|YJvGe}$kB~K8@0Gqn4aQoh-v}NBCi)`UjG7(We&6ld3V9ZvoAIsK?7%e;YlB!9UTpU>!uSzAY zUT$1b5LZ3rKi~0+)-}5=g#!wQf4=aS%}20Qy|~hL52il(CYrye3M@}DKSQm&_)Nx2 z!i^#m#Lb=$bCK+}q+V!o4q=gcAoWL*$lOryk~)bd)IC!3+$H zh!s_CYs^U!;)cU@H*Lj+eaF@Hbw^iIovSfL7MqMt;anUM71d4DlGaZiZh_{*;DUzJ z%OccVPhojGA;e61`1y9hIy3$9v?82+uHLNr+hz{;D4X2L?=wpePlObV7#mi|g^X1# ziHTYgpmXNf_9b>7{jAKdcskS!k{j|Pol9Id#8)|#E4N2kFRUQ)_|JbfFa0*lVV`0U z7|G{Kk{J%)e`f^azBTOZiGTg|*Wvd`J(!D@A?iA9f6=VW5NfpfTTj#J%-e`;gw-z% zWEnReFm*%7RPi;eL_86~GsguLB#EvC0gt#biF6C%U^4MZn{M_b)>)XWyOtzj$VgHJ zeGM}~>PA^xn&|NJz5RHicw~E~uh2IbgS{HKY(!=p>)$C%N3X0`ud92^4d^p}GIuUcn!8}BB775O9<|AR{rZ)(ExSv$h&if|5JR(I zltZ7CG^5Y1cSKxNt6kchlVHx#96<|oZ#tY2(<5zt`y5`y-*XYh?{kKXm% zU{M^r&w#;g5z;;toSGkACY;m%!dO`*09QL=K|A{7&HphZ4XocqIiAj|o00rEaUHc4 zZaQ=3E-*$FIp>s`cp`)#F+;hPvJ?gWDU7`yp}t!?U|#(ijC!At5K9v~G?k_>1q)dn zL`XTq5OEePIkv+BHtx*pJTyRy&D?uu^j&K@8SP>>R`a@pl4KT`-tiID)$|u z9SA-_gJO5$tN!I@4VHnu7$GHzIw56dVsD{8IE%#OwRjlEcno{xye81}sDXjzCZE1u z+QnB|xB7Mufqu~2zOLwj%*GZ2sod{Z;E$oAp`p$RMzM1_M=MxmF%RledoEF?vzx`-Q*Ubq*o}VwnJV5n^uZR*zX=%$x&ffxOAq6PG z#QphUso_GzoE8Pvf}Th5R^caVG3bIWFdb6}tb#AHGr%kX1{4@+O6**eMfS5`n7n0z zuhw25z_AG?(Glrj|6_hc8y&W`wx*L@+<@$!m&I!!;dlB;^Z5H6sa#||J*yth?MJD* zoKXC=0$Jv8W_Xa#CAq@;{j|E{nOg#*VlllD-uVVDQU%2ve)X0s-7H)CT4McPsP6Uj zQPwvz4=mfAP#e(VDmQ$M{Znu06~XEUN@H(rEx+|g|NPu}LRVoIfiB(!4zl-m__z5h zoZ7?GfsYSRT!$NW;v826uX0C_>P3wU2ok!AU~*oaSBhJ_3MzWwR)O&6!SIEfM!>{E z7Ey`-bUs>aVvbd`+bl*Xh<%Nm=v}Qy{0QpxV#)h|bX^BLmHYpf(jeShNl~TepAr{?6;=(tVZZdA`qge8zhK zewdM)yRCT~D%wVC+qANucLE}NJ5)9mvn)Er2d8zQhr6EmmMsutTIs96-a5#{L3UHX!3Hy zJlK$FL>!0rOCPZ8k!})#^fw|~b~QjTfED97+0*GSDTRgK0s1)WF4=f6V9w;C28=a8 zojN^!BHRAHD04=Q0=&`WS40g`A*$*0`Tf4Wd85@BV{W{pyJe7N2uE+J8qG3wl5Sn6 zU2dpkJ%;i|Y6-D_ne6rUJEOMJbEABD_|B-MoErDyKGM}-c8AnJEoVHvvfe^vuZP@s z&@8%E7;;R*Ldi*OLG7JyYCM*c(9ypO`lh#L<+N$n<|dTdQ6}j z%0}s0+S#kC=`N}hhcZ;&oTV|1H3e4DApyb5O*Ys zpBBUVEt*L5J}<)4xAn(gYZok^b#~7i=G+LGGn?7zpe0Q$c&2y7*M9C4uB1DbhFrd{ z-7suuZ%?gr&^T{2MIoW>Gvi6KeLdp$y!kwvJfX$Fyfon=1sdbMqmj=UKG(499sB28 z6Nze6*@eWFg8074>Z=#50h)Hh9^Lq;nxXM!Zk1a!3TB5cef08_pjIP^;DmK{DiQzY{Q{W>cOHdy4ri z2A$Ib;SZea`ta=QS}N+}3H8-HX5xeU>w5*&lM0h`Cyw-)7TiB}#Y5^wiRhch^PTOO zp$md8Gr`mjHmy}O#|1SvVpb!=tIo&93(9+F&pyo|>`Bs<5t(byjEug}U??<^Xm~qm zq%4DBG@B=mIn*SCW?@ySje=ZBdnul#iCYQY{*GT-J=5nv{DPZ>;V$5x_lq1@d-bZ@ z^v@%5h(syV(sfY$mVv=WSp01;#0jIMjNNXb)LrDYy3zizl?9aM8iP$9YVbA-ZSb16yX<`)4OdK%eF z>KhZG^>}J!J)7Q;v6phsR5)Yt!U>QZsc?Af-{rPi$PM0}s}*b2O%#tSHxi$PV3c zx8lDXP4)8KMY5klB4&QxzLp^f8hA4+|I`G&kBN$< zY7%Vh@E~WGLRm%oUcIfm zOG|d$wU2R(n`E}L?0#b5qTfbFGdui8Z|*cZTSvCY%A=JX*Ka(1m?V^O{=tXX#nT|t z{jA!+bfhTofE9*q`c8xQgQA6iHXtjJxZLS-VUrd}zUn`PISs)fBS+==66PIsn2ac4 z`t2l2fy8-^x2wB)Ohn8EwMGO%_ikyTI{||Ci=)h;&>~Z^%D3&G356E6X2i26Pi71b zxMG$@JXDQ9JRr!}&ej&ZZ~Nx5v$9ZO98pITIDzrON=*;(U;AudNr?awcNE@Q&*p&z z2Ry(rpb$$*ODlucBQ)I*u@x0_A?z^i%!-4+F>wwftOsXOVD|+3l+N#|9-nFzEI6^z zpmUzvI}mZ2d+(xYe?sY`Z>c;ix2C$-H>j{$sYOnCH)#3HRLvh`b;KK)Q+v=?n?9(uVi|RtsDG$nfw?i0bw`XPu2FI?u@X+5h`u%K+jZ_^`t> zCqj>V$901Y`0>!1LyN%5nLR8^$ICl&Q^uWmSe2Scygj&*R( z1_uWxz!b|!?*xD}hQtdUPXcDcSPT$YGeG!7x*xQol9tYaR0bdy_(5C=%1t((EG+Z2 zz&oj_z~&q1EgXTAvD;Ssx0Mrn-TGS$OTgUfk8<`nZR~MLOxs$m zBW}a6_)u?@_sFKR*L|JunCZZ}Zeo$`tKWQf$v@`7g9o6~mPy%Pbsr1JUe%F0s9eE$ ztqV;Z*sv|0OihDyM%6}+|hzQhy`e#$yBBecf z?@mWyv7nycGHM4q`WKvecJSNA^E%gi?9iy8U)+ewDdCD-`dIbx z)p8L@x5aYvD3#F-cP5u8@Q3@tf>z;9p(zuZKes*L_wrhi?oK^S@_jN-(Mc#1{gr%w z>h^mx=(q>e4!?}eF2k80@rLqWPvNkqda+Lyq|?e>~PW zfkp&)on&ZR;W9ioQb1?ST==&U_^PcIUIUp&!hs5rQ0UB#9;c{$`yx%E3rZ&6ieueb z+`u)V?5geV&ObhffV2)HH*!{hbExAvMD!Jx`ws2DZD^PTIw1Zg+wVP*PJqr|y_6Xe zt7H^{+VO{j#leJzo^UCb6(qO-`tdknurdx+R3^K4XhH0_t|YiEZfTL;F3I0m+gAY<5L)?dfk4>MurMzDI4B}^{puN{r_goXt)HQGKrB6Dw0M39;d zsA{W2<7ol*m9>rEc4;rWD-Nt%ELZnME%_PIw`FbAy7k#X&8_Wx>Ra+BtR3e;w@l|; zM|O4evICP6pGSXq!-Oq5ZpZh*k@A%U-m6TD3dkSP_jxPR6F~|mdF_fy%l1<%2;Md_ zs`)l^BO-z54^qiSxi57~K3E`i3%NZl*_9ebV$i z^$Gg1Ie<+Qj%Nb0<~_tl&&Zft7(K_$tqQwIkWuA_4@1^r>-{+B-h;@Y%a?>~_ZQ$r zgaB;*0<+g28U7rO?>{8syRa4+TE)Hi1qanQ7#a=+uYAX1)d@o0l4x>GHK+<*4;z?^ z2)V+|ow*{?zf;4Z(i}&r9NS>PpniSD(LVfyv*OKfDI{7HN$LaqRlG{}X#`hUC*d^u z2UATO=}A63i&}l0MOw)E)i&q0@Dh}@8%|(ki{v0s>pg6UIu|G zq4ru*)_^6h*j659Gj;bEdLe|$`cGTVDzVEO!b%R zLF01&HGy(Qg6qRXT~t5&+v~1*ePzyYeX_U5hji`?GEXQ1)pmG$#DF+Zzt*aRO3Bay z{i?C_me+H+lAic^;_CDWr4sZyXZ8NzxEl~tw0;E{FSJ2h&dg*Hc+|~MjZTARj&Q>2 zvo`Z`^@!$*7Rcj38x>-ec=^b5*mn9-I6;mn9+G)v<^bGiFpoj9+sL&Vde9!Jp)Wo2WV3Txk?y?q0hg$ZxTGex|PEW95d(G0g)ORw8yy2XU6FfJ|#dX)= z38&7n;lw!roFn>bRK}9tq&o;+6riKJOZLO^W z3_AjL!3;pERefqI#CJmC)zUQMkbx02gCMVzyD1uU>-~KaWX2L09PGqQz{zb%w}RNt z7$`9Av;WA1OU5D_1ZdYdFdWNwzM&whLj^bvs6w#idJrS!jyy}NulSqA* zpLUjamvHB{RQ44pD7JEz7;x`vaGSFhqZUsD36hTfID_yH7@}A8=_;-0N$TxkX4yQvcYF9#Oj_b!+P7c!yKWpr z#IBVm^EVoA=ke?t&@nFpC*-$vb#=F(a(bxuF)R%&xdhG%rj$HL^=q@))rZGUEu59G znW#{0%G9p}wN-uRP3Tdpn3^WjAKVy$ay-)#eX<*j`j;>71VSSsbO-5=_(HZQig3{& zk&y_EuMbMl8;3kuTwY-2Aqaddz%q2!3DN-ZQg}zqr%zX=5WbJ~&;L$`!v4kGC^(&( zp&kqwjNk)TQ<;t zfQ@G33G#2l0AmnqO%+Ipbg>x z+-*FJp`wR}$CG{$;SB<8SIrRC9ZmeJ&HECG`K!3?1ZmdX0o0cF?Q0^x)N|8$v+=EH z5s=b1sK>St09v!aTE8%Z^7f9K8c3`MbTyFtm2GkFaMyriu|vQ664S|(SAds3gYN>a zC9X+=o(=nZC4v{X#NgGI1{t^wgV!i1@tnz}Fil%C?Mr~oC;3~Va{6)a{SK6qmS*fM zLBs4V<;`1hPA&ay_@1^JZaZl@p8dxutx_HuT^j3d$S^bME@$LORIA83d^ff$;vjys zW2_~jNWADO8S$L=l2~3m%_>(@Qu+E|>st3QP0u=ovU5?;ffHeXjUb_?XK-u%73`mb z1Y1Eme<(kpxaK+lRiOHouz&khRG0wbHh4cFUIeN-zPt2^t6oWZiHYc%sxqHuzJeiw zTWou)!y|_?udbCw9}vOaPHGpW6pTfh!-x_L3Ez64Tz|E+Y6(J8vybyV<5pdEgb^NRk(+zX25nIa3c4`dkQXyZ=!fdwvj&k4G;V)fwHCn}* z!NmfZC8YIN(=b{bl3h9lTE*E;gwS!TR;I)Nmt9K;lEC+LP_I^>Uz=YsM)t(Fn&IaW zmL=K^8)d=W<0-E9$e*NYxepDQDU-^G68vd3J+(<~Lhx!>6?1oG3)4{BBZjOHw<82m z5h#htmj>njRsBs7Fj1giDDCEM0g+{Mb8}!&&{+UJ!tn|OeGq3+-s0N-Ewy+10ac8) zMUns>3H%2UXiY*}fiahLYu*g%BU0nllAuZ^al0aeS%PplITeJeNRQ>DETr_zmYPI#4c$q3$9F+E=3HRZ9}O58G@iT7WG-s zus{-nLe$eMt8)g`#ivlV-0wE`%mNC$5H2QlW*ZX_s1lS4;>8M_ zsWv5`Vk04QfW4_g1K;@7A3<=Lj}wjrz&3KsamXtQ1lPKh-!WXFzXOc9;ZBfXLftb! zJ8D85GH4XG2n0yW0@Tan%WpZoH9McW)J(&xH4Qq;$~3z7g7XQ}!nnKH`^Rq1zqJV z;T;~Cb~Br64{~u$ev@2P=(`}b%Hnc)!y>IlC+-;MIT2jL;fQQKhb*VH5@XM6dSCYT zn2GR2oDUpjDsAFm>u(%C)liJL&m`RV!n3Dj$^0w?CX$txRy`IST` zNW3NI+9n3kFj%tsEUkYDEoaQIB=LeCUK>;gGKwdQYG=9QP4Gzx5zVltg8AZFKU5Rg zu$>?Pj73~2d7+h9Z7lUU5FbwOz_O^-i=Hc2oSF$Bjt3}=V zhKMw|NjV>fYUZgIB@9=WunK zi7mz#FJ6>#t0Px&^wvTrfVy?}dTl#FckipHJ;}hJ5!+fRB zL8Y6%6_t4L0#ZQ5TfzaBG>>ZyDi+SF0;3!tVATYSD%N^rf(@%_)+&k!B)S27-U10z zt-}UnwedhUQw-K|e1od^cyqu`2C?fTBSstQz(bj@wuk=c(WISwC~njofFA+_4@qZN zfvBcc&Bk0exZ42z=;R4cURG9C6=?3}0>oK*4thffD;}vFei>YfRZaKZgxcJzprFGQ z*F=UdKp{mb(hYB0$aU-EUqssgB!%#qBdDz)5;eVy7MsY4nIo~Lwd|kUKa`SDDW4Oc zz~_;Tbt>n{HF2^;%$P`2W_r6=G@9X6G6H0ir1V3YQ*`3=mR9o;uDIeBBjc2GJ#Qr( zeB+D?_srAFi&?2G1~K!4uX@d;pzFk(0s$;ID=n#*TrpHexPkqKr0A8Pw7TOxXnO+2 z6Bfic?S&OuowK8d`zFcrU{6RwMG-Juxeoo#SNcZ`gC@g0iuI2$@T3LhB?t_AF-$-2|!=5}Kzm+ARrLo!E6?zQdicnI#02~OETEP1%*JiLmr2&uwrUC{mz)%vQOAaT+ z8~9>+TnSOP%yHHBTMB!JJ;|zoKgN5L z@=Taq0-eXQK5V#6&2G1DMI&CT;{@^AnN#T5e))XWK7c1}`>UNwx$#Kkp{Y5)`4aow z)VAiO^J?Q-1FjI>IUJ|Y1Pp3O_KX(@^}IZUElnba@}r0$HQerDHqARwXavSe+8FQl zuT?Q=%U!1&r6VQMPk}tn1b9G5js(=F+{EAMYIq1M+gq5Bc*f~iRZTewuM7ns;#6th zgKUIHo;5c~%f2@x>xW<6;{}vP6PT??JsIFi+Udt306<>N;ALl`6%YA}2?R_*8A)3C z>GHvL3o6moc!kY@U|WGzw(tVp(QCXG10Vp>-e-P! z@gibRK-@yq#s0U3cvCz*0)S|KmH`5E{Y&=WTb|GvX9<&@2eBQ&fz|6ePs3lzWFTORsV7Wm z1stHU;Jz85r~`MKGL7xo&ZHGOL8=a!^#In_CXTsvkDJ(z6YF@`3flqUWM9vX{S3l) zEX1t*Q}cu6NXZgN=B@Wh$bkNGJd<^l)QYqf3euBMJPhZx`2c34B#%{90V1>jp&$+n zO!hB#q6{1^2@jT`tcMIfh6(O$L{CBIv2tKz>l8=P*r~_{HV&(X-axut}{t+;D9)ZOXVy(Vov;*36>l)kLlN~WBj*ySMydm}R^Ol=e@0LcTXPSy@5 zk6qust_m{*TBgmhPmn-VV`C!_8aoiHRR>$+3re>m ze9#QW0fj3cU@%F-n=}4-;ZHc7m5G2gas^q|LV3q_2QpEFJOaQMw${bHE~q98#rlP@ zrpl>Ngr|pD-j1-^Ik-1dMq{!&ZUXqkt!BWQ7g@iwal;H!f^*M}KfeU|h(q=0Mnpfb z5b3`+6@D4Fy*Yq@M<_lzi(0zc`&Z=-FY7GezFe$$k#U`ERinIY;yhDodjH@?pPwjB zO7MB?+%YZ8vP;f4uSv>~c!o(=Zoy?q9YR>f-ndr<=hC$fYUxS9L6)2jIS#jF&kZ;c z(F($YH)T|m?V;1#5v2k-tdt~J$tdK}%(?Rx%JOqdxWv4>m-p_H0UXpkj2{8$m5sol zNkwOJ=p`#5hhlJKd?`moUes&(j80G!5S*p(X3i$Gm=O4QwNz9Bhdbf82Ajr>qa}q_ zZDIh!Mw!1ZwfAaO2`3beN66aj7MGV;b4nX=w8rl8N;vJlfy_Hr=s8 z`TD1meIF71QiRIjh&L2PP;VQa614iJS|vO@Hj_L@Mn@xECcX>7sUi_5Qc@*r>*=HP z5M{Abzq-TgG@WvM2Q|bjkLg^lQwq*M2UbWrDDk7JBT_^3gTce+CQ$DRTBHty=nNhf z3mUD+2T8|mrizr3GJirS${ZR3YT#1_TYqgBaGGus9q0^x3-CNR(w%{oxP9i}lT+r= z5Chsf1ni`sA*ebT4sGZrXc0JcTjVFf$raadmVrT|&rG6F2Z&OL(_cFWMt0)|&zJBC zgJmc*x_|rZYA)%W3)Ff|n2Ts?iUIUq0DpZP*;Mdq|GDEmCoEnw15q)Ke%a!aj;47@nBTY$}YG6WKd zAYuaZQu&GJyC)SU&`bexqtb{r6w$$9FbcFxiDH=}E)Cm`n(p|DgWwR=J*A9@5#+ zxlYz8&f{>BZ~j6oVg=2F#!*i9f%+Ao-+9Pv@A<#HkrU62&Nj?DKkml0X9iV**%N2w z^HaqU>qlmDa$J)F&#QJ_RL1jal9KMb5$Leyq54cOKRNtzC&8@p*|BF1>`gaD4;UJ? z2j`VD<(7V=Wb$2F=(-JnlK6s2S$hwHi!I;r9hYe#d&x*-e2=s5%EEBfE63eu=(WUZ zpu4Dmjt}n>aNuSJjYFTOPr=9M)pY2mX-$Z@SgDAlkgWHk!$fD#o&|f$yd&vFVA~ak z_T+sB&n{0qg~=Vf`go}YN)v5CoTVGi6v&^gXO?u|yUmYO|I)bi!oTN|)#<`34Idsc zt+g@3^m8;sjXY4{EQo*hr6%Z2WKw8(u|{xC!L`$x{t6E=cgN{{wU$cb;9t2g7^!3_ z4hB!_M(JdB8+*OV!76&P9v{a1 z$IlTL`8w?=OSB#j6@nmRr}2&ffPY5x10e^j*=!)dG<05!_GQl+u7fgyD>tYXn%5Q% z18SQMGcqy)uByMhHT0vG2)OoO?F+<}C1l&?n_3*)s|l(cz>s%k_b=<&v^IQQZd}H5 ztT!rHtvvQ*i}%6ZVgGA{JRm;!=lnHxSQFHG5=Zw189wG&Ibac&{LmdcE zQ5GOD4(L`8iKsrq*Z|(wtQeTXjX|6smwxhb<#*;12L~p|uC_K*N!Y4}_;*yZ3c1DU zF8sYd%CU$J*Bk-ELLfutf*ISe>#THXy8aE(aB62=FQv`1LKik$%UxysgU0ou8PbkxWGATTkiw7Yi#w##>U;Ymd?XNLpLJG$;gnE=x-mYFT>U*BCSN^f6+v> z_NcfQ6SS(%RhdB)U)A7mDkvrQm^12VKuf?v?OQ#cQZ_*j9p!xaw$=&dwk$Pict{f! zf}*KPjG_o<1cQDuhDGM+MSlO>lTRIH2uiH=7DCVC>-RLzkN2eETe8x{ovfk~f4Fp~@dRJ^ zqTtLK9-j8uacFB$Jog z0e5+ILY10J$}9nXwMuyU3_rI-QZ(~GwM*OYA9)+bqaz{D;$*|7{8G*l4E_!$8 znEN1}V#5Ic4(l(e5C$g0wTLm0xiAjg;Ktc;s7Y7|c55*)wfDVJdZ;OaI zrrkl4(AVL*&|5Gy-+ywe%`lA}$yl@%ITE}^AW7y7C}C;gG&FUtu@%f3`jb3_|GGSz zrxdN9`LyzfTjpD8ASSjeBc&AM%mL*4_DEyhFk=6tM_QCD9flo&KPMj1%c0~kWMv81 z1x@yjP+`xq;SVC0q21d*I}T-gz(!TQxoGGUR|pLEJM(v3`<-n&GWCOup*?R(=zW)!xl8B5XvvE6WBliE3a#xgQGbe!U~NLLAT{h(B`;9SW!a< zFEq;EaS?0_5m{gO+|TLy_bXALI^zB3G$-J#EIK*)yZSCY=TL07F?md$;dJMcHfa(f zYPFwBFvYwBLImVLw?v`G`}ZddqIe zm38?jo5Plde}RztWrGZ?>uOGF%IB`P9@l?PS8K}{v`=o#_fdvHBB=|UCh?fd+TPNYT9o-GpNUcTaR?TO77gk!871E4E$wewA^mdnwrAdf z^+0KjlKu5UI6<+k*aS*h}o!pR~6Ydyf4 z@K6g|G7IWo8_&i-PsqrG2P9xCAMcrd!v14^{P;e-MPWqO>a!E+2)h}YySR14US!P}KA^mP#CzBu^tIL)Bn)3f zM5Kdf5lsD9GXSTF9O88F1d3oygBozP1r8J_U@PS#D{T@EhJjm ztitiMCP5>;;$_~K)$tQwgL7-#LpKLp)ZL%5(e$!4Vi*o^mi{ONACdaP zS3-)!nJ0ne4bU{U+U04c2TyI-_3=#b2GV6_|2#*C(Z081u2Gb7+mU@7(W$G2Hx+?X z)xIC3Tbe;3&0yvD05VhpWKLJe+lwiQPBjP_gEajSdj~5MA)oat^% zUh^|1^!py*o*$-n=uDBGAEA_#5_&O%H|kQ7L&uSELS?0v6I5_%ze;+PXNQOF;M3*Y_J5sF(kPFkUS^= zuytRIjf+DK`>q0;m|-(Gz!QKj+!^%qHT}5%l9_5h&(_Anq6_s6R)->wWb~R8m-aQC zjeZ6QNh{9+C8&)Wdw7UTCQ0Ho%TvTbuP-i*UDd+L!i?;GzIPkV{ z-%rFX4ZUvL6S7(qvA7kh{A8!vz0W55R8ALNOSXJgLG@4Ey1bLbtE~e~d1;fb!Uir` zQX-3OFPTWU*(VU?8Jldv-lhr&Erd6K0%zb_4=jB%&`j3^zQ(W_Qk^>~>K(XNmki81 zRq*mCLzW=mm2@rOtZXxCAwh7};n5C{zX0`WGbqsO>Odi7Ct5mGN_7x$i3-9F|DAHn z0p(rDds?6`1!d8RxfRIX5n8Vlgp6Zh@u{*?Z`J;Wb|6x)p~2os4K3=46?WJRIN*2o zj?th@eJ{5S)=|j^lhGVjgb14zn3ZtD=)CUn2`$TZe zOF?zlN|i|U*Y5`|c9G|we98@^m+W?WMhBy|$%C4?YY!tL3MHxYk}}}9gw86(Y^Uze8?FU@f1j{V!W6uipKY z3i-Qx=a*Of&6*yHxy(dUx0RcC@;!a2H!{Q(M$_bSjYv6y>$J@$4ZYf>AwscWKhAGz zsL8mN!fEV>q$Ij6 zi)EqlsuU^Yj(~eezZG!Nh{Q())JiBrL3tk)iohWiN~1`37D=eU?=l6O6sTD-sZ+o~ z0M2tLHR9R z$5^bSw!j3CMKJ;v`}>w4a-tyIQm1QH34I-J;7{$mY|J8bK^JxaTIA6#J`1^@3+tvZDG_GJp^jJd!%sHnApF8ZYqGsLPMS^6 zAS52yF+s(W36z6CI#&t$x@hD;*$L!ZaY#fSxPa(I^=O+-Z7#Y3`ui`i9?(rU!;rvs z+6wzDZef5vvRmubS+oodoxClnk2Y9x6CGOaPxxi^- zRG7{(eQ0d0w4VT9DIRy+>*+YP^snecAn~c`8k6BOjM>wMZ)YUF`pkQDINrb&f*Zxr z-qI(isr&bbxKgoc2T@otYEgiV8d3z?*5_+eRYz_=0pNLZoMbBlrUi5=6ysR7ST5fB zxEFabLVKI)_;4Wfz>vZ-s^*GG{661_B6nSWz#Uul2g&7~Yhe>Hof5gXw+=)uGt}DX_v{zNgg=fz-j}EV?e|8|P6J8e=cM&B5Uk=s zSMWvUd(XoxzR0H!3enI%Qx}t9Y6BcNSmB)FHc^_HI?Q{sf{0D8OdE>wNn?yZ9{R_3 z1;hGIK8Z(0Z!xZe(chr9d(T8_pR!xOa(UXJ&Uz3HjvE~^n+e*$o0tdR4syjXgwrsw zb{OiN|M3fmgkx~{V>gfNrXOAxxd}V5I2FaEsH-#>^r{JGt_ zpN_I7H>HajeLWg4{i2s4p*tUjQF@1)PIZaw<5oP*!PS@8cINq4xu|_ zU!OmDVpNp`ZZ$PC8_cT~h63c7K@ba6=5!tnGiHcCqrt6Bm19xQ>Z~mB($GC=_QGrM zUR;1q#Pn|0?@vN+Ay}r`EpNW$jDfoPp+VAjCtr}9%#EF)m!h0}KDc>0m*zy$F)?p&g!iV!_|!>r|qUtMjJg zGdK67_%ylnF-8w=3x_Q6vN9D8%+kivHcS-VNZXr~=$#dwo3K<>?RQm}q5dmK_909f z9tpF-dou5}I^vCvWq?`Spw@GHmsXte0Lgnn#9Ry}ar;3um<4u#DdSHcKaRzRS~epc z&)wwATbFukZNbDDkMwpuH|OXPQn3pb`vmx+y#-(}GGP0Lz3}^hbTA5C=nE1AC62uD z8L8_QN!7XMgqxLO$y;K{mE#^9)(ve+%{bK5JoTsVF-eT-)j{1-+LFc8?xM?%$;Ac< zn}e$=wF2P_4*H(%qqsQMaGgZn66x6cI({P8*z-OhG0`?x5fh*F zHAx9r_?okDQ8v7&e2KzB>wVIXn@S7=(%2`!(5?FT5e52!z6M0X+>i)^L$3n8`}~Wt zjYTa$;3oE5?#{Q$K&c`$#MR&!Fqa{OBFN;W9&1stYF<&$z(u-88xvNZEvS0~63?jD zkJO|VCl*U~Y5}hd<)Au%XDAwr_Pu>%_^$DLDOLdiZA#(wOa$hHGe8hC=#Okp9U zv8zBoB(NxBc_m$aH&@^I!$UfQH<3f5 zlJp_8pHX;GJ3NnEeCqKUph*PElv0Sbw*A?zuQKN%!~-m7s0qSyX#&ZQSfH)mf&QwL zoSYhfWWlHhjJ#qXf=-0mFzQAj9585rCISZnDb0eYPpwZGiz*V0bO6mjJjne8o&kLf z6(~Wsfkp#@(F558;7sZW1pWE50-z;;@pOoWCK*WhkmjVoO`r}l%1mYH*8Jfp_;!H!v=)kIF!hl?43zGp5!(@BS}-S2hu;Ux#zWA;gP0foiZt}i5bp^! z0TH~pWUfIOr1h9r*?&CzkI5sFi+1_&&w{}60uJa=Z++2Ipo!I3CCYQ!{t+Q^gU!;H}heM%Vp-8~O3XJ~s9_gPQE& zA!_`C;bQJAv)JfUAEd%J+yMoRS0lcG)IooF2XrJ}M9I4<&mV%aUq?p=sL9HufQy|s z#qngQ7^~R_GFJ~+qx)|G0l9x`$r2G&z22s5dhdT`Dp=#q1lV&DbOnJkd8h2v2FNIQpZVI0M2d5^&MzL7oe*&plP$=B&Jt1P@A>fS%_=nY{h za&<{>F|3ipRc<5J8tip9WOy``5?I zE(98(dJSv7sOL2KxyTku0DjpVfnv3b94&S%ku8a1ib$M7_Cx61{EE;)k>WEl3(k); zSfs?~=747}>mpZn*qqO;9ZMz{4?)Q_Ve`wUf=^!|p(9jztAamT=>Hp!X<7+rp#A&f z<#Xupp?DjMYTUO0db9T7Y1M=A4O1P{ zLXotlZggf;CQ+OK6Za)m-$i!*Z)PkM>5V=QSmvFu{oFZK3edM=%2P}|CjPZ%R_fJu zeDn#$N3cRXx^+~D8705nidlE`%Wz}b;@pp`vgvJ2lC)TR@M94wRDnjtf81I5xAVvF zAdBmMdJX?>j;>{0aE>bSP)6HhHR{Xs)W@m6KHP>KjDBHR%mbk$Xtc2iG3m-yhC(EL z=a~;(oDp{@3Gc9p0G&xCSN{?h{uDQU4EhLuv7@FMgNo%5ik;F#6O3CaPnUk6+r4}g zB>VDyW`Muk6m!D#SLsw{m_hgjk-fege~x zaS2M z8|1X{tRLz84D+eKU;dvko|hJOhkt)=DrSe&+q*7xbC3G)xp;Q0`S|*^Jajxbbe?!k zDNQG-IMDhGMEh#=nrY{PgpqbB{vCtA$=Z_%kL&99A2RWI7#ovb$mCH4JhvDih?sK(Fx|7|)DQYzR-Tvd?N7WA@Q;&c)RBAcT1@|O zGhXtff{%o#0dMe)=2=^U4L$7vjm&SCnJ%?K=lIhabdIwRC>=60S3YMDe1=T+ZUSHF zcOOrNKJ96|nO7fY zQvhHd8oIXpVX*g|D0$mzS&(B;HuQy~pCUmE&)e0f9fw+s?UUH-E0HO|2E~qdLrlf> zg{xfI6|y=rTg^Q6wimX-O0zx2>tchj#`m>U<0(-x1mbo~zLA$#F!%hsXn)=kGwOx? z`;&MT<|gW_@mm|ZnD#9VNkDV01*`Ny#iSq8H*v=)>5x*l@QTm7g_}jTerJ+`U5n2o zJu@h$vzKXm5R$AKkr$%ap_fgDX~{@-{^Y;_l6pyX3|`>4P4#xy&x>dO_c~U+=Av6v z*1uMYaV_E=ix0}xTBZA}rSA~e=gGffb1Oe*pcal-iTq%93+z4*f2Sf~-TTzLv%$Wo3HZ*q<42_ab^k9Nw|@pfglY!V zF~7r;;BcpHUS^DrxZu!%D< z?>I(SeplBC`tT6=N{6r6SJCNgZA!W4p4B*7XlOj^3gJW*MtaYIl5&c_uk2;|>3_^h z!|u>Lbu-G01!v6Hkq4?Q1wrIb)++`AqxS$dXy#>(dpcl)@Q$h?207_^qL@$SFBVs} zQh{(bEZriwQ!1Q|8BD%x-YHf!xaAs^t4;B}t?KswJkb?(@;EKT=YhL(OimGsO^`$se?6Zx*AYO!LyZG4fYqaW#s!L{ zh?b6Hnn4&=&OJiwYt#6{ogv}YBC>>s_!?csqAYbz?zDq6%d_Q^>cPKUjsAaJ?RvfJ zs}}3zMpo7(Kkv8X4jw}*Jn>m0*=&(X#xW5{pQr-E9<1XVS68`1u-WfG1!VbBB}Q8r zoi2v&DN0v2D00nIl(i`1wQ9uv*%23kDE#9=fBBy5Rlc~9VmaZMGBO?(1Czl*_+2mI z_~~eg&p7MVlR94(jmNRsERnCyM&&;@VK46gmKnNHCdAI);E(gU#A4E(eFLadDwGw*-9}x)sdUcqM;!$nSqO8C-AgN28!5jC zk3AluSLxQ#0y!UbZTm3(b^>GNbQu>$t$RdjEg>$xYcN)_9Lf&vGhx%Ix8L+dTW&hgQPN$pV zj$4xom#mj<8`ToV!k4;C_>pIRbZMZAl6>XH1ERR~@P|xgQ+tz7=F*=e!Sb#+6G;(K zTMBA7WEw}W{{&TS+5V4rC3x!UDSO$+W?Y6thupbWS$Z3ByW2pL6{>vfW)2z^b05!D zxpGG?n?-NtuIkZTwD`+X%R02IcO%V~%x)tv{m2`MxQ|nSKhPht8uskX5Yq5DS4lvp zronOH)rc>||3nef!U)*)AD@m4*=w}D{REGV!qLdwjgO9?mqanP(n-=8lJBZpn7;6u zj;*&`MS6)tHAB2~zFd0C*skb+`MT6aGPtne`kP4VSA+EhIxn4uUEsns!SSxUmm|`4 z1#bN~8~-@s=ksHG`hPbtO&?qthcubidyv{Cgh`Q0`z?h!ytxiD$jrD)Jlm~A@WpJp zETzZ?4Skt*F@zuqj%Eg#*G0WYGkC7jF12@Xs)RoUeBAsRp zIqT*c^Yea_z; zl=Tl(thvSGLlSZ!Ifg;@=dUCabdE-ziIgTP=6hKpoUJ|1vQ^8**jlRGZgLxYmZtgb z3sAzMo&B){6uAF8Hp&!}yW&^YyO4%)y@mgnDB4TGbB5IGxu%l8*%=+>&ErDg8z;Wv zzc6^Hy9V6si)9~k8CPDZ@3dA}Fx_Pahwj;V%lLNk4;Gz2HX9McPu+w6F=#~QGnHlZ zff13Da}l)$?7@G&HY!%WIL8T|6ds+W3(M_UkBju&vu?}ZEA2PT*4;G5c}T6^YU@+p z@?hnZx7sLBexR$FI%BmFn}I#ca;`kH$K=PuC5|%^{fNPSy>iDbm=hZ@Tf+9b-{xvc zD^0*lc405Avc?=fL>&q8m*$OdPe^tfboX6qF9qApPtaK^8y}ETC%#j<&H-JfZ^qBC zw1hrJ2g|8KOJnb1-J3Bs=6GR&->hwNGsv?7G#1-AQG;~_DC-7L)>IF7y?tQvJ<48+ZD)aoZw zX{Ttr_TO0Y?$h3iKZ64sBk7lew+5xaMaJCf)5Oa<+i)|=shTZ1y~P5VHwlwd6TMa( zj*c}PuC+bEpruV2G}XSR)+t3Rn}1bw%7~^d?TKlD^G`fT6#ko4@sC0Mbs+Q14)k3M zD3Wbv)3ItQI!!>GdFSF$rqjYPtpsSXQ7C-qUw^$GqhzOyS?+?rkTdz29|@9@oAO+T z@+``t*H?(XUDQG;BBC1t~)FSpk#r>=PW$O%`DQ5^v8_5f69&JNbJZ38SXN!{M z?HqiQ*+4t6>&NJd7+%?N;@A87`{xQPXxAb>MT|bBV9%&N7#S&W1{mSN`Kp2OSwL*a zdu|7tY~P&`7r++aV>cXK+)hi{NH!F}qo%j#uUCPal0$eqgYMiKBwDI5yBhQ1d(|r< z_AbY3k6Y|&UomrLDCnhjC2*)swDdmc9xHomQJeeYIP>xm|Ihn6apJ1ZTj&)(6wjf1 z`{2!=0HUCh*;#8JNogX$Rhxr>(JV(Vt4C6<_;92$aKuokQu;U-QP`+ zl@<@^)M7Q5c7)~eYf#E*akLye@uu1L$|lo}`Pbfbb&;{Sh#jk@T`rQ%1s#dEj7yoe zSY}67FXi4Ez2ICIA!J;d?8JH0dtmOL5%NL!(*O7<{Fz7BpKNh1Z>40k` zQ^Vraelu9qz~zvh%#ZSti0XgO;ICmS+B3S&+Wj*w+xma|GcwrHcTF!rdMOt~)W__P z+u*BOabM|AlBo(LT2(@>7>oC8R`W-t)9m|Ef|~ry#_|144R0sQ)Gqxix_Uq6rikGn zLjL~8XP0K#IXyea`Wa_=DCD5E163sDmo=&{|BtTkfTz0s-`9RB>S;(+w2)m!WosaN zZ;pm7Bik_>R6K}`Y%-5^tV0~DBq5G1Tf{N4_p$!(Ptnu!`}=ym>YVdDC!hOsf9~ywhg5x?V?QZ6fL!DB_lbSADmFOW<^wtm%(Z99hY|#S907^kg3!C)> z7=$P(D=U-zOaA@0vF`T4-2SLm(&NiF4$bkTAfs8P(sh)7bzR{!j$V~N}rJzB*dlulu^S(3K*xEhVE36a;?#BtJwXo(<|EF!WNvfqYG+Zf^fZ zLR(*gS7puVm(zJasLu$J{vo(9?Ff`ExR6v8sQgOP>SxS2I`*}HaDoev?*@n<6TqL| z1RKnsz4}uszcn_n&WbXl>EvSLQNyv5p@j|e>E<>rsXnR397eRIg zS&-=uJ~w%AjJ#a=&Ufwt6D-s?W%<(0->=uQI@uF46Iplf4FZSx*siMo7|-ZPr98?j zBgR|D#Ju6{{j!MzFJ}}#YuLh>&8E{?nI(hWT^dU{!H;;piJn>+v^rV%)-bS*cdMI{ z|3Uf^G$qcJU-nvi1;Q9-!6UKgiPBbLb?b}pDl$C;`yhBYLZTUVxZ>K0qat|FhYSP_ zEHx;+E}pMc7i`x{Xmc7p8A^I>no(jeoLqogkKK#!r*Dc{F>7(7Vl;-_tq5VOLzLaX zn9vkx zz-%rz2hh5IZk?iZ)r*v)?)?7nm1+qabZycgJAX5dle2~A8um2qNd*h@jxM^eG#{U9Uscx` zB{bI_3!Zzx*a6TuL2W{CesX^mM)FQijG=)=YjTDRcdQ)OypgK77}>%7TR}j}zCG?! zn&9VzC@vHgg9zph>Ft)y)`Cd$Vw-6xNjR$J<4aoLG%a~OtZzOl$7_Q1OK|>fOY4F8 zFk5bEM^EkqRT&wKiW1xG3}uKv#-BRWL|c8hrLO-=3Uy-bd|OCrbH>M+(jsXlC_rid zp222IGXS7DaC*VPV-1Ea3szpqwLJ;(1;LB)z~W*+(-empeYR&GD^!L3{D~O_{y6I3 z;lms_vdaPj0^9em6RsP_6T7xs#z^=EzmmNPLY0#YOMq>-rYH|U^@^)r^P@#?t%^$7 zowR4Nch_^13!+Lh-X1t0>tbea`3jY;C5{zsR_%>AU6EjDBCncvQ)bdmO3~SY0{Pw- ztH2FRJVM!63JMHY^^GiTGJA6T^bp+4kQrZc^N&?U!@M(+ZB02>$Jz_Dc#5na$P9OD zyJ)qssXacwc_)2c{mIB^L5kZ)$IqQRw?lGk7;S#z=SzvH4jwo0vRJ&=XGPY6!ci&& zS14_sg#Wm#&=B|ia*>-O%GD&zO7T+_cQMCHE{a<#Po8+Kk>p}y(ed|OC?57G%e7!r zdCc>_1h3Htx%hGnx+NN4V$_eAQIfiJOM6WiYkz`eVXxDI`rLALaj@a+0fDeAc2PG6 zq9Fy^IBOk$T|&IkdhN~DDO^&S-mDjzt`ywmW4u zdJVM!m1nh8TYcC9La9?g)*6>A7UbdK5s}#XAAh`-37hO~YkrqEFxQ|@HxhoOcQ`mB zKlzc*Coi+(sRp<(M_g+1DuG+h71dXHwCuc7)8eS`z7Qkz9EPywN2!hM%+bmo~!6}x~X z;P#Jyy$vdfyITg>yBpRHogwf}wBSlPAYgn&lX_a>oPU$vNrSAm4t+=UplHcvKM+Obf;C*x;kGsNQXBebq@|I?dh7S89NXh= zsUafbzV|RKYtGlhf$Zxmu%(ar8Et*zkJmo?Ixzfg{HybTOK7pkG1ux=mMrfH3R|!gwDeAm|8z#Dmzdbxq@kHL z_RN*)O-%1TSrw^)H(J(wo^7f`16*;$@97)_=t2I+%E}POHQ;AuUfTahOSaxBpUw#0 zD5ji?edvjKmqT>c-1%<(D>~H5B`mXH(7t0Ge1}E z6Ck>I)w02-J4N2wQFKrn3C>SQdYuq^EFrO5s#l#&dekPB3ia6fz<6RJR<0p^ zN2+r9XEyYDhr2E}lfzrp=K?9cdl-^E9;JQZZF%yLrZqhjJFvAxGxLH&M6kO%nc(VF zIj8s9SeY3#^ zZt#AL6ih0Ol76kU%OxfaI?`T}ET2}kbn0f4d1JkOJoKJckN*dJq?-^4b?r6YaN!de zPW(_1?|f|4ws3e!gKl?e9NjJ2rkuz7P41m$DZH9!FQxlwYlTrh0#TY7==`HW16D71 z>efZ^{e2)}hK0iHm2>|ep%r1%=+}6pTeMZCD$jynKO^9*vn5+B@b9WmEuHR6v`j60O^Y2ov!3mMJ)<5%&yNwNMJ;ya1P`k!BuSciFh zQt_gK;casY9~#rUY;PJ9XIO=)HhZH_2%f6{yLZ>29>4_%OP@Ae-+aHco16R=P_Gd_ zYpyj>*6sHV{n>}n=$XO=l9}`fy?aI=Oy3VQEya|z#_*o^y3)?2&Np_*7wRY;o*bEL z?>TBBoXXI#RA#KgoDcqb_>J!dHWXM;B1PhmicRfi2K3xwk%TYG&Y>v0kJBt;BZp*;jJlq(8h92FgD&9T;S+C4h565lxPxbJ8jf896hR8 za>vHl#BC}og^l}qgGY)d?Z+I%eD!}H0gwV{+Jofe%@MrTP}TtK45O2u_RzaC%0)GU zEN2WdEFnU7l_lS%l_ifJ?T_I{WR~trUeg;iYUJTydep2)VJ!HuQ^ETrCwJ`R?g|Q5 zokH7y?_z^7al0)Y$`(@^7NA;#P=BUvukz}Qa8qDFqJyF8-1W&Xj}$)?J`EADzsx3O z;ex-_R#c+AvDl7glMzb1i8tL?*lIzEC>&Vdf}R56RSBjp9GBKv*6s1#89-HxhHAA) zFq$hxbhM-Wx8mlle+sWA`q_| z!)!E@U|XXtzKO?Fbo!2zFpafL`XrDl`y(X&6|0$CKJca!+Zn3F&XJQzI=TB|A$ z{2)~`W8jZ0TH)q-?>ObIutW@qgCVl4K$_(wzXe5Fs_?ZI5L<&16G=pm1S)7$(lvRY zT<5dFtc5OU60xnJw|eG}`*WAP-xSgqG0pkC816<~qZf)|LPlDhE143Ixmg#@g|eE7 z7=M4GLz^xBqiK@0+}LYfp@#42uUkqT-F#l2j!O+kv4wxDT=`_xn4oLmD3pYD!IaCx zgJR;x%I938wQ`I$mSnMus`rXyY>qL={4`&D(~sP1>c-8j=cED8NeftwI?6+8Cz`l9 zmRBl7-F=1gfn*2;FYWt`1%VC=rIM>>wx;;2v1IMZ#8l1qYl-iNb&1aR{f4*Ot|D9cdQ?YrC znxbnk(YnwlXr~mr(42>dFr9*dui+v-QXo8uOT!T*xwTYVdeFJ?9Af5g;;wNC#L1Cx zr`A-D zE0m%>q<6YLe5^TZfenMZ31lqF8oBDCHzt zJ)G#yexvg$Jrr+X(!8obS`2o>^OWmj#u5g!1f#7*-7v0N$jn=u&e6=@$gQ+S<1$iT zh~bKU`!n{Xh`8+&863JanR>~(2&p~%|9=MgvJ(`8U{Fbd2@3o9j2{)g&h$mH_;_QS zDVkoX*TAKiGfA5ww_y=Y@0*jD&OaQ)J6)`a*58WC%4{dr__o^+$t+Pz zL5=Rc_^bxELAOIdB7lAmE`8Veb=FZ|dund9-b8Z$ftl-4A$xV2F|Le$#On!_I*m?`&uAk1H96;I1P(nz;UW0Y76(pdw2&DHU=e;QY%qnj8Td)FQgb-DcJgbCHfhTY1Hf@%LhC4fa9k!6|#1m zvi+KtWW47oce-VaZ;ESywb-J`x3T2S>$!76#O!y{^V{S$iz$@p1#0b7pRV3G-Nm$H z)nwV4v)D4aeafz!^620F)2IDBTKzN7@}q0+f!V6i9cGdAl;5@AO?d54T+0itkd&xt zJdBqc9gj%}(Ka=SAE}B7MGII42Y2AdYCfD~%eN2G$&+eDwF^i?*rRb|3(J)ElIkt~ zUBvxo$4s1>i{S1%Os}1pxJq~x+arUnc{Ntyyg6|2SMzKBs?F&AI>^Ot@VS26Ki^59 zGL`(6iDMA=s>{fTp7G~Xisi|=*u~R^#u3J2ipt`lg;jZZ%{)6iF=IQg8d*(gX;RN< z3DRDc@(HqgAGU;Ib2&q~*#LRppHl|3wWO#~OX=H1C-U^0V`-!JSZmOR%rO6rM@Jr+ z6CMQuyH5MIHfF4(dn3K>xB)(5`u?u4!}5S<3q%cY#o8vM(gi?IN-j%uaLRZUwKx7X zU96Q%^v4`%kDhEM8GK?Aq~yL;N)drcSfC}nwajeYw@{yHF5?n0r^sZiao})jVi{TZ zpyB2a7ZJU^<7`(pXd=0Z|Ji?=@7=x9lXp*1)YNRm>(;C|tL%L9Dx%NoQ@}^@3MYME z0<~xJ%;@Z4ZyxNil%Y^vd=W?4Wm_GQfQ*B88b@M2r7SmXNVExAujACqxMh68vt>hh zmuV=wZ^k*{pxQ=OLk|}qms$A+y{w;Y{uF4L$`a!B6(%Q3a<`6@sm-~EEtPdo#4Zu zd7kjR73Zp0G{@vom}-V?5oK3j>iTS*vi^J$?sUu9tAumx=VgzPWM7>tALN3C$J(Ay z{9W^o$P3TBGbtSA>o@o3Uo>*~Xz8*0*>#?LO%a@x^~#63CVtzsFJtrTLyNZO$DR!m z@vJN|9d;wc9(|thJLAtCgeoPdd6zY(X1^(7lOk)H#90=Zh9+xlSM~{;w0bH7)m}4r zE6K6CeVU7G^`jSr7rH@Yd^X_Q$1(3B@iOk{yfneExyWFa)3B#`h{40-SwTdFQd2N(qe`%MoQ7BO-qiA1kC{QRR6{@nP73L8(M zniO69?>1&F^Z#zwpKn4=xgkeS(T~PAd-rqdy(?-{*m>Q4vCFEhgFHOL%r(8o+fnYI zxmL`h$WKhH7o`K5are}0lY8F}&I>=^}cc*y=jTKToqDGekKiQwcS}eMy?v16;KKNq~7&~|P8V_dhhr6ljGPq$l zUY9njd{Z-){(h3e=!(eWtHNCY1+Fj~=1voT&W4E?wV{u&u>@_Mpyd6xCvv!pGT(#< zuLZVQWwy+)wi*0rQk<}{E=j0u;q=N?_t2?T#5%@ z)D4|*5HP%LW4&je)hX6r-RhoFS!n-oyX(G_R{03is8ZX0hF6lzn}B)Y8^xb8sZ_G) zAUj_+I@*}&O?8wvcI;#ocS1aqVh8QD=OkMQuc?~1%hMbXi04zm(sUmlkIoJ+RLh{f#VA@r{yozmtZV z=2obpn)5#^c?-xzaN{;D$wsge885@Flp*uq*75h%GurbyS@VbQ0tJHM3 zvL~jt%a5*TjWk>wnJ7?9`WC>J{2hl2lN`^;XVsK-jWsZnZb^0@JivLtJIcb0KT&u$ z{czh>R`Xna*CllEc@4RHNm6Hu8aC=2PF4F2VxowL-Ld#0&~ z(-0;W_RI8va2XS>snvlW`;D8Z6dR9^%$4Z2A**NR#MMTNd|DN>YDWLlkYESFuSoBh z+DMhrjOScaz4`4f82n(B4&d*0PfgS+vt26l`n);m`>4R5Q6ylwtJ*02?us%P|qu&mG`g#%CJGD^c*5t58}iL6I|rC zz@6X(!#07Td$x)POz#x=o!5CBQ`CmKXdUr8A5s>btuuJtK`yZISt2CGLj&zhG`Kga zZJi+H^u*_8_t8wT{M~5{LQW6Zu(mmGO>_q1o+UV0bugT%`K;oMJyEz^ZHXZ7TATe? zQqKQs${U1_5W#AwnDz%L{5M_CQCnu*h{%qss`;@#C^>w1Wh7?)OOb&Nug$SEaruv?Ro%uxa zg8MH4X`r(NgPHyTiK2@ibCaQE}}Q9oNIVetl<{l27{x- zVO=k8ZzT{{&<`7;x5(oc>cN?YsHUlZYx-CC=HJd|&QC@wpp(aLu}`M5LJ$l`g|K@2 zC*%bv*9G~u=d8eF%D7>)OYrOb4K|vrJCo$j;%XkcgL6Hy^ZXd=r*%ToYS~yj=Y%Ef z0FU9~>A~aQ)m=+!7TAO8PR}{Ze)mxvw?sgI@e=NFLC1_P+xBITF#o`mBa<7+W4)+Y zKedUL5o^a27dKC!@|2JYjlKlVUoea^K&8VJ^yx+EoqV4MiMr`Kg7k~`y6YpR*m6YU zB=x~I>qfF35=A`63;mcQRjWdnA-lh?T!*f8$$Y@&O*QZ1JduiAuZGGtx3q%%x|XlW zSt-=YIbQ^)6{b%ltOOZ{N#2pIZ&lKo2hf9(|AOj<`o`e|gG9}!3S$YSA}&UB1fX(E z_jJ5!ob1jBr-o2HY*WE9jAmg@;n0f`r9F(BJ7dfYV7DlHu)Cn36;PinUPLv7xB4my zx>2p``~ZDhc_?l55@L@cC@5byZDj?${w1b!|2~$jckb06+K-l1LuRZ`a{paXrVYG$ zc;;2~L<%wRIncdh9B=xyz628iKqX&wf*Xwri*9HWa|L*+=pNLZ0=wt1NC>rWii zSV{~F?7zW8W|biYCdXK!^#@H!vwcnw$&6?$Yc9W^u3d!hjkB9P_!VhzC>O>9mt|+dQ)*MIBuPJwr&A= z4bpX_cMmFtJty>NnV06en)ZCmXrbVYT`kR3sn-^7(g0G35xF2AV59XB1bo$NXQY*0 zCj~DRF)6VePH(>O(rg@kv$27u4Ab#DMFfrIWMr2DgW`-eDY5mZXJH^nN(0+sEeqONtvHzb&u_uB}-wPDO0r=>;ZwuXS~A6N$Cj}okkd_f)Y zQxf$y?N?@_3L#U)!KM@-NyehJ+*?7TYLN_6BW(zm#$gu@(GZw6CAASjjJIxr*K30h z^?>T1mLkEQ>d@uSsM>RsC54BVBR-#k@;`y-f%sa?h@?>1$aKVGf1l&DCq_MPZ(f$2 z5tddK*V*u1qzauXkQDU2zrVDsOoRfo91)vBP{WJ|c$yhRg_2|=6~W6*e_7mz##Ume zpDrmr9?VGEvjw)f2WDY7BB-!!SYJZzRBx}@SY_&s!cy}azAN4!z7`&n6JGs!;-hw? zMoFuBu39UqA0!arbi7PXbun%Jrg3ci5(?!ozST_r$4KJZ0*rXV_-s>@2HkweK*Z;# zUX0U3fjH>$=dhX@n}d*7F=;eaKSLwyz6UsPvi?SK|7c!R+=emg}RE`qWgc-q|# z9dxU}B4YJmn%an%hJhr!R8H_9l9PvV5*QW5UVd5984Ncwns*%*=zG4EEcoLN$e43# z5{^$=IY$0GfB<5uFpUZw;MQ_)UMJ1^{ZroPNl2iGmY~MejZZ%EgPC>p!Ijx-bgJg4 zsCAkd%m*Lt@yu&&%^%)}seF~AP8petP!J4fxeR2i&8wsw>d|;6j&fVG1+h$N#pOXa zNISG5!bo#Xa%#!I_sMR5Sh&z(D&;}}$30MDaJ{pImj2n$`8?$HatkjxEagItH9Qi5Bvo&5Fle_UdF$PyH4PisrdA1 z6f{Sa!6~DHDbgP7B|{utK*E5}X(3J2_|G{lpn(aGN}O1Q zD;GX~XIVeChFiw0J-ecMYf0Q{Ci3de%>E0VfU{r>n|ygE#p2EL90yGqC{~}&eIzu# zF;-kT7cgDgsTBwAFp_qzkMD;M8ON9@g^s;_$V4)&Pa-jWKeEO)yleilog``AwH!e! zPaXet4Ur(#9j-nHnNvZm>Za#C?HT83A|lWp%4Nt5=1kQ_<|ANLQ(y|}S1n0$bO(PE zdH!r7`@Y$QFG_Yd@+z$}ENqKuo?V@~d7ch>)c;nUaHA4rk0i|YYS5f3R1tLP(#Pj^ zvASi&%U_VYuuIiQuk3(XettcSPm++stBlF!uay8Jt!E2%*a|2;K<6tHRBfe-N{?+e zcTfbuD?yBA4Wv~dLzd_`a;h6lB`%XA>VF`9Hh1f08_&b9^0uSR3TQMMgEa-in*T9i zy}&8_=c&pRqCf1HtlR3=n8|_GXf5@#W=mhv)6YC)LRT$dW_)(d|4h{~XZ6Im)P~qq{jSx|x(mSZQDAtXeUJ~;g`Y8UXCNuL@Mx$id zk4PkkW9a)jF+)(je-=(2Am{LQkCtz;XtBJ{MElJ+be{Y`M+HsL77=xp_YUPYN%w)-8@WYag5-`5E9fd?h(8R-$8Ary&E^%LO z9;C)SF&#;~dTsfvPWz9$kg9!je*4Z+;gE#TNm-Y3{|Z58U=4BgIJx@xdIebjO>N%W4oIJ#w&C6R<7`1bY$YtSKGz~ zwV-oHg`_uQ*D}hVJ(>eLbyjV2V{L>d7kj8^G#3u@f-t_}w$HO{FwxG^th;?$wzk+d zL#Sxt7KO=`J6Gd=Xx#t=JMU6AR@NZ884gDc0Z*mo!Y5thw1_<^9QkgT97jVoLVw_g zoyG&iD8l}~f(w1;0i^w5r_|J%0K2@Am~W3xp;p$0dd8OsXAXuc0h_meTdx}1!D8i%0u;L_} zKILFonZ~}VL$=TH+!htcB8Kd5c7CV4)!wqEl%RRx%Tu22?(UpeB60SV`8JQ3tkqaE z2jki~kgq9Vm4zB#OewtjL(_&$h`DD*0FJ>dANP}gpLjN#JFy} zv(uh;92RSOlV3)7>-eoB0yEhwSOB2H%~fw5_j(W*DA^gFo!UegOj3x&jhf*Cw-tkrw)A!~DZ8Fs)y@^i4ER`n4Wfh>?VbQ52RbWLEbfzH-L7(~!J zW;#R3DL|#zpatT7!E2qCDQZ~r?Yo9KxY%$3L5mA;`2gtK?<;9?>Fr5+9wP8#P)~n& z<(bV2QL*#=1mQ0j%0Ba&@iU;p`V6;EMTeKRc7G-{4Rv>y6lSXfey*G|j}mutfDxu* z@F1vH!>PwOYGYgoHkqt#7jQDl%AXrcl4)E9L~DWWXE6hrvwpcQ5Us`gYy{Pvv3C`# zypBN&_UadX_I#Rz8(Y$Fp`APIK~3bwS!NDVE;R6Z6mlEN>s{c<(5V$?+B`5v2L=i`l{l~=s-aR#{bFN}t z6m1f2vtpneiw`r*S+cK zI<~nEDc^=eg+9cDEcUe^?FCOq$FME}@h_y8fEtc>iJ+Ey;-}Hy|D91W_m|LGxYQ(YF9J6cKsVd_}g<$#-sv0n__h(MOS!$A|+r`amNWmKFqA|FqlL?fond zIIB=-r|dcB*4Wi2%p!CblfshJ%qwG}*5tn6x-PJ}1YJ6UjNb68X4N`502#uj*9IDa zH9FRaRobiVQtIwr<=iqdGEt*J8owfKp81Sd_jLoKx)^*&$^g247;9LR^t`7L(OpSk zX8qdy*?lk}W5lF0we6`;tK2!i;lVPw=Blr5Rbib@SJm#43+0i?uJ`&N^$sTI zz89-5eUmY5;>I~Uj##j&DFc&<)n3MrR*?11c3D7?3V$0`2|VG)f`cr+aJ)HAVNbCf z$7OZka@s6vk4*b0_ASysox|+KQ%}636Cwf zPr@MQBsW$joH!9*T%UcWa-Kksx49_TIkTxT?Oy#12&f6-ezcr2vrmZ9O{~njyK;?R zgEHB7KO^(3&haooC%cy(o)vHst9iS1y8O@MRVLrhf3%2`QHZmoYh{V~8QLsEj6l(XPy$CO|>T3nP`NAT(5 zLAply0-J$^d;@X-03FTzE*_;ssA&J215wrmh41qcRL4)9*tl^MIPc&XW#9<*b^rg* z>fr6x{q(eV0I05w2}5#ws5^S+!s*P*1##jX`Ca4V&|wu(E1F?zG0Hz&C3K~LnozC7 zNH1Zhq#5R{eb_lFUI>~N?j2y;*UVd!y?F@`$aJ@q(%9pU1P?L@ItdQoIhTW0Kw3Fn z5&J8a01Y?IH=8lXf19=uo@MHJ;LA=wBDpC)2*ji~ol~I9|E4tg%S~b8(G)2y%gC~w_25%;jlV2c&tG(nWV_*xB;L}|q-aWBmb{UMY zTfzC;(DAC8%WUm65-1#cc^#BG2F3~ZnE%_5U!PX704I91{k7;&H=Nvnx}#J<`CZ~v z>6EkV-DI1=aoAQBZ^Y^}y_RGrV>NG?P(nM8is`JGyk&4MmcjcOYQEYe^dvhV?Ez;( z@Musoxfc~DJqZR*%94`H79FIT0&C(NXsv6@-yfD=EdYnMWVelVRk6+4@}G8OOa`+ve?bcns(CSpHeWZ zM}v0)I}2^N$l_u^9}6cBzuu zW_qB|1UeEJe_cl&DGl)JvTf5r+z#W9_5x>bw`E`1V?MB7X}RM4eQ0PDB=H;R)~B8y zDDqEAodxkeWPxxu4RTc^-erh=-6|mFnabbG5 zS+F7Bt4AWKhp^1k9p9{<&l4y%nr)k~O>}DO3RZiU!k0&iHExm0l3OHUG40Z&Sv`*4cy3zy^_AziaiyqQKMAX64 zTgPo}z60Et5PWSmABeFW#d862|9T|+(f#r*yE}GLHgSqA+86ZB?26Mun|bws8TH7V?u&7NTfo!oDfbk0+c z&!0bk5z}>4M0~lY#AO9p$1Z_dDWdES-5L)-nnT23+2dVd;FkkZz&CizI+VeUKna}M z6u#*?BE@LTXU~ctvhQG%Josq4q7JgVJ|0d~%v>Bz>BUHRu`GuskJaQ2mU{}mBvS4Is!Q>Q>%sUmjsWa8f%~&Yk3gi!IH^g{mm@5%# zMt=2;yBAx1?+$sM<_sMzF2lNJFpY@&@#BZ0)Ph$C8J|#HU0o~i*|`ntPD?0)m1Z+^ zHV}|gx~##8+Z=qz$3Tx89420Y9Z~X^FS@;NIHF>gLK7Z+cbcxCYRR|IO+szUdYKY# z;ttBZ@P3w;(^kKnrTEonQHl!*=dco2-2C%ugCNDfPmMqS8i{tqZBaq<-jJtq`vL3u zho8AUs5MC5%b^C8s8o&v4{|FX4$Vb06l)&u-q;L8wb@~>X|sWZ8<)YC`t~kC;iwxsj9# zuv>)@e+(ojh&~-I_fXYJGrQ8d;~7q2lA#!yFLR?MJ|m7G?8_LnWj z>iw-i(G%Dy@;GwvSPsR-ezyt|IX8iP?= zEVBPJm^t{_nf<6xEJ9RkWgqm();_P1-%{Th~3lZ0o0&`h? zD5P1ZNh*1I#m59BOmEV*%s!4zO@Ea9(KhQ0P3pb$zjehnVOVC+1^Q--xN888NqNF< zy|%w!-q~Kn z5-hk~P*KhWseNXw!thL_v1K?QNi$?CLd=Zb@od|xOKoX7Ie``g2#)IWZmEDRBGu7l z`M5(sHNKO@A&C#UQ;Sxojh$HF(9v`YV$)FD!^l#bh6(jp!{w4>3iEVs(Iv2S8wyXf zeOFmgNkYH!w6{pSQmmEYGN2hu{Ph6K25XUHULn{nwk$-&kJ#EaRPzrA)=+v_l`T^ZV@ZSA9qMWu6;t|IH$ z%;*-+;LkoIE7JrnCo1$99pz*YuL`OWkeZjY2whE5Jsj|=9H1@CBt4}eVd-pUKL(Lj zE7z(&7vx^vRB)O)4sH17-buuM94VBljS|$l*5eRIUVaHjUf+JdEPLU)!M@$Qjpl|M z5RGN)1DPL1Ft;bZPc&IX9ff*kTf8_rcB4>%a^vz2)-$zy6Zf){f}! z@3;B>`G^bnDQmv7j6Hhnm@TkWq+0ovc3v6@xF&n+)-B3o$Kt@Z&=lNTpv0=A4YgfF zPBv8vvF^I_eDwTnKSplgBg%AMk%1E7LIFd)75@X-dzR1MYnN`a8Ktd0aKYGXivTF8 z9@5`h0@O|e^E)kHC@@||%1V9Ge4a&fj7QAWFQWy)Yv=kDDZ@MlCn&ggB52t`Mbsr8E|q~}m8Qxo3SQnX zl*aoyf(_+YIBGMK+f4)5$jpf=GK?`#2Y zrMy~yt0t)U7#vr$q=0Ch>Cws~sD2rnj=0wyh7o&#%QvtPjL49cDQ6XIqGJzf`?ag~ z-JP{3D+BTFWI*nb!4L*sgow1bhsVESX8-A3$!0h}2zIO~u+bK%TP(OK3DV48dZgp5 zTvSmN5AqMSJv{i~frt;MYvBMNH{{o-b8xcpN%6rz-8UAF8JtK(46k6NBjgs2ww{@* zj)2@s5oe`_1xF7?t7q*70OV|fZ6@$yTZ0!K9 z=qN|qs;HcpFlO0lC>26(co2@haJ;c{o93JWtz%8_(&(d8ik~aqa2-Jo^ z!L$&eUrHZpnO5Nu_MnQI3gv%2j}xH3vF(G(EE|bv(#*B+ue1h>yXWXLMXx?noa0Ft zc8cE@EOD4MYPr5-kyh+L@ad|r*(IV`;#y^G%c=Y?aK5B?9fJ6WIAWv9i5gY6&#U~L^9PI=-e zj6_^$Mah=VsHmchVn4-S z!)NLF|6o*;xu+m?5x_qi{EeuB#mBHy!oCox!>q5-T^IJWEX|_{kAgp8)Gnx7yILoR z?ZvX&%G|o3cP^lAT| zJtqs(#krz~el&ASTloB7w&&Z+BDFsTgd05174u}L^6^m2x?cX(0^tMj9F=A5@H$sd zt@;1oR{i{3_a;oB1yV#mYsrW=O(X;-`8TGX$1|~880$qe#67m=5xN@{U^=I~7I>3s z^h7~RJrQ|0^i}Br0zdislrOJUZ!q_d{fgVBj#HRh)__fY8se29C$t=o_-H_JJc)n1 z%rBXUM__>eTb1Xkjsi(29J(;0#TIo(x#CREr8Di{7wp3Cr95cm8>y5K0@BY(>TYeg z<FSI(gKR`H_#k1R?0B>@AB%GMwkKUZ>n7lA z>%QB9qVneeV30}dGP;TX{KD?S@za0*@VKp_-FSQ}k9L`}uz-}CKH1virMmOZrgpGM z`_8p9WI@r!Va%5<)kCD3Yfwv53=TF2C@54)UDu97bOSDHwv#>Gy;rtf`dC9?Uueez zP*G{{)dsj@$gK|=ND31Gficp-lwU?RP^f_wrjxXHDvjGMAD~+^duiiWm~@E_BIGys zP6pIb?cmeX*EgQ-uh1-V$hwFDH#i!w7X%0ZX#+U=F4MDY_w?O^8m*gJ(iN_yOY1Nx zndiP;BgC9|itMW#45@Ejqs|RR&O6JtWhu(@Ah=t&uJ0wTq_Q~bL?%J5ZZ~@OEt%Ns z&jEM)!YxDXsi3@Debw=KZZ0=sqmpA#8*q`wqNgaC{4xWBm`vD|C)alENJb-M*~R-k zN&t=|PQJ;|z#B3NUh5v@jk_Sea#n{jkh`7V`t9U2>^1ahG6mlYd_TFGacSWN#@eY{ zL&(sI>un8rx{E$9;x>hQwXY(YBq{G9y-pk8CAs5_Uw@mDqT<|0QuHXC6jh;R%>~wm zYfydOQsg)r={Rav1BXy! zAaj5z+f(%^TFurL8| zgkV#Q62vwmbk~rsBx4WQ@o>u@4c2VFGxA^>ZpU@_HJXi^BQi0;hL0qX>G12Y5|%g7 zw}(#n$n{%tyXyijBElts9JRTN_Qr|G7!?z{wkTVF)IoE7F+b+8{^!8pQrGpW8wAH| zXMf(6$R0fi_OxjMW#~J%rg>o4p}hT3dQ6N6;x=Q7Ek?WvTfp549AArj90n-TbxYR+ ztZw}3k^lbfUY!iIV{}3Ckd;`L;V?k0QU&KNl6jVI-q&c3V_rK1zH zSDrL?R%@$$CtIpJ?PMlUl6Aj(HuUwmHG%S3-q`v0L$`o^9pCljW^I>c^6)@Ekm2>X zq>-Bw`>Og*pc9IwE-D@;Ksw~W^XAP-Q8BT?Q`=S_mrVk(J#~ezH_3^wCywsWS_}Xyq;K_y z1LCzhy50i9&q@f)yb$}52o+J9?<`_ZOlTzoXPf2>ujVzKN3T=%spMb(Ch8h`ZZLY* zSvG%j>Ka$&4M_5bFpe}L75e*QW)ead*4bX^;HnV%r}irkYiJJ|MKqQ4;8WGAfzb@qe2umIsKCqG!VL8ROIKC zSHm3IW%^3@{Z6P1Kls<;ph0f~m){RuBWPrY_ARuFGIj+y)qS zDiElW;WK)!L7WHB$b_V%mGAT0E(uGD-W_an(pbah40HY(LR5~EuhoG_j)s~qgl4z= z4YgZD@|In_f-w+xq|~E^%b(HzRjNp{UNUEsZ8H$ASbivjVALXK^0jBBUD7`wI3Wlx zYl5Eg)<+5nCCS8LusH`qagdl|3crH)Qqd~m-tt)EBDTQw*XAWc|2IP6C<4d^FcA#M zPyne9Od%1pT`HKh0rE6~uV=?j;eqcP#$J?aKiv^^ z4C08*k`P!RKERNIx1AeS(AU>zVquYj{|ErCA_(L_ay0S9i@(4h??ZysW{mWoQQ zE`v`Te>1eOPUp9pjQp9R`6l^}{>FSt%j|tV#%HZTe-v}GnnkivURN+W>4GJ|`N~Yk z%av{^0o`uLS6r#EGuhcVvA9%<2xVsU#(Ln;vmki_dUSJ4Td(~ZAnphLfxXHD5+z`? ziTJ1XZmcg>*VeW`vL2^bb(Efg0r8oGW2dNT4f7O>AB%@Od_Zh!0|El(z;+DCinjsm zkx@8z7mF&sbT)N&V`JkS5Z{fzeel?_lAN2wutGKj#5n_zBx$&Lp~SAeX4_u$h#RaK2p*VS21pe*pqkgYR@IgaExqx<0TcNFKH>6g3 z4)6X?7ykUvmz_Tr%bR;Opo@2ChAU7rpvJtx}D>Y+PALjC-e?gy$b>lmYUb-~sc3x2$) zmoHy}1Wq$}dwFLBDVGtegllH1_jv1KVNk#=$}9i%6|_V02_B1x;o31q*=AV2$CV)k z0SpohLZ?Rj=3&ehznYrS%kRViu;>DFjRf0qV0idgPysk9w!OLX0LgG9J1tJ2LN%y; zpqd2%rfXJ^UIYaaN8!IERq%FZz;q2p7sHqYFS5+bN8}%|s%MHoEmi{RFbL#;jqSsG z=aKtRq3(T(yk;Kg{b_iRdGzP!vS?ZvXJr5eAw@J;!ok9RzV6`5qR-q3fzk2vuM^U9 z5v$%LZy6bs>zR&u=YaQo^$9rhi8b&D5DAn3m7XU@L3 z;`f6=XH99H@fL{aG@GTJazcVW<=d;|yDy#5VF;muvu59nJhZ-|qQbcU z#1n*8q!+ua{a~6gG;w>=HZBL0^dD9Wyap@O+?-8qw6HF4yr1#ePox2xaU=sj(HO|2 z1hCZTJYiQv&ck+2!~+&$fG~dh3^hb+9C9YeuxW-T0xF@}5HQSEchz`woBy;31Z_dE z0lgO{>{il-)UCs${plt=HypcT*IpxF4Wq(!G`@uK)TGY{Bfa;3ex^Kc86Gwk9X;Sj zY~GKFJEulI4Ny84IcBh>(Tq+~j#26sDum{CROty9Y=XkhT@PtAIaf?)ihzVejI;IWFcr;g<7z-tsYX+HJwdL=zF(iW;v2+L`k4queuQ zX=5ld&DW1^V-)jQD?>f|P53CIE+9}D%*>Jh83*(w?`@N*Wrb7&Q)|Yf z{WfKnw_k>=+&`1>0_$_#WBBa&+i;BsE}iCb(UU*^BLh!A?6c>qud4zkIMQoox_js` zrBd@(6z#^e(=Yw^ZfJ0bnn0pj83^c#ZTiHjfe|0@?3p$kt8fK7KFWIJ2Ok!Xij|*} zWIfk~hAxvjb2Octic(c#ExV$+y1G^xO(=;FMghyTx4@C>#k+TxtG~b7i@5a&=2vVf z>6u!Ao|^4RvIil&>cI4w zVocQGcIFZm);Y|k6w+t2WDxY*?gPlKE1KUlV1R$Q8;V5>!2ehl-=ZYo*Z8G$71t5f zD{!J^e4q*!O|YDHPsp^H6U;bShZ&OK+9t@$zHO~|t)+O?h1KGr^`rh@?LZQgK)3pC z?|}oI36~zs11%f_Sq?18Fcb_yHC79n7OK!Mi)JNXzPQ{8ZC9bt?8+e`LdX?`KKJy{ zAP~ZLvXJamdjQ54W(G`vd@$!qC$C{+gN0*I3Y~|Ppl{BI*CumNa(L?%=lIVOLbQbf zFb$+S|77)}c3aMst+ibHm7YeS^wdrp>e|3kKL><$rBG;7tj?oXaAor_*Rr&<{M-#{ zAdbbX3+NGGP7GWs`v%lm}U`iq(V&t(*upL4c!0z^8VK>W;Mm}n~sW;~>A&mk>;wq*5A z5lS1(7#3YEayeuw`3?CfF9O1;Ouu$U8042)9zeVQ9P8SjAwE;384Bf(=0yHC=w?b& zjpx-TvF}LU(Mm0`9l)Z$hpT{h=2<`heyVf;+h6UO1)VN|#Tf_xVc|$c@)Mxy;Tyua zguGXr;7Djl=>i^F2lSm@Xj7Hu5EN`DT7?^dJQ=EY6E0+vwp3*yr!h4n&#B^x*4Gcf z&J5M2IM1C^gRasYP{e=^;Jgs?C_r%l-y&VP_}i&A!G%_tgBj566>Yn|hU?F{^^4>X zmu%}1Dt9E0(y5=ljJS7qo5wzWE?^SoOUZoKsk%7srm8^Gcj@QM`eE2H=sUi@J1z(>Cg`+0fjax}&uP++zhT+u1>7)12as+Rj2v66>?R67E(Fzay9( zM6c=jx9cq7I$HS_$Ttt|c-dK5-;X=`P{`(zvmlXa@uduD)MS3muRGBeEKM1ktwH@b z;kz61*e)wpsvR6VVu)&pei#&rk(jo-%DoV^QAfR-VM%2ag87!y>QpHPYPqxr54wtC zu0DszV)qHRHv{MYxln$-zF1xBiRsMKQxJGE!hN*^KX?t`zRfPN z>6@5e0hJV@uOOb90%%+1)zm_!L7X}DC0_=~$_Pg|0 zGo)+*1lg5?R!8#HeEYzzHRXY4YbryP&vcVouc^%7#sgl_0mcd`gr{TQD`dFU?a@G9 zWmvat6wEkB2u%WumNVORmhVXY0>Y+2G^pJPUUUl!1QXQ$Tn&mr?L`)vsI&{0OFT=x zV4u6dA93AzHy=nXfBh|uK!A3u1HRO1bjdA7fqi7OgnI!6+7(w8&19s-;ekHaD^<#0 z|M4TNXUSoF93V;nr1;<==$-mO_FkF)3~gV9?tJ_`ZHa}AZ30JK&#g0Gm4W1!0xgU| z=pDd?ZGE`s@Rq_k8l2_z>enZxSMnI187AWnE>|MUwdpv({P%_$v4bK>z@@o0rq7X% z>RdH_-OhhxCMwr3kap3~EE@a>6v2gl&&mHjJ-~q4*DhVUr-L=jz^xJa5G(?rbsAch ztJ9SzYDe0tClQh@R{?C9YbGK-vKENa&u8&|QO&z)jttXX!dF;a>K`e2f zGg}{GrnV}J^d(m~lPrN<<^hd(ivg+xm9e4PGLnk_Mmg`fXqBT^_+fm33I?kvAM;Bl0IXy4D=_C67&X|5$#SWdMRZc$O-K$GKk6BQRnmA>XMIWw*jkP zT*UvsHq>bTYA~fz)>pv$P{{1l5h0u2>xhn4*dmo>i(A)$JeP}eO#ryZ@1$$b@s{Z@ z1Z?-N3r{RDu&vfUDDmA-)xm4F{;WzQfe1`I7=uOmpnzNWWO>LJojukeXv{^}D!1z0 zyXmQ_@z{`%-_tr(K^z7*(xTo8TeM7o3#T;_4OC9jj4!qF>XR*={f!W+4}&hO>B*}k zYVUXE_r=fJ_UG8)sEx-VX{ zCxv7jI#JBw>n(379PxNvF_g6Q_9*{?POJaXn~v2x@=^-~8%jPw2wrKyPD*|9>t6i} zu2nl|=o~HOU4gh`SFc=2hX}<3h(4ffG#Q8N)0BZC?~pm4Tjece+1?s*N`~9LTDuFM zqKE?1v`(EYou;%DPoSE60OvTym)KwqvVm#vluY?Jr&}1(DkAx)n;(0)*(2 zkm;!8G=2Ki4$%f_=t^8;LjxX6AWUrbjKg=bARN~VqupYddT$?j3@1ZMQeK}j89to z5bt=WyhGZK))BKkUsr))*p%Q~X+#mpA~I_yE%ouvY*u*F17Pnw0wH1&kkC|ct9>)z zx0(Yz=Q*ULjG2Ac@)xK3NE(Cjg`gUr*$Z?BP}yxXvVR{ykFYT)dEBTc? zwW}Z-XtW-vF@hLdzu?Z32tE_+)2B}pF~o3+d(wB+P)Jp^wU$LdqX|3eV|XMDBN(_S zLvcza=eVdtGDMXlLsv!-@_`nf)AIL02LcTg}>xj0hMLGS1F?R`T>MwosG#ty{>+`!9cd zGcm)%&M$N4&g(v#Dv*orh#YEq=gt^h4}6^KT*h9+92kg2h5=n5;J{Girhm@`cne## z!|gL9zzbk)B34`iCfXu&Ud-IDoj}C<%M!rsW-j_4x zC<(u6cll11)vLO`eHlZJ$2j`Lo?SnGH?y1Zghq}{aKng7V1j@Dim+awk7#DTZgIPj zZmG_TJj)34%^%0UA13}foK6r1!-9?s3rhx+LB57(jjKikcu3VA3!I#5B#5a%&1dM% z@%>(kVq}9&sd(`spr|@G5{jvX2!4PLGD?6VbGlB!E$KWvEH8Ao_09b|HKicEP9wmP z*XA!@kljak^v}N`~0hFaYLB6W*_aOwcRo_Zhl3o?s7FrDKn&45vtS+VX=!H3n zkYK1VaAg{Y&HYJ%9(B!3e6>x7-u$shU(sFC2REbt#5L^n0YmONe^!kZIg7vRQn1cs z=ZK;Ca*3vHJGt_mF4arxC%ntNa&0CKVeP#QvOF6rjKz0v48|KH(5CUgIYj^pDuR(w zCI~RhRYCyc3ON&YJ)}n0Vb|MzMbK^|tp7l-r9M}c+-ET9H$w|r*1-Xx(a1bHHG*3& zae3KouLijv?51Ljd!S6o%*N3Zu4_C#udhp~CU*mRl?>N(czG%m%sdvm%z3slq@W2m zxa@HMm-Ey%<0vB63t?sa?pM;S;6Mg`vZM1gOpn$VZc`q3aDA7FR9u7R15(>e2N*{= zWm2`0Ze|d`t}Sa+S2EYXLMr)3-v>|Prwq~o&eAu=^Y-`p+N+xUg+LbMY^x_bv|{}F zPjL}-HNPgV(anRQEC94!M7YX2;N!B4<1ga^16QlGmkEhi_rCx8Z#v0nL5pveR?BYz zzMGlv4lt%+kM)(*PN4y@_5+n%Feykm_#!OlY9ND3t|Y{qkg#P!nn^yVP6n5&1d#!+ z!cRimwrxWw7TuALRF18np4mI#a`m=<=RaJoW@F`Fv5l`c%_xS(nJiSXh-#y7`wb z+7xbkmTL7KeS0Ey&&E>t%Bk=FRTv3)u9d&{PT{aMfz1m``XoFwI|M=i$INk`BQF1$us^D3x#;iay1aG6c0i z4WFIt+n!eFW%jIurUgPN5WKAHKJ&>s3ns1ko|P4FnC~nV7d&qti73SO-nnXbUg+Dz zZ}L9B(juusGaW@fGJ--spbMViKaV*;R9GW+B+h;*vrlTH3a{xsWccHc*8rG}ffG3q zyAB9nSbTggu*fa`~CMdsj?hQ=nKUw1=btdg-g)XC^R)@mzuzGM`%sPup)Us~Q<-3ZP^B*1#gg7ZzPW zP!R9t*#?p`uZY8)J&;VdVLa!@25VV}fk8n~_`Ow5a&UA+Y+*p>o0eXCaf^%hj2ENI z&dtzSU}9Ei(TwpSTREWUf>#iDSPcMkr1<17)%fNyyZO7;ejv!npn^PLm)h@wc36w% zzb7)ql3aC0cg1>#G&`mMl`KqW`*nSIDrrR;k)EErgdb){yJiWa4PZQI2YsY88vrh|bd^&d96%*&28NNkJKu|W z3}Sres-QqBrKC{h-BhF2maFuJa?g@DK%@*%s|eE3f$0fGPau;_|iiUBZ2RI zkjGul=uejpP?-ZAHA%5E44PpIlAz1_Eb#i)w6`zIzg3Qwb_~381Zk@?pxzBVHqPdD zkGgbz16@k+&x*!ZO*pa70&$v?0==#XAhFv045AjG0{f`!;+pEKB#akBrZ1)Rt#8iA z-H2Wfa=bQ-ql1Ij%fBl}%}q_mKR!Q$!mERajV7Spgz&cp!^0;|U~%hHwp+)ZnOV2j zgFG^36g?_N+oGXr45iQ1uuowc1ph}5Ek4rAa4Wg>Bg-x*=H*CL=`&lC1}+qOHaN#VFvFD1$oww@PP!X?2Fc?gDNmZ2uRO2d&>Lx-zz^w!c znlYzqA4=t5qc2PS{?BFn^R*${yUXvKRMR}?7ry5%_)M-IZT0fo#}t`e$@5JZoQ1E) z@tqQVJvIYfHEYDb$4;*EE!qrRP z?g1?wyF7e9Su_I++rcZ3{2N^Qk(JXp%z^Yb)9(3$Au7u4*(&LEKN|-%972`!ichz2 z{K1CUFW1Y5`!XZDo~>D&*CkuF`Ce_=btZae#L&H=XYoelGFgE(Yt%p+M=^fv}z;?8M-O0Ydo z?0r`-qssN<=F3b5DH+jFT6|J$x4`KekFfdHu4Haq)2LI?`WNIv>5fDsTMi1`If9Lx zW7_EW0Zc?rM2U0@*836?qwdnsv$Tk3VNnsWbnyPg4^6gz^jwS>T}|wHVhbtOx3cOLLigY=!r7t z2P~|sb<&jAC~7T7*fFYAZXKvcmW~uhlQPEA=H*Idi|!7bo)RsTZNdnZO4L1#70|lD z5LW&nc5|)E?#ON(xGxoUiV(PLC{&$?Ho=Fo;v`3WO%rpgd9hdfPk@o3O-@ev4E z)M&mWT>5S2u3ec436mmt*74;ZLkujl)e$@fV%09NgV5$c%_oSG*tONUzu|vF=z3V? zG)TrY;Bw!&6&OTw01$2!`j6zxHIgO(e10d3HiyyZ>ru=__AB!qyQN14zTrwsrgx~) z)g%5zJx;i>A2mKXeC5oWhBj{)H=1#^s88#5{;8j8Vf?+!4U|TVh66ZX9Q0hF-i4N6 zmM}*Zt}|HkIQMH%uh4)phc@5-6LK42$Iypo-Y@?a1tvalC;_QyY0)(^OAS6uHU_*b z)_Aq{pfn_&T>!9-&&EMng?zI9(WFZys$UU@hr`Nk0Aj45QdYg=He=&|uXCu>OO|P! zEl|Dg034Td=eWm1G2oyruaQ{ouYqAMNrup*b5dDz_OsFgzsp_uk27JvOI*q?VPPt$ zbh4?{KUGn#s2Mr8nc9~h&+r8X0A7L}*?q}ZqY-fB~dfosVFY7NdHLC->5$P0D} zY)UT^0J%|jsl?d6d3zK~mj}C&eD2AdVg1dkZ)0+=%0{le@=|bsj*`~>RbBoT3OZ_P zh;dL})e?}~0!SDt6!Q}vg2x&twZDl_{{37VU%fG9J0`6$PoVmp)?fawu+tqsjyP%2#0=q$Fs15~Uyx+Fpei2V6 zzkD{}JAA?}#V-ePG`PwnbRCi*SB7|`X7BBLpsoOJrXiR)s^qB3$*Dp67w?#f%L86> z&s5^2re>u~7-^=v3T1s)+Tt6GmY_PsdHVFbG(BDsKwqL!amTkVgat7%+^d1Sx0iuC zkA1&dJ{=uhm}e|i3O$V5-Yw}DG~qp;?OH7azU{0qw> zEz8;tXax5xTU6to`1ax({&NE}^ZTA>id;w~3Gl6XnShmVq*eUH_?z)){Ub@Ld$EK+ zI{56bC7cp!=mkW`r6T4}cy~X{GSh$5DrPCG7ds%Xk-(SP-+p#n9I(isaF(h5YJ;B; zO%0Xe2^a!>j&tenc~#y_OiU|)UZeVnVkl%Oi7#Kigo6&K7w(Iv2P2>`f1$brfZv+E z-?r;Il+CVi7MzlKJO+8Zi{+Ggymu;&vXD!A;J~7NritjQsaw-wyTpK@g`%H^h6Xrq z!FyvK(!EvgIwCkAmiB(D4tPkdJIa2Xy3zjSCr9OfIV&{ugo*49G{44s8^X{lSFVg9lU~Sb zox!{mm;%N~`j3>+5WqGFHYNJcW6B5K@AQ37KcI;Rjv#ND4-$O=fKvh3De6q&Jl1*% zQGZZ@8Bk9}se>0x@Wkw+LYB)L+iwscxsNvGLc%{rA_!_b+ab+|}%d%>SjCpF`08aEppB z0FXVNzx==>+Mum?RYaLdOug`dQn|}WFANua+rhqvETAkSDtm3h-$=4}v5fTF_PvGe z6YT-B1SXgFJF`2hLPmuom#?l%doCS6t{scBUn>_FpKtZNC?>a;=gRoit5>w>)F0;2 ze#yJlRh-?Y?K@GisD1Hw`jh}ajUCC458yFl)ol0L%W=|Qo`i*QxSDD7=Q@sXN3E{= z)U-S-F#q5f-+RO0)T?8m$wA@AZQ@BhZDD52=bTQzpOM{&*ZjOrvbSzib7Ok^8m^a2 zIF^nAR0zDYA|U@Xft3@Scx_P34u}3<#f#9)(Y$LQ9P1^OTMgYW+W;tAfO=hnSs{m* zm_EXiV5=iG0u(H`jCrvkadFeL-3bY6KUANKi^5NZ7}pnZS*#$f7sb9@1->wxyn z;hfqHb@j>MfGAPtyLo8f00&h=IfGz;#lzRs%=+J2TpbY_9SsN}CSjIutAb+4Z$BIj=bx9#p-J|Te0PS%>83mP*;-3u?tbv8G@BObD0`Zr60Y3AVbSow_RPj7WcRbWcfc?43=sPOJ8VY` zWPqyBodVp}=xa}pyhg#jU{kjLyl%dU%TC|O3MUg4&sYND^4)q*TMe!f6P-D)8p1e| zKrc7}sC@^(xNEcC?3}$EHyZhN`n`SomN%D&d#4{%N>B>aNP2dU=sz8lC!0bBHG@+(qnKXqdgQK8OEI zh=qq*-V*N68;kdW#G2_)AYGx6%*nCGDG_~A!->Al#|EYfEZ(0dj4+v{S~AB^Eq190 zS=BA%4H+zaSuRtE8yNj@OqE;0;fGK(f6 zLnqIw5T*vEhaHu!w(|JrXJiF|>z`c*<-WpBGu`cD+^d!N@D`KuC4Ax=upPQP-CK?* zYAhUp;G%|Or8a%-#TZ>9$0nhET#lUoEwS!N1^;fX(mt103X#0A z+P$OPGmZ?arn(2*GO8AhJl2QnU%+J)it2R0lvG7`Jvg~0>^aP~O!QQHdEwZBNJ96N z3p1O2thi{eyEoYg0Z&k7C|!Jdk1_rp*G?Sg*p$TujUIgEih3+4#OWMHZpVM z+>v6wnI8UQ%-|*MOv;-q;QAj15v5FA9+%t{g+PF7h=n(8fCNy zH@Tp1Fys@Zd*_EXc_5{{rpL4`;C6WnZsbd@O?-T8AF;AgaLqNBlz65jt0pZ{q4}KP zYJxJ=@HXMgap5WDc>}?Xcm4|g!KVi@Vf~|o^vU6~6A*u)K&Rhl)f#afVHcG%tP+Ru zl32R!UTuQuk+>{WPBF!9RsTI)mnn3i`!_2X7<9<;k^L*5`Ja$llspQ-gPtRwP zD7GTx)ca9&tFhs8`*Wmjwypm8VE%2qOOEJG_O@sPu?-aUqF;G`>&_h^H;(|~qyyBs zIQJ1I2vsbgW{7qYu!qwCKjaV)5Wq}@v-&j`;JA#)RpOq{E8%R9BvfctjVeyl{lQSO z{SDBS1BppzuEJZ&LP9c8>tQr6}}M%*^Lc7yitllOGKC z4eg!$>KH*29h%s1uzk?sI16LH?=kEbJ>g2DJ#}^CtOpyZcN&PZI9$n*6`M$-4n>8I zKog&w<{w?t<{v*$9FC{tY4}u*`w-PRIvyOtJ!FyDBRGwLJ0gPA!BN$<| zE8hn$(tJHlNs+lncj!&Ih$scT(z+b)#z;P0$QYeqgIRtIIaTrF!=KvO*YgdR?wFZbf;j7_ zxJx#0Y;xP%+a+2u49g1+FiTBpuw~KG90V3H(C7GDoLzhE{cWljbQGJfOvm|B+$E`N zbN7Ny$#d!z+`+Q?LCqAvmq_Nr+sJiKnFJixsjd_sG`e|*W-g&Wm-o(WP-T zb20X@YpyH#McR@=mX1fraOR!N4ytuWK(_VU>?%_+rRw#5FL_3ZID0nb712u*eXqkS zL^AK{p{m&%lV#hJ7n|8}-1^IX*Iug?+>!5dXymCNMi{Wj%LW~*=lm^3#5V50u?xR{ zeRx&XE{`NF%)-Od1p9kbCFtFCn!86HqZl4?^t*LI$8BcffvN@JdJ61&;M!jX>Z2AA zaA3La>9P`r*2W~jaJoSa0eui&CnvK+nu|al^kCP1{9#pzLA(b{2=ExO5aQUshHH{`IwoUM!C$h0@a3CN83{B z>!tg+kmq+ALgo|CLZ2aH!`W}|V`%XWMd97?M=p^i>f$eWpF-($2k`-ba2Hff)8k16@0SwoLSU&V;i-nOYLo_uKnB5o=*z zEkqBq>Sqkqv#+0zB(Slut(<#8>aB+(6Hx7Ynk80xO);XH`T6-MDU}t#x3!_@2c(tn z3X~Ax9~Pux|6wMk@rClCx?ofan==F&-Ao3&t8x5RXaIYRWn^Z~XtzY#A3WE_BKvS- zXpPp5AJ@%Mgf&VK)g$^+v%ZmDgmKrm9lEH=$Lp?MN?)nWrKxKs>HD@S;eAG6F^lt) ziCrDq#DoU@vOBL03S)Vp883@WYQJOtj&pUhxb`a+P1l2G4OvHSVn)jD&WG+$9NA~X z%v#x0Jz%>rp&__0+mF+H-~FnIt+J1|w&@_>pr|YD7w||Ot!2SFp7p2S=}6WFmME~V ze33!Hy`V&hjqf(ch*pe5W5OaLMrNgK_mZLcMkZKEakn@dRl0NlS*A+tr!~gE){UCr zl^wEU%`2{!8Z+`o9cz#D{qFqW{?n848sWFJ=ha@la_sdqCC6*VC*MI+zpw4nP4i}@ zsOT^W`O!~VGr5AMmYyG6c$D%}*Z4?eYB){54fRZ2wJ2(8zQUZWwRc)Er`Is^kD>Kr zjMk!FDvd7j^ByWcT2C%uw43f<+4w9cL++zTegwI&1;kFjE)y`IGb#Qs|Mh`VS##|D zs=xofvKdb_MDUPc4d~*0ym^ePu9x$JcWmviCEo2eY zgln5=1zKFmuiz8Ak@saS20xUHbD8p=~E@hMYSb$jCZza&tvGJ^4 z5vzGW7jiyW&S%Z|nQ=i~sOY-Bw&s((8;WKdH>%$ov<)shI1~U$Cq#Rt)S@jl8$-9g z^Rf6&cfkH;ZyqAVN_lq^i>K+1F=!#uQ-NtCO4m^!N!9 z?oA|Yo9woew8@ZO^O)2aLg0c#twpdofrubiQSrUyRt&rEf1rH_gapipwR-gYt%oqbq_(+twY3YqjxFQmqj8lJo|7uuZoo+@ zDMp1M@ECqBJ8Q@Y%&4<*Zts$|RQ7&+R=8v4&HY>i+tWJjNyvhLh{VUSExU8v)*T}1 zlCBW!xWf;7uUAED0v78_8rKy1J$ochc0DkXZd4q|{gPI+&tLy&PxuWTJV*HaT@}JE zdaXjM^MP%fvw0Dmm3MxC^b9f&36uyUIMZR)gqcFrUXdM)r$ThpL@Y+M^qYrB0%ddE zw1Lp(Lj|sBJdl~wfx>hTXEcJW@oREwfXxXZ)o7$#%2}TE(aJuc6bdSc zNKO-ziS^g*#H$ty>=y5JHSo_T3A<$FK0lBYulvn{>A*9i65UG;t!Ga$XFNS5BswSd ztf5L>TzP3)_xK@$#-IMYemHfSzr2v+{KnR8j?E&^jhg5*5F6j&xXj-QK&Fl`W?+$o zjCP-qby)trBe=I-ElcO~nqRwFVFu7+CI)agL}7*u;x6!|x(m&N>jZ$;m4yiOh}#dE zzi3i79A)JarSdP>P7pT+BE^(hQI=BW zr98Jy<4W?Vd6`Ae^DC?=W@BtUwA#Wd@}awSG!gs~$oen4v`kF0T+R4icdky9h^ z1f3~s?op{3hgcQTwK6o&xFOsSfCL?cwp4py*9GGs0UiTt18)w1vC)uK5StnsJAi4L z0*7g%`J802-QeX?TBS6|M&P?0uJ`^mu0Ow+UNs@dSF(CAGU0RL6`FRZw@~ALfExlS zKQ~J?R?1g$P~9gGHAiN@V%ce8=@A*0cU_;7QDoiuUZ7iQtj|is$RH;yLVDn8Mtsd_ zR%4%>B<}}e-6D5iB}HE|?N85$%2&{qD{=gGE2+1_f3tQsYzx`g4OmGDK*q2@IXnbo zow+9Q+Et^l+9pSg#JHeZhBW8^f>gLnWo`&W3*EhR)PWz$6NxItP&?ShLjw&S(i$;P zW`lyzPE`;`LN^sB(8!P{pMqMqa?P~{j$^6DjlKOpkMGxV9h##Ka}(!G_k7)JZBhoh zSa+WU$kyx6CF>JRykdG;r;JaAXAP|ziiAs)=qvQb3@xmb{I(J~g*(b5cxgzW(!%hX zYphyEHp%q#eP>KyCgm>=CjZ*7rfcITH{Px0BB;+k4BFiV9w&Op5!hD5#z-z69_3K# zUMg>_d0`honvL1-aOe<$Ec8VDBV2o~i3!AtP8L&8;&Fo1VfBLg^k`)!P|~E7?oVbL zmg9-V04&Yl+|mKV>kY6H&YDEfxTJSqauq5gP3$FS>}buH6k=q)m$!B}G9p}{c|1R% z{-_OAuZ{oqg7e6;ZnMr-zY-xj2CF6ek6G)ZOR@SJx^z?WTSk4|5&Zz02(Y z7Ye#g8=|8T79f!GZgmz{DNwz%m(Ln;+c`2&AkWbQv}1F-YV&2GWs&;H{gMy&wtWvZJ(GEG zWyP%RA6sKD?R7S9z06}Ts9qb;q8Q{6+BA|BqN~{SvAvAw>3o_)JJ2;wO{?oa`z@JM zd~!0g+}PighaM5?jKPMvhMd(zU|@|?ysB0Iym^+NAo`=7@^UtWAWI0W-y z4vS3D`1{wGtUmowo$z4x_|?-2G%3q`!(B5|SMy7r;oCivWonaO_2={Io-nhzkbPJ_ zL(k-Fj6|+(s%__LVQH30*2K|XDFva1Ys)+v88FQwM44*Oe0Zy^bK_p^pKBVFQ76r*SMv=8x?$6DOJA!LRfPr9f1D&R7=W=v z{u8b8j8~p>_rePC-S(ZIEFCI^91U+or(WafdNEb}cl*9)`USE{k<;p>kLl?d|4ez= zZCY5pgsLnwG{a9pQhn#cQzj2!jU#1&=&=Kc2iR!SpHlel-8&$DzS3TXK;d}EX;H&w zo6;=6aKIDpW*i3E1VUZS63FD;2kUu96{OM-qyF5U0s-r8!AL?s#3E8kn<37|TmAPp zzek)R;bKx;JYGFb&!!_G@?A2hSwcm(qgRC0ax{t!2fji)RcF4}j2zFB!*n)<)m=Kx zk}JdG&zaG(yB+;)-EQ9vu^1)I=t6S(h?P|4u5g9Ba#lQj_^N<+_osXmHt1Xz-(G{l zQGsO#CkVD@3r4++mR-jsD*LcwV`DH|ps<8Gh=&)0R~pp&c^M}G2snFkr=R1n#5J4F7nMr#3puN6Bpj0RuGY?h#d<$?<5Zwi5l~ zU>S(=Nh#-*vYPrAhu#FWtS_u{+~pTYUT(>WqMr*1Yw{-4@O#vsDDAYB3{5v@vu^Fd z*>v~`3kjY}P34T(H>WPP@kX?}4HAA!xFN9b4C#~+_gLlp;CS}r2r$zw220HTg+MSU zy;zcGiHOPHo}$RuK%G7BN;_xP5(lSsm!gVFC(!IL&L8XMdF=gpnD5GhGe%0uG#>lF43-Pq_(hRa+AeneM%IFd= z^+j?{TT0<-b-ZRlbbITw#H)PAFL)c{Y$U#Y?$@lhSaGAMysufWjH6go_bf$kfR$=t zJ9diE&`POFdz~*J%O8$xM)xmVL(vQAfU(pu{c!=N<1rcNvK;}Qg35aFSCkTkOZ z2!A-JsPWy9>2b0DQ>aDOf;%8V3m%Wd4;?xLK>$x=Cnz7)q00H)`s6=m z?$=8{+Y61;3^lQ}_t!uIE}yD|q8@pTcrhEgcF{RiZ@C5zO<|%h*MVHMM}N@w5{I_5(vHTa%qM_NIpxLLF5(Keh2b5o)y99x4S&O46Fu`4UbE~IHdc0ol&_#Gh z4SD3x$j)oBvRRNKNU3b$BtYYLka&IjOB|$JUK-n9Dw9nfpON9?@s{@wJ&=KUh7G_R zN=qfa@_61`x0oAtAp5(Iirx7PqIZ9b{bzE~K5yKuc-BG)9=M}6=H}wftH39lXu#tX z_fjF1aE9cDRbH92Sp*P62ZqC9XPbJuie%4`Ruz|yiO1u?IXa4Y!mpa!DF zg@Zj0z8e&0-COUT?+>ydhcYL}zer*A>k5OzAg0>U>D+h%i^X(Jd32>M7E(-%+>28c z*a>G)RoWWgUx@I%)fB_9q%fG06Ggl)k2x@57=T%F9$~96V-m{I>0Z6KF|%~HfG4KW z1)^R>Djcx-r8co}l!4g^;H$o}S7@9j+U0@L*9KhOS;I<;Ha6sYggiN09KDwZ{dpNb zEll<3z7J$vvOj$RGDJN9N+41|F36z3ByYW6d_sZ8mg{9i8NDNq&agrrs(`X)l1Na^ z1i3?27qjrWBU7^?XqU)|>{ph3$u~UnWXU|vgGEKw5j!93%jmP)J5u&x@SKoY{Ru_0 z{ZDdC>o;?6S^;2c7IP_5V;(`q4ApS7kl=RF2Gk6pW4?7VQa8ZL9f}4h4}!WML^IyT zG;Sbf^oFyYH#ayiaPH<&Ly*AA92K^D*+?4jUNY)JRfnw(={GH6(tJW=tlBmcox-*a z)O}0=v;i8Iuifuit>)a8{e`8DP`>uv!CJJKwQfqhWwITv+*VnPG~WB!bla4(t?rMI zZ#Jf-T5e3^pM~%Nd?_8blfwk!nk-rs0ar9FFy!fWzg!t~)>AS~A>-VFmEq@~=mwol z$;I6l-wl>(_nn%a((^RH}cqGoZYr=QE7P``ftr6LAol9?bU z?oV?^xGVU8R1^tAxfF(HK|bjG?GHeci)03gr&RrO6HqyVlGs?x{@X)EQl-;)VvYCe z$_4sgXTd-J-1c>J7FY9!_d@A6U(JEPYM}qRWUb!z3)Z88OTr_wVs%zWhwy*h9t|F^ z)}G0z`}@R--GaZE52ehLDO)QuvwfX@yuJyqJR|>{P$r$!C(}9F@IL*$CwG*sS*x=`wyc@5kZ8ZD7ZFVc9 zQ-QsB2FXpKy6UvHY>y5*V5D{k5!}AFomESgnENC^yJwHR#S{p#g@9`hfrz32@bR>e zy@pa-@xi=5g{{&-IMIjSM~=!GV9Wv`i5wD>K%iyRKL@hU49Ik)lr|&Je?Ra=iaA2% zeAu@gtF|wy^K3f~JymZPtSC(-@rihiYaht%veH=pGvzH#u9iW*X_s8d*BC;b1UJ*P z?||e&6Mlz0eqge2K0YM4_}u)S{l%)f@~o9Yqa_g?T4L{tSO3}w-Pk8UKO&3FPocK6 zTWlBYOAvL8g9_KdeH}E5sldt7(@}6;nYUN~F&Kd3_UD<*TCU&cec6Y2;S<*BEb^Kmx#Uwg+WfyuIl*KZ<#

ADk^lvta%pg)Q6;oEks z)IEm3NvU+nXuR72bkXm1j9c;zpD1WVGA5rDQLLu&glGBwAPdW+B>axMHcrT_NG<8h zxOHv9w1rVXgPw8z6~jY`488|cRqLlb8V7tkvAG5+&Rh}SWj1}WXm@wNpjp<2_K{Mn zlLAbSNzC(*G$K&|qHpv`fs?y8FxM?Z6R-R76XbA^lxdbb5ZkkK z`Mg0VC+7A&L05neQgdX40NH>R)CeII80@6ndLLi`A$g`oN`UT`P$c`uY<4P1Gc8z= zwAwyCL^$+DfWutSz3xtFOM{BxiwmXG77LYM?KnL0=35=cunn+)Z(fps8#_S44BeNS?Tq_8gi3erP<{^Q$3H?sp<6rTAdronmXfuz+? z5Gb!QhX+BOAZ&2!F3_q_3r^YarU*xW3pjf~GMkJ_{{Ry>a{+e|ac7};Inr74juRBw z$QT6(nhRea97Lv6mTjreu%HG6&9VtdiL{`=p_Qt{1nj>0bNisy!v$_mz@3Bk1C>Qc z3=PFj5Sr;KC;t@AiXAlINu3KivURJz=qKUN`!1z9CTgm15NsgDIQu7 zP$i)>@!i8cKH>rwE?kGResF24^Gz*zXX08*Ju|Bx2NTDN4{7NHu@ax~;lZ8KE}kgu zyHTk{lZQ)7wfR*@QD66X2;L1?3@_I%(bP_HaQ6QFoOx0tn_TFDc;(OHIGZ-vIhS~!8-n3aCzvYS99MEn zbNlfv`htBTP?4C%*teRV9ZDw~AyPHkzC4GGcjhF9=`yi$@N;XF8af6N9BHf9xso4b zN%o(xNzR~9m{X_}Hpyyb+5@HM44a!{RNIDycJq4jvi7~6(Vc8t;#wSEsUXrpa;vhy z`O!>ZEp$`SvRz!?{Y=5Z?8b0>Ew(ln%?R=!ipQUC%c_QSf z-#b(a^}Q9J_dY4f;to|cckA}-XDU=M8Zb$>jbLNv5URE9+ISzkooLBqdXZmJuo3NqquQPI(s`MdhtA;VHawNc7tMfWP) z$G@l={KxxSEbI!k*c#xIu2{FJ9~XP|tuqb~4DV{UV6hr;6PY?JzQE|LY4kKTb|Y$i z!%0W8{UalU_x$=AL_h+*5fn!%ogntz z$-PxslZJfB2c#MW6+80W41}^g>&gnKm`05MZ(h5 zwKhB%_}<`Ifz*V6M4eSMXWW$}8{CPSQUNdpLKh3<7t+#_4K^>x@Mk}?3;}3#iR`}B zYz@2agcV=!9(2|{ment^`8mo_R@%pt`U&%$-yQ@Cc?{jn5v$+?OVIX;OWFat_FNC> zkEO~8*N!YXN|w09ghh<4$7FuiSSUf6<>TMXi#%p5a!14Vp*FGfKdm(U%t5Aq(WuPs z5|rQk5x*3<-@vUe=1Zv}IA(#@50oX-6(f0(O+PSxZd}q|4&2lcLwACCVA^4T4UbkR z@-GZF7X~l{lnooas+9$j!OKo@bQ}R{|J(5)epnP*Km}Pq>X1{XF5#$@N(MgTZ1kRB zuoe;X8EQq&U;~3FTu@wKueGC|U8UOzqHTWVCF;;-p#JaCO8Ckt2bKC7aJ*&#*_yxQ z@%GpHyR9$OT!Lh;v&wtULE;S7K4$lL^%5m>sd#QuWxs{Ql^m|(=7A+;G5!>U0d-8D zst?X}-Y9GL_LV$7eK~zI*4S}iMq$tuv6*4P0zhzN9audeEo`hX)BfB68B38b)d%rx zLwOmt1Gz#C@Pc@N@G!aPrUsWZaMHs=LlYs& z$hh+45G=GXD0=2VAuiK?=mStEUjVYdeO-e#8Kh!pt;jsy_nZX`R4yZp4TLzuEom-GoR}$uSD_nS$kpHUA5||VUj%&{G4p!mUJA$)kZhExDDvGDYmr#@Em`00- zzaA3e?2)rq{??vzO=M@+?BLXzf$#I?$vGdD`b>>8)O9^^7v8Hls|&*m$10mzz0dzD zyS~{={(ks3I%Fi$hMF;PB)C|1d%if8d@3b)pT>ACoCx;H9fPjK3^6e z9BMm6Phe@D`)a&w-xDkrZ!bk6HJuf~48MDxsZ$lbOXx&0V2JDz>`+@RC?>gLMv9m? zyB;9y!!~k8+aq<=R|MN$Xn$3kCpOq;gF-}eHIxTP$IIZgMuKi|YEZ5*-gLpa3~jKH z+p~R_j7F!B?TJuq^i)*|)UUwn+6ed|`uVr6p2P|Ld#(Tc>f&oCk4`|?X&mUS{CHpK zl9(b*+Eh%$Xt%>4Q81DCpQiHLLFlNo<}Cifg4NX!&=m4%T(-(RE+>{C@@+t^<%#4% z*Gh{M8}X@cEpd3{U`m-u%HwL*+S-bHUvFv5pH#d}WMh@o92#2E>*p`kfR-;6$P1kJAdwN7_G zrJm=_#f8{k8n9khsb*Wk3;0ST@tiGP=8efZjgc3r;gKxYoA~iqEA#Q*SNk%i?BZn| z;S@-UWRc@v&}t2~w3__krekQObur-d#_*IKf~GWvK&U`{P;^bawGa58$#PN+HBqEG zIGFyCU=a-$P9zkb&;`Fsa5E|R-!Tn%oRe0<&<&rHOM#{|u6yFaoqmHn-+PCeS<9;V z+CH^sOBOnf^0`jj>pI9zv8y6>^)l!vSW^EIyp_{#`&27Oxfw$mUvtF-@BJTW=-5Q;COY6w}nGjLaRDjXYr=S#%C}D;siG`Av_`JaTl%- z-SA0w{k74U=RLKDndCspKx{5S=EdeGLXZ0hOL#^nV z^)b`>m}#NPERXt$h)=Uoc%kGtTe;Y{7tO~buw~M{eBW>(4rBpM{Ds`XOSmzgRi!4U zq7DL+h-J0jS(3+$nYLEVm2~F&#?uh170umEoVM20q*r)MUfiVRUDvabZJSQFxM=O!US`t|%<<;}3skP9LFHHz|3(*k7Z4A&)AjIY!% zGJ+;GEiDUtF7?5;G*h=_lsS6KC7E!sF>6O&0?7Ew0mL6@q`Jg+T&ald#wTmuMW=kDDk@Z{-0ZjF%3sRNvE z6K{LuF@y=pP^m=}+oMumWh@p@AwynsAHb#+3=NE(U0h;-9ElJd1PZ`8?I3>m|4bwL z#@C=21)9Bz0LR(DR93@O)^x2sV|DD-vCR5FJZgZlC;=S>RTobKt{#_S+Ai$v#emGb zne!Qw7df(%4{kTJ9ml@t_7Rj14U4m|Z0LRvU9gy--@%dZsvh}VwT_Tc1`o$CmFk`P%k8s*>MAMFZtTvf0lZ3T<4X?3!R4GM*zTA>f=ZR`D= zdqLws$o6Uu#l;xEm|FpF-UU#I=tXaRT7PVoX=282?7E6PD5@`Hw8`eauVIt%?VB_B zy@47OE1f!CnQ8!2DGyUgTl{GsY`@%VS|24i*TF!OAQ5=E+-yEnvP%kQIb$KY)_2s| z&Adj+AWzY}IgKo|L1RDZ3%n^~GH5nY;E{a`7jt3n0z4vczmoup8Hb2i7dQ~>p@jgi zMhln+`K(TfK=#O$HOyCf`r;@Ctc!mfS8lE$=xbILNzRu4ve!!a%r`jjIEb|*Kh_IGZH*8l{#)O7N?FQf- z!6?Fp7Ilg`ZwJC-n8ko51R*h^>3Og0pvZgxgLH87Qa}dB$v6et!XYo~nX0)U=`&ju zRA>_Z!u&tJ-U2SlbbTKOb4_+tWU(+n8k7`ClkRSV5QdQMSY5#)B&8AQZltk*kr%Okvd(XE0K~74nYK55Uj4kP1 zCVk#mSL~P199iZX$}iOD?*Wn3UTrr?*5r4c_K8FXgRs{jxzDobT#H@41|EHWvPf<4 zn{j$U(~-hz|4j&&$`wS177id!11d6t+Lf+)V`&@%E;niVV;REg%H+LzH;~EGV2upD z76`qK&#kR3Y;e%ueK(x6A6G8R; zbl6d5UhoqOKVAI8gwI+g6rYZ}F)<_GpLs`cMJ-fX9s`ms}3{wP-zKpy@nqDfJ10wRD9 z_!1#lk*UyGc40Ap^9>+#ZvpPrjawL4L=ewVLh2)*vf zZ(O&!7rg^tc;nm^)|KL*ohhL4Hz#YIf9hYpWFX&hHGvSSR|3z~6q*chy-83KUNq+l z+6A^5u~~t){FEStpmzQGBc{+TZxNbC{FHPzRv%lN5>?jHS$znv>8i4-iMnoe?nK)| zDVlcKggmMN9mYeajOqzA{;{dc&C9+c4`siIfH#0LEAi-w7U4NjZ4$)du%{#_WYA29 zZ`0-lOCslD1n5sp{`5n5Mw>3}uitwBI>Ndk*TUK%;LuV9n@lown^{xQ;4#w0l)7m- z%)NdqtuL0@nBSO<@|s#!EuXjd#uO6=j9LaowL^-Rnw6^aM|KZhBJBz2y>eUDLe?7- zns&55B~b-Gu3>Sm>%sUx5NUarIDkkO{9d_Ml4*ABJhGFdyf>jA5YA>jU*y@SfHW0S zldiq*W;)UK#w}MDBmtO0w%&7W>2gmZ+S^iZ2qKv(_A!=Q;V+R?>W+}n7)4xTm|L$y zLn~7UHHRYUl+a_ylueOpz%bFtlv-(`Sj1~or?#}0$6!AnNv+NNitD>H^Z0ytL?nTw>KX=~^&|Zm%jg1|T zhWi4yci}ID8PI(LvdrFcTOSOX_$a7Hwx+}_xl;S?qXh3!emfM$-}yn~_|vChSH-x+ zDQTU=0~u-^O?kphXP-nappwUJt-PP}I5p{hcUiMs z{wYna+@7ldtv!wmE0}2$Y;#6iZeA{o?K@0X6K5IcsQ=b;^gG*Rpku(GSa*nSf#yB# zsQcxKzh~(BWK0^WeYj^qN^4)iC705zNxrbi9I4|le0l1b z*K_q481&`+?yg>))NGAc*3Ni(r}iiF)UDHS0`$$y%;HgyyJZT|!I%||x(|MTxXS)B zbN|bz-r>vs#yMUgd7qX%TjcdS zk9h`T)S8et-V}qhom^nGQJLwlo!;o}cbqYJZp@FEA1T%Au&=c$907@C)m!+Pc+K+; zKpJ}`Y@<_|GoYqLdAYS~LBn&h+M<}n!5ur7v;Plzt|-m)&pzkS%a%7MD4*LaY;(}V zNsK2CPrKf;EX68aOq+a*bKzJquAP3iZ+dzBuOjc3J;*EGqDA%$0KygxijX^oxj@U^ zy#f&3+#fF$R@*=`N>UPeORNL@u|fXi$i>f0fn_G$L-mijqtw$=V#B)wi_El|FLXEC z{e`R^^Er&uWK?Quws`tCCf@GT3EW*T5BZ0`nw`dz`9&LYNlC+x*kl$Zn9(S5a2aB9BQ)2rrTBviis!346MK*j>9VMW{@ zDvJedfh+)s?V}{`yIF$?bjt;mkT=_1alX^-{2e9ZGYG=Sg6~s^$P+y?zhl%Vf<^bv z6q*ITxXrx)6@WKI?Cu`jS|uK+c)(a%-rZztWYa@14#3{%qx;?1`I`^bOEP5v5w{nx z`*D-e@6~h#Fcz${ZwV!&p?P<)=S+5jJ2hFk!aGTeULS-5-AH4Ws&Am;yFY_lQr?{C zA(^J(lyR2{ke(AmQ3uwnLy4cg7^707wKz?GUhZts$PhqDrNSyfc#{N6KoLP_y?_3J_)-vl#!yo4m~18VLT*W(0?22swD=Puv_ zBL5sP$+!JLFVrMiVx|=HCPch3T9@a~O0H{BhxzeO+}@R2m}+t{{^M}`924YoUTFrp zSjfhQ7VWwOBruR%UUCsDBSQ-kaH3w<8sij^KUC>79WjgAs)`HNhnx%vaQE7d_2_Rd z6>DA7X}{~s#Cs&k-Og|zw0g_9lq*Q5@||Mzmc-s)*OuF>CO5&e!S9} z#M<3#VV8Hzs1IiCb=6p6tC0-2x=kliy0YCZ@H;o{$sdT97NLI*kpn+?Bh>;^OwGeiUUf#v$ISA!j;Y(Le$i9hNwRYXXbRQSSJYi{@KxgDZhS()FDbF z)TEYOB*Z6UD!p<=r*VwIr=S+rx8b`SG;IGs!49g(vuL)WE)<2Wt#~1 zjRcL-K#%o)@sStjT#yp~=ww&dN?b_Xie%ME|`v0sltWX#dEWQpqY)a&@FS z&E6ry%mb3_eNJMs2TD(ChuP_GZ6@X__kyi(lXHyXw-+ulh zc$6E!1-2~vleGAk7h}t;2UueF+Nggdsweht#ZsiGpaW6C^vVEl!4hMPVy4eyfd>@= zo&}v&z9t7+y{(%+wzCk6*Y!w8-mI-F9$J3z$)F^Ewp02X({xZu26}R1Z&C_$9t?chI^>~g?0u7b zBf7*qLfQkW4Vj>jo)y&Xo%~n8o=l$&N@4%Zan|MQDX5g11ld6fdk$Gnk5J-B8TpK2 z;gAooA)sPI?!G_KcU5gH>51Cd=kd%x)0REwi6{OL(3LcG?wn{oS&YpNn~ptKpjtz> z8S~x(Tu=Tdpol}VXuv%sia8=RId#4UQA!0|7nFBe^z@;)*_CUk4_j2_$$t7{kO6ON zQvq~s3IO?`2MJ^ax*@%dG^rt_Q`oE8aZZzN+7b!sw?AG&SPL`3h}d|u{<5AwzbI$? ziEhg?JEd?n9g>JBsmHX(QwnvSJy(nLk-xK>+hr&DeAx*|q2|=HWsoES5X1f?j@=ea5(ZPBe#~p}niX#;w=t_P5O{ zPogj6>LS>nHVn#;sYu5ZAPibccBxcU{5Ib{9t-v@7vRwE9KD^*4X=u(35w+40ab&* zZzEeby|rIoKmFM0o8#PIhl;k(mTQJR)2QK5e zm98lpJW>*z-}@jPkgb>28UR1z$rE8xA5+@o^smcpyB z%}*)x2wh{~<8c*F(_65d(s~=S`x*JurR2olsR@;C(T;P8O-(U9N0zTOn(LjqdY!H} zEmOBw!6{Swy+3VH+3@Y`V%?5Wq$NKL{d3 zqVeYX?x<8ZT}ERY18zdo?5n|3+6EOaZHd=TNP1UU2~jM6ol@i*-|(MxR#))mY{Yb& zV+KQXpF~*5HAyTyK;0UC8NZLB8p z^LAPEwd=`E)tkX-a6+5?o+gA}4)6o2P*mmRTy)TOPVsdUANbC7SU^!7PATLS-`oy5 zqxg@m(Jw<=t;1A$cV~pD8)2Rue4&wW)r$)vklCQf!#N9Cd)RfF+<$ZtwTov`qB;7av9RHoB(c4 zwJ@Wf+ufG}HbnzK2E|at27b=-b?9G4v-w5h!!M2|Q;@{b;hUb@gvy|gKH2p=P7{P(5AjE z2q-`kWE|+>X8+cPGxgOzP6hnpBv5{T1sDp5#tvh-wjPd3STj!2*aI_5a946wdAEke z+g?k$KIizTn81J^|5GSq_7Zq?Y!^D-6v!VP_~vq+U6HA!|4mPs4>t5@_atVgc@EuP zCf`|cruo%ruf%=B~c$^FD z{U=i1qFYZ?Vx#N%wS9)#gsXXGJ%=jy2%UJKnsl9OG`83*771AjkdTG9_dYuI-HNJi z_2$6}#v#d$=keg-A{}dM^B?ID)k;J}5E{I`0?a z49A4=qf}D6>6xG+)llICF>61n3}Ip-VVEK_D(QOT7yoL+o(&L{lKe| z;pF0*kf#iY$ShlcWUtVvD{nPDl%d(dL?_q=rTY(+!_Y~jJr|nz5i)(k#Mc`k2$%*y zUFt~r3C8XOq&^7D9l+wMfZS12Qwsy+PII#YXuh&>aVY@j@$;82HK1c$1EeVcF|Lj^ z^2h<|vrJTOx!>)rYsNH<(nxYR23wnfWMJ*|>n(n)JVTJNDb;oX!=ACZzc)4qNBG#Z zWINNzdRLkIYyy;)ZPjmlzMj#6EK;z~Lf~%FZEz!h$|Ap(lHTUFUR4?W5l&E;HW$dA zyo8ixyedca)Gqp^bGPihojJOc3C=5tIDpoNovrP4iEIbB3hYnIQ{*&7oU z5tV8y?87N5C#T$=9`Lr)K~1^3YT0yFqOu?FW}sFX>PQu{Xtc`s&K>goTFyRwnD=eYw=tPmlOZTohmXDXn@uu~2 zj90zCubN^~MB4=cH?H{YvTj_KixyzVOVZmu;Ct;&|5OVoWnfA>n!L)JB6vTg_$GFx z?49<0-r1(VBcp04!H}mx=PHV zc z%4p&H;J!md?W?lwc>N$*KEcZ)^uXFRG5s=TIZd~JR>Te>>twdg9Nj=T=9@@TqO7tq z7TR{5!1Dr)mYd+lXu7+*C*I#?zYY~h9wxsLHz&dsFu364Zbi92#a|M15&t^7xLJTH zZAnT;mVNB*mp-q>P7bUjYV-=Prk&I)a4Mp9_J~obu~pguWLuI8)+){ z%k_>tw76aV<4r}mt|=4iX5^3B%*Fb3b|QFH1z?|ohJ~zR526jwmurKDB-+^vGLJ~b z44h7RqzMudJjhuC=2z;TO|$>&9M>sAxaI7j{GogovZK7JR_-IvWI`5B8ER&0XX6+U z1dBee#Nq6a2(Rj9Vt*xCYFD=cnJXxseahhJ>>e8N#uwGU4 zm-4)!Z_a|pPM8p#HVbw6;1D-h_;KF!XGhSl!yhP}>$#dEQd&Q}(ZG8O>yMJ?#Gb6}1_q{7B%i8a z{>CyV+52q@|9T3&v7A3vR`C8t!f>aJ#q>)n-mc=)9g^1f2_|hfy%KtLaVE>1=fW$k z6rT>Jdh~TKOSd;AC!1&D#+w`+I=)QdD*WVb?OGQ{?h4;W&vr+??l&Bk z?PUNCk|FcxG1K+d1j#&h_0$J|0Re82c3_T2v?PIx3iWZDWarSEuP3GT`O@IDlgh|= zwUjJ*aidTL^)GLw>sTXvcqXTm9?ORdw4!v{4sNta$k$%&o5*?@Q{0+;L3U~|`}vp1 z-v~F_niTb2RD8~eWl7S-clkTGOsq^~o*1Z!n9^XIBW`*W`;SLsA4UPdlJnxl+dk|4 zxMCnZ&prZjXu0k(KH+3TQgGPpnQ;QtXeI!*jZo127#`k93fX4o2Qz~S(qAHCAVnH{ z@dj7aurTDWD*1QPIxy>l`uzfA0YvZPL;YRS z7+{KNAM|#(T96WsviQPJu{~g;;rdatHnqvVq6^qZPd&0r3M2@iDVRD1l&Qpi(l$e4 zPGd!V=-wC6e4^b%rh8+(@h>ErDKOLOzxz)bwn*Swd?()(1&i+b3sXcAAA#appv4kf z$khQfsY*|Bc3r9jJmSyk309%e`5PMPlmOy80U%5Y*CxT^JZU@u3w=5p|Hvx*G8Pp9 z#Q_P`XOqv2Fc})zAvWnwk9R-YU%uIwQk`&A?YgB%8}up2Dac}#v#NMI`d#N^pFh!4 z*L$rF*rvPew9PqW%(Ej>@L=H8ra7((tMS*~Gb*6m+l|cyJ<}ZjEVtOAj*bpO-A+0- ze*TUPhHWBe-W>3CM%8+Lci$OMTuk3UBwQ|G-xnDw zPqc!x6BT%C2V8IcG9N#`a2>;2Q*$T10LxbGy}#gztH9fvGW!ON@Xjwn>8}HWpnfXA zf%0Xo{oSCD5p`Joe#AwcO)PJo`8z$zxQ2>6%^*N6lXf8tH6%lo#GQ3iXdPLG()T-! zFRbjSxS~YBS0m&G2x=d2cA5Z527-b{0Y#)=0C9x@_yDQmw}9O;F2zGgo{&unbdIzH1U^7(FtrMn-lpQju^ zJGx4yUE>8@B!F-Pe5NnYio1QA7U{b1v8&|ntvoZUtBzVs8*}aeNGt*}v$?0aW14$> z=92+71;wj$>EY*=1}R~L_sBSSRcUl~A@b(X%ht@%*VK}N0y%6%*qJcdAq|}vE|b{^ zmm5Iu*Fb493n*fnF1<9s2rBYtvCa1s+&{r@_7c%DuFu-W#MC*AerTHfdOT>#R*{kl zo-}G^tl(;_=M}6tWMvT_K$4|ufV8~y{I|g08hdTzMObqfQ7zf8rL&`klfKFmb@j>2Za;?u<{`v2%p^IQ9RsJS-|t^ zO&VnYhK)@v_oh*w5G0R*Kma+la}n}!O<)RclB3w)k4}}>1#`94CtvU8!@uXO9rMfv zgl^axQX{6qGa`rk^mEH^!HbbD58hgDomG!asF-M36?Qti;ETf$WoCZM(AkYQ)39LI zv_&bNVXzXnSCV&*|A_^evoaifbd#ZJ{af|hD1&s{ch8GW+H%+8F^PZRehYZ3xpYsKUB=IfHg#F_5ARf{;;p1dWk9!mQI*<5h{> zl57_qIrQv~e!fkvSJB0l_;e%8ayR?V z-{)!XAXWH|IXk&?fpPL#fLelb%5z1rn4?SiVwN>aZLe9t4kFE}a(=t@`Q$ku_q{0r zn#h(&lmCArlW!iF(kU%pl>V-P-#uAP^xZ&owJ$b2eX_}#kbAY8AAEpWh=GJ z26}>U?+L?E%n004Y}G?Gbr+?UwZ6Mo1vu|U%&m>`h+kT#+h~olv}q4{t?(0s1;bL#SUIJRu#&y>sTxl>T0ndL9MA)q z8s<~k75?)M>6`BWcY#Bdvjxc*k>UhTWsR!=>1~3vaHYnM*ZO8#?HKruoMTsB@18g8 zu{PRmyzJW4uruU4Of07$zhFPAiH;YWFY*z=om-C0MSXc_vMLhy;^2+ULD`CN>B(1` zYFV|i*S?qIE%-GG_pYRkqvjdXy@YRCClT(V&dbsU==Hp-YG!kO%lB7LKmB%=jC7 zr<536Wc&b^lb0-q(d3li`#+#*qP9Ns4C5QjUV*OAl;fFIc1p^-l-t|e{#es)i_A2i zadA^Ju;OM)FJW zEe)wrt$DL++N@wp5b6$7a)L#N#%>m-)-}FP8LZ*80|KJUx&ep0<>RcTO&VVfuej5{ z;4D?rO=#eH`k#TbB_RU`LF`h@$;c{)EY-Juh<1t3Ej5sr{1VCQqZ!CK8n#VH?3=_4 zWV!`0_3p()7_L{r_XC93PW3!qA8{WB+C5KXTINFhc*6Ezf~SZfeTRuYhdaU|ykdt( z53fiHUK}~yvd`_dOaC~#hJ|*{vlltxsI*7nVE0pbEB%i>JtAe>M6H=QbA2-(x}SMJ z&5Pgxx#i7yMJOzA-vs2;pt}!9v3dA|Tj+71|Koi{ ziJK<0EPo=Gb#4TCpXj$wlkVTp+%aKI!Ub6q)7P0cl1a9@Oo$T0{AFagkpCJlA496E zH$s{QAAURpJ}K}DZU-WO91sA&zQ)`Jz&5x7ND1v{Hg!Pnj0LmB%{C40eW%}04^R|> z1eH`>pAJfY&%H$Dw)oy3qF`7yX*y`L{_*YQ8Xnr>Byt|1f`K`T!I<}_>v#uAYfv1P zC%$IIBb-NAAUV?lL^+vJHU#1Gd*biU3EL9nubRhB_W_+4dAnSuFWIE`yJ?@hWfs=q zk=3<|wD01GcdIlTQQA8H0QK}$M*r-KWJv~DbX>B>MOkO2ZclLU4NV$5E8iQ-Otv#i z?=5Q(fuh!A;Dlww=i*|(MUW~)C2eJI!@SjDL41IQ3bNXbrcZp7ptI`ILEy(ZPm__1 z&=&)vO#cr_^K(Edwe>>#CfPLCUk3B8nH9-FpJjs1zRpcKV5lW9o{`_~%?(|sj12NL zwq+aNzv@8OF+?a;ifm{Qu2njKt6B9z9=ad?^CB3c?s4~O=&1LWvo8U4juH0_Xpo}p z+XibUB~d&&a-3VV3i98NPtui|D7}fW*Mcw)$)=W?DLLCCG?=g$5-^6Jj@oVr`ESX{ z$;stnvotb(q%mv1c=@uK;0}!)3EKcEX@aRQzX|k(h@8%H(tyri1oo4|$ob!7UM8%d z>6RuHNwb#nf37m{SsXv-7Cr&&w9U%0xmv((WsopV)`Mf?FX)@I03L-tC3 z?3iT~qZ*l^yZN~rU|6;73&5ZZ`M#-Pnj#(sObQm(V3XLs(;^eS9>at%~5Wr%co4;^4}Y z<<;BBEjQ0Mhk39`apYBcii_vljSC%q=(~Gzcg@f7MygYg#NE56JEXQ5g71!I=q%NK z+1+3$+1)9j?u3fdr#Cqe!u(|KlW8EG-ouQAjB%lN^&RRC1hIN3Rz#&1zixQA#+Fm8;@CrV;;cdW_<5cmf0zlT9s z?VRw>#Qd@S#60;Vn3DGuRggD{?f2F+7`}qE#Y1kLB;K&n(OUb|X>8tx~ z_(fDbdmP{D{A^5}}NK0`V=Joipv_ldX`JbN( z{QvnWvw<oJg|(Ze$}bqN-N`5X1!$|sXT0;< z^v#EST+<$N<<+cZN|5J2`o?+z=dBnPL1WU%+OMn*2cbSa{e!k;o1c^N7WBe8#wmzQ z5@Ormq#(zynogr<{5i}|f!QoRqDGfX) zwu3bsN44rbifA1S>3u^1{aD)F#rJ?*e; zHEph0u44*v%r<;I6)I0O{|_@8p*P@A;D~wjpF@V-{+gu8y9xRM-)<8v>#g~hy9u@# zMp5oIv$ophaVNs9N8UO>2-&7em+fWh}4huDj8WD{n_?#ekgT zwV#%d4@hUiEF5Fp{`Rapf+T+o*3A@W#8neq)(xyVOPnl>!G1HbHht^uETR>`-Y3|E z&Hc%uX+1g^TY7`VBbeFZ$JEXW{+fu}sdP*4cIDgkxd$~-;s12REtCjA_PLCR%>HiG z&BWcoj~l}Jw-|A}+bqZcNCe!=s^@?NgHT*gGDHig)^8&AuLHBXyLr`(FKgZ-$6prb zH!R!mj6viipf>wF<5VbBbPrUjLi>3oR`P-)ytu5RcubePT2wb{p|T7x9wh_bj-5B#S0xk;n+-_iQkvJnt!V5N-3f86!>XiAYp7 z@oG)l#Bl?toTmYUk3SjA38~wgtwKWd3z~9V?kx zKXcF@9+`#?bM^oQCU+1f{U>R^A13QMz;GG29aG}d7YAQ-B7Lp^qc4%Pt9@ks-W!uY zQFng!Y9(hs%0Gl|a+cn98lbfq0LQDSd_Tx>(x@A=PyBZ+wdZa!mZA!MYcGmt)Gers zO;~}6lxH5-?I9z-Xu2=4C3uc5IwkC-N{fB*s~e?Fx#~M$YJ5MmMi95@x_}r=?~nI? zWHRYWo;45ZyTXAHG*`z=y*Ol?KAs%!?nRpJbFoQa3URZYjykROR-zr}9eQTf(9+)D zq=!ZJ!1?u2UCOus`s=j|9scOMCnC(P9`vUvUzcc)4SrPtw)Rn&U9Z#6(91ry0Fp9I z4u}z>NYS2!e{A`A{*usuMYR+N^5iMQ-SxNi(M}IbTk(=1c5AVMul|!&OMv2a8ebL_ zv>q>hp{xVhsC5bB4|~o&zoK$k;n>5Zq1DVQms@T{N9(qJITaP&C+w4Q zXcqO+J|&}EQ1I;$hm^4o0ek~Hi8RNq?dpwPT7Rs>Q}31FfFtS#H8|PrBaRcis}qPK zNdrdOm_j@Yni$`>O7MRDaW0oVot$TsAx9JGINsNFbgA+%!^qs>hVeRQs*-;*^-~l} zI89*eCBAj412tB1j(mG`2aRtk-~s>jzP>`ki)lQzZRLFxeFK!fS<+OCam#n=RWW5{ zw~FHTCnm{u za#`}3-F-*GZ+nr9tJjXyF-J*yJybe%S;EQbGd?F%E*JMBJX_4hF(Ziw z>gyf$a_d?4jxCJ_g?GvfN*?N%bvvP-U8rZ3?IXI9Ye#(uQ#j(+$AP&r5cNL*CBT18 z1WoZiZ83+>tY3ytSk7}iF8V5WGW@LSuvZ04v*FZY=w7AP*fOG`;owjbu{)A#Ei}g} zyRXLV^Moeh8l`N*Nu+SB-k|0o)}Z1JHr8=HWwN;M>1Q)l*!)uRzq-J_TDD(i*vsuc z1hDivt?u!UG*Q0Kok7N5aGLD#xH%QV_1egF-yQV`s+U1frmjft7~ZXN{badYxJyLz zt$k-{Xt-}VssDl?@U^cT>qYV9IUBttF6-AAm+E@O9AUPMHI1Zlt7&RRDpgA-r#1}l zp0(zI`Jj9)LD}e<+Gl1)#32jwdZ{7K_%8qlv_1UwDt*vp){+oD9bcQvTzS}#+NPl` zXl*L}1|GAYo7T!^)aOE_Q;V{;-sKDq@=L@>MvHDS#g;xE3${_0ZEwFNW)GN-&XjiB zu*h^i#3*|4FubfyoN#F3ptTAd^tLY*?aM0q48Oek;nhwXdh*DF~nOR(12 zJJ)mUOUTSs*XqX|HHPaUGnVPJ;(JFrbCeY|pWD{!tL?k9#7#xjc_?Tq4X$+_oDfMo z2=KzhgQaZNO*ux;62$(9%4LTK<-#%-rsQc(s#R$l@93#% z7!Kg2uD6rWZ-lwmP!|M2QV4MiADr82Y))3#%j>z7wzm&6MHQ7wa-JmgrB9rm&FUXV z?X1=Ea}413SsQA0^T2g>31;ugU$XRR=|4*04d9@jbR0@DK7933?^Ms88QtW|qdrbf zno&zDHOQHIjNeP+E09SLnGHLQ9k_h|8)Ilwd<7S=#?AJcIZ@9e zFT2w;g^!i1^=SjH8O~Z-uFb=#5XUL;^O~BU=}BEIBIVi`X7qd%({Z~+b=WI@8)8w! zyNf+3w?-d0l5n5Aitelp#a_AR8DfHak2+QjJDMYVYlKIWkNM4i)MR9#r2aC} z)Kr@5;)jjOJ^$&*7ivgyg<)Ys6ncJXe@(5%sLu=UIAkcd#VBT9D`9)6ZLtIwbE?UG zB2Lrl4*e2kqxl3ndF)C8_xt`D%!+PSgC0Fb$f>n6mawWTGB-EONA~+p>ObJqRP|(O zak;-kQk9~e$H(F;&rV%`r&ts3IT_ScRTeht!&F_9zH5H6ERCW1D9pe$+Oz*&3F|%% zP_d-*BcFAd@sReuw7OR}V@Zzc$pd16^rj~U>1OF;3G%FkdSf;7Ne$e_^Pf?$(dXD-LU-WTP%OuDMx&pxWDy7 zof@HeR5@uhW@&Y#f&aniHG0ftkM}bM>jNbTZeC!?L_C^%C)GMwsQe~6XU>#)PaXFx zoUnPn{5~o)SsnjJMrJ1G)HlS2GfFId3=(HA1gpA1J|xXbVv`qXq6YR`#CiIRJH7Z8 zqwoECSx21F-nG5JV_}?@CQ<5FV>ERCYVmY%HMUpOBd^FMbin81-zOI-1H{Nx&+bRM zZkF!@CTm(-qKK6GC}F4m&Q?Q0Ek<5{M^D{it$PAkmc|FSv3S9zk^+hzZM^KOs>s7GFVuq-`&z}dbf{P@}i-nkJeRUIoE7ORji5XcO0_Q zTz=HB*O=ko9;tgZSRs^4&ij_QGn6+Dm%dn=$?VXiN{Qs+*jUG4xr@?RT&R2^sE;G9 z39L*?7ClPPM6}~qgW0AqK{8YFF22rwgu0aHofvUBgLDitucS32?D_ zdCl!bZ`2xV>~ig=%1gZN$=`q)0{gFXoyeG;mDQA@Y}l86diHAVt5y_Q#2B}V@3k6G z=JOo$7jgR1=@(9OQH1nYD8K!O#@nVRMDCg>c@K>oOBj-biB2_JZKf;geU~t@#%)Bp zx$n+fIC>+06@^qhk@uGH(OR5$L-(F!5%%&?y$kzZ;L#2#nty#B>^T#)EE6BMX7!d> zEbkQPwopGJ8SW9lNt=z**f#{p^v}4Bg~i%60VZBrD=;j3kA@a#GYC~aGy+?LE|0k= zd@4>Ms%_qbmgYgnug6-7|6#9sWVi`tj^E6r>&XF$1wHjJnut;|{;fbvz`E@1S-t|h zQ6JgGq4F2cH=e6jo@FGCkI>x+sXY^+;GSs*Z3_<^ws`DO51T0mxB1z<@`cmElT2JI z1i1*Bh&1G}r~!xTd~?xBE>x_)dPoD0^(v{8MVTsIerI|lqgMDH6dJ7qwwQ@~k&<3+ zvMUGU1VyJ?6KX$=hl9GQEeR)WVgK>#AzoU~RkF$Z8NaxVcY)#|-lBru$bwY|Qq^J$@t$EK}eMZ5C(z!s%gsO%e>u|Qv7ppUaHC|z}K&ycoorlo1S_$yr2 z_o8DLzqaY!!4J3by$@Rl4o2~pCH7JyXoQC1!2uP@B=f>ihu6IoNh7hAX7cUjdA#n+ z6~j>OAWJe7Bm0hRvFC4oOIY%zto*>q6;9_*G96Q$&<_9pv9&QnKOrJ>PbZBx(0amZ zXo4B;;PdQZl-?*I>NtSGove6852RHP>NzaQ(a3eN19+Bp)|;L6Mg ztFIm}_TWWK)?OBKK3IGUmg(dAAq>1@bfyNqmo2!Q6Uox@+7#i5x?7|Z!K1Y-zQeh? z_qCu2nh1Cc%m@SdRxQ ztf=;DRifq78fR_-&W6}OP)t-5Nu<(FcII~QVNR{Sf9aT+rC;9}(nOuo%-r=bC*W7G9f~M%hFi94K1#N+?~RMK5}ts09Z^NS5~O|4tYf1AeaxB08vyY)2`<*V=d1 zOPi7cn|Pgb9jvVnuihEsE9I_)o1`3Q#W<*0*x(~|v)*Ad58Hnvgp))J}CKLP6H+*Dn8;3Mg z=ZhS65*4)0fcZR;najiIbi43oXh&lFHS4zX*?o+ z?YIrUeDa&EtB}4^(e2qDtFD$4+7xZuw!dC{)6SG|&nW=YgY^m@IgoY{=flyv;xF59 zCc#r;`S11t_3TKz?A%pu5toOHWwtDMF|2?HfD`v^VLRG4%68>Df~n?%tLSCCK!vL4 zZRHbjua4f1V8#HJP+pfpv@>+SC`!3PqJ*NA(wGgk6uL>*3;Pn=ahgxpTXmMP6@4S< z>CmMz8OkDIWY$hG6gKDWt-NEYeKQZ$`0fysiMLsFh2aNd$#v)qdBe9Wohdx5k`L`e zOdvuCpc9&?GYLN=w;~alt{!AEv4B1C?7M+R5q(w&=G5|uhO5Rhe(}NC zfR`!)b9;6xKZNa-nHD&aHM<^;{QZihS9=9E$aI_FWP$tW-1<9JbFK~2i!#US7NHeu9{`8Qg0?9Zewt|qs2%CFz!C{wu-@t~l z=5n^=TGvDtql}TOC~S)o)Pwsc^eHZV-Dw+T!ito_(6IfK~mFdCr`FJ;lMv*e0US@%O%;^c}B(D;UAZsE^MnF^$m^Ei;3Q$11# z_7TPH##{z3EqOIwX!yND=o5#NwP_9*lg7INxScdox*Ebx|6WL%L^212F-Yi(JViY` zGYOvwx((p-eKprFR%&8BT_Nm^p`MC!oakE>hxdN6L+alTc`(YMOVL)|cjr~9=w;*_ z9+p(Pn%9bR?D6YT;Jehc(Xfi!~oSxQup$u)G#k;Pso(tzOToO8F1AfiZ(CEDxQ`sEq z&JujAmEFz7K|6H(I5TH<$w==xe-=aSY@K4N-X&hQ$=u}J)mjYrH0OUkY;9iz(tiH_ zo75Y8tHC3pK`iTJ_Q@`4D5l>@q4a90MPWd#P`M?3L|K#>GZ@?1Eu?rD(qz|Z&;EPz ziqE$cY|g@MOYKmrVjuhEk7$ZEOO{RX1VNEbsUlC0BzAy-nMn2iioutwK|Gpa? zdLg9mNjNmDw(aN?*kV-$q8*T%VB-*4*LcV3g1EJslT+b0BXpg3C<9(bOE=HLUW`y? z(wCLsIU8plQtNf0e4QHdrh%7(%L-c~`-7H7Kzb{K^`I&O=I_6^3#K~~$xId=MC-lI z%rqI~Wft#FCl8jCpwsyy$evU3=*G994nm5zjbob=)XO3N-=d=kxh}SDP_JD2aDaCN z$dDUB>zWUg6aXQ^3LG4fDw;`PRq-- zpppTS4`I;%ZVKI(QNp%Hhy*txa0(6Ix~Acpg?*M;Dar{Fy>}iTD*Sr;q$za#P67l~ zy%sL&|NbOCc_0gib_$P@nS*#Z2><3oeD&q1#Sew!skQL~o}Tu2+t8dqMZZ%Kj`Ou? zdujT3cKb>d2}5(^0FXeIgC_eT^g)gTrFiRyCkGJjmC^i6-WL8* z4uawE+Qbn+VRNjaE_tlXG{=jJcBCpcA&N~vV?aKN=`XWQ;4T~B1J*r<70@qQhPH77 zTiXAAPl$-V>)j(6i?jH0YZw~xO}+fl+8i4;Kp7sP;8^v~#92{tlGTG2M|RRYs0S0* z(rxH681B$2!YVxIsDAB}d>{+?@`NA*a4IeOo!_J>IIN8!Z#geVymyJuOB1NTP*-+=0+or*>Dht zPB_Fv)sF@0w$TuI9&~DqO*E*>@gQ%2c8>gTAxJC)IG!aE)(6JQje*rDf^FygiQd6isAKM zc)_KUpJ?S$avUU$?+Eo<6?qPy#5KO)tS7Z*<_ZUn->N4c(fLx0ep~+firu}^LFaxD zC>K{e%_7U^GBVQ|*4EbQ(va?i z9fTaEMOY3&r?86z;QloAKkeLjR9Wn6r>evoIP04S7|jwX;1p(N0km4A_Q;wr5TzA% zI`-dd0}0>ez%!1Hfqkp#kH+=&;3W8k(VQt+P!(}+`)aDtDYe-s6p116y97A59pUmtKX z5;SZ^^L#c?Fx=`SXXR)CcK9DIXWT|!IRe&Y0#s0erMPH3-eU|JoNU`jU0V9w9&_d9 z&_EImN{41ZSgimp89>J!8pUru2E50uaG+lAJ>z;78Z`CeJr~hQD_BVV0h4|+Fl5BQ zUKV1z&!VBNZC>X~%gARUBh+gWnqAVZHwngE3$8H7**-zgC_@9kAwP82SCPhI+!j7F zEcM(E8U?YKW@toE*Ve`+df;o;=T6yu`lEcNut|;__`h@LJC<5AG6%(^cb(-Cdf;J7 z5H~A-TpK#kjw>NSHJhV={UdB}mK#pDSEL?7%p*@Hbx;Bjwv`wg4c?!841^pY$1`2uthBk*@)5uYm+I2(Kaqs!ZOe5g!Sj|^+qoD^S7_P;_bpGk= zA|>R2o${Q2A5i0yl~ei!#C4*<>nIuGM-&zv;NB5loAc|r_k!CVnIYt=f#a6|Q=OVQ zRYZN2epw4Pqk-esTjdM&ClP;>-f5+p_^kzTZ+5t^aXsZket%K zOmOCh_DZs49-Bp6U$A#tA(b(e9ZI6ya2RdgFF`|76O1DU*n7)N7y|(S}HQFhqG9$FtUMkT>MKl!=sb0oVNwlMV(@vtj zqEcZ>o>EECR?$|ZE$uhoaX!tw@4V^vt@W+-|Nqzef9t*1dgl#2&wbz5bzbLnp2vBd z$L08V0beV+b3_e)i$xix7=5Gz6hNX!r|i*uu2Ae60TYc79v8>)Gp6){QDtFnlOsVA zHrhejGh(_@^|K2O90681)VEBr%}qTfL9lbGur*{#W69{Q{;Z=5W$!htV(y&pzhyN; zaS^Jb@i*MYTezIj2)rm<0qw2nrBZCJPlcZQxPFRu!8R#!YVw(Qx$S43!w@2RCesnB z(>v}^B77aMz>|AsNW?i1idt5n`_-bCVNq}d{HH78xd6GMB0W95Hut$pp89FZ2dzGK ze}j>2s*+)kQ7DE;`d;JdBU%^E!;dl94UDy(ps4-#OVQEsQ)IN`M0oYRI;3R;yna5j zKY2X)mYyEZk)9iCoE#l$5}9?f!e?DWdUzz)3NHJ&yuEC9duhUWE`y=UdNDK4y1Y-Z zqHUKpUg1~0qAHRV^QJ!=N9nZVg*K^PX>W$WO*vAQMd4E|TvInryfVCL>rBF6*eH@a z;ZC;?V6nPFnn}NZ4PK@evq$d6_{_%)Lmd37>bh$)g-fCMq*B-y2=CEy?4H3}e^R;| zFjQ;ia_n|%WIkV0wh(7ZkyXS=6Peo94*}%?+(QvTp}ATPQ-)r}j5&;806LLBbYn-j zylz`|WGzj8#_?pFc`$;`OOxJlww1eFZ<1iRm54TlZXK3nX2#x>*J z35Gi_lJodWNDywmsqJy;kfnWVMV zSaa*-a7+5*g+ePNu#0vanj9bD$<0UV#`D@>A%=dWP}EhcDhR=7j+)Ki4Fx|RSfFpH zP&@RZ^+pBrsvY;wOYDNz_)H1}ZE1-%Eq7MP>iC3*^pkZ9eCBe`#$gWQXfTGji#B%n z2Vu6-OdP7*G}bs&yqe$3vr0qy?XTxLlC$3@h{f4#ofS%iHp^$*hrF@XN z5#F`V*}(R3^{f=1*lVs#myK@_tI+#9Lei%kGi%VkBf!9Vv$^jYho>7X)m{wCCSw~GfwAB28SrPxl*fg zfQ$9oc&55e`t~)|_r6xgcCX8g|N5T{hCC`Pd-Ty>dgf6& zjy(}F_kGf2WMFU|DO~z98^I2w6GEq)&M!u!=o?#a9qqj^T)4gGUf>$(6c(uSt+p;j*tITrqR7)v&`hv$85|AtH49m^Tv3$DX_p)E(n_Q zhrm%;;aE+!QrB+Bh?0ccN&DJ&c-;d+!XY;XmiYC}%9iTLiQd!#?YX|0`2t7X3L#Ds zJ>`n7G)uKgxd#9{*vdr^4YnX*iD#_kX4P;y$;g{D{S)^oXek zQ(I;%8b+OaU0o|>gh$@&XBN+;jPQ*PnFs9$=d6H;REqH$X8yG39|(0qaI#4@rpp|; z9b35*FdK|$A_NTC$}=x~^{{B&nLBT2FS&PFdB$W#2A%4TVET8cQcA3Xl=#4Ay2(Jn za?KTTvcJ4}NH>`?ccGmLmx8Mcr=P9{g4>1RXxKl<>9?sKqHPPq*WzE0;1}PB>wJwE zgRT4+4z-_U(iBZh9GWqS;%MjVoZ^R8oQTWtmk=pq zg&kcuW$MK}yQcmNGiJxV{ebr)=Di-(SF6Kg65gH}U7|i}yFYC&gW*M1=;b`n-i8EB z#5xlv>?#FR1pEums@A&rlYjyK} zoH0kwLq9c2*G?6;-q_{qy<~Sn9echx@Cyj8Pg_JEj>w*N7$WuPyjX@b>pi{AjjAs z-g+`CRxNCYoUn0kS1Z#`+;x0dEY9!&-5G}f3yc~c8J=`$5Oo_VksGWrXDjDI20}5^ z7ZH)-qROLf79FOW1ixzN-lcrg=d+qE;S72sYC62!n&Uj2Cr|WW+`znK$L$w!%Vh~8 zGU{;fR>t$K>^cu$AyO9O6)@f`1G%PP=y(T;s<9z!l|6DNb!Q{apg7l_OiJ4i`kq*7 zd{(C5n4->4S+8^%*oBw2->uXTI+aJ}TY66d?&Y+G!o;VzE7!P#fTe0ji0(~Uj{_7P zFT7A3NIUT8oTdEG7?vVGd&G7yyH)x|@P~NrfB(TcM@psibbd*2PeV|^O`q~VL=E_o zbtlWWtpSvolZEm|pC^ja-jDfMIt+RDKTbGv=yjYkqk+#~Ht|NIo5#QwL^8#9VNu!LE4a+|jOU^;X+TKd5iVZ+XKdwiC@$ zma$92Ro=fB^k2f@=c54US%gCVo7&*u;A!K4*E4v+9gq$H!{P$FKL4pnLO$ata@oN( z(m0d{LV#yEkarj7@34v$d%Sdqfy zH9!SYsPP>6l!U|X0@rI+;uR$0a?(l4+bc=SNTd`Xv?!4Y`)IGjJGzILNBRR=B0R_Oe;Fj0BKl*Z@(t;dQ?8_jhzsH-kJ z_9>k0<=TOLJ+H?Ny*Y}kzI9g`_glj6WroH;fkvU5W}g4>a&{9gB(xDFiOnY)?00E( ztOMr#4W}5l>3H)>M_?TtC|{UmJAKTq5~pGU(3c3I zS$2YC_d?!t?JYREd;k0VrU`OkD*ux|i;v7gGI&LRnGh_T7a-cz|I)YXoJv3E*MVvy zmi5g!i~W_L5sWAdNk6CGiliHB5>pu|V347RaCEZ6ZIVwkZ`iD&1EA?E%JpqfWF-U{ zIoXeAM?Wc}{;FeQ61G%f{6_+E2#m(*U=oy^oEnPUejX|0#a3vBxo#g2j%D-`jHMy_ z(I2@;&Kq%TUuF4I6Fm?bx_O!TA6^Fgi|^^K7Z!tepY+&NZw7sxND;x{QbcaT0PpMV z0=$aY;FrSIcMyu^^pgk!;IsK&gM(^jYM>3!q%5G@ zi{vXIT<+UoqCw?drw03?2ZMD-*di#z=!b-pEY+Vl{bnwF9!WQ+{^wkX)ho~Yb>9v| zWc!>uA>_}kco2}lqe!C6E;@ zq{Vh_5rYovz$t{tq6eO%G9C&Hh*R>gF4=EdQ#ByFarnk^0#Lyem{?x!iO9Y3=19g% zO&|nFluJ+^z;odj8;)11*TVe2oSgVeWhH#|;rHYJ(Yxp-&ue{w@veEM8v4dLwiOKb zVoDtgR~@;d)!S9zvApC)%qLDyXS>8gD&8Ss+eE8Os>x-*x5o|(i!g|`AggdDs*q_l z=L%U^*4Yn<_x204NY-JM3|tU(*#NaM;bAo(1XL8WK*%6!Iy0Gw?BD97nz>a$1z3Xc$XJhF8N-Id;51M6|oGcf2NaFt5R716so zeqF9%{i)h4?8Gak4-j3rCZVj+_qQvNF!7Y-;WTHqp4Xs0tO~g8PqjXjhD4mZQi~SK zR{}jB|7hn{vNEstf*9}23@%uAOoQ3pq;h4g-!}@Pog*WK<%?@J8af}aOy^NX3R$_- zcV*AsPmYX8ZdSN^`t!&7E#>lKU1A-F%EQAvmh;7(>}h1*opGwrza-=3R}Xzwqqaq7 z?NZr~RZ7M?w35-GIOLCU7AF66k<0Z4^2}J22eA+|eb#MbRd)b=JjLdJDu zewRn}Vc=1M)=u7%uXf}2Rt*fQ96}+2GVB3-^$M4`xHw*#KXS;kyr6gR5+<*yCY0a% zKPmWX<*PP2w?}u>hd-Cd+Ml(>xyx5c;j~>SV*M9xLowOeHvJ4mA@EcALogG!Bfmn| z8xEcE<6vmq`0@8QwdHQE3yyXk)rFPN*t@g|nF`de6@AeA)BAS-sOQ^p5=(~7G{Z$j6^JHLaUK6j0fr@^8j7@*T z$tSxMBBbRN1rH;7Y7n9LCUf5xjrl;812-@5 z5(h+i&gvdmCGbbAfd;-Qyi~4N@sU-+?c0u>vDX7LcF#;ht>+}%_WS1u+~s@-(6Gw&mv5Mj2X|-UHf%$+>NLQpu#-Bt&c&(&>5$(E($h5*)JW7 z0!ennAikbM0^3lDq|NpgD&}IDw*og6e&2utPp;d61YxPdHskhte!W-3yS$sFZWsTC#y$u%K&-xF|b=OyfbCW`Gc{fFI!8py{7NyFPQ0qRbC|_8#l0%~2zs=$3 zON1J}R^iTZk+o}2Hf#m}CFB@Y7y@`@5Ow;7vqP_y!emj3ajeqX6(BJ4+&{%@-Llcc z;^KUK_ole1L8Y;YxT@fFS_>0cRGDOwV~fHpKsN+B&f|SW^aR~-o|tsJt{Cq@`<++T z81{Bir4xWsnv7$+#c=Q2k)ix4ld3H7GU<&?6Wu3E{1?u6`N-Wpav^djb^a(X4-alQ zTNm}iLuJhXk(G?QKhOqKhhbY3p4)Oo7TdkV5XXQkzjyw4nv z6_^$Lj!{0KIjo<*<`+ep=c+7vDw&UWD~rFJ(SJ6&ZRB)23d+PlZcN+<5z_Kg%vS7UP= zpXhPJ?82ZX#!>ze`Equ55|K7DCH!LS`%INICKRag&YLmVwMPLY8k&1cE(|`4Xu}bk zYM@NT4@k}QAF(+S2_qW^f4A?b8bh!e{@uo%DUd@vJa}mfjqk$fdF0Zf`L;-fBS%J_kD9J|A^fL((vA);JaO|#X??3Zcn|s zmluFwJ6UaJn$A!;kfH9k|AUlkd0-Lu+8pXgy6b=y?YWn*1r`?I1~<}y0*J6`AaE)n zdWJ^>RJ$_@T;uYBsGcBdfD4!uIRZ2z^z2}5+v3k$NHC6zWVQN6m925AIhX|u0bK`r zU)n!U3d-&kOZmo3uH8vH_=nSRW0Bf%qu5e5Mj}YYk!G&Le{jWtcEwgo6^Z$4kMF@W zs|Fv$%#74k=LKeGXP;}Izhun~g7J7tpNF!Ko)E}D>LQCx?r1m0=3F@e1;qUOao~oh z2Z4Ui<|Bz2`d1VthtG9Pq14n?-!$pOROtk87ii*C%Y$RS1c#|$?)UzE=73MJo$Ek| zO!xhkepHEQ7L$2HHc~bX0_BEt)WZ_ux!ieiRa9nXMyuV$}WAku^%*qz_uhr z<%hsxd`j#Y)Vo%=9E%OmF9yP`H+U{LV!V}a1Pj8bDhLUUf`Q2iJuqtxzMN?GJ$eBy zu4ApwLwx_33iwp-%uN4ziDq`v-c;+Uj05|{Mw=}f?-VyJW_VKpKOUT{Rs^%=WbX2g z0E7+!X?zC0q*ormViCeSi19~u_r?(d?9ULA8-6;Q$OQZygj`CL%7zqKfRnNwiLrjP zQyHkTtXL5E9x)UNHPz|>3K&dfOK?v1MLVo$zMemBSz!f*^wFxSsuG7J2>2$?zGl#YDB}Ypm_L*Ux<%pS>2DEpT{i9=BxY7Wq9hc z*l1SZag-zAjlfnL{YJc{$fumc$o3i;uT1l$jcIT^vDv4YYvWK{dP*LKtbuSStr3ci zUg{ZGBG%=9Z+t`&3|z{@2y}2jv|yQ-@v0b`VK@#0_>uC<4*8+1JHW9F4_;s=5)_)W z+rYee20|-~cul~Dc)6S(SbCy9a{ar>KqA+m%9%Ae`hivQ9$q`M?v|o<`>5}l-VTd? zarCEZhL0Mhb#7-m1*-IzqLt0bDgvhDhEmm*`MyX@G|(XVj(Msx{h`d z)x;6ifR!#_V2aSWaj>#9l>Who-N0gJ_OG?7!~$x)#8?G1yaiqJLY+tRK~n27LAvH4U|O(?)j}g4g$U%)15( zBXyyj%-np9bz4PiyH+!&T=+UO9sCOBy2rvJOL)MOU0x$2M!Z>Kct({|wn^v!R`C_z z_N|EB2T-a{i;=YnMK#fqNHCVyO@g=144fFBk!IR-Cnl=zoH)iT?z8k^c(q}-?7R5D%iL@e4Ata(R*zuT<4EA@2am>oJyl*oL_SZ;!+w|Lz{ zj@scVl=KwgMFdW(lRB~H?{}o1gT2t(z$=;ZFfmEWxmlDsV#Mnv!ylw@^KR|Fv>Z)M zkp?Nwlj=Hr0?GE(n@&fZjA*PSv^}~_xe9`Rxm^f8zGt z6MDYct-nPZ*)4c;{|HBJewFa)d=(5dVkm2UqDF(ov-SG^(>78Kzx?6blMHkgqk!Zk zPZss|v&13rZL09aeql+Gx??|+&nntmD&c7uF~*X?qBY#g$>0aLFL~0fI)n;|a^PiWN0vW2S+AMz%!&gdNc7jhSWv5a=8yK|Z zARS#@x&PGf+$Zk<4<@2-8iIR^oR68Rn0DpCKy4F~*J&4LK6U(MEi3;+ni0ajc|WVB z-{u(uw=j3gpTUdPUZGXDHgTZwFnMyK=NE0IjdPIB1!qvAM4=608Zi_WDQ~8n4m9U- z77g%k-6keEPU@K0O7O^CfajJ2s!NAAv%>6aA}bFWO}x7sXLyuiV+)5blvBnzqyCqH zrW1e)fbS~iOCTAiV-QaAEL29ElJ!s-#}|N?j)VP!Zk7@ip+tYMzWB(;qAZ;T`fn^? z4)yV}nXhWSdA}Rzrg=ma{R!2=U=!h&%V>^#mpzO{6DiFRPFz;>+JlBn3gLU-JW^j9 ztNsC%X(#j?5bUPDc4i*xo@rKv+I{-_oy@IAA8auXLdVKJ=+SIowVQp#uK&7fCM=2v z<2ceh+*(-AVi))&B)sT4?6FV;RKbX45ACb{g|&fGP8#$ynhKAOGIZU)Qp898^NMuN zCek-DGO+_b^l@JKYYk%`=B=?k$m70PVCweCp5&Eh!x+VCbJqXoC-JA}8)0bMs)^31$7gLWXV;zB`Xxo42;+v?@bYi#oEkZ+^9R76~DS;y}jx-y`{L1q^8;R~59X~O>Aqpndr&!NNr`;= zG>uZhNcBaq3L{`@4l!WA_#k-0zuTpC7&7f!&{3~(c&n(h(}xz{;IBNtQa$>r%A)Q_ zK>ocwiNCXM{S%5|Uwp&9@HTx_r)}Ft8vU43O`2PePqhvt3Gs!jtCFb2z9nRH6Pwy4$yj5&v7#O(stN8Jy)^Cv*eeqzzrXB3QAE&mAOzJRKx(0nC^8gKK zP!Q;z&voW^5$Dk!CYupo^|~7mKA);=-RB#q%lay|*}f`qS5Y@pze#zk)9vxsj#j)& zBkr|!lsAQr+Z44XXNN;0M@sUX-9jBSNTcI@e2eDL|+0V}?x;YJNX)m&;xjeH}OSD23XxHB@^nELVU z({FD%+apW7LJxkB-)g79kDHk%Ow~ndc%4Uo^L-+?&rxuW?&SQtKYiJXipE>>M-N&j z(^utpgx&O8a8k-u(_Hc*@pKi1V!sgnVlW~%hu;?&c~knN=T?FSxX3L-{y*siG6bjQ zQmXvL%PQ;s37jYdKNVS zM&#a}Tz|EoJ%4VT0ec>^2Fi#+^jQWfbpM2Jk3xXlcv0)MMSfY8t21x*JhvznRtZUL zc&|EiOnR$8+JhcQKJGYw>fi(+v#f?7zCTJ3$g5X z$!zwka_j6(i*!5grnP>MMq+wS$jhb||HjPD(Umvy9UsVH@|f=4e?M13$=yccp}*?tH{0Z~ zQ^c6e{c!8O>L{j6*(5re7E|!doEYf(`y^brl?ebvH~wK?THZd3aG z7auWO47eAyOLkq^K3_!eqpIF{bCD3^!k z9Iq{G5`XtFrblYA^6<61dYJn@p4nD*;%jOk7g`iC^(L|P)pD?gRggji$wv34w;J4P>W*t!dXaN2bk$q=a zsK;n}^7UNmxmJuk@udbG;)YeFVL@`oUE!}}G3p+!K%MX z+M0Q$bfdk&paL(6tP}Kio zm>G$sJLhw=I@R<0&IFn|R+OtkH$Zd2`sc4^i)5^i*1hCj{V{^Nc&7B239H%jqZ78) zwvTzaHsTdy1Y4>{2d$tVk(=85{IcnXdK|44xp>wg-KS^3_u*rJ%UE9P!+hQ&w)=-` zKMyIN{(R*4h-uz&*T(l5AGL4dzeoFH2cq%TA7`CMCp|r8w(0IX`!fzt75p*+_dmVP z4duBYc!Jhf!Rs^44I_k@$-c!T>kUyl|+BoFld#j}M| z)?TBw;VvIXTkD5-<_?Xvrt3+?yG&bxkp8UB#rmh*EgE?adi`aN1b6T%gdyUUP)5Qs zI9cY`w?6`-I1@NLPhqQvmDBztEn6u`jx=k9x|I#e0 zfx!{b_WGCObC+JfKW)?jvj#7(NR=XK&czbl={NSAb;e6bH~?MVtg7V~1{9fic)_3R z(tVaEanFqBna)z~&Z0R9ErsB~Kh5pjti!GPXZy9{qFDo+MC--VH=i|ncF&BI{PX5$ zE}hM*z546sv%YyLuYASn=`Pw|nwQ6Fu=R4z`Zei|t9j}t?B*`XyozQcZ-F@t-ERM5 z8l!mR-XF?LCk4S~#YON?(~?Ga-+h?7XU=S2UU%*s1YE3PE@rGWfjw?Ef0MZP(1HVt z{%S8&h+Hu1`=}xwuTjC`6i#F%3_E6B7LpMHb8MlC{F%dm6>|SHn+Orwb@rH^L%L>U zMV35t0{TKuQ@62yY0vr=32QY}=5>XCYK*_-=U)xcJUuDviJs-wg9KWAd8x-I`Zs3; z3@wm2GTYZNBEOpL(HV+tv%NRNec@~lh{0f=EwBV=oo@{y@ww}@N*8pQ$^ug3T~UiiuXhk~fqly{1@Ib3&Iw%&Q& zoO{LYB1aAmH@o`BlYRSa)0VKu&Sh8Lb^P14akt{)f_k{d&YVeZI`h&o&RO2{rE&80 z663+#_Q6x~$3(|o72XayHWP4USUhCRX2bu7f4x5W?%lf*)jSMFro_m|NNTE^cLG|o zb{;)2fU~?FRH#9gS=<`Az3#lm^H?&5eUo^Sr@lkDx1#<7$lNm0TDSdU{O-AP=N7xl zi;9ZkY$CD4Ki7Q&K*0a!{rmSP3E_AC^9uNtc|UQNYtn27-z!=knAL#9{@?uTJ(AVH z&oXyl1hllZ(Q95_QsRXIl~v6@q`27F*jAUKiGlAtFW%Ym%{G7pSJ`_Mz-!#(yc9!Y zQ8-2L?{Ib_@&*h}-^L*RQhWQ@#{F$oVqS=;ZnQK5fva_u?eY z-@Ne!i9s_4@;|=1SG0Z2mwOsx{oHx8Y<2(r>;Debe=f8C|JsS3qX}N6CL1M@#ag<$ zpZp?l0O;x8j?#(=``@n^=U7}>BD2^6MDoUsSN`V^vHs*<{Qrn6{qL82F}DAQo6&zq z@c;S|j6BTR^^JU@qM~kqw}k#Cg@p?jMny)h2MKdIc;i=aX44K-(99uE;<3|vm6B`T zHV4+Y92iJJ2mKAHqx)RI`|3j*Ng;}Q&Cut$0_x^!*myF-$iDky>GNZ<>Yj z3J#9RcN>3*!UI6)$2%U4bwr3x1=nT=cso%_UL5vNvUvgtmhW*^E3@x50s*?#-+J%@ zm+^J{oT-M}okh#uYHIl`MBlMFUNRLg;T?`MQ+G<(HOgJtHdrH#7P1zI^mwC3%If*| z@O-N_?YqklDK0LwntEWUc39Qjv*SV!mgYVDb4npUKmR3=>_m6^tXoSRc4$P|jAJJ= znB}GA&Av_hA4sEg`YpIDQ*RZ(oB1H7a1*T+ z73jV96h%m7yBWMF4!5!Tre;w1y+PfKeCD<%QEuN|>+jH>;z10h!_`S)qh}FJ9ZNLH zks__3VRYVcLJCa-Rr&d;4sFG1vaKB*yU+;Jg6Z;#nCP;)77-EAIe`;uUbR6q!wVFH z+s`^c2u!{KK5gMj%$vgxh+C`Km!WsvL^pAtWVIwis+gkdt2Lk!wSa(diRs68vw!@- zg9p-}Nj8H$=MB27Y=A5VqO{tVN7Ys0)0Tsef4zaO)(dj=^jTev2$z24Z@A>;pntHA zh&qNoU`Wa*L4n~unkvk|eke7hz;P{EEtpINWFTm8&q^9N52?ZebVYH1+FpJF1m6RT z(D=foRG)d&9Cd$7`6Co0XNn*Y6bz?%I1tStx_=FXmXt`?E2!ZfMCG1mSAFx4u09^94_} z9$s?cUEA8Uc+6MQk?|Oa?ra4IWEnU?c1gDx42IDqEZm(Xfx_mXC$??1``g2rf=uYX z7@a#lQ4s6s!_-P}@m-q_SH*uX?{bPN*g>xsGZ--+z}LA9;@fb$1_p-RE^p*e zD1@-IaIEkL!Kn(6uv`3fG(1RB40Vj`>Te54ZJof|V9bMQ zZr&)IZV$3*KDS8Z5|(o4;4o;JQCNwakJjA{9i&IY3+#qQqL=v<8QwfB4Pyg5yx=tu zQTQO=^20`VSg+e%@H^hU&Kct9n@i4xk!e9`fcum=SVidX@ZlE_V4euLbZHpG>1cG8 z^r1z)J$ssIqZ|7P3mXpVi~ESiwV|G-+ubf zAnbu!g#5NLg{g6eiMyHTKP^H-K0BH(PIaNtF%^`cUC{nA$4I4GS47=_;t&bC^?|}z z1bZ`xvl4}tU72*tD?ChKhF364#uM(pzO9CrEbhHNbh!ilj zZtEw;>)qC0v2x|Eg9i_y|9K0&&Jz&!*O20h85m#WM;%_vqVeb*s6#|3_7Q|D?j=tw zwF|qzWh|l{XdQ?`H&X??JAHXoqR|%E=yHg(c!MVV1lkYgg`VsRE>H>Fh~HlU=k7_= z@jziC{q7}rg_C!W)=N>Jn!V^ZFrp}R7|JoU(6L615x=5eMO9VR(F8ZGk-M`mLvV@0 zc<+s^Ck_XdtvyktWskPh0<7FH{(MZ|DePM<;5?tDwqCW9pV8lqb)+2!m92;EEu@Ue z)V$PPoootU*UUPG^H9Aby(8lsp_&ty$3qg7j zY&C>6bsv3SEty6p8ow{&aMBTmt?qPwAL4@^yiBzgH^?BVk9TUidD6bsH*C6NN55xBqQ#?%B@vBQQ2RQYn{8ysDQpR#?m+lsBbx6r_NE-z zE{7+!#}W=WGcNi=6hvO^(MVN*xo$=e5P$WStAih^ML~p5cQ{El&IM!fK=;EFD1Vqk zMRhaOrM`#ck@2aw7g8a^X7H5D_ck((Q0MlbKDeR+NX|y#mX@wh(3wasE2IHHK~4X} zklWPI&Y~&UMX=Ut*6zA*U+}=v7Pp6iKl}?)ac>|ElNL0wc=`JJ?ifL2Q}FcK#uoG( zHMHhH;-K+9HqGT7Ls*G4)HqZ7h+hwuN7@PWS{6WzV0p*tEyvbiWA~&z{m+G>g_*f@ z>3gVDl0ZO(BW!pjHS%a$(mv4-dEFggH%+y4P_*+78cQ@{?_VW`9QFZ8cPGf`=8(p- z+*%E%eG2-3I*0L2F_yJymKAqxDy1P(6OEnF9^I5mm?E){d-m;H1zkK(#6Fu|C7FZ_ z8wUvLHDf=%M0;SN6B(~9lo9Pg1mCHpRiSwZ{(U73#f#d8D#VBW+-un+L0)kX?p(S> z%#!VDXqGlyJQh#O)I|Q&^;6@?h$JXZ(t8TyC;)Mo9UF!>$%1LQLhY#!?B@-n61y;q zi`LrsSWVNE%XoPW{-o%f0f{E+w}3X&aZ+l}Ws(c-%Ob`WE$@qK9Cn{Z z%;&xk?ykNNy$Mk&0fI6gu3o>slJr3(jx|VY$h7${UUG6g=ktf^A~e1>!y&0=ZGipB zU{RdKpr48E*+6ko4e5Q+=rK}0mz1A?(_TLWqG>+uSZOi`$er`aLgGi#4^qiiNF~{^fuQK}vU9+uGWWkM}ge)&)o{Pb|zC@*diUvA5ZF zgX^3JPuwt1eC^ibm%K!>`J;E@@fiW8d4dyT?kxu>xD=iHG^^Wp_gJ8es-v{gi&9)8GbrJ%_BuBW2{F6<$%cB(?@=kUn>)~ zaqCJqA|fYy(9U_w;AH9KwZGM>S$t%<( z?=gVr#0x>?`a-;~qUA5(`t1Tb**uO2uTqG{#tFz}GZxQf@apV-Jc%u57d8Vi*7WXi z{+{tQ`t!RnKboPrXqJpd{N5ShacQ7jL1BqZ>(w2#I4HdU_NMa@Uxv$8=J3mefDa3& zDj)&2W@Ln!ulE6wg+?kOgFT#G=sl=_Cn^{L{r+YR)_hHaT<^oVeYk<$kCh2}x9`7C zxGi>==w5rWrf=Sbx$}b871qjxkF`fE9%ID+Lw|pNGt_F7L)}0P)v=wvc}i!ngv~ON zL}(sIkA=S(d{ktbbeq4c0(vr8zjDnpqY3)W4Amb|_CVdKx#7gY{nx>&ImqOzmOzgK!VKQxTc% zF{J&|eh_U=n)K(CEPi2OZ~3#M1$alP8zdw~$rv+^lw1{gEGTpoOhxx5PuU=BrjS=b zA5KWRBh+zOM+C^>E9zOdVc5d;*71~;K|CDurcLjyI}gvH*=)Og`*u%t7(;0x+H_VR zGHN_<2%)bx;sr|`yb~kRSB&*;RdDL&*!Vrth&YPY8iBT*3PhxGs;sBSSN~Rc669ajpR%N^pGSI6X0bdtOKWfyjfL(p3OOTv zPh<5gx7so^=i#NaT=)d~K4avhyF-zeIk5)6_yBTgk953%N-_cFIv_IZ8AEMob?L-N zx!V;Iy*|%!J=4Z*jR=yq;~lk-D;5IV`MUq=2`fa%%AsNCo~7@kOR5x6n;9ZDk2J)3 zEEBa&LvqGfmI*d@Aunu5#02d+t0z_|VH0eDEKW&0izUi>@@2u0I|e?_Tbz0LrC^(s zLL#zZEd(DsY9V7L0S|rs*ap^(+#P}u#5E_EOB}A^?;kjOWF>6ZhJ18^;aqq8d}0+g zV6guk&Ie%wE+U>YYxo&IQ0YT4_7nOy@Km<7Vuie`uOD|$iI3+ezxUVp_fyA0vn{qs z9a{vCy7Pqe?_8p8NRKp95A4E|3v9tZq-8=<=01q!=ypw5IukgH%g`{-#hK6zj{!m^ zk`W%Kyc~n@elz&vD*i_iZim`G;hcU8DQHf6PyP}`hzxb4(^y4{kqo~J+C4TybZHnl zgLzq~OdtH^4g~#o_UCRzmug5nKmIMa#!Ap1~CFBS!90!G(j!{cS3@c^V z{R!BEMri40#v5$VA<{;HRNBFHHGouNJUu;^S%Nve5;3rP77QaLV-)Q$%}~2iA74j` zx|iSrV;bNBpT1}=^lIrZ5pA;WhN^-GT6C?R!<6GUQ785(h>tg;PqqHQG2}m~cphY4 z*ayv_5~eWf;_B*p7Z#==KhjEGHwyWNjo!ScLDMN{S_YigFz&m|65S$2^oGUWQnuL9 z)j}ozB%#_KL#(x$kdTO9w7Z1xHzC)hJ7^!nYg&9X$RE{n zfsMEeDS1?%DG#b#+l2pGVQu zl5L-!-$$~n4TpiJLWJ*wLm2GO2VqYvMDQJrpo=pDZ&M>dkQ5>wxmA*fS5OKH z*+X7&mWzG{q-~kimWy*9Qu>pipBT)agDl7Y&s~7~9+J-cpI;d*@9>dnzhMo0#FK)c zL?*12wnYyDQYhvsEG+aWTYLK5?|o>SQ9?(x&N0lTg$>h}#~%Ic$0UYAn#Osl+wU84 zb-H(ukrvtkj5>5ErM>`qk{qdXS2Nx`I4un91v z6)RTkpuo)Fgl2q)!XHtUFeN`&Nv&mnpt0S;p%4+M_xUv#ximjZiGBqG{Gwa5mR#O z@RIQe;FE;r_y^5Vguz;1CFB&;lFKdRWl|93F^{ov^7ANpD!Q@;k*5@)%W7E%Bo15O zq1t)+0=~HP2~Jp8fgtlp+)4f0`ohQ1MmAh(=eit)(x67XMvNW6hd!th9Q)A^5j159 zgke$yvEGDW7P#gj)2Y$w8o)D-Ci5fJTwZcugAYpkhH*^f=hK#*edq_gSu@RQKhSch zER>U4N1I)MgSAj+A8R^`1p&}e`1n11rZI$dp8(N0Aaob-)G($dtHKy<8`0Q$Sf24| z8J@odUEV%E3X{@+Yl;gDj?uPdh*Y@Q7T9v7koG*wPOZRdMAo?WR3N)z$H!TdB=3l> z%bi$c+O}9yx>5)~Jkb^_%BvZ^2F+-f(D=+>9e~mCr_N=9o{#-l3GE+*&a$k4?P?;A zYTyniA`%*wmGsrsy)RjHr!+lXU4LmKxUCf-+y;T`ES&*m(#8G}N)JlFx%fN=$WN2< zGi$92`auop2|C6&D2~MnY0XC3a5XJ|;-g(394)LC_@@lzcH7CHrq#hYn!z@w-bTZa zQjy{);dR}H%aOY8%{_f$lVKV+0Zcb!91js@ObG?VG%h0waA?X$=s{C|nM*;QB~9dF z$>{uXdKqHZU1oJ#|FvABn15^$or*%67Ovh(${9|*zjbq22M%Z9B>OouAc^A?50ngH z0ypLXA|mXEphW6@YwW0wy{#v9Ahv(74EvBy0D|9>p_03viS_yxM zwo1^wwG45&54@lfrluJg^Tb<6f-dQBmwAg<5pW}DaFYrF1W+OByTXdUIT?n`>CDW? zlJjZ3@nnjjq3iiV#(LJ%UtL7H8#LaQTL;hvwv)DF3c7Xm33*ztQF$@dSww|}go)ysW=xA&E{u%B5hxLZM z$L)P|G-P=6llO-WtI@WM4P|#KJAwlrM1ZF6^0O$-T5FS zWu*EfPWE#(901}IBt2BL@xlJiBR^E`HYwhS_Gm&SJU=pur}1|&0>+wc4SySYp&Pj2 zCyFg`DROX#7=I6ekjp4d@yVyd0Tp4(=ESs|@hm0RY=XTm8c|G}yaIZBPhr_KBb~c~ zronA^2c5V9s9JbYA3NRB8emt}8GLW;YN#fWxC+AXw@ckFA+L@##n7*xOGsDm6~hVram#q~cw!cX9#*xeP_80+jHy435_O9 z{Me5tfln6TeZnbya<}b*u5llvPn29;`K9MvrnL@$AQ%rRA(+i_KYgC$$WtUjS;b={z^8?TuV4fy>V`roMw=BY zpAMqJlf4ttCIKnsq)pq3|C&Hw!A+YkLw#R{^k;_EFd9@%u*XRpF*OM1-?*JX$zT%s z+7r?*AASb&Zb9^@LTfuk0PB72N|WPStQo_K7-I!Ym-pc%T6dyM6^+EgV*tlZ*>5t< zlLPS5WJkD{a~X``e2UOc z;Uo@(5~Qcgw* z_TjuWfY$7xHh`dxN)MDivY;hr7&Py^Z@y2dU}?rmW35$+!Xu<`TG!pRp#wQEB(B2; zJ&!Vqix}(4*IRNjj3LnMsqQNPz)X&@7wykf+R`SN0hca^l9CcKDXRiX;D^^AlY%X z@2M;6Hns%_;l0)Eo6@K>Ka8UB8A6e&2RT)zf} zyWDc6i17`F5YLY(C=vV>6UJ{sQofQfQVM#e9{@eMYara9LKC6LNqYMf0rAV?pfhqr z#S}=yK+`(J`%oE9#h~)KxHVoU#TiGUC^vWEd>n)?e;UCufHYcB4G3Ea74HnJy(F4H zE@uCVrUqBaExJF6%aCB2<<>1oerUyO6E3(%9vIlsHOS#S22j}6WMO+1;iw)wEh#DK z+IS0yP+(^k2|o4MEyI`T)d5ahZnbFPLYVwt4JgDwv{1snW5=u~jLH=B6zauZ@ zDRaf55Rkf6GX{({n4mvghy;L#4P$Aqqps$lGS+rLr&q;dEipopHZ>VYLUi%pUytyU zyDSNefWLh`05%DGCjbxvQnmM|VHg(R!Mer6SBK#Q>?cP$iVz`~#yRGXz3yqgmp^e- zB@w?MxDyG&a;tpgCjY)k+U3yz%T3>|7n+7^Ff@(7E?5o#>mb4kPhh2d#U!kmiVxjv zz`lj6rq18re+P8knh{9~S7y;6IFzXPlONIzWjW#`UfJqfvyC&)^# zY10k#?Na4dWtHq43LN?N-zGs2nEo~l3xp&lJr@H}AtJr%o9YPL# z_L-F@SW7jgSnS3SbR}bIS`~z_aS)uYTKh2e#;aGL+s<7EKh>We%Tlu<&vOd;i9aYb-6Kmh z3P;FUL`UsOH=#hu!gKNHw%KUu=PPS(Ya?<8Yj4UEf|C|ZB}p3lL4fk=sZ5{JkS(H( zNKsM0>^EvC00#oMCxeW4ulsvw$n=~#l{s(AKuBg zyT1DlLU)H~H=K@#&44XbAPguNQ5b)_v@>92%J8nW7HPkF3;>&C)lYEKlvp?u*OjD$ zf}29Ri4`6aqE3$aY94`o@+f5%j8HO(P>6Mf9HMd+pn>b1&yXetXs>oxpN>hgh*Ls% zJ^vW=Ukga`=5PcRACamovoy*$%#L7OEdymQTq$kY(9M>J`|5vM#0UnR_N{~ z)KI4jGRgQmI^c_y%Hvb~`9w3LbeDj&ata_S0B@}@n&ThAT3@ZJB&@%sjV&}Eb>S8y zmg=!3@mkTeUOfg7kedi@W8L3fxCsJAobXOUl|jojq&HA}&59W496Q|svf2_mxaS8DFsZHA|(;yce|X(UO*03*=tO!Dbl?xf zoY;iWzAp%gnL__SZtS#UbnVi_38cm+Ug}wHt%T*Df@ddsmijFUb2EasopGXhr0V!E zjzwH?;lc%(PNJXO$2JrV-`$77y58BvV#c7rytQz85QJY~F)l+i51e9O0rpD&k!nS% zc+>4z?|?{1EUXmG1|&Lo?fUiW8Zzz+4+z6=UAlCMqAHXzeF{cU!jnL}%MO60Hs(yn zv!LZv+9R?~Ul39DKrFbcJOl@Z%P0b_uMn7#ew;X9PA|$W4!^n+M1vnGHVizw1t%?f zI_elA38J!bWk$JS9GV~HjIpP)+UE8%T=qGV^Pd|fwWM&A09=5*)u4+VU zRx9w{0-9Q?mC?>9_F4~I13FNKRGLyTWd$9X$SZDO&OzTyQKN7^#0MeyF7Q|!Ornj~ zA#HsJ#|p*?3KqYkD7zVg!N%3`-$L!{GK6c}v$5r*%mF{b2l?{|p8`l66J!WPh9W$w z2D^(;Ya@zsgi?{I(kU2}tY$?>LbL82PM*2&31ge-O1Yr}$y8#~<$EoL;PWs7{cjES zJGW`Nx?)N$6OiJ;7ydma>^QuMwO^0%gH!foxqV>3JwYf_JP}F&B7nD+`H#N}$xUFT z*S7N6$2*si)sncUM>$O`C4|HophN#EK-_p*UOvTiL2>f|a#eePd_|-)Sp{TN6i=*7 z4tM%`c*w5vMJ%DRPf(y({oQw@PlZfa499`3Lzdu06*h7;z^^Y6+ZIK-D3}*oUzQQ& z0?`RkV2QCw2Q%SrqRlvy_KJPWlfwSCk}X+HK!q)Ed@No3>A+PAz!+Fd)3##=c^CLS zc5GNaAaqXlN?wJlk^ysbE#Y?vvx}&Lhpm8Ml|sBSJMxgr1bc%IY=*Od;EuADb5UF6 z63zYO+oy2Ai`Duwe2vh!Cs)?4W^L%=p!xS9v?xH1^DO}n7^$K;^VhI`28Jc2e`oJ^ zUMoefKwtO?m^9Jx@$ts5iHAYyK*9GRxah=d{Iu^BsP76E{0FK?s@oKk;X`8~Y z8U2$uR-iF)AYRy4wzcZEf#@Vo8!W<7@JnC9usldv?eH~Zt1M`Vm=$#5)5tiGC7lu8 zmtYhXLV zs7VXHz!PqyHCtuJ4w8G@e5&^iWf>>nqoyx+;TObvrjii_jCm^;vHreBkdn?m1QG~{ zGNmcPbDy%l8Rq0kaTVs@zj7T3-pPHg(zzDV^Ktr9_^6`uUF(V;h-FJ$UI!CwEw~Q& zfnTB&A%E5km2=|kfoaJvzGxK|wq_k3)Es%DJ&I$8CYMLRn%07JX4`Ahm{mVKb%J~G}WWw_LoMXL=)6d zi=bc_w%&~Ym9>JlJbk&Ru?i*7O0oy0xC<022a}Fn2;pwt?~DsEgN&U$#Z9E%{XvEG zk%t^+#1a4!(vkgSsshpbDF|+vBe@}>2A-jYn>BVjki;(MI{QhBjtf`<(#AqJSJeAM zApqBhCojV3j6{=2?v?%PSr~%F@NVA%lQ~G0BoA6Kq}oT^tg=Z(V}J|IgoDCeJwa~T zl0W$&-;9pHRYuVn*MX9kkg6ruP5klAIOU0)QdwU69(Zs1k+|2Ji3kbLNCaj+6NaGn zej8j#s`$JSgp+p`f>jruCNl^9aYB=^hN>VBP5{) zhoeWq6{Qm11hxzdUEO|NixV49I`SjPW{B1D) z{PF+0F$uXaIWY$AY2!|X(V-sGwj8CwfN7?l(<$dXVqbBjWx29dRWR8&+Xna5U1Dbb?DU3OzBB2kt$ zrFyENZk1;4D2)~=ElRz|ajBW+_x^sL_pkTAr_X#wa(Ca?^}W8|b2-lAJkFB$yJPC# zHdZ(iBkOp16HMpApDv~#^Y}fAB|UuY&E87@;s5oO@&Enf(lXbo2Hy@q)9G~-bdanf@?dM-9(zuTVN2rTw z0bvMvvlC-~7qo*aRPx)J2i89WTw=mS&zL`dyNfK$Z&3vJlhL^GRlv4F?+`W* z@mhtC_MiWq|8MCOu&mEND7wVHCZyrVCKThWjp?X^zVP@t)6q4+R*ZzZJ?<@`=e=oQ z$qj;wQOAkKk=1Q)CjQ16R{#5d-P`uKBLk89QI zdB84A5UzC#fMqR*7mc0mANmZOJr)f?imb_s6ItSpU0EW&viin2OxpUDFv}7sSkLcl zZ&(ek6n_r3b2N%b4363UN8$r}hw$I1A>=B(syyG>V5epjF&qW30H*Q5>LyYoa7Rd> z16;s>48rl936}!DB#Z4;Hl^rWhW*xhs@&>ElxVb`|u6G$rGc> zNzfIGxqyj`6Uyk7cXt_~gp>m6gc26kpX@F2PqF7%`(uF~h(;=MyD>5WuPA8E@Kbf^;bARh?Fc_A!gG*T~q;6gO#M#F+7T#b@L zJ;x6dirA6KCTM04taO39v;dzWqz&Mf*`hEAapr*uSJ!T;$c-Aq#z^wF_@tPHu)e4F)U-k;*no!SJY!6v(ulFv* zptWRZsM5hKv@L++4e&3(wmbod6hiL1)LOS>YqW%i)C9sm`x5z^Y8`8;7eS zot_JH57l7Z_76V})K<~F_wLafEcsa_9m4`-%sj>?+apMj?fn8`YV$nOK+u`k7^X5E z_vsFHvOxX9`g~M#!8yHwXR{jFsJo!O7Hs?NS)C z``!2VfT?l_2MYTR;y6~!aimg#$SCn7;GRV|BqokeD^4SC)%P1dq))$rek^V5>zp44 zkI2Iaju9z{?TrU@AXU@cd?s{*x|a@2tWP>7lG5`;98C3k}t?vq;x zsD-EnVM%f+oN!a;i{hn|0r3$*6@U(OaE*Mr2e=|Bndv}Cy&Cthe(VGkBptk`VK{%q zZw5E9#TBSQiS2DroY+lv?0&bYil0!`>21|*xAuNBx1*&Tw(nk^Iec+B0Gf^`xlyq4 zJU&O}pU2HoHhw<04WC z_Ad?B@*-`(t3rX6HzfD;72~y_PUqzXsw+) z+nxeSl@b^PzeNO3DFx5Z4?V{H9V2wWzIJTHq&2qllSj$9cVrZW*tJiQZs_AnD2NpX z!pucjA}QqCePLI|pRG`^fOV|Dyy26^h?(}oVHQ83)p4dJifi@2po9is6g`go(x;!k zfx(ky6>4C{;;_Ee*98)O+}Z7OAwp(jgLMxlropr6+lS|ht$v5D5a#}L>oto#azV-7@5SdT*=2_+v^?y5b2tCJa&>5wu zPWu53UiBuffa7}!^pitT|3ody^iAB?Uw>T=yC{G!j5hjv&NQ{gkrp^aG??xnE6kex z%}*iN1DvFD10w$G8>L-5LhBXTIYpr^-ybRonatuV>!ub^xhWNO{ zapH6*X^JhnDzTq!j-}1$JVs6-E2U^c%osXvv^ns0K-?=vVGI{3S1G7olTfFyi&_*? z@YD%LF2u8&*zR?BDN7?@l6aHRj#`pw?JpTo?BLSJ3)oWX2WV~Oo4BsHrRXp2D2`*i zJ4GUPs8a1c1P|{Cjn;bU4))K(d#;aF{evD*m0FZ7q_-=WUl|IeS z-vRry5b+FWE?s=tfMV(b#1=w_=7&>S*dgC`mrZs|%FY$6h=NX=sfb4hK9JZnA}5H^mT z>+~5F&DRk4VM1^0Y}oH|P)@VjJ35&_h)7WwW8C4!Um>}SJe#MrUHRX}tR5O|MdDw9 zwx06pXcbAwo(EUsZk~X2lRDP;6b-KI>=##8P(6W_NDzEipKAt5PXuanIT$4+8*9mE zMQg=mGK-Dlymo&2P{`_Kc4JNqt8{nXhz~nYTRs~>J5T@SKOP+jD;uyjmW2%prl9_l z(_RaQOgR){%3)>ehEmspNi=#5!U{%{aLDVsnotqGMBnM+aF_$ZvEnegICtXzTq^AZ zor@?>3oe^gPI83KucLcMn&OYpUZo*X7j-2Hscc5h6IP})BoEm59fTb&&a=8a;z_k0 z8P!k+xFW*PA_+5(J&yU+j8*YNpQuD_q0535HKW?~U?MV?VZH2AdTug~niHsqY1m%V z9h;_bceA@$&8;&SA%hy+__2b4JUZlc*6VIrE?F8mXNJ+d55KY3Bxep|MOGVOU^C4Q zMXi7pVsDO6aYaySUfB8&)D<~U1ZVWVbAbI7VeVhdnM^t*=N@X;yfc}PeL>L-p0R|h z@AqLoAcX}sBb*B>)rKP!ju-4{c6Cl?4EJVR^VY6Kn5jFm)A)IJj39IJhH$o&5a&7l z=lg!DdmIt|O6fz%s5Cx=>W11LS4~{Ki4$;h(7zA{=fUsMXKiM)0Aq6m*p#4{iUN7d zo9NDf`#J%IyK*|yJLjG+NU}S7Kz!5CXH#ad>=4QL#GuGQ)Av2x*jHh?-=>Nzzp0B( z4qqHPt}T3=&&@@?P4g6L-fCAir?;n7KECks{MFYHcgwckZaB0nX+v)Mj*49y3Xf}# zK0-#fg7#wwzevHF@CVuCl}GY?d^*kFX3%VO<|?Bui$b0fJtb)WA`~5>Au_^4w;E*6 zC3q$j_<@7ba86MhRHXc9UQJT8Evh(`Q=1E3H+_ihy3s67-4o~AgCo}HpC z%2TejwA*&T3JXkqw7AbKHtxvsRhTG6+1#J?ez4gK?ruT2Oke=vcb-vH9}kWbuX99L2v$vg>e3E!Ro8Y(4Aa23et%+c#AaBwsdNQ_~?&Dc`u)TbW_ z4e-E{q%2=`ciuV_&!Aef?PPKp77oc-?ZDhHP+O>rb>PXOTXb0nbC73T%P1U;Y2QvH zI3jQwg{ym6Ta8$xoH-uJD9BN6luCcY1t?semWW<&_w!ku8m1QpvrkFcfA%=G#Iu<8 z+plY9@#k=^M-Z2#)5Nic39Te|9A{F?rZ_8B!!-|Q8#LygI-hqAT8~)Pm(w^i3V*t? zdMcvYd)Rqj!wvcuZ3?SlbOc9ugsei05Wb(CfNLk|q@2W(!0BfnqwXjOY9V*8{_O+9 zbk;hV6!3cj2&9&yA0?o@y`9gBI%Is*jFU+8_4)c;2Upn%AY&TtSRUwN>BR^Ga|E~) zEE(2%mspA>_;nz|O&4P&bRwdFIdJy2F96=Hx99H0krjxX@M7yjduI?B%ga!CJ zV7zVylEp+#Eoa5@EgX?f&WHntz6yC-Si_mlR6K#xaBP)krh!?JqBB; zzkeUp8JR%wt<4BneJTq!!4DC^+uG2a6|64DA$X{C&SJe@^xA945VCdzH5Zuv6gCNB zLX!H5t1xb9iBlhQDGc#H%#f~Rbl@9g3tSQ^xY7htPP z3zIu`Al3hxG$Qt*GV56IVrTY@LUsWhjyT@P&R;6fAon}k5*`r|A&_IS#AFCAL|n-w zuCJ55L-w1XKZGvt!SH*<71ao9eHUog##&`b(I%zo+`55PeB@UFpi_^dO#wT0qxtr{ z1wt;zGr$Fj37sJQT*#9bt&;0stpfwHjS)1RxR;sFRNga{p%2lV~$QZtpVeJ1HKe_=u(!1ECdw!{)t z+~*sg$shC#jWLw6v2CIP501pRx{MfnO#7Q_V_*pQ-ggjoME`K0zs?RZ#+mt$bFtuV1-1VGW9l$`Be5TwCn>`N zVaEs(um}qSQn)Kh-8y8*+IV{(#<^gxn!bvR$z@{NP?@`I?gjt>Yy=}VflTL?iO%BV z8Vc-yCgO$A>~?lS&Hb%5KY%!lx{We>wOhhL5lCm6!z_y#5E`ZKnj{7wzITV5nG_Jz z#C%1jgwS1aKkw?8i|s8%-_PXy8SCzD_hB0` zk{;tKCIm7;CYeicZgq{PVhS~Z`7lk7e0gj#5mb^q1|o-8H-F-+S+n?9sGTC0J#6UE zGyp+k0REW)NNq2yE4=j6L_Q?K@^0E|MJZ&uahFS5$+o2~My$?p>h*!>aRkJ{Nvf4f z$Ze^_Gftt25f6KlgR2jfro!%Th>5*}QH65|5AtXjHf?}&tq0qz*3@AAT~7o!PDnaB z-)#95@Z`x8pS6w&s_;R>;9`sn4k9*SPy0xmw#}v>1?9~^>zJUUquM6f!Jbx(tW!Bv z#wZaF!0FLfYB83bFkd4npp%)i_!b`k@qhOuMD_#_xcQ>-Fx8*DBmBZ3cii#t^=_p* zSd|K{?hF7BG_>j|Q_}UAkje;jMQk#DgBa$pg#BGG*xq@Edh30D7^rcGMnIWIoPbxQ z8mL9yEbySbP|Dc}2GbRIEB?sC=fk`ojh)UNglK+=x$OtAo6>-@b-pdUjKsRi^+J-e6c zGoYR2ps25swl3C8P@xu3aHWu@g7;|*(s*#x{fQJeSbfjkNenZUl}2EfdSckQ=jUd9 zr4})m=baF^PX%Okbkl*QuQ;_&j05vlHe}ICJPBe`gli0^2Txq32~{z#RO5w8$Map> zo`FCsW=~jUBJvMxlBKPcSG>J>*6}%F;9@=%tAJt){NH#qpR@{excYW(G@!Ic0L%qj zdAGO)R&k!E(1x>%-HH54?Dyqf;T!x<&xdqhcXR~EW}m`AF@_9B+3$gv|o(Cw;T!z&x|%OROTllFqwVeVn-nYAEktZCwq2Z zop4}%6`=Nn;pjxD#tyX8PDY466-?0yXc-o_BDm8B9$gUhrD3>kM}2^g4O#?N#W-IQ zqe*FP;QN?jcpnQgx~(yOT!~HcDC)$_D1d1njlV564Tc9z+x+2EiOCUkVzYfSrGaBN zGqXB7m_i6lceL8)J9p#=N|J~(e5@gaC(pwm{rB5QK1-H$u?VVpyKyxpD{t-ur70CR zEt@^lE??yo*ta)NoFjffF4xV-&umT^y(bt<*}aStoCprX+roW5|D{|PV^xzcu})Co%i zY8md{0oS)|_moGqLJKi?w5oab@bKmELW|9BCdAPWzrk{?aZ~xgHoy96K6m1{`JokF zN-j^QGRYRjaWE~5RoOm8g!Rfzpc-K%ywMNv5M#OaoKeJoh_vJfjwo|jzqK+tYOn$H$vgt8p%*js;G zk`6Us$88V<^{~$(4~oj%5G<*Mp9JsD9=EMLW2ZhUh zU*CjboTT`RC1sy#-53>WsrhEWYQi#Go&!vJ< zLBt!cXBUi>>2vWU5LaM}ScNnJLvW!iiYShtwqZxaQBir?k#f}QvNF2QtYP1tXZAfC zF91aZ+Qy?!q+Wco@d_Z#G~COI_*u^w-T_xslL<69=`*sG+jp;)=7b zvv0$chhob4i-zh9wq{M(s=?Sd5tP@_j=?Ip#ncXstzv#{-l<@=Yh3 zGY!l7xur2k5V_zK8_hjw$haIB!}xHe?>6d%7hIp5JGWs81ZLI3?}J4;ZOt|}Sl)$T zTThR#JH$Q)#4AQx9!PQtQetV6BMAtj+)}sA5z8WYxBROyQ3eQ?39*!(UAJHdGz-}q zGyU%8);yWL(#5^Tc5kQU;%`RH{w~kl(b2IHL=h_w4>SU3Yis*hAG3aXkPY5!w+>tf z&~Q@zZV*wKqSzTWc;eX{ruoXV&wun}J3Aj4{VSHj-P-6Q0R3zRk&GRy5G|j3AKrtJ zvM5d{VxfFzXVmC9t8}}GwE3#(S~vvi735V@y@1q=aJf%+5U^8($948B1c=P&`^wh; zDAc(VSl#Yy&+UxS&Tg(j9fnAP)pm?Q2T-jNei`n*ol+<+;SPxiEakF4A#Hk5rNoM_ zuu1LF&&Sxdv}&DBG(a*&0yf*#x)vohq_}xD6}v(QMD3$rGwc)) z(m#x9+_A@$fxh5D=FYx&;@A6Kw=S>y_vD$ahu3=byvrIj;m=V)+r4#X$X|Zj}xhf|I>i>o({Joe9Q zIKO7AR9tu$j=HzH$G(*JxOVToAv=ch?13wdQ&UrOFrx_tgai``1v~1c<)1ivAt?B2 z%$l%iRd-6 zsWZUFWm@NDzHXJxLdytuyU$9U!HsT4K0y?Up_0!VdEk!G``nb1$3Ikt)0 zc%w{(kjhEj*U=LRd){~8s8HLhSPX_Icp9B^5Jp5JI6-hVzi&%2rv%t9^!9$G9lZI5 zntEo#{g~3M#GkR~ijrfK*T0>nR@J;~Sz`LQ5*yu{2nj?k2D*vo*W%yfl)8_}q@KrQ zEtNlnI=tXj{Dxj*yAEq}B8oQpQ?Ts*FGV%-AHV== zVG1Pv*V7m6imI_|UcJAq`cTmPRd7;q)16jay)(DF#*s0)M_he_5OYc#Li#-;j1)wPh80loFQzQv?u>LRm$44FN&p0uO<>ef(5z(Dl9skXM_CuY9V-HZ&8 z&N$g5DO8`qK95uScHB6Ck>R$Q2mrDTPPa?|HA*V!y4z5{rv`uDr{NkiC#NS}i>lYu z)0&<|gqDh(5v!zZMYS;^&2dWmWMl3GKUT>$hPUP|D%(j+MNbk#+l5Yy1Oz8qIKr@ya66`%(R6B*)}mx315xeZB4{ zRO9@rH#LVe&Mz*gz45PR$siUi@=6dq6hx?mNrSpv+}`RZS+3pdC9`)7;=*gh`?6g9 zf;|x5QTUSeEc=CLzTl4M+5}aS`4)amubxFevLLamYq!O74_<Pq_vxXm6X3ZuMsaEBzt!#4fJBvQ~xcRJ3IRVrLYzq{lM8vi`eC?ZKb{NHmIv z-eR%=tT?4&#R!nZzu^60gwtwQ2& z26ASsh?NHSaInV}q$)lYR2Ret*%`%I04&UP?dGk=F6lM4``IkN(oMGIwNTNQnmbqu z8R}_4p~8B`V^*7?72{(KA<>WuEz7k=Mn>X{lU>l*?8)BtE~ynnf_F zgf438SE}psJ?wFWS*Aunc|+?y;~lVHUt9uoV%yV{As2%oy{zga9d zS~>A5NF#8KC!T$S3d&ORisuMmw9bE943r|$))AM?Xpc0AqO0)!YT7{X=QLig2Z5ro!fNZl&3ugT;nFHYkmK*SftZV0i zjADWKwT*ZzxZY;jUCXD})MLi0?-6Q!uSbOvOPNSTbCi*eaVc4DUD-VBtV$(9IztOt z-+jOu$A=dKdkH^gUyL5e>G2b*T=pR0U>_aVWXaI=uPZ9_QEZjVHbQrFw%vp$2#AIO zqd<(0c!t3m`9(K8sqrqA%==^hL;!LiK5OMw1Nbb6IOks1<&I9f_ZSx{KaxNnGLO%h z6MFcrulB@qoMPOB$DM|@$r}^PG@1rWG<{GKSt3p#;eZE0aAfnLm5vsJF}Lq5=?>< zw(+<%Y0_PPX^bhsi=l~LO?Sg%RL+Dv|Kj1 z3{DT7E@hvZr$a@KE7e_n5~tmJnt-p_QcKY&94idyK)u7jMJ(1Kxe3*FA8XJ(3pidR zT+TS(6Bd)bwl-GH6vabaVx)EQ=JrElR-IcCCUQa5#=s@0<}y;CR~5A_3zyA8o{c7q z3_Wq3$J<|TPg@fd3Vas`dBcbZ&FVLdyehVs#fD@sd-hQ06Dr6{mulUHRntCiv$w=Foc4xL| z+($dUV%bh$4=Ukn!9u=={eq7yBa}e!Ev*@cK!>&;V4QA;`}3^H>Pck3rd-pJ>`ER5 zRCwj7$4uMB3E1;gtS^Wd&+JfPq0$ahv4qYPq;FtXZFr}*ak^bcyG;F*Zm+Mq&1AJP z^m_&`oA<#~+A0pNwt7K2EST>`T5X&m0+W;<;T`0ND)Lm&f&6MCFl$LV?G~jEu;Wft zh!St(BUQsWFEjjD^=f1_a@n51$&e9va-%^MW_+}c^0+-64N(h$?a5}dlCabzyt9cP zfb!3@q*>#{3j;>`R4}|JS1P<<`HI)CUZp^(^OUVCYRzP4p4ZN6X7vzIyqD$nO0VtJ zMN_GVVcSI2W3(4&sbwaCmOCr21QwEHuc`qJeZ26oWE3fuewNXe(W~zKF_JDRQ1mDNJ4*X}02nUyO!D$WRc5fY$KCb!2fx@Yc~rX@4PsM~ zp7~XO1QaBN3e_^LwMZvsV?I}Ygl+RGcoLBdp7dhgG4N4w0%GP=cr4%(Wh5aXzjV`g z{S-<))B0+(N{8GrcUc8Y+;b|FQt-Z0al^~nKYj;dK3NakW0!!U67Lqpv9QO2KY+`v zAOSd#{j8iA|N7G9tG)=NRKxE>w1@l#JEP!rNDz+@e#*0Fg%;Q#Le!AwOK3kcJ}cVG z$QTao5k{}f2Hzj&@V+RH7#R-mIqkfwIw1W~%=+{5VbclilTfX``$o(ZXHBy`Tsy`% ziBrC`LYK-ew$RvR-&Fft5de6y5I))homGppRzXD@oej%e!o3KKG7(gie6YxYw;|># zmeA%RYCKsX8bY{%O!*oQ*H=hWmYN$iwUu?wudnRYG>I38e0%(<&Zy4TC<^=JhrTHz z#gUc07tQv$EQC^bNi3m{=6EM+UAkPV{@5*oX`Kv9!$(J_<*-u_^nyZ1zH7I{g6gr} zdfnz=>}3Xwcf4O+i1znoYkRhj>pCC?!uhm@+#UBu)qoVoKL|FEuYfWT=|!AzlS>_4 zyCrdz?6?;vprSk$;vIn%TE&GZ7&1^1OOkQ=Nh!Wrp@@NDbHN$2E4`r%gX7OSKz%#P z60&5xzj#mCcp8m##3lvt$`?7ZN;Skh$aW?mRB-BsM0s`W3^y^BT?g$Ns!NFCC?m|G zu2Wb|4x0?vO6E{GER`Bdf+=pp0z*fr{xEFCRieusm0lfc_3a??3S+$xm!F%P1=85j z56u(0*2Gt>$L4tsKu7-K+_OMV?Uo!{v*5`bkoi+oy{jdxh?DG9;M_E(xI=!@VJRoW?0pSS19=&#%Ag?$a?#jLyT~$3|kX)F2i4Z-fLcLexQ)`ny+OK|4F78 z03IEyN`_KSn=D0iHRY7KAnIyK+f@!76Ca$YS*n#?iQVYrQvx-mUR(ImQ$}nkWIm5m}UQ% z!tF$Dd1))yVpMY`4y&H^j_sdN3T~k7$jn)C0O`jJx=ic-w#zIAzMDy`YSpC#*4~>!~ zPpIN)(|VKq8tM(k<;>UGsupUnppUlJGuvv-T zl7u$08vITa&WGP4b(S5V2dqb%LyBjc7xXPEgMRyg2VI} zhAZ$5lRxTYmZLpD5_YHypL*aZ>R|*Fm^mDOj_w<$$*hFQ>aiH zlRwmTD{IZ5gnq{v4GuZ{T#7VN-b%`dfTjUO){*4r!HIjWS^;ub8Ku9acncqDmXnN! z&zbCe4q1IVwTf^WUmib{7Qi^E90BFaO@YOOm`n=nwHFc~jgcBM?YXzG@3u-;oJCEA zlf=f5oIxF13UHF5e+Qd* zane)a@kU}r57V}O-%m*%ckIW48nThi0Gx!@QdE}+wX-iyO+)7j{4{ewvnlylte@G9 zNGn3Vzw|9LH1?hdW4=J<)}nUgY^Y<3VdWO=nfw9{n|6RxatRZ&rhx4sW7UW;WT`%J;9t`vhE-uF@{CP?zYZ_Fe$>+VsyY3-Lx}dI0Q!5WnnTWT%sT< z4gkx|y@R6BxR2uFhmOm#>OBe4h!pD_w~qCE5&>R2=jZ9zoY^kaQ##0Zmxz}dyoxBvx2gb^5tIeLDeN) z$)sL=4@^G8SE&BY15L}&{*Tr03gxqsTbGI@__2n}D-S~DR6#DsF@9NFf}mXxMq{h6 zgBeGmkrxh@?spD4P20f>SxD_You6_-?P%OV>*?4Kf!Uc0?mAKz6RnYCB9587=B76u z&+col90A?2DJK-fc#7~jRjt4hmBUNe@M-EaY+Lase1bp7)b}#JG#@e~D`ZLlb-NJU zn4GAjalzuAufDfV(5GSmLy{kY?7JC-UdV6j@sc#q)Qia$`>PQH!M*9V_4B|+8iS?x zL6njT8zJm6co-5mNl@o=WLPj_v|^YkC~Xv2EN7i@(wdtW78Syc?rENDcpUZLG$EFR zo?&KAi30Ks53-}!OFeEw8&4jTs3@*BWC)8k47(xZr3;jPB&O8(;r2--vVUcKFPZ+(Fh2Dc~*qdP)eSWTprheVp>b=->AKy3uc zF6fWMonl{d&d&$Ou&jd>>L+m0fjql?j3ACiVF3)Dv+G}Ayn++>gcev38WmvXGuQBG zrz5c*j`CjanuB8+sNV;8K@p4IrWwhO$Z;W)hAu=z;KRrg^I(S|oyVX@w(NqNnbcMZ z!zC&N;Yf2`U{@HH5nE#4T{)AHX__mYPsXMc*BB>8*-#{NhV@S@U?LYK~do4EL76uBs$Xj#)ybPDld3I}`N z`osa!><2X~PM!zw)1SE*u_Try5H#+fN(248jg=RV1zF%Q4c1nj{*8$8AxU#uRNKj{ ztpyDFXz&{qi_Nefkkvf!QfPC8U&#BwjOxd3nGxSUJ+dTy2fTpH@$UWcbV8Ep>n7#iGiM15kf)T>SD4snth^HXd>wT%a93(<2KiK2 zNBVo7A{k~oy33NjU-euDfjS32nbMH>W3P>1LWx=Ju@0HCVKk>90AY}2m5H~`#ti+; zSX}Kea-OM0Qj^${gkA>07ZTGU3AEVB^#Ztf^@xhnsK|OF5~WcJ^$6758<9G15lA1w zn@xuiIN7w0P%bw99BA#u->fq{0Kb+Bh-oN^-Ay&cHaa;0nP3X=<1jNWv}S_+k0kd2 z{OZUP-`d_nS$V#eJu=E|uFvQ`c`ZDvHD}#)IAqreofwvutMJgwL9wRVpU{vGQ)5)s z+Hcf0J@mVDdUFR7z8n*2hH>@cxF$d_rutph<@E5L>EdsQYUFZ9L!Lz7Kc0I+Z=C|t zb+CKVgfiu(Nl>8l1u=R$S<|x-Rp-Y>BRr}n*_t{Kh}rBU-%n%b8dm~5q~X+D<^aIr z!1#;sXo9{Y!vegMVeu)@kuerzBt=VA|NL|Y=b9pnci<;T(^c2i1r35x2q)W>gD$zG zwY3WK(GI0T5?~COgqYwpsn}`UIQAY3lcLd8BD7X8%qk8n@(1UD>bp|LqPWzvRts?m zEfAFp9AMNw@?(|PWuBNk5}klPoLfMRjGOlcD*S}tyZlOAjxZjHN{F}ZVNBtD=0$@D)<`^zo>^X(nwNk$>n^b)&zjKvL*TT!lw0FV* z$&$1JI?VWRT{OPtM@(>WyjyinfN>;P9Pq!qOU%8}C+gO+=YrrB9U^T0vU_OYN!)D> zUIJNm0RsIEqUHY%jxj`uCmLz06WAbWs2Z~Inae83U&2$dB#{pImtBfCK=&j)d8P9S zl(K}$yGY_kCbwp9l>)pmkVu$tFqfsM6TGUr&a7jMj)j?O$}X|><<9B-zN6m9~+tDi7q2L{`(ItTlog&j_Ep(+WVp`v8*&q{EK%y8L^ zBRDYFiQ4yJa3ukpOn@Bgr%ApIt_!eq?AjLk;@Ne<0F+fl#o`U1r7|v*#vC*9MI=0x z?EyDRi(_GUh4v91dUj)R8YQ(k*|LJuO^@V@+9B0v=kt*0@WjH$-F}=vhXoFwT%>jv?^uvE2Fgq2 zOE>qWu((o`^L!B^a$X4iQ{b^<$85`L-%yYriwsr~f)1yLUk;1W{g31CpcJxGj>93w zKnADe;&iHfuqRT;Mse9S+x9TELuy;Q?J79Il)#A04A!860DGR93AiKi+l+mob8kE> zI@2H)(uBF;pas`FKM=_P2J%~JMC%Akp`Bv9l}!j7E<*@GkOE~gr{9bhE&z?i#C4Cs zQUB&>X$8&-r;&flVdLm34%iG6r*rQd&|X2L0(U+}Epqz`YS$_*3RgmrXey?3u`hrt z!#zs^q@)#ZdYCOSY|oI-M-kvX_P=_ngzaF^>3}q<=Mf+gNN*F zFg*mNOK|uta8b;PNfF085(*Tf&YOn=0LhBiZdS$~z5rd);mS8-QKf@|@hi$$%7u$ZjrL?Dn@KWX*#v3-18?U#A{+8ws-ztYOXTz_ zaG|wMUy(=zFh82L3M7Q~3)P>KXC)+V@K+N56_Z%FLPcsgX@&98%YR_C8|IOnrTAxi z6mZokS5Ae2SS735ACUN~gl|F28h)(nTt0neu!2 zC%U5Ijmvse2(7dr$-L;%Zkx>YMN~QoY=kTEZM4NJj|d<_*|{6xWEXFvV;6CExEKOR={!2fIp2 zGztvWG)l*?aPz`V6HMnEH1BcDw`>S72|?2a_BduLW_$@>sRw%Neg01P|Hj+5a6&0D zM68jD@b0J`QC?ZSl+1n3PGhV>oxE}Dkg2p$8O9{MYsvOXCr&BudS0L3HJ>y_C|D^0 zJoV?IGm3<)i8<9VC;`C0Nq9~M6Lj2gz8A1YgsWhl$*M1IOt4O1Qcyu`T}~dy+hTy5 zYil?0%y8g8_OC}M&J%AmPN|PCX{F%R9!39em$ic<(_>#mf_;s80Yh&H8EpwNco@ zl=q1Sv>l@K0f22N8N^;)#nSGsuKM7R9`sARP1SOkOjh@p8Xm@zNyldjp%$7oIS7Hm zVd|w6#-YG?#P)mx!9l{wuh{ih1u&|&9^R|_Yvb)zI7v*;x7WOwF^=0uM8z=2)1a3T;{Hy>-FtH2<(0>x4}P+ zMEAcap8kiS>HhIFyoJ`|noy?^gM1Gjx6PUkCKRL=^vZ`Fj6zpWyHR-75e8 zZQ4l{vBCVXibJp%tMM3HSS?q z+kWBSqV)fJ%o_H8#H{~JXZFr3L`ke1IISNGa`>JyUK|vJ?(5R#B!V%l9Wti_^i0+i zo6ZDnN_)U(~+pVWfe*(=wBH@)Cc+Vn?zl=+aRnECbrj|G{LF6+D&e{ zkjsEgkleNgpYIkGI17m@irL2Kj%7g?iYK*+xf!HGAe9&4HA!uLyMY^X)@?M>XMY-2xuNw=BzDKwpO8 z`#zS2cy|lTJdpSY&IAr8@fQdLY-G{d;Q)%2l*I=paZnYXA8X~DAWlLI^#SW|p@ZWF zvM_INHY}ov(><{PsKQ~E(Md%j1O_B*JQ*ColZ(!#U!T{%pGi3ob|3TxS?Tnx4u*(h z`hj8VLu-cH0fvZTHP|qB6sVfGts9F9LAZGGR@DD#_>769(BgS~f+*VfBmjfAhz{0$ zdV%~isW}&GNs0hyK0lJEjpEX9yxz?)Hm*_ukUSp;+?GpP&8d5fzAzg1Ey0OdJ=@>dLOFn_@qVS#%uohp3;l zl|nzTMu8s%ih~ZGbd)VR)mWdwb{vX4G}m3odiO4A1y8aZf;8S7vQvgFQW|6DzI zE@{xSnilVdBfwHQ)hsydyX@00v?a3@f&k(h^lfWF#>FB`re!M{6&x8GpTI+)Zavom zc<1~)Tu$Adv?YIRuE!aU6{es=nn}B$w>v5in<*`unXI23rAwIARg;sJXY$k z5irgC6~NQ!(C%WL9d`H$5E-)EymXpC|CXWx(3vMpwncGLQ9$HTOruVW^)#VUte44# zPPSDDm>0A<%(8BDQTe14J^)%EOjc#VZq&91z09({&~wcO3`8}e$fP~k&zz%8R-H-c zrIt37r^`XA@}UeZo6X91+n@^uXq8`G<~c!Z9NS0`S*K0}fSkC9!2onYg{C@V3z*iU zVcs%V=M@c7fKV1`IoNIW9H~qt13_>XB+v}QQ$at29LYizS%xAJNH*I}#^JObiTYG+ zLt%c-QDb@9WUAyK^-jo0getn)X8fMSzabJp`kqxKN<%nAfqf?Bp%xfwh{`MF7+&wk zp4M}W@2blQbQI9uQouzX%ocIN*!3sN+Q-*;O&4Tn^)CGiMi2!hIp3F+SF_2TZD#=J zr=jRL9H{sa4jv{|tY(pneS2SAdHK|A`yH6k)7DryX1`1K{*9uMHK5Bv09dn0FJ)7rw*HiAL5TA`*h z6wY)3@I)yEztQAxsgvXAfQ>*MBudysfNjevzqL-j<5m!gNsH8{2Y_bfltA5rRbbb0 z_y-xBC~$|?%*Ot?p1z{17c;d4_cii-gtOr&lqD$KhO59UWLlN(lZ3^D;gc~+Od6T1Vh0e(2OzxIh4xo-;1SoFs4+oP0yKrUgV8RWm#B7C#3?KrxI0rBYc>k5jU{t%c*-Qnk!$1O>w^ zU@#^AJO{zsx{$Kd`zdG5Im?uf;oQ+!B>@c|%jTs*bC;#<;M5&~tR4srMr=i*USl2@ z2&8|-m&+X0C-X*Pwy)nHBZ*n+6OQ+WYueW=lF5iAZM$n_b6tZYPvG&fvJH=;0m~n0 zpDs}*Y)-nWFme)gZHa$e@$i}Ut8Y3K&lFalF!KY)A9{_&pSbX`tRbRXo8$zFDSy5n znd*m}`9V%OVia9e&|;O;R4I_c*HQmJ(^Xz3e`HPPz42W?$r=lUwexa~kn)FyxpadW|j>qg58YIxbko*Mk(hazb zqnp{Vb!9{H{IfO#(RO^c(yD;P5sI7w$(L!e1@GURGh%RACu%0BhhTYUm2CTw8c0H% zJKJMF891QRjYb%l?HVlmmInRu)w@66Zq4E)?v*NcL-Kngu1pno{~Z`Ve@K?`R;wybqwi0E;&NeOMnE-)O1_+(rLAY!6x&So#_9K(Yt1mnaftKXgGIL>xGaP(YkOeh>2KfMS7sXIE@7d)CnkD zE#wgVd<^|T8Q`3VB3Q0{{@Pu|C>&GLheT7#3gTGuD=~r80R)kwac0!DuYu2&he@!k zKG1Emmp*ci4en3iJiWb^Jepw=V#f0-Wn@3Xxz=O0_5x6|4RgL2tJAFlotcXe%Ypj& z6uSE*^y7n$|%a5BK#;YR{|Cb>9p(7DKZ?IZk%MG+DiH_!vjh?av6gop2SlR znxEf-MiG|L;5uYCfg?kf#JN{xzp%rX|IV@v@`OzxowHzY1DLf@U=}9R2mJDMH~^ET zy0=)#y-&N75!Dg|yHd>aIRZ}q1R()R@8xPj{WhPDfMGbTYx1=V>C2XH5fO5>7Y;*{&)7!J3i~vLSs*G^5{>3gFB%oJDr1p zXcReJHjzqd>jl?=0=_#|TksQ4zZdDPafUpHmAPXUqRyQ0*oksQmF_dQy9x^br^!h<)jciqpv!aEx zV$pJM<2yNe3mKVr%5*Orly>$SiNZ*iNYSV#6DJvMaxIU?bPQ&1Up0)mdUhMm2&axj zbWoewO7p2E<)FHHSOF>kj*_F-%wB$v{=)JTBYZ&ZAHaS;Kj3X4#`qz{`+JHZS-brTlyI1>3*tOrmo)EHkHIYY~k53 zSPI~)w`wLgF9SsznOJ2}0)Zc8l#^vM-;` zE%;P|&d2Pnd*sj`QBw7mR+y7I2I;nc$BxV36P*r=k@}Wn9*@8SV&4_J;uO_Rxr<{L z;!#XUYu8;XJd~s3kv>skj5)uQwMx?F_drlP4ZA{#*aqZJR48Z}{HfnnIvp|_Rc(Z4 z(w>ezdpqm37a5Ao63KIcHOpE3{W5GK4kq^lgGnD(<5qPgeYD3U_Fu(JP?QN1#uy@p zlFda_csHYNBw`iK&6lb@&;>}t{qo`#7c_8D!kyI?MYy;X!H#WA4hPL^TuypCtnKZ^Hp~jRVx&YE z-wirTeh*$u=?h`D4F_;jhBn1}2+86kn+U8wu=vhdma)r{V_=?`B}UVqA;`R0P)IFc z=D*asMaE`Jjt-iejd(bS7EyIn42Z}qiy>e8>@W9zeh#YKC0NZ_ICR6{jhZz(WgNj~ zHwTGJ-B5`B22TZnjk?LgpaxHUxLiuH9EOotfR=BQP|XCg?kML7>sEHw1zui`s?5GC zdL32Y*P+`~tD|vgi$kB5AE#(|ulpW^XmOFk+AFK~UXWiqNj+TbGh@VJdjqXBTYLE% z8__fO@Src4Pc!A!$1RxiwE0j}!mL^P5}TZ`>3wpyPJVuOR&8^&js9Gh%KGA=b}+HYSgIjJU?!qySrtuj%&4E zWlrQXf3S=iuf@j3f^ID{*Yl(4`fI z=${fhK4_wkjEDaK(4KNIXwf^Hyk6EpF5syGXW)C zeijcYYHx7TGUWWcyTAJ1Y;4?q=gyt6I97nE-)WeL;U|zk#D3Ane)y z_UY57*Ig=&b|Y!&9}{%Q$LFh$O*My+)tlenrGU3Pc=6)J7dLP*9oEQLW_y0T`RXHV z(O4CgFJKyirykcjckW#1ben;QSx-OfvwWDQx%YzydWy$hPvKf1rsegLNw>y<9qxFi zqv~cIPH&%2hKv4jMGbHY;1K@`lY4R*{Ah4jC*t(&Lm>O-PtiY&6TZa%_8uVP)4d?x z-i`b3-=BwU*B1u&=Ub7W$UF)D`(OLVBG{J&HT;A*I+wkwi*FCYD~?YI{s#MZKW_R_ z(drkgF3QQt;f(8AT3csEV6}s<@A&^Bli-BqCx|J2Z}_oy!~piHV69!J2eh<5jsV z1n%(PxQ;(SScEl7dg0V{pZzDzlu`M-I{bgWGM)m!(HSMBrK(%Y0a17#K74Gd!smU5 z|0`&v2aHLFV^k^haChH`SP!BuN2ea&4Y%rp*mJRCZ}*0ZrC=1UtuPgdV!p^bxBKeV zt6rXa&`0srGdvQxufF=~hZ#S+x4u^eZAICtJ&W`@7hQUWoqr$^|u`}dH9MP|^Y(0GI)(jBs ze9)z1_%aO<@6pJ}$rc)qPeev?LdMsHkf~NgY``=1-d1LxJOuDEBNT7{%Jp@o!u|sXzIx`qYgfmImhGxyY;M1qC z-@KUui)?&uiK4-W`uh6WPSXAN&U{mZfP9FO(q!{lZnft3J!SfKU3%55PaP`<{B<8g zjC)x*I2?g-T6EQ>#|i}fiFn`v6cbdRJ-@ta5DwhFu&}VF7lTO>x4?-D`Z*5P5C;xb zgv!HpC%sxXW|VSqad9-r z-NO6ud5L@f^3OAE3b%e>nEd@6pj?I(4DP;D?hTJG;Q z{&soQvK2MBGb-F{Z>+EHU zFg_+2Dz3JUo{j@g;v8W-+P@01XlB1?;q-lZC?FspCU>I@#Lfr97+4v_j08qRZoSGg zSd}4v{PD*$walm(JQk4H7cE_Se3suYLHQ{s(=)o=(tv-O77KLKQ_xxU*?K4tRq#_j ze+5S!ICMz)yYH5-aDe#9ch0XCg~?SJkw(4oVQ+(5=+b!vvuSCBSHF;TctnF?ddakE zOlRqDzsZA$?DL;^z**OBXK$)2OCEGYU)j{c(a|5jqCsmup)>30(-a_%D$nN3p1l!e zfoW>_N@xN8;)^dHJbk+4&P@0_ET!q#pE?R)$PMb8TwP~gU4LK0Yiyrm!NL1OLx=xy z7o@}qM-P6s72f^(o80R2*UlO;BrkdT%$c0m`A1#d6!VdaiWl|9Sy@?IO92MlL6$X6 zS-JlAhkZo)`s2R+wig1zG_dmm!^8VepFSN=DjIh0`mI~6?g0_8LbmrMDbxT-Hg4K< zrYTGPXlz`ZQ(Ke6{zHe#Q4RuCzt^exp1wszt5Z@_zr_Z_Ud_nJkdaxvX3ZmnGb>lF zoM0^e0&&d7ty>2zT(}UMQU*X)F zlb-&)Z(kq8+xtQP<}6(tXKAuW{=^YS`Xbu9v+IKfp8qc}Zeukx`WqM+EHX6w!P$A* z)9ma`up~G`k6*qV4f;46R^LGnhyL$+T%1Xp)tlq6<>h$A9c-lyy2i%Fi;Rr)4GsHa zQrgk5Fdu|5XTVjwu>4GKc$kCOS3K%LBQ1~ZLWlac^0WaZcXxaZ$<>F5;NMA8zfMU> z8LO!|(9X`zOG!CAEbJj}{`vFgUTx~YKSwDkbvBtmS_1IM(6qGOeKlTh!2WuK!^fy$ zuKPO~EQ9;|S6|`dJLaTi=Hzs|ExLq<0kOp2HdJOHlwW`%3<7S2TN`|()22@!GIZ#{ zcki|#OzMYU^{Uwdn-_TMl)sTMBEGM@QlaZ5~l2MoQx<9D%Q_{V8Nv(CB*P^495s}MGoH+5;hSBO9 z0YZTot8g_AW*+aSuqb9N!W)V*4jwT=!yLNY=73bbsi>&vuVRu8gY5)oQ*v*o+^nrH zQxJD`xM~I;JGO7!0$-TBz6hljqPK}b1IoJuKJ{ROf7|obC7&ZlQsFY3nrlmwuO92D zvvIe!uGr94(%JD15TI#L&>jfr9-5jz)r5#cU`c%7NjrC(+5@YqqN39Np)KtA@ehS< zKik+GLiRyTe+cW02Do(qrl(=9SjHW9K5)$ZNv7phRjt>&Dqg=nfO*ibcCNi~<3>@U z+Z1zi^ZnD_z@qNowiHJJ!MIp&1PuJYHz8_rZ*RE~^8)eL86Z{f`{v(3_(M|d59uab z9VD?|0+9a^wn=``2`>PC@)Ynu#L|_;gUy>dN(yS^^buM;+Oc} z|Nf`%FbC?aGDBuJ=EL>2d*ud$Z(o+A#IPR7_0dzOIv!${(Wsd7=gZNQ%AJFgP=8zZ z_Vw#}xBx`=gAf34RFYxply|i+?;l3?HE#Co;RxIwq0ELo9#;AB_R>8vzatL212(;G z8hjs7Kg9U`kZx~&x50jvX;M;bs7RdbTo_a8JU9ltpknauCM z|2|h~ii(<=G9*Wv>&ns*Rm;er@b@E-It8P}&N$BlQPKDXk^JvC-d;)#o*BjZK(Fp+ z7PxQOvW0t%_6Ol&9?Doy);8X?ZQOA?tq~06Q1nSfr2rw%09&o_LC-(c)j#v{8rn+_ z}a_1zOqN1YHfN)V)o(dKEUl9MX z5oU$OL=D)+wx*iLKq&@~8Z~LV=bIXvt?P#?DxSf^LKkAgzx-Nmi_eUe=yz$s9-kp|MHC8AQ=l%q7HK|7&B#_xWq^Zk9#w?96ebNh7ie!pJN=k>g< z$9hIkk513+t;Pin*8$m2&Cl+>$JA2;uwS-Y9h-7#Y>(CoX*X^tWk1fz=^W(a=XZ2E zmF7CmBAqO9MQVfJ8g#N3I5V%HU}wR{>O~l5UO{b}4H~q@Af+f6sNBj~VV+)YuhAi) zvm6;=*L%AD+n~I!e>_C%_coLN&2*!A-Qm#bdwSl*LNI6CpljYO!Cy`7K#q-#9%|?%!9QFk!;!1<6{QnF!eSFF$_{VCzIcAh1jH$chVKGE_9G zz8!n?s9x!>UsqYga??C*^Gagm?mM}~Rkk*8GYj(9w1TU+BGpMD z2>kSE!S(!mN&%MZ!3MBEw%|=&W6p$wsW+s>7iU9_XWSLJcI{g1m$hX#i;4mFa~g+A zQ+4%2kDo>D;TaCg`6{3V3uUZUa6iN>evsByF;n85x8HH98d=iv9A||`&ccx+n-GvB z$@B*}&IJSB*ZOf~__1SM_w-p@TRxP$xz(kv&yqYR#kzbr2$vzaEiHf=A%6`tH8taM zFI6|^xTb(hrpjQNsGhW7D@-khxDaU4wETGmm`-uxXXvXLH-p;4XsN;qcHsxST7S3N zREM6ABs^FH6U0!PC=j=od>K?eq@2ejf!yLUNYN%J|12Yyks9c@Ax29 z?aJOOOXfw~?*qcn-=oOl^W#)v0JKW_DXDiZ$zI>U@7+~cJe@L={@~kZ?l?UfjobxshRBRO-tnN;Ss_7 zChzl0Zt{t39zCWeHdwT15vRVy?Tq%Ekrd&-X;Ui5RvCMT_)a5U}V!)9q|7n8HX z_w3msM>_|n>}Z;VW8Y_fOyrQOn*V|sJ9M+MRWHUm>Tw4GpEmpXH5igFwTcR zz@YBmKWx`7ez%^MClYGRb@Ad9PN_$M=8D6H55ET4M=QLQBPNeoIVRtuqO=zgZ~iQr z1CHq-@>5xy$DQjqMS26Wtwrc@fG0t`OnW-*n9@D8n9#gRR94yvA4+!@(<5yn4<014 ztR-qUAxf{abjI9u`}t)GLa&w_#TJ}jg(!HyxGW0#%DDyVc7Rp#IDY=l80CTPmE}gD zU4_}XqnWRX<8{8AXgQ=hbno8AoG{k$jCHyT7A$Za8Fidq#wO;H`?ts!Mio^-6acZ; zySllJK6Yv{#|c=^X3(ZQ2%&47I_kTJj)U4f#W_Z3QA?nv6zZm$%gV~J&d!}-=-0@8 z;MncMRW7gGV&2mdgD?&hFbbfg%knAJ^fFTF;GNgLOAp0Uz@XKWOlCK7IP+^D*<`LyWU4>#Dx(QTE`ZH(+mp@hr z`ZIv>o7H{mvR7RS=kz*|C`f1f)5wX%J@qJuc)fivZ$l97vBgKx-#AXTz{$ zul>c7+!8sQxWiU~HsJ>6G%K^;%YuT96wc|OVj<0k>UX2NqV+==&>=E1l0Q(glS4zw zI6%}jI(~=wIbtM*v#oRQ-n~smSF*+~T-cps*hiQudS*~02b0W!*KXW+4HYw#J-f`f zfYajvBQr4~$_(xOxP+EdXXJj<0C*2MFGia*d7B~~lAuL%ot%Wk>=I-(1>SrR4V!M3 zjmxJ4^SLLGFd{>-QJ$IglPZn^R87cw2(4uXN1lz`(`PM9FeNKXJt86^=4~G=+0y*; zL-H?esI%yVgx)CuXJAz{x3oK%kdQ`% zqHdPPt+Ir$qN^+JG_vMUpZcP8hd;f@)s%W`{?tPGZRK(LtB?;RdAE1-e(}m%Fdn`9 z`V|=AAR?nHENf&YLLiTf@2FHRk!KvBX_S_r@bK8>dw%xwuIkU^+*44t`!+MXcI%dx zpWo5J?afV<^-fMXjY)Pqb>2> z{=9@4c!XCzd{oL%Au|{fmlNX(#=z(erVXM^`KxN=Smz}dWb@GuLMA?j6U$lb_^teV&GLi7x3sqp>D-E~^&rV}mGuZa>w)ad=`2(; zBgmq4{{Ghc(pG{LyO{Lv-=^UH{uVKIVe#?tu6Oyk9>Yi0-SIB@7tQu7MsUSL!TY6A zDg|XZ$V`08r~R#swQJYb@$7MkNB!=}nIpCRAN@pd`nK%x$K)yS5Xe64wCt*8+@xg< zr)7P4_v*ZV`GBbZ0|0kgmUlTv=?B-5`qGBaK#*W%Wo2u0`_eo^jS3_OsFmvM8|Zy} zd7H}zdyLR4>TF`t8lCcBV4&bVdyXw{6B2yx+_?v(&z?;_##7wg(}1v6)fd%%Nt!tb z37 z+nFf7ALQt$!@3h#I{skOR(qK2WsW@WU7eI;SJl2-x5nf(3|RT|OI&$D2L+!E8|b5& z3+<9)S7J$5WLjO}1_;`mgU$Iy#A+QQBX#bX4{Gwt(r zJXYYbB_%1`P8})Fwmh5l$FPsD5k%pyvVD6_3G85Kr;g;t|j7-Z0|5jZ*z== z+r&weu4ZM8i7>2&9;ip-BhvPpw{F?5Hg(bI*fEkRt`q=0E6}Xo9Bzol4%`N0>rr6Q zPIAmNDE`hjf*hHA3QI~r3peE0S=E7y z!Ns1LbN1Q!*-cnRqr0t7%9v+ZSX7jX5SR~H_5id&x9x3`jZ}bAMr#Fo_5Ay9nca1> z(1i?o(bE7SmLf3CM%w)NgB5S-)MTgu<%wP%xU`=>lI{So;^Ig0W{kNVweL9u69iM!R2iv9^ zxpp6Sd{0!r=*H{)8|{VUps(_Eu3e{2<5w%ALsvOpTs>YrID*D4wBlquEAiGI%VaB0 z&+?T?aXlJ+GnrGq?*F6A_5O=8yMZQ!d{AuBy{lVDVqdR{K5P;?h=^Mi_5dJ_z@TrS zLgNJ(oL^mL08+A*Q6>Ih&~U-{(|9JWNtt!f3+S)fteFhk5gIL8v;bhx3w;-G?V1G= zBbBPEs!jJgbYg^&m&U*UsKzlFANfpzii`w$FtNoYME{O87J_#0L z(5dVsO%-QHI~wNrdj(Q*?t@QL1^lc?x8P%6$DM^R#=oob`|IV#j>(~!(d}GS8Xlo0R z#Kp8-Uvvs7id9VOp3~Rdu`U?}cr<WXxoGCh zbu161`+zB}VMeTvS{jCj5GK=z$uaLD4U(y!uVPnO$2mEQS?_*bj^TkSX`boqd18}Z za$ebwHw6qnf~G>aXKeYoeF-tOw9tmcM!!(fDNobP0+6lhD)*|qW=%+@#M)9 zt5Ktd!bGsnRn*meN!NJA?m2C=y|3#_1wO<&H1X-D2iR}@U2s&?)ItlwSlW4HQXzHp zU6&rk`O-`SMWqM(+%Cd!5PzE}CFl!po*uw?EJO;LoWVlXKvq9~@*v?kh!h(rDLq^nTup<$nLapzuJ3eWlUvi|{6ogrAZu4xSfqfKWWfqK54@2I zKrau*^59^`Gr56iwfJ<`r!i>v znc_CHP!6JIq7&6&Fr4n<(ioylVNvtBaOPV2`VE0422lg#Vaw;?*b$Y2?q*{SWuXrz zB#hyaK(#896tx!604B^9=!fN>`s`U7UKfK>#eB^+EHl`>{@zt>7)P%1bU}XVK&-ny`aXvYtXP^3dc-PSXfL}BBRs|G)v@uw3#qvGv8f+*Z@0K z%3Av6nMCue@4F4`jmaPdHFnWtw~ErmB8WmLptf(+LYAo+3Si&r%34=&7;Ql@d=QbB zqE3g*X?$dmiDu4?Q7(R`Gw~?R*$CVm1xWYPrz`0e|{!i(#^Gf^g4EKdP5%NLWFt-rz z6|6Pp>_H#%z1iEo;o+@W>AL#W@DC>!zqaJt)MNbwg|=tF0NO}n^?(fPIJK_pA04ev zw;*V}Y$ut2(?fLQbLK2vYA7lp0;Ar3mX8sJbPM@7qTnmz-Y;U9k4RAzy)&s z!}ZjGo^L^YA1U+%`r~V)(D|qh*S$+8u$cKhLZjx4YTYHIlSr+&Zv0}|G=Ejyp4?c; znV`gj{S_N+GgVhdXF9+TnusB;t|y};rPX!CiW_wLc3f>|{j{frvZiUp%a$4U4I#aI z1$gmA)#2)kOLoshy@F(`2CwAYvxQRae}5YkE6A1HebI+#$v25K4zdPqxmrH`scjCL zzMTb!FVoM-Q`^v})jGQU)N9vt?iV}Go%@=_R`~Ph4NB^vG~I584jr07-3a+OV)*a} zXbA+`0F-cbb$!rpG@DZtX#D-Jm_dbUhQW@1@#T{1z+v{#5;Lfu6J6j&8z5V{&L6=U z(qjCC32!eLckSB9)YMeIGyLD1M#}B_ui3bvg291*pfrGIB?B9uv4I1+%! zd7cXu6P?zSCa65bb+(usz`fPK_JU$E7wcwcbNvbDDDz+^!gcjZ`c`y@FQ;W4VrA6; zd5P!{U$Ci~AKP zLxR*e8d7;TzG0@pUr>WL?49zXq$ITe{v$_@*wz^oU|EMheP>rM^P)XVoHHVQqw1|e zfgoxHl{Rg*!0~qp+G6GHv1*l)XLIg-)zZ>ZAYeCcU38Q+e=)P3uQSYSY10APwZQs? zhjpETSwLy{!RIh%Rxy`&K6k8(l+8;6cbjr~to#6;%De0nnlwXWwc70({Ac7UvYX@E z;NSLv-_y0bbQyLuFUy;lrocN+FS^0jQG<6Rx;Ak?GhT>9DR>;9UCK5e;+)&5Zrx{bWNuX$KxNqGi^jmP1p^f z>vlsnsRf^nquy~%{p8q=>!LJ;dTuf7S6P{UsHF+*eX0>ehoX+hEEMEYo!*oK(_P8V zZXqljgDTL-V=nLB|oAPpPkHB14D{9;NIPxS-9c?Yl_YHBV}^C^G zW8+WNruS>Uu%Dx|vxI}D@`*q%2Qy_wrFHBk|3C9zv*Ujo8Of$X7UIwIOnv%v(vEy@ z1zU3Ngi58o?102W1q_G3EtTn@G`D-Os>}m`*>MRnBf$E!McO$CZLtp@br3~Lnq`!) zY62^u_0XOB1aQaJt(iW6`o>3(9P;`>^rBpD#WNZ*eYzI4es*6h!Gg}9extO`{?J`kpLPJ6uB>KXTQFE^Z4m~R+skV z1sCzc+#gy=c@u#n<=Tg0F+WRd2^^t&RmFujE2D*$g$lMl?!Br>$(!_M+^MMo8IziQ zW=-#c9Xw_;zL>~LX}5>nGvw9hZJ2k_6~)DBj2W73#!*R2%gccpYlAyCUszRN0i9?X z3V%NUw3z_6_OEIyz>%$|NgQ^((_2)b4Fb-cI+YRgM6wy-7IZ|Me57~dJkAaM3&#EW zX)qq{d^UZQ{r!eqOL^$=`n-}6yeA!_=9k?H z0>=gv6vy(g)0I~~$XaoyWUuj!n@otfcw)!qUjEa!N3J_EeR9M9rT;XrMFwVJX130C zFI^yZ)DCr3E4Ljv(uptKAv%F09?GCi!lK+j-umqw>6w|T!cu_8==OLK*5AW`$Eq{w zaK!;CT48aqIVUHG+{+IiIy=>h^&>g+B_nbwi1f=ZU%ETBMh?_sYU$AO8~i;yXEP&y z`ZZ1sH5;7~Altwmog7}nw*cqqhs?bZ*jB1(RF3R*{7tmC8^Qf4t&X>mUz?zmm9s4* zVb!-+L*QV>C-iqL<(2+?G4KRex3K2(kSIP)K1We|4cftNCugF{X%gD^>o;*n*Cm^` zY^iuTliTbsz2@6-H%3_0^+{jte@n84>~IO*#miL87B&oI@&-$bR5g#f_LX}B0vgLv zM1z1Li8?WE$=?&SUC5oha{KnMBJD?%vJTW$?9ivXCW_09G~iB?FD)MtYZ)Wk(ahXD z{$6qS_wV0_Xv~%?^$=PK3x`TIV$kX2E{M74?@m$fq#dVk-u}o>@5E|PPZ~O)C#nH- zM=L(m&ed(SQy)KWN!Ndarbtw0drVd|p_-*O?qWT_zIw_qmrZm1G>n{eqElRPtTKVA zTZOLRG?4c9g-P0-JB_eZq+n`#z@3qC1(IVRryJN}1pIeMf=Y`P8zGLJ_71tm6xoZO z#oBu=ZI7@6Ec~9>m!4>3)LzssQBF3Bn~n3~y`iB|V;-6uLNwkI4NP@;L0Vecu0D&k z(a+QZC1VzH9&jWst{c}42eRIWmG8kTa~;$2;bl$i)4+aDAz+CJBTjvu=bcw*&<(5D zynVbX&X0Awg*Kc8hZ z%rU!rT9m2XKR56W6Y}{8gTnmskBm_2R*sKBqICB@m<>9<*}w*5~#di}rc=qKjM?GD+v#hz%yC5{3lDO?wG4uHWgD5&X>@FmzC;k-Uw z;nPE^^hWLakI#1)1m}YGrEXqY<F=bg=eKhG%jvuj&nesO#`B!o2>T{vN83 zCff&$nkxD(VfT(tOAcg`jAXJ-&2DFEaaKQ)23~3tu-wEST|KhsQluIqQ=}U2h;P_j z-`vK$Hiz+$@M#}f1CBu4O*;RDm#(=W>4>q3iHZCe3fiGhzXB*e9SjW}iq=n~`4q9j zgugG}2mB2V4b_>9ghanhzoiX?M4=L?Tm7)4I*CFUld{eE0eo>yM|U82zW=rF3ecaHK7g8?@^479opb0d2=k_M5YkCJf5Ha{OpPmK=_Fpwpg3r_Uh&kBI zs664Qjp5eq+qb`|*G;ns#}!0Ki_~R|FgM_$m;N*F5R6nGk0KrBCKK#PUWVk`UpO_Vn@N>AbC#4-2C~ zV?d{yEzC`7%uxM*f^7U~q)B*?Bd1{PWO#9iO*_a65aiQ^oR%d4*kK`_!n(khHh&NyJZe@^$((k&(O)>A3_1mmLMSAjk0D_Z$r4m7wwogJ=@{nb)2!dz z^I<>CqA$9;2H6~et#QqWUrF8S`zUsp88HFCS2~kTmVIzo?>@+eaaO*?(vSa)$nX#d zwdO!O1Ovwbps1tm;%}T4JN{H;*MO0-ZlQ3LvQR)yvA=4kYjxrN&+eFbxH6?7MzsKF z=a+Z|^R7e zG`N0nt@J)IS=Zra)9D5}zfXy(7OD&OL%=XW33;!1>^}pYKdnh*h0lM5nhyY#3SsuF zV~h+8GSgE(V2-TUV_K40OfPz0RuBsJ}*48OB5j9iL^jWhytlGiT7UxFl zGN#JMbYfknxwo(b0dLcH$zODr>M;UZaGHiT98ync!tn_UcDt^huFojv!|9YlvwXBW zEh0R*;-QdS&gou&Rshj=Ako_!RtdiX>~1jQtVGGy&OYk*NKhV_wg%ax>S)kPiW#PM zbk#kMdd>x*I-|-7pHQLsJv~SDdA9f*Qg3Xy2%lT$NrG^7n5dG-2a}zK#001pvzjHvm7cgQ;mdjH^wL z$09|O84J|%mga{6;)R=gzn!5|rp3`OU_l{amG44miUc(Qlz8uG${~*cf%iZgkN(zW z^5vCdN;L|Bb{sEt)LD7AAA}|IcF637F0zh!vZogo(>BQso3?ad90_%#=!=+(gC@P7 za&VYMc;5Bv*Jr@l-11S0%9wW&<3ogosFY*Jj)<_ZD9fh%@R`qt`(9LjF{J1z>rdML z8Zk|LLc%}c^*6oSEZ!Qgz28~6-2K&$z>oF3r|B3f0XybCT=1v-{g)i}+{UphGeA|y zG=P1z>e^L*;HA8atei+l4@I3@;YjHedpNQKLklB+Rfy2Yd8qpdx=%@zGBcu1qa#~u z=5ICbcNJeA{*c~rch7YsCaj}3R?710u6;X}@~M=KFhU&(R5P#YxAt7oMn_;bZ-&U* z^6%_EIK8uh1MV64THldj)tAMnF0<|Vg&azXQNjC>x76?(jqF9xP~1NOq*rdGR3C00 zl`B9qA6hY+&TIx%46JBf?dTVGSzFi?h63pN%%3%LrlZTrePLmpmmVL>kb{r#rg3tT z>XYi)S1_oIF&W$Gs=B(mZuD`uY|a{Q`yV^kl>8j;L@zm*kG;&8J07o}gipiopp;!j z%m}=OV${l6NENJx4_Av>?CN?2t%z-;MMGcv%lo%)R~K4$b>kJBzDT{s=xtw)n39(A zz?ppSMU|{?jAu<_8Y(K9IXlOg`Jc_EOF-HC{`n~OruwS8_JJt_1`L=To=ks$X7Q|T zK00=5Fl>arL66`}X2$9B=XY^9*yCr6 zY|Lkd!=hJ>DSOWA7*kzQd2T;rOibmEH>)tTg#@;m|LADM!&T$TwUYNP`Zy8dfD?Tq z5U}-khBEs%Ykf8>1TWK@lyFS@sTb05rocMv3a*oAC8ZhwntKf#J`wK}aORIDL9wOR zQ^aon{<7MNJod`-=WQvVI}-yCA>G{d?m5Ddj)}H~2s1YF%gn!MAx_)WX_=E*3}#MN ztqJvS9A@aG?a+*8XRDE^PVd&o#Dv0*%MfL)qV6pdQiLMDF^3OjF+1Kr#cT5M@oA7H z#~Kf_r;*Y20bBjBg3MroH8Vn-DQY`|wKuiYf%*AY7{2VXXV62YO7LCCi6#)=P*8Zy9-?Wq#%^$X>!j4zY95>2g7-@f`m?<)C2ykV{PEf-;; z1EUYs6-R?_np_h(sH;zNk7*)Rj~&;e?n7Iz?}!Slmo;h9MAjR!{*Vt*NjGdhPbEU0Rd6J6wBR{;^qs3$vP2-hxKZzaoPqs^*Dcy}I^Z-x8#OggxHtJz)a>iGR#5%_fZTh3nzaMW!;ceO z!r!R)K&{7BILW5cxubIx6-a{4+WNK5ZA`a^q;P$=Y~NAnqv z6c4rkJ)LMmu)u=qHS4%l$QouyJdp10S00bAnsiaLv&X*y5>Oc&?`umsy@dVs-^$=K zw|G=}I6PBq!kSySi8xG~$FR+U<5EKGn|B?*h6fDAs#eIQoDtuolhkV%Ts3Ues2eO4 z-;W>2K4+J93DR36dMPQx*#j_bm*!ka&P&RFZt-F#HU5D6w^xdXBPu#~?rdYf_h#P- zUhRJ$f-_xQ;+%`Wz}XyR{iH67%yuhwrhm5@Hmq69?taTUi&W66ogKbbM7@_NEU(oM zA+E5qceA=+<>co9-&Pl37Cuxp$s4ze{;DSI^gIp3#82F;jFx{IF9gN*3z|F=2(;;N z2qGy#bx0DKB&0MFp&=M^Jyd8m#*sf&E{~%P)_r!;VIkOU^Q!LaM5MT2ftrm)s5gsb zOK5gm;5-&;-OQF79z3umUat|yOUOA%1VM{CEX|>87_vKu`9Y;TvrjKBw`RAR6EGyctE6Gv^f*--)~uhkhMAtkUAZn@>fquvYnJ3UjXM7Yv5dfn$0lTE zX5tj+;xL-?S@6Kq`49eK#`p2+O+OH~Liy5e44EvvsGJH~ux1z28YNyxvn(Hc)_)&> zxpsCh=m|gCrG{A|7&{TR96s(K+tK;P8Yp3R_dcsvukJ}hDyYS%T9iBOnIZWdG7L}U!S#Vb%uL}yVs-~OCOR@(nv8Ea9VFrf9K zdO94ntwmVn(1{bn#y;f{94>sNZ704*x-4I3a%=+WsJk??!Wh{hFW(NR(@w9k(|quI zk9Og-R*dzXcWqdjf*z}M*gq7{F)oYGSRP!PoSe*V^PS}(V(Ex)5X{7hC4B08mdd0D z8UNN}^}KoW)=pM1tCnkS1a%0L%fs+UtHoSc_Hl=q)7jpj$MGG4)}0+Nw0&nQi>*Hu z4lwr$7FgTq8r{h(TENt0Ky{P{-+zkTrWG$-JGt7JvmCB4stGK@@ z^A5$DUqA+ZaFrhvhK^0qpg z)no=eGgld5!6C*NvC7j1^kkS9I~iX`I>8r4hKJS-Eg3u#9a0LrPu-??M&#YCZQHbY z5Iwrn?9`@j-TLP??-2hj!gQ}&7yVA1>Wj6XtDM9d!iy9^O{@#IsT{jvyhlxdBb2N( ze#reaLqbBNnGLCRkvBN z1DKquhNh}&q^)YEE^dX0Z#1&0jfcNoLLH`xHOTTyN=l^EG@sh_>*vpn>({UU&tvtqz5&Qw_rHC+4iY|~rpe+#OCvtjO4Q92Oz21-F(-v#S zj-a45Jm-el@6DSXKF585?Ux3!oxc!AIVY|l|MwxYu4rFSMU-)vTq2q{xRFm>T%2ow zsZntW>ON4TtiW0drKI-w%zu+~{0u^Xh;JhFhAeixtF@D6STP{`$b21!m<^{+l@HUf zfI$Fwe9_}U9sDGz0i!I!OZ+iloGe`5iPE5E(;)x|HLy+J+Vr)^_+pWsipzyys zmh~tt*O5pdQbt}p-){T6ME29Bt|y=2LYOE>p>Ya z+N7R>+^wdnapFW{h5C&(bP`YQZ8VHERr*t(Es}n;_c|^h?Gfh`jjMiQ_CS z>j`-S{{qI82chUZG_rOY!xAnE)tCv%UYA{q?fc4ERa!jFf8!Vxbu}p{-Ek20lZ^x!6}C8aXlNp58?jN2c^&lf;K50@;G<)tRXhHAx94{ z%1wf#-#*|r=cI3%WKmN=cMjM%S&|}3-md&|HJU%-JhXHe<;N#&AeZh&=;X9Q?3bfr zH3Q*IGYxNMNgZ8X{m>0o-fjCXu{fXh^l58|5(e^xzzeBHuoY?xy-JfUej1?(ATRIu zST~K@!9R5=#o)7}dp3SMPAH)diq7V>kyu$Tv(KH|m!rfKF!0%kAv3dQ;o=91fl+_)zycV5v`d&x@BX zb*XY~K+hfVjcKq!g9f&G0n0_>KpUBtKgYQ*t^?$`WFxN<#_Dq)hc$l2>6-%sWt<3Y zSlo_o&Fr<@TvegfUAtU)-=fXE-W0o-zxwb&5j)Q1OWj?pgd77)5NY&hJ&z?wAkjE9 zWr3%H#b9*#(`$ac@}D!Ko--0iVQ)d14sR^mazdOmIKA~%&AjrF>d7asK<+i6N}tYVWUX;cCq=g{-xhMmOxz`|i18G&B06z(VCe;xS)mN_E`# zM5J4(H)0blBO7^|oVcSb+mE*|%|b+&s6&}Eu?8svgNyj*Xg)u&hOzX2!=+`K66YWl zf{`sNuy`=XODSxK^eOy5qq#u&K06oZ)tIAmWW2$q!ZY%J5li@s2$Rj6{1of`*_NIK zFJG<^MLJlN^U(Aal1xS%&db8QtEst@>^6gq%M?N$%F(vIf6nA8&Humztr}3&B~+O5 zVv4WuaB*3W$>+5UnGt^6`YU(>1+l0jCty1&PYcMk@iw+x)sHN$fR zupEQr#+NUr#})iDF7j(b1qi~_hYz=H-miZ@s{6_Nw{C^>^`9Zolf#kabv6>4(V+Ln zhjpb)EPOukXvhBjCx6UMCIf`Z-Z1N3@!X%2HY^Xg23E@XFwW>|wd#Oz*|T4FEWgBH zucfOykYYn9>5;?G#O`$)XZ>&7QTaG}bET>(L zo!9hc=n7`1R>*jtcQ~4->`NnQ=KtrVJ}P$c9DCk%1~&jGQ8|Wiwq^xxJJHv~ z0KQ;HS{|s@NtI%0r5n(T%BoBIL?cTk6@BJ+a zM~rS}M$`{G{5R-nIrH!&^HLiNdGakIBSTTQ{S>#wi&duj5Z6m%nap3&7JY%QvqcO4 zw^{T}Ou+I7F&;CaJm7u2}_Z!}$Gkb7=01(e@)@@a{pb&tnu+Tb;BZzyvaimD9fks0%K zX!uj_et#sg{gNQH_!Gh4p^5_^4RPWbHKhgol}c-AelX+R^ZT@tvsVRBh|OMu*9qwI zB)>X{rb5C%%#3I{A3e>DUg1O!Bzzst0?{)elYRJf&KkZ5|8$j8PRu&HxN?@XmF^A) zV^@uVuChP}X&YewGe$9teki)C?AM}!tbsAVKBxb5PwJLtd;i>bJ0Ra)B%RX0DpM-o zu8J~;IZ7qJZXE-pFeGGS?|NZe=MEkQLe+W#x#Al84gIORmzTNx3keD`Xa;h63SXI+ z9O#XPpec8_y##-FUXN$S3m)5IWjk~3TnmkA09fCUH$6BXuP`3SARuN{rmDd-zT$6_ zh99J29b*ZI=JW*%8r8J*bMEcY5A9)UIyGY4$cuAk&#nt58lj=Td2dwHDT!GK5c2BI z^iU_>#&F*+*ISFAcTX($@s=T84o%gD|=o&EZOou7Lc!9wCIK%4(FwDf|6Tj7o(;KtHk|ko+NX^JlA?|ngv4Ghn zlFF}}g{N5wI;|JDd2K*Dn75mIwiGEvZ@xn1nLTo5%c!J<@hzVAp8wDAtg_spHpUtC zvnqP9WO(Z9I1k3UeXzk&Rn&j%=lMGQM|Fzksk)YzI7NhkdweWeaS!Dy1ihINnC9aP zZbuB(syULKguG=sHQsOQR!Lat$qNO=a41a~VIyi7uJJfYz*zi2TT`-gbPYiyizoIr zzNdt~GvXTnxa;!eV>>potCd>p(rW`&sZl@_LJbSq%rzL@DftJNN7cTK1YW+J$k14b zFHxO}!Y~8#$mL5(Vq`_dH=!njPijP6jsH~t_t6{|vUvNIy{g_Qsdm{=7!%g&6m>y@ z^Pm)$vu{Yt1SubskuxuOWbfG6P{>P>zx5I6i3RW({#%pP5+Njg%bs>fN z-4EZf<8X0b>%KLo1rJ=MWy_<(cU7+dW0#bMqn1k-kDodlMKZ*`nbEV2qrEz0{xx`< zMGNKMzwNxe}4&9c>`oQ7>II~jrMoGVS|9)Mn*$; zbxhF8868hBLy_&{Kh~`|xH>1*&dK}9M?U49P7kkua>d*~>9jWiiSnS(}$cigu`3Roy0P zl{hlkQc^Ue=NGd#DtzK4))4L>0^EMNH}cU|fw8(1Z#A;u&^ic$KcoD)g?l5F)0zF6 zRwb%>zH6>>x%K^X*R4FK`k^+I=(te%(5KWi=j{(0sM=o@gOk7=+J{)RF#3>gMfVsE2 zc3{TkE_${6!?A*TH7o1xzI+(|u5RgAofw|O41#RGii>I2m z+5yXD6N8x57w~Y<*s;y=IkM_88mxc36n)>X1QxLbe4!Cvw;lt7M5<}~4+;A8ng2W1lB@VSx9>)Vm&QMS} z4rYI7Uj3?{+js3kUaM?;z5NhBPzi_*OjSJMH2>P>SnNT=egEW`>p zq~PCdHt+vRF6s#D$rUhdkjD1gKgp)}Xhn=xZ|x^Qb_^^H;Cc|cj{MwbVlSVL$~wQJ zWoDimxP9Vq$o_@c-++O;D>h5%+Ud|~*^H$2oBjQROBN0Ou&QedTB%SJs#%RR?IEcmzU5R@T_+C_ z0Az`$*TMW{s{4*?Q$zfqeq6;RwNod0ES!>xSqwa#n^|t<2Q@;#kOnur7*(Idv_Sr+ z;sM$yYHNc6Xlva{Qx#7d>dl2$_l1_P0ApXrx!y2K&*Q|VqX+WJ5?V%QS7(_P{4*E2 z1pT@?`B8*PgdCummk2YG;7z0$;U5%}j90}sNunGS-1jR+@%>)q*1;}+60I|mXZ>%u zAaVuL-acT&g`<#xLpBuBYRVK0YkoyoN|x+FM932hHf`Fp4zrD@A>FsnEY56A6X87c z!3B}@Uc4y&4+1#D$e>8cuUod2U`x@%Ih;W$G{mcgMQf!Tpk)Z6(*^FEe-&2i`TcU$ z);(!wp7NdbZ~%m_-)@nnVU3j(hF*k!ODBWV=bAhywyzZDPJR7e6wt~5!i)%fq@_Cx zTz5h7BIFgI06{LRzHY-x$;b)Qrb+i;1`7LtCKpdm9XQZ_=|M#0o*jft*!7`Xve!;m ziIznx5=WYCklZPupkq$atS8OsdW7Am*!x@(Q#%JO8ojI2QF~GCrlY|*k0M5J6#7nV zsFweDh^*w?{H?;jV3@^xAzUf%XjFIu7twgAM9ZJn|_`Gyn}&DKge>j z_$I&ZLdPosCE^>ExKP@tS-6JaXvM`Fe{UJ4ZSmM9Y&;jVa!WvfSjM@hq%kk-I*p=i zz$agOi;Qjc6`kKFM{wY&TL0rdR#6G&eA)6ZJHTYb#aV5+Wku=O)XN$$Uhq(Vac@BY z-PQ<;ji%>-aP^bwZ&N_xGz(&<{O-QhE)ulqAowy z3dQ|eA$ml&pqF!Vy{wXXtdc_~YfVoP-zM8!=z*9!nk0GDRcd~K<_nciS41f5dFf+L zH?1`YgwJ&ZG6yv)?GviHHVx?TdQ^?zM0dq&jTq;4!req^@##y2U6C>;g+RQ+TynK{ zZrL8ar`qL#1@CcwzwxNzYL>R*zGBpDZ)FDmP5UB;saH~_7c&$O=`1EDWF zMPh#$Q`$dG-Uuo$EcFhTKP`maiu@*uHbQUk0U`l-$UCx&pI{FNE%`fH>vhkf@9;%~F%uz(tRBe$fP#$OvGHt& zWs6Vo^vAf!yec#-;-`2&{%{}1FSH;Zug$Ao@s(f(f>QM^;#fRX5@pTpn zA;*-jYOC&(CQVvhUHMbsIu>Oe8Ntt8;4w*ZcTnKFfp}hh?mu~xG%g+uXP)IKo7`CK z&hw!CyT4!k3AJL~FMXbaGAxTgjW2Vg#C*`wMu1s`B)9?QQ)#(Gb!fg%lrjA|wE}*&KU^Yy{ak=v^r7YnWx2lWOzn{H;9wP@9!Z&N<&tyO&ZG(F z!@s%&XtU`D|H^Eo-`Fq8F#DmA{^o6O7b-MJbm~Kt(`o_988^1!(=;

xuqL1bV0# z?c!9XgZ@hfjtK8g9~j-5buJ1w(dRWwrtL;W1^vb^A1!>mqlLXe=O>L$@SQRI%7s4Cd|%H`m#9!~ z9cU*r4I{&tbW#QasNOHZ3Zd0{;#F`+|F#233mYHtWsoim)*Oz%U)z)Hz6EdY#$yHI*3AQ||(o&(cv{Wxh$NT-W z3lfE-6@4Mo`)QKrrQ!a5Raa~B5Iv@yK9Vty2(lixpD`o%aecYQHUMR(?Nsest)sK= z9NOot(b;@J?pSjWCRc8}5-pj1B`;4rQoBb7n{p*!FBb3Fs-G#d9BVe6w)XS9ERR3` zD8FrIypq@pxhlA0bQM<foz_)Jecv40#vjyV>Dy};Q0>Mz2p{v#~vRPnRt8aev_QZCU1;X zwXbfYUNi0}We2c|fV5YB>+tr>4;JC3++VkqCD8*+CH3CDkwwOG&BfC?r~FL87uC2kz5 zoP-*zg#mH)5al}k@^tJqF|!XOqQDN0x(FU}dyj<#y0nLWIe#4SKumATfAZUFUeqps zGH>>5U61ZlJG3|G&$_XkJb6z}F9&R)2bce~9=FAqxOPP%6Q)jbb;rBLHF6@rE6Ppi zKgH$c<%$8-1a8@qLK9b@8|nS3?8in)MTRp>U4|l8?pCSo-)KEcldBZv+Cio4BrKbV zqb}5rw%RY5wNT}2f&8P&C4`olRqjct`Bl>WzX?d4C_>_CkSL||#>65gSN;gEh^X36 zAl?J~wM3%}D$@bWR zcTg^+Jdg4JUcuptQ8vxm>)-vpbi}Q)?HY}@OU5k@CoMz6n#^i8ws=HALk1U2kV$}n zLkp`{fm?NNE@2R9GK%U!;4YFN3ELV$t?pNCBJHruSo~G*mQGde6yH9DML2t8WO9`8 z%;54DxAdjTo*B4pNq{53cFeTfwjU(WIV5+O_7we_BMNy6>Yk+<6L;FJY?k|K)+JP6y5CNmb-uNK&#&WO)A|=6Ao0^*eoFSMOd#{ z^?0CaR&|+{8V2?49Lw6{p?gue{&~$#+S+B@3DkzuN90g)&&joG*QV1Ui9lQ?EBv*c z_elT@#Ku)dG4=hM6`Skdn83N|pyi)POos3LsKgda@NwM$G?ElnNrwkSOkoLgS?zdE z@@bjNn%jxFAA{L9AiC=Xx0JwIrSvmFUk5J;-nGk5=3G3g16KVAJ=g$FejC}CUGMK7c!SO+D=;FAQ~IyE zb)(x}oqlIe-_c7xQwbc0o0V+99zwnVUGBo?n;3u7-8R8?bFN&vbm>i*-@8fzL^o3& z8)lQCB8{1%PUgT3tCQlCflhsB_5Ghfxr_e?pFE6ZKwL;Z zA4!B0lC7?4ElDbT{bbACLbR>*@Z2?xiT-VfYRIniwST+Uc=HTB?;3-yCTYTaXREL- zc&B(J&0@Y47OnvWiz>75|8lj~mmB_mR(+|_K1jN~s>vgMyziq4u|CjvNS z(;dm&L@y=c?BLI%Qz#0(@-z-<{JbqD%v2-$7fQN)`}7fe2;_`8)^53@0hU?xtfDR_ znN)puZ`i%k$rj_7WF*J=yir+6y9- zl96F|{tGCFYhLK+5< zu-41!9%{(C+^C!N{%To5Qp-NBT1d(CCbys|2Al01P_lc^cZAVOn`ab1@O;Z|r;(MB^{<%y`AAQ7pF zls&<^@W+O@P#~7ipoKW?GD@GOLxyV8%97C}YUHtF+)E4FljEvHLq^F-Hy#IOO!@Lf z2l^zzx=3>Fqb@Qd-`ZnQEf-0MVY0@`Ck*Q#?Ot4?bv|X^aeuEb=zMCBB;H}v)Dw3{ z;bZCc-tFjt58Oi+brEFX_8y;i0Z`d;k%F0#{ZCJX$xTg=O~olRsstvGI^;Se>l&O zuz<)<9$0dG-4KnW?^_>=&(s%@r&WgIh_r;eqzvObQm({1a{e!c&Cl*cKV_hkl0#WkQZ=J4WR&42b z#sn#mG_>#+qQPe+_d>8fA*|Mh4I5@slMSMDbgf(z^i~c?Z))usU?1LJuRUkv=LTPO z!%i@!g%nV?)Y!qk&h7y|R&Am31SO+FUZj=6$Tj$L%X$aF@kqeaDVJh0~NrbNm}iV#Z8%JDoW>Ux%8!|X$c4+}#f zFDesy!dm%?wUt#f{mYPzdG!SJ?s0n)@kAEA*kIp>w>9zVs-8AF!Qh4Zun13s()H=ABs znAd;{P59V7J&GLFxbC^=hvalZi??cKKe$s)X?FtyRWJgwfj5R)cG>WcLZSDQr%zvV zJy&UL#vKv1FdkdKm6NnY-Nak+w?d#G}7N@ z$4LhfB8%sxDf}k-2J^at$5^9m(j|t^nAYNELCzN0uq~;w~Gz_z@q>Z$^Vu=L(s(75vZVJfTT8S3pp??+8)9{1P6uz%nDuoNCs=)Maai|e$gKrBgO`x* z7xSQ$lb2gan-(L#6yY_AxmBJeneXf)(+yB&5c53i@TQ z(!Bb0RfA3czZA0a|3rlxqp)+D9dLaP^eg!;PnL*@`g}gN#M5_2-Gc1J&=_lG9hH~b zd!;5WvWRbxzJnbc9QLI_=L#<{?-%CP439b^0QR8V#~ ztdM*6pMRRm)Xs~U!5}nQE`7MX(8qkkA)vifBRUydE&u);XukJPL4G%60`*mm<}zjj zu19aoX|6k9k7x)mblPj}zDQ%Wkv>@zYat)bv7OwsLvBBaFxSnBL*PN+zrm3VWh!{E zLvILCR9?6DSoZT=nCL-1PhJ?(PiLbe@8Z7@Y$0~=*uMT&caTigq-Qs}9I`)bSeH17 zpf)Otzo7bFIb+T$ffeZ}i~7G1Ir}dv#!%Px=u zLk8uO+{m5Ok|+6{Whcjpa>(fIqd8L%^g9*Mx$k^Cyi)EXquRe3=axI z^`%}Jgf*ofY()}ftQHnXO@1J*+81_MkB!)cbfH~?7~MUm-3|F!&OW@WSn+49%6^PW z0F%vPd2*L3+NsNev0zt}>m^L@5_E3rH}2mz3d(c6a%K7khdr%^92(nz#7kjTxq)Uo z__D^CVN+1VkjJG`%8>2Thn}ST(hn;#S&iE|n0vGKrq%Tsog07EO`N|+tU`N&J>s=xCiA>vhd1FA!=8&85@kdi`KurKfG;04QMXwq!DW08t==czT^z zMlVgxZ2OYXao^8e!94IiNn4(?fick;pe&7~!R;>`<^sANr=PAl@M#0wV$xm%Eq8&!A|j(^2z`cwJIhaZans>M!PWc&cq}d^73V*?0C+Lti**xV?EtCEY6>U zLIwPspf*h)#X-LH#>k*=7H zIh=J1(e=XswmSs9OmBQJ9Q9Zy9Xz*CIU=>4cH#`M{ueo%R=8C+EDw7C`x5cFT>8v$ z9)~dO%}2wHFidp+-o4+; z`g8vR0=q?jD}dHAaG1XU7U$Xuts37aR_J^~M=Q4VL@AW>h zb2phEfWz9=8xwX$$@oOOzO{9@cI#&txOZw5@8AT_2apKK(%e{tz&xf7Nj@Ww9u*Ej zA;YXR^>=uF5Y^GPv_E$*>?AUj%b;qfl>uE)ET8eIaKUkShN5`oY8P%tR*Zv~BNl3b zZ6wN74mU!@BKm2y@(;%wTjrf$Ol7~`|56<@DLBERduwAH&LQdZBYVHeX8u_~CbW!v#w&e|I8Rr-6Ij+xufNoaj1GiI5YqB!XCq?9taD z-VS|r#25{v(<6&^8Y1( zXrBBVYP-k{8{j!=uz&TJo^cFXJ1p(`6mZj(HCoZ!_#v%#2Bom;rp}gQ!G`n*AK#U zLzZha{O8l1OO#BV_syy0+`b;vwNk}WC^pd~Z6tJ4F_n^PbbBhs21?r{b*{M(52NI- zK$Oh#2UL(Bp}Wk*4EO1XIZB@!6VLW!Zj&$AgrdQ6-98YBy&a#8LgWi*Js>G|HG>oo zv`B(_=m-_N9og~YC*?bw<|zqQt=t3yO-RsTEC+fTsTqwSm|8Z+%Yj&UOhHhN9mPhv zdHc4|X}%h^>Cb`u85iQ3Owa68tJOP;v|7c9E8{nC{d<>ehpy$0n9yE5MoWK3AuI-B!yL`Wlh zcD<~+A2a^J9t6m7Q=pSAOp6H%E*kV*3QW%#PkR~A@e2~+=ATyJR0Ss<(uMLwSLo_( z`XNj_N5!`z`D2&~f7|RjdQg}egmy_6GfeLC1Un$)qo|MaA0l6V{R%3+i@%Gf^h*v! zL;Uq3XM9qfj7jq~2X&SO8>eEz8LGnvl-6LuO;*MqqQUMji`cpeP z5`h+?MwgX6sW3>U*cU4WA`a)qkvsR@YELl9E*bk?XCw!#ral{(aS!zR;H3tB*2uUN$Pv2S#O4KzkDl!s>6DM25TtG+MDg0Uf-!C3SWCcwxtih8Qm?e@yyg}3 z6hVh8o?Wt+cHM?QcOA=@2MJGUc=cEvLLRMaUndq+-k+%~}sQJXw6s{FP{$3Y;5d6Vqu6cH$cQy(v&56oS@ zLEdKw0N!R8g02qY{LXxi890FE$75p2@wD58o&N&SbADI*un;~@p33@XkfOmRN2PTT z58Q*f(cz0jCK`H$ss%8DTz&nJB5&~s9L@phV`7b4K>$K=mZ zSdN8Bk-iKy$BN`YQX^uvtem9s;MZ&7F6N*CSA3drxp#KIlD2wTjFy7Q2oMz_R$Pl4 zh^p_46}}yUP9b(KBlIX!xb%aKldCzM5M*F*bLTF5`%TP@w*m&)b)Ox#Mkq$Ckd7b z-6FRn^U)9Bve=s!E`-3|Zc0v>n@v7`bvp;hn+5v8ICZ|pJ9qCMe&)>b!UnA=Y~gDh z2%JLfbZx}~Ct_gIyt&zTP3Au(VKW}(_&^6-*yO6IPX+mtAZj6OvE6MKI4 z_EOxJE{Nk4V^_iX0A4JZGI%izvMrNOX^ECK04QPk7%R(HoB~`Pq8i266X>{oYx-AG z^4;LK9RJm`UH7*bXx4x?MKzrqG>+fQ9{(}RZXIZ%@V-w1Tfs087#aNyL6j}x^<8LM z2tq2GVFz;?afvZ%+!YK-MZ)dEWk~brP@6anpCl^-+%ng194Dls!_mYW25e4F5(y|# zpk%p48xkWul+t##$Sq7K#Sxg$*rTiEA=R13WdwMg`AES?PlFp^UB*c`%u!V>P>_im zOz7ncn<49a4@Av6%zHIpZ9wW=ZLK-A{v%{^D~D);N$2oUhOwrst?iSyF+OzPzChJ+ zQ`;QMJEZ;3;CFxt^m{X`V>)eSN)eL?Dt>-^>xYm_oqgA5!xYOI8YRmb#A28JbMn0h zH3O>pIzB^cwg7H+fiQ-gR&l&GYZ0&vy?5xF`007&^TG^7X{Al6W*AMxbU2akwE(#D zC^2y^!8pU!<2m5SFJ8Lj`b1++VcpfA)La zf7U_1yaoICh?>qLNc2=SYoPFHn0aU^+&juVmOem;9mms7h2N4Qh*uY-n4`vXR&v=2H zR2xQ7FY-5GA0R|&2^9^a?4E#trDbff9Uzeuycf($Z`z#yaqKlvCmf*c@tGJ91ee2b zF#qXxJXE~s)$2a6sCmeDnf)aq zgOestK7=6)-mNPz;|+Mpo7;-}@URw2n)#UZKyADb3eXoeSgHP7XE=lXq?|AM8>)Ux znJXXue1dN~bxZ4KSSzJjK)R2I{t((5whbv{&W^t&2W$YZ1ZT+SNakTp8eaCK_c>1Q zM06S|r9d_4BQ>*Vcpsp;@!At`kwv-aH0p#uA@*Qj9lBqykdu@Tj|0c`yu5smW;?QY z8el%U>V9NEWQaaRfu!MxXX%={bl-XdS6g=E#L4JA7p({8Z zjqQq0n_m43*su8;03&W@f&`K+B^w;7J|jokQ*jh`Vq;9LKvvI&BJd?#{!;>sW)3>8 zIR@6$HBVv3j)Rb16}SvK_W!h!YJ56y+aad?hWPEn)4>TM9nd1Aozus7E2N6@h!nCA#LWcz!LhzP;Ysfr(Qds@uF!eaLvo;ujJcDi3l)@ zy893~3wf{Dik{djd*1m1aHC;@rdz|N#dWs7RI|)J=u#R#39hyQ=L+ zPWJgxF62>iz_`fg{gRA=s|L`}a}#4xPUo7a0tAOMt1LR)!_8 zKe1;upLZl8tey-4-bYUu+rkteCUxVBW@i8 zoA$SyRx+I45;0wJ5WZb15q0wMw*ea;Ut($X4MAcKr%_JKRd>?ZI z+VH6x{(x_}me9=XGAQz4T``pe^Q?@2IWoG7eJ!2@Ty*8$N3v;ZVMTEGeiIzP2m%p| zQkDqQ&F(GauPw1fP;e62I0()3vH%9TJM9~eg%=dXyVHYPIDL^Gg*EIW@-Mo#YXdSj>YWaJ=MU@!{oZ^Kzoh}? z%F#(~&P8{}!4oG|>8GMM3`g|)16(b542NKKK{;@hhTGV3QBjqFv#bno2nUbf+v=A) zgG)j&?OVg^TQH&aF&=}z3H6nuQ;Uxb(zA!(p1+SQf@Y$iOW$9+0~0i$11ebTE;O6k zDj+Mv*qv-$8vv%#4g>1ZdzQcve=dz=co+b&hRt+9Tg92fY>3I^&y0}=;&zKskjeu! zHr}Q42=`?+7BNSBHN2*QiiFDYjrx0gUxe^%E)02}VbLU%nDLXGA z=rX;(n9AOc?tGrze^So$-%wT)@MYdD)a-yca1WctG4D?U31VFadM84VI@pg27Bw^+ zfwB5Tirbt<4k4+#RsB_fN4jtp(WoEv6l$V_|HS8~Jb*u^q3*R_AN2%5hAi1b0*stS zIhfsZd<+{*jsF2`eiFBAvcNczj4;BI~0At%poOU`<`KdpLOwDez5aoc#CluUr%4P z$BcUlcw`ZYL59c~G%sN z=cA)Jid5priL?9ZL=t%s#H>XI`w{PUKj6`z{f#xIU1Rtha5H$0; z8l3tI&=521*I1)gCP^FOtjHE!c-$e9UcmURx+?T}iq<}&;C35EX5m#}uxH|2Wj}ww zMGVOIVXSXp=aZ?>&icGuvkH04+{KGU^;blg20b-{YeA>YksCXEbl0s;C-Z*1>z(M; z>#RBRxeh07l7*2401k|05GBwzrWT#S2Llud!RxTYnzVP0_@yG#E z5NuK5)*{phulq1VZzm%6BQ#$x(o%xd;1V*^Ff27iB_*${K#Yncn=7w1D4-V|L=UXD z*|E2`mz`WV;g*k&3+mG_fQbuX-4BIynMbc7Oxn=qDar~1{FB>TI@tcAd6ja1qvj{a z66NzWj#?gIcw{2ugf8z#*3FtqDMW)pfI?2-ff72eAHdV{@W?Ih(lF|98tJ;yDJK`f z8EtM(K*J4p=MC3XR;UKJAd1!@WnvS!wH#t%bSkW%DPquZ)FYsoDHLxG9S#SzLR0n< z7B8C9=nAymvPYLeGl~(?qGUtI&t~p*M6h;$ANCMj{|LNsDGGi1^vMz?Vksa+O7ydk z8)L#8XDkdLwt|Z{F3cTW$s&s(-!zj=DFuC>3c!MZ!V8~{9Y=-kjLE!ky4{VCvH!^* zs9%iL`tp#%c8>OcCeK+cOnK0bd_8VBc-V%=;9Iv8CMxQDtaH zSTr;wZPlr>3ChIHr(S;$QZYQ&z6XNcb}^?`*^y2j#}$p0MSxbl&K(D@4~@4`<6S$bTTkozz$P?WAvUu=_1H*kAsB%?em)**%|z>= zK+R)EQ9N7_8qQdsP=1OX&dAC{#x|aK=5v>7*|o*__pdKMks-t`bnc{=AR8+in^0)z z#o$o4dJzlmv?(n%qou7GKQ7Fl)V1mMMb?XaNfRe-yZp)`L^edCS@G8AB_G(P_J&JI zH4kJNi5t#rKO-%byyDWgt7=?pBQXCNuOsY*~)ws7ZWQxAM$IYs0lqV=AFdM|OV;nw34wl(b+ER(pQ< zM4)Yzsab7Sx}kluATVxmGrQ16chPvEvaF_{b83J$5QP2GF9@6fFnui0#_tE(@#f_i z<=U~>3mBZOb6r+A2p5@BOt+Tl|8$z2Wv3#RT^YJIZhl)hxJBBhy1hKY-;m2pLIr-( zVcO!4R&@hokHx`Z|LxAPhMvJ)yN>EFo$~>U&8AF8S9sMbRXm*!KwrbWBcz4iNtq(~ zH3N@RYv1}%*>2d){V*o&LF~m zDH`Nty8f77g%eLZ2}*rKtQFC+>0Bo>nj@zQe3ibIQ)6ACip)hT<{K(XJ%k~Nh_rD< z05iHMReI~LEb%jYTGCvKA*#Z6-yO9|${lprlHK!uv)SjT+1PO5ICwSCYU}nrNMZhr z$$j*$u$*)t@Kih@#~8)nzPTici(sE)>GBY-&m7^B>C zv&r!MV572{nun~&-nzKQ??w9VUSRJU9_7M_Z?Z{(^ypPm2hA9JKrMw$_f99H;CfWf zwaMBf=Kif!*8spi#Qb6dMC;gQ^Fr8)!UOLE&>+p&K|D;0m|8}Z#PRiaw~Tad$A(YQ z?ty>e10Zp&fbu-`>MjdB1O?e&doBUis==oVWpvTy;-1Ex6~}M@-oJyDFuLw^ zpwG9?ow)(>@qHSr-oAhPmiabssclk%7J7e7#i@3+U=HD45>#274<_4z+tk09jYV0pE5Ai$nFbHwGR|S>m8hxh9Hm6>cMd z+y>YZk!>fQXsJocoaW7+5+ zm}Nf8nQszA6SCHZcfsmv*$oIYdwjjU=M~>GfqL0!Z_Xnaq(_|V$ks)+R{}kJ3}j$E zFL*8$HkE`c-J-!%C|``|`PDj&kKR<-ClW@hg4c6JgB?zbQd}ZYkFCiiY9%~pK80XA zs?yvO@YD~H6kKso!@|mWn{)BmDFlSb(#B?6ZZO-mmx&E67?YmLF}w+F(IYk$y71J%AZ_O-;3S2s0%)%(Fb;wV|O z_4dZXuP1FY4VE}`UVsc)MRF@@1Wp5MugNnO21B87IS@7j3W$tuY8&e&t^%o8+A583 zY=*q*tVd&4KoOX!CW#fk6Mrh5dxJ)^IDKY7t$MTj>HTBPoW z8vV>f@8`-JYR`rt=0-fK08aTBWN9QY$X0~PVw`ik6wjo|E)6EtIy~-mk<;%Imdord zR_S{_Wr=*&)UsVGg3cbgdh+7U`}Y$Nn)ZP$S>3p$1Ida_jZH-ia*QfOso^R;3JLH6OFQ%jNkQ3TY3)9dSLMeuuiPe8Oz$;Q70yHCEiS zyclHn?arfXVk{3FfYwJ0Z4GhX%fRH4?KZ%$8|><`o~sC|8uO<(_!y_=6VkgDAy#in*5t z@H+Ntd_4ZdYA_1v_CbSwTKnYxfv%ywt(aEw9c(+8tQ*#aGX3&xcFBN0%#b~s6^CD~ zJzIa{kyBw54wnFA*(mIeYRYlHL(Nr+g70P%SY{pMs7VBe6A%KCQfcEAdU5ZsjGjIVQbVC_ypS0Xo+V0!@%#!643{P^1>Pb&QqJxy zg(Z&KSaKSb;(LL56l1~DX^rGGv9y(%QBbn)K?m>q%^lK#XKL+QkZM+TSpDc9P65dF z4vndZXSV>0M*-h(O*y)Qos%S?2=X z58+|jH+U(qPo2n@bUs?V$~{tn*G?Ymy9_0{K?`-y#ZKWpD+}0;LY>Wz^rl#-9U`;b z)`DC_02JGDWgJ0huK0$SXoPrc9OKPpx<;$YMn*;)-UV*fMeLio`HioxVGJ&2YnzR; zy7XYft$;O$cgDOQB^y0DNUw=yDAJ|?R4$xZGcauNH-%20IDrEPTI0Q6PRg2gY1#=>s_@r7!Pw$qzNE7z2Kk#rJ<{Lr6qz7~FmC^@80X?Jibb%%!;)!B!H_lLSXz*!mDn`}Mgd-lMUGDoET$ar zW6|ubBf&6F{SK^jMr(QjKXOBP_$GUC&$?o2uD47~ObrP`5-MYzL;H%Ul1JK1zX1u; zUF-6F$As6fFaNOR`2lroq~iT2vm(){|qoZ*Dh)E}9xnIy@IS|LeJ}Buk#M#V-b$q;4zUIey zBL~4jE*fq}9bSY+B4rS2n}Mgoj79+DjX@Zt?7=L1%KWoOe^w`bJWk0!>NMt23;kxS zLFN-_UQd7pI4Huffk7vUKw*ZOR1-f4xpO=gwK)V2dYQHl*`T9->f!sG)+55;hPX2q zF!ww?KBGm%;9PqO+2o=ZAs%&l446O+LDJCF^oEP!Hb^oGwapblxz8 zcs3u6{e7E_x4%Z17$r zF#Cj_owpB$TjRWoK`g~d9ZxwWw8}zQ-KbSXFza#46=?G~@8?2q8V?GM#%2~26s)b| z3VlV_l3Htjt$L@nGU|a+&@g>i&c0^nS1&9joDC{)xZ{_qQ-J{wbV;aXaqs=}>ory{ z!~h)+$P1Fep;EI7>fvjUugul#I)DzPJkKRdY)=_V5NJhKaRjO>dFR%t19>mQc`XSx z1lh_S+!f?$nhxg#mw=3=~Lm4bX=lXtnx|maP3(+i*BDO zIvJ5!_$z1cL}3M^)-bS+J9#}7q5^FL07OLrx+W2UG908(+JM$f!7gOJU5pf`=5*Cgb(ATo|5Zm+_ zjlB;C^n1X7+_lZ=NvSZrRxsT!+b{vIYE#*>9e11}FS3u4uZJ}uOR<#@!zsr3fIu3pH%VgH6}H~x>>y;TIQk^1 zksQD32If?V(u`AFgD#f7&&`{`U=Y5ZuEllw1_nN)zAXZQXtErH!E!W6x=E^-Lsvh9 zN}o@@;~Y|>y(KoN&0244s9h~_9(fCGL~IG`D$^*k&cs^Q>1y}DlLIA7Q>AGML1K@- zIX~0>j}{rt%jt}WjML#lYjZl73hN4kGp^ZtiWZ-f9_h?Qgs1uu;}ss@zCOUVQ&v^g zfp!$HArLblH7}v!0djFbw+4`1BNffY4vGLK;~F?kNEFUvMzI^r*`f|)#w~_39NxRz)oRk6s%V z`8^0ak{FN>2&}9s``nqz)=8J1=LU(>wIKB^gP}r-Ns$}`b69EGSpT@XhCX|G2vEA4 z1K%4$m68nOG(@74bA?55z1eV#i3IU+`{{a*AH^!-WrsawA}NEHI0=9l?wVd|2$NF< zA8dsF>e}ax4-{$q4U&4=I|xcz2;0}jPbPl%wEi+?12Bb(V&aJrl#yWuq67@1*~8)a zY&&V=A{LAIkFS_UkyLhvEXz`SWd7lJhMbDqiX~V;=4a($E~x8;#lN2Xm=r-CU9i>J zj{<1MIhp2X;{2T1AEtOU*=F`Z92Sd{%zPrb0C2smSsLxq;yiWfq*mzyeMiAXyoLW4r494LE&hkTwabO3LNW zqSTGc{E?xuTc%GtIgFvv^>$sM2>{uHoX0?3g{95-aD3L4?O+}fY4;+xdehtYa1V%= zaT1e>n{wTzjv@beIm z3c*MPOwbJ!8NXNr=Ur5gy)t&HyVSmth7z<)82X-CGF zi_??A!E03jC>Y6KtSJ9R&|g0kr(0^;z>IRsjocaIW5a}1xk{5J8t$H&6E$@l;LKHq zPWW)>eTAzuW@(|ho3ai>hU>O}f(at4&LvOywZ5D?``SKgAtLL&>LF)0)!VC|CvyYh zEkz-0{q^dKfG5l2Yygq9T$sX(E0{;l0>JcffNCa(E$mKk8dX6?Vw-&U%Ty{mi}bbaAKPsy&Qpz%9Oe>-8$;z3Dt*p&p~e?GI1R#e4ebQ0))e>*44hR3 z1&Xxenk~D$A}nH4EbHWe&aAJ}*aZ$O6yiHwx9+XY&kF02SZgDTFj0_-g!v@+ms7^y zo(`#Qs0jyY^QPTaVKbY0-GIXuM~nkmR@hpTnTon)?ge?{d^Ce>4|DuaD3>Os79_>f+g<&)ozbQXq5(m|P%=m{+?5Mun9W-%DS7tapVT~U$jNX+Ne zTD?$Wl>*LZNf?|Wb^aq+^58=dF#gR(0^;^lTA24$!=Xh<@tx!@j_UE-&pE3 zzN|K=%J^?E2ZhQ9Y^6o$g5J$;oQ zpx`Gkj8N*Go0TKJS#PpI-RJ)oo_8r4w%k$3J9K0D6q(!TfEXKt<*yADy_Ap}WF)H^ z?9i?90cJ6~n86lzdKUsh%<3FB{X3Od*>EA*1PCGw18C^rpdo;iYh$Iagrygm$6$mG zPrJ~@Kalyo>9sGiLgi=GAGhHlgX@eb|B_ro^1}_vOf^Vj{z(kQaIXT-mK0AfLzRNb#PP{7< zyQCrIdlq39I7TMrh->Vm&OH3w47*y`;3Xqo^h|g@ z56~Fx30f_{rX{ORF`ujRzimS~yFa%f;Xl}hQtvMCk>berHJ?-%rJ&~V>C3CutmH)5 zG7gdi%UV7;j2%cmB69NzAnUD(H& zy9e_^0hmXx7EChUh6J$>Z?qXu&()T}8$ByMz5zdkSn@H&cN2xdDW3UZ#IOJ_HBQeS zKNf+K+Z2~!-_EAiB}V{9I#7ueryEj0I3b*nKA`-livYXh?acKDQ--yCvxx`{Y)!j~^OW$4B*5H{xyP~jHg#n6^a7kR zMSMn@sh!Nf!xb?UFm*g~ffcdhaio+5Z4nD32isQIOzQ1d%Z=96CsIw3T2c{$+LEhX z(YF?1%d}t<;0#08bN;=Ek~ILyDaVY@{#j+!bL|WIJ&VRiKaZOt(?#BP4;bj8c17bo z=!)fa8aefF-{YOBHMaXB?3PKYH$17fD1n3}?5A81VeC*&l$k~aF7O>yVIK9AD3q$q zyOC7go`Ic~f?j0zQ{8zEI;*oq{XwjV?IpgPXJLNZf2+;hGA)N8nc!PR|4g^lM z;s{EzF0@S37pp-KqO9&cN>I19BDm(!Z$o{4_0^CU7?l+yKe5M;hHCP`cQPI&=M{++ zIHU-TbeX4PDCVz1c?DrGcxvIhoR)0no;8zalQzX(oJc6VADSp6?LwMIOBl3}jfSvv z9CEFva0SZlE)ccKtnuqG(t`-16q!XIxN`ryO~NI`#n$vz@j4Zd0;%+kPjM#TSSxlz zxQME-p&hj)0$Gu1utQK^BVAr+`Tf)B!ZJ`N!K5K54p++fS!J$+MB`@vDivHs7_1#& zMtF)4`{a7YvNaEqJAR$T`=-l&T!;1os(mR0-Vw6d8iX_UJCgM>MBg`Mr=5IX;~2mz zW+Pt!w1CD}H`&ndtvHG(0;48VCH!wy>ZecuatfRG>{Z(`c!Y%Tga{F+-M*2zP`^xV ztS?*iYt24;gcL1JyNCB&+nPzNEVoKV9s&WI2CECx9m? zB70#yWdb2~V`Q6vcYOLcE<(--Pm36?I=a`&94_}L{t~@I(>7$e#QEV_p=@YQl z*qym7$FJo!mSO+y8XQ~O`f{JK2F{s2oVn)s$R%ZUM4L@U8L880TFbP2lCiU~QDU{l zeICXUEl7MPL?FoaFJ7L-6AP40e)EC@SMiQj@W|IboKx-wgodoL12&#Ibm#oGA!KiT zsHKDe7ULcV!Ez%SSd9GU@~s=OWROZ=dz1h@4^K``Hc=Rwg0w~xTO{c0*J%$y$r8s~ z>dv5ohweX7l2!Fy)fSnmNZm+B&g5KCQ0hWLpq<3M8$TQWbjXahmpI~~{I&Zu&kO9S zB6!*lkP6Xej)8<~ZnZc!PS0{mmT{280Oizp1Lw@QH=90zN$`#Bd}oFT0PZoF);aND zyEx`UylDb#m`c}PbT(j6&z>R=b`AtpdyoiyIPGIVSo*a!BYP=P-C&9vOC`n1k0r-( z#-ZHtWd1UMiMX%sw&6~2xz50|(W5m3*5<)j&;4=js*ck>tAMhC(c1Q^2fF20s5o{k z)%e%|=mTl(pUEpOXsTV%n?_BbL(Hd$TS;q(!V8YI?6>TGOLk-O15u{5RzS+=0#gp< znI_~5y#19={vD3N@mL1;92}a+F_rNMi&34%BBA!b^Eu~Kx;__%Q4u7BPW))pwnZK; z^_J=SR7NUG_JjRcBc=Kg0kRa}V>SZQFRX%&HlR3r;KrC-@B6CV)*Kiv7RCKu0MFl1 zv|hIrVD1IW8ShP|{Mr?aZ#X^flPwW8ElPg$;|}2{k_6p1RdBQV_j2&W5Uv{$enZ)_ zBSGnKUH#*ybP%)@^n0~&E6SiOro&xO!R`Z;;f{DN0h`an(~43>qrme6tNG61>t-;5 zVDfW-q1@Uu{16u*y$JdkpEWOx;@`&l`D-X|O_Sd@F< zXSL`}hbzs0vrbzcI32}A=e_|xHj9yf$^JHBmlOE@!c^Y9J5@pfcYqiNG+f6zjgKL9^ZQ}s7kDaf5rs<{yE#6b zGhRYi&1ZQ0s`=|%T}A4lbI|=e9Qc^`@yw@FS12&kBP22suwUc8dumY#e-x}$Aja^( zvemDv-4&69I2sNNST3Lhf!6KFnp}`WDJXPqHUW^2)@LueLv)ips*3Fa^&s#lPXsNv zvhOJhLmXn-5SfyYp`f*I!DsPt1ep{N)PoLBH4{$yAqU4I-3^u7hxDeP2Y@zl%*vbo zIOpGZnsrvw-&ozMJ}w;6{)YB3S7X$}QKBvLH|XlQqWBmYM1!}A^=mcG>KtD z=2TqFjW>WNSOPRE9$D>P#I_V`CzmFSm!wQM1d9;65^xi7S=I%@QSw6jJ{E)CCcqW> zQ&e|Pk0dmEhwgTf~g&u{0_qAmh$k*V5riSPVTn_b;2gJ)lc267ur zXacenOX_tb(|4ZkHts?S-vS*069gv`CEE~hjZ%m}pbVQ3jD67wRP2yYA(~KOel{z= z-YdU;n&filFw8~uq+$1vL7L-DP+HeKDFo0O!OBQ3tf5GFKx`v=YyjHD3^QcCP()C* zU4p$INiSw&i1t$^3x`TdmcSZUQFH~2>LneyN}B;KFXkBFNhgVqzyGlzL!2Qk(9x-F zZf9buv`?DPF^U$0|=8B`&1V!EBw zhjBiW&;~0)3yrCzFy%?Fu_)=Erhs*m0)`{E9ued`39RPsa;X{QMrJ_dwHqb zOYE==+xA$xeTZZU?1FQkW*tI-BMIXk;(m$g0`Ifya}-JrVw->tGYdM%LNrh$HxDzO zd7*lRawi_Lr0*yQ%FvBXx3Ik?b3^EGB<><|ZMr-3O6UXB&d>z9aGlsK=*hH3ZV$t8 zS;EHg?z_nOY8$sfX+gw~HO?{|mU@vt=Bk1ipJn$Rw1f^MJ0*|z8YAlj`fB*9hfXrk z4hl;(2Iozki1u%hRS^6G7#4o&nT31e_G3TXB1y^fvfm5(%6K>cyZvB-(TunM#_tK8 z2Ads)XVZ%JQi_0_f@y;%YP0r{UqWG%=omlG*)<7o8oja2i1PsZg@8=F0tqb$Ge#VJ zfDi<}PvhxP4)`rpCj(D|5@s)$$8vl%1-3VshV!PWCkEIx4j~K`0?ecicpV65C_0!Z zN7@8{$r|NBXU7EXIp_kSQ=^{aPyg*7=9oVpyew7K#Jxe}k7Y>o zBI>Si#Mc-gb|6wXa^hw!H6xfFl`4n-y)l%uRY}IzAO#Y~zRdZY0FY5oP*51%VOTpl z#2aC^r(lR7fRuEF=o_`5R5(q5HlRm^oC%vO0*>o%CGtQ(7(ES zdg>yDD+P>39V7@WTGSeXWWvOVqlAN<-30#xqCbTIaNHm&1HsuTbfqs}u_9_fzut1A zdm;4_zHA~^j%04Ypitg`Uqm18!a07a@Raql)YOn*|uzA;LVQ7y*(P;+y^hgmv zj4~cF*lHF#DDl9WI8-hxte*MXH~3sAPiO^ z(W$g8EY88kT|dC}+t-B_{VgH>>kC3>DE-A!;Nsd3E`u<=xoW>K@jt&u@E@+}J(8W7 zo+OmvfcpNq#BVQiV8%bZ%=HC~ax_MRT5_}e{avlT%qsia&*L&gQ4|4tUN7+zyofp+ zSdUC#rV_ut&v_d=gZ0-Ze|`+s-v_7z+55h)X;dWyn8znBo%`GOEZokr^tXRtFbaHu z9C2~=qn`{qq8%H5zrzdvEjs`8g9RM?lbo^TDeGIQ_%EV|`PDoP#?;?`zq1wpoT(;g za}o472lW-ox>bt5-`#)unZv-rpi|iN<2I=U!H=da|9w@tIJ3(B{z43&#Q-Q)o_dRs z(;}IHMz@#*$FJ{E|Jiw0_17nVeH7Y2H2tT9RLHGRiX;pDe(5fGi`xI=Cm7Be$ck^+ z{(b>MlK;kc{pU|GKUZI*{-5{d_wRF_^fv(f`&a(@>>2C-^0dotJC|6gvyy`ovTUUgm&ev?=)96n!j^s(@=WzS#8 zGw;Gb{ih%d$gSwY8N5BM&`Cm-zF@hWz{iXE!xi9po{>rQWX z^%T!-^l`6i{u25a_s3!8`M;;GiwUBNb}gK^@d?1edb;=fd?xPsvI}2OXG1lYpIv_s zSvioPeYd9yZH5}g;nNC3l-R(=P9Ef=U&pcN|H-ch0$y)>2gC68-k$7r)YF!J^1uHP znehLQ1NeVC-aD_WLMF?x8?Y&5-T<0lWxgLBCKzIX?uUzjxqw!M1BQ%-P$H>XRF|`z z17i_Q0c^+FAlZty3o&!6A_F?7vyL33C`efY-<1 z4+*LeQM9g;NC4|jXcp0N5TPjmGvyG%CB+Ni{&&PW8p%=^oRyEmT#z)Motm_ZD}67X8g|bc>^cRNXDz4BeXB)PvT#-6foBl*OF%?RRNdT~6$@todV5-oVQ~+rBaB|~-uooSTYaF$ zThOgl0aTqo!xM^8(j&ojss-+RrT9O0(I`WEW&e$I*;^-Ct@|RENLqD@7J1BHBkqy2 zqr>i4%y{hXzET~d9h>QF_{Tr$Z+THshkP=uOZ$pYu7%k;TV|`R>|U zIg&s22A%OUM3xFFp@A;(D`4# z_&@$4G@a@=ZXhoYtijp6>FB>AoeDhB9+Dnv@;CwWd4SnE+qPW*W=!e^M*!@Q@VMY7 z7IaquA@4zGG}STb9yq32>k;{Y)smKOp;N4jZ%lhji~9J590 z=7v6)IXu8ElWMSIh(vl9jJx~v&y(eEblM@r@_Xg__q&%(rpkR_3Iy3ih`_pQ**gH( zcPVrL+-fE<5|MXkhyzCXy4f0XQZs1RQ;0^(9vf~$dXSULS64nEf}8X6`!8Vi!D9?zuq1&A^7XONnB~jx ziyTRKb)>VBLpZ(Ytt*|*O0aZ=tF9v8Ca_U=dORm@1 zOUmoTC$kQobpZDbEF%J+B$l4bd-;;YdG_E@wg;Ta=Q-n|oyQqZlqU6{)OC?w2Lwhb z@O;gVkHOm}5RHLxIBTWzTl-odk`V6;VicrqF}VEQY`6Hwi_dR1`T5U#W?3+P{CRNv z&tA>@V%zy{{?~J3p*I=pkxXkV7$@Avud z&!V~8kkkivV;o$f*wcYSGU$z2wogfuz*ZUetKe^VU5LMg)9y_4L3?szviQc}vjZTa?GNP%AGR5_4b^KcYq)q;Q=YRff zsXZdkfjf|t`6uP9{Q(8Sdg-4Rr;B~CsW9O5;-=jL62jQzIMOad_!+o02zi5F$M;us z4v8(^3~>jwcf>UwmD~C3*0UUNclNqk78!QqKPV=H!_Wt_^=o6^8Km1n2LpZ^s88!NAT4 zE)i&mUdXi=S{1Z7?p%LU0Gu3D4sSYXEQ=7I6!}0PC)<7)Qm==|Ggt6Q&7%H$wA{bw z98lz0%xF}xTlv=w`p})@^?uy+Ms>`w!?kgi%;Q*QaZhAfl}Ij zcnYQ)k_KvH5ep1*G_Y7^-Y|dy2Yp&6>@TB#va++1v`SAjeYAb^AfvE2+eQK#9JIj3 z3$Ar*vnmcQVaOMHH995eD3yPyG7Y%>Jw{#7S;22ybyu&6WxGW79>F{FWPg85zdoBw zz_lz)=_I9X(a1Y@m(|9ok{IgH=^TJq;g8Z$c)m-5QQdyH#v=9dj75i9#_~%*q1d!l z7JaCMd<{bd_5s)r&Jvm}=t%fOQeNP2$3KLW#*TL222od+h{(3arUNt=()EfDl@K%uOG$k!9aWk4?(l?Q z2hlgbUjM;Jg5nNg7HPvlqq+Zeow7}GW~jd=amfYQXCErT^Sx=d-np@;j+zgTU8roOZQYF7brM4 zE!Yc5lY$@Psr2cGdn~FKyO#dC-M@bnnTOIg*!wODq`E{mdl84Mpka`w2;;M)Z^@GQSxJvwbE!n69$(oGr(HtD76 z$VR(0Sr@9|V}+J?pPs);gx-pstA+o*s(<_2pNLKLA2j`O(o8=YO8j4#dOQSS91EFy zNFt4+z+{Zdb7K3F{^+bU;k}F2*w^$>=Q|gy;QDhNeN43PH_P_w(t6cXU_UK*5iYy- z)qv82GYKBD%K!Fi|Mpj3O1agqx@u0XK#D(gx$vDL@9eBBY3e&^8!dQ~CK*| za|{2y$+C9GjQ_mSC&_VDnx1FQ>92P^Zz%Ra(D|s}_{Sq9^)*R-~5-K$iKZD zgCT1y$Fh{6edvw9_y*}GNGRv-(oFJOb%XQ7O4#u+U-HzZKr_s|3rPgmNIo_$^I3#C z-U_kY%Q0;`mH+OugkSeohR~(S5-?^V(7WNKAuoC0Jh5vvEb< z>59{g$JOI2iV)0AK$c$4iwqBs#({XSol{KIbEb2_vQP7#CDi+w)|H=97#(`?u)f#k z(^?#P!PjGv?;~FPc0Ip75qg7D*ID^EYS_#9J2M%NuvjnWU$)Bjpg{rXKD?ZF*;`aI zPI^7cK1&rwPS?tDg=t^t*WWlMMJp%Iw~2YQ{`!r-ee|(mqGj?5=g&Wdl;J2d)=2a2 zcA3v(1h#&r=giawF`vPZ26uMmMHnN42=7Y$F4GZr^V%(UWk!mQyO)ZSnXBJfD?z## zeIb$TbKj$`uxpzbKiVPa?A?3(=UvSU5@s(hB+P8lt|+~CB^1Z%KmC!llV!mp)Pz<~ zn{v4Iv^h-QzB^#da=>^qu5ZaYWyY-u+l-~!yye6XXs(W~8gsT-)O+arX%@yo;obkk zO%!L|L=k@e+|J4*bt`|&UyLdd&iQQgwGs%5ONy@D=Jg>*ruJ7dqVK&}#q!q5Cv+ge z?OkNxtW0iOh31N>MR%8cihNr$y)ikRoj>*7lf5r14>u;~i{{N0_vhaxrW>mNUS8@` zS5o@ChU^4sCC}%T~Q4J;!us zS)2Eip@_5*=dTyH*|DOI@;D!BgKILLEK#QG1BFW0p~)~RhfcJJaE-oTo1zOo1N&(Gy_ zc7O2KQS(plF<3g3B6^Iv`xoW?;m4k+Tea0@@27@}vMr76l`i)B1&^s`lG*fmSkW6d z)pOVe${2Ll?f04dNbT{!W61**7LGirZ_P2E@2o}V z9Q6XdBAjLRY`dajm1cZqQ)7~fSSEY@#(}OcpA9^6#PhjFGHWu%lo(em3u3lSyCiXN zeBx<*+Y8rj-9B{ohP7ACz3v=*y{A3 z9*0{26nM~_sBqs!YcZzQfPR?neFwJF34eUePIB2?9v!U~E3^0c!)=cB`z(~E1#dQa z+}kAlc|on=lLP8Mowtt#OWv7&F^_G!qiv>xx9yU~^}$}OemwOrYI35_JXe_VX6mKx zi4&|is*X(0d&TRfvGmKHApHX0{k6gSpKcfH@K@QA&JkU*!^W&4RY2T1H|6vbt&k{n zBl{eQh>4x`k}~WobFoQhJZ=@30*geBg|z$r<6i zgSywZTYbFbo~W|M_O-Epi{M0^>cdL<&*t$M@Cd$6p7$)V^_=3`J**3_cISk){w|H6 zN6q}Rhnd#ITx6{`-llf!V_N!DLB#j-G5s+!@~Hwi`Y3kd>gC_vDytN<<{V`?puaSE zZJZ^C&u*6Ro}<eo~)kEn9!KOSY5v8q};s2Y?taj&q_beOV=@{ zlefP$-FEnba&CRE_Rqd=5c|b=yzA(X(HZf4Y3y?9d9d^ag!kw5JA5vBvkB&Wj^B6A z{`LN0c^5FEM1!3rg=U4`{B-K#`z)lH-9ysvX!&-=Ak!v21&}V-T(VBq%Dvo z&x`0OyY#@>xZG2pG8Vr16&(s}aUtq-Asd1kBSa3c?b!99>dLD0pPk<_FC7${6Uw^( z;NBjd=fQ`##cmb*tTd|QWaMp(Tgm8k&E9$a({h0|%Pa0btV=QH?K4lj;4J+-_$%x4 zuNP%^ueR*$nBvYVb0N6x0=MLom5J7^K~d~s4ucoP1{=0?uK4b^J3d$JTw{6scCn^{ zRYo5o!d>KNZVCx7wwpe|yJq>0fl~Mf|4$EPCS{^ZQh|9VS-}8KytPnQUH!n>94C~$i9vf8NVeE6(@6Y@I{tdymQJV=fR(y?gsU&A-*=QZ%(c|f7fQE#q{Zn(dWz+ zwojL_cTT0#+l0od_5$DVdG?ofzkB^S8IQ8hKUOFq&1JRN!j-~b5Be>5QogfhaiW8Q z{b6I-)}NajlB+om`|I2C41C|%xh9WyWcaj#!}U`WeZTl*lqdgede7!1#G?ObU9`>c z@&A?%MyoS38TflF;$5tqt}o!K`GiyLHBWwI8`{7~k7heVNfVxlR}aex-I}h0um}B4bn<0g3>v3O1E@}g-S{z2q?|a-3)?&v~)KE(wze{ z|9$j&@Avzz-}C&>qX_6D=j^lhTJKuxUGGxG&`Yw#jTR=-`xrdmTAkL(BfHOXa@bY$ zS_4K_yyuBhJ3v)Xs}&l5z>mDPM`2UdT)952pFlhxk|xd8wuOiLASfd|i4r~C_~G}v zd(e31)Yj=2Tf{zs3dHI=6{4T}zSpl$Uppqul3n3|uAz>fR;L*0UudX)hoYwHg^&!wl>=?`#>Z$v1-SL|R_6?7lXZ z!w0jeCCy57pJUHU2DT6!)Pr&4yu+_?~QXv>{t2RTN=FZ;u6@a z>-rp@#cBsE(`0{0mOx!!{kn6^C`fwm7wi&CRVm;TBJ(n*38Wq8Wl zD40ast41vl;BcOK$y8hW=Mquy8(au@fks_|kdDsIVErqz4_l@;BWhU?)l_i+X}Q(t ziWyQ}Itz@I6rCo@CyaPmCf_Qr=KcqRyy;R6kAx0_B4n4f9gcoN&fV-oa1OQE$|TLD zqSRuT@7HV5a+LZrY6Nb~uj6|Jsi$wEA5OQnPLS_WsAAhuRCW~YMWd1Q<{@9!!|@Ia zfvsYnf|qurmFsWN$m2E+T_B-N44VrNwsU7c$8Y5D3bPYRPUky$`>Ulvb{rHGzq!PU z4NuX}e;Ng&*2Jj2`ePDJRPv{7LV%#xuX%0sns;a*`NI~X)?Iv48;yIspCc}VkoX(v z>n%1IN=qH(^W{_Q+;H&(RfN=ipN87V&t1%^UiUrfbsLNWcy7Mq0QA(_yYkCy8d|WJ zJm4o`pG%tD`W|5DlMXAiW^yV9X_9XFK* zRDz3yvULBW1m`>Z`B!`)wf2xPCLl$@UL{NQC@Fr+*(#f#4aSuItAx?HpODe%?r&f6UVXf&a_DV4WLZvW2RX*Px^&T)#$2|>n24qrL9H9$ z?M}-QYUtht*e2|%lFXB*GPxj~VwdX*;6c%390_EiU#G@B7adBCTl)n3mD?89YuH9D zAw}rsqqpoAqbdPUCGT`TH&ji*Fa4Ruo&yUm&LnkyY7-=@6mb7UZ@fqPJHCU+3IG$2 z0ilD7Aq1&k*PnpkN!>{srXp+-iIwEvu*;HyQyHL7F3H4Z6X zTg~FOz1I>~riOMXij0rW`FMQN%J?m`td8FHvwUs6APR3Q^7^-EdGG$rQT`-y!ji5k zaQ??gMOfNP&fJcyeZa~~W`fpyyY=#nL0;&`_Z9#mdESXoch_zK3uc1sIyi|jv=hi? zhV9I|M_QJ>De-HYNv!bHa!vKHyW_a00mn7N$J=$Cx8cbeWP0jB$=Icr@dl}xx%AGa z|A~E;L=w6V^;I1%?+C)*k^0B5xBnkSOv+zC;@2+{&xS4Sx^pQfUtG2yE=tYupv521sG^ zjMccJ9(Ob5PA}W|IN*C3fq?hP1FK7>*NaFe*45qd;Z`vtrIR&{3lE&gbAZ5 zJsoeOVR$e3$CtzPdP-lZYrq>T9rSXA^@f(!{|JuCM5 zlx2GO(naB=L4iT?Tcf;jwZU4dCepCB@K{EIUFXR%6zfLo@_wtz}))%t$EY7 zXe71{_2T2H#C`PK_Cm|`Z^{j%I;M{{4PVq3ez(n%!Cbdqs z^^*14QggA#f^&`?VecilqC`HT=Ov>Qp=y7ye(UqLLwIE9ha_Wxtk$fd7`lRhf9}$ ziou%zho(&F95#a-A{N<~l8hvH7a}bQ^KkA?*jT%1Ca_)}I4<8vd&45~p2izT-}4_6 zXvZ-?0$XbvrrM)ms~QFF@wHB+`BR)vj-O6Ho7St^?T@-l_)sdHB8>cJ!p`h{KVIaRnszCY)Vi-taaJncJNQ5Z@sZluNCS)ocPayIg>+AQzl z@B<)V^QWkj7;0c(Dgev}VEy5A!P|$PP`w^12tGh0YXRN0=>k5-7NMy8E}R8Kz8y?1x3;=4{AXSB`OQVQ=V-p%jIYt3a^ zWC;(a(y@8)IqkSqr~m3WB9ttP;++kA^Q*eI7VOguBhz};TacoTz(zJM|0z@amKrju zS1dvI*k@c(NvOwK1s?_m(3!egfo`0Jkt{$KfEu9WG)PIDO_u&u%Oz)H+^bVP}?Kjn+=s9v8=!c7gZa@fhXEyP4>>EO?_vp>p? z@9Ep&2{B$s;91hiE44tMNNrz3luqW2U>^2wq2Z(JYOFq=1?jjYDwLMgBUD?5qO$~= z*acP`I4;E@=*!_ki=sEDp4-+wMvKQ@5$Sb%u zR`}BZO@c!2>3o5?_a&)SE-r2g9@{_7(%^bzULAej zq}K8NOvoG0j)naem;52N&(0pw+x$;27WY!VVZIEs_DBHKc(3(?z$55j=r-hlMQrtk zEWh&SFvG@*d`y8CH&4o|f&EGV*SKWNCHNT1n!gGI^(=NTX_M zzCy{Rs8a*{>KD`QwFqrcq4fD9$zDGDHWn;823HuNIY_h02%Rqg&5L>=vR*ewMrNMhM4hYqVWI>+TT# zIl=x+`)B=W0O+DN7)ApD_Aj^Tw1CvfbOA_#U-Uo%DKRo8Si~jDI5S{Q0M8B7etEb{ zfqILSRAKIov!aKWJAP82l312U^KCQdAp@lq!|YRMYo9dBoYDPg#QfO1H&oC${pmQ{ zRZu|Cy`fh4rcC0YHXMR$ZG=eJ-Oiusj>1A9;po>!irH`IZpBhdy+25;BCpi(*?AFOfdO(Er_9R8-RfsEsRinJoy_iKsOqk}(&W6CaJwZG>C>XR5} zK-RtWTp9zd>y*8s?pix_O{S6Hpugw@wAfKjiO2Qh|^{ zubAOAcHL}9=V?Vq+7NIo{hDJH1J8YW%7_ne7X!{C@!5Og%uYb%ZDkQ@Ja_H@15O$1qNU*u|jZhVvQAh@Ub~6U83|Nk5ZG}f(c%D z1d)s)W3-r(}TYJr2Wh0gB*41?B=)S-Kcwepeq=Dxo1@%w`$44CH;nb16#jXwhn_`9LWoo9v*q666{plrmuKYCV zKXIXB*3lOco-2lM+QqtsD`RrQw+@8x>U=fiB}D{JLgb_00EQB%FO%qCb^jdXVIaqu z@fGCIp>|~&?}N`@3qYj=(h&jQuzFC~K;EL30&2Z!E5o&39zcx_3jzUmYsv6V&lmg5 zC($rcycezZ#83RsTgH!^FX=dMBwFc`gVA9XFFEn<-@As00*2oki6Fr4MS!*0rzcV+;Q_RstZ@eTUUT9}_Q#gM``|~w1i7arW=9?QKTi#{zxc2n3 z{Rywui+O1I1Yg;AxsM!h$=@rM%g%;jD)eOTW@vgNEvS?(sJH34ZY1lOW9nyO8|GpO zSlZ&Mj5F_)OE3$?Bn9gC&xDYFAx>o$U;Kh-4PV~4e+I{TWVJtSTvt*l#AG1y6>j8& zVk=fRD=eE2aeHyIeVig+^ zvTA-!azLQvr^wV*DmE~)0o0_qxOstaArLnyH1_}#ADR^aMw}W_*MWgqT-sn7i6>Wf10VYrd1K{x1X^fzu0<2N<5z=hv@Ui!ar-dD zTcjggp|`O5`J9D8UN=J3%q>|1B+d$lcN8q(lK!ser`C3m#p6U1%9i~v1|}YNT{5BC z-9Ez`$J_YTOu4=LI)U|LBDj7Dq19(GX{4;MEq_FYO>mQ#Ci z_$9bxz1Es8IP+Z=0@IS@RVE&!6Lp_v{oKr#e4#U2m< zfKv*|GXVVuAnVA-(@-$CumFu!xywCZQnXl)&mIV&XT+rl9camQMn10zbG#>PqM-nDqYpvdG4v;bwUdNnd0nKp?6SFq_en$3vDWO)6Xf z>SOAC3n|ZpX&dAyGk>Xk=sJqo0ikoAZWl2BMk{Uo11yQ9CRAussW2I@(E9;EvN+5#-x{gOWb#V;V) zVQ6Lr_U*Tm{w0g`eOGR}?Uxhb7}JoSE#jZ;&bEij1f87Y-QufsSVb~e?LWAFa0YfJ-A zqz8$@5PWY%3zNZQ#q`*rQYPA%q?0X52kpBI#%o>5^BBRL5$}V+1oELMT+s;mRrc`P zHN5DFWQYaLOy?U4UY3$J?$Gw)%Ukd4Jw}G%KA<{`UqC3e z6;`hWIqcM+Z6tdz`q==IL*U#`$)7#_ta60i#;hD%@$)4tUuJ^YDhFQsPHbVY7Dny% z2%WDgxZV5D1PdJvzcE5d@&CR^eo6xXNnipnNgN_e69i%Rkyxrt+&Un$Q3I4t{hIZF zs1#94H;8N?K`WsAV))JwsJ$luB}O4I>4T_6$q1-FL%KJg3qU6tL^`L1n4v16f2H+| z13sX9c!zgf%bIxreF^X`F5*Q-MyFceAKlrl%-daDk{8nzPy(fn5H-#LHE)@q-jP>j zqUTCi)l&tlgtB=M!yW88A_-P+)OsdAxCl^=tUfbqs$~ryj%+tMR7)*HDx>aS%Ak}yGn1`;v_(o2#d9)h4Hxl410IRxl zC?sv*^3Sp)dY&VjtK62znrcdScxq}_oEm16LC($?9KNJkdqWS4KXPi%ZZOHg-X;N+ z;APM)z#}MZHrL;h>Ig*1mVttkGU%juXSe|7z5p+#0_2*^ziy2I_A!vs;N>m_L~*EV zh&IX?=r;IWfYB{NVq!?lE;}UgdrJdo-#7vyI~lbP82ba*l=p9Gz#?==3VvmR6?oMZ zfja}DPK*VNQtxCH<1DQE(loC_g_R3T#my3+awiiK6ur03(m!^qW2uw$cNY|AampE#w*cb1t3TPw&U2w0W@kzz{O9^*^UL0 zVFdcNwywuu65Z8MN^xk^4m29!`w$RDf<*D38V5lHWk~s7%ut6-?TPVo7?U6Qb~Ahk zSTVqiPs$RiF=B44D9t$itm)W}=m{Py@+BPQ^O)0JmAdD9_vyMs)N${L%pT0nn=)8{ z6)ki6b4Au4!W0b7fMDN-;#7TF0A};**fo*>US66B7&-YJNH!8&`vKbEq=5bdH%~(- z=(C}Aox*9DO_xv11u(XChZ0(Dpj>6+dJO4frpr*6ccu|=GPI6S{IJb0Z#Zvq&%Sr#W3bv*<_y6ao$k0sZ%84+PqnvH0xn#au zz&zG;y=!)s{|9J<@iOUtLa`b^*YPd5IOwM_i6nIwg56me*MF#^o#bLsy5o=XKDWnvdJeOgh&? zHovK68=G`?ch3xNZ+;i+`QRYDz-2g$r{#^BX^iN^E+a9P;B&t+8P# zFdJ_mp=ZjP1)Ae8G(QM2Q-myChgC?lfY(6-O=<0S(&)IjEOzhB0QbSF3A$dHRT>MQ z-7LL+K-k_<^VwB{6g_(@6U}3ffC_eQh|lpX7y~SSSPA5=Akbz$-i82EO_#zGk5jf{`OBJYxN;*pBxAfYJ@yj#0p zBM-1h@yzBy?1H?!{BoNfrchH;bLR`8_uZU>L<6!TAeZR@S4+Q!%5R{-Zqh7+<_7uY zSfAr&9~CjNm%@iF@=IVO&vJs#=8U-4UQuE{V9V!;93_iLF=Ny;H4(Pn+i`&SW4?M$ zf5Cl@R{n=iz@UzkXZlxcnD_QIj5bY2jdat6O--;<-dE&MVx{?2e4Y?aZsrFP-;&RZ zyeNC(;GIjo>n*v?khdh-9Mdzl zG(JH$C)iyowB(oj(E3fj6eCJl>HJsk&%r6cpG63gd#5LX+7x4o|f+sw}tpm=*$(}e>|BfKx;WS zVM`O6{TZ_Q>mag499s(!`#ZuB622OWMgP-+jxpDe~_v4y!Y{2|$iI5cKSZMw>!v zxXmFn^5~<@O*^QG(H-=?TaPa{&|va02O-#@fe(v_++3)=GPSH4#TxtZqYU~8NNN56 zjqjyvMr3}Nr96z(x@)t5RXo1_!V?J?w*SX)C@{&)w7&bXyI(;Ypx7uQCi>CoXHK*Z zv|ANkns1Fs4Wd(gMf7JSmap@fuy$qSlz;J)RpR2Fuy&KE$Qy$`=R#)WMYCA6D#ddJ1ztY(?lQ=ueqKo>@6yMpL*dodeRDPMJyZz3CsSA3K<;v1H)swiIR==M+Y_$q6fgWZRu}X%OzJ*&} z7+X(Ka{#7qSb58w;ySfNxXfLfxT9o;-bEhouiRL*TRwGowll(*~5Z^)EiSM2K`%CV&0yKYMPDhm_QBHhD8X8 zMD(~()8_gcJVMHZ6TST>x%AnEK8X*Shz@?3#Tzn zTE{u|J*{x zeg+vV=`zOmjYsrqeHtB1ZgHtK;-DK&D9#aP+Z$nPU&utQ2O7 z7IfL!IvB#$r7uOf&>jV@@et>S} zo^+8Db1$G=9&MhsPgs)k4TwBK0LON?Zv6SFvwZ^tX?jPgdOeVfxaYoJS;_B(9-SNj z!++*}c!8`#KG*821HCImb?tM;sLY#L4+t6w;wqbEj3jzP&84|;Uwf=-+!5c-Wo+YG zLhKC#>*Dv=gWL3GK61*wh1-+YrkJ;v8-C?_cn=n3*77P#-8i>D`Hl1TC7Rx@D&6k) z8rctu9?>$XaCe9VPr|3hELUE21VhgI4~D~vHWf_l$1wU%sOD&dGBT&O{^U;dr@r_L8;gMFmPnTZhUIjY}#iI60;4Z%g?^C z$bH3u7ZRVR1jdvR8J60hbJ%$XmMF}VGU>5J0!%`tporFQ? zhyVXt4mxN#%qvz)M|Wld*q4~~4*j921@ZUn>IV+}41TQI`c!$N%Y3vTYhfK<(=EL7 znQ#$=kVkshWuL_Wz2l_Sn{{Ab$jKHvw$OXQ#rv_7lT&FY9_V){vDW*f5W?rOl%pd+ zi-|TeJ-uN~Kr(Wzd~lD-jz<937ssa#*hs$1dhf?RJnj}uQ%R_5YYG}5jjho?l=sWp ziVxTg3EEjUdoEwG$#N!15iV}X6w){+XV_#_>X4Ur8`Vz8jvh0PVH!+n4U$|Ptbpgm zaTReJky?IbP)wL$XsId)(B-^)KmB=&8-YxxbgcIF*o=0bGs@Ib?K!}(wbFKVRyD~L zO3#yav0`WB9{;c7Kmm>ei($3*z@gVPIGg#l?N|K~VBe@>KKg-kL~XxBvrKO)WD7nlSab zM+zd&YLcjpib3R4^SYb%$+R~?`$d)-nsbC^X3kISxN6q|5!Fm*d26yo1l0UHOg+6) z$Lz^JoITykQ*h4;tg}n>y=!TSl$D0JN&~x-#z(|E0z*arqXvj$)#mHO`XE$n7=RUOgT zMeF$Es!Ak}%<6srLNLMA!Yv#5wK-+S=e`c-G?QXQTLr`1H^(KMy8e~c{ZuE6#Q)r< zOkkhFw8;EE18u01;$o{kCM_^_uNS1ul0DWcOpDZ@ZKT>qwDf)YdzZ80T#}kv~5k=d}u}#2mbs(-oL6B`sr&Tv#i# zOD=gm&nBg7$%WWL0Jn3-u%U*D<7t#hyRpFjk(AP1Pbu4HG+MixZx;vh{dvry%)YT` zUO06}n7vy?wZgt;EpV-dh^UUQT%J`R!VMhUO`*fm6P43=;^}6srbAH(t<{Ta;kUxxkC z!0}D#qxBsXdK)2U=6^slpsb~mwa-_p2VB%{*N){4!A~1A{X~T&r?+sg7mxRw%o53# z=QN@bV->vC;jxkqJzIg5b;97bWzA9^)8xt>$B;HZMfgjQylql(TlBg?p~J6A7Gl}R zqEqXjceS8Av*#d2RrfZ}?3xnX=<-likHr5(9JhYIV)a50fTy1hRXQ(AgcW15$*G2y zsZLbxRG7!c`pdB5TxGM4w<(`-1aiT*@U#op zoeQ}B7a)X#6vofDTF03s4s+4GY@YL-cvHlv_3lNIqYLmK%qq%~z5WaBj~AlP;4q&6 zQ#mNoYwIS_zs5I|FS+DL96Hx|;12D=h|#j|{7t6pQdy_5x|W@&p2cjI_)bmlV`Qb@ zE-6|~OVKPtttzlQm3({Hc@BH!Qa?>kz`{fKq#lx{U~)hbTraU^sdg;?$C%+zF8Hy#S;m}N_V;3ySD-}f{5B^AA9WXuCInw zO?exuQMEAO9z2wDme}W&727_wzq}k@<(OZtwqK@V%Dqs6N58Q9$Rp9B^%%jrZ7FY_ z>q)&(d*@HZC@p*((O>tQ%|QOe<9KLRfD;q#XncC(`6<1B|Gc5b;UX%>&p>4+Mwe-Jk=>L4w zUxorH=<dYo!$coiSrDY(is<*E z{J;Fj29_!N7TBl;6IEc{o$TVlMxC$!DmkvDlM2rH&j2w4SItwKD5#~XGcbGR6G|vI z5KDKT1jp0*nBA_u_T1EP_eLRrhK@J6v+zG_2=($5u5ctar`DuKzwkwQ_v>CbJ)r>q zG{%CF`cs0)85dJR_UnlT9CIFR=0+~OvmAYSmZlH-{nSeFWzkED7;*)lay<~aQJiDP zx^mQ(&jd>Oq#C04-k^ai8#%!PR$%;X0Ygjt<}RBuQx|I)$a%e*XIpyFm4!bM$>qb= ztK!B2Lf#c6%DY78WW2RWf*8xJ%2KIR{jqe`j;Eic9!#Q|SKh&Dd12*Iug$dM#d?=0 zV|AU6!9e!0v{4Ibu8BYGl6g4#{H^Q8M^Zsu)q6QTLoUGBL}vv0GCXeN4$ z_e%Aikt?=j#z(T{oW5MYh?ImMpXR$v_^gj~`p{(@!Eg!KGoBJ-?>4Sq>-T>@YMuJM zfnjx=Yz?VfWA>2?QOlx-&t*pqe;zZqZX{%vY>q!Zw6Q!>$K;YLJDOtB`mtDWwz9P; zFjtxmYZ_5hvWo-$D>DSTZL(xZhc2~w0i55+mA9+_b*px}J z#d(tSn0?*BBKJNtT}6G`MKOMD6INWam^5l?f<=XU+1Qzruwn);X77dAK_d#Bj|qBx zqqpRjb=UEwn<*ISpz*qfa95uq|k0LTh{tolX~oPgYMO&a#8|E?^n;H{ z;Y2~^-{THD%R1SAe3wxVo8y!bs(emV=a5{4;5&+@V&+OyF_Br^%?&ngPVbqpAFuhHChxjy{@gWQ*Ek2k;8e~lfCHi>Rs*t=hpoq~CWJ)+N{RqzM_Tfodf z;)JcC=dHcloRgcf@T3%=c-5-Dw`Bw+U3L@nj#0v7C^+ZS=TE9bHNSCA#`HdzExuGK z$1WgjcavdJMT%?XnKO5G_lLI;6e^;P2g_0<_~MuUtwC&UAqT{ z)McsU59DoH7c_&gLLU|ek#niu$o?3=&ke?OVa3x#b>AE1jLA8q(QNbUrH)>eoxy%; zUMx0J*Tftu$zpqpbZFbC+qTM8l$X@J#1k+x(Kb;AmrwojtAE|mUyB;~_bG>2Nmop0 z_mlKz=4RM5HqV-jb$j8}LkP+Z4iH}K^AEZpzV>Wnj5mFJy#7q%osqIiXXd%78HG0} zouDm=HZG+SvVi4>X1vLkwB6MjrAUzWy;i~6edk83OkA>k%ekp=H%zJ__|rqDD;G@IJU11Zob`s-Yj!+pe@AT{ z{CjxKtb>1(^1*XWG1(73C*l9+F@JqAMIrIqQ^R1_FTOgXV+wjCQ{+Yf3H5)v@kUX{%ijW&UKm2opS2}Eab=Z}|b*za*V>{%mZQJ-B$xGY+; z-_YSq8DZy4@}}NeqTGI;ufKo1FG?`3=I^frzCgCWaWR16A|b*j4MKzjuip^!Bs1#J zY@FqFZ9pA0oJ5(PW+Kcz8d43x($UfShB=zuVOg|4tq{;tHsg}(1)l!X?eR&a8b?nf zlLvzzYQp+=+u~R*JsEF&{y=EuWUFVv!6Zs94hNVmKnh#peYwQ(lHXR9p|Vwvqdy9* zCRnS8!5nUHnO6Kfg&GML9BP6mXnaqoJu0Pr_D*bs+_BG%k-2N!EtB*j-ut^pU$w6D zdio`1ohNo-ATa{3zxcAE zp^;)x=vQ=2Kmg;(nGO}*oa0NimzvDfq!!$QVsiP89BYnl*OWU7+EBz+Y-yvB`k&%`bgR{;1OFPc9q;K#KCh9UUA6`l-C^puQjN*s z?q{tFv1xsL9OBwl!(%d_A2FGBS1n0Q3BGA@Dr+rDX077?` zI(;{ClK$P_4)OP$z@Ay(_#Ifn>Ud0e`Lh!7F(1LP1X%6+&Wz&-7cQo*r&$1OU8BdR z^JgE$@mm!3RN4Y{Q{6nZ$?b(Zmo8$H6GFVDyw{r^F9Fl+RMTx~E}_jBhV&-Kk zk#iPi*#>-ZoOumc73UCG+V&q;#aZ~D^QCRLRkXFcV0*Zo+Lcb*yOg*%DC#PD!gT^H z3EQuvcKr1k3kd*yewL#ODR5Z!cbMj!wMGm=M5dkq$Ja?1w73wI<@2$ZV-Y`ND9*Z9 zVi|uQiEybH=`+N0YRc|;(Sy$>r6j8{foD}(=sFf*@T7?pt$CJL8UfO+s}wjgpjGDf zE#JS_>h~urR{#0>P^PG?f)vFdx*%rZ+RIu`9^tTyP`#&});BGw zmPqnU)Y_!FdvfY>FNfQ7Um;DLOgl+`)=-+4lA_RYAa&=FfTU78w`2EMDmB+9>LN`D zPi%ey#;t?FrE!@+tTNXT)y(^FaHDwQBwD0=%)3*Ko*A;D zN7L_`PRa`bb2EO+_XDWPVOG%N?xVFAR`H2PkblAS-;V?S98&q`iRxlKZ4z^t%jE`1 zv|aiQX^?35lg0gk;Ct4u4<=XPWy^=p7mS%|E-2q2s=L+k<6%@uOu}sto@gY5B8I+a zMVXd6=TN>MI|l;wunLDT=FN)HyCs8UJ-P&o)HT&BV>m@djCe!Vs#)~Z3L)ewHj1wc zYiydGg$1q*j6IdfyCk#N|2#8`ntjtWb6$xo{|@xO|^QK6{d+Hi2><^VGXNG?^(+$H!SId{Tb0~1eE&xO0Zn`SqWV>1eNW#+uAuu@x zy%0BVIh*+WVh6)_4i9Rw-%+=5ZMpD470Dy|d6le*h|V0&hY0&OjtiFFf@!1|Qa7Z- zkXE#+)vX`8H)2EH)Dyj~C!!Mi56gw#eOJc&BTA_8dc~co7^7-idI{L-TdZ~C!oPdx zRv!H0r_~EJPe027Iljz-az(y~i5rr^k6_YLVzGgmqZOGcEhE0%#Yb-(_3Tnx4LNvN zSr8moAfxMX?HWqf&QB!YR?MZk=R+tt755QK#|GmqR1{FCJputA6-+zGTnZFwmf~W1 zZ6_RRI<#=&EWus~n{8n&#Inoz&jql>e_RL*jL#!je0P>A1e@btV~|k?&$p22T08gY zrn39Y1E*q>()CD+0IG|yU`GUPo26U(uK3_+zKq3Ing>hQx5=6=P`Yt&X2}-W@YHb1 z#gXiJtMMtpwZy&M*S-A{_*gmHPoWx`66urM7lo!8RST>2cq;0%KUR_2RaC>a%DS6X zI+iz5DEJEysab!}6R#LZj`l4UqV)yk_W!;_EB}cRVasfd*kbV+pUgr5T!s%zE9lIK z)uLiGWyx@0uQ>;DI$4%+%K9G$ILGM)W?F2%m@DLMu4$_nJQ(|4jtSr>-f^qoNVVT* z9M4s5>x|=ca2&aa5TMrfKjj?vVD|$G!Ro*Zb2YhLy|R7SSk8}^-p_H*tG}YLV&c)| zd=~i<6h@i`-LD?X9?g7`h%GO*PXA+(kPDYAx-Sw{QXJBZQnWV6 zNhM#5@j5xh?=#P=6x($o^_m*VWY4^!WkFCg3x%(&9qQcGTckRsz$3=3tiEr4o9ChX zoFhFhh}dq z_IAhm&7W_R@t@ng;V>!);Dg%fjrqef9hKTq&Y8^F;e*z!w_<`5T6)bz76vVtY$8Ix zgt**U+D;DRFfea&-J@Q$7uX*(D)=lXJ!pD8pmlp;1n`(hlQ?#RyEJ19(r>F#mz5;q zgM~u<@ecIQV3+WIzi=ayse|CRSUM_%NXnaaS9QOhNg;9^PhLJPq_FVkGC$K24?B)z zAqr^4B{R)fWZR4CVOGa!&G&mN!fDmp(QZ(ynd2zM{c!##Ev{$`qV8 zupCaC<&4qHFQq6;6KDi)32onBtYv?4RwSRet?hPYbRbNsl5)JLZs0%<&3A=pobRO6 zaWI{A{qNWC_Y;;9{^$0HP7;@=KH0XW0h^fuM^IZeET(tsdTZ5kZ>2_0N0p5(KRrdr zQhncRz!elEItvm!9b+9Q*Y3N(K1)MpdXA*| zR6uuDlJA#K4tbkXebp9yrd|pa;Pb{WL^Z?xxzt=4!bK`3c)RtnoM5^3y{7NWwzDD9 z+Vf%|Y!$w~tpa~9OZlwo;0vv^qK43>{>%yKJD3dsnDeMVM^kwJL{s`L;Z?SM)A*_8 zX`&)ctBiOhtGcU#s#uA534#^TFRVb7cT*xoz?~$?_PU9F8N}%iYf}%|#(?lW!ik%TodJ+ixRzAWX28E}!Qi2MTR3yVLP@ zSp}&12zJe*Tg8A@iS1+tN%Vao&hX8WaEAa3h6K9Ty0 z1`ymgaK}eO*B?fGf23;OEf_Fe6ArCroPGznzjp}?CP4bn@pxZwmQXk&gz7-Ob-}jm zKu-xo6yU2EYQcjkJR4)3h4Nk4r{3pc0!gof*94z>O(qF-@Un!(IwTwPR{$^ewuLUT z?$tus zz_Mw;S3Eh{Uig`o`a3aPg^jxVOxu0lfn3{_5tl&{GOojIw+DV1*X3SP;KhL5&0N&Y zTuR%?`}=ABUSchZe^yw3*qx|ul^QE8MF;A|Gd^KE(z3`DJ&PkcNhMc~?6plB@Ob?k z6Q4U3(kq**cxdAEc8{2RA}@HomdnY)@4YrKMo+RUzPnY~)3UCiAG;LGpLMNuYxkkt zUXMYDIfAXQoaMq0nTCpip!e=Yz2^~nsP@{hG`5e0f`+v}+(EKk$FW>FsHwO!7Ve)C zsVeiV>f$O}=eTbN82Zbd{kuqZfpj4w4L~4}$cjS4m7`qoiRZteI4MUvIN*Ge`(8I2 z?oBj_!^&iiGXM}BmNEgOWK zy8MWu##vySg1u#GkG&83dV4QX6=d+^xjo+v?TX6-VUq`$oj&i{H4!ZRfneCg1H8%;NrW&d%Is0VopFISfGD8vJs%z1!)=qbkMoURT$=p5KQw zAWGG{lc+}o*BUIds#XB!j9(Xoxi|(PO*uhR6O-iJ_PRCoZm6W_hQ3Ht&Woc4&+Y}FPN6KE zMA~ z7T=}RTmF%Q7K>Yk5g0H$`(5McBYP}wE_eSj>09mIJ!Wy!e0WKfw?BDL%!0*ybgkPV zXPyY5mDu|L3E1(hfNGt^#Dy|$+Kw+~HlOs|$)q2{KRyIa`P%ar7wTd^Gm( zjJZXxtPE6(^<1fj9b6XDhrE`>ewIyt41HfPp-tHTGYC!@aQZ;!yxZNKyu5rFVO7L3 zTu)r@l0G6G1keDRtZvUe%eTm&y>}F@I_D4h>QV@m=7Z9S36EY!&VXdxa58cRx~4Rj z@&drlOV7$623evqepPzFlIh>Be@t4(Onq?Y`V&T4-{*vYmoHIM19 zY^??v;$Nevad<2a+xx1}wZQJ(lN!tEJ(c%8|BKo$0~x}QUWF&0 zjKmktzy;kvh+b?&&^nH!m!+ii|3fzDqxu5{gA~rpxUO$()!C?nxOy(LtK;LpU&}8JEWfElmG8cEdz^@orv#z|9IDwRGmZUVu4;o7 zWZGBGSVip>OUM`SozbUfE$@iS5@__dUKvUOY7LjQYU7x~aitp^4$hnCPR~T|>Dz}=k8UNMjntK1<4|DrhP7jJKu|4$tv}h`El*2db?T2PxsUF#l-xkOZF6?<&MqDhA{KtL z-5_#Agy;vJ0O~S<@vKinpVA!wo^T!#qJ06vOCm(x|NOl3n~}J(gI9)cI-=9rCcaLS z_P&X|{@mi({eHkuC_hp}^}f-W>8fk#eU){n>8r%O4kd2N%zY=k#ab59R#*c-=1ohA{rx{hZv=bkb-e+#4uc#=#l%!uT~;sn@)fupGS{PCys(tnAKkZU?<BR7<>SH|hIiP4(o>kb74SCQyqX66?ai=nasJC2< z!tFOnUi;m~S{_5P$^inrE!ZgG-)}aw?L3B0K?ZXjM&07`i_&_5i7}Nd?deUB%v+_* z6*cn=C25|@XrJxYOq|ZEeY?lWG#mt(Bp+^gt-mv;-xDFMpeJH>?S$Ef{?tVFg}Qvx zzWOccRfKSkq_BRtq4L3MTO#8oA@+c9@7_K+%kuA$Svk!Q2L|!!6ud_rWy(z^LakPMYPID7i^8IqniX|nH}|0iW6FWr^ zOY*SMrT7GgiNAb5&D?z>D`HgdDOuDCVV6cCF}oE`R73hPK8$WR_|({=c$A!A4zs&A zVTR<~$M*Y|dx)|b6A4Zx@-UaZX2E5*@iklUT7WZ{mt6Oe2Pw_7|3BdefmpuKvB|f- z*#P5vIZ^7!V%>tU+nXxBY9RSWOsqsqW{#htFQOm1Sb94(dGIZN0;6_9UIUBn&UU)k zt)>SGYEf>*#T)EEtT0`ZqR1mb29#oQgv84s5;JVhycwoJPJk4m9K{Lf0M@KRT~o=j zv#ljUn=O&59=xdQblZfY+H3_`=v)v~rN&h8s2PKP4m4@hc%wmo-de{gLWqyAj=u~b zsWLHV^ZQ1&>a7-b-XHuU*b1!mY_W-?b1^Ms-mJ7|S#@qoMLP4m`)!IXmyOiX_;e$I zwaWa^?L~*ay6mok@i(l|lto7rvyGybTtXKqn+i5obTLWXfrmSwy5LQTUme@ zgwnX{0PLc);N<`I^MAj!Cs5eoAA@b=F%l6ha8L%&%#9B>ABbD~0Y2H_e}~ll?A8r* z92}s=9CGGq9m7FO*O_dhSutr3tG7Xr7&e7bzdf#k!~v}Qsr-7JAbWit!Rj{u;a1FS zLO7G~qMYb>1qoh|XwHaELHoyZf0u@80|Ho&1KqFI@tKTRA?)f2W=LH{iMB=P=(;_>yp7oSh6;taL0mlfX9?d_!Tx>~KO|vto5EB2f1=enVh~BCcsb z-$(j)P;f| zEG%GPIuko>^OBnXy7AxG2=jTwE=`1q7Q*e31W&qG71HzG|Hk&;Zvz?H|2TCBM5n1- zS5`r3&LwjODo3Bwx?ss?;i>;pV4tF5Hdv}@z=UMUT5sKsnfOjyWWnMySy*q|ef%%N zi8LLN*ZR1r&FSlLcunHF)UT?>WLU26YFJUBt$9&>%V@fp-P_f-9=x8tlf0!)ZsuM1 z0N6YGOQ(JlKN*btPhN@}rcTqSzc#`TAt;1Uv*SwaC6Y993l|g{@O2Ar4hH@?C5+9p z?y7=-oiZS}76G{^Q*l9kWeM)#TQl*MNFQ|$lW0VL!t8QJaZZSto|5HP6BP8MJ>|mF zZO$TKergt<1ra$(0RwcaDJ{nDjUGQGlF(F4rq#Y=w7Mw!PUqWub^Eig&o8mH@3{Uq zZT~&Y9b>~F`G%|YM`Lc=o2vsJj(T9h0ZN)p+n=1j#)b%SzFB)&&)L5ZuQ3GZvTzaZ zDM%;fczSEMhxnylO<4Fyqy<^3#WR*SOcxcW-=zST^0Ea@z!4>MnI$q!5gyiDNd$BX z%7W++0)zaFmot?bHGhMA$tfjlS6}a(l~0Yd)};pp#=Ij_|2#D_@EmDfdK`c7w&vy zJ?1bbEYr$J&H!-dbTFAMbFDK7cWQ9eVG85&ol!Us86VK3?At=kH>{G|Wo6#CG!RGo8=}+7MdQX7om)s@3qwIer&^lo! zNwgy`Rtd-!e>>hjtbWIm8lO^JFGb`Wq6ND-Mxs8f*lN<8(dy{MKN?-d30qryP7uRLp-CS3P46 z>c`lk9j?jzx8MHvU~r6-06c7Pz8%I+F!Q9(2%8rFLvUn`>uoqs?1&}_u~@w%m>f@v zIPZ05TOZuEj9shvYJ3?RK~z_EFugaBqZ*|)OwLjWq>8eAk%oU${dO7~ztzhlE7=uQr^#o? z;7iis<`i0&EA{70Y$Ca>&C?Ix-jhLRVw@Y+1Bbi(`l(n{910)o`}*Mw#BG`h&g=bMldB! zv6g6n_U1edp^7js{}35jM}OTXW8=NA8>gerQ+6-)m=^5pnH6=%V)5mORKcZP|BzOA zzx4p7R`Xh$6g&}}+3C7Vi&qjAx4#6{uiGclwQ;0@{4n-pz*Pg>xSyQ5`C&`2n)1i^ z{(Tzx>j%IIfsDKZ2@}9G5)y9byn=R^Nq8#O)mqO@Jpw2#C)cxP-K^xayZ&K%R9%5x zd`H#t8^Q%GRZvvuHnVA(Ol*>r=N+#*?Q9?B$D^mc1G-bel%ofpK}2GrbDGGH#7$0% zlHs_Ithe(h?8H9@%>-Y8cAy$Xwtb)@%2sMfQVejaX5 zlwDtBSI|EQ6S`b)!2y7`*_h{VodS^wSR&vd{I1Ato`emXKn z^S;s_>K!h~HH6O4m1H@8>rnR%OOE$4Lrj2W_g1L*SlTCH{F<;It?}FG-R|}n> z#p(rOR|)sDv5E}OZWM@q;-Gk?LcoKb3GTz_X-`uq1^aJUZ-av6Q+=t*vwCH%7?l?e zaoi(xGf`=E$_(-wa$2B(cD2Ot(l6r&CPDOA0tYDT1~E7*6xtcOz<4OytFRG~ZX{Bn0DyIium5b;6g?{* z)npp8!O7!H?nC&l<3_84IRnw}Fuji`=}nE(6-HKhN4I#%w|nXiJ8&9;k`)0BAmR9J zgqGgNAS}p|hF|@?F)h~|Q166Vb8nrx1=wNj*iQ&oRb>q$oF0zd{~Ni1W_wTOXup&O zbgO%ZBi^Fva3#=1MgWR8`er9d-@$^ztuL|4vc7{h)xH6!3;2g@gdvql$87cg1`6Ya_IkN<-gyQA4-M@|N9f@rt(=uwp;$Y+(4RQz~kT%HVss;0MS6t zAuB38JH2lL{ps;)IyFW{0(5c%4I-oXUA~5F`$2+ ze!>(p)CGVw3`!J>YIQX}sQ53Q%2*FUhHU2EulaX!Ia=Vld5aOZKlaI_>u z&i#ZB3Pf)T8*+mU%`#!n*`Fco^++JeG%S~#&pi1W8t@mq9d_XjyZXC>)1QQ@`MCPWKTcfF=wnVXQ|9W0n` zD41eZ+0WPCP@df*uXCz+bYQ~}&;RAUZ@@P5eMk<8lHaYcE#as(wn*tkuyLE1>n`nO zZ{GraIVgAt9a;1;w_Fm2JKca!F_%6=s^`$AWelphiXgAH02& zy(nGEFK1LbchsEPlUakxAeQP(% z;x^p`^a{W$3Vsw0)LY9VxDuTVPK)H$%QTnK{Xt zMt*aQcYd&Y5D1m=Wq;uCPpv<}(JL~oIDIh1suF-KfXffTIqPpnJtI7$v`e4;M5P)y z;)2Ds&{Yc*poi05()uK?dW`J_`{oUproAzBk=O?p$5CK(PGY{_9E$JK~x}F znM$c;`=QV`xQ~P{&9l>jxN#F$wf>oob{BQ#fe z7h#xKOC!ZRiD)fd-GGzI;fXX+)>xi>a-Fx#o)G{##2xP6LQ9{QRmaLrK*NMt4Am;Y zZ?e*uQZZmFpFT{osq$J_SHTS+Y^Ku@6_gIx@@f)1ORPW1^K6ejRSY410^$9{k5?g; zDeZB&-BQHI1Fr8jqET(`7?lpbi!0!IBn%mRF#2Mx49IP#hDGJzn1HCwF=ME^{*eLe|?I3Q*QfbfwKRQ=;MO?=}eLubFMe@__ z(Hyb4E8UY8%6p%%lI;cI8E49n>o8a$PYH(8(bTIU?NvI|L^Fa&KT()4kM;^5qS(9r zYrN;%dz9s{VDnhFiD^+(Vz>^^8N#xL>IZykq#stNM+ANyr$OeFP|J@!JW1hfx0iC; zUs91Pb}a~$nrl13a6_Zk)GQxmC-o;1_GoRwwX3>WW!_mgz%6`ZY~NcZ9ie0s*YC`| zCUQG|c=K)4#;UovP23D|{#chdVfRxLo{|^4=t4SR_Fm2zcocvxEdQpf6JAvc;g2o{ z2m|Af@>l@vGVbgS>9rn*q`nW>@)%(Zf!GGuxS~7vhS;&PrVQP0K!yzhO&k#cLK(+L zg6U9z3~aHM%Hs|b&~J`wxx&B2DWWf2k`(cKB9Atek)HZ5Rt{*Q&&MD?H_zN{eC)&| z=)F0E>T2Ggqu(mJIX~LPxX17k^lNWpZ2Mp);ZWE!o<6W9J@Hw!RaRM0_~O7qSYe{s zs=lBefcx?BPM#X3Vd<|oNIvWE>^IZi=yW`lg}i2QjshqUuH^tOm<0M{5NzXM*^7#e z<1yno`8F&?OpsUiaKkT&Crqm2-$_Yaaz)zXe{ru8*t_7Juhp>qLTj$IbbGUbt%)No zML3{hcAHK+@#8v^8@3o!4H$NB0%=b|E*X`4I z`Z!+!`cWBP&Th|90;LWs!wzWVTFi$a5MoB90C8WJ@u$Y1bdY%hzZ$iT)l<3V#h-@_H2rrDQy$s`zz*CG^+ z(WsR_yomx1m3E)O*(==!`89s_wS&+P+x_pjbAO5<2X)MG%6wX8xY4$zAAkT}kL2kU zICt&>3L{YjTZ;S8WqnXDWg!4|&{lw;ve(Uu0HRib+b7SH1yGWLX(SEY_Q9v>#^-x5 zy3{hQEkO@S>v!PDgbP+ZQ5~S244j3kh?`a;GW8;M_TX4<{_lVu`5&J?gY`5hSo^Nr zGBGzwrapqn=R@_St2{*<$*a0MiS^E(+{4p=|MA?NYlz>9584>|8$wjB1qPF!Y)-i!_LE*Xd zlwH;;J;otBfea)^<%93OJh4@dqbeuD1aW>Y1f`@lgYxq9y3 zSNrdm(5d6@#%G-qps-2`QRpL2WTZ8IA?t|gZekwk`BR&Kfgw~LF!_8Y?TL@@e%f`4 zFw^L@%)1aJhSsj03LzuE)~^yBTQd)AMb~a{{D|& z1-R+4@4AWs;7fEU)`9JhsVh(h0R~7w_v|J@5l&w%C2}rvIs$OY&F+hMjQL801-|Y3 zWu$Atrr9S}(h4A@3r7krRCL2UCDX@KmGtBKM;JQ&l#&#eb)*!+xiW;dLAYY>%;>h)B>GAGWm~ei><<`dv@LPNTc1MD?De;;ylj&iGUlE<4O%W zY$-mrEg-~ScG#JFZ&IlSnxy^o(FGH( zal8>=S07L3NNzvL3(335R1__~GFCBMC}rWFG0Veg#j2s9`6BPDM-ooDYH4!!Fk(GN zL`0YdrO+L;0O;|kkng~?EfbN(>ys$)Y}Rgvhq^jO$7(Y1a7CX(7|U0`W->D75nrN566sIAYWd*|xfm z+e2XTr!=^)pG$b*7RvC%r_M@g-f^nP;_3FXRf$N`+XVfE zxPJEPh628-kSt+bKwB3Q#}li(SoC4m;O%K^mooLeOk}-@$+c|qF8_^pLoetS&Go%9G&R_!Z^$S#t!@rp zrovC28IjgtiIwrp+!v}Y+K?zyE6pw|R^?l**4)+Hh3mi4zOL&X$|b|l87yNYJYZ7k zsU%(k4)x?qFzN|}+wNKaEXp9l>bHoyG(8vSU|c5U08eB;g@@_CQh+WDq!*y+D*=R` zW9i>QBXBTRLaZk$mHwdW{bhm+1qOm4f|TE?C|n%p&4%6UaY8wOys>t}Bu5P5K)n#7 zgu?v$`M(aw+8QD{Y_mWlO^lywh62a@O;5$CC)S>TT2iHcaa(g>F3s%Cc5Zf1Pxagk zbluH&KXUxFvP|n<=S7f7ATS@?(I`wt?RF%o|rjnkPL>3 z3t)pEpP1R*8Hib)0_YAX#LNO~UapPL5dq-7B+mwIn-TS7Pdroa`eUvKXW_02dysSe zFm(p-N=%TRqSe#MH4{mYTZwN+vwd@rJx< zEYdTS@j5VO0fplS_uaVcWzwhWD2vA0r*36ojlX;8dL$0YoA?BoWG)CGYmv)xcaa!t z;@a!#@C>JGdI4mc;1yIHt`eUfC1-hXw;bK88x{-T7F^Lh5W|lE7LfkP^fD4aR=+h4 zEq%aKeU!3TCMKZQp6K< z%LZrfl5OPD{j)-G8IAyb=b|+f9vc4+z=QSJn|5ARH#~o+qIuby9M`+4hd(HKi znV+=yDGt!?!gZI?42B#XW;LKeJz?&I<*r;OTi4>?hg)Um%Cf8q<$#Sav-6YEg{O;M ztCI;iPhED~==-9K6v~|@61$lvQ%mjQJvBJxas9+Aq7z$XFyKe^m6w;`x#PSTE)X$^ z$#=1~Q!n-wRO+j_*UA^X;)#uB&x3*GCuOm}dn#Ur=7yCU^@ zCd|X&Eq?2djV7yCKEBPiOtP7|>%GG{}jJtZ&Mpc_y_p5MGm!hSXXkZ2b0 zi3{Ft4Q#N$ST@8fcVLf|Ycva@r#A(S)Y>B9C~!tjK>a`Uw+r%cyi}B0mfk<%XI~XR z0$mt_{b}e|j(c+-RwHI`UY3F&494!oo7LIq1%zrr1Rd*pvW>;T9MHXaxD;VA?4R4Z zpv9aJOlI<4pMj@Vcx|?HJaxcSMQEF%0m+x;o8KpsBxycV;Ts=5ke^e6j`BXiAHVG?>}yiGG< z+2;pK6wZRg2{{s+$kWZlVX`T)&Fq${rzto9kHW0>A4+Cx^w4BW8sQ<;p<7l1l3%FC^&5or=av1KKwSsc+sVk+r+8>|FrZ zbeIxgq*+N>E%MAzc`qv#_ogrvYJV4EjoX5Nh@wd0>nv`RM_&@pk|NG$dg_+l%C^{k zbHum39*F%sf{b(HGpKo4SA6cIPm}Wc&F<|sTyS4=$+Go#iLwuz@_2~fm@ymzz@Y>H zK~Y+i+)gb^K>=+ZUlm8z%GyeLHzOItMjhcq-!_|vLO6gdUu)mAR>XNUW^I(pC|yOz z@_b0ghNgEgspA$88-=K$t3NUSjjDuQvX@m-vcgSVQ6`^V#z2Hw0_u!d?;BN5J4~o2 zcBcZ0e2Vn}4h#q9>)P2@PnJo(bTZAQ701YBrAe`1i=Obk+p9O57AO-_Z^ z&nky89e$a*u-WunG?ESohuO~HF>4{j7S4UGq&gS~&;u18sIK}JrzK1N%JrwWZUVtg5L ze%gz?ZSp{sWVKB&sq#n~$16B!F~KqQg)$e<{ z=RCn1$VkT1pW{EA1hH)ziXrU>Wc0_suDiLs%JjG3() z5q(B7tzSK_j9tFbb7X)MpI8819aM0n_zVyKVVF`sNhoYb<#GMG<_IQ>J{ds|HFTJO zx)pSb1KZJ@vXl%|qIPB9sQCce!>#%2E7UemBQ+GR=c7lWTtpp}0wvM)rYlALZ7T5H(?ThVI>Mgzt1dKO1acYSf zfjpe4jH=X8auu6eo;-80m258Uu~D?IPn~3X8(~KQ;dp%I08?@wvbOoPo}Qn|-=(HW zB(=ljNLGnx`B?X|*SSF^O9gDDt~q6ONK;|0K`L9PxjbuT@!t#dC(C|Xa;iS!#la#F zzyRtBG@-zi8$8=o19B*fvv3tB=}SW7jgxf7G8{Zh_Rb) zARN;T^d5lroN|V?^w#Ie5B%NxEulh99h4- z9|Vf;3S!Z~Gy(de4$v0~Jk0cYbQpkmzN(47wE$>k|?tC9SSz6wy=6vKh} zKL;s4SEiW=*5+Xo1LX~y=>Cna_ai3rWk(b_!$4GPWUIB0qJ_0{J`^;F@5Mty5BY>y zVX+*Cf@J^tEChJ!t2`UkS(%)D=SoFKQ9{krOwxd6)=slGAELXb%gs|0jJf_GTrd35 zx(jDDB>(HuIR>K87*MSLtxadQ+NF<#H#KN<-1K}u-Nj*$AW}f>X02y;Iq<4%PE9_K zGA&i(r(_*<`tD)fgUOBT>gcggxEsDsi%V$O*wdin96c5WcX!wTxdN~(oO?K_>MU4l z_3j&nvvh%MxUj9O4El#nuJK#r)@V?7CrI1~u1wH|fyO_p+3wNfs@rU> ztHPIJdUKN1S-Z{i96>X^%leV%8N@~+R69QUw0;r)`xhtpMvCQcT90X8pV8IffmDWL zbegK=n*=`}1<)}$y`vplqs^LXIX7%yrM{N|YH^(SAv=%UlNe0MQB*8F!K!}kZT3QL zSlK~RypOO?9>2vf8W)Zq$;J!~z~zhq^P6=aQlWidQ&M;Ppm@pz(651`XI19}D2D)R z>!}gua{phDvm>93)R$PgUzLSdh^Lj6+~b5g%M)Bg95Zn zUV2W__Q8vdG8!A(1Dk}ozi^ZKR=z!3vV*B_~a z3KN{Zrr_C$SyOjD>!P0uxfjjVXnpiC;Zq2Iy$a0YbN$P_8^L`so~JUXuyCwD(D&d9 z)2lIk(9vJs7ov^#^Ln`*Zx7lL1W28MKsB5n>1bkSwr(j992XwX10{%u4b<2Ix~%*{ z`Mj4v`vW)5X}52u8gqcru^7+5!eTy};wN|pqf8Gm?^KsZyM$@Ew4Ui5@`Qz8n7_VU zMvQ!GaN^HH8Ib21VlJI2`3}b#dP;5?ADtwDWc2@DmzVXspAmSPS~jSrdp=8>3kTMcj0HUAR+;!HMS#+VItliPeoq zwG~A~%>iU&xG-3}{g&)kmi_-fdf+tVoyDdGU@GAjgrQt^k)eM$}!a zn{LD&TN%E=`xi8OC&aX6sb^IY?sRHIO8SKqf(FC_2;YK4Z!;hk_4f{y5^F zXeo##r42#tUEIf^SAd#EAiq4Bx9nW`!p;Xf@u{##lTtN7N+g`dTK!{?W^56&X|&Va zYPmUW9H|QI)M~i3i~7{Mi)`#Uff_OWxJ~HWsQWRUc%ZY=?&I?>t1@vdC{5HuMN+(@ z>4IZ+abD~jEt3$^jN#6z%`vGYT4>2W@gLjH)Zt)Fq%rC`29SpqNeGuA{Eu(&lT(IR z3JD}q;RNh%o+u1GjIiib!exOX5Fqf{%dQvgk`^EYA%nc2mISRdbiE1W?8a;rkw7dg z>>jEG;Oz}W;dkxNP_l79Z`IGj~FYntjeBA;{)uMu>K zC~93+GAiYoS%>R>D`=fQDxx!gyJ2zFzRq#WL8%keV$E^_8k4nqkeub?!PMhvBv+Em zKBrj56evgX7P@s6{q_P*WV1LGpYtS^5)?D^fa&H+iill#nQh%}Ci%tJz2am1MTZ9 z&XZW^7vf|z;AycMIeP9nMDQXuBFx3}w*ps7*Pl?4#*jILD?+(y-7wdPwv_~EW;$;G zF`nGrU^&Y4*&5UOoH{>ul*Z@{T!L2D#|r}YE|5qnG0#MSMDpf!L-U=;bmELpQHqGh z48H->@0vEN#wpCTDOa%Apb?Afh_E6 zW%*!5+y-@-2<@PSr-b0?5SYnFB!Lk+SSe}(4AmqygB7pQ6Yn{=iJ+dq;GoMmRIXcc z^C0F$qUfdK`f2*#YD){lS+}T%j*n4Da^wZra5$)?RU(9mB2+pYNRT#VSGn9WwxO`_ z2@LwJ?im2f1gb4Fk1*o8FM6q0%{0Jj^cgqHVV+jNQJANRnK$=mgX+gEEo}7z#Pdxk z6Rsg@zehhZ2qW#F`pT#e-F{jeqR-s1tVBoFZ3|l{k5&3D(5gIp+;KyE&K3Tx-4hUY zDQb?N8scI1rCF5*2n9EFCLG-IR|Q~7A&in|Ixb|FaT4QO0?m7rP)C;PrO_){_MrN9 zlQzI;U0Dg+0a71NE9A!>0M(s81K9^Ggka_Rw?GTPaJ-iGr_NmW!3q2}4u)<~gRT*7 zzo!R{JOMu)jmFdbBKA6AF7J^+5A}-{0~diBna9dEt91d?TyE;WMj(7Nub*KtLd8!juH_-Ir>^Mu+C?GxNxkRIB>u%RAX;j_Hs;CZK z%v(tfPpdSa2Q_*7;K~o+l&EK|n?bTJpiyW?Xq`#$dSCOmZHVSS;UhF?DzXlR`WFqs z?;N)_lUgbZ1^u3z+Y6xYDjn?KS&%al)g&xYR##|xkidQo`G>@&SxEq;yNXn*H;ntVd0c`T!~n`i}W zWnh`ze2l?rrNwTTt`jLJ_vBKtK8!*VoN(M~X>256qINuvCH zatkNPKyGi(9jEvc#ErV5`wedT{S}Y?{E;)!3o_wa?4{WmWi2%LmU(KP3Wut5jIDI=-gxnl6^$_qVR`k)1>1P*Z1du4kXOrJ zOmBB3Ob1;fr7XL7CF>=H+CO}d8@hqhG3=tG_K(;{!Mzz(<(R4uYoHx5l=C+?AWMl4 zF@>CPy!3SE`j1^SDZzP>bK}m@Nw=$5JeZQC_fyf+gGza^0~DPKu|TU~Z<&0s+)Yd5L3mMtNM0GCjcueqn%6BF% z%Of@yRMeBo2e@J3U{)7xu4v}FNAX{N`ir`-vGONE2jY{hop%O;HqI|GjF_Ze;(y~@ zJ>Dy%yE@-mCK^RI)74%_a*_p%SK=Mr*%bOTX^hAxQMxQ_uA|%P%vA&BvVOGPI&?_f zP=EcV+<-S*{AktT!E3Fqb5hlpS4#v=xELQOAe%)!(c+LMD3-D#CJ`^4uH_$(U+Z)E ze@e6=jYND)lmm~qPDag<81qwR=2%yW$fIrZ@1C2ZDBYY_gCP&ncGXYe%`tQ#99!c8 z<5DzGo;K*dJlhU9iE{Gc`FB=SS!47_+iu*S$CcoV8wp`ApWCe|rj-GtC+tA2f0 zKVlgSp+KsxHTZN8Hxk6yi-44Dt(RDf*GBEb_Q{_Y+GiacVgrA}(LFl+W^OTWgJU%< zK5bLBt%jSS8``m9BrnsN9mqyX6>YP%3obzPF#WsAf{3F?FQ+Bb@U-0bEP0(8IfxjH zN~9wAQ*PTjk)NTIgZ*J^VCz9a@OhcMr)-jVbNNnAnX}s7Eft`B$7N1-p1a;c&Y53@ z>cZ2=974AC$re$)4~73$WKw^IRn`xLgh;JbSScyC4|YEz$&9lXm-1u;hhNHc+B>|| z=`EGGc;&tN^FO~2q>C29?@OF_{56$quhnT+2~RtTS6;UqWZ-W~Z4&J9y80Ot>mG+1 z9m&;?-|?d}$24iHPO=rc3-8~*4_hDDx!{Q$a^FV4bP)q4_gkc)9ZO)tRxzz1C&Og) zO)18zMIUyj7s&NZXcGB#aBN;soIpM%SV&u`{p7m(d@x^CaU%R0Zlo&Vb63#6%0g_f z;59;9IEZ30n3^~?n%TYVQqVEHxH}mak*3F0_$qxu{W-6mT?XbL#9cyBA}pA4Z1_`G z(<0461vf3zO&Fmmd#QP<`J1Yiy`ZX`Lt?SaczBeXw)KwFo3#cRbX$M+o=qE{w@NS* zWr4eB=K8rj!Oi8r0)T7@=G9*LYmX+M65Mvs-$O<-xcQk+gW(h~xE=2n(6U?t7tP63 z6HOPReyTF2mA4pWv1~Izqhw&CJ6p|R?NYZmV9~)fV3Mo)5A!>JtBfoLOj1#C!e3%n z76eo7IVTGXP54|>hRb_uhvx@EW*zI3dCoUub#7(OP{uo>;J3oq@;=I+-yK&YA_~39 z8|W?c%lc0Lq?(670z;k+EJG_WTR|h6t;|@Brg}r_75=3QC(6~}`WTVT;EiBct9vR> z&W@f6SK-xgZ;F-EL8SEhD;YU@u79#S6Rc_NkH3&8ewm*s`^Y&&~?Jr)@|7 zk$v#PIcwB|)-j63%2gx=KHIG(o91w=YDsv&|WF zEXkm6=CA(I+H>&(H(-kBOf&E|mXS5Qlb!fDYZUyg2Aky}q0hjPH;nngy+p1%I zYJHf94A;e!iz?tGfn8}f|D<$YR|!~C#6u6Ri^%lPRPNi=??9_`7^ktt^Im#-1~Z3M zzrr!~uab~Hw+Se^48+}d>Jkw2TvcmXtBWeiIe6F23ge0@PefmEN&o~_CjA?_Rr|kf z$CvmS(Z4u>SEWB;Vvwtki1P_pWi&I4nL4N%oDuM{87LfyzJZ(>P2~bRrEYAuJSu}l zHIli#Xg@?-Hf6&dyNGqykM6Hkx5(c*gBO>Rezc<9{edlP$S(XKh-LDP)NBcmkqF5*S22Nk#w5OT z#Q6vZxu3VR59}x1DFl)cxkv_X1W5_HPRaY%xKP6Cyl;Wm1G_Lgt%!OFaVT)JEXc2s zGl7AxKHqJ0sVJS-!(M}BFdQsu0xP75PM2?0Fdiq3Za9S zur-eI?U=poiiUJ>hK44dgh(;paA?pXU((^3Y!g8ALqs z?BC7V2lO+D98s-7QDgz1LPHk#Fu?+YpP{l#Rl#7DfZ0+@%X=XEp6)^_)IZWb4y&F*IU&r&-Sq)a>5iE4#<`Fr^E{FtzBooopsc{=6d1oH!S?!~MU4eYXcX52 z{!u(wc+lN(Ql&yAba$_D-sh(FP1PYKFmNYvxbd)bUWZO5Sb{uR?X1BM8jR}HNgpmV zx#wYTxN@>o5b%Pb<`Yb2WTr1;uPzLHs+)u&X}e`|l6s8D^8M*SMpTaMQEEJVz^mOB1 z5rb!NijE?$<)!%V(@(fKdTruGwssD?XOd$6jXWvcMzB=KItHkf=I-D zb}E-^pE36WA=N2q!Aa4hyT}fOwnTzS0ADp4!At0OX?-Ylp3=c?wG{H+r&5!&_dTLT zu{LqstM4N`qt`RGzN(g7)8k*)s-`&simPB=fxlHi$m-??9P6wC-iJU9Wc?5Wu=wZV z@C(Xw)PQZ9u67#a%dN9=-=tYRc$z|+Vl{5Lc*Bu=ap+uk`-6GI+B^8R+Ec7k0Wlrv zZ#2AfSHtGg?M5*c=vM5BE81~+b62#}YuHXh=*_hsJ}FPDHV&c1Rl$`|CZ2;IbaTsT zpYXw~kMdd`cmH5090+1aJRVU~rQ_Awo!n!J8iE2zGLe*4GSQ4t&8q1{#mEJas8yrf zO22GvjF8R*78}N8!Pnn)ehP+|=&m^w?fu2Hoo{F9>Ni@`5`;Zu(n+J?uhD!7uD?HgzktK& zi{`O;o~$k1;T}tJZdmEA(GTw*ns5~$7}Ux$8f(q3F;N}9DK5@Wjz_r}oSl)^@-;pM zbT17rEz5vmcSjt>Kf1{lIaCZ&;(e^%!HwE&mkFlk4NY^k3uy^~47jqkVy~FVp}hw( z;G6Lb!sWapQ}ul6s<^#qmpI}t_r$q2PaV7M+)5Agzs8y%Bt!4YgiCPvyIGy@m8R|= zn`GRh6h0)gOmx3QH14-GV9=A+2^@d9&sN90ts9=U^4NOWYRny|`bSiA%3|QuW1#5R zNKn*q92qqDOar(UlRgP$^gt|waNVYltTM%dW)2<>cw4e$n&G9K_KsfRb;9rAE?eGk zl38m29St|Mx>Gsj78df(&@tr_H%bHb1w899%zxI*p~=j7}jdnzo_14_%gNp=5@+`XDPmiWL=Qnk%iJ{^r>Y z%JP`%^GPdJBv`^io)fRi)C9lK#^J{3q>FDmQcqq=&(yATVB@fQ>X2qa2}{i;0g3)7 zhb(q&E4RAR(?6CuTXGl$fP3@hCjz`yB=POlU2*l^rDf`p+U}c8V~q4L*Q~#8wmIzk z`hc`DmU`}e?9VfA;D5Z$6V9t#6KFZ&7|v6v00IdzV-j!|@)!Ad;bfZnL$QA|ipZE3 z3-gDq#g=--A`aWv57%u%bvLUw2@C@1%pD%dzM8^~pXo#;>#e)m=S6G;j+{S4=U8`E zZ;YF+=#fMLiLmMbLNl@GHnS$IsLPK9TqUIHY37c0)_LIBdg>6J2z>Ow62B*Q8dJ(4 z%tXa}EH?+E_kjlf1oT1vJ}uH`Dg&|AofV`k|7$!hbE03SRSyY1;dI9ICg$LKQe%>= z8zoYj0h%Ezm%hwxvqsUy(fS~xN=dS+?!`5c0WZvF<$kz693I7)FQkjBlSrsHjvn7H zaVOK=^LUqBTn~Ih`0Wau;Y==3u$nsqNPZ#F*SSM$yjH&)$w|rMIt5^MeWy)Bb4&|c zkwGAD01m;hPvY%RU-4XaK^(|;JZd%BX}mSVx%mw9133c$3t19T45}7sYy3b%40D-m zQF-!b7{8|S_xM&Y#0bFK!PsWP-_d{v(K`3Az>-U4n9txMD#xs>8qv?tW>+S|!KIdL z%V%Wy9~1K`=Lsmwj~Q6p`d0@1I)mRgCGf2C&&jyIe}{9;ZS; z2@F#!bwRwtM4wTnHydeGHnWkhQ=H6Z3pDyBrdkE$^xYph(x!Br2e)gLjCG@Dp!BX? zD?~rC`@NJvVnNSCxUiin7S(lrbgDiTU7B~sENC5<8?Ev?i@#}E=j4KwpS zFW!4Uz&}RULe}!kd(QjBe)is{th{<{$W!maQF2LQ6E|K+nLv`YBR*w*xp;9+z`97m zYOFuiBw>%oLi<}N)^vJ2NNFk*0>Pn-EF-;H5XJ%NcyVBxpOz2*7O55r_4qTi8sS!e zo9D3^Uf{cLdTj`^qe~ujNY-N}N7v)7Z9ylKs}1xM1#qt_=vs;w#{y3I3_K$%1@mRM z|60L5QBNJo#F^PkoXcnGyo;8dy)QQ@^{cv-KB%d&OuOW%Lw?CXX&Sw_ZgkWjEbC1% zq1~$h+e#V1NiS7^9G76M3HXwL zKZ9vDz=-pd;HLgye}5OobqaB&5#j4Sr&J)1$_^m!={>uXHVa;O+fTD-*5x9ha zxd6qK{!sO@RDX`SgBmL}|3*Q^K!&KYMteq}yoPqk>;4s>u-XUk;BH7>8IdHgt zo4;H1Hl{%H$nmg~5?Gx$p^&xtEz@*|b6(s9)Sh}#SFr)~QZ&x;yV^BQS zED5VQ*6l&DV|M>BsTat*YdWu+-NUd$$m!&)l5kVGW5WW2wn!Z{ReT2?8+_AOn3NJ} z&{`_Y+MJ)*#IPnTTh`iQrlNr1kqz$jR`pnko9e^uO`C*WSDA-m=V+;KlXM@U;~-C* zs0#ZkWIksblUSqL`+g`;lTj40wZ=e18kHeGBwS5e=T>Jhp=ytnknuS%+>LZ`b zjx_7cmS3N9BbxZ?oJ11!yR=iXcGwK$oz)N3OU?w$;WyF_ePZ0{2t-@;Utp5#l7 zjkT@czaMJ0SMN*gNY}IO!NnahgH3V}Ri-*Dvm_jg`kntVhTxu+fyjO@@Kre_Kf!CP;_RJGQ;9L@8cnWe z5?z(hPhb#7k@QQfb8L6Kga1p@_XjuPh-H{{i6V_MmK(!hraN3M>d=#5JsH+a zuU^cB#<7K(eVGpYs7OYdq@vm!@isyJ8AzFS45G#Pb;Z2(g5g%|+?*nHzPA7SQ2+jY z@e>v5Yog2WcPd?7-M+=>Bbb${!?v4`5Wf`M5^V%!jdRgp!k{g{nh?B-N7l-oqN}<+ z<260UPUFnNG8Eg|=RdPjAEJDJ+x+UX$#}?3joti`a~1WjC0si%P#GRkLU(?7DPXKM z10scEk1IY^T-B&3xfozVOv{+nu|!8ezHv%R=NqR}--k-y2sw=Xo7nrva{XC$TvWY7 zUXURtG^1x6MWwcAgHS%g7Ecy0>xLSDiRfpW3texU9vIb3$WzJ^EG+V5MC7sI$FILJ z6u*#oh`6hpiiSHtaOWrc+i~>r^k0sXOS}pX1V9In*&JD7=oba>*M5I8>ES3xqP2Iq z!mL@Yyx+6-iCkiL+mEC^XOpzF+4kp4IWmNv)}x_sXotqj!|*5AUIhCsX#Jxey#Ox7 zXQbLn=VV*upB*vZ{BVEYK^|s@FUs6EcSq&ijN~0!aa!Dw(nc0$J&T)(4fn60a0-(( z&g9=vJ?8e2?yJnUP0P0z(nf->zlRw@ z+9dIOW!)MtleHKh0>6nQc6r!cguXHS7Ok&NG!7UxThGFOcDqsM+5M^4N(^ZK&qyBm zmCtnZhbCsCOLPH-g_9y|}I z#SW^OGn1|S`~ZYDm8)2s z8=b)7l&=+Wt|B5X_;Ptf6;01quBP*@hHY6>TDfdthM{Mwe{l&p!Pb}n`qvp1c4d4T)i8VL9AOV{{IffmTo=_ zsFO->j!7si^TG|^@Cj}g{FzXe>4`jbNGm!$CfsooB{Rhv-C^#WS3>t%&$-5D{A!s+ z%iOJ#9C@pQHUnVr?MLS6^;)g2W!{mI{XyD-#H6K@fftMaq>K7v$dpe?m^2EeVztZ+ zn<0M;H8~!R&(byM`oI2mc@#8hZJw90i?J{3UqaA8W_N?7#{qZ_gCcNTdh3x<72Z6c zhJW+t6gy*JxlpeoQlT2`;QF=dY+i`cjaw!yu|YxOOc<2cJY+7k-jcr4o6x7YJ0!Xe6R*3eXf6hGgqtmc1z zdwY8Z-lr{J>0$8km_)T-QF)x6A*Uz4{Mj>Y-;)hEIb&bKT1=c_Y>o)IudD2q>+X9E zfN9+fLVY`<^5n?M5hZa~!!)e7*nT%sLnc!DZajRw@X(Jx)}l{NS&tXvl?p%bOSQ~Z znp&dA4q*k=CKT)4;pNPpE&Fw{w!#AH5a_|fhLg?;igm`TZA~PR(c6Gh+K9*RciVpN z{yi?$h$g2>O%sw7ZGxnsBMewA261H6H}cLip1c1j=Z-3+OaGQp)tz~B5M(h5}Iwy%|xnzTEq z^vhD6mRTiSB-i&tFG;DRal^H9-$RBpU9<|w0jbA#Q1Vl9W>#WCB{>5E6;qZ?D0g}! zeN*PN4;gk4D-5yjK89-G27;1em@`~jjG!CS&rW>1QoMa!e@kfFCZDPJTiQ&1b*oP} z*!M))U%hmI&=Y9i201uc7?X3N)kY}cvnx7It;;d4AfssiZSz; z;dc}zrc&=H)w+@xn%jg4mF78Q@^Y7t=86n8GR zIynrT;NMPm5-~ayH{5zdOXbb2+(}gBu*+zs%Kg&GpS1Nuot7CT1D?o2!()tY`Z5ld zyy4U~a$c>OPZ(4>t5@)G3WXh1icW`p=i+j$5r=E{`(x zR<66o+h}5KZEtjiW90}(M;LZ3+DOUh6uYHi+_A*wG8w+c8By-a40CWAA1m!cd3r)sqXNnZfEqON%sx%d4;mLH;9Qmt zPhK<19udPa_HUXw!%Oc|yTwQX`9by+W}@Ny9^ttDTh{)pvV~T?-hDV1z=Ty_uia_X ze98TZBEY6OBnU3(TwIZ~R6rskTaj9H0m2?Q_2y}W8 zJtY}JB6-$YWqrAMS+R&AG4gbyT438~he3C#xJqz)i^Ti1HC~uMS-YB~%zWahZgE}~ zax#d$Z)EteHTcHepL@5&C!f@9^AR6TR$^>LtA@AW`^hR9E$6%bcWzj;AETmb_223G z;Fer-@nrtJYI26aAzAzCZ{wLiX_@?=cghqx8)I5kgUCv)6U0{YpnN*{$9ccijXDn) z#w^ccd$4mXVc5mlU=t^?{gJw-<>a}A&&walh)mz7*Wm2Z{KBQn;0P*wSb~9vk(N2k zTKRrUJkfQ_wnOc^Mec+`nJYiLCwIHHB(5#^cA>P+9QEpHrXW9L#c4w~bdND4WEt(= z@j}2aYt7^1H*(g<1g?SvR}p$UkASNwjZ#jo9Xd89ixOp8%NRz_O;o7HDrp|jn%T>l z-OjRG)r_miSly0GDJ`uK`hu|nU}Kamxui=k4-pMt$7Dcd7Dwer%59w}`y3jxw5&(=C4L|OkV*HWO*F&Ru*o1+d+HtvhBn%4(%POHF&+KdR(Q4914We9ze;Z+ zwS?DPBohm%`M;3nE^kL2GjiW~spX$sfK_|G>pBpXDXiwkt&txsnfT?VCsv#UvhfGK-PiH zv4g+$x1!`d-OB}9UTP6$CrPgPNkNLR8C8d^$JbYGLHfJ0vKB*I0yZ_84D#S+U z$=vVg@x6XlR7}69w#b7#xNPRpcV~UJWo4r)?3T#WmzgEF|77!t{j#j`Li$|UdZ^CY zo?UqEz#=#ankZ6zGRkSUDFm-^?D^-SGc^+IkE$3$z~Kp-l7BvdJPA<2K_5++Vi z>q@9l#aE15`N=~|$|)`;hj$h*(-VsKFeHAz%^@20f2T6Bt{5&yRG!zq`}4G$C;c}T zo(!9cx5Y~oNT1V~o_n|V;IV0NNUd~wfeNH1Q=Hs-p_r=Vw#=GbaNrqv&tr+5ks+Z8 zrNfeBny=)`$3o8X6gNZJZy%*oL3H@gle#+_TbZ9{|{8>pxnp(i?-yqLOp6C|ZC{35-*)u0lnyA=J2-`*oX4PLv8 zDG5*Z#~HyAlRb9x!vGnz^==6B!R>pQX%Ik`Dj6`4>y*E9^X9PcSZ07px^B8&06|(* zD}3l~be8=mjU&W$R%A^4FIk=Ca~7W0vn;tp=mxkxb!$f!RIR!$b?xJ`~biH z`&_rO@=-q4^?@tc(I-)Oqpi)?NLqOWd!_C6Y^-Avw)7 z6Qlb|KG9F$#s3s_dN;xo2&xjvV!~i7QKog%|2UO%NBu9y!LTwB)7cVQB^xQxx6rRb zDop#BrBc)F!LG!<3gT6W8BdO1VyORHdvxdiccuYi_uAU*!yup>6t4k8Fl zc%w=I=KPkJXR$pG8Ghs@(fC!aHcxq-8TK@_u~?D^z{L*zE}%4^KfRp!yh0wK!ERbQ z*T^h&&F@5`!D)>G1xqnY!|-CT#UB~>);1+jr51LqMVD$pHKMutFmK2PfDMx8m}lZ5 zd+>E*XTxt9*O2!c`6y{w&Awd{a%EB<8T)EKj}Cqm8VC!Q_T&do&3hphC~zy5sX zx)$f^+C@XaLubsSyIOSFJz;pb%8B5E5HHH^XUMXz+GU#XE6lY>_FG3>EVUQkxY}Fo z+w3Mz8DNbwZkM;rJSy`9;Ic9wjjZ*=)}gkVvZtr04*lsx2luGEpm6=cNJQX#w-t*hR!uupY(1s$2Ts-Y$2t9W;rmRp`eB~HWQ#dL3 zzM-UGBeZ%MISNZlJAXerENnzBM54*{sNclp_!H>a#=S(9qT>?+c`&DgZ}GP~@65PH zQZqQuv|ZG?QEeqtR`G8or=e6GLRd*O|3wP+qe%tx_S6h?Ha*gXgSLx-gzg6|JHkZ6 zalmMl`uK;cMDLBM{L>^~rp~cpcks)rPBj6}OlC7qaz)olaNqi4Kk%9B;m_ zf&I{LE#_Laj81lXzZ!j5IIhjrwG(o=KrrNSpg1k`Dr-2L`Ea2_?VsC{%_rGV&y;LC zGYkwrn18;Ky}6_CQL+<&UN-si?mz8C+TtyaU*^H=sb)=}tz&AnRl8&Zuysjo!pSrV z?~`Fmx#Fk3zsuJmeE~e)JR=a?HVv^_zOa#!d)j_bJ2Ye#;7jiqHRGO^XebAZ@G5s4 zA-_LO*`p?-{f~`AB=dgM4K2dY8tLR9^pwT1vMts4nVeci$VyXG7wr?e=KVi?zd+s0 zQy^*8tx^}NCq09t6iL>OFoLWn-d^#MlxVpKcBnnvn?^iI(B2?!=tuvqss!;LZXwNl zib(gGPM@JbA!t<%+U17x)c>5tiS6N-(}oLz_8G_BAKs;YnfE`mAaeH1sc*ivxBjbo zsYSCEG^n9mt~s&jjrs3G`DO8ZBYLJ{uX2D&e5YG4kZeuZS=E%y?$nDH9z8bEnvQXa zaOrYJKscb5-H{TdZS`;eN;{Ht=CO5E4otRTqo?lW-4l;g-Y%-HT-+*_LsfT$4@Ue_$ zjhyRIudTTLxmvz$i+~y_<(qT>W>PKK|2uG$3GgVM#(Q+UwhjHa>!m+kb}Du1=_6U3 zYS#tlrP&;5i)hNK9}h!!^C&9)7{WQ6RszspR~MTKkh*TCYijw>7u~LmW=Dx)i^f{J zfVFR$E+t<|hp$;SKL?+U*H!`w+no#Aw(+e{+I2dCu$<)mZwp&&+`mocbvV?BGpOU} zrdl$_4Z!88h0sLXcSy^%3@>(!7R9In6auN@Ge$vKa|$ipO^4opELZtkkm%eu^-Cb= zbRe%}^w=o&fgEgr;?}zdBg?mk0)b>%$Rz?-P)`+}<|nwVz&f~$36e4ESGqJZM@#k<wYbGv8oXB9wBfv`o$&%{9+iXUAisXxtCpzL#((h zZ{tK^;rhX|5PkvfkpU5wf}ARMp4CRldZY8R2yymPRRMXx%-~NLg35n zqRxi~6rrNr&GXS$b%b<{m%EGN9X*m}sLQmL{Z0iaQd^#=4HgfXv`Yw4GM?LK;DCWVpdgQ?HY z*J-E$5%xDkWb51QDN={}pn%V`4~@I}xc_CNBGP`i}OFid`zf96eA}UoLMtXrHj0 zJR20r){VYZh!lg_I%qiKXKwcM-*Tif-#puHx??`NZ5n5;#SN4|?R4oR;5gq>>{1I` zG4laW(-b{4*D%cYp(@moEWB3j_ySLZBVFcbihWsFn?C=|f$6RcZ98);qsI5;{C7~G zhgosS7LVRu)?}KNPQ##KAa)`mxiwk~;a-P^MN%j8q z5*K=y+<;Lep?-VDhMcIVpK1K2qiZjV;>Z4KcAG^4iX9QVr!BN!+ELv;PAmn3{dH2w zFf{f(RPr+h!C55~f?rBgox$dE+iiq`6gw_%Ig}y&+Uaq@iEr6_w0WT12S#RG##)F< zToASI_1go{PYf?u#Y^W59-ADW{lTDS|GqTGxI}%nwQ{`Dx$88jsDMUZzkIkltF1(6 zn1Oy7KTVwO_Has%HC{~&Fj5n&)=>UcO?qpJe&TeeaG2q+t$aBLV^rTy^X&G#nr{D@ zy*2NiJYq}e_DlmasExkk00M%4%9er|FpPpH8R%ocd#3jFzdN>-#|0SDevzFQbb(M3 ze+4z|M-E^Y=G6`2_0T~+yV!Q6NouFU{^$znzE7x-4bJ1V2{~obB<-u$f6dPQ+tKBt zmS=8ue`pkwPrLhduS@m6<}_g!ZZF*WKWd=hE4h-#g8xL@*Z)LYJL(#0N8uaw2d(d+ z9#!P3489H_YgaVK*2|jB_im#dnJXW>^2hYTpD%fk9gOLAthc9WH2#Db3qJM7`wW9zKY;_qwG{NLX&r6_dW#I*>M#*KPbcTA_wb_N&a!a(X{ z7R*UE*n6tyz`4=Hd5D5@dtQa>oZ7Bkx$+eTPL#52Y;1?^1k2_&(`iwv{)oz^WDJ{m z*>&Jb_ECiEtM{P9yc-iI+V-RE?OLoyy(2V_fJBEV|7Al|d>B0*r;)a%&$-OYiB6S? zrcGQ-ye9R@!Hzbfr2oe=4NnbcBLu{`%Q(;BN#EgAU}9=ZGiNb1VZ z9YwrEEFzQ9J1%nMGlzN;_mHv2S`$mPI4jyKYNl43W{y5CeA9I2-d8K@Z&NF0d6YE} zTG4u9v1SKH3Eo*rlgd}`RSLX1_`Zme_#RNoXDXQ` zDAEMY2N=cR`4d|YCK)(FQj;^O4#48l7Fas4VK)^W^#OE*yC>wT#qx$N!S{M0`VifW z%~a=~@ql!%1Zi!1Vf=VzGBdG<0WUzA$}jleZYP9I2DMCKsm3S7A87OA^_h5)vUhV| zh(d*Q_r%y6#SRD4G60z87nsym zdxS^*M#lODkhn~4gRkad(`!eMu?8^&P*7^E5gDFTIl@;mk`H6-ZOOQ8dx)w`bg}A; zNn0TvoW9%7X`i4k@y2z0{m<&lTN&y`nZI&!t3F}_bcFPJ=c65E#}?Cz%_j7nE3^{1 zwQvHR|5GfwKVM+{>ELIC-={ToH#O_>q?m9yOmQWE?t@SkFkW4Ohn4X?M8Qr>cYm4P z?`gp?r|Y-D5+N~Ck>@o7>DoXT@cI-e7PO8%lhhId7bgg(L4+Q2*T)QR-W{z^&HRBM)C$>K;FU%I*a1JccoI7D#( z&7}3)KbOeY-#|yBGlplu_aMS2Gy5wr8v9Z<(lJ>IRZ@klpI^Q-$Nu^;c3f9n-+QFp z>Tpf{Sgy@fCd=A*wk{@Ne*{(Xp={9$0%>I_4_C0{6L9!1i<5Kme|e-PE0s)&*Pxs6 z?ws2Wk#!*I&y`2R$N4&mPXgnlcwtNW<+J-I-E10c;Iwn->(oCv zQPzeJOrp#0%NMZ~+(qj<+_cOh#}eU{03s-;RjFG6*ZE$F2Q5_CjgXkWjzE;TcPgL{ z4n>sIx0AXOF0-E_ zw1eEMPB4s~p2@*0Xg=8i1{R~?XQjFNeQn>qzXm}bGp?eADQy2BtIX}>66DJiJdrEH zW)~P*)EbMvYfkG61LC^-H8`T2Sa71C6fxq44>S&UF$OshPa!b9w^a#euS|6g~yW z@z)z(XuN?J;n}li2l{V$oUbAt-(q0kqh$Y8^xd>t4^Q*luv-S-quQjbFKhn8tF6(J zILFJHV_~XsP9E9hpL4pL0(x&MNDlw;J0=akVQfCFhX^nLk925Tj`1U#Of1Mqy`5*X zU2Bkfk#~Vj)A#NlnQhppP~Dd)FDpQgjH`Tv^?#{rBnnzm1Mv&*@0 z>IP%kvcD!$Zdd3y2&|7XgwgkZBH>@{ATJ+Vi5(nObdOp;UsdHMXU9UIgl(?K$C6nhN1Z+)0)$b*8jo8SHsSgqv)i>Wt9^l&`u z?qq9i)DHv>X_|`I>tTmB#S|_si9pR!yFkqOa`8X@^E}Z;rVfcC(M?DEccV#K3771n ziuB7)&``%y8`N6F+6$AGdo9uze|FzhaXdZY)a+xLA(=$Ot-&e&B?&rG>8sHRPxYD@ z2oDAAl^pd0XK!tO)Tp}(U`oMexNpl3myr9ZYv(SIC`@;GE(a~*@Y>nPr~W0vFC6*H z2I|j{^q!k?JG7{1y@zzQfBg5#*l<{Pp*H_F2A(M~_Gv;q`8($;(zviuSMh6CzWS>` zwkam~+I#d{u@z1VQpt3+RcTDJW0O^~vjNM|q{_lI{mx>1Y5;RUqX_03GsTFc(&81PvS|6dvx51 zU-SMi~UTnqsQFfdW3s-Qn)ufweHZX|tOE%!XJ2Dut(v@G|GuQ48H=kB& zmP4!1cP8yOSL(;JN=ZO>{2*I~+_o$J2$QVA0IdwegOxbd)In|EzU?BI=vuclKnjDD4Pr0*4Xn~*N{{v`l5-xxx0sWh9;dAurYVVD<|dL)G?h4A&oW?Z1h zSmyDFi!~toPnW29&e>W2Vng~|4b#9Kow|x>rif-|@x-oAfVO`WVdJ_~$Mw;Qg@Ur` zs<+|0`6EQL)FIEVGL~m3`8CSSx*~Eb4sd`yPRobjYtU0@9UXR{i!h^w`Q*jjTR6Cp z_qM0|{UO7VH>F;ZeVD&vE`rrWnsqv?mK$O~V_9QY%q+ZC#c|eeh7O`kts$Vo(Aa3{ z_1x&Wm!n?SiiuUh%^dk<(?L5r?IT9915>=trZ_p+ont@a*XtvOTrKX=C6^za zd+1-qoz$TLnjstmealR7(+~T50dGS3x((ZgE3l0K^k3P0VGPRW0AfGGPdU`dv9(_R z!o_t;88?>IwN`|~KXEquk&|1)Ta7y6!l(m$;s65%5Is(36?SxDZvmro;0xX7kzj!c zLXZTRWo*_=|2kUU6e=p0PjZlBUUC9C17@ld6LqB@;JQ2OuIK890#+_p)Y2lQ1_ixY zXECvPJo(?0{+JbYq4D*Q``VTui~3Iwkg&PvYC}n@9Fp4zOL|$h$y4#eKxh5cA_awR zy~yS>qRQKL^gmFCo{wve#U9);G)3*t27zl>BcJ1XIbh;aV$1-vjEF^E znJiTKxI*y^I@`r0u;R%BdU|`$VK%{AL;H!8>Wx`e8Ac@6&$s_i#0) zkgj*4)NtRodFd_}DH=Ra(dFmlJv!?#IxBC5TrIDr5WJGhS6;{>@|TH0p~k?V!^GIl zA-a-so9qvSisP!YbW9WCH~y~>Nku9heXb%#O4&EbPAg-8Xb!{?%%aLJ8h*GWUc@$h zAJ97404QbW3QUFLrjNL1+ZgzfYhN=yAn*Y_juC*ZyKxM5M ze{FuM$~olns?q}6Ue7&0kCKguR}}T#vw!wjDMK@j^wi`(-I_@p)!(&WCVzbBWP2?% z%^*i}=;xLViX?4=^-%n~Hc*_5xDwMj&AIR~^P>~eoX%ZFaUo{lop*NX*@?h`TkxMF z_cE?4mL!#(L9UG($rtS}nO=YEt<{$prz6VQYWW`OsJer#x_XgWaud%5C@mOEwp3{U z46{(TBKzY_b@O!$VuxTjVs-}7{3O!&;sm;^pL-s-lymQPMxJz43}0icJzD+jm*c2V z5IP%zElVr5%s#19p-0C%QO!Pfy#4nxzHu84E>aizx*|c{d7tylv*z}hVqPeaTO-JX zXCH6X)c(&?F^oR+4g7lU+1I2Y7%LkO*CRi@oOxnmFVW^ z=7-&2p7Z`f?zI-GmcSVS+e|OxI#Z4g{gng{XKF2s{%yf|sR2-YZcNXwmsN*RRmQ!J zI#&%ZySH+ww3k8_@`3S9etMR6KU8@pwo&vYYxZt^SCHQ!>y?xt!2Na2Ff!R?G88*dJNL8j>Px%hyi*JlZMYQE zF8D;$-?Mh^zT@s730nck)Yy1nTVOqVqsfSjh?hJ)T_}Be;u;{gqx7|lCifq(j@UW5 z)QD$W6gto)cTQvE>zq|i-0%>+LF;R$qS9__{e11~H!ox&+c?BD`3t|REPKMp!P;xC zBIRjZdo$OV2hHAf%Q;w_Vs5dQ_k~ev}Wl^G3|@w1+3_m z2P;^Wa<$;ZltSj0i7(lF?1f`=yPm|qoW<~LJ2w9;`*g%WE4Y#%*dNA)5SKb%O(I`q{*V!Ui@iLzysX2MbvCBa{cjtg(VV-2D$BQJoxPU{ z!Lxo#`Rp^{gF3louTh_r9aKLuH(;(F8I^fI&~hDgX7xSeVNh_k(Wuu$kL?uq;MI<4 z@v{2)Xc!&>SuIg(EMM}*Q~M|0QpM^>(aX!${p82EDGIa+zW3o3$^^x&V zPxFz<%;eaY%b!kc-JZ&A98pk?$AfD@-}%|Y$cJb-XEq75yb+EuiDFq@m9V|?`_47P zCF}Xu8C1Cd$&4UaxK}xx+4-~YBylO5h|y3CIoQueEq!_>+dc0Z+e6{i**!Bm zYi5l$rdVHoQG~^W+E$4~3VHM-cFKm=O#R`BI6ZdC$C)~U>>Y2?P1r@IiaDFa8?HWk zXs+KIq4t5L!8_1|Y$QKpg0Xeg7oF-W^4DUI`C(T3?jua;-UBUMCee^}-zd|hSi5-T zC3tRL7piL;jShu6!xJ~5EoV`ksZsjme>bS2Z~hs0tf@yX@S=%=jv>+?&M4rPWY{=W zsVc>1e`X)S2f{`4bVyuVGq5!Mp}+o1>ct{h7nDzk0W4xG(=FW;!^_RBSSZPM9GMxq zm&yjWJ70%ek-IYDW^KajUv@UcC477+mW zzClAVcPP?S)$Ij+Wuh*!zw*j={lZgt3z5TCh`FY$y8INSF&m<4 z_MOcokT=9hjI<0bIGN#rTU;MiWv8r`nbmjC{z#D5ebO)|N6DccL7}Ckd?Qb~oK>U0 zTLe-IZI|zp*Gg|hCG3p50`=W(jjoR6$FQ_(q(v=;OrDV|rlcNe(nRnFUe&HIi&ub@ zJi0}H#DDCc*bx$r@Kt<)O&c-rQIg|0R%+3tTHzbKwwkvtCnqe&o_Fvg)<~I!u9X1! z4FaFZlXmxW@2TLaX9I2XG26~-V~6fHH5vo>^$85s_PL-4%$KYQ8OkYF-48aHYfDDh&eeg1wVt|)4ww-CO^A74%dQ~7ui5{< z4LA>|k+Ekm`#%8BjMtduvBYS-R@4Bq1c}Dnb@zwzQ(x&s1zdnglYvy-6*dT8NMS}5 zJ`K9$AMb%!l~!7yRw2=voIFEfFxA(4DKg_3SX0|Xk!Di?ZlC~~ZdK;`;Qn2EF!IFZ z?_S9O^b>h;K^y4oy|SK^jh*mNm~|>kK#bZ11_hy~dLj6Nnu%(9+)hy5p&)Pc2=S@4 zvhD23kSA!guRj%PPY0_FQP>8!cEXq>4I)ieQ_L<==nRm_WJ6ykaNhl11YR|`UR-yu z4X-~d?EH@Sur%M6E8A8Z&=p?=Vw|>?YNDMPe@y{lZ50e&&?_ zp7Kzjh9e3)!lK=wRo`#I7Q|A#-wXd-_uQxwgHIpwvvp;%h&f2L1qaFo7(K8fFyYa3 zyb*IKsgc%~)$$yk1xLO@&lLW~CU3wi@dQr^(h~wprAE{G6W>>xntRLPMnD=woSfJl zL%;{&Bc9Ozms$4y$;AIwD!0ex4ntXWoM}Ky=P~!)Wo8w3+o%z`q!(?+2L!eWZ$2^q z6IM8F>-rI?V7q8z{r|*4t8!dF}0`OC9dM~&$i<-9A@M(1!v0Zq?v=6|J zI#})V*khulO)ul&J23WW2SZtvHQGP=GJD~*^t5eHI^v!cBuswKQaZK|=wD|j8NM7< zp}NSBvF3A=wh8O%_tT^+^)ppm5}hxrtzjq_6m5R{D)HO9Bp*(;FVqOGmoJXamo8b# z6?dKq1&7?>j{eRvVB+z`lz_{H){qucUvtkmP|!HVmFl%4jA9@0zy7}8d_cCT-`stg}=6C-&YoWrJPA|0Euc!C{OBTIm^Pv9Q-m*~Ny9mu*1s&fI z;U^WU7mgMYNR0M)3}AG~Ou zfM)^piqI%$0Xz$1CWYnAkKf1fpT}>_0r(5RT7mt!?{a`Is>r6r@KNOFheM15H+O&d z6aS~FBD|S{$z3;?Gp2h)#*~27S`)zRzgH`(HL6@2$rvwgkGvk%O6Lv5UBi+2JH)hP zPNv(E>AM1~@EX}H+RB&nl!1dS%A>69P?}5T*|lj&7v25|X&)YJgfz`tuY%u&oNIpY zC>n4v4rTYKFMaErNH$a7Z zslh=xCDJVnOYvee2 zxh@l{5@D zu+XNR#*qIbzV|K3Mk4|FygNl{do3~zLmn50QUHAZH|?Ui=(f%Wg*pLjt81}2ZcR79 zmg?6BwLgegFPOS$!W%Xd?V19%5lm&|ypLo#$UQ_y6V28^*IzQrx5NXLnDU1zyc5mR z&~k?O9Y8d{ta|e?5VG68$yu)rR;hISxPJ*Mn6Rz_8-0@$UwJRl(t_Kc8IfY@p3w%9 zf_ti<1~ZneKI+<(+ha9~!Yf$=>FePdkDw8{_%+?W>^xBUB06NhzXM>PXCRtyfnx$p zSgX2j^1H=(?O;{U(M-1rr*b**)#T7ZO+U2)E4vSYr8m&>H#747FykE0eOFWap`g96 z*mB5y68ITe#fRZRcg+UorLNv3>yCv}CrcDZHCv?(-i{g(v)t1(v&GK*Z;LNC}!0_%gt1LP)~IWXclIkU8B; zU;Mt%IwbRQErWdbNkbs&x2>y6%K^Z2PxFdjcBQ#BKJ$f=m~TCK1w5pJ^3vfA29Q1Q z>Ehv-8BK-Rmm^~8Pqzqq&Hw4hQ4}EEz)y65O+`DryW}U&)b0Lw zO~*yw*$ODR`)9n2npxaTUmtkQ1-D|raR9Zqw$qioM^U~t;1R{;L}SQsG;k$uIBt1f zo3#J;B*!_mgR2Bd>?z^t948GWt${~Cka_<9nPS7qUNJ1RdN=%YgLETUtf5B`WjA$C z4dM8>Sw-#h`_mbZ&4(7wuTSbZL00WJLp&$3OO~9}#o}pV)M?-HEhE6sWe-a&H!$$( z?=9u1+b4*QI~wukA@<#!DW>F55mJ{tx``l0od3$_?DG5Wr%sA=#1*#&v-$}{;vyv0 z>o1^g@<+{J?)M&ppClvy5{o5!{h{d~6`sRr_^KFsRpiqhR`v@BzD^6#x3r*fo)Uu7 zR&UEn>n2i~@}^e}S+(^!Hdfgn8p*603TA!my*QVc{v_Zx+S+$#&3vALN-|t~^mlmc zpYacHE@->*(QN3o##-#SC*~@V~tPgce(UmO?&=X%+ATb^5O%)C#;5KBDQx3xDnVw{j9npy^L{{nYh8nvTQ8 z$hA(%4L{g?0zpJ~IS9FNn_@pW$lOy;OQ&5;K<-__g#dtQXJ1V#>vMfq{svKo)L-f$rc0*DM0QGqi^I3cPR3;^;lAzG>^XL18 zv1Z)*>HvQR`t!r!yv+c=z%3WLUaC{*=k>YmRkBG0*=@Q zpW?8JwrhuA_#TgXo5GJ2Q=&qHZQ1?e3H_g`h=Y~ZbiR398+8p};K?Hk!6Oc80c7UQ zi&I6+9L|(wW$~6Rb=!F0JM{BCm+d+_I;@?X7Q?%$zkN&l@ZoAwQj*8-2m5pk4bvhc zYgaE~b(~4-?!>jOicSXm()hj-S6tJ5t+BG2eR zdv9-szNx#Mefes#%WQvUfrjQ7&voMJoJ1EZp5&PEedpEC&uNgig_{aab z1X@DpVg1%8BB`UEBsOs+L#J%up^Zy(iu_uQu`|b56nd;Z1y;m4btEz9#!YF>{{9Zu z@Y>y2H$4JF^Q28Si|(BpdCD{d3m*oWWKJ>Zx)$Q5wV{%aA`dSUOPq0CgJ+RtMx4~Y zw1=D}%+LRpNLaQZlZb0$7?KtHnKP4YEUV8*iyCB|J$v?C|LJz?&#ITlNSOYjJ$cFA zV>-V}=)#2ySz>53y1T?RdugUGJsUl3;};av#j^gHWxOqplm~h)i-pdnaU8B~xq^%) z{@y2Z)zZ@P$L9(gcbS@+y8EN$3jskve65DJmWK3d;>V94@AlJgUbJAqMwJMa zv|dVffh0%oL$KiUr`wSy2;H|M0v(uDI#X3THflK(w3F1I5sa%QP`|InIjt9VmAaUU zuRD?l{DS92R+qWFt}53#xm4IpNjP`T`@@U{XhB9WHR)`SDf`%AQct^|Oj3K9U7Cq~UuQwwBFA07fkDrjht_Ipw5M9E; z!_$h3y9<5|xWI9hT4)fgYijD$){shq6B{H!5)BUzKOse!%7t*yp&+xS86)QSt>D+D zg`pzdfnjY|*PW=?HB6FfS11k~f3l13v6sooou8&x3jP2Vs3$XkF&jFNV6u_45QY%V z;nKGt_EAl>O&R|RjIneeaE z?u@r$$;EoJt7D>0H4&H;GCsG^DG%>OE4sNnj}(WxC{n1qyL<8LF^%^b8LImZGw$y} ztG2b*^HpS6)`w4Ilh?9^1q6;3c&gDL?`UVHQHso3f=p|U#Q06?(l#4oYUCm<2-c9S zvdwmGdZ3s|$0`=7b^oE82r>;JVGSn+FySZ4RQ#Tmr! z9JI(M*IIF0C7T@9?!bR8y-#r|+6{e=xD!oa!{yDsSf1F&!q*98Q!YMX*7rE6J=WLz z|J+gQLxT&F#0<`;=@4AI5+L3sb9YE@^O?{_xcnhsVx>IuT&4|);|ekkQ?ZZ-;QEE~ zM9 z`%4X2Kor^D+B!I1=IQB)f5PW=X}QmpMW$r)|GQsFPW#CS9dy?qTQ>*iKZzgS7iZC{ zWr&$dezt9#Jo+w zd*9IV&09)nWg+Q!tUX@*S)o$T5_02K0NQ)t(a_It4_l~Gmnv#7XobwYq4d_znM>2h z-~D{Q-xdazd{U*VBXP^`*B6-469Y-zc^A}LUUkV##?T&1eYeL>!F92-z$o?=*ynYK zrRY103)GC1WbM#rfntQoV-Kr71T~lGS5o5lV5AYvxab)_Lp# z3!AJ~mCM9;?$%fON&P1{n|MYtj<~a^s80v4m1Hy<%zwbsiPWm7T{XQED_y{^MCeUOkkOiWm$Xa zC5?SN)6(9)aqvvD^;IHxV}6*Nc_e7nG)^MSb{W~13Adyx2E${<&jn$OtE#HjhB;)! z;!CD}=ExqAS^v-!DNe-PM{0ezy_t8cGwQB6usc-megfs`v%{A}&bbV^D3_?%4Uu{g zl~z?^)#*C9iPK%D+Z?9)hjFBl{58^^dg>E!r96ZC3M^vL53G*=3A z%D%if9e*FD`4v$Q(Bn_fT;l;|*ts%&=DbyZ+G=|(b9X5>N`L(c-RJ!TIAv4cToj0r zYVF+A1+{j7C%)@Y!`rI@T&SJ!{I4Gih5dU`^&TT$iX2-%_9H=j2^$y~=)JYrq+@K1 zMEB-dcRpEJQyCcuHCnOgUP%q?G(-ehC0y@0CtP9Rq{xii(Q29&se< z<|bvK;c#wQnY%Fo7bmWc?31hZLs^_E(T}&cHk9w))qeOe-P^~_7mnGj z1i5a*T|9{Eb+nJp2p+bUh}lj*hB>Xpp`R*?)nMZP7U>nNq{nazZY*$_kHQ`4hjA%? ze)rnonSRa2ZL#HW9(yLzTg@OzYdx8As$2hGqMNV862>}#VSMLMIBMmxqVPu*x+%(evj4KN{JL5U@=QfLoHcQdv)*eqM+B z^n5>MT0OuJL7DOc4wCELax|^k0W9AHd9G$z4M8>DYt^Fy1V;a3OEdi?Vm_<30wz`3 zapDgDreOq`Q7c}d$VnM)hKH->EL4paVA0hLz5f?}@h*6nL**)y>Y%Mq>2#!eRP7oE*KzAD))nZ<(ZnpwKlN zYwNE4vJ1PAI^y*||NLpCw{so7^9S9}>M+TIe2MQfHpsB0f4Kqu zQWDI&g8C6<2!uhsHC-iPPXceE5x>$^MU)-bx{Z&4VOTuqLVdC9g-6km)y+^ve>XZk z;NtRthwle^U?+QQY&D~N4E3V3TU{={;pO4|e*UhmrFDxT4qNp8>iP8?(q`EByo<=W z=gg1(yzu4)m09QO=9dVjp69whf3Enzr2`l8 zuAjYr@_^De$$Gh;ji^&=BQA4o-ZC6v%lGDJiMTaC2fuOv;F}ceWAYV-MJJvgZ&%tiU`d|m6$0#x^-W}@Tba^c%p4_CP@T94Ag>^p{xL^cCG_pYPAoxBvyE52-sdjNNPE2pZ?J zKK4?~>F2G$7cV?(JWQOHCX|rk)tww~KU~Fg<%$N>1LZaJqWcY{-V|%q1W6r83+~hL z`xs74jfctg3I%Mav~KE6R?pXU+Z5LR>XlerT%@jat248*T6@t4?W7V;zm}Sd!M(Cx*1T#?siM$bdsK4a?r%l%Hs`u64L6zoOlGVk!Oe z_sgm>J{PNJ+$EfaV5KR~_DfU_y7Up3txx z!36fJ;qyygxmFP9#p^dhlvPwr3^~r6$pgMbWint=W^18=m!BUGyK=gV>bJQ%T}e#r z4i>6=+`5hJcfrYI!kMhDsk0#z7#2T#HBe?}V-&Qo;Mf)~p#?MnCOjenR-GSL6!* zHQcutQ9WR`XT2@d0r}TFG`+1NbLP{wcwcOx0;bYE#2{*GH>O}5{2WbVqCAUZ#Xmpw zDQT9d)eVoT26q|P7ZeGnnH#o@InJ*|>jbwjv#{g%y2MW(o{9_E|L~+HJu8FtShq5~ zfo#2M$0W<0Ao=Y@MK}+6)Ws$aG3SXps`1w}l$4Yt{ivmPyIrUIpva%Ar~A82cio0~ zVyapn={-*_tnYr&>bD(=UBwgpi?^Pj>A= z;!(fhHW6Rv=fla(%_k~~$532|?LClo>~OzP#OuoUl~Q!i=->BhpUUdAlv~i+Nb=9= zjf?kD#<4d?->)*mTDIV|_!7IsrRqM!m((P+(uZ)ax*MbFJYwUC#RL;GTh&t8wB<`Y z*M_KPJkq(8eWF!d5+k?!)v0TLT6G3@eQFEepCsqd!pGm6vyv7~eDli6LY|e7z<;T0 zV7Q6bw_Oy&=o3bsUoM+oBA{&+7#LQ*vBX8bcfQWO6zm&&Y{zyNwOtiIo^qqV+#yM& z(Fl}e)u^1 z+&DuO>z^L42MTJIl!v{D38u}95Pq#ETcTRNf6sHDo$k)0wD1*9K_Cg%E5`rfP_r1M zmLxm7L=B*Cj*@!w;|NQl*7!T!nd*8F_>Eisg=ppVwES2x8{Jt$kJ_acKEXn_UrbC) zWil_dVA~@HQ#I~t8-{}9V!`Se;ljz^UO|o3>?f?Gj%yAzu;*GXY9W3}j@!~;MC(YK zMU@j<>Wa&O$JH| z(CZ=RRsnB1Z4K+W_|uvoXjW$oR?xe9LH=9~;r z!=~)*keUpT%gkfpd~zeD>%kyqrLn8`7LR~I3(no;pL30OmlUd65~R=0n(1vUH?1k> zj$D#r6+@eIMKkYqKXqZB=#oi$()y-^Xr9W8Ah%Z?^IVjUx*2JK5qJGyt&&o6;t}TK zQMytO{%(3?-F5Bbeyf18O9HKF%gV~C`6CJWJ=G;x^QI%T`PFk*xpzjN^_aAbJ<0ZQ zvVK+R#Y;7>nUs)f!fteJ(4k&NYuoZ<(4mHF4rY3hX7lkMELu;5uu17c%~d4hArFet z!m66p5ubUTOtpj>7KJV(cT(m@M=@BWhKE=(-yv-Ol#&xcWfNgM=8h- zKi@P$5C~;8SrzI5aH85SgRu;I*y=cLc#GTez>k&E>AC$;<*jsowd_-Ck+mFd2G>FO zR>Mc@sZekXfBw)9dw9-%MGE2kY>?5!G^G;S8 zxjs(H`W52V{WjFwV<2!~{iVvvC%fljcKY0I)}0kyE(%TStB-~nuPYaVJEl~l&e+#yZ+jVr6l#LpJcw3vBMnJ^Ubw_3BcXR4OkJlFBUXsxZKE*j5ZR8s; zmMrDtzwl{)*=)57Q4L7ywn>WksBej#Pqj55e8GG^UfwPUAQ231JD0HIZ~lSuZ%c0g zT=&d>)GcqJ$G1nKyerlUBC1!q2GGaX+~T=#@ALF}Yg56yqoZl)JYon?Dm)Gro010? zn_g~tO;?c9(A~R!{k3a<5=M8zJT3h^ z2miL)YS>%r(|UGTLfBAdAZSCh>1Qc_t4M0BxF$OK+|~4*PndNES;f@bJ!Zxp<00Y$ zRm3igir9m%hfW3Apz)`IG{(kSya4Zo1#G3c&kb3Lxj!eWZM+u>#&6MRZh#6aYqlYo zC9!m`j{wII_3qtRm*LBXl;#L-ABoNlb8~Zin&M$}FBc~#kCfD4w4YwS;pEalo!@2- z1kJJ;GLuIgJBQ!OJC=wYhXsXNHL7yRo;-CSZtWdie63}8sa`mUD=feO#}uFz)Fk%A zqDwuUTyM0U8~129{X=&XDVtf{>eI-+7NPcX{cX#s{xO`@(mI+mOn6&+_xqTipDNvM zm4tS^t;Sfr>PnMJ=c5alc)rAcZX)>FC2>ccFiJXRB*lPgwK+3Y=puGg|YbPG`dPh%rmI12U`< zJ+yW9>igT@xbbv*p1zICSYhn`@StgB*kiP^^y>NZH^-a8)|^vIDz!9Y;^Su;FV>Ym zYGXwcR_8~}1Pn_T%wt=CN@>Tq-M)Q0R>U$?z^7_?WSuHP##g!7Q09gQF<5eMzSg5h z8R%m>Un^?W>%rD(Z~rgLu^mp&SU1F%9)F#BpPQ~xPx*0I9?G|DI%DkrTis0_y`DMq z%(kuXiu_?g?|TMg}8$q(WGwD6K?zD6q7H1a8=k$sTStx@ zk-hWFPi|}Bd8^HSM%IbOi>tFTmhERu0%(-zwLF#iwrBw(V?!zUPYAlIe!BDVQE{RS z_8CZ#jC{H|GqJyZunLTn>j$q2XzH5kVu|~&?H0`&zMMV&qIiGwR)1qcfFRukS>KD( zurIx|d-Y;IcijwYm&)D3HOF{-l?l&1r6_YQ#H%aqkfXfD)6xfZ6p0UuNcE;t&Y_## zIGT84n~CvNK};OyjuibQs8Iu1NC}3O9AW#RYes8;aKv+cM=rk+!T3SFhVZ_a3yPsr zkg|KAG$=rba|nfrx&_AB5VfX(NysU^Q?xY>M;d`R6s+h)fbwo$vk)w6-+!UjLHgSE zJuUb-mveQde|!lBU-9wa$x5g{gAoge}nai#Laq+ zC7-q=VKcKY0V&m+!};uOKHA>xKgymnAN@-c?gUbgjvCe>Z!O7XHk)vh;h46(9UIFn zQVfKMM{~H;IK9L>H=pvL!IBa4teG+IH&_T&I2kaZum|Ls?|(OK!7y!hQo zb2}fwnjIq9HvrDcmD#3vKXWYSlPEM@qQ~{X-%+p}1(7JtZ6XYF>9rIk zU&NBE{M2N0G_9?huafsYfdUd)ibhUM)p8n^b!%(4$@YLV&CfozcU~qVyz8}t<4#c= z=`cN(=}8rjj7;t4Ce@OeXA$q;pA@qn>MNrmqKCLRpNzLqEjIeW_U{4l1oNp=(_KTb zopfFv=IDir(#dpJvQ?}lduwZ}mZoNShFXI4Vw5O90Kkq=HYsDnK{&BktM0F@uXwLM z{Pq``P+(Nv9<1cc2T>my9fM^Q^YEP8w{BfJd-gg6Gr@c_IQQNZ(&VDQmzNh(%Cq{3A3g*KItwZ$g*NMH3#^~F6QGH zW&2b{9?tQKVs&Q2#Brd&C_Z6)naTR$rC#&{b|V2d3k8Q#9);`?&GAtQd1Z%rH*A<= za3@*aWoN{lcfq@&@T%1w^Rk7Pam|+xF|vw&>!m@w%JCgB=w16Rg1f}a+mhdpaIjxP z*?e@z%x*twkDu-}zH|Dj?X|+955jx)Gp#tswz$m>=)h}mvzkSMl3;4??9$SbvFT}6 zR#M}|9*B@mUim%YU#nK?Dyjqgc#D2pn|3&7sR!7&r#6n@a#ineil?(JKQuTna;gA! z78HI+2GtGn)%x~J7YG3Q=@wJHjW?0>4b!iz)A;+ydgS9A6_wsaZdH`})oITRFuK`v zrHYd0om^Z0a(jG#v<+wS;gUe^=ccepW~;AX_jvy(390%~=~YDvVfJ?WI@j`is54+QT6V*YxE}Uzwhg(krN=weCxpZ8SmEooz;^64+-Kk@iFv5jq}_ zS}Pn=6iZGQQ^3vf(z#1q)Nl8p zM|-+dOfWA7(*?|w_i_8hHQe?)A2-!yn$LW6in#cubJ(c={Wq~-O+G;sKkom_HB7Cj zDl0eRUu{vH5ME9K}J8_z5az@AE=_z+Ae6u)=r04uz? zclMM}_XuyiG+&2A46IT-Uz9}7ukrai=;f5?!+HThfUhdY5DpxU$v_BSwePo@$Gkoy zD7Fw~{fhIp99q%g7p}i%=WP6{awQ_YsJE_7=hXojBb%GJUS58|o`K%dDrOq`I%j`Y6@jDRo=N(QTQ8IBYz?%MbD#pAn3AX z31$oTYN;MB5$s~@#w_CQ%g9abqO#TaEt(2!G6Jh{(N(CqQV0`xU%Ak zwIQ^p(T2Rt)Z(wDgohu6Gqpa~BImS5F1Ez6gP5jeESb)-<4vH7TAM$U3Uggw=1&G> z85}Xe9621#Cb1t=YM^PI8d;Z~cehY-*Evn1#)z6%+4qpHW|| zt#NV)WYMC50 ztfQeAsK#nP;UMhU@wV=24eJ6b?UpambDKU7+<9&Ia{6aw`|v@#n&W@X48|KB zlaZQtwC?{fr9?aw^dS7I6VFQY%0p?X><^Mkm&9}nuy>(|a+vyk9x-ltoG$iiha9=42%&(d#p zOO#_{>~ot)vv`NW8iqmRsgkAo^p%Tj-|{Qt8m>P6G^RP93+o%fKFTw^juBnZY2FA=q&F_^_~cJ!_`{2aR;zMCu#G=8xGT_q8hty!;=eEsyVe zvSSb84UVHe+ih(0m}Q+fV~ZPBsNbBcKFA^7VsiXAG=+i%tG-3k;Jx$uwTr4kqq4tP zUEUGi7QEk}f8X!M=4N$iS)DJFr0dj=rGd!E<3e271HanhhGm-)aAvnX9d`U};B7Sr z3zZQuU!p=`bY}f)ZwzyDOKaDBG+hnt@0Fd=mYDIv?tr8d^#x(=_P(v>>GtCo2m~_m zyfo`X(XCzC7I}EPXAUrLl80@?+E2|ko^p!Pm#R%Bq^!QOP1U`>YFx;O+j304?~Aj& zRJenr_6^y6y+S}psBl0GdNHuS4R$4K>wW_=F6c0a;LC=@Fz422=FtP)2G=~{0!pJ* zt3QiNN=!@#tK7&W7O$B5C!_pnI2~>6^!WHQKxxzgp0BQP-&mSN;sD45D*f6)HY+eY z-R?84BrEkEZe-%qt?*0iS=$+iP#{6Tet{?AD5(>NmJ!*s<;(nSL6+ki&V{6Pk+G}xX8$0Q3F;W&Ay5rbW zm;md)24L7PYzb_;Wy>0`2sBKLR>RZZzJ1G^gu~&=?Fy;w3E>|QJbC36d8k=~LmB@E z)0wHI0Z^QXChX-(hka-P56ke9;=LE|h4fhwC`=FnthuWhF;^zYlb z5v(I38+c-?Eeq_HeKmH!kM#HNG}5qo_iH|(a6gM&R;SsUUXf9mG`E+%2|NdH?Rgvf z*iQj{Me|-3MS_AKN%I=;>Z7{#radr1u=_?JCok`q&r@yP?KRxKL5tX~2M6Lvb_f3c zTy;n$x=1O5hvxFhU3te~n2(RP#n@18>i6#5!`c8S#OK9et3%nLb2B|X4d@}mO1H{> zsv{+Om8Y<3_s7pS=N^-JJ(RzG{`|S-{TH{niEr)gy8kk?U-v`%Eq8TxknchRmLW`b zb4CP!7OpkB{VIs1LEG^i)+Bm}kzKlP5~~<`rW0xcw`t7k(5FG2B;Tc1io_nu?vE^H zz8XSx>*lIWZ!aPsX2aLX=|gz9ZN-JF_x3Zhu;^_{*UKU6*B6*{1NpgrP%Z$4;w>)t zJK?DFv4=TJ!=c-N zZm~&xHVYJ0^-sxxIyQLfCx%bt_8?*PhsxHW-P#3Jqa0agK<5rVd;UDvBqAXp|J%1a zDx3U9WqF^Q7{`e!!9b1;^OABx>jQe~IhB=_Z3lDfq(BVQY6IQ3T9z-2a}$n4O3x#- ziF?e57m*F!>krLp?_V*N$4^dG^OYI5xeKZ*?`b7>VS=mNXLI0%RFrOmfN<4n*WW-U z$!@Pd2y4euNARUc^T?=1FK$7u_xj{I4SCFu==D=bQShX2VR=7Fl%LE%Ad_nf?S$wq z!WO*e#BXq7IIGSs>>m78&}v5Pr9Qwkm0k*XcVbdVQ>xyb#L;2qw|n!_cMU1~Z3drP z>?Ri)ep>cNrtC@a+XzVIwUr>fohTB$P-c~_tfH)At$q=0+w6X+{!0p@VmhN@3w!Xv zD?KII*@v$~7MaDM;)}3pz;_o*#wXCpVAq9}ArRf9&e`OTXG1#i+Ubt1Z`L+}cW42ac=$ zv`dD8yVDowQyTMLbk%_j9ff=O;sul#ejZRMK){b)>q$5>S5r5@FDpATiABhEpofW# zqLza-UL|$3RU=r*aq@V(&ocBqZOFYj^Z(doLOW2;z`%e#!N^SZH$CQc)g^bRBzUyU zh<^E$K(bwoo^`af))-e9PVS!b_2zxe)U#`QjFysDAG>^}TFyMa@U;#2( zl$UiaduC63$pQNKk>xc}8;$_R9Z@Oor@HA_nQp$JPW2;VdqVVDjJQMMp|qvo{h%iM z=g0;Ac`Z}7eNR$SQp)D^l9-t*{VAdK_4OWs7Tu3@cGf}|M~k-sG?9gx4^;k7cS(QlmJ(#;$u5nN4xv#Z=HRAyR)F!Wqm7J zh&(9Q1S!r3SPbg&*|Q%fu@uZLfos?FAuYIg(Ng4Jx^rFQ}fT6=@-e9C$5+o;up=TDi%p0jo|C219MJ>t62T5*vM33F9?5dpM z-8H0L(cHD6M%%sFFT5WspBurmBm#njW?SKoAkhMbOYJ?$!wys79PGVW_)NTvOVH=# zHD&e@-@ZXZvGBwxy;M2VdwJQNoTTnN?Was@#qNiqZW`AQ^_-AncbWHz=8>;rw#Rg!Xzx$&0tUuM>J2cVG8##%CVI0%2wZ;v>OAI#lEo zXxFydc-7IjePk9s?umW`;?jX=enehsL=FIf>0=PEmCcyELpBbgqY-E;BG>NRJ1ADx z+{pkvu{!1YgS4muYhRs^NYsg#+XI>vjcG2eKDmY5w*RFJVIH( zHX9SD6I>G7yh_%w^@=h~{+KJ-^@Mc}4z0pB>Ue2!Rbdss*kilFN;d%}k#tb*7R_O#0Bb}6EBgUH7NL4z!r<695y5kSY zpUSNH>)?NP8Y}7`YV2KKU!MrZQ*AQ94-lr^z{G}$xg5w&ms|E>N*MN6yH2M9kK%a_PC+uv37FqEP%EQfF_l0?TAVe>FllY1384K z!vxUyehQ^><5wK>v18*))U7RF6Zd`#fb<_M=u5B{Wf1vIG!dVP6a4Q3LdxQEkEEOY z<@xmD^s|o)*6Dj4jXJL~XMLPqZtsyRs-HZSWwI*9ky6_x)N3V&bBIjncTEm?W!$~$ z*(g54$n#y3&`{#GxJq>EkKV)w;H0em%%7jZVCR3~wwZV`US;P>Mv**dDl7OW=Bm@i zsfns8%zwwzX&IJUYxVmLoX)CCYCNv}R-h;{`m0QS^RMY3L5#5UdYze`GAcikeoEL) z9<7Nzym<5Se;@iW3UaIBABWkEXJets)}7X$t5?_?EnwmCUZ(tE$Hx2nCs{=vy-{4| zgN8s?R~IioyDMp^vLxT9*Alvaf`tNtf~)3737{^othoxu8)(S+7|TQr;CxL?&7eXw zvah_2lU{yf7wBvjK*K78oDsBC$HQDRdp$+JWy7k zIF_3#8??_|@JX$n@&2twcoOuv9a!zyOS^{jOFL(4+b6l@CWu44rR zysS^)?$_!YXEB@SpJ9Rr-&f@-W}8+N-STLRp89zeV}0Zyuk=Ul^sv@me`)*Lj|EoA z*<~TNe`@XdqgJfcxli7nm)GgDKm#4=_(7n`uxD}TK}a%@RNTYg@AB+lCP#fcJzJMgBxZ zj!Cge3*Y~|7nq#v($bZ@&(htZ7F({1?T8*J*Ng@+LrD;4Qt6DTqmpt(L|XXh`i_o8 zg0(A}!G%9d@WtD*%>Y==u^T{2M}2|r~VoHPIFNFeCxZT%9j@BAJk0wGMgyxjm5&7uM#+hK*RxwVy3_hTBLt);A{)(eRySHk62MX9=K zop{~qM1(pC1Uq@~_R|*@7I;-q;KYG~gV=EE`s};NNbSjh(T)GZ!fF87VQoI@t#9l> zu_ijW`=-5MopLhpFIi#iyQ$`(gK87zetG8a;I6un}mB;I3 zho7kRqjJwtQE6Mn_s4P> z!%81_-URJmM>wZSJ0IC48Wo$7jhsBtQuaU=H=g}o>$7GJ3I|K*OcGs=ajR*Me_b81 za{(TpryvE@;kIknE{L1_uJcTJBR|zbsrsnLCxc{ZD_V?flG=mi4j!9ZpwqDeH{!uR z|Lg#?jkNWlkHf>yf0yZ{Jk*q$(1b?hEj_th5t7*@q>{ZW%Rd(@H=((I5Rcp2_qhxSi%cbb_A0n(Cc}qA&MScU})Rqp<6&v^#WV zZJNV5nPv6rzRXAInRWuPgrFl82%hmnxzFUfff4eSo12@FvjGNA=~xY5bzrq^D5Rb;3*|d^ z?rDaTS(2{;xQMQ8t)5B^M&c}az@|_~>6N9&=l162&d-4iSkQ$V2}5D8kEr0>XcR)V zZ>adlZ&P5BWfv`=#t~ORi8u?F%G%T#iSRiaWVRlkA`Zq8=OjO<@VwL#tsD0Y+*{#q za=wPY6yy3y)uL(Im?!z2!`f)Matp2u;mH5hBWoTuN_5h2bqUQ2% zlL5^3mX)OM9F!P@2VpW9kcoBl2lVRpI)di}MDU$}K*e0A?qMB9O(DGxfLs%l!dSql zB4j?z?ZvFDON~uUgH*#%c9|SFLV6YT%WjQdzEtQ~6FMrjgxx{+EyU%NASFR^d1VMX z4Xo?5rt164H^ASR+sO~o!EW%O;4vyJ%qLD%`I-VAt_dfy)UO9-s3#Rb7u_^dJ!!Rt zy@2)d-%lRl67!RjlMNStCqOATQ~_LjxB0COZYXPj4FTmG3CJ0@bmi-K}A$_ ztYL9m$!R6DxFn*eFxE5H%sD->ZMsKFto!|Y-Ku1Ht&L3y+u=09XlNAgQ2ApKX%rID z*?nfNAP%Ug6KhdIyCTzp+I!sinwgmY&R=jts{GEvkU^OA(jCmEmo=PhUIBspqHi5B zcEBK&%^8eVYQ05AM2t6HEO6mg1iKD!z`tN!A4AZn0%0olenSvza|Z}f!0BxL@yV|6 z^r0bRG!A;b`Q_%*Ik^R0c?Kn-ZX|6sSzFp%S>j1)&mwqpJ$VKqN?79Wz@Jnc%TIS% zQaJE;L^4-ZC7})Z40!owhId6oMkc23$z-aKmJ$}#q#3Px@P+9BgQ2XZ9(|EH^7!N4 zIfGcNPju{lae_sHpq8&|jkn@T87)>5@0`Jd;eyLqrIeiej1K7~*-ALxRCG3}mvFN9 z`lYn=TnPEq9GIb2m;aP@G0S2pyugLz9BbiLP#iHk^5)PZ~3L{U)e$VhD&oN})3Yd6@9$k=&(>r}c0tLV=* z#mFQBZ+h{X7-sW$;JzRoDRDu`cH(Ux8>V~>UH@LMFiVz)RLvC z&1kcqY+Dekt7D0)Z{dGbD#4ohqh~801b-!+Ibsg-YXLPWskP>3=A4*^q|WI$*Rf?d zg5*}pn%7|I{rM|Vk=`Bu=(R^aouza|`Y%lwrIqZxeBUGpbEqd}XY{ldI*7Wj1REDP zv4n%cn=LNUG>KpoPNoIDOV=G#6x6}d?TqBJK65owkr5GTU%q^?7P@;HG>rM1y&iMN zQS8#59l=V*E(r6(fRdM&XFhpyYVsCV{@%T}rarS`0!C$bp@Lta`iHQJb&24l)42e~%TMIger4S-%;M~%Iw^3VX2A(%r`j$&AZFP|7$B}0@|J(SPduV(H z@Es1(DCKZ4xc^Ol>g_$%ZRk5|PJ6H-CtBCwx$oL;USkdxHljOI?okge-ReiUW*P4X zLqM8)zy&MTCvdk@o0g)^p7WxYz4Ygk)H$Y$p4rKS85a1h(pum(x^g>9UG^ zt4i~=6g?JOf{sHTJ`jf^$R|1A#ZRx1Jxx;-H+y~^z1~7c@WKE6N_I~}{S}SGx_a8I z11@q!r_o@=V@~6gr9|@mlU3l^60>MIUOmot?%WNSP+++fH9Cl7^jdF9vEMv3&(DV- zwEpe;_Z9P_n<5p<1Ek<17Zi{x9;x2NJQw~RB<|n4cM6P!c#t(@A*yZW6a0@Xbo?}Q zy<~h=OGQjEKtko0kL19)AY;&`nlG8yY)8|e$fXX?`y)C_6Q5ZuQN~PDGj(Rh7X4`7 z{{2Xcd+wkAdeA0ZA8XsU*kSg<$qWoDDL{Z{6Khp zt@y=4UH2;O8G~kH)%71`pQu~y=ctq{!Pj=jes#X-ydq$yrh}E|W>{%>8X;JSlhw&8 z6rUmNNwUN5!?kz!&`q-mEcSYH)8^%?`62%sD2RyeO|EABXYfF+PdRL&WsycN9p=r- zRNq}@NwR(`tAh?kv3fB`ZPP`JpL`AzGFDqgC0D3JlVgcTWHP~9AYYfFr zW+WQT-7N~xBLiAhS>T!?4Of>V9*D*9rd*%3Il)=vPX{m!{Yv;<>#p=yQE1|ofPjF; z#zr1NK{e1nQpa9$lv?-j+6|N{LHz21AqB4M3-_Tf&Lbyh2B7KS;lp|nT&f7j0ko(B zA+Q4uV@|YyN%it9bb(CTiDdIzJ6~;bSq=lR&vk;kTwfmw!L#|zJCe^-U(Db(Ogu8f zlIO(s6{HGS1?zCisZdn*;9j!JkdtSe>qDdddWS?)_w{|sooTHts0Un1Dfzx}&8oAp zSGyQl+&YlY^v|RD{cd-IyNXLM38+lJ#0inljBwukw5zW6{$eVkRaS5fxtCnukmh0| zf8gvSw2c1q>z>Cw)SrWJhf?{7w+b}!diETaPL7X{FL{l^w6vmH3wi42Vr>dKK>(Q# z*0REf{s3@I3>9}JTS|J&&1mjQzBt?WAx(h+ti*W*PnEqV={uNx?O^;~)DY-n@00t7l{|h$aFS3Xwf_H)2@X$b&ZBu8$I| zVo8L;Bv7GcgPUl`W-S|R59Sy@I2rWwr}dAUN#5oFh6M{%m6R4i zmj-9Dc@oQF>8pHG)+0Y*q>i2y6$42VszArP|u1PH-dA>Zki}pulK9O>Jyn328o>|b`^#%_Yb~R zuxwe8=9vWcKw0wwORv_>io)#}R1`T735UJO`Bju&BTgkK`MW?&5Ct#{-3_3SH%-Qb)yV6f0){;;*RRTKZ4RxK-mBoEymKfzr?F3w?^q5AbH z3l<4NT2C%~47!y?c@}raFC&tzF%x5=0zpVC0;5HY{EV%?chF{h(ATQDw_UE%%y2nW zl&a*jgx3nTy@Wb*Y_KcnqFhPZ-Uak<`V9eIvvShgl||>@Hi=*=>MvR5qeoNOWxVmO zhk#(41`|%s^ht^-c=K4r?el7CYOD$NeML7QDm!00BYVfa43u^`Aj8988MBQG%KET2 zX#cH6MRYHyYRYaz4RLZ-`e%|49OLr*T~U3{rzaEmWU3*^4Cbg}8al7SLdz|fNGIuM zvj<-kUznTM{5p`-f;xtoapfudLzX4`s&9rA6Pi`LTsAYYMph%7;y8cN{mObKUd*_8@+ZeZ7#ht1NgXua-m&~XN&0)bV z=-IKZ0!%OQ%U6RWjWDP)Y`qjB6n2p~dhp)w58gf1XDXyR&D}tA=n>}hEACF|F|bTB z*4-v1@2o3Gmk*+LdG@?GaLm|L3YbgK0a}`Qm>!;41n^W{DtPhYEj?qWKy){r9rS?R zz|WW%N`asR(Z;pD+Icdc3~-7`VMn6r68)h6h)o~`KAcmL2v7Bs*yP8-8$ypMb)O&! zHM})!REES?J-_OuY4wgGaU7*<+IuLvG`gq>akB9}9L*cj3&3+uU zdx6*E;IgrRNJ%$fgwlVH##O7XTOdeVbv_?i4#S1=4Y4g4Eb`p2@n)dNY1+@>n+$y+ zbT7C>DW+;WoC7EnUiL%V0}9!{-hH#C3iQtpF?$yXH2?g*Umr~GOxAr#cvbfO-yIez zRd;9eCg0&aZ6&K$xHScVXzK>cDpj*=tNn<>ACc+xIpLS$K?ytXHpALI5>>bT{P~jH ze^)7sd&@==^@M5%_y>4}7})5#vjdbrO#Hoo5q)FA0(a|Jej>}bS8a{tUNCYA79ReT}$~qIo^cR$fWm|fxmrwzcZlGxla4#cn#!-HY_(`+!$#YCx_U4{Fa)z1q*47 zLjGfo7q1ZjVNgEp=cp)k|MBrDLW`o0^{^vdm@>P;UtI%Ia~1N4Y1R4sf7ceFfU7d; zGF9*udkS)McO0)25<{xB(MHlmH-}!6utVOrTr$7+45DlDn@zZKKfvI-M_&{->-g=) zMgn;+@w~mr)-IQK*njIf!Ph6m|H?9px8<@_%lEbwFE0G<>S*P_%KscX3P{w@87n>M zvd}1==vS@V#5$z@({VN~LdU-4<0>ob@Mp`--vbGx3slV{Yp7)|IuIHsPRcGB@e4PVQ1eQ!h>8j&>j8 z^Yv|7WTO(P0iDdl`0gQW4$qlALNJb~E2 zy`TEHzX4c7bEY+ zSjy-Pw$j^szSX}IB>To7A3&!F@Z!X9^Gx1p@v>386?(7a$0OM`k8ATqx)udF?!yD} zHrUk;!`cNJ11qzbvQwv1)wLz_ebjx_vz)#KrMHw-|0Q-U813ssmrZ%diab~AW*+x6 zteuiR{)5=@cIpJ{(czowYBMRcre*9k0hM6Q!#0hf7g~gPvlnWve5eyZ4JAh9!f)2r z9sUj3SA&%IBl!%|OVDIxfJ?O27z)zB1v`wvLdtdDSo`gIpN@O+M!WS#K|;gJyDJak1<{&)$XI-( z;s)~ZQJd4y^bUtjf)&b~3CeLY`RSWz)mvb|E2aW1V|~LcFP~plBZ*!I4<9065(IUC zWc;I)^=w*bWZtKJr))4<25?%a>mnwa{Ft`zgP|%hap|{lDs7VJ$$vu7seh=1R=LzZ zdf2T{wU`=;d?ZbbQ+uk5v6m=C0K<4_-*}WXgWq1KgxLPjdfZ?|Z!8UOSv?!O)I}&%JUMZDZEDWn zgD|+$wWUEsHrJJ!w7Kbkusoq3PSP--rY6&0CMWm|(`dAVpz^Z)uHWlJ@pXbL3dJZ7)SVcN z;Hd?{1k3=Kc&8}pzvYRw?eALUXJ8Th*O9(N9o=3nFSGo(0jneGwe-+#sG<`?fpVEj zl%r1%-^1QAG>k<$;0f29K4U0IxepDBUz6H9FW@5mFinoF^bZyYS-6)c9#CrE<3vR@W#8| zIoV&>jo;|$;TyZok`f@#S}p!;G%UAIfax^<4_ns(7S*+NL8C@Rd`1!JF@i{!E*&+B zfE1}x2SlU}y~BV;fkZ%*-i!1uy$>292na*(FiIQx&^t5#zUqr4|MSa)(NAaYJ?GqW z_Fj9fwVl7A0avf88XFtWLIw=dtF(J5w=F;ezOp+0ngityV*hnGakZfo*OT80;DnOs z2x5gR#z;LRzz7^u(NVV)Fe0(Q1T#xHfoJScnGYI#{Hf~8T?N8Z;gP(;%iA`&A|vmy zF<{mMVjrTfxSUe0C}Q;r-d^GH@e7?E@T?+R{Rt55I0zgZ$0VDaf;2aR<&}c2zL3rw z4n@a%@R0F1sgWHs7_X;#Fw}Ma;mG4m+UL)oBQ&lVgrRU+ zCJuA&?)GcZ`m0~;fD)w*Lb^*V)Dh$0DkxKSgFGPdk!4R!|($NsJuBmtON2_W;BMg9lR|UJ;IbiREN}c`bCnw-V z&4FnIZ=#^f{Cz3X*0|waXDs-BSv7}ofC|Vv?e`yvs5mWfbAx}TjM#mE$CH6HF)JgX z6KH)kQU5Typ`b5QE7tfLQCoES{?_34_G+rje#?tOGP`L8S^sE-Yj~>TiO+{_q)y+% zwnkOTi${MRs7!mWw)46u!rV)zbjihG0)%<#;C4oQ9u(Ar7;u3yGRBMJ)SpBjvL{rEK`0J& zkq*EkG*nfMEbss!SiwdF>iN(X!d=kegA}^F#MZ!Z?62dsz)L_r1_E}l%}Rni!`-w1 zD!^C3&<@GG^(K7)$?pbZ*ooB#4S-O5+qo8;p_FPq)0qaorG*%lE}?aV(Fxf&!mJ(U zBr}LPqV~&zzYf#14e2UJZ4K zt%jnKQV$|>v+Uc4rJ|Lim1m77L-v6LI|jxB_)1RCVId_TAWb8tNnouL4t`-;*O`X9 zD(p@6ck$%jNg&8fS!uu=~O&<^Xn#I?P0;eL5TZ&z9lK@&&# z!uJm6;j%Kkui2^jJ1To(Sj-U58oK^bKlgM86RRZ#_#1_eI6Y9E0&bHIrZL%i#xE-#*&5c zoTIJnJ_h9z;HhXiI20{ncWs;(hjk!T(*lei9{3b^G_pZ`ha^M5c{07=hq#GDv2+1n zheA9Qk>W|3V&p9Nq-X=XTTTr4ATvkY(10743m9)U zz{8e!Y%M%PDR16f1q>#qqT)UR%z*tuDX6y=hAY*P>LGYKgo9CeXQx`QLkW6F3w+MB zfJTk>_WeGL@b2-7a%5cZ@Q5S82K^pMgTB4Pt#|$-}_RC1%#^#~FN0^Xo6l)YxLPo=+A+Q7PuqU61R?EEwyu&g<&1C@VITE zfEd~Wa!Uj#2hwsnc*D)W`2wb&oiMeq!Ca1)UKlVCNCa<1rI^1AoVkjv`goygrHD|B za2r&>V1bcF<<#*4Oa*MHdw}h$Y@)l;gOCssCTqtD_5J$co%!z(rrhev_n`0Ga>p__ zXjs3Du*UeIUUoajfwH6jbvJk7qM7z_qm`+Vl3W71@0j+s9G{y|2Efh}4H z@tGyiw9QUzwVB4G!zOu-#g=$P0c;Ksv-P&YzR;Drm1bH>pzt73F8D`v7n!zzPW_>U z2}y_x~*1v=cbpp{5!IcNS(5L*FZWWBV4{ z&gZxCEQ?loKeR)q7F%hzUK2tDrQz@bLE!D>peu(DRGH~gI19(3$`k4D2!N%KWF_?-9p&K z7Fldwd_XOP-RJdQ!6Ag@^qhw4V6KG>FpC&yuOc3Cmr9yBb({Mh^Ba2k!TFd9Q+LiB zN^@t~DRD7CmseDAu)6tck!hA6p5CQriwafb2U0Y|p}BMbrjE}E3`@JJHymG(NkGl4 z`m&|zzKlte1C>Y;VQQvqv+oL&td%Edb^bVT@}4>b$Y_6OS`X^26O1jVUd-O$qo9N-i=6kBt1XPIHfDc^Q; zL-oJfEPqTuq+Iyys9{=Fa)7M@g;JNs%G6UE;-&C#N?rwt+{T~O*0v&JC1Vbpf$Q;K zD_Nf2HzOpO!JJu4{dvaYw2a>xJ=lII3*?Zqoboi z71ITD67a=zP5)tO7#w*L+`WJvrCa#G7leQ|b93(o;3L<-?@6<6>pkCEEPn6yTwlTF zP684yAqLwB%8n_h`h}Z2w_$_&)Ty3J!IEFB^&v17jz|%Jyg=Mz%{*v+BukwgCeNoc zNObgy|IiX0%e1&id9mts3k~vW1`%YgK`}zm$s5qikt71x!r9K(F2~W5YMKG< zgBJ)=hM6kH4m!vSKS z+KRg4eO)b*-&E|uWeDZ5IQ3JIu%{1-gfx`%Nx0i_sjFp456rye*tDrxZqd@!k26-jxFnX=ZSRz+q;cQcKNJtA=0}+qncJUI$}_tIfPdSC!Nu7VU!~ zMLMAH8WkIGmVDuvfJ+o9x2UeUhO{$xj$-G-%ZoQlz?}yJK2SgHX)kHFxU3=o6{ z!mkj9;nOqgJBAppfDfQ_YZU)Yyw_@wnwnY-)(nVe&aes20Z&%FB|;i|IF|unK18)_ z0U=n7m}5Ga{t(xt-dvN%N5b7ua@{ z#TU+{KU{TR-Nx4q(@YcFE12`R57rr zbRq{y6yVmgGc%_@GEa&*LNylzyLXTi%FWHK)RC6^eiB!H#SI9l2(40^>+=v7fEm)8 z$@RC+Nbc^>;{AnJ4uWlF+#f+fV0az3STRlwCCdJ&H{L@)wLpZNlP!@}Na?N&_??cP z8}nKA;|((itqW2!y#9iBU!qodE7K(V$MU-ODc0Xx`8FZVx+R*EFW>(t%Y-^(>}0Tlhq z%}Z!NC0!rXg+*`!J+(SgJ}sO~w(-?n4_n-BlNjJEo^hO+lQ7U5%8u;5gw3UTql9W| zo6{6jPc6gb=s(EX!@cw#P@?aCy;9ILm_pid19}J<=vOpf=)q@vbW#C?>*?yxV`)`h zwEfw_E4bH#5OJM39x*X|TfQauALJ&ma5J)#(*hRv5m0|N9g;0g&;iL7Xcrikg+mMU zKsrH<`}f_nJ}0SfkG*kO7~~KW8%P5b0ICvk2+Ml}>=FqyFU3wCVav+QyaQs2ZXg7K zd(2w{pnCQ|3I**7L)Zc>Q>Vdu1gr?9SmhCSVu-bH zHGGigs{-E{aHF;wQNXW}D};{%oh`y%hJ~03--tx&usP?qx3|-KJ0pYn{Z|g7-_56k zRGmp8PuC`HsaRSxsL_O<+b#hIz+PtEIeUQd7o;oo3T(X$z*s4!*E0t5PE|takFcZo zdoB|!p=G#GHN-t2?X^09A$o^>mN|tx)=PC{!k83EzX<=q*}}lU?tJ0$w$4`0xd21% zSocW=H8KOI{)5szVj9PO_w=XBn#-_osvSs z#AMLL|9!ZSccphQi#N|osFVPEp!9ZYDz-0z>DH0Xd^S^4 z&#Wf3(O1u5Z`edPy!NtaJcMhLDpc7awHBEScXhr$?I~ggR7k^8%Wp3Nk8R)_ zQoQXu@%*HaEl#q<@n|_yZtul&?!s3n->GdXrg0gDGLKvy5s{yda#8!VdnDkkU`bK-8(YHbIm?6UQz(j9!_QQH| z8_<=drpe*VYbti`iys!xoH$KwC-dcr|9VkE|M?;{$AOO;xCc0;Unuwm{JD$Kb&#iK z0|UAfPzP{wt6FW7;Nm{+bgRIy)~Sgt(!4EB%&gT8>}mkc0WEFbY)6W}8Q+2Q;LFD^ zy?Rd<;N0w2R01a!LuXQ(!!QB)cg(TrD*9@$HpN`?lwZ!(5DO7jRtFJS5&Rm zB`DIt+UiqO-*NA5F^}nlKTQ9S7OZvu>jitX%Op4JJn^OuA`T4h|L6R7A^i^ zZw4$F@Hv^9(yC5}gt%;>+-rM9ArWfme#X;?ZUQ)}X&5+*vJFBbA|6>BY#oB!$J?P7 zG>ly<`{AgkbJ_g&OwQ3?u)O)p+t(PpqPtuk?vL8x+VvigBJe+)Wh0k6m6~MfjW2-l z&q~P;OO}mlwG-qB#%%1nH&s8qeKm6F95dr5LyCa&X^$+HfaqI4l(V*+Ep;$8$Xx$& zS|og-LqPkrj}f(iwIYpk=z8>@*uAIGzCW4+*pX$&YhUoI07T^D37fhK%&tqz?!U)< zRLE?T@hewIu5sw)(Kpu-nCN0&>c&%j6cIQ^q4ighjY{p+n(533%f2B45@8~46H(UK z$?v)6yKwg?Qrb2dSG?I`KfU9_Cch)M9JZPe+ntfu;y52tA*P;|UgAKwmpAOL;j{H9 zfOmEnfQ+&p)7rsI)B7)Rg5M)}Sxuw};~dO&5$r&a<_l2_gf7IXMuH0J6XYjfS9YUE|ez&NLFP<`bWuc&#=aWt&c+X+0vP?wq zmhK8|dAVH#h2g?|-AQpnp<{(<7c87SiS}CNH63v6%VfnxnZFuGa=v^h@2F zUr&}lieJB<#es?R)=+8fe;r^LRWL_djhEiBDKBz3;T3a$v&?yu^5@~HmP2n5@y(x& zK@Qr#2toD@6vJ}Uy2X)dZN!TT(3I>Y_kYbrl1RU&LxCD~#{C3GL=N)l$2S+x7g*$!glM5K@VX&!)@OEXm)lafqlRjzb$&Jq!JA)r(6f@UV=so-M zDP|XA0-T7I00mAAwmVEK&1^2q*1P={A9s6qIkwCH9}CL(tMdf_V5L^zp^a8NZe)7o zamW{NuN_WvZsK@1$T-0JqphtB&G)Yhe`^CFG7ubyW4Co;l%xlC{s15f5ep#IPdrPh zM)s-1nYXGOgROIIyLiLT@1m>#9F)|(+j0}SB2ti{8M zZ!}05MJsiDigF2?!?4{*wasRwwnp<72rJF(8Vu}sYnLS?Y(M3l@7A}+3|c-QidfPx zLkjx+;_O5K5)$#Rzqb&BxS6O?Q~=Y1E_}pci5+ba}hro`(fPD;HDhVoH8j6y?G&&iGv=+heU} zGV9HT37?sW2>a*#aaj|s(Su-H5rlc1n7k~dHxyOlapV@8ZdA-Pr4YBy&$oyyNPA+snzTRCKv)DEp%(+&O4N{w5l8 zvHtw)S#f1mq-tBr%qrubsN$IH$Asr%x?2c4_UNjk4=1IN+3=~Z@fM-c_&PZ zRe?cIzA&^|z?peQhd((MVJ~9VV+>a|bN6sz7ss1LAFkD1$FQxV@fs@n=W}>=RX8mi z5r{fVK7}GSR2z+~?h}gKxMwQmP03U?56~_&>03NKJ(RZY z8V~MU(tG4?@t)$L%i@@17Nxq085F&jxG~yd5T4q4j0gAokEc3)<6~gc{(b}ca@EIMu?{-1TQ|I7(tZEIcx8)7wpjxWAN8 zB|Mi7aR<~P{_PAYpoYKxY`aU5s*SVyKxBxUuE;(HGO1rd>E^wgcE zFvAmXz`Z@|s`k$3xuW_rsu98>%Fm-8;=D4x^pRMu*(;dl#psBuq1dcLzEmtmy_m0D z;q3S=5BlFl_g4q)G5Vc4z$g2<4glxMc4>vIn42i*x~NZgyT|9HG}JI!cEhv{D2*Vm z$lLvX27Mh#>;z${>y1l2VmrH!o!-}So{=C+X$zv(w!iB599@#zS$-!nBXMAVjXc&`;4~J~f|^q9|c7yUGZ=J9DB{bNB4ioYL(NQ}j(QAny$j z+9MTR5>-@CYl&)!wBY-ci1+T2n0_U@)=U$h-E6| zyI_B)WoZ1zq*&-q1&aDWVb&!HOhf4e9s&&$(QbhlBT)tgMpuxeHYJ6E350}8E|@^5 zgP{Yk9W-?%ugG_Fbd>$W6&Sf%p@&~;9KQ-ZZwDV@^qs?d^U23Y*56jpb5aHdt?ucw zK(X*@ek^lL`$+xcUbcU%gP^$=1RBoq`w1$W-;)?s3E(OPQ!$9-elshLf$|pEqt9&2 z*X>R6@#e)|vwuBQoKpnw11LKbvTNMlAa>{f|I##O8oSoVJ6L#NdvJff$3zlgJ=8Yk zaNKCwK)}@GxY0Z-uB}*=WY*kn^1ifguK?!vWEspap=dO3lJKUoqL3bTD4{XF0HJLZ z*IHtl1jm6|3_b8(KfeN0^9m3@pk+WJKr}UAa5myL9t8ao9o!cIR4z4o_nRQwZ>EyUn0b0Z)I~)3Q<{1^DTzjPcm#+_g4jX z=Z5YQbgqy?spzz^_cp|{r~k^Cfz4siM-l}R5LlRMiDe?G_9{>*lkZH&G_K!pu+*XZ z1X{t~kodt!r3012_Lq?K1V8ih1L1-_A$(09Qros7EcAPv291&y7(kQ?ib8w3Sg45Q zzOHM2go4sE$kUhhj%XMG@`otf4`j4o?&M8=H@7B44K0qZV}H$&TV;mv=G4|Xo@9In zc*Ge1BrDbyMC?7yvpvs1Ac>uCAv=8mPJ~R2JZpv0P`+%BOOs*IR+Uio)cDI;EZ)2X z3(01-m$Q3;?o9HNs!Yd|e5pCZPsX=(>o&LCgKe9yCDWRv&5qTn9sM4|39-UnXaa0D zt2CTgzz!7ff#?1O1%+)T(+-VzjjSe;%|Ax*i@UE(M6XJX3;}A)BS9=&F@1(qfd@-- z7IweaV!lq(saC(-Q-g`s_?5V==`BuMS?d1D;h)|XLkMTlCy-U~cIP&=%x3S928p0? z@3;|~gUnUnId@e`D7kt{N>X8!nLg`SqpSL6Z+YC6V2!JEdTGv%ce7GRej9==HhwJ0Wc~`Heq` zz>ZT|ut(G%(e-kb3-P8FcA zeRr+wonJ*dAik%;m*+tjg$=bEe-8l#_E!-61CJsjBf&$V4(wF8YONk^tH}T-#Fc0W zdI(~TaEN}@YP#_Sq@7Bhzl-#+h%qU==-M zsB@g;Ctjs>#*{zI+AAQR>O3u&3NEK_uVxV*W)Vx(GS0*RHsn!qN@CZ!m(oDbcjn2m zv4@eDD2#|E+&(fQv+qEbbpGNK`r*n-6+zR44}GAhla%&ZC7m6tAwOfCS?n;FfBu~- zm~<3&MMZD07@6tOM)iQc19xsez6FGVq`pbb^|)1cLLdkyrX%b2(t-+-K0={XeIe%J zO}~EZ|C{M{s7SBL53?&MsHi>gc)c+>pF>JLfry2~bk?Vc(FJ1F1oO5*X}o$^^e z|IbVA%-w;j3d;%ssjq_N_3FZ1_#!|46d(~bTRz7V?sBCAdmh@WS$B7s&X#X7>F|<6 zQ^WY0Njg!N(0dj0KU%S`N53}2WGH0o9eF(IjHb!nZFKJ1AFr|?eAZ_JCvhAO^jWq( z1#N>~?Ga*-)(r}LKi_3r5xwme$U+b|d8kil!d#mk2glASZR`?pn2@syb_`9Q-)x>9 zLYlIGhk<5PP7U~t4gUYduIfxh%mk8q3Sy%lc8Nn_I68Bn+H7uXW}G*k<dkJ!vPDRtd*<_Lz2WWG4THsXw?h7i3X7Wl=+JYkv72znWyKOnp0o8>~-7K82 zTIikA8@Wu##)lcN>iIC*6f4Msn`WZRr{o}P*L{6YFbl6?F)P~*#>aQ~vcY7^swaHlg?F{?=?5gS^q|@%xh|?MDbQwU@((yBn z<5(;Poi9F$-((F~S9(D@$v|Sx_@eU#C#u!v(eJy+*LTgZ=!G~f!*1USQnNA6M_fh! zTKhGxO`m5q?$6?u6uwP&tWNc#_{fxBWSIBwAuqlHjLyv=YE7?5x1b>U9Ecz>FMldk zkiEq5=)pkYXOo#&e1+85-Qz|Z4!0)K2enD;@*JoN{`xQ%9v+DhW)4p!SnCFjir$pW z4=pb|LN}F|Dnm<{zpqTT_6Ft8)~iTe88OO$F6z$d*Hl7=Kp-1HhGPq=H|wpU_z!qI zDR>Tu8Bp6+LmL}IMQ*|K-}qPNeRHGC{CSTwb~i(eBOK^!33cTclG)mPzPF`1&@Sk zpzF!f6Ir)BY%IBxLiAaKwdKwanu0Uy0p$$BnL01shqBHy!kksfbfgWFUZ41d@HL4=#$R1)>7&T%6eD8O^1dD&nB(wWjS z-}Mr@)r&>UW;5z;8_WN5!Hma05*BiM^5lsJxIe8!xf|KT~LE(=_!nuKNOV^|EFl5cv-v6_VM2h7*YlwHuUjNs%L@t`!?d^FNi ztK$k(>NdxSmDUQmkW;7Z30bcpK%>r$d|^|LRl;Y5d|vpazKY9z^?Hk-N7*UujNkvm z&{@F?A^nNx3f-leQ7W6?zk>cJh?q6~jFHF-6geNG8^NmRyT&mGOpxFYRxR=&ibg0) zrzMwUORWm37sXjv{~e8~GUQ2BXz94?{GBBE^(j!~AQK(NH$RX~EZz8+O^7bS7;8)ulwT{$(;m4uda`u0LO3d(0a~4nHR!dp6g$XYmln>sTOpX=t@sfbQV6 z5*<5t>mPIDLx*I$goLeHuFH3p-K-pRF|Q`^`&3tz?qpHDvDI_Vp!yzEzX?1f`|q!% z;8a!BPXfIJv;wMVH7Y%BVRG}AZi%vRiYisuer5vFYA&7M*p|mJv8b3HJl0Y;3f0sgY zADjj%Z&kt!+-d~D`nndGAr-)y>PUC#l&;@rVb2G}D{j+HU@vvF?u~Q?=4im4+PWK3K>(Wf%|b+W>1wv+S-5Teg_3j7K& z$?WWtg`UD&zegUpp7q23<9g!8@4w^c!P^#wDRn}}&J!o8iZ7m-P5T08y?Ut2_>d$d z7amEGep&wg_W8|M-LBc|bc=(fcUMk_45F^k`4KnEbr4a@{+RiQ_c8!yFgT^841u@I z==vV9Kg-!XVg;1V$@VxI7Kzh|ojE66uT+^{IdCDe!dEE1=hfea=@TQ;S*cLR+FcnC z+fx?9t2(o0gBXW$K(2anZt>BrCtb}mEXo7iCg!KNBAB$3#Fu4W9Fu0AWw&I1KPS<& z`g;PL-z7fr-MQ*Il*WlxX}{-Vai5P&wosgA#P#L!9P5!}eM=Av5j6ulgRdMG;6DC$ zmMFSyL4o=A@4mgUd%;z0m_=>O6b4{xWi^2_<4WTKozl}7OSkIJhIh2ZfaE7X%RcD* zAd*zR?lTK*A3;6!Jm7^o0P`xvNhiv{Dns+$q5i6jbDKp@0|A{cj;J*gz)DU-|I^ME zbEM*viyQBq-@jr4XSxt4>++HbK2y1gw-AJnYAXT_s&#@5aZxC^?XpsB)LmF|#0Hcnn17mEf& z)bu#fw&hLPBio+*v(;^T9-B=gJADm4Gbjdf8fD&502K`*ooaqndK$YUMBBWq3j%B! zw#Ok8v_HSs*K#=*7gpx2r**W#%3?iw$I!}i&=O60J=VBcz$NiWhQpZ&6~Xf;BPrXUhfBb+nZ4PsaRYu^abAd}Du0ht7!bDx@AKDmGUE)em6H z?uZHH%ULmW{ypXt>;LO%ugH{FJ!{alPmjD7a3cjEM8(9C@?7HkoqMY?-&|P_nx5;j zexLR}rqn7zaqj$rUh1vg^Bmki-#sg?^rc!+#(V{Gn(LiMn~};B7=4NRmWTSusJbu? z|AHpnP>AN8WW3^u#R-Qb29xO(povevOwozjkjNzekLU31VMryaQix1dwYY^H{#`j_)Pe8kRPrek9!1lw z3Oj4(DNCj%nXz6mv0Gw0mb==>%kpgJ?ND)*P9-T@wO>R ze}Rx}y)5O=mZiXH2eFN6Wo0F#W(av6L^6oh;nOE0=m>NN>P*@|>9-Q+{61G--aS6r z4C*Y)4#isCwa!aVnL9S4@n6#=#N$Mq{3+|H2ibqqSsfQ^t?+|~?=R@Y(9UZ)XG_)X}ScU#a6{O?!y!Dui~R!UNj)_ZJIML3?ej zYxZN$z^pqBNWO?&OIB7Em`l`Avq*Dy<&wsp!F7Y`Tp3Vi4G<3?+?-PvuF66;g4OFD ze}B@qH&@1i@w)Wkvov0`;EKxXW?Q+WnfXxibMte?H-EVU`y&x)d+(MrSMR-7;CM`3 zc0lonhU^c&+BaU%W;Flp1f`WAH2dg`UW+ZUFbP4SL(Aj`FI#8{#$LYtA2UY#23AX< zGq>!np1XJ5uQ}vYa~Rn9KH?N5=j*(dBL^zbCQV|rEcW(vgD+Ea$9+ywXP$XG(4~OO z%$9#qnY$L}V%ZiVtW%S{CL_vAFOfurrYF?-Y~QtsuNCs&n2$T2a_r%sQIvEN{TF`z zI`-(Nl(L*i$NKHjO>88~{a^o!ruTrg?yC!WSuuVALaUM%93NjBTsejtjja12H}o! z>s+>lnEr}1-c9M+U*uQDnuE663TUS!>I|da`8%~e<6k#<+(`coGESlqq_}enO#3dA z*HPr~0?dMy4lwO_Z(=-mU(YT!P~x*clSU?mhU}l#>IeYvPJEno5To=F3MHiE*v*g4(tCh?o&Att5cLJSA-s7F3|1V4Gfgn z=)auMb@VnxVwG6dkUp%RELcA#p0e(tH|DJgcrwWSjtaco%7vJMDcx0dMaV|XA~*=>Lb|(CXYA#vR~&;m*((e zp=$DO9k~ThTEI^MST$ntk(h^)97#;BlN#u%^}S)7;YgofO(yL+!qS=mhRsJ&>~atz zbZJnMK5&OgY$Ju!FS==5nd&Wb1N;s2{X~vc2n3Q%hiRHZpcklny&KAtkupvyZ!Pe} zNa$zUumnen>8?DJQP1Yj?nDlMLb!A6Y5@C&50xD(uyBsbr+NhL5rVLymhDGZpH+SA zZY)7y`cqq_ofBDKsQ16iFAtVqOzX;I%PK5CQLqmqGSqukGmKj)+cGg)U#q*%oqnHt z3e2oM zaUnentF^m{Et`uzyoWuVnte@NDp{pSAa>SKD9L->|?TL z>pJck-fOq`0`vU+14vsF>-JjeK7!zlWDVTGvDyPy95Y)fjGO#JJMoGb;m>5+^z`g> zsvv4r9)41v(J;;WW=8w7SQHCooU?ORn+>(&qf`qrGycJRcc&n=UG3@FC>hD^rM)#3 z4$*F%NKPmp{zREO&e_x!2^_UhljzsPz-zv^xhz?L%#ibOR9AK zoM+lpx%GQMONgVaWz%xq(NmkES&eg-9!pG>qz-f`;-;mqi0z@%2to}T3r$39Xkg7X zv90#z1Ov)i>e(nRWod5hIIsJL2IXR|l9iIMFX=Bcm$&I?IowXPVR9UMnP6)EZBtQF z@98{Zj>-o^ff^!)2p6iScI6!MANP3%VN#zRN}VOBaQr_;h4(*#3?Rg@O^hAn^L2Sc8j{>-iO9&u<5j z7c4Rh($g=?G1~w7LV9PK(f+S9Gkpc9osET9UW2MsDB3|B(FELNXm~M|t6Rzmnrnnm zf-K07@e-n3TDko*f%^;U+~@HZD4~1Bqc0~>qYTMDg>3NORSG{f6e0(Cqpw=uxJ(uM zQd<-ogW}$~WnERwsCwD!x7Nlq->dBkcvT(5inVM(p#}>1|Z+t==TZ37(b` zq&;1IE#tJfRB2Bs4Y3TRJHCZ_S|)v{KS>cc@s~`NPp*E{$LLp*-bzI)1GV@*+q<2% z8m8hR{Z$<9D-8yT1w(O?7{~pT)r(F1k-foZnLQl#`!5C|yFQ!Qnsla#GGk{k75eKH zC(Te%sKE(RW(sFNATzDrK?@7l_WJBb_!}8RTX?Iv%@W)nDNAopIDsa(31jH?*;f)e zQ&fVJrz0qZAA%R2M0|C*jl>HI(prX0E4Yhpc!40z#^C_vN#@ao!1h$AoKh)j=W z-URNauVX`f|0o5=KpmWN1aNgQ@7_Wc-oFd(+AB{^d;N^WD~_OEjm*Ot`!hwY4xKX=L6n*&8jChSC6jeuMzQe*82z63vhdwZ>|u= zNs=rQ8z%01lZ}oof9g3jzLqHRSe=c}uZ9heYjk0ecCl@$s&%)OD(Ri%wly{zTkylcQnD--sMx z>Dg%~+smNNaD@!fSPkx8?TzH6hD<{=8ZEv2hsp%Vu3P%B8>K}r$hDeEN=lbi65>1; zE7|L|TWuW%Ei!65>{aml_Kll}#=&dsY@&JDK~_X-mg<#<`gr^8j~t0jwZuwMl+5m& zn9qmp8P%SPrJAK;#HCfv(U}O}a-p4s_jBh762*0)t|MFdd+&IBUd~OS`lwnrl6iv2 z!WUd`?N<)$;}h}KeR33L1_p~-llKf_sbu(~_x2}3PlhOBQH z*{oZ;zY9Nw(T+6x+st$vkmNSq3Y+@ zsVL^>%|O_7!-FE_S0`>5rZS59|bR8>vzgJ^*{i z+(J8}+a%XMdTleI+A!+G7SXot+a6By_d2Ls`uK3f2vUA(AiE*vm*70N+`B;=>UxZ1 ztM&vr3I?b7h``;a6T>)d(tL)^-7;GqDKq4x9?VkGn{(JyZ&7TkG;*rb&=#KDyxt|X zHP5xZP+X91%BY3(1bzYw2Aey>PY~jq6+r z%f31EEJ~)L6JUM+z`lInl~IuUe8Bdfv{==q=Lc4DYqp-hjhOSNEE<{34T6nIq5LHe z31s=Uv_Fz5orHCH?9U&K6r-hT*8-J~vCGvKL)tK_y^3nv;c;do+`S<9C2inxZNss6 zZ6?R<`FgHIGY}@;nW6Z2%9fUv zoP+i%pic@1)BGzbw}S@9e*{gjXOuL?16p|Ne2zG9!3!-sCz1HgHWDjVi2uXXyqIOM zehYQ@(&Nc;%X=$-+A8A2raDv8O=iRvx-S}tPsF{#sOyb{p{mzCSh_E=pI*>x(Aq6? zYHj%F<*gYqfkdLA{)QiD@R)1tKA#u&#!oeT<9|>;%rglJ5}7fR*&UGfUp?V_Lz=W4 zOejv=xAq-c(1S$P0cu}R5>ROcM}jw9M#drWew5|tp$H@c^4T!+=~Z(+uxL>6uQjwaBa=I%=Z*JlZTtrVhl`w9M9Yg{#7|*1OuFs*Hn(?v{PaTXSd~~` z1Usyfm5CB{_EQVdp?(`5V}kS?VYN8I0kPfsn|4u}&91juoX=e{tQ?H&8xEVqV(W5T zU6GBV_s-JE?U{PM)XnQm4kZ44$BrmUF$;5CH++4`rLP0aQ?Ko79s+7yNzfvzgv8%o z4T*0gkAh7M0Z-n?>%AWHp264oWPD~vKUV4{% zIu09_r^kKpk`;34RP%|k)U#EQv3fIbD%xvzZ?+_mNqb7ioLj@5?60;y^{kl;|MJX_ zyR)kw!U5Q?C!HcofyZkY(a5psO z6~#kSNcwQfr3qmvLGXf>njuU?F|bR1ZIioA+lx_Xfl zZ&=(@$6Ja#Y3<(PW>}EVB0e-tolJtW~T#*uV}1$oU{$yO{t}~KCwy! zUpOCNOS;ww)2c-~O$Iu$)z!u4J6QKsVmt8~sqd4X|Jn!9(~Hp6hPYLI*mI9h{*elw zN?R1iWRuuqXQD=|VlYD-5%cNU$C{Ply}oXHcS5H3jH)`hFl$wAQ$@+yROW^=5+IG# zIqXO5&Aal2WqmvK@|2VmX_L^f|M|PnH!Hd@w{e|2vE2eGmO`Ip5vblKpR(*3k>=`1 zR*{>fDWI&pW)^3E`$+78hqVOr6`i&D>_hYLfLb2K60= zlaN{FF{r3F+i3 z*vvEfAZ3KjNLgZ`go;VLgl$%MU>6c%jG>?pY43#4ftxUw5$Qv>#Rn{MixK`Jv8Vg= zkzl1Jw(U4!-RGZ;ynvN?fwE>MFu0@^_MP$k4@zcU4};|heJQ}OGF81hCg3oDDe^V=w$yWsJ@Hj!^kB(udVP=# zEx$pIAu`6XS9CS6RAqj(>Ot~LE>sPVsFb7n5#4aS5^gvQevd9dF1d8$4=?zeT7HHyI-B{~Bnzj)~2{C*=C1c`xzF zm*uNGQc?64;MfjM2}OB{yU!Fp6iv)ZvbTv<-=X-#f4G{kWN6Ux_X7Gr@pBM3-WM#a z#+g zFY02s>gt)pp0D!Uxmvo;`_@XkXee1saJxaish}<_*8@AYKKOLfO7wrMoKj@vlou)E>YP-4w{8hpCpfrAJ;U$y$- zL)@#%S+utB%xIawq5E*v7k%~D%W?#Y2p=Aq_xfpSvfUhwsM)n@BF84)-L@B48B5J} z>9ew`zI=&Y13Nx%v5TDw-)^cU$9XwhuRJ{&D(4+#&5dbal(pZDOXCnBmG|)S3Q&Bl zDzxX*QKWW=*bGViFuDJ-zna#dGrvQ8}><6XRsd|K4lr39e-D%v*;*vXZ33 z13@7xIZFw)l*^YR$tB)YOJn4_)Dr8heZk(^oyNpO)Rk)OM5PGH&I(UMx2u(twjq3{ zRr0s%C$eHg(Xp{4%f zJ-uc_c&S|GAM3wi=Kcsj;glF3^2!m-Yhwyn`~WdpQ*NZ$6<6p z8fm%FmEAw#KGtyI!}HSEm0f~%M4V$sKi~#k*JOP5(wr9V$9DzKhf)h`(#U*e&wr9N zp?GgQyw{-Nl)3E; z$y{^DD!!N`v0uGmOOxUb7y0C-AFG*H(F);wK-0WM8exqwf=W6WiH0}WBhvb}@P^e< zSJR6QKL+fd?6Et{ty9Yn8{|ZM%Fg6#{=*JC_iDQe)2m*8!yTy4A^Xfe9fdyN9Y?7$ z_gopddZ0B&abMp*m$)jkzl%i4m{~8npaqQ^(JHIqVyO_2*L9M_ZQ&_xmWiR7xbOr) z7fZD(VStDS&Et7!gPC4>67oOz@i;3rU-OXNq*^c-z~z7Ruy>Bg9gSjjM|YL!lcz(F zm($#RnWNWW!>++pe1nP~gGJq)lv9k?V9N%kH2ascaWJe802H{OF3RLS6i96my4mids2H2U-3 zLm5xg**-vdw^CCxa2oT$ZA{sY@1`j$jn*Dp59&tlPSwUiIN2(t!iU?z1X3zPigSZ! zjway!u!z}!bb%*&wQP8)KLmL(b{AeIFpr3yZJ_!DS2E+$USNiUQpQ<`1s)B*mgG zoTzpGONji*c}{sDUUPbQg=E$KIbjet7pNYn15j`-U}=dherSdmo;u?nmeS2^EXxFc z8uytu+9>H1%(e_M;pLJdQ1oS$i4$15WKgwx6%ftEZzpaB;n>EHP9?n%mJbPNpvrX1 zfFb9ZAvwpEPr~C=yUg5Q&5qLT>ZIWulXXx0vd~mdz^FFOWF%r6`yl**AP5VdFOQ%| zhy<iC6sSj#l|zGXL_^BsDcK|$u(Bq zyriA|Xnsd~MQx}ZKH_bAkE)X)yZ7xyt9%vctPMnVI`5kI*n6! zpgEjt6|82&q2LnPN8dmdIx(FR3_yewm%-`pm;LyJoAY>%`%>C5E(a~gAPRc23A+ke za-a-K6NTyuIHO?k9xVcFFQ)D9;<-E)=igfuJzQ@9P>g=4jtc$tDzP58-_8Xzv71Sb z+5oKbQ9n+l%}w(CgOwi7^A{+;O#kEBtAHrPxlcvg27az}zE*Ib8_OTJ30{oCz*Tls z)EMT2Ee-q(cZ&f~6!peR_};h(Z8fqV9>@kLIHzd?ykAv4FnHg_wfSSxvW&~}mT;Px z(|kf;#hbObhAJWoiYx3x<$!z~{wvQhA|kFMxr&p(I8p%DTHpuq=YsPOc8&1!_SgK| z2uDTH$to-?91RA1%*R$kYWNSifrfg5v`Z{7s@~u12=*2#2ct>`gUzYuT=|)*T;B%| zmgX`|u=d_Zhad{l5Rt@_=>AEtf!sgf4%(rW!c;4Kx>=xytJ+YdSNulf^U5X+>aMrb zy%m&6NVQC2t{dRg&B(g`aR%k^*!;&p3AVEOcVMS{hVI=H5R05G12qOeC{?8k1 z5BB@}pX++*xoj_a-_LkH&vW1RbAL*aq}f9(wBi8I<@%;IO_&cw;3xg1IxM>`FevxN zg?zxoAYo4cV+Xj&eDOkOU%P~mrNNM#~;yffRhhAi#9X*TRz6)LQN7dp)SJQv#LNIjY5n~XoQqM26l z4^k34e4H$5d$OA^x#f>tz|PmX?3HBl92m{UIFGbc_2prbOXIQO?39EmKYcg^u6mKr z+N{Q>>#r7NAwzGs$H0Kkls;dEgvb3~>_6~gV?KT|%LPL!I z2vF;-^v7@^Bx-<)xe=Tp*|nY@XMhDtmHlxm3jDka4s!+A5ZP6xB3ww zHF1BsH%W3#VlUf8ezt7TTFu@IVU$FwmW>L=?p0YE52PMv+j)&><79 zB@MS-M<6`9OTQQRAoM;kD=@21UeVcl$rt%>;SH`$e7uam)@CI(hQ?4|6_OiX=tK|g zYwS-E))s&R9`4Y4gMb;k>lP?GToMnQ_p_fdhY^cuOzWh1(oK3NpJYs z6f0YR1io>Mbapx-Sf;p4cltJI&6cDD&+`629!!!TmB18mm zsS@)YxTPJoQ#es4T4EHZCqvSaOo^G8(7Sl1U_O<%sr}`Q`u%l! zd#d6B2X0bMZZ}ZNrE2m=f9*$6aFrU99H?ETLKj{fI&J|sn#fctA&*{{GzqwZfRXaB zTUD747IqsqJ@8hz)SV$y=X)|FzFTyV;ppDusTEzv+j^9W1mL@BBFXJrQc@@IZM>c6 z=~HPRNxf-0WOg{UCOn!J61&jv{kg!*Z7@dN-=>{DJgdu?Esf47j7FDNxfb`q5FM9B zJ=gL!Aq#gxTwWTkmG)*agy%tKUUbt~>E2LLglUJTXUT8j4FbyO{HXd+`#)~@Tm+0h5eTy3cn zf!D@`I)!l;f6${i)fw#XQ$UbsY~F#CVa-)%5C|2u+JwRmbF2-k@SRM~00-Rpl9W0D z%E4AiBpF6&GaFA!D{k%)(H3~Pc8laGf2fRIk*Ipys`4a~uKDh7?~fJ^7hw9n@W4*Z zRP3CQ!qioRx~LI6xMKkGitSie>I*c;eY4yXS6ATJ{|wkFrLv&EM(rrSo$G%sZ|3PR zj(SfqR297xK;H1Qr2Lq}c6ziz7}MWo`)mnH4^hw*ILq3E7I)rDR>NC=n;G z>2W{u?~w=Uvt#sqLy~(Rx+TcHT~dVPdo3SpfCJtRRuKbumJ^VXu-*xV%+|ghuC8VJ z1aWe0LiIbJ?0P3$$AjEH6+pe@dsv<@W__~~fyrdfg;MM*pNVBd60vixj}Jt^#* z|3u~scfE0xO;%j$ErGsU+h_55=VCxEnIE`3~Oz*7sX_>5cERZId!*o+4P%JJD^pf)k;Y*YGajR4ZXJtrdx zy{WlnY^i9cqz4*rn3q_lAt-H;0HLE<*ifdiVbNS3%E|k_<#tPLxS8Psw?L7=8{ReH z+oDU5a%OEr6QdwIu0b-1WWP^;u-MQ7593i z7qVc`g*EWFblzB;xx3tYXZ2HsNq*G75M1ff`9^lt%I3Y>2|sP|RW0McA$fs8eUNf3 z^`K8qX8AD>wF2LAUwrOo!j~!4B_m=jp+3by>fGJ=3{qX@QPFH?P%J=s!HSp;n?v)z z-!TLrgDY?;Ml)!)Qow&*3VL|F;GnOm6BrIK03aW%Zs+HsuS?nzc~*D@ofBT-3u#ru-7nATq-SRim>Go!ifS(0Guf3z%H8> z4}6%2yf%*%7yPe!nGE8Xw|7R9F=P?krhUhj9PP~jre;E9Qep|Z@5U2i{` zS2sX^Ej<~_Wg%u)UR)L}3*Tnl^1l`sfzZJxFoTCl{46B#by>$R@lj=!FNmdrcJ02G zy;z-q`j9HE4|^vi#X%wNA2=PAfY!C=9464WkF>436N`y0X@|Wjg(Ii zJ`Vb@$c$0_)ftQ8;$k7Wo4?dX3MY+3s>wK{1^YxoDk5LHZg@i($R`Z2r$5hgAFb2dr>R2AvVf()L1))}p9ljouwJUi$tb)q8 zw^oP6wNp$16k`ASq6A|XSgcUmYs}$m0H1Etu@F!UzO5Sq0!6e%cFP<$2C>ta$Da7%1;a~ za(1FMvhnyJin8nfq$K+WWjjso$txZscAfYqPF)Mjf6{gg%ooL=f2$rGm#&qs_uo~F z_y@{&`jc_#2Yn&AjGGQhSIgamS6nR~duVc-gB+H8y_Rk`I86MWjmqZfAfjdZ*#kyL z4sWdOLJzSFNf;ttbU1Kg%yx3cw#Q7TG$eMqh#N~ysMzmI=@Tbyh z-8R_&2*G$z&k-V;(P9P6Jufb=_X(XlMmS7D4;a-uX)i%hxKyb(N}mb?>4=q>XWdO7#<%jM$W@pEW`pXq|>b#OP{0efWC5l zP(vqE^H4fzyL3wD8@qE-SZ|%Qyw1n(Byj%7Fst^#M9Y)WnOJ~&W%a~Q+aJTzFiCnjInGEvS1V%M?JT}H~AI-PJ zsji^>+d03*UfVf3FyR_Uv-6}O-!L*UssCOpVC=U;8ko_u&lx=tIbM@fcKlf=x2J$E ztlXy_R6kcw`HBVW_Hop4A;oG? zM_6$7eK;h9T|VUTV8f6ye>xRqb9-YV>efJ2#Sj5cZSVdFv*H_iP{0x8N=zgFH+d^x zPoAShMkLR&Z?x^;@W*BK^3m3T*B`@_6}~A8nOtGBd(+~Rkr|Q@xyYJ3(^K`#h1^wC@?eTtgsH>SQ<2@%uVEtCA+2}>k6az|yn#9=ke@_2DX783|DDg+ z{Y|>Aje_D`uZKKwXsB?r+cXO*Z4v;>x@1I6hAL}+m$CQPOU($QAV)uHxU<3pmc(4R z@TED72ll2DqB>Eyo|P7_`pt6xy?o{D@V|eDm5KBh#%1l7JgquP1LAT-?O>W-g+=0- ztq;kr2nU{!v_IJ6Ipx?M1-B6Y+BO-{TmEKVPY-*WM@!~OX*kUOp_4DBOG)n}xEYLZ z46WNfmHIx=dvKHm1uso6I!Zr%4!fZ8$KSsdGPQLyyg(1V<*Rm0R_7G;Xx_!CIN(Fu*`RKLj?>;Ea=N;7}ckD7YcAP1e>Ji0c#;0C1i9U#N z8b>|!rl7^6IEQSx^B4&*cnC65&zIO z7|5TL6hXZ)i4>?Vn2SYXtT^p<&UDmzd-jzSJ`I%zpHT&J*AG zwJWG7jZY0G6yLmJ=9T&2$)&i1M=Gqe4?6^_vU2Kh=xQm{oFR^^!3;4BcPIV6O{(2P zJIcCnm8Mde$mUj%m=yhL9}93*=n_28=2(h;^Xj-*&=0j!Jb~+%(BCXW;Sgt6(fapG zrG9<-OYqhAxlWsACmpaF=<3-zMA+htcTSAC#R!d7K+=GPJNCv$4u_}4z)?u`powEW z^}V2~@~*Rl>yG8Jr!9IzWGQ-aC;@*z; zbG^;y_cFO>hy0h-6mER}?RNI`rMaC&Hnb@j*8wj_S>Z`|%MzCuO= zF_hb%5y7=>QyNvPF6anTmVoYVs*n&o?teXhaK&dP36vOx$7w3H8nOe?TdV_42v#p# zuV&PnGG@evQlL_|?|JwB*w8)YJmVn~4TXz=N&)<|goZNpoY8AyY9 zXA2kv>XXKX?i}I$8ZWia2~IpVOhx}}C~djAvhPEII2pd7RG^xu5pa$j zf&0PtV!8o!K%VpQeHRX@9Eq+IB!l84%jif9{U`ocy%o3~NQ;olP(zD!Ya@iag&MDK;PrgGx=2raPe=9|C^@YCky-(1n9>$ zo0sZ&Y97C&TCMa=+Jx#AdIAKbE%-V0M(|GO4zp%CF7rx`vTJjch((O3M%fXBJ%s{X z;nu*@h4HR8teyPoFm&VZ8{TdV-B6LK@bv3%nul|w>*O~*A6neQ$9@<=KSql(X#`Ab z3L^Cu!LsHK>v*TDMu!<5TTNJHG~pc>^$cyF)xN*G2NuQ$B;nsSym&5=0m`i1?%zFB z4D5s4U({yEI2AGs(B-|nGpOKvoynf|f3M(c28TWDFZ+*;YEc`k6f*&mXFZx7#om7Qm?W-aIF@by_c6<&gDE2Ss_37xu$NdN9# z^oEK^KhxBZ#qkSCD$?eq9{R&F!AYZ)Rq!>#Hcql0L8##nc0X%oiayq)MQMW51Osuy z*yJVtl$PUfZb{LS9!E52uiJ52J7p1!=*W*=5C%{nKM4Ai@?OD% z&FCuU%7E%RrcI$o2S&J_JE%~AWd^ZR-WSfsE(&$go^r}dGeG}3Q6v^1^rg=I@3OMZ z`fVH7x~Gn}AE7Yv0{TskzL?X}-?2vFfFMWM-ONv~%foW`Md03C%NSV=Mn-brG=XsA z-3~kV&H9R~i9n7+DsFKpU}xZE7^hzj2=nw1?7Z~$8Y1D?{;%meZ4PPm^-Z2kfP0{e z;EER+3OLlK4`K~1-{}_JGLh#+wqYVwWygcgkE3E<#mo`U971_t&Hr&fPn%~Y+*PQD zw2)M$^S{9}6j8z|63-Bby8JT!%a?5lT|yQ`y0-C<;d?}TJpB$tJa$|>OB{IG`Ogo= zHK6tE=`R2vbhsT|Q?4H|%O1g6CkDAnM2T8lBF|h<4e^A^+G;I^>)sG}ogx)CDW$M( z@H_>a4EbE+%v2(wJ4T$wcpRT)bRz65z|H~VLMZ`<-&15Y!f`P!Y+2F)9vj=OX%*)l zFN}V99JTiTKPd?GM7n{IO2&H1_f%552u#Yp4X>CJwWgTvdEeON_S_P4qzOf6|LH%v zs$^4jrq$yl6WWWBXZ1$Hd!?;$hbS`NRiAGH!X~Mc&bLwUc&N zDF^!s^>o&3V@_Ry7PEDqB5*B&AVn+b2RaGKH*$u2Otv0XTp0@6^%nkIS*x&t@G;>) zf%j?`4uh;hOXr6-TDRU7eG){yLoFiemhW&y61~yMBBH%@w0ej)0~>#sCwGi6A{uRn zX?yW)rE(si^Em2Qo%Jz)(8%tjcNSCE7>u`HRS$0uoLf4W5Or|%@wwsdE3ijmoDh#}x?| z4^M3i;`lfOTFM884@XVLi4!?=YJZmGu&OkHhmKZ?km}FArwBchT0W=?tDFeC#x>q- zW5U-7hj5VVKpmsi237@ zZD)==yIJsAh185q2=e!n=Ws{^{Wv%C#40OsMW{1y2Vv)NZ5rO7rhm5*FA6e#a~0&D zlOmSMm}*8&&`3PRc0BQ6bBG9kOh|OBZ1XcX0B7 zA^x#&^;`UsJh!yi-30``GN>#MS~Y6EML|z?Q*1}EsaIS0q-efo611E(RZEx=P6&Cr zw)xuHt-20AQTH|;nSoAYEX7zwJVg*1!H=UpM&Y>6ld^0STxRBohsWE}C1A6iM4kv! zxBA5>8IpID40%4^-SOt6inc)X)I9rA(-XqUZPsRKvV(H6*3}p*19X8egn;DvbBl(w zot@1-GW;)4RQWo72fohQ^%h>e`#NYSrtM&`opW5~IrGFchbtP<?sZk5Kv-G)4F&MG_71QL`{eV4uj~9r6wNBooy%3hrkP3EXY|B;E9dAmX|111$XQ6UZR)0q5Mlz4h_T03ugsFE2dNDHgm z<1i9eUa;0h6FO$p{&n>2`!(v}>Q%Dl)YOA1R6$0LVh+@!O~0p#^>J1QF2dnnRy`u0 zM=#^+P7wJ_AFJD*RBpNDB~pFOg&Zhxucz#Vrp`2v!D>F^jOi2u9mc6Y7uhx*K7UD!;$;FlG^fbfMO~6l6ui>Co;UP!ZX;h*a2RX6ro@w zn&8+J8nn8@I~e4W|eu#kbe5q0o{~r-W+MjD~143sW5mSoN_e%w$IC*a2FQ zn8S8Wv3oz_4r`SQk|03l`DK~!8Nz`wp1xG)Z|N(AFvd>{Fv{J9UJ7Ye7}~8lu#xi)k#Zh=9q;jGaXRr z!`~xfS~6-Ox#LRrm8as0e>U7BeHsRhYQUvS?U1E!b=(HW|9-NQ?l7!7Va)!?VtsQ= z{||aex9O3Q!UJO3i<4Kp*62vZEnmlv*L&|)>>v+6;3e%r1$H$S%40j((Dnj}HIiJn zXO3N<@4mVEB9QLelv7P-M zy4MR!psD3LWBDDcjcQ|jM3IZ+0LZ3X84`+8=BAcTfHQ@!u-a?t+GU1FIk~Y@1?U zP-d&F`a~dqP+V|qSasS5jouC(d4acep07@mU(DTYz^!GB&0m9;0!8xP{gd)G+y@1= z`a-SW*f_mbqXo$bd7T5eMV{GZ+h1GjuwC`gxc4utis|MtZxWp=*;{^ywHS}PQzved zCGlKRe9PkCc-s=vWd2{V(EifBn8BtR{h6Mpz!+d^F9z$9`2!X@X8X0l@wJ34RslbO zR^}**M&(L6T#dS6=eWtv2IBkOO)d>oV})$8ls)PO6MW4%FqH8k zIoN@@DAF#6Zr}Z=LkeTBoPA+&!r3sJPP1ypb?Wc?EhwTfQZy!U0-#L((s+sz`U>+7 zy)wqnV;vfPKWaz1Q!v>hEyUci7*(tX3Z;&y4KhiEw7{*Mq|c4Vy5GE;a;m^qUyWDC zm@=9yvvbCA_~ts=!k^>*ul+7eT&fzL%MAvZ7NDh3A}!KT#=dEs>~20DJgcZ9Av|2p z6XvhcQ#b!L1hL5O5*@X0&1$DE7xEHVMR{M}fk4xtS zcoS34ebl(7$M+Qan_EJSmfb&8-y-|~Hmul+uM2~tfARR9`N84iP5#eU9M048zF6FZ zmNW|d^kq-+|55aFH<_qhqZqs?=N4oO9wF&9r1rFZJG*=-zgmq=&9@ zzD}({c2JsRp5Fcb1KxVWe@?J&r zhEYMK`MbB?V>5TxIn?y&Bga0HvdqWlyWGy#sWasck35%sMc(V4lq5T#tRlG+br?Z2 zpfGLAjYbFZS6Yw4*TJVn7f4;)fjt98UIs{IADMVL>|DzkJRWx_s~auDz9i4vOS(ui zsji!H5+Bs8bk@6azOUQOb$XeI#IdQq_l zVa}bh^%f7HJtkrGFF9=T#MVJ=4!S9O&!`7N17bYS)>Z;@d^cgHwT3lX8E;$~%-oU^ zc$;{ztyt?h`DkZmt~bGMNw2~`B+xy1@e=ZEUiuuP7bO~_1LMk9rLUp5x$$4+-vW-} zE4Rm^dFqqsLRU_KMd^p~rYC5zeAl3iR+O=}fm@hQU@7oNxED6wb@$VDG~XmI6#O+{ z#4J$>8L)ytHMOSW^XPn&sk%2(=+U;i?e&fMZe;z!INRE$nuLm};=!etFVxbmrFJX3 z^-n4x{D=pe(Tk+t_Uw=0wh*-mj#Hsvt7D$N)@xjJ?q9TlK#v(Ok28<7{QDYID_Hy2 znR;E~MK7%m9U2U$Lex>QsTiyP7Qt(#7+O^AxqNWzewv`22}munVh_$c(+>GRJE{15 zYee55Y^Z;Z0EZkdb^5*6sx?ugls!7m`oL!!`#_eVMcy}*^~zy7 z3OQ0HRuU-r4O#hV(LeB5Gwe=^NMk;Ym|Q+x6Fkg^s7_TF|0`1p9n8taH~VXm8Ghyg@6Cj0DD=F zz?zHq8ozayk!D;MTe@~==33eDa+KG{l9t2ocZ$Rj(c^RsC2)pBGvHW29ZYCcO2Mm* z4r*6cd>TZMxF%~Q-orF-?tlo$Lw?Xn^0`iB8HFOCg`{vomX(QvMP+vXajMT1@+NP zD@Rw5A2yyg%Y8*M3b+AWDwCid^}t?o2l}9-)YCzS-Vr)?!iOW{_G2q~FZl=;7eNaLN0mhoUZ6vCzW2 zJgjx^N9JNaxA>-5XzZ2adlYQOBE)H+8%x4O&OmfsixEoyP7E9?0Zg}9J(z?%hN;UW zgg!yJeQ?@Mf8*8OFhKZB4z?(;%xbJ1)o>$i%<%mGvfJLAI zcQhSKQpibl%Jga3RG6hSzX95*$>rq<6es&Ykmt|lVD&>-HTO;MzX>V$s!a9xMb`?- z=&dD|ZXiHg|0|#BOq6twLVcjj;zEv1OZ4xiwk63nXAjsi>B!IAZ+m8M2pt68<~TxW2U>OUeC-7tgJq*O`ja-Y zBa#hRbIj!#&uriJw5b+7g@_cNe9`2*j0X7wU#R!?&MR;oSwFY}Zj?{mduS>VSYs~( zI=Kp|BIDC{DceFW}vg2W4tzHan%MZ+wSLA0&Pjmln%lz^( zihWSPTykyuPY+oFmLM0q!Mwb{ zxpZn6TAyoU>s5!A$X74KGGoEPYhbs2S?OZg+#B&;s})gyB;t)9dRPRDpoYS4thrA4 zKeGUruJ+?5_gYx5OCXF+cPc^F0HhQ#uBl21A*KAR+k%Y%=8#n3oZXL(W3GI6y{+s` zC3HHVx|L^MKFq-lbA35BpM{`pGUh?qk?ir;lf?iN9yT^OsR$Le19I*`qerxSxi_Aq z27Y*$!r;{;7kfMC2}53VD0u4a!8UJ|FU60M+}GJd=sChXORdm(9#US!=me>y0QkKJ z_9bBC#2G2JBQ?-)?+x|0n&=;FcKP$W5A%YDUE&oP$-?T)$(6dt^b133Hni>sysD3n z@`M>&<8Ue`YbS|4nm<~e5P{*?=poK_Otlfnb1p#lmAxw=Cw8)wno4LaEY5p^((9t8 zc?2J$J(!9|4oYFM6=);HKMUs1r) z1$nICIsE|^t(Lds=tp#CE&TR;o;0sbMev>n@G8J&6@q()6+H<&ChqO89v?H)D=406 z=Ito$+6^9c@uPbUW%NM%M#bH_EAIrTkjB%%nhO5DKKSx$lwM%fZK%QD-?hdDLckDb zHd*}x6&BbPJiLmzin!rmM~si!WRHeWaBmV?gGh|`5yKyuob9)*NU^Stn(^4G+VxjXM zhRXSF&J`-cf&OjjE}SU9v`Fv3LItt2W2SidrJBuMvv0D%O^RA3@6LBKz%e=RDBQ{j7q?Y$g0FB{mwj3}5E@Z^ZQqO5Ab50b` zgC3@WlLa27Y|cHgc^>&d>S~(5I5K=0bvy8WQIqyE?h6{`llKWDq*3G-)d_@D z8VjpfnRss9jB2NlXd-Nj)PTk8`)QO7uHel#;&)W>;~3xDq-wq$0I@v-W&x#IhB_+` z0Rr8QO#j&L)hxPHBqdY?dia*Q%BKk*-^A-S_<3{U23Q>hxADD1bU%N!^`NUq*J}?2 zT5N&nloULPLLS6;XmMK}1p-{b&5`>WL&$#Es{E?dxg9?MZjG)0aCOU;X(G?RBv&n!M(m~+T1t5eMzctK8ne+ zArqF8gGL|cQ)`N4fz;jd1RP?bMl+7ybzVEoxmkr-@k3c)jaH&x%j-)=jvI00RT|fj zh_^}qC(2d>Y&-QmJ zOM&emj#Iq^IYE7B-bP01M>;7(+cI$|B~S&Uwew^~q`=T(FJr-PDOF;~5xPQFSyS;~ z`4dP&LCGqkwbqe4g#SO&VGU^~Vd14-dv>OA4JB36Bj7pRtUSc2da0+IK^CGnWrZwe zH(6*Z)ZDZQ@4GHrYk3jTrrT zu6uEXNq_MS0z?p|!vE8X?R;Osl>syOwMo|CU6i^4oIdUc&6ovIG(?d4RJ{CPJt8s1YnK<~_kdj@Z zr6(t_?0V*;=v~7L2FuUE{V=+ZJenOKP~krIselUMujF&Z#=*F9X@nuvB|}hg0GTiVSAj;*eDqK>P=SW1III$5o7guH=w@=| zzuV$&u=B6J5|s$bsUhZL*`MgqHu>j~)Xd?Rb_y!gEvG+qQq=sC7a2@oX)))z|A5zaF2=CHt!Z0{+eX^oJXTKH0Vn~0#*0H_XXc2W>cUX*!4WF`Z3XSo}Z6} z%xB*j!TAO&vHA(5H&~-HZ@}?YoP^T`qH>A70y*0IVcqIm{M0yE2=dg76#r0v2xHr) z2aBo600QWmm>7o$D-T9UsZiC30m@Qc?)c9H{&+|u&~r=4?yYJ(ZT8ZMxc~Etj-Usz zBO$=Dnb-BS{pXh4*;jG3A$jAA2!f2WoslL%SKu3?1cWSoEIP$2rl5^@pWCE_nBk;l zL5Zr!BUM^z-H;nz;1wFr|Cw{ZYw&pl2A)E{&f0Ud3;WS!LVfV23VUfT%;WV$&P{hH zxg`-yh@j2XgB<0)FMka=0@8An6glGOAxw73=^F`L4;r6rX);I2BDQbTvo#?QXSm;Q$UG~plI?*76h>K!r zv+PBb_UK326?@ooh|IP3b%uKyGga}01Hu4*BRyOc94Ob_Y+=D0x#=}r8IOUdy~u-4c83T=HrpUu}`XmRhWQTxO>P4QTfF3|b`R#$O zz|REJLfgeWq9*8xa@&V(>pwxOOGc3%*|I?8Cc8?7)uU!IHP&-m!SKwL*SV$9;x zWZ7UR1+}{!D2IU#PJ9a88)u15pWfMt@TB&D^@>sIt2xnQhU5(|UFs5%`~#UGWJQ&0 z@1-G6O{~XGx;F%=-`;FIHsl85w^}*Y8{bVE4v|x_F1K+X3b~vH(|wZma3UV86m~oE zw}_F|zfxeIQE)A^9VvOZTJ0$+voGK@V(0@!?gf3)U% zJ<1_4r^OLbzJ6RlN&&Bvf-3wIqOnFa;yWj<_C}@T0W()hF)INJP+19LBF`&Ci8p$C z@^UmV11FF#xfL#wd?vl+fj)n&HDvuerpL68-!-6wpTi#6;;UZvBDqo9!YcKQ(S795 zWMmNPniCNMTZDDP->Vk;S{)3h@c2j3AU=*C!nlgCnh31bZQ55V-%o>#Xr!xLVsN!D z(~a*K)~h1g1PO8D0AF43l=U@5D9{)CZg4XVQ8`r%V|=SUSN3|jrr8`wkt^^1e6W4> ziM?Z~ZZ7e=rM30VGSAz7v>`uVU4$Xz-zwDecN-fIriC^yiJ zH~@$s4gmZ$aqRiO2q*!?@W@W#`8=^9pibuUz-dSY0jF}ec{JC$9bo#?k;A;j(*exb z<^`ENEyPy_F)T9HzR*nCXkcKHj{juocyE6#3kerDh3+OfA)`Z7&F+Uz!CQ2FXVo}p zequm401I)5f6yadje6k{{-uC?x!sy|=dic8cZIs?kxJI!Yv?8RL3jvFhu6CfIo*t$GSDj;b1`y`!)39RK`Am z-wq#u&dx*sc_R&|gQj^ETeE z6jCBOV_@DTjS?@yxlN-XI1r3w(%(O`g#oD)I3n> zh^a90`1`+aB)GrxCirlR&EDKN%V%RXk#6VwJv`^Ad=Gqo%z-q5oQfvK<{WcBs2j7! zz)Gm7-sn*7+cGIY<|HFR+7})i%2F8yk%c`b_6<$DA#xNwV@ z7yPMH(hJbUqsJyH1FRqzL3{_k^I#`=?dk6I6B&Ei*d!YI zbxhd<(%$A?oL?so1P}K~yUdSdg(OFKl%2%-bf=Ai1B+Ck%C&SD6P1wTy_9$L8d6;} z#qRH}L+|&u))%-w?p~zQ=y#Gznj>XQ@y_B=dWlNSO|QZ5Xl-n=tC@9gq2PZeRXiHq z5Kj(;03+suso|(UaRw$(95N2cekv{oLc{yicw%zqb3FD($SH3 z@glBmzyIWRp%-Bg=fAs->+mtC<(y_n`ihJC|Afe!L1q+eoesKfPII@5p;gey1O*KO zOEx2DT5eF%oWad3Ln7WTgUm1~ZG z=TC{Cx`aLezHr|$qd^mB#BanxcdSGi$gJoxN-@!py9jwsrRHl)u&E!kl8Ei*8jSZU z*h+slMg>o&+S{4InUAi^*C}zw2W9z;t!N{-mbqnpMcs~L;3QyH;pFlK+36GA7<#Zp z1k0Wa0+#?o#2m*Pd`t00V(SNH=izzNX3BFZ5or|dwR`wz%$+RQEV-8op{{=U0mkOG z`Vk@CJ1Qk4C1^RGbc?R%Trm~Y3{F@HGHQLV<^369gT$pzTBIG=ICfn$NGrq#D>V$Vml7Fu`7JiXBrBdpSpotRYeJylYrBb4EVV>eX5C= zhnt;gzQk2acOqx$)zvpYBPO^b*n58_@zR4oyuBl&dfPE0hmS{m`QjFG?r^y#8oNXT z{{7X=6TQgF7Yk>KGf7zq1FOyzl%&`0Bg5bMsd-!)^UR>}dJ z7#gP?DCw|6Ks(S|Zx(GsMMsJv88aDdJ1${eceFEwN94v2`7mr=Z!X87>a-aL} zK+Eol$j-}~-D|o(JAE=z3tLeE{xY_o{`w;pzh0>Lb_4aFjvB)C`fm|)ZlV3H_!vd5 z>G`naR0v<+GfR<0`QuidQf@5Tx77n@n&#A3HEC@y!=q5SJl!E~DG6m7SKN2!sj-{4 zjELF^FdBP;c=v_X@u@a{`FnG*yd!Zp{3~c#92%Jf9a)np-Rx2RP~lHt z!J7b+40lv)K)rk(HOJ4ND;U;01&us}=`Jp;jJ{jT9@dumWzW8?KEM7WPE`Q4fdQhV z0q4!CZ*0VANnM&)9u^;dB}#YkGT0U+Q1TmOh+&Uz%3pUC^4jUjDfeyA9=i1lck00n z1P}dtrMW1(>m%S**{2kDKUbX+I?dyGc$#?v@=yjBY-J9%qmgXvs8(PG9{-x2gq#(j z8-E2Mcu%C5-^1ek*2+r-Qg(*)bi{J(I1D-UuOAGXoU&4`e6(M`hl+fo^86GjuR=1Z z$uTq!kM;bn%4JGo)wYY=V{_p}z1!$r1Kste{a~G0FhT<=G z$ECiPfvz#yvo{;Pz;JIjIuNl}d41DTM+mv90~CQrjQJt&X>JY_m@SE5>jI8h@RL0! z%DaV_2gT*_U+2r1oKjoJ{sA3JL~%XjKR-RKPyXDM4*J}H(?aI0&l17$;vM8c5KzDG zT?2oeGQN$J{dWLgdDAd{*%3w1U8Q`BFa)u|IX1Ii$pT zgv=*N_pECq76@H><&c%i8j-^$o6A-y4WFbPK-tU+9aZ#7p2msE>d+F&%^jW;D2q}Z zOws0ZnEv81aO_6p)~Qu0W}GwQDD9N^gF#ovQANj+N;^k0&1Avl^p#=v1GR+@ZQJ;n z#Pk_xP6~}H8u<*K^Sqij;1F?_wNy$>N!(A=SidA3t)K@2`TfXa#_s!s(A@|um!q8D zN2@XpGt55q9vn7iGT4ppdARAC>3?ggD)lNZ0{XOhN4L^=C7_GY6(cCZI_>WTNPxeW zqsfeaz}YU>fooo5XlL+UQRh#Q=k-F*a}~uzo?PXPWe>PpoNtOgPeBt=F6&dFx9&S; zluu$6xE_3Sq7=$-f)ggo4zyN2fzwAf8jv1|XdUZ=60s@mF}#}&PCE|Ge*mtc6+D+| z3=AVmf^A~HUzTz%j<55sc524ia%FWXaRk#akp`;U^{3@RoEpl81lEVIbFO)VZ5QZy^Rz4q0sl2tGJ)+0vx$Ws|RFYh)~ zgxqi8I#4qA&;>~aY69JI`x7VkSd=!-gQP&5r?84;RH23&6Yj3HFf_b1z631{es#(j zAg|<$$9s6B5ME5FZFGMJ@z{I;c{`;6bBj- zW0Br=xRnA$eWcX}*74g9o;-nMD#+y($zBadQ7fOHo0m(hUkp>NpjKq`8l#gC6Vnjx z6h$F;XrZ!XvAA-i#rJY$^>{oU zwrolmcYlZ#+?HZ$8b%LTziS1+jmi6SoK$4>&)5?T!GfUojE>7D+~+sCo2u-I`N1EH z_cBJctCRE5ON$7qX`#trAl-~Y{l$lJ0kL{_NAsKIR8a{K?K0{GkrYcg-zli}_ifQL z8ykk*tgjHC91L*NlZ555QvWK<9pFOE~x$Ng~o+yx6Na!QmwKcs_1U^n!E6 z3?~&>(D!8gFBK`xD^3N$E(O%b)XXSxo}4^^L&xpLNDXJCTr2fAj}+>uq9#KE1b^oU z`_mtGERq(*p*bvfH=3U!^q~LE?}v7|aJm**tU@&C!oZaHg8I#yLi>wP=lUbI)gjRV z)qrc;7?>-2TFB4lkks;Z$1IYdnzCgjTjn3&y#tSrfAC7 zyU`fsahZrfH;8=guiRI4;)2)CnOIVKtNu4S8-XVzUk*^Vy$Z5hxC z*p(gV^+{9`rmSH3@yf?45Q&wz>EfNEZ_#suvhEQtT#@dZpG085<+J&=1EO6~KQ5_0 zyENUGa&cpYL&w{T2oy4AI&VcrctFa)Xz#UB`miWy1Ps!RdRwaytQl-H59^e;_NSWL z%Qj0F#%FqzMiLg5PbUNc5!jh;epZbik18Mq)j7ryO}}Kp}9O8slcuJuCniUE7R17*PhVX z&Nm`87Cs|uccL|I|>19|s!G4y0W?nMGaRd!9MKRkp9n&Bv7 zX9)}g=7Tp#RKFKYmE`m-&aU=Wpo7d6I z_Rv+cM@T|v1-UW`b?Kri;uCfHf8h7;#wV$EbhY%TI$zOfh&cLX9i9JC;7@(uLGO6t zSB2%57n^++?Ifw>%d?1L{_?GMHugPN`S7trx>~HXAH+jz!o{@j^E&1=&OPn8^&2hF z^YMqb0*h`JErZQ3o3^no+za2dqW->US(MGA9gL51HvO(tZmr)* zAXM+-*IK48zq_nyA*DTbx_-%z@>JsPk0O`PHN4O@Ui;1O$%Hl(bK8*2@8hzu`J*h6 zA79=i{3k8VUs*{H^FyS6WtQ>X`!Q>-U;+Y~|M@`we~h|7=qDO27~NmsaJA`#`O=Sp z8E@d?TaGY+Wm|S@jxHWLnbnhmcQsRJP1U&de7g7UO}nmIv4*Bwew7Z6uEPJ^QhH?T zx1s-!zdp1vXo!c=7+&;O%I_GM7B=muJhS8ZfxajBC%OYy0~&eBQ%5#j7;yB(7kq5m z;6#&6rDq#iJ9pI0YaH>(tPy4SX1?@0-21S$Y4Meo(i!Uiad&)%JX=4AU04po1jP{-alujE#z zsNXNAuP>$C=_Xe?zH+WR$HEgu7YXWYC-5p}cSr1vdCfpeIt&Tf*b!p#x{a}H_FE;C z8F8;bz>%N+Kf1mGEb6s+8_c7k9+glOFhClV5QzmOq`TV!q@`;K3y&aOf)dh=bS|KX zD7CPZe(&4T_v&-?mvc>zCRmnSFgxo1Xu>RSKaQc-O?=V^%FpYF~7iJOYH zt))@^9O>_0ycsBJSbLNL;YQILb*8Yd^!b9N{&Bk->-hK-V{|kb4P~6U!0`tdU=L1EIK+PDCloVNy&6W zl-tphC-Kg|^`rka@c2(hukGt7P*hsUYFB%qcEX}Jz>Hu$?ko`FsT)H6@PN5=`z2v? z5w}_D_rN+Mr=9hzrRZ{xj1=p*jBitU<-B8>E1BI&A0B^Leeoz_fE}6a{rI%u_V{R% z$o(vO?wxZDJ5Wz41mXVu^S6S-bqyf~jE*z zv(T)48A{NZ4U{`JG&NOPe!fQ5nQLSOmCG>4`TFC}+f=IDy0xkDYXZN0?N<@ZFW&B2 zuqn?S@Q5z)iY1P+VK`iaJs}!hfJALgUp9qVux@KtvOL$o1f_^O$Q9_RbLXd^ZgDV^ z_EVnD8jI3l;f0pHkzpj;3qq3XaR$8uSB+yMPh{J9N#U-lK8;;97R$TNz8%Ew?(?ZD z&-moezi;snA)fyJ&WC*ne80VJ-o3i#8}i&cO8#65YVP>CPAL7j43(cVpa!Yi+VG2& zR`HX}H@_W=`}R9L@bj(0NH0CUMBVz(`w$OxeA8R`xHvE2=}ME?C}Y=c2ZEVL>7=+v z<@$XCopIR#xPj$eQyC;zYGOsJBeDM2Yq#dLm~w3yl`NF2yXBPDDWSTpX1+ufkgZyCPkD8Q?xaar8Mjbm@n%KG1yWB#fU!C){vcB9e; z0HVVpJeO~;e8f$b*!sqP4mw)8O{J%Hlsj5v>*7A7Ui{tE_&M{SFug+)79w-&D&qw$ z708%chl!G>)sus+_$i-BzK36j8H$amjjrpSVY%JNLx#{Q$~U=9D1OkWWpX>B-Clzg z{!=0CZ1w_0;ucN%a(dhC@?nL^HY-exb5itdmI2jSmLecI_be7z#1@V!n2GUCj#wlg zHi$tU+g8gKdP77s0{ba}cQ>)pH`w z^yi2-U+xoic|cg6JW58!woG~MTsqVk@AF)R``3}J$EOf0#E->@$WT%26R=T?j3Axs zFH?gm+R5NhUFj?MJ@WeV4S&!=Kl0AiT%kexYwPg|;xo*-=c_#{uUfu-G+dvOG#(+G z8dYJ^n_pe}y38UaR*&$uNeHj-?b@x8?m)a=iYhygsxJ-0mT|BHI#>0@Db+_3AC|JM zLoTzdvke}!xVpW7J**|&zH=GXqaVHGJUOa}9cNCa*6{Bb>Auk&!niTvSCQK~v|2U>*YScAdyRm`2vs~695U;PhJ^rAf!(J{fl>WFm*Ow9d z&Dp@k>PBog4!M25FL1>%D?ibxzQ3=CQ|5ei3;Tdz74Caf>GdkK<5+y*Qe@-2l3Yl{ z4j;ZN-qgByj8FR3r7E;`!+}F*r`igA-FUJSypm1LRzFK9_=zO(ZiF61&6RiYstdDy zlVY}yL4WBAd~=$!oRgVXE{?4)RViXtZHZb1>?5hCz1^CfY07aXKcQLV^L?VF>{qUc zLz}~L9voTox;@f9&=*C-Eg%}9QDTC%Cqeevj|s1Y&Igv zX5{4Lm!9QDlNSzIBTGmT8{v$Ornmd(uueQWoZF=uoI8aIs5cs&VC+q`Cq#=q-RJT8 zXZyk*97jopi{m^AGR(}(RI*EN--_HI6W20u43Fk9yEk11KS?)fd21%OZe-Zf)UpXN z2i57WY>G2y?l?JvS{u63TB{bceR`nW}E^G4@ zXC}YPbL>cQDy)~xW{~+9Twt!j+KatjnUf{-Gv<&=;&oW`>&g}$OT}*webxHhOziCP zV_m)<=>u!*?FLzG>-y3-uSwHcJ^atp@%wDwcP|_KZjh4Ct*&SiU&!Fi?cD6JA@B7l zc@u5+(dP&?$O9_1VXjl*NzqmwUULC)$zh4s`VVC*#$?py!v?LdFvyo6bag2IzLVx2 z%Hp=vwW_;?_jGfV)8u)4@H+Y;IE_4eQj!h$}uvJ5P+xbM2kS&&B$E<|N)$b{F^wCL4Uk zGt`vaO|upyF@q_1zRLMUM~3VJtub)Q;VIWDwZ!!jg>N|T83Z;MDRDG+Vx4xBm4!{a zR-m&pJ7#Kqb7sDacGaam;6AftRdpeci^bdt6t`EZyqX)b*GE-v-%Zflv~k6^Qkdbt z85z8HM-kr?Px7}lzx~)NrZnw;=cE_UvvmtBbbmbV&cYi(tv?B#2WyI1uj)OmGW~yY z%nh4;B}sa({RHt^F|K9SpQ0a@<_AO-@a)zD*2m)1^i*|#)c16aGl!%R)0$+cBjc^tX^3$gipm;l!*2-xc{TfO^N0$pFTfgu$Bjre9 zmvqqE6)&7=_8n2i_B12HCyDS5Y%5(u@81P{zA)u2C;REAO5puSHi= z*AleD_IfwUSzQn#=?O(dLkvCFji3AYP?i@+`cdkZ*(LWDn%V1kf>p5J`rG?k(4DAo zvgco`y!Y@!UE6!qY}(u608Y({iMAEMw=@i@!z-DPI5xY|>|XkCbKSI%mZxtS66 z$}$j7_A>jvc=Y#r^Yu728Fo?!kaRCki|)R+vMxCAB{O{`xvlw?(8IOIZE$(A{TKp0 zS=4Q4@9GRHWEq$UU)e?}#KClegHyg2aQr#4pI^Lfczmss7zIVrT}ztUj|~_q`^mEV zR;DPSgfl2rnps_C?T%c;c|H32k_NNQ0M2r+enxjE(F2@e$~boP8c&)B`*{pG=Mkxv zseyxCAed!!kHibYshH>Zmj3LD>Fmipu{b0J>uPLfW+q_!{TV%lc62xN&FX8Blb7!R zyJ!)CzD5?6!d!c;BiBfz$aSeeH?}E7RbK zIGOhRfmARkHI~dXPM*T8=qIo`mhJWd^hicO>sCsEx#9LawHQ%r}zo+0Nb zTCu*wxOtz@D{f6uZD0;)2s)Bn4P5ZB-qWIj4Lh<+xqAUArV3C&klQR`I4WOc-f1al zGyL)S`k>7yaOb(WRG%JlUG;wl1$rs@3(VTD2DbcRNr&7iKC(PipH?9Zr_e2XR^vM> ztZfDcH&^`z6Gs(VPK!Ff=31G-n4%1cOWS|??~DEh9FYH*?v%CRu6r{0BkMQH#{3z1 zY@E(#^#C%Bt%g&yvuS5fWo6!*amQw8*t871J2!oTm7TkO+BEz#@zU;%;wUB2R(4fY zQ}cV9S3vRzT3sLXywc30aL(u5_SOa~J^iOdd*~XF>Fw=(Ot2YgsM4Qz|Ao{q$K&^@ z{D>pDB06B532U*C4XyEEgGvrDiO+;8r<4QCo*#*y-T-94P{?fk9?gZU~?*#1L74Xe8YO}!Q zwd4yrgDJ@1?TTMJgY()O`SYdOOams0EOL_Dw{Q2_bwO_c&agS0)|YXfJ2fPMXuvD9 zo*p`WG^VG(G_ZdB_v!xpp6Shr)C;Q<1RE!0B5SH)`m@j@Hy9E&Pu|GvG^Ab&Sf02s zN#IMKvhuA;xviJ(B$X>wA-|cbsvA*H5BO^*zLtF(I9p7hsLC66sSlY|L@NRVuK=HmmC1x?4+Yyh}u@ms1h zXA%+atD_r}py{WeGeq&*KU|}DOaA{eguykoXiR4}*GLYpuYkSmeij}nFu-2tAABM^ z7^hnC`t8*UMzE6KnM%ps#OlxMIn0Sr-B__ zLnn$HN9Chaas{)@7G4zMN7s?#Z@T|c&D6ztM7QxY?~_|zjg##>Z|^+eUnba*ZEJko zKRa<+w_91_9}k-zrwDABTEaLRX;VdgB-38GF_QN_;PuT9yJ@plgR_X&BZ^A@v@>A}6rqPuZH#qKkmm(~gY>?^hP2ZKSxn{DKcULFSn zIoY^EX|n9x8%K}6XlhJefB;|C1G&LHIlDVxZ%3lIKX>k&WJ?nC8qhDZqm3&gaM^!O;N#0Ln6tlVBbio5P7F1>0+wNt#K(~0$sOOba-6(hGK(w9jKTMnL z>RjC1R)T-9W<-0g0jiuk;}}8G($CwD5yE*fISH{z*~@J*(&}5v3XV$~4NeWyY7b8@ zipUTg`)p%mniruVQh=in$BsP_2mo;~-bF{XCk=`pl#&0E26KS2bNIb_#b!5F^LRgP z+|qPz^_aWYAeE3sN7}nX$EjVA5o%6OPVWK_A3WIO^ar5X8#8}r@fJIO{BRFmx3B)_t=t~x{JnIXZxL22cAZSr!@14-fU|DEDd%-VJ z1{F@O4!7Oh%E5l8Py9#glKb++a2tQ5tfC^v@&Z^HdgwohLuEJP(FYGdx11B^&x|Lk zRBxd!`9f2rnTPJH@!C;k+wbiz#8MTz6@1IN`P<3h2XG=ER+#DHMSO|kt%DwZlzphW+9$z(vUDHfwv4cQ|i_R z-e~nTh(!f8aNjUx_T%bRNY|2%9t7h1TZ>aZitn?MR=;WbGFH$S*>bw3(mgBwXTy^kVbbjr-XZC*V_clB z&pGA;?d|NA0qv+L5@cYIY)@6HPMev>*u(g`a||f{zB6w#3Tq2PDB9wgbKh&9Q~)@$+}rA8y`mx@N0KdU^UKPbkpveF16?UV9xJHjRuMAv zDi{^tra>F{W9~=oRywtSQFIZ&Dgl=tcixRd-`j6p+<#cwFq+QG8Ix5`c(axuezyvI z-;`>BTyQtp!<(W$5M;A^TCnQ^N9Q~G=EOK<8)|PqS&i$P4~3Nep3Uqq+mtLRqN_(`U+H)4VSCnqm%nbw8=~I>eS=xC8w%}V3mciw zjvP4>&1LK>=iZLNEJI6VgKsLYN%tQrEv#UIA4#^rwfgsAB|g=t-6Fj;rB|IRTsbD* zOf4jLMK?fMUAn{A{_f+u1oy~l3w^w;Atz~*-gabcOb&Bj3R8P>9#1$w@lsLgAT!*Xny3*APDK`JPRL1XubKPlv&LlkM5im8O*5|@6S$t5ox%(%^Cl#p(V`RIc$-+ z$3Z4LK(*Ov^?_KPopC!0VfZmEb!YZt7KsBDMYSMPx0D_59}*B#%NQZ{9#=8^vgK&k z2{laE0BK}6NsfT^!-hGMvZWHlFNymcB(8PE`q-PLt*ib^!nN1JLP8RRJqW<$mz12_ zfEGgON6uW;XFAywxGROBBjg*?;ibF>UqddN5@FMgy%e*5Z|&c-|rK4|+938^vVw`h*wywz+;F~myuk>{ZdCxu( zOPa<8(GFZaj;!B0U0r&8bu9lft3mIYofQ3IGo*u6fhc-mf2pIWQio~=oLz}4bM@WjppKDA>B;eM6Y<+|FQ>} zs1JHS>hr)4Xbs(Wl_NQG=1gaajgkM^>te?!*_3s4d!LuRdPUa!`nou@DQSgvxY|R) zwQC~>Ki1TU4#3N92tD;%;xMdSOMtWpJ^=w;pi396=>L07cArYsr&+Rjb2e@kW%Vy6 zY|L_yRu*n5g^bO`W!5sk@T+v{o3wJXTL>+`OE^xj>x-0aRAgPGuE`alF@msq@@n*WcZGT%O~o;NhV4R#Rv| z3vGxMYqpS}aE%dZn4_E*dUt=Ei=%wrQa7S+13aG{g}?q!jyCQp04)&r9k2w=aUw=O zclDXJ>_G+i-2HNm3^zLZupx|@c+=_A#hxF94@|mRDu@2~+iC}N^2VW)v{}7H7JUSL z&0NFmGmMJl1R(+EIm_v&KdiVHl7$!;I#QGUadg8oN%*?-!z2unXe`}|`W4Lak zpe=H%q@>iKq`p4~^jd$*!8M85fU*(`qmUb(?AcLFG+5Oi$cnzCAiJu@@xn2@NT8Vv zW^re1ka{@`f`-jDK~Kbxap`2~zyT3iu}rFP=TZL{Y)^#IoAtdUQqiV{JX##|%H2gd z!%Il8Nqef=!`{V=_p?SN|I#gcHrpyxhHt!PXY|E>+s3ek3t^fUyA%-?mIQPBGW%i-v3(o#^jnY}E7<}~^XgXZ{~)kyG~n{9rc%cU^|qzoPW5Zpp*LF(#`QY6 zz0unU;R@mL+;TBkn&ox#SecF(WIeQIpk3IpPCHp;jCswk+Siv<)7m(GPijNBZy_7= z7#E4Hw#nnMDqPl-GaFn|#RwZQvJzDt+!C<1HFXypj6AMg*3>G=%8B>x$9EcHi&HL( zJwZlK!V&Q7v1>{-rS$nF*}Fkd2Y#xno1Ckd=U9Go9WKPN3W~zobua{|g^{JOyQUjU zuWwlCRvq+l{Ud)R{w6W}r%7ip+ZNC%rDZXe6Gb(^cl~aHlpq5$yPyIiMv;8olRaMh zI$63Q)#TX8B&iaa?n-(M>yQoY0S?ubh$?iUiRy4*oX911S2?#-)Nd@jT?6QD(5jde*N%^mz4*V`tgnvHE3=?L!bOXC zRjtnUY269NCgX8iV+wb1k6p(z)YB87hf=f8Cn~?d!0uwJK90s%yk+e*rhiqT`+0hY zoFUw?8`(>Lf{iqO&a8%J_fQPsN&9+{;jL_I!>4d3iH_G@_bq$&uSrTUr1u#m=iucw zDCKU)&vQRWkv(6Pf722|A-KT=bHF&p1`{mYc`qli1izzhPkd+85=-gzg>&4{_t)_8 z#LbYrecQY%OJ`~jRnZb7sCDPa9YaY3$CgTsX>`iI{rh>%F!UOkn#~bSt{%{N>!9#h z6S14BMw;@6)q+1AK9&jyPAx`|a0nEBiHIRWGxEu2^_)mOjnAsqvToTseRNj+tkaz< zCw!S5DXF`h(J>=1nPHklZ8d{FT;1z&S#tWs+XZK`UuKLDkz>R}qYLF%01q)@`pQi< zBKA0r@$EsRP4!msA+obW3srK-$;p$zhvwwTynA*EfV)}KKiJOR8cvZr{87807Lj|U zw>mIDu-028G473i8Ear8kThGsAXSWTRn9`5_xgf8^-F~R`1_#udj+uVid+`%)qVP; z&opOW^j9mt%~>D$c6Dj#e~2;d0k54c!>>ZFiw_tW7-R^Eme)kOjl57=Eql({za*4* zf=lKmC#RrONjm1XZRd!k^!~8BFV82{E&%-6c?s{M3RIV=ilP@=(T{)a78-7YUXf*w zDv>F2MoH*hYinzxFNt5dOqnDy#f*i6Ly=W8tM&Eu`;`%R6n?M~zg?O99M>4B1>LDp z5r5b#lB3`K7DXyvStAGucoWh`wb3%GGcReZ(14}OImdLg*-v^lwnDO@%f&%?(A<0^`t|Eqh*ha; zYriI5M`%Hx0e$$UdJ0lmG%`j*k;E_s{a2o2J7e7|-A40%H~%oQM~{g(F_~jVn@nb4 z&Z>^16=G zUE|*?t1kK#77>{MIFR{ZWm)xo{h>!Ump>e)(~kCk`EtST7bETWL99JZ#d(dC2et#e zDbzdS%QCFN^L{}zHJ5^0e0~q#{{6j4NFJSn8%uAnW@Hmda>C}i{=3KT4Es)o9eFX5eE*FQRtr02S+T6@pO)tFB?B`fLy zIu>j$7;ebOwa)Zg3>tnchQ^uTawRkzp*b-h-ns{?gh`O^b+rDEKLLHAn1EYna%718 zdI=K?eZwkBvd7&icM$uds>S5(%6gCYECvl&;0jX7MKaxZ+v{ZfgJWdZmeqI0bXV2s zJh;k3tsm;CUAk2_V)b1zoP<^|GRHcXt<}Q5c=AUS4_)e>=wON^9;`onc;`30f#63= z{Q!bd!9z2e{F`?Y>ctKz!mj zW~JK5+2W&3MQ5t3qyLPq5h7Y$Mbvw%u5fRV47V269{xetkdQQ7Gz#0{2eybboTAW6 z_+yd18dj;ISCm7D=SagZZETgpnMMhbqvLKO6N1TaU#{!ooDg$j+An9c;m43Ms?*z&ip^;t=zLN(+tonP+zo)zG`f`w!O*4CU99B^kw&Q-T?1> zuwi+w^L-6Yx~Vor@s#KY=P!>&u=IPt5Y=2`gY874#$k@lZ+B&vifP-wyv*zv_s1@` zeMbm{Mo+4k>`u!&gy{?RPr{3Y$q%Umbi23C_lLgvVX_bf4#qL8yeTVZ9kaSre1<)HE)7xL#U(2`%h}#f61PZNlfjJH zB+o2=%(ZA$%fNK-omE3J|KWS zGtPycoTf3N5-6Bxz3fkL4ZFR`Berz1DYDjKjfv*Y6`+bZg&Ycu1h>ZkPnRw$|6$4Y zJ~FbI`HD{O&6Pm9)Yy;+6f3G*g?AU(`=`-g@&q zj*av!rI&PE?l+@R?b-*%??Lf{0@63{JJcMo#IMwsxu{TBbi(?c3Kz2**?ZRJ&MD@TuzE!c_G9NUG3!*kaB z3caGpMJDlfsHXn+c@sfVM2af3@U;6c)yH&|+r2zh$RG(@U zG)WL)sNa8hpPi|1Rz#bALjo5p0?dMjuT0u^W{l2L=n=R|1W9ly_`4EHGm- zvdn4k$(ZKI#LZg`s278mzi3WQdC5?mm!{)VCO30y=M91 z5p0~-gKP(f#A8%YN01*ASuz$u%7N4nh@2>LF@6r}2|(Xej?QCo)2ayPmTm^`5OVTe z3QpC}m}*VqA5C78nnvII#K<=jX_M{fMEf%(s~+C?VUmM~4)o?9`%&Rd!c6}WKb{jc zv0XHNLZ-Tk9@Qz^ThLl1Z~Te|=LLFIJDLu73Y-ky`+Gao!@nqFY4-|k4ekFQ>O-=w z3@8Dmkt7^9OGP)(vv?P!hj-HEENxSdzx3u}n|)O{sfWftyDjS|=w6jdwrIQ_7b+r4 zBIS@iUs1camdJnhiSB*(@6VM<^dM&`x=)L?^YGfXOXxWrx8~9guVwAaKgLu5KBaN0 zYt^3cA9rs!>jl5Oo`2xIt3Oj+SMJ2t)4g}w^xh}B_uaogSH{za!@Jj?t|7WTOX zcg=k_Z3_^__qDpKbsZbKi;St1O=z?)#eADuk0l_IGOowYGmHB|jzVaO97&?sQz9{7 zp6#dfIz-f#4BcRUZqj^61;!Wjz@7P{!Qop*Ou`ry!p4jb?}p9{`V?*2F<0aey~8{y zjy-Nl7ltS-W|&9S`vKGrJ5`qsb16d)=s!PqT2Bfm=6YUecREZc7u+>8(0i=<6tCNcQCK1!Lk%kAk2H zL;BneBkUCi`}ZLrPvMF9O_g_JEr4eaQ-1n7*UZD@eGU0bj7hE1Xgp6jQI#$slJ#YP(zq8iTFE-_9;qEfD9W-nV)7fa z=1-a1(TV5t>dE<3U?%*tkw+Nff86TFW8u-$gHHHzq=C#{>ctOu%5Y5{qm41Tl=WoJ z!Z~h?EG98kP$auIxX7J?R>)%wAM`f%TY2^#hpmE&2gcl2jnAhPinLkR@=BZjw__B&Ve@0V63>CiH5C zUWs+o#%LjcL=(VVlLem5WP55jFp8I#9ROi&ZB>5${5dl~hP>t-%FWTd8Wm1fo+tmy zGgcORWhJ5sCEaQd$SpBs!)=SgLooJhSkb+tjotz0;qm$t!?%XZ6YFSzq$qE{+T51Z z99oDlbFV5$)b&?Y_MXSemTi8q169s{+=gGjgr`C>_)@Sin#4u&KLE9Rv%O!aRpq_r z#~RT-xk){NGRNJPOmd=oi-aIngM!VGL3^Hg7`m zhvLWU;8>;H)@U?aqgdgkFAhkked-aiCxXI`!`Wb3Rg4qPCdRd(Pz;f6P-u##1zeHb z)c_p8Xg-@9$Otj3@g{{3RHT@=xJOXwjI^R+7g}T|tIm(gqRyA1_x;_c5FTYWIDhJt z?Qr)vgd2zvJ90|OG2Evr`>76QcHKhhV^ka+;8TSM1;s-EsG{(SkdS`!8$K;?K06Cc zl~$%Y|D0}bpZ$e1U$_+dg;XE} zRQ|&y`Ms>?27m19Yby2a0n^QEd@IABPx7*vy!I)%kON-eX2{|9d*EGqdtB1fOglf4 zGbwWX=MEaR+ddsVSvdoD#?;4w3je= zhic7n{>VcxwoDs|Shj&9WTCvFOWjsf1+1u5x2wBTP$mEX5qQpLc>b@0TQov1IF4^`F-Cba+ zP1T+h>ENv1OnCK5tm=~5KOG(F*#;GwL~KLP29^BJKYtB)Zp@bNY;SbF6F>Y$ZR57A ztZx-ziWSl;vEQ_pqft0lBjVP@Um|!2iu$J@Dt2e zZg~_D;sv@g<4+k(XL?OXA3b(rS$D5`x^nr!H9->D8|^%PxaP0dULE68iam^+F2Q=L zZLH1`V++l1`P;J>t2dL9k|w-%HsW*(AHI8IT`mLJI7P-bI>V1{^4NZt;I$dl=NoiM zgqH6(r*$JwkT5F?^>mq#1W&vhfC=93v$hfR+$@cCn_}+F*3*LYp1?75+`R3&(Jg>7 zQ^w=G3>Dto=wvVHPgq-X$^8R;r=PEQOM9SuuBvg4ll?a*W?~Uo3@YuG0Le8Td9+*Qy7WGY!c-r;ZQ&z%dJ@sEnIQ`P-9Z^PvY3j)w z9o5V?N!~;K_0fh`G}5Lwi8IiVv{2ANR7nHxB^Xd4}(685EYc@co8gmmn zE{$Nf+HUE!v`Z-bA%aQhPJ*lh$UV5~0mPQv+wwQY|6G;6hSIx}b*W>83 z;WX==Mnkr)P7xDtCaszH<=ufPM;rjrF~lAm98AsgFo=j+GhDqo<$4D0b=d%GbX z{D$@F>TN=%fWt&QkOv6-u07nw4dg4(&kWo=S9bkU<-EMS-cs8{qZZB_=uw~PxkWI8 zvnb5D(`d1?y*1UA_(FJn^h~vJX~&a;$2vfKS4ZyP92ZArj$gQ`42rh0I`RLn)6eg` zg^1>2?qN>@bGWOAc+VvfzfWo0QA~;HXfog)DF4ssWrN*=p0_8M?#rv`a(^wLF+E94 z-ou2AKG0#MRz*k4L zmsgD7_&Vc;OYJev%J{tdjdOer|Alce1w?C^&&~fOtfCofdh4o9OqRSGLn2ddOj+>a*$baF4msBu) z%uQP{fX_SU1}e5_>T(rh1d=mz%4LDbzw8|52dN>|n>bG5721jzhWBj;nUvEckFGj3 zZFT0Vd@B@!nf{YgXnb4N#5cwIjd^2^O7?B$YZqH13`C=fOcM6eXX~FN$dbsp!6^rm z3Fak(>EJya9yPM=u4gl+trz_6)(!eS)Y$lVE>pZbwUEnu&{Vk=Ic2wDBP+5FTw`Zf z;2UrVB}OJ71V9k9PA_zv);vxptl!hq!vSsgT>jyl9|d zA_qK$Dd0jmRcvy?MggHn3nEaR$#PUcD$=81)l>&tmE!E#w4@|@h&W9Gffl%J;gFS- z!yp$i0m&iOF?fs|XFBxdroLhMTCe-R)j>_Ujk9Mam^FcT^&`0nkNpq#2K~iUtEwoi zXX;wTm|srLU9*JXcoZ=RSwrKJ_{az_8poGhkiCbZ#_9rHVQ65LFZ%9>^rgY%Dt7nX zizM13PI|E+3(kfaF|r8x3!t(%SxJQ)r@{`MxR3_60_21cw;%)(we_saB*)Ql&XeVE zrl!NS3{?VY5sMy`a3XvvZOm62onh=< zJ|e>KW&cT`cnEh@APqnpEYB36r-+ujsHkWaHwBBj^7Eq<9r?y`;A2S>$xu*$Gd|MD zQwNJ&^1pDxA}%5{CMNrCt&iDkZ&8L$K}w?z(J#F1Pn`_w8wvI83e&d<-PPvH6K%e} zzATS&;71uMi9ST*Y7pfv7XmKB3fQI75PECR(8$ym-l*D`Q-isvXKJ!X=I;5^zso&u zULAfNf@PyAaq;ezitTq5IX@JPp595$~RlQ_n1W80OsE|!r5|qIr16 zBHN{>PoHK(zj*d+*D!=Du6hSdzb8+hf``ZiU3m>4r^JqV1oRq@RWDCu4)Y{TLeOJ# zp`OD)?VZ>`55i=sZn;A`0Y7g9ue=2wP%5mZtREGpro8+s+;jjfBIDGR+ocW>j46sS z8K7=U9Tb$6gCLJ06%OJgM7r1tH*+sux^#&c@7K)HPgfGzQipwWo+N-HH63Ld`wKw+ zeX&Ti@wKsZ4nixX_3oFSULiU`M7XYLIH*fL|8DT5xhTjmGs>nJ|z13GUy)_Yg2^8^`L~%d(^rUbahe7!lV)B9QuxIVH2hk~m$R!1< z{?fLuf#~_J>^DTw17=LiBJa{Tx|_-fIlRy#2{=HT$o9g?$eeWD zqKpU*gACI+k1m|*rzfv2@T-DYRR@RCpnML3+udE+dRAZmwJ5s}-hTY@FRn6tQ@L?< z;IzG8f>?rO&%rPqcS>nfOC}c!H-GhavE%MSKYnyJFW2rz$XY>WJj5l4>@H#Eoj$Lr zO3JyL!waz)D(}iuG#t;L-ql3j`M&!^MKKn+D5thSh4#uHSdf!$KmqW0o8|z79X!^n z`of79$?NamUu%v<=z$AXfZLR!b(H|^n2%d0O0PO9qe9%w_c{35@$yWUQK2;^=_MtH zews=1jQcGVaK#DR8}qz(YDgNpg;u}a7l2Get8W9$Z%3c45j*h(3 zEK1m-`M`)=7qTJdaXgMi)orh~tdP$P@0t9{#S0DlE~bOOG}T*_Dc>G;_bk;MklG-P??g+0nOv$XHJZpSze5`~s!^N$WSC9^LQB6=#QktwsGpnUAv9dN={DJY*kn!>jBNV%V%%}`=2@T*}7y<0Di<^*-*a2B!xws=IPj>TRk%<6G$t}UoX{oA)XyrdJHl742oG0Xk z3)eEAXnkk+HAD*p2{AFOaS7_Mb-@)vz5eUJPJO(kTYh_JdHHrH*Mm}2ZO}U~8+xdY zGG%^DNS-!|%qUr~RGKkR6^%zkDYIz=kaeO^)E2`dT4vwVZW>UiY53Gtf6ld5G2l%! z;5@P1(YNH3QSU`LG3zSmFr#0NM(;sNs~{uR28KR7T|!}ZNt=)axW=PoRsgU^wjrt) zV+o*=mK;7IF>xhsXS05B6V692AWv@Wfg;8xCR01x^E)8TffnK1Z~KDk49@rE%iZik zvl{>c&ZF?LT6S5wMY5m(ON4fS1m?~lDfAoN2__53a)PL)JC&SQG-pw@+R>x-RxeI5Ii7_&7ti_M zs}gWJlO5LBI0K)9koezTSq_advYrPTBv&t+C;6UwzJn0XxA34#-VoO{38>PsSFUd{ zCN56rR`|hkuSH#UtcPrh89`{z@A+}zpm)u@Igt3lw32OL-wJhT^D{hrlC}e$H$$>{ zTp%f&9lgDh>!ksiO_fx)F+YZDp)!cOTmeyFGR7glcM5Ii!>ZDVc=j)DR_|=taHf=f zBl^#P;ps+uz*2>Uha0>50L4TvHXB4ix#P5nyU!B|DJctp^CHIitotYG{!r${Snuh? zA-Af&rD*O40YoqM%aC+qcYrmb*YB%0*OzNRUB?V9U=sV1rnj$Xyv%d5lJ`nSDi8t6 zjFU;m^D^^}VZ!I>8JdFZX1vfBj%w!GJ&T>giZ#Z~W%5~@rLH=%>fdNjGv{}-((f7X zslq)}LZr<#>ORNu7zEw+6PRN!dIP?fJq%Ljj+5z4n&-RI43jxaTF<@nDt1dy~+=RX;4H&^dA z(+Fq0A>FZwbboD`mqKD+r8o?pF1_Q zAI<44LNtxD_8Kx83Ke-2BfTC6&I`mQczMRfvl6R~#8t`k1;j4h71$m05L8xpECeR3 z_QVK~y@h2}%jIJPG<0;jg!vzU$jC6LD2_aXD_`l-1Ew0gT*1P^LT|Cvo5(Zkv7PsB z%anuCt$h7yiCbiAS*;H(VmJB^t|u1Z-s@QvV|w-KRk!O${(Es2eaT*SOmro#ECt1_ zh?P)v#3P>~$3GXYiub%uns@fft*1idoKL~VGwY=?u?seH@{_~?;qaET*%v9y6}{xl z9R`icQA9Gud1?QgMUUc@PzEXC`495^SJ^!c+$yqp)+x<4ltQl5N zv^eSMwo0Icyd;`9Q*EywuTBS$8%#w;Mwp)j-Kim@Mi%HHF5O>T*Od*#GP0l>7Dosw&p_z4m@m) zzh$WCQ1<%u*`kMSA2Bmv9;Sf>*5~F4J_@b}5TtKz#RI10i+|u6-w6z=`Fo&$*`)b` zkeUtNQ_m{15cNa5z_+<0(dlHIX#)gvL!0BILx|pLW2RwOQF~73v*TwRu5P_TFOdjq z<@k1N*J}HJpH>yK$9aT!Fz0wDRI^{8!W#e2^e12?>cR z{CS^C?L3a7e{ud(&ce(r(-_HF!lRcgO97$;-T0EjX*|YRH#P=t9#!btAYh;D=wchJ zA=E%vy%+stWwx&yqpztMG1e4yf4WCUXB}y-N(woA=F>fzkkgm}R!oFRK|ulP?SBhu zl7kST?I`gy^0+>9OrhK<#I0*C{d#siaGm2!qrC1^ouH>Hov2EBMelDUV%Uvz_unp< z5|NdcSq4mbeBZvL&ss7io*amLNne`T4KjDn@Q_uVI1y)U!Yme}mz|tD7v|L5$bL#9 z-GP8i@%%Qijjd-?<66NQfjd<~#f)IB|NLP0nAE6&CU=E6$oBV6NVP$RB`s^ezw`J4 zrIAq8Hes5AoO~1~K{XB8Q|8?{R%T9M&I!0KCczz2gi5roLBSaEh~bHY>6+b)IPbu$a|}op!Rr zH34ei`X_DZ3v#6(n)MT(@J0a_#nXA_+jXm+{N&cCMcn$cV_HyxUNOZ? zH`?Fdf5k5P2@szp05*8fQ{lQ~Vr*>e$`=#}X|B4l{;ysw-wR0~mPlF5ied1F6y`!9 zLDQBCeJw>(pr(t3+`*Rpqf+s$ka@${lb`A);V9{|hTpm^`m)46$6+pL+&y|F64=^R z^>mAXldJ4wk`Ztb(5SW+nOlej{x*@3{?jibsemxtrZtFps)i{J_H1rq?nIjPK>7AR zn)e`t*0pE}(FoM*q=%Zv{(@2fVL?GdaP)&CB1~Lwu(37y$@o&z(ptNAwd|__m;(N3 zMwn1>=ufDoC(w8jCK=`IKYaK=1aTwVclY~WpW;ge!jRJTtLQxA?mZ@Yn3=`Z-o2_8 zNcL)ghh#}s>KeAVme$j4J7;62S?K=}*gKfMSE}wEriZ1R1W+*I?%C%pa8ABRy_9_c zq+Q)utG0yaRH5YAz>JMB<+J=YR7YQR=Iq&rt~VGN>tWOpF)>!IPPIPABg0+X?scT8 zM2unD+j;MPJkZy|-jHwHSZLY9C078ypaxJ+<@x{i8A$57Qjf$n+!cT`ouGOQXdrby z5~Amv#=Jq$FC!SwIjXizG=g#Z63i9tQOEj&zB0j_FSneTW!m4j}>> zPY>H0k+Ejo%mPGISXNyCe7pKZO9&K!xiPq8;A&W>w$1Q2v7Vb1UUh3?{!** zN_mNp;VD-@EU)9ZI-}Fq!qEg?l(p+B1X5S;{j4eV`_hw}rnW0te9k!sXi>Y#E3(@6 zMEXkhmi+SwtPTYz&%c(Dft)(PePBss@GjtEVA;)5Bc^5OQe;&JlJCCR8s$N6rX|nK z1t}B=$%v}SR!C{4qh~>^&J9?&c3}^C18h+wG~KYo(sKFoWj1uIfMWyP*vP1;^wH4= zkvVw`rn`5Ex30U?`@0@Xx_%-4uajDTZZr4GY+YIDJcN8U#x(vySd-o#6J z`!q!X+9jy7zdz3_@=zHz=)jid7dq3(kDE_1>#X<57$pvR%<9Yd*C^sVC z!MwZK;Yd*2?ZcsKZk`Ds>jSHD@J#$sot`&ALXj6A9lgH+0wtZqvMrnG6F{tRr7%Jd zG{-ayNKpgei?`j6LX7eH@|4R~N(Kw%q*;ikD}*5*bAa^Aork?uZl$A@`Hvw3 z*A6pgN*g@$&TzEzwE`NLKm*67kH&b2Di5GfCME458`tE211vQi)?R9<;XoBJS|1eS zIHyOrkBH?ZKJjY0xO$=NtdoT<9#wPCj z?g8lpDbO7JL1){743H&Z#C32 z?l}*z3Z}0Y>T{mbOFfK|W@gCZiPJ3enNKjB;W^i^^q`75vh7(@;IpQ^{w_5(hgaJgKlEd)rYCjYm5bzHk{La zZYd@# zzF5%b458ez_KrJ!Z+<5vhJ63X=OVtY_q$zvY!~E0%WUQ@(rhq+OoV9G-}gN!u-7$A z3YpFuW1Y?S_7c78;^Fu^`TpB|jDtm?bf=~U9hZVdnZ>46m=NQgCc~sF5FWU1ncO z!6Z~bFH8&;4VeDf@Y{6Ko5{t+#fTh{ZtPgCcLnt2Bm;0|HP>H+^y9>e*qBcb0w!p^ zOQpnKzW)don0TjyE79Wy(tn{y_~#KzUiC~PFzGqlh9Hy-j=&M`Fty**{y_NMQ>G}> zU+&cMI5`k%;nErmO16jGs*gb_jPkYW@5)R!6c6iX$li%5y0a~j@%&FJ=@PBP@G&=W zbz@e4rqkxZ>dq7PEgy=Xow(0>>Z`Z&Hay~~pC4Uwpgd^WedZS*Wn$g;ggv%w{Lfgz zpIs2LiM+XKck9U=hrNgNhYKnB395k@xi^1W#UiaG(8P}v!T{9*&}*WYVLI$fea!|j zYGWB%U1~wr%Sge{tMX0*Jqycx(}g~uZ|QTRBAt?qOp0GzQ3mv#Uk;cL3-lt9)y#Fi)s=q;cNM-HiS{Iezm zA=XJY={cuz0BU!j1l|dd_t%xOe=hh%U+C(Cw!xlkSuQ)7TEnCZKB-CTyXnkA%`2fP z?N7MHOFe21AHP`kE4Tbj8HC4T9_niHdyFC~B1}H6Zg-+NYvXnaTZEsld{DLi4AtUN z&K6sk#x69w^Rzsy)Sz7;~Cc;EW*KLtxzkfITud;vPBH<&_CZ*G>S;k?{F znAfg!i;fHzl|OOM#+vsku6w)eMG#Ao_ooPchjjk)pZ_?js~bI3?{}C^4Wg}d?5Rp2 zRohvxW)&hPx=UNL*l)%gp@+@@vbyY)n(DeRtP8Awa$zP=O@lS`LciERcrAe^S&D_X z0lJ+AcE-9>>N6<9DI(Mu;K14tRDjP^A*03$&_mTks6^?*30Z8SiDsOroiNnJ5gn^B z^_m&v|D-H7KDxlgb#}`GynY>Jiis^_Ur@~4+}y7gj~;#f6>*36=;{t3@A8?)X9xMS zA!d^iuC9m19hGqUEWW;()!vpnS}7&JAMH7HCP~fZ+(CbTY>#y1?fG@TbB!S@k{VA$ zg{jX@YFBoxh-lUAT6(TZh$zRaf1W_gJ`cUSP$1QN_@cNgR+Y@Itq@&GDecMd>MU`K zbH5#12QL#Vt0-loFwdj-`@T^eAW{Bbo-Y25I#~V9t!RCoP*+!nhT3?#Q*Yxo<4&^j zgtCMOoH<1wMexjr#yY5T6=Lhu=%dO$QZy& zZz~DZEIk4Zm74e&I;|2z$hvV;7h-IBbE1&OT`(5ckP;m6*IU&hc7u2ElH}kgbZkbP zb^f@IA1@YrV6PUf1aPToEt8N`$zNbuWG|RA9-rOA8|&T^&cV_dst0xX7w(&3>C)#B z)V93!;b=x|Hl?HdgjKGSIXa1k2{V-|&P+_ou}>N4k$h9R|M*~vn%f-qlX9pRddBfH zdyL}h@mJOr8wb!%PA-K`s`@KGOqsskU9JqkzZ}T%c1oE^G`Og7=k4MO-^)ukXJ>Zg z5A(Q0Y;$JoFf7z#R}7+4(1H6`2Rg1XY3yBLHBhhqF^s5PtZiUl@KJyF zEE7|1z_GJA5T}i9Ug9|gK7`wVq^GZDGgt|&ey9{H zz3N-k)$WpHv7efv6N!pFDI$HPxrF5w%XNzJ)AGre+dz|X&0Q$`OCX!$AQEx|D-4QA z3I}LZl8g;5oC7Is*QZ5U7Mw0T6SKbo5MP*OpMko}%c}&DXt5*)Jc88b=f|VRR;!Ww z0$Kr%+g=#z7B3KR5Vc&d)vqZap73#espDBYkWrC3VK1mgNbRh44}x%*cE{d=fA_A} z27b2uA;<8x#0Z;fy=*j7cHMp7op2M^57rs8E8+E~Lb}dfq_1lw*x8s;o>(4 zDyWA0btdM-Z<#YYZ*Qfl?P?b%D8&36E(xydxL|Kx@&6|mDF6_u&WTo}tuCw3 zDKFa2#u-M&nZ-XjjO2MyE*x@Jmr#-Ez!z2h{rBIaNiy4WLOY8X8d)z9(&-ro%yyid zgrK0Ht%AnYz{V8l@6~$v@Zrozb;YPBiDiDIn!sh@Fi?C8TeA`b5k;oNVvPpa;T2rv zcdxnk&BYP$W+k7^a~SS+lPoOa2K1tf@;<$C$*@uX@N4bEg%j>;jV&ck27UI6sssBr@kWlUNO+hfoty=QkvOeoQw572FD`R*1+E`cK#~s?YLl ziR1VUAYLf|fk+cz5(1tFsK}w2O0QBu?Qt5R@&Qywjs7Qf0JZe~N!tkp(FneFa~^#g zLBiLBN%vJEMZopq_VbwTeY+E3KQ|mDZM<%w%=0H%93)~mjLUE8J!~Vd$lT1V(iV_f z9N7D*4cs6MRP;z;J*crAr@Kz7>CMyKEA1jxS|HQT0$oW9%J*y-dPO#EKWPN#eEGgA zFORpi1YiOqr7zxysozT#C74el5wh2Kz*$?KAtXU7s98|}YKmtKD6IB8`Hj-r*4Be` zE+Y~ka9oWfnl+)M3Y;Jf_^!;O$UEu7UL5=VZf-tnbg_K+WOnh{6*KPhJl7YqYOrA% z(tRCy34+Sq$Byiyt+*b!H!&eo=@WV;k`{GxR+T{kw_bxP)V!q;RkIQOZNzF2A0z(r zi!ZysdO$a9jyAU78}NODMZ#^5rjw^DgpuP}19QTQuewu1QZ6|CQ*`<`N+65#SCX6rR#jVT8g1_6s4AeVLdLabGZiV6ZjA8PYl| z_}x8P2~d0tJ9LMEJi`qdRby8!$m4LgFtNA6Kh=xR~y1wu0&ApI=_PdCNRMPk^a^ zy!(#-c)VwvTifW3Og&cSoseoy->Y6$Qf=g=n@o(mx1MSiOe!yM40lbe&rNGeT)TdK z-#RaN>uXONHm;%0oyBy&wL@rx_3Q@kFCPc6501dy@$qrQ?jdd1{wSl><-^)XQHGaB z;lc#{Xz1z3(F9Bj>|#C52T(4ox;}&&got74F@s!PHpJ3M*avb> zy^#6x$s=S&#EmM)UsVS+tmqCGV1a^MFn8l+#G6z`R=n{B-pd*=%(o?;T*!vNCmY%}TNwUgERjjxXU zB55=~G?ub1>hQ#YgBhJG^(@AtChI!!M=38khl4--BAO07plkAPH?H|VQuos>U&=jE z0bK~KV?U_{pV4x0%Wi8^0u-tviaDbQ1w21rz&a3mgWJOJ^vW94#v%~(4|XaS%#k&K zaWj4SxzKEK@P{A1QYmDly95Lxz+77vw2P z95u>_#r&u1V>Dv^wfw{2_|9B7DQ{^_Tmz;emJY3c*Wt`~Iikg{_=3naS; zg${C4GyP0ZEtrNLwo)Hu;9c9I^}~Vf0wYP?>_%$_Rzv`1?0*0Bl;M`MS|p%O2&cFY zm^+zZDex^2#I7&`$J=dA2grT0+6E5;?EVEjLP;nqyfkf1^jq7`zV31W2pdg_h8+Gu zbzfg>abYwH*+;rvJi*}(4i6WFc4S!CbWEkSxV_o(7SOg-^9MeA5&GN8ame}CA3$A9 zFt~J20;2b`5jrG=lM=_Kf?zUIEF!i9ok9imX|EqN1;t9Z7ch$1=fPoUC4eARWBGAJ zMq{cY!NzkJi`mIVdMxyzDTNUv*P!H;223YKGAs<^l?Q)xbQmnehA zV|}*}E2$6BQrDh#?uHIKNio~;id5e6<-j~d^m7+du~-~Y~HXeiQ< zFXiMa)O(R_Y9*9usP|65pZ@_7_TgxDQsjiW)%m@%;081df9*GSp2x(;&p`rR8J-5w zGHfB{%9Sg6#imbzto*s+IIt`UKt6Ihe-kNS+Sv5vSt&kg45XW7qiqHfDbQD!A5dr*5=he?yFsmpnov5gvN2&hER~DQ6@At#wx& zlUY3{e`+P~QPt|3{}~jb92Ax0dsMwK#byL3ctd$A@-}NEiczq4yg}}46sqO&>FB8R zmFd6{ys*c9BF5}Dn7>tEW2g~9>$yc{ozCbSVS*7xuNx?Ct~{@m6D-*{+t!q+*E1~8 zE}KfRMsX#EBSuEafpvOWn>$%%v6)c+MLt?YL1oY*fajn;AhBx?ezpNS&Kr{kdNkZ1 z0NnaCC=jSZKyC2WtMMp8Hh7H;-g52TF#$`EI)H!zWW@!$uwXnD^9=e{o?Qb(NKji_sO&s8k&&0a>k^mR?8jg zEF3RGIQ(IMwE_>Y;hx83SROFi@TDYKDRh6h%~T%^y@KAN{FZn4?$DU~6?l@Sb7LIr z)96K7jYWl06@8OPPFIzbjXXc6ZVNgy#}@7W`9w*lV0O$fRY03X%{r4r&mj~7T*bfv<2=#`j<)KOOy0kRla-+@T0irgWANWt$+u+ctN+*^iz zlIRUkgXx-3ir`Y!f($Za07h6^0t1;fX*vh4$8@J0TbU#cJd^j8Z_*>*z4+(Y&|V4d z%m=~E-m(>}e2tE^tH&?8+Fsl@S57v=x6l~Zqs7N2M#~cWMN|i=`Ku#RT@v%@8H=~A zEPRpYc;zHW8 zyW3qI$7H;-Px-65nn5jRnKaf0$cKP}o zS{Mx{4ImFZ&A>4I__vD%(5;aSWovpg((v~F{cpW_)7z?Zj!qc{1$p$SDX;`tP@u0} zAG84wI|(7x0>^rOv{oNP?zMq_*a4Fqp!fvsHh*=G!lAPssVW2hVH&h=Wb2lgM|UVH zDuN6lIP*Th5+Phol$6TI%tTn~(dGyC?+3QKn5Ro3S4)fl7XF_--zY2tjWVq=i{G8B zy>I+0{Vpa1{02oR;s~W36&f*?VO&EVkBbJ8}-5J zrIl?Vjr21U8BvRhe23)?*`Ck5-;!p#AP>`*G&ux&NF-M2h)jxpSf$ShsJxfjZd?L4 zk~t(n=!UvujvnQ*z=geZBJx&E>XDcb7K!qYso5(;=u+{MK9QDZ(_fg9vHzMp1o$z= z$58I`gJz!P>g+N#n+CzaF}(%{>r;Nk=uDXq^zEMSE?rlC0^y98&nPrEMnN&ssvMM^ zbD+@BY~huvjWvoshMJg|_*WW;qbex#t(h;1l`YOm`-U$)tsC2^EoRm|*r9zq|22pi zPB#95=?4)TMp?1d)&YMGX`X$;>2D{T@y=IkJXFp{)38g;%7KxWr8cy%xjk!sm(2Z7 z|L1F*&r+^{HtX}o$1?ln@ENoDo)VGKQE6FQVif{=Qa{N`h-^iqB=CNstzr+3UO?#F z8XzjU6MuS_9!Af2x&i;rNa?{M1u#$YgP$iYAY_cT@LroCE_>>i+ZIU<6`9C|;mLPx z^VU?Ei}hOmh32uT_z#BNM<0^C!^7%#kKg&ms|nSU z1PIa$M&jpSQrCrpo8$Sjq|n=OSwL?oG>8>9*m8(3ow<35T(eR9b`hXrXo}nyw(-jo z7t)zE&^tg5*)?S3PBEbFt(Sv+98@4ABb(efeU?SsrBJdOU|IprOM_4&1VAb9T}81u z1cA{O*s2-sFua6g!`8D(Xak{XR2kqLmp)$?_-2#8Kge?$BB?p7p}soKfgQcW6OJf(gr{rDX(MC0to!L2g}w2%W)j6a;fF6q5K54RU@px<}-tjJQb)-hSxiVvCw1NuHe`^@8MD(Y_BO(N-6@V7{ z3MvDP*8{;eTh@(-lM3oadwh!1{30Tn(EeSvNBsci#Zc>0$80!{y0JXQbv1kkLx4M5 zE~yXUdTL-z9>8nS77^j$H81}qzb-U3y`2s|AU`RPns>IUHu(^d>FZRcSnds-gGmXWMEhM_a)0-S_Kb^IE z`o|X{nYe8`AXH=H3mR+4$7f`?;hyk6@M-tt{-K9s^C~F80zrr8*I!c`#)Le<&Zz*o zd*8mgMGnJyzgo!lc-sfn`41E3Myj=uGbs#nr`Qf2I^^YJt{1!JP#6#x=AjuUx?gT_6cqaf(z9f)trnIcH+`jITTlBh3sj%AnhPA??D&1(4B$@(dSnUGYiUuzf&QM5Z-FTU5JDe`&h# z5f3yT7?1j){DczC7DJ8|#4WLx4Emt-Vj&-o-y40@5&UQ2ZhJjck@Y)P|KMRT@U;Jzr{2A6HhVgQl&+ts+N#nG zU2GzV$kbm1uxHb#W57UK=UcXIuH&fmrrHhBf!rj1( zRoB3%*jE$FiND*~WW!k1zZgA^R}eD>R}@6({2mH$HIvWYRPzFn%xuWlfSV&=lm{+f zfUBw>TJa)Zytr?*o|9W}2T-|~Q|Dno6JhJv64IIts_S3}R^~!kc4V`WuX63qlHE9R97Npt?{!lRKG*(c_ng zM>}D5*VMA!rnnE&s1mw`h1t7p@G74SenF+b6&>}M zAlB_dH=*Y1BYaK#)pOy1;r7hVy?Hp{1QWEx9;V&uK$GIV=-OC(mfk|hsCY^&wF8Eh zK8J{sFgpjfEvE6LL|)#8u|A{u8L}sn%yhc$;ULIGSY+l`^7qLE6tV)0!iln62H(a$Ee_~z1%U;LpWc#4?h&Zv; z+y3R@x=MY1N$cF>y6(MRhJ<|QZRX34Kqc6?Pgk>KA6mDXGPg2YO|JGfZu4Hm=X)U4 zS?)&ExfA73$>d+7+(>!;py(wu{%XJZsohXnSveHC5WSLUI90zc7qi_7Xf1E!h%vac zNCuF|=T!OqhuGS6Jr(ikbgv|t*}Rf2U_%yf^n-}Stgl;t;r&dr%Ig&Gs_hLwn^_ zb$E!(i_?sh`IVt0qfsMaoB5$$)3J6fd|47xe05!oMkq^{n4x$dKbd;}@m9KX;0k7O zMy}GSXY&H?{f0S_R3Q`bR)!{5=QQ#%*w4%!nerToZv~KK9TQw?j*DbzRsqhPp zC-ZqlwQc-^qakk|!g@uR=G#T68olz_EixU72w&&vqYd_os&38qyNp=&iGCdskr8*i z#=5n>K$(7fpbJw*hZ!TPKi<}=A(Y33w;KE~F@)qy!jkP^I7 zGR6PeLku3J1&=xxQVf|U|Hj&r<99kmR~JSknpxZpYVnx0T;q1=0Uxz<)ZaF^A2%&czE%6P)>!r0Mw&6sFY!GTU0Fa zU;lAR#qv{qzZ2XRvHR@*cVyrTOT!N}BAj8hYdX5cp<}C?#gh$AQCD}xyyj1lKOY)v z`C6uG%fRk0-{qTNI%dpa%n&oT`#61ehRwHqJxTRwh$n`_YqD!{EQW(@uDLtv^D&6U z#<|DM*LnM_dz-NeYq;uh1NQl$GsP2!q>5F-4josB#+A|4h6l7#(zf5HXH!0`nUsv+ zcN2vie7Obc$$mtnnO)885XveN@4Mifovph%lvUV&_6;0|pr!|)g&)+GBvY@qW|>*H z9O94;fb*L8Hh}4*mnNaOcLB#*2gi~7r7p*!x!73>`UF=4S-mWEC4?{cdE)ToB8OAVgx?*vehqcS~i!E0d7m_$D{LpCc?#YED4x!NkA3EuDwTq^4ek0Bc zKj}}sby!Gb^Lx-8-YZJXu-U{D9N z|3)G7l~F>x_d+FGuwnT@AX+`B+iVgLwbUuN3y>%t2CxX3x4rZ-E*Y|~CNhm}%63O> zg(0W&I%y2JoO9(v_MTAmhl{=)80#&#FjMCS8CC_Ehix{1B|#-0yT1 z_!7OP{OknDBe&S_K4O&{G0&c$9Cm$H+=z8q5yaVnGLyd9fs8L3wa&v#p59yWhm76F z$cvNC+S0KJey;BPZ?*$!gwnUv35|)_>m<+DK-64S`bV4E%2`)0Yn+7(z@N zqf0w%2!D-*RAee5iE4^$#i0-t{#KZ+5#!)TjvH`l?U|%$ z5K+K=YybXhxs&;FF7=ph)K!yme6cNswNK2NMPj6*%Z0g)Urjj@*Et1tH0CjXTRN)* z-$oDoljE@AOM3Kvoh-r!-0x>E7_-K>7*(!pKzUC1hyK~6(?>7SKdVIM zWt3rk^JC9gJpnYk-Ul3s-6s*`T*9TSM$TF##3;p%eu@Imk`-OvQ zmJsNafMJ#avdKpf6j}lO1S0ZRNxQ3AKD6yIJQDbUN(1R5dsy4p?s^5sp_{X5;Jm;| z88_3^HKx*=8T5bM~K_dj?xS3~ZooD5e)eqitR;42}Esc3zB9Lzld zmcZ6zOg+^M?%>GhliqVha!3eu$oM<%IBz!C(b?YejsS0im$NbteG#``%2TR8MOo7} zl95=?rs>?P4a4&=w?|r`mAfr?=nUK1T&&4<2~aPQZB~Y{x?E2n%bmxiqe87NuDX zEMp6BQOMT_r$Z@Dl+U4dO-nY6H37m$N%%QdcPsWzEZ8X~S3CVB2p33T>N}8g8#Gb^ z9R`)a*w0-bBLY#e9R_KKgUnNnI)Mhaqop2NYcJqnbrZmCN+Lb`UKFNL0m-^SO@OK(?j5nj=%i*kK;2^A2&S8IitYr zYq-~`Z|vZI{QL!N*JP6xab%5VG)Sj};iGKRg<}%HI4KEkMw&*|5f|k&+g}RFh)J$n z*5zXnNZZ&L8Q`M5tnTMkvb2V?2OC%-#SoFL^~D7<>7Y zO4RiA;~Krf8g3gba5wp7V1{RFth^PlFv5}Tfsj4NIt;Nq z$ZptI&zFZg8NtP=0sS5`>oQxLydqhs`L4Ubv|!xg9%JUOB|_QtG8*=MWEe_(5g{sb zi6HH5SKzxfsFWy#uGRjU;JY=iu`CU#ON^A~z+stshc4er_#CJqO`-2M92s!UH_R1O zxXqwxLdAyu)bNDK^STuQpYTG`MP1O_+G*()ar(EChZ82)sh!GW3LOKOlHP9Lrjy?+ zN5#AoaF!EhRCe6d(`_aHV%QYmj=R<4{r`x-@ zQKkBu%2QQm18-v;Ia&*(&_7+ZV4`vh<+Xzog^dPCDjo3F;~4k$LD~TJM$pIx=*I@u$y5CYCG|;H(cQ z;8S!xH;Ef7!*LljmYQis9<$amE&f`ByK|;jlJLy3XnoijAIv1i4-`nk9XZsoz33UJ za0%2o3mHYw+7fd7+~7mxF~)(mQ6%JBl`V_@)?dNPF2GIkK}KGG-cZVbNiiIlt?s0i zT;m;XU=`(lt<|jp0unI{Lp6cRQH31uL02SNojfeFc^yetGNEt0w}AXRXroLL>UUii zz=VVJP1>OA-`BzasJH!!Gjg&ae(%exSc#LvM1;}NJUTpA<7eMwIPL6LBfJkdFRQJn7?gdn^cpL5P_dx%qDU^fFJWT)kh31%B`hVl4$d zS0?FXY4mLSl;}hDbK-zL_5$Pr1d((p;sS8D+VpJlqu`A#z)CA;sU#qW7)o6Z*kX7a zi2m~jcZMDT(;zygzF#!^`_fo8 zK9NG_y(K6miAlvsds-Fv%(VDC*ioH)qa3C<7PTdMU4k(m9ZKuXZne8xPYXuzCw9jM z*9pE7%3qB)in}m7Zv=2gi+;BSDU@pr@Bo{vL7xZ7i+o^(ET1B&0g_+W(m4F9QtF#z zcE`>)G~wG4r6fS@#|N>Gf}-{{RpU1f_(xswSo$mpmxcnh)-<4mHwh(mCOTA$hbKYv1QN5q&jTnaqIdoN*Y&O^JS?aFo(qBV&` zDSQYV07aH)8R|G41BAo37HS8rbBRcV5L36BkyqBIcczl-?<@03vQ~7WY%7Id=|$VHPK!#l$FP= zjo9oE$0HkxA4~ERI>tnnlf>PB+^0Y~Ip3lWR>D8%GU~QGJ==oKoNFuN&$hOre8vcV zBeT27jG-=5fGqrqr{K-6pvWNyQa|mo7QnHS0TjzvdV2tGo)#j?Z8Frw41bM=Ym{SX zazx**OtT!`in`e>(*c!tG9I%l1Ohl1-~|3I32~@dWiwdUaHu;=1u{F`c7r?WMHeKh z4GJzTm$Kr+k-!UB?n(tfiQBWqAlEBo(Gg!fViBP%ii0~CtLpRR)Bue8>MlqSX!#EP z#GO$!d~vYpAP33zP0N$%v04lRqk3`l|Mwx3B@Qtd6CXlak*$LVngl@M zBXHzFXJ`&eFI>Q$R)XfZZm=AA08JoSf);E!Vig9!9SYrR@ITIc^)mDj=By8Whu6iv zx>S-i`Gn+fQL%6NK&XT0*w{d3S^9FlxGd`ICHjcNcmdVE@+3uTiD<58<~AWw5~N(V zv5QG#c8`bA3n2z*>l>_ol-jVG1(Vs0k6u#Mcaz7%3p~F@#gjKk-44BHoK`>AF^Iob z)iO%C*@UR8mAV{4U6R)bo)F1;D`lK+FAb0i%=L@}*iExqA+9e?E^H2b_5d`*~kizxX29>zs?NBPBcUGqNz=Q)~x2*@o_${8XN1UmO zsbJ!hrS)pHsGc0;O{;@!Q_`{9_ET=_&sgkezJ}Z4SnikF1+SU*8nj)<&-nIN^_K}d z+r7+=yF2KmM~4Neo!Ua)qg`^x0NU6TIN<;NGk)4XvPlhjC28S=L+82}a2$4UbYx)c zw9LN`@T@*~sPJA<#glbcDP5;<&2{lEGkyNgj^Unn$L2Be$q`iMo!g%KQHEmNTau*3 zu5R1ad0E>WMLP|ZX$%#tX#Aud8ecd}U`x8nVZ7Zs!9XQrCP@`i2}c&|j8n|vLHNQj zPrf^RD3sny$}titD60UD-%m_zFFMK+kTomKgf(;ZWn8P<725yCLq)NyYX-+EqvS@_ z6P%hc?Fqn5F1Oa3r};)`5^{g5=BQm$TKOUq&KD*RJ5JdyQ3|+m{xQK&1o?DOj!OtF zo97-K52(nrm{eTso1Ke%MP8}K)JBetZQOAiEwl(_7#6Fx?ctfXW)wOKVd5uo21soK z9;p`p9U+2Pe!gSb-MlMUo`bX(K8cE_9uKjM?7O;W$uO>S;kNE~irb&!gfPmoiAhR6 zmeUp$GPT7cGm;()sW0An`@J|WE;_I5>8ay*de5o92 z^~kNKbtaBWBI(8O_OnAq{Wm_)W_s3a+xo{lEO@tEtwZ_-Idx})CTn9N0{K-~s|5#k zSJOYeEPDU56m{ElyoMu*hyQjWbKTd@4U=b8c7@t^G)h*F>*dFNP-+QAlNCD#+#&Ty zQ*0I#MlLP|2|OS!w*AL*S|!*>kUoZlwT&~eBuX@oy}GY@vb7{4DSu;aJFi5w?`yH_ zDbY#xd5}Vq>GS@fFd&51Yt{DS=Z-PzB39L=53uPZW6o+Hq3KU$D;r7Mek+Tu(HQf0 zJI`2i?VleY?hwxzDQmlwoCUSM))V=phbW^>PIkLv#4wbLscj2)b-Sb$7u z9|m{J+aS^oq}h!KERel&+LyaH)3;@}_{QZM)|Xk%EwGn;`pe8-WWDqOj3feWsPD+g$2@kj)@jj0<}$zv@_@bx11UV`>X z{1?>sJPUuVWQayhZ2Wj*7F?|g1~y{n2Hf$dqpy^gPsB=?H)@LJIW|u2crIEj&Te$j zu~F}TP-QV*-WJnmL+|f@2Nt=<;)g=MP?~1zyMwsb$C&&^+T0_&F_o4-E=}RN9HcaM z?S+ql1yPHRhec6NQ43pEg-A&B9qQbF*97^hR4{IBn74j_C{{^Hj&uHcC@|Akd7HyX z2C`DkY1bWR0x3avadL}<#dFzj{Z{9M*It>FP}Ry%EGcRGsXlZ;h0%ialm!E!?@vEwBA|{XF$2vhbVp1NU7+p5VV9 zmKj^FvoUP;w8ml2uL($AJl$2ND7skbd1#IG?lM1_zO5BvpXImsXP2f5j<^&5tY>|3 zYC-b+hH8~e(}SWfwXsojA*k|V*gHk0eZsrip6uXoJNmdTl(Do#+$woEQqN^R`lySh zBJHA$M=@$8V|uaAd#|?EI=xW^A%le^WqA)F`g#CT{2`;$LG-D z<8c}JakRGHHemweIs;V5EKZ3e@CaQ- zzQUenrqk$oan2#X@>S;8D9SPVsTuWCE#a=<*3ED!_dnE%io_Lk<`0U*8t8i_!S+al znfmVv?R|AuHs+*Z7goPMXw3co!~2j{%(3I8Bq#$u$+uNNE{+lP~>8&*{8ifp2GVthNDYSk*YDt-G0UwnN8A+v)Y4GKA0?OU}~ktsi& zc(`teH=~gk@Jn*W`EF61BH#*3Xr3FSx$4ARHz=H2UjAQqcr9X!kV|WMreU17L6H~Y zB$DW8lHMoAc+N`ssb{t&cDWE^b9=?GZjW0mc@|61uO!cVTL0!*{3PBe5f&psZ0=QS z*chj`?J!TkjR|M)A{9OvuVYFU0nprOCPVmyrNh+phN4blR(pMXHz(lVjO|Xq>4SB; zdIUSjHvX5KFECXtFbAhT!c z-OG9rvz5>8|11ni>3>9BQ#ASC2}_oOX=98Doem-VmrVMox|LhgxkA1RtAb^ZM6LTG zCyRJmB19%jS0+E@<@fpq#22~Kf~kG>Xi|i}X>OTz0l`(yen@P7NYk(Di0^ ze5|XsQ3bE=Cv&OwX48e>E@v;g+kGP$tIT@A;M|=)McYgz^AXx2A~L6D0y!r$JF#Yc zH3!+m_4PGAW|bS}eqk~8u#si;7$3QSQ*@|LVjJ7K+fhXxV1CoYh&I1HW?Ll-kzLLo zX0SThOb`gAJl?vSqcyy)ehpG?nW1XZ;lsA!uHFT2-p_j5Rq1(Q zd$PaO7Wi4d3rvg?ak##_`tkjo`@#--^4(#liLVgOT}lh!>y`WVV9dK;bI(|6`mHh0 za>+v&$s{;z1=EWAP}hzeM|~F^qfp8Z`Xd@!!b>!<`OtC5*AjlvZqSbwAGgxkV2fl^{fY>7t}Y3Q<}BiI(oV6V`{|=`R1*UB5M=m{tE5BD;GK>wcZlx zL&1kxY#URB>T4!mDfu{<2MmgYY$3au&F+5!o@#G5rwaaMH%TEIV;_x;cWrcwrAr1Z zTEY)p&~>dfrHx&v_7$USWZ-VrtBzuFcL@&Ll~8NzUQ26&g2KT49aiMi(|K@ib!M>W z3yW;9CttS(9!m8aqe*ek7Cf(<9ov53HuPFMl(kDt!r_w;+zU>7UFivF8klckbHcUs^Kfjv01SXrINGQ z8b1UhhA<+!@WzH|7M9D{PY{CcbkYYl@IYrG^1~dq>}fXR?q5llOC6sLRhFeB{%DtSQgf5*f}_V%DPgs7F{W;k*1KWEq?tWPF-F21tXe*I_p zigaArU??tHjw>rvDYQ;n*PURNG_vwFoy;9It3?W^=c>T4BlX@s0j|XwHOfh0{jgd= z4%J%e{PbY$(YRMka;ge;%B>Vy`={%^dhISIW<51>5G`40eM@Czt(Yv<#&HtYg^r6H~Qs8qXSy?ugg;N_ARB&AD^zc&Cfyf@rqE*+WGl_Y5rJ%34hzI zFyqJvL6p%0V>V^%{>Wo3N-fo%)j~7$wCfIg9n)P!qKEA&%^4Uqjcgdf zzaK_j)4%_}=JsMPYl8Qr;^Vr=>L;U7*yCFYUTzBmpM#^s^CEAGT`fH_C}Qjiu32vu z3K8&UFiKQ|CqHp+`SE1yM7Xb?X2MB!0iE4hY=}w$P04A29`~5URg$HdPT$_>N=tlM zd5k_f-ua`JO{QY=prCM0Xy4`imN32BzdW7jw|@QE8i0&u0F8PA4PgaT$EV5&My=3m z6y-kZ$yH+B-V%>?76h!vnqY7P2v}6gZqwnvnLjYpPri1gD2B2*`h*T{z8>D{%4b-g zEDTN(turF9cGCXL`{Wmp$=4rDUEDNIsQRhl0@`us0FPnrT(sz}cGkj9QdLuSR6 zbiY|=T32Rmv?RL5&mv1jX?Hzga@3ep-&Y)RCR1WrY&n}|*}eN$w8OkIcy(d-^`qmh zbC~LF+Ws^efyF^bneM&U2h=%bd!z^pRV!zZb(#YHK|7QcmQ#e9KKRfBQRr_U*PeY! zF$`obetRBmx%1d*<9)R=_+hiTA(I%-I*n=-w9^DTPybT=?v-&ih8}MVICDP z;(RzCqgLfUW3=oSVXoAoy|`m7UOM|6&XI7^=w!EU zZR?D(7d{MX?%iE-s97N-b3G>?jur}+3l!Pi`toQJH~x&3Yxq^36ij`zq(`diyy)iR z3)<1~Q>h#ws69KBFNnH5Pz$n)=!swAO_^EsQ2-vKYcdcFvT!*WVJtMwd%p}8C^Al=Ln9HlZ9<5!yCl; z_6=|~(_NKjDk#1`u&6x-tIp^8L*eGOUIXIkUr%pd2H+qZx0V~ zkXGjgudt1kx-&3}2=Lwi;nODMS9ZE!ORnI8z{03UvnuCbfv4y9qkfSjj|wS&3Nm*X ze*~Zg5y$AHcgI98rL59w)h2{7blX_Yw%Tp5!X}|!2CQyG$&-_9m`qm2bo(D1H`B1u z^*X^c@cef0PU4`da5-sb&cYd*Vlhj%THifLI>@;8Jy3AZ6G>t_`qzVVMrf*d>ZOvi zZAMeG8_HDz$Y;OA((kfcC9eE747gaw2{_Qc0?;U=q1N zD9C)yUSU{GCC0v}dQtNsc)m9TY6co7KhQu61$EBsvcqT%v)|@8!XMD!r9T1h_V_@j{N`oRDzTlagsor8A&4AWM5GeVkqG+sWvB?Jag@0uwnI z6&S9~c1bF$TmzsaIMj3bwKGR4ebP)8lND}w8jI*<{k$@#+5!o4$FWSl^3y`34m_O$ zLkv4@No`$n+n6%(ctXh6ZAb1Hlg-y;X|&DP24QoD!oLnp&s*easWAYQJAu#v!s>Ha zS~5;iv;1kV`ToD}p;zH~j6@82s4cv;RbgHmH72NPf*BOS4`^FsUQV06p!Ydv41(dvT5^5 z+S@ODGN8hI@~~J~tDDTWT%Gg8DbJ}8D`l@m>(D(j13H*m)hIp!5Ie~24t~y0m+Qld zH(wk1c6@)XuW3{{QxiPrcL)j{i2c|d*%sT{s_KMDkM!+~oj{({TYw8cte2SgHY@t7$)F~7)WMGBUiE^5b(p!y0v@j#T?Vi@gN!Y%`>60(IHvP{z!FzQJk0xnWRC|Ky&k(tkI>atNLRDa7&WBG_J) z>zvjdSw&WeCFFE#1i9rIWCuitC8jIyPoqmcMzk!GPPrS1am^K~uzD;f7+i6>AzQm? ze=`4F^6<;28iEUDR;^OxkDEA8Q|e^=05RLgInH+~4Dg=4{E_i-u z)LCw#LM63;kh=5b!0%9IwUOSagd}@s10Tdw(BC8S{RO@Eiq&KOcS$iyWw^8Tu`;w< zw@K@#*Jj9GrrDNX{Z-eZ8HtR;j1t>)cXb8@PoQh_$}B0?)<*{(K2AhF;ZPV=xmg=8 zpG1(L#gfIgmvQ7pzw>8D$v4*f-?)b|KzyG^U>6ZF`{kpOne4ZREk+*JZ=-t53^

_2HATMS?FN^r6&>$O7!k|Of1{^c93CwKmprU^ zwvUUl`3l!Db{oJ(23K{#wWuxQ`mKiavF6wUn4l!`fi~)mvA1X0_Iixf*MT6VCyp|t z;b5M?$}{zzg@6MF4xeIHCi7mrhicWD3!v`>m8e+$Fpa|6@;CBVuBL%-T z`TyUeT`O6BKlK0T`VO$BvUTmCqs*w_nd7Jf2#g~|x`KeTfO-@G0Tt;bD!pq$ks4-f zqkuRGMQT6_Lkmc|?un!-Z1ZI5-=vk3l zSXk)y72OX8v&tr=)fLEVXsuFYL<;cdtnpk+)YdL-D$h6GdkmAZ9z$E#!f-dGNgFDq zTdY%a{P3?RSE)u_Y)V-WveAGjVtRwHyRG;4hfQ{zjt6)rQI$6cYvd8j_8;}e(IDZ_ zwV=3_fZOG6CKfBexq%($_$TyrH?HkT{(2w2)ei}pC9#_2c%Z8A!)_Bmio$nC(^Or& zih&JWNYM+x&wzS7QjAV`5mj?aD9m3O-HRrB1tK9nXKggcOnI)J7p}c#O4QVn z9z?^f(J^N{tfMW)5#;*RC-kHFfh2K{SXGka>{Gd?};iC$E7sRPgdvZ0S?d!0a4 zg}&_SRp{GmLp@RxHbQTeDrrLHx$5bck+SC7WQeogt+tMxMIA-7l;3ptUGg1l<1#)m z{`cEoZq$GO&zG0CkK%ojFQ{?AQ+bkzAX&;ntwF+w!DB^Yx}zM`dF(GI+8*(6?nDSS z|FP6jK>(Tmny6mOfMU6yH3(a=90;48p`si}H%qRC#5LVkW=L+WFaj{1OMnjFJ+b)k z7I{8&5rs1XcZbUMf5o1G!DgpM1q9oHk&n+*hid}pTwQbO0Ux*=_eIvLOKyUYZ*U8+ zm`u0>_rf{t^}GNi(-d2# zZs5bZ&S+mYwuzh^n|&<(3Pk;Cy0kyM`wSlsv|M>`!{eVYG7%aHXkaWJ?6Y+4t!l5; z32-~5`yP?6_o3c+!I1kziuM=Ukj6@TXh^NEYn!5H?_ABex(;0RVGFu8Kov4!@09D* zG!yTj8;cTkwSxStpj1~CXZV4N!^^+_G~b$51yS}(X(>tPk?$)#6Ed!GR9FAWcr~HZ z3QE9Wdu;`=A3>qpb__zR|Lf;!5~!=8{=++goO@R_nV`j07AeGkQYNp>4#{m6)*|){ za{4UkERT^?jt`-1I8as@igx11-z^)}a;pciB&N|K>tfJGM*-V^elAfP_!uDNl@U)vq~WI8=x|RzuG*L{Yw$rs7RcIJ{Ym1Gs>Jh-3CQs}6fdZh1dJ+^ zbu>3W9YEiFv!rX4By$LRS3O?Z6KfhP{n%xq{jP7UPX&00 zcaMJtAWFnVP`izY&jC~!QW&6?EgtsR4xD8Iw&r8iz>irW_DP=1TD6e1VU>qJbykG+ z9T>jjX0BdsCy4K2^= zhzEzC`(d|J(@&`JRuQa(t$+XQ{VDO}O)H<2piHoK@suu1bJ0oD-sfE;?1i!}5Txs< z&!j?s5~xACmN7}s8?-k(vfGm^=~0=WGGlD~gcK5er#F@CG$jz?oE)AHX#_x=S&qbKtG*VB~d|ZfcF5@NMG-YGxY?yRbxOXvX~eFI;mcX zYMvIf|7OQZW9{s8fxYq>u%)zs0V}n0Z#BOCayo&2AIRdq;H$d6W79GsNe~JSCU1H~ z;XI)3AlG|6CrZwRG1l|VP*B?AJnxyPg&up{E>_-@G*fwg^J!ompo|@ahfhY&uojI? z<0Y%Ct`OktC5bH{KG_xae6PrPURRSeT|FM@s@Dyu#uLGN z4NG5W-wO}IS8}|r50+|Mm%HT`^dFaAsB?hVj@MK(Syj+7K#2d|0!ra$`$xJP9+Rzz z{#VRXpzZ(zuI2&gqYekRFM0rcrXEPOfM834H98KlT|g79a0@_~msS6|Di9IBKqhlF zRHn!U0nu5?T>WGf) E$B>-6kmAKj1k(rP$bA(5Ob6&s;^6xep+;qQ0A{3fCgWG8 zGF0)f-3rOHRaI3fpmh-ZXRZG`6JX> zj5kgRzLIh)ZlUe*`jT>fN(d#JRKbck+-_Fivajo3wQ(XTg@2>Chij#Q3ISY#^tYCX z6vhFZwZf~1zW%yysh8?b{Yq~OFCI{ZzXz*3@Kgt5Pe=@95or-rDIGPhn|jBELOrlI z?q9c4^*G-|cZbR*l`W8bi?cT9`epQ;0p@(hmv_s6`~c8qpr3J+GD)#24F38>9WNEE z-u#jfQ(Gr*UAsb&eE1W5?WuOD2>8OU8f%;eOWZTm!WsIgQ0$8j2~EESlEctqA0lU2=Wi zcbV*8H3IW#WPRyk?Hj28q}F{CWcO4&Z2rW;NQ33R=ygOiw1)?TA*BakLt-x+)Hwr| z;9(Pdx7?N_K?o2NK*KJstlGA+c6^SN{Nz@ZsrTHRcvC6PLS4Kh??xqKVt&Z=10TK3hyCY(0fQ?F$%`d>v8XD35;z|I$(LZ+g zKO;a#;$g9Ej7OZi=Q0^9A*Kl_T}2&=%|5|i7^nC9PcS};#Kguj!9St@Ww^Mf(4k5d z8-q&>b+*IzfzF?vO2OfqU0tu8%dhJ&9&d3aLRSBzDK$$@dB*{SGEt?TQUAJTEQXNe zJM!f}*7yMGo4{VXY83E9P#FgX{~e$Nc!&)Nx}2GLcpTwaY*2rEYk-w<#)YjBV`a?p z`nPrZ2mHp=5GOJrB>Q>iqrc!I^zoUl3R7rrQ$t2WWU{TUJDhF`rT<13;(M?$+pj8w z^k6*vL>#k}5)rpz38JW`V%2_>V$;OuLrZNm^<=5QFkL8-skvs}C?2K?xpE2vR9cz$ zW1>O9>n#H$e@=ik?h2`QB_Hu-;U*YB#&fM24j=*CAm4nOx3P&5u%P_%KlA|=zs3xA zL>J+j1|*m9+5#2Np8y$)8teT_aXD{5otT#q5A$j7ru{~hn(~St`ch3>Ej4zCp3N2E z$;D5h1!k%MIMctO6MwHA`nvMTe0nXP%ezcSY421Jlnso zG5Fu3Ve?1$@WurHh4AMM0vubo%BafB0Kv1qc=%SdC}Tc^9PbbD>-F4@A5pw~$)V$| z=cKeFFNN*XOpD={AafL~-;}s-Tsu4=#xufX@&otW_BeqX1+5H}!+Q}}ZN8H)BNYwD zba6on@Lg6Xe_{Yh&J<|A-S!*5*o#ufLeAIrP7mA+J9GjeypqNCo~AP5&LIrQ?K--Q zq-YDuYXd;e`I+y*kx|MZhNz^@-ALfY*`cf$%^b7dinDpyG9P%F6~z#l)n;<;5-4zw zHXeXow~$WtyAItwnhk&saZu3WEhi#|o559ko)9S&qPAB9DK)sIId(SwYj8f|NV?Hu zMF`@n9`Dd%j4z;5!sS+NXRB3f3ld2m?0cQSH;Y%>b&nKTMXM%~RcFF}3l9FmX3$nP zt%NH^E|qou1cU*MC%<{V8r-*#5b|N`Bjtkfq?;y0(llSJUHTy63cx&8t1BD}$iN%- z#{lg9Bg`IRGB0gq(r=t_7%3(hgf#9S0Oy!;Hkx<2M1v zy(r*oZw0&jI6xHnWiS7hRT(}+Z-;<-AS&RDt^&e=d4bXJ_ct+K4IkE6pFWB^FaBOl z$)`GKI7gb{eX9KBdiPkh=JQOXp2_Ou*f%>R11F!6m*l}#G5{x_*kKBa7$u@-uc-r) z94JbcJMD$pmV(wss*y`|pV9E;yv@=gvtcsm+JOU?H=hM}K-}@)*Lz{Bh_jq;|MiE5 z!LORVCN6r?(}sHo6k-T0xA3JeN{o4$t4N&r<>MTWO=mWHNhbRi=?VZW2MY=IlkzXH z64j1uQ7BY*=J_+p#NDRtHuilUHna?X z+B&+wg3(srHVfTr@e+g_=QB#)pS^{e-?`!w!7ykBPixRB95 z)Qkint%&Nbv$Lz$jI^st-kefzxQFrynW;Qh{_dQH`!W_k@HAgF??eX-D=lG4-6CNp zNI%Xy>CdLG4EK^>5z82TrNyoQ91#!Zym%KTk^(tZ*a28&aAeH9c_aQ2=LnjMZiXd` zj6e9_BfIs>8Q1?Q7w(N&lQeq9lVpuHe*h$S68kgz0NUpsWbz(+-?K6qnt#7ym*HxS z|1Im@^ygRWW2KdQZPDacmb^~X>!;U0@b*2V6=dwz{h6}a{!gsdlj%TwB~ylxkSp$h zZ~78~Gi!wSzJsL~s=)g9o?-IUP7W1o96a=O+M=fcC^Ki8zm%aYNYMDPn(=tRVRo8+?9)-cgjy1YjBxk%M&clX}}6dQT4l-8D0ypVu-1O z2hI8;3{UTv@$a#YY&wVz3i?=3CBy)d=Wo=_usHox*NveWr)=H%~~Cmu*?p9LZ;eN%%E!?97?NxRlH;7qqcRj#ie z4*T*c?=;tP%L@IoRyE;4P!x7ZU8{7yx+A;76Xz9f#i$O!I{F%`4b_JCRUl4-a1d)@ zoA+=(whC9s4zvBO7jX7n|EVebB)rs+1gg0pe6ZQ#1GrQGf@+sF(E6CUwYsW)Jp#S5 z>unGZqffoE84qpBPQX`lChb0Ac2WX#;h0`pLjhVKrkNMpimP8)wiU(tIb`8Qu{1zZ z=sOl)P!)pb%n)m8v#-hB@xI~->X&AHIj8CQ5TbVsROz09Lwg(aX(--qfz$uf2CH0nu)0R{>FAB**%CqhZfNyggWvp!6rSou>(Ndz3W3j=-eoZm{t*KaV~c z=;T@BBQCj7WrX~^kh8C89~&gJaMx1BP9!V`wnV98(Co7i2c#HbG!l}FtWPR6?wgKR zng?xciakN8&)-mpkNuaAh*OtpOV5d%22P%siSO56%YC~fd$K~+)VII}CCzW=4%9F;B2Bh)SRnQjC!62>vh zl~=N_$Xn(gnaaEbv)usG*@*hPdY*M^hiy4f9=p`gDwnLwikEIrg)=btO46S+x?Mf+k3{&OqzB+MLS zbX=R#h%S#4(z*=0qeoLW$y2rykkw+Yu8ze_?XMMrxJ?tMVf~lp@gzkVdDl_`z?8s6 zJBPitz59QZ0n3CW3j_;7J>oaW?-#XqU$|7HPm)t?gV)%6+ zKgrpWpLFf3h`Uw?7+JstgaKQ18qjkuY%92?<00mj1z_#x96J#~u47)YuCY6{@w;R= z96iRiV-ERK=#MxI(qnXDpi8}3{3dMm6r+woJD~lmb*X+39t>XgBkZOKD4r+W`|p{6 z-{bnAVm`p4_agd0%rP6Qyz3t0Ew&5%TZ~pzkmr@fWIyV4L~`vNpQ7N6ym=G{&T7kS zAjVS63<=^T$LRI3+F_m$_thc|*xQJGJ0gOsdvbj4dYA~^Gpr|9m4k(g7UI)(9+lDX zk2E78dCScyygyxClwPDly!sLK`P5~79L^n;6E`vPmUoZVDbdu4QX7(Ew_Gd7TJe|Ed-da31{- z#pNjrrb?#Z6GzDIIDS_zih~o?2`m7_QU^~4q5o72yy04(2~JCADjKc?RqwfH7h@7t z(H7R4=aTzwJp|!6wu_e807#u#0}o{v+~ zeu~$T7;wsNux5pTn5Yo5A6#Aj4GnNBOY zMLgOpFU*|l@Ta(1+Ne-g(hXHNi>ps-2CWtVnsX5QT&^6E0sJenpe_L4XNoP3GJKRo~0BRMWr6@f;)MGlaK89;?G z%InQb&S>2J$o;5yFZQ=!dOROGXn17;%IltPvm77d8V+%0joJMN?cFk_uUSI0M(X~v z!cZKDX09DoWDSKVNmhj^RBz@G0o{HuTydtxW}+5=>k8jk*X#6r+5r?%NpN1k9QGt;EjS0CVBEFOt`pFrFM-b zQ#^>PkF!3dE`;(&ep(~O@k=YQPskieCWwHA`}G?O7u)EqM2%0#CftZGfMos)gB40f zM>@_M2g@gZ(Q7OUTEaz&)vFmlN{RPUJCnQ6e})52$dTOa?PP3N`Z1UG1(78O1*;XH z{$iTler}+~=WnYN!W^u9GQg+s0V2xp0Yv#)Py9ecCko8S0yIY3w%mm#G3`2xXm7%w z(35aO)7ad?+`>Np9Pc0-kji*|4$v!81B&nd!&_Mcg9iTo&cgt+DIAeoYY*f{t5=DI zdO|&K%H`xkhKd0-3S#KV^$WViLnYY%QAM+~07PK5V~@dX>LEx&+?$s<6xz`S5t_^{ zk6myzp?+S0npJqO1DoVa;JGx>_sci^&LUnonjr1@(cNII5e?lv=M8YDZ4(@bs<5=t z(xom1Azo>z8}m2fOqhgV-?i#nIJRH6>2hx?5QFor$K?1JW}C?C z`ApZmiVDJQxmleV1al)P0yT^(c%n*c_gmi^{ghI$CZ}9CgJ(#C}WeIS1sP z;Ea_UZYLzs#bP>AzdJE z;knn{{~#G0;%RlsIr^tRo}X78TvMPq7wmDQ{ zTJ&?^MHez|_`yPYwA@da)c|8a=GO4PfuA^SP%F4vTgeM2=FO>kH)JJlhF_Pr;1a;$ zxi19U7Cc4ltDR`FWwfkV3WpAdlu=36JhXD1>Tz`L3}R?XUnyJRLWoG;?_gDlrTkPAaqyph!Zk)G9o;ZU4fz z0%Yp*z7cdGpiUK_FIyucf@e$4n47A`?Bv5@T~jd=qn%re7GDR z>N6BgEUS{dZ*qArE~TKem{Fh9^1>67Y+`)<$|9%f%z}4uW=AJ^6PS^ z^>y=*$&+o{jm*_N%ChSe(-Dn`F97)I$&i)dOnGa)-96nB9H#xsiXA5i4$fAU?DtwQjP#_4=4#Vj73{pM8AZ1%;NioMboOpG?@ z3Ek!Sdhe8NK)MB5T!2IK%U&2OBBS=8%F}K4566;PgH%w&LkY2xo@HXm&Qox$1j+qw z8334G6{ zC3-H8%rk+iY~x5y&efA()NUD%&{ByyS$F$P!ZoTnb3|V?gGJq(l){!`I7mqsITw*k za&jFgKE&=&2*S>k3ZYz``rq7gCJyBFSqR}jJO_SMp?g@@G_9s|C52)Jf(?+2+zD`-*lebKv~8J>N01*Ab9jAbBucrAicOD>(S2r2B}6NXp%f z_#E|fD(M#!wc$ZwS3szKrm?}SCXut;B=fFVb2f#v~N#L)87qn|8Msg->Nul zNn$<@)m0Y{MG4x`-**2r%PizUY_8oQf?kj-RGP?BZb+L{`S_<+sBxMk}2|Y0K zVhk^+n^W_DkK6h!b`Su;EvE1_?2zB6F~v1C?E2+f)l;T}pUd~D?oKMSHUsSKcqMwa z*-^lq;)h7UZYLmYY*u!wWCy$n3-G283z}`c?OJrZg>3{RJ-G^#Dt|_PYIq#kXN>}B zOxT>b2K02Rm?!;DV~gQe`xY=jU7l0%&Xh5Z$T#IJ|Lk zx9<2@A40} zkIc=dg2Gg~tUZ@8giyXU@Zf-mx;*5X+C{<~vfENE;uJe3d&-U0SkCy~0ONmgaX-F2 z-FN2P8WQ5P07nC|_Wzy$_Xrti4bZzHQ-v* zR+@Y)Ia6IjQ?3$GDm$ERoadh4#dvZt=1Gji39?ZdK~hFhzDoe;@L$|;xk26{V%_-0 zlt{gRew{bOgdPc8%Vx)N*OUpF<=9Rh>7#F@diX=!JX z@xQw#wZv8(*xCc2V6+|ZHF|M6@Y17bk;)+zv&kz&UonpH7QD+@=}9cRY4UJ@PkfqS zf+s6Msm9v+txo?{;jzN?e+;Saq$WsZpn(_nq>r;So2>(%8>m$aUUILLzw`JaROuNmin zYCVX*04HqQ(?@rMC$}9QFLL|h4-~j6uFo`8_=o)Te1gZaTM=g)ei+~*nGYTpS_c=C zZ(>YiF85N)9+W6Y!`c(mqO^Isf9@9+x($uIcW3bW22N z7@zTDhlK3uU1ukgXz@yF*~931xD;#n84>r)@JOqY0!TcQcE)2JAL`-bt57w^8o#z! z6$mLofG072C8G~(wgZOEP-Y?i#^7mpOIw0A4E9=i$C`G0;P}kbm3_zR04I8%DyZx! z3!?dqb7U@o2b4{-kONDe6K#N$Cc7hFf_e9sS9c)?NmXDSpyHb5aIcKfk*jIYlw(npOEs$~RxHQ9n4T3aBecCPKI zB30&lCqDtVa{%w&Jb!2ul^+6m0M|M9(*nz51QJA z*UfYTG!E~fCB5vbz-!gilJxYo90&v3EHOWKho4EG0KOXfwE0MSpKDzj6onqt;em*b zF^A@9ZjO}r7KKd?wA!Dl+P9D%2Rd2;D!n0Ty2_E!}d6 zS$#W!%bjD5eH5R3n=II>pfrNnv;XKBZw)u^50DA)z}$XvuIZwNV-aXR6Fa}&bMZn% z2=}aY>D0>;TIkH~%4n5|xQq4K#)dwdHjKgFh_53t)hhX2`~Z|7LtyR6pW?TJwR%R# zrSYS#;djIDgRna6HX)2xh5Fd`nD%Tb&OW2?;7H z{sD?zVZzhgGVH@hPO9>FH0_zMqVTTJFLh3fn>{mo0I1>&D-i(A0F1!*{OU)~=u2mJ z0&>o%D&CLNN9P0!)=rdYuP&N7d+jZ}LILO~aMd?4epbgR>@R@#xLiMbYxb4Xin$Sb zfm4NP2vgT^Eu#^r5~ys;N&rX|S^#C*RUwE&vAx*}xaLt&40ZR&k)!b`%Z%;>s5-5D z=68$NM367AT|p1v%Cq<<8Ehzz2CXHbPv0ILZAsaZ=(y`*`3IET`d5?cg8|nG6s* z4i*9l-{pWRtBGcDr_(Ap{q;LrJi$gYp*Zs=(ka8F-hBX;nR3L*?BY z9dde?@(7{s>Vc#yVan8vxOZKYm+KjUAW$>kY3I*){!cLh?-b^dX_^I$3GlmxmkfZ; z?iKY}WVly}EQkv3$+4KuS9ZWBI2Sf&Q>s9V&6y<46|3!Oadz8};81>@XN{PDpTNS1IrV2V>FRFnyrQ24p!z=plx&Q)nWgl6e zhDw>B1%oUogZqN6LL9%y6Sg0|AKj!&#n=H^l{Xw)(4VPo4dQB{orco|GLEuFCVgx6 zsQK*Xc#Ql6$u zmt$w4V-@I1aij?Fj%LqH{rEPKE_skc0M|u4`@2^Nup&=)S`o@@?R6^qb~A$Z$aLtr z&gLTJb(D{2?Zk`d7#Wm`TSgKR6pT@#e4*2yofcO*Q3L*00@iOsh-A6JH)iI`G4Cb& z2C$5|$hQc*5zb!NZ(%7}45uhsbH@0zn}IB-yysMd5153Bs(GVr4dl$$?yC$Zuze?Y z)Nf%nQ9!;nRX0o~^=vw%F7)+tPmlxY-8%X!x-WON0Rv0}MFgNnT%TVcrsQT#b(e!2 zD+>ZS-O6@`&I;|5I_hNl8rxoxy2${&ZQT;5AVvx#$=;`S-{rM1up&vM??;d5OW>;I ztkL97WTm#|OmEH#98A}G=X8&FUZtNCs_ZLahm)zU%VNn&OE$%agD1ev9mR&lQ_{LP zBix%aDpPF*Eu694P@mK;yGyXX0X2=_dkhL%N@TI?%bceNHYTik1>~XS?%#MtA*lX+ z6uyA$Ay`g8S<;7LbrVdePZ=3P+|6hF0NjskcbsycR@o=ccqN&N}0)n}Q zF?Z?DNV*Oz{lCLv%NVvS3RMV1|k$1*8FE?Tr=i-@!)m5gr+T(hlDgn68+f0<6kTz&)B(%EmdawQR=kBA+aUleZ>Bt6gNNZ{2 zCxPHkRtlhhkO@$tUBN8QN%5!gaL>$7&3vLgtOb4K-#^CW3mPj@bb=O5E=2r|u5Eik z#J_m=Es z?lCq~u{plRM-&ULD8XQcJ3-R)|C~UGBsPx(7tm5l=}~Qm=-QyqRJo7>^dXFX<|`=g z6E{t(t>?P(LT@l?MS;XcXxDczx5=HSJT@IF^qu~v(5LZ|_oFlMrGT5jIGRUp4|`0p z?)7XWxF{cg_(1Rb%MmwU|Dbw2!yxj^k3T+t_RGJ%H?*uw|HyTyDxMfV;+J{Z>`+Za z#QE=b?fU(A`M-YIBhwl3Z^M6GznseA{xQB+z^Sb@xHm}^mDc?3xXN50Z_%?&qEVZB zSJiCS`mJ$vCqqSrmt+^{haAfRx)M|2gjn69zzS#YICbd)9~v~_TX%j0h*q)g&QK~` ztph&2^MA!?a501>BrWyPa+7V*+_oGHHO8==sunayVNC3TrOW@c10g8C?r7%Njzfl9 z2NaGtt{zjKevY4id4KMY33OX5Op2LepQaNzDJggGBv}#Md2)&Gmu=r!Pi~minHuEL zYvxQ@jZ+|CeC%uDoR5n3uegg=v5T!W3}HE@a)Eg*_r`N+Pf8~!72{|Lf$(f#z|_Gl zu-l$ybIV{HV|Qxecl^8!s!0{~_7Q(9c$ghe0rR74<>#Bxu{>2zqaQ~9P)P_+_4xDv zm+e3CjQ6rn7_@4s3z?7@Lf*x4=%=r z^-^=L+LVLkVQ3os=iH40Po{4eD)JS40v|;|hOc0P(IAodrR-I1=|YHwosLj|-yjq4 za=zaav26)pg(cjUxv3QUcA#ZzkkTrwFw1AAoLzZ;rdvJsv{32?q!G-s4y>$R(hhw8m z#!eW)w7~7mWifJm1*>4F)l4)dThg1_h3aw2cN`>uK<6)TpZ2z~p1hxtf3R(u9M#?w z;*fGH|DfDVtHA|R!-NgRJ<^$tn^pgQD`>&(^RkwV5X}Ik`@LQXE7my+A#i`gPSDf> zT7aK-E`W3Ss<7=;C)pthvB1sus+@HZ*HCwhJ4fMQYb{R+i4N$3!McIL9*lR3O|EtiO+dOC?b5OBqb#&FFw3W8OMe=Jyevt!4BV7PO>JB)?>N0H?#~&ABm-f z-Y$E_gxC5RSF*3;n{E*i#iolIT0xtXPO>l1!xjeKWr6lckuAD=w&QYs|MvIyXRSn- zP7Q<=wVCR(&&;h_D;eN}8roEDFZ^gu^dsjpX|{(5ab(UIs(Nu|4*&Y@HFMgK8^9ad_^Z&}%cH{jXH)9>KRot}(adkyQv1*CL(2L5nNTLbC zbfd^J)e8n&unMc#{q<6UGgHtM9f=x?-EZqR`J@W>kqG9XKN9RDWrDN1s+`_4JBtwr zFtxC&U<9hGNsW`afAk$uQs84xSP%uIC46;kDbSNscIj<0j5iiq?mq5 zhnGO>F_@sJer|nF{t1?jy}t9WzH7BUE1jSnZU8218)j9BKyBjZcX{;dxF)!grPWOL zh81bo{(olcvi28+Qb2V9E)z0|VE@Y3MhLHdt|uBX#Wxlz8(qw;c4I~& zSq=%VbE=g-t7+bwzJuAzdij;hvP0rN9G~bOODlB zfU?X;=dW*5O-wDO?FXs}bD-C|m6sYYL>b>OdU?h9WY<29mrpKW?=X8!az#n=YY3uy7YMVYhBrdlY!g=r zd*Qzi_Ok6ZDHu#oy7wyec~~D+J*2SK@&jB;joh#qs%GPyndel!=-W3D9po!vz+E2U zwN5u*ntGohJ*k3YUzweo&By$({9$61cvjlKnR7nx2>5p4EBrtT3-n1skv7PJgv2)xY!lN@RL8Vh(AxDzXtYV5;} zp$#cuABSV*lMpPx)8w7!`(^vqG7oH{77+)RsScB#rVYz}gkYv6YF**+6rpd??7Qz5 z%$aeRR05EC-ie`0dkPvoI_8ine=x>i1Xr;_rG_X71zuuA9w+WTDzSgcT>219Z)ZGy z)fsi9ohXT}cdACA!#0aG#@Y`dSG@IILH2q0^4@a8DhHw ziwQd6)-Fm(!`Y%tLV&MeEvrPEx47(VxTm{7zxeWGs~07aNi|sHZWR%Sb?r7z!}QL5 z<3WeZCdn;vrViHe_F6^IU22B@OQO9i>;uri#D5u4%k|KI{YN_k?w&!klqy5`Zl*mf!}jd00tv`l<(*M- z`sa}prb|)y>@0qM;Gcs|!so}^gFNRLvg^3e=6t`0zD#$&YxCsuWI^H{GsV{dKMi1; z_G3fHGUTFYrU87+bsy|%)FTi6?W>=@EX3)bmbb#Ew}s4JPrz1bS08xdF$kXV@u8X0 z6-?+R!B^T~ZSZD;$0gbK&?^R+VOqxS8&jJ)?$ZY5CKqc@t$*F=8$q47GJKUAtMb1Vk!u8ttOEr2fFk??Hn95&x zIj~v`GEq&NA4c&YOOxS~=qfVia<7Bzj2+FG=Yy?(ztd>Hejyoc#AunfY{Abh&xOH3 zY+Wp0>+wlHj;A_zQZho^lG}IXhnv!sPIr~ZazIAN2sxzD6W{oHw`;lsiN0&= z#^Dvs#rTU23O4mQ8AZpXz3!eD!uG^ZfT!lK{`>9qt?|vj660M^o?|iQg_qj42Ke(g z2KX9y6|aWLwQ2^+aLVS_t7VgOc+w&Tb>|GGYI+0PmTZq9?$oT! zMt0ZKO8FjWSG!e*| zAARFhd4wW(NGLMKu7SMD`edTpB5k=rYi<{>`}EG*u}M`nwkS+!DDV!Up^<5pP;&%V z829hDm9e~@EJZ4HY!muVd_=dtUWyv4la3u= z#OCKwC6|h{d~?Y@=!pG>);<+j=cg~6ES!(Yu-2F7y8+sZ6>6N(n6D!Kz?4i5Jd}0Z66~t^H|Ca56EKr>VXr9WE`Jm$(H57;SIw5!tYB?#6s`=)q;9f!|e)^ae??;Nl{^!T}ZN1 zy{V-%xn9>)_^6~(l&RvdRy7SpTpq{D#y{N!i`yBxL?m5BSf=Jh0sa|npuxVjwJ*C~ zRiT-BH}n~+>vYh)4~>USDsLzxK=1p!;r(JBeGS>tNF32Mnzi9Fv)e{Obb?m!2hodJ zn-I#X$n|2(;|}xf(&OI=puylDigP%ck-|sA=37swh!anvHKh>M9J$1`$?|=Yn}`al zU9Z_Oc{cu>SG*%V)tkVjO72hK49FdnvJ`tBHKGu-Vfqxtm%e*v&$ zaNRHuWZM|=qL!p-l(Dc#Bxx_~#)F+twR&`PB(hl9VD|euH?oS z>ufEwS@N?U zmy46V@UpX_`QLgIXusftDGBmPeU+lV@Wi2eNM&D(AZ75Foq!#T+tfwZP91c3Qz&06 zI53^QLhosiueEupv$f5;lGWuB&(vtwR*J=~*c5^kCgSPNlo7`J4BSt7Ucn;5f38yj zF~TM}U+&gi*jg)zpfA5Wjipr5-KW#M&>oOAHUGwR;G;`b;$$3xi?R+7Rhup;=tWiF z=RFEN;=wk&FF|j>USXRD1qg^It~g{uMmFh=))L~#DKQgHttZzxSqPJ~)5dx=ipes9*5@ z%a-tqkX5;lzGj(lEYK2=(=c&;pyiVyfJKxLir-$NhSwlsfWi`i&5`H4k);NebY=vG zELJvidZyxh@vg2oeGMaMy83Qb$A#d^8mph28kVuRx za!dQ!S|{8plem>w1utgXomqVe=wh4`Q=0+wWFgXiUP#vji4jAq2MuWf!g}` zl)5fx7td*N+6|NaMp6^&2H;IvGKp(s0W&ql-n)qnR1^EX1 zFY-qSUg7&?`z*_^G9N8!cywhV=lH57L6Ids&caFtL1D|y^k&(bGoTs(dv&2WE$7X#%^b(& z=~jK)^89JYhJE>Qb`Be@iwkuQMFJt#fGxOv=US?Ku}+dUYO@oK!2goCk_=vsO*Sza z3Ch(>1TWu->A<|ZLmrOI3}ktlFT&9+EE1ay`ZPdU-qZsvlaC1Mh9`0JsVrn8Bwyzn zsST)TEVetXM(1P4(s10(Dd1CM>@aMkmGWAwQ}1#dc@IqV8wURMH8W~TQiwzSl%wln z2!{~56t6VdU2D=tb>S4gs-IAVUZ8q=qnzej6}mDP9f>7cN0X_435lkX31EWk$)KHkd2*vKr_)8nao_SKHi6 z5jOpebXQLx>5Subu@vsjNb)eZbAiH(*_A>x$aMb#hY>P|%Jx@p(R600% zg6+NE1^%Ztt2sW^-Q$W_tzz}fT3XGY#Mb8hPxit@pX}1xzR_Nv1`vRTFC(ZBPVMi0 zk&J85*c^G|8@~313`hEaj0GIkR~A&Pyn^g8kcX))z+^|$$_DSekqKfyqW!giwQWCX zD*>DSW2a@-iw?TEu{&rbT7R(4)u0QrGSlmtSR5S|;6(_dR&~W@s||npJ2R5wd$2a& zmXmN~J?=t-0I7^0rg?Iwk-mBX6djNwwB;6jzAuxY5&C6}x5h$({K9P4_X|T0a8eWN znRXRk3|dWt)RE2#y+S)OP1cmEp5_(9hwNqCUp+SG#?Yc2;l zuiu?-J!9zq%7POLgp@^rVIJ%5r>(N$c`fC+hfcGqAob$p5&>ric&%^FW_SDtP&TM}_8SYlJHXmC zf$cPfa~d_=Jy`CVIx+`22ZPQvMgyJxg%d?VU4c@bIN13@D7x_X>ddkoT=PR{P&P=; zPriet{`QSc%D3vjO7R@7M>dA5)A+U6zj&_N{ER#goPmN7iyAI6pCCa28BHvB z@JvN8qZ%iXV{BBZrQtsPsYVBh<4GBm1e0V*tJjtEp09zT#q+FBp?g+ule7|fzT;1tK ztM;fbm-wgRcl!{b5Mg6=x@t&8T0loeT^Eg_kf5CXfpD+qDourI3c+tnbHsi1;C8RU zLl`l+qhi3w{QDcL+z4eNC)D7-jtl;r(DfLXW?oZ>Z>>I;f1suA;_^PZt*z)W^pt}c zZYTqI+xtX=DmW?4Hp3D>{3Nce*Q<9w@${c)} zrXLPQPp=ljOU(%=Uf@23t>|{xa(9F|mN9zOL``S$aS0;DmZy!?a1e!t%%`UO!jA>Rx z+f*FSZ&ACU&R(V_%7$3^{)nAjzuV?E>tMyv<7uX@$NLyEbEg95?h8y~mmMhL)QRv- zoZ=YMD<-R?moINJUjsdh4WRF->POF+tLzUrV69}<5W0LyS}L}jLZuqz;d*%aP-7nuUQP9sktUY;_?6>D#ahyzu;0* z0tlGZ-8s^;`NYI}ag+X*?g@P$it1OU?$QtIU)eMFiHz5d6PkUm9$VF?zI`3b_AB2G z)d)q#3;FMu!5KHtGH3aWudpx=PdE2@Vel?p8WDQm|9C<5{>g8U)4$8^bmXv;qqmq~ zyv0!2S_TLE)LBt|Y@W)TU_%5xG25LFGzzV{gA>`O$*h?QWPzD2W=`C6*7kg7zo2fO zKZq3GX{x8kExzUU8NxR=L2Uuov$b+C(%(cS@8`lTUCnJQjPKpL@(L6F`a!Ct)uV83 zGt6k4&E_w9WJbTY1FJ6kOwPb36_rNqh#ffR&(e`{2ANggyL)d{;tdH)F#dM_3@PBR z(|xBc%NUtZ+T){8GvZJ`(CI*&%UX}`N?c^TR|0DyQ|eV#EsvXI`ZFT7wfuWtx8z-S zb(#G64I9MGEd@UM82`3I+toGT45;p)9m^Sa&Q4tdH#d-JV_zVi+A^dKD^wG*_~DZC zVORamMW`EcMRCot^mAz+ZYe&&wx&yCI6J&_?>(WV0GG9Yp0=Lx%~f@EKa?C9P;w|x zCiXLXO3kO1PZqw-J#w?$#+yw>68+|hCkkXUqGo<4_L#4&|D)mUpb25_Sjzq#1jf#9 zK0hWR{w~+pk8gAF@K8$SOFv#c?(nTzVxrmB#(jNHiW=w3D1B!m34e^1XGqe>K>dN3 zFuZnkDBF46z_8DTX+yuuy_V(*IG`=L>eR{O0y|u6`v&J1=10o$){8pz=6-BpM7=h@ zIW>ui`Vvyy!y9($kgpHW*2JMP0*G&LD#`gzOq)m#!Ch(^FBwabYHzVcr>lMRPJ@&is0!lvau@6OMjg?x9@YMN?U-Yeqm=_I`a_U zNNH)D&MS{&%+o96xsQzDyy}N%W~dn$7(r_70G!Q)eAvqHqT0B(NQx@Ue9lU7Mo)~msp2=<<>~lbM@X=g8!+wCfVS@FoOpd)vvkMTh6bFK&9-cOEMcg>%>?bcg9VPryY_k+#Aqh#iw}Q@w*MG^ z6N{Ja&F7&-AsQ#do_i z!uOIqVl*Ldw3Tm_goCMLy;asl7RgMFR<~k0cqzzI5T zG;KR;;kqy!x-BaD+CeR$cp~t~oBK{UbXt*4G{@++ygSdzTTf-$f4exIH_a@3&~|6E z;d6YU@OkzXUH;qoMa(R>;vD-|EHm9@s41dN%csW+%Xo7-ebIM%xg$_oHS7Dm1(x^P z%?w_LnvjsX$$4b-VHfg^#jZi>nt`-q2`!Bj2&LXNl=c7>uq*F>-zaE`y(R zPk*UimeW7>wXy6(Zhv?ux-vT9XeTa58y>ARW4ZB;ym4--17COgbGhf6*R{1*`Hc#U zYf}z64Zb_ied>g4b-GEJx$NJD0e|>#FmS8Zt(c3xMjwxJt3ldzbZ{Q4)b`3aGn4TsR62;}^yE6{ zPK@>3NKH*O7uP@49@}}h*(dvRg+fB$wN157ZQzfCWc`EQFq~&!G)8)WT zDKv~dhM>b&h)p!2%2t7KLpS5|Sgcw5h{p7Pkynqpm4pMs*E+Ra(MmD=S;PK5?n`5qfJ*i)h)KIynY>jD*#YF#YlEY-Skz!!3lOs>0M>*hk{yO(7AH1CsK-EhVCj z&#iO10^1^-lV0t+^%0$&OKIttRmN#Z7M&Lo7H%DEzEp-uxy2Iu9_OvI&t`E@%`lq! z0I1A!YQsFd8VYT#Q@iCx{^@rJLN%DNjw;*y>IDo3WfiF*|BtDlUbK{)4}X?kO_LkR^rI< z*YQsurNNjkP-TA zp_G_?Td7rfHj88Jh9z4RpV5&WJvarW4z08WkG*}Ec&9?%%+&PRt%RfyC6T(#XaIVW z_x`6xijh(~f^_ZVX3bmq;=1!X=g!nHm%c(CiOPLpr#{9zy*)Eq+r@gME353TZF64{ zcXA85#}+M;U3=xw<8!eFd9Lkm9yqUFy*ds5WMGaJp6O=JzE1O zghyn5eCwYu=aTvb;wHT($}5uR%AAEK+i0(Eo94koXUR-ve|_Ve-s~e8 z=#qr~{;S08jK>GE@{Y7TyTVg+vXCvPWw;~RraV~t>v`$X4MqhQ&B}w}hQ)*Q9JRW! zbvtqN9S>KZg71c%=UPH6l4#Kgn7)YeEi1Xoze#qTld)I#$GzHpr(YfR;z_GMptJ1i zw;MUi&&*Ph!q}V|mMe+rR!)vQDuviV=68NbVVewGmm!(Bd6WFe3O$E?h5c~irLRvk zhWjZ?#8;mf_)xxyCJ60=BQriUyv!T_@;qEJtNLq=FJ6w1J?z*oUZs|I-<=B-X`y~RyR7vGeW^GF zTUvs5L=j$^o`1M-}bj{E{JuT7(Y^0kzw&t*KOpizlzgwMAOiSfz;L?oK@8%jj)6DG)_{HwxD#5sxzI$ZQ!|Y2rH_JNP{yuYsF%Cas zD>FFx?rhz$$MfeFlU372JRQ6(4tsP7It1ut7vB6Ryk;j!l^ek;sG z|1pJ^#>ISWH@1g$P9zvt&j-%&(6R8I+t7xKh}xCr+5yB^4(5fU!Ry;tfqt$_MRuZjdl38!9jjq>w2;`FLA+YAr9En19Iu` z%B6g6L&d)?$ykUD$?4>X2(S(Yb?TEnJnvw(_uSgRuu)aJw^w5tqb^0T^m@l63A4Fa z34Oh7{M&0uw)Y(SA+u^Qid#+vQ%GG)X1ME!;BOAS5xj{k(yJ#mTgBYYmUUUTJ05Tql9%RO7M< zWhLSzXPEoLjUU4a1dfQSH7hJ%Ch6J3*DPDZAqPcssaW$x-?n6&7c{+6y==Z{gKA$V z`e20J&U$n2p%7~gJW<%OM?bQaOa?AAb?Im+sKd5ApvzvfLmh^ZSM9$stzoIiio zw?_7DGX%r`QaW$svguY|lk(pcKa}kyKZyyORbJ;Ru);x}FXqWf*i!A}H$heE$=#IjDZi*tK zipT95+^o}#f1hx@Z~SxLqrsRY1@09G;wfEJZAOH6Hs|B53b&snKi~Yf^=6p&(fFW~@cG>n% z4`;BI40OEYqj2zd52?-zn|wH&92@T1VhHZjmf0@p@Zm+`y^ptM#toU~bY<$u*?TSL zDT*BbeB;+j^{4qO48r2#D%MF1f9VK95R*04{8jmnxCL)@&5LSX#$+rUe!~3xf(S>? z%+hkJnPbm`ugW`j?!>oSA_~^BxSb&%629HZ?#-!=+j!Yh9HFG&*Lgt4O2g2%@Ad0N za~VNfwR~w;v<%@?6antUlwWMmd^-d;dF&hIw|Mgo`u<8xlNBm)dOK=det(Xx zx+-%|{{{wX=|?zeUZ>0lD;QgNoTa;77xU%m_H{~hB&y-=qJ|IMeNB)FM?7V9yZ=xq zK$K~PaS}j1s}_D-Q#op#oTC|btBn46Fg`H@z$!B6jI-WW0^Z+Sr9snz!=c~&w*`Lk|a zM&ci^y&k)Ny5H7D9K(08&r+7l?EYw9vBG$NW|JrPd-V3_5&Kr_$`EcI%VS@{cdMe+ zisU`B9SmtZZ%5k8R<>Y`NaDlI#hT{R-Vr!~Kz&76oWL8mi7{W3oD)6zhQ6&GI8>o9 zoh6>}smY6v*JO#kWn? zd$oq)>Tk!>ylC{R@9Z+ZvZO<@YzB9?$?0(~$Vwpt@#06siF5i#`^$p1=lniv&C;te z_rGSfoX#-Waq2TRBwEbQ+``#2*8jew7&*yYMYUCvK8Vc2q4O+LeUOY2xKZdn>Gdvm z4zemJe91lb^Q-;S@7Cyib?L0qws{?m8C^;<>V)$(xt&F(fR2Ps&Ko}^mp(T9#bVzoy+t+1VSG&_<)<0u zxsJ(4@O*LB`Zp4xJA;b1S1|PLON4_ZPgu*P>*Y9>l*_W}9osl%qzky0_{~hO&%KeP zkXHFpdNfOL7I30XUTDTdwa8$B&8Oto_T}Q z=A6%dh8T0B;slX88UuLSd-*2j4;aUuU*%^ja~$%3(7IMOjopj6zmT zPhHcCn4VLR4GWNVV}?XD2}>p7f(1Ja_KgR{i@Yv(s(v_wJdwc$rQ3 z@fyS!ukM)5+%k0X(vE?HUS)S$$_$+QvFc5lo_I{!{;45bRg9Dcd!(dfUHfMeClh0m zXD~c;Z#dROTHe0>jW;_R&(@w1lONwEI#=41s?iYK$bB`<-N%e+EL@wGL~?ACGy4er zEDpU05Xvzvzy3U8N6y<_`Sq6RCGrsu5Z=#K?Cag4c=bh-AjJjK{~W|!tT`_6KgSoASN-;R|E)+swa=q#t|t z2xl=Z!`Q497tp)sz`1RTePQ_}x!SMHMOwTo)%Zpwiul}~AJa?gUlrSBwev^A4i3aS z20H93di!Qz1$&{ z{Gf*2sU&?4OL1RBdHX@y`Gb_l^mQUzP}jY@+*Hmd@P6JvXL{tA<(^CH^eQ@AgA5`l zS=TyrcG(=|FM0AM1IgNIt83RWWBWRswo|Ev#A2>ur4-M>6vOO%=PnO}#COp{BS_!W zeNAvkMb!T7ZuA~4t3Y|&Tv~=sOfUF(l)r8t^5AO;*7*ADl+EiaUm6G14jdE^mFuhe zIFdQ2^)@yjOQl&tA+5DIdM@WQOL@I5$@aSXT23QR?B}R9Gx3G1IKL0ECb5yx%N-v6*he-0zZ zu}izpl4tpI9)+*nuLbQ|p82)`k_}FF{gRMBbNIZ$*hkH59CoOEI=3cQ8X}GC7GDMV z2*p0y3gonjELo_s_eoVoq@P}_$itDUE) zW*0bw!gLJ+#MXZQXT2dI$UbWt#pwidzc((qHO3XJkK2#_LS_ z!VfR5t-|?PQ{$K@t64DkWAC?D$FbnQ0n=<$IMg<}5A39ggW>fxS;42Ti;3gWzH_ss zE=ezE`PG=d+>zHkaVBLEY-OS%BJV#$Un)J3H}X0ypzAgA);dJb%&qREiNwF?@=XCU z5NmAigQ-G>o-{Qkf3auAn~2Li2J6D_31yh6=!MYQ4q!}YQEs2F$KXkMG>4l)&ZY+& zGh!~JL@#3`Wz=X7;RN_FHI*G1ErOV`p}dK&6YnV?#kU8&dwf3YV>bqYr*XI@%MPn2 z^W$im1A-mP98X95@hD~5C5}CBcF>Vszk9sGlirIx(etL-=gQ{b9nJ%GCffVY&0&$_ zoKX7m6;_60#eb{}gR4;RUkrvSXM{9Nj-5`&ZD)a)dBBArx$DSrD6|-JNF(hNFN4pG~b*pzYa79>R1oePUMb|1@ia%2MZ*lrIgJT{5c^; z5pVRd!v7lIDA&&O^W*?#)VzM7&+)cL*Cp%BFAiO=GFs{o{9rx61C=B9==k{2?n||1 zn_A?sdW6&a;N_8du=@7k72*Ko)!7yEq|-S~58bD=gLC@W(II%EyMeIGvhDqf>rQ>R z2H$m~<@L_<3n+96pBTI}!C{t*ig#9=D9;Q$hX`|=0@pFL&5AS%z1d?MTHPiR+F3`U zfB5O96NOK7R4-duDLnMU&9N48J`p>d@wlfB=pC;n%uBK}W#=1YkO#UB-Z9-rPq6*- zi=9V`9e@kBVX!!d6dQ9-7u%gECzIdTd9NcW6uoL=r$!bp=9~oq3WnNY-WS5Q6?r%f z0Z@FMqqzTGV9U*bU$bj!4S$<&SGMD;G2Xx0$5-Qk7TbviTiF@|w=qO{DJ}LEiK%-M zJZt`He>{k&j&=5tY5^AnFwX#tRJF+LjI>~)uvim z(=#Gq;A44h240CN#ara(%QMcrf}WjYm%^MrqK9B19$?e6m1V}fO*wEoy;Oo=XuBfL z8|tIoU77W~1S-%;VQ#M7;2E|Kx$rDy_z((K2c}67neBn^7^j)94vvdDg*V$xoHIGn zC-IbX+7A*$ZNaiL#9-N``}s3>@(RYl$7*iMcCnSuV=K2J?m2=W>@rVQL)xd2Q=dOv zAz!@;WKZ6*HyJUEW0-|jp92SI>2(7a{HMIc^o)T21es$fNe{f1gHWTL(vj4GR~A9r zC9xIp2+}(h-ss4t!nVB!RaaWAX%KFeSr^wi0>=}w$wzFX%J$w}L~dCG&-9`gws1tG z&e+ecfIEkYq~u^&=rBIcsYr_d&5M(GbGSEh^q**n;9d4rbRx)@qpbF39^95S^7Ukb ziX3YX5uUt7Da2o}R4ls0zzdMmwuweq##T^{&j2R}BTjQ|=>$lk+4rVIq&`t8+w;!J z-X>ijJ8WgF$E)^H7JSCzTbC5|gB8bw!bgGQubU@sqfUq1eSF8dNDfTM8D_|yggd`4 zWRKMCZW!swi)^pFaRUJBvb`CWJe)xti8I|x>te8D&I z@;&&xKMrYswtd@CYydNJb0X4-6HkOitV3{}HuOH!1Zia1o;6nL6{m^mAwu2vD9n5p z62BWfHp!~Z1>P3>-nD!;`C_n{8VwmB)6;iGhk}#6vdRx?Y})3r2*d<@9gRl&mvigh zcwS@#09odEj;#)RYv{Wj^pOS+!v&<0LWCY-R_ti!Sqs))rPrk_z0(KDkA#v^?AZQX zKqE^7qt_N(T&336i6i&0s8Bx=G8)` zs)gyaD9^|hIZx258ZHhzQV}D^R_3#k|N6ttR)SdfFkVS5|6mLQqjg)|c=$hmif!Bf z(o=F`-*mCoTL;2s-kgVxb11XHt{5r1QYf&T)=-J#=7s5x&&}uF_G7VtZPOE9lM{7E zf~Nc3DTxiz4*@wGBt$R;(Q-4{r+>33+%KtmPb!K?R;>zzyLCt3vrUwfQ7#TLORJ(2 zSzrX5b;8?SqX}3Sc`?~gaK!7a5Yl()&1Wkko7-NUpgDE#zulys&J+|y{RRQR(xW&V zmDoVJbU$_#WduUMdjwj6|0gFYm)@1Fn-qNtsd^s*Fn^&O?20&rAawpP4@a2EPUBhF zAHBz$Yw8Yj`S*b8qylRi8PUpEg&;cUk*%aOTvC*b7Jbp^U@u#lHBhLTTMlUz_^{~o zb%Lq^>XAu2ePMd2WtyDSmw1)$_@=;XJ0@kb4%^5hb-~B8mA$cj$^y`$>;aFHwEt7G zOup~wq})#6Rx@vyg%e4{w8{VQ&|7ypZ)FMtnM&rf=5mMLz^Vh|ITDKOzdLVY-1q1R zfP6ATZ+E%8z$u@k-v|`K{YNNpqmdyR923QDmI?1Hj+vXQJVklM`XXYIF(v`F%r!FL ziD^Y#Y$eK9w{5`g20I+x7ZF2RKDG_NL zu>ZBcGuboDuT4(&45)&Z-pb9D0)1&9mk!)v=yi{)=CSJwnGo?RNrXFd6d&cCdLL|J zhqW3YBne>w9XUj=1g5%`)Dr)|lesUv89TXRS3?NE(Qrj}omOAxhw^Bo?1%XBM(s!? z;(HY0mSAWU@@VAT#@pPEBJ*S`i2%2Sxp^>YvSI&C;LNv9T~MPtdBAug6sUqKTIQY9 zSi6b|;A>v9f!?RAWq|&*k6n)?gd|9JTNczHH=taZ$$q_#b^OzLVxoYv9>KL)i;4Wl8 z7@PJRkr6;^(=Tr&oe=MX&lSFH*!0hTvHNt0AUPtqIo0C)g&JSHxJ+W7{B!2NkqdIe zJSar43Y)7>U6da_OB|k*K+Xqlt^OP`qLM`9B3S&0S&2x7z^FLn(EI1X;!PJeRaB|J z;=6`4$94g@gS4ZjW%6V9{Of^_M_@CEQwz;P6Oxsfq?d?rZ_}u!?3T@KhbCC6PVCsJ z1~#fPMCx`k785t<^Ur3j$}>ON0GU{p-hHp*J=AA>PUAos)O@7J2h#$W;a43TJNXAN zv9Npb$vxYpxh_d|-*xG-Feq*WjqdrHG!G`vE^i>=RH2C@xCWR0(8jI2>T86N%2g=v z@i>ix>DY^j^_u&wJ&6XFs;reaOcV-48de?1;?fICWWP1$0032qPoSd$29$3X2S zGJEe!!*!nN!O)ksNly%|b@}wW6OssdsVtbER)89&FY_-_?5vN>=$`_&y=mx?bipR$ zt&BJ9uZ0pib=mNY4KvhbMyyn(OT-`*cn__bqMlxR-da7}s1DK>0kevj<&7_^s{FZ= z?+d^&7Q=GNOTEmpX#`Cx&Xb$GDH~C)J(9K?U<^p7VPC#`MJpgLi^@`P#nPGvr;iVS zwIoGRR)d{_S1Hkd#OH->`1J0vAlRetB>(BY&|=>CQ;RumSq-}U$h0x{ z3+B9xa3$X|#c&DXdg~l3T52w>+y;fD+Zi6d)V(cyhqI&W#7JWs9-;(LfR2AM%G@+{ zZFkooPFfz`aTA<;B>3+mV6wz}pDdx(1a2p@@O`LF#LvIYYW0g8HLf{m*ARlp&Z{~Jx##;)(Fp$-vpPXQu3T^d>iGl&Zif*hHHd-~`Xu>dCrQ!jAkfG% zqxt|dC@kVih{1`(PRO({PrFna1!@`p$&V{lZm=e{5I+a_9_TK3*RS|@rY#`4m-W2{bn`4~X2K)6>%w7)SE z6kZ3N0zy}nsn+N1rcs?A4QE3+m6^!=#%0y$h48}ZOIN)pe5(m%5azOSz7+LS5Q15{ z#d6l|ATlXCM9D7|hZ>=aB1AmsAMm_~cAa)L6$1Btw9yys!#jmWgO5;@YLG0gTf16X})- z$+@R6!fCpQ_S@^TY%-etExQ}CnQ=kiDB>xdUg@51CoDyAEbFG@uSFmJ5+VKqT&@pm zdo#AF8>E#7u1G>U@^<@|Dm8Ir{oHm2JRbl{RCjkH9)&uwrv)p#c%LkbM#kFP$7yYY z031s6l|NbyN4>_#En>4BOtK;2}Y?Gd@WuZ$db z&^mGA2NDS>@Ay*HfEa3(q@!gV0`tLeVhw$;jMhTgrDc^-Jtr@jqh#i}*n^;V(qTrH zhXH>2<}xMM(4~C(^l2Z68%Q=lkfz;GYYL~bm#D?NRK&ab=MmEDW$>iw7Sn&@C-uX z{eUL|A5=TQAhuyyBstFe=CJ^Bvp{on$0Dcuo&|XuQV{~(DVecw`(^e>7XiwRNr(x+ zUy@uk{6#t#&^Tamv@vRQY#xwuug;-TslQ#tO=8CE1&ISX@pAb8bHd9owjy$U_}CF_ zeSl6TeVyrL?`i5lEQe7b4Wy$mOx#|;ZG7}IbXla)PS$@w1kRDi^F^QIJa7Tw#MQULF3ltsTSRw!}YD&uAr~zk80D2vs;1TsJhyd8YV<7V_LQ;1NLFFdcpCv1h#$W`d($*|HFIz-%W@q z6(6{3t3#nuP*8BmB*96IXCLy;ZC;0^-&(e%eV4R|CQr_`mX3-s@DIo?26BH z&%GL)*A`kCUUiag@pc|*oKv>?=8}|V78k5aVw#@yGp4p|#&FBb z@-L*rGz_2G0kDwO*MDP^o98mrx5^TnQRfGjd9dilo|lLxQtac0*S^dt1)iEAQ22B` zVhNZBzPK(M?xPIf9q@RRRwg>zP0N z{XfR;(`5esH_SghW6W^>&R<`iHl^=7ed-^F>c0;@brAnM;@?^1GPC{{EtMl_dYHCa z+m_bWeBhXep*On{8oDMsJ3G~NZ20E>Sb6o^+QPRq5|$%Owy8?cyL{2UYrmYm zse0`f)Cp`N_^lQy?CZ$t%aMhkGlAoMHvA(N~{vbVfUwYV$Zh0_UZ1SzE;5(D=|Eawrbzu zfChR6%5*&L-@m`hL_5ox<+e_ivJF4XV-5{jr0cNR#g+UUr2so#1yPj{|@5mOwFO8A%19?t_qofmu()h5p|x!Wtm`p4I_h6qjX|(RmBnX&T4c4;n5$~P2ms@gVBwpQ+9(JO zX0d79QuhGb{}d?B8t>J@T<6X)7!Q381NG%cZP-dt>xMG7F@U#fuF62Qt^+>LH-LJl z)*75N4=F590)1%eFOyaoT6k;OZYW5v>ttEmBK49D;L@mYg{w<0{QlVM$2)3lkz*DB$y|puQ1oGpo}m?j1}{v9SgSog;4Nm{)UQ3;6eGkq1dJ z;%EFzb(Hy}Iz&6-LDw{aFD-d?dKveDi%1%s3@P+ zS2_&W-PZ`~qqnb^@2UH=8BM?jiX6iYYN7RQioX%zxqwB&n7&>0;(^42i-av|o;!Ls zIzYcJ3#Qu$DPFPTGK_#^Dk`B&!7~C!%h=mCABopPADo^e)7#IDe^1c@s^gtrCM5~s z!TF1?v*~>yo+VHZg!)p-Wed7dHB`|7%;_QujRu>PF)ch&km8E9`m1e}mX@y9aIFT= z-CU)n;tgH>7Ak7w&`i?J#JRH!wufL1SD#;NxA!xM>wCvL0=p#e&W>*()!^x)Bl#E% zodaC;*aq%aF9Aj_e!A9PanI9<@vJMGWcNU3ewfIwY<$)(GeAI%{{GCvgikVFr4%rGZqry#9_(OXyv z!o0bIP0xypi_I@Vf3X3y@Cq2RVsq&4aJe@LL76Rvb=3@|_H!E5s2`j#(9NJ?1gA4^ zLaP%65m{a~cPWES*)e%@)}80(c_{E^Z=N$}PMRLu#*O1&lHGRKXIeFbAS|Oh(ftn# zTD`hs3i(B%Zni+Z2L5Jo%TQb7C215wF(20QH{!Wyoo6zS4etC@WQ-otj1;S2sne%) zQM|Hy*xCxu-~-S_bOE#;V&IMr(~6c4;L0xw;HH(t55#vR;D102YiO|iBObsqi$O$l z7y#YA)WiAybdnt|OJ!U{(3PhhDWRx0EWgV@GR zc$-T`CRv?W?GQs{zhxw*-!G zG=Ay1jQcvqFmGs_2t%lRm)zFQ@O->bdV7eF*BP`uh4*;^{>k4wVDN*bHi? zA1%3xnXgLHb56L2SFO*36A%M4a~Sk(e&2oUvI5{ho~>Gl+Xt+=+JptnpcmMOibuv(CJC9OgK`WH-Kfvlj~p{7a|X{GJsD;Dj`w5tzZ^5?FCjHC+TRP< zJk9~Opf;5jgv9ZWOUdG9CeRaH!>m4G3({Ro?iA(c>xuQg`{~hKFXj!Q54nqC79)s@ zZE@2T?Q{1!fBvwj(WPJM3iZ9M_rX*bKrX=o^|u$Q2J!*pMWZg(wmmkeVA|}ps$1Rm zCL!Ihh2wmJrMU*a$J5A1d`qjzR)gH_kcy;MBYJV~YNVP?9-oPDtcz9VG<(T&=FUwY zKRUXwR=)-20QLZT^zvzdz89zx2zzsJYr=ustFacnAkwf)=y3(w)r7ZI4r{bXesCCt zV*9e~T5spBVKAO0V#4ylHY{oDc$v%!t>A^_Jlea819_tH)cY_q7cQ(sUjvB7gv;&m zSc@RB+bVyAOmQD>xd$}_u3t`5u%mmtTEiAqp1U&4t1DhLgE+cCh8TeU<%(?jiE3Yj zGT_iFj^ukTD^EG}SPV71(XiOIqrFdM>(Y)0zPg4LK0MI12GS5KfSMb6voUW^K{c(Q zYT(uN*wOWAfES-`IKOtWlao_ka6I-KxpNq_OS{Stm06P*?docLPhH^W&^5tn)AyF@ zaxxe{ojrTD7kgK#chKPMoMla@;^heJ&AV_R)cPK$h-K|hR7Z1t6fkBpk#kf=ly3*) zoMJWDXyi8GG*VUzqb;*9!}_%Z(amC@QUo2_P@TKTz@>LLLai+r%YeZKv}7=X?t=oq z&jFY*PrWZ6tBs&r+;`8RJ@NRn!a@(|1UG)fc;7%}#nJPU<5{o{yJ0e$;fPi2cVcvP zaKE?@uQEE8OP@R0az&Oxr7~4+tSxsIgLq3E(ZWdUfpox!FL!XG?YIYf#D(ZfQuhu@ zLMypL!m;zJ*aU)AlI(iX=?|C1zjVAL7oU&UUdej;^S-S*nOk!~|E`2^h4yfHlAa`; z3H$JXczcZBVF0eZ5Cs`KjP^*A3~>;5GinPzq1>)Z@}4UAiM>H#VPT2nw4f;Tf}}mh z;XO*H6xFb<40XQJ*CS{a3B`*jkxXfoIXM$m0cJ4Q^!sd9#jqV%0L|b9_bOaMNX|Cy za}0CZi{HEv3xMsi6n2l`0Dg+8reWT+=i-HHJI@#3=PT8`v>@)Iw4XEF3GvrPK0ZDr zZ;X!bTVDlU56GxC*^a}(T_gjU3c-8|PY6ZuU)?6Y9u-8)qUdCd7VQjo9;R<&YXGlj z)LEPAk+zIWeQ(DHeau-iq$2WRZcq>zA<8%Fz&I|=!}eG?f}bkhxA>{}Ahvi4Nk~u^ zm$U`uZ}g?xm}b)`3?VbBG};8`x*1H-?2YW~?6$5?E-Y&2#_w9%W0y98#PUXPXeDw2 zdW2mF!vw16nC++*CLqApKt<(Z&LzSxcfsOTXl~iad+)<_Q<$9Vov<#4LDrge;byoj zrQyQDy5{741jpyGKi1bRz6KDzZ-EFFtXv9a`6<+aeqz#)y$NMv4`m9g?D(Qi+NjWy zJEr9utx=*iPncqD4lN4uWPZ$qO9hFya53@UBZ&Kr#>v9lV56!b{<qa)xjED(SI!>eip%}B zJ&J1BN?oxx%q;Qr{!8I-U#S1-{G1=#X@lv zY{9n4Y(kl>1+t{W>A`Rfe570q{)K*Gi`5!(HadFbBBSud%bYUt*G=9`DP%gWNVS-B0Sk z)y5{{sV-}v2w*3zRh{Q#WcFbT%@d*p{*bXA<0HeZnRF4gN?VGsIz%bo77`skPLlE_ zT4j~BWU64sIxHLR@*|Q9;Ly3}U`9{#@IWXc*QQR|P|R-@Aq|4g=-S)JkCA$}p{aA^p!7ZP}{+b+r_kS@5X`>Q^UACF<+Gdt%N91Pz ztG}=BFhW){>&Z2&Duj?pABhAb0 zsaPFRndA)SYz!`Be$jNLU;#E;NA&MdG4kWFfEb~v69L4ZLl*Uc`hGmAd%Qq$D|74n zzNNGtNzCS=EvtT@btJ8+cU%KuFLp|%RXt@If@-vq+#>^+nC$v~a-?GQFe^eLoNq?d zoCwIl6`W?*S~Q5pI7`~#=fiUaFdYkekV<;en%S3$p|gcWh|Pw*zigI#zprR{p7=gw z<=0grrI_x=e=~%0UX;!go0ue&nP4)QwA#1GOz_W)>t}lG1wuVBk2y`TQGK5fpFrvy@GClj0kgxb` z?|XI?BE{=2D7k3Db1T^+99dsUt#A$^vN)< zv9tCrYsFm7pq zZM}>(bdw7fOJ(gWJkz4q_wNf(0=4w~x>Kf2y?Hwqh;OELBtoKC?*d&=#a)1u#Uecz zN#7n+TwaIaTxE_#C*^pYa`awWtOcXI6duQ*i6jhb$m5WoHp??E$Z1W+xsM994ASsPx~ zz3UAk%VrSvJ`=;q6P{?3lDrQiVW~NNZ}2o3`0_)6ym}#GIxxFJB63NXKlIk!G(I-W zgpjb->IR_UdUAQg&c$si;;sIsnAhPsFb?$>fzfbNJD7`aw2-&m1y|Y(NzqP!E)A|| z9OBGq7d3u%`6NOMwDJJ!@I0SOuWb>$Yp^J;b*&D1w!vHkvikJ?D=JPVSpSgDI zcRGzP#g%V`pxG7y*i+2L;>c{&Akexov&0JZ7Yg9k^qI?de;Yc5tR>I|TVJd`0OKx{ z4Yy(R?$O!M61WTYbpV)|aoe**K*_t1uN%SS*CkEAd@z`qBM5LKF1F2t*)+5C)%~B} z--Y%<7g6oWWjjtd0%@PTVdmX^W31{k3DMkxyG8$Uc1~Rq20f+@pa?6XzJ|ly!6p$N zSXoD+n8Som>f1h?HhXlm2KM?UOt5;wfv&c^_ib%Yk+>hmV( Pyjn?gn~ML#6<)l zQ|3A}P7jS-`Y@bGD$K+3X6_k#C%w!ga=f;giosURJI|?~BEv-9gf7>5%3-MPpveWB z>M&ZC)IV=Crd8R5fzKn4`hC65pzgy5(oxCEZ}sAj!S_E+Eqj2nj> ziCgH8P5)k^d;#HrEM_L_WE||pJ}e2s?uATWtS4DdWMdXU?vs$pT}LiY2-L>o+Gwjs znoWLm;p5QBw7e2A?J{R9lX`fTs6MMNGeFuhuqe+E04nq8jUOX|T}3i8d6NiiK~p&7 zkkwfEY}JJKpjMI+If)PvtJNfIZfR>X$ytu|_?%+&L4et!p><|A!kdtsJ*P;+P*xMG z>n?=UhtX&$)$sRUPogZQ2@sBg(0CRb42BOJq{J4)dV~lB^5`sY7msuscOvVi^LqCB z*OQS-`i=#RxQfS&^~|TdY(@jf#QNsWT@slM^AHWOIdge_>fwLr#e0u~X{F$gV5P90 zTY&Ri93LC8;b&%kBnCdS2Zqb16N;k?5Kv5PA3gyfVo&`3_Ru7ABufCQw~)mqc)F;K z6+aE4=%C`oyr{uRj}R9Xwf>KQ_it-grvp8Yyiq|YjM)krR0OC>7_z(({E@ps2z->o z$0|-<6oZnBVLqPD1{gewTY26qLj!pib)wAKuPr|fSuLuoHHp9xa5O=X+JuGy7l6YG z!R#gbm(oH;J2Jnxqm2A$#YtzX5vSON-?e?e=gARrwFl`s|o9S zvlJ;npJK@^0STgFBuL3|4boU@N0)WA9wA_&L7o(1%w_1+bCIwj>}(^%1iN#cv9$S7 z^|}%jprkb3?F#7k@(%KA0M>2NgAuIAA{`f`Kz#k_5K)_Ts7BJd1B7A{ihu~WY!G?s zbz~A|ma|m>cTrlv2{gOOlIyW^yMNJ7*T`PuTEApDukK20es46}VV6pWO)Nn8xs=kd z)uCjX@8KbL16uNQaYYX{da#o~1P+5xAVST*v_50!nrDF;;1^R!`8J6ktM{@8um$l;OG2#U72PwzTTNKwf z%zQ?MC)pD~6**VY@To}Qtx<(kEa-cavBCw9r56FS-X&!6le9C;%aQf1ME^_mWc?kz*#xmc^#PsXlGzVd z(nC#IoDHQ`euIi|+(wYJ+rloyr6P2BI6=h0Xn*9yMUvk4lJM$jZK_daExdc}>W-S* zUd6mQTY-RzhSr0>YlbO*PN>nC{Q1n@<~IoCE(2czeWb|NRM;`zTnvmVrX3c^B@3JVpHYpii7x6!jz7@#a6&& zs6bpYsHIcHv-W}-EP4X7y_zEVVNZOSWdX9NRj?#BO{0zIDmRF=$qddpJb^*UV%29} zMQyk13My|Hrkv7p26n|tAPdKuMuQAogMrKJHlj>Y{;K*c#tL5Dt5~_<#@W^}62XQ0 zb8GUJAOOJS?n`J|DLVTQ>bE446Fe)mza{pAxr%Gk;KRhRlKsUXyqsV{O8WzXf>xm8 zh#Bw(OOY%9xcQ_MWdc0)=U}MWOJOtwPw!@UK4Yv$kh2Y$m0Xw}>W@~3E_FMvu0IJB zJbX{S9tbA6D+QM=0M3x=te_rhOe?fm4Y|f$Y}CbV=jW~Rr5sSEDB@(3#~_wq=2d5e zRMCh|m{D0u7qJM7P1>FZ`{izA>^7c!ePAX$Tn7@ba^!$963XIyvw#UMhcaKD!IqEI zFdE@pFThxKDL*i=AYd&K4zQih$4B;8VHk+rx!wtu&{PySuM>&}9 z8DMXW`atCSn@da4VHnQAvw->HGJqBp{INpxh*)@VB=aq{kxH2G9|3~pZQ^gRnAV`= z%UZsTav!P!2q9!=sS=>`X3UC87%S*iCK8q31tQiPfYHSVY{Ec6{3EFJ@AKGZd|omJ zJ6+ON1m5p|JV5-s)*~a55;yGJ0I>dJVYXrT+Nm3a4<%BOR^g^f0SEWAoRDDE{$zL)lCq!Gp<2 z7$}0;FY)z;^cW}c(@avJ_Efx!UNzA7Kc6S+q&kEPwvKp21na6oOxN{;1e#hdHo1Xb zmjzpNM4b9sp46cw=Z#c|GjZWmi#uj&L?KcO-57^%BoaQ9Q7Ms8_mmBnIKJ2fa`KQr z!M6NO0sHdQ3#LyK0EtYv5Qc`>b#EmRLba)p>#jPgf1%P4A<@ai-cblUo2ZT_pi=@X zvXQUyP`y9%JvgLbdz8cUFuhEi1>d`rCu}Z-)s_B_Nm3;Q1Ayz6A|I$ph`9n@Dui?sY`TKK6&622^eul{ zNtWLc7A`@b5#{#hF!O6qj|>Qp&xYX*l7g>%QirV{L+kRgCz7JwhYr0H`4XrO2vzM= zH_E#&=SJ?uzB*4;UzD*nxd3PfwDISV!sf=K3!&iRBXhwOe0gc0VjpdA3bh=IO<;~X z|C+m{R9SP9*!Yw&Ev&+esAaLu#kTwpnoWJ}#6n@%nBc`4 z_v^hH@klX#)dR`tkq$OO7vo()K`defMgQ9Xi>N~d)6QYMEqkn?h@y#9lc)s0vQq4r zp+B#l1ap&BSfEyckcVA$B#WY#BKR6t)CZDwkS%R;A*l^asF~#te{O6Gj0~l;`y7$M z@}t5EJ0gn)j!=|N^v+s_5&09UHgvARxSvGWuwQ~WfPCza!=n&5)LJiFy7US1!>eL$ zPZr7U`V+#!*Bf?F#^aGUv~SlF&|?qwu#R-q+^qxPuKvh?Zu8~ zD?I_?lh6}f?p?1@`^K_x$7fY}6SNn;a}uco;X`HwD_wSlt?(eVnCa zeiB|uO~M|DSzP@5hc%OHyMdMuu}%JC=#kb8Bd%l-iOgmPA=^iE?wBq@Fs@`V895n_ z9EVmZZgjqnGT;&lQlc&E(*F2nEKDyVH*9l>zCblKlkvhM%aoVE^-#Xc!NIZD<^8iw zmo7qg5R&qyuFvFjCa;!lRirIVl|Hny0!FwjdL{h$|gv?up6Sa~3A97JnW1XF;E zy1%uc#T3*KegXW#GDar5Gt**}6_SHXAg{zhRrw7*N3yz{30vWFxD1_Bp&vrX4S`Q2 z_K6CSzfaNeN=@P==2S>{dhIDP_3nd@S;sFAE=)rYruC#~@z0g~Wie7cPXb1I^X9!m z{72+*J}P(Us^#Af4vN#Q_b3!86jf68&a{+{LV$whg{&LI2p&2-aq8A}2om;_#EIHD z4=RGzB4Y5wY6|Oc)%#HoT}r`!o4v4f_@}qPx0^|00mdNCAqj4b=&iW;We;nZ*}xNQ z$R*Tta56T#i>@wST?VzpLYB4L@VPuv38qyTVWN96hgjKb7a`FylBZJU2I2%yQILqM zK9(>Y3ZH=4dJrzRYGUnP$OO?@)6Ij#cL-SgD(Vm}oJ7qH@sc}Q8J=e{Q2(=j<3{-V zq*{2j#ch$u`$#l_vhQ!$8l8bc!^S*c6j+G7u=*&-;|1GHSe4YbfQ zn0R>=apv6(bG|~F@&x;Xg%mqfl}u?Pt>_N)nt3Ws&^iICOU+Jxg1+n$HPD=2!thl2 zANt61RO3mTc5mzBe^&chC_h~KGtq*amX!vZ<(ndN|0B@#^ zKP|6)KgqEe)|Uf=VDbt`EaY5{q6o_tnmJiexWvd`AZ7+xjjLcJ1fbONZTnD*A3x|U z|6xK#5h-|2OfETEb@wrFPqA*6Q=#duT~)U+`feiEq`(gO z6f43g((@7ijsq<=FUNz^T5-W%;6L=}-z!la3DnLmVT2m17ECZ#gS$VD9N0_+#58G} zHeM$KhMu^lz!0%pKDCvdp?sfWQx1b%7k@qjDG}?2m6STd%oPAF_=yl-kS6(11{y(O zwC~`-yBZJ7YZ6ys)I`Q-TdrV&)OiqqEPMi;(jt<-HVKk^1Sv)V!FPl^0P!gRTDOvZ zCb9@PE>n4mAtHZ{%xYP@4rThNw&$#XbZPQ(x6}rc=z>tG7gKg5N1miL<5};!4>m2HgNjDGDasyL<>-daKz5 zZ6QB;(-F*nz_|fJpkAmScE|6Ra`|fwad^TrJwc|rio`!m85VA5nSn1Q3jZR?(jl3N zgxr!dJqo`y8b{Ab$PD3O1$oW(z&x6ODKT}oBrYh=`RnG6KM0#wT|jQUnSf9P*(HuF z^t8|rWRg4rF)_)r_F=_azMRIfm^s8p0}#}#gOYR*{+aYptFqH6FC=S(fe*Se!n_6j zXFt`M63x_vQwc5tmNUsI<)h{nwuBJ?`)6 zgu{oQXd9AD{nXcP7KHjmuiDmfso(qwKY9X#;3Ec&Dqv|1a_ccX)&7U2jYOH{Q>ed~ za5FjxE*lajGeBTGsaQ#;U2yKNhpi(${mLDu9B6(?mbX&c)dfB$x37u zk!ZOJf~wj->V;waFTjK3gR3`s^zR=@?oFF6QUAfc+MZiz%t4}bQoce4V+Tm<0emBF?emHN9z%|HFJ;v9u@*m!nnc%xY&aH%}NJqjo{7ns2C6$*cA$m^N z3s{^8-#4C(gov)%|MwOBf7<)*zo^fxTk__;$vGy+1Q3k{H5QsJiVBgIf(1JWHbf$d zM5TlgvCupxF*+b%8BhcyQY@$_px}srZ=~oT5Gx?){8*rbklo*IOKcw11!Ri^_=)_cOFzbhw4)|iuMj;&Io@k z{AaZl+e`yrp8E)Yz}zd=+Z8oH3!t(K=Ri#u{F-XnPlf3J{gPCqTrST_K%BbsS*c2o z6>3|EAEbvChe-6h)A0Y?p|CdHLh|6=NLUk+22gYz2rn11n`G5UkMvxvO zp~@W+P#M1a04gcF`>6o^KVo7e_*Uub;f;N~a2E42Fy$Pa{~JIZMM?lM&$m5Co6))G z1K(^ygs;sCVU>S>aCr`D3h8wJ&-(5#eJot${e&Ok&xR<5i?6m&Yz&O~KNo{@jdq`_B2 z9we}a`+xu4;U~fygem$WAYs@$V_-GsG@?HF-OK%3={RKR&e1d%wmXqJUT7cm^hDvU zM!bB;B9oqcRtE20sGs}V|NFbcIrB&?!sgkFPI67H(pN6l&VhB*+AHt!esoX&^q4>$ z$wis2?g)v19IAt^u1u`<0ojx2s?lWkf7QX7oX8Af_JsA2{x6q{`5p)-Ga-*x2 zJ?m==BGn`9P@D2^boadfpZ9ujjv&D4|NZJsw362;LOBd-%kRpr7V`ZF2B0sy#G?r8 zp|G9VjWYbb9K4{Q2Pd_2@tNeLbbywh#WEUr2`e$SbdmJyx1$;{#A&Nyi=G^-r6Eg| z9Ty@&Bcd5Fg;W%;V#<*{WMBRyeQ*~8Kv!d;4YXTGu1{|b5@RoA(e$a^wd6V&3T$li zM*t8S$tXfSF5ZAp3W!9}K(WbcD@KoZEBLO#KnruBwD=6gwO300x8gU5HMuxh<6s56 zhmV#874^jk2UH9S`Y%Xv$RWkMGzaP}hv#+>UT%BZfwkzAW(Aw|eTE|+#8(E!=YYID z5pRtAOiI%@|Bf2TXwVTDY@F9=<)KKa!l0+cg31@5GYJi>2w1$JXG-LQ?Mbd2JHW&N z33ve&jX_~pk`SfAiUjuoX)64v&lBv%vXmfGlKU8CswK$G7ZH02=z+gj zT{{OlnXzCX`=k2LL778P(oA_^6OL#xAz2_R?)N`GY>sdeEzrmMb%)SMW~odZ+%wm| zT@T8`$C?Y~TBaawW_D$u%Qa<;$~Z6(V5=;f^ejFrN$m;Zy4Qyp1{c6h{;FbLgzXg^pETN z00(Xb^39e<{&teC!BCkEnnNd^v~OPveymW7BOuL8+`71KF4_TrZ1UHd;jy;s{ybk9 zgEu{!!PH0V0nL=og10CDlGs^2`J2%HfP7&-S*HZ9(6;L7$zWG^rCD!VCtLn_!VkWx zZ(tGY0BE%Za7`|L_((Lpj-UZMWdXSBb>9zE)9w#v=b9fLu1Tfd4%de%6QOv;s0TG* z??F(gy0&-dlfuHIi0$D3SkO$l4`i1rxSj_<`fSGd!CF=;-ihyxA`-GEa`=kmO7a+r z3yYxO4nmL75W-s0DUJwyaF>8eApKQ%gTZulgKuy~NdvZ>173j7+1~rkY8-sS-+xk< zgCBYnk=51xZ(iUHw!kRLCD9h_ZL&^Rwtq9QlZq2!mA2FW6N|RpOI0b;v61NFb`hO;kNW2`;1HEjk{FR62L2eaTUO1?ngjs6 zo22&wwAsE#gPAwK?Koxk3~X_KXdox@FASl@t%A(0^p$JLYY@k>0p5)x`tUIz-GC~; zaDCE)fv*c12huHZUIP;A+Rq_lIDYbEa(3zoK}ssvnET%QA53{w4Ak;U zTllBtB3Bm@1>Y1;bod~7! zkZ{2$p=C3SNayaVhS7+nB;W`rKN7|&PyqdbF`u8?H>#!iy=(xz+32KefU3WbP^N&4 zfo3N;Uz1HiuRDB5*`SZcOk%8VX#|=^Ie32Rz_DG~2O$;(#5gl73P?{GVzRBb7a)#+ zvi{ybL`LC5lZQV5+G)!o@wu4QVHe=jjniD!(uuVO31R*Dz+;6ftanoE{9~HThk*B?}R3K2; z`@FG9H1)zY)XwbPIhD;XdIU*W`PvFX;i1BCN&(Lk776@bc{T zhUMKj(em@*uKqmkSkBv>*!%u_F1jJiw_r-+3}NHJ9HM7I>W^W#4(Ga67y}GSv8g(f zxt)ABoN9E3N<2-*Z^8p*SAgd*2qqOTVVMVPFm`?OY3wa7rzPM^qJ;jvegRi)*028z zJs5v9v9s(k0&CJI=6#{C?lw)p*fc{5M$n|le(OAN3_ZsUNhcdC7z-$_h<3)-3z({| z+5$S8YtiH{R8{fB?8jl@#D0DL4lw4U8%3P)zYTCYXdpp9@bw@5(w7QO1ch^Q*zk#= zcetPkl4BEG7jP_grRz=D3uHjT2Of#*Yel`?^_Xz>sQ{q1kXr&#=dlzoT=^p?WZ~N2 z7Ku#pdi*(#K3g+{VCA6H1|v;~?JYnnJBLs=?%)7+`g%S z%!34g(ZB*O9ZAT!|Ld+Nr<#dH#bpo^-TBnx?9=^2(HM0n|%`y%H} zUn*fh>W$fdiSB{6R?c28J|-MZHoIrJmsL_7{TO=V+99p;eEN61>Pe4N;aROATh>1?eYt;~Nu z4ah7Fs_BJH6N3AZXq>o%Cz@lk&Q1dnQ+7YnmU)UhJp8gS=8Km`US}_PrD!0{Uy0xk zImwQkW@RvI2Ba(@?Wzi;3;zk#(>M#^iADn%cCqOYbRuOJ6B`_=$(B?X90iHadGQpx<9cu>em>J%3go$p z&XzADE&egi@CzDRUio;0FPMF#E#^Q6q3>(pT*zR8upI;mk5f+*AYd9JY{hLcI@3sl z(O6*RVtCE7@$5yhiB0a)(W7!JW8O-LR>5F9Iw|_ddBj?UgruEB+Ps-joU#Ne57(yA z$zo%Q^Js>coaR0drsZr*g}Al(wKBoJUX)L%zNNd%wDnq8W{%kW7!8^s-MJ(BH` z?P{HPLV0^EQb|>ZyrNkx_^S(fh{VDTv(~656o|b!-80ZwDoJ>qOerQd6U{V6r|rg3 z5}KgwcONb9+J#&#>}I9kKw5CUvE+4XQh#?1C#?8q#FJT;LK`1lHf>*5637v#k0MAf zusn>6QOnnJK1f8%*leF7dyXWSYmTt(CiE839)PvZ8Y&8yHPUkg*F#*{7KB{-0W6L( z_3>?~Vv_vP%v%%jcvCyM8_jX+3jPpKP_e&2&Lxv?w(_}r2q9x3fY$9u!;M3hA0}b$ zjP*{r1>u}QkchEwLFzOrQo#lTKRvbc3KpDAuTk(U zu{eG^_8v-#Xk;$z<2k0uuD!x{vl~RR0*qY3IhdX!J=ayYa$-A!FFlBGpYKL#GnH)D z0SRUfGjcK@+pZwvGT8{;3(l>P{TVa*lu(Nfcm|K$Z@S&>xuln~Xd@ebNBS;Q1T?D1 zMH*pU?L<8n)l`@n{WWcr=*)q$*4@<{!qAQ@?$pZ-oHjidEuZ@XnnD;v;l&&WW3S4w zXj}^O*@-eQfw$0wo*p_3aqw$)*N{KS0x()*NH8cqDqo8X0KkMhNrj4J z%Gfr+?bRKZS}s$Ok_Nus8kH5^t@&hGZAD6v88!_G6&z5EDKnH9#ogl;V-W&~Xi}sbsx`I;d8APu z9c6OG?mvx;kPfnSw-sJtKopNM-=e-j{NW#clw`PrGLyp=HDc&2tHLRKd#C5SY?Rfq zO^CnPPvuEFN21l#0t;XR7DK4_CRhEAb1ht7oaG|Y9@uW4(=-0ptii2!z5Eq$&ge}b zf3x^m-qpp=31Z#t^=aFlfCH?GJM!(b4)EY~$pSqM!*DtP(P#n=Aq&kZQ({F!Kp?{7 zv4uDd2t$v9c@s*RVC;sT?S1S{liLrEiYhq%zkoh7EAy}~`Bm&a3z#OfEzM!w5O`*z zR#UHivIW`0Y#8lgqag6f`NJ^mB?o3BlJ9$FO`@xG5cRicfT|;@3`Vezds~+Bn4PcQ~s>eUu^jXHG~TaBUM%QEGbXmGd#Uu&&~)?3c~Y|MVZjWNpc|W z9$sq%Ex={9OkD}e3A!?%soA9DktNUGxFr_oBGg3G3KIPh@G@7}bwD~rf)&e*M>vVa z2uy2kw^HW=-1S0PNZUq$06cgUpbC627C6Klc-0~Qb8+vPC9jA$Wgoqbr&{G zS2#@poYkvtK_VK2gKnZ|$;6S(!T2II+QHCsrUk2>#cYlC(+${eme3&R0J0)E1+akz z3WWf?B?Hpf`S6JBFkjPtn_lGyicrjwOtV$5uye#1UUS}KJEfn@62O>cwIt3_PMSoq z63a_EYx#pgF@vrhl@C!tdxnn=7{GETdJRELOXE?)lLXui|YCeO17*UkW zGnc^Lxr2Ywf=#oS@#iVIq-1*KQ2H5MeihOu^x)UTcKdVuonNaDLV5r=qSGnNHQ#z9 z^E~3BP(^`RKHtc?RVgbh45kPKw`zdLEKud36@RU=9)K0W3hKW#x+)N%b0B^A6ceTDV*g}}|jij?uL?yL&c%%W~c2O^G6>EfBQ8N>~nyq*{%$zG9x-=ir-FhSYPmk(h(KO<++&<&!L(rE?QSBRbl@jae!lG}No!z~t&TM^aKd%q4tV># z$9d2~XTwATwCZVUpBz-4!C-?~@Iq2U@%%P_d5UuLKyo~>`%h1sNChNbr*%qkd?!_& zY-_;0VMe!w8QQkY+&aO=jKPIv+e<;nLL@N^noA_J5KTcDnM5Kth!>q^&6T)jMEZE4rUanu2n_su>@kOs6yCAo52R*&_)wMU76ol{wBRPy7IqMe? zC#8K>XK7{MNaUN#JZkvpC)Y*(t4-XB8`AHnrqO)vKdM<1JqTfK1+=0Yc!m**^i>C`(u_IgWBpmEEd+TU4F9r4 ze%QTL_#~_L|1{7qIe21FQi(8s-L5~vhuPmTYv@x*oK97M5#3>yb-z&Y04VR5|iZrZ5BJdIyT4Dz+jjE99&}VW~cXDbD z9|{K9ERoE>bxo(WmRz&G*`N^FHrNR}1{h~FmQ?(j`FjucPjA<=ZUuTK z0ofO@w;aYWK)alER|?BFGQ9+fs#TDRyO^U08Zrz0kI}DFJ zy(ATLJiNFS7|s#ILHZ~9U;P%>*YXMAg|Y}qG^H;Rz7A^sI0OnxOQvcU38}hcArcj) z9><&G;dK&$T2Gt=vg+pP7<+wxucH-!7o4$*;`pfWN-KmEMpS=qX37{HCWxtKr@Wm& z)Jvil(vVkcHM(tSD!N5k1ggk#&TB=Q((&1xZA+NkTlylOrZvkAkAF7i3$*l7Y;Z}= zC96HiTQ5A-F2^U=q??We+5`IKk7bOw;kf|%207lzlDU#w>{!04O^&56BkMo+J^Vp1 zDB#^erJ5pZuY00R^MRU0&IM7>FlCi66XdLhxhZ14M`NJ)JJKg#V%Ti~!lor7Taq+f z<_>3U7qX6_6_NS9Y?z`21BUm$+`I{5M!CBj+cTRGGm@~9S6&7eK*Dc9vPSjr;{yYo z4wceTL%|%5(-VuBX#x>WfC9s4pQG{c%%WJ5G1}A3ATx<0%4qQ1*-nABvsm2DWH$^q1|PT%2M8K^thTr**sl zyevXkeO#tPsyDCN>d&9c=YT&=m9Cm&Ayj_1Fqz_U*~?StC#IO+i>Cz_sye82Gk4NT z73rFJ32KYDxg&4QLoqmNl%0p=qNW!SbZW3nKq5XH6&GVA+?s+}gdh)!)ak}^%fYpo z`YMAr8qjWa$25;RtLYQ8rx3;__gG&va9~wRKODMb3VN&(yb`)Y*`98XomQ|u#(X~K zj*+RnonYuXN3;%&3@g*!&|xe_OnvfOjdE9W!M!`vU*7zu-{H|eub9|wx6s`4Yti4A zzc=sG-MQAE#%2!>U3(_%h2?uQOhWd=Z*|R@cy7nc^hvINJEP@)@W1qaivHVw>7^yz zpa1Y-_hPr&73%vwsM+tU|3}xRQ+^S7-5uV|zn^jX+01xv)O>Vo?iUtTy0~InFSC<9KUa(B{guo%i?Tb+T+qZ_l@5tO=4wN zl+r?S8RtdryigAS8ZGH8LHbP8P2J+elwLU%Uv}g2vEpIp^HgJ49N@cjo4{& zq%f-_D;5}rg%WC}igdXfiUH{(;40=NxR0hYXox0Xj9{aS&D!XOj*O1{h}JR2O)Q=j5Qg@zr>c+ zJVB@%i><%;yn*r=nhqg4oM_xxsO%|}ls1$RUDN6C>nl{2R0*9=;zr^mrXNUo8(OZK zFraomPt6FaThSlJs{`c|D%q!z<8+YP}Mk0ENCgq+RKx#EuWSJ!p1 zpu#$NUPfzxPKsGw6vZI6opFd+Rgd@=T?X)Qjcd{_7~9?VzDuhP=nRhQq#-%X`qAk6 zwf&IBs4GAL70v1KczNz{j)iulq^tbM5#~0yCW6Xqz_L(f-T6VFXA|-t&*(DvB7}(4 zO{u4%+pe~3I3~li9?w5=-`nGlC;+`9(Q0suZa}pijo7bi@IuPE-WRg#1F;wpu{uL^!^bnjq3--TUzal@j}@y%lC?0)p2+ zQa82Bo0Ekfl%x5qC5wa*?Gb7LJjWMkJD%0)K-O`g?5Dy5)MebbG1sykAj}eJer-L9 zQP%mbX@zD=a*9nY+oJR2|Bv5QtRJ}(=}aP~Z=6Mkb?XwZUJ7s(VpZ;+>dWH->9 z^TpMbQyWu|d`ZF^%IHdx{OCGTmfTU9o!RCvS#Ag>qnATwqZ?p5b6gZ2X@m(!G4Q~6 z5>CVzv!bTRc+cvlmZbkUe1Q(6MVY0X?xp|zz09R=yW@aCvb!5ww!M~(p@(j!$mhf& zwyVLu#vgZNybifGMb=oyrpOI*DTVm)HhJaBu?rvnkLAFpYHIR z527AHT_IX9EX_<%KPuQDhzPn35|UYKIK0JIN{paPS>t+Q`QxZ>anxpXBnJcpFpXU* zF@Z~+thdL%jdPPO3=+F8jvG=J*?ePZX(?|&A+VXwBmBL~x8S?)Wk#p=2ci6jez zkzDf&%$3;_9;fbT(}bhfrdPByV9VPz)^@O3fJxEu+0~ zAgyWe+~2INx#M3x*+@0i6&an`v(A@o>qzR`Fb9J-&84zGoLW~|_033uzJT1TRfl)gY5?V4FQ0{Agyh7#% z_GtBu!Op%^kZSgC(Ti;qod`Z~j)$TDK*Dlq&x5=?p{Zi&iE5EDwWqfw>rOlh@du81 zTBitH21$5NT5P#!p2~VOI;ojk>8e}tww5@Ye0>SYY>mOmpxJ9{T(Kc_ z4Z6G=OH&IUlou|2F}ZGucEhw2zJ=?4-rEJ|ro4vdgox3r7bktF>9Jboasq|d+USV) z?lw&E$z_`W?$n5fO^#h>*+;NUn3KL$^+824-X(8e>Dll$F9kyR^rGEQtTqg&Jynhw zNtIF82A5x@_z-?*Hdp{>b?7dz{O8c&CT+h7HsYWVl)1D+%oK=-xd;h{Rr5_Fv?d_S4_hqi@|ZwDbhfqnoO$yo!~~Ws6J{zD=)HWw~Qh=(G^Waaubl(!Wsl-+ICP z2H{q_{37j6s!U&Hy@pFk(p0`5(0Y)kO>bTgEJr_0VbXnLm1)-$%LEVtysR$#Y7^Q# zsPhsHJ%N`rG&GQ(pd~>6{#p+ePrMHO~N#D^Vj1SB^F0XYP-|p z)APKbgR}`Nd!S)fpLDXV@PMCJ?xZ_TQ8#fm%%!n@dso>)OCz!y0DBIO6Qrp8(3nQG zk-f~G-e$j55)(A?=4fudgye)4GvXvt5g^2$RyWciYR!h6EhpNSEXa7j`(LlUGuPeR zyWg#`{{8)kEYgJQl}p~9ZFFm1|5Hap@(JH-AgDH3L=IcGA;W3lMel14$p_+WuzL-? zC_gT)Zv6)f)f8jz*f42ewKPII;v0EUT%v56rk0_qB|ScX-9SNzk01LEG)R1SpYxPm_Av#{#OWl z-*RUguTve*GfbB+@;s5@)Lm*c@^_Q&EAjK!ZW^-hhg^S4>%ihUie`Jw?L~*W(2%Q| z<=3?=Vb|(I)}ijFV@-enhl$iL8lMPSvCujlYZu})PSrE}VrjwtLem*_m0#=Sb@*HU zFz{K1+&UpvxOEbyS>N($*)_=oUQPvj4joxi0j#L|d37U9=jS}C%N`IVJmBBn-Al(*aNkluGdsQM2hyJZTk z)%$7ii8XS-^_7+{JQ{4fY3`ortg@#XSNwDQ^t$Gd-bT%U&Rnk)fDz?2EW_FN_#jYp z8IMFP0`R_6YB48-w#~wqbj^$+sNx5{OfMr@D$=mBT)S3i_wV^f{E_(i-#N_c63AP?;F=b?DZ0 z7MZov?xo$qYCX(RExobhq+uGWHQ|MQa;c%iO|V$z;yJ6XInV!Cn@OpCMIxXuEg8e= z(xpqST$8=1luhVYy2BG->(ITV;G7GBuy`-6Y+dLV8lS8mWBncg<3M0=H8<{oV9G|W zIEls#(tk)p0XOTMdiGmcZONVeySJypt|(Gx-RPgsCN=!<+t(jXEue$9?)-D{%iacQ zj2e{-93xy5UViy#b4lOppgmxvSPJDSaJLI(+lz3cj=+oM?-+baqQW70!le-!8j9QB zylOvu?RfgSjT^^sg!PWYbORf|yB^{*nall~XpVt8RheOete^wn$#&1nsN2LM#PDTO z3&pG7z~&PSZ+!r(S-E~|L#wlkYiE@BHJz>RxDp#XDiMak%3Oly;Cv9@FUt?h{*fUQ{`-n!kt!4NLK^t;Z0q zk;~=gC8T;F&((WoM)&8ZK1k->u{cfn6EwQTn}W0GUT>KIkn|Cgl+t6n=ujoGP4jeN z<_rw*e#3LD^jRG~6OeKoWG;F|y)+55bVaw*a^uD`qOtKwvCSJ2{Oq^;nAI7LR3!m* zM7Z^Ml-thHWw2{F{v^tX7;V9T9k9yk{X>{DdV#pXrWT+|n47KTb>27<^}m(#uNmy9 zu+EGqtH|*2T7K5}OUrifK$l7LGiI2XnOV*(`gRA_81EM7m?R`5uB@ig1*jt13?=F4 zT$%$pfYJ1dGZNG@;TZA&h30}M;r4GIpHfqBI|2n>CH;rZhR2n&*ak)qmgNhL%IeZ_ z2`@&@sOCt!A5pjr1tGc-w#ZrJ|E%&)0SYF+rtqYJc_4hx!6qfpSjzu!@N>eQ)qBVUNw5p4}e?|oHUx|%A9 zB(b(X>&>WZK9!V|6yY=LDw^M{<{mZ=2c%)yL{2Qo;D+UMLhk-uJK|VpZ2^G`QF!5A z02wva9C5*~kl=U7_Agd!waFXUOZ&uon+rSD$%?KsC4PaU_0K=9yn6J<2pbFG5MZq( zqLX%cXr7@LHdUsj>2Y-lkRe%54M7E+4qS8~85yJQ^uq^C=>)IqbXPgJ3_0i_gzI<# zTdnpkJ0ZJ_E|}P_srpri0u`U=wTU-9*kz19NVTk7PkNDXjxNv?8K@XP(nRY**~=$P z=9@V{k6%64WL@@m|D&Pp4gvO^1?_Bm?x$h5IY-_a0I>)aO^z2%I&s~) zd<5?)^q>ok|WWYr?&?*R7 zSQ>vk_&4E%R8YQ8m0ew*IH|9v*6c#r&+&S=k7#sZUIM6wg67krm{p~?0m{JV46Eq5 zfMnPdoR$b3FFIH3*s((vC~`xuTr9$@<6x8vake%3zHctu)5Cqv{}X7tFQumngON@t zPZXas@2064G(Q&1OE>f^vo?JIFS|+?S7=&RJ<3NDvM`tukx74D`c0wl=-n9T0 zHlt;sra&(c)#<9S=#Wtd@g!VTl^tf>+*4(UwDSlU0w(ms+bryH%FP@Ddr4*imhCW= zGdPmB@*glybmwnYB|gZUrl;qR^vd8#xY8Pk4o7pVIl?~fGxox*TqR!i-7kuw@pHvV zq<@n*S@v=QrA?ivy2BpK=zr!a@gEGy6$=8vC70vy8j$?VK)QoFGm0Z4Ix?Ix%(G9O;|=_`s(-YwwYYj-qp=RMo}?E}H#LS->Qn zs!+_VkUlb_Z}V&*Y|C96A95HBc;(_GK&~!VAU9AflG>0l`!YH}&2ib%r2_RHuwd+q z9Z03Z$_7&8Uv>^UzhWJ#neoWk*Nk?C)yc=B=S)#7@@fWx6^vr2|LGv35cWG7_gMy+ zUHLjQXRdrx03K*ncxBIa`9G70?vl4`~V3gMDK58gtWZziy@ z!N%ZXkSL3rE=0!&Hv>7wR<0uiI}11;tjSC^B8Dh;Pl`gfO{_G%+cy=vpMI%XUCrLL zMzpGkD}FhF?+~J33jZjd5 zq2$i$KzrEQ%^UOJ19@q?_boPiYw7ROJ^>x@r4lcs0sVuh0q~G#)JG!GqD1!#V;x8h>!>xa*s+VI4r8#RbG3ks$xWCQW z1f0mda#izoH*(N>5VBS&O3b=T3dxTYw>q8OzkM89;+H&1D#z`4YKf*@X6Yt(cXwKE zjGp`ACTVAuz&-Y~aIpH#@w|J1blLbvMOF4T?N$F|a#L~QWQISIZS?NsA~O~2zTr4- z-I?6+6!OGR@!XdQ&T=Fh%?7R`v7OohI(07p((mn)D3P6G=30~nqF&=LaQ3m0DlHVX z_uwrzlI{_Q%=WI*#K|QkPP?EInjbQx&M!E&elu>HO%b>qHQMhWCTfpAdh`e>LlGEX zmeusNG^ zNNtylO}usst(7WtK?9L>4%@#Ot4+fq+F)z-E#I=`oMrehYqSIyprae;IuG`aMe1*^ z)MSX0IXQ^bDUFIPApEw3T=Sla`_B6J!U}c3rD8TN-F=bjva^?kBcONX9`-gvd=Q@0 z`Crd&Pz8WA28Z2EtyUo00=MK)zE#((|BE#D3B4~DyW<+;{K2hwYF{>fD-enfYkIDi z_i)G2QVG}gu=*dcbOI9`d5cE-L;oK@vR#OPq+aWXHcBpPkTK*UCO%8xmCXhzl>lvE z#KP2L>}mUWXrgb4%+$gex`}l6Q&D zqtbJ42fHBvr|m-Vc?aM|GaxWJfxF%8qxMgbU6<8mVyF6!Bo6~)h@7vvlG+KL%csgW z_DY+C!d}?n1R(`)eCA@>2paMdNh#7#(!yHM(-v+A*GrKcK@ts!PMk#07R@x;(CAfr zA`JC3?ad5OUupO`c&7HB7hcg}0}G{lp174zI&Q*jn7G_2+Uihf+`60=D{SI6%uT)= zrMsh>=bFtUc@LQr6iqPXGWT#uUR9dpxD3Jf{nf$g4Ac9$7W&}3RA zHPwfI5f_#|&DUH(IsBX)J1|9xS5_8n%GgS7KX%|O+%CsE^~nz>7!33H)mvhIwV*L* z0;W!|t0XYP!P&bYs>ORe3W~_7dVL%!e|m7!=nD;mS#%x}o3f)qs_GbO61X*4`A2RK zMhekc(UGw(Ve`N_Y492*8tmzS5N$?CfnyG{x{y4bFV@n;jT~s-BOfJB;v_Yqi#9u} zk9qXw`t>X}W?F}W#J4GvN*q#ucrVaXn@(KfsB|PFoxq+ZWcD_?Z3S4Tc!e0WI2&vd z`-H;lUf?45(v=WJk!Sdf88ZSo8n6Y|#^*Q{BXOr6CDn}VA)cOp{cD?Y|M!$Ip^vU; zIzyXTTvpxyI95t3Z|~VfREzdsSulwjg_K>9F(Sa)+_lySyB7ZspPba09@>)El}hc0H?A3J)LzaMIf98M&~SY#t&8gB5yY&e#+$2d*%)y2z*?_31(dnR;ih# zMZdv6^2IXb0D+C@)W^jxX3pb_Cnkt3a9PFw@%cT}8?2MS>Qg6Y*lEFLFAVF<0@asI z61}2Yx=2y@BagqF;7{K#x>liy7dXrN_m9Y_EXJN^|BONwip~ywG)n7$E9#199QMs% z1)FpY>R5^o4-E!#vOs~SYRl&De5wNq4RUDzB3!J3oEM*^(!~?|!yV{d$gUfQd~Df3 z=IB)1PrELJu`Iwj9Y@{|EySskq$F>gXYm$N2$Y(ay1+nkK#!^gZQ~sDF*Vui!yOn? z7WwM=)v;`K!v4p{En}{!FwPLER%PR{Qm3on?z4+va{EhgAxy@o^wc`JL64CYvlInf z%af?SxfJ)1$;>PbLX3>kLZKzi^Z}KQ=a)UBR7ve2pOB8T;stTPlL`y;O&{Kfn-U6V zK*)+@VkEcg$0+g;5JypGLb(iZlu<}0X@dvS$wD6Z&7ggP0IIDPsQDb&97%2wpVT3O znQ;sRiKwIlw$!qPOUo<4Mk{WXk1mCv!jL}1wlcE-WD}}nqq1xP^<^B1R`fFjLM7`~ z9Q&5>La+(t4sLP6AImA#19LMALygp_SrlxS5cbI|K}oF5m*gB=YGYV6lch_BXClDA za#Q7pW}RQ72e!*C!Wv=Gg8u!FU&J2a_>Q4>#g{Rb?u>GX-O}qFS;W>CfEra20Vve)?^cUxT zeam-6yQyJb6&1V%1Trb82J6!g?2(!&(byNBEkgmVpCIs6!}T8smV_{b6u*N1^BE*a z0r=x=EVctsT|pfW7z`E%MwXj4Mf|#MQ7A4TRp0>r>>$!`PEwzY>r~n8V{J*rvyfAQ zcY{aM~Goz~%GhVX_N%bO^mpEQYVdfI~lgkQ|28lo;q4`}rX?*M z$`S7OI~bAX)#iGkjwc2?ZVo%s6u^s~Z^fQt)gY;-<(}@%fh=QU(GUnQjCxp-<;1P5 z9TQjFri7VF2%&k*8s{{mQ&m1h7^n_gF)XThig$bmgL(}H^H0Szye*PI4GWEFG14aibeXojHCCR;s~#E5S}wqLBd$GV^? z7{GZ3s4=zGeSI~61A?h$Dw?O(jVx>|(}Uffnb@^0h`}`ty~QDj7{XnY+)d%gCWsTi zOv{|c0Zkm#NV#0i?O`_SdA;D84ZuHDRQm#5t)d1K=cuN-uZg@VobFxbP0BjlgLg1_ zgld@Wp2^te_=|40dl|?XE!w)Mjrwh%r+QF!S7qWra-(wW5-$!sl2e9e$WBI-Zi_Lt zzlWZmIG6*EX$iii&*bdjvLn;7J`Z^m%5cuTURmiiP!`6Smq#N zA{nR?`bslPk^4kDJ;iMry=&lkueKO+`_6fT+n#g6)N4Bqy>}M?*FwZfHOC_GOb7+b z0x$Z5(xJ{z&N))C@us87QOBG5Nd80xRTUBIu~2N`e`M2Am8gF};Msidu8w1h6Eu+FWkZ$IL8sy5P%Y$ns9=c}zJxnk#vY^pIt?kS< z8GU23x?cB;PV{>K0F~^#?FA8|Ich=AfO#r?l0kv`$Q@0YIMI*W7&%FD2hl!M4F=kh z`fF5F3MslmvVe*(8tA+g)PN)J8wc%-G$Csyfj!=qP(pZ6)Dkil zhvO);5ns^Rk{7(5!DA~RjtC;#7?#Prj(ffP;vMb{mO-2khIUo@EkGpt>6O6L(E>1{ zWrO>Z6$T4I!EEo`zPdRnA3JG|HqWM=&XK`OVa5CFh)G1e~{D)J}V}|p{ z6iOH#s_1U3J1L53pvvqK_K|DK4^!%wF5IUaR>5>& zX^+wQIY37X&0qo;synS{phZg5}h!3h~YSd4&?^^mW z(#U`!gj?Wu)2Gs__aQ48ZYPAF%OmdX_lg0Lf>&85t7%HXnKdM$`g+)8fVjho8iQCi zdIN(F#J%n0>E*-!-P?zDD>pv(9Eoi-UNW6y)ADLwmOkF4PSYC26&}-^2PSNTETNqFD)Z}fh{LK zD+O_y^|~OxXLh!30ZLfA1D z9Be7FfWR-UcR4vp$e9FjH_;M|-7LQFp%LDdaP=>bFr3Z!M|&5&h7vXlfum)gLX9E- z62vbdzaQr1YjZ58IYzb}v@TwdIe-8eyb?j*C>N%D(r!5yfblp!BOce$bMpgPtRbHA zRX7{#H288zY1S6EqQj;^>jAP81z84<)>(0lvyX2&Z;gXqc3m9D;s^$XE? zpz#o&{r5kplI^FFa)C9Tg3N*> zc04OVsQ+qjFO7q}Y`S61>8)~jTRqqlvQ!t(fsXS?Hw*V@#9zeiN;+mVs!nNw)ecR1 z*j`u_^%5mv!sUi!Hi~qLu)LCi**7Z3mJLl9v2(t&Hvn>BE@hZf4Ejk|pLo}U#P=K= zF#|qC<`DiI+@*I1B4q@LSoWq6V7tg}tX>GZb%t2}P#q(vI-VZr zsWHgZ?dUcJoA>G4{vV>!aP9wi!GB|H;2xTsi<5YqI6+)7XqZ=h=FcB^SUaiDl=2#y zq29fS_4N-N_`w%H{__v+j;O@ECc4{D%RML42i8{E(BBGNDgnedGps_r>dStC^mKoWLwQxxZ&AacilGiYY3FSdT&Rn~1xKKV!QAz@#2(LG{!2 zay$-HkD(=l%rsN`o0|sJE5d3NM^T)`h9!wmpSM2z0%j820|X>Z z7)Xe|8jkWn_(=o*xto!IhfHs43iEc`4Md28AEtQpEN z!|TSL1B%W%J&W#I42OWSvYBboQ=8g((B-DJRnY2ywEqZL*)jG&Gjr{?+JTR}`put? zvP%1Y22mb(WnVA6{jXe^UV)C)K8UEd!d8va%k{87U{i-qRD4y!vV`dgbs+s?q@cAK zB?8~$Gtza1nkAyjvwT|uXv{OtZ_q^2+H*gix1)6Cz=;{U`YPSGcS;9Y7k~bX_y4p{ z2mkKadw>1$;93m+`q!EauEe`v|5}rGYccqLf33;jO1%5^uQhqM7K8uy*P0Bj#JgYr zT9bEcG5CLft;yg@y!-X9HF>udga7yc+nW4S`O&!Fw~ZcW=a|HgXt8jmdBQi}{p)`N DHo|8b literal 0 HcmV?d00001 diff --git a/docs/turbine_interaction.ipynb b/docs/turbine_interaction.ipynb index 2b7507765..bbc74fb0a 100644 --- a/docs/turbine_interaction.ipynb +++ b/docs/turbine_interaction.ipynb @@ -89,7 +89,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyYAAAI5CAYAAABUwC7IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AACVS0lEQVR4nOzdeVxUVf8H8M8ww46AgKiICy6Iey64IWhlmntmaWVuqdlm2lNWTz2Z9lSPtpdtmhouZaWVlUtZJouIC2qmuaKgiCibiOzMzP39wY8rc4eB2e8MfN6vl69m7r1zzoGu43znnO/3KARBEEBERERERCQjF7kHQERERERExMCEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkp5J7AOQ8ysrKcPz4cQBAs2bNoFLx9iEiIiJyJmq1Gjk5OQCAHj16wMPDQ+YR3cJPlmS048ePo3///nIPg4iIiIis4ODBg4iMjJR7GCIu5SIiIiIiItlxxoSM1qxZM/FxQkICwsLCZBwNNQalpaVISEgAAMTExMDT01PmEVFDx3uO7I33HNlbWloaYmJiAOh+tnMEDEzIaDVzSlq0aIHQ0FAZR0ONQWlpKYKCggAAoaGh/AebbI73HNkb7zmyt9LSUvGxo+ULcykXERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJrtEGJtnZ2di2bRsWL16MUaNGISgoCAqFAgqFAjNnzjSqjdjYWPE19f2JjY21yrhzc3OxePFi9OzZE76+vvD19UXPnj2xePFi5OXlWaUPIiIiIiJ7U8k9ALk0b95c7iGY7MCBA7jnnntw9epVnePHjx/H8ePHsXr1amzduhX9+/eXaYREREREROZptIFJTW3atEFERAR27dpldhu//fYbQkJCDJ4PDQ01u20AyMjIwLhx45CTkwOVSoV//etfGDt2LABg27ZteO+995CVlYVx48bh8OHDFvdHRERERGRPjTYwWbx4MSIjIxEZGYnmzZsjPT0dYWFhZrcXHh6Odu3aWW+AEi+//DJycnIAAF9//TXuv/9+8Vx0dDT69u2LKVOmIDs7G//5z3+stnSMiIiIiMgeGm2OydKlSzF27FinWNJ19epVfPXVVwCAkSNH6gQl1SZPnoyRI0cCADZs2KC33IuIiIiIyJE12sDEmfz888/QarUAgFmzZhm8rjppX6vV4ueff7bH0IiIiIiIrIKBiRPYu3ev+Hjo0KEGr6t5LikpyaZjIiIiIiKypkabY2Jts2bNwpkzZ5CbmwtfX1907NgRw4cPx+OPP45WrVpZ1PbJkycBAH5+fmjRooXB61q2bAlfX18UFhbi1KlTFvVJ1BCcu3YT+y/kQa0V5B4KOYnKykqczlIAAK4dyICrq6vMI3Iuvh6uuD0iGAHebnIPhYicEAMTK4mLixMf5+XlIS8vDwcOHMC7776LDz74APPmzTO77cuXLwMwrrJX69at8c8//yAjI8PsfgzJysoSH5eXl6O0tNTkPohMUVZWVutjYyScy8NjXx8DQxIynbLqP+nn5B2Gk2rl74HvH42EnyeDOmNY8j5HZI7y8nK5h2AQAxMLtW/fHvfeey8GDRqE1q1bAwAuXLiA77//Hlu2bEFZWRkee+wxKBQKPProo2b1cfPmTQCAj49Pvdd6e3sDAIqKikzup3r8xjhw4ADOnz9vch9E5kpISDD6WkEA/ndMCQEKG46IiGqTWVCGlVvjcFsgvxYwlSnvc0Tmys3NlXsIBjEwscDEiRMxY8YMKBS6H34iIyMxZcoUbNu2Dffeey8qKyvxzDPPYPz48XUuxTKk+hsUN7f6p8bd3d0BgLMZ1KidK1TgWimDEiK5lKjlHgEROSMGJhbw8/Or8/zYsWOxePFivPLKKygpKcGaNWvw8ssvm9yPh4cHSkpKUFFRUe+11dNznp6eJvdT3/KvrKwscVf5AQMGoEOHDib3QWSKsrIy8RvEmJgYeHh4GPW6X749DiBHfN7UyxWdm9c/40ik1WpRUHAdAODv3xQuLqwRY4yTWTdRWHYrGgmP6IIRkdzo1xjmvs8RmcuRV7wwMLGxRx99FIsXL4YgCIiPjzcrMGnSpAlKSkqMWp5VXFwMwLhlX1Km7Bbv7u5uVvBDZC4PDw+j7rnMglL8eSZH59jC4eGYMbidjUZGDUlpaSl27doFABgxoi/f54z00Bf7se98nvhc4aLi784Mxr7PEVmienWNI+JXQTYWHByMwMBAAEBmZqZZbVQHDPUlpwO3Zj1MyRchaki+PnARNYtwebspcW8fyyrjEVHdVErdjxPq/997i4jIFAxM7ECag2Kqrl27AgBu3LhR547uWVlZKCwsBAB06dLFoj6JnFFZpQabDuouSby3TyiaeLA6EJEtqVx0/52r1DDxnYhMx8DExnJycsTqByEhIWa1MWTIEPFxfHy8wetqnouKijKrLyJntuN4FvKLdXOxpg9qK9NoiBoPaWCi4d5BRGQGBiY2tmrVKghC1Rt0Xbu212X8+PFiAuaXX35p8LrY2FgAgIuLC8aPH29WX0TObH3yRZ3ngzsEolPzJjKNhqjxcJUu5dJwKRcRmY6BiZnS09Nx9OjROq/Ztm0bXnvtNQBVVbJmzZpV63XDhg2DQqGAQqFAenq63vkWLVpg6tSpAIDffvsNW7Zs0btm8+bN+O233wAA06ZNM6ssMZEzO5ZRgL8yCnSOcbaEyD5USslSLs6YEJEZGm1Vrr179yI1NVV8XnOzmdTUVHH2odrMmTN1nqenp+P222/HoEGDMG7cOPTq1QvBwcEAqjZY3LJlC7Zs2SLOlrzzzjto1cr8BNw33ngDv/76K3JycvDggw8iJSUFY8eOBVAVAL377rsAgGbNmuH11183ux8iZyWdLWnp54HhXZrLNBqixkXlwhkTIrJcow1MVq9ejXXr1tV6LikpCUlJSTrHpIFJteTkZCQnJxvsx8vLC++//77Zu75Xa926NX755Rfcc889uHr1KpYvX47ly5frXNOiRQts3brVpLK/RA1BfnEFfvn7is6xhwe21asURES24SqdMWHyOxGZodEGJpbq27cvNm7ciOTkZKSkpCArKwu5ublQq9Vo2rQpunXrhjvvvBNz5swRZ1IsNWDAABw/fhwffvghtm7dKi77CgsLw4QJE7Bw4UKxNDFRY/LtoQxUqG99Q+umdMGUSJbMJrIX6VIulgsmInM02sAkNjZWb7mWKZo0aYKpU6eKuR+WiIuLM/raoKAg/Pe//8V///tfi/slagg0WgEb9+su4xrTsyWCfBx3AymihkZ/KRdnTIjIdFznQERO7c/T2cgsKNU5xqR3IvuSlgtWM/mdiMzAwISInNr65HSd5z1D/XBba39ZxkLUWOnt/M7kdyIyAwMTInJaqdlFSDyXq3Ns2sC2UCgUBl5BRLagl/zOGRMiMgMDEyJyWtLckqZerhjXK0Sm0RA1XiwXTETWwMCEiJxSUbka3x++rHNsSmQbeLgqZRoRUeOlV5WLye9EZAYGJkTklH45dgU3y9XicxcFMHVAGxlHRNR4cSkXEVkDAxMickqH0vN1nt8REYzWAV4yjYaocVNKlnJpuI8JEZmBgQkROaW03GKd54M7BMk0EiLizu9EZA0MTIjI6QiCgAs5uoFJWDNvmUZDREx+JyJrYGBCRE7nekklbpRW6hxrH8TAhEguesnvzDEhIjMwMCEip5OWW6Tz3FWpQCt/T5lGQ0RcykVE1sDAhIicjnQZV9tAb72dp4nIfriUi4isgf+SE5HTuSBJfA/jMi4iWalcuJSLiCzHwISInE6aZMaE+SVE8pLOWKpZLpiIzMDAhIicjrRUcHtW5CKSFXd+JyJrYGBCRE5FoxWQliddyuUj02iICABcJTkmTH4nInMwMCEip3KloBQVat1lIswxIZKXfrlgLuUiItMxMCEipyJdxtXEXYUgHzeZRkNEgH65YC7lIiJzMDAhIqdSW36JQqEwcDUR2YO0XHAlywUTkRkYmBCRU7mQo7u5IpdxEclPKSkXrGG5YCIyAwMTInIq+nuYMPGdSG6ueuWCBQgCgxMiMg0DEyJyKtKlXGEsFUwkO2nyO8BNFonIdAxMiMhplFVqkFlQqnOMmysSyU9aLhhgAjwRmY6BCRE5jYt5JZCuDmGOCZH8apsxqWTJYCIyEQMTInIaabm6ie/Nfd3h7a6SaTREVK3WpVycMSEiEzEwISKnoZ/4ztkSIkcgLRcMAGqWDCYiEzEwISKnkZYj3cOEFbmIHAGT34nIGhiYEJHTkM6YMPGdyDEw+Z2IrIGBCRE5Db1SwQxMiBwCk9+JyBoYmBCRUygorUR+cYXOMQYmRI5B5cLkdyKyHAMTInIK6XklOs9VLgq0DvCSaTREVJNCodALTiqZ/E5EJmJgQkROQRqYtAnwgquSb2FEjkK6nIvJ70RkKv6rTkROQRqYcBkXkWORlgzWMMeEiEzEwISInMLFvFKd5+2bMTAhciTSGZNK5pgQkYkYmBCRU0jTmzHhHiZEjkQ6Y8LkdyIyFQMTInJ4WgG4yKVcRA7NVTpjwqVcRGQiBiZE5PBuVABlat0POVzKReRY9JLfOWNCRCZiYEJEDi+7TPcDj7ebEsFN3GUaDRHVRrr7u5rlgonIRAxMiMjhZevmvSOsmTcUCv0N3YhIPiwXTESWYmBCRA4vp1T3Aw8T34kcj1I6Y8IcEyIyEQMTInJ42WW6z5n4TuR49JLfmWNCRCZiYEJEDk86Y9KBie9EDkflwuR3IrIMAxMicmhqLZBXrnuMMyZEjkel5FIuIrIMAxMicmi5ZYAA3W9i2zEwIXI4XMpFRJZiYEJEDi1HUio4yMcdvh6uMo2GiAzR3/mdMyZEZBoGJkTk0KSlgrmxIpFj0ssxYblgIjIRAxMicmjSzRXbcxkXkUPizu9EZKlGG5hkZ2dj27ZtWLx4MUaNGoWgoCAoFAooFArMnDnTqDZKSkrwww8/4PHHH0dkZCSaNm0KV1dXBAYGYtCgQViyZAmuXr1qlfG2a9dOHF9df9q1a2eV/ogchf4eJgxMiBwRk9+JyFIquQcgl+bNm1v0+r///htRUVEoKirSO5efn4/9+/dj//79eP/997Fq1SpMmTLFov6IGivuYULkHFxdmPxORJZptIFJTW3atEFERAR27dpl9GsKCwvFoCQqKgpjx45Fv379EBgYiJycHPzwww/44osvUFhYiKlTp8LX1xejRo2yeKwTJkzA66+/bvC8m5ubxX0QOYqbZWrcrJQs5WrGXd+JHJHejAmT34nIRI02MFm8eDEiIyMRGRmJ5s2bIz09HWFhYUa/3sXFBZMnT8arr76Krl276p0fMWIERo0ahYkTJ0Kj0WD+/Pk4d+4cFApFLa0Zz9/fH927d7eoDSJnkZ5XovPcRQG0CfCSaTREVBdpuWAmvxORqRptYLJ06VKLXj948GAMHjy4zmsmTJiAe++9F99//z3Onz+Po0ePok+fPhb1S9SYSAOT1gFecFM12tQ4IoemVy6YOSZEZCL+C29jt99+u/j4/PnzMo6EyPlIAxPmlxA5LqW0XDBzTIjIRAxMbKy8vFx8rFQqZRwJkfNJkwQm7YOYX0LkqLjzOxFZioGJjcXHx4uPu3TpYnF7CQkJuO2229CkSRN4eXkhLCwMU6ZMwdatWyEI/EeAGha9GRNurkjksFgumIgs1WhzTOzh2LFj2L59OwCgR48eVglM0tLSdJ6np6cjPT0d3333HaKiovDtt9+iVatWZrV9+fLlOs9nZWWJj8vLy1FaWlrH1USWEQRBLzBp1UTF+45sqqysrNbHZAStRudpeYWaf1+NwHuO7K3mah5Hw8DERsrLyzFnzhxoNFVv1G+88YZF7bm5uWH8+PEYMWIEunfvDj8/PxQUFCA5ORmfffYZMjIykJSUhLvuugvJycnw8/MzuY/WrVsbfe2BAweYM0M2daMCKK3UfYvK+CcFN1NlGhA1OgkJCXIPwalcvKwAcGvJcmbWVezadUW+ATkh3nNkD7m5uXIPwSAGJjby1FNPISUlBQAwY8YMjBs3zqL2Dh48CH9/f73jw4YNw1NPPYX77rsPu3btwqlTp7B06VK89957FvVHJLdsyY7vbi4CfLlND5HDkuS+gykmRGQqBiY28L///Q+rV68GAERGRuKTTz6xuM3agpJqTZo0wXfffYf27dsjPz8fq1atwrJly0zebDEjI6PO81lZWejfvz8AYMCAAejQoYNJ7ROZ4npKJnDyjPi8XZA37h45UMYRUWNQVlYmfmsdExMDDw8PmUfkPDL3XcK2S7emNAMCgzBixG3yDchJ8J4je3PkFS8MTKxs5cqVeOmllwAAERER2LFjB7y9bZ+w6+fnhwceeACffvopiouLkZKSUu8+K1KhoaFGX+vu7g5PT09Th0lktIsFumtg2zfz4T1HduXh4cF7zgQe7rpfhmmh4O/PRLznyB7c3d3lHoJBrMplRZs2bcITTzwBAGjbti1+//13BAUF2a3/mjvQZ2Zm2q1fIltIzS7Sed6Re5gQOTS9nd+5louITMTAxEp+/vlnTJ8+HVqtFi1btsTu3btNmoGwBoVCUf9FRE5CGpi0b+Yl00iIyBjScsGVLBdMRCZiYGIFu3fvxuTJk6FWqxEYGIjff/9dlvyLkydPio9DQkLs3j+Rtdwsq0TWDd2ymR24hwmRQ1Nx53cishADEwvt27cPEyZMQHl5Ofz8/PDbb7+hW7dudh/HjRs38M033wAAvLy80K9fP7uPgchazucU6zxXQEC7AM6YEDkyV+mMiYYzJkRkGgYmFvjrr78wZswYFBcXw9vbG9u3b0ffvn1NbmfYsGFQKBRQKBRIT0/XO//rr7/WuUlVUVERJk+ejLy8PADA7NmzHTqxiag+567d1HnezANwU/HtisiRqSQ5JhotZ0yIyDSNtirX3r17kZp6q6xhzc1mUlNTERsbq3P9zJkzdZ6fP38eI0eOREFBAQDg9ddfh5+fH06cOGGwz+DgYAQHB5s81mXLlmHq1Km49957MWTIEHTo0AE+Pj64ceMG9u3bh88//xyXLl0CAHTu3BlLliwxuQ8iR5Kao5tf0tyTH3CIHJ3eUi4GJkRkokYbmKxevRrr1q2r9VxSUhKSkpJ0jkkDk8TERGRnZ4vPn3nmmXr7fPXVV80OGvLz87F69Wpxf5TaDB06FF999RUCAgLM6oPIUaRekwQmXMVF5PBULlzKRUSWabSBiTN55513sHv3biQnJ+PMmTPIzc1FQUEBvLy8EBISggEDBuDBBx/EiBEjWJmLGgTpjEkLzpgQOTzpUi4mvxORqRptYBIbG6u3XMsUM2fO1JtFMVdcXFyd5/v168dkdmo0yio1uJRfonOMS7mIHJ80+V3NcsFEZCJmkxKRQ7mQUwxBEoc050bIRA5PmmNSyRkTIjIRAxMicijnsnUrcjV1E+CulGkwRGQ06QaLauaYEJGJGJgQkUM5L9nxvYUXv3Ulcgau0hwTVuUiIhMxMCEih3IuW1oqWKaBEJFJlCwXTEQWYmBCRA4lVTpjwsR3IqcgTX7XaAUI0oQxIqI6MDAhIodRqdEiLbdY5xgrchE5B2nyO8AEeCIyDQMTInIYF/NK9JZ/cCkXkXOQzpgALBlMRKZhYEJEDiNVUpEryNsN3q4yDYaITCLdYBHgjAkRmYaBCRE5DGl+SYdmXjKNhIhMpXLR/0ihYQI8EZmAgQkROQxpRa72Qd4yjYSITFVbjgn3MiEiUzAwISKHoT9jwsCEyFnUupSLMyZEZAIGJkTkELRaAedzuJSLyFnVmvzOGRMiMgEDEyJyCJkFpSir1P0QwxkTIufBcsFEZCkGJkTkEM5JKnL5eqgQ5O0m02iIyFTSnd8BlgsmItMwMCEihyDNL+nUvAkUCv0POkTkmBQKBVwleSZqzpgQkQkYmBCRQzh3TTcw6djMR6aREJG5pCWDpRumEhHVhYEJETmE1BzpjAkDEyJnI80zYfI7EZmCgQkRyU4QBKRKZkw6BDMwIXI20pLBTH4nIlMwMCEi2WXfLMfNcrXOMS7lInI+KqV0KRdnTIjIeAxMiEh20sR3T1clWvl7yjQaIjKXq95SLs6YEJHxGJgQkezOXdMtFdwh2BsutZQeJSLHJp0xqWSOCRGZgIEJEclOL/E9uIlMIyEiS0hzTDSsykVEJmBgQkSy0ysVzMR3IqfkKikXXMnAhIhMwMCEiGR3PoeBCVFDIN39neWCicgUDEyISFbXiyuQW1Shc4yBCZFz4s7vRGQJBiZEJCtpfomrUoG2AV4yjYaILKGX/M5ywURkAgYmRCQraX5JWJC33ocbInIO+ju/c8aEiIzHf/2JSFbSPUxYkYvIebmyXDARWYCBCRHJ6ly2dA8T5pcQOSuWCyYiSzAwISJZndebMWFgQuSs9JZyMTAhIhMwMCEi2RSVq3HlRpnOMVbkInJeKuk+JlzKRUQmYGBCRLKRzpa4KKqS34nIOUmXcjH5nYhMobJ3hzk5Obhw4QKuXr2K4uJiuLq6wt/fH23atEHHjh2hVCrtPSQiksk5SWDSJsALHq58DyByVnrJ7ywXTEQmsHlgUlxcjJ9++gk7d+5EfHw8MjMzDV7r7u6O3r17Y8SIEZg4cSJ69uxp6+ERkYykFbk6siIXkVNjuWAisoTNApOjR49ixYoV2Lx5M0pKSgAAglD3G1RZWRmSk5Oxf/9+vPbaa+jWrRuefPJJTJs2DV5e3HCNqKFJlVTkYn4JkXOT7kHEqlxEZAqrByZHjx7FK6+8gp07dwK4FYy0aNEC/fv3R9++fREcHIyAgAA0bdoUpaWlyM/Px/Xr13H27FkcOnQIf//9NyorK3HixAk88cQTeOWVV/D8889j/vz5cHd3t/aQiUgm+nuYMDAhcmaukhwTJr8TkSmsGpjMmjULGzZsgPb/15T26dMHU6dOxaRJk9CmTRuj26moqEBCQgK++uor/Pjjj8jNzcULL7yATz/9FOvXr8eQIUOsOWwikkFZpQaX8kt0jnHGhMi5KbmUi4gsYNWqXOvWrYNKpcLcuXNx+vRppKSk4JlnnjEpKAEANzc3DB8+HF9++SWuXbuG9evXo3PnzkhPT8eff/5pzSETkUzScoshXeXBzRWJnBuT34nIEladMXniiSfwwgsvoHXr1lZr093dHQ8//DCmTp2KzZs3Q6PRWK1tIpLP2Wu6+SUhfh7wcbd7oUAisiImvxORJaz6KeDjjz+2ZnM6FAoFJk+ebLP2ici+TmXpBiadW7AiF5Gzkya/qzljQkQm4AaLRCSL01cLdZ5HtPSVaSREZC2uLtLkd86YEJHxGJgQkSxOS2ZMIjhjQuT0WC6YiCxh9QXdISEhiImJQXR0NGJiYtCjRw9rd0FETq6gpAJXC8t0jnXhjAmR05PmmLBcMBGZwuqBydWrV7F582Zs3rwZAODv748hQ4YgJiYGMTEx6Nu3L1xcOFFD1Jidvqo7W+KmdEFYkLdMoyEia1EpmfxOROazemDStm1bXLx4UXx+/fp1bNu2Ddu2bQMAeHt7Y9CgQeKsysCBA+Hm5mbtYRCRAzudpZtf0jHYR6/MKBE5Hya/E5ElrB6YpKWlITMzE4mJieKff/75R9wBvqioCH/88Qf++OMPAFV7lkRGRoozKlFRUfD25jenRA2ZdMYkoiXzS4gaAia/E5ElbLJpQKtWrfDAAw/ggQceAFA1a5KUlCQGKocPH0ZlZSUAoLy8HElJSUhKSsL//vc/KJVK3HbbbWKgEh0djaZNm9pimEQkk1OSwKRLC+aXEDUEnDEhIkvYZe1E06ZNMXbsWCxfvhz79u3DjRs38Oeff2Lp0qUYPnw4vLy8IAgCBEGAWq1GSkoK3n//fUycOBHBwcE2GVN2dja2bduGxYsXY9SoUQgKCoJCoYBCocDMmTNNbm/nzp2YOHEiQkND4e7ujtDQUEycOBE7d+606rhLSkrw1ltvITIyEgEBAfD29kZERASeffZZnSV0RI5KoxVwljMmRA2SK3NMiMgCsmyz7OHhgWHDhmHYsGEAAI1GgyNHjogzKnv37kVeXh4AQGujb1uaN29ulXa0Wi0effRRrFmzRud4ZmYmMjMzsXXrVsyZMwcrV660OOk/NTUVo0ePxrlz53SOnzlzBmfOnMHq1avx1VdfYezYsRb1Q2RLl/JLUFqp0TkWwRkTogZB5SKdMWFgQkTGc4hsU61Wi8rKSlRWVqKiogJqtRoKhaL+F1pJmzZtMGLECLNe+/LLL4tBSe/evbFp0yYcPHgQmzZtQu/evQEAq1evxn/+8x+Lxnjz5k2MGTNGDErmzp2L3bt3Y9++fXjjjTfg4+ODwsJCTJkyBX/99ZdFfRHZkjTxPcjHDc2auMs0GiKyJqWLdMaES7mIyHiyzJgUFxdj37594gzJwYMHUVZWtadBdZI8AERERCA6OtomY1i8eDEiIyMRGRmJ5s2bIz09HWFhYSa1cfbsWbzzzjsAgH79+iEhIQGenp4AgMjISIwfPx5Dhw5FSkoK3n77bTzyyCPo2LGjWeN9++23cfbsWQDAW2+9hUWLFonnBg0ahGHDhmHo0KEoKSnBwoULERcXZ1Y/RLYmzS/hbAlRwyFdysXkdyIyhV0Ck7y8PJ0qXX/99Rc0mqqlHNWBiJubG/r06YMhQ4ZgyJAhiIqKQmBgoM3GtHTpUovb+OCDD6BWqwEAK1asEIOSal5eXlixYgUGDRoEtVqN999/H5988onJ/VRWVuKjjz4CAHTp0gXPPvus3jWDBw/G7NmzsXLlSsTHx+PQoUOIjIw046cisi3pjAl3fCdqOJj8TkSWsElgkpGRgcTERCQkJCAxMRGnT58Wz1UHIr6+vhg8eLAYiPTv3x8eHh62GI5NCIKAn376CUDVzM7AgQNrvW7gwIHo3Lkzzpw5g59++gkff/yxycvU9uzZgxs3bgAAZsyYYTBXZebMmVi5ciUA4Mcff2RgQg5Jv1QwZ0yIGgppuWAmvxORKawemLRr1w4ZGRkAdJdltWrVSgxChgwZgp49e9o1j8Ta0tLScOXKFQDA0KFD67x26NChOHPmDDIzM81aMrZ3716dtgzp168fvLy8UFJSgqSkJJP6ILKHonI1LuWX6BzjjAlRwyGdMalkjgkRmcDqgcmlS5eqGlapcN9992Hs2LGIiopC27Ztrd2VrE6ePCk+joiIqPPamudPnTplcmBibF8qlQodO3bE33//jVOnTpnUB5E9nJHMlihdFOgY7CPTaIjI2lSSHBMNq3IRkQlsspRLoVBAo9Hgu+++wz///IPo6GhER0cjKioKoaGhtujS7i5fviw+ru9nat26tfi4ejbJnL68vb3h7+9fb19///03cnJyUF5eDnd346sd1fyZapOVlSU+Li8vR2lpqdFtEwHA8Ut5Os/bBXpBUFegVF379dVFMaSPiWyF95xltJUVOs8rNQL/ragH7zmyt/LycrmHYJDVA5P3338fe/fuxd69e3Ht2jUcP34cJ06cwGeffQagqjRv9XKu6OhodO3a1dpDsIubN2998+vjU/c3vt7e3uLjoqIis/uqr5/a+jIlMKkZQNXnwIEDOH/+vNHXEwHAHxdcULNKuZ/2Jnbt2mXUaxMSEmw0KqLa8Z4zXWYxUPOjRaVGY/TfceI9R/aRm5sr9xAMsnpgsmDBAixYsABAVTnd6kpcCQkJSE9Px8WLF3Hx4kV8/fXXAKp2hR88eDCio6MxZMgQ9OvXD66urtYeltXV/FbDzc2tzmtrBgfmfHNU3Vd9/VijLyJbulKiu8wjxJvLPIgaEslKLghQQCsALs6bUkpEdmTTcsHh4eEIDw/H7NmzAVTthl4zUDl58iTy8/Oxbds2bN++HUDVB+v+/fuLsyqDBw+Gr6/jVe2pWUGsoqKijit1p8ykJYVN6au+fiztq75lZllZWejfvz8AYMCAAejQoYNJ7VPjJggCXj6SAODWru9jonpjWHiQwdeUlZWJ3yDGxMQ4VeU+ck685yyTnleC/x3br3PsjjuHw03lEPs5OyTec2Rvjrzixa4bLLZq1QoPPPAAHnjgAQDA9evXsXfvXiQkJCAhIQFHjx4V/4ImJiYCAJRKpVEfyO2tSZNblYTqW55VXFwsPjZmOZahvoxZBmZJX6bk/7i7u5sVZFHjdfl6CYrKNTrHerUNMvo+8vDw4D1HdsV7znQ+XvqzoCo3d3i6y7Kfs9PhPUf2YMoyf3uT9SuMpk2bYty4cXj77bdx4MABFBQU4PPPP0f79u0hCAIEQRA3YnQ0NT/E15c0XnMmwpQ8DmlfxcXFKCgoMKqvZs2aOfSNR43P6SzdilxNPFRo6cdvBokaElel/scKNStzEZGRZP8K459//hFnSBITE8W9QRQKhc4+KI6mZtJ+zQ0ka1PzfJcuXczq6/vvvxfbMrSZo1qtFqfnzOmHyJbOXNMNTLq08HXqvYyISJ+0XDAAqLmXCREZya6BiUajweHDh8Uck6SkJFy/fl08Lw1E2rRpg5iYGHsO0WhhYWEICQnBlStXEB8fX+e11WtHW7VqhXbt2pnc15AhQ8TH8fHxBgOTlJQUcSlXVFSUyf0Q2dKprEKd5xEtubEiUUOjqiXLnTMmRGQsmwYmZWVlSE5OFgORAwcOoKTk1q7P0kCkc+fOiImJQUxMDKKjo9GmTRtbDs8iCoUCEyZMwGeffYbTp09j//79tQYM+/fvF2dMJkyYYNY3xMOGDYOfnx9u3LiBdevW4fnnn6+1ndjYWPHxxIkTTe6HyJZOSzZXjGjheEUtiMgy0p3fAe7+TkTGs3qOybZt2/DCCy9g8ODB8Pf3x/Dhw7F06VLs2bMHxcXFYu6IQqHAbbfdhqeffhpbtmzBtWvXcOrUKaxcuRJTp0516KCk2sKFC6FUKgEA8+fP1yvPW1paivnz5wOo2pV94cKFtbYzc+ZMKBQKKBQKxMXF6Z13c3PD008/DaBq5/h33nlH75rk5GSsWbMGADB06FBERkaa+2MRWV1ZpQYXcnSLN3DGhKjhqXXGRMMZEyIyjtVnTMaPHy9+m19zRsTNzQ39+vVDdHQ0YmJiEBUVJWsZ4L179yI1NVV8XnOzmdTUVJ3ZB6AqeJAKDw/HokWLsGzZMqSkpCAqKgovvPACOnTogPPnz2P58uU4evQoAGDRokXo1KmT2eNdtGgRvv32W5w9exbPP/88UlNT8cADD8DT0xN79uzBm2++CbVaDU9PT3zwwQdm90NkC6nZRZCu5ujcnIEJUUNTe/I7Z0yIyDg2WcolCAK8vLwwaNAgMRAZOHCgQ9XmXr16NdatW1fruaSkJCQlJekcqy0wAYA33ngD2dnZWLt2LY4ePSqWQq5p9uzZeP311y0ab5MmTbB9+3aMHj0a586dw6pVq7Bq1Sqda3x9ffHVV1/htttus6gvImuT5pe0DfSCN8uHEjU4ShcFFAqg5krtSs6YEJGRrP7J4K233kJ0dDT69u0Llarhf/BwcXHBmjVrMGnSJKxatQqHDh1Cbm4ugoKCEBkZiXnz5mHUqFFW6atjx444evQoPvnkE2zevBmpqamoqKhA69atMXr0aCxYsABt27a1Sl9E1qSfX8LZEqKGytXFBRU18ko0TH4nIiNZPXJ47rnnrN2kTcTGxuot17LE6NGjMXr0aJuPxdvbG88//zyef/55s/oiksPpq5KKXEx8J2qwVEoFKmpsQcbkdyIylqwbLBJRwycIAk5JNlfswsR3ogZLKUmAZ7lgIjIWAxMisqmconLkF1foHOOMCVHDJU2A54wJERnL6ku57rjjDqu2p1AosHv3bqu2SUT2c1oyW+LpqkSbAC+ZRkNEtiYtGcxywURkLKsHJnFxcTrlgs3ZULCapa8nIvlJ80s6t2gCl1r2OiCihkE6Y8JywURkLJuVzfLw8EBwcLCtmiciJyGdMWF+CVHDplJyxoSIzGOzwKSsrAwtW7bE9OnTMWXKFDRt2tRWXRGRAzulVyqY+SVEDZneUi4mvxORkaye/P7f//4X4eHhEAQB+/fvx5NPPomWLVti0qRJ2Lp1KyorK63dJRE5qEqNFqnZ3MOEqDFh8jsRmcvqgcnLL7+MU6dO4eDBg3jqqacQFBSEiooK/Pjjj5g0aRJatmyJJ598EsnJydbumogczIWcYr1dnzljQtSw6ZUL5lIuIjKSzcoF9+vXDx999BGuXLmCn3/+Gffddx/c3d2Rn5+Pzz//HEOGDEF4eDj++9//Ii0tzVbDICIZSRPfQ/w84OflKtNoiMgeVEx+JyIz2XwfE6VSibFjx+K7777D1atX8cUXXyA6OhoAkJqaiiVLlqBjx46Ijo7GF198gYKCAlsPiYjsRLqxYkRLzpYQNXSukhkT6awpEZEhdt1g0dfXF7Nnz0ZcXBzS0tLw2muvoWPHjhAEAfv27cNjjz2GsLAwew6JiGxIOmPC/BKihk+/KhdnTIjIOLLt/N6mTRv85z//wZkzZ7BixQq4u7tDEASUl5fLNSQisjJpqWDOmBA1fPr7mHDGhIiMY7NywfXJyMjAxo0bsWHDBpw5c0Y87ubmJteQiMiKCkoqcLWwTOdYF86YEDV4LBdMROaya2BSWFiIzZs3Y+PGjUhMTIQgCBCEqjesQYMGYdq0aZgyZYo9h0RENnIiU3cZl5vKBe2CvGUaDRHZi9JFMmPCpVxEZCSbByYajQY7d+7Ehg0b8Msvv6C8vFwMRtq3b4+HH34Y06ZNQ4cOHWw9FCKyo+OZN3Sed2npq7fEg4gaHlclk9+JyDw2C0wOHTqEDRs24Ntvv0Vubi4AQBAE+Pv7Y/LkyZg2bRqioqJs1T0Ryex4ZoHO8x6tmF9C1BiwXDARmcvqgcnrr7+Or776CmfPngVQFYy4urpi1KhRmDZtGsaNG8c8EqJGQDpj0rOVvzwDISK7kpYL5gaLRGQsqwcmixcvhkKhgCAIGDBgAKZPn44pU6YgICDA2l0RkYO6XlyBjPxSnWPdW/nJNBoisie9csFMficiI9lsKZenpyeuXbuGt99+G2+//bbZ7SgUCpw/f96KIyMiWztxRXe2xF3lgk7NfWQaDRHZk95SLia/E5GRbBaYlJaWIj093eJ2FApF/RcRkUP5+zIT34kaK72d3zljQkRGsnpgEhMTw2CCqJE7Ic0vCeUyLqLGguWCichcVg9M4uLirN0kETkZ6YwJ80uIGg9puWAmvxORsbi2goisKr+4ApkFuonvPRiYEDUa0uR3LuUiImMxMCEiq5KWCXZXuaBTMBPfiRoLFZdyEZGZGJgQkVVJ80u6hvjqVekhooZLbykXZ0yIyEhW/bSQlZVlzeZqdfXqVZv3QUTmO35ZurEil3ERNSYsF0xE5rJqYNKhQwc8/fTTyMzMtGazAIDvvvsOPXv2xKpVq6zeNhFZj3QpFxPfiRoXlXTnd86YEJGRrBqYqNVqfPLJJ+jYsSNmzJiBXbt2Qas1/5uSjIwMvPXWW+jSpQsefPBBnDhxAm5ublYcMRFZU15RuV7ie89Qf3kGQ0SykAYmlZwxISIjWbVc8IkTJ/DMM89g586d2LhxIzZu3Ijg4GBMmDABAwcORGRkJLp27Wpwn5Pc3FwcOnQIBw8exO7du7Fv3z4IggBBENCqVSssXboUM2fOtOaQiciKpLMlHq4u6NDMW6bREJEc9JdyccaEiIxj1cAkPDwc27dvx759+/D666/jt99+w7Vr1/DFF1/giy++AAC4ubkhMDAQTZs2RdOmTVFaWor8/Hxcv34dN27c+lAjCFVvZKGhoZg/fz7mz58PDw8Paw6XiKxMmvjeLcSPie9EjYw0+Z3lgonIWFbfYBEABg8ejB07duDs2bNYu3YtNm/ejLS0NABAeXk5rly5gitXrkChUIgBSE3u7u4YOXIk5s6di1GjRsHFhR9siJyBdGNF7l9C1PhIywVrLFjSTUSNi00Ck2rh4eFYtmwZli1bhkuXLiExMRH79u3D5cuXkZOTg/z8fHh4eKBZs2Zo1qwZevTogejoaPTv35+5JEROSDpjwsCEqPGRbrDIpVxEZCybBiY1tWnTBlOnTsXUqVPt1SUR2VFuUTmu3CjTOdYjlIEJUWPjKlm+yeR3IjIW10gRkVVIE989XZXo0Iw7vhM1NkqWCyYiMzEwISKrkG6s2C3EV+8DChE1fHo7v3MpFxEZiYEJEVkFN1YkIkA/+Z1LuYjIWAxMiMgqpInvPZlfQtQoSZPfNVzKRURGYmBCRBbLuVmOLGniO2dMiBolJr8TkbkYmBCRxaSzJV5uSrRn4jtRo6Ri8jsRmYmBCRFZTLqxIhPfiRov6YwJk9+JyFgMTIjIYtLE9x6t/OUZCBHJTvqlRCV3ficiIzEwISKLHc8s0HneI9RXnoEQkeyk5YIFgQnwRGQcBiZEZJHswjJcKyzXOcbEd6LGS1ouGGACPBEZxy6ByR133IE77rgDX375pT26IyI7ki7j8nZTIiyIie9EjZW0XDDAGRMiMo5dApPExETEx8ejXbt29uiOiOxIGph0C/Fj4jtRIyZNfgeYAE9ExrFLYBIcHAwA8Pf3t0d3RGRHxyUVuXpwY0WiRk1aLhhgAjwRGccugUmvXr0AAGfPnrVHd0RkR/oVuRiYEDVmteWYcMaEiIxhl8Bkzpw5EAQBn3/+uT26s5thw4ZBoVCY9CcuLs7kfpYsWWLT9onMda2wDNk3JYnvnDEhatRqyzFh8jsRGcMugcm9996Lhx9+GPHx8XjkkUdQXFxsj24djouLCzp16iT3MIisRrqMy8ddhbBAb5lGQ0SOoLbAhLu/E5ExVPboZP369bjzzjvx999/Y926dfjpp58wbtw49OzZE02bNoVSqazz9dOnT7fHME325Zdf1htknTx5ElOmTAEA3HnnnWjVqpVFfR4/frzO82FhYRa1T2QK/cR3X7gw8Z2oUXOtZSmXhjkmRGQEuwQmM2fOhEJx68PK9evXsWHDBqNeq1AoHDYwMSYIqPlzWuPn6N69u8VtEFkL80uISMrFRQEXBVBzkqSSOSZEZAS7BCYAIAhCnc8bIq1Wi6+++goA4OPjg3vvvVfmERFZjyAI+oEJ80uICIBK6YIK9a1ZEia/E5Ex7BKYpKWl2aMbh7N7925kZmYCAO677z54eXnJPCIi67lyoww50sR3zpgQEQBXFwUqajxnuWAiMoZdApO2bdvaoxuHs379evGxoy5HIzLXkYvXdZ77eboiLIiJ70QEvU1WOWNCRMawS1WuxqioqAg//vgjgKrAbNiwYVZpd8SIEQgODoabmxuCg4MxbNgwLFu2DNevX6//xURWdPRSgc7z3m38dXLJiKjxku7+rma5YCIygt1yTBqb77//XqzY9fDDD1vtA9vvv/8uPs7JyUF8fDzi4+OxfPlyxMbGYsKECWa3ffny5TrPZ2VliY/Ly8tRWlpqdl/k/FLS83Se92jpY/V7oqysrNbHRLbCe846JHEJikvL+G+GAbznyN7Ky8vrv0gmdg9Mzp07h/Xr1yM5ORlXr15FaWkpfvvtN3Ts2FG85sSJE7h06RK8vb0xdOhQew/RKqy9jKtHjx6455570L9/f4SEhKCyshJnzpzBV199hV27dqGgoACTJk3CL7/8glGjRpnVR+vWrY2+9sCBAzh//rxZ/ZDzU2uBf64oAdwKuNXXUrFr1zmb9ZmQkGCztolqw3vOfOoK3feHQ4ePoOQCl3PVh/cc2UNubq7cQzDIboGJVqvF888/jw8//BBarVasyqVQKFBRUaFz7aVLlzB27FioVCqkpaVZvPeHvV2+fFncgX3gwIEIDw+3qL2FCxdiyZIlescHDBiA6dOnY+XKlXjssceg0WgwZ84cnD9/Hh4eHhb1SVSXjGJAI9z60KGAgLY+/NBBRFWk2xkxxYSIjGG3wGTevHlYu3YtBEFAq1atMGjQIGzZsqXWa0ePHo2wsDCkp6djy5YtWLBggb2GaRUbN26E9v8rkMyYMcPi9vz9/es8P2/ePBw6dAhr1qzBlStX8P3332Pq1Kkm95ORkVHn+aysLPTv3x9AVVDUoUMHk/ughiE2+RJwIlV83qGZDyaMHmD1fsrKysRvEGNiYhhwk83xnrOOj87tR25Zifi8e49eGNEtWMYROS7ec2RvjrzixS6Bye7du7FmzRooFAq89NJLWLp0KZRKJVxq2R222v3334+33noLf/75p9MFJtWbKrq7u4u7vtvavHnzsGbNGgBAfHy8WYFJaGio0de6u7vD09PT5D6oYTiRVazzvF+7AJvfDx4eHrznyK54z5nPVaXUee6iUvF3aQTec2QP7u7ucg/BILsEJqtWrQJQNRPy+uuvG/Wa6m/m//nnH5uNyxZSUlJw8uRJAMDYsWPRtGlTu/TbtWtX8XH13ilEtnL0km4VuN5t/OUZCBE5JJVSdy0Xd34nImPYpVxwcnIyFAoFZs+ebfRrqr+9v3r1qq2GZRM1k96tsYzLWCzTSvZy9UYZrtzQrRzTp419AnAicg4qF5YLJiLT2SUwyc7OBgC0a9fO6Ne4uroCANRqtS2GZBOVlZX45ptvAADNmjUzuzqWOapnaQAgJCTEbv1S4yOdLWnioUKHZj4yjYaIHJGrZMZEreWMCRHVzy6Bibd31W7QOTk5Rr+mek+NgIAAm4zJFnbu3Cn+jA899BBUKvtVY165cqX42FlLLJNzOCIJTG5r7Q8XaQkeImrUOGNCROawS2DSvn17ALrf6tdn586dAIBu3brZZEy2YM7eJbGxsVAoFFAoFLWWBD5+/DhSU1P1X1jDqlWrsHr1agBAixYtMHHiROMHTWQi/R3fuYyLiHRJc0w4Y0JExrBLYDJixAgIgoBPPvlELKNbl5MnT4of2EePHm2HEVru+vXr2LZtGwCge/fu6NOnj1XaPXz4MCIiInDXXXfhvffew++//44jR47g4MGDWL9+PUaOHIl58+YBAJRKJVatWiXOUBFZW4Vai78zb+gc68PEdyKScJVs/c7kdyIyhl3WGj399NP46KOPcP78eTz22GP49NNPDS5z+v333zFr1iyUlZUhMDAQc+fOtccQLfbtt9+ivLwcgHV2eq9Jo9Hgjz/+wB9//GHwmsDAQKxZswbjxo2zat9ENZ3KKkSFWvfLhd6tOWNCRLqUkuWdXMpFRMawS2DSvHlzfP7555g+fTrWrFmD3377DWPGjBHPf/jhhxAEAUlJSTh9+jQEQYCLiwtiY2Ph4+McSbXVe5colUqz9hAxZPTo0VizZg2Sk5Nx9OhRXLt2DXl5eRAEAQEBAejVqxfuvvtuzJw5E76+vlbrl6g20vySDs284eflKtNoiMhRSZPfK7mUi4iMYLfs7KlTp8LV1RXz5s1DRkYGVq5cKZa4rc6PEISqNy4fHx+sW7dOJ3hxdElJSWa9bubMmZg5c6bB88HBwXjkkUfwyCOPmDkyIuthfgkRGYPJ70RkDrvkmFSbPHkyUlNTsXTpUvTt2xdKpRKCIIh/unXrhn//+99ITU1lAjeRA5LOmHD/EiKqjTT5XcMZEyIygv3q2f6/wMBAvPLKK3jllVeg1WqRn58PjUaDgIAAce8SInI82TfLcPl6qc4x7vhORLVxdWHyOxGZzu6BSU0uLi4ICgqScwhEZCTpMi5vNyXCmzeRZzBE5ND0ywVzKRcR1c8uS7lKSkrs0Q0R2ZA0MOnV2l+v8g4REcBywURkHrvMmDRt2hT9+vVDTEwMhg0bhiFDhnCvDSInw/wSIjIWywUTkTnsEphUVlZi//792L9/P9566y0olUr06dMHQ4cOFQOVJk24JITIUak1Wvx9uUDnGPNLiMgQ7vxOROawy1KuN998EyNHjoSPjw8EQYBarcbBgwfxzjvvYOzYsQgMDET//v2xaNEibN++HYWFhfYYFhEZ6fTVmyirlGysyBkTIjJAmvzOwISIjGGXGZMXX3wRL774IjQaDY4cOYK4uDjEx8dj7969KCwshFqtRkpKCg4fPoz33nsPLi4u6NWrlzijwt3MieR1VLKMq12gFwK83WQaDRE5Or0ZEy7lIiIj2LUql1KpRGRkJCIjI7Fo0SJotVocPXoU8fHxiIuLw969e1FQUACNRoOjR4/i6NGj+PDDD6FWq+05TCKSOCJJfGd+CRHVhcnvRGQOu26wqNe5iwv69u2Lf/3rX/j5559x7tw5vPLKK/Dz8wMAceNFIpKXdMaE+SVEVBeVNPmd5YKJyAiy7mNSUFCAhIQExMXFIS4uDn///bdeMNK2bVsZR0hEeUXlSM/TLfnN/BIiqot+VS5+yUhE9bNrYGIoEAEg/rddu3ZibsmwYcMYmBDJ7K+MAp3nnq5KRLRgFT0iMkx/KRdnTIiofnYJTP71r38ZnBEJCwvTCUTatGljjyERkZGk+5f0DPWDSinrKlAicnAsF0xE5rBLYPLBBx9AoVBAEASEhYWJQciwYcPQunVrewyBiMwk3fGdy7iIqD4sF0xE5rDr154KhQLe3t7iHy8vL3t2T0Qm0mgFHJMs5erDxHciqgfLBROROewyYzJ9+nQkJCQgPT0dJ06cwD///INPPvkECoUCXbt2FWdPhg4disDAQHsMiYiMcPbaTRRXaHSO3cbAhIjqIV3uyeR3IjKGXQKT2NhYAMClS5fEPUvi4+Nx4cIFBipEDkyaXxLa1BPBTTxkGg0ROQtXSVWuSpYLJiIj2LUqV5s2bTBt2jRMmzYNAHD58mXEx8cjPj4ee/bswfnz5/UClW7duuHYsWP2HCYR/T9pfgk3ViQiY7BcMBGZQ9bSOqGhoZg6dSpWrVqFc+fO4fLly3jllVfg6+sLQRCg1Wpx4sQJOYdI1KgduciNFYnIdNJywcwxISJjyLrBIgCcPXtW3NckPj4eV69eBQCxihcRySO7sAwXcot1jvVrGyDTaIjImbBcMBGZw+6BiaFABIBOINKxY0cxz4SI7G9/Wr7O8ybuKnQN8ZVpNETkTFQsF0xEZrBLYLJq1ap6A5Hw8HAxEBk2bBhatmxpj6ERkQH7L+TpPI8MC9BbN05EVBtXyYwJd34nImPYJTB57LHH9JZmRURE6AQizZs3t8dQiMhI0sBkYHsu4yIi47BcMBGZw25Lubp06SIGIkOHDkVwcLC9uiYiE2XfLMOFHN38koHtWbqbiIyjklblYrlgIjKCXQKT7OxsBAUF2aMrIrKCAxd080t83FXo2pL5JURkHGnye6VGgCAIUCi4HJSIDLNLuWAGJUTORS+/pF1TvaUZRESGSJPfAUDDBHgiqoes5YLVajWuX6/aJ6Fp06ZQqWSvXkxEAA5IKnJxGRcRmUKa/A5UVeZSKWUYDBE5Dbt/BXrq1CnMnz8fXbp0gYeHB1q0aIEWLVrAw8MDXbp0wdNPP42TJ0/ae1hE9P9ybpYjNbtI59gABiZEZILaZlhZMpiI6mPXwOTf//43evbsiU8//RRnzpyBVquFIAjiLu9nzpzBJ598gl69euGll16y59CI6P8dSNNdxuXtpkR37l9CRCZwraW0OHd/J6L62G3t1Pz58/Hpp5+KJYO7dOmCAQMGoEWLFgCAq1ev4uDBgzh58iQ0Gg2WL1+O4uJifPjhh/YaIhFBP/E9MiyA+SVEZJLa3jMqWTKYiOphl8AkKSkJn3zyCRQKBbp27YpVq1Zh8ODBtV6bnJyMxx57DMePH8fHH3+MKVOmGLyWiKxPmvg+IIzLuIjINLVtxsqSwURUH7t8Dbpy5UoAQFhYGJKSkuoMNAYNGoSEhAS0b98eAPD555/bY4hEBCC3qBznJPkl3FiRiExVa/I7Z0yIqB52CUwSExOhUCjw4osvws/Pr97r/fz88MILL0AQBCQmJtphhEQEAAcl1bi83ZTo3qr+v7NERDXVVi6Yye9EVB+7BCZXr14FAPTu3dvo1/Tp0wcAcO3aNZuMiYj0SZdx9W0XAFfmlxCRiWqfMeFSLiKqm10+cXh4eAAAiouLjX5N9bXu7u42GRMR6ZMGJlzGRUTmUCgUenkmTH4novrYJTAJCwsDAPzyyy9Gv6b62upcEyKyrbyicpy9Js0vYeI7EZlHJQlMmPxORPWxS2AyevRoCIKAFStWYPfu3fVev2fPHqxYsQIKhQKjR4+2wwiJSJpf4uWmRA/mlxCRmaTLQDljQkT1sUtgsnDhQvj6+qKyshKjRo3CU089hSNHjkBb49sTrVaLI0eO4KmnnsLdd9+NiooK+Pr6YuHChfYYIlGjp5df0rYp80uIyGzSpVzMMSGi+thlH5OgoCB89913GD9+PCoqKvDZZ5/hs88+g5ubGwICAqBQKJCXl4eKigoAgCAIcHNzw+bNmxEYyKUkRPawX7KxIpdxEZElpAnwrMpFRPWx29ehI0aMwP79+9GvXz8IggBBEFBeXo6srCxcuXIF5eXl4vF+/frhwIEDGD58uL2GR9So5RdX4My1mzrHmPhORJaQlgxmYEJE9bHLjEm12267DQcPHsShQ4fwxx9/4MSJE8jPr/qWNiAgAN27d8fw4cMRGRlpz2ERNXoH03SXcXm6KtGjlb88gyGiBkElnTHhUi4iqoddA5NqkZGRDD6IHIh0GVe/dk3hpmJ+CRGZj8nvRGQqmwYm27dvx6+//oqLFy9Co9EgJCQEw4YNw+TJk+Hq6mrLronIBNLE9wFhXMZFRJZhuWAiMpVNApNr167hnnvuwcGDB/XOrV27FosXL8bWrVvRo0cPW3RPRCa4XlyB01el+SVMfCciy+hX5eKMCRHVzeprNTQaDcaPH48DBw6IyezSP2lpaRg5ciRyc3Ot3T0RmeiAZP8SD1cX9Az1l2cwRNRg6C/l4owJEdXN6oHJd999h0OHDkGhUKBjx45Ys2YNjh8/jtOnT2Pz5s0YOHAggKpZlXfffdfa3RORiQ5IEt/7tQ1gfgkRWUya/K5hVS4iqodNAhMAaNeuHQ4ePIhZs2ahW7duCA8Px6RJk5CYmIihQ4dCEARs3rzZ2t0TkYmkie/MLyEia3CVlAuuZGBCRPWwemBy9OhRKBQKPPvss/D399c7r1QqsXTpUgBAWloabt68qXeNM1EoFEb9GTZsmFX627RpE0aMGIEWLVrAw8MDbdu2xcMPP4zk5GSrtE+NS0FJBU5fLdQ5NrAD80uIyHIsF0xEprJ6YJKTkwMA6Nevn8Frap5jnolxSktLMWbMGDz00EP4/fffce3aNZSXl+PSpUv46quvMGTIEDHgIzLWwbR8CDW+xKzKL/GTb0BE1GCoJDkmTH4novpYvSpXaWkpFAoFfHx8DF7j5eUlPi4rK7P2EGTx+OOP44knnjB43tvb26L2H3nkEezYsQMAcPvtt2PBggUICQnB8ePH8eabb+L8+fNYsmQJWrZsiUcffdSivqjxkC7j6tOmKdxVSplGQ0QNiaukKlclywUTUT1k2WCxJkFoGN+gBAcHo3v37jZp+88//8Q333wDABg3bhx+/PFHKJVVHx4jIyMxfvx49O3bF5cuXcILL7yA+++/H02bNrXJWKhhSTyXo/N8QBiXcRGRdbBcMBGZiqV3nMA777wDAFCpVPj000/FoKRaUFAQli9fDgAoKCjA6tWr7T5Gcj6ZBaU4l12kcyw6PEim0RBRQyMtF8wcEyKqj81mTD799FMEBwdb5brFixdba1hO5+bNm9i9ezcAYPjw4QgNDa31unvvvRe+vr4oLCzEjz/+iEWLFtlzmOSE4s/ozpb4e7miF/cvISIr0Ut+Z1UuIqqHzQKTzz77rM7zCoXCqOuAxh2YHDp0CBUVFQCAoUOHGrzOzc0NAwcOxK5du3Do0CFUVlbC1dXVXsMkJxR3JlvneXSnZnpLL4iIzKWSlAtmYEJE9bHJUi5DO76b88dZbN68GV27doWXlxeaNGmCTp06YcaMGdizZ49F7Z48eVJ8HBERUee11efVajXOnTtnUb/UsFWotdh3XndjxWHhzWQaDRE1RK6SGRPu/E5E9bH6jImlH8SdVc0AAgBSU1ORmpqK9evX45577kFsbCz8/Ewvw3r58mXxsaFlXNVat24tPs7IyEDXrl3N7qs2WVlZ4uPy8nKUlpaa1D45joPp11FUrtY51r9NE4f7f1qzal9DqeBHjo33nBUJuoFIWXmlw73HOALec2Rv5eXlcg/BIKsHJnUtN2qIvLy8MH78eNx5552IiIiAj48PcnJyEB8fj88//xx5eXnYunUrJkyYgN9//93k5VU1N6CsqwQzoFuSuKioqI4ra1czsKnPgQMHcP78eZP7IMfw80UX1JwwDfUWcGRfnGzjMUZCQoLcQ6BGhvecZa5c1n2fSb+UgV27Lso3ICfAe47swZH3EJS9XLCzy8zMrHWH+7vuugvz58/HqFGjcPToUcTHx+Ozzz7D008/bVL7Nb89cXNzq/Nad3d38TG/laK6nCrQXWLRxd95lk0SkXOQpqyxWjAR1YeBiYVqC0qqNW/eHFu2bEFERAQqKyuxYsUKkwMTDw8P8XF1ErwhNafmPD09TeoHqFr+VZesrCz0798fADBgwAB06NDB5D5Iftk3y3ElOUnn2IwR/dC3jb88A6pDWVmZ+A1iTEyMzt8HIlvgPWc9x/9IRVzWJfF585YtMWJENxlH5Jh4z5G9OfKKFwYmNta+fXvcdddd2LFjB1JTU3HlyhWEhIQY/fomTZqIj+tbnlVcXCw+rm/ZV23qy2Gpyd3d3azgh+R34ITuFG4TDxUGdmwOldKxtzXy8PDgPUd2xXvOMp7uurP8Alz4+6wH7zmyh5orbByNY38SaSBqJqFnZmaa9NqawUJ9yek1ZzxMyRehxiX+rO7+JdGdghw+KCEi56NXLphruYioHvw0YgfVe7aYo2ZQc/r06TqvrT6vUqnQqVMns/ukhkut0SLxnG5gMiy8/o1QiYhMpb/BIssFE1HdGJjYQc1SwqYs4wKAyMhIMek9Pj7e4HUVFRXYv3+/+Bpurki1OZpRgMIy3TLBMdy/hIhsQH8fE86YEFHdGJjYWFpaGn7//XcAQIcOHdCqVSuTXt+kSRPceeedAIA//vjD4HKuH374AYWFhQCAiRMnWjBiasjiz+jOlkS0aIIWfky0JCLrU+rt/M4ZEyKqGwMTC/zyyy9Qq9UGz1+7dg2TJk0Sq2k98cQTetfExsZCoVBAoVBgyZIltbbz3HPPAaja0f3JJ5+ERqPROZ+bm4sXXngBQFWVsDlz5pjz41AjEHc2W+f50M6cLSEi2+CMCRGZilW5LDB//nxUVlZi0qRJGDRoENq1awdPT0/k5uYiLi4OK1euFDexGTJkCJ588kmz+rnjjjvwwAMP4JtvvsHPP/+Mu+66CwsXLkRISAiOHz+ON954A5cuVZVkXL58OZo2bWq1n5Eajpyb5TiRWahzjPklRGQr0uR3jZaBCRHVjYGJha5cuYIVK1ZgxYoVBq+ZNGkSVq9ebVF5trVr16KwsBA7duzAnj17sGfPHp3zLi4ueOWVV/Doo4+a3Qc1bAmSalzebkr0bcsglohsQy/5XcOlXERUNwYmFli3bh3i4+ORnJyMCxcuIDc3F4WFhfDx8UHr1q0xePBgzJgxA4MGDbK4L09PT2zfvh1ff/01YmNjcezYMRQUFKB58+aIjo7GU089ZZV+qOGSlgmO6hgENxVXcxKRbXApFxGZioGJBYYOHYqhQ4da1MbMmTMxc+ZMo69/6KGH8NBDD1nUJzU+Gq2ABGmZ4M5cxkVEtqO3jwmT34moHvy6lKgROHa5AAUllTrHmPhORLYknTHhBotEVB8GJkSNgLRMcKdgH7Ty95RpNETUGEjLBVdyxoSI6sHAhKgRiJPklwzlpopEZGPS5HcNZ0yIqB4MTIgauPziCvx9uUDnGPNLiMjWXPVmTBiYEFHdGJgQNXCJ53Ig1Pg84OmqRGQYywQTkW2xXDARmYqBCVEDJ80vGdwhEO4qpUyjIaLGgsnvRGQqBiZEDZhWK+jtX8JqXERkD9JywUx+J6L6MDAhasD+uVKIvOIKnWPDwplfQkS2p3ThjAkRmYaBCVEDtudMts7z9kHeaBPoJdNoiKgxcVVKN1gUIAgMTojIMAYmRA3Yryeu6jyPYZlgIrITafI7AGhYmYuI6sDAhKiBupRXgpNZhTrHRnZrIdNoiKixkZYLBqpmTYiIDGFgQtRA7TyRpfM80NsN/cMCZBoNETU2tc2YVLJkMBHVgYEJUQO1U7KMa0S35nrJqEREtlJbYMIEeCKqCwMTogYo60Yp/soo0Dl2d/eW8gyGiBql2pZysWQwEdWFgQlRAyRNevf1UGFQ+0CZRkNEjZGSMyZEZCIGJkQNkHQZ1/AuzeGm4l93IrKf2mZMWJWLiOrCTypEDUzOzXIcSs/XOXZ3d1bjIiL7YvI7EZmKgQlRA/P7yWuouYeZl5uS+5cQkd2paim2wXLBRFQXBiZEDYy0TPDtEcHwcFXKNBoiaqwUCoVecMIZEyKqCwMTogbkRkklks/n6RwbxWVcRCQT6XIuJr8TUV0YmBA1IL+fuqazVMJd5YLbOwfLOCIiasykCfBqlgsmojowMCFqQH6VLOOKCW8Gb3eVTKMhosZOWjK4kjMmRFQHBiZEDURRuRoJ53J1jt3djcu4iEg+KsmMCcsFE1FdGJgQNRB/ns5GhfrWMgmViwLDuzSXcURE1Ni56s2YcCkXERnGwISogZAu4xrcMQh+Xq4yjYaIiMnvRGQaBiZEDUBZpQZ7TufoHGM1LiKSG5PficgUDEyIGoD4szkordSIz10UwIiuXMZFRPKSzpgw+Z2I6sLAhKgB+PXEVZ3n/cMCEOjjLtNoiIiqKDljQkQmYGBC5OQq1Fr8ceqazrFR3VvKNBoiolukye/MMSGiujAwIXJySedzcbNMrXNsJMsEE5EDULlIAhOWCyaiOjAwIXJyvx7XXcbVu40/Wvh5yDQaIqJbVErJUi6WCyaiOjAwIXJiao0Wu07qBiasxkVEjkJ/HxPOmBCRYQxMiJzYwbR8XC+p1DnG/BIichTSnd+Z/E5EdWFgQuTEfjiaqfO8W4gvWgd4yTQaIiJdnDEhIlMwMCFyUsXlauw4rrvb+/heITKNhohIn1Ka/M7AhIjqwMCEyEntPHEVJRW6mypO7N1KxhEREemSJr9ruJSLiOrAwITISW05nKHzfGh4MwT7shoXETkOV8mMSSXLBRNRHRiYEDmhjPwS7L+Qr3Psvr6tZRoNEVHtWC6YiEzBwITICX1/5LLOcz9PV9zZJVim0RAR1Y7J70RkCgYmRE5GqxX0ApPxvULg4aqUaURERLVjuWAiMgUDEyInczA9Hxn5pTrH7usbKtNoiIgMUylZlYuIjMfAhMjJbDmsO1vSKdgHPUP9ZBoNEZFhKmm5YCa/E1EdGJgQOZHa9i65r28oFAqFgVcQEcmHye9EZAoGJkRO5FfuXUJEToTlgonIFAxMiJyIdBkX9y4hIkfGGRMiMgUDEyInkZFfguQLeTrHuHcJETkyJr8TkSkYmBA5iR+OZOo8594lROToXCXlgrmUi4jqwsDEQikpKXjttdcwYsQIhIaGwt3dHT4+PggPD8esWbOwd+9eq/SzZMkSKBQKo/7ExcVZpU9yHFqtgC1HMnSOce8SInJ0SkmOiYb7mBBRHVRyD8CZxcTEIDExUe94RUUFzp07h3PnziE2NhbTp0/HF198ATc3NxlGSQ3BoVr2LpnEvUuIyMFx53ciMgUDEwtcuXIFABASEoL7778f0dHRaNOmDTQaDZKTk/Huu+8iMzMT69evR2VlJb7++mur9Hv8+PE6z4eFhVmlH3Ic0qT3jsE+6MW9S4jIwTH5nYhMwcDEAhEREXjzzTcxadIkKJW6S2oGDhyIadOmISoqCmfPnsWmTZvw2GOPISYmxuJ+u3fvbnEb5DyKy9XYzr1LiMgJcYNFIjIFc0wssG3bNkyePFkvKKkWFBSEd999V3y+ZcsWew2NGhDuXUJEzspVMmPCpVxEVBcGJjZ2++23i4/Pnz8v40jIWUmXccWEN0Nz7l1CRE5Av1wwl3IRkWEMTGysvLxcfGxoZoXIkEt5te1dwqR3InIOKkm5YC7lIqK6MDCxsfj4ePFxly5drNLmiBEjEBwcDDc3NwQHB2PYsGFYtmwZrl+/bpX2yXGsT07Xee7rocLwLs3lGQwRkYn0c0w4Y0JEhjH53Ya0Wi2WLVsmPp88ebJV2v3999/Fxzk5OYiPj0d8fDyWL1+O2NhYTJgwwax2L1++XOf5rKxbCdjl5eUoLS2t42qyVHGFGt8e0t27ZEKvFhDUFShVyzQoOysrK6v1MZGt8J6zLq2mUud5pVrLfzskeM+RvdVczeNoGJjY0Pvvv4+DBw8CAO6991707dvXovZ69OiBe+65B/3790dISAgqKytx5swZfPXVV9i1axcKCgowadIk/PLLLxg1apTJ7bdu3droaw8cOMCcGRtLvKrAzfJby/8UENCuIh27dqXLNygZJSQkyD0EamR4z1nuzA0FgFvvY8WlZdi1a5d8A3JwvOfIHnJzc+UegkEKQRC44NMG4uPjMXz4cKjVagQHB+P48eMIDg42u72CggL4+/sbPL9y5Uo89thjAKr2VTl//jw8PExLkDal/Ozq1asRFBRkUvtkPK0A/O8vJbLLbv0/6d5Ui7kRXAZBRM4jtRBY8c+t70C9VAL+F6mp4xVEZGu5ubmYM2cOACAjIwOhoY6Tu8oZExv4559/MHHiRKjVanh4eGDz5s0WBSUA6gxKAGDevHk4dOgQ1qxZgytXruD777/H1KlTTeojIyOjzvNZWVno378/AGDAgAHo0KGDSe2T8RJT85C9/5jOsX+N7YNB7QNkGpE8ysrKxG8QY2JiTA62iUzFe866mmXcwIp/DovPFS4qjBhxp4wjcjy858jeHHnFCwMTK0tLS8OIESNw/fp1KJVKfPPNN1bZVNEY8+bNw5o1awBUzdiYGpiYEjG7u7vD09PTpPbJeF8duqLzPLy5D27vGtKoN1X08PDgPUd2xXvOcj5eumvZ1VqBv9M68J4je3B3d5d7CAYxMLGiK1euYPjw4bhy5QoUCgXWrl1rdiK6Obp27So+zszMtFu/ZF2p2UWIP5ujc2zm4LBGHZQQkW2VlZWhoKAAJSUl0Gist9RKU67Gy0Oais8VCuDcuXNWa78h0Gq1CAwMBABcunQJLi4smEqGKZVKuLm5wdfXFz4+Pg3ufmFgYiW5ubm46667cOHCBQDAihUrMH36dLuOgR9cG4Z1+9J1nvt7uXKndyKyCUEQkJWVhRs3btikfSW0aBeguzRJrW4kZQWNJAi3ZpE0Gg20LKlMdVCr1SgvL8fNmzehUCjQqlUrNGnSRO5hWQ0DEyu4ceMGRo4ciZMnTwIAli1bhieffNLu46juH6hKgCfnc6O0Et8f0S3b/EBkG3i6cXNOIrK+vLw8vaBEpbLeRwMXpYDAJrrf6Fqz/Yai+otF/m6oPhqNBtV1qwRBQGZmZoMKTvg3wEIlJSUYM2YMjhw5AgB4+eWX8cILL8gylpUrV4qPhw4dKssYyDKbUzJQUnFrGYXSRYHpg9rKOCIiaqgqKiqQk3Nr2WhwcDD8/f2hVFrvi5AKtQanr97UOdYhxA8uLpzhr6bValFYWAgA8PX1bXBLc8i6BEFASUkJ8vPzUVRUJAYn4eHhDeLecf6fQEYVFRWYOHEikpKSAAALFizA66+/bnI7sbGxUCgUUCgUWLJkid7548ePIzU1tc42Vq1ahdWrVwMAWrRogYkTJ5o8DpKXRisgVrKM6+5uLRDiz0RIIrK+oqIi8XFgYCACAwOtGpRU0Q9ABHCXAiJzKRQKeHt7IzQ0FD4+PgCqgpWaf5+dGWdMLPDggw+KG0XdcccdmD17Nk6cOGHwejc3N4SHh5vcz+HDhzFnzhzcfvvtGDVqFHr06IHAwECo1WqcPn1a3GARqEqKWrVqFby9vc37oUg2f5y6hsvXdXdEnhXVTp7BEFGDV1xcLD729fW1SR+1pT5y9zQiyykUCgQEBIgBSWFhoc3+HtsTAxML/PDDD+LjP//8Ez179qzz+rZt2yI9Pd2svjQaDf744w/88ccfBq8JDAzEmjVrMG7cOLP6IHl9mZSm87xHKz/0bdvUwNVERJapqKgAUPUBx1blQ2tbsMW4hMg6vLy8oFAoIAiC+PfZ2TEwcQKjR4/GmjVrkJycjKNHj+LatWvIy8uDIAgICAhAr169cPfdd2PmzJkNIlpujE5lFWL/hXydY7Oi2rHSGhHZTHX1J6VSabP3Gs6YENmOQqGAUqmEWq22aplvOTEwsYBgpXfXmTNnYubMmQbPBwcH45FHHsEjjzxilf7I8UhnS4J83DGmZ0uZRkNEZB0K5pgQkQmY/E4ks/ziCmz9S3en94cHtoG7iiWCici5ccaEiEzBwIRIZpsOXkKF+taGWm5KF0wdwBLBRERE1LgwMCGSUblag/XJ6TrHxvZqiWZNbJOISkRkT9Wl8Guy1jJoImp4GJgQyejbQxm4Vliuc2zW4DCZRkNEZH3S1VyNNSypuWeZuRU6iRo6BiZEMimr1OCTPbobZw5sH4AeoX4yjYiIyPqkeSacMGl4tFotTp48idjYWDzxxBOIjIyEu7u7GIjFxcUZ1c6wYcPE19T3x5CaAaBCoUCHDh2M6jsjI0OsUFdbAJmdnS0ev/fee+tsq6CgQKetP//8s87rly5dKl67c+dOo8bbULEqF5FMvjpwSW+25Jnhpm/ASUTkyDhj0vBt2LChzuqicrpw4QL27duHwYMH13ndV199JZbQrk1wcDA6d+6MM2fOYO/evXW2tXfvXp22EhMTcccddxi8PjExEUBV6e6oqKg6227oGJgQyaCkQo3P4nRnS4Z0DMKA9oEyjYiIyEYUCtQMRxprjkl9WwM4s5r/T11dXdGjRw9UVlbi+PHjZrXXr18/fPnllxaPy8PDA2VlZdiwYUO9gcmGDRt0XlObmJgYnDlzBjk5OTh9+jQiIiJqva5moKHRaMTntVGr1di/fz8AoFevXo1+Pzou5SKSwYbki8gt0t2l9Zm7OFtCRA0PZ0wavq5du+Kjjz5CcnIyCgsLcfjw4XqXO9XF29sb3bt3r/OPMcaPHw8A+O677+rcGf3IkSM4efIkAGDChAkGr4uJiREfJyQkGLyu+tz9998PANi/fz8qKysN9l1cXKzXfmPFwITIzorK1fg8/rzOsWGdm6Fv26YyjYiIyHb00gEYmTQ4/fv3x/z58zFw4EB4eHjIPRzRlClT4Obmhvz8fGzfvt3gddWzJZGRkQZnQQAgOjpafGxoFqS0tBSHDx8GACxYsACenp4oLi7GkSNHar2+ZjsMTBiYENndun3puF6i+83JvzhbQkQNlHT398a6lMuYqlwajQbr1q3D2LFjERISAnd3dwQGBmLIkCF47733UFpaarB9rVaLP//8E8899xyioqIQFBQEV1dX+Pv747bbbsNzzz2HS5cu2einc0wBAQEYM2YMgFvBh5RarcamTZsAANOmTauzvbZt26JNmzYADAcm1bMjTZo0QWRkJPr371/n9dXHFQqFTuDTWDEwIbKjwrJKrEq4oHNseJfm6BnqL8+AiIhsTK8qlzzDcHgZGRmIjIzEzJkzsX37dmRlZaGiogL5+flISkrCs88+i549e+Ls2bO1vv61117DnXfeiXfffRf79u1DXl4e1Go1bty4gWPHjuHdd99Fly5d8OOPP9r5J5NXdbCxfft25Ofn653ftWsXrl27BpVKhQceeKDe9qpnNS5evIiMjAy989XLuAYOHAilUokhQ4boHK9JEAQxkb5Lly4ICgoy8qdquBiYENnR2r1puFGqO1vyzF2dZBoNEZHtcSVX/fLz8zFq1CgcO3YM7u7ueOqpp7B582YcOnQIe/bswb///W94eXkhNTUVo0aNwo0bN/TaUKvVaNmyJZ544gls2LABSUlJOHz4MLZu3Yrnn38ePj4+KCkpwUMPPYRTp07J8FMa7/Tp0xgwYAD8/f3h4eGB0NBQTJgwAevXrzeYq2HImDFjEBAQgIqKCnz33Xd656tnUu6++240a9as3vbqyzOpngGpDkiq/5uUlKQ3W3jq1Cnk5eXptduYMTAhspMbJZVYk5imc2xU9xboFsJ9S4io4eI+JvV74YUXkJmZibZt2+LUqVNYsWIF7rvvPvTr1w/Dhg3Dm2++ib1798Lb2xsXLlzAW2+9pdfGnDlzcPHiRXzyySd4+OGHMXjwYPTp0wcTJkzA8uXLcerUKbRq1QplZWV48803ZfgpjXft2jUcPHgQN27cQHl5OTIzM/Hzzz9jxowZuO2220wKrNzc3DBlyhQA+su5bt68iZ9++gkAMH36dKPaqyvPpGaFrerrBg8eDBcXF+Tn5+Off/7RuZ75JfpYLpjITr5IvICb5WrxuUIBLOS+JUTkwLRaAddLDFczMkZBSSVKKzXicy/XcofNM2nq5QYXF8Ob99lCenq6uLzqo48+QlhYWK3X9e7dG08++STeeustxMbG4o033tA5365duzr7CQ0NxaJFi7Bw4UL8/PPPEAShzo0K5eDi4oI777wTo0ePRq9evRAYGIibN2/iyJEjWLlyJU6dOoWTJ0/i9ttvx8GDB8V8j/pMmzYNn332Gfbt24cLFy6gffv2AIAtW7agtLQUfn5+GDdunFFtRUREIDg4GNnZ2XqBSXWFLVdXVwwYMAAA4Ovrix49euDYsWNITEzUqSjGwEQfAxMiO8gvrsCXSbqzJWN7hqBziyYyjYiIqH7XSyrQ9/U/5B6G3Rz+z3AE+rjbtc8dO3ZAo9HAy8sLo0aNqvPamJgYvPXWW7hy5QouXbpU5wfzwsJC5OXloaSkRAwEvby8xHNpaWniB3RH8cMPP8Df31/veHR0NJ544gnMnTsX69atw7Vr17Bw4UL88MMPRrU7aNAgdOzYEampqdi4cSMWL14M4NYMyv33329SNbHo6Gh8//33OHXqFHJzc8XckOqlXb179xZ/10DVcq5jx44hISEBjz/+uHi8OjBp3749WrVqZXT/DRmXchHZwaqECyiuuPWNoYsCWHAnc0uIiBq7lJQUAEBJSQnc3NzEyl21/Rk7dqz4uqtXr+q1dfHiRcyfPx/t2rWDn58f2rdvj+7du6NHjx7o0aMHHn30UfHa3Nxc2/9wJqotKKnm6uqK1atXo3PnzgCAH3/8EZmZmUa3XZ0Ev3HjRgBVxQbi4uIAGL+Mq1r1Mq2ayevArUBDWl2r+nnNGZJLly6JVdJYjesWBiZENpZzsxzr9qXrHLvntlboGOwjz4CIiMhhZGdnm/W6kpISnec7d+5E165d8fHHH+PixYv1vr6u0sOOSqVSYfbs2eLz+Ph4o1/78MMPAwDOnTuH/fv3Y+PGjRAEAe3atRMT1I1Vc9lVdbBRM0iRtlf9PDMzE2lpaTqvk7bX2HEpF5GNfR5/Xmd9tdJFgac5W0JERKjauwQAAgMD8eeff8LFxbjvjGvmouTm5uKhhx5CSUkJfHx88Nxzz2HkyJHo0KED/Pz84ObmBgD4888/ceeddwJw3v1kunbtKj42Zcakffv2iIqKQlJSEjZs2IA9e/YAqApYTM216dWrF/z8/HDjxg1x+dY///wjliOWBiatWrVCu3btkJ6ejoSEBISFhTEwMYCBCZENnbt2E+uT03WOTerTCu2CvOUZEBGRCZp6ueHwf4Zb1Mbl6yUoLLtV+KOZjzuaNbFvHoexmnq52b3PwMBAAEBRURG6dOkCV1dXk9vYsmULCgoKAFQtcRo+vPb/Z7Xt4+FsLEnYnz59OpKSkrB27VqUlZUBqH9Txdq4uLggKioKO3bswNGjR1FUVCQGGhEREbXuRzJkyBCkp6cjMTERM2bMEAOakJAQdOzY0eyfqaFhYEJkI1qtgJd+PI5Kza1vpVQuCsy/g7MlROQcXFwUFieDF5erdT5M+nu52T3B3JH17t0bmzZtQnl5OVJSUjBo0CCT26guQxsQEGAwKAFu5bM4s5MnT4qPQ0JCTHrt5MmT8fTTT4tByYABAxAebl51zOjoaLFwQXJyst7+JVJDhgzBxo0bkZiYiNzcXJw+fVpsh25hjgmRjWw+nIFD6dd1jj0a0x6tA7wMvIKIqOGRfsMtcItFHWPHjhV/Rx9++KFZbajVVTNSZWVl0Gq1tV5TUlKit4+Hs1Gr1Vi7dq343NQlUP7+/rjnnnvg7u4Od3d3zJgxw+yxSDdaNCYwAYCzZ8/i+++/F5fScRmXLgYmRDaQV1SO/+08rXOsdYAnZ0uIqNFz0tQGm+ncuTPuueceAMC3336L9957r87r09LSsGnTJp1jnTpV/dtSUlJS6+7mGo0Gc+bMwZUrV6wzaBvYs2ePuBytNpWVlZgzZ464ueK4cePQunVrk/v55ptvUFZWhrKyMp3Svabq168fPD09AQBff/01Ll++DMDwDEjXrl0REBAAADobZDIw0cWlXEQ28MaOUygoqdQ59t8J3eHpppRpRERE8nCwPfwc0rvvvoujR48iPT0dzz77LH766SdMnz4d3bp1g7u7O/Ly8nDs2DH8+uuv+PPPPzFx4kQ8+OCD4usnT56Ml156CeXl5Zg1axb++usv3HXXXfDz88M///yDFStW4PDhw2Lyty3ExsbqPP/rr7/Ex7/++ivS09PF5x07dtSbWVi3bh3Gjx+P8ePHY9iwYejcuTN8fX1RVFSEw4cPY9WqVeIyruDgYLNnl6zFzc0NAwYMQFxcHC5cuACgammZob1hFAoFBg8ejG3btonXBwYGolu3bnYbszNgYEJkZftSc/HDEd1KIWN7tsSwzsEyjYiISD56S7k4ZaKnadOm+PXXXzF37lwkJiYiISFBTI6uja+vr87z0NBQfPbZZ5gzZw7KysqwfPlyLF++XOeaKVOmYO7cuXXmoFhi1qxZBs9JxzJjxoxalzwVFRXh66+/xtdff22wrR49euCbb77RqUoml5iYGHEvFACIioqq8/ohQ4Zg27ZtOs8tSeZviBiYEFlRWaUG/9l6QudYEw8VFo/tauAVREQNm/RjF8OS2jVv3hxxcXHYuXMnNm3ahOTkZFy9ehWVlZXw9/dHp06dMGjQIIwfP77W5T+zZs1C586d8fbbbyMpKQkFBQUICgpCr169MGvWLEyePFnnQ7SjeeGFF3DbbbchOTkZJ0+eRE5ODvLz8+Hu7o7mzZujX79+uO+++zBx4kQolY6x+kD6/6G+/VCky7y4jEufQuBXF2Sky5cvi+s5z549K65ppVve//0sPtx9TufYf+/pjmkD28o0IudWWlqKXbt2AQBGjBghruclspXGdM+dO3cOarUaKpXKpu/nWTdKkXOzXHze1MuNRUBq0Gq1KCwsBFA1E2LsPiZEgHl/j8+dOydWI8vIyEBoaKgth2gS3v1EVnI+pwifxZ3XOXZba39M7d9GphEREcmPMyZEZCwGJkRWIAgCXv7xOCo0t8o0Kl0UeHNiD7i4cP0oETVizDEhIiMxMCGygh+OZGL/Bd0ddWcPCUPXEF8DryAiahz0ZkwYlxCRAUx+J7LQ9eIKvLHjlM6xVv6eWDicOThERCw65Niys7ORnZ1t8uvc3NzM3jWdyBAGJkQWEAQBr/78D/KLK3SOvzahG7zc+NeLiEgB6c7v5Eg+/fRTLF261OTXtW3bVmdvEiJr4FIuIgt8deASfj6mu5Pu3d1a4M4uzWUaERGRY5HOmDDHhIgMYWBCZKbjl2/gtV9O6hxr4q7Cq+O5ZwkRUTXmmDi2JUuWQBAEk/9wtoRsgYEJkRlulFTiia8P61ThAoC37++Fln4Nd98DIiJT6c2YyDMMInICDEyITCQIAp7bcgwZ+aU6x+cMCcPd3VvINCoiIkfFcsFEZBwGJkQm+iLxAn4/eU3nWN+2TfHCqAiZRkRE5LikWzkxLCEiQxiYEJkgJT0fy389o3MswNsNHz/UG65K/nUiIqoPJ0yIyBB+kiIyUl5ROZ76+ig02lv/qioUwAdTbmNeCRGRAQpuZEJERmJgQmQEjVbAwm//wtXCMp3j8+/ohJjwZjKNiojI8elX5eKUCRHVjoEJkRFW/HkOiedydY4N6RiEBXdyd3cick4uLlUfATQajU2DBVblIrINQRCg0WgAAEqlUubRWAcDE6J6/HHyGj7cfU7nWHNfd3zwwG1QSrM6iYichJubG4CqDzfl5eU264f7mBDZRklJifilQvXfZ2fHwISoDnvP5eKJr4/o/EOqdFHg44f6IMjHXb6BERFZyNvbW3xcWFhos36kOSYC50yILCYIAvLz88Xnvr6+Mo7GehiYEBlwKD0fc9enoEKtu4ni8yM7I7JdgEyjIiKyDh8fH/FxXl4e8vLyxGUhtsQZEyLzCYKA4uJiXL58GUVFRQCqgv+af5+dmUruARA5omMZBZj15SGUVur+I31f31A8GtNeplEREVmPm5sbmjVrhpycHABAdnY2srOzoVQqrVpJS6MVoK649V6qAHCuJNtq7TcEarUaAMT/F0SGSHPCFAoFWrVqJeaMOTsGJkQSp7IKMX3tQRSVq3WOj+3ZEssn9WTpSyJqMAIDA1FRUYEbN26Ix6w9a1Kp0SLv5q0cFgUADxVLrFcTBAGlpaUAAE9PT/4bQ0arDkqaNGki91CshoEJUQ2p2UWYtuYAbpRW6hwf3qU53p/CZHcialgUCgVCQkIQEBCAgoIClJSUWD0wqdCqkZ6vW2q9bbOG80HKUlqtVgxMfHx8Gsw332QbSqUSbm5u8PX1bZD3CwMTov+XkV+Ch1cfQG5Rhc7x6E5B3NmdiBo0Dw8PtGjRwiZtp+UW440NF3SOzbh7INxUfE8FgNLSUpw+fRoA0LdvX3h6cjaJGi++K1jRxYsX8eyzzyIiIgLe3t4ICAhAZGQk3n77bZSUlFitn507d2LixIkIDQ2Fu7s7QkNDMXHiROzcudNqfTQ2WTdK8eAX+/U2UOwfFoBV0/rBw7Vh1AcnIrI3VS0zzWqttpYriaix44yJlfzyyy94+OGHdUoulpSUICUlBSkpKVi9ejW2b9+Ojh07mt2HVqvFo48+ijVr1ugcz8zMRGZmJrZu3Yo5c+Zg5cqVDW5qz5Yu5ZVg5pcHcfl6qc7xXq39sXZmJDzdGJQQEZmrttnmSg1LcxGRPn56tYKjR49iypQpKCwshI+PD9544w3s27cPu3fvxty5cwEAZ8+exZgxY3Dz5k2z+3n55ZfFoKR3797YtGkTDh48iE2bNqF3794AgNWrV+M///mP5T9UI5FwNgfjPt6LC7nFOse7tPTF+ln94ePO2J2IyBIqZS0zJhrOmBCRPn7qsoIFCxagtLQUKpUKu3btwqBBg8Rzd9xxBzp16oTnn38eZ8+exbvvvoslS5aY3MfZs2fxzjvvAAD69euHhIQEcR1qZGQkxo8fj6FDhyIlJQVvv/02HnnkEYtmZxo6QRCwMuEC3vr1NLSSL+46NPPGhtn94eflKs/giIgaENdaZvA10jdeIiJwxsRiBw8eRGJiIgBg9uzZOkFJtWeffRZdunQBAHz44YeorKzUu6Y+H3zwgVjnfMWKFXrJcV5eXlixYgWAqnro77//vsl9NBYlFWo8tekolu3UD0rCm/vgqzkDuas7EZGVKGuZMalkYEJEtWBgYqGtW7eKj2fNmlXrNS4uLpg+fToAoKCgAHv27DGpD0EQ8NNPPwEAIiIiMHDgwFqvGzhwIDp37gwA+Omnn3Q24KEql/JKcO+n+7D97yy9c6N7tMCPT0ShhZ+HDCMjImqYak1+51IuIqoFAxML7d27FwDg7e2Nvn37Grxu6NCh4uOkpCST+khLS8OVK1f02qmrn8zMTKSnp5vUT0NXnU9y+qpuno9CASwa2RmfPNQH3swpISKyKia/E5Gx+CnMQqdOnQIAdOzYESqV4V9nRESE3muMdfLkyVrbMaafsLAwk/pqKApKKnAhtxhpOcW4kFuE1Owi/H7ymt7SLV8PFT58sDdu7xwsz0CJiBo4pYsCCgVQcxKf5YKJqDYMTCxQVlaG3NxcAEBoaGid1zZt2hTe3t4oLi5GRkaGSf1cvnxZfFxfP61btxYfW9JPbWq29+JXe+EbcNak9m1NAwHZhRXIuF6KG6Xqeq9vF+iF18dEoJXLDZw7d8MOIyRTlZeXi3/Hzp8/D3d35v6QbfGes5GiPKhrzJK8tD4Ofh4sxQ4AGq0WObn5AIDv0/6AkuX+ycYK87PFx9X5y46CgYkFapb+9fHxqff66sCkqKjIZv14e3uLj03tp2ZQU58flj5iUtuOKBPA7a/LPQoiosbnR7kHQEQAgJycHLRr107uYYgYllugrOzWLuFubm71Xl/9zVtpaWk9V5rfT81v90zth4iIiIgaj2vXrsk9BB2cMbGAh8et6k0VFRX1Xl9eXg4AeqV+rdlPdR/m9FPf0q+0tDTExMQAAPbt22fSDAuRObKystC/f38AVaW5W7ZsKfOIqKHjPUf2xnuO7C0jIwODBw8GUH/usr0xMLFAkyZNxMfGLJsqLq7aXdyYZV/m9lPdhzn91Je/UlPr1q1Nup7IUi1btuQ9R3bFe47sjfcc2VvNL78dAZdyWcDDwwOBgYEA6k8cv379uhg0mDrTUPNNypQEdc5oEBEREZGzYGBioa5duwIAUlNT66xscPr0afFx9S7wpvYhbcfa/RARERERyYWBiYWGDBkCoGoJ1eHDhw1eFx8fLz6OiooyqY+wsDCEhITotVObhIQEAECrVq0cqsoCEREREVFdGJhY6J577hEff/nll7Veo9VqsX79egCAv78/br/9dpP6UCgUmDBhAoCqGZH9+/fXet3+/fvFGZMJEyZAoVCY1A8RERERkVwYmFiof//+iI6OBgCsWbMGycnJete8++674m7vCxYsgKurq875uLg4KBQKKBQKzJw5s9Z+Fi5cCKWyajOq+fPn65UCLi0txfz58wEAKpUKCxcutOTHIiIiIiKyKwYmVvDhhx/C09MTarUaI0aMwP/+9z/s378fe/bswbx58/D8888DAMLDw/Hss8+a1Ud4eDgWLVoEAEhJSUFUVBS+/fZbpKSk4Ntvv0VUVBRSUlIAAIsWLUKnTp2s88MREREREdkBywVbQe/evfHtt9/i4YcfRmFhIV566SW9a8LDw7F9+3ad0r+meuONN5CdnY21a9fi6NGjeOCBB/SumT17Nl5/nduZExEREZFzUQiCIMg9iIbi4sWL+PDDD7F9+3ZcvnwZbm5u6NixI+6//3489dRT8PLyqvV1cXFxYt7JjBkzEBsbW2c/O3bswKpVq3Do0CHk5uYiKCgIkZGRmDdvHkaNGmXtH4uIiIiIyOYYmBARERERkeyYY0JERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJGuXjxIp599llERETA29sbAQEBiIyMxNtvv42SkhK5h0dOIDs7G9u2bcPixYsxatQoBAUFQaFQQKFQYObMmSa3t3PnTkycOBGhoaFwd3dHaGgoJk6ciJ07d1p/8OSUUlJS8Nprr2HEiBHifeLj44Pw8HDMmjULe/fuNak93nNUl8LCQnzzzTd49tlnMXToUHTs2BF+fn5wc3NDcHAwhg0bhrfeegt5eXlGtbdv3z48/PDDaNu2LTw8PNCiRQuMHDkSmzZtsvFPQg3FCy+8IP47q1AoEBcXV+9rZH+fE4jq8fPPPwu+vr4CgFr/hIeHC+fOnZN7mOTgDN0/AIQZM2YY3Y5GoxFmz55dZ3tz5swRNBqN7X4YcnjR0dF13iPVf6ZPny6Ul5fX2RbvOTLG77//btQ9FxQUJPz66691tvXqq68KLi4uBtsYM2aMUFpaaqefjJzR0aNHBZVKpXPf7Nmzx+D1jvI+x8CE6nTkyBHB09NTACD4+PgIb7zxhrBv3z5h9+7dwty5c3WCk8LCQrmHSw6s5ptbmzZthBEjRpgVmLz44ovi63r37i1s2rRJOHjwoLBp0yahd+/e4rl///vftvthyOF16NBBACCEhIQICxYsELZs2SIcPHhQSE5OFt577z2hVatW4r3y4IMP1tkW7zkyxu+//y60bt1amD59uvDhhx8KP/zwg5CcnCwkJSUJ3377rXD//fcLSqVSACC4ubkJf/31V63tfP755+I91aFDB2HNmjXCwYMHha1btwq333670fctNV4ajUaIjIwUAAjBwcFGBSaO8j7HwITqVP2to0qlEvbt26d3/q233hJv1ldffdX+AySnsXjxYuGXX34Rrl69KgiCIKSlpZkcmJw5c0b8Bqhfv35CSUmJzvni4mKhX79+4j3LmbzGa8yYMcK3334rqNXqWs/n5OQI4eHh4j0YHx9f63W858hYhu61mn788Ufxnps4caLe+by8PMHPz0/8AicnJ0evj3Hjxhn1QZMar/fff18AIERERAj//ve/671fHOl9joEJGXTgwAHxZp43b16t12g0GqFLly4CAMHf31+oqKiw8yjJWZkTmDz++OPia5KTk2u9Jjk5WbzmiSeesOKIqaH55ZdfxHtl/vz5tV7De46srXPnzuKSLqnly5eL99KmTZtqfX1GRoY48zJ69GhbD5eczMWLFwUfHx8BgBAXFye8+uqr9QYmjvQ+x+R3Mmjr1q3i41mzZtV6jYuLC6ZPnw4AKCgowJ49e+wxNGqEBEHATz/9BACIiIjAwIEDa71u4MCB6Ny5MwDgp59+giAIdhsjOZfbb79dfHz+/Hm987znyBaaNGkCACgrK9M7V/3vrq+vL+69995aXx8aGorhw4cDAHbv3o2bN2/aZqDklJ588kkUFRVhxowZGDp0aL3XO9r7HAMTMqi6Yo23tzf69u1r8LqaN35SUpLNx0WNU1paGq5cuQIA9b7ZVp/PzMxEenq6rYdGTqq8vFx8rFQq9c7zniNrO3PmDP766y8AVR8Ca6qoqMDBgwcBAIMGDYKbm5vBdqrvt/LycqSkpNhmsOR0vvvuO2zbtg0BAQF45513jHqNo73PMTAhg06dOgUA6NixI1QqlcHrar65Vr+GyNpOnjwpPpb+gy7Fe5KMER8fLz7u0qWL3nnec2QNJSUlOHfuHN577z0MHToUarUaALBw4UKd686ePQuNRgOA9xuZrqCgAAsWLAAALF++HEFBQUa9ztHe5wx/2qRGraysDLm5uQCqpo3r0rRpU3h7e6O4uBgZGRn2GB41QpcvXxYf13dPtm7dWnzMe5Jqo9VqsWzZMvH55MmT9a7hPUfmio2NNbgEGgBefPFFPPTQQzrHeL+RJZ5//nlcvXoVUVFRmD17ttGvc7T7joEJ1armmlUfH596r68OTIqKimw5LGrETLknvb29xce8J6k277//vrhs5t577611uSrvObK22267DatWrUJkZKTeOd5vZK7ExESsXr0aKpUKn3/+ORQKhdGvdbT7jku5qFY1k/LqWudazd3dHQBQWlpqszFR42bKPVl9PwK8J0lffHw8XnzxRQBAcHAwPvvss1qv4z1H5rrnnntw/PhxHD9+HAcPHsSmTZswceJE/PXXX3jwwQexbds2vdfwfiNzVFRU4NFHH4UgCHjmmWfQvXt3k17vaPcdAxOqlYeHh/i4oqKi3uurk0g9PT1tNiZq3Ey5J2smNfOepJr++ecfTJw4EWq1Gh4eHti8eTOCg4NrvZb3HJnL398f3bt3R/fu3REZGYkHHngAP/zwA9avX48LFy5gwoQJiI2N1XkN7zcyx5tvvonTp0+jTZs2ePXVV01+vaPddwxMqFbV5QwB46briouLARi37IvIHKbck9X3I8B7km5JS0vDiBEjcP36dSiVSnzzzTeIiYkxeD3vObK2adOm4f7774dWq8VTTz2F/Px88RzvNzLV6dOn8b///Q8AsGLFCp2lVsZytPuOOSZUKw8PDwQGBiIvL08nMao2169fF2/WmolRRNZUMymvvnuyZlIe70kCgCtXrmD48OG4cuUKFAoF1q5diwkTJtT5Gt5zZAsTJkzAd999h+LiYvz6669iEjzvNzLV+++/j4qKCrRv3x4lJSX45ptv9K45ceKE+PjPP//E1atXAQDjxo2Dt7e3w913DEzIoK5duyIxMRGpqalQq9UGSwafPn1afFxbyU0ia+jatav4uOY9Vxvek1RTbm4u7rrrLly4cAFA1TeL1RvD1oX3HNlCs2bNxMcXL14UH4eHh0OpVEKj0fB+I6NUL626cOECHnzwwXqv/+9//ys+TktLg7e3t8O9z3EpFxk0ZMgQAFVTd4cPHzZ4Xc29AKKiomw+LmqcwsLCEBISAkD3nqtNQkICAKBVq1Zo166drYdGDuzGjRsYOXKkWKt/2bJlePLJJ416Le85soXMzEzxcc3lMG5ubujfvz8AIDk5uc71/tX3o7u7O/r162ejkVJj4GjvcwxMyKB77rlHfPzll1/Weo1Wq8X69esBVCX73X777fYYGjVCCoVCXHpz+vRp7N+/v9br9u/fL36rM2HCBJPKJlLDUlJSgjFjxuDIkSMAgJdffhkvvPCC0a/nPUe2sHnzZvFxjx49dM5V/7tbWFiIH374odbXX758GX/88QcA4M4779TJEaDGJTY2FoIg1PmnZkL8nj17xOPVgYXDvc8JRHWIjo4WAAgqlUrYt2+f3vm33npLACAAEF599VX7D5CcVlpamnjvzJgxw6jXnDlzRlAqlQIAoV+/fkJJSYnO+ZKSEqFfv37iPXv27FkbjJycQXl5uTBixAjxHluwYIFZ7fCeI2N9+eWXQmlpaZ3XvPfee+I9GRYWJqjVap3zeXl5gp+fnwBAaNu2rZCbm6tzXq1WC+PGjRPb2LNnj7V/DGpgXn311XrvF0d6n2OOCdXpww8/RFRUFEpLSzFixAi89NJLuP3221FaWopvvvkGq1atAlC1NvbZZ5+VebTkyPbu3YvU1FTxeW5urvg4NTVVr3TmzJkz9doIDw/HokWLsGzZMqSkpCAqKgovvPACOnTogPPnz2P58uU4evQoAGDRokXo1KmTTX4WcnwPPvggdu3aBQC44447MHv2bJ0kUCk3NzeEh4frHec9R8ZasmQJnn32WUyaNAlDhgxBhw4d4OPjg5s3b+L48eP46quvkJSUBKDqflu1ahWUSqVOGwEBAVi+fDkee+wxXLx4EQMGDMDLL7+MHj164MqVK/jggw+wZ88eAFX3+LBhw+z9Y1ID5FDvczYLeajB+PnnnwVfX18x4pb+CQ8PF86dOyf3MMnBzZgxw+A9VNsfQzQajfDII4/U+drZs2cLGo3Gjj8dORpT7jX8/7fThvCeI2O0bdvWqHstNDRU2LVrV51tLV68WFAoFAbbGD16dL2zM0SCYNyMiSA4zvscc0yoXuPGjcPff/+NZ555BuHh4fDy8oK/vz/69esnRtEdO3aUe5jUSLi4uGDNmjXYvn07JkyYgJCQELi5uSEkJAQTJkzAjh07sHr1ari48O2NrIP3HBnjt99+w7vvvot7770XPXv2RPPmzaFSqdCkSRN06NABkyZNwpdffokzZ87grrvuqrOtpUuXYu/evXjooYfQunVruLm5ITg4GHfddRe+/vprbN++XWdjPCJLOcr7nEIQBMGmPRAREREREdWDX+8QEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQETmoJUuWQKFQQKFQyD0UpKeni2OJjY2VeziNTmxsrPj7T09Pt7i9tWvXQqFQoEePHhAEwfIBOqjNmzdDoVAgPDwclZWVcg+HiOrBwISIyAgajQa+vr5QKBTo06dPndcKgoDAwEDxg+TatWvrvH7dunXitZ999pk1h+2QLl++jCVLliA6OhrNmjWDq6srPD09ERoaipiYGCxYsABbtmzBjRs35B5qg1RUVISXXnoJALB48WKHCHxrGjFiBBQKBRYsWGBxW5MmTULXrl1x7tw5rFixwgqjIyJbYmBCRGQEpVKJwYMHAwCOHTuGwsJCg9f+888/yM/PF58nJibW2XbN8zExMRaO1LF98cUX6Ny5M5YuXYq9e/ciNzcXarUaZWVlyMzMRGJiIj766CPcf//9mDdvntzDbZA++ugjXLt2DV27dsV9990n93B03Lx5E/Hx8QCAcePGWdyei4sLXn75ZQDAsmXLUFxcbHGbRGQ7DEyIiIxUHTRotVrs27fP4HXVgYZSqdR5Xt/1QUFB6Nq1q3h8yZIlEAShwSy12bRpEx599FGUlJTAw8MDjz/+OLZu3YqUlBQcOnQIP/30E1555RX07t1b7qE2WKWlpXjvvfcAAM8884zDzZb89ttvqKiogK+vL4YOHWqVNqdMmYJWrVohJycHK1eutEqbRGQbDEyIiIxUczYjISHB4HXV5+6//34AwPnz53HlypVar83OzsbZs2cBAEOGDHG4D4rWotFo8K9//QsA0KRJExw4cACffvopJkyYgL59+6Jfv34YP348XnvtNRw5cgQnT57EvffeK/OoG56NGzciLy8P7u7uDjdbAgC//PILAGDkyJFwdXW1SptKpRJTpkwBAHz88cfQarVWaZeIrI+BCRGRkSIjI+Hh4QGg7lmQ6nP33XcfOnToUOf1jWUZ14EDB3D16lUAwLx589CzZ886r+/SpQsmT55sj6E1KmvWrAEAjBkzBv7+/vIORkKr1WLHjh0AgLFjx1q17alTpwIA0tLSsGfPHqu2TUTWw8CEiMhI7u7u6N+/PwDg0KFDKC8v17smLS0NmZmZAKpmQIYMGQLAvMCkvqpc7dq1g0KhwMyZMwEAZ86cwdy5c9GuXTu4u7ujefPmmDhxIvbv31/vz6bRaPDpp59iwIAB8PX1hZ+fH/r06YN33nmn1p/TVJcuXRIfd+zY0ex2aqsOtnnzZgwfPhzBwcHw9PREREQE/v3vf6OgoMCoNvfs2YMZM2agffv28PLygq+vL3r06IFFixYZnOmydhvXr1/Hiy++iIiICHh6eiI4OBjDhw/H5s2bjerfGBcvXsSBAwcAVCWFGxIXFyf+juPi4iAIAtasWYMhQ4YgMDAQvr6+6N+/PzZs2KDzuoqKCnz++ecYOHAgAgIC0KRJE0RFReG7774zanz79+9Hbm4uXFxcMHr0aL3zhw8fxuzZsxEeHg5vb294eHigdevW6Nu3L5588kn8/PPPBpc99unTB2FhYQCqlhQSkYMSiIjIaP/5z38EAAIAIT4+Xu98bGysAEDo1KmTIAiC8MUXXwgAhB49etTaXp8+fQQAgq+vr6BWq3XOvfrqq2JftWnbtq0AQJgxY4bwww8/CF5eXuL1Nf8olUrhm2++Mfgz3bx5U4iOjq71tQCEPn36CEeOHBGff/nll0b+tm75/vvvxdcvWLDA5NdXS0tL0xnHI488YnDcISEhwqlTpwy2VVpaKjzwwAMGXw9A8Pb2Fn7++WebtnHy5EkhJCTE4OtnzZolfPnll+LztLQ0s3531fcmAOH8+fMGr9uzZ4943a5du4Rx48YZHNvTTz8tCIIg5OfnCzExMQave+ONN+od34svvigAEKKiovTOvffee4KLi0udv2cAws2bNw22X/3/qVWrVkb8tohIDgxMiIhMsGvXLvFD0Ouvv653fvbs2eKHSUEQhFOnTgkABIVCIeTn5+tcW1hYKCiVSgGAcPfdd+u1ZWxg0qdPH8HDw0MICwsTPv74Y2H//v1CcnKysGTJEsHDw0MMfLKzs2ttZ8KECWI//fv3FzZt2iSkpKQI27dvF+6//34BgBAZGWlRYHLhwgXx9R4eHsLu3btNbkMQdAOT6jHVHPOOHTuEyZMni9e0adNGKCws1GtHq9UKY8aMEa8bN26csGHDBiEpKUlITk4WPvzwQ6FNmzYCAMHNzU04dOiQTdq4ceOG0Lp1a7GNKVOmCDt27BBSUlKEr7/+WujXr5/e79/cwKT63gwMDKzzupqByYABAwQAwtSpU4Xt27cLhw8fFjZt2iR07txZvOb3338Xxo8fL6hUKuHxxx8Xdu3aJRw+fFhYs2aNGHAplUrhxIkTdfbbrVs3AYCwbNkynePHjh0Tg5KwsDDh3XffFXbv3i0cPXpUSEhIEL744gvhoYceEry9vesMTN577z1xzOfOnTP+F0dEdsPAhIjIBDdv3hRUKpUAQBg5cqTe+fDwcAGAsHbtWvFYUFCQAED45ZdfdK799ddfxQ9Kb775pl5bxgYmAIS+ffsKN27c0Ltm48aN4jXvvfee3vlt27aJ50ePHi1UVlbqXbN06VKdb6XNCUwEQRDGjh2r005kZKSwePFiYceOHUJOTo5RbdQMTOoa82uvvSZes2jRIr3zq1atEgAIrq6uws6dO2vtKz8/X/ywXNu3+NZo47nnnqvzHqioqBBGjBih8zObG5h06dJFACDceeeddV5XMzABIHzwwQd612RlZQlNmjQRAAjNmjUTFAqF8OOPP+pdVzOoqJ5dqU3NwFUawLzyyivizNPVq1cNtlFQUCBoNBqD5+Pj48U+6ppBJCL5MDAhIjJR9bfXTZo00Vl+de3aNfGDz9mzZ8Xj1TMSzz//vE47L7/8snj93r179foxJTA5duxYrddotVrxW+uJEyfqnR89erQAQHB3dxcyMzNrbUOj0Qjdu3e3ODDJycnR+eZf+ic8PFx46qmnhMOHDxtso2ZgYuyYAwIChPLycvGcVqsVOnToIAAQnn322TrHvGPHjlr/n1qjjfLycqFp06YCAKFnz56CVqut9fUZGRmCq6urxYFJdSDx4IMP1nmddMbEkOnTp+vM9BhSvcSrd+/eBq/56KOPxBkRqblz59b7emNUz14aCgKJSH5MficiMlF1kvrNmzfx119/icerywQ3b94cnTp1Eo9XJ8BLSwxXJ757eHggMjLS7PH06NHDYJUrhUIh7gty4cIFnXMajQZxcXEAqnbbDgkJqbUNFxcXzJgxw+zxVQsKCkJSUhJWrVqFPn366J0/e/YsPv74Y/Tt2xfTpk2rdzM8Y8ecn5+PI0eOiOdOnjyJ8+fPA0C9JXNrFiRITk62ahuHDx/G9evXAQAzZswwWOQgNDQUI0aMqLOP+pSXl+PmzZsAgKZNmxr9ugceeMDguV69epl0nfT+q6m6THBtmyq2bNkSQNXv/ODBg3UPuA4BAQHi4+oKcUTkWBiYEBGZKDo6Wnxcs6pW9ePqQER6/eHDh1FaWgqgqoJR9YesAQMGwM3NzezxRERE1Hm++gNZ9QfTaufPn0dJSQkA1BsYVVcjs5Srqyvmzp2Lw4cPIzMzE9988w2ee+45REdH6+xbsXHjRowfPx4ajcZgW6aM+fjx4+LjlJQU8fGgQYPEClS1/fHx8RGvrflh1hpt1ByTrX//+fn54mNTApPw8HCD52qWGzbmOun9V62+3d4ffPBBuLq6ory8HFFRURg3bhw+//xznDhxwqTNR2v+3NwBnsgxMTAhIjJRdHS0+O22MYFJnz594OXlhcrKSrF076FDh1BWVgbA8v1LvLy86jzv4lL1Vi/9kF/zw2pwcHCdbTRv3tzM0RkWEhKCKVOm4O2330ZCQgKuXr2Kf//73+J4//zzzzpLu5oy5po/a3Z2tlnjrQ7irNWGPX//1fvvABCDY2PUdW9V/38y9jpDGxtW7/bepEmTWnd7j4iIwKZNm9C0aVOo1Wps27YNjz/+OHr06IHg4GBMmzatzn2FqtX8ua21eSMRWZdK7gEQETmbgIAAdOvWDSdOnBA/EBUWFuLYsWMA9AMTV1dX9O/fH3FxcUhISMDtt9/ucBsrOsKO8wEBAXjzzTchCAKWLVsGoGqPkocffrjW680dc80A7ZdffkG7du2Mel3N4MEabdRk69+/v78/VCoV1Gq1TkDkCLZt2wag7t3eJ02ahOHDh+Pbb7/Fb7/9hsTEROTk5CA3NxcbN27Exo0bMWPGDKxdu1YnYKqp5s/taJtLElEVBiZERGaIiYnBiRMnkJOTg9OnTyMtLQ1arRY+Pj5iTkdNQ4YMQVxcnBiQVOebuLq6YtCgQXYde7WaS1uuXbtW57X1nbemuXPnioFJamqqwetMGXPN/ILAwEDxsb+/P7p3727yGK3RhvT3X9dyKEt//wqFAkFBQbh69aqY1+IIau72Xtsyrpr8/Pzw6KOP4tFHHwUAnDp1Cj/99BNWrFiBK1euYN26dejduzcWLFhQ6+tr/txt2rSx0k9ARNbEpVxERGaQ5plUBxwDBw6EUqnUu756FmX//v0oLy/Hvn37AFQt8/L29rbDiPV16NABnp6eAKqWltWlvvPWVDOhva6ZBFPGXDNwqBk4JiUlmTNEq7TRo0cP8bE9fv/V/Z09e9bitqxl//79yMnJMbjbe126dOmCF198Efv37xf/DtW1y3zNn7tbt27mDZiIbIqBCRGRGWouv0pISBBnQKTLuKoNGjQISqUSxcXFiI2NxY0bN/TasTeVSoVhw4YBAHbt2oWsrKxar9NqtVi3bp1FfZmSpFwzsbx9+/YGrzN2zE2bNtWpAtanTx+EhoYCAFatWiXm+pjCGm307dtXnDXZsGGDwd9RZmYmdu3aZXL7UtXB9JkzZwwmottbdTWuQYMGISgoyKw2WrduLc425ebmGryuOrhzdXWttSocEcmPgQkRkRlCQkLQoUMHAMCePXvED9M1Z1Jq8vX1Fb+xfuutt8TjcueXPP744wCqysnOmzev1ipY//vf/3QqSJlj586dmDx5Mo4ePVrndfn5+Xj66afF5xMmTDB4bV1jXrZsmTjmRx55BO7u7uI5FxcXvPTSSwCqSthOnz4d5eXlBvspLCzExx9/rHPMGm24u7tj1qxZAIC//voLb7/9tt7r1Go15s6di4qKCoNtG6v63tRqtTrBn5yqA5OxY8cavGbr1q0oKCgweD7j/9q7n5Cm/ziO4y/nckKOQVnMLpFiUBJb5aJaYQZKJB66GuSgRIU6VGAE/TkE7hbBoINB39VhWQsCPQSL0IPUoX8GjSQIjBWBBoHeBvb5HSTR8rv8pf4+9uv5AE/7fD+fz7542IvPn3cup5GREUnSpk2bXNt9vwVvz549c25KA7BycMYEAH7T/v379f79e3369EnS9ArE7t27Xdvv27dPw8PDM/UcPB6P6wrLf6W5uVnNzc3q7+9Xf3+/otGoTp8+rerqao2NjSmZTOru3buqra1d1I/Zb9++KZ1OK51OKxQKqampSZFIRBUVFSopKdHY2JiGhobU09Mzc+PVzp07C9ZPqa2tnXfOt27dUm9vr6TpGiAXL1786dmOjg49evRIDx48UDqd1suXL9Xe3q5du3YpEAhoYmJCIyMjGhwcVF9fn0pLS3Xy5Mkl7+PSpUu6d++ePn78qHPnzml4eFjHjh3T+vXr9e7dO129elXPnj1b9PuXpL1792rdunUaHx/X48ePVV9fv6j+Fmt0dFTZbFZS4fMl165d09GjR9XU1KSDBw9qy5YtCgQC+vr1q54/f65EIjFz41ZHR8e8fUxOTs6smBw5cmSJvwmAJWO3viMA/Llu3rw5p3J5JBIp2L63t3dO+1AoVLD9Qiu/t7a2FuyntbXVSDIbN26c9/OJiQkTjUZdK7Jv377dvHjxYlGV34eGhszq1atdx/jxr6GhwXz58uWnfmZXfnccx8RiMdc+KioqTDabdZ1TPp83nZ2dpqio6Jfzma8i+VL18ebNGxMMBl2fi8VixnGcRVd+N8aYs2fPGkmmsrLStc3syu8DAwOu7RY6J7f/40LV3merq6v75bv1eDzmypUrrn0kk0kjyXi9XvP58+eC4wGwh61cAPCbftyG9avVjx+3ednexvWd3+/X4OCgEomEIpGIysrK5Pf7FQ6HFY/H9eTJkzm3Wv2OaDSq8fFx9fX16cyZM6qrq9OGDRvk8/nk9Xq1Zs0a7dixQ+3t7RoYGFAmk5lz85Ubx3GUSqV04MABrV27Vj6fT5s3b1ZXV5ey2ay2bt3q+uyqVat0/fp1vX79WqdOndK2bdsUCARUXFysQCCgcDis48eP6/79+3r79u2y9VFTU6NsNquuri5VV1fL5/OpvLxc9fX1SqVSchxnYS95Adra2iRNbz/7XlPHlkLV3me7c+eOenp61NLSonA4rGAwKK/Xq7KyMtXU1Kizs1OvXr3ShQsXXPtIpVKSpldLgsHg0n0JAEuqyJh/cSIRAACLRkdHZ84ROI6jWCxmd0J/oMOHD+vhw4c6ceKEbty4YWUOk5OTKi8vVz6fVyaTUUNDw7KN9eHDB1VVVWlqakpPnz4tuN0SgF2smAAA8BeJx+PyeDy6ffu2crmclTlkMpmC1d6XUnd3t6ampnTo0CFCCbDCEUwAAPiLhEIhtbS0KJ/PKx6PW5mD3+/X5cuXlUgkVFJSsmzj5HI5JZNJFRcXz7kND8DKxK1cAAD8Zbq7u1VVVaXS0lIZYwoWslwOjY2NamxsXPZxcrmczp8/r8rKyjkFLQGsTJwxAQD8MThjAgD/X2zlAgAAAGAdKyYAAAAArGPFBAAAAIB1BBMAAAAA1hFMAAAAAFhHMAEAAABgHcEEAAAAgHUEEwAAAADWEUwAAAAAWEcwAQAAAGAdwQQAAACAdQQTAAAAANYRTAAAAABYRzABAAAAYB3BBAAAAIB1BBMAAAAA1hFMAAAAAFhHMAEAAABgHcEEAAAAgHUEEwAAAADWEUwAAAAAWPcPkMARciNb5W0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyYAAAI5CAYAAABUwC7IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AACVS0lEQVR4nOzdeVxUVf8H8M8ww46AgKiICy6Iey64IWhlmntmaWVuqdlm2lNWTz2Z9lSPtpdtmhouZaWVlUtZJouIC2qmuaKgiCibiOzMzP39wY8rc4eB2e8MfN6vl69m7r1zzoGu43znnO/3KARBEEBERERERCQjF7kHQERERERExMCEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkx8CEiIiIiIhkp5J7AOQ8ysrKcPz4cQBAs2bNoFLx9iEiIiJyJmq1Gjk5OQCAHj16wMPDQ+YR3cJPlmS048ePo3///nIPg4iIiIis4ODBg4iMjJR7GCIu5SIiIiIiItlxxoSM1qxZM/FxQkICwsLCZBwNNQalpaVISEgAAMTExMDT01PmEVFDx3uO7I33HNlbWloaYmJiAOh+tnMEDEzIaDVzSlq0aIHQ0FAZR0ONQWlpKYKCggAAoaGh/AebbI73HNkb7zmyt9LSUvGxo+ULcykXERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJjoEJERERERHJrtEGJtnZ2di2bRsWL16MUaNGISgoCAqFAgqFAjNnzjSqjdjYWPE19f2JjY21yrhzc3OxePFi9OzZE76+vvD19UXPnj2xePFi5OXlWaUPIiIiIiJ7U8k9ALk0b95c7iGY7MCBA7jnnntw9epVnePHjx/H8ePHsXr1amzduhX9+/eXaYREREREROZptIFJTW3atEFERAR27dpldhu//fYbQkJCDJ4PDQ01u20AyMjIwLhx45CTkwOVSoV//etfGDt2LABg27ZteO+995CVlYVx48bh8OHDFvdHRERERGRPjTYwWbx4MSIjIxEZGYnmzZsjPT0dYWFhZrcXHh6Odu3aWW+AEi+//DJycnIAAF9//TXuv/9+8Vx0dDT69u2LKVOmIDs7G//5z3+stnSMiIiIiMgeGm2OydKlSzF27FinWNJ19epVfPXVVwCAkSNH6gQl1SZPnoyRI0cCADZs2KC33IuIiIiIyJE12sDEmfz888/QarUAgFmzZhm8rjppX6vV4ueff7bH0IiIiIiIrIKBiRPYu3ev+Hjo0KEGr6t5LikpyaZjIiIiIiKypkabY2Jts2bNwpkzZ5CbmwtfX1907NgRw4cPx+OPP45WrVpZ1PbJkycBAH5+fmjRooXB61q2bAlfX18UFhbi1KlTFvVJ1BCcu3YT+y/kQa0V5B4KOYnKykqczlIAAK4dyICrq6vMI3Iuvh6uuD0iGAHebnIPhYicEAMTK4mLixMf5+XlIS8vDwcOHMC7776LDz74APPmzTO77cuXLwMwrrJX69at8c8//yAjI8PsfgzJysoSH5eXl6O0tNTkPohMUVZWVutjYyScy8NjXx8DQxIynbLqP+nn5B2Gk2rl74HvH42EnyeDOmNY8j5HZI7y8nK5h2AQAxMLtW/fHvfeey8GDRqE1q1bAwAuXLiA77//Hlu2bEFZWRkee+wxKBQKPProo2b1cfPmTQCAj49Pvdd6e3sDAIqKikzup3r8xjhw4ADOnz9vch9E5kpISDD6WkEA/ndMCQEKG46IiGqTWVCGlVvjcFsgvxYwlSnvc0Tmys3NlXsIBjEwscDEiRMxY8YMKBS6H34iIyMxZcoUbNu2Dffeey8qKyvxzDPPYPz48XUuxTKk+hsUN7f6p8bd3d0BgLMZ1KidK1TgWimDEiK5lKjlHgEROSMGJhbw8/Or8/zYsWOxePFivPLKKygpKcGaNWvw8ssvm9yPh4cHSkpKUFFRUe+11dNznp6eJvdT3/KvrKwscVf5AQMGoEOHDib3QWSKsrIy8RvEmJgYeHh4GPW6X749DiBHfN7UyxWdm9c/40ik1WpRUHAdAODv3xQuLqwRY4yTWTdRWHYrGgmP6IIRkdzo1xjmvs8RmcuRV7wwMLGxRx99FIsXL4YgCIiPjzcrMGnSpAlKSkqMWp5VXFwMwLhlX1Km7Bbv7u5uVvBDZC4PDw+j7rnMglL8eSZH59jC4eGYMbidjUZGDUlpaSl27doFABgxoi/f54z00Bf7se98nvhc4aLi784Mxr7PEVmienWNI+JXQTYWHByMwMBAAEBmZqZZbVQHDPUlpwO3Zj1MyRchaki+PnARNYtwebspcW8fyyrjEVHdVErdjxPq/997i4jIFAxM7ECag2Kqrl27AgBu3LhR547uWVlZKCwsBAB06dLFoj6JnFFZpQabDuouSby3TyiaeLA6EJEtqVx0/52r1DDxnYhMx8DExnJycsTqByEhIWa1MWTIEPFxfHy8wetqnouKijKrLyJntuN4FvKLdXOxpg9qK9NoiBoPaWCi4d5BRGQGBiY2tmrVKghC1Rt0Xbu212X8+PFiAuaXX35p8LrY2FgAgIuLC8aPH29WX0TObH3yRZ3ngzsEolPzJjKNhqjxcJUu5dJwKRcRmY6BiZnS09Nx9OjROq/Ztm0bXnvtNQBVVbJmzZpV63XDhg2DQqGAQqFAenq63vkWLVpg6tSpAIDffvsNW7Zs0btm8+bN+O233wAA06ZNM6ssMZEzO5ZRgL8yCnSOcbaEyD5USslSLs6YEJEZGm1Vrr179yI1NVV8XnOzmdTUVHH2odrMmTN1nqenp+P222/HoEGDMG7cOPTq1QvBwcEAqjZY3LJlC7Zs2SLOlrzzzjto1cr8BNw33ngDv/76K3JycvDggw8iJSUFY8eOBVAVAL377rsAgGbNmuH11183ux8iZyWdLWnp54HhXZrLNBqixkXlwhkTIrJcow1MVq9ejXXr1tV6LikpCUlJSTrHpIFJteTkZCQnJxvsx8vLC++//77Zu75Xa926NX755Rfcc889uHr1KpYvX47ly5frXNOiRQts3brVpLK/RA1BfnEFfvn7is6xhwe21asURES24SqdMWHyOxGZodEGJpbq27cvNm7ciOTkZKSkpCArKwu5ublQq9Vo2rQpunXrhjvvvBNz5swRZ1IsNWDAABw/fhwffvghtm7dKi77CgsLw4QJE7Bw4UKxNDFRY/LtoQxUqG99Q+umdMGUSJbMJrIX6VIulgsmInM02sAkNjZWb7mWKZo0aYKpU6eKuR+WiIuLM/raoKAg/Pe//8V///tfi/slagg0WgEb9+su4xrTsyWCfBx3AymihkZ/KRdnTIjIdFznQERO7c/T2cgsKNU5xqR3IvuSlgtWM/mdiMzAwISInNr65HSd5z1D/XBba39ZxkLUWOnt/M7kdyIyAwMTInJaqdlFSDyXq3Ns2sC2UCgUBl5BRLagl/zOGRMiMgMDEyJyWtLckqZerhjXK0Sm0RA1XiwXTETWwMCEiJxSUbka3x++rHNsSmQbeLgqZRoRUeOlV5WLye9EZAYGJkTklH45dgU3y9XicxcFMHVAGxlHRNR4cSkXEVkDAxMickqH0vN1nt8REYzWAV4yjYaocVNKlnJpuI8JEZmBgQkROaW03GKd54M7BMk0EiLizu9EZA0MTIjI6QiCgAs5uoFJWDNvmUZDREx+JyJrYGBCRE7nekklbpRW6hxrH8TAhEguesnvzDEhIjMwMCEip5OWW6Tz3FWpQCt/T5lGQ0RcykVE1sDAhIicjnQZV9tAb72dp4nIfriUi4isgf+SE5HTuSBJfA/jMi4iWalcuJSLiCzHwISInE6aZMaE+SVE8pLOWKpZLpiIzMDAhIicjrRUcHtW5CKSFXd+JyJrYGBCRE5FoxWQliddyuUj02iICABcJTkmTH4nInMwMCEip3KloBQVat1lIswxIZKXfrlgLuUiItMxMCEipyJdxtXEXYUgHzeZRkNEgH65YC7lIiJzMDAhIqdSW36JQqEwcDUR2YO0XHAlywUTkRkYmBCRU7mQo7u5IpdxEclPKSkXrGG5YCIyAwMTInIq+nuYMPGdSG6ueuWCBQgCgxMiMg0DEyJyKtKlXGEsFUwkO2nyO8BNFonIdAxMiMhplFVqkFlQqnOMmysSyU9aLhhgAjwRmY6BCRE5jYt5JZCuDmGOCZH8apsxqWTJYCIyEQMTInIaabm6ie/Nfd3h7a6SaTREVK3WpVycMSEiEzEwISKnoZ/4ztkSIkcgLRcMAGqWDCYiEzEwISKnkZYj3cOEFbmIHAGT34nIGhiYEJHTkM6YMPGdyDEw+Z2IrIGBCRE5Db1SwQxMiBwCk9+JyBoYmBCRUygorUR+cYXOMQYmRI5B5cLkdyKyHAMTInIK6XklOs9VLgq0DvCSaTREVJNCodALTiqZ/E5EJmJgQkROQRqYtAnwgquSb2FEjkK6nIvJ70RkKv6rTkROQRqYcBkXkWORlgzWMMeEiEzEwISInMLFvFKd5+2bMTAhciTSGZNK5pgQkYkYmBCRU0jTmzHhHiZEjkQ6Y8LkdyIyFQMTInJ4WgG4yKVcRA7NVTpjwqVcRGQiBiZE5PBuVABlat0POVzKReRY9JLfOWNCRCZiYEJEDi+7TPcDj7ebEsFN3GUaDRHVRrr7u5rlgonIRAxMiMjhZevmvSOsmTcUCv0N3YhIPiwXTESWYmBCRA4vp1T3Aw8T34kcj1I6Y8IcEyIyEQMTInJ42WW6z5n4TuR49JLfmWNCRCZiYEJEDk86Y9KBie9EDkflwuR3IrIMAxMicmhqLZBXrnuMMyZEjkel5FIuIrIMAxMicmi5ZYAA3W9i2zEwIXI4XMpFRJZiYEJEDi1HUio4yMcdvh6uMo2GiAzR3/mdMyZEZBoGJkTk0KSlgrmxIpFj0ssxYblgIjIRAxMicmjSzRXbcxkXkUPizu9EZKlGG5hkZ2dj27ZtWLx4MUaNGoWgoCAoFAooFArMnDnTqDZKSkrwww8/4PHHH0dkZCSaNm0KV1dXBAYGYtCgQViyZAmuXr1qlfG2a9dOHF9df9q1a2eV/ogchf4eJgxMiBwRk9+JyFIquQcgl+bNm1v0+r///htRUVEoKirSO5efn4/9+/dj//79eP/997Fq1SpMmTLFov6IGivuYULkHFxdmPxORJZptIFJTW3atEFERAR27dpl9GsKCwvFoCQqKgpjx45Fv379EBgYiJycHPzwww/44osvUFhYiKlTp8LX1xejRo2yeKwTJkzA66+/bvC8m5ubxX0QOYqbZWrcrJQs5WrGXd+JHJHejAmT34nIRI02MFm8eDEiIyMRGRmJ5s2bIz09HWFhYUa/3sXFBZMnT8arr76Krl276p0fMWIERo0ahYkTJ0Kj0WD+/Pk4d+4cFApFLa0Zz9/fH927d7eoDSJnkZ5XovPcRQG0CfCSaTREVBdpuWAmvxORqRptYLJ06VKLXj948GAMHjy4zmsmTJiAe++9F99//z3Onz+Po0ePok+fPhb1S9SYSAOT1gFecFM12tQ4IoemVy6YOSZEZCL+C29jt99+u/j4/PnzMo6EyPlIAxPmlxA5LqW0XDBzTIjIRAxMbKy8vFx8rFQqZRwJkfNJkwQm7YOYX0LkqLjzOxFZioGJjcXHx4uPu3TpYnF7CQkJuO2229CkSRN4eXkhLCwMU6ZMwdatWyEI/EeAGha9GRNurkjksFgumIgs1WhzTOzh2LFj2L59OwCgR48eVglM0tLSdJ6np6cjPT0d3333HaKiovDtt9+iVatWZrV9+fLlOs9nZWWJj8vLy1FaWlrH1USWEQRBLzBp1UTF+45sqqysrNbHZAStRudpeYWaf1+NwHuO7K3mah5Hw8DERsrLyzFnzhxoNFVv1G+88YZF7bm5uWH8+PEYMWIEunfvDj8/PxQUFCA5ORmfffYZMjIykJSUhLvuugvJycnw8/MzuY/WrVsbfe2BAweYM0M2daMCKK3UfYvK+CcFN1NlGhA1OgkJCXIPwalcvKwAcGvJcmbWVezadUW+ATkh3nNkD7m5uXIPwSAGJjby1FNPISUlBQAwY8YMjBs3zqL2Dh48CH9/f73jw4YNw1NPPYX77rsPu3btwqlTp7B06VK89957FvVHJLdsyY7vbi4CfLlND5HDkuS+gykmRGQqBiY28L///Q+rV68GAERGRuKTTz6xuM3agpJqTZo0wXfffYf27dsjPz8fq1atwrJly0zebDEjI6PO81lZWejfvz8AYMCAAejQoYNJ7ROZ4npKJnDyjPi8XZA37h45UMYRUWNQVlYmfmsdExMDDw8PmUfkPDL3XcK2S7emNAMCgzBixG3yDchJ8J4je3PkFS8MTKxs5cqVeOmllwAAERER2LFjB7y9bZ+w6+fnhwceeACffvopiouLkZKSUu8+K1KhoaFGX+vu7g5PT09Th0lktIsFumtg2zfz4T1HduXh4cF7zgQe7rpfhmmh4O/PRLznyB7c3d3lHoJBrMplRZs2bcITTzwBAGjbti1+//13BAUF2a3/mjvQZ2Zm2q1fIltIzS7Sed6Re5gQOTS9nd+5louITMTAxEp+/vlnTJ8+HVqtFi1btsTu3btNmoGwBoVCUf9FRE5CGpi0b+Yl00iIyBjScsGVLBdMRCZiYGIFu3fvxuTJk6FWqxEYGIjff/9dlvyLkydPio9DQkLs3j+Rtdwsq0TWDd2ymR24hwmRQ1Nx53cishADEwvt27cPEyZMQHl5Ofz8/PDbb7+hW7dudh/HjRs38M033wAAvLy80K9fP7uPgchazucU6zxXQEC7AM6YEDkyV+mMiYYzJkRkGgYmFvjrr78wZswYFBcXw9vbG9u3b0ffvn1NbmfYsGFQKBRQKBRIT0/XO//rr7/WuUlVUVERJk+ejLy8PADA7NmzHTqxiag+567d1HnezANwU/HtisiRqSQ5JhotZ0yIyDSNtirX3r17kZp6q6xhzc1mUlNTERsbq3P9zJkzdZ6fP38eI0eOREFBAQDg9ddfh5+fH06cOGGwz+DgYAQHB5s81mXLlmHq1Km49957MWTIEHTo0AE+Pj64ceMG9u3bh88//xyXLl0CAHTu3BlLliwxuQ8iR5Kao5tf0tyTH3CIHJ3eUi4GJkRkokYbmKxevRrr1q2r9VxSUhKSkpJ0jkkDk8TERGRnZ4vPn3nmmXr7fPXVV80OGvLz87F69Wpxf5TaDB06FF999RUCAgLM6oPIUaRekwQmXMVF5PBULlzKRUSWabSBiTN55513sHv3biQnJ+PMmTPIzc1FQUEBvLy8EBISggEDBuDBBx/EiBEjWJmLGgTpjEkLzpgQOTzpUi4mvxORqRptYBIbG6u3XMsUM2fO1JtFMVdcXFyd5/v168dkdmo0yio1uJRfonOMS7mIHJ80+V3NcsFEZCJmkxKRQ7mQUwxBEoc050bIRA5PmmNSyRkTIjIRAxMicijnsnUrcjV1E+CulGkwRGQ06QaLauaYEJGJGJgQkUM5L9nxvYUXv3Ulcgau0hwTVuUiIhMxMCEih3IuW1oqWKaBEJFJlCwXTEQWYmBCRA4lVTpjwsR3IqcgTX7XaAUI0oQxIqI6MDAhIodRqdEiLbdY5xgrchE5B2nyO8AEeCIyDQMTInIYF/NK9JZ/cCkXkXOQzpgALBlMRKZhYEJEDiNVUpEryNsN3q4yDYaITCLdYBHgjAkRmYaBCRE5DGl+SYdmXjKNhIhMpXLR/0ihYQI8EZmAgQkROQxpRa72Qd4yjYSITFVbjgn3MiEiUzAwISKHoT9jwsCEyFnUupSLMyZEZAIGJkTkELRaAedzuJSLyFnVmvzOGRMiMgEDEyJyCJkFpSir1P0QwxkTIufBcsFEZCkGJkTkEM5JKnL5eqgQ5O0m02iIyFTSnd8BlgsmItMwMCEihyDNL+nUvAkUCv0POkTkmBQKBVwleSZqzpgQkQkYmBCRQzh3TTcw6djMR6aREJG5pCWDpRumEhHVhYEJETmE1BzpjAkDEyJnI80zYfI7EZmCgQkRyU4QBKRKZkw6BDMwIXI20pLBTH4nIlMwMCEi2WXfLMfNcrXOMS7lInI+KqV0KRdnTIjIeAxMiEh20sR3T1clWvl7yjQaIjKXq95SLs6YEJHxGJgQkezOXdMtFdwh2BsutZQeJSLHJp0xqWSOCRGZgIEJEclOL/E9uIlMIyEiS0hzTDSsykVEJmBgQkSy0ysVzMR3IqfkKikXXMnAhIhMwMCEiGR3PoeBCVFDIN39neWCicgUDEyISFbXiyuQW1Shc4yBCZFz4s7vRGQJBiZEJCtpfomrUoG2AV4yjYaILKGX/M5ywURkAgYmRCQraX5JWJC33ocbInIO+ju/c8aEiIzHf/2JSFbSPUxYkYvIebmyXDARWYCBCRHJ6ly2dA8T5pcQOSuWCyYiSzAwISJZndebMWFgQuSs9JZyMTAhIhMwMCEi2RSVq3HlRpnOMVbkInJeKuk+JlzKRUQmYGBCRLKRzpa4KKqS34nIOUmXcjH5nYhMobJ3hzk5Obhw4QKuXr2K4uJiuLq6wt/fH23atEHHjh2hVCrtPSQiksk5SWDSJsALHq58DyByVnrJ7ywXTEQmsHlgUlxcjJ9++gk7d+5EfHw8MjMzDV7r7u6O3r17Y8SIEZg4cSJ69uxp6+ERkYykFbk6siIXkVNjuWAisoTNApOjR49ixYoV2Lx5M0pKSgAAglD3G1RZWRmSk5Oxf/9+vPbaa+jWrRuefPJJTJs2DV5e3HCNqKFJlVTkYn4JkXOT7kHEqlxEZAqrByZHjx7FK6+8gp07dwK4FYy0aNEC/fv3R9++fREcHIyAgAA0bdoUpaWlyM/Px/Xr13H27FkcOnQIf//9NyorK3HixAk88cQTeOWVV/D8889j/vz5cHd3t/aQiUgm+nuYMDAhcmaukhwTJr8TkSmsGpjMmjULGzZsgPb/15T26dMHU6dOxaRJk9CmTRuj26moqEBCQgK++uor/Pjjj8jNzcULL7yATz/9FOvXr8eQIUOsOWwikkFZpQaX8kt0jnHGhMi5KbmUi4gsYNWqXOvWrYNKpcLcuXNx+vRppKSk4JlnnjEpKAEANzc3DB8+HF9++SWuXbuG9evXo3PnzkhPT8eff/5pzSETkUzScoshXeXBzRWJnBuT34nIEladMXniiSfwwgsvoHXr1lZr093dHQ8//DCmTp2KzZs3Q6PRWK1tIpLP2Wu6+SUhfh7wcbd7oUAisiImvxORJaz6KeDjjz+2ZnM6FAoFJk+ebLP2ici+TmXpBiadW7AiF5Gzkya/qzljQkQm4AaLRCSL01cLdZ5HtPSVaSREZC2uLtLkd86YEJHxGJgQkSxOS2ZMIjhjQuT0WC6YiCxh9QXdISEhiImJQXR0NGJiYtCjRw9rd0FETq6gpAJXC8t0jnXhjAmR05PmmLBcMBGZwuqBydWrV7F582Zs3rwZAODv748hQ4YgJiYGMTEx6Nu3L1xcOFFD1Jidvqo7W+KmdEFYkLdMoyEia1EpmfxOROazemDStm1bXLx4UXx+/fp1bNu2Ddu2bQMAeHt7Y9CgQeKsysCBA+Hm5mbtYRCRAzudpZtf0jHYR6/MKBE5Hya/E5ElrB6YpKWlITMzE4mJieKff/75R9wBvqioCH/88Qf++OMPAFV7lkRGRoozKlFRUfD25jenRA2ZdMYkoiXzS4gaAia/E5ElbLJpQKtWrfDAAw/ggQceAFA1a5KUlCQGKocPH0ZlZSUAoLy8HElJSUhKSsL//vc/KJVK3HbbbWKgEh0djaZNm9pimEQkk1OSwKRLC+aXEDUEnDEhIkvYZe1E06ZNMXbsWCxfvhz79u3DjRs38Oeff2Lp0qUYPnw4vLy8IAgCBEGAWq1GSkoK3n//fUycOBHBwcE2GVN2dja2bduGxYsXY9SoUQgKCoJCoYBCocDMmTNNbm/nzp2YOHEiQkND4e7ujtDQUEycOBE7d+606rhLSkrw1ltvITIyEgEBAfD29kZERASeffZZnSV0RI5KoxVwljMmRA2SK3NMiMgCsmyz7OHhgWHDhmHYsGEAAI1GgyNHjogzKnv37kVeXh4AQGujb1uaN29ulXa0Wi0effRRrFmzRud4ZmYmMjMzsXXrVsyZMwcrV660OOk/NTUVo0ePxrlz53SOnzlzBmfOnMHq1avx1VdfYezYsRb1Q2RLl/JLUFqp0TkWwRkTogZB5SKdMWFgQkTGc4hsU61Wi8rKSlRWVqKiogJqtRoKhaL+F1pJmzZtMGLECLNe+/LLL4tBSe/evbFp0yYcPHgQmzZtQu/evQEAq1evxn/+8x+Lxnjz5k2MGTNGDErmzp2L3bt3Y9++fXjjjTfg4+ODwsJCTJkyBX/99ZdFfRHZkjTxPcjHDc2auMs0GiKyJqWLdMaES7mIyHiyzJgUFxdj37594gzJwYMHUVZWtadBdZI8AERERCA6OtomY1i8eDEiIyMRGRmJ5s2bIz09HWFhYSa1cfbsWbzzzjsAgH79+iEhIQGenp4AgMjISIwfPx5Dhw5FSkoK3n77bTzyyCPo2LGjWeN9++23cfbsWQDAW2+9hUWLFonnBg0ahGHDhmHo0KEoKSnBwoULERcXZ1Y/RLYmzS/hbAlRwyFdysXkdyIyhV0Ck7y8PJ0qXX/99Rc0mqqlHNWBiJubG/r06YMhQ4ZgyJAhiIqKQmBgoM3GtHTpUovb+OCDD6BWqwEAK1asEIOSal5eXlixYgUGDRoEtVqN999/H5988onJ/VRWVuKjjz4CAHTp0gXPPvus3jWDBw/G7NmzsXLlSsTHx+PQoUOIjIw046cisi3pjAl3fCdqOJj8TkSWsElgkpGRgcTERCQkJCAxMRGnT58Wz1UHIr6+vhg8eLAYiPTv3x8eHh62GI5NCIKAn376CUDVzM7AgQNrvW7gwIHo3Lkzzpw5g59++gkff/yxycvU9uzZgxs3bgAAZsyYYTBXZebMmVi5ciUA4Mcff2RgQg5Jv1QwZ0yIGgppuWAmvxORKawemLRr1w4ZGRkAdJdltWrVSgxChgwZgp49e9o1j8Ta0tLScOXKFQDA0KFD67x26NChOHPmDDIzM81aMrZ3716dtgzp168fvLy8UFJSgqSkJJP6ILKHonI1LuWX6BzjjAlRwyGdMalkjgkRmcDqgcmlS5eqGlapcN9992Hs2LGIiopC27Ztrd2VrE6ePCk+joiIqPPamudPnTplcmBibF8qlQodO3bE33//jVOnTpnUB5E9nJHMlihdFOgY7CPTaIjI2lSSHBMNq3IRkQlsspRLoVBAo9Hgu+++wz///IPo6GhER0cjKioKoaGhtujS7i5fviw+ru9nat26tfi4ejbJnL68vb3h7+9fb19///03cnJyUF5eDnd346sd1fyZapOVlSU+Li8vR2lpqdFtEwHA8Ut5Os/bBXpBUFegVF379dVFMaSPiWyF95xltJUVOs8rNQL/ragH7zmyt/LycrmHYJDVA5P3338fe/fuxd69e3Ht2jUcP34cJ06cwGeffQagqjRv9XKu6OhodO3a1dpDsIubN2998+vjU/c3vt7e3uLjoqIis/uqr5/a+jIlMKkZQNXnwIEDOH/+vNHXEwHAHxdcULNKuZ/2Jnbt2mXUaxMSEmw0KqLa8Z4zXWYxUPOjRaVGY/TfceI9R/aRm5sr9xAMsnpgsmDBAixYsABAVTnd6kpcCQkJSE9Px8WLF3Hx4kV8/fXXAKp2hR88eDCio6MxZMgQ9OvXD66urtYeltXV/FbDzc2tzmtrBgfmfHNU3Vd9/VijLyJbulKiu8wjxJvLPIgaEslKLghQQCsALs6bUkpEdmTTcsHh4eEIDw/H7NmzAVTthl4zUDl58iTy8/Oxbds2bN++HUDVB+v+/fuLsyqDBw+Gr6/jVe2pWUGsoqKijit1p8ykJYVN6au+fiztq75lZllZWejfvz8AYMCAAejQoYNJ7VPjJggCXj6SAODWru9jonpjWHiQwdeUlZWJ3yDGxMQ4VeU+ck685yyTnleC/x3br3PsjjuHw03lEPs5OyTec2Rvjrzixa4bLLZq1QoPPPAAHnjgAQDA9evXsXfvXiQkJCAhIQFHjx4V/4ImJiYCAJRKpVEfyO2tSZNblYTqW55VXFwsPjZmOZahvoxZBmZJX6bk/7i7u5sVZFHjdfl6CYrKNTrHerUNMvo+8vDw4D1HdsV7znQ+XvqzoCo3d3i6y7Kfs9PhPUf2YMoyf3uT9SuMpk2bYty4cXj77bdx4MABFBQU4PPPP0f79u0hCAIEQRA3YnQ0NT/E15c0XnMmwpQ8DmlfxcXFKCgoMKqvZs2aOfSNR43P6SzdilxNPFRo6cdvBokaElel/scKNStzEZGRZP8K459//hFnSBITE8W9QRQKhc4+KI6mZtJ+zQ0ka1PzfJcuXczq6/vvvxfbMrSZo1qtFqfnzOmHyJbOXNMNTLq08HXqvYyISJ+0XDAAqLmXCREZya6BiUajweHDh8Uck6SkJFy/fl08Lw1E2rRpg5iYGHsO0WhhYWEICQnBlStXEB8fX+e11WtHW7VqhXbt2pnc15AhQ8TH8fHxBgOTlJQUcSlXVFSUyf0Q2dKprEKd5xEtubEiUUOjqiXLnTMmRGQsmwYmZWVlSE5OFgORAwcOoKTk1q7P0kCkc+fOiImJQUxMDKKjo9GmTRtbDs8iCoUCEyZMwGeffYbTp09j//79tQYM+/fvF2dMJkyYYNY3xMOGDYOfnx9u3LiBdevW4fnnn6+1ndjYWPHxxIkTTe6HyJZOSzZXjGjheEUtiMgy0p3fAe7+TkTGs3qOybZt2/DCCy9g8ODB8Pf3x/Dhw7F06VLs2bMHxcXFYu6IQqHAbbfdhqeffhpbtmzBtWvXcOrUKaxcuRJTp0516KCk2sKFC6FUKgEA8+fP1yvPW1paivnz5wOo2pV94cKFtbYzc+ZMKBQKKBQKxMXF6Z13c3PD008/DaBq5/h33nlH75rk5GSsWbMGADB06FBERkaa+2MRWV1ZpQYXcnSLN3DGhKjhqXXGRMMZEyIyjtVnTMaPHy9+m19zRsTNzQ39+vVDdHQ0YmJiEBUVJWsZ4L179yI1NVV8XnOzmdTUVJ3ZB6AqeJAKDw/HokWLsGzZMqSkpCAqKgovvPACOnTogPPnz2P58uU4evQoAGDRokXo1KmT2eNdtGgRvv32W5w9exbPP/88UlNT8cADD8DT0xN79uzBm2++CbVaDU9PT3zwwQdm90NkC6nZRZCu5ujcnIEJUUNTe/I7Z0yIyDg2WcolCAK8vLwwaNAgMRAZOHCgQ9XmXr16NdatW1fruaSkJCQlJekcqy0wAYA33ngD2dnZWLt2LY4ePSqWQq5p9uzZeP311y0ab5MmTbB9+3aMHj0a586dw6pVq7Bq1Sqda3x9ffHVV1/htttus6gvImuT5pe0DfSCN8uHEjU4ShcFFAqg5krtSs6YEJGRrP7J4K233kJ0dDT69u0Llarhf/BwcXHBmjVrMGnSJKxatQqHDh1Cbm4ugoKCEBkZiXnz5mHUqFFW6atjx444evQoPvnkE2zevBmpqamoqKhA69atMXr0aCxYsABt27a1Sl9E1qSfX8LZEqKGytXFBRU18ko0TH4nIiNZPXJ47rnnrN2kTcTGxuot17LE6NGjMXr0aJuPxdvbG88//zyef/55s/oiksPpq5KKXEx8J2qwVEoFKmpsQcbkdyIylqwbLBJRwycIAk5JNlfswsR3ogZLKUmAZ7lgIjIWAxMisqmconLkF1foHOOMCVHDJU2A54wJERnL6ku57rjjDqu2p1AosHv3bqu2SUT2c1oyW+LpqkSbAC+ZRkNEtiYtGcxywURkLKsHJnFxcTrlgs3ZULCapa8nIvlJ80s6t2gCl1r2OiCihkE6Y8JywURkLJuVzfLw8EBwcLCtmiciJyGdMWF+CVHDplJyxoSIzGOzwKSsrAwtW7bE9OnTMWXKFDRt2tRWXRGRAzulVyqY+SVEDZneUi4mvxORkaye/P7f//4X4eHhEAQB+/fvx5NPPomWLVti0qRJ2Lp1KyorK63dJRE5qEqNFqnZ3MOEqDFh8jsRmcvqgcnLL7+MU6dO4eDBg3jqqacQFBSEiooK/Pjjj5g0aRJatmyJJ598EsnJydbumogczIWcYr1dnzljQtSw6ZUL5lIuIjKSzcoF9+vXDx999BGuXLmCn3/+Gffddx/c3d2Rn5+Pzz//HEOGDEF4eDj++9//Ii0tzVbDICIZSRPfQ/w84OflKtNoiMgeVEx+JyIz2XwfE6VSibFjx+K7777D1atX8cUXXyA6OhoAkJqaiiVLlqBjx46Ijo7GF198gYKCAlsPiYjsRLqxYkRLzpYQNXSukhkT6awpEZEhdt1g0dfXF7Nnz0ZcXBzS0tLw2muvoWPHjhAEAfv27cNjjz2GsLAwew6JiGxIOmPC/BKihk+/KhdnTIjIOLLt/N6mTRv85z//wZkzZ7BixQq4u7tDEASUl5fLNSQisjJpqWDOmBA1fPr7mHDGhIiMY7NywfXJyMjAxo0bsWHDBpw5c0Y87ubmJteQiMiKCkoqcLWwTOdYF86YEDV4LBdMROaya2BSWFiIzZs3Y+PGjUhMTIQgCBCEqjesQYMGYdq0aZgyZYo9h0RENnIiU3cZl5vKBe2CvGUaDRHZi9JFMmPCpVxEZCSbByYajQY7d+7Ehg0b8Msvv6C8vFwMRtq3b4+HH34Y06ZNQ4cOHWw9FCKyo+OZN3Sed2npq7fEg4gaHlclk9+JyDw2C0wOHTqEDRs24Ntvv0Vubi4AQBAE+Pv7Y/LkyZg2bRqioqJs1T0Ryex4ZoHO8x6tmF9C1BiwXDARmcvqgcnrr7+Or776CmfPngVQFYy4urpi1KhRmDZtGsaNG8c8EqJGQDpj0rOVvzwDISK7kpYL5gaLRGQsqwcmixcvhkKhgCAIGDBgAKZPn44pU6YgICDA2l0RkYO6XlyBjPxSnWPdW/nJNBoisie9csFMficiI9lsKZenpyeuXbuGt99+G2+//bbZ7SgUCpw/f96KIyMiWztxRXe2xF3lgk7NfWQaDRHZk95SLia/E5GRbBaYlJaWIj093eJ2FApF/RcRkUP5+zIT34kaK72d3zljQkRGsnpgEhMTw2CCqJE7Ic0vCeUyLqLGguWCichcVg9M4uLirN0kETkZ6YwJ80uIGg9puWAmvxORsbi2goisKr+4ApkFuonvPRiYEDUa0uR3LuUiImMxMCEiq5KWCXZXuaBTMBPfiRoLFZdyEZGZGJgQkVVJ80u6hvjqVekhooZLbykXZ0yIyEhW/bSQlZVlzeZqdfXqVZv3QUTmO35ZurEil3ERNSYsF0xE5rJqYNKhQwc8/fTTyMzMtGazAIDvvvsOPXv2xKpVq6zeNhFZj3QpFxPfiRoXlXTnd86YEJGRrBqYqNVqfPLJJ+jYsSNmzJiBXbt2Qas1/5uSjIwMvPXWW+jSpQsefPBBnDhxAm5ublYcMRFZU15RuV7ie89Qf3kGQ0SykAYmlZwxISIjWbVc8IkTJ/DMM89g586d2LhxIzZu3Ijg4GBMmDABAwcORGRkJLp27Wpwn5Pc3FwcOnQIBw8exO7du7Fv3z4IggBBENCqVSssXboUM2fOtOaQiciKpLMlHq4u6NDMW6bREJEc9JdyccaEiIxj1cAkPDwc27dvx759+/D666/jt99+w7Vr1/DFF1/giy++AAC4ubkhMDAQTZs2RdOmTVFaWor8/Hxcv34dN27c+lAjCFVvZKGhoZg/fz7mz58PDw8Paw6XiKxMmvjeLcSPie9EjYw0+Z3lgonIWFbfYBEABg8ejB07duDs2bNYu3YtNm/ejLS0NABAeXk5rly5gitXrkChUIgBSE3u7u4YOXIk5s6di1GjRsHFhR9siJyBdGNF7l9C1PhIywVrLFjSTUSNi00Ck2rh4eFYtmwZli1bhkuXLiExMRH79u3D5cuXkZOTg/z8fHh4eKBZs2Zo1qwZevTogejoaPTv35+5JEROSDpjwsCEqPGRbrDIpVxEZCybBiY1tWnTBlOnTsXUqVPt1SUR2VFuUTmu3CjTOdYjlIEJUWPjKlm+yeR3IjIW10gRkVVIE989XZXo0Iw7vhM1NkqWCyYiMzEwISKrkG6s2C3EV+8DChE1fHo7v3MpFxEZiYEJEVkFN1YkIkA/+Z1LuYjIWAxMiMgqpInvPZlfQtQoSZPfNVzKRURGYmBCRBbLuVmOLGniO2dMiBolJr8TkbkYmBCRxaSzJV5uSrRn4jtRo6Ri8jsRmYmBCRFZTLqxIhPfiRov6YwJk9+JyFgMTIjIYtLE9x6t/OUZCBHJTvqlRCV3ficiIzEwISKLHc8s0HneI9RXnoEQkeyk5YIFgQnwRGQcBiZEZJHswjJcKyzXOcbEd6LGS1ouGGACPBEZxy6ByR133IE77rgDX375pT26IyI7ki7j8nZTIiyIie9EjZW0XDDAGRMiMo5dApPExETEx8ejXbt29uiOiOxIGph0C/Fj4jtRIyZNfgeYAE9ExrFLYBIcHAwA8Pf3t0d3RGRHxyUVuXpwY0WiRk1aLhhgAjwRGccugUmvXr0AAGfPnrVHd0RkR/oVuRiYEDVmteWYcMaEiIxhl8Bkzpw5EAQBn3/+uT26s5thw4ZBoVCY9CcuLs7kfpYsWWLT9onMda2wDNk3JYnvnDEhatRqyzFh8jsRGcMugcm9996Lhx9+GPHx8XjkkUdQXFxsj24djouLCzp16iT3MIisRrqMy8ddhbBAb5lGQ0SOoLbAhLu/E5ExVPboZP369bjzzjvx999/Y926dfjpp58wbtw49OzZE02bNoVSqazz9dOnT7fHME325Zdf1htknTx5ElOmTAEA3HnnnWjVqpVFfR4/frzO82FhYRa1T2QK/cR3X7gw8Z2oUXOtZSmXhjkmRGQEuwQmM2fOhEJx68PK9evXsWHDBqNeq1AoHDYwMSYIqPlzWuPn6N69u8VtEFkL80uISMrFRQEXBVBzkqSSOSZEZAS7BCYAIAhCnc8bIq1Wi6+++goA4OPjg3vvvVfmERFZjyAI+oEJ80uICIBK6YIK9a1ZEia/E5Ex7BKYpKWl2aMbh7N7925kZmYCAO677z54eXnJPCIi67lyoww50sR3zpgQEQBXFwUqajxnuWAiMoZdApO2bdvaoxuHs379evGxoy5HIzLXkYvXdZ77eboiLIiJ70QEvU1WOWNCRMawS1WuxqioqAg//vgjgKrAbNiwYVZpd8SIEQgODoabmxuCg4MxbNgwLFu2DNevX6//xURWdPRSgc7z3m38dXLJiKjxku7+rma5YCIygt1yTBqb77//XqzY9fDDD1vtA9vvv/8uPs7JyUF8fDzi4+OxfPlyxMbGYsKECWa3ffny5TrPZ2VliY/Ly8tRWlpqdl/k/FLS83Se92jpY/V7oqysrNbHRLbCe846JHEJikvL+G+GAbznyN7Ky8vrv0gmdg9Mzp07h/Xr1yM5ORlXr15FaWkpfvvtN3Ts2FG85sSJE7h06RK8vb0xdOhQew/RKqy9jKtHjx6455570L9/f4SEhKCyshJnzpzBV199hV27dqGgoACTJk3CL7/8glGjRpnVR+vWrY2+9sCBAzh//rxZ/ZDzU2uBf64oAdwKuNXXUrFr1zmb9ZmQkGCztolqw3vOfOoK3feHQ4ePoOQCl3PVh/cc2UNubq7cQzDIboGJVqvF888/jw8//BBarVasyqVQKFBRUaFz7aVLlzB27FioVCqkpaVZvPeHvV2+fFncgX3gwIEIDw+3qL2FCxdiyZIlescHDBiA6dOnY+XKlXjssceg0WgwZ84cnD9/Hh4eHhb1SVSXjGJAI9z60KGAgLY+/NBBRFWk2xkxxYSIjGG3wGTevHlYu3YtBEFAq1atMGjQIGzZsqXWa0ePHo2wsDCkp6djy5YtWLBggb2GaRUbN26E9v8rkMyYMcPi9vz9/es8P2/ePBw6dAhr1qzBlStX8P3332Pq1Kkm95ORkVHn+aysLPTv3x9AVVDUoUMHk/ughiE2+RJwIlV83qGZDyaMHmD1fsrKysRvEGNiYhhwk83xnrOOj87tR25Zifi8e49eGNEtWMYROS7ec2RvjrzixS6Bye7du7FmzRooFAq89NJLWLp0KZRKJVxq2R222v3334+33noLf/75p9MFJtWbKrq7u4u7vtvavHnzsGbNGgBAfHy8WYFJaGio0de6u7vD09PT5D6oYTiRVazzvF+7AJvfDx4eHrznyK54z5nPVaXUee6iUvF3aQTec2QP7u7ucg/BILsEJqtWrQJQNRPy+uuvG/Wa6m/m//nnH5uNyxZSUlJw8uRJAMDYsWPRtGlTu/TbtWtX8XH13ilEtnL0km4VuN5t/OUZCBE5JJVSdy0Xd34nImPYpVxwcnIyFAoFZs+ebfRrqr+9v3r1qq2GZRM1k96tsYzLWCzTSvZy9UYZrtzQrRzTp419AnAicg4qF5YLJiLT2SUwyc7OBgC0a9fO6Ne4uroCANRqtS2GZBOVlZX45ptvAADNmjUzuzqWOapnaQAgJCTEbv1S4yOdLWnioUKHZj4yjYaIHJGrZMZEreWMCRHVzy6Bibd31W7QOTk5Rr+mek+NgIAAm4zJFnbu3Cn+jA899BBUKvtVY165cqX42FlLLJNzOCIJTG5r7Q8XaQkeImrUOGNCROawS2DSvn17ALrf6tdn586dAIBu3brZZEy2YM7eJbGxsVAoFFAoFLWWBD5+/DhSU1P1X1jDqlWrsHr1agBAixYtMHHiROMHTWQi/R3fuYyLiHRJc0w4Y0JExrBLYDJixAgIgoBPPvlELKNbl5MnT4of2EePHm2HEVru+vXr2LZtGwCge/fu6NOnj1XaPXz4MCIiInDXXXfhvffew++//44jR47g4MGDWL9+PUaOHIl58+YBAJRKJVatWiXOUBFZW4Vai78zb+gc68PEdyKScJVs/c7kdyIyhl3WGj399NP46KOPcP78eTz22GP49NNPDS5z+v333zFr1iyUlZUhMDAQc+fOtccQLfbtt9+ivLwcgHV2eq9Jo9Hgjz/+wB9//GHwmsDAQKxZswbjxo2zat9ENZ3KKkSFWvfLhd6tOWNCRLqUkuWdXMpFRMawS2DSvHlzfP7555g+fTrWrFmD3377DWPGjBHPf/jhhxAEAUlJSTh9+jQEQYCLiwtiY2Ph4+McSbXVe5colUqz9hAxZPTo0VizZg2Sk5Nx9OhRXLt2DXl5eRAEAQEBAejVqxfuvvtuzJw5E76+vlbrl6g20vySDs284eflKtNoiMhRSZPfK7mUi4iMYLfs7KlTp8LV1RXz5s1DRkYGVq5cKZa4rc6PEISqNy4fHx+sW7dOJ3hxdElJSWa9bubMmZg5c6bB88HBwXjkkUfwyCOPmDkyIuthfgkRGYPJ70RkDrvkmFSbPHkyUlNTsXTpUvTt2xdKpRKCIIh/unXrhn//+99ITU1lAjeRA5LOmHD/EiKqjTT5XcMZEyIygv3q2f6/wMBAvPLKK3jllVeg1WqRn58PjUaDgIAAce8SInI82TfLcPl6qc4x7vhORLVxdWHyOxGZzu6BSU0uLi4ICgqScwhEZCTpMi5vNyXCmzeRZzBE5ND0ywVzKRcR1c8uS7lKSkrs0Q0R2ZA0MOnV2l+v8g4REcBywURkHrvMmDRt2hT9+vVDTEwMhg0bhiFDhnCvDSInw/wSIjIWywUTkTnsEphUVlZi//792L9/P9566y0olUr06dMHQ4cOFQOVJk24JITIUak1Wvx9uUDnGPNLiMgQ7vxOROawy1KuN998EyNHjoSPjw8EQYBarcbBgwfxzjvvYOzYsQgMDET//v2xaNEibN++HYWFhfYYFhEZ6fTVmyirlGysyBkTIjJAmvzOwISIjGGXGZMXX3wRL774IjQaDY4cOYK4uDjEx8dj7969KCwshFqtRkpKCg4fPoz33nsPLi4u6NWrlzijwt3MieR1VLKMq12gFwK83WQaDRE5Or0ZEy7lIiIj2LUql1KpRGRkJCIjI7Fo0SJotVocPXoU8fHxiIuLw969e1FQUACNRoOjR4/i6NGj+PDDD6FWq+05TCKSOCJJfGd+CRHVhcnvRGQOu26wqNe5iwv69u2Lf/3rX/j5559x7tw5vPLKK/Dz8wMAceNFIpKXdMaE+SVEVBeVNPmd5YKJyAiy7mNSUFCAhIQExMXFIS4uDn///bdeMNK2bVsZR0hEeUXlSM/TLfnN/BIiqot+VS5+yUhE9bNrYGIoEAEg/rddu3ZibsmwYcMYmBDJ7K+MAp3nnq5KRLRgFT0iMkx/KRdnTIiofnYJTP71r38ZnBEJCwvTCUTatGljjyERkZGk+5f0DPWDSinrKlAicnAsF0xE5rBLYPLBBx9AoVBAEASEhYWJQciwYcPQunVrewyBiMwk3fGdy7iIqD4sF0xE5rDr154KhQLe3t7iHy8vL3t2T0Qm0mgFHJMs5erDxHciqgfLBROROewyYzJ9+nQkJCQgPT0dJ06cwD///INPPvkECoUCXbt2FWdPhg4disDAQHsMiYiMcPbaTRRXaHSO3cbAhIjqIV3uyeR3IjKGXQKT2NhYAMClS5fEPUvi4+Nx4cIFBipEDkyaXxLa1BPBTTxkGg0ROQtXSVWuSpYLJiIj2LUqV5s2bTBt2jRMmzYNAHD58mXEx8cjPj4ee/bswfnz5/UClW7duuHYsWP2HCYR/T9pfgk3ViQiY7BcMBGZQ9bSOqGhoZg6dSpWrVqFc+fO4fLly3jllVfg6+sLQRCg1Wpx4sQJOYdI1KgduciNFYnIdNJywcwxISJjyLrBIgCcPXtW3NckPj4eV69eBQCxihcRySO7sAwXcot1jvVrGyDTaIjImbBcMBGZw+6BiaFABIBOINKxY0cxz4SI7G9/Wr7O8ybuKnQN8ZVpNETkTFQsF0xEZrBLYLJq1ap6A5Hw8HAxEBk2bBhatmxpj6ERkQH7L+TpPI8MC9BbN05EVBtXyYwJd34nImPYJTB57LHH9JZmRURE6AQizZs3t8dQiMhI0sBkYHsu4yIi47BcMBGZw25Lubp06SIGIkOHDkVwcLC9uiYiE2XfLMOFHN38koHtWbqbiIyjklblYrlgIjKCXQKT7OxsBAUF2aMrIrKCAxd080t83FXo2pL5JURkHGnye6VGgCAIUCi4HJSIDLNLuWAGJUTORS+/pF1TvaUZRESGSJPfAUDDBHgiqoes5YLVajWuX6/aJ6Fp06ZQqWSvXkxEAA5IKnJxGRcRmUKa/A5UVeZSKWUYDBE5Dbt/BXrq1CnMnz8fXbp0gYeHB1q0aIEWLVrAw8MDXbp0wdNPP42TJ0/ae1hE9P9ybpYjNbtI59gABiZEZILaZlhZMpiI6mPXwOTf//43evbsiU8//RRnzpyBVquFIAjiLu9nzpzBJ598gl69euGll16y59CI6P8dSNNdxuXtpkR37l9CRCZwraW0OHd/J6L62G3t1Pz58/Hpp5+KJYO7dOmCAQMGoEWLFgCAq1ev4uDBgzh58iQ0Gg2WL1+O4uJifPjhh/YaIhFBP/E9MiyA+SVEZJLa3jMqWTKYiOphl8AkKSkJn3zyCRQKBbp27YpVq1Zh8ODBtV6bnJyMxx57DMePH8fHH3+MKVOmGLyWiKxPmvg+IIzLuIjINLVtxsqSwURUH7t8Dbpy5UoAQFhYGJKSkuoMNAYNGoSEhAS0b98eAPD555/bY4hEBCC3qBznJPkl3FiRiExVa/I7Z0yIqB52CUwSExOhUCjw4osvws/Pr97r/fz88MILL0AQBCQmJtphhEQEAAcl1bi83ZTo3qr+v7NERDXVVi6Yye9EVB+7BCZXr14FAPTu3dvo1/Tp0wcAcO3aNZuMiYj0SZdx9W0XAFfmlxCRiWqfMeFSLiKqm10+cXh4eAAAiouLjX5N9bXu7u42GRMR6ZMGJlzGRUTmUCgUenkmTH4novrYJTAJCwsDAPzyyy9Gv6b62upcEyKyrbyicpy9Js0vYeI7EZlHJQlMmPxORPWxS2AyevRoCIKAFStWYPfu3fVev2fPHqxYsQIKhQKjR4+2wwiJSJpf4uWmRA/mlxCRmaTLQDljQkT1sUtgsnDhQvj6+qKyshKjRo3CU089hSNHjkBb49sTrVaLI0eO4KmnnsLdd9+NiooK+Pr6YuHChfYYIlGjp5df0rYp80uIyGzSpVzMMSGi+thlH5OgoCB89913GD9+PCoqKvDZZ5/hs88+g5ubGwICAqBQKJCXl4eKigoAgCAIcHNzw+bNmxEYyKUkRPawX7KxIpdxEZElpAnwrMpFRPWx29ehI0aMwP79+9GvXz8IggBBEFBeXo6srCxcuXIF5eXl4vF+/frhwIEDGD58uL2GR9So5RdX4My1mzrHmPhORJaQlgxmYEJE9bHLjEm12267DQcPHsShQ4fwxx9/4MSJE8jPr/qWNiAgAN27d8fw4cMRGRlpz2ERNXoH03SXcXm6KtGjlb88gyGiBkElnTHhUi4iqoddA5NqkZGRDD6IHIh0GVe/dk3hpmJ+CRGZj8nvRGQqmwYm27dvx6+//oqLFy9Co9EgJCQEw4YNw+TJk+Hq6mrLronIBNLE9wFhXMZFRJZhuWAiMpVNApNr167hnnvuwcGDB/XOrV27FosXL8bWrVvRo0cPW3RPRCa4XlyB01el+SVMfCciy+hX5eKMCRHVzeprNTQaDcaPH48DBw6IyezSP2lpaRg5ciRyc3Ot3T0RmeiAZP8SD1cX9Az1l2cwRNRg6C/l4owJEdXN6oHJd999h0OHDkGhUKBjx45Ys2YNjh8/jtOnT2Pz5s0YOHAggKpZlXfffdfa3RORiQ5IEt/7tQ1gfgkRWUya/K5hVS4iqodNAhMAaNeuHQ4ePIhZs2ahW7duCA8Px6RJk5CYmIihQ4dCEARs3rzZ2t0TkYmkie/MLyEia3CVlAuuZGBCRPWwemBy9OhRKBQKPPvss/D399c7r1QqsXTpUgBAWloabt68qXeNM1EoFEb9GTZsmFX627RpE0aMGIEWLVrAw8MDbdu2xcMPP4zk5GSrtE+NS0FJBU5fLdQ5NrAD80uIyHIsF0xEprJ6YJKTkwMA6Nevn8Frap5jnolxSktLMWbMGDz00EP4/fffce3aNZSXl+PSpUv46quvMGTIEDHgIzLWwbR8CDW+xKzKL/GTb0BE1GCoJDkmTH4novpYvSpXaWkpFAoFfHx8DF7j5eUlPi4rK7P2EGTx+OOP44knnjB43tvb26L2H3nkEezYsQMAcPvtt2PBggUICQnB8ePH8eabb+L8+fNYsmQJWrZsiUcffdSivqjxkC7j6tOmKdxVSplGQ0QNiaukKlclywUTUT1k2WCxJkFoGN+gBAcHo3v37jZp+88//8Q333wDABg3bhx+/PFHKJVVHx4jIyMxfvx49O3bF5cuXcILL7yA+++/H02bNrXJWKhhSTyXo/N8QBiXcRGRdbBcMBGZiqV3nMA777wDAFCpVPj000/FoKRaUFAQli9fDgAoKCjA6tWr7T5Gcj6ZBaU4l12kcyw6PEim0RBRQyMtF8wcEyKqj81mTD799FMEBwdb5brFixdba1hO5+bNm9i9ezcAYPjw4QgNDa31unvvvRe+vr4oLCzEjz/+iEWLFtlzmOSE4s/ozpb4e7miF/cvISIr0Ut+Z1UuIqqHzQKTzz77rM7zCoXCqOuAxh2YHDp0CBUVFQCAoUOHGrzOzc0NAwcOxK5du3Do0CFUVlbC1dXVXsMkJxR3JlvneXSnZnpLL4iIzKWSlAtmYEJE9bHJUi5DO76b88dZbN68GV27doWXlxeaNGmCTp06YcaMGdizZ49F7Z48eVJ8HBERUee11efVajXOnTtnUb/UsFWotdh3XndjxWHhzWQaDRE1RK6SGRPu/E5E9bH6jImlH8SdVc0AAgBSU1ORmpqK9evX45577kFsbCz8/Ewvw3r58mXxsaFlXNVat24tPs7IyEDXrl3N7qs2WVlZ4uPy8nKUlpaa1D45joPp11FUrtY51r9NE4f7f1qzal9DqeBHjo33nBUJuoFIWXmlw73HOALec2Rv5eXlcg/BIKsHJnUtN2qIvLy8MH78eNx5552IiIiAj48PcnJyEB8fj88//xx5eXnYunUrJkyYgN9//93k5VU1N6CsqwQzoFuSuKioqI4ra1czsKnPgQMHcP78eZP7IMfw80UX1JwwDfUWcGRfnGzjMUZCQoLcQ6BGhvecZa5c1n2fSb+UgV27Lso3ICfAe47swZH3EJS9XLCzy8zMrHWH+7vuugvz58/HqFGjcPToUcTHx+Ozzz7D008/bVL7Nb89cXNzq/Nad3d38TG/laK6nCrQXWLRxd95lk0SkXOQpqyxWjAR1YeBiYVqC0qqNW/eHFu2bEFERAQqKyuxYsUKkwMTDw8P8XF1ErwhNafmPD09TeoHqFr+VZesrCz0798fADBgwAB06NDB5D5Iftk3y3ElOUnn2IwR/dC3jb88A6pDWVmZ+A1iTEyMzt8HIlvgPWc9x/9IRVzWJfF585YtMWJENxlH5Jh4z5G9OfKKFwYmNta+fXvcdddd2LFjB1JTU3HlyhWEhIQY/fomTZqIj+tbnlVcXCw+rm/ZV23qy2Gpyd3d3azgh+R34ITuFG4TDxUGdmwOldKxtzXy8PDgPUd2xXvOMp7uurP8Alz4+6wH7zmyh5orbByNY38SaSBqJqFnZmaa9NqawUJ9yek1ZzxMyRehxiX+rO7+JdGdghw+KCEi56NXLphruYioHvw0YgfVe7aYo2ZQc/r06TqvrT6vUqnQqVMns/ukhkut0SLxnG5gMiy8/o1QiYhMpb/BIssFE1HdGJjYQc1SwqYs4wKAyMhIMek9Pj7e4HUVFRXYv3+/+Bpurki1OZpRgMIy3TLBMdy/hIhsQH8fE86YEFHdGJjYWFpaGn7//XcAQIcOHdCqVSuTXt+kSRPceeedAIA//vjD4HKuH374AYWFhQCAiRMnWjBiasjiz+jOlkS0aIIWfky0JCLrU+rt/M4ZEyKqGwMTC/zyyy9Qq9UGz1+7dg2TJk0Sq2k98cQTetfExsZCoVBAoVBgyZIltbbz3HPPAaja0f3JJ5+ERqPROZ+bm4sXXngBQFWVsDlz5pjz41AjEHc2W+f50M6cLSEi2+CMCRGZilW5LDB//nxUVlZi0qRJGDRoENq1awdPT0/k5uYiLi4OK1euFDexGTJkCJ588kmz+rnjjjvwwAMP4JtvvsHPP/+Mu+66CwsXLkRISAiOHz+ON954A5cuVZVkXL58OZo2bWq1n5Eajpyb5TiRWahzjPklRGQr0uR3jZaBCRHVjYGJha5cuYIVK1ZgxYoVBq+ZNGkSVq9ebVF5trVr16KwsBA7duzAnj17sGfPHp3zLi4ueOWVV/Doo4+a3Qc1bAmSalzebkr0bcsglohsQy/5XcOlXERUNwYmFli3bh3i4+ORnJyMCxcuIDc3F4WFhfDx8UHr1q0xePBgzJgxA4MGDbK4L09PT2zfvh1ff/01YmNjcezYMRQUFKB58+aIjo7GU089ZZV+qOGSlgmO6hgENxVXcxKRbXApFxGZioGJBYYOHYqhQ4da1MbMmTMxc+ZMo69/6KGH8NBDD1nUJzU+Gq2ABGmZ4M5cxkVEtqO3jwmT34moHvy6lKgROHa5AAUllTrHmPhORLYknTHhBotEVB8GJkSNgLRMcKdgH7Ty95RpNETUGEjLBVdyxoSI6sHAhKgRiJPklwzlpopEZGPS5HcNZ0yIqB4MTIgauPziCvx9uUDnGPNLiMjWXPVmTBiYEFHdGJgQNXCJ53Ig1Pg84OmqRGQYywQTkW2xXDARmYqBCVEDJ80vGdwhEO4qpUyjIaLGgsnvRGQqBiZEDZhWK+jtX8JqXERkD9JywUx+J6L6MDAhasD+uVKIvOIKnWPDwplfQkS2p3ThjAkRmYaBCVEDtudMts7z9kHeaBPoJdNoiKgxcVVKN1gUIAgMTojIMAYmRA3Yryeu6jyPYZlgIrITafI7AGhYmYuI6sDAhKiBupRXgpNZhTrHRnZrIdNoiKixkZYLBqpmTYiIDGFgQtRA7TyRpfM80NsN/cMCZBoNETU2tc2YVLJkMBHVgYEJUQO1U7KMa0S35nrJqEREtlJbYMIEeCKqCwMTogYo60Yp/soo0Dl2d/eW8gyGiBql2pZysWQwEdWFgQlRAyRNevf1UGFQ+0CZRkNEjZGSMyZEZCIGJkQNkHQZ1/AuzeGm4l93IrKf2mZMWJWLiOrCTypEDUzOzXIcSs/XOXZ3d1bjIiL7YvI7EZmKgQlRA/P7yWuouYeZl5uS+5cQkd2paim2wXLBRFQXBiZEDYy0TPDtEcHwcFXKNBoiaqwUCoVecMIZEyKqCwMTogbkRkklks/n6RwbxWVcRCQT6XIuJr8TUV0YmBA1IL+fuqazVMJd5YLbOwfLOCIiasykCfBqlgsmojowMCFqQH6VLOOKCW8Gb3eVTKMhosZOWjK4kjMmRFQHBiZEDURRuRoJ53J1jt3djcu4iEg+KsmMCcsFE1FdGJgQNRB/ns5GhfrWMgmViwLDuzSXcURE1Ni56s2YcCkXERnGwISogZAu4xrcMQh+Xq4yjYaIiMnvRGQaBiZEDUBZpQZ7TufoHGM1LiKSG5PficgUDEyIGoD4szkordSIz10UwIiuXMZFRPKSzpgw+Z2I6sLAhKgB+PXEVZ3n/cMCEOjjLtNoiIiqKDljQkQmYGBC5OQq1Fr8ceqazrFR3VvKNBoiolukye/MMSGiujAwIXJySedzcbNMrXNsJMsEE5EDULlIAhOWCyaiOjAwIXJyvx7XXcbVu40/Wvh5yDQaIqJbVErJUi6WCyaiOjAwIXJiao0Wu07qBiasxkVEjkJ/HxPOmBCRYQxMiJzYwbR8XC+p1DnG/BIichTSnd+Z/E5EdWFgQuTEfjiaqfO8W4gvWgd4yTQaIiJdnDEhIlMwMCFyUsXlauw4rrvb+/heITKNhohIn1Ka/M7AhIjqwMCEyEntPHEVJRW6mypO7N1KxhEREemSJr9ruJSLiOrAwITISW05nKHzfGh4MwT7shoXETkOV8mMSSXLBRNRHRiYEDmhjPwS7L+Qr3Psvr6tZRoNEVHtWC6YiEzBwITICX1/5LLOcz9PV9zZJVim0RAR1Y7J70RkCgYmRE5GqxX0ApPxvULg4aqUaURERLVjuWAiMgUDEyInczA9Hxn5pTrH7usbKtNoiIgMUylZlYuIjMfAhMjJbDmsO1vSKdgHPUP9ZBoNEZFhKmm5YCa/E1EdGJgQOZHa9i65r28oFAqFgVcQEcmHye9EZAoGJkRO5FfuXUJEToTlgonIFAxMiJyIdBkX9y4hIkfGGRMiMgUDEyInkZFfguQLeTrHuHcJETkyJr8TkSkYmBA5iR+OZOo8594lROToXCXlgrmUi4jqwsDEQikpKXjttdcwYsQIhIaGwt3dHT4+PggPD8esWbOwd+9eq/SzZMkSKBQKo/7ExcVZpU9yHFqtgC1HMnSOce8SInJ0SkmOiYb7mBBRHVRyD8CZxcTEIDExUe94RUUFzp07h3PnziE2NhbTp0/HF198ATc3NxlGSQ3BoVr2LpnEvUuIyMFx53ciMgUDEwtcuXIFABASEoL7778f0dHRaNOmDTQaDZKTk/Huu+8iMzMT69evR2VlJb7++mur9Hv8+PE6z4eFhVmlH3Ic0qT3jsE+6MW9S4jIwTH5nYhMwcDEAhEREXjzzTcxadIkKJW6S2oGDhyIadOmISoqCmfPnsWmTZvw2GOPISYmxuJ+u3fvbnEb5DyKy9XYzr1LiMgJcYNFIjIFc0wssG3bNkyePFkvKKkWFBSEd999V3y+ZcsWew2NGhDuXUJEzspVMmPCpVxEVBcGJjZ2++23i4/Pnz8v40jIWUmXccWEN0Nz7l1CRE5Av1wwl3IRkWEMTGysvLxcfGxoZoXIkEt5te1dwqR3InIOKkm5YC7lIqK6MDCxsfj4ePFxly5drNLmiBEjEBwcDDc3NwQHB2PYsGFYtmwZrl+/bpX2yXGsT07Xee7rocLwLs3lGQwRkYn0c0w4Y0JEhjH53Ya0Wi2WLVsmPp88ebJV2v3999/Fxzk5OYiPj0d8fDyWL1+O2NhYTJgwwax2L1++XOf5rKxbCdjl5eUoLS2t42qyVHGFGt8e0t27ZEKvFhDUFShVyzQoOysrK6v1MZGt8J6zLq2mUud5pVrLfzskeM+RvdVczeNoGJjY0Pvvv4+DBw8CAO6991707dvXovZ69OiBe+65B/3790dISAgqKytx5swZfPXVV9i1axcKCgowadIk/PLLLxg1apTJ7bdu3droaw8cOMCcGRtLvKrAzfJby/8UENCuIh27dqXLNygZJSQkyD0EamR4z1nuzA0FgFvvY8WlZdi1a5d8A3JwvOfIHnJzc+UegkEKQRC44NMG4uPjMXz4cKjVagQHB+P48eMIDg42u72CggL4+/sbPL9y5Uo89thjAKr2VTl//jw8PExLkDal/Ozq1asRFBRkUvtkPK0A/O8vJbLLbv0/6d5Ui7kRXAZBRM4jtRBY8c+t70C9VAL+F6mp4xVEZGu5ubmYM2cOACAjIwOhoY6Tu8oZExv4559/MHHiRKjVanh4eGDz5s0WBSUA6gxKAGDevHk4dOgQ1qxZgytXruD777/H1KlTTeojIyOjzvNZWVno378/AGDAgAHo0KGDSe2T8RJT85C9/5jOsX+N7YNB7QNkGpE8ysrKxG8QY2JiTA62iUzFe866mmXcwIp/DovPFS4qjBhxp4wjcjy858jeHHnFCwMTK0tLS8OIESNw/fp1KJVKfPPNN1bZVNEY8+bNw5o1awBUzdiYGpiYEjG7u7vD09PTpPbJeF8duqLzPLy5D27vGtKoN1X08PDgPUd2xXvOcj5eumvZ1VqBv9M68J4je3B3d5d7CAYxMLGiK1euYPjw4bhy5QoUCgXWrl1rdiK6Obp27So+zszMtFu/ZF2p2UWIP5ujc2zm4LBGHZQQkW2VlZWhoKAAJSUl0Gist9RKU67Gy0Oais8VCuDcuXNWa78h0Gq1CAwMBABcunQJLi4smEqGKZVKuLm5wdfXFz4+Pg3ufmFgYiW5ubm46667cOHCBQDAihUrMH36dLuOgR9cG4Z1+9J1nvt7uXKndyKyCUEQkJWVhRs3btikfSW0aBeguzRJrW4kZQWNJAi3ZpE0Gg20LKlMdVCr1SgvL8fNmzehUCjQqlUrNGnSRO5hWQ0DEyu4ceMGRo4ciZMnTwIAli1bhieffNLu46juH6hKgCfnc6O0Et8f0S3b/EBkG3i6cXNOIrK+vLw8vaBEpbLeRwMXpYDAJrrf6Fqz/Yai+otF/m6oPhqNBtV1qwRBQGZmZoMKTvg3wEIlJSUYM2YMjhw5AgB4+eWX8cILL8gylpUrV4qPhw4dKssYyDKbUzJQUnFrGYXSRYHpg9rKOCIiaqgqKiqQk3Nr2WhwcDD8/f2hVFrvi5AKtQanr97UOdYhxA8uLpzhr6bValFYWAgA8PX1bXBLc8i6BEFASUkJ8vPzUVRUJAYn4eHhDeLecf6fQEYVFRWYOHEikpKSAAALFizA66+/bnI7sbGxUCgUUCgUWLJkid7548ePIzU1tc42Vq1ahdWrVwMAWrRogYkTJ5o8DpKXRisgVrKM6+5uLRDiz0RIIrK+oqIi8XFgYCACAwOtGpRU0Q9ABHCXAiJzKRQKeHt7IzQ0FD4+PgCqgpWaf5+dGWdMLPDggw+KG0XdcccdmD17Nk6cOGHwejc3N4SHh5vcz+HDhzFnzhzcfvvtGDVqFHr06IHAwECo1WqcPn1a3GARqEqKWrVqFby9vc37oUg2f5y6hsvXdXdEnhXVTp7BEFGDV1xcLD729fW1SR+1pT5y9zQiyykUCgQEBIgBSWFhoc3+HtsTAxML/PDDD+LjP//8Ez179qzz+rZt2yI9Pd2svjQaDf744w/88ccfBq8JDAzEmjVrMG7cOLP6IHl9mZSm87xHKz/0bdvUwNVERJapqKgAUPUBx1blQ2tbsMW4hMg6vLy8oFAoIAiC+PfZ2TEwcQKjR4/GmjVrkJycjKNHj+LatWvIy8uDIAgICAhAr169cPfdd2PmzJkNIlpujE5lFWL/hXydY7Oi2rHSGhHZTHX1J6VSabP3Gs6YENmOQqGAUqmEWq22aplvOTEwsYBgpXfXmTNnYubMmQbPBwcH45FHHsEjjzxilf7I8UhnS4J83DGmZ0uZRkNEZB0K5pgQkQmY/E4ks/ziCmz9S3en94cHtoG7iiWCici5ccaEiEzBwIRIZpsOXkKF+taGWm5KF0wdwBLBRERE1LgwMCGSUblag/XJ6TrHxvZqiWZNbJOISkRkT9Wl8Guy1jJoImp4GJgQyejbQxm4Vliuc2zW4DCZRkNEZH3S1VyNNSypuWeZuRU6iRo6BiZEMimr1OCTPbobZw5sH4AeoX4yjYiIyPqkeSacMGl4tFotTp48idjYWDzxxBOIjIyEu7u7GIjFxcUZ1c6wYcPE19T3x5CaAaBCoUCHDh2M6jsjI0OsUFdbAJmdnS0ev/fee+tsq6CgQKetP//8s87rly5dKl67c+dOo8bbULEqF5FMvjpwSW+25Jnhpm/ASUTkyDhj0vBt2LChzuqicrpw4QL27duHwYMH13ndV199JZbQrk1wcDA6d+6MM2fOYO/evXW2tXfvXp22EhMTcccddxi8PjExEUBV6e6oqKg6227oGJgQyaCkQo3P4nRnS4Z0DMKA9oEyjYiIyEYUCtQMRxprjkl9WwM4s5r/T11dXdGjRw9UVlbi+PHjZrXXr18/fPnllxaPy8PDA2VlZdiwYUO9gcmGDRt0XlObmJgYnDlzBjk5OTh9+jQiIiJqva5moKHRaMTntVGr1di/fz8AoFevXo1+Pzou5SKSwYbki8gt0t2l9Zm7OFtCRA0PZ0wavq5du+Kjjz5CcnIyCgsLcfjw4XqXO9XF29sb3bt3r/OPMcaPHw8A+O677+rcGf3IkSM4efIkAGDChAkGr4uJiREfJyQkGLyu+tz9998PANi/fz8qKysN9l1cXKzXfmPFwITIzorK1fg8/rzOsWGdm6Fv26YyjYiIyHb00gEYmTQ4/fv3x/z58zFw4EB4eHjIPRzRlClT4Obmhvz8fGzfvt3gddWzJZGRkQZnQQAgOjpafGxoFqS0tBSHDx8GACxYsACenp4oLi7GkSNHar2+ZjsMTBiYENndun3puF6i+83JvzhbQkQNlHT398a6lMuYqlwajQbr1q3D2LFjERISAnd3dwQGBmLIkCF47733UFpaarB9rVaLP//8E8899xyioqIQFBQEV1dX+Pv747bbbsNzzz2HS5cu2einc0wBAQEYM2YMgFvBh5RarcamTZsAANOmTauzvbZt26JNmzYADAcm1bMjTZo0QWRkJPr371/n9dXHFQqFTuDTWDEwIbKjwrJKrEq4oHNseJfm6BnqL8+AiIhsTK8qlzzDcHgZGRmIjIzEzJkzsX37dmRlZaGiogL5+flISkrCs88+i549e+Ls2bO1vv61117DnXfeiXfffRf79u1DXl4e1Go1bty4gWPHjuHdd99Fly5d8OOPP9r5J5NXdbCxfft25Ofn653ftWsXrl27BpVKhQceeKDe9qpnNS5evIiMjAy989XLuAYOHAilUokhQ4boHK9JEAQxkb5Lly4ICgoy8qdquBiYENnR2r1puFGqO1vyzF2dZBoNEZHtcSVX/fLz8zFq1CgcO3YM7u7ueOqpp7B582YcOnQIe/bswb///W94eXkhNTUVo0aNwo0bN/TaUKvVaNmyJZ544gls2LABSUlJOHz4MLZu3Yrnn38ePj4+KCkpwUMPPYRTp07J8FMa7/Tp0xgwYAD8/f3h4eGB0NBQTJgwAevXrzeYq2HImDFjEBAQgIqKCnz33Xd656tnUu6++240a9as3vbqyzOpngGpDkiq/5uUlKQ3W3jq1Cnk5eXptduYMTAhspMbJZVYk5imc2xU9xboFsJ9S4io4eI+JvV74YUXkJmZibZt2+LUqVNYsWIF7rvvPvTr1w/Dhg3Dm2++ib1798Lb2xsXLlzAW2+9pdfGnDlzcPHiRXzyySd4+OGHMXjwYPTp0wcTJkzA8uXLcerUKbRq1QplZWV48803ZfgpjXft2jUcPHgQN27cQHl5OTIzM/Hzzz9jxowZuO2220wKrNzc3DBlyhQA+su5bt68iZ9++gkAMH36dKPaqyvPpGaFrerrBg8eDBcXF+Tn5+Off/7RuZ75JfpYLpjITr5IvICb5WrxuUIBLOS+JUTkwLRaAddLDFczMkZBSSVKKzXicy/XcofNM2nq5QYXF8Ob99lCenq6uLzqo48+QlhYWK3X9e7dG08++STeeustxMbG4o033tA5365duzr7CQ0NxaJFi7Bw4UL8/PPPEAShzo0K5eDi4oI777wTo0ePRq9evRAYGIibN2/iyJEjWLlyJU6dOoWTJ0/i9ttvx8GDB8V8j/pMmzYNn332Gfbt24cLFy6gffv2AIAtW7agtLQUfn5+GDdunFFtRUREIDg4GNnZ2XqBSXWFLVdXVwwYMAAA4Ovrix49euDYsWNITEzUqSjGwEQfAxMiO8gvrsCXSbqzJWN7hqBziyYyjYiIqH7XSyrQ9/U/5B6G3Rz+z3AE+rjbtc8dO3ZAo9HAy8sLo0aNqvPamJgYvPXWW7hy5QouXbpU5wfzwsJC5OXloaSkRAwEvby8xHNpaWniB3RH8cMPP8Df31/veHR0NJ544gnMnTsX69atw7Vr17Bw4UL88MMPRrU7aNAgdOzYEampqdi4cSMWL14M4NYMyv33329SNbHo6Gh8//33OHXqFHJzc8XckOqlXb179xZ/10DVcq5jx44hISEBjz/+uHi8OjBp3749WrVqZXT/DRmXchHZwaqECyiuuPWNoYsCWHAnc0uIiBq7lJQUAEBJSQnc3NzEyl21/Rk7dqz4uqtXr+q1dfHiRcyfPx/t2rWDn58f2rdvj+7du6NHjx7o0aMHHn30UfHa3Nxc2/9wJqotKKnm6uqK1atXo3PnzgCAH3/8EZmZmUa3XZ0Ev3HjRgBVxQbi4uIAGL+Mq1r1Mq2ayevArUBDWl2r+nnNGZJLly6JVdJYjesWBiZENpZzsxzr9qXrHLvntlboGOwjz4CIiMhhZGdnm/W6kpISnec7d+5E165d8fHHH+PixYv1vr6u0sOOSqVSYfbs2eLz+Ph4o1/78MMPAwDOnTuH/fv3Y+PGjRAEAe3atRMT1I1Vc9lVdbBRM0iRtlf9PDMzE2lpaTqvk7bX2HEpF5GNfR5/Xmd9tdJFgac5W0JERKjauwQAAgMD8eeff8LFxbjvjGvmouTm5uKhhx5CSUkJfHx88Nxzz2HkyJHo0KED/Pz84ObmBgD4888/ceeddwJw3v1kunbtKj42Zcakffv2iIqKQlJSEjZs2IA9e/YAqApYTM216dWrF/z8/HDjxg1x+dY///wjliOWBiatWrVCu3btkJ6ejoSEBISFhTEwMYCBCZENnbt2E+uT03WOTerTCu2CvOUZEBGRCZp6ueHwf4Zb1Mbl6yUoLLtV+KOZjzuaNbFvHoexmnq52b3PwMBAAEBRURG6dOkCV1dXk9vYsmULCgoKAFQtcRo+vPb/Z7Xt4+FsLEnYnz59OpKSkrB27VqUlZUBqH9Txdq4uLggKioKO3bswNGjR1FUVCQGGhEREbXuRzJkyBCkp6cjMTERM2bMEAOakJAQdOzY0eyfqaFhYEJkI1qtgJd+PI5Kza1vpVQuCsy/g7MlROQcXFwUFieDF5erdT5M+nu52T3B3JH17t0bmzZtQnl5OVJSUjBo0CCT26guQxsQEGAwKAFu5bM4s5MnT4qPQ0JCTHrt5MmT8fTTT4tByYABAxAebl51zOjoaLFwQXJyst7+JVJDhgzBxo0bkZiYiNzcXJw+fVpsh25hjgmRjWw+nIFD6dd1jj0a0x6tA7wMvIKIqOGRfsMtcItFHWPHjhV/Rx9++KFZbajVVTNSZWVl0Gq1tV5TUlKit4+Hs1Gr1Vi7dq343NQlUP7+/rjnnnvg7u4Od3d3zJgxw+yxSDdaNCYwAYCzZ8/i+++/F5fScRmXLgYmRDaQV1SO/+08rXOsdYAnZ0uIqNFz0tQGm+ncuTPuueceAMC3336L9957r87r09LSsGnTJp1jnTpV/dtSUlJS6+7mGo0Gc+bMwZUrV6wzaBvYs2ePuBytNpWVlZgzZ464ueK4cePQunVrk/v55ptvUFZWhrKyMp3Svabq168fPD09AQBff/01Ll++DMDwDEjXrl0REBAAADobZDIw0cWlXEQ28MaOUygoqdQ59t8J3eHpppRpRERE8nCwPfwc0rvvvoujR48iPT0dzz77LH766SdMnz4d3bp1g7u7O/Ly8nDs2DH8+uuv+PPPPzFx4kQ8+OCD4usnT56Ml156CeXl5Zg1axb++usv3HXXXfDz88M///yDFStW4PDhw2Lyty3ExsbqPP/rr7/Ex7/++ivS09PF5x07dtSbWVi3bh3Gjx+P8ePHY9iwYejcuTN8fX1RVFSEw4cPY9WqVeIyruDgYLNnl6zFzc0NAwYMQFxcHC5cuACgammZob1hFAoFBg8ejG3btonXBwYGolu3bnYbszNgYEJkZftSc/HDEd1KIWN7tsSwzsEyjYiISD56S7k4ZaKnadOm+PXXXzF37lwkJiYiISFBTI6uja+vr87z0NBQfPbZZ5gzZw7KysqwfPlyLF++XOeaKVOmYO7cuXXmoFhi1qxZBs9JxzJjxoxalzwVFRXh66+/xtdff22wrR49euCbb77RqUoml5iYGHEvFACIioqq8/ohQ4Zg27ZtOs8tSeZviBiYEFlRWaUG/9l6QudYEw8VFo/tauAVREQNm/RjF8OS2jVv3hxxcXHYuXMnNm3ahOTkZFy9ehWVlZXw9/dHp06dMGjQIIwfP77W5T+zZs1C586d8fbbbyMpKQkFBQUICgpCr169MGvWLEyePFnnQ7SjeeGFF3DbbbchOTkZJ0+eRE5ODvLz8+Hu7o7mzZujX79+uO+++zBx4kQolY6x+kD6/6G+/VCky7y4jEufQuBXF2Sky5cvi+s5z549K65ppVve//0sPtx9TufYf+/pjmkD28o0IudWWlqKXbt2AQBGjBghruclspXGdM+dO3cOarUaKpXKpu/nWTdKkXOzXHze1MuNRUBq0Gq1KCwsBFA1E2LsPiZEgHl/j8+dOydWI8vIyEBoaKgth2gS3v1EVnI+pwifxZ3XOXZba39M7d9GphEREcmPMyZEZCwGJkRWIAgCXv7xOCo0t8o0Kl0UeHNiD7i4cP0oETVizDEhIiMxMCGygh+OZGL/Bd0ddWcPCUPXEF8DryAiahz0ZkwYlxCRAUx+J7LQ9eIKvLHjlM6xVv6eWDicOThERCw65Niys7ORnZ1t8uvc3NzM3jWdyBAGJkQWEAQBr/78D/KLK3SOvzahG7zc+NeLiEgB6c7v5Eg+/fRTLF261OTXtW3bVmdvEiJr4FIuIgt8deASfj6mu5Pu3d1a4M4uzWUaERGRY5HOmDDHhIgMYWBCZKbjl2/gtV9O6hxr4q7Cq+O5ZwkRUTXmmDi2JUuWQBAEk/9wtoRsgYEJkRlulFTiia8P61ThAoC37++Fln4Nd98DIiJT6c2YyDMMInICDEyITCQIAp7bcgwZ+aU6x+cMCcPd3VvINCoiIkfFcsFEZBwGJkQm+iLxAn4/eU3nWN+2TfHCqAiZRkRE5LikWzkxLCEiQxiYEJkgJT0fy389o3MswNsNHz/UG65K/nUiIqoPJ0yIyBB+kiIyUl5ROZ76+ig02lv/qioUwAdTbmNeCRGRAQpuZEJERmJgQmQEjVbAwm//wtXCMp3j8+/ohJjwZjKNiojI8elX5eKUCRHVjoEJkRFW/HkOiedydY4N6RiEBXdyd3cick4uLlUfATQajU2DBVblIrINQRCg0WgAAEqlUubRWAcDE6J6/HHyGj7cfU7nWHNfd3zwwG1QSrM6iYichJubG4CqDzfl5eU264f7mBDZRklJifilQvXfZ2fHwISoDnvP5eKJr4/o/EOqdFHg44f6IMjHXb6BERFZyNvbW3xcWFhos36kOSYC50yILCYIAvLz88Xnvr6+Mo7GehiYEBlwKD0fc9enoEKtu4ni8yM7I7JdgEyjIiKyDh8fH/FxXl4e8vLyxGUhtsQZEyLzCYKA4uJiXL58GUVFRQCqgv+af5+dmUruARA5omMZBZj15SGUVur+I31f31A8GtNeplEREVmPm5sbmjVrhpycHABAdnY2srOzoVQqrVpJS6MVoK649V6qAHCuJNtq7TcEarUaAMT/F0SGSHPCFAoFWrVqJeaMOTsGJkQSp7IKMX3tQRSVq3WOj+3ZEssn9WTpSyJqMAIDA1FRUYEbN26Ix6w9a1Kp0SLv5q0cFgUADxVLrFcTBAGlpaUAAE9PT/4bQ0arDkqaNGki91CshoEJUQ2p2UWYtuYAbpRW6hwf3qU53p/CZHcialgUCgVCQkIQEBCAgoIClJSUWD0wqdCqkZ6vW2q9bbOG80HKUlqtVgxMfHx8Gsw332QbSqUSbm5u8PX1bZD3CwMTov+XkV+Ch1cfQG5Rhc7x6E5B3NmdiBo0Dw8PtGjRwiZtp+UW440NF3SOzbh7INxUfE8FgNLSUpw+fRoA0LdvX3h6cjaJGi++K1jRxYsX8eyzzyIiIgLe3t4ICAhAZGQk3n77bZSUlFitn507d2LixIkIDQ2Fu7s7QkNDMXHiROzcudNqfTQ2WTdK8eAX+/U2UOwfFoBV0/rBw7Vh1AcnIrI3VS0zzWqttpYriaix44yJlfzyyy94+OGHdUoulpSUICUlBSkpKVi9ejW2b9+Ojh07mt2HVqvFo48+ijVr1ugcz8zMRGZmJrZu3Yo5c+Zg5cqVDW5qz5Yu5ZVg5pcHcfl6qc7xXq39sXZmJDzdGJQQEZmrttnmSg1LcxGRPn56tYKjR49iypQpKCwshI+PD9544w3s27cPu3fvxty5cwEAZ8+exZgxY3Dz5k2z+3n55ZfFoKR3797YtGkTDh48iE2bNqF3794AgNWrV+M///mP5T9UI5FwNgfjPt6LC7nFOse7tPTF+ln94ePO2J2IyBIqZS0zJhrOmBCRPn7qsoIFCxagtLQUKpUKu3btwqBBg8Rzd9xxBzp16oTnn38eZ8+exbvvvoslS5aY3MfZs2fxzjvvAAD69euHhIQEcR1qZGQkxo8fj6FDhyIlJQVvv/02HnnkEYtmZxo6QRCwMuEC3vr1NLSSL+46NPPGhtn94eflKs/giIgaENdaZvA10jdeIiJwxsRiBw8eRGJiIgBg9uzZOkFJtWeffRZdunQBAHz44YeorKzUu6Y+H3zwgVjnfMWKFXrJcV5eXlixYgWAqnro77//vsl9NBYlFWo8tekolu3UD0rCm/vgqzkDuas7EZGVKGuZMalkYEJEtWBgYqGtW7eKj2fNmlXrNS4uLpg+fToAoKCgAHv27DGpD0EQ8NNPPwEAIiIiMHDgwFqvGzhwIDp37gwA+Omnn3Q24KEql/JKcO+n+7D97yy9c6N7tMCPT0ShhZ+HDCMjImqYak1+51IuIqoFAxML7d27FwDg7e2Nvn37Grxu6NCh4uOkpCST+khLS8OVK1f02qmrn8zMTKSnp5vUT0NXnU9y+qpuno9CASwa2RmfPNQH3swpISKyKia/E5Gx+CnMQqdOnQIAdOzYESqV4V9nRESE3muMdfLkyVrbMaafsLAwk/pqKApKKnAhtxhpOcW4kFuE1Owi/H7ymt7SLV8PFT58sDdu7xwsz0CJiBo4pYsCCgVQcxKf5YKJqDYMTCxQVlaG3NxcAEBoaGid1zZt2hTe3t4oLi5GRkaGSf1cvnxZfFxfP61btxYfW9JPbWq29+JXe+EbcNak9m1NAwHZhRXIuF6KG6Xqeq9vF+iF18dEoJXLDZw7d8MOIyRTlZeXi3/Hzp8/D3d35v6QbfGes5GiPKhrzJK8tD4Ofh4sxQ4AGq0WObn5AIDv0/6AkuX+ycYK87PFx9X5y46CgYkFapb+9fHxqff66sCkqKjIZv14e3uLj03tp2ZQU58flj5iUtuOKBPA7a/LPQoiosbnR7kHQEQAgJycHLRr107uYYgYllugrOzWLuFubm71Xl/9zVtpaWk9V5rfT81v90zth4iIiIgaj2vXrsk9BB2cMbGAh8et6k0VFRX1Xl9eXg4AeqV+rdlPdR/m9FPf0q+0tDTExMQAAPbt22fSDAuRObKystC/f38AVaW5W7ZsKfOIqKHjPUf2xnuO7C0jIwODBw8GUH/usr0xMLFAkyZNxMfGLJsqLq7aXdyYZV/m9lPdhzn91Je/UlPr1q1Nup7IUi1btuQ9R3bFe47sjfcc2VvNL78dAZdyWcDDwwOBgYEA6k8cv379uhg0mDrTUPNNypQEdc5oEBEREZGzYGBioa5duwIAUlNT66xscPr0afFx9S7wpvYhbcfa/RARERERyYWBiYWGDBkCoGoJ1eHDhw1eFx8fLz6OiooyqY+wsDCEhITotVObhIQEAECrVq0cqsoCEREREVFdGJhY6J577hEff/nll7Veo9VqsX79egCAv78/br/9dpP6UCgUmDBhAoCqGZH9+/fXet3+/fvFGZMJEyZAoVCY1A8RERERkVwYmFiof//+iI6OBgCsWbMGycnJete8++674m7vCxYsgKurq875uLg4KBQKKBQKzJw5s9Z+Fi5cCKWyajOq+fPn65UCLi0txfz58wEAKpUKCxcutOTHIiIiIiKyKwYmVvDhhx/C09MTarUaI0aMwP/+9z/s378fe/bswbx58/D8888DAMLDw/Hss8+a1Ud4eDgWLVoEAEhJSUFUVBS+/fZbpKSk4Ntvv0VUVBRSUlIAAIsWLUKnTp2s88MREREREdkBywVbQe/evfHtt9/i4YcfRmFhIV566SW9a8LDw7F9+3ad0r+meuONN5CdnY21a9fi6NGjeOCBB/SumT17Nl5/nduZExEREZFzUQiCIMg9iIbi4sWL+PDDD7F9+3ZcvnwZbm5u6NixI+6//3489dRT8PLyqvV1cXFxYt7JjBkzEBsbW2c/O3bswKpVq3Do0CHk5uYiKCgIkZGRmDdvHkaNGmXtH4uIiIiIyOYYmBARERERkeyYY0JERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJERERERLJjYEJGuXjxIp599llERETA29sbAQEBiIyMxNtvv42SkhK5h0dOIDs7G9u2bcPixYsxatQoBAUFQaFQQKFQYObMmSa3t3PnTkycOBGhoaFwd3dHaGgoJk6ciJ07d1p/8OSUUlJS8Nprr2HEiBHifeLj44Pw8HDMmjULe/fuNak93nNUl8LCQnzzzTd49tlnMXToUHTs2BF+fn5wc3NDcHAwhg0bhrfeegt5eXlGtbdv3z48/PDDaNu2LTw8PNCiRQuMHDkSmzZtsvFPQg3FCy+8IP47q1AoEBcXV+9rZH+fE4jq8fPPPwu+vr4CgFr/hIeHC+fOnZN7mOTgDN0/AIQZM2YY3Y5GoxFmz55dZ3tz5swRNBqN7X4YcnjR0dF13iPVf6ZPny6Ul5fX2RbvOTLG77//btQ9FxQUJPz66691tvXqq68KLi4uBtsYM2aMUFpaaqefjJzR0aNHBZVKpXPf7Nmzx+D1jvI+x8CE6nTkyBHB09NTACD4+PgIb7zxhrBv3z5h9+7dwty5c3WCk8LCQrmHSw6s5ptbmzZthBEjRpgVmLz44ovi63r37i1s2rRJOHjwoLBp0yahd+/e4rl///vftvthyOF16NBBACCEhIQICxYsELZs2SIcPHhQSE5OFt577z2hVatW4r3y4IMP1tkW7zkyxu+//y60bt1amD59uvDhhx8KP/zwg5CcnCwkJSUJ3377rXD//fcLSqVSACC4ubkJf/31V63tfP755+I91aFDB2HNmjXCwYMHha1btwq333670fctNV4ajUaIjIwUAAjBwcFGBSaO8j7HwITqVP2to0qlEvbt26d3/q233hJv1ldffdX+AySnsXjxYuGXX34Rrl69KgiCIKSlpZkcmJw5c0b8Bqhfv35CSUmJzvni4mKhX79+4j3LmbzGa8yYMcK3334rqNXqWs/n5OQI4eHh4j0YHx9f63W858hYhu61mn788Ufxnps4caLe+by8PMHPz0/8AicnJ0evj3Hjxhn1QZMar/fff18AIERERAj//ve/671fHOl9joEJGXTgwAHxZp43b16t12g0GqFLly4CAMHf31+oqKiw8yjJWZkTmDz++OPia5KTk2u9Jjk5WbzmiSeesOKIqaH55ZdfxHtl/vz5tV7De46srXPnzuKSLqnly5eL99KmTZtqfX1GRoY48zJ69GhbD5eczMWLFwUfHx8BgBAXFye8+uqr9QYmjvQ+x+R3Mmjr1q3i41mzZtV6jYuLC6ZPnw4AKCgowJ49e+wxNGqEBEHATz/9BACIiIjAwIEDa71u4MCB6Ny5MwDgp59+giAIdhsjOZfbb79dfHz+/Hm987znyBaaNGkCACgrK9M7V/3vrq+vL+69995aXx8aGorhw4cDAHbv3o2bN2/aZqDklJ588kkUFRVhxowZGDp0aL3XO9r7HAMTMqi6Yo23tzf69u1r8LqaN35SUpLNx0WNU1paGq5cuQIA9b7ZVp/PzMxEenq6rYdGTqq8vFx8rFQq9c7zniNrO3PmDP766y8AVR8Ca6qoqMDBgwcBAIMGDYKbm5vBdqrvt/LycqSkpNhmsOR0vvvuO2zbtg0BAQF45513jHqNo73PMTAhg06dOgUA6NixI1QqlcHrar65Vr+GyNpOnjwpPpb+gy7Fe5KMER8fLz7u0qWL3nnec2QNJSUlOHfuHN577z0MHToUarUaALBw4UKd686ePQuNRgOA9xuZrqCgAAsWLAAALF++HEFBQUa9ztHe5wx/2qRGraysDLm5uQCqpo3r0rRpU3h7e6O4uBgZGRn2GB41QpcvXxYf13dPtm7dWnzMe5Jqo9VqsWzZMvH55MmT9a7hPUfmio2NNbgEGgBefPFFPPTQQzrHeL+RJZ5//nlcvXoVUVFRmD17ttGvc7T7joEJ1armmlUfH596r68OTIqKimw5LGrETLknvb29xce8J6k277//vrhs5t577611uSrvObK22267DatWrUJkZKTeOd5vZK7ExESsXr0aKpUKn3/+ORQKhdGvdbT7jku5qFY1k/LqWudazd3dHQBQWlpqszFR42bKPVl9PwK8J0lffHw8XnzxRQBAcHAwPvvss1qv4z1H5rrnnntw/PhxHD9+HAcPHsSmTZswceJE/PXXX3jwwQexbds2vdfwfiNzVFRU4NFHH4UgCHjmmWfQvXt3k17vaPcdAxOqlYeHh/i4oqKi3uurk0g9PT1tNiZq3Ey5J2smNfOepJr++ecfTJw4EWq1Gh4eHti8eTOCg4NrvZb3HJnL398f3bt3R/fu3REZGYkHHngAP/zwA9avX48LFy5gwoQJiI2N1XkN7zcyx5tvvonTp0+jTZs2ePXVV01+vaPddwxMqFbV5QwB46briouLARi37IvIHKbck9X3I8B7km5JS0vDiBEjcP36dSiVSnzzzTeIiYkxeD3vObK2adOm4f7774dWq8VTTz2F/Px88RzvNzLV6dOn8b///Q8AsGLFCp2lVsZytPuOOSZUKw8PDwQGBiIvL08nMao2169fF2/WmolRRNZUMymvvnuyZlIe70kCgCtXrmD48OG4cuUKFAoF1q5diwkTJtT5Gt5zZAsTJkzAd999h+LiYvz6669iEjzvNzLV+++/j4qKCrRv3x4lJSX45ptv9K45ceKE+PjPP//E1atXAQDjxo2Dt7e3w913DEzIoK5duyIxMRGpqalQq9UGSwafPn1afFxbyU0ia+jatav4uOY9Vxvek1RTbm4u7rrrLly4cAFA1TeL1RvD1oX3HNlCs2bNxMcXL14UH4eHh0OpVEKj0fB+I6NUL626cOECHnzwwXqv/+9//ys+TktLg7e3t8O9z3EpFxk0ZMgQAFVTd4cPHzZ4Xc29AKKiomw+LmqcwsLCEBISAkD3nqtNQkICAKBVq1Zo166drYdGDuzGjRsYOXKkWKt/2bJlePLJJ416Le85soXMzEzxcc3lMG5ubujfvz8AIDk5uc71/tX3o7u7O/r162ejkVJj4GjvcwxMyKB77rlHfPzll1/Weo1Wq8X69esBVCX73X777fYYGjVCCoVCXHpz+vRp7N+/v9br9u/fL36rM2HCBJPKJlLDUlJSgjFjxuDIkSMAgJdffhkvvPCC0a/nPUe2sHnzZvFxjx49dM5V/7tbWFiIH374odbXX758GX/88QcA4M4779TJEaDGJTY2FoIg1PmnZkL8nj17xOPVgYXDvc8JRHWIjo4WAAgqlUrYt2+f3vm33npLACAAEF599VX7D5CcVlpamnjvzJgxw6jXnDlzRlAqlQIAoV+/fkJJSYnO+ZKSEqFfv37iPXv27FkbjJycQXl5uTBixAjxHluwYIFZ7fCeI2N9+eWXQmlpaZ3XvPfee+I9GRYWJqjVap3zeXl5gp+fnwBAaNu2rZCbm6tzXq1WC+PGjRPb2LNnj7V/DGpgXn311XrvF0d6n2OOCdXpww8/RFRUFEpLSzFixAi89NJLuP3221FaWopvvvkGq1atAlC1NvbZZ5+VebTkyPbu3YvU1FTxeW5urvg4NTVVr3TmzJkz9doIDw/HokWLsGzZMqSkpCAqKgovvPACOnTogPPnz2P58uU4evQoAGDRokXo1KmTTX4WcnwPPvggdu3aBQC44447MHv2bJ0kUCk3NzeEh4frHec9R8ZasmQJnn32WUyaNAlDhgxBhw4d4OPjg5s3b+L48eP46quvkJSUBKDqflu1ahWUSqVOGwEBAVi+fDkee+wxXLx4EQMGDMDLL7+MHj164MqVK/jggw+wZ88eAFX3+LBhw+z9Y1ID5FDvczYLeajB+PnnnwVfX18x4pb+CQ8PF86dOyf3MMnBzZgxw+A9VNsfQzQajfDII4/U+drZs2cLGo3Gjj8dORpT7jX8/7fThvCeI2O0bdvWqHstNDRU2LVrV51tLV68WFAoFAbbGD16dL2zM0SCYNyMiSA4zvscc0yoXuPGjcPff/+NZ555BuHh4fDy8oK/vz/69esnRtEdO3aUe5jUSLi4uGDNmjXYvn07JkyYgJCQELi5uSEkJAQTJkzAjh07sHr1ari48O2NrIP3HBnjt99+w7vvvot7770XPXv2RPPmzaFSqdCkSRN06NABkyZNwpdffokzZ87grrvuqrOtpUuXYu/evXjooYfQunVruLm5ITg4GHfddRe+/vprbN++XWdjPCJLOcr7nEIQBMGmPRAREREREdWDX+8QEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQEREREZHsGJgQETmoJUuWQKFQQKFQyD0UpKeni2OJjY2VeziNTmxsrPj7T09Pt7i9tWvXQqFQoEePHhAEwfIBOqjNmzdDoVAgPDwclZWVcg+HiOrBwISIyAgajQa+vr5QKBTo06dPndcKgoDAwEDxg+TatWvrvH7dunXitZ999pk1h+2QLl++jCVLliA6OhrNmjWDq6srPD09ERoaipiYGCxYsABbtmzBjRs35B5qg1RUVISXXnoJALB48WKHCHxrGjFiBBQKBRYsWGBxW5MmTULXrl1x7tw5rFixwgqjIyJbYmBCRGQEpVKJwYMHAwCOHTuGwsJCg9f+888/yM/PF58nJibW2XbN8zExMRaO1LF98cUX6Ny5M5YuXYq9e/ciNzcXarUaZWVlyMzMRGJiIj766CPcf//9mDdvntzDbZA++ugjXLt2DV27dsV9990n93B03Lx5E/Hx8QCAcePGWdyei4sLXn75ZQDAsmXLUFxcbHGbRGQ7DEyIiIxUHTRotVrs27fP4HXVgYZSqdR5Xt/1QUFB6Nq1q3h8yZIlEAShwSy12bRpEx599FGUlJTAw8MDjz/+OLZu3YqUlBQcOnQIP/30E1555RX07t1b7qE2WKWlpXjvvfcAAM8884zDzZb89ttvqKiogK+vL4YOHWqVNqdMmYJWrVohJycHK1eutEqbRGQbDEyIiIxUczYjISHB4HXV5+6//34AwPnz53HlypVar83OzsbZs2cBAEOGDHG4D4rWotFo8K9//QsA0KRJExw4cACffvopJkyYgL59+6Jfv34YP348XnvtNRw5cgQnT57EvffeK/OoG56NGzciLy8P7u7uDjdbAgC//PILAGDkyJFwdXW1SptKpRJTpkwBAHz88cfQarVWaZeIrI+BCRGRkSIjI+Hh4QGg7lmQ6nP33XcfOnToUOf1jWUZ14EDB3D16lUAwLx589CzZ886r+/SpQsmT55sj6E1KmvWrAEAjBkzBv7+/vIORkKr1WLHjh0AgLFjx1q17alTpwIA0tLSsGfPHqu2TUTWw8CEiMhI7u7u6N+/PwDg0KFDKC8v17smLS0NmZmZAKpmQIYMGQLAvMCkvqpc7dq1g0KhwMyZMwEAZ86cwdy5c9GuXTu4u7ujefPmmDhxIvbv31/vz6bRaPDpp59iwIAB8PX1hZ+fH/r06YN33nmn1p/TVJcuXRIfd+zY0ex2aqsOtnnzZgwfPhzBwcHw9PREREQE/v3vf6OgoMCoNvfs2YMZM2agffv28PLygq+vL3r06IFFixYZnOmydhvXr1/Hiy++iIiICHh6eiI4OBjDhw/H5s2bjerfGBcvXsSBAwcAVCWFGxIXFyf+juPi4iAIAtasWYMhQ4YgMDAQvr6+6N+/PzZs2KDzuoqKCnz++ecYOHAgAgIC0KRJE0RFReG7774zanz79+9Hbm4uXFxcMHr0aL3zhw8fxuzZsxEeHg5vb294eHigdevW6Nu3L5588kn8/PPPBpc99unTB2FhYQCqlhQSkYMSiIjIaP/5z38EAAIAIT4+Xu98bGysAEDo1KmTIAiC8MUXXwgAhB49etTaXp8+fQQAgq+vr6BWq3XOvfrqq2JftWnbtq0AQJgxY4bwww8/CF5eXuL1Nf8olUrhm2++Mfgz3bx5U4iOjq71tQCEPn36CEeOHBGff/nll0b+tm75/vvvxdcvWLDA5NdXS0tL0xnHI488YnDcISEhwqlTpwy2VVpaKjzwwAMGXw9A8Pb2Fn7++WebtnHy5EkhJCTE4OtnzZolfPnll+LztLQ0s3531fcmAOH8+fMGr9uzZ4943a5du4Rx48YZHNvTTz8tCIIg5OfnCzExMQave+ONN+od34svvigAEKKiovTOvffee4KLi0udv2cAws2bNw22X/3/qVWrVkb8tohIDgxMiIhMsGvXLvFD0Ouvv653fvbs2eKHSUEQhFOnTgkABIVCIeTn5+tcW1hYKCiVSgGAcPfdd+u1ZWxg0qdPH8HDw0MICwsTPv74Y2H//v1CcnKysGTJEsHDw0MMfLKzs2ttZ8KECWI//fv3FzZt2iSkpKQI27dvF+6//34BgBAZGWlRYHLhwgXx9R4eHsLu3btNbkMQdAOT6jHVHPOOHTuEyZMni9e0adNGKCws1GtHq9UKY8aMEa8bN26csGHDBiEpKUlITk4WPvzwQ6FNmzYCAMHNzU04dOiQTdq4ceOG0Lp1a7GNKVOmCDt27BBSUlKEr7/+WujXr5/e79/cwKT63gwMDKzzupqByYABAwQAwtSpU4Xt27cLhw8fFjZt2iR07txZvOb3338Xxo8fL6hUKuHxxx8Xdu3aJRw+fFhYs2aNGHAplUrhxIkTdfbbrVs3AYCwbNkynePHjh0Tg5KwsDDh3XffFXbv3i0cPXpUSEhIEL744gvhoYceEry9vesMTN577z1xzOfOnTP+F0dEdsPAhIjIBDdv3hRUKpUAQBg5cqTe+fDwcAGAsHbtWvFYUFCQAED45ZdfdK799ddfxQ9Kb775pl5bxgYmAIS+ffsKN27c0Ltm48aN4jXvvfee3vlt27aJ50ePHi1UVlbqXbN06VKdb6XNCUwEQRDGjh2r005kZKSwePFiYceOHUJOTo5RbdQMTOoa82uvvSZes2jRIr3zq1atEgAIrq6uws6dO2vtKz8/X/ywXNu3+NZo47nnnqvzHqioqBBGjBih8zObG5h06dJFACDceeeddV5XMzABIHzwwQd612RlZQlNmjQRAAjNmjUTFAqF8OOPP+pdVzOoqJ5dqU3NwFUawLzyyivizNPVq1cNtlFQUCBoNBqD5+Pj48U+6ppBJCL5MDAhIjJR9bfXTZo00Vl+de3aNfGDz9mzZ8Xj1TMSzz//vE47L7/8snj93r179foxJTA5duxYrddotVrxW+uJEyfqnR89erQAQHB3dxcyMzNrbUOj0Qjdu3e3ODDJycnR+eZf+ic8PFx46qmnhMOHDxtso2ZgYuyYAwIChPLycvGcVqsVOnToIAAQnn322TrHvGPHjlr/n1qjjfLycqFp06YCAKFnz56CVqut9fUZGRmCq6urxYFJdSDx4IMP1nmddMbEkOnTp+vM9BhSvcSrd+/eBq/56KOPxBkRqblz59b7emNUz14aCgKJSH5MficiMlF1kvrNmzfx119/icerywQ3b94cnTp1Eo9XJ8BLSwxXJ757eHggMjLS7PH06NHDYJUrhUIh7gty4cIFnXMajQZxcXEAqnbbDgkJqbUNFxcXzJgxw+zxVQsKCkJSUhJWrVqFPn366J0/e/YsPv74Y/Tt2xfTpk2rdzM8Y8ecn5+PI0eOiOdOnjyJ8+fPA0C9JXNrFiRITk62ahuHDx/G9evXAQAzZswwWOQgNDQUI0aMqLOP+pSXl+PmzZsAgKZNmxr9ugceeMDguV69epl0nfT+q6m6THBtmyq2bNkSQNXv/ODBg3UPuA4BAQHi4+oKcUTkWBiYEBGZKDo6Wnxcs6pW9ePqQER6/eHDh1FaWgqgqoJR9YesAQMGwM3NzezxRERE1Hm++gNZ9QfTaufPn0dJSQkA1BsYVVcjs5Srqyvmzp2Lw4cPIzMzE9988w2ee+45REdH6+xbsXHjRowfPx4ajcZgW6aM+fjx4+LjlJQU8fGgQYPEClS1/fHx8RGvrflh1hpt1ByTrX//+fn54mNTApPw8HCD52qWGzbmOun9V62+3d4ffPBBuLq6ory8HFFRURg3bhw+//xznDhxwqTNR2v+3NwBnsgxMTAhIjJRdHS0+O22MYFJnz594OXlhcrKSrF076FDh1BWVgbA8v1LvLy86jzv4lL1Vi/9kF/zw2pwcHCdbTRv3tzM0RkWEhKCKVOm4O2330ZCQgKuXr2Kf//73+J4//zzzzpLu5oy5po/a3Z2tlnjrQ7irNWGPX//1fvvABCDY2PUdW9V/38y9jpDGxtW7/bepEmTWnd7j4iIwKZNm9C0aVOo1Wps27YNjz/+OHr06IHg4GBMmzatzn2FqtX8ua21eSMRWZdK7gEQETmbgIAAdOvWDSdOnBA/EBUWFuLYsWMA9AMTV1dX9O/fH3FxcUhISMDtt9/ucBsrOsKO8wEBAXjzzTchCAKWLVsGoGqPkocffrjW680dc80A7ZdffkG7du2Mel3N4MEabdRk69+/v78/VCoV1Gq1TkDkCLZt2wag7t3eJ02ahOHDh+Pbb7/Fb7/9hsTEROTk5CA3NxcbN27Exo0bMWPGDKxdu1YnYKqp5s/taJtLElEVBiZERGaIiYnBiRMnkJOTg9OnTyMtLQ1arRY+Pj5iTkdNQ4YMQVxcnBiQVOebuLq6YtCgQXYde7WaS1uuXbtW57X1nbemuXPnioFJamqqwetMGXPN/ILAwEDxsb+/P7p3727yGK3RhvT3X9dyKEt//wqFAkFBQbh69aqY1+IIau72Xtsyrpr8/Pzw6KOP4tFHHwUAnDp1Cj/99BNWrFiBK1euYN26dejduzcWLFhQ6+tr/txt2rSx0k9ARNbEpVxERGaQ5plUBxwDBw6EUqnUu756FmX//v0oLy/Hvn37AFQt8/L29rbDiPV16NABnp6eAKqWltWlvvPWVDOhva6ZBFPGXDNwqBk4JiUlmTNEq7TRo0cP8bE9fv/V/Z09e9bitqxl//79yMnJMbjbe126dOmCF198Efv37xf/DtW1y3zNn7tbt27mDZiIbIqBCRGRGWouv0pISBBnQKTLuKoNGjQISqUSxcXFiI2NxY0bN/TasTeVSoVhw4YBAHbt2oWsrKxar9NqtVi3bp1FfZmSpFwzsbx9+/YGrzN2zE2bNtWpAtanTx+EhoYCAFatWiXm+pjCGm307dtXnDXZsGGDwd9RZmYmdu3aZXL7UtXB9JkzZwwmottbdTWuQYMGISgoyKw2WrduLc425ebmGryuOrhzdXWttSocEcmPgQkRkRlCQkLQoUMHAMCePXvED9M1Z1Jq8vX1Fb+xfuutt8TjcueXPP744wCqysnOmzev1ipY//vf/3QqSJlj586dmDx5Mo4ePVrndfn5+Xj66afF5xMmTDB4bV1jXrZsmTjmRx55BO7u7uI5FxcXvPTSSwCqSthOnz4d5eXlBvspLCzExx9/rHPMGm24u7tj1qxZAIC//voLb7/9tt7r1Go15s6di4qKCoNtG6v63tRqtTrBn5yqA5OxY8cavGbr1q0oKCgweD7j/9q7n5Cm/ziO4y/nckKOQVnMLpFiUBJb5aJaYQZKJB66GuSgRIU6VGAE/TkE7hbBoINB39VhWQsCPQSL0IPUoX8GjSQIjBWBBoHeBvb5HSTR8rv8pf4+9uv5AE/7fD+fz7542IvPn3cup5GREUnSpk2bXNt9vwVvz549c25KA7BycMYEAH7T/v379f79e3369EnS9ArE7t27Xdvv27dPw8PDM/UcPB6P6wrLf6W5uVnNzc3q7+9Xf3+/otGoTp8+rerqao2NjSmZTOru3buqra1d1I/Zb9++KZ1OK51OKxQKqampSZFIRBUVFSopKdHY2JiGhobU09Mzc+PVzp07C9ZPqa2tnXfOt27dUm9vr6TpGiAXL1786dmOjg49evRIDx48UDqd1suXL9Xe3q5du3YpEAhoYmJCIyMjGhwcVF9fn0pLS3Xy5Mkl7+PSpUu6d++ePn78qHPnzml4eFjHjh3T+vXr9e7dO129elXPnj1b9PuXpL1792rdunUaHx/X48ePVV9fv6j+Fmt0dFTZbFZS4fMl165d09GjR9XU1KSDBw9qy5YtCgQC+vr1q54/f65EIjFz41ZHR8e8fUxOTs6smBw5cmSJvwmAJWO3viMA/Llu3rw5p3J5JBIp2L63t3dO+1AoVLD9Qiu/t7a2FuyntbXVSDIbN26c9/OJiQkTjUZdK7Jv377dvHjxYlGV34eGhszq1atdx/jxr6GhwXz58uWnfmZXfnccx8RiMdc+KioqTDabdZ1TPp83nZ2dpqio6Jfzma8i+VL18ebNGxMMBl2fi8VixnGcRVd+N8aYs2fPGkmmsrLStc3syu8DAwOu7RY6J7f/40LV3merq6v75bv1eDzmypUrrn0kk0kjyXi9XvP58+eC4wGwh61cAPCbftyG9avVjx+3ednexvWd3+/X4OCgEomEIpGIysrK5Pf7FQ6HFY/H9eTJkzm3Wv2OaDSq8fFx9fX16cyZM6qrq9OGDRvk8/nk9Xq1Zs0a7dixQ+3t7RoYGFAmk5lz85Ubx3GUSqV04MABrV27Vj6fT5s3b1ZXV5ey2ay2bt3q+uyqVat0/fp1vX79WqdOndK2bdsUCARUXFysQCCgcDis48eP6/79+3r79u2y9VFTU6NsNquuri5VV1fL5/OpvLxc9fX1SqVSchxnYS95Adra2iRNbz/7XlPHlkLV3me7c+eOenp61NLSonA4rGAwKK/Xq7KyMtXU1Kizs1OvXr3ShQsXXPtIpVKSpldLgsHg0n0JAEuqyJh/cSIRAACLRkdHZ84ROI6jWCxmd0J/oMOHD+vhw4c6ceKEbty4YWUOk5OTKi8vVz6fVyaTUUNDw7KN9eHDB1VVVWlqakpPnz4tuN0SgF2smAAA8BeJx+PyeDy6ffu2crmclTlkMpmC1d6XUnd3t6ampnTo0CFCCbDCEUwAAPiLhEIhtbS0KJ/PKx6PW5mD3+/X5cuXlUgkVFJSsmzj5HI5JZNJFRcXz7kND8DKxK1cAAD8Zbq7u1VVVaXS0lIZYwoWslwOjY2NamxsXPZxcrmczp8/r8rKyjkFLQGsTJwxAQD8MThjAgD/X2zlAgAAAGAdKyYAAAAArGPFBAAAAIB1BBMAAAAA1hFMAAAAAFhHMAEAAABgHcEEAAAAgHUEEwAAAADWEUwAAAAAWEcwAQAAAGAdwQQAAACAdQQTAAAAANYRTAAAAABYRzABAAAAYB3BBAAAAIB1BBMAAAAA1hFMAAAAAFhHMAEAAABgHcEEAAAAgHUEEwAAAADWEUwAAAAAWPcPkMARciNb5W0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -112,7 +112,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AACbRElEQVR4nOzdd3gU1foH8O/spmx6Dy0QCCGEKkgndAUVREAF9IoUQbGjF0VFr6A/UVGBi3pFEQTRKyCodATEAKH3XkJCEkISSnovuzu/P3KzZFvq7s5k9/t5njzuzp6ZOYtDmHfOed8jiKIogoiIiIiIyASF1B0gIiIiIiL5YsBARERERERmMWAgIiIiIiKzGDAQEREREZFZDBiIiIiIiMgsBgxERERERGQWAwYiIiIiIjKLAQMREREREZnFgIGIiIiIiMxiwEBERERERGYxYCAiIiIiIrMYMBARERERkVkMGIiIiIiIyCwGDEREREREZBYDBiIiIiIiMosBAxERERERmcWAgYiIiIiIzHKSugNkfcXFxTh37hwAICgoCE5O/N9OREREJBdqtRp37twBAHTq1AkqlUriHunjnaMDOHfuHHr27Cl1N4iIiIioGkePHkWPHj2k7oYeTkkiIiIiIiKzOMLgAIKCgnSv9+3bh1atWknYG7JnRUVF2LdvHwBgwIABcHNzk7hHZK94rZEt8DojW0lISMCAAQMA6N+3yQUDBgdQOWehcePGCAkJkbA3ZM+KiooQGBgIAAgJCeE/rmQ1vNbIFnidka0UFRXpXssx15RTkoiIiIiIyCwGDEREREREZBYDBiIiIiIiMosBAxERERERmcWAgYiIiIiIzGLAQEREREREZjFgICIiIiIisxgwEBERERGRWQwYiIiIiIjILAYMRERERERklvzWniYiIiKUlpYiPz8fBQUFKC0thVarlbpLDker1SIgIAAAcP36dSgUfM5KpimVSqhUKnh7e8PDwwOCIEjdJYtiwEBERCQjoigiPT0d6enpUnfF4YmiCDc3NwCARqNh0EZmqdVqlJSUICcnB25ubmjRooVdBZgMGIiIiGQkLS0NOTk5etsEQYBSqZSoR46t4kmxkxNvmcg8jUYDURQBAEVFRbh+/TpCQ0PtZqSBVz8REZFMFBcX6wULAQEB8Pb2hqurq93ceDQkWq0Wubm5AABvb2+7emJMlqXVapGfn4+bN29Co9GgqKgIBQUF8PT0lLprFsErn4iISCays7N1r4ODgxEcHAyVSsVggUjmFAoFvL290bhxY922vLw8CXtkWQwYiIiIZKKwsFD32tfXV7qOEFGdeHp66gL8oqIiiXtjOQwYiIiIZEKj0QAony/PnAWihkehUOj+7lb8fbYHDBiIiIiIiMgsBgxERERERGQWAwYiIiIiIjKLAQMREREREZnFgIGIiIiIiMxiwEBEREQOa+XKlRAEAYIgIDExUeruEMkSAwYiIiIiO6TVanHx4kWsXLkSL774Inr06KFbNVwQBOzZs6dGxxk0aJBun+p+zKkcmAmCgNatW9fo3MnJyVAqlXr7Vg7sbt++rdv+6KOPVnms7OxsvWP9/fffVbb/4IMPdG23b99eo/7aKyepO0BERERElvfTTz9h8uTJUnfDpGvXruHgwYPo27dvle3++9//QqvVmv08ODgYbdu2xZUrV7B///4qj7V//369Y8XExGDIkCFm28fExAAAlEoloqKiqjy2vWPAQERERA5r8uTJsr2pri9RFHWvnZ2d0alTJ5SVleHcuXN1Ol737t2xYsWKevdLpVKhuLgYP/30U7UBw08//aS3jykDBgzAlStXcOfOHVy+fBmRkZEm21UOADQaje69KWq1GocPHwYA3HPPPfD29q72e9kzTkkiIiIiskPt27fHl19+iUOHDiE3NxcnTpyodtpOVTw8PNCxY8cqf2rikUceAQD8+uuvKC0tNdvu5MmTuHjxIgBg1KhRZtsNGDBA93rfvn1m21V8NnbsWADA4cOHUVZWZvbcBQUFRsd3VAwYiIiIiOxQz5498corr6B3795QqVRSd0dn/PjxcHFxQWZmJrZu3Wq2XcXoQo8ePcyOGgBA//79da/NjRoUFRXhxIkTAIAZM2bAzc0NBQUFOHnypMn2lY/DgIEBAxERETmwmlRJ0mg0+PHHH/Hwww+jadOmcHV1RUBAAPr164eFCxeiqKjI7PG1Wi3+/vtvvPHGG4iKikJgYCCcnZ3h6+uLLl264I033sD169et9O3kyd/fHyNGjABwNygwpFarsXr1agDA008/XeXxQkND0aJFCwDmA4aK0QQvLy/06NEDPXv2rLJ9xXZBEPQCEkfFgIGIiIjIjOTkZAwaNAjPPPMMtm7dirS0NJSWliIzMxMHDhzAzJkz0blzZ8TGxprc/8MPP8R9992HBQsW4ODBg8jIyIBarUZOTg7OnDmDBQsWoF27dvjjjz9s/M2kVREEbN26FZmZmUaf79y5E7du3YKTkxOeeOKJao9XMQqQlJSE5ORko88rpiP17t0bSqUS/fr109temSiKugTqdu3aITAwsIbfyn4xYCAiIiIyISMjAw899BDOnz8PV1dXvPzyy1i3bh2OHTuG6OhovPPOO3B3d0dcXBweeugh5OTkGB1DrVajSZMmePHFF/HTTz/hwIEDOHHiBDZs2IBZs2bB09MThYWF+Mc//oFLly5J8C1r7vLly+jVqxd8fX2hUqkQEhKCUaNGYdWqVWZzAcwZMWIE/P39UVpail9//dXo84qRhwcffBBBQUHVHq+6PIaKEYOKQKHivwcOHNBLDgeAS5cuISMjw+i4joxVkoiIiBoQrVZEVqH5RFF75OfuAoXCfI1/a5kxYwZSUlLQvHlzREdHG60dMGjQIIwdOxb9+/fHtWvX8Nlnn2HevHl6baZNm4Y5c+bA2dlZb/u9996LUaNG6XIMUlJS8PHHH5udoiMHt27dwq1bt3TvU1JSkJKSgk2bNmH+/PlYv3492rVrV6Njubi4YPz48ViyZAl++uknPP/887rP8vLysHHjRgDAxIkTa3Q8wzyGp556Sve+csWjinZ9+/aFQqFAZmYmLly4oJewzfwFYwwYiIiIGpCswlJ0++gvqbthUyfeux8Bnq42PWdiYqLuyfdnn32GVq1amWzXtWtXvPTSS/jss8+wcuVKo4ChZcuWVZ4nJCQEb775Jl577TVs2rQJoihWuQCaFBQKBe677z4MHz4c99xzDwICApCXl4eTJ0/iu+++w6VLl3Dx4kUMHjwYR48e1eUTVOfpp5/GkiVLcPDgQVy7dg1hYWEAgPXr16OoqAg+Pj4YOXJkjY4VGRmJ4OBg3L592ygvoaLikbOzM3r16gUA8Pb2RqdOnXDmzBnExMQwYKgGpyQRERERGdi6dSs0Gg3c3d0xdOjQKttW3FSmpqZWm8Ccm5uLhIQEXLhwAefPn8f58+fh7u6u95nc/P777/jrr7/wz3/+E/fddx+6dOmC/v37Y8aMGThz5gwmTZoEoHwE4rXXXqvxcfv06YPw8HAAwM8//6zbXjHKMnbs2FpVd6oYPbh06RLS09N12yumKHXt2lX3Zw3AbB5DRcAQFhaGZs2a1fj89owBAxEREZGB48ePAwAKCwsRGBgIpVKpq6Zk+PPwww/r9rt586bRsZKSkvDKK6+gZcuW8PHxQVhYGDp27IhOnTqhU6dOeO6553RtK9/oyoWvr6/Zz5ydnbFs2TK0bdsWAPDHH38gJSWlxseuSH6uCBiSk5OxZ88eADWfjlShImConLQM3A0ADKsdVbyvPKJw/fp1XdDH6kh3MWAgIiIiMnD79u067VdYWKj3fvv27Wjfvj2+/vprJCUlVbt/VSVa5crJyQlTp07Vvd+7d2+N950wYQIA4OrVqzh8+DB+/vlniKKIli1b6kYAaqry9KGKIKBy8GB4vIr3KSkpupEdTkcyjTkMREREDYifuwtOvHe/1N2wKT93F5ufU6PRAAACAgKwadMmeHp6QqGo/jlr5VyH9PR0/OMf/0BhYSE8PT3xxhtv4IEHHkDr1q3h4+MDF5fy7/X333/jvvvuAwCjij0NRfv27XWvazPCEBYWhqioKBw4cAA//fQToqOjAZQHErXN5bjnnnvg4+ODnJwc3TSjCxcu6Mq2GgYMzZo1Q8uWLZGYmIh9+/ahVatWDBjMYMCA8qHCL7/8Elu3bkVycjJcXV3RunVrjBs3Di+99JLefLe6SkxMxJIlS/DXX38hPj4eBQUF8PLyQmRkJB588EE8//zzCA4OtsC3ISIie6ZQCDZPAHZEAQEBAID8/Hy0bdsWfn5+NQoYKlu/fj2ys7MBlE/Vuf9+04GeqXUIGpr6JGpPnDgRBw4cwA8//IDi4mIA1S/WZopCoUBUVBS2bduGU6dOIT8/XxcAREZGmlxPoV+/fkhMTERMTAwmTZqkCzSaNm2qy68gTknC5s2b0blzZyxcuBBXrlxBYWEhsrKycPz4ccyaNQtdu3ZFXFxcvc7x008/oX379vjss89w8uRJ5OTkQK1WIysrC4cOHcKcOXPQrl077Nq1y0LfioiIiOqja9euAICSkhKcOnWqTse4cOECgPKVjc0FC8DdfImG7OLFi7rXTZs2rdW+48aNg6urqy5Y6NWrFyIiIurUj4q8A41Gg0OHDhmtv2CoYntMTAzS09Nx+fJlveNQOYcOGE6dOoXx48cjNzcXnp6emDdvHg4ePIjdu3fj2WefBQDExsZixIgRyMvLq9M5Dhw4gMmTJ6OoqAgKhQJTpkzBhg0bcPToUaxfv15XLiwzMxOjRo3CtWvXLPb9iIiIqG5Gjhype2q+ZMmSOh1DrVYDAIqLi6HVak22KSwslPXaCzWhVqvxww8/6N7XdiqPr68vRo8eDVdXV7i6uuqqLtWF4QJuNQ0YYmNj8dtvv+mmhHE6kj6HDhhmzJiBoqIiODk5YefOnZg9ezb69OmDIUOGYOnSpfjss88AlF9ECxYsqNM5PvnkE90via+++go//PADRo0ahR49euCxxx7Dpk2b8M9//hNAeaLTwoULLfPliIiIqM7atm2Lxx9/HEB5WdFFixZV2T4hIQGrV6/W29amTRsA5UGBqdWMNRoNpk2bhtTUVAv12vKio6N106pMKSsrw7Rp03SrVI8cORLNmzev9XnWrFmD4uJiFBcX44UXXqhrd9G9e3e4ubkBAH755RfcuHEDgPkRg/bt28Pf3x8AdPd9AAMGQw6bw3D06FFd1Dl16lT06dPHqM3MmTOxYsUKXLp0CYsXL8a7775rtFJjdQ4ePAigfC7kiy++aLLN+++/rwsUDh06VKvj27vYW3m4cjMPvcMCEOTFObtERGQ733zzDY4dO4bExES88cYb2LRpEyZOnIgOHTrA1dUVGRkZOHPmDP7880/8/fffGDNmDJ588knd/uPGjcPs2bNRUlKCKVOm4PTp0xg6dCh8fHxw4cIFfPXVVzhx4oQu6dcaVq5cqff+9OnTutd//vknEhMTde/Dw8ONnsT/+OOPeOSRR/DII49g0KBBaNu2Lby9vZGfn48TJ05g6dKluulIwcHBWLx4sVW+R025uLigV69e2LNnj27WRtOmTXWLwhkSBAF9+/bFli1bdO0DAgLQoUMHm/W5IXDYgGHDhg2611OmTDHZRqFQYOLEiXjnnXeQnZ2N6OhoDBs2rFbnKS0tBQCzK0QCgI+PDwIDA5Genq5rT8D+q+mYsvIoyjQiAj1d8N9pvdG2sZfU3SIiIgfh7++PP//8E1OmTMGhQ4ewb98+o0W+KvP29tZ7HxISgiVLlmDatGkoLi7G/PnzMX/+fL0248ePx7PPPltljkN9mLvHAWDUl0mTJpmcupOfn49ffvkFv/zyi9ljderUCWvWrKnyfsdWBgwYoFvLAQCioqKqbN+vXz9s2bJF773cVtuWmsNOSaqoyevh4YFu3bqZbTdw4EDd67pE/xULmVS1cmNubq5uoZaK9gSsP5GMMk35XML0/FK8/MtJFJaqJe4VERE5kkaNGmHbtm3YtGkTnnrqKYSFhcHd3R3Ozs4ICgpC3759MXPmTOzdu1dvHn+FKVOmICYmBqNHj0ZQUBCcnZ3RpEkTPPjgg1i7di3WrFkDpVIpwTermbfeeguLFi3CuHHj0LFjRzRq1AjOzs7w9PRE69atMX78eKxbtw6nTp3SK60qJcPpRNWt52A4XYnTkYwJYkMt+FtPQUFBSE9Pxz333KM3PGcoKytLN7dt7NixJucgVuX777/XreC4ZMkSPP/880Zt3nzzTXzxxRcAgF27dln8KcONGzd08wljY2N1cyrlbuIPR7Ev9o7etnHdQ/DZ4/dI1COqTlFREXbu3AkAGDZsmG4eKZGl2eu1dvXqVajVajg5OTWY39X2TKvVIjc3F0D56EFty6qSY6rL3+OrV6/qKkMlJycjJCTEml2sNYecklRcXKx7ol/d/xA/Pz94eHigoKAAycnJtT7XM888g/3792PVqlV46aWXcOLECTzyyCNo0qQJrl+/jp9++kk3Perdd9+tU7BQkdBjTlpamu51SUlJg1lFsrTMeDTh1+M30K25Nx7p3FiCHlF1KkriGb4msjR7vda0Wq2uSou5qjpkO5X/H/D/B9WGKIrQarU1vucqKSmxco/qxyEDhsolUj09PattXxEw5Ofn1/pcSqUSP/74I0aOHImPP/4Yy5Ytw7Jly/TaDB48GLNnz67zyEJtqhEcOXIE8fHxdTqPrd1JVwIwnkP4r40XkJtwFsH28UDRblU1z5fIkuzpWgsICICbmxsEQdA92SZ5qMs9ADkmtVqNoqIiFBUV6dZ1qE7Fg2y5csixtcpPoyqWZa+Kq2t5dZ66Ppm/dOkSVq1ahXPnzpn8/NChQ1i+fHmtllJ3BBozk+VKtQJWxipRxoc9RERERFbnkCMMKpVK97omVYkqhonqMkc2JiYGI0eORE5ODkJDQ/HRRx9h6NCh8Pf3x61bt7Bp0yb861//wpo1a7Bv3z7s3Lmz1qW8qpsqlZaWhp49ewIoXz2xdevWtf4eUliaeAzIN71gXkqhgJPaUPzrQSaJy0lxcbHuae+AAQP0/q4RWZK9XmvXr1+HRqOBk5OTUcUdsj2tVqsbWfD09LRpDsPt27dx+/btWu/n4uJS51WSyTLu3LkDNzc3eHp6VllYpzK5z/5wyIDBy+tuac6aDDEWFBQAqNn0pcpKSkrw5JNPIicnB40bN8bhw4fRuPHdufchISF48cUXMXDgQHTv3h2pqamYNGlSrZeIr01ijKura4NJDjQcYVAqBGi0dzf+ciwF/SMa4aFOTWzcM6oJlUrVYK41atjs6VpTKBS6ufJMsJUXhUJh0/8n3377LT744INa7xcaGqq3tgJJQxAEKBSKGv9uqpjNIlcOGTCoVCoEBAQgIyOj2oThrKwsXcBQ25UL//zzT900o1deeUUvWKisQ4cOmDBhApYtW4YTJ07gzJkzuOceVgJSa/UjhpcGh2PpvngUV5qLNOu3s+jYzAfN/d2t2hdRFHEnvwTJmYVIzizC9cxCXM8sRF5xGbTi/5KbREArihAr/dfT1QmNfVQI9nZFY28VGv3vp7GPCp6uDvnXj4iIiBoYh71jad++PWJiYhAXF6crfWVK5WSVdu3a1eocFcukA8C9995bZdtu3brpkqEvX77MgAHQG00AgPZNvPDhIx0x67ezum15xWq8vPoU1k3vAxen+j/5EUURSRmFOJ+ag3MpOYi7lY/rmYVIzirUC1QswdPVCe2beqNv6wBEhQfinhBfi3wHIiJq+ObOnYu5c+dK3Q0iAA4cMPTr1w8xMTEoKCjAiRMn0KtXL5Pt9u7dq3td3UqBhioHIWp11QuOlZWVmdzPkZVp9G/QnRQKjO0egoPx6dhwOlW3/UxyNib+cASjuzTD4MhgNPKu2VxmjVZEYkYBzqfk4HxKeYBwITUXecW2WRwuv0SNowmZOJqQiX//dRXuLkr0aOmvCyDaNfGGUsGVJomIiEhaDntnOnr0aHzyyScAgBUrVpgMGLRaLVatWgUA8PX1xeDBg2t1jsrLo8fExODhhx8227ZyYCKHZdXlQG2QxOCkFCAIAj4a0wlnbuQgIb1A99nha5k4fC0TANCpmQ+GRAbjvnbB6NjUBwqFgPwSNS6n5eJSWi4upuXhUlourtzMQ1GZxqbfqSqFpRrsjb2Dvf9brM7X3RkPdWyCCb1boENTH4l7R0RERI7KYQOGnj17on///oiJicHy5csxadIk9OnTR6/NggULdNOKZsyYAWdnZ73P9+zZowsiJk2ahJUrV+p9ft9998Hd3R2FhYVYsmQJJkyYgE6dOhn1Zfv27fjjjz8AAM2aNUOXLl0s9C0bNrXBIjnOyvLpOp6uTvj6H10x5puDKFUbTxM697/RgsW7ryLIyxXuLkokZRRapE8uSgVC/NzQ3N8dzf3dEOSpgpOyfBRAIQhQCIAglL8GgOzCMtzMLcat//3czClGbg1HMLILy7D66HWsPnodXZr74qleLfBw56Zwc1Fa5LsQERER1YTDBgwAsHjxYkRFRaGoqAjDhg3D7NmzMXjwYBQVFWHNmjVYunQpACAiIgIzZ86s9fF9fX3x9ttv4/3330deXh769u2LV155BUOHDoWfnx9u3bqFjRs34vvvv9dVxfj0009ZGeN/ygxHGCpNz+nQ1AdfPtEFb64/W+UUojt5dVs5McDDBR2b+aBDU2+EBXmiuZ8bWgS4o5GXCop6ThMqKtXgVm4xrqXn42BcBg7EZ+BSWtULNJ1Ozsbp5Gz835aLeLxbc/yjVwuEB9euahcRERFRXTh0wNC1a1esXbsWEyZMQG5uLmbPnm3UJiIiAlu3btUrxVob7733HjIzM7F48WLk5+fjk08+0U2FqszZ2Rkff/wxJkyYUKfz2CO1YQ6DUj+QerBjE/RqFYDoK7ex+/Jt7LtyB3kltc8/CPJyRadmPujYzAcdm3qjU4gPGnurIAjWyR9wc1GiZaAHWgZ6YEhkIwBAZkEpDsVn4EB8Og7FZ+hNt6ost1iNHw4k4IcDCejYzBvuLvL6K6zVapGVqYS/q4iC4DQMbt8ETXzso9wlERGRo5LX3YYERo4cibNnz2Lx4sXYunUrbty4ARcXF4SHh2Ps2LF4+eWX4e5e95KdgiBg0aJFurKp+/fvR1JSEgoLC+Hp6Ynw8HAMHDgQ06dP50IrBsoMqiQ5K41v4P08XPDovSF49N4QlGm0OJaYib8v3cbfl2/jmsFNt1IhoHWQB9o18a7044VgL+kXfPL3cMGIzk0wonP5mhLJmYX47eQNrDmajJu5xSb3OZ9S9aiEdATE5wk4tvESsPESwoI80C88EFHhgegdFgAfN+fqD0FERESyIYiiKFbfjBqyGzdu6NaQiI2NRZs2bSTuUc2EvbMVlWOGra/2q1Xyb0J6AY4lZkIhCIhs7IXwYE+onBvW/H+1Rovdl2/jv0euY9//kqEbMoUAdA7xxeS+LTGqS1OrjeKQ/SsqKsLOnTsBAMOGDbObhduuXbuGkpLyqZQRERFQKhvW7yx7o9VqkZtb/nDG29ubU4apWlqtFrGxsRBFEa6urggLC6vRflevXtU9OE5OTq7Vory24PAjDCRPWq0IgwEGXdJzTbUK9ECrQA8L9sr2nJQKPNChMR7o0BhJGQX45eh1rDt+A5kFpVJ3rU60Ynk+xmtrT8PdRYlhHUwvZkjkqNzd3XUBQ3Z2NgICAiTuERHVRn5+PiqexdvLgwyAAQPJlOEqz4B+0rMjCg3wwDsPtcM/h0bgQFw6UrJNT1WSUllpKc5euISEPAGJhS7IqSIhfdu5NAYMRAZ8fX2RlZUFALh9+zY0Gg28vb3h6urKETkiGdNqtcjPz8fNmzd12+qa/ypHDBhIlgxLqgK1H2GwV65OSl2ytNwUFRUhIOsiBkPEfff3x7WsUuyPS8eBuHQcS8zSK4ObaKFSt0T2RKVSwcfHBzk5OQCAjIwMZGRkQBAETk+SSMXCq3fuNPxpoWQ9Go0GlWf5u7m5wcOjYc9yqIwBA8mSYUlVALr1DqhhUCoEdA7xRecQX7w4KBzRl29jyspjus8TM0xXgiJydE2aNIGLi4veDaooirobV7IdURRRVFQEoPwGkKM8VBNubm5o0aKFXV0vDBhIlgxLqgKAE5PNGrSWBvkk2YVlyC4sha+7i0Q9IpInQRAQGBgIb29v5Ofno6CgAKWlpbr1esh2tFqtLmDw9PRk0jOZpVQq4ebmBi8vL3h4eNhVsAAwYCCZMpXDYKqsKjUcIX5uUCoEaCr9v03MKEQXBgxEJrm4uMDf3x/+/v5Sd8VhFRUV4fLlywCAbt262VUSK1FtMFQmWSozNcLAHIYGzVmpQIif/j+2SZyWREREJHu8AyNZ0rBKkl1qGaA/LcncitZEREQkHwwYSJZMJj0zYGjwWgbor5qexEpJREREsseAgWTJVFlVJQOGBs8w8ZkjDERERPLHgIFkSW0wwuCsFOyu4oAjMpySxBwGIiIi+WPAQLJkmPTMkqr2wXCEIauwDDmFZRL1hoiIiGqCd2EkS4ZlVblom32oKK1aGRdwIyIikjcGDCRLhiMMziypahdMlVZlwEBERCRvvAsjWTLMYWCFJPsRapDHkJjOSklERERyxoCBZMlwHQYGDPajlUFpVY4wEBERyRsDBpIlo6RnTkmyG0YjDAwYiIiIZI13YSRLTHq2X60CDackMWAgIiKSMwYMJEtGSc8sq2o3Qg2mJLG0KhERkbzxLoxkySjpmSMMdiPEz92otGpSJkcZiIiI5IoBA8mSWsscBnvl4qRAM1/90qoJnJZEREQkW7wLI1kqMxhhcGaVJLtiuOJzUgZLqxIREckVAwaSJbVRlSQGDPakpWFpVY4wEBERyRYDBpIloypJTHq2KyytSkRE1HDwLoxkiWVV7VurQMPF2zgliYiISK4YMJAsGU1J4giDXTEcYcgsKEVOEUurEhERyRHvwkiWjJKeOcJgV5r7ucMwjz2J05KIiIhkiQEDyRLLqto3FycFmvnpl1bltCQiIiJ54l0YyZLhwm0sq2p/WhomPrNSEhERkSwxYCBZMpySxKRn+2MUMHBKEhERkSwxYCBZ4pQk+2e4eBtHGIiIiOSJd2EkS8brMHCEwd4YLt7G1Z6JiIjkiQEDyRLLqto/wxGGjIJS5BaztCoREZHc8C6MZMko6Zk5DHbHZGnVdI4yEBERyQ0DBpKlMq70bPdMlVZNYOIzERGR7DBgIFnilCTHYFgpKYmJz0RERLLDuzCSJa707BgMAwaOMBAREckPAwaSJZZVdQyhrJREREQke7wLI1kyTHpmWVX71IprMRAREckeAwaSJaMRBgYMdik0gKVViYiI5I4BA8mS0QgDpyTZpeb+biytSkREJHO8CyNZMiyryqRn++TqpERTX/3SqolMfCYiIpIVmwQM+/btw759+1BUVFTjfYqLi3X7keNhWVXHwTwGIiIieXOyxUkGDRoEhUKBs2fPon379jXaJyUlRbefWq22cg9JboynJHGEwV6FBrgj5urd94mslERERCQrNntsK4pi9Y0suB81bGUGSc/OzGGwW4ZrMXBKEhERkbzI9i5M+78bRqVSKXFPSAosq+o4jFZ7ZsBAREQkK7INGJKSkgAAPj4+EveEpGCUw8ApSXarZaD+4m3p+aXIY2lVIiIi2bBKDsP169dNbk9LS4Onp2eV+5aUlCA+Ph7/+te/IAgCOnToYI0uksyptYYjDLKNbamemvu7QxCAyrMPkzIK0bEZHxYQERHJgVUChlatWhltE0URw4YNq/WxJk6caIkuUQNjFDBwhMFuuTop0dTHDSnZd6uoJaQXMGAgIiKSCasEDOYSlWuTwKxSqfDqq6/imWeesVS3qAEp0zDp2ZG0CvTQCxiYx0BERCQfVgkYVqxYofd+ypQpEAQB//d//4dmzZqZ3U8QBKhUKjRp0gRdu3atdvoS2S8mPTuW0AB37I+7+z6Bqz0TERHJhlUChkmTJum9nzJlCgBg9OjRNV6HgRybmmVVHYrh4m0cYSAiIpIPmyzcFh0dDcB0bgORIVEUUcaF2xxKKNdiICIiki2bBAwDBw60xWnITmi0xrkurJJk31qZKa3qpXKWqEdERERUgXdhJDuGFZIA5jDYuxC/8tKqlSVlMI+BiIhIDmwywlDZmTNnEBMTg2vXriEvLw8ajabK9oIgYPny5TbqHcmByYCBU5LsmsrZuLQq12IgIiKSB5sFDFeuXMEzzzyDw4cP13gfURQZMDggw1WeASY9O4Kmviq9gOFOXrGEvSEiIqIKNgkYUlJSMGDAAKSnp+vWYvD09ISfnx8UnJtOBgwTngFOSXIEQV6ueu/v5JdI1BMiIiKqzCYBw7x583Dnzh0IgoBp06bhjTfeQEREhC1OTQ2QYUlVAHDiCIPdC/I0CBjyGDAQERHJgU0Chj///BOCIGDixIlYunSpLU5JDZjhom0A4MwcBrtnOMKQnl8qUU+IiIioMps8tk1NTQUATJw40RanowauzEQOA8uq2r9AjjAQERHJkk3uwvz8/AAAvr6+tjgdNXAsq+qYjHIYGDAQERHJgk0Chu7duwMAYmNjbXE6auAMpyQpBEDBgMHuGU9JKoHWRPBIREREtmWTgOHVV1+FKIrMX6AaMUx6ZsKzYzAMGNRaETlFZRL1hoiIiCrY5E5s6NCheOuttxAdHY0XXngBZWW8CSDzDMuqOnN0wSEEeLgabWNpVSIiIunZpErSqlWr0K5dO/Tt2xdLly7F5s2b8fjjjyMyMhLu7u7V7s9kacdiuHAbRxgcg4uTAr7uzsguvPtA4U5eCSIaeUnYKyIiIrJJwDB58mQIwt2nxGlpafjqq69qtG9FOVZyHIZJzyyp6jiCPF2NAgYiIiKSls0e3YqiWOcfciyGZVVZUtVxmEp8JiIiImnZZIQhISHBFqchO2FYJcmJIwwOg2sxEBERyY9NAobQ0FBbnIbshGGVJGfmMDgMrsVAREQkP7wTI9kxzGFQskqSwzAKGDgliYiISHIMGEh2jKYkMWBwGEGckkRERCQ7NpmSVNnVq1exatUqHDp0CDdv3kRRURF27NiB8PBwXZvz58/j+vXr8PDwwMCBA23dRZKYYdIzpyQ5jkAmPRMREcmOzQIGrVaLWbNmYfHixdBqtbrqR4IgoLS0VK/t9evX8fDDD8PJyQkJCQlo1qyZrbpJMmA4JYlJz47DcIQho6AUao2Wa3EQERFJyGb/Ck+fPh2LFi2CRqNB06ZN8fjjj5ttO3z4cLRq1QoajQbr16+3VRdJJgwXbnNmWVWHYZjDIIpAZkGpmdZERERkCza5E9u9ezeWL18OAJg9ezYSExPx66+/VrnP2LFjIYoi/v77b1t0kWSkjGVVHZa/hwsMU1aY+ExERCQtmwQMS5cuBVA+cvDRRx9BqVRWu0/Pnj0BABcuXLBq30h+DMuqcjqK41AqBPh7MPGZiIhITmxyJ3bo0CEIgoCpU6fWeJ+QkBAAwM2bN63VLZIpwxEGZ1ZJcihci4GIiEhebBIw3L59GwDQsmXLGu/j7OwMAFCr1dboEsmYhuswODTDgCE9nzkMREREUrJJwODh4QEAuHPnTo33uXHjBgDA39/fKn2qLCkpCTNnzkRkZCQ8PDzg7++PHj164PPPP0dhYaFFz/XXX39h8uTJCA8Ph4eHB3x8fBAREYHHH38cS5YsQX5+vkXP1xAZJT1zSpJD4VoMRERE8mKTsqphYWE4efIkLl68iKFDh9Zon+3btwMAOnToYM2uYfPmzZgwYQJyc3N12woLC3H8+HEcP34cy5Ytw9atW/XWiaiLrKwsTJkyBRs3bjT6LDc3F1evXsVvv/2GPn36oEuXLvU6V0NXxrKqDi3Qy0XvPZOeiYiIpGWTR7fDhg2DKIr4z3/+A61BQqspFy9exMqVKyEIAoYPH261fp06dQrjx49Hbm4uPD09MW/ePBw8eBC7d+/Gs88+CwCIjY3FiBEjkJeXV+fz5OTkYOjQobpgYcyYMfjvf/+Lw4cP49ixY/j9998xY8YMXd6GozMcYXBiWVWHYjzCUCxRT4iIiAiw0QjDq6++ii+//BLx8fF4/vnn8c0338DJyfSpd+3ahSlTpqC4uBgBAQG6G3drmDFjBoqKiuDk5ISdO3eiT58+us+GDBmCNm3aYNasWYiNjcWCBQswd+7cOp3nlVdewYkTJ+Dq6opff/0VjzzyiN7n3bt3x5gxY3TrVDg6o6RnjjA4FOYwEBERyYtNHt02atQI3377LQBg+fLlaN26NV588UXd54sXL8Zzzz2HDh064MEHH0RqaioUCgVWrlwJT09Pq/Tp6NGjiImJAQBMnTpVL1ioMHPmTLRr107Xx7KyslqfZ//+/fjpp58AAB999JFRsFCZIAhmAylHYlxWlQGDI2GVJCIiInmx2VyPp556CqtXr4a3tzeSk5Px3XffQRDKbwSXLVuG5cuX49KlSxBFEZ6enli3bh1GjBhhtf5s2LBB93rKlCkm2ygUCkycOBEAkJ2djejo6Fqf5+uvvwYA+Pj44OWXX659Rx2Q2nDhNk5JciiGU5JyispQoubIGxERkVRseic2btw4xMXF4YMPPkC3bt2gVCohiqLup0OHDnjnnXcQFxeHMWPGWLUv+/fvB1Bewalbt25m2w0cOFD3+sCBA7U6R2lpqS5vYejQoVCpVAAAjUaD5ORkJCYmoriY87MNcUqSYzMcYQA4LYmIiEhKNn90GxAQgH/96184evQoiouLcfv2baSlpaGkpATnzp3DvHnzEBwcbPV+XLp0CQAQHh5e5TSgyMhIo31q6syZM7qAoFOnTsjNzcVrr72GwMBAtGjRAq1atYKPjw+GDh2KPXv21P5L2CmNwZQkJUcYHIqPm7NRkJjOaUlERESSkXTCvEKhQGBgoM3PW1xcjPT0dACotjKRn58fPDw8UFBQgOTk5Fqd5+LFi7rXWq0W3bt3x9WrV/XalJaW4q+//sLu3bvxySef4K233qrVOYC7a1aYk5aWpntdUlKCoqKiWp/DlorLDBbr02pk32cqV3nErD6jZ4EeLkjLvRskpGTkISLQeOSBHJelrjWiqvA6I1spKZH3gzGHzLCtXCK1JknVFQFDbRdVy8zM1L2eP38+iouL8eCDD+LDDz9E586dkZubi99++w1vv/02cnJy8PbbbyMyMhKjRo2q1XmaN29e47ZHjhxBfHx8rY5va6lpClQe/EpKiMfOnXHSdYjqZN++fXXe10mjBHB3lGHv0VMoSxLN70AOrT7XGlFN8Toja6p4kC1XDjnXo/JTAhcXlypalnN1LX+yWdun3AUFBXrnHDp0KLZs2YIePXrA1dUVQUFBeP7557FlyxYo/jft5p133oEoOvaNkUEKA7jQs+PxdtG/CPJqX6CMiIiILMSiIwxDhgwBUF4edPfu3Ubb68LwWJZQkXwMlE8Jqk7FMJGbm1udzwOUjzIolUqjdv369cOjjz6K9evX49KlSzh37hw6d+5c4/NUN1UqLS0NPXv2BAD06tULrVu3rvGxpbDu9mkg6+7oTLu2bTGsbwvpOkQ1VlxcrHsKN2DAAKO/AzUVU3wJF7LuTqXzbdwCw4a1tUgfyT5Y6lojqgqvM7IVuc/+sGjAUJG4W1EutfJ2QRBq9eS8or3hsSzBy8tL97om04wqRgpquyZE5fMEBQWha9euZts+8MADWL9+PQDg2LFjtQoYarNCtKura60DH1vTQv//uZuri+z7TMZUKlWd/7818fPQe59VpOE1QGbV51ojqileZ2RNFbNZ5MqiAcOAAQNM3uCb2y4VlUqFgIAAZGRkVJswnJWVpQsYapMrYNi+upv6ym3v3LlTq/PYG8N1GFhW1fEEenLxNiIiIrmwyghDTbdLqX379oiJiUFcXBzUarXZ0qqXL1/Wva5Y9bmmOnTooHut0VS98FTlzx19tecyo5WemcTgaIxWe85nwEBERCQVh70T69evH4Dy6UYnTpww227v3r2611FRUbU6R2hoKFq0KJ97n5iYWOWUrMpz15o1a1ar89gbjVb/z0mp4AiDozEMGLgOAxERkXQcNmAYPXq07vWKFStMttFqtVi1ahUAwNfXF4MHD671eR577DEAQG5ubpXJ27///rvudUUw46i40jMFGUxJKijVoKBEbaY1ERERWZPDBgw9e/ZE//79AQDLly/HoUOHjNosWLBAt7rzjBkz4OzsrPd5RTK3IAiYPHmyyfO89tpruqoK//znP5Gbm2vU5ueff9ZN2xoxYkStcyXsjVpjMCWJKz07nEAv4+SvdE5LIiIikoRN7sTOnTuHsLAwtGnTBikpKdW2T0lJQXh4OFq3bo3Y2Fir9Wvx4sVwc3ODWq3GsGHD8Mknn+Dw4cOIjo7G9OnTMWvWLABAREQEZs6cWadztGjRAh9++CGA8j+Hnj17YsWKFThx4gSio6Pxyiuv6IINb29vLFq0yCLfrSFTaznC4Og8XJRwc9YvQczEZyIiImnYJLv2559/RmJiIh544IEazc9v1qwZIiIisGPHDvz888+6G25L69q1K9auXYsJEyYgNzcXs2fPNmoTERGBrVu36pVIra0333wTmZmZmD9/Pq5cuYJnnnnGqE1wcDA2bNiANm3a1Pk89qKMIwwOTxAEBHm54npmoW4bRxiIiIikYZM7sb1790IQBDzyyCM13mfUqFEQRdHii7YZGjlyJM6ePYvXX38dERERcHd3h6+vL7p374758+fj1KlTCA8Pr/d5PvnkExw4cABPP/00WrZsCVdXV/j4+KBHjx74v//7P8TGxqJPnz4W+EYNn2FZVSeOMDgko0pJHGEgIiKShE1GGCqmFdVmMbKOHTsCAK5cuWKVPlUWGhqKhQsXYuHChbXab9CgQbVajK5Pnz4MCmpAbVBW1ZllVR1SoKeL3nsGDERERNKwyZ1YxWrKtVkpuaKtqSRhsm+GVZJYVtUxcS0GIiIiebBJwODn5wcAuHnzZo33qWhbn9wBapgM12Fg0rNjCvJU6b2/k1cqUU+IiIgcm00ChopE3j///LPG+2zfvh0A0Lp1a6v0ieSLSc8EcISBiIhILmxyJ/bAAw9AFEUsXbpUt65BVS5cuIDvv/8egiDgwQcftEEPSU4My6oy6dkxGeYwcLVnIiIiadgkYHjhhRfg4eGB4uJiDBkyBFu2bDHbdtOmTbj//vtRVFQENzc3vPTSS7boIsmEKIompiRxhMERmRphqE2RASIiIrIMm1RJCgwMxLfffounn34at2/fxqhRoxAWFoZ+/fqhSZMmAIC0tDTExMQgISEBoihCEAQsWbIEjRo1skUXSSYME54BwIlJzw7JMGAoVWuRW6yGj5uzmT2IiIjIGmwSMADAU089Ba1WixdeeAGFhYWIj4/HtWvX9NpUPD308PDAkiVLMGHCBFt1j2TCsKQqwBEGRxXo6Wq07U5eCQMGIiIiG7PpndjTTz+NuLg4vP322+jUqROA8iChYkShc+fOePfddxEXF8dgwUGZHGFgDoNDUjkr4aXSf6bBtRiIiIhsz2YjDBUaN26Mjz/+GB9//DHUajUyMzMBAP7+/nBysnl3SGbUGuMRBq7D4LiCvFyRV6zWvU9npSQiIiKbk/QO3cnJCcHBwVJ2gWTGMOEZAJxZVtVhBXm64tqdAt17jjAQERHZHu/ESFbKTAQMnJLkuLgWAxERkfQYMJCsmJqSxKRnx2WY+MwRBiIiItuz6JSkIUOGAAAEQcDu3buNtteF4bHIvrGsKlVmOMLAHAYiIiLbs2jAsGfPHgDlN/mG2wVBqNWiSxXtDY9F9s1UWVUmPTsuoylJHGEgIiKyOYsGDAMGDDB5g29uO5EhtcZwlWeB144DY8BAREQkPauMMNR0O5GhMoMcBidWSHJoQQY5DBkFpdBqRSg46kRERGQzFr0bO3v2LM6ePYvS0lJLHpYciGFZVeYvODbDEQaNVkRWIX+/EBER2ZJFRxi6dOkChUKBs2fPon379rrtH374IQDgxRdfRGBgoCVPSXbGMOmZJVUdm7+HCwQBqJz+dCe/BAEGIw9ERERkPRZfuM1UYvPcuXMhCAIef/xxBgxUJcOkZyeWVHVozkoF/N1dkFFwd1ThTl4JIhtL2CkiIiIHY9G7MWdnZwBAUVGRJQ9LDsQo6ZlTkhwe12IgIiKSlkUDhkaNGgEATpw4YcnDkgMxSnrmCIPD41oMRERE0rJ4WdVffvkFb731FuLj4xEREaEbdQCAjRs34vjx47U+7sSJEy3ZTZIxtWHSM3MYHB5LqxIREUnLogHDO++8gz/++AM5OTn44osv9D4TRRHvvfderY8pCAIDBgdiOMLgzLKqDo8BAxERkbQsejfWoUMH7Nu3D/fffz+cnZ0hiqJeEnTF+9r+kOMwzGHgCAMFerrovb/DKUlEREQ2ZfEqSd26dcPOnTuhVquRnp6O4uJihIWFQRAE7NixA23atLH0KcmOcB0GMmSUw5DHdRiIiIhsyeIBg+7ATk5o3Fi/9mHTpk0RGhpqrVOSHShjWVUyEOSp0nvPEQYiIiLbsmjA8OWXXwIAnn76afj5+em2z5kzB4IgIDg42JKnIztkNCWJIwwOz3CEIbOgFGUaLZwZTBIREdmERf/Ffe211/D6668jLS1Nb/uePXuwZ88eFBQUWPJ0ZIeMkp55U+jwDHMYACAjn9OSiIiIbMVqU5Iq27t3LwRBYMBA1WJZVTLk5+4CpULQy29Jzy9BYx9VFXsRERGRpVj08a1KVf4PeHZ2tiUPSw5EbbhwG8uqOjyFQjCulMTSqkRERDZj0buxli1bAgC2bNliycOSAykzyGFw5ggDgWsxEBERScmiU5KGDx+Oy5cvY/78+di9e7fRSs/vvfcefH19a3VMQRCwfPlyS3aTZEzNKklkQqCnQcDASklEREQ2Y9GAYfbs2di0aRPi4uJw7NgxHD9+XPeZKIrYuHFjrY4niiIDBgdjlMPAKkkEIMgwYOAIAxERkc1YNGDw9/fH8ePH8fXXX2P37t1ISUlBSUkJkpKSIAgCmjRpojfiQGSIZVXJFKMpSRxhICIishmLV0ny9vbG7NmzMXv2bN02xf8SV3fu3In27dtb+pRkR4ySnjklicAcBiIiIinxboxkpUzLpGcyZpjDkM4RBiIiIpuxyToM0dHRAIBWrVrZ4nTUgLGsKpnCEQYiIiLp2CRgGDhwoC1OQ3bAMIeBIwwEGAcMecVqFJdpoHJWStQjIiIix2GTgKEyrVaL6OhoHDp0CDdv3kRhYSHmzZuHJk2a6NqUlpZCrVZDqVTC1dW1iqORvTGcksSVngkAGnkbr+ocdzsfHZv5SNAbIiIix2LTgGHLli149dVXkZSUpLf9jTfe0AsYli1bhldeeQWenp5ITU2Fh4eHLbtJEuKUJDLF09UJoQHuSMoo1G07n5LDgIGIiMgGbHY39v3332PUqFFITEyEKIoICAiAKIom206bNg0+Pj7Iz8/HH3/8YasukgxwHQYyxzA4OJeSI1FPiIiIHItNAoarV6/ipZdeAgAMGTIEFy9exO3bt822d3FxwWOPPQZRFLFz505bdJFkgmVVyZxOBgHDeQYMRERENmGTu7FFixZBrVajQ4cO2LZtGyIjI6vdp3///gCAU6dOWbt7JCOGIwxMeqYKhgHDpZt5KDMIMImIiMjybBIw/P333xAEAa+99hpcXFxqtE94eDgAIDk52ZpdI5kxvAHklCSq0LGpfsBQqtYi9laeRL0hIiJyHDYJGG7cuAEAuOeee2q8T0Wic2FhYTUtyZ4YllXllCSq4OPujBb+7nrbOC2JiIjI+mxyNyYI5U+Ja3Pzn5GRAQDw8WEVFEfClZ6pKobTkpj4TEREZH02CRiaNWsGALh27VqN99m/fz8AICwszCp9InliWVWqinGlpFyJekJEROQ4bHI3NmjQIIiiiB9//LFG7XNycvDtt99CEAQMGTLEyr0jOTGeksQRBrrLKPE5LZeJz0RERFZmk4Bh+vTpEAQBe/fuxcqVK6tsm5GRgdGjR+PmzZtwcnLC888/b4sukkyotRxhIPM6NvPWe1+q1uLqrXyJekNEROQYbHI31rVrV8yYMQOiKGLq1KkYP348fv31V93nBw8exC+//IKXXnoJ4eHh2LdvHwRBwL/+9S+EhobaooskE0YLt3GEgSrxdXdBc383vW1MfCYiIrIuJ1udaMGCBSgpKcGSJUuwfv16rF+/XpcMPX36dF27itWfX3vtNbz33nu26h7JhOGUJCY9k6FOzXyQnFmke38uJQfjejSXsEdERET2zWbzPQRBwH/+8x/s2LEDgwYNgiAIEEVR7wcA+vTpg61bt2LhwoW26hrJiPE6DJySRPqME585wkBERGRNNhthqDB06FAMHToUeXl5OHXqFG7fvg2NRoOAgAB06dIFgYGBtu4SyQinJFF1DBdwu5SWC7VGyzU7iIiIrMTmAUMFLy8vDBgwQKrTk0wZjjA48yaQDBhWSipRa3H1dj7aNfE2swcRERHVB+/GSFaMyqoqOMJA+vw8XNDMVz/xmdOSiIiIrEeSEYZbt25hz549OH/+PDIzMwEA/v7+6NixIwYNGoRGjRpJ0S2SAZZVpZro1MwHKdl3E5/Pp+RgXHcmPhMREVmDTQOGtLQ0/POf/8Tvv/8OtVptukNOTnjsscewYMECNGnSxJbdIxlgDgPVRKcQH/x54abuPUurEhERWY/NHt+eOXMGnTt3xq+//oqysjKjCkkVP2VlZVi7di3uuecenDt3zlbdIxnQaEWI+vECy6qSSYaVki7+L/GZiIiILM8mAUNBQQFGjBiBjIwMiKKI+++/H2vXrkViYiKKi4tRXFyMxMRE/Prrrxg2bBhEUUR6ejpGjBiBwsJCW3SRZMAw4RnglCQyzTDxubhMi/g7BRL1hoiIyL7Z5G7s66+/RmpqKhQKBb7//nvs3LkTY8eORYsWLeDi4gIXFxe0aNECjz/+OP78808sW7YMgiAgJSUF//nPf2zRRZIBw+lIAKckkWn+THwmIiKyGZsEDBs3boQgCJg8eTKmTp1abftnnnkGU6ZMgSiK+OOPP2zQQ5IDU1NKWFaVzOnYTL+MKvMYiIiIrMMmd2OxsbEAgCeeeKLG+zz55JN6+5L9K9OYGGFgWVUyw3BaEkcYiIiIrMMmAUN+fj6A8tKpNeXn5wegPP+BHINhSVUAXL2XzDJKfE7NhcbEtDYiIiKqH5vcjQUFBQEALl26VON9Ll++DAAIDAy0Sp9IfgwXbQM4wkDmGY4wFJVpEH8nX6LeEBER2S+bBAy9e/eGKIpYuHCh2fUXKlOr1Vi4cCEEQUDv3r1t0EOSAyY9U20EeLqiqY9Kb9u5G5yWREREZGk2CRgmTpwIADh9+jRGjBiB1NRUs21TU1MxcuRInDx5EgAwefJkW3SRZMBk0jPLqlIVDKclMY+BiIjI8myy0vPIkSMxevRobNiwAX/99RfCwsIwbNgw9OrVC8HBwRAEAbdu3cKRI0ewa9culJaWAgDGjBmDESNG2KKLJAOGSc8KAVBwShJVoVMzH+y8eEv3npWSiIiILM8mAQMArF69GhMnTsS6detQWlqKrVu3YuvWrUbtxP8t9Tt27FisWrXKVt0jGTBMembCM1WnY4j+CMOF/yU+KxloEhERWYzN7shcXV2xdu1abN68GQ899BDc3NwgiqLej5ubGx566CFs2bIFa9euhaurq626RzJgOMLgzJs+qkbHpsaJz9eY+ExERGRRNhthqDBixAiMGDECGo0G165dQ2ZmJoDykqthYWFQKpW27hLJhGEOA0cYqDpBXq5o7K3Czdxi3bZzKTlo08hLwl4RERHZF5sHDBWUSiXatGkj1elJhgyrJDmzQhLVQMdmPkYBw6P3hkjYIyIiIvvCR7gkG4YBA+ehU00YrsfAxGciIiLLskrAcPjwYTz66KN49NFHsX79+lrtu27dOt2+J06csEb3SKaMpiSxpCrVQKcQb733F7jiMxERkUVZ5Y5sxowZ2LhxI5KTkzFq1Kha7Ttq1CgkJydj48aNeP31163RPZIpo6RnTkmiGjBci6GwVIOEdCY+ExERWYrFA4YjR47g2LFjAIAvv/wSzs7OtdrfxcUFX375JURRxIEDBzjK4EBYVpXqIthLhUbe+hXVuIAbERGR5Vj8juzXX38FAPTr1w99+vSp0zH69OmDgQMHAgDWrFljsb6RvKkNRhicmMNANWSYx3DuRq5EPSEiIrI/Fg8YDh06BEEQaj0VydAjjzwCURRx8OBBC/WM5K7MIIfBmSMMVEOG05LOpWRL0xEiIiI7ZPE7svj4eABAp06d6nWcjh076h2P7J9hlSQn5jBQDd0T4qv3/kxyDopKNdJ0hoiIyM5YPGDIzs4GAAQFBdXrOBX7VxyP7J9hlSRnVkmiGure0k+vDG+pRotjiZkS9oiIiMh+WPyOzN3dHQCQm1u/OcR5eXkAADc3t3r3qTpJSUmYOXMmIiMj4eHhAX9/f/To0QOff/45CgsLrXLOwsJChIWFQRAECIKAli1bWuU8DQnXYaC68lI5o3OI/rSkA/HpEvWGiIjIvlg8YKgYGYiLi6vXcSr2r+9IRXU2b96Mzp07Y+HChbhy5QoKCwuRlZWF48ePY9asWejatWu9v4sp77//PhISEix+3IbMKOmZU5KoFvqFB+q9PxiXIVFPiIiI7IvFA4auXbtCFEVs3769XsfZunWr7njWcurUKYwfPx65ubnw9PTEvHnzcPDgQezevRvPPvssACA2NhYjRozQjXhY6rz//ve/oVKp4OXlZbHjNnRlWiY9U931ba0fMJxPzUF2YalEvSEiIrIfFr8je+CBBwAAGzZswIULF+p0jPPnz2PDhg0QBEF3PGuYMWMGioqK4OTkhJ07d2L27Nno06cPhgwZgqVLl+Kzzz4DUB40LFiwwCLn1Gg0ePbZZ6HRaDB79mz4+/tb5Lj2gGVVqT7uDfWFyvnurzRRBA5f4ygDERFRfVk8YHjiiScQHBwMrVaLxx9/HBkZtfsHOz09HY899hi0Wi2CgoLwxBNPWLqLAICjR48iJiYGADB16lSTa0bMnDkT7dq1AwAsXrwYZWVl9T7v4sWLceLECbRt2xZvvfVWvY9nT4ySnjnCQLXg6qREj5b6AfgBTksiIiKqN6skPX/wwQcQRRGxsbHo0qULNm7cWKN9N2zYgK5du+Lq1asQBAEffvihLona0jZs2KB7PWXKFJNtFAoFJk6cCKC8WlN0dHS9zpmUlIT3338fAPDtt9/CxcWlXsezN2Usq0r1ZDgtiYnPRERE9edkjYNOnz4dJ0+exPfff4/U1FQ8+uijaNmyJR588EF069YNwcHB8PDwQEFBAW7duoWTJ09i+/btSEpKgiiW3zQ+99xzeO6556zRPQDA/v37AQAeHh7o1q2b2XYVK04DwIEDBzBs2LA6n/PFF19EQUEBnn76aQwaNKjOx7FXhiMMTiyrSrUUFR6g9/7anQLczClGYx+VRD0iIiJq+KwSMADlT9AbN26MefPmQavVIjExEd9++22V+4iiCIVCgffeew9z5syxVtcAAJcuXQIAhIeHw8nJ/B9DZGSk0T51sWbNGmzbtg1+fn4Wy4ewN2UGOQzOHGGgWurQ1AfeKifkFqt12w7EpeOxbiES9oqIiKhhs1rAIAgCPvjgA4waNQoff/wxNm7cCI3G/MqrSqUSo0ePxjvvvIN7773XWt0CABQXFyM9vXyqQkhI1TcSfn5+utGQ5OTkOp0vKysLr732GgDg008/tXip2Bs3blT5eVpamu51SUkJioqKLHp+Sykp1c8REbVa2faVTCsuLjb52pZ6tvTDX5fv6N7vvXILw9sHVLEHNURyuNbI/vE6I1spKSmRugtVslrAUOHee+/F+vXrkZOTg/379+PMmTPIyMhAXl4evLy8EBAQgHvuuQf9+vWDj49P9Qe0gMolUj09PattXxEw5Ofn1+l8b775Jm7duoU+ffroyrVaUvPmzWvc9siRI4iPj7d4Hywh8boCldNq0lKSsXNnknQdonrZt2+fJOf1LREAKHXv915Kww73GxA4YGW3pLrWyLHwOiNrqniQLVdWDxgq+Pj4YMSIERgxYoStTmlW5acENUk8dnV1BYA6Pe3et28ffvjhBzg5OeHbb7+FwLsWswxmJIFVVakuInz0L6ScMgG3i4FG1l80noiIyC7ZLGCQE5XqbgJkaWn1CztVDBO5udXujqOkpATPPfccRFHEjBkz0Llz59p1tIaqmyqVlpaGnj17AgB69eqF1q1bW6Uf9fVX/gXgzi3d+/Cwlhh2f7iEPaLaKi4u1j2FGzBggN7fNVsRRRHL4g/gdt7dv9uKJu0xrCfzGOyJHK41sn+8zshW5Dr7o4JDBgyVV1euyTSjgoICADWbvlTZvHnzcOXKFTRv3hwffPBB7TpZC9XlYVTm6upa68DHVrSCflUkN1cX2faVqqdSqST7/9cvPAi/n0rRvT92PQfTBraRpC9kfVJea+Q4eJ2RNVXMZpErhwwYVCoVAgICkJGRUW3CcFZWli5gqE2uAADMnz8fAHD//fdj8+bNJttUHLugoABr1qwBAAQHB2PIkCG1Opc9YFlVspS+4YF6AcOh+AxotCKUnOdGRERUaw4ZMABA+/btERMTg7i4OKjVarOlVS9fvqx7XbHqc01VTHdasWIFVqxYUWXb9PR0PPnkkwDK135wzICBC7eRZRiux5BbrMaF1Bx0DvGVpkNEREQNmMM+wu3Xrx+A8if7J06cMNtu7969utdRUVFW75cjM1rpmU+DqY6a+LghLNBDb9uBuAyJekNERNSwOWzAMHr0aN1rc0//tVotVq1aBQDw9fXF4MGDa3UOURSr/QkNDQUAhIaG6rbt2bOnTt+podNoDaYkKR328iQL6GswynAwXt4l64iIiOTKYe/Ievbsif79+wMAli9fjkOHDhm1WbBggW515xkzZsDZ2Vnv8z179kAQBAiCgMmTJ1u9z/aOKz2TJUW1DtR7fywxEyVq84tHEhERkWkOGzAAwOLFi+Hm5ga1Wo1hw4bhk08+weHDhxEdHY3p06dj1qxZAICIiAjMnDlT4t7aPyY9kyX1aR2gt1hbcZkWJ5OyJesPERFRQ+WwSc8A0LVrV6xduxYTJkxAbm4uZs+ebdQmIiICW7du1SvFStahNsxh4AgD1YOvuws6NPXG+ZRc3baD8eno0zqgir2IiIjIkE0e4a5atQqrVq1Cbm5u9Y3/Jz8/X7efNY0cORJnz57F66+/joiICLi7u8PX1xfdu3fH/PnzcerUKYSHc/EwW+CUJLI0w2lJB+KYx0BERFRbNhlhmDx5MgRBQPfu3dG+ffsa7XPr1i1MnjwZCoUCEydOtGr/QkNDsXDhQixcuLBW+w0aNAiiKFbfsAqJiYn12t+ecEoSWVrf8EB8t++a7v2ZGznIKy6Dl8q5ir2IiIioMtnfkdX3hpwaDsMpSRxhoPrq0dJP7zrSaEUcTciUsEdEREQNj2wDBo2mvJqJuQXVyP6UGYwwKDnCQPXk7uKEri389LZxPQYiIqLake0d2ZUrVwAA/v7+EveEbEXDpGeyAsM8Bq7HQEREVDtWeXy/b98+k9uPHTuG9PSq/7EuKSlBfHw8vvjiCwiCgC5dulihhyRHRknPHGEgC4gKD8Civ+6+v3wzD3fyShDk5Spdp4iIiBoQqwQMgwYNgiDoPx0WRRHPPPNMjY8hiiIEQcD06dMt3T2SKbXRSs8cYaD6u6e5LzxclCgovbto28H4dIzq0kzCXhERETUcVnuEK4qi7sfUtup+QkJC8J///AejR4+2VhdJZtQsq0pW4KxUoFeY/toL0ZdvS9QbIiKihscqIwzR0dG616IoYsiQIRAEAcuXL0erVq3M7icIAlQqFZo0aYLmzZtbo2skY4ZJzyyrSpYyMCIIf1cKEnZfuo0StQauTkoJe0VERNQwWCVgGDhwoMntPXv2rPE6DOR4uNIzWcuDHRtjzqYLuvd5JWociEvHkMhGEvaKiIioYbDJI9yEhARcu3YNERERtjgdNUCiKBpVSXJWcoSBLKORtwrdQvXLq24/d1Oi3hARETUsNrkjCw0NRWhoKNdUILMMKyQBgFLBEQaynIc6NtZ7v/PiLaNpcERERGRMNo9wN2/ejKeffhoPPfQQXnzxRZw8eVLqLpENGY4uACyrSpb1UKcmeu9zispwKJ6LuBEREVXHJndk0dHRCA4ORosWLZCdnW30+b/+9S+MHj0av/zyC3bu3InvvvsOvXv3xk8//WSL7pEMlGmNn/Qyh4EsqZmvG+5p7qu3bfv5NGk6Q0RE1IDYJGDYtm0b0tPT0aNHD/j6+up9dvbsWXz88ce6cqq+vr4QRRFqtRrTp09HYmKiLbpIEjMsqQowYCDLG24wLWnHhVtQc1oSERFRlWwSMOzfvx+CIOD+++83+mzJkiUQRRF+fn44ceIEMjIycPToUfj7+6OkpATffvutLbpIEjN108YpSWRpD3XUn5aUWVCKo4mZEvWGiIioYbDJHVlaWvmwf4cOHYw+27JlCwRBwMsvv4yuXbsCALp3746XX34Zoijir7/+skUXSWJlJnIYOMJAltYiwB0dmnrrbWO1JCIioqrZJGC4c+cOABhNR4qPj0dKSgoAYMyYMXqf9e/fX9eG7J/JEQaWVSUrGG6Q/PznhZsmk+6JiIionE3uyESx/B/jnJwcve0xMTEAAB8fH3Tp0kXvs4CAAABAYWGh9TtIkjNVVtWJZVXJCgzLq97JK8GJpCyJekNERCR/NgkYGjcu/wf60qVLett37NgBAIiKijLap6CgAADg5+dn9BnZH1NPeLkOA1lDWJAnIht76W3bdo7VkoiIiMyxScDQu3dviKKIJUuW6EYMrl27ho0bN0IQBAwdOtRon9jYWAB3gw2yb4YLaDkpBAgCAwayDsPk5x0XbkLLaUlEREQm2SRgmDZtGoDyEqodO3bE448/jt69e6O4uBhubm74xz/+YbTPvn37AAARERG26CJJTG1ws8aEZ7Km4Z30H0Sk5RTj9I1saTpDREQkczYJGIYMGYIZM2ZAFEUkJibijz/+QHp6OgDg888/R2BgoF774uJi3ejDgAEDbNFFkphh0jNLqpI1tWnkhfBgT71t2zktiYiIyCQnW51o0aJFuO+++7Bu3TrcvHkTTZo0wcSJEzFkyBCjtps2bYK3tzd8fHwwcuRIW3WRJGSY9MwRBrK2hzo2xld/x+nebzt3E7OHt+NUOCIiIgM2CxgA4OGHH8bDDz9cbbtx48Zh3LhxNugRyYVaa5DDwJKqZGUPdWyiFzCkZBfhXEoOOof4StcpIiIiGeJdGcmC2mCEwZkVksjK2jXxQssAd71t289zETciIiJDDBhIFoyqJHGEgaxMEAQ8ZLCI2/Zzabp1Y4iIiKicTaYkXb9+vV77t2jRwkI9IbkyXIeBi7aRLQzv2ARL9txdTT4xoxCX0vLQvqm3hL0iIiKSF5sEDK1atarzvoIgQK1WW7A3JEdlLKtKEujYzBshfm64kVWk27b9fBoDBiIiokpsMu9DFMV6/ZD9Myyr6sSyqmQDgiDgoY76azJw1WciIiJ9NhlhWLFiRbVtCgoKEBsbi99++w0pKSmIiorSLfhG9s8o6ZkjDGQjD3Vqgu9jEnTv4+8U4PLNXEQ25igDERERYKOAYdKkSTVu+/nnn+P111/HkiVLEBUVhU8//dSKPSO5KGNZVZJIlxBfNPFRIS2nWLft12M38P7I9hL2ioiISD5kd1fm7OyMr7/+GoMGDcLnn3+OHTt2SN0lsgHDEQYmPZOtKBQCRndtprftt5M3UFymkahHRERE8iK7gKHC9OnTIYoivvrqK6m7QjZgWFbVmSMMZENP9Giu9z6nqAx/ck0GIiIiADIOGNq0aQMAOH78uMQ9IVtQs0oSSSg0wAP9wgP1tv1ytH7loImIiOyFbAOGnJwcvf+SfeM6DCS1J3vqr/dyNCETcbfzJeoNERGRfMg2YPjxxx8BAE2aNKmmJdkDo5WeWVaVbGxo+0YI8HDR27aGowxERETyCxiuXr2K559/Hj/++CMEQcDw4cOl7hLZgFHSM6ckkY25OCnwePcQvW2/nbyBEjWTn4mIyLHZpKxqWFhYtW20Wi2ys7ORl5en2xYcHIx3333Xml0jmTAsq8qkZ5LCEz1a4Lu913TvswrLsOPCLTxyT1MJe0VERCQtmwQMiYmJtd6nT58++OGHHzglyUGwrCrJQatAD/RtHYCD8Rm6bauPXGfAQEREDk02C7cpFAp4eXmhVatWGDhwILp06WL9jpFsqA1zGDjCQBJ5omcLvYDh0LUMXLuTj7AgTwl7RUREJB2bBAwrVqywxWmoASszqJLkzBwGksgDHRrBz90ZWYVlum1rjyXjneHtJOwVERGRdPgYl2TBaISBVZJIIq5OSjzeTT/5ed0JJj8TEZHjssldWVhYGMLCwvD111/b4nTUAHHhNpKTJwzWZMgsKMWui7ck6g0REZG0bBIw3LhxA0lJScxLILOY9Exy0jrIE71a+ettW801GYiIyEHZJGBo3LgxAMDNzc0Wp6MGSK1l0jPJyz966Y8yHIjLQGJ6gUS9ISIiko5N7sp69eoFALhw4YItTkcNUJnBCIMzRxhIYg90aAxfd2e9bWuOJUvUGyIiIunYJGB44YUXIIoiFi1ahLKysup3IIfDsqokNypnJR67Vz/5ef2JZJSqtWb2ICIisk82uSsbMmQI3nnnHZw5cwYPP/wwkpP5lI70GSY9s6wqycGTPZvrvU/PL8XuS0x+JiIix2KTdRg+/PBDuLq6olOnTti1axfCwsIQFRWFzp07w8/PD0qlssr933//fVt0kyRUZlRWlQEDSS882As9W/rjaGKmbtsvR6/joU5cgZ6IiByHTQKGuXPnQhDKbwAFQYBGo0FMTAxiYmJqtD8DBvtnWCVJySlJJBNP9GyuFzDEXE3HhdQcdGjqI2GviIiIbMdmd2WiKOp+DN9X90P2z2hKEkcYSCaGd2oCP4Pk5y93X5WoN0RERLZnk4BBq9XW64fsH8uqklypnJWY1j9Mb9uOC7dwKS1Xoh4RERHZFu/KSBYMpyQx6ZnkZGKfUPi4cZSBiIgcEwMGkgXjpGdemiQfXipnTO3XSm/b9vM3ceVmnkQ9IiIish3elZEsGOYwOHGEgWRmclRLeKv060R8+TdHGYiIyP7ZpEqSKbm5ucjLy4NGo6m2bYsWLWzQI5ISpySR3HmrnPFMv1b49193g4Rt59Jw9VYe2jTykrBnRERE1mXTgGHXrl345ptvsH//fmRmZla/A8rLsKrVaiv3jKTGKUnUEEyJaoXlMQnIKyn/nSSKwJd/x+GrJ7tK3DMiIiLrsdld2auvvooHH3wQmzZtQkZGBsuqkh6jKUksq0oy5OPmjClRLfW2bTmbirjbzGUgIiL7ZZMRhl9++QVff/01AEClUmH06NHo1q0b/P39oeCTZAKgNhxhYFlVkqln+rXCDwcSkV9plOHrv+Pw7yc4ykBERPbJJgHDd999BwBo3rw5/v77b7Ru3doWp6UGhEnP1FD4urtgct+W+Do6Trdt05lUvHpfG4QFeUrYMyIiIuuwyWPcs2fPQhAEzJkzh8ECmWSU9MyRJ5Kxqf1awcNFqXuv/d8oAxERkT2yyV1ZWVkZAKBrVw7Zk2llRis9c4SB5MvPwwUT+7bU27bhdAoS0guk6RAREZEV2SRgaNmyJQAgPz/fFqejBkajFWGY286yqiR3z/YPgztHGYiIyAHYJGB49NFHAQC7d++2xemogTEsqQqwrCrJn7+HC57uE6q3bcPpFCRlcJSBiIjsi03uymbOnIkWLVrg3//+Ny5fvmyLU1IDYpjwDHBKEjUMz/YPg5vz3VEGjVbE4r+4+jMREdkXmwQMPj4+2LFjBxo1aoS+ffvim2++QVZWli1OTQ2AYUlVgCMM1DAEerpiQm/9leh/P5WCk9f5+42IiOyHRcuqhoWFVfl5YWEhsrOz8corr+DVV19FYGAg3N3dq9xHEATEx8dbspskMxxhoIbsuQGtsfposm5dBgCYu+kCNrwYBQUXICQiIjtg0YAhMTGxRu0qVnC+fft2tW0Fgf/g2jvDkqoAy6pSwxHk5YoZ97XBvG2XdNvO3sjB+hM3MK5Hcwl7RkREZBkWDRgmTZpkycORgzCZ9MwRBmpAJvVtidXHruPanbsJz5/tuIwHOzWGt8pZwp4RERHVn0UDhhUrVljycOQgOCWJGjoXJwXef7g9Jq84ptuWnl+KL/+6ivcebi9hz4iIiOrP4vM+FAoFnJyccPHiRUsfmuyUqaRnTkmihmZQ22Dc3y5Yb9vKg4mIu50nUY+IiIgswyp3ZaLhKlxEVSgzyGFQCGCyKDVI741oDxfl3V+raq2IDzZf5O9EIiJq0PgYlySn1uqPMDgpeVlSw9Qy0APT+rfS2xZzNR27Lt6SqEdERET1xzszkpxhDoMTRxeoAXtpcDgaebvqbfu/rRdRXKaRqEdERET1w4CBJGdYVpUBAzVkHq5OmD28nd625MwiLIu5JlGPiIiI6ocBA0nOMOnZmVOSqIF75J6m6B7qp7ftP9HxSM0ukqhHREREdcc7M5JcmeGUJJZUpQZOEATMfaQDKq87WVSmwSfbL0vXKSIiojqy6DoMlU2ZMgUeHh71Po4gCNi9e7cFekRyZTjC4MSSqmQHOjbzwZM9W+CXI9d12zafScWTPZujb+tACXtGRERUO1YLGI4fP17vY4iiCEHg02Z7Z1hW1ZkjDGQn3hjWFlvOpCK3WK3bNmv9Wex4bQA8XK3265eIiMiirPYoVxTFev+QY2BZVbJX/h4ueOOBtnrbbmQV4eNtlyTqERERUe1Z7c7s/Pnz0Gq19f7RaKxfijApKQkzZ85EZGQkPDw84O/vjx49euDzzz9HYWFhvY5dWFiI33//HS+88AJ69OgBPz8/ODs7IyAgAH369MHcuXNx8+ZNC32TholVksieTegVip4t/fW2/ffIdcRcvSNRj4iIiGrH4R/lbt68GZ07d8bChQtx5coVFBYWIisrC8ePH8esWbPQtWtXxMXF1enYZ8+eRaNGjfDYY4/h22+/xfHjx5GdnQ21Wo3MzEwcPnwYH3zwAdq2bYu1a9da+Js1HEbrMHBKEtkRhULA52M7w81Zqbf9rfVnkVtcJlGviIiIas6hA4ZTp05h/PjxyM3NhaenJ+bNm4eDBw9i9+7dePbZZwEAsbGxGDFiBPLy8mp9/NzcXOTn5wMAoqKi8Mknn2DXrl04efIkduzYgenTp0OhUCA3NxdPPfUUtm/fbtHv11Aw6ZnsXWiAB94ZHqm3LTWnGB9tuShRj4iIiGrOobPuZsyYgaKiIjg5OWHnzp3o06eP7rMhQ4agTZs2mDVrFmJjY7FgwQLMnTu3VsdXKBQYN24c5syZg/bt2xt9PmzYMDz00EMYM2YMNBoNXnnlFVy9etXhEr0Ny6oy6Zns0YReofjz/E0cjM/Qbfv1+A081LEJBkcGS9gzIiKiqjnso9yjR48iJiYGADB16lS9YKHCzJkz0a5d+YqtixcvRllZ7aYP9O3bF2vXrjUZLFQYNWoUHn30UQBAfHw8Tp06Vatz2AOOMJAjUCgEzH+sMzxc9Kcmvf37WeQUcmoSERHJl8PemW3YsEH3esqUKSbbKBQKTJw4EQCQnZ2N6Ohoq/Rl8ODButfx8fFWOYecGSU9c4SB7FRzf3e897D+A4RbuSWYu/mCRD0iIiKqnsMGDPv37wcAeHh4oFu3bmbbDRw4UPf6wIEDVulLSUmJ7rVSqayipX0qMyir6syyqmTHnujRHAMigvS2/XEqBTsuOHa1NCIiki+L35klJCTg2rVriIiIsPShLerSpfI66OHh4XByMp/KERl5N1GxYh9L27t3r+51xRQoR8KyquRIBEHA/Mc6wUul/3vn3T/OIbOgVKJeERERmWfxpOfQ0FBLH9LiiouLkZ6eDgAICQmpsq2fnx88PDxQUFCA5ORki/flzJkz2Lp1KwCgU6dOdQoYbty4UeXnaWlputclJSUoKiqq9TmsqahE/yZJAVF2faSaKS4uNvma9Pm6ALMfaIN3Nt59CJGeX4rZv5/Bwsc6OFzhg7rgtUa2wOuMbKXybBM5csgqSZVLpHp6elbbviJgqCiRaiklJSWYNm2abnG6efPm1ek4zZs3r3HbI0eOyC5P4up1BSoPdt2+dRM7d6ZK1yGyiH379kndBVlzE4EOfgpcyLp77f954TZ8itLQtxFXuq8NXmtkC7zOyJoqHmTLlUNOFq/8lMDFxaXa9q6urgBg8afeL7/8Mo4fPw4AmDRpEkaOHGnR4zcUBikMYAoDOQJBAMaHaeGu1A8O1icokGzZZxNERET14pAjDCqVSve6tLT6OcMVw0Rubm4W68Mnn3yCZcuWAQB69OiB//znP3U+VnVTpdLS0tCzZ08AQK9evdC6des6n8sajv8ZC6TdnVbVIqQZhg1zvFwOe1BcXKx7CjdgwAC9v2tkmnfYbby27rzuvUYUsDrZE+uf6wFfN2cJeyZvvNbIFnidka3IbfaHIYcMGLy8vHSvazLNqKCgAEDNpi/VxHfffYfZs2cDKE+q3rZtGzw8POp8vOryMCpzdXW1aOBjEYJ+ZSiVi7P8+ki1plKp+P+xBkZ3C8XZ1AL8cCBBty0luxjvbrqCZRO7Q8EiANXitUa2wOuMrKliNotcOeTkD5VKhYCAAADVJwxnZWXpAoba5AqYs3r1arz44osAyhPEd+3ahcDAwHoftyFTs6wqObh3hkeiW6if3ra/L9/Gkr3yfuJERESOwWHvzCpWX46Li4NarTbb7vLly7rX9S15umnTJkycOBFarRZNmjTB7t27azU6YK/KWFaVHJyzUoH//ONeBHjo51Qt2HkFB+LknQhHRET2z2EDhn79+gEon2504sQJs+0qr5EQFRVV5/Pt3r0b48aNg1qtRkBAAHbt2iW7XAKpqDX6IwxOHGEgB9TYR4Uvn+yKyvGyVgReXX0KN3NYzpGIiKTjsHdmo0eP1r1esWKFyTZarRarVq0CAPj6+mLw4MF1OtfBgwcxatQolJSUwMfHBzt27ECHDh3qdCx7VKblCAMRAESFB2LmsLZ62zIKSvHSLydRZhBYExER2YrDBgw9e/ZE//79AQDLly/HoUOHjNosWLBAt7rzjBkz4OysX7Fkz549EAQBgiBg8uTJJs9z+vRpjBgxAgUFBfDw8MDWrVvRrVs3y36ZBk5jOCVJyYCBHNcLA1vjvshgvW0nkrLwybbLZvYgIiKyLoesklRh8eLFiIqKQlFREYYNG4bZs2dj8ODBKCoqwpo1a7B06VIAQEREBGbOnFnr48fHx+OBBx5AdnY2AOCjjz6Cj48Pzp8/b3af4OBgBAcHm/3cHjHpmeguhULAwnFdMOKrGNzIurv2yw8HEnBvqC8e7txUwt4REZEjcuiAoWvXrli7di0mTJiA3NxcXanTyiIiIrB161a9Uqw1FRMTg9u3b+vev/7669XuM2fOHMydO7fW52rImPRMpM/H3RlLnuqGx749iFL13YD6n7+egb+HC/q2duzKakREZFsO/yh35MiROHv2LF5//XVERETA3d0dvr6+6N69O+bPn49Tp04hPDxc6m7aNcMRBiY9EwGdQnzwwSP6uU6lai2e/fE4TidnS9MpIiJySA49wlAhNDQUCxcuxMKFC2u136BBgyCKotnPJ0+ebDa3ge4yHGFwZg4DEQDgiR7NcfZGDlYfva7bVlCqweQVR/Hr9D6IaFT7kU8iIqLa4qNckpxRWVUFL0siABAEAR+N7ojhnRrrbc8uLMPTy48gObNQop4REZEj4Z0ZSU5tWFaVIwxEOkqFgEXju6B/G/28hVu5JXhq2RHczuUaDUREZF0MGEhyTHomqpqrkxLfPd0N3UL99LZfzyzE08uPIruwVKKeERGRI2DAQJLTMOmZqFruLk74YVIPRDbWz1u4cisPk1ccQ0GJWqKeERGRveOdGUlObZj0zBEGIpN83J3x09ReaBngrrf9dHI2nvvpOIrLNBL1jIiI7BkDBpJcGUcYiGosyMsVP0/rhSY+Kr3tB+Iy8Oyq4ygs5UgDERFZFu/MSHKGIwxMeiaqWoifO36a2gv+Hi5622OupmPSD0eRW1wmUc+IiMgeMWAgyRmtw8CyqkTVCg/2xKpnesLLVX85nWOJWXjq+yPIKmAiNBERWQbvzEhyxis9c4SBqCY6NvPBz9N6wdfdWW/7uZQcjF96iCVXiYjIIhgwkOSMkp4ZMBDV2D3NfbH2uT4I9HTV2x57Kx/jvjuEG1lc3I2IiOqHAQNJrsxgpWclpyQR1Urbxl5Y93wfNDVIhE7MKMS4bw8hIb1Aop4REZE94J0ZSU5juNIzy6oS1VqrQA+se6GvUcnV1JxijP32EC7fzJWoZ0RE1NAxYCBJiaIItdZwShIvS6K6aObrhl+n90HbRvqLu6Xnl2D8d4dx5FqGRD0jIqKGjHdmJCnDYAFg0jNRfQR7q7Dmud7oHOKjtz2nqAwTlh/BH6duSNQzIiJqqBgwkKQME54BllUlqi8/Dxf8d1ov9Gjpp7e9TCPi9bVnsGhXLETR+O8eERGRKbwzI0kZrvIMcISByBK8VM5Y9Uwv3N8u2Oizxbuv4rW1p1FcppGgZ0RE1NAwYCBJmRphYMBAZBluLkp893R3PBPVyuizjadTMWHZEWRygTciIqoGAwaSlFpjPMLAKUlElqNUCHh/ZHv836gOMCxAdjwpC2O+OYD4O/nSdI6IiBoE3pmRpMpMJD0rOcJAZHFP92mJ5ZN7wMNFqbc9KaMQj35zEAfj0iXqGRERyR0DBpKUhknPRDYzuG0w1j3fF00MFnirqKC0cFesyVE/IiJybLwzI0kx6ZnItto39caGl6LQsZm33natCHy5+yqe/P4wUrKLJOodERHJEQMGkpTJpGeu9ExkVY28Vfh1eh8Mbd/I6LNjiVl46N/7sP1cmgQ9IyIiOWLAQJIqM5j+4KQQIAgMGIiszd3FCd9N6IZZD7aF0iBIzy1W44X/nsTsP86hqJSlV4mIHB0DBpKU4UrPnI5EZDsKhYAXB4Vj3fN9EOLnZvT5L0euY9R/9uPKzTwJekdERHLBgIEkZZhgyYRnItu7t4Ufts3oj4c7NzH6LPZWPh75ej+WxVyDxkRVMyIisn+8OyNJlWk4wkAkB94qZ3z1ZFd89nhnuDnrl14tUWvx0dZLeHTJQY42EBE5IAYMJCnDJ5ZKjjAQSUYQBIzr3hxbXu2H9k28jT4/k5yNh7+KwaJdsShRM7eBiMhR8O6MJGVYVtWZIwxEkmsd5Ik/XuqLZ6JaGX1WphGxePdVjPxqP05dz5Kgd0REZGsMGEhShmVVOSWJSB5cnZR4f2R7rHu+D8KCPIw+j72Vj0eXHMT/bbmIwlK1BD0kIiJbYcBAkmLSM5G89Wjpj22v9sdLg1sblV8VRWD5/gQMW7QPf128BVFkUjQRkT3i3RlJqoxlVYlkT+WsxJsPRGLTy1Ho0NQ4t+FGVhGmrTqOZ1YeQ2J6gQQ9JCIia2LAQJIyHGFw4ggDkWx1aOqDjS9F4a0HI+HiZPx3NfrKHQxbtA9f7LjCaUpERHaEd2ckKcMcBiY9E8mbk1KBFwa1xp8z+qNnK3+jz0s1WnwdHYf7F+zFtnNpnKZERGQHGDCQpAyrJDkpeUkSNQRhQZ5Y+1xvLBp/D4K8XI0+T80pxov/PYkJy48g9hbXbiAiash4d0aSMl6HgSMMRA2FIAgY0zUEf88ciGf7t4KTib+/B+Iy8MC/9+G1Nadw7U6+BL0kIqL6YsBAkjJc6ZlTkogaHi+VM94d0R7bZ/RH39YBRp+LIrDhdCruX7gX//z1NBOjiYgaGAYMJCkmPRPZjzaNvPDfab3wzVP3oqmPyuhzrQj8fjIF9y3cizfXncH1jEIJeklERLXFuzOSlFrLEQYieyIIAoZ3aoK/Zg7Eq/e1gaerk1EbjVbEuhM3MGTBHrz921kGDkREMseAgSRVxhEGIrvk7uKEfw6NQMyswXhpcGu4uyiN2qi1ItYcS8agL6LxyupTOJ+SI0FPiYioOrw7I0kZllXlwm1E9sXPwwVvPhCJmFmDMX1gGNycjQMHrQhsPpOKh7/aj6eXH8GBuHSWYyUikhEGDCQpw7KqziyrSmSXAjxd8c5D7bBv1mBM69cKriYWfgOAmKvpeGrZETzy9QFsOZtqVEmNiIhsj3dnJCnDEQaWVSWyb0Fernjv4faI+V/g4GFiqhIAnEvJwcu/nMLgL/Zg+f4E5BaX2binRERUgQEDScrw6SGTnokcQ7C3Cu893B4H374PbwyLQICHi8l21zML8X9bLqL3x7vx3oZzuMpF4IiIbM64fAWRDTHpmcix+bg74+UhbTCtfxjWn7iB72OuIclE1aTCUg1+PnwdPx++jqjwADzZrSm0IsBBSSIi62PAQJJi0jMRAYDKWYkJvUPxZM8W+PP8TXy7Nx7nzFRNOhCXgQNxGfB3VSKqkRb35JagpZubjXtMROQ4GDCQpJj0TESVKRUCRnRuguGdGuNoQiZ+PJSIHRdumUx+ziwRsPm6ElsWHUBUeCDGdG2GBzs2hoeJtR+IiKju+FuVJGU0wsD5BUSE8gXgeoUFoFdYAFKzi/Dz4SSsOZaMzIJSo7YigP1x6dgfl473NpzHgx0b49F7m6Fv60AWUiAisgAGDCQptcEIgxNHGIjIQFNfN8x6MBKv3tcGm8+k4sdDiTifkmuybVGZBn+cSsEfp1LQyNsVIzs3xch7mqJziA8EgcEDEVFdMGAgSZUZjDA482kgEZmhclZibPfmeLxbCA5dvYXFm4/hdKaAEo3p3xu3ckuwbH8Clu1PQGiAuy54aNvYy8Y9JyJq2BgwkKTUBlWSlEx6JqJqCIKArs198I9wLR7XAELze7D1/G3su5pudqG3pIxCfB0dh6+j4xDRyBMjOzfFw/c0RatADxv3noio4WHAQJJSG67DwLKqRFQLLkpgWMdGeLxHS9zJK8GmM6n449QNs1OWACD2Vj4W7IrFgl2xiGjkiaHtG+H+do1wT4gvFBzlJCIywoCBJMWyqkRkKUFerpjarxWm9muF2Ft52HwmFZvPpCLRxLoOFWJv5SP2Vj7+Ex2PYC9X3NeuEYa2D0bf1oFQOZtehZqIyNEwYCBJMemZiKwhopEXZg5ri38OjcD5lFxsPpuKLWdSkZpTbHaf23klWH30OlYfvQ53FyX6hQdiYNsgDGgThOb+7jbsPRGRvDBgIEkx6ZmIrEkQBHQK8UGnEB+8/WAkTl7PwuYzqdh67ibS80vM7ldYqsHOi7ew8+ItAEBYoAcGRARhQEQgerUK4FoPRORQ+BuPJMURBiKyFYVCQPeW/uje0h/vj+yA08lZ2HXxNnZdvIn4OwVV7nstvQDX0guw8mAinJUCuof6o39EIKJaB6JjMx+u90BEdo0BA0nKMIfBmTkMRGQDSoWAbqH+6Bbqj7cfisS1O/n469It7Lp4CyeSsmCm2BKA8pHRQ9cycOhaBoAr8FY5oXdYAPq1CUTf1oFoHeTBNR+IyK4wYCBJlRmUVXVilSQikkBYkCeeC/LEcwNaIyO/BNFX7mBf7B3sj0s3ubp0ZbnFar3pS428XRHVOhA9WvmjW6gfwoM8WX2JiBo0BgwkKcOyqhzWJyKpBXi64vFuIXi8Wwi0WhEXUnOx7+od7I29g5NJWUa/twzdyi3B76dS8PupFACAl8oJ97bwQ7fQ8p97mvvCkzkQRNSA8DcWSYpTkohIzhSKu0nTLw0OR15xGQ7FZyDmajoOxKfjWjW5DwCQV6zG3tjygAMAFALQtrE3ujT3RdfmvujSwpejEEQkawwYSFJMeiaihsRL5YxhHRpjWIfGAICbOcU4EFcePByMy8DNXPNlWytoReBSWi4upeVi9dHrAABPVyd0DvFBl+a+up9gb5VVvwsRUU0xYCBJGY0w8AkbETUgjX1UeKxbCB7rFgJRFHEtvQAH49JxNDELJ5OykJJdVKPj5JeocTA+AwfjM3Tbgr1c0bGZDzo29UaHZj7o2MwHTX1UTKgmIptjwECSMkp65ggDETVQgiCgdZAnWgd54uk+LQEAaTlFOJmUjRNJWThxPQsXU3OM1p8x53ZeCf6+fBt/X76t2+bn7oyOzXzQvok32jb2QmRjb7QO9oCrE1elJiLrYcBAkjJMHnRiDgMR2ZEmPm4Y0dkNIzo3AQAUl2lw9kYOTidn4XRyNk5fz65y9WlDWYVliLmajpir6bptTgoBYUEeiGxcHkS0a+KFiEZeaObrxtEIIrIIBgwkKeMpSRxhICL7pXJWomcrf/Rs5a/bdju3GKeSs3E6ORunrmfh3I0cFJRqanxMtVZE7K18xN7KB87c3e7p6oTwYE+0beSFNo080bZxeSAR7OXKQIKIaoUBA0mqzCjpmf+IEZFjCfZW4YEOjfHA/xKptVoRCRkFOJ+SgwupuTifkoPzKTnILVbX6rj5JeryUYzkbL3tzXzdMPeRDhjavpGlvgIR2TkGDCQZjVaEaDCV14lJz0Tk4BSKu7kQo7o0AwCIoojkzCKcT83BhdQcXLmZh0tpeTVOqq4sJbsIr689jQNvDYGPu7Olu09EdogBA0nGsKQqwKRnIiJTBEFAiwB3tAhwx/BOTXTbc4vLEHszD5dv5uHyzVxcTsvDlVt5yKtmNCK/RI0/L6RhfI8W1u46EdkBBgwkGcP8BYAjDEREteGtckb3lv7o3vJuToQoiriVW4Irt/Jw9VYertzMQ+ztfFy5mYvisrsPajafYcBARDXDgIEkYypgcOYIAxFRvQiCgMY+KjT2UWFgRJBu+9azaXjpl5O69wfj03E7rxjBXlwgjoiqxrszkoxhwjPApGciImu5r10wPFzurtegFYFtZ9Mk7BERNRQMGEgyJkcYWFaViMgqVM5KDPtfJaYKm86kStQbImpIeHdGkjFc5RngCAMRkTWNvKeJ3vuT17ORnFkoUW+IqKFgwECSMVzlGWDAQERkTf3Cg+BrUEp181mOMhBR1RgwkGTUpkYYOCWJiMhqXJwUeKij/ijDptMMGIioarw7I8kYjjAIAqBkWVUiIqt65J6meu8v3ywvv0pEZA4DBpKMYdIzE56JiKyvZyt/NPJ21dvG5Gciqgrv0EgyhmVVmb9ARGR9SoWAhzvrjzJsOpMKUTTOKyMiAhgwkIQMRxi4yjMRkW0YTktKyijE2Rs5EvWGiOSOAQOApKQkzJw5E5GRkfDw8IC/vz969OiBzz//HIWFlis3t337dowZMwYhISFwdXVFSEgIxowZg+3bt1vsHA2JYdIzV3kmIrKNziE+CA1w19vGaUlEZI7D36Ft3rwZnTt3xsKFC3HlyhUUFhYiKysLx48fx6xZs9C1a1fExcXV6xxarRbTpk3D8OHDsWHDBqSkpKC0tBQpKSnYsGEDhg8fjmeffRZaEysf27Myg6RnTkkiIrINQRCMRhm2nE2FxkS5ayIihw4YTp06hfHjxyM3Nxeenp6YN28eDh48iN27d+PZZ58FAMTGxmLEiBHIy6t7BYl3330Xy5cvBwB07doVq1evxtGjR7F69Wp07doVALBs2TK899579f9SDYjhCANLqhIR2Y5hwHArtwRHEzIl6g0RyZlD36HNmDEDRUVFcHJyws6dOzF79mz06dMHQ4YMwdKlS/HZZ58BKA8aFixYUKdzxMbG4osvvgAAdO/eHQcOHMATTzyBHj164IknnsD+/fvRvXt3AMDnn39e79GMhsSwrCpHGIiIbKdNIy9ENvbS28ZpSURkisMGDEePHkVMTAwAYOrUqejTp49Rm5kzZ6Jdu3YAgMWLF6OsrKzW5/n3v/8NtVoNAPjqq6/g5uam97m7uzu++uorAIBarcaiRYtqfY6GiknPRETSeqSL/ijD9vNpKFU71vRYIqqewwYMGzZs0L2eMmWKyTYKhQITJ04EAGRnZyM6OrpW5xBFERs3bgQAREZGonfv3ibb9e7dG23btgUAbNy40WFK26m1THomIpLSSIPyqtmFZdgfd0ei3hCRXDnsHdr+/fsBAB4eHujWrZvZdgMHDtS9PnDgQK3OkZCQgNTUVKPjVHWelJQUJCYm1uo8DVWZ4QgDpyQREdlUc3933NvCV2/bptOclkRE+hw2YLh06RIAIDw8HE5OTmbbRUZGGu1TUxcvXjR5HEufp6Fi0jMRkfQMk593XryFolKNRL0hIjkyf6dsx4qLi5Geng4ACAkJqbKtn58fPDw8UFBQgOTk5Fqd58aNG7rX1Z2nefPmutf1OY8plY/32sp98PK/XKvjW0tabjHUuXfXuSjJLsHVq1cl7BHVV0lJie7vVnx8PFxdXSXuEdkrXmuW096zDNq8dFTUocgF8OjnG+Gjcpa0X3Kg0WqRlVVeOern2J1Q8sEWWUle5m3d64rcVzlxyIChcolUT0/PattXBAz5+flWO4+Hh4fudW3PUznYqM62j6fV6ti2lAIgwrEqyxIRyVKK1B0gcmB37txBy5Ytpe6GHocMlYuLi3WvXVxcqm1f8eSqqKjIauep/HSstuchIiIiIvtw69YtqbtgxCFHGFQqle51aWlpte1LSkoAwKgkqiXPU3GOupynuilMCQkJGDBgAADg4MGDtRqRIKqNtLQ09OzZE0B56eImTZpI3COyV7zWyBZ4nZGtJCcno2/fvgCqz3uVgkMGDF5edxeqqcn0n4KCAgA1m75U1/NUnKMu56kuP6Ky5s2b16o9UV01adKE1xrZBK81sgVeZ2QrlR84y4VDTklSqVQICAgAUH3CcFZWlu5mvrZP5iv/YqlNYjJHAIiIiIhILhwyYACA9u3bAwDi4uKqzEa/fPluRaGKVZ9rew7D41j6PERERERE1uKwAUO/fv0AlE8FOnHihNl2e/fu1b2Oioqq1TlatWqFpk2bGh3HlH379gEAmjVrJrvMeCIiIiJyXA4bMIwePVr3esWKFSbbaLVarFq1CgDg6+uLwYMH1+ocgiBg1KhRAMpHEA4fPmyy3eHDh3UjDKNGjYIgcMVjIiIiIpIHhw0Yevbsif79+wMAli9fjkOHDhm1WbBggW7V5RkzZsDZWX8Rmz179kAQBAiCgMmTJ5s8z2uvvQalUgkAeOWVV4xKphYVFeGVV14BADg5OeG1116rz9ciIiIiIrIohw0YAGDx4sVwc3ODWq3GsGHD8Mknn+Dw4cOIjo7G9OnTMWvWLABAREQEZs6cWadzRERE4M033wQAHD9+HFFRUVi7di2OHz+OtWvXIioqCsePHwcAvPnmm2jTpo1lvhwRERERkQU4ZFnVCl27dsXatWsxYcIE5ObmYvbs2UZtIiIisHXrVr0SqbU1b9483L59Gz/88ANOnTqFJ554wqjN1KlT8dFHH9X5HERERERE1iCIoihK3QmpJSUlYfHixdi6dStu3LgBFxcXhIeHY+zYsXj55Zfh7u5ucr89e/bo8homTZqElStXVnmebdu2YenSpTh27BjS09MRGBiIHj16YPr06XjooYcs/bWIiIiIiOqNAQMREREREZnl0DkMRERERERUNQYMRERERERkFgMGIiIiIiIyiwEDERERERGZxYCBiIiIiIjMYsBARERERERmMWAgIiIiIiKzGDAQEREREZFZDBiIiIiIiMgsBgx2LikpCTNnzkRkZCQ8PDzg7++PHj164PPPP0dhYaHU3SMZu337NrZs2YL3338fDz30EAIDAyEIAgRBwOTJk2t9vO3bt2PMmDEICQmBq6srQkJCMGbMGGzfvt3ynacG5fjx4/jwww8xbNgw3fXh6emJiIgITJkyBfv376/V8XitkSm5ublYs2YNZs6ciYEDByI8PBw+Pj5wcXFBcHAwBg0ahM8++wwZGRk1Ot7BgwcxYcIEhIaGQqVSoXHjxnjggQewevVqK38Tasjeeust3b+lgiBgz5491e4ji99pItmtTZs2id7e3iIAkz8RERHi1atXpe4myZS56waAOGnSpBofR6PRiFOnTq3yeNOmTRM1Go31vgzJVv/+/au8Nip+Jk6cKJaUlFR5LF5rVJVdu3bV6FoLDAwU//zzzyqPNWfOHFGhUJg9xogRI8SioiIbfTNqKE6dOiU6OTnpXSvR0dFm28vpdxoDBjt18uRJ0c3NTQQgenp6ivPmzRMPHjwo7t69W3z22Wf1gobc3Fypu0syVPkXUosWLcRhw4bVKWB4++23dft17dpVXL16tXj06FFx9erVYteuXXWfvfPOO9b7MiRbrVu3FgGITZs2FWfMmCGuX79ePHr0qHjo0CFx4cKFYrNmzXTXyJNPPlnlsXitUVV27dolNm/eXJw4caK4ePFi8ffffxcPHTokHjhwQFy7dq04duxYUalUigBEFxcX8fTp0yaP8+233+qupdatW4vLly8Xjx49Km7YsEEcPHhwja9XciwajUbs0aOHCEAMDg6uUcAgp99pDBjsVMVTOycnJ/HgwYNGn3/22We6C23OnDm27yDJ3vvvvy9u3rxZvHnzpiiKopiQkFDrgOHKlSu6pyndu3cXCwsL9T4vKCgQu3fvrrtWOeLleEaMGCGuXbtWVKvVJj+/c+eOGBERobv29u7da7IdrzWqjrlrrLI//vhDd62NGTPG6POMjAzRx8dH9yDlzp07RucYOXJkjW4GybEsWrRIBCBGRkaK77zzTrXXiNx+pzFgsENHjhzRXYjTp0832Uaj0Yjt2rUTAYi+vr5iaWmpjXtJDU1dAoYXXnhBt8+hQ4dMtjl06JCuzYsvvmjBHpO92Lx5s+4aeeWVV0y24bVGltK2bVvd1CRD8+fP111Dq1evNrl/cnKybqRi+PDh1u4uNQBJSUmip6enCEDcs2ePOGfOnGoDBrn9TmPSsx3asGGD7vWUKVNMtlEoFJg4cSIAIDs7G9HR0bboGjkQURSxceNGAEBkZCR69+5tsl3v3r3Rtm1bAMDGjRshiqLN+kgNw+DBg3Wv4+PjjT7ntUaW5OXlBQAoLi42+qzi31dvb288+uijJvcPCQnB/fffDwDYvXs38vLyrNNRajBeeukl5OfnY9KkSRg4cGC17eX4O40Bgx2qqCji4eGBbt26mW1X+aI9cOCA1ftFjiUhIQGpqakAUO0vyIrPU1JSkJiYaO2uUQNTUlKie61UKo0+57VGlnLlyhWcPn0aQPmNWmWlpaU4evQoAKBPnz5wcXExe5yK66ykpATHjx+3TmepQfj111+xZcsW+Pv744svvqjRPnL8ncaAwQ5dunQJABAeHg4nJyez7Sr/MqzYh8hSLl68qHtt+A+vIV6LVJW9e/fqXrdr187oc15rVB+FhYW4evUqFi5ciIEDB0KtVgMAXnvtNb12sbGx0Gg0AHidUc1kZ2djxowZAID58+cjMDCwRvvJ8Xea+btJapCKi4uRnp4OoHxYtCp+fn7w8PBAQUEBkpOTbdE9ciA3btzQva7uWmzevLnuNa9Fqkyr1eLTTz/VvR83bpxRG15rVFsrV640O2UXAN5++2384x//0NvG64xqa9asWbh58yaioqIwderUGu8nx2uNAYOdqTxX0tPTs9r2FQFDfn6+NbtFDqg216KHh4fuNa9FqmzRokW6aSCPPvqoyWmWvNbIUrp06YKlS5eiR48eRp/xOqPaiImJwbJly+Dk5IRvv/0WgiDUeF85XmuckmRnKidpVTW/soKrqysAoKioyGp9IsdUm2ux4joEeC3SXXv37sXbb78NAAgODsaSJUtMtuO1RrU1evRonDt3DufOncPRo0exevVqjBkzBqdPn8aTTz6JLVu2GO3D64xqqrS0FM899xxEUcTrr7+Ojh071mp/OV5rDBjsjEql0r0uLS2ttn1FMqGbm5vV+kSOqTbXYuWkVl6LBAAXLlzAmDFjoFaroVKpsG7dOgQHB5tsy2uNasvX1xcdO3ZEx44d0aNHDzzxxBP4/fffsWrVKly7dg2jRo3CypUr9fbhdUY19fHHH+Py5cto0aIF5syZU+v95XitMWCwMxXl4ICaDU0VFBQAqNn0JaLaqM21WHEdArwWqbxCyLBhw5CVlQWlUok1a9ZgwIABZtvzWiNLefrppzF27FhotVq8/PLLyMzM1H3G64xq4vLly/jkk08AAF999ZXelKGakuO1xhwGO6NSqRAQEICMjAy9pBlTsrKydBda5aQZIkuonKhV3bVYOVGL16JjS01Nxf3334/U1FQIgoAffvgBo0aNqnIfXmtkSaNGjcKvv/6KgoIC/Pnnn7rkZ15nVBOLFi1CaWkpwsLCUFhYiDVr1hi1OX/+vO7133//jZs3bwIARo4cCQ8PD1leawwY7FD79u0RExODuLg4qNVqs6VVL1++rHttqlQhUX20b99e97rytWYKr0UCgPT0dAwdOhTXrl0DUP50rmKByarwWiNLCgoK0r1OSkrSvY6IiIBSqYRGo+F1RmZVTBG6du0annzyyWrb/9///Z/udUJCAjw8PGT5O41TkuxQv379AJQPU504ccJsu8q1zaOioqzeL3IsrVq1QtOmTQHoX2um7Nu3DwDQrFkztGzZ0tpdIxnKycnBAw88oKs//umnn+Kll16q0b681siSUlJSdK8rT/FwcXFBz549AQCHDh2qcm55xXXo6uqK7t27W6mnZK/k+DuNAYMdGj16tO71ihUrTLbRarVYtWoVgPLkr8GDB9uia+RABEHQTSW5fPkyDh8+bLLd4cOHdU9IRo0aVavSc2QfCgsLMWLECJw8eRIA8O677+Ktt96q8f681siS1q1bp3vdqVMnvc8q/n3Nzc3F77//bnL/Gzdu4K+//gIA3HfffXrz0cn+rVy5EqIoVvlTORE6Ojpat73ihl+Wv9NEskv9+/cXAYhOTk7iwYMHjT7/7LPPRAAiAHHOnDm27yA1OAkJCbprZtKkSTXa58qVK6JSqRQBiN27dxcLCwv1Pi8sLBS7d++uu1ZjY2Ot0HOSs5KSEnHYsGG6a2vGjBl1Og6vNarOihUrxKKioirbLFy4UHcttmrVSlSr1XqfZ2RkiD4+PiIAMTQ0VExPT9f7XK1WiyNHjtQdIzo62tJfg+zAnDlzqr1G5PY7jTkMdmrx4sWIiopCUVERhg0bhtmzZ2Pw4MEoKirCmjVrsHTpUgDlczJnzpwpcW9Jjvbv34+4uDjd+4oVxAEgLi7OqOTg5MmTjY4RERGBN998E59++imOHz+OqKgovPXWW2jdujXi4+Mxf/58nDp1CgDw5ptvok2bNlb5LiRfTz75JHbu3AkAGDJkCKZOnaqXEGjIxcUFERERRtt5rVF15s6di5kzZ+Kxxx5Dv3790Lp1a3h6eiIvLw/nzp3Df//7Xxw4cABA+XW2dOlSKJVKvWP4+/tj/vz5eP7555GUlIRevXrh3XffRadOnZCamop///vfiI6OBlB+bQ8aNMjWX5PshOx+p1k1HCFJbdq0SfT29tZFsYY/ERER4tWrV6XuJsnUpEmTzF47pn7M0Wg04jPPPFPlvlOnThU1Go0Nvx3JRW2uMfzvqa45vNaoKqGhoTW6xkJCQsSdO3dWeaz3339fFATB7DGGDx9e7WgGOa6ajDCIorx+pzGHwY6NHDkSZ8+exeuvv46IiAi4u7vD19cX3bt310Wm4eHhUneT7JxCocDy5cuxdetWjBo1Ck2bNoWLiwuaNm2KUaNGYdu2bVi2bBkUCv46ovrhtUZV2bFjBxYsWIBHH30UnTt3RqNGjeDk5AQvLy+0bt0ajz32GFasWIErV65g6NChVR7rgw8+wP79+/GPf/wDzZs3h4uLC4KDgzF06FD88ssv2Lp1q97iW0R1IaffaYIoiqLVz0JERERERA0SH7MQEREREZFZDBiIiIiIiMgsBgxERERERGQWAwYiIiIiIjKLAQMREREREZnFgIGIiIiIiMxiwEBERERERGYxYCAiIiIiIrMYMBARERERkVkMGIiIiIiIyCwGDEREREREZBYDBiIiIiIiMosBAxERERERmcWAgYiIiIiIzGLAQEREREREZjFgICIiIiIisxgwEBHV09y5cyEIAgRBkLorSExM1PVl5cqVUnfH4axcuVL355+YmFjv4/3www8QBAGdOnWCKIr176BMrVu3DoIgICIiAmVlZVJ3h4gMMGAgIrui0Wjg7e0NQRBw7733VtlWFEUEBATobvB++OGHKtv/+OOPurZLliyxZLdl6caNG5g7dy769++PoKAgODs7w83NDSEhIRgwYABmzJiB9evXIycnR+qu2qX8/HzMnj0bAPD+++/LIiCtbNiwYRAEATNmzKj3sR577DG0b98eV69exVdffWWB3hGRJTFgICK7olQq0bdvXwDAmTNnkJuba7bthQsXkJmZqXsfExNT5bErfz5gwIB69lTevv/+e7Rt2xYffPAB9u/fj/T0dKjVahQXFyMlJQUxMTH48ssvMXbsWEyfPl3q7tqlL7/8Erdu3UL79u3x+OOPS90dPXl5edi7dy8AYOTIkfU+nkKhwLvvvgsA+PTTT1FQUFDvYxKR5TBgICK7U3Ezr9VqcfDgQbPtKgIApVKp97669oGBgWjfvr1u+9y5cyGKot1MGVm9ejWee+45FBYWQqVS4YUXXsCGDRtw/PhxHDt2DBs3bsS//vUvdO3aVequ2q2ioiIsXLgQAPD666/LbnRhx44dKC0thbe3NwYOHGiRY44fPx7NmjXDnTt38N1331nkmERkGQwYiMjuVH76v2/fPrPtKj4bO3YsACA+Ph6pqakm296+fRuxsbEAgH79+snuBs5SNBoN/vnPfwIAvLy8cOTIEXzzzTcYNWoUunXrhu7du+ORRx7Bhx9+iJMnT+LixYt49NFHJe61/fn555+RkZEBV1dX2Y0uAMDmzZsBAA888ACcnZ0tckylUonx48cDAL7++mtotVqLHJeI6o8BAxHZnR49ekClUgGoetSg4rPHH38crVu3rrK9o0xHOnLkCG7evAkAmD59Ojp37lxl+3bt2mHcuHG26JpDWb58OQBgxIgR8PX1lbYzBrRaLbZt2wYAePjhhy167KeeegoAkJCQgOjoaIsem4jqjgEDEdkdV1dX9OzZEwBw7NgxlJSUGLVJSEhASkoKgPIRg379+gGoW8BQXZWkli1bQhAETJ48GQBw5coVPPvss2jZsiVcXV3RqFEjjBkzBocPH672u2k0GnzzzTfo1asXvL294ePjg3vvvRdffPGFye9ZW9evX9e9Dg8Pr/NxTFVrWrduHe6//34EBwfDzc0NkZGReOedd5CdnV2jY0ZHR2PSpEkICwuDu7s7vL290alTJ7z55ptmR4YsfYysrCy8/fbbiIyMhJubG4KDg3H//fdj3bp1NTp/TSQlJeHIkSMAypOBzdmzZ4/uz3jPnj0QRRHLly9Hv379EBAQAG9vb/Ts2RM//fST3n6lpaX49ttv0bt3b/j7+8PLywtRUVH49ddfa9S/w4cPIz09HQqFAsOHDzf6/MSJE5g6dSoiIiLg4eEBlUqF5s2bo1u3bnjppZewadMms9P37r33XrRq1QpA+dQ4IpIJkYjIDr333nsiABGAuHfvXqPPV65cKQIQ27RpI4qiKH7//fciALFTp04mj3fvvfeKAERvb29RrVbrfTZnzhzduUwJDQ0VAYiTJk0Sf//9d9Hd3V3XvvKPUqkU16xZY/Y75eXlif379ze5LwDx3nvvFU+ePKl7v2LFihr+ad3122+/6fafMWNGrfevkJCQoNePZ555xmy/mzZtKl66dMnssYqKisQnnnjC7P4ARA8PD3HTpk1WPcbFixfFpk2bmt1/ypQp4ooVK3TvExIS6vRnV3FtAhDj4+PNtouOjta127lzpzhy5EizfXv11VdFURTFzMxMccCAAWbbzZs3r9r+vf322yIAMSoqyuizhQsXigqFoso/ZwBiXl6e2eNX/H9q1qxZDf60iMgWGDAQkV3auXOn7ubko48+Mvp86tSpups8URTFS5cuiQBEQRDEzMxMvba5ubmiUqkUAYgPPvig0bFqGjDce++9okqlElu1aiV+/fXX4uHDh8VDhw6Jc+fOFVUqlS4guX37tsnjjBo1Sneenj17iqtXrxaPHz8ubt26VRw7dqwIQOzRo0e9AoZr167p9lepVOLu3btrfQxR1A8YKvpUuc/btm0Tx40bp2vTokULMTc31+g4Wq1WHDFihK7dyJEjxZ9++kk8cOCAeOjQIXHx4sViixYtRACii4uLeOzYMascIycnR2zevLnuGOPHjxe3bdsmHj9+XPzll1/E7t27G/351zVgqLg2AwICqmxXOWDo1avX/7d3/zFV1f8fwJ/AvUACIYgIzH4IgyQkfolJSEolNRSba6vEBPqByGa10igrbdUGLBdz4VrDxY9igNFmCUnhDCJUll6BBUkUZSMCuQwV1g8Q7vvzBztn58I9lwtcfnz5Ph+b2+2+3+d93ud4bed13j9eAoDYuXOn+Oqrr4ROpxOlpaXirrvukuucPn1abNu2TWg0GpGeni6qq6uFTqcTH3/8sRwI2dnZiZaWFrPnDQoKEgBEdna20ffNzc1ysLBq1Srx/vvvizNnzojGxkZRV1cnjh07JhITE4WTk5PZgCEnJ0fu8y+//GL5jSOiWcOAgYgWpcHBQaHRaAQA8fDDD08oDwgIEABEfn6+/J2Hh4cAICoqKozqfv311/IDTGZm5oS2LA0YAIiIiAhx48aNCXWKi4vlOjk5ORPKKysr5fL4+Hhx8+bNCXXefvtto7e40wkYhBBi69atRu1ERkaKQ4cOiVOnTgm9Xm9RG8qAwVyf33nnHbnOK6+8MqE8Ly9PABBarVZUVVWZPFd/f7/8EGvqrbc12ti/f7/Z38Dw8LCIi4szuubpBgyBgYECgHjwwQfN1lMGDADEkSNHJtTp7u4WLi4uAoBYvny5sLGxESdOnJhQT/mwL41GmKIMKMcHFgcPHpRHanp6elTbuH79uhgdHVUt/+677+RzmBtxI6K5w4CBiBYt6W2vi4uL0TSiq1evyg8k7e3t8vfSG/yMjAyjdt544w25fn19/YTzTCVgaG5uNlnHYDDIb3m3b98+oTw+Pl4AEA4ODqKrq8tkG6Ojo2LNmjUzDhj0er3Rm/LxfwICAsTevXuFTqdTbUMZMFjaZ3d3dzE0NCSXGQwG4efnJwCIffv2me3zqVOnTP6dWqONoaEh4ebmJgCIe+65RxgMBpPHd3Z2Cq1WO+OAQXrA37Fjh9l640cY1CQlJRmNjKiRpiqFhYWp1vnggw/kEYTxUlNTJz3eEtJon1pwRkRzj4ueiWjRkhYnDw4OoqmpSf5e2k51xYoV8Pf3l7+XFj6P34pVWvDs6OiIyMjIafcnODhYddchGxsbOa/Bb7/9ZlQ2OjqK2tpaAGPZdX18fEy2YWtri+Tk5Gn3T+Lh4YGzZ88iLy/PZLbs9vZ2HD16FBEREdi1a9ekSbYs7XN/fz8uXbokl/3000/o6OgAgEm3FlUuRD9//rxV29DpdLh27RoAIDk5WXVx+8qVKxEXF2f2HJMZGhrC4OAgAMDNzc3i45588knVspCQkCnVG//7U5K2UzWVrM3b2xvA2D3/4YcfzHfYDHd3d/mztGMXEc0vBgxEtGjFxMTIn5W7HEmfpQBhfH2dTod///0XwNiOMtLDz7333gt7e/tp92f16tVmy6UHJemBUdLR0YF//vkHACYNWKTdoWZKq9UiNTUVOp0OXV1dKCsrw/79+xETE2O0735xcTG2bduG0dFR1bam0ucff/xR/nzx4kX5c1RUlLwjkKk/zs7Ocl3lQ6Y12lD2abbvvzLz+FQChoCAANUy5basltQb//uTTJbdeceOHdBqtRgaGkJ0dDQSEhLw0UcfoaWlZUpJDZXXzYzPRAsDAwYiWrRiYmLkt8GWBAzh4eFYsmQJbt68KW9xeuHCBfz3338AZp5/YcmSJWbLbW3H/pc8/uFb+RDp6elpto0VK1ZMs3fqfHx88MQTT+Dw4cOoq6tDT08PDhw4IPf322+/NbsF5lT6rLzW3t7eafVXCq6s1cZc3n8pfwgAOWi1hLnflvT3ZGk9tYRpUnZnFxcXk9mdV69ejdLSUri5uWFkZASVlZVIT09HcHAwPD09sWvXrkmzqQPG122tpHBENDOa+e4AEdFscXd3R1BQEFpaWuQHlYGBATQ3NwOYGDBotVqsW7cOtbW1qKurQ2xs7IJL2LYQMky7u7sjMzMTQghkZ2cDGMux8NRTT5msP90+KwOniooK3HnnnRYdp3yot0YbSrN9/5cuXQqNRoORkRGjQGUhqKysBGA+u/Njjz2Ghx56CMePH8c333yD77//Hnq9Hn19fSguLkZxcTGSk5ORn59vFMgoKa97oSWtI/r/igEDES1q999/P1paWqDX69HW1obff/8dBoMBzs7O8poBpQ0bNqC2tlYOFKT1DFqtFlFRUXPad4lyisbVq1fN1p2s3JpSU1PlgOHXX39VrTeVPivnry9btkz+vHTpUqxZs2bKfbRGG+Pvv7lpPTO9/zY2NvDw8EBPT4+8bmIhUGZ3NjUdScnV1RW7d+/G7t27AQCXL1/Gl19+idzcXPz1118oKipCWFgYXnzxRZPHK6/79ttvt9IVENFMcEoSES1q49cxSIHA+vXrYWdnN6G+NOrQ0NCAoaEhnDt3DsDYdCUnJ6c56PFEfn5+uOWWWwCMTZEyZ7Jya1IuZDb35n0qfVY+0CsDurNnz06ni1ZpIzg4WP48F/dfOl97e/uM27KWhoYG6PV61ezO5gQGBuK1115DQ0OD/G/IXFZp5XUHBQVNr8NEZFUMGIhoUVNOI6qrq5NHDMZPR5JERUXBzs4Of//9NwoLC3Hjxo0J7cw1jUaDTZs2AQCqq6vR3d1tsp7BYEBRUdGMzjWVxanKBcW+vr6q9Szts5ubm9GuTOHh4Vi5ciUAIC8vT15LMhXWaCMiIkIeZfj0009V71FXVxeqq6un3P54UpD7888/qy5AnmvS7khRUVHw8PCYVhu33XabPDrT19enWk8KurRarclduoho7jFgIKJFzcfHB35+fgCAmpoa+SFXOfKgdOutt8pveN977z35+/lev5Ceng5gbNvNtLQ0k7sSZWVlGe3oMx1VVVV4/PHH0djYaLZef38/XnjhBfm/H330UdW65vqcnZ0t9/mZZ56Bg4ODXGZra4vXX38dwNhWn0lJSRgaGlI9z8DAAI4ePWr0nTXacHBwwNNPPw0AaGpqwuHDhyccNzIygtTUVAwPD6u2bSnpt2kwGIyCsvkkBQxbt25VrfPFF1/g+vXrquWdnZ1oa2sDAKxatUq1nrQrWVRUlNHOVUQ0f7iGgYgWvZiYGHR0dKCrqwvA2Bv79evXq9bfsGEDmpqa5P3obW1tVUck5kpCQgISEhJQUVGBiooKREdH46WXXoK/vz96e3tRWFiI48ePY+3atTN6yDQYDCgvL0d5eTlCQkKwZcsWREZGwtvbG/b29ujt7UV9fT3y8vLkHYgiIiLM5n9Yu3atyT4XFRWhrKwMwFgOg4MHD044ds+ePTh9+jROnDiB8vJyXLp0CWlpaVi3bh1cXV0xMDCAtrY21NbW4uTJk3B0dMTevXut3sahQ4fw2Wef4c8//8Srr76KpqYmJCUlwdPTE+3t7cjJycGFCxdmfP8B4L777sPy5cuh1+tx5swZxMbGzqi9mbpy5QpaW1sBmF+/cOTIEezcuRNbtmzBAw88gMDAQLi6uuLatWu4ePEicnNz5R2Q9uzZY7KNwcFBeYRh+/btVr4SIpq2+c0bR0Q0+/Lz840yFUdGRpqtX1ZWZlQ/JCTEbH1LMz0nJyebbSc5OVkAEHfccYfJ8oGBAREdHa2agTksLEzodLoZZXqur68XTk5OqucY/2fz5s2ir69vQjvKTM8FBQUiJSVFtQ1vb2/R2tqq2qfh4WGRnp4ubGxsJu2PqQzE1mqjpaVFeHl5qR6XkpIiCgoKZpzpWQgh9u3bJwAIX19f1TrKTM81NTWq9Sztk9rv2Fx2Z6WNGzdOem9tbW3Fu+++q9pGYWGhACA0Go3o7u42ez4imjuckkREi9746USTjRaMn64039ORJC4uLqitrUVubi4iIyPh7OwMFxcXhIaGIisrC+fOnTPaZWg6oqOjodfrcfLkSbz88svYuHEjfHx84ODgAI1GA3d3d4SHhyMtLQ01NTWorq422olITUFBAUpKSrBp0yYsW7YMDg4OCAgIQEZGBlpbW3H33XerHqvVavHhhx+iubkZzz//PIKDg+Hq6go7Ozu4uroiNDQUzz77LD7//HNcvnx51toICgpCa2srMjIy4O/vDwcHB3h4eCA2NhYlJSUoKCiw7CZbIDU1FcDYNCopJ8h8MZfdWam0tBR5eXlITExEaGgovLy8oNFo4OzsjKCgIKSnp6OxsRFvvvmmahslJSUAxkYXvLy8rHcRRDQjNkJMYYUbERGRBa5cuSLPUy8oKEBKSsr8duj/oPj4eFRVVeG5557DsWPH5qUPg4OD8PDwwPDwMKqrq7F58+ZZO9cff/wBPz8/jI6O4vz582anDRLR3OIIAxER0QKUlZUFW1tbfPLJJ+js7JyXPlRXV5vN7mxNmZmZGB0dxSOPPMJggWiBYcBARES0AIWEhCAxMRHDw8PIysqalz64uLjgrbfeQm5uLuzt7WftPJ2dnSgsLISdnZ3R7mREtDBwlyQiIqIFKjMzE35+fnB0dIQQwmyCvNkQFxeHuLi4WT9PZ2cnDhw4AF9fX6NEeUS0MHANAxERWR3XMBARLR6ckkRERERERKo4wkBERERERKo4wkBERERERKoYMBARERERkSoGDEREREREpIoBAxERERERqWLAQEREREREqhgwEBERERGRKgYMRERERESkigEDERERERGpYsBARERERESqGDAQEREREZEqBgxERERERKSKAQMREREREaliwEBERERERKoYMBARERERkSoGDEREREREpIoBAxERERERqWLAQEREREREqhgwEBERERGRKgYMRERERESk6n+1XywpNfO8LQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AACbRElEQVR4nOzdd3gU1foH8O/spmx6Dy0QCCGEKkgndAUVREAF9IoUQbGjF0VFr6A/UVGBi3pFEQTRKyCodATEAKH3XkJCEkISSnovuzu/P3KzZFvq7s5k9/t5njzuzp6ZOYtDmHfOed8jiKIogoiIiIiIyASF1B0gIiIiIiL5YsBARERERERmMWAgIiIiIiKzGDAQEREREZFZDBiIiIiIiMgsBgxERERERGQWAwYiIiIiIjKLAQMREREREZnFgIGIiIiIiMxiwEBERERERGYxYCAiIiIiIrMYMBARERERkVkMGIiIiIiIyCwGDEREREREZBYDBiIiIiIiMosBAxERERERmcWAgYiIiIiIzHKSugNkfcXFxTh37hwAICgoCE5O/N9OREREJBdqtRp37twBAHTq1AkqlUriHunjnaMDOHfuHHr27Cl1N4iIiIioGkePHkWPHj2k7oYeTkkiIiIiIiKzOMLgAIKCgnSv9+3bh1atWknYG7JnRUVF2LdvHwBgwIABcHNzk7hHZK94rZEt8DojW0lISMCAAQMA6N+3yQUDBgdQOWehcePGCAkJkbA3ZM+KiooQGBgIAAgJCeE/rmQ1vNbIFnidka0UFRXpXssx15RTkoiIiIiIyCwGDEREREREZBYDBiIiIiIiMosBAxERERERmcWAgYiIiIiIzGLAQEREREREZjFgICIiIiIisxgwEBERERGRWQwYiIiIiIjILAYMRERERERklvzWniYiIiKUlpYiPz8fBQUFKC0thVarlbpLDker1SIgIAAAcP36dSgUfM5KpimVSqhUKnh7e8PDwwOCIEjdJYtiwEBERCQjoigiPT0d6enpUnfF4YmiCDc3NwCARqNh0EZmqdVqlJSUICcnB25ubmjRooVdBZgMGIiIiGQkLS0NOTk5etsEQYBSqZSoR46t4kmxkxNvmcg8jUYDURQBAEVFRbh+/TpCQ0PtZqSBVz8REZFMFBcX6wULAQEB8Pb2hqurq93ceDQkWq0Wubm5AABvb2+7emJMlqXVapGfn4+bN29Co9GgqKgIBQUF8PT0lLprFsErn4iISCays7N1r4ODgxEcHAyVSsVggUjmFAoFvL290bhxY922vLw8CXtkWQwYiIiIZKKwsFD32tfXV7qOEFGdeHp66gL8oqIiiXtjOQwYiIiIZEKj0QAony/PnAWihkehUOj+7lb8fbYHDBiIiIiIiMgsBgxERERERGQWAwYiIiIiIjKLAQMREREREZnFgIGIiIiIiMxiwEBEREQOa+XKlRAEAYIgIDExUeruEMkSAwYiIiIiO6TVanHx4kWsXLkSL774Inr06KFbNVwQBOzZs6dGxxk0aJBun+p+zKkcmAmCgNatW9fo3MnJyVAqlXr7Vg7sbt++rdv+6KOPVnms7OxsvWP9/fffVbb/4IMPdG23b99eo/7aKyepO0BERERElvfTTz9h8uTJUnfDpGvXruHgwYPo27dvle3++9//QqvVmv08ODgYbdu2xZUrV7B///4qj7V//369Y8XExGDIkCFm28fExAAAlEoloqKiqjy2vWPAQERERA5r8uTJsr2pri9RFHWvnZ2d0alTJ5SVleHcuXN1Ol737t2xYsWKevdLpVKhuLgYP/30U7UBw08//aS3jykDBgzAlStXcOfOHVy+fBmRkZEm21UOADQaje69KWq1GocPHwYA3HPPPfD29q72e9kzTkkiIiIiskPt27fHl19+iUOHDiE3NxcnTpyodtpOVTw8PNCxY8cqf2rikUceAQD8+uuvKC0tNdvu5MmTuHjxIgBg1KhRZtsNGDBA93rfvn1m21V8NnbsWADA4cOHUVZWZvbcBQUFRsd3VAwYiIiIiOxQz5498corr6B3795QqVRSd0dn/PjxcHFxQWZmJrZu3Wq2XcXoQo8ePcyOGgBA//79da/NjRoUFRXhxIkTAIAZM2bAzc0NBQUFOHnypMn2lY/DgIEBAxERETmwmlRJ0mg0+PHHH/Hwww+jadOmcHV1RUBAAPr164eFCxeiqKjI7PG1Wi3+/vtvvPHGG4iKikJgYCCcnZ3h6+uLLl264I033sD169et9O3kyd/fHyNGjABwNygwpFarsXr1agDA008/XeXxQkND0aJFCwDmA4aK0QQvLy/06NEDPXv2rLJ9xXZBEPQCEkfFgIGIiIjIjOTkZAwaNAjPPPMMtm7dirS0NJSWliIzMxMHDhzAzJkz0blzZ8TGxprc/8MPP8R9992HBQsW4ODBg8jIyIBarUZOTg7OnDmDBQsWoF27dvjjjz9s/M2kVREEbN26FZmZmUaf79y5E7du3YKTkxOeeOKJao9XMQqQlJSE5ORko88rpiP17t0bSqUS/fr109temSiKugTqdu3aITAwsIbfyn4xYCAiIiIyISMjAw899BDOnz8PV1dXvPzyy1i3bh2OHTuG6OhovPPOO3B3d0dcXBweeugh5OTkGB1DrVajSZMmePHFF/HTTz/hwIEDOHHiBDZs2IBZs2bB09MThYWF+Mc//oFLly5J8C1r7vLly+jVqxd8fX2hUqkQEhKCUaNGYdWqVWZzAcwZMWIE/P39UVpail9//dXo84qRhwcffBBBQUHVHq+6PIaKEYOKQKHivwcOHNBLDgeAS5cuISMjw+i4joxVkoiIiBoQrVZEVqH5RFF75OfuAoXCfI1/a5kxYwZSUlLQvHlzREdHG60dMGjQIIwdOxb9+/fHtWvX8Nlnn2HevHl6baZNm4Y5c+bA2dlZb/u9996LUaNG6XIMUlJS8PHHH5udoiMHt27dwq1bt3TvU1JSkJKSgk2bNmH+/PlYv3492rVrV6Njubi4YPz48ViyZAl++uknPP/887rP8vLysHHjRgDAxIkTa3Q8wzyGp556Sve+csWjinZ9+/aFQqFAZmYmLly4oJewzfwFYwwYiIiIGpCswlJ0++gvqbthUyfeux8Bnq42PWdiYqLuyfdnn32GVq1amWzXtWtXvPTSS/jss8+wcuVKo4ChZcuWVZ4nJCQEb775Jl577TVs2rQJoihWuQCaFBQKBe677z4MHz4c99xzDwICApCXl4eTJ0/iu+++w6VLl3Dx4kUMHjwYR48e1eUTVOfpp5/GkiVLcPDgQVy7dg1hYWEAgPXr16OoqAg+Pj4YOXJkjY4VGRmJ4OBg3L592ygvoaLikbOzM3r16gUA8Pb2RqdOnXDmzBnExMQwYKgGpyQRERERGdi6dSs0Gg3c3d0xdOjQKttW3FSmpqZWm8Ccm5uLhIQEXLhwAefPn8f58+fh7u6u95nc/P777/jrr7/wz3/+E/fddx+6dOmC/v37Y8aMGThz5gwmTZoEoHwE4rXXXqvxcfv06YPw8HAAwM8//6zbXjHKMnbs2FpVd6oYPbh06RLS09N12yumKHXt2lX3Zw3AbB5DRcAQFhaGZs2a1fj89owBAxEREZGB48ePAwAKCwsRGBgIpVKpq6Zk+PPwww/r9rt586bRsZKSkvDKK6+gZcuW8PHxQVhYGDp27IhOnTqhU6dOeO6553RtK9/oyoWvr6/Zz5ydnbFs2TK0bdsWAPDHH38gJSWlxseuSH6uCBiSk5OxZ88eADWfjlShImConLQM3A0ADKsdVbyvPKJw/fp1XdDH6kh3MWAgIiIiMnD79u067VdYWKj3fvv27Wjfvj2+/vprJCUlVbt/VSVa5crJyQlTp07Vvd+7d2+N950wYQIA4OrVqzh8+DB+/vlniKKIli1b6kYAaqry9KGKIKBy8GB4vIr3KSkpupEdTkcyjTkMREREDYifuwtOvHe/1N2wKT93F5ufU6PRAAACAgKwadMmeHp6QqGo/jlr5VyH9PR0/OMf/0BhYSE8PT3xxhtv4IEHHkDr1q3h4+MDF5fy7/X333/jvvvuAwCjij0NRfv27XWvazPCEBYWhqioKBw4cAA//fQToqOjAZQHErXN5bjnnnvg4+ODnJwc3TSjCxcu6Mq2GgYMzZo1Q8uWLZGYmIh9+/ahVatWDBjMYMCA8qHCL7/8Elu3bkVycjJcXV3RunVrjBs3Di+99JLefLe6SkxMxJIlS/DXX38hPj4eBQUF8PLyQmRkJB588EE8//zzCA4OtsC3ISIie6ZQCDZPAHZEAQEBAID8/Hy0bdsWfn5+NQoYKlu/fj2ys7MBlE/Vuf9+04GeqXUIGpr6JGpPnDgRBw4cwA8//IDi4mIA1S/WZopCoUBUVBS2bduGU6dOIT8/XxcAREZGmlxPoV+/fkhMTERMTAwmTZqkCzSaNm2qy68gTknC5s2b0blzZyxcuBBXrlxBYWEhsrKycPz4ccyaNQtdu3ZFXFxcvc7x008/oX379vjss89w8uRJ5OTkQK1WIysrC4cOHcKcOXPQrl077Nq1y0LfioiIiOqja9euAICSkhKcOnWqTse4cOECgPKVjc0FC8DdfImG7OLFi7rXTZs2rdW+48aNg6urqy5Y6NWrFyIiIurUj4q8A41Gg0OHDhmtv2CoYntMTAzS09Nx+fJlveNQOYcOGE6dOoXx48cjNzcXnp6emDdvHg4ePIjdu3fj2WefBQDExsZixIgRyMvLq9M5Dhw4gMmTJ6OoqAgKhQJTpkzBhg0bcPToUaxfv15XLiwzMxOjRo3CtWvXLPb9iIiIqG5Gjhype2q+ZMmSOh1DrVYDAIqLi6HVak22KSwslPXaCzWhVqvxww8/6N7XdiqPr68vRo8eDVdXV7i6uuqqLtWF4QJuNQ0YYmNj8dtvv+mmhHE6kj6HDhhmzJiBoqIiODk5YefOnZg9ezb69OmDIUOGYOnSpfjss88AlF9ECxYsqNM5PvnkE90via+++go//PADRo0ahR49euCxxx7Dpk2b8M9//hNAeaLTwoULLfPliIiIqM7atm2Lxx9/HEB5WdFFixZV2T4hIQGrV6/W29amTRsA5UGBqdWMNRoNpk2bhtTUVAv12vKio6N106pMKSsrw7Rp03SrVI8cORLNmzev9XnWrFmD4uJiFBcX44UXXqhrd9G9e3e4ubkBAH755RfcuHEDgPkRg/bt28Pf3x8AdPd9AAMGQw6bw3D06FFd1Dl16lT06dPHqM3MmTOxYsUKXLp0CYsXL8a7775rtFJjdQ4ePAigfC7kiy++aLLN+++/rwsUDh06VKvj27vYW3m4cjMPvcMCEOTFObtERGQ733zzDY4dO4bExES88cYb2LRpEyZOnIgOHTrA1dUVGRkZOHPmDP7880/8/fffGDNmDJ588knd/uPGjcPs2bNRUlKCKVOm4PTp0xg6dCh8fHxw4cIFfPXVVzhx4oQu6dcaVq5cqff+9OnTutd//vknEhMTde/Dw8ONnsT/+OOPeOSRR/DII49g0KBBaNu2Lby9vZGfn48TJ05g6dKluulIwcHBWLx4sVW+R025uLigV69e2LNnj27WRtOmTXWLwhkSBAF9+/bFli1bdO0DAgLQoUMHm/W5IXDYgGHDhg2611OmTDHZRqFQYOLEiXjnnXeQnZ2N6OhoDBs2rFbnKS0tBQCzK0QCgI+PDwIDA5Genq5rT8D+q+mYsvIoyjQiAj1d8N9pvdG2sZfU3SIiIgfh7++PP//8E1OmTMGhQ4ewb98+o0W+KvP29tZ7HxISgiVLlmDatGkoLi7G/PnzMX/+fL0248ePx7PPPltljkN9mLvHAWDUl0mTJpmcupOfn49ffvkFv/zyi9ljderUCWvWrKnyfsdWBgwYoFvLAQCioqKqbN+vXz9s2bJF773cVtuWmsNOSaqoyevh4YFu3bqZbTdw4EDd67pE/xULmVS1cmNubq5uoZaK9gSsP5GMMk35XML0/FK8/MtJFJaqJe4VERE5kkaNGmHbtm3YtGkTnnrqKYSFhcHd3R3Ozs4ICgpC3759MXPmTOzdu1dvHn+FKVOmICYmBqNHj0ZQUBCcnZ3RpEkTPPjgg1i7di3WrFkDpVIpwTermbfeeguLFi3CuHHj0LFjRzRq1AjOzs7w9PRE69atMX78eKxbtw6nTp3SK60qJcPpRNWt52A4XYnTkYwJYkMt+FtPQUFBSE9Pxz333KM3PGcoKytLN7dt7NixJucgVuX777/XreC4ZMkSPP/880Zt3nzzTXzxxRcAgF27dln8KcONGzd08wljY2N1cyrlbuIPR7Ev9o7etnHdQ/DZ4/dI1COqTlFREXbu3AkAGDZsmG4eKZGl2eu1dvXqVajVajg5OTWY39X2TKvVIjc3F0D56EFty6qSY6rL3+OrV6/qKkMlJycjJCTEml2sNYecklRcXKx7ol/d/xA/Pz94eHigoKAAycnJtT7XM888g/3792PVqlV46aWXcOLECTzyyCNo0qQJrl+/jp9++kk3Perdd9+tU7BQkdBjTlpamu51SUlJg1lFsrTMeDTh1+M30K25Nx7p3FiCHlF1KkriGb4msjR7vda0Wq2uSou5qjpkO5X/H/D/B9WGKIrQarU1vucqKSmxco/qxyEDhsolUj09PattXxEw5Ofn1/pcSqUSP/74I0aOHImPP/4Yy5Ytw7Jly/TaDB48GLNnz67zyEJtqhEcOXIE8fHxdTqPrd1JVwIwnkP4r40XkJtwFsH28UDRblU1z5fIkuzpWgsICICbmxsEQdA92SZ5qMs9ADkmtVqNoqIiFBUV6dZ1qE7Fg2y5csixtcpPoyqWZa+Kq2t5dZ66Ppm/dOkSVq1ahXPnzpn8/NChQ1i+fHmtllJ3BBozk+VKtQJWxipRxoc9RERERFbnkCMMKpVK97omVYkqhonqMkc2JiYGI0eORE5ODkJDQ/HRRx9h6NCh8Pf3x61bt7Bp0yb861//wpo1a7Bv3z7s3Lmz1qW8qpsqlZaWhp49ewIoXz2xdevWtf4eUliaeAzIN71gXkqhgJPaUPzrQSaJy0lxcbHuae+AAQP0/q4RWZK9XmvXr1+HRqOBk5OTUcUdsj2tVqsbWfD09LRpDsPt27dx+/btWu/n4uJS51WSyTLu3LkDNzc3eHp6VllYpzK5z/5wyIDBy+tuac6aDDEWFBQAqNn0pcpKSkrw5JNPIicnB40bN8bhw4fRuPHdufchISF48cUXMXDgQHTv3h2pqamYNGlSrZeIr01ijKura4NJDjQcYVAqBGi0dzf+ciwF/SMa4aFOTWzcM6oJlUrVYK41atjs6VpTKBS6ufJMsJUXhUJh0/8n3377LT744INa7xcaGqq3tgJJQxAEKBSKGv9uqpjNIlcOGTCoVCoEBAQgIyOj2oThrKwsXcBQ25UL//zzT900o1deeUUvWKisQ4cOmDBhApYtW4YTJ07gzJkzuOceVgJSa/UjhpcGh2PpvngUV5qLNOu3s+jYzAfN/d2t2hdRFHEnvwTJmYVIzizC9cxCXM8sRF5xGbTi/5KbREArihAr/dfT1QmNfVQI9nZFY28VGv3vp7GPCp6uDvnXj4iIiBoYh71jad++PWJiYhAXF6crfWVK5WSVdu3a1eocFcukA8C9995bZdtu3brpkqEvX77MgAHQG00AgPZNvPDhIx0x67ezum15xWq8vPoU1k3vAxen+j/5EUURSRmFOJ+ag3MpOYi7lY/rmYVIzirUC1QswdPVCe2beqNv6wBEhQfinhBfi3wHIiJq+ObOnYu5c+dK3Q0iAA4cMPTr1w8xMTEoKCjAiRMn0KtXL5Pt9u7dq3td3UqBhioHIWp11QuOlZWVmdzPkZVp9G/QnRQKjO0egoPx6dhwOlW3/UxyNib+cASjuzTD4MhgNPKu2VxmjVZEYkYBzqfk4HxKeYBwITUXecW2WRwuv0SNowmZOJqQiX//dRXuLkr0aOmvCyDaNfGGUsGVJomIiEhaDntnOnr0aHzyyScAgBUrVpgMGLRaLVatWgUA8PX1xeDBg2t1jsrLo8fExODhhx8227ZyYCKHZdXlQG2QxOCkFCAIAj4a0wlnbuQgIb1A99nha5k4fC0TANCpmQ+GRAbjvnbB6NjUBwqFgPwSNS6n5eJSWi4upuXhUlourtzMQ1GZxqbfqSqFpRrsjb2Dvf9brM7X3RkPdWyCCb1boENTH4l7R0RERI7KYQOGnj17on///oiJicHy5csxadIk9OnTR6/NggULdNOKZsyYAWdnZ73P9+zZowsiJk2ahJUrV+p9ft9998Hd3R2FhYVYsmQJJkyYgE6dOhn1Zfv27fjjjz8AAM2aNUOXLl0s9C0bNrXBIjnOyvLpOp6uTvj6H10x5puDKFUbTxM697/RgsW7ryLIyxXuLkokZRRapE8uSgVC/NzQ3N8dzf3dEOSpgpOyfBRAIQhQCIAglL8GgOzCMtzMLcat//3czClGbg1HMLILy7D66HWsPnodXZr74qleLfBw56Zwc1Fa5LsQERER1YTDBgwAsHjxYkRFRaGoqAjDhg3D7NmzMXjwYBQVFWHNmjVYunQpACAiIgIzZ86s9fF9fX3x9ttv4/3330deXh769u2LV155BUOHDoWfnx9u3bqFjRs34vvvv9dVxfj0009ZGeN/ygxHGCpNz+nQ1AdfPtEFb64/W+UUojt5dVs5McDDBR2b+aBDU2+EBXmiuZ8bWgS4o5GXCop6ThMqKtXgVm4xrqXn42BcBg7EZ+BSWtULNJ1Ozsbp5Gz835aLeLxbc/yjVwuEB9euahcRERFRXTh0wNC1a1esXbsWEyZMQG5uLmbPnm3UJiIiAlu3btUrxVob7733HjIzM7F48WLk5+fjk08+0U2FqszZ2Rkff/wxJkyYUKfz2CO1YQ6DUj+QerBjE/RqFYDoK7ex+/Jt7LtyB3kltc8/CPJyRadmPujYzAcdm3qjU4gPGnurIAjWyR9wc1GiZaAHWgZ6YEhkIwBAZkEpDsVn4EB8Og7FZ+hNt6ost1iNHw4k4IcDCejYzBvuLvL6K6zVapGVqYS/q4iC4DQMbt8ETXzso9wlERGRo5LX3YYERo4cibNnz2Lx4sXYunUrbty4ARcXF4SHh2Ps2LF4+eWX4e5e95KdgiBg0aJFurKp+/fvR1JSEgoLC+Hp6Ynw8HAMHDgQ06dP50IrBsoMqiQ5K41v4P08XPDovSF49N4QlGm0OJaYib8v3cbfl2/jmsFNt1IhoHWQB9o18a7044VgL+kXfPL3cMGIzk0wonP5mhLJmYX47eQNrDmajJu5xSb3OZ9S9aiEdATE5wk4tvESsPESwoI80C88EFHhgegdFgAfN+fqD0FERESyIYiiKFbfjBqyGzdu6NaQiI2NRZs2bSTuUc2EvbMVlWOGra/2q1Xyb0J6AY4lZkIhCIhs7IXwYE+onBvW/H+1Rovdl2/jv0euY9//kqEbMoUAdA7xxeS+LTGqS1OrjeKQ/SsqKsLOnTsBAMOGDbObhduuXbuGkpLyqZQRERFQKhvW7yx7o9VqkZtb/nDG29ubU4apWlqtFrGxsRBFEa6urggLC6vRflevXtU9OE5OTq7Vory24PAjDCRPWq0IgwEGXdJzTbUK9ECrQA8L9sr2nJQKPNChMR7o0BhJGQX45eh1rDt+A5kFpVJ3rU60Ynk+xmtrT8PdRYlhHUwvZkjkqNzd3XUBQ3Z2NgICAiTuERHVRn5+PiqexdvLgwyAAQPJlOEqz4B+0rMjCg3wwDsPtcM/h0bgQFw6UrJNT1WSUllpKc5euISEPAGJhS7IqSIhfdu5NAYMRAZ8fX2RlZUFALh9+zY0Gg28vb3h6urKETkiGdNqtcjPz8fNmzd12+qa/ypHDBhIlgxLqgK1H2GwV65OSl2ytNwUFRUhIOsiBkPEfff3x7WsUuyPS8eBuHQcS8zSK4ObaKFSt0T2RKVSwcfHBzk5OQCAjIwMZGRkQBAETk+SSMXCq3fuNPxpoWQ9Go0GlWf5u7m5wcOjYc9yqIwBA8mSYUlVALr1DqhhUCoEdA7xRecQX7w4KBzRl29jyspjus8TM0xXgiJydE2aNIGLi4veDaooirobV7IdURRRVFQEoPwGkKM8VBNubm5o0aKFXV0vDBhIlgxLqgKAE5PNGrSWBvkk2YVlyC4sha+7i0Q9IpInQRAQGBgIb29v5Ofno6CgAKWlpbr1esh2tFqtLmDw9PRk0jOZpVQq4ebmBi8vL3h4eNhVsAAwYCCZMpXDYKqsKjUcIX5uUCoEaCr9v03MKEQXBgxEJrm4uMDf3x/+/v5Sd8VhFRUV4fLlywCAbt262VUSK1FtMFQmWSozNcLAHIYGzVmpQIif/j+2SZyWREREJHu8AyNZ0rBKkl1qGaA/LcncitZEREQkHwwYSJZMJj0zYGjwWgbor5qexEpJREREsseAgWTJVFlVJQOGBs8w8ZkjDERERPLHgIFkSW0wwuCsFOyu4oAjMpySxBwGIiIi+WPAQLJkmPTMkqr2wXCEIauwDDmFZRL1hoiIiGqCd2EkS4ZlVblom32oKK1aGRdwIyIikjcGDCRLhiMMziypahdMlVZlwEBERCRvvAsjWTLMYWCFJPsRapDHkJjOSklERERyxoCBZMlwHQYGDPajlUFpVY4wEBERyRsDBpIlo6RnTkmyG0YjDAwYiIiIZI13YSRLTHq2X60CDackMWAgIiKSMwYMJEtGSc8sq2o3Qg2mJLG0KhERkbzxLoxkySjpmSMMdiPEz92otGpSJkcZiIiI5IoBA8mSWsscBnvl4qRAM1/90qoJnJZEREQkW7wLI1kqMxhhcGaVJLtiuOJzUgZLqxIREckVAwaSJbVRlSQGDPakpWFpVY4wEBERyRYDBpIloypJTHq2KyytSkRE1HDwLoxkiWVV7VurQMPF2zgliYiISK4YMJAsGU1J4giDXTEcYcgsKEVOEUurEhERyRHvwkiWjJKeOcJgV5r7ucMwjz2J05KIiIhkiQEDyRLLqto3FycFmvnpl1bltCQiIiJ54l0YyZLhwm0sq2p/WhomPrNSEhERkSwxYCBZMpySxKRn+2MUMHBKEhERkSwxYCBZ4pQk+2e4eBtHGIiIiOSJd2EkS8brMHCEwd4YLt7G1Z6JiIjkiQEDyRLLqto/wxGGjIJS5BaztCoREZHc8C6MZMko6Zk5DHbHZGnVdI4yEBERyQ0DBpKlMq70bPdMlVZNYOIzERGR7DBgIFnilCTHYFgpKYmJz0RERLLDuzCSJa707BgMAwaOMBAREckPAwaSJZZVdQyhrJREREQke7wLI1kyTHpmWVX71IprMRAREckeAwaSJaMRBgYMdik0gKVViYiI5I4BA8mS0QgDpyTZpeb+biytSkREJHO8CyNZMiyryqRn++TqpERTX/3SqolMfCYiIpIVmwQM+/btw759+1BUVFTjfYqLi3X7keNhWVXHwTwGIiIieXOyxUkGDRoEhUKBs2fPon379jXaJyUlRbefWq22cg9JboynJHGEwV6FBrgj5urd94mslERERCQrNntsK4pi9Y0suB81bGUGSc/OzGGwW4ZrMXBKEhERkbzI9i5M+78bRqVSKXFPSAosq+o4jFZ7ZsBAREQkK7INGJKSkgAAPj4+EveEpGCUw8ApSXarZaD+4m3p+aXIY2lVIiIi2bBKDsP169dNbk9LS4Onp2eV+5aUlCA+Ph7/+te/IAgCOnToYI0uksyptYYjDLKNbamemvu7QxCAyrMPkzIK0bEZHxYQERHJgVUChlatWhltE0URw4YNq/WxJk6caIkuUQNjFDBwhMFuuTop0dTHDSnZd6uoJaQXMGAgIiKSCasEDOYSlWuTwKxSqfDqq6/imWeesVS3qAEp0zDp2ZG0CvTQCxiYx0BERCQfVgkYVqxYofd+ypQpEAQB//d//4dmzZqZ3U8QBKhUKjRp0gRdu3atdvoS2S8mPTuW0AB37I+7+z6Bqz0TERHJhlUChkmTJum9nzJlCgBg9OjRNV6HgRybmmVVHYrh4m0cYSAiIpIPmyzcFh0dDcB0bgORIVEUUcaF2xxKKNdiICIiki2bBAwDBw60xWnITmi0xrkurJJk31qZKa3qpXKWqEdERERUgXdhJDuGFZIA5jDYuxC/8tKqlSVlMI+BiIhIDmwywlDZmTNnEBMTg2vXriEvLw8ajabK9oIgYPny5TbqHcmByYCBU5LsmsrZuLQq12IgIiKSB5sFDFeuXMEzzzyDw4cP13gfURQZMDggw1WeASY9O4Kmviq9gOFOXrGEvSEiIqIKNgkYUlJSMGDAAKSnp+vWYvD09ISfnx8UnJtOBgwTngFOSXIEQV6ueu/v5JdI1BMiIiKqzCYBw7x583Dnzh0IgoBp06bhjTfeQEREhC1OTQ2QYUlVAHDiCIPdC/I0CBjyGDAQERHJgU0Chj///BOCIGDixIlYunSpLU5JDZjhom0A4MwcBrtnOMKQnl8qUU+IiIioMps8tk1NTQUATJw40RanowauzEQOA8uq2r9AjjAQERHJkk3uwvz8/AAAvr6+tjgdNXAsq+qYjHIYGDAQERHJgk0Chu7duwMAYmNjbXE6auAMpyQpBEDBgMHuGU9JKoHWRPBIREREtmWTgOHVV1+FKIrMX6AaMUx6ZsKzYzAMGNRaETlFZRL1hoiIiCrY5E5s6NCheOuttxAdHY0XXngBZWW8CSDzDMuqOnN0wSEEeLgabWNpVSIiIunZpErSqlWr0K5dO/Tt2xdLly7F5s2b8fjjjyMyMhLu7u7V7s9kacdiuHAbRxgcg4uTAr7uzsguvPtA4U5eCSIaeUnYKyIiIrJJwDB58mQIwt2nxGlpafjqq69qtG9FOVZyHIZJzyyp6jiCPF2NAgYiIiKSls0e3YqiWOcfciyGZVVZUtVxmEp8JiIiImnZZIQhISHBFqchO2FYJcmJIwwOg2sxEBERyY9NAobQ0FBbnIbshGGVJGfmMDgMrsVAREQkP7wTI9kxzGFQskqSwzAKGDgliYiISHIMGEh2jKYkMWBwGEGckkRERCQ7NpmSVNnVq1exatUqHDp0CDdv3kRRURF27NiB8PBwXZvz58/j+vXr8PDwwMCBA23dRZKYYdIzpyQ5jkAmPRMREcmOzQIGrVaLWbNmYfHixdBqtbrqR4IgoLS0VK/t9evX8fDDD8PJyQkJCQlo1qyZrbpJMmA4JYlJz47DcIQho6AUao2Wa3EQERFJyGb/Ck+fPh2LFi2CRqNB06ZN8fjjj5ttO3z4cLRq1QoajQbr16+3VRdJJgwXbnNmWVWHYZjDIIpAZkGpmdZERERkCza5E9u9ezeWL18OAJg9ezYSExPx66+/VrnP2LFjIYoi/v77b1t0kWSkjGVVHZa/hwsMU1aY+ExERCQtmwQMS5cuBVA+cvDRRx9BqVRWu0/Pnj0BABcuXLBq30h+DMuqcjqK41AqBPh7MPGZiIhITmxyJ3bo0CEIgoCpU6fWeJ+QkBAAwM2bN63VLZIpwxEGZ1ZJcihci4GIiEhebBIw3L59GwDQsmXLGu/j7OwMAFCr1dboEsmYhuswODTDgCE9nzkMREREUrJJwODh4QEAuHPnTo33uXHjBgDA39/fKn2qLCkpCTNnzkRkZCQ8PDzg7++PHj164PPPP0dhYaFFz/XXX39h8uTJCA8Ph4eHB3x8fBAREYHHH38cS5YsQX5+vkXP1xAZJT1zSpJD4VoMRERE8mKTsqphYWE4efIkLl68iKFDh9Zon+3btwMAOnToYM2uYfPmzZgwYQJyc3N12woLC3H8+HEcP34cy5Ytw9atW/XWiaiLrKwsTJkyBRs3bjT6LDc3F1evXsVvv/2GPn36oEuXLvU6V0NXxrKqDi3Qy0XvPZOeiYiIpGWTR7fDhg2DKIr4z3/+A61BQqspFy9exMqVKyEIAoYPH261fp06dQrjx49Hbm4uPD09MW/ePBw8eBC7d+/Gs88+CwCIjY3FiBEjkJeXV+fz5OTkYOjQobpgYcyYMfjvf/+Lw4cP49ixY/j9998xY8YMXd6GozMcYXBiWVWHYjzCUCxRT4iIiAiw0QjDq6++ii+//BLx8fF4/vnn8c0338DJyfSpd+3ahSlTpqC4uBgBAQG6G3drmDFjBoqKiuDk5ISdO3eiT58+us+GDBmCNm3aYNasWYiNjcWCBQswd+7cOp3nlVdewYkTJ+Dq6opff/0VjzzyiN7n3bt3x5gxY3TrVDg6o6RnjjA4FOYwEBERyYtNHt02atQI3377LQBg+fLlaN26NV588UXd54sXL8Zzzz2HDh064MEHH0RqaioUCgVWrlwJT09Pq/Tp6NGjiImJAQBMnTpVL1ioMHPmTLRr107Xx7KyslqfZ//+/fjpp58AAB999JFRsFCZIAhmAylHYlxWlQGDI2GVJCIiInmx2VyPp556CqtXr4a3tzeSk5Px3XffQRDKbwSXLVuG5cuX49KlSxBFEZ6enli3bh1GjBhhtf5s2LBB93rKlCkm2ygUCkycOBEAkJ2djejo6Fqf5+uvvwYA+Pj44OWXX659Rx2Q2nDhNk5JciiGU5JyispQoubIGxERkVRseic2btw4xMXF4YMPPkC3bt2gVCohiqLup0OHDnjnnXcQFxeHMWPGWLUv+/fvB1Bewalbt25m2w0cOFD3+sCBA7U6R2lpqS5vYejQoVCpVAAAjUaD5ORkJCYmoriY87MNcUqSYzMcYQA4LYmIiEhKNn90GxAQgH/96184evQoiouLcfv2baSlpaGkpATnzp3DvHnzEBwcbPV+XLp0CQAQHh5e5TSgyMhIo31q6syZM7qAoFOnTsjNzcVrr72GwMBAtGjRAq1atYKPjw+GDh2KPXv21P5L2CmNwZQkJUcYHIqPm7NRkJjOaUlERESSkXTCvEKhQGBgoM3PW1xcjPT0dACotjKRn58fPDw8UFBQgOTk5Fqd5+LFi7rXWq0W3bt3x9WrV/XalJaW4q+//sLu3bvxySef4K233qrVOYC7a1aYk5aWpntdUlKCoqKiWp/DlorLDBbr02pk32cqV3nErD6jZ4EeLkjLvRskpGTkISLQeOSBHJelrjWiqvA6I1spKZH3gzGHzLCtXCK1JknVFQFDbRdVy8zM1L2eP38+iouL8eCDD+LDDz9E586dkZubi99++w1vv/02cnJy8PbbbyMyMhKjRo2q1XmaN29e47ZHjhxBfHx8rY5va6lpClQe/EpKiMfOnXHSdYjqZN++fXXe10mjBHB3lGHv0VMoSxLN70AOrT7XGlFN8Toja6p4kC1XDjnXo/JTAhcXlypalnN1LX+yWdun3AUFBXrnHDp0KLZs2YIePXrA1dUVQUFBeP7557FlyxYo/jft5p133oEoOvaNkUEKA7jQs+PxdtG/CPJqX6CMiIiILMSiIwxDhgwBUF4edPfu3Ubb68LwWJZQkXwMlE8Jqk7FMJGbm1udzwOUjzIolUqjdv369cOjjz6K9evX49KlSzh37hw6d+5c4/NUN1UqLS0NPXv2BAD06tULrVu3rvGxpbDu9mkg6+7oTLu2bTGsbwvpOkQ1VlxcrHsKN2DAAKO/AzUVU3wJF7LuTqXzbdwCw4a1tUgfyT5Y6lojqgqvM7IVuc/+sGjAUJG4W1EutfJ2QRBq9eS8or3hsSzBy8tL97om04wqRgpquyZE5fMEBQWha9euZts+8MADWL9+PQDg2LFjtQoYarNCtKura60DH1vTQv//uZuri+z7TMZUKlWd/7818fPQe59VpOE1QGbV51ojqileZ2RNFbNZ5MqiAcOAAQNM3uCb2y4VlUqFgIAAZGRkVJswnJWVpQsYapMrYNi+upv6ym3v3LlTq/PYG8N1GFhW1fEEenLxNiIiIrmwyghDTbdLqX379oiJiUFcXBzUarXZ0qqXL1/Wva5Y9bmmOnTooHut0VS98FTlzx19tecyo5WemcTgaIxWe85nwEBERCQVh70T69evH4Dy6UYnTpww227v3r2611FRUbU6R2hoKFq0KJ97n5iYWOWUrMpz15o1a1ar89gbjVb/z0mp4AiDozEMGLgOAxERkXQcNmAYPXq07vWKFStMttFqtVi1ahUAwNfXF4MHD671eR577DEAQG5ubpXJ27///rvudUUw46i40jMFGUxJKijVoKBEbaY1ERERWZPDBgw9e/ZE//79AQDLly/HoUOHjNosWLBAt7rzjBkz4OzsrPd5RTK3IAiYPHmyyfO89tpruqoK//znP5Gbm2vU5ueff9ZN2xoxYkStcyXsjVpjMCWJKz07nEAv4+SvdE5LIiIikoRN7sTOnTuHsLAwtGnTBikpKdW2T0lJQXh4OFq3bo3Y2Fir9Wvx4sVwc3ODWq3GsGHD8Mknn+Dw4cOIjo7G9OnTMWvWLABAREQEZs6cWadztGjRAh9++CGA8j+Hnj17YsWKFThx4gSio6Pxyiuv6IINb29vLFq0yCLfrSFTaznC4Og8XJRwc9YvQczEZyIiImnYJLv2559/RmJiIh544IEazc9v1qwZIiIisGPHDvz888+6G25L69q1K9auXYsJEyYgNzcXs2fPNmoTERGBrVu36pVIra0333wTmZmZmD9/Pq5cuYJnnnnGqE1wcDA2bNiANm3a1Pk89qKMIwwOTxAEBHm54npmoW4bRxiIiIikYZM7sb1790IQBDzyyCM13mfUqFEQRdHii7YZGjlyJM6ePYvXX38dERERcHd3h6+vL7p374758+fj1KlTCA8Pr/d5PvnkExw4cABPP/00WrZsCVdXV/j4+KBHjx74v//7P8TGxqJPnz4W+EYNn2FZVSeOMDgko0pJHGEgIiKShE1GGCqmFdVmMbKOHTsCAK5cuWKVPlUWGhqKhQsXYuHChbXab9CgQbVajK5Pnz4MCmpAbVBW1ZllVR1SoKeL3nsGDERERNKwyZ1YxWrKtVkpuaKtqSRhsm+GVZJYVtUxcS0GIiIiebBJwODn5wcAuHnzZo33qWhbn9wBapgM12Fg0rNjCvJU6b2/k1cqUU+IiIgcm00ChopE3j///LPG+2zfvh0A0Lp1a6v0ieSLSc8EcISBiIhILmxyJ/bAAw9AFEUsXbpUt65BVS5cuIDvv/8egiDgwQcftEEPSU4My6oy6dkxGeYwcLVnIiIiadgkYHjhhRfg4eGB4uJiDBkyBFu2bDHbdtOmTbj//vtRVFQENzc3vPTSS7boIsmEKIompiRxhMERmRphqE2RASIiIrIMm1RJCgwMxLfffounn34at2/fxqhRoxAWFoZ+/fqhSZMmAIC0tDTExMQgISEBoihCEAQsWbIEjRo1skUXSSYME54BwIlJzw7JMGAoVWuRW6yGj5uzmT2IiIjIGmwSMADAU089Ba1WixdeeAGFhYWIj4/HtWvX9NpUPD308PDAkiVLMGHCBFt1j2TCsKQqwBEGRxXo6Wq07U5eCQMGIiIiG7PpndjTTz+NuLg4vP322+jUqROA8iChYkShc+fOePfddxEXF8dgwUGZHGFgDoNDUjkr4aXSf6bBtRiIiIhsz2YjDBUaN26Mjz/+GB9//DHUajUyMzMBAP7+/nBysnl3SGbUGuMRBq7D4LiCvFyRV6zWvU9npSQiIiKbk/QO3cnJCcHBwVJ2gWTGMOEZAJxZVtVhBXm64tqdAt17jjAQERHZHu/ESFbKTAQMnJLkuLgWAxERkfQYMJCsmJqSxKRnx2WY+MwRBiIiItuz6JSkIUOGAAAEQcDu3buNtteF4bHIvrGsKlVmOMLAHAYiIiLbs2jAsGfPHgDlN/mG2wVBqNWiSxXtDY9F9s1UWVUmPTsuoylJHGEgIiKyOYsGDAMGDDB5g29uO5EhtcZwlWeB144DY8BAREQkPauMMNR0O5GhMoMcBidWSHJoQQY5DBkFpdBqRSg46kRERGQzFr0bO3v2LM6ePYvS0lJLHpYciGFZVeYvODbDEQaNVkRWIX+/EBER2ZJFRxi6dOkChUKBs2fPon379rrtH374IQDgxRdfRGBgoCVPSXbGMOmZJVUdm7+HCwQBqJz+dCe/BAEGIw9ERERkPRZfuM1UYvPcuXMhCAIef/xxBgxUJcOkZyeWVHVozkoF/N1dkFFwd1ThTl4JIhtL2CkiIiIHY9G7MWdnZwBAUVGRJQ9LDsQo6ZlTkhwe12IgIiKSlkUDhkaNGgEATpw4YcnDkgMxSnrmCIPD41oMRERE0rJ4WdVffvkFb731FuLj4xEREaEbdQCAjRs34vjx47U+7sSJEy3ZTZIxtWHSM3MYHB5LqxIREUnLogHDO++8gz/++AM5OTn44osv9D4TRRHvvfderY8pCAIDBgdiOMLgzLKqDo8BAxERkbQsejfWoUMH7Nu3D/fffz+cnZ0hiqJeEnTF+9r+kOMwzGHgCAMFerrovb/DKUlEREQ2ZfEqSd26dcPOnTuhVquRnp6O4uJihIWFQRAE7NixA23atLH0KcmOcB0GMmSUw5DHdRiIiIhsyeIBg+7ATk5o3Fi/9mHTpk0RGhpqrVOSHShjWVUyEOSp0nvPEQYiIiLbsmjA8OWXXwIAnn76afj5+em2z5kzB4IgIDg42JKnIztkNCWJIwwOz3CEIbOgFGUaLZwZTBIREdmERf/Ffe211/D6668jLS1Nb/uePXuwZ88eFBQUWPJ0ZIeMkp55U+jwDHMYACAjn9OSiIiIbMVqU5Iq27t3LwRBYMBA1WJZVTLk5+4CpULQy29Jzy9BYx9VFXsRERGRpVj08a1KVf4PeHZ2tiUPSw5EbbhwG8uqOjyFQjCulMTSqkRERDZj0buxli1bAgC2bNliycOSAykzyGFw5ggDgWsxEBERScmiU5KGDx+Oy5cvY/78+di9e7fRSs/vvfcefH19a3VMQRCwfPlyS3aTZEzNKklkQqCnQcDASklEREQ2Y9GAYfbs2di0aRPi4uJw7NgxHD9+XPeZKIrYuHFjrY4niiIDBgdjlMPAKkkEIMgwYOAIAxERkc1YNGDw9/fH8ePH8fXXX2P37t1ISUlBSUkJkpKSIAgCmjRpojfiQGSIZVXJFKMpSRxhICIishmLV0ny9vbG7NmzMXv2bN02xf8SV3fu3In27dtb+pRkR4ySnjklicAcBiIiIinxboxkpUzLpGcyZpjDkM4RBiIiIpuxyToM0dHRAIBWrVrZ4nTUgLGsKpnCEQYiIiLp2CRgGDhwoC1OQ3bAMIeBIwwEGAcMecVqFJdpoHJWStQjIiIix2GTgKEyrVaL6OhoHDp0CDdv3kRhYSHmzZuHJk2a6NqUlpZCrVZDqVTC1dW1iqORvTGcksSVngkAGnkbr+ocdzsfHZv5SNAbIiIix2LTgGHLli149dVXkZSUpLf9jTfe0AsYli1bhldeeQWenp5ITU2Fh4eHLbtJEuKUJDLF09UJoQHuSMoo1G07n5LDgIGIiMgGbHY39v3332PUqFFITEyEKIoICAiAKIom206bNg0+Pj7Iz8/HH3/8YasukgxwHQYyxzA4OJeSI1FPiIiIHItNAoarV6/ipZdeAgAMGTIEFy9exO3bt822d3FxwWOPPQZRFLFz505bdJFkgmVVyZxOBgHDeQYMRERENmGTu7FFixZBrVajQ4cO2LZtGyIjI6vdp3///gCAU6dOWbt7JCOGIwxMeqYKhgHDpZt5KDMIMImIiMjybBIw/P333xAEAa+99hpcXFxqtE94eDgAIDk52ZpdI5kxvAHklCSq0LGpfsBQqtYi9laeRL0hIiJyHDYJGG7cuAEAuOeee2q8T0Wic2FhYTUtyZ4YllXllCSq4OPujBb+7nrbOC2JiIjI+mxyNyYI5U+Ja3Pzn5GRAQDw8WEVFEfClZ6pKobTkpj4TEREZH02CRiaNWsGALh27VqN99m/fz8AICwszCp9InliWVWqinGlpFyJekJEROQ4bHI3NmjQIIiiiB9//LFG7XNycvDtt99CEAQMGTLEyr0jOTGeksQRBrrLKPE5LZeJz0RERFZmk4Bh+vTpEAQBe/fuxcqVK6tsm5GRgdGjR+PmzZtwcnLC888/b4sukkyotRxhIPM6NvPWe1+q1uLqrXyJekNEROQYbHI31rVrV8yYMQOiKGLq1KkYP348fv31V93nBw8exC+//IKXXnoJ4eHh2LdvHwRBwL/+9S+EhobaooskE0YLt3GEgSrxdXdBc383vW1MfCYiIrIuJ1udaMGCBSgpKcGSJUuwfv16rF+/XpcMPX36dF27itWfX3vtNbz33nu26h7JhOGUJCY9k6FOzXyQnFmke38uJQfjejSXsEdERET2zWbzPQRBwH/+8x/s2LEDgwYNgiAIEEVR7wcA+vTpg61bt2LhwoW26hrJiPE6DJySRPqME585wkBERGRNNhthqDB06FAMHToUeXl5OHXqFG7fvg2NRoOAgAB06dIFgYGBtu4SyQinJFF1DBdwu5SWC7VGyzU7iIiIrMTmAUMFLy8vDBgwQKrTk0wZjjA48yaQDBhWSipRa3H1dj7aNfE2swcRERHVB+/GSFaMyqoqOMJA+vw8XNDMVz/xmdOSiIiIrEeSEYZbt25hz549OH/+PDIzMwEA/v7+6NixIwYNGoRGjRpJ0S2SAZZVpZro1MwHKdl3E5/Pp+RgXHcmPhMREVmDTQOGtLQ0/POf/8Tvv/8OtVptukNOTnjsscewYMECNGnSxJbdIxlgDgPVRKcQH/x54abuPUurEhERWY/NHt+eOXMGnTt3xq+//oqysjKjCkkVP2VlZVi7di3uuecenDt3zlbdIxnQaEWI+vECy6qSSYaVki7+L/GZiIiILM8mAUNBQQFGjBiBjIwMiKKI+++/H2vXrkViYiKKi4tRXFyMxMRE/Prrrxg2bBhEUUR6ejpGjBiBwsJCW3SRZMAw4RnglCQyzTDxubhMi/g7BRL1hoiIyL7Z5G7s66+/RmpqKhQKBb7//nvs3LkTY8eORYsWLeDi4gIXFxe0aNECjz/+OP78808sW7YMgiAgJSUF//nPf2zRRZIBw+lIAKckkWn+THwmIiKyGZsEDBs3boQgCJg8eTKmTp1abftnnnkGU6ZMgSiK+OOPP2zQQ5IDU1NKWFaVzOnYTL+MKvMYiIiIrMMmd2OxsbEAgCeeeKLG+zz55JN6+5L9K9OYGGFgWVUyw3BaEkcYiIiIrMMmAUN+fj6A8tKpNeXn5wegPP+BHINhSVUAXL2XzDJKfE7NhcbEtDYiIiKqH5vcjQUFBQEALl26VON9Ll++DAAIDAy0Sp9IfgwXbQM4wkDmGY4wFJVpEH8nX6LeEBER2S+bBAy9e/eGKIpYuHCh2fUXKlOr1Vi4cCEEQUDv3r1t0EOSAyY9U20EeLqiqY9Kb9u5G5yWREREZGk2CRgmTpwIADh9+jRGjBiB1NRUs21TU1MxcuRInDx5EgAwefJkW3SRZMBk0jPLqlIVDKclMY+BiIjI8myy0vPIkSMxevRobNiwAX/99RfCwsIwbNgw9OrVC8HBwRAEAbdu3cKRI0ewa9culJaWAgDGjBmDESNG2KKLJAOGSc8KAVBwShJVoVMzH+y8eEv3npWSiIiILM8mAQMArF69GhMnTsS6detQWlqKrVu3YuvWrUbtxP8t9Tt27FisWrXKVt0jGTBMembCM1WnY4j+CMOF/yU+KxloEhERWYzN7shcXV2xdu1abN68GQ899BDc3NwgiqLej5ubGx566CFs2bIFa9euhaurq626RzJgOMLgzJs+qkbHpsaJz9eY+ExERGRRNhthqDBixAiMGDECGo0G165dQ2ZmJoDykqthYWFQKpW27hLJhGEOA0cYqDpBXq5o7K3Czdxi3bZzKTlo08hLwl4RERHZF5sHDBWUSiXatGkj1elJhgyrJDmzQhLVQMdmPkYBw6P3hkjYIyIiIvvCR7gkG4YBA+ehU00YrsfAxGciIiLLskrAcPjwYTz66KN49NFHsX79+lrtu27dOt2+J06csEb3SKaMpiSxpCrVQKcQb733F7jiMxERkUVZ5Y5sxowZ2LhxI5KTkzFq1Kha7Ttq1CgkJydj48aNeP31163RPZIpo6RnTkmiGjBci6GwVIOEdCY+ExERWYrFA4YjR47g2LFjAIAvv/wSzs7OtdrfxcUFX375JURRxIEDBzjK4EBYVpXqIthLhUbe+hXVuIAbERGR5Vj8juzXX38FAPTr1w99+vSp0zH69OmDgQMHAgDWrFljsb6RvKkNRhicmMNANWSYx3DuRq5EPSEiIrI/Fg8YDh06BEEQaj0VydAjjzwCURRx8OBBC/WM5K7MIIfBmSMMVEOG05LOpWRL0xEiIiI7ZPE7svj4eABAp06d6nWcjh076h2P7J9hlSQn5jBQDd0T4qv3/kxyDopKNdJ0hoiIyM5YPGDIzs4GAAQFBdXrOBX7VxyP7J9hlSRnVkmiGure0k+vDG+pRotjiZkS9oiIiMh+WPyOzN3dHQCQm1u/OcR5eXkAADc3t3r3qTpJSUmYOXMmIiMj4eHhAX9/f/To0QOff/45CgsLrXLOwsJChIWFQRAECIKAli1bWuU8DQnXYaC68lI5o3OI/rSkA/HpEvWGiIjIvlg8YKgYGYiLi6vXcSr2r+9IRXU2b96Mzp07Y+HChbhy5QoKCwuRlZWF48ePY9asWejatWu9v4sp77//PhISEix+3IbMKOmZU5KoFvqFB+q9PxiXIVFPiIiI7IvFA4auXbtCFEVs3769XsfZunWr7njWcurUKYwfPx65ubnw9PTEvHnzcPDgQezevRvPPvssACA2NhYjRozQjXhY6rz//ve/oVKp4OXlZbHjNnRlWiY9U931ba0fMJxPzUF2YalEvSEiIrIfFr8je+CBBwAAGzZswIULF+p0jPPnz2PDhg0QBEF3PGuYMWMGioqK4OTkhJ07d2L27Nno06cPhgwZgqVLl+Kzzz4DUB40LFiwwCLn1Gg0ePbZZ6HRaDB79mz4+/tb5Lj2gGVVqT7uDfWFyvnurzRRBA5f4ygDERFRfVk8YHjiiScQHBwMrVaLxx9/HBkZtfsHOz09HY899hi0Wi2CgoLwxBNPWLqLAICjR48iJiYGADB16lSTa0bMnDkT7dq1AwAsXrwYZWVl9T7v4sWLceLECbRt2xZvvfVWvY9nT4ySnjnCQLXg6qREj5b6AfgBTksiIiKqN6skPX/wwQcQRRGxsbHo0qULNm7cWKN9N2zYgK5du+Lq1asQBAEffvihLona0jZs2KB7PWXKFJNtFAoFJk6cCKC8WlN0dHS9zpmUlIT3338fAPDtt9/CxcWlXsezN2Usq0r1ZDgtiYnPRERE9edkjYNOnz4dJ0+exPfff4/U1FQ8+uijaNmyJR588EF069YNwcHB8PDwQEFBAW7duoWTJ09i+/btSEpKgiiW3zQ+99xzeO6556zRPQDA/v37AQAeHh7o1q2b2XYVK04DwIEDBzBs2LA6n/PFF19EQUEBnn76aQwaNKjOx7FXhiMMTiyrSrUUFR6g9/7anQLczClGYx+VRD0iIiJq+KwSMADlT9AbN26MefPmQavVIjExEd9++22V+4iiCIVCgffeew9z5syxVtcAAJcuXQIAhIeHw8nJ/B9DZGSk0T51sWbNGmzbtg1+fn4Wy4ewN2UGOQzOHGGgWurQ1AfeKifkFqt12w7EpeOxbiES9oqIiKhhs1rAIAgCPvjgA4waNQoff/wxNm7cCI3G/MqrSqUSo0ePxjvvvIN7773XWt0CABQXFyM9vXyqQkhI1TcSfn5+utGQ5OTkOp0vKysLr732GgDg008/tXip2Bs3blT5eVpamu51SUkJioqKLHp+Sykp1c8REbVa2faVTCsuLjb52pZ6tvTDX5fv6N7vvXILw9sHVLEHNURyuNbI/vE6I1spKSmRugtVslrAUOHee+/F+vXrkZOTg/379+PMmTPIyMhAXl4evLy8EBAQgHvuuQf9+vWDj49P9Qe0gMolUj09PattXxEw5Ofn1+l8b775Jm7duoU+ffroyrVaUvPmzWvc9siRI4iPj7d4Hywh8boCldNq0lKSsXNnknQdonrZt2+fJOf1LREAKHXv915Kww73GxA4YGW3pLrWyLHwOiNrqniQLVdWDxgq+Pj4YMSIERgxYoStTmlW5acENUk8dnV1BYA6Pe3et28ffvjhBzg5OeHbb7+FwLsWswxmJIFVVakuInz0L6ScMgG3i4FG1l80noiIyC7ZLGCQE5XqbgJkaWn1CztVDBO5udXujqOkpATPPfccRFHEjBkz0Llz59p1tIaqmyqVlpaGnj17AgB69eqF1q1bW6Uf9fVX/gXgzi3d+/Cwlhh2f7iEPaLaKi4u1j2FGzBggN7fNVsRRRHL4g/gdt7dv9uKJu0xrCfzGOyJHK41sn+8zshW5Dr7o4JDBgyVV1euyTSjgoICADWbvlTZvHnzcOXKFTRv3hwffPBB7TpZC9XlYVTm6upa68DHVrSCflUkN1cX2faVqqdSqST7/9cvPAi/n0rRvT92PQfTBraRpC9kfVJea+Q4eJ2RNVXMZpErhwwYVCoVAgICkJGRUW3CcFZWli5gqE2uAADMnz8fAHD//fdj8+bNJttUHLugoABr1qwBAAQHB2PIkCG1Opc9YFlVspS+4YF6AcOh+AxotCKUnOdGRERUaw4ZMABA+/btERMTg7i4OKjVarOlVS9fvqx7XbHqc01VTHdasWIFVqxYUWXb9PR0PPnkkwDK135wzICBC7eRZRiux5BbrMaF1Bx0DvGVpkNEREQNmMM+wu3Xrx+A8if7J06cMNtu7969utdRUVFW75cjM1rpmU+DqY6a+LghLNBDb9uBuAyJekNERNSwOWzAMHr0aN1rc0//tVotVq1aBQDw9fXF4MGDa3UOURSr/QkNDQUAhIaG6rbt2bOnTt+podNoDaYkKR328iQL6GswynAwXt4l64iIiOTKYe/Ievbsif79+wMAli9fjkOHDhm1WbBggW515xkzZsDZ2Vnv8z179kAQBAiCgMmTJ1u9z/aOKz2TJUW1DtR7fywxEyVq84tHEhERkWkOGzAAwOLFi+Hm5ga1Wo1hw4bhk08+weHDhxEdHY3p06dj1qxZAICIiAjMnDlT4t7aPyY9kyX1aR2gt1hbcZkWJ5OyJesPERFRQ+WwSc8A0LVrV6xduxYTJkxAbm4uZs+ebdQmIiICW7du1SvFStahNsxh4AgD1YOvuws6NPXG+ZRc3baD8eno0zqgir2IiIjIkE0e4a5atQqrVq1Cbm5u9Y3/Jz8/X7efNY0cORJnz57F66+/joiICLi7u8PX1xfdu3fH/PnzcerUKYSHc/EwW+CUJLI0w2lJB+KYx0BERFRbNhlhmDx5MgRBQPfu3dG+ffsa7XPr1i1MnjwZCoUCEydOtGr/QkNDsXDhQixcuLBW+w0aNAiiKFbfsAqJiYn12t+ecEoSWVrf8EB8t++a7v2ZGznIKy6Dl8q5ir2IiIioMtnfkdX3hpwaDsMpSRxhoPrq0dJP7zrSaEUcTciUsEdEREQNj2wDBo2mvJqJuQXVyP6UGYwwKDnCQPXk7uKEri389LZxPQYiIqLake0d2ZUrVwAA/v7+EveEbEXDpGeyAsM8Bq7HQEREVDtWeXy/b98+k9uPHTuG9PSq/7EuKSlBfHw8vvjiCwiCgC5dulihhyRHRknPHGEgC4gKD8Civ+6+v3wzD3fyShDk5Spdp4iIiBoQqwQMgwYNgiDoPx0WRRHPPPNMjY8hiiIEQcD06dMt3T2SKbXRSs8cYaD6u6e5LzxclCgovbto28H4dIzq0kzCXhERETUcVnuEK4qi7sfUtup+QkJC8J///AejR4+2VhdJZtQsq0pW4KxUoFeY/toL0ZdvS9QbIiKihscqIwzR0dG616IoYsiQIRAEAcuXL0erVq3M7icIAlQqFZo0aYLmzZtbo2skY4ZJzyyrSpYyMCIIf1cKEnZfuo0StQauTkoJe0VERNQwWCVgGDhwoMntPXv2rPE6DOR4uNIzWcuDHRtjzqYLuvd5JWociEvHkMhGEvaKiIioYbDJI9yEhARcu3YNERERtjgdNUCiKBpVSXJWcoSBLKORtwrdQvXLq24/d1Oi3hARETUsNrkjCw0NRWhoKNdUILMMKyQBgFLBEQaynIc6NtZ7v/PiLaNpcERERGRMNo9wN2/ejKeffhoPPfQQXnzxRZw8eVLqLpENGY4uACyrSpb1UKcmeu9zispwKJ6LuBEREVXHJndk0dHRCA4ORosWLZCdnW30+b/+9S+MHj0av/zyC3bu3InvvvsOvXv3xk8//WSL7pEMlGmNn/Qyh4EsqZmvG+5p7qu3bfv5NGk6Q0RE1IDYJGDYtm0b0tPT0aNHD/j6+up9dvbsWXz88ce6cqq+vr4QRRFqtRrTp09HYmKiLbpIEjMsqQowYCDLG24wLWnHhVtQc1oSERFRlWwSMOzfvx+CIOD+++83+mzJkiUQRRF+fn44ceIEMjIycPToUfj7+6OkpATffvutLbpIEjN108YpSWRpD3XUn5aUWVCKo4mZEvWGiIioYbDJHVlaWvmwf4cOHYw+27JlCwRBwMsvv4yuXbsCALp3746XX34Zoijir7/+skUXSWJlJnIYOMJAltYiwB0dmnrrbWO1JCIioqrZJGC4c+cOABhNR4qPj0dKSgoAYMyYMXqf9e/fX9eG7J/JEQaWVSUrGG6Q/PznhZsmk+6JiIionE3uyESx/B/jnJwcve0xMTEAAB8fH3Tp0kXvs4CAAABAYWGh9TtIkjNVVtWJZVXJCgzLq97JK8GJpCyJekNERCR/NgkYGjcu/wf60qVLett37NgBAIiKijLap6CgAADg5+dn9BnZH1NPeLkOA1lDWJAnIht76W3bdo7VkoiIiMyxScDQu3dviKKIJUuW6EYMrl27ho0bN0IQBAwdOtRon9jYWAB3gw2yb4YLaDkpBAgCAwayDsPk5x0XbkLLaUlEREQm2SRgmDZtGoDyEqodO3bE448/jt69e6O4uBhubm74xz/+YbTPvn37AAARERG26CJJTG1ws8aEZ7Km4Z30H0Sk5RTj9I1saTpDREQkczYJGIYMGYIZM2ZAFEUkJibijz/+QHp6OgDg888/R2BgoF774uJi3ejDgAEDbNFFkphh0jNLqpI1tWnkhfBgT71t2zktiYiIyCQnW51o0aJFuO+++7Bu3TrcvHkTTZo0wcSJEzFkyBCjtps2bYK3tzd8fHwwcuRIW3WRJGSY9MwRBrK2hzo2xld/x+nebzt3E7OHt+NUOCIiIgM2CxgA4OGHH8bDDz9cbbtx48Zh3LhxNugRyYVaa5DDwJKqZGUPdWyiFzCkZBfhXEoOOof4StcpIiIiGeJdGcmC2mCEwZkVksjK2jXxQssAd71t289zETciIiJDDBhIFoyqJHGEgaxMEAQ8ZLCI2/Zzabp1Y4iIiKicTaYkXb9+vV77t2jRwkI9IbkyXIeBi7aRLQzv2ARL9txdTT4xoxCX0vLQvqm3hL0iIiKSF5sEDK1atarzvoIgQK1WW7A3JEdlLKtKEujYzBshfm64kVWk27b9fBoDBiIiokpsMu9DFMV6/ZD9Myyr6sSyqmQDgiDgoY76azJw1WciIiJ9NhlhWLFiRbVtCgoKEBsbi99++w0pKSmIiorSLfhG9s8o6ZkjDGQjD3Vqgu9jEnTv4+8U4PLNXEQ25igDERERYKOAYdKkSTVu+/nnn+P111/HkiVLEBUVhU8//dSKPSO5KGNZVZJIlxBfNPFRIS2nWLft12M38P7I9hL2ioiISD5kd1fm7OyMr7/+GoMGDcLnn3+OHTt2SN0lsgHDEQYmPZOtKBQCRndtprftt5M3UFymkahHRERE8iK7gKHC9OnTIYoivvrqK6m7QjZgWFbVmSMMZENP9Giu9z6nqAx/ck0GIiIiADIOGNq0aQMAOH78uMQ9IVtQs0oSSSg0wAP9wgP1tv1ytH7loImIiOyFbAOGnJwcvf+SfeM6DCS1J3vqr/dyNCETcbfzJeoNERGRfMg2YPjxxx8BAE2aNKmmJdkDo5WeWVaVbGxo+0YI8HDR27aGowxERETyCxiuXr2K559/Hj/++CMEQcDw4cOl7hLZgFHSM6ckkY25OCnwePcQvW2/nbyBEjWTn4mIyLHZpKxqWFhYtW20Wi2ys7ORl5en2xYcHIx3333Xml0jmTAsq8qkZ5LCEz1a4Lu913TvswrLsOPCLTxyT1MJe0VERCQtmwQMiYmJtd6nT58++OGHHzglyUGwrCrJQatAD/RtHYCD8Rm6bauPXGfAQEREDk02C7cpFAp4eXmhVatWGDhwILp06WL9jpFsqA1zGDjCQBJ5omcLvYDh0LUMXLuTj7AgTwl7RUREJB2bBAwrVqywxWmoASszqJLkzBwGksgDHRrBz90ZWYVlum1rjyXjneHtJOwVERGRdPgYl2TBaISBVZJIIq5OSjzeTT/5ed0JJj8TEZHjssldWVhYGMLCwvD111/b4nTUAHHhNpKTJwzWZMgsKMWui7ck6g0REZG0bBIw3LhxA0lJScxLILOY9Exy0jrIE71a+ettW801GYiIyEHZJGBo3LgxAMDNzc0Wp6MGSK1l0jPJyz966Y8yHIjLQGJ6gUS9ISIiko5N7sp69eoFALhw4YItTkcNUJnBCIMzRxhIYg90aAxfd2e9bWuOJUvUGyIiIunYJGB44YUXIIoiFi1ahLKysup3IIfDsqokNypnJR67Vz/5ef2JZJSqtWb2ICIisk82uSsbMmQI3nnnHZw5cwYPP/wwkpP5lI70GSY9s6wqycGTPZvrvU/PL8XuS0x+JiIix2KTdRg+/PBDuLq6olOnTti1axfCwsIQFRWFzp07w8/PD0qlssr933//fVt0kyRUZlRWlQEDSS882As9W/rjaGKmbtsvR6/joU5cgZ6IiByHTQKGuXPnQhDKbwAFQYBGo0FMTAxiYmJqtD8DBvtnWCVJySlJJBNP9GyuFzDEXE3HhdQcdGjqI2GviIiIbMdmd2WiKOp+DN9X90P2z2hKEkcYSCaGd2oCP4Pk5y93X5WoN0RERLZnk4BBq9XW64fsH8uqklypnJWY1j9Mb9uOC7dwKS1Xoh4RERHZFu/KSBYMpyQx6ZnkZGKfUPi4cZSBiIgcEwMGkgXjpGdemiQfXipnTO3XSm/b9vM3ceVmnkQ9IiIish3elZEsGOYwOHGEgWRmclRLeKv060R8+TdHGYiIyP7ZpEqSKbm5ucjLy4NGo6m2bYsWLWzQI5ISpySR3HmrnPFMv1b49193g4Rt59Jw9VYe2jTykrBnRERE1mXTgGHXrl345ptvsH//fmRmZla/A8rLsKrVaiv3jKTGKUnUEEyJaoXlMQnIKyn/nSSKwJd/x+GrJ7tK3DMiIiLrsdld2auvvooHH3wQmzZtQkZGBsuqkh6jKUksq0oy5OPmjClRLfW2bTmbirjbzGUgIiL7ZZMRhl9++QVff/01AEClUmH06NHo1q0b/P39oeCTZAKgNhxhYFlVkqln+rXCDwcSkV9plOHrv+Pw7yc4ykBERPbJJgHDd999BwBo3rw5/v77b7Ru3doWp6UGhEnP1FD4urtgct+W+Do6Trdt05lUvHpfG4QFeUrYMyIiIuuwyWPcs2fPQhAEzJkzh8ECmWSU9MyRJ5Kxqf1awcNFqXuv/d8oAxERkT2yyV1ZWVkZAKBrVw7Zk2llRis9c4SB5MvPwwUT+7bU27bhdAoS0guk6RAREZEV2SRgaNmyJQAgPz/fFqejBkajFWGY286yqiR3z/YPgztHGYiIyAHYJGB49NFHAQC7d++2xemogTEsqQqwrCrJn7+HC57uE6q3bcPpFCRlcJSBiIjsi03uymbOnIkWLVrg3//+Ny5fvmyLU1IDYpjwDHBKEjUMz/YPg5vz3VEGjVbE4r+4+jMREdkXmwQMPj4+2LFjBxo1aoS+ffvim2++QVZWli1OTQ2AYUlVgCMM1DAEerpiQm/9leh/P5WCk9f5+42IiOyHRcuqhoWFVfl5YWEhsrOz8corr+DVV19FYGAg3N3dq9xHEATEx8dbspskMxxhoIbsuQGtsfposm5dBgCYu+kCNrwYBQUXICQiIjtg0YAhMTGxRu0qVnC+fft2tW0Fgf/g2jvDkqoAy6pSwxHk5YoZ97XBvG2XdNvO3sjB+hM3MK5Hcwl7RkREZBkWDRgmTZpkycORgzCZ9MwRBmpAJvVtidXHruPanbsJz5/tuIwHOzWGt8pZwp4RERHVn0UDhhUrVljycOQgOCWJGjoXJwXef7g9Jq84ptuWnl+KL/+6ivcebi9hz4iIiOrP4vM+FAoFnJyccPHiRUsfmuyUqaRnTkmihmZQ22Dc3y5Yb9vKg4mIu50nUY+IiIgswyp3ZaLhKlxEVSgzyGFQCGCyKDVI741oDxfl3V+raq2IDzZf5O9EIiJq0PgYlySn1uqPMDgpeVlSw9Qy0APT+rfS2xZzNR27Lt6SqEdERET1xzszkpxhDoMTRxeoAXtpcDgaebvqbfu/rRdRXKaRqEdERET1w4CBJGdYVpUBAzVkHq5OmD28nd625MwiLIu5JlGPiIiI6ocBA0nOMOnZmVOSqIF75J6m6B7qp7ftP9HxSM0ukqhHREREdcc7M5JcmeGUJJZUpQZOEATMfaQDKq87WVSmwSfbL0vXKSIiojqy6DoMlU2ZMgUeHh71Po4gCNi9e7cFekRyZTjC4MSSqmQHOjbzwZM9W+CXI9d12zafScWTPZujb+tACXtGRERUO1YLGI4fP17vY4iiCEHg02Z7Z1hW1ZkjDGQn3hjWFlvOpCK3WK3bNmv9Wex4bQA8XK3265eIiMiirPYoVxTFev+QY2BZVbJX/h4ueOOBtnrbbmQV4eNtlyTqERERUe1Z7c7s/Pnz0Gq19f7RaKxfijApKQkzZ85EZGQkPDw84O/vjx49euDzzz9HYWFhvY5dWFiI33//HS+88AJ69OgBPz8/ODs7IyAgAH369MHcuXNx8+ZNC32TholVksieTegVip4t/fW2/ffIdcRcvSNRj4iIiGrH4R/lbt68GZ07d8bChQtx5coVFBYWIisrC8ePH8esWbPQtWtXxMXF1enYZ8+eRaNGjfDYY4/h22+/xfHjx5GdnQ21Wo3MzEwcPnwYH3zwAdq2bYu1a9da+Js1HEbrMHBKEtkRhULA52M7w81Zqbf9rfVnkVtcJlGviIiIas6hA4ZTp05h/PjxyM3NhaenJ+bNm4eDBw9i9+7dePbZZwEAsbGxGDFiBPLy8mp9/NzcXOTn5wMAoqKi8Mknn2DXrl04efIkduzYgenTp0OhUCA3NxdPPfUUtm/fbtHv11Aw6ZnsXWiAB94ZHqm3LTWnGB9tuShRj4iIiGrOobPuZsyYgaKiIjg5OWHnzp3o06eP7rMhQ4agTZs2mDVrFmJjY7FgwQLMnTu3VsdXKBQYN24c5syZg/bt2xt9PmzYMDz00EMYM2YMNBoNXnnlFVy9etXhEr0Ny6oy6Zns0YReofjz/E0cjM/Qbfv1+A081LEJBkcGS9gzIiKiqjnso9yjR48iJiYGADB16lS9YKHCzJkz0a5d+YqtixcvRllZ7aYP9O3bF2vXrjUZLFQYNWoUHn30UQBAfHw8Tp06Vatz2AOOMJAjUCgEzH+sMzxc9Kcmvf37WeQUcmoSERHJl8PemW3YsEH3esqUKSbbKBQKTJw4EQCQnZ2N6Ohoq/Rl8ODButfx8fFWOYecGSU9c4SB7FRzf3e897D+A4RbuSWYu/mCRD0iIiKqnsMGDPv37wcAeHh4oFu3bmbbDRw4UPf6wIEDVulLSUmJ7rVSqayipX0qMyir6syyqmTHnujRHAMigvS2/XEqBTsuOHa1NCIiki+L35klJCTg2rVriIiIsPShLerSpfI66OHh4XByMp/KERl5N1GxYh9L27t3r+51xRQoR8KyquRIBEHA/Mc6wUul/3vn3T/OIbOgVKJeERERmWfxpOfQ0FBLH9LiiouLkZ6eDgAICQmpsq2fnx88PDxQUFCA5ORki/flzJkz2Lp1KwCgU6dOdQoYbty4UeXnaWlputclJSUoKiqq9TmsqahE/yZJAVF2faSaKS4uNvma9Pm6ALMfaIN3Nt59CJGeX4rZv5/Bwsc6OFzhg7rgtUa2wOuMbKXybBM5csgqSZVLpHp6elbbviJgqCiRaiklJSWYNm2abnG6efPm1ek4zZs3r3HbI0eOyC5P4up1BSoPdt2+dRM7d6ZK1yGyiH379kndBVlzE4EOfgpcyLp77f954TZ8itLQtxFXuq8NXmtkC7zOyJoqHmTLlUNOFq/8lMDFxaXa9q6urgBg8afeL7/8Mo4fPw4AmDRpEkaOHGnR4zcUBikMYAoDOQJBAMaHaeGu1A8O1icokGzZZxNERET14pAjDCqVSve6tLT6OcMVw0Rubm4W68Mnn3yCZcuWAQB69OiB//znP3U+VnVTpdLS0tCzZ08AQK9evdC6des6n8sajv8ZC6TdnVbVIqQZhg1zvFwOe1BcXKx7CjdgwAC9v2tkmnfYbby27rzuvUYUsDrZE+uf6wFfN2cJeyZvvNbIFnidka3IbfaHIYcMGLy8vHSvazLNqKCgAEDNpi/VxHfffYfZs2cDKE+q3rZtGzw8POp8vOryMCpzdXW1aOBjEYJ+ZSiVi7P8+ki1plKp+P+xBkZ3C8XZ1AL8cCBBty0luxjvbrqCZRO7Q8EiANXitUa2wOuMrKliNotcOeTkD5VKhYCAAADVJwxnZWXpAoba5AqYs3r1arz44osAyhPEd+3ahcDAwHoftyFTs6wqObh3hkeiW6if3ra/L9/Gkr3yfuJERESOwWHvzCpWX46Li4NarTbb7vLly7rX9S15umnTJkycOBFarRZNmjTB7t27azU6YK/KWFaVHJyzUoH//ONeBHjo51Qt2HkFB+LknQhHRET2z2EDhn79+gEon2504sQJs+0qr5EQFRVV5/Pt3r0b48aNg1qtRkBAAHbt2iW7XAKpqDX6IwxOHGEgB9TYR4Uvn+yKyvGyVgReXX0KN3NYzpGIiKTjsHdmo0eP1r1esWKFyTZarRarVq0CAPj6+mLw4MF1OtfBgwcxatQolJSUwMfHBzt27ECHDh3qdCx7VKblCAMRAESFB2LmsLZ62zIKSvHSLydRZhBYExER2YrDBgw9e/ZE//79AQDLly/HoUOHjNosWLBAt7rzjBkz4OysX7Fkz549EAQBgiBg8uTJJs9z+vRpjBgxAgUFBfDw8MDWrVvRrVs3y36ZBk5jOCVJyYCBHNcLA1vjvshgvW0nkrLwybbLZvYgIiKyLoesklRh8eLFiIqKQlFREYYNG4bZs2dj8ODBKCoqwpo1a7B06VIAQEREBGbOnFnr48fHx+OBBx5AdnY2AOCjjz6Cj48Pzp8/b3af4OBgBAcHm/3cHjHpmeguhULAwnFdMOKrGNzIurv2yw8HEnBvqC8e7txUwt4REZEjcuiAoWvXrli7di0mTJiA3NxcXanTyiIiIrB161a9Uqw1FRMTg9u3b+vev/7669XuM2fOHMydO7fW52rImPRMpM/H3RlLnuqGx749iFL13YD6n7+egb+HC/q2duzKakREZFsO/yh35MiROHv2LF5//XVERETA3d0dvr6+6N69O+bPn49Tp04hPDxc6m7aNcMRBiY9EwGdQnzwwSP6uU6lai2e/fE4TidnS9MpIiJySA49wlAhNDQUCxcuxMKFC2u136BBgyCKotnPJ0+ebDa3ge4yHGFwZg4DEQDgiR7NcfZGDlYfva7bVlCqweQVR/Hr9D6IaFT7kU8iIqLa4qNckpxRWVUFL0siABAEAR+N7ojhnRrrbc8uLMPTy48gObNQop4REZEj4Z0ZSU5tWFaVIwxEOkqFgEXju6B/G/28hVu5JXhq2RHczuUaDUREZF0MGEhyTHomqpqrkxLfPd0N3UL99LZfzyzE08uPIruwVKKeERGRI2DAQJLTMOmZqFruLk74YVIPRDbWz1u4cisPk1ccQ0GJWqKeERGRveOdGUlObZj0zBEGIpN83J3x09ReaBngrrf9dHI2nvvpOIrLNBL1jIiI7BkDBpJcGUcYiGosyMsVP0/rhSY+Kr3tB+Iy8Oyq4ygs5UgDERFZFu/MSHKGIwxMeiaqWoifO36a2gv+Hi5622OupmPSD0eRW1wmUc+IiMgeMWAgyRmtw8CyqkTVCg/2xKpnesLLVX85nWOJWXjq+yPIKmAiNBERWQbvzEhyxis9c4SBqCY6NvPBz9N6wdfdWW/7uZQcjF96iCVXiYjIIhgwkOSMkp4ZMBDV2D3NfbH2uT4I9HTV2x57Kx/jvjuEG1lc3I2IiOqHAQNJrsxgpWclpyQR1Urbxl5Y93wfNDVIhE7MKMS4bw8hIb1Aop4REZE94J0ZSU5juNIzy6oS1VqrQA+se6GvUcnV1JxijP32EC7fzJWoZ0RE1NAxYCBJiaIItdZwShIvS6K6aObrhl+n90HbRvqLu6Xnl2D8d4dx5FqGRD0jIqKGjHdmJCnDYAFg0jNRfQR7q7Dmud7oHOKjtz2nqAwTlh/BH6duSNQzIiJqqBgwkKQME54BllUlqi8/Dxf8d1ov9Gjpp7e9TCPi9bVnsGhXLETR+O8eERGRKbwzI0kZrvIMcISByBK8VM5Y9Uwv3N8u2Oizxbuv4rW1p1FcppGgZ0RE1NAwYCBJmRphYMBAZBluLkp893R3PBPVyuizjadTMWHZEWRygTciIqoGAwaSlFpjPMLAKUlElqNUCHh/ZHv836gOMCxAdjwpC2O+OYD4O/nSdI6IiBoE3pmRpMpMJD0rOcJAZHFP92mJ5ZN7wMNFqbc9KaMQj35zEAfj0iXqGRERyR0DBpKUhknPRDYzuG0w1j3fF00MFnirqKC0cFesyVE/IiJybLwzI0kx6ZnItto39caGl6LQsZm33natCHy5+yqe/P4wUrKLJOodERHJEQMGkpTJpGeu9ExkVY28Vfh1eh8Mbd/I6LNjiVl46N/7sP1cmgQ9IyIiOWLAQJIqM5j+4KQQIAgMGIiszd3FCd9N6IZZD7aF0iBIzy1W44X/nsTsP86hqJSlV4mIHB0DBpKU4UrPnI5EZDsKhYAXB4Vj3fN9EOLnZvT5L0euY9R/9uPKzTwJekdERHLBgIEkZZhgyYRnItu7t4Ufts3oj4c7NzH6LPZWPh75ej+WxVyDxkRVMyIisn+8OyNJlWk4wkAkB94qZ3z1ZFd89nhnuDnrl14tUWvx0dZLeHTJQY42EBE5IAYMJCnDJ5ZKjjAQSUYQBIzr3hxbXu2H9k28jT4/k5yNh7+KwaJdsShRM7eBiMhR8O6MJGVYVtWZIwxEkmsd5Ik/XuqLZ6JaGX1WphGxePdVjPxqP05dz5Kgd0REZGsMGEhShmVVOSWJSB5cnZR4f2R7rHu+D8KCPIw+j72Vj0eXHMT/bbmIwlK1BD0kIiJbYcBAkmLSM5G89Wjpj22v9sdLg1sblV8VRWD5/gQMW7QPf128BVFkUjQRkT3i3RlJqoxlVYlkT+WsxJsPRGLTy1Ho0NQ4t+FGVhGmrTqOZ1YeQ2J6gQQ9JCIia2LAQJIyHGFw4ggDkWx1aOqDjS9F4a0HI+HiZPx3NfrKHQxbtA9f7LjCaUpERHaEd2ckKcMcBiY9E8mbk1KBFwa1xp8z+qNnK3+jz0s1WnwdHYf7F+zFtnNpnKZERGQHGDCQpAyrJDkpeUkSNQRhQZ5Y+1xvLBp/D4K8XI0+T80pxov/PYkJy48g9hbXbiAiash4d0aSMl6HgSMMRA2FIAgY0zUEf88ciGf7t4KTib+/B+Iy8MC/9+G1Nadw7U6+BL0kIqL6YsBAkjJc6ZlTkogaHi+VM94d0R7bZ/RH39YBRp+LIrDhdCruX7gX//z1NBOjiYgaGAYMJCkmPRPZjzaNvPDfab3wzVP3oqmPyuhzrQj8fjIF9y3cizfXncH1jEIJeklERLXFuzOSlFrLEQYieyIIAoZ3aoK/Zg7Eq/e1gaerk1EbjVbEuhM3MGTBHrz921kGDkREMseAgSRVxhEGIrvk7uKEfw6NQMyswXhpcGu4uyiN2qi1ItYcS8agL6LxyupTOJ+SI0FPiYioOrw7I0kZllXlwm1E9sXPwwVvPhCJmFmDMX1gGNycjQMHrQhsPpOKh7/aj6eXH8GBuHSWYyUikhEGDCQpw7KqziyrSmSXAjxd8c5D7bBv1mBM69cKriYWfgOAmKvpeGrZETzy9QFsOZtqVEmNiIhsj3dnJCnDEQaWVSWyb0Fernjv4faI+V/g4GFiqhIAnEvJwcu/nMLgL/Zg+f4E5BaX2binRERUgQEDScrw6SGTnokcQ7C3Cu893B4H374PbwyLQICHi8l21zML8X9bLqL3x7vx3oZzuMpF4IiIbM64fAWRDTHpmcix+bg74+UhbTCtfxjWn7iB72OuIclE1aTCUg1+PnwdPx++jqjwADzZrSm0IsBBSSIi62PAQJJi0jMRAYDKWYkJvUPxZM8W+PP8TXy7Nx7nzFRNOhCXgQNxGfB3VSKqkRb35JagpZubjXtMROQ4GDCQpJj0TESVKRUCRnRuguGdGuNoQiZ+PJSIHRdumUx+ziwRsPm6ElsWHUBUeCDGdG2GBzs2hoeJtR+IiKju+FuVJGU0wsD5BUSE8gXgeoUFoFdYAFKzi/Dz4SSsOZaMzIJSo7YigP1x6dgfl473NpzHgx0b49F7m6Fv60AWUiAisgAGDCQptcEIgxNHGIjIQFNfN8x6MBKv3tcGm8+k4sdDiTifkmuybVGZBn+cSsEfp1LQyNsVIzs3xch7mqJziA8EgcEDEVFdMGAgSZUZjDA482kgEZmhclZibPfmeLxbCA5dvYXFm4/hdKaAEo3p3xu3ckuwbH8Clu1PQGiAuy54aNvYy8Y9JyJq2BgwkKTUBlWSlEx6JqJqCIKArs198I9wLR7XAELze7D1/G3su5pudqG3pIxCfB0dh6+j4xDRyBMjOzfFw/c0RatADxv3noio4WHAQJJSG67DwLKqRFQLLkpgWMdGeLxHS9zJK8GmM6n449QNs1OWACD2Vj4W7IrFgl2xiGjkiaHtG+H+do1wT4gvFBzlJCIywoCBJMWyqkRkKUFerpjarxWm9muF2Ft52HwmFZvPpCLRxLoOFWJv5SP2Vj7+Ex2PYC9X3NeuEYa2D0bf1oFQOZtehZqIyNEwYCBJMemZiKwhopEXZg5ri38OjcD5lFxsPpuKLWdSkZpTbHaf23klWH30OlYfvQ53FyX6hQdiYNsgDGgThOb+7jbsPRGRvDBgIEkx6ZmIrEkQBHQK8UGnEB+8/WAkTl7PwuYzqdh67ibS80vM7ldYqsHOi7ew8+ItAEBYoAcGRARhQEQgerUK4FoPRORQ+BuPJMURBiKyFYVCQPeW/uje0h/vj+yA08lZ2HXxNnZdvIn4OwVV7nstvQDX0guw8mAinJUCuof6o39EIKJaB6JjMx+u90BEdo0BA0nKMIfBmTkMRGQDSoWAbqH+6Bbqj7cfisS1O/n469It7Lp4CyeSsmCm2BKA8pHRQ9cycOhaBoAr8FY5oXdYAPq1CUTf1oFoHeTBNR+IyK4wYCBJlRmUVXVilSQikkBYkCeeC/LEcwNaIyO/BNFX7mBf7B3sj0s3ubp0ZbnFar3pS428XRHVOhA9WvmjW6gfwoM8WX2JiBo0BgwkKcOyqhzWJyKpBXi64vFuIXi8Wwi0WhEXUnOx7+od7I29g5NJWUa/twzdyi3B76dS8PupFACAl8oJ97bwQ7fQ8p97mvvCkzkQRNSA8DcWSYpTkohIzhSKu0nTLw0OR15xGQ7FZyDmajoOxKfjWjW5DwCQV6zG3tjygAMAFALQtrE3ujT3RdfmvujSwpejEEQkawwYSFJMeiaihsRL5YxhHRpjWIfGAICbOcU4EFcePByMy8DNXPNlWytoReBSWi4upeVi9dHrAABPVyd0DvFBl+a+up9gb5VVvwsRUU0xYCBJGY0w8AkbETUgjX1UeKxbCB7rFgJRFHEtvQAH49JxNDELJ5OykJJdVKPj5JeocTA+AwfjM3Tbgr1c0bGZDzo29UaHZj7o2MwHTX1UTKgmIptjwECSMkp65ggDETVQgiCgdZAnWgd54uk+LQEAaTlFOJmUjRNJWThxPQsXU3OM1p8x53ZeCf6+fBt/X76t2+bn7oyOzXzQvok32jb2QmRjb7QO9oCrE1elJiLrYcBAkjJMHnRiDgMR2ZEmPm4Y0dkNIzo3AQAUl2lw9kYOTidn4XRyNk5fz65y9WlDWYVliLmajpir6bptTgoBYUEeiGxcHkS0a+KFiEZeaObrxtEIIrIIBgwkKeMpSRxhICL7pXJWomcrf/Rs5a/bdju3GKeSs3E6ORunrmfh3I0cFJRqanxMtVZE7K18xN7KB87c3e7p6oTwYE+0beSFNo080bZxeSAR7OXKQIKIaoUBA0mqzCjpmf+IEZFjCfZW4YEOjfHA/xKptVoRCRkFOJ+SgwupuTifkoPzKTnILVbX6rj5JeryUYzkbL3tzXzdMPeRDhjavpGlvgIR2TkGDCQZjVaEaDCV14lJz0Tk4BSKu7kQo7o0AwCIoojkzCKcT83BhdQcXLmZh0tpeTVOqq4sJbsIr689jQNvDYGPu7Olu09EdogBA0nGsKQqwKRnIiJTBEFAiwB3tAhwx/BOTXTbc4vLEHszD5dv5uHyzVxcTsvDlVt5yKtmNCK/RI0/L6RhfI8W1u46EdkBBgwkGcP8BYAjDEREteGtckb3lv7o3vJuToQoiriVW4Irt/Jw9VYertzMQ+ztfFy5mYvisrsPajafYcBARDXDgIEkYypgcOYIAxFRvQiCgMY+KjT2UWFgRJBu+9azaXjpl5O69wfj03E7rxjBXlwgjoiqxrszkoxhwjPApGciImu5r10wPFzurtegFYFtZ9Mk7BERNRQMGEgyJkcYWFaViMgqVM5KDPtfJaYKm86kStQbImpIeHdGkjFc5RngCAMRkTWNvKeJ3vuT17ORnFkoUW+IqKFgwECSMVzlGWDAQERkTf3Cg+BrUEp181mOMhBR1RgwkGTUpkYYOCWJiMhqXJwUeKij/ijDptMMGIioarw7I8kYjjAIAqBkWVUiIqt65J6meu8v3ywvv0pEZA4DBpKMYdIzE56JiKyvZyt/NPJ21dvG5Gciqgrv0EgyhmVVmb9ARGR9SoWAhzvrjzJsOpMKUTTOKyMiAhgwkIQMRxi4yjMRkW0YTktKyijE2Rs5EvWGiOSOAQOApKQkzJw5E5GRkfDw8IC/vz969OiBzz//HIWFlis3t337dowZMwYhISFwdXVFSEgIxowZg+3bt1vsHA2JYdIzV3kmIrKNziE+CA1w19vGaUlEZI7D36Ft3rwZnTt3xsKFC3HlyhUUFhYiKysLx48fx6xZs9C1a1fExcXV6xxarRbTpk3D8OHDsWHDBqSkpKC0tBQpKSnYsGEDhg8fjmeffRZaEysf27Myg6RnTkkiIrINQRCMRhm2nE2FxkS5ayIihw4YTp06hfHjxyM3Nxeenp6YN28eDh48iN27d+PZZ58FAMTGxmLEiBHIy6t7BYl3330Xy5cvBwB07doVq1evxtGjR7F69Wp07doVALBs2TK899579f9SDYjhCANLqhIR2Y5hwHArtwRHEzIl6g0RyZlD36HNmDEDRUVFcHJyws6dOzF79mz06dMHQ4YMwdKlS/HZZ58BKA8aFixYUKdzxMbG4osvvgAAdO/eHQcOHMATTzyBHj164IknnsD+/fvRvXt3AMDnn39e79GMhsSwrCpHGIiIbKdNIy9ENvbS28ZpSURkisMGDEePHkVMTAwAYOrUqejTp49Rm5kzZ6Jdu3YAgMWLF6OsrKzW5/n3v/8NtVoNAPjqq6/g5uam97m7uzu++uorAIBarcaiRYtqfY6GiknPRETSeqSL/ijD9vNpKFU71vRYIqqewwYMGzZs0L2eMmWKyTYKhQITJ04EAGRnZyM6OrpW5xBFERs3bgQAREZGonfv3ibb9e7dG23btgUAbNy40WFK26m1THomIpLSSIPyqtmFZdgfd0ei3hCRXDnsHdr+/fsBAB4eHujWrZvZdgMHDtS9PnDgQK3OkZCQgNTUVKPjVHWelJQUJCYm1uo8DVWZ4QgDpyQREdlUc3933NvCV2/bptOclkRE+hw2YLh06RIAIDw8HE5OTmbbRUZGGu1TUxcvXjR5HEufp6Fi0jMRkfQMk593XryFolKNRL0hIjkyf6dsx4qLi5Geng4ACAkJqbKtn58fPDw8UFBQgOTk5Fqd58aNG7rX1Z2nefPmutf1OY8plY/32sp98PK/XKvjW0tabjHUuXfXuSjJLsHVq1cl7BHVV0lJie7vVnx8PFxdXSXuEdkrXmuW096zDNq8dFTUocgF8OjnG+Gjcpa0X3Kg0WqRlVVeOern2J1Q8sEWWUle5m3d64rcVzlxyIChcolUT0/PattXBAz5+flWO4+Hh4fudW3PUznYqM62j6fV6ti2lAIgwrEqyxIRyVKK1B0gcmB37txBy5Ytpe6GHocMlYuLi3WvXVxcqm1f8eSqqKjIauep/HSstuchIiIiIvtw69YtqbtgxCFHGFQqle51aWlpte1LSkoAwKgkqiXPU3GOupynuilMCQkJGDBgAADg4MGDtRqRIKqNtLQ09OzZE0B56eImTZpI3COyV7zWyBZ4nZGtJCcno2/fvgCqz3uVgkMGDF5edxeqqcn0n4KCAgA1m75U1/NUnKMu56kuP6Ky5s2b16o9UV01adKE1xrZBK81sgVeZ2QrlR84y4VDTklSqVQICAgAUH3CcFZWlu5mvrZP5iv/YqlNYjJHAIiIiIhILhwyYACA9u3bAwDi4uKqzEa/fPluRaGKVZ9rew7D41j6PERERERE1uKwAUO/fv0AlE8FOnHihNl2e/fu1b2Oioqq1TlatWqFpk2bGh3HlH379gEAmjVrJrvMeCIiIiJyXA4bMIwePVr3esWKFSbbaLVarFq1CgDg6+uLwYMH1+ocgiBg1KhRAMpHEA4fPmyy3eHDh3UjDKNGjYIgcMVjIiIiIpIHhw0Yevbsif79+wMAli9fjkOHDhm1WbBggW7V5RkzZsDZWX8Rmz179kAQBAiCgMmTJ5s8z2uvvQalUgkAeOWVV4xKphYVFeGVV14BADg5OeG1116rz9ciIiIiIrIohw0YAGDx4sVwc3ODWq3GsGHD8Mknn+Dw4cOIjo7G9OnTMWvWLABAREQEZs6cWadzRERE4M033wQAHD9+HFFRUVi7di2OHz+OtWvXIioqCsePHwcAvPnmm2jTpo1lvhwRERERkQU4ZFnVCl27dsXatWsxYcIE5ObmYvbs2UZtIiIisHXrVr0SqbU1b9483L59Gz/88ANOnTqFJ554wqjN1KlT8dFHH9X5HERERERE1iCIoihK3QmpJSUlYfHixdi6dStu3LgBFxcXhIeHY+zYsXj55Zfh7u5ucr89e/bo8homTZqElStXVnmebdu2YenSpTh27BjS09MRGBiIHj16YPr06XjooYcs/bWIiIiIiOqNAQMREREREZnl0DkMRERERERUNQYMRERERERkFgMGIiIiIiIyiwEDERERERGZxYCBiIiIiIjMYsBARERERERmMWAgIiIiIiKzGDAQEREREZFZDBiIiIiIiMgsBgx2LikpCTNnzkRkZCQ8PDzg7++PHj164PPPP0dhYaHU3SMZu337NrZs2YL3338fDz30EAIDAyEIAgRBwOTJk2t9vO3bt2PMmDEICQmBq6srQkJCMGbMGGzfvt3ynacG5fjx4/jwww8xbNgw3fXh6emJiIgITJkyBfv376/V8XitkSm5ublYs2YNZs6ciYEDByI8PBw+Pj5wcXFBcHAwBg0ahM8++wwZGRk1Ot7BgwcxYcIEhIaGQqVSoXHjxnjggQewevVqK38Tasjeeust3b+lgiBgz5491e4ji99pItmtTZs2id7e3iIAkz8RERHi1atXpe4myZS56waAOGnSpBofR6PRiFOnTq3yeNOmTRM1Go31vgzJVv/+/au8Nip+Jk6cKJaUlFR5LF5rVJVdu3bV6FoLDAwU//zzzyqPNWfOHFGhUJg9xogRI8SioiIbfTNqKE6dOiU6OTnpXSvR0dFm28vpdxoDBjt18uRJ0c3NTQQgenp6ivPmzRMPHjwo7t69W3z22Wf1gobc3Fypu0syVPkXUosWLcRhw4bVKWB4++23dft17dpVXL16tXj06FFx9erVYteuXXWfvfPOO9b7MiRbrVu3FgGITZs2FWfMmCGuX79ePHr0qHjo0CFx4cKFYrNmzXTXyJNPPlnlsXitUVV27dolNm/eXJw4caK4ePFi8ffffxcPHTokHjhwQFy7dq04duxYUalUigBEFxcX8fTp0yaP8+233+qupdatW4vLly8Xjx49Km7YsEEcPHhwja9XciwajUbs0aOHCEAMDg6uUcAgp99pDBjsVMVTOycnJ/HgwYNGn3/22We6C23OnDm27yDJ3vvvvy9u3rxZvHnzpiiKopiQkFDrgOHKlSu6pyndu3cXCwsL9T4vKCgQu3fvrrtWOeLleEaMGCGuXbtWVKvVJj+/c+eOGBERobv29u7da7IdrzWqjrlrrLI//vhDd62NGTPG6POMjAzRx8dH9yDlzp07RucYOXJkjW4GybEsWrRIBCBGRkaK77zzTrXXiNx+pzFgsENHjhzRXYjTp0832Uaj0Yjt2rUTAYi+vr5iaWmpjXtJDU1dAoYXXnhBt8+hQ4dMtjl06JCuzYsvvmjBHpO92Lx5s+4aeeWVV0y24bVGltK2bVvd1CRD8+fP111Dq1evNrl/cnKybqRi+PDh1u4uNQBJSUmip6enCEDcs2ePOGfOnGoDBrn9TmPSsx3asGGD7vWUKVNMtlEoFJg4cSIAIDs7G9HR0bboGjkQURSxceNGAEBkZCR69+5tsl3v3r3Rtm1bAMDGjRshiqLN+kgNw+DBg3Wv4+PjjT7ntUaW5OXlBQAoLi42+qzi31dvb288+uijJvcPCQnB/fffDwDYvXs38vLyrNNRajBeeukl5OfnY9KkSRg4cGC17eX4O40Bgx2qqCji4eGBbt26mW1X+aI9cOCA1ftFjiUhIQGpqakAUO0vyIrPU1JSkJiYaO2uUQNTUlKie61UKo0+57VGlnLlyhWcPn0aQPmNWmWlpaU4evQoAKBPnz5wcXExe5yK66ykpATHjx+3TmepQfj111+xZcsW+Pv744svvqjRPnL8ncaAwQ5dunQJABAeHg4nJyez7Sr/MqzYh8hSLl68qHtt+A+vIV6LVJW9e/fqXrdr187oc15rVB+FhYW4evUqFi5ciIEDB0KtVgMAXnvtNb12sbGx0Gg0AHidUc1kZ2djxowZAID58+cjMDCwRvvJ8Xea+btJapCKi4uRnp4OoHxYtCp+fn7w8PBAQUEBkpOTbdE9ciA3btzQva7uWmzevLnuNa9Fqkyr1eLTTz/VvR83bpxRG15rVFsrV640O2UXAN5++2384x//0NvG64xqa9asWbh58yaioqIwderUGu8nx2uNAYOdqTxX0tPTs9r2FQFDfn6+NbtFDqg216KHh4fuNa9FqmzRokW6aSCPPvqoyWmWvNbIUrp06YKlS5eiR48eRp/xOqPaiImJwbJly+Dk5IRvv/0WgiDUeF85XmuckmRnKidpVTW/soKrqysAoKioyGp9IsdUm2ux4joEeC3SXXv37sXbb78NAAgODsaSJUtMtuO1RrU1evRonDt3DufOncPRo0exevVqjBkzBqdPn8aTTz6JLVu2GO3D64xqqrS0FM899xxEUcTrr7+Ojh071mp/OV5rDBjsjEql0r0uLS2ttn1FMqGbm5vV+kSOqTbXYuWkVl6LBAAXLlzAmDFjoFaroVKpsG7dOgQHB5tsy2uNasvX1xcdO3ZEx44d0aNHDzzxxBP4/fffsWrVKly7dg2jRo3CypUr9fbhdUY19fHHH+Py5cto0aIF5syZU+v95XitMWCwMxXl4ICaDU0VFBQAqNn0JaLaqM21WHEdArwWqbxCyLBhw5CVlQWlUok1a9ZgwIABZtvzWiNLefrppzF27FhotVq8/PLLyMzM1H3G64xq4vLly/jkk08AAF999ZXelKGakuO1xhwGO6NSqRAQEICMjAy9pBlTsrKydBda5aQZIkuonKhV3bVYOVGL16JjS01Nxf3334/U1FQIgoAffvgBo0aNqnIfXmtkSaNGjcKvv/6KgoIC/Pnnn7rkZ15nVBOLFi1CaWkpwsLCUFhYiDVr1hi1OX/+vO7133//jZs3bwIARo4cCQ8PD1leawwY7FD79u0RExODuLg4qNVqs6VVL1++rHttqlQhUX20b99e97rytWYKr0UCgPT0dAwdOhTXrl0DUP50rmKByarwWiNLCgoK0r1OSkrSvY6IiIBSqYRGo+F1RmZVTBG6du0annzyyWrb/9///Z/udUJCAjw8PGT5O41TkuxQv379AJQPU504ccJsu8q1zaOioqzeL3IsrVq1QtOmTQHoX2um7Nu3DwDQrFkztGzZ0tpdIxnKycnBAw88oKs//umnn+Kll16q0b681siSUlJSdK8rT/FwcXFBz549AQCHDh2qcm55xXXo6uqK7t27W6mnZK/k+DuNAYMdGj16tO71ihUrTLbRarVYtWoVgPLkr8GDB9uia+RABEHQTSW5fPkyDh8+bLLd4cOHdU9IRo0aVavSc2QfCgsLMWLECJw8eRIA8O677+Ktt96q8f681siS1q1bp3vdqVMnvc8q/n3Nzc3F77//bnL/Gzdu4K+//gIA3HfffXrz0cn+rVy5EqIoVvlTORE6Ojpat73ihl+Wv9NEskv9+/cXAYhOTk7iwYMHjT7/7LPPRAAiAHHOnDm27yA1OAkJCbprZtKkSTXa58qVK6JSqRQBiN27dxcLCwv1Pi8sLBS7d++uu1ZjY2Ot0HOSs5KSEnHYsGG6a2vGjBl1Og6vNarOihUrxKKioirbLFy4UHcttmrVSlSr1XqfZ2RkiD4+PiIAMTQ0VExPT9f7XK1WiyNHjtQdIzo62tJfg+zAnDlzqr1G5PY7jTkMdmrx4sWIiopCUVERhg0bhtmzZ2Pw4MEoKirCmjVrsHTpUgDlczJnzpwpcW9Jjvbv34+4uDjd+4oVxAEgLi7OqOTg5MmTjY4RERGBN998E59++imOHz+OqKgovPXWW2jdujXi4+Mxf/58nDp1CgDw5ptvok2bNlb5LiRfTz75JHbu3AkAGDJkCKZOnaqXEGjIxcUFERERRtt5rVF15s6di5kzZ+Kxxx5Dv3790Lp1a3h6eiIvLw/nzp3Df//7Xxw4cABA+XW2dOlSKJVKvWP4+/tj/vz5eP7555GUlIRevXrh3XffRadOnZCamop///vfiI6OBlB+bQ8aNMjWX5PshOx+p1k1HCFJbdq0SfT29tZFsYY/ERER4tWrV6XuJsnUpEmTzF47pn7M0Wg04jPPPFPlvlOnThU1Go0Nvx3JRW2uMfzvqa45vNaoKqGhoTW6xkJCQsSdO3dWeaz3339fFATB7DGGDx9e7WgGOa6ajDCIorx+pzGHwY6NHDkSZ8+exeuvv46IiAi4u7vD19cX3bt310Wm4eHhUneT7JxCocDy5cuxdetWjBo1Ck2bNoWLiwuaNm2KUaNGYdu2bVi2bBkUCv46ovrhtUZV2bFjBxYsWIBHH30UnTt3RqNGjeDk5AQvLy+0bt0ajz32GFasWIErV65g6NChVR7rgw8+wP79+/GPf/wDzZs3h4uLC4KDgzF06FD88ssv2Lp1q97iW0R1IaffaYIoiqLVz0JERERERA0SH7MQEREREZFZDBiIiIiIiMgsBgxERERERGQWAwYiIiIiIjKLAQMREREREZnFgIGIiIiIiMxiwEBERERERGYxYCAiIiIiIrMYMBARERERkVkMGIiIiIiIyCwGDEREREREZBYDBiIiIiIiMosBAxERERERmcWAgYiIiIiIzGLAQEREREREZjFgICIiIiIisxgwEBHV09y5cyEIAgRBkLorSExM1PVl5cqVUnfH4axcuVL355+YmFjv4/3www8QBAGdOnWCKIr176BMrVu3DoIgICIiAmVlZVJ3h4gMMGAgIrui0Wjg7e0NQRBw7733VtlWFEUEBATobvB++OGHKtv/+OOPurZLliyxZLdl6caNG5g7dy769++PoKAgODs7w83NDSEhIRgwYABmzJiB9evXIycnR+qu2qX8/HzMnj0bAPD+++/LIiCtbNiwYRAEATNmzKj3sR577DG0b98eV69exVdffWWB3hGRJTFgICK7olQq0bdvXwDAmTNnkJuba7bthQsXkJmZqXsfExNT5bErfz5gwIB69lTevv/+e7Rt2xYffPAB9u/fj/T0dKjVahQXFyMlJQUxMTH48ssvMXbsWEyfPl3q7tqlL7/8Erdu3UL79u3x+OOPS90dPXl5edi7dy8AYOTIkfU+nkKhwLvvvgsA+PTTT1FQUFDvYxKR5TBgICK7U3Ezr9VqcfDgQbPtKgIApVKp97669oGBgWjfvr1u+9y5cyGKot1MGVm9ejWee+45FBYWQqVS4YUXXsCGDRtw/PhxHDt2DBs3bsS//vUvdO3aVequ2q2ioiIsXLgQAPD666/LbnRhx44dKC0thbe3NwYOHGiRY44fPx7NmjXDnTt38N1331nkmERkGQwYiMjuVH76v2/fPrPtKj4bO3YsACA+Ph6pqakm296+fRuxsbEAgH79+snuBs5SNBoN/vnPfwIAvLy8cOTIEXzzzTcYNWoUunXrhu7du+ORRx7Bhx9+iJMnT+LixYt49NFHJe61/fn555+RkZEBV1dX2Y0uAMDmzZsBAA888ACcnZ0tckylUonx48cDAL7++mtotVqLHJeI6o8BAxHZnR49ekClUgGoetSg4rPHH38crVu3rrK9o0xHOnLkCG7evAkAmD59Ojp37lxl+3bt2mHcuHG26JpDWb58OQBgxIgR8PX1lbYzBrRaLbZt2wYAePjhhy167KeeegoAkJCQgOjoaIsem4jqjgEDEdkdV1dX9OzZEwBw7NgxlJSUGLVJSEhASkoKgPIRg379+gGoW8BQXZWkli1bQhAETJ48GQBw5coVPPvss2jZsiVcXV3RqFEjjBkzBocPH672u2k0GnzzzTfo1asXvL294ePjg3vvvRdffPGFye9ZW9evX9e9Dg8Pr/NxTFVrWrduHe6//34EBwfDzc0NkZGReOedd5CdnV2jY0ZHR2PSpEkICwuDu7s7vL290alTJ7z55ptmR4YsfYysrCy8/fbbiIyMhJubG4KDg3H//fdj3bp1NTp/TSQlJeHIkSMAypOBzdmzZ4/uz3jPnj0QRRHLly9Hv379EBAQAG9vb/Ts2RM//fST3n6lpaX49ttv0bt3b/j7+8PLywtRUVH49ddfa9S/w4cPIz09HQqFAsOHDzf6/MSJE5g6dSoiIiLg4eEBlUqF5s2bo1u3bnjppZewadMms9P37r33XrRq1QpA+dQ4IpIJkYjIDr333nsiABGAuHfvXqPPV65cKQIQ27RpI4qiKH7//fciALFTp04mj3fvvfeKAERvb29RrVbrfTZnzhzduUwJDQ0VAYiTJk0Sf//9d9Hd3V3XvvKPUqkU16xZY/Y75eXlif379ze5LwDx3nvvFU+ePKl7v2LFihr+ad3122+/6fafMWNGrfevkJCQoNePZ555xmy/mzZtKl66dMnssYqKisQnnnjC7P4ARA8PD3HTpk1WPcbFixfFpk2bmt1/ypQp4ooVK3TvExIS6vRnV3FtAhDj4+PNtouOjta127lzpzhy5EizfXv11VdFURTFzMxMccCAAWbbzZs3r9r+vf322yIAMSoqyuizhQsXigqFoso/ZwBiXl6e2eNX/H9q1qxZDf60iMgWGDAQkV3auXOn7ubko48+Mvp86tSpups8URTFS5cuiQBEQRDEzMxMvba5ubmiUqkUAYgPPvig0bFqGjDce++9okqlElu1aiV+/fXX4uHDh8VDhw6Jc+fOFVUqlS4guX37tsnjjBo1Sneenj17iqtXrxaPHz8ubt26VRw7dqwIQOzRo0e9AoZr167p9lepVOLu3btrfQxR1A8YKvpUuc/btm0Tx40bp2vTokULMTc31+g4Wq1WHDFihK7dyJEjxZ9++kk8cOCAeOjQIXHx4sViixYtRACii4uLeOzYMascIycnR2zevLnuGOPHjxe3bdsmHj9+XPzll1/E7t27G/351zVgqLg2AwICqmxXOWDo1avX/7d3/zFV1f8fwJ/AvUACIYgIzH4IgyQkfolJSEolNRSba6vEBPqByGa10igrbdUGLBdz4VrDxY9igNFmCUnhDCJUll6BBUkUZSMCuQwV1g8Q7vvzBztn58I9lwtcfnz5Ph+b2+2+3+d93ud4bed13j9eAoDYuXOn+Oqrr4ROpxOlpaXirrvukuucPn1abNu2TWg0GpGeni6qq6uFTqcTH3/8sRwI2dnZiZaWFrPnDQoKEgBEdna20ffNzc1ysLBq1Srx/vvvizNnzojGxkZRV1cnjh07JhITE4WTk5PZgCEnJ0fu8y+//GL5jSOiWcOAgYgWpcHBQaHRaAQA8fDDD08oDwgIEABEfn6+/J2Hh4cAICoqKozqfv311/IDTGZm5oS2LA0YAIiIiAhx48aNCXWKi4vlOjk5ORPKKysr5fL4+Hhx8+bNCXXefvtto7e40wkYhBBi69atRu1ERkaKQ4cOiVOnTgm9Xm9RG8qAwVyf33nnHbnOK6+8MqE8Ly9PABBarVZUVVWZPFd/f7/8EGvqrbc12ti/f7/Z38Dw8LCIi4szuubpBgyBgYECgHjwwQfN1lMGDADEkSNHJtTp7u4WLi4uAoBYvny5sLGxESdOnJhQT/mwL41GmKIMKMcHFgcPHpRHanp6elTbuH79uhgdHVUt/+677+RzmBtxI6K5w4CBiBYt6W2vi4uL0TSiq1evyg8k7e3t8vfSG/yMjAyjdt544w25fn19/YTzTCVgaG5uNlnHYDDIb3m3b98+oTw+Pl4AEA4ODqKrq8tkG6Ojo2LNmjUzDhj0er3Rm/LxfwICAsTevXuFTqdTbUMZMFjaZ3d3dzE0NCSXGQwG4efnJwCIffv2me3zqVOnTP6dWqONoaEh4ebmJgCIe+65RxgMBpPHd3Z2Cq1WO+OAQXrA37Fjh9l640cY1CQlJRmNjKiRpiqFhYWp1vnggw/kEYTxUlNTJz3eEtJon1pwRkRzj4ueiWjRkhYnDw4OoqmpSf5e2k51xYoV8Pf3l7+XFj6P34pVWvDs6OiIyMjIafcnODhYddchGxsbOa/Bb7/9ZlQ2OjqK2tpaAGPZdX18fEy2YWtri+Tk5Gn3T+Lh4YGzZ88iLy/PZLbs9vZ2HD16FBEREdi1a9ekSbYs7XN/fz8uXbokl/3000/o6OgAgEm3FlUuRD9//rxV29DpdLh27RoAIDk5WXVx+8qVKxEXF2f2HJMZGhrC4OAgAMDNzc3i45588knVspCQkCnVG//7U5K2UzWVrM3b2xvA2D3/4YcfzHfYDHd3d/mztGMXEc0vBgxEtGjFxMTIn5W7HEmfpQBhfH2dTod///0XwNiOMtLDz7333gt7e/tp92f16tVmy6UHJemBUdLR0YF//vkHACYNWKTdoWZKq9UiNTUVOp0OXV1dKCsrw/79+xETE2O0735xcTG2bduG0dFR1bam0ucff/xR/nzx4kX5c1RUlLwjkKk/zs7Ocl3lQ6Y12lD2abbvvzLz+FQChoCAANUy5basltQb//uTTJbdeceOHdBqtRgaGkJ0dDQSEhLw0UcfoaWlZUpJDZXXzYzPRAsDAwYiWrRiYmLkt8GWBAzh4eFYsmQJbt68KW9xeuHCBfz3338AZp5/YcmSJWbLbW3H/pc8/uFb+RDp6elpto0VK1ZMs3fqfHx88MQTT+Dw4cOoq6tDT08PDhw4IPf322+/NbsF5lT6rLzW3t7eafVXCq6s1cZc3n8pfwgAOWi1hLnflvT3ZGk9tYRpUnZnFxcXk9mdV69ejdLSUri5uWFkZASVlZVIT09HcHAwPD09sWvXrkmzqQPG122tpHBENDOa+e4AEdFscXd3R1BQEFpaWuQHlYGBATQ3NwOYGDBotVqsW7cOtbW1qKurQ2xs7IJL2LYQMky7u7sjMzMTQghkZ2cDGMux8NRTT5msP90+KwOniooK3HnnnRYdp3yot0YbSrN9/5cuXQqNRoORkRGjQGUhqKysBGA+u/Njjz2Ghx56CMePH8c333yD77//Hnq9Hn19fSguLkZxcTGSk5ORn59vFMgoKa97oSWtI/r/igEDES1q999/P1paWqDX69HW1obff/8dBoMBzs7O8poBpQ0bNqC2tlYOFKT1DFqtFlFRUXPad4lyisbVq1fN1p2s3JpSU1PlgOHXX39VrTeVPivnry9btkz+vHTpUqxZs2bKfbRGG+Pvv7lpPTO9/zY2NvDw8EBPT4+8bmIhUGZ3NjUdScnV1RW7d+/G7t27AQCXL1/Gl19+idzcXPz1118oKipCWFgYXnzxRZPHK6/79ttvt9IVENFMcEoSES1q49cxSIHA+vXrYWdnN6G+NOrQ0NCAoaEhnDt3DsDYdCUnJ6c56PFEfn5+uOWWWwCMTZEyZ7Jya1IuZDb35n0qfVY+0CsDurNnz06ni1ZpIzg4WP48F/dfOl97e/uM27KWhoYG6PV61ezO5gQGBuK1115DQ0OD/G/IXFZp5XUHBQVNr8NEZFUMGIhoUVNOI6qrq5NHDMZPR5JERUXBzs4Of//9NwoLC3Hjxo0J7cw1jUaDTZs2AQCqq6vR3d1tsp7BYEBRUdGMzjWVxanKBcW+vr6q9Szts5ubm9GuTOHh4Vi5ciUAIC8vT15LMhXWaCMiIkIeZfj0009V71FXVxeqq6un3P54UpD7888/qy5AnmvS7khRUVHw8PCYVhu33XabPDrT19enWk8KurRarclduoho7jFgIKJFzcfHB35+fgCAmpoa+SFXOfKgdOutt8pveN977z35+/lev5Ceng5gbNvNtLQ0k7sSZWVlGe3oMx1VVVV4/PHH0djYaLZef38/XnjhBfm/H330UdW65vqcnZ0t9/mZZ56Bg4ODXGZra4vXX38dwNhWn0lJSRgaGlI9z8DAAI4ePWr0nTXacHBwwNNPPw0AaGpqwuHDhyccNzIygtTUVAwPD6u2bSnpt2kwGIyCsvkkBQxbt25VrfPFF1/g+vXrquWdnZ1oa2sDAKxatUq1nrQrWVRUlNHOVUQ0f7iGgYgWvZiYGHR0dKCrqwvA2Bv79evXq9bfsGEDmpqa5P3obW1tVUck5kpCQgISEhJQUVGBiooKREdH46WXXoK/vz96e3tRWFiI48ePY+3atTN6yDQYDCgvL0d5eTlCQkKwZcsWREZGwtvbG/b29ujt7UV9fT3y8vLkHYgiIiLM5n9Yu3atyT4XFRWhrKwMwFgOg4MHD044ds+ePTh9+jROnDiB8vJyXLp0CWlpaVi3bh1cXV0xMDCAtrY21NbW4uTJk3B0dMTevXut3sahQ4fw2Wef4c8//8Srr76KpqYmJCUlwdPTE+3t7cjJycGFCxdmfP8B4L777sPy5cuh1+tx5swZxMbGzqi9mbpy5QpaW1sBmF+/cOTIEezcuRNbtmzBAw88gMDAQLi6uuLatWu4ePEicnNz5R2Q9uzZY7KNwcFBeYRh+/btVr4SIpq2+c0bR0Q0+/Lz840yFUdGRpqtX1ZWZlQ/JCTEbH1LMz0nJyebbSc5OVkAEHfccYfJ8oGBAREdHa2agTksLEzodLoZZXqur68XTk5OqucY/2fz5s2ir69vQjvKTM8FBQUiJSVFtQ1vb2/R2tqq2qfh4WGRnp4ubGxsJu2PqQzE1mqjpaVFeHl5qR6XkpIiCgoKZpzpWQgh9u3bJwAIX19f1TrKTM81NTWq9Sztk9rv2Fx2Z6WNGzdOem9tbW3Fu+++q9pGYWGhACA0Go3o7u42ez4imjuckkREi9746USTjRaMn64039ORJC4uLqitrUVubi4iIyPh7OwMFxcXhIaGIisrC+fOnTPaZWg6oqOjodfrcfLkSbz88svYuHEjfHx84ODgAI1GA3d3d4SHhyMtLQ01NTWorq422olITUFBAUpKSrBp0yYsW7YMDg4OCAgIQEZGBlpbW3H33XerHqvVavHhhx+iubkZzz//PIKDg+Hq6go7Ozu4uroiNDQUzz77LD7//HNcvnx51toICgpCa2srMjIy4O/vDwcHB3h4eCA2NhYlJSUoKCiw7CZbIDU1FcDYNCopJ8h8MZfdWam0tBR5eXlITExEaGgovLy8oNFo4OzsjKCgIKSnp6OxsRFvvvmmahslJSUAxkYXvLy8rHcRRDQjNkJMYYUbERGRBa5cuSLPUy8oKEBKSsr8duj/oPj4eFRVVeG5557DsWPH5qUPg4OD8PDwwPDwMKqrq7F58+ZZO9cff/wBPz8/jI6O4vz582anDRLR3OIIAxER0QKUlZUFW1tbfPLJJ+js7JyXPlRXV5vN7mxNmZmZGB0dxSOPPMJggWiBYcBARES0AIWEhCAxMRHDw8PIysqalz64uLjgrbfeQm5uLuzt7WftPJ2dnSgsLISdnZ3R7mREtDBwlyQiIqIFKjMzE35+fnB0dIQQwmyCvNkQFxeHuLi4WT9PZ2cnDhw4AF9fX6NEeUS0MHANAxERWR3XMBARLR6ckkRERERERKo4wkBERERERKo4wkBERERERKoYMBARERERkSoGDEREREREpIoBAxERERERqWLAQEREREREqhgwEBERERGRKgYMRERERESkigEDERERERGpYsBARERERESqGDAQEREREZEqBgxERERERKSKAQMREREREaliwEBERERERKoYMBARERERkSoGDEREREREpIoBAxERERERqWLAQEREREREqhgwEBERERGRKgYMRERERESk6n+1XywpNfO8LQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -167,7 +167,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLYAAAI5CAYAAAC8ULOiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1iTV/8/8HcSRhgiiCgOFBBRXEURkam4xVVHFa1arD61X1upffqofdqq0Fpnq3W0Wussjtpqta0+VtS6GFZt3RPBgRtkyR7J7w9+3OVOGAFCwni/rovL5Nwn55wkt4H7k3M+R6JUKpUgIiIiIiIiIiKqZaT6HgAREREREREREVFlMLBFRERERERERES1EgNbRERERERERERUKzGwRUREREREREREtRIDW0REREREREREVCsxsEVERERERERERLUSA1tERERERERERFQrMbBFRERERERERES1EgNbRERERERERERUKzGwRUREREREREREtRIDW0REREREREREVCsxsEVERERERERERLUSA1tERERERERERFQrMbBFRERERERERES1EgNbRERERERERERUKzGwRUREREREREREtRIDW0REREREREREVCsZ6HsAVHtkZ2fjypUrAAAbGxsYGPD0ISIiIiIiIqrr8vPzkZCQAADo3Lkz5HK5nkf0D0YmSGNXrlxBjx499D0MIiIiIiIiItKTs2fPwt3dXd/DEHApIhERERERERER1UqcsUUas7GxEW6fOnUKDg4OehwN6VpWVhZOnToFAPDz84OJiYmeR0S6xnOgfuP7TzwH6je+/8RzoH7j+093796Fn58fAHFsoCZgYIs0Vjynlq2tLVq2bKnH0ZCuZWVloXHjxgCAli1b8pdZPcRzoH7j+088B+o3vv/Ec6B+4/tPWVlZwu2alm+bSxGJiIiIiIiIiKhWYmCLiIiIiIiIiIhqJQa2iIiIiIiIiIioVmJgi4iIiIiIiIiIaqWalfGLiIiIiIiqRKFQIC0tDSkpKcjLy9Nam9bW1gCABw8eQCrl9+P1Dc+B+o3vf90mk8lgZmYGCwuLWrkxAANbRERERER1yLNnz5CSkqLVNpVKpXCxU1BQAIVCodX2qebjOVC/8f2v2/Lz85GTk4OkpCQ0b94cDRs21PeQKoSBLSIiIiKiOiIrK0sU1JLJZJBIJFppu6idmrbNO+kOz4H6je9/3ZWfny/cfvz4MYyNjSGXy/U4oorhGUlEREREVEckJSUJtxs3bgwbGxuttFu0vBEALCwsuAypHuI5UL/x/a/bCgoK8PTpU+E9Tk1NrVWBLZ6NRERERER1RG5urnC7cePGehwJERHVFjKZDLa2tsL9jIwMPY6m4hjYIiIiIiKqI4qWk2hzCSIREdV9MplMWGZaUFCg59FUDANbRERERER1DINaRERUXzCwRUREREREREREtRIDW0REREREVONt3boVEokE9+7d0/dQqJrY29sjKChIo7q9e/dG7969q6XfEydOQCKR4MSJE1ppn4iqFwNbREREREREGtq9ezcmTpyItm3bQiKRlBpcKQqOlPRz5swZUV17e3tIJBL069evxLa+++474bHnz58HACxbtgwSiQQXLlwQ1VUqlbCysoJEIsHdu3dFx7Kzs2FsbIwJEyZU8tnr1vXr1xESEsJgph4tWrQI+/fv12qbQUFBpf7fKP6jaZCzMm7evIk5c+bA1dUVDRo0QLNmzTBkyBDh/1dlBQUFwdzcvNTjEokE7777bpX6KEt6ejoWLFiAQYMGoVGjRpBIJNi6dWu19VdTGOh7AEREREREROWZNGkSAgMDYWxsrNdxrFu3Dn/99Rfc3d3x4sWLcusHBwfD3d1dVObk5KRWTy6X4/jx43j69KlodzIA2LFjB+RyObKzs4UyHx8fAEBERAS6du0qlF+7dg0pKSkwMDBAZGQkHBwchGPnzp1Dbm6u8Nia7vr16wgNDUXv3r1hb28vOhYeHl5t/fr5+SErKwtGRkbV1kdtsWjRIowZMwbDhw/XWpvTp08XBXHv3r2L+fPn46233oKvr69Q3qZNG631qWrjxo3YtGkTRo8ejRkzZiA1NRXffvstevbsid9//73UIHNNl5iYiE8//RStWrXCK6+8Um9mHdbbwNbz589x9uxZnD17FufOncO5c+eEX0xvvPGGRlHNrVu3YsqUKRr1t2XLFq1EnBMTE7F69Wrs379f+ObC3t4er776Kt577z1YW1tXuQ8iIiIioppGJpNBJpPpexgICwtDixYtIJVK0alTp3Lr+/r6YsyYMeXW8/b2xrlz57B792689957QvnDhw9x+vRpjBw5Env37hXKu3fvDrlcjoiICMycOVMoj4yMhLW1Nbp3746IiAhMnDhROBYREQEAtSawVZbqDDpJpVLI5fJqa7++8/T0hKenp3D//PnzmD9/Pjw9PUXna3UaP348QkJCRLOr3nzzTbi4uCAkJKTWBraaNWuGJ0+ewNbWFufPn1cLqtdV9XYpYtOmTTFs2DB89tln+P333zX6tkXf/vzzT3Tu3BmfffYZrly5gpcvX+Lly5e4cuUKPvvsM3Tu3Blnz57V9zCJiIiIiLSutBxbhw4dgq+vL8zMzNCgQQMMGTIE165dE9W5fPkygoKC4OjoCLlcDltbW7z55puVugaws7ODVFqxy6iXL18iPz+/zDpyuRyjRo3Czp07ReW7du2ClZUVBg4cKCo3MjKCu7s7IiMjReWRkZHw9PSEt7d3iccsLS01CsgV6d27Nzp16oTLly9jyJAhaN68OZydnbFnzx4AwMmTJ+Hh4QETExO0a9cOR48eFT0+KChIbbYVAISEhJS5e+fWrVvx2muvAQD8/f2F5WlFM1Aqk2NLqVRi4cKFaNmyJUxNTeHv7692rgAl59gq/jr06tULpqamcHJy0vh10IRCocCqVavQuXNnyOVy2NjYYNCgQaLlcUVL2Xbs2IF27dpBLpfDzc0Np06d0np/EokEGRkZ2LZtG2QyGaysrDBjxowK91NV9vb2GDp0KMLDw+Hq6gq5XI4OHTrg559/VqsbGxuL2NjYctt0c3NTWzJobW0NX19f3LhxQ1SemZmJmzdvIjExsWpPpBRr1qxBx44dYWpqCisrK3Tv3l3tc+DmzZt48OBBuW0ZGxurzfisD+ptYKu4Vq1aYcCAAVVq4/Dhw7hy5UqpP6+++mqV2o+Pj8ewYcPw9OlTGBgYYM6cOTh16hROnTqFOXPmwMDAAE+ePMGwYcPw8OHDKvVFRERERHWHQqHEi/ScKv8kZeYhKTNPK229SM+BQqGs8nMLCwvDkCFDYG5ujqVLl2LevHm4fv06fHx8RAGwI0eOIC4uDlOmTMGaNWsQGBiIH374AQEBAVAqqz6OskyZMgUWFhaQy+Xw9/cvM4fPhAkTcPbsWdGF+c6dOzFmzBgYGhqq1ffx8cGjR49EzzUyMhJeXl7w8vISliUChUGdqKgoeHp6Vjgwl5ycjOHDh8PNzQ0hISEwNjZGYGAgdu/ejcDAQAQEBGDJkiXIyMjAmDFj8PLlywq1XxI/Pz8EBwcDAD766COEhYUhLCwMLi4ulW5z/vz5mDdvHl555RUsX74cjo6OGDBgADIyMjR6fHJyMoYOHQoPDw8sW7ZM66/D1KlTMWvWLNjZ2WHp0qX48MMPIZfL1XKynTx5ErNmzcLEiRPx6aef4sWLFxg0aBCuXr2q1f7CwsJgbGwMX19fbNu2DevXr6/WvFdliYmJwbhx4zB48GAsXrwYBgYGeO2113DkyBFRvb59+6Jv376V7ufp06do3LixqOzs2bNwcXHB2rVrNW4nMTGxxB9V3333HYKDg9GhQwd89dVXCA0NhaurK/78809RPRcXF0yePLlyT6oeqLdLEefPnw93d3e4u7ujadOmuHfvnmj9eUU5OzuX+E2Etnz88cdISEgAUPjLrejbC6BwerObmxvGjRuH58+f45NPPqkXCeKIiIiIqHzJmblwW1jx2SPV7a9P+sHavPL5stLT0xEcHIxp06Zhw4YNQvkbb7yBdu3aYdGiRUL5jBkz8MEHH4ge37NnT4wfPx4RERGivD7aYmRkhNGjRyMgIACNGzfG9evX8cUXX8DX1xdRUVGivFhF+vTpA1tbW+zatQuffPIJbty4gYsXL2LVqlWIi4tTq188z5a9vT2ePn2KuLg4eHt7o1u3bpBKpYiKikJAQACuX7+O5OTkSi1DfPz4MbZv344hQ4YAAIYNG4YOHTpgwoQJiIqKgoeHB4DCi++BAwdi7969VQ6AODo6wtfXF6tXr0b//v2rvANiQkICli1bhiFDhuC3334TZot9/PHHWLRokUZtPH78GDt37sT48eMBAP3790f79u218jocP34cW7duRXBwMFatWiWUf/DBB2rB16tXr+L8+fNwc3MDAAQGBqJdu3aYP39+ibOYKtvfxIkT8fbbb8PR0RETJ05EWlqaRm1Xh9u3b2Pv3r0YNWoUgMKgXPv27TF37lz0799fK32cPn0a0dHR+OSTT6rUTkZGBmxsbDSqe/DgQXTs2BE//fRTlfqs7+rtjK3Q0FAMHToUTZs21fdQyvX06VPs2LEDADBw4EBRUKvI2LFjhenJYWFhePr0qU7HSERERESkS0eOHEFKSgrGjx8vmhEhk8ng4eGB48ePC3VNTEyE29nZ2UhMTETPnj0BAH///Xe1jM/Lywt79uzBm2++ieHDh+PDDz/EmTNnIJFI8N///rfEx8hkMowdOxa7du0CUJg03s7OrtTAm5eXF6RSqZA7KzIyEoaGhnB3d4e5uTm6dOkiLEcs+rcygS1zc3MEBgYK99u1awdLS0u4uLgIwRwAwu2SgnD6dvToUeTm5mLmzJmiJZCzZs3SuI3qfB327t0LiUSCBQsWqB1TXbLp6ekpBLWAwhVII0aMwOHDh1FQUKD1/mqC5s2bY+TIkcJ9CwsLTJ48GRcuXBBd+967d69Su2g+f/4cEyZMgIODA+bMmSM61rt3byiVSoSEhGjUllwux5EjR0r8UWVpaYmHDx/i3LlzZbapVCrrTSL4yqi3M7Zqk19//RUKhQIAykxWHxQUhMOHD0OhUODXX3/FW2+9pashEhERERHpVExMDIDCWU4lsbCwEG4nJSUhNDQUP/zwA54/fy6ql5qaWn2DVOHk5IQRI0bg559/RkFBQYnJ8CdMmIDVq1fj0qVL2LlzJwIDA0sNNFhaWqJjx46i4FXXrl2FQJ6Xl5fomJGREXr06FHhcbds2VJtDA0bNoSdnZ1aGVC4ZK+muX//PgCgbdu2onIbGxtYWVlp1EZ1vg6xsbFo3rw5GjVqVG5d1ecAFK4gyszMREJCgkY5lirSn6ZUJ1c0bNhQFFSuCicnJ7XX3tnZGUBhMKsqeaUyMjIwdOhQvHz5EhEREWq5typKJpNpnHx+7ty5OHr0KHr06AEnJycMGDAAEyZMgLe3d5XGUN8wsFULFH0DAwC9evUqtV7xY5GRkQxsEREREVGdVfTFb1hYWIkXtQYG/1zqjB07FlFRUZg9ezZcXV1hbm4OhUKBQYMGCe3oip2dHXJzc5GRkSEKvhXx8PBAmzZtMGvWLNy9excTJkwosz0fHx+sX78eKSkpQn6tIl5eXti8eTPy8vIQEREBNze3Su32V9pulKWVF186V1pQTtOZRTVJVV6H+qBZs2ai+1u2bNFbTi5N5ebmYtSoUbh8+TIOHz5coY0VtMHFxQW3bt3CgQMH8Pvvv2Pv3r345ptvMH/+fISGhup0LLUZA1taMmXKFNy6dQuJiYmwsLCAk5MT+vXrh//7v/9DixYtqtT29evXARRGvMuKRDdr1gwWFhZIS0tT28mBiKi2uPY4FX/dT0aBFpIKk/bk5eXh5pPCi5Nnf8aXmMSY6jaeA7WDvWEWzI0kMJVIkZieAwBQKJU48r5fldpVKpXIzs6BVAI0tjSDYSkX8hVhZWpUpce3adMGANCkSZMyZ0ckJyfj2LFjCA0Nxfz584XyohlfuhYXFwe5XF7mrJDx48dj4cKFcHFxgaura5nt+fj4YN26dTh69CguXLiA2bNnC8e8vLyQlZWFgwcPIi4uDqNHj9bW09CYlZWVkMC+uKIZVGXR5pK41q1bAyh83x0dHYXyhISEGjHDrE2bNjh8+DCSkpLKnUVV0rl7+/ZtmJqaapzbSdP+KvIeqC6169ixo8aPLc+dO3egVCpF47l9+zYAVDrXtUKhwOTJk3Hs2DH8+OOPZU4iqU5mZmYYN24cxo0bJwTaPv/8c/z3v/+tVCC6PmJgS0uKr3d98eIFXrx4gT///BNffvklvvrqK0yfPr3SbRftctiyZcty69rZ2eHatWuIj4+vdD+lefLkiXA7JycHWVlZFe6Daq/s7OwSb1P9oYtz4ODVZ5jz8zUwplVT/f8L2Xv6uRikmoDnQE33sY8V7BvJIZMZ4HGKlv9WMzCEAkByZj6cbIwhk1Y16KCs0M6IRTOrFAoFFAoF+vfvDwsLCyxatAi9evVSC7YmJCTAxsZGuBAuelyRlStXFo5CqazyrK2SHl/Uf3GXLl3Cr7/+ikGDBqk9rvg43nzzTUilUvTo0UP0vEt6HkUztFasWIG8vDz07NlTON6qVSs0a9YMy5YtE+pW9rkWf1zR7dJeu+Lljo6OSE1NxcWLF9GlSxcAhdcV+/btU2tX9bFFy9iSkpJKHbemz6dPnz4wNDTE6tWr0a9fP+G8KOk8KO21Lq0/TV6H8owcORJff/01QkJC8NVXX6m1UzygEx0djfPnz6Nbt24AgPj4ePzyyy8YOHAgJBKJRn1q2p+ZmRmSk5NLfP9VlbQsWJOxlPV6F3n8+LEoeXxaWhq+//57uLq6okmTJsLjinYULQp8l+Xdd9/F7t27sW7dOrz66qtamb1ZNEuvrLaKnxcvXryAtbW1cMzAwAAuLi44dOgQcnJyYGRU+AXAzZs3YWpqilatWmk8Fk1e17LGp3q9n5OTo3EbusbAVhU5Ojpi1KhR8PT0FNZWx8XFYe/evdizZw+ys7Px9ttvQyKRVHppYNE2sZqs9TUzMwNQuEtMRamuDS/Ln3/+KdqGmOqXU6dO6XsIpGfVcQ68yAaWXpZBoax5CUuJiOgfeQUKJKS8hKmOrySKvlRJT08Xdmf74osv8Pbbb6Nr164YNWoUGjdujIcPHyI8PBweHh5Yvnw5gMKAzvLly5Geno5mzZrh+PHjwoyhnJycCu32FhkZiejoaACFCadfvnwpzATz9PQUcuO89tprkMvl6NGjB2xsbHDr1i1s27YNJiYm+Pjjj0V9KhQK5OfnC2VWVlZ4//33AUAoK3r+GRkZosdaWlqiRYsWiI6ORqtWrWBubi467u7ujl9//RUSiQRdunSp8M52+fn5KCgoEF1fpKenq425uNzcXKE8ICAAH374IUaOHInp06cjMzMTmzdvRps2bXDp0iW11yEvL08oa9OmDWQyGZYsWYJnz57ByMgIfn5+sLGxQX5+vuj1KY+xsTHeffddrFy5EoMHD0b//v1x5coVHD16FNbW1qJ+MzMzhX+LyopeB9X+NH0dylO0y/2aNWtw48YN9OvXDwqFAtHR0fDx8RFdS7q4uGDQoEGYPn06jIyMsGnTJgDAf/7zH63316VLFxw7dgxLly6Fra0tWrduje7du2vUh6YyMjIAFJ7jJY1foVDAyckJ06ZNQ2RkJJo0aYLt27fj2bNnWLNmjegxffv2BQBcvny5zD7XrVuHdevWwd3dHRKJBN99953o+NChQ4Vr64iICAwbNgxz587Fhx9+WGa7eXl5AMo+L4ufF/3790eTJk3g4eGBJk2a4Pbt2/juu+8wYMAAKJVKoV7Hjh3h7e2NAwcOlNk/AGzYsAFpaWnCxJT9+/cLGxn861//EnLAlSQ/Px9ZWVnIysrCzZs3RccSExPL7VtfGNiqgpEjR+KNN95Qm57p7u6OcePG4cCBAxg1ahTy8vLw/vvvY/jw4ZVKalf0S6woWlsWY+PCLZM5m4qIahOFEtgZK0NOAYNaRES1QU2ZWfvaa6+hWbNm+Oqrr7BmzRrk5uaiWbNm8PT0xOuvvy7U++677zB37lxs3LgRSqUSffr0wU8//QQXF5cK93n69GksXbpUVPb5558DKEwEXRTYGjJkCH766Sd88803ePnyJRo3boyhQ4di7ty5oqVw2tCzZ0/s3bu3xMTwHh4e+PXXX+Hs7KzVROGaatSoEcLCwvDxxx9jwYIFaN26NebPn4+4uDhcunSpzMc2bdoUK1aswMqVKzFz5kwUFBTgt99+03i5napPPvkEcrkcW7ZsEXKO7d27F+PGjatUe9r29ddfo2PHjti+fTvmz58PCwsLuLq6inZcBABvb2+4u7tj2bJlePjwIdq1a4dvvvmmwvmhNOnv888/x6xZs/D5558jKysL48eP13pgSxOOjo5YunQp5s+fjzt37qB169bYvHmzEMiqqCtXrgAAzp07V+KOhJcuXVKbNNK0adNKjr50QUFBwudERkYGmjdvjrfeegv/+c9/Kt3m2rVrRSu4fvvtN/z2228ACvMNlhXYqq0kyvqW0a4U9+7dg4ODAwDgjTfewNatW7XS7sKFCzFv3jzh9scff1zhNszMzJCZmQkPDw+cOXOmzLoeHh44e/YszM3NhZlemtJkKWLRL8srV65oNL2T6o7s7Gxhlo6fnx/Xe9dD1XkObI1+gKXhd0RlbWzMYGNetfwrpD0KhQIpKYU5SCwtrSCVSvU8ItI1ngO1w+i2BmhqboSGZnKYNyk/jYWmsvMKRLkPm1nIYc3P6HpFoVAIF/jm5ub8DNATmUyGGTNmYM2aNTrtV5/vv6OjIzp27CgEZ3Rt7ty5+OGHH3D79m1hIkldFRsbi7y8PMhkMrVlj7GxsejcuTOAwuWvmqRK0hXO2Kpmb731FubPnw+lUomTJ09WKrDVoEEDZGZmarS8sGgaZ2W2KK3IiWlsbKy1rVup9pHL5Xz/6zltngMxz15i5R9xorIWlibY/443GsiZnLqmyMrKQnh4OABgwAA3fgbUQzwHaoeYmBjk5+fDwECGNjZV27K+uLsJ6XiZky/cV0rAwEY9JpVK+f7rkUQi0evrr4/3X5/P+cSJE5g3b169+b1X9FqrPt+aHNRjYKuaNWnSBNbW1khMTMSjR48q1UbLli3x7NmzcmdUARCmHFYkXxYRkb7k5ivw/o8XkZv/T0JLiQT4cuwrDGoREdUgqqk36tqaj4KCAiQkJJRZx9zcvFJfHtdUSUlJyM3NLfW4TCar9JI/XUtISEBBQUGpx42MjPSyDBPQ/blVH8/l6lbSUkWqWRjY0oGqblPboUMH/PXXX0hNTcXTp09LzdP15MkTIblcZfIFEBHp2to/YnD1kTi55lRvB/R0tC7lEUREpA+qGyDWtWwm8fHxQlqS0ixYsAAhISG6GZAOjBo1CidPniz1eOvWrXHv3j3dDagK3N3dhc0AStKrVy/RLva6pOtzqz6ey0QMbFWzhIQEYfeA5s2bV6oNHx8fhIWFAQBOnjxZanLD4r+YipJWEhHVVBceJOPrE+LdVds2Mcd/BrbT04iIiKg0qt/T1pTk8dpia2uLI0eOlFlH2wnf9e3LL79EcnJyqcdr07KrHTt2lLl5lpWVlQ5HI6btc6u8oHJdPJdrS4CV9IeBrWq2YcMG4cOnV69elWpj+PDh+L//+z8oFAps2bKl1MBWUcJ7qVSK4cOHV6ovIiJdyMotwAc/XhIlIjaQSrBynCvkhjI9joyIiEoigepSxLoV2ZLL5ejXr5++h6FTbm5u+h6C1tTkL/V1fW7Vx3OZiBn/KunevXu4cOFCmXUOHDiATz/9FEDhNx5TpkwpsV7v3r0hkUggkUhKjEbb2toK2xUfPnwYe/bsUavz008/4fDhwwCASZMmlbpckYioJlhy6AbiEjNEZe/1bYtOLere9sNERHWB6lLEujZji4iIaq96O2MrIiICd+78s7V80XJBALhz544w+6lIUFCQ6P69e/fg7+8PT09PDBs2DK+88gqaNGkCAIiLi8OePXuwZ88e4dusL774Ai1atKj0eD///HP8/vvvSEhIwPjx43H+/HkMHToUQGEA7csvvwQA2NjYYOHChZXuh4ioup2OScC2aHEejFfsLPF/vdvoaURERFSeup48noiIaq96G9jauHEjtm3bVuKxyMhIREZGispUA1tFoqOjER0dXWo/pqamWLlyJd56661KjxUo3OXwt99+w6uvvoqnT59i6dKlWLp0qaiOra0t9u/fj5YtW1apLyKi6pKamYfZP10WlckNpVgx9hUYyDiJmIioplLNsaUEI1tERFQz1NvAVlW5ublh+/btiI6Oxvnz5/HkyRMkJiYiPz8fVlZW6NixI/r27Ytp06YJM7mqysPDA1euXMGqVauwf/9+Ydmig4MDRowYgVmzZsHamjuJEVHNFfLbNTxNyxaV/XewC9rYcMtpIqKajEsRiYiopqq3ga2tW7eqLTesiAYNGuD1118Xcl9VRUW2nm3cuDE+++wzfPbZZ1Xul4hIl/535Qn2XXgkKvNt2xiTerbW04iIiEhT6ksRGdkiIqKages+iIio2j1Py8bH+66IyhrIDbBsTBdIVacBEBFRjaP6Sc0ZW0REVFMwsEVERNVKqVTiw5+vIDkzT1T+2YhOaNbQRE+jIiKiipByxhYREdVQDGwREVG1+uFcPP64+VxUFtDZFiNcm+tpREREVFGqyeP1MWNr69atkEgkQp5Zqnvs7e1L3bRLVe/evdG7d+9q6ffEiROQSCQVShlDRPrDwBYREVWbBy8y8dmB66IymwbGWPhqZ7V8LUREVHOpzdiqx7si7t69GxMnTkTbtm0hkUhKDa4UBUdK+jlz5oyorr29PSQSCfr161diW999953w2PPnzwMAli1bBolEggsXLojqKpVKWFlZQSKR4O7du6Jj2dnZMDY2xoQJEyr57HXr+vXrCAkJYTBTjxYtWoT9+/drtc2goKBS/28U/9E0yFkZN2/exJw5c+Dq6ooGDRqgWbNmGDJkiPD/q7KCgoJgbl76pkgSiQTvvvtulfooS0U+d+qSeps8noiIqleBQokPfrqIzNwCUfnS0Z3RyMxIT6MiIqLKUP0uQh8rESdNmoTAwEAYGxvrvvNi1q1bh7/++gvu7u548eJFufWDg4Ph7u4uKnNyclKrJ5fLcfz4cTx9+hS2traiYzt27IBcLkd29j87C/v4+AAAIiIi0LVrV6H82rVrSElJgYGBASIjI+Hg4CAcO3fuHHJzc4XH1nTXr19HaGgoevfuDXt7e9Gx8PDwauvXz88PWVlZMDLi3yuLFi3CmDFjMHz4cK21OX36dFEQ9+7du5g/fz7eeust+Pr6CuVt2rTRWp+qNm7ciE2bNmH06NGYMWMGUlNT8e2336Jnz574/fffSw0y1xaafu7UFQxsERFRtdh/4RHO3UsWlY3vYYc+7ZvqaURERFRZ6snjdR/ZkslkkMlkOu9XVVhYGFq0aAGpVIpOnTqVW9/X1xdjxowpt563tzfOnTuH3bt347333hPKHz58iNOnT2PkyJHYu3evUN69e3fI5XJERERg5syZQnlkZCSsra3RvXt3REREYOLEicKxiIgIAKg1ga2yVGfQSSqVQi6XV1v79Z2npyc8PT2F++fPn8f8+fPh6ekpOl+r0/jx4xESEiKaXfXmm2/CxcUFISEhtT6wpennTl3BpYhERFQtfr/2VHS/VSNTfDKkg55GQ0REVaG6fFwfM7ZKy7F16NAh+Pr6wszMDA0aNMCQIUNw7do1UZ3Lly8jKCgIjo6OkMvlsLW1xZtvvqnRjCtVdnZ2kEordhn18uVL5Ofnl1lHLpdj1KhR2Llzp6h8165dsLKywsCBA0XlRkZGcHd3R2RkpKg8MjISnp6e8Pb2LvGYpaWlRgG5Ir1790anTp1w+fJlDBkyBM2bN4ezszP27NkDADh58iQ8PDxgYmKCdu3a4ejRo6LHBwUFqc22AoCQkJAy0xJs3boVr732GgDA399fWE5VlPeqMjm2lEolFi5ciJYtW8LU1BT+/v5q5wpQco6t4q9Dr169YGpqCicnJ41fB00oFAqsWrUKnTt3hlwuh42NDQYNGiRaHle0lG3Hjh1o164d5HI53NzccOrUKa33J5FIkJGRgW3btkEmk8HKygozZsyocD9VZW9vj6FDhyI8PByurq6Qy+Xo0KEDfv75Z7W6sbGxiI2NLbdNNzc3tSWD1tbW8PX1xY0bN0TlmZmZuHnzJhITE6v2REqxZs0adOzYEaamprCyskL37t3VPgdu3ryJBw8eVKhdTT536goGtoiISOsUCiXO3UsSlQX3bQszY04UJiLSOYUCyEis0o80KxGyrBfCjyQzEcr0hKq1q1BU+amFhYVhyJAhMDc3x9KlSzFv3jxcv34dPj4+ogDYkSNHEBcXhylTpmDNmjUIDAzEDz/8gICAgGrf4XHKlCmwsLCAXC6Hv79/mTl8JkyYgLNnz4ouzHfu3IkxY8bA0NBQrb6Pjw8ePXokeq6RkZHw8vKCl5eXsCwRKAzqREVFwdPTs8KBueTkZAwfPhxubm4ICQmBsbExAgMDsXv3bgQGBiIgIABLlixBRkYGxowZg5cvX1ao/ZL4+fkhODgYAPDRRx8hLCwMYWFhcHFxqXSb8+fPx7x58/DKK69g+fLlcHR0xIABA5CRkaHR45OTkzF06FB4eHhg2bJlWn8dpk6dilmzZsHOzg5Lly7Fhx9+CLlcrpYb6eTJk5g1axYmTpyITz/9FC9evMCgQYNw9epVrfYXFhYGY2Nj+Pr6Ytu2bVi/fn215r0qS0xMDMaNG4fBgwdj8eLFMDAwwGuvvYYjR46I6vXt2xd9+/atdD9Pnz5F48aNRWVnz56Fi4sL1q5dq3E7iYmJJf6o+u677xAcHIwOHTrgq6++QmhoKFxdXfHnn3+K6rm4uGDy5Mka91+Rz526gFcYRESkdbefv0RKZp6ozLONtZ5GQ0RUz2UlAcurlqvGFEBH7YzmH7NjAbPG5dcrRXp6OoKDgzFt2jRs2LBBKH/jjTfQrl07LFq0SCifMWMGPvjgA9Hje/bsifHjxyMiIkKU10dbjIyMMHr0aAQEBKBx48a4fv06vvjiC/j6+iIqKkqUF6tInz59YGtri127duGTTz7BjRs3cPHiRaxatQpxcXFq9Yvn2bK3t8fTp08RFxcHb29vdOvWDVKpFFFRUQgICMD169eRnJxcqWWIjx8/xvbt2zFkyBAAwLBhw9ChQwdMmDABUVFR8PDwAFB48T1w4EDs3bu3ygEQR0dH+Pr6YvXq1ejfv3+Vd0BMSEjAsmXLMGTIEPz222/CbLGPP/4YixYt0qiNx48fY+fOnRg/fjwAoH///mjfvr1WXofjx49j69atCA4OxqpVq4TyDz74QC34evXqVZw/fx5ubm4AgMDAQLRr1w7z588vcRZTZfubOHEi3n77bTg6OmLixIlIS0vTqO3qcPv2bezduxejRo0CUBiUa9++PebOnYv+/ftrpY/Tp08jOjoan3zySZXaycjIgI2NjUZ1Dx48iI4dO+Knn36qUp9FKvO5UxcwsEVERFr3Z5x4tlZLKxO0sDTR02iIiKguOnLkCFJSUjB+/HjRTAiZTAYPDw8cP35cKDMx+ed3UHZ2NtLT09GzZ08AwN9//10tga2iWVNFhg8fjjFjxqBLly7473//i99//13tMTKZDGPHjhUCWzt27ICdnR18fX1LDGx5eXlBKpUKubQiIyNhaGgId3d3mJiYoEuXLoiMjERAQICwLLEygS1zc3MEBgYKM5DatWsHS0tLtGjRQgjmABBulzRWfTt69Chyc3Mxc+ZM0RLIWbNmaRzYKnodimjzddi7dy8kEgkWLFigdkx1yaanp6cQ1AKAVq1aYcSIEfjtt99QUFCgUS66ivRXEzRv3hwjR44U7ltYWGDy5MlYunSpaMOFyu6g+fz5c0yYMAEODg6YM2eO6Fjv3r0rNLNTLpfjt99+K/GYahDO0tISDx8+xLlz59SSvRenaf+V+dypCxjYIiIirTt7VxzY6uHQSE8jISKiuiomJgZA4SynklhYWAi3k5KSEBoaih9++AHPnz8X1UtNTa2+QapwcnLCiBEj8PPPP5cagJgwYQJWr16NS5cuYefOnQgMDCw10GBpaYmOHTsKQavIyEh07dpVCOR5eXmJjhkZGaFHjx4VHnfLli3VxtCwYUPY2dmplQGFS/Zqmvv37wMA2rZtKyq3sbGBlZWVRm1U5+sQGxuL5s2bo1Gj8v9mUn0OAODs7IzMzEwkJCSo7apZ1f409fSpOL9qw4YNRUHlqnByclJ77Z2dnQEUBrM0ec6lycjIwNChQ/Hy5UtERESo5d6qKJlMpnHy+blz5+Lo0aPo0aMHnJycMGDAAEyYMAHe3t5VGkNxmnzu1HYMbBERkVYplUr8eVecjLenA5chEhGRdin+f46usLCwEi9qDQz+udQZO3YsoqKiMHv2bLi6usLc3BwKhQKDBg0S2tEVOzs75ObmIiMjQxR8K+Lh4YE2bdpg1qxZuHv3LiZMmFBmez4+Pli/fj1SUlKE/FpFvLy8sHnzZuTl5SEiIgJubm6V2u2vtAvh0sqLzy4pLShXUFBQ4XHoW1Veh/qgWbNmovtbtmzRW04uTeXm5mLUqFG4fPkyDh8+XKGNFbTBxcUFt27dwoEDB/D7779j7969+OabbzB//nyEhoZqrZ/yPndqOwa2iIhIq2ITMpCYnisq83DkjC0iIr0xaVSYz6oK8gsKcOtZuqjMycYcxoZV+ObfpGq/G9q0Kcwb1qRJkzJnRyQnJ+PYsWMIDQ3F/PnzhfKiGV+6FhcXB7lcXuaskPHjx2PhwoVwcXGBq6trme35+Phg3bp1OHr0KC5cuIDZs2cLx7y8vJCVlYWDBw8iLi4Oo0eP1tbT0JiVlZWQwL64ohlUZdHmkrjWrVsDKHzfHR0dhfKEhIQaMcOsTZs2OHz4MJKSksqdRVXSuXv79m2YmppqnNtJ0/4q8h6oJnLv2FF7mfnu3LkDpVIpGs/t27cBoMRdNzWhUCgwefJkHDt2DD/++CN69eqljaFWmJmZGcaNG4dx48YJgbbPP/8c//3vfysViC6JJp87tRl3RSQiIq1SXYbY1MIYrRqZ6mk0REQEqbQwSXsVfiRmjVFgYi36UVSxTVRwZz5VAwcOhIWFBRYtWoS8vDy14wkJCQD+mU2jOnvmq6++qlL/5Snqv7hLly7h119/xYABA8rcmXDatGlYsGABvvzyy3L7KcqZtWLFCuTl5YlmbNnb26NZs2ZYtmyZqK4utWnTBqmpqbh8+bJQ9uTJE+zbt6/cx5qZmQFAiYGxiurXrx8MDQ2xZs0a0blQ3eeBpkaPHg2lUlniLB3Vczc6Ohp///23cD8+Ph6//PILBgwYoPEyM037MzMz0/j179evn+hHdQZXVTx+/Fh0zqSlpeH777+Hq6uraMZmbGysaFfRssycORO7d+/GN998IySl17UXL8SrHIyMjNChQwcolUrR59rNmzfx4MGDcturyudObcYZW0REpFWqyxA9HKxrZBJSIiLSnEQigQRA8ctrfS+zsrCwwLp16zBp0iR069YNgYGBsLGxwYMHD3Dw4EF4e3tj7dq1sLCwgJ+fH5YtW4a8vDy0aNEC4eHhuHv3bqX6PXXqFE6dOgWg8CIyIyMDCxcuBAD4+fnBz88PADBu3DiYmJjAy8sLTZo0wfXr17FhwwaYmppiyZIlZfbRunVrhISEaDSeVq1awc7ODtHR0bC3t0fz5s1Fx728vIRE4drM26OpwMBAzJ07FyNHjkRwcDAyMzOxbt06ODs7i4IzJXF1dYVMJsPSpUuRmpoKY2Nj9OnTB02aNKnwOGxsbPCf//wHixcvxtChQxEQEIALFy7g0KFDaNy48rtzaou/vz8mTZqE1atXIyYmRlgme/r0afj7++Pdd98V6nbq1AkDBw5EcHAwjI2N8c033wBAhZauadqfm5sbjh49ipUrV8LS0hKtW7cuNa9ddXJ2dsbUqVNx7tw5NG3aFJs3b8azZ8+wZcsWUb2+ffsCKD+J/FdffYVvvvkGnp6eMDU1xfbt20XHR44cKQRWT5w4AX9/fyxYsEDj/5eaGjBgAGxtbeHt7Y2mTZvixo0bWLt2LYYMGYIGDRoI9VxcXNCrVy+cOHGizPaq8rlTmzGwRUREWqNUKtV2RGTieCKiukEiAYrHsmpC+qAJEyagefPmWLJkCZYvX46cnBy0aNECvr6+mDJlilBv586dmDlzJr7++msolUoMGDAAhw4dUgsCaeKPP/5QCyDMmzcPALBgwQIhsPXqq69ix44dWLFiBdLS0mBjY4NRo0ZhwYIFcHJyqsKzVufj44Ndu3aJZmsV8fb2xt69e9G+fXtYW+s+56W1tTX27duHf//735gzZw4cHBywePFixMTElBvYsrW1xfr167F48WJMnToVBQUFOH78eKUCWwCwcOFCyOVyrF+/HsePH4eHhwfCw8MxZMiQSrWnbVu2bEGXLl2wadMmzJ49Gw0bNkT37t3V3tdevXrB09MToaGhePDgATp06ICtW7eiS5cuWu9vxYoVeOuttzBv3jxkZWVh/PjxeglstW3bFmvWrMHs2bNx69YtODg4YPfu3Rg4cGCl2rt48SKAwtlv0dHRasfv3r0rBLbS0wuXYWtzBlqR6dOnC58T6enpaNmyJYKDg/HJJ59Uqj1dfu7UJBKlvr9qoVrj4cOHwo4ft2/fLnE3Dqq7srKyEB4eDqDwmwVt7XBCtYcm58CDF5nwW35cVHb0335watJArS7VLvwMIJ4DtUNMTAzy8/NhYGCg1b/VFAoFbjxJQ0GxKweHxmZoIDfUWh9UsykUCqSlpQEonC1XV5c01XQSiQTvvPMO1q5dq9N+9fn+29vbo1OnTjhw4IDO+ixuzpw52LVrF+7cuQNjY2O9jEFXyvodEhMTI+xEGR8fj5YtW+pjiCXipxEREWnNGZVliNZmRmhjUzeTVBIR1Teqi8r59TgR1QfHjx/HvHnz6nxQqzbjUkQiItIa1cTxPRwaMb8WEVEdIVFJsqWoQ5GtgoKCEpMuF2dubl6ndhRLSkpCbm5uqcdlMpnGO+zpW0JCAgoKCko9bmRkVO5Og9VF1+dWfTyXq9u5c+f0PQQqBwNbRESkNeqJ45lfi4iorqjLM7bi4+Ph4OBQZp3qSBytT6NGjcLJkydLPd66detyE3DXFO7u7rh//36pxzVJul1ddH1u1cdzmYiBLSIi0orHKVmIT8oSlXk46j5JLRERVQ/VwJYCdSeyZWtriyNHjpRZx9HRUUej0Y0vv/wSycnJpR6vTXn0duzYgaysrFKPW1lZ6XA0Yto+t8pLkV0Xz+XaEmAl/WFgi4iItEJ1GWJDE0O0a8qk8UREdYXqyvK6NGNLLpejX79++h6GTrm5uel7CFrj7e2t7yGUStfnVn08l4mYPJ6IiLRCdRmiu30jSKXMr0VEVFdxc3UiIqoJGNgiIiKt+FNlxhbzaxER1S1qSxEZ1yIiohqAgS0iIqqy5y+zEZeQISrzcGRgi4ioLqnLSxGJiKj2YmCLiIiqTDW/lrmxATo0s9DTaIiIqDqo74rIyBYREekfA1tERFRlqoEtt9ZWMJDxVwwRUV2iOmNLoZ9hEBERifCqg4iIquzPOJX8WlyGSERU56jN2GKSLSIiqgEY2CIioipJysjFrWcvRWUeDtZ6Gg0REVUXteTxOu5/69atkEgkuHfvno57Jl2xt7dHUFCQRnV79+6N3r17V0u/J06cgEQiwYkTJ7TSPhFVLwa2iIioSs7dE8/WkhtK0blFQz2NhoiIqot68vj6OWNr9+7dmDhxItq2bQuJRFJqcKUoOFLSz5kzZ0R17e3tIZFI0K9fvxLb+u6774THnj9/HgCwbNkySCQSXLhwQVRXqVTCysoKEokEd+/eFR3Lzs6GsbExJkyYUMlnr1vXr19HSEgIg5l6tGjRIuzfv1+rbQYFBZX6f6P4j6ZBTm3YsWMHJBIJzM3Nq9RO79690alTpxKP3bt3DxKJBF988UWV+ijLkydP8OGHH8Lf3x8NGjSoNwFaA30PgIiIajfVZYhura1gZMDvTYiI6hr15PG67X/SpEkIDAyEsbGxbjtWsW7dOvz1119wd3fHixcvyq0fHBwMd3d3UZmTk5NaPblcjuPHj+Pp06ewtbUVHduxYwfkcjmys7OFMh8fHwBAREQEunbtKpRfu3YNKSkpMDAwQGRkJBwcHIRj586dQ25urvDYmu769esIDQ1F7969YW9vLzoWHh5ebf36+fkhKysLRkZG1dZHbbFo0SKMGTMGw4cP11qb06dPFwVx7969i/nz5+Ott96Cr6+vUN6mTRut9VmW9PR0zJkzB2ZmZjrprzrdunULS5cuRdu2bdG5c2dER0fre0g6wcAWERFVydl74j/qe9hzGSIRUV2kthRRx5EtmUwGmUym0z5LEhYWhhYtWkAqlZY6M6M4X19fjBkzptx63t7eOHfuHHbv3o333ntPKH/48CFOnz6NkSNHYu/evUJ59+7dIZfLERERgZkzZwrlkZGRsLa2Rvfu3REREYGJEycKxyIiIgCg1gS2ylKdQSepVAq5XF5t7dd3np6e8PT0FO6fP38e8+fPh6enp+h81ZWFCxeiQYMG8Pf31/rsNF1zc3PDixcv0KhRI+zZswevvfaavoekE/xKnYiIKi0tOw/XH6eJypg4noioblJfiqjb/kvLsXXo0CH4+vrCzMwMDRo0wJAhQ3Dt2jVRncuXLyMoKAiOjo6Qy+WwtbXFm2++qdGMK1V2dnaQSit2GfXy5Uvk5+eXWUcul2PUqFHYuXOnqHzXrl2wsrLCwIEDReVGRkZwd3dHZGSkqDwyMhKenp7w9vYu8ZilpaVGAbkiRUurLl++jCFDhqB58+ZwdnbGnj17AAAnT56Eh4cHTExM0K5dOxw9elT0+KCgILXZVgAQEhICiepJVczWrVuFi3J/f39heVrRsqrK5NhSKpVYuHAhWrZsCVNTU/j7+6udK0DJObaKvw69evWCqakpnJycNH4dNKFQKLBq1Sp07twZcrkcNjY2GDRokLD8FAAkEgneffdd7NixA+3atYNcLoebmxtOnTql9f4kEgkyMjKwbds2yGQyWFlZYcaMGRXup6rs7e0xdOhQhIeHw9XVFXK5HB06dMDPP/+sVjc2NhaxsbEatx0TE4OVK1dixYoVMDAoed5Pamoqbt68idTU1Eo/h9Lk5eUhNDQUbdu2hVwuh7W1NXx8fHDkyBFRnZs3b+LJkyflttegQQM0alT//hZnYIuIiCrt/L0kFN8Uy0gmhaudpd7GQ0RE6hRKBZKyk6r8k5qTjLTcf36Sc6rWnkJZ9fTzYWFhGDJkCMzNzbF06VLMmzcP169fh4+PjygAduTIEcTFxWHKlClYs2YNAgMD8cMPPyAgIKDac4VNmTIFFhYWkMvl8Pf3FwUpVE2YMAFnz54VXZjv3LkTY8aMgaGhoVp9Hx8fPHr0SPRcIyMj4eXlBS8vL2FZIlAY1ImKioKnp2eFA3PJyckYPnw43NzcEBISAmNjYwQGBmL37t0IDAxEQEAAlixZgoyMDIwZMwYvX74sv9Fy+Pn5ITg4GADw0UcfISwsDGFhYXBxcal0m/Pnz8e8efPwyiuvYPny5XB0dMSAAQOQkZGh0eOTk5MxdOhQeHh4YNmyZVp/HaZOnYpZs2bBzs4OS5cuxYcffgi5XK6Wk+3kyZOYNWsWJk6ciE8//RQvXrzAoEGDcPXqVa32FxYWBmNjY/j6+mLbtm1Yv369TvNeFRcTE4Nx48Zh8ODBWLx4MQwMDPDaa6+JAkAA0LdvX/Tt21fjdmfNmgV/f38EBASUWmffvn1wcXHBvn37NGqzoKAAiYmJaj/JyclqdUNCQhAaGgp/f3+sXbsWH3/8MVq1aoW///5bqPPo0SO4uLjgv//9r8bPq77hUkQiIqq0P++K82u52llCbqj/ZSJERPSPlJwU9NrdS9/DUHNy3Ek0kld+ZkF6ejqCg4Mxbdo0bNiwQSh/44030K5dOyxatEgonzFjBj744APR43v27Inx48cjIiJClNdHW4yMjDB69GgEBASgcePGuH79Or744gv4+voiKipKlBerSJ8+fWBra4tdu3bhk08+wY0bN3Dx4kWsWrUKcXFxavWL59myt7fH06dPERcXB29vb3Tr1g1SqRRRUVEICAjA9evXkZycXKlliI8fP8b27dsxZMgQAMCwYcPQoUMHTJgwAVFRUfDw8AAAuLi4YODAgdi7d2+VAyCOjo7w9fXF6tWr0b9//yrvgJiQkIBly5ZhyJAh+O2334TZYh9//DEWLVqkURuPHz/Gzp07MX78eABA//790b59e628DsePH8fWrVsRHByMVatWCeUffPCBWvD16tWrOH/+PNzc3AAAgYGBaNeuHebPn1/iLKbK9jdx4kS8/fbbcHR0xMSJE5GWllZac9Xu9u3b2Lt3L0aNGgWgMCjXvn17zJ07F/37969UmwcPHkR4eDguXbqkzaHi5s2bsLGx0XgMAQEBos8wqjjO2CIiokpTTRzPZYhERKQrR44cQUpKCsaPHy+aFSGTyeDh4YHjx48LdU1MTITb2dnZSExMRM+ePQFANDNCm7y8vLBnzx68+eabGD58OD788EOcOXMGEomk1JkXMpkMY8eOxa5duwAUJo23s7MrNfDm5eUFqVQq5M6KjIyEoaEh3N3dYW5uji5dugjLEYv+rUxgy9zcHIGBgcL9du3awdLSEi4uLkIwB4Bwu6QgnL4dPXoUubm5mDlzpmgJ5KxZszRuozpfh71790IikWDBggVqx1SXbHp6egpBLQBo1aoVRowYgcOHD6OgoEDr/dUEzZs3x8iRI4X7FhYWmDx5Mi5cuICnT58K5ffu3dNoF83c3Fy8//77ePvtt9GhQ4cy6wYFBUGpVGocpLS3t8eRI0fUfrZv365W19LSEteuXUNMTEyZ7SmVSmzdulWj/usjztgiIqJKycjJx9VH4lwDHg5MHE9ERLpRdCHYp0+fEo9bWFgIt5OSkhAaGooffvgBz58/F9Wrjrw5pXFycsKIESPw888/o6CgoMRk+BMmTMDq1atx6dIl7Ny5E4GBgaUGGiwtLdGxY0dR8Kpr165CIM/Ly0t0zMjICD169KjwuFu2bKk2hoYNG8LOzk6tDECJS6707f79+wCAtm3bisptbGxgZWWlURvV+TrExsaiefPmGuVHUn0OAODs7IzMzEwkJCSo7apZ1f40VTzABBS+DsWDylXh5OSk9to7OzsDKAxmafKci1u5ciUSExMRGhqqlfEVZ2ZmJtr1sUhJAbdPP/0UI0aMgLOzMzp16oRBgwZh0qRJ6NKli9bHVZcxsEVERJXy94Nk5BdLsGUglaBba0v9DYiIiOoVhaIwR1dYWFiJF7XFE0GPHTsWUVFRmD17NlxdXWFubg6FQoFBgwYJ7eiKnZ0dcnNzkZGRIQq+FfHw8ECbNm0wa9Ys3L17FxMmTCizPR8fH6xfvx4pKSlCfq0iXl5e2Lx5M/Ly8hAREQE3N7dK7fZX2m6UpZUXXzpXWlBO05lFNUlVXof6oFmzZqL7W7Zs0VtOrrKkpqZi4cKFmDFjBtLS0oQllunp6VAqlbh37x5MTU3RpEmTah+Ln58fYmNj8csvvyA8PBwbN27EypUrsX79ekybNq3a+68rGNgiIqJKUV2G2LllQ5ga8dcKEVFNY2lsiZPjTlapDYVCgRcpL5GQ/U+ZVCJB+2bqgZmKjKsq2rRpAwBo0qRJibMjiiQnJ+PYsWMIDQ3F/PnzhfKylv5Up7i4OMjlcpibm5daZ/z48Vi4cCFcXFzg6upaZns+Pj5Yt24djh49igsXLmD27NnCMS8vL2RlZeHgwYOIi4vD6NGjtfU0NGZlZSUksC+uaAZVWbS5JK5169YACt93R0dHoTwhIaFGzDBr06YNDh8+jKSkpHJnUZV07t6+fRumpqYa53bStL+KvAeqidw7duyo8WPLc+fOHSiVStF4bt++DQAl7rpZluTkZKSnp2PZsmVYtmyZ2nEHBweMGDEC+/fvr8qQNdaoUSNMmTIFU6ZMQXp6Ovz8/BASEsLAVgXwCoSIiCrlrEri+B4OzK9FRFQTSSXSKiVpBwoDWwpjA+QUm9wkgQSN5A2rOLrKGzhwICwsLLBo0SL4+/ur7RqYkJAAGxsbYTaN6uyZr776qlrHV9R/cZcuXcKvv/6KwYMHl7kz4bRp04RcYeUpypm1YsUK5OXliWZs2dvbo1mzZsLFe2Xya1VVmzZtkJqaisuXLwvLq548eaLRDnNmZmYAUGJgrKL69esHQ0NDrFmzBgMGDBACJNV9Hmhq9OjR+PrrrxEaGipK5g5ALaATHR2Nv//+G926dQMAxMfH45dffsGgQYNKnT1W2f7MzMw0fv3LCjBX1ePHj7Fv3z4heXxaWhq+//57uLq6imZsFu0oWhT4LkmTJk1KPP9Wr16N6Oho7Nq1S232WXV58eIFrK3/SeVhbm4OJycnxMfHC2V5eXmIjY1Fw4YNdTau2oaBLSIiqrDsvAJcjE8RlfVkfi0iojpNdeKGEkq1C25dsrCwwLp16zBp0iR069YNgYGBsLGxwYMHD3Dw4EF4e3tj7dq1sLCwgJ+fH5YtW4a8vDy0aNEC4eHhuHv3bqX6PXXqFE6dOgWgMHiVkZGBhQsXAihcVuTn5wcAGDduHExMTODl5YUmTZrg+vXr2LBhA0xNTbFkyZIy+2jdujVCQkI0Gk+rVq1gZ2eH6Oho2Nvbo3nz5qLjXl5eQqJwb2/vCj7bqgsMDMTcuXMxcuRIBAcHIzMzE+vWrYOzs3O5iftdXV0hk8mwdOlSpKamwtjYGH369KnUEjEbGxv85z//weLFizF06FAEBATgwoULOHToEBo3blzZp6c1/v7+mDRpElavXo2YmBhhmezp06fh7++Pd999V6jbqVMnDBw4EMHBwTA2NsY333wDABXKF6Vpf25ubjh69ChWrlwJS0tLtG7dutS8dtXJ2dkZU6dOxblz59C0aVNs3rwZz549w5YtW0T1+vbtC6DkfFZFTE1N8eqrr6qV79+/H2fPnlU7tnXrVkyZMqVallZ26NABvXv3hpubGxo1aoTz589jz549ovf70aNHcHFxwRtvvKFRAvmiz6Nr164BKFyuXbTBxCeffKLV8dcUDGwREVGFXX6UhtyCf762l0oAN3vNEq8SEVHtVFL4SqEEZHrcQG3ChAlo3rw5lixZguXLlyMnJwctWrSAr68vpkyZItTbuXMnZs6cia+//hpKpRIDBgzAoUOH1IJAmvjjjz/UAgjz5s0DACxYsEAIbL366qvYsWMHVqxYgbS0NNjY2GDUqFFYsGABnJycqvCs1fn4+GDXrl2i2VpFvL29sXfvXrRv3140M0RXrK2tsW/fPvz73//GnDlz4ODggMWLFyMmJqbcwJatrS3Wr1+PxYsXY+rUqSgoKMDx48crnfto4cKFkMvlWL9+PY4fPw4PDw+Eh4djyJAhlWpP27Zs2YIuXbpg06ZNmD17Nho2bIju3burva+9evWCp6cnQkND8eDBA3To0AFbt26tcMJxTfpbsWIF3nrrLcybNw9ZWVkYP368XgJbbdu2xZo1azB79mzcunULDg4O2L17NwYOHFjtfaenpwNQzyGmDcHBwfj1118RHh6OnJwctG7dGgsXLhQtKa6oos+jIps3bxZu19XAlkRZ3zLaUaU9fPhQ2PHj9u3bJe7GQXVXVlYWwsPDAQADBgzQ2g4nVHsUPwdijNti7Yl/vunu1MICB2aWvBU51Q38DCCeA7VDTEwM8vPzYWBgoNW/1RQKBZJT0vAoU1zeoZkFDGSlL6mjukOhUAhJti0sLMpcSknVRyKR4J133sHatWt12q8+3397e3t06tQJBw4c0FmfxY0dOxb37t3D2bNn9dK/LpX1OyQmJkbYiTI+Ph4tW7bUxxBLxBlbRERUYefvp4jue3AZIhFR3VfCzCx+RU5EdZlSqcSJEyewfft2fQ+FysDAFhERVUi+ArgYnyoqY+J4IqK6r8SliKgbka2CggIkJCSUWcfc3LzMnQxrm6SkJOTm5pZ6XCaTabzDnr4lJCSgoKCg1ONGRkbl7jRYXXR9btXHc7k6SSQSPH/+XN/DoHIwsEVERBUSnwFk5ytEZT3sGdgiIqrrSgps1ZUZW/Hx8XBwcCizzoIFCzRO6F4bjBo1CidPniz1eOvWrctMwF2TuLu74/79+6Ue79WrF06cOKG7ARWj63OrPp7LRAxsERFRhdxJE1/atLdtACszIz2NhoiIdEUiKQxuFY9lKepIZMvW1hZHjhwps46jo6OORqMbX375JZKTk0s9Xpvy6O3YsQNZWVmlHrey0t8GN9o+t8pLkV0Xz+XaEmAl/am3ga3nz5/j7NmzOHv2LM6dO4dz587hxYsXAKDxNpqZmZn4/fffceTIEZw/fx537txBeno6LCws4OzsjIEDB+Ltt9+Gra1tlcdrb29f5rcQRWrTNytEVDvFqgS2uAyRiKj+kEjEs7TqSFwLcrkc/fr10/cwdMrNzU3fQ9Aab29vfQ+hVLo+t+rjuUxUbwNbTZs2rdLjL1++DG9vb2Hrz+KSkpJw5swZnDlzBitXrsSGDRswbty4KvVHRFQTFCiBOJXAFhPHExHVH6rLEbnBOhER6Vu9DWwV16pVK7Rv317YwloTaWlpQlDL29sbQ4cORffu3WFtbY2EhAT8/PPP+O6775CWlobXX38dFhYWGDx4cJXHOmLECCxcuLDU40ZGXA5ERNXnYQaQo+CMLSKi+ko1sKVgXIuIiPSs3ga25s+fD3d3d7i7u6Np06a4d+9euUn2ipNKpRg7diwWLFiADh06qB0fMGAABg8ejJEjR6KgoAAzZ85ETEwMJJKS0m5qztLSEp06dapSG0RElaW6DNHRxgw2DYz1NBoiItI1iUqSLc7YIiIifau3ga3Q0NAqPd7LywteXl5l1hkxYgRGjRqFvXv3IjY2FhcuXEC3bt2q1C8RkT6pBra4DJGIqH5Rm7Gll1EQERH9Q6rvAdR1/v7+wu3Y2Fg9joSIqGoUSmUJgS0uQyQiqs84Y4uIiPSNga1qlpOTI9yWyWR6HAkRUdXcfpaOrAKVwJYjA1tERPWJalYNxrWIiEjfGNiqZidPnhRuu7i4VLm9U6dOwdXVFQ0aNICpqSkcHBwwbtw47N+/n9+YEVG1Onc/RXS/VSNTNGtoop/BEBGRXjB5PBER1TT1NseWLly6dAkHDx4EAHTu3Fkrga27d++K7t+7dw/37t3Djz/+CG9vb+zevRstWrSoVNsPHz4s8/iTJ0+E2zk5OcjKyqpUP1Q7ZWdnl3ib6o8/416I7ru1suDnQD3CzwDiOVA7KBQK4ctOhUJ7GbCK2lILbCkUWu2nLFu3bsXUqVMRGxsLe3t7nfRJ/yj+PlfXe+7o6IhevXphy5Yt5dbt06cPAOCPP/7Qer8nTpxA3759cezYMfTu3bvK7dcFunj/qWZQKpVQKBRqf+cXX41W0zCwVU1ycnIwbdo0FBQUAAA+//zzKrVnZGSE4cOHY8CAAejUqRMaNmyIlJQUREdHY926dYiPj0dkZCT69++P6OhoNGzYsMJ92NnZaVz3zz//ZM6weuzUqVP6HgLpmFIJ/BknQ/FLGpOXjxAeXnZAnOomfgYQz4Gay9raGiYmJpBIJEhLS9N6+6pLEbOzc5Cm1M3FTlFANT09vVqem6Z+/vln/P777/jrr78QFxcHb29vHDhwQK1eREQEhg0bVmIb4eHhcHd3F+536dIF8fHx6NWrF/bv369Wf9u2bZg1axaAwkBO165dsWrVKoSEhODkyZPo0qWLUFepVMLBwQGpqam4ePEiWrduLRzLzs5G69atMWzYMGzcuLGSr0Dhe1AdFAoF8vLyhPf35s2b2L9/PyZMmIBWrVqJ6ubn5wOAVs4F1X4zMzOFf/V5rtUEX375Jdq3b48hQ4YIZVV9/2fMmIFdu3aVW2/8+PH45ptvqtSXpn788UdMnz4dZmZm5U74KMvQoUPx4sULREdHqx178OABXnnlFXz66aeYOXNmVYZbqp07d+Kdd94p8djNmzfRtGnTMh+fn5+PrKwsZGVl4ebNm6JjiYmJWhuntjGwVU3effddnD9/HgDwxhtvlPpLTVNnz56FpaWlWnnv3r3x7rvvYsyYMQgPD8eNGzcQGhqKFStWVKk/IqLinmUB6fniqxknC64/ISKqb1RnbOnyN8G4ceMwatQoGBsb67BXdZs3b8alS5fQtWtXJCUllVt/+vTp6Nq1q6jM0dFRrZ5cLsfp06fx7NkztYvPn376CXK5XDRbsmfPngCAM2fOiAJbN27cQGpqKgwMDHDmzBlRYOvvv/9Gbm6u8Nia7tatW1i6dCl8fHzUAls///xztfXr5eWFJ0+ewMjIqNr6qC1WrlyJ4cOHiwJbVRUUFIRevXoJ9x88eIBFixbhjTfegKenp1Du4OCgtT7Lkp6ejpCQEJiZmemkP1346KOP1P7PVGbyS23BwFY1WLx4sfANiLu7O77++usqt1lSUKtIgwYN8OOPP8LR0RFJSUnYsGEDlixZUuEP4vj4+DKPP3nyBD169AAAeHh4oE2bNhVqn2q37Oxs4Rt6Pz8/yOVyPY+IdGnXuYfApdvC/aYNjBA4zB8S1a/uqc7iZwDxHKgdHjx4gIKCAhgYGMDCwkJr7SoUCqSnp6sFtgyNjGBhUb/OhR07dqBFixaQSqXo0qVLqa+1qakpgMIlc2PGjCmzTalUCm9vb5w7dw6HDh1CcHCwcOzhw4eIjo7Gq6++ip9//hlmZmawsLBAr169IJfLcf78efznP/8R6l+6dAnW1tZwc3PD33//jX/961/CsYsXLwIA+vXrV+Hzo+gcAABzc3NIpdpP1yyVSmFoaCiMzcSkMJenqampVs/n8volMUNDQ5ibm2vt/e/Xr5/o/vnz57Fo0SL4+fkhKCioKkOtlMWLF8PCwgL+/v745ZdfqnQeGBgYQCaTldiGubk5gMIgdnWda0W/m0eMGIHu3btX+PEJCQkwMTGBubk53NzcRMdq8ootBra07Ntvv8VHH30EAGjfvj3+97//6STy27BhQwQGBuKbb75BRkYGzp8/Dy8vrwq10bJlS43rGhsbC79oqP6Ry+V8/+uZs/fF0/B72FsJf7BT/cPPAOI5UHNJpVIh/011BB7UdkWspn5KsnXrVkyZMgV3794V5dg6dOgQFi1ahL///htSqRR+fn5YtmwZOnbsKNS5fPkyVqxYgVOnTuHx48ewtLREQEAAli9fDmtr6wqNo/gMqCIlvQZFZVKpFBkZGTAxMYGBQemXX3K5HKNGjcKuXbuEZYcAsHv3blhZWWHQoEH4+eefIZVKIZVKIZfL4e7ujqioKFH/0dHR8PT0RI8ePfDjjz+KjkVFRcHS0hJdunTR+H3r3bs3EhMTsX37drzzzju4cOECmjdvjiVLlmDMmDE4efIk5syZg8uXL6NVq1b4+uuvRYGLoKAgnDhxAvfu3RO1GxISgtDQULUNsCQSCaRSqfB+A0Dfvn2F48ePH0fv3r2F3FcnTpzQ6HkAhcs0P//8c6xfvx5JSUnw8PDA2rVrRf0Wtenv7y/0Vfx12LlzJ2bOnIlz585V6HXQhEKhwJo1a7Bx40bExMSgQYMGcHNzw8KFC4UghUQiwTvvvANPT098+umnuH//Pjp27IiVK1fCz89Pq/0VfYH5/fff4/vvvwdQuDxw+/btWv1/X/z/Sknt2tvbo1OnTggODsacOXNw8+ZNODo6YuHChRg1apSoblHwRdNJGDExMfjqq6+wb98+/Pjjj6LxFElNTcWTJ0/QrFkzjWc9lfWZUPxcy8vLw6JFi7B9+3bEx8fDzMwMLi4uWLBgAfr37y/UiY2NRcOGDdGsWTON+i363DE1NYVMJtNozEWKxqf6e17fs2XLwl0RtWjXrl2YMWMGgMJfeEeOHEHjxo111n+HDh2E248ePdJZv0RUtxUolIhWSRzv5dhIT6MhIqKKUioUyE9KqvJPQXIykCL+USQlV7o9pRYSUIeFhWHIkCEwNzfH0qVLMW/ePFy/fh0+Pj6iQMqRI0cQFxeHKVOmYM2aNQgMDMQPP/yAgICAat9ZfMqUKbCwsIBcLoe/v7+QrqQkEyZMwNmzZ0UzI3bu3IkxY8bA0NBQrb6Pjw8ePXokeq6RkZHw8vKCl5cXrl27hpSUFACFQZ2oqCh4enpWOCiRnJyM4cOHw83NDSEhITA2NkZgYCB2796NwMBABAQEYMmSJcjIyMCYMWPw8uXLCrVfEj8/P2Hm2kcffYSwsDCEhYVVaUOu+fPnY968eXjllVewfPlyODo6YsCAAcjIyNDo8cnJyRg6dCg8PDywbNkyrb8OU6dOxaxZs2BnZ4elS5fiww8/hFwux5kzZ0T1Tp48iVmzZmHixIn49NNP8eLFCwwaNAhXr17Van9hYWEwNjaGr68vtm3bhvXr1+tlRhVQGIAaN24cBg8ejMWLF8PAwACvvfYajhw5IqrXt29fUSC0PLNmzYK/vz8CAgJKrbNv3z64uLhg3759GrVZUFCAxMREtZ/k5GS1ukUBXn9/f6xduxYff/wxWrVqhb///luo8+jRI7i4uOC///2vxs/L398fFhYWMDU1xfDhwxETE6PxY2sjztjSkl9//RWTJ0+GQqFAs2bNcOzYsQrNgNIGLgkioupw7XEqUrPyRGU9Ha30NBoiIqqogpQUxHh5a6294uGVDACVvVxqGxUJg0aV/6IkPT0dwcHBmDZtGjZs2CCUv/HGG2jXrh0WLVoklM+YMQMffPCB6PE9e/bE+PHjERERAV9f30qPozRGRkYYPXo0AgIC0LhxY1y/fh1ffPEFfH19ERUVpZZ3Cyhctmhra4tdu3bhk08+wY0bN3Dx4kWsWrUKcXFxavV9fHwAFCaqt7e3x9OnT4WE9t26dYNUKkVUVBQCAgJw/fp1JCcnC4+piMePH2P79u1CnqVhw4ahQ4cOmDBhAqKiouDh4QEAcHFxwcCBA7F3794qB0AcHR3h6+uL1atXo3///lXenTAhIQHLli3DkCFD8NtvvwnXTh9//DEWLVqkURuPHz/Gzp07MX78eABA//790b59e628DsePH8fWrVsRHByMVatWCeUffPCBWvD16tWrOH/+vLBULDAwEO3atcP8+fM1zj2mSX8TJ07E22+/DUdHR0ycOFGvifRv376NvXv3CjO0pk6divbt22Pu3LnCzKaKOnjwIMLDw3Hp0iVtDhU3b96EjY2NxmMICAgQfYZVhampKYKCgoTA1l9//YUVK1bAy8sLf//9d4U2jKtNOGNLC44dO4axY8ciPz8f1tbWOHLkiF7yT12/fl243bx5c533T0R1U8Qd8Q4oTeRK2NazfCpERFTzHDlyBCkpKRg/frxoVoRMJoOHhweOHz8u1C2+pCY7OxuJiYlCAvXiMyO0ycvLC3v27MGbb76J4cOH48MPP8SZM2cgkUhKnXkhk8kwduxYYce4HTt2wM7OrtTAm5eXF6RSKSIiIgAUztYyNDSEu7s7zM3N0aVLF0RGRgrHAFQqsGVubo7AwEDhfrt27WBpaQkXFxchmANAuF1SEE7fjh49itzcXMycOVM0IaD4ss/yVOfrsHfvXkgkEixYsEDtmOoEBk9PT1H+o1atWmHEiBE4fPgwCgoKtN5fTdC8eXOMHDlSuG9hYYHJkyfjwoULePr0qVB+7949tWWvJcnNzcX777+Pt99+W7TyqSRBQUFQKpUaBynt7e1x5MgRtZ/t27er1bW0tMS1a9fKnFFlb28PpVKJrVu3ltv32LFjsWXLFkyePBmvvvoqPvvsMxw+fBgvXrzA559/rtH4ayPO2KqiqKgojBgxAjk5OWjYsCEOHz4sWs+vK6mpqfjhhx8AFEZpK5MojoioJJEqga12DbkbIhER6V/RhWCfPn1KPF48OXNSUhJCQ0Pxww8/4Pnz56J6qamp1TdIFU5OThgxYgR+/vlnFBQUlJj7ZsKECVi9ejUuXbqEnTt3IjAwsNRAg6WlJTp27CgKXnXt2lUI5Hl5eYmOGRkZCZtBVUTLli3VxtCwYUO12R9F+YdKWnKlb/fv3wcAtG3bVlRuY2MDKyvNZqJX5+sQGxuL5s2bo5EGsxhVnwMAODs7IzMzEwkJCbC1tdVqf5oqHmACCl8HbeVjdHJyUnvtnZ2dARQGszR5zsWtXLkSiYmJCA0N1cr4ijMzMysxv1pJAbdPP/0UI0aMgLOzMzp16oRBgwZh0qRJop1Oq8rHxwceHh44evSo1tqsaRjYqoKLFy9iyJAhyMjIgJmZGQ4ePKi2c4AmevfujZMnTwKAWjJMAPj999/Rq1evUj8U0tPTMXbsWLx4UZgDZ+rUqTU6sRsR1R7ZeQU4d0/8R5mzJQNbRESkf0VJ8sPCwkq8qC2eqH3s2LGIiorC7Nmz4erqCnNzcygUCgwaNEhoR1fs7OyQm5uLjIyMEndGK9p9fNasWbh79y4mTJhQZns+Pj5Yv349UlJShPxaRby8vLB582bk5eUhIiICbm5uldrRtLTk06WVF186V1pQTtOZRTVJVV6H+kA1sfmWLVv0lpOrLKmpqVi4cCFmzJiBtLQ0YYlleno6lEol7t27B1NTUzRp0qTax+Ln54fY2Fj88ssvCA8Px8aNG7Fy5UqsX78e06ZN01o/dnZ2uHXrltbaq2nqbWArIiICd+7cEe4nJv4zI+HOnTtq0/xU/0PGxsZi4MCBQjLGhQsXomHDhmUm7GvSpEml/nMsWbIEr7/+OkaNGgUfHx+0adMG5ubmSE1NRVRUFNavX48HDx4AKJwOGxISUuE+iIhKcv5eMnLz//mDXwIlnCzq1x9pRES1nczSEm2jIqvUhkKhwMuXL5GRB6Tk/lNuYiSDQ2PzSo+rKopSfzRp0qTM3eeSk5Nx7NgxhIaGYv78+UK5vpIpx8XFQS6Xw9y89Ndt/PjxWLhwIVxcXODq6lpmez4+Pli3bh2OHj2KCxcuYPbs2cIxLy8vZGVl4eDBg4iLi8Po0aO19TQ0ZmVlJVwzFVc0g6os2lwSV7SbZUxMDBwdHYXyhISEGjHDrE2bNjh8+DCSkpLKnUVV0rl7+/ZtmJqaapzbSdP+KvIeqCZy1+ZKpjt37kCpVIrGc/v2bQBQmxhSnuTkZKSnp2PZsmVYtmyZ2nEHBweMGDEC+/fvr8qQNdaoUSNMmTIFU6ZMQXp6Ovz8/BASEqLVwFZcXJzG50ZtVG8DWxs3bsS2bdtKPBYZGSlM2S2iGtg6ffq0aBrz+++/X26fCxYsqHTQKSkpCRs3bsTGjRtLrdOrVy/s2LFDq9NJiah+U82v1cocMK23vzmIiGoniVRapSTtQGFgS2ZgAFkegJx/ypWGMhg0alC1AVbSwIEDYWFhgUWLFsHf319t18CEhATY2NgIs2lUZ8989dVX1Tq+ov6Lu3TpEn799VcMHjy4zJ0Jp02bJuQKK09RzqwVK1YgLy9PNGPL3t4ezZo1Ey7eK5Nfq6ratGmD1NRUXL58WVhe9eTJE412mDMzMwOAEgNjFdWvXz8YGhpizZo1GDBggBAgqe7zQFOjR4/G119/jdDQUFEydwBqAZ3o6Gj8/fff6NatGwAgPj4ev/zyCwYNGlTq7LHK9mdmZqbx619WgLmqHj9+jH379gnJ49PS0vD999/D1dVVNGOzaEfRsnJeN2nSpMTzb/Xq1YiOjsauXbvUZp9VlxcvXsDa2lq4b25uDicnJ8THxwtleXl5iI2NRcOGDcsdV0mfO//73//w119/CbuM1kW8PKkFvvjiCxw7dgzR0dG4desWEhMTkZKSAlNTUzRv3hweHh4YP3686AOaiEgbmF+LiIiKU/1TU58rrSwsLLBu3TpMmjQJ3bp1Q2BgIGxsbPDgwQMcPHgQ3t7eWLt2LSwsLODn54dly5YhLy8PLVq0QHh4OO7evVupfk+dOoVTp04BKLyIzMjIwMKFCwEULivy8/MDAIwbNw4mJibw8vJCkyZNcP36dWzYsAGmpqZYsmRJmX20bt1a4y/EW7VqBTs7O0RHR8Pe3l5tEykvLy8hUbi3t/Z2x9RUYGAg5s6di5EjRyI4OBiZmZlYt24dnJ2dy03c7+rqCplMhqVLlyI1NRXGxsbo06dPpVbB2NjY4D//+Q8WL16MoUOHIiAgABcuXMChQ4fQuHHjyj49rfH398ekSZOwevVqxMTECMtkT58+DX9/f7z77rtC3U6dOmHgwIEIDg6GsbExvvnmGwCoUL4oTftzc3PD0aNHsXLlSlhaWqJ169al5rWrTs7Ozpg6dSrOnTuHpk2bYvPmzXj27Bm2bNkiqte3b18AJeezKmJqaopXX31VrXz//v04e/as2rGtW7diypQp1bK0skOHDujduzfc3NzQqFEjnD9/Hnv27BG9348ePYKLiwveeOONchPIe3l5oWvXrujevTsaNmyIv//+G5s3b4adnR0++ugjrY69Jqm3ga2tW7dqtKtAaYKCgrR2Up84caLM4927d2cyeCLSuZTMXFx9LE6o68zAFhFRvab6Faq+cwhNmDABzZs3x5IlS7B8+XLk5OSgRYsW8PX1xZQpU4R6O3fuxMyZM/H1119DqVRiwIABOHToUKV2Ev/jjz/UAgjz5s0DULhCoyiw9eqrr2LHjh1YsWIF0tLSYGNjg1GjRmHBggVwcnKqwrNW5+Pjg127dolmaxXx9vbG3r170b59e9HMEF2xtrbGvn378O9//xtz5syBg4MDFi9ejJiYmHIDW7a2tli/fj0WL16MqVOnoqCgAMePH6907qOFCxdCLpdj/fr1OH78ODw8PBAeHo4hQ4ZUqj1t27JlC7p06YJNmzZh9uzZaNiwIbp37672vvbq1Quenp4IDQ3FgwcP0KFDB2zdurXCCcc16W/FihV46623MG/ePGRlZWH8+PF6CWy1bdsWa9aswezZs3Hr1i04ODhg9+7dGDhwYLX3nZ6eDkA9h5g2BAcH49dff0V4eDhycnLQunVrLFy4ULSkuCLGjRuHgwcPIjw8HJmZmWjWrBn+9a9/YcGCBWjatKmWR19zSJT6/m1EtcbDhw+FHT9u375d4m4cVHdlZWUhPDwcADBgwACt7XBCNdehK0/wfzv++YNTbiDF5265MJDyHKiP+BlAPAdqh5iYGOTn58PAwECrf6spFAqkpaUhOx94nv1PuYFUig7N1ROgU91TdA4AhbPlylpKSdVHIpHgnXfewdq1a3Xarz7ff3t7e3Tq1AkHDhzQWZ/FjR07Fvfu3cPZs2f10r8ulfU7JCYmRtiJMj4+Hi1bttTHEEtUb2dsERFR2VTza7m1toSB9HkptYmIqD5QX4rI78iJqO5SKpU4ceIEtm/fru+hUBkY2CIiohKp5tfydLACMhjYIiKqz1SXIipKrFX7FBQUICEhocw65ubmZe5kWNskJSUhNze31OMymazW7KKWkJCAgoKCUo8bGRnpbYMtXZ9b9fFcrk4SiUS0aRzVTAxsERGRmvikTNx7kSkq83RshIdX9DQgIiKqEUrKsaW6Y1ttFB8fDwcHhzLrVGWH85po1KhROHnyZKnHW7duXWYC7prE3d0d9+/fL/V4r169ys1rXF10fW7Vx3OZiIEtIiJSExUrnq1lZWqI9rbmDGwREdV3JcSvlEr1JYq1ja2tLY4cOVJmHUdHRx2NRje+/PJLJCcnl3q8NuXR27FjB7Kysko9bmVlpcPRiGn73Cpv+W9dPJdrS4CV9IeBLSIiUhNx54XovpdTY0hr+1ULERFVWUm/CRRKJaQlHqk95HI5+vXrp+9h6JSbm5u+h6A13t7e+h5CqXR9btXHc5mIW1kQEZGIQqFElEp+LR+nxnoaDRER1SQlha+YPp6IiPSJgS0iIhK5+fQlXmSIk8kysEVEVLtU126FJU3e5c6IRESkTwxsERGRiGp+LbtGJrBrZKqn0RARUUUYGBRmGikoKKiWgFPJSxG13g0REelYQUEB8vPzARTuilqbMLBFREQiEVyGSERUaxkZGQm3ExMTy6hZORIJIFEJb3HGFhFR7VZQUICnT58K983MzPQ4mopj8ngiIhLk5ivwZ1ySqMybgS0iolqjUaNGSEtLA1AY2EpOToZES5t/FH2Tn58vzqt1P0MGmbR2J48nzRSdAwkJCXoeCekD3/+6q+i9LdKwYUM9jaRyGNgiIiLBhQfJyMorEJV5tWFgi4iotjAxMYGlpSVSUlIAFH4Lrw1KpRJZWVkAgNRcCQqKRbak5kYwNqxdy1ao4oqfAyYmJloLmFLtwPe//mjevDnkcrm+h1EhDGwREZEgUmUZYsfmFmhkZlRKbSIiqomaNm0KExMTpKSkIC8vTyttKhQK4aL2YboBcvIVwrEGpsYwM+BlRV1X/BwwNzeHVMqsNvUJ3/+6TSaTwczMDA0bNqx1QS2AgS0iIiqG+bWIiGo/qVQKS0tLWFpaaq3NrKws3Lx5EwCw8VYDPEjKEo6tn+iInm1ttdYX1UzFzwE3NzeYmJjoeUSkS3z/qSZjmJWIiAAAadl5uPQwVVTG/FpERKTK2EB8CZGTr53ljkRERJXBwBYREQEA/oxLQkGxPduNZFK42zfS44iIiKgmUg1s5RZblkhERKRrDGwREREA9fxabq2tYGLEZMBERCSmPmOLgS0iItIfBraIiAiAemDL28laTyMhIqKazIiBLSIiqkEY2CIiIjxLy0bM83RRGfNrERFRSZhji4iIahIGtoiISG22VgO5ATq3aKin0RARUU2mFtjK44wtIiLSHwa2iIgIESqBLU9HaxjI+CuCiIjUcSkiERHVJLxqISKq55RKpdqMLZ+2XIZIREQlM5ZxKSIREdUcDGwREdVzsQnpeJaWIypjfi0iIiqNsYF4x1zO2CIiIn1iYIuIqJ6LiBHP1mrWUA7HxmZ6Gg0REdV0zLFFREQ1CQNbRET1XMSdF6L73k6NIZFI9DQaIiKq6dRzbHEpIhER6Q8DW0RE9Vh+gQJ/xqkGtqz1NBoiIqoN1GZscSkiERHpEQNbRET12OVHqXiZky8q827D/FpERFQ6BraIiKgmYWCLiKgei1TJr+Xc1BxNLOR6Gg0REdUGaksR87gUkYiI9IeBLSKieizijjiwxd0QiYioPJyxRURENQkDW0RE9VRmbj7+fpAsKvNhYIuIiMqhnjyegS0iItIfBraIiOqps3eTkFegFO7LpBJ4ODJxPBERlU11xlYud0UkIiI9YmCLiKieilRZhtjVzhLmxgZ6Gg0REdUWnLFFREQ1ic6vYBISEhAXF4enT58iIyMDhoaGsLS0RKtWreDk5ASZTKbrIRER1UsRd16I7jO/FhERaYI5toiIqCap9sBWRkYGfvnlFxw6dAgnT57Eo0ePSq1rbGyMrl27YsCAARg5ciS6dOlS3cMjIqqXEtNzcONJmqiMgS0iItKEWmCLuyISEZEeVVtg68KFC1izZg1++uknZGZmAgCUSmWZj8nOzkZ0dDTOnDmDTz/9FB07dsQ777yDSZMmwdTUtLqGSkRU70TFimdrmRrJ4GpnqZ/BEBFRrcIZW0REVJNoPbB14cIFzJs3D4cOHQLwTzDL1tYWPXr0gJubG5o0aYJGjRrBysoKWVlZSEpKQnJyMm7fvo1z587h8uXLyMvLw9WrVzFjxgzMmzcPc+bMwcyZM2FsbKztIRMR1TtRKvm1PBwaqeVMISIiKklJObaUSiUkEomeRkRERPWZVgNbU6ZMQVhYGBSKwm9tunXrhtdffx2jR49Gq1atNG4nNzcXp06dwo4dO7Bv3z4kJiZi7ty5+Oabb/D999/Dx8dHm8MmIqpXlEolTseIA1tchkhERJpSnbEFALkFChgbMFcuERHpnla/nt+2bRsMDAzwr3/9Czdv3sT58+fx/vvvVyioBQBGRkbo168ftmzZgmfPnuH7779Hu3btcO/ePfzxxx/aHDIRUb1z/0UmHqVkicp82jKwRUREmikpsMXliEREpC9anbE1Y8YMzJ07F3Z2dlpr09jYGBMnTsTrr7+On376CQUFTE5JRFQVJ249F91vbG6Edk0b6Gk0RERU25QY2MpTAHI9DIaIiOo9rQa21q5dq83mRCQSCcaOHVtt7RMR1Rd/3EoQ3fdztmFeFCIi0lhJORlz8vnlMxER6QczBRMR1SOZufk4EyfeEbFP+yZ6Gg0REdVGXIpIREQ1CQNbRET1SOSdF8gtdvEhk0rg29ZGjyMiIqLaxkAqhUwqnumbk8fAFhER6YdWlyICQPPmzeHn5wdfX1/4+fmhc+fO2u6CiIgq6Y+b4vxa3VtboaGJoZ5GQ0REtZWxgRSZuf8sP+RSRCIi0hetB7aePn2Kn376CT/99BMAwNLSEj4+PvDz84Ofnx/c3NwglXKiGBGRrimVShxXCWz1deEyRCIiqjj1wBZnbBERkX5oPbDVunVr3L9/X7ifnJyMAwcO4MCBAwAAMzMzeHp6CrO6evbsCSMjI20Pg4iIVFx/koanadmiMubXIiKiylBNIM/AFhER6YvWA1t3797Fo0ePcPr0aeHn2rVrUCqVAID09HQcPXoUR48eBQAYGRnB3d1dmNHl7e0NMzMzbQ+LiKjeU52tZdfIBG1szPU0GiIiqs2MDWSi+7kMbBERkZ5oPbAFAC1atEBgYCACAwMBFM7aioyMFAJdf/31F/Ly8gAAOTk5iIyMRGRkJBYvXgyZTAZXV1ch0OXr6wsrK6vqGCYRUb2iml+rT7smkEgkpdQmIiIqnerOiMyxRURE+qKTZFdWVlYYOnQoli5diqioKKSmpuKPP/5AaGgo+vXrB1NTUyiVSiiVSuTn5+P8+fNYuXIlRo4ciSZNqmeZzPPnz3HgwAHMnz8fgwcPRuPGjSGRSCCRSBAUFFTh9g4dOoSRI0eiZcuWMDY2RsuWLTFy5EgcOnRIq+POzMzEsmXL4O7ujkaNGsHMzAzt27fHBx98IFoCSkRUXFJGLi7Ep4jK/LkMkYiIKsnYUCWwxV0RiYhIT6plxlZ55HI5evfujd69ewMACgoK8PfffwszuiIiIvDixQsAgEJRPb8kmzZtqpV2FAoF3nrrLWzatElU/ujRIzx69Aj79+/HtGnT8O2331Y5af6dO3cQEBCAmJgYUfmtW7dw69YtbNy4ETt27MDQoUOr1A8R1T0nbj3H/18RDgAwMZShp6O1/gZERES1mupSRObYIiIifakR2xMqFArk5eUhLy8Pubm5yM/P1+nymFatWmHAgAGVeuzHH38sBLW6du2KXbt24ezZs9i1axe6du0KANi4cSM++eSTKo3x5cuXGDJkiBDU+te//oVjx44hKioKn3/+OczNzZGWloZx48bh4sWLVeqLiOoe1WWI3k6NITeUlVKbiIiobFyKSERENYVeZmxlZGQgKipKmKF19uxZZGcX7tSlLDaloH379vD19a2WMcyfPx/u7u5wd3dH06ZNce/ePTg4OFSojdu3b+OLL74AAHTv3h2nTp2CiYkJAMDd3R3Dhw9Hr169cP78eSxfvhxvvvkmnJycKjXe5cuX4/bt2wCAZcuWYfbs2cIxT09P9O7dG7169UJmZiZmzZqFEydOVKofIqp78gsUOHU7QVTG3RCJiKgq1ANbnLFFRET6oZPA1osXL0S7JF68eBEFBYXf6hQFsoyMjNCtWzf4+PjAx8cH3t7esLauvmUyoaGhVW7jq6++Qn5+PgBgzZo1QlCriKmpKdasWQNPT0/k5+dj5cqV+PrrryvcT15eHlavXg0AcHFxwQcffKBWx8vLC1OnTsW3336LkydP4ty5c3B3d6/EsyKiuuav+8lIy84Xlfm3t9HTaIiIqC5QW4rIHFtERKQn1RLYio+Px+nTp3Hq1CmcPn0aN2/eFI4VBbIsLCzg5eUlBLJ69OgBuVxeHcOpFkqlEr/88guAwpllPXv2LLFez5490a5dO9y6dQu//PIL1q5dW+FllsePH0dqaioA4I033ig1V1dQUBC+/fZbAMC+ffsY2CIiAMAft8TLEDs0s0Czhial1CYiIiqfWvJ4LkUkIiI90Xpgy97eHvHx8QDEywpbtGghBLF8fHzQpUuXWr3N/N27d/H48WMAQK9evcqs26tXL9y6dQuPHj2q1JLHiIgIUVul6d69O0xNTZGZmYnIyMgK9UFEdddxlfxaXIZIRERVxaWIRERUU2g9sPXgwYPChg0MMGbMGAwdOhTe3t5o3bq1trvSq+vXrwu327dvX2bd4sdv3LhR4cCWpn0ZGBjAyckJly9fxo0bNyrUBxHVTfFJmbj9LF1U5s/AFhERVZH6roicsUVERPpRLUsRJRIJCgoK8OOPP+LatWvw9fWFr68vvL290bJly+roUucePnwo3C7vOdnZ2Qm3i2azVaYvMzMzWFpaltvX5cuXkZCQgJycHBgbG1e4n9I8efJEuJ2Tk4OsrCyN26bar2iDB9XbVLMdvvJIdN/K1BDtGhtX6v8vz4H6je8/8Ryo31TffxnEM7Qys/P4t2Edx8+A+o3vP+Xk5Oh7CKXSemBr5cqViIiIQEREBJ49e4YrV67g6tWrWLduHQCgVatWwnJEX19fdOjQQdtD0ImXL18Kt83Nzcusa2ZmJtxOT08vo2bZfZXXT0l9VSSwVTwAV54///wTsbGxGtenuuXUqVP6HgJpaO8NKYB/lou0Mc3BsaNHqtwuz4H6je8/8Ryo306dOoVH8eLfL/fiHyE8vOJf4FLtxM+A+o3vf/2UmJio7yGUSuuBrffeew/vvfceAOD27dvCToinTp3CvXv3cP/+fdy/fx87d+4EAFhZWcHLywu+vr7w8fFB9+7dYWhoqO1haV3xKLWRkVGZdYsHl6oyS6K8frTRFxHVHbkFwJ1UcS7DjlbKUmoTERFpzlAq/n2Sz18vRESkJ9WyFLGIs7MznJ2dMXXqVADAo0ePRIGu69evIykpCQcOHMDBgwcBFAZmevToIczq8vLygoWFRXUOs1KK7+CYm5tbZt3iU/ZMTCq+E1lRX+X1U9W+ylsm+eTJE/To0QMA4OHhgTZt2lSofardsrOzhW9n/Pz8atUupvXV8duJyDt7Wbgvk0gwY1RvWMgr9+UBz4H6je8/8Ryo31Tf//i/nuF/8f/M3m/YyAYDBryir+GRDvAzoH7j+081ecVWtQa2VLVo0QKBgYEIDAwEACQnJyMiIgKnTp3CqVOncOHCBeE/zOnTpwEAMplMo4COrjVo0EC4Xd7ywoyMDOG2JssJS+tLk2WMVemrIvnPjI2NKxWko7pBLpfz/a8FIuJSRPfd7K3Q1Eo7XxTwHKjf+P4Tz4H6TS6Xw8xEnO4iX1G5L3CpduJnQP3G979+qkiaI12Tll+l+lhZWWHYsGFYvnw5/vzzT6SkpGD9+vVwdHSEUqmEUqlEQUHN3GGleBCovKTrxWdCVSSPlWpfGRkZSElJ0agvGxubGn3iEVH1UiqVOH7zuaisD3dDJCIiLVHdFTG3QFFKTSIiouql0xlbJbl27ZowQ+v06dN4/PgxgMKdFZXKmrtYv3jS+5s3b5ZZt/hxFxeXSvW1d+9eoa2ePXuWWC8/P1+YHliZfoio7rj59CWepIp3rOnLwBYREWmJsYH4+/Gc/Jr5ZTQREdV9Og1sFRQU4K+//hJybEVGRiI5OVk4rhrIatWqFfz8/HQ5RI05ODigefPmePz4MU6ePFlm3aK1yC1atIC9vX2F+/Lx8RFunzx5stTA1vnz54WliN7e3hXuh4jqjj9UZmu1tDKBU5OKL4UmIiIqibGhSmArjzO2iIhIP6o1sJWdnY3o6GghkPXnn38iMzNTOK4ayGrXrh38/Pzg5+cHX19ftGrVqjqHVyUSiQQjRozAunXrcPPmTZw5c6bEgNOZM2eEGVsjRoyARCJRq1Oe3r17o2HDhkhNTcW2bdswZ86cEtvZunWrcHvkyJEV7oeI6o6SliFW5vOHiIioJKpLEXPyGdgiIiL90HqOrQMHDmDu3Lnw8vKCpaUl+vXrh9DQUBw/fhwZGRlC7iyJRAJXV1cEBwdjz549ePbsGW7cuIFvv/0Wr7/+eo0OahWZNWsWZLLCX+ozZ85EVlaW6HhWVhZmzpwJADAwMMCsWbNKbCcoKAgSiQQSiQQnTpxQO25kZITg4GAAwI0bN/DFF1+o1YmOjsamTZsAAL169YK7u3tlnxYR1XLJGbn4+0GyqMyfyxCJiEiLuBSRiIhqCq3P2Bo+fLgwK6D4jCwjIyN0794dvr6+8PPzg7e3NywstLM7V2VERETgzp07wv3ExETh9p07d0Szn4DC4JMqZ2dnzJ49G0uWLMH58+fh7e2NuXPnok2bNoiNjcXSpUtx4cIFAMDs2bPRtm3bSo939uzZ2L17N27fvo05c+bgzp07CAwMhImJCY4fP45FixYhPz8fJiYm+OqrryrdDxHVfidvJ0BRbEKs3FAKT0dr/Q2IiIjqHPXAFmdsERGRflTLUkSlUglTU1N4enoKgayePXtCLpdXR3eVsnHjRmzbtq3EY5GRkYiMjBSVlRTYAoDPP/8cz58/x+bNm3HhwgUEBgaq1Zk6dSoWLlxYpfE2aNAABw8eREBAAGJiYrBhwwZs2LBBVMfCwgI7duyAq6trlfoiotpNNb+Wj1NjyA1lpdQmIiKqOGOV3yvMsUVERPqi9cDWsmXL4OvrCzc3NxgY6H3TxWonlUqxadMmjB49Ghs2bMC5c+eQmJiIxo0bw93dHdOnT8fgwYO10peTkxMuXLiAr7/+Gj/99BPu3LmD3Nxc2NnZISAgAO+99x5at26tlb6IqHbKL1Dg5O0EURmXIRIRkbaVtBSxKN0IERGRLmk98vSf//xH201Wi61bt6otN6yKgIAABAQEVPtYzMzMMGfOHMyZM6dSfRFR3XYhPgWpWXmiMv92DGwREZF2qQa2FEogX6GEoYyBLSIi0i2tJ48nIiL9OXZDvAyxvW0DNLc00dNoiIiorlJdiggwzxYREekHA1tERHXIcZX8Wn24DJGIiKqB6owtAMjJ486IRESke1pfitinTx+ttieRSHDs2DGttklEVBc9SsnCrWcvRWV9XRjYIiIi7SsxsMUZW0REpAdaD2ydOHFCSBpZ1QSSTEBJRKQ51d0QrUwN4WpnpafREBFRXWZswKWIRERUM1TbtoVyuRxNmnCmABGRrqguQ+zlbAOZlF8OEBGR9hnKJJBIAKXyn7KcfC5FJCIi3au2wFZ2djaaNWuGyZMnY9y4cbCy4qwBIqLqkpVbgMg7iaIyf+bXIiKiaiKRSGAkk4pmaeXkccYWERHpntaTx3/22WdwdnaGUqnEmTNn8M4776BZs2YYPXo09u/fj7y8vPIbISKiComOSxRdXMikEvRyttHjiIiIqK5TzbOVW8DAFhER6Z7WA1sff/wxbty4gbNnz+Ldd99F48aNkZubi3379mH06NFo1qwZ3nnnHURHR2u7ayKieks1v5ZbKytYmhrpaTRERFQfGBuK82xxxhYREemD1gNbRbp3747Vq1fj8ePH+PXXXzFmzBgYGxsjKSkJ69evh4+PD5ydnfHZZ5/h7t271TUMIqI6T6lU4vjNBFEZlyESEVF1U52xxRxbRESkD9UW2Coik8kwdOhQ/Pjjj3j69Cm+++47+Pr6AgDu3LmDkJAQODk5wdfXF9999x1SUlKqe0hERHXK7WfpeJSSJSrrw8AWERFVM/XAFmdsERGR7lV7YKs4CwsLTJ06FSdOnMDdu3fx6aefwsnJCUqlElFRUXj77bfh4OCgyyEREdV6qssQW1iawLmpuZ5GQ0RE9YWxgcpSRM7YIiIiPdBpYKu4Vq1a4ZNPPsGtW7ewZs0aGBsbQ6lUIicnR19DIiKqlf64+Ux0v0/7JpBIJHoaDRER1RfGhioztphji4iI9MBAXx3Hx8dj+/btCAsLw61bt4RyIyMmOyYi0lRyRi7+up8sKuMyRCIi0gUuRSQioppAp4GttLQ0/PTTT9i+fTtOnz4NpVIJpVIJAPD09MSkSZMwbtw4XQ6JiKhWO3L9GRTKf+7LDaXwbGOtvwEREVG9waWIRERUE1R7YKugoACHDh1CWFgYfvvtN+Tk5AjBLEdHR0ycOBGTJk1CmzZtqnsoRER1zv+uPhHd92/XBHKV7deJiIiqg9qMLS5FJCIiPai2wNa5c+cQFhaG3bt3IzExEUDhlvSWlpYYO3YsJk2aBG9v7+rqnoiozkvNzEPknURR2eDOzfQ0GiIiqm+MDVVnbDGwRUREuqf1wNbChQuxY8cO3L59G0BhMMvQ0BCDBw/GpEmTMGzYMObRIiLSgqM3niGv4J91iEYGUubXIiIinVHPscWliEREpHtaD2zNnz8fEokESqUSHh4emDx5MsaNG4dGjRppuysionrtf1fEyxB7OdvA3Fhve4IQEVE9w+TxRERUE1TbFZCJiQmePXuG5cuXY/ny5ZVuRyKRIDY2VosjIyKq/dKy83A6RrwMMaCzrZ5GQ0RE9ZFa8njm2CIiIj2otsBWVlYW7t27V+V2JBJJ1QdDRFTH/HHjOXIL/rmAMJJJ0delqR5HRERE9Y2xIZciEhGR/mk9sOXn58dgFBFRNVNdhujbtjEs5IZ6Gg0REdVHRjIuRSQiIv3TemDrxIkT2m6SiIiKSc/Jx4nbCaIy7oZIRES6pj5ji4EtIiLSPWn5VYiIqCb54+Zz5Ba7eDCQStCfyxCJiEjHVHNs5TKwRUREesDAFhFRLXNIZRmit1NjNDTlMkQiItIt9V0RmWOLiIh0j4EtIqJaJDM3H8dvPReVDeEyRCIi0gP1wBZnbBERke5pNbD15MmT8itV0dOnT6u9DyKimurErQRkF9tOXSaVoH8HLkMkIiLdMzYUL0XMyWNgi4iIdE+rga02bdogODgYjx490mazAIAff/wRXbp0wYYNG7TeNhFRbaG6G6JXG2tYmRnpaTRERFSfcSkiERHVBFoNbOXn5+Prr7+Gk5MT3njjDYSHh0OhqPw3N/Hx8Vi2bBlcXFwwfvx4XL16FUZGvIAjovopO68Af9wUL0Mc3InLEImISD+4FJGIiGoCA202dvXqVbz//vs4dOgQtm/fju3bt6NJkyYYMWIEevbsCXd3d3To0AESiaTExycmJuLcuXM4e/Ysjh07hqioKCiVSiiVSrRo0QKhoaEICgrS5pCJiGqNE7cSkJn7z7fhUgkwoCOXIRIRkX6o7orIwBYREemDVgNbzs7OOHjwIKKiorBw4UIcPnwYz549w3fffYfvvvsOAGBkZARra2tYWVnBysoKWVlZSEpKQnJyMlJTU4W2lEolAKBly5aYOXMmZs6cCblcrs3hEhHVKoeuipch9nS0RmNzYz2NhoiI6jtjQ5UZW3lcikhERLqn1cBWES8vL/zvf//D7du3sXnzZvz000+4e/cuACAnJwePHz/G48ePIZFIhABWccbGxhg4cCD+9a9/YfDgwZBKuXkjEdVv2XkFOHZDZRkid0MkIiI94lJEIiKqCaolsFXE2dkZS5YswZIlS/DgwQOcPn0aUVFRePjwIRISEpCUlAS5XA4bGxvY2Nigc+fO8PX1RY8ePZhLi4iomIiYRKTn5Av3JRJgIJchEhGRHqkuRcxXKJFfoICBjF9KExGR7lRrYKu4Vq1a4fXXX8frr7+uqy6JiOoM1d0Q3e0boUkDLs8mIiL9UZ2xBQC5DGwREZGO8bcOEVENl5NfgCM3nonKAjrZ6mk0REREhVRzbAFATh6XIxIRkW4xsEVEVMNF3XmBl9n5ojLm1yIiIn1TXYoIMM8WERHpHgNbREQ1nOoyxO6trdDUgssQiYhIv0paipiTz50RiYhItxjYIiKqwfIKFAi/Ll6GyNlaRERUExiVkEuLM7aIiEjXGNgiIqrBomJfIDUrT1Q2iPm1iIioBpBKJWrBrVwGtoiISMcY2CIiqsEOqSxDdLWzRAtLEz2NhoiISEx1OSKXIhIRka4xsEVEVEPlFyhw+NpTUdkQLkMkIqIaRHVnRO6KSEREusbAFhFRDfXn3SQkZ3IZIhER1VyqOyMyxxYREekaA1tERDXUQZVliF1aNoRdI1M9jYaIiEgdlyISEZG+MbBFRFQDFSiUOHxVvAxxcCcuQyQioprFSC2wxRlbRESkWzoJbPXp0wd9+vTBli1bdNEdEVGtd/ZuEl5k5IrKAjpzGSIREdUsxoYqSxGZY4uIiHRMJ4Gt06dP4+TJk7C3t9dFd0REtd6hq+JliB2bW6C1tZmeRkNERFQyLkUkIiJ900lgq0mTJgAAS0tLXXRHRFSrKRRKHFJZhhjA3RCJiKgGUg9sccYWERHplk4CW6+88goA4Pbt27rojoioVjt/PxkJL3NEZYO5GyIREdVA3BWRiIj0TSeBrWnTpkGpVGL9+vW66E5nevfuDYlEUqGfEydOVLifkJCQam2fiGqW/6nshtjetgEcbcz1NBoiIqLSGRuqzNjK41JEIiLSLZ0EtkaNGoWJEyfi5MmTePPNN5GRkaGLbmscqVSKtm3b6nsYRFSDKRRK/M7dEImIqJbgUkQiItI3A1108v3336Nv3764fPkytm3bhl9++QXDhg1Dly5dYGVlBZlMVubjJ0+erIthVtiWLVvKDdJdv34d48aNAwD07dsXLVq0qFKfV65cKfO4g4NDldonIv26EJ+Cp2nZorIhXbgMkYiIaiYuRSQiIn3TSWArKCgIEolEuJ+cnIywsDCNHiuRSGpsYEuTIFLx56mN59GpU6cqt0FENdchlWWIbZuYw6lJAz2NhoiIqGzcFZGIiPRNJ4EtAFAqlWXer4sUCgV27NgBADA3N8eoUaP0PCIiqslK2g1xMHdDJCKiGkwtsJXHGVtERKRbOgls3b17Vxfd1DjHjh3Do0ePAABjxoyBqampnkdERDXZuXtJeJSSJSrjbohERFSTqQW2ChjYIiIi3dJJYKt169a66KbG+f7774XbNXU5JRHVHPsuPBLdd25qjva2XIZIREQ1l7GhSo4tztgiIiId09lSxPomPT0d+/btA1AY2Ovdu7dW2h0wYAAuXryIlJQUWFpaokOHDhg0aBCmT58OKysrrfRBRLqXnVeAgyr5tUZ2bSnKT1iv5OcASl4c1Sh5WZAqcoXb/AuiHuI5UL/9//dfKREHsphji4iI9I1/klSTvXv3CjsmTpw4UWsXp0eOHBFuJyQk4OTJkzh58iSWLl2KrVu3YsSIEZVu++HDh2Uef/Lkn4vunJwcZGVllVGb6prs7OwSb5N2HL7+HC+z84X7EgAD2zeqUf/PdHEOSJ5chOHxEEjj/4QEdT8XY21iAmBY0Z1LehwI6Q3Pgfqt6P3PlxghHxORNWAhIJFCohQHsrJy82vU7y7SHv4tWL/x/aecnBx9D6FUOg9sxcTE4Pvvv0d0dDSePn2KrKwsHD58GE5OTkKdq1ev4sGDBzAzM0OvXr10PUSt0PYyxM6dO+PVV19Fjx490Lx5c+Tl5eHWrVvYsWMHwsPDkZKSgtGjR+O3337D4MGDK9WHnZ2dxnX//PNPxMbGVqofqv1OnTql7yHUOZtuSgH88623k4UCV/48hSv6G1KZtH4OKBVo8/wwOjz5EVIlv+0nIqqpDJS5MLi4GaczmiHJvB3uPJcA+GcWV8KLZISHh+tvgKQT/FuwfuP7Xz8lJibqewil0llgS6FQYM6cOVi1ahUUCoWwK6JEIkFubq6o7oMHDzB06FAYGBjg7t27aNGiha6GqRUPHz7EiRMnAAA9e/aEs7NzldqbNWsWQkJC1Mo9PDwwefJkfPvtt3j77bdRUFCAadOmITY2FnK5vEp9EpHuZOQB11PEszq729Sf2UrGeSnodn8Dmry8qu+hEBGRhiyyHiLJvB0MVBYlMMUWERHpms4CW9OnT8fmzZuhVCrRokULeHp6Ys+ePSXWDQgIgIODA+7du4c9e/bgvffe09UwtWL79u1QKAp/q7/xxhtVbs/S0rLM49OnT8e5c+ewadMmPH78GHv37sXrr79e4X7i4+PLPP7kyRP06NEDQGFQrU2bNhXug2qv7Oxs4dsZPz8/Bk+1aNe5hyhQ3hbuGxtI8f4YPzSQ16zV4tVxDkjjjsPo4KeQZNbcb4CIiEhdB8cWcPYcANx4jrA7/3wxYWRihgEDeupxZFRd+Ldg/cb3n2ryii2dXDUdO3YMmzZtgkQiwUcffYTQ0FDIZDJIpdJSH/Paa69h2bJl+OOPP2pdYCssLAwAYGxsjHHjxumkz+nTp2PTpk0AgJMnT1YqsNWyZUuN6xobG8PExKTCfVDdIJfL+f5r0cFrCaL7/To0RROrmr0bYpXPgfxc4FgoEL22hIMSwOd9oNukwttUI2Tn5OD06dMAAF9fX8iNjfU8ItI1ngP1W8GhDyGL+V24b1iQAUMTE1iYin8X5BUo+TdCPcC/Bes3vv/1k3EN/r2vk8DWhg0bABTOxFq4cKFGjymaGXTt2rVqG1d1OH/+PK5fvw4AGDp0qM52KuzQoYNw+9GjRzrpk4iq7v6LDPx1P1lUNqpr7Vp+XWEvYoE9bwJPLqofM7cFRm0AHGtnfsW6TJmVhUzjW4W3LVsD/IO23uE5UL8pzW3FBdlpALgrIhER6Z9OAlvR0dGQSCSYOnWqxo8pmj309OnT6hpWtSieNF4byxA1pa1dF4lIt/ZfeCy638jMCH7ONnoaTTVTKoFLPwAHPwDyMtSPOw8CRnwDmFnrfmxERFQmpbyhuCA7FQBgbKgS2GKSLSIi0jGdBLaeP38OALC3t9f4MYaGhgCA/Pz86hhStcjLy8MPP/wAALCxsan07oSVUTRLDACaN2+us36JqPKUSiX2XXgoKhvWpRkMZaUv0661stOAg/8GrvykfkxmBAxYCPR4C2CQnoioZjK2EN8vCmwZyETFOfkMbBERkW7pJLBlZmaGlJQUJCQklF/5/3v4sPBir1GjRtU1LK07dOiQ8BwnTJgAAwPdJX7+9ttvhdu9enEJD1FtcDE+BfdeZIrKXq2LyxAf/gXsfRNIvqd+rLEzMGYzYNtZ58MiIiLNKY1LmbGlshQxt0ABhUIJqZRfVBARkW7oZFqAo6MjAPGsovIcOnQIANCxY8dqGVN1KL4McfLkyRo9ZuvWrZBIJJBIJAgJCVE7fuXKFdy5c6fMNjZs2ICNGzcCAGxtbTFy5EjNB01EerPvgjgfnkNjM7jaWepnMNUlai2weUDJQa1uk4G3TjCoRURUCyjlms3YAgqDW0RERLqikylFAwYMwF9//YWvv/4aM2fOLHM3RKAwAFYU8AkICNDFEKssOTkZBw4cAAB06tQJ3bp100q7f/31F6ZNmwZ/f38MHjwYnTt3hrW1NfLz83Hz5k3s2LED4eHhAACZTIYNGzbAzMxMK30TUfXJK1Dgt0vi/FqvuraoW/nyruwBwj9WLzduCAxfBXRkEJ6IqNYobSmiofrf9Tl5CsgN1QNeRERE1UEnga3g4GCsXr0asbGxePvtt/HNN9+UukzvyJEjmDJlCrKzs2FtbY1//etfuhhile3evRs5OTkANJ+tpamCggIcPXoUR48eLbWOtbU1Nm3ahGHDhmm1byKqHidvJSA5M09U9mrXOpQfryAf+OMz9XI7D2D0RsCyle7HRERElaYsJbBlVEJeyMKdEQ11MCoiIiIdBbaaNm2K9evXY/Lkydi0aRMOHz6MIUOGCMdXrVoFpVKJyMhI3Lx5E0qlElKpFFu3boW5ubkuhlhlYWFhAApnTb3++utaazcgIACbNm1CdHQ0Lly4gGfPnuHFixdQKpVo1KgRXnnlFQwaNAhBQUGwsLAov0EiqhH2XRQvQ3RrbYXW1nVotuXVPerLD33+Dfh/DMh0l3+QiIi0RHVXxIIcIC8bxobqn+lMIE9ERLqks6uL119/HYaGhpg+fTri4+Px7bffCktuivJDKZVKAIC5uTm2bdsmCn7VdJGRkZV6XFBQEIKCgko93qRJE7z55pt48803KzkyIqpp0rLzcOT6M1FZnUoarygATi0XlzXvBvSdz10PiYhqKbUZWwCQkwYjk8bqxQxsERGRDul0T/mxY8fizp07CA0NhZubG2QyGZRKpfDTsWNH/Pe//8WdO3eYAJ2I6qzfrzxFbrE/+g1lEvy/9u48LKqy/QP498wMMOwIiIo7KOK+4q5opua+lZYtWprWa2Zlli2a9Xuz1d7KstJcKsu1NNdyA1xRUTR3FHADVEBlh9nO7w9i5DAM68wcBr6f6+Jy5jnPOefGORyGe57nfoa3rSdjRBZ2bhOQWmTRi9A3mNQiIrJnxSW2ctOgUiqgKrICYv5URCIiItuw+XwQHx8fzJs3D/PmzYPBYMDdu3eh1+vh7e0NBwfOxSei6u+P6JuS5/1a+KGWq6NM0ViYwQDs/1zaVrctEPSIPPEQEZFlqJygExyhEjUP2owrIyqg0zxIZnHEFhER2ZKshU4UCgV8fU2HLxMRVVcJ93MQGXdX0ja2Ok1DvLgNSL4gbevL0VpERNWBTukCla5wYus+AMDJQYmswoktLRNbRERkOzaZipidnW2L0xARVXl/Fika765WoX+wn0zRWJgoAvs/lbb5tQKCh8sTDxERWZRW5SJtKDRiqzBORSQiIluyyYitWrVqoUuXLujbty/69euH3r17w9W1Gq3+RURUBqIoYtNJaWJreLt6UDsoZYrIwmL+Am6dkbb1mQ0obFrOkYiIrESrcJY2mE1sccQWERHZjk0SW1qtFpGRkYiMjMSnn34KpVKJTp06ITQ01Jjocnd3t0UoRESyOZeYjst3MiVtoztUk2mIoghEFBmt5dMcaM2FQIiIqgutssgH07npAAAnlfQDGia2iIjIlmzyMfrChQsxePBguLm5QRRF6HQ6HDt2DJ9//jmGDx8OHx8fdO3aFXPmzMH27duRnp5ui7CIiGxqc7R0tFZ9L2eENPGWKRoLu7IXSDwpbev7OqCoJqPRiIgIWqWZqYgORUZsaTkVkYiIbMcmI7bmzp2LuXPnQq/X4+TJkwgPD0dERAQOHjyI9PR06HQ6REVF4cSJE/jiiy+gUCjQvn1744iuESNG2CJMIiKr0ekN+PN0oqRtdEd/KBTVoKh6cbW1ajUF2jwqTzxERGQVZa+xxRFbRERkOzZdFVGpVCIkJAQhISGYM2cODAYDoqOjERERgfDwcBw8eBD379+HXq9HdHQ0oqOj8dVXX0Gn09kyTCIiizscm4rkjDxJ25jqshpi/H7gxlFpW5/XAKWsC+8SEZGFmR2xxamIREQkI1kr+ioUCnTu3BmvvfYatmzZgsuXL2PevHnw9PQEkF9oWRRFOUMkIrKIotMQ29b3RDO/alJbcP9n0ueejYB2j8sTCxERWY35xBZXRSQiIvnI+nH6/fv3sX//foSHhyM8PBz//POPSTKrcePGMkZIRFR52Rod/jp3S9I2urqM1rp2GLh6QNrW+xVA5ShLOEREZD1lr7HFEVtERGQ7Nk1smUtkATD+26RJE2NtrX79+jGxRUR2b9e528jWPPj0WqkQMLK9v4wRWVDRlRDd/YGOT8kTCxERWRWnIhIRUVVkk8TWa6+9ZnZEVtOmTSWJrEaNGtkiJCIim/mjyDTE3s18UdvdSaZoLOhmFBAXJm3rNQtQVYPvjYiITOjMJLYclZyKSERE8rFJYuvLL7+EIAgQRRFNmzY1JrH69euHhg0b2iIEIiJZ3MnIxcHLyZK2sZ2qyTTEoqO1XP2AzpPkiYWIiKzOZMRWXjoA06mIGo7YIiIiG7Jp8XhBEODq6mr8cnFxKX0nIiI7tuVUIgyF1sBwcVRiYKs68gVkIcKt08Dlv6WNvV4GHJzlCYiIiKzOJLGlzQZ0mmKKxzOxRUREtmOTEVvPPPMM9u/fj6tXr+Ls2bM4d+4cvv32WwiCgFatWhlHb4WGhsLHx8cWIRER2cTmU9JpiI+0qQsXR1nX7bAIh8NfShtcfIAuz8kSCxER2YZJYgsA8tJZY4uIiGRlk7+uVq1aBQC4fv06IiIiEB4ejoiICMTFxTHRRUTV1uXbGTibkC5pG1MNVkP0yLkO5eWd0sYeMwBHV3kCIiIimyg2sZWbZjpiS8saW0REZDs2HTbQqFEjPP3003j66acBADdv3kRERAQiIiIQFhaG2NhYk0RX69atcfr0aVuGSURkEZuKFI33c3dCz0BfmaKxnKBbW6QNai8g5HlZYiEiItsxKByhFxygFLUPGnPvw8nBS9KPI7aIiMiWbFpjq6gGDRrgySefxNKlS3H58mXcvHkT8+bNg4eHB0RRhMFgwNmzZ+UMkYioQnR6A34/eVPSNqqDP5QKQaaILMMtNwH+949LG7v/B1B7yBMQERHZlMmordy0YqYicsQWERHZjuyFXmJiYhAeHm6cnnjr1i0AMK6iSERkj/ZevIPb6XmStjEdG8gUjeUE3doKAYXuzU4eQLfp8gVEREQ2pVM6A7q0Bw3FTUXkiC0iIrIhmye2zCWyAEgSWc2aNTPW2SIisje/Hr0ued6hoRda+dv3qCbhbhwa3Dsibew6DXD2kiUeIiKyPdMRW+lwcihaY4uJLSIish2bJLaWLl1aaiIrKCjImMjq168f6tWrZ4vQiIgs7lpqFvbHJEvanureWKZoLEd15CvpaC0H1/yi8UREVGMUOxXRg1MRiYhIPjZJbL3wwgsmUwuDg4Mliaw6derYIhQiIqv77Zh0tJaHWoXh7ew8WX/vKpTnNkrbuk4FXLzliYeIiGRRbGLLm1MRiYhIPjabitiyZUtjIis0NBR+fn62OjURkc3k6fTYECUtGv9o54ZQOyjN7GEnwj+GID74BF5UOUPoMVPGgIiISA5apau0odji8UxsERGR7dgksXXnzh34+tr/EvdERKX56+wt3M3SSNomdmskUzQWcvs8cHqtpEnf4Rmo3GrLFBAREcml2BFbJjW2OBWRiIhsR1F6l8pjUouIaoqiReO7B3ijmZ+bTNFYyL7/AwrV1tIp1NBytBYRUY1UbGKLqyISEZGMbJLYMken0yE5ORnJycnQ6XRyhkJEVGkxtzNwLP6upM3ui8bfOAZc2iFpuuL3CODCDyyIiGqi4hNbplMRC9fWJSIisiabJ7YuXLiAmTNnomXLllCr1ahbty7q1q0LtVqNli1b4uWXX8b58+dtHRYRUaX9VmS0lq+bIwa1qitTNBYgisCeBZKmPJU7Yv2GyBMPERHJTqt0ljbkpcNRZfonhUbPUVtERGQbNk1svfXWW2jXrh2WLFmCS5cuwWDI/zRHFEUYDAZcunQJ3377Ldq3b4+3337blqEREVVKtkaH309Ki8aP79Kw2Df7duPKXuDaIUlTTJ0R0BX9o4aIiGqM4ovHm/6u43REIiKyFZutijhz5kwsWbLEOCy5ZcuW6NatG+rWzR/NcOvWLRw7dgznz5+HXq/HJ598gqysLHz11Ve2CpGIqMK2nU5CRu6DKdWCADzR1Y6LxhsMwN4F0ib3+rjq+5A88RARUZVQlhpbAKBhYouIiGzEJomtQ4cO4dtvv4UgCGjVqhWWLl2Knj17Ftv3yJEjeOGFF3DmzBl88803mDBhgtm+RERVxa9Hr0mehwbVRkNvFzO97cD5TcCtM5ImXe/XYbjlKFNARERUFeiKJrY0mXBSmtbT4ogtIiKyFZvMkfnhhx8AAE2bNsWhQ4dKTFT16NED+/fvR0BAAADg+++/t0WIREQVduZmGk7fTJO0PdXNjovG67XAvv9K23xbQN/mMXniISKiKkOrMv3QxkmXadKWp9XbIhwiIiLbJLYOHDgAQRAwd+5ceHp6ltrf09MTb775JkRRxIEDB2wQIRFRxRUdreXvqUb/YD+ZorGA6F+Au3HStofeBRQ2m71ORERVlMlURAAqTToUgrSNI7aIiMhWbJLYunXrFgCgY8eOZd6nU6dOAIDbt29bJSYiIktIz9Xiz1OJkrbHuzaCsug7fHuhyQbCP5G2+XcCWo6QJx4iIqpS9IIjRIWDpE3IS4OTSilpY2KLiIhsxSaJLbVaDQDIysoq8z4FfZ2cnKwSExGRJWyOTkBOoekWSoWACSENZYyoko4tBTJvSdseXpBfDZ+IiEgQACd3aVtuGpwcpH9WcCoiERHZik0SW02bNgUAbN26tcz7FPQtqLVFRFTViKKIXyOvS9oGtqyDOh5qmSKqpJx7wMEvpG0B/YGAUHniISKiKklUFyktkptusjIiR2wREZGt2CSxNXToUIiiiMWLF2Pv3r2l9g8LC8PixYshCAKGDh1qgwiJiMov6to9XLqdIWl7qrsdF40/9DWQKy2CjwHz5YmFiIiqLicP6fNcTkUkIiL52CSx9corr8DDwwNarRZDhgzBSy+9hJMnT8JgePALz2Aw4OTJk3jppZfwyCOPQKPRwMPDA6+88ootQiQiKrdfI6VF45v4uKBnoI9M0VRSxi0g8jtpW6tRQP1O8sRDRERVluhUdMRWWjEjtjgVkYiIbMMmS1z5+vpi/fr1GDlyJDQaDb777jt89913cHR0hLe3NwRBQGpqKjQaDYD86T2Ojo7YsGEDfHzs9I9EIqrW7mZpsOOMtBbVxG6NoLDXovH7PwN0OQ+eC0rgoXnyxUNERFWXupgRWyY1tjhii4iIbMMmI7YAYNCgQYiMjESXLl0giiJEUUReXh6SkpKQmJiIvLw8Y3uXLl1w9OhRPPzww7YKj4ioXDaeuAGN/sGbdkelAo92ttOi8XfjgBOrpG0dnwR8m8sSDhERVW3Fj9jiVEQiIpKHTUZsFejQoQOOHTuG48ePY8+ePTh79izu3r0LAPD29kabNm3w8MMPIyQkxJZhERGVi8Eg4tej0qLxQ9vWhbero0wRVVLYQsCge/Bc6QSEzpUvHiIiqtLE4kZscSoiERHJxKaJrQIhISFMXhGR3ToUm4JrqdmSNrstGn/rDHBmg7St6/OAZ3154iEioqqvTDW2OGKLiIhsw6qJre3bt+Ovv/7CtWvXoNfr4e/vj379+mH8+PFwcHCw5qmJiKzm10jpaK0WddzRuXEtmaKppL3/J33u5AH0mS1PLEREZBdEJ3dpQ1666VRE1tgiIiIbsUpi6/bt2xg9ejSOHTtmsm3FihWYP38+Nm/ejLZt21rj9EREVnM7PRe7L9yWtD3ZvREEwQ6Lxl87DFz+W9rW82XAxVueeIiIyD6oTUdsOXpxKiIREcnD4sXj9Xo9Ro4ciaNHjxqLwRf9io+Px+DBg5GSkmLp0xMRWdW64zegN4jG584OSozuaIfT9kQR2PO+tM21NtD9RXniISIiuyE6lV5jS8OpiEREZCMWT2ytX78ex48fhyAIaNasGZYvX44zZ87g4sWL2LBhA7p37w4gf1TXokWLLH16IiKr0ekNWHNMOg1xVAd/eKjtcGr15V3AjUhpW985gJObPPEQEZH9KGbElpMDa2wREZE8rJLYAoAmTZrg2LFjePbZZ9G6dWsEBQVh3LhxOHDgAEJDQyGKIjZs2FDK0YiIqo6wS8lISsuVtD3ZzQ6Lxhv0wN4PpG1ejYDOk2UJh4iI7IvJiK28dKiVRZo4FZGIiGzE4omt6OhoCIKA2bNnw8vLy2S7UqnE++/nT3+Jj49HRkaGpUOwKUEQyvTVr18/i5xvzZo1GDRoEOrWrQu1Wo3GjRvjqaeewpEjRyxyfCIy79ej1yTP2zfwRNsGnmZ6V2HRq4HbZ6Vt/d4GVE7yxENERHZFLLoqIgB3IUfynCO2iIjIViye2EpOTgYAdOnSxWyfwttYZ6tscnJyMGzYMEycOBG7d+/G7du3kZeXh+vXr+PXX39F7969jQlDIrK8G3ezERGTLGmzy9FaOfeBvUXuFbVbAu3GyxIOERHZoaJTEQF4IFvynKsiEhGRrVh8VcScnBwIggA3N/N1WlxcXIyPc3NzzfazJy+++CL+85//mN3u6upaqeM/99xz2LFjBwCgf//+mDVrFvz9/XHmzBksXLgQsbGxWLBgAerVq4dp06ZV6lxEZOrXo9chPqgZD3e1CsPb15MvoIoK/wjITpW2Df4QUCiL709ERFSUgwsgKAHxwXRDt6KJLU5FJCIiG7F4Yqu8xMJ/KdoxPz8/tGnTxirH3rdvH9auXQsAGDFiBDZt2gSlMv+P0JCQEIwcORKdO3fG9evX8eabb+Kxxx5DrVq1rBILUU2Ukas1mYY4rlMDuDjKfgstn9vngWPLpG3Bw4FmA+SJh4iI7JMgAGoPIOeesclNzATw4INcTkUkIiJbsfhURLK8zz//HACgUqmwZMkSY1KrgK+vLz755BMAwP379/Hjjz/aPEai6mzNsevIyNUZnwsC8HQPO5uGKIrAzjckn65D6QQM+q98MRERkf0qMh3RVcySPGdii4iIbMVqww2WLFkCPz8/i/SbP3++pcKyOxkZGdi7dy8A4OGHH0aDBg2K7Td27Fh4eHggPT0dmzZtwpw5c2wZJlG1pdEZsPxgvKRtUKs6CKxtfrp1lXT+T+DqAWlbr1mAd1N54iEiIvtWJLHlYsgE8OA9PaciEhGRrVgtsfXdd9+VuF0QhDL1A2p2Yuv48ePQaDQAgNDQULP9HB0d0b17d+zatQvHjx+HVquFg4ODrcIkqrY2n0rA7fQ8Sdv00ECZoqkgTTaw611pm0cDoPer8sRDRET2r0hiy9mQKXnO4vFERGQrVpmKKIqixb7sxYYNG9CqVSu4uLjA3d0dzZs3x6RJkxAWFlap454/f974ODg4uMS+Bdt1Oh0uX75cqfMSEWAwiPghIlbS1rWpNzo1srMadoe+BNJuSNsG/xdwdCm2OxERUamKJLbUuiKJLU5FJCIiG7H4iK3KJnLsVeEEFABcuXIFV65cwc8//4zRo0dj1apV8PQ0XRq5NDdv3jQ+NjcNsUDDhg2Nj2/cuIFWrVpV+FzFSUpKMj7Oy8tDTk5OuY5P9q3wCqbVZTXT0uy9mIzYZGnNkOd6NLCra1+4fw1OB7+EUKhN36gXNE0HA+X8PmriNUAP8PUnXgM1W9HX30HlJvlDwkFzX9pfq7Or35dUOt4Daja+/pSXl1d6J5lYPLFV0nS56sjFxQUjR47EgAEDEBwcDDc3NyQnJyMiIgLff/89UlNTsXnzZowaNQq7d+8u9/TAjIwM42M3t5Jr+ri6PliJJjMzs4SexSucGCvN0aNHERsbW3pHqpb2798vdwg28eVZJVAoJVTPWURu3Ensije/T1UTEvcV/PUPfgkZoECEy1Bk7N5dqePWlGuAisfXn3gN1Gz79+9H61v30KxQW/rtq5I+mTl52LVrl03jItvhPaBm4+tfM6WkpMgdgll2tlZ91ZOQkAAvLy+T9oEDB2LmzJkYMmQIoqOjERERge+++w4vv/xyuY5fOBvu6OhYYl8nJyfjY35CRlQ5selAfIYgaRtQ3wBBMLNDFVQ7/Sz8005I2q7WHoAM57InsYmIiIqjVUqnszsbpO89ORORiIhshYmtSiouqVWgTp062LhxI4KDg6HVarF48eJyJ7bUarXxcUEReXMKDw10dnYu13mA/OmLJUlKSkLXrl0BAN26dUNgoJ0V0KZKyc3NNX4607dvX8m1WR29uOY0gFTj83qeTnjj8R5wUFqlNKHl6bVwWvl/kibR2Rv1Ji5GPbVXhQ5Z064BkuLrT7wGarair7/r2evArT+M2/3cVYV/bUInChg0aJCtwyQr4j2gZuPrT1V5xhYTW1YWEBCAgQMHYseOHbhy5QoSExPh7+9f5v3d3d2Nj0ubXpiV9aAWUGnTFotTWg2vwpycnCqUPKPqQa1WV+vXP+Z2BsJjUiVtz/cJhIebq5k9qqAjK4BU6SISwsPvwblWPYscvrpfA1Qyvv7Ea6BmU6vVcHT3lbQ5FikebxABB0cnqOzlAyEqF94Daja+/jVT4RliVQ1/09hA4SLuCQkJ5dq3cLKptOLuhUdcladeFhFJ/RARJ3nu6eyACSF29DOVeQcI/1jaVq890PFpeeIhIqLqp8iqiEpNukkXroxIRES2wMSWDQiVKMpTOCl28eLFEvsWbFepVGjevHmFz0lUkyXez8Gfp6QJ6Ek9GsPVyY4GuO55H8gr8gfGkM8AhVKeeIiIqPopkthSFP29Aya2iIjINpjYsoHz588bH5dnGiIAhISEGIvGR0REmO2n0WgQGRlp3Ke8qy8SUb7lB+OhM4jG52oHBSb1bCJfQOV18wRwarW0rd3jQKNu8sRDRETVU5HElpCXDgHSRFaeTm/LiIiIqIZiYsvK4uPjsXv3bgBAYGAg6tevX6793d3dMWDAAADAnj17zE5H/OOPP5Cenv9J2ZgxYyoRMVHNlZatxZpj1yVt47s0hI9b1Z1PLmEwADvnSNsc3YCB78sTDxERVV9FE1sQ4YZcSVueliO2iIjI+pjYqoStW7dCp9OZ3X779m2MGzfOuJrhf/7zH5M+q1atgiAIEAQBCxYsKPY4r7/+OgBAp9NhxowZ0Ouln36lpKTgzTffBJC/SuPUqVMr8u0Q1Xi/RF5FtubBz5dCAKb2DpAxonI6/RuQcELaFvoG4F5XnniIiKj6KpLYAgB3ZEuecyoiERHZgh0Vjal6Zs6cCa1Wi3HjxqFHjx5o0qQJnJ2dkZKSgvDwcPzwww9ISUkBAPTu3RszZsyo0HkeeughPP7441i7di22bNmCgQMH4pVXXoG/vz/OnDmDDz/8ENev548y+eSTT1CrVi2LfY9ENUWuVo+Vh65K2oa180cjHxd5Aiqv3DRgzwJpm08zoNuLsoRDRETVnKMbAAHAg+n7vqocJBb6zJdTEYmIyBaY2KqkxMRELF68GIsXLzbbZ9y4cfjxxx8rtTzmihUrkJ6ejh07diAsLAxhYWGS7QqFAvPmzcO0adMqfA6immzDiZtIzdJI2qb3taPRWhGfAlnJ0rZHPgFUjvLEQ0RE1ZtCAag98j9Y+ZePKgeQJLY4YouIiKyPia1K+OmnnxAREYEjR44gLi4OKSkpSE9Ph5ubGxo2bIiePXti0qRJ6NGjR6XP5ezsjO3bt+O3337DqlWrcPr0ady/fx916tRBnz598NJLL1nkPEQ1kd4gYtn+OElbn+a+aFPfdJpFlZR8CTj6vbStxVCg+cPyxENERDWD2lOS2PJWssYWERHZHhNblRAaGorQ0NBKHWPy5MmYPHlymftPnDgREydOrNQ5iUhq59kkXL8rrQvyQmigTNGUkygCO98ADIU+Ilc6AoM/lC8mIiKqGYrU2aqlKFpji1MRiYjI+lg8nohqNFEU8X1ErKStbX1P9Az0kSmicjq9BogLl7b1nAl429E0SiIisk9qL8lTL5PEFkdsERGR9TGxRUQ12uHYVJxNSJe0vRAaCEEQZIqoHNKTgL/mStvc/YE+s+WJh4iIapYiI7Y8hRzJc47YIiIiW2Bii4hqtKKjtRr7uOCRNnVliqYcRBHY/pqktgkAYPj/AEdXeWIiIqKapUhiy0MoMmKLNbaIiMgGmNgiohrrbEIaDlxOkbQ93ycASoUdjNY6+ztwaYe0re14oMUj8sRDREQ1j0liK0vynFMRiYjIFpjYIqIaq+hoLV83RzzauYFM0ZRDZjKwY460zbU2MOQTeeIhIqKayclD8tRNZPF4IiKyPSa2iKhGup6ajR1nkiRtz/ZqCrWDUqaIymHnHCDnrrRt2CLAxVueeIiIqGYqMmLLTZSO2NJwxBYREdkAE1tEVCMtOxAHg/jguaujEk91ayxfQGV1fgtwbpO0rdWo/C8iIiJbKpLYchUzJc85FZGIiGyBiS0iqnFSMvOwPuqGpO2Jro3g6eIgU0RllH0X2F5kxUNnb2Do5/LEQ0RENVuRxJaLgTW2iIjI9pjYIqIaZ9mBOMmbbQelgCl9msoYURn9NRfIuiNtG/Ip4OYnTzxERFSzmSS2iozY0rLGFhERWR8TW0RUo9xKy8WqQ1clbaM61Ec9T2d5AiqrS38B/6yTtgUNAdo+Kk88RERERRJban0WgAfz/Dlii4iIbIGJLSKqUb7ed1nyRlupEDCjfzMZIyqDnPvAtlekbU6ewPD/AYIgR0REREQmiS0F9HBBnvE5E1tERGQLTGwRUY0Rn5KFdceltbUmhDREU19XmSIqo13vAhnSFRzxyELAo5488RAREQGA2sOkyQMP6mzl6TgVkYiIrI+JLSKqMb7YHQN9oaUQnVQKzBrQXMaIyiB2HxD9i7QtcADQ4Ul54iEiIirgVExiS8g2Ps7TcsQWERFZHxNbRFQjnE1Iw9bTiZK2yb2aoI6HWqaIyiAvA9jysrTN0Q0Y8RWnIBIRkfwUSpPklnTEFhNbRERkfUxsEVGN8PmuS5Ln7moVXgwNlCmaMtqzAEiTTp3EwA8Ar4ayhENERGSiSJ0tyYgtTkUkIiIbYGKLiKq9yLhUhF9KlrS9EBoILxdHmSIqg6sHgeM/Stua9AE6PytPPERERMUpmthC4cQWR2wREZH1MbFFRNWaKIr49K+LkjZfNyc826uJPAGVhSYb+PMlaZuDCzByMaDgbZuIiKoQkxFbhaYissYWERHZAP9CIqJqbe+FOzh5/b6kbdaAZnBxVMkTUFns+y9wL17aNuA9wLupPPEQERGZUySx5Y4c42NORSQiIltgYouIqi29QcRnf0trazXydsGEkEYyRVQGN44BkUukbQ27A12nyRMPERFRSUoascWpiEREZANMbBFRtfXnqQRcup0haXttYBAcVVX01peXCWx6AYD4oE2lBkZ9wymIRERUNZmsisgaW0REZFtVeC4OEVHFaXQGfLE7RtIWXNcdI9v7yxRRGex8E7gbK23r/zbg21yeeGRyNe0qYu7FwAD+QVSVaDQanNGcAQAINwQ4OlbhxRfIKngN1GwFr79aUKOPrg+c4Zy/oYQRWxomtoiIyAaY2CKiamnNseu4eS9H0vbGIy2gUAgyRVSKs78Dp1ZL2+p3AbrPkCceG0vNScXO+J3YGrcV51PPyx0OlWLdkXVyh0Ay4zVQsx3YcwBrhq+Bi4NLKasissYWERFZHxNbRFTtZOXpsHjfZUlbl8a10L+Fn0wRleLeNWDrK9I2R3dg3I+AsvrepnN0OQi/EY6tsVtxOPEw9CL/ACIisgdx6XHYn7AfjzR5pJgRWw8SW1q9CL1BhLKqfqhERETVQvX9i4mIaqwVB+ORkqmRtL05JBiCUAXfWOt1wO9Tgbx0afvwL6rlKogG0YDjt45ja+xW7Lm+B1narNJ3IiKiKudq2tX8ByYjtqT3dY3OAGdHpY2iIiKimoiJLSKqVu5labB0f5yk7aFgP4Q08ZYpolJEfALcPCZta/c40G68PPFYyZV7V7A1biu2x23H7ezbpfb3VnvDW11FX7MaymAwIDMzEwDg5uYGBRc0qHF4DdRsydnJSNOkGZ8nZSXlPyiS2HIXpGUA8nR6JraIiMiqmNgiomrlu4hYZOTpJG2vD2ohUzSluHoIOPC5tK1WE2DY58V2tzeiKGJH/A78dO4nXLh7odT+zipnDGg0ACMCRqBbvW5QKviHUFWSk5ODXbt2AQAGDRoEZ2dnmSMiW+M1ULN9f/J7fHvmW+PzhMyE/AfFjtgSAeSPkubKiEREZG1MbBFRtZGUloNVh69K2kZ18Ecrf4/id5BT9l3gj+cBsdAbfoUKGLcCcHKXLy4LEUURi6MXY9mZZSX2UwgKdKvbDSMCR2BAowH5hYiJiKjKqedaT/I8MTMx/4Fa+jvWUdBDDQ1y4QQAyNMysUVERNbFxBYRVRtf770sWVpcpRDw2sAgGSMyQxSBrS8D6QnS9v7vAA06yxOThX1/+vsSk1pBtYIwImAEhgYMhZ9LFS3qT0RERkUTW0lZSTCIBijUXiZ9PZD9ILHFlRGJiMjKmNgiomohNjkT66NuStoe79oQjX1cZYqoBCdWARe2Stua9gV6vSJHNBa37J9lWHJ6iUl7befaGBYwDMMDhqOFdxWdHkpERMWq5yJNbOkMOiRnJ6OO2sekr4eQhTtiLQCcikhERNbHxBYRVQtf7IqB3iAan6sdFHj5oeYyRmTGnYvAX29J25y9gTFLgWpQiHnl2ZX4Ovprk/a3u72N8UHjWTeLiMhO+ah9oIIKOjyoY5mYlYg6rnUARzdAk2ls90C28TFHbBERkbXZ/19RRFTjnbmZhu1nkiRtz/VqCj8PtUwRmaHNBX6fAuikK0Zh9BLAo17x+9iRX87/gi9OfGHSPq/7PDwR/ASTWkREdkwQBHgpvCRtZgvIC1nGx6yxRURE1sbEFhHZvU//vih57qFWYXrfQJmiKcGe94DbZ6VtIc8DLYbIE48Frbm4Bp8e/9SkfW7XuRjfYrwMERERkaUVTWw9KCBfdGXEwiO2mNgiIiLrYmKLiOza/phkHLicIml7sV8zeLo4yBSRGTF/A0e/l7b5tQIG/Z888VjQhpgNWHh0oUn7611ex5Mtn5QhIiIisoYyJ7YETkUkIiLbYWKLiOxWrlaP+X9KR0D5uTthcs8m8gRkTsYtYPOL0jaVGhi3HHBwlicmC9l0eRM+OPKBSfsrnV7BpNaTZIiIiIispZailuQ5R2wREVFVwMQWEdmt7yNicTU1W9L22sAgODtWoVpOBgOw6QUgO1XaPui/QJ1W8sRkIVtjt+K9w++ZtL/U4SVMaTtFhoiIiMiaTEZsZf2b2HLykLRLRmyxxhYREVkZE1tEZJeupmRhSXispK1TIy+M79JQpojMOPINEBcmbWsxDAiZKk88FrL7+m68e+hdiBAl7dPbTcf09tNlioqIiKyp6IitpMwkGERDMSO2ChWP51REIiKyMpXcARARlZcoipj351loCk1vUCoE/Hd0WygUgoyRFZFwEthbZJqeez1g5GJAqEJxltM5zTmsP7o+/4+ZQqa0mYIZHWbIFBUREVlb0RFbGoMGqTmpqF1ijS2O2CIiIuviiC0isjvbzySZFIyf3LMJWvl7mNlDBlkpwPpnAIO2UKMAjF0KuPrIFlZlXdBewLrsddCL0k/gJ7WahFmdZkGw44QdERGVzE1wgxLS6f4JmQmljNhiYouIiKyLiS0isisZuVp8sPW8pK2uhxqvDgySKaJi6DT5Sa20G9L23q8CTfvKE5MFHEo6hLVZa2GA9I+UJ1s+idldZjOpRURUzSkERfErI3LEFhERyYiJLSKyK1/sjsGdjDxJ2/wRreDmVIVmVv81F7h2SNrWsDvQ/2154rGAfdf34Y1Db0AP6UitCS0m4M2QN5nUIiKqIYotIF8kseUuWRWRNbaIiMi6mNgiIrtxNiENPx2+KmkLDaqNIW3qyhNQcaJWAFHLpW0e9YEJvwBKB3liqqRtcdvwWvhr0EqmVQLjmo/D293eZlKLiKgGKfeILa6KSEREVsbEFhHZBYNBxLubz8JQaBE+J5UCH4xqXXUSK9cOAzvmSNtUauDxXwE3P3liqqT1l9bj7QNvm9TUGtZkGOb3mA+FwF8jREQ1SdGVEYtNbIFTEYmIyHaq0NwdIiLz1hy/jlM37kvaZvRvhsY+rvIEVNT9G8C6pwGDTto+6lvAv6M8MVXS8jPL8eXJL03aOzt2xrtd3mVSi4ioBio6Yqu44vFOghZO0CAPjpyKSEREVsfEFhFVeSmZefhk50VJW4CvK6aHBsgUURGabGDtRCBbulIjer0CtH1UlpAqQxRFLI5ejGVnlpls6+XUC4+oH4FSoSxmTyIiqu6KJraSspIgOnmg6NhpD2QjGY4csUVERFbHxBYRVXkLd1xAeq50JNT/jW4DJ1UVSK6IIvDnDODWP9L25oOAAfPliakSDKIBHx/7GGsurjHZNq31NDS82bDqTP0kIiKbKzoVMU+fh1RRB98i/TyELCSLXqyxRUREVsd5JERUpUXGpeKPkwmStpHt/dGrWdG30DI5+AVw7g9pm09zYNyPgJ2NatIZdJh3aF6xSa03Qt7A1NZTmdQiIqrh3AV3KAXp77fE3GTAwUXSVlBni1MRiYjI2pjYIqIqS6Mz4N3NZyVt7k4qvDu8pUwRFXHpL2Dv/0nbnDyBJ9aY1Bup6jR6DeZEzMGW2C2SdgEC3u/5Pp5u9bRMkRERUVWiEBSo6yJdjTgxy7SAvLtQkNjiiC0iIrIuJrYqKSoqCh988AEGDRqEBg0awMnJCW5ubggKCsKzzz6LgwcPWuQ8CxYsgCAIZfoKDw+3yDmJ5Lb8YDyu3MmUtL0+uAX83NUyRVRI8iXg96kACi3TCAF4dDng21yuqCokW5uNmftmYs/1PZJ2laDCp6GfYmzzsTJFRkREVVE913qS5yWtjMjEFhERWRtrbFVC3759ceDAAZN2jUaDy5cv4/Lly1i1ahWeeeYZLFu2DI6OjjJESWSfbt7Lxtd7L0va2tb3xFPdG8sUUSE594A1TwCaDGn7wwuA5gNlCamiMjQZmLF3BqLvREvanZRO+KLfF+jboK9MkRERUVVVpsRWwYgtLaciEhGRdTGxVQmJiYkAAH9/fzz22GPo06cPGjVqBL1ejyNHjmDRokVISEjAzz//DK1Wi99++80i5z1z5kyJ25s2bWqR8xDJacGW88gp9GZYEIAPx7SBUiFzjSeDHtg4BbgbK21v+xjQa5Y8MVXQ3dy7eGH3C7hw94Kk3UXlgm8GfIOQuiEyRUZERFVZPRdpYishMwFw8pC0eSALQH5ZASIiImtiYqsSgoODsXDhQowbNw5KpbSIZvfu3fH000+jV69eiImJwZo1a/DCCy+gb9/Kj35o06ZNpY9BVJXtPn8bey7clrQ91a0x2jXwkiegwva8B8TulbbVaw+MXJyffbMTt7Nu4/ndzyM+LV7S7unkie8GfIe2tdvKFBkREVV1RUdsJWUmAWofSZsHa2wREZGNsMZWJWzbtg3jx483SWoV8PX1xaJFi4zPN27caKvQiOxWtkaHBVvOSdp83Zzw+uAWMkVUyOl1wOHF0jZXP+Dx3wAHZ3liqoDL9y7j6Z1PmyS1fJ19sXLwSia1iIioRCZTEbMSIZoZscXEFhERWRsTW1bWv39/4+PY2NgSehIRAHy99woS7udI2t4d1hKezg4yRfSvG8eBLTOlbQoHYMIvgGcDeWKqgIMJB/H0zqeRlJUkafd39cdPj/yE5rXsq/A9ERHZnr+Lv+R5ji4H9xylH/A8GLHFGltERGRdTGxZWV5envGxuZFdRJTvzM00/HggTtLWM9AHozr4m9nDRu5cAH59FNDnSduHLQIadZcnpgpYe3EtZuydgSxtlqS9iUcT/DTkJzTyaCRTZEREZE98nX2hFKTvaxOV0un47lwVkYiIbISJLSuLiIgwPm7ZsqVFjjlo0CD4+fnB0dERfn5+6NevHz7++GPcu3fPIscnkkO2RodZa6OhM4jGNgelgA9GtYEgZ+2qe1eBX8YAufel7V2nAZ0nyRFRuekNenxy7BN8ePRDGETpHxjtarfDqkdWoa5rXZmiIyIie6NSqEx+byQK0t8vBSO2NDoDRFEEERGRtbB4vBUZDAZ8/PHHxufjx4+3yHF3795tfJycnIyIiAhERETgk08+wapVqzBq1KgKHffmzZslbk9KejB1KS8vDzk5OSX0puomNze32MeWsmDrRcSlSEcSPd+rMeq7K+W71jLvwOnXUVBkSKft6Zv2h6bvPMAOfgaytFl4N/JdHEo6ZLJtYMOBmBcyD2qoy/R/bO1rgKo2vv7Ea6BmK/r613Wum78a4r+u66S/Rzz+HbEFAGmZWXBSceaCveM9oGbj60+FZ6NVNYLIj1CsZtGiRXj99dcBAGPHjsXvv/9e4WMtWLAAf/zxB0aPHo2uXbvC398fWq0Wly5dwq+//opdu3YByJ/uuHXrVgwZMqTc5yjPqJgff/wRvr6+5T4HUXHO3BXw4yXpG97GbiJmtdZDKdO4UpUuC70vL4Rn7g1Je6prcxxp9gb0Cid5AiuH+4b7WJ25GrcMt0y29XPqh4fUD0EhcOAuERGV3+/ZvyNaE2183g/NsDh+n/H5bdEL3fKWAAA+CtHBhR+nExHZtZSUFEydOhUAcOPGDTRoUHXqDPNXjJVERERg7ty5AAA/Pz989913lTreK6+8ggULFpi0d+vWDc888wx++OEHvPDCC9Dr9Zg6dSpiY2OhVqsrdU4iW0jTAGtipckVR4WIp5vJl9RSGvLQPe4Lk6RWmrohjga8ZhdJrQRdAlZnrUaGmCFpV0KJ0S6j0dGxo0yRERFRdeAleEmepwjST/ILj9himS0iIrImJras4Ny5cxgzZgx0Oh3UajU2bNgAPz+/Sh3Ty8urxO3Tp0/H8ePHsXz5ciQmJuL333/Hk08+Wa5z3Lhxo8TtSUlJ6Nq1K4D8hFpgYGC5jk/2LTc3F/v37wcA9O3b1yKJU4MoYtqvp5Gluytpnz+8JcZ1lKlgvF4Dxz8mQ5l1WdJs8GoCxye3oL9b5X6WbSHsZhhWHF2BPFH6R4anoyc+7fUpOtauWFLLGtcA2Q++/sRroGYr+vprkjQIOx5m3J7jIu3vLGjgCC00cECP3n1Q30u6aiLZH94Daja+/hQbGyt3CGYxsWVh8fHxGDRoEO7duwelUom1a9eib9++Njn39OnTsXz5cgD5I8bKm9gqz1BCJycnODvzDUpNpVarLfL6rzgYj0Ox0qTWI63r4skeAfIUjDfogT9mAHH7pO1udaGY9CecazW2fUzlIIoiVp1bhf+d+B9ESGeZN/Fogm8HfGuxlQ8tdQ2QfeLrT7wGaja1Wo0m3k0kbUl5KRABFP7t7Y5spMITUDryeqlmeA+o2fj610xOTlV31goTWxaUmJiIhx9+GImJiRAEAStWrKhwIfeKaNWqlfFxQkJCCT2J5HfxVjo+/uuipK2OhxM+GttWnqSWKAI75gBni9TCU3sBT28CajWxfUzloDVo8WHkh/j9smktv651u+KLfl/A08lThsiIiKg68neTjqzO1uUgTaGAl+HBvEMPIRupoifydHpbh0dERDUIE1sWkpKSgoEDByIuLg4AsHjxYjzzzDM2jUGWZABRBeRq9Zi15hQ0RYpuLHqsA2q5OsoT1L7/AlHLpW0OrsCTG4E6rYrfp4pIy0vD7IjZOJp01GTbmGZjMK/7PDgoHWSIjIiIqis/Fz8oBAUM4oPf5YlOLvDKyTQ+d/+3zlYei2wREZEVcTksC0hLS8PgwYNx/vx5AMDHH3+MGTNm2DyOgvMDgL+/TPWJiMrg078u4dJtaVHzqb2bondzmVbaPPwNcOBzaZvCAXh8NdAwRJ6Yyuji3Yt4YvsTxSa1Xun0Ct7v+T6TWkREZHEOCgfUcakjaUt0dpc89xD+TWxpmdgiIiLr4YitSsrOzsawYcNw8uRJAMA777yDN998U5ZYfvjhB+Pj0NBQWWIgKs3+mGSsOBQvaQuu6445j7SQJ6Do1cCud6RtggIY9yMQ+JA8MZWBKIr4/fLv+OjoR9AYNJJtaqUaC/ssxMDGA2WKjoiIagJ/N38kZSUZnyc4SWvueCALADgVkYiIrIojtipBo9FgzJgxOHToEABg1qxZ+O9//1vu46xatQqCIEAQBCxYsMBk+5kzZ3DlypUSj7F06VL8+OOPAIC6detizJgx5Y6DyNruZmkwe8NpSZuTSoGvn+gIJ5XS9gFd2AZsmWnaPvxLoPVoW0dTZtnabLxz8B28f+R9k6SWr7MvVj6ykkktIiKyOn9X6QyBRAfpCGHjiC1ORSQiIiviiK1KeOKJJ7Br1y4AwEMPPYQpU6bg7NmzZvs7OjoiKCio3Oc5ceIEpk6div79+2PIkCFo27YtfHx8oNPpcPHiRfz666/GOJRKJZYuXQpXV9eKfVNEViKKIt78/R8kZ+RJ2t8e2hJBddzN7GVFcRHAxmcBscib7YffBzpPsn08ZRR7Pxazw2cjNs10ud12vu2wqN8i1HWtK0NkRERU0xQtIJ+olH5m/mDEFhNbRERkPUxsVcIff/xhfLxv3z60a9euxP6NGzfG1atXK3QuvV6PPXv2YM+ePWb7+Pj4YPny5RgxYkSFzkFkTWuP38Du87clbf1a1MYzPRrbPphrh4G1EwG9dLQTer0C9H7F9vGU0ba4bfjgyAfI0eWYbHuq5VN4rfNrrKdFREQ2U9+tvuR5oiBNYBWM2Cq6WAwREZElMbFlB4YOHYrly5fjyJEjiI6Oxu3bt5GamgpRFOHt7Y327dvjkUceweTJk+Hh4SF3uEQm4pIz8cHW85I2H1dHfPpoO9uv5nl5D7DuKaBocqjTJODhBbaNpYzy9Hn45Ngn2BCzwWSbm4MbPuj1AaceEhGRzZmM2IL0AyMP46qIrLFFRETWw8RWJYiiaJHjTJ48GZMnTza73c/PD8899xyee+45i5yPyJa0egNeWXcKOVrpm9pPH20HP3e1bYM5txn4fSpg0ErbW40Ghv8PsHWSrQxupN/A7IjZuHD3gsm2YO9gLApdhEYejWSIjIiIarqiNbYyRT3SFQI8DPnvkd25KiIREdkAE1tEZFVf7onBPzfTJG1PdW+EAS3rmNnDSqJ/Bba8ZFpTq8UwYOxSQCFD8fpS7L22F/MOzUOGNsNk26NBj+LNkDehVtk4OUhERPSvuq51IUCAiAcf9iaqVPDQ5H+A9GDEFhNbRERkPUxsEZHVHI1LxZJwaZHzwNqueGdoK9sGEvk98Nebpu3tJgCjvgWqWF0qrUGL/534H345/4vJNmeVM+Z1n4cRgaylR0RE8nJQOsDPxQ+3sx/U0ExQqRBckNgSCorHcyoiERFZDxNbRGQVd9JzMWvtKRSeseugFPDV4x3h7Gij0VGiCBz4HNj3X9NtXaYAQz8HFArTbTJKykzCnP1zcDr5tMm2AM8AfNHvCwR6BcoQGRERkan6bvUlia1E1YM/Lzhii4iIbIGJLSKyuFytHs//cgK30nMl7bMHtUCb+p62CUIUgd3zgcNfm27r9Up+ofgqVFNLFEVsjduKj45+hExtpsn2YQHDML/7fLg4uMgQnW0YNBpoYmORe+kSdElJFqtjSJah0+rgfeUKAOD+1WvIdOBbiJqG10DNVvD6691coe/SBaifvyJiPbd6wJ0H/RJVDz688mCNLSIisgG+IyEiixJFEW9s/Aenb9yXtPcI8MHzfQJsE4RBD2yfDZxYabptwHygz2zbxFFG93Lv4YMjH2DP9T0m2xwVjpjbbS4ebf6o7VeQtBJRFKFLTkbepRjkXbqI3EsxyLt4EXnx8YBOJ3d4VALff/+9v3u3rHGQfHgN1GwFr3/ikUgEbtsGpZurSQF56YgtTkUkIiLrY2KLiCzqm31XsOV0oqStobczvn2yE5QKGyRm9Fpg84vAmQ2m24Z8BnSbZv0YymH/zf2Yf2g+UnNTTbY1cGuARf0WoZWPjWuSWZCo1yPv0iVj8io35hLyLl6C/t49uUMjIqIK0t+6hbQ/N8P7ySdR362+ZFvhxJarkAcVdJyKSEREVsXEFhFZzM4zSVi0O0bS5uakwvJJIfB2dbR+ANpcYOOzwKUd0nZBkV8kvsNE68dQRtnabHwW9Rk2xmwsdvvIwJGY23Uu3B3dbRyZZYhaLdL+/BMp330PbUKC3OEQEZGFZR+PgveTT8LfTTpiK0El/fPCDTlMbBERkVUxsUVEFnE2IQ2vrj8laVMIwOKJHRFUxwbJmbxMYO0TQPx+abvCAXh0OdBqlPVjKKNTd07h7YNv40bGDZNttZxq4b0e72FA4wEyRFZ5ok6HtG3bkLLkO2ivX6/QMRwaNIBjYAAUjjZIhlKZ6fV63L6dX0inTh0/KJU2WgSCqgxeAzWb5tZt5J05Y3yeffw4RFE0SWxlKBXIEAS4/1sn0UPIRp6WUxGJiMh6mNgiokq7k56LqT9FIbdIcdi3h7ZE/xZ+1g8g5x7w62PAzePSdpUz8PhqoNnD1o+hDLR6Lb47/R2Wn10Og2j66XXfBn3xfs/34evsW8zeVZtoMCB9x06kfPstNPHxZdpHcHGBunlzOAUHw6lFENTBwXBq3hxKd/scpVbd5eTk4NSuXQCAtoMGwdnZWeaIyNZ4DdRs6TExSBj54EMifWoqNHFxqNekoUnfRJUKLbRaAPl1tjhii4iIrImJLSKqlFytHs//HGWyAuLjIQ0xpXdT6wdw/zrw2+PAnXPSdicPYOJ6oHEP68dQBlfuXcHbB9/GhbsXTLY5q5zxRsgbGNd8nN0ViBcNBmTs3oOUbxYj7/IVs/0c/P3h1Kol1EEt4BTcAuoWLeDQsCEEhcKG0RIRUUWpGjSA1tMTDmlpxrbs48dRKzAQfs5+uJPzYGnERIdCiS0hm8XjiYjIqpjYIqIKE0URczb+g9M30yTt3Zp644NRbayfpLl6CFj/NJBdpPC6szfw9CbAv4N1z18GBtGAX87/gq9Pfg2NQWOyvUPtDljYeyEaeph+4l2ViaKIjH37kLz4G+RdME3WFVC3b4faL78M15497S5pR0REDwiCgJyApnCIPmVsyz52DLUefxz+bv7SxJbqwTRVD2TjNkdsERGRFTGxRUQVtnjfFWwtsgJiI28XfPdUZziqrDwS5/hyYOcbgEEnbXevBzy9GfALtu75y+BG+g0sOLIAx24dM9mmUqgwo8MMPNv6WSgVdlSnRhThEhODpJ9/gebcObPd1K1awfflmXALDWVCi4iomsgOCIBHocRW1r91tuq51cOp5AfthVdG9BCycF3LxBYREVkPE1tEVCHb/0nCF0VWQHR3UmH5pC7WXQFRp8lPaJ1YabrNpznw5AbA2wZTIEug0Wuw/Oxy/PjPj8WO0mrm1Qwf9fkIwd7yJ9/KShRF5ERGouF338P52jWYflf5nIKC4DvzJbg//DATWkRE1UxOQIDkuT45BZr4q6jvVl/SLklsIRsaPRNbRERkPUxsEVG5nUtMx+wNpyRtCgH4emJHNLfmCoiZycD6Z4Drh023NR8EjPsRUHta7/xlEJkUiQ8jP8TV9Ksm2wQIeKbVM5jZaSaclE62D64CRL0eGXv2InXpUuSeOwdzpaIdAwJQe+ZLcB88mHWziIiqKa2PD3QeHlClpxvbso8fh39H6cqICUVGbLHGFhERWRMTW0RULmka4MO1/5isgPjOsFbWXQEx6R9g7UQg7Ybptt6vAg/NA2Sc0peSk4JPj3+KnfE7i91ez7UePuz9IULqhtg4sooRNRqkbd2K1B+Xl7jKoUPjRqg9YwY8hg2DoLSjKZVERFR+goDsgKbwOHXa2JR97Bjq9x4r6ZZUqMaWO3KQx6mIRERkRUxsEVGZafTAsotK3MmSTkR7omtDPNerifVOfG4TsOlFQJcjbVepgVHfAm0ftd65S6E36LHu0josjl6MTG2myXaFoMDE4ImY0WEG3BzdZIiwfAxZWbi3YQPurlwF3e3bZvup/P1Re8Z/4DlqFAQVf5UQEdUUOQEB0sTW8eOo6/ofSZ/7SiWyBAGuovjviC0mtoiIyHr41wgRlYkoivgtVoEbWdK6Sd2aeuP9kVZaAdFgAMIXAvs/M93mUR94/FfAv6Plz1tG51LO4YPID3A+9Xyx29v5tsO8HvPsopaW/v593F39K+798gv0aWlm+2l8fHAvtC+6zp0LFw8PG0ZIRERVQXaROlu6O3dQN1Vr0i9RpUJzrRYeyOZURCIisiomtoioVKIo4st9cYhOldZOauzjgu+ttQJibjqwaTpwaYfptobdgQm/AG5WnPpYgnRNOhafXIx1l9ZBhGiy3d3RHa92fhXjmo+DQqja9aa0t2/j7spVuLd+PcTsbLP9nIKD4T5pEg6LBkCphODgYMMoiYioqtD6+kLh4wNDaqqxTXfyH/g6+yIlJ8XYlqRS5ie2hGzkaQ0QRZGLihARkVUwsUVEJRJFEZ/+fQlLD16TtBesgFjLGisg3o0D1jwBJF803dbpGWDo54DK9sXXRVHEjvgd+Oz4Z0jNTS22z8jAkXit82vwcfaxcXTlkxcbi9SVK5H25xZAa/pJewGXLl3gM+15uPbpg9zcXGDXLhtGSUREVY4gQN25M7IL/T7IPnYc/v38JYmtggLyHsiCKAJavQhHFRNbRERkeUxsEZFZoihi4Y4LWHZAWjxcIQCLJ3ZEMz8rrIB4ZS+w8Tkg9760XVACQz4BQqYCMnzieyH1AhZFLcLRW0eL3R7gGYB3u79bpYvDi3o9MsPDcXf1amQfiSyxr1u/fvCZNg0uneSb6klERFWTSWLr+HH4D+uMf1L+MbYlFiS2hPzRwHk6vXVGeBMRUY3HxBYRFUsURXyw7TxWHroqaRcg4v3hLdHP0isganOBff8HHPnGdJuzNzD+J6BpX8ueswxuZNzAN9HfYEd8MVMiAaiVakxvPx2TWk2Cg7JqTs/T37+P+7//jnu/rYE2IcF8R6USHkOHwmfqVKhbBNkuQCIisivqLp0lz3W3biEwR/phV4JDwYitgsSWAVb4OIyIiIiJLSIyZTCIeG/LOfwSKZ1+KEDEE4EGPNrJ37InvH0e+H0qcOec6Ta/1sATvwG1mlj2nKW4m3sXS/9ZinWX1kFn0BXbJ7RBKOZ2nYsG7g1sGltZ5V66hHurVyNt6zaIublm+wmOjvB6dBy8n3sOjg2q5vdCRERVh0PTplD6+EBfqM5WYFwOUGjx3ySVEgDgLuRAAQNXRiQiIqthYouIJAwGEe9sPos1x65L2hUCMDHQgJDapsXSK3Ey4NgPwO73AH2e6fbg4cCYHwAnN9NtVpKtzcZP53/CqrOrkK0rvph6HZc6eKvbW3io4UNVrhCuqNMhY89e3F39C3KiTpTYV1mrFrzGj4f3009B5etrowiJiMjeCYIAl5AQZPz1l7HN9+IdoMuDPgVTEQHADdnI03JlRCIisg4mtojISG8Q8dYf/2B91E1Ju1Ih4JPRLeGQ9I+ZPSsgPQnY/CIQF2a6TekEDHwf6DodUNimHofWoMXvMb/j+9Pfmy0M7+bghiltp+DJlk/CWeVsk7jKSnf3Lu6vX497a9dBd+tWiX3VrVuj1lNPwWPoECicbF+En4iI7J9LSBdJYkt95ooksXVXqUS2IMBFFPNXRuSILSIishImtogIQH5Sa86G0/gjWlqDSaUQ8NXjHfFQcy/sslRi6/wWYOvLQM49021+rYFxy4A6rS1zrlKIooi/r/2NxScX43rG9WL7OCgc8ETwE3i+7fPwUnvZJK6yEPV6ZB0+grRNfyBj9x6IJaxuCJUKHoMHo9ZTT8K5Q4cqN9KMiIjsi2vXrtKGW8mofV+JZK8Hv1+SVEoEanXwBBNbRERkPUxsERF0egNeW38aW04nStodlAIWP9EJj7Spi5ycnMqfKC8D+GsuEL26+O09XgIemgc4qCt/rjI4lnQMX5z4AudSi6ntBUCAgBGBIzCjwwz4u1m4rlglaK5dw/0/NiHtzz9LHZ2lrO2LWuMnwGvCeDj4WbjgPxER1ViOzZpBWasW9PcefEjVNckF270evF9IVKkQqNXBQ8jiVEQiIrIaJraIajit3oBX1p7C9jNJknZHpQJLnuyEh1vVscyJbhwH/ngeuBdvus3dHxjzHRDQzzLnKoEoioi6HYVl/yzDkaQjZvv1bdAXL3d8GS28W1g9prIwZGUh/a+/cX/TH6XWzgIA5/bt86cbDh4EwdHRBhESEVFNYqyztWuXsa39TQdsbylNbAH5KyNyxBYREVkLE1tENZhGZ8DMNSfx97nbknZHlQI/PN0Z/VtYYISPXgfs/yz/Syzm09pWo4DhXwIu3pU/VwkMogHhN8Kx/Mxy/JNifkplO992eKXzKwipG2LVeMpCFEXknDiB+39sQvpff0HMLr6YfQHBwQEeQ4ei1lNPwbltGxtFSURENVXRxFZgvHR0d0JBYkvIgoaJLSIishImtohqqDydHjN+jcaeC9KklpNKgWXPdEHfoNqVP0nKFWDzC8DN46bbHN2BoZ8B7R8HrFjvSWvQYmf8Tqw4swKxabFm+zXxaIJZnWZhQKMBstef0t66hbTNf+L+pj+gvVZ83a/C1K1awXPsWHgMGwpVrVo2iJCIiAhwKVJnyz01B75pSqR45v8eTVIp89uRwxFbRERkNUxsEdVAuVo9Xlx9AmGXkiXtagcFlk8KQa9mvpU7gSYLOLAIOLwY0GtMtzfsBoxdCtRqUrnzlCBHl4NNlzfhp3M/ITEr0Wy/2s618WKHFzGm2RioFPLdEnX37iHj711I37ED2cePA6JYYn+llxc8Ro6A19ixUAcH2yhKIiKiB5yaN4PS0xP6tDRjW6vrIva3zU9sJRYasZWnY40tIiKyDia2iGqYpLQcvLD6JE7fuC9pd3FUYsXkEHQP8Kn4wUURuLAF+OttIP2m6XZBCfR7C+j9KqC0zu0nXZOOdRfXYfWF1bibe9dsv/pu9TG59WSMbjYaapVtitUXpc/MQubePUjbsQNZhw4DOl3JOygUcOvTB55jx8K9fz/WziIiIlkJCgWcQ7ogc89eY1t+Yiv/cQJrbBERkQ0wsUVUgxy/ehcvrj6JlMw8SburoxKrnuuKkCaVqHOVcgXYOQeI3Vf8du9AYOwyoEHnip+jpNPnpODn8z9j/aX1yNJmme3XzKsZprSdgkeaPCLLCC1Dbi4yI/YjfccOZIaHQ8zLK3Ufx6ZN4TVuLDxGjuTKhkREVKW4du1qktgqkKpSIlcQ4CFkI5OrIhIRkZUwsUVUA4iiiF+PXseCLeegM0inuLk7qbDqua7o3LiCtZk0WcD+z/OnHRq0ptsVKqD7f4DQNwEnt4qdowTnUs5h3aV12B63HRpDMdMe/9W+dntMbTsVfRv0hUJQWDyOkohaLbKOHEH69h3I2LMHhizzibcCCldXeAwdCs+xY+DcoYPsdb+IiIiK4xIiXWyl7n3AJ11EqseDOlseuiykcsQWERFZCRNbRNVcnk6P9/48h7XHb5hsa+zjgqVPd0GLuu7lP3Bp0w4BoGlfYOjnQO0W5T9+CbK12fjr6l9Yd2kdzqeeL7FvL/9emNJ2CrrU6WLT5JAhLw/ZR48iY89eZOzaBf39+6XuIzg5wa1/f3gMHQK30FAonJysHygREVElOLVoAYWnJwxF6mwdaPOgzpaHwKmIRERkPUxsEVVjt9Nz8cLqE4i+ft9kW9+g2lj8eEd4ujiU+7hC6hVg3zwgLqz4Du7+wOAPgdZjLLri4ZV7V7A+Zj22xm5FpjbTfHwQMKjJIExpMwUtfVpa7Pyl0d27h8yICGTuC0PmwYMQs7NL30mlgluvXvAYPgxu/R+C0s3V+oESERFZiKBQwKVzZ2Tue1CKID+xlf84QaVCG2SzeDwREVkNE1tE1dSJa/fwwuoTSM4wreH0Yr9AvD6oBZSK8iWdlPo8BN3+E06n/zY/7bDHDKDvGxabdqjRa7Dn2h6sj1mPE7dPlNhXpVBhVOAoPNvmWTT2aGyR85ca3/XryNi7D5l79yL75EnAUIZPpAUBLl27wmPYULgPHAhVrQpOAyUiIqoCXLqGSBJbLQvV2UpUKdFTyEKeliO2iIjIOpjYIqqG1hy7jvl/noVWL62n5eygxGePtcPwdv7lO6BOA+Wp1RhwYSGctWZWGgzoBwz5DKgdVLGgi7iRcQMbYzZi85XNJa5uCAB1Xevi0eaPYmzzsajtUtsi5zdHNBiQe+YMMvbuQ8a+vdBciS3zvur27eA5bBjcBz8ChzosAk9ERNVD0Tpb/veAWhki7rkLSFSp4M5VEYmIyIqY2CKqRjQ6AxZsPYffjl432dbQ2xlLn+6ClvU8yn5AbS4Q/Qtw8Es4mquj5VE/f9phq9GVnnaYo8tBxI0IbI7djMMJhyFCNNtXgIDe9XtjQosJ6F2/N5QKZaXOXRLd3bvIOnIEWYcPI3P/fuiTU8q2oyDAuWNHuD/UH+6DB8OxYUOrxUhERCQXdXAwFO7uMGRkGNtaXRdxqHVBYisHGm0xI72JiIgsgIktomriTkYu/rP6JKKu3TPZ1qe5L75+vCNquTqW7WDaHODET8ChL4GMpOL7KBz+nXY4p1LTDnUGHSKTIrEjbgf2Xt+LbF3Jdam81d4Y13wcxgWNQ323+hU+b0kMubnIPnECWYcPI+vwEeRduFDmfQW1Gq69esH9oYfg1i8UKh8fq8RIRERUVQhKZX6drfBwY1t+Yit/KqJCEAGN+dqYRERElcHEFlE1EH09v57W7XTTelrT+gbgjcEtoFIqSj+QJguIWgEc+hrIumO2m75xXyiHL6rwtENRFHE6+TS2x23Hrmu7Sp1qCAAhdUMwvsV4DGg4AA7K8he8LzEegwF5Fy/+m8g6jOwTJyHmmf5fmqP08YFb/35wf2gAXHt0h8LZ2aLxERERVXUuXbuaJLYAIFmlggaAMi9dnsCIiKjaY2KLyI5pdAZ8Fx6Lb8OuQKOX1q5QOyjwybh2GNWhDKOa8jKAY8uAI98A2almu6W4tsCleqPRaewrcHZxKXe8V+5dwY74HdgRvwMJmQml9nd3dMeowFF4rMVjCPAMKPf5zBFFEdqEBGQfPYqsQ4eRFRkJ/d3Sk2uFOQYG5o/Keqg/nNu3h6AoQ+KQiIiomipaZ6v+XcArU8R9NwFJKhVUWia2iIjIOpjYIrJTJ67dxdzfz+DyHdOh/fW9nLH0mc5o7e9Z8kFy04CjS4HIb4Ec0ymMRk37Iq/7Kzh08d9zlaOWVlJmEnZe3YkdcTtw6d6lUvsrBAW61e2GYQHDMKjJIDirKj/6SdTrkRcTg+wTJ5Fz8gSyo05Ad8f8iLTiCC4ucA0JgWuvnnDr2xeOTZpUOi4iIqLqQt0yGAo3NxgyH7wvaXldxJFWAhJUKqi0GSXsTUREVHFMbBHZmYxcLT77+xJ+ibwGsZja6j0CfPDtk53gXVI9rbQE4MTK/KRWXpr5foEDgNA3gEbdYcjJAS7uKjU+g2jAhbsXEHEjAuE3wnHhbtnqU7X1bYthAcMwuMlg+Dr7lmkfszHk5iL3zBlknziRn8yKjpa80S4ThQLqtm3g2rMn3Hr2zB+V5VjGGmVEREQ1jKBSwblzJ2RF7De2tb4u4kgrINFBCUcmtoiIyEqY2CKyI7vP38a8zWdxKz3XZJtSIWBa3wDMHhhUfD0tgx64sgeIWglc/hsQS1h2O+gRoO8bQIPOZYorR5eDo0lHEX4jHPtv7kdyTnKZ9mvi0QTDAoZhaNOhaOTRqEz7FEeXmoqc0//kj8Y6cRI5Z88CFVh9yaFRI7j27AHXnj3h2q0blJ6ljHgjIiIiI9eQEEliq6DOVqJKBUcti8cTEZF1MLFFZAfuZOTi/S3nsf1M8SsUtvb3wCfj2qFN/WISMemJwMlfgJM/A+k3Sz5R8HCg7+uAf8dSY7qVdQv7b+5HxM0IHE06ijx92Yqt+zn7YUjTIRgaMBQtvVtCKMe0RgDQ37+PnHPnkHvmLHLPnUXO2XPQJZlZubEUSm9vuISE5CeyevWEY4MGFToOERER5ReQL6xBKuCZJSJRpUKjHI7YIiIi62Bii6gKE0UR66Nu4MPtF5CeqzPZrnZQ4LWBQXiuV1PpKC2DHojdlz86K+YvQNSXcBYBaDUK6DsHqNvGbC+dQYcbuhuI0cbgl12/4NL90utlFXB3dMegxoMwtOlQdK7TGUqFskz76TMzkXvuPHLPnkXO2TPIPXsO2hs3ynzeohwaNYJLp05w6dIZzp06w7Fpk3In1oiIiKh46latoHBxgSE729jW8rqIxKZKBOk5YouIiKyDiS2iKio+JQtv/fEPIuOKX62vdzNfLBzTFo18Cq1OmJ4ERK/OH52Vdr3kEzi6AW0fA7pNB/xammzW6rU4l3oOUbejEHUrCtF3opGt+/eNahkGZzX2aIzQBqEIbRCKjnU6wkHhYLavKIrQ3b6NvJgY5MXEIPdSDHLPnoUmPr70E5mjUMApuAVcOneBS+dOcO7UCQ5+fhU/HhEREZUov85WZ2QdOGBsa31dxNbmKjgzsUVERFbCxJYFXbt2DV9//TW2b9+OGzduwMnJCYGBgRg/fjxmzJgBFxeX0g9SBjt37sTSpUtx/PhxJCcno3bt2ggJCcG0adMwZMgQi5yD5KPVG7B0fxy+2nsZGp1pHSwvFwfMG9YKYzvVzx9tpM0F4sLyE1qXdpYyOgtAvQ5Al2eBNuMAJ3djc54+D/8k/4Oo21E4cfsETt85jVy9aS0vc5SCEh39OuYnsxqGoqln02L76TMzkRdz+d8k1iXkxsQg7/IVGNJKKGJfBoKLC5xbt4Zzl85w6dQZzh07QOnmVqljEhERUfm4hIRIElstr4tYoVTCwcCpiEREZB1MbFnI1q1b8dRTTyE9Pd3Ylp2djaioKERFReHHH3/E9u3b0axZswqfw2AwYNq0aVi+fLmkPSEhAQkJCdi8eTOmTp2KH374AQpFMcXDqUrTG0Rs+ycRi/ddwZU7xX+qOaqDP+YNbwVfBw1w7g/gwjbg8i5AU8qnoA6uQNtH8xNa/9bPytZm45+kSETdikLU7SicST4DjUFTrpjdHdzRu35vhDYMRe/6veHp9KDGlz4zC5qrV6GJj0fe5cvG0VjaxMRynaM4gqMj1C1bQt2mDdRt2sC5TWs4BgRAUJZtiiMRERFZh2vXEBReQqZRCuCWA2iVlfsAi4iIyBwmtiwgOjoaEyZMQE5ODtzc3PDWW2+hf//+yMnJwdq1a7Fs2TLExMRg2LBhiIqKgru7e+kHLcY777xjTGp17NgRb7zxBgIDAxEbG4tPP/0U0dHR+PHHH1G7dm0sXLjQkt8iWZFWb8CfpxKxJOwK4lKyiu1T38sZnwz1R2/dcWDLx0BsGFCWYu112wFdnkVOyxG4lJWAc6nncD5uI86nnkdcWhwMJa2MaEZtRW0MbDYQDzd9GO1rtYaYeBua+KvQhP+BpH8TWZqrV6FLLtvKiKVycIA6KOjfJFZrOLdpA6dmzSA4mJ/aSERERPJQt24NwcUFYqE6W62ui8jxKP49DhERUWUxsWUBs2bNQk5ODlQqFXbt2oUePXoYtz300ENo3rw53njjDcTExGDRokVYsGBBuc8RExODzz//HADQpUsX7N+/H87OzgCAkJAQjBw5EqGhoYiKisJnn32G5557rlKjw8j6NDoDfj95E0vCr+DG3Zxi+9QXUvFus3gMUhyDctNhoAyJqBxHV1wKfhjn6rXGeX06zidsRdz5ryqUxAKAli4B6K0IQmuNH3SnkuB2NwP1D8RDf20eYm/eBPSlTH0sB4WrK5yaN4dTUBCcglvAuW1bOAUFQeHkZLFzEBERkfUIDg5w6dgRWYcOGdtaXReR1SEPOr1ButgNERGRBTCxVUnHjh3DgX/rCEyZMkWS1Cowe/ZsrFy5EhcuXMBXX32Fd955Bw7lHG3y5ZdfQqfLXxVv8eLFxqRWARcXFyxevBg9evSATqfD//73P3z77bcV/K7ImnK1emyIuoHvwmORmCatYSXAgGDhBvopTmO0+iRa6GMAM4sAGgAkqZSIc3BAnIMDLteqj3POzojT3IMhIxrIiC5TPM65IvzSAN90EX73gRYabzTJcYXvfQPUKRkw3IsBECPZp/g0XDkolXBs2gTqoCA4BbXIT2QFBcGhvj9XKSQiIrJzLiEhJomtE120yNMxsUVERJbHxFYlbd682fj42WefLbaPQqHAM888g7feegv3799HWFgYBg0aVOZziKKIP//8EwAQHByM7t27F9uve/fuaNGiBS5duoQ///wT33zzDZMEVUiORo/fjl3HDxGxuJORP41QCT1aC1fRVXER3RQX0FVxEZ7Cv0P3/x0IpQVwzcEBcQ4qxDvmJ7HiHRxw1UGFHEkttWwg78Gwf5VORK1MwCsT8M7Mf1yr4N8MoFaWCJ90wNVkRmPKv1/5ybNKEQQ41K8Px6ZNoW4RZExgOQYEQOHoWNmjExERURXk0rWr5HnjZOCATo88nQGuHIRNREQWxsRWJR08eBAA4Orqis6dO5vtFxoaanx86NChciW24uPjkfhvwe3CxzF3nkuXLiEhIQFXr15F06bFr0xHtpOVp8Mvkdfw44E4pGVmo50Qi0eV+YmszooYuAm5yBUEJKmUOKdSIVHlipsqlTGBdcNBBb0gAKII5zzAIwdwTwNaZotwzzHAIxvwyBHhkQXU+jeJ5ZWZ389WlN7ecGzSJP+raf6/Tk2awKFRI04jJCIiqmGc27SG3lEJpeZBuQKX20CeVgeAH2wREZFlMbFVSRcuXAAANGvWDCqV+f/O4OBgk33K6vz588UepyznYWLLugwGEfeyNUjJ1CA5Iw8pGbm4l5aG9PR7yEhPR3ZmGlLvJCBQewZvOF2EV60E3BVEpOhVCNersEXviSydN/RaBVzy8kdPueSKcM0F2uUAvbMB9xx9fvIqG1BVeghVxSlq1UK2qyu0tWqhQbeucG3ePD+R1bgxlF5e8gVGREREVYrg6AhNcCM4/xNvbPNOUkKTnQF4ucgYGRERVUdMbFVCbm4uUlLyp2w1aNCgxL61atWCq6srsrKycOOGmaJJZty8edP4uLTzNGzY0Pi4MucpTuHjbZo6BLXUNXRVOoMIiCJgMEAQAUCEAEAwiPnPRcBTBDxFAYIICCLgoAEcNQA0atTRAXUeHAxlmfCnQcHkQCsRBCi9vaH084OqTh0o6/z7r59ffpufHzSCgJNHjwIAXLp1Q1bBSKzk5Pwvqvby8vKM97zY2Fg4cTRejcLXn3gN1Gzlff1TmzaB6sSDGp3+/wC7nu1nxQjJFkQx/9/VS+bKGwjJgq9/zXYvV2t8XFD/u6pgYqsSMjIyjI/d3NxK7V+Q2MrMzLTaeVxdXY2Py3uewkmx0ry5P7ZcxyY7wJeUiIiIrOms3AEQEZElJCcno0mTJnKHYcRlSSohN/fBinaOZSiEXfDJVk5O+Yoflec8hT89K+95iIiIiIiIiIhKcvv2bblDkOCIrUpQq9XGxxqNptT+eXn5y885Oztb7TwF56jIeUqbuhgfH4++ffsCAA4fPlyuEV5k/5KSktD131WOjh07hnr16skcEdkar4Gaja8/8Rqo2fj6E6+Bmo2vP924cQM9e/YEUHrtb1tjYqsS3N3djY/LMu0vKysLQNmmLVb0PAXnqMh5SqvfVVjDhg3L1Z+ql3r16vH1r+F4DdRsfP2J10DNxtefeA3UbHz9qfDgm6qAUxErQa1Ww8fHB0Dphdfv3btnTDqVd6RT4ZtGeQq8c0QVEREREREREVVnTGxVUqtWrQAAV65cKXFlgIsXLxoft2zZskLnKHocS5+HiIiIiIiIiMieMLFVSb179waQPwXwxIkTZvtFREQYH/fq1atc52jatCn8/f1NjlOc/fv3AwDq169fpVYpICIiIiIiIiKyNCa2Kmn06NHGxytXriy2j8FgwM8//wwA8PLyQv/+/ct1DkEQMGrUKAD5I7IiIyOL7RcZGWkcsTVq1CgIglCu8xARERERERER2RMmtiqpa9eu6NOnDwBg+fLlOHLkiEmfRYsW4cKFCwCAWbNmwcHBQbI9PDwcgiBAEARMnjy52PO88sorUCqVAICZM2ciJydHsj0nJwczZ84EAKhUKrzyyiuV+baIiIiIiIiIiKo8JrYs4KuvvoKzszN0Oh0GDRqEjz76CJGRkQgLC8P06dPxxhtvAACCgoIwe/bsCp0jKCgIc+bMAQBERUWhV69eWLduHaKiorBu3Tr06tULUVFRAIA5c+agefPmlvnmiIiIiIiIiIiqKJXcAVQHHTt2xLp16/DUU08hPT0db7/9tkmfoKAgbN++He7u7hU+z4cffog7d+5gxYoViI6OxuOPP27SZ8qUKfjvf/9b4XMQEREREREREdkLQRRFUe4gqotr167hq6++wvbt23Hz5k04OjqiWbNmeOyxx/DSSy/BxcWl2P3Cw8ONdbcmTZqEVatWlXieHTt2YOnSpTh+/DhSUlLg6+uLkJAQTJ8+HUOGDLH0t0VEREREREREVCUxsUVERERERERERHaJNbaIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFZXLt2jXMnj0bwcHBcHV1hbe3N0JCQvDZZ58hOztb7vDICgRBKNNXv3795A6VKuDOnTvYtm0b5s+fjyFDhsDX19f4mk6ePLncx9u5cyfGjBmDBg0awMnJCQ0aNMCYMWOwc+dOywdPFmGJa2DVqlVlvlesWrXKqt8PlU9UVBQ++OADDBo0yPhz6+bmhqCgIDz77LM4ePBguY7He4D9scQ1wHuAfUpPT8fatWsxe/ZshIaGolmzZvD09ISjoyP8/PzQr18/fPrpp0hNTS3T8Q4fPoynnnoKjRs3hlqtRt26dTF48GCsWbPGyt8JVZQlroHw8PAy//wvWLDAdt8cVdqbb74pef3Cw8NL3Uf29wEiUSm2bNkienh4iACK/QoKChIvX74sd5hkYeZe76JfoaGhcodKFVDSazpp0qQyH0ev14tTpkwp8XhTp04V9Xq99b4ZqhBLXAMrV64s871i5cqVVv1+qOz69OlTptfsmWeeEfPy8ko8Fu8B9slS1wDvAfZp9+7dZXrNfH19xb/++qvEY7333nuiQqEwe4xhw4aJOTk5NvrOqKwscQ2EhYWV+ef/vffes+03SBUWHR0tqlQqyesXFhZmtn9VeR+gAlEJoqOjMWHCBOTk5MDNzQ1vvfUW+vfvj5ycHKxduxbLli1DTEwMhg0bhqioKLi7u8sdMlnYiy++iP/85z9mt7u6utowGrKGRo0aITg4GLt27Sr3vu+88w6WL18OAOjYsSPeeOMNBAYGIjY2Fp9++imio6Px448/onbt2li4cKGlQycLqcw1UODvv/+Gv7+/2e0NGjSo8LHJshITEwEA/v7+eOyxx9CnTx80atQIer0eR44cwaJFi5CQkICff/4ZWq0Wv/32m9lj8R5gnyx5DRTgPcC+NGzYEP3790fnzp3RsGFD1KtXDwaDATdv3sTGjRvxxx9/ICUlBSNHjsSxY8fQvn17k2P88MMPeP/99wEAgYGBePvtt9G2bVskJibiq6++QlhYGLZv347nnnuuTNcQ2ZYlroECK1asQEhIiNntfn5+1vgWyMIMBgOmTZsGnU4HPz8/3Llzp9R9qsz7AKumzcjuFXyip1KpxMOHD5ts//TTT5mJr6b4ulZv8+fPF7du3SreunVLFEVRjI+PL/donUuXLhk/0enSpYuYnZ0t2Z6VlSV26dLFeA/hyM6qxRLXQOHRGvHx8dYLlixq2LBh4rp160SdTlfs9uTkZDEoKMj42kZERBTbj/cA+2Wpa4D3APtk7nUvbNOmTcbXdsyYMSbbU1NTRU9PTxGA2KhRIzE5OdnkHCNGjCjTiA+yPUtcA4VHbPH1rR7+97//iQDE4OBg8a233ir19a1K7wNYY4vMOnbsGA4cOAAAmDJlCnr06GHSZ/bs2WjZsiUA4KuvvoJWq7VpjERUMe+//z6GDx+OOnXqVPgYX375JXQ6HQBg8eLFcHZ2lmx3cXHB4sWLAQA6nQ7/+9//Kh4wWZwlrgGyT9u2bcP48eOhVCqL3e7r64tFixYZn2/cuLHYfrwH2C9LXQNkn8y97oWNHj0aLVq0AADj3wOF/fjjj0hLSwMAfPLJJ/D19TU5x5IlS4zn+uyzzyobNlmQJa4Bql6uX7+OefPmAQC+//57ODo6lrpPVXofwMQWmbV582bj42effbbYPgqFAs888wwA4P79+wgLC7NFaEQkM1EU8eeffwIAgoOD0b1792L7de/e3fim6M8//4QoijaLkYgqrn///sbHsbGxJtt5D6j+SrsGqPorKDGSm5trsq3g7wQPDw+MHTu22P0bNGiAhx9+GACwd+9eZGRkWCdQspqSrgGqXmbMmIHMzExMmjQJoaGhpfavau8DmNgiswpWw3F1dUXnzp3N9it84R86dMjqcRGR/OLj4401Wkr75VewPSEhAVevXrV2aERkAXl5ecbHxX2yz3tA9VfaNUDV26VLl3Dq1CkA+X+0FqbRaHDs2DEAQI8ePUoc2VHw85+Xl4eoqCjrBEtWUdI1QNXL+vXrsW3bNnh7e+Pzzz8v0z5V7X0AE1tk1oULFwAAzZo1g0plfp2Bwje6gn2o+tiwYQNatWoFFxcXuLu7o3nz5pg0aRJH59Vw58+fNz4u7c0O7xE1w7PPPgt/f384OjrC19cX3bt3x7vvvouEhAS5Q6MKiIiIMD4uKDlQGO8B1V9p10BRvAfYv+zsbFy+fBlffPEFQkNDjVOMXnnlFUm/mJgY6PV6APz5r27Keg0U9c4776Bx48ZwcnJCrVq10LFjR7z66quIiYmxQdRUGffv38esWbMAFD+t2Jyq9j6AiS0qVm5uLlJSUgCUvopNrVq1jCvj3bhxw+qxkW2dP38eFy5cQE5ODjIzM3HlyhX8/PPPeOihhzBmzBhjfQWqWW7evGl8XNo9omHDhsbHvEdUX+Hh4UhKSoJWq0VqaiqOHj2KDz/8EM2aNcMPP/wgd3hUDgaDAR9//LHx+fjx40368B5QvZXlGiiK9wD7tGrVKgiCAEEQ4OrqiqCgIMyePRu3b98GAMydOxcTJ06U7MOf/+qlItdAUYcPH8b169eh0Whw//59nDp1Cl9++SVatmyJBQsWcBp6FfbGG2/g1q1b6NWrF6ZMmVLm/arafcD8MByq0QrPgXdzcyu1v6urK7KyspCZmWnNsMiGXFxcMHLkSAwYMADBwcFwc3NDcnIyIiIi8P333yM1NRWbN2/GqFGjsHv3bjg4OMgdMtlQee4RBYlvALxHVEMBAQEYO3YsevToYXzjEhcXh99//x0bN25Ebm4uXnjhBQiCgGnTpskcLZXF//73P+M0o7FjxxZbjoD3gOqtLNdAAd4DqqcOHTpg6dKlCAkJMdnGn/+aoaRroEC9evUwduxY9O7dGwEBAVCpVLh+/Tq2bduGn3/+GVqtFu+//z40Gg0WLlxow+ipLA4cOIAff/wRKpUK33//PQRBKPO+Ve0+wMQWFatwgcCyrIjg5OQEAMjJybFaTGRbCQkJ8PLyMmkfOHAgZs6ciSFDhiA6OhoRERH47rvv8PLLL9s+SJJNee4RBfcHgPeI6mbMmDGYNGmSyRuhkJAQTJgwAdu2bcPYsWOh1Wrx6quvYuTIkahbt65M0VJZREREYO7cuQAAPz8/fPfdd8X24z2g+irrNQDwHlAdjB49Gl26dAGQ//MZGxuL9evXY9OmTXjiiSfw5ZdfYvjw4ZJ9+PNfvVTkGgDyf86vXbtm8uF2p06dMHr0aEybNg2DBg1CWloaPv74Y0yYMAHt27e3yfdEpdNoNJg2bRpEUcSrr76KNm3alGv/qnYf4FREKpZarTY+1mg0pfYvKDBadIlPsl/FJbUK1KlTBxs3bjT+IitYxpVqjvLcIwoXIOY9onrx9PQs8dO94cOHY/78+QDy63YsX77cVqFRBZw7dw5jxoyBTqeDWq3Ghg0b4OfnV2xf3gOqp/JcAwDvAdWBl5cX2rRpgzZt2iAkJASPP/44/vjjD/z888+Ii4vDqFGjsGrVKsk+/PmvXipyDQD5o3BKmrHRtWtXfPPNNwDyV9AreExVw8KFC3Hx4kU0atQI7733Xrn3r2r3ASa2qFgFS7sCZRsumJWVBaBs0xapeggICMDAgQMBAFeuXDGuikE1Q3nuEQX3B4D3iJpo2rRpxj98CxejpqolPj4egwYNwr1796BUKrF27Vr07dvXbH/eA6qf8l4DZcV7gH16+umn8dhjj8FgMOCll17C3bt3jdv4818zlHQNlNXjjz8ODw8PAPz5r0ouXryIjz76CED+AIXCUwXLqqrdB5jYomKp1Wr4+PgAkBaGK869e/eMF2vhwnBU/bVq1cr4mKse1SyFi0SWdo8oXCSS94iax8/Pz/j7hPeJqikxMREPP/wwEhMTIQgCVqxYgVGjRpW4D+8B1UtFroGy4j3AfhVcA1lZWfjrr7+M7fz5rznMXQNlpVKpEBQUBIA//1XJ//73P2g0GgQEBCA7Oxtr1641+Tp79qyx/759+4ztBX/3V7X7AGtskVmtWrXCgQMHcOXKFeh0OqhUxV8uFy9eND4uy3LQVH2Up8AgVS+Fk5qF7wHF4T2CeK+oulJSUjBw4EDExcUByP/k9plnnil1P94Dqo+KXgPlwXuAfapdu7bx8bVr14yPg4KCoFQqodfr+fNfzZm7BsqDP/9VT8HUwLi4ODzxxBOl9v+///s/4+P4+Hi4urpWufcBHLFFZvXu3RtAfob+xIkTZvsVHlbaq1cvq8dFVcf58+eNj/39/WWMhGytadOmxte8tKHl+/fvBwDUr18fTZo0sXZoVMUkJycjJSUFAO8TVU1aWhoGDx5svJd//PHHmDFjRpn25T2geqjMNVBWvAfYr8IjbApPH3J0dETXrl0BAEeOHCmxvk7B/cHJyclYoJzsh7lroKx0Oh1iYmIA8Oe/uqlq7wOY2CKzRo8ebXy8cuXKYvsYDAb8/PPPAPILD/bv398WoVEVEB8fj927dwMAAgMDUb9+fZkjIlsSBME4PP3ixYuIjIwstl9kZKTxU5pRo0bxU7saaOnSpRBFEQAQGhoqczRUIDs7G8OGDcPJkycBAO+88w7efPPNMu/Pe4D9q+w1UFa8B9ivDRs2GB+3bdtWsq3g74T09HT88ccfxe5/8+ZN7NmzBwAwYMAASU0esg8lXQNlsW7dOqSlpQHgz39VsmrVKoiiWOJX4YLyYWFhxvaCxFSVex8gEpWgT58+IgBRpVKJhw8fNtn+6aefigBEAOJ7771n+wDJKrZs2SJqtVqz22/duiV27NjR+NovWrTIhtGRNcTHxxtfz0mTJpVpn0uXLolKpVIEIHbp0kXMzs6WbM/Ozha7dOlivIfExMRYIXKylPJeA/Hx8eLJkydL7LN161bR0dFRBCA6OzuLN2/etFC0VBl5eXnioEGDjK/3rFmzKnQc3gPslyWuAd4D7NfKlSvFnJycEvt88cUXxuujadOmok6nk2xPTU0VPT09RQBi48aNxZSUFMl2nU4njhgxwniMsLAwS38bVAmVvQbu3r1b6mt69OhR0cvLSwQgCoIgRkVFWSJ0spH33nuv1J/fqvQ+gDW2qERfffUVevXqhZycHAwaNAhvv/02+vfvj5ycHKxduxZLly4FkD/Xfvbs2TJHS5Yyc+ZMaLVajBs3Dj169ECTJk3g7OyMlJQUhIeH44cffjBOK+jdu7fFpy2Q9R08eBBXrlwxPi94PYH8VS6LLus8efJkk2MEBQVhzpw5+PjjjxEVFYVevXrhzTffRGBgIGJjY/HJJ58gOjoaADBnzhw0b97cKt8LVUxlr4GrV6+if//+6NGjB0aMGIH27dvDz88PQH7Nho0bN2Ljxo3GkRqff/45R3ZWEU888QR27doFAHjooYcwZcoUSZHYohwdHY3FfwvjPcB+WeIa4D3Afi1YsACzZ8/GuHHj0Lt3bwQGBsLNzQ0ZGRk4c+YMfv31Vxw6dAhA/mu/dOlSKJVKyTG8vb3xySef4IUXXsC1a9fQrVs3vPPOO2jbti0SExPx5ZdfIiwsDED+9davXz9bf5tUgspeA2lpaejfvz/atWuH0aNHo3PnzqhXrx6USiWuX7+Obdu24ZdffjFOU3399dfRuXNnWb5Xsp4q9T7Aaikzqja2bNkienh4GDO2Rb+CgoLEy5cvyx0mWVDjxo3Nvt6Fv8aNGyfeu3dP7nCpAiZNmlSm17jgyxy9Xi8+99xzJe47ZcoUUa/X2/C7o7Ko7DUQFhZWpv1cXFzEH374QYbvkMwpz+uOf0djmMN7gH2yxDXAe4D9Kuv7vAYNGoi7du0q8Vjz588XBUEwe4yhQ4eWOjKIbK+y10DhUd4lfSmVSnHBggWiwWCQ4bukyijLiC1RrDrvAzhii0o1YsQI/PPPP/jqq6+wfft23Lx5E46OjmjWrBkee+wxvPTSS3BxcZE7TLKgn376CREREThy5Aji4uKQkpKC9PR0uLm5oWHDhujZsycmTZqEHj16yB0qyUyhUGD58uUYN24cli5diuPHjyMlJQW+vr4ICQnB9OnTMWTIELnDJCvo3LkzVq9ejSNHjiAqKgpJSUlISUmBTqdDrVq10Lp1awwYMABTp041juKg6of3gJqL9wD79ffff2P79u04dOgQrly5gtu3byM1NRXOzs7w8/NDhw4dMHz4cIwfP77U9/jvv/8+Bg8ejG+//RYHDhzA7du34eXlhfbt2+PZZ58t04prZHuVvQb8/f2xYcMGHDlyBMeOHUNCQgJSUlKQm5sLT09PtGjRAv369cPUqVO5aEg1V1XeBwii+O/4YCIiIiIiIiIiIjvCVRGJiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIjI7ixYsACCIEAQBLlDwdWrV42xrFq1Su5wapxVq1YZ//+vXr1a6eOtWLECgiCgbdu2EEWx8gFWURs2bIAgCAgKCoJWq5U7HCIiogpjYouIiIgqRa/Xw8PDA4IgoFOnTiX2FUURPj4+xkTEihUrSuz/008/Gft+9913lgy7Srp58yYWLFiAPn36oHbt2nBwcICzszMaNGiAvn37YtasWdi4cSPS0tLkDrVayszMxNtvvw0AmD9/fpVInBY2aNAgCIKAWbNmVfpY48aNQ6tWrXD58mUsXrzYAtERERHJg4ktIiIiqhSlUomePXsCAE6fPo309HSzfc+dO4e7d+8anx84cKDEYxfe3rdv30pGWrUtW7YMLVq0wPvvv4+DBw8iJSUFOp0Oubm5SEhIwIEDB/D111/jsccew/Tp0+UOt1r6+uuvcfv2bbRq1QqPPvqo3OFIZGRkICIiAgAwYsSISh9PoVDgnXfeAQB8/PHHyMrKqvQxiYiI5MDEFhEREVVaQdLJYDDg8OHDZvsVJKqUSqXkeWn9fX190apVK2P7ggULIIpitZkqtmbNGkybNg3Z2dlQq9V48cUXsXnzZkRFReH48eP4888/MW/ePHTs2FHuUKutnJwcfPHFFwCAV199tcqN1vr777+h0Wjg4eGB0NBQixxzwoQJqF+/PpKTk/HDDz9Y5JhERES2xsQWERERVVrh0VT79+83269g22OPPQYAiI2NRWJiYrF979y5g5iYGABA7969q1yiwVL0ej1ee+01AIC7uzuOHj2KJUuWG8g3vgAAE0ZJREFUYNSoUejcuTO6dOmCkSNH4oMPPsDJkydx/vx5jB07Vuaoq5/Vq1cjNTUVTk5OVW60FgBs3boVADB48GA4ODhY5JhKpRITJkwAAHzzzTcwGAwWOS4REZEtMbFFRERElRYSEgK1Wg2g5FFYBdseffRRBAYGlti/pkxDPHr0KG7dugUAmD59Otq1a1di/5YtW2L8+PG2CK1GWb58OQBg2LBh8PLykjeYIgwGA3bs2AEAGD58uEWP/eSTTwIA4uPjERYWZtFjExER2QITW0RERFRpTk5O6Nq1KwDg+PHjyMvLM+kTHx+PhIQEAPkjsHr37g2gYomt0lZFbNKkCQRBwOTJkwEAly5dwvPPP48mTZrAyckJderUwZgxYxAZGVnq96bX67FkyRJ069YNHh4e8PT0RKdOnfD5558X+32W1/Xr142PmzVrVuHjFLc644YNG/Dwww/Dz88Pzs7OCA4OxltvvYX79++X6ZhhYWGYNGkSAgIC4OLiAg8PD7Rt2xZz5swxO9LO0se4d+8e5s6di+DgYDg7O8PPzw8PP/wwNmzYUKbzl8W1a9dw9OhRAPlF1c0JDw83/h+Hh4dDFEUsX74cvXv3ho+PDzw8PNC1a1f88ssvkv00Gg2+//57dO/eHd7e3nB3d0evXr2wfv36MsUXGRmJlJQUKBQKDB061GT7iRMnMGXKFAQFBcHV1RVqtRoNGzZE586dMWPGDGzZssXstN1OnTqhadOmAPKnxBIREdkdkYiIiMgC3n33XRGACECMiIgw2b5q1SoRgNi8eXNRFEVx2bJlIgCxbdu2xR6vU6dOIgDRw8ND1Ol0km3vvfee8VzFady4sQhAnDRpkvjHH3+ILi4uxv6Fv5RKpbh27Vqz31NGRobYp0+fYvcFIHbq1Ek8efKk8fnKlSvL+L/1wO+//27cf9asWeXev0B8fLwkjueee85s3P7+/uKFCxfMHisnJ0d8/PHHze4PQHR1dRW3bNli1WOcP39e9Pf3N7v/s88+K65cudL4PD4+vkL/dwXXJgAxNjbWbL+wsDBjv127dokjRowwG9vLL78siqIo3r17V+zbt6/Zfh9++GGp8c2dO1cEIPbq1ctk2xdffCEqFIoS/58BiBkZGWaPX/A61a9fvwz/W0RERFULR2wRERGRRRQeVVXcKKyCtoKRWgX/nj17Fvfu3ZP0zcjIwOnTpwEAPXv2NBabL68zZ85g4sSJqFOnDr755htERkbiyJEjWLBgAdRqNfR6PaZNm4bk5ORi93/qqaeMcXft2hVr1qxBVFQUtm/fjsceewwnT56s9AqFhQvC//DDD9i3b1+ljgcAS5YswYoVKyQx79ixwziFMTExEYMHD0ZGRobJvqIo4tFHH8XatWsB5K/A98svv+DQoUM4cuQIvvrqKzRq1AhZWVl49NFHERUVZZVjpKenY/DgwcZRXRMmTMCOHTsQFRWF3377DV26dMHKlSuxZMmSSv9/FbzGPj4+CAgIKNM+8+bNw9atW/Hkk09i+/btOHHiBNasWYMWLVoAyF9hcc+ePZg8eTIOHz6MF198Ebt27cKJEyewfPly+Pv7AwDmz5+Pc+fOlXiugvpaRVdD/Oeff/D666/DYDCgadOmWLRoEfbu3Yvo6Gjs378fy5Ytw8SJE+Hq6lri8QtGWyYkJODKlStl+v6JiIiqDLkza0RERFQ9ZGRkiCqVSgQgDh482GR7UFCQCEBcsWKFsc3X11cEIG7dulXS96+//jKONFm4cKHJsco6YguA2LlzZzEtLc2kz+rVq419vvjiC5Pt27ZtM24fOnSoqNVqTfq8//77klExFRmxJYqiOHz4cMlxQkJCxPnz54s7duwQk5OTy3SMwiO2Sor5gw8+MPaZM2eOyfalS5eKAEQHBwdx586dxZ7r7t27YuvWrc2OIrLEMV5//fUSrwGNRiMOGjRI8j1XdMRWy5YtRQDigAEDSuxXeMQWAPHLL7806ZOUlCS6u7uLAMTatWuLgiCImzZtMul3+vRp40irgtFdxYmLizOe7+zZs5Jt8+bNM458u3Xrltlj3L9/X9Tr9Wa3R0REGM9R0ghGIiKiqogjtoiIiMgi3NzcjKOPDh8+DL1eb9xWdIXDAr169QJgOsLLkoXjV6xYAQ8PD5P2iRMnGkfNFDfCrGAkkJOTE5YtWwaVSmXS591330WbNm0qFR8ArFy5EiEhIcbnx48fxwcffIChQ4eidu3aaNGiBWbOnImTJ0+W6XglxfzOO+8YY16+fDk0Go1xmyiK+OSTTwAAL7/8Mh555JFij1+rVi189tlnAIBDhw7h8uXLFj2GRqMxFnNv164d5s6da7K/g4MDli9fbpEVAm/evAkA8PPzK/M+3bp1w6xZs0za69atizFjxgAAkpOTMX78eIwePdqkX7t27UqtMwcA27ZtAwA0bdoUrVu3lmwrWHQgKCgIderUMXsMT09PKBTm3/YX/r7j4uLM9iMiIqqKmNgiIiIiiylIQmVkZODUqVPG9v379wMA6tSpg+bNmxvbC/6wL9heoOAPfbVaLUn4lFfbtm3NrjIoCIIxEVf0j3m9Xo/w8HAAwKBBg4wJsKIUCgUmTZpU4fgK+Pr64tChQ1i6dCk6depksj0mJgbffPMNOnfujKeffhpZWVklHq+sMd+9e1eSLDt//jxiY2MB5K9cWZLCCccjR45Y9BgnTpwwTk+dNGmS2UUCGjRogEGDBpV4jtLk5eUZp2TWqlWrzPs9/vjjZre1b9++XP1KSiaZm4YIAPXq1QOQ/39+7NixkgMugbe3t/FxQbKMiIjIXjCxRURERBbTp08f4+PCo1CK1tcq2v/EiRPIyckBkD9ap+CP9G7dusHR0bHC8QQHB5e4veAP+qK1pmJjY5GdnQ0ApSbWCuoTVZaDgwOef/55nDhxAgkJCVi7di1ef/119OnTRzIqafXq1Rg5cqRkRFxR5Yn5zJkzxseFa1316NHDuAJgcV9ubm7GvoWTIZY4RuGYrP3/f/fuXePj8iS2goKCzG7z8vIqV7/iap0VtEdERAAoPrH1xBNPwMHBAXl5eejVqxdGjBiB77//HmfPnjW7CmJxCn/fpSVNiYiIqhomtoiIiMhi+vTpYxxdU5bEVqdOneDi4gKtVovIyEgA+dPwcnNzAVR+GqKLi0uJ2wumZxVNEhVOdpQ2Pa2kKWAV5e/vjwkTJuCzzz7D/v37cevWLbz11lvGePft24c1a9aY3b88MRf+Xu/cuVOheAuSgJY6hi3//9VqtfFxQXK1LEq6tgpP+ytLP4PBUOz2v//+GxqNBu7u7ggNDTXZHhwcjDVr1qBWrVrQ6XTYtm0bXnzxRbRt2xZ+fn54+umnS5zmWKDw922JqZ1ERES2ZFp4gYiIiKiCvL290bp1a5w9e9b4B3V6erpxhcOiiS0HBwd07doV4eHh2L9/P/r372/R+lqWYG4anC15e3tj4cKFEEURH3/8MQBgw4YNeOqpp4rtX9GYCyf4tm7diiZNmpRpv8LJJ0scozBr//97eXlBpVJBp9NJEmpVQUF9rcGDB5tNOI0bNw4PP/ww1q1bh7///hsHDhxAcnIyUlJSsHr1aqxevRqTJk3CihUrzNbZKvx9Fx5tRkREZA+Y2CIiIiKL6tu3L86ePYvk5GRcvHgR8fHxMBgMkuLyhfXu3Rvh4eHGhFZBvS0HBwf06NHDprEXKDw16/bt2yX2LW27JT3//PPGxNaVK1fM9itPzIXrK/n4+Bgfe3l5VagwviWOUfT/v6TpfJX9/xcEAb6+vrh165axrldVYDAYsGPHDgDFT0MszNPTE9OmTcO0adMAABcuXMCff/6JxYsXIzExET/99BM6duxYbLF7AJLvu1GjRhb6DoiIiGyDUxGJiIjIoorW2SpIWHXv3h1KpdKkf8EorsjISOTl5eHw4cMA8qcpurq62iBiU4GBgXB2dgaQPzWyJKVtt6TCBeFLGslUnpgLJ54KJx4PHTpUkRAtcoy2bdsaH9vi/7/gfAUrd1YFkZGRSE5OhkKhwNChQ8u1b8uWLTF37lxERkYaf4bWr19vtn/h77voyotERERVHRNbREREZFGFpw/u37/fOAKr6DTEAj169IBSqURWVhZWrVqFtLQ0k+PYmkqlQr9+/QAAu3btQlJSUrH9DAYDfvrpp0qdqzxFvgsXZg8ICDDbr6wx16pVS7IKY6dOndCgQQMAwNKlS421zsrDEsfo3LmzcdTWL7/8Yvb/KCEhAbt27Sr38YsqSMZeunTJbCF3WytYDbFHjx7w9fWt0DEaNmxoHO2WkpJitl9BctDBwaHYVTmJiIiqMia2iIiIyKL8/f0RGBgIAAgLCzMmYwqP5CrMw8PDOGLm008/NbbLXV/rxRdfBADk5eVh+vTpxa5C+NFHH0lW8KuInTt3Yvz48YiOji6x3927d/Hyyy8bn48aNcps35Ji/vjjj40xP/fcc3BycjJuUygUePvttwEAcXFxeOaZZ5CXl2f2POnp6fjmm28kbZY4hpOTE5599lkAwKlTp/DZZ5+Z7KfT6fD8889Do9GYPXZZFVybBoNBkjyUU0Fia/jw4Wb7bN68Gffv3ze7/caNG7h48SIAoGnTpmb7FaxC2qNHD8lKlURERPaANbaIiIjI4vr06YPY2FgkJCQAyB8B1b17d7P9e/fujVOnTiEuLg5AfnLE3AgvWxkxYgRGjBiBrVu3YuvWrejVqxdeffVVNG/eHHfu3MGqVauwbt06dOnSpVLJEIPBgA0bNmDDhg1o3749hg0bhpCQENSrVw+Ojo64c+cODh48iKVLlxpXHOzcuTMmTZpk9phdunQpNuaffvoJa9euBQA0aNAA8+bNM9n3hRdewO7du7Fp0yZs2LABJ0+exPTp09G1a1d4enoiPT0dFy9eRHh4OLZs2QK1Wo2XXnrJ4seYP38+1q9fj5s3b+LNN9/EqVOn8Mwzz8DPzw8xMTH44osvcPz48Ur//wNAz549Ubt2bSQnJ2Pv3r3o379/pY5XWVevXsW5c+cAlFxf68svv8STTz6JYcOG4aGHHkLLli3h6emJe/fuISoqCosXLzauePjCCy8Ue4yMjAzjiK0xY8ZY+DshIiKyAZGIiIjIwlasWCECMH6FhISU2H/t2rWS/u3bty+x/3vvvWfsW5zGjRuLAMRJkyaVeJxJkyaJAMTGjRsXuz09PV3s1auXJLbCXx07dhRPnDhhfL5y5coSz1ecgwcPiq6urmbPUfRr4MCBYkpKislx4uPjJXFMnjzZ7DHq1asnnjt3zmxMGo1GfPHFF0VBEEqNp2nTplY7xtmzZ8W6deua3W/y5MniypUrjc/j4+PL/f9fYPbs2SIAMSAgwGyfsLAw47nCwsLM9itrTOau46+//rrE/5cCoaGhpf7fKhQK8f/+7//MHmPVqlUiAFGlUolJSUklno+IiKgq4lREIiIisrii0whLG31VdJqi3NMQC7i7uyM8PByLFy9GSEgI3Nzc4O7ujg4dOuCjjz7C4cOHJasKVkSvXr2QnJyMLVu24LXXXkNoaCj8/f3h5OQElUoFb29vdOrUCdOnT0dYWBh27dolWXnQnJUrV+K3335Dv3794OPjAycnJwQFBeGNN97AuXPn0KpVK7P7Ojg4YMmSJTh9+jRmzpyJtm3bwtPTE0qlEp6enujQoQOmTJmCjRs34sKFC1Y7RuvWrXHu3Dm88cYbaN68OZycnODr64v+/fvjt99+w8qVK8v2n1wGzz//PID86ZORkZEWO25FFExDLG01xDVr1mDp0qWYOHEiOnTogLp160KlUsHNzQ2tW7fGiy++iOjoaLz77rtmj/Hbb78ByB+tVbduXct9E0RERDYiiGI5KpYSERERUZV09epVYx2llStXYvLkyfIGZIeGDh2KnTt3YurUqVi2bJksMWRkZMDX1xcajQa7du3CwIEDrXaua9euITAwEHq9HkeOHClxujAREVFVxRFbRERERETIXwxAoVDg559/xo0bN2SJYdeuXdBoNHB3d0doaKhVz7Vw4ULo9Xo88sgjTGoREZHdYmKLiIiIiAhA+/btMXHiRGg0Gnz00UeyxODu7o733nsPixcvhqOjo9XOc+PGDaxatQpKpVKyGikREZG94aqIRERERET/WrhwIQIDA6FWqyGKIgRBsOn5Bw0ahEGDBln9PDdu3MBbb72FgIAAtG3b1urnIyIishbW2CIiIiKqBlhji4iIiGoiTkUkIiIiIiIiIiK7xBFbRERERERERERklzhii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrv0/5jBicKdK+iGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLYAAAI5CAYAAAC8ULOiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1iTV/8/8HcSRhgiiCgOFBBRXEURkam4xVVHFa1arD61X1upffqofdqq0Fpnq3W0Wussjtpqta0+VtS6GFZt3RPBgRtkyR7J7w9+3OVOGAFCwni/rovL5Nwn55wkt4H7k3M+R6JUKpUgIiIiIiIiIiKqZaT6HgAREREREREREVFlMLBFRERERERERES1EgNbRERERERERERUKzGwRUREREREREREtRIDW0REREREREREVCsxsEVERERERERERLUSA1tERERERERERFQrMbBFRERERERERES1EgNbRERERERERERUKzGwRUREREREREREtRIDW0REREREREREVCsxsEVERERERERERLUSA1tERERERERERFQrMbBFRERERERERES1EgNbRERERERERERUKzGwRUREREREREREtRIDW0REREREREREVCsZ6HsAVHtkZ2fjypUrAAAbGxsYGPD0ISIiIiIiIqrr8vPzkZCQAADo3Lkz5HK5nkf0D0YmSGNXrlxBjx499D0MIiIiIiIiItKTs2fPwt3dXd/DEHApIhERERERERER1UqcsUUas7GxEW6fOnUKDg4OehwN6VpWVhZOnToFAPDz84OJiYmeR0S6xnOgfuP7TzwH6je+/8RzoH7j+093796Fn58fAHFsoCZgYIs0Vjynlq2tLVq2bKnH0ZCuZWVloXHjxgCAli1b8pdZPcRzoH7j+088B+o3vv/Ec6B+4/tPWVlZwu2alm+bSxGJiIiIiIiIiKhWYmCLiIiIiIiIiIhqJQa2iIiIiIiIiIioVmJgi4iIiIiIiIiIaqWalfGLiIiIiIiqRKFQIC0tDSkpKcjLy9Nam9bW1gCABw8eQCrl9+P1Dc+B+o3vf90mk8lgZmYGCwuLWrkxAANbRERERER1yLNnz5CSkqLVNpVKpXCxU1BQAIVCodX2qebjOVC/8f2v2/Lz85GTk4OkpCQ0b94cDRs21PeQKoSBLSIiIiKiOiIrK0sU1JLJZJBIJFppu6idmrbNO+kOz4H6je9/3ZWfny/cfvz4MYyNjSGXy/U4oorhGUlEREREVEckJSUJtxs3bgwbGxuttFu0vBEALCwsuAypHuI5UL/x/a/bCgoK8PTpU+E9Tk1NrVWBLZ6NRERERER1RG5urnC7cePGehwJERHVFjKZDLa2tsL9jIwMPY6m4hjYIiIiIiKqI4qWk2hzCSIREdV9MplMWGZaUFCg59FUDANbRERERER1DINaRERUXzCwRUREREREREREtRIDW0REREREVONt3boVEokE9+7d0/dQqJrY29sjKChIo7q9e/dG7969q6XfEydOQCKR4MSJE1ppn4iqFwNbREREREREGtq9ezcmTpyItm3bQiKRlBpcKQqOlPRz5swZUV17e3tIJBL069evxLa+++474bHnz58HACxbtgwSiQQXLlwQ1VUqlbCysoJEIsHdu3dFx7Kzs2FsbIwJEyZU8tnr1vXr1xESEsJgph4tWrQI+/fv12qbQUFBpf7fKP6jaZCzMm7evIk5c+bA1dUVDRo0QLNmzTBkyBDh/1dlBQUFwdzcvNTjEokE7777bpX6KEt6ejoWLFiAQYMGoVGjRpBIJNi6dWu19VdTGOh7AEREREREROWZNGkSAgMDYWxsrNdxrFu3Dn/99Rfc3d3x4sWLcusHBwfD3d1dVObk5KRWTy6X4/jx43j69KlodzIA2LFjB+RyObKzs4UyHx8fAEBERAS6du0qlF+7dg0pKSkwMDBAZGQkHBwchGPnzp1Dbm6u8Nia7vr16wgNDUXv3r1hb28vOhYeHl5t/fr5+SErKwtGRkbV1kdtsWjRIowZMwbDhw/XWpvTp08XBXHv3r2L+fPn46233oKvr69Q3qZNG631qWrjxo3YtGkTRo8ejRkzZiA1NRXffvstevbsid9//73UIHNNl5iYiE8//RStWrXCK6+8Um9mHdbbwNbz589x9uxZnD17FufOncO5c+eEX0xvvPGGRlHNrVu3YsqUKRr1t2XLFq1EnBMTE7F69Wrs379f+ObC3t4er776Kt577z1YW1tXuQ8iIiIioppGJpNBJpPpexgICwtDixYtIJVK0alTp3Lr+/r6YsyYMeXW8/b2xrlz57B792689957QvnDhw9x+vRpjBw5Env37hXKu3fvDrlcjoiICMycOVMoj4yMhLW1Nbp3746IiAhMnDhROBYREQEAtSawVZbqDDpJpVLI5fJqa7++8/T0hKenp3D//PnzmD9/Pjw9PUXna3UaP348QkJCRLOr3nzzTbi4uCAkJKTWBraaNWuGJ0+ewNbWFufPn1cLqtdV9XYpYtOmTTFs2DB89tln+P333zX6tkXf/vzzT3Tu3BmfffYZrly5gpcvX+Lly5e4cuUKPvvsM3Tu3Blnz57V9zCJiIiIiLSutBxbhw4dgq+vL8zMzNCgQQMMGTIE165dE9W5fPkygoKC4OjoCLlcDltbW7z55puVugaws7ODVFqxy6iXL18iPz+/zDpyuRyjRo3Czp07ReW7du2ClZUVBg4cKCo3MjKCu7s7IiMjReWRkZHw9PSEt7d3iccsLS01CsgV6d27Nzp16oTLly9jyJAhaN68OZydnbFnzx4AwMmTJ+Hh4QETExO0a9cOR48eFT0+KChIbbYVAISEhJS5e+fWrVvx2muvAQD8/f2F5WlFM1Aqk2NLqVRi4cKFaNmyJUxNTeHv7692rgAl59gq/jr06tULpqamcHJy0vh10IRCocCqVavQuXNnyOVy2NjYYNCgQaLlcUVL2Xbs2IF27dpBLpfDzc0Np06d0np/EokEGRkZ2LZtG2QyGaysrDBjxowK91NV9vb2GDp0KMLDw+Hq6gq5XI4OHTrg559/VqsbGxuL2NjYctt0c3NTWzJobW0NX19f3LhxQ1SemZmJmzdvIjExsWpPpBRr1qxBx44dYWpqCisrK3Tv3l3tc+DmzZt48OBBuW0ZGxurzfisD+ptYKu4Vq1aYcCAAVVq4/Dhw7hy5UqpP6+++mqV2o+Pj8ewYcPw9OlTGBgYYM6cOTh16hROnTqFOXPmwMDAAE+ePMGwYcPw8OHDKvVFRERERHWHQqHEi/ScKv8kZeYhKTNPK229SM+BQqGs8nMLCwvDkCFDYG5ujqVLl2LevHm4fv06fHx8RAGwI0eOIC4uDlOmTMGaNWsQGBiIH374AQEBAVAqqz6OskyZMgUWFhaQy+Xw9/cvM4fPhAkTcPbsWdGF+c6dOzFmzBgYGhqq1ffx8cGjR49EzzUyMhJeXl7w8vISliUChUGdqKgoeHp6Vjgwl5ycjOHDh8PNzQ0hISEwNjZGYGAgdu/ejcDAQAQEBGDJkiXIyMjAmDFj8PLlywq1XxI/Pz8EBwcDAD766COEhYUhLCwMLi4ulW5z/vz5mDdvHl555RUsX74cjo6OGDBgADIyMjR6fHJyMoYOHQoPDw8sW7ZM66/D1KlTMWvWLNjZ2WHp0qX48MMPIZfL1XKynTx5ErNmzcLEiRPx6aef4sWLFxg0aBCuXr2q1f7CwsJgbGwMX19fbNu2DevXr6/WvFdliYmJwbhx4zB48GAsXrwYBgYGeO2113DkyBFRvb59+6Jv376V7ufp06do3LixqOzs2bNwcXHB2rVrNW4nMTGxxB9V3333HYKDg9GhQwd89dVXCA0NhaurK/78809RPRcXF0yePLlyT6oeqLdLEefPnw93d3e4u7ujadOmuHfvnmj9eUU5OzuX+E2Etnz88cdISEgAUPjLrejbC6BwerObmxvGjRuH58+f45NPPqkXCeKIiIiIqHzJmblwW1jx2SPV7a9P+sHavPL5stLT0xEcHIxp06Zhw4YNQvkbb7yBdu3aYdGiRUL5jBkz8MEHH4ge37NnT4wfPx4RERGivD7aYmRkhNGjRyMgIACNGzfG9evX8cUXX8DX1xdRUVGivFhF+vTpA1tbW+zatQuffPIJbty4gYsXL2LVqlWIi4tTq188z5a9vT2ePn2KuLg4eHt7o1u3bpBKpYiKikJAQACuX7+O5OTkSi1DfPz4MbZv344hQ4YAAIYNG4YOHTpgwoQJiIqKgoeHB4DCi++BAwdi7969VQ6AODo6wtfXF6tXr0b//v2rvANiQkICli1bhiFDhuC3334TZot9/PHHWLRokUZtPH78GDt37sT48eMBAP3790f79u218jocP34cW7duRXBwMFatWiWUf/DBB2rB16tXr+L8+fNwc3MDAAQGBqJdu3aYP39+ibOYKtvfxIkT8fbbb8PR0RETJ05EWlqaRm1Xh9u3b2Pv3r0YNWoUgMKgXPv27TF37lz0799fK32cPn0a0dHR+OSTT6rUTkZGBmxsbDSqe/DgQXTs2BE//fRTlfqs7+rtjK3Q0FAMHToUTZs21fdQyvX06VPs2LEDADBw4EBRUKvI2LFjhenJYWFhePr0qU7HSERERESkS0eOHEFKSgrGjx8vmhEhk8ng4eGB48ePC3VNTEyE29nZ2UhMTETPnj0BAH///Xe1jM/Lywt79uzBm2++ieHDh+PDDz/EmTNnIJFI8N///rfEx8hkMowdOxa7du0CUJg03s7OrtTAm5eXF6RSqZA7KzIyEoaGhnB3d4e5uTm6dOkiLEcs+rcygS1zc3MEBgYK99u1awdLS0u4uLgIwRwAwu2SgnD6dvToUeTm5mLmzJmiJZCzZs3SuI3qfB327t0LiUSCBQsWqB1TXbLp6ekpBLWAwhVII0aMwOHDh1FQUKD1/mqC5s2bY+TIkcJ9CwsLTJ48GRcuXBBd+967d69Su2g+f/4cEyZMgIODA+bMmSM61rt3byiVSoSEhGjUllwux5EjR0r8UWVpaYmHDx/i3LlzZbapVCrrTSL4yqi3M7Zqk19//RUKhQIAykxWHxQUhMOHD0OhUODXX3/FW2+9pashEhERERHpVExMDIDCWU4lsbCwEG4nJSUhNDQUP/zwA54/fy6ql5qaWn2DVOHk5IQRI0bg559/RkFBQYnJ8CdMmIDVq1fj0qVL2LlzJwIDA0sNNFhaWqJjx46i4FXXrl2FQJ6Xl5fomJGREXr06FHhcbds2VJtDA0bNoSdnZ1aGVC4ZK+muX//PgCgbdu2onIbGxtYWVlp1EZ1vg6xsbFo3rw5GjVqVG5d1ecAFK4gyszMREJCgkY5lirSn6ZUJ1c0bNhQFFSuCicnJ7XX3tnZGUBhMKsqeaUyMjIwdOhQvHz5EhEREWq5typKJpNpnHx+7ty5OHr0KHr06AEnJycMGDAAEyZMgLe3d5XGUN8wsFULFH0DAwC9evUqtV7xY5GRkQxsEREREVGdVfTFb1hYWIkXtQYG/1zqjB07FlFRUZg9ezZcXV1hbm4OhUKBQYMGCe3oip2dHXJzc5GRkSEKvhXx8PBAmzZtMGvWLNy9excTJkwosz0fHx+sX78eKSkpQn6tIl5eXti8eTPy8vIQEREBNze3Su32V9pulKWVF186V1pQTtOZRTVJVV6H+qBZs2ai+1u2bNFbTi5N5ebmYtSoUbh8+TIOHz5coY0VtMHFxQW3bt3CgQMH8Pvvv2Pv3r345ptvMH/+fISGhup0LLUZA1taMmXKFNy6dQuJiYmwsLCAk5MT+vXrh//7v/9DixYtqtT29evXARRGvMuKRDdr1gwWFhZIS0tT28mBiKi2uPY4FX/dT0aBFpIKk/bk5eXh5pPCi5Nnf8aXmMSY6jaeA7WDvWEWzI0kMJVIkZieAwBQKJU48r5fldpVKpXIzs6BVAI0tjSDYSkX8hVhZWpUpce3adMGANCkSZMyZ0ckJyfj2LFjCA0Nxfz584XyohlfuhYXFwe5XF7mrJDx48dj4cKFcHFxgaura5nt+fj4YN26dTh69CguXLiA2bNnC8e8vLyQlZWFgwcPIi4uDqNHj9bW09CYlZWVkMC+uKIZVGXR5pK41q1bAyh83x0dHYXyhISEGjHDrE2bNjh8+DCSkpLKnUVV0rl7+/ZtmJqaapzbSdP+KvIeqC6169ixo8aPLc+dO3egVCpF47l9+zYAVDrXtUKhwOTJk3Hs2DH8+OOPZU4iqU5mZmYYN24cxo0bJwTaPv/8c/z3v/+tVCC6PmJgS0uKr3d98eIFXrx4gT///BNffvklvvrqK0yfPr3SbRftctiyZcty69rZ2eHatWuIj4+vdD+lefLkiXA7JycHWVlZFe6Daq/s7OwSb1P9oYtz4ODVZ5jz8zUwplVT/f8L2Xv6uRikmoDnQE33sY8V7BvJIZMZ4HGKlv9WMzCEAkByZj6cbIwhk1Y16KCs0M6IRTOrFAoFFAoF+vfvDwsLCyxatAi9evVSC7YmJCTAxsZGuBAuelyRlStXFo5CqazyrK2SHl/Uf3GXLl3Cr7/+ikGDBqk9rvg43nzzTUilUvTo0UP0vEt6HkUztFasWIG8vDz07NlTON6qVSs0a9YMy5YtE+pW9rkWf1zR7dJeu+Lljo6OSE1NxcWLF9GlSxcAhdcV+/btU2tX9bFFy9iSkpJKHbemz6dPnz4wNDTE6tWr0a9fP+G8KOk8KO21Lq0/TV6H8owcORJff/01QkJC8NVXX6m1UzygEx0djfPnz6Nbt24AgPj4ePzyyy8YOHAgJBKJRn1q2p+ZmRmSk5NLfP9VlbQsWJOxlPV6F3n8+LEoeXxaWhq+//57uLq6okmTJsLjinYULQp8l+Xdd9/F7t27sW7dOrz66qtamb1ZNEuvrLaKnxcvXryAtbW1cMzAwAAuLi44dOgQcnJyYGRU+AXAzZs3YWpqilatWmk8Fk1e17LGp3q9n5OTo3EbusbAVhU5Ojpi1KhR8PT0FNZWx8XFYe/evdizZw+ys7Px9ttvQyKRVHppYNE2sZqs9TUzMwNQuEtMRamuDS/Ln3/+KdqGmOqXU6dO6XsIpGfVcQ68yAaWXpZBoax5CUuJiOgfeQUKJKS8hKmOrySKvlRJT08Xdmf74osv8Pbbb6Nr164YNWoUGjdujIcPHyI8PBweHh5Yvnw5gMKAzvLly5Geno5mzZrh+PHjwoyhnJycCu32FhkZiejoaACFCadfvnwpzATz9PQUcuO89tprkMvl6NGjB2xsbHDr1i1s27YNJiYm+Pjjj0V9KhQK5OfnC2VWVlZ4//33AUAoK3r+GRkZosdaWlqiRYsWiI6ORqtWrWBubi467u7ujl9//RUSiQRdunSp8M52+fn5KCgoEF1fpKenq425uNzcXKE8ICAAH374IUaOHInp06cjMzMTmzdvRps2bXDp0iW11yEvL08oa9OmDWQyGZYsWYJnz57ByMgIfn5+sLGxQX5+vuj1KY+xsTHeffddrFy5EoMHD0b//v1x5coVHD16FNbW1qJ+MzMzhX+LyopeB9X+NH0dylO0y/2aNWtw48YN9OvXDwqFAtHR0fDx8RFdS7q4uGDQoEGYPn06jIyMsGnTJgDAf/7zH63316VLFxw7dgxLly6Fra0tWrduje7du2vUh6YyMjIAFJ7jJY1foVDAyckJ06ZNQ2RkJJo0aYLt27fj2bNnWLNmjegxffv2BQBcvny5zD7XrVuHdevWwd3dHRKJBN99953o+NChQ4Vr64iICAwbNgxz587Fhx9+WGa7eXl5AMo+L4ufF/3790eTJk3g4eGBJk2a4Pbt2/juu+8wYMAAKJVKoV7Hjh3h7e2NAwcOlNk/AGzYsAFpaWnCxJT9+/cLGxn861//EnLAlSQ/Px9ZWVnIysrCzZs3RccSExPL7VtfGNiqgpEjR+KNN95Qm57p7u6OcePG4cCBAxg1ahTy8vLw/vvvY/jw4ZVKalf0S6woWlsWY+PCLZM5m4qIahOFEtgZK0NOAYNaRES1QU2ZWfvaa6+hWbNm+Oqrr7BmzRrk5uaiWbNm8PT0xOuvvy7U++677zB37lxs3LgRSqUSffr0wU8//QQXF5cK93n69GksXbpUVPb5558DKEwEXRTYGjJkCH766Sd88803ePnyJRo3boyhQ4di7ty5oqVw2tCzZ0/s3bu3xMTwHh4e+PXXX+Hs7KzVROGaatSoEcLCwvDxxx9jwYIFaN26NebPn4+4uDhcunSpzMc2bdoUK1aswMqVKzFz5kwUFBTgt99+03i5napPPvkEcrkcW7ZsEXKO7d27F+PGjatUe9r29ddfo2PHjti+fTvmz58PCwsLuLq6inZcBABvb2+4u7tj2bJlePjwIdq1a4dvvvmmwvmhNOnv888/x6xZs/D5558jKysL48eP13pgSxOOjo5YunQp5s+fjzt37qB169bYvHmzEMiqqCtXrgAAzp07V+KOhJcuXVKbNNK0adNKjr50QUFBwudERkYGmjdvjrfeegv/+c9/Kt3m2rVrRSu4fvvtN/z2228ACvMNlhXYqq0kyvqW0a4U9+7dg4ODAwDgjTfewNatW7XS7sKFCzFv3jzh9scff1zhNszMzJCZmQkPDw+cOXOmzLoeHh44e/YszM3NhZlemtJkKWLRL8srV65oNL2T6o7s7Gxhlo6fnx/Xe9dD1XkObI1+gKXhd0RlbWzMYGNetfwrpD0KhQIpKYU5SCwtrSCVSvU8ItI1ngO1w+i2BmhqboSGZnKYNyk/jYWmsvMKRLkPm1nIYc3P6HpFoVAIF/jm5ub8DNATmUyGGTNmYM2aNTrtV5/vv6OjIzp27CgEZ3Rt7ty5+OGHH3D79m1hIkldFRsbi7y8PMhkMrVlj7GxsejcuTOAwuWvmqRK0hXO2Kpmb731FubPnw+lUomTJ09WKrDVoEEDZGZmarS8sGgaZ2W2KK3IiWlsbKy1rVup9pHL5Xz/6zltngMxz15i5R9xorIWlibY/443GsiZnLqmyMrKQnh4OABgwAA3fgbUQzwHaoeYmBjk5+fDwECGNjZV27K+uLsJ6XiZky/cV0rAwEY9JpVK+f7rkUQi0evrr4/3X5/P+cSJE5g3b169+b1X9FqrPt+aHNRjYKuaNWnSBNbW1khMTMSjR48q1UbLli3x7NmzcmdUARCmHFYkXxYRkb7k5ivw/o8XkZv/T0JLiQT4cuwrDGoREdUgqqk36tqaj4KCAiQkJJRZx9zcvFJfHtdUSUlJyM3NLfW4TCar9JI/XUtISEBBQUGpx42MjPSyDBPQ/blVH8/l6lbSUkWqWRjY0oGqblPboUMH/PXXX0hNTcXTp09LzdP15MkTIblcZfIFEBHp2to/YnD1kTi55lRvB/R0tC7lEUREpA+qGyDWtWwm8fHxQlqS0ixYsAAhISG6GZAOjBo1CidPniz1eOvWrXHv3j3dDagK3N3dhc0AStKrVy/RLva6pOtzqz6ey0QMbFWzhIQEYfeA5s2bV6oNHx8fhIWFAQBOnjxZanLD4r+YipJWEhHVVBceJOPrE+LdVds2Mcd/BrbT04iIiKg0qt/T1pTk8dpia2uLI0eOlFlH2wnf9e3LL79EcnJyqcdr07KrHTt2lLl5lpWVlQ5HI6btc6u8oHJdPJdrS4CV9IeBrWq2YcMG4cOnV69elWpj+PDh+L//+z8oFAps2bKl1MBWUcJ7qVSK4cOHV6ovIiJdyMotwAc/XhIlIjaQSrBynCvkhjI9joyIiEoigepSxLoV2ZLL5ejXr5++h6FTbm5u+h6C1tTkL/V1fW7Vx3OZiBn/KunevXu4cOFCmXUOHDiATz/9FEDhNx5TpkwpsV7v3r0hkUggkUhKjEbb2toK2xUfPnwYe/bsUavz008/4fDhwwCASZMmlbpckYioJlhy6AbiEjNEZe/1bYtOLere9sNERHWB6lLEujZji4iIaq96O2MrIiICd+78s7V80XJBALhz544w+6lIUFCQ6P69e/fg7+8PT09PDBs2DK+88gqaNGkCAIiLi8OePXuwZ88e4dusL774Ai1atKj0eD///HP8/vvvSEhIwPjx43H+/HkMHToUQGEA7csvvwQA2NjYYOHChZXuh4ioup2OScC2aHEejFfsLPF/vdvoaURERFSeup48noiIaq96G9jauHEjtm3bVuKxyMhIREZGispUA1tFoqOjER0dXWo/pqamWLlyJd56661KjxUo3OXwt99+w6uvvoqnT59i6dKlWLp0qaiOra0t9u/fj5YtW1apLyKi6pKamYfZP10WlckNpVgx9hUYyDiJmIioplLNsaUEI1tERFQz1NvAVlW5ublh+/btiI6Oxvnz5/HkyRMkJiYiPz8fVlZW6NixI/r27Ytp06YJM7mqysPDA1euXMGqVauwf/9+Ydmig4MDRowYgVmzZsHamjuJEVHNFfLbNTxNyxaV/XewC9rYcMtpIqKajEsRiYiopqq3ga2tW7eqLTesiAYNGuD1118Xcl9VRUW2nm3cuDE+++wzfPbZZ1Xul4hIl/535Qn2XXgkKvNt2xiTerbW04iIiEhT6ksRGdkiIqKages+iIio2j1Py8bH+66IyhrIDbBsTBdIVacBEBFRjaP6Sc0ZW0REVFMwsEVERNVKqVTiw5+vIDkzT1T+2YhOaNbQRE+jIiKiipByxhYREdVQDGwREVG1+uFcPP64+VxUFtDZFiNcm+tpREREVFGqyeP1MWNr69atkEgkQp5Zqnvs7e1L3bRLVe/evdG7d+9q6ffEiROQSCQVShlDRPrDwBYREVWbBy8y8dmB66IymwbGWPhqZ7V8LUREVHOpzdiqx7si7t69GxMnTkTbtm0hkUhKDa4UBUdK+jlz5oyorr29PSQSCfr161diW999953w2PPnzwMAli1bBolEggsXLojqKpVKWFlZQSKR4O7du6Jj2dnZMDY2xoQJEyr57HXr+vXrCAkJYTBTjxYtWoT9+/drtc2goKBS/28U/9E0yFkZN2/exJw5c+Dq6ooGDRqgWbNmGDJkiPD/q7KCgoJgbl76pkgSiQTvvvtulfooS0U+d+qSeps8noiIqleBQokPfrqIzNwCUfnS0Z3RyMxIT6MiIqLKUP0uQh8rESdNmoTAwEAYGxvrvvNi1q1bh7/++gvu7u548eJFufWDg4Ph7u4uKnNyclKrJ5fLcfz4cTx9+hS2traiYzt27IBcLkd29j87C/v4+AAAIiIi0LVrV6H82rVrSElJgYGBASIjI+Hg4CAcO3fuHHJzc4XH1nTXr19HaGgoevfuDXt7e9Gx8PDwauvXz88PWVlZMDLi3yuLFi3CmDFjMHz4cK21OX36dFEQ9+7du5g/fz7eeust+Pr6CuVt2rTRWp+qNm7ciE2bNmH06NGYMWMGUlNT8e2336Jnz574/fffSw0y1xaafu7UFQxsERFRtdh/4RHO3UsWlY3vYYc+7ZvqaURERFRZ6snjdR/ZkslkkMlkOu9XVVhYGFq0aAGpVIpOnTqVW9/X1xdjxowpt563tzfOnTuH3bt347333hPKHz58iNOnT2PkyJHYu3evUN69e3fI5XJERERg5syZQnlkZCSsra3RvXt3REREYOLEicKxiIgIAKg1ga2yVGfQSSqVQi6XV1v79Z2npyc8PT2F++fPn8f8+fPh6ekpOl+r0/jx4xESEiKaXfXmm2/CxcUFISEhtT6wpennTl3BpYhERFQtfr/2VHS/VSNTfDKkg55GQ0REVaG6fFwfM7ZKy7F16NAh+Pr6wszMDA0aNMCQIUNw7do1UZ3Lly8jKCgIjo6OkMvlsLW1xZtvvqnRjCtVdnZ2kEordhn18uVL5Ofnl1lHLpdj1KhR2Llzp6h8165dsLKywsCBA0XlRkZGcHd3R2RkpKg8MjISnp6e8Pb2LvGYpaWlRgG5Ir1790anTp1w+fJlDBkyBM2bN4ezszP27NkDADh58iQ8PDxgYmKCdu3a4ejRo6LHBwUFqc22AoCQkJAy0xJs3boVr732GgDA399fWE5VlPeqMjm2lEolFi5ciJYtW8LU1BT+/v5q5wpQco6t4q9Dr169YGpqCicnJ41fB00oFAqsWrUKnTt3hlwuh42NDQYNGiRaHle0lG3Hjh1o164d5HI53NzccOrUKa33J5FIkJGRgW3btkEmk8HKygozZsyocD9VZW9vj6FDhyI8PByurq6Qy+Xo0KEDfv75Z7W6sbGxiI2NLbdNNzc3tSWD1tbW8PX1xY0bN0TlmZmZuHnzJhITE6v2REqxZs0adOzYEaamprCyskL37t3VPgdu3ryJBw8eVKhdTT536goGtoiISOsUCiXO3UsSlQX3bQszY04UJiLSOYUCyEis0o80KxGyrBfCjyQzEcr0hKq1q1BU+amFhYVhyJAhMDc3x9KlSzFv3jxcv34dPj4+ogDYkSNHEBcXhylTpmDNmjUIDAzEDz/8gICAgGrf4XHKlCmwsLCAXC6Hv79/mTl8JkyYgLNnz4ouzHfu3IkxY8bA0NBQrb6Pjw8ePXokeq6RkZHw8vKCl5eXsCwRKAzqREVFwdPTs8KBueTkZAwfPhxubm4ICQmBsbExAgMDsXv3bgQGBiIgIABLlixBRkYGxowZg5cvX1ao/ZL4+fkhODgYAPDRRx8hLCwMYWFhcHFxqXSb8+fPx7x58/DKK69g+fLlcHR0xIABA5CRkaHR45OTkzF06FB4eHhg2bJlWn8dpk6dilmzZsHOzg5Lly7Fhx9+CLlcrpYb6eTJk5g1axYmTpyITz/9FC9evMCgQYNw9epVrfYXFhYGY2Nj+Pr6Ytu2bVi/fn215r0qS0xMDMaNG4fBgwdj8eLFMDAwwGuvvYYjR46I6vXt2xd9+/atdD9Pnz5F48aNRWVnz56Fi4sL1q5dq3E7iYmJJf6o+u677xAcHIwOHTrgq6++QmhoKFxdXfHnn3+K6rm4uGDy5Mka91+Rz526gFcYRESkdbefv0RKZp6ozLONtZ5GQ0RUz2UlAcurlqvGFEBH7YzmH7NjAbPG5dcrRXp6OoKDgzFt2jRs2LBBKH/jjTfQrl07LFq0SCifMWMGPvjgA9Hje/bsifHjxyMiIkKU10dbjIyMMHr0aAQEBKBx48a4fv06vvjiC/j6+iIqKkqUF6tInz59YGtri127duGTTz7BjRs3cPHiRaxatQpxcXFq9Yvn2bK3t8fTp08RFxcHb29vdOvWDVKpFFFRUQgICMD169eRnJxcqWWIjx8/xvbt2zFkyBAAwLBhw9ChQwdMmDABUVFR8PDwAFB48T1w4EDs3bu3ygEQR0dH+Pr6YvXq1ejfv3+Vd0BMSEjAsmXLMGTIEPz222/CbLGPP/4YixYt0qiNx48fY+fOnRg/fjwAoH///mjfvr1WXofjx49j69atCA4OxqpVq4TyDz74QC34evXqVZw/fx5ubm4AgMDAQLRr1w7z588vcRZTZfubOHEi3n77bTg6OmLixIlIS0vTqO3qcPv2bezduxejRo0CUBiUa9++PebOnYv+/ftrpY/Tp08jOjoan3zySZXaycjIgI2NjUZ1Dx48iI4dO+Knn36qUp9FKvO5UxcwsEVERFr3Z5x4tlZLKxO0sDTR02iIiKguOnLkCFJSUjB+/HjRTAiZTAYPDw8cP35cKDMx+ed3UHZ2NtLT09GzZ08AwN9//10tga2iWVNFhg8fjjFjxqBLly7473//i99//13tMTKZDGPHjhUCWzt27ICdnR18fX1LDGx5eXlBKpUKubQiIyNhaGgId3d3mJiYoEuXLoiMjERAQICwLLEygS1zc3MEBgYKM5DatWsHS0tLtGjRQgjmABBulzRWfTt69Chyc3Mxc+ZM0RLIWbNmaRzYKnodimjzddi7dy8kEgkWLFigdkx1yaanp6cQ1AKAVq1aYcSIEfjtt99QUFCgUS66ivRXEzRv3hwjR44U7ltYWGDy5MlYunSpaMOFyu6g+fz5c0yYMAEODg6YM2eO6Fjv3r0rNLNTLpfjt99+K/GYahDO0tISDx8+xLlz59SSvRenaf+V+dypCxjYIiIirTt7VxzY6uHQSE8jISKiuiomJgZA4SynklhYWAi3k5KSEBoaih9++AHPnz8X1UtNTa2+QapwcnLCiBEj8PPPP5cagJgwYQJWr16NS5cuYefOnQgMDCw10GBpaYmOHTsKQavIyEh07dpVCOR5eXmJjhkZGaFHjx4VHnfLli3VxtCwYUPY2dmplQGFS/Zqmvv37wMA2rZtKyq3sbGBlZWVRm1U5+sQGxuL5s2bo1Gj8v9mUn0OAODs7IzMzEwkJCSo7apZ1f409fSpOL9qw4YNRUHlqnByclJ77Z2dnQEUBrM0ec6lycjIwNChQ/Hy5UtERESo5d6qKJlMpnHy+blz5+Lo0aPo0aMHnJycMGDAAEyYMAHe3t5VGkNxmnzu1HYMbBERkVYplUr8eVecjLenA5chEhGRdin+f46usLCwEi9qDQz+udQZO3YsoqKiMHv2bLi6usLc3BwKhQKDBg0S2tEVOzs75ObmIiMjQxR8K+Lh4YE2bdpg1qxZuHv3LiZMmFBmez4+Pli/fj1SUlKE/FpFvLy8sHnzZuTl5SEiIgJubm6V2u2vtAvh0sqLzy4pLShXUFBQ4XHoW1Veh/qgWbNmovtbtmzRW04uTeXm5mLUqFG4fPkyDh8+XKGNFbTBxcUFt27dwoEDB/D7779j7969+OabbzB//nyEhoZqrZ/yPndqOwa2iIhIq2ITMpCYnisq83DkjC0iIr0xaVSYz6oK8gsKcOtZuqjMycYcxoZV+ObfpGq/G9q0Kcwb1qRJkzJnRyQnJ+PYsWMIDQ3F/PnzhfKiGV+6FhcXB7lcXuaskPHjx2PhwoVwcXGBq6trme35+Phg3bp1OHr0KC5cuIDZs2cLx7y8vJCVlYWDBw8iLi4Oo0eP1tbT0JiVlZWQwL64ohlUZdHmkrjWrVsDKHzfHR0dhfKEhIQaMcOsTZs2OHz4MJKSksqdRVXSuXv79m2YmppqnNtJ0/4q8h6oJnLv2FF7mfnu3LkDpVIpGs/t27cBoMRdNzWhUCgwefJkHDt2DD/++CN69eqljaFWmJmZGcaNG4dx48YJgbbPP/8c//3vfysViC6JJp87tRl3RSQiIq1SXYbY1MIYrRqZ6mk0REQEqbQwSXsVfiRmjVFgYi36UVSxTVRwZz5VAwcOhIWFBRYtWoS8vDy14wkJCQD+mU2jOnvmq6++qlL/5Snqv7hLly7h119/xYABA8rcmXDatGlYsGABvvzyy3L7KcqZtWLFCuTl5YlmbNnb26NZs2ZYtmyZqK4utWnTBqmpqbh8+bJQ9uTJE+zbt6/cx5qZmQFAiYGxiurXrx8MDQ2xZs0a0blQ3eeBpkaPHg2lUlniLB3Vczc6Ohp///23cD8+Ph6//PILBgwYoPEyM037MzMz0/j179evn+hHdQZXVTx+/Fh0zqSlpeH777+Hq6uraMZmbGysaFfRssycORO7d+/GN998IySl17UXL8SrHIyMjNChQwcolUrR59rNmzfx4MGDcturyudObcYZW0REpFWqyxA9HKxrZBJSIiLSnEQigQRA8ctrfS+zsrCwwLp16zBp0iR069YNgYGBsLGxwYMHD3Dw4EF4e3tj7dq1sLCwgJ+fH5YtW4a8vDy0aNEC4eHhuHv3bqX6PXXqFE6dOgWg8CIyIyMDCxcuBAD4+fnBz88PADBu3DiYmJjAy8sLTZo0wfXr17FhwwaYmppiyZIlZfbRunVrhISEaDSeVq1awc7ODtHR0bC3t0fz5s1Fx728vIRE4drM26OpwMBAzJ07FyNHjkRwcDAyMzOxbt06ODs7i4IzJXF1dYVMJsPSpUuRmpoKY2Nj9OnTB02aNKnwOGxsbPCf//wHixcvxtChQxEQEIALFy7g0KFDaNy48rtzaou/vz8mTZqE1atXIyYmRlgme/r0afj7++Pdd98V6nbq1AkDBw5EcHAwjI2N8c033wBAhZauadqfm5sbjh49ipUrV8LS0hKtW7cuNa9ddXJ2dsbUqVNx7tw5NG3aFJs3b8azZ8+wZcsWUb2+ffsCKD+J/FdffYVvvvkGnp6eMDU1xfbt20XHR44cKQRWT5w4AX9/fyxYsEDj/5eaGjBgAGxtbeHt7Y2mTZvixo0bWLt2LYYMGYIGDRoI9VxcXNCrVy+cOHGizPaq8rlTmzGwRUREWqNUKtV2RGTieCKiukEiAYrHsmpC+qAJEyagefPmWLJkCZYvX46cnBy0aNECvr6+mDJlilBv586dmDlzJr7++msolUoMGDAAhw4dUgsCaeKPP/5QCyDMmzcPALBgwQIhsPXqq69ix44dWLFiBdLS0mBjY4NRo0ZhwYIFcHJyqsKzVufj44Ndu3aJZmsV8fb2xt69e9G+fXtYW+s+56W1tTX27duHf//735gzZw4cHBywePFixMTElBvYsrW1xfr167F48WJMnToVBQUFOH78eKUCWwCwcOFCyOVyrF+/HsePH4eHhwfCw8MxZMiQSrWnbVu2bEGXLl2wadMmzJ49Gw0bNkT37t3V3tdevXrB09MToaGhePDgATp06ICtW7eiS5cuWu9vxYoVeOuttzBv3jxkZWVh/PjxeglstW3bFmvWrMHs2bNx69YtODg4YPfu3Rg4cGCl2rt48SKAwtlv0dHRasfv3r0rBLbS0wuXYWtzBlqR6dOnC58T6enpaNmyJYKDg/HJJ59Uqj1dfu7UJBKlvr9qoVrj4cOHwo4ft2/fLnE3Dqq7srKyEB4eDqDwmwVt7XBCtYcm58CDF5nwW35cVHb0335watJArS7VLvwMIJ4DtUNMTAzy8/NhYGCg1b/VFAoFbjxJQ0GxKweHxmZoIDfUWh9UsykUCqSlpQEonC1XV5c01XQSiQTvvPMO1q5dq9N+9fn+29vbo1OnTjhw4IDO+ixuzpw52LVrF+7cuQNjY2O9jEFXyvodEhMTI+xEGR8fj5YtW+pjiCXipxEREWnNGZVliNZmRmhjUzeTVBIR1Teqi8r59TgR1QfHjx/HvHnz6nxQqzbjUkQiItIa1cTxPRwaMb8WEVEdIVFJsqWoQ5GtgoKCEpMuF2dubl6ndhRLSkpCbm5uqcdlMpnGO+zpW0JCAgoKCko9bmRkVO5Og9VF1+dWfTyXq9u5c+f0PQQqBwNbRESkNeqJ45lfi4iorqjLM7bi4+Ph4OBQZp3qSBytT6NGjcLJkydLPd66detyE3DXFO7u7rh//36pxzVJul1ddH1u1cdzmYiBLSIi0orHKVmIT8oSlXk46j5JLRERVQ/VwJYCdSeyZWtriyNHjpRZx9HRUUej0Y0vv/wSycnJpR6vTXn0duzYgaysrFKPW1lZ6XA0Yto+t8pLkV0Xz+XaEmAl/WFgi4iItEJ1GWJDE0O0a8qk8UREdYXqyvK6NGNLLpejX79++h6GTrm5uel7CFrj7e2t7yGUStfnVn08l4mYPJ6IiLRCdRmiu30jSKXMr0VEVFdxc3UiIqoJGNgiIiKt+FNlxhbzaxER1S1qSxEZ1yIiohqAgS0iIqqy5y+zEZeQISrzcGRgi4ioLqnLSxGJiKj2YmCLiIiqTDW/lrmxATo0s9DTaIiIqDqo74rIyBYREekfA1tERFRlqoEtt9ZWMJDxVwwRUV2iOmNLoZ9hEBERifCqg4iIquzPOJX8WlyGSERU56jN2GKSLSIiqgEY2CIioipJysjFrWcvRWUeDtZ6Gg0REVUXteTxOu5/69atkEgkuHfvno57Jl2xt7dHUFCQRnV79+6N3r17V0u/J06cgEQiwYkTJ7TSPhFVLwa2iIioSs7dE8/WkhtK0blFQz2NhoiIqot68vj6OWNr9+7dmDhxItq2bQuJRFJqcKUoOFLSz5kzZ0R17e3tIZFI0K9fvxLb+u6774THnj9/HgCwbNkySCQSXLhwQVRXqVTCysoKEokEd+/eFR3Lzs6GsbExJkyYUMlnr1vXr19HSEgIg5l6tGjRIuzfv1+rbQYFBZX6f6P4j6ZBTm3YsWMHJBIJzM3Nq9RO79690alTpxKP3bt3DxKJBF988UWV+ijLkydP8OGHH8Lf3x8NGjSoNwFaA30PgIiIajfVZYhura1gZMDvTYiI6hr15PG67X/SpEkIDAyEsbGxbjtWsW7dOvz1119wd3fHixcvyq0fHBwMd3d3UZmTk5NaPblcjuPHj+Pp06ewtbUVHduxYwfkcjmys7OFMh8fHwBAREQEunbtKpRfu3YNKSkpMDAwQGRkJBwcHIRj586dQ25urvDYmu769esIDQ1F7969YW9vLzoWHh5ebf36+fkhKysLRkZG1dZHbbFo0SKMGTMGw4cP11qb06dPFwVx7969i/nz5+Ott96Cr6+vUN6mTRut9VmW9PR0zJkzB2ZmZjrprzrdunULS5cuRdu2bdG5c2dER0fre0g6wcAWERFVydl74j/qe9hzGSIRUV2kthRRx5EtmUwGmUym0z5LEhYWhhYtWkAqlZY6M6M4X19fjBkzptx63t7eOHfuHHbv3o333ntPKH/48CFOnz6NkSNHYu/evUJ59+7dIZfLERERgZkzZwrlkZGRsLa2Rvfu3REREYGJEycKxyIiIgCg1gS2ylKdQSepVAq5XF5t7dd3np6e8PT0FO6fP38e8+fPh6enp+h81ZWFCxeiQYMG8Pf31/rsNF1zc3PDixcv0KhRI+zZswevvfaavoekE/xKnYiIKi0tOw/XH6eJypg4noioblJfiqjb/kvLsXXo0CH4+vrCzMwMDRo0wJAhQ3Dt2jVRncuXLyMoKAiOjo6Qy+WwtbXFm2++qdGMK1V2dnaQSit2GfXy5Uvk5+eXWUcul2PUqFHYuXOnqHzXrl2wsrLCwIEDReVGRkZwd3dHZGSkqDwyMhKenp7w9vYu8ZilpaVGAbkiRUurLl++jCFDhqB58+ZwdnbGnj17AAAnT56Eh4cHTExM0K5dOxw9elT0+KCgILXZVgAQEhICiepJVczWrVuFi3J/f39heVrRsqrK5NhSKpVYuHAhWrZsCVNTU/j7+6udK0DJObaKvw69evWCqakpnJycNH4dNKFQKLBq1Sp07twZcrkcNjY2GDRokLD8FAAkEgneffdd7NixA+3atYNcLoebmxtOnTql9f4kEgkyMjKwbds2yGQyWFlZYcaMGRXup6rs7e0xdOhQhIeHw9XVFXK5HB06dMDPP/+sVjc2NhaxsbEatx0TE4OVK1dixYoVMDAoed5Pamoqbt68idTU1Eo/h9Lk5eUhNDQUbdu2hVwuh7W1NXx8fHDkyBFRnZs3b+LJkyflttegQQM0alT//hZnYIuIiCrt/L0kFN8Uy0gmhaudpd7GQ0RE6hRKBZKyk6r8k5qTjLTcf36Sc6rWnkJZ9fTzYWFhGDJkCMzNzbF06VLMmzcP169fh4+PjygAduTIEcTFxWHKlClYs2YNAgMD8cMPPyAgIKDac4VNmTIFFhYWkMvl8Pf3FwUpVE2YMAFnz54VXZjv3LkTY8aMgaGhoVp9Hx8fPHr0SPRcIyMj4eXlBS8vL2FZIlAY1ImKioKnp2eFA3PJyckYPnw43NzcEBISAmNjYwQGBmL37t0IDAxEQEAAlixZgoyMDIwZMwYvX74sv9Fy+Pn5ITg4GADw0UcfISwsDGFhYXBxcal0m/Pnz8e8efPwyiuvYPny5XB0dMSAAQOQkZGh0eOTk5MxdOhQeHh4YNmyZVp/HaZOnYpZs2bBzs4OS5cuxYcffgi5XK6Wk+3kyZOYNWsWJk6ciE8//RQvXrzAoEGDcPXqVa32FxYWBmNjY/j6+mLbtm1Yv369TvNeFRcTE4Nx48Zh8ODBWLx4MQwMDPDaa6+JAkAA0LdvX/Tt21fjdmfNmgV/f38EBASUWmffvn1wcXHBvn37NGqzoKAAiYmJaj/JyclqdUNCQhAaGgp/f3+sXbsWH3/8MVq1aoW///5bqPPo0SO4uLjgv//9r8bPq77hUkQiIqq0P++K82u52llCbqj/ZSJERPSPlJwU9NrdS9/DUHNy3Ek0kld+ZkF6ejqCg4Mxbdo0bNiwQSh/44030K5dOyxatEgonzFjBj744APR43v27Inx48cjIiJClNdHW4yMjDB69GgEBASgcePGuH79Or744gv4+voiKipKlBerSJ8+fWBra4tdu3bhk08+wY0bN3Dx4kWsWrUKcXFxavWL59myt7fH06dPERcXB29vb3Tr1g1SqRRRUVEICAjA9evXkZycXKlliI8fP8b27dsxZMgQAMCwYcPQoUMHTJgwAVFRUfDw8AAAuLi4YODAgdi7d2+VAyCOjo7w9fXF6tWr0b9//yrvgJiQkIBly5ZhyJAh+O2334TZYh9//DEWLVqkURuPHz/Gzp07MX78eABA//790b59e628DsePH8fWrVsRHByMVatWCeUffPCBWvD16tWrOH/+PNzc3AAAgYGBaNeuHebPn1/iLKbK9jdx4kS8/fbbcHR0xMSJE5GWllZac9Xu9u3b2Lt3L0aNGgWgMCjXvn17zJ07F/37969UmwcPHkR4eDguXbqkzaHi5s2bsLGx0XgMAQEBos8wqjjO2CIiokpTTRzPZYhERKQrR44cQUpKCsaPHy+aFSGTyeDh4YHjx48LdU1MTITb2dnZSExMRM+ePQFANDNCm7y8vLBnzx68+eabGD58OD788EOcOXMGEomk1JkXMpkMY8eOxa5duwAUJo23s7MrNfDm5eUFqVQq5M6KjIyEoaEh3N3dYW5uji5dugjLEYv+rUxgy9zcHIGBgcL9du3awdLSEi4uLkIwB4Bwu6QgnL4dPXoUubm5mDlzpmgJ5KxZszRuozpfh71790IikWDBggVqx1SXbHp6egpBLQBo1aoVRowYgcOHD6OgoEDr/dUEzZs3x8iRI4X7FhYWmDx5Mi5cuICnT58K5ffu3dNoF83c3Fy8//77ePvtt9GhQ4cy6wYFBUGpVGocpLS3t8eRI0fUfrZv365W19LSEteuXUNMTEyZ7SmVSmzdulWj/usjztgiIqJKycjJx9VH4lwDHg5MHE9ERLpRdCHYp0+fEo9bWFgIt5OSkhAaGooffvgBz58/F9Wrjrw5pXFycsKIESPw888/o6CgoMRk+BMmTMDq1atx6dIl7Ny5E4GBgaUGGiwtLdGxY0dR8Kpr165CIM/Ly0t0zMjICD169KjwuFu2bKk2hoYNG8LOzk6tDECJS6707f79+wCAtm3bisptbGxgZWWlURvV+TrExsaiefPmGuVHUn0OAODs7IzMzEwkJCSo7apZ1f40VTzABBS+DsWDylXh5OSk9to7OzsDKAxmafKci1u5ciUSExMRGhqqlfEVZ2ZmJtr1sUhJAbdPP/0UI0aMgLOzMzp16oRBgwZh0qRJ6NKli9bHVZcxsEVERJXy94Nk5BdLsGUglaBba0v9DYiIiOoVhaIwR1dYWFiJF7XFE0GPHTsWUVFRmD17NlxdXWFubg6FQoFBgwYJ7eiKnZ0dcnNzkZGRIQq+FfHw8ECbNm0wa9Ys3L17FxMmTCizPR8fH6xfvx4pKSlCfq0iXl5e2Lx5M/Ly8hAREQE3N7dK7fZX2m6UpZUXXzpXWlBO05lFNUlVXof6oFmzZqL7W7Zs0VtOrrKkpqZi4cKFmDFjBtLS0oQllunp6VAqlbh37x5MTU3RpEmTah+Ln58fYmNj8csvvyA8PBwbN27EypUrsX79ekybNq3a+68rGNgiIqJKUV2G2LllQ5ga8dcKEVFNY2lsiZPjTlapDYVCgRcpL5GQ/U+ZVCJB+2bqgZmKjKsq2rRpAwBo0qRJibMjiiQnJ+PYsWMIDQ3F/PnzhfKylv5Up7i4OMjlcpibm5daZ/z48Vi4cCFcXFzg6upaZns+Pj5Yt24djh49igsXLmD27NnCMS8vL2RlZeHgwYOIi4vD6NGjtfU0NGZlZSUksC+uaAZVWbS5JK5169YACt93R0dHoTwhIaFGzDBr06YNDh8+jKSkpHJnUZV07t6+fRumpqYa53bStL+KvAeqidw7duyo8WPLc+fOHSiVStF4bt++DQAl7rpZluTkZKSnp2PZsmVYtmyZ2nEHBweMGDEC+/fvr8qQNdaoUSNMmTIFU6ZMQXp6Ovz8/BASEsLAVgXwCoSIiCrlrEri+B4OzK9FRFQTSSXSKiVpBwoDWwpjA+QUm9wkgQSN5A2rOLrKGzhwICwsLLBo0SL4+/ur7RqYkJAAGxsbYTaN6uyZr776qlrHV9R/cZcuXcKvv/6KwYMHl7kz4bRp04RcYeUpypm1YsUK5OXliWZs2dvbo1mzZsLFe2Xya1VVmzZtkJqaisuXLwvLq548eaLRDnNmZmYAUGJgrKL69esHQ0NDrFmzBgMGDBACJNV9Hmhq9OjR+PrrrxEaGipK5g5ALaATHR2Nv//+G926dQMAxMfH45dffsGgQYNKnT1W2f7MzMw0fv3LCjBX1ePHj7Fv3z4heXxaWhq+//57uLq6imZsFu0oWhT4LkmTJk1KPP9Wr16N6Oho7Nq1S232WXV58eIFrK3/SeVhbm4OJycnxMfHC2V5eXmIjY1Fw4YNdTau2oaBLSIiqrDsvAJcjE8RlfVkfi0iojpNdeKGEkq1C25dsrCwwLp16zBp0iR069YNgYGBsLGxwYMHD3Dw4EF4e3tj7dq1sLCwgJ+fH5YtW4a8vDy0aNEC4eHhuHv3bqX6PXXqFE6dOgWgMHiVkZGBhQsXAihcVuTn5wcAGDduHExMTODl5YUmTZrg+vXr2LBhA0xNTbFkyZIy+2jdujVCQkI0Gk+rVq1gZ2eH6Oho2Nvbo3nz5qLjXl5eQqJwb2/vCj7bqgsMDMTcuXMxcuRIBAcHIzMzE+vWrYOzs3O5iftdXV0hk8mwdOlSpKamwtjYGH369KnUEjEbGxv85z//weLFizF06FAEBATgwoULOHToEBo3blzZp6c1/v7+mDRpElavXo2YmBhhmezp06fh7++Pd999V6jbqVMnDBw4EMHBwTA2NsY333wDABXKF6Vpf25ubjh69ChWrlwJS0tLtG7dutS8dtXJ2dkZU6dOxblz59C0aVNs3rwZz549w5YtW0T1+vbtC6DkfFZFTE1N8eqrr6qV79+/H2fPnlU7tnXrVkyZMqVallZ26NABvXv3hpubGxo1aoTz589jz549ovf70aNHcHFxwRtvvKFRAvmiz6Nr164BKFyuXbTBxCeffKLV8dcUDGwREVGFXX6UhtyCf762l0oAN3vNEq8SEVHtVFL4SqEEZHrcQG3ChAlo3rw5lixZguXLlyMnJwctWrSAr68vpkyZItTbuXMnZs6cia+//hpKpRIDBgzAoUOH1IJAmvjjjz/UAgjz5s0DACxYsEAIbL366qvYsWMHVqxYgbS0NNjY2GDUqFFYsGABnJycqvCs1fn4+GDXrl2i2VpFvL29sXfvXrRv3140M0RXrK2tsW/fPvz73//GnDlz4ODggMWLFyMmJqbcwJatrS3Wr1+PxYsXY+rUqSgoKMDx48crnfto4cKFkMvlWL9+PY4fPw4PDw+Eh4djyJAhlWpP27Zs2YIuXbpg06ZNmD17Nho2bIju3burva+9evWCp6cnQkND8eDBA3To0AFbt26tcMJxTfpbsWIF3nrrLcybNw9ZWVkYP368XgJbbdu2xZo1azB79mzcunULDg4O2L17NwYOHFjtfaenpwNQzyGmDcHBwfj1118RHh6OnJwctG7dGgsXLhQtKa6oos+jIps3bxZu19XAlkRZ3zLaUaU9fPhQ2PHj9u3bJe7GQXVXVlYWwsPDAQADBgzQ2g4nVHsUPwdijNti7Yl/vunu1MICB2aWvBU51Q38DCCeA7VDTEwM8vPzYWBgoNW/1RQKBZJT0vAoU1zeoZkFDGSlL6mjukOhUAhJti0sLMpcSknVRyKR4J133sHatWt12q8+3397e3t06tQJBw4c0FmfxY0dOxb37t3D2bNn9dK/LpX1OyQmJkbYiTI+Ph4tW7bUxxBLxBlbRERUYefvp4jue3AZIhFR3VfCzCx+RU5EdZlSqcSJEyewfft2fQ+FysDAFhERVUi+ArgYnyoqY+J4IqK6r8SliKgbka2CggIkJCSUWcfc3LzMnQxrm6SkJOTm5pZ6XCaTabzDnr4lJCSgoKCg1ONGRkbl7jRYXXR9btXHc7k6SSQSPH/+XN/DoHIwsEVERBUSnwFk5ytEZT3sGdgiIqrrSgps1ZUZW/Hx8XBwcCizzoIFCzRO6F4bjBo1CidPniz1eOvWrctMwF2TuLu74/79+6Ue79WrF06cOKG7ARWj63OrPp7LRAxsERFRhdxJE1/atLdtACszIz2NhoiIdEUiKQxuFY9lKepIZMvW1hZHjhwps46jo6OORqMbX375JZKTk0s9Xpvy6O3YsQNZWVmlHrey0t8GN9o+t8pLkV0Xz+XaEmAl/am3ga3nz5/j7NmzOHv2LM6dO4dz587hxYsXAKDxNpqZmZn4/fffceTIEZw/fx537txBeno6LCws4OzsjIEDB+Ltt9+Gra1tlcdrb29f5rcQRWrTNytEVDvFqgS2uAyRiKj+kEjEs7TqSFwLcrkc/fr10/cwdMrNzU3fQ9Aab29vfQ+hVLo+t+rjuUxUbwNbTZs2rdLjL1++DG9vb2Hrz+KSkpJw5swZnDlzBitXrsSGDRswbty4KvVHRFQTFCiBOJXAFhPHExHVH6rLEbnBOhER6Vu9DWwV16pVK7Rv317YwloTaWlpQlDL29sbQ4cORffu3WFtbY2EhAT8/PPP+O6775CWlobXX38dFhYWGDx4cJXHOmLECCxcuLDU40ZGXA5ERNXnYQaQo+CMLSKi+ko1sKVgXIuIiPSs3ga25s+fD3d3d7i7u6Np06a4d+9euUn2ipNKpRg7diwWLFiADh06qB0fMGAABg8ejJEjR6KgoAAzZ85ETEwMJJKS0m5qztLSEp06dapSG0RElaW6DNHRxgw2DYz1NBoiItI1iUqSLc7YIiIifau3ga3Q0NAqPd7LywteXl5l1hkxYgRGjRqFvXv3IjY2FhcuXEC3bt2q1C8RkT6pBra4DJGIqH5Rm7Gll1EQERH9Q6rvAdR1/v7+wu3Y2Fg9joSIqGoUSmUJgS0uQyQiqs84Y4uIiPSNga1qlpOTI9yWyWR6HAkRUdXcfpaOrAKVwJYjA1tERPWJalYNxrWIiEjfGNiqZidPnhRuu7i4VLm9U6dOwdXVFQ0aNICpqSkcHBwwbtw47N+/n9+YEVG1Onc/RXS/VSNTNGtoop/BEBGRXjB5PBER1TT1NseWLly6dAkHDx4EAHTu3Fkrga27d++K7t+7dw/37t3Djz/+CG9vb+zevRstWrSoVNsPHz4s8/iTJ0+E2zk5OcjKyqpUP1Q7ZWdnl3ib6o8/416I7ru1suDnQD3CzwDiOVA7KBQK4ctOhUJ7GbCK2lILbCkUWu2nLFu3bsXUqVMRGxsLe3t7nfRJ/yj+PlfXe+7o6IhevXphy5Yt5dbt06cPAOCPP/7Qer8nTpxA3759cezYMfTu3bvK7dcFunj/qWZQKpVQKBRqf+cXX41W0zCwVU1ycnIwbdo0FBQUAAA+//zzKrVnZGSE4cOHY8CAAejUqRMaNmyIlJQUREdHY926dYiPj0dkZCT69++P6OhoNGzYsMJ92NnZaVz3zz//ZM6weuzUqVP6HgLpmFIJ/BknQ/FLGpOXjxAeXnZAnOomfgYQz4Gay9raGiYmJpBIJEhLS9N6+6pLEbOzc5Cm1M3FTlFANT09vVqem6Z+/vln/P777/jrr78QFxcHb29vHDhwQK1eREQEhg0bVmIb4eHhcHd3F+536dIF8fHx6NWrF/bv369Wf9u2bZg1axaAwkBO165dsWrVKoSEhODkyZPo0qWLUFepVMLBwQGpqam4ePEiWrduLRzLzs5G69atMWzYMGzcuLGSr0Dhe1AdFAoF8vLyhPf35s2b2L9/PyZMmIBWrVqJ6ubn5wOAVs4F1X4zMzOFf/V5rtUEX375Jdq3b48hQ4YIZVV9/2fMmIFdu3aVW2/8+PH45ptvqtSXpn788UdMnz4dZmZm5U74KMvQoUPx4sULREdHqx178OABXnnlFXz66aeYOXNmVYZbqp07d+Kdd94p8djNmzfRtGnTMh+fn5+PrKwsZGVl4ebNm6JjiYmJWhuntjGwVU3effddnD9/HgDwxhtvlPpLTVNnz56FpaWlWnnv3r3x7rvvYsyYMQgPD8eNGzcQGhqKFStWVKk/IqLinmUB6fniqxknC64/ISKqb1RnbOnyN8G4ceMwatQoGBsb67BXdZs3b8alS5fQtWtXJCUllVt/+vTp6Nq1q6jM0dFRrZ5cLsfp06fx7NkztYvPn376CXK5XDRbsmfPngCAM2fOiAJbN27cQGpqKgwMDHDmzBlRYOvvv/9Gbm6u8Nia7tatW1i6dCl8fHzUAls///xztfXr5eWFJ0+ewMjIqNr6qC1WrlyJ4cOHiwJbVRUUFIRevXoJ9x88eIBFixbhjTfegKenp1Du4OCgtT7Lkp6ejpCQEJiZmemkP1346KOP1P7PVGbyS23BwFY1WLx4sfANiLu7O77++usqt1lSUKtIgwYN8OOPP8LR0RFJSUnYsGEDlixZUuEP4vj4+DKPP3nyBD169AAAeHh4oE2bNhVqn2q37Oxs4Rt6Pz8/yOVyPY+IdGnXuYfApdvC/aYNjBA4zB8S1a/uqc7iZwDxHKgdHjx4gIKCAhgYGMDCwkJr7SoUCqSnp6sFtgyNjGBhUb/OhR07dqBFixaQSqXo0qVLqa+1qakpgMIlc2PGjCmzTalUCm9vb5w7dw6HDh1CcHCwcOzhw4eIjo7Gq6++ip9//hlmZmawsLBAr169IJfLcf78efznP/8R6l+6dAnW1tZwc3PD33//jX/961/CsYsXLwIA+vXrV+Hzo+gcAABzc3NIpdpP1yyVSmFoaCiMzcSkMJenqampVs/n8volMUNDQ5ibm2vt/e/Xr5/o/vnz57Fo0SL4+fkhKCioKkOtlMWLF8PCwgL+/v745ZdfqnQeGBgYQCaTldiGubk5gMIgdnWda0W/m0eMGIHu3btX+PEJCQkwMTGBubk53NzcRMdq8ootBra07Ntvv8VHH30EAGjfvj3+97//6STy27BhQwQGBuKbb75BRkYGzp8/Dy8vrwq10bJlS43rGhsbC79oqP6Ry+V8/+uZs/fF0/B72FsJf7BT/cPPAOI5UHNJpVIh/011BB7UdkWspn5KsnXrVkyZMgV3794V5dg6dOgQFi1ahL///htSqRR+fn5YtmwZOnbsKNS5fPkyVqxYgVOnTuHx48ewtLREQEAAli9fDmtr6wqNo/gMqCIlvQZFZVKpFBkZGTAxMYGBQemXX3K5HKNGjcKuXbuEZYcAsHv3blhZWWHQoEH4+eefIZVKIZVKIZfL4e7ujqioKFH/0dHR8PT0RI8ePfDjjz+KjkVFRcHS0hJdunTR+H3r3bs3EhMTsX37drzzzju4cOECmjdvjiVLlmDMmDE4efIk5syZg8uXL6NVq1b4+uuvRYGLoKAgnDhxAvfu3RO1GxISgtDQULUNsCQSCaRSqfB+A0Dfvn2F48ePH0fv3r2F3FcnTpzQ6HkAhcs0P//8c6xfvx5JSUnw8PDA2rVrRf0Wtenv7y/0Vfx12LlzJ2bOnIlz585V6HXQhEKhwJo1a7Bx40bExMSgQYMGcHNzw8KFC4UghUQiwTvvvANPT098+umnuH//Pjp27IiVK1fCz89Pq/0VfYH5/fff4/vvvwdQuDxw+/btWv1/X/z/Sknt2tvbo1OnTggODsacOXNw8+ZNODo6YuHChRg1apSoblHwRdNJGDExMfjqq6+wb98+/Pjjj6LxFElNTcWTJ0/QrFkzjWc9lfWZUPxcy8vLw6JFi7B9+3bEx8fDzMwMLi4uWLBgAfr37y/UiY2NRcOGDdGsWTON+i363DE1NYVMJtNozEWKxqf6e17fs2XLwl0RtWjXrl2YMWMGgMJfeEeOHEHjxo111n+HDh2E248ePdJZv0RUtxUolIhWSRzv5dhIT6MhIqKKUioUyE9KqvJPQXIykCL+USQlV7o9pRYSUIeFhWHIkCEwNzfH0qVLMW/ePFy/fh0+Pj6iQMqRI0cQFxeHKVOmYM2aNQgMDMQPP/yAgICAat9ZfMqUKbCwsIBcLoe/v7+QrqQkEyZMwNmzZ0UzI3bu3IkxY8bA0NBQrb6Pjw8ePXokeq6RkZHw8vKCl5cXrl27hpSUFACFQZ2oqCh4enpWOCiRnJyM4cOHw83NDSEhITA2NkZgYCB2796NwMBABAQEYMmSJcjIyMCYMWPw8uXLCrVfEj8/P2Hm2kcffYSwsDCEhYVVaUOu+fPnY968eXjllVewfPlyODo6YsCAAcjIyNDo8cnJyRg6dCg8PDywbNkyrb8OU6dOxaxZs2BnZ4elS5fiww8/hFwux5kzZ0T1Tp48iVmzZmHixIn49NNP8eLFCwwaNAhXr17Van9hYWEwNjaGr68vtm3bhvXr1+tlRhVQGIAaN24cBg8ejMWLF8PAwACvvfYajhw5IqrXt29fUSC0PLNmzYK/vz8CAgJKrbNv3z64uLhg3759GrVZUFCAxMREtZ/k5GS1ukUBXn9/f6xduxYff/wxWrVqhb///luo8+jRI7i4uOC///2vxs/L398fFhYWMDU1xfDhwxETE6PxY2sjztjSkl9//RWTJ0+GQqFAs2bNcOzYsQrNgNIGLgkioupw7XEqUrPyRGU9Ha30NBoiIqqogpQUxHh5a6294uGVDACVvVxqGxUJg0aV/6IkPT0dwcHBmDZtGjZs2CCUv/HGG2jXrh0WLVoklM+YMQMffPCB6PE9e/bE+PHjERERAV9f30qPozRGRkYYPXo0AgIC0LhxY1y/fh1ffPEFfH19ERUVpZZ3Cyhctmhra4tdu3bhk08+wY0bN3Dx4kWsWrUKcXFxavV9fHwAFCaqt7e3x9OnT4WE9t26dYNUKkVUVBQCAgJw/fp1JCcnC4+piMePH2P79u1CnqVhw4ahQ4cOmDBhAqKiouDh4QEAcHFxwcCBA7F3794qB0AcHR3h6+uL1atXo3///lXenTAhIQHLli3DkCFD8NtvvwnXTh9//DEWLVqkURuPHz/Gzp07MX78eABA//790b59e628DsePH8fWrVsRHByMVatWCeUffPCBWvD16tWrOH/+vLBULDAwEO3atcP8+fM1zj2mSX8TJ07E22+/DUdHR0ycOFGvifRv376NvXv3CjO0pk6divbt22Pu3LnCzKaKOnjwIMLDw3Hp0iVtDhU3b96EjY2NxmMICAgQfYZVhampKYKCgoTA1l9//YUVK1bAy8sLf//9d4U2jKtNOGNLC44dO4axY8ciPz8f1tbWOHLkiF7yT12/fl243bx5c533T0R1U8Qd8Q4oTeRK2NazfCpERFTzHDlyBCkpKRg/frxoVoRMJoOHhweOHz8u1C2+pCY7OxuJiYlCAvXiMyO0ycvLC3v27MGbb76J4cOH48MPP8SZM2cgkUhKnXkhk8kwduxYYce4HTt2wM7OrtTAm5eXF6RSKSIiIgAUztYyNDSEu7s7zM3N0aVLF0RGRgrHAFQqsGVubo7AwEDhfrt27WBpaQkXFxchmANAuF1SEE7fjh49itzcXMycOVM0IaD4ss/yVOfrsHfvXkgkEixYsEDtmOoEBk9PT1H+o1atWmHEiBE4fPgwCgoKtN5fTdC8eXOMHDlSuG9hYYHJkyfjwoULePr0qVB+7949tWWvJcnNzcX777+Pt99+W7TyqSRBQUFQKpUaBynt7e1x5MgRtZ/t27er1bW0tMS1a9fKnFFlb28PpVKJrVu3ltv32LFjsWXLFkyePBmvvvoqPvvsMxw+fBgvXrzA559/rtH4ayPO2KqiqKgojBgxAjk5OWjYsCEOHz4sWs+vK6mpqfjhhx8AFEZpK5MojoioJJEqga12DbkbIhER6V/RhWCfPn1KPF48OXNSUhJCQ0Pxww8/4Pnz56J6qamp1TdIFU5OThgxYgR+/vlnFBQUlJj7ZsKECVi9ejUuXbqEnTt3IjAwsNRAg6WlJTp27CgKXnXt2lUI5Hl5eYmOGRkZCZtBVUTLli3VxtCwYUO12R9F+YdKWnKlb/fv3wcAtG3bVlRuY2MDKyvNZqJX5+sQGxuL5s2bo5EGsxhVnwMAODs7IzMzEwkJCbC1tdVqf5oqHmACCl8HbeVjdHJyUnvtnZ2dARQGszR5zsWtXLkSiYmJCA0N1cr4ijMzMysxv1pJAbdPP/0UI0aMgLOzMzp16oRBgwZh0qRJop1Oq8rHxwceHh44evSo1tqsaRjYqoKLFy9iyJAhyMjIgJmZGQ4ePKi2c4AmevfujZMnTwKAWjJMAPj999/Rq1evUj8U0tPTMXbsWLx4UZgDZ+rUqTU6sRsR1R7ZeQU4d0/8R5mzJQNbRESkf0VJ8sPCwkq8qC2eqH3s2LGIiorC7Nmz4erqCnNzcygUCgwaNEhoR1fs7OyQm5uLjIyMEndGK9p9fNasWbh79y4mTJhQZns+Pj5Yv349UlJShPxaRby8vLB582bk5eUhIiICbm5uldrRtLTk06WVF186V1pQTtOZRTVJVV6H+kA1sfmWLVv0lpOrLKmpqVi4cCFmzJiBtLQ0YYlleno6lEol7t27B1NTUzRp0qTax+Ln54fY2Fj88ssvCA8Px8aNG7Fy5UqsX78e06ZN01o/dnZ2uHXrltbaq2nqbWArIiICd+7cEe4nJv4zI+HOnTtq0/xU/0PGxsZi4MCBQjLGhQsXomHDhmUm7GvSpEml/nMsWbIEr7/+OkaNGgUfHx+0adMG5ubmSE1NRVRUFNavX48HDx4AKJwOGxISUuE+iIhKcv5eMnLz//mDXwIlnCzq1x9pRES1nczSEm2jIqvUhkKhwMuXL5GRB6Tk/lNuYiSDQ2PzSo+rKopSfzRp0qTM3eeSk5Nx7NgxhIaGYv78+UK5vpIpx8XFQS6Xw9y89Ndt/PjxWLhwIVxcXODq6lpmez4+Pli3bh2OHj2KCxcuYPbs2cIxLy8vZGVl4eDBg4iLi8Po0aO19TQ0ZmVlJVwzFVc0g6os2lwSV7SbZUxMDBwdHYXyhISEGjHDrE2bNjh8+DCSkpLKnUVV0rl7+/ZtmJqaapzbSdP+KvIeqCZy1+ZKpjt37kCpVIrGc/v2bQBQmxhSnuTkZKSnp2PZsmVYtmyZ2nEHBweMGDEC+/fvr8qQNdaoUSNMmTIFU6ZMQXp6Ovz8/BASEqLVwFZcXJzG50ZtVG8DWxs3bsS2bdtKPBYZGSlM2S2iGtg6ffq0aBrz+++/X26fCxYsqHTQKSkpCRs3bsTGjRtLrdOrVy/s2LFDq9NJiah+U82v1cocMK23vzmIiGoniVRapSTtQGFgS2ZgAFkegJx/ypWGMhg0alC1AVbSwIEDYWFhgUWLFsHf319t18CEhATY2NgIs2lUZ8989dVX1Tq+ov6Lu3TpEn799VcMHjy4zJ0Jp02bJuQKK09RzqwVK1YgLy9PNGPL3t4ezZo1Ey7eK5Nfq6ratGmD1NRUXL58WVhe9eTJE412mDMzMwOAEgNjFdWvXz8YGhpizZo1GDBggBAgqe7zQFOjR4/G119/jdDQUFEydwBqAZ3o6Gj8/fff6NatGwAgPj4ev/zyCwYNGlTq7LHK9mdmZqbx619WgLmqHj9+jH379gnJ49PS0vD999/D1dVVNGOzaEfRsnJeN2nSpMTzb/Xq1YiOjsauXbvUZp9VlxcvXsDa2lq4b25uDicnJ8THxwtleXl5iI2NRcOGDcsdV0mfO//73//w119/CbuM1kW8PKkFvvjiCxw7dgzR0dG4desWEhMTkZKSAlNTUzRv3hweHh4YP3686AOaiEgbmF+LiIiKU/1TU58rrSwsLLBu3TpMmjQJ3bp1Q2BgIGxsbPDgwQMcPHgQ3t7eWLt2LSwsLODn54dly5YhLy8PLVq0QHh4OO7evVupfk+dOoVTp04BKLyIzMjIwMKFCwEULivy8/MDAIwbNw4mJibw8vJCkyZNcP36dWzYsAGmpqZYsmRJmX20bt1a4y/EW7VqBTs7O0RHR8Pe3l5tEykvLy8hUbi3t/Z2x9RUYGAg5s6di5EjRyI4OBiZmZlYt24dnJ2dy03c7+rqCplMhqVLlyI1NRXGxsbo06dPpVbB2NjY4D//+Q8WL16MoUOHIiAgABcuXMChQ4fQuHHjyj49rfH398ekSZOwevVqxMTECMtkT58+DX9/f7z77rtC3U6dOmHgwIEIDg6GsbExvvnmGwCoUL4oTftzc3PD0aNHsXLlSlhaWqJ169al5rWrTs7Ozpg6dSrOnTuHpk2bYvPmzXj27Bm2bNkiqte3b18AJeezKmJqaopXX31VrXz//v04e/as2rGtW7diypQp1bK0skOHDujduzfc3NzQqFEjnD9/Hnv27BG9348ePYKLiwveeOONchPIe3l5oWvXrujevTsaNmyIv//+G5s3b4adnR0++ugjrY69Jqm3ga2tW7dqtKtAaYKCgrR2Up84caLM4927d2cyeCLSuZTMXFx9LE6o68zAFhFRvab6Faq+cwhNmDABzZs3x5IlS7B8+XLk5OSgRYsW8PX1xZQpU4R6O3fuxMyZM/H1119DqVRiwIABOHToUKV2Ev/jjz/UAgjz5s0DULhCoyiw9eqrr2LHjh1YsWIF0tLSYGNjg1GjRmHBggVwcnKqwrNW5+Pjg127dolmaxXx9vbG3r170b59e9HMEF2xtrbGvn378O9//xtz5syBg4MDFi9ejJiYmHIDW7a2tli/fj0WL16MqVOnoqCgAMePH6907qOFCxdCLpdj/fr1OH78ODw8PBAeHo4hQ4ZUqj1t27JlC7p06YJNmzZh9uzZaNiwIbp37672vvbq1Quenp4IDQ3FgwcP0KFDB2zdurXCCcc16W/FihV46623MG/ePGRlZWH8+PF6CWy1bdsWa9aswezZs3Hr1i04ODhg9+7dGDhwYLX3nZ6eDkA9h5g2BAcH49dff0V4eDhycnLQunVrLFy4ULSkuCLGjRuHgwcPIjw8HJmZmWjWrBn+9a9/YcGCBWjatKmWR19zSJT6/m1EtcbDhw+FHT9u375d4m4cVHdlZWUhPDwcADBgwACt7XBCNdehK0/wfzv++YNTbiDF5265MJDyHKiP+BlAPAdqh5iYGOTn58PAwECrf6spFAqkpaUhOx94nv1PuYFUig7N1ROgU91TdA4AhbPlylpKSdVHIpHgnXfewdq1a3Xarz7ff3t7e3Tq1AkHDhzQWZ/FjR07Fvfu3cPZs2f10r8ulfU7JCYmRtiJMj4+Hi1bttTHEEtUb2dsERFR2VTza7m1toSB9HkptYmIqD5QX4rI78iJqO5SKpU4ceIEtm/fru+hUBkY2CIiohKp5tfydLACMhjYIiKqz1SXIipKrFX7FBQUICEhocw65ubmZe5kWNskJSUhNze31OMymazW7KKWkJCAgoKCUo8bGRnpbYMtXZ9b9fFcrk4SiUS0aRzVTAxsERGRmvikTNx7kSkq83RshIdX9DQgIiKqEUrKsaW6Y1ttFB8fDwcHhzLrVGWH85po1KhROHnyZKnHW7duXWYC7prE3d0d9+/fL/V4r169ys1rXF10fW7Vx3OZiIEtIiJSExUrnq1lZWqI9rbmDGwREdV3JcSvlEr1JYq1ja2tLY4cOVJmHUdHRx2NRje+/PJLJCcnl3q8NuXR27FjB7Kysko9bmVlpcPRiGn73Cpv+W9dPJdrS4CV9IeBLSIiUhNx54XovpdTY0hr+1ULERFVWUm/CRRKJaQlHqk95HI5+vXrp+9h6JSbm5u+h6A13t7e+h5CqXR9btXHc5mIW1kQEZGIQqFElEp+LR+nxnoaDRER1SQlha+YPp6IiPSJgS0iIhK5+fQlXmSIk8kysEVEVLtU126FJU3e5c6IRESkTwxsERGRiGp+LbtGJrBrZKqn0RARUUUYGBRmGikoKKiWgFPJSxG13g0REelYQUEB8vPzARTuilqbMLBFREQiEVyGSERUaxkZGQm3ExMTy6hZORIJIFEJb3HGFhFR7VZQUICnT58K983MzPQ4mopj8ngiIhLk5ivwZ1ySqMybgS0iolqjUaNGSEtLA1AY2EpOToZES5t/FH2Tn58vzqt1P0MGmbR2J48nzRSdAwkJCXoeCekD3/+6q+i9LdKwYUM9jaRyGNgiIiLBhQfJyMorEJV5tWFgi4iotjAxMYGlpSVSUlIAFH4Lrw1KpRJZWVkAgNRcCQqKRbak5kYwNqxdy1ao4oqfAyYmJloLmFLtwPe//mjevDnkcrm+h1EhDGwREZEgUmUZYsfmFmhkZlRKbSIiqomaNm0KExMTpKSkIC8vTyttKhQK4aL2YboBcvIVwrEGpsYwM+BlRV1X/BwwNzeHVMqsNvUJ3/+6TSaTwczMDA0bNqx1QS2AgS0iIiqG+bWIiGo/qVQKS0tLWFpaaq3NrKws3Lx5EwCw8VYDPEjKEo6tn+iInm1ttdYX1UzFzwE3NzeYmJjoeUSkS3z/qSZjmJWIiAAAadl5uPQwVVTG/FpERKTK2EB8CZGTr53ljkRERJXBwBYREQEA/oxLQkGxPduNZFK42zfS44iIiKgmUg1s5RZblkhERKRrDGwREREA9fxabq2tYGLEZMBERCSmPmOLgS0iItIfBraIiAiAemDL28laTyMhIqKazIiBLSIiqkEY2CIiIjxLy0bM83RRGfNrERFRSZhji4iIahIGtoiISG22VgO5ATq3aKin0RARUU2mFtjK44wtIiLSHwa2iIgIESqBLU9HaxjI+CuCiIjUcSkiERHVJLxqISKq55RKpdqMLZ+2XIZIREQlM5ZxKSIREdUcDGwREdVzsQnpeJaWIypjfi0iIiqNsYF4x1zO2CIiIn1iYIuIqJ6LiBHP1mrWUA7HxmZ6Gg0REdV0zLFFREQ1CQNbRET1XMSdF6L73k6NIZFI9DQaIiKq6dRzbHEpIhER6Q8DW0RE9Vh+gQJ/xqkGtqz1NBoiIqoN1GZscSkiERHpEQNbRET12OVHqXiZky8q827D/FpERFQ6BraIiKgmYWCLiKgei1TJr+Xc1BxNLOR6Gg0REdUGaksR87gUkYiI9IeBLSKieizijjiwxd0QiYioPJyxRURENQkDW0RE9VRmbj7+fpAsKvNhYIuIiMqhnjyegS0iItIfBraIiOqps3eTkFegFO7LpBJ4ODJxPBERlU11xlYud0UkIiI9YmCLiKieilRZhtjVzhLmxgZ6Gg0REdUWnLFFREQ1ic6vYBISEhAXF4enT58iIyMDhoaGsLS0RKtWreDk5ASZTKbrIRER1UsRd16I7jO/FhERaYI5toiIqCap9sBWRkYGfvnlFxw6dAgnT57Eo0ePSq1rbGyMrl27YsCAARg5ciS6dOlS3cMjIqqXEtNzcONJmqiMgS0iItKEWmCLuyISEZEeVVtg68KFC1izZg1++uknZGZmAgCUSmWZj8nOzkZ0dDTOnDmDTz/9FB07dsQ777yDSZMmwdTUtLqGSkRU70TFimdrmRrJ4GpnqZ/BEBFRrcIZW0REVJNoPbB14cIFzJs3D4cOHQLwTzDL1tYWPXr0gJubG5o0aYJGjRrBysoKWVlZSEpKQnJyMm7fvo1z587h8uXLyMvLw9WrVzFjxgzMmzcPc+bMwcyZM2FsbKztIRMR1TtRKvm1PBwaqeVMISIiKklJObaUSiUkEomeRkRERPWZVgNbU6ZMQVhYGBSKwm9tunXrhtdffx2jR49Gq1atNG4nNzcXp06dwo4dO7Bv3z4kJiZi7ty5+Oabb/D999/Dx8dHm8MmIqpXlEolTseIA1tchkhERJpSnbEFALkFChgbMFcuERHpnla/nt+2bRsMDAzwr3/9Czdv3sT58+fx/vvvVyioBQBGRkbo168ftmzZgmfPnuH7779Hu3btcO/ePfzxxx/aHDIRUb1z/0UmHqVkicp82jKwRUREmikpsMXliEREpC9anbE1Y8YMzJ07F3Z2dlpr09jYGBMnTsTrr7+On376CQUFTE5JRFQVJ249F91vbG6Edk0b6Gk0RERU25QY2MpTAHI9DIaIiOo9rQa21q5dq83mRCQSCcaOHVtt7RMR1Rd/3EoQ3fdztmFeFCIi0lhJORlz8vnlMxER6QczBRMR1SOZufk4EyfeEbFP+yZ6Gg0REdVGXIpIREQ1CQNbRET1SOSdF8gtdvEhk0rg29ZGjyMiIqLaxkAqhUwqnumbk8fAFhER6YdWlyICQPPmzeHn5wdfX1/4+fmhc+fO2u6CiIgq6Y+b4vxa3VtboaGJoZ5GQ0REtZWxgRSZuf8sP+RSRCIi0hetB7aePn2Kn376CT/99BMAwNLSEj4+PvDz84Ofnx/c3NwglXKiGBGRrimVShxXCWz1deEyRCIiqjj1wBZnbBERkX5oPbDVunVr3L9/X7ifnJyMAwcO4MCBAwAAMzMzeHp6CrO6evbsCSMjI20Pg4iIVFx/koanadmiMubXIiKiylBNIM/AFhER6YvWA1t3797Fo0ePcPr0aeHn2rVrUCqVAID09HQcPXoUR48eBQAYGRnB3d1dmNHl7e0NMzMzbQ+LiKjeU52tZdfIBG1szPU0GiIiqs2MDWSi+7kMbBERkZ5oPbAFAC1atEBgYCACAwMBFM7aioyMFAJdf/31F/Ly8gAAOTk5iIyMRGRkJBYvXgyZTAZXV1ch0OXr6wsrK6vqGCYRUb2iml+rT7smkEgkpdQmIiIqnerOiMyxRURE+qKTZFdWVlYYOnQoli5diqioKKSmpuKPP/5AaGgo+vXrB1NTUyiVSiiVSuTn5+P8+fNYuXIlRo4ciSZNqmeZzPPnz3HgwAHMnz8fgwcPRuPGjSGRSCCRSBAUFFTh9g4dOoSRI0eiZcuWMDY2RsuWLTFy5EgcOnRIq+POzMzEsmXL4O7ujkaNGsHMzAzt27fHBx98IFoCSkRUXFJGLi7Ep4jK/LkMkYiIKsnYUCWwxV0RiYhIT6plxlZ55HI5evfujd69ewMACgoK8PfffwszuiIiIvDixQsAgEJRPb8kmzZtqpV2FAoF3nrrLWzatElU/ujRIzx69Aj79+/HtGnT8O2331Y5af6dO3cQEBCAmJgYUfmtW7dw69YtbNy4ETt27MDQoUOr1A8R1T0nbj3H/18RDgAwMZShp6O1/gZERES1mupSRObYIiIifakR2xMqFArk5eUhLy8Pubm5yM/P1+nymFatWmHAgAGVeuzHH38sBLW6du2KXbt24ezZs9i1axe6du0KANi4cSM++eSTKo3x5cuXGDJkiBDU+te//oVjx44hKioKn3/+OczNzZGWloZx48bh4sWLVeqLiOoe1WWI3k6NITeUlVKbiIiobFyKSERENYVeZmxlZGQgKipKmKF19uxZZGcX7tSlLDaloH379vD19a2WMcyfPx/u7u5wd3dH06ZNce/ePTg4OFSojdu3b+OLL74AAHTv3h2nTp2CiYkJAMDd3R3Dhw9Hr169cP78eSxfvhxvvvkmnJycKjXe5cuX4/bt2wCAZcuWYfbs2cIxT09P9O7dG7169UJmZiZmzZqFEydOVKofIqp78gsUOHU7QVTG3RCJiKgq1ANbnLFFRET6oZPA1osXL0S7JF68eBEFBYXf6hQFsoyMjNCtWzf4+PjAx8cH3t7esLauvmUyoaGhVW7jq6++Qn5+PgBgzZo1QlCriKmpKdasWQNPT0/k5+dj5cqV+PrrryvcT15eHlavXg0AcHFxwQcffKBWx8vLC1OnTsW3336LkydP4ty5c3B3d6/EsyKiuuav+8lIy84Xlfm3t9HTaIiIqC5QW4rIHFtERKQn1RLYio+Px+nTp3Hq1CmcPn0aN2/eFI4VBbIsLCzg5eUlBLJ69OgBuVxeHcOpFkqlEr/88guAwpllPXv2LLFez5490a5dO9y6dQu//PIL1q5dW+FllsePH0dqaioA4I033ig1V1dQUBC+/fZbAMC+ffsY2CIiAMAft8TLEDs0s0Czhial1CYiIiqfWvJ4LkUkIiI90Xpgy97eHvHx8QDEywpbtGghBLF8fHzQpUuXWr3N/N27d/H48WMAQK9evcqs26tXL9y6dQuPHj2q1JLHiIgIUVul6d69O0xNTZGZmYnIyMgK9UFEdddxlfxaXIZIRERVxaWIRERUU2g9sPXgwYPChg0MMGbMGAwdOhTe3t5o3bq1trvSq+vXrwu327dvX2bd4sdv3LhR4cCWpn0ZGBjAyckJly9fxo0bNyrUBxHVTfFJmbj9LF1U5s/AFhERVZH6roicsUVERPpRLUsRJRIJCgoK8OOPP+LatWvw9fWFr68vvL290bJly+roUucePnwo3C7vOdnZ2Qm3i2azVaYvMzMzWFpaltvX5cuXkZCQgJycHBgbG1e4n9I8efJEuJ2Tk4OsrCyN26bar2iDB9XbVLMdvvJIdN/K1BDtGhtX6v8vz4H6je8/8Ryo31TffxnEM7Qys/P4t2Edx8+A+o3vP+Xk5Oh7CKXSemBr5cqViIiIQEREBJ49e4YrV67g6tWrWLduHQCgVatWwnJEX19fdOjQQdtD0ImXL18Kt83Nzcusa2ZmJtxOT08vo2bZfZXXT0l9VSSwVTwAV54///wTsbGxGtenuuXUqVP6HgJpaO8NKYB/lou0Mc3BsaNHqtwuz4H6je8/8Ryo306dOoVH8eLfL/fiHyE8vOJf4FLtxM+A+o3vf/2UmJio7yGUSuuBrffeew/vvfceAOD27dvCToinTp3CvXv3cP/+fdy/fx87d+4EAFhZWcHLywu+vr7w8fFB9+7dYWhoqO1haV3xKLWRkVGZdYsHl6oyS6K8frTRFxHVHbkFwJ1UcS7DjlbKUmoTERFpzlAq/n2Sz18vRESkJ9WyFLGIs7MznJ2dMXXqVADAo0ePRIGu69evIykpCQcOHMDBgwcBFAZmevToIczq8vLygoWFRXUOs1KK7+CYm5tbZt3iU/ZMTCq+E1lRX+X1U9W+ylsm+eTJE/To0QMA4OHhgTZt2lSofardsrOzhW9n/Pz8atUupvXV8duJyDt7Wbgvk0gwY1RvWMgr9+UBz4H6je8/8Ryo31Tf//i/nuF/8f/M3m/YyAYDBryir+GRDvAzoH7j+081ecVWtQa2VLVo0QKBgYEIDAwEACQnJyMiIgKnTp3CqVOncOHCBeE/zOnTpwEAMplMo4COrjVo0EC4Xd7ywoyMDOG2JssJS+tLk2WMVemrIvnPjI2NKxWko7pBLpfz/a8FIuJSRPfd7K3Q1Eo7XxTwHKjf+P4Tz4H6TS6Xw8xEnO4iX1G5L3CpduJnQP3G979+qkiaI12Tll+l+lhZWWHYsGFYvnw5/vzzT6SkpGD9+vVwdHSEUqmEUqlEQUHN3GGleBCovKTrxWdCVSSPlWpfGRkZSElJ0agvGxubGn3iEVH1UiqVOH7zuaisD3dDJCIiLVHdFTG3QFFKTSIiouql0xlbJbl27ZowQ+v06dN4/PgxgMKdFZXKmrtYv3jS+5s3b5ZZt/hxFxeXSvW1d+9eoa2ePXuWWC8/P1+YHliZfoio7rj59CWepIp3rOnLwBYREWmJsYH4+/Gc/Jr5ZTQREdV9Og1sFRQU4K+//hJybEVGRiI5OVk4rhrIatWqFfz8/HQ5RI05ODigefPmePz4MU6ePFlm3aK1yC1atIC9vX2F+/Lx8RFunzx5stTA1vnz54WliN7e3hXuh4jqjj9UZmu1tDKBU5OKL4UmIiIqibGhSmArjzO2iIhIP6o1sJWdnY3o6GghkPXnn38iMzNTOK4ayGrXrh38/Pzg5+cHX19ftGrVqjqHVyUSiQQjRozAunXrcPPmTZw5c6bEgNOZM2eEGVsjRoyARCJRq1Oe3r17o2HDhkhNTcW2bdswZ86cEtvZunWrcHvkyJEV7oeI6o6SliFW5vOHiIioJKpLEXPyGdgiIiL90HqOrQMHDmDu3Lnw8vKCpaUl+vXrh9DQUBw/fhwZGRlC7iyJRAJXV1cEBwdjz549ePbsGW7cuIFvv/0Wr7/+eo0OahWZNWsWZLLCX+ozZ85EVlaW6HhWVhZmzpwJADAwMMCsWbNKbCcoKAgSiQQSiQQnTpxQO25kZITg4GAAwI0bN/DFF1+o1YmOjsamTZsAAL169YK7u3tlnxYR1XLJGbn4+0GyqMyfyxCJiEiLuBSRiIhqCq3P2Bo+fLgwK6D4jCwjIyN0794dvr6+8PPzg7e3NywstLM7V2VERETgzp07wv3ExETh9p07d0Szn4DC4JMqZ2dnzJ49G0uWLMH58+fh7e2NuXPnok2bNoiNjcXSpUtx4cIFAMDs2bPRtm3bSo939uzZ2L17N27fvo05c+bgzp07CAwMhImJCY4fP45FixYhPz8fJiYm+OqrryrdDxHVfidvJ0BRbEKs3FAKT0dr/Q2IiIjqHPXAFmdsERGRflTLUkSlUglTU1N4enoKgayePXtCLpdXR3eVsnHjRmzbtq3EY5GRkYiMjBSVlRTYAoDPP/8cz58/x+bNm3HhwgUEBgaq1Zk6dSoWLlxYpfE2aNAABw8eREBAAGJiYrBhwwZs2LBBVMfCwgI7duyAq6trlfoiotpNNb+Wj1NjyA1lpdQmIiKqOGOV3yvMsUVERPqi9cDWsmXL4OvrCzc3NxgY6H3TxWonlUqxadMmjB49Ghs2bMC5c+eQmJiIxo0bw93dHdOnT8fgwYO10peTkxMuXLiAr7/+Gj/99BPu3LmD3Nxc2NnZISAgAO+99x5at26tlb6IqHbKL1Dg5O0EURmXIRIRkbaVtBSxKN0IERGRLmk98vSf//xH201Wi61bt6otN6yKgIAABAQEVPtYzMzMMGfOHMyZM6dSfRFR3XYhPgWpWXmiMv92DGwREZF2qQa2FEogX6GEoYyBLSIi0i2tJ48nIiL9OXZDvAyxvW0DNLc00dNoiIiorlJdiggwzxYREekHA1tERHXIcZX8Wn24DJGIiKqB6owtAMjJ486IRESke1pfitinTx+ttieRSHDs2DGttklEVBc9SsnCrWcvRWV9XRjYIiIi7SsxsMUZW0REpAdaD2ydOHFCSBpZ1QSSTEBJRKQ51d0QrUwN4WpnpafREBFRXWZswKWIRERUM1TbtoVyuRxNmnCmABGRrqguQ+zlbAOZlF8OEBGR9hnKJJBIAKXyn7KcfC5FJCIi3au2wFZ2djaaNWuGyZMnY9y4cbCy4qwBIqLqkpVbgMg7iaIyf+bXIiKiaiKRSGAkk4pmaeXkccYWERHpntaTx3/22WdwdnaGUqnEmTNn8M4776BZs2YYPXo09u/fj7y8vPIbISKiComOSxRdXMikEvRyttHjiIiIqK5TzbOVW8DAFhER6Z7WA1sff/wxbty4gbNnz+Ldd99F48aNkZubi3379mH06NFo1qwZ3nnnHURHR2u7ayKieks1v5ZbKytYmhrpaTRERFQfGBuK82xxxhYREemD1gNbRbp3747Vq1fj8ePH+PXXXzFmzBgYGxsjKSkJ69evh4+PD5ydnfHZZ5/h7t271TUMIqI6T6lU4vjNBFEZlyESEVF1U52xxRxbRESkD9UW2Coik8kwdOhQ/Pjjj3j69Cm+++47+Pr6AgDu3LmDkJAQODk5wdfXF9999x1SUlKqe0hERHXK7WfpeJSSJSrrw8AWERFVM/XAFmdsERGR7lV7YKs4CwsLTJ06FSdOnMDdu3fx6aefwsnJCUqlElFRUXj77bfh4OCgyyEREdV6qssQW1iawLmpuZ5GQ0RE9YWxgcpSRM7YIiIiPdBpYKu4Vq1a4ZNPPsGtW7ewZs0aGBsbQ6lUIicnR19DIiKqlf64+Ux0v0/7JpBIJHoaDRER1RfGhioztphji4iI9MBAXx3Hx8dj+/btCAsLw61bt4RyIyMmOyYi0lRyRi7+up8sKuMyRCIi0gUuRSQioppAp4GttLQ0/PTTT9i+fTtOnz4NpVIJpVIJAPD09MSkSZMwbtw4XQ6JiKhWO3L9GRTKf+7LDaXwbGOtvwEREVG9waWIRERUE1R7YKugoACHDh1CWFgYfvvtN+Tk5AjBLEdHR0ycOBGTJk1CmzZtqnsoRER1zv+uPhHd92/XBHKV7deJiIiqg9qMLS5FJCIiPai2wNa5c+cQFhaG3bt3IzExEUDhlvSWlpYYO3YsJk2aBG9v7+rqnoiozkvNzEPknURR2eDOzfQ0GiIiqm+MDVVnbDGwRUREuqf1wNbChQuxY8cO3L59G0BhMMvQ0BCDBw/GpEmTMGzYMObRIiLSgqM3niGv4J91iEYGUubXIiIinVHPscWliEREpHtaD2zNnz8fEokESqUSHh4emDx5MsaNG4dGjRppuysionrtf1fEyxB7OdvA3Fhve4IQEVE9w+TxRERUE1TbFZCJiQmePXuG5cuXY/ny5ZVuRyKRIDY2VosjIyKq/dKy83A6RrwMMaCzrZ5GQ0RE9ZFa8njm2CIiIj2otsBWVlYW7t27V+V2JBJJ1QdDRFTH/HHjOXIL/rmAMJJJ0delqR5HRERE9Y2xIZciEhGR/mk9sOXn58dgFBFRNVNdhujbtjEs5IZ6Gg0REdVHRjIuRSQiIv3TemDrxIkT2m6SiIiKSc/Jx4nbCaIy7oZIRES6pj5ji4EtIiLSPWn5VYiIqCb54+Zz5Ba7eDCQStCfyxCJiEjHVHNs5TKwRUREesDAFhFRLXNIZRmit1NjNDTlMkQiItIt9V0RmWOLiIh0j4EtIqJaJDM3H8dvPReVDeEyRCIi0gP1wBZnbBERke5pNbD15MmT8itV0dOnT6u9DyKimurErQRkF9tOXSaVoH8HLkMkIiLdMzYUL0XMyWNgi4iIdE+rga02bdogODgYjx490mazAIAff/wRXbp0wYYNG7TeNhFRbaG6G6JXG2tYmRnpaTRERFSfcSkiERHVBFoNbOXn5+Prr7+Gk5MT3njjDYSHh0OhqPw3N/Hx8Vi2bBlcXFwwfvx4XL16FUZGvIAjovopO68Af9wUL0Mc3InLEImISD+4FJGIiGoCA202dvXqVbz//vs4dOgQtm/fju3bt6NJkyYYMWIEevbsCXd3d3To0AESiaTExycmJuLcuXM4e/Ysjh07hqioKCiVSiiVSrRo0QKhoaEICgrS5pCJiGqNE7cSkJn7z7fhUgkwoCOXIRIRkX6o7orIwBYREemDVgNbzs7OOHjwIKKiorBw4UIcPnwYz549w3fffYfvvvsOAGBkZARra2tYWVnBysoKWVlZSEpKQnJyMlJTU4W2lEolAKBly5aYOXMmZs6cCblcrs3hEhHVKoeuipch9nS0RmNzYz2NhoiI6jtjQ5UZW3lcikhERLqn1cBWES8vL/zvf//D7du3sXnzZvz000+4e/cuACAnJwePHz/G48ePIZFIhABWccbGxhg4cCD+9a9/YfDgwZBKuXkjEdVv2XkFOHZDZRkid0MkIiI94lJEIiKqCaolsFXE2dkZS5YswZIlS/DgwQOcPn0aUVFRePjwIRISEpCUlAS5XA4bGxvY2Nigc+fO8PX1RY8ePZhLi4iomIiYRKTn5Av3JRJgIJchEhGRHqkuRcxXKJFfoICBjF9KExGR7lRrYKu4Vq1a4fXXX8frr7+uqy6JiOoM1d0Q3e0boUkDLs8mIiL9UZ2xBQC5DGwREZGO8bcOEVENl5NfgCM3nonKAjrZ6mk0REREhVRzbAFATh6XIxIRkW4xsEVEVMNF3XmBl9n5ojLm1yIiIn1TXYoIMM8WERHpHgNbREQ1nOoyxO6trdDUgssQiYhIv0paipiTz50RiYhItxjYIiKqwfIKFAi/Ll6GyNlaRERUExiVkEuLM7aIiEjXGNgiIqrBomJfIDUrT1Q2iPm1iIioBpBKJWrBrVwGtoiISMcY2CIiqsEOqSxDdLWzRAtLEz2NhoiISEx1OSKXIhIRka4xsEVEVEPlFyhw+NpTUdkQLkMkIqIaRHVnRO6KSEREusbAFhFRDfXn3SQkZ3IZIhER1VyqOyMyxxYREekaA1tERDXUQZVliF1aNoRdI1M9jYaIiEgdlyISEZG+MbBFRFQDFSiUOHxVvAxxcCcuQyQioprFSC2wxRlbRESkWzoJbPXp0wd9+vTBli1bdNEdEVGtd/ZuEl5k5IrKAjpzGSIREdUsxoYqSxGZY4uIiHRMJ4Gt06dP4+TJk7C3t9dFd0REtd6hq+JliB2bW6C1tZmeRkNERFQyLkUkIiJ900lgq0mTJgAAS0tLXXRHRFSrKRRKHFJZhhjA3RCJiKgGUg9sccYWERHplk4CW6+88goA4Pbt27rojoioVjt/PxkJL3NEZYO5GyIREdVA3BWRiIj0TSeBrWnTpkGpVGL9+vW66E5nevfuDYlEUqGfEydOVLifkJCQam2fiGqW/6nshtjetgEcbcz1NBoiIqLSGRuqzNjK41JEIiLSLZ0EtkaNGoWJEyfi5MmTePPNN5GRkaGLbmscqVSKtm3b6nsYRFSDKRRK/M7dEImIqJbgUkQiItI3A1108v3336Nv3764fPkytm3bhl9++QXDhg1Dly5dYGVlBZlMVubjJ0+erIthVtiWLVvKDdJdv34d48aNAwD07dsXLVq0qFKfV65cKfO4g4NDldonIv26EJ+Cp2nZorIhXbgMkYiIaiYuRSQiIn3TSWArKCgIEolEuJ+cnIywsDCNHiuRSGpsYEuTIFLx56mN59GpU6cqt0FENdchlWWIbZuYw6lJAz2NhoiIqGzcFZGIiPRNJ4EtAFAqlWXer4sUCgV27NgBADA3N8eoUaP0PCIiqslK2g1xMHdDJCKiGkwtsJXHGVtERKRbOgls3b17Vxfd1DjHjh3Do0ePAABjxoyBqampnkdERDXZuXtJeJSSJSrjbohERFSTqQW2ChjYIiIi3dJJYKt169a66KbG+f7774XbNXU5JRHVHPsuPBLdd25qjva2XIZIREQ1l7GhSo4tztgiIiId09lSxPomPT0d+/btA1AY2Ovdu7dW2h0wYAAuXryIlJQUWFpaokOHDhg0aBCmT58OKysrrfRBRLqXnVeAgyr5tUZ2bSnKT1iv5OcASl4c1Sh5WZAqcoXb/AuiHuI5UL/9//dfKREHsphji4iI9I1/klSTvXv3CjsmTpw4UWsXp0eOHBFuJyQk4OTJkzh58iSWLl2KrVu3YsSIEZVu++HDh2Uef/Lkn4vunJwcZGVllVGb6prs7OwSb5N2HL7+HC+z84X7EgAD2zeqUf/PdHEOSJ5chOHxEEjj/4QEdT8XY21iAmBY0Z1LehwI6Q3Pgfqt6P3PlxghHxORNWAhIJFCohQHsrJy82vU7y7SHv4tWL/x/aecnBx9D6FUOg9sxcTE4Pvvv0d0dDSePn2KrKwsHD58GE5OTkKdq1ev4sGDBzAzM0OvXr10PUSt0PYyxM6dO+PVV19Fjx490Lx5c+Tl5eHWrVvYsWMHwsPDkZKSgtGjR+O3337D4MGDK9WHnZ2dxnX//PNPxMbGVqofqv1OnTql7yHUOZtuSgH88623k4UCV/48hSv6G1KZtH4OKBVo8/wwOjz5EVIlv+0nIqqpDJS5MLi4GaczmiHJvB3uPJcA+GcWV8KLZISHh+tvgKQT/FuwfuP7Xz8lJibqewil0llgS6FQYM6cOVi1ahUUCoWwK6JEIkFubq6o7oMHDzB06FAYGBjg7t27aNGiha6GqRUPHz7EiRMnAAA9e/aEs7NzldqbNWsWQkJC1Mo9PDwwefJkfPvtt3j77bdRUFCAadOmITY2FnK5vEp9EpHuZOQB11PEszq729Sf2UrGeSnodn8Dmry8qu+hEBGRhiyyHiLJvB0MVBYlMMUWERHpms4CW9OnT8fmzZuhVCrRokULeHp6Ys+ePSXWDQgIgIODA+7du4c9e/bgvffe09UwtWL79u1QKAp/q7/xxhtVbs/S0rLM49OnT8e5c+ewadMmPH78GHv37sXrr79e4X7i4+PLPP7kyRP06NEDQGFQrU2bNhXug2qv7Oxs4dsZPz8/Bk+1aNe5hyhQ3hbuGxtI8f4YPzSQ16zV4tVxDkjjjsPo4KeQZNbcb4CIiEhdB8cWcPYcANx4jrA7/3wxYWRihgEDeupxZFRd+Ldg/cb3n2ryii2dXDUdO3YMmzZtgkQiwUcffYTQ0FDIZDJIpdJSH/Paa69h2bJl+OOPP2pdYCssLAwAYGxsjHHjxumkz+nTp2PTpk0AgJMnT1YqsNWyZUuN6xobG8PExKTCfVDdIJfL+f5r0cFrCaL7/To0RROrmr0bYpXPgfxc4FgoEL22hIMSwOd9oNukwttUI2Tn5OD06dMAAF9fX8iNjfU8ItI1ngP1W8GhDyGL+V24b1iQAUMTE1iYin8X5BUo+TdCPcC/Bes3vv/1k3EN/r2vk8DWhg0bABTOxFq4cKFGjymaGXTt2rVqG1d1OH/+PK5fvw4AGDp0qM52KuzQoYNw+9GjRzrpk4iq7v6LDPx1P1lUNqpr7Vp+XWEvYoE9bwJPLqofM7cFRm0AHGtnfsW6TJmVhUzjW4W3LVsD/IO23uE5UL8pzW3FBdlpALgrIhER6Z9OAlvR0dGQSCSYOnWqxo8pmj309OnT6hpWtSieNF4byxA1pa1dF4lIt/ZfeCy638jMCH7ONnoaTTVTKoFLPwAHPwDyMtSPOw8CRnwDmFnrfmxERFQmpbyhuCA7FQBgbKgS2GKSLSIi0jGdBLaeP38OALC3t9f4MYaGhgCA/Pz86hhStcjLy8MPP/wAALCxsan07oSVUTRLDACaN2+us36JqPKUSiX2XXgoKhvWpRkMZaUv0661stOAg/8GrvykfkxmBAxYCPR4C2CQnoioZjK2EN8vCmwZyETFOfkMbBERkW7pJLBlZmaGlJQUJCQklF/5/3v4sPBir1GjRtU1LK07dOiQ8BwnTJgAAwPdJX7+9ttvhdu9enEJD1FtcDE+BfdeZIrKXq2LyxAf/gXsfRNIvqd+rLEzMGYzYNtZ58MiIiLNKY1LmbGlshQxt0ABhUIJqZRfVBARkW7oZFqAo6MjAPGsovIcOnQIANCxY8dqGVN1KL4McfLkyRo9ZuvWrZBIJJBIJAgJCVE7fuXKFdy5c6fMNjZs2ICNGzcCAGxtbTFy5EjNB01EerPvgjgfnkNjM7jaWepnMNUlai2weUDJQa1uk4G3TjCoRURUCyjlms3YAgqDW0RERLqikylFAwYMwF9//YWvv/4aM2fOLHM3RKAwAFYU8AkICNDFEKssOTkZBw4cAAB06tQJ3bp100q7f/31F6ZNmwZ/f38MHjwYnTt3hrW1NfLz83Hz5k3s2LED4eHhAACZTIYNGzbAzMxMK30TUfXJK1Dgt0vi/FqvuraoW/nyruwBwj9WLzduCAxfBXRkEJ6IqNYobSmiofrf9Tl5CsgN1QNeRERE1UEnga3g4GCsXr0asbGxePvtt/HNN9+UukzvyJEjmDJlCrKzs2FtbY1//etfuhhile3evRs5OTkANJ+tpamCggIcPXoUR48eLbWOtbU1Nm3ahGHDhmm1byKqHidvJSA5M09U9mrXOpQfryAf+OMz9XI7D2D0RsCyle7HRERElaYsJbBlVEJeyMKdEQ11MCoiIiIdBbaaNm2K9evXY/Lkydi0aRMOHz6MIUOGCMdXrVoFpVKJyMhI3Lx5E0qlElKpFFu3boW5ubkuhlhlYWFhAApnTb3++utaazcgIACbNm1CdHQ0Lly4gGfPnuHFixdQKpVo1KgRXnnlFQwaNAhBQUGwsLAov0EiqhH2XRQvQ3RrbYXW1nVotuXVPerLD33+Dfh/DMh0l3+QiIi0RHVXxIIcIC8bxobqn+lMIE9ERLqks6uL119/HYaGhpg+fTri4+Px7bffCktuivJDKZVKAIC5uTm2bdsmCn7VdJGRkZV6XFBQEIKCgko93qRJE7z55pt48803KzkyIqpp0rLzcOT6M1FZnUoarygATi0XlzXvBvSdz10PiYhqKbUZWwCQkwYjk8bqxQxsERGRDul0T/mxY8fizp07CA0NhZubG2QyGZRKpfDTsWNH/Pe//8WdO3eYAJ2I6qzfrzxFbrE/+g1lEvy/9u48LKqy/QP498wMMOwIiIo7KOK+4q5opua+lZYtWprWa2Zlli2a9Xuz1d7KstJcKsu1NNdyA1xRUTR3FHADVEBlh9nO7w9i5DAM68wcBr6f6+Jy5jnPOefGORyGe57nfoa3rSdjRBZ2bhOQWmTRi9A3mNQiIrJnxSW2ctOgUiqgKrICYv5URCIiItuw+XwQHx8fzJs3D/PmzYPBYMDdu3eh1+vh7e0NBwfOxSei6u+P6JuS5/1a+KGWq6NM0ViYwQDs/1zaVrctEPSIPPEQEZFlqJygExyhEjUP2owrIyqg0zxIZnHEFhER2ZKshU4UCgV8fU2HLxMRVVcJ93MQGXdX0ja2Ok1DvLgNSL4gbevL0VpERNWBTukCla5wYus+AMDJQYmswoktLRNbRERkOzaZipidnW2L0xARVXl/Fika765WoX+wn0zRWJgoAvs/lbb5tQKCh8sTDxERWZRW5SJtKDRiqzBORSQiIluyyYitWrVqoUuXLujbty/69euH3r17w9W1Gq3+RURUBqIoYtNJaWJreLt6UDsoZYrIwmL+Am6dkbb1mQ0obFrOkYiIrESrcJY2mE1sccQWERHZjk0SW1qtFpGRkYiMjMSnn34KpVKJTp06ITQ01Jjocnd3t0UoRESyOZeYjst3MiVtoztUk2mIoghEFBmt5dMcaM2FQIiIqgutssgH07npAAAnlfQDGia2iIjIlmzyMfrChQsxePBguLm5QRRF6HQ6HDt2DJ9//jmGDx8OHx8fdO3aFXPmzMH27duRnp5ui7CIiGxqc7R0tFZ9L2eENPGWKRoLu7IXSDwpbev7OqCoJqPRiIgIWqWZqYgORUZsaTkVkYiIbMcmI7bmzp2LuXPnQq/X4+TJkwgPD0dERAQOHjyI9PR06HQ6REVF4cSJE/jiiy+gUCjQvn1744iuESNG2CJMIiKr0ekN+PN0oqRtdEd/KBTVoKh6cbW1ajUF2jwqTzxERGQVZa+xxRFbRERkOzZdFVGpVCIkJAQhISGYM2cODAYDoqOjERERgfDwcBw8eBD379+HXq9HdHQ0oqOj8dVXX0Gn09kyTCIiizscm4rkjDxJ25jqshpi/H7gxlFpW5/XAKWsC+8SEZGFmR2xxamIREQkI1kr+ioUCnTu3BmvvfYatmzZgsuXL2PevHnw9PQEkF9oWRRFOUMkIrKIotMQ29b3RDO/alJbcP9n0ueejYB2j8sTCxERWY35xBZXRSQiIvnI+nH6/fv3sX//foSHhyM8PBz//POPSTKrcePGMkZIRFR52Rod/jp3S9I2urqM1rp2GLh6QNrW+xVA5ShLOEREZD1lr7HFEVtERGQ7Nk1smUtkATD+26RJE2NtrX79+jGxRUR2b9e528jWPPj0WqkQMLK9v4wRWVDRlRDd/YGOT8kTCxERWRWnIhIRUVVkk8TWa6+9ZnZEVtOmTSWJrEaNGtkiJCIim/mjyDTE3s18UdvdSaZoLOhmFBAXJm3rNQtQVYPvjYiITOjMJLYclZyKSERE8rFJYuvLL7+EIAgQRRFNmzY1JrH69euHhg0b2iIEIiJZ3MnIxcHLyZK2sZ2qyTTEoqO1XP2AzpPkiYWIiKzOZMRWXjoA06mIGo7YIiIiG7Jp8XhBEODq6mr8cnFxKX0nIiI7tuVUIgyF1sBwcVRiYKs68gVkIcKt08Dlv6WNvV4GHJzlCYiIiKzOJLGlzQZ0mmKKxzOxRUREtmOTEVvPPPMM9u/fj6tXr+Ls2bM4d+4cvv32WwiCgFatWhlHb4WGhsLHx8cWIRER2cTmU9JpiI+0qQsXR1nX7bAIh8NfShtcfIAuz8kSCxER2YZJYgsA8tJZY4uIiGRlk7+uVq1aBQC4fv06IiIiEB4ejoiICMTFxTHRRUTV1uXbGTibkC5pG1MNVkP0yLkO5eWd0sYeMwBHV3kCIiIimyg2sZWbZjpiS8saW0REZDs2HTbQqFEjPP3003j66acBADdv3kRERAQiIiIQFhaG2NhYk0RX69atcfr0aVuGSURkEZuKFI33c3dCz0BfmaKxnKBbW6QNai8g5HlZYiEiItsxKByhFxygFLUPGnPvw8nBS9KPI7aIiMiWbFpjq6gGDRrgySefxNKlS3H58mXcvHkT8+bNg4eHB0RRhMFgwNmzZ+UMkYioQnR6A34/eVPSNqqDP5QKQaaILMMtNwH+949LG7v/B1B7yBMQERHZlMmordy0YqYicsQWERHZjuyFXmJiYhAeHm6cnnjr1i0AMK6iSERkj/ZevIPb6XmStjEdG8gUjeUE3doKAYXuzU4eQLfp8gVEREQ2pVM6A7q0Bw3FTUXkiC0iIrIhmye2zCWyAEgSWc2aNTPW2SIisje/Hr0ued6hoRda+dv3qCbhbhwa3Dsibew6DXD2kiUeIiKyPdMRW+lwcihaY4uJLSIish2bJLaWLl1aaiIrKCjImMjq168f6tWrZ4vQiIgs7lpqFvbHJEvanureWKZoLEd15CvpaC0H1/yi8UREVGMUOxXRg1MRiYhIPjZJbL3wwgsmUwuDg4Mliaw6derYIhQiIqv77Zh0tJaHWoXh7ew8WX/vKpTnNkrbuk4FXLzliYeIiGRRbGLLm1MRiYhIPjabitiyZUtjIis0NBR+fn62OjURkc3k6fTYECUtGv9o54ZQOyjN7GEnwj+GID74BF5UOUPoMVPGgIiISA5apau0odji8UxsERGR7dgksXXnzh34+tr/EvdERKX56+wt3M3SSNomdmskUzQWcvs8cHqtpEnf4Rmo3GrLFBAREcml2BFbJjW2OBWRiIhsR1F6l8pjUouIaoqiReO7B3ijmZ+bTNFYyL7/AwrV1tIp1NBytBYRUY1UbGKLqyISEZGMbJLYMken0yE5ORnJycnQ6XRyhkJEVGkxtzNwLP6upM3ui8bfOAZc2iFpuuL3CODCDyyIiGqi4hNbplMRC9fWJSIisiabJ7YuXLiAmTNnomXLllCr1ahbty7q1q0LtVqNli1b4uWXX8b58+dtHRYRUaX9VmS0lq+bIwa1qitTNBYgisCeBZKmPJU7Yv2GyBMPERHJTqt0ljbkpcNRZfonhUbPUVtERGQbNk1svfXWW2jXrh2WLFmCS5cuwWDI/zRHFEUYDAZcunQJ3377Ldq3b4+3337blqEREVVKtkaH309Ki8aP79Kw2Df7duPKXuDaIUlTTJ0R0BX9o4aIiGqM4ovHm/6u43REIiKyFZutijhz5kwsWbLEOCy5ZcuW6NatG+rWzR/NcOvWLRw7dgznz5+HXq/HJ598gqysLHz11Ve2CpGIqMK2nU5CRu6DKdWCADzR1Y6LxhsMwN4F0ib3+rjq+5A88RARUZVQlhpbAKBhYouIiGzEJomtQ4cO4dtvv4UgCGjVqhWWLl2Knj17Ftv3yJEjeOGFF3DmzBl88803mDBhgtm+RERVxa9Hr0mehwbVRkNvFzO97cD5TcCtM5ImXe/XYbjlKFNARERUFeiKJrY0mXBSmtbT4ogtIiKyFZvMkfnhhx8AAE2bNsWhQ4dKTFT16NED+/fvR0BAAADg+++/t0WIREQVduZmGk7fTJO0PdXNjovG67XAvv9K23xbQN/mMXniISKiKkOrMv3QxkmXadKWp9XbIhwiIiLbJLYOHDgAQRAwd+5ceHp6ltrf09MTb775JkRRxIEDB2wQIRFRxRUdreXvqUb/YD+ZorGA6F+Au3HStofeBRQ2m71ORERVlMlURAAqTToUgrSNI7aIiMhWbJLYunXrFgCgY8eOZd6nU6dOAIDbt29bJSYiIktIz9Xiz1OJkrbHuzaCsug7fHuhyQbCP5G2+XcCWo6QJx4iIqpS9IIjRIWDpE3IS4OTSilpY2KLiIhsxSaJLbVaDQDIysoq8z4FfZ2cnKwSExGRJWyOTkBOoekWSoWACSENZYyoko4tBTJvSdseXpBfDZ+IiEgQACd3aVtuGpwcpH9WcCoiERHZik0SW02bNgUAbN26tcz7FPQtqLVFRFTViKKIXyOvS9oGtqyDOh5qmSKqpJx7wMEvpG0B/YGAUHniISKiKklUFyktkptusjIiR2wREZGt2CSxNXToUIiiiMWLF2Pv3r2l9g8LC8PixYshCAKGDh1qgwiJiMov6to9XLqdIWl7qrsdF40/9DWQKy2CjwHz5YmFiIiqLicP6fNcTkUkIiL52CSx9corr8DDwwNarRZDhgzBSy+9hJMnT8JgePALz2Aw4OTJk3jppZfwyCOPQKPRwMPDA6+88ootQiQiKrdfI6VF45v4uKBnoI9M0VRSxi0g8jtpW6tRQP1O8sRDRERVluhUdMRWWjEjtjgVkYiIbMMmS1z5+vpi/fr1GDlyJDQaDb777jt89913cHR0hLe3NwRBQGpqKjQaDYD86T2Ojo7YsGEDfHzs9I9EIqrW7mZpsOOMtBbVxG6NoLDXovH7PwN0OQ+eC0rgoXnyxUNERFWXupgRWyY1tjhii4iIbMMmI7YAYNCgQYiMjESXLl0giiJEUUReXh6SkpKQmJiIvLw8Y3uXLl1w9OhRPPzww7YKj4ioXDaeuAGN/sGbdkelAo92ttOi8XfjgBOrpG0dnwR8m8sSDhERVW3Fj9jiVEQiIpKHTUZsFejQoQOOHTuG48ePY8+ePTh79izu3r0LAPD29kabNm3w8MMPIyQkxJZhERGVi8Eg4tej0qLxQ9vWhbero0wRVVLYQsCge/Bc6QSEzpUvHiIiqtLE4kZscSoiERHJxKaJrQIhISFMXhGR3ToUm4JrqdmSNrstGn/rDHBmg7St6/OAZ3154iEioqqvTDW2OGKLiIhsw6qJre3bt+Ovv/7CtWvXoNfr4e/vj379+mH8+PFwcHCw5qmJiKzm10jpaK0WddzRuXEtmaKppL3/J33u5AH0mS1PLEREZBdEJ3dpQ1666VRE1tgiIiIbsUpi6/bt2xg9ejSOHTtmsm3FihWYP38+Nm/ejLZt21rj9EREVnM7PRe7L9yWtD3ZvREEwQ6Lxl87DFz+W9rW82XAxVueeIiIyD6oTUdsOXpxKiIREcnD4sXj9Xo9Ro4ciaNHjxqLwRf9io+Px+DBg5GSkmLp0xMRWdW64zegN4jG584OSozuaIfT9kQR2PO+tM21NtD9RXniISIiuyE6lV5jS8OpiEREZCMWT2ytX78ex48fhyAIaNasGZYvX44zZ87g4sWL2LBhA7p37w4gf1TXokWLLH16IiKr0ekNWHNMOg1xVAd/eKjtcGr15V3AjUhpW985gJObPPEQEZH9KGbElpMDa2wREZE8rJLYAoAmTZrg2LFjePbZZ9G6dWsEBQVh3LhxOHDgAEJDQyGKIjZs2FDK0YiIqo6wS8lISsuVtD3ZzQ6Lxhv0wN4PpG1ejYDOk2UJh4iI7IvJiK28dKiVRZo4FZGIiGzE4omt6OhoCIKA2bNnw8vLy2S7UqnE++/nT3+Jj49HRkaGpUOwKUEQyvTVr18/i5xvzZo1GDRoEOrWrQu1Wo3GjRvjqaeewpEjRyxyfCIy79ej1yTP2zfwRNsGnmZ6V2HRq4HbZ6Vt/d4GVE7yxENERHZFLLoqIgB3IUfynCO2iIjIViye2EpOTgYAdOnSxWyfwttYZ6tscnJyMGzYMEycOBG7d+/G7du3kZeXh+vXr+PXX39F7969jQlDIrK8G3ezERGTLGmzy9FaOfeBvUXuFbVbAu3GyxIOERHZoaJTEQF4IFvynKsiEhGRrVh8VcScnBwIggA3N/N1WlxcXIyPc3NzzfazJy+++CL+85//mN3u6upaqeM/99xz2LFjBwCgf//+mDVrFvz9/XHmzBksXLgQsbGxWLBgAerVq4dp06ZV6lxEZOrXo9chPqgZD3e1CsPb15MvoIoK/wjITpW2Df4QUCiL709ERFSUgwsgKAHxwXRDt6KJLU5FJCIiG7F4Yqu8xMJ/KdoxPz8/tGnTxirH3rdvH9auXQsAGDFiBDZt2gSlMv+P0JCQEIwcORKdO3fG9evX8eabb+Kxxx5DrVq1rBILUU2Ukas1mYY4rlMDuDjKfgstn9vngWPLpG3Bw4FmA+SJh4iI7JMgAGoPIOeesclNzATw4INcTkUkIiJbsfhURLK8zz//HACgUqmwZMkSY1KrgK+vLz755BMAwP379/Hjjz/aPEai6mzNsevIyNUZnwsC8HQPO5uGKIrAzjckn65D6QQM+q98MRERkf0qMh3RVcySPGdii4iIbMVqww2WLFkCPz8/i/SbP3++pcKyOxkZGdi7dy8A4OGHH0aDBg2K7Td27Fh4eHggPT0dmzZtwpw5c2wZJlG1pdEZsPxgvKRtUKs6CKxtfrp1lXT+T+DqAWlbr1mAd1N54iEiIvtWJLHlYsgE8OA9PaciEhGRrVgtsfXdd9+VuF0QhDL1A2p2Yuv48ePQaDQAgNDQULP9HB0d0b17d+zatQvHjx+HVquFg4ODrcIkqrY2n0rA7fQ8Sdv00ECZoqkgTTaw611pm0cDoPer8sRDRET2r0hiy9mQKXnO4vFERGQrVpmKKIqixb7sxYYNG9CqVSu4uLjA3d0dzZs3x6RJkxAWFlap454/f974ODg4uMS+Bdt1Oh0uX75cqfMSEWAwiPghIlbS1rWpNzo1srMadoe+BNJuSNsG/xdwdCm2OxERUamKJLbUuiKJLU5FJCIiG7H4iK3KJnLsVeEEFABcuXIFV65cwc8//4zRo0dj1apV8PQ0XRq5NDdv3jQ+NjcNsUDDhg2Nj2/cuIFWrVpV+FzFSUpKMj7Oy8tDTk5OuY5P9q3wCqbVZTXT0uy9mIzYZGnNkOd6NLCra1+4fw1OB7+EUKhN36gXNE0HA+X8PmriNUAP8PUnXgM1W9HX30HlJvlDwkFzX9pfq7Or35dUOt4Daja+/pSXl1d6J5lYPLFV0nS56sjFxQUjR47EgAEDEBwcDDc3NyQnJyMiIgLff/89UlNTsXnzZowaNQq7d+8u9/TAjIwM42M3t5Jr+ri6PliJJjMzs4SexSucGCvN0aNHERsbW3pHqpb2798vdwg28eVZJVAoJVTPWURu3Ensije/T1UTEvcV/PUPfgkZoECEy1Bk7N5dqePWlGuAisfXn3gN1Gz79+9H61v30KxQW/rtq5I+mTl52LVrl03jItvhPaBm4+tfM6WkpMgdgll2tlZ91ZOQkAAvLy+T9oEDB2LmzJkYMmQIoqOjERERge+++w4vv/xyuY5fOBvu6OhYYl8nJyfjY35CRlQ5selAfIYgaRtQ3wBBMLNDFVQ7/Sz8005I2q7WHoAM57InsYmIiIqjVUqnszsbpO89ORORiIhshYmtSiouqVWgTp062LhxI4KDg6HVarF48eJyJ7bUarXxcUEReXMKDw10dnYu13mA/OmLJUlKSkLXrl0BAN26dUNgoJ0V0KZKyc3NNX4607dvX8m1WR29uOY0gFTj83qeTnjj8R5wUFqlNKHl6bVwWvl/kibR2Rv1Ji5GPbVXhQ5Z064BkuLrT7wGarair7/r2evArT+M2/3cVYV/bUInChg0aJCtwyQr4j2gZuPrT1V5xhYTW1YWEBCAgQMHYseOHbhy5QoSExPh7+9f5v3d3d2Nj0ubXpiV9aAWUGnTFotTWg2vwpycnCqUPKPqQa1WV+vXP+Z2BsJjUiVtz/cJhIebq5k9qqAjK4BU6SISwsPvwblWPYscvrpfA1Qyvv7Ea6BmU6vVcHT3lbQ5FikebxABB0cnqOzlAyEqF94Daja+/jVT4RliVQ1/09hA4SLuCQkJ5dq3cLKptOLuhUdcladeFhFJ/RARJ3nu6eyACSF29DOVeQcI/1jaVq890PFpeeIhIqLqp8iqiEpNukkXroxIRES2wMSWDQiVKMpTOCl28eLFEvsWbFepVGjevHmFz0lUkyXez8Gfp6QJ6Ek9GsPVyY4GuO55H8gr8gfGkM8AhVKeeIiIqPopkthSFP29Aya2iIjINpjYsoHz588bH5dnGiIAhISEGIvGR0REmO2n0WgQGRlp3Ke8qy8SUb7lB+OhM4jG52oHBSb1bCJfQOV18wRwarW0rd3jQKNu8sRDRETVU5HElpCXDgHSRFaeTm/LiIiIqIZiYsvK4uPjsXv3bgBAYGAg6tevX6793d3dMWDAAADAnj17zE5H/OOPP5Cenv9J2ZgxYyoRMVHNlZatxZpj1yVt47s0hI9b1Z1PLmEwADvnSNsc3YCB78sTDxERVV9FE1sQ4YZcSVueliO2iIjI+pjYqoStW7dCp9OZ3X779m2MGzfOuJrhf/7zH5M+q1atgiAIEAQBCxYsKPY4r7/+OgBAp9NhxowZ0Ouln36lpKTgzTffBJC/SuPUqVMr8u0Q1Xi/RF5FtubBz5dCAKb2DpAxonI6/RuQcELaFvoG4F5XnniIiKj6KpLYAgB3ZEuecyoiERHZgh0Vjal6Zs6cCa1Wi3HjxqFHjx5o0qQJnJ2dkZKSgvDwcPzwww9ISUkBAPTu3RszZsyo0HkeeughPP7441i7di22bNmCgQMH4pVXXoG/vz/OnDmDDz/8ENev548y+eSTT1CrVi2LfY9ENUWuVo+Vh65K2oa180cjHxd5Aiqv3DRgzwJpm08zoNuLsoRDRETVnKMbAAHAg+n7vqocJBb6zJdTEYmIyBaY2KqkxMRELF68GIsXLzbbZ9y4cfjxxx8rtTzmihUrkJ6ejh07diAsLAxhYWGS7QqFAvPmzcO0adMqfA6immzDiZtIzdJI2qb3taPRWhGfAlnJ0rZHPgFUjvLEQ0RE1ZtCAag98j9Y+ZePKgeQJLY4YouIiKyPia1K+OmnnxAREYEjR44gLi4OKSkpSE9Ph5ubGxo2bIiePXti0qRJ6NGjR6XP5ezsjO3bt+O3337DqlWrcPr0ady/fx916tRBnz598NJLL1nkPEQ1kd4gYtn+OElbn+a+aFPfdJpFlZR8CTj6vbStxVCg+cPyxENERDWD2lOS2PJWssYWERHZHhNblRAaGorQ0NBKHWPy5MmYPHlymftPnDgREydOrNQ5iUhq59kkXL8rrQvyQmigTNGUkygCO98ADIU+Ilc6AoM/lC8mIiKqGYrU2aqlKFpji1MRiYjI+lg8nohqNFEU8X1ErKStbX1P9Az0kSmicjq9BogLl7b1nAl429E0SiIisk9qL8lTL5PEFkdsERGR9TGxRUQ12uHYVJxNSJe0vRAaCEEQZIqoHNKTgL/mStvc/YE+s+WJh4iIapYiI7Y8hRzJc47YIiIiW2Bii4hqtKKjtRr7uOCRNnVliqYcRBHY/pqktgkAYPj/AEdXeWIiIqKapUhiy0MoMmKLNbaIiMgGmNgiohrrbEIaDlxOkbQ93ycASoUdjNY6+ztwaYe0re14oMUj8sRDREQ1j0liK0vynFMRiYjIFpjYIqIaq+hoLV83RzzauYFM0ZRDZjKwY460zbU2MOQTeeIhIqKayclD8tRNZPF4IiKyPSa2iKhGup6ajR1nkiRtz/ZqCrWDUqaIymHnHCDnrrRt2CLAxVueeIiIqGYqMmLLTZSO2NJwxBYREdkAE1tEVCMtOxAHg/jguaujEk91ayxfQGV1fgtwbpO0rdWo/C8iIiJbKpLYchUzJc85FZGIiGyBiS0iqnFSMvOwPuqGpO2Jro3g6eIgU0RllH0X2F5kxUNnb2Do5/LEQ0RENVuRxJaLgTW2iIjI9pjYIqIaZ9mBOMmbbQelgCl9msoYURn9NRfIuiNtG/Ip4OYnTzxERFSzmSS2iozY0rLGFhERWR8TW0RUo9xKy8WqQ1clbaM61Ec9T2d5AiqrS38B/6yTtgUNAdo+Kk88RERERRJban0WgAfz/Dlii4iIbIGJLSKqUb7ed1nyRlupEDCjfzMZIyqDnPvAtlekbU6ewPD/AYIgR0REREQmiS0F9HBBnvE5E1tERGQLTGwRUY0Rn5KFdceltbUmhDREU19XmSIqo13vAhnSFRzxyELAo5488RAREQGA2sOkyQMP6mzl6TgVkYiIrI+JLSKqMb7YHQN9oaUQnVQKzBrQXMaIyiB2HxD9i7QtcADQ4Ul54iEiIirgVExiS8g2Ps7TcsQWERFZHxNbRFQjnE1Iw9bTiZK2yb2aoI6HWqaIyiAvA9jysrTN0Q0Y8RWnIBIRkfwUSpPklnTEFhNbRERkfUxsEVGN8PmuS5Ln7moVXgwNlCmaMtqzAEiTTp3EwA8Ar4ayhENERGSiSJ0tyYgtTkUkIiIbYGKLiKq9yLhUhF9KlrS9EBoILxdHmSIqg6sHgeM/Stua9AE6PytPPERERMUpmthC4cQWR2wREZH1MbFFRNWaKIr49K+LkjZfNyc826uJPAGVhSYb+PMlaZuDCzByMaDgbZuIiKoQkxFbhaYissYWERHZAP9CIqJqbe+FOzh5/b6kbdaAZnBxVMkTUFns+y9wL17aNuA9wLupPPEQERGZUySx5Y4c42NORSQiIltgYouIqi29QcRnf0trazXydsGEkEYyRVQGN44BkUukbQ27A12nyRMPERFRSUoascWpiEREZANMbBFRtfXnqQRcup0haXttYBAcVVX01peXCWx6AYD4oE2lBkZ9wymIRERUNZmsisgaW0REZFtVeC4OEVHFaXQGfLE7RtIWXNcdI9v7yxRRGex8E7gbK23r/zbg21yeeGRyNe0qYu7FwAD+QVSVaDQanNGcAQAINwQ4OlbhxRfIKngN1GwFr79aUKOPrg+c4Zy/oYQRWxomtoiIyAaY2CKiamnNseu4eS9H0vbGIy2gUAgyRVSKs78Dp1ZL2+p3AbrPkCceG0vNScXO+J3YGrcV51PPyx0OlWLdkXVyh0Ay4zVQsx3YcwBrhq+Bi4NLKasissYWERFZHxNbRFTtZOXpsHjfZUlbl8a10L+Fn0wRleLeNWDrK9I2R3dg3I+AsvrepnN0OQi/EY6tsVtxOPEw9CL/ACIisgdx6XHYn7AfjzR5pJgRWw8SW1q9CL1BhLKqfqhERETVQvX9i4mIaqwVB+ORkqmRtL05JBiCUAXfWOt1wO9Tgbx0afvwL6rlKogG0YDjt45ja+xW7Lm+B1narNJ3IiKiKudq2tX8ByYjtqT3dY3OAGdHpY2iIiKimoiJLSKqVu5labB0f5yk7aFgP4Q08ZYpolJEfALcPCZta/c40G68PPFYyZV7V7A1biu2x23H7ezbpfb3VnvDW11FX7MaymAwIDMzEwDg5uYGBRc0qHF4DdRsydnJSNOkGZ8nZSXlPyiS2HIXpGUA8nR6JraIiMiqmNgiomrlu4hYZOTpJG2vD2ohUzSluHoIOPC5tK1WE2DY58V2tzeiKGJH/A78dO4nXLh7odT+zipnDGg0ACMCRqBbvW5QKviHUFWSk5ODXbt2AQAGDRoEZ2dnmSMiW+M1ULN9f/J7fHvmW+PzhMyE/AfFjtgSAeSPkubKiEREZG1MbBFRtZGUloNVh69K2kZ18Ecrf4/id5BT9l3gj+cBsdAbfoUKGLcCcHKXLy4LEUURi6MXY9mZZSX2UwgKdKvbDSMCR2BAowH5hYiJiKjKqedaT/I8MTMx/4Fa+jvWUdBDDQ1y4QQAyNMysUVERNbFxBYRVRtf770sWVpcpRDw2sAgGSMyQxSBrS8D6QnS9v7vAA06yxOThX1/+vsSk1pBtYIwImAEhgYMhZ9LFS3qT0RERkUTW0lZSTCIBijUXiZ9PZD9ILHFlRGJiMjKmNgiomohNjkT66NuStoe79oQjX1cZYqoBCdWARe2Stua9gV6vSJHNBa37J9lWHJ6iUl7befaGBYwDMMDhqOFdxWdHkpERMWq5yJNbOkMOiRnJ6OO2sekr4eQhTtiLQCcikhERNbHxBYRVQtf7IqB3iAan6sdFHj5oeYyRmTGnYvAX29J25y9gTFLgWpQiHnl2ZX4Ovprk/a3u72N8UHjWTeLiMhO+ah9oIIKOjyoY5mYlYg6rnUARzdAk2ls90C28TFHbBERkbXZ/19RRFTjnbmZhu1nkiRtz/VqCj8PtUwRmaHNBX6fAuikK0Zh9BLAo17x+9iRX87/gi9OfGHSPq/7PDwR/ASTWkREdkwQBHgpvCRtZgvIC1nGx6yxRURE1sbEFhHZvU//vih57qFWYXrfQJmiKcGe94DbZ6VtIc8DLYbIE48Frbm4Bp8e/9SkfW7XuRjfYrwMERERkaUVTWw9KCBfdGXEwiO2mNgiIiLrYmKLiOza/phkHLicIml7sV8zeLo4yBSRGTF/A0e/l7b5tQIG/Z888VjQhpgNWHh0oUn7611ex5Mtn5QhIiIisoYyJ7YETkUkIiLbYWKLiOxWrlaP+X9KR0D5uTthcs8m8gRkTsYtYPOL0jaVGhi3HHBwlicmC9l0eRM+OPKBSfsrnV7BpNaTZIiIiIispZailuQ5R2wREVFVwMQWEdmt7yNicTU1W9L22sAgODtWoVpOBgOw6QUgO1XaPui/QJ1W8sRkIVtjt+K9w++ZtL/U4SVMaTtFhoiIiMiaTEZsZf2b2HLykLRLRmyxxhYREVkZE1tEZJeupmRhSXispK1TIy+M79JQpojMOPINEBcmbWsxDAiZKk88FrL7+m68e+hdiBAl7dPbTcf09tNlioqIiKyp6IitpMwkGERDMSO2ChWP51REIiKyMpXcARARlZcoipj351loCk1vUCoE/Hd0WygUgoyRFZFwEthbZJqeez1g5GJAqEJxltM5zTmsP7o+/4+ZQqa0mYIZHWbIFBUREVlb0RFbGoMGqTmpqF1ijS2O2CIiIuviiC0isjvbzySZFIyf3LMJWvl7mNlDBlkpwPpnAIO2UKMAjF0KuPrIFlZlXdBewLrsddCL0k/gJ7WahFmdZkGw44QdERGVzE1wgxLS6f4JmQmljNhiYouIiKyLiS0isisZuVp8sPW8pK2uhxqvDgySKaJi6DT5Sa20G9L23q8CTfvKE5MFHEo6hLVZa2GA9I+UJ1s+idldZjOpRURUzSkERfErI3LEFhERyYiJLSKyK1/sjsGdjDxJ2/wRreDmVIVmVv81F7h2SNrWsDvQ/2154rGAfdf34Y1Db0AP6UitCS0m4M2QN5nUIiKqIYotIF8kseUuWRWRNbaIiMi6mNgiIrtxNiENPx2+KmkLDaqNIW3qyhNQcaJWAFHLpW0e9YEJvwBKB3liqqRtcdvwWvhr0EqmVQLjmo/D293eZlKLiKgGKfeILa6KSEREVsbEFhHZBYNBxLubz8JQaBE+J5UCH4xqXXUSK9cOAzvmSNtUauDxXwE3P3liqqT1l9bj7QNvm9TUGtZkGOb3mA+FwF8jREQ1SdGVEYtNbIFTEYmIyHaq0NwdIiLz1hy/jlM37kvaZvRvhsY+rvIEVNT9G8C6pwGDTto+6lvAv6M8MVXS8jPL8eXJL03aOzt2xrtd3mVSi4ioBio6Yqu44vFOghZO0CAPjpyKSEREVsfEFhFVeSmZefhk50VJW4CvK6aHBsgUURGabGDtRCBbulIjer0CtH1UlpAqQxRFLI5ejGVnlpls6+XUC4+oH4FSoSxmTyIiqu6KJraSspIgOnmg6NhpD2QjGY4csUVERFbHxBYRVXkLd1xAeq50JNT/jW4DJ1UVSK6IIvDnDODWP9L25oOAAfPliakSDKIBHx/7GGsurjHZNq31NDS82bDqTP0kIiKbKzoVMU+fh1RRB98i/TyELCSLXqyxRUREVsd5JERUpUXGpeKPkwmStpHt/dGrWdG30DI5+AVw7g9pm09zYNyPgJ2NatIZdJh3aF6xSa03Qt7A1NZTmdQiIqrh3AV3KAXp77fE3GTAwUXSVlBni1MRiYjI2pjYIqIqS6Mz4N3NZyVt7k4qvDu8pUwRFXHpL2Dv/0nbnDyBJ9aY1Bup6jR6DeZEzMGW2C2SdgEC3u/5Pp5u9bRMkRERUVWiEBSo6yJdjTgxy7SAvLtQkNjiiC0iIrIuJrYqKSoqCh988AEGDRqEBg0awMnJCW5ubggKCsKzzz6LgwcPWuQ8CxYsgCAIZfoKDw+3yDmJ5Lb8YDyu3MmUtL0+uAX83NUyRVRI8iXg96kACi3TCAF4dDng21yuqCokW5uNmftmYs/1PZJ2laDCp6GfYmzzsTJFRkREVVE913qS5yWtjMjEFhERWRtrbFVC3759ceDAAZN2jUaDy5cv4/Lly1i1ahWeeeYZLFu2DI6OjjJESWSfbt7Lxtd7L0va2tb3xFPdG8sUUSE594A1TwCaDGn7wwuA5gNlCamiMjQZmLF3BqLvREvanZRO+KLfF+jboK9MkRERUVVVpsRWwYgtLaciEhGRdTGxVQmJiYkAAH9/fzz22GPo06cPGjVqBL1ejyNHjmDRokVISEjAzz//DK1Wi99++80i5z1z5kyJ25s2bWqR8xDJacGW88gp9GZYEIAPx7SBUiFzjSeDHtg4BbgbK21v+xjQa5Y8MVXQ3dy7eGH3C7hw94Kk3UXlgm8GfIOQuiEyRUZERFVZPRdpYishMwFw8pC0eSALQH5ZASIiImtiYqsSgoODsXDhQowbNw5KpbSIZvfu3fH000+jV69eiImJwZo1a/DCCy+gb9/Kj35o06ZNpY9BVJXtPn8bey7clrQ91a0x2jXwkiegwva8B8TulbbVaw+MXJyffbMTt7Nu4/ndzyM+LV7S7unkie8GfIe2tdvKFBkREVV1RUdsJWUmAWofSZsHa2wREZGNsMZWJWzbtg3jx483SWoV8PX1xaJFi4zPN27caKvQiOxWtkaHBVvOSdp83Zzw+uAWMkVUyOl1wOHF0jZXP+Dx3wAHZ3liqoDL9y7j6Z1PmyS1fJ19sXLwSia1iIioRCZTEbMSIZoZscXEFhERWRsTW1bWv39/4+PY2NgSehIRAHy99woS7udI2t4d1hKezg4yRfSvG8eBLTOlbQoHYMIvgGcDeWKqgIMJB/H0zqeRlJUkafd39cdPj/yE5rXsq/A9ERHZnr+Lv+R5ji4H9xylH/A8GLHFGltERGRdTGxZWV5envGxuZFdRJTvzM00/HggTtLWM9AHozr4m9nDRu5cAH59FNDnSduHLQIadZcnpgpYe3EtZuydgSxtlqS9iUcT/DTkJzTyaCRTZEREZE98nX2hFKTvaxOV0un47lwVkYiIbISJLSuLiIgwPm7ZsqVFjjlo0CD4+fnB0dERfn5+6NevHz7++GPcu3fPIscnkkO2RodZa6OhM4jGNgelgA9GtYEgZ+2qe1eBX8YAufel7V2nAZ0nyRFRuekNenxy7BN8ePRDGETpHxjtarfDqkdWoa5rXZmiIyIie6NSqEx+byQK0t8vBSO2NDoDRFEEERGRtbB4vBUZDAZ8/PHHxufjx4+3yHF3795tfJycnIyIiAhERETgk08+wapVqzBq1KgKHffmzZslbk9KejB1KS8vDzk5OSX0puomNze32MeWsmDrRcSlSEcSPd+rMeq7K+W71jLvwOnXUVBkSKft6Zv2h6bvPMAOfgaytFl4N/JdHEo6ZLJtYMOBmBcyD2qoy/R/bO1rgKo2vv7Ea6BmK/r613Wum78a4r+u66S/Rzz+HbEFAGmZWXBSceaCveM9oGbj60+FZ6NVNYLIj1CsZtGiRXj99dcBAGPHjsXvv/9e4WMtWLAAf/zxB0aPHo2uXbvC398fWq0Wly5dwq+//opdu3YByJ/uuHXrVgwZMqTc5yjPqJgff/wRvr6+5T4HUXHO3BXw4yXpG97GbiJmtdZDKdO4UpUuC70vL4Rn7g1Je6prcxxp9gb0Cid5AiuH+4b7WJ25GrcMt0y29XPqh4fUD0EhcOAuERGV3+/ZvyNaE2183g/NsDh+n/H5bdEL3fKWAAA+CtHBhR+nExHZtZSUFEydOhUAcOPGDTRoUHXqDPNXjJVERERg7ty5AAA/Pz989913lTreK6+8ggULFpi0d+vWDc888wx++OEHvPDCC9Dr9Zg6dSpiY2OhVqsrdU4iW0jTAGtipckVR4WIp5vJl9RSGvLQPe4Lk6RWmrohjga8ZhdJrQRdAlZnrUaGmCFpV0KJ0S6j0dGxo0yRERFRdeAleEmepwjST/ILj9himS0iIrImJras4Ny5cxgzZgx0Oh3UajU2bNgAPz+/Sh3Ty8urxO3Tp0/H8ePHsXz5ciQmJuL333/Hk08+Wa5z3Lhxo8TtSUlJ6Nq1K4D8hFpgYGC5jk/2LTc3F/v37wcA9O3b1yKJU4MoYtqvp5Gluytpnz+8JcZ1lKlgvF4Dxz8mQ5l1WdJs8GoCxye3oL9b5X6WbSHsZhhWHF2BPFH6R4anoyc+7fUpOtauWFLLGtcA2Q++/sRroGYr+vprkjQIOx5m3J7jIu3vLGjgCC00cECP3n1Q30u6aiLZH94Daja+/hQbGyt3CGYxsWVh8fHxGDRoEO7duwelUom1a9eib9++Njn39OnTsXz5cgD5I8bKm9gqz1BCJycnODvzDUpNpVarLfL6rzgYj0Ox0qTWI63r4skeAfIUjDfogT9mAHH7pO1udaGY9CecazW2fUzlIIoiVp1bhf+d+B9ESGeZN/Fogm8HfGuxlQ8tdQ2QfeLrT7wGaja1Wo0m3k0kbUl5KRABFP7t7Y5spMITUDryeqlmeA+o2fj610xOTlV31goTWxaUmJiIhx9+GImJiRAEAStWrKhwIfeKaNWqlfFxQkJCCT2J5HfxVjo+/uuipK2OhxM+GttWnqSWKAI75gBni9TCU3sBT28CajWxfUzloDVo8WHkh/j9smktv651u+KLfl/A08lThsiIiKg68neTjqzO1uUgTaGAl+HBvEMPIRupoifydHpbh0dERDUIE1sWkpKSgoEDByIuLg4AsHjxYjzzzDM2jUGWZABRBeRq9Zi15hQ0RYpuLHqsA2q5OsoT1L7/AlHLpW0OrsCTG4E6rYrfp4pIy0vD7IjZOJp01GTbmGZjMK/7PDgoHWSIjIiIqis/Fz8oBAUM4oPf5YlOLvDKyTQ+d/+3zlYei2wREZEVcTksC0hLS8PgwYNx/vx5AMDHH3+MGTNm2DyOgvMDgL+/TPWJiMrg078u4dJtaVHzqb2bondzmVbaPPwNcOBzaZvCAXh8NdAwRJ6Yyuji3Yt4YvsTxSa1Xun0Ct7v+T6TWkREZHEOCgfUcakjaUt0dpc89xD+TWxpmdgiIiLr4YitSsrOzsawYcNw8uRJAMA777yDN998U5ZYfvjhB+Pj0NBQWWIgKs3+mGSsOBQvaQuu6445j7SQJ6Do1cCud6RtggIY9yMQ+JA8MZWBKIr4/fLv+OjoR9AYNJJtaqUaC/ssxMDGA2WKjoiIagJ/N38kZSUZnyc4SWvueCALADgVkYiIrIojtipBo9FgzJgxOHToEABg1qxZ+O9//1vu46xatQqCIEAQBCxYsMBk+5kzZ3DlypUSj7F06VL8+OOPAIC6detizJgx5Y6DyNruZmkwe8NpSZuTSoGvn+gIJ5XS9gFd2AZsmWnaPvxLoPVoW0dTZtnabLxz8B28f+R9k6SWr7MvVj6ykkktIiKyOn9X6QyBRAfpCGHjiC1ORSQiIiviiK1KeOKJJ7Br1y4AwEMPPYQpU6bg7NmzZvs7OjoiKCio3Oc5ceIEpk6div79+2PIkCFo27YtfHx8oNPpcPHiRfz666/GOJRKJZYuXQpXV9eKfVNEViKKIt78/R8kZ+RJ2t8e2hJBddzN7GVFcRHAxmcBscib7YffBzpPsn08ZRR7Pxazw2cjNs10ud12vu2wqN8i1HWtK0NkRERU0xQtIJ+olH5m/mDEFhNbRERkPUxsVcIff/xhfLxv3z60a9euxP6NGzfG1atXK3QuvV6PPXv2YM+ePWb7+Pj4YPny5RgxYkSFzkFkTWuP38Du87clbf1a1MYzPRrbPphrh4G1EwG9dLQTer0C9H7F9vGU0ba4bfjgyAfI0eWYbHuq5VN4rfNrrKdFREQ2U9+tvuR5oiBNYBWM2Cq6WAwREZElMbFlB4YOHYrly5fjyJEjiI6Oxu3bt5GamgpRFOHt7Y327dvjkUceweTJk+Hh4SF3uEQm4pIz8cHW85I2H1dHfPpoO9uv5nl5D7DuKaBocqjTJODhBbaNpYzy9Hn45Ngn2BCzwWSbm4MbPuj1AaceEhGRzZmM2IL0AyMP46qIrLFFRETWw8RWJYiiaJHjTJ48GZMnTza73c/PD8899xyee+45i5yPyJa0egNeWXcKOVrpm9pPH20HP3e1bYM5txn4fSpg0ErbW40Ghv8PsHWSrQxupN/A7IjZuHD3gsm2YO9gLApdhEYejWSIjIiIarqiNbYyRT3SFQI8DPnvkd25KiIREdkAE1tEZFVf7onBPzfTJG1PdW+EAS3rmNnDSqJ/Bba8ZFpTq8UwYOxSQCFD8fpS7L22F/MOzUOGNsNk26NBj+LNkDehVtk4OUhERPSvuq51IUCAiAcf9iaqVPDQ5H+A9GDEFhNbRERkPUxsEZHVHI1LxZJwaZHzwNqueGdoK9sGEvk98Nebpu3tJgCjvgWqWF0qrUGL/534H345/4vJNmeVM+Z1n4cRgaylR0RE8nJQOsDPxQ+3sx/U0ExQqRBckNgSCorHcyoiERFZDxNbRGQVd9JzMWvtKRSeseugFPDV4x3h7Gij0VGiCBz4HNj3X9NtXaYAQz8HFArTbTJKykzCnP1zcDr5tMm2AM8AfNHvCwR6BcoQGRERkan6bvUlia1E1YM/Lzhii4iIbIGJLSKyuFytHs//cgK30nMl7bMHtUCb+p62CUIUgd3zgcNfm27r9Up+ofgqVFNLFEVsjduKj45+hExtpsn2YQHDML/7fLg4uMgQnW0YNBpoYmORe+kSdElJFqtjSJah0+rgfeUKAOD+1WvIdOBbiJqG10DNVvD6691coe/SBaifvyJiPbd6wJ0H/RJVDz688mCNLSIisgG+IyEiixJFEW9s/Aenb9yXtPcI8MHzfQJsE4RBD2yfDZxYabptwHygz2zbxFFG93Lv4YMjH2DP9T0m2xwVjpjbbS4ebf6o7VeQtBJRFKFLTkbepRjkXbqI3EsxyLt4EXnx8YBOJ3d4VALff/+9v3u3rHGQfHgN1GwFr3/ikUgEbtsGpZurSQF56YgtTkUkIiLrY2KLiCzqm31XsOV0oqStobczvn2yE5QKGyRm9Fpg84vAmQ2m24Z8BnSbZv0YymH/zf2Yf2g+UnNTTbY1cGuARf0WoZWPjWuSWZCo1yPv0iVj8io35hLyLl6C/t49uUMjIqIK0t+6hbQ/N8P7ySdR362+ZFvhxJarkAcVdJyKSEREVsXEFhFZzM4zSVi0O0bS5uakwvJJIfB2dbR+ANpcYOOzwKUd0nZBkV8kvsNE68dQRtnabHwW9Rk2xmwsdvvIwJGY23Uu3B3dbRyZZYhaLdL+/BMp330PbUKC3OEQEZGFZR+PgveTT8LfTTpiK0El/fPCDTlMbBERkVUxsUVEFnE2IQ2vrj8laVMIwOKJHRFUxwbJmbxMYO0TQPx+abvCAXh0OdBqlPVjKKNTd07h7YNv40bGDZNttZxq4b0e72FA4wEyRFZ5ok6HtG3bkLLkO2ivX6/QMRwaNIBjYAAUjjZIhlKZ6fV63L6dX0inTh0/KJU2WgSCqgxeAzWb5tZt5J05Y3yeffw4RFE0SWxlKBXIEAS4/1sn0UPIRp6WUxGJiMh6mNgiokq7k56LqT9FIbdIcdi3h7ZE/xZ+1g8g5x7w62PAzePSdpUz8PhqoNnD1o+hDLR6Lb47/R2Wn10Og2j66XXfBn3xfs/34evsW8zeVZtoMCB9x06kfPstNPHxZdpHcHGBunlzOAUHw6lFENTBwXBq3hxKd/scpVbd5eTk4NSuXQCAtoMGwdnZWeaIyNZ4DdRs6TExSBj54EMifWoqNHFxqNekoUnfRJUKLbRaAPl1tjhii4iIrImJLSKqlFytHs//HGWyAuLjIQ0xpXdT6wdw/zrw2+PAnXPSdicPYOJ6oHEP68dQBlfuXcHbB9/GhbsXTLY5q5zxRsgbGNd8nN0ViBcNBmTs3oOUbxYj7/IVs/0c/P3h1Kol1EEt4BTcAuoWLeDQsCEEhcKG0RIRUUWpGjSA1tMTDmlpxrbs48dRKzAQfs5+uJPzYGnERIdCiS0hm8XjiYjIqpjYIqIKE0URczb+g9M30yTt3Zp644NRbayfpLl6CFj/NJBdpPC6szfw9CbAv4N1z18GBtGAX87/gq9Pfg2NQWOyvUPtDljYeyEaeph+4l2ViaKIjH37kLz4G+RdME3WFVC3b4faL78M15497S5pR0REDwiCgJyApnCIPmVsyz52DLUefxz+bv7SxJbqwTRVD2TjNkdsERGRFTGxRUQVtnjfFWwtsgJiI28XfPdUZziqrDwS5/hyYOcbgEEnbXevBzy9GfALtu75y+BG+g0sOLIAx24dM9mmUqgwo8MMPNv6WSgVdlSnRhThEhODpJ9/gebcObPd1K1awfflmXALDWVCi4iomsgOCIBHocRW1r91tuq51cOp5AfthVdG9BCycF3LxBYREVkPE1tEVCHb/0nCF0VWQHR3UmH5pC7WXQFRp8lPaJ1YabrNpznw5AbA2wZTIEug0Wuw/Oxy/PjPj8WO0mrm1Qwf9fkIwd7yJ9/KShRF5ERGouF338P52jWYflf5nIKC4DvzJbg//DATWkRE1UxOQIDkuT45BZr4q6jvVl/SLklsIRsaPRNbRERkPUxsEVG5nUtMx+wNpyRtCgH4emJHNLfmCoiZycD6Z4Drh023NR8EjPsRUHta7/xlEJkUiQ8jP8TV9Ksm2wQIeKbVM5jZaSaclE62D64CRL0eGXv2InXpUuSeOwdzpaIdAwJQe+ZLcB88mHWziIiqKa2PD3QeHlClpxvbso8fh39H6cqICUVGbLHGFhERWRMTW0RULmka4MO1/5isgPjOsFbWXQEx6R9g7UQg7Ybptt6vAg/NA2Sc0peSk4JPj3+KnfE7i91ez7UePuz9IULqhtg4sooRNRqkbd2K1B+Xl7jKoUPjRqg9YwY8hg2DoLSjKZVERFR+goDsgKbwOHXa2JR97Bjq9x4r6ZZUqMaWO3KQx6mIRERkRUxsEVGZafTAsotK3MmSTkR7omtDPNerifVOfG4TsOlFQJcjbVepgVHfAm0ftd65S6E36LHu0josjl6MTG2myXaFoMDE4ImY0WEG3BzdZIiwfAxZWbi3YQPurlwF3e3bZvup/P1Re8Z/4DlqFAQVf5UQEdUUOQEB0sTW8eOo6/ofSZ/7SiWyBAGuovjviC0mtoiIyHr41wgRlYkoivgtVoEbWdK6Sd2aeuP9kVZaAdFgAMIXAvs/M93mUR94/FfAv6Plz1tG51LO4YPID3A+9Xyx29v5tsO8HvPsopaW/v593F39K+798gv0aWlm+2l8fHAvtC+6zp0LFw8PG0ZIRERVQXaROlu6O3dQN1Vr0i9RpUJzrRYeyOZURCIisiomtoioVKIo4st9cYhOldZOauzjgu+ttQJibjqwaTpwaYfptobdgQm/AG5WnPpYgnRNOhafXIx1l9ZBhGiy3d3RHa92fhXjmo+DQqja9aa0t2/j7spVuLd+PcTsbLP9nIKD4T5pEg6LBkCphODgYMMoiYioqtD6+kLh4wNDaqqxTXfyH/g6+yIlJ8XYlqRS5ie2hGzkaQ0QRZGLihARkVUwsUVEJRJFEZ/+fQlLD16TtBesgFjLGisg3o0D1jwBJF803dbpGWDo54DK9sXXRVHEjvgd+Oz4Z0jNTS22z8jAkXit82vwcfaxcXTlkxcbi9SVK5H25xZAa/pJewGXLl3gM+15uPbpg9zcXGDXLhtGSUREVY4gQN25M7IL/T7IPnYc/v38JYmtggLyHsiCKAJavQhHFRNbRERkeUxsEZFZoihi4Y4LWHZAWjxcIQCLJ3ZEMz8rrIB4ZS+w8Tkg9760XVACQz4BQqYCMnzieyH1AhZFLcLRW0eL3R7gGYB3u79bpYvDi3o9MsPDcXf1amQfiSyxr1u/fvCZNg0uneSb6klERFWTSWLr+HH4D+uMf1L+MbYlFiS2hPzRwHk6vXVGeBMRUY3HxBYRFUsURXyw7TxWHroqaRcg4v3hLdHP0isganOBff8HHPnGdJuzNzD+J6BpX8ueswxuZNzAN9HfYEd8MVMiAaiVakxvPx2TWk2Cg7JqTs/T37+P+7//jnu/rYE2IcF8R6USHkOHwmfqVKhbBNkuQCIisivqLp0lz3W3biEwR/phV4JDwYitgsSWAVb4OIyIiIiJLSIyZTCIeG/LOfwSKZ1+KEDEE4EGPNrJ37InvH0e+H0qcOec6Ta/1sATvwG1mlj2nKW4m3sXS/9ZinWX1kFn0BXbJ7RBKOZ2nYsG7g1sGltZ5V66hHurVyNt6zaIublm+wmOjvB6dBy8n3sOjg2q5vdCRERVh0PTplD6+EBfqM5WYFwOUGjx3ySVEgDgLuRAAQNXRiQiIqthYouIJAwGEe9sPos1x65L2hUCMDHQgJDapsXSK3Ey4NgPwO73AH2e6fbg4cCYHwAnN9NtVpKtzcZP53/CqrOrkK0rvph6HZc6eKvbW3io4UNVrhCuqNMhY89e3F39C3KiTpTYV1mrFrzGj4f3009B5etrowiJiMjeCYIAl5AQZPz1l7HN9+IdoMuDPgVTEQHADdnI03JlRCIisg4mtojISG8Q8dYf/2B91E1Ju1Ih4JPRLeGQ9I+ZPSsgPQnY/CIQF2a6TekEDHwf6DodUNimHofWoMXvMb/j+9Pfmy0M7+bghiltp+DJlk/CWeVsk7jKSnf3Lu6vX497a9dBd+tWiX3VrVuj1lNPwWPoECicbF+En4iI7J9LSBdJYkt95ooksXVXqUS2IMBFFPNXRuSILSIishImtogIQH5Sa86G0/gjWlqDSaUQ8NXjHfFQcy/sslRi6/wWYOvLQM49021+rYFxy4A6rS1zrlKIooi/r/2NxScX43rG9WL7OCgc8ETwE3i+7fPwUnvZJK6yEPV6ZB0+grRNfyBj9x6IJaxuCJUKHoMHo9ZTT8K5Q4cqN9KMiIjsi2vXrtKGW8mofV+JZK8Hv1+SVEoEanXwBBNbRERkPUxsERF0egNeW38aW04nStodlAIWP9EJj7Spi5ycnMqfKC8D+GsuEL26+O09XgIemgc4qCt/rjI4lnQMX5z4AudSi6ntBUCAgBGBIzCjwwz4u1m4rlglaK5dw/0/NiHtzz9LHZ2lrO2LWuMnwGvCeDj4WbjgPxER1ViOzZpBWasW9PcefEjVNckF270evF9IVKkQqNXBQ8jiVEQiIrIaJraIajit3oBX1p7C9jNJknZHpQJLnuyEh1vVscyJbhwH/ngeuBdvus3dHxjzHRDQzzLnKoEoioi6HYVl/yzDkaQjZvv1bdAXL3d8GS28W1g9prIwZGUh/a+/cX/TH6XWzgIA5/bt86cbDh4EwdHRBhESEVFNYqyztWuXsa39TQdsbylNbAH5KyNyxBYREVkLE1tENZhGZ8DMNSfx97nbknZHlQI/PN0Z/VtYYISPXgfs/yz/Syzm09pWo4DhXwIu3pU/VwkMogHhN8Kx/Mxy/JNifkplO992eKXzKwipG2LVeMpCFEXknDiB+39sQvpff0HMLr6YfQHBwQEeQ4ei1lNPwbltGxtFSURENVXRxFZgvHR0d0JBYkvIgoaJLSIishImtohqqDydHjN+jcaeC9KklpNKgWXPdEHfoNqVP0nKFWDzC8DN46bbHN2BoZ8B7R8HrFjvSWvQYmf8Tqw4swKxabFm+zXxaIJZnWZhQKMBstef0t66hbTNf+L+pj+gvVZ83a/C1K1awXPsWHgMGwpVrVo2iJCIiAhwKVJnyz01B75pSqR45v8eTVIp89uRwxFbRERkNUxsEdVAuVo9Xlx9AmGXkiXtagcFlk8KQa9mvpU7gSYLOLAIOLwY0GtMtzfsBoxdCtRqUrnzlCBHl4NNlzfhp3M/ITEr0Wy/2s618WKHFzGm2RioFPLdEnX37iHj711I37ED2cePA6JYYn+llxc8Ro6A19ixUAcH2yhKIiKiB5yaN4PS0xP6tDRjW6vrIva3zU9sJRYasZWnY40tIiKyDia2iGqYpLQcvLD6JE7fuC9pd3FUYsXkEHQP8Kn4wUURuLAF+OttIP2m6XZBCfR7C+j9KqC0zu0nXZOOdRfXYfWF1bibe9dsv/pu9TG59WSMbjYaapVtitUXpc/MQubePUjbsQNZhw4DOl3JOygUcOvTB55jx8K9fz/WziIiIlkJCgWcQ7ogc89eY1t+Yiv/cQJrbBERkQ0wsUVUgxy/ehcvrj6JlMw8SburoxKrnuuKkCaVqHOVcgXYOQeI3Vf8du9AYOwyoEHnip+jpNPnpODn8z9j/aX1yNJmme3XzKsZprSdgkeaPCLLCC1Dbi4yI/YjfccOZIaHQ8zLK3Ufx6ZN4TVuLDxGjuTKhkREVKW4du1qktgqkKpSIlcQ4CFkI5OrIhIRkZUwsUVUA4iiiF+PXseCLeegM0inuLk7qbDqua7o3LiCtZk0WcD+z/OnHRq0ptsVKqD7f4DQNwEnt4qdowTnUs5h3aV12B63HRpDMdMe/9W+dntMbTsVfRv0hUJQWDyOkohaLbKOHEH69h3I2LMHhizzibcCCldXeAwdCs+xY+DcoYPsdb+IiIiK4xIiXWyl7n3AJ11EqseDOlseuiykcsQWERFZCRNbRNVcnk6P9/48h7XHb5hsa+zjgqVPd0GLuu7lP3Bp0w4BoGlfYOjnQO0W5T9+CbK12fjr6l9Yd2kdzqeeL7FvL/9emNJ2CrrU6WLT5JAhLw/ZR48iY89eZOzaBf39+6XuIzg5wa1/f3gMHQK30FAonJysHygREVElOLVoAYWnJwxF6mwdaPOgzpaHwKmIRERkPUxsEVVjt9Nz8cLqE4i+ft9kW9+g2lj8eEd4ujiU+7hC6hVg3zwgLqz4Du7+wOAPgdZjLLri4ZV7V7A+Zj22xm5FpjbTfHwQMKjJIExpMwUtfVpa7Pyl0d27h8yICGTuC0PmwYMQs7NL30mlgluvXvAYPgxu/R+C0s3V+oESERFZiKBQwKVzZ2Tue1CKID+xlf84QaVCG2SzeDwREVkNE1tE1dSJa/fwwuoTSM4wreH0Yr9AvD6oBZSK8iWdlPo8BN3+E06n/zY/7bDHDKDvGxabdqjRa7Dn2h6sj1mPE7dPlNhXpVBhVOAoPNvmWTT2aGyR85ca3/XryNi7D5l79yL75EnAUIZPpAUBLl27wmPYULgPHAhVrQpOAyUiIqoCXLqGSBJbLQvV2UpUKdFTyEKeliO2iIjIOpjYIqqG1hy7jvl/noVWL62n5eygxGePtcPwdv7lO6BOA+Wp1RhwYSGctWZWGgzoBwz5DKgdVLGgi7iRcQMbYzZi85XNJa5uCAB1Xevi0eaPYmzzsajtUtsi5zdHNBiQe+YMMvbuQ8a+vdBciS3zvur27eA5bBjcBz8ChzosAk9ERNVD0Tpb/veAWhki7rkLSFSp4M5VEYmIyIqY2CKqRjQ6AxZsPYffjl432dbQ2xlLn+6ClvU8yn5AbS4Q/Qtw8Es4mquj5VE/f9phq9GVnnaYo8tBxI0IbI7djMMJhyFCNNtXgIDe9XtjQosJ6F2/N5QKZaXOXRLd3bvIOnIEWYcPI3P/fuiTU8q2oyDAuWNHuD/UH+6DB8OxYUOrxUhERCQXdXAwFO7uMGRkGNtaXRdxqHVBYisHGm0xI72JiIgsgIktomriTkYu/rP6JKKu3TPZ1qe5L75+vCNquTqW7WDaHODET8ChL4GMpOL7KBz+nXY4p1LTDnUGHSKTIrEjbgf2Xt+LbF3Jdam81d4Y13wcxgWNQ323+hU+b0kMubnIPnECWYcPI+vwEeRduFDmfQW1Gq69esH9oYfg1i8UKh8fq8RIRERUVQhKZX6drfBwY1t+Yit/KqJCEAGN+dqYRERElcHEFlE1EH09v57W7XTTelrT+gbgjcEtoFIqSj+QJguIWgEc+hrIumO2m75xXyiHL6rwtENRFHE6+TS2x23Hrmu7Sp1qCAAhdUMwvsV4DGg4AA7K8he8LzEegwF5Fy/+m8g6jOwTJyHmmf5fmqP08YFb/35wf2gAXHt0h8LZ2aLxERERVXUuXbuaJLYAIFmlggaAMi9dnsCIiKjaY2KLyI5pdAZ8Fx6Lb8OuQKOX1q5QOyjwybh2GNWhDKOa8jKAY8uAI98A2almu6W4tsCleqPRaewrcHZxKXe8V+5dwY74HdgRvwMJmQml9nd3dMeowFF4rMVjCPAMKPf5zBFFEdqEBGQfPYqsQ4eRFRkJ/d3Sk2uFOQYG5o/Keqg/nNu3h6AoQ+KQiIiomipaZ6v+XcArU8R9NwFJKhVUWia2iIjIOpjYIrJTJ67dxdzfz+DyHdOh/fW9nLH0mc5o7e9Z8kFy04CjS4HIb4Ec0ymMRk37Iq/7Kzh08d9zlaOWVlJmEnZe3YkdcTtw6d6lUvsrBAW61e2GYQHDMKjJIDirKj/6SdTrkRcTg+wTJ5Fz8gSyo05Ad8f8iLTiCC4ucA0JgWuvnnDr2xeOTZpUOi4iIqLqQt0yGAo3NxgyH7wvaXldxJFWAhJUKqi0GSXsTUREVHFMbBHZmYxcLT77+xJ+ibwGsZja6j0CfPDtk53gXVI9rbQE4MTK/KRWXpr5foEDgNA3gEbdYcjJAS7uKjU+g2jAhbsXEHEjAuE3wnHhbtnqU7X1bYthAcMwuMlg+Dr7lmkfszHk5iL3zBlknziRn8yKjpa80S4ThQLqtm3g2rMn3Hr2zB+V5VjGGmVEREQ1jKBSwblzJ2RF7De2tb4u4kgrINFBCUcmtoiIyEqY2CKyI7vP38a8zWdxKz3XZJtSIWBa3wDMHhhUfD0tgx64sgeIWglc/hsQS1h2O+gRoO8bQIPOZYorR5eDo0lHEX4jHPtv7kdyTnKZ9mvi0QTDAoZhaNOhaOTRqEz7FEeXmoqc0//kj8Y6cRI5Z88CFVh9yaFRI7j27AHXnj3h2q0blJ6ljHgjIiIiI9eQEEliq6DOVqJKBUcti8cTEZF1MLFFZAfuZOTi/S3nsf1M8SsUtvb3wCfj2qFN/WISMemJwMlfgJM/A+k3Sz5R8HCg7+uAf8dSY7qVdQv7b+5HxM0IHE06ijx92Yqt+zn7YUjTIRgaMBQtvVtCKMe0RgDQ37+PnHPnkHvmLHLPnUXO2XPQJZlZubEUSm9vuISE5CeyevWEY4MGFToOERER5ReQL6xBKuCZJSJRpUKjHI7YIiIi62Bii6gKE0UR66Nu4MPtF5CeqzPZrnZQ4LWBQXiuV1PpKC2DHojdlz86K+YvQNSXcBYBaDUK6DsHqNvGbC+dQYcbuhuI0cbgl12/4NL90utlFXB3dMegxoMwtOlQdK7TGUqFskz76TMzkXvuPHLPnkXO2TPIPXsO2hs3ynzeohwaNYJLp05w6dIZzp06w7Fpk3In1oiIiKh46latoHBxgSE729jW8rqIxKZKBOk5YouIiKyDiS2iKio+JQtv/fEPIuOKX62vdzNfLBzTFo18Cq1OmJ4ERK/OH52Vdr3kEzi6AW0fA7pNB/xammzW6rU4l3oOUbejEHUrCtF3opGt+/eNahkGZzX2aIzQBqEIbRCKjnU6wkHhYLavKIrQ3b6NvJgY5MXEIPdSDHLPnoUmPr70E5mjUMApuAVcOneBS+dOcO7UCQ5+fhU/HhEREZUov85WZ2QdOGBsa31dxNbmKjgzsUVERFbCxJYFXbt2DV9//TW2b9+OGzduwMnJCYGBgRg/fjxmzJgBFxeX0g9SBjt37sTSpUtx/PhxJCcno3bt2ggJCcG0adMwZMgQi5yD5KPVG7B0fxy+2nsZGp1pHSwvFwfMG9YKYzvVzx9tpM0F4sLyE1qXdpYyOgtAvQ5Al2eBNuMAJ3djc54+D/8k/4Oo21E4cfsETt85jVy9aS0vc5SCEh39OuYnsxqGoqln02L76TMzkRdz+d8k1iXkxsQg7/IVGNJKKGJfBoKLC5xbt4Zzl85w6dQZzh07QOnmVqljEhERUfm4hIRIElstr4tYoVTCwcCpiEREZB1MbFnI1q1b8dRTTyE9Pd3Ylp2djaioKERFReHHH3/E9u3b0axZswqfw2AwYNq0aVi+fLmkPSEhAQkJCdi8eTOmTp2KH374AQpFMcXDqUrTG0Rs+ycRi/ddwZU7xX+qOaqDP+YNbwVfBw1w7g/gwjbg8i5AU8qnoA6uQNtH8xNa/9bPytZm45+kSETdikLU7SicST4DjUFTrpjdHdzRu35vhDYMRe/6veHp9KDGlz4zC5qrV6GJj0fe5cvG0VjaxMRynaM4gqMj1C1bQt2mDdRt2sC5TWs4BgRAUJZtiiMRERFZh2vXEBReQqZRCuCWA2iVlfsAi4iIyBwmtiwgOjoaEyZMQE5ODtzc3PDWW2+hf//+yMnJwdq1a7Fs2TLExMRg2LBhiIqKgru7e+kHLcY777xjTGp17NgRb7zxBgIDAxEbG4tPP/0U0dHR+PHHH1G7dm0sXLjQkt8iWZFWb8CfpxKxJOwK4lKyiu1T38sZnwz1R2/dcWDLx0BsGFCWYu112wFdnkVOyxG4lJWAc6nncD5uI86nnkdcWhwMJa2MaEZtRW0MbDYQDzd9GO1rtYaYeBua+KvQhP+BpH8TWZqrV6FLLtvKiKVycIA6KOjfJFZrOLdpA6dmzSA4mJ/aSERERPJQt24NwcUFYqE6W62ui8jxKP49DhERUWUxsWUBs2bNQk5ODlQqFXbt2oUePXoYtz300ENo3rw53njjDcTExGDRokVYsGBBuc8RExODzz//HADQpUsX7N+/H87OzgCAkJAQjBw5EqGhoYiKisJnn32G5557rlKjw8j6NDoDfj95E0vCr+DG3Zxi+9QXUvFus3gMUhyDctNhoAyJqBxHV1wKfhjn6rXGeX06zidsRdz5ryqUxAKAli4B6K0IQmuNH3SnkuB2NwP1D8RDf20eYm/eBPSlTH0sB4WrK5yaN4dTUBCcglvAuW1bOAUFQeHkZLFzEBERkfUIDg5w6dgRWYcOGdtaXReR1SEPOr1ButgNERGRBTCxVUnHjh3DgX/rCEyZMkWS1Cowe/ZsrFy5EhcuXMBXX32Fd955Bw7lHG3y5ZdfQqfLXxVv8eLFxqRWARcXFyxevBg9evSATqfD//73P3z77bcV/K7ImnK1emyIuoHvwmORmCatYSXAgGDhBvopTmO0+iRa6GMAM4sAGgAkqZSIc3BAnIMDLteqj3POzojT3IMhIxrIiC5TPM65IvzSAN90EX73gRYabzTJcYXvfQPUKRkw3IsBECPZp/g0XDkolXBs2gTqoCA4BbXIT2QFBcGhvj9XKSQiIrJzLiEhJomtE120yNMxsUVERJbHxFYlbd682fj42WefLbaPQqHAM888g7feegv3799HWFgYBg0aVOZziKKIP//8EwAQHByM7t27F9uve/fuaNGiBS5duoQ///wT33zzDZMEVUiORo/fjl3HDxGxuJORP41QCT1aC1fRVXER3RQX0FVxEZ7Cv0P3/x0IpQVwzcEBcQ4qxDvmJ7HiHRxw1UGFHEkttWwg78Gwf5VORK1MwCsT8M7Mf1yr4N8MoFaWCJ90wNVkRmPKv1/5ybNKEQQ41K8Px6ZNoW4RZExgOQYEQOHoWNmjExERURXk0rWr5HnjZOCATo88nQGuHIRNREQWxsRWJR08eBAA4Orqis6dO5vtFxoaanx86NChciW24uPjkfhvwe3CxzF3nkuXLiEhIQFXr15F06bFr0xHtpOVp8Mvkdfw44E4pGVmo50Qi0eV+YmszooYuAm5yBUEJKmUOKdSIVHlipsqlTGBdcNBBb0gAKII5zzAIwdwTwNaZotwzzHAIxvwyBHhkQXU+jeJ5ZWZ389WlN7ecGzSJP+raf6/Tk2awKFRI04jJCIiqmGc27SG3lEJpeZBuQKX20CeVgeAH2wREZFlMbFVSRcuXAAANGvWDCqV+f/O4OBgk33K6vz588UepyznYWLLugwGEfeyNUjJ1CA5Iw8pGbm4l5aG9PR7yEhPR3ZmGlLvJCBQewZvOF2EV60E3BVEpOhVCNersEXviSydN/RaBVzy8kdPueSKcM0F2uUAvbMB9xx9fvIqG1BVeghVxSlq1UK2qyu0tWqhQbeucG3ePD+R1bgxlF5e8gVGREREVYrg6AhNcCM4/xNvbPNOUkKTnQF4ucgYGRERVUdMbFVCbm4uUlLyp2w1aNCgxL61atWCq6srsrKycOOGmaJJZty8edP4uLTzNGzY0Pi4MucpTuHjbZo6BLXUNXRVOoMIiCJgMEAQAUCEAEAwiPnPRcBTBDxFAYIICCLgoAEcNQA0atTRAXUeHAxlmfCnQcHkQCsRBCi9vaH084OqTh0o6/z7r59ffpufHzSCgJNHjwIAXLp1Q1bBSKzk5Pwvqvby8vKM97zY2Fg4cTRejcLXn3gN1Gzlff1TmzaB6sSDGp3+/wC7nu1nxQjJFkQx/9/VS+bKGwjJgq9/zXYvV2t8XFD/u6pgYqsSMjIyjI/d3NxK7V+Q2MrMzLTaeVxdXY2Py3uewkmx0ry5P7ZcxyY7wJeUiIiIrOms3AEQEZElJCcno0mTJnKHYcRlSSohN/fBinaOZSiEXfDJVk5O+Yoflec8hT89K+95iIiIiIiIiIhKcvv2bblDkOCIrUpQq9XGxxqNptT+eXn5y885Oztb7TwF56jIeUqbuhgfH4++ffsCAA4fPlyuEV5k/5KSktD131WOjh07hnr16skcEdkar4Gaja8/8Rqo2fj6E6+Bmo2vP924cQM9e/YEUHrtb1tjYqsS3N3djY/LMu0vKysLQNmmLVb0PAXnqMh5SqvfVVjDhg3L1Z+ql3r16vH1r+F4DdRsfP2J10DNxtefeA3UbHz9qfDgm6qAUxErQa1Ww8fHB0Dphdfv3btnTDqVd6RT4ZtGeQq8c0QVEREREREREVVnTGxVUqtWrQAAV65cKXFlgIsXLxoft2zZskLnKHocS5+HiIiIiIiIiMieMLFVSb179waQPwXwxIkTZvtFREQYH/fq1atc52jatCn8/f1NjlOc/fv3AwDq169fpVYpICIiIiIiIiKyNCa2Kmn06NHGxytXriy2j8FgwM8//wwA8PLyQv/+/ct1DkEQMGrUKAD5I7IiIyOL7RcZGWkcsTVq1CgIglCu8xARERERERER2RMmtiqpa9eu6NOnDwBg+fLlOHLkiEmfRYsW4cKFCwCAWbNmwcHBQbI9PDwcgiBAEARMnjy52PO88sorUCqVAICZM2ciJydHsj0nJwczZ84EAKhUKrzyyiuV+baIiIiIiIiIiKo8JrYs4KuvvoKzszN0Oh0GDRqEjz76CJGRkQgLC8P06dPxxhtvAACCgoIwe/bsCp0jKCgIc+bMAQBERUWhV69eWLduHaKiorBu3Tr06tULUVFRAIA5c+agefPmlvnmiIiIiIiIiIiqKJXcAVQHHTt2xLp16/DUU08hPT0db7/9tkmfoKAgbN++He7u7hU+z4cffog7d+5gxYoViI6OxuOPP27SZ8qUKfjvf/9b4XMQEREREREREdkLQRRFUe4gqotr167hq6++wvbt23Hz5k04OjqiWbNmeOyxx/DSSy/BxcWl2P3Cw8ONdbcmTZqEVatWlXieHTt2YOnSpTh+/DhSUlLg6+uLkJAQTJ8+HUOGDLH0t0VEREREREREVCUxsUVERERERERERHaJNbaIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFZXLt2jXMnj0bwcHBcHV1hbe3N0JCQvDZZ58hOztb7vDICgRBKNNXv3795A6VKuDOnTvYtm0b5s+fjyFDhsDX19f4mk6ePLncx9u5cyfGjBmDBg0awMnJCQ0aNMCYMWOwc+dOywdPFmGJa2DVqlVlvlesWrXKqt8PlU9UVBQ++OADDBo0yPhz6+bmhqCgIDz77LM4ePBguY7He4D9scQ1wHuAfUpPT8fatWsxe/ZshIaGolmzZvD09ISjoyP8/PzQr18/fPrpp0hNTS3T8Q4fPoynnnoKjRs3hlqtRt26dTF48GCsWbPGyt8JVZQlroHw8PAy//wvWLDAdt8cVdqbb74pef3Cw8NL3Uf29wEiUSm2bNkienh4iACK/QoKChIvX74sd5hkYeZe76JfoaGhcodKFVDSazpp0qQyH0ev14tTpkwp8XhTp04V9Xq99b4ZqhBLXAMrV64s871i5cqVVv1+qOz69OlTptfsmWeeEfPy8ko8Fu8B9slS1wDvAfZp9+7dZXrNfH19xb/++qvEY7333nuiQqEwe4xhw4aJOTk5NvrOqKwscQ2EhYWV+ef/vffes+03SBUWHR0tqlQqyesXFhZmtn9VeR+gAlEJoqOjMWHCBOTk5MDNzQ1vvfUW+vfvj5ycHKxduxbLli1DTEwMhg0bhqioKLi7u8sdMlnYiy++iP/85z9mt7u6utowGrKGRo0aITg4GLt27Sr3vu+88w6WL18OAOjYsSPeeOMNBAYGIjY2Fp9++imio6Px448/onbt2li4cKGlQycLqcw1UODvv/+Gv7+/2e0NGjSo8LHJshITEwEA/v7+eOyxx9CnTx80atQIer0eR44cwaJFi5CQkICff/4ZWq0Wv/32m9lj8R5gnyx5DRTgPcC+NGzYEP3790fnzp3RsGFD1KtXDwaDATdv3sTGjRvxxx9/ICUlBSNHjsSxY8fQvn17k2P88MMPeP/99wEAgYGBePvtt9G2bVskJibiq6++QlhYGLZv347nnnuuTNcQ2ZYlroECK1asQEhIiNntfn5+1vgWyMIMBgOmTZsGnU4HPz8/3Llzp9R9qsz7AKumzcjuFXyip1KpxMOHD5ts//TTT5mJr6b4ulZv8+fPF7du3SreunVLFEVRjI+PL/donUuXLhk/0enSpYuYnZ0t2Z6VlSV26dLFeA/hyM6qxRLXQOHRGvHx8dYLlixq2LBh4rp160SdTlfs9uTkZDEoKMj42kZERBTbj/cA+2Wpa4D3APtk7nUvbNOmTcbXdsyYMSbbU1NTRU9PTxGA2KhRIzE5OdnkHCNGjCjTiA+yPUtcA4VHbPH1rR7+97//iQDE4OBg8a233ir19a1K7wNYY4vMOnbsGA4cOAAAmDJlCnr06GHSZ/bs2WjZsiUA4KuvvoJWq7VpjERUMe+//z6GDx+OOnXqVPgYX375JXQ6HQBg8eLFcHZ2lmx3cXHB4sWLAQA6nQ7/+9//Kh4wWZwlrgGyT9u2bcP48eOhVCqL3e7r64tFixYZn2/cuLHYfrwH2C9LXQNkn8y97oWNHj0aLVq0AADj3wOF/fjjj0hLSwMAfPLJJ/D19TU5x5IlS4zn+uyzzyobNlmQJa4Bql6uX7+OefPmAQC+//57ODo6lrpPVXofwMQWmbV582bj42effbbYPgqFAs888wwA4P79+wgLC7NFaEQkM1EU8eeffwIAgoOD0b1792L7de/e3fim6M8//4QoijaLkYgqrn///sbHsbGxJtt5D6j+SrsGqPorKDGSm5trsq3g7wQPDw+MHTu22P0bNGiAhx9+GACwd+9eZGRkWCdQspqSrgGqXmbMmIHMzExMmjQJoaGhpfavau8DmNgiswpWw3F1dUXnzp3N9it84R86dMjqcRGR/OLj4401Wkr75VewPSEhAVevXrV2aERkAXl5ecbHxX2yz3tA9VfaNUDV26VLl3Dq1CkA+X+0FqbRaHDs2DEAQI8ePUoc2VHw85+Xl4eoqCjrBEtWUdI1QNXL+vXrsW3bNnh7e+Pzzz8v0z5V7X0AE1tk1oULFwAAzZo1g0plfp2Bwje6gn2o+tiwYQNatWoFFxcXuLu7o3nz5pg0aRJH59Vw58+fNz4u7c0O7xE1w7PPPgt/f384OjrC19cX3bt3x7vvvouEhAS5Q6MKiIiIMD4uKDlQGO8B1V9p10BRvAfYv+zsbFy+fBlffPEFQkNDjVOMXnnlFUm/mJgY6PV6APz5r27Keg0U9c4776Bx48ZwcnJCrVq10LFjR7z66quIiYmxQdRUGffv38esWbMAFD+t2Jyq9j6AiS0qVm5uLlJSUgCUvopNrVq1jCvj3bhxw+qxkW2dP38eFy5cQE5ODjIzM3HlyhX8/PPPeOihhzBmzBhjfQWqWW7evGl8XNo9omHDhsbHvEdUX+Hh4UhKSoJWq0VqaiqOHj2KDz/8EM2aNcMPP/wgd3hUDgaDAR9//LHx+fjx40368B5QvZXlGiiK9wD7tGrVKgiCAEEQ4OrqiqCgIMyePRu3b98GAMydOxcTJ06U7MOf/+qlItdAUYcPH8b169eh0Whw//59nDp1Cl9++SVatmyJBQsWcBp6FfbGG2/g1q1b6NWrF6ZMmVLm/arafcD8MByq0QrPgXdzcyu1v6urK7KyspCZmWnNsMiGXFxcMHLkSAwYMADBwcFwc3NDcnIyIiIi8P333yM1NRWbN2/GqFGjsHv3bjg4OMgdMtlQee4RBYlvALxHVEMBAQEYO3YsevToYXzjEhcXh99//x0bN25Ebm4uXnjhBQiCgGnTpskcLZXF//73P+M0o7FjxxZbjoD3gOqtLNdAAd4DqqcOHTpg6dKlCAkJMdnGn/+aoaRroEC9evUwduxY9O7dGwEBAVCpVLh+/Tq2bduGn3/+GVqtFu+//z40Gg0WLlxow+ipLA4cOIAff/wRKpUK33//PQRBKPO+Ve0+wMQWFatwgcCyrIjg5OQEAMjJybFaTGRbCQkJ8PLyMmkfOHAgZs6ciSFDhiA6OhoRERH47rvv8PLLL9s+SJJNee4RBfcHgPeI6mbMmDGYNGmSyRuhkJAQTJgwAdu2bcPYsWOh1Wrx6quvYuTIkahbt65M0VJZREREYO7cuQAAPz8/fPfdd8X24z2g+irrNQDwHlAdjB49Gl26dAGQ//MZGxuL9evXY9OmTXjiiSfw5ZdfYvjw4ZJ9+PNfvVTkGgDyf86vXbtm8uF2p06dMHr0aEybNg2DBg1CWloaPv74Y0yYMAHt27e3yfdEpdNoNJg2bRpEUcSrr76KNm3alGv/qnYf4FREKpZarTY+1mg0pfYvKDBadIlPsl/FJbUK1KlTBxs3bjT+IitYxpVqjvLcIwoXIOY9onrx9PQs8dO94cOHY/78+QDy63YsX77cVqFRBZw7dw5jxoyBTqeDWq3Ghg0b4OfnV2xf3gOqp/JcAwDvAdWBl5cX2rRpgzZt2iAkJASPP/44/vjjD/z888+Ii4vDqFGjsGrVKsk+/PmvXipyDQD5o3BKmrHRtWtXfPPNNwDyV9AreExVw8KFC3Hx4kU0atQI7733Xrn3r2r3ASa2qFgFS7sCZRsumJWVBaBs0xapeggICMDAgQMBAFeuXDGuikE1Q3nuEQX3B4D3iJpo2rRpxj98CxejpqolPj4egwYNwr1796BUKrF27Vr07dvXbH/eA6qf8l4DZcV7gH16+umn8dhjj8FgMOCll17C3bt3jdv4818zlHQNlNXjjz8ODw8PAPz5r0ouXryIjz76CED+AIXCUwXLqqrdB5jYomKp1Wr4+PgAkBaGK869e/eMF2vhwnBU/bVq1cr4mKse1SyFi0SWdo8oXCSS94iax8/Pz/j7hPeJqikxMREPP/wwEhMTIQgCVqxYgVGjRpW4D+8B1UtFroGy4j3AfhVcA1lZWfjrr7+M7fz5rznMXQNlpVKpEBQUBIA//1XJ//73P2g0GgQEBCA7Oxtr1641+Tp79qyx/759+4ztBX/3V7X7AGtskVmtWrXCgQMHcOXKFeh0OqhUxV8uFy9eND4uy3LQVH2Up8AgVS+Fk5qF7wHF4T2CeK+oulJSUjBw4EDExcUByP/k9plnnil1P94Dqo+KXgPlwXuAfapdu7bx8bVr14yPg4KCoFQqodfr+fNfzZm7BsqDP/9VT8HUwLi4ODzxxBOl9v+///s/4+P4+Hi4urpWufcBHLFFZvXu3RtAfob+xIkTZvsVHlbaq1cvq8dFVcf58+eNj/39/WWMhGytadOmxte8tKHl+/fvBwDUr18fTZo0sXZoVMUkJycjJSUFAO8TVU1aWhoGDx5svJd//PHHmDFjRpn25T2geqjMNVBWvAfYr8IjbApPH3J0dETXrl0BAEeOHCmxvk7B/cHJyclYoJzsh7lroKx0Oh1iYmIA8Oe/uqlq7wOY2CKzRo8ebXy8cuXKYvsYDAb8/PPPAPILD/bv398WoVEVEB8fj927dwMAAgMDUb9+fZkjIlsSBME4PP3ixYuIjIwstl9kZKTxU5pRo0bxU7saaOnSpRBFEQAQGhoqczRUIDs7G8OGDcPJkycBAO+88w7efPPNMu/Pe4D9q+w1UFa8B9ivDRs2GB+3bdtWsq3g74T09HT88ccfxe5/8+ZN7NmzBwAwYMAASU0esg8lXQNlsW7dOqSlpQHgz39VsmrVKoiiWOJX4YLyYWFhxvaCxFSVex8gEpWgT58+IgBRpVKJhw8fNtn+6aefigBEAOJ7771n+wDJKrZs2SJqtVqz22/duiV27NjR+NovWrTIhtGRNcTHxxtfz0mTJpVpn0uXLolKpVIEIHbp0kXMzs6WbM/Ozha7dOlivIfExMRYIXKylPJeA/Hx8eLJkydL7LN161bR0dFRBCA6OzuLN2/etFC0VBl5eXnioEGDjK/3rFmzKnQc3gPslyWuAd4D7NfKlSvFnJycEvt88cUXxuujadOmok6nk2xPTU0VPT09RQBi48aNxZSUFMl2nU4njhgxwniMsLAwS38bVAmVvQbu3r1b6mt69OhR0cvLSwQgCoIgRkVFWSJ0spH33nuv1J/fqvQ+gDW2qERfffUVevXqhZycHAwaNAhvv/02+vfvj5ycHKxduxZLly4FkD/Xfvbs2TJHS5Yyc+ZMaLVajBs3Dj169ECTJk3g7OyMlJQUhIeH44cffjBOK+jdu7fFpy2Q9R08eBBXrlwxPi94PYH8VS6LLus8efJkk2MEBQVhzpw5+PjjjxEVFYVevXrhzTffRGBgIGJjY/HJJ58gOjoaADBnzhw0b97cKt8LVUxlr4GrV6+if//+6NGjB0aMGIH27dvDz88PQH7Nho0bN2Ljxo3GkRqff/45R3ZWEU888QR27doFAHjooYcwZcoUSZHYohwdHY3FfwvjPcB+WeIa4D3Afi1YsACzZ8/GuHHj0Lt3bwQGBsLNzQ0ZGRk4c+YMfv31Vxw6dAhA/mu/dOlSKJVKyTG8vb3xySef4IUXXsC1a9fQrVs3vPPOO2jbti0SExPx5ZdfIiwsDED+9davXz9bf5tUgspeA2lpaejfvz/atWuH0aNHo3PnzqhXrx6USiWuX7+Obdu24ZdffjFOU3399dfRuXNnWb5Xsp4q9T7Aaikzqja2bNkienh4GDO2Rb+CgoLEy5cvyx0mWVDjxo3Nvt6Fv8aNGyfeu3dP7nCpAiZNmlSm17jgyxy9Xi8+99xzJe47ZcoUUa/X2/C7o7Ko7DUQFhZWpv1cXFzEH374QYbvkMwpz+uOf0djmMN7gH2yxDXAe4D9Kuv7vAYNGoi7du0q8Vjz588XBUEwe4yhQ4eWOjKIbK+y10DhUd4lfSmVSnHBggWiwWCQ4bukyijLiC1RrDrvAzhii0o1YsQI/PPPP/jqq6+wfft23Lx5E46OjmjWrBkee+wxvPTSS3BxcZE7TLKgn376CREREThy5Aji4uKQkpKC9PR0uLm5oWHDhujZsycmTZqEHj16yB0qyUyhUGD58uUYN24cli5diuPHjyMlJQW+vr4ICQnB9OnTMWTIELnDJCvo3LkzVq9ejSNHjiAqKgpJSUlISUmBTqdDrVq10Lp1awwYMABTp041juKg6of3gJqL9wD79ffff2P79u04dOgQrly5gtu3byM1NRXOzs7w8/NDhw4dMHz4cIwfP77U9/jvv/8+Bg8ejG+//RYHDhzA7du34eXlhfbt2+PZZ58t04prZHuVvQb8/f2xYcMGHDlyBMeOHUNCQgJSUlKQm5sLT09PtGjRAv369cPUqVO5aEg1V1XeBwii+O/4YCIiIiIiIiIiIjvCVRGJiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIjI7ixYsACCIEAQBLlDwdWrV42xrFq1Su5wapxVq1YZ//+vXr1a6eOtWLECgiCgbdu2EEWx8gFWURs2bIAgCAgKCoJWq5U7HCIiogpjYouIiIgqRa/Xw8PDA4IgoFOnTiX2FUURPj4+xkTEihUrSuz/008/Gft+9913lgy7Srp58yYWLFiAPn36oHbt2nBwcICzszMaNGiAvn37YtasWdi4cSPS0tLkDrVayszMxNtvvw0AmD9/fpVInBY2aNAgCIKAWbNmVfpY48aNQ6tWrXD58mUsXrzYAtERERHJg4ktIiIiqhSlUomePXsCAE6fPo309HSzfc+dO4e7d+8anx84cKDEYxfe3rdv30pGWrUtW7YMLVq0wPvvv4+DBw8iJSUFOp0Oubm5SEhIwIEDB/D111/jsccew/Tp0+UOt1r6+uuvcfv2bbRq1QqPPvqo3OFIZGRkICIiAgAwYsSISh9PoVDgnXfeAQB8/PHHyMrKqvQxiYiI5MDEFhEREVVaQdLJYDDg8OHDZvsVJKqUSqXkeWn9fX190apVK2P7ggULIIpitZkqtmbNGkybNg3Z2dlQq9V48cUXsXnzZkRFReH48eP4888/MW/ePHTs2FHuUKutnJwcfPHFFwCAV199tcqN1vr777+h0Wjg4eGB0NBQixxzwoQJqF+/PpKTk/HDDz9Y5JhERES2xsQWERERVVrh0VT79+83269g22OPPQYAiI2NRWJiYrF979y5g5iYGABA7969q1yiwVL0ej1ee+01AIC7uzuOHj2KJUuWG8g3vgAAE0ZJREFUYNSoUejcuTO6dOmCkSNH4oMPPsDJkydx/vx5jB07Vuaoq5/Vq1cjNTUVTk5OVW60FgBs3boVADB48GA4ODhY5JhKpRITJkwAAHzzzTcwGAwWOS4REZEtMbFFRERElRYSEgK1Wg2g5FFYBdseffRRBAYGlti/pkxDPHr0KG7dugUAmD59Otq1a1di/5YtW2L8+PG2CK1GWb58OQBg2LBh8PLykjeYIgwGA3bs2AEAGD58uEWP/eSTTwIA4uPjERYWZtFjExER2QITW0RERFRpTk5O6Nq1KwDg+PHjyMvLM+kTHx+PhIQEAPkjsHr37g2gYomt0lZFbNKkCQRBwOTJkwEAly5dwvPPP48mTZrAyckJderUwZgxYxAZGVnq96bX67FkyRJ069YNHh4e8PT0RKdOnfD5558X+32W1/Xr142PmzVrVuHjFLc644YNG/Dwww/Dz88Pzs7OCA4OxltvvYX79++X6ZhhYWGYNGkSAgIC4OLiAg8PD7Rt2xZz5swxO9LO0se4d+8e5s6di+DgYDg7O8PPzw8PP/wwNmzYUKbzl8W1a9dw9OhRAPlF1c0JDw83/h+Hh4dDFEUsX74cvXv3ho+PDzw8PNC1a1f88ssvkv00Gg2+//57dO/eHd7e3nB3d0evXr2wfv36MsUXGRmJlJQUKBQKDB061GT7iRMnMGXKFAQFBcHV1RVqtRoNGzZE586dMWPGDGzZssXstN1OnTqhadOmAPKnxBIREdkdkYiIiMgC3n33XRGACECMiIgw2b5q1SoRgNi8eXNRFEVx2bJlIgCxbdu2xR6vU6dOIgDRw8ND1Ol0km3vvfee8VzFady4sQhAnDRpkvjHH3+ILi4uxv6Fv5RKpbh27Vqz31NGRobYp0+fYvcFIHbq1Ek8efKk8fnKlSvL+L/1wO+//27cf9asWeXev0B8fLwkjueee85s3P7+/uKFCxfMHisnJ0d8/PHHze4PQHR1dRW3bNli1WOcP39e9Pf3N7v/s88+K65cudL4PD4+vkL/dwXXJgAxNjbWbL+wsDBjv127dokjRowwG9vLL78siqIo3r17V+zbt6/Zfh9++GGp8c2dO1cEIPbq1ctk2xdffCEqFIoS/58BiBkZGWaPX/A61a9fvwz/W0RERFULR2wRERGRRRQeVVXcKKyCtoKRWgX/nj17Fvfu3ZP0zcjIwOnTpwEAPXv2NBabL68zZ85g4sSJqFOnDr755htERkbiyJEjWLBgAdRqNfR6PaZNm4bk5ORi93/qqaeMcXft2hVr1qxBVFQUtm/fjsceewwnT56s9AqFhQvC//DDD9i3b1+ljgcAS5YswYoVKyQx79ixwziFMTExEYMHD0ZGRobJvqIo4tFHH8XatWsB5K/A98svv+DQoUM4cuQIvvrqKzRq1AhZWVl49NFHERUVZZVjpKenY/DgwcZRXRMmTMCOHTsQFRWF3377DV26dMHKlSuxZMmSSv9/FbzGPj4+CAgIKNM+8+bNw9atW/Hkk09i+/btOHHiBNasWYMWLVoAyF9hcc+ePZg8eTIOHz6MF198Ebt27cKJEyewfPly+Pv7AwDmz5+Pc+fOlXiugvpaRVdD/Oeff/D666/DYDCgadOmWLRoEfbu3Yvo6Gjs378fy5Ytw8SJE+Hq6lri8QtGWyYkJODKlStl+v6JiIiqDLkza0RERFQ9ZGRkiCqVSgQgDh482GR7UFCQCEBcsWKFsc3X11cEIG7dulXS96+//jKONFm4cKHJsco6YguA2LlzZzEtLc2kz+rVq419vvjiC5Pt27ZtM24fOnSoqNVqTfq8//77klExFRmxJYqiOHz4cMlxQkJCxPnz54s7duwQk5OTy3SMwiO2Sor5gw8+MPaZM2eOyfalS5eKAEQHBwdx586dxZ7r7t27YuvWrc2OIrLEMV5//fUSrwGNRiMOGjRI8j1XdMRWy5YtRQDigAEDSuxXeMQWAPHLL7806ZOUlCS6u7uLAMTatWuLgiCImzZtMul3+vRp40irgtFdxYmLizOe7+zZs5Jt8+bNM458u3Xrltlj3L9/X9Tr9Wa3R0REGM9R0ghGIiKiqogjtoiIiMgi3NzcjKOPDh8+DL1eb9xWdIXDAr169QJgOsLLkoXjV6xYAQ8PD5P2iRMnGkfNFDfCrGAkkJOTE5YtWwaVSmXS591330WbNm0qFR8ArFy5EiEhIcbnx48fxwcffIChQ4eidu3aaNGiBWbOnImTJ0+W6XglxfzOO+8YY16+fDk0Go1xmyiK+OSTTwAAL7/8Mh555JFij1+rVi189tlnAIBDhw7h8uXLFj2GRqMxFnNv164d5s6da7K/g4MDli9fbpEVAm/evAkA8PPzK/M+3bp1w6xZs0za69atizFjxgAAkpOTMX78eIwePdqkX7t27UqtMwcA27ZtAwA0bdoUrVu3lmwrWHQgKCgIderUMXsMT09PKBTm3/YX/r7j4uLM9iMiIqqKmNgiIiIiiylIQmVkZODUqVPG9v379wMA6tSpg+bNmxvbC/6wL9heoOAPfbVaLUn4lFfbtm3NrjIoCIIxEVf0j3m9Xo/w8HAAwKBBg4wJsKIUCgUmTZpU4fgK+Pr64tChQ1i6dCk6depksj0mJgbffPMNOnfujKeffhpZWVklHq+sMd+9e1eSLDt//jxiY2MB5K9cWZLCCccjR45Y9BgnTpwwTk+dNGmS2UUCGjRogEGDBpV4jtLk5eUZp2TWqlWrzPs9/vjjZre1b9++XP1KSiaZm4YIAPXq1QOQ/39+7NixkgMugbe3t/FxQbKMiIjIXjCxRURERBbTp08f4+PCo1CK1tcq2v/EiRPIyckBkD9ap+CP9G7dusHR0bHC8QQHB5e4veAP+qK1pmJjY5GdnQ0ApSbWCuoTVZaDgwOef/55nDhxAgkJCVi7di1ef/119OnTRzIqafXq1Rg5cqRkRFxR5Yn5zJkzxseFa1316NHDuAJgcV9ubm7GvoWTIZY4RuGYrP3/f/fuXePj8iS2goKCzG7z8vIqV7/iap0VtEdERAAoPrH1xBNPwMHBAXl5eejVqxdGjBiB77//HmfPnjW7CmJxCn/fpSVNiYiIqhomtoiIiMhi+vTpYxxdU5bEVqdOneDi4gKtVovIyEgA+dPwcnNzAVR+GqKLi0uJ2wumZxVNEhVOdpQ2Pa2kKWAV5e/vjwkTJuCzzz7D/v37cevWLbz11lvGePft24c1a9aY3b88MRf+Xu/cuVOheAuSgJY6hi3//9VqtfFxQXK1LEq6tgpP+ytLP4PBUOz2v//+GxqNBu7u7ggNDTXZHhwcjDVr1qBWrVrQ6XTYtm0bXnzxRbRt2xZ+fn54+umnS5zmWKDw922JqZ1ERES2ZFp4gYiIiKiCvL290bp1a5w9e9b4B3V6erpxhcOiiS0HBwd07doV4eHh2L9/P/r372/R+lqWYG4anC15e3tj4cKFEEURH3/8MQBgw4YNeOqpp4rtX9GYCyf4tm7diiZNmpRpv8LJJ0scozBr//97eXlBpVJBp9NJEmpVQUF9rcGDB5tNOI0bNw4PP/ww1q1bh7///hsHDhxAcnIyUlJSsHr1aqxevRqTJk3CihUrzNbZKvx9Fx5tRkREZA+Y2CIiIiKL6tu3L86ePYvk5GRcvHgR8fHxMBgMkuLyhfXu3Rvh4eHGhFZBvS0HBwf06NHDprEXKDw16/bt2yX2LW27JT3//PPGxNaVK1fM9itPzIXrK/n4+Bgfe3l5VagwviWOUfT/v6TpfJX9/xcEAb6+vrh165axrldVYDAYsGPHDgDFT0MszNPTE9OmTcO0adMAABcuXMCff/6JxYsXIzExET/99BM6duxYbLF7AJLvu1GjRhb6DoiIiGyDUxGJiIjIoorW2SpIWHXv3h1KpdKkf8EorsjISOTl5eHw4cMA8qcpurq62iBiU4GBgXB2dgaQPzWyJKVtt6TCBeFLGslUnpgLJ54KJx4PHTpUkRAtcoy2bdsaH9vi/7/gfAUrd1YFkZGRSE5OhkKhwNChQ8u1b8uWLTF37lxERkYaf4bWr19vtn/h77voyotERERVHRNbREREZFGFpw/u37/fOAKr6DTEAj169IBSqURWVhZWrVqFtLQ0k+PYmkqlQr9+/QAAu3btQlJSUrH9DAYDfvrpp0qdqzxFvgsXZg8ICDDbr6wx16pVS7IKY6dOndCgQQMAwNKlS421zsrDEsfo3LmzcdTWL7/8Yvb/KCEhAbt27Sr38YsqSMZeunTJbCF3WytYDbFHjx7w9fWt0DEaNmxoHO2WkpJitl9BctDBwaHYVTmJiIiqMia2iIiIyKL8/f0RGBgIAAgLCzMmYwqP5CrMw8PDOGLm008/NbbLXV/rxRdfBADk5eVh+vTpxa5C+NFHH0lW8KuInTt3Yvz48YiOji6x3927d/Hyyy8bn48aNcps35Ji/vjjj40xP/fcc3BycjJuUygUePvttwEAcXFxeOaZZ5CXl2f2POnp6fjmm28kbZY4hpOTE5599lkAwKlTp/DZZ5+Z7KfT6fD8889Do9GYPXZZFVybBoNBkjyUU0Fia/jw4Wb7bN68Gffv3ze7/caNG7h48SIAoGnTpmb7FaxC2qNHD8lKlURERPaANbaIiIjI4vr06YPY2FgkJCQAyB8B1b17d7P9e/fujVOnTiEuLg5AfnLE3AgvWxkxYgRGjBiBrVu3YuvWrejVqxdeffVVNG/eHHfu3MGqVauwbt06dOnSpVLJEIPBgA0bNmDDhg1o3749hg0bhpCQENSrVw+Ojo64c+cODh48iKVLlxpXHOzcuTMmTZpk9phdunQpNuaffvoJa9euBQA0aNAA8+bNM9n3hRdewO7du7Fp0yZs2LABJ0+exPTp09G1a1d4enoiPT0dFy9eRHh4OLZs2QK1Wo2XXnrJ4seYP38+1q9fj5s3b+LNN9/EqVOn8Mwzz8DPzw8xMTH44osvcPz48Ur//wNAz549Ubt2bSQnJ2Pv3r3o379/pY5XWVevXsW5c+cAlFxf68svv8STTz6JYcOG4aGHHkLLli3h6emJe/fuISoqCosXLzauePjCCy8Ue4yMjAzjiK0xY8ZY+DshIiKyAZGIiIjIwlasWCECMH6FhISU2H/t2rWS/u3bty+x/3vvvWfsW5zGjRuLAMRJkyaVeJxJkyaJAMTGjRsXuz09PV3s1auXJLbCXx07dhRPnDhhfL5y5coSz1ecgwcPiq6urmbPUfRr4MCBYkpKislx4uPjJXFMnjzZ7DHq1asnnjt3zmxMGo1GfPHFF0VBEEqNp2nTplY7xtmzZ8W6deua3W/y5MniypUrjc/j4+PL/f9fYPbs2SIAMSAgwGyfsLAw47nCwsLM9itrTOau46+//rrE/5cCoaGhpf7fKhQK8f/+7//MHmPVqlUiAFGlUolJSUklno+IiKgq4lREIiIisrii0whLG31VdJqi3NMQC7i7uyM8PByLFy9GSEgI3Nzc4O7ujg4dOuCjjz7C4cOHJasKVkSvXr2QnJyMLVu24LXXXkNoaCj8/f3h5OQElUoFb29vdOrUCdOnT0dYWBh27dolWXnQnJUrV+K3335Dv3794OPjAycnJwQFBeGNN97AuXPn0KpVK7P7Ojg4YMmSJTh9+jRmzpyJtm3bwtPTE0qlEp6enujQoQOmTJmCjRs34sKFC1Y7RuvWrXHu3Dm88cYbaN68OZycnODr64v+/fvjt99+w8qVK8v2n1wGzz//PID86ZORkZEWO25FFExDLG01xDVr1mDp0qWYOHEiOnTogLp160KlUsHNzQ2tW7fGiy++iOjoaLz77rtmj/Hbb78ByB+tVbduXct9E0RERDYiiGI5KpYSERERUZV09epVYx2llStXYvLkyfIGZIeGDh2KnTt3YurUqVi2bJksMWRkZMDX1xcajQa7du3CwIEDrXaua9euITAwEHq9HkeOHClxujAREVFVxRFbRERERETIXwxAoVDg559/xo0bN2SJYdeuXdBoNHB3d0doaKhVz7Vw4ULo9Xo88sgjTGoREZHdYmKLiIiIiAhA+/btMXHiRGg0Gnz00UeyxODu7o733nsPixcvhqOjo9XOc+PGDaxatQpKpVKyGikREZG94aqIRERERET/WrhwIQIDA6FWqyGKIgRBsOn5Bw0ahEGDBln9PDdu3MBbb72FgIAAtG3b1urnIyIishbW2CIiIiKqBlhji4iIiGoiTkUkIiIiIiIiIiK7xBFbRERERERERERklzhii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrvExBYREREREREREdklJraIiIiIiIiIiMguMbFFRERERERERER2iYktIiIiIiIiIiKyS0xsERERERERERGRXWJii4iIiIiIiIiI7BITW0REREREREREZJeY2CIiIiIiIiIiIrv0/5jBicKdK+iGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -193,7 +193,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1gU1/oH8O/sUpbeBKlSRBRFg0FEqmCsYCxoDBoLam7ML4kl8aqJsZFrrFFjydWYGE2MLdFojF4jarCAJtbYsCDFXui97/7+IDsyW2CBbey+n+fhkZ2dnXN2HWDeOed9DyMSiUQghBBCCCGEEBl4mu4AIYQQQgghRHtRwEAIIYQQQgiRiwIGQgghhBBCiFwUMBBCCCGEEELkooCBEEIIIYQQIhcFDIQQQgghhBC5KGAghBBCCCGEyEUBAyGEEEIIIUQuChgIIYQQQgghclHAQAghhBBCCJGLAgZCCCGEEEKIXBQwEEIIIYQQQuSigIEQQgghhBAiFwUMhBBCCCGEELkoYCCEEEIIIYTIRQEDIYQQQgghRC4KGAghhBBCCCFyGWi6A0T1KioqcP36dQCAvb09DAzov50QQgghRFvU1NQgOzsbANC1a1cIBAIN94iLrhz1wPXr19GzZ09Nd4MQQgghhDTi/PnzCAwM1HQ3OGhKEiGEEEIIIUQuGmHQA/b29uz3p0+fhqenpwZ7Q3RZeXk5Tp8+DQCIiIiAiYmJhntEdBWda0Qd6Dwj6pKZmYmIiAgA3Os2bUEBgx6on7Pg6OgIV1dXDfaG6LLy8nK0adMGAODq6kp/XInK0LlG1IHOM6Iu5eXl7PfamGtKU5IIIYQQQgghclHAQAghhBBCCJGLAgZCCCGEEEKIXBQwEEIIIYQQQuTSvqwKQgjRcuXl5SgqKkJpaSlqa2s13R29JBQKYWdnBwB48OABeDy6/0WUj84zoiyGhoawtraGpaVlqzyPKGAghJAmKCwsxJMnTzTdDb0nEonYijW1tbUQCoUa7hHRRXSeEWWpqalBeXk5ysvL4eTkpOnuNBkFDIQQoqDy8nKpYEEby9/pC4ZhAND/AVEtOs9IS4lEInY0uqCgANbW1q2uRC+d/YQQoqCioiL2e0tLSzg6OoLP52uwR/pLKBSy/x+tdYifaD86z4iyZGdnIycnBwCQl5cHFxcXDfeoaejMJ4QQBZWWlrLfU7BACCFEUeJcGACoqqrSYE+ahwIGQghRkHhI2cDAgIIFQgghCuPxeOzfjZqaGg33pukoYCCEEEIIIUTFxPkwrREFDIQQQgghhBC5KGAghBACANi2bRsYhkFWVpamu0JUxMPDA/Hx8QrtGxkZicjISJW0e/LkSTAMg5MnTyrl+IQQ1aKAgRBCiFbZs2cPxo4diw4dOoBhGLkXrcnJybCxsQGfzwfDMJyvP//8k7Ovh4cHGIZB3759ZR7rm2++YV978eJFAMCKFSvAMAyuXLnC2VckEsHGxgYMwyAzM5PzXEVFBYyNjTFmzJhmvnv1Sk1NxaJFiyhI1KAlS5bgwIEDSj1mfHy81M+ErC9Fg8fmuH37NmbPng1/f39YWFjAyckJMTEx7M9Xc8XHx8Pc3Fzu8wzD4IMPPmhRGw0pKSnBwoULMXDgQNja2oJhGGzbtk1l7WkLKqtKCCEEADBu3DjExcXB2NhYo/3YuHEjLl26hMDAQOTm5ja6/9SpU9GzZ0/ONm9vb6n9BAIBkpKS8OzZMzg6OnKe27FjBwQCASoqKthtYWFhAOoCk+7du7Pbb968iYKCAhgYGCAlJQWenp7scxcuXEBVVRX7Wm2XmpqKhIQEREZGwsPDg/NcYmKiytqNiIhAeXk5jIyMVNZGa7FkyRKMHDkSw4YNU9oxp0yZwgmOMzMzsWDBArzzzjsIDw9nt7dv315pbUr69ttvsWXLFowYMQLvvfceCgsL8fXXX6NXr174/fff5Qbv2i4nJwefffYZ2rVrh1deeUVvRskoYCCEEAIA4PP5WlH9afv27XBxcQGPx4Ofn1+j+4eFhWHUqFGN7hcaGooLFy5gz549mD59Orv90aNHOHPmDIYPH459+/ax23v06AGBQIDk5GRMnTqV3Z6SkgI7Ozv06NEDycnJGDt2LPtccnIy26fWTpUX8zweDwKBQGXH13fBwcEIDg5mH1+8eBELFixAcHAw53xVpdGjR2PRokWc0YBJkybB19cXixYtarUBg5OTE54+fQpHR0dcvHgRgYGBmu6SWtCUJEIIIQDk5zAcOXIE4eHhMDMzg4WFBWJiYnDz5k3OPteuXUN8fDy8vLwgEAjg6OiISZMmKTRCIMnNza3JC2QVFxc3WqpQIBAgNjYWO3fu5GzftWsXbGxsMGDAAM52IyMjBAYGIiUlhbM9JSUFwcHBCA0NlfmctbW1QoGOWGRkJPz8/HDt2jX07t0bpqam8Pb2xt69ewEAp06dQlBQEExMTNCxY0ccP36c8/r4+Hip0QEAWLRoUYNVWbZt24Y33ngDABAVFcVOUxHfMW1ODoNIJMLixYvh6uoKU1NTREVFSZ0rgOwchpZ+DooQCoVYu3YtunbtCoFAAHt7ewwcOJAzTUY8pWXHjh3w9fWFo6MjIiMjcfr0aaW3xzAMSktL8f3336tlmpA8Hh4eGDx4MBITE+Hv7w+BQIDOnTvjl19+kdo3PT0d6enpjR4zICBAauqQnZ0dwsPDcevWLc72srIy3L59m13YTNnWr1+PLl26wNTUFDY2NujRo4fU74Hbt2/jwYMHjR7L2NhYaoRSH1DAQAghLSAUipBbUql1X0KhSCnvb/v27YiJiYG5uTmWL1+O+fPnIzU1FWFhYZzA4tixY8jIyMDEiROxfv16xMXFYffu3YiOjoZIpJy+yDN58mRYWlpCIBAgKiqqwTnSY8aMwfnz5zkXPDt37sTIkSNhaGgotX9YWBgeP37Mea8pKSkICQlBSEgIOz0JqLtYPnv2LIKDg5sc8OTn52Pw4MEICgrCihUrYGxsjLi4OOzZswdxcXGIjo7GsmXLUFpaipEjR6K4uLhJx5clIiIC06ZNAwDMnTsX27dvx/bt2+Hr69vsYy5YsADz58/HK6+8gpUrV8LLywv9+/fnLHrYEFV/DpMnT8aMGTPg5uaG5cuX4+OPP4ZAIJDKeTl16hRmzJiBt956C5988gny8vIQHR2NGzduKLW97du3w9jYGOHh4eznP2XKlCa1oSxpaWl48803MWjQICxduhQGBgZ44403cOzYMc5+r732Gl577bVmt/Ps2TO0adOGs+38+fPw9fXFhg0bFD5OTk6OzC9J33zzDaZNm4bOnTvjyy+/REJCAvz9/fHXX39x9vP19cX48eOb96b0AE1JIoSQFsgvq0LA4qbf6VS1S/P6ws68ZbkIJSUlmDZtGt5++21s3ryZ3T5hwgR07NgRS5YsYbe/9957mDlzJuf1vXr1wujRo5GcnMyZN60shoaGGDJkCF5//XU4ODggNTUVX3zxBcLDw3H27FlO3oFYnz594OjoiF27dmHevHm4desW/v77b6xduxYZGRlS+9fPY/Dw8MCzZ8+QkZGB0NBQvPrqq+DxeDh79iyio6ORmpqK/Pz8Zk1HevLkCXbu3InRo0cDAPr164dOnTphzJgxOHv2LIKCggDUXdQMGDAA+/bta/GdaC8vL4SHh2PdunXo169fiysiZWdnY8WKFYiJicFvv/3Gjm58+umnWLJkiULHUOXnkJSUhG3btmHatGlYu3Ytu33mzJlSQe2NGzdw8eJFdO/eHUVFRYiNjUXPnj2xYMECmXfdm9ve2LFj8e6778LLy0ttU4XkuXv3Lvbt24fY2FgAdcFOp06dMGfOHPTr108pbZw5cwbnzp3DvHnzWnSc0tJS2NvbK7Tv4cOH0aVLF/z8888talPfUcBACCFEpmPHjqGgoACjR4/m3Lnj8/kICgpCUlISu83ExIT9vqKiAiUlJejVqxcA4PLlyyoJGIKCghAUFARLS0vweDwMGTIEI0eORLdu3fDJJ5/g999/l3oNn8/HqFGj2IBhx44dcHNzQ3h4uMyAISQkBDwej81VSElJgaGhIQIDA2FiYoJu3bohJSUF0dHR7PSk5gQM5ubmiIuLYx937NgR1tbWcHFxYS+Sxe8ZgMy+atrx48dRVVWFqVOncqZCzZgxQ+GAQZWfw759+8AwDBYuXCj1nOTUreDgYAQEBEAoFAKomyY3ZMgQHDp0CLW1tQrl+jSlPW3g7OyM4cOHs48tLS0xfvx4LF++nFMooLkVtV68eIExY8bA09MTs2fP5jwXGRnZpJFIgUCA3377TeZzksGNtbU1Hj16hAsXLjSYb6DqkdDWjgIGQgghMqWlpQGouysvi6WlJft9Xl4eEhISsHv3brx48YKzX2Fhoeo6KcHb2xtDhw7FL7/8IvfCbsyYMVi3bh2uXr2KnTt3Ii4uTu4FnLW1Nbp06cIGAykpKejevTsbIIWEhHCeMzIykqrYpAhXV1epPlhZWcHNzU1qG1A3dUfb3L9/HwDQoUMHznZ7e3vY2NgodAxVfg7p6elwdnaGra1to/tKvgcA8PHxQVlZGbKzsxWaw96U9hT17NkzzmMrKytOsN4S3t7eUp+9j48PgLogoSXz9ktLSzF48GAUFxcjOTm5wbKoiuDz+QonTc+ZMwfHjx9Hz5494e3tjf79+2PMmDEIDQ1tUR/0DQUMhBBCZBLfXd2+fbvMiwUDg5d/QkaNGoWzZ89i1qxZ8Pf3h7m5OYRCIQYOHMgeR13c3NxQVVWF0tJSTlAjFhQUhPbt22PGjBnIzMxsdM2EsLAwbNq0CQUFBWz+glhISAi+++47VFdXIzk5GQEBAc2q/iPvjrW87fXvhsoLdmpra5vcD01ryeegD5ycnDiPt27dqpEk6aaoqqpCbGwsrl27hqNHjzapIIAy+Pr64s6dOzh06BB+//137Nu3D//973+xYMECJCQkqLUvrRkFDIQQ0gI2pka4NE/7ygPamLa8JKa4RruDg0ODd/Py8/Nx4sQJJCQkYMGCBex28QiFumVkZEAgEDR4F3P06NFYvHgxfH194e/v3+DxwsLCsHHjRhw/fhxXrlzBrFmz2OdCQkJQXl6Ow4cPIyMjAyNGjFDW21CYjY0Nm3hdn/iOf0OUOTXG3d0dQN3/u5eXF7s9OztbK0ZE2rdvj6NHjyIvL6/Ru/6yzt27d+/C1NRU4bnzirbXlP8DyQTkLl26KPzaxty7dw8ikYjTn7t37wKAzCpcihAKhRg/fjxOnDiBn376Cb1791ZGV5vMzMwMb775Jt588002gPn888/xySefUHlfBVGVJEIIaQEej4GdubHWffF4Lb8QHDBgACwtLbFkyRJUV1dLPZ+dnQ3g5d1fybu9X375ZYv70BBZFVGuXr2KgwcPon///g1WKnr77bexcOFCrFq1qtF2xDkJq1evRnV1NWeEwcPDA05OTlixYgVnX3Vq3749CgsLce3aNXbb06dPsX///kZfa2ZmBgAyA46m6tu3LwwNDbF+/XrOuaDq80BRI0aMgEgkknlXWfLcPXfuHC5fvsw+fvToEXteKbpWiaLtmZmZKfz59+3bl/MlOeLQEk+ePOGcM0VFRfjhhx/g7+/PGWFUtKwqULeo4p49e/Df//6XTaZWN8nSzkZGRujcuTNEIhHn95qiZVX1FY0wEEIIkcnS0hIbN27EuHHj8OqrryIuLg729vZ48OABDh8+jNDQUGzYsAGWlpaIiIjAihUrUF1dDRcXFyQmJiIzM7NZ7Z4+fZqteZ+dnY3S0lIsXrwYQF0p0IiICAB1i0AJBAJERESgbdu2SE1NxebNm2Fqaoply5Y12Ia7uzsWLVqkUH/atWsHNzc3nDt3Dh4eHnB2duY8HxISwia4amJedFxcHObMmYPhw4dj2rRpKCsrw8aNG+Hj48O56JXF398ffD4fy5cvR2FhIYyNjdGnTx84ODg0uR/29vb497//jaVLl2Lw4MGIjo7GlStXcOTIEakympoQFRWFcePGYd26dUhLS2Ony505cwZRUVH44IMP2H39/PwwYMAATJ06FSKRCFu2bAGAJk1hUbS9gIAAHD9+HKtXr4azszM8PT05Cd7q4uPjg8mTJ+PChQto27YtvvvuOzx//hxbt27l7CcuqdpY8vOXX36J//73vwgODoapqSl+/PFHzvPDhw9nA9aTJ08iKioKCxcuVPjnUlH9+/eHo6MjQkND0bZtW9y6dQsbNmxATEwMLCws2P18fX3Ru3dvhVZu3rBhAwoKCvDkyRMAwG+//YZHjx4BqAuSxDk2uoQCBkIIIXKNGTMGzs7OWLZsGVauXInKykq4uLggPDwcEydOZPfbuXMnpk6diq+++goikQj9+/fHkSNHpC6uFfHHH39IXZjNnz8fALBw4UI2YIiJicHPP/+MNWvWoKioCPb29oiNjcXChQvh7e3dgnctLSwsDLt27eKMLoiFhoZi37596NSpE+zs7JTariLs7Oywf/9+fPTRR5g9ezY8PT2xdOlSpKWlNRowODo6YtOmTVi6dCkmT56M2tpaJCUlNStgAIDFixdDIBBg06ZNSEpKQlBQEBITExETE9Os4ynb1q1b0a1bN2zZsgWzZs2ClZUVevToIfX/2rt3bwQHByMhIQEPHjxAx44dsW3bNnTr1k3p7a1evRrvvPMO5s2bh/LyckyYMEEjAUOHDh2wfv16zJo1C3fu3IGnpyf27NkjtaChov7++28AdaM1586dk3o+MzOTDRhKSkoASOdoKMOUKVOwY8cOrF69GiUlJXB1dcW0adNaVNr1iy++4Ez5++WXX9hyu2PHjtXJgIER6VvGkB569OgRW2Hi7t27Mqs/EKIM5eXlSExMBFB3V0dZ1Tu0RVpaGmpqamBgYEA/RxomFApRVFQEAGxZVUKUgWEYvP/++9iwYYPenGceHh7w8/PDoUOHNNL+7NmzsWvXLty7dw/Gxi1bP0abNfQ3JC0tja1K9fDhQ7i6umqii3Lp5plPCCGEEEJahaSkJMyfP1+ng4XWjqYkEUIIUbna2lo2SVoec3PzFtdn1yZ5eXmoqqqS+zyfz1e44o6mZWdnN1im1cjISKnrDTSFus8tfTyXVe3ChQua7gJpBAUMhBBCVO7hw4fw9PRscB9VJDxqUmxsLE6dOiX3eXd392avmqtugYGBDZZpVTRZVBXUfW7p47lMCAUMhBBCVM7R0VGqhryk+rX7dcGqVasaXH+gNeX47NixA+Xl5XKfV3QlZ1VQ9rnVWGqnLp7LrSVwJZpDAQMhhBCVEwgEDS7+posCAgI03QWl0US5WEWp+9zSx3OZEEp6JoQQQgghhMhFAQMhhBBCCCFELgoYCCGEEEIIIXJRwEAIIYQQQgiRiwIGQgghhBBCiFwUMAC4f/8+Zs6ciU6dOsHMzAy2trYIDAzEypUrUVZWppQ2srKyMGfOHAQEBMDa2hqGhoawtbVFSEgIPvvsM7x48UIp7RBCCCGEEKJMel9W9bfffsPYsWNRVFTEbisrK8PFixdx8eJFfPvttzh8+DC8vb2b3cb27dsxZcoUqRrW+fn5OHfuHM6dO4e1a9di9+7d6NevX7PbIYQQQgghRNn0eoThypUrePPNN1FUVARzc3N8/vnnOHv2LE6cOIF//etfAIC7d+8iJiYGxcXFzWojJSUF8fHxKC8vB4/Hw8SJE3HgwAGcP38ee/fuxeuvvw4AyMvLw9ChQ5GRkaG090cIIU2xbds2MAxDizjpMA8PD8THxyu0b2RkJCIjI1XS7smTJ8EwjMZWhyaENI1eBwzTp09HeXk5DAwMkJiYiLlz5yI4OBh9+vTB5s2bsWLFCgB1QcOqVaua1cbSpUshFAoBAOvXr8d3332HoUOHIjAwECNGjMDBgwfx0UcfAQDKy8uxevVq5bw5Qghppfbs2YOxY8eiQ4cOYBhG7kVrcnIybGxswOfzwTAM5+vPP//k7Ovh4QGGYeQuuPXNN9+wr7148SIAYMWKFWAYBleuXOHsKxKJYGNjA4ZhkJmZyXmuoqICxsbGGDNmTDPfvXqlpqZi0aJFFCRq0JIlS3DgwAGlHjM+Pl7qZ0LWl6LBY3Pcvn0bs2fPhr+/PywsLODk5ISYmBj256u54uPjYW5uLvd5hmHwwQcftKiNhoiDXVlfkr93dIneTkk6f/48zpw5AwCYPHkygoODpfaZOXMmtm7dilu3bmHt2rX49NNPYWho2KR2zp49CwCws7PDe++9J3OfBQsWsIHCuXPnmnR8XXf3eTHuPCtGLy872FsYa7o7hOi0cePGIS4uDsbGmv1Z27hxIy5duoTAwEDk5uY2uv/UqVPRs2dPzjZZ00gFAgGSkpLw7NkzODo6cp7bsWMHBAIBKioq2G1hYWEA6gKT7t27s9tv3ryJgoICGBgYICUlBZ6enuxzFy5cQFVVFftabZeamoqEhARERkbCw8OD81xiYqLK2o2IiEB5eTmMjIxU1kZrsWTJEowcORLDhg1T2jGnTJnCCY4zMzOxYMECvPPOOwgPD2e3t2/fXmltSvr222+xZcsWjBgxAu+99x4KCwvx9ddfo1evXvj9999b/WrZ06ZNQ2BgIGdbS6avazu9DRjqR/MTJ06UuQ+Px8P48ePxySefoKCgAElJSejfv3+T2qmqqgIAzh8USVZWVmjTpg1ycnLY/QmQnJaDidvOo7pWhDbmRtjxdi90dLTQdLcI0Vl8Ph98Pl/T3cD27dvh4uICHo8HPz+/RvcPCwvDqFGjGt0vNDQUFy5cwJ49ezB9+nR2+6NHj3DmzBkMHz4c+/btY7f36NEDAoEAycnJmDp1Krs9JSUFdnZ26NGjB5KTkzF27Fj2ueTkZLZPrZ0qL+Z5PB4EAoHKjq/vgoODOTdCL168iAULFiA4OJhzvqrS6NGjsWjRIs5owKRJk+Dr64tFixa1+oAhPDwcI0eO1HQ31EZvpySJf6mbmZkhICBA7n69e/dmv09JSWlyOx07dgQAqWHr+oqKipCTk8PZnwB7Lz1Eda0IAJBTUoUPdl5GWVWNhntFiO6Sl8Nw5MgRhIeHw8zMDBYWFoiJicHNmzc5+1y7dg3x8fHw8vKCQCCAo6MjJk2apNAIgSQ3NzfweE3781RcXIyamoZ/PwgEAsTGxmLnzp2c7bt27YKNjQ0GDBjA2W5kZITAwECp3/0pKSkIDg5GaGiozOesra0VCnTEIiMj4efnh2vXrqF3794wNTWFt7c39u7dCwA4deoUgoKCYGJigo4dO+L48eOc18fHx0uNDgDAokWLwDCM3Ha3bduGN954AwAQFRXFTqsQ5xU0J4dBJBJh8eLFcHV1hampKaKioqTOFUB2DkNLPwdFCIVCrF27Fl27doVAIIC9vT0GDhzImSYjntKyY8cO+Pr6wtHREZGRkTh9+rTS22MYBqWlpfj+++/VMk1IHg8PDwwePBiJiYnw9/eHQCBA586d8csvv0jtm56ejvT09EaPGRAQIDV1yM7ODuHh4bh16xZne1lZGW7fvs1eCynb+vXr0aVLF5iamsLGxgY9evSQ+j1w+/ZtPHjwoEnHVeT3jq7Q24BBfLJ6e3vDwED+QEunTp2kXtMU7777LgAgNzcXmzZtkrnPf/7zH6n9CZBXVs15nPaiBIsOSv/hIUSjhEKgNEf7vv7JnWqp7du3IyYmBubm5li+fDnmz5+P1NRUhIWFcQKLY8eOISMjAxMnTsT69esRFxeH3bt3Izo6GiKRSCl9kWfy5MmwtLSEQCBAVFRUg3Okx4wZg/Pnz3MueHbu3ImRI0fKnHIaFhaGx48fc95rSkoKQkJCEBISwk5PAuouls+ePYvg4OAmBzz5+fkYPHgwgoKCsGLFChgbGyMuLg579uxBXFwcoqOjsWzZMpSWlmLkyJHNLsRRX0REBKZNmwYAmDt3LrZv347t27fD19e32cdcsGAB5s+fj1deeQUrV66El5cX+vfvj9LSUoVer+rPYfLkyZgxYwbc3NywfPlyfPzxxxAIBFJzz0+dOoUZM2bgrbfewieffIK8vDxER0fjxo0bSm1v+/btMDY2Rnh4OPv5T5kypUltKEtaWhrefPNNDBo0CEuXLoWBgQHeeOMNHDt2jLPfa6+9htdee63Z7Tx79gxt2rThbDt//jx8fX2xYcMGhY+Tk5Mj80vSN998g2nTpqFz58748ssvkZCQAH9/f/z111+c/Xx9fTF+/HiF2584caLCv3d0gV5OSaqoqGBPKldX1wb3tbGxgZmZGUpLS/Hw4cMmtzVp0iQkJyfjhx9+wPvvv49Lly5hyJAhcHJywoMHD7B9+3Z2etSnn37arCG6R48eNfj806dP2e8rKyulyrtqq6pq6aj9p4uPEOBmiSHdHGW8gmha/fnf9b/XFUKhkL34FRczQGkOeKs6aLBXsglnpgFmbRrfsf5r/nlPQqEQQqEQJSUlmDZtGiZPnoyvv/6a3W/cuHHw9fXF559/zm5/99138eGHH3KO17NnT7z11ls4ffo0Z950s96PRAAkFAphaGiIIUOGYPDgwbC3t8etW7ewatUqhIeHS+UdAHUX9JGRkXB0dMTOnTvx6aef4tatW/j777+xZs0atkqd+P0DQEhICADg9OnTaNeuHZ49e4aMjAwEBwfj1VdfBY/HQ3JyMqKjo3Hz5k3k5+cjNDRUqr+NefLkCX788UeMHj0aQN1FWefOnTFmzBgkJycjKCgIQN0o9KBBg/Dzzz+zd6Klzsl671fedqFQCA8PD4SGhmLdunV47bXXOKMJ9V+j6HvJzs7GihUrEB0djYMHD7KjG/PmzcPSpUvZdusfs/5n3dLPoTFJSUnYtm0bpk6dii+//JLd/uGHH3L6BgA3btzA+fPn0b17d5SUlCA2NhY9e/bE/PnzOdPWWtremDFj8O6778LT05OTKN/U86cx8j7v+u7evYuff/4ZsbGxAOouiDt37ow5c+bIDBCa08czZ87g3Llz+PTTT2WeY5L/D7KIRCKUlpbC3t6+wX3Exzl06BC6dOmCPXv2KPQeGmvfwMAAsbGxGDRoENq0adPo7x15fZO8FqusrGzwdZqmlwFD/TsSDWXai4kDhpKSkia3xefz8f333+P111/HkiVL8O233+Lbb7/l7BMVFYW5c+c2ez6fm5ubwvv+9ddfCg0laoPsHD4A6eH0+b/eRFHmNTiYqL9PRHHNGb7XdnZ2djAxMQHDMOzaLUxZMaw03C9ZiouLIapt2hx0cZBXUlKCoqIiHDp0CAUFBRgyZIjUtMqAgAD88ccfnDVsqqur2eOUlpay03LOnTuHV155pVnvo7a2FjU1NZx2xIKCgtgLSKBuSsuAAQMQFhaGOXPmsFNZgLqLgJqaGpSWlmLo0KHYuXMnpk6diq1bt8LFxQWvvPIKUlNTAQClpaVse127dgWPx0NSUhKGDBmC48ePw9DQEB07doRQKESXLl2QlJSEsLAwnDhxAgDg7+8vs7/y1NTUwNzcHNHR0ezrnJycYGVlBScnJ/j6+rLbxXf/b9++zW6rrq6GUCiUalN8AVJ/u1AoRHV1NbtNfNFSVlYm9XrxVAtF38tvv/2GqqoqTJo0ifN3dtKkSVi6dCmnXfGiqPXbbenn0Jjdu3eDYRh8+OGHjb4mMDAQHTp0YP/uu7m5YdCgQTh69Cjy8/MVyvVpSnv1PxtVEI/wVFRUyGxHKBTCyckJr732Guf5UaNGYe3atUhLS0Pbtm0BAH///TcAxc8LsezsbIwZMwbu7u6YMmUK5/Wvvvoq8vPzFTpudXU1BAIBdu3aJfP54cOHo6qqij2OmZkZHj58iJMnT+LVV1+Ve1xF2/fz88OWLVvYxw393pFUU1OD8vJylJeX4/bt25znVDUdS1n0MmCof+dTkaQuccWQ5t6Zv3XrFn744Qdcv35d5vPnzp3Dli1b4OvrCxcXl2a1oYtq5cxiqBIy2HaXjw+71sJQbyfVEaJ64psLQ4YMkfm8hcXLIgT5+flYvnw5fvnlF2RnZ3P2U+WFkCQvLy8MGjQIhw4dQm1trcwLu5EjR+Lrr7/G9evXsXfvXsTGxsqd629lZYVOnTqx0xf++usvdOvWDSYmdXcsevbsyXnOyMiowbw4eZydnaX6YGlpKfU3wcqqLjwVT4PSJuJReMnKO23atIG1tbVCx1Dl55CZmQknJyfY2Ng0uq+s6kHe3t7Yv38/cnJy2ItnZbWnqOfPn3MeW1pasudiS3l6ekp99uKqPw8ePFDoPctTWlqKuLg4lJSU4MiRIwrdrG0In89XOL9m+vTpOHXqFF577TV4eXkhKioKI0eORK9evVrUh/oU+b3T2ullwFC/MoMiVYnEd2ma80N55swZvP766ygsLIS7uzsWL16Mfv36wdbWFs+fP8fBgwcxf/587N69G6dPn0ZiYiK6dOnSpDYamyr19OlTtuRgUFCQSsuoKdPmrAtAiez5qY/LGFwWumP+QEoS1yYVFRXsyEJERITOVUF58OABamtrYWBgAEtLy7qNfO2sbGZhYQGYWTbpNeL/L3Nzc1haWrI3VL7//nupMqQAOJ/DyJEjcfbsWfz73//GK6+8AnNzcwiFQkRHR8PQ0PDl59VEfD6f+3n/QzxlStzf+jkDXl5eqKqqAp/PZ1/H4/HY4/Tp0wft27fHggULcP/+fcTHx7NzkYG6O5L124uIiMDXX38NoVCIixcvIiwsjH2+d+/e2LFjB0xMTHD+/HkEBATAwcGhSe/RwMBA5mfE4/FgbGws87Orv7+RkRF4PJ7UfuL8vPrbeTwe57Xiv2umpqYKvb4hkudPfQzDcNo1NTWVareln0NjDAwMwDCMQvuLj1v/PBP/PFhYWCh0jOa01xjJ4GPLli0KTckyMzMDUPd/JKud+j8f9cn7mWiKqqoqjBo1Cjdv3sSRI0dafKEuzjVqqD9GRkbs84GBgbh9+zYOHTqEo0eP4tChQ9iyZQvmz5+PRYsWtagv9cn6vSMpOzsbJiYmMDc3l7qxoO2zP/QyYKh/V0yRaUbiobymRsSVlZUYPXo0CgsL4ejoiD///JPzR9fV1RXvvfceevfujR49euDJkyeYMGFCkxNnGsvDqM/Y2FhpdyNUTXKEgc9jUCt8uXHnhccI92mLQV2d1NwzogiBQNBqzjVF8Xg8dn4re4Fq1gaYpX2/6HkmtkATE2/F74nH44HH47F3Fx0dHRssKZ2fn48TJ04gISEBCxYsYLenpaUBqLtYbGoSsLy+yXuu/vOZmZnshVH97fX7MXr0aCxevBi+vr7sNAXJ9y8WHh6OTZs24Y8//sCVK1cwa9Ys9vmwsDCUl5fjyJEjyMjIwIgRI5r9XmW9Tt5nV3+7ra0tCgoKpPYTV3yR3F7/teI7oZLvubF+ySKu1JSens6pR5+dnY38/HxOu/I+a3ntKfI5NMbb2xuJiYkoKCiAra1tg/veu3dP6rhpaWkwNTVF27ZtFWpT0fbE1ZEUOaZkAnKXLl0Uel1Dn7fYvXv32L7U3wbUXQw357wWCoWIj4/HH3/8gZ9++glRUVFNPoYkcf8a6o/k52lhYYHRo0dj9OjRqKqqQmxsLJYsWYK5c+cq7caWvN878vom+fdR0+vfNEYvAwaBQAA7Ozvk5uY2mjCcn5/PBgxNyRUAgN9//x2PHz8GULewkKw7dEDdD/zYsWPx7bff4tKlS7h69Wqz5/vqkhohN2J4P8obm0+no6L6ZULS7H3X4OdiBTdbU5X2RSQSIbukEg/zyvAwrxwP8srwIK8MxRXVEIr+SWISAUKRCKJ6/5obG8DRSgAHS2M4WgrQ9p8vRysBzI318sdP9/B4TU4ubi0GDBgAS0tLLFmyBFFRUVJVhLKzs2Fvb89edEpWQ6qf6KkKOTk5UtVWrl69ioMHD2LQoEEN/tF+++23wefzOTkQ8ojXVFi9ejWqq6vZRGig7iLZyckJK1as4OyrTu3bt0dhYSGuXbuGbt26AagbWd6/f3+jrxXfeVbGFKe+ffvC0NAQ69evR//+/dkLO1WfB4oaMWIEvvrqKyQkJGDt2rWc50QiEedC+dy5c7h8+TL8/f0B1BUXOXjwIAYOHKjwdBNF2zMzM1P481fl2gVPnjzB/v372aTnoqIi/PDDD/D39+dcv4jvhCsyW2Hq1KnYs2cPvv76a/a46pabmws7Ozv2sZGRETp37owjR46w+RBAXT6Mqakp2rVr1+DxxL/36lP0905rprdXLJ07d8aZM2dw79491NTUyC2tWj8ppaml5uqXYW0o0QaoSyAUJ0Pfvn2bAgaAM5oAAJ2dLPDZED/M3neN3VZcUYMPdl3Bz1OCYWTQ8h9SkUiE+7lluPGkENcfF+Le8xI8yCvDw/wyTqCiDObGBujsbImQ9nYI9W6DV1ytlfIeCFEWS0tLbNy4EePGjcOrr76KuLg42Nvb48GDBzh8+DBCQ0OxYcMGWFpaIiIiAitWrEB1dTVcXFyQmJjY4PozDTl9+jQ7tS07OxulpaVYvHgxgLrpQREREQDqkmkFAgEiIiLQtm1bpKamYvPmzTA1NcWyZcsabMPd3V3h6Qjt2rWDm5sbzp07Bw8PDzg7O3OeDwkJwb59+8AwDEJDQ5v4blsuLi4Oc+bMwfDhwzFt2jSUlZVh48aN8PHxweXLlxt8rb+/P/h8PpYvX47CwkIYGxujT58+TZ5WBQD29vb497//jaVLl2Lw4MGIjo7GlStXcOTIEanAThOioqIwbtw4rFu3DmlpaRg4cCCEQiHOnDmDqKgofPDBB+y+fn5+GDBgAKZOnQqRSMQmuSYkJCi9vYCAABw/fhyrV6+Gs7MzPD09FQpklc3HxweTJ0/GhQsX0LZtW3z33Xd4/vw5tm7dytlPXDFJcr0WSV9++SX++9//Ijg4GKampvjxxx85zw8fPpwNWE+ePImoqCgsXLhQqdOEAKB///5wdHREaGgo2rZti1u3bmHDhg2IiYnhzDjx9fVF7969OWuDyPLmm2/CxMQEISEhcHBwaNLvndZMbwOGsLAwnDlzBqWlpbh06ZLcH85Tp06x3zf1D0H9IKSxhT3E1UUkX6fPqmu5F+gGPB7e6OGKs+k5OPD3E3b71YcFGP/dXxjm74KoTg5oa6nY8GKtUISs3FLceFyIG4/rAoSbT4pQXKGeRVhKKmtwPjMP5zPz8OXxNJga8RHoYcsGEL5OluDz5C+6RIg6jBkzBs7Ozli2bBlWrlyJyspKuLi4IDw8HBMnTmT3E1cd+uqrryASidC/f38cOXJE6uJaEX/88YfUhdn8+fMBAAsXLmQDhpiYGPz8889Ys2YNioqKYG9vj9jYWCxcuJAzJUYZwsLCsGvXLs7oglhoaCj27duHTp06ce5kqoudnR3279+Pjz76CLNnz4anpyeWLl2KtLS0RgMGR0dHbNq0CUuXLsXkyZNRW1uLpKSkZgUMALB48WIIBAJs2rQJSUlJCAoKQmJiImJiYpp1PGXbunUrunXrhi1btmDWrFmwsrJCjx49pP5fe/fujeDgYCQkJODBgwfo2LEjtm3bxo7gKLO91atX45133sG8efNQXl6OCRMmaCRg6NChA9avX49Zs2bhzp078PT0xJ49e6QWNFSUuJrSuXPncO7cOannMzMz2YBBPD3cyUn5U4ynTJmCHTt2YPXq1SgpKYGrqyumTZuGefPmNet4w4YNY4+n6t872oQRqXpFHS11/vx59gdyypQpMhdVEwqF8PPzw61bt2BtbY0XL17IXNhHnn379rHLhs+ePRvLly+Xu+/IkSPZ2s6XLl1qdESiKR49esROp7p79y46dNC+mvGy9FpyAs+KXla02jYxEJEdHVBSWYPX1ycjM0f2QkBdXazQp5MDXvN1gJ+zFXg8BiWVNbj9tAi3nhYh9Wkxbj0twp1nxSivrlXX22kya1NDDPJzwthe7dDFWRsLd0orLy9HYmIigLq7OrqWw5CWlsaOSLaWnyNdVb+MaGNzhglpCoZh8P7772PDhg16c555eHjAz88Phw4d0kj7s2fPxq5du3Dv3j2tn8vfEg39DUlLS4OPjw+AumI2TclPVQe9vZXds2dPhIeH48yZM9iyZQsmTJiA4OBgzj6rVq1ipxVNnz5dKlgQD6EBwIQJE7Bt2zbO86+99hpMTU3Z4eGxY8eia9euUn05cuQIO9fUxcWFnTOp72okFk8x5Nf9ojY3NsCGMd0x/L9nUVUjPU3o+j+jBWtPpMHewhimRnzczy1TSp+M+Dy42pjAzdYUbrYmsDcXwID/TwIWw4DHAAxT9z0AFJRV41lRBZ7/8/WssAJFCo5gFJRVY9f5B9h1/gH83azxVlA7DO7mDBMj3SvXRgghRH8lJSVh/vz5Oh0stHZ6GzAAwNq1axEaGory8nL0798fc+fORVRUFMrLy7F7925s3rwZQN28vpkzZzb5+NbW1vj444+xYMECFBcXIyQkBFOnTkW/fv1gY2OD58+f49dff8U333zDVl5ZtmyZzt7BaKpqiTJJBvWm53RxtsK6OH/M2nutwSlE2cXNWznRzswIfi5W6OJsCS97c7jZmKCdnSnaWgjAa+E0ofKqWjwvqkBGTgnO3stFSnoubj1tuE793w8L8PfDAvznUCpGBrhhTFA7eDu0rI41IepUW1srtT6DJHNz8xbXZ9cmeXl5DZbu5vP5Da5Wq02ys7NRWyt/RNbIyKjRykOqou5zSx/PZVW7cOGCprtAGqHXAUP37t2xZ88ejB07FkVFRZg7d67UPj4+Pjh8+DAnMaYp5s2bh7y8PKxduxYlJSVYunQpli5dKrWfoaEhlixZgrFjxzarHV1UI5nDwOcGUgP9nBDkaYekOy9w4vYLnL6TjeLKpucf2FsYo6uLFfxcrODnbImurlZwtBTIXcippUyM+PBoYwaPNmbo06luIZy80iqcS89FSnoOzqXnyp1uVVRRg+9SMvFdSib8XCxhaqRdP8JCoRD5eXzYGotQ6vAUUZ2d4GSlW9OSSPM8fPgQnp6eDe6jioRHTYqNjeXkwUlyd3dvNHFUWwQGBuL+/ftyn1ckWVRV1H1u6eO5TIh2XW1owOuvv45r165h7dq1OHz4MB49egQjIyN4e3vjjTfewAcffMAuMNMcDMNgzZo1bNnU5ORk3L9/H2VlZTA3N4e3tzd69+6NKVOmsHPXSJ1qiSpJhnzpC3gbMyPEvuqK2FddUV0rxIWsPPxx6wX+uP0CGRIX3Xweg/b2ZvB1sqz3ZQEHC80vLmZrZoSYbk6I6VaX8PUwrwz7Lj/C7vMPOXkc9d14rL7Vc5uGQXoxgwu/3gJ+vQUvezOEebdBqHcb9PKyg5WJ4nlARHc4OjpK1ZCX5OXlpabeqMeqVauQn58v9/nWlOOzY8cOlJeXy31emasZN5Wyz63GUjt18VxuLYEr0Ry9TXrWJ6016dnrk8OoHzMcnhbWpOTfzJxSXMjKA49h0MnRAt4O5hAYtq75/zW1Qpy4/QI7/nqA03cbHgJvDXgM0M3VGvEhHhjq76yyURxVoaRn7aEvyahEs+g8I8pESc+EKJlQKILEAAOb9KwozzZm8GxjpsReqZ8Bn4cBXRwxoIsj7ueWYuf5B/j54iPklcqfF63NhKK6fIwZe/6GqREf/bvIXsyQEEIIIdqDAgailSRXeQa4Sc/6yN3ODJ8M8sVH/XyQci8HjwtkT1XSpOqqKly7eQuZxQyyyoxQ2EBC+v+uP6WAgRBCCGkFKGAgWkmypCrQ9BEGXWVswGeTpbVNeXk57PJTEQURXusbjoz8KiTfy0HKvRxcyMrnlMHNUlKpW0IIIYSoFgUMRCtJllQFwK53QFoHPo9BN1drdHO1xnuR3ki6/QITt70snZeVK7sSFCGEEEK0C92yJVpJsqQqABhQslmr5iGRT1JQVo2CstaZi0EIIYToE7oCI1pJVg6DrLKqpPVwtTEBXyIPhaYlEUIIIdqPAgailapljTBQDkOrZsjnwdWGW3f+Pk1L0irbtm0DwzBUk12HeXh4ID4+XqF9IyMjERkZqZJ2T548CYZhNLbYGyGkaegKjGilWqqSpJM87LjTkuStaE302549ezB27Fh06NABDMPIvWhNTk6GjY0N+Hw+GIbhfP3555+cfT08PMAwDPr27SvzWN988w372osXLwIAVqxYAYZhcOXKFc6+IpEINjY2YBgGmZmZnOcqKipgbGyMMWPGNPPdq1dqaioWLVpEQaIGLVmyBAcOHFDqMePj46V+JmR9KRo8KsOOHTvAMAzMzc1bdJzIyEj4+fnJfC4rKwsMw+CLL75oURsNefr0KT7++GNERUXBwsJCbwJfSnomWklm0jMFDK2eh50pTtV7fJ+mJGmVcePGIS4uDsbGxhrtx8aNG3Hp0iUEBgYiNze30f2nTp2Knj17crZ5e3tL7ScQCJCUlIRnz57B0ZFb0nfHjh0QCASoqHhZrjgsLAxAXWDSvXt3dvvNmzdRUFAAAwMDpKSkwNPTk33uwoULqKqqYl+r7VJTU5GQkIDIyEh4eHhwnktMTFRZuxERESgvL4eRkZHK2mgtlixZgpEjR2LYsGFKO+aUKVM4wXFmZiYWLFiAd955B+Hh4ez29u3bK63NhpSUlGD27NkwM2vdayMBwJ07d7B8+XJ06NABXbt2xblz5zTdJbWggIFoJVllVSXnv5PWRzLxmUYYtAufzwefr/nV0Ldv3w4XFxfweDy5dxLrCwsLw6hRoxrdLzQ0FBcuXMCePXswffp0dvujR49w5swZDB8+HPv27WO39+jRAwKBAMnJyZg6dSq7PSUlBXZ2dujRoweSk5MxduxY9rnk5GS2T62dKi/meTweBAKByo6v74KDgxEcHMw+vnjxIhYsWIDg4GDO+aouixcvhoWFBaKiopQ+mqJuAQEByM3Nha2tLfbu3Ys33nhD011SC5qSRLRSjcQIgyG/bviUtG6SU5Ioh0G7yMthOHLkCMLDw2FmZgYLCwvExMTg5s2bnH2uXbuG+Ph4eHl5QSAQwNHREZMmTVJohECSm5sbeE2silZcXIyaGvkLBQJ1IwyxsbHYuXMnZ/uuXbtgY2ODAQMGcLYbGRkhMDAQKSkpnO0pKSkIDg5GaGiozOesra0VCnTExFMsrl27ht69e8PU1BTe3t7Yu3cvAODUqVMICgqCiYkJOnbsiOPHj3NeHx8fLzU6AACLFi1q8Pfmtm3b2IudqKgodpqKeHpFc3IYRCIRFi9eDFdXV5iamiIqKkrqXAFk5zC09HNQhFAoxNq1a9G1a1cIBALY29tj4MCB7DQ0AGAYBh988AF27NgBX19fODo6IjIyEqdPn1Z6ewzDoLS0FN9//71GpgmJeXh4YPDgwUhMTIS/vz8EAgE6d+6MX375RWrf9PR0pKenK3zstLQ0rFmzBqtXr4aBgez71IWFhbh9+zYKCwub/R7kqa6uRkJCAjp06ACBQAA7OzuEhYXh2LFjnH1u376Np0+fNno8CwsL2NraKr2f2o4CBqKVJJOeqaSqbpAcYcgvq0ZhWbWGeqMcQpEQeRV5WvclFEmP0jXH9u3bERMTA3Nzcyxfvhzz589HamoqwsLCOIHFsWPHkJGRgYkTJ2L9+vWIi4vD7t27ER0dDZFIeoqhMk2ePBmWlpYQCASIioriXPxJGjNmDM6fP8+54Nm5cydGjhwJQ0NDqf3DwsLw+PFjzntNSUlBSEgIQkJC2OlJQN3F8tmzZxEcHNzkgCc/Px+DBw9GUFAQVqxYAWNjY8TFxWHPnj2Ii4tDdHQ0li1bhtLSUowcORLFxcVNOr4sERERmDZtGgBg7ty52L59O7Zv3w5fX99mH3PBggWYP38+XnnlFaxcuRJeXl7o378/SksVuzmg6s9h8uTJmDFjBtzc3LB8+XJ8/PHHEAgEUjkvp06dwowZM/DWW2/hk08+QV5eHqKjo3Hjxg2ltrd9+3YYGxsjPDyc/fynTJnSpDaUJS0tDW+++SYGDRqEpUuXwsDAAG+88QbnwhoAXnvtNbz22msKH3fGjBmIiopCdHS03H32798PX19f7N+/X6Fj1tbWIicnR+orPz9fat9FixYhISEBUVFR2LBhAz799FO0a9cOly9fZvd5/PgxfH198cknnyj8vvQNTUkiWkmyrCot2qYbxKVV6ye1Z+WW4hVTa811qoUKKgvQe09vTXdDyqk3T8FW0LK7YCUlJZg2bRrefvttbN68md0+YcIEdOzYEUuWLGG3v/fee5g5cybn9b169cLo0aORnJzMmTetLIaGhhgyZAhef/11ODg4IDU1FV988QXCw8Nx9uxZTt6BWJ8+feDo6Ihdu3Zh3rx5uHXrFv7++2+sXbsWGRkZUvvXz2Pw8PDAs2fPkJGRgdDQULz66qvg8Xg4e/YsoqOjkZqaivz8/GZNR3ry5Al27tyJ0aNHAwD69euHTp06YcyYMTh79iyCgoIAAL6+vhgwYAD27dvX4jvRXl5eCA8Px7p169CvX78WV0TKzs7GihUrEBMTg99++40d3fj000+xZMkShY6hys8hKSkJ27Ztw7Rp07B27Vp2+8yZM6WC2hs3buDixYvo3r07ioqKEBsbi549e2LBggUy77o3t72xY8fi3XffhZeXl0amCtV39+5d7Nu3D7GxsQDqgp1OnTphzpw56NevX7OOefjwYSQmJuLq1avK7Cpu374Ne3t7hfsQHR3N+R1Gmo5u2xKtJDnCYEglVXWCrNKqtOKz9jp27BgKCgowevRozl08Pp+PoKAgJCUlsfuamLz8f62oqEBOTg569eoFAJw7ecoUFBSE77//HpMmTcKQIUPw8ccf488//wTDMHLvFPL5fIwaNQq7du0CUJfs7ObmJjegCQkJAY/HY3MTUlJSYGhoiMDAQJibm6Nbt27stCTxv80JGMzNzREXF8c+7tixI6ytreHr68teJIvfMwCZwY2mHT9+HFVVVZg6dSpnKtSMGTMUPoYqP4d9+/aBYRgsXLhQ6jnJqVvBwcEICAhgH7u5uWHIkCE4evQoamtrld6eNnB2dsbw4cPZx5aWlhg/fjyuXLmCZ8+esduzsrIUqqpVVVWFDz/8EO+++y46d+7c4L7x8fEQiUQKB38eHh44duyY1NePP/4ota+1tTVu3ryJtLS0Bo8nEomwbds2hdrXRzTCQLSSZA4DVUjSHe52ZpzqSFk5VClJW4n/wPbp00fm85aWluz3eXl5SEhIwO7du/HixQvOfqqYlyyPt7c3hg4dil9++QW1tbUyk7jHjBmDdevW4erVq9i5cyfi4uLkXsBZW1ujS5cunKCge/fubIAUEhLCec7IyEiqYpMiXF1dpfpgZWUFNzc3qW0AZE690LT79+8DADp06MDZbm9vDxsbG4WOocrPIT09Hc7OzgrNP5d8DwDg4+ODsrIyZGdnS1XZaml7iqp/4Q7UfQ71g/WW8Pb2lvrsfXx8ANQFCYq85/rWrFmDnJwcJCQkKKV/9ZmZmckskSwrkPnss88wdOhQ+Pj4wM/PDwMHDsS4cePQrVs3pfdLl1HAQLSS5DoMFDDoDk87U9RPHaQRBu0l/Kda2fbt22VeLNRPYBw1ahTOnj2LWbNmwd/fH+bm5hAKhRg4cCB7HHVxc3NDVVUVSktLOUGNWFBQENq3b48ZM2YgMzOz0TUTwsLCsGnTJhQUFLD5C2IhISH47rvvUF1djeTkZAQEBDSr+o+86lTyttefQiMv2FH0Trg2acnnoA+cnJw4j7du3aqRJOnGFBYWYvHixXjvvfdQVFSEoqIiAHXTHEUiEbKysmBqagoHBweV9yUiIgLp6en49ddfkZiYiG+//RZr1qzBpk2b8Pbbb6u8fV1BAQPRSlJJzzQlSWe4S1RKau0Bg7WxNU69earxHdXM2ti6xccQ12h3cHCQu+AZUHeX98SJE0hISMCCBQvY7Q1NAVCljIwMCASCBheIGj16NBYvXgxfX1/4+/s3eLywsDBs3LgRx48fx5UrVzBr1iz2uZCQEJSXl+Pw4cPIyMjAiBEjlPU2FGZjY8MmXtcnvuPfEGVOjXF3dwdQ9//u5eXFbs/OztaKEZH27dvj6NGjyMvLa/Suv6xz9+7duzA1NVV47ryi7TXl/0AyAblLly4Kv7Yx9+7dg0gk4vTn7t27ACCzCldD8vPzUVJSghUrVmDFihVSz3t6emLo0KFqK7Fqa2uLiRMnYuLEiSgpKUFERAQWLVpEAUMTUMBAtBIlPesuT4lKSVmtfC0GHsNrcXKxthowYAAsLS2xZMkSREVFSVURys7Ohr29PXv3V/Ju75dffqnS/uXk5KBNmzacbVevXsXBgwcxaNCgBisVvf3222wuRmPEOQmrV69GdXU1Z4TBw8MDTk5O7EWRJtZfaN++PQoLC3Ht2jV2msXTp08VqjgjXkhLVsDRVH379oWhoSHWr1+P/v37sxeeqj4PFDVixAh89dVXSEhI4CQhA5C6UD537hwuX77MBpOPHj3CwYMHMXDgQIXXKlG0PTMzM4U//4YC95Z68uQJ9u/fzyY9FxUV4YcffoC/vz9nhFFcYayhRd8cHBxknn/r1q3DuXPnsGvXLqnRElXJzc2FnZ0d+9jc3Bze3t54+PAhu626uhrp6emwsrJSW79aGwoYiFaSSnqmsqo6w93OlPNYXFrVylS6pCXRLEtLS2zcuBHjxo3Dq6++iri4ONjb2+PBgwc4fPgwQkNDsWHDBlhaWiIiIgIrVqxAdXU1XFxckJiYiMzMzGa1e/r0abbmfXZ2NkpLS7F48WIAddMLIiIiAACTJk2CQCBAREQE2rZti9TUVGzevBmmpqZYtmxZg224u7tj0aJFCvWnXbt2cHNzw7lz5+Dh4QFnZ2fO8yEhIWyCa2hoaBPfbcvFxcVhzpw5GD58OKZNm4aysjJs3LgRPj4+jSac+/v7g8/nY/ny5SgsLISxsTH69OnTrKki9vb2+Pe//42lS5di8ODBiI6OxpUrV3DkyBGpwE4ToqKiMG7cOKxbtw5paWnsdLkzZ84gKioKH3zwAbuvn58fBgwYgKlTp0IkEmHLli0A0KT5+Iq2FxAQgOPHj2P16tVwdnaGp6enQoGssvn4+GDy5Mm4cOEC2rZti++++w7Pnz/H1q1bOfuJS6o2lPhsamoqc+XqAwcO4Pz581LPbdu2DRMnTlTJFKvOnTsjMjISAQEBsLW1xcWLF7F3717O/7e4rOqECRMUSnwW/z4SrzGyfft2tjDCvHnzlNp/bUEBA9FKUknPNMKgM1xtTKVKq97PK0W3VlxaVZeNGTMGzs7OWLZsGVauXInKykq4uLggPDwcEydOZPfbuXMnpk6diq+++goikQj9+/fHkSNHpC6uFfHHH39IXZjNnz8fALBw4UI2YIiJicHPP/+MNWvWoKioCPb29oiNjcXChQvh7e3dgnctLSwsDLt27eKMLoiFhoZi37596NSpE+dOprrY2dlh//79+OijjzB79mx4enpi6dKlSEtLazRgcHR0xKZNm7B06VJMnjwZtbW1SEpKavbc8sWLF0MgEGDTpk1ISkpCUFAQEhMTERMT06zjKdvWrVvRrVs3bNmyBbNmzYKVlRV69Ogh9f/au3dvBAcHIyEhAQ8ePEDHjh2xbdu2JifKKtLe6tWr8c4772DevHkoLy/HhAkTNBIwdOjQAevXr8esWbNw584deHp6Ys+ePVILGqpCSUkJAOkcDWWYNm0aDh48iMTERFRWVsLd3R2LFy/mTC1sKvHvI7HvvvuO/V5XAwZGpG8ZQ3ro0aNHbIWJu3fvyqz+oG32XHiAOfuus49fcbPGr++r/84daZry8nIkJiYCAPr37y+3ekfEiiQ8yHtZHWltnD+G+ruopY8tkZaWhpqaGhgYGLSKnyNdJhQK2URKS0vLJi+URog8DMPg/fffx4YNG/TmPPPw8ICfnx8OHTqkkfZHjRqFrKwsnD9/XiPtq0tDf0PS0tLYqlQPHz6Eq6urJrooF40wEK1ULTHCYEhVknSKRxszTsBQv8wqIYQQ/SESiXDy5EmZaygQ7UEBA9FKNVJVkihg0CUekqVVW3niM2lcbW0tsrOzG9zH3Ny8wcpGrU1eXh6qqqrkPs/n8xWuuKNp2dnZDZZpNTIyUup6A02h7nNLH89lVWIYRmrtFqJ9KGAgWkmqSpKODgPrK10rrUoa9/DhQ3h6eja4z8KFCxVORG4NYmNjceqU/JK77u7uCq2Yqw0CAwMbLNPau3dvnDx5Un0dqkfd55Y+nsuEUMBAtBKVVdVtnm24lZKyaEqSznN0dJSqIS+pfu1+XbBq1aoG1x9Q1gq96rBjxw6Ul5fLfV7RlZxVQdnnVmOpnbp4LreWwJVoDgUMRCtJTUmiEQadIjnCkFdahcLyaliZUGlVXSUQCFRaQ14bBQQEaLoLSqOJcrGKUve5pY/nMiF0FUa0klTSM40w6BQ3G1NI5rHfp2lJhBBCiFaigIFopRqhZNIznaq6xMiABxcb7nQMmpZECCGEaCe6CiNaSXLhNiqrqns8JBOfqVISIYQQopUoYCBaSXJKEiU96x6pgIGmJBFCCCFaiQIGopVoSpLu82hDIwyEEEJIa0BXYUQrSa/DQCMMusbDjltalVZ7JoQQQrQTBQxEK1FZVd0nOcKQW1qFoopqDfWGEEIIIfLQVRjRSlJJz5TDoHNkllbNoVEGTdq2bRsYhqFFnHSYh4cH4uPjFdo3MjISkZGRKmn35MmTYBhGY6tDE0KahgIGopWqaaVnnSertGomJT4TAHv27MHYsWPRoUMHMAwj96I1OTkZNjY24PP5YBiG8/Xnn39y9vXw8ADDMHIX3Prmm2/Y1168eBEAsGLFCjAMgytXrnD2FYlEsLGxAcMwyMzM5DxXUVEBY2NjjBkzppnvXr1SU1OxaNEiChI1aMmSJThw4IBSjxkfHy/1MyHrS9HgURl27NgBhmFgbm7eouNERkbCz89P5nNZWVlgGAZffPFFi9poiPjGiqyvZ8+eqaxdTaOVnolWoilJ+sHDzgwP88rZx/cp8Vmjxo0bh7i4OBgbG2u0Hxs3bsSlS5cQGBiI3NzcRvefOnUqevbsydnm7e0ttZ9AIEBSUhKePXsGR0dHznM7duyAQCBARUUFuy0sLAxAXWDSvXt3dvvNmzdRUFAAAwMDpKSkwNPTk33uwoULqKqqYl+r7VJTU5GQkIDIyEh4eHhwnktMTFRZuxERESgvL4eRkZHK2mgtlixZgpEjR2LYsGFKO+aUKVM4wXFmZiYWLFiAd955B+Hh4ez29u3bK63NhpSUlGD27NkwMzNrfOdW4rPPPuP87AOAtbW1ZjqjBhQwEK1EKz3rBw87M5xJy2Ef0wiDZvH5fPD5fE13A9u3b4eLiwt4PJ7cO4n1hYWFYdSoUY3uFxoaigsXLmDPnj2YPn06u/3Ro0c4c+YMhg8fjn379rHbe/ToAYFAgOTkZEydOpXdnpKSAjs7O/To0QPJyckYO3Ys+1xycjLbp9ZOlRfzPB4PAoFAZcfXd8HBwQgODmYfX7x4EQsWLEBwcDDnfFWXxYsXw8LCAlFRUUofTdGUQYMGoUePHpruhtrQbVuilaisqn5wp0pJWkVeDsORI0cQHh4OMzMzWFhYICYmBjdv3uTsc+3aNcTHx8PLywsCgQCOjo6YNGmSQiMEktzc3MBr4qhicXExampqGtxHIBAgNjYWO3fu5GzftWsXbGxsMGDAAM52IyMjBAYGIiUlhbM9JSUFwcHBCA0NlfmctbW1QoGOmHiKxbVr19C7d2+YmprC29sbe/fuBQCcOnUKQUFBMDExQceOHXH8+HHO6+Pj46VGBwBg0aJFYBj5N1u2bduGN954AwAQFRXFTqsQ5xU0J4dBJBJh8eLFcHV1hampKaKioqTOFUB2DkNLPwdFCIVCrF27Fl27doVAIIC9vT0GDhzITkMDAIZh8MEHH2DHjh3w9fWFo6MjIiMjcfr0aaW3xzAMSktL8f3332tkmpCYh4cHBg8ejMTERPj7+0MgEKBz58745ZdfpPZNT09Henq6wsdOS0vDmjVrsHr1ahgYyL5PXVhYiNu3b6OwsLDZ70Ge6upqJCQkoEOHDhAIBLCzs0NYWBiOHTvG2ef27dt4+vRpk45dXFyM2tpaZXdZK9FVGNFKkknPVFZVN3nqwFoMIqEQNXl5Wvclkgi6m2v79u2IiYmBubk5li9fjvnz5yM1NRVhYWGcwOLYsWPIyMjAxIkTsX79esTFxWH37t2Ijo6GSCSS34ASTJ48GZaWlhAIBIiKiuJc/EkaM2YMzp8/z7ng2blzJ0aOHAlDQ0Op/cPCwvD48WPOe01JSUFISAhCQkLY6UlA3cXy2bNnERwc3OSAJz8/H4MHD0ZQUBBWrFgBY2NjxMXFYc+ePYiLi0N0dDSWLVuG0tJSjBw5EsXFxU06viwRERGYNm0aAGDu3LnYvn07tm/fDl9f32Yfc8GCBZg/fz5eeeUVrFy5El5eXujfvz9KSxX72Vb15zB58mTMmDEDbm5uWL58OT7++GMIBAKpnJdTp05hxowZeOutt/DJJ58gLy8P0dHRuHHjhlLb2759O4yNjREeHs5+/lOmTGlSG8qSlpaGN998E4MGDcLSpUthYGCAN954g3NhDQCvvfYaXnvtNYWPO2PGDERFRSE6OlruPvv374evry/279+v0DFra2uRk5Mj9ZWfny+176JFi5CQkICoqChs2LABn376Kdq1a4fLly+z+zx+/Bi+vr745JNPFH5fUVFRsLS0hKmpKYYMGYK0tDSFX9sa0ZQkopWkRhgoYNBJ7nayS6taCqQv3LRVbUEB0kJCNd0NKR3OpsDA1rZFxygpKcG0adPw9ttvY/Pmzez2CRMmoGPHjliyZAm7/b333sPMmTM5r+/VqxdGjx6N5ORkzrxpZTE0NMSQIUPw+uuvw8HBAampqfjiiy8QHh6Os2fPcvIOxPr06QNHR0fs2rUL8+bNw61bt/D3339j7dq1yMjIkNq/fh6Dh4cHnj17hoyMDISGhuLVV18Fj8fD2bNnER0djdTUVOTn5zdrOtKTJ0+wc+dOjB49GgDQr18/dOrUCWPGjMHZs2cRFBQEAPD19cWAAQOwb9++Ft+J9vLyQnh4ONatW4d+/fq1uCJSdnY2VqxYgZiYGPz222/s6Mann36KJUuWKHQMVX4OSUlJ2LZtG6ZNm4a1a9ey22fOnCkV1N64cQMXL15E9+7dUVRUhNjYWPTs2RMLFiyQede9ue2NHTsW7777Lry8vDQyVai+u3fvYt++fYiNjQVQF+x06tQJc+bMQb9+/Zp1zMOHDyMxMRFXr15VZldx+/Zt2NvbK9yH6Ohozu+wljA1NUV8fDwbMFy6dAmrV69GSEgILl++DDc3N6W0o21ohIFoJakRBpqSpJPcbE2otKoWO3bsGAoKCjB69GjOXTw+n4+goCAkJSWx+5qYvKx4VVFRgZycHPTq1QsAOHfylCkoKAjff/89Jk2ahCFDhuDjjz/Gn3/+CYZh5N4p5PP5GDVqFHbt2gWgLtnZzc1NbkATEhICHo/H5iakpKTA0NAQgYGBMDc3R7du3dhpSeJ/mxMwmJubIy4ujn3csWNHWFtbw9fXl71IFr9nADKDG007fvw4qqqqMHXqVM5UqBkzZih8DFV+Dvv27QPDMFi4cKHUc5JTt4KDgxEQEMA+dnNzw5AhQ3D06FGFp6A0pT1t4OzsjOHDh7OPLS0tMX78eFy5coVT/ScrK0uhqlpVVVX48MMP8e6776Jz584N7hsfHw+RSKRw8Ofh4YFjx45Jff34449S+1pbW+PmzZsNjgB4eHhAJBJh27ZtjbY9atQobN26FePHj8ewYcPwn//8B0ePHkVubi4+//xzhfrfGtEIA9FKkmVVKelZNxkb8OFsbYJH+S8rJWXllqKrq5UGe0XExH9g+/TpI/N5S0tL9vu8vDwkJCRg9+7dePHiBWc/VcxLlsfb2xtDhw7FL7/8gtraWplJ3GPGjMG6detw9epV7Ny5E3FxcXIv4KytrdGlSxdOUNC9e3c2QAoJCeE8Z2RkJFWxSRGurq5SfbCyspK6W2llVfezIWvqhabdv38fANChQwfOdnt7e9jY2Ch0DFV+Dunp6XB2doatAiNvku8BAHx8fFBWVobs7GypKlstbU9RkmU7raysOMF6S3h7e0t99j4+PgDqggRF3nN9a9asQU5ODhISEpTSv/rMzMxklkiWFch89tlnGDp0KHx8fODn54eBAwdi3Lhx6Natm9L6ExYWhqCgoGbl1bQWagkYxIlCgYGBCp/YFRUVOH/+PIC6eZZEv1BZVf3h2caMGzC0wjwGXSX8Z2rg9u3bZV4s1E9gHDVqFM6ePYtZs2bB398f5ubmEAqFGDhwIHscdXFzc0NVVRVKS0s5QY1YUFAQ2rdvjxkzZiAzM7PRNRPCwsKwadMmFBQUsPkLYiEhIfjuu+9QXV2N5ORkBAQENKv6j7zqVPK2159CIy/YaY3JmC35HPSBk5MT5/HWrVs1kiTdmMLCQixevBjvvfceioqKUFRUBKBumqNIJEJWVhZMTU3h4OCg8r5EREQgPT0dv/76KxITE/Htt99izZo12LRpE95++22ltePm5oY7d+4o7XjaRi0BQ2RkJHg8Hq5du9bosJTY48eP2dc1VvmC6B7pKUk0wqCr3O1McabeSHFWK6uUxLe2RoezKY3vqGZ8JdQDF9dod3BwkLvgGVB3l/fEiRNISEjAggUL2O2aSgLMyMiAQCBocIGo0aNHY/HixfD19YW/v3+DxwsLC8PGjRtx/PhxXLlyBbNmzWKfCwkJQXl5OQ4fPoyMjAyMGDFCWW9DYTY2NmzidX3iO/4NUebUGHd3dwB1/+9eXl7s9uzsbK0YEWnfvj2OHj2KvLy8Ru/6yzp37969C1NTU4XnzivaXlP+DyQTkLt06aLwaxtz7949iEQiTn/u3r0LADKrcDUkPz8fJSUlWLFiBVasWCH1vKenJ4YOHaq2Equ2traYOHEiJk6ciJKSEkRERGDRokVKDRgyMjIUPjdaI7VNSWruXQB9u3tA6lRL3JE0pBwGneUhkfic1crWYmB4vBYnF2urAQMGwNLSEkuWLEFUVJRUFaHs7GzY29uzd38lf19/+eWXKu1fTk4O2rRpw9l29epVHDx4EIMGDWqwUtHbb7/N5mI0RpyTsHr1alRXV3NGGDw8PODk5MReFGli/YX27dujsLAQ165dY6dZPH36VKGKM+KFtGQFHE3Vt29fGBoaYv369ejfvz974anq80BRI0aMwFdffYWEhAROEjIAqQvlc+fO4fLly2ww+ejRIxw8eBADBw5UeK0SRdszMzNT+PNvKHBvqSdPnmD//v1s0nNRURF++OEH+Pv7c0YYxRXGGlr0zcHBQeb5t27dOpw7dw67du2SGi1RldzcXNjZ2bGPzc3N4e3tjYcPH7LbqqurkZ6eDisrq0b7Jf69V9///vc/XLp0ia06pou0NodBPIStDYsIEfWjsqr6QzJguN/KAgZdZmlpiY0bN2LcuHF49dVXERcXB3t7ezx48ACHDx9GaGgoNmzYAEtLS0RERGDFihWorq6Gi4sLEhMTkZmZ2ax2T58+zU5lzc7ORmlpKRYvXgygbnqBeJrqpEmTIBAIEBERgbZt2yI1NRWbN2+Gqakpli1b1mAb7u7uWLRokUL9adeuHdzc3HDu3Dl4eHjA2dmZ83xISAib4Boaqv6KWXFxcZgzZw6GDx+OadOmoaysDBs3boSPj0+jCef+/v7g8/lYvnw5CgsLYWxsjD59+jRrqoi9vT3+/e9/Y+nSpRg8eDCio6Nx5coVHDlyRCqw04SoqCiMGzcO69atQ1paGjtd7syZM4iKisIHH3zA7uvn54cBAwZg6tSpEIlE2LJlCwA0aT6+ou0FBATg+PHjWL16NZydneHp6alQIKtsPj4+mDx5Mi5cuIC2bdviu+++w/Pnz7F161bOfuKSqg0lPpuamspcufrAgQM4f/681HPbtm3DxIkTVTLFqnPnzoiMjERAQABsbW1x8eJF7N27l/P/LS6rOmHChEYTn0NCQtC9e3f06NEDVlZWuHz5Mr777ju4ublh7ty5Su27NtHagEE8lCpObCL6RSqHgaYk6SyPNtzF23JKqlBcUQ2LVlRaVZeNGTMGzs7OWLZsGVauXInKykq4uLggPDwcEydOZPfbuXMnpk6diq+++goikQj9+/fHkSNHpC6uFfHHH39IXZjNnz8fALBw4UI2YIiJicHPP/+MNWvWoKioCPb29oiNjcXChQvh7e3dgnctLSwsDLt27eKMLoiFhoZi37596NSpE+dOprrY2dlh//79+OijjzB79mx4enpi6dKlSEtLazRgcHR0xKZNm7B06VJMnjwZtbW1SEpKavbc8sWLF0MgEGDTpk1ISkpCUFAQEhMTERMT06zjKdvWrVvRrVs3bNmyBbNmzYKVlRV69Ogh9f/au3dvBAcHIyEhAQ8ePEDHjh2xbdu2JifKKtLe6tWr8c4772DevHkoLy/HhAkTNBIwdOjQAevXr8esWbNw584deHp6Ys+ePVILGqpCSUkJAOkcDWWYNm0aDh48iMTERFRWVsLd3R2LFy/mTC1sijfffJMtF1tWVgYnJyf861//wsKFC9G2bVsl9157MCIVzPl58OAB57GHhwcYhkFiYqLMygP1VVZWIj09HfPnz8fly5cRHh7OWQmSNN2jR4/YChN3795t9P9AG/T8/DheFFeyj3+Y1BMRPro7N1BXlJeXIzExEQDQv39/hYocVNbUotP831H/N9GhqWHwc9G+mwVpaWmoqamBgYFBq/g50mVCoZBNpLS0tGzyQmmEyMMwDN5//31s2LBBb84zDw8P+Pn54dChQxppf9SoUcjKymKL3eiqhv6GpKWlsVWpHj58CFdXV010US6VjDB4enpKbRPfcWqq8ePHK6NLpJWpEVLSs74wNuDD2coEjwteVkrKzCnVyoCBEEKIcolEIpw8eVLmGgpEe6gkYJA3aNGUwQyBQIBp06Zh0qRJyuoWaUWqaynpWZ94tjHjBAyUx6B7amtrkZ2d3eA+5ubmDVY2am3y8vJQVVUl93k+n99qqqpkZ2c3WKbVyMhIqesNNIW6zy19PJdViWEYqbVbiPZRScAgmSAzceJEMAyD//znP3BxcZH7OoZhIBAI4OTkhO7du9MPmx6jpGf94m5niuR7Lx9n0mrPOufhw4cyR5/rW7hwocKJyK1BbGwsTp06Jfd5d3d3hVbM1QaBgYENlmnt3bu3xqYPq/vc0sdzmRCVBAwTJkzgPBYnxg0bNkzhdRiIfquhsqp6xbMNVUrSdY6OjlI15CXVr92vC1atWtXg+gPKWqFXHXbs2IHy8nK5zyu6krMqKPvcamw2hC6ey60lcCWao5YqSUlJSQBk5zYQIkkkEqGaFm7TK+6tfC0G0jiBQKDSGvLaKCAgQNNdUBpNlItVlLrPLX08lwlRS8DQu3dvdTRDdEStUPrujoGOVqYgdTyptCohhBCitegqjGgdyQpJAOUw6DpXG1MwEv/F93Mpj4EQQojuUMFKBmqj9oXbrl69ijNnziAjIwPFxcUNVl0A6hKhxSssEv0gM2CgKUk6TWAoXVr1fm6Z1pVW5fP5qKmpQU1NDWpra2klekIIIQoRCoXsNa+BgdaumyyX2np8584dTJo0CX/++afCrxGJRBQw6CHJVZ4BSnrWB87WAk7AkF1cocHeyGZmZobKyroFBZ89ewZHR0cKGgghhDQqNzeX/d7IyEiDPWketQQMjx8/RkREBHJyctjhGHNzc9jY2Ojsqomk+SQTngGakqQP7C2MOY+zSyrl7Kk5lpaWyMvLAwAUFRWhqKioVd4p0hU1NTUA0GhNfEJags4z0lIikYgzo8bOzk6DvWketfyl+/zzz5GdnQ2GYfD222/j3//+N7v8NSGSJEuqAoABjTDoPHtziYChWPsCBhMTEzg7O+PJkyfsNvHFBFEvkUjElvk0MTEBI5kEQ4gS0HlGlM3a2hoCgUDT3WgytQQMv//+OxiGwfjx47F582Z1NElaMclF2wDAkHIYdJ7kCENOifwVcjXJysoKxsbGKCwsRGlpaaN5WEQ1hEIheyFnbm5Oo9VEJeg8I8piaGgIa2trWFpaarorzaKWgEF8N278+PHqaI60ctUychiorKrua9MKRhjEBAJBq7xDpEvKy8tx+/ZtAHXrHbSmRdBI60HnGSF11HIVJl4B0traWh3NkVaOyqrqJ6kcBi0OGAghhBB9opaAoUePHgCAu3fvqqM50spJTkniMQCPAgadJz0lqRJCGcEjIYQQQtRLLQHDtGnTIBKJKH+BKEQy6ZkSnvWDZMBQIxShsLxaQ70hhBBCiJharsT69euHOXPmICkpCf/3f/+H6mq6CCDySZZVNaTRBb1gZ2YstU0bS6sSQggh+kYtSc8//PADfH19ERISgs2bN+O3337DyJEj0alTJ5iamjb6ekqW1i+SC7fRCIN+MDLgwdrUEAVlL28oZBdXwqethQZ7RQghhBC1BAzx8fGc2sVPnz7F+vXrFXqtuBwr0R+SSc9UUlV/2JsbSwUMhBBCCNEstd26FYlEzf4i+kWyrCqVVNUfshKfCSGEEKJZahlhyMzMVEczREdIVkkyoBEGvdGa1mIghBBC9IVaAgZ3d3d1NEN0hGSVJEPKYdAbtBYDIYQQon3oSoxoHckcBj5VSdIbUgEDTUkihBBCNI4CBqJ1pKYkUcCgN+xpShIhhBCiddQyJam+tLQ0/PDDDzh37hyePXuG8vJyHD16FN7e3uw+N27cwIMHD2BmZobevXuru4tEwySTnmlKkv5oQ0nPhBBCiNZRW8AgFAoxe/ZsrF27FkKhkK1+xDAMqqqqOPs+ePAAgwcPhoGBATIzM+Hi4qKubhItIDkliZKe9YfkCENuaRVqaoW0FgchhBCiQWr7KzxlyhSsWbMGtbW1cHZ2xsiRI+XuGx0dDU9PT9TW1mLv3r3q6iLREpILtxlSWVW9IZnDIBIBeaVVcvYmhBBCiDqo5UrsxIkT2LJlCwBg7ty5yMrKwk8//dTga9544w2IRCL88ccf6ugi0SLVVFZVb9maGUEyZYUSnwkhhBDNUkvAsHnzZgB1IweLFy8Gn89v9DU9e/YEANy8eVOlfSPaR7KsKk1H0R98HgNbM0p8JoQQQrSJWq7Ezp07B4ZhMHnyZIVf4+rqCgB49uyZqrpFtJTkCIMhVUnSK7QWAyGEEKJd1BIwvHjxAgDg4eGh8GsMDQ0BADU1NaroEtFitbQOg16TDBhySiiHgRBCCNEktQQMZmZmAIDs7GyFX/Po0SMAgK2trUr6VN/9+/cxc+ZMdOrUCWZmZrC1tUVgYCBWrlyJsrIypbZ1/PhxxMfHw9vbG2ZmZrCysoKPjw9GjhyJjRs3oqSkRKnttUZSSc80JUmv0FoMhBBCiHZRS1lVLy8vXL58GampqejXr59Crzly5AgAoEuXLqrsGn777TeMHTsWRUVF7LaysjJcvHgRFy9exLfffovDhw9z1olojvz8fEycOBG//vqr1HNFRUVIS0vDvn37EBwcDH9//xa11dpVU1lVvdbGwojzmJKeCSGEEM1Sy63b/v37QyQS4auvvoJQIqFVltTUVGzbtg0MwyA6Olpl/bpy5QrefPNNFBUVwdzcHJ9//jnOnj2LEydO4F//+hcA4O7du4iJiUFxcXGz2yksLES/fv3YYGH48OHYsWMH/vzzT1y4cAG//PILpk+fzuZt6DvJEQYDKquqV6RHGCo01BNCCCGEAGoaYZg2bRrWrVuH9PR0vPvuu/jvf/8LAwPZTR87dgwTJ05ERUUF7Ozs2At3VZg+fTrKy8thYGCAxMREBAcHs8/16dMHHTp0wOzZs3H37l2sWrUKixYtalY7U6dOxaVLl2BsbIyffvoJQ4YM4Tzfo0cPDB8+nF2nQt9JJT3TCINeoRwGQgghRLuo5dZt27ZtsWnTJgDAli1b0L59e7z33nvs82vXrsU777yDLl26YODAgXjy5Al4PB62bdsGc3NzlfTp/PnzOHPmDABg8uTJnGBBbObMmfD19WX7WF1d3eR2kpOTsX37dgDA4sWLpYKF+hiGkRtI6RPpsqoUMOgTqpJECCGEaBe1zfV46623sGvXLlhaWuLhw4f4+uuvwTB1F4LffvsttmzZglu3bkEkEsHc3Bw///wzYmJiVNafAwcOsN9PnDhR5j48Hg/jx48HABQUFCApKanJ7WzYsAEAYGVlhQ8++KDpHdVDNZILt9GUJL0iOSWpsLwalTU08kYIIYRoilqvxEaNGoV79+4hISEBAQEB4PP5EIlE7FeXLl3wySef4N69exg+fLhK+5KcnAygroJTQECA3P169+7Nfp+SktKkNqqqqti8hX79+kEgEAAAamtr8fDhQ2RlZaGiguZnS6IpSfpNcoQBoGlJhBBCiCap/datnZ0d5s+fj/Pnz6OiogIvXrzA06dPUVlZievXr+Pzzz+Hg4ODyvtx69YtAIC3t3eD04A6deok9RpFXb16lQ0IunbtiqKiIsyYMQNt2rRBu3bt4OnpCSsrK/Tr1w8nT55s+pvQUbUSU5L4NMKgV6xMDKWCxByalkQIIYRojEYnzPN4PLRp00bt7VZUVCAnJwcAGq1MZGNjAzMzM5SWluLhw4dNaic1NZX9XigUokePHkhLS+PsU1VVhePHj+PEiRNYunQp5syZ06Q2gJdrVsjz9OlT9vvKykqUl5c3uQ11qqiWWKxPWKv1fSZ16o+YtWT0rI2ZEZ4WvQwSHucWw6eN9MgD0V/KOtcIaQidZ0RdKiu1+8aYXmbY1i+RqkhStThgaOqianl5eez3y5cvR0VFBQYOHIjPPvsM3bp1Q1FREfbt24ePP/4YhYWF+Pjjj9GpUycMHTq0Se24ubkpvO9ff/2F9PT0Jh1f3Z485aH+4Nf9zHQkJt7TXIdIs5w+fbrZrzWo5QN4Ocpw6vwVVN8XyX8B0WstOdcIURSdZ0SVxDeytZVezvWof5fAyMiogT3rGBvX3dls6l3u0tJSTpv9+vXDoUOHEBgYCGNjY9jb2+Pdd9/FoUOHwPtn2s0nn3wCkUi/L4wkUhhACz3rH0sj7klQ3PQCZYQQQghREqWOMPTp0wdAXXnQEydOSG1vDsljKYM4+RiomxLUGPEwkYmJSbPbAepGGfh8vtR+YWFhiI2Nxd69e3Hr1i1cv34d3bp1U7idxqZKPX36FD179gQABAUFoX379gofWxN+fvE3kP9ydMa3Y0f0D2mnuQ4RhVVUVLB34SIiIqR+BhR1puIWbua/nEpn7dgO/ft3VEofiW5Q1rlGSEPoPCPqou2zP5QaMIgTd8XlUutvZximSXfOxftLHksZLCws2O8VmWYkHilo6poQ9duxt7dH9+7d5e47YMAA7N27FwBw4cKFJgUMTVkh2tjYuMmBj7oJwf0/NzE20vo+E2kCgaDZ/29ONmacx/nltXQOELlacq4Roig6z4gqiWezaCulBgwREREyL/DlbdcUgUAAOzs75ObmNpownJ+fzwYMTckVkNy/sYv6+vtmZ2c3qR1dI7kOA5VV1T9tzGnxNkIIIURbqGSEQdHtmtS5c2ecOXMG9+7dQ01NjdzSqrdv32a/F6/6rKguXbqw39fWNrzwVP3n9X2152qplZ4piUHfSK32XEIBAyGEEKIpenslFhYWBqBuutGlS5fk7nfq1Cn2+9DQ0Ca14e7ujnbt6ubeZ2VlNTglq/7cNRcXlya1o2tqhdzPic+jEQZ9Ixkw0DoMhBBCiObobcAwbNgw9vutW7fK3EcoFOKHH34AAFhbWyMqKqrJ7YwYMQIAUFRU1GDy9i+//MJ+Lw5m9BWt9EzsJaYklVbVorSyRs7ehBBCCFElvQ0YevbsifDwcADAli1bcO7cOal9Vq1axa7uPH36dBgaGnKeFydzMwyD+Ph4me3MmDGDrarw0UcfoaioSGqfH3/8kZ22FRMT0+RcCV1TUysxJYlWetY7bSykk79yaFoSIYQQohFquRK7fv06vLy80KFDBzx+/LjR/R8/fgxvb2+0b98ed+/eVVm/1q5dCxMTE9TU1KB///5YunQp/vzzTyQlJWHKlCmYPXs2AMDHxwczZ85sVhvt2rXDZ599BqDuc+jZsye2bt2KS5cuISkpCVOnTmWDDUtLS6xZs0Yp7601qxHSCIO+MzPiw8SQW4KYEp8JIYQQzVBLdu2PP/6IrKwsDBgwQKH5+S4uLvDx8cHRo0fx448/shfcyta9e3fs2bMHY8eORVFREebOnSu1j4+PDw4fPswpkdpUs2bNQl5eHpYvX447d+5g0qRJUvs4ODjgwIED6NChQ7Pb0RXVNMKg9xiGgb2FMR7klbHbaISBEEII0Qy1XImdOnUKDMNgyJAhCr9m6NChEIlESl+0TdLrr7+Oa9eu4cMPP4SPjw9MTU1hbW2NHj16YPny5bhy5Qq8vb1b3M7SpUuRkpKCcePGwcPDA8bGxrCyskJgYCD+85//4O7duwgODlbCO2r9JMuqGtAIg16SqpREIwyEEEKIRqhlhEE8ragpi5H5+fkBAO7cuaOSPtXn7u6O1atXY/Xq1U16XWRkZJMWowsODqagQAE1EmVVDamsql5qY27EeUwBAyGEEKIZarkSE6+m3JSVksX7ykoSJrpNskoSlVXVT7QWAyGEEKId1BIw2NjYAACePXum8GvE+7Ykd4C0TpLrMFDSs36yNxdwHmcXV2moJ4QQQoh+U0vAIE7k/f333xV+zZEjRwAA7du3V0mfiPaipGcC0AgDIYQQoi3UciU2YMAAiEQibN68mV3XoCE3b97EN998A4ZhMHDgQDX0kGgTybKqlPSsnyRzGGi1Z0IIIUQz1BIw/N///R/MzMxQUVGBPn364NChQ3L3PXjwIPr27Yvy8nKYmJjg/fffV0cXiZYQiUQypiTRCIM+kjXC0JQiA4QQQghRDrVUSWrTpg02bdqEcePG4cWLFxg6dCi8vLwQFhYGJycnAMDTp09x5swZZGZmQiQSgWEYbNy4EW3btlVHF4mWkEx4BgADSnrWS5IBQ1WNEEUVNbAyMZTzCkIIIYSogloCBgB46623IBQK8X//938oKytDeno6MjIyOPuI7x6amZlh48aNGDt2rLq6R7SEZElVgEYY9FUbc2OpbdnFlRQwEEIIIWqm1iuxcePG4d69e/j444/RtWtXAHVBgnhEoVu3bvj0009x7949Chb0lMwRBsph0EsCQz4sBNx7GrQWAyGEEKJ+ahthEHN0dMSSJUuwZMkS1NTUIC8vDwBga2sLAwO1d4domZpa6REGWodBf9lbGKO4ooZ9nEOVkgghhBC10+gVuoGBARwcHDTZBaJlJBOeAcCQyqrqLXtzY2Rkl7KPaYSBEEIIUT+6EiNapVpGwEBTkvQXrcVACCGEaB4FDESryJqSREnP+ksy8ZlGGAghhBD1U+qUpD59+gAAGIbBiRMnpLY3h+SxiG6jsqqkPskRBsphIIQQQtRPqQHDyZMnAdRd5EtuZximSYsuifeXPBbRbbLKqlLSs/6SmpJEIwyEEEKI2ik1YIiIiJB5gS9vOyGSamolV3lm6NzRYxQwEEIIIZqnkhEGRbcTIqlaIofBgCok6TV7iRyG3NIqCIUi8GjUiRBCCFEbpV6NXbt2DdeuXUNVVZUyD0v0iGRZVcpf0G+SIwy1QhHyy+j3CyGEEKJOSh1h8Pf3B4/Hw7Vr19C5c2d2+2effQYAeO+999CmTRtlNkl0jGTSM5VU1W+2ZkZgGKB++lN2SSXsJEYeCCGEEKI6Sl+4TVZi86JFi8AwDEaOHEkBA2mQZNKzAZVU1WuGfB5sTY2QW/pyVCG7uBKdHDXYKUIIIUTPKPVqzNDQEABQXl6uzMMSPSKV9ExTkvQercVACCGEaJZSA4a2bdsCAC5duqTMwxI9IpX0TCMMeo/WYiCEEEI0S+llVXfu3Ik5c+YgPT0dPj4+7KgDAPz666+4ePFik487fvx4ZXaTaLEayaRnymHQe1RalRBCCNEspQYMn3zyCfbv34/CwkJ88cUXnOdEIhHmzZvX5GMyDEMBgx6RHGEwpLKqeo8CBkIIIUSzlHo11qVLF5w+fRp9+/aFoaEhRCIRJwla/LipX0R/SOYw0AgDaWNuxHmcTVOSCCGEELVSepWkgIAAJCYmoqamBjk5OaioqICXlxcYhsHRo0fRoUMHZTdJdAitw0AkSeUwFNM6DIQQQog6KT1gYA9sYABHR27tQ2dnZ7i7u6uqSaIDqqmsKpFgby7gPKYRBkIIIUS9lBowrFu3DgAwbtw42NjYsNsXLlwIhmHg4OCgzOaIDpKakkQjDHpPcoQhr7QK1bVCGFIwSQghhKiFUv/izpgxAx9++CGePn3K2X7y5EmcPHkSpaWlymyO6CCppGe6KNR7kjkMAJBbQtOSCCGEEHVR2ZSk+k6dOgWGYShgII2isqpEko2pEfg8hpPfklNSCUcrQQOvIoQQQoiyKPX2rUBQ9we8oKBAmYcleqRGcuE2Kquq93g8RrpSEpVWJYQQQtRGqVdjHh4eAIBDhw4p87BEj1RL5DAY0ggDAa3FQAghhGiSUqckRUdH4/bt21i+fDlOnDghtdLzvHnzYG1t3aRjMgyDLVu2KLObRIvVUJUkIkMbc4mAgSolEUIIIWqj1IBh7ty5OHjwIO7du4cLFy7g4sWL7HMikQi//vprk44nEokoYNAzUjkMVCWJALCXDBhohIEQQghRG6UGDLa2trh48SI2bNiAEydO4PHjx6isrMT9+/fBMAycnJw4Iw6ESKKyqkQWqSlJNMJACCGEqI3SqyRZWlpi7ty5mDt3LruN90/iamJiIjp37qzsJokOkUp6pilJBJTDQAghhGgSXY0RrVItpKRnIk0yhyGHRhgIIYQQtVHLOgxJSUkAAE9PT3U0R1oxKqtKZKERBkIIIURz1BIw9O7dWx3NEB0gmcNAIwwEkA4YiitqUFFdC4EhX0M9IoQQQvSHWgKG+oRCIZKSknDu3Dk8e/YMZWVl+Pzzz+Hk5MTuU1VVhZqaGvD5fBgbGzdwNKJrJKck0UrPBADaWkqv6nzvRQn8XKw00BtCCCFEv6g1YDh06BCmTZuG+/fvc7b/+9//5gQM3377LaZOnQpzc3M8efIEZmZm6uwm0SCakkRkMTc2gLudKe7nlrHbbjwupICBEEIIUQO1XY198803GDp0KLKysiASiWBnZweRSCRz37fffhtWVlYoKSnB/v371dVFogVoHQYij2RwcP1xoYZ6QgghhOgXtQQMaWlpeP/99wEAffr0QWpqKl68eCF3fyMjI4wYMQIikQiJiYnq6CLRElRWlcjTVSJguEEBAyGEEKIWarkaW7NmDWpqatClSxf873//Q6dOnRp9TXh4OADgypUrqu4e0SKSIwyU9EzEJAOGW8+KUS0RYBJCCCFE+dQSMPzxxx9gGAYzZsyAkZGRQq/x9vYGADx8+FCVXSNaRvICkKYkETE/Z27AUFUjxN3nxRrqDSGEEKI/1BIwPHr0CADwyiuvKPwacaJzWVlZI3sSXSJZVpWmJBExK1NDtLM15WyjaUmEEEKI6qnlaoxh6u4SN+XiPzc3FwBgZUVVUPQJrfRMGiI5LYkSnwkhhBDVU0vA4OLiAgDIyMhQ+DXJyckAAC8vL5X0iWgnKqtKGiJdKalIQz0hhBBC9IdarsYiIyMhEonw/fffK7R/YWEhNm3aBIZh0KdPHxX3jmgT6SlJNMJAXpJKfH5aRInPhBBCiIqpJWCYMmUKGIbBqVOnsG3btgb3zc3NxbBhw/Ds2TMYGBjg3XffVUcXiZaoEdIIA5HPz8WS87iqRoi05yUa6g0hhBCiH9RyNda9e3dMnz4dIpEIkydPxptvvomffvqJff7s2bPYuXMn3n//fXh7e+P06dNgGAbz58+Hu7u7OrpItITUwm00wkDqsTY1gputCWcbJT4TQgghqmWgroZWrVqFyspKbNy4EXv37sXevXvZZOgpU6aw+4lXf54xYwbmzZunru4RLSE5JYmSnomkri5WeJhXzj6+/rgQowLdNNgjQgghRLepbb4HwzD46quvcPToUURGRoJhGIhEIs4XAAQHB+Pw4cNYvXq1urpGtIj0Ogw0JYlwSSc+0wgDIYQQokpqG2EQ69evH/r164fi4mJcuXIFL168QG1tLezs7ODv7482bdqou0tEi9CUJNIYyQXcbj0tQk2tkNbsIIQQQlRE7QGDmIWFBSIiIjTVPNFSkiMMhnQRSCRIVkqqrBEi7UUJfJ0s5byCEEIIIS1BV2NEq0iVVeXRCAPhsjEzgos1N/GZpiURQgghqqOREYbnz5/j5MmTuHHjBvLy8gAAtra28PPzQ2RkJNq2bauJbhEtQGVViSK6uljhccHLxOcbjwsxqgclPhNCCCGqoNaA4enTp/joo4/wyy+/oKamRnaHDAwwYsQIrFq1Ck5OTursHtEClMNAFNHV1Qq/33zGPqbSqoQQQojqqO327dWrV9GtWzf89NNPqK6ulqqQJP6qrq7Gnj178Morr+D69evq6h7RArVCEUTceIHKqhKZJCslpf6T+EwIIYQQ5VNLwFBaWoqYmBjk5uZCJBKhb9++2LNnD7KyslBRUYGKigpkZWXhp59+Qv/+/SESiZCTk4OYmBiUlZWpo4tEC0gmPAM0JYnIJpn4XFEtRHp2qYZ6QwghhOg2tVyNbdiwAU+ePAGPx8M333yDxMREvPHGG2jXrh2MjIxgZGSEdu3aYeTIkfj999/x7bffgmEYPH78GF999ZU6uki0gOR0JICmJBHZbCnxmRBCCFEbtQQMv/76KxiGQXx8PCZPntzo/pMmTcLEiRMhEomwf/9+NfSQaANZU0qorCqRx8+FW0aV8hgIIYQQ1VDL1djdu3cBAHFxcQq/ZvTo0ZzXEt1XXStjhIHKqhI5JKcl0QgDIYQQohpqCRhKSkoA1JVOVZSNjQ2AuvwHoh8kS6oCoNV7iVxSic9PilArY1obIYQQQlpGLVdj9vb2AIBbt24p/Jrbt28DANq0aaOSPhHtI7loG0AjDEQ+yRGG8upapGeXaKg3hBBCiO5SS8DQq1cviEQirF69Wu76C/XV1NRg9erVYBgGvXr1UkMPiTagpGfSFHbmxnC2EnC2XX9E05IIIYQQZVNLwDB+/HgAwN9//42YmBg8efJE7r5PnjzB66+/jsuXLwMA4uPj1dFFogVkJj1TWVXSAMlpSZTHQAghhCifWlZ6fv311zFs2DAcOHAAx48fh5eXF/r374+goCA4ODiAYRg8f/4cf/31F44dO4aqqioAwPDhwxETE6OOLhItIJn0zGMAHk1JIg3o6mKFxNTn7GOqlEQIIYQon1oCBgDYtWsXxo8fj59//hlVVVU4fPgwDh8+LLWf6J+lft944w388MMP6uoe0QKSSc+U8Ewa4+fKHWG4+U/iM58CTUIIIURp1HZFZmxsjD179uC3337DoEGDYGJiApFIxPkyMTHBoEGDcOjQIezZswfGxsbq6h7RApIjDIZ00Uca4ecsnficQYnPhBBCiFKpbYRBLCYmBjExMaitrUVGRgby8vIA1JVc9fLyAp/PV3eXiJaQzGGgEQbSGHsLYzhaCvCsqILddv1xITq0tdBgrwghhBDdovaAQYzP56NDhw6aap5oIckqSYZUIYkowM/FSipgiH3VVYM9IoQQQnQL3cIlWkMyYKB56EQRkusxUOIzIYQQolwqCRj+/PNPxMbGIjY2Fnv37m3Sa3/++Wf2tZcuXVJF94iWkpqSRCVViQK6ulpyHt+kFZ8JIYQQpVLJFdn06dPx66+/4uHDhxg6dGiTXjt06FA8fPgQv/76Kz788ENVdI9oKamkZ5qSRBQguRZDWVUtMnMo8ZkQQghRFqUHDH/99RcuXLgAAFi3bh0MDQ2b9HojIyOsW7cOIpEIKSkpNMqgR6isKmkOBwsB2lpyK6rRAm6EEEKI8ij9iuynn34CAISFhSE4OLhZxwgODkbv3r0BALt371Za34h2q5EYYTCgHAaiIMk8huuPijTUE0IIIUT3KD1gOHfuHBiGafJUJElDhgyBSCTC2bNnldQzou2qJXIYDGmEgShIclrS9ccFmukIIYQQooOUfkWWnp4OAOjatWuLjuPn58c5HtF9klWSDCiHgSjoFVdrzuOrDwtRXlWrmc4QQgghOkbpAUNBQQEAwN7evkXHEb9efDyi+ySrJBlSlSSioB4eNpwyvFW1QlzIytNgjwghhBDdofQrMlNTUwBAUVHL5hAXFxcDAExMTFrcp8bcv38fM2fORKdOnWBmZgZbW1sEBgZi5cqVKCsrU0mbZWVl8PLyAsMwYBgGHh4eKmmnNaF1GEhzWQgM0c2VOy0pJT1HQ70hhBBCdIvSAwbxyMC9e/dadBzx61s6UtGY3377Dd26dcPq1atx584dlJWVIT8/HxcvXsTs2bPRvXv3Fr8XWRYsWIDMzEylH7c1k0p6pilJpAnCvNtwHp+9l6uhnhBCCCG6RekBQ/fu3SESiXDkyJEWHefw4cPs8VTlypUrePPNN1FUVARzc3N8/vnnOHv2LE6cOIF//etfAIC7d+8iJiaGHfFQVrtffvklBAIBLCwslHbc1q5aSEnPpPlC2nMDhhtPClFQVqWh3hBCCCG6Q+lXZAMGDAAAHDhwADdv3mzWMW7cuIEDBw6AYRj2eKowffp0lJeXw8DAAImJiZg7dy6Cg4PRp08fbN68GStWrABQFzSsWrVKKW3W1tbiX//6F2prazF37lzY2toq5bi6gMqqkpZ41d0aAsOXv9JEIuDPDBplIIQQQlpK6QFDXFwcHBwcIBQKMXLkSOTmNu0Pdk5ODkaMGAGhUAh7e3vExcUpu4sAgPPnz+PMmTMAgMmTJ8tcM2LmzJnw9fUFAKxduxbV1dUtbnft2rW4dOkSOnbsiDlz5rT4eLpEKumZRhhIExgb8BHowQ3AU2haEiGEENJiKkl6TkhIgEgkwt27d+Hv749ff/1VodceOHAA3bt3R1paGhiGwWeffcYmUSvbgQMH2O8nTpwocx8ej4fx48cDqKvWlJSU1KI279+/jwULFgAANm3aBCMjoxYdT9dUyyurKjFViRB5JKclUeIzIYQQ0nIGqjjolClTcPnyZXzzzTd48uQJYmNj4eHhgYEDByIgIAAODg4wMzNDaWkpnj9/jsuXL+PIkSO4f/8+RKK6i8Z33nkH77zzjiq6BwBITk4GAJiZmSEgIEDufuIVpwEgJSUF/fv3b3ab7733HkpLSzFu3DhERkY2+zi6SnKEwUaYD3w3CHhyGfAZAAxYCli5aKh3pDUI9bbjPM7ILsWzwgo4Wgk01CNCCCGk9VNJwADU3UF3dHTE559/DqFQiKysLGzatKnB14hEIvB4PMybNw8LFy5UVdcAALdu3QIAeHt7w8BA/sfQqVMnqdc0x+7du/G///0PNjY2SsuH0DXVEjkMr+XuAnL/Wek79Vcg/SQwaDnwShzAUH4DkdbF2QqWAgMUVdSw21Lu5WBEgKsGe0UIIYS0bioLGBiGQUJCAoYOHYolS5bg119/RW2t/JVX+Xw+hg0bhk8++QSvvvqqqroFAKioqEBOTt1UBVfXhi8kbGxs2NGQhw8fNqu9/Px8zJgxAwCwbNkypZeKffToUYPPP336lP2+srIS5eXlSm1fWSqruDkibSskys5WFgIH3kXtjV9QNeALwNxBjb0jiqioqJD5vTr19LDB8dvZ7ONTd54jurNdA68grZE2nGtE99F5RtSlsrJS011okMoCBrFXX30Ve/fuRWFhIZKTk3H16lXk5uaiuLgYFhYWsLOzwyuvvIKwsDBYWVk1fkAlqF8i1dzcvNH9xQFDSUlJs9qbNWsWnj9/juDgYLZcqzK5ubkpvO9ff/2F9PR0pfdBGbIe8FA/rUZUUShzP/69RPAzg3HNdTwe2/Si0QYtdfr0aY20a13JAOCzj0/deoqjpo/oNNFhmjrXiH6h84yokvhGtrZSecAgZmVlhZiYGMTExKirSbnq3yVQJPHY2NgYAJp1Z/706dP47rvvYGBggE2bNoGhqxa5JGYkwQjyq1IZ1Zaix/2NcC68iKuuE1BlaKnczohEMKotgXF1EQxrS//5KoNRTSkMastg9M82vlBc518E5p/Xsd8DqGUMUMM3QQ1PgBq+oN73JqjmmaDCyAZlRvao4at+RXN94WPFPZEKqxm8qADa0kdMCCGENIvaAgZtIhC8TICsqmp8YSfxMJGJSdOuOCorK/HOO+9AJBJh+vTp6NatW9M6qqDGpko9ffoUPXv2BAAEBQWhffv2KulHSx0vuQlkP2cfmxuKgHqz2EQMD4yImxjtXHABTpXpqPWMhMjGCyLb9hDaekFk4wUYy1gUr7YKKM0BU/oCTFk2mJJsMKXPwZQ8A1PyAkzJc6D0OZjSbDC16lv0S2RiC5F1Owit2kFk1Q4i63YQWXtA6NAZMG3T+AG0REVFBXsXLiIigvOzpi4ikQjfpqfgRfHL/z+eU2f070l5DLpEG841ovvoPCPqoq2zP8T0MmCov7qyItOMSktLASg2fam+zz//HHfu3IGbmxsSEhKa1skmaCwPoz5jY+MmBz7qImS4VX6NRNz5fMyQDcC948DNX7jby/NgkMrdBgAwbwvYeQMMDyh5AZS+AMrzld5vZWDK88CU54H39G/pJ63aAc7+gMurgHN3wMkfMLFWbwebQSAQaOxcC/O2xy9XHrOPLzwoxNu9O2ikL0T1NHmuEf1B5xlRJfFsFm2llwGDQCCAnZ0dcnNzG00Yzs/PZwOGpuQKAMDy5csBAH379sVvv/0mcx/xsUtLS7F7924AgIODA/r06dOktnSB1MJtQokEMysX4I2tQOchwKGPgPK8hg9Y8rzuq7UrfFD3devgy222Xv8EQ3z5r9MAI2Eter7IRrWBOQxSbgAOHQAbj7ovM3u15ZuEeLfhBAzn0nNRKxSBT6uHE0IIIU2mlwEDAHTu3BlnzpzBvXv3UFNTI7e06u3bt9nvxas+K0o83Wnr1q3YunVrg/vm5ORg9OjRAOrWftDPgEFi4TahRMUAw38W8esyHHAPBQ59CNw+pPqOGVkAAqu6u/oCa+6/hqb/XAQzL/8FXl4Y11QAlcVAZQlQ9c+/lcVAVQlQXgCUPGten/Iy6r60DB+Ak/hB8hnuk4am/wQPnkC3UUCXYSrrh+R6DEUVNbj5pBDdXK1V1iYhhBCiq/Q2YAgLC8OZM2dQWlqKS5cuISgoSOZ+p06dYr8PDQ1VV/f0EnelZxEMaiVGGAzrDQWbOwBv/gg8vQo8PA/k3nv5VfAAgEQGtSSeAWDmAJjbA+aOgEXbl/9aOL383swBMFDhitzVFUDhQyD/PpCfCRTc/+f7LCAnDajRzhK4zVJdBrxIrfu6cxgw2A10HKSSppysTODVxgwZOaXstpR7uRQwEEIIIc2gtwHDsGHDsHTpUgB1IwCyAgahUIgffvgBAGBtbY2oqKgmtSFetbohHh4euH//Ptzd3ZGVldWk4+uaWuHLKUlGqAEP3ClK7AiDGMPUze139udur66ou+DOvVd3F57h1eUzmDv889W2boSAx82Z0AhDAdCmQ92XpNoaIOcO8OTKy69n1+sSt3XBhS0qCxgAIMTbjhMwnE3Pwf9FamfCPyGEEKLN9DZg6NmzJ8LDw3HmzBls2bIFEyZMQHBwMGefVatWsas7T58+HYaGhpznT548yQYREyZMwLZt29TSd11Vf6VnAWQsYGKgYHUKQwHg0KnuqzXjGwBtu9R9dR9bt62mCsi+BTz5GyjL1Wj3ZKmuqcG9u3cgqM5HOwsh+EX/jJ4IZZTIzToDVJdzR46UKLR9G/z45wP28YWsPFTW1MLYQLvyPgghhBBtp7cBAwCsXbsWoaGhKC8vR//+/TF37lxERUWhvLwcu3fvxubNmwEAPj4+mDlzpoZ7q/vqJz0LZK3BoKILy1bFwAhweqXuSwvVlJfjblEiAMCxf/+6iiLCWqD4KZBzF/hxBCAujVtTAWSlAB36qqQvwe3twDD/LI0BoKJaiMv3CxDcnlZ9JoQQQppCrwOG7t27Y8+ePRg7diyKioowd+5cqX18fHxw+PBhTilWoho19XIYTBgZIwySU5JI68DjA1audV+ugcDDv14+d++YygIGa1MjdHG2xI3HRey2s+k5FDAQQgghTaSWSdw//PADfvjhBxQVFTW+8z9KSkrY16nS66+/jmvXruHDDz+Ej48PTE1NYW1tjR49emD58uW4cuUKvL29VdoHUqf+lCQTSM7TZwAD7a5RTBTgLREcpB1TaXOh7bmL3qXcy1Fpe4QQQoguUssIQ3x8PBiGQY8ePdC5c2eFXvP8+XPEx8eDx+Nh/PjxKu2fu7s7Vq9ejdWrVzfpdZGRkQolNjdE3xOd66s/JclEMofB0ERtNfyJCnn3BZI+f/k4L70uMd3WSyXNhXi3wdenX5afvfqoEMUV1bAQGDbwKkIIIYTUpwVlYhrW0gty0nrUn5IkYCRGGCh/QTc4+dct4FZf2nGVNRfoYQND/stAs1YowvnMRhb8I4QQQgiH1gYMtbW1ACB3QTWie6o5Sc+SAQPlL+gEHg9o/xp32z3VTUsyNTJA93Y2nG0p97SvuhQhhBCizbQ2YLhz5w4AwNbWVsM9IepSWz/pWdaUJKIbOvTjPs48U7d2hopI5jGcTac8BkIIIaQpVHL7/vTp0zK3X7hwATk5Df+xrqysRHp6Or744gswDAN/f38V9JBoI+46DBIjDIquwUC0X/s+dYvpseVVy4H7ydIJ0UoS6m2HNfVmPd1+Vozs4krYW1ASPSGEEKIIlQQMkZGRYCQSVEUiESZNmqTwMUQiERiGwZQpU5TdPaKlauqt9GwilcNAU5J0hqkt4BIAPLrwclvacZUFDK+4WcPMiI/Sqlp229n0HAz1d1FJe4QQQoiuUdmUJJFIxH7J2tbYl6urK7766isMGzZMVV0kWqamoZWeaUqSbvGWmJakwjwGQz4PQV7ctReSbr9QWXuEEEKIrlHJCENSUhL7vUgkQp8+fcAwDLZs2QJPT0+5r2MYBgKBAE5OTnBzc1NF14gWq+aUVaURBp3WoS9wcsnLx7n3gLxMwFb+74eW6O1jjz/qBQknbr1AZU0tjA34KmmPEEII0SUqCRh69+4tc3vPnj0VXoeB6J+Gy6pSDoNOceoOmLYByurlNN07DvT8l0qaG+jniIUHb7KPiytrkHIvB306tVVJe4QQQoguUUuVpMzMTGRkZMDHx0cdzZFWSCQSSVRJonUYdBqPB3hLlFdV4arPbS0FCHDnllc9cv2ZytojhBBCdIlaAgZ3d3e4u7vTmgpErvoVkgBZZVVpSpLOkcxjyFJtedVBfo6cx4mpzznT4AghhBAim9asw/Dbb79h3LhxGDRoEN577z1cvnxZ010ialR/dAGglZ71Qvs+AOpVU6suAx6cVVlzg7o6cR4XllfjXDot4kYIIYQ0Ri0BQ1JSEhwcHNCuXTsUFBRIPT9//nwMGzYMO3fuRGJiIr7++mv06tUL27dvV0f3iBaoFnLv9Eqvw0ABg84xs6srr1pf2nHZ+yqBi7UJXnGz5mw7cuOpytojhBBCdIVaAob//e9/yMnJQWBgIKytrTnPXbt2DUuWLGHLqVpbW0MkEqGmpgZTpkxBVlaWOrpINKym0SlJFDDoJMlVn1VYXhUAoiWmJR29+Rw1NC2JEEIIaZBaAobk5GQwDIO+faUXZtq4cSNEIhFsbGxw6dIl5Obm4vz587C1tUVlZSU2bdqkji4SDZO8aKOF2/SEZB5Dzl0g/77Kmhvkx52WlFdahfNZeSprjxBCCNEFagkYnj6tG/bv0qWL1HOHDh0CwzD44IMP0L17dwBAjx498MEHH0AkEuH4cdVNUSDao1oyh4FGGPSDc3fAlLuomipHGdrZmaKLsyVnG1VLIoQQQhqmloAhOzsbAKSmI6Wnp+Px48cAgOHDh3OeCw8PZ/chuk9yhEGAau4OFDDoJh4PaC9ZXlW1NwmiJZKff7/5TCrpnhBCCCEvqSVgEInq/hgXFhZytp85cwYAYGVlBX9/f85zdnZ1dx3LyspU30GicY2XVaWAQWdJ5jFkngZqKmXvqwSS5VWziytx6X6+ytojhBBCWju1BAyOjnV/oG/dusXZfvToUQBAaGio1GtKS0sBADY2NlLPEd0jeYdXOoeBAgad1f41cMurlgL3VVde1cveHJ0cLTjb/nedqiURQggh8qglYOjVqxdEIhE2btzIjhhkZGTg119/BcMw6Nevn9Rr7t69C+BlsEF0m+QCWlIjDFRWVXeZ2QEur3K33VPttCTJ5OejN59BSNOSCCGEEJnUEjC8/fbbAOpKqPr5+WHkyJHo1asXKioqYGJigjFjxki95vTp0wAAHx8fdXSRaFiNxMWaseQ6DDTCoNskqyWlqbi8alfujYinhRX4+1GBStskhBBCWiu1BAx9+vTB9OnTIRKJkJWVhf379yMnJwcAsHLlSrRp04azf0VFBTv6EBERoY4uEg2rn/RsgBoYMbXcHaisqm6TzGPIuQMUPFBdc20t4O1gztl2hKYlEUIIITKpJWAAgDVr1uDgwYMYN24c+vbti/Hjx+P48eP4v//7P6l9Dx48CEtLS7Rr1w6vv/66urpINKh+0rPUKs8AjTDoOufugIktd1tWikqblEx+/t/1Z2yBBkIIIYS8ZKDOxgYPHozBgwc3ut+oUaMwatQoNfSIaIsa4csRBhMKGPQPjw+06wXc+d/Lbc9vqLTJQX5OWP/HPfbx44JyXH9ciG6u1iptlxBCCGlt1DbCQEhDauqNMBhLVkgCKGDQB45duY+fXVdpc75OFvCw4051O3KDFnEjhBBCJFHAQLRC/SpJMkcYqEqS7mvrx3387DqgwilCDMNgkMQibkeuP6VpSYQQQogEtUxJevCgZcmL7dq1U1JPiLaqvw6DdElVQd2KwES3SY4wlOcBxU8BS2eVNRnt54SNJ1+uJp+VW4ZbT4vR2dlSZW0SQgghrY1aAgZPT89mv5ZhGNTU1CixN0QbVXMCBokRBgOBmntDNMLaHTCyAKqKX257dl2lAYOfiyVcbUzwKL+c3XbkxlMKGAghhJB61HLbViQSteiL6L76ZVUFUqs8U0lVvcDjAY4ypiWpEMMwMqolUXlVQgghpD61jDBs3bq10X1KS0tx9+5d7Nu3D48fP0ZoaCi74BvRfTWcsqoSU5Io4Vl/tPUDHpx7+VjFAQMADOrqhG/OZLKP07NLcftZETo50igDIYQQAqgpYJgwYYLC+65cuRIffvghNm7ciNDQUCxbtkyFPSPaorqhsqo0wqA/JPMYVFxaFQD8Xa3hZCXA08IKdttPFx5hweudVd42IYQQ0hpoXSapoaEhNmzYgMjISKxcuRJHjx7VdJeIGtQfYTBhJEcYKIdBb0hOScpNB6pKVdokj8dgWHcXzrZ9lx+horpWzisIIYQQ/aJ1AYPYlClTIBKJsH79ek13hahB/bKqUis905Qk/eHQGWDq/1oSAc9TVd5sXKAb53FheTV+pzUZCCGEEABaHDB06NABAHDx4kUN94SoQ01DVZJoSpL+MDQB7Dpwtz27pvJm3e3MEObdhrNt5/mWlYMmhBBCdIXWBgyFhYWcf4luq78Og0BqShKNMOgVDeQxAMDontz1Xs5n5uHeixK1tE0IIYRoM60NGL7//nsAgJOTUyN7El3Q4ErPtMqzflFzaVWxfp3bws7MiLNtN40yEEIIIdoXMKSlpeHdd9/F999/D4ZhEB0drekuETXgllWlHAa9JjXCkAoIVZ+AbGTAw8gerpxt+y4/QmUNJT8TQgjRb2opq+rl5dXoPkKhEAUFBSgufrnKq4ODAz799FNVdo1oCU5ZVamF2yhg+P/27js+ijp94PhntmXTQxIChBYIhN6bdLBgAUTseiogKsdZ0OPE3u7sBUU8T7GAFRF/iiAgINJ7qFIDoQVCQnrPZsv8/liyZJNsCtnshuR5v17z2sl3vjPzbBzDPvttDUqTUgmDOQ/ST0B4u1q/9Z39WvHpuuOOnzPyzaw4kMyNPWpvtWkhhBCirvNIwnDy5MlqnzNw4EC+/PJL6ZLUQFS8cJsMem5QApuAfwTknb9YlvyXRxKGNuH+DIoOY3N8mqNs/rbTkjAIIYRo0OrMwm0ajYbAwEDatGnD8OHD6dmzZ+0HJuoMS0VjGGQdhoanaVeI//Piz0l/QZfxHrn1nf1bOSUMW46ncTwll7aNAzxyfyGEEKKu8UjCMHfuXE/cRlzGzLaKxjBIC0OD07RbqYTBMzMlAVzbpQmN/PRk5JsdZQt2JPDMDZ08FoMQQghRl9S5Qc+iYXJqYZBpVUXpcQwemikJwEen5dY+zoOfF+6Uwc9CCCEaLo8kDG3btqVt27Z89NFHnriduAzJwm3CSemZknISIS+t/Lq14M5SazKk5xWx6mCyx+4vhBBC1CUeSRjOnDnDqVOnZFyCcKnCQc86GcPQ4IS1A62Pc1my51oZohsHMKBNqFPZfFmTQQghRAPlkYShadOmAPj6StcSUT5LiWlVjYrZ+aC0MDQ8Wh006exc5sFxDAB3D3BuZdh0LI2TqXkejUEIIYSoCzySMAwYMACAAwcOeOJ24jJktpbskiRjGATQxDsrPhe7tktTQvz0TmU/7EjwaAxCCCFEXeCRhGHq1Kmoqsr777+P2Wyu/ATR4FQ8raokDA1S0+7OPyd7toXBqNdyS2/nwc8/7UygyGJzcYYQQghRP3kkYbjyyit55pln2Lt3L2PGjCEhQb6lE86KBz1rsOFTpkuSJAwNUtNSLQwph8FiKr9uLbmrf0unn1Nzi1h9SAY/CyGEaFg8sg7Dv//9b3x8fOjWrRurVq2ibdu2DB48mO7du9OoUSO0Wm2F57/44oueCFN4kflCC4NP6dYFkIShoWrSxflnm8WeNDTr4bEQ2kUE0j8qlO0n0x1l328/zfXdZAV6IYQQDYdHEoaXX34ZRVEAUBQFq9XKhg0b2LBhQ5XOl4Sh/iueJalMdySQQc8NlTEYQlpD5qmLZUn7PZowANzZv6VTwrDhaCoHErPoEhns0TiEEEIIb/HYwm2qqjq20j9Xton6r7hLUpkBzyAtDA1Z6fUYPDzwGeCGbs1oVGrw84erj3o8DiGEEMJbPJIw2Gy2Gm2i/iueVtWolNPCoJOEocEqnTB4eOAz2Ac/PzC0rVPZigPJHDqX7fFYhBBCCG/wWAuDEBUp7pJkLN0lSaO3z8kvGqYyLQz7wAutjvcNbE2wr7QyCCGEaJgkYRB1QvGg57JrMMj4hQat9FoMhVmQdcbjYQQa9Uwe0sapbPn+JI4k5Xg8FiGEEMLTJGEQdYJjDEPpLkkyfqFhC2kFPqUGF3thHAPAxMFRBBmdW7s+/FNaGYQQQtR/XuvrkZ2dTU5ODlartdK6rVq18kBEwptcdknSG70QjagzFMW+HsOpTRfLkvdDxxs8HkqQUc/9Q9rwwR8Xk4Rlf53jaHIO7ZsEejweIYQQwlM8mjCsWrWKjz/+mI0bN5Kenl75CdinYbVYLLUcmfC2i12SSicM0iWpwWvazTlhSNrntVAmDW7DFxtOkGOy/01SVfjwz2PMvquX12ISQgghapvHuiQ99thjXHfddSxevJi0tDSZVlU4Ke6SZFRKj2GQLkkNXulxDEmenympWLCvnkmDo5zKftuXyLHzMpZBCCFE/eWRFobvv/+ejz76CACj0chNN91Enz59CA0NRaORYRQCLNLCIFwpPVNSxgkozAZjkFfCuX9IG77cdJLcEq0MH/15jA/ulFYGIYQQ9ZNHEoZPP/0UgJYtW/Lnn38SHR3tiduKy4ijhaF0wqCTMQwNXuOOoGhBLTHe6fxBaHWFV8IJ8TMwcVAUH6055ihbvDeRx65qT9vGAV6JSQghhKhNHvl6f9++fSiKwksvvSTJgihX8aBnX+mSJErTG6FxB+cyL82UVGzykDb4G7SOn20XWhmEEEKI+sgjCYPZbAagVy9pshflMxev9CxdkkR5yoxj8G7C0MjfwH2DopzKFu05y4nUPO8EJIQQQtQijyQMUVFRAOTm5nriduIyY7WpjsV7yy7cJi0MgnJWfPZuwgDw4NC2+EkrgxBCiAbAIwnDzTffDMDq1as9cTtxmSmeUhXAiNn5oCQMAuxrMZR0/iBYisqv6yGh/gbuHdjaqWzRnrOcSpNWBiGEEPWLRxKG6dOn06pVKz744AMOHz7siVuKy0jxgGeQMQzChabdnX+2FELccu/EUsKDQ9viq7/YymC1qcz6Q1Z/FkIIUb94JGEIDg5mxYoVNGnShEGDBvHxxx+TkZHhiVuLy4ClRAtD2WlVJWEQgH84tCw1K9LOeV4JpaTwAB/uucJ5Jfqfd59l12n5+yaEEKL+cOu0qm3btq3weH5+PpmZmTz66KM89thjhIeH4+dX8aBWRVGIj493Z5iijinZwmAsM4ZBBj2LC/pMhIStF3+OXwMZJ6FRlJcCsntoWDTztyc41mUAeHnxARb9YzAajeLFyIQQQgj3cGvCcPLkySrVK17B+fz585XWVRT5B7e+K55SFcCoyDoMwoUuN8HvT0Fh1oUCFXZ9A1e94M2oaBzow7Sr2vPaskOOsn1nsvhp5xlu79fSi5EJIYQQ7uHWhGHChAnuvJxoIMwVdkmSFgZxgd4Xut8B2+dcLNv9LYx4GrR678UFTBgUxfwdpzmecnHA89srDnNdt6YEGb0bmxBCCFFTbk0Y5s6d687LiQbCadCzTKsqKtJnonPCkJsEcSug0xivhQRg0Gl4cUxnJs7d4ShLzS3iwz+O8vyYzl6MTAghhKg5tw961mg06HQ6Dh486O5Li3qq5KDnMl2SpIVBlNSkC7To51xWBwY/A4zoEMHVnSKcyuZtPsmx8zleikgIIYRwj1qZJUlV1corCXGBueQYhjJdkmQMgyilz0Tnn4/9AZmnvRJKac+P7oxBe/HPqsWm8sqSg/I3UQghxGXNI9OqClERi03GMIhq6DIefIJKFFwY/FwHRIX788DQNk5lG46msupgspciEkIIIWpOEgbhdRfHMKj4ycJtojIGf+h+u3PZ7m/Baim/voc9PLIdTYJ8nMr+s/QghWarlyISQgghakYSBuF1xdOq+mAue1ASBlGe0t2SchLh2CqvhFKav4+OZ2/o5FSWkF7A5xuOeykiIYQQomYkYRBeVzzoucz4BQCdJAyiHE27QfM+zmV1ZPAzwI09IunbupFT2X/XxJOYWeCliIQQQohLJwmD8DrzhS5JZaZUBWlhEK6VbmU4uhKyzngllNIUReHlG7tQct3JArOVN5Yf9l5QQgghxCVy6zoMJU2aNAl/f/8aX0dRFFavXu2GiERdVdzC4Ft6SlWQQc/CtS43w+/PQFGu/WfVdnEhtzqga/Ng7urfiu+3XZzBacneRO7q35JB0eFejEwIIYSonlpLGGJjY2t8DVVVUUp+RSfqpeJpVcu0MChar6/gK+ownwDodhvsLLFg5K6vYdiToNF6L64S/jWqA7/tTSS78OKA7Bk/7WPF48Pw96m1P79CCCGEW9ValyRVVWu8iYaheFrVsmsw+IIkjKIipbslZZ+1r8tQR4T6G/jXtR2cys5kFPD6skNeikgIIYSovlpLGPbv34/NZqvxZrXW/lSEp06dYvr06XTs2BF/f39CQ0Pp168f77zzDvn5+TW6dn5+Pj///DNTp06lX79+NGrUCL1eT1hYGAMHDuTll18mKSnJTe/k8lQ8S1LZVZ5l/IKoRGRPaNbTuWznV96IxKV7BrSmf1SoU9l3206z4WiKlyISQgghqqfBD3pesmQJ3bt3Z+bMmRw5coT8/HwyMjKIjY1lxowZ9OrVi2PHjl3Stfft20eTJk245ZZb+OSTT4iNjSUzMxOLxUJ6ejpbt27llVdeoUOHDixYsMDN7+zyYXE16FkSBlEVpVsZ4n6H7ESvhFIejUbhndu646t37ib11E/7yC4sZyphIYQQoo5p0AnD7t27ueOOO8jOziYgIIDXXnuNzZs3s3r1ah588EEA4uLiGD16NDk5OdW+fnZ2Nrm59gGZgwcP5o033mDVqlXs2rWLFStWMGXKFDQaDdnZ2fztb39j+fLlbn1/lwvHoGdZ5Vlcim63gr7EBAuq1T74uQ5pHebPMzd0dCpLzCrk1d8OeikiIYQQouoa9Ki7adOmUVBQgE6nY+XKlQwcONBx7Morr6R9+/bMmDGDuLg43nvvPV5++eVqXV+j0XD77bfz0ksv0blz5zLHR40axfXXX8/48eOxWq08+uijHD16tMEN9C6eVrVMlySd0QvRiMuOT6A9adhVoivStk/hiqn2Y3XEPQNa8/v+JDbHpznKfow9w/VdmzGyY4QXIxNCCCEq1mBbGLZv386GDRsAmDx5slOyUGz69Ol06mRfsXXWrFmYzdXrPjBo0CAWLFhQbrJQbNy4cdx8880AxMfHs3v37mrdoz5wuXCbtDCIquo7yfnn/FTY+ol3YnFBo1F465bu+BucuyY9/fM+svKla5IQQoi6q8EmDIsWLXLsT5o0qdw6Go2G++67D4DMzEzWrFlTK7GMHDnSsR8fH18r96jLLK6mVZUxDKKqIntBzHXOZZs/hPx078TjQstQP54f4/wFQnK2iZeXHPBSREIIIUTlGmzCsHHjRgD8/f3p06ePy3rDhw937G/atKlWYjGZLn5Q1mrrxvzxnmS2uRrD4Mv5/PPsSNpBakGqFyITl5Urn3f+2ZQNm2Z5J5YK3NmvJcNiGjuV/bL7LCsONOzZ0oQQQtRdbk8YTpw4wfHjx4mJiXH3pd3q0CH7POjt2rVDp3M9lKNjx4sDFYvPcbd169Y59ou7QDUkrqZV3auxcOOiG7l/xf1ctfAqJq+YzI9HfiStIK28y4iGrmk36HqLc9m2TyGnbn0QVxSFt27pRqDR+e/Oc7/8RXpeOaudCyGEEF7m9kHPrVu3dvcl3a6wsJDUVPs31i1atKiwbqNGjfD39ycvL4+EhAS3x7J3716WLl0KQLdu3S4pYThz5kyFx8+dO+fYN5lMFBQUVPsetanAZP+QVLpL0nxzKnmWPABsqo3tSdvZnrSd17a9Rt+Ivlzd4mpGtBhBiE+IR+JUVRWT1USRrcj+ai3CYrOv4KtycaHBkvsaRYNBY0Cv0aPX6DFo7ftaRVsvB7cXFhaWu+8pysDp+BxYhKJeWL/FUoBlzZuYr3nD47FUJMQAz17bnmd+vfglRGpuEc/+vJeZt3Spl8+Gu3n7WRMNgzxnwlNK9japixrkLEklp0gNCAiotH5xwlA8Raq7mEwmHnjgAcfidK+99tolXadly5ZVrrtt27Y6N07i6GkNoCkz6Pm4KQfK6aFlU21sT97O9uTtvLnzTVrrWhOkBOGn+OGn8bO/Kn74Kr74KfaB00UUUaRe2EruX/jZpJowqSaKVPt+cR2TasKCBYtqwYLFbe9ZQUGHDh/FB1/FF6NiLPPqp/gRoAkgSBNEoBJIkCYIg2JwWwy1bf369V65b4/QoUSlrXX8rNn9NRsLu5Lv09j1SV7gq0KXRhoOZFxs6P39wHmCC84xqImsdF8d3nrWRMMiz5moTcVfZNdVDTJhKPktgcFQ+QcwHx8fALd/M//II48QGxsLwIQJExg7dqxbr3+5uDCEAV/FObvOVmyVn4uNE5YTtRFWrVJRMWPGrJrJVaueiPrgY08gNIH4KnV3ULgePb6KL74aX6dEyFfxxV/xJ0wTVmvfoh9pOo6W6ZvQqvaZhzSqlQ5Jv7C79UO1cr9LpShwR1sbb+5RyLde/F38dEJDS38rLSv/LkMIIYTwiAaZMBiNF+f3LyqqvM9wcTORr6/7PqC98cYbfP755wD069eP//73v5d8rcq6Sp07d47+/fsDMGDAAKKjoy/5XrUh9vc4OHcGI85TS+bpgBI5Q/ew7sRlxlFobbjNwiZMpNhSSLGleDuUGokOjmb20NmE+4bXyvVV38MQ+6nj55YZm4kY/xpqeIdauV9NBLU9z+ML9zt+tqoK8xMC+OmhfoT46r0YWd1WWFjo+MZ32LBhTn/XhXAXec6Ep9S13h+lNciEITDw4mJOVelmlJdn70dfle5LVfHpp5/y7LPPAvZB1cuWLcPf37+Ss1yrbBxGST4+Pm5NfNxCsfc7KjmGwQZk25yTuRcGvUDroNZsOLOB30/+zoYzGxp08nA5i8+K5/197zNzxMzaucHIGbDvOyiy//+tqDaMm9+FO+rWCtAAN/Vpzb7EPL7cdLGl7GxmIc8tPsLn9/VFo5HxDJUxGo117++aqHfkORO1qbg3S13VIBMGo9FIWFgYaWlplQ4YzsjIcCQM1Rkr4Mr8+fP5xz/+AdgHiK9atYrw8Nr5lvVyYbnQJ6nkLEk5Gg02nPtxh/iE4KvzZVTUKEZFjSLfnM+mxE2cyj5FlimLTFMmmaZMx36WKYssUxYAfjo/fPW++On88NP74auz7/vqfPHX++Ov98dP74efzu/izxfOMWqN+Gh9HJtBa8CoM2LQGtBpdCjYP9ApKI5uNgoKKipW1YrZaqbIWoTZZqbIVuTYN1lM5JhzyC7KJqcoh2xT9sX9omwyCjNIKUghJT+FXLN7x8/UBatOrSI2KZa+Tfu6/+L+4XDFP2D92xfLDi2BszuhuetplL3lmRs6svdMJjtPZTjK/jx8nv+ti+fhke28GJkQQgjRQBMGgM6dO7NhwwaOHTuGxWJxObXq4cOHHfs1nfJ08eLF3HfffdhsNpo1a8bq1aur1TpQX5mLp1UtMeg5U1N2xt/SsyH56f24pvU1FV5bVe3X9sasMwoKGkWDXqPHr4arVueb80kpSOF8/nlS8u2v+ZZ8N0XqPmazmfj4eIooIrRZKHnWPLKLsh1ban4qFvXi4PG3d7zN/NHz0WpqYf2RQY/A9jlQmHmx7M9X4d5f3H+vGtJrNfz37t6M/nADaSWmVn1v5RF6tgxhcLuG/aWCEEII72qwCcOQIUPYsGEDeXl57Ny5kwEDBpRbr+QaCYMHD77k+61evZrbb78di8VCWFgYq1atqnNjCbzFYi1euO1il6QMrXPC4Kvzxairft/R+jI9pZ/ej9b61rQOqtvTFhcUFLAycSUAo/qPKtN8P//wfF7f9rrj50Pph1gcv5jx7ce7PxhjMAx5Av546WJZ/J9wYgO0Ger++9VQ02AjH97Vi3u/2IbtQuOaTYXH5u9m6WNDaRosfaeFEEJ4R4Nd6fmmm25y7M+dO7fcOjabja+//hqAkJAQRo4ceUn32rx5M+PGjcNkMhEcHMyKFSvo0qXLJV2rPjJf+HRUcqXnrFItDME+wR6NSdSO22JuIzrYOVH+cPeH5JnzaueG/R+CgKbOZX/+B9S6OW3p4HbhTB/lPDA7La+Ih7/fhdla+axhQgghRG1osAlD//79GTrU/i3jF198wZYtW8rUee+99xyrO0+bNg293nnGkrVr16Io9n7rEydOLPc+e/bsYfTo0eTl5eHv78/SpUvp06fu9aH2JqtjpeeSLQzOXVQa+TTyaEyidug0Op7s96RTWWpBKl/89UXt3NDgB8Od70fCNji8tHbu5wZTh0dzVccIp7KdpzJ4Y9lhF2cIIYQQtavBJgwAs2bNwtfXF4vFwqhRo3jjjTfYunUra9asYcqUKcyYMQOAmJgYpk+fXu3rx8fHc+2115KZmQnAq6++SnBwMPv373e5nT9/3p1v8bLgGPRcYlpVaWGovwY3H8zQ5s5dgr468BVnc8/Wzg173QchpbpyLfsXFGTWzv1qSKNRmHl7T1o0cu7O9eWmE/y2L9FLUQkhhGjIGnTC0KtXLxYsWEBQUBC5ubk8++yzDBw4kCuvvJI5c+YA9mRh6dKlTlOxVtWGDRucEoAnnniCbt26Vbh9/PHHbnt/lwv7oGe1wjEM0sJQv/yr37/QKhdbkYpsRby/8/3auZnOAFe+4FyWcw5WvVB+/Tog2E/P//7WB4PO+f+Df/64l83xdXs1UCGEEPVPg04YAMaOHcu+fft44okniImJwc/Pj5CQEPr27ctbb73F7t27addOpjWsTRabDT1WdCVWds4sNWuOtDDUL22D23JnxzudylacXMGu5F21c8Nut0L0Vc5lu76G+DW1cz836NYimFdudB7rVGSx8eBXsexJyPROUEIIIRqkBp8wgH09hJkzZ3LkyBHy8vLIyMhgx44dzJgxAz8/19NhjhgxAlVVUVWVefPmlTk+ceJEx/Gqbi+//HLtvdE6ymx1bl0AyCzdwmCUFob6ZmqPqQQZgpzK3trxFja1Fgb3KgqMnQWGUosvLnkMTHV3jYs7+7Xkrv6tnMryiqxMnLuduOQcL0UlhBCioZGEQXidxWrDB+dVnUuvwyAtDPVPsE8w/+j5D6eyg2kHWRK/pHZuGNISrnnFuSzzNKz+d+3czw0UReHVm7pyQzfnmZ4y883c+8U2EtLr3locQggh6h9JGITXWWwqvkqphEHGMDQIt3e4nTbBbZzKZu2aRb65lj4I97kfWg9xLtv+KZwqO0taXaHVKLx/R0+GtndevC0528TfPt/G+exCL0UmhBCioZCEQXhduV2SSo1hKL3Ks6gf9Bo9T/Z1nvY0pSCFL/d/WTs31Gjgxg9B5zwDEYsfAXNB7dzTDXx0Wj69tw99WjsnzqfT87n3i+1k5he5OFMIIYSoOUkYhNdZbTanRdtUIKtUC0OIMcSzQQmPGdpiKIObO6+iPu/APJLzkmvnhmHRcOXzzmVpx2DtG7VzPzfxM+j4ckI/OjZ1nrHtSHIOE+fuIM9k8VJkQggh6jtJGITXWawqxhJdknIVBYuiONWRFob67cm+TzpNs2qymvg1/tfau+EVU6F5X+eyzbPh7M7au6cbBPvp+WbyAKLCnCdj2JOQyUPfxFJotnopMiGEEPWZJAzC68w2G8YSXZIyS63yDJIw1HfRIdHcGH2jU9ni+MWoqlo7N9RoYdx/QWu4WKba4NdHwFK3u/c0DvTh2wcG0CzY6FS+6VgaD34dS36RtDQIIYRwL0kYhNdZrKpTl6TSMyQZNAZ8S/c5F/XOze1vdvr5VPYp9qbsrb0bRnSE4TOcy84fhA3v1d493aRFIz++mTyAUH+DU/mGo6lM+HI72YVmF2cKIYQQ1ScJg/C60oOeS6/yHGIMQSnVRUnUPz0a96B1UGunssXxi2v3poMfh6bdnMs2vAunt9bufd2gXUQAX9/fn0AfnVP5jpMZ/O2zbWTk1e2WEiGEEJcPSRiE11lsNozKxW9Eywx4lu5IDYKiKIxtO9ap7PeTv2Oymlyc4QZaPYz7GDQlPnTbLPDjfZB9rvbu6yZdmwfz7QMDCPHTO5X/dTaLO+ZskSlXhRBCuIUkDMLrLKVbGEpNqSprMDQcY6OdE4acohzWJKyp3Zs26w5D/+VclptsTxostZisuEmPliEseGgg4QE+TuVxybnc/ukWzmTI4m5CCCFqRhIG4XVmqw1jyTEMWlnluaGKDIikf9P+TmWLj9VytySwj2WIvsq57Mx2WP5U7d/bDTo0DWTh3wcSWWog9Mm0fG7/ZAsnUvO8FJkQQoj6QBIG4XVWm4qvUmKWpFKDnhsZpYWhISk9W9LmxM2kFqTW7k01WrjlcwhxHkPBzrmwc17t3ttN2oT7s3DqoDJTriZmFXLbJ1s4nJTtpciEEEJc7iRhEF6lqioWm1qqhcG5S5K0MDQs17S+xmlWLKtqZenxpbV/Y79QuPN70Dt/4GbZk5Cwo/bv7wbNQ3z5ccpAOjRxXtwtNdfEHZ9uZdvxNC9FJoQQ4nImCYPwKovNPs9+RdOqyhiGhsVP78c1ra9xKvs1/tfaW5OhpKZd4cbZzmXWIvjxXsippZWn3SwiyMgPD11B9xbOiXZWgZl7vtjGL7vPeCkyIYQQlytJGIRXWaz2D4HGkl2SZAxDg1e6W9LRjKMcTj/smZt3uxUGPuJclnMOFk6o84u6FWvkb+C7BwbQL8o52TZbVZ5YsJf3V8V5JgETQghRL0jCILzKbLMBlbQwyBiGBqdf034082/mVFbrazKUdPUr0GaYc9npLbDyOc/FUEOBRj1f3z+AqztFlDk2a/VRHl+wh0Kz1QuRCSGEuNxIwiC8ytHCcCFhUCk7hkHWYWh4NIqGMW3HOJUtO7EMs81DKxhrdXDrPAhu5Vy+fQ7s+sYzMbiBr0HLp/f25f7Bbcoc+3VPIvd8vo10WeBNCCFEJSRhEF5lsTq3MOQrCuZSqzpLwtAwle6WlF6YzsYzGz0XgH8Y3PEN6JynKmXJY7D//zwXRw1pNQovju3Mf8Z1QVNqwfTYUxmM/3gT8Sm53glOCCHEZUESBuFV5uJBzxfGMJQevwCSMDRUUcFR9Gjcw6nMo92SACJ7wthZzmWqDf7vQTjwi2djqaF7B0bxxcR++BucW/BOpeVz88eb2XyslqeuFUIIcdmShEF4lbVUl6TMUqs86zQ6/PX+Ho9L1A2lWxnWnllLZmGmZ4PocScMesy5TLXCT5Ph4K+ejaWGRnaIYOHfB9Gs1AJvxTMozVwV52j1E0IIIYpJwiC8qnjQsyNhKNXCEOITglKqi5JoOK5rcx0GjcHxs8VmYfnJ5Z4P5Jp/Q/8pzmWqFX66Hw4t8Xw8NdA5MohFDw+ma/Mgp3KbCh+uPspdn23lbGaBl6ITQghRF0nCILyqeNBzcZekDE3ZhEE0XEGGIEa2GulUtviYh7slASgKXP8W9HvQudxmgYUT4bAHFpZzoyZBRn6cMpBrOjcpc2zHyQyu/2A9y/8654XIhBBC1EWSMAivMpca9JxVTguDaNhKd0van7af45nHPR+IosAN70Dfyc7lNgv8OAGOeKHlowb8DDo+vacPM67rgLbUaOjsQgtTv9vFs7/8RUGRTL0qhBANnSQMwquKV3o2UtzC4DyGQdZgEIMiBxHuG+5U9mu8l8YOKArc8C70meRcbjPDgnshboV34rpEGo3CP0a0Y+HfB9KikW+Z499vO824/27kSFKOF6ITQghRV0jCILzKYrWhxYpBsX+LKas8i9J0Gh2j24x2Klt0bBFpBWneCUijgdEzofd9zuU2Myy4Bw56octUDfVu1Yhl04YypnuzMsfiknO58aONfL7hOFabrA4thBANkSQMwqvMVtUx4BnKWeXZR1oYBNzYruyaDP9a9y/PLeRWmkYDY2ZBr3ucy61F8OO9sPEDUC+vD9dBRj2z7+rF27d2x1fv3NJnsth4dekhbv7fZmltEEKIBkgSBuFVVpvqGL8AZVd5lhYGARDTKIbBzQc7lcUmxzIzdqaXIsKeNIydDT3/VvbYHy/ZF3izeimhuUSKonB735b89tgQOjcLKnN8b0ImY2Zv4P1VcZgsMrZBCCEaCkkYhFeZbTaMF2ZIgnJaGGQMg7jg1cGv0sTPeVafbw99y5J4L05rqtHAjbOhz8Syx3Z9Dd/dCgWZno6qxqIbB/DLw4O4f3CbMsfMVpVZq48ydvZGdp/O8EJ0QgghPE0SBuFVltJdkmSWJOFCuG84H4z8wGldBoBXtrzCobRDXooK0GhhzAf2tRpKO74WvhgFGSc9HFTN+ei0vDi2Mwv/PpC2jcsunhiXnMvN/9vMf347SH6RxQsRCiGE8BRJGIRXWaw25y5Jsg6DqEDX8K48f8XzTmUmq4nH1zxORqEXv+1WFBg8DW7/BnSlZhtKPQKfXQUJ270TWw31iwpl2WNDeXhkdJnpV1UVvth4glHvr+ePg8mol9m4DSGEEFUjCYPwKrNNxffClKoFioJJEgZRifHtx3NHhzucyhLzEnly/ZNYbF7+prvzjTBpKfhHOJfnp8K8MfDXT96Jq4aMei1PXtuRxY8Mpktk2bENZzIKeODrWO6ft4OTqXleiFAIIURtkoRBeJXFasNXsbcwlG5dAAgxhng4InE5eKrfU/Rs3NOpbNu5bXy460PvBFRS8z7w4GqI6OxcbjXB/02G5U+DxVT+uXVcl8hgfn14ME9d1xGDruz/r2uOpDDq/fW8u+KIdFMSQoh6RBIG4VUlxzCUHr+gVbQE6gO9EZao4/RaPTNHzKSxb2On8rkH5vL7id+9FFUJIa3g/hXQ7uqyx7b9D764BtLiPR+XG+i0GqaOiOb3aUPp3ya0zPEiq42P1hzj6vfWseyvc9JNSQgh6gFJGIRXmW02l6s8B/sEoyhKeacJQWO/xswcMROdRudU/uLmF707CLqYMQjuWgB9J5c9dm4vfDr8su2iBNC2cQALHrqC9+/oQeNAnzLHE7MK+cd3u7jni23EJcvaDUIIcTmThEF4ldWmOrokZckMSaKaekb05NkBzzqVFVgKeGDlA+xP3e+lqErQ6mD0e/ZZlHRG52NFOfYuSkumgbnAK+HVlKIojO/Vgj+nD+fBoW3Qacom+JuOpXHtB+t5/IfdHE/J9UKUQgghakoSBuFVJVd6zihnwHPBnj2kf/0N2cuXYzp6FNV8eS2EJWrfbTG3cUv7W5zKsouyeWDlA+xM3umlqEpQFOg7CR5YDeExZY/vnAefXQkpRzwemrsEGvU8N7ozy6cNZVB0WJnjqgqL9iRy9cx1/PPHPTIwWgghLjO6yqsIUXtKTqtauoWhx5EiTv7zbvunjWJ6PT5RrTG0a4dPu3b4tGuPoXUrNL6+KEZfNEYfFF9fFL3eZXcm1WZDNZtRzRZUcxFqkfnCz+XsW8xgsaBaragWC1x4VS1WsFpQrbaK36ACilYLWq39VaO5+KrToRh80PgYUHx8UHyMF/eNRjQ+F96LdMuq1LMDnuVU9ilik2MdZXnmPP6+6u/MunIWgyIHeTG6C5p2hQfXwLInYe/3zsfOH4Q5I+C6N6D3BHuScRlq3ySQ7x4YwPL9Sbz620ESswqdjttU+HnXWX7dk8jNvZrz6JXtaRXm56VohRBCVJUkDMKrLDbVsdJz6TEMPTYnOycLAGYzpqPHMB09RoW9ojUax4duFOVCEmDfsFrd+yZqk6Kg8fNDExCAxt/fefMxAHXrg6XVaqVpUhJoNaRu347ez9+exBl8UIw+aHx80Pj54TdgAIaWLd12X4PWwMdXf8zjax5nc+JmR3mhtZBHVj/Ce8PfY2SrkW673yXzCYDx/4M2w2DpdDCX+KbdnG/vnrT/Zxg7C0LLrrJ8OVAUhRu6NWNEh8Z8su44X248Qa7JecYkq01l4c4z/LL7LLf2acE/RrSTxEEIIeowSRiEV5mtNvxczJIUcq4G/Z1tNtT8fKz5+TUJz/tUFVteHra8y6cLR/Es/bm7druso+j1NHv9dYLHjnHbfX11vsy+cjb/Wvcv1iSscZSbbWaeWPsEbwx9g+vbXO+2+9VIz7vs06/+NAmSS421OLEO/jcIrnwBBkyxryR9GfIz6PjnNTFMGhTF5xuPM3fTSfKLnJN1i03lhx0J/BibwOjukUwZ1pauzYO9FLEQQghXZAyD8CpX06rqLSq+qTKzSn2lms0kPvkkqXM+c+u0mwatgfdGvFcmMbCqVp5a/xS/HP3FbfeqscYx8MAf0Pf+ssfM+bDiGfhiFJyvAzM+1UAjfwNPXtuRDTNGMmV4W3z1ZRMgmwpL9iYyZvZG7v1iG5uOpcp0rEIIUYdIC4PwKrPN5ljpObPEN6lNM0Ap9Xmh3Zo/MZ87d6FL0lFMx45hOnYMa2qqW2NSDAb7GAiDAUWnA70ORauzjz3QaVF0+ov7isa5v3npvuc2G6rNZh8HYbNdHPdQPBaiqAhbURGqyYRa6NzfuyFImTkTc+JZmj7/vP137QZ6jZ43hryBr86Xn4/+7ChXUXlx84vkW/L5W6e/ueVeNab3hTHvQ8z18NvjkH3W+fjZWPhkKAx7EoY8ATqDV8J0h7AAH565vhMPDGnLp+vi+WbrKUyWsmOANhxNZcPRVLo1D2bK8LZc37UZ2nJmXxJCCOE5kjAIr7JYL06rWrKFITLNOVvQRUSgb9YMfbNm+PXu7XRMVVXHB26byYRaUHDxtbAQUFAMensSUHrT6S4mCHo96HReG2Ssqqp9nEXxeyksxJaf7+iSVGYrKvJKnBWxmC0cPx6PYrXRulkztFaL/b9FoQnVZMKamUnB3r1O52T+sADLuSSaz3wPjb+/W+LQarS8NPAlfHW+fHfoO6djb25/k/jMeJ7q/xQ+2rLrB3hFzCj4x1ZY/Qrs+Nz5mM0Ma1+Hg4vg+rfs4x8uY40DfXh+TGceGtaWOeuPM3/7afKKyo4r+utsFo98v5tWoUeYMCiK2/q2IMio90LEQgghJGEQXmW1qY6F2zJLTKsame5cz9DG9QBQRVFQjEYwGrk8e3vbKYqCYjCAwQCBl+cK1wUFBaStXAlA71Gj8PX1dTquqirp877i/FtvOZXnrlvHqfsm0PKT/6Fr7Lx686XSKBqe6vcUvjpfPv/L+UP4wriF7E/dz3sj3qNloPsGX9eIMci+ZkOXm2Hxo5BeaiXo8wfhq7EQfRVc/RI06+GdON0kIsjI82M68+iV7flm60nmbjpJWl7ZJPh0ej7/+e0g7608ws29mzNhYBTtm1ye/38IIcTlSsYwCK8yW20YKcKkQIHGdQuDoU2UhyMTtUFRFMImTaT5B+/bk6MSCg8c4OSdd2E6ftyt95vWexqP9XqszLFD6Ye4Y8kd/Hn6T7fdzy2iBsPUTTD4cVDKSYHjV8Onw+CnyZDuvt+VtwT76XnkyvZsevpKXr2pK61dzJaUX2Tl262nueb99fzt862sPpyCTYY5CCGER0jCILyquEtSZqmZYJqlO38S8KmghUFcfoKuu45Wc79EG+w8I4757FlO3nU3+bGxLs68NA92f5DXh7yOr865xSPHnMO0NdN4L/Y9zLY6tCig3heueQUeXA1NupVfZ/9P8FE/WPovyD3v2fhqgVGv5Z4rWvPn9BH89+7edKtgtqRNx9J4ZMFf/Ge3lj/OKiRnmzwYqRBCNDySMAivsg96LnKeUlVVq9UlSVye/Pr0ofX8+ehbtHAqt2VlcfrBhyiMi3Pr/cZGj+X7G74nKiiqzLF5B+bxwIoHSM5Ldus9ayyyFzy0BkbPhIAmZY/bLLDjM5jVE/58DfLTy9a5zGg1CqO7N2PxI4NZ8NAV3NCtqctBz+kmhSWntYx8fxP3fL6N/9t5hrxSaz4IIYSoOUkYhFfZp1U1OY1fCMqHgFITBknCUD/5tG1D1A/zMXbt6lSuFhRw9p//xObmdTTaNWrHD2N+4Pqosusx7Dq/i9t/u51NZze59Z41ptVDv8nw2G772gw+QWXrmPNg/dvwfldY8Rxkn/N8nG6mKAoD2obx8d/6sGHGSP4xIppQ//JniVKBjcdSmb5wL31f/YMnFuxhw9EUrNJnSQgh3EISBuFVFpsNo1JEhvZil6TSrQuKwYA+MtLDkQlP0YWH0/rrrwgYMcKpvOhYPEmvveb2+/nr/Xlr2Fs8N+A5dBrneR/SC9P5+x9/55kNz5BeWMe+rTf4w7B/wbS9MPARKG+GJ3MebPkIZnW3rxpdD8Y4AESG+DLjuo5sfvpK3rm1O12bl5M0XVBgtvLL7rPc+8V2Br25mld/O8jehExZ10EIIWpAEgbhVWarii9FZFU04Ll1K/u6B6Le0vj50XzWB/h06uRUnvV/P5O1eLHb76coCnd2vJNvrv+GSP+yyehvx3/jxkU38svRX+reB02/ULj2NXh0J/S8B5Ry/oxbi2DnPJjdxz44Oml/2TqXIaNey219W7LkkSF8f38fBjS24aN1/d8nOdvE5xtPMO6/mxjx7lreXXGEI0myIKQQQlSXJAzCqyxW+8JtGSXXYCg14NkQJd2RGgKNj499LQY/51lyzr38CqYTJ2rlnl3Du/Lj2B8Z1qLs2gZZpixe3Pwik1dO5kRW7dy/RkJawk3/halboPsd5c+opNrsg6M/GQzf3gpH/wBb2cXSLjeKotCrZTB3t7Pxah8r797ShZEdGle4wNuptHw+WnOMaz9Yz6j31zF79VFOpOZ5MGohhLh8ScIgvMpqtWJUzKVaGJzryPiFhsOnTRuavvKKU5man8/Zf07HZqqdmXCCfYKZfeVsXrjiBQL1Zef335G0g1sW38L/9v6PImvdWyyPiI5w8xx7i0Pf+0HrYjXoY6vgu1vgo76w7VMozPZsnLXEoIXRXZswd1J/tj5zFS+M6VxhlyWAuORc3lsVx8h31zLq/XW8s+Iwu09nYJMxD0IIUS5JGIRXKRb7h0DnMQyl12CQhKEhCR47huBbb3EqMx06xPm33q61e2oUDbd3uJ1fb/qVa6OuLXPcbDPz8Z6PuXXJraxNWFv3uikBhLaBMe/D43/BoMfAEFB+vfR4WD4DZnaGZTMg9Zhn46xFjQN9mDykDb89OpSVTwzj0SvbEeViXYdiccm5/HdNPOM/3swVb6zmmZ//4s/DyRSay64+LYQQDZUkDMKrtLYC4OIqz1qrSkSmcx0fWbStwWn63HMY2kU7lWV8/z3ZK1bW6n0b+zXm3eHv8t+r/lvu2IYTWSd49M9HuWvpXaw/s75uJg6BTWHUf+yJw4hnwbdR+fWKcmD7p/BRH/j2Fjj4K1jqz3oGMU0CmT6qA2v+NYIljwzhoWFtiQw2VnjO+RwT87ef5v55sfT+zyoe+jqW77adIiHdvbN1CSHE5UZXeRUhao/GYp8/tXgdhohM0JXqYi0tDA2PxteXFu+/z4nbbkctvDjH7rnnn8fYpTOGUms3uNuwFsPoO64v/9v7P745+A1W1fnb5gNpB3h49cN0D+/O1J5TGRw5GEVx3X/eK/xCYcRTMOgR2PcjbJ8D5w+WX/fYH/bNGAxdxkOPu6DlAKhr7+kSKIpCtxbBdGsRzNPXdWTX6QyW7E1k6V9JpOa6TpDyi6ysPJjMyoP2tTnahvszLKYxw2LCGdAmDH8f+edTCNFwSAuD8Cqdo4XB3iWpdHckbWhomdWARcPg0749TV943qnMlpPD2X9ORy2q/bEEfno/pvedzg9jfqBLWJdy6+xL3cfUP6Zy7/J72Zy4uW62OBj8oe8kmLoZJiyBjmPKn1kJoDDLPrvSl9fChz1hzeuQFu/JaGuVRqPQNyqUV8Z1ZduzV/F/Uwfy9+HRRDf2r/Tc46l5zNt8kvvnxdLz3yu5a85WPl57jL0JmbLegxCi3pOvSIRXaS90gShuYZABz6Kk4JtvJm/rNrKXLHGUFe7bR+LTT9P0xRfRhoTUegwdQzvy3Q3fsezEMj7Z+wmnc06XqbM3ZS9TVk2hZ+Oe3NP5Hq5qdVWZNR68TlGgzTD7lnkadnwOu76Ggozy62echHVv2bfmfaHLTdDpRmjU2pNR1xqtRqFP61D6tA7l6es7cjwllz8OJbPqYDI7T2VQUQ5gtqpsOZ7GluNpwBGCjDquaBvGkPbhDIoOJ7qxf91rcRJCiBqoY/+iiYZGay3EDORdGMNQdsBzlOeDEnWGoig0feklCvfto+jUKUd59rLl5G3dRpNnniZozJha/3Cm1WgZGz2W69tcz9LjS/l036ck5CSUqbcnZQ971u2hiV8T7uhwB7fE3EKoMbRWY7skIa3gmn/D8KfhwM+w9wc4ucF1/bOx9m3l89Cshz1x6DwOwtt7LuZa1rZxAA81DuChYdGk5ZpYcySF9XEpbDyWSnpexS1a2YUWp+5LTYJ8GBwdTr82ofRp3Yh2jQPQVDDlqxBC1HWSMAiv0quFjtYFKLtom4+0MDR42gB/mn/wPifvuNOpK5I1PZ3EJ2eQtehXmr70IoZWrWo9Fp1Gx7h247ih7Q38Fv8bn+77lLO5Z8vUS85P5sPdH/LJ3k+4rs113N3pbpfdmrzK4Ae97rFvmaftYx32LYDUONfnnNtr3/78DzTuaE8eOo2Bpt3rxZgHgLAAH27t04Jb+7TAZlM5kJjN+qMprItLYdepDCyVdEFKzjbx8+6z/Lzb/mwEGnX0btWIPq3tW4+WIQTIGAghxGVE/mIJr9JZCx3jFwAi052PS5ckAWDs1InId9/h3NPPYMt3nrEmb9Mmjo+9kfCHHyZs0kQUvb7W49Fr9IxvP54x0WNYfGwxc/bNITEvsUy9IlsRi+MXszh+MT0b9+T2DrdzVaur8NNXPNWnV4S0gmH/gqHTIXG3vdVh/0+Qn+b6nJTD9m392xDUHNqPgpjr7N2eDHXwPV4CjebioOmHR7Yjp9DMlvg0NhxNZVN8KsdTKl/8LafQwro4e8IBoFGgQ9MgerYMoVfLEHq2CpFWCCFEnSYJg/Aqvc1Ept7ewuBfoBJcavZCWeVZFAsaNQrf7t1JevVVcv9Y7XRMNZlImTmT7CVLaPrvV/Dr1csjMek1em6JuYUbo2/kj9N/8N2h79ibsrfcuntS9rAnZQ9+Oj9GRY3ixugb6dOkDxpXA5C9RVGgeW/7du1rcHytfcrVw0uhIN31edlnYedc+6YzQpvhEHOtfQuu3VmtPCnQqGdUl6aM6tIUgKSsQjYdsycPm4+lkZRdWMkVwKbCoXPZHDqXzfzt9jExAT46urcIpmfLEMcWEVTxNLBCCOEpkjAIr9LbCh1rMJRuXUCnw9Cy/nzQEDWnb9qUlh99RM4ff5D0n1exJCc7HTcdPcqpu+4mYMQIwqY85LnEQavn+jbXc32b6zmQeoDvD3/P8hPLMdvMZermW/JZdGwRi44tonlAc8ZGj+XGtjfSMqilR2KtFq0e2l9j38Z8AKc3w8HFcGgJ5Ca5Ps9SCEdX2LelQHgHaDMUooZA1FDwD/fUO6h1TYON3NKnBbf0aYGqqhxPzWPzsVS2n8xg16kMzmYWVOk6uSYLm+PT2Bx/sUUnItCHrs2D6RoZRJfmwXRtHkxksFEGVAshPE4SBuFVetXkWOW59PgFQ4sWHuleIi4/gVdfjd8VA0mZNYuMb7+FUtOZ5q5dS+7atfj170/436fgN3Cgxz5kdQnvwmtDXuOfff7J/x39PxYcXsD5gvPl1j2be5ZP9n7CJ3s/oXdEb66NuparW19NhF+ER2KtFq3u4ixL178NZ3bAocVw+Df7jEoVST1i33Z8bv85orM9cWgzFFoPtq8ZUQ8oikJ04wCiGwdw78AoAM5lFbDrVCY7T2Ww83QGBxOzMFurNg3r+RwTfx4+z5+HLz4/jfz0dG0eTOdmQXRoGkjHpkFER/jjo9NWcCUhhKgZSRiEVxlshWS5nCFJuiMJ17QB/jR97lmCbxzLuRdexHT4cJk6+du3c3r7dozduhE+5SECrrwSReOZLkBhvmE81P0hJnWdxOrTq1l0dBFbzm3BptrKrb/r/C52nd/FG9vfoEfjHlzT+hqubn01zQOaeyTeatFooNUA+zbqVUg9CnHLIW4FnN4KpRa6K+P8Qfu2/VP7z407XbjeQPuCcY2i6s0A6mbBvozu7svo7s0AKDRb2Xcmiz0JGexJyGTP6UwSsyrvxlQsI9/MhqOpbDia6ijTaRTaNvanY1N7EtGpWSAxTQJpHuIrrRFCCLeQhEF4lUEtIkNbfpckSRhEVfh260abnxaS/vU3pM2ZgzUzs0ydwr/+4swjj2JoF03YpEkEXXcdGv/KF+tyB71Gz3VR13Fd1HWczz/P0uNLWRy/mGOZx1yeszdlL3tT9vJu7Lt0DuvM1a2u5qrWV9EmqE3d+wCoKNA4xr4Nngb56RD/J8T9DkdXQWFm5ddIOWTfds6z/xzQBFpdAS2vsCcQTbuCzqc234XHGPVa+rcJpX+bi60q57ML2Z2QyZ6ETHafzuCvM1nkFVWSdJVgsanEJecSl5wLJYbQBPjoaBcRQIcmgbRvEkCHpvZEIiLQp+49R0KIOk0SBuFVBtVE8oVvfJuV7pIkazCIKlJ0OsLun0SjO24nY+FC0r+ci+V82W5ARcfiOffc8yS99jpB119HyM0349u7t8c+PEX4RTCp6yQmdpnIwfSDLD62mGUnlpFpynR5zsG0gxxMO8iHuz+kmX8zrmh2BQMjBzKg2YC6ucaDXyh0u9W+WS1wbg+cWA8nN9pbH8yVzypEbrJ9oPXBX+0/aw32aVub94EWfe2vvs1q9W14UkSQkWu7NOXaCwOpbTaVE2l57D+bxYHEbPafzWL/2SyyCy3Vum6uyWJvxUjIdCpvHuLLyzd24ZrOTdz1FoQQ9ZyiqqqsaV/PnTlzhpYt7QMq4+LiaN++biy2ZLWpfPPi7WxvvpuNRiPfvGvFUOJLtdbffoNf377eC1BUW0FBAStXrgRg1KhR+Pr6eiUOW1ERWYsWkfbZ55gTyi6wVpKhdWuCb7mF4HHj0Dfx/NgBs9XMhrMbWHVqFesS1pFjzqnyuR1DO9oTiGYD6dWkF7467/y+q8xqhrO74OR6OLEBErbZB0hfAtUYwnl9S7L8oogaMAZDqz4Q2hY09bMvv6qqJKQXsD8xiwOJWRxJyuHQuZwqD6ouLcBHx6anriTYT8aJVaSu/E0T9d/Ro0eJiYkBICEhgRYt6takL5IwNAB1NWEwWawsevlmFrc8RFKBgY8+cW6Cb79pI7qwMC9FJy5FXfvHVbVYyP59BWmfforp6NGKK2s0+A8dQtD11xM4YgTakBCPxFiS2Wpm67mt/HH6D/48/WeFLQ+l6TQ6Ood1pndEb3pH9KZXRC9CjCG1FqtbWEz2ReBOb7UnD6e3Qn5q5ee5ovOFiE72LkxNutlfIzqBbyP3xVzHZBeaiUvK4XBSDoeTsjl8LocjyTnkVKE14q1bunFHv9pf8PByVtf+pon6q64nDNIlSXiNxapiVOxjGEoPeNYEBaENrYPdLcRlRdHpCB4zmqAbrid37Toyf/yR3PXrwVbOwGObjbx168lbt55zWi1+/foRePXVBF51Jfpmnun+otfqGdpiKENbDOWFK15gZ/JOVp1axZrTa1zOtFTMYrOwL2Uf+1L2Me/APACig6Pp3aQ3vZv0pkfjHrQIaFG3+q7rfKBlf/sG9tmu0uIhYevFJKKiVadLsxRA4i77VlJgM3viENH5wmsn+yrVBs+MY6lNQUY9faNC6Rt18e+lqqokZ5s4kpzD0eQcjiTlEHc+lyNJ2RSaLz77S/aek4RBCFElkjAIr7FYVXwxkanR0q3UYrKGNlF164ONuKwpGg2BV44k8MqRmJPPk7X4V7J+/oWiEyfKP8FqJX/rVvK3biX51Vcxdu1K4NVXETDySnxi2nvk2dRpdAxoNoABzQbw3IDniM+MZ+u5rWw5t4UdSTsosFTeFSU+K574rHgWxi0EoJFPI7o17kbX8K50D+9O1/CuBPsE1/ZbqTpFgfB29q3XPfaywix7N6azsfbXM7GQV3HyVEbOOfsW/2fJm9lXtw6PgfD2ENbu4n5Ak8t6liZFUWgabKRpsJHhMY0d5Uv3nePh7y8mU5vjUzmfU0hEoCwQJ4SomCQMwmvMNht6TORoNUSmO3dH8pEVnkUt0TeJIPzBBwl74AEKdu8h8+f/I2fZcmz5+S7PKdy/n8L9+0n5YBbasDD8+vfDf8AA/PoP8EhyqygK7Rq1o12jdtzT+R7MVjP7UvfZE4jELexP3Y+1sqlMgQxTBuvPrGf9mfWOsqigKLqGd6VjaEfaN2pPh0YdCPOtQ10BjcEQPdK+gb0VIusMphObOb3lV4IKThNhS0apbhKBCpmn7NuxVc6HfILsCURYOwhtYx8b0ejCq3/4ZZtMXNUpAn+D1jEDk02FZfvOMXGw/L0VQlRMEgbhNRarik1nAmRKVeF5iqLg17sXfr17YXvmGbJXrSJn5SryNm1CNZlcnmdNSyNn+e/kLP8dAF3jxvj174/fgP749e2LISqq1td60Gv19GnShz5N+vBwz4fJM+exN2Uvu5J3sfv8bval7KPQWrXBxCezT3Iy+yS/Hf/NURZmDKNDaAdiGsU4tqjgKHy0dWBqU0WBkJbYOt7IwdP2b8ZHjRqFrzUXkvfbt6QLrylHoJzVtitlyi6/axOAIcCeRDRqY38NaW1fN6JRFAS3BJ2hRm+vNhn1WkZ1acovu886yhbvTZSEQQhRKUkYhNeYrTaKNEVAOas8S8IgPEjj70/ITTcRctNN2PLzyd20idw//iBn7TpsWVkVnmtJSSF76VKyly61XyswEN9u3TB274Zv9x74du+GLjy8VuP31/szKHIQgyIHAfbB0wfTD7IreRe7knexN2UvGaaMKl8vrTCNzYmb2Zy42VGmUTQ0D2hOdHA0bULaEB0cTdvgtrQNaYu/vg6MBQhoDAElWiLAPitTWvyFheIOXXxNPw5c4nwfRbmQ9Jd9K0OBoOYXEojW9v3g5hDU4sJrczAGXdp93WRsj2ZOCcOu05kkpOfTMtTPi1EJIeo6SRiE11hsKmatGaNJS2iu8zFZg0F4i8bPj6BrriHommtQzWbyY2PJ+WM1OWv+xJJ4rtLzbTk55G3eTN7mix+29ZGRGLt3x9i5M8ZOHTF27IiuceMKrlIzeq2eHo170KNxDyZ1nYSqqpzJPcNfKX/xV6p9O5R2iCJbUZWvaVNtJOQkkJCTwNoza52ORfhFEBUUReug1rQOau3Ybx7YHL3Gi9N2avUQ0dG+lWQusLc+pMbZV6lOO3rh9dglT/Nqp0L2Gft2amP5VXyCLiYSgc3s+0HFr5H2Mt9GtdbtaUi7xoT46cnMv9jysmRfIv8Y0a5W7ieEqB8kYRBeY7HaKNBaaZZeat50RcHQurV3ghKiBEWvx3/gQPwHDqTJ889hTkggf/t28rZtJ3/btnIXhyuPOTERc2IiOb//7ijThoVh7NABnwsJhE+HDvhERaEY3N+lRVEUWga2pGVgS25oe4M9JquZuIw49qXu40j6EY6kH+FY5rEqd2Uq6Xz+ec7nn2d70nancq2ipXlAc1oEtiAyIJLmAc0dW2RAJGHGMO9MbqD3hcie9q0km83+YT81DlKP2VsiMk5A+gnIOHlp3ZtKM2VDSrZ9ZWtXdL4Q2NS+BTRxfg1sCgFNISACfEOhmt3fDDoN13dtxvztpx1li/dIwiCEqJgkDMJrLDaVQq2FyPPO30DqmzdH41MH+koLUYKiKBhatcLQqhUht96KqqqYT51yJA/5sbFVTiDAPhaidEsEWq39HtFt8Yluh090WwzR0fi0aYPGz71dRvRaPV3Cu9AlvMvFmGxWTuecJi4jjiPpR4jLiCMuI45zeZW3rJTHqtqvdzrndLnHjVojkQGRNPVvSjP/ZjT1b+rYb+bfjCb+TTw7bkKjsc+cFNIK2l3tfMxmheyz9iQi/YT9NfMUZJyyJxOFme6Lw1JgT1QyXMziVUzR2gdh+ze2bwERF/cdW/jFV719DYEbe0Q6JQyHk+zTr7ZvEui+9yCEqFckYRBeY7Gq5GtsMn5BXJYURcEQFYUhKopGd9wOgDk5mYK9eynct4+CfX9RsH8/agWzL5VhtVJ04gRFJ06Q+8dqp0O6yGYYWrRE36ql/bVlCwytWqFv0QJtSIhbvqnXarS0CW5Dm+A2XBt1raM835zPiawTxGfFczzzOMez7FtCTgI2tZw1Laqo0FrouJYrocZQIvwiaOLXhAi/CMd+iC6EZGsygUogHll/VKO9mEy0HVH2eEHmhQTipD2JyDxtTzCyzthf89PKnlNTqhVyk+1bVRgCwD+cK8LaMzzgGtblXlwYavHeRKaP6uD+GIUQ9YIkDMJrzFYreVq1nBmSorwSjxA1pW/SBP2oUQSNGgWAarViio+3JxD792M6fITCuLjqJREXWBLP2cdQbN9e5pgmIAB98+boIyPRN2uGvvmF18hIdM0i0TUOr9HMTX56vzKtEQAmq4lT2ac4nX2ak9knOZV9yrGlF6a7uFr1pBemk16YzuH0wy7rvP1/bxNqDCXcN5wwYxhhvmGO/VBjKKG+ofZXYyiNfBqh1WhdXuuS+YbYt2Y9yj9uLrQnDtlnIevCa845yE68uFV7athqKsqFolyUjJN8ot3KSF4nCfsUuov3JvLPa2Jk/RshRLkkYRBeYzWbyNRq6FxqlWcfaWEQ9YSi1WKMicEYE0PIrbcCoNpsmE+fpvDwEQoPH7InEYcPY0lKuuT72HJzMR05gunIkfIr6PXoGzdG17QpuiYR6COaoGvaFH2TCHRNmti3sDA0vr7Vuq+P1scx7WppWaYsTmef5lTOKRJzE0nMTeRM7hkScxM5l3cOi81yKW+1XBabxTGOojIKCiE+IY5EIsQnxGlrZGzkeA02BBPkE0SgIRCNUsOpcvVGCIu2by7fSBHkJtmTh5wk+5abBDnJzq9uaK3wtebwrv4T7jU/g4qGU2n57DuTRY+WITW+thCi/pGEATh16hQffvghS5cuJSEhAR8fH6Kjo7n99tt5+OGH8XNT3+Hly5czZ84cduzYQUpKCo0bN6Zfv3489NBDXH/99W65x+VENeWRpWhoJmswiAZE0WgcXZmCrrvY7ceak0NRfDym+OOY4uMv7MdjPnvWvlhZTZjNjoHXFdH4+aFtHI4uLBxdWBja8DD7fngY2pBGaEMboQsNRRsaijY4GEXr+pv6YJ9gujXuRrfG3cocs9qspBSkcCbnDOfyzpGcn8y53HOcyztHUn4SSblJ5JhzavaeXVBRyTBlkGHKID4rvkrnKCgEGgIJ9gkm2BBMsE8wQYYggnyC7K8Ge1JR8ucgnyAC9AH46/3Raar4T63OcLHbU0UsRZCfCnkpkJtib5nIS4HcEq/5qZB3YXMxWHuI9gATbSuYa7X/+7N4b6IkDEKIcjX4hGHJkiXcc889ZGdnO8ry8/OJjY0lNjaWzz//nKVLl9Ku3aXPIGGz2XjooYf44osvnMrPnj3L2bNnWbRoEQ888ACffvopmlpe8KkusZoLsBRoMZb6t0wSBtEQaQMD8e3ZE9+ePZ3KbQUF9nENpxMwn0mgKOEM5oTT9tfERLBWvsJzVdny87GdOo35VPmDlJ0oCtqQEHvyEBJyYQsusW/fdCEhaIKC0QYFogkMQuPvh1ajdQxwdiW3KJdzeeccLQdJ+UmO/eS8ZJLzk8k0ZbrtvVdERSW7KJvsomwSSKj2+b46X0fyEGgIdLz66fwIMNjL/fX+jjrFm5/eD3/dhVe9P746X3tLh85gn4I1KLIKwatQmGVPHHKT4OeH7N2hLnha9wMbbN04prbgt32JPHtDJ7Qa6ZYkhHDWoBOG3bt3c8cdd1BQUEBAQADPPPMMI0eOpKCggB9++IHPPvuMuLg4Ro8eTWxsLIGBlzaDxHPPPedIFnr16sWMGTOIjo4mPj6et99+m927d/P555/TuHFjXn/9dXe+xTpNLcrHmOmcINl8fdBFRHgpIiHqHo2vr339hs6dyxxTLRbMSUmYExIutCCcs7+es79azp1DNbthKtDyqCrWjAysGVVfEA4ArRZtYCCaoKALr4FoAwLQBASiCQxAGxCIJiAATWAATQIDaeYfgCYgCm1AVzSN/e3H/P0pLCpi2Ypl5Kq5dO3flVxbLmmFaaQWpJJWcOG1MI2MwgzSC9M9llyUp8BSQIGlgJSClBpfy1fni5/ODz+9n2PfV+dr39df3He5jXiC1kufosmFRNNHMfOB/mPGF/2b5GzYfiKdgdFhNY5TCFG/NOiEYdq0aRQUFKDT6Vi5ciUDBw50HLvyyitp3749M2bMIC4ujvfee4+XX3652veIi4vj3XffBaBv376sX78e3wv9hPv168eNN97I8OHDiY2N5Z133uH++++vUWvGZcVcgH+m8zdZaoumMuhOiCpSdDoMLVpgaNGi3OOqzYYlNRXLuXOYk5OxJJ/Hcj7Zvp+UjCU5GfP586gFBZ4L2mrFmpmJNTOTmqQyiq8vMTodNoOBgPBwwgICaOPri8bP78IWjOLbFI2vHxpfX1RfA4U6yNWaydGaydIUkqWYyFIKyVDySVNzSVNzSLNmk1GURYYpA7M71l1ws+LkI63w0scxKK2ac11uHs+lpRNsU+mqOcnjup94x3Ini/cmSsIghCijwSYM27dvZ8OGDQBMnjzZKVkoNn36dObOncuhQ4eYNWsWzz33HHp99VYt/eCDD7BY7IP7Zs+e7UgWivn5+TF79mwGDhyIxWLh/fff57///e8lvqvLi7Uoj9AMBbjYP1sbVUnfXSFElSkaDfqICPQREbgazqyqKra8PCwpKVjT0rCkptmTjLRUrBf2renpWC60JthyamdsQXWpBQWOf8CK0qr34TngwtbcxXHFxwfFaETxCUT10WMz6LAatFj0Gsw6hSIdFOpUTFr74pMFGit5GjN5ShG5ShE5igmT1oZZC2YdjleLVrlYpgOLprj8Yh2rhlpb5bmYCiwP8Ge30Yc3UtLoW2ji79olrLH2ZPl+Pa/c2AWDruF0jxVCVK7BJgyLFi1y7E+aNKncOhqNhvvuu49nnnmGzMxM1qxZw6gL0yVWhaqq/PrrrwB07NiRK664otx6V1xxBR06dODIkSP8+uuvfPTRRw3iW/Z8U1qZAc++bRtI64oQdYSiKGgDAtAGBEAVxg+pRUVYMjKxZqRjzcjAkp7uaDGwZmZd3M/IsL9mZdWZJKOqVJMJ1WRyKtNe2DyxjJw9mVAw61QsmosJhUV7cd+qtdexFO9rcdS1ltx3vCqO8zP9YU9bhSRfHfc3jeCBrGymZmQxU/8/rs9/k43HUriyYxMPvFMhxOWiwSYMGzduBMDf358+ffq4rDd8+HDH/qZNm6qVMJw4cYLEC7OSlLyOq/scOXKEs2fPcvLkSdo0gIG/uUUZRJaaUjWwnSwcJERdphgM6JtEoG9S9bFGqtWKLS8Pa3YOtpzssq85udhycrDm5mDLycWWm4s1115my83FlpeH7RLWrrhc6S2gR8W3qLKa1Zk9y7muRQO7oxU2dlH4ql0QW41G3kpJ40XbNyzeEy0JgxDCSYNNGA4dOgRAu3bt0Olc/xo6duxY5pyqOnjwYLnXqcp9GkLCkJefQscs5zL/6PbeCUYIUWsUrRZtUBDaoCBcdwSqmGq12mdxysvDlptLfloasevXoykqontMDDqLBVt+gb1O8VaQj1pQYC8vsG9qfr5j31ZQABb3rQdxOdHZoN9RlX5HVQoMsD1Gx0udmzAuaAeWg0soKOqOr6EWFrgTQlyWGmTCUFhYSGpqKgAtXAwWLNaoUSP8/f3Jy8sjIaF60+mdOXPGsV/ZfVq2bOnYr8l9ylPyeosmXEuosXrjMGqLxmrjvNn5Wy+t1Ypy9KiXIhI1ZTKZHP9vxcfH4+PjiQ4coiEy+ftzOjQUgCadOlX7WdNc2LBYUIuKsF3ohlS82QoLoagItXgrNKEWmez7piLHPkVmbEXFP5svvppM9hmqLBb7dcxm+1ZUhGqxuHU63BozQ4fd9i3bz49e4V/x3bXf1fZQistG8TIo38+a4d1ARL2WXnhxkgVLHfwio0EmDDkl+tMGBARUWr84YcjNza21+/j7+zv2q3ufkslGZWZsOVGta3tc9+7ejkAIIYQQwmtSUlKIiorydhhOGuQ0CIWFhY59g8FQaf3ib64Kqjn1YHXuU/LbsereRwghhBBC1A/JycneDqGMBtnCYDQaHftFRZWOKsN0YbaM0lOiuvM+phIzclT3PpV1YTpx4gTDhg0DYPPmzdVqkRCiOs6dO0f//v0B+9TFzZo183JEor6SZ014gjxnwlMSEhIYNGgQUPm4V29okAlDyRWbq9L9Jy8vD6ha96VLvU/xPS7lPpWNjyipZcuW1aovxKVq1qyZPGvCI+RZE54gz5nwlJJfONcVDbJLktFoJCzMvpJlZQOGMzIyHB/mq/vNfMk/LNUZmCwtAEIIIYQQoq5okAkDQOfOnQE4duxYhaPRDx8+7Njv1KnTJd2j9HXcfR8hhBBCCCFqS4NNGIYMGQLYuwLt3LnTZb1169Y59gcPHlyte7Rp04bIyMgy1ynP+vXrAWjevHmdGxkvhBBCCCEargabMNx0002O/blz55Zbx2az8fXXXwMQEhLCyJEjq3UPRVEYN24cYG9B2Lp1a7n1tm7d6mhhGDduHIpMfi2EEEIIIeqIBpsw9O/fn6FDhwLwxRdfsGXLljJ13nvvPcfqztOmTUOvd17wbO3atSiKgqIoTJw4sdz7PP7442i19tUyH3300TJTphYUFPDoo48CoNPpePzxx2vytoQQQgghhHCrBpswAMyaNQtfX18sFgujRo3ijTfeYOvWraxZs4YpU6YwY4Z9VceYmBimT59+SfeIiYnhySefBCA2NpbBgwezYMECYmNjWbBgAYMHDyY2NhaAJ598kvbt27vnzQkhhBBCCOEGDXJa1WK9evViwYIF3HPPPWRnZ/Pss8+WqRMTE8PSpUudpkitrtdee43z58/z5Zdfsnv3bu68884ydSZPnsyrr756yfcQQgghhBCiNiiqqqreDsLbTp06xaxZs1i6dClnzpzBYDDQrl07brvtNh555BH8/PzKPW/t2rWOcQ0TJkxg3rx5Fd5n2bJlzJkzhx07dpCamkp4eDj9+vVjypQpXH/99e5+W0IIIYQQQtSYJAxCCCGEEEIIlxr0GAYhhBBCCCFExSRhEEIIIYQQQrgkCYMQQgghhBDCJUkYhBBCCCGEEC5JwiCEEEIIIYRwSRIGIYQQQgghhEuSMAghhBBCCCFckoRBCCGEEEII4ZIkDEIIIYQQQgiXJGGo506dOsX06dPp2LEj/v7+hIaG0q9fP9555x3y8/O9HZ6ow86fP89vv/3Giy++yPXXX094eDiKoqAoChMnTqz29ZYvX8748eNp0aIFPj4+tGjRgvHjx7N8+XL3By8uK7Gxsfz73/9m1KhRjucjICCAmJgYJk2axMaNG6t1PXnWRHmys7P54YcfmD59OsOHD6ddu3YEBwdjMBiIiIhgxIgRvP3226SlpVXpeps3b+aee+6hdevWGI1GmjZtyrXXXsv8+fNr+Z2Iy9lTTz3l+LdUURTWrl1b6Tl14m+aKuqtxYsXq0FBQSpQ7hYTE6MePXrU22GKOsrVcwOoEyZMqPJ1rFarOnny5Aqv98ADD6hWq7X23oyos4YOHVrhs1G83XfffarJZKrwWvKsiYqsWrWqSs9aeHi4+vvvv1d4rZdeeknVaDQurzF69Gi1oKDAQ+9MXC52796t6nQ6p2dlzZo1LuvXpb9pkjDUU7t27VJ9fX1VQA0ICFBfe+01dfPmzerq1avVBx980ClpyM7O9na4og4q+QepVatW6qhRoy4pYXj66acd5/Xq1UudP3++un37dnX+/Plqr169HMeeeeaZ2nszos6Kjo5WATUyMlKdNm2a+tNPP6nbt29Xt2zZos6cOVNt3ry54xm56667KryWPGuiIqtWrVJbtmyp3nfffeqsWbPUn3/+Wd2yZYu6adMmdcGCBeptt92marVaFVANBoO6Z8+ecq/zySefOJ6l6Oho9YsvvlC3b9+uLlq0SB05cmSVn1fRsFitVrVfv34qoEZERFQpYahLf9MkYainir+10+l06ubNm8scf/vttx0P2ksvveT5AEWd9+KLL6pLlixRk5KSVFVV1RMnTlQ7YThy5Ijj25S+ffuq+fn5Tsfz8vLUvn37Op5VafFqeEaPHq0uWLBAtVgs5R5PSUlRY2JiHM/eunXryq0nz5qojKtnrKRffvnF8ayNHz++zPG0tDQ1ODjY8UVKSkpKmXuMHTu2Sh8GRcPy/vvvq4DasWNH9Zlnnqn0Galrf9MkYaiHtm3b5ngQp0yZUm4dq9WqdurUSQXUkJAQtaioyMNRisvNpSQMU6dOdZyzZcuWcuts2bLFUecf//iHGyMW9cWSJUscz8ijjz5abh151oS7dOjQwdE1qbS33nrL8QzNnz+/3PMTEhIcLRU33HBDbYcrLgOnTp1SAwICVEBdu3at+tJLL1WaMNS1v2ky6LkeWrRokWN/0qRJ5dbRaDTcd999AGRmZrJmzRpPhCYaEFVV+fXXXwHo2LEjV1xxRbn1rrjiCjp06ADAr7/+iqqqHotRXB5Gjhzp2I+Pjy9zXJ414U6BgYEAFBYWljlW/O9rUFAQN998c7nnt2jRgquvvhqA1atXk5OTUzuBisvGww8/TG5uLhMmTGD48OGV1q+Lf9MkYaiHimcU8ff3p0+fPi7rlXxoN23aVOtxiYblxIkTJCYmAlT6B7L4+NmzZzl58mRthyYuMyaTybGv1WrLHJdnTbjLkSNH2LNnD2D/oFZSUVER27dvB2DgwIEYDAaX1yl+zkwmE7GxsbUTrLgs/Pjjj/z222+Ehoby7rvvVumcuvg3TRKGeujQoUMAtGvXDp1O57JeyT+GxecI4S4HDx507Jf+h7c0eRZFRdatW+fY79SpU5nj8qyJmsjPz+fo0aPMnDmT4cOHY7FYAHj88ced6sXFxWG1WgF5zkTVZGZmMm3aNADeeustwsPDq3ReXfyb5vrTpLgsFRYWkpqaCtibRSvSqFEj/P39ycvLIyEhwRPhiQbkzJkzjv3KnsWWLVs69uVZFCXZbDbefPNNx8+33357mTryrInqmjdvnssuuwBPP/00d999t1OZPGeiumbMmEFSUhKDBw9m8uTJVT6vLj5rkjDUMyX7SgYEBFRavzhhyM3Nrc2wRANUnWfR39/fsS/Poijp/fffd3QDufnmm8vtZinPmnCXnj17MmfOHPr161fmmDxnojo2bNjA559/jk6n45NPPkFRlCqfWxefNemSVM+UHKRVUf/KYj4+PgAUFBTUWkyiYarOs1j8HII8i+KidevW8fTTTwMQERHB//73v3LrybMmquumm27ir7/+4q+//mL79u3Mnz+f8ePHs2fPHu666y5+++23MufIcyaqqqioiIceeghVVXniiSfo2rVrtc6vi8+aJAz1jNFodOwXFRVVWr94MKGvr2+txSQapuo8iyUHtcqzKAAOHDjA+PHjsVgsGI1GFi5cSERERLl15VkT1RUSEkLXrl3p2rUr/fr148477+Tnn3/m66+/5vjx44wbN4558+Y5nSPPmaiq119/ncOHD9OqVSteeumlap9fF581SRjqmeLp4KBqTVN5eXlA1bovCVEd1XkWi59DkGdR2GcIGTVqFBkZGWi1Wn744QeGDRvmsr48a8Jd7r33Xm677TZsNhuPPPII6enpjmPynImqOHz4MG+88QYAs2fPduoyVFV18VmTMQz1jNFoJCwsjLS0NKdBM+XJyMhwPGglB80I4Q4lB2pV9iyWHKglz2LDlpiYyNVXX01iYiKKovDll18ybty4Cs+RZ02407hx4/jxxx/Jy8vj999/dwx+ludMVMX7779PUVERbdu2JT8/nx9++KFMnf379zv2//zzT5KSkgAYO3Ys/v7+dfJZk4ShHurcuTMbNmzg2LFjWCwWl1OrHj582LFf3lSFQtRE586dHfsln7XyyLMoAFJTU7nmmms4fvw4YP92rniByYrIsybcqXHjxo79U6dOOfZjYmLQarVYrVZ5zoRLxV2Ejh8/zl133VVp/f/85z+O/RMnTuDv718n/6ZJl6R6aMiQIYC9mWrnzp0u65Wc23zw4MG1HpdoWNq0aUNkZCTg/KyVZ/369QA0b96cqKio2g5N1EFZWVlce+21jvnH33zzTR5++OEqnSvPmnCns2fPOvZLdvEwGAz0798fgC1btlTYt7z4OfTx8aFv3761FKmor+ri3zRJGOqhm266ybE/d+7ccuvYbDa+/vprwD74a+TIkZ4ITTQgiqI4upIcPnyYrVu3lltv69atjm9Ixo0bV62p50T9kJ+fz+jRo9m1axcAzz33HE899VSVz5dnTbjTwoULHfvdunVzOlb872t2djY///xzueefOXOGP/74A4CrrrrKqT+6qP/mzZuHqqoVbiUHQq9Zs8ZRXvyBv07+TVNFvTR06FAVUHU6nbp58+Yyx99++20VUAH1pZde8nyA4rJz4sQJxzMzYcKEKp1z5MgRVavVqoDat29fNT8/3+l4fn6+2rdvX8ezGhcXVwuRi7rMZDKpo0aNcjxb06ZNu6TryLMmKjN37ly1oKCgwjozZ850PItt2rRRLRaL0/G0tDQ1ODhYBdTWrVurqampTsctFos6duxYxzXWrFnj7rch6oGXXnqp0mekrv1NkzEM9dSsWbMYPHgwBQUFjBo1imeffZaRI0dSUFDADz/8wJw5cwB7n8zp06d7OVpRF23cuJFjx445fi5eQRzg2LFjZaYcnDhxYplrxMTE8OSTT/Lmm28SGxvL4MGDeeqpp4iOjiY+Pp633nqL3bt3A/Dkk0/Svn37Wnkvou666667WLlyJQBXXnklkydPdhoQWJrBYCAmJqZMuTxrojIvv/wy06dP55ZbbmHIkCFER0cTEBBATk4Of/31F9999x2bNm0C7M/ZnDlz0Gq1TtcIDQ3lrbfe4u9//zunTp1iwIABPPfcc3Tr1o3ExEQ++OAD1qxZA9if7REjRnj6bYp6os79TavVdER41eLFi9WgoCBHFlt6i4mJUY8ePertMEUdNWHCBJfPTnmbK1arVb3//vsrPHfy5Mmq1Wr14LsTdUV1njEufKvrijxroiKtW7eu0jPWokULdeXKlRVe68UXX1QVRXF5jRtuuKHS1gzRcFWlhUFV69bfNBnDUI+NHTuWffv28cQTTxATE4Ofnx8hISH07dvXkZm2a9fO22GKek6j0fDFF1+wdOlSxo0bR2RkJAaDgcjISMaNG8eyZcv4/PPP0Wjkz5GoGXnWREVWrFjBe++9x80330z37t1p0qQJOp2OwMBAoqOjueWWW5g7dy5HjhzhmmuuqfBar7zyChs3buTuu++mZcuWGAwGIiIiuOaaa/j+++9ZunSp0+JbQlyKuvQ3TVFVVa31uwghhBBCCCEuS/I1ixBCCCGEEMIlSRiEEEIIIYQQLknCIIQQQgghhHBJEgYhhBBCCCGES5IwCCGEEEIIIVyShEEIIYQQQgjhkiQMQgghhBBCCJckYRBCCCGEEEK4JAmDEEIIIYQQwiVJGIQQQgghhBAuScIghBBCCCGEcEkSBiGEEEIIIYRLkjAIIYQQQgghXJKEQQghhBBCCOGSJAxCCCGEEEIIlyRhEEIIIYQQQrgkCYMQQtTQyy+/jKIoKIri7VA4efKkI5Z58+Z5O5wGZ968eY7f/8mTJ2t8vS+//BJFUejWrRuqqtY8wDpq4cKFKIpCTEwMZrPZ2+EIIUqRhEEIUa9YrVaCgoJQFIXevXtXWFdVVcLCwhwf8L788ssK63/11VeOuv/73//cGXaddObMGV5++WWGDh1K48aN0ev1+Pr60qJFC4YNG8a0adP46aefyMrK8nao9VJubi7PPvssAC+++GKdSEhLGjVqFIqiMG3atBpf65ZbbqFz584cPXqU2bNnuyE6IYQ7ScIghKhXtFotgwYNAmDv3r1kZ2e7rHvgwAHS09MdP2/YsKHCa5c8PmzYsBpGWrd99tlndOjQgVdeeYWNGzeSmpqKxWKhsLCQs2fPsmHDBj788ENuu+02pkyZ4u1w66UPP/yQ5ORkOnfuzK233urtcJzk5OSwbt06AMaOHVvj62k0Gp577jkA3nzzTfLy8mp8TSGE+0jCIISod4o/zNtsNjZv3uyyXnECoNVqnX6urH54eDidO3d2lL/88suoqlpvuozMnz+fhx56iPz8fIxGI1OnTmXRokXExsayY8cOfv31V1544QV69erl7VDrrYKCAmbOnAnAE088UedaF1asWEFRURFBQUEMHz7cLde84447aN68OSkpKXz66aduuaYQwj0kYRBC1Dslv/1fv369y3rFx2677TYA4uPjSUxMLLfu+fPniYuLA2DIkCF17gOcu1itVv75z38CEBgYyLZt2/j4448ZN24cffr0oW/fvtx44438+9//ZteuXRw8eJCbb77Zy1HXP99++y1paWn4+PjUudYFgCVLlgBw7bXXotfr3XJNrVbLHXfcAcBHH32EzWZzy3WFEDUnCYMQot7p168fRqMRqLjVoPjYrbfeSnR0dIX1G0p3pG3btpGUlATAlClT6N69e4X1O3XqxO233+6J0BqUL774AoDRo0cTEhLi3WBKsdlsLFu2DIAxY8a49dp/+9vfADhx4gRr1qxx67WFEJdOEgYhRL3j4+ND//79AdixYwcmk6lMnRMnTnD27FnA3mIwZMgQ4NIShspmSYqKikJRFCZOnAjAkSNHePDBB4mKisLHx4cmTZowfvx4tm7dWul7s1qtfPzxxwwYMICgoCCCg4Pp3bs37777brnvs7pOnz7t2G/Xrt0lX6e82ZoWLlzI1VdfTUREBL6+vnTs2JFnnnmGzMzMKl1zzZo1TJgwgbZt2+Ln50dQUBDdunXjySefdNky5O5rZGRk8PTTT9OxY0d8fX2JiIjg6quvZuHChVW6f1WcOnWKbdu2AfbBwK6sXbvW8Tteu3YtqqryxRdfMGTIEMLCwggKCqJ///588803TucVFRXxySefcMUVVxAaGkpgYCCDBw/mxx9/rFJ8W7duJTU1FY1Gww033FDm+M6dO5k8eTIxMTH4+/tjNBpp2bIlffr04eGHH2bx4sUuu+/17t2bNm3aAPaucUKIOkIVQoh66Pnnn1cBFVDXrVtX5vi8efNUQG3fvr2qqqr62WefqYDarVu3cq/Xu3dvFVCDgoJUi8XidOyll15y3Ks8rVu3VgF1woQJ6s8//6z6+fk56pfctFqt+sMPP7h8Tzk5OerQoUPLPRdQe/fure7atcvx89y5c6v427ro//7v/xznT5s2rdrnFztx4oRTHPfff7/LuCMjI9VDhw65vFZBQYF65513ujwfUP39/dXFixfX6jUOHjyoRkZGujx/0qRJ6ty5cx0/nzhx4pJ+d8XPJqDGx8e7rLdmzRpHvZUrV6pjx451Gdtjjz2mqqqqpqenq8OGDXNZ77XXXqs0vqeffloF1MGDB5c5NnPmTFWj0VT4ewbUnJwcl9cv/u/UvHnzKvy2hBCeIAmDEKJeWrlypePDyauvvlrm+OTJkx0f8lRVVQ8dOqQCqqIoanp6ulPd7OxsVavVqoB63XXXlblWVROG3r17q0ajUW3Tpo360UcfqVu3blW3bNmivvzyy6rRaHQkJOfPny/3OuPGjXPcp3///ur8+fPV2NhYdenSpeptt92mAmq/fv1qlDAcP37ccb7RaFRXr15d7WuoqnPCUBxTyZiXLVum3n777Y46rVq1UrOzs8tcx2azqaNHj3bUGzt2rPrNN9+omzZtUrds2aLOmjVLbdWqlQqoBoNB3bFjR61cIysrS23ZsqXjGnfccYe6bNkyNTY2Vv3+++/Vvn37lvn9X2rCUPxshoWFVVivZMIwYMAAFVD/9re/qUuXLlV37typzp8/X+3QoYOjzqpVq9Qbb7xR1el06tSpU9WVK1eqO3fuVL/44gtHIqTVatX9+/dXeN8uXbqogPrmm286le/du9eRLLRp00Z977331NWrV6u7d+9W169fr3722Wfq3Xffrfr7+1eYMMycOdMR89GjR6v+ixNC1BpJGIQQ9VJOTo6q0+lUQL322mvLHI+JiVEB9csvv3SUhYeHq4C6ZMkSp7q///674wPM66+/XuZaVU0YALVPnz5qVlZWmTrffvuto87MmTPLHP/tt98cx2+44QbVbDaXqfPKK684fYt7KQmDqqrqmDFjnK7Tr18/9cUXX1SXLVumpqSkVOkaJROGimL+97//7ajz5JNPljk+Z84cFVD1er26fPnycu+Vnp7u+BBb3rfe7rjGv/71rwqfgaKiInXUqFFO7/lSE4ZOnTqpgHrVVVdVWK9kwgCoH3zwQZk6586dUwMDA1VAbdy4saooivrLL7+UqVfyw35xa0R5SiaUpROLF154wdFSk5SU5PIamZmZqtVqdXl83bp1jntU1OImhPAcSRiEEPVW8be9gYGBTt2IkpOTHR9I4uLiHOXF3+DPmDHD6TrPPfeco/7GjRvL3Kc6CcPevXvLrWOz2Rzf8o4fP77M8RtuuEEFVB8fH/Xs2bPlXsNqtapdu3atccKQkpLi9E156S0mJkZ95JFH1J07d7q8RsmEoaoxh4aGqiaTyXHMZrOp0dHRKqBOnz69wpiXLVtW7n9Td1zDZDKpjRo1UgG1e/fuqs1mK/f8hIQEVa/X1zhhKP6Af9ddd1VYr3QLgyv33XefU8uIK8VdlXr16uWyzocffuhoQSjtwQcfrPT8qihu7XOVnAkhPE8GPQsh6q3iwck5OTns2bPHUV48nWqTJk1o3769o7x44HPpqViLBzwbjUb69et3yfF069bN5axDiqI41jU4fvy40zGr1cratWsB++q6kZGR5V5Do9EwYcKES46vWHh4OJs2bWLOnDnlrpYdFxfHRx99RJ8+fbj33nsrXWSrqjGnp6eza9cux7GDBw8SHx8PUOnUoiUHom/ZssWt19i5cycZGRkATJgwweXg9hYtWjBq1KgK71EZk8lETk4OAI0aNaryeXfeeafLYz169KhWvdLPX0nF06mWt1hbs2bNAPvvfPv27RUHXIHQ0FDHfvGMXUII75KEQQhRbw0dOtSxX3KWo+L94gShdP2dO3dSUFAA2GeUKf7wM2DAAAwGwyXH07FjxwqPF39QKv7AWCw+Pp78/HyAShOW4tmhakqv1/Pggw+yc+dOzp49yw8//MC//vUvhg4d6jTv/rfffsuNN96I1Wp1ea3qxPzXX3859mNjYx37AwcOdMwIVN4WEBDgqFvyQ6Y7rlEyptr+/Zdcebw6CUNMTIzLYyWnZa1KvdLPX7HKVne+66670Ov1mEwmBg8ezNixY/nkk0/Yv39/tRY1LPm+ZcVnIeoGSRiEEPXW0KFDHd8GVyVh6N27N35+fpjNZscUpzt27KCwsBCo+foLfn5+FR7XaOx/kkt/+C75ITIiIqLCazRp0uQSo3MtMjKSO+64g3feeYf169eTlJTEM88844j3zz//rHAKzOrEXPK9nj9//pLiLU6u3HUNT/7+i9cPARxJa1VU9GwV/3eqaj1XC6YVr+4cGBhY7urOHTt2ZP78+TRq1AiLxcJvv/3G1KlT6datGxEREdx7772VrqYOzu/bXYvCCSFqRuftAIQQoraEhobSpUsX9u/f7/igkp2dzd69e4GyCYNer6d///6sXbuW9evXM3LkyDq3YFtdWGE6NDSU119/HVVVefPNNwH7Ggv33HNPufUvNeaSidOSJUuIioqq0nklP9S74xol1fbvPyQkBJ1Oh8VicUpU6oLffvsNqHh151tuuYWrr76aBQsWsGLFCjZs2EBKSgqpqal8++23fPvtt0yYMIEvv/zSKZEpqeT7rmuL1gnRUEnCIISo14YNG8b+/ftJSUnh8OHDnDhxApvNRkBAgGPMQElDhgxh7dq1jkSheDyDXq9n4MCBHo29WMkuGsnJyRXWrey4Oz344IOOhOHYsWMu61Un5pL918PCwhz7ISEhdO3atdoxuuMapX//FXXrqenvX1EUwsPDSUpKcoybqAtKru5cXnekkoKDg3nooYd46KGHADh06BC//vors2fPJjExka+++opevXoxbdq0cs8v+b5btWrle+51gwAAB3RJREFUpncghKgJ6ZIkhKjXSo9jKE4ErrjiCrRabZn6xa0OW7duxWQysXnzZsDeXcnf398DEZcVHR2Nr68vYO8iVZHKjrtTyYHMFX3zXp2YS36gL5nQbdq06VJCdMs1unXr5tj3xO+/+H5xcXE1vpa7bN26lZSUFJerO1ekU6dOPP3002zdutXx/1BFq0qXfN9dunS5tICFEG4lCYMQol4r2Y1o/fr1jhaD0t2Rig0cOBCtVkteXh7z5s0jKyurzHU8TafTMWLECABWrlzJuXPnyq1ns9n46quvanSv6gxOLTmguG3bti7rVTXmRo0aOc3K1Lt3b1q0aAHAnDlzHGNJqsMd1+jTp4+jleGbb75x+Ts6e/YsK1eurPb1SytOco8cOeJyALKnFc+ONHDgQMLDwy/pGi1btnS0zqSmprqsV5x06fX6cmfpEkJ4niQMQoh6LTIykujoaADWrFnj+JBbsuWhpKCgIMc3vG+//baj3NvjF6ZOnQrYp92cMmVKubMSvfHGG04z+lyK5cuXc/vtt7N79+4K66Wnp/PYY485fh43bpzLuhXF/Oabbzpivv/++/Hx8XEc02g0PPvss4B9qs/77rsPk8nk8j7Z2dl89NFHTmXuuIaPjw+TJk0CYM+ePbzzzjtlzrNYLDz44IMUFRW5vHZVFT+bNpvNKSnzpuKEYcyYMS7rLFq0iMzMTJfHExISOHz4MABt2rRxWa94VrKBAwc6zVwlhPAeGcMghKj3hg4dSnx8PGfPngXs39hfccUVLusPGTKEPXv2OOaj12g0LlskPGXs2LGMHTuWJUuWsGTJEgYPHswTTzxB+/btOX/+PPPmzWPBggX07du3Rh8ybTYbCxcuZOHChfTo0YPRo0fTr18/mjVrhsFg4Pz582zcuJE5c+Y4ZiDq06dPhes/9O3bt9yYv/rqK3744QfAvobBCy+8UObcv//976xatYpffvmFhQsXsmvXLqZMmUL//v0JDg4mOzubw4cPs3btWhYvXozRaOSRRx5x+zVefPFFfvzxR86cOcNTTz3Fnj17uO+++4iIiCAuLo6ZM2eyY8eOGv/+AQYNGkTjxo1JSUlh9erVjBw5skbXq6mTJ09y4MABoOLxCx988AF/+9vfGD16NFdeeSWdOnUiODiYjIwMYmNjmT17tmMGpL///e/lXiMnJ8fRwjB+/Hg3vxMhxCXz7rpxQghR+7788kunlYr79etXYf0ffvjBqX6PHj0qrF/VlZ4nTJhQ4XUmTJigAmrr1q3LPZ6dna0OHjzY5QrMvXr1Unfu3FmjlZ43btyo+vv7u7xH6e2aa65RU1NTy1yn5ErPc+fOVSdOnOjyGs2aNVMPHDjgMqaioiJ16tSpqqIolcZT3grE7rrG/v371aZNm7o8b+LEiercuXNrvNKzqqrq9OnTVUBt27atyzolV3pes2aNy3pVjcnVc1zR6s4lDR8+vNLfrUajUf/zn/+4vMa8efNUQNXpdOq5c+cqvJ8QwnOkS5IQot4r3Z2ostaC0t2VvN0dqVhgYCBr165l9uzZ9OvXj4CAAAIDA+nZsydvvPEGmzdvdppl6FIMHjyYlJQUFi9ezD//+U+GDx9OZGQkPj4+6HQ6QkND6d27N1OmTGHNmjWsXLnSaSYiV+bOncv333/PiBEjCAsLw8fHh5iYGGbMmMGBAwfo3Lmzy3P1ej0ff/wxe/fu5dFHH6Vbt24EBwej1WoJDg6mZ8+eTJ48mZ9++olDhw7V2jW6dOnCgQMHmDFjBu3bt8fHx4fw8HBGjhzJ999/z9y5c6v2S66CBx98ELB3oypeE8RbKlrduaT58+czZ84c7r77bnr27EnTpk3R6XQEBATQpUsXpk6dyu7du3n++eddXuP7778H7K0LTZs2dd+bEELUiKKq1RjhJoQQQlTByZMnHf3U586dy8SJE70b0GXohhtuYPny5TzwwAN89tlnXokhJyeH8PBwioqKWLlyJddcc02t3evUqVNER0djtVrZsmVLhd0GhRCeJS0MQgghRB30xhtvoNFo+Prrr0lISPBKDCtXrqxwdWd3ev3117FarVx33XWSLAhRx0jCIIQQQtRBPXr04O6776aoqIg33njDKzEEBgby0ksvMXv2bAwGQ63dJyEhgXnz5qHVap1mJxNC1A0yS5IQQghRR73++utER0djNBpRVbXCBfJqw6hRoxg1alSt3ychIYFnnnmGtm3bOi2UJ4SoG2QMgxBCCLeTMQxCCFF/SJckIYQQQgghhEvSwiCEEEIIIYRwSVoYhBBCCCGEEC5JwiCEEEIIIYRwSRIGIYQQQgghhEuSMAghhBBCCCFckoRBCCGEEEII4ZIkDEIIIYQQQgiXJGEQQgghhBBCuCQJgxBCCCGEEMIlSRiEEEIIIYQQLknCIIQQQgghhHBJEgYhhBBCCCGES5IwCCGEEEIIIVyShEEIIYQQQgjhkiQMQgghhBBCCJckYRBCCCGEEEK4JAmDEEIIIYQQwiVJGIQQQgghhBAuScIghBBCCCGEcEkSBiGEEEIIIYRL/w+H2AVxDBK5BQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJECAYAAAC7A6POAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1gU1/oH8O/sUpbeBKlSRBRFg0FEqmCsYCxoDBoLam7ML4kl8aqJsZFrrFFjydWYGE2MLdFojF4jarCAJtbYsCDFXui97/7+IDsyW2CBbey+n+fhkZ2dnXN2HWDeOed9DyMSiUQghBBCCCGEEBl4mu4AIYQQQgghRHtRwEAIIYQQQgiRiwIGQgghhBBCiFwUMBBCCCGEEELkooCBEEIIIYQQIhcFDIQQQgghhBC5KGAghBBCCCGEyEUBAyGEEEIIIUQuChgIIYQQQgghclHAQAghhBBCCJGLAgZCCCGEEEKIXBQwEEIIIYQQQuSigIEQQgghhBAiFwUMhBBCCCGEELkoYCCEEEIIIYTIRQEDIYQQQgghRC4KGAghhBBCCCFyGWi6A0T1KioqcP36dQCAvb09DAzov50QQgghRFvU1NQgOzsbANC1a1cIBAIN94iLrhz1wPXr19GzZ09Nd4MQQgghhDTi/PnzCAwM1HQ3OGhKEiGEEEIIIUQuGmHQA/b29uz3p0+fhqenpwZ7Q3RZeXk5Tp8+DQCIiIiAiYmJhntEdBWda0Qd6Dwj6pKZmYmIiAgA3Os2bUEBgx6on7Pg6OgIV1dXDfaG6LLy8nK0adMGAODq6kp/XInK0LlG1IHOM6Iu5eXl7PfamGtKU5IIIYQQQgghclHAQAghhBBCCJGLAgZCCCGEEEKIXBQwEEIIIYQQQuTSvqwKQgjRcuXl5SgqKkJpaSlqa2s13R29JBQKYWdnBwB48OABeDy6/0WUj84zoiyGhoawtraGpaVlqzyPKGAghJAmKCwsxJMnTzTdDb0nEonYijW1tbUQCoUa7hHRRXSeEWWpqalBeXk5ysvL4eTkpOnuNBkFDIQQoqDy8nKpYEEby9/pC4ZhAND/AVEtOs9IS4lEInY0uqCgANbW1q2uRC+d/YQQoqCioiL2e0tLSzg6OoLP52uwR/pLKBSy/x+tdYifaD86z4iyZGdnIycnBwCQl5cHFxcXDfeoaejMJ4QQBZWWlrLfU7BACCFEUeJcGACoqqrSYE+ahwIGQghRkHhI2cDAgIIFQgghCuPxeOzfjZqaGg33pukoYCCEEEIIIUTFxPkwrREFDIQQQgghhBC5KGAghBACANi2bRsYhkFWVpamu0JUxMPDA/Hx8QrtGxkZicjISJW0e/LkSTAMg5MnTyrl+IQQ1aKAgRBCiFbZs2cPxo4diw4dOoBhGLkXrcnJybCxsQGfzwfDMJyvP//8k7Ovh4cHGIZB3759ZR7rm2++YV978eJFAMCKFSvAMAyuXLnC2VckEsHGxgYMwyAzM5PzXEVFBYyNjTFmzJhmvnv1Sk1NxaJFiyhI1KAlS5bgwIEDSj1mfHy81M+ErC9Fg8fmuH37NmbPng1/f39YWFjAyckJMTEx7M9Xc8XHx8Pc3Fzu8wzD4IMPPmhRGw0pKSnBwoULMXDgQNja2oJhGGzbtk1l7WkLKqtKCCEEADBu3DjExcXB2NhYo/3YuHEjLl26hMDAQOTm5ja6/9SpU9GzZ0/ONm9vb6n9BAIBkpKS8OzZMzg6OnKe27FjBwQCASoqKthtYWFhAOoCk+7du7Pbb968iYKCAhgYGCAlJQWenp7scxcuXEBVVRX7Wm2XmpqKhIQEREZGwsPDg/NcYmKiytqNiIhAeXk5jIyMVNZGa7FkyRKMHDkSw4YNU9oxp0yZwgmOMzMzsWDBArzzzjsIDw9nt7dv315pbUr69ttvsWXLFowYMQLvvfceCgsL8fXXX6NXr174/fff5Qbv2i4nJwefffYZ2rVrh1deeUVvRskoYCCEEAIA4PP5WlH9afv27XBxcQGPx4Ofn1+j+4eFhWHUqFGN7hcaGooLFy5gz549mD59Orv90aNHOHPmDIYPH459+/ax23v06AGBQIDk5GRMnTqV3Z6SkgI7Ozv06NEDycnJGDt2LPtccnIy26fWTpUX8zweDwKBQGXH13fBwcEIDg5mH1+8eBELFixAcHAw53xVpdGjR2PRokWc0YBJkybB19cXixYtarUBg5OTE54+fQpHR0dcvHgRgYGBmu6SWtCUJEIIIQDk5zAcOXIE4eHhMDMzg4WFBWJiYnDz5k3OPteuXUN8fDy8vLwgEAjg6OiISZMmKTRCIMnNza3JC2QVFxc3WqpQIBAgNjYWO3fu5GzftWsXbGxsMGDAAM52IyMjBAYGIiUlhbM9JSUFwcHBCA0NlfmctbW1QoGOWGRkJPz8/HDt2jX07t0bpqam8Pb2xt69ewEAp06dQlBQEExMTNCxY0ccP36c8/r4+Hip0QEAWLRoUYNVWbZt24Y33ngDABAVFcVOUxHfMW1ODoNIJMLixYvh6uoKU1NTREVFSZ0rgOwchpZ+DooQCoVYu3YtunbtCoFAAHt7ewwcOJAzTUY8pWXHjh3w9fWFo6MjIiMjcfr0aaW3xzAMSktL8f3336tlmpA8Hh4eGDx4MBITE+Hv7w+BQIDOnTvjl19+kdo3PT0d6enpjR4zICBAauqQnZ0dwsPDcevWLc72srIy3L59m13YTNnWr1+PLl26wNTUFDY2NujRo4fU74Hbt2/jwYMHjR7L2NhYaoRSH1DAQAghLSAUipBbUql1X0KhSCnvb/v27YiJiYG5uTmWL1+O+fPnIzU1FWFhYZzA4tixY8jIyMDEiROxfv16xMXFYffu3YiOjoZIpJy+yDN58mRYWlpCIBAgKiqqwTnSY8aMwfnz5zkXPDt37sTIkSNhaGgotX9YWBgeP37Mea8pKSkICQlBSEgIOz0JqLtYPnv2LIKDg5sc8OTn52Pw4MEICgrCihUrYGxsjLi4OOzZswdxcXGIjo7GsmXLUFpaipEjR6K4uLhJx5clIiIC06ZNAwDMnTsX27dvx/bt2+Hr69vsYy5YsADz58/HK6+8gpUrV8LLywv9+/fnLHrYEFV/DpMnT8aMGTPg5uaG5cuX4+OPP4ZAIJDKeTl16hRmzJiBt956C5988gny8vIQHR2NGzduKLW97du3w9jYGOHh4eznP2XKlCa1oSxpaWl48803MWjQICxduhQGBgZ44403cOzYMc5+r732Gl577bVmt/Ps2TO0adOGs+38+fPw9fXFhg0bFD5OTk6OzC9J33zzDaZNm4bOnTvjyy+/REJCAvz9/fHXX39x9vP19cX48eOb96b0AE1JIoSQFsgvq0LA4qbf6VS1S/P6ws68ZbkIJSUlmDZtGt5++21s3ryZ3T5hwgR07NgRS5YsYbe/9957mDlzJuf1vXr1wujRo5GcnMyZN60shoaGGDJkCF5//XU4ODggNTUVX3zxBcLDw3H27FlO3oFYnz594OjoiF27dmHevHm4desW/v77b6xduxYZGRlS+9fPY/Dw8MCzZ8+QkZGB0NBQvPrqq+DxeDh79iyio6ORmpqK/Pz8Zk1HevLkCXbu3InRo0cDAPr164dOnTphzJgxOHv2LIKCggDUXdQMGDAA+/bta/GdaC8vL4SHh2PdunXo169fiysiZWdnY8WKFYiJicFvv/3Gjm58+umnWLJkiULHUOXnkJSUhG3btmHatGlYu3Ytu33mzJlSQe2NGzdw8eJFdO/eHUVFRYiNjUXPnj2xYMECmXfdm9ve2LFj8e6778LLy0ttU4XkuXv3Lvbt24fY2FgAdcFOp06dMGfOHPTr108pbZw5cwbnzp3DvHnzWnSc0tJS2NvbK7Tv4cOH0aVLF/z8888talPfUcBACCFEpmPHjqGgoACjR4/m3Lnj8/kICgpCUlISu83ExIT9vqKiAiUlJejVqxcA4PLlyyoJGIKCghAUFARLS0vweDwMGTIEI0eORLdu3fDJJ5/g999/l3oNn8/HqFGj2IBhx44dcHNzQ3h4uMyAISQkBDwej81VSElJgaGhIQIDA2FiYoJu3bohJSUF0dHR7PSk5gQM5ubmiIuLYx937NgR1tbWcHFxYS+Sxe8ZgMy+atrx48dRVVWFqVOncqZCzZgxQ+GAQZWfw759+8AwDBYuXCj1nOTUreDgYAQEBEAoFAKomyY3ZMgQHDp0CLW1tQrl+jSlPW3g7OyM4cOHs48tLS0xfvx4LF++nFMooLkVtV68eIExY8bA09MTs2fP5jwXGRnZpJFIgUCA3377TeZzksGNtbU1Hj16hAsXLjSYb6DqkdDWjgIGQgghMqWlpQGouysvi6WlJft9Xl4eEhISsHv3brx48YKzX2Fhoeo6KcHb2xtDhw7FL7/8IvfCbsyYMVi3bh2uXr2KnTt3Ii4uTu4FnLW1Nbp06cIGAykpKejevTsbIIWEhHCeMzIykqrYpAhXV1epPlhZWcHNzU1qG1A3dUfb3L9/HwDQoUMHznZ7e3vY2NgodAxVfg7p6elwdnaGra1to/tKvgcA8PHxQVlZGbKzsxWaw96U9hT17NkzzmMrKytOsN4S3t7eUp+9j48PgLogoSXz9ktLSzF48GAUFxcjOTm5wbKoiuDz+QonTc+ZMwfHjx9Hz5494e3tjf79+2PMmDEIDQ1tUR/0DQUMhBBCZBLfXd2+fbvMiwUDg5d/QkaNGoWzZ89i1qxZ8Pf3h7m5OYRCIQYOHMgeR13c3NxQVVWF0tJSTlAjFhQUhPbt22PGjBnIzMxsdM2EsLAwbNq0CQUFBWz+glhISAi+++47VFdXIzk5GQEBAc2q/iPvjrW87fXvhsoLdmpra5vcD01ryeegD5ycnDiPt27dqpEk6aaoqqpCbGwsrl27hqNHjzapIIAy+Pr64s6dOzh06BB+//137Nu3D//973+xYMECJCQkqLUvrRkFDIQQ0gI2pka4NE/7ygPamLa8JKa4RruDg0ODd/Py8/Nx4sQJJCQkYMGCBex28QiFumVkZEAgEDR4F3P06NFYvHgxfH194e/v3+DxwsLCsHHjRhw/fhxXrlzBrFmz2OdCQkJQXl6Ow4cPIyMjAyNGjFDW21CYjY0Nm3hdn/iOf0OUOTXG3d0dQN3/u5eXF7s9OztbK0ZE2rdvj6NHjyIvL6/Ru/6yzt27d+/C1NRU4bnzirbXlP8DyQTkLl26KPzaxty7dw8ikYjTn7t37wKAzCpcihAKhRg/fjxOnDiBn376Cb1791ZGV5vMzMwMb775Jt588002gPn888/xySefUHlfBVGVJEIIaQEej4GdubHWffF4Lb8QHDBgACwtLbFkyRJUV1dLPZ+dnQ3g5d1fybu9X375ZYv70BBZFVGuXr2KgwcPon///g1WKnr77bexcOFCrFq1qtF2xDkJq1evRnV1NWeEwcPDA05OTlixYgVnX3Vq3749CgsLce3aNXbb06dPsX///kZfa2ZmBgAyA46m6tu3LwwNDbF+/XrOuaDq80BRI0aMgEgkknlXWfLcPXfuHC5fvsw+fvToEXteKbpWiaLtmZmZKfz59+3bl/MlOeLQEk+ePOGcM0VFRfjhhx/g7+/PGWFUtKwqULeo4p49e/Df//6XTaZWN8nSzkZGRujcuTNEIhHn95qiZVX1FY0wEEIIkcnS0hIbN27EuHHj8OqrryIuLg729vZ48OABDh8+jNDQUGzYsAGWlpaIiIjAihUrUF1dDRcXFyQmJiIzM7NZ7Z4+fZqteZ+dnY3S0lIsXrwYQF0p0IiICAB1i0AJBAJERESgbdu2SE1NxebNm2Fqaoply5Y12Ia7uzsWLVqkUH/atWsHNzc3nDt3Dh4eHnB2duY8HxISwia4amJedFxcHObMmYPhw4dj2rRpKCsrw8aNG+Hj48O56JXF398ffD4fy5cvR2FhIYyNjdGnTx84ODg0uR/29vb497//jaVLl2Lw4MGIjo7GlStXcOTIEakympoQFRWFcePGYd26dUhLS2Ony505cwZRUVH44IMP2H39/PwwYMAATJ06FSKRCFu2bAGAJk1hUbS9gIAAHD9+HKtXr4azszM8PT05Cd7q4uPjg8mTJ+PChQto27YtvvvuOzx//hxbt27l7CcuqdpY8vOXX36J//73vwgODoapqSl+/PFHzvPDhw9nA9aTJ08iKioKCxcuVPjnUlH9+/eHo6MjQkND0bZtW9y6dQsbNmxATEwMLCws2P18fX3Ru3dvhVZu3rBhAwoKCvDkyRMAwG+//YZHjx4BqAuSxDk2uoQCBkIIIXKNGTMGzs7OWLZsGVauXInKykq4uLggPDwcEydOZPfbuXMnpk6diq+++goikQj9+/fHkSNHpC6uFfHHH39IXZjNnz8fALBw4UI2YIiJicHPP/+MNWvWoKioCPb29oiNjcXChQvh7e3dgnctLSwsDLt27eKMLoiFhoZi37596NSpE+zs7JTariLs7Oywf/9+fPTRR5g9ezY8PT2xdOlSpKWlNRowODo6YtOmTVi6dCkmT56M2tpaJCUlNStgAIDFixdDIBBg06ZNSEpKQlBQEBITExETE9Os4ynb1q1b0a1bN2zZsgWzZs2ClZUVevToIfX/2rt3bwQHByMhIQEPHjxAx44dsW3bNnTr1k3p7a1evRrvvPMO5s2bh/LyckyYMEEjAUOHDh2wfv16zJo1C3fu3IGnpyf27NkjtaChov7++28AdaM1586dk3o+MzOTDRhKSkoASOdoKMOUKVOwY8cOrF69GiUlJXB1dcW0adNaVNr1iy++4Ez5++WXX9hyu2PHjtXJgIER6VvGkB569OgRW2Hi7t27Mqs/EKIM5eXlSExMBFB3V0dZ1Tu0RVpaGmpqamBgYEA/RxomFApRVFQEAGxZVUKUgWEYvP/++9iwYYPenGceHh7w8/PDoUOHNNL+7NmzsWvXLty7dw/Gxi1bP0abNfQ3JC0tja1K9fDhQ7i6umqii3Lp5plPCCGEEEJahaSkJMyfP1+ng4XWjqYkEUIIUbna2lo2SVoec3PzFtdn1yZ5eXmoqqqS+zyfz1e44o6mZWdnN1im1cjISKnrDTSFus8tfTyXVe3ChQua7gJpBAUMhBBCVO7hw4fw9PRscB9VJDxqUmxsLE6dOiX3eXd392avmqtugYGBDZZpVTRZVBXUfW7p47lMCAUMhBBCVM7R0VGqhryk+rX7dcGqVasaXH+gNeX47NixA+Xl5XKfV3QlZ1VQ9rnVWGqnLp7LrSVwJZpDAQMhhBCVEwgEDS7+posCAgI03QWl0US5WEWp+9zSx3OZEEp6JoQQQgghhMhFAQMhhBBCCCFELgoYCCGEEEIIIXJRwEAIIYQQQgiRiwIGQgghhBBCiFwUMAC4f/8+Zs6ciU6dOsHMzAy2trYIDAzEypUrUVZWppQ2srKyMGfOHAQEBMDa2hqGhoawtbVFSEgIPvvsM7x48UIp7RBCCCGEEKJMel9W9bfffsPYsWNRVFTEbisrK8PFixdx8eJFfPvttzh8+DC8vb2b3cb27dsxZcoUqRrW+fn5OHfuHM6dO4e1a9di9+7d6NevX7PbIYQQQgghRNn0eoThypUrePPNN1FUVARzc3N8/vnnOHv2LE6cOIF//etfAIC7d+8iJiYGxcXFzWojJSUF8fHxKC8vB4/Hw8SJE3HgwAGcP38ee/fuxeuvvw4AyMvLw9ChQ5GRkaG090cIIU2xbds2MAxDizjpMA8PD8THxyu0b2RkJCIjI1XS7smTJ8EwjMZWhyaENI1eBwzTp09HeXk5DAwMkJiYiLlz5yI4OBh9+vTB5s2bsWLFCgB1QcOqVaua1cbSpUshFAoBAOvXr8d3332HoUOHIjAwECNGjMDBgwfx0UcfAQDKy8uxevVq5bw5Qghppfbs2YOxY8eiQ4cOYBhG7kVrcnIybGxswOfzwTAM5+vPP//k7Ovh4QGGYeQuuPXNN9+wr7148SIAYMWKFWAYBleuXOHsKxKJYGNjA4ZhkJmZyXmuoqICxsbGGDNmTDPfvXqlpqZi0aJFFCRq0JIlS3DgwAGlHjM+Pl7qZ0LWl6LBY3Pcvn0bs2fPhr+/PywsLODk5ISYmBj256u54uPjYW5uLvd5hmHwwQcftKiNhoiDXVlfkr93dIneTkk6f/48zpw5AwCYPHkygoODpfaZOXMmtm7dilu3bmHt2rX49NNPYWho2KR2zp49CwCws7PDe++9J3OfBQsWsIHCuXPnmnR8XXf3eTHuPCtGLy872FsYa7o7hOi0cePGIS4uDsbGmv1Z27hxIy5duoTAwEDk5uY2uv/UqVPRs2dPzjZZ00gFAgGSkpLw7NkzODo6cp7bsWMHBAIBKioq2G1hYWEA6gKT7t27s9tv3ryJgoICGBgYICUlBZ6enuxzFy5cQFVVFftabZeamoqEhARERkbCw8OD81xiYqLK2o2IiEB5eTmMjIxU1kZrsWTJEowcORLDhg1T2jGnTJnCCY4zMzOxYMECvPPOOwgPD2e3t2/fXmltSvr222+xZcsWjBgxAu+99x4KCwvx9ddfo1evXvj9999b/WrZ06ZNQ2BgIGdbS6avazu9DRjqR/MTJ06UuQ+Px8P48ePxySefoKCgAElJSejfv3+T2qmqqgIAzh8USVZWVmjTpg1ycnLY/QmQnJaDidvOo7pWhDbmRtjxdi90dLTQdLcI0Vl8Ph98Pl/T3cD27dvh4uICHo8HPz+/RvcPCwvDqFGjGt0vNDQUFy5cwJ49ezB9+nR2+6NHj3DmzBkMHz4c+/btY7f36NEDAoEAycnJmDp1Krs9JSUFdnZ26NGjB5KTkzF27Fj2ueTkZLZPrZ0qL+Z5PB4EAoHKjq/vgoODOTdCL168iAULFiA4OJhzvqrS6NGjsWjRIs5owKRJk+Dr64tFixa1+oAhPDwcI0eO1HQ31EZvpySJf6mbmZkhICBA7n69e/dmv09JSWlyOx07dgQAqWHr+oqKipCTk8PZnwB7Lz1Eda0IAJBTUoUPdl5GWVWNhntFiO6Sl8Nw5MgRhIeHw8zMDBYWFoiJicHNmzc5+1y7dg3x8fHw8vKCQCCAo6MjJk2apNAIgSQ3NzfweE3781RcXIyamoZ/PwgEAsTGxmLnzp2c7bt27YKNjQ0GDBjA2W5kZITAwECp3/0pKSkIDg5GaGiozOesra0VCnTEIiMj4efnh2vXrqF3794wNTWFt7c39u7dCwA4deoUgoKCYGJigo4dO+L48eOc18fHx0uNDgDAokWLwDCM3Ha3bduGN954AwAQFRXFTqsQ5xU0J4dBJBJh8eLFcHV1hampKaKioqTOFUB2DkNLPwdFCIVCrF27Fl27doVAIIC9vT0GDhzImSYjntKyY8cO+Pr6wtHREZGRkTh9+rTS22MYBqWlpfj+++/VMk1IHg8PDwwePBiJiYnw9/eHQCBA586d8csvv0jtm56ejvT09EaPGRAQIDV1yM7ODuHh4bh16xZne1lZGW7fvs1eCynb+vXr0aVLF5iamsLGxgY9evSQ+j1w+/ZtPHjwoEnHVeT3jq7Q24BBfLJ6e3vDwED+QEunTp2kXtMU7777LgAgNzcXmzZtkrnPf/7zH6n9CZBXVs15nPaiBIsOSv/hIUSjhEKgNEf7vv7JnWqp7du3IyYmBubm5li+fDnmz5+P1NRUhIWFcQKLY8eOISMjAxMnTsT69esRFxeH3bt3Izo6GiKRSCl9kWfy5MmwtLSEQCBAVFRUg3Okx4wZg/Pnz3MueHbu3ImRI0fKnHIaFhaGx48fc95rSkoKQkJCEBISwk5PAuouls+ePYvg4OAmBzz5+fkYPHgwgoKCsGLFChgbGyMuLg579uxBXFwcoqOjsWzZMpSWlmLkyJHNLsRRX0REBKZNmwYAmDt3LrZv347t27fD19e32cdcsGAB5s+fj1deeQUrV66El5cX+vfvj9LSUoVer+rPYfLkyZgxYwbc3NywfPlyfPzxxxAIBFJzz0+dOoUZM2bgrbfewieffIK8vDxER0fjxo0bSm1v+/btMDY2Rnh4OPv5T5kypUltKEtaWhrefPNNDBo0CEuXLoWBgQHeeOMNHDt2jLPfa6+9htdee63Z7Tx79gxt2rThbDt//jx8fX2xYcMGhY+Tk5Mj80vSN998g2nTpqFz58748ssvkZCQAH9/f/z111+c/Xx9fTF+/HiF2584caLCv3d0gV5OSaqoqGBPKldX1wb3tbGxgZmZGUpLS/Hw4cMmtzVp0iQkJyfjhx9+wPvvv49Lly5hyJAhcHJywoMHD7B9+3Z2etSnn37arCG6R48eNfj806dP2e8rKyulyrtqq6pq6aj9p4uPEOBmiSHdHGW8gmha/fnf9b/XFUKhkL34FRczQGkOeKs6aLBXsglnpgFmbRrfsf5r/nlPQqEQQqEQJSUlmDZtGiZPnoyvv/6a3W/cuHHw9fXF559/zm5/99138eGHH3KO17NnT7z11ls4ffo0Z950s96PRAAkFAphaGiIIUOGYPDgwbC3t8etW7ewatUqhIeHS+UdAHUX9JGRkXB0dMTOnTvx6aef4tatW/j777+xZs0atkqd+P0DQEhICADg9OnTaNeuHZ49e4aMjAwEBwfj1VdfBY/HQ3JyMqKjo3Hz5k3k5+cjNDRUqr+NefLkCX788UeMHj0aQN1FWefOnTFmzBgkJycjKCgIQN0o9KBBg/Dzzz+zd6Klzsl671fedqFQCA8PD4SGhmLdunV47bXXOKMJ9V+j6HvJzs7GihUrEB0djYMHD7KjG/PmzcPSpUvZdusfs/5n3dLPoTFJSUnYtm0bpk6dii+//JLd/uGHH3L6BgA3btzA+fPn0b17d5SUlCA2NhY9e/bE/PnzOdPWWtremDFj8O6778LT05OTKN/U86cx8j7v+u7evYuff/4ZsbGxAOouiDt37ow5c+bIDBCa08czZ87g3Llz+PTTT2WeY5L/D7KIRCKUlpbC3t6+wX3Exzl06BC6dOmCPXv2KPQeGmvfwMAAsbGxGDRoENq0adPo7x15fZO8FqusrGzwdZqmlwFD/TsSDWXai4kDhpKSkia3xefz8f333+P111/HkiVL8O233+Lbb7/l7BMVFYW5c+c2ez6fm5ubwvv+9ddfCg0laoPsHD4A6eH0+b/eRFHmNTiYqL9PRHHNGb7XdnZ2djAxMQHDMOzaLUxZMaw03C9ZiouLIapt2hx0cZBXUlKCoqIiHDp0CAUFBRgyZIjUtMqAgAD88ccfnDVsqqur2eOUlpay03LOnTuHV155pVnvo7a2FjU1NZx2xIKCgtgLSKBuSsuAAQMQFhaGOXPmsFNZgLqLgJqaGpSWlmLo0KHYuXMnpk6diq1bt8LFxQWvvPIKUlNTAQClpaVse127dgWPx0NSUhKGDBmC48ePw9DQEB07doRQKESXLl2QlJSEsLAwnDhxAgDg7+8vs7/y1NTUwNzcHNHR0ezrnJycYGVlBScnJ/j6+rLbxXf/b9++zW6rrq6GUCiUalN8AVJ/u1AoRHV1NbtNfNFSVlYm9XrxVAtF38tvv/2GqqoqTJo0ifN3dtKkSVi6dCmnXfGiqPXbbenn0Jjdu3eDYRh8+OGHjb4mMDAQHTp0YP/uu7m5YdCgQTh69Cjy8/MVyvVpSnv1PxtVEI/wVFRUyGxHKBTCyckJr732Guf5UaNGYe3atUhLS0Pbtm0BAH///TcAxc8LsezsbIwZMwbu7u6YMmUK5/Wvvvoq8vPzFTpudXU1BAIBdu3aJfP54cOHo6qqij2OmZkZHj58iJMnT+LVV1+Ve1xF2/fz88OWLVvYxw393pFUU1OD8vJylJeX4/bt25znVDUdS1n0MmCof+dTkaQuccWQ5t6Zv3XrFn744Qdcv35d5vPnzp3Dli1b4OvrCxcXl2a1oYtq5cxiqBIy2HaXjw+71sJQbyfVEaJ64psLQ4YMkfm8hcXLIgT5+flYvnw5fvnlF2RnZ3P2U+WFkCQvLy8MGjQIhw4dQm1trcwLu5EjR+Lrr7/G9evXsXfvXsTGxsqd629lZYVOnTqx0xf++usvdOvWDSYmdXcsevbsyXnOyMiowbw4eZydnaX6YGlpKfU3wcqqLjwVT4PSJuJReMnKO23atIG1tbVCx1Dl55CZmQknJyfY2Ng0uq+s6kHe3t7Yv38/cnJy2ItnZbWnqOfPn3MeW1pasudiS3l6ekp99uKqPw8ePFDoPctTWlqKuLg4lJSU4MiRIwrdrG0In89XOL9m+vTpOHXqFF577TV4eXkhKioKI0eORK9evVrUh/oU+b3T2ullwFC/MoMiVYnEd2ma80N55swZvP766ygsLIS7uzsWL16Mfv36wdbWFs+fP8fBgwcxf/587N69G6dPn0ZiYiK6dOnSpDYamyr19OlTtuRgUFCQSsuoKdPmrAtAiez5qY/LGFwWumP+QEoS1yYVFRXsyEJERITOVUF58OABamtrYWBgAEtLy7qNfO2sbGZhYQGYWTbpNeL/L3Nzc1haWrI3VL7//nupMqQAOJ/DyJEjcfbsWfz73//GK6+8AnNzcwiFQkRHR8PQ0PDl59VEfD6f+3n/QzxlStzf+jkDXl5eqKqqAp/PZ1/H4/HY4/Tp0wft27fHggULcP/+fcTHx7NzkYG6O5L124uIiMDXX38NoVCIixcvIiwsjH2+d+/e2LFjB0xMTHD+/HkEBATAwcGhSe/RwMBA5mfE4/FgbGws87Orv7+RkRF4PJ7UfuL8vPrbeTwe57Xiv2umpqYKvb4hkudPfQzDcNo1NTWVareln0NjDAwMwDCMQvuLj1v/PBP/PFhYWCh0jOa01xjJ4GPLli0KTckyMzMDUPd/JKud+j8f9cn7mWiKqqoqjBo1Cjdv3sSRI0dafKEuzjVqqD9GRkbs84GBgbh9+zYOHTqEo0eP4tChQ9iyZQvmz5+PRYsWtagv9cn6vSMpOzsbJiYmMDc3l7qxoO2zP/QyYKh/V0yRaUbiobymRsSVlZUYPXo0CgsL4ejoiD///JPzR9fV1RXvvfceevfujR49euDJkyeYMGFCkxNnGsvDqM/Y2FhpdyNUTXKEgc9jUCt8uXHnhccI92mLQV2d1NwzogiBQNBqzjVF8Xg8dn4re4Fq1gaYpX2/6HkmtkATE2/F74nH44HH47F3Fx0dHRssKZ2fn48TJ04gISEBCxYsYLenpaUBqLtYbGoSsLy+yXuu/vOZmZnshVH97fX7MXr0aCxevBi+vr7sNAXJ9y8WHh6OTZs24Y8//sCVK1cwa9Ys9vmwsDCUl5fjyJEjyMjIwIgRI5r9XmW9Tt5nV3+7ra0tCgoKpPYTV3yR3F7/teI7oZLvubF+ySKu1JSens6pR5+dnY38/HxOu/I+a3ntKfI5NMbb2xuJiYkoKCiAra1tg/veu3dP6rhpaWkwNTVF27ZtFWpT0fbE1ZEUOaZkAnKXLl0Uel1Dn7fYvXv32L7U3wbUXQw357wWCoWIj4/HH3/8gZ9++glRUVFNPoYkcf8a6o/k52lhYYHRo0dj9OjRqKqqQmxsLJYsWYK5c+cq7caWvN878vom+fdR0+vfNEYvAwaBQAA7Ozvk5uY2mjCcn5/PBgxNyRUAgN9//x2PHz8GULewkKw7dEDdD/zYsWPx7bff4tKlS7h69Wqz5/vqkhohN2J4P8obm0+no6L6ZULS7H3X4OdiBTdbU5X2RSQSIbukEg/zyvAwrxwP8srwIK8MxRXVEIr+SWISAUKRCKJ6/5obG8DRSgAHS2M4WgrQ9p8vRysBzI318sdP9/B4TU4ubi0GDBgAS0tLLFmyBFFRUVJVhLKzs2Fvb89edEpWQ6qf6KkKOTk5UtVWrl69ioMHD2LQoEEN/tF+++23wefzOTkQ8ojXVFi9ejWqq6vZRGig7iLZyckJK1as4OyrTu3bt0dhYSGuXbuGbt26AagbWd6/f3+jrxXfeVbGFKe+ffvC0NAQ69evR//+/dkLO1WfB4oaMWIEvvrqKyQkJGDt2rWc50QiEedC+dy5c7h8+TL8/f0B1BUXOXjwIAYOHKjwdBNF2zMzM1P481fl2gVPnjzB/v372aTnoqIi/PDDD/D39+dcv4jvhCsyW2Hq1KnYs2cPvv76a/a46pabmws7Ozv2sZGRETp37owjR46w+RBAXT6Mqakp2rVr1+DxxL/36lP0905rprdXLJ07d8aZM2dw79491NTUyC2tWj8ppaml5uqXYW0o0QaoSyAUJ0Pfvn2bAgaAM5oAAJ2dLPDZED/M3neN3VZcUYMPdl3Bz1OCYWTQ8h9SkUiE+7lluPGkENcfF+Le8xI8yCvDw/wyTqCiDObGBujsbImQ9nYI9W6DV1ytlfIeCFEWS0tLbNy4EePGjcOrr76KuLg42Nvb48GDBzh8+DBCQ0OxYcMGWFpaIiIiAitWrEB1dTVcXFyQmJjY4PozDTl9+jQ7tS07OxulpaVYvHgxgLrpQREREQDqkmkFAgEiIiLQtm1bpKamYvPmzTA1NcWyZcsabMPd3V3h6Qjt2rWDm5sbzp07Bw8PDzg7O3OeDwkJwb59+8AwDEJDQ5v4blsuLi4Oc+bMwfDhwzFt2jSUlZVh48aN8PHxweXLlxt8rb+/P/h8PpYvX47CwkIYGxujT58+TZ5WBQD29vb497//jaVLl2Lw4MGIjo7GlStXcOTIEanAThOioqIwbtw4rFu3DmlpaRg4cCCEQiHOnDmDqKgofPDBB+y+fn5+GDBgAKZOnQqRSMQmuSYkJCi9vYCAABw/fhyrV6+Gs7MzPD09FQpklc3HxweTJ0/GhQsX0LZtW3z33Xd4/vw5tm7dytlPXDFJcr0WSV9++SX++9//Ijg4GKampvjxxx85zw8fPpwNWE+ePImoqCgsXLhQqdOEAKB///5wdHREaGgo2rZti1u3bmHDhg2IiYnhzDjx9fVF7969OWuDyPLmm2/CxMQEISEhcHBwaNLvndZMbwOGsLAwnDlzBqWlpbh06ZLcH85Tp06x3zf1D0H9IKSxhT3E1UUkX6fPqmu5F+gGPB7e6OGKs+k5OPD3E3b71YcFGP/dXxjm74KoTg5oa6nY8GKtUISs3FLceFyIG4/rAoSbT4pQXKGeRVhKKmtwPjMP5zPz8OXxNJga8RHoYcsGEL5OluDz5C+6RIg6jBkzBs7Ozli2bBlWrlyJyspKuLi4IDw8HBMnTmT3E1cd+uqrryASidC/f38cOXJE6uJaEX/88YfUhdn8+fMBAAsXLmQDhpiYGPz8889Ys2YNioqKYG9vj9jYWCxcuJAzJUYZwsLCsGvXLs7oglhoaCj27duHTp06ce5kqoudnR3279+Pjz76CLNnz4anpyeWLl2KtLS0RgMGR0dHbNq0CUuXLsXkyZNRW1uLpKSkZgUMALB48WIIBAJs2rQJSUlJCAoKQmJiImJiYpp1PGXbunUrunXrhi1btmDWrFmwsrJCjx49pP5fe/fujeDgYCQkJODBgwfo2LEjtm3bxo7gKLO91atX45133sG8efNQXl6OCRMmaCRg6NChA9avX49Zs2bhzp078PT0xJ49e6QWNFSUuJrSuXPncO7cOannMzMz2YBBPD3cyUn5U4ynTJmCHTt2YPXq1SgpKYGrqyumTZuGefPmNet4w4YNY4+n6t872oQRqXpFHS11/vx59gdyypQpMhdVEwqF8PPzw61bt2BtbY0XL17IXNhHnn379rHLhs+ePRvLly+Xu+/IkSPZ2s6XLl1qdESiKR49esROp7p79y46dNC+mvGy9FpyAs+KXla02jYxEJEdHVBSWYPX1ycjM0f2QkBdXazQp5MDXvN1gJ+zFXg8BiWVNbj9tAi3nhYh9Wkxbj0twp1nxSivrlXX22kya1NDDPJzwthe7dDFWRsLd0orLy9HYmIigLq7OrqWw5CWlsaOSLaWnyNdVb+MaGNzhglpCoZh8P7772PDhg16c555eHjAz88Phw4d0kj7s2fPxq5du3Dv3j2tn8vfEg39DUlLS4OPjw+AumI2TclPVQe9vZXds2dPhIeH48yZM9iyZQsmTJiA4OBgzj6rVq1ipxVNnz5dKlgQD6EBwIQJE7Bt2zbO86+99hpMTU3Z4eGxY8eia9euUn05cuQIO9fUxcWFnTOp72okFk8x5Nf9ojY3NsCGMd0x/L9nUVUjPU3o+j+jBWtPpMHewhimRnzczy1TSp+M+Dy42pjAzdYUbrYmsDcXwID/TwIWw4DHAAxT9z0AFJRV41lRBZ7/8/WssAJFCo5gFJRVY9f5B9h1/gH83azxVlA7DO7mDBMj3SvXRgghRH8lJSVh/vz5Oh0stHZ6GzAAwNq1axEaGory8nL0798fc+fORVRUFMrLy7F7925s3rwZQN28vpkzZzb5+NbW1vj444+xYMECFBcXIyQkBFOnTkW/fv1gY2OD58+f49dff8U333zDVl5ZtmyZzt7BaKpqiTJJBvWm53RxtsK6OH/M2nutwSlE2cXNWznRzswIfi5W6OJsCS97c7jZmKCdnSnaWgjAa+E0ofKqWjwvqkBGTgnO3stFSnoubj1tuE793w8L8PfDAvznUCpGBrhhTFA7eDu0rI41IepUW1srtT6DJHNz8xbXZ9cmeXl5DZbu5vP5Da5Wq02ys7NRWyt/RNbIyKjRykOqou5zSx/PZVW7cOGCprtAGqHXAUP37t2xZ88ejB07FkVFRZg7d67UPj4+Pjh8+DAnMaYp5s2bh7y8PKxduxYlJSVYunQpli5dKrWfoaEhlixZgrFjxzarHV1UI5nDwOcGUgP9nBDkaYekOy9w4vYLnL6TjeLKpucf2FsYo6uLFfxcrODnbImurlZwtBTIXcippUyM+PBoYwaPNmbo06luIZy80iqcS89FSnoOzqXnyp1uVVRRg+9SMvFdSib8XCxhaqRdP8JCoRD5eXzYGotQ6vAUUZ2d4GSlW9OSSPM8fPgQnp6eDe6jioRHTYqNjeXkwUlyd3dvNHFUWwQGBuL+/ftyn1ckWVRV1H1u6eO5TIh2XW1owOuvv45r165h7dq1OHz4MB49egQjIyN4e3vjjTfewAcffMAuMNMcDMNgzZo1bNnU5ORk3L9/H2VlZTA3N4e3tzd69+6NKVOmsHPXSJ1qiSpJhnzpC3gbMyPEvuqK2FddUV0rxIWsPPxx6wX+uP0CGRIX3Xweg/b2ZvB1sqz3ZQEHC80vLmZrZoSYbk6I6VaX8PUwrwz7Lj/C7vMPOXkc9d14rL7Vc5uGQXoxgwu/3gJ+vQUvezOEebdBqHcb9PKyg5WJ4nlARHc4OjpK1ZCX5OXlpabeqMeqVauQn58v9/nWlOOzY8cOlJeXy31emasZN5Wyz63GUjt18VxuLYEr0Ry9TXrWJ6016dnrk8OoHzMcnhbWpOTfzJxSXMjKA49h0MnRAt4O5hAYtq75/zW1Qpy4/QI7/nqA03cbHgJvDXgM0M3VGvEhHhjq76yyURxVoaRn7aEvyahEs+g8I8pESc+EKJlQKILEAAOb9KwozzZm8GxjpsReqZ8Bn4cBXRwxoIsj7ueWYuf5B/j54iPklcqfF63NhKK6fIwZe/6GqREf/bvIXsyQEEIIIdqDAgailSRXeQa4Sc/6yN3ODJ8M8sVH/XyQci8HjwtkT1XSpOqqKly7eQuZxQyyyoxQ2EBC+v+uP6WAgRBCCGkFKGAgWkmypCrQ9BEGXWVswGeTpbVNeXk57PJTEQURXusbjoz8KiTfy0HKvRxcyMrnlMHNUlKpW0IIIYSoFgUMRCtJllQFwK53QFoHPo9BN1drdHO1xnuR3ki6/QITt70snZeVK7sSFCGEEEK0C92yJVpJsqQqABhQslmr5iGRT1JQVo2CstaZi0EIIYToE7oCI1pJVg6DrLKqpPVwtTEBXyIPhaYlEUIIIdqPAgailapljTBQDkOrZsjnwdWGW3f+Pk1L0irbtm0DwzBUk12HeXh4ID4+XqF9IyMjERkZqZJ2T548CYZhNLbYGyGkaegKjGilWqqSpJM87LjTkuStaE302549ezB27Fh06NABDMPIvWhNTk6GjY0N+Hw+GIbhfP3555+cfT08PMAwDPr27SvzWN988w372osXLwIAVqxYAYZhcOXKFc6+IpEINjY2YBgGmZmZnOcqKipgbGyMMWPGNPPdq1dqaioWLVpEQaIGLVmyBAcOHFDqMePj46V+JmR9KRo8KsOOHTvAMAzMzc1bdJzIyEj4+fnJfC4rKwsMw+CLL75oURsNefr0KT7++GNERUXBwsJCbwJfSnomWklm0jMFDK2eh50pTtV7fJ+mJGmVcePGIS4uDsbGxhrtx8aNG3Hp0iUEBgYiNze30f2nTp2Knj17crZ5e3tL7ScQCJCUlIRnz57B0ZFb0nfHjh0QCASoqHhZrjgsLAxAXWDSvXt3dvvNmzdRUFAAAwMDpKSkwNPTk33uwoULqKqqYl+r7VJTU5GQkIDIyEh4eHhwnktMTFRZuxERESgvL4eRkZHK2mgtlixZgpEjR2LYsGFKO+aUKVM4wXFmZiYWLFiAd955B+Hh4ez29u3bK63NhpSUlGD27NkwM2vdayMBwJ07d7B8+XJ06NABXbt2xblz5zTdJbWggIFoJVllVSXnv5PWRzLxmUYYtAufzwefr/nV0Ldv3w4XFxfweDy5dxLrCwsLw6hRoxrdLzQ0FBcuXMCePXswffp0dvujR49w5swZDB8+HPv27WO39+jRAwKBAMnJyZg6dSq7PSUlBXZ2dujRoweSk5MxduxY9rnk5GS2T62dKi/meTweBAKByo6v74KDgxEcHMw+vnjxIhYsWIDg4GDO+aouixcvhoWFBaKiopQ+mqJuAQEByM3Nha2tLfbu3Ys33nhD011SC5qSRLRSjcQIgyG/bviUtG6SU5Ioh0G7yMthOHLkCMLDw2FmZgYLCwvExMTg5s2bnH2uXbuG+Ph4eHl5QSAQwNHREZMmTVJohECSm5sbeE2silZcXIyaGvkLBQJ1IwyxsbHYuXMnZ/uuXbtgY2ODAQMGcLYbGRkhMDAQKSkpnO0pKSkIDg5GaGiozOesra0VCnTExFMsrl27ht69e8PU1BTe3t7Yu3cvAODUqVMICgqCiYkJOnbsiOPHj3NeHx8fLzU6AACLFi1q8Pfmtm3b2IudqKgodpqKeHpFc3IYRCIRFi9eDFdXV5iamiIqKkrqXAFk5zC09HNQhFAoxNq1a9G1a1cIBALY29tj4MCB7DQ0AGAYBh988AF27NgBX19fODo6IjIyEqdPn1Z6ewzDoLS0FN9//71GpgmJeXh4YPDgwUhMTIS/vz8EAgE6d+6MX375RWrf9PR0pKenK3zstLQ0rFmzBqtXr4aBgez71IWFhbh9+zYKCwub/R7kqa6uRkJCAjp06ACBQAA7OzuEhYXh2LFjnH1u376Np0+fNno8CwsL2NraKr2f2o4CBqKVJJOeqaSqbpAcYcgvq0ZhWbWGeqMcQpEQeRV5WvclFEmP0jXH9u3bERMTA3Nzcyxfvhzz589HamoqwsLCOIHFsWPHkJGRgYkTJ2L9+vWIi4vD7t27ER0dDZFIeoqhMk2ePBmWlpYQCASIioriXPxJGjNmDM6fP8+54Nm5cydGjhwJQ0NDqf3DwsLw+PFjzntNSUlBSEgIQkJC2OlJQN3F8tmzZxEcHNzkgCc/Px+DBw9GUFAQVqxYAWNjY8TFxWHPnj2Ii4tDdHQ0li1bhtLSUowcORLFxcVNOr4sERERmDZtGgBg7ty52L59O7Zv3w5fX99mH3PBggWYP38+XnnlFaxcuRJeXl7o378/SksVuzmg6s9h8uTJmDFjBtzc3LB8+XJ8/PHHEAgEUjkvp06dwowZM/DWW2/hk08+QV5eHqKjo3Hjxg2ltrd9+3YYGxsjPDyc/fynTJnSpDaUJS0tDW+++SYGDRqEpUuXwsDAAG+88QbnwhoAXnvtNbz22msKH3fGjBmIiopCdHS03H32798PX19f7N+/X6Fj1tbWIicnR+orPz9fat9FixYhISEBUVFR2LBhAz799FO0a9cOly9fZvd5/PgxfH198cknnyj8vvQNTUkiWkmyrCot2qYbxKVV6ye1Z+WW4hVTa811qoUKKgvQe09vTXdDyqk3T8FW0LK7YCUlJZg2bRrefvttbN68md0+YcIEdOzYEUuWLGG3v/fee5g5cybn9b169cLo0aORnJzMmTetLIaGhhgyZAhef/11ODg4IDU1FV988QXCw8Nx9uxZTt6BWJ8+feDo6Ihdu3Zh3rx5uHXrFv7++2+sXbsWGRkZUvvXz2Pw8PDAs2fPkJGRgdDQULz66qvg8Xg4e/YsoqOjkZqaivz8/GZNR3ry5Al27tyJ0aNHAwD69euHTp06YcyYMTh79iyCgoIAAL6+vhgwYAD27dvX4jvRXl5eCA8Px7p169CvX78WV0TKzs7GihUrEBMTg99++40d3fj000+xZMkShY6hys8hKSkJ27Ztw7Rp07B27Vp2+8yZM6WC2hs3buDixYvo3r07ioqKEBsbi549e2LBggUy77o3t72xY8fi3XffhZeXl0amCtV39+5d7Nu3D7GxsQDqgp1OnTphzpw56NevX7OOefjwYSQmJuLq1avK7Cpu374Ne3t7hfsQHR3N+R1Gmo5u2xKtJDnCYEglVXWCrNKqtOKz9jp27BgKCgowevRozl08Pp+PoKAgJCUlsfuamLz8f62oqEBOTg569eoFAJw7ecoUFBSE77//HpMmTcKQIUPw8ccf488//wTDMHLvFPL5fIwaNQq7du0CUJfs7ObmJjegCQkJAY/HY3MTUlJSYGhoiMDAQJibm6Nbt27stCTxv80JGMzNzREXF8c+7tixI6ytreHr68teJIvfMwCZwY2mHT9+HFVVVZg6dSpnKtSMGTMUPoYqP4d9+/aBYRgsXLhQ6jnJqVvBwcEICAhgH7u5uWHIkCE4evQoamtrld6eNnB2dsbw4cPZx5aWlhg/fjyuXLmCZ8+esduzsrIUqqpVVVWFDz/8EO+++y46d+7c4L7x8fEQiUQKB38eHh44duyY1NePP/4ota+1tTVu3ryJtLS0Bo8nEomwbds2hdrXRzTCQLSSZA4DVUjSHe52ZpzqSFk5VClJW4n/wPbp00fm85aWluz3eXl5SEhIwO7du/HixQvOfqqYlyyPt7c3hg4dil9++QW1tbUyk7jHjBmDdevW4erVq9i5cyfi4uLkXsBZW1ujS5cunKCge/fubIAUEhLCec7IyEiqYpMiXF1dpfpgZWUFNzc3qW0AZE690LT79+8DADp06MDZbm9vDxsbG4WOocrPIT09Hc7OzgrNP5d8DwDg4+ODsrIyZGdnS1XZaml7iqp/4Q7UfQ71g/WW8Pb2lvrsfXx8ANQFCYq85/rWrFmDnJwcJCQkKKV/9ZmZmckskSwrkPnss88wdOhQ+Pj4wM/PDwMHDsS4cePQrVs3pfdLl1HAQLSS5DoMFDDoDk87U9RPHaQRBu0l/Kda2fbt22VeLNRPYBw1ahTOnj2LWbNmwd/fH+bm5hAKhRg4cCB7HHVxc3NDVVUVSktLOUGNWFBQENq3b48ZM2YgMzOz0TUTwsLCsGnTJhQUFLD5C2IhISH47rvvUF1djeTkZAQEBDSr+o+86lTyttefQiMv2FH0Trg2acnnoA+cnJw4j7du3aqRJOnGFBYWYvHixXjvvfdQVFSEoqIiAHXTHEUiEbKysmBqagoHBweV9yUiIgLp6en49ddfkZiYiG+//RZr1qzBpk2b8Pbbb6u8fV1BAQPRSlJJzzQlSWe4S1RKau0Bg7WxNU69earxHdXM2ti6xccQ12h3cHCQu+AZUHeX98SJE0hISMCCBQvY7Q1NAVCljIwMCASCBheIGj16NBYvXgxfX1/4+/s3eLywsDBs3LgRx48fx5UrVzBr1iz2uZCQEJSXl+Pw4cPIyMjAiBEjlPU2FGZjY8MmXtcnvuPfEGVOjXF3dwdQ9//u5eXFbs/OztaKEZH27dvj6NGjyMvLa/Suv6xz9+7duzA1NVV47ryi7TXl/0AyAblLly4Kv7Yx9+7dg0gk4vTn7t27ACCzCldD8vPzUVJSghUrVmDFihVSz3t6emLo0KFqK7Fqa2uLiRMnYuLEiSgpKUFERAQWLVpEAUMTUMBAtBIlPesuT4lKSVmtfC0GHsNrcXKxthowYAAsLS2xZMkSREVFSVURys7Ohr29PXv3V/Ju75dffqnS/uXk5KBNmzacbVevXsXBgwcxaNCgBisVvf3222wuRmPEOQmrV69GdXU1Z4TBw8MDTk5O7EWRJtZfaN++PQoLC3Ht2jV2msXTp08VqjgjXkhLVsDRVH379oWhoSHWr1+P/v37sxeeqj4PFDVixAh89dVXSEhI4CQhA5C6UD537hwuX77MBpOPHj3CwYMHMXDgQIXXKlG0PTMzM4U//4YC95Z68uQJ9u/fzyY9FxUV4YcffoC/vz9nhFFcYayhRd8cHBxknn/r1q3DuXPnsGvXLqnRElXJzc2FnZ0d+9jc3Bze3t54+PAhu626uhrp6emwsrJSW79aGwoYiFaSSnqmsqo6w93OlPNYXFrVylS6pCXRLEtLS2zcuBHjxo3Dq6++iri4ONjb2+PBgwc4fPgwQkNDsWHDBlhaWiIiIgIrVqxAdXU1XFxckJiYiMzMzGa1e/r0abbmfXZ2NkpLS7F48WIAddMLIiIiAACTJk2CQCBAREQE2rZti9TUVGzevBmmpqZYtmxZg224u7tj0aJFCvWnXbt2cHNzw7lz5+Dh4QFnZ2fO8yEhIWyCa2hoaBPfbcvFxcVhzpw5GD58OKZNm4aysjJs3LgRPj4+jSac+/v7g8/nY/ny5SgsLISxsTH69OnTrKki9vb2+Pe//42lS5di8ODBiI6OxpUrV3DkyBGpwE4ToqKiMG7cOKxbtw5paWnsdLkzZ84gKioKH3zwAbuvn58fBgwYgKlTp0IkEmHLli0A0KT5+Iq2FxAQgOPHj2P16tVwdnaGp6enQoGssvn4+GDy5Mm4cOEC2rZti++++w7Pnz/H1q1bOfuJS6o2lPhsamoqc+XqAwcO4Pz581LPbdu2DRMnTlTJFKvOnTsjMjISAQEBsLW1xcWLF7F3717O/7e4rOqECRMUSnwW/z4SrzGyfft2tjDCvHnzlNp/bUEBA9FKUknPNMKgM1xtTKVKq97PK0W3VlxaVZeNGTMGzs7OWLZsGVauXInKykq4uLggPDwcEydOZPfbuXMnpk6diq+++goikQj9+/fHkSNHpC6uFfHHH39IXZjNnz8fALBw4UI2YIiJicHPP/+MNWvWoKioCPb29oiNjcXChQvh7e3dgnctLSwsDLt27eKMLoiFhoZi37596NSpE+dOprrY2dlh//79+OijjzB79mx4enpi6dKlSEtLazRgcHR0xKZNm7B06VJMnjwZtbW1SEpKavbc8sWLF0MgEGDTpk1ISkpCUFAQEhMTERMT06zjKdvWrVvRrVs3bNmyBbNmzYKVlRV69Ogh9f/au3dvBAcHIyEhAQ8ePEDHjh2xbdu2JifKKtLe6tWr8c4772DevHkoLy/HhAkTNBIwdOjQAevXr8esWbNw584deHp6Ys+ePVILGqpCSUkJAOkcDWWYNm0aDh48iMTERFRWVsLd3R2LFy/mTC1sKvHvI7HvvvuO/V5XAwZGpG8ZQ3ro0aNHbIWJu3fvyqz+oG32XHiAOfuus49fcbPGr++r/84daZry8nIkJiYCAPr37y+3ekfEiiQ8yHtZHWltnD+G+ruopY8tkZaWhpqaGhgYGLSKnyNdJhQK2URKS0vLJi+URog8DMPg/fffx4YNG/TmPPPw8ICfnx8OHTqkkfZHjRqFrKwsnD9/XiPtq0tDf0PS0tLYqlQPHz6Eq6urJrooF40wEK1ULTHCYEhVknSKRxszTsBQv8wqIYQQ/SESiXDy5EmZaygQ7UEBA9FKNVJVkihg0CUekqVVW3niM2lcbW0tsrOzG9zH3Ny8wcpGrU1eXh6qqqrkPs/n8xWuuKNp2dnZDZZpNTIyUup6A02h7nNLH89lVWIYRmrtFqJ9KGAgWkmqSpKODgPrK10rrUoa9/DhQ3h6eja4z8KFCxVORG4NYmNjceqU/JK77u7uCq2Yqw0CAwMbLNPau3dvnDx5Un0dqkfd55Y+nsuEUMBAtBKVVdVtnm24lZKyaEqSznN0dJSqIS+pfu1+XbBq1aoG1x9Q1gq96rBjxw6Ul5fLfV7RlZxVQdnnVmOpnbp4LreWwJVoDgUMRCtJTUmiEQadIjnCkFdahcLyaliZUGlVXSUQCFRaQ14bBQQEaLoLSqOJcrGKUve5pY/nMiF0FUa0klTSM40w6BQ3G1NI5rHfp2lJhBBCiFaigIFopRqhZNIznaq6xMiABxcb7nQMmpZECCGEaCe6CiNaSXLhNiqrqns8JBOfqVISIYQQopUoYCBaSXJKEiU96x6pgIGmJBFCCCFaiQIGopVoSpLu82hDIwyEEEJIa0BXYUQrSa/DQCMMusbDjltalVZ7JoQQQrQTBQxEK1FZVd0nOcKQW1qFoopqDfWGEEIIIfLQVRjRSlJJz5TDoHNkllbNoVEGTdq2bRsYhqFFnHSYh4cH4uPjFdo3MjISkZGRKmn35MmTYBhGY6tDE0KahgIGopWqaaVnnSertGomJT4TAHv27MHYsWPRoUMHMAwj96I1OTkZNjY24PP5YBiG8/Xnn39y9vXw8ADDMHIX3Prmm2/Y1168eBEAsGLFCjAMgytXrnD2FYlEsLGxAcMwyMzM5DxXUVEBY2NjjBkzppnvXr1SU1OxaNEiChI1aMmSJThw4IBSjxkfHy/1MyHrS9HgURl27NgBhmFgbm7eouNERkbCz89P5nNZWVlgGAZffPFFi9poiPjGiqyvZ8+eqaxdTaOVnolWoilJ+sHDzgwP88rZx/cp8Vmjxo0bh7i4OBgbG2u0Hxs3bsSlS5cQGBiI3NzcRvefOnUqevbsydnm7e0ttZ9AIEBSUhKePXsGR0dHznM7duyAQCBARUUFuy0sLAxAXWDSvXt3dvvNmzdRUFAAAwMDpKSkwNPTk33uwoULqKqqYl+r7VJTU5GQkIDIyEh4eHhwnktMTFRZuxERESgvL4eRkZHK2mgtlixZgpEjR2LYsGFKO+aUKVM4wXFmZiYWLFiAd955B+Hh4ez29u3bK63NhpSUlGD27NkwMzNrfOdW4rPPPuP87AOAtbW1ZjqjBhQwEK1EKz3rBw87M5xJy2Ef0wiDZvH5fPD5fE13A9u3b4eLiwt4PJ7cO4n1hYWFYdSoUY3uFxoaigsXLmDPnj2YPn06u/3Ro0c4c+YMhg8fjn379rHbe/ToAYFAgOTkZEydOpXdnpKSAjs7O/To0QPJyckYO3Ys+1xycjLbp9ZOlRfzPB4PAoFAZcfXd8HBwQgODmYfX7x4EQsWLEBwcDDnfFWXxYsXw8LCAlFRUUofTdGUQYMGoUePHpruhtrQbVuilaisqn5wp0pJWkVeDsORI0cQHh4OMzMzWFhYICYmBjdv3uTsc+3aNcTHx8PLywsCgQCOjo6YNGmSQiMEktzc3MBr4qhicXExampqGtxHIBAgNjYWO3fu5GzftWsXbGxsMGDAAM52IyMjBAYGIiUlhbM9JSUFwcHBCA0NlfmctbW1QoGOmHiKxbVr19C7d2+YmprC29sbe/fuBQCcOnUKQUFBMDExQceOHXH8+HHO6+Pj46VGBwBg0aJFYBj5N1u2bduGN954AwAQFRXFTqsQ5xU0J4dBJBJh8eLFcHV1hampKaKioqTOFUB2DkNLPwdFCIVCrF27Fl27doVAIIC9vT0GDhzITkMDAIZh8MEHH2DHjh3w9fWFo6MjIiMjcfr0aaW3xzAMSktL8f3332tkmpCYh4cHBg8ejMTERPj7+0MgEKBz58745ZdfpPZNT09Henq6wsdOS0vDmjVrsHr1ahgYyL5PXVhYiNu3b6OwsLDZ70Ge6upqJCQkoEOHDhAIBLCzs0NYWBiOHTvG2ef27dt4+vRpk45dXFyM2tpaZXdZK9FVGNFKkknPVFZVN3nqwFoMIqEQNXl5Wvclkgi6m2v79u2IiYmBubk5li9fjvnz5yM1NRVhYWGcwOLYsWPIyMjAxIkTsX79esTFxWH37t2Ijo6GSCSS34ASTJ48GZaWlhAIBIiKiuJc/EkaM2YMzp8/z7ng2blzJ0aOHAlDQ0Op/cPCwvD48WPOe01JSUFISAhCQkLY6UlA3cXy2bNnERwc3OSAJz8/H4MHD0ZQUBBWrFgBY2NjxMXFYc+ePYiLi0N0dDSWLVuG0tJSjBw5EsXFxU06viwRERGYNm0aAGDu3LnYvn07tm/fDl9f32Yfc8GCBZg/fz5eeeUVrFy5El5eXujfvz9KSxX72Vb15zB58mTMmDEDbm5uWL58OT7++GMIBAKpnJdTp05hxowZeOutt/DJJ58gLy8P0dHRuHHjhlLb2759O4yNjREeHs5+/lOmTGlSG8qSlpaGN998E4MGDcLSpUthYGCAN954g3NhDQCvvfYaXnvtNYWPO2PGDERFRSE6OlruPvv374evry/279+v0DFra2uRk5Mj9ZWfny+176JFi5CQkICoqChs2LABn376Kdq1a4fLly+z+zx+/Bi+vr745JNPFH5fUVFRsLS0hKmpKYYMGYK0tDSFX9sa0ZQkopWkRhgoYNBJ7nayS6taCqQv3LRVbUEB0kJCNd0NKR3OpsDA1rZFxygpKcG0adPw9ttvY/Pmzez2CRMmoGPHjliyZAm7/b333sPMmTM5r+/VqxdGjx6N5ORkzrxpZTE0NMSQIUPw+uuvw8HBAampqfjiiy8QHh6Os2fPcvIOxPr06QNHR0fs2rUL8+bNw61bt/D3339j7dq1yMjIkNq/fh6Dh4cHnj17hoyMDISGhuLVV18Fj8fD2bNnER0djdTUVOTn5zdrOtKTJ0+wc+dOjB49GgDQr18/dOrUCWPGjMHZs2cRFBQEAPD19cWAAQOwb9++Ft+J9vLyQnh4ONatW4d+/fq1uCJSdnY2VqxYgZiYGPz222/s6Mann36KJUuWKHQMVX4OSUlJ2LZtG6ZNm4a1a9ey22fOnCkV1N64cQMXL15E9+7dUVRUhNjYWPTs2RMLFiyQede9ue2NHTsW7777Lry8vDQyVai+u3fvYt++fYiNjQVQF+x06tQJc+bMQb9+/Zp1zMOHDyMxMRFXr15VZldx+/Zt2NvbK9yH6Ohozu+wljA1NUV8fDwbMFy6dAmrV69GSEgILl++DDc3N6W0o21ohIFoJakRBpqSpJPcbE2otKoWO3bsGAoKCjB69GjOXTw+n4+goCAkJSWx+5qYvKx4VVFRgZycHPTq1QsAOHfylCkoKAjff/89Jk2ahCFDhuDjjz/Gn3/+CYZh5N4p5PP5GDVqFHbt2gWgLtnZzc1NbkATEhICHo/H5iakpKTA0NAQgYGBMDc3R7du3dhpSeJ/mxMwmJubIy4ujn3csWNHWFtbw9fXl71IFr9nADKDG007fvw4qqqqMHXqVM5UqBkzZih8DFV+Dvv27QPDMFi4cKHUc5JTt4KDgxEQEMA+dnNzw5AhQ3D06FGFp6A0pT1t4OzsjOHDh7OPLS0tMX78eFy5coVT/ScrK0uhqlpVVVX48MMP8e6776Jz584N7hsfHw+RSKRw8Ofh4YFjx45Jff34449S+1pbW+PmzZsNjgB4eHhAJBJh27ZtjbY9atQobN26FePHj8ewYcPwn//8B0ePHkVubi4+//xzhfrfGtEIA9FKkmVVKelZNxkb8OFsbYJH+S8rJWXllqKrq5UGe0XExH9g+/TpI/N5S0tL9vu8vDwkJCRg9+7dePHiBWc/VcxLlsfb2xtDhw7FL7/8gtraWplJ3GPGjMG6detw9epV7Ny5E3FxcXIv4KytrdGlSxdOUNC9e3c2QAoJCeE8Z2RkJFWxSRGurq5SfbCyspK6W2llVfezIWvqhabdv38fANChQwfOdnt7e9jY2Ch0DFV+Dunp6XB2doatAiNvku8BAHx8fFBWVobs7GypKlstbU9RkmU7raysOMF6S3h7e0t99j4+PgDqggRF3nN9a9asQU5ODhISEpTSv/rMzMxklkiWFch89tlnGDp0KHx8fODn54eBAwdi3Lhx6Natm9L6ExYWhqCgoGbl1bQWagkYxIlCgYGBCp/YFRUVOH/+PIC6eZZEv1BZVf3h2caMGzC0wjwGXSX8Z2rg9u3bZV4s1E9gHDVqFM6ePYtZs2bB398f5ubmEAqFGDhwIHscdXFzc0NVVRVKS0s5QY1YUFAQ2rdvjxkzZiAzM7PRNRPCwsKwadMmFBQUsPkLYiEhIfjuu+9QXV2N5ORkBAQENKv6j7zqVPK2159CIy/YaY3JmC35HPSBk5MT5/HWrVs1kiTdmMLCQixevBjvvfceioqKUFRUBKBumqNIJEJWVhZMTU3h4OCg8r5EREQgPT0dv/76KxITE/Htt99izZo12LRpE95++22ltePm5oY7d+4o7XjaRi0BQ2RkJHg8Hq5du9bosJTY48eP2dc1VvmC6B7pKUk0wqCr3O1McabeSHFWK6uUxLe2RoezKY3vqGZ8JdQDF9dod3BwkLvgGVB3l/fEiRNISEjAggUL2O2aSgLMyMiAQCBocIGo0aNHY/HixfD19YW/v3+DxwsLC8PGjRtx/PhxXLlyBbNmzWKfCwkJQXl5OQ4fPoyMjAyMGDFCWW9DYTY2NmzidX3iO/4NUebUGHd3dwB1/+9eXl7s9uzsbK0YEWnfvj2OHj2KvLy8Ru/6yzp37969C1NTU4XnzivaXlP+DyQTkLt06aLwaxtz7949iEQiTn/u3r0LADKrcDUkPz8fJSUlWLFiBVasWCH1vKenJ4YOHaq2Equ2traYOHEiJk6ciJKSEkRERGDRokVKDRgyMjIUPjdaI7VNSWruXQB9u3tA6lRL3JE0pBwGneUhkfic1crWYmB4vBYnF2urAQMGwNLSEkuWLEFUVJRUFaHs7GzY29uzd38lf19/+eWXKu1fTk4O2rRpw9l29epVHDx4EIMGDWqwUtHbb7/N5mI0RpyTsHr1alRXV3NGGDw8PODk5MReFGli/YX27dujsLAQ165dY6dZPH36VKGKM+KFtGQFHE3Vt29fGBoaYv369ejfvz974anq80BRI0aMwFdffYWEhAROEjIAqQvlc+fO4fLly2ww+ejRIxw8eBADBw5UeK0SRdszMzNT+PNvKHBvqSdPnmD//v1s0nNRURF++OEH+Pv7c0YYxRXGGlr0zcHBQeb5t27dOpw7dw67du2SGi1RldzcXNjZ2bGPzc3N4e3tjYcPH7LbqqurkZ6eDisrq0b7Jf69V9///vc/XLp0ia06pou0NodBPIStDYsIEfWjsqr6QzJguN/KAgZdZmlpiY0bN2LcuHF49dVXERcXB3t7ezx48ACHDx9GaGgoNmzYAEtLS0RERGDFihWorq6Gi4sLEhMTkZmZ2ax2T58+zU5lzc7ORmlpKRYvXgygbnqBeJrqpEmTIBAIEBERgbZt2yI1NRWbN2+Gqakpli1b1mAb7u7uWLRokUL9adeuHdzc3HDu3Dl4eHjA2dmZ83xISAib4Boaqv6KWXFxcZgzZw6GDx+OadOmoaysDBs3boSPj0+jCef+/v7g8/lYvnw5CgsLYWxsjD59+jRrqoi9vT3+/e9/Y+nSpRg8eDCio6Nx5coVHDlyRCqw04SoqCiMGzcO69atQ1paGjtd7syZM4iKisIHH3zA7uvn54cBAwZg6tSpEIlE2LJlCwA0aT6+ou0FBATg+PHjWL16NZydneHp6alQIKtsPj4+mDx5Mi5cuIC2bdviu+++w/Pnz7F161bOfuKSqg0lPpuamspcufrAgQM4f/681HPbtm3DxIkTVTLFqnPnzoiMjERAQABsbW1x8eJF7N27l/P/LS6rOmHChEYTn0NCQtC9e3f06NEDVlZWuHz5Mr777ju4ublh7ty5Su27NtHagEE8lCpObCL6RSqHgaYk6SyPNtzF23JKqlBcUQ2LVlRaVZeNGTMGzs7OWLZsGVauXInKykq4uLggPDwcEydOZPfbuXMnpk6diq+++goikQj9+/fHkSNHpC6uFfHHH39IXZjNnz8fALBw4UI2YIiJicHPP/+MNWvWoKioCPb29oiNjcXChQvh7e3dgnctLSwsDLt27eKMLoiFhoZi37596NSpE+dOprrY2dlh//79+OijjzB79mx4enpi6dKlSEtLazRgcHR0xKZNm7B06VJMnjwZtbW1SEpKavbc8sWLF0MgEGDTpk1ISkpCUFAQEhMTERMT06zjKdvWrVvRrVs3bNmyBbNmzYKVlRV69Ogh9f/au3dvBAcHIyEhAQ8ePEDHjh2xbdu2JifKKtLe6tWr8c4772DevHkoLy/HhAkTNBIwdOjQAevXr8esWbNw584deHp6Ys+ePVILGqpCSUkJAOkcDWWYNm0aDh48iMTERFRWVsLd3R2LFy/mTC1sijfffJMtF1tWVgYnJyf861//wsKFC9G2bVsl9157MCIVzPl58OAB57GHhwcYhkFiYqLMygP1VVZWIj09HfPnz8fly5cRHh7OWQmSNN2jR4/YChN3795t9P9AG/T8/DheFFeyj3+Y1BMRPro7N1BXlJeXIzExEQDQv39/hYocVNbUotP831H/N9GhqWHwc9G+mwVpaWmoqamBgYFBq/g50mVCoZBNpLS0tGzyQmmEyMMwDN5//31s2LBBb84zDw8P+Pn54dChQxppf9SoUcjKymKL3eiqhv6GpKWlsVWpHj58CFdXV010US6VjDB4enpKbRPfcWqq8ePHK6NLpJWpEVLSs74wNuDD2coEjwteVkrKzCnVyoCBEEKIcolEIpw8eVLmGgpEe6gkYJA3aNGUwQyBQIBp06Zh0qRJyuoWaUWqaynpWZ94tjHjBAyUx6B7amtrkZ2d3eA+5ubmDVY2am3y8vJQVVUl93k+n99qqqpkZ2c3WKbVyMhIqesNNIW6zy19PJdViWEYqbVbiPZRScAgmSAzceJEMAyD//znP3BxcZH7OoZhIBAI4OTkhO7du9MPmx6jpGf94m5niuR7Lx9n0mrPOufhw4cyR5/rW7hwocKJyK1BbGwsTp06Jfd5d3d3hVbM1QaBgYENlmnt3bu3xqYPq/vc0sdzmRCVBAwTJkzgPBYnxg0bNkzhdRiIfquhsqp6xbMNVUrSdY6OjlI15CXVr92vC1atWtXg+gPKWqFXHXbs2IHy8nK5zyu6krMqKPvcamw2hC6ey60lcCWao5YqSUlJSQBk5zYQIkkkEqGaFm7TK+6tfC0G0jiBQKDSGvLaKCAgQNNdUBpNlItVlLrPLX08lwlRS8DQu3dvdTRDdEStUPrujoGOVqYgdTyptCohhBCitegqjGgdyQpJAOUw6DpXG1MwEv/F93Mpj4EQQojuUMFKBmqj9oXbrl69ijNnziAjIwPFxcUNVl0A6hKhxSssEv0gM2CgKUk6TWAoXVr1fm6Z1pVW5fP5qKmpQU1NDWpra2klekIIIQoRCoXsNa+BgdaumyyX2np8584dTJo0CX/++afCrxGJRBQw6CHJVZ4BSnrWB87WAk7AkF1cocHeyGZmZobKyroFBZ89ewZHR0cKGgghhDQqNzeX/d7IyEiDPWketQQMjx8/RkREBHJyctjhGHNzc9jY2Ojsqomk+SQTngGakqQP7C2MOY+zSyrl7Kk5lpaWyMvLAwAUFRWhqKioVd4p0hU1NTUA0GhNfEJags4z0lIikYgzo8bOzk6DvWketfyl+/zzz5GdnQ2GYfD222/j3//+N7v8NSGSJEuqAoABjTDoPHtziYChWPsCBhMTEzg7O+PJkyfsNvHFBFEvkUjElvk0MTEBI5kEQ4gS0HlGlM3a2hoCgUDT3WgytQQMv//+OxiGwfjx47F582Z1NElaMclF2wDAkHIYdJ7kCENOifwVcjXJysoKxsbGKCwsRGlpaaN5WEQ1hEIheyFnbm5Oo9VEJeg8I8piaGgIa2trWFpaarorzaKWgEF8N278+PHqaI60ctUychiorKrua9MKRhjEBAJBq7xDpEvKy8tx+/ZtAHXrHbSmRdBI60HnGSF11HIVJl4B0traWh3NkVaOyqrqJ6kcBi0OGAghhBB9opaAoUePHgCAu3fvqqM50spJTkniMQCPAgadJz0lqRJCGcEjIYQQQtRLLQHDtGnTIBKJKH+BKEQy6ZkSnvWDZMBQIxShsLxaQ70hhBBCiJharsT69euHOXPmICkpCf/3f/+H6mq6CCDySZZVNaTRBb1gZ2YstU0bS6sSQggh+kYtSc8//PADfH19ERISgs2bN+O3337DyJEj0alTJ5iamjb6ekqW1i+SC7fRCIN+MDLgwdrUEAVlL28oZBdXwqethQZ7RQghhBC1BAzx8fGc2sVPnz7F+vXrFXqtuBwr0R+SSc9UUlV/2JsbSwUMhBBCCNEstd26FYlEzf4i+kWyrCqVVNUfshKfCSGEEKJZahlhyMzMVEczREdIVkkyoBEGvdGa1mIghBBC9IVaAgZ3d3d1NEN0hGSVJEPKYdAbtBYDIYQQon3oSoxoHckcBj5VSdIbUgEDTUkihBBCNI4CBqJ1pKYkUcCgN+xpShIhhBCiddQyJam+tLQ0/PDDDzh37hyePXuG8vJyHD16FN7e3uw+N27cwIMHD2BmZobevXuru4tEwySTnmlKkv5oQ0nPhBBCiNZRW8AgFAoxe/ZsrF27FkKhkK1+xDAMqqqqOPs+ePAAgwcPhoGBATIzM+Hi4qKubhItIDkliZKe9YfkCENuaRVqaoW0FgchhBCiQWr7KzxlyhSsWbMGtbW1cHZ2xsiRI+XuGx0dDU9PT9TW1mLv3r3q6iLREpILtxlSWVW9IZnDIBIBeaVVcvYmhBBCiDqo5UrsxIkT2LJlCwBg7ty5yMrKwk8//dTga9544w2IRCL88ccf6ugi0SLVVFZVb9maGUEyZYUSnwkhhBDNUkvAsHnzZgB1IweLFy8Gn89v9DU9e/YEANy8eVOlfSPaR7KsKk1H0R98HgNbM0p8JoQQQrSJWq7Ezp07B4ZhMHnyZIVf4+rqCgB49uyZqrpFtJTkCIMhVUnSK7QWAyGEEKJd1BIwvHjxAgDg4eGh8GsMDQ0BADU1NaroEtFitbQOg16TDBhySiiHgRBCCNEktQQMZmZmAIDs7GyFX/Po0SMAgK2trUr6VN/9+/cxc+ZMdOrUCWZmZrC1tUVgYCBWrlyJsrIypbZ1/PhxxMfHw9vbG2ZmZrCysoKPjw9GjhyJjRs3oqSkRKnttUZSSc80JUmv0FoMhBBCiHZRS1lVLy8vXL58GampqejXr59Crzly5AgAoEuXLqrsGn777TeMHTsWRUVF7LaysjJcvHgRFy9exLfffovDhw9z1olojvz8fEycOBG//vqr1HNFRUVIS0vDvn37EBwcDH9//xa11dpVU1lVvdbGwojzmJKeCSGEEM1Sy63b/v37QyQS4auvvoJQIqFVltTUVGzbtg0MwyA6Olpl/bpy5QrefPNNFBUVwdzcHJ9//jnOnj2LEydO4F//+hcA4O7du4iJiUFxcXGz2yksLES/fv3YYGH48OHYsWMH/vzzT1y4cAG//PILpk+fzuZt6DvJEQYDKquqV6RHGCo01BNCCCGEAGoaYZg2bRrWrVuH9PR0vPvuu/jvf/8LAwPZTR87dgwTJ05ERUUF7Ozs2At3VZg+fTrKy8thYGCAxMREBAcHs8/16dMHHTp0wOzZs3H37l2sWrUKixYtalY7U6dOxaVLl2BsbIyffvoJQ4YM4Tzfo0cPDB8+nF2nQt9JJT3TCINeoRwGQgghRLuo5dZt27ZtsWnTJgDAli1b0L59e7z33nvs82vXrsU777yDLl26YODAgXjy5Al4PB62bdsGc3NzlfTp/PnzOHPmDABg8uTJnGBBbObMmfD19WX7WF1d3eR2kpOTsX37dgDA4sWLpYKF+hiGkRtI6RPpsqoUMOgTqpJECCGEaBe1zfV46623sGvXLlhaWuLhw4f4+uuvwTB1F4LffvsttmzZglu3bkEkEsHc3Bw///wzYmJiVNafAwcOsN9PnDhR5j48Hg/jx48HABQUFCApKanJ7WzYsAEAYGVlhQ8++KDpHdVDNZILt9GUJL0iOSWpsLwalTU08kYIIYRoilqvxEaNGoV79+4hISEBAQEB4PP5EIlE7FeXLl3wySef4N69exg+fLhK+5KcnAygroJTQECA3P169+7Nfp+SktKkNqqqqti8hX79+kEgEAAAamtr8fDhQ2RlZaGiguZnS6IpSfpNcoQBoGlJhBBCiCap/datnZ0d5s+fj/Pnz6OiogIvXrzA06dPUVlZievXr+Pzzz+Hg4ODyvtx69YtAIC3t3eD04A6deok9RpFXb16lQ0IunbtiqKiIsyYMQNt2rRBu3bt4OnpCSsrK/Tr1w8nT55s+pvQUbUSU5L4NMKgV6xMDKWCxByalkQIIYRojEYnzPN4PLRp00bt7VZUVCAnJwcAGq1MZGNjAzMzM5SWluLhw4dNaic1NZX9XigUokePHkhLS+PsU1VVhePHj+PEiRNYunQp5syZ06Q2gJdrVsjz9OlT9vvKykqUl5c3uQ11qqiWWKxPWKv1fSZ16o+YtWT0rI2ZEZ4WvQwSHucWw6eN9MgD0V/KOtcIaQidZ0RdKiu1+8aYXmbY1i+RqkhStThgaOqianl5eez3y5cvR0VFBQYOHIjPPvsM3bp1Q1FREfbt24ePP/4YhYWF+Pjjj9GpUycMHTq0Se24ubkpvO9ff/2F9PT0Jh1f3Z485aH+4Nf9zHQkJt7TXIdIs5w+fbrZrzWo5QN4Ocpw6vwVVN8XyX8B0WstOdcIURSdZ0SVxDeytZVezvWof5fAyMiogT3rGBvX3dls6l3u0tJSTpv9+vXDoUOHEBgYCGNjY9jb2+Pdd9/FoUOHwPtn2s0nn3wCkUi/L4wkUhhACz3rH0sj7klQ3PQCZYQQQghREqWOMPTp0wdAXXnQEydOSG1vDsljKYM4+RiomxLUGPEwkYmJSbPbAepGGfh8vtR+YWFhiI2Nxd69e3Hr1i1cv34d3bp1U7idxqZKPX36FD179gQABAUFoX379gofWxN+fvE3kP9ydMa3Y0f0D2mnuQ4RhVVUVLB34SIiIqR+BhR1puIWbua/nEpn7dgO/ft3VEofiW5Q1rlGSEPoPCPqou2zP5QaMIgTd8XlUutvZximSXfOxftLHksZLCws2O8VmWYkHilo6poQ9duxt7dH9+7d5e47YMAA7N27FwBw4cKFJgUMTVkh2tjYuMmBj7oJwf0/NzE20vo+E2kCgaDZ/29ONmacx/nltXQOELlacq4Roig6z4gqiWezaCulBgwREREyL/DlbdcUgUAAOzs75ObmNpownJ+fzwYMTckVkNy/sYv6+vtmZ2c3qR1dI7kOA5VV1T9tzGnxNkIIIURbqGSEQdHtmtS5c2ecOXMG9+7dQ01NjdzSqrdv32a/F6/6rKguXbqw39fWNrzwVP3n9X2152qplZ4piUHfSK32XEIBAyGEEKIpenslFhYWBqBuutGlS5fk7nfq1Cn2+9DQ0Ca14e7ujnbt6ubeZ2VlNTglq/7cNRcXlya1o2tqhdzPic+jEQZ9Ixkw0DoMhBBCiObobcAwbNgw9vutW7fK3EcoFOKHH34AAFhbWyMqKqrJ7YwYMQIAUFRU1GDy9i+//MJ+Lw5m9BWt9EzsJaYklVbVorSyRs7ehBBCCFElvQ0YevbsifDwcADAli1bcO7cOal9Vq1axa7uPH36dBgaGnKeFydzMwyD+Ph4me3MmDGDrarw0UcfoaioSGqfH3/8kZ22FRMT0+RcCV1TUysxJYlWetY7bSykk79yaFoSIYQQohFquRK7fv06vLy80KFDBzx+/LjR/R8/fgxvb2+0b98ed+/eVVm/1q5dCxMTE9TU1KB///5YunQp/vzzTyQlJWHKlCmYPXs2AMDHxwczZ85sVhvt2rXDZ599BqDuc+jZsye2bt2KS5cuISkpCVOnTmWDDUtLS6xZs0Yp7601qxHSCIO+MzPiw8SQW4KYEp8JIYQQzVBLdu2PP/6IrKwsDBgwQKH5+S4uLvDx8cHRo0fx448/shfcyta9e3fs2bMHY8eORVFREebOnSu1j4+PDw4fPswpkdpUs2bNQl5eHpYvX447d+5g0qRJUvs4ODjgwIED6NChQ7Pb0RXVNMKg9xiGgb2FMR7klbHbaISBEEII0Qy1XImdOnUKDMNgyJAhCr9m6NChEIlESl+0TdLrr7+Oa9eu4cMPP4SPjw9MTU1hbW2NHj16YPny5bhy5Qq8vb1b3M7SpUuRkpKCcePGwcPDA8bGxrCyskJgYCD+85//4O7duwgODlbCO2r9JMuqGtAIg16SqpREIwyEEEKIRqhlhEE8ragpi5H5+fkBAO7cuaOSPtXn7u6O1atXY/Xq1U16XWRkZJMWowsODqagQAE1EmVVDamsql5qY27EeUwBAyGEEKIZarkSE6+m3JSVksX7ykoSJrpNskoSlVXVT7QWAyGEEKId1BIw2NjYAACePXum8GvE+7Ykd4C0TpLrMFDSs36yNxdwHmcXV2moJ4QQQoh+U0vAIE7k/f333xV+zZEjRwAA7du3V0mfiPaipGcC0AgDIYQQoi3UciU2YMAAiEQibN68mV3XoCE3b97EN998A4ZhMHDgQDX0kGgTybKqlPSsnyRzGGi1Z0IIIUQz1BIw/N///R/MzMxQUVGBPn364NChQ3L3PXjwIPr27Yvy8nKYmJjg/fffV0cXiZYQiUQypiTRCIM+kjXC0JQiA4QQQghRDrVUSWrTpg02bdqEcePG4cWLFxg6dCi8vLwQFhYGJycnAMDTp09x5swZZGZmQiQSgWEYbNy4EW3btlVHF4mWkEx4BgADSnrWS5IBQ1WNEEUVNbAyMZTzCkIIIYSogloCBgB46623IBQK8X//938oKytDeno6MjIyOPuI7x6amZlh48aNGDt2rLq6R7SEZElVgEYY9FUbc2OpbdnFlRQwEEIIIWqm1iuxcePG4d69e/j444/RtWtXAHVBgnhEoVu3bvj0009x7949Chb0lMwRBsph0EsCQz4sBNx7GrQWAyGEEKJ+ahthEHN0dMSSJUuwZMkS1NTUIC8vDwBga2sLAwO1d4domZpa6REGWodBf9lbGKO4ooZ9nEOVkgghhBC10+gVuoGBARwcHDTZBaJlJBOeAcCQyqrqLXtzY2Rkl7KPaYSBEEIIUT+6EiNapVpGwEBTkvQXrcVACCGEaB4FDESryJqSREnP+ksy8ZlGGAghhBD1U+qUpD59+gAAGIbBiRMnpLY3h+SxiG6jsqqkPskRBsphIIQQQtRPqQHDyZMnAdRd5EtuZximSYsuifeXPBbRbbLKqlLSs/6SmpJEIwyEEEKI2ik1YIiIiJB5gS9vOyGSamolV3lm6NzRYxQwEEIIIZqnkhEGRbcTIqlaIofBgCok6TV7iRyG3NIqCIUi8GjUiRBCCFEbpV6NXbt2DdeuXUNVVZUyD0v0iGRZVcpf0G+SIwy1QhHyy+j3CyGEEKJOSh1h8Pf3B4/Hw7Vr19C5c2d2+2effQYAeO+999CmTRtlNkl0jGTSM5VU1W+2ZkZgGKB++lN2SSXsJEYeCCGEEKI6Sl+4TVZi86JFi8AwDEaOHEkBA2mQZNKzAZVU1WuGfB5sTY2QW/pyVCG7uBKdHDXYKUIIIUTPKPVqzNDQEABQXl6uzMMSPSKV9ExTkvQercVACCGEaJZSA4a2bdsCAC5duqTMwxI9IpX0TCMMeo/WYiCEEEI0S+llVXfu3Ik5c+YgPT0dPj4+7KgDAPz666+4ePFik487fvx4ZXaTaLEayaRnymHQe1RalRBCCNEspQYMn3zyCfbv34/CwkJ88cUXnOdEIhHmzZvX5GMyDEMBgx6RHGEwpLKqeo8CBkIIIUSzlHo11qVLF5w+fRp9+/aFoaEhRCIRJwla/LipX0R/SOYw0AgDaWNuxHmcTVOSCCGEELVSepWkgIAAJCYmoqamBjk5OaioqICXlxcYhsHRo0fRoUMHZTdJdAitw0AkSeUwFNM6DIQQQog6KT1gYA9sYABHR27tQ2dnZ7i7u6uqSaIDqqmsKpFgby7gPKYRBkIIIUS9lBowrFu3DgAwbtw42NjYsNsXLlwIhmHg4OCgzOaIDpKakkQjDHpPcoQhr7QK1bVCGFIwSQghhKiFUv/izpgxAx9++CGePn3K2X7y5EmcPHkSpaWlymyO6CCppGe6KNR7kjkMAJBbQtOSCCGEEHVR2ZSk+k6dOgWGYShgII2isqpEko2pEfg8hpPfklNSCUcrQQOvIoQQQoiyKPX2rUBQ9we8oKBAmYcleqRGcuE2Kquq93g8RrpSEpVWJYQQQtRGqVdjHh4eAIBDhw4p87BEj1RL5DAY0ggDAa3FQAghhGiSUqckRUdH4/bt21i+fDlOnDghtdLzvHnzYG1t3aRjMgyDLVu2KLObRIvVUJUkIkMbc4mAgSolEUIIIWqj1IBh7ty5OHjwIO7du4cLFy7g4sWL7HMikQi//vprk44nEokoYNAzUjkMVCWJALCXDBhohIEQQghRG6UGDLa2trh48SI2bNiAEydO4PHjx6isrMT9+/fBMAycnJw4Iw6ESKKyqkQWqSlJNMJACCGEqI3SqyRZWlpi7ty5mDt3LruN90/iamJiIjp37qzsJokOkUp6pilJBJTDQAghhGgSXY0RrVItpKRnIk0yhyGHRhgIIYQQtVHLOgxJSUkAAE9PT3U0R1oxKqtKZKERBkIIIURz1BIw9O7dWx3NEB0gmcNAIwwEkA4YiitqUFFdC4EhX0M9IoQQQvSHWgKG+oRCIZKSknDu3Dk8e/YMZWVl+Pzzz+Hk5MTuU1VVhZqaGvD5fBgbGzdwNKJrJKck0UrPBADaWkqv6nzvRQn8XKw00BtCCCFEv6g1YDh06BCmTZuG+/fvc7b/+9//5gQM3377LaZOnQpzc3M8efIEZmZm6uwm0SCakkRkMTc2gLudKe7nlrHbbjwupICBEEIIUQO1XY198803GDp0KLKysiASiWBnZweRSCRz37fffhtWVlYoKSnB/v371dVFogVoHQYij2RwcP1xoYZ6QgghhOgXtQQMaWlpeP/99wEAffr0QWpqKl68eCF3fyMjI4wYMQIikQiJiYnq6CLRElRWlcjTVSJguEEBAyGEEKIWarkaW7NmDWpqatClSxf873//Q6dOnRp9TXh4OADgypUrqu4e0SKSIwyU9EzEJAOGW8+KUS0RYBJCCCFE+dQSMPzxxx9gGAYzZsyAkZGRQq/x9vYGADx8+FCVXSNaRvICkKYkETE/Z27AUFUjxN3nxRrqDSGEEKI/1BIwPHr0CADwyiuvKPwacaJzWVlZI3sSXSJZVpWmJBExK1NDtLM15WyjaUmEEEKI6qnlaoxh6u4SN+XiPzc3FwBgZUVVUPQJrfRMGiI5LYkSnwkhhBDVU0vA4OLiAgDIyMhQ+DXJyckAAC8vL5X0iWgnKqtKGiJdKalIQz0hhBBC9IdarsYiIyMhEonw/fffK7R/YWEhNm3aBIZh0KdPHxX3jmgT6SlJNMJAXpJKfH5aRInPhBBCiIqpJWCYMmUKGIbBqVOnsG3btgb3zc3NxbBhw/Ds2TMYGBjg3XffVUcXiZaoEdIIA5HPz8WS87iqRoi05yUa6g0hhBCiH9RyNda9e3dMnz4dIpEIkydPxptvvomffvqJff7s2bPYuXMn3n//fXh7e+P06dNgGAbz58+Hu7u7OrpItITUwm00wkDqsTY1gputCWcbJT4TQgghqmWgroZWrVqFyspKbNy4EXv37sXevXvZZOgpU6aw+4lXf54xYwbmzZunru4RLSE5JYmSnomkri5WeJhXzj6+/rgQowLdNNgjQgghRLepbb4HwzD46quvcPToUURGRoJhGIhEIs4XAAQHB+Pw4cNYvXq1urpGtIj0Ogw0JYlwSSc+0wgDIYQQokpqG2EQ69evH/r164fi4mJcuXIFL168QG1tLezs7ODv7482bdqou0tEi9CUJNIYyQXcbj0tQk2tkNbsIIQQQlRE7QGDmIWFBSIiIjTVPNFSkiMMhnQRSCRIVkqqrBEi7UUJfJ0s5byCEEIIIS1BV2NEq0iVVeXRCAPhsjEzgos1N/GZpiURQgghqqOREYbnz5/j5MmTuHHjBvLy8gAAtra28PPzQ2RkJNq2bauJbhEtQGVViSK6uljhccHLxOcbjwsxqgclPhNCCCGqoNaA4enTp/joo4/wyy+/oKamRnaHDAwwYsQIrFq1Ck5OTursHtEClMNAFNHV1Qq/33zGPqbSqoQQQojqqO327dWrV9GtWzf89NNPqK6ulqqQJP6qrq7Gnj178Morr+D69evq6h7RArVCEUTceIHKqhKZJCslpf6T+EwIIYQQ5VNLwFBaWoqYmBjk5uZCJBKhb9++2LNnD7KyslBRUYGKigpkZWXhp59+Qv/+/SESiZCTk4OYmBiUlZWpo4tEC0gmPAM0JYnIJpn4XFEtRHp2qYZ6QwghhOg2tVyNbdiwAU+ePAGPx8M333yDxMREvPHGG2jXrh2MjIxgZGSEdu3aYeTIkfj999/x7bffgmEYPH78GF999ZU6uki0gOR0JICmJBHZbCnxmRBCCFEbtQQMv/76KxiGQXx8PCZPntzo/pMmTcLEiRMhEomwf/9+NfSQaANZU0qorCqRx8+FW0aV8hgIIYQQ1VDL1djdu3cBAHFxcQq/ZvTo0ZzXEt1XXStjhIHKqhI5JKcl0QgDIYQQohpqCRhKSkoA1JVOVZSNjQ2AuvwHoh8kS6oCoNV7iVxSic9PilArY1obIYQQQlpGLVdj9vb2AIBbt24p/Jrbt28DANq0aaOSPhHtI7loG0AjDEQ+yRGG8upapGeXaKg3hBBCiO5SS8DQq1cviEQirF69Wu76C/XV1NRg9erVYBgGvXr1UkMPiTagpGfSFHbmxnC2EnC2XX9E05IIIYQQZVNLwDB+/HgAwN9//42YmBg8efJE7r5PnjzB66+/jsuXLwMA4uPj1dFFogVkJj1TWVXSAMlpSZTHQAghhCifWlZ6fv311zFs2DAcOHAAx48fh5eXF/r374+goCA4ODiAYRg8f/4cf/31F44dO4aqqioAwPDhwxETE6OOLhItIJn0zGMAHk1JIg3o6mKFxNTn7GOqlEQIIYQon1oCBgDYtWsXxo8fj59//hlVVVU4fPgwDh8+LLWf6J+lft944w388MMP6uoe0QKSSc+U8Ewa4+fKHWG4+U/iM58CTUIIIURp1HZFZmxsjD179uC3337DoEGDYGJiApFIxPkyMTHBoEGDcOjQIezZswfGxsbq6h7RApIjDIZ00Uca4ecsnficQYnPhBBCiFKpbYRBLCYmBjExMaitrUVGRgby8vIA1JVc9fLyAp/PV3eXiJaQzGGgEQbSGHsLYzhaCvCsqILddv1xITq0tdBgrwghhBDdovaAQYzP56NDhw6aap5oIckqSYZUIYkowM/FSipgiH3VVYM9IoQQQnQL3cIlWkMyYKB56EQRkusxUOIzIYQQolwqCRj+/PNPxMbGIjY2Fnv37m3Sa3/++Wf2tZcuXVJF94iWkpqSRCVViQK6ulpyHt+kFZ8JIYQQpVLJFdn06dPx66+/4uHDhxg6dGiTXjt06FA8fPgQv/76Kz788ENVdI9oKamkZ5qSRBQguRZDWVUtMnMo8ZkQQghRFqUHDH/99RcuXLgAAFi3bh0MDQ2b9HojIyOsW7cOIpEIKSkpNMqgR6isKmkOBwsB2lpyK6rRAm6EEEKI8ij9iuynn34CAISFhSE4OLhZxwgODkbv3r0BALt371Za34h2q5EYYTCgHAaiIMk8huuPijTUE0IIIUT3KD1gOHfuHBiGafJUJElDhgyBSCTC2bNnldQzou2qJXIYDGmEgShIclrS9ccFmukIIYQQooOUfkWWnp4OAOjatWuLjuPn58c5HtF9klWSDCiHgSjoFVdrzuOrDwtRXlWrmc4QQgghOkbpAUNBQQEAwN7evkXHEb9efDyi+ySrJBlSlSSioB4eNpwyvFW1QlzIytNgjwghhBDdofQrMlNTUwBAUVHL5hAXFxcDAExMTFrcp8bcv38fM2fORKdOnWBmZgZbW1sEBgZi5cqVKCsrU0mbZWVl8PLyAsMwYBgGHh4eKmmnNaF1GEhzWQgM0c2VOy0pJT1HQ70hhBBCdIvSAwbxyMC9e/dadBzx61s6UtGY3377Dd26dcPq1atx584dlJWVIT8/HxcvXsTs2bPRvXv3Fr8XWRYsWIDMzEylH7c1k0p6pilJpAnCvNtwHp+9l6uhnhBCCCG6RekBQ/fu3SESiXDkyJEWHefw4cPs8VTlypUrePPNN1FUVARzc3N8/vnnOHv2LE6cOIF//etfAIC7d+8iJiaGHfFQVrtffvklBAIBLCwslHbc1q5aSEnPpPlC2nMDhhtPClFQVqWh3hBCCCG6Q+lXZAMGDAAAHDhwADdv3mzWMW7cuIEDBw6AYRj2eKowffp0lJeXw8DAAImJiZg7dy6Cg4PRp08fbN68GStWrABQFzSsWrVKKW3W1tbiX//6F2prazF37lzY2toq5bi6gMqqkpZ41d0aAsOXv9JEIuDPDBplIIQQQlpK6QFDXFwcHBwcIBQKMXLkSOTmNu0Pdk5ODkaMGAGhUAh7e3vExcUpu4sAgPPnz+PMmTMAgMmTJ8tcM2LmzJnw9fUFAKxduxbV1dUtbnft2rW4dOkSOnbsiDlz5rT4eLpEKumZRhhIExgb8BHowQ3AU2haEiGEENJiKkl6TkhIgEgkwt27d+Hv749ff/1VodceOHAA3bt3R1paGhiGwWeffcYmUSvbgQMH2O8nTpwocx8ej4fx48cDqKvWlJSU1KI279+/jwULFgAANm3aBCMjoxYdT9dUyyurKjFViRB5JKclUeIzIYQQ0nIGqjjolClTcPnyZXzzzTd48uQJYmNj4eHhgYEDByIgIAAODg4wMzNDaWkpnj9/jsuXL+PIkSO4f/8+RKK6i8Z33nkH77zzjiq6BwBITk4GAJiZmSEgIEDufuIVpwEgJSUF/fv3b3ab7733HkpLSzFu3DhERkY2+zi6SnKEwUaYD3w3CHhyGfAZAAxYCli5aKh3pDUI9bbjPM7ILsWzwgo4Wgk01CNCCCGk9VNJwADU3UF3dHTE559/DqFQiKysLGzatKnB14hEIvB4PMybNw8LFy5UVdcAALdu3QIAeHt7w8BA/sfQqVMnqdc0x+7du/G///0PNjY2SsuH0DXVEjkMr+XuAnL/Wek79Vcg/SQwaDnwShzAUH4DkdbF2QqWAgMUVdSw21Lu5WBEgKsGe0UIIYS0bioLGBiGQUJCAoYOHYolS5bg119/RW2t/JVX+Xw+hg0bhk8++QSvvvqqqroFAKioqEBOTt1UBVfXhi8kbGxs2NGQhw8fNqu9/Px8zJgxAwCwbNkypZeKffToUYPPP336lP2+srIS5eXlSm1fWSqruDkibSskys5WFgIH3kXtjV9QNeALwNxBjb0jiqioqJD5vTr19LDB8dvZ7ONTd54jurNdA68grZE2nGtE99F5RtSlsrJS011okMoCBrFXX30Ve/fuRWFhIZKTk3H16lXk5uaiuLgYFhYWsLOzwyuvvIKwsDBYWVk1fkAlqF8i1dzcvNH9xQFDSUlJs9qbNWsWnj9/juDgYLZcqzK5ubkpvO9ff/2F9PR0pfdBGbIe8FA/rUZUUShzP/69RPAzg3HNdTwe2/Si0QYtdfr0aY20a13JAOCzj0/deoqjpo/oNNFhmjrXiH6h84yokvhGtrZSecAgZmVlhZiYGMTExKirSbnq3yVQJPHY2NgYAJp1Z/706dP47rvvYGBggE2bNoGhqxa5JGYkwQjyq1IZ1Zaix/2NcC68iKuuE1BlaKnczohEMKotgXF1EQxrS//5KoNRTSkMastg9M82vlBc518E5p/Xsd8DqGUMUMM3QQ1PgBq+oN73JqjmmaDCyAZlRvao4at+RXN94WPFPZEKqxm8qADa0kdMCCGENIvaAgZtIhC8TICsqmp8YSfxMJGJSdOuOCorK/HOO+9AJBJh+vTp6NatW9M6qqDGpko9ffoUPXv2BAAEBQWhffv2KulHSx0vuQlkP2cfmxuKgHqz2EQMD4yImxjtXHABTpXpqPWMhMjGCyLb9hDaekFk4wUYy1gUr7YKKM0BU/oCTFk2mJJsMKXPwZQ8A1PyAkzJc6D0OZjSbDC16lv0S2RiC5F1Owit2kFk1Q4i63YQWXtA6NAZMG3T+AG0REVFBXsXLiIigvOzpi4ikQjfpqfgRfHL/z+eU2f070l5DLpEG841ovvoPCPqoq2zP8T0MmCov7qyItOMSktLASg2fam+zz//HHfu3IGbmxsSEhKa1skmaCwPoz5jY+MmBz7qImS4VX6NRNz5fMyQDcC948DNX7jby/NgkMrdBgAwbwvYeQMMDyh5AZS+AMrzld5vZWDK88CU54H39G/pJ63aAc7+gMurgHN3wMkfMLFWbwebQSAQaOxcC/O2xy9XHrOPLzwoxNu9O2ikL0T1NHmuEf1B5xlRJfFsFm2llwGDQCCAnZ0dcnNzG00Yzs/PZwOGpuQKAMDy5csBAH379sVvv/0mcx/xsUtLS7F7924AgIODA/r06dOktnSB1MJtQokEMysX4I2tQOchwKGPgPK8hg9Y8rzuq7UrfFD3devgy222Xv8EQ3z5r9MAI2Eter7IRrWBOQxSbgAOHQAbj7ovM3u15ZuEeLfhBAzn0nNRKxSBT6uHE0IIIU2mlwEDAHTu3BlnzpzBvXv3UFNTI7e06u3bt9nvxas+K0o83Wnr1q3YunVrg/vm5ORg9OjRAOrWftDPgEFi4TahRMUAw38W8esyHHAPBQ59CNw+pPqOGVkAAqu6u/oCa+6/hqb/XAQzL/8FXl4Y11QAlcVAZQlQ9c+/lcVAVQlQXgCUPGten/Iy6r60DB+Ak/hB8hnuk4am/wQPnkC3UUCXYSrrh+R6DEUVNbj5pBDdXK1V1iYhhBCiq/Q2YAgLC8OZM2dQWlqKS5cuISgoSOZ+p06dYr8PDQ1VV/f0EnelZxEMaiVGGAzrDQWbOwBv/gg8vQo8PA/k3nv5VfAAgEQGtSSeAWDmAJjbA+aOgEXbl/9aOL383swBMFDhitzVFUDhQyD/PpCfCRTc/+f7LCAnDajRzhK4zVJdBrxIrfu6cxgw2A10HKSSppysTODVxgwZOaXstpR7uRQwEEIIIc2gtwHDsGHDsHTpUgB1IwCyAgahUIgffvgBAGBtbY2oqKgmtSFetbohHh4euH//Ptzd3ZGVldWk4+uaWuHLKUlGqAEP3ClK7AiDGMPUze139udur66ou+DOvVd3F57h1eUzmDv889W2boSAx82Z0AhDAdCmQ92XpNoaIOcO8OTKy69n1+sSt3XBhS0qCxgAIMTbjhMwnE3Pwf9FamfCPyGEEKLN9DZg6NmzJ8LDw3HmzBls2bIFEyZMQHBwMGefVatWsas7T58+HYaGhpznT548yQYREyZMwLZt29TSd11Vf6VnAWQsYGKgYHUKQwHg0KnuqzXjGwBtu9R9dR9bt62mCsi+BTz5GyjL1Wj3ZKmuqcG9u3cgqM5HOwsh+EX/jJ4IZZTIzToDVJdzR46UKLR9G/z45wP28YWsPFTW1MLYQLvyPgghhBBtp7cBAwCsXbsWoaGhKC8vR//+/TF37lxERUWhvLwcu3fvxubNmwEAPj4+mDlzpoZ7q/vqJz0LZK3BoKILy1bFwAhweqXuSwvVlJfjblEiAMCxf/+6iiLCWqD4KZBzF/hxBCAujVtTAWSlAB36qqQvwe3twDD/LI0BoKJaiMv3CxDcnlZ9JoQQQppCrwOG7t27Y8+ePRg7diyKioowd+5cqX18fHxw+PBhTilWoho19XIYTBgZIwySU5JI68DjA1audV+ugcDDv14+d++YygIGa1MjdHG2xI3HRey2s+k5FDAQQgghTaSWSdw//PADfvjhBxQVFTW+8z9KSkrY16nS66+/jmvXruHDDz+Ej48PTE1NYW1tjR49emD58uW4cuUKvL29VdoHUqf+lCQTSM7TZwAD7a5RTBTgLREcpB1TaXOh7bmL3qXcy1Fpe4QQQoguUssIQ3x8PBiGQY8ePdC5c2eFXvP8+XPEx8eDx+Nh/PjxKu2fu7s7Vq9ejdWrVzfpdZGRkQolNjdE3xOd66s/JclEMofB0ERtNfyJCnn3BZI+f/k4L70uMd3WSyXNhXi3wdenX5afvfqoEMUV1bAQGDbwKkIIIYTUpwVlYhrW0gty0nrUn5IkYCRGGCh/QTc4+dct4FZf2nGVNRfoYQND/stAs1YowvnMRhb8I4QQQgiH1gYMtbW1ACB3QTWie6o5Sc+SAQPlL+gEHg9o/xp32z3VTUsyNTJA93Y2nG0p97SvuhQhhBCizbQ2YLhz5w4AwNbWVsM9IepSWz/pWdaUJKIbOvTjPs48U7d2hopI5jGcTac8BkIIIaQpVHL7/vTp0zK3X7hwATk5Df+xrqysRHp6Or744gswDAN/f38V9JBoI+46DBIjDIquwUC0X/s+dYvpseVVy4H7ydIJ0UoS6m2HNfVmPd1+Vozs4krYW1ASPSGEEKIIlQQMkZGRYCQSVEUiESZNmqTwMUQiERiGwZQpU5TdPaKlauqt9GwilcNAU5J0hqkt4BIAPLrwclvacZUFDK+4WcPMiI/Sqlp229n0HAz1d1FJe4QQQoiuUdmUJJFIxH7J2tbYl6urK7766isMGzZMVV0kWqamoZWeaUqSbvGWmJakwjwGQz4PQV7ctReSbr9QWXuEEEKIrlHJCENSUhL7vUgkQp8+fcAwDLZs2QJPT0+5r2MYBgKBAE5OTnBzc1NF14gWq+aUVaURBp3WoS9wcsnLx7n3gLxMwFb+74eW6O1jjz/qBQknbr1AZU0tjA34KmmPEEII0SUqCRh69+4tc3vPnj0VXoeB6J+Gy6pSDoNOceoOmLYByurlNN07DvT8l0qaG+jniIUHb7KPiytrkHIvB306tVVJe4QQQoguUUuVpMzMTGRkZMDHx0cdzZFWSCQSSVRJonUYdBqPB3hLlFdV4arPbS0FCHDnllc9cv2ZytojhBBCdIlaAgZ3d3e4u7vTmgpErvoVkgBZZVVpSpLOkcxjyFJtedVBfo6cx4mpzznT4AghhBAim9asw/Dbb79h3LhxGDRoEN577z1cvnxZ010ialR/dAGglZ71Qvs+AOpVU6suAx6cVVlzg7o6cR4XllfjXDot4kYIIYQ0Ri0BQ1JSEhwcHNCuXTsUFBRIPT9//nwMGzYMO3fuRGJiIr7++mv06tUL27dvV0f3iBaoFnLv9Eqvw0ABg84xs6srr1pf2nHZ+yqBi7UJXnGz5mw7cuOpytojhBBCdIVaAob//e9/yMnJQWBgIKytrTnPXbt2DUuWLGHLqVpbW0MkEqGmpgZTpkxBVlaWOrpINKym0SlJFDDoJMlVn1VYXhUAoiWmJR29+Rw1NC2JEEIIaZBaAobk5GQwDIO+faUXZtq4cSNEIhFsbGxw6dIl5Obm4vz587C1tUVlZSU2bdqkji4SDZO8aKOF2/SEZB5Dzl0g/77Kmhvkx52WlFdahfNZeSprjxBCCNEFagkYnj6tG/bv0qWL1HOHDh0CwzD44IMP0L17dwBAjx498MEHH0AkEuH4cdVNUSDao1oyh4FGGPSDc3fAlLuomipHGdrZmaKLsyVnG1VLIoQQQhqmloAhOzsbAKSmI6Wnp+Px48cAgOHDh3OeCw8PZ/chuk9yhEGAau4OFDDoJh4PaC9ZXlW1NwmiJZKff7/5TCrpnhBCCCEvqSVgEInq/hgXFhZytp85cwYAYGVlBX9/f85zdnZ1dx3LyspU30GicY2XVaWAQWdJ5jFkngZqKmXvqwSS5VWziytx6X6+ytojhBBCWju1BAyOjnV/oG/dusXZfvToUQBAaGio1GtKS0sBADY2NlLPEd0jeYdXOoeBAgad1f41cMurlgL3VVde1cveHJ0cLTjb/nedqiURQggh8qglYOjVqxdEIhE2btzIjhhkZGTg119/BcMw6Nevn9Rr7t69C+BlsEF0m+QCWlIjDFRWVXeZ2QEur3K33VPttCTJ5OejN59BSNOSCCGEEJnUEjC8/fbbAOpKqPr5+WHkyJHo1asXKioqYGJigjFjxki95vTp0wAAHx8fdXSRaFiNxMWaseQ6DDTCoNskqyWlqbi8alfujYinhRX4+1GBStskhBBCWiu1BAx9+vTB9OnTIRKJkJWVhf379yMnJwcAsHLlSrRp04azf0VFBTv6EBERoY4uEg2rn/RsgBoYMbXcHaisqm6TzGPIuQMUPFBdc20t4O1gztl2hKYlEUIIITKpJWAAgDVr1uDgwYMYN24c+vbti/Hjx+P48eP4v//7P6l9Dx48CEtLS7Rr1w6vv/66urpINKh+0rPUKs8AjTDoOufugIktd1tWikqblEx+/t/1Z2yBBkIIIYS8ZKDOxgYPHozBgwc3ut+oUaMwatQoNfSIaIsa4csRBhMKGPQPjw+06wXc+d/Lbc9vqLTJQX5OWP/HPfbx44JyXH9ciG6u1iptlxBCCGlt1DbCQEhDauqNMBhLVkgCKGDQB45duY+fXVdpc75OFvCw4051O3KDFnEjhBBCJFHAQLRC/SpJMkcYqEqS7mvrx3387DqgwilCDMNgkMQibkeuP6VpSYQQQogEtUxJevCgZcmL7dq1U1JPiLaqvw6DdElVQd2KwES3SY4wlOcBxU8BS2eVNRnt54SNJ1+uJp+VW4ZbT4vR2dlSZW0SQgghrY1aAgZPT89mv5ZhGNTU1CixN0QbVXMCBokRBgOBmntDNMLaHTCyAKqKX257dl2lAYOfiyVcbUzwKL+c3XbkxlMKGAghhJB61HLbViQSteiL6L76ZVUFUqs8U0lVvcDjAY4ypiWpEMMwMqolUXlVQgghpD61jDBs3bq10X1KS0tx9+5d7Nu3D48fP0ZoaCi74BvRfTWcsqoSU5Io4Vl/tPUDHpx7+VjFAQMADOrqhG/OZLKP07NLcftZETo50igDIYQQAqgpYJgwYYLC+65cuRIffvghNm7ciNDQUCxbtkyFPSPaorqhsqo0wqA/JPMYVFxaFQD8Xa3hZCXA08IKdttPFx5hweudVd42IYQQ0hpoXSapoaEhNmzYgMjISKxcuRJHjx7VdJeIGtQfYTBhJEcYKIdBb0hOScpNB6pKVdokj8dgWHcXzrZ9lx+horpWzisIIYQQ/aJ1AYPYlClTIBKJsH79ek13hahB/bKqUis905Qk/eHQGWDq/1oSAc9TVd5sXKAb53FheTV+pzUZCCGEEABaHDB06NABAHDx4kUN94SoQ01DVZJoSpL+MDQB7Dpwtz27pvJm3e3MEObdhrNt5/mWlYMmhBBCdIXWBgyFhYWcf4luq78Og0BqShKNMOgVDeQxAMDontz1Xs5n5uHeixK1tE0IIYRoM60NGL7//nsAgJOTUyN7El3Q4ErPtMqzflFzaVWxfp3bws7MiLNtN40yEEIIIdoXMKSlpeHdd9/F999/D4ZhEB0drekuETXgllWlHAa9JjXCkAoIVZ+AbGTAw8gerpxt+y4/QmUNJT8TQgjRb2opq+rl5dXoPkKhEAUFBSgufrnKq4ODAz799FNVdo1oCU5ZVamF2yhg+P/27js+ijp94PhntmXTQxIChBYIhN6bdLBgAUTseiogKsdZ0OPE3u7sBUU8T7GAFRF/iiAgINJ7qFIDoQVCQnrPZsv8/liyZJNsCtnshuR5v17z2sl3vjPzbBzDPvttDUqTUgmDOQ/ST0B4u1q/9Z39WvHpuuOOnzPyzaw4kMyNPWpvtWkhhBCirvNIwnDy5MlqnzNw4EC+/PJL6ZLUQFS8cJsMem5QApuAfwTknb9YlvyXRxKGNuH+DIoOY3N8mqNs/rbTkjAIIYRo0OrMwm0ajYbAwEDatGnD8OHD6dmzZ+0HJuoMS0VjGGQdhoanaVeI//Piz0l/QZfxHrn1nf1bOSUMW46ncTwll7aNAzxyfyGEEKKu8UjCMHfuXE/cRlzGzLaKxjBIC0OD07RbqYTBMzMlAVzbpQmN/PRk5JsdZQt2JPDMDZ08FoMQQghRl9S5Qc+iYXJqYZBpVUXpcQwemikJwEen5dY+zoOfF+6Uwc9CCCEaLo8kDG3btqVt27Z89NFHnriduAzJwm3CSemZknISIS+t/Lq14M5SazKk5xWx6mCyx+4vhBBC1CUeSRjOnDnDqVOnZFyCcKnCQc86GcPQ4IS1A62Pc1my51oZohsHMKBNqFPZfFmTQQghRAPlkYShadOmAPj6StcSUT5LiWlVjYrZ+aC0MDQ8Wh006exc5sFxDAB3D3BuZdh0LI2TqXkejUEIIYSoCzySMAwYMACAAwcOeOJ24jJktpbskiRjGATQxDsrPhe7tktTQvz0TmU/7EjwaAxCCCFEXeCRhGHq1Kmoqsr777+P2Wyu/ATR4FQ8raokDA1S0+7OPyd7toXBqNdyS2/nwc8/7UygyGJzcYYQQghRP3kkYbjyyit55pln2Lt3L2PGjCEhQb6lE86KBz1rsOFTpkuSJAwNUtNSLQwph8FiKr9uLbmrf0unn1Nzi1h9SAY/CyGEaFg8sg7Dv//9b3x8fOjWrRurVq2ibdu2DB48mO7du9OoUSO0Wm2F57/44oueCFN4kflCC4NP6dYFkIShoWrSxflnm8WeNDTr4bEQ2kUE0j8qlO0n0x1l328/zfXdZAV6IYQQDYdHEoaXX34ZRVEAUBQFq9XKhg0b2LBhQ5XOl4Sh/iueJalMdySQQc8NlTEYQlpD5qmLZUn7PZowANzZv6VTwrDhaCoHErPoEhns0TiEEEIIb/HYwm2qqjq20j9Xton6r7hLUpkBzyAtDA1Z6fUYPDzwGeCGbs1oVGrw84erj3o8DiGEEMJbPJIw2Gy2Gm2i/iueVtWolNPCoJOEocEqnTB4eOAz2Ac/PzC0rVPZigPJHDqX7fFYhBBCCG/wWAuDEBUp7pJkLN0lSaO3z8kvGqYyLQz7wAutjvcNbE2wr7QyCCGEaJgkYRB1QvGg57JrMMj4hQat9FoMhVmQdcbjYQQa9Uwe0sapbPn+JI4k5Xg8FiGEEMLTJGEQdYJjDEPpLkkyfqFhC2kFPqUGF3thHAPAxMFRBBmdW7s+/FNaGYQQQtR/XuvrkZ2dTU5ODlartdK6rVq18kBEwptcdknSG70QjagzFMW+HsOpTRfLkvdDxxs8HkqQUc/9Q9rwwR8Xk4Rlf53jaHIO7ZsEejweIYQQwlM8mjCsWrWKjz/+mI0bN5Kenl75CdinYbVYLLUcmfC2i12SSicM0iWpwWvazTlhSNrntVAmDW7DFxtOkGOy/01SVfjwz2PMvquX12ISQgghapvHuiQ99thjXHfddSxevJi0tDSZVlU4Ke6SZFRKj2GQLkkNXulxDEmenympWLCvnkmDo5zKftuXyLHzMpZBCCFE/eWRFobvv/+ejz76CACj0chNN91Enz59CA0NRaORYRQCLNLCIFwpPVNSxgkozAZjkFfCuX9IG77cdJLcEq0MH/15jA/ulFYGIYQQ9ZNHEoZPP/0UgJYtW/Lnn38SHR3tiduKy4ijhaF0wqCTMQwNXuOOoGhBLTHe6fxBaHWFV8IJ8TMwcVAUH6055ihbvDeRx65qT9vGAV6JSQghhKhNHvl6f9++fSiKwksvvSTJgihX8aBnX+mSJErTG6FxB+cyL82UVGzykDb4G7SOn20XWhmEEEKI+sgjCYPZbAagVy9pshflMxev9CxdkkR5yoxj8G7C0MjfwH2DopzKFu05y4nUPO8EJIQQQtQijyQMUVFRAOTm5nriduIyY7WpjsV7yy7cJi0MgnJWfPZuwgDw4NC2+EkrgxBCiAbAIwnDzTffDMDq1as9cTtxmSmeUhXAiNn5oCQMAuxrMZR0/iBYisqv6yGh/gbuHdjaqWzRnrOcSpNWBiGEEPWLRxKG6dOn06pVKz744AMOHz7siVuKy0jxgGeQMQzChabdnX+2FELccu/EUsKDQ9viq7/YymC1qcz6Q1Z/FkIIUb94JGEIDg5mxYoVNGnShEGDBvHxxx+TkZHhiVuLy4ClRAtD2WlVJWEQgH84tCw1K9LOeV4JpaTwAB/uucJ5Jfqfd59l12n5+yaEEKL+cOu0qm3btq3weH5+PpmZmTz66KM89thjhIeH4+dX8aBWRVGIj493Z5iijinZwmAsM4ZBBj2LC/pMhIStF3+OXwMZJ6FRlJcCsntoWDTztyc41mUAeHnxARb9YzAajeLFyIQQQgj3cGvCcPLkySrVK17B+fz585XWVRT5B7e+K55SFcCoyDoMwoUuN8HvT0Fh1oUCFXZ9A1e94M2oaBzow7Sr2vPaskOOsn1nsvhp5xlu79fSi5EJIYQQ7uHWhGHChAnuvJxoIMwVdkmSFgZxgd4Xut8B2+dcLNv9LYx4GrR678UFTBgUxfwdpzmecnHA89srDnNdt6YEGb0bmxBCCFFTbk0Y5s6d687LiQbCadCzTKsqKtJnonPCkJsEcSug0xivhQRg0Gl4cUxnJs7d4ShLzS3iwz+O8vyYzl6MTAghhKg5tw961mg06HQ6Dh486O5Li3qq5KDnMl2SpIVBlNSkC7To51xWBwY/A4zoEMHVnSKcyuZtPsmx8zleikgIIYRwj1qZJUlV1corCXGBueQYhjJdkmQMgyilz0Tnn4/9AZmnvRJKac+P7oxBe/HPqsWm8sqSg/I3UQghxGXNI9OqClERi03GMIhq6DIefIJKFFwY/FwHRIX788DQNk5lG46msupgspciEkIIIWpOEgbhdRfHMKj4ycJtojIGf+h+u3PZ7m/Baim/voc9PLIdTYJ8nMr+s/QghWarlyISQgghakYSBuF1xdOq+mAue1ASBlGe0t2SchLh2CqvhFKav4+OZ2/o5FSWkF7A5xuOeykiIYQQomYkYRBeVzzoucz4BQCdJAyiHE27QfM+zmV1ZPAzwI09IunbupFT2X/XxJOYWeCliIQQQohLJwmD8DrzhS5JZaZUBWlhEK6VbmU4uhKyzngllNIUReHlG7tQct3JArOVN5Yf9l5QQgghxCVy6zoMJU2aNAl/f/8aX0dRFFavXu2GiERdVdzC4Ft6SlWQQc/CtS43w+/PQFGu/WfVdnEhtzqga/Ng7urfiu+3XZzBacneRO7q35JB0eFejEwIIYSonlpLGGJjY2t8DVVVUUp+RSfqpeJpVcu0MChar6/gK+ownwDodhvsLLFg5K6vYdiToNF6L64S/jWqA7/tTSS78OKA7Bk/7WPF48Pw96m1P79CCCGEW9ValyRVVWu8iYaheFrVsmsw+IIkjKIipbslZZ+1r8tQR4T6G/jXtR2cys5kFPD6skNeikgIIYSovlpLGPbv34/NZqvxZrXW/lSEp06dYvr06XTs2BF/f39CQ0Pp168f77zzDvn5+TW6dn5+Pj///DNTp06lX79+NGrUCL1eT1hYGAMHDuTll18mKSnJTe/k8lQ8S1LZVZ5l/IKoRGRPaNbTuWznV96IxKV7BrSmf1SoU9l3206z4WiKlyISQgghqqfBD3pesmQJ3bt3Z+bMmRw5coT8/HwyMjKIjY1lxowZ9OrVi2PHjl3Stfft20eTJk245ZZb+OSTT4iNjSUzMxOLxUJ6ejpbt27llVdeoUOHDixYsMDN7+zyYXE16FkSBlEVpVsZ4n6H7ESvhFIejUbhndu646t37ib11E/7yC4sZyphIYQQoo5p0AnD7t27ueOOO8jOziYgIIDXXnuNzZs3s3r1ah588EEA4uLiGD16NDk5OdW+fnZ2Nrm59gGZgwcP5o033mDVqlXs2rWLFStWMGXKFDQaDdnZ2fztb39j+fLlbn1/lwvHoGdZ5Vlcim63gr7EBAuq1T74uQ5pHebPMzd0dCpLzCrk1d8OeikiIYQQouoa9Ki7adOmUVBQgE6nY+XKlQwcONBx7Morr6R9+/bMmDGDuLg43nvvPV5++eVqXV+j0XD77bfz0ksv0blz5zLHR40axfXXX8/48eOxWq08+uijHD16tMEN9C6eVrVMlySd0QvRiMuOT6A9adhVoivStk/hiqn2Y3XEPQNa8/v+JDbHpznKfow9w/VdmzGyY4QXIxNCCCEq1mBbGLZv386GDRsAmDx5slOyUGz69Ol06mRfsXXWrFmYzdXrPjBo0CAWLFhQbrJQbNy4cdx8880AxMfHs3v37mrdoz5wuXCbtDCIquo7yfnn/FTY+ol3YnFBo1F465bu+BucuyY9/fM+svKla5IQQoi6q8EmDIsWLXLsT5o0qdw6Go2G++67D4DMzEzWrFlTK7GMHDnSsR8fH18r96jLLK6mVZUxDKKqIntBzHXOZZs/hPx078TjQstQP54f4/wFQnK2iZeXHPBSREIIIUTlGmzCsHHjRgD8/f3p06ePy3rDhw937G/atKlWYjGZLn5Q1mrrxvzxnmS2uRrD4Mv5/PPsSNpBakGqFyITl5Urn3f+2ZQNm2Z5J5YK3NmvJcNiGjuV/bL7LCsONOzZ0oQQQtRdbk8YTpw4wfHjx4mJiXH3pd3q0CH7POjt2rVDp3M9lKNjx4sDFYvPcbd169Y59ou7QDUkrqZV3auxcOOiG7l/xf1ctfAqJq+YzI9HfiStIK28y4iGrmk36HqLc9m2TyGnbn0QVxSFt27pRqDR+e/Oc7/8RXpeOaudCyGEEF7m9kHPrVu3dvcl3a6wsJDUVPs31i1atKiwbqNGjfD39ycvL4+EhAS3x7J3716WLl0KQLdu3S4pYThz5kyFx8+dO+fYN5lMFBQUVPsetanAZP+QVLpL0nxzKnmWPABsqo3tSdvZnrSd17a9Rt+Ivlzd4mpGtBhBiE+IR+JUVRWT1USRrcj+ai3CYrOv4KtycaHBkvsaRYNBY0Cv0aPX6DFo7ftaRVsvB7cXFhaWu+8pysDp+BxYhKJeWL/FUoBlzZuYr3nD47FUJMQAz17bnmd+vfglRGpuEc/+vJeZt3Spl8+Gu3n7WRMNgzxnwlNK9japixrkLEklp0gNCAiotH5xwlA8Raq7mEwmHnjgAcfidK+99tolXadly5ZVrrtt27Y6N07i6GkNoCkz6Pm4KQfK6aFlU21sT97O9uTtvLnzTVrrWhOkBOGn+OGn8bO/Kn74Kr74KfaB00UUUaRe2EruX/jZpJowqSaKVPt+cR2TasKCBYtqwYLFbe9ZQUGHDh/FB1/FF6NiLPPqp/gRoAkgSBNEoBJIkCYIg2JwWwy1bf369V65b4/QoUSlrXX8rNn9NRsLu5Lv09j1SV7gq0KXRhoOZFxs6P39wHmCC84xqImsdF8d3nrWRMMiz5moTcVfZNdVDTJhKPktgcFQ+QcwHx8fALd/M//II48QGxsLwIQJExg7dqxbr3+5uDCEAV/FObvOVmyVn4uNE5YTtRFWrVJRMWPGrJrJVaueiPrgY08gNIH4KnV3ULgePb6KL74aX6dEyFfxxV/xJ0wTVmvfoh9pOo6W6ZvQqvaZhzSqlQ5Jv7C79UO1cr9LpShwR1sbb+5RyLde/F38dEJDS38rLSv/LkMIIYTwiAaZMBiNF+f3LyqqvM9wcTORr6/7PqC98cYbfP755wD069eP//73v5d8rcq6Sp07d47+/fsDMGDAAKKjoy/5XrUh9vc4OHcGI85TS+bpgBI5Q/ew7sRlxlFobbjNwiZMpNhSSLGleDuUGokOjmb20NmE+4bXyvVV38MQ+6nj55YZm4kY/xpqeIdauV9NBLU9z+ML9zt+tqoK8xMC+OmhfoT46r0YWd1WWFjo+MZ32LBhTn/XhXAXec6Ep9S13h+lNciEITDw4mJOVelmlJdn70dfle5LVfHpp5/y7LPPAvZB1cuWLcPf37+Ss1yrbBxGST4+Pm5NfNxCsfc7KjmGwQZk25yTuRcGvUDroNZsOLOB30/+zoYzGxp08nA5i8+K5/197zNzxMzaucHIGbDvOyiy//+tqDaMm9+FO+rWCtAAN/Vpzb7EPL7cdLGl7GxmIc8tPsLn9/VFo5HxDJUxGo117++aqHfkORO1qbg3S13VIBMGo9FIWFgYaWlplQ4YzsjIcCQM1Rkr4Mr8+fP5xz/+AdgHiK9atYrw8Nr5lvVyYbnQJ6nkLEk5Gg02nPtxh/iE4KvzZVTUKEZFjSLfnM+mxE2cyj5FlimLTFMmmaZMx36WKYssUxYAfjo/fPW++On88NP74auz7/vqfPHX++Ov98dP74efzu/izxfOMWqN+Gh9HJtBa8CoM2LQGtBpdCjYP9ApKI5uNgoKKipW1YrZaqbIWoTZZqbIVuTYN1lM5JhzyC7KJqcoh2xT9sX9omwyCjNIKUghJT+FXLN7x8/UBatOrSI2KZa+Tfu6/+L+4XDFP2D92xfLDi2BszuhuetplL3lmRs6svdMJjtPZTjK/jx8nv+ti+fhke28GJkQQgjRQBMGgM6dO7NhwwaOHTuGxWJxObXq4cOHHfs1nfJ08eLF3HfffdhsNpo1a8bq1aur1TpQX5mLp1UtMeg5U1N2xt/SsyH56f24pvU1FV5bVe3X9sasMwoKGkWDXqPHr4arVueb80kpSOF8/nlS8u2v+ZZ8N0XqPmazmfj4eIooIrRZKHnWPLKLsh1ban4qFvXi4PG3d7zN/NHz0WpqYf2RQY/A9jlQmHmx7M9X4d5f3H+vGtJrNfz37t6M/nADaSWmVn1v5RF6tgxhcLuG/aWCEEII72qwCcOQIUPYsGEDeXl57Ny5kwEDBpRbr+QaCYMHD77k+61evZrbb78di8VCWFgYq1atqnNjCbzFYi1euO1il6QMrXPC4Kvzxairft/R+jI9pZ/ej9b61rQOqtvTFhcUFLAycSUAo/qPKtN8P//wfF7f9rrj50Pph1gcv5jx7ce7PxhjMAx5Av546WJZ/J9wYgO0Ger++9VQ02AjH97Vi3u/2IbtQuOaTYXH5u9m6WNDaRosfaeFEEJ4R4Nd6fmmm25y7M+dO7fcOjabja+//hqAkJAQRo4ceUn32rx5M+PGjcNkMhEcHMyKFSvo0qXLJV2rPjJf+HRUcqXnrFItDME+wR6NSdSO22JuIzrYOVH+cPeH5JnzaueG/R+CgKbOZX/+B9S6OW3p4HbhTB/lPDA7La+Ih7/fhdla+axhQgghRG1osAlD//79GTrU/i3jF198wZYtW8rUee+99xyrO0+bNg293nnGkrVr16Io9n7rEydOLPc+e/bsYfTo0eTl5eHv78/SpUvp06fu9aH2JqtjpeeSLQzOXVQa+TTyaEyidug0Op7s96RTWWpBKl/89UXt3NDgB8Od70fCNji8tHbu5wZTh0dzVccIp7KdpzJ4Y9lhF2cIIYQQtavBJgwAs2bNwtfXF4vFwqhRo3jjjTfYunUra9asYcqUKcyYMQOAmJgYpk+fXu3rx8fHc+2115KZmQnAq6++SnBwMPv373e5nT9/3p1v8bLgGPRcYlpVaWGovwY3H8zQ5s5dgr468BVnc8/Wzg173QchpbpyLfsXFGTWzv1qSKNRmHl7T1o0cu7O9eWmE/y2L9FLUQkhhGjIGnTC0KtXLxYsWEBQUBC5ubk8++yzDBw4kCuvvJI5c+YA9mRh6dKlTlOxVtWGDRucEoAnnniCbt26Vbh9/PHHbnt/lwv7oGe1wjEM0sJQv/yr37/QKhdbkYpsRby/8/3auZnOAFe+4FyWcw5WvVB+/Tog2E/P//7WB4PO+f+Df/64l83xdXs1UCGEEPVPg04YAMaOHcu+fft44okniImJwc/Pj5CQEPr27ctbb73F7t27addOpjWsTRabDT1WdCVWds4sNWuOtDDUL22D23JnxzudylacXMGu5F21c8Nut0L0Vc5lu76G+DW1cz836NYimFdudB7rVGSx8eBXsexJyPROUEIIIRqkBp8wgH09hJkzZ3LkyBHy8vLIyMhgx44dzJgxAz8/19NhjhgxAlVVUVWVefPmlTk+ceJEx/Gqbi+//HLtvdE6ymx1bl0AyCzdwmCUFob6ZmqPqQQZgpzK3trxFja1Fgb3KgqMnQWGUosvLnkMTHV3jYs7+7Xkrv6tnMryiqxMnLuduOQcL0UlhBCioZGEQXidxWrDB+dVnUuvwyAtDPVPsE8w/+j5D6eyg2kHWRK/pHZuGNISrnnFuSzzNKz+d+3czw0UReHVm7pyQzfnmZ4y883c+8U2EtLr3locQggh6h9JGITXWWwqvkqphEHGMDQIt3e4nTbBbZzKZu2aRb65lj4I97kfWg9xLtv+KZwqO0taXaHVKLx/R0+GtndevC0528TfPt/G+exCL0UmhBCioZCEQXhduV2SSo1hKL3Ks6gf9Bo9T/Z1nvY0pSCFL/d/WTs31Gjgxg9B5zwDEYsfAXNB7dzTDXx0Wj69tw99WjsnzqfT87n3i+1k5he5OFMIIYSoOUkYhNdZbTanRdtUIKtUC0OIMcSzQQmPGdpiKIObO6+iPu/APJLzkmvnhmHRcOXzzmVpx2DtG7VzPzfxM+j4ckI/OjZ1nrHtSHIOE+fuIM9k8VJkQggh6jtJGITXWawqxhJdknIVBYuiONWRFob67cm+TzpNs2qymvg1/tfau+EVU6F5X+eyzbPh7M7au6cbBPvp+WbyAKLCnCdj2JOQyUPfxFJotnopMiGEEPWZJAzC68w2G8YSXZIyS63yDJIw1HfRIdHcGH2jU9ni+MWoqlo7N9RoYdx/QWu4WKba4NdHwFK3u/c0DvTh2wcG0CzY6FS+6VgaD34dS36RtDQIIYRwL0kYhNdZrKpTl6TSMyQZNAZ8S/c5F/XOze1vdvr5VPYp9qbsrb0bRnSE4TOcy84fhA3v1d493aRFIz++mTyAUH+DU/mGo6lM+HI72YVmF2cKIYQQ1ScJg/C60oOeS6/yHGIMQSnVRUnUPz0a96B1UGunssXxi2v3poMfh6bdnMs2vAunt9bufd2gXUQAX9/fn0AfnVP5jpMZ/O2zbWTk1e2WEiGEEJcPSRiE11lsNozKxW9Eywx4lu5IDYKiKIxtO9ap7PeTv2Oymlyc4QZaPYz7GDQlPnTbLPDjfZB9rvbu6yZdmwfz7QMDCPHTO5X/dTaLO+ZskSlXhRBCuIUkDMLrLKVbGEpNqSprMDQcY6OdE4acohzWJKyp3Zs26w5D/+VclptsTxostZisuEmPliEseGgg4QE+TuVxybnc/ukWzmTI4m5CCCFqRhIG4XVmqw1jyTEMWlnluaGKDIikf9P+TmWLj9VytySwj2WIvsq57Mx2WP5U7d/bDTo0DWTh3wcSWWog9Mm0fG7/ZAsnUvO8FJkQQoj6QBIG4XVWm4qvUmKWpFKDnhsZpYWhISk9W9LmxM2kFqTW7k01WrjlcwhxHkPBzrmwc17t3ttN2oT7s3DqoDJTriZmFXLbJ1s4nJTtpciEEEJc7iRhEF6lqioWm1qqhcG5S5K0MDQs17S+xmlWLKtqZenxpbV/Y79QuPN70Dt/4GbZk5Cwo/bv7wbNQ3z5ccpAOjRxXtwtNdfEHZ9uZdvxNC9FJoQQ4nImCYPwKovNPs9+RdOqyhiGhsVP78c1ra9xKvs1/tfaW5OhpKZd4cbZzmXWIvjxXsippZWn3SwiyMgPD11B9xbOiXZWgZl7vtjGL7vPeCkyIYQQlytJGIRXWaz2D4HGkl2SZAxDg1e6W9LRjKMcTj/smZt3uxUGPuJclnMOFk6o84u6FWvkb+C7BwbQL8o52TZbVZ5YsJf3V8V5JgETQghRL0jCILzKbLMBlbQwyBiGBqdf034082/mVFbrazKUdPUr0GaYc9npLbDyOc/FUEOBRj1f3z+AqztFlDk2a/VRHl+wh0Kz1QuRCSGEuNxIwiC8ytHCcCFhUCk7hkHWYWh4NIqGMW3HOJUtO7EMs81DKxhrdXDrPAhu5Vy+fQ7s+sYzMbiBr0HLp/f25f7Bbcoc+3VPIvd8vo10WeBNCCFEJSRhEF5lsTq3MOQrCuZSqzpLwtAwle6WlF6YzsYzGz0XgH8Y3PEN6JynKmXJY7D//zwXRw1pNQovju3Mf8Z1QVNqwfTYUxmM/3gT8Sm53glOCCHEZUESBuFV5uJBzxfGMJQevwCSMDRUUcFR9Gjcw6nMo92SACJ7wthZzmWqDf7vQTjwi2djqaF7B0bxxcR++BucW/BOpeVz88eb2XyslqeuFUIIcdmShEF4lbVUl6TMUqs86zQ6/PX+Ho9L1A2lWxnWnllLZmGmZ4PocScMesy5TLXCT5Ph4K+ejaWGRnaIYOHfB9Gs1AJvxTMozVwV52j1E0IIIYpJwiC8qnjQsyNhKNXCEOITglKqi5JoOK5rcx0GjcHxs8VmYfnJ5Z4P5Jp/Q/8pzmWqFX66Hw4t8Xw8NdA5MohFDw+ma/Mgp3KbCh+uPspdn23lbGaBl6ITQghRF0nCILyqeNBzcZekDE3ZhEE0XEGGIEa2GulUtviYh7slASgKXP8W9HvQudxmgYUT4bAHFpZzoyZBRn6cMpBrOjcpc2zHyQyu/2A9y/8654XIhBBC1EWSMAivMpca9JxVTguDaNhKd0van7af45nHPR+IosAN70Dfyc7lNgv8OAGOeKHlowb8DDo+vacPM67rgLbUaOjsQgtTv9vFs7/8RUGRTL0qhBANnSQMwquKV3o2UtzC4DyGQdZgEIMiBxHuG+5U9mu8l8YOKArc8C70meRcbjPDgnshboV34rpEGo3CP0a0Y+HfB9KikW+Z499vO824/27kSFKOF6ITQghRV0jCILzKYrWhxYpBsX+LKas8i9J0Gh2j24x2Klt0bBFpBWneCUijgdEzofd9zuU2Myy4Bw56octUDfVu1Yhl04YypnuzMsfiknO58aONfL7hOFabrA4thBANkSQMwqvMVtUx4BnKWeXZR1oYBNzYruyaDP9a9y/PLeRWmkYDY2ZBr3ucy61F8OO9sPEDUC+vD9dBRj2z7+rF27d2x1fv3NJnsth4dekhbv7fZmltEEKIBkgSBuFVVpvqGL8AZVd5lhYGARDTKIbBzQc7lcUmxzIzdqaXIsKeNIydDT3/VvbYHy/ZF3izeimhuUSKonB735b89tgQOjcLKnN8b0ImY2Zv4P1VcZgsMrZBCCEaCkkYhFeZbTaMF2ZIgnJaGGQMg7jg1cGv0sTPeVafbw99y5J4L05rqtHAjbOhz8Syx3Z9Dd/dCgWZno6qxqIbB/DLw4O4f3CbMsfMVpVZq48ydvZGdp/O8EJ0QgghPE0SBuFVltJdkmSWJOFCuG84H4z8wGldBoBXtrzCobRDXooK0GhhzAf2tRpKO74WvhgFGSc9HFTN+ei0vDi2Mwv/PpC2jcsunhiXnMvN/9vMf347SH6RxQsRCiGE8BRJGIRXWaw25y5Jsg6DqEDX8K48f8XzTmUmq4nH1zxORqEXv+1WFBg8DW7/BnSlZhtKPQKfXQUJ270TWw31iwpl2WNDeXhkdJnpV1UVvth4glHvr+ePg8mol9m4DSGEEFUjCYPwKrNNxffClKoFioJJEgZRifHtx3NHhzucyhLzEnly/ZNYbF7+prvzjTBpKfhHOJfnp8K8MfDXT96Jq4aMei1PXtuRxY8Mpktk2bENZzIKeODrWO6ft4OTqXleiFAIIURtkoRBeJXFasNXsbcwlG5dAAgxhng4InE5eKrfU/Rs3NOpbNu5bXy460PvBFRS8z7w4GqI6OxcbjXB/02G5U+DxVT+uXVcl8hgfn14ME9d1xGDruz/r2uOpDDq/fW8u+KIdFMSQoh6RBIG4VUlxzCUHr+gVbQE6gO9EZao4/RaPTNHzKSxb2On8rkH5vL7id+9FFUJIa3g/hXQ7uqyx7b9D764BtLiPR+XG+i0GqaOiOb3aUPp3ya0zPEiq42P1hzj6vfWseyvc9JNSQgh6gFJGIRXmW02l6s8B/sEoyhKeacJQWO/xswcMROdRudU/uLmF707CLqYMQjuWgB9J5c9dm4vfDr8su2iBNC2cQALHrqC9+/oQeNAnzLHE7MK+cd3u7jni23EJcvaDUIIcTmThEF4ldWmOrokZckMSaKaekb05NkBzzqVFVgKeGDlA+xP3e+lqErQ6mD0e/ZZlHRG52NFOfYuSkumgbnAK+HVlKIojO/Vgj+nD+fBoW3Qacom+JuOpXHtB+t5/IfdHE/J9UKUQgghakoSBuFVJVd6zihnwHPBnj2kf/0N2cuXYzp6FNV8eS2EJWrfbTG3cUv7W5zKsouyeWDlA+xM3umlqEpQFOg7CR5YDeExZY/vnAefXQkpRzwemrsEGvU8N7ozy6cNZVB0WJnjqgqL9iRy9cx1/PPHPTIwWgghLjO6yqsIUXtKTqtauoWhx5EiTv7zbvunjWJ6PT5RrTG0a4dPu3b4tGuPoXUrNL6+KEZfNEYfFF9fFL3eZXcm1WZDNZtRzRZUcxFqkfnCz+XsW8xgsaBaragWC1x4VS1WsFpQrbaK36ACilYLWq39VaO5+KrToRh80PgYUHx8UHyMF/eNRjQ+F96LdMuq1LMDnuVU9ilik2MdZXnmPP6+6u/MunIWgyIHeTG6C5p2hQfXwLInYe/3zsfOH4Q5I+C6N6D3BHuScRlq3ySQ7x4YwPL9Sbz620ESswqdjttU+HnXWX7dk8jNvZrz6JXtaRXm56VohRBCVJUkDMKrLDbVsdJz6TEMPTYnOycLAGYzpqPHMB09RoW9ojUax4duFOVCEmDfsFrd+yZqk6Kg8fNDExCAxt/fefMxAHXrg6XVaqVpUhJoNaRu347ez9+exBl8UIw+aHx80Pj54TdgAIaWLd12X4PWwMdXf8zjax5nc+JmR3mhtZBHVj/Ce8PfY2SrkW673yXzCYDx/4M2w2DpdDCX+KbdnG/vnrT/Zxg7C0LLrrJ8OVAUhRu6NWNEh8Z8su44X248Qa7JecYkq01l4c4z/LL7LLf2acE/RrSTxEEIIeowSRiEV5mtNvxczJIUcq4G/Z1tNtT8fKz5+TUJz/tUFVteHra8y6cLR/Es/bm7druso+j1NHv9dYLHjnHbfX11vsy+cjb/Wvcv1iSscZSbbWaeWPsEbwx9g+vbXO+2+9VIz7vs06/+NAmSS421OLEO/jcIrnwBBkyxryR9GfIz6PjnNTFMGhTF5xuPM3fTSfKLnJN1i03lhx0J/BibwOjukUwZ1pauzYO9FLEQQghXZAyD8CpX06rqLSq+qTKzSn2lms0kPvkkqXM+c+u0mwatgfdGvFcmMbCqVp5a/xS/HP3FbfeqscYx8MAf0Pf+ssfM+bDiGfhiFJyvAzM+1UAjfwNPXtuRDTNGMmV4W3z1ZRMgmwpL9iYyZvZG7v1iG5uOpcp0rEIIUYdIC4PwKrPN5ljpObPEN6lNM0Ap9Xmh3Zo/MZ87d6FL0lFMx45hOnYMa2qqW2NSDAb7GAiDAUWnA70ORauzjz3QaVF0+ov7isa5v3npvuc2G6rNZh8HYbNdHPdQPBaiqAhbURGqyYRa6NzfuyFImTkTc+JZmj7/vP137QZ6jZ43hryBr86Xn4/+7ChXUXlx84vkW/L5W6e/ueVeNab3hTHvQ8z18NvjkH3W+fjZWPhkKAx7EoY8ATqDV8J0h7AAH565vhMPDGnLp+vi+WbrKUyWsmOANhxNZcPRVLo1D2bK8LZc37UZ2nJmXxJCCOE5kjAIr7JYL06rWrKFITLNOVvQRUSgb9YMfbNm+PXu7XRMVVXHB26byYRaUHDxtbAQUFAMensSUHrT6S4mCHo96HReG2Ssqqp9nEXxeyksxJaf7+iSVGYrKvJKnBWxmC0cPx6PYrXRulkztFaL/b9FoQnVZMKamUnB3r1O52T+sADLuSSaz3wPjb+/W+LQarS8NPAlfHW+fHfoO6djb25/k/jMeJ7q/xQ+2rLrB3hFzCj4x1ZY/Qrs+Nz5mM0Ma1+Hg4vg+rfs4x8uY40DfXh+TGceGtaWOeuPM3/7afKKyo4r+utsFo98v5tWoUeYMCiK2/q2IMio90LEQgghJGEQXmW1qY6F2zJLTKsame5cz9DG9QBQRVFQjEYwGrk8e3vbKYqCYjCAwQCBl+cK1wUFBaStXAlA71Gj8PX1dTquqirp877i/FtvOZXnrlvHqfsm0PKT/6Fr7Lx686XSKBqe6vcUvjpfPv/L+UP4wriF7E/dz3sj3qNloPsGX9eIMci+ZkOXm2Hxo5BeaiXo8wfhq7EQfRVc/RI06+GdON0kIsjI82M68+iV7flm60nmbjpJWl7ZJPh0ej7/+e0g7608ws29mzNhYBTtm1ye/38IIcTlSsYwCK8yW20YKcKkQIHGdQuDoU2UhyMTtUFRFMImTaT5B+/bk6MSCg8c4OSdd2E6ftyt95vWexqP9XqszLFD6Ye4Y8kd/Hn6T7fdzy2iBsPUTTD4cVDKSYHjV8Onw+CnyZDuvt+VtwT76XnkyvZsevpKXr2pK61dzJaUX2Tl262nueb99fzt862sPpyCTYY5CCGER0jCILyquEtSZqmZYJqlO38S8KmghUFcfoKuu45Wc79EG+w8I4757FlO3nU3+bGxLs68NA92f5DXh7yOr865xSPHnMO0NdN4L/Y9zLY6tCig3heueQUeXA1NupVfZ/9P8FE/WPovyD3v2fhqgVGv5Z4rWvPn9BH89+7edKtgtqRNx9J4ZMFf/Ge3lj/OKiRnmzwYqRBCNDySMAivsg96LnKeUlVVq9UlSVye/Pr0ofX8+ehbtHAqt2VlcfrBhyiMi3Pr/cZGj+X7G74nKiiqzLF5B+bxwIoHSM5Ldus9ayyyFzy0BkbPhIAmZY/bLLDjM5jVE/58DfLTy9a5zGg1CqO7N2PxI4NZ8NAV3NCtqctBz+kmhSWntYx8fxP3fL6N/9t5hrxSaz4IIYSoOUkYhFfZp1U1OY1fCMqHgFITBknCUD/5tG1D1A/zMXbt6lSuFhRw9p//xObmdTTaNWrHD2N+4Pqosusx7Dq/i9t/u51NZze59Z41ptVDv8nw2G772gw+QWXrmPNg/dvwfldY8Rxkn/N8nG6mKAoD2obx8d/6sGHGSP4xIppQ//JniVKBjcdSmb5wL31f/YMnFuxhw9EUrNJnSQgh3EISBuFVFpsNo1JEhvZil6TSrQuKwYA+MtLDkQlP0YWH0/rrrwgYMcKpvOhYPEmvveb2+/nr/Xlr2Fs8N+A5dBrneR/SC9P5+x9/55kNz5BeWMe+rTf4w7B/wbS9MPARKG+GJ3MebPkIZnW3rxpdD8Y4AESG+DLjuo5sfvpK3rm1O12bl5M0XVBgtvLL7rPc+8V2Br25mld/O8jehExZ10EIIWpAEgbhVWarii9FZFU04Ll1K/u6B6Le0vj50XzWB/h06uRUnvV/P5O1eLHb76coCnd2vJNvrv+GSP+yyehvx3/jxkU38svRX+reB02/ULj2NXh0J/S8B5Ry/oxbi2DnPJjdxz44Oml/2TqXIaNey219W7LkkSF8f38fBjS24aN1/d8nOdvE5xtPMO6/mxjx7lreXXGEI0myIKQQQlSXJAzCqyxW+8JtGSXXYCg14NkQJd2RGgKNj499LQY/51lyzr38CqYTJ2rlnl3Du/Lj2B8Z1qLs2gZZpixe3Pwik1dO5kRW7dy/RkJawk3/halboPsd5c+opNrsg6M/GQzf3gpH/wBb2cXSLjeKotCrZTB3t7Pxah8r797ShZEdGle4wNuptHw+WnOMaz9Yz6j31zF79VFOpOZ5MGohhLh8ScIgvMpqtWJUzKVaGJzryPiFhsOnTRuavvKKU5man8/Zf07HZqqdmXCCfYKZfeVsXrjiBQL1Zef335G0g1sW38L/9v6PImvdWyyPiI5w8xx7i0Pf+0HrYjXoY6vgu1vgo76w7VMozPZsnLXEoIXRXZswd1J/tj5zFS+M6VxhlyWAuORc3lsVx8h31zLq/XW8s+Iwu09nYJMxD0IIUS5JGIRXKRb7h0DnMQyl12CQhKEhCR47huBbb3EqMx06xPm33q61e2oUDbd3uJ1fb/qVa6OuLXPcbDPz8Z6PuXXJraxNWFv3uikBhLaBMe/D43/BoMfAEFB+vfR4WD4DZnaGZTMg9Zhn46xFjQN9mDykDb89OpSVTwzj0SvbEeViXYdiccm5/HdNPOM/3swVb6zmmZ//4s/DyRSay64+LYQQDZUkDMKrtLYC4OIqz1qrSkSmcx0fWbStwWn63HMY2kU7lWV8/z3ZK1bW6n0b+zXm3eHv8t+r/lvu2IYTWSd49M9HuWvpXaw/s75uJg6BTWHUf+yJw4hnwbdR+fWKcmD7p/BRH/j2Fjj4K1jqz3oGMU0CmT6qA2v+NYIljwzhoWFtiQw2VnjO+RwT87ef5v55sfT+zyoe+jqW77adIiHdvbN1CSHE5UZXeRUhao/GYp8/tXgdhohM0JXqYi0tDA2PxteXFu+/z4nbbkctvDjH7rnnn8fYpTOGUms3uNuwFsPoO64v/9v7P745+A1W1fnb5gNpB3h49cN0D+/O1J5TGRw5GEVx3X/eK/xCYcRTMOgR2PcjbJ8D5w+WX/fYH/bNGAxdxkOPu6DlAKhr7+kSKIpCtxbBdGsRzNPXdWTX6QyW7E1k6V9JpOa6TpDyi6ysPJjMyoP2tTnahvszLKYxw2LCGdAmDH8f+edTCNFwSAuD8Cqdo4XB3iWpdHckbWhomdWARcPg0749TV943qnMlpPD2X9ORy2q/bEEfno/pvedzg9jfqBLWJdy6+xL3cfUP6Zy7/J72Zy4uW62OBj8oe8kmLoZJiyBjmPKn1kJoDDLPrvSl9fChz1hzeuQFu/JaGuVRqPQNyqUV8Z1ZduzV/F/Uwfy9+HRRDf2r/Tc46l5zNt8kvvnxdLz3yu5a85WPl57jL0JmbLegxCi3pOvSIRXaS90gShuYZABz6Kk4JtvJm/rNrKXLHGUFe7bR+LTT9P0xRfRhoTUegwdQzvy3Q3fsezEMj7Z+wmnc06XqbM3ZS9TVk2hZ+Oe3NP5Hq5qdVWZNR68TlGgzTD7lnkadnwOu76Ggozy62echHVv2bfmfaHLTdDpRmjU2pNR1xqtRqFP61D6tA7l6es7cjwllz8OJbPqYDI7T2VQUQ5gtqpsOZ7GluNpwBGCjDquaBvGkPbhDIoOJ7qxf91rcRJCiBqoY/+iiYZGay3EDORdGMNQdsBzlOeDEnWGoig0feklCvfto+jUKUd59rLl5G3dRpNnniZozJha/3Cm1WgZGz2W69tcz9LjS/l036ck5CSUqbcnZQ971u2hiV8T7uhwB7fE3EKoMbRWY7skIa3gmn/D8KfhwM+w9wc4ucF1/bOx9m3l89Cshz1x6DwOwtt7LuZa1rZxAA81DuChYdGk5ZpYcySF9XEpbDyWSnpexS1a2YUWp+5LTYJ8GBwdTr82ofRp3Yh2jQPQVDDlqxBC1HWSMAiv0quFjtYFKLtom4+0MDR42gB/mn/wPifvuNOpK5I1PZ3EJ2eQtehXmr70IoZWrWo9Fp1Gx7h247ih7Q38Fv8bn+77lLO5Z8vUS85P5sPdH/LJ3k+4rs113N3pbpfdmrzK4Ae97rFvmaftYx32LYDUONfnnNtr3/78DzTuaE8eOo2Bpt3rxZgHgLAAH27t04Jb+7TAZlM5kJjN+qMprItLYdepDCyVdEFKzjbx8+6z/Lzb/mwEGnX0btWIPq3tW4+WIQTIGAghxGVE/mIJr9JZCx3jFwAi052PS5ckAWDs1InId9/h3NPPYMt3nrEmb9Mmjo+9kfCHHyZs0kQUvb7W49Fr9IxvP54x0WNYfGwxc/bNITEvsUy9IlsRi+MXszh+MT0b9+T2DrdzVaur8NNXPNWnV4S0gmH/gqHTIXG3vdVh/0+Qn+b6nJTD9m392xDUHNqPgpjr7N2eDHXwPV4CjebioOmHR7Yjp9DMlvg0NhxNZVN8KsdTKl/8LafQwro4e8IBoFGgQ9MgerYMoVfLEHq2CpFWCCFEnSYJg/Aqvc1Ept7ewuBfoBJcavZCWeVZFAsaNQrf7t1JevVVcv9Y7XRMNZlImTmT7CVLaPrvV/Dr1csjMek1em6JuYUbo2/kj9N/8N2h79ibsrfcuntS9rAnZQ9+Oj9GRY3ixugb6dOkDxpXA5C9RVGgeW/7du1rcHytfcrVw0uhIN31edlnYedc+6YzQpvhEHOtfQuu3VmtPCnQqGdUl6aM6tIUgKSsQjYdsycPm4+lkZRdWMkVwKbCoXPZHDqXzfzt9jExAT46urcIpmfLEMcWEVTxNLBCCOEpkjAIr9LbCh1rMJRuXUCnw9Cy/nzQEDWnb9qUlh99RM4ff5D0n1exJCc7HTcdPcqpu+4mYMQIwqY85LnEQavn+jbXc32b6zmQeoDvD3/P8hPLMdvMZermW/JZdGwRi44tonlAc8ZGj+XGtjfSMqilR2KtFq0e2l9j38Z8AKc3w8HFcGgJ5Ca5Ps9SCEdX2LelQHgHaDMUooZA1FDwD/fUO6h1TYON3NKnBbf0aYGqqhxPzWPzsVS2n8xg16kMzmYWVOk6uSYLm+PT2Bx/sUUnItCHrs2D6RoZRJfmwXRtHkxksFEGVAshPE4SBuFVetXkWOW59PgFQ4sWHuleIi4/gVdfjd8VA0mZNYuMb7+FUtOZ5q5dS+7atfj170/436fgN3Cgxz5kdQnvwmtDXuOfff7J/x39PxYcXsD5gvPl1j2be5ZP9n7CJ3s/oXdEb66NuparW19NhF+ER2KtFq3u4ixL178NZ3bAocVw+Df7jEoVST1i33Z8bv85orM9cWgzFFoPtq8ZUQ8oikJ04wCiGwdw78AoAM5lFbDrVCY7T2Ww83QGBxOzMFurNg3r+RwTfx4+z5+HLz4/jfz0dG0eTOdmQXRoGkjHpkFER/jjo9NWcCUhhKgZSRiEVxlshWS5nCFJuiMJ17QB/jR97lmCbxzLuRdexHT4cJk6+du3c3r7dozduhE+5SECrrwSReOZLkBhvmE81P0hJnWdxOrTq1l0dBFbzm3BptrKrb/r/C52nd/FG9vfoEfjHlzT+hqubn01zQOaeyTeatFooNUA+zbqVUg9CnHLIW4FnN4KpRa6K+P8Qfu2/VP7z407XbjeQPuCcY2i6s0A6mbBvozu7svo7s0AKDRb2Xcmiz0JGexJyGTP6UwSsyrvxlQsI9/MhqOpbDia6ijTaRTaNvanY1N7EtGpWSAxTQJpHuIrrRFCCLeQhEF4lUEtIkNbfpckSRhEVfh260abnxaS/vU3pM2ZgzUzs0ydwr/+4swjj2JoF03YpEkEXXcdGv/KF+tyB71Gz3VR13Fd1HWczz/P0uNLWRy/mGOZx1yeszdlL3tT9vJu7Lt0DuvM1a2u5qrWV9EmqE3d+wCoKNA4xr4Nngb56RD/J8T9DkdXQWFm5ddIOWTfds6z/xzQBFpdAS2vsCcQTbuCzqc234XHGPVa+rcJpX+bi60q57ML2Z2QyZ6ETHafzuCvM1nkFVWSdJVgsanEJecSl5wLJYbQBPjoaBcRQIcmgbRvEkCHpvZEIiLQp+49R0KIOk0SBuFVBtVE8oVvfJuV7pIkazCIKlJ0OsLun0SjO24nY+FC0r+ci+V82W5ARcfiOffc8yS99jpB119HyM0349u7t8c+PEX4RTCp6yQmdpnIwfSDLD62mGUnlpFpynR5zsG0gxxMO8iHuz+kmX8zrmh2BQMjBzKg2YC6ucaDXyh0u9W+WS1wbg+cWA8nN9pbH8yVzypEbrJ9oPXBX+0/aw32aVub94EWfe2vvs1q9W14UkSQkWu7NOXaCwOpbTaVE2l57D+bxYHEbPafzWL/2SyyCy3Vum6uyWJvxUjIdCpvHuLLyzd24ZrOTdz1FoQQ9ZyiqqqsaV/PnTlzhpYt7QMq4+LiaN++biy2ZLWpfPPi7WxvvpuNRiPfvGvFUOJLtdbffoNf377eC1BUW0FBAStXrgRg1KhR+Pr6eiUOW1ERWYsWkfbZ55gTyi6wVpKhdWuCb7mF4HHj0Dfx/NgBs9XMhrMbWHVqFesS1pFjzqnyuR1DO9oTiGYD6dWkF7467/y+q8xqhrO74OR6OLEBErbZB0hfAtUYwnl9S7L8oogaMAZDqz4Q2hY09bMvv6qqJKQXsD8xiwOJWRxJyuHQuZwqD6ouLcBHx6anriTYT8aJVaSu/E0T9d/Ro0eJiYkBICEhgRYt6takL5IwNAB1NWEwWawsevlmFrc8RFKBgY8+cW6Cb79pI7qwMC9FJy5FXfvHVbVYyP59BWmfforp6NGKK2s0+A8dQtD11xM4YgTakBCPxFiS2Wpm67mt/HH6D/48/WeFLQ+l6TQ6Ood1pndEb3pH9KZXRC9CjCG1FqtbWEz2ReBOb7UnD6e3Qn5q5ee5ovOFiE72LkxNutlfIzqBbyP3xVzHZBeaiUvK4XBSDoeTsjl8LocjyTnkVKE14q1bunFHv9pf8PByVtf+pon6q64nDNIlSXiNxapiVOxjGEoPeNYEBaENrYPdLcRlRdHpCB4zmqAbrid37Toyf/yR3PXrwVbOwGObjbx168lbt55zWi1+/foRePXVBF51Jfpmnun+otfqGdpiKENbDOWFK15gZ/JOVp1axZrTa1zOtFTMYrOwL2Uf+1L2Me/APACig6Pp3aQ3vZv0pkfjHrQIaFG3+q7rfKBlf/sG9tmu0uIhYevFJKKiVadLsxRA4i77VlJgM3viENH5wmsn+yrVBs+MY6lNQUY9faNC6Rt18e+lqqokZ5s4kpzD0eQcjiTlEHc+lyNJ2RSaLz77S/aek4RBCFElkjAIr7FYVXwxkanR0q3UYrKGNlF164ONuKwpGg2BV44k8MqRmJPPk7X4V7J+/oWiEyfKP8FqJX/rVvK3biX51Vcxdu1K4NVXETDySnxi2nvk2dRpdAxoNoABzQbw3IDniM+MZ+u5rWw5t4UdSTsosFTeFSU+K574rHgWxi0EoJFPI7o17kbX8K50D+9O1/CuBPsE1/ZbqTpFgfB29q3XPfaywix7N6azsfbXM7GQV3HyVEbOOfsW/2fJm9lXtw6PgfD2ENbu4n5Ak8t6liZFUWgabKRpsJHhMY0d5Uv3nePh7y8mU5vjUzmfU0hEoCwQJ4SomCQMwmvMNht6TORoNUSmO3dH8pEVnkUt0TeJIPzBBwl74AEKdu8h8+f/I2fZcmz5+S7PKdy/n8L9+0n5YBbasDD8+vfDf8AA/PoP8EhyqygK7Rq1o12jdtzT+R7MVjP7UvfZE4jELexP3Y+1sqlMgQxTBuvPrGf9mfWOsqigKLqGd6VjaEfaN2pPh0YdCPOtQ10BjcEQPdK+gb0VIusMphObOb3lV4IKThNhS0apbhKBCpmn7NuxVc6HfILsCURYOwhtYx8b0ejCq3/4ZZtMXNUpAn+D1jEDk02FZfvOMXGw/L0VQlRMEgbhNRarik1nAmRKVeF5iqLg17sXfr17YXvmGbJXrSJn5SryNm1CNZlcnmdNSyNn+e/kLP8dAF3jxvj174/fgP749e2LISqq1td60Gv19GnShz5N+vBwz4fJM+exN2Uvu5J3sfv8bval7KPQWrXBxCezT3Iy+yS/Hf/NURZmDKNDaAdiGsU4tqjgKHy0dWBqU0WBkJbYOt7IwdP2b8ZHjRqFrzUXkvfbt6QLrylHoJzVtitlyi6/axOAIcCeRDRqY38NaW1fN6JRFAS3BJ2hRm+vNhn1WkZ1acovu886yhbvTZSEQQhRKUkYhNeYrTaKNEVAOas8S8IgPEjj70/ITTcRctNN2PLzyd20idw//iBn7TpsWVkVnmtJSSF76VKyly61XyswEN9u3TB274Zv9x74du+GLjy8VuP31/szKHIQgyIHAfbB0wfTD7IreRe7knexN2UvGaaMKl8vrTCNzYmb2Zy42VGmUTQ0D2hOdHA0bULaEB0cTdvgtrQNaYu/vg6MBQhoDAElWiLAPitTWvyFheIOXXxNPw5c4nwfRbmQ9Jd9K0OBoOYXEojW9v3g5hDU4sJrczAGXdp93WRsj2ZOCcOu05kkpOfTMtTPi1EJIeo6SRiE11hsKmatGaNJS2iu8zFZg0F4i8bPj6BrriHommtQzWbyY2PJ+WM1OWv+xJJ4rtLzbTk55G3eTN7mix+29ZGRGLt3x9i5M8ZOHTF27IiuceMKrlIzeq2eHo170KNxDyZ1nYSqqpzJPcNfKX/xV6p9O5R2iCJbUZWvaVNtJOQkkJCTwNoza52ORfhFEBUUReug1rQOau3Ybx7YHL3Gi9N2avUQ0dG+lWQusLc+pMbZV6lOO3rh9dglT/Nqp0L2Gft2amP5VXyCLiYSgc3s+0HFr5H2Mt9GtdbtaUi7xoT46cnMv9jysmRfIv8Y0a5W7ieEqB8kYRBeY7HaKNBaaZZeat50RcHQurV3ghKiBEWvx3/gQPwHDqTJ889hTkggf/t28rZtJ3/btnIXhyuPOTERc2IiOb//7ijThoVh7NABnwsJhE+HDvhERaEY3N+lRVEUWga2pGVgS25oe4M9JquZuIw49qXu40j6EY6kH+FY5rEqd2Uq6Xz+ec7nn2d70nancq2ipXlAc1oEtiAyIJLmAc0dW2RAJGHGMO9MbqD3hcie9q0km83+YT81DlKP2VsiMk5A+gnIOHlp3ZtKM2VDSrZ9ZWtXdL4Q2NS+BTRxfg1sCgFNISACfEOhmt3fDDoN13dtxvztpx1li/dIwiCEqJgkDMJrLDaVQq2FyPPO30DqmzdH41MH+koLUYKiKBhatcLQqhUht96KqqqYT51yJA/5sbFVTiDAPhaidEsEWq39HtFt8Yluh090WwzR0fi0aYPGz71dRvRaPV3Cu9AlvMvFmGxWTuecJi4jjiPpR4jLiCMuI45zeZW3rJTHqtqvdzrndLnHjVojkQGRNPVvSjP/ZjT1b+rYb+bfjCb+TTw7bkKjsc+cFNIK2l3tfMxmheyz9iQi/YT9NfMUZJyyJxOFme6Lw1JgT1QyXMziVUzR2gdh+ze2bwERF/cdW/jFV719DYEbe0Q6JQyHk+zTr7ZvEui+9yCEqFckYRBeY7Gq5GtsMn5BXJYURcEQFYUhKopGd9wOgDk5mYK9eynct4+CfX9RsH8/agWzL5VhtVJ04gRFJ06Q+8dqp0O6yGYYWrRE36ql/bVlCwytWqFv0QJtSIhbvqnXarS0CW5Dm+A2XBt1raM835zPiawTxGfFczzzOMez7FtCTgI2tZw1Laqo0FrouJYrocZQIvwiaOLXhAi/CMd+iC6EZGsygUogHll/VKO9mEy0HVH2eEHmhQTipD2JyDxtTzCyzthf89PKnlNTqhVyk+1bVRgCwD+cK8LaMzzgGtblXlwYavHeRKaP6uD+GIUQ9YIkDMJrzFYreVq1nBmSorwSjxA1pW/SBP2oUQSNGgWAarViio+3JxD792M6fITCuLjqJREXWBLP2cdQbN9e5pgmIAB98+boIyPRN2uGvvmF18hIdM0i0TUOr9HMTX56vzKtEQAmq4lT2ac4nX2ak9knOZV9yrGlF6a7uFr1pBemk16YzuH0wy7rvP1/bxNqDCXcN5wwYxhhvmGO/VBjKKG+ofZXYyiNfBqh1WhdXuuS+YbYt2Y9yj9uLrQnDtlnIevCa845yE68uFV7athqKsqFolyUjJN8ot3KSF4nCfsUuov3JvLPa2Jk/RshRLkkYRBeYzWbyNRq6FxqlWcfaWEQ9YSi1WKMicEYE0PIrbcCoNpsmE+fpvDwEQoPH7InEYcPY0lKuuT72HJzMR05gunIkfIr6PXoGzdG17QpuiYR6COaoGvaFH2TCHRNmti3sDA0vr7Vuq+P1scx7WppWaYsTmef5lTOKRJzE0nMTeRM7hkScxM5l3cOi81yKW+1XBabxTGOojIKCiE+IY5EIsQnxGlrZGzkeA02BBPkE0SgIRCNUsOpcvVGCIu2by7fSBHkJtmTh5wk+5abBDnJzq9uaK3wtebwrv4T7jU/g4qGU2n57DuTRY+WITW+thCi/pGEATh16hQffvghS5cuJSEhAR8fH6Kjo7n99tt5+OGH8XNT3+Hly5czZ84cduzYQUpKCo0bN6Zfv3489NBDXH/99W65x+VENeWRpWhoJmswiAZE0WgcXZmCrrvY7ceak0NRfDym+OOY4uMv7MdjPnvWvlhZTZjNjoHXFdH4+aFtHI4uLBxdWBja8DD7fngY2pBGaEMboQsNRRsaijY4GEXr+pv6YJ9gujXuRrfG3cocs9qspBSkcCbnDOfyzpGcn8y53HOcyztHUn4SSblJ5JhzavaeXVBRyTBlkGHKID4rvkrnKCgEGgIJ9gkm2BBMsE8wQYYggnyC7K8Ge1JR8ucgnyAC9AH46/3Raar4T63OcLHbU0UsRZCfCnkpkJtib5nIS4HcEq/5qZB3YXMxWHuI9gATbSuYa7X/+7N4b6IkDEKIcjX4hGHJkiXcc889ZGdnO8ry8/OJjY0lNjaWzz//nKVLl9Ku3aXPIGGz2XjooYf44osvnMrPnj3L2bNnWbRoEQ888ACffvopmlpe8KkusZoLsBRoMZb6t0wSBtEQaQMD8e3ZE9+ePZ3KbQUF9nENpxMwn0mgKOEM5oTT9tfERLBWvsJzVdny87GdOo35VPmDlJ0oCtqQEHvyEBJyYQsusW/fdCEhaIKC0QYFogkMQuPvh1ajdQxwdiW3KJdzeeccLQdJ+UmO/eS8ZJLzk8k0ZbrtvVdERSW7KJvsomwSSKj2+b46X0fyEGgIdLz66fwIMNjL/fX+jjrFm5/eD3/dhVe9P746X3tLh85gn4I1KLIKwatQmGVPHHKT4OeH7N2hLnha9wMbbN04prbgt32JPHtDJ7Qa6ZYkhHDWoBOG3bt3c8cdd1BQUEBAQADPPPMMI0eOpKCggB9++IHPPvuMuLg4Ro8eTWxsLIGBlzaDxHPPPedIFnr16sWMGTOIjo4mPj6et99+m927d/P555/TuHFjXn/9dXe+xTpNLcrHmOmcINl8fdBFRHgpIiHqHo2vr339hs6dyxxTLRbMSUmYExIutCCcs7+es79azp1DNbthKtDyqCrWjAysGVVfEA4ArRZtYCCaoKALr4FoAwLQBASiCQxAGxCIJiAATWAATQIDaeYfgCYgCm1AVzSN/e3H/P0pLCpi2Ypl5Kq5dO3flVxbLmmFaaQWpJJWcOG1MI2MwgzSC9M9llyUp8BSQIGlgJSClBpfy1fni5/ODz+9n2PfV+dr39df3He5jXiC1kufosmFRNNHMfOB/mPGF/2b5GzYfiKdgdFhNY5TCFG/NOiEYdq0aRQUFKDT6Vi5ciUDBw50HLvyyitp3749M2bMIC4ujvfee4+XX3652veIi4vj3XffBaBv376sX78e3wv9hPv168eNN97I8OHDiY2N5Z133uH++++vUWvGZcVcgH+m8zdZaoumMuhOiCpSdDoMLVpgaNGi3OOqzYYlNRXLuXOYk5OxJJ/Hcj7Zvp+UjCU5GfP586gFBZ4L2mrFmpmJNTOTmqQyiq8vMTodNoOBgPBwwgICaOPri8bP78IWjOLbFI2vHxpfX1RfA4U6yNWaydGaydIUkqWYyFIKyVDySVNzSVNzSLNmk1GURYYpA7M71l1ws+LkI63w0scxKK2ac11uHs+lpRNsU+mqOcnjup94x3Ini/cmSsIghCijwSYM27dvZ8OGDQBMnjzZKVkoNn36dObOncuhQ4eYNWsWzz33HHp99VYt/eCDD7BY7IP7Zs+e7UgWivn5+TF79mwGDhyIxWLh/fff57///e8lvqvLi7Uoj9AMBbjYP1sbVUnfXSFElSkaDfqICPQREbgazqyqKra8PCwpKVjT0rCkptmTjLRUrBf2renpWC60JthyamdsQXWpBQWOf8CK0qr34TngwtbcxXHFxwfFaETxCUT10WMz6LAatFj0Gsw6hSIdFOpUTFr74pMFGit5GjN5ShG5ShE5igmT1oZZC2YdjleLVrlYpgOLprj8Yh2rhlpb5bmYCiwP8Ge30Yc3UtLoW2ji79olrLH2ZPl+Pa/c2AWDruF0jxVCVK7BJgyLFi1y7E+aNKncOhqNhvvuu49nnnmGzMxM1qxZw6gL0yVWhaqq/PrrrwB07NiRK664otx6V1xxBR06dODIkSP8+uuvfPTRRw3iW/Z8U1qZAc++bRtI64oQdYSiKGgDAtAGBEAVxg+pRUVYMjKxZqRjzcjAkp7uaDGwZmZd3M/IsL9mZdWZJKOqVJMJ1WRyKtNe2DyxjJw9mVAw61QsmosJhUV7cd+qtdexFO9rcdS1ltx3vCqO8zP9YU9bhSRfHfc3jeCBrGymZmQxU/8/rs9/k43HUriyYxMPvFMhxOWiwSYMGzduBMDf358+ffq4rDd8+HDH/qZNm6qVMJw4cYLEC7OSlLyOq/scOXKEs2fPcvLkSdo0gIG/uUUZRJaaUjWwnSwcJERdphgM6JtEoG9S9bFGqtWKLS8Pa3YOtpzssq85udhycrDm5mDLycWWm4s1115my83FlpeH7RLWrrhc6S2gR8W3qLKa1Zk9y7muRQO7oxU2dlH4ql0QW41G3kpJ40XbNyzeEy0JgxDCSYNNGA4dOgRAu3bt0Olc/xo6duxY5pyqOnjwYLnXqcp9GkLCkJefQscs5zL/6PbeCUYIUWsUrRZtUBDaoCBcdwSqmGq12mdxysvDlptLfloasevXoykqontMDDqLBVt+gb1O8VaQj1pQYC8vsG9qfr5j31ZQABb3rQdxOdHZoN9RlX5HVQoMsD1Gx0udmzAuaAeWg0soKOqOr6EWFrgTQlyWGmTCUFhYSGpqKgAtXAwWLNaoUSP8/f3Jy8sjIaF60+mdOXPGsV/ZfVq2bOnYr8l9ylPyeosmXEuosXrjMGqLxmrjvNn5Wy+t1Ypy9KiXIhI1ZTKZHP9vxcfH4+PjiQ4coiEy+ftzOjQUgCadOlX7WdNc2LBYUIuKsF3ohlS82QoLoagItXgrNKEWmez7piLHPkVmbEXFP5svvppM9hmqLBb7dcxm+1ZUhGqxuHU63BozQ4fd9i3bz49e4V/x3bXf1fZQistG8TIo38+a4d1ARL2WXnhxkgVLHfwio0EmDDkl+tMGBARUWr84YcjNza21+/j7+zv2q3ufkslGZWZsOVGta3tc9+7ejkAIIYQQwmtSUlKIiorydhhOGuQ0CIWFhY59g8FQaf3ib64Kqjn1YHXuU/LbsereRwghhBBC1A/JycneDqGMBtnCYDQaHftFRZWOKsN0YbaM0lOiuvM+phIzclT3PpV1YTpx4gTDhg0DYPPmzdVqkRCiOs6dO0f//v0B+9TFzZo183JEor6SZ014gjxnwlMSEhIYNGgQUPm4V29okAlDyRWbq9L9Jy8vD6ha96VLvU/xPS7lPpWNjyipZcuW1aovxKVq1qyZPGvCI+RZE54gz5nwlJJfONcVDbJLktFoJCzMvpJlZQOGMzIyHB/mq/vNfMk/LNUZmCwtAEIIIYQQoq5okAkDQOfOnQE4duxYhaPRDx8+7Njv1KnTJd2j9HXcfR8hhBBCCCFqS4NNGIYMGQLYuwLt3LnTZb1169Y59gcPHlyte7Rp04bIyMgy1ynP+vXrAWjevHmdGxkvhBBCCCEargabMNx0002O/blz55Zbx2az8fXXXwMQEhLCyJEjq3UPRVEYN24cYG9B2Lp1a7n1tm7d6mhhGDduHIpMfi2EEEIIIeqIBpsw9O/fn6FDhwLwxRdfsGXLljJ13nvvPcfqztOmTUOvd17wbO3atSiKgqIoTJw4sdz7PP7442i19tUyH3300TJTphYUFPDoo48CoNPpePzxx2vytoQQQgghhHCrBpswAMyaNQtfX18sFgujRo3ijTfeYOvWraxZs4YpU6YwY4Z9VceYmBimT59+SfeIiYnhySefBCA2NpbBgwezYMECYmNjWbBgAYMHDyY2NhaAJ598kvbt27vnzQkhhBBCCOEGDXJa1WK9evViwYIF3HPPPWRnZ/Pss8+WqRMTE8PSpUudpkitrtdee43z58/z5Zdfsnv3bu68884ydSZPnsyrr756yfcQQgghhBCiNiiqqqreDsLbTp06xaxZs1i6dClnzpzBYDDQrl07brvtNh555BH8/PzKPW/t2rWOcQ0TJkxg3rx5Fd5n2bJlzJkzhx07dpCamkp4eDj9+vVjypQpXH/99e5+W0IIIYQQQtSYJAxCCCGEEEIIlxr0GAYhhBBCCCFExSRhEEIIIYQQQrgkCYMQQgghhBDCJUkYhBBCCCGEEC5JwiCEEEIIIYRwSRIGIYQQQgghhEuSMAghhBBCCCFckoRBCCGEEEII4ZIkDEIIIYQQQgiXJGGo506dOsX06dPp2LEj/v7+hIaG0q9fP9555x3y8/O9HZ6ow86fP89vv/3Giy++yPXXX094eDiKoqAoChMnTqz29ZYvX8748eNp0aIFPj4+tGjRgvHjx7N8+XL3By8uK7Gxsfz73/9m1KhRjucjICCAmJgYJk2axMaNG6t1PXnWRHmys7P54YcfmD59OsOHD6ddu3YEBwdjMBiIiIhgxIgRvP3226SlpVXpeps3b+aee+6hdevWGI1GmjZtyrXXXsv8+fNr+Z2Iy9lTTz3l+LdUURTWrl1b6Tl14m+aKuqtxYsXq0FBQSpQ7hYTE6MePXrU22GKOsrVcwOoEyZMqPJ1rFarOnny5Aqv98ADD6hWq7X23oyos4YOHVrhs1G83XfffarJZKrwWvKsiYqsWrWqSs9aeHi4+vvvv1d4rZdeeknVaDQurzF69Gi1oKDAQ+9MXC52796t6nQ6p2dlzZo1LuvXpb9pkjDUU7t27VJ9fX1VQA0ICFBfe+01dfPmzerq1avVBx980ClpyM7O9na4og4q+QepVatW6qhRoy4pYXj66acd5/Xq1UudP3++un37dnX+/Plqr169HMeeeeaZ2nszos6Kjo5WATUyMlKdNm2a+tNPP6nbt29Xt2zZos6cOVNt3ry54xm56667KryWPGuiIqtWrVJbtmyp3nfffeqsWbPUn3/+Wd2yZYu6adMmdcGCBeptt92marVaFVANBoO6Z8+ecq/zySefOJ6l6Oho9YsvvlC3b9+uLlq0SB05cmSVn1fRsFitVrVfv34qoEZERFQpYahLf9MkYainir+10+l06ubNm8scf/vttx0P2ksvveT5AEWd9+KLL6pLlixRk5KSVFVV1RMnTlQ7YThy5Ijj25S+ffuq+fn5Tsfz8vLUvn37Op5VafFqeEaPHq0uWLBAtVgs5R5PSUlRY2JiHM/eunXryq0nz5qojKtnrKRffvnF8ayNHz++zPG0tDQ1ODjY8UVKSkpKmXuMHTu2Sh8GRcPy/vvvq4DasWNH9Zlnnqn0Galrf9MkYaiHtm3b5ngQp0yZUm4dq9WqdurUSQXUkJAQtaioyMNRisvNpSQMU6dOdZyzZcuWcuts2bLFUecf//iHGyMW9cWSJUscz8ijjz5abh151oS7dOjQwdE1qbS33nrL8QzNnz+/3PMTEhIcLRU33HBDbYcrLgOnTp1SAwICVEBdu3at+tJLL1WaMNS1v2ky6LkeWrRokWN/0qRJ5dbRaDTcd999AGRmZrJmzRpPhCYaEFVV+fXXXwHo2LEjV1xxRbn1rrjiCjp06ADAr7/+iqqqHotRXB5Gjhzp2I+Pjy9zXJ414U6BgYEAFBYWljlW/O9rUFAQN998c7nnt2jRgquvvhqA1atXk5OTUzuBisvGww8/TG5uLhMmTGD48OGV1q+Lf9MkYaiHimcU8ff3p0+fPi7rlXxoN23aVOtxiYblxIkTJCYmAlT6B7L4+NmzZzl58mRthyYuMyaTybGv1WrLHJdnTbjLkSNH2LNnD2D/oFZSUVER27dvB2DgwIEYDAaX1yl+zkwmE7GxsbUTrLgs/Pjjj/z222+Ehoby7rvvVumcuvg3TRKGeujQoUMAtGvXDp1O57JeyT+GxecI4S4HDx507Jf+h7c0eRZFRdatW+fY79SpU5nj8qyJmsjPz+fo0aPMnDmT4cOHY7FYAHj88ced6sXFxWG1WgF5zkTVZGZmMm3aNADeeustwsPDq3ReXfyb5vrTpLgsFRYWkpqaCtibRSvSqFEj/P39ycvLIyEhwRPhiQbkzJkzjv3KnsWWLVs69uVZFCXZbDbefPNNx8+33357mTryrInqmjdvnssuuwBPP/00d999t1OZPGeiumbMmEFSUhKDBw9m8uTJVT6vLj5rkjDUMyX7SgYEBFRavzhhyM3Nrc2wRANUnWfR39/fsS/Poijp/fffd3QDufnmm8vtZinPmnCXnj17MmfOHPr161fmmDxnojo2bNjA559/jk6n45NPPkFRlCqfWxefNemSVM+UHKRVUf/KYj4+PgAUFBTUWkyiYarOs1j8HII8i+KidevW8fTTTwMQERHB//73v3LrybMmquumm27ir7/+4q+//mL79u3Mnz+f8ePHs2fPHu666y5+++23MufIcyaqqqioiIceeghVVXniiSfo2rVrtc6vi8+aJAz1jNFodOwXFRVVWr94MKGvr2+txSQapuo8iyUHtcqzKAAOHDjA+PHjsVgsGI1GFi5cSERERLl15VkT1RUSEkLXrl3p2rUr/fr148477+Tnn3/m66+/5vjx44wbN4558+Y5nSPPmaiq119/ncOHD9OqVSteeumlap9fF581SRjqmeLp4KBqTVN5eXlA1bovCVEd1XkWi59DkGdR2GcIGTVqFBkZGWi1Wn744QeGDRvmsr48a8Jd7r33Xm677TZsNhuPPPII6enpjmPynImqOHz4MG+88QYAs2fPduoyVFV18VmTMQz1jNFoJCwsjLS0NKdBM+XJyMhwPGglB80I4Q4lB2pV9iyWHKglz2LDlpiYyNVXX01iYiKKovDll18ybty4Cs+RZ02407hx4/jxxx/Jy8vj999/dwx+ludMVMX7779PUVERbdu2JT8/nx9++KFMnf379zv2//zzT5KSkgAYO3Ys/v7+dfJZk4ShHurcuTMbNmzg2LFjWCwWl1OrHj582LFf3lSFQtRE586dHfsln7XyyLMoAFJTU7nmmms4fvw4YP92rniByYrIsybcqXHjxo79U6dOOfZjYmLQarVYrVZ5zoRLxV2Ejh8/zl133VVp/f/85z+O/RMnTuDv718n/6ZJl6R6aMiQIYC9mWrnzp0u65Wc23zw4MG1HpdoWNq0aUNkZCTg/KyVZ/369QA0b96cqKio2g5N1EFZWVlce+21jvnH33zzTR5++OEqnSvPmnCns2fPOvZLdvEwGAz0798fgC1btlTYt7z4OfTx8aFv3761FKmor+ri3zRJGOqhm266ybE/d+7ccuvYbDa+/vprwD74a+TIkZ4ITTQgiqI4upIcPnyYrVu3lltv69atjm9Ixo0bV62p50T9kJ+fz+jRo9m1axcAzz33HE899VSVz5dnTbjTwoULHfvdunVzOlb872t2djY///xzueefOXOGP/74A4CrrrrKqT+6qP/mzZuHqqoVbiUHQq9Zs8ZRXvyBv07+TVNFvTR06FAVUHU6nbp58+Yyx99++20VUAH1pZde8nyA4rJz4sQJxzMzYcKEKp1z5MgRVavVqoDat29fNT8/3+l4fn6+2rdvX8ezGhcXVwuRi7rMZDKpo0aNcjxb06ZNu6TryLMmKjN37ly1oKCgwjozZ850PItt2rRRLRaL0/G0tDQ1ODhYBdTWrVurqampTsctFos6duxYxzXWrFnj7rch6oGXXnqp0mekrv1NkzEM9dSsWbMYPHgwBQUFjBo1imeffZaRI0dSUFDADz/8wJw5cwB7n8zp06d7OVpRF23cuJFjx445fi5eQRzg2LFjZaYcnDhxYplrxMTE8OSTT/Lmm28SGxvL4MGDeeqpp4iOjiY+Pp633nqL3bt3A/Dkk0/Svn37Wnkvou666667WLlyJQBXXnklkydPdhoQWJrBYCAmJqZMuTxrojIvv/wy06dP55ZbbmHIkCFER0cTEBBATk4Of/31F9999x2bNm0C7M/ZnDlz0Gq1TtcIDQ3lrbfe4u9//zunTp1iwIABPPfcc3Tr1o3ExEQ++OAD1qxZA9if7REjRnj6bYp6os79TavVdER41eLFi9WgoCBHFlt6i4mJUY8ePertMEUdNWHCBJfPTnmbK1arVb3//vsrPHfy5Mmq1Wr14LsTdUV1njEufKvrijxroiKtW7eu0jPWokULdeXKlRVe68UXX1QVRXF5jRtuuKHS1gzRcFWlhUFV69bfNBnDUI+NHTuWffv28cQTTxATE4Ofnx8hISH07dvXkZm2a9fO22GKek6j0fDFF1+wdOlSxo0bR2RkJAaDgcjISMaNG8eyZcv4/PPP0Wjkz5GoGXnWREVWrFjBe++9x80330z37t1p0qQJOp2OwMBAoqOjueWWW5g7dy5HjhzhmmuuqfBar7zyChs3buTuu++mZcuWGAwGIiIiuOaaa/j+++9ZunSp0+JbQlyKuvQ3TVFVVa31uwghhBBCCCEuS/I1ixBCCCGEEMIlSRiEEEIIIYQQLknCIIQQQgghhHBJEgYhhBBCCCGES5IwCCGEEEIIIVyShEEIIYQQQgjhkiQMQgghhBBCCJckYRBCCCGEEEK4JAmDEEIIIYQQwiVJGIQQQgghhBAuScIghBBCCCGEcEkSBiGEEEIIIYRLkjAIIYQQQgghXJKEQQghhBBCCOGSJAxCCCGEEEIIlyRhEEIIIYQQQrgkCYMQQtTQyy+/jKIoKIri7VA4efKkI5Z58+Z5O5wGZ968eY7f/8mTJ2t8vS+//BJFUejWrRuqqtY8wDpq4cKFKIpCTEwMZrPZ2+EIIUqRhEEIUa9YrVaCgoJQFIXevXtXWFdVVcLCwhwf8L788ssK63/11VeOuv/73//cGXaddObMGV5++WWGDh1K48aN0ev1+Pr60qJFC4YNG8a0adP46aefyMrK8nao9VJubi7PPvssAC+++GKdSEhLGjVqFIqiMG3atBpf65ZbbqFz584cPXqU2bNnuyE6IYQ7ScIghKhXtFotgwYNAmDv3r1kZ2e7rHvgwAHS09MdP2/YsKHCa5c8PmzYsBpGWrd99tlndOjQgVdeeYWNGzeSmpqKxWKhsLCQs2fPsmHDBj788ENuu+02pkyZ4u1w66UPP/yQ5ORkOnfuzK233urtcJzk5OSwbt06AMaOHVvj62k0Gp577jkA3nzzTfLy8mp8TSGE+0jCIISod4o/zNtsNjZv3uyyXnECoNVqnX6urH54eDidO3d2lL/88suoqlpvuozMnz+fhx56iPz8fIxGI1OnTmXRokXExsayY8cOfv31V1544QV69erl7VDrrYKCAmbOnAnAE088UedaF1asWEFRURFBQUEMHz7cLde84447aN68OSkpKXz66aduuaYQwj0kYRBC1Dslv/1fv369y3rFx2677TYA4uPjSUxMLLfu+fPniYuLA2DIkCF17gOcu1itVv75z38CEBgYyLZt2/j4448ZN24cffr0oW/fvtx44438+9//ZteuXRw8eJCbb77Zy1HXP99++y1paWn4+PjUudYFgCVLlgBw7bXXotfr3XJNrVbLHXfcAcBHH32EzWZzy3WFEDUnCYMQot7p168fRqMRqLjVoPjYrbfeSnR0dIX1G0p3pG3btpGUlATAlClT6N69e4X1O3XqxO233+6J0BqUL774AoDRo0cTEhLi3WBKsdlsLFu2DIAxY8a49dp/+9vfADhx4gRr1qxx67WFEJdOEgYhRL3j4+ND//79AdixYwcmk6lMnRMnTnD27FnA3mIwZMgQ4NIShspmSYqKikJRFCZOnAjAkSNHePDBB4mKisLHx4cmTZowfvx4tm7dWul7s1qtfPzxxwwYMICgoCCCg4Pp3bs37777brnvs7pOnz7t2G/Xrt0lX6e82ZoWLlzI1VdfTUREBL6+vnTs2JFnnnmGzMzMKl1zzZo1TJgwgbZt2+Ln50dQUBDdunXjySefdNky5O5rZGRk8PTTT9OxY0d8fX2JiIjg6quvZuHChVW6f1WcOnWKbdu2AfbBwK6sXbvW8Tteu3YtqqryxRdfMGTIEMLCwggKCqJ///588803TucVFRXxySefcMUVVxAaGkpgYCCDBw/mxx9/rFJ8W7duJTU1FY1Gww033FDm+M6dO5k8eTIxMTH4+/tjNBpp2bIlffr04eGHH2bx4sUuu+/17t2bNm3aAPaucUKIOkIVQoh66Pnnn1cBFVDXrVtX5vi8efNUQG3fvr2qqqr62WefqYDarVu3cq/Xu3dvFVCDgoJUi8XidOyll15y3Ks8rVu3VgF1woQJ6s8//6z6+fk56pfctFqt+sMPP7h8Tzk5OerQoUPLPRdQe/fure7atcvx89y5c6v427ro//7v/xznT5s2rdrnFztx4oRTHPfff7/LuCMjI9VDhw65vFZBQYF65513ujwfUP39/dXFixfX6jUOHjyoRkZGujx/0qRJ6ty5cx0/nzhx4pJ+d8XPJqDGx8e7rLdmzRpHvZUrV6pjx451Gdtjjz2mqqqqpqenq8OGDXNZ77XXXqs0vqeffloF1MGDB5c5NnPmTFWj0VT4ewbUnJwcl9cv/u/UvHnzKvy2hBCeIAmDEKJeWrlypePDyauvvlrm+OTJkx0f8lRVVQ8dOqQCqqIoanp6ulPd7OxsVavVqoB63XXXlblWVROG3r17q0ajUW3Tpo360UcfqVu3blW3bNmivvzyy6rRaHQkJOfPny/3OuPGjXPcp3///ur8+fPV2NhYdenSpeptt92mAmq/fv1qlDAcP37ccb7RaFRXr15d7WuoqnPCUBxTyZiXLVum3n777Y46rVq1UrOzs8tcx2azqaNHj3bUGzt2rPrNN9+omzZtUrds2aLOmjVLbdWqlQqoBoNB3bFjR61cIysrS23ZsqXjGnfccYe6bNkyNTY2Vv3+++/Vvn37lvn9X2rCUPxshoWFVVivZMIwYMAAFVD/9re/qUuXLlV37typzp8/X+3QoYOjzqpVq9Qbb7xR1el06tSpU9WVK1eqO3fuVL/44gtHIqTVatX9+/dXeN8uXbqogPrmm286le/du9eRLLRp00Z977331NWrV6u7d+9W169fr3722Wfq3Xffrfr7+1eYMMycOdMR89GjR6v+ixNC1BpJGIQQ9VJOTo6q0+lUQL322mvLHI+JiVEB9csvv3SUhYeHq4C6ZMkSp7q///674wPM66+/XuZaVU0YALVPnz5qVlZWmTrffvuto87MmTPLHP/tt98cx2+44QbVbDaXqfPKK684fYt7KQmDqqrqmDFjnK7Tr18/9cUXX1SXLVumpqSkVOkaJROGimL+97//7ajz5JNPljk+Z84cFVD1er26fPnycu+Vnp7u+BBb3rfe7rjGv/71rwqfgaKiInXUqFFO7/lSE4ZOnTqpgHrVVVdVWK9kwgCoH3zwQZk6586dUwMDA1VAbdy4saooivrLL7+UqVfyw35xa0R5SiaUpROLF154wdFSk5SU5PIamZmZqtVqdXl83bp1jntU1OImhPAcSRiEEPVW8be9gYGBTt2IkpOTHR9I4uLiHOXF3+DPmDHD6TrPPfeco/7GjRvL3Kc6CcPevXvLrWOz2Rzf8o4fP77M8RtuuEEFVB8fH/Xs2bPlXsNqtapdu3atccKQkpLi9E156S0mJkZ95JFH1J07d7q8RsmEoaoxh4aGqiaTyXHMZrOp0dHRKqBOnz69wpiXLVtW7n9Td1zDZDKpjRo1UgG1e/fuqs1mK/f8hIQEVa/X1zhhKP6Af9ddd1VYr3QLgyv33XefU8uIK8VdlXr16uWyzocffuhoQSjtwQcfrPT8qihu7XOVnAkhPE8GPQsh6q3iwck5OTns2bPHUV48nWqTJk1o3769o7x44HPpqViLBzwbjUb69et3yfF069bN5axDiqI41jU4fvy40zGr1cratWsB++q6kZGR5V5Do9EwYcKES46vWHh4OJs2bWLOnDnlrpYdFxfHRx99RJ8+fbj33nsrXWSrqjGnp6eza9cux7GDBw8SHx8PUOnUoiUHom/ZssWt19i5cycZGRkATJgwweXg9hYtWjBq1KgK71EZk8lETk4OAI0aNaryeXfeeafLYz169KhWvdLPX0nF06mWt1hbs2bNAPvvfPv27RUHXIHQ0FDHfvGMXUII75KEQQhRbw0dOtSxX3KWo+L94gShdP2dO3dSUFAA2GeUKf7wM2DAAAwGwyXH07FjxwqPF39QKv7AWCw+Pp78/HyAShOW4tmhakqv1/Pggw+yc+dOzp49yw8//MC//vUvhg4d6jTv/rfffsuNN96I1Wp1ea3qxPzXX3859mNjYx37AwcOdMwIVN4WEBDgqFvyQ6Y7rlEyptr+/Zdcebw6CUNMTIzLYyWnZa1KvdLPX7HKVne+66670Ov1mEwmBg8ezNixY/nkk0/Yv39/tRY1LPm+ZcVnIeoGSRiEEPXW0KFDHd8GVyVh6N27N35+fpjNZscUpzt27KCwsBCo+foLfn5+FR7XaOx/kkt/+C75ITIiIqLCazRp0uQSo3MtMjKSO+64g3feeYf169eTlJTEM88844j3zz//rHAKzOrEXPK9nj9//pLiLU6u3HUNT/7+i9cPARxJa1VU9GwV/3eqaj1XC6YVr+4cGBhY7urOHTt2ZP78+TRq1AiLxcJvv/3G1KlT6datGxEREdx7772VrqYOzu/bXYvCCSFqRuftAIQQoraEhobSpUsX9u/f7/igkp2dzd69e4GyCYNer6d///6sXbuW9evXM3LkyDq3YFtdWGE6NDSU119/HVVVefPNNwH7Ggv33HNPufUvNeaSidOSJUuIioqq0nklP9S74xol1fbvPyQkBJ1Oh8VicUpU6oLffvsNqHh151tuuYWrr76aBQsWsGLFCjZs2EBKSgqpqal8++23fPvtt0yYMIEvv/zSKZEpqeT7rmuL1gnRUEnCIISo14YNG8b+/ftJSUnh8OHDnDhxApvNRkBAgGPMQElDhgxh7dq1jkSheDyDXq9n4MCBHo29WMkuGsnJyRXWrey4Oz344IOOhOHYsWMu61Un5pL918PCwhz7ISEhdO3atdoxuuMapX//FXXrqenvX1EUwsPDSUpKcoybqAtKru5cXnekkoKDg3nooYd46KGHADh06BC//vors2fPJjExka+++opevXoxbdq0cs8v+b5btWrle+51gwAAB3RJREFUpncghKgJ6ZIkhKjXSo9jKE4ErrjiCrRabZn6xa0OW7duxWQysXnzZsDeXcnf398DEZcVHR2Nr68vYO8iVZHKjrtTyYHMFX3zXp2YS36gL5nQbdq06VJCdMs1unXr5tj3xO+/+H5xcXE1vpa7bN26lZSUFJerO1ekU6dOPP3002zdutXx/1BFq0qXfN9dunS5tICFEG4lCYMQol4r2Y1o/fr1jhaD0t2Rig0cOBCtVkteXh7z5s0jKyurzHU8TafTMWLECABWrlzJuXPnyq1ns9n46quvanSv6gxOLTmguG3bti7rVTXmRo0aOc3K1Lt3b1q0aAHAnDlzHGNJqsMd1+jTp4+jleGbb75x+Ts6e/YsK1eurPb1SytOco8cOeJyALKnFc+ONHDgQMLDwy/pGi1btnS0zqSmprqsV5x06fX6cmfpEkJ4niQMQoh6LTIykujoaADWrFnj+JBbsuWhpKCgIMc3vG+//baj3NvjF6ZOnQrYp92cMmVKubMSvfHGG04z+lyK5cuXc/vtt7N79+4K66Wnp/PYY485fh43bpzLuhXF/Oabbzpivv/++/Hx8XEc02g0PPvss4B9qs/77rsPk8nk8j7Z2dl89NFHTmXuuIaPjw+TJk0CYM+ePbzzzjtlzrNYLDz44IMUFRW5vHZVFT+bNpvNKSnzpuKEYcyYMS7rLFq0iMzMTJfHExISOHz4MABt2rRxWa94VrKBAwc6zVwlhPAeGcMghKj3hg4dSnx8PGfPngXs39hfccUVLusPGTKEPXv2OOaj12g0LlskPGXs2LGMHTuWJUuWsGTJEgYPHswTTzxB+/btOX/+PPPmzWPBggX07du3Rh8ybTYbCxcuZOHChfTo0YPRo0fTr18/mjVrhsFg4Pz582zcuJE5c+Y4ZiDq06dPhes/9O3bt9yYv/rqK3744QfAvobBCy+8UObcv//976xatYpffvmFhQsXsmvXLqZMmUL//v0JDg4mOzubw4cPs3btWhYvXozRaOSRRx5x+zVefPFFfvzxR86cOcNTTz3Fnj17uO+++4iIiCAuLo6ZM2eyY8eOGv/+AQYNGkTjxo1JSUlh9erVjBw5skbXq6mTJ09y4MABoOLxCx988AF/+9vfGD16NFdeeSWdOnUiODiYjIwMYmNjmT17tmMGpL///e/lXiMnJ8fRwjB+/Hg3vxMhxCXz7rpxQghR+7788kunlYr79etXYf0ffvjBqX6PHj0qrF/VlZ4nTJhQ4XUmTJigAmrr1q3LPZ6dna0OHjzY5QrMvXr1Unfu3FmjlZ43btyo+vv7u7xH6e2aa65RU1NTy1yn5ErPc+fOVSdOnOjyGs2aNVMPHDjgMqaioiJ16tSpqqIolcZT3grE7rrG/v371aZNm7o8b+LEiercuXNrvNKzqqrq9OnTVUBt27atyzolV3pes2aNy3pVjcnVc1zR6s4lDR8+vNLfrUajUf/zn/+4vMa8efNUQNXpdOq5c+cqvJ8QwnOkS5IQot4r3Z2ostaC0t2VvN0dqVhgYCBr165l9uzZ9OvXj4CAAAIDA+nZsydvvPEGmzdvdppl6FIMHjyYlJQUFi9ezD//+U+GDx9OZGQkPj4+6HQ6QkND6d27N1OmTGHNmjWsXLnSaSYiV+bOncv333/PiBEjCAsLw8fHh5iYGGbMmMGBAwfo3Lmzy3P1ej0ff/wxe/fu5dFHH6Vbt24EBwej1WoJDg6mZ8+eTJ48mZ9++olDhw7V2jW6dOnCgQMHmDFjBu3bt8fHx4fw8HBGjhzJ999/z9y5c6v2S66CBx98ELB3oypeE8RbKlrduaT58+czZ84c7r77bnr27EnTpk3R6XQEBATQpUsXpk6dyu7du3n++eddXuP7778H7K0LTZs2dd+bEELUiKKq1RjhJoQQQlTByZMnHf3U586dy8SJE70b0GXohhtuYPny5TzwwAN89tlnXokhJyeH8PBwioqKWLlyJddcc02t3evUqVNER0djtVrZsmVLhd0GhRCeJS0MQgghRB30xhtvoNFo+Prrr0lISPBKDCtXrqxwdWd3ev3117FarVx33XWSLAhRx0jCIIQQQtRBPXr04O6776aoqIg33njDKzEEBgby0ksvMXv2bAwGQ63dJyEhgXnz5qHVap1mJxNC1A0yS5IQQghRR73++utER0djNBpRVbXCBfJqw6hRoxg1alSt3ychIYFnnnmGtm3bOi2UJ4SoG2QMgxBCCLeTMQxCCFF/SJckIYQQQgghhEvSwiCEEEIIIYRwSVoYhBBCCCGEEC5JwiCEEEIIIYRwSRIGIYQQQgghhEuSMAghhBBCCCFckoRBCCGEEEII4ZIkDEIIIYQQQgiXJGEQQgghhBBCuCQJgxBCCCGEEMIlSRiEEEIIIYQQLknCIIQQQgghhHBJEgYhhBBCCCGES5IwCCGEEEIIIVyShEEIIYQQQgjhkiQMQgghhBBCCJckYRBCCCGEEEK4JAmDEEIIIYQQwiVJGIQQQgghhBAuScIghBBCCCGEcEkSBiGEEEIIIYRL/w+H2AVxDBK5BQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -242,10 +242,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "iea_15MW_floating\n", "iea_15MW_multi_dim_cp_ct\n", "nrel_5MW\n", - "iea_10MW\n" + "iea_10MW\n", + "iea_15MW_floating\n" ] } ], @@ -286,10 +286,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "iea_15MW_floating\n", "iea_15MW_multi_dim_cp_ct\n", "nrel_5MW\n", "iea_10MW\n", + "iea_15MW_floating\n", "iea_15MW\n" ] } @@ -328,7 +328,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeVxU5f4H8M9hGZZBZBMRBUEFMgNDchcBN8As0UwzUTb3q13X1LTcl3LJLdN7DXCpzOt29aelN2MAcc0yRTIRUcBQERcWh21mfn8gIyM7DAzL5/16zauZc57zPN/DHIk533m+j6BQKBQgIiIiIiIiIiIiIiLSIC1NB0BERERERERERERERMSEBRERERERERERERERaRwTFkREREREREREREREpHFMWBARERERERERERERkcYxYUFERERERERERERERBrHhAUREREREREREREREWkcExZERERERERERERERKRxTFgQEREREREREREREZHGMWFBREREREREREREREQax4QFERERERERERERERFpHBMWRERERERERERERESkcUxYEBERERERERERERGRxjFhQUREREREREREREREGseEBRERERERERERERERaRwTFkREREREREREREREpHFMWBARERERERERERERkcYxYUFERERERERERERERBrHhAUREREREREREREREWkcExZERERERERERERERKRxTFgQEREREREREREREZHGNcqExb1797Bx40YMGjQItra2EIlEsLKywnvvvYcLFy6UekxGRgZmzZqFtm3bQk9PD3Z2dpg7dy6ysrKqPP7Jkyfh4eGBZs2awdjYGF5eXjh9+nRNT4uIiIiIiDSoqp8zlixZAkEQynzcuXOn1HH4eYKIiIiImiodTQdQG7Zs2YLPP/8c7du3x6BBg9CiRQvEx8fjyJEjOHLkCL777juMGjVK2T47OxseHh64cuUKBg0ahNGjR+P333/HunXrEBkZiaioKOjr61dq7L1792Ls2LFo0aIFAgMDAQA//PADBg4ciP3792PEiBG1ccpERERERFTLqvo5o0hAQADs7OxKbDcxMSmxjZ8niIiIiKgpExQKhULTQajboUOHYG5uDg8PD5Xt0dHR6N+/P4yMjJCamgo9PT0AwOLFi7Fs2TLMmzcPa9asUbafP38+Pv/8c6xatQoLFiyocNwnT56gXbt20NHRwe+//442bdoAAFJSUuDq6goAuH37Npo1a6auUyUiIiIiojpS1c8ZS5YswdKlSxEREQFPT88K++fnCSIiIiJq6hplSajhw4eX+BABAO7u7vDy8sKTJ09w7do1AIBCocDOnTthZGSETz/9VKX9p59+CiMjI+zcubNS4/7nP//B06dPMX36dOWHCwBo06YNpk2bhkePHuHw4cM1ODMiIiIiItKUqnzOqA5+niAiIiKipq5RloQqj66uLgBAR6fw1OPj4/H333/D29sbYrFYpa1YLEbv3r1x8uRJJCcnw8bGpty+JRIJAGDQoEEl9nl7e2PJkiWIjIzEuHHjKh1vSkpKuftzcnJw48YNtGzZEi1atFCeFxERERFReQoKCpCWlgYAcHZ2rnQJVCrdq58ziouKisKFCxegpaUFBwcHDBgwAEZGRiXa8fMEERERETUUtfV5okn9NZqUlISff/4ZrVq1grOzM4DChAUAODg4lHqMg4MDTp48ifj4+AoTFuX1VbStqE1lVTQmEREREVFNXbx4EV27dtV0GA1WaZ8zilu8eLHKaxMTE2zatKlE4oGfJ4iIiIioIVLn54lGWRKqNPn5+Rg7dixyc3Px+eefQ1tbGwDw7NkzAEDz5s1LPc7Y2FilXXnK66sq/RARERERUcNQ1ucMAOjcuTNCQ0Nx+/ZtSKVSJCYmYsuWLRAEAYGBgTh69KhKX/w8QURERERNXZOYYSGXyxEYGIioqChMmDABY8eO1XRIlZacnFzh/l69egEA/ve//6Ft27Z1ERbVUG5uLi5cuAAA6N69u3JhRqq/+J41THzfGia+bw0P37OG6e7duxg4cCAAoEWLFhqOpmGq6HPGsGHDVF7b2dlh2rRp6NixIwYOHIhFixbh3XffrdUYq/J5IioqClZWVrUaDxERERE1Dvfv30ffvn0BqPfzRKNPWMjlcgQHB+O7776Dv78/tm/frrK/6NtLZX1TKSMjQ6VdeYr3ZW5uXu1+iiu+2F5F2rZtW2ZpK6pfpFIpEhISAADt27eHgYGBhiOiivA9a5j4vjVMfN8aHr5nDR/XLai6ij5nlKd///5o3749rl27hoyMDOXsCU1/nrC3t69SeyIiIiJquop/7lPn54lGXRJKLpcjKCgIu3btwujRoxEeHg4tLdVTrqgWbEVrXFS2r6r0Q0RERERE9VdlPmdUxMLCAgDw/Plz5TZ+niAiIiKipq7RJiyKPkTs3r0bo0aNwp49e1TqyRZxcHCAtbU1YmJikJ2drbIvOzsbMTExsLe3r9RidR4eHgCAU6dOldh38uRJlTZERERERNTwVPZzRnmys7Nx/fp1iMViZeIC4OcJIiIiIqJGmbAomp69e/duvP/++9i7d2+ZHyIEQcD48eORlZWF5cuXq+xbvnw5srKyMGHCBJXtz58/x40bN5CUlKSyfeTIkWjevDm2bNmClJQU5faUlBRs3boVFhYWJerYEhERERFRw1CVzxmZmZm4efNmie1SqRQTJkxAZmYmRo4cqTJ9np8niIiIiKipa5TFapctW4Zdu3bByMgIjo6OWLFiRYk2fn5+ePPNNwEAH3/8Mf773//i888/x++//44uXbrgt99+w6lTp9C1a1fMmDFD5diLFy/Cy8sLHh4ekEgkyu2mpqbYunUrxo4diy5dumDUqFEAgB9++AHp6en44Ycf0KxZs9o67TIpFAo8evQI2dnZyM/Pr/PxqSS5XK6sS5yUlFTlEgJU99T9nunq6iq/VSkIgjpCJCIiolpWlc8Z6enpeO2119C1a1d07NgRVlZWePDgAX7++WekpKTA2dkZa9euVTm2vn6eICIiIiKqK40yYXHnzh0AQFZWFlauXFlqGzs7O2XCQiwWIzIyEkuWLMHBgwcRERGBVq1aYfbs2Vi8eHGVFo709/eHhYUFVq1ahbCwMAiCADc3NyxatAgDBgyo6alVmUKhwIMHD/DkyZM6H5vKplAolNeVTCaDXC7XcERUEXW/ZwUFBZBKpZDJZGjZsiWTFkRERA1AVT5nmJmZYerUqbh48SJOnDiBJ0+ewMDAAB07dsRHH32EadOmlfo5o759niAiIiIiqkuCQqFQaDoIqr6UlBTl+ho3b94ssQhfWloaHj16pHytra3NG6P1REFBAQColAGg+k1d75lCoYBMJlO+trCwQIsWLWrUJ5VOKpUq64APGjSoSglo0hy+bw0P37OGKT4+Ho6OjgCA5ORktGnTRsMRkSYU/zzB64CIiIiIKqu2/o7kndJGrvhC4q1atYKJiYnmgiEluVyOjIwMAICxsTFLQjUA6n7Pnj59itTUVACF/06ZsCAiIiIiIiIioqaOd0kbuaI1K7S1tZmsIKpHTExMlIt0Fs3cICIiIiIiIiIiasqYsGgiWAaKqP4p+nfJynxEREREREREREQsCUVERERERERERGpiN/+4pkOgSriz5u06GYfXQ/1XV9cCwOuhIajL66EsnGFB9ZKnpydmzJih6TAapCNHjqBDhw7Q1tbGjBkzEB4eXmflwOzs7LBx48Y6Gasy0tPTYWlpiTt37tT52D169MDBgwfrfFwiIiIiIiIiIqKGigkLqpcOHTqE5cuX19l4UVFReOedd2BtbQ1BEHDkyJESbQIDAyEIgsrDx8dHpU3R9vPnz6tsz83Nhbm5OQRBgEQiAQAMHDgQM2fOVGm3fft2CIKA8PDwEmO7u7tX6lwmTZqEESNGIDk5udZ+hmUlQS5duoSJEyfWypjVsXLlSgwdOhR2dnYAgD/++AOjR4+GjY0NDAwM0LFjR2zatKnK/Vbmelm0aBHmz58PuVxew7MgIiIiIiIiIiJqGpiwoHrJzMwMzZo1q7PxsrOz0blzZ3z11VfltvPx8UFqaqry8f3335doY2Njg7CwMJVthw8fhpGRkcq2Pn36ICYmRmVbREQEbGxslEmNIhKJBP369avwPLKysvDw4UN4e3vD2tq6Tn+GANCiRQsYGhrW6Zhlef78Ob755huEhIQot12+fBmWlpbYu3cvrl+/joULF2LBggXYunVrlfquzPXi6+uLzMxM/Pjjj9U+ByIiIiIiIiIioqaECQuql14tCZWbm4s5c+agdevWEIvF6N69u8pN/fT0dIwePRqtW7eGoaEhnJ2dS00mlMXX1xcrVqzAsGHDym2np6cHKysr5cPU1LREm4CAAOzbtw9SqVS5LTQ0FAEBASrt3N3dER8fj/v37yu3RUZGYv78+SrnlpiYiLt378LLy6vc2CQSiTJB0a9fP5XZHK/6+uuv0b59e4hEIjg5OWHPnj0q+zds2ABnZ2eIxWLY2Nhg6tSpyMrKUo4TFBSEZ8+eKWeULFmyBEDJklCCIGDnzp0YNmwYDA0N4eDggKNHj6qMdfToUTg4OEBfXx9eXl7YtWsXBEHA06dPyz3fipw4cQJ6enro0aOHcltwcDA2bdoEDw8PtGvXDv7+/ggKCsKhQ4eq1HdlrhdtbW0MHjwY+/btq/Y5EBERERERERERNSVMWFCDMG3aNJw7dw779u3D1atX8f7778PHxwfx8fEAgJycHLi5ueH48eOIjY3FxIkTMXbsWFy8eFGtcUgkElhaWsLJyQlTpkxBenp6iTZubm6ws7NTrl+QlJSEqKgojB07VqVd9+7doauri4iICABAXFwcpFIpQkJCkJ6ejsTERACFsy709fXRs2fPcmPr1asX/vrrLwDAwYMHkZqail69epVod/jwYfzzn//E7NmzERsbi0mTJiEoKEgZBwBoaWlh8+bNuH79Onbt2oVffvkFH3/8sXKcjRs3wtjYWDnTZM6cOWXGtXTpUowcORJXr17F4MGDMWbMGDx+/BhAYTJmxIgR8PPzwx9//IFJkyZh4cKF5Z5nZUVHR8PNza3Cds+ePYOZmZlaxnxVt27dEB0dXSt9ExERERERERERNTY6mg6ANGdn9G3sjE6ssN0brY2xM6Cryrbxuy4h9l5GhceOd7fHePd21Y4RKLzhHxYWhqSkJFhbWwMA5syZg59++glhYWFYtWoVWrdurXLTfPr06Th58iT279+Pbt261Wj8Ij4+Phg+fDjs7e2RkJCATz75BL6+vjh37hy0tbVV2gYHByM0NBT+/v4IDw/H4MGD0aJFC5U2YrEYXbp0QWRkJMaMGQOJRII+ffpAT08PvXr1gkQigb29PSQSCXr27Ak9Pb1y4xOJRLC0tARQWFLLysqq1Hbr1q1DYGAgpk6dCgCYNWsWzp8/j3Xr1ilncRSf3WJnZ4cVK1Zg8uTJ2LZtG0QiEZo3bw5BEMoco7jAwECMHj0aALBq1Sps3rwZFy9ehI+PD3bs2AEnJyesXbsWAODk5ITY2FisXLmywn4rcvfuXeX1UpazZ8/ihx9+wPHjx2s8Xmmsra2RnJwMuVwOLS3mh4mIiIiIiIiIiMrDhEUTlplTgPsZORW2a2WiX2JbenZepY7NzCmoVmzFXbt2DTKZDI6OjirbixayBgCZTIZVq1Zh//79uHfvHvLy8pCbm6vW9RQ++OAD5XNnZ2e4uLigffv2kEgk6N+/v0pbf39/zJ8/H7dv30Z4eDg2b95cap99+vTBsWPHABTO3vD09AQAeHh4KEsvSSQSTJgwQW3n8eeff5ZYGLt3794qi0///PPPWL16NW7cuIGMjAwUFBQgJycHz58/r/LP1MXFRflcLBbD2NgYDx8+BAD89ddf6NpVNRlWUYJp8uTJ2Lt3r/J1UamqV0mlUujrl7x2i8TGxmLo0KFYvHgxBg0aVOF5VIeBgQHkcjlyc3NhYGBQK2MQERERERERERE1FkxYNGHN9HVgZVz2Dd0i5mJRqdsqc2wz/ZpfYllZWdDW1sbly5dLzGQoWsh67dq12LRpEzZu3Khce2HGjBnIy8ur8fhladeuHSwsLHDr1q0SCQtzc3MMGTIEISEhyMnJUS7A/Cp3d3esX78e9+7dg0QiUc4S8fDwwI4dO5CQkIDk5ORKLbitLnfu3MGQIUMwZcoUrFy5EmZmZjhz5gxCQkKQl5dX5YSFrq6uymtBECCXy6sd37Jly8otQVXEwsICT548KXVfXFwc+vfvj4kTJ2LRokXVjqUijx8/hlgsZrKCiIiIiIiIiIioEpiwaMLGu7erdrmmV0tE1SZXV1fIZDI8fPgQ7u7upbaJiYnB0KFD4e/vDwCQy+W4efMmXn/99VqLKyUlBenp6WjVqlWp+4ODgzF48GDMmzevRKKlSLdu3SASibBt2zblOhwA0LVrV6SlpSE0NBRisVhtZa0AoGPHjoiJiVFZBDwmJkb5s7p8+TLkcjnWr1+vLGO0f/9+lT5EIhFkMlmNY3FycsKJEydUtl26dKncYywtLZWlr8rj6uqqMhOjyPXr19GvXz8EBASopfRUeWJjY+Hq6lqrYxARERERERERETUWTFhQvefo6IgxY8Zg3LhxWL9+PVxdXZGWlobTp0/DxcUFb7/9NhwcHHDgwAGcPXsWpqam2LBhAx48eFDphEVWVhZu3bqlfJ2YmIgrV67AzMwMtra2yMrKwtKlS/Hee+/BysoKCQkJ+Pjjj9GhQwd4e3uX2qePjw/S0tJgbGxc5rgGBgbo0aMHtmzZgt69eysTGyKRSGX7q7MUamLu3LkYOXIkXF1dMWDAABw7dgyHDh3Czz//DADo0KED8vPzsWXLFrzzzjuIiYnB9u3bVfqws7NDVlYWTp8+jc6dO8PQ0LBa5bcmTZqEDRs2YN68eQgJCcGVK1cQHh4OoHAmRk14e3tjwYIFePLkCUxNTQEUJhD69esHb29vzJo1C/fv3wcAaGtrl1hjpDxZWVm4ffu28vWr10uR6OjoWis3RURERERERERE1NhwFVhqEMLCwjBu3DjMnj0bTk5O8PPzw6VLl5Q3hxctWoQuXbrA29sbnp6esLKygp+fX6X7//XXX+Hq6qr8NvysWbPg6uqKzz77DEDhDe2rV6/i3XffhaOjI0JCQuDm5obo6OgyF8MWBAEWFhYQiUqW1CrO09MTmZmZyvUrinh4eCAzM1O5ELa6+Pn5YdOmTVi3bh06deqEHTt2ICwsTDl+586dsWHDBnz++ed444038O2332L16tUqffTq1QuTJ0/GqFGj0KJFC3zxxRfVisXe3h4HDhzAoUOH4OLigq+//hoLFy4EgAoXGa+Is7MzunTpojI75MCBA0hLS8PevXvRqlUr5aP4Ohp37tyBIAiQSCRl9l3R9QIA9+7dw9mzZxEUFFSj8yAiIiIiIiIiImoqBIVCodB0EFR9KSkpsLGxAQDcvHkTDg4OKvvj4+NRUFAAHR2dEvtIc+RyOTIyMgAAxsbGytJLBKxcuRLbt29HcnJyjfs6fvw45s6di9jY2Er/jCMiIjB8+HDcvn1bOTMDqPp7Nm/ePDx58gT/+te/ymzDf5+1TyqV4tSpUwCAQYMGcT2RBoLvW8PD96xhio+Ph6OjIwAgOTkZbdq00XBEpAnFP0/wOiAidbCbf1zTIVAl3Fnzdp2Mw+uh/qurawHg9dAQVOV6qK2/I1kSiog0atu2bejatSvMzc0RExODtWvXYtq0aWrp++2330Z8fDzu3bun/AVakRMnTuCTTz5RSVZUh6WlJWbNmlWjPoiIiIiIiIiIiJoSJiyo0UtKSip3LYu4uDiVdQfqM19fX0RHR5e675NPPsEnn3xSxxHVXHx8PFasWIHHjx/D1tYWs2fPxoIFC9TW/4wZM6rUfu3atWoZd/bs2Wrph4iIiIiIiIiIqKlgwoIaPWtra1y5cqXc/Q3Fzp07IZVKS91nZmZWx9Gox5dffokvv/xS02EQERERERERERGRhjFhQY2ejo4OOnTooOkw1KJ169aaDoGIiIiIiIiIiIioVnClXyIiIiIiIiIiIiIi0jgmLIiIiIiIiIiIiIiISOOYsCAiIiIiIiIiIiIiIo1jwoKIiIiIiIiIiIiIiDSOCQsiIiIiIiIiIiIiItI4JiyoXvL09MSMGTM0HUaDdOTIEXTo0AHa2tqYMWMGwsPDYWJiUidj29nZYePGjXUyVmWkp6fD0tISd+7cqdNx8/LyYGdnh19//bVOxyUiIiIiIiIiImrImLCgeunQoUNYvnx5nY0XFRWFd955B9bW1hAEAUeOHCnRJjAwEIIgqDx8fHxU2hRtP3/+vMr23NxcmJubQxAESCQSAMDAgQMxc+ZMlXbbt2+HIAgIDw8vMba7u3ulzmXSpEkYMWIEkpOTa+1nWFYS5NKlS5g4cWKtjFkdK1euxNChQ2FnZwcA+OOPPzB69GjY2NjAwMAAHTt2xKZNm6rc79KlS0tcC6+99ppyv0gkwpw5czBv3jx1nQoREREREREREVGjx4QF1UtmZmZo1qxZnY2XnZ2Nzp0746uvviq3nY+PD1JTU5WP77//vkQbGxsbhIWFqWw7fPgwjIyMVLb16dMHMTExKtsiIiJgY2OjTGoUkUgk6NevX4XnkZWVhYcPH8Lb2xvW1tZ1+jMEgBYtWsDQ0LBOxyzL8+fP8c033yAkJES57fLly7C0tMTevXtx/fp1LFy4EAsWLMDWrVur3H+nTp1UroUzZ86o7B8zZgzOnDmD69ev1/hciIiIiIiIiIiImgImLKheerUkVG5uLubMmYPWrVtDLBaje/fuKjf109PTMXr0aLRu3RqGhoZwdnYuNZlQFl9fX6xYsQLDhg0rt52enh6srKyUD1NT0xJtAgICsG/fPkilUuW20NBQBAQEqLRzd3dHfHw87t+/r9wWGRmJ+fPnq5xbYmIi7t69Cy8vr3Jjk0gkygRFv379VGZzvOrrr79G+/btIRKJ4OTkhD179qjs37BhA5ydnSEWi2FjY4OpU6ciKytLOU5QUBCePXumnF2wZMkSACVLQgmCgJ07d2LYsGEwNDSEg4MDjh49qjLW0aNH4eDgAH19fXh5eWHXrl0QBAFPnz4t93wrcuLECejp6aFHjx7KbcHBwdi0aRM8PDzQrl07+Pv7IygoCIcOHapy/zo6OirXgoWFhcp+U1NT9O7dG/v27avReRARERERERERETUVTFhQgzBt2jScO3cO+/btw9WrV/H+++/Dx8cH8fHxAICcnBy4ubnh+PHjiI2NxcSJEzF27FhcvHhRrXFIJBJYWlrCyckJU6ZMQXp6eok2bm5usLOzw8GDBwEASUlJiIqKwtixY1Xade/eHbq6uoiIiAAAxMXFQSqVIiQkBOnp6UhMTARQOOtCX18fPXv2LDe2Xr164a+//gIAHDx4EKmpqejVq1eJdocPH8Y///lPzJ49G7GxsZg0aRKCgoKUcQCAlpYWNm/ejOvXr2PXrl345Zdf8PHHHyvH2bhxI4yNjZWzC+bMmVNmXEuXLsXIkSNx9epVDB48GGPGjMHjx48BFCZjRowYAT8/P/zxxx+YNGkSFi5cWO55VlZ0dDTc3NwqbPfs2TOYmZlVuf/4+HhYW1ujXbt2GDNmDJKSkkq06datG6Kjo6vcNxERERERERERUVOko+kASIPObgXOlV8CCQDQqjPw4SvfEv/uAyD1j4qP7fkPoNe06sX3QlJSEsLCwpCUlARra2sAwJw5c/DTTz8hLCwMq1atQuvWrVVumk+fPh0nT57E/v370a1btxqNX8THxwfDhw+Hvb09EhIS8Mknn8DX1xfnzp2Dtra2Stvg4GCEhobC398f4eHhGDx4MFq0aKHSRiwWo0uXLoiMjMSYMWMgkUjQp08f6OnpoVevXpBIJLC3t4dEIkHPnj2hp6dXbnwikQiWlpYACktqWVlZldpu3bp1CAwMxNSpUwEAs2bNwvnz57Fu3TrlLI7is1vs7OywYsUKTJ48Gdu2bYNIJELz5s0hCEKZYxQXGBiI0aNHAwBWrVqFzZs34+LFi/Dx8cGOHTvg5OSEtWvXAgCcnJwQGxuLlStXVthvRe7evau8Xspy9uxZ/PDDDzh+/HiV+u7WrRvCw8Ph5OSE1NRULF26FO7u7oiNjVUpw2VtbY27d+9WK34iIiIiIiIiIqKmhgmLpiw3E8j8u+J2zVuX3Pb8UeWOzc2selyvuHbtGmQyGRwdHVW7frGQNQDIZDKsWrUK+/fvx71795CXl4fc3Fy1rqfwwQcfKJ87OzvDxcUF7du3h0QiQf/+/VXa+vv7Y/78+bh9+zbCw8OxefPmUvvs06cPjh07BqBw9oanpycAwMPDQ1l6SSKRYMKECWo7jz///LPEwti9e/dWWXz6559/xurVq3Hjxg1kZGSgoKAAOTk5eP78eZV/pi4uLsrnYrEYxsbGePjwIQDgr7/+QteuXVXaV5Rgmjx5Mvbu3at8XVSq6lVSqRT6+vpl9hMbG4uhQ4di8eLFGDRoUIXnUZyvry+0tAonqLm4uKB79+5o27Yt9u/fr7JmhoGBAZ4/f16lvomIiIiIiIiIiJqqRlkSau/evZg0aRLeeust6OnpQRAEhIeHl9q2qAZ/eY/k5ORKjWtnZ1dmH0U3ousVvWZAM+uKH4YWJY81tKjcsXo1X/Q5KysL2trauHz5Mq5cuaJ8/Pnnn8qb7GvXrsWmTZswb948RERE4MqVK/D29kZeXl6Nxy9Lu3btYGFhgVu3bpXYZ25ujiFDhiAkJAQ5OTnw9fUttQ93d3fcvHkT9+7dg0QigYeHB4CXCYuEhAQkJydXasFtdblz5w6GDBkCFxcXHDx4EJcvX1YuRl6dn6eurq7Ka0EQIJfLqx3fsmXLVK6DslhYWODJkyel7ouLi0P//v0xceJELFq0qNqxFDExMYGjo2OJa+Hx48clZtYQERERERERERFR6RrlDItFixbh7t27sLCwQKtWrcotybJ48eJSt9+6dQvffvstXn/9ddjY2FR67ObNm6uU0yliZ2dX6T7qTK9p1S/X9GqJqFrk6uoKmUyGhw8fwt3dvdQ2MTExGDp0KPz9/QEAcrkcN2/exOuvv15rcaWkpCA9PR2tWrUqdX9wcDAGDx6MefPmlSgZVaRbt24QiUTYtm2bch0OAOjatSvS0tIQGhoKsVistrJWANCxY0fExMSoLAIeExOj/FldvnwZcrkc69evV84i2L9/v0ofIpEIMpmsxrE4OTnhxIkTKtsuXbpU7jGWlpbK0lflcXV1VZmJUeT69evo168fAgIC1FJ6CihMqiUkJJRYpyQ2Nhaurq5qGYOIiIiIiIiIiKixa5QJi507d8LBwQFt27bFmjVrsGDBgjLbLlmypNTt06dPBwCV8i6VYWJiUmafVD2Ojo4YM2YMxo0bh/Xr18PV1RVpaWk4ffo0XFxc8Pbbb8PBwQEHDhzA2bNnYWpqig0bNuDBgweVTlhkZWWpfDs+MTERV65cgZmZGWxtbZGVlYWlS5fivffeg5WVFRISEvDxxx+jQ4cO8Pb2LrVPHx8fpKWlwdjYuMxxDQwM0KNHD2zZsgW9e/dWJjZEIpHK9ldnKdTE3LlzMXLkSLi6umLAgAE4duwYDh06hJ9//hkA0KFDB+Tn52PLli145513EBMTg+3bt6v0YWdnh6ysLJw+fRqdO3eGoaFhtcpvTZo0CRs2bMC8efMQEhKCK1euKGdDCYJQo/P09vbGggUL8OTJE5iamgIoTCD069cP3t7emDVrFu7fvw8A0NbWrtJMiLlz5+Ldd99F27Zt8ffff2Px4sXQ1tZWrtVRJDo6GsuXL6/ReRARERERERERETUVjbIk1IABA9C2bdtqH5+Tk4Nvv/0WIpGoxDemSTPCwsIwbtw4zJ49G05OTvDz88OlS5dga2sLoHBWTZcuXeDt7Q1PT09YWVnBz8+v0v3/+uuvcHV1VX4bftasWXB1dcVnn30GoPCG9tWrV/Huu+/C0dERISEhcHNzQ3R0dJmLYQuCAAsLC4hEonLH9vT0RGZmZomyYR4eHsjMzFQuhK0ufn5+2LRpE9atW4dOnTphx44dCAsLU47fuXNnbNiwAZ9//jneeOMNfPvtt1i9erVKH7169cLkyZMxatQotGjRAl988UW1YrG3t8eBAwdw6NAhuLi44Ouvv8bChQsBoMJFxivi7OyMLl26qMwOOXDgANLS0rB37160atVK+Si+jsadO3cgCAIkEkmZfaekpGD06NFwcnLCyJEjYW5ujvPnz6skPc6dO4dnz55hxIgRNToPIiIiIiIiIiKipkJQKBQKTQdRm4pmWISFhSEwMLBSx3z33XcYM2YMRowYgf/85z+VHsvOzg65ublYvXo1/v77bxgbG6Nr167o3r17NaMvvDFantTUVGW5oGvXrqF9+/Yq+5OSkiCTyaCrq1tiH2mOXC5XLhZtZGSkLL1EwKpVq7Bjx45yS7lV1vHjxzFv3jxcvXq10j/jiIgIjBgxArdu3VLOzACq/p598MEH6Ny5c7kzvBISEpCfnw9tbW1l8o3UKycnB1FRUQCAvn37lrsQO9UffN8aHr5nDVNCQgKcnZ0BAMnJyWjTpo2GIyJNSElJUZbA5XVAROpgN/+4pkOgSriz5u06GYfXQ/1XV9cCwOuhIajK9VBbf0c2ypJQNfXNN98AAMaPH1/lY+/fv4+goCCVbV27dsX3339frYRBVdbPuHDhAhISElS2mZubw8DAAIIgICMjo8rjU+0rugneVO3cuRNdunSBmZkZzp8/j7Vr12LChAlquV7d3d0xduxY3Lhxo9K/NI8cOYKZM2dCW1u7zBgqes/y8vLg6OiI4ODgcs+joKAAUqkUUqkUN27cqFR8VH1FN1OpYeH71vDwPWs4Hj16pOkQiIiIiIiIVDBh8YrExERERETA1tYWAwcOrNKxQUFBcHd3xxtvvAEjIyPcvHkTGzZswJ49e9C/f39cu3YNzZo1q6XIqSzJycno2bNnmfvPnTtXpcSQJo0YMQLnz58vdd/MmTMxe/bsOo6o5m7fvo3169fjyZMnaNOmDaZNm4aZM2eqrf8pU6ZUqb061pwQiUSYM2dOjfshIiIiIiIiIiJqSpiweEVoaCgUCgWCgoKqXKZn8eLFKq/ffPNN7N69GwCwZ88e/Pvf/8asWbOq1GdycnK5+4uXhOrevXuZJaF0dHTKXfy5MXNycsJvv/1W5n47Ozvo6NTtP4XqloQKCwuDVCotdZ+ZmVmDfI+3bt2KrVu3ajqMCtVGGa+0tDQYGBjAyMgIbm5uNe6PSmKZmoaJ71vDw/esYXp1Zi4REREREZGmMWFRjFwuR3h4OLS0tBAcHKy2fidNmoQ9e/YgJiamygmLqtT+0tPTg4GBgco2LS0tyOVy5fOmSCQSwdHRUdNhlElLS6vS701DmQnS2FXlPauIIAjQ0tIq8W+X1E9fX58/5waI71vDw/es4dDT09N0CERERERERCqa5h3sMvz0009ISUnBwIED1boAroWFBQAgOztbbX0SERERERERERERETUmTFgUU5PFtstz4cIFAIWlh4iIiIiIiIiIiIiIqCQmLF5IS0vDsWPH0KJFC7z77rtltsvPz8eNGzdK1Py9ceMGnj9/XqL9jRs3MG/ePADAhx9+qN6giYiIiIiIiIiIiIgaiUa5hsXOnTtx5swZAMC1a9eU2yQSCQCgT58+JWZR7N69G/n5+Rg7dixEIlGZfd+7dw8dO3ZE27ZtcefOHeX2ffv2YcOGDejbty/atm0LsViMmzdv4sSJE8jPz8eCBQvQt29f9Z4oEREREREREREREVEj0SgTFmfOnMGuXbtUtsXExCAmJkb5+tWERU3LQXl5eeHPP//E77//jujoaDx//hwWFhYYPHgwpk6dikGDBlWrXyIiIiIiIiIiIiKipqBRloQKDw+HQqEo8xEeHl7imLi4OCgUCnTs2LHcvu3s7KBQKFRmVwCAh4cHfvjhB9y8eRPPnj1Dfn4+UlNTceTIESYrqsHT0xMzZszQdBgN0pEjR9ChQwdoa2tjxowZCA8Ph4mJSZ2MbWdnh40bN9bJWJWRnp4OS0vLEv9e60KPHj1w8ODBOh+XiIiIiIiIiIiooWqUCQtq+A4dOoTly5fX2XhRUVF45513YG1tDUEQcOTIkRJtAgMDIQiCysPHx0elTdH28+fPq2zPzc2Fubk5BEFQliYbOHAgZs6cqdJu+/btEAShRFItMDAQ7u7ulTqXSZMmYcSIEUhOTq61n2FZSZBLly5h4sSJtTJmdaxcuRJDhw4tdcH79PR0tGnTBoIg4OnTp1XqtzLXy6JFizB//nzI5fLqBU9ERERERERERNTEMGFB9ZKZmRmaNWtWZ+NlZ2ejc+fO+Oqrr8pt5+Pjg9TUVOXj+++/L9HGxsYGYWFhKtsOHz4MIyMjlW19+vRRKVMGABEREbCxsVEmNYpIJBL069evwvPIysrCw4cP4e3tDWtr6zr9GQJAixYtYGhoWKdjluX58+f45ptvEBISUur+kJAQuLi4VKvvylwvvr6+yMzMxI8//litMYiIiIiIiIiIiJoaJiyoXnq1JFRubi7mzJmD1q1bQywWo3v37io39dPT0zF69Gi0bt0ahoaGcHZ2LjWZUBZfX1+sWLECw4YNK7ednp4erKyslA9TU9MSbQICArBv3z5IpVLlttDQUAQEBKi0c3d3R3x8PO7fv6/cFhkZifnz56ucW2JiIu7evQsvL69yY5NIJMoERb9+/VRmc7zq66+/Rvv27SESieDk5IQ9e/ao7N+wYQOcnZ0hFothY2ODqVOnIisrSzlOUFAQnj17ppxRsmTJEgAlS0IJgoCdO3di2LBhMDQ0hIODA44ePaoy1tGjR+Hg4AB9fX14eXlh165d1Zr18KoTJ05AT08PPXr0KPX8nz59ijlz5lSr78pcL9ra2hg8eDD27dtXrTGIiIiIiIiIiIiaGiYsqEGYNm0azp07h3379uHq1at4//334ePjg/j4eABATk4O3NzccPz4ccTGxmLixIkYO3YsLl68qNY4JBIJLC0t4eTkhClTpiA9Pb1EGzc3N9jZ2SnXL0hKSkJUVBTGjh2r0q579+7Q1dVFREQEgMJ1VKRSKUJCQpCeno7ExEQAhbMu9PX10bNnz3Jj69WrF/766y8AwMGDB5GamopevXqVaHf48GH885//xOzZsxEbG4tJkyYhKChIGQcAaGlpYfPmzbh+/Tp27dqFX375BR9//LFynI0bN8LY2Fg506S8G/9Lly7FyJEjcfXqVQwePBhjxozB48ePARQmY0aMGAE/Pz/88ccfmDRpEhYuXFjueVZWdHQ03NzcSmyPi4vDsmXLsHv3bmhp1e6vwG7duiE6OrpWxyAiIiIiIiIiImosdDQdAGnOruu7sDtud4XtXjd7HVv6b1HZNv30dMQ9jqvw2HGvj0NAp4AK25UnKSkJYWFhSEpKgrW1NQBgzpw5+OmnnxAWFoZVq1ahdevWKjfNp0+fjpMnT2L//v3o1q1bjcYv4uPjg+HDh8Pe3h4JCQn45JNP4Ovri3PnzkFbW1ulbXBwMEJDQ+Hv74/w8HAMHjwYLVq0UGkjFovRpUsXREZGYsyYMZBIJOjTpw/09PTQq1cvSCQS2NvbQyKRoGfPntDT0ys3PpFIBEtLSwCFJbWsrKxKbbdu3ToEBgZi6tSpAIBZs2bh/PnzWLdunXIWR/HZLXZ2dlixYgUmT56Mbdu2QSQSoXnz5hAEocwxigsMDMTo0aMBAKtWrcLmzZtx8eJF+Pj4YMeOHXBycsLatWsBAE5OToiNjcXKlSsr7Lcid+/eVV4vRXJzczF69GisXbsWtra2uH37do3HKY+1tTWSk5Mhl8trPTlCRERERERERETU0DFh0YRl52fj4fOHFbazEpe8Kf0493Gljs3Oz65WbMVdu3YNMpkMjo6OKtuLFrIGAJlMhlWrVmH//v24d+8e8vLykJubq9b1FD744APlc2dnZ7i4uKB9+/aQSCTo37+/Slt/f3/Mnz8ft2/fRnh4ODZv3lxqn3369MGxY8cAFM7e8PT0BAB4eHgoSy9JJBJMmDBBbefx559/llgYu3fv3ti0aZPy9c8//4zVq1fjxo0byMjIQEFBAXJycvD8+fMq/0yLrxMhFothbGyMhw8Lr52//voLXbt2VWlfUYJp8uTJ2Lt3r/J1UamqV0mlUujr66tsW7BgATp27Ah/f/8qnUN1GRgYQC6XIzc3FwYGBnUyJhERERERERERUUPFhEUTJtYVw9LQssJ2ZnpmpW6rzLFiXXG1YisuKysL2trauHz5comZDEULWa9duxabNm3Cxo0blWsvzJgxA3l5eTUevyzt2rWDhYUFbt26VSJhYW5ujiFDhiAkJAQ5OTnKBZhf5e7ujvXr1+PevXuQSCTKWSIeHh7YsWMHEhISkJycXKkFt9Xlzp07GDJkCKZMmYKVK1fCzMwMZ86cQUhICPLy8qqcsNDV1VV5LQgC5HJ5teNbtmxZpdaesLCwwJMnT1S2/fLLL7h27RoOHDgAAFAoFMq2CxcuxNKlS6sdV2keP34MsVjMZAUREREREREREVElMGHRhAV0Cqh2uaZXS0TVJldXV8hkMjx8+BDu7u6ltomJicHQoUOV35yXy+W4efMmXn/99VqLKyUlBenp6WjVqlWp+4ODgzF48GDMmzevRKKlSLdu3SASibBt2zblOhwA0LVrV6SlpSE0NBRisVhtZa0AoGPHjoiJiVFZBDwmJkb5s7p8+TLkcjnWr1+vLGO0f/9+lT5EIhFkMlmNY3FycsKJEydUtl26dKncYywtLZWlr8rj6uqqMhMDKFzbo/hi6JcuXUJwcDCio6PRvn37KkReObGxsXB1dVV7v0RERERERERERI0RExZU7zk6OmLMmDEYN24c1q9fD1dXV6SlpeH06dNwcXHB22+/DQcHBxw4cABnz56FqakpNmzYgAcPHlQ6YZGVlYVbt24pXycmJuLKlSswMzODra0tsrKysHTpUrz33nuwsrJCQkICPv74Y3To0AHe3t6l9unj44O0tDQYGxuXOa6BgQF69OiBLVu2oHfv3srEhkgkUtn+6iyFmpg7dy5GjhwJV1dXDBgwAMeOHcOhQ4fw888/AwA6dOiA/Px8bNmyBe+88w5iYmKwfft2lT7s7OyQlZWF06dPo3PnzjA0NKxW+a1JkyZhw4YNmDdvHkJCQnDlyhWEh4cDKJyJURPe3t5YsGABnjx5AlNTUwAokZR49OgRgMIkjomJSaX7zsrKUln/4tXrpUh0dDQGDRpUg7MgIiIiIiIiIiJqOrgKLDUIYWFhGDduHGbPng0nJyf4+fnh0qVLypvDixYtQpcuXeDt7Q1PT09YWVnBz8+v0v3/+uuvcHV1VX4bftasWXB1dcVnn30GANDW1sbVq1fx7rvvwtHRESEhIXBzc0N0dHSZi2ELggALCwuIRKJyx/b09ERmZqZy/YoiHh4eyMzMVC6ErS5+fn7YtGkT1q1bh06dOmHHjh0ICwtTjt+5c2ds2LABn3/+Od544w18++23WL16tUofvXr1wuTJkzFq1Ci0aNECX3zxRbVisbe3x4EDB3Do0CG4uLjg66+/xsKFCwGgwkXGK+Ls7IwuXbqUmB1SkTt37kAQBEgkkjLbVHS9AMC9e/dw9uxZBAUFVSt+IiIiIiIiIiKipkZQFBVxpwYpJSUFNjY2AICbN2/CwcFBZX98fDwKCgqgo6NTYh9pjlwuR0ZGBgDA2NhYWXqJgJUrV2L79u1ITk6ucV/Hjx/H3LlzERsbW+mfcUREBIYPH47bt28rZ2YAVX/P5s2bhydPnuBf//pXmW3477P2SaVSnDp1CgAwaNAgrifSQPB9a3j4njVM8fHxcHR0BAAkJyejTZs2Go6INKH45wleB0SkDnbzj2s6BKqEO2verpNxeD3Uf3V1LQC8HhqCqlwPtfV3JEtCEZFGbdu2DV27doW5uTliYmKwdu1aTJs2TS19v/3224iPj8e9e/eUv0ArcuLECXzyyScqyYrqsLS0xKxZs2rUBxERERERERERUVPCr3VTo5eUlAQjI6MyH0lJSZoOsdJ8fX3LPI9Vq1ZpOrxqiY+Px9ChQ/H6669j+fLlmD17NpYsWaK2/mfMmFHpZAUArF27FnPnzq3xuLNnz0bLli1r3A8RERHVH/fu3cPGjRsxaNAg2NraQiQSwcrKCu+99x4uXLhQ6jEZGRmYNWsW2rZtCz09PdjZ2WHu3LnIysoqtb1cLseWLVvg7OwMAwMDtGjRAqNHj1ZZP4uIiIiIqLHiDAtq9KytrXHlypVy9zcUO3fuhFQqLXWfmZlZHUejHl9++SW+/PJLTYdBREREVKEtW7bg888/R/v27TFo0CC0aNEC8fHxOHLkCI4cOYLvvvsOo0aNUrbPzs6Gh4cHrly5gkGDBmH06NH4/fffsW7dOkRGRiIqKgr6+voqY0yaNAk7d+5Ep06d8NFHH+Hvv//G/v37cerUKZw/f55lJImIiIioUWPCgho9HR0ddOjQQdNhqEXr1q01HQIRERFRk9WtWzdIJBJ4eHiobI+Ojkb//v0xZcoU+Pn5QU9PDwDwxRdf4MqVK5g3bx7WrFmjbD9//nx8/vnn+PLLL7FgwQLl9oiICOzcuRN9+/bF//73P4hEIgDAhx9+iMGDB2PatGk4efJkHZwpEREREZFmsCQUERERERFRJQwfPrxEsgIA3N3d4eXlhSdPnuDatWsAAIVCgZ07d8LIyAiffvqpSvtPP/0URkZG2Llzp8r2f//73wCA5cuXK5MVQGFZUE9PT5w6dapBlTMlIiIiIqoqJiyIiIiIiIhqSFdXF0Dh7F6gcJ2uv//+G71794ZYLFZpKxaL0bt3b9y+fRvJycnK7RKJRLnvVd7e3gCAyMjI2joFIiIiIiKNY0koIiIiIiKiGkhKSsLPP/+MVq1awdnZGUBhwgJAmWtOODg44OTJk4iPj4eNjQ2ys7ORmpqKN954A9ra2qW2L95vZaWkpJS7PzU1VflcKpWWuV4aERE1Lvx9T0V4LVBxVbkeauvaYcKCiIiIiIiomvLz8zF27Fjk5ubi888/VyYbnj17BgBo3rx5qccZGxurtKtq+8qysbGpdNuoqChYWFhUqX8iopJ4q6khOHXqVB2NxOuhvqu7awHg9VD/VeV6ePToUa3EwJJQRERERERE1SCXyxEYGIioqChMmDABY8eO1XRIREREREQNGtNaVC95enrizTffxMaNGzUdSoNz5MgRzJkzB4mJiZg+fTrefPNNzJgxA0+fPq31se3s7DBjxgzMmDGj1seqjPT0dHTs2BEXL16EnZ1dnY2bl5cHR0dHHDhwAG+99VadjUtERER1Ry6XIzg4GN999x38/f2xfft2lf1FMyXKmhGRkZGh0q6q7Sur+BoZpUlNTUW3bt0AAH379kWbNm2q1D8RUQnnftF0BFQJgwYNqpuBeD3Ue3V2LQC8HhqAqlwPFZUerS4mLKheOnTokHLhwroQFRWFtWvX4vLly0hNTcXhw4fh5+en0iYwMBC7du1S2ebt7Y2ffvpJ+VoQBADAuXPn0KNHD+X23NxcWFtb4/Hjx4iIiEDfvn0xcOBAvPHGG/jmm2+U7bZv344pU6YgLCwMgYGBKmMnJCQgOjq6wnOZNGkSgoKC8NFHH6FZs2Y4ePBgVX4UlRIeHl5qEuTSpUslFpXUpJUrV2Lo0KGlJivS09PRuXNn3Lt3D0+ePIGJiUml+126dCmWLVumss3JyQk3btwAAIhEIsyZMwfz5s3D6dOna3IKREREVA/J5XIEBQVh9+7dGD16NMLDw6GlpTp5vaI1J15d40IsFqNVq1ZITEyETCYrsY5FRWtilKUqCQgDAwMYGBhUqX8iImqY+PueivBaoOKqcj3U1rXDhAXVS2ZmZnU6XnZ2Njp37ozg4GAMHz68zHY+Pj4ICwtTvtbT0yvRxsbGBmFhYSoJi8OHD8PIyAiPHz9WbuvTpw+OHz+ucmxERARsbGwgkUhUEhYSiQQBAQEVnkdWVhYePnwIb29vWFtbV9he3Vq0aFHnY5bl+fPn+Oabb3Dy5MlS94eEhMDFxQX37t2rVv+dOnXCzz//rHyto6P663TMmDGYPXs2rl+/jk6dOlVrDCIiIqp/iicrRo0ahT179pS5SLa1tTViYmKQnZ2t8qWO7OxsxMTEwN7eXmWNCQ8PD+zbtw8xMTHo27evSn9Ff9O8up2ovrCbf7ziRqRRd9a8rekQiIiIKsQ1LKhe8vT0VCkrlJubizlz5qB169YQi8Xo3r07JBKJcn96ejpGjx6N1q1bw9DQEM7Ozvj+++8rPZ6vry9WrFiBYcOGldtOT08PVlZWyoepqWmJNgEBAdi3bx+kUqlyW2hoaImEg7u7O+Lj43H//n3ltsjISMyfP1/l3BITE3H37l14eXmVG5tEIkGzZs0AAP369YMgCCr9FPf111+jffv2EIlEcHJywp49e1T2b9iwAc7OzhCLxbCxscHUqVORlZWlHCcoKAjPnj2DIAgQBAFLliwBUFgSqngZL0EQsHPnTgwbNgyGhoZwcHDA0aNHVcY6evQoHBwcoK+vDy8vL+zatQuCINS4hNWJEyegp6enkjgqfv5Pnz7FnDlzqt2/jo6OyrXw6gKVpqam6N27N/bt21ftMYiIiKh+KSoDtXv3brz//vvYu3dvqckKoPDvoPHjxyMrKwvLly9X2bd8+XJkZWVhwoQJKtsnTpwIAPj000+Rl5en3P7jjz9CIpFg0KBBaNu2rZrPioiIiIio/mDCghqEadOm4dy5c9i3bx+uXr2K999/Hz4+Psqp8Tk5OXBzc8Px48cRGxuLiRMnYuzYsbh48aJa45BIJLC0tISTkxOmTJmC9PT0Em3c3NxgZ2enLMWUlJSEqKioEoswdu/eHbq6uoiIiAAAxMXFQSqVIiQkBOnp6UhMTARQOOtCX18fPXv2LDe2Xr164a+//gIAHDx4EKmpqejVq1eJdocPH8Y///lPzJ49G7GxscoSUkVxAICWlhY2b96M69evY9euXfjll1/w8ccfK8fZuHEjjI2NkZqaitTU1HJv/C9duhQjR47E1atXMXjwYIwZM0Y50yQxMREjRoyAn58f/vjjD0yaNAkLFy4s9zwrKzo6Gm5ubiW2x8XFYdmyZdi9e3eJ0g1VER8fD2tra7Rr1w5jxoxBUlJSiTbdunWrVBkvIiIiahiWLVuGXbt2wcjICI6OjlixYgWWLFmi8rhy5Yqy/ccff4zOnTvj888/h7e3NxYsWABvb298/vnn6Nq1a4l1v7y8vDB+/HhERUWhS5cumDdvHsaNGwc/Pz+YmZlhy5YtdXvCRERERER1jCWhmrD0sHA8Dg+vsJ3+66/D5uttKtuSp0xFTlxchceaBQbCPCiwmhEWSkpKQlhYGJKSkpRljubMmYOffvoJYWFhWLVqFVq3bq1y03z69Ok4efIk9u/fr1xEsKZ8fHwwfPhw2NvbIyEhAZ988gl8fX1x7ty5Et+sCw4ORmhoKPz9/REeHo7BgweXKJckFovRpUsXREZGYsyYMZBIJOjTpw/09PTQq1cvSCQS2NvbQyKRoGfPnqWWnypOJBLB0tISQGFJLSsrq1LbrVu3DoGBgZg6dSoAYNasWTh//jzWrVunnMVR/MOznZ0dVqxYgcmTJ2Pbtm0QiURo3rw5BEEoc4ziAgMDMXr0aADAqlWrsHnzZly8eBE+Pj7YsWMHnJycsHbtWgCF60DExsZi5cqVFfZbkbt375Yoi5Wbm4vRo0dj7dq1sLW1xe3bt6vVd7du3RAeHg4nJyekpqZi6dKlcHd3R2xsrHKWCwBYW1vj7t27NToPIiIiKt2DBw9w+vRp/Pbbb3jw4AGePHkCU1NTtGzZEm5ubujXrx9atmyp1jHv3LkDoLAMZ1l/r9jZ2eHNN98EUPj3XmRkJJYsWYKDBw8iIiICrVq1wuzZs7F48eJS6/7u2LEDzs7O+Ne//oVNmzbByMgIw4YNw8qVK9G+fXu1ng8RERERUX3DhEUTJs/KQsGDBxW2k5VyU1r2+HGljpW/KCNUE9euXYNMJoOjo6PK9tzcXJibmxfGI5Nh1apV2L9/P+7du4e8vDzk5ubC0NCwxuMX+eCDD5TPnZ2d4eLigvbt20MikaB///4qbf39/TF//nzcvn0b4eHh2Lx5c6l99unTB8eOHQNQOHvD09MTQGH94qLSSxKJpES5gJr4888/leUGivTu3RubNm1Svv7555+xevVq3LhxAxkZGSgoKEBOTg6eP39e5Z+pi4uL8rlYLIaxsTEePnwIAPjrr7/QtWtXlfYVJZgmT56MvXv3Kl9nlXGNSaVS6Ovrq2xbsGABOnbsCH9//yqdw6t8fX2VszNcXFzQvXt3tG3bFvv370dISIiynYGBAZ4/f16jsYiIiOil/Px8/PDDD/jqq6+UM2kVCkWJdoIgACic0fqPf/wDI0eOhK6ubo3HDw8PR3glvvBTXPPmzfHll1/iyy+/rFR7LS0tfPTRR/joo4+qESERERERUcPGhEUTpmVkBJ1KfOtMu5QFsLXNzCp1rJaRUbViKy4rKwva2tq4fPlyiZkMRi/6X7t2LTZt2oSNGzcq116YMWOGSu1fdWvXrh0sLCxw69atEgkLc3NzDBkyBCEhIcjJyYGvry8yMzNL9OHu7o7169fj3r17kEgkylkiHh4e2LFjBxISEpCcnIx+/frV2nm86s6dOxgyZAimTJmClStXwszMDGfOnEFISAjy8vKqnLB49eaAIAiQy+XVjm/ZsmWVWnvCwsICT548Udn2yy+/4Nq1azhw4ACAlzc4LCwssHDhQixdurRaMZmYmMDR0RG3bt1S2f748eN6tRA5ERFRQ7Znzx4sWLAAqampUCgUaNGiBXr27IlOnTrB3NwcxsbGePbsGdLT0xEbG4tz587h/PnzuHDhAubPn4/Vq1fX+EsLRERERERUu5iwaMLMg6pfrunVElG1ydXVFTKZDA8fPoS7u3upbWJiYjB06FDlh1C5XI6bN2/i9ddfr7W4UlJSkJ6ejlatWpW6Pzg4GIMHD8a8efPKXIyxW7duEIlE2LZtm3IdDgDo2rUr0tLSEBoaCrFYrLayVgDQsWNHxMTEqCwCHhMTo/xZXb58GXK5HOvXr1fOIti/f79KHyKRCDKZrMaxODk54cSJEyrbLl26VO4xlpaWytJX5XF1dVWZiQEUru1RfDH0S5cuITg4GNHR0TUqsZCVlYWEhIQS65TExsbC1dW12v0SERFRoZ49e+LixYuwsLDARx99hMDAQHTu3LnC465cuYKwsDB8//33CAgIwLZt23D27Nk6iJiIiIiIiKqDi25Tvefo6IgxY8Zg3LhxOHToEBITE3Hx4kWsXr0ax48fBwA4ODjgf//7H86ePYs///wTkyZNwoNKlKwqkpWVhStXrigXSUxMTMSVK1eUCylnZWVh7ty5OH/+PO7cuYPTp09j6NCh6NChA7y9vUvt08fHB2lpaVi2bFmZ4xoYGKBHjx7YsmULevfurUxsiEQile3qKGFQZO7cuQgPD8fXX3+N+Ph4bNiwAYcOHVLOWujQoQPy8/OxZcsW3L59G3v27MH27dtV+rCzs0NWVhZOnz6NR48eVbvs0aRJk3Djxg3MmzcPN2/exP79+5VlFopKOVSXt7c3rl+/rjLLon379njjjTeUD3t7ewCFSZzKJEGKzJ07F5GRkbhz5w7Onj2LYcOGQVtbW7lWR5Ho6GgMGjSoRudBREREQHx8PL744gskJSXhyy+/rFSyAgDefPNNbNq0CcnJyVizZg1u3rxZy5ESEREREVFNMGFBDUJYWBjGjRuH2bNnw8nJCX5+frh06RJsbW0BAIsWLUKXLl3g7e0NT09PWFlZwc/Pr9L9//rrr3B1dVV+G37WrFlwdXXFZ599BgDQ1tbG1atX8e6778LR0REhISFwc3NDdHR0mYthC4IACwsLiESicsf29PREZmamcv2KIh4eHsjMzFQuhK0ufn5+2LRpE9atW4dOnTphx44dCAsLU47fuXNnbNiwAZ9//jneeOMNfPvtt1i9erVKH7169cLkyZMxatQotGjRAl988UW1YrG3t8eBAwdw6NAhuLi44Ouvv8bChQsBoMJFxivi7OyMLl26lJgdUpE7d+5AEARIJJIy26SkpGD06NFwcnLCyJEjYW5ujvPnz6uUfzp37hyePXuGESNGVPcUiIiI6IXbt29j9uzZ1f77QE9PD3PnzsXt27fVHBkREREREamToChtlboGbu/evYiOjsbly5dx7do15OXlISwsDIGBgSXaLlmypNy69YmJibCzs6v02Ddv3sSiRYvwyy+/IDs7G46Ojpg8eTImT55c42+MlyYlJQU2NjbKsR0cHFT2x8fHo6CgADo6OiX2kebI5XJkZGQAAIyNjZWllwhYuXIltm/fjuTk5Br3dfz4ccydOxexsbGV/hlHRERg+PDhuH37NkxNTZXbq/qejRo1Cp07d8Ynn3xSZhv++6x9UqkUp06dAgAMGjQIBgYGGo6IKoPvW8PD96xhio+Ph6OjIwAgOTkZbdq00XBEpAnFP0/wOqCasJt/XNMhUAXurHm7TsbhtdAw8HqgInV1LQC8HhqCqlwPtfV3ZKNcw2LRokW4e/cuLCws0KpVK9y9e7fCYwICAkpNTJiYmFR63Li4OPTq1QtSqRQjR46EtbU1jh8/jqlTpyIuLg5btmypwlkQNQ3btm1D165dYW5ujpiYGKxduxbTpk1TS99vv/024uPjce/ePeUv0IqcOHECn3zyiUqyoqry8vLg7OyMmTNnVrsPIiIiIiIiIiKipqZRJix27twJBwcHtG3bFmvWrMGCBQsqPCYwMLBESZ6qmjJlCp49e4YTJ07A19cXALB8+XIMGDAAW7duxYcffoiePXvWaAyquqSkpHIX346Li1OWlqrvfH19ER0dXeq+Tz75pNxv89dX8fHxWLFiBR4/fgxbW1vMnj27Uv9mK2vGjBlVar927doajykSibBo0aIa90NEREQVk8lkSE9PR05OTpltGsrfekRERERETV2jTFgMGDCgzse8efMmoqKi4OXlpUxWAIU3LpcvXw5PT0/8+9//ZsJCA6ytrZWLaZe1v6HYuXMnpFJpqfvMzMzqOBr1+PLLL/Hll19qOgwiIiJqYM6ePYulS5ciKioKeXl5ZbYTBAEFBQV1GBkREREREVVXo0xYVEdUVBQuXLgALS0tODg4YMCAATAyMqr08UUL9A4aNKjEvj59+kAsFiMyMrLKcaWkpJS7PzU1Vfk8Nze3xM1suVyOomVK5HJ5lcdvDLS0tNCuXbty29T1z6b4eFUZu1WrVpXul9Sruu9ZRRQKBfLyCnAx8jYUcgUsm+nBXPxyofZ8mRy30rIr1Ze9hSH0dbSVr59K85D6LLfC43S0BDhYqv6+u/dUioycim/uNDfQgXVz1Vr1Nx9mQSaveHmk1ib6MNbXVb6W5stwJ/15hccBgIOlGDrF1hFJy8rFo6ySN6sKCvLx7O/C/9X9duYujAz0YW9uqNLmTvpzSPNlFY5pIRahRbOXi73KFQr89SCrUvG2NTOEoejle5ORk497T8v+JnARLUGAU0vV9yY1IwdPn+dXeGwzfR20MVF9b26lZSFfVvF7Y2WsB1PDl9dhboEMtx9V7r3p0MIQutovz/Xx8zw8yKj4OhTpaKG9hRhAYVk1o2c6SM8pfN90dHTLPdZUrAurZvoq2/68n1mpeNuYGqCZ3ss/h7JzC5D0pPTE8Ktea2mksj7Vg8wcPM6u+L0Ri7Rha6Z6HSamZyMnv+LfLfX1d0TRvzVtA3m533Kn+iU3t+L3v7765Zdf4Ovri/z8wn9zZmZmaNasmYajIiIiIiKimmLC4oXFixervDYxMcGmTZswbty4Sh0fHx8PAKUunKutrQ17e3vExcUpF9itrMrW3QeACxcuICEhQWWbubk5DAwMIAiCcsFgql+ysip3w5PqD3W9ZwUFBXieLYXwoADWZ17ebH/1X2rrSvaX9+JRRKsKx746ZrMXj+oca1XJ40o7trLxvnrrXK+cY9vCuPDJ3bRSx6zK3KTqxltQg2NfPU784lGdYy0reVxpx1Y2XumLRxGdKhxbfEynovftdlqVj0UVxlTU4NhXUyIGVTj21THNK3lcacfWl98RRf/WjqVdRHNHJi0agkePHmk6hGpbtGgR8vPzMWPGDCxatKjBzjQlIiIiIiJVWhU3adw6d+6M0NBQ3L59G1KpFImJidiyZQsEQUBgYCCOHj1aqX6ePXsGAGjevHmp+42NjSGXy5GZWblvfBJR46dQANr5WhBBqLgxEVEDYfms/BkxROpw5coVvPnmm9iwYQOTFUREREREjUiTn2ExbNgwldd2dnaYNm0aOnbsiIEDB2LRokV49913NRQdkJycXO7+1NRUdOvWDQDQvXt3tG/fXmV/UlISZDIZdHR0YGxsXGtxUtXI5XLlt/SNjIygpdXkc4f1nrrfM7lcAUGeqvwl/FBLgQet9NHG1ACtmr8sbZMvk+NK8rNK9dnJ2lil7NCjrFwkVqKMj662Ft60UU22JqRl43F22fXAi1gY6cHeQrW0zW9JTytVEqpdC7FKaZvs3ALEpVYuqetq21ylJNTfT6WllliSyxXIyCz8brhxM2M0M9DF661Uvxf+Z2omsnIrLn9lbaKP1sVKLMkVCly++7RS8Xa0agYj/Zf/y33yPA+3HlZcxkcQBLzV1kRl253050jLrLiMi4mhbokyPn+kPENeQcVlh9qaG8KyWPmrnHwZrt2r3Cw9lzbG0CtWduhBRg6SHldcYklfVxvOrQv/PyUrKEBycjLuPRegY2AMLa3yk3otjfVKlFi6dOdJpeJ1aGkEE4OXN9ifSfNxs5Klvt5qa6JSEir5yXPcr0SJJWMD3RKlvmL/zoA0r+LSZPX1d4RcJkfn+4WlefS1dOFRSolMqn9enZnbkBgZGeG1117TdBhERERERKRmTT5hUZb+/fujffv2uHbtGjIyMiq82V80s6JopsWrMjIyIAhClWvrtmnTptJt9fT0YGCgWq9cS0tLWW+fN8XrJy0tLb43DUxN3zOFQoHsR8+h9eKefgEUMAl4HV2cLEptX/7KJWWzAFDdWzmlR1I51b1NaQGgbQ2OdSllu1QqxalTpwAA/Qb1KfE7EgDcqzkmAPhW8zgLACULCFb+2OrqX4NjK/9/I1UWADpV8RipVIp7p24CKPt9q0hN3pv2FbYq+9jq8qzBsfXhd0R2djbSll+GDgToKhTVes+o7unp6VXcqJ7q0aMHbt68qekwiIiIiIhIzXiXtBwWFoUfx58/r/jbh0VrVxStZVGcTCZDYmIi7O3tq7R+BRE1ThmPpDAoeDkDQd7SEO3KSFYQETUEWlpaKJpbolPxJB6iGlu4cCGuXbuG7777TtOhEBERERGRGvHueRmys7Nx/fp1iMViZeKiPB4eHgCAU6dOYf78+Sr7zpw5g+zsbGUb0ixBEHD48GH4+flpOhRqgjKfSGGQ+7LsS4GeNoyN9cs5goiogdBSAHIB5nr885JqX/fu3fHDDz9g/PjxOHbsGHx9fWFra1vmDMi+ffvWcYRERERERFQdTXqGRWZmZqlTyaVSKSZMmIDMzEyMHDmyxKyIGzdu4MaNGyrbnJyc0LdvX0RERODHH39Ubs/Ly8Onn34KABg/fnwtnAXVJjs7OwiCoPJYs2aNcr9EIoEgCDA1NUVOjmr9/EuXLimPAYCsrCzo6upi3759Ku1Gjx4NQRBw586dEmMXXTvUOMhyCiDKfrlWglxLgL4hF6closZBR7dw5pgByl9zhEhdZDIZDA0NsX//fgQFBaF///7w8vIq8ejXr5+mQyUiIiIiokpqlF+B27lzJ86cOQMAuHbtmnKbRCIBAPTp0wfjx49Heno6XnvtNXTt2hUdO3aElZUVHjx4gJ9//hkpKSlwdnbG2rVrS/TfsWNHAIV16Ivbtm0bevfuDT8/P4waNQqtWrXC8ePHcf36dUybNg29evWqxbOm/Px86Oqq/+bvsmXLMGHCBOXr0tYhadasGQ4fPozRo0crt33zzTewtbVFUlISgMLFId966y1IJBKMHDlS2S4yMhI2NjaQSCQIDAwEACQmJuLu3bv8gN2IyPNlkD3OUd7Gk+oK0BFpo6Cg4sWeiYgaAvmLhXkU+awJRbXv6NGjGDVqFORyOczMzGBvbw8jI6OKDyQiIiIionqtUSYszpw5g127dqlsi4mJQUxMjPL1+PHjYWZmhqlTp+LixYs4ceIEnjx5AgMDA3Ts2BEfffQRpk2bVqVFIzt16oQLFy5g0aJFOH78OLKzs+Ho6IivvvoKU6ZMUdv5NRWenp5wcXGBvr4+du7cCZFIhMmTJ2PJkiUACks7bdu2DT/++CNOnz6NuXPnYsmSJfjvf/+LpUuXIi4uDtbW1ggICMDChQurvX5Is2bNYGVlVW6bgIAAhIaGKhMWUqkU+/btw0cffYTly5cr23l5eeHQoUPK13/99RdycnLwz3/+UyVhIZFIoKenh549e1YrZqpfFDI5Ch7lAPLCm3mCvg6amenjYYaGAyMiUiO59osn+XIoFArlDEOi2rBixQooFAps3rwZU6ZMgba2dsUHERERERFRvdcoExbh4eEIDw+vsJ2xsTG2bt1a5f5fnVlRnJOTE/7zn/9UuU8q3a5duzBr1ixcuHAB586dQ2BgIHr37o2BAwcCAJYsWYI1a9Zg48aN0NHRQXR0NMaNG4fNmzfD3d0dCQkJmDhxIgBg8eLF1YphzZo1WL58OWxtbfHhhx9i5syZJZIfY8eOxdq1a5GUlARbW1scPHgQdnZ26NKli0o7Ly8vrF69GqmpqRCLxYiOjkbv3r3Rr18/7NixQ9kuIiICPXv2hL4+1zZo6GQyOWSPpICs8BvHgq42dMz0IWjxRh4RNS4Fwsu/j2R5cujo8QYy1Z64uDj07NkT06ZN03QoRERERESkRo0yYUEV27/qEp5n5NXpmIbGIoz8pGuVjnFxcVEmGhwcHLB161acPn1ambD48MMPERQUpGwfHByM+fPnIyAgAADQrl07LF++HB9//HG1EhYfffQRunTpAjMzM5w9exYLFixAamoqNmzYoNLO0tISvr6+CA8Px2effYbQ0FAEBweX6K93794QiUSQSCR4++23ERMTAw8PD7i5ueHRo0dITEyEvb09IiMjERISUuV4qX6RyxXIfvAc+i9mVkBbCzoWTFYQUeOUJAWcXzzPzMqFqZ6hRuOhxk0sFqNt27aaDoOIiIiIiNSMCYsm6nlGHrKf5mo6jAq5uLiovG7VqhUePnyofP3WW2+p7P/jjz8QExODlStXKrfJZDLk5OTg+fPnMDSs2s2TWbNmqcQiEokwadIkrF69Gnp6eiptg4OD8c9//hP+/v44d+4c/vOf/yA6OlqljaGhIbp27YrIyEhlwmL+/PnQ0dFBr169IJFIoFAokJSUBC8vryrFSvWLQqFA5sNsGLxIVsgBiMz1IWhraTYwIqJakl9shoX0eT5MzTUYDDV6np6e+P333zUdBhERERERqRkTFk2UobGoQYz56iLagiBALn+5mKdYLFbZn5WVhaVLl2L48OEl+lJHeaXu3bujoKAAd+7cgZOTk8o+X19fTJw4ESEhIXjnnXdgbl76nRovLy/88MMP+PPPP5GTk6MsG+Xh4YGIiAjI5XIYGhqie/fuNY6XNCczXQqDghcL0AKQNRdBS8TyKETUeMmK5WNznudrLhBqEpYvXw43NzesWbMG8+fP13Q4RERERESkJkxYNFFVLc3UUHTp0gV//fUXOnToUCv9X7lyBVpaWrC0tCyxT0dHB+PGjcMXX3yBH3/8scw+vLy8sGLFChw4cADdu3dXLhLZt29f/Otf/4JCoVCWjqKGqSBfBr0cmfJ1nlgHzZrplXMEEVHDV6D1coZFrrRAg5FQU3D+/HkEBwdj4cKFOHr0KHx8fGBrawstrdJnMo4bN66OIyQiIiIioupgwoIalc8++wxDhgyBra0tRowYAS0tLfzxxx+IjY3FihUrqtTXuXPncOHCBXh5eaFZs2Y4d+4cZs6cCX9/f5iampZ6zPLlyzF37twyZ1cAQK9evaCnp4d///vfKiWnunXrhocPH+K///0vFixYUKVYqX6RZuahKD0h1dVCc1MDjcZDRFQXZMUSFnk5TFhQ7QoMDIQgCFAoFDh//jwuXLhQbnsmLIiIiIiIGgYmLKhR8fb2xv/93/9h2bJl+Pzzz6Grq4vXXnsN48ePr3Jfenp62LdvH5YsWYLc3FzY29tj5syZKkmGV4lEIlhYWJTbr76+Pnr06IHIyEj06dNHZbwePXpAIpFw/YoGTpH7cnaFrli3nJZERI2HvNgX25mwoNo2btw4CIKg6TCIiIiIiEjNmLCgeksikZTYduTIEeVzhUJRYj9QmLTw9vYus9+yjntVly5dcP78+XLbeHp6ltufn59fqft/+eUXZGRklNgeERFRqdio/pLJ5BDJCt/zAgAGTFgQURMhLzbDIp8JC6pl4eHhmg6BiIiIiIhqQelFXomIqFqkWXnKX6z5OgK//UlETYZc+2XCoqDYTDMiIiIiIiKiymLCgpqsVatWwcjIqNSHr6+vpsOjBkpWbKFZbUNOYiOiJqTYDAtZLmdYEBERERERUdXxbho1WZMnT8bIkSNL3WdgwEWSqeoUCgX05YXP5QAMxSKNxkNEVJcU2i+fy/PkmguEGqXDhw9j2LBhNe7n0KFDGD58uBoiIiIiIiKi2sCEBTVZZmZmMDMz03QY1Igo8mQQ5IXfMNYx0IGWNiexEVHTYWUkBx4UPu9s1UyzwVCj895776F79+5YsmRJuWuVlUahUODEiRNYtmwZfv31V8hkLFlGRERERFRf8W4aEZGayKUvb4AI+swHE1HTIio2qUxXwfV7SL2+/PJL/PXXXxg8eDBsbW2xaNEiREREIDs7u9T22dnZ+OWXX7BgwQLY2tri3XffRXx8PL788ss6jpyIiIiIiKqCd9SIiNRAoVBAnvOyZruWvnY5rYmIGh95sTUsFPn8Bjup1z//+U+MGTMGS5Yswa5du7Bq1SqsXr0aWlpaaNOmDczNzWFsbIyMjAykp6cjJSUFcrkcCoUCYrEYU6dOxeLFi2FhYaHpUyEiIiIionIwYUFEpAZ5uTIIBYU12wU9bQgsB0VETYxKwoJrWFAtsLCwwNatW7Fy5UqEhobiyJEjuHDhAu7evYu7d++qtBWJROjduzf8/PwQFBSE5s2bayhqIiIiIiKqCiYsiIjUICczD0VLtedqC9DVaDRERHVPipcJi9RH2TDVYCzUuDVv3hwzZ87EzJkzkZOTg+vXr+PBgwd49uwZTExMYGlpiU6dOkFfX1/ToRIRERERURUxYUFEpAZaeS/Ln4jETFcQUdOT/TJfgZS0bLyuuVCoCdHX14ebm5umwyAiIiIiIjVhzRIiohrKy5NB78WNujwBEOkxF0xETY+W9suMhXaBopyWRERERERERKVjwoLqLU9PT8yYMUPTYRBVKCczT/lcJuKvVSJqmnR0XiYptORMWBAREREREVHV8c4a1VuHDh3C8uXL62SsqKgovPPOO7C2toYgCDhy5EiJNgqFAp999hlatWoFAwMDDBgwAPHx8SptBEGAIAg4f/68yvbc3FyYm5tDEARIJBIAwMCBAzFz5kyVdtu3b4cgCAgPD1fZHhgYCHd39xqfJ9WS3ALlU5FYpMFAiIg0R6vY5DIdGRMWREREREREVHVMWFC9ZWZmhmbNmtXJWNnZ2ejcuTO++uqrMtt88cUX2Lx5M7Zv344LFy5ALBbD29sbOTk5Ku1sbGwQFhamsu3w4cMwMjJS2danTx/ExMSobIuIiICNjY0yqVFEIpGgX79+1Tgzqm0FBXLoyV88B6BvwHJQRNQ0aWkBOS8W3tbhDAsiIiIiIiKqBiYsqN4qXhIqNzcXc+bMQevWrSEWi9G9e3eVm/rp6ekYPXo0WrduDUNDQzg7O+P777+v9Fi+vr5YsWIFhg0bVup+hUKBjRs3YtGiRRg6dChcXFywe/du/P333yVmYwQEBGDfvn2QSqXKbaGhoQgICFBp5+7ujvj4eNy/f1+5LTIyEvPnz1c5t8TERNy9exdeXl6VPh+qO9KsPAgvnufrakEQhHLbExE1ZrkvEha6cg0HQkRERERERA1SrX4V+OnTpzh58iROnz6N3377DQ8ePMCTJ09gamqKli1bws3NDf369YO3tzdMTExqMxR6xd4FM5D99Emdjik2MYX/6o3VOnbatGmIi4vDvn37YG1tjcOHD8PHxwfXrl2Dg4MDcnJy4Obmhnnz5sHY2BjHjx/H2LFj0b59e3Tr1q3GsScmJuL+/fsYMGCAclvz5s3RvXt3nDt3Dh988IFyu5ubG+zs7HDw4EH4+/sjKSkJUVFR+Oqrr1RKXHXv3h26urqIiIjAmDFjEBcXB6lUipCQEMybNw+JiYmwt7dHREQE9PX10bNnzxqfB6mfXPqyHJSOIWdXEFHTlvviv7qcYEFERERERETVUCt3165du4ZNmzbh+++/R05ODhQK1U+tz58/x7179/Dbb79h586d0NfXx4cffojp06fDxcWlNkKiV2Q/fYKsx+maDqNSkpKSEBYWhqSkJFhbWwMA5syZg59++glhYWFYtWoVWrdujTlz5iiPmT59Ok6ePIn9+/erJWFRNAuiZcuWKttbtmypMkOiSHBwMEJDQ+Hv74/w8HAMHjwYLVq0UGkjFovRpUsXREZGYsyYMZBIJOjTpw/09PTQq1cvSCQS2NvbQyKRoGfPntDT06vxeZB6yeUK6L2o0y4DYMD1K4ioicsTFIACEDFhQURERERERNWg1oTFw4cPsWDBAuzatQtyuRwWFhZ4++230atXL3Tq1Anm5uYwNjbGs2fPkJ6ejtjYWJw9exZRUVH45ptvEBYWhsDAQKxatQqWlpbqDI1eITYxbTBjXrt2DTKZDI6OjirbixayBgCZTIZVq1Zh//79uHfvHvLy8pCbmwtDQ8Max10d/v7+mD9/Pm7fvo3w8HBs3ry51HZ9+vTBsWPHABSuU+Hp6QkA8PDwgEQiQVBQECQSCSZMmFBXoVMVyHMLlHX18rUFGGixHBQRNW35AgAFoK/pQKjRW7ZsGZo1a4aZM2dqOhQiIiIiIlIjtSYsHBwckJmZiSFDhiAkJARvv/02dHTKHmLQoEGYNWsWCgoKcOzYMYSGhiI0NBQHDx7Ekyd1W66oqaluaSZNyMrKgra2Ni5fvgxtbW2VfUULWa9duxabNm3Cxo0b4ezsDLFYjBkzZiAvL08tMVhZWQEAHjx4gFatWim3P3jwAG+++WaJ9ubm5sp/Bzk5OfD19UVmZmaJdu7u7li/fj3u3bsHiUSinCXi4eGBHTt2ICEhAcnJyVxwu77KkSmfiptzBgwRkUx4sYYFBBTky6Cjq13BEUTVs2zZMgwZMoQJCyIiIiKiRkati25369YNly5dwtGjRzF06NBykxXF6ejoYNiwYTh27BguXLiAt956S51hUQPn6uoKmUyGhw8fokOHDiqPokRCTEwMhg4dCn9/f3Tu3Bnt2rXDzZs31RaDvb09rKyscPr0aeW2jIwMXLhwocy1JYKDgyGRSDBu3LgSiZYi3bp1g0gkwrZt25TrcABA165dkZaWhtDQUIjFYrWUtSL1UigUkOe8WL9CALT0uX4FEZGl0ctaUFoy1oWi2mNpaQkDAwNNh0FERERERGqm1jts//vf/2rcR9euXdXSDzUejo6OGDNmDMaNG4f169fD1dUVaWlpOH36NFxcXPD222/DwcEBBw4cwNmzZ2FqaooNGzbgwYMHeP311ys1RlZWFm7duqV8nZiYiCtXrsDMzAy2trYQBAEzZszAihUr4ODgAHt7e3z66aewtraGn59fqX36+PggLS0NxsbGZY5rYGCAHj16YMuWLejdu7cysSESiVS26+rqVv4HRnVCkS8HXtyME/R0ILAcFBER5FovkxSKfDlrQ1GtcXd3x8WLFzUdBhERERERqZlaZ1gQ1ZawsDCMGzcOs2fPhpOTE/z8/HDp0iXY2toCABYtWoQuXbrA29sbnp6esLKyKjORUJpff/0Vrq6ucHV1BQDMmjULrq6u+Oyzz5RtPv74Y0yfPh0TJ05E165dkZWVhZ9++gn6+qXfjREEARYWFhCJyl+I2dPTE5mZmcr1K4p4eHggMzMTXl5elT4Pqju5WS/LjWnps+QJERHwSsIiT1ZOS6Ka+eyzz/D3339j0aJFUCg4m4eIiIiIqLFQ6wyLsLAweHl5wc7OTp3dUhMlkUiUz3V1dbF06VIsXbq01LZmZmY4cuRItcfy9PSs8MOuIAhYtmwZli1bVmab8vowMTFR7pfL5crtixcvLvW8Fi9ejMWLF1cUOmmITFoAZZqC5aCIiAAAcu1XZlgQ1ZLLly9j3LhxWL16NQ4ePAg/Pz/Y2dmVWSZq3LhxdRwhERERERFVh1rvsoWEhEAQBNja2sLLy0v5aNOmjTqHISLSqLxcGUQv7snlCkAzHU5WIyICgNRcwOLF86QHmWhvJdZoPNR4BQYGQhAEKBQK/PXXX/jiiy/Kbc+EBRERERFRw6DWhMXrr7+OuLg43L17F+Hh4di1axcAoF27dioJjKKFkonqQlJSUrlrWcTFxSlLSxFVRm52Poq+vynXYzkoIqIiz4pVgXqWkVd2Q6IaGjduHASB60cRERERETU2ak1YxMbG4tGjR5BIJIiIiIBEIsGff/6JhIQEJCQk4JtvvgFQuIhyUfLC09MTLVq0UGcYRCqsra1x5cqVcvcTVYVW7ss7cnpiLohORFSk+BoW+bkFGoyEGrvw8HBNh0BERERERLVA7YXXLSwsMGLECIwYMQIA8PDhQ5UExl9//aV87NixA0DhzIx+/fph06ZNaolh7969iI6OxuXLl3Ht2jXk5eUhLCwMgYGBKu3y8/Nx9OhRHD16FBcvXkRycjIEQcDrr7+OwMBATJw4Edralf/2tJ2dHe7evVvqPg8PD5U1Gaju6OjooEOHDpoOgxoJuQwweHE/Ll8ADLl+BRGRkqzYGhYFuVx0m4iIiIiIiKqm1u+0WVpaYuTIkRg5ciQA4MGDB8rkRUREBOLj43H9+nXExcWpLWGxaNEi3L17FxYWFmjVqlWZSYSEhASMGDECRkZG6N+/P9599108e/YMx44dw9SpU3HixAkcPXq0StPNmzdvjhkzZpTYzoXIiRoHeb6Aot8IBbpaLEdBRFSMovgMixzOsKC6c+vWLaSlpcHc3ByOjo6aDoeIiIiIiKqpzr8a3LJlS/Tq1Qt5eXnIyclBeno6Hj9+rNYxdu7cCQcHB7Rt2xZr1qzBggULSm3XrFkzfPXVVwgICIBY/HJRyPXr18PT0xP/93//hwMHDuD999+v9NgmJiZYsmRJTU+BiOopHdnLBIWuIctBERGp0Hr5VJbHGRZUu2QyGVavXo2tW7ciLS0NABAQEIDQ0FAAwLfffouvvvoK//73v9GpUydNhkpERERERJVUJwmLlJQU5awKiUSCO3fuAAAUCgXMzc3h5+cHDw8PtY03YMCASrVr3bo1pk6dWmK7WCzGrFmz8OGHHyIyMrJKCQsiarwUcsBAUZiwkAEw4PoVREQqFDovZ1jIWRKKapFMJsOQIUNw6tQp6OjooGPHjoiLi1Np07t3b4wdOxaHDh1iwoKIiIiIqIGolYTF33//rVL2KTExEUBhgsLS0hLvvfcePDw84OHhgTfeeKM2QqgxXd3CG5E6OlX7EeXm5iI8PBx///03jI2N0bVrV3Tv3r3acaSkpJS7PzU1VWVsqVSqsl8ul0OhUCifU/1Q/L3g+9IwyOVyyPIF5ZeH83QE6CkUyn9f1aVQKCCXy0v82yX1yMnJKfU51W983xoe5ftUfA2LnHz+bqvncnNzNR1CtW3fvh0nT55Ev379sHv3blhbW0NLS0uljZ2dHdq3b49Tp07h008/1VCkRERERERUFWpNWEycOBESiQQJCQnKm3itWrXCqFGjlAmK1157TZ1D1pqiqeSDBg2q0nH3799HUFCQyrauXbvi+++/R/v27asch42NTaXbXrhwAQkJCSrbzM3NYWBgAEEQkJGRUeXxqfZlZWVpOgSqJH35yxsh+VqyGv+bKigogFQqhVQqxY0bN2oaHlUgKipK0yFQNfB9a1gE7ZfPnz56glOnTmkuGKrQo0ePNB1Cte3atQtmZmb4z3/+A1NT0zLbdezYEX/88UcdRkZERERERDWh1oTFzp07IQgCunTpgsmTJ8PDwwMdOnRQ5xB14l//+hd+/PFH9OvXD4MHD670cUFBQXB3d8cbb7wBIyMj3Lx5Exs2bMCePXvQv39/XLt2Dc2aNavFyBuXIUOGwNnZGatXr9Z0KESAAtCVC0VPoa1bs5kVRESNkvbLWYNacqGchkQ1c+PGDfTp06fcZAUANG/eHA8fPqyjqIiIiIiIqKbUXhJKoVDgt99+w8KFC+Hp6amcWfH666+re6ha8X//93+YNm0a2rZti71791bp2MWLF6u8fvPNN7F7924AwJ49e/Dvf/8bs2bNqlKfycnJ5e5PTU1Ft27dAADdu3cvMYsjKSkJMpkMOjo6MDY2rtLYmnbkyBHo6urWSZInKioK69atw2+//YbU1FQcPHgQfn5+Km2CgoKU72eRQYMG4ccff1S+1tYu/GppTEwMevToodyem5uLNm3a4PHjxzh9+jT69u2Lnj174o033sC///1vZQmD7du34x//+Ae++eYbBAYGqox9+/ZtREZGqvnMqbJkOQVQZBeWzhD0tdG8ubjGfaalpcHAwABGRkZwc3OrcX9UUk5OjvIb+n379oW+vr6GI6LK4PvW8BS9ZwZ6L7c5tjTDa4N6ay4oqtCrM3MbEplMBj09vQrbpaamVqodERERERHVD2pNWCQnJ6ssrr1//37s378fgiDAwsICffv2haenJzw9PevlwncnTpzAiBEj0LJlS/zyyy9o1aqVWvqdNGkS9uzZg5iYmConLNq0aVPptnp6ejAwMFDZpqWlpVwj4dW6vvWdhYVFnY0llUrx5ptvIiQkBMOHD4eWllaJn5cgCPDx8UFYWJhym56eXol2NjY22LVrF3r16qXc9t///hdGRkZ4/Pixsu8+ffrg+PHjKmNFRkbCxsYGUVFRCA4OVh4fGRmJgICABvceNiaynJeLx2oZ6KjtvRAEAVpaWiX+7ZL66evr8+fcAPF9a1iM9F/OPrNtbsj3rp5ryDfy27Zti6tXr5bbJj8/H7GxsXBwcKijqIiIiIiIqKbUevezdevW8Pf3x86dO3Hr1i0kJSVh9+7dCAwMhJGREQ4ePIjp06fDxcUFlpaWGDFiBLZu3Ypr166pM4xqOX78OIYPHw4LCwtERESgXbt2auu76MZ7dna22vpsCjw9PTFjxgwAhTMU5syZg9atW0MsFqN79+6QSCTKtunp6Rg9ejRat24NQ0NDODs74/vvv6/0WL6+vlixYgWGDRtWbjs9PT1YWVkpH6WVIQgICMC+fftUFhoNDQ1FQECASjt3d3fEx8fj/v37ym2RkZGYP3++yrklJibi7t278PLyqvT5kHrJ5QrIpYUJCwUAQU+7/AOIiJooudbLhIUiT15OS6Ka8fHxwZ07d/Cvf/2rzDZbtmxBWloa3n77bbWOvXfvXkyaNAlvvfUW9PT0IAgCwsPDS227ZMkSCIJQ5uPOnTulHnfy5El4eHigWbNmMDY2hpeXF06fPq3W8yAiIiIiqo/UXhKquDZt2sDf3x/+/v4AVGdgREZG4tChQzh8+DCAwsWhNVVf9vjx43jvvfdgZmaGiIgIta+7ceHCBQCAnZ2dWvutiQdbfoc8M69Ox9RqJkLL6a7VOnbatGmIi4vDvn37YG1tjcOHD8PHxwfXrl2Dg4MDcnJy4Obmhnnz5sHY2BjHjx/H2LFj0b59e2XJLHWQSCSwtLSEqakp+vXrhxUrVsDc3FyljZubG+zs7HDw4EH4+/sjKSkJUVFR+Oqrr7B8+XJlu+7du0NXVxcREREYM2YM4uLiIJVKERISgnnz5iExMRH29vaIiIiAvr4+evbsqbbzoKqRZudBV1F4Ey5XSwFdLdZlJyIqjbzYV2EU+bKyGxLV0Ny5cxEeHo6pU6ciLi4OI0eOBFD4BaHffvsN+/fvx4YNG2BhYYFp06apdexFixbh7t27sLCwQKtWrXD37t0KjwkICCj1s4CJiUmJbXv37sXYsWPRokULZYnQH374AQMHDsT+/fsxYsSIGp4BEREREVH9VasJi1fZ2Nhg3LhxGDduHO7du4fdu3dj/fr1ePz4MdLT0+syFKUff/wR7733HkxNTREREVHhlPH8/HwkJCRAV1dXZb2IGzduwNbWFoaGhirtb9y4gXnz5gEAPvzwQ/WfQDXJM/Mgy6jbhEV1JSUlISwsDElJSbC2tgYAzJkzBz/99BPCwsKwatUqtG7dGnPmzFEeM336dJw8eRL79+9XW8LCx8cHw4cPh729PRISEvDJJ5/A19cX586dU65dUSQ4OBihoaHw9/dHeHg4Bg8ejBYtWqi0EYvF6NKlCyIjIzFmzBhIJBL06dMHenp66NWrFyQSCezt7SGRSNCzZ88GXbahoSvIzofui+d52lxsm4ioLMVnWMg5w4JqUatWrXDkyBEMHz4cmzdvxpYtWyAIAg4cOIADBw5AoVDAxMQEBw8eVHuZ0Z07d8LBwQFt27bFmjVrsGDBggqPCQwMhKenZ4Xtnjx5gunTp8PCwgK//fabsjzsvHnz4OrqiilTpsDb27tO1ngjIiIiItKEOktYPHjwABKJBBEREYiIiMCtW7cAFC7SDRTWcVeXnTt34syZMwCgLDe1c+dOZZmdPn36YPz48bhx4waGDRuG3NxceHp6llpCyM7OTmXx43v37qFjx45o27atyhTuffv2YcOGDejbty/atm0LsViMmzdv4sSJE8jPz8eCBQvQt29ftZ1jTWk1EzWYMa9duwaZTAZHR0eV7bm5ucrZDTKZDKtWrcL+/ftx79495OXlITc3t0QCqSY++OAD5XNnZ2e4uLigffv2kEgk6N+/v0pbf39/zJ8/H7dv30Z4eDg2b95cap99+vTBsWPHABTO3ij6IOvh4QGJRIKgoCBIJBJMmDBBbedBVSOXKyAqKPw9JQegpcuEBRFRmbSAAiigAwG3/s5AS03HQ41a3759cf36dXz55Zc4ceIEbt++DblcDhsbG/j6+mLu3Llo3bq12scdMGCA2vss8p///AdPnz7F0qVLVdaya9OmDaZNm4YlS5bg8OHDGDduXK3FQERERESkSbWWsHj06JFKguKvv/4C8DJBAQCvvfYavLy84OXlValvHFXWmTNnsGvXLpVtMTExiImJUb4eP3487t+/j9zcXACFCYfSeHh4qCQsyuLl5YU///wTv//+O6Kjo/H8+XNYWFhg8ODBmDp1KgYNGlT9E6oF1S3NpAlZWVnQ1tbG5cuXS8xkMDIyAgCsXbsWmzZtwsaNG+Hs7AyxWIwZM2YgL6/2ZpG0a9cOFhYWuHXrVomEhbm5OYYMGYKQkBDk5OTA19cXmZmZJfpwd3fH+vXrce/ePUgkEuUsEQ8PD+zYsQMJCQlITk5Gv379au08qHzSrDzl7IocQQGue05EVL5cFP6BqStngpdqX8uWLbFmzRqsWbNG06GUKyoqChcuXICWlhYcHBwwYMAA5d+xxRV9waq0zw7e3t5YsmQJIiMjq5SwSElJKXd/amqq8rlUKlVZh42IGhf++6bieD1QEV4LVFxVrofaunbUmrA4dOiQMkkRFxen3F6UpOjQoYNKgsLKykqdwyuFh4eXufBdcZ6enioJlMqws7Mr9RgPDw94eHhUqS+qHFdXV8hkMjx8+BDu7u6ltomJicHQoUOV66XI5XLcvHkTr7/+eq3FlZKSgvT0dLRq1arU/cHBwRg8eDDmzZtXItFSpFu3bhCJRNi2bZtyHQ4A6Nq1K9LS0hAaGgqxWKzWdTioagqevywHVaCjqNs6ekREDVCuAIgVgC4rQlEtioqKgpWVVYkZuK+Kj49Hamqqxmc6L168WOW1iYkJNm3aVCLxEB8fDwCllqkt2lbUprJsbGwq3TYqKkrtJbSoKeFfyvXdqVOn6mgkXgsNAa8HKlJ31wLA66H+q8r18OjRo1qJQa1XyYgRIyAIgvKGvp2dnTJB4eXlVStTsqnxc3R0xJgxYzBu3DisX78erq6uSEtLw+nTp+Hi4oK3334bDg4OOHDgAM6ePQtTU1Ns2LABDx48qHTCIisrS1mmDAASExNx5coVmJmZwdbWFllZWVi6dCnee+89WFlZISEhAR9//DE6dOgAb2/vUvv08fFBWloajI2NyxzXwMAAPXr0wJYtW9C7d29lYkMkEqls19XVLbMPqj2vloPSZjkoIqIK5QsAFICIvzKpFnl6eiIoKAjffPNNue2++OILhIaGQibTzCLwnTt3RmhoKDw9PdGqVSvcv38f//d//4fPPvsMgYGBMDExwbvvvqts/+zZMwBA8+bNS/RV9DdlURsiIiIiosZIrQmL1q1bo1+/fsoERdu2bdXZPTVhYWFhWLFiBWbPno179+7BwsICPXr0wJAhQwAAixYtwu3bt+Ht7Q1DQ0NMnDgRfn5+lf5A9+uvv8LLy0v5etasWQCAgIAAhIeHQ1tbG1evXsWuXbvw9OlTWFtbY9CgQVi+fHmZi2ELglCpb6h5enoiKiqqRFk0Dw8PREREqMRFdat4OahcbQECy0EREVUo/8WyZHW/WhY1NVWdKa0Jw4YNU3ltZ2eHadOmoWPHjhg4cCAWLVqkkrCoDcnJyeXuT01NVc7m7du3r8raGURVcu4XTUdAFaizUtW8FhoEXg9UpE7L2PN6qPeqcj1UVHq0utSasKjoj2Giqiiq4QsAurq6WLp0KZYuXVpqWzMzMxw5cqTaY1VUHszAwAAnT56ssJ/y+jAxMVHul8tf1slYvHhxqee1ePHiEuUDqG4VLwelZaANGQo0Gg8RUUOQryUAMsAAAuRyObS4+A9p0JMnT6Cvr6/pMEro378/2rdvj2vXriEjI0M5e6JoZsWzZ89gbm6uckxGRoZKm8qqSgLCwMAABgYGVeqfiBoO/vum4ng9UBFeC1RcVa6H2rp2WDiMiKgUr5aDMjASISsrV7NBERE1AAXaAPILn+fmFMDAkHMtSD2SkpJUXmdlZZXYVqSgoADXr1/HqVOn0L59+7oIr8osLCxw69YtPH/+XJmwcHBwwK+//or4+PgSCYvy1rcgIiIiImos1Jqw+Pvvv2t0vLW1tZoiIXopKSmp3LUs4uLiYGtrW4cRUUMgzylA0VLpudoCRFqCRuMhImooZFovFrEAIM3OZ8KC1MbOzg6C8PL/xwcPHsTBgwfLPUahUMDf37+2Q6uy7OxsXL9+HWKxWKWEqIeHB77//nucOnUKPXr0UDmmaLavh4dHncZKRERERFSX1JqwaNOmjcqHiKoQBAEFBSy3QupnbW2NK1eulLufqIScl4tzGjUvfZ0SIiIqSa5TLGEh5d92pD62trbKzxpJSUkwNDQsc70wkUiENm3a4L333sOUKVPqMkylzMxMpKamwtHRUWW7VCrFhAkTkJmZiaCgIOjovPxINnLkSMybNw9btmxBcHCwspxTSkoKtm7dCgsLixLrYhARERERNSa1UhKqOgvgNYRF86hh0tHRQYcOHTQdBjUgCoUC8pwXN9kEAVr6OlCAv6OIiCpDrv3yyyu50nwNRkKNzZ07d5TPtbS08P777yM0NLTO49i5cyfOnDkDALh27ZpyW9H6a3369MH48eORnp6O1157DV27dkXHjh1hZWWFBw8e4Oeff0ZKSgqcnZ2xdu1alb5NTU2xdetWjB07Fl26dMGoUaMAAD/88APS09Pxww8/oFmzZnV3skREREREdaxWEhbdunVDcHAwRo8ezT+o6wkmhIgqT5EjA+SF/2a0DHQgaAlQyNX/b6jo32V1Z6YREdVH9lZGwJNnAAALfV0NR0ONVVhYmMa+kHLmzBns2rVLZVtMTAxiYmKUr8ePHw8zMzNMnToVFy9exIkTJ/DkyRMYGBigY8eO+OijjzBt2rRSFyr09/eHhYUFVq1ahbCwMAiCADc3NyxatAgDBgyo9fMjIiIiItIktSYsfvjhB4SGhuJ///sfLl26hFmzZuG9995DSEgI+vbtq86hqJJ0dXVRUFAAmUyGp0+fwsTERNMhEdV7OZl5yl+OWga1ktfF06dPIZMVlp0qXgqCiKihMzfRRw4KExZ6/L4E1ZKAgACNjR0eHo7w8PAK2xkbG2Pr1q3VGsPHxwc+Pj7VOpaIiIiIqCFT612y999/H++//z5SUlIQFhaG8PBw7NmzB3v37kW7du0QFBSEgIAAtG7dWp3DUjnEYjGkUikAIDU1FQ8fPuS3ueuJojVb0tLSNBwJqVAA8tyXNde1pC9/TarrPVMoFMpkBVD475SIqLEQdLWUzxV5cg1GQk1BQkICduzYgbNnzyItLQ1Dhw7FF198AQC4cOEC/vjjD4waNQrNmzfXcKRERERERFQZtfK13jZt2uDTTz/Fp59+il9++QWhoaE4fPgwFi1ahMWLF2PgwIEIDg7G0KFDoavLUgG1ycLCAjKZDE+ePAEAlZukpDkKhUKZSDIwMGASqR7JleZD+8WC2/laAoomWNTWe2ZqalrmgqFERA2RSsIin393UO0JDw/HlClTkJubC6CwxOKjR4+U+58/f44pU6ZAJBIhMDBQQ1ESEREREVFV1Hodkn79+qFfv37IyMjAt99+i9DQUPz00084efIk2rVrh/j4+NoOoUkTBAEtW7aEtrY2srOzUVBQwPUs6gG5XK68+W1kZAQtLa0KjqC68jQtC0b5hf9GZBZ6ynJN6nzPBEGAjo4OxGIxLCwsmLAiokYlSy5H0W/I9Kc5aKPRaKixOn/+PCZMmABDQ0MsX74cHh4e6N69u0obDw8PNG/eHMeOHWPCgoiIiIiogaizwunGxsaYMmUKvL29MXPmTBw7dgzPnj2rq+GbNEEQ0KJFC7Ro0ULTodALUqkUN27cAAC4ubmVuuAi1T3p8zwovkmFIQRkQgGXJV2gp1/4a5LvGRFR5dxMf47XXjyPT3mGNkxZUC344osvoFAocPz4cfTp06fUNlpaWnjzzTcRFxdXx9EREREREVF11cnXunNycrBnzx54eXnB0dERx44dg7GxMcaMGVMXwxMRVcrvkUkwROFshyRzkTJZQURElaetp618LstjSSiqHTExMejWrVuZyYoiVlZWSE1NraOoiIiIiIiopmr1btyFCxcQGhqKH374AZmZmQCAvn37Ijg4GCNGjOA3lImoXsn64+Vi2qZuLTUYCRFRw6UjepmwkOdz0W2qHU+fPoWtrW2F7aRSKfLy8uogIiIiIiIiUge1JyzS0tKwe/duhIWF4c8//4RCoUCbNm0wffp0BAUFoV27duoekoioxqTZebB/mg9AQAYUeLOPjaZDIiJqkIrPsFBwhgXVEnNzc9y9e7fCdrdu3YKVlVUdREREREREROqg1oTFsGHDcOLECRQUFEBXVxfvvfcegoOD4e3tzUVliahe+z3yLmxflINKthDhdRHLQRERVYdI/2XCApxhQbWkR48eOHbsGK5fv45OnTqV2iYmJgbXr1+Hv79/HUdHRERERETVpdY7cv/9738hCALeeust+Pv7w9zcHI8fP8b3339fqeM//PBDdYZDRFRp2cXKQZm58ZuYRETVpVt8/Z8CJiyodvzjH//AkSNH8N5772Hfvn148803Vfb/+eefCA4OhiAImDp1qmaCJCIiIiKiKquVrxD/+uuv+PXXX6t8HBMWRKQJ8jwZnLILb6plCAp07s1yUERE1aWnMsNCoblAqFHr378/Zs2ahQ0bNsDNzQ3t27eHIAg4efIkXFxcEBcXB7lcjo8//hg9evTQdLhERERERFRJak1Y9O3bl6WfiKjBybnxGFoFhTfVrN5qBVGxBWOJiKhqRAYv/7zUknGGBdWedevWwcnJCUuWLMGtW7cAAKmpqUhNTYWFhQUWL16Mf/zjHxqOkoiIiIiIqkKtCQuJRKLO7oiI6oT02iPlc8POFhqMhIio4dMz0EXRvIqiZDBRbZkwYQLGjx+P33//Hbdv34ZcLoeNjQ26du0KHR2uR0VERERE1NDwr3giatLkuTLk3HgMANAS60LP3kSzARERNXAGBjp4/uK5jpwJC6p9giCgS5cu6NKli6ZDISIiIiKiGtLSdABERJoUF50ERX5hyRKDN8whaLOsHRFRTRRfw6KjhZEGIyEiIiIiIqKGRq0zLP7++29YW1vXm36IiCqSeiEVJi+ep9uIYarJYIiIGgEtLS0IulpQ5MuhyJdpOhxq5FJSUiCRSPD3338jJyen1DaCIODTTz+t48iIiIiIiKg61JqwcHBwwPTp0zFv3jyYmlb9tt/jx4+xZs0afPXVV8jOzlZnaEREJTx7KkW7zAIAAp4KCrz2ppWmQyIiahQEUWHCQp7PRbepdshkMnz00Uf417/+Bbm88DpTKFRLkAmCAIVCwYQFEREREVEDotaExaBBg/DFF19gy5YtGDZsGAICAtC3b1/o6emVeUxubi4kEgnCw8Px3//+Fzk5OfDz81NnWEREpfrt5G04oLAE1L2W+nhDh1XyiIjUQdDVBlAARR4TFlQ7VqxYga+//ho6OjoYMmQIHBwc0KxZM02HRURERERENaTWhMXhw4fx888/Y+bMmfjuu+/w/fffQ1dXF2+++SY6duwIc3NzGBsbIyMjA+np6YiLi8Mff/yB/Px8KBQKvPHGG9iwYQMGDBigzrCIiEqlHfdY+dzWw0aDkRARNS7PCmQwApDzPF/ToVAjFR4eDgMDA0RHR3OxbSIiIiKiRkStCQsAGDBgAK5du4b//e9/2Lp1K06dOoWLFy/i4sWLAF5OzS6ip6eHd955B9OmTWOigojqTGJ8OtrlFj5P0VGgW+eWmg2IiKgReZxbACMAWjLOsKDacf/+fXh6ejJZQURERETUyKg9YVFk4MCBGDhwIHJzcxETE4Pff/8dDx48wLNnz2BiYgJLS0t06dIFvXr1KrdkFBFRbbh5+g46vXie2aE5tLRYDoqISF0KXvxK1YGAvLwCiES19icnNVHW1tYsAUVERERE1AjV+qdHPT099OvXD/369avtoYiIKkVWIIfl3WwAAgqggMsge02HRETUqBRoCwAKZ9RKn+czYUFqN2zYMOzduxe5ubn88hMRERERUSPCrxQTUZNz5WwyWigKF9tOEGujpfX/s3ff8VFV+f/HXzOTZNITQgKEGkrovUqvAhZs2F0V++pP/bq6q2tbsK1lV9Fdt6iorL2hYKfXSC8qPdRQQkkIqTOTKff3x8AkI4G0mSSE9/Px8OG9555z7me4lyG5n3vOia3liERE6hePxeTb1joWEgx/+ctfiI+P59prryUrK6u2wxERERERkQCpt6+7ffDBByxdupS1a9fy66+/UlxczLvvvsukSZPKrJ+Xl8eUKVOYMWMGhw4dIjk5mauuuorJkycTHR1dqXPPnj2bv/71r6xbtw6TyUSfPn144oknGD16dAA+mYhUV9aKg5xcscLaM6lWYxERqY88IWbAu36FvchVu8FIvRQbG8vy5csZMWIEbdu2pU+fPrRs2bLMKR5NJhNvv/12LUQpIiIiIiKVVW8TFk888QR79+4lMTGR5ORk9u7de9q6hYWFDB8+nA0bNjB27Fiuu+461q9fz9///ncWL17MkiVLCA8Pr9B5P/jgA2688UaSkpJ8yZFPP/2U888/n88++4wrr7wyEB9PRKrI43DROd/7EK3QBH1GazooEZFAM0JKRlg47BphIYHncDiYNGkSGzduxDAMFi1adNq6SliIiIiIiJw96m3CYtq0aaSmptKqVSteeOEFHn300dPWfemll9iwYQOPPPIIL7zwgq/8z3/+My+++CJTp049Y/uTcnJyuO+++0hMTGTdunU0b94cgEceeYRevXpx9913M27cOC0QKFKLbL9mY3J6ExaN+jchIjK0liMSEamHQkrecnfYNMJCAm/y5Ml88803NGjQgBtvvJHU1NRKj4oWEREREZG6p94mLMaMGVOheoZhMG3aNKKjo3nyySf9jj355JP861//Ytq0aRVKWHz++eccP36cp556ypesAGjevDn33nsvU6ZM4auvvuKmm26q3IcRkYApWnfYtx3Zp/EZaoqISJWFliQsiu1KWEjgffzxx8THx7NhwwZatGhR2+GIiIiIiEiA1NuERUWlp6dz8OBBxo0bR1RUlN+xqKgoBg8ezOzZs9m3b1+5vwydHIo+duzYU46NGzeOKVOmsHjx4kolLPbv33/G45mZmb5th8OBzWarcN9Se+x2e5nbElzuHAeOXbkAmBuG404MqfDfmWBeM6fDzrED+8EwAtqvgKPYgT3rCAAZWzZiDbPWckRSEbpuZ5+T18wSHo7dbsewlByz5dv180kd5XA4ajuEKjty5Ahjx45VskJEREREpJ5RwiI9HYDU1NQyj6empjJ79mzS09PL/YXoTH2dLDtZp6Iq80vYypUr2blzZ6X6l9q3ZMmS2g7hnFG8JYKBRACwL+oYq+fOrVI/gbpmHpeL3O2byNn8M57is/eh0dli/5xZtR2CVIGu29nnm8z9RNIbiATg0O6dzHFurd2gpExZWVm1HUKVnW6BbalZKX/+rrZDkArY88JFtR2CiIiISIUF9af8JUuWkJaWFsxTVFturvdt67i4uDKPx8bG+tWral+V6UdEAs/wQMrxMAA8GGTE116CwHC7yd2+mb1ff0L2hlVKVohIvVKwbw/JMSUjxhqHmc5QW6Rqrr/+ehYtWsTx48drOxQREREREQmgoI6wGDFiBCNGjGDBggXBPE29tm/fvjMez8zMpH///gAMGDCAtm3b1kRYUk12u933lv6wYcMIDw+v5Yjqv19XZZLMAQB2RJi4+PLzK9U+ENfM43GTvnwZq2d+Rt7RIyUHTCba9hlAVIOESvcpZ+ZyuzlwwHvdmzVrRojFUk4LqQt03c4+LrebzQtmAxAVbqVLjy4U7N4DQNcOnQnv16gWo5PTOZtH5j766KMsWrSICy+8kLfffptOnTrVdkgiIiIiIhIAQU1YNGjQgKZNmwbzFNV2cjTE6UY+5OXl+dWraF8NGzascj+llV68uzxWq5WIiIhK9S+1Lzw8XNetBuSsPsLJb6OQ7knV+jOv7DUzDIMdq5eT9ukHZO/P8DuW2n8Qg66+gcQWraocj5yezWZjzpw5AIwYO1Z/184Sum5nH5vNxtalC/A4nbjsdsKiSpK6IVh0Desoq/XsXR9m/PjxOJ1OVqxYQbdu3WjZsuVpp4kymUzMnz+/FqIUEREREZHKCmrComfPnpVes6Gmlbe2RHlrXPy2rzVr1pCenn5KwqIy/YhIYBUVFJOSVQyYKMSg7/ltauS8hmGQ8evPLPvkfxza6f8d06p7L4ZccyNN2rWvkVhERILNHBqGx+mk2FaEKbRkVIzh9NRiVFJfLVq0yLft8XjYs2cPe/bsKbOuyaRpyUREREREzhZBTVjcf//9XH755Xz33XdcdFHdXOgrNTWVpk2bkpaWRmFhIVFRUb5jhYWFpKWl0bp16wotfj18+HA+/vhj5syZw3nnned3bPbs2b46IlKz1szdRRu8Dyv2JIbRITos6Oc8mrGHhdPfZN+mX/zKk9t3ZMg1N9Gya/egxyAiUpPMoWFAIcW2Ivbm2og+Ub5mRxajRreszdCkHlq4cGFthyAiIiIiIkEQ1IRFr169uPfee7n88suZNGkSEydOJCUl5bTTArRsWfO/zJpMJm6//XaefvppnnnmGV544QXfsWeeeYaCggIee+wxvzZFRUVkZGQQGRnpF/PVV1/NI488wj//+U9uvfVW33RO+/fv5/XXXycxMZHLL7+8Zj6YiPi4f83ybTce1Czo5yvKy+Wzpx7FXpDvK0tqmcLga2+iTe9+etNTROolc5g3GewqLqaYklEVxXZXbYUk9ZheAhIRERERqZ+CmrBo3bo14J0W5e233+btt98+bV2TyYTLFbhfaKdNm8ayZcsA+PXXX31lJ4ePDxkyhNtvvx2Ahx9+mFmzZvHiiy+yfv16evfuzbp165gzZw79+vXjgQce8Ot71apVjBw5kuHDh/sNR2/QoAGvv/46N954I7179+aaa64B4NNPPyU7O5tPP/2UmJiYgH1GESnfgYxc2hZ5ABOHzQa9zgt+wmLtdzN9yYr4xskMvuZ3dBg4FFMZ82qLiNQX3hEWXhZTyc90Jk0JJSIiIiIiIhUU1IRFixYtau1N4mXLlvG///3PrywtLY20tDTf/smERVRUFIsXL2bKlCnMmDGDhQsXkpyczEMPPcTkyZMrtVDk7373OxITE/nrX//Ku+++i8lkok+fPjzxxBOMGTMmMB9ORCps09zddD4xHVRWSnSZi3EGUlFeLut//BYAsyWEq/7yV2ITk4J6ThGRuqB0wsKM07dtchm1EY6IiIiIiIichYKasDjdwnc1Yfr06UyfPr3C9ePi4pg6dSpTp04tt+6IESMwjNP/8j1+/HjGjx9f4XOLSHAYhkHC7pJpmTqPaR30c679biZOuw2AbqPGKlkhIueMk1NCAZgpLtl2a4SFBM+aNWv44osv2LZtG3l5eWX+jG4ymZg/f34tRCciIiIiIpUV1ISFiEhtKt6XT5MTs5Iciguhb5sGQT1f6dEVlpAQ+l92VVDPJyJSl5QeYQEO35bFrREWEhx//OMfmTp1qi9JYTKZ/BIWJ/e1dpSIiIiIyNlDE6qLSL1VtPawb7vT+TUwuuLbr3yjK7qOGqfRFSJyTrGUSlgYLltJuRIWEgSff/45r7zyCs2aNeONN95g7NixAMyePZvXX3+dgQMHYhgGf/7zn1mwYEEtRysiIiIiIhVVIwmLpUuXcvXVV9O8eXOsViu33Xab79jcuXN57LHHOHToUE2EIiLnCMPpoejnLABMoWYiuiUG9XynjK649Mqgnk9EpK4pPSWUq9iOE2+iIkQzQkkQvPnmm1gsFubPn88dd9xBcnIyAOeffz733HMPaWlpPP7447zyyivExcXVcrQiIiIiIlJRQU9YPPvss4wYMYIvvviCgwcP4nQ6/YZqx8XF8eKLL/Lll18GOxQROYcUbc7CsHvng4romojZGtwZ8NZ++xVOhx3Q6AoROTeVnhKquKjQNylUiEcjLCTw1q9fz4ABA0hNTT1tnaeeeork5GSeffbZGoxMRERERESqI6gJix9++IG//OUvNGvWjM8++4zDhw+fUqd///4kJSXx7bffBjMUETnHrP4m3bcd0atRUM+l0RUiIv4JC0dREcUnlg0I0wgLCYL8/Hxatmzp2w87McKnoKDAV2Y2mxkwYABpaWk1Hp+IiIiIiFRNUF85fu2117Barfzwww906dLltPV69OhBenr6aY+LiFTG4YN5pBS4ARNZJoPkNsGdCkKjK0REfpuwKCQxMhQKXcSFWmoxKqmvkpKSOH78uG8/MdE79eOePXvo2rWrr7ywsJC8vLyaDk9ERERERKooqCMsVq9eTf/+/c+YrADvLxxaw0JEAuWXObsJwftq7+GWUVhCgvdV99vRFQMuuypo5xIRqctKr2HhKCoiNsa7H6YZoSQIUlJS2Lt3r2+/V69eGIbBRx995Cs7dOgQixcvplWrVrURooiIiIiIVEFQExaFhYU0adKk3Hq5ubl4PJovQESqz+PxEJOe69tPHRXchxRrSo2u6DZ6HDENg7u4t4hIXeU/wqIAU5h3ZIXh9GBoHQsJsNGjR7N161b27NkDwAUXXEBCQgIvvvgiV111FQ899BADBgygsLCQiRMn1m6wIiIiIiJSYUGdEqpx48bs2LGj3Hrbtm2jRYsWwQxFRM4Rv6w4QHO3d3TFLisM6xC8BEJRXi4b/Nau0OgKETl3/XYNC1NMyXsxhsvjS2CIBMK1117LwYMH2bdvHykpKURFRfHuu+9y7bXXMmPGDF+9Pn368Oijj9ZipCIiIiIiUhlBTVgMGTKETz75hLS0NAYPHlxmnW+//ZYdO3Zw1113BTMUETlHHFmyH1+Komdw15LQ6AoRkRLm0FDfdnFRIS6zybfvtLuwKmEhAdSpUyfeeustv7IJEyaQnp7ON998w7Fjx+jUqRMTJkzAYtG9JyIiIiJytgjqlFAPPfQQJpOJK664gpkzZ+JyufyO//jjj9x+++2EhoZy3333BTMUETkHHM7MJ/W4E4BcDPqPbxu0c2l0hYiIP5PJ5Btl4Sgq4tcj+b5jR3NstRWWnGOaNm3KXXfdxaOPPspll12mZIWIiIiIyFkmqAmL3r178/LLL5OVlcXEiROJj4/HZDIxY8YM4uPjueiiizhy5Agvv/wynTt3DmYoInIO+PnbHYSeWGx7f8tIwiNCy2lRdRpdISJyqpKERSGGpeTHTIfNdbomIiIiIiIiIj5BTVgA/N///R/ff/89/fr1w2azYRgG+fn55OXl0a1bN77++mvuvffeYIchIvWcs9hN413et3ndGHS5MHijK2y/HV1xmUZXiIgAmMO8CYvioiIILfkxs9jmrK2QRERERERE5CwS1DUsTho3bhzjxo0jOzub3bt34/F4aNGiBcnJyTVxehE5Bxxef5iGhnd0RXq0hTEpDYJ2rg0/flNqdMV4YhI0ukJEBErWsXA5i6HUTDwOu0ZYSPVYLBZMJhObN2+mffv2lZrqyWQynTI1rYiIiIiI1E01krA4qWHDhjRs2LAmTyki5wjrL1k4Tmy3GN0qaOdx2238Ou9H4OToiiuDdi4RkbPNySmhAAyzx7ddrCmhpJoMw8AwDL/9yrQVEREREZGzQ1CnhJo+fTr79+8P5ilERHAeKcKxMxeAkIbhtB/QLGjnytnyC65ib2pEoytERPyVTliYzG7fttPuLqu6SIV5PB48Hg/t27f326/ofyIiIiIicnYI6giLW2+9FZPJRGpqKmPGjGHMmDGMGjWK2NjYYJ5WRM4xhSsyfdtR5zXFZDYF5Txuu43c7ZsBsISGanSFiMhvnFzDAsBkcnHy3Ri3QyMsREREREREpHxBTVhMmjSJBQsWsH37drZv385//vMfzGYzffr08SUwBg8eTOiJ+Y5FRCqrIM9B3ppDmAFTqJmoPo2Cdq6cLb9guL0P3bprdIWIyClKj7DA5MaXsCjWCAsREREREREpX1ATFu+88w4A6enpzJs3j7lz57Jo0SJWrVrFqlWreP7554mIiGDIkCGcf/75PPTQQ8EMR0TqoVXfpdO+2DvVQ0HbWMyRwUmAFh3PKRldERJKv0snBuU8IiJnM0vphIXhBLzfyW6HEhYSWB6PhzVr1rBp0yays7MxmUwkJCTQrVs3+vTpg8kUnNGWIiIiIiISXDWy6HZqaiqpqancfffdGIbBmjVrmDdvHvPmzSMtLY05c+Ywb948JSxEpFI8Hg+Rm44B3ocSnp5JQTvX2m+/8o2u6DxijEZXiIiUofSUUFAMRALgcWoNAQkMp9PJSy+9xNSpU8nJySmzTsOGDXnooYd46KGHCAmpkV93REREREQkQGr8J3in00l+fj75+fnk5eXhcnkfABqGUdOhiMhZ7pcVB2ju8iYrdofB0J5NgnKe3COH2bRwDgAmSwh9JlwRlPOIiJztSk8JlRhZUt47WeuXSfUVFhZy0UUXsXTpUt/vDmFhYSQkJODxeDh+/DjFxcVkZWXx2GOPMXfuXL755hsiIiJqOXIREREREamoGklYbNiwgblz5zJv3jyWLVuG3W7HMAxiY2O56KKLfOtZiIhUxpHF+zg5zsHoFbzRFcu/+BiP2zudSXzHrkTGxQftXCIiZ7PSCQuPx+HbDtEACwmAP/7xjyxZsoTw8HDuu+8+fve739G1a1ff9E8ej4eNGzfy/vvv869//YuFCxfypz/9iddff72WIxcRERERkYoyB7Pza6+9lkaNGtGnTx8eeeQRFi1aRN++fZkyZQppaWlkZ2cza9Ys7rvvPjp16hTMUESknjl8MI/2ud4RWscx6H9B26CcJ3t/BpuXLAC8D+LiO3UPynlEROqD0lNCFRcX+bYNp9awkOrJyMjgzTffJDY2lrS0NF588UW6devmt1aF2Wyme/fu/O1vf2PZsmVER0fzxhtvsH///oDG8sEHH3DXXXfRt29frFYrJpOJ6dOnn7Z+Xl4eDz74IK1atcJqtZKSksKf/vQnCgoKyqzv8Xj45z//Sbdu3YiIiCApKYnrrruOXbt2BfRziIiIiIjURUFNWHz22WdkZ2fTvXt3vvzyS3Jycli8eDFPPvkkAwcOxGKxBPP0IlKPbfh2JyEn1q440DKS8PDgLLad9tkHGIb31eAGnXtgCbMG5TwiIvVB6REWDr+EhYZYSPV8+OGHALzwwgv06tWr3Pq9e/fmhRdewO12+9oGyhNPPMGbb77J3r17SU5OPmPdwsJChg8fztSpU+nYsSN/+MMf6NChA3//+98ZNWoUdrv9lDZ33XUX999/P4ZhcP/99zN+/Hi+/PJL+vXrR3p6ekA/i4iIiIhIXRPUhEVMTAyGYfDzzz9zww03cMUVV/Dyyy/z888/B/O0IlLPFRe7aLI7HwA3Bl0uaheU8xzamU76yp8AiIiNI65Dl6CcR0SkviidsCgsyvdtZ2YVlVVdpMKWL19OeHg4t9xyS4Xb3HLLLYSHh/PTTz8FNJZp06axZ88ejh49yu9///sz1n3ppZfYsGEDjzzyCLNnz+aFF15g9uzZPPLII6xevZqpU6f61V+4cCHTpk1j2LBhrFu3jhdffJH333+fmTNncuzYMe69996AfhYRERERkbomqAmLY8eOkZaWxlNPPUXfvn1988j27t2bxo0bc/311/Puu+8GfJi2iNRvq+fupqHhHV2RHmOheav4oJxn2Sfv+bb7XnIl5pDgjOIQEakvLKWmhLLZSqa7OZSthIVUz6ZNm+jVqxdWa8VHOoaHh9O7d282btwY0FjGjBlDq1atyq1nGAbTpk0jOjqaJ5980u/Yk08+SXR0NNOmTfMrf+uttwB45plnCCv19+mCCy5gxIgRzJkzh4yMjAB8ChERERGRuimoi25bLBYGDhzIwIEDefLJJykqKmLRokXMmzeP+fPn8+mnn/Lpp58C0L59e7Zs2RLMcESknnCuPuzbjh/ULCjn2LfpF/b+sh6A2KTGdB4xmswFC4NyLhGR+sIUEgomExgGxfaShIXFbdRiVFIfHDt2jN69e1e6XdOmTdm0aVMQIipfeno6Bw8eZNy4cURFRfkdi4qKYvDgwcyePZt9+/bRokULABYtWuQ79lvjxo1j0aJFLF68mBtvvLHCcZT3clhmZqZv22azYbPZKty3nB10TeUk3QtSmu4HOUn3gpRWmfshWPdOUBMWvxUZGcmFF17IhRdeyM8//8yHH37I66+/jt1uZ/v27TUZioicpZyHC2ln9z74OmQx6DW0ZcDPYRgGS0uNrhh01fVYNLpCRKRcJpOJsPAIim1FOOwFeMINzJgI8ShhIdWTn59PTExMpdtFRUWddnHrYDu53kRqamqZx1NTU5k9ezbp6em0aNGCwsJCMjMz6dq1a5lr/Z3sp7LrWJxMhlTEkiVLSExMrETvNfrrpFTRnDlzauhMuh/qOt0LUpruBzmp5u4F0P1Q91XmfsjKygpKDDV2l+zfv5+5c+f6RlccPXoU8D4YDA0NZeDAgTUVioicxQpWlLwF2G5cGywhgZ/Zbte61WRu3wpAw+Yt6TR0BA5HccDPIyJSH4VFRnoTFkWFOMIhApSwkGrzeKq+cHt12lZHbm4uAHFxcWUej42N9atX2foiIiIiIvVRUBMWM2fOZN68ecybN8/3JpBhGJhMJrp27cqYMWMYM2YMw4cPJzIyMpihiEg94HG4KFp3BABTqJnYfk0Cfg7D4yGt1OiKwdf8DrP51LccRUSkbGER3p/piouKcCR4ExahtfO8WOqZgoKCSq/fUFujK+qSffv2nfF4ZmYm/fv3B2DYsGE0b9684p0vX1Cd0KSGjB07tmZOpPuhztO9IKXpfpCTauxeAN0PZ4HK3A/BWpc6qAmLK664wrfdokULX4Ji9OjRNGrUKJinFpF6qGj9EQyHG4DIno0wRwT+K2zr8qUczdgDQJO2qbTrp9FfIiKVYT3xEorLWYzTZIBhIlQDLCQAZsyYwYwZM2o7jAo7OVLidCMi8vLy/OpVtn5FVSYBERERQURERKX6l7pP11RO0r0gpel+kJN0L0hplbkfgnXvBDVhcdlll3H++eczZsyY087dKiJSER6Phx0/7ubkrMpRA5MDfg63y8VPn37g2x9y7c2YTKaAn0dEpD47OcICOJGwgHAlLCQADKNqN1Jt/Vte3poTv13jIioqiuTkZHbv3o3b7T5lHYvy1sQQEREREakPgpqw+PLLL4PZfcBMnz6dW2655Yx1Ro0axfz5889YZ9GiRYwcOfK0x999910mTZpUlRBFznk/L99Pkt07p0hGhInmTaMDfo5Ni+Zx/LB3jYwWXbrTsluPgJ9DRKS+K52wcJu8D5jD8CaezebArzsk54bdu3fXdgiVlpqaStOmTUlLS6OwsJCoqCjfscLCQtLS0mjdurXfotjDhw/nk08+IS0tjWHDhvn1N3v2bIBTykVERERE6hMtzQ707NmTyZMnl3nsiy++YNOmTYwbN67C/Q0fPpwRI0aUeR4RqZqjS/aTdGLb1SPpjHWrwlnsYPkXH/n2h1x7k0ZXiIhUgTWy5KGs2+RNNIdgwlnswRquhIVUTatWrWo7hEozmUzcfvvtPP300zzzzDO88MILvmPPPPMMBQUFPPbYY35t7rzzTj755BOefPJJ5s6dS1hYGAA//PADixYtYuzYsWfln4WIiIiISEXVSMJiy5YtvPbaayxcuJADBw4A0KxZM0aNGsX9999Pp06daiKM0+rZs2eZyYTi4mJef/11QkJCuPnmmyvc34gRI5gyZUrgAhQ5x+3fk0P7XBdg4jgG/ce3Cfg5fp79HQU5xwBo23cATdt3DPg5RETOBWGRJSMsTBYDXN7tYrsLa7jelZGz37Rp01i2bBkAv/76q69s0aJFAAwZMoTbb78dgIcffphZs2bx4osvsn79enr37s26deuYM2cO/fr144EHHvDre+TIkdx+++1MmzaN3r17c9FFF5GZmcmnn35KQkIC//znP2vsc4qIiIiI1Iag/9Y4ffp0fv/73+N0Ov3mnU1PTyc9PZ13332XN954o1IJgZoyc+ZMsrOzueyyy2jcuHFthyNyzto4K52ueEc7HGwdTdfw0ID27ygqYuWsL7w7JhODr7kxoP2LiJxLSk8J1TzBCt6Z9og0a9Sa1A/Lli3jf//7n19ZWloaaWlpvv2TCYuoqCgWL17MlClTmDFjBgsXLiQ5OZmHHnqIyZMnl7lQ4RtvvEG3bt148803ee2114iOjubyyy/nueeeo23btsH9cCIiIiIitSyoCYu1a9dyxx134Ha7ufjii7ntttt8P2Tv2rWLt99+m2+++YY77riDLl260Ldv32CGU2nTpk0DSn7hqKj09HReffVVbDYbzZs3Z9SoUTRr1qxKMezfv/+MxzMzM33bDocDm81WpfNIzbLb7WVuy6mO59hom2kHTNgx6HJhq4Df56tmfo49Pw+A1POGEJ3U+JRzBO2auexY1v8PS0YaGJ4yq3haDsHV//d+ZaFf342pOL/87vvfjaflYN++KWc3ofOfrFBoxRP+DdZY375ly0wsm74ot50Rn4JzzLN+ZSGLnsGcta3ctu6Ol+DuenVJgctB2MzbKhSvc/jjGEklI/bMB9ZgWfYKA45le+P/dDpuSxnT0VjCKL78Hf+ide9g2bWg3HN6mvbBNegPfmWh3/8BU9HRctu6ek3C03ZMSUF+JmGz/1RuO4Di8a9AdCPfvnnHHEI2vFduOyO6Cc7xf/crC0l7GXPm+nLbutuOwd1rkl9Z2IybwXCX29Y56EGMpr19+6Yjmwhd8vxp61vcHt91sxcN8j/2y8dYtn9X7jk9SZ1xDfefaiV07mOYcjPKbevqeg2ejhNKCuzHCfv23nLbATjHPIcRXzJdi3nPUkLWvFFuO8Mah3PCv/zKQlb+C/O+5eW2rQvfEXa7naY5K2iUt5HMRpf46jg9Tix4k8y2/CIsoWV/z0ntcDgctR3CWWn69OlMnz69wvXj4uKYOnUqU6dOrVB9s9nM/fffz/3331/FCEVEREREzl5BTVj87W9/w+Px8Pbbb5+yqHXXrl255JJLmD59Orfeeisvv/wyH3/8cTDDqZS9e/cyf/58mjdvzvjx4yvV9qOPPuKjj0rmwg8JCeG+++7jb3/7GxaLpVJ9lV6ErzwrV65k586dlepfat+SJUtqO4Q6LX9zBCPwvn24PqKYsHXLAtq/225nz3czvTsmE8WJTZkzZ84Z2wTqmiUfX0OXAx8TUXzmh9sHj9lYd9x/Gqzx2+didReUe44Nrnbs31ro248r2s2InfMqFN+i+XMpDonx7bc/NI9OmeW3PR6RwmKP/4Kgg7fPI7Gw/ITFzoIIthyM9+2bPcVMqGC8y839yY7e59tvcnwtA/YsoMnJgryy27lNoadc8+775tE6q/yExZGsY6wq6OJXNmbbPKLKuaYAGx3N2LOz5OFtlP0QYyr4WZctnEORtSRh0froXLrvL79tgbUx883+n3XAzrk0ydtQbtu9ufDr0aZ+ZRN2zMNM+QmL1UY3Dsdl+fYT8zcz+Ayf1QK+6/b10iUYppIfVzofmEfqkfI/67HDB/jJ4f8ixIit84izlZ+w2GpLYEeG1bdvdeYyvoLXZknIcPIiSxIWLbKX0Tuj/Lb2kNhT7sPee+bRIqf8hEWd+I4wPLS3H6LVsSXsO+qBE6PisnOO0gzvffPT4jRsUeXfL1JzsrKyyq8kIiIiIiJSg4K68uHSpUvp2bPnKcmK0iZNmkTv3r3r3EPbd999F4/Hw6RJkyqcZEhKSuKFF15g48aNFBQUcPjwYWbOnEm7du2YOnUqDz/8cJCjFqlfXC7onut9aOjGwNk68COIcjZvwHA5AYht25HQmNhyWgRO8vG1FXqwLSJS15nw0OnQlwDEeHJ85S7D6ds2a3CFiIiIiIiIlMNklF5YIsCsVitXXXUVH3zwwRnr/e53v+Pzzz+vM8PSPR4PrVu3Zt++fezcuZPWrVtXq79Dhw7RvXt3cnJyOHDgAI0aNSq/0QkVmRKqf//+gHfRP81re3aw2+2+JN2wYcMIDw+v5YjqpmVfptPp11wANseYGfpg73JaVE7e0SN8/OgDuF1OLKGh3PDSP4lu0LDMukG5ZvmZhL81CE/TPjhHPIkRd5oRVeYwsEb7l9lygAp8fYdGQUjJm+J4XOA4zVCD3wqPB1OpvLazCFwVmA7LZIHwOP8yR5733OUJCYfQkvnvMQyw55y+fmlhMWAptb6JuxhHXjY/Lf8JgEEDB2ENt5bdNiLBf7+4ENwV+DfJHArWGP8y+/HTTu/lJzTS+3lP8rjBkVt+OwBrHJhLJdOdNnBVIKFnMnuva2mOfPA4y6zux2KFsCj/Mtux8tsBhEWDJaxk3+2EM0xX5LA7fNdt4MgLCS89x3uFr02I35RmANhzKzSFFSEREFrqnIbHe10rwhrrPfdJLgc4C09f38cEEQ38ixwF4Ckuv2kd+I6w2+3E/qMdFsPFPnNHPtuUBECfTjfSzu4dYZF9YXPa92tyut6kFuzcuZNu3boBsG/fPpo3b17LEUlt2L9/v29Ud2Xvg5Q/lz9Fn9S+PS9cVCPn0f1Q9+lekNJ0P8hJNXUvgO6Hs0Fl7ofq/Bx5JkGdEio+Pp6MjPKnXsjIyCAuLq7cejVl3rx5ZGRkMHr06GonKwCaNGnCpZdeyrRp01i5ciUTJkwov9EJlbnQVqu1zIX7pG4LDw/XdSuD4TFouqNkOpOm41oH/M9pwczPcJ8YXdH7gktIalqxv2+VvmYuB6x8w7vmQI9rS8oj2sDv07AktMFiquRitNX5s4iKKb9OoM9ZnbaRkeXXKfukYAnDeWLKGmuD5Ipft9r6rFHR5dcJ9Dmr1bZq6zNBBHCG0Uw2m++6hUdE+F+3WrsPo8qvU/ZJgfgqNq2t+7Bq3xG2sIZEOw4T7s4BvAkLu7MkuWSze/TvXR1jtZ4miSsiIiIiIlJLgjolVL9+/fjpp59YsOD084AvWLCAtLQ0BgwYEMxQKqWqi22fSWJiIgCFhRV5y1JE7FuOEWfzvgl9LCGMrn2bltOicg7t2M7WtMUAhMfE0v+yqwLaP+AdHbD1O/jXAJj7JMx+3PuGd2kN20JlkxUiInVQscWbcLO6SkZFuT0lo7JcDq1fIYHz9NNPV3gRaxEREREROXsENWFx33334fF4mDBhAg8//DCbNm2iqKiIoqIiNm7cyB//+EffaIP77rsvmKFUWHZ2NrNmzSIhIYHLL788YP2uXLkSgJSUlID1KVKf5S8pmQ4t9ZLUgPZtGAaLP3jHtz9w4nWEV/XN9tM5uh3euxQ+uR5ydnvLirJhZ/kLOYuInI1OLsBtNZckJjylpu9yOSowLZxIBT399NMsXry4tsMQEREREZEAC2rCYty4cTz++OPYbDZefvllunfvTkxMDDExMfTo0YOpU6dis9l44oknGDt2bDBDqbD333+f4uJifve73512mHxWVhZbt24lKyvLr3zt2rVl1n/ttddYuHAhqamp9OvXL+Axi9Q3jr15FO/1zqEe0iiS8PYNymlROTvXrGT/lo0ANEhuSo/zLwho/xQcgXfGwe5SD1JaDYa7FkOXwCVCRUTqkpMJizCz2zdyzF1q3Rt3sUZYSOA0atRIU4yJiIiIiNRDQV3DAuCZZ55h8ODB/P3vf+enn37Cbvf+4mq1WhkyZAgPPfQQ48ePD3YYFfb2228DZ54O6vXXX+epp55i8uTJTJkyxVc+ceJEQkND6du3L82bN6ewsJAVK1awfv164uPj+eCDD7BYLKftV0S89ny/k5OzxccMa47JHLgpk9wuF0s+fNe3P/SGW7CEBPircPbjJYsRx7eEsc9Cp0s09ZOI1GuOEO9INZMJrNYwHHYHbmcRnFhv3VNcgcXoRSpo6NChrFq1qrbDEBERERGRAAt6wgJg/PjxjB8/HrfbTXZ2NgANGzascw/vV61axcaNG+nfvz/dunWrdPu7776b2bNns2TJErKzszGbzbRq1YoHHniAhx56KGArpYvUZ7u2ZRGxNx8w4Qi3ENkzKaD9/zLvB3IyDwDQrGMX2vU9L6D9s3Mh/PqZdzs8Hm5fANGB/QwiInXRyREWAFZrKA67A6fT5itTwkIC6S9/+Qt9+/bliSee4JlnnsGklwJEREREROqFoCQsduzYwZdffsmePXuwWq307NmTq6++moiICBo1ahSMUwZE//79MQyj3HpTpkzxG1lx0iOPPMIjjzwShMhEzh3p3+6kC96HDrtaRdI2JHAz1zmKCvnpi499+8NvvDWwDzicdvjuoZL9859WskJEzhl+CYsw70spzuJCX5nh1JRQEjhr167lpptu4vnnn2fGjBlcdtllpKSknHaaqJtuuqmGIxQRERERkaoIeMLi1Vdf5eGHH8bt9v+l9Mknn+T777+na9eugT6liNQTRzILSD3qAEwUYtD/8g4B7X/lzM+x53vXxug4eDjJ7QLbP/tXQe4+73aL86DXjYHtX0SkDjsU24uFHZ7lvNEXEfb6f+FoLq5SIyxMTo2wkMCZNGkSJpMJwzDYtm0bL7300hnrK2EhIiIiInJ2CGjCYtmyZTz00EMYhkFUVBQdOnQgLy+PXbt2sX//fiZOnMiWLVswm4O61reInKXWz9zmG12xp3kkHeIDt5hm3tEjrPt+FgCW0FCGXBuEBxeth8Hv0+DHR2Dsc6DvOhE5hxSHxlIcGgsxyVijvCsRuQxXSQWXEhYSODfddJOmgRIRERERqYcCmrB4/fXXMQyDm2++mddff52oE7+s/vLLL0ycOJEdO3bw448/cuGFFwbytCJSDxTkOWi5txAw4cKg26WpAe1/6cf/w+10AtD7gkuIa9Q4oP37JLWHG78KTt8iImcJa6T3Z0C34fSVNY2y1lY4Ug9Nnz69tkMQEREREZEgCOjrv8uXL6d58+a88cYbvmQFQPfu3XnttdcwDIMVK1YE8pQiUk+smLWNmBOjK7YlhNK0RVzA+j60Yztb0xYDEB4TS//LrgpY3yIicqqwEwkLl6ckYZEcGVZb4YiIiIiIiMhZIqAJi8OHD9O3b1/Cwk79hXTIkCEAHDlyJJCnFJF6wFnsJmHzcd9+6wvbBKxvwzBY/ME7vv2BE68jPCo6YP1TdAyW/M274LaIyDmu2bHlWFa/ifX4dgDcpaaEMrSGhQSRYRhkZWWRlZWFx6N7TURERETkbBXQhEVxcTHx8fFlHouNjfXVEREpbfkPO2hkeEdXbI8y0b5r4KZr2rlmJfu3bASgQXJTepw/PmB9AzBvMix4Fv4zEA5uCGzfIiJnmW4HPiBswV+wHloF+E8JpYSFBMP8+fMZP3480dHRNG7cmMaNGxMTE8MFF1zA/Pnzazs8ERERERGpJK0IKyK1yjAMQtaUjLyKG9EiYH27XS6WfPiub3/oDbdgCQkNWP9krIB173m3C45CdJDWxRAROUsUh8QAYHXnA2BgYJgMANwOd63FJfXT008/zdixY5kzZw42mw3DMDAMA5vNxuzZsxk7dizPPvtsbYcpIiIiIiKVENBFtwF27NjBe++9V6XjN910U6DDEZE6zrHzOC1PvIC7LwwGDA5cwuKXeT+Qk3kAgGYdu9Cu73kB6xu3E779Q8n+6CchNjlw/YuInIUclhhigDCjyFdm87iJNIWw/2gB+paUQJk3bx5TpkwhLCyMO++8k9tuu422bdsCsGvXLt5++23efPNNJk+ezKBBgxg1alQtRywiIiIiIhUR8IRFWloaaWlpZR4zmUynPW4ymZSwEDkH5S854NvuPrEDZnNgBn45igr56YuPffvDb7wVk8kUkL4BWP46HNns3U7uCf1uD1zfIiJnqeIQ7xpBVkvJ2hUuww2mEEI1I5QE0D/+8Q9MJhOzZs1i3Lhxfse6d+/Oa6+9xkUXXcQFF1zAa6+9poSFiIiIiMhZIqAJi5YtWwb2gaCI1GvFmYU4tucAYGlgJbJrUsD6Xjnzc+z5eQB0HDyc5HYdAta36fheWPTiiR0zTHgVzJaA9S8icrbyTQllLpn+yYV3O8yolZCknlq5ciWDBg06JVlR2tixYxk0aBDLly+vwchERERERKQ6Apqw2LNnTyC7E5F6LnfRPt92zJBmmCyBSXjmHT3Cuu9nAWAJDWXItQEcvWUYhM59DFw2737/O6Fpr8D1LyJyFvMlLEqNsHAb3m1rrUQk9dXx48dp1apVufVatWrFqlWraiAiEREREREJBC26LSK1Yte2LIp+9i62bYoIIbJfk4D1vfTj/+F2ehfG6H3BJcQ1Ctxi2MnHV2PZNd+7E5MMIx8PWN8iImc7h2+ERakpofB+H1sx4XZpXigJjMTERLZu3Vpuva1bt5KYmFgDEYmIiIiISCAoYSEitWLHV+lY8I6o2NoiAnNYYKZUytj4C1vTFgMQHhNL/8uuCki/ACFuG90OfFhScMGLEB4bsP5FRM52ZU0J5TGcvm273XlKG5GqGDx4MOvXr+ejjz46bZ0PP/yQdevWMWTIkBqMTEREREREqkMJCxGpcdt+OUzn4963b3MxGHBlp4D063I6mTftX779IdfcSHhUdED6BvCYQtiTOArDYoXUcdDpkoD1LSJSHxRbvN+5oWY3J5c1c3tKkhS2QiUsJDD+9Kc/YTKZuOmmm7j66qv57rvv2Lx5M5s3b+bbb7/lyiuv5Oabb8ZisfDHP/6xtsMVEREREZEKCugaFiIiFbHvmx10PLGd2SmOLrGBmdl81czPyck8AEBy+450H336hTirwmMOZXuTS2k94Y+ER8bgexonIiIAOELj8MS1wByVSNjuUBwOJx5Pse+43aaEhQRGv379+M9//sP/+3//jy+++IIZM2b4HTcMg5CQEP71r3/Rr1+/WopSREREREQqSyMsRKRGbVp7kI753jnMs00Gg68KzOiKYwf3s2rmZwCYLRbOv+NeTObgfMUZDVpDfIug9C0icjbLjUzB8fvVcOcirLENAHB7HL7jDpvrdE1FKu2OO+5g3bp13HrrrbRp0war1YrVaqVNmzbcdtttrFu3jjvuuKO2wxQRERERkUrQCAsRqVGHv9tF3IntrO4J9IgMq3afhmEwb9q/cbu8D8L6XHw5SS1Tqt2vT+5+CGsYuP5ERM4B1ohIANwuJSwkeLp27cq0adNqOwwREREREQkQjbAQkRqzYfk+2hcZABwxGQy5vGM5LSpm85IF7Nv0CwCxSY0ZOPHagPQLwJ5l8FoPQhb/FbNHU5mIiFRUWGQUAO5SU0I1jQrMFIAiS5YsYfv27eXWS09PZ8mSJTUQkYiIiIiIBIISFiJSIzweD8dn7/Ht5/VJxBpe/UFetvw8Fr//tm9/zG13E2oNr3a/ADgKYOY94HERuuIfNM/5KTD9ioicA6yRJ0ZYGCXJ3gB9O4swYsQIXnzxxXLrvfTSS4wcObIGIhIRERERkUDQlFAiUiPWL91HO7t3O9NsMPiSDgHpd8mH72LLzwOg/XlDaN2rb0D6BWDeZDi+FwB38/PISBgauL5FROqpkAVT4MhGrAecQJhfwsJwemotLql/DMOo7RBERERERCTANMJCRILOMAySfznm27cNaExomKXa/e7fvJGNC+cCEBYRycibA7iw5q5FsPrEnNihkTgvnAomfWWKiJTHfGQj7F1GWHEWAC5PyboVHiUspIbl5OQQHq6xPSIiIiIiZwuNsBCRoLNvPYbnQAEApqQIBl2UWu0+XU4nc9963bc/5LqbiE4I0MLY9jyYdW/J/pinMBq0BtID07+ISD1mRHi/i61mb6Ki9AiLrGM2omolKqkPMjIy/PYLCgpOKTvJ5XKxadMm5syZQ9u2bWsiPBERERERCQAlLEQkqAyPQd6cvb79hHEphIRUf6TCmq9ncOzgfgCatGtPj/MvqHafPnOfhNx93u2UodDvdnA4Ate/iEh9FpkAgNXiBsBllIywSD+QS6taCUrqg5SUFEwmk29/xowZzJgx44xtDMPgd7/7XbBDExERERGRAFHCQkSCyrYxC2dmIQChzaIJ71L9URA5hw6y4qtPATCZzZx/x72YzdWfYgqAHfNh7XTvdlg0XPovMGsqKBGRijIiTiQsyhhhoSmhpDpatmzpS1hkZGQQGRlJYmJimXXDwsJo3rw5EydO5O67767JMEVEREREpBqUsBCRoHG5PGz6bCvJJ/bjxrbyezOyKgzDYN60f+N2eh+A9b7wUhqltKlmpCfYc+Hr+0r2xz4DDfQusIhIZZQkLLwjLNyeUotuF7trJSapH/bs2ePbNpvNXHXVVbzzzju1F5CIiIiIiAScEhYiEjQ/fbOdNidmAtkbYaJZ+wbV7nNr2mIyft0AQExiEoOuur7affoUHfNOZZJ3ANqMgD63BK5vEZFzxck1LCzefwBKTwllaISFBMi7775Lu3btajsMEREREREJMCUsRCQoiotdRK0+AnhHVESMalnt0RW2gnwWvTfNtz/61t8TFh5RrT79JLSG2xdA2qvQ4zqoZrwiIuci48QaFmFlTAllcilhIYFx880313YIIiIiIiISBEpYiEhQpH21jVSP94F/eoSJkUNbVrvPpR9Npyj3OACp/QfRts+Aavd5ipAwGP5w4PsVETlH+KaEOrnodqkpoUwaYSEB5nK5+OKLL1i4cCEHDhwAoFmzZowcOZIrr7ySkBD9uiMiIiIicjbRT/AiEnB2m5MGG7I5Obqi4fjW1e7zwNbN/Dp/NgCh4RGMnHRntfv08bghUIt2i4ic48606LbJbdRKTFI/bdiwgSuvvJLdu3djGP731rRp03jyySf5/PPP6dmzZ+0EKCIiIiIilaaEhYgEXNqMrXQwvMmKbVFmRg9oVq3+3C4nc9963bc/5NobiWmYWK0+fbZ+Dwufg8v+A8ndA9OniMi5LLIhnHcP1pBY2JGGq1TCwqyEhQTIwYMHGTt2LFlZWTRu3Jhrr72Wtm3bArBr1y4++eQTdu7cybhx49iwYQPJycm1HLGIiIiIiFSEEhYiElBFBcU02pTDydEVTSe0rXafa76dSfb+DAAat2lHz3EXVbtPAPIPwzf3Q+FReGsk3LkYmnQNTN8iIueqECuMf55Qw8A07VLcnpJFty1uTQklgfHiiy+SlZXF7bffzmuvvUZEhP+aVn/961+5//77mTZtGi+99BJTp06tpUhFRERERKQyzLUdQF2RkpKCyWQq878RI0ZUqq8PP/yQ/v37ExUVRYMGDbj44otZt25dcAIXqWPSPt9CgxOjK7bEWujUs0m1+jt++BArvvgYAJPJzPl33Is5ENM3edzw5e3eZAVAuzHQuEv1+xUREQBMJhNhkRF4cOMxvImKMA2wkAD54YcfaNmyJf/5z39OSVYAhIeH8+9//5uWLVvy3Xff1UKEIiIiIiJSFRphUUpcXBwPPPDAKeUpKSkV7uO5557jiSeeoFWrVvz+978nPz+fTz75hEGDBjF//nwGDx4cuIBF6piswwU035YLmPBg0Pqy1Gr1ZxgG89/+Ny5nMQC9LphA4zbtAhApsOTvsHuJdzsmGS79F5hMgelbREQAsEZG4SgsxIMLM2G0iY+s7ZCknti3bx+XX345FsvpX2IICQlh4MCBzJw5s+YCExERERGRalHCopT4+HimTJlS5fbp6elMmTKF9u3bs2rVKuLi4gC45557OO+887jjjjvYuHEjZrMGtkj9ZFp6kJgTU0FtaRjGuM5J1epv2/Kl7PnZOzopumEig6++odoxArB7KSx+wbttMsPEtyEqQGtiiIgIGAY48rCGeX/UdHmchFjCMJyaEkoCw2q1kpeXV269/Px8rFZrDUQkIiIiIiKBoCfnAfTuu+/icrl4/PHHfckKgJ49e3LdddexZcsWli1bVosRigRP8f58bGsPe3fCzPS5sXrTK9kLC1g4/U3f/qhb7iIsIgBv5hYchRm3w4npSRjxGKRo5JOISEDNvBteaIk1ZwvgTVgAGMXu2oxK6pHOnTuzcOFC9u3bd9o6GRkZLFy4kC5dNOWjiIiIiMjZQiMsSnE4HEyfPp2DBw8SGxtLv379GDBgQIXbL1q0CICxY8eecmzcuHFMnz6dxYsXM2zYsAr3uX///jMez8zM9G07HA5sNluF+5baY7fby9w+WxmGQd7MdDgxN3nkiKZExIVU635c/ME7FOUeB6B1r34079qz+ve34SHsi9uxFBwCwN1qKMV974YK9FtXrpnH7eH4YRuG5oGvkGKHg+I8b24+c9cxwvSW7VlB1+3sc/KaWcIM7HY7oaExhABhZu+C227D+39PsVs/q9QhDoejtkOosptuuol77rmHMWPGMHXqVC688EK/499++y0PPfQQdrudm266qZaiFBERERGRylLCopRDhw5xyy23+JX169ePjz/+mLZt25bbPj09nejoaJo0OXWR4dTUVF+dymjRokWF665cuZKdO3dWqn+pfUuWLKntEKot9nAYqfujAbBFuFmX+wvGnF+q3J896zD7F8wBwBQSgqdlO+bMmVPtOFMPfUPnzEXec4TEsSjmahzz5le6n9q6Zo5jFo79HI7brsFxlRMFwA9p22o5DqkcXbezj/eafX90Ob1Dj9EJsPoSFt4RFp5iN7N/nINJX2N1QlZWVm2HUGV33HEHM2bMYP78+UyYMIGEhARat24NwO7duzl27BiGYTBmzBjuuOOOWo5WREREREQqSr8unnDLLbcwf/58Dh8+TGFhIevXr+fGG29k9erVjB49mvz8/HL7yM3N9ZsKqrTY2FhfHZH6xOmAxF0lUzXtSynEqMY3i+HxcGRVydRpDbv3JTQqujoh+rjNoXiwYGBibcrvcYSW/fe1rjEMyNsRxtGVEUpWiEidV3QwBEeI93vbavFOAXVySigzJjxaxkICwGKx8N133/Hwww8TFRVFdnY2a9asYc2aNWRnZxMVFcUjjzzCt99+q/XjRERERETOIhphccLkyZP99nv27Ml7770HwPvvv89bb73Fgw8+WONxnWleXvBOCdW/f38ABgwYUKGRIFL77Ha77y39YcOGER4eXssRVd2it36lAd4pJbbHWhh49ahq9bf++1nsPH4MgMRWrbny/z2A2WKpdpxeY3EeuB5T5np6963c25a1dc2K8opZ/MEO8tJLkp2NUmJIaBqA9TzOAS63m8yDBwFIbtqUkIDdSxJMum5nH5fbzc41RzHcJkKNSDr1GQL7ppcaYeHy1R04cCjxDSJqK1Qp5WwfmRsWFsYLL7zAU089xZo1azhw4AAAzZo1o2/fvlpsW0RERETkLKSERTnuuusu3n//fdLS0spNWMTFxZ12BEVeXp6vTmU0b968wnWtVisREXoAcLYJDw8/a6/brq1ZdDpoB0wUY5B6badqfZbcI4dZPfNz747JxLg77yMqOjCjK3zaDfX+Vw01dc32bT7G3Hc3Ycv3vplsMkG/i1vT54IUzGZT0M9fH9hsNubM2Q3AsLGpZ+3ftXONrtvZx2azsXfzYZz5Fmx5TkJjvdNjhp0cYXFiSigAPCG6pnVEfXmgb7VaGTx4cJnHjh8/zt/+9jeee+65Go5KRERERESqQuOjy5GYmAhAYWFhuXVTU1MpKCjg0KFDpxw7uXbFybUsRM52Ho+HPZ9tJQTvg/P0lChatGlQ5f4Mw2D+O//BVewdrdFr3MU0ade++oHmZZZfp47xuD2smLmTr/+5wZesiIoL49I/9KLfRa2VrBCROskSYQDgcRvYPN5/D367hgWA3eY8tbFIgOXl5TF58mRSUlJ44YUXajscERERERGpII2wKMfKlSsBSElJKbfu8OHDWb58OXPmzOGmm27yOzZ79mxfHZH6YOWc3bQv8j6cyjIZDP1dt2r1l74yjd3r1wAQ3SCBwdfcWO0Y2bcapl8EQx+EYX8Cc92fVqYgx86ctzeRuaNktFbLLg0ZM6kTETFhtRiZiMiZWcJLFqfId8QQBVjN3hEWbk/JlFCOItdvm4pU2Nq1a/nmm284fPgwjRs35pJLLqF3796+43a7nVdeeYW///3v5ObmYhgGnTt3rsWIRURERESkMjTCAti6dStFRUVllj/yyCMAXH/99b7y3Nxctm7dSmam/5vbt9xyCyEhITz33HN+U0Nt2LCBjz/+mE6dOjFkyJAgfQqRmmMrcmJdcsC3XzA4mcjoqj9MdxQVsmD6m779kbfchTWymms02HLgi1vB7YBFz8O696rXXw3Y82sWnz672pesMJlNDLyiLRf/v+5KVohInRdyYoQFQH6h9zvLavEmJ0pPCVVsV8JCquaPf/wj/fv355lnnuHNN9/kmWeeoV+/fkyZMgWA1atX07lzZ5588kmOHz9OixYteOedd/jll19qN3AREREREakwjbAAPvnkE1555RWGDRtGq1atiIqKYvv27Xz//fc4nU4effRRhg0b5qv/1Vdfccstt3DzzTczffp0X3n79u2ZMmUKTzzxBD169GDixInk5+fzySefAPDWW29hNitHJGe/pR9tpLPHOy3RjnATwy6s3mLvyz55n8Ic70LbbXr3I7X/oOoFaBgw617IzfDutzgPegVgxEaQuF3eKaA2zNvnK4tOsDLu9q40aVO5dW9ERGqLJaLUCIvjxRAeT1jRqVNCOZWwkCr47rvveOWVVwCIjY0lNTWVvLw8du3axTPPPEOHDh24++67ycvLIyEhgSeeeIJ77rmHsDAl/EVEREREziZKWAAjR45ky5YtrF+/nqVLl1JUVERiYiIXXngh99xzD2PHjq1wX48//jgpKSm8+uqr/Oc//yEsLIyhQ4fyzDPP+A1XFzlbHdh7nDY78gETLgyaXtmhWom4zB3b2DDnOwBCrFZG33o3JlM112hY+QZs/da7HdEArnwbLHXz685R5OS7f/1C5s6SUVmteyQy6qZOhEeF1mJkIiKVU3pKqIJjDrjhC6zZ+fD8K7hKTQmlhIVUxVtvvQXAfffdx0svveRbMHzLli1MnDiRm2++GZfLxciRI/n0009969CJiIiIiMjZpW4+wathw4cPr9TaEpMmTWLSpEmnPX7DDTdwww03BCAykbpn9xfbSTmx0PbW5HDGd21U5b48bjdz3/qXd0QEMOiqG4hNqnp/3gCXwJzHS/YvfwPimlevzyCxFzr55h8bOLI3HwBziInBE9vRbUTz6idtRERqmN+UUMfs0KIf1sgs4DcjLBzuGo9Nzn5r164lJSWFqVOn+r0o0alTJ1599VXGjx9PbGwsM2fOJCYmphYjFRERERGR6lDCQkQqzL7zOClHHQDkmQzOu7F6C22v+34WR/fsAiCpVWt6X3BJ9QLM3gmf3ggn3+QddD+0H1e9PoPEXuBk1mvrydpXAEBETCgX39uDRq1iazkyEZGqMVsNMBlgmCjIsQNgjYoC/NewiA+11Ep8cnY7evQoF110UZmjOs877zwAhg4dqmSFiIiIiMhZTgkLEakQw21w/Oudvv0Wl6USkxBR5f4Obt/Ksk9OLIRtMnH+HfdiCanGV5LtOHx0DdiPe/dTx8GYKVXvL4hs+cXMenU92QcKAYiIDeOyB3qR0DSqliMTEak6kwks4QZum8k7wgIItYZjMptxe0oSFq3jq/5vh5y7iouLiYsre12n2Fhvsj8pKakmQxIRERERkSBQwkJEKqRwxUFch4sACG0WTXS/JlXv63gO37zyV9wu70iIPhdeQnJqh+oF+P0fITvdu53UCSZOA3Pde4u3KM+brDh20JusiIwL47I/9KJBEyUrROTsZwn34LaZcRS6KN6/hbCs9VhDzbiMknUrjGLPGXoQERERERGRc5kSFiJSruwjhRTO2cPJSRjiL2mLyVy1NRbcLidfv/I8BTnHAGjeqStDr7+l+kGOehIOb4KCw3D9JxBe96ZWKsx1MGvqenIOeRM/0Q2sXPpAL+IbR9ZyZCIigRESYVCc490u+HkxCasfIczTD7e5ZISF4dQaFlI1O3bs4L333qvS8ZtuuilYYYmIiIiISAApYSEi5Vrz3q90cXjfiLV0T8RajXUWFv5vGge3bQYgumEiFz/wSPWmgjqpQSu4bQ4c2w0NUqrfX4AV5NiZOXU9uUdsAEQnWLnsD72JS9LUKCJSf1giSkZP5LsakgBYzS6/Rbc9To2wkKpJS0sjLS2tzGMmk+m0x00mU60mLFJSUti7d2+Zx4YPH86iRYv8yhwOBy+++CLvv/8++/btIyEhgYsvvphnn32WRo0a1UDEIiIiIiK1RwkLETmj1Qv30CXL+6CpEIP4Ec2q3NevC+fw85zvALCEhnLpg48RFd8gIHECYI2B5O6B6y9A8o/ZmfnKOvKyvHO6xyaGc+kDvYhNVLJCROoXS7jh2y4o9q43YLW4KXSVTAm1Nj2L0Re0rvHY5OzWsmVLTKaqje6sC+Li4njggQdOKU9JSfHb93g8XHrppcyePZvzzjuPiRMnkp6ezrRp05g/fz4rVqzQWh0iIiIiUq8pYSEip5V73EbonAzA+4Bgf48EOjSt2uiKzB3bmD/t3779MbfdQ5N27aseXPZOWPYKXPAShNXd9R/ysmzMnLqe/OwTyYqkCC77Qy9iEsJrOTIRkcALKT3Cwu6d7i7M7CKv1AgLl0NTQknl7dmzp7ZDqJb4+HimTJlSbr3//e9/zJ49m+uuu44PP/zQl6T573//y913380TTzzBG2+8EeRoRURERERqj7n8KiJyrlox7WcSDe8vyukRJkZc3blK/RQez+Hrl0sW2e457iK6jjy/6oHZcuCjq2H9B/DOeMg/VPW+gij3aBFfvbzOl6yIbxzJ5Q/2VrJCROotvxEWhaGAd0ooV6mEhcmlKaFETuett94C4Pnnn/cbUXLXXXfRpk0bPvzwQ2w2W22FJyIiIiISdBphISJlWjlvl99UUKk3d8ViqXyO0+1y8c3UFyg4lg1As46dGXHT7VUPzO2CzydB9o4T+04IrXuLVh8/XMTMqespPO4AoEGTSC79Qy+i4qy1HJmISPD4rWGR733YarW4cXtKpoSyuI1T2onUdw6Hg+nTp3Pw4EFiY2Pp168fAwYM8Ktjt9tZuXIlHTp0oFWrVn7HTCYT559/Pm+88QZr1qxh6NChFT73/v37z3g8MzPTt22z2ZQQqYd0TeUk3QtSmu4HOUn3gpRWmfshWPeOEhYicorj2TbC5+/n5FRQB3o1ZFRK1daaWPz+2xzYugmA6AYJTPjDo1hCQqse3OxHYdci73ZkQ7j+Ewiv+iLgwXB0Xz7f/vNnivKKAUhoGsWlD/QiMjasliMTEQkucwhYI0NwFLnIP+6CMMspi26blbCQc9ChQ4e45ZZb/Mr69evHxx9/TNu2bQHYuXMnHo+H1NTUMvs4WZ6enl6phEWLFi0qXHfJkiUkJiZWuL5+nTw7zJkzp4bOpPuhrtO9IKXpfpCTau5eAN0PdV9l7oesrKygxKApoUTkFCvf3kDDE1NBbY80MeKqTlXqZ9Pi+az/8RsALCEhXPLQ49VbZHv1NFj1pnfbHArXfAgNUqreXxAc2JbDzJfX+ZIVDZtFc9kflKwQkXNHVAPv911hjgNPRCJhFjduo2SERYgSFnKOueWWW5g/fz6HDx+msLCQ9evXc+ONN7J69WpGjx5Nfn4+ALm5uYB3ge6yxMbG+tUTEREREamPlNYSET8rZu+kyzHvg6UCDDpM6o7ZXPnc5uFdO5j71uu+/dG33UNyaoeqB7ZrEXz/cMn+hNeg1cCq9xcEO9cfYe7bm3GfmJ+9SZtYLvp/PQiPqsaIEhGRs0x0AyvHDhTh8RgUhaVgNe/FwMDtcWExhxCiJSzkHDN58mS//Z49e/Lee+8B8P777/PWW2/x4IMPBu38+/btO+PxzMxM+vfvD8CwYcNo3rx5xTtfvqA6oUkNGTt2bM2cSPdDnad7QUrT/SAn1di9ALofzgKVuR/Km3q0qpSwEBEfd6GTZquO+PYz+ybSsWXZb/mdSVHucWb9/TncTu8UID3Ov4Buo6rxD2DmL/DpjWC4vfuD7oNeN1S9vyDYtPQAiz/ahnHixeFW3Roy7o6uhIZZajcwEZEaFhVfslZPQXhHrLH5cAhchhMLIYR4NMJCBLwLab///vukpaXx4IMP+kZWnG4ERV5eHnD6ERinU5kEREREBBEREZXqX+o+XVM5SfeClKb7QU7SvSClVeZ+CNa9o4SFiPgc/2YnpkLv6Iq8ZpEMv6Jjpftwu1x88+oL5GcfBaBp+06MnHRnNYLKgA8mgsP7Szrtx8OYp6reX4AZhsGa7/ew6pvdvrKO5zVhxI0dz7hIuWEYbD22lWUHlrHswDJ25u7EOJHt+PKSL2kc1dhX95Otn/DP9f8sN5aUuBQ+vPBDv7IHFz3IysyV5ba9psM13N/7fr/4hnwypNx2AC+PeJnzks/z7a/IXMFDix6qUNu069L89v+x7h98uu3TctsNSB7AKyNe8Su74fsb2JO755S6zhOJs5dmvgTAfb3u49qO1/qOHy48zBVfX1GheN+/8H3axLXx7X+z8xteWPVCue0aRTbiq0u/8it7YtkTLNy3sNy2F7e5mEcHPOpXNvaLsRQ6C8tt+/TgpxndcrRvf2PWRu6ae1e57QBmT5xNdFi0b3/ar9N4d+O75bbr0rALb45906/szjl3sil7U7ltb+16K7d1u823bzfsjJk5pkLxvnH+G3RN7Orbn58xn7+k/aXcdlGhUcy50n+OzudXPs+3u74tt+3IFiN5dsizfmWXz7qcI0VHTtOixJ/7/5kJbSf49nfl7uLG728stx3U3e8Ip9NJlCmK+61TfGX5fR/Het5+eH6yb1qoMOUrRAB8a0UUFnq/z9u0aYPZbCY9Pb3M+ifLT7fGhYiIiIhIfaCEhYgAYNuYhW2DN8lgCg+hw81dqzQV1JIP32X/5o0ARDVIYMKD1VxkO6oRtOgPW7+F5v3hynfAXDdGLXg8Bss+3c6viw/4ynqd35KBV7TFZDKdUj+vOI/lB5ez7MAy0g6kcdR2tMx+Dfyf5jncDvKK88qNp7D41AfYhc7CCrW1u+1lxlsRbo/bb9/lcVW47W/ZXLYKtS1yFp1SVlBccMa2tmIbAMXuYr9yA6PC8Z5MKp1U7C6uUNuIkFPfOihyFVXr2lQkYeHyuE7Zr+q1qfB96Kr6ffjbawOVuA8N//vQ6XFWqK3HOHV+oorehzaX7ZSyvOK8CrV1epx++x6Pp+L3YR3+jrAZNn7KX0IKgwHIP2anSUokgG/hbSUsRLxWrvQmC1NSUgDvG2r9+/dnxYoV7N27l1atWvnqGobB3LlziYqKom/fvrURroiIiIhIjVDCQkTIOVpE0Vclb/PFX9oWS6z1DC3KtnnpQtZ9PwsAsyWESx58lOgGCdULLjQcrn4Plvwd+t8BYVHV6y9A3E4P86ZvZsfakjepB01sR6/zW5ZZf1/+PiZ8NeGUh6onNYlqQrglHIAQs/9Xc2xYLCmxKeXG1DS66SlljSMbV6htQvip16ki7QDCQ8L99y3hFW5bVhwVaVv67fKTmkY3PeXhs8fwUFToTW5ERkViNpmJtcb61bGYLBWON9Tsn3yLDouuUNuGEQ1PKWsU2ahibcNPbdsypmWZD8t/KzIk0m/farFW+LOaTf4Jy3hrfIXaJkcln1LWJKpJhR6Kx1n9pzkxYaJlTMtTYimL1eL/nRUVElWheMtKJjWMaFihtkmRSaeUNY9ufsqfe1miQ6P99kMtoRW+NnXxO8JjeNifvx8PHvYY6b6ERUG2HWtn7/e260SSJqoKyXCRs9XWrVtp2bIlkZGRp5Q/8sgjAFx//fW+8jvvvJMVK1bw6KOP8uGHH/pegHjjjTfYtWsXd955p6ZtEBEREZF6zWT89nVROavs37+fFi1aALB9+3YNET9L2Gw25szxTkEyduzYWv/Fc+7zP9Ep1/sgPbxzQxre2KnMEQJncnjXDj75y8O4nN43pMfc/v/ocf4FAY+1tpS+ZiOHjWbh/9LZvzUHAJPZxKibOtLxPO+DWrfHjcfwEGopebhtGAbnf3E+h4sOA96H+gOSBzCk2RCGNBtC85hKLHApFVbX/q5Jxei6nX1sNhtXzriSDHcGkcWx3LT2GQBSuicy7NqmvHn3JEYn30BiuPe7rtlfh2AyV+7fGQm89PR02rdvD3gXZq7UYstSIVOmTOGVV15h2LBhtGrViqioKLZv387333+P0+nk0Ucf5a9//auvvsfj4cILL2T27Nmcd955DB8+nB07dvDll1+SkpLCypUrSUo6NVlaHaV/n6jsfZDy5+8CGosEx54XLqqR8+h+qPt0L0hpuh/kpJq6F0D3w9mgMvdDdX6OPBONsBA5xy37ZrsvWZGHQfxFKZVOVhTl5TLr5ed8yYpuo8dVPVnhdsHsR+G8eyChddX6CCK3w8T3/9pE9n7v1CohoWbG3dmVlG7eeajzivP485I/0yiyEZMHTvb9WZpMJia2n0ieI4+hzYbSp0mfU94IFxE5myVaEslwZ1AUmo/JAoYb8g8fw/q9d50Xl1EyRZnh9GCy1o3p/USCaeTIkWzZsoX169ezdOlSioqKSExM5MILL+See+5h7NixfvXNZjOzZs3ihRde4P3332fq1KkkJCRw22238eyzzwY8WSEiIiIiUtcoYSFyDjuSWUBC2iHA+1A9e1BjOjcsfyqT0jxuN9+99iL5Wd71GJJTOzDqlt9XLSDDgG/+DzZ8AJtnwe9mQJNuVesrCFxFJrJWR+Iq8iYrrJEhXHxvD5q08U5js+v4Lu5feD978/YC0DGho9/iznf3uLvmgxYRqSFJ5hMPUk0GlmgPrlwzBbluQtO/w8QQ3KXW7TCcblDCQs4Bw4cPZ/jw4ZVqY7VamTx5MpMnTw5SVCIiIiIidZcSFiLnKI/Hwy/v/EzHE8mKLbEWRl9c+SnFlnz4LhkbfwEgKr4Blzz4GCGhVVxke95kb7ICwJYDRdlV6ycIMnfkcmR5JJ5i79zr0Q2sTLivJwlNvXOzL8xYyKPLHvUthBxvjad1XN0bISIiEiztQtphCjcxrt84co7EcCS3EIfdhDM2HKvZhcsoSVjYi5xERYfVYrQiIiIiIiJSFylhIXKOWvZ1Oh3zvQsU52LQ87bumCu5EOqWZYtY+91MAMwWCxP+8CjRCacuEFwhaf+AtNdO7JjgiregzYiq9RVAhmHw8/x9/PTlDgyP988nvnEEl/xfL2ISwvEYHt745Q3+veHfvjYdGnTgtVGv0Sy6WW2FLSJS45JDkkkOSWZw8mDSknZzZKc3gZvvTiLM4sZdakqog1lFpDaKqq1QRUREREREpI5SwkLkHLRrWxaNVxzm5FRQOUOS6dI4ulJ9HNmzizlv/NO3P3LSXTTr2LlqAa3/EOY+WbJ/8SvQ5bKq9RVAToebBe9vYceaI74ya6KLi+7rQkxCOIXOQh5b+hgL9i3wHR+fMp6nBj1FZGjlptYSEalPYhLCfdsFniSsZpfflFAOm7OsZiIiIiIiInKOU8JC5BxTkOfg6HubaXYiWbG5QQhjKzkVlC0/j1l/fw5XsQOAriPHVn2R7W0/wNf3leyPfAL63lq1vgLo+OEifnjjV44dLPSVxbR1EJtajDUqlIy8DO5fcD87c3cCYMLE//X+P27temulFy0XEalvohtYfdv5RjJWyz6/KaGKba6ymomIiIiIiMg5TgkLkXOIx+Php3+vo7Pb+0B9v8Vg8P/rXbk+3G6+fe0l8o4eBqBJu/aMvvX3VXtIv/cn+HwSGG7vfv+7YNgfK99PgO35JYu57272PVALDbcw7Pp2bMtc46vz8pqXfcmKmLAYXhr2EkOaDamVeEVE6gqH4WBT9iZ2Og4DEQAUmFsQZt7tNyWU06GEhYiIiIiIiJxKCQuRc0jh8kw6H/c+JCrEoNFNnYmKtpbTyt/Sj/9Hxq8bAIiMi/cush1WhYVT8w7Ch1eBy+7d73oljH8BanF0guExWPXdbtZ8t8dX1qBJJBf8vhvhcWa2ZZbUnTxoMlu/3UpESASvjXqNVrGtaj5gEZE6Zql9Kc/Mf4b4osZcy2MA5BuNCbf4L7rtsrtrK0QRERERERGpw5SwEDlHOPbkkvvdbt9+7shm9O+QWKk+tv60hDXffAmcXGT7z8Q0rFwfPrFNYcgfYMEz0G4MXPYfqOSi34FkL3Qy793N7N2Y7Str2zuJUTd1Iiw8BJvN5lc/ITyB/57/XxpFNiIqVAvHiogAJFq8/yYUWHN8ZQXuJGLNbgpcpRIWGmEhIiIiIiIiZVDCQuQc4M4vJvujreAxAIge1pz+41pXqo+je3cz+7+v+fZH3HwHzTt1rV5gw/4IcS2g86UQUoVRGgGStb+AH/77C3lZ3tEeJhOcd3lbep3fEpPJxKbsTTy/4nku8FxAtLlkcfLWcZX7MxQRqe+SzEkAuCzFeKxOzI5Q8ovjSDK7yC01JZS7WCMsRERERERE5FRKWIjUc85iN3vf+ZXwvGIArG3iiBuXUqk+bAX5zPr7s7gc3kW2uwwfQ8+xF1U+mMIsiPrNiIwe11S+nwDavvoQC9/fiqvYA0B4VChj7+hCi44JGIbBh1s+5O9r/o7L46IgpICbo26u1XhFROqykyMsAIrCc4l2JFLgiCKszQBcW0pGWLgdntoIT0REREREROq42pt/RURqxII31xOeWQSAOSaMhOs6YrJUfJ0IR1EhM196htwj3kW2G7dJZczt91R+ke2NM+DV7rBjfuXaBYnb7WHZZ+nMfXuzL1mR1DKGqx7rS4uOCeQ6cnlg4QO8sOoFXB7vW8F2w47dsNdm2CIidZrVZKVxZGMAckKOAmAYJuhwCW5PScLCcGqEhYiIiIiIiJxKIyxE6rGfvt9Bl/3etRdcGNjGtaBpTMWnXirKPc6Mv07myJ6dAETExnHJQ1VYZHvDxzDrHjA88Mn1cMdCaNy5cn0EUFFeMbPf2sjB9OO+so6Dkhl+XXtCQi38fPRnHl78MAcLD/qOX9/+etofbk+ISV+bIiJnkhKTwuGiwxwPPUILOgHgcYfiKjUllOHUCAsRERERERE5lUZYiNRTu7Zl0XBJyQP3HV3i6dS3aYXb52dn8cmUP5ckK2JimfjY08QmJlUukDXvwsy7vckKgO5XQ1LHyvURQId25fLZc6t8yQqzxcTw6zsw6saOmENMTN84nUk/TPIlK+Kscfxz1D95oOcDSlaIiFRAq5hWgP/C225nCG6jZIRFn6ZxNR6XiIiIiIiI1H16+iZSDxUWODjy3maa4522aXN8CGNuqPgC2TmZB/jiuSfJO3oEgOiEhlz5xLM0bNaicoGsfAN+eLhkv/+dMP5FMNd8rtQwDDYtPcjST7fjcXsXH4+KC2P8Xd1o0iaOHHsOjy97nKUHlvra9GrUi5eGvUSTqCbYbLYaj1lE5GyUEpsCQEFYScKi2G72S1hYTnwPi4iIiIiIiJSmERbAgQMHePXVVxk7diwtW7YkLCyMJk2aMHHiRFauXFnhfhYtWoTJZDrtf9OnTw/ehxA5wePxkPb6Opq7vcmKAxaDQff0xlzBJMHRjD18MvkRX7Iivkky1z71UuWTFWn/8E9WDLoPLnipVpIVLqebhe9vZfFH23zJiqap8Vz1WD+atPG+5bsyc6VfsuL2brfz9ri3aRLVpMbjFRE5m50cYZFfaoSFY/VM33pAoCmhREREREREpGwaYQH885//5MUXX6Rt27aMHTuWpKQk0tPTmTlzJjNnzuSjjz7immuuqXB/w4cPZ8SIEaeU9+zZM3BBi5zGwo820fm496FQIQZJN3UmOtZaobaZ6dv48vnJ2AsLAEhs0Yorn3iWqPgGlQti8d9g4bMl+8P+BCMfh8ou1B0A+cfs/PDfXzmake8r6zGqBQMntsViKUmejG89np8O/sTi/Yv565C/MrjZ4BqPVUSkPmgd2xqAyAahvjK7kYjLOOLbN4q16LaIiIiIiIicSgkLoH///ixatIjhw4f7lS9dupTRo0dz9913c9lll2G1Vuyh74gRI5gyZUoQIhU5s19W7qftxhw4MRVU1tBkBndIrFDbjI0/M/OlZ3A67AA0adeeKx59iojomMoFsehFWPTXkv2RT8DwP1WujwDZt/UYc6Ztwl7gnYYkJNTMyBs70r5/Ew4UHKBpVFNMpZIojw54lHt73UujyEa1Eq+ISH3QMLwhK69fSYQlgv/+tAiP26DIaIzb+NlXJzO7iIa1GKOIiIiIiIjUTZoSCrjiiitOSVYADB06lJEjR5KTk8Ovv/5aC5GJVFzxkSJCZ+0m5ESyYlPzCAZflFqhtjvWrOTLF6b4khUtunTnqieerXyyAqDlADCfyIWOfbZWkhWGYbBu9l6+eW2DL1kRmxjOxEf60qZvItN+ncaErybw7a5v/dpFhEQoWSEiUk0mk4nI0EhMZhPRDbwvexS6k/F4in11snO0LpCIiIiIiIicSiMsyhEa6p3OICSk4n9U6enpvPrqq9hsNpo3b86oUaNo1qxZlc6/f//+Mx7PzMz0bTscDi0MfJaw2+1lbleVp8BJ7jtbiDkxJXh6OAy8uWOF7oftPy1l/rTXMTzexik9+zD2ngdxY6ra/ZQ8AMvYF8HjxN1rEtTwPVl43MFPn+9m3+aSudObd4pn+O9SOejK4N7vnmbTsU0APL/yeXo06EFSRFK5/Qb6mknN0HU7O+m6nX1Od80i48PIy7JTTDShZicew4PZZMbiMfQzSx3gcDhqOwQRERERERE/SlicQUZGBvPmzSM5OZlu3bpVuN1HH33ERx995NsPCQnhvvvu429/+xsWi6VSMbRoUfGFjleuXMnOnTsr1b/UviVLllSrvdkFHTbFElnk/etcGOHiaMd8Fi6YX27b3PTNHF2d5tuPbtUWS8eeLFi0qMLnjyjOwhba8DfrU5xIAMyZU+F+qsswoDAjlNxtVgx3SSwx7Ry4W+7l2XkfMd8+Hxfe9T1MmOhp7smqJasINYWertsyVfeaSe3QdTs76bqdfUpfszxbOHDi5Q+zgdtwYjZZsbg8zKnBfyOkbFlZWbUdgoiIiIiIiB9NCXUaTqeTG2+8EYfDwYsvvlihRENSUhIvvPACGzdupKCggMOHDzNz5kzatWvH1KlTefjhh2sgcjmXuF3QZluML1nhsLrZ2Tkfa7hRbtuczRv8khWx7TrReNBITOaKfy00yv2ZUVseI/Xwt+VXDiJnvpmjKyI5vjncl6wwh3lo2KeI4jYHmFb4FrPts33JikRzIndG38m4iHGVTlaIiEj5stxZzCiawQbzal+ZxWzG5fFO0xdW/j9TIiIiIiIicg7SCIsyeDweJk2axJIlS7jjjju48cYbK9SuS5cudOnSxbcfFRXFpZdeyoABA+jevTv/+Mc/eOSRR2jUqOJz5O/bt++MxzMzM+nfvz8AAwYMoG3bthXuW2qP3W73vYE6bNgwwsPDK92H2+Mh7bUNxOV5p3IyRYTQ+NauNE08c1+GYbDii4/YsaHkIVKvCy/lvKtu8FuAujyWtdMI3TAVk+Ghc+bntB1yOZ42oyr9OarDVexmw9wD/PrTQQxPydOv9uc1ovdFzZl5YAb/3fhfHG7vlBcmTFzf/nru6noX4SGV+zMPxDWTmqfrdnbSdTv7/PaaHSo+xKs/vkrHUCvtGQSA2RSK2/AmjsMxMXbs2FqLV7w0MldEREREROoaJSx+w+PxcOutt/LRRx/xu9/9jv/+97/V7rNJkyZceumlTJs2jZUrVzJhwoQKt23evHmF61qtViIiIqoSotSi8PDwSl83j8fDnH+uoeuJZEWxCZpN6oy1RdwZ2xkeD/Pf+S8/z/3eVzbk2psYcPnVFT+52wWzH4VVb5aUdb4Ma/tREFpz99/+rcdY9OE2co+WzIEe3ziSkb/rQNPUBvx7w7/5z8//8R1rGdOSZ4c8S69Gvap97qpcM6l9um5nJ123s094eDjt4toRYgqhwFqynhAmK27jxAgL0HWtA6xWa22HICIiIiIi4kcJi1I8Hg+33HIL7733Htdddx3Tp0/HXInpcc4kMTERgMLCwoD0J+e2+f/7la6Z3lEDLgyOjGxGm1ZnTla4XS5m/+dVtixb5Csbfevd9Bx3UcVPbM+DL26FHXNLyoY+BCOfgAD9XSk3hAInaV/uYOtPJQvOmy0meo9vRZ/xrQgJ9U7fdm3Ha/l026fk2HO4odMN3N/7fiJC9HBMRKQmhJpDaRHbgpyikoSFYYrAdSJhYTVMeDyegP2cJSIiIiIiIvWDEhYnlE5WXHPNNbz//vuVXiD7TFauXAlASkpKwPqUc9PiL7fQaVueb393n0RGjj3zVGCu4mK+fe1Fdq7x3ocms5nx9/yBzkNHVvzExzPgo2vgyGbvvjkUJrwGvW6o9GeoCsMwSF99mGWfp2PLd/rKk9vGMfyGDthjc33JCoCE8ASeG/Ic4ZZw+jbpWyMxiohIidaxrdl3bJlv3xPZErfHOyWU2WTCYXcTEamEhYiIiIiIiJRQwoKSaaDee+89rrrqKj744IMzJiuysrLIysoiMTHRN3ICYO3atfTp0+eU+q+99hoLFy4kNTWVfv36BeUzyLlh1YLdtFp1FPCuNbGpbTTjrup8xjbFdhuz/vYMGRt/AcASEsLFD/yZdv3Oq/iJ962CT26AwiPe/fB4uPZDSBlShU9ReXlZNhZ/vI2MTcd8ZWHhFgZe0Y7o7k4eX/NHfj7yM99c/g2JESV/J4c0q5n4RETkVK3jWrPAsgBbSAERrmic7khcISUJZ7vNSURkaC1GKCIiIiIiInWNEhbA008/zf/+9z+io6Np3749zz777Cl1LrvsMnr27AnA66+/zlNPPcXkyZOZMmWKr87EiRMJDQ2lb9++NG/enMLCQlasWMH69euJj48vNxEiciab1h6kwZx9hJxMVjS2cv5tPc7YxlaQz1fPTyFzxzYAQq3hXPqnJ2jVrWfFT2wYMPuxkmRFQlu4/jNIbFeVj1EpHreHnxfsZ9U3u3AVe3zlbXol0W9iCz7KeI/p30zH6fE+AHtlzSv8dehfgx6XiIiUr3VcawAKrDnehEVxCO4wl++42+GurdBERERERESkjlLCAtizZw8ABQUFPPfcc2XWSUlJ8SUsTufuu+9m9uzZLFmyhOzsbMxmM61ateKBBx7goYceqtQC2iKl7U7Pxvh8BxEnkhVbYiyMvq/vGef+LjyewxfPPUlWxh4ArFFRXPHnp2javmPlTm4yweVvwBvDIbkHXPM+RCZU9aNU2NGMfBZ+sJWjGfm+sqh4K0OvSWV3wi9cv+ghMgtL1rFoHNmYkS0rMcWViIgElS9hEZZDUmELIAy3p2SERVyoXuIQERERERERf0pYANOnT2f69OkVrj9lyhS/kRUnPfLIIzzyyCOBC0wEcOcXU/j+FuJPJCt2hsOQP/QjJOT0yYq8o0f4/NnHOX7I+0A/Mi6eKx9/hqRWrSt2UlcxhISV7DdsC7d8D406gSW403c4HW5Wfbubn+fvw/AY3kITdBvWjORRofztl7+Q9kuar36IOYSbO9/Mnd3vJDI0MqixiYhIxZUeYQFgMll9i24DGE5Pme1ERERERETk3KWEhUgd5s51cHTar8QXex/c7w8x6PF//c445/exg/v5/NknKMjOAiAmMYmrnniWBsnNyj+hxwPLXoFNX8FtcyGsVAIguXu1PktFZGzKZtFH28jPtvvKEppGMfDaFL7M/5AP5nzgm/4JYGDyQB4d8KjvodjZyjAMcLkwhYb6lRk2W4Xam6xWTKWmmzNcLozi4gq1NUf6J3k8xcXgcp2mdikWC2ar1b+tzeadQqy8eEND/T+rx4Nht5+hRam24eGYSo0sMpxODKfztPU9djum0/xZeBwOcFdgSpqQEMxhYX5FnqKiisUbFoYppOSfWsPtxnA4KtY2IgKTyVRyzopeG7MZc3i4f7x18NqUNDRhjojwj9fh8F03j82G53Sx15FrYxQXY1T12tjt3u/e8s4ZEoKp1Geta98RJ/+uGaXOExMWQ1JEEvknEhaYwnAbJTErYSEiIiIiIiK/pYSFSB3lyrZx9O2NuI95Hxaa46ykTupEfIOI07bJ3LGNr158GlteLgANkptx5RPPEpuYVP4JC47Al3fCroXe/R/+BJf+q9qfoyKK8opJ+yKd7asO+8osIWb6XphCr7EtcVLM919970tWNI5szCP9H2FMyzF+Dw3rMsMwcGdnU7x3L8V7M078fy/FGXtx7s0g4eabSLr//pL6RUVs69O3Qn23+uhDInv39u3nz1/Agf/7v3LbmSIj6bhurV/Z4Wee5fjnn5fbNub882n+z3/4le286CJcBzNP06JEk6eeosE1V/v2i/fsYdeFF5XbDqDd/HmENitJvuV89BGHn3/hjG1SgeKkJLj4Yr/y/ffeR+HSpeWes8FNN9Lkscf8yrb16VuhBECLN98getgw337hihXsu+32ctsBdNy8yTsl2wlHp77KsXffLbdd1KCBtHznHb+yPVdfgyM9vdy2jf70Jxredqtv33U0ix3Dh1co3tazZhHeob1vP/frb8h8/PFy24UkJZG6dIlfWdZfJpM6Zw4AGU/+5bRt4y6/nKbP+69bkz58BJ78/NO0KNH05b8Td1HJfWffuJE911xbbjuA9qtWYomNLYn3rbfI+ufr5bYL796d1p996leWccut2NavL7dt4j131/nviFTAExZGYWgYERO8f9+u73Q97tAoXHvLGGFRrDUsRERERERExJ8SFiJ10I7NR7HO2IGp0PsWqyUhnKTbuxGSEF5mfcPjYfU3X5L26ft4TrwxnpTShisfe5rIuPjyT7h7Ccy4HQpOJgxMENvM+0A2iAkBwzDYuvwQaTPScRSWvLHbrH08I27oSHxj75u9FsK5t9e9PL38aW7qfNNZNf3T4RdepHDVSpx7M/AUFtZ2OCIiQWUuLub4m2+QeCJhcXu32zkUncuM2WvBZPVbw2Lrvlx6pjaorVBFRERERESkDlLCQqSO2bI+E+PTdMJPrFkR0iiSpNu7Yom1llk//1gWP/7rFTI2/uIra9axM5c9/BfCo6LPfDKPG5b8DRa/CMaJqTmiG8MVb0KbEYH4OKd1YHsOK2bu4tCuXF+ZNTKE5DFmPjGm0ifyr8RTkpSY0GYC5yWfR5OoJkGNqzoMl8tvihkAx+5dODZvOX0ji4XQZs0Ibdr0lPLIgedV6LzmaP/rHNIwoUJtzWGn3lNhbdpUqK21fftTyiJ79cbVKrvctiGNG/nHER5e4c9q+s00VCFNks/Y1uP2kH3sGK64uFOOhXfsiOEqf8qisJSUU8qiBp7nncqrHJb4eP/9uPgKf9ZT4mjVqmLXplOnU8oievbAktiw3LahTZP99k1hoRW/DyP9R3+FNEqqUNvf/hkBhLVrx9FduwBomJCA2VL2mj3Wdm1PKYvs1w+PrfxpoUIaJvrtm6OjK34fWvwXiw5r3rxi16Z1m1PKwrt2xRRe9vd7aaHNW/gX1LHvCI/bQ8GmTYQUFuJM30FxRgZhLVsCEHMi2f7bERb5BRWbgktERERERETOHUpYiNQhG5bvI2LWbqJOJCsyI8z0vqs7lqiy16xIX72cOf/9B/aCE9OfmEz0v/RKBl11A5aQcv565x30TgG1p9SUOG1GwBVvQXSj0zarrqMZ+ayYuZOMzcf8ypv0iGBhi0957eh8AP657p+8NPwl33GL2VInkxWGYWBbu5acTz7FvnULbb7+2m8e/7CWrSg0mwlt1oywVq1O/NeSsFatCG3ZkrBmzfzmpT/JHB5OqwpM/1OWyL59q9y24S2TaHjLpCq1bfby36vULrRp0yrHGztuLLHjxp72uM1m45cTUwv9VqOHHqzSOYFTplyqqIiuXar8WRtcew0Nrr2mSm2Tn3mmSu1CGjSocrzRQ4cSPXRoldrG33E7q1p5H3Z3GTuWiIjTT4X3Wy3+XbWp7Kxt21b5s8Zdeilxl15apbZNHn+s/EplqGvfETabjdWPP0HUls00u/wKzDExJeeLCcMcYsLttOL2lIymczs0JZSIiIiIiIj4U8JCpI5Ys3AP8bMzfCMrdlmhx//1LjNZ4XTYWfTeNH6Z96OvLDqhIRfe+xAtulRgcewNH8EPj4Ajz7tvMsPIx2DIQ2Au+03m6so5VMjKr3ezc90Rv/KYxmHs7bKaN2zvYmSXvLG+O283NpeNiJCKP6isSe7cXHJnzSLn088o3rnTV164fDnRgwf79pP+734a/+mPZSYlRETqk5xhQ8kZPozOY8cSUirJZHPbsMaaKcoO8UtYuJSwEBERERERkd9QwkKkDkj7fgfJSw4SdiJZsT3SxHkP9icy+tSH3Ef27OK7117i2MH9vrLUAYM4/877iIiOOaV+mRz5JcmKmKZw5dvQalC1P0dZ8o/ZWf3dbrYuP4ThKUlIRDYIJafbdqa7/4vdZveVN4lqwn297uOi1hdhMVvK6rL2GAbhGRkcffIvFM2di+Hwn87EEheHOyvLvyy6nGm5RETqizLWPDIMg1Gfj2KUaxLNTO1xlTrm0aLbIiIiIiIi8htKWIjUsuXf7qTN2mOEnEhWbI21MOTBfoSH+4+sMDwe1v3wNUs/mo7b5X3kE2K1MmrSXXQdeT6myiyO3e922DgDGraDsc9CZELAPs9Jtvxi1v6wl1+X7MfjKklUhMeEcqzzNqab38TutPnKY0JjuKP7HVzf6XqslvLnc69peZ99Tqu338Z65Ai/XTo7om8fGlxzDTFjx2K21r3YRURqi8lkolVsKwqsOQC4Sy39Yjg9tRSViIiIiIiI1FVKWIjUotztVvpk58CJZMWmhBBGPdCf0DD/kQWFx3P44V+vsPeX9b6yRq3bctH9fyKhafMzn+TgBtizDAbdW1JmtsBNX0NoeIA+SQmHzcWGeRn8PG8fzlLTfYRFhNBrbEu6jWzGNT++jD3Xm6ywWqxc0+Ea7uh2B/Hh8QGPJ1Cc6elYj5RMZ2WOjSXu0ktpcM3VWNu1q8XIRETqFsPjwfbzzzh27CR+4hW0jmvN4ZMJC0ol1zXCQkRERERERH5DCQuRWmLdFc6o7Ejf/qbGVsbc1xdLiP8aErvWrebH/7yKLS/XV9Z3whUMufZGLCFlL8YNQHERLHoelv8LDA807wstzys5HuBkReFxBz/P38fGpQdw2kseQllCTfQY1YJeY1sRfmI9jju638FTy5/i2g7XclOXm0iMSAxoLFVlGAa29evJnfU1jf7wAJb4eN+xqAkXk//FF9hSWtHilltpeMkEzJVYCFhE5FyRefMkijduxBQaSsy4cbSObc3OsDUAuI1S/8YVu07Tg4iIiIiIiJyrlLAQqWGGy0PhDxl0PVwqWdEygvN/3xtzqQWvncUOlnzwDhtmf+cri2qQwAX3PEir7j3PfJJdi+Gb/4Oc3SVlK/7tn7AIkJxDhayfm8G2lYf8pn4ymeF4mz18HfcO7wx705esABiXMo7BTQfXmREVzgMHOD5rFrmzZuHcmwGAtUN7Eq6/3lfH2q0bux/+E86GDek0dqySFSIip2Ht0pnijRsxnE4Kly2ldcfWFFjnAuCm5N85kxIWIiIiIiIi8htKWIjUIFeug2MfbqE4I99XdqRnAuOu7eJX72jGHr577SWy92f4ytr2HcDYu+4nMjbu9CcoOgZz/wLr3y8ps4TB8Idh0P8F7HMAHNqVy/o5Gez6+SiUmpPcZIFjrXbzfdz75IdnA/DWL28xdeRUX50Qc0itJyucR46QP2cueT/+gG3N2lOO5//wo1/CwmQy4WzYsCZDFBE5K0WOGEn+p58BkD93Hq0H3EW+b0qokoSF2aWEhYiIiIiIiPhTwkKkhqxdspeE+fsJdXgXGfWYDDJaF9Hn0r6+OoZhsP7Hb1ny4Tu4nU4AQkLDGHHz7XQfc8HpF9Z2OWDVW7DkJbCXTB1Fy4Ew4R+Q1D4gn8EwDPZuzGb9nAwOph/3O2ayetjdfB2L42diCytJyCRGJNK7cW8Mw6jcwuBBkr9gAcfenU7RmjVgGP4HTSYiBwwg/vLLiDn//NoJUETkLBfepzfm2Fg8eXkULF5MyrNPUWT1/tvkpmSNpkZW/RgqIiIiIiIi/vSbokiQuV0e5v/vFzqk52E5sdioOS6MLS2PUhRdstZDUe5xfvzPq+xev8ZXltQyhYv+72EaNm95+hPkH4Z3xkLOnpKysBg4fwr0uRXM5tO1rNRn2LH2COvn7CX7QKHfMSOymPVN5rO+4UKcIQ5feXJUMrd2vZXLUy/HarFWO4ZAcWZmUrR6tV9ZWOvWxF0ygbhLLiG0WbNaikxEpH4whYYSPWI4eV9/g6egAOea9STHNcYWUoC11I+e8aHV//dJRERERERE6hclLESC6HiOjTX/WkfnAg+cSFbsibXQ687OFC1b4Ku3e8Nafvz3VIpyj/vKel94KUOvu5mQsLAznyS6EcQ2P5GwMEGP62D0kxDbtNrxZx8oYEtaJttWHcJe4PQ7Ft84kgYDPDx6+EE85pLES4+kHlzf8XrOb3U+oZYzLAoeRK6sLPLnLyDvxx9Iuu9+Inv38h2LHTuWw8/9lbCWLYm5YDyx4y/A2j61Toz+EBGpL2LGjCHv628AyJ8/j9ZDW5NvPUZoQcm/C0axp7bCExERERERkTpKCQuRINny8yEKP91OR4/3QbgHgy1tYhhzaw+Knd6RCIbbzbKPpvPLnJKFtSPj4hl/zx9o3bNP2R3nZUJscsm+yQRjn4F5U7z/T+5RrbjthU7SVx9m6/JMjuzNP+V449ax9B7XitbdE8EEb3/Tlj25e7ig9QVc1+k6ujTsUkavwWUYBo5t2yhYuJD8hYuw//KL71heu1S/hEVIUhJtf/ie0JYtlaQQEQmS6CFDMFmtGA4HBfMX0PrCSzhozSHBFIbL4yTEHIrhdJffkYiIiIiIiJxTlLAQCYJFX2ymxZosYk6MqsjDoGBsC8aNau2t4ITi3BwOpS2g+PgxX7vWPfsw7u4HiIpvcGqnthxY8ndY+QZc/wm0G1NyrFlvuPnrKsdreAz2b81hy08H2bUhC7fL/61Xw+xhT8NfKWi/j3t+97Lfg/7nhjxHo8hGJIQnVPn8VeFxOChauZL8hQspWLQYV2ZmmfXsWzafUhbWqlWwwxMROaeZIyOJGjyYggULcB09yu8YwKZuCWw8tAS34SKEUAynRliIiIiIiIiIPyUsRALIVuRkyX/W0uWok5NTQO0NhVa3daNzijcJYS8oYNWsz9n340wMt/ftUktoKMNuuJVe4y8+9a1/lwNWvw2LXwT7cW/ZnCehzUgwW6iO3KM2ti7PZOuKTAqOOU49HnuIXxouJT1xLcUhNvDA5uzNdEksGUXRMaFjtWKoqqOvvMKx/71X5jFr+/ZEjxxJzNjzCe/cuYYjExERgJjRoylY4J3+0LRkJQk9rwaTFbfhBCKw2zTCQkRERERERPwpYSESIM4sGxv/tY4utpI3Rjc1CmP4Pb0JDw/FXljAuu9nse77r3EUlSxc3aBpcyY88AhJrVr7d+jIhzXvwvJ/QcGhkvKQcOhwIbidVUpYOIvd7Fp3hC3LMzmw7fgpx11hdjY3XMHWpJUcizroK48IieDC1hcSa42t9DmrylNcjG3degrT0mhw3bWENi1ZlyNq2DBfwsIUGkrkgAFEjxxBzIgRWjhbRKQOiB41EktiItHDhhE1ZCjRoeGYTkwJBRCKFt0WERERERERf0pYiFST4fKQv2Q/eQsySHYZADgw2N8viXETO+EoKmL5jC9Y+91MHIUliQpMJuLad+Gqh/5MTFx8SXlhNqz8L6x6s2REhbcB9LgWRj0Bcc0rF6NhcHh3Hlt+yiR9zWGcdv+3Wk0m2N9gGxsTl7G3wSbfItomTPRv0p9L213K6JajiQyNrNR5K8swDIp37qQwLY2CtDSKVq/BsNkACG3enAbXXO2rG9WvH/FXXUXU0CFEDRqMJToqqLGJiEjlhDRoQOqSxZjM3sREzO68EyMsXACEmqo3SlBERERERETqHyUsRKohf+dxCr/eietwka/MER2K65LWDEyNYeVXn7Hm26+wF5QsXm0ym+k4ZCRF8UmERscQEmYt6bDoGLzWHYoLSp3FBJ0uhmF/qvSC2oW5DratPMTWnzLJOVR0yvH4xpF0Vjn9gwABAABJREFUHNiEjucl8/j6r9md4V2sumVMSy5pewkT2k6gaXTTU9oFkuvYMQqXL6cw7ScK09JwHT5c9mdZtswvYWEKCyP5maeDGpuIiFTPyWQFwJqi5ZhMVlyGN3lvMVlwFrsJDVPiQkRERERERLyUsBCpgtzjNla8+yudDtsxn1irAjNED2lO0pAkNiz4gbf+8RX2/DxfG5PZTOdhozjvimuxxsYxZ86cUzuOTIA2I2Drt2AOge7XwOAHIKl9hWNzuz3s/TWbLT9lsndjNobH8DvutDjYnfgLD95wCy1Tk3xrZlzV/irirfFc1u4yeiT1OHUtjSA5+Oc/U7hkaZnHQpKSiBo82PvfoIE1Eo+IiATHmtwVxJn7nFjDwstudylhISIiIiIiIj5KWIhUUtr3O4heepAuhomTC2uHNosm5uKWbNq4mNUPfoGtdKLCZKbzsJEMuOIaGjTxjlaw2WzEFe2mVfYS8IzyP8HQB71TPg28F+JbVCgme6GTfVuOkbH5GHt/zcKW7zylzsGYHWxttIJdDX/GZSnmsvD+tDKN9B0f3Gwwg5sNruSfRvmcBw5QtGYNRWvWYPvlV1I+/wxzWJjvePTgwb6EhSk8nMh+/YgaPIioQYOwpqbWWOJERESCx52XR5+fC9kYmo/L4/KV2wqdxMRaz9BSREREREREziVKWIhUUOb+PDb971c65ns4maiwYZDRMYa4hntY/fzLFOUe99U3mcx0HDKc8664loSmJxaBtufBxhlY1/6PEZnrASje+g30ub7kRM36eP87A8NjcHRfPhmbstm78RiHd+diGKfWKwg7zraklWxLWkVeRBYAoeZQhjUdRkxYTJX/LE4bl9uNY8dObBs2ULTWm6RwHcz0q2PfuJHI3r19+9HDh+M6epSowYOJ6N0bs1UPrkRE6pPcWbM4+PgTtHW52DqyNW5LqO+Yw3Zqgl1ERERERETOXUpYiJTD5fKw+NNNNP81h46UvO2/PRJC2maRvuQtCo/nlDQwmeg4aBjnTbyWhs1agGHA3uWw/n3Y9BU4izCX6t/y6yf+CYvTsOUXk7H5GBmbs9m3+ViZoygA3GYnexpsZGvSCvbHb8MwGUSERDC22VjGtBrD0GZDiQ6LruofR5mM4mIybr8D28aNGEWnrpXhExpK8d4Mv4RFWEoKjf74x4DGIyIidYe1Y0dweUdVxOfl4I5P9B2zKWEhIiIiIiIipShhIXIGv6zcT+53u+lQDCdHVeTg4UCTbPZsnUnhpmN+9dsPHMrAideS2KIV5B+GZa/C+g8gO/2UvnMjWrI7cRQdJk4hooxzezwGR/bksXdTNhkbszmSkQ9ljKIAaNAkkpZdGtKqS0M+y5vO3G3TiQmLYUKLCYxuOZpBTQcRHhJerT8Ld34+9o0bsf38C+bYGBKuL0mymMLCcB4+dEqywhQeTkTPnkT27Utk375E9OiOOaKsTysiIvWVtX17Qlu0wLlvH02yj+GOb+g75ihSwkJERERERERKKGEhUgbH3jxy5uwhYWcuCaXKt1pz2HvkG47v9p/mKHXAIAZeeT1JLVNKCle/BUv+5t+xNQ66XYm9y9Us+vkQmEx0KJVIKMx1sG/zMfZu8o6icBS5KEux2c6BuO1kNNjCs9c+SvtS5738+GWc12IA/Zv0J7TUtBsVZRgGrsxM7Fu3Yd+6BcfWbdi3bsWZkVHyMTp08EtYAER074HhdBLRvQcR3boS0bs3EV26YCq1XoWIiJx7TCYTMaNHc2z6dCLsx3CXmsPQUWCvxchERERERESkrlHCQqQUR0YeefMycGzP8Ss/atjZWjCPg7s3+ZW36zeQgVdcRSMOQrTHv7OeN5QkLFKGQq8bodMECIvEsNngl8MYHji0M49DOw6SsSmbrH0Fp40tO+Ig+xpsISN+M4diduMxu4kKjeKIZT/tSfHVaxPfhjbxbar0+fO+/57Mp57Gk5t7xnqO9HQ8RUWYIyN9ZU2fe1bJCRERKVPMGG/CItxxjPxSowWbVW/wn4iIiIiIiNQzSliIABvXHCTrx920K/BPOhSHOvk55yd2H12FQcmxtr37MrBfCo1zV8Bn54P9OAz5A4yZUtI4oTVMeM2brGjYFoCivGKy0rM5uCuHrHXhOLJDODDbPwniO7fFxr64reyL38q++C0UWr1JhM4NO3NR01sZ1HQQPRr1INRc/igKj81G8e7dOHbuwrFrJ8Un/p/89NN+60lY4uPLTFaYwsOxtm9PRNcuhHfvTkT37pjC/Z8yKVkhIiKnE9GrF5aEBMJtORwvVW5xFNdWSCIiIiIiIlIHKWEh57SNaw5y+IfddCj0EF+qvMiTz8bsZewp2OiXqGjTrhkDmx+nSfZ/YYnNv7Mt3/oSFoZhkJ9t56j5QrLSCji672eyMvIpzC39YObURENSyxhadkmgZZeGTN7xMCsOLyclNoVxjUfTr0k/BiYPpGFEw1Pa/dbxL7/CsX27LznhPHjQu/j3bzi2p/slLKydOmFJSiS8YyfCO3bE2rED4Z06EdaqFSaLpdzzioiIlMVksRA9aiTFX36N2zD5yp15Zx7RJyIiIiIiIucWJSzknLR5XSaZ3+06JVFR6Mxl8/Gf2FOwEc+JRIXJZCIl0WBg9K8khy6Fw/59eULjyGl6BVmxozn6+Xay9heQta/gtOtPlGYPKWRf3P9n767josreP4B/zsyQ0oogBooB6NrKuhbYrq6ta4PYit2N3a7d2IEiurbLIhJ259cCE0VQVESRmpnn9we/uTICKq4S+rxfL1/Cvefeey7nxsx5TtzGi3wPsLr7XzAy/dBrYazlGJjqmmoFKEitRvKzZ0h6HI6kx4+Q/Pgx5GbmyNuju9Z+X65ejaRHjz55bKGjA9VHvSkU5uYodfz4Z/PNGGOMZZZx/fp447sbpP7QEEAZG5uNOWKMMcYYY4wxltNwwCKV8+fPw9PTE6dOnUJycjLKli2LYcOG4c8///zifSQmJmLOnDnYsmULwsPDYWFhgT/++APTp09H/vz5v2Pu2efExsTjot996Nx4iaLJAiap1sUp3+BmzGk8fHsdaqghkytQtGxFlHSqjhKmsTA82BMAoCQdvFTaIlqUxQvDmniRVAwvI2VQhWt6LzzJ8PiJ8veIzvME0Xme/v//TxBn8ArlrMqheoEqkOfR7gFhE5mMuBN7ERnxDMkREUgKf4zkx+GgJO3hM/Ts7dMELHSLF5cCFjJDQ+gWLw694sWhW9wOesWLQ8/ODjqFCkEo+BHAGGMsa+T57beUuY9UH95jb15yDwvGMvItvpswxhhjjDGW23Bt5f8LDAxEo0aNoK+vjw4dOsDY2Bi7d+9G+/btER4ejuHDh392H2q1Gi1atICfnx+qVauGNm3aIDQ0FF5eXggICMCZM2dgaWmZBWfDNIgISQ9j8fjYA8juxqCkkAP4MBTFe2UsbsacxoO31yGTJcPO+BVK1m4C6wYDkJygwNtXCbjz4i2iY4chSlUcb5KsAZJ9fJQ0x81jqot8RYyhsFRixZO/EJ3nCUj/PSro2KG8KIhiicWQdMsQed+qYWtoBHp+Dop5bQErA2kf8Zcv4/m8+Z89x6TwcBARhPhwXnl79oR5507QK14cCisrrXWMMcZYdpDp6SFP7doQscnSstfRcdmYI8Zyrm/x3YQxxhhjjLHciAMWAJRKJXr16gWZTIaQkBBUqFABADBp0iQ4OTlh3LhxaNu2LWxtbT+5n02bNsHPzw8dO3bEtm3bpEriVatWoV+/fpgwYQJWr179vU+HAUiOSUTs2cd4dzYC8vcyGACA+DAHw+vEKNx7ewXh767D1EAPhc2KALrF8EptjaDTlqBTVz7aY60Mj/VW9zne6j5FogiHY5mS6Ni6FwxNUiagTop5DeuOz6AXkwjExAF0DcA1re01VTXJT55Ax8pKWq5ToIBWOqGrC53ChaFbpAh0ixSGTpEi0C1iC90ihdPkybBSxc/8hRhjjLGsV3DeXFybuE76XZasysbcMJYzfavvJowxxhhjjOVGHLAAcOzYMdy7dw/u7u7SFwIAMDU1xbhx49CtWzds2rQJkyZN+uR+1q5dCwCYNWuWVov2Pn36YN68edi2bRsWLVoEAwODjHbB/oOkJCXOHLgOceEpbNXGkAkZ5PjQGyJJlYBHcTfx4N0dxJIJZLolIDOtjbdCgbcAkJzhrlOQCrLkZ9CPD4fx2yewiAmH5eunUKgSPiTJoysFKwBAx9gEeo+igFTjdWckOTJS63f9X35Bwb8WQFGgAHQKFIAif34I2ce9OxhjjLHcQ+joQGGoC7xP+Z2S0/ZSZOxn962+mzDGGGOMMZYbccACQFBQEACgYcOGadY1atQIABAcHPzJfSQkJODs2bOwt7dP09pJCIEGDRpg9erVuHDhAmrVyri1/seePMl4TgQACA8Pl34+vGIt8pmZfzK9qVVhGJt8GJYqPu4NXkbc+6K8WNv9AoX8Q2X86xfhiIt58dntdPQMYVXEQWtZ1OPbSE58/9lt85jlg5GhFZJjE6CMS0RybAISXr+CDimgAx3oCAV0ZTrQkelCV6YHA6GTsn8kSvt4kfAU4e/vIyoZgI4thLwWhJABiQASX2sdT6GMh1z5BnnL2cPQVAeGJrowNNVFxNZ5KHjtBmSkPZF29Ef5NYx4g9DQUO00ZmYgUkNmbgG5hQUUFhYgExM8inmNZBMTlK5ZE4YFC+K5oSGef7QtSpZM+f/t25R/LNskJiYiOjqlxO/duwc9Pb1szhH7ElxuuROXW+6TmTK7nfAY5rGmAIBXiW+xZcZiqRekkYECQqUEkt8jj9wAKrVAkp4+hEKBJEpGvCoeSFZBxKc0FlDrGAMAZHKBPLoKIDkBUCXCVGGEd8kqwDhl/XtVPJIpGYhPhEhWgoQcpDAEAOgpZNDVkQNJ76CAgL5MD+/VgDDMAwB4o3wHQA3xNh4gNUimB/r/z0OGunLIBQFJ76Av14OAHIkyPQg9HahIjXeqd4CKIOLe/39+8wCQQcgEjPQUgDIRUCbASGGIJCVBaZgHQiZDgjoZiep4IEkJkZAIQECtYwQA0FEI6OsogOT3kKtVMJIb4p1SDRilrI9TxkEJFfA+AUKpAsl0QHJ9AIC+jhw6ChmQGAtdmQ5evvow6blSqf0Zh2Wfb/HdJLXMfJ948OAB4uPjv3jfytiPPw2znOjj7yffC18POR9fCyw1vh6YRlZdCwBfD7lBZq6HyFSNr7/l9wkOWOBDQZTUVA6nYm1tDSMjo88W1r1796BWq9PdR+p9h4aGZipgUbhw2uF+MjJk0bwvTss+Y/dXbnf/HrB2zTfNCmOMMcbY9/bixQsULVo0u7PB8G2+m6SWme8TtWvX/uK0LPcotTK7c8ByCr4WWGp8PTANvhZYal97PXzL7xM8vgyAN2/eAEjpZp0eExMTKc1/2UfqdIwxxhhjjOUUUVFR2Z0F9v++xXcTxhhjjDHGcivuYZHDpe6inZ4HDx5ILaFOnTqVqRZULPs8e/YMTk5OAIBz586hwEcTbLOch8ssd+Jyy5243HIfLrPcKTw8HNWrVwcAODg4fCY1y60+930iISEBt2/fhpWVFSwtLaFQ/JxfEfk5xjT4WmCp8fXAUuPrgWnwtZBCqVTixYuU6QLKli37zfb7c34a/Yim9VJGLZViY2Nhbv6ZuSG+YB+p032pQoUKfXHawoULZyo9yxkKFCjA5ZbLcJnlTlxuuROXW+7DZZY76evrZ3cW2P/7Ft9NUvuS+7FEiRJfvL+fAT/HmAZfCyw1vh5Yanw9MI2f/Vr4HsPK8pBQ0J5f4mORkZF49+5dhnNTaNjZ2UEmk2U4nuynxqJljDHGGGOMMeDbfDdhjDHGGGMst+KABQBnZ2cAwL///ptmnZ+fn1aajBgYGMDJyQl37tzBo0ePtNYREfz9/ZEnTx5UqVLlG+WaMcYYY4wx9qP5Ft9NGGOMMcYYy604YAGgXr16sLOzw/bt23HlyhVp+Zs3bzBz5kzo6urC1dVVWv7s2TPcvn07TTft3r17AwDGjh0LIpKWr169Gvfv30fnzp1hYGDwfU+GMcYYY4wxlmtl9rsJY4wxxhhjPxKewwKAQqGAl5cXGjVqhNq1a6NDhw4wNjbG7t278ejRI8yfP19rPK6xY8di06ZN2LBhA7p16yYtd3Nzw86dO+Ht7Y0HDx7A2dkZYWFh2LNnD4oVK4bp06dn/ckxxhhjjDHGco3MfjdhjDHGGGPsR8I9LP5fnTp1cOLECdSoUQM7d+7EypUrYWVlhR07dmD48OFftA+ZTIZ9+/Zh8uTJePHiBRYuXIiTJ0+iR48eOH36NCwtLb/zWTDGGGOMMcZyu2/x3YQxxhhjjLHciHtYpOLk5IQjR458Nt3GjRuxcePGdNfp6enB09MTnp6e3zh3jDHGGGOMsZ/Fl343YYwxxhhj7EfCPSwYY4wxxhhjjDHGGGOMMZbtBKWeHZoxxhhjjDHGGGOMMcYYYywbcA8LxhhjjDHGGGOMMcYYY4xlOw5YMMYYY4wxxhhjjDHGGGMs23HAgjHGGGOMMcYYY4wxxhhj2Y4DFowxxhhjjDHGGGOMMcYYy3YcsGCMMcYYY4wxxhhjjDHGWLbjgAVjjDHGGGOMMcYYY4wxxrIdBywYY4wxxhhjjDHGGGOMMZbtOGDBGGOMMcYYY4wxxhhjjLFsxwELxhhjjDHGGGOMMcYYY4xlOw5YMMYYY4wxxhj7IRFRdmeB5RB8LTDGGPsUfk/kHBywyMXOnz+PJk2awMzMDHny5EG1atXg4+OT3dlin1C0aFEIIdL95+Likt3Z+6lt3boVffr0QZUqVaCnpwchBDZu3Jhh+tjYWAwbNgy2trbQ09ND0aJFMXLkSLx79y7rMs0yVW6TJ0/O8P4TQuDhw4dZmvef1dOnT7Fo0SI0bNgQRYoUga6uLqytrdGmTRucPXs23W34fstemS0zvtdyhoSEBAwbNgy1a9eGjY0N9PX1YW1tjRo1amDDhg1ITk5Osw3fa+xHQ0QQQmR3NlgOwNcCY4yxz9G8JxISErI5J0yR3RlgXycwMBCNGjWCvr4+OnToAGNjY+zevRvt27dHeHg4hg8fnt1ZZBkwNTXFkCFD0iwvWrRolueFfTBhwgQ8evQI+fLlQ4ECBfDo0aMM08bFxcHZ2RlXrlxBw4YN0bFjR1y+fBnz589HcHAwQkJCoK+vn4W5/3llptw03Nzc0r3fzMzMvn0GWRpLly7FnDlzULx4cTRs2BCWlpYIDQ3F3r17sXfvXmzfvh3t27eX0vP9lv0yW2YafK9lr3fv3mHlypVwcnJC06ZNYWlpidevX+PIkSPo3r07duzYgSNHjkAmS2m/xPca+xEJIXDy5EmsW7cOq1evho6OTnZniWUTIQTUajVGjhyJWrVqoWXLllCr1dIzkDH2c9G0pOdAJkuNiDB+/HgkJCRg1qxZ0NPTy+4s/byI5TrJyclUvHhx0tPTo8uXL0vLY2JiqFSpUqSrq0sPHz7MvgyyDNna2pKtrW12Z4Olw9/fX7pvZs2aRQBow4YN6aadNGkSAaDRo0drLR89ejQBoJkzZ37v7LL/l5ly8/T0JAAUGBiYdRlkaezevZuCgoLSLA8JCSEdHR0yNzenhIQEaTnfb9kvs2XG91rOoFKpKDExMc3y5ORkcnFxIQB08OBBaTnfa+xHlJycTGXKlCEhBJ09e5aIiNRqdTbnimWXzZs3kxCC2rRpk91ZYTmASqXK7iywHCA+Pl76OSkpKRtzwnKC06dPk0wmo19++SW7s/LT4+YEudCxY8dw7949dOrUCRUqVJCWm5qaYty4cUhKSsKmTZuyL4OM5UL169eHra3tZ9MREby8vGBkZISJEydqrZs4cSKMjIzg5eX1vbLJPvKl5cZyjtatW8PZ2TnN8lq1aqFOnTp4/fo1rl+/DoDvt5wiM2XGcg6ZTAZdXd00yxUKBVq1agUACAsLA8D3Gsv9KJ0xp1UqFRQKBVxdXQEA//zzDwBuTfsz+Ph60PzevHlzmJqa4tatW9Lzj/28uHcNmzp1Ktq3b4/bt28DAHR0dEBEeP/+fTbnjH1varU63eVVq1ZFpUqV8L///Q8nTpwAwPNaZBd+QudCQUFBAICGDRumWdeoUSMAQHBwcFZmiWVCYmIiNm7ciJkzZ2LZsmUZjtnOcqbQ0FBERESgRo0ayJMnj9a6PHnyoEaNGrh//z7Cw8OzKYfsc0JCQjBnzhzMmzcPe/fu5bHZcxDNUB0KRcqIlXy/5Xwfl1lqfK/lTGq1Wqq4/eWXXwDwvcZyN7VanWbMabVaDblcDgCoXr06TExMcPfuXcTFxWVbPtn3R6mGeElKSpKWCyFARNDX10ejRo0QGRmJiIiI7MomyyZEpFVJee3aNfTo0QNXr17Nxlyx7BIfH4+7d+/iwIEDuHTpEgBg48aNkMvlWLJkSTbnjn0vmveETCZL85lApVJBLpejQ4cOAD7Uq3JDh+zBc1jkQqGhoQCAkiVLpllnbW0NIyMjKQ3LeSIjI+Hu7q61rGrVqvD29kbx4sWzKVfsS33q/tMs9/PzQ2hoKAoXLpyVWWNfyNPTU+t3MzMzLF68WGqBybLH48ePcfToURQoUABly5YFwPdbTpdemaXG91rOkJSUhJkzZ4KI8PLlSwQEBOD27dtwd3dHvXr1APC9xnI3mUyGixcvYs6cOahcuTJGjRoFmUwmVTzky5cPBQsWRGBgoFRRQTwB8w9JU6aenp548OABBg0ahCpVqkCpVEKhUEBXVxeOjo7w8fHBtWvXULt2bek6YT82TTkLIfD+/XskJCRg79692LBhA0qVKoXixYvDyMgou7PJspC+vj6mT5+Os2fPYsaMGZg6dSru3r2LunXrwtHRkee4+UFp3hOzZs2Cl5cXZs+ejXbt2oGIpHdB5cqVYWJigtu3byMxMZHnscgmfPflQm/evAGQMgRUekxMTKQ0LGdxd3dHQEAAoqKiEBcXh8uXL6Nr1644f/486tWrh7dv32Z3FtlnfMn9lzodyznKly+P9evX4/79+4iPj8eDBw+wdOlSCCHQrVs37N+/P7uz+NNKTk5G165dkZiYiDlz5kgfFvl+y7kyKjOA77WcJikpCVOmTMHUqVOxfPly3LlzByNGjMCaNWukNHyvsdyuTZs28PX1xfLly7FgwQIAH4Z7cXBwgIODA549e4ZDhw5lZzZZFti8eTOmTZuGbdu2YdiwYYiLi4NCoZCCVDVq1AAAbN++HQA4WPGT0JTztGnTUK1aNTRt2hT+/v6QyWTw9fWVWtizH1/qnlh58uSBQqHAnTt38ObNGyxcuBBbtmxBixYtOFjxAwsODsb48ePx4MED9OvXD6dPn9bqfWVtbQ1ra2v4+fkhOTkZAA8LlR34DmQsC3l6eqJu3brInz8/DA0NUaFCBWzevBldu3bFo0ePsHbt2uzOImM/rFatWsHd3R3FihWDvr4+ihYtigEDBmDXrl0AgAkTJmRzDn9OarUa3bp1Q0hICHr16oWuXbtmd5bYZ3yuzPhey1mMjIxARFCpVAgPD8fy5cvh5eUFFxcXxMbGZnf2GPtiGc1TAQA9e/YEAJQrVw5jxoyBt7c3EhMTpXSdO3cGkFJJkZyczL0rfgAZVR7VrVsXVlZWcHR0xJMnT9C2bVs8efJEKvP69evDwcEBYWFhPDTvT+TJkydo0KABPD09UblyZTRq1AgtW7aEkZERLl68CF9fX7x48SK7s8m+I837IvXz39fXF2q1Gvny5YNMJkPp0qVRoEABAFxB/SPIaJ4KZ2dnODg4oFSpUrCyskKXLl20GlQ5ODjgl19+QXR0NPbt25dV2WUf4YBFLqRp/ZZRK7fY2NgMW8ixnKlPnz4AgJMnT2ZzTtjnfMn9lzody/nq1auH4sWL4/r161x5l8XUajW6d++O7du3o0uXLli1apXWer7fcp7Pldmn8L2WvWQyGQoVKoR+/fphzZo1OHnyJGbMmAGA7zWW86UewklT6ZR6+IYyZcrAyMgI1apVQ58+fdCrVy9s3LhR2t7BwQGFCxfGnTt3uEfzD0IIkW5llI6ODipVqgS1Wo3FixcjICAAI0aMwJ07dwCk9Dpr0qQJYmNj8fTp06zONssmwcHBCA4ORr9+/TBnzhxMnjwZw4cPx+7du1GlShVs3boVp06dyu5ssu9AM3eJ5n0REhKCpUuX4syZM+jXrx927tyJ+fPnIyoqCj4+PoiKisrmHLNvRSaTac1npGnAAwCtW7dGTEwMdu/eDZlMhlGjRuHYsWNSWk1DhzNnziApKYkbOmQDDljkQprxhdObpyIyMhLv3r3LcAxiljPly5cPAHgiwFzgU/df6uV8D+Yumnvw/fv32ZyTn4darYa7uzs2bdqEjh07YuPGjWm6XvP9lrN8SZl9Dt9rOUPDhg0BAEFBQQD4XmM5nxACDx48wJ9//glvb28olUoIIaBUKgEAxYoVQ758+fD48WMsWLAA5cuXx+TJk7FhwwYAgIWFBezs7BASEiIF4DJqeclyhwULFmDAgAFSIEJTCWVlZYXixYvjzZs3cHBwwIoVK+Dn54eBAwcCAHR1deHg4ICkpCScOHFCa1uWu32qRfzmzZsBAH379kX+/Pml+79evXoYM2YMhBBYv349Hj58mBVZZVlICAGZTIYbN26gbt26aNasGaZNm4Zp06YhMTERFSpUQKtWrdCyZUv4+PhIldZcQZ37fPwMWLlyJapXry71nkjd0KFixYp48eIFwsPDsWvXLhgZGaFLly64fPkyiAiOjo4oVKgQbt26pdVjk2UdDljkQs7OzgCAf//9N806Pz8/rTQsd9B0Ry5atGj2ZoR9VsmSJWFjY4OTJ0+mCTDFxcXh5MmTKFasGE9KmovExcXhf//7H/LkySNVprLvS1PxvXnzZrRv3x5btmxJdwxpvt9yji8ts0/hey3niIiIAJDSEhnge43lPOkFE3bu3AlfX1+MGTNG6j2hCZpWqFABhQoVwqVLlyCXy7Fq1SpUrFgRHh4eOHDgAKytrVG9enWoVCrs3LlTa1uWs6VuEatx7do1bN26FatWrcKkSZMQGxsLuVwuBbAaN26MZ8+e4dKlS+jZsydGjRqFEydOwNXVFbGxsahfvz6EEPj777+lbXn4l9wrvaF+Uq9LTk5Gnjx5YGRkBGtraymtpsxr1qyJxo0bw8/PD//++69Wi2yWu2nK2NvbG/Xq1cPTp08xdOhQ+Pj4YO/evdJkynny5MHQoUMhhMCWLVsQFhYGANIzheVsml40qZ8Bz58/R1hYGC5dugQPDw/cvXtX671vb28Pa2tr7N69GxUqVMDy5cthZGQEV1dXHDt2DHZ2dihSpAiOHTsmDRfHDR2yFn9Ky4Xq1asHOzs7bN++HVeuXJGWv3nzBjNnzoSuri5cXV2zL4MsXbdv3063Rent27cxevRoAECnTp2yOlssk4QQ6NmzJ969e4dp06ZprZs2bRrevXuHXr16ZVPuWEbevn2Lu3fvplkeHx+PXr164e3bt/jzzz+hUCiyIXc/F82QQps3b0a7du2wdevWDCu++X7LGTJTZnyv5Rw3b95M93PH+/fvMWzYMABAkyZNAPC9xnIeTaXC9u3b4e/vDwDo3bs3vL29ERERgX79+iE4OFir8sHV1RVXr17Fw4cPUbZsWcyZMwdVq1ZFjx49sGfPHnTv3h0AcP78eZ5APhcRQkAulyM0NBQLFy4EkDJXiaYCcteuXRg8eDCUSqX0bqlTpw4KFy4stZTu3bs35s+fj61bt2Lw4MHImzcv2rdvj/DwcKmXBbemzp1St5gODAzErFmzsHPnTqnCWS6XQ0dHB3p6eoiJicE///wjbacp8/z586Ny5cpISkrCrl27cOPGjew5GfbNCSHw9u1b/PXXXzA0NMTSpUsxYcIEuLi4SI02NCpXrozevXvj33//xYEDB6BSqaRnyqtXr7Ij++wLaXrR3L59W/q8mj9/fixYsAADBw7E06dPpfn3NH755ReUKlUKly5dwsuXL1G9enXs3LkTz58/R//+/REVFYXGjRsDAHbs2AGAGzpkOWK50rFjx0hHR4eMjY2pV69eNGzYMLK1tSUANH/+/OzOHkuHp6cnGRsbU9OmTal///40cuRIatGiBeno6BAAGjt2bHZn8ae2du1acnNzIzc3N6pUqRIBoBo1akjL1q5dK6V99+4dlS9fngBQw4YNacyYMdSwYUMCQFWrVqX3799n45n8XL603B48eEBCCHJyciI3NzcaPXo0devWjQoVKkQAqGzZshQdHZ3NZ/Nz8PT0JABkZGRE48ePJ09PzzT/Ll++LKXn+y37ZabM+F7LOTSfO37//Xfq168fjR49mrp06UJ58+YlAFSrVi2t+4fvNZaT3Llzh4oUKUJCCGrcuDElJydL6+bMmUNCCCpRogT5+vpKy0NCQsjExIQmT54sLXv27Bk5OjpS/vz5ae3atVSnTh0qV64cPX78OEvPh309tVpNI0eOJCEE6evr0759+6R1jx49ol9++YWEEDRs2DC6f/8+ERHFxMRQ165dqUCBApSQkCClHzt2LBkZGVGbNm1o1apVJJfLaeXKldJxWM6UmJhIREQqlUpalvqZEBERQc2aNSMhhPTPwcGBTp48KaX5559/SAhBDRo0oLdv3xIRkVKppKSkJCIiCggIkLadMmUKxcXFZcWpsSzg4+NDQgit7/MZ3e+3b9+mkiVLUpkyZSgkJITevHlDW7dupUaNGml9P2E5z/jx46V7eNGiRdLymJgYGjhwIOnp6ZGTkxOdOHFCWrdmzRqSy+V09+5daZmPjw8VLVqUqlatSps2bSIhBHXs2JFevnyZpefDiDhgkYudPXuWGjduTCYmJmRgYEBOTk60Y8eO7M4Wy0BQUBD9+eefVLJkSTIxMSGFQkHW1tbUokUL8vPzy+7s/fTc3NwIQIb/3NzctNLHxMTQkCFDqHDhwqSjo0NFihSh4cOHU2xsbPacwE/qS8vtzZs35OHhQVWrViVLS0tSKBRkbGxMTk5ONHfuXK6Iy0KfKzMAtGHDBq1t+H7LXpkpM77Xco7z589Tr169qEyZMmRmZkYKhYLy5s1LderUodWrV2tV9mjwvcZyil27dpEQghQKBVlYWND69euldUqlkmbMmEHm5uZUtGhR8vHxISKix48fU/ny5alRo0Za12xQUBDVrFmT9PT0yM7OjoQQFBISQkTaFaAsZ3rx4gVVq1aNhBCkp6dHTZo00XqXBAYGUt26dUkul1O3bt2kisiZM2eSiYkJ/f3331JapVJJo0ePJgMDA+laaNGiBRFxwCInUqlUNGzYMOrfv3+67yzNsjFjxlDRokXJ09OTdu/eLVVclipVSgpOEBHVq1ePhBA0ffp0rf2o1Wrq1q0b1ahRg2rVqkV2dnb04MGD73puLOsMHTqUhBC0d+9eIqJ0ryUNtVpNGzduJCEEWVlZUfXq1cnQ0JAMDAzo7NmzWZVl9hV69+5NQggyMzMjQ0NDevPmjbTu6dOnNGbMGCmYGRERQUREJ06cIGNjY5o4caKUVq1W0+HDh8nKyopsbGxIX1+fnJycKCoqKsvP6WfHAQvGGGOMMcYYY1nqUxXEBw4coLx589Iff/xBQgiqVq0aRUZGSuvfvHlDK1askConzp8/T0REvXr1ooIFC9LNmze19nfmzBn67bffpNaXffr0+T4nxb65xMREcnFxoSpVqpCDgwMJIWj16tVaaW7cuEHly5cnIQQNHTqUiIhCQ0NJCEGzZ88mlUolBaciIyOlXjqaf48ePcry82KfFx8fT6ampmRgYEAXL17UWnf06FESQpCnpyfVrVuXZs2apdWbZvjw4SSEoHHjxknLrly5QnK5XGqB/ejRI7p58yYtWLCA7O3tadu2bfTXX3+REIJ27txJRBzIys009/zChQtJCEHLly9PtzzTC1xPnjyZqlevTmXLluURTHKIT92LKpWKJk6cSDY2NuTi4qL1nk+9XadOnUgIQQ0bNqTLly/TmzdvqHTp0vT7779TTEyM1j7//fdfMjU1ld4THz+D2PfHAQvGGGOMMcYYY1lCrVanqXj4uMLo3bt3ZGhoSLNnz6YePXqk2yqaiGj06NEkhKCyZctSQEAAhYSEkBCC/vnnHyLSbkl748YNsrCwIDc3Nx7aIQdRKpUZrtNcF0OHDqVixYrRvn37SAhBFSpUoPDwcK3tr169SsWLFychBI0fP54iIyOpUaNGVKdOHa19aXTp0oWKFi2q1QOD5TwnTpyQggep+fn5kZGRERkaGlKZMmWk8tUMH3X79m2qUaMGGRgY0PXr16XtvLy8qESJEiSEoLx585KFhQUJIahZs2akVCrpwIEDJISgESNGZM0Jsu9u9+7dZGRkRJ06ddKqlE79HkpMTNQaQowo5T0UHx8v/f6pnhns+/rUe0JTjl5eXpQ3b17y8vKShpTU3Puacnzy5An17NmT5HI51ahRg169ekWjRo0iGxsbun37dpp9Llq0iBo2bEjbt2//XqfGPoFnDGGMMcYYY4wxliWEEBBC4NKlS1i2bBmAtBNZxsfHw97eHidOnMCUKVOgr6+PtWvX4tq1awCApKQkAMD48eMxYcIEhIWFYeDAgbh69SoqVqyIzZs3A4A0YaparUaZMmVw+/ZtbNy4ERYWFlCr1Vl1yuwT5HI51Go1li1bhtu3b2ut01wXpUqVwqNHj1CkSBEMHToUV69exapVq7S2L1euHJYsWYJff/0Vc+fOxaRJk1CjRg2cPXsW9+/fh0wmg1qtlsp97dq1ePDgAVq2bJml58vSUqlUAFImwv5YjRo18Oeff+LJkycICAiQljds2BA9evRAcnIyTE1NkZiYCJVKBV1dXQCAvb093NzcoFQqMXXqVGm7Hj164OjRoxg4cCAaNmyImjVrYufOndi/fz/kcjkSEhIAACVLlvyep8yygOZ6qlSpEqpVqwZfX1/s27dPKmPNpOvh4eHo3r07Bg8ejHfv3knb58mTB/r6+lCpVCAi6X3Csp7mOT9u3Dj4+/tLzwy1Wi2VY82aNfHq1SsUKFAAM2bMAAAMGjQIAKCvrw8iQsGCBeHp6YmePXvi1KlTaN26NSpUqIBnz54hPDwcAKTyBoD+/fvDz88PHTt2BJD+M4p9R9kZLWGMMcYYY4wx9vNISEiQhmUQQtC0adOk8eJTt6J0cXGhihUr0rt372jixIlphnLSpI2JiaHp06eTEILy5ctHpUqVoqpVq9LDhw/TPb5arf5ka02Wtf755x/S09MjIQRVrFiRjh8/Lq3TlNOePXtIJpPRjh076MGDB2RsbEw2NjZ07tw5IiJp4mSVSkWXL1+mQoUKkRCCSpcuTdbW1rR48eI0x9W0oOVW0zmHZm6S1K3aiVKG8dLV1SV7e3utyXFv375NDg4OJJPJ6M6dO0SUcs1oeltER0dT27ZtSQhBhw8fltanR61Wk7+/Pzk4OFChQoUoLCzsm58fyz5bt26lQoUKUaFChWjOnDmUlJREMTExdOTIEerUqRPly5ePpk2blubaYzlDUFAQ6ejokBCCChYsqDXnhMaNGzcob968NHjwYFKr1VS9enUSQtDu3buJ6MN7gijlXdGkSRNprhshBLm6umZ4fP7MkD24hwVjjDHGGGOMsW+O0mmN+OrVKzx+/BgAULBgQUybNg09evRAZGQk5HK5lK5GjRp48OABdHV1MXLkSBQpUgRbt27FkSNHtPZnamqK8ePHo2fPnlCr1QgNDUVoaCgePHiQbp6EEFrHYdlHrVYjPDwcSUlJyJ8/P27cuIFu3bphyZIlACCVU7Vq1aCnp4dnz56haNGiGDVqFJ49eyb10NHR0YFarYZMJkOFChWwceNGlChRArdv30ZUVBRCQ0Px/v17rWNrWuVyq+nsd/HiRZiYmGDw4MEAUlpDA8CpU6cQFRUFKysrDBgwAHfv3sWOHTuk7ezt7dG7d28QETw9PQGk9MqRyWQgIuTNmxdubm6wsrLClClTEB8fn+69f/r0acyZMweDBg3CgwcPMHz4cBQrViwLzpx9jqYl/dfSvINatWqFWbNmISYmBmPGjEHJkiVRtWpVdOrUCX///TdGjRqFCRMmSNceyz7pfW4oXLgwlEoljI2NoaOjg5UrV6Jnz56IioqS0pQpUwbm5uYIDw+HEAIjRowAAAwbNgxAynuCiKBSqSCTyTB//ny4ubkhNDQUAHDhwgWpl8XH+DND9uCABWOMMcYYY4yxb4aItIZq0CwDAGtra6liqGLFimjXrh3CwsLw+++/awUjrK2t8fbtWwQFBcHY2BiTJ0/G+/fvsWzZMiQkJEAul0uVDwAwZcoU9OzZE0BKsKNSpUpZeMbsUzTDMH1cESWTydC8eXO0atUKarUa3bp1g52dHYYOHYoZM2bg2bNnAFKGCCtYsCCOHz8OABg+fDhKlSqFnTt3Yu/evWmOV69ePcyYMQMODg4AgN9//x2Ghobf8QzZf2FlZQWFQoE9e/YgKioK//vf/+Dg4IAOHTrgf//7HwBgzJgxKFy4MLZs2YJTp05J27q7u8PZ2Rk7d+7EyZMnIYSAUqmU1jdu3BjNmjXDuXPncOjQIa3jJiUloU2bNmjZsiWmTp0KIyMjBAUFYciQIWmGqWNZj4ikiuKTJ0/i4sWLuH//vtb6z9G8gwwNDdGlSxcEBARg0qRJKFmyJEqVKoVu3brh3r17GDlyJADwUIHZSPMuF0IgOTlZWq5UKmFnZ4cxY8bg7du3sLe3x8iRI7F+/Xp06dIF169fl9JWqVIFV65cAZASpGrXrh0eP36MWbNmAUgpX8015ejoiClTpqBp06YAgOnTp6Nw4cJZcarsS2VPxw7GGGOMMcYYYz+a1EMnnD9/njp27EivXr3SSvPmzRtyd3enPHny0KRJk+jYsWNkY2ND+fLlow0bNhARUWBgIAkhaMeOHUSUMmSLi4sLCSFo9erV0rLUoqOjtSbOZNnr4/LJaPglf39/MjQ0pMaNG9OBAwdo6NChJISgpk2bSsMEVa1alZydnen169dEROTj40NCCKpXrx7FxsYSUcowH6mHerp9+3aaPLCcRfO88Pb2JiEEFS5cmIQQVL58eVq8eDE9f/5cSrt27VoSQlDfvn0pISFBWr5r1y6SyWRUqVIlrX1rhoa6dOkS7du3T2ud5rrYt28fTZgwQWu9Wq3m6yabfPy3v3jxIlWvXp0UCgUJIUhPT4969+5N9+/f/8/H0jxbiFKuQy7z7PHx333UqFE0YMAAioyMJKIP97FSqSRLS0sSQtDJkyfJ29ubzM3NqVixYuTv709ERMOGDSMzMzM6f/48EaXc+8bGxqRQKKRnycfDO8XHx3PZ51AcNmaMMcYYY4wx9p9oWqbK5XK8efMGbm5ucHJyQmBgIO7du6eV1sTEBB4eHjA2Noavry9sbW1x5MgRlCtXDt27d8fEiRNRoEABFC5cGGFhYQBSWl1OmzYNALBq1So8efIEQgitIUPy5s0Le3t7rZ4XLPtoWjfv2rULDRs2RMOGDdGiRQscOXJEqxV8tWrV4O7uDj8/P1y5cgV//fUXJk6cCH9/fzRo0AAhISFo1aoVbt++DVNTUwBAu3bt0LhxYxw7dgybNm2Sjpd6qCd7e/s0Le5ZzqIpr5s3bwIAIiIi0LZtWxw4cAD9+/eHpaWllNbNzQ01atTAzp07tXpLtG3bFh07dsTly5exceNGACmtsjW9JCpWrIjmzZsDSNsqv3nz5pg2bZq0XtMzLHXvMJZ1NH97tVqNp0+fokuXLoiLi8PAgQMxYcIE/Pbbb1i7di1cXV2lHlhfy8DAAMCHVvdc5lmLPuqJ6e3tjUKFCmHevHmQy+XS/SuTyaBUKiGXy7FgwQIAKT0qO3TogD179kBHRwft2rXD+vXrUbt2bcTGxkpDe1WsWBEDBgyASqXC6NGjASBNOevp6fF7IqfK5oAJY4wxxhhjjLEfxOzZs0lPT4/y5s1LY8aMobNnz6bbejExMZGmTZtGQggaOHAgJSUlUVxcHHXo0IH09fWpcuXKVLBgQWrevLnUwpKIqFevXiSEoMGDB2fhWbGv8eLFC+rYsaPUYr5SpUpkZGSUbiv5q1evkq2tLdnZ2dHZs2eJiOjvv/+mfPnyUf78+alWrVpkbGxMwcHB0jYXLlwgHR0dKlasGPesySU0z4KPnwmDBg2iqlWrkhCCKleuLC3/uFdOQEAACSGoefPmUgtsIqLTp09TgQIFSCaTfdVE6tzCOueYO3cuDRgwgDw8PKhkyZJ0/PhxaV1cXBy1bt2ahBA0YMAAio6Ozsacsm/hypUrVK1aNRJCUP369WnHjh1aPas+9uuvv5IQgry8vIiI6ObNm1S/fn0SQlDdunVJCEHr16+X0j9//pxKly5NQgita4nlfNzDgjHGGGOMMcbYf3L69GkUKVIE48aNQ+vWrbFlyxaMGzcOTk5O6bZc1dXVRefOnVGhQgXs3LkTBw8ehKGhIdauXYsJEybg1q1biIiIQOHChbUmTB4zZgwAIDo6GomJiVl2fizzfH194evriyFDhsDHxwcXL17E6dOnUaNGDaxevRqenp5SK+lSpUph4MCBePDgAdatW4fY2Fi0bNkSXl5ecHJywokTJ2BiYgJdXV0AKa1zK1eujPbt2+Phw4eIiYnJxjNln0NEUCqV0rPg42fCrFmzcPz4cXTo0AGXLl3CwoULASDNXBJ169ZFly5dcPDgQfj6+krLq1WrhlatWqFQoUJ49OjRF81vkBq3rs96arU6TTnFxMTgwIEDWLduHYKDg9G9e3fUrFkTAJCYmAhDQ0NMnDgRLi4u2LJlizRfAct9lEol+vXrh4oVK+LVq1dYunQpli1bhvbt20s9qzTXh+b5AQCLFy8GAMydOxdRUVFwdHTE+vXrMXLkSAQGBsLQ0FDaTq1Ww9LSEr169QIAvHz5MqtPk/0HgjL7JGeMMcYYY4wxxv5fQkICxo4di8WLF6NTp06YOXMmihQpAiClwkAmkyExMRF6enpa26nVamzduhXdunVDmzZtsHjxYtjY2AAADh06hODgYHTo0EGaQJuIIITA/fv3YWdnl7Unyb4YESE2NhaNGzfGkydP8OjRI8hkMqn8Lly4gEmTJiEkJASzZs3CwIEDAQCPHj1Cx44dcffuXSxbtgwdOnQAEeH9+/eYNGkSKlasiJYtW8LIyEg61tu3b6Grq5vm2mI5h0qlkia6fffuHTZu3IjXr18jb968aNq0KWxtbaVr4/r166hVqxaMjY1x7tw5FChQQHqGaNy9exdVq1bFL7/8gjVr1qBMmTLSvlNfGyznUiqVUCgUAIBXr14hISEBNjY2UKvVOHnyJNq1a4fnz59j7dq16NGjB5KTk6GjoyNtv2zZMgwaNAiDBw/GwoUL01wjH9NcX0DKZOsymQwKhUJrOcta0dHR6Nq1K/z8/DBz5kypMUJqr1+/hrm5ufS7ppxdXV2xdetWjB49WppQGwBWr14NS0tL1KlTB+bm5lrl+/E1xHI+DlgwxhhjjDHGGPsqqSuhBw8ejGfPniEoKAiFCxfG1atXcfbsWYSEhOD58+dwcnJCixYt4OTkJG0fHR2NHj164N9//8WiRYvQp08fad3nKhhSV4SynCUuLg5lypSBtbU1AgMDoaurCyGEFLgICQlB+/btUaBAAaxatQq//vorlEol9uzZg44dO6Jp06ZYsWIFChUqBCDlWkg9rvnHUleAspxp6dKlmDRpEt6+fQu5XI7k5GSUKVMGixcvRt26daV048aNw+zZs+Hh4YGlS5eme59PnToVkydPxsiRIzFnzhytdXwt5FypK5Dj4uIwffp0BAcHg4iwceNG2Nvb4927d5g1axZmzZoFNzc3rFu3TrrvNduHhoaifPnyKFiwIK5duybNR/Gp46nVapw9exZBQUFwcnJCvXr1suakWYaOHz+OZs2aoU6dOli+fDmMjY1x5MgRHD9+HIGBgTA2Nkb16tXRsWNHVKlSRXoWPH/+HDY2NsiTJw+OHz+OcuXKAUCGgSvNdcDPhtyFh4RijDHGGGOMMfZVNJVBlStXRocOHRAeHo558+bB29sb7u7u6NevH4KCgnDq1CnMmjULLi4u8PLykrbPly8fBg0aBIVCga1bt+LWrVsAUioePtcakoMV2eNLJjR///49rKysEBMTAwMDA61ggxACv/76K/r164erV6/i4MGDSEpKgkKhQL169dC2bVv8888/+Pvvv6X96ejofLIFNVdC5VxRUVHo2bMnJk+ejHr16mH16tW4evUq9uzZg5cvX2Ls2LE4fvy4lH7UqFEoUaIE1q9fjzNnzkj3+cuXL3H//n0AwKBBg9CtWzetAKcGXws5l+Z9sW3bNhQpUgReXl4wMjJCzZo1pV5SRkZG6NSpE0qUKIGzZ8/i3LlzAKA1zE/x4sVRvHhxWFhYQFdXN83QUprfNccLDQ3FokWL0L17d4wfPx6PHz/OkvP9mX3Je6JKlSpwd3fHoUOH4OXlhTFjxsDNzQ07d+6ESqXCw4cPsXDhQrRs2RJnz56V3gH58+fH1KlT8fbtW8yePVvaX0bvCM11wM+GXCZLZspgjDHGGGOMMfZD0kxYe//+fWrRogUJIUgul1OlSpXIz8+Pnjx5Qnfv3qV169aREIIMDAwoNDRU2v7du3c0cOBAkslkNGXKlOw6DfYZqScmTkhIoM2bN0uTo6aeGF2jWbNmJISgffv2ERGRUqnUWn/jxg2yt7enKlWqaF0Px48fJ3Nzc6pevTpduXIlw/2znE+lUtHGjRvJzMyMhg0bRmFhYdK60NBQcnBwIAMDA+rZsyfFxcVJ67y8vEgIQc7OzhQdHU1HjhyhLl26UIsWLejmzZtax+AJs3OXgIAAsrKyoho1atDevXvp5cuXadIkJyfT4sWLSQhBPXv2pDdv3mitDwoKIoVCQS1btkzzbEh9PURFRdG2bduoTp06JISg2rVr09WrV7/PiTEiyvx74ubNm1S8eHESQpChoSFNnDiRXr58Sa9evaKEhAQaPHgw6enpUePGjen+/fta29ra2n7yHcNyNw5YMMYYY4wxxhj7JrZt20blypWjIUOGpLt+/PjxJISgvn37EtGHyo3r169TgQIFyMTEhM6cOZNl+WWZt3PnTjIxMSG5XE7Lly9Ps15TaeTr60tCCGrSpIm0LHVlVmxsLA0ePJiEEFpl/v79exo1ahQJIWj48OFcIZ0LaCoi0yurVatW0Zw5c6TfExMTqV+/fiSEoBIlSlDRokXJwsKCduzYobXdn3/+SUIIsrS0JGNjYxJCaO0n9XFZ7pCQkECNGjUiY2NjOnHihLRcrVanuXaePn1KLi4uUtAiMjKSXr9+TYcOHSJnZ2fS19cnPz+/dI/z/v178vf3J1dXV9LR0aGCBQuSj4/Pdz03pu1z7wmNpKQkWrZsGTk4OFBwcLC0XHM9PHnyhFxdXUkul9PevXuJKOU6IiLavXs3CSGoUqVK/Cz4AXHAgjHGflCBgYEEgDw9Pb/bMTw9PQkABQYGfrdj5BYPHjwgAOTm5pap7S5dukQymYy2bdv2fTL2Daxdu5ZkMhldu3Ytu7PCGGMsh9JULrx48YJ27NhBjx49IqIPFYrJyclERPTs2TNSKBRka2tLL168kLZPTEyk+fPn09SpU7M45+xLvXnzhhYsWEDGxsZkaGhI+vr6VLt2bbpz5w4RpV95XLVqVRJC0KZNm9JNs3r1ahJCpCn3a9euUefOndO0pmc5i1KpzDCgpAlSJSQkSOXu5+dHJUuWJCMjI+rfvz+dOXOGdu3aRUIIatq0KYWHh0vbh4aG0l9//UXNmzenUaNG0atXr77/CbHvKjw8nAwMDKhly5ZElPI8yOj6UavVtHfvXtLV1ZWCW3Z2dlSoUCEyMjKiJUuWpLvdtWvXaOzYsWRlZUU6Ojrcay+Lfc174unTpxQQEEDx8fHpXg+a90S/fv2ISDswOnjwYLp48eJ3OhuWnXgOC8YYyyHOnDkDIQQaN26c7vohQ4ZACAEHB4d01y9atAhCCEycOPF7ZvM/ISJs3boVdevWRd68eaGrqwsrKytUrFgR/fv3R3BwcHZnMcsNGzYMDg4O6NChw3c/1oULFyCEwLJlyzK1nZubG2xtbTFy5MjvlDPGGGM5xa5du9CkSRNcv34dQMp44V9CM0Z0vnz50LZtWxQpUgTAhzGl5XI5lEol9PX1YWNjgwIFCsDCwkIaa1xXVxfDhg3L0Z9jfnYhISGYMWMGjIyM4Ovri169euH48ePw9vYGoD1+uKZcPT09AQALFizAs2fPIJPJoFKpkJSUBADSZKn58uUD8OF6K1u2LLZu3QpHR8c049Oz7PFxOajVasjlcgghcOrUKfTu3Rvdu3fHwIEDce7cOWnuCT09PchkMkRHR2PmzJl4/fo1FixYgOnTp+PXX3+VJk++ePEifHx8pP2XKFECQ4cOhbe3N+bMmQNzc3MolUq+HnKxpKQkJCQkICkpCfHx8ZDJZNK742NCCNSqVQtdunSBrq4uGjdujHnz5mHMmDF4+PAhBg4cCCDtdblt2zbMnj0bzs7OiIiIwKRJk777ebEPMvOe0LCxsUHdunWhr6+vdT1o3hOa94PmfyGENEfGokWLUKlSpS/+rMJyDw5YMMZYDlGlShUYGRnh5MmTUCqVadYHBgZCCIE7d+4gMjIy3fUAULduXQCAk5MTbt26hQEDBnzfjGdC9+7d0bVrV1y5cgVNmzbF8OHD0bFjR5iZmWHdunVYu3ZtdmcxSx07dgxBQUEYPnz4JyeS/Fb27dsHAGjRokWmttPR0cHQoUPh5+eHkydPfo+sMcYYyyHOnTuHf/75B76+vgAynsTyUz6eDJuIIISAQqHAiRMnEB4eDhsbmzQVVZrfuUIyZzIyMkLXrl1x+vRp/P777+jVqxcKFCiA7du3S58PNJVGmrJs2rQpXF1dcf36dQwbNgxAyvWhq6sLADh8+DAAwNbWFkDa602tVmdYocm+v2fPnkll+3E5yGQyvH79Gq6urqhZsyYOHDiA/fv3Y/ny5ahWrVqaimJfX1+EhIRg9OjR6N27N8zNzQEAhoaGePPmDV69eoXNmzfjwoULAD48BwwNDQGkXAsKhYKvh1xMX18fv/zyC54+fYqnT5+mWa95fmi+C5ubm6Nnz54wMDDAvXv3UKFCBXh4eCBv3rxQqVTSuwX4cL107NgRly9fxs6dO6UKbpZ1MvOe+BilmlgdgPSe+PvvvwGk1G9opP6cQURZ8l2aZbHs6NbBGGMsfb///jsBoFOnTmktj46OJiEEtW7dmgDQ9u3btdarVCoyNzcnPT09io+Pz7L8ZmZIqJCQEAJAFSpUSDNxGhHR69ev6eTJk98hl1nja4aEatu2LRkYGKT79/geypYtS5UqVfqqbZ8/f04KhYK6dOnyjXPFGGMsJ3n16hU5ODhQ0aJFKSgoiIi+fpz41MM2JCYm0t69e6lYsWJkZ2dHly9f/hbZZVks9bA8ycnJNHv2bBJCUJ8+faRxxTXlrvk/JiaGKleuTEII6tChA504cYJu3rxJy5YtIxsbG2rYsKG0Lcs5nj59SkIIqly5Mj1+/JiI0j4LBgwYQIaGhjRq1Cg6d+4cPXv2jHx9fSlfvnwkhKCVK1fS27dviYho/vz5JISgjRs3au3D09OTqlatSj179iQhBB09ejRrTpBludjYWOrRowcJIWj16tXS99bExEQpzatXr6hLly506dIlIkqZj2Ls2LEkk8lo3rx5PLFyLpCZ98THUi8PDQ2lkSNHkq6uLrm6un7fTLMch0NQjDGWg9SpUwcAEBQUpLU8ODgYRIRBgwbBwsJC6k2hcfXqVbx+/Rq//fYb9PX1pX0IITB58mSttEWLFkXRokXx7t07DB48GDY2NtDT00O5cuWk1pQfCw8PR8eOHWFhYQEjIyM4OzsjJCQkU+d2+vRpACnDC5mYmKRZb2ZmhurVq2st69atG4QQuH//PubOnYuSJUtCX18fxYoVw9SpU5GcnJzusUJCQtCsWTPky5cPenp6KFmyJCZMmID379//5/QqlQpz5sxBiRIloK+vjxIlSmDWrFmZ7ob6+vVr7Nu3D40aNUrz93j48CGEEOjWrRtu3bqFP/74A2ZmZjA3N0fHjh0RHR0NIOVvWq9ePZiYmEgtkOLi4tI93oMHD3D9+nWt3hVv3rzBpEmTULp0aRgZGcHExAQlSpSAm5sbHj16pLW9paUlXFxc4Ovri3fv3mXqXBljjOUe5ubmmDBhAh49eoTNmzfj/fv3kMlkX9XrQQiB5ORkBAQEYPz48Rg4cCBev36NiRMnokKFCt8+8+y707SKBwCFQoEuXbqgcuXK8PX1xcGDB7XSaobtMDU1xZo1a9CjRw/s3LkTtWrVQtWqVTFw4EAULlwYCxYsgJ6eXlafCsvA+vXrsXDhQuTNmxe9e/fG1atXsWvXLgDaPWCuXbuGFStWwMXFBVOmTEHVqlVhbW2NNm3aYPny5bCzs8PChQtx48YNAEDVqlVhZGSEPXv24MqVK7h//z6WLFmCLVu24Pfff8fatWvx4sUL1KtXL1vOm31fRARjY2O0atUKhQsXxqxZs7B3714AH1rSX7hwAf369UNwcDBev34NADAwMIC7uztKliyJ7du34/z589l1CuwLZeY98bHExETcu3cPCxYsQP/+/TF//nzUr1+fh/b6GWVzwIQxxlgq58+fJwDUoEEDreUDBgwgAwMDSkhIoBYtWlCJEiW01i9YsIAAaE0qltGk27a2tmRjY0O//fYbOTg40IABA6h79+5kaGhIQgjy8/PTSh8REUEFCxYkANSoUSMaO3YstWzZknR1dalRo0Zf3MPCy8uLAEiTZX0JNzc3AkDNmjUjCwsL6tu3L40YMYLs7e0JALVp0ybNNitWrCAhBJmbm5OrqyuNGDGCXFxcCABVr15dqwXP16Tv3r07AaBixYrRsGHDqH///pQvXz76448/MtXDYu/evQSAZs+enWadprdG7dq1yczMjOrXr0/Dhw8nZ2dnAkA1atSg48ePk4GBATVv3pyGDx9OlStXJgDk7u6e7vH++usvAkBXrlwhopTWK7/++qu0v6FDh9Lw4cOpbdu2ZGZmRv7+/mn2MXHiRAKQ5hphjDH2Y1EqlVS3bl0yNjamHTt2fNU+VCoVnThxgkxNTcna2poMDQ3pjz/+oAcPHnzbzLJs5+3tTUIIatasGT179oyIMu6V4+PjQ7Nnz6YRI0bQrl27pOUZtbZlWScsLIwaNGhAQghyd3en169f0+PHj8nS0pLKli0rtXjXtHDfv38/CSFo1apVRJTSSl6zLj4+nqZOnUpCCJo2bRoRpfTWHT16NAkhyMTEhPLnz09CCKpbty49fPhQyge3oM+5PjVJ9udotktOTqaFCxeSubk5GRgY0IgRI2jDhg00evRoqly5MhkbG9PkyZO1Rg1QKpW0Zs0aaeLlrBxRgH0bX/qe6N+/P+nq6pKxsTHZ2dnRunXrsjqrLIfggAVjjOUgSqWSTE1NKU+ePJSUlCQt/+WXX6hOnTpE9KHiOTw8XFrfrFkzAkAhISHSsk8FLABQixYttCrjjx49KgUlUtMEDaZPn661fPXq1QTgiwMW4eHhZGJiQkII6tSpE+3atUvry0l6NMe2tLTUOt/ExESqXbs2ASBfX19p+f/+9z9SKBRUvnx5io6O1trXrFmzCADNnz//q9Nr/qbly5end+/eScufPHlC+fLly1TAYuTIkQQg3cCAJmABgBYtWiQtV6vV1KRJEwJAZmZmtHfvXmldUlISlStXjhQKBUVGRqbZp7OzMxUtWlT6/dq1awSAWrZsmSZtQkKC1H0/tX379hEAmjRp0hedI2OMsZwvo8qnEydOkBCCGjduTE+ePCGizA8N9e7dO+revTsNGDCATp8+LS1XKpVcQf0DiYmJoVatWpFCoaClS5emmyY5OTnD7T+1jmWNxMRE6ty5M5mbm9O8efPo5s2b0jrNUE7Dhg3TegYsX75cWp6a5t4OCQkhQ0NDKlu2rNb6GTNmUNeuXal58+a0ZcuW73hW7FtKHUhK/T0hM89yTdr4+Hjy8fGhokWLkhCChBBkZGRElStXpuDg4HS3ffr0KfXp04fOnj37lWfAstOXvCeIiE6fPk1DhgyhTZs2aV1zHMj8+XDAgjHGchhN8OHEiRNElNIaSQgh9Z64ePEiAaDNmzcTUUrlgZmZGRkYGGgFID4XsLh//36aY9va2pKFhYX0e2JiIunr61P+/PnTtGRRqVRUsmTJLw5YEBH5+/tTkSJFpMp4TTDizz//pICAgDTpMwqWEBEdP36cANAff/whLRs0aFCawE3q/FpaWlLlypW/Or27uzsBoN27d6dJP23atEwFLDp27EgA6Nq1a2nWaQIWxYsXT/MlYPPmzQRACmClNnXqVAJAx44d01oeHR1NcrmcBg8eLC3TBCw6duz4RfklIjpz5gwBoO7du3/xNowxxnKm1JXEH79rNL/37t2bhBC0cOHCrz5OXFyc1u9c6fBjCgkJoTx58lDVqlUpLCyMiFIahnh7e6dJq7m+vnZuFPbtPXr0iIoVK0b169dPsy4pKYnKli1L1tbWdOTIEWn53bt3SVdXV6uHxMfPkrJly5KlpSU9evQoTXmnTsvPhdzh1atX1LdvX6pSpQo1b96cTp8+LTWy+5r7+e3bt3TmzBkKCgrS+j6mVqv5+fAD+tL3ROqGm/xs+HkpvtHIUowxxr4RFxcXHDhwAIGBgahRowaCgoJARHBxcQEAVKhQAaampggMDETXrl1x5coVxMTEoH79+tL4n59jZmaGYsWKpVleqFAhaa4JALhz5w4SEhJQt25daW4MDZlMhho1aiA0NPSLz61+/fq4d+8egoKCEBISgosXL+LEiRPw8fGBj48Pxo4di5kzZ6bZrlatWmmW/fbbb1AoFLh8+bK07MyZMwAAPz8/BAQEpNlGR0cHt2/f/ur0V69ezTA/6S37lJcvXwJIKYuMlCtXDkIIrWUFChQAgHTH/tasi4iI0Fp+6NAhqFQqrfkrHB0dUa5cOXh7e+PJkydo2bIlXFxcUKFCBa3xiVOzsLAAAGkODcYYY7kPEUEIAYUi5avgli1bcOXKFZiYmKBSpUpo1KiR9Hli7Nix8PX1xcaNG1GnTh2UL18earU6w/dEegwNDQFA2k4ul3/7k2LZrnLlyujXrx8WLFiA5cuXw8HBARs3bsSZM2dgYWGBhg0bSmk1n20ycx2x70upVEJXVxdhYWEAgH379qFPnz6YMGECBgwYgClTpqBNmzbYvHkzqlWrBjMzM5iZmaF58+bw8/ODv78/evbsKc1bIpfLERcXh6SkJJiZmaFgwYJa5a15DvFzIefSlJHG2bNn4ebmhmfPniFv3ry4ePEizp49K81P9DX3s5GREX799VetZZrr5+PvQBnli+UeX/qe0NHRkebN4mfDz4sDFowxlsOknnh7woQJCAoKgr6+vvRhTiaToWbNmtLE25r/69at+8XHMDU1TXe5QqHQmjz6zZs3AID8+fOnm97KyuqLj5n6GPXr10f9+vUBpHxB2rhxI/r164dZs2ahbdu2qFSp0mePI5fLkTdvXimPAPDq1SsAwIwZM74oL5lN/+bNG8hkMuTLly/Nusz+LQwMDAAACQkJGaZJb3JyTQXTp9Z9PBn53r17YWFhoRVUUSgUOHbsGCZPnozdu3dj+PDhAFIm1x4wYADGjx+f5gNifHw8gA+VT4wxxnIfTUXP8ePH0adPH9y9exdmZmaIjY0FEaFDhw6YPn06bG1tUbRoUYwePRpjxozBtm3bUK5cOWkC7sxWGHHl9I9Jcy0YGhrCzc0N3t7eWLlyJRITE2FkZIS//vpLK1jBch61Wg07Ozu0a9cOM2bMgK2tLcLDw1GrVi0ULlwYRIRWrVqhefPm2LNnDxo0aAB3d3fky5cPXbt2RXBwMObMmYMCBQqgadOmkMvlePv2LVavXo3Q0FBMmzYtzWdKDlrlXJrvgh+XzZ49e6Cvr49Nmzbht99+w/Xr1+Hu7o45c+bAwcEBDRo0yHRAOz2fq6DmYEXu8zXvCS5nxm8HxhjLYcqXLw9zc3OcOnUKSUlJCAwMRLVq1aCnpyelcXFxwcOHD/Hw4UMEBQUB+BDo+JY0gY3nz5+nuz4qKuo/H0OhUKBnz57o1KkTgA8BmM8dR6VS4eXLl1rBF00lvqbSJaN/X5ve1NQUarU63R4Gmf1bWFpaAvgQNPleEhIS8O+//6Jp06ZSQEMjb968WLp0KZ4+fYqbN29i2bJlsLCwgKenJ+bOnZtmX5q8avLOGGMsd7p06RLc3Nwgk8mwZMkSHD9+HLdu3UK/fv2wbds2jBgxQkrbt29flClTBtu2bcPRo0e/aP+p351JSUlSwDv1cpY9VCrVN92fplLp7NmzWLNmDSIiIpCYmAgPDw9ERkZiyJAhALjsczJNBfOtW7cghMDTp08xcuRI+Pr6okWLFlIZe3p6goiwadMmhIWFQQgBZ2dnjB8/Hvfu3UO3bt0wefJkLFq0CKNGjcK0adNQtWpVtGnTJjtPj2UCEUEmk0EmkyEsLAwbN25EYGAgYmJisHfvXkycOBEtW7aElZUV6tevj2XLliEiIgKLFi1CfHy8FNBmuRu/J1hOwAELxhjLYWQyGZydnREfH4/9+/fj1q1b0nBQGs7OzgCAo0eP4vjx4zAyMkKVKlW+eV5KlSoFfX19XLhwIU1PALVajVOnTn2zYxkZGWW47vjx42mWnT59GkqlEhUrVpSWaXqhaIZ6+pzMpi9fvnyG+Ulv2aeULVsWQMqwW9/T0aNHERcXpzUc1MeEEHB0dISHhwf8/f0BAPv370+TTpNXTd4ZY4zlbBlVOqxZswaPHj3CrFmz0L9/fzg6OqJ48eLo0aMH7OzssHv3buzZswdASnB/8uTJePbsGTZt2oTY2FgIIdKtWNAs01ROXLx4EXPnzsWWLVt4GI9sRkTSUCsA8PDhQ7x48QJxcXHS+q/d76lTp9C5c2csW7YMdevWxc2bN7F06VIYGhpCqVRy2ecCW7duRWhoKH799Veo1Wo8evRIaqCieY5UrFgRAwYMQEhICHbu3AkgpTHP4MGDMWXKFFhYWGDq1KkYO3Ystm/fjvbt2yMgIAD29vbZdl4srdS96TWUSiWAlGd3cnIyRo0aBQcHB3Tv3h316tXDH3/8ASEEqlSpArVaLe2jRYsWaNy4MY4cOYItW7Z8cR64Yjpn4vcEy0k4YMEYYzmQprfElClTACBNwKJSpUowNjbG4sWL8ebNG9SqVStN6/lvQU9PD3/++SeeP3+OBQsWaK3z8vLC3bt3v3hf//zzD/bt2yd9IE4tLCwMu3btAgDUrFkzzfrFixfjyZMn0u9JSUkYP348AKBbt27S8v79+0OhUGDgwIF4/Phxmv3ExMRozXmR2fRdu3YFAEydOlX64AYAT58+xeLFizM89/Rogk5nz57N1HaZtW/fPujp6aFRo0ZayzU9dD6m6Sny8ZwlwIe8avLOGGMsZ9NUOqxYsQKrV69GYmIioqKicPjwYdSvXx/NmjUDkPIeXrRoEbp164b79++jQ4cOqFevnrSfNm3aoGnTpti/fz/27dsHQHu4ho8DFQ8ePMCyZcvQvXt3TJo0Cc+fP0+3koxlDU1FkFwuR1hYGNq1a4d69erByckJzs7OOHr0qPT5LLMVUkII6Ovro2rVqvDx8cHRo0fh4OAgVWoqFAquhMpimSlDTdqmTZvCx8cHhw4dksry0KFDafY3cuRI2NjYYMuWLVqfYSdOnIizZ8/i7Nmz2L17N65cuYI1a9YgT54837y1Nvt6Xl5eaNOmDe7fv6+1PPX3yEOHDmHLli3o06cPFi1ahKFDh+LUqVO4e/eu1PtCU7ENAEuWLAGQ8p4JDw+X5iZJT3rvijt37vD7IQfg9wTLcb7lDN6MMca+jWvXrhEAAkD6+vqUkJCQJk3jxo2lNHPnzk2zPjAwkACQp6en1nJbW1uytbVN97jOzs708ashIiKCChYsSACocePGNHbsWGrZsiXp6upSw4YNCQAFBgZ+9pwWLlxIAChfvnzUunVrGjlyJI0YMULaFwDq16+f1jZubm4EgJo1a0YWFhbUr18/GjFiBNnb2xMAat26dZrjrFmzhuRyOenr60vH6du3LzVs2JD09PSoT58+/ym9u7s7AaBixYrRsGHDyMPDg/Lly0d//PEHASA3N7fP/i2IiNRqNdnZ2VHJkiXTrHvw4EGG+8qoXImINmzYQABow4YNRESkUqnIysqKmjRpkibt33//TUII+vXXX8nd3Z3Gjh1Lrq6uZGJiQjKZjPbt25cmv0WKFCFHR8cvOj/GGGPZQ6lUSj/HxsZShw4dSAhBrVu3poiICHr+/DkZGBjQ0KFDKSYmhrZv306NGjUiIQRVqVKFzp07J22flJQk/Xzx4kUSQlCFChXo2bNn0nK1Wi39HB0dTT4+PtL+qlatSmfPnv3OZ8y+hEqlojlz5pCRkREVKlSIGjduTK1bt6aCBQuShYUFbdy48T/tO7XU1yDLPvHx8ZlKr7mX9+zZQ0II+u2336R1qct45cqVJISggQMHSs+I9MpcpVKluTZY9mrdujUJIWjbtm1ayx8+fEhFihShFi1aUO/evalr164UHR0trR84cCAJIahv375a22nKfciQISSEoAkTJmR47NTviufPn9OOHTuoWrVq1KRJE3rw4ME3ODv2X/F7guUkHLBgjLEcSK1WU758+QgAubi4pJtm1qxZUsDi/PnzadZ/q4AFEdGjR4+offv2ZGZmRoaGhlSrVi0KDg4mT0/PLw5YPH/+nNauXUtt27Yle3t7MjY2Jh0dHSpQoAD98ccf5Ovrm2YbTcDi3r17NHv2bCpRogTp6uqSra0tTZ48mRITE9M91rlz56hDhw5kY2NDOjo6lC9fPqpUqRKNGTOGbt269Z/SK5VKmjVrFtnZ2ZGuri7Z2dnRzJkzKSwsLFMBCyKiOXPmEIA0lTnfKmBx8uRJAkBr1qxJkzY8PJzGjBlD1apVo/z585Ouri4VKVKEWrduTadPn06TPigoiADQokWLvvj8GGOMZY8nT57Q/v376dy5c1SkSBGaPn063bx5k4hS3un29vZUtGhR6tOnD+nr65OlpSVt2rQpzX4CAwMpLi5O+n3SpEnk7e2dJl1CQgIFBQVRr169Prk/lj2SkpJo+fLlVKBAAeratSv5+flRcnIyERHdv3+fTE1NqXr16nT8+HEiSlux9KW4cjpnUKvVNHbsWBo6dGi6jZ6+RKtWrUgIQcuWLSMi7crFhIQEql69OllYWNDOnTszzAPLftHR0VrP8KdPn9LKlSvTBLOePn1KDg4OJJfLydramq5du0ZEJH3XevnyJRUvXpzy5MkjBbWVSqV0zyckJJClpSWZmZnRiRMntPad+lp4//49HT16lLp16ya9KzK6hljW4vcEy2k4YMEYYyzH0gQsftRWNy9fviRTU1Pq2bPnd9n/qFGjSAih1RL2a3Xu3JksLCzo9evX/z1jjDHGvhulUkmmpqakr69PpUuXpo4dO6ZJ065dOxJCkEwmoylTpqRbgTBt2jQqWbIknTp16pPHCwsLo0mTJlGhQoVIJpPR6NGjv9m5sG8jKiqKmjZtSs2bN6eHDx9Ky//991/65ZdfSAhBCoWC+vbtK1Vwc4Vz7nX69GmSyWT0yy+/ZHpbTWDiypUrZGxsTEWLFqWoqCitdURE+/fvJyEELV269Ntkmn1zvr6+Um+Kj+9npVJJhw4d0nr2r1u3jszMzMjKyopCQ0OldZpyX716NQkhqFmzZlr70lRqL1y4kIQQdPDgQSJK+wy5fPkyTZgwgaysrEihUNCkSZO+7Qmz/4TfEyyn4YAFY4yxHOtHD1gQEc2ePZt0dHS0Phh+K/b29lStWrX/vJ87d+6QXC6nv/766xvkijHG2LeQ3nArmoqjxYsXkxCCTExMpF53ycnJUsVTQEAAGRoakomJSZphGcLCwmjChAlkbW1N3bp1SxOo/riCwsvLi4yNjalp06b05MmTb3iGLDM0ZZ+R4OBg6efIyEj6888/SQhBlStXpmXLllH58uUpX758tHv3biL6fEVU6vXJyckZ9npl309GLZWVSiVVqVKFhBBSa+jMVCxq0g4fPpyEEDRkyJB093H//v2vyTbLIvv37ycbGxuqXbu21rNZqVRSnTp1SAhBhw4dkpYnJSVRixYtSAghDf2TnJysVe61a9cmIQT5+PhI+0q9Pr2GTQ8fPqQVK1ZQhQoVSAhBbdu2lYJgLGvxe4LlJjzpNmOMMZaNBg8ejAkTJqQ76fd/dfv2bZw+ffo/7+fJkyfw9PSEh4fHN8gVY4yx/0qtVkuTn965cweBgYG4f/++NHHqoEGDUKFCBbx9+xaxsbEAAJlMJk3CXbduXQwaNAhv375F+fLlMW/ePJw+fRpz585F//79MW/ePFSrVg0TJ06EmZmZ1rE1E2PS/0+62aBBA5w4cQIHDx5EwYIFs+gvwDQ0k9Vqyn7//v0ICAjAtWvXEBcXJ6WrWbMmAOB///sfOnTogCNHjmDUqFFYt24dPDw84OHhgZcvX2Lbtm2IjIzMcOJc+mjS3KtXr2LhwoU4fPgwT5ybRTRlIJPJtMoYAFQqFeRyOTp06AAACA4OBoBMTWir2f/YsWNRrFgxbNq0CRcvXoQQQmsC7WLFikmT5rKcQ1N+9erVQ/fu3XH8+HHs2rVLmjBZLpdLn+m3bduGmJgYAICOjg4GDhwIY2NjTJo0CcCH54qm3CdNmgSFQoG5c+ciKSlJeqdojmtmZiYdBwCuX7+OIUOGwMPDA0IInDhxArt27UL+/Pm/7x+BaeH3BMuVsjFYwhhjjH3Sz9DDgjHGGPtSqVtUx8TEkLu7O+nq6pK+vj7JZDKaP38+PX78mIhS5p/QTJL95s0baXvNPl69ekVeXl5kZWVFQggSQpCBgQEVLlw43bmPWPY6efIkPX/+nIjSb1nv7e1Ntra2pKOjI5Vn/fr1KSIiQivdvHnzSC6X06xZs+jt27fS8iVLlpAQgooUKSLNW/Apjx8/ptWrV5OTkxMJIWjatGk8iWoWmzlzJtnZ2Umt3VO3Zg4MDCRTU1Pq0qXLV81joSnLFStWkBCCWrZs+W0yzbKEZjL0CxcuUNWqVcnW1pZu3LihlaZly5akp6dH69ev11o+YMAAEkLQ9OnTiSjt5MidOnX64uHA7t27R87OzrRu3br/cjrsC/F7gv1IOGDBGGOMMcYYY7mIWq0mNzc3KlCgAHXq1Ik8PDyoRIkSpK+vT5MmTZIqKFu2bKk1cW56wzc8fPiQDh8+TPv376e///5ba8gIrljIGWbPnq1VgaihUqkoOTmZpk+fTvr6+lSnTh2aN28eHTt2jDw8PMjAwIAaNGhAly9fJqKUSsxKlSpRvnz56OXLl1r7mjt3LlWqVImEEGRnZ6fVWCT1dRMTE0N79+6Vho4pW7YsHTt27LudO0tfUFCQVOGYN29eOnXqlNb9euvWLbK3tydLS0upwvFrhoUiIpo0aRIP95ZLfPzMjo+PpyVLlpC+vj4NGTJEq/L58uXLpKurS87OzhQWFiYtv3nzJhUvXpwUCoVU+a1UKqV93717l2bMmJGp4YDY98fvCfaj4YAFY4wxxhhjjOUC/v7+1K5dO1q4cCFZWVnR6tWr6d27d0REdPXqVapUqRLlz5+ffH19iYjowYMHJIQgR0dHunfvHhFlPO59ahyoyFlu3rxJRYoUodWrV6cpv/v371PBggXJ2dmZrl69Ki2Pjo6mYcOGkRCC3N3dpYrHrl27kqmpKf3zzz9ElDKu+J49e8jY2JjWrFlDy5YtS7eHTXJyMp08eZIGDBhAxsbGZGpqSitWrPiOZ82IPn2/Ojo6kr29PZUuXZrs7Oxoz549WuvbtGkjTbpMlPkK5I+P/SXPDpYz+Pj4ULVq1ahFixZUsWJFsrGxobx581JgYKBWOs08JR9Xcs+dO5eEEOTm5kZEH8r+42uIr4mcg98T7EfDAQvGGGOMMcYYy+HUajV5enqSEIJq1KhBHTt2TJPmyJEjJISgVq1a0dOnT4mIaNSoUSSEoJEjR37xcVjOo6lI+ti0adNICEEnT56Ull2/fp3mzJlDRYoUISEEzZ07l4hSynbXrl1kZGREDg4ONGbMGOrTpw8VL16cqlWrluEkymFhYTRr1iwqVqwYCSFowIAB0pAz7PtLPVGtWq2WAorjx48nKysrunXrFpUoUYJKlChBAQEBUto9e/ZI5fVfJ7vl50LOp1arKS4ujvr16ycN9TNixAgaPHgwlSpVioQQ1KFDB3rx4oW0zbNnz6hgwYJkb29PZ86ckZa/fPmSXFxcSAhBISEhGR6P5Sz8nmA/Eg5YMMYYY4wxxlgu8OzZM6pXrx4JIahXr15ERFpDOBERdezYkeRyudYwUPnz5ydra2s6fvw4EXGr2Nzq2LFjVKNGDTp8+DARpfSE6dWrF5mamlJERIQ0L0n16tVJCEENGjTQGuqFiOj9+/fSEDEGBgZkaGhIzZo1o4cPH2Z43CVLlpBcLqd69epRaGjodz3Hn93HlcArVqygypUr0759+4hI+9719fUlmUxG//77L12+fJkqVKhABQoUoEuXLpFaraZbt25R4cKFqX79+hQbG/uf8sFyh8uXL5OJiQk1atSI7ty5Iy2/efMmValSRepxk/o6WrlyJQkhyMPDQ6uCef369WRmZkZ79+7N0nNg/w2/J9iPQpbdk34zxhhjjDHGGPs8a2tr9O3bF0IIhIWFITIyEgqFAmq1WkozceJE6OvrY+vWrbh+/TqEEJgzZw6ioqKwcOFCAIBMxl8Dc6PHjx/j1KlT8PX1RWxsLORyOXR1dREbG4ulS5eif//+6N27NyIjI3HgwAH8+++/KF68OAAgOjoaycnJMDAwwMCBA3Ht2jUcPHgQJ06cwP79+2Fra6t1HQEAEQEAmjdvjsDAQBw9ehQlSpTI8vP+GRAR1Go1hBDSsufPnyMsLAyXLl2Ch4cH7t69q3Xv2tvbw9raGr6+vqhQoQKWL18OIyMjuLq64tixY7Czs4OtrS0CAgLw4sULAEhTxhnR5CMyMhLR0dHf8EzZ97R79268ffsWvXv3RqlSpQAAycnJcHR0hKenJ4oUKYKFCxciPDxc2sbd3R1OTk7YvXs3jhw5orX8xYsXaNGiRZafB/t6/J5gP4xsDpgwxhhjjDHGGPtCb9++pXbt2pGxsTF5e3unm2bixIkkhKBJkyZJy/r37083btzIqmyy70CtVlPTpk0pT548tHnzZiIiOnr0KOno6JCOjg4ZGhrSwoUL02yXnJxMzs7OtHjxYmk/H+N5S3KGW7duUc+ePbWWDRo0iIQQ9Ntvv1FwcLDWOhcXF6patSpFR0cTEdGlS5cof/78VKpUKXr8+LE0FMyMGTM+e+zU18Xbt2/pn3/+oSZNmlDTpk35+sglhgwZQkIIOn36NBGl3Puacn3//j15eHiQEILmz59P8fHx0nb+/v4khKB69erRmzdvtPbJZZ+78HuC/Si4aQ1jjDHGGGOM5RJGRkYYMmQIhBDYsmUL7t27B0C75fSQIUNgY2OD+fPn49SpUwCA5cuXo0yZMlJrSJb7CCEwceJExMfHY8uWLYiIiED58uXRpEkTKJVKzJgxA0OGDNHa5vLly+jSpQsuXrwIc3NzaT8fk8vlWXEK7BMmTJiA0qVLY926dVi8eLG0fOrUqfDw8MClS5cwcuRInDx5UlrXqVMnXLp0Ca9evQIAVKxYEcuWLUNSUhLatGmDIkWKAABu3LiB169fp3tczTNBCAG1Wo0LFy5g6tSp6NKlC44dOwYnJye+PrJQXFwcAECpVGZ6W809fujQIQCAQqGAEAJEBAMDA9StWxcAsHbtWty6dUvarn79+hg6dChGjhwJExMTrX1y2ecu/J5gPwoOWDDGGGOMMcZYLuLk5IRevXrBz88Phw4dAhFBJpNJFY8WFhaYPXs2xo8fj+rVq0vbfTzkDMt9fv31V/Tt2xdHjx6Fj48P8uXLh969e8PU1BSzZs3C8uXLERkZidDQUCxbtgxDhgyBn58fBg0ahJYtW2Z39tknaIZtMjU1xbhx4xAbGyv9PnbsWAwdOhTnz59Hz5498ezZMwBA6dKlYWhoiK1bt0r7adu2LVasWIHHjx9j7Nix0NPTw71795CcnJzucTXPhHv37mHJkiVwdXXF/Pnz0bRpU0RFRWHSpEnf87QZUoJGRISxY8eicuXKiI+Ph0Kh+OLtNQHrjh07wsDAAEePHsXdu3cBACqVCiqVCgBQrlw5mJub4+7du1i1apV0jQHAggUL0KhRo294Viy78HuC/QgEcRMbxhhjjDHGGMtV7t27h4YNG8LMzAxr1qxB5cqVQUQckPgJPHnyBJUqVUL+/Pmxfft2lCtXDjt27ICHhwdev34NMzMzEBHevXuHwoULY9GiRWjevHl2Z/un96n7U61WY/LkyVi3bh1KlSqF4OBg9O7dG6tWrdLarlOnTtixYwcaNGiAOXPmwM7ODr/99htsbW3h7e0NU1NTaZ/+/v5o166dVCl94cIFVKpUKc2xX7x4gYCAAHh5eeHYsWOoVq0aVqxYgQoVKnz7PwL7pHr16iEwMBC7d+9Gq1atMr19QkICBg8ejLVr12LQoEFYtGiR1vqZM2di+fLlKFmyJEJCQnDjxg2ULl1aWs/vkB8HvydYbscBC8YYY4wxxhjLZYgIy5cvx9ChQzFw4EBMnToVRkZG6abjCqgfz8KFCzF8+HAMGTIE8+bNg1wux+3bt3H48GE8fPgQOjo6KFeuHNzc3KRt1Go1T7ieTVQqVYbDqWju0XXr1mH06NGYM2cOpk6divDwcFy7dg2//PILEhISoK+vjydPnmDKlCnYsGEDqlWrhgMHDmD27NnYunUrjh07Bnt7e619L168GIcPH0a3bt3QsWPHNMe+e/cuRo8eDX9/f5iYmOCvv/5Chw4dvsvfgGVMc308efIEly9fRrNmzaR1mb1v79y5gyZNmuDBgweYNGkSevToAR0dHfj7++Ovv/5C586dUatWLZiYmMDR0fF7nA7LIfg9wXIzDlgwxhhjjDHGWC4UHR2NWrVqwdDQEIcOHYK1tXV2Z4llkfj4eFSvXh2RkZFYv349fv/9d631qSudlEplpoaXYd+HWq3GhAkTUKdOHdStWxdyuVyrnO7cuQNHR0ccPHgQr169gqurK1xcXHDs2DEAHwIbT548wYwZM7B69Wo4Ozujd+/e6Ny5M/7991/Ur18fKpUKQgjIZDIkJydDR0dHysPHAcz4+HgUKFAA/fr1w6xZs7L2D/KT+lTwSuPx48c4fPgw+vbt+1XHCA4ORufOnREREQELCwsYGxvj6dOncHR0hK+vL0qWLAmAK6d/dPyeYLkZBywYY4wxxhhjLJe6c+dOmlbV7Odw4MABtGjRAs2bN8f69ethYWGhNYFy6p9Z9goODkaDBg2gVCphY2OD7t27Y+rUqVpp/ve//8HZ2RldunTBwoULUbNmTZw+fRq+vr5o3bq1VvBBrVajWbNmOHLkCEqWLInQ0FB07doVmzZtSvf46VWSayoo4+PjYWBg8H1OnGXo6dOnKFiwYJqgUnJyMsqXL4/bt28jMDAQzs7OXxTk+Njdu3exfft2XLp0CW/evMHvv/+OMWPGfOvTYDkcvydYbsUBC8YYY4wxxhjL5bh15M+pdu3aePz4MQIDA1GsWLHszg5D+sOw3b9/HyVKlICxsTEsLCzw7t07tGjRAjNmzICVlZWUrmTJkihXrhx2796Nv//+G23atEGRIkXw8OFDad9qtRpyuRy3bt3C3LlzpSCFo6Mj/vnnHxQuXDjLzpVlDhHh0aNHqFu3LiwsLHDmzBnpub1nzx6ULFkSZcuWxcaNG9G9e3fUq1cP/v7+0rZfW6mcmJgIPT09APyu+Bnxe4LlRtz3izHGGGOMMcZyOa6A+jnt2rULDx8+5EqoHEClUgFIaamcnJwsLVcqlbCzs8OYMWPw9u1b2NvbY+TIkVi/fj26dOmC69evS2mrVKmCK1euAABatWqFdu3a4fHjx9JwTZpgBZASoJgyZQqaNm0KAJg+fToHK3Kgixcv4syZMwBSrg1TU1NUqlQJly5dQnBwMC5evIjy5cujffv2CAoKAgB069YNDRs2REBAADZu3Aggpey/lp6eHtRqNYiI3xU/IX5PsNyIe1gwxhhjjDHGGGO5GLeazj4ft3wfPXo03r9/jwkTJsDKykoaJ16lUqFAgQKIjo7GiRMn8PjxY/Tv3x9mZmZYs2YN6tevj+HDh2P9+vXw9/dHlSpVcPnyZTg7OyM+Ph4RERGwtLRMMzxQQkIC9PT0eEiXHOjatWuoUKECatSoAX9/f+jr6wNIGf6rYcOGiIuLQ2xsLMqVK4devXqhRYsWsLGxgUwmw6lTp1C3bl0ULVoU58+fh7GxMc85wf4Tfk+w3ISfdIwxxhhjjDHGWC7GlVBZTzM8kyZQ4O3tjUKFCmHevHmQy+VSxbJMJoNSqYRcLseCBQsAAFOmTEGHDh2wZ88e6OjooF27dli/fj1q166N2NhYqWK7YsWKGDBgAFQqFUaPHg0g7VjzmmCFUqnMqlNnX6hcuXJo3LgxTp48ic2bN0vL/fz88OzZM8TGxsLFxQXbt29H//79UahQIem6qV69Otzd3XH37l3MnTsXwJfPM8Dtkll6+D3BchMOWDDGGGOMMcYYY4xlghACMpkMV69exW+//YbOnTvD0dER3t7eGD9+PCwtLaW0morCrl27wsnJCf7+/li3bh1cXFywd+9eVKlSBT179sSSJUtARDh//ry07dChQ+Ho6IiNGzfixIkTaVrYayqxuTIyZ9EMEbZ48WIAwMqVK/H48WMAKUGspk2bokSJErh06RLMzc0hhJCGfdJsO378eBQoUADLly/H7du3IYSQ1n2K5pp4+fKlFMj6L0NKMcZYVuOABWOMMcYYY4wxxlgmKJVK9OvXDxUrVsSrV6+wdOlSLFu2DO3bt5eCFZqW7kQkVRxrKrDnzp2LqKgoODo6Yv369Rg5ciQCAwNhaGgobadWq2FpaYlevXoBSKmAZrmDXC6HSqVCyZIlMWjQIFy9ehWrVq0CAAwZMgQ+Pj4YOnQoYmNjMX78eACQglFyuRxqtRqFChXC0KFDERMTg2nTpknr0pO6V8Xbt29x8OBBDBs2DMuWLdPaN2OM5QY8hwVjjDHGGGOMMcZYJkRHR6Nr167w8/PDzJkzMWbMmDRpXr9+DXNzc+l3zRwErq6u2Lp1K0aPHi1NqA0Aq1evhqWlJerUqQNzc3Ot+TGSk5Oho6Pz/U+M/Sep5xjRlHdCQgIKFCgAfX197N+/H1WrVgUAREREoFevXjhy5AiCgoJQu3btNPtRKpWoVq0abty4gb1796Jx48Zax0h9jahUKly4cAE+Pj5Yt24dlEolVq9ejc6dO2fxX4Exxv4bDlgwxhhjjDHGGGOMZdLx48fRrFkz1KlTB8uXL4exsTGOHDmC48ePIzAwEMbGxqhevTo6duyIKlWqSBXNz58/h42NDfLkyYPjx4+jXLlyAJDhpMqaSmmeNDf3uHHjBuzt7aUg05o1a9C3b1+4urpi48aNUjpfX1/07NkTFSpUwNGjRyGXy7UCEHK5HLt370a7du1QpUoVnDt3Lt3j3b17FwcOHMDq1asRFhaGXr16YeHChTA0NPzu58oYY98aBywYY4wxxhhjjDHGUkndij0j8fHxGDduHJYvX44JEyYgKioK69evh7GxMfLmzYuYmBhERUXBxsYGu3fvhpOTk1QZPXPmTEyYMAEdOnTA9u3bs+KUWBZ4+/YtOnXqhMuXL+PAgQOoWLGitK58+fK4desWdu7ciVatWgFIuYYGDx4MLy8vrFu3Du7u7gCA58+f4/79+6hWrRoAYPLkyejQoQMcHBy0jhcVFYWjR49i7dq1CAkJQa1atbBy5UqULl06i86YMca+PQ5YMMYYY4wxxhhjjEF7iJ3ExET4+PigcePGsLS0TLcHxK1bt9CsWTPcv38fBgYGGD58OIYMGQIhBAwNDTF69GisWrUKderUwYoVK1CsWDFp26JFi+Lx48fYu3cvmjdv/kVBEpazJSQkYMmSJZg4cSLGjBmDESNGwNjYGAAQHByMOnXqoG7duvj777+l5SdOnECPHj2QlJSEFStWIDk5GX///TcCAgKwcuVKNG3aVNq/5hokIpw7dw7z5s3DwYMHkT9/fixatAitW7fOlvNmjLFviWfdYYwxxhhjjDHGGAOkYIWPjw/y588Pd3d37Nq1C0D6ExeXKFECQ4cOhb29PY4cOYKpU6fCwsICZmZm0NPTw8iRI9G+fXv4+/vj2rVrAFICIQDw119/AQCmTJkCtVrNwYofgL6+Ptq0aYPatWvDy8sLFy5ckNY5OzujVatWOHbsGDZs2CAtr1mzJgYOHIiXL1+iadOmaN++Pby9vdGnTx+tYAURSdegUqnElStXcPjwYYwbNw6PHz/mYAVj7IfBPSwYY4wxxhhjjDHGAMTGxsLLywuTJ0+GSqWCWq2Gk5MT1q5di1KlSqXbyyIiIgK3b99G9erVoaenJwU9NDTzF/Tt2xcrVqzQ6sUxZMgQuLq6olKlSll2juzbWLduHRITE9GrVy/o6OhI5UpE2LVrF9zd3dGuXTvMnj0b1tbWAIDw8HDY2trCwcEBBw4cQPHixQEA79+/x+nTp3H48GGYmZlhwIAB0oTtqa+X1CIiImBiYgIjI6OsO2nGGMsC3MOCMcYYY4wxxhhjDEBISAhmzJgBIyMj+Pr6olevXjh+/Di8vb0BpN/LwsbGBnXr1oW+vr5WxXJSUhIAIF++fFr/CyGgUqkAAIsWLUKlSpWgVqu/63mxb+vOnTuYOXMmJk2ahLt37wKAFKwQQsDZ2Rl//vkndu3ahZCQEGjaChcuXBjjxo3D7du3sWbNGml/BgYGqFevHubMmYOJEyfC3NwcKpUqw2AFkHLdcbCCMfYj4oAFY4wxxhhjjDHGGAAjIyN07doVp0+fxu+//45evXqhQIEC2L59O06ePAkAGQYXNJXSmvW6uroAgL///hsA4OTkJKVNPfxT6qF+WM6iVCq1fteUrb29PUaMGIH3799j1apVeP/+vVY6KysrdO3aFaampvDy8kJYWJi0bvr06ShYsCCWL1+OgIAAre0UCoV0HLlcnmGwgjHGfmT8RmSMMcYYY4wxxhgD4OLiAk9PT9ja2gIAHB0dMWjQIISGhmLLli1ITEyUJj3+mKaFvSb4EBYWhlGjRsHHxwddu3bFH3/8ke4xuVI659EEJjQBhAsXLiA+Pl4rze+//46GDRtiw4YNOHv2LICUstRsW758eTRs2BCBgYH4559/tLafNGkS3r9/j5iYGGm71DiAxRj7mfETkDHGGGOMMcYYY+z/aeYOAFIqrLt06YLKlSvD19cXBw8e/OS2iYmJuHfvHhYsWID+/ftj/vz5qF+/PiZNmvS9s82+IU3AYMeOHShZsiTq1auH+vXrY/78+VKaokWLokuXLtDT08PChQvx8uVLaVu1Wo28efPCxsYGKpUKPj4+uHHjhrRtr1698OLFC7Rp0yZrT4wxxnIBDlgwxhhjjDHGGGOMZaBgwYIYPnw4Xr16hU2bNiEyMlKrJX1qw4cPR+nSpTFlyhTcu3cPXl5eOHTokDS5MsuZiEjqNaP5f8eOHRg0aBAsLCzg4uKCW7duYcyYMVpzT9SpUwft27fHwYMHcejQISQnJwP4EPCQyWSoUqUKTp48CS8vL7x7907aNm/evNI8FYwxxj4QxE9GxhhjjDHGGGOMsQy9efMG7u7uOHDgABYuXIgBAwakm+7MmTPYuXMnKlasiM6dO0tzVahUKq15K1jOoVQqpaGfNOWUmJiI2rVro0iRIpgxYwZKlSqF06dPY8CAAXj06BEOHToEJycnCCEQFBSEvn37QkdHB0uXLoWLiwuSk5Oxb98+9OzZExMmTMD169fRuHFjdOzYMZvPljHGcj4OWDDGGGOMMcYYY4x9xvHjx/H777+jdOnS8Pb2RvHixXHz5k1cu3YNHTp0kNIlJydDR0cHAAcqcpMVK1bg7NmzqFSpEgoVKoTNmzdjzZo1sLKyktJs2bIFAwYMQOPGjbFy5UpYWFggKSkJXl5eGDlyJExMTNC+fXvExsYiJCQEjo6O8Pb2hpGRUTaeGWOM5S4csGCMMcYYY4wxxhj7jPfv38PT0xMLFizAkCFD4ODggI0bN+LMmTP4559/0LBhQymtpqqFJ9TOmdRqtTRs061bt9CxY0dcu3YNCoUCSqUSBgYGMDIyws2bN5E3b14pCPX8+XOMHTsWmzZtwo4dO9CqVSvI5XK8e/cOmzZtwqhRo0BESEhIQNOmTbF8+XIUKVIkzTEZY4xljAMWjDHGGGOMMcYYYxkgIinwcOPGDTRu3BgvX75EYmIijIyMMHXqVAwZMiR7M8ky7f79+0hOTsbff/+NXbt2oXfv3qhTpw42bdqEDRs2QC6XY+vWrXB2dtba7ujRo+jZsycKFCiAXbt2oVChQlr7fPDgAczMzFC5cmUAHKhgjLHM4icmY4wxxhhjjDHGfhgqleqb7k8TrDh79izWrFmDiIgIJCYmwsPDA5GRkVKwgtuD5h5nz55FiRIlMH78eCxYsAC9e/dGnz59UKpUKYwaNQqDBg1CREQE/P398fbtWwAfrqsaNWqga9euOHv2LHx9faFUKgGklL+dnR3q1asnBStUKhUHKxhjLJO4hwVjjDHGGGOMMcZyPSKCWq2W5ox4+PAh8uTJA0NDQ+TJk0erp0Rm93v69Gm4urri/v37qFu3LpYtWwYHBwcAKZM2y+VyHv4pF4mKikK3bt3g5+eHkiVL4saNG9DR0ZEm4L579y769u2L0NBQbNmyBS4uLgA+9Ja4cuUK+vbti+vXr+PMmTMoW7Zs9p4QY4z9QDjMyxhjjDHGGGOMsVxNE4yQy+UICwtDu3btUK9ePTg5OcHZ2RlHjx7VagmfGUII6Ovro2rVqvDx8cHRo0fh4OAAtVoNtVoNhULBwYps8rVtcK2srDBixAiYmpoiIiICd+7cAfChN02JEiXQu3dvvHr1Cps3b0ZUVJTW9hUqVEC7du1Qu3Zt5M+f/7+dBGOMMS0csGCMMcYYY4wxxliuJoSAWq3G3LlzUbFiRZw5cwalSpVCpUqVEBkZifbt22P79u1S2syqUKECvL290bZtWwAfhvrh4X6yl6YsExISMr2tk5MTXF1dERcXB39/fwCAXC6XelG4uLigbdu28PHxwfHjx0FEkMlk0tBQ/fv3x5EjR2BlZfXtTogxxhgHLBhjjDHGGGOMMZa7JScnY9WqVVi0aBFatWqFdevW4cCBA9i9ezeOHz8OlUqFNWvW4MSJEwBShvbJDE1gQrOdZtgplr2ICOPGjcO4ceOQmJiYqW2NjY3Ro0cP2NjYYNeuXbh27ZrWemtra7i5ucHCwgKrV6/G3bt3AXwoewMDAwDffs4Uxhj72XHAgjHGGGOMMcYYY7na69evcfjwYVStWhXTpk1Dw4YNoVAo4O/vj+bNmyM2Nhbnzp3Dtm3bkJiYCJlM9lXDCXGPipzl7NmzmDNnDvz9/aGnp5fp7R0dHTFo0CCcOXMGe/bsQUJCglYviipVqqB169YICAhAeHh4uvvg4BVjjH1bPOk2Y4wxxhhjjDHGcjzNhMgZCQkJQe3atQGkTKo8aNAg7Nq1C5UqVYK7uzvWrl2Lp0+fYvXq1WjduvVnJ+FOvV6pVEKtVkNXV/fbnhT7Ipphmj6mUqlQrVo1XLx4ESEhIahZs2amJ1cPDw9H69at8erVK6xduxZ169bVWh8aGgqlUglHR8f/fB6MMcY+j5sGMMYYY4wxxhhjLMfSDMOkCVbs378fAQEBuHbtGuLi4qR0NWvWBAD873//Q4cOHXDkyBGMGjUK69atg4eHBzw8PPDy5Uts27YNkZGR0rwXH9O069RUel+9ehULFy7E4cOHMz2UFPtvNGUhk8m0yhpICVbI5XJ06NABABAcHAwg83OUFCpUCMOHD8ejR4/g6+uL6OhoAB+uu5IlS8LR0RFqtfqrJ/lmjDH25ThgwRhjjDHGGGOMsWx36tQpvHjxAoD2HBOalvU7duxA0aJF0bZtWzRo0AAVKlRAy5Yt8ezZM610R44cwfHjxzFu3DhMmDAB5cuXB/BhYuYLFy5g9+7dWtukpqnwDg8Px5o1a9C7d2+MHj0aN27c4ArrLKYpi1mzZqFcuXLYtWsXgJRAhmYopsqVK8PExAS3b9/O9DwWmmM0atQILVq0wKpVqxAQEAAg7bUhk8m+asJ2xhhjmcMBC8YYY4wxxhhjjGWrOXPmoGbNmlizZg0A7UmulUolZsyYAXd3d9jZ2WHmzJkICAhA//79cfLkSbi5ueHKlSsAUibf9vb2hrm5OXr37g0jIyPpGAkJCahYsSLCw8Px119/4eHDh9K61IGIN2/eYN++fRg4cCD69u2L+Ph4BAQEYMKECTxfQTYIDg7G+PHj8eDBA/Tr1w+nT5/WCmhZW1vD2toafn5+SE5OBoBMB5bMzc3h4eEBV1dXNGjQ4JvmnzHGWOZkPPgjY4wxxhhjjDHGWBZo3rw5VqxYAUtLS635CmQyGR49eoSVK1fi119/xaJFi1CuXDkAQLly5aCnp4eFCxdiyZIlmDNnDiwtLVGmTBncu3cP58+fR6NGjaBUKnHgwAFMmzYNCxYsQFJSEnR1dVG0aFHp+EIIKJVKnDt3Dt7e3ti0aRNkMhmWL1+Ofv36Zcef5KeT0TwVzs7OcHBwgFqthlwuR5cuXTB//ny0atUKAODg4IBffvkFe/bswf79+9GpU6evOn6dOnWk+SsyOw8GY4yxb4cDFowxxhhjjDHGGMtWjo6OuHDhAiwtLdOs27ZtGyIiIuDj4yMFK27cuIHDhw/D19dX2t7S0hJEhObNm+Pvv//GkCFD0LJlS7x+/RpHjx5FmTJlUL9+fRQrVizNMe7du4ddu3ZhzZo1ePjwITw8PPDXX39BR0fn+544k8hkMimYBKQEDTRBitatW8PLywtBQUFo1qwZRo0aBVNTUynA0LlzZ+zZswenT59G27Ztv2pydE2AIqPACWOMsazBT2DGGGOMMcYYY4xlO0tLSwQGBqJmzZo4cuQIgJSJlR8/fgwTExMUK1YMr1+/xrp169CnTx+MGTMG9vb2CA0NxciRIwGkVDo3bdoUM2fOxMOHD7F48WJs2bIFpUuXxo4dO9INVgDA4cOHMWHCBNjZ2eHu3btYunQpByu+s4+HbVq5ciWqV6+O/fv3S+s1Q3BVrFgRL168QHh4OHbt2gUjIyN06dIFly9fBhHB0dERhQoV+qp5LD7OBwcrGGMse/FTmDHGGGOMMcYYYznC48ePcerUKfj6+iI2NhZyuRy6urqIjY3F0qVL0b9/f/Tu3RuRkZE4cOAA/v33XxQvXhwAEB0djeTkZBgYGGDgwIG4du0aDh48iBMnTmD//v2wtbXVmvsA+FBZ3bx5cwQGBuLo0aMoUaJElp/3z0TTcyL1kEvPnz9HWFgYLl26BA8PD9y9e1crcGBvbw9ra2v4+vqiQoUKWL58OYyMjODq6opjx47Bzs4Otra2CAgISHfi9k/R5CMyMhLR0dHf8EwZY4x9DQ5YMMYYY4wxxhhjLEdwdXVFkyZNsHPnTuzbtw8A0KpVKygUCsyfPx/79+/HggULcO/ePTRt2lTaTqlUom3btli5ciWAlErxkiVLom7duqhYsSKAlN4aH7ee11RW29raolatWllxij89IQRkMhlu376NXr16AQDy58+PBQsWYODAgXj69Cm6deuGkJAQaZtffvkFpUqVwuXLl/Hy5UtUr14dO3fuxPPnz9G/f39ERUWhUaNGAIAdO3YA+HRPidS9Kt69ewc/Pz/06NED3bp1g0ql+h6nzRhj7AtxwIIxxhhjjDHGGGM5ghACEydORHx8PLZs2YKIiAiUL18eTZo0gVKpxIwZMzBkyBCtbS5fvowuXbrg4sWLMDc3l/bzMc3wQiz7TZgwAaVLl8a6deuwePFiafnUqVPh4eGBS5cuYeTIkTh58qS0rlOnTrh06RJevXoFIGWYqGXLliEpKQlt2rRBkSJFAKTMb/L69et0j6sJVAghoFarceHCBUydOhVdunTBsWPH4OTkxNcJY4xlMw5YMMYYY4wxxhhjLMf49ddf0bdvXxw9ehQ+Pj7Ily8fevfuDVNTU8yaNQvLly9HZGQkQkNDsWzZMgwZMgR+fn4YNGgQWrZsmd3ZZ19AM2yTqakpxo0bh9jYWOn3sWPHYujQoTh//jx69uyJZ8+eAQBKly4NQ0NDbN26VdpP27ZtsWLFCjx+/Bhjx46Fnp4e7t27h+Tk5HSPqwlk3bt3D0uWLIGrqyvmz5+Ppk2bIioqCpMmTfqep80YY+wLCPp4diHGGGOMMcYYY4yxbPTkyRNUqlQJ+fPnx/bt21GuXDns2LEDHh4eeP36NczMzEBEePfuHQoXLoxFixahefPm2Z1t9v+IKN1eLkDK3BKTJ0/GunXrUKpUKQQHB6N3795YtWqV1nadOnXCjh070KBBA8yZMwd2dnb47bffYGtrC29vb5iamkr79Pf3R7t27aTAx4ULF1CpUqU0x37x4gUCAgLg5eWFY8eOoVq1alixYgUqVKjw7f8IjDHGvgr3sGCMMcYYY4wxxliOUqhQIYwdOxY3b97Exo0boVKp0KFDB5w8eRLz589Hly5d0L17d3h5eeH+/ftSsOJLJ1pm349KpcowWEFEkMlksLW1RWJiIrp06YLChQtjzZo1uHHjBoQQSEhIAADMnTsXPXr0QEBAAAYMGACVSoU//vgDV69eRWRkpNZ+GzRogClTpqBBgwbYtm1busGKu3fvonfv3ujZsydu3ryJ7du349SpUxysYIyxHIZ7WDDGGGOMMcYYYyzHiY+PR/Xq1REZGYn169fj999/11qvVquliZWVSiUUCkV2ZJOlQ61WY8KECahTpw7q1q0LuVyuVV537tyBo6MjDh48iFevXsHV1RUuLi44duwYgA89NJ48eYIZM2Zg9erVcHZ2Ru/evdG5c2f8+++/qF+/vhQckclkSE5Oho6OjpSHj3t5xMfH/x97dx4f0/X/cfw12TchG7GEWFPUEmrXEtTaWvpV6odai/arrVpKVReKVqlSXehXiW+1VbW1/aJaKkSs1SqqJUgk9khChGyz/P6ITI2EBJGl3s/HY9qZc88959y5E5nczz3nQ9myZXn22Wd5++23C/YNERGRPNMMCxEREREREREpclxdXZkyZQrnzp1jwYIF1mTLFovFeqd+1nMFK4qOLVu24OLiwjvvvMOgQYOYPHkygDVYAZkBJm9vb3788Uf69u1Ls2bNCAsLY9WqVdbtkDnT5qOPPqJTp05s2bKFN998E4DPP/8cyEykntVuVrDCZDIBtonXjUYjrq6unDlzRsEKEZEiTgELERERERERESmSHn/8cVq2bMm+ffu4dOkSkHkhOuti9PXPpeDltGhHQEAARqOREiVK4OjoyCeffMLQoUM5d+6ctU7t2rXx8vIiNjYWg8HA2LFjARg9ejSQGXywWCyYTCbs7OyYNWsWAwYMIDIyEsjMUREbG5vjmOzt7bOVZQW0XF1d7+6ARUTknlPAQkRERERERESKrG+++Ybo6GgqV65c2EORa66fxZCRkWEtNxqNVKlShQkTJnD58mWCgoIYN24cixYtol+/fhw4cMBa96GHHmLfvn0A9OjRgyeffJKYmBjrDAiz2WwNPtSsWZPJkyfTpUsXAKZOnUpAQEBBHKqIiBQw5bAQERERERERkSJPeSoK3415IcaPH8/Vq1eZNGkSZcqUseapMJlMlC1blgsXLrBt2zZiYmJ47rnnKFWqFJ9++int2rVjzJgxLFq0iJ9++omHHnqI3377jVatWpGSksLp06fx8/PDZDLZzJhITU3F2dlZs2pERP7BNMNCRERERERERIo8BSsKj8ViwWw2WwMFX331FRUqVGDmzJk2eSTs7OwwGo3Y29vz3nvvATB58mSeeuopVq1ahaOjI08++SSLFi3ikUceISkpCRcXFwCCg4MZOXIkJpOJ8ePHA2QLTGQFK7JyXIiIyD+PZliIiIiIiIiIiEiufv/9d0aMGMGuXbto27YtQ4cOpU2bNvj5+eVYv2nTpuzevZv//Oc/DBkyhD///JMXXniBTZs2ERISwubNm/nss88YNGgQAHFxcbRu3Zo///yTrVu30rJly4I8PBERKQI0w0JERERERERERG7KaDTy7LPPEhwcTEJCAvPmzePDDz+kd+/e1mBF1v2wFovFOgNi7ty5ALz77rucO3eOmjVrsmjRIsaNG8fmzZtxc3Oz7mc2m/Hz8+OZZ54BID4+vqAPU0REigDNsBARERERERERkZu6cOEC/fv3Z8OGDUyfPp0JEyZkq5OYmIiXl5f1dVY+i6effpqlS5cyfvx4a0JtgAULFuDn50dISAheXl42+TEyMjJwdHS89wcmIiJFjgIWIiIiIiIiIiJyS+Hh4Tz++OOEhITw0UcfUaJECdavX094eDibN2+mRIkSNG/enD59+vDQQw9ZE2afP3+ecuXK4e7uTnh4OHXr1gX+DmjcKCtwoSTrIiL3JwUsRERERERERETuY1nBhVtJSUlh4sSJfPTRR0yaNIlz586xaNEiSpQogY+PDxcvXuTcuXOUK1eOlStX0rhxY+uMienTpzNp0iSeeuopvvzyy4I4JBERKaYUsBARERERERERuQ9dvwxTWloay5cvp2PHjvj5+eU4A+LPP//k8ccf5/jx47i6ujJmzBhGjRqFwWDAzc2N8ePHM3/+fEJCQvj444+pXLmydd/AwEBiYmJYs2YNXbt2zVOQRERE7j9Kui0iIiIiIiIich/KClYsX76c0qVLM2jQIL755huAHJdrqlatGi+99BJBQUGsX7+eKVOm4O3tTalSpXB2dmbcuHH07t2bn376if379wOZgRCA2bNnAzB58mTMZrOCFSIikiMFLERERERERERE7kNJSUnMnj2boUOHYjQacXR05Ouvv+bIkSNAZp6J6zk6OtKjRw8++ugjGjduTNaiHVmBj/Lly9OiRQvMZjMbNmwAwMnJCYAnnniCF154gf/85z85BkNERERAAQsRERERERERkfvS1q1bmTZtGh4eHqxYsYJnnnmG8PBwvvrqKyDnWRblypWjTZs2uLi4WAMVAOnp6QD4+vra/N9gMGAymQCYM2cODRo0yBYIERERyaKAhYiIiIiIiIjIfcjDw4P+/fuzY8cOOnXqxDPPPEPZsmX58ssviYiIALLPssiSNbsia3vWTIrVq1cD0LhxY2vd65d/slgsmmEhIiI3pd8QIiIiIiIiIiL3odatW/PGG29QqVIlAGrWrMkLL7xAZGQkn3/+OWlpadjZ2VmDE9czGAw2wYejR4/y8ssvs3z5cvr3789jjz2WY5/Xz8oQERG5kcGS028dERERERERERG575w6dYru3bsTFRXFggUL+Ne//oXFYskx0JCamsqpU6dYs2YNGzZsYOPGjXTq1IkPPviAqlWrFsLoRUSkuNMMCxERERERERERATITZ48ZM4aEhASWLFnC2bNnMRgMOS4NNWbMGGrVqsXkyZM5duwYCxcuZO3atQpWiIjIHXMo7AGIiIiIiIiIiEjR0alTJ7p3787333/PihUrGDlyZI55J/r374+TkxPBwcH07dvXmqvCZDLZ5K0QERHJKy0JJSIiIiIiIiIiNsLDw+nUqRO1atXiq6++omrVqhw6dIj9+/fz1FNPWetlZGTg6OgIKFAhIiJ3TzMsRERERERERETERsOGDXn22Wd57733+Oijj3jggQcIDQ1l586deHt70759ewAcHR2tSbkVrBARkbulGRYiIiIiIiIiIgJgk2D74MGDdOzYkfj4eNLS0vDw8GDKlCmMGjWqcAcpIiL/WJphISIiIiIiIiJSTOX3MkxZwYpdu3bxxRdfcPr0aQD+/e9/M2PGDNzc3ADbwIaIiEh+UcBCRERERERERKSYsVgsmM1ma7AiOjoad3d33NzccHd3v+OAgsViYceOHTz99NMcP36cNm3a8OGHH/LAAw8AYDQasbe3V7BCRETuCbvCHoCIiIiIiIiIiORdVjDC3t6eo0eP8uSTT9K2bVsaN25Mq1at2LhxI0aj0Vr3dhgMBlxcXGjUqBHLly9n48aNPPDAA5jNZsxmMw4ODgpWiIjIPaMcFiIiIiIiIiIixYzZbGbWrFm89dZblCpVigcffBA3Nzd27dpFSkoKs2fPZsCAAXfctp3d3/e45veyUyIiIjejJaFERERERERERIqRjIwM/vOf/zBnzhx69OhBv379aNOmDQ4ODkRFRREcHMynn35K1apVadmyZbYARG6y6mbtp2CFiIgUFC0JJSIiIiIiIiJSjCQmJrJu3ToaNWrEW2+9Rfv27XFwcOCnn36ia9euJCUlsXv3br744gvS0tKws7O77aWhgNsKcoiIiOQH/eYRERERERERESlisnJQ5KR06dK8/PLLfPvtt1SqVIlz587Ru3dvOnTogLOzM/PmzaN27dqsWLGCtWvX5qm/6wMaRqOR9PT0uz4GERGR26UloUREREREREREioisZZgcHDIv2Xz33Xe4u7vj5+dH1apVcXd3B6Bly5YA/PHHH4wcOZK9e/fy8ssv06dPH+rVq4eTkxPDhw/niy++oHnz5vj7++e4NFRWAu+sRNq///47P/74I9WrV6dr166aZSEiIgVKv3VERERERERERArY9u3biYuLAzKDFFmyAgTLli0jMDCQnj178uijj1K/fn26d+/OmTNnbOqtX7+e8PBwJk6cyKRJk6hXrx4AqampAPzyyy+sXLnSZp/rZQUqYmNj+fTTTxk2bBjjx4/n4MGDd7SMlIiIyN1QwEJEREREREREpADNmDGDli1b8umnnwK2Sa6NRiPTpk1j0KBBVKlShenTp7Np0yaee+45IiIiGDBgAPv27QMyk29/9dVXeHl5MWzYMDw8PKx9pKamEhwcTGxsLLNnzyY6Otq67fpAxKVLl/j22295/vnnGTFiBCkpKWzatIlJkyYp2baIiBQ4LQklIiIiIiIiIlKAunbtyscff4yfn5/NMk12dnacOHGCTz75hCZNmjBnzhzq1q0LQN26dXF2dub999/ngw8+YMaMGfj5+VG7dm2OHTvGnj176NChA0ajke+//5633nqL9957j/T0dJycnAgMDLT2bzAYMBqN7N69m6+++oolS5ZgZ2fHRx99xLPPPlsYb4mIiAiggIWIiIiIiIiISIGqWbMmv/zyC35+ftm2ffHFF5w+fZrly5dbgxUHDx5k3bp1rFixwrq/n58fFouFrl27snr1akaNGkX37t1JTExk48aN1K5dm3bt2lG5cuVsfRw7doxvvvmGTz/9lOjoaP79738ze/ZsHB0d7+2Bi4iI5EJLQomIiIiIiIiIFDA/Pz82b95My5YtWb9+PQAmk4mYmBg8PT2pXLkyiYmJfPbZZwwfPpwJEyYQFBREZGQk48aNAzJnSnTp0oXp06cTHR3N3Llz+fzzz6lVqxbLli3LMVgBsG7dOiZNmkSVKlU4cuQI8+bNU7BCRESKBM2wEBEREREREREpBDExMWzfvp0VK1bQokULPD09cXJyIikpiXnz5hEVFcXy5csJDAzk+++/p0uXLtZ9L1y4QMmSJXF1deX555+nY8eOxMbG4uXlRXBwMIDNclOQmbvCYDDQtWtX6tevz8MPP1zgxywiInIrBsv1mZZERERERERERKRAWCwWHn/8ccLCwvjkk0/o378/mzZtolOnTgA4Ojoybdo0Ro0aZbOf0WikXbt2PPHEE7zwwgvWQMT1TCaTkmaLiEixoyWhREREREREREQKgcFg4LXXXiMlJYXPP/+c06dPU69ePTp37ozRaMwxWPHbb7/Rr18/9u7di5eXl7WdGylYISIixZECFiIiIiIiIiIihaRJkyaMGDGCjRs3snz5cnx9fRk2bBglS5bk7bff5qOPPuLs2bNERkby4YcfMmrUKDZs2MALL7xA9+7dC3v4IiIi+UpLQomIiIiIiIiIFKKTJ0/SoEEDSpcuzZdffkndunVZtmwZ//73v0lMTKRUqVJYLBaSk5MJCAhgzpw5dO3atbCHLSIiku8UsBARERERERERKWTvv/8+Y8aMYdSoUcycORN7e3v++usv1q1bR3R0NI6OjtStW5cBAwZY97kxqbaIiEhxp4CFiIiIiIiIiEghS0lJoXnz5pw9e5ZFixZZE29nuT44YTQacXBwKIxhioiI3FMKw4uIiIiIiIiIFDJXV1emTJnCuXPnWLBgAQkJCQBYLBYsFgt2dnbW5wpWiIjIP5VmWIiIiIiIiIiIFBGPPPIIMTExbN68mcqVKxf2cERERAqUAhYiIiIiIiIiIkXEuXPnKFOmTGEPQ0REpFAoYCEiIiIiIiIiUsQoT4WIiNyPFLAQEREREREREREREZFCp6TbIiIiIiIiIiIiIiJS6BSwEBERERERERERERGRQqeAhYiIiIiIiIiIiIiIFDoFLEREREREREREREREpNApYCEiIiIiIiIiIiIiIoVOAQsRERERERERERERESl0CliIiIiIiIiIiIiIiEihU8BCREREREREREREREQKnQIWIiIiIiIiIiIiIiJS6BSwEBERERERERERERGRQqeAhYiIiIiIiIiIiIiIFDoFLEREREREREREREREpNApYCEiIiIiIiIiIiIiIoVOAQsRERERERERERERESl0CliIiIiIiIiIiIiIiEihU8BCREREREREREREREQKnQIWIiIiIiIiIiIiIiJS6BSwEBERERERERERERGRQqeAhYiIiIiIiIiIiIiIFDoFLEREREREREREREREpNApYCEiIiIiIiIiIiIiIoVOAQsRERERERERERERESl0CliIiIiIiIiIiIiIiEihU8BCREREREREREREREQKnQIWIiIiIiIiIiIiIiJS6BSwEBERERERERERERGRQqeAhYiIiIiIiIiIiIiIFDoFLEREREREREREREREpNApYCEiIiIiIiIiIiIiIoVOAQsRERERERERERERESl0CliIiIiIiIiIiIiIiEihU8BCREREREREREREREQKnQIWIiIiIiIiIiIiIiJS6BSwEBERERERyYNTp04xZ84c2rdvT8WKFXFycsLf359//etf7Nq1K8d9kpKSGD16NJUqVcLZ2ZnAwEDGjRtHcnJyjvXNZjPz5s2jTp06uLq64ufnR58+fTh+/Pi9PDQRERERkSLBYLFYLIU9CBERERERkaJuwoQJzJgxg6pVq9K6dWv8/PyIjIxkzZo1WCwWvvzyS3r37m2tf+XKFVq2bMm+ffto3749wcHB/Pbbb/z44480atSIrVu34uLiYtPHM888w8KFC6lduzZdunTh9OnTLF++HA8PD3bu3En16tUL+rBFRERERAqMAhYiIiIiIiJ5sGrVKnx8fGjVqpVNeXh4OG3btsXDw4MzZ87g7OwMwBtvvMGUKVMYP34877zzjrV+VuBj+vTpvPLKK9byzZs306ZNGx555BF++uknnJycAFi/fj2dO3emffv2bNiwoQCOVERERESkcChgISIiIiIicpc6dOjAjz/+yJ49e3jooYewWCxUqFCBpKQkzp49i7u7u7XulStX8Pf3p3Tp0hw7dsxa/n//93989dVXbNmyhUceecSm/ZCQEMLCwjhx4gQVK1YssOMSERERESlIDoU9ALk7qampHDhwAAA/Pz8cHHRKRURERCR3RqORuLg4AOrUqZNtaSK5PY6OjgDW7+ORkZGcPn2aDh062AQrANzd3WnRogUbNmwgNjaWgIAAAMLCwqzbbtShQwfCwsLYsmUL/fv3z/O4Tp48ecvtqamp/PXXX5QpU0Z/T4iIiIhInt2rvyf0bbSYO3DgAI0bNy7sYYiIiIhIMbZ7924aNWpU2MMotmJiYti4cSNly5alTp06QGbAArhpzonq1auzYcMGIiMjCQgI4MqVK5w5c4YHH3wQe3v7HOtf325eZQVDRERERETulfz8e8IuX1oRERERERG5D2VkZNC/f3/S0tKYMWOGNdhw6dIlAEqWLJnjfp6enjb1bre+iIiIiMg/kWZYFHN+fn7W51u3bqVy5cqFOBrJq5SUFLZu3QrAI488gqurayGPSHKjc1Y86bwVTzpvxY/OWfEUFRVlzZNw/XdKyTuz2czAgQPZunUrzzzzzG0t1VRQYmNjc93evHlzIPPvCX9//4IYloiIiIgUc2fPnr0nf08oYFHMXb/GrL+/PxUqVCjE0UhepaSk4OvrC0CFChV0YacY0DkrnnTeiiedt+JH56x4SklJsT5X3oLbZzabGTx4MF9++SX9+vVj/vz5NtuzZkrcbEZEUlKSTb3brZ9Xt/P3QeXKlfX3hIiIiIjkyfV/9+Xn3xNaEkpEREREROQ2mM1mBg0axJIlS+jTpw+hoaHY2dn+aZVbzokbc1y4u7tTtmxZoqKiMJlMudYXEREREfknUsBCREREREQkj7KCFf/973/p3bs3n3/++U2TZJcrV46IiAiuXLlis+3KlStERERQuXJlm6TYrVq1sm670YYNGwCs0+5FRERERP6JFLAQERERERHJg6xloP773//y5JNPsnTp0hyDFQAGg4GhQ4eSnJzMW2+9ZbPtrbfeIjk5mWeeecamfNiwYQC89tprpKenW8vXr19PWFgY7du3p1KlSvl8VCIiIiIiRYcWqxUREZF8YbFYuHDhAleuXCEjI+OO2zGbzfj4+AAQExOTbZkVKXp0zoouR0dH3N3d8fX1xWAwFPZwir0pU6awZMkSPDw8qFGjBlOnTs1Wp3v37tSvXx+Al19+mW+//ZYZM2bw22+/0aBBA3799Vd+/PFHGjVqxKhRo2z2DQkJYejQoSxcuJAGDRrQpUsXzpw5w9dff423tzfz5s0rgKMUERERESk8CliIiIjIXbNYLJw7d47ExMR8aSsreZfJZMJsNt91m3Jv6ZwVXUajkZSUFEwmE2XKlFHQ4i5FR0cDkJyczLRp03KsExgYaA1YuLu7s2XLFt58801WrlzJ5s2bKVu2LGPGjOGNN97IMUH9ggULqFOnDp9++ilz587Fw8ODHj16MG3aNKpWrXqvDk1EREREpEhQwEJERETu2oULF2yCFfb29nd1YTRrXwcHfVUpLnTOih6LxWJN3pyYmIi9vT1+fn6FPKriLTQ0lNDQ0Nvap2TJkrz//vu8//77eapvZ2fHCy+8wAsvvHAHIxQRERERKd70F6WIiIjctesTypYtW5ZSpUrdcVtms5mkpCQAPD09tbxQMaBzVnRdvHiRM2fOAJk/pwpYiIiIiIhIUaa/JkVEROSuZeWssLe3v6tghYjkr1KlSlmTQhuNxkIejYiIiIiIyK0pYCEiIiL5RuvjixQ9WT+XFoulkEciIiIiIiJyawpYiIiIiIiIiIiIiIhIoVPAQkRERO5brVu3ZtSoUYU9jGJpzZo1VKtWDXt7e1566SW+/PJLKlWqVCB9BwYGMmfOnALpKy/i4+MpXbo00dHRBd5306ZNWblyZYH3KyIiIiIici8oYCEiIiL3rVWrVvHWW28VWH9bt27l8ccfp1y5chgMBtasWZOtzsCBAzEYDDaPjh072tTJKt+5c6dNeVpaGj4+PhgMBsLCwoDMC9ojRoywqTd//nwMBgOhoaHZ+n744YfzdCzDhw+nZ8+exMbGMmXKlDztc7tCQ0NzzImyZ88ehg0bdk/6vBPTpk2jW7duBAYGAvD777/Tp08fAgICcHV1pWbNmsydO/e2283L52XSpElMmDABs9l8l0chIiIiIiJS+BSwEBERkfuWt7c3JUqUKLD+rly5Qr169fjoo49uWa9jx46cOXPG+vjqq6+y1QkICGDx4sU2ZatXr8bDw8OmLCQkxBq8yLJ582YCAgKylYeFhdGmTZtcjyM5OZnz58/ToUMHypUrV6DvIYCfnx9ubm4F2ufNXL16lc8++4whQ4ZYy/bu3Uvp0qVZunQpf/zxB6+++iqvvPIKH3744W21nZfPS6dOnbh8+TLr16+/42MQEREREREpKhSwEBERkfvWjUtCpaWlMXbsWMqXL4+7uztNmjSxuagfHx9Pnz59KF++PG5ubtSpUyfHYMLNdOrUialTp9KjR49b1nN2dsbf39/68PLyylZnwIABLFu2jJSUFGvZokWLGDBggE29kJAQDh8+zNmzZ61lW7ZsYcKECTbHFhUVxYkTJwgJCbnl2MLCwqwBijZt2tjM5rjRJ598QtWqVXFyciIoKIjPP//cZvvs2bOpU6cO7u7uBAQE8Nxzz5GcnGztZ9CgQVy6dMk6o+TNN98Esi8JZTAYWLhwIT169MDNzY3q1avz3Xff2fT13XffUb16dVxcXAgJCWHJkiUYDAYuXrx4y+PNzbp163B2dqZp06bWssGDBzN37lxatWpFlSpV6NevH4MGDWLVqlW31XZePi/29vZ07tyZZcuW3fExiIiIiIiIFBUKWIiIiIhcM3LkSHbs2MGyZcvYv38/Tz75JB07diQyMhKA1NRUGjZsyNq1azl48CDDhg2jf//+7N69O1/HERYWRunSpQkKCuLZZ58lPj4+W52GDRsSGBhozV8QExPD1q1b6d+/v029Fi1a4OjoyObNmwE4dOgQKSkpDBkyhPj4eKKiooDMWRcuLi40a9bslmNr3rw5hw8fBmDlypWcOXOG5s2bZ6u3evVqXnzxRcaMGcPBgwcZPnw4gwYNso4DwM7Ojg8++IA//viDJUuW8PPPP/Pyyy9b+5kzZw6enp7WmSZjx4696bgmT55Mr1692L9/P507d6Zv374kJCQAmcGYnj170r17d37//XeGDx/Oq6++esvjzKvw8HAaNmyYa71Lly7h7e2dL33eqHHjxoSHh9+TtkVERERERAqSQ2EPQERERP65FoYfZ2F4VK71HizvycIBjWzKXlxxiMPnrwKGW+479OHKDH24yt0ME8i84L948WJiYmIoV64cAGPHjuWHH35g8eLFTJ8+nfLly9tcNH/++efZsGEDy5cvp3Hjxnc9BshcDuqJJ56gcuXKHDt2jIkTJ9KpUyd27NiBvb29Td3BgwezaNEi+vXrR2hoKJ07d8bPz8+mjru7O40bNyYsLIw+ffoQFhZGy5YtcXZ2pnnz5oSFhVG5cmXCwsJo1qwZzs7Otxyfk5MTpUuXBjKX1PL3988xf8KsWbMYOHAgzz33HACjR49m586dzJo1yzqL4/rZLYGBgUydOpURI0bw8ccf4+TkRMmSJTEYDPj7++f6vg0cOJA+ffoAMH36dD744AN2795Nx44dWbBgAUFBQcycOROAoKAgDh48yLRp03JtNzcnTpywfl5uZvv27Xz99desXbv2rvvLSbly5YiNjcVsNmNnp/uRRERERESk+FLAQkRERO6Zy6lGzial5lqvbCmXbGWJV42cTUrLUx/54cCBA5hMJmrUqGFTnpXIGsBkMjF9+nSWL1/OqVOnSE9PJy0tLV/zKTz11FPW53Xq1KFu3bpUrVqVsLAw2rZta1O3X79+TJgwgePHjxMaGsoHH3yQY5utW7fmm2++ATJnb7Ru3RqAVq1aWZdeCgsL45lnnsm34/jzzz+zJcZu0aKFTfLpjRs38vbbb/PXX3+RlJSE0WgkNTWVq1ev3vZ7WrduXetzd3d3PD09OX/+PACHDx+mUSPbgFhuAaYRI0awdOlS6+uspapulJKSgotL9s9vloMHD9KtWzfeeOMN2rdvn+tx3AlXV1fMZjNpaWm4urrekz5EREREREQKggIWIiIics+UcHHA3/PmF3Oz+Lg7ZSvzcnPA39OZ3GZYlHDJn68zycnJ2Nvbs3fv3mwzGbISWc+cOZO5c+cyZ84ca+6FUaNGkZ6eni9jyEmVKlXw9fXl6NGj2QIWPj4+PPbYYwwZMoTU1FRrAuYbhYSEMG3aNE6dOkVYWJh1lkirVq1YsGABx44dIzY2Nk8Jt/NLdHQ0jz32GM8++yzTpk3D29ubbdu2MWTIENLT0287YOHo6Gjz2mAw5DjzI6+mTJlyyyWosvj6+pKYmJjjtkOHDtG2bVuGDRvGpEmT7ngsuUlISMDd3V3BChERERERKfYUsBAREZF7ZujDVe54uaa5PWvh6elZYEvcBAcHYzKZOH/+PA8//HCOdSIiIujWrRv9+vUDwGw2c+TIEWrVqnXPxnXy5Eni4+MpW7ZsjtsHDx5M586dGT9+fLZAS5bmzZvj5OTExx9/bM3DAdCoUSPi4uJYtGiRdemo/FKzZk0iIiJskoBHRERY36u9e/diNpt57733rOd4+fLlNm04OTlhMpnueixBQUGsW7fOpmzPnj233Kd06dLWpa9uJTg42GYmRpY//viDNm3aMGDAgHxZeupWDh48SHBw8D3tQ0REREREpCAoYCEiIiIC1KhRg759+/L000/z3nvvERwcTFxcHJs2baJu3bp06dKF6tWrs2LFCrZv346XlxezZ8/m3LlzeQ5YJCcnc/ToUevrqKgo9u3bh7e3NxUrViQ5OZnJkyfzr3/9C39/f44dO8bLL79MtWrV6NChQ45tduzYkbi4ODw9PW/ar6urK02bNmXevHm0aNHCGthwcnKyKb9xlsLdGDduHL169SI4OJh27drx/fffs2rVKjZu3AhAtWrVyMjIYN68eTz++ONEREQwf/58mzYCAwNJTk5m06ZN1KtXDzc3tztafmv48OHMnj2b8ePHM2TIEPbt20doaCiQORPjbnTo0IFXXnmFxMREvLy8gMwAQps2bejQoQOjR4/m7NmzANjb22fLMXIruX1esoSHh9+z5aZEREREREQKkrLyiYiIiFyzePFinn76acaMGUNQUBDdu3dnz5491ovDkyZNokGDBnTo0IHWrVvj7+9P9+7d89z+L7/8QnBwsPVu+NGjRxMcHMzrr78OZF7Q3r9/P127dqVGjRoMGTKEhg0bEh4eftNk2AaDAV9fX5ycsi+rdb2QkBAuX75szV+RpVWrVly+fNmaCDu/dO/enblz5zJr1ixq167NggULWLx4sbX/evXqMXv2bGbMmMGDDz7IF198wdtvv23TRvPmzRkxYgS9e/fGz8+Pd999947GUrlyZVasWMGqVauoW7cun3zyCa+++ipArknGc1OnTh0aNGhgMztkxYoVxMXFsXTpUsqWLWt9XJ9HIzo6GoPBQFhY2E3bzu3zAnDq1Cm2b9/OoEGD7uo4REREREREigKDxWKxFPYg5M6dPHmSgIAAAI4cOUL16tULeUSSFykpKfz4448AtG/fXmtOFwM6Z8WTzlvBiYyMxGg04uDgcNe/i8xmM0lJSQAFuiSU3LnieM6mTZvG/PnziY2Nveu21q5dy7hx4zh48GCej33z5s088cQTHD9+3Doz406MHz+exMREPv3005vWudnPZ2RkpDXJfGxsLBUqVLjjcUjxdf3fE/ociIiIiEhe3avvkVoSSkRERET+8T7++GMaNWqEj48PERERzJw5k5EjR+ZL2126dCEyMpJTp05Zv7DnZt26dUycOPGughWQmWtj9OjRd9WGiIiIiIhIUaGAhYiIiEg+iImJuWUui0OHDtnkHSjKOnXqRHh4eI7bJk6cyMSJEwt4RHcvMjKSqVOnkpCQQMWKFRkzZgyvvPJKvrU/atSo26o/c+bMfOl3zJgx+dKOiIiIiIhIUaCAhYiIiEg+KFeuHPv27bvl9uJi4cKFpKSk5LjN29u7gEeTP95//33ef//9wh6GiIiIiIiI3IICFtcsXbqU8PBw9u7dy4EDB0hPT2fx4sUMHDjwttoxm8189NFHfPrppxw9ehQPDw/atWvHtGnTqFKlyr0ZvIiIiBQ6BwcHqlWrVtjDyBfly5cv7CGIiIiIiIjIfajoZ0QsIJMmTeLTTz/lxIkTlC1b9o7bGT58OC+88AIWi4UXXniBjh07smrVKho1akRkZGQ+jlhERERERERERERE5J9DAYtrFi5cSHR0NHFxcYwYMeKO2ti8eTMLFy7kkUce4ddff2XGjBl8/vnnrFmzhoSEhHxL7CgiIiIiIiIiIiIi8k+jJaGuadeu3V238Z///AeAt956CycnJ2t5p06daN26NT/++CMxMTHFJuGmiIiIiIiIiIiIiEhBUcAiH4WFheHu7k6LFi2ybevQoQNhYWFs2bKF/v3757nNkydP3nL7mTNnrM/T0tJumiDzfnA1KZ3khLS872AAOzsDBjvDtf+DwXDDazsDdvYGnN0cMBgM+TbW1NTUHJ9L0aVzVjzpvBUcs9mMxWKxPr/btnJ6LkWXzlnRZ7FYMJvNNt8V09Ju43uTiIiIiIhIAVDAIp9cuXKFM2fO8OCDD2Jvb59te/Xq1QFuO49FQEBAnuvu2rWLY8eO3Vb7/xSp8fZc2OMKlvwLKlzP0dOEX+Or2Dnmf9tbt27N/0blntI5K5503u4tHx8fXF1dMRgMJCUl5Vu7ycnJ+daWFAyds6LHaDSSkpJCSkoKf/31l7X8woULhTgqERERERGR7JTDIp9cunQJgJIlS+a43dPT06ae5K/U8w73LFgBkJFkT8J+F67dPCwiIv8Qjz32GK+88kphD6NYWrt2LQ0aNMDHx4dXXnmFL7/8kkqVKhVI33Xr1uWTTz4pkL7yIiEhgerVqxMTE1Og/aanp1O3bl1+++23Au1XRERERETkXtEMiyIuNjb2ltvPnDlD48aNAWjSpAlVq1YtiGEVOdsvHeev6HMAVG3oi4t77lMhMpdGsGAxZz63mLNeXyu79vrs0STSU02knnekjKEK9dtXuOvxpqamWu/2fuSRR3BxcbnrNuXe0jkrnnTeCk5MTAwmkwkHBwdrkP5Omc1m6136Hh4e2Nndu/sr1qxZg6OjIyVKlLhnfVxv69atzJo1i19//ZUzZ86wcuVKunfvblNn0KBB/Pe//7Upa9++PevXr7e+zprNGRERQdOmTa3laWlpVKhQgYSEBDZt2kTr1q1p3rw59erVs7nAP3/+fP7973/z2WefMXDgQJu+jx8/zpYtW3I9ltGjRzNw4ECef/553N3d+eqrr4D8PWehoaGMHj2ahIQEm/I9e/bg7u6Om5tbvvRztyZPnky3bt148MEHAfj999+ZMWMGERERXLhwgcDAQIYPH84LL7xw2+1OmTLFpiwoKIhDhw5ZX48bN46pU6fy008/3bSduLg4XF1d8fDwoGHDhtby+3VmroiIiIiIFF0KWOSTrJkVN5tBkbU8xs1mYNxMhQp5vzju7OyMq6vrbbX/j3Hd7IrGj1XFu6x7vjV94o94/vfh72CBX3+IpWwVLwLr+OZb+y4uLvfveSumdM6KJ523e8vOzs6auyA/Awx2dnb3NGDh65t//57nRUpKCvXr12fIkCE88cQTOR6fwWCgY8eOLF682Frm7OycrV5AQABLliyhefPm1rJvv/0WDw8PEhISrG2HhISwevVqm/23bNlCQEAAW7duZfDgwTblAwYMyPU9T05O5vz583Ts2JEKFSrY5K3Iz3OW1c6N7ZUpUyZf2s8PV69eZdGiRWzYsME6zt9++40yZcqwdOlSAgIC2L59O8OGDcPBwYGRI0fmuW2DwUDt2rXZuHGjtczBwcHm/ejXrx9jx47lzz//pHbt2rdsy87OzubfQWdn59s5VBERERERkXtOS0LlE3d3d8qWLUtUVBQmkynb9qzcFVm5LCR/GTP+vlDi4Ji/H+tKtX1o0rVK5gsL/LToEBfPX83XPkREpHC0bt2aUaNGWV+npaUxduxYypcvj7u7O02aNCEsLMy6PT4+nj59+lC+fHnc3NyoU6eOdWZBXnTq1ImpU6fSo0ePW9ZzdnbG39/f+vDy8spWZ8CAASxbtswmifKiRYsYMGCATb2QkBAOHz7M2bNnrWVbtmxhwoQJNscWFRXFiRMnCAkJueXYwsLCrDNS2rRpg8FgsGnnep988glVq1bFycmJoKAgPv/8c5vts2fPpk6dOri7uxMQEMBzzz1nnV0TFhbGoEGDuHTpEgaDAYPBwJtvvglAYGAgc+bMsbZjMBhYuHAhPXr0wM3NjerVq/Pdd9/Z9PXdd99RvXp1XFxcCAkJYcmSJRgMBi5evHjL483NunXrcHZ2tpnpMnjwYObOnUurVq2oUqUK/fr1Y9CgQaxateq223dwcLD5LNwYZPPy8qJFixYsW7bsro5DRERERESkKFDAIh+1atWKK1euEBERkW3bhg0bgMwlSST/ma4LWNjnc8ACoGHHSlSp7wdAeoqR9fMPkJ5qzPd+RESkcI0cOZIdO3awbNky9u/fz5NPPknHjh2tNx6kpqbSsGFD1q5dy8GDBxk2bBj9+/dn9+7d+TqOsLAwSpcuTVBQEM8++yzx8fHZ6jRs2JDAwEBWrlwJZC7LtXXrVvr3729Tr0WLFjg6OrJ582YADh06REpKCkOGDCE+Pp6oqCgANm/ejIuLC82aNbvl2Jo3b87hw4cBWLlyJWfOnLGZ5ZFl9erVvPjii4wZM4aDBw8yfPhwBg0aZB0HZM6c+OCDD/jjjz9YsmQJP//8My+//LK1nzlz5uDp6cmZM2c4c+YMY8eOvem4Jk+eTK9evdi/fz+dO3emb9++1qWkoqKi6NmzJ927d+f3339n+PDhvPrqq7c8zrwKDw+3WWbpZi5duoS3t/dttx8ZGUm5cuWoUqUKffv2zTFPRuPGjQkPD7/ttkVERERERIoaLQl1By5cuMCFCxfw9fW1uctt2LBhLFu2jNdee42ffvoJJycnANavX09YWBjt27cvsGSU9xvTPZxhAZl3brYdUJPEs1dIPHuVhNNX2Pz5X7QfWhuD4d4l+xYRKfa2fwg7Psq9Xtl68H+2d4i7fzcEQ9yhm+xwnWb/huZ5X2bnZmJiYli8eDExMTGUK1cOgLFjx/LDDz+wePFipk+fTvny5W0umj///PNs2LCB5cuXW3NK3a2OHTvyxBNPULlyZY4dO8bEiRPp1KkTO3bssOauyDJ48GAWLVpEv379CA0NpXPnzvj5+dnUcXd3p3HjxoSFhdGnTx/CwsJo2bIlzs7ONG/enLCwMCpXrkxYWBjNmjXLdZkgJycnSpcuDYC3tzf+/v42S0JlmTVrFgMHDuS5554DMnNe7Ny5k1mzZllncVw/uyUwMJCpU6cyYsQIPv74Y5ycnChZsiQGgwF/f/9c37eBAwfSp08fAKZPn84HH3zA7t276dixIwsWLCAoKIiZM2cCmXkgDh48yLRp03JtNzcnTpywfl5uZvv27Xz99desXbv2ttpu0qQJoaGhBAUFcebMGSZPnszDDz/MwYMHbfKulCtXjhMnTtzR+EVERERERIoSBSyuWbhwIdu2bQPgwIED1rKsJQ5atmzJ0KFDAfjwww+ZPHkyb7zxhnVpAshccmHo0KEsXLiQBg0a0KVLF86cOcPXX3+Nt7c38+bNK9Bjup8Y7/EMCwAnVwc6jajDN+/8QkaqiaN7z1O6kifB7Svek/5ERP4R0i7D5dO51ytZPluR4Wo8hrzsm3b5DgaW3YEDBzCZTNSoUcO2+bQ0fHx8ADCZTEyfPp3ly5dz6tQp0tPTSUtLy9fkz0899ZT1eZ06dahbty5Vq1YlLCyMtm3b2tTt168fEyZM4Pjx44SGhvLBBx/k2Gbr1q355ptvgMzZG61btwYyZ4dmLb0UFhbGM888k2/H8eeffzJs2DCbshYtWjB37lzr640bN/L222/z119/kZSUhNFoJDU1latXr972e1q3bl3rc3d3dzw9PTl//jwAhw8fplGjRjb1cwswjRgxgqVLl1pfZy1VdaOUlBRcXFxu2s7Bgwfp1q0bb7zxBu3bt8/1OK7XqVMn6/O6devSpEkTKlWqxPLlyxkyZIh1m6urK1evarlKEREREREp/rQk1DXbtm1jyZIlLFmyhF9//RWAiIgIa1lWMCM3CxYssP4hPnfuXNatW0ePHj3YvXt3tgsgkn9sAhYO9+5j7eXvTruBtayvd6w+SuxfCfesPxGRYs+5BJQol/vDLXvya4ubD5a87OtcIoeOb19ycjL29vbs3buXffv2WR9//vmn9Xf7zJkzmTt3LuPHj2fz5s3s27ePDh06kJ6eni9jyEmVKlXw9fXl6NGj2bb5+Pjw2GOPMWTIEFJTU20ucF8vJCSEI0eOcOrUKcLCwmjVqhXwd8Di2LFjxMbG0qZNm3t2HDeKjo7mscceo27duqxcuZK9e/fy0UeZs3Hu5P10dHS0eW0wGHKc+ZFXU6ZMsfkc3Iyvry+JiYk5bjt06BBt27Zl2LBhTJo06Y7HkqVUqVLUqFEj22chISEh28wauXeWLl3K8OHDeeihh3B2dsZgMBAaGppj3az8K7d6xMbGWutHR0ffsu71N0uJiIiIiPwTaYbFNaGhoTf9Q+NGb7755k3/WLCzs+OFF17ghRdeyL/BSa6yloSyd7S750s0Vanvx0OdA/llXTQWC/z4nz94cuJDePq43tN+RUSKpeYj73i5pitdP8PT0xODXcHcXxEcHIzJZOL8+fM8/PDDOdaJiIigW7du9OvXDwCz2cyRI0eoVatWjvXzw8mTJ4mPj6ds2bI5bh88eDCdO3dm/Pjx2ZaMytK8eXOcnJz4+OOPrXk4ABo1akRcXByLFi2yLh2VX2rWrElERIRNEvCIiAjre7V3717MZjPvvfcedtfO8fLly23acHJywmQy3fVYgoKCWLdunU3Znj17brlP6dKlrUtf3UpwcLDNTIwsf/zxB23atGHAgAH5svQUZAbVjh07li1PycGDBwkODs6XPiR3kyZN4sSJE/j6+lK2bNlbLsf1xhtv5Fh+9OhRvvjiC2rVqkVAQEC27fXq1aN79+7ZyrNmR4mIiIiI/FMpYCH/CCZjZsDiXuSvyEmjxypz/sRlYv6IJ/VKBj8sOMgTYxvg4JTzhSIRESn6atSoQd++fXn66ad57733CA4OJi4ujk2bNlG3bl26dOlC9erVWbFiBdu3b8fLy4vZs2dz7ty5PAcskpOTbe6Oj4qKYt++fXh7e1OxYkWSk5OZPHky//rXv/D39+fYsWO8/PLLVKtWjQ4dOuTYZseOHYmLi8PT0/Om/bq6utK0aVPmzZtHixYtrIENJycnm/IbZyncjXHjxtGrVy+Cg4Np164d33//PatWrWLjxo0AVKtWjYyMDObNm8fjjz9OREQE8+fPt2kjMDCQ5ORkNm3aRL169XBzc7uj5beGDx/O7NmzGT9+PEOGDGHfvn3WG1Xu9kaHDh068Morr5CYmIiXlxeQGUBo06YNHTp0YPTo0Zw9exYAe3v725oJMXbsWB5//HEqVarE6dOneeONN7C3t7fm6sgSHh7OW2+9dVfHIXm3cOFCqlevTqVKlXjnnXd45ZVXblr3Zjc5Pf/88wA2S3tdr379+ppNISIiIiL3JS0JJf8IxvTMuy/vVf6KG9nZGXh0cC08/TJnVcTFXGbLl4exWCwF0r+IiNwbixcv5umnn2bMmDEEBQXRvXt39uzZQ8WKmfmKJk2aRIMGDejQoQOtW7fG398/x7ugb+aXX34hODjYejf86NGjCQ4O5vXXXwcyL2jv37+frl27UqNGDYYMGULDhg0JDw+/aTJsg8GAr68vTk5Ot+w7JCSEy5cvZ7tDu1WrVly+fNmaCDu/dO/enblz5zJr1ixq167NggULWLx4sbX/evXqMXv2bGbMmMGDDz7IF198wdtvv23TRvPmzRkxYgS9e/fGz8+Pd999947GUrlyZVasWMGqVauoW7cun3zyCa+++ipArknGc1OnTh0aNGhgMztkxYoVxMXFsXTpUsqWLWt9XJ9HI2vpn6x8aTk5efIkffr0ISgoiF69euHj48POnTttgh47duzg0qVL9OzZ866OQ/KuXbt2VKpU6Y73T01N5YsvvsDJySnbbBkRERERkfudwaIrrMXayZMnrdPIjxw5QvXq1Qt5RIVj0bhwUi5n4OnrQv+pzQus3/hTyayY8QvG9MwZHo88VYM6rSvkul9KSgo//vgjAO3bt8fVVctJFXU6Z8WTzlvBiYyMxGg04uDgcNe/i8xmM0lJSQB4enpalwuSoqs4nrNp06Yxf/58m/wBd2rt2rWMGzeOgwcP5vnYN2/ezBNPPMHx48etMzPuRO/evalXrx4TJ068aZ2b/XxGRkZac6zFxsZSoULu32HEVtYMi8WLFzNw4MA87fPll1/St29fevbsyTfffGOzLTo6msqVK/Poo4/SrVs3Ll26RJkyZWjdujVVq1a9ozGePHnyltvPnDljXQ7uyJEj+hyIiIiISJ6cPHnynvw9oSWh5B8hK+n2vUy4nROf8h606V+THz/7A4BtyyPxqeBBuWqlCnQcIiIicmsff/wxjRo1wsfHh4iICGbOnMnIkXeWX+VGXbp0ITIyklOnTuWYjyAn69atY+LEiXcVrEhPT6dOnTq89NJLd9yGFLzPPvsMgKFDh960zk8//cRPP/1kfW0wGOjbty/z58/H3d39tvrL62cSYOvWrfj6+t5W+yIiIiJyf7pw4cI9abfo3/4mkgem9L+Tbhe06o3KUL9d5h+CZrOFDZ8e5MrFtAIfh4iIFK6YmBg8PDxu+oiJiSnsIeZZp06dbnoc06dPL+zh3ZHIyEi6detGrVq1eOuttxgzZky+5ggYNWrUbV0YnjlzJuPGjburPp2cnJg0aZJmjxUjUVFRbN68mYoVK/Loo49m2+7m5sZrr73G3r17uXjxIgkJCWzcuJHGjRuzdOlSnn766UIYtYiIiIhIwdEMCyn2zCYzZnPmymYOjoWT9LpZj6rExSZz6nAiV5PS+eHTA3Qf3aDAZ3yIiEjhKVeuHPv27bvl9uJi4cKFpKSk5LjN29u7gEeTP95//33ef//9wh6G3OcWLVqExWJh0KBBOS4fVrp0aaZMmWJT1rZtW5o1a0aDBg1YtWoVv/76Kw0aNMhzn7kte3b9klCPPPKIloQSERERkTzJbenRO6WAhRR7JuPfaVgKY4YFgJ29HR2G1mb523tITkjj7PEkwpdH0vr/ggplPCIiUvAcHByoVq1aYQ8jX5QvX76whyDyj2M2mwkNDcXOzo7Bgwff1r5ubm7079+fSZMmERERcVsBi9sJQLi6umrGjoiIiIjkyb363qjbv6XYM2aYrM8dCilgAeBawolOw+tYZ1X8sfUUhyJOF9p4RERERKTo+OGHHzh58iSPPvooFStWvO39s3JLXLlyJb+HJiIiIiJSZChgIcWe6VrCbSjcgAVA6UqetLpuVsWWrw5zLjqpEEckIiIiIkVBXpJt38quXbsACAwMzK8hiYiIiIgUOQpYSLFnvC5gUVhLQl2vZvOyPNgqcykNs9HCDwsOcDUpvZBHJSIiIiKFJS4uju+//x4/Pz+6du1603q//fYbFoslW/mqVatYsmQJXl5edOrU6V4OVURERESkUCmHhRR7piIWsABo+WR14k8mc+bYJZIT0/hx4UG6vlgfO/uiMT4RERERuTMLFy5k27ZtABw4cMBaFhYWBkDLli2zzaL473//S0ZGBv3798fJyemmbb/00kscO3aMZs2aUaFCBUwmE7/++ivbtm3D2dmZ0NBQSpYseW8OTERERESkCFDAQoo9o82SUPaFOJK/2TvY0WHYgyyfvoerl9I5deQi21cdo+WT1Qt7aCIiIiJyF7Zt28aSJUtsyiIiIoiIiLC+vjFgkdfloPr168fKlSvZuXMnFy5cwGw2U758eYYOHcqYMWN44IEH8ukoRERERESKJgUspNgrijMsANxLOtNxWB3WzP4Vs8nC75tiKV2pBDUa+xf20ERERETkDoWGhhIaGnpb+xw6dChP9YYOHXrHOS5ERERERP4Jis7VXZE7VJSSbt+obNWSPNzr71kVmz//iwsnLxfiiERE5HqtW7dm1KhRhT2MYmnNmjVUq1YNe3t7XnrpJb788ksqVapUIH0HBgYyZ86cAukrL+Lj4yldujTR0dEF3nfTpk1ZuXJlgfcrIiIiIiJyLxStq7sid8CYYbI+t3fI3490RnoacSeiuBB7gisXEzEZjbfdRu1HyvNA87JA5vJV6+cfIO1KRr6OU0RE7syqVat46623Cqy/rVu38vjjj1OuXDkMBgNr1qzJVmfgwIEYDAabR8eOHW3qZJXv3LnTpjwtLQ0fHx8MBoN1Pf2mTZsyYsQIm3rz58/HYDBku0t84MCBPPzww3k6luHDh9OzZ09iY2OZMmVKnva5XaGhoZQqVSpb+Z49exg2bNg96fNOTJs2jW7duhEYGJhtW3x8PBUqVMBgMHDx4sXbajcvn5dJkyYxYcIEzGZz9gZERERERESKGS0JJcWeTQ4LpzsLWBgzMkg8fZILJ2OIj43hQuwJ4k+e4OK5s2Cx2NR1dnPHtYQnriU8cSlRwvr8xkfWNhePErTqU4OEU8mcP3GZpAuphC09CoFgMNzNkYuIyN3y9vYu0P6uXLlCvXr1GDx4ME888cRN63Xs2JHFixdbXzs7O2erExAQwOLFi2natKm1bPXq1Xh4eJCQkGAtCwkJYfXq1Tb7bt68mYCAAMLCwhg4cKC1PCwsjAEDBuR6HMnJyZw/f54OHTpQrly5Ar9Y7ufnV6D93crVq1f57LPP2LBhQ47bhwwZQt26dTl16tRtt52Xz0unTp0YOnQo69evp0uXLrfdh4iIiIiISFGigIUUeybjdTkscplhYTIauXj2jDUgkRWcSDx7GkseL7akXb1C2tUrXDx3Js9jdHZ3x9mtBBlXDFgsLkTtdcX5uCMla/jd0awNERHJH61bt6Z+/frW5YXS0tJ49dVX+eqrr7h48SIPPvggM2bMoHXr1kDm3fIjR45k69atJCYmUrVqVSZOnEifPn3y1F+nTp3o1KlTrvWcnZ3x9791zqMBAwbwwQcfMGfOHFxdXQFYtGgRAwYMsJk1EhISwjvvvMPZs2etbW7ZsoXXX3+dd99911ovKiqKEydOEBIScst+w8LCrHXatGkDwKZNm3Ks+8knnzBr1ixiY2OpXLkykyZNon///tbts2fPZvHixRw/fhxvb28ef/xx3n33XTw8PAgLC2PQoEFA5owSgDfeeIM333yTwMBARo0aZV3Oy2Aw8J///Ie1a9eyYcMGypcvz3vvvUfXrl2tfX333XeMGTOG2NhYmjVrxsCBAxk4cCCJiYk5zuLIq3Xr1uHs7GwTOLr++C9evMjrr7/O+vXrb7vtvHxe7O3t6dy5M8uWLVPAQkREREREij0FLKTYM6ZnT7ptNpu4dO7sDTMmYkg4dRKzKW8BAgdnZ3zKV8SnQgAGOztSky+TkpREyuXMR+qV5GyzL24m7coV0q5csSlLOZf5+Hz/L9Rp0546bdpTsrQScovIP8uSP5bw30P/zbVeLe9azGs7z6Zswq4JRCZF5rrv07WeZkDt3GcF5MXIkSM5dOgQy5Yto1y5cqxevZqOHTty4MABqlevTmpqKg0bNmT8+PF4enqydu1a+vfvT9WqVWncuHG+jAEygwKlS5fGy8uLNm3aMHXqVHx8fGzqNGzYkMDAQFauXEm/fv2IiYlh69atfPTRRzYBixYtWuDo6MjmzZvp06cPhw4dIiUlhSFDhjB+/HiioqKoXLkymzdvxsXFhWbNmt1ybM2bN+fw4cMEBQWxcuVKmjdvTqlSpfjrr79s6q1evZoXX3yROXPm0K5dO/73v/8xaNAgKlSoYA142NnZ8cEHH1C5cmWOHz/Oc889x8svv8zHH39M8+bNmTNnDq+//jqHDx8GwMPD46bjmjx5Mu+++y4zZ85k3rx59O3blxMnTuDt7U1UVBQ9e/bkxRdfZOjQofz222+MHTv2ts7JzYSHh9OwYcNs5YcOHWLKlCns2rWL48eP50tfN9O4cWPeeeede9qHiIiIiIhIQVDAQoo9U4YZi8WEKf0QBzbuYO9350k4FYsxIz1P+9s7OuJdrgK+AZXwqVAR34qV8KlQiZJ+pTHY3XzGhtlsIjU5+e8AxuXLXE26lBnYuJxk80i9nERK0rUgxw2uXrrIrtXL2bXmGwLrBlO3XUeqNGiMvYN+PEWk+LuScYXzV8/nWs/fPXvA9mLaxTzteyXjSq518iImJobFixcTExNDuXLlABg7diw//PADixcvZvr06ZQvX97mQvfzzz/Phg0bWL58eb4FLDp27MgTTzxB5cqVOXbsGBMnTqRTp07s2LEDe3t7m7qDBw9m0aJF9OvXj9DQUDp37pxtuSR3d3caN25MWFgYffr0ISwsjJYtW+Ls7Ezz5s0JCwujcuXKhIWF0axZsxyXn7qek5MTpUuXBjKX1PL3989xSahZs2YxcOBAnnvuOQBGjx7Nzp07mTVrljVgcX3C88DAQKZOncqIESP4+OOPcXJyomTJkhgMhlxnm0Bm/o2smS7Tp0/ngw8+YPfu3XTs2JEFCxYQFBTEzJkzAQgKCuLgwYNMmzYt13Zzc+LECevnJUtaWhp9+vRh5syZVKxY8Z4HLMqVK0dsbCxmsxm7W3x3ERERERERKep0RVSKPZPRjCn9IMarmzh56Ob17Ozt8SpbHp+ASvhWqIhPQEV8AypRqkxZ7G64AJQXdnb2uHmWxM2zZJ73MZtMpCRf5qdFe4g5EI0p/Q/MGccAC1gsRP/+K9G//4q7lzcPtn6Uum074OlX+rbHJiJSVLg7ulPaLfd/x7yds+eSKOVcKk/7uju639HYbnTgwAFMJhM1atSwKc9KZA1gMpmYPn06y5cv59SpU6Snp5OWloabm1u+jAHgqaeesj6vU6cOdevWpWrVqoSFhdG2bVubuv369WPChAkcP36c0NBQPvjggxzbbN26Nd988w2QOXsja4mrVq1aWZdeCgsL45lnnsm34/jzzz+zJcZu0aIFc+fOtb7euHEjb7/9Nn/99RdJSUkYjUZSU1O5evXqbb+ndevWtT53d3fH09OT8+czA16HDx+mUaNGNvVzCzCNGDGCpUuXWl8nJ2e/6QAgJSUFFxcXm7JXXnmFmjVr0q9fv9s6hjvl6uqK2WwmLS3NujyYiIiIiIhIcaSAhRR7xgwzFlO89bXBYEcp/7LXzZbIDEx4lS2HvYNjIY40M2jiXrIU7YY255v3zVw9XRWLORlT2h/Y2/1J2tXMJKlXEhPYtfprdq1ZTuV6DajTriNVGzS+o8CKiEhhGlB7wB0v1/ROk3fw9PQssDvGk5OTsbe3Z+/evdlmMmQtRTRz5kzmzp3LnDlzqFOnDu7u7owaNYr09LzN6rsTVapUwdfXl6NHj2YLWPj4+PDYY48xZMgQUlNT6dSpE5cvX87WRkhICNOmTePUqVOEhYVZZ4m0atWKBQsWcOzYMWJjY605KQpCdHQ0jz32GM8++yzTpk3D29ubbdu2MWTIENLT0287YOHoaPs73mAw3FUy8ClTpuRp2ShfX18SExNtyn7++WcOHDjAihUrALBcW0LS19eXV199lcmTJ9/xuHKSkJCAu7u7ghUiIiIiIlLsKWAhxZ4pwwSWv/NS9J0+mzJVqhXiiHJn72CHV91U7F3NXD7mgYNrEyyWxlSscRFHhz85/uvuzCTgFgtR+/YStW8vHl7ePHgt14Wnr2ZdiIjkt+DgYEwmE+fPn+fhhx/OsU5ERATdunWz3jlvNps5cuQItWrVumfjOnnyJPHx8ZQtWzbH7YMHD6Zz586MHz8+W6AlS/PmzXFycuLjjz+25uEAaNSoEXFxcSxatMi6dFR+qVmzJhEREQwY8HfAKiIiwvpe7d27F7PZzHvvvWcNSi1fvtymDScnJ0wm012PJSgoiHXr1tmU7dmz55b7lC5d2rr01a0EBwfbzMQAWLlyJSkpKTZ9DR48mPDwcKpWrXobI8+bgwcPEhwcnO/tioiIiIiIFDQFLKTYM2aYsfB3wMKpmNxdaDBAyRrp1GlQkx0ro8AM5094UbZqJwa8+wyRuzez/+cNXL4QB0ByYgI7Vy5j56qvqVy/IXXbdaJK8EOadSEikk9q1KhB3759efrpp3nvvfcIDg4mLi6OTZs2UbduXbp06UL16tVZsWIF27dvx8vLi9mzZ3Pu3Lk8ByySk5M5evSo9XVUVBT79u3D29ubihUrkpyczOTJk/nXv/6Fv78/x44d4+WXX6ZatWp06NAhxzY7duxIXFwcnp6eN+3X1dWVpk2bMm/ePFq0aGENbDg5OdmU3zhL4W6MGzeOXr16ERwcTLt27fj+++9ZtWoVGzduBKBatWpkZGQwb948Hn/8cSIiIpg/f75NG4GBgSQnJ7Np0ybq1auHm5vbHS2/NXz4cGbPns348eMZMmQI+/btIzQ0FMiciXE3OnTowCuvvEJiYiJeXl4A2YISFy5cADKDOKVKlcpz27l9XrKEh4fTvn37uzgKERERERGRokFZ+aTYM2WYbWZYODjdOlloUfNA8zJ0frYODs6ZF4/OHLvEDwujqPlIN4bOW8gTE96k6kNN/04AbrEQ9dsvfDvzLf4zcjARy78g6VpQQ0RE7s7ixYt5+umnGTNmDEFBQXTv3p09e/ZYLw5PmjSJBg0a0KFDB1q3bo2/vz/du3fPc/u//PILwcHB1rvhR48eTXBwMK+//joA9vb27N+/n65du1KjRg2GDBlCw4YNCQ8Pv2kybIPBgK+vL05OTrfsOyQkhMuXL1vzV2Rp1aoVly9ftibCzi/du3dn7ty5zJo1i9q1a7NgwQIWL15s7b9evXrMnj2bGTNm8OCDD/LFF1/w9ttv27TRvHlzRowYQe/evfHz8+Pdd9+9o7FUrlyZFStWsGrVKurWrcsnn3zCq6++CpBrkvHc1KlThwYNGmSbHZKb6OhoDAYDYWFhN62T2+cF4NSpU2zfvp1Bgwbd0fhFRERERESKEoMla1FdKZZOnjxJQEAAAEeOHKF69eqFPKKCtzH0EAd++hizMRqA5xZ+iWuJm99lWhSkpKTw448/AtC+fXtcXV05fyKJ/320n5SkzHXQXUs40uXf9SgTmHkslxMucHDzTxz4+UfrrIssBoMdlYMbUrddRyoHP4SdnWZd5LeczpkUfTpvBScyMhKj0YiDg8Nd/y4ym80kJSUBFGgOC7lzxfGcTZs2jfnz5xMbG3vXba1du5Zx48Zx8ODBPB/75s2beeKJJzh+/Lh1ZsadGD9+PImJiXz66ac3rXOzn8/IyEhrkvnY2FgqVKhwx+OQ4uv6vyf0ORARERGRvLpX3yO1JJQUe6YMM3D9DItb32FaVJWu5EnPlxvyvw9/J/HsVVIuZ7Bm9q90GPoggXV9KeHtS7N/9aFJj15E//4r+zf+wPG9e7BYzFgsZo7/uofjv+7Bw8eXSnXq412uAt7lKuBVrjylypTF3kE/7iIicv/6+OOPadSoET4+PkRERDBz5kxGjhyZL2136dKFyMhITp06Zf3Cnpt169YxceLEuwpWQGaujdGjR99VGyIiIiIiIkWFrmBKsWfMMGO5fkkox+IZsADw9HXliXENWT//AKcjL2JMN7Puk/080ieIBx8pD4CdnT1VghtRJbgRl+Ovm3URfy3XRfwF/gjbaNOunb09JUv741WuvDWQkRXMcPMsWeDHKSLyTxQTE3PLXBaHDh2yyTtQlHXq1Inw8PAct02cOJGJEycW8IjuXmRkJFOnTiUhIYGKFSsyZswYXnnllXxrf9SoUbdVf+bMmfnS75gxY/KlHRERERERkaJAAQsp9kwZJrJmWNg7OP6d66GYcnF3pOsL9dm05BCRv5zHYoEtXx7mcnwKTbtVxWD3d3LQEj6+NOvZhyZP9CLqt73s3/QDUb/+gsVitmnTbDKReOYUiWdOcXzvbtv+SnjiXbY83uUr4FW2PN7lA/AuV56Spf01K0NE5DaUK1eOffv23XJ7cbFw4UJSUlJy3Obt7V3Ao8kf77//Pu+//35hD0NERERERERuQVcjpdgzXpd0u7guB3Uje0c7Hh1cmxI+Lvy6IQaAXzfEcDkhjbZP18Te0TYoY2dnT9WGjanasDEZqakknDlFwumTJJ4+ScKpkyScOUXi6VMY09Oy9ZV6OYnTl5M4feRP2zbt7SlZpize183K8A2ohE/FSjgWs8TmIiIFwcHBgWrVqhX2MPJF+fLlC3sIIiIiIiIich9SwEKKPdN1S0I5OP9zLqQb7Aw061ENDy8Xwr8+gsUCkXvOceViGp1G1MHF3THH/RxdXChTuSplKle1KbeYzVxOuJAZwDh9XUDj9EmSE+KztWM2mUi8VucYu/4el8EOr3LlKR1YBb9KlSldqTJ+gVVwL3V3a3CLiIiIiIiIiIjI/U0BCyn2TMa/k27/E+/8r9O6Ah7eLvy48CDGdDOnIy+yauZeHnu+Hp4+rnlux2Bnh6dvaTx9SxNYr4HNtvSUqySeOU3CtQBGwqnMQEXimdMYM9Jt6losZhJOxZJwKpa/IrZYy91KlsKvUuXMIMa1YIZ3uQrY2dvf3RsgIiIiIiIiIiIi9wUFLKTYM6b/85aEulHlur50H92AtR/9TsrlDBLPXmXljL08NrIefhVL3HX7Tq5ulKlSjTJVbJcysZjNJF2IuxbEiCXuRBTnT0QRHxuD2WS0qXv10kVO7P+NE/t/s5bZOzriG1DpWiCjyrXZGJVxdnO/6zGLiIiIiIiIiIjIP4sCFlLsGa9Luv1PDVgAlAn05F8vP8T/Pvydi+eucjUpnVXv/UrHZx6k0oM+96RPg50dJUuXoWTpMlSu39BabjJmkHDqZGYAI/o4cSeiiDsRRcrlJJv9TRkZnDt+lHPHj9qUe/qVoXRg1myMqgTWa/CPPnciIiIiIiIiIiKSOwUspNgzZmRYnzv8A5eEul5JP1f+Na4haz/ez9njlzCmmVj78X5a9alB7YcLLkGqvYOjdfmnWo+0AcBisZCcGJ8ZvIjOnIkRdyKKxDOnwGKx2T8p7hxJcec4umcnAKX8y9Ll+XH4V6tRYMcgIiIiIiIiIiIiRYtdYQ9A5G4Z0//OsXA/3KXv4uFIt1H1qdrADwCL2ULYF4fZ+e0xLDcEBgqSwWCghLcvVYIb0aRHLx4fNZ7B78/nhdBv+L+p7/HoMyOp92hnytWoiaOzi82+F8+e4avXx7Fz1deYzaZCOgIRuR+1bt2aUaNGFfYwiqU1a9ZQrVo17O3teemll/jyyy+pVKlSgfQdGBjInDlzCqSvvIiPj6d06dJER0cXaL/p6ekEBgbyyy+/FGi/IiIiIiIi94oCFlLsmTLur4AFgIOTPR2GPki9dgHWsr3rT7Ax9NC1JORFh6OLC2WrB1G3XUfaDX2OPm/N5PnQ5Qye+ymPvzQB/6rVATCbTER8/TnLJ08kKe58IY9aRO4Xq1at4q233iqw/rZu3crjjz9OuXLlMBgMrFmzJludgQMHYjAYbB4dO3a0qZNVvnPnTpvytLQ0fHx8MBgMhIWFAdC0aVNGjBhhU2/+/PkYDAZCQ0Oz9f3www/n6ViGDx9Oz549iY2NZcqUKXna53aFhoZSqlSpbOV79uxh2LBh96TPOzFt2jS6detGYGBgtm3x8fFUqFABg8HAxYsXb6vdN998M9tn4YEHHrBud3JyYuzYsYwfP/4uj0BERERERKRoUMBCijWzyYzZdP8sCXU9g52Blj2r07JXdTBklh3ZdY7v5/1OWorx1jsXMoOdHV7+5ajRtCVPTZlJkx69MRgy/zk69dcf/Pfl5/kzYkshj1JE7gfe3t6UKFGiwPq7cuUK9erV46OPPrplvY4dO3LmzBnr46uvvspWJyAggMWLF9uUrV69Gg8PD5uykJAQa/Aiy+bNmwkICMhWHhYWRps2bXI9juTkZM6fP0+HDh0oV65cgb6HAH5+fri5uRVonzdz9epVPvvsM4YMGZLj9iFDhlC3bt07br927do2n4Vt27bZbO/bty/btm3jjz/+uOM+REREREREigoFLKRYM2aYyUq4DffPDIvr1WsTQKdhdbB3vHbB/3AiK975hXPRSbnsWTTYOzjQ8qn+9HpjOp5+pQFIu3qFdR/MZN28WaRdvVLIIxSRf7Ibl4RKS0tj7NixlC9fHnd3d5o0aWJzUT8+Pp4+ffpQvnx53NzcqFOnTo7BhJvp1KkTU6dOpUePHres5+zsjL+/v/Xh5eWVrc6AAQNYtmwZKSkp1rJFixYxYMAAm3ohISEcPnyYs2fPWsu2bNnChAkTbI4tKiqKEydOEBIScsuxhYWFWQMUbdq0sZnNcaNPPvmEqlWr4uTkRFBQEJ9//rnN9tmzZ1OnTh3c3d0JCAjgueeeIzk52drPoEGDuHTpknV2wZtvvglkXxLKYDCwcOFCevTogZubG9WrV+e7776z6eu7776jevXquLi4EBISwpIlS+5o1sON1q1bh7OzM02bNs3x+C9evMjYsWPvuH0HBwebz4Kvr6/Ndi8vL1q0aMGyZcvuuA8REREREZGiQgELKdZMGWaw3N8BC4AqwX50fykYF3dHAC6eu8qqd/fyy7oozKaitUTUzVSo+SBPvzuPmi1bW8v+3BbGf19+npN/6a5RkeIqfnEoka1a5/qIffa5bPsmjB3HsZA2ue4bvzg038Y7cuRIduzYwbJly9i/fz9PPvkkHTt2JDIyEoDU1FQaNmzI2rVrOXjwIMOGDaN///7s3r0738YAmRfrS5cuTVBQEM8++yzx8fHZ6jRs2JDAwEBWrlwJQExMDFu3bqV///429Vq0aIGjoyObN28G4NChQ6SkpDBkyBDi4+OJiooCMmdduLi40KxZs1uOrXnz5hw+fBiAlStXcubMGZo3b56t3urVq3nxxRcZM2YMBw8eZPjw4QwaNMg6DgA7Ozs++OAD/vjjD5YsWcLPP//Myy+/bO1nzpw5eHp6WmcX3OrC/+TJk+nVqxf79++nc+fO9O3bl4SEBCAzGNOzZ0+6d+/O77//zvDhw3n11VdveZx5FR4eTsOGDbOVHzp0iClTpvDf//4XO7s7/8odGRlJuXLlqFKlCn379iUmJiZbncaNGxMeHn7HfYiIiIiIiBQVClhIsWbMFrC4f5aEupF/lZL8a3xDSlfKvOvVbLaw67soVr/3G5fiUnLZu2hwdnOn8/Nj6fz8WJxcM5f6SIo7z/I3XyHi688xGYv2Ulcikp05ORnjuXO5PkzXLizb7HvxYp72NV+7I/9uxcTEsHjxYr755hsefvhhqlatytixY2nZsqV16aXy5cszduxY6tevT5UqVXj++efp2LEjy5cvz5cxQOZyUP/973/ZtGkTM2bMYMuWLXTq1AmTyZSt7uDBg1m0aBGQme+hc+fO+Pn52dRxd3encePG1lkQYWFhtGzZEmdnZ5o3b25T3qxZM5ydb/271MnJidKlM2fEeXt74+/vj1MONwzMmjWLgQMH8txzz1GjRg1Gjx7NE088waxZs6x1Ro0aRUhICIGBgbRp04apU6da30snJydKliyJwWCwzi64cbmr6w0cOJA+ffpQrVo1pk+fTnJysjWQtGDBAoKCgpg5cyZBQUE89dRTDBw48JbHmVcnTpygXLlyNmVpaWn06dOHmTNnUrFixTtuu0mTJoSGhvLDDz/wySefEBUVxcMPP8zly5dt6pUrV44TJ07ccT8iIiIiIiJFhUNhD0DkbpgyzFju8yWhrleqtBtPvNyQX9ZGs3d9NBYLnD1+ia+n7ubh3tV5oFlZDAZDYQ8zVzVbtqZcjZqs/+g9Tv11CIvFzM5VXxO9/zc6Pz8WL/9yuTciIkWCnYcHDmXK5FrP3ts7+76lSuVpX7tbXMS+HQcOHMBkMlGjRg2b8qxE1gAmk4np06ezfPlyTp06RXp6OmlpafmaT+Gpp56yPq9Tpw5169alatWqhIWF0bZtW5u6/fr1Y8KECRw/fpzQ0FA++OCDHNts3bo133zzDZAZmGjdujUArVq1si69FBYWxjPPPJNvx/Hnn39mS4zdokUL5s6da329ceNG3n77bf766y+SkpIwGo2kpqZy9erV235Pr88T4e7ujqenJ+fPnwfg8OHDNGrUyKZ+48aNb9neiBEjWLp0qfV18k0CYykpKbi4uNiUvfLKK9SsWZN+/frd1jHcqFOnTtbndevWpUmTJlSqVInly5fb5MxwdXXl6tWrd9WXiIiIiIhIUaCAhRRr2WZYON7fAQsAe3s7mnStQsXaPmxc/AdJF1LJSDPx83//IvpAPK37BuHqUfTfp5Kly9DrjbfZvWYF27/5AovZzNmjR/j85RcIGTSMB1s/WiyCLyL3O59BA/EZNPCO9vWeNRNPT8+7Wk7ndiQnJ2Nvb8/evXuxt7e32ZZ1Z//MmTOZO3cuc+bMseZeGDVqFOnp6fdsXFWqVMHX15ejR49mC1j4+Pjw2GOPMWTIEFJTU+nUqVO2u+8hM4/FtGnTOHXqFGFhYdallVq1asWCBQs4duwYsbGxeUq4nV+io6N57LHHePbZZ5k2bRre3t5s27aNIUOGkJ6eftsBC0dHR5vXBoMBs/nOl0WcMmVKnnJP+Pr6kpiYaFP2888/c+DAAVasWAGAxWKx1n311VeZPHnyHY2pVKlS1KhRg6NHj9qUJyQkZJtZIyIiIiIiUhwpYCHFmilb0u37d0moG5WtWpLerzYm/JtI/tp+BoDjv8Vx9tgl2g6oScXaPoU8wtzZ2dnT9IneVKpbn3XzZnHx7Bky0lL5cf4HRP32C48+MxLXEp6FPUwR+YcIDg7GZDJx/vx5Hn744RzrRERE0K1bN+ud82azmSNHjlCrVq17Nq6TJ08SHx9P2bJlc9w+ePBgOnfuzPjx47MFWrI0b94cJycnPv74Y2seDoBGjRoRFxfHokWLrEtH5ZeaNWsSERFhkwQ8IiLC+l7t3bsXs9nMe++9Zw1K3bi0lpOTU45LYd2uoKAg1q1bZ1O2Z8+eW+5TunRp69JXtxIcHGwzEwMyc3tcnwx9z549DB48mPDwcKpWrXobI7eVnJzMsWPHsuUpOXjwIMHBwXfcroiIiIiISFGhHBZSrJmMJixKun1TTq4OtH26Jh2HP4ize2Z88mpSOt/P+52ty45gTL/7i0AFoWy1IPrP+IA6bdpbyyJ3bee/40Zy4sC+whuYiPyj1KhRg759+/L000+zatUqoqKi2L17N2+//TZr164FoHr16vz0009s376dP//8k+HDh3Pu3Lk895GcnMy+ffvYt28fkJkMet++fdZEysnJyYwbN46dO3cSHR3Npk2b6NatG9WqVaNDhw45ttmxY0fi4uKYMmXKTft1dXWladOmzJs3jxYtWlgDG05OTjblN85SuBvjxo0jNDSUTz75hMjISGbPns2qVaussxaqVatGRkYG8+bN4/jx43z++efMnz/fpo3AwECSk5PZtGkTFy5cuONlj4YPH85ff/3F+PHjOXLkCMuXLyc0NBTgrmfrdejQgT/++MNmlkXVqlV58MEHrY/KlSsDmUGcvARBsowdO5YtW7YQHR3N9u3b6dGjB/b29vTp08emXnh4OO3bt79JKyIiIiIiIsWHAhZSrBnTzWDJsL52zCVR6P2qanBp+rzWhIq1/l4j/kDYSZZP30NcTPalQ4oiJxdX2g9/ga6jJ+LikZlYPDkxgRVTJ7Fl6SKMGRm5tCAikrvFixfz9NNPM2bMGIKCgujevTt79uyxJk6eNGkSDRo0oEOHDrRu3Rp/f3+6d++e5/Z/+eUXgoODrXfDjx49muDgYF5//XUA7O3t2b9/P127dqVGjRoMGTKEhg0bEh4eftNk2AaDAV9f3xwTX18vJCSEy5cvW/NXZGnVqhWXL18mJCQkz8eRF927d2fu3LnMmjWL2rVrs2DBAhYvXmztv169esyePZsZM2bw4IMP8sUXX/D222/btNG8eXNGjBhB79698fPz4913372jsVSuXJkVK1awatUq6tatyyeffMKrr74KkGuS8dzUqVOHBg0a3Hbi9ejoaAwGgzXpeU5OnjxJnz59CAoKolevXvj4+LBz506b5Z927NjBpUuX6Nmz550egtympUuXMnz4cB566CGcnZ0xGAzWANiN3nzzTQwGw00f0dHROe63YcMGWrVqRYkSJfD09CQkJIRNmzbdu4MSERERESkiDJasRXWlWDp58iQBAQEAHDlyhOrVqxfyiArW8X1xfD9nEcaUcAAef2kCNZq2LORR5S4lJYUff/wRgPbt2+Pq6log/VosFg6EnWL7qqPXltMCO3sDjR+vTHD7StjZFY+cEJcTLvDDx3OIuW52hV9gFbo8Pw6fCgH3pM/COmdyd3TeCk5kZCRGoxEHB4e7/l1kNptJSkoCKNAcFnLniuM5mzZtGvPnzyc2Nvau21q7di3jxo3j4MGDeT72zZs388QTT3D8+HG8vLzuuO/evXtTr149Jk6ceNM6N/v5jIyMtCaZj42NpUKFCnc8jvtJYGAgJ06cwNfXF3d3d06cOMHixYsZOHBgtrpvvvkmkydPZsCAAQQGBmbbPmrUKEqVKmVTtnTpUvr374+fnx+9e/cG4Ouvv+bChQssX74834NT1/89oc+BiIiIiOTVvfoeWeRyWNjb2zNw4EA+++yzW9Z75plnWLx4MUaj8Zb15J/NZLwh6bZyWNySwWCgbkgFKgR58dPiP7gQm4zZZGHnmuOcOBhPu4G18PQt+hd0S3j70nPiFPau+5ZtXy3BZDQSF32cpRNepFX/IdRr31kJuUVExMbHH39Mo0aN8PHxISIigpkzZzJy5Mh8abtLly5ERkZy6tQp6xf23Kxbt46JEyfeVbAiPT2dOnXq8NJLL91xG3L7Fi5cSPXq1alUqRLvvPMOr7zySq77DBw4MNvsppwkJiby/PPP4+vry6+//mr9o2/8+PEEBwfz7LPP0qFDB0qUKHG3hyEiIiIiUiQVudvfLBYLeZ30ockhYkw3Y0E5LG6Xdzl3eo5/iAYdKsG16/pnjl5i2dTdHN55plj8bBns7HjosR7837TZ+FTIXKrFmJHOpkWfsObdKVy9dLFwBygi952YmBg8PDxu+sjKU1EcdOrU6abHMX369MIe3h2JjIykW7du1KpVi7feeosxY8bw5ptv5lv7o0aNynOwAmDmzJmMGzfurvp0cnJi0qRJmj1WwNq1a0elSpXuSdvffPMNFy9e5Pnnn7e5Q61ChQqMHDmSCxcusHr16nvSt4iIiIhIUVDkZljk1dWrV/M1MaQUT9lnWChgkVf2DnY061GVSg96s3Hxn1xOSCUj1cTG0D+JPhBPq/8LwsW96P+MlQ6sQt+332fr0sXs2/A/AI7/uocl40by2KjxBNSqU8gjFJH7Rbly5azJtG+2vbhYuHAhKSkpOW7z9vbOsbyoe//993n//fcLexhyn9q6dSu7du3Czs6O6tWr065dOzw8PLLVy8ppklMS9Q4dOvDmm2+yZcsWnn766Tz3ffLkyVtuP3PmjPV5SkrKTX/2RURERESud6++NxbLgMXFixfZtm0bZcuWLeyhSCEzZWhJqLtVrroXvV9rTPiyIxzedRaAo3vPc+bYJdoOqElAzaJ/YcrRyZm2g0dQObghGz6Zy9VLF7l66SJr3p3CU1Nm4lcxsLCHKCL3AQcHB6pVq1bYw8gX5cuXL+whiPyjvPHGGzavS5Uqxdy5c7MFHiIjIwFyzAWUVZZVJ69uZ+bP1q1b8fX1va32RUREROT+dOHChXvSbpEIWFSpUsXm9YoVK6x3F93IaDRy9uxZTCYTw4cPL4DRSVFmzDBpSah84OzqQLtBtahUx4ctXx4m7aqRKxfT+G7uPuq1DaBp9yo4ONoX9jBzVSW4EQNmfsjaebOIObCP9JQUVs+YTN9ps3EvdedrhIuIiIjciXr16rFo0SJat25N2bJlOXv2LP/73/94/fXXGThwIKVKlaJr167W+pcuXQKgZMmS2dry9PS0qSMiUlS9uKNIXGqSXMxtVjA5YfV5KPoK6rMA+jwUBwX5ebiZIvEpiY6Otj43GAwkJyeTnJx80/pOTk5079692K6hLPnHmG2GhQIWd6P6Q2UoW7UUm5Yc4uRfiQD8vimW2D8TeHRwLXwrFP0Ej24lS9F93CS+fvMVzh2P5PKFONa8O4Veb7yNo7NLYQ9PRERE7iM9evSweR0YGMjIkSOpWbMmjz76KJMmTbIJWNwLsbGxt9x+5swZGjduDMAjjzxikztDROSO7Pi5sEcgeZDT8oP3hD4PRV6BfRZAn4di4HY+D7ktPXqnikTAIioqCshMol2lShV69uzJzJkzc6zr5OSEn58fDg5FYuhSyEwZZkBLQuUnDy9nur5Qn/2bT7Jj9TFMRjMJp6/wzTu/8FCnQOq3q4ijc9GebeHo7EL3l1/jy1fHcDk+jrPHIln/0WweHzUBg51dYQ9PRERE7nNt27alatWqHDhwgKSkJOvsiayZFZcuXcLHx8dmn6SkJJs6eXU7AQhXV1clcRcRuU/o33vJos+CXO92Pg/36rNTJK7cVapUiUqVKhEYGMiAAQPo2LGjtezGR9myZe9ZsGLPnj107tyZUqVK4e7uTtOmTVm+fPlttXH69GlefPFFatWqhbu7O2XKlKFly5Z8/vnnmEymezLu+1n2HBaaYZEfDHYG6rUN4MlXHsKnfGZCSLPRwu7vo1j6+g4ObTuN2WQu5FHemoeXNz0mvIHTtX88I3dtJ3zZfwt5VCIiIiKZsnJFXL161Vp2qzwVt8pvISIiIiLyT1EkAhbXW7x4MYMHDy7wfjdv3kyLFi3Ytm0bvXr1YsSIEZw9e5bevXvz3nvv5amN48ePU69ePebNm0elSpUYOXIkTzzxBMeOHePpp59m6NCh9/go7j/GDDOWawELO4M9dpp5k698ynvw5ISHCH60IgY7AwBXL6WzeelfLJu6h6j9F7BYLIU8ypvzqxjIYy+Ox2DI/Kduz7crOPDzj4U8KhEREbnfXblyhT/++AN3d3ebJNetWrUC4Mcfs39f2bBhg00dEREREZF/oiIXsCgMRqORZ555Bjs7O7Zu3cqnn37Ke++9x++//06NGjWYOHEiJ06cyLWdWbNmceHCBd5//33Wr1/PjBkz+OSTT/jzzz+pWLEioaGheWpH8i5rSShv57J0q/g8+1/bwfYfjhb2sP5R7B3taP6vavR5vTGV6/39B3XimSus+3g/a2b/xrmopEIc4a1VDn6IkEHDrK83LvyImIO/F+KIROR+YDAYWLNmTWEPQ0QK0eXLlzly5Ei28pSUFJ555hkuX75Mr169bGaP9+rVi5IlSzJv3jybNYFPnjzJhx9+iK+vb7a8GCIiIiIi/yRFMmBx+fJlZsyYwaOPPkqtWrWoUqVKjo+qVavmS38///wzx44d4//+7/+oX7++tbxkyZJMnDiR9PR0lixZkms7x48fB6Bz58425aVKlaJly5YAXLhwIV/GLJmykm4HuAXhZOdMaYuBimFn+Gn6ds6dLroX0YsjL393Oj9blyfGNsC/iqe1/HTkRVbM+IUN/znIpbirt2ih8AR3eIwGnTITWppNJr6bPZ34U7dOQCkiUlACAwMxGAw2j3feece6PSwsDIPBgJeXF6mpqTb77tmzx7oPQHJyMo6Ojixbtsym3lNPPYXBYCA6Ojpb36+99tq9OTCRf6iFCxcycOBABg4cyDfffJOtbOHChQDEx8fzwAMP0KRJEwYOHMiECRMYNGgQNWrU4KuvvqJOnTrZ8vZ5eXnx4YcfcuHCBRo0aMDzzz/P888/T4MGDYiPj+fjjz+mRIkSBX7MIiIiIiIFpcitn3P69GlatmzJiRMncl1qJuuP87sVFhYG5JwFvUOHDgBs2bIl13YefPBBNmzYwLp163jxxRet5RcvXiQiIgJ/f39q1ap1W2PLLdv6mTNnrM/T0tJISUm5rfaLu/TUDCwYcbCzzV1RM8lE4gf72F+3FM26VcW+iCVavv6C040Xn4q6UuWd6TSyFicOJPDL/2JIissc/9G95zn2Wxw1W5ShXvsKuHo4FvJIbTV+8v+IP32SE7//StqVK6x6+03+9do0XD3zlriyOJ+z+5nOW8Exm83W39tm893luLl+/7ttK79lZGTg6Ji3f9/MZnOexz958mSbpSNLlChh3Tfr/yVKlGDlypX06dPHWm/hwoVUrFiRmJgYzGYzbm5uPPTQQ2zevJlevXpZ64WFhREQEMDPP//MwIEDAYiKiuLEiRO0bt36H33OJJPFYsFsNtt8V0xLSyvEERVf27Zty3YzU0REBBEREdbXQ4cOxdvbm+eee47du3ezbt06EhMTcXV1pWbNmrzwwguMHDkyx0SF/fr1w9fXl+nTp7N48WIMBgMNGzZk0qRJtGvX7p4fn4iIiIhIYSpyAYuJEycSHR1N/fr1mTBhAjVr1sTT0zP3He/CrRLY+fv74+HhkWPiuxuNGzeO77//npdeeokffviBunXrkpSUxJo1a3Bzc2P16tW3nT09ICAgz3V37drFsWPHbqv94i7unCtYjDgY/r54lIIFVwx4YKDm/kscOLyLSzWvkOZaNC+gbN26tbCHcMdKNAC7WEeSjjphTrfDYrZwKPwsf24/g3uFDFzLGHHyNpFPscW7Zl+jDk4nokm/mEBS3Dm+mvIq5dp2xs7+9v4pLM7n7H6m83Zv+fj44OrqisFgICkp/2a4JScn51tbOXnssceoXbs2zs7OfP755zg5OTFo0CAmTJgAZN7tPGvWLDZu3MjWrVt5/vnnmTBhAuvWrWPGjBkcPnwYf39/+vTpw5gxY2yWdklJScnTe2E2m3F0dMTNzc1aZjKZrPtmJeTt3bs3CxcupEuXLtb2ly1bxvDhw5k5c6a1frNmzfjf//5nfX348GFSUlIYNmwYGzdu5IknngDghx9+wNnZmdq1axercya3z2g0kpKSQkpKCn/99Ze1XDN/70xoaCihoaG51vP09OTDDz+8oz46duxIx44d72hfEREREZHirMgFLDZs2ECZMmXYvHkzJUvm7c7nu3Xp0iWAm/bn6elprXMrZcqUYceOHfTr14/169fzww8/AODq6sqIESOoV69e/g1aALCYAYsRe7u/Axa7qifhHuNKo7TMWRcBaY6U/70kZyqkcLZcahFdCK14MtiBR6UM3MpncDnKieQoJywmAxaTgeQTTiSfcMLOyYxrGSOu/kacvU0YCvH9t3N0olzrDsRu+BZTylVSL5zj/M6tlGkekm8ztkTkb+vn/UXK5YwC79e1hCOdnn8gz/W/+uor/v3vf7Nx40b27NnDc889R5MmTQgJCQFgxowZvPHGG7z99tvY29uzfft2RowYwYwZM2jWrBlRUVGMGjUKgPHjx9/RmOfMmcPMmTOpUKECPXv25LnnnrMJfkBmwGLevHnExsYSEBDAd999R8WKFbN9v3j44Yd5//33OXv2LP7+/oSHh9O0aVMeeeQRm4us4eHhNGrUCBcXlzsas4iIiIiIiEh+K3IBi8TERDp37lxgwYr8dPToUR5//HE8PDwIDw+nfv36XLx4kaVLlzJp0iQ2bNhAeHg49vb2eW4zNvbW6+yfOXOGxo0bA9CkSZN8y+tRXHx74HeSsJ1h0aFLCzxKuvBb+En8d1/AKdmIncVA+Vg3Kqb7YH60At5VC/fzlZqaar3b+5FHHsnxYpHFaCYhIYXkS2lcvZyB2ZQ5Q8QCWKz/yfyfn4cTvu7XLYvlYCA2OR1ndwfcPJxw83DE2ene/7hfvZTObxtiidwdh9l0bWmYdDuuxDpxJdYJZzcHKj7oRWBdH8oFlcTeoXCiF+fr12PN9DcwpqeRfOIYD9QPpnGP3rfcJy/nTIoenbeCExMTg8lkwsHBwTozMu2KkZSkgg9Y2NkZ8jw708HBgXr16jFt2jQAgoODWbRoETt37qRbt24A/N///R/PPvusdZ+XXnqJCRMmMHz4cADq1q3L5cuXmTBhgrUdyLxhIS/jePHFFwkODsbb25vt27fz6quvkpiYyHvvvQdgnXlRpUoVOnbsyKpVq3jttdf4+uuvGTp0qHX2ZlZfjz76KE5OTuzdu5c+ffqwa9cu2rZtyyOPPEJCQgLx8fFUrlyZHTt2MHjw4HyZyWo2m60zKzw8PLArYksx3u/i4uJwdXXFw8ODhg0bWsuL+8xck8nErl27+PXXXzl37hyJiYl4eXlRpkwZGjZsSOPGjW/re7eIiIiIiBS+IhewCAgIKPC1j7OCIzebRZGUlISXl1eu7QwcOJATJ05w/Phx/P39gcw/2idMmMC5c+eYM2cOy5Yto2/fvnkeW4UKFfJc19nZ+baXnCruzEYzYMHe8PdH2de3JAYHO5q3r465dRWSfjpB8rZTYAHTuRRMS4+wpawrLQbVpYSn870fo9lM0qU04s9d4dKFq1xJSOVqwlWunnTD0WRg9x+HcDRa8LK3p6yLI+YUI+ZUIxgzL/h7XHvk5sbFPLJCMmYgGUjAQiqQaoB0O8iwN2B0MBBQsSSlK3hiX8oFey9nKOmEvacTjncQ4HB1daXdgJI83MvIiQMXOPZrHDF/xGcmRwfSrhqJ3B1H5O44nFzsqVTHlyr1/XAv5YydvcH6sLe3u/bcLsdyg93dzYaoVPNBurwwjm/fmwYWC798uwLf8gHUbtU2T/u7uLjcdz9r/wQ6b/eWnZ2d9fd31sVqN09n4E5+Xi2YzZZrbRluuw03T6fbumBet25dm/ply5YlLi7OWtaoUSOb7b///jsRERFMnz7dWmYymUhNTSU1NdUaYLCzs8vTOMaMGWN9Xr9+fVxcXBg+fDjvvPMOzs7O1jbs7OwYMmQIL774Iv3792fHjh188803hIeHW7dD5nePRo0asXXrVvr27cvWrVt5+eWXcXJyonnz5mzduhWDwUBMTAxt2rTJ9+BCXo9bCpbBYMDOzs7m30Fn53v/Pehe2LZtGx999BFr167lypUr1nKLxWIzY9LDw4MuXbrw73//mxYtWhTGUEVERERE5DYVuYBFz549+fTTT7ly5Qru7u4F0mdW7orIyEibu84Azp49S3JysnUWw81cvnyZiIgIGjRoYA1WXC8kJIQ5c+bw22+/3VbAQm4tIz0zWaRD1pJQdoD933+o2jnZU6pLFdzq+ZG4MpKMM1ewx8CDZ1JJnL6LSAMkudiRVsIRO28X3Mu44xvgSYXAUrh5OOXQYyaz2UxSYhoJF66QFJ/ClcRUUi+lYrycQSO/EpiTMzBfTsd0OZ20pDQczOAMlLZp5dqd3ilZATojxsvGfLrZweoAAQAASURBVHpnsnPCgBPgaQFM1x7pFvjrIkl/XbSpa8JCggGSnAykuTlgKemEs48rvpVLUbWWL65uN39vAJxdHajR2J8ajf3JSDNx4mA8x347z4kD8WSkmQBITzURuecckXvO3faxGAxkBjMcDNbAhr29IVuQw8HRDntHO+wd7P9+7miHg4Md9o4+BNbvRvRvawDY8Mlczp9Ip2yN+tg72FnrO1zb32hOJ+OKAbsi96+mSNHVa2KjO9rPbDZbcyp4enre84vfNybRNhgMNjdP3Ph9JDk5mcmTJ1tzQVwvP2bxNGnSBKPRSHR0NEFBQTbbOnXqxLBhwxgyZAiPP/44Pj4+ObYREhLC119/zR9//EFKSgoNGjQAoFWrVmzevNmaoLtJkyZ3PV6RghIeHs5LL73Eb7/9hsViwc7Ojjp16lC7dm18fHysy7jGx8dz8OBBDh06xLJly/j6669p0KABs2fP5uGHHy7swxARERERkVsocpfeXnvtNdavX0+vXr1YvHgxpUuXzn2nu9SqVSvefvttfvzxR5566imbbRs2bLDWuZX09HTg5skL4+LigOJ7J1tRZbr2vttfWxLK4GifYy4Cpwol8HmuHps/P0CVI0k4Y8AOA6UtUDrFAinpcD4d/koCzpAAXPR0wsHHBQdvVy6nZHAsOhGXDAvuRgueFnC8FgDwvfbIcjXqik3ft/NDZnC2x87VATsXBwyu9kRdTuOi2QRO9ljsDGC4dp/xtWO0XDvUAG83Kni5knUXcsrVDH4/Ho8hw4y90YKD0YyjCZzMFpwt4GIB11vcsWyPAT8L+KUBaUZINEL0VdgbzzmOctYBLns60bRZBZzKe+BYzgM7l5yP1NHZnmoNS1OtYWmMGSZiDyVw7Nc4ovZfID3lzgI0FguYjGZMdxnfsVgqY+9cD1Pa71gsZn5dOx+nLf/CzvFmM5sy57qsOrSPag3KUCXYD98KHsp/IXKfadCgAYcPH6ZatWr3pP19+/ZhZ2eX43cgBwcHnn76ad59913Wr19/0zZCQkKYOnUqX375JS1btrQui/PII4/w6aefYrFYaNGiBU5Otw5AixQVTz31FN988w0ODg507dqVgQMH0qZNG0qUKHHTfZKSkti0aROhoaH88MMPtG7dml69evHVV18V4MhFREREROR2FLmAxciRI6latSqrV6+mWrVqPPTQQ1SsWDHHuysNBgOfffbZXffZtm1bqlSpwpdffskLL7xA/fr1gcwloqZPn46TkxNPP/20tf6ZM2e4dOkSZcuWtS4n5ePjQ1BQEIcPH2bhwoUMHTrUWv/ixYvMmjULwJrAU/KHMePaDAtrwOLmd+E6ONrz6OD6REfG88e3kbgnZeCdbsHzJhfuzUnppCelkx6VhD1Qw7ol7xen7dwduOpoR2xaBhku9ljcHbHzcMTew4HY8yewdzbTtPlD+JYuiUdJZxxuyOlwp+G6koA/1W9Zx2g0k3wpDbc0E6aLaZgSUzEmpnEiKpHk81fxysj5vXHAQAUjkJDBpbVR1nJ7HxdOORlI8HCgZMUSOLo6Zts3S51GfjRvWZa42MvEn0wmPd3ExSvpWMxgMVvAnLmsg8Vsyfbaxd4uc3kvkwWL2UyG0YLJaM6sa8naP2vf3N4pA5YSbTA6uGMxXcsXY9yDg6MHdvY5LwNnAVLOpfDLumh+WReNp68Llev7UbW+H/5VSt71clUiUvS9/vrrPPbYY1SsWJGePXtiZ2fH77//zsGDB5k6depttbVjxw527dpFSEgIJUqUYMeOHbz00kv069fvpstRvvXWW4wbN+6msysAmjdvjrOzM/PmzePVV1+1ljdu3Jjz58/z7bff8sorr9zWWEUK0+rVq3nuueeYNGkSZcqUydM+np6e9OjRgx49enDu3DmmTJmSL387iIiIiIjIvVPkAhahoaHWu5WTk5MJCwu7ad38Clg4ODiwcOFCOnTowCOPPMJTTz1FiRIlWLlyJSdOnGDWrFkEBgZa67/yyissWbKExYsXM3DgQGv5+++/T9euXXnmmWdYtmwZwcHBJCYm8t133xEXF8e//vUv2rVrd9fjlb+ZMq7NsLi2Ts+Zq+mUy2WfwOo+BI79+yJPYvxVTkVdJOHUZVLOXcWQmEo1J0dcko2Yr9gmizViIckAV+wNpDoZyHC2x+zqgJ2HI06eTriWciGoijclfF2xc3fEYJ8ZgLjxHtyUlBQu/3gUgPKBJQtlXX0HBztK+Vzrt9zfWTJKXVcnOSmNM7GXSDh9mctnr2A+e5USlzIoa7TgcEMwwxSfij/gDxB5+ZZ9ZwAJgD1/B2Xynq0lB3aANVBwBwGDEre/PITZYiHFDFdTMrgacZqD4afY42jAsYIH5YNLE9SkLM43mXUiIsVbhw4d+N///seUKVOYMWMGjo6OPPDAAzY3K+SVs7Mzy5Yt48033yQtLY3KlSvz0ksvMXr06Jvu4+TkhK+v7023Q+bSVE2bNmXLli20bt3apr+mTZsSFhammyikWDl8+LDN9/HbVaZMGT766CPGjh2bf4MSEREREZF8V+Supi1evLhQ+g0JCWHbtm288cYbfP3112RkZFCnTh1mzJhB796989RGp06d2L59OzNnzmTbtm1s2bIFFxcXatasyeuvv86zzz57j4/i/mKxWDBlZAYUspaEyriDZc69fNzw8nGDh7JvM6caMSakgr2BZDso6eWKvcP9k0jUw9OZ6rVLQ23buR6pqRkkn0zGNSGN9NPJZJxOJv30FTDmOqXhH8POYMDdHtztbwiQnL0K66M5uy6KRCA9pDyNO1YtlDGKSO5yujFizZo11ucWiyXH/Tp06ECHDh1u2u7N9rtRgwYN2Llz5y3rtG7d+pbtde/ePcftN7vpY/PmzXkam0hRcjfBiutVrlw5X9oREREREZF7o8gFLAYMGFBofTdu3PiW60FnCQ0NJTQ0NMdtjRo1Yvny5fk8MsmJ2WTBYslMYpC1JJQxn5fjsXNxwOna7APvfG25eHNxccSlWuZSJVmpaE0ZZqIi4zl9OJ6Us1cyl2a6iWqlPfDz+DufS3KakQOnLuWp74cqeeFo/3fQ6GRiCrGJV3Pdz8PZgTrlS9qU/XE6iaTU62bRmIzYHf8NQ2oyABYXd8yVgynv60lZTyeio6IwmA34uPlxOuYy3kYLHjeZ0WFvMOALxG88yeYLGTR+vDLuJZXDRkRERERERERE5GaKXMBCJK9MGWYsFiP2BgfrMmL5HbCQvLN3tKNaLT+q1fK77X1LAuXvsN+SQO073Ld5DmXJiTVY9sbLXDp3FgB/96O0GTYVEwZO/XgIgFrtgwi8tozXxcQUzsRcIvF0MlfOXYHTV3G/nIG/GZwMBrztDeyOOE3knnM06FiJ+m0DcHCyv8MRi0hxM336dKZPn57jtocffjhPN0qIiIiIiIiI3C+KdMDi0KFDbN++nbi4OGrXrk3Xrl0BMJvNGI1GnJycCnmEUpiMGWa4FrDIYrpxeR6R2+Th5U3PV6ey7I2XuZKYwNmjR/h21jQ6vTg+x/qlvFwp5eUK9WzLE/93jCvbTmMwGCjjYCA2zcSub4/zx9ZTNO1elRqNyihBt8h9YMSIEfTq1SvHbYWRv0jkn+T48ePMmDGDTZs2cfr0adLS0nKsZzAYMBqNBTw6ERERERG5E0UyYBEbG8ugQYNs1lgeMGCANWDxn//8h+eee44ff/yRtm3bFtYwpZCZjGbA+P/s3Xd8VFX6x/HPnZn0DgkhCQmhBOm9o1SlWcCuqxRdy7rrKqJrWxXb6tp2Leuu+kOKXVSwIYICAUGqFJFOIIQSILQ0kkz9/TFkkkgghSQzge/b17ycuffcc5/JnCTkPvecx1O/AsBp0QVgOXuRsY25+tGn+fTJhyjKzyfjt/X88PZrGC3bY5gqV8MkuH00+Uv2A9AqPoS9GXm4XJB3rIgfp27i1wV76HdtCvEtI2vxnYiItzVo0IAGDbSooEhNW7t2LQMHDiQvL6/CmjGVrSkjIiIiIiLe53PVg48ePcqAAQNYsGAB7dq146677jrlj4zrrrsOk8nE119/7aUoxRfYrQ5cLjsWU6mEhdnnhrTUUzFJyVz18JNYAtx1J3auXkHWqiWVvujhnxSOKdidEw4rsHPdI91JatfQs//Q7lxmvbyG79/ZQHZWQc2/ARERkXPYQw89RG5uLldddRW//PILOTk5OJ3O0z5ERERERKR+8Lmruy+88ALp6ek88MADrF+/nv/85z+ntImKiqJDhw4sWbLECxGKryieYWEpNcPC5acZFlJz4lu1YdTERzGZ3YmHnLStHFm3slLHGiYDc0okAC6rg73px7j8r524/K+daBAf4mmXtiaLj55aztIvduCw6YKKiIhIZSxbtowLLriAGTNm0KVLF0JDQ70dkoiIiIiI1ACfS1h89dVXJCcn889//tNTSLk8zZs3Z//+/XUYmfia8mpYGH4qZiw1K7lzN0bcPRFO/jw6vvlXfvl2VqWO3R5WMjYPrjkIQFK7hlz/9x4MvOkCgsLcyTan3cW6HzJYOnNHDUcvIiJybvLz86Nz585n/HtBRERERETqH59LWOzevZuuXbtiqmCdeH9/f44ePVpHUYkvclid4LJhMZUqvu7nc0NazgGt+/ZnwNjbPa9XfP4Rq7+ZWeFxHS9sgg33ElKNDhV6lqQwmU20uyiBm5/uQ7fhTTGdrL2y+edMrIUqCioiIlKRrl27snfvXm+HISIiIiIiNcznru4GBgaSm5tbYbuMjAwiIiLqICLxVXa7ExdlZ1i0bqIxIbWj3aBLaNi5p+f1og+msOa7r854THhkEOlB7h+zMU6DHZsOl9nvH2Sh9+gWtOkTB4C9yMGO1YdqOHIREZFzzwMPPMCyZctITU31digiIiIiIlKDfC5h0bp1a9asWUN+fv5p2xw+fJj169fTsWPHOoxMfI3j5JJQpWtYNIwK8mJEcq6LatuJBh27e14vnP5/rJ377RmPcTQP9zxPX1H+MnZtL4z3PN+0VEvdidSlgQMHMmHCBG+HISJVNHz4cF577TVGjRrFI488wuLFi0lPTycjI6Pch4iIiIiI1A8+l7C45pprOHLkCBMnTvQsn/J7f/vb3zhx4gTXX399HUcnvsRuc7hrWJhKEhaGloSSWtagfRe6j7rW83rBlLdY/8Oc07a/oF+i53nQ7vJnj8UkhdGwibtY6MFdORzZl1dD0YpIRWbOnMkzzzxTJ+davHgxl19+OfHx8RiGwZdffnlKG5fLxRNPPEFcXBxBQUFcfPHFbN++vUwbwzAwDIPly5eX2V5UVETDhg0xDMNz13nv3r3505/+VKbdW2+9hWEYTJs2rcz28ePHc9FFF531+xSpK127diU+Pp4XX3yRQYMG0aJFC5o1a3bKo3nz5t4OVUREREREKsnnru7+5S9/oX379kyePJmePXvy3HPPAZCWlsa//vUv+vTpw3vvvUfnzp0ZP368d4MVr3LY3EtClZ5hYfj73JCWc1CP0dfS68qShOmPk99kw4J55bZNbB7FXrO7jkVTq4usg6cmIwzDoG0/zbIQ8YYGDRoQFhZWJ+fKz8+nU6dOvPnmm6dt8+KLL/L666/z1ltvsWLFCkJCQhg2bBiFhYVl2iUmJjJ16tQy22bNmkVoaGiZbYMGDTplyZyFCxeSmJh4yvbU1FQGDx5c9Tcm4gVLlixhyJAhbN26FZfLRYMGDUhKSir3kZiYWHGHIiIiIiLiE3zu6m5gYCBz586lT58+rFmzhscffxxw/1Hyt7/9jRUrVtC9e3e+/fZb/Pz8KuhNzmXFS0KVrmGR73R5MSI5XxiGQb/rb6bHFVd7ts175w02LppfbvvshGAATBhs/Kn8ZSla9YzFbHH/SN664oB7BpGI1LrSS0IVFRXxwAMPkJCQQEhICL169SpzUf/IkSPceOONJCQkEBwcTIcOHfj4448rfa4RI0bw7LPPcuWVV5a73+Vy8eqrr/LYY48xatQoOnbsyHvvvcf+/ftPmY0xbtw4PvnkEwoKCjzbpkyZwrhx48q0GzRoEFu3buXAgQOebYsWLeLhhx8u89527drF7t27GTRoUKXfj4g3PfbYYxQWFjJx4kSOHDlCVlYWu3btOu1DRERERETqB0vFTepeXFwcS5YsYe7cucyePZudO3fidDpJTExkxIgRjBo1CsMwvB2meJnd5gTKLgmVkVNIjPdCkvOIYRhc9IfxOB12fpn9FbhcfP+/VzGZTLS5qOwFv7iujSHDfbHEvvV4uf0FhvjRomsM21YepCjfzq51h0npEVvbb0OkVn3wyATyjx+r1rHFy0KaTFW/tyIkMoqbn3+1ysfdfffdbNq0iU8++YT4+HhmzZrF8OHD2bBhAykpKRQWFtKtWzceeughwsPDmT17NmPGjKFFixb07Nmzyuf7vV27dnHgwAEuvvhiz7aIiAh69erFsmXLuOGGGzzbu3XrRnJyMl988QU333wzGRkZLF68mDfffLPMElf9+vXDz8+PhQsXcuONN7Jp0yYKCgr44x//yEMPPcSuXbto1qwZCxcuJDAwkD59+pz1+xCpC2vWrKFLly68/PLL3g5FRERERERqkE8mLIoNGzaMYcOGeTsM8VH2copu+wX69JCWc4xhGAwYcxtOh5O1338DLhdz3vw3htlM6779Pe3ado9n65c7icCgaa6dwkIbgYGnzhBr2y+ebSsPAu5loZSwkPou//gx8o4e8XYYlZKRkcHUqVPJyMggPt69RNsDDzzA999/z9SpU3nuuedISEjggQce8Bzz17/+lblz5zJjxowaSVgUz4KIjS37vR8bG1tmhkSxW2+9lSlTpnDzzTczbdo0Ro4cSUxM2bR9SEgIPXv2JDU1lRtvvJHU1FQuvPBCAgIC6Nu3L6mpqTRr1ozU1FT69OlDQEDAWb8Pkbrg7+/PBRdc4O0wRERERESkhunqrtRbDpsT1+8SFgFBGtJStwzDYND4O3A6HKz/4TtcLiffvfEyJpOJVr0vBMBiMXE8LoiIzEKCMHCm50LrBqf0Fd8qkoiYILKzCti75RjZWQVExATV9VsSqTEhkVHVPvZsZ1hU1YYNG3A4HLRq1arM9uJC1gAOh4PnnnuOGTNmsG/fPqxWK0VFRQQHB1f5fDXh5ptv5uGHH2bnzp1MmzaN119/vdx2AwcO5LPPPgPcdSoGDhwIwIABA0hNTeWWW24hNTWV22+/va5CFzlrvXr1Ytu2bd4OQ0REREREapiu7kq95fAsCVUyjJWwEG8wDIMht/4Jp9PBhvlzcTmdzH79JQyzmZQe7uVVugxO5uiHWwAo2nqU4HISFoZh0KZfHMu/3AnA5p/303tUi7p7IyI1rDrLMoE7WZGTkwNAeHh4tZIWVZWXl4fZbOaXX37BbDaX2VdcyPqll17itdde49VXX6VDhw6EhIQwYcIErFZrjcTQuHFjAA4ePEhcXJxn+8GDB+ncufMp7Rs2bMhll13GH//4RwoLCxkxYgS5ubmntBs0aBD/+Mc/2LdvH6mpqZ5ZIgMGDODtt98mLS2NPXv2qOC21CuPP/44/fv35+OPP+bGG2/0djgiIiIiIlJDvH51t3nz5hiGwY8//kizZs1o3rx5pY81DIO0tLRajE58md1TdLtkhkVgsAqxi3cYJhOX3PYXnA4HG1N/xOlw8O2/X+DqR58mqX1HAlOiwGyAw0Xh5qO4rnCVW4undZ84Vny9C5fTxZafM+l5WTNM5tq/WCtyvuvSpQsOh4NDhw5x0UUXldtm6dKljBo1iptvvhlwJ1a2bdtG27ZtaySGZs2a0bhxY+bPn+9JUOTk5LBixQruuuuuco+59dZbGTlyJA899NApiZZiffv2xd/fn//+97+eOhwAPXr0ICsriylTpniWjhKpL6xWKxMmTGDMmDF8/fXXjBgxgqSkpNMmOPv371/udhERERER8S1eT1ikp6djGAY2m83zurJUePv85rA5gLJLQilhId5kmEwMvfOvuBwONv20EKfDzvIvPiapfUdMgRYCmkdQtP04juNF2A6cwD8u5JQ+QiICSO7QkF3rD5OfbSVj41GSO0Z74d2InF9atWrFTTfdxNixY3nllVfo0qULWVlZzJ8/n44dO3LppZeSkpLC559/zs8//0xUVBT/+te/OHjwYKUTFnl5eezYscPzeteuXaxbt44GDRqQlJSEYRhMmDCBZ599lpSUFJo1a8bjjz9OfHw8o0ePLrfP4cOHk5WVRXh4+GnPGxQURO/evXnjjTfo16+fJ7Hh7+9fZrufn36HSv0xcOBADMPA5XIxY8YMZsyYcdq2hmFgt9vrMDoREREREakurycsdu3aBUBCQkKZ1yIVsdvdNSzMppILLEFButgi3mUymRn25wns3bKJnKyD7N++BbvVisXfn8DWDSjafhyAtQt20eum9uX20bZfPLvWHwbcxbeVsBCpG1OnTuXZZ5/l/vvvZ9++fURHR9O7d28uu+wyAB577DF27tzJsGHDCA4O5o477mD06NFkZ2dXqv/Vq1czaNAgz+uJEycCMG7cOKZNmwbAgw8+SH5+PnfccQfHjx/nwgsv5PvvvycwMLDcPg3DIDq64p8RgwYNYvHixZ76FcUGDBjAwoULy8QlUh/0799fNy+JiIiIiJyDvJ6waNq06Rlfi5yOw+peEspiuIexHRcBgV4f0iKYTGaS2nfkt4U/4LDZyNyxlcS2HchOKJlRYd167LTHJ7VrQHCEPyeyraRvOEJ+dhEhEQF1EbrIeSc1NdXz3M/Pj6eeeoqnnnqq3LYNGjTgyy+/rPa5Bg4ciMvlOmMbwzB4+umnefrpp0/b5kx9REZGlrv/ySef5Mknnzxl+6RJk5g0adIZYxLxRaW/d0VERERE5NyhhdGl3rLbTxbdPrkkVJF3wxEpI7FtB8/zPRs3ANAkOZK9FveFxKZWF4cy88o91mQ20aaPu+Cuy+liy7LMWo5WRERERERERETE+3wuYbFnzx7ee+89tm7deto2W7Zs4b333mPv3r11GJn4GrvVBjixnFwSyqpVAcSHNGlbstzT3k0bPM+z44MBMGGwaUnGaY9v0y/O83zz0swK78oWEe/KyMggNDT0tI+MjNN/v4uIiIiIiIiIm88lLN544w1uueWWM16cc7lcjB8/nv/+9791GJn4GnuRFcAzwyI6Ksib4YiUER7diIhGsQCeOhYAcd1KEhH2badfFioiJpiEC6IAyM4qYP/J2hci4pvi4+NZt27daR/x8fHeDlGkXluzZo1P9SMiIiIiIrXD5xIW8+bNo02bNrRu3fq0bdq0aUPbtm35/vvv6zAy8TW2kwmL4hoWJn+fG85ynmtyclmo4joWAG27xXGck8tC5TooOGE77fFtLyxJbmxaur8WIxWRs2WxWGjZsuVpHxaLaiyJnI0ePXpwww03sGXLlmodv3HjRq677jp69Ohx1rF88MEH3HnnnXTv3p2AgAAMw2DatGmntLPZbHzxxReMGzeONm3aEBoaSlhYGL169eJ///sfDofjlGPS09MxDOO0j/Jq0YiIiIiInEt87q/nPXv2cNFFF1XYrmXLlixdurQOIhJfZbO6q1ZYTP4AGH5mb4YjcorEth3YmPoj4K5jkdi2AxaLiX0N/Yk8YiMIg1+X7aHXkOblHt+8cwwBwRaKTthJW5PFRdfZCAzxq8u3ICIi4hPuuece3nzzTT777DP69OnD+PHjGTJkCM2aNTvtMTt37uSHH35g2rRprFy5ErPZzL333nvWsTz22GPs3r2b6Oho4uLi2L17d7nt0tLSuOaaawgNDWXIkCFcccUVZGdn88033/DnP/+Z7777jq+//hrDOHVd006dOjF69OhTtg8cOPCs4xcRERER8WU+l7A4ceIEQUEVL+0TFBREbm5uHUQkvsphK8JslAxhw08zLMS3lC68vXfzb57nYe0awuIDABz/NQtOk7Cw+Jm5oFdjfl24F4fNyfZVB+kwsEntBi0iIuKD/v3vf3PHHXfwt7/9jTlz5rBs2TIAYmJiaNOmDQ0bNiQ8PJycnByOHDnC5s2bycrK8hw/cuRIXnzxRdq0aXPWsUyePJmUlBSaNm3KP//5Tx555JFy24WFhfHmm28ybtw4QkJCPNtfeeUVBg4cyLfffsvnn3/Otddee8qxnTt31mwKERERETkv+VzCIi4ujnXr1lXYbv369TRq1Kj2AxKfZbdaPfUrADJPWInxYjwivxce465jkX3oIJnb3HUsLP7+dLwwiUOLM/HHIPZQEU6nE5Op/IRbm37x/LpwLwAbl+yn/YCEcu/EFBEROde1adOGb7/9lu3bt/Of//yHr776ioyMDA4dOlRu+6SkJEaPHs1f/vIXUlJSaiyOiy++uFLtEhIS+POf/3zK9pCQECZOnMgf/vAHFi1aVG7CQkRERETkfOVzCYuLLrqIDz74gC+++IKrr7663DYzZ85ky5Yt/OEPf6jj6MSXOGw2T/0KgAMFVjp6MR6R8jRp24HsQwex26wc2LGNJm3bExoewMpgE61OuIh2GWzdcIg2nRqXe3x0k1AaJYdzKD2HI3vzyMrIpVHT8Dp+FyIiIr4jJSWF1157jddee42dO3eydu1aDh48SHZ2NpGRkTRq1IiuXbuecbkob/Pzc990c7r6Nvv37+fNN98kOzub2NhYBg4cSIsWLap1rr17955xf2Zmpud5QUEBBQUF1TqPiIjUL/p5L8U0FqS0qoyH2ho7PpewuPfee/nwww8ZO3Yse/fu5dZbbyUsLAyA3NxcpkyZwt///ndMJhP33HOPl6MVb3LYrfidrF8B4LJoSSjxPWXqWGzaQJO27QGwtIqCdUcBaJhZAJ1O30fbfnEcSs8BYNPSTCUsRERETmrevDnNm5e/tKIvmzJlCgBDhw4td/8PP/zADz/84HltGAY33XQTb731VpnlpSojMTGx0m0XL15MdHR0lfoXETmVz11qknLMmzevjs6k8eDr6m4sgMaD76vKeDh8+HCtxOBzV3i7du3K888/T0FBARMnTqRBgwYkJSWRlJREgwYNmDhxIidOnODZZ5+lZ8+e3g5XvMTlcp0ywwIlLMQHNWnT3vN8z6YNnud9h5XcJenacfyMfaT0iMUS4C4qv33lAWxFjpoNUuQ8NnDgQCZMmODtMETkPPLOO+8wZ84cBg8ezMiRI8vsCw4O5vHHH+eXX37h+PHjHD16lB9//JGePXvywQcfMHbsWC9FLSIiIiJSN3wyrfW3v/2NCy64gEmTJrF+/foy05g7derEpEmTGD16tPcCFK9z2l2AvUwNC1R0W3xQRKNYwmNiyck6WcfCZsPi54clKhC/xiHYDuRj25uHI8eKOdy/3D78Ay2kdGvE5p8zsRY6SFtziNZ94ur4nYicm2bOnOlZmqW2LV68mJdeeolffvmFzMxMZs2adcq/Z8aPH8/06dPLbBs2bBjff/+953VxHZtly5bRu3dvz/aioiLi4+M5evQoCxcuZODAgfTu3ZvOnTvz1ltvedq99dZb3HXXXUydOpXx48eXOXdaWho//fRTDb5rESnt22+/5e6776Zp06Z88MEHp+xv1KgRTz/9dJltQ4YMoU+fPnTt2pWZM2eyZs0aunbtWulz7tmz54z7MzMzPTeC9e/fnyZNmlS6bxGRci1b4O0IpBJON8uvxmk8+Lw6Gwug8VAPVGU8VLT0aHX5ZMIC4IorruCKK67g4MGDZGRkAO7CebGxsV6OTHyB3e4Elx2LSQkL8X2JbTuwcVFxHYutnlkXgW0aYDuQD0DhlqOE9Cy/jgVA2wvj2fyze43pTUv3K2EhUkMaNGhQZ+fKz8+nU6dO3HrrrVx11VWnbTd8+HCmTp3qeR0QEHBKm8TERKZOnVomYTFr1ixCQ0M5evSoZ9ugQYOYNWtWmWMXLlxIYmIiqampZRIWqampjBs3rjpvTUQq4bvvvuOaa64hNjaWBQsWEBdX+d/lwcHBjBkzhscee4ylS5dWKWFRlQREUFAQQUFBlW4vIiL1l37eSzGNBSmtKuOhtsaOz1/hjY2NpUePHvTo0UPJCvFw2Jy4fjfDwuTv88NZzlOJ7Tp4npdeFiqwTcmF0u0/nzkrHdssnKg495rVmTuyOXYy0SEiZ6f0klBFRUU88MADJCQkEBISQq9evUhNTfW0PXLkCDfeeCMJCQkEBwfToUMHPv7440qfa8SIETz77LNceeWVZ2wXEBBA48aNPY+oqKhT2owbN45PPvmkTJGzKVOmnJJwGDRoEFu3buXAgQOebYsWLeLhhx8u89527drF7t27GTRoUKXfj4hU3uzZs7nqqquIjo5m4cKF1aq7UVxbIj9f/wYQERERkXOXz86wEDkTu9VxcoZFyRA2+Zu9GJHI6ZWuY7F30wa4+kYA/BJCOW64iHQZhB44QcEJK0HB5S8LZRgGbfvFsfTzHQBsWZZJnytb1n7wImfh4BtrceZaq3ycC3C5nACcMEwYVTzeFOZP7F+7VPm8d999N5s2beKTTz4hPj6eWbNmMXz4cDZs2EBKSgqFhYV069aNhx56iPDwcGbPns2YMWNo0aJFjdbVSk1NpVGjRkRFRTF48GCeffZZGjZsWKZNt27dSE5O5osvvuDmm28mIyODxYsX8+abb/LMM8942vXr1w8/Pz8WLlzIjTfeyKZNmygoKOCPf/wjDz30ELt27aJZs2YsXLiQwMBA+vTpU2PvQ0TcZs+ezdVXX02DBg1YuHAhLVtW7/f3ihUrAEhOTq7B6EREREREfIvXExbvvfceAFdeeSVhYWGe15WlwnPnJ8fJJaHMpZaEMgcoYSG+yV3HohE5WYfYv7WkjoXJbGJfQ38iD9sIxODXpXvpdcnp77i8oFdjln6xA1yQsekofc58k7aI1zlzrThyqp6wKM1VQ7FUJCMjg6lTp5KRkUF8fDwADzzwAN9//z1Tp07lueeeIyEhgQceeMBzzF//+lfmzp3LjBkzaixhMXz4cK666iqaNWtGWloajz76KCNGjGDZsmWYzWV/z916661MmTKFm2++mWnTpjFy5EhiYmLKtAkJCaFnz56kpqZy4403kpqayoUXXkhAQAB9+/YlNTWVZs2akZqaSp8+fcpdfkpEqm/OnDlcffXVREVFsXDhQlJSUs7Yfu3atXTu3NlTq6bYzJkzmT59OlFRUYwYMaI2QxYRERER8SqvJyzGjx+PYRj07t2bsLAwz+vKUsLi/GS3OXFhw1JqSSizv9eHs8hpuetYzD+ljkVYu2hY5K5Ncfy3LDhDwiIozJ/oJqEc3pPH4b15FObbCAypm2LBItVhCit/xlBFSs+wMKo5w6KqNmzYgMPhoFWrVmW2FxUVeWY3OBwOnnvuOWbMmMG+ffuwWq0UFRURHBxc5fOdzg033OB53qFDBzp27EiLFi1ITU1lyJAhZdrefPPNPPzww+zcuZNp06bx+uuvl9vnwIED+eyzzwD37I2BAwcCMGDAAFJTU7nllltITU3l9ttvr7H3IXIumzx5MkuWLAHcPzuKtxUvs3bhhRdy2223sWXLFq688kqKiooYOHBguUvIJScnl6klc99995GWlkafPn1o0qQJDoeDNWvWsGTJEgICApg2bRoRERG1/h5FRERERLzF61d4x44di2EYnn94F78WOROH7eQMC6PkolRkhO4KFd/V5GTCAtx1LIoTFh37JXJk0X7MGIQerfhO9ISUKA7vyQMXZO44TrNOMRUeI+It1VmWCcDpdJKTkwNAeHg4JlPt1yjKy8vDbDbzyy+/nDKTITQ0FICXXnqJ1157jVdffZUOHToQEhLChAkTsFrPbhbJmTRv3pzo6Gh27NhxSsKiYcOGXHbZZfzxj3+ksLCQESNGkJube0ofgwYN4h//+Af79u0jNTXVM0tkwIABvP3226SlpbFnzx4GDx5ca+9D5FyyZMkSpk+fXmbb0qVLWbp0qef1bbfdxoEDBygqKgLgk08+KbevAQMGlElY3HzzzXzxxRcsX76cw4cP43Q6SUhI4LbbbuP++++ndevWNf+GRERERER8iNcTFtOmTTvja5Hy2G1OwI7FVHJXa0qC7jYT35XYtqTw9t5Nv8HV7ueh4QFsNEOCA+JtLooK7QQEnv5Hc3yrSNYv2APAvm1KWIjUlC5duuBwODh06BAXXXRRuW2WLl3KqFGjuPnmmwF3YmXbtm20bdu21uLau3cvR44cIS4urtz9t956KyNHjuShhx46JdFSrG/fvvj7+/Pf//7XU4cDoEePHmRlZTFlyhTP0lEi9YXZbGb8+PG8++67Z2x3++23M3XqVOx2e42de9q0aZX6m2XgwIG4XFVb2O62227jtttuq2ZkIiIiIiL1X+3fsliB4vWXi2VkZHD06FEvRiT1QckMi5LlcAx/rw9nkdMqrmMBsH+bu45Fsexw9zj2w2DnlsNn7Cc+JZLi9XH2bTtWK7GKnI9atWrFTTfdxNixY5k5cya7du1i5cqVPP/888yePRuAlJQUfvjhB37++Wc2b97MnXfeycGDByt9jry8PNatW8e6desA2LVrF+vWrSMjI8Oz/29/+xvLly8nPT2d+fPnM2rUKFq2bMmwYcPK7XP48OFkZWXx9NNPn/a8QUFB9O7dmzfeeIN+/fp5Ehv+/v5ltvv5aYk5qT9cLlelkwFVTRqIiIiIiIj3eP0K77Rp0zxrwAI0a9aMv/3tb16MSOoDu82By2UvU8PC8FPRbfFtxctA2a1FHEjb5tluNA7xPD+w7cgZ+wgM8SO6iXt5muI6FiJSM6ZOncrYsWO5//77ueCCCxg9ejSrVq0iKSkJgMcee4yuXbsybNgwBg4cSOPGjRk9enSl+1+9ejVdunShSxf3UlkTJ06kS5cuPPHEE4D7jvFff/2VK664glatWvHHP/6Rbt268dNPP522GLZhGERHR+Pvf+a6HYMGDSI3N9dTv6LYgAEDyM3NZdCgQZV+HyL1yYkTJ5SMExERERGpR7y+JJTZbMZW6k7jqtwtJecvx8klocymkj9ATZphIT4usW0HNi1eAMDejRto0rodAA1bRMLmbACK9uVV2E9Cq5I6Fvu3H6d5Zy0LJVJdxUVyAfz8/Hjqqad46qmnym3boEEDvvzyy2qfq6LlYYKCgpg7d26F/Zypj8jIyHL3P/nkkzz55JOnbJ80aRKTJk2q8Jwi9dHx48dZsmTJaZdUE5GalfzwbG+HIBVI/+el3g5BRESkQl5PWDRq1Ih169bhcrlUbFsqzX5ySSiLUTKEj1vtRHsxJpGKJLYrqWOxZ9MGel99AwAt2seQ++1uAEKOVaLwdqtI1s9317HYv00JCxEROT80b968zOvPP/+8TNKxNLvdzoEDB3A4HNx55511EJ2IiIiIiNQErycsBg8ezIcffkjz5s1p1qwZAN9//z2DBw+u8FjDMJg/f35thyg+yGFz4sKO2ShZAsMvyOvDWeSMwmNiCYuOIfdwFvu3bcFht2G2+BERGcQOs4tYh0GiHVwOF4b59AncuJaR7joWLti3XXUsRHxBRkbGGYtvb9q0ybO0lIhUT3p6uue5YRjk5eWRl3f6mYn+/v6MHj2a5557rg6iExERERGRmuD1K7wvvPAC27ZtY9WqVeze7b7D+MCBAxw4cKDCYzUj4/zlmWFhKhnCQcFan1h8m2EYnmWh7NYiDuzYTkJr9wXOpm1jKNxwGIsT7Fkn8CtV1+L3iutYHN6T56ljERii8S/iTfHx8Z5i2qfbLyJnZ9euXYB7WbTmzZtzzTXX8NJLL5Xb1t/fn5iYGCwWr/+5IyIiIiIiVeD1f8HHx8ezYsUKdu/eze7duxk4cCDDhw/noYce8nZo4sMcJxMW5pNFt2248Pf3+nAWqVCTtu09dSz2bNrgSVgENAmlcMNhAKz78s6YsABIuEB1LER8icVioWXLlt4OQ+Sc1rRpU8/zcePGcdFFF5XZJiIiIiIi9Z/PXOFt2rSp5w+Oxo0bM2DAAC9HJL7MYXcX3bacTFgUeTcckUpLbNvR83zPpg30vup6APziQz3bbfvzoFvsGftJaBXF+h/ddSz2bTumhIX4jDMVhBYR7yj+vjyXZidPnTrV2yGIiIiIiEgtMHk7gMGDB/Piiy96Xk+dOpXbbrvNixFJfWC3OnC57JhN7oSF9dz5+1vOcRGNYglr6E4u7N+6GYfdBpRNWBTuza2wn/iWEe46FsC+bcdrPE6RqvLzc/88djgcHD9+3LvBiIjH8ePHcTgcAFoeSUREREREfJ7X/2pJTU0lOTnZ8/rWW29l/Pjx9O3b13tBic9z2IpnWLiHsE0JC6kn3HUs2rPpp4Vl6liYQ/zIDTARVuQkZ3cOMXYnZsvpc8oBwX7EJIaRlZHLkX2qYyHeFxISQkFBAQCZmZkcOnTorO7mttvtAGRlZdVIfFL79Jn5HpfL5UlWgPv79FySm5vLf//7X3788Uf27dtHYWFhue0MwyAtLa2OoxMRERERkerwesLCz8+vzB8XLpdLy0lIhez2sjUsrF6fKyRSeU3adWDTTwsB2Lv5N08di73+0KYIgjHYnXaU5hdEn7Gf+FaRZGXkqo6F+ITo6GgcDgfHjh0DKHORtKpcLpcn+REUFHROLWNzrtJn5vuioqKIjj7z75X6ZP/+/Vx44YXs3r27wr8dNB5FREREROoPrycs4uLiWLFiBfn5+efcXV9Se2xFdsCB5eSSUHaT/hCV+uP3dSx6XXkdAM5GwZCbB8C+rUcqTFg0KV3HYqvqWIh3GYZBbGwsZrOZ/Px87HZ7tW9AcDqdnovfoaGhmEzKSvs6fWa+yTAMLBYLISEhREdHn1MX7h999FHS09Pp3LkzDz/8MG3atCE8PNzbYYmIiIiIyFnyesLi0ksv5X//+x+NGjUiNtZdZPbzzz8nNTW1wmM1vfv8ZbdaPbMrABzmc+cPcDn3RTSKJbRhNHlHDrNv6yYcdhtmix+RzSIgzZ2wyM+ouI5FXMsIDANcLtWxEN9gGAYxMTHExJxd8qygoIAtW7YA0K1bN4KCgmoiPKlF+sykrs2dO5fY2FgWLlxIRESEt8MREREREZEa4vWExXPPPUdWVhZffvkl6enpGIZBXl4eeXl5FR57Lt0lJlVjKyry1K8AiG0Y7MVoRKrGXceiA5t/Woi9qIgDaTtIuKANye1isP24D4CAI+Wvw11aQLAf0aXrWOTZCAxVHQsRETn3HTt2jJEjRypZISIiIiJyjvH6fP2IiAhmzJjBiRMnSE9Px+Vycc0117Br164KHzt37qzRWFatWsXIkSOJjIwkJCSE3r17M2PGjCr3c+jQIe677z5SUlIIDAykYcOG9OnTh//97381Gu/5zF5kxWwquTDbqIHu5JT6JbFtB8/zvZs2ABAbF8ZRw72ETuMCJ06ns8J+ElpFep7v3368RmMUERHxVYmJiZX6PSkiIiIiIvWL12dYFLNYLCQlJQHutY+bNm1ap+dfuHAhw4YNIzAwkBtuuIGwsDC++OILrr/+evbs2cP9999fqX7WrVvH0KFDOXbsGJdeeinXXHMNeXl5bN68mW+++Ya77rqrlt/J+cFuLcRSakkow8/sxWhEqq50wqJ0HYusYDMN8p2EYbAvPZvE5lFn7CehVRTriutYbDtG8y6qYyEiIue+a665hnfeeUd18EREREREzjE+k7Ao5o07pex2O7fffjsmk4nFixfTuXNnAJ544gl69uzJo48+yjXXXFNhEiUnJ4dRo0YB8Msvv9CxY8cy++12e63Efz6y/a6GheHv9clCIlUSEdv4d3Us7JgtFuwxgZB/AoCMzYcrTFjEpUSWqmNxrC5CFxER8brHH3+cOXPmcN111zF16lQaNWrk7ZBERERERKQG+FzCorTs7GxWrVpFVlYWTZs2pW/fvrVyngULFpCWlsYtt9ziSVaAe7mqRx99lPHjxzN9+nSeeOKJM/bz3//+l4yMDN59991TkhXgnkUiNcNhs2IxlXw9rSpnIvXM7+tYHNy5nfhWbQhrGgHp7oRFXkZOhf0EBFmISQrj0O5cjuzLpyDPSlCof22HLyIiUqduvfXWU7Y1b96cL7/8kpYtW9K9e3eSkpIwmU69icUwDN599926CFNERERERM6ST15Bz83N5b777uP999/3zEoYN26cJ2ExefJknnjiCWbNmkWvXr3O+nypqakADB069JR9w4YNA2DRokUV9vPpp59iGAZXX301W7duZd68eRQUFNC6dWuGDx+Ov3/VLyLu3bv3jPszMzM9z4uKiigoKKjyOeojm9VKsFHy9Vyz7zgD69F7LywsLPe5+K7a+MxiW17A5p8WArBz/VqiEpNp3DIMFrm/ry1ZBZX6nm7UPJRDu3MBSN94iOSODWskvnOBvtfqJ31u9Y8+s/qpqKjI2yFU2rRp0067Ly8vz/Pv+fIoYSEiIiIiUn/4XMKioKCAgQMHsnbtWho1akT37t357rvvyrS57LLLuPPOO/nyyy9rJGGxfft2AFJSUk7Z17hxY0JDQz1tTsdqtbJhwwZiYmJ44403mDRpUpnlrYrvAOvQocMZejlVYmJipduuWLGCtLS0KvVfXxUV5BNulAzfI9lHmDdvnhcjqr7Fixd7OwSpopr6zKy52Z7nvy5ZxBH/EFxOaGeKJMhpornVwby586CCGUQFOWYgGICVC35j24H6cwGqLul7rX7S51b/6DOrPw4fPuztECpt6tSp3g5BRERERETqgM8lLP71r3+xdu1abrzxRt555x1CQkJOmdrduHFj2rRpw8KFC2vknNnZ7ouGERER5e4PDw/3tDmdo0eP4nA4OHLkCE8//TQvvvgiY8aMwWaz8fbbb/Pss89y+eWXs2XLFgIDA2sk7vOZy+HAbCqpYeFUzW2ph/xCwzEHheAoyKcw6yAupxPDZMIa5iAo24Sf3YSf1cAW4DpjPwFRDsAFGBQd1TeDiIice8aNG+ftEEREREREpA74XMLi008/pXHjxrz77rtnvLDfqlUrVq5cWYeRnVnxbAqHw8Hdd9/N/fff79n39NNPs3XrVmbMmMHnn3/OzTffXOl+9+zZc8b9mZmZ9OzZE4BevXrRokWLakRf/7z7zRQspWZYJCTF03doSy9GVDWFhYWeO1D79++vJFY9UFuf2Q/pW9m+7CdcDjudWjajccsLyDftpXDpAQD6teqB/wWRFfbz9dZfObwnH1uumYv6DiIo1K/CY84H+l6rn/S51T/6zOqn82VmroiIiIiI1B8+l7BIS0vjkksuqfAP3eDg4Bqbxl48s+J0syhycnKIioqqVB8AV1xxxSn7r7jiCmbMmMHq1aurlLBo0qRJpdsGBAQQFBRU6fb1lcvlwuGwYbaU1LAICK6/7z0wMLDexn6+qsnPLLlDZ7Yv+wmAQ2nbadahM66mkZ6EhXHYSlDnis+V2Lohh/fkA3BsTyENuobXSHznEn2v1U/63OoffWb1R0BAgLdDEBERERERKcPnEhZmsxmbzVZhu7179xISElIj5yyuXbF9+3a6detWZt+BAwfIy8vzzGI4nZCQEBISEti3bx+RkZGn7C/edr4Uxa5NDrsTXHYsppLhawnQMjhSPyW2K6lrk77+F3qNvhZzXMnPtu2/HqLbxU0r7Ce+VSRrf8gAYN+247To2qjmgxUREfERt956a6Xa+fv7Ex0dTffu3Rk5ciT+/v4VHyQiIiIiIl7jcwmLFi1asH79eux2OxZL+eHl5eXx66+/0rZt2xo554ABA3j++eeZN28eN9xwQ5l9c+fO9bSpyODBg3n//ffZtGkTXbt2LbNv06ZNACQnJ9dIzOczh80J2DEbJUve+AX53FAWqZTI2Dii4hI4lrmPfZs3cSInm8CGYeThIhQDc1blkpzxLSMxDHC5YN+2Y7UctYiIiHdNmzYNAMMwAPcM3NJ+v90wDGJjY5k+fTqXXHJJ3QUqIiIiIiJVYqq4Sd264ooryMzM5Nlnnz1tm2effZbs7GyuvPLKGjnnkCFDaN68OR999BHr1q3zbM/Ozua5557D39+fsWPHerZnZmayZcuWU5aQ+tOf/gTAP//5T44fP+7ZfuDAAV577TVMJhNXX311jcR8PrPbnLhcdiylEhb+gUpYSP1kGAYpPfsA4HI52bFqOSaTiQOB7h/P0S6DQwfyKuzHP8hCTFIYAEf351OQa629oEVERLxs6tSp3H333bhcLuLj47n33nv597//zauvvsqECRNo0qQJLpeLv/zlLzz99NMMGDCAAwcOMHr0aLZs2eLt8EVERERE5DR8LmFx3333kZCQwDPPPMPo0aP56KOPADh48CAzZ87khhtu4KWXXiI5OdmTIDhbFouFyZMn43Q66d+/P3fccQf3338/nTp1Ytu2bTz33HNlZkY88sgjtGnThlmzZpXpp2/fvkycOJGNGzfSsWNH/vKXv3DHHXfQqVMn9u3bx7PPPkurVq1qJObzmcPmXhLKbCpJWARohoXUYyk9+3qe71j5MwCFDUrWFU/fmFWpfhJaldTa2bfteM0EJyIi4oN69uzJlClTmDBhAjt37uTf//439957L/fccw//+te/2LFjB/fddx9Tp07lqquuYsGCBTzxxBMUFBTwr3/9y9vhi4iIiIjIafhcwiIyMpLvv/+eZs2a8fXXXzNmzBgMw+D777/n2muvZcaMGSQlJfHNN9/UWA0LgEGDBrFkyRL69evHp59+yv/+9z9iY2P55JNPuP/++yvdzyuvvMLUqVOJjY1l2rRpfPTRR7Rq1YqZM2fyyCOP1Fi85zP7ySWhLEZJkiIwUOsRS/0V2yKF0IbRAOzesJ6iE/kEJ4Z59h9Pzz7doWUkXFCSsNivZaFEROQcNmnSJOLi4njllVfw8/M7Zb+fnx8vv/wycXFxTJo0CYC///3vxMXFsWDBgroOV0REREREKsknb0tv27Ytv/32G9OmTeO7775j586dOJ1OEhMTGTFiBHfccQfBwcE1ft6ePXsyZ86cCttNmzbNs25uecaPH8/48eNrLjApwzPDotSSUI2ig7wYkcjZKV4Wau2cb3A67Oxcs4qE1u1ghXtmhXHwRKX6iWsRgWEycDld7Nt+vBYjFhER8a5FixYxZMgQT62K8hiGQY8ePZg/fz7gTmJ06NCBxYsX11WYIiIiIiJSRT6ZsAAIDAzkT3/6U40t+yTnDrvNiQs7FpNqWMi5o1XPfqyd8w0A21f+zMh7+rMLF0EYNMizV6qP4joWh9JzOLo/nxM5VoLDNftIRETOPTk5ORw7VvFswuPHj5Obm+t5HRUVdcYkh4iIiIiIeJfPLQklUhGHzXHKDAvDz+zFiETOXnzrNgSFRwCwa90vuBxWMgPcF1RinQbHjxRUqp+EVpGe5/s1y0JERM5RLVq0IDU1lR07dpy2zfbt21m4cCEtWrTwbMvMzKRhw4Z1EaKIiIiIiFSDTycsli9fzvPPP8/dd9/N3XffzfPPP8/y5cu9HZZ4mf3kklCeGhZmA8OsO+WkfjOZzLTs0RsAe1ER6evXcCKqpPB22sZDleqnbOFt1bEQEZFz0y233EJRUREDBw7k3Xff5cSJkuUTCwoKmDJlCoMHD8ZqtXqWarXZbKxfv56OHTue1bk/+OAD7rzzTrp3705AQACGYZxxudicnBwmTpxI06ZNCQgIIDk5mb/97W/k5eWV297pdPLGG2/QoUMHgoKCiImJ4cYbb2Tnzp1nFbeIiIiISH3gk+voZGRkcNNNN/Hzzz8D4HK5ADzTt/v168cHH3xAUlKS12IU73GcXBKqeIaFzafTbiKVl9KzLxvmzwVg+8plBDUZAQeKADi68zj0b1phH3EtS9Wx2Ha8FqMVERHxngkTJpCamsrs2bO54447uOOOO4iOjsYwDLKy3DWgXC4XI0eOZMKECQBs2rSJzp07c9NNN53VuR977DF2795NdHQ0cXFx7N69+7Rt8/PzGTBgAOvWrWPo0KHceOONrF27lpdffplFixaxePFiAgMDyxxz5513MnnyZNq1a8c999zD/v37mTFjBvPmzWP58uWkpKScVfwiIiIiIr7M5y71Hj9+nEGDBrF06VICAgK44oormDhxIhMnTmTUqFEEBASwZMkShgwZQnZ2trfDFS/wzLA4WcMix+70ckQiNSOpfUf8g4IB2PnLSuJaRnr2NbG6KtWHf6CFRk3DADiW6a5jISIicq4xm818/fXXvPrqqzRr1gyXy0VWVhaHDh3C5XLRtGlT/vWvf/H1119jNruXDu3UqRMLFy7kxhtvPKtzT548mfT0dLKysiqst/fiiy+ybt06HnroIebOncs///lP5s6dy0MPPcSqVav497//Xab9woULmTx5Mv3792fNmjW88MILvP/++3z55ZccPXqUu++++6xiFxERERHxdT6XsHjllVfYtWsXI0eOZMeOHcyaNYuXX36Zl19+mZkzZ7Jz504uvfRSdu7cySuvvOLtcMULHHYnlJ5hodWg5BxhtvjRoltPAIpO5BPo3A8W9wCPyq1c4W1QHQsRETk/GIbBPffcw44dO9izZw/Lli1j2bJlZGRksHPnTiZMmIDJVPN/7lx88cU0bVrxrEeXy8XkyZMJDQ3l8ccfL7Pv8ccfJzQ0lMmTJ5fZ/n//938APPPMM/j7+3u2jxgxgoEDBzJv3jwyMjJq4F2IiIiIiPgmn1sSatasWcTExDBjxgyCg4NP2d+4cWM+/fRTmjVrxsyZM3n66ae9EKV4k93qPFl02z18rT6XdhOpvpRefdm8JBWA7auX07FxP2x787AfLsBZZMcUUPGP7fhWUayZ676YsW/bMVp2a1SbIYuIiHhdQkICCQkJ3g6jjO3bt7N//36GDRtGSEhImX0hISH069ePuXPnsmfPHhITEwFITU317Pu9YcOGkZqayqJFixgzZkyl49i7d+8Z92dmZnqeFxQUUFBQUOm+RaR+0fe3lKbxIMU0FqS0qoyH2ho7Ppew2LVrF5deemm5yYpiwcHBDBgwgNmzZ9dhZOIrHDYnuByeJaEcJk2xkHNHcqeuWPwDsFuL2LF6Od2GD8W2Nw9cYNufT0CziAr7iGtRqo7FVhXeFhER8Ybt27cDnLbmREpKCnPnzmX79u0kJiaSn59PZmYm7du39yxj9fv2pfutrOJkSGUsXryY6OjoKvUvUsLnLi/I78ybN6+OzqSxUB9oPEixuhsLoPHg+6oyHg4fPlwrMfjcKDGbzdhstgrb2e32WpniLb7PYXdgLpWjsJuVsJBzh19AIM06d2P7yp85kX2cE6Zcz76jaceIq0TCoriOxcFdORw7cIITOVaCw/0rPE5ERMRXvffeewBceeWVhIWFeV5X1tixY2sjrDMqrrcXEVH+7+7w8PAy7araXkRERETkXORzCYuUlBRSU1M5fvw4kZGR5bY5evQoCxcupFWrVnUbnPgEu9VJ6XvOnEpYyDkmpWcftq/8GYAtu3+lNS0B+HVNJnEXJ1eqj4RWURzclQO4l4VK6R5bK7GKiIjUhfHjx2MYBr179yYsLMzzurK8kbDwFXv27Dnj/szMTHr2dNfQ6t+/P02aNKmLsORctGyBtyOQCgwdOrRuTqSxUC9oPEixOhsLoPFQD1RlPFS09Gh1+VzC4tprr+XRRx/l0ksv5Z133qFdu3Zl9m/YsIE777yTnJwcrr/+ei9FKd5kszkwl1oGymHRTBs5tzTr2gOT2YLTYWfX1iW0DG+BBYOInIpnnxVLaBXJmrm7AUjfcFgJCxERqdfGjh2LYRie2QfFr31ZcaynmxGRk5NTpl1V21dWVRIQQUFBBAUFVal/Eak/9P0tpWk8SDGNBSmtKuOhtsaOzyUs7r33Xj799FOWLVtGp06d6NKlC82aNQNg586drFu3DqfTSefOnbnnnnu8HK14g73IisUoWd7GZfHtP1ZFqiowJJSkDp1IX/cLOUcOcjDSToLTjzg7nMizEhxa8fJOcSmRBARbKDphZ8fqQ/S9siUhkQF1EL2IiEjNmzZt2hlf+6KKak78vsZFSEgIcXFx7Nq1C4fDcUodi4pqYoiIiIiInAt87tb0oKAgFixYwHXXXQfAL7/8wueff87nn3/OmjVrALj++uv58ccfCQwM9Gao4iXWoiIsRqlcm2ZYyDkopWdfz/N83IWzzRikbc6q1PF+/mba9U8AwOlw8evC2pmmJyIiIuVLSUkhPj6epUuXkp+fX2Zffn4+S5cupVmzZmWKYg8YMMCz7/fmzp0LuJdtEhERERE5V/nkld6oqCg++eQTdu3axfvvv88///lP/vnPf/L++++za9cuPv74Yxo0aODtMMVL7IVWzCY/z+uAYL8ztBapn1p274VhuH9E5+ft9Gw/tONYpfvoOLAJppM1Xjb+tA9rob1mgxQREfERVquVzMxMjh496u1QPAzD4LbbbiMvL49nnnmmzL5nnnmGvLw8br/99jLb77jjDgAef/xxrFarZ/ucOXNITU1l6NChNG3atPaDFxERERHxEp9bEqq0xMREbrrpJm+HIT7GXlSIxShJUnRtruSVnHuCIyJJaNOWvZt+48jx7RDcGwD7vrxK9xESGUCrnrFsWXaAohN2Ni/NpNOQxIoPFBERqSc++OADXn/9ddauXYvT6WTcuHFMmTIFgFmzZvHZZ5/xj3/8w7PEbE2YPHkyS5YsAdz19Yq3paamAnDhhRdy2223AfDggw/y1Vdf8cILL7B27Vq6du3KmjVrmDdvHj169GDChAll+h40aBC33XYbkydPpmvXrlx66aVkZmby6aef0qBBA954440aex8iIiIiIr7IJ2ZYFBYWkpOTQ1FRUYVti4qKKt1Wzk02qxVzqYSF4W8+Q2uR+qt4Wajj1iycLhcAodmVL7wN0PniJM/z9Qv24HQ4ay5AERERL7rtttsYN24cq1evJigoCNfJ35XFWrVqxSeffMIXX3xRo+ddsmQJ06dPZ/r06Z4la5cuXerZVpzMAHddikWLFjFhwgQ2b97MK6+8wpYtW7j//vuZP39+uYUK3377bV577TUAXnvtNb777juuvPJKVq5cSatWrWr0vYiIiIiI+BqvJyxsNhtt2rQhNjaW3377rcL2GzduJDY2lg4dOuBwOOogQvE1dmsRFlPJ5CDDz+vDWKRWtOzRBwCHy0a24zgA8TYXhYWVT1o0TAglqa17FlLukULS1lauBoaIiIgv+/DDD5kyZQrt27dn1apVZGdnn9KmXbt2NGnShDlz5tTouadNm4bL5Trt4/cFwSMiIvj3v/9NRkYGVquV3bt38/LLLxMWFlZu/yaTiXvuuYfffvuNwsJCDh8+zCeffEKLFi1q9H2IiIiIiPgir1/p/eyzz9i9ezf3338/3bp1q7B9165deeCBB0hLS2PmzJl1EKH4GrtmWMh5Ijw6hsYtUgDILtwHgB8Gu7YcqVI/nS8pmWWx7oeMU+5AFRERqW/eeecdQkND+fbbb+nWrRuGYZTbrkOHDuzatauOoxMRERERkeryesJi1qxZWCwW7rvvvkofM3HiREwmE59//nktRia+ymG3lqlhsfP4CS9GI1K7Unr1A+BY0UHPtqM7j1epjyato2jYJBSAQ7tzydxx6l2oIiIi9cn69evp1asXiYlnrs3UoEEDDh48eMY2IiIiIiLiO7yesFizZg1du3alYcOGlT4mKiqK7t2788svv9RiZOKr7FYrZlNJwuKEU3eLy7mreFmoY9aSiy1tSy2JVhmGYdDl4pILOut+zKiZ4ERERLykqKiIiIiICttlZWVhNms2roiIiIhIfeH1hMWBAwdITk6u8nFNmzYlMzOz5gMSn+ew2TAbJRds/QKrdvFWpD5pEJ9AdGJTjpeaYWHbl1flflp2jyUkMgCAXb8e5tiB/BqLUUREpK4lJCSwefPmM7ZxuVxs2rSJZs2a1VFUIiIiIiJytryesHC5XDidziof53Q6tQ77eer3S0L5BylhIee2lj37YnNZybUdBcCamY/LUbWff2aLiY6DmrhfuGD9/D01HaaIiEidGTJkCFu2bOGrr746bZv333+fvXv3cskll9RhZCIiIiIicja8nrCIiYkhLS2tysft3LmT6OjoWohIfJ3TbsVSakkof82wkHNcSs+Ty0IVz7KwO7FnVb12S7uL4vELcC+LsWX5AQpyrTUWo4iISF164IEHCAgI4A9/+AOvvvoq+/fv9+w7evQob731Fn/+858JCQnhnnvu8WKkIiIiIiJSFV5PWHTp0oX169eTkVH5NdXT09NZu3YtXbt2rcXIxFc5HDbMpWZYBAX7naG1SP0X07QZEbGNy9SxWLtq/xmOKF9AsB9tL4wHwGFzsmHRvhqLUUREpC6lpKQwffp0nE4n999/P4mJiRiGwfTp04mJieEvf/kLdrudadOmkZSU5O1wRURERESkkryesBg1ahROp7NKdz7de++9nmPl/OJyunA5ytawCAhSwkLObYZhkNKzb8kMC+DYjmPV6qvj4CYYJgOA3xbtxW511EiMIiIide3aa69l1apVXHvttYSFheFyuXC5XAQGBnL55ZezbNkyrr76am+HKSIiIiIiVeD1hMWYMWNITk7mm2++4ZprruHQoUOnbZuVlcU111zDN998Q9OmTRkzZkwdRiq+wGF34sKOxeTv2RYUooSFnPtSevblqDUTh8sOQOLBQgpOVH1Jp/CGQbTsGgNAQa6NrSsO1GicIiIidal9+/Z88sknHDt2jEOHDnHgwAFyc3P58ssv6dKli7fDExERERGRKvL64v8Wi4XPP/+c/v37M2vWLGbPns2wYcPo0aMHjRo1AuDQoUOsWrWKuXPnYrVaCQwM5LPPPsNi8Xr4UsfsNie47FhKzbAIVA0LOQ/EtWxFQEQIe/K3kBzannAMVny3g4HXtK1yX50vSWL7andyeN2Pe2jbL94z60JERKQ+MgxD9e1ERERERM4BPnGlt2vXrixevJhrr72WXbt28fXXX/PNN9+UaeNyuQBITk5mxowZdOvWzRuhipc5TiYsimtY2Fwu/PzNXo5KpPYZJhMte/Zhe+oakkPbA+C3/gjOq5yYTFWbLNeoaTjxKZHs336c4wdPkP7bEZp11EUeERERqZrkh2d7OwSphPR/XurtEEREREQqzScSFuBOWmzdupWPPvqIr776itWrV5OVlQVATEwM3bp1Y9SoUdx0002aWXEes9vcS0IV17BwWnRXuJw/Unr2Zd3c2RwtyqRBQBxNbbDxl0w69Eiocl9dLkli//bjAKz7IUMJCxER8WlPP/30WR3/xBNP1FAkIiIiIiJSm3zqyr/FYmHs2LGMHTvW26GIj7LbHO4loU7WsAgM8qkhLFKrmrRpT1h0DDty1tIzJg6AzAUZ1UpYNG3fkMjYYI4fPMH+7cc5mJ5DbHJ4TYcsIiJSI5588kkMo/o3qihhISIiIiJSP+hqr9QrJUtCuYeu4e/1uvEidcZkNtN1xBUs+WA6nRoMIsAcRMtjNrIO5hETG1qlvgyTQeeLE0n9cCsA637MYNht7WsjbBERkbPWv3//0yYsFi1aRGxsLK1bt67jqEREREREpKYpYSH1isPmBOxYTtawMPlrCMv5pcPgYSz7/GN25v5Km8he+GOw9tsdDP1j5yr3dUHvxqz4eicFuTbS1mSRc7iA8Oigmg9aRETkLKWmpp52n8lkYsSIEUyZMqXuAhIRERERkVqh29OlXrHbnOByYDYVz7BQwW05vwQEB9Px4uGk5a7F5XIBkLQ7D5fDVeW+LH5mOgxsAoDL6eLXBXtrNFYREREREREREZGqUMJC6hWHzYnZKLkwuykrz4vRiHhHl+GXU+DKY39BGgChVheFW45Uq6/2AxIw+7l/FWxaup+iE7Yai1NERERERERERKQqlLCQesVuc2KmZP1ih7n6xRdF6qvw6Bha9b6QHTlrPNvylmVWq6+gUH9a93EX8LYVOdj40/4aiVFERERERERERKSqlLCQesVhd1I6R+G0aAjL+an7ZVdyoGAXubajABTtOI7t0Ilq9dV5SCLFecBfF+zBYXfWVJgiIiIiIiIiIiKVpqu9Uq/YrQ4sRknGwmXRDAs5P8U2b0liu47syFnr2ZbxY3q1+oqMDaZZx2gA8rOt7Fh9sCZCFBERERERERERqRKfS1hkZGRw9OjRCtsdO3aMjIyMOohIfInD7sRcethqhoWcx7pfdiW78jZgd1oBsP96mNycomr11fmSJM/ztT/s8RT0FhERERERERERqSsWbwfwe82aNWP8+PG8++67Z2z34IMPMnXqVOx2ex1FJr7AZnVgNpWaVeGnhIWcv5p17kZY4xh2522iRXhnQjBY+e02hvyhQ5X7imsRQWyzcA7uyuHIvjz2bjlGYpsGtRC1iIhI1b333ntn3L9jx44zthk7dmxNhyQiIiIiIrXA5xIWLper0nf26g7g84+9yIbFKBm2hr/Zi9GIeJdhMtHtsitZNe0TWoR3BiB04zGcTicmU9WSeYZh0PniJOb+328ArPshQwkLERHxGePHj8cwyl8K1DAMli5dytKlS0+7XwkLEREREZH6wecSFpWVm5uLv7+/t8OQOmYtLMJs+HleG5phIee5thcNYumn75NVuIeYwEQSHAZrl+6h20VNq9xX887RhEcHknO4kIxNRzmyL4+GCaG1ELWIiEjVJCUlnTZhISIiIiIi5456l7BwOp1s3LiRBQsWkJSUVPEBck6xFRVhMZUkLEwBmmEh5zeLvz+dh17K9u9+ISYwEYCjP+2DaiQsTGYTHQcnsmTGdgDW/ZjBkHFtazReERGR6khPT/d2CCIiIiIiUgd84vZ0s9nseQBMnz69zLbSDz8/Pzp37syRI0e46qqrvBy51DVbYRHmUktCmbUklAidho4k05pOgT0PgFbZdvbvya5WX236xhEQ7P4e27byIPnHq1fEW0REREREREREpKp8ImFRXLfC5XJhGEaZ179/WCwWkpOTuf/++3nqqae8HbrUMXtRERajZCmw1k0ivBiNiG8IDo+g7YCBpOWuA8BsGGyYvaNaffkHWmh3UQIAToeLX1P31lSYIiIiIiIiIiIiZ+QTCQun0+l5uFwuxo8fX2Zb6UdRURFpaWm8+OKLqmFxHrIVFWE2lcywiIgI9GI0Ir6j26WjScv7FafLAUBCej6FhbZq9dVxUBNMZvc64RsX78NaaK+xOEVERERERERERE7HJxIWpU2aNInRo0d7OwzxUXZrERYV3RY5RYP4JiR0bsve/G0ARGKw8vud1eorJDKAVj1jASg6YWfLsswai1NEREREREREROR0fO5q76RJk7jiiiu8HYb4KLvVWiZhYVINCxGP7pdeyY7cNZ7XzTLyq91X54uTPM/Xz9+D0+E8q9hEREREREREREQq4nMJC4fDQU5ODnZ72SVICgoKeOqpp7jyyiu577772L9/v5ciFG+y26yYTSUJi0JcXoxGxLcktGmHKS6Q49YsAIz9+Vj35VWrr4YJoSS1bQBAzuFCdq47XGNxioiIiIiIiIiIlMfnEhZPP/00UVFRLFu2zLPN5XIxcOBAnn76ab766itef/11+vTpw7Fjx7wYqXiDw2bFbJTUsMi2ObwYjYhvMQyD7ldcxY6cXzzb8pZVP7lbepbF2h8ycLmUIBQRERERERERkdrjcwmL+fPn07hxYy666CLPtm+++YZVq1aRkpLCq6++ytChQ9m7dy//93//58VIxRvsNluZJaECg/3O0Frk/NOqVz+OBmZhdRYBcGLtIZwnqld8u0mbKBomhAJwKD2HzLTsGotTRETkfDBt2jQMwzjjY8iQIZ72Tz755Bnbpqene+/NiIiIiIjUAUvFTerWrl27aN26dZltX331FYZh8OGHH9KtWzf+/Oc/06RJEz7//HMefPBBL0Uq3uC0WzGbgjyvg5SwECnDZDbTacRI0r/dQKuI7uBwsfSLLVw0pkOV+zIMg86XJDJ/2mYA1v2QQXzLyBqOWERE5NzVuXNnJk2aVO6+zz//nI0bNzJs2LBT9o0bN47k5ORTtkdGRtZwhCIiIiIivsXnEhZHjhyhcePGZbYtXbqUhIQEunXrBoDFYqF3794sX77cGyGKF9ntViz+mmEhcibtBw3lw5kTSHF1wzAMojce5fiRAiIbBlV88O+kdI9l+aw08rOt7Pr1MMcPniAyNrgWohYREame5cuXk5qayt69e3G5XDRp0oSBAwfSp08fb4dG586d6dy58ynbrVYr//nPf7BYLIwbN+6U/ePHj2fgwIG1H6CIiIiIiI/xuYSFxWIhPz/f8/rYsWNs376d6667rky7sLAwsrO1PMn5xmm3YQ5wD1uby4nF4nOrmol4XUBwMC0G9SZ92W80C+tAGCZWfPQbw/7ao8p9mS0mOg5OZNmsNHDB+vl7GPCHC2ohahERkapJS0tj7NixnpuYimstGYYBQK9evXjvvfdo2bKl12I8nS+//JIjR44wevRoYmNjvR2OiIiIiIjP8LmERfPmzVm+fDlOpxOTycS3336Ly+XiwgsvLNPu0KFDxMTE1Oi5V61axaRJk/j555+x2Wx06NCBiRMnnpIsqaxjx47Rvn179u/fz7Bhw/j+++9rNN7zkdNuw2Jyz6ooQgWARU6n64gr+HDefSSGtMZi8qPV3gL27DxGYvOoKvfV7qJ4Vn+Xjq3IweZlmfS8vBlBYf61ELWIiEjl7N+/n4suuogDBw4QHBzM8OHDadasGQDp6el8//33LF++nP79+7Nq1SoSEhK8HHFZkydPBuC2224rd//ixYtZsWIFJpOJlJQULr74YkJDQ6t1rr17955xf2Zmpud5QUEBBQUF1TqP+C59plJMY0FK03iQYhoLUlpVxkNtjR2fS1hcccUVPPfcc4waNYqLL76YF154AbPZzOWXX+5p43K5WLt2LW3atKmx8y5cuJBhw4YRGBjIDTfcQFhYGF988QXXX389e/bs4f77769yn3fffbdmgdQwp8OG+WTRbauhhIXI6YQ1jKbLlZezbe5q2kb2wc8w2PTpJhIf6VflvgKC/WjbL571C/bgsDn5bfE+elzarBaiFhERqZwnnniCAwcOcPXVV/Pf//73lBuZDh8+zJ///Gc+//xzJk2a5EkQ+ILdu3czf/58mjRpwvDhw8tt8/u6F5GRkbz22muMHTu2yudLTEysdNvFixcTHR1dhd597s9JKce8efPq6EwaD75OY0FK03iQYnU3FkDjwfdVZTwcPny4VmLwufV0HnzwQdq1a8fs2bO57777OHDgAH/7299ISkrytFmyZAmHDx8+ZdZFddntdm6//XZMJhOLFy/mnXfe4ZVXXmH9+vW0atWKRx99lN27d1epzy+++IKPPvqIF154oUZiFHA6XbicNiwnExY2w8sBifi47pdfxcGw/RQ63Mvstc128tvq/dXqq+PgJpxcYYMNqXux2xw1FaaIiEiVzZkzh/j4eD788MNyZ11HR0fzwQcfEB8fz3fffeeFCE9v6tSpOJ1Oxo8fj9lsLrOvU6dOTJkyhZ07d1JQUMCuXbt44403MAyD8ePH8/XXX3spahERERGRuuFzaa3w8HBWrlzJ559/zsGDB+nRowcDBgwo0+bIkSPce++9XH/99TVyzgULFpCWlsYtt9xSpiheREQEjz76KOPHj2f69Ok88cQTleovKyuLu+66izFjxnDppZdy991310ic5zuHzYkLO2bTyRoWpdNtdiusfQ/M/tBqOIQ28k6QIj7EbLEw9K67Wf78+3RreDEAx77agrNrY0ymquWrw6ODaNGtETtWH6Ig18bW5Qdod5FvLa8hIiLnj6NHjzJq1Cj8/U+/RKG/vz8XXnghX331VR1GdmZOp5OpU6diGAa33nrrKfuvvPLKMq+Tk5O5++67adOmDZdccgmPPfYYV1xxRZXOuWfPnjPuz8zMpGfPngD079+fJk2aVL7zZQuqFIt4x9ChQ+vmRBoPPk9jQUrTeJBidTYWQOOhHqjKeKho6dHq8rmEBUBQUBBjxow57f7Ro0czevToGjtfamoqUP4HMmzYMAAWLVpU6f7+9Kc/YTabee211856SaiqrDlbVFR0Tq87V5hvw3A5MBslCYvi92te/X/4z38cABcGzia9cLQaibPVCFwRlZ8GX1cKCwvLfS6+q75+ZuFxCYT0bULOhiOE+zekmc2PJd9upcclyVXuq81FsexYfQiAtT9k0KxrFIbJt6c61dfP7Xynz63+0WdWPxUVFXk7hGpr0qQJ+fn5FbY7ceKET9Wv+PHHH8nIyGDIkCGemhuVMWTIEFq0aMGGDRvIyckhPDy80sdWJQERFBREUFBQpdtL/aDPVIppLEhpGg9STGNBSqvKeKitseOTCYu6tn37dgBSUlJO2de4cWNCQ0M9bSrywQcfMHPmTL788kuioqLOOmFRlTVnV6xYQVpa2lmdz5c5Cg3MpepWNAi0e9ZVC7SFE9biQTrtmUaI9RDmvcsx710OC57geFAymZHd2R/ZjbxA3/mDtdjixYu9HYJUUX37zJzhDVh3YhX9/d3rZIctyeB72zZM1fgN4B8VhPWYhexDBXz9wUKCGttrONraU98+N3HT51b/6DOrP2przdm6cO211/LGG2+wb9++0yYk9u3bx4IFC3xqtnNFxbbPJDo6mh07dnDixIkqJSxEREREROoTn0tYVPWP3P79+5/1OYuTChEREeXuDw8Pr1TiYf/+/dxzzz3ceOONjBo16qzjkrJcDii9yq+z1ItCvyhMThv7onoRd3w1YUUlM08iC9KJLEinTebn5AbEsbXxKPY16Ft3gQO4XHgKAACGy0GDvO2YXFbMThsml63U/8tuS48eyImAWM+xYQV7aZ41D3Anb4zS5zjJaZhxmSz8lvAHXEbJF6pB3lYiCjJwGhb3w+SHzRSE3RyEzRx88hGCw+RfJl6p30wWC0aXRLI27yEmMJEYUzDZewvITq76ZxzWzMqRY+5fHcc2BeAf5cAc4KrgKBERkZr1+OOPk5qayuDBg3nllVe47LLLyuyfPXs2999/Px07djylgLW3HDlyhK+++ooGDRqcsvRTRfLz89m4cSMhISFVLIotIiIiIlK/+FzCYuDAgRiVvFBqGAZ2u+/c3Xvbbbfh5+fH66+/XmN9VmXN2V69etGiRYsaO7evOZZ5gm/mpHpexybE0XLo79/vzQAUHt6GefsczNtmYzrwq2dvWFEmHTt0oF27kuW/TLtS8VvyEq7ASFxBURAYefJ5JARG4QqMAJcTzAE4m5Wtp2L+5V1MWZvBdgLDmu/+v+0EWPPBlu/ZZu9+B/YBj3qOK8zLJurNWyr1vpMGjcOZXJKYM+1cQMBnqac/oJS4W6aDUVKrwLJgKX7b36/wOEdib6x/+LLMNsuif2AU5eAKicUVGosrtBGukEa4QmIhJJpq3a5fjxQWFnoSqv379ycwMNDLEVXdov+8R8wR9/OkzFBix/bCFFi1z83lcjHvxGb2bcnGWWTCtL8Jl9ze2meXhjoXPrfzkT63+kefWf1Un2bmDh48+JRtJpOJ7du3M2rUKCIjI0lOTgYgPT2d48ePA9CnTx8uu+wy5s+fX4fRlu/999/HarVy8803ExAQcMr+3NxcMjMzadWqVZntBQUF3H777eTm5nLLLbdgsZzb/+YSERERkfObz/1rt3///uUmLJxOJ7t37/ZcwO/Tpw9+fn41cs7imRWnm0WRk5NDVFTUGfuYPn06c+bM4bPPPqvRu56qsuZsQEDAOb3uXK7ZhqXURVG/4DO838RO7sfgh+F4Bmz+FjZ/A/vX4N/uMih93IkDsP+XigOIaQ1tV5TdtmsBpFX8B7Cfswi/0ud0uXBixoSjwmMDTK6y8fqf+gduuUwWgoJDym4zKncnvDko8tSv7fbv4cjplkYzICQGQmOh373Q8dqSXcf3wOIXKxfz0H9AYKklDrb/AJu/rvi48CYw8KGy25a+foZ4S2l5MbQtNSPKYYfZ953SzM/uoNO+vYCJ0GXL8QttCO2uhIalkma2Aig4DoER4Bfkc7NUBv1lDOsf/4x4v+b4E0DmZ6tpecegKvcz9NYOfPLsSgpyrOzbcpytPx+myyVJtRBxzQoMDDynf0aeq/S51T/6zOqP8i6a+6rimnPlcblcHDt2jGPHjp2y7+eff670zVC17d133wVOvxzUkSNHaN26NT169KBNmzY0btyYgwcP8uOPP7J37146dOjASy+9VJchi4iIiIjUOZ9LWJzpjxGAX3/9lfHjxxMSEsJ3331XI+csrl2xfft2unXrVmbfgQMHyMvL88xiOJ21a9cC7vV0yzN37lwMw6BTp06sW7fu7IM+D9mtzjJLQu3OKcCTRlr/CQSEQ3g8xHcue2BkEvT5s/tRmO2+mFyateKCjadt5x9cflu/EPc+/xDwD4XQmLL7DYPtjS/DhUGLC9rhFxgKlgCwBJb6/8nnse3KHpvUC+76uXRnnj4B99JQTjs4bafG1elGSOgODqv7YS+Colz316Uo2/3/wmxo3OHUYwvPtCyaC/IPuR+2E2V3FRyDNe+d4dhSBj8OlEpYHPytcsfGdjg1YbF9HqT/VPGxQVFlExa4yj2nBUgufnFkofv/cZ3LJiwylsH7J5d4MPtDWBxc9i93UsQHBAQHEz2qNY7ZJzAbFvzSIGf3QcKbxlZ8cCnB4f5cPL4N37y+HoDlX6aR0CqSRk21nraIiNSOhQsXejuEs7Jy5Up+++03evbsSYcO5fw7C2jQoAF//vOfWblyJd999x3Hjh0jKCiINm3acM8993D33XcrGSgiIiIi5zyfS1hUpGPHjsycOZN27drx0ksv8fDDD591nwMGDOD5559n3rx53HDDDWX2zZ0719PmTPr06UNeXt4p2/Py8vj0009p0qQJw4YNIynJ9+9C9lUOmxNzqTvkDhZY3U+cDpj1J8AFCd3g9gWn7+T3yQqAvndDrz9BUY774np5D8MEwQ1PPfbip2DAw+7kRHGSwi8ETKZT2/7OlrirAWjae2jZ2RcVCQg7NYlRWQld3Y/quGMh5B6EvIOQd+Dk8wOQdwhyD5zcfhDCGlev//ooKLLs69JJHYcVju+GWXfBX1eXP/a8oHn/XqxdPIOYvDjMhoU1b85n4It/qHI/SW0b0mVoEmvnZeB0uJg7eSPXP9oD/6B692tFRETqgYr+Le7revbsict15pmu4eHh/Oc//6mjiEREREREfFO9vLKUnJxMjx49eO+992okYTFkyBCaN2/ORx99xD333EPnzp0B9xJRzz33HP7+/owdO9bTPjMzk+zsbOLi4jzLSV1//fVcf/31p/Sdnp7Op59+Srt27Zg8efJZx3o+s9udmEvVYzD8Ts63KDhGcQHqcpMKlWG2QHAD96MqGp67NUNOEdHE/TgTpxPPZ1EsOgXuWla5cwT97uvfZQykDKv4OEs5S1qM+g9YT5y6/fd+P2ZMlnLjLSwq5Oefl2G4HPTt2o4AVyE0bFm2UUgMtL7Mnbg4uhNy9rlnnSx8Hkb8s+JY6kjzWwdz+NW1BJgCaWE0YclnP3LhtVWfBdJrVHP2bTvOofQccrIKWPTxVi6+pa3PLL0hIiIiIiIiIiL1S71MWADExMSwcuXKGunLYrEwefJkhg0bRv/+/bnhhhsICwvjiy++YPfu3bz88sueIn4AjzzyCNOnT2fq1KmMHz++RmKQijlsTiylEhYm/5PP8w+XNAquufohUg3lzSzxC4LYttXrLyTa/aiOqOTqHWcY5cbrKiggN8hdQ8eZ1LdsXZFiyRe6H+CunfKfnmAvgJVvQ5ebyl9qywsi4qNZ1shK+8OBGIZBwNJDnBiWQ3B41ZZ0MptNDP1jO2b8YyXWQgfbVh4ksU0DWveJq6XIRURERERERETkXFYvExZWq5VVq1YRHHya+gHVMGjQIJYsWcKkSZP49NNPsdlsdOjQgRdeeKHcmRNS9+w2R5kloUz+J2dYnDhS0qiqMyREaktkEvR/ABY8Ay4nzH4Abv3eZwpxD/jLJex8Yj4R5lDiAhOZ//pHXP7Yn6rcT0RMEANvas28dzcCsOiTbTRuHkFkbM39fBYREfm9wYMHV7qtYRjMnz+/FqMREREREZGaUq8SFvn5+WzevJmnnnqKPXv2cNVVV9Vo/z179mTOnDkVtps2bRrTpk2rVJ/JyckVrlcrlWMrsmExSoasOaA4YVFqhkV178YXqQ19/wrrPoKjabBnubs4fOcbvR0VAEFB/mR1jyVirbuYfLOjjdi1dg3NulS9xklKj1j2bD7K5p8zsRc5mDv5N655sDtmv4pruYiIiFRHampqhW0Mw8DlcmmpQhERERGResTnEhZms7nCNi6Xi8jISJ599tk6iEh8hbWgCLPJz/PaEnBy+JZZEqqaNSxEaoMlAEa+CB+4C6yTvsRnEhYA/a/tzKq180gghEj/GFa/O4cmL7fFLzCwyn1ddH0rDuzM5tiBExzek8eyWWlceF1KLUQtIiICCxcuLHe70+lk9+7dfPvtt8ycOZNHHnmEoUOH1nF0IiIiIiJSXT6XsDjTbAQ/Pz8SEhK4+OKLefTRR8vUlZBzn62wCItRKmERWDzD4mhJI9WwEF/T8mLo/Wdo1h8uGOHtaMowmUz4X9YWvt0NQLvALqR+MJ1Lbruzyn35BZgZels7Pvvnapx2F+sX7KFJmyiSO+h7UkREat6AAQPOuH/8+PG8/vrrPPjgg1x33XV1FJWIiIiIiJwtn1uvw+l0nvZRVFTEzp07eeedd5SsOA9ZC4swl1oSyr94hoWWhBJfN/x5n0tWFOtyYRJbg+wABFnCcK3OYf+2LdXqK7pJGP2ubul5PX/6ZvKPF9VInCIiIlV1zz33kJiYyJNPPuntUEREREREpJJ8LmEhcjq2oiIspZaE8g8qTliULrqtJaFEqqrZDR2wu5wAtI7oyZL/vY/dZqtWXx0GNiG5oztxWJhn44epG3E6VcdHRES8o1OnTixZssTbYYiIiIiISCX5XMLCZDLRtWvVi77Kuc9WVIi51JJQEeEB7ifmAAiMdD9XwkJ8ncsFm7+BTV95OxKP5hdEszUlDACTYaKjqRcrP/+sWn0ZhsGQsW0IiXR/f+7bepw13++usVhFRESq4ujRo+Tl5Xk7DBERERERqSSfS1iEhITQtm1bb4chPsheZC1Tw6JxwxD3k9FvwsO74fEjEBjhpehEKsFWCB9eA5/eDN9OhILj3o7IY/C4Tjhi3LOWQv2isC05StbuXdXqKzDUj0tubYthuF+v/HYXmWnZNRWqiIhIpSxevJiffvqJFi1aeDsUERERERGpJJ8rup2SksKhQ4e8HYb4IHtR2RoWhv/v8m1mnxvOImX5BYL/yUTbicOw8B8w8iXvxnSSn5+ZhPGd2f/KSkxOEy3COrHqfzMY/o8HMJnNVe4voVUU3UYms3p2Oi6ni3nv/sYNj/UkINiv4oNFREQq8PTTT592X25uLps3b2bu3Lk4nU5uu+22OoxMRERERETOhs9d4b355pv5+9//Tlpamu6GkjJstrI1LAz/ql9EFfG6Yc/B9h/AdgJWTYYuN0NcJ29HBYClYRCRl7Ug52v3zIoUe0d+/mwWF95wTbX66zEymX1bj5G5I5u8o0Us/GALw25vj1E89UJERKSannzySQzDwOU6fZ0kk8nEvffey4QJE+ouMBEREREROSs+l7CYMGECixcvZvDgwTz//PNcddVVBAYGejss8QH2ImuZGhaGxedWNBOpWEQTGPAg/PgkuJww+wG4dS6YfGM8h/VJ4NjqPZj32wmyhGJaup8j/ffSML5JlfsymU1ccms7Pn12JUUn7KStyWLTkv20uyihFiIXEZHzyaRJk067z9/fn4SEBAYPHkyTJlX//SUiIiIiIt7jcwmLli1b4nK52LNnD2PGjGHMmDE0atSIoKCgU9oahkFaWpoXohRvcNitWAz3OLC5nBgmA3Iy4dv73MW2mw+Ajtd5OUqRSuj9F1j7IRzZDntXwvqP3DMtfIBhGARe047sV1cRbPInKaQVS179jCtemFCtmRFhDQIZPLYNc97aAMBPM7bTuEUEDeNDazp0ERE5j5wpYSEiIiIiIvWXb9zSW0p6ejq7d+8GwOVy4XK5OHjwIOnp6eU+5PzhsNkwn1wSyorTvTF3P2ybA+s+gD0rvBidSBVY/MvWrvhhEhQc8148vxMbH87Bfo09rzu42vPzzO+q3V/zzjG0H+CeVeGwOZk3eSN2q+Os4xQRERERERERkXOLz82w2LVrl7dDEB9ltxZhOVlY25OwyD9S0iA42gtRiVRTi0HQ7krYOMtdgHvBP+DSl70dlcdFo9rx47p5tC4Iwt8cSMBPh8jun0VETEy1+ut3dUsydxznyL58ju7PZ8nnOxj4hwtqOGoREREREREREanPfC5h0bRpU2+HID7KabdhtrhnWNiMkwUWT5ROWDT0QlQiZ2HoP2DbPLDlw+p33ctCxXf2dlQe3e+5iP3P/0S4KYjGgUkseWUmI5+/o1pLQ1n8zQz9Y3s+e34VdpuTjYv3kdg6ihZdG9VC5CIicq55+umnz+r4J554ooYiERERERGR2uRzCQuR03E4rJ4loWzF10tPHC5pEKKEhdQzEQkw8CF3Ae6Wl4DD6u2IyoiMCmLbxUmEL8gCoJ0zhWUzf6Tv1ZdUq78G8SFceF0KqR9uBWDhB1tolBxOWIPAGotZRETOTU8++WS1EubFlLAQEREREakflLCQesNps2M2zADYi6uvnNCSUFLP9boL2l8NEU28HUm5eg5tzbyVu2ibF4rF5EfI0qNkDzxGRMOoavXX9sJ49mw+RtqaQxSdsPPDuxsZPbELJrPPlVQSEREf0r9//9MmLBYtWkRsbCytW7eu46hERERERKSm+WTCIiMjg+eff54ff/yRffv2UVRUVG47wzCw2+11HJ14i+F0ep7bzSf/YM0vNcNCS0JJfWTx99lkRbGLJg5h+6QfaGAOp6F/LMtf/oZhz4+tVl+GYTDo5gs4lJ5D7tFCMtOyWTU7nV5XNK/hqEVE5FySmpp62n0mk4kRI0YwZcqUugtIRERERERqhc/d0rplyxa6dOnCO++8Q1paGoWFhbhcrnIfzlIXsOXcZyr1eTuKExYnjpY0CNEMC5HaEBTsj/PyFJwuBwBtnE1J/3FltfsLCPZj6G3tMEzu7+PVc9LZt/VYjcQqIiIiIiIiIiL1l88lLP7+979z7Ngxhg4dyvLly8nOzsbpdJ72IecPk6tUwsLiXhqqTA2LoAZ1HJFIDXPYYescyFzv7UhO0bl/K7KauGtsmAwThXMPUZSTV+3+GjePoNcVzdwvXPDDlI0U5PlWDQ8REREREREREalbPpewWLRoEUlJSXz11Vf07NmTsLAwb4ckPsDpcGIutW6x03Jy6BbXsAiIcC+tI1JfHdoM/24HH98AS1/zdjTl6nLXxeSajgMQao5g84vfYbNWP8nQdWhTmrR218LIz7ay4L0tuFyumghVRERERERERETqIZ9LWJw4cYKePXvi76+Lz1LCbnNiLvU6qXG4+0mH66DzzdButDfCEqk5DVqA0+Z+vvkbyD9y5vZeYLKYaDy2E/aTcUbb40id9D4Ou61a/Rkmg4tvaUtgqB8A6b8eZkPq3hqLV0RERERERERE6hefS1g0b96c/Px8b4chPsZhd2IumWBB45hQ95OBD8HoN+GK170TmEhNsfhDpxvdzx1W+PVT78ZzGlGtk7AMaeCZCdHG1YrZT76D0+GoVn8hEQEMGdfG83rpFzvYv+N4TYQqIiIiIiIiIiL1jM8lLMaMGcPixYvJysrydijiQ+zWsktCmQP9vBiNSC3pOrbk+Zr3wEeXR2oyrDOb40pmVXS0tuHbf76J01m9pEVyh2g6DUkEwGl38c3r69iz5WiNxCoiIiIiIiIiIvWHxdsB/N7999/P/PnzGTFiBNOmTaN9+/beDkl8gMPmxFIqv2b4mc/QWqSeirkAkvpAxjLI2gx7V0NiD29HVa6L7xnEgmd+pHVBEBaTH22OtWTO6/9l5D1/wTBVPRfe58oWHMvMJ2PTUexWJ7P/8yvD7mhPs47RtRC9iIjUN++9994Z9+/YseOMbcaOHXvafSIiIiIi4ju8nrAYPHjwKdtsNhtr1qyhc+fOJCUlkZSUhKmcC2CGYTB//vy6CFO8zL0kVMkMi0JchDlsgAFmrw9jkZrTdaw7YQGwZrrPJixMJhMXPjSIX55eSFNnEEGWMJJ2N2beO28x9M67MEp9v1aG2WJi5F0dmTv5N3atP4zD7uT7tzZw8a1tSekeW0vvQkRE6ovx48ef9neLYRgsXbqUpUuXnna/EhYiIiIiIvWD16/0pqamnnaf0+kkPT2d9PT0cvdX9YKY1F/uJaFKklabD+cSs2UVfHYLBEXCxU9Bt3HeC1CkprQdBXMegqIc+G0mDH8eAsK8HVW5AgP9aH1fP/a+spyG+BMV0Jj8jdmkTp/MwHG3VT1p4Wdi2B3tmT9tM9tXHcTpdPHDuxuxW5206RtXS+9CRETqg6SkJP3bX0RERETkPOD1hMXChQu9HYLUAw67A0uphIUlwAL5hwEXFBwDk9eHskjN8A+BDtfA6ilgy4ffvoBu470d1Wk1jAnh2NiOFEzfSJBhpknIBWxavowlAe9x4Q1jq560MJu4+Ja2+Pmb2LQ0E5cLFry3GbvVQYeBTWrpXYiIiK873Q1MIiIiIiJybvH6Vd4BAwZ4OwSpB+w2J2ajpG6FJcACJ0oV5Q1u6IWoRGpJ17HuhAXAL9N9OmEB0LJtDCuHNiVg3h5MhkHbyD6s+PFblvt/Qp+rb6xyfyaTwcCbW2MJMPPrgr0ALP5kG7YiB12HNa3p8EVERERERERExEdUvTJqDRs8eDAvvviit8MQH2cvspdJWPgHWuDE4ZIGISrMK+eQ+C7QfCD0/jOMetPb0VRKzyHN2N4hyvO6e/Rwtn2Vyqqvv6hWf4ZhcOG1KXQbXpKgWDYrjRVf78Tlcp11vCIiInUlOTkZwzDKfQwcOPCU9kVFRTz99NOkpKQQGBhIfHw8d9xxB4cOHar74EVERERE6pjXZ1ikpqaSnJzs7TDExxUVFGEx+Xle+wdaIPNISYPgBl6ISqQWjf3K2xFU2aA/tOPH11bT9mARZsNCv9ir+PHT9zD7+dN1xOVV7s8wDHqPboElwMyKr3YCsPq7dGxFDvpd01JrmYuISL0RERHBhAkTTtn++7+DnE4no0aNYu7cufTu3Zurr76a7du3M3nyZObPn8/y5cuJiYmpm6BFRERERLzA6wkLkcqwFRZiMUoSFgHBxTUsTgrWDAsRbzOZTFxyT3cOT91I0Y7jBJqDuSj2an6cPhWLnx8dLx5erX67j0jGL8DMkhnbAVg/fw82q4OBN16AYVLSQkREfF9kZCRPPvlkhe2mT5/O3LlzufHGG/nwww89yfm33nqLu+66i8cee4y33367lqMVEREREfEery8JJVIZRQXuO7aLBQSVqmFh8oOAMC9FJiKlGWYTDW9qgyUmCIAI/xj6NLqCHyf/l42L5le7306DExk0pjWczE9s+mk/P07fhNPhrImwRUREfML//d//AfD888+XmUl455130rx5cz788EMKCgq8FZ6IiIiISK3TDAupF2yFRZhLLQkVFOxfUsMiJBq0NIycq/KyYP3HcHgbjPqPt6OpFFOQhehx7Tj45jpcBXbig1vQK/pS5v3vDcx+frTu279a/bbtF4/F38SPUzfjcrrYtuIgdquTobe2w+yn/LuIiPiuoqIipk2bxv79+wkPD6dHjx706tWrTJvCwkJWrFjBBRdcQNOmTcvsMwyDSy65hLfffpvVq1dz0UUXVfrce/fuPeP+zMxMz/OCggIlRM5B+kylmMaClKbxIMU0FqS0qoyH2ho7SlhIvWArKiSg1JJQQUEWOHGyhkVwQy9FJVIH3rsCDm1yP7/wPmjYwrvxVJIlOghGN8f28Vb8MGga2hazYeH7N/6N2WIhpWffavXbqkdjLH5m5k7+Dafdxc61WXz31q+MuLMDFn9zDb8LERGRmnHgwAFuueWWMtt69OjBxx9/TIsW7t/taWlpOJ1OUlJSyu2jePv27durlLBITEysdNvFixcTHV2VpVb152R9MG/evDo6k8aDr9NYkNI0HqRY3Y0F0HjwfVUZD4cPH664UTX4xC2p06dPx2w2V/lhsWiQny9shUVla1iYC8Bhdb9QwkLOZR2vL3m+9n3vxVENCZ1iOTg4ASsuAJqEtKJfzGjmvPYvdq5dVe1+m3eO4dI/d8RyclZFxsajfPuf9VgL7TUSt4iISE265ZZbmD9/PgcPHiQ/P5+1a9cyZswYVq1axZAhQ8jNzQUgOzsbcBfoLk94eHiZdiIiIiIi5yKfuOLvcrm8HYL4OFuRFbPJPVwdODEHhMCt89yzLAJCvRydSC3q/AdY8Aw47bDuIxj0dzD7VXycj+g9tAWrAyxEzNlNEAZxwc250LiS7/71Epf/7VGaduxcrX6T2jbk8ns68+2b67EVOti37Thfv7aOy+7uRGBI/fn6iIjIuW/SpEllXnfu3Jn33nsPgPfff5//+7//Y+LEibV2/j179pxxf2ZmJj179gSgf//+NGnSpPKdL1twNqFJHRk6dGjdnEjjwedpLEhpGg9SrM7GAmg81ANVGQ8VLT1aXT6RsBg+fDgPPfSQt8MQH2a3lsywcJlc7gu2Sb0qOErkHBDaCC4YAZu/gbyDsH0etL7U21FVSfcBTVnnb8L11S6CMWgUlMRFDa/m25dfYNTDf6dJ2/bV6jc+JZJR93bhmzfWUXTCzsFdOXz16lquuKczQWH+NfwuREREatadd97J+++/z9KlS5k4caJnZsXpZlDk5OQAp5+BcTpVSUAEBQURFBRUpf7F9+kzlWIaC1KaxoMU01iQ0qoyHmpr7PhEwqJx48YMGDDA22GID7NZizAb7mnwLrNm5Mh5pus4d8IC4Jfp9S5hAdC5TyK/+Zuxf7aDcAwaBsbTv+HVfPPiC4x69O/Et2pdrX5jm4UzemJXvn5tLQW5Ng7vyWPWK2sYNaELIZEBNfwuREREak5xrYj8/HwAmjdvjslkYvv27eW2L95+uhoXIiIiIiLnAp+oYSFSEbvVitl0cpkXjVo537QYDOEJ7uc7foDsfd6Np5rad4vHfNMFHMcJQFRALP0bXMV3L7zIwZ07qt1vdJNQrry/qydBcezACWa+/As5hwtqJG4REZHasGLFCgCSk5MB9x1qPXv2ZOvWrezevbtMW5fLxQ8//EBISAjdu3ev61BFREREROqMLv1KvWC3WrEY7glBBS4nHPjNfcf57mVQqMKDco4zmaHLze7nLqe7lkU9dUGHWILGt+OI4U5aRPhH0y9yNLOff4GsjPRq9xvVOISrHuhKeHQgADmHC5n1yhqyDylpISIi3rNlyxZOnDhR7vbiJXH/8Ic/eLbfcccdADzyyCNl6vy9/fbb7Ny5k5tuuknLNoiIiIjIOU0JC6kXHFYbJsMMQLbNDhtmwKc3w9ThkLney9GJ1IEuNwOG+/na98Dp9Go4Z6NF62iibuuINdSdhAzzi6JfxGi++8eLHNl35sKgZxIeHcSV93cjqnEwAHnHivjuPxux5epXnYiIeMcnn3xC48aNueyyy/jLX/7Cgw8+yOjRo+nYsSMHDhzgkUceoX///p7248aNY9iwYXz88cf07duXhx9+mGuuuYY///nPNGvWjGeffdaL70ZEREREpPbpKo7UCy6bzfPcZgLyj5TsDI6u+4BE6lpkkntpKIC8LDi81bvxnKWkFlEk/bUr5obuZZxCLOH0Dbuc75596ayWhwqNCmD0xK40TAgFoCDXRtaKYKzZ+nUnIiJ1b9CgQYwYMYJt27bxwQcf8O9//5sVK1YwcuRI5s6dy3PPPVemvclk4quvvuLJJ58kKyuLf//73yxdupQ//vGPLFu2jJiYGC+9ExERERGRuuH1otvOenyXsNQdl83uGa0OswEnSicsGnonKJG61u8euGAEdLgWgiK9Hc1Zs0QE0OhPnTn0f+txHCokyBJK39BL+f7pf9Hh+hF0GX4ZhmFUud/gcH9GT+zCN2+s51B6Dk6bQdaKYNJaHKZ9v8RaeCciIiLlGzBgAAMGDKjSMQEBAUyaNIlJkybVUlQiIiIiIr5Lt5xK/eAoSWw5LAacOFyyL7iBFwIS8YLmA6Hn7edEsqKYOcyf2D91Ji/CnZEMMAczMPY6dn+xnK9f+QeFeXnV6jcwxI9REzrTuEUYAC6HwaL3tzPv3Y0U5tsqOFpERERERERERLxBCQupF0zOkqKDTosJ8k8mLAIjwOznpahEfID11EKe9Y0p2I+4uzqzw10vG7Nhpkf0cMJ3hvH+Q/eyf9vmavXrH2hh6B1tCIorSVBsX3WQT55ZyZ7NR2sidBERERERERERqUFKWEi9YJSaYeGymOHEyYuNql8h57OsrfC/PvDLNG9HctYiIoPo92hffosL8GxLCe9KN8tgZj31FCu/+hxXNZYQtPibadi5kAadCvAPMgOQf7yIr19bx08ztmG3OmrsPYiIiIiIiIiIyNlRwkLqhdID1fAzoCjb/SJECQs5T+VkwuRL4Fg6zL4fdi32dkRnzc/fzPB7e7Kje0NsLvesqkZBSVwcN4bfPp/DzH8+yYns49XqOzjezpUPdqJJ6yjPtl8X7GXGc6vIysitifBFREREREREROQsKWEh9YK51I3Vfn6l7ohWwW05X4XHQZeb3c+ddvh0DBze4d2YasjAa9qSd00LjhjupEWIJZzBcTfh3FHAew/+lYzffq1WvyGRAVxxT2cuvC4Fs5/719+xAyf4/J+rWT0nHWeppedERERERERERKTuKWEh9YKZkguJFrO1ZIcSFnI+G/oMpAxzPy88Dh9fDwXHvBpSTenQI4HGf+3MLn/3a4vJjz6NrqCF0ZHPn32MpTM+xOms+nJOhsmg0+BErnukB9GJoQA4nS5WfLWTWS+vITuroCbfhoiIiIiIiIiIVIESFuLzXC4XZsPwvA4LMty1KwyTEhZyfjOZ4erJ0Kit+/WRHTBjLDhsZz6unoiND6fHo73ZGO3n2dYmsjcXNbqaX2bN5LNn/k7u0cPV6rtBfAjXPNSdbsObUvzj5cDObD59diWblu7H5dJsCxERERERERGRuqaEhfg8p9OFudRQTenYGR5Mg8ePwKBHvReYiC8IDIcbPykpQL9rMXz3NzhHLrgHBvpxycSemIYmgcmdWYgLbs4l8WPJ2Z7J+w/ew861q6rVt9liovfoFlx5f1fCowMBsBU5WPj+Fr773wZO5Fgr6EFERERERERERGqSEhbi8xw2JxajZKia/M0nn5jAEuClqER8SFRTuOEjMJ9cP+mXqbDiLe/GVINMJhPxg5sS/cf2mEIsAIT5NeDi+DE0ciUy659PseiDKTjs9mr1H9cykusf60nbfnGebem/HuaTZ1awa31WjbwHERERERERERGpmBIW4vPsVmeZJaGM4oSFiJRI6gVX/Kfk9dxH4cBv3ounFgS2iKTR3V2wxIUA4GcKoHfMZfSJuYJfZ3/Hp5MeIvvQwWr17R9oYdCYNoy8qwNBYe4lqApybXz3vw0sfH8z1sLqJUNERERERERERKTylLAQn+ewOzGXmmFh+GnYipSr0/Vw0f2AAZc8A7HtvB1RjbNEBRJ5e3s2Niipa5EU2oZhCbfi2FvI+w/dw/YVP1e7/2adYrjh8V4kd4z2bNu0NJNPn11J5o7jZxO6iIiIiIiIiIhUQFd+S1m1ahUjR44kMjKSkJAQevfuzYwZMyp1rMvlYs6cOdx111107NiRiIgIgoOD6dSpE8899xyFhYW1HP25y70kVMmsitxf3oNZf4K5f4fCHC9GJuKDBj0Gt82HvndDqZlJ55LAYH+GPdib9Asbk4u7VkewJYxBcTfQJrAn3/77BeZP+R92a/VqUASH+zPyrg4MGtMaS4D7Z0/O4UJmvbKG5V+m4bA7a+y9iIiIiIiIiIhICYu3A/AVCxcuZNiwYQQGBnLDDTcQFhbGF198wfXXX8+ePXu4//77z3h8UVERI0eOJCAggIEDBzJs2DAKCwuZO3cuf//73/nyyy9JTU0lODi4jt7RucNuc2AulbAIOLgCsr5xvxj4iJeiEvFRJhM06Xbqdms++IfUfTy16MLLUsjsHMuWd38lpcCduLggoiexQcksX/AN+7Zu5pI/3Vutvg3DoG2/eBJaRfLj1M0c2JmNywW/fL+b3RuPcMkt7WgQf259PUVEREREREREvE0zLAC73c7tt9+OyWRi8eLFvPPOO7zyyiusX7+eVq1a8eijj7J79+4z9mE2m3n22WfJzMzk+++/56WXXuKNN95g48aNXH755axatYo333yzjt7RucVmdWA2SnJrfrbD7ifmgHPuAqxIrfj1M3ij+zlX0wIgrkk4/f/ely1tI7CenG0R6d+ISxLGEXW0ATMmPUjurh3V7j8iJpgrH+hK79HNMZncM1YO78ljxnOrWD9/Dy6nq0beh4iIiIiIiIiIKGEBwIIFC0hLS+MPf/gDnTt39myPiIjg0UcfxWq1Mn369DP24efnx9///neioqJO2f7II+5ZAIsWLarx2M8H1oIiLKaShIW56GRR3ZDoMkveHDpxiB3HdmBz2Oo6RBHftesn+PIuyN0PU0dC+hJvR1TjzBYTF4/tiP3mC9hrcScQzIaFLg2H0C9qNDkrV3Nw+SIKcqu3hJzJZNBteDLXPNydqMbuWXIOu5Mln23nq1fXkpWRW2PvRURERERERETkfKYloYDU1FQAhg4desq+YcOGAWeXbPDzcxeHtViq/uXeu3fvGfdnZmZ6nhcVFVFQUFDlc/i6vOxczEZJgV1T4QEAnIFRFJ18vysOrOCvi/8KgNkwkxCaQHJYMs/0foYgS1DdB12B0jVNVN+kfqi3n1l4MwJiO2DKXANF2bjevwrr5f/FecGl3o6sxiW2CCfm/s4sf28zHTLd9SsaByUzLOEWfjk4jw8f/CvdLr+KDhePwOLvX+X+Q2MsXH5fe1bPzmDTYvfPoX3bjjPjuVUkd2pI1xGJRMb63s+b+qjefr+dx/SZ1U9FRUXeDkFERERERKQMJSyA7du3A5CSknLKvsaNGxMaGuppUx1TpkwByk+IVCQxMbHSbVesWEFaWlqVz+Hr8nYX0r50wsJ5Agw4XADL5s0D4IsTX3j2O1wOMnIzOJh7kMXzF2OUmoWxsHAh6fZ0YkwxhJpC8cMPi2HBDz/8jJLnUaYoGpobeo5zupwccR7BgQOHy4ETJ3bsOF1O97aT2x04aGlpSYipZKmqQ45D/Gb7zbPfiROHy+E5/rM5n+HEiQkT14ZcW+a9/1T4E5ttm3Fy5iK/yZZkhgcNL7Ptk/xPyHXmYjJMFP9nYLj/bxiebV38u9DKr5XnuEJXIcuLlnu+NhYsnv/7G/4EGAH4G/7440+EKaJMfZHzxeLFi70dQpWYY+6iR/4bxOb8iuEowv/L2/g1cRzp0YO9HVrtSIYtkRaap4XibzURYA6ib6NR7MvfzpqZX7Nq9pc07NSD0KYtyvx8qLQQiO5h5thvgTgK3BMV09cfIX39YYIT7ISnFGEJ0lJRNaW+fb+JPrP65PDhw94OQUREREREpAwlLIDs7GzAvQRUecLDwz1tqmrOnDm8/fbbtGnThj/+8Y/VjvF85rQ5MJsCAbA57Z5VoIosYZ42WY4sz/M4cxyHHYeJMceccjEyw55Bmj2NNM6c2OkX0I8RQSM8r23YeC33tUrFe1vobWUSFlmOLBYULqjwOD/8Ttl2xHmEDEdGhceGmcJO2bbXsZfjzuMVHptsSS7zOt+Zz4+FP1Z4HMC9YfcSY47xvF5vXU9qYSp+hh+mM6w4F2WK4vqQ68ts+/bEt+x1nHlGEUBHv470DexbZttbuW9VKt5Lgy4l0VKSBNxj38PsgtmVOvZPYX8q83pN0Ro22zafktQp/f8wUxjt/NoRYARU6hy1xWEOYEXzCXTOeJeko0sxcNFpzzQCbNlsbTy6zNJq54r8SDubOmWTtDOYBkfcX/+EkBRig5qy8fhStv68iONbfiO6ay+CGsVVuf/AaAeNL8onf48fOWn+OK0mwODEPj9O7LcQmmQjrIUVc4ASFyIiIiIiIiIilaWERS1atWoV119/PREREXz22WcEBFT9ouWePXvOuD8zM5OePXsC0KtXL1q0aFGtWH3ZGsdaLPuPAODA4dke17wdQy8eisvl4vkvnwcHxAXH8dVlX+F0Ocmx5hAZEFmmr2lzp0Elck+tmrdiaIeSGTFWh5VnvnimUvF27d6V7o26e14H7Q/i4yUfV3icy+Q6ZRbOul/WsTptNQAGp7+o3KhRI4b2K3vsG9++AScqjrdTu04MbV5ybFp2Gsyt+DiAiwdcTGxwrOd11tYs/p+9+w6PqkofOP69U5NMeq8kBAKhSRNEOiLgunZXgbWAfe0rlrVjhcV117X97Iq9Ym+ASBcRpEgRCBAgIb0nk+lzfn8MmWRIaC6kwPt5nvvMzL33zD03996ZzHnvOW/p+tKDlPAxWozN9vWrxV+RX3zogMWILiMY3y+w7P0f3X9Y9e05oCenJp7qf72iaAUvLXnpsMqOHDnSf9fwyJEj2bRlE79v+/2Q5daGr+Wl0S81OxfbhPoTrsWPYVz5PADZRZ/RNTEM1+kzQXd89pSx2Wxs/GwlUdtDiFI6DDoTfaPHkBHam9Vl89j7w9d0HjiYUy+6hMjE5D+0DZfDw+alRWz4cS9OmweURt1uE/bCIHqOTKLPmGTMIfJ1eyTsdnvA9RYUFNTGNRKHIsesYzoee+YKIYQQQgghOjZpQaGxZ8WBelHU1NQ0S6Z9KKtXr2b8+PHodDrmzp1Lr169/lDdUlNTD3tds9lMcPDxN366cnvQa75T1a3c/vmG8EQMwcGU1JdgdVkByIzK9P8NLCGWZu/16bmfUmGvILc6l1pnLQ6Pwz/Z3Xbfo8fOyQknB/wtzcrMOV3OwagzYtAZMOqMgc/1+4ZP0hnIis0KKDsweSDPj33eX8aoN+J1efnl51/Qo2fUiFFYgi3oNF2z43ff0Pu4f+j96DTdEQ9dM/fCub4hq5THP3m9vtcN891eN5HmSIJNjdtN16fzzJhncHgdOD1OHJ7Gx3pXPfXuet+jq5748HiCjY1ljUYjocZQ6t31KHXgO8v1On2zfTXoDQcNyvi3YTA2K3s45QDMpsBrxGwyH3bZpo1vQUFBeLWDD9PVoGtUVxIiEtBpB+5x0qr+NAMikmHefQAY1r2FQfPCuc+3ccWOncpYJ8WhLkILEuhZ7ECPRoQpjrHJl7Cz9jfWr13EB+um0XfcmQy5cBIh4S33tjuQ4GAYcnZX+o9NZ+38PaxfkIfb6cXt9PLbD3vZsryY/uM7cdKYVExB8rV7pIKCgo7L77bjmRyzjuOP3EwjhBBCCCGEEMeStJzQmLsiJyeHgQMHBiwrKiqirq7O34vhcKxevZpx48bh9XqZN28egwYNOqr1PdG4HA4MOt9wSR4aAxaERAOwo6rx7sAuEQfvYaJpGjHBMcQExxx0vf3pNB2PD3/8iMo0iAmOYWTqyIB5NpuNPXrfUE+poakHbNgx6P74JarX6dGjb3GoqYMJM4UxptOYP7TNKb2mMKXXlD9U9sVxhzesU0t+m/LbHyo3LGXYYZfdP6H97SffzvV9r/cHvBqCOg3PS+pLWLp3KY8Ne6z9BCsaDL0JQuPh8+tBZ4T+l7d1jY45U5Bi9N9OIvf3Kio/2066yzc/M+wkUkKyWF+xiLXff8WmxQs45fyLGfCnc444Mbc5xMiQc7tw0pg0fv1uFxuX7sXrVjhtblZ+sZPffsxj4J8y6D0iBb2xnZ0TQgghhBBCCCGEEO2ABCyAUaNGMXPmTObNm8ekSZMCls2dO9e/zuFoCFZ4PB7mzp3LKaecctTre6Jx2Z3otX29JfTAgMuhvgJifYmid1bv9K+bGZHZBjUUJ6JgQzDBhoPfQXx+1vnN5u2u2U1qaCr6th6C6aSLfUE/jxs6nTifUz0HJOE+KYHFH20i9bdKLGiY9cEMjvsTncP68GvZXJa+N5v1879l+OQpZJ86Ak13ZMGFkHATIyZ2o9+4Tqz6JpctPxWiFNhqXSz7KId1P+xh0J87kz0kEZ1eAhdCCCGEEEIIIYQQDaSlBBg7diyZmZm89957rFu3zj+/urqaGTNmYDKZuPzyxjuQCwsL2bJlS7MhpH799VfGjRuH2+3mu+++49RTT0X879wOh/8OdUOQGc55Fia9C51HAPCXbn9hzjlz+Neof3FqsvzNRfuVX5vPZd9exo0/3kits7atqwNdT4fuZwTOcztg27y2qU8rMRh0jP1rHyJv6c/myMa4fVxQKuNTrqBv9Bjs5TV8+8y/eO/+28nfvPEPbScsOojTLuvB5Omn0HVgvH9+XYWDhW9v4f1HfiFndTHKK4m5hRBCCCGEEEIIIUB6WABgMBh49dVXmTBhAiNHjmTSpEmEhYUxZ84cdu/ezZNPPklGRoZ//XvuuYc333yTN954g6lTpwJQUVHBuHHjqKqq4owzzmD+/PnMnz8/YDuRkZH8/e9/b70dO0547a7GFy3clG7Wm+kW1Y1uUd1ar1JCHCGv8jJt0TQqHZUs37ucS7+9lOdOe4608LS2rlqg+dNh5Qu+nkxn/BNMzXPBHC8SksMYf/eprF60G+bvJtGjodN0ZEcMpktYX7ZVr2Zr7io+fPhuug4awoi/XkF0csoRbycq0cKEa3oz4IxaVn65k90bygGoKq5n3qubWJO2m1POySS9d8wR56oRQgghhBBCCCGEOJ5IwGKfMWPGsGzZMqZPn86HH36Iy+WiT58+zJo1i4kTJx6yfE1NDZWVlQB8//33fP/9983WSU9Pl4DFH+B1NglYGKQxT3RMOk3HnYPu5LZFt1HtqGZn9U4mfzuZp0Y/xaDEdpLnpmCtL1gBsOYt2PMzXPgaJJ3UtvU6xk4enY53WCp1S/ZSs3APuBVGnZleUcPICh/I1ppV5Kxezc41qzjp9D9x6l8mH3FiboC4tDDOurEvhdur+PmLnRTkVAFQllfHN8//RlKXCIacl0lyVtRR3kMhhBBCCCGEEEKIjkGGhGpi8ODBfPfdd1RXV1NfX8/KlStbDFbMnj0bpZS/dwVARkYGSqmDTrt27Wq9nTmOeB0SsBDHh0GJg3j/zPf9uVaqHdVcO+9aPt72cRvXbJ+kfnDOc2AM8b0u2wavjoUV/wfq+B62SGfUEz62E4l3DMJySiLofZ81Jn0QfaJG8Oe0v9E9dBAb583jtVuu4ZcvPsHtdP6hbSV1jeS8af05+5a+xHUK888v3FHNZ/9ey5fPrKMot/og7yCEEEIIIYQQQghxfJKAhWj3nA63/7m35DeYmQYvjwEgtzqXF9e/yLxd8yiyFrVVFYU4bGnhabxz5jsMTxkOgFu5eWTFI8xcORO3132I0seYpsGAy+C6JZC4r1eFxwlz74H3Loa60ratXyswRJqJOj+LsJv6sinOiAdfoMasD+ak6FGclXYdmaY+rHj/Xd6Y9jc2LV6Ay+k44u1omkannjFcdM/JnHFdb6ISQ/zL8jZXMGfWr3w0YxWblu7FaW/j80IIIYQQQgghhBCilUjAQrR/7sbGOgN14KgBhy9h8dqStTy/7nluX3w7C/YsaKsaCnFEwkxhPHfac1ze83L/vPe2vMdjPz/WhrVqIjYLrv4BTr2pcV7OPHhxGOz4se3q1YoiksKYcPsQtKv7sCmmaeAihL7Ro/lz2nUkOdKZ/8KzvHjtZcx76Rnyf9+IOsKeKJqm0aV/PJMePIWxU3sQFhPkX1a6p5ZF725l9j+Ws+jdLZTuaQeJ2oUQQgghhBBCCCGOIclhIdo9ze31n6lGzep7YokFYGfVTv96nSM6t3bVhPjD9Do9dw66ky6RXXj050dxe93MyZnD6emn+3tftCmDGSY8Dplj4PO/gbUU6orh7fPh0k+h69i2rmGr6NQ1ik53DiE3p5ytn26je6ULPRpBegv9Yk4jO/IUcmrWsHXRUjb8OI+IhER6jjiNXqNOIyI+8bC3o9NpZA9JIuvkBLauLGLTkr2U7PYFKFwOD5uWFrBpaQHxGeH0GpFM1skJGM36Y7XbQgghhBBCCCGEEG1CAhai3dO8jc911PuehMQAsLO6MWDRJaJLa1ZLiKPigqwLMOlN3LfsPm7ufzNDk4e2dZUCZZ0O1/8En/0NdiyAtFOg86i2rlWr65wVQ+d/nMqOLWVs/TyH7CoXun2Biz5RI+gRMYRddRvZWr6KFZ+8x4pP3iMluxe9Ro2l25DhmENCDr0RQG/Q0XNYMj2HJVOyu4ZNSwvYtqoYt8MDQMmuGkp21bD84xy6n5JIr5EpxKSEHstdF0IIIYQQQgghhGg1ErAQ7Z7O2xixMGgtBywsRgvxIfGtXjchjoazMs+iV0yv9ttLKDQeLvkEfnkJup8J+v2+Opz1YDq8BvmOrkt2LF3ujiVnUwm5X26nR40HTYFBZ6RreH+6hPVjb30OW6tXsXfLJvZu2cSPb7xE10FD6DVqLJ369EWnO7yeEfHp4cSnhzPswq5sW1XMxiV7Kc+vA8Bp97Bh8V42LN5LYmYEvUYm03VAPAaT9LoQQgghhBBCCCFExyUBC9Hu6ZsMCW/Q2XxPQmKwuW0U1BUAkBmRiaZpbVA7IY6OdhusaKDTwZDrm8/fuRjmXAWnPwR9/+pb7wSQ1SuerF7xuCvs1C3fi3VVMcrpQdM0Ui3dSLV0o9xewNaaVeRbt7Jl+WK2LF9MaFQ0PUaModeoscSkdjqsbZmCDfQemUKvEckU7/L1uti+qhi3yxfMLdpZTdHOapZ9lEP2kCR6jUwmKtFyLHdfCCGEEEIIIYQQ4pg4MVqWRIemaxKw0GP3PbHEsqt6F2pfItx239grxBFaVbSK1za81tbVODiPC767y5ff4osb4fXxULC2rWvVqgzRQUSe3YWkewYT8afOVDfp4BATlMzQ+HM5M+06uoWfjEEzUVdZwaov5zD79ht4557bWPPdV9TXVB/WtjRNI7FzBGMv78HUWcMYMbEb0cmNgQlHvZv1P+bx3kMr+ezfa9j2SxEel/cg7yiEEOJY27t3L//9738ZP348nTp1wmQykZiYyIUXXsjKlSubrf/QQw+hadoBp127drX+TgghhBBCCNGKpIeFaPf0NPac0GuNPSya5q/IjMhs7WoJccy8tekt/vPrf/AoDxkRGYzt1E4TXDvrIK47lG7xvc5fBS+PgYFTYeyDEBLdptVrTbpgA2GjUul6SiIrv9uO8ddS0ty+ZaGGCPrHjKVn1Ej21G1kR80aql1lFO/MoXhnDovffo3MASfTc9RYMvufjN5gPOT2zCFGThqTSp/RKRTtqPb1uvi1BI/bF6AoyKmiIKeKpaE5ZJ+aRK/hyUQmnBjDdgkhRHvy7LPPMmvWLLp06cL48eOJi4sjJyeHzz//nM8//5z33nuPiRMnNis3ZcoUMjIyms2PjIw89pUWQgghhBCiDUnAQrR7TQMWjUNCxbKz+nf//C6RknBbHF88ypdk+b5l99Hlz13IiMho2wq1JDgKLn4Ldiz09bQo2wYo+PUN2Py5L2gxYAocZs6G44E5yMDI87PxntuNtUvzqFqST3erL4hg1hnJCu9PVnh/yj2l5FSsJN+6FY/HzfZVP7N91c8EhYWTPXQkvUaNJSGz6yGHutM0jaSukSR1jWT4RVls+bmQTUsLqCr25fux17lYN38P6+bvIaV7FD2GJpFxUizmYPn6F0KI1jB48GAWLVrEqFGjAuYvXbqUsWPHcv3113PeeedhNpsDlk+dOpXRo0e3Yk2FEEIIIYRoH6TFQrR7hiYjlxm0fUNChUSzM196WIjj02U9L2ND2Qa+3/U9VpeV2xbdxrtnvkuIsZ3eId9lDPxtOax8ERbP8vW8sFXC17fBr2/CmU9C2qC2rmWr0ul0DByVDqPSydlUws7vdpJZ5iR4XwA2Rh9HTNxZeBL/xG7rZraU/UytqwJ7bQ3r5n7NurlfE5PaiZ4jT6PHiNGERccecptBoUb6nd6JvmPTKMipYtPSAnasKcHr8Q2dt3drJXu3VqLTa6R2j6Jzvzg6943FEmE+xDsLIYT4oy644IIW548YMYIxY8Ywb948NmzYwMknn9zKNRNCCCGEEKJ9koCFaPcMTZL4Ok9/kKDwCojOpFtUN8rt5eyt3UtKaEob1lCIo0vTNB4e+jA5lTnsqN7B9qrtTP9pOk+MfKL9Jpc3mGDYLdDnIpj/AGz42De/cB388tIJF7BoqiFBd3WVjdXfbCd+Zy1RVl8PGr1HT2ZQHzJT+5DvKSOv8mfya3/Hi5fy/D0sfW82y95/i059+tJr1Fi6DhqC0Rx00O1pmkZKtyhSukVhuziL31cUsnlpAdWlvh5qXo9iz+YK9myuYPH7W0nsHEFmvzgy+8cSEddOg2JCCHEcMhp9QwAaDM1/ki1ZsoSVK1ei0+nIysri9NNPJzQ09A9tJz8//6DLCwsL/c9tNhs2m+0PbUe0X3JMRQM5F0RTcj6IBnIuiKaO5Hw4VueOBCxEu6aUQk/jcDLBPUfBvga16/tdz/X9rm+rqglxTIUYQ3hqzFNM/mYyVpeV73d9z0lxJ3FZz8vaumoHF54EF74KA6+Ab++Ekk0wfFrgOl4vaJpvOoFERAYz9pI+KKVw7qnF+nMh9RtKwe3rAZGqjyU19ixqYyaQ79rBntIVVDlLUMrL7t/Wsvu3tZiCg+k2ZDi9Ro4lJbsnWpOAbkuCw0wMGJ9O/9M7UbC9ip1rS9m5rpS6SodvBQVFO6sp2lnNT59uJybFQud+cWT2iyM2NbT9BsiEEKKD27NnDz/88ANJSUn06dOn2fLp06cHvI6MjOTpp5/m8ssvP+JtpaWlHfa6S5YsITb20L36GsnPyY5g3rx5rbQlOR/aOzkXRFNyPogGrXcugJwP7d+RnA9lZWXHpA5yloh2zetR6LXGBjnNeOKMhS9E54jOPD7scf6+6O8A/Hv1v+kR3YOTEzvAsBEZw+C6JbDjR0joGbhs7duw5i0YcTt0OwMO0eh+vNE0DXN6OOb0cCLOyiRvaR6lS/NJ8viCA2GakR6mbHqkZFPmrafI9jt7KtdQ66rAabOxceF8Ni6cT0R8Aj1GnEavkacRmZh08G3qGntdDL84i9I9texcV8rOdWVUFlr965XvtVK+18rqb3YRHhvkD14kZkag00nwQgghjgaXy8Vll12Gw+Fg1qxZ6PWN/9/27duX119/ndGjR5OUlERRURFff/01Dz74IFOnTiUyMpJzzjmnDWsvhBBCCCHEsSUBC9GuuV1e9FrjjzjNeGI1bAoxNn0sV/W+itc2voZHebhj8R18dPZHxIfEt3XVDk1vgG7jA+d53LDsKajMhQ8mQ3wvGDENep1/QiXnbqC3GMk4I5NO4zNYuzyP8mV76VbtxrAv10WsLoRYy0B6WwZS4qmh2LqBXdW/Ue+uobqkmJ/nvM/Pc94nJbsnPUeOpfupwzGHWA66TU3TiE8PJz49nCHndqGquH5f8KKU4twa/3o1ZXbW/5DH+h/yCA4z0rmvL3iR2j0KvXwWCyHEH+L1epk6dSpLlizhmmuu4bLLAntOnn/++QGvMzIyuOmmm+jRowfjxo3j/vvvP+KARV5e3kGXFxYWMnjwYABGjhxJamrq4b/5ih+PqC6ibYwfP/7QKx0Ncj60e3IuiKbkfBANWu1cADkfOoAjOR8ONfToHyUBC9GueVxeDFqT03TvCohNxR3ZCYNOTl9xYrip/01sLN/IysKV1Lvr2V65vWMELFpSWwimJg3qJZtgzlWw8HEY9nfoO9mXD+MEo9PpGDgiHUakU15qZf2CXHRbqsi0e9HtC17E68OJDx9Gn/Bh1OqqyCn9lTzr79g9VvZu2czeLZtZ+MZLdBk0hF6jxpJ+Uj90hxEEikwIYcCEdAZMSKeu0kHuel/wYu+2KpTXN1yVrdbF5mUFbF5WgClIT3rvGDr3iyO9dwymIPksFkKIw+H1ernyyit57733uPTSS3nxxRcPu+zYsWPp0qULGzZsoKamhvDw8MMueyQBiODgYIKDgw97fdExyDEVDeRcEE3J+SAayLkgmjqS8+FYnTvSyiDaNZfTjX5fg5tSCt27Z0PXsTyQ0Z2VhSvJjMhk5oiZxIXEtXFNhTh2DDoDT4x8gruW3MU/Bv2DrKistq7SHxeZBn9bBtvmwtInIX+Vb37FTvjqFlg0EwZOhf6XQURKm1a1rcTEWThtUm8ACvNr2PTjLszbq+nsbFwnzBvJgJix9I85jWJnEYW1v7O3Pgerq4qtPy1h609LsERF02P4aHqNGktsWvphbTs0ykyf0an0GZ2K3epi14Yydq4tJW9zBW6XFwCn3UPO6hJyVpegN+hI7RFFRu8YUrpHEZkQInkvhBCiBV6vlyuuuIK33nqLyZMnM3v2bHRHOCRibGws27dvp76+/ogCFkIIIYQQQnQkErAQ7ZrL7sSgGQHwKLcvR68llp3VOym1lVJuLyfcLD/YxPEvOiiaV8e/2mz+9srtRAdHEx0U3Qa1+oM0DbqfAd0mQO4SWPpvyF3sW1Zb6AtarHge7tgGxhP7To+k1HCSLj8JAEeZDceGMmzrS3EV+fJOaGgkmpJIjEmif8xpVLnKKbBuY299DhWVhaz+6lNWf/Up8Z270GvUWLqdMozQ6JjD2naQxUj2kCSyhyThcnrI21TBznWl7NpQhqPeDYDH7WX3hnJ2bygHICTCtC9XRiQp3aOIiAuWAIYQ4oTXNFgxceJE3n777YC8FYfDarWyadMmLBbLESbFFkIIIYQQomORgIVo1xz1dvT+gIULAG9wNLkV6wBICU3BrDe3VfWEaFNur5u7lt5FkbWIm/vfzEXdLupYQ6VpGmSO8k15q3y5LbZ9B8oLPc9tHqxw1oMppG3q2g6YY4Mxj0kjfEwarmIrO5fmUbO2xJ+sGyDSGENk5Kn0jDwVm7uOgvrt7K3fTsmu3SzMfZmFs18mMiGJlB69SM3uRUqPXkQmJB0yqGA06cnsH0dm/zg8Hi8FW6t8eS/Wl1Jf3dj1o77aSc6qYnJWFQO+Hhsp3aJI7hZJavcowmNP7ACUEOLE0zAM1FtvvcVFF13EO++8c8BgRW1tLYWFhXTr1i1gvs1m45prrqG2tpYrrrgCg6EDfdcLIYQQQghxhOS/XdGuOevtGHS+gIVX+e7oLTIFYXPbAOgS0aXN6iZEW/tw64fkVOYAMGPlDOZsm8N9Q+6jf3z/Nq7ZH5A2CCa/B9X5sOZtyD4zcLm9Bv7bBzJHw8lXQueRvoDHCcqYYKH7X7LhL9ns2FLGjp/yCdpdS4ZD+XNeBBtC6RLejy7h/XB7nRTZcimo30FhWS6bFv3ApkU/AGCJjCIluxepPXqRkt2L2E7pB819odfrSOsZTVrPaEZO6kbJnlr2bq1k77ZKCrZX43Z4/OvWVTrYurKIrSuLAAiLDiKlu6/3RUq3KMKig47hX0kIIdreI488wptvvkloaCjdunXjsccea7bOeeedR79+/SgvLyc7O5tBgwbRo0cPEhMTKS4u5ocffiA/P58+ffrwr3/9qw32QgghhBBCiNYjAQvRrjltDkz7km439LDYqfP6l3eO7Nwm9RKiPZiQMYHN5Zv5cseXAGyt3Mrl313OOV3O4baBtxEb3AGHjIhIhTH3NJ+/4SOwV8Hmz31TTFcYMAX6/AXCk1u5ku1Ll+xYumT7jnVJYR2blu7Gs62KznUezPuCFwadiVRLd1It3QGocpRQaNtJkS2Xsqp8tv28jG0/LwPAHGIhuXsPXxAjuxcJXbIwGI0tblvTaSRkhJOQEc6ACel4PF5Kd9eSv7WSgm2VFG6v9ue+AKitsLNlRRFbVvgCGOFxwb7ho7pFkdo9Ckuk9JgTQhxfdu3aBUBdXR2PP/54i+tkZGTQr18/oqOjueGGG/jll1/49ttvqaysJDg4mB49enDLLbdw0003SVJMIYQQQghx3JOAhWjXHPU2gvcNCeXF18NiJw7/8syIzDaplxDtQWxwLI8Pf5yLul3EjJUz+L3idwC+3PElP+75kRv63cCk7EkYdS03Nnc4ljiwlvqel2+H+Q/A/AchYzj0uQh6ngPBUW1bxzYWnxRK/MW9AKivc7Ju2R4i91qJLLDhtbr860Wa44k0x9Mjcggur5MS225/AMNaX03u2tXkrl0NgMFoIjGrm28IqexeJHfLxhTc8tBcer2OxMwIEjMj4E8ZeNxeinfV7OuBUUXRzmo8TQIYNaU2akpt/L680FevhBBSukUSl2HB49DQm9Wx+lMJIUSrmD17NrNnzz6sdcPDw3nuueeObYWEEEIIIYRo5yRgIdo1m9VOtKYDQDX0sHDV+JdLwEII6Bffj/f//D6fbPuEZ9Y+Q42zhjpXHU+seoJPcz5lxvAZ9Ijp0dbV/N8Muhr6Xw5bvobVr8OupfsWKN/zXUvhm9vh1Btg3CNtWtX2IiTUxNAzugKgvApnXi32rRVUby6HIqt/6CijzkSKJYsUSxYA1a4Kiut3UmTbRZkjH5fLQf7mjeRv3giAptMRn9GF1B49SdkXxAgJj2ixDnqDjuSukSR3jWTQn8Ht8lCc2ySAkVuN190YlKgqrqequB6WAoSiD/GysGgbyV2iiM8IJy4tDKP5yBLVCiGEEEIIIYQQouOQgIVo1+y1dsDXOOXFF7DItZf7l3eOaBwSyut0omw2dOHhh0wgK8TxRq/TMzF7IuMzxvP0mqf5NOdTFIpd1buICjpOeh0YTND7At9Uth02fOybKnb4lntdYIkPLKMUmvKgtBO7kVvTaZjTwzGnhxMxPoOy4jp+X5GPbWslyZUuImn8zIwwRhMREU23iJNRKGo9lRRbcym151Nqz8PusVK8M4finTn8+s0XAEQnp/oSeffoTWp2L8Lj4lush8GoJ6WbL38FgNvpoXBnNQXbqti7tZLi3Bq83sYAhqdeR+7acnLX+j73NQ2ik0OJzwgjPt03FFV0igW9Xnes/nRCCCGEEEIIIYRoRRKwEO2as94B+IYeUbhQwA7rXgDiQ+IJM4UBUL9mLXuuvBJlt4PBgD4yEkNUFPqGKToKU6d0Yq6YGvD+jp07UQ4H6PVoBiOaQY9mMIDegGY0oOl9rzWjEc1k8pdTHg/usjLweFBeb+Oj14vyeAIezV26oAtpHD7FVVKCbcMGLFu2gFLUm8y4jYZ95RUoL8rrRTMYCZ8wPqC+9atX49y955B/N2NqKpZTBgfMq12wAOV0+lr8NB1ovjul0evR9Pp9jwZMmZ0xxjc2NnqdTlx5eb6/hdEIRiOa0YjOZGp8LQGidiMqKIqHhj7EhVkX8s9f/kl6eDqJlsSAdX4u/JnO4Z1JsCS0US2PgtiuvlwXo++GgrWwcQ5s+swXzGhCK9nIhI23UBA5CN1OI3Q/3Rf4OMHFJoQy4rxsADxuL1t/KyZ/TRFBeXV0cigM+wIYGhrh+mjCw6PJCh8IQLW7mnLbbkrteZTa87G6q6goyKeiIJ8NC+YCEBYTR0p2T1L3BTGiU9Ja/JwwmPSkZUeTlh0NgMvhoXBHFbs3lbLl1zycNTrwNpZTCsr31lG+t84/jJTeqCM2NZT4jHAS0sOIzwgnMj4ETSefS0IIIYQQQgghREcjAQvRrnnsjQELlIsKvYFqp29IqKbDQZW/9povWAHgduMpK8NTVhbwXubs7GYBi8J77sW2fv0h6xH391uJ/dvfGutVU8P2UaMPax8yPv6Y4D69/a/rV66k+M67SNn3uoQ3Wyynj4hoFrCo+mQO1Z9/fshthp/5p2YBi6KHHsZdWnrIskmPPUrkX/7if+3ctYvcc849eKF9QYwu33yNMSnJP7vygw8of/mVQ27T1KULnV55OWDe3tvvwLZ27SHLRk6cSOx11/pfK7ebHeMnHLIcQPKT/yJkwAD/a+vPP1N4730trutVis52GwD5zz1H13nzAhpgK958k5q583zBH4Mv+KMLCyV8wgTCxo71BXdaUZ+4Prxz5jvY3LaA+Xa3nX8s+Qc1zhrO7HwmU3pNoVtUt1at21GlaZAywDeNf8z3ugn95k8xumvpXPYjfPwjmMIg63To/mfIGgfBkW1T73ZEb9DRc0ASPQf4rt2qShubV+Sj22uls82Lq9AKTVJJRBgiiAg7icywkwCo81ipsOdRbi+g3LGXSmcxteWlbFm+mC3LFwMQFBZOSveepGb3JKVHL+IzuqA3NP8XxGjW06lnDHGdQ6gwbUV54eTew6guclCyq4biXbVUFFpRTXthuLwU59ZQnFvDhn3zTEF64vb1wGjojREaZZbgqhBCCCGEEEII0c5JwEK0a0FN863GdCL8tq18aC9hZ/VOwoy+3hVeqxXrsmUAaCEhmDLS8VRU4qmo8PUo2McQ3XxYHOV2H1Y9lNcb8FrTHcHwI15P4OvDLKvU/5BsVmu+jcN+P/1+HwseT8vrNeVyoVwuX++UJrx1dbgKCg5ZXBcW1myeu7z8sMp6aqqbV+cwygG+3jVNeO32g5ZtCDm4a+uaNXw69+RhW7OmWZna777HEBdH5MUXE3nxRRgTWq9Xg6ZphBgDkyN/vfNrKuwVgC8595c7vmRY8jCm9JrCkKQhHbtBt4W6ax4nHs2Ifl8OHJy1vp4Ymz4DnQHSh/qCF9lnQmSnVq5w+xQZFczQM7P8r712N47dNThza9jwcz7Jdi+mJkNIheothFqy6WTZ12NDeahyllBu30uZwxfEqK+tYcfqn9mx+mcAjOYgkrpl+xN5J2V1w2gOalYXTQcxqRZSs2LpNcIX5nU5PZTtqaV4Vw0lu2sp2VVDdWlgYM5p9/jyZGyt9M8LCTcRnxFOfHoYsWlhxCRbCIsJ6tjnvBBCCCGEEEIIcZyRgIVo15TD1fjCqGG0xNLTEkvPmJ7+2ZrJROpzz1I7bx766Bjib/u7r6xSKJsNd0UlnspKNGPz0z1swgSCevdGedzgcqM8Hl8Qw+NG+V+7MCYnB5TTTCbCxo8Hna5xWCWdzheM0OvQdHr/oz4mJqCsOSuLiGuvYUduLuh0dM3qhtFs8pXXdKDT0HQ6NJO5WX0jzj+f4P79D/l3M3VKazYv7uab8drq9w071TD0lAKvB+X2+P4Gbg/mblkB5XRh4URccAHK7QtKNEy4XCinC6/L6X+tmQPrrAUHo4+LPWR99VHNg0n6iIjDKquzWJqXPYxyQLNeDzqT6cBlFTgcDlAKc0hI88WeAwe/3KWllD3/PGUvvkjMVVcRP+22w6rfsTAqdRTX9LmGD7d+SM2+3krLC5azvGA53aK6cV7X8/hT5z8RG3x4f8P2znX64/zoGkxczQYGWIow7PgB7FW+hV435C7xTSWb4Jxn27Su7ZUuyEBw92iCu0cz/IwMbPVOtqwtonRzOYZCK6n1XkKaBDD0mp4YcxIx5iQa+u7YPVbK7HspdxRQ4Sik0lHEng3r2LNhnW8begMJXbqSmr1vCKlOnZtXZB+jSU9S10iSukb659mtLkp211Cyq5aS3TUU76qhvtoZUK6+xsmu38rY9Vtj7ztjkJ6YZAvRyaHEpFiISQ4lJiWUoNDW7RElhBBCCCGEEEIIH039T7dxi7aWn59PWpqvcXrbtm1kZWUdokTH8uOMj+hW4xumpDLeRp9p4w9RomOw2WzMmzcPgPHjxxMcHNzGNRKHcqhjppRqzF3i9gW77Bs3Uvne+9T++KO/p0riIw8TdfHFrV7//dW76vls+2e8vflt9tbtDVim1/RcmHUhD5z6QBvV7uhpdtxMRtizArZ+C1u+gardvhUnfwjdz2gsWL0XvpkGGSOg8whI6HPYvaNONG63lx2bS9m7uRRXXh1RVU6SPYfutVDjLKfSWUyFo4hKZyGVjhLcal+QQdMwRURhiogiq3cfYpKSCY+NJyw2jvC4eExBh/7MrKt07Ati1Pged9fiqD+8XnUhESZiUkIDghnRSRYMphM7efvByPdax5STk0O3br7QYl5eHqmpqW1cI9EWmv6eONLzIOPub45VtcRRtOuff26V7cj50P7JuSCakvNBNGitcwHkfOgIjuR8+F/+jzwY6WEh2jWvs7FxSScNRaId0zStMYH5vgTtllNPxXLqqbiKiqj66CNqvp9LxFlnBZSzbdxE1ScfEzX5rwR1b71cEiHGEC7pcQmTuk9iwZ4FvLn5TX4r/Q3wDekTExzTrIxXedG1MNxYh6I3+AIQnUfAhBlQ8rsveJE5KnC9XUth2/e+CSAoEjKGNwYw4npIAGMfg0FH95MS6H5S43Bn3noXzvw631BSebXU7qzC5A68PyLcFEO4KYb0UF+POaUUta4KKpyFviCGrYiq6jzW7t7RbJtBoWFNAhhxhMfGEx4X73uMjSM4PILQKDOhUXFk9ovzv391iY2SPTWU77VSsbeO8gIrteX2Zu9fX+2kvrqCvM0V/nmaBhHxIb4gRkpjj4zwuGB0kuBbCCGEEEIIIYQ4KiRgIdo1u71xSChn6e+8u2QxSRmjyYrMIi28+bBHQrRHxsRE4m65hdibb242Xn7lO+9Q/fnnVH3wIRHnnkP83XdjaGGIrGNFr9MzPmM84zPGs7NqJ1/v/Jpvdn7DWZmBgZVd1bu4at5VnNn5TM7KPIvu0d1brY7HjKZBQk/ftL/81YGv7VWw5WvfBBASA+nDoNsE6H/pMa9qR6MLMRLULYqgbr5zOdrtZdf2CvI2luDIqyOk0kGKUwXkwtA0zR/EyAjt7Z9vdVVT7SqlyllKjbOMalcpNXUVlNTtoGRX82AGgMFk9gUz9vXIaAhkhMfGk5gRT9cBGej0viC40+amotBK+d46yvfueyyow2EN7I2hFFQV11NVXM+OtaWN2zLqiN4XxIhKCCEyPoSI+GAi4oKlR4YQQgghhBBCCHGEJGAh2jXl8vozHZutW/hn7mLI/Yx+cf14+8y3qXj3XXQhFsLGjEYfGdmWVRXikPYPVnidTuoWL/a/rv7iS+qWLCXh3nsIP+usVk8GnBmZyS0DbuHm/s0DK9/kfkNJfQmzN81m9qbZdI3sypi0MYxKG0Wf2D4dv+fF/s78F5x8pa+nRe4S2L0cbI0JnKkvh9+/BKe1ecAibxXEdIGQ6NatczumN+jokh1Ll+zG3ChOp5sdv5dRtLUcZ34doZVOUt2g32+gSosxAosxguSQrv55XuWl1lVB9b4ARrWzjBpXGXWuShQKt9NBZUE+lQX5LdZH0+kIjY7xBzEaghpp2XH0Gh5PWEwPXA5dYxCjoI7yvXVUFtbjcXsD3svt8vqSf++u3W8jEBplJjK+MYgRGR9CZEIIYbFB6PXH2TUjhBBCCCGEEEIcBRKwEO2a5m1suarTO/zPMyMzUW43Zc8+h6eqiuLwcLotX9YsibIQ7ZnOZKLL/HlUz5lD6fP/h7emBk9lJQV33kX1l1+R9NB0jCkprV6vlgIl1Y5qDJoBt/Lddb69ajvbq7bzyoZXiA6KZkTKCEanjebU5FOxGJsnQu9wmva+OOU68Hp9iblzl/qCGLuWg6Ma0k4JLOf1wNvng7MWYrr6lqcO8j3GZcswUk2YTAZ69E2kR99E/zzl9uIqsmLdVcmuX7ZirtejrzNgIfCc1Gk6IkyxRJhigWz/fC9e7DorNa4KKqyFVNmLqXGWUeuqxIuncTteL7VlpdSWlbKXzS3WLygsPCCg0bVfPKGnxaAzROC0h1BbCZUF9ZTvraO6zAb7ZwRTUFfhoK7CQf6WyoBFmk4jLCZoXzAjmIh9j5EJIYRGB8kQU0IIIYQQQgghTlgSsBDtWtM7bSuNTv/zzIhM6levxlNVBYBl2FAJVogOSR8aSvSUKYSfeSZFj8+g9ntfzgTr0qXsOPsc4m+9hahLL/XlxmhD955yL9f3vZ65u+by1c6v/PkuACrsFXyx4wu+2PEFZ2eezYwRM9qwpseITgeJfXzTqTf4AhNFv/mGhmqq5HdfsAKgfLtvWveu77UpDJL6QnI/SO4PWeMhKLxVd6O90ww6TKlheGIM7ClfC8Dpp59OZZmLvdvKqc6rhVIbobVuEt2BQ0oB6NAR4g0jRB9GYng67PvzepSiEjs1mhWbqsLuLKPGupeq2r04vbYW62KvrcFeW0NJ7gGGnTKb/cGMuL6xGMwR6HQReDwWHPZg6muMVJfYW0z0rbyKmlIbNaU29mwKXKYzaETENgYxIuJDCI8JIjQ6iLCYIIwyzJQQQgghhBBCiOOYBCxEu6ZvMvJGmaExMWrniM7Uzpnvfx0+blxrVkuIo84QF0fqf5+idsFZFD3yKO7iYlR9PcUz/4n155WkvfB/bV1FooKimJQ9iUnZkyitL2Xp3qUszlvMisIV2Ny+Rt+RqSMDylhdVl5a/xIDEwbSL74fEeaItqj60afT+4IO+zOFwJAbIW8lFK4Hb2MeHpy1sHuZbwL4+8bAgEV1vi8QEtnJ18NDAKDT6UhNjyQ1PTJgvsvpYc/OSop2VFKXX0v/kCC8ZTbcZTbwBHZ30GsasQQTSzBosWDuCmYgGqx4CY424DI6qKeWGkc5xdV7qajKo6ayCKUCh4Bq4HY4qNibR8XevBaXazodYTGxRMfFYrZEozdFAGG4XCHY64KwVptwO5v3uPG6FZVF9VQW1bf4vkGhRsL2BS/CooOaPTdbDK0+nJwQQgghhBBCCHG0SMBCtGv6JnfPFpiaBCzCMqidfz8AmsmEZeSoVq+bEMdC2NixhJxyCqX/+Q+V770PQMS557RxrZqLC4njgqwLuCDrAhweB6uLVrMobxFDU4YGrLeiYAVvbHqDNza9gYZG16iuDIwfyMCEgQxIGEB8SHzb7MCxEp0JZ+zrYeKyQ+E6yPvFF8AoWAc1+3IqhMRCRGpg2Z9fgBXPQXA0JJ0E8T0hvofvMa47mMNac0/aPaNJ3ywvBoDyeHFX2Nm+uZT8nApUuZ3QOjcJLoWZ5g35FnRQ4cWMETPRRBFNOlkQAVURiiqDB4fRjdvowKtZcatK7I4SamsKqC0twe1yNntP8A07VVNaQk1pyQH3ITgsguDwGEzBkWj6cLzeUJz2EGx1QShvKGjmZsEHe50Le52L0j21Lb6n0az39cbwBzLMvsco3+uQCLMMOSWEEEIIIYQQot2SgIVo15oGLPKCfTksgvRBRO8oY09pKQCWYcPQhx4HY+YLsY8+NJTEBx8k/KyzqJ07j7AJEwKWK7cbzdB+Pr7NejPDUoYxLGVYs2WL8xuTiisUOZU55FTm8MHWDwBIDU1lYMJATkk6hbO7nN1qdW4VxiDoNMQ3Nagr8QUu7FXNe1EU+IZAwlYBOxf5pqYiO/mCF70ugL4Tj129OzhNr8MYF0KPUen0GJXun+92eynYXU3hzgpqC614ym2YalwkeTVCnd7mOSiASDQi3QZwG8AWBEQAyUAv3GaFo5uBiPhgPEEeHDo7de5q8ioLcdpLqa0ppLasFHtdy4EFAFttNbba6gMuN5iDCLJEYwiKRKcLR6lQ3K4QHLYQNF0YaKHNAhouh4fKQiuVhdYW31On1wiNMhMaFYQl0kxopBlLpJmQCBOWSDOWCDOWCBMGGXpKCCGEEEIIIUQbaD8tXkK0wEDjcBm7zL6hVTpHdKbuhwX++WEyHJQ4ToUMGEDIgAHN5u+9bRqO3J2EjR5N6OjRBPfr164CGE1NGziNUamj+LX4V34t/pWtlVvxNhliJ78un/y6fPJq85oFLNaVrCMlNIW4kLjWrvaxExoP3ca3vCxrHJgssHcN1Jc1X161xzcl9A6c73HBx1MhpgvEZEFsFsR2g5Doo179jsxg0NGpSxSdukQ1W6ZcXtwVvuGkXGU2fl5dgKnWRZTDS4xquTeCAQ1DvQf3rjoATEA04UQTDnTHoSnKE6HOpOE2e/AanWj6ejxU43KUYa0tora8hLrKClAtREsAt8NOnaMAKGhxuU6vx2yJwhQchd4YjlJheDwWnPYQvN5QNF0Ymhb42eD1KGrK7NSU2Vt8zwbmEMO+AIYJS4SZkIZgRqRp36OZkHATeoMkkhdCCCGEEEIIcfS0zxYuIfbRNwlY1O5Lut05PIPa+fvyV+j1hI4Z3foVE6KN1Myf7z//y7fvoPzV19BHRGAZOZLQ0aMIHT4cfUT7yRMRFRTF6emnc3r66QDUOetYX7reH8DYWLYRp9fJwISBAeWUUty44EZqnDXEB8fTM6YnPWN70iumF71iehETHNPS5jq24bf5JqXAWgolm31JvP2Pv4OzzjdMVFOVu2DL183fLzh6X/AiqzGQkTnGl2dDBNCMOowJFowJFoKB8aPS/Mts9S4K86opza+hrsiKu8KOvsaJxeYlRdOhc7Wc48KMRrIHsAE2PRC8b4oBMkGnoe9kQtfbiDcIiux1FFur8GLF467EbiulpnovteXFeNzNE3cDeD0ebDVl2GpaCHA11MMSgTkkCr0pAk0Lx+Ox4HKE4HZZfAENXVCL5Rz1bhz1bioKWu6p0SA4zEhIhJngMAOVtWb0IQqHzU1w8EGLCSGEEEIIIYQQLZKAhWjX9FrjkBR2vS9g0acqDFeeL8lpyOBBGKKa3y0rxHHL5SK4Xz9s69f778r2VFdT89VX1Hz1Fej1hAwcSOjo0URNnoSunbUahppCA4aPcngcbCrbRGxwYB6C/Lp8apw1AJTYSijJL2FR/iL/8kRLIj2ie5AVlcXF3S4mwZLQavtwzGmarydGaDxkjm6crxRU50FQZOD6ZTktv4+twpc7I29l47w7tgcGLHKX+Iaiis70TVGdJaCxn+AQI5ndY8nsHttsmVIKb70bT4Udd4WdvXuq2Lm9EmOdC4vdQ7QHglvImwGAV+GpduCp9g13GAfEEQlEAim+dUKgOkRRq/di17tx65wYTE5CgxzU1JdRXV1EWWU+tbVlqJbGtAIc1moc1gMPO2U0BxMUFo0pOAqDKRJ0YXg9obidIdhtwXg9wQdN4m2rdWGrbUgubwJg6XvbOfumFpLSCyGEEEIIIYQQhyABC9GuGZoELLoazOQYNLLWl/vnhY8/wNAqQhynws88k/Azz8RdUUHdkiXULVqMdelSvNZ9d0F7PNT/8gv2338n+rJLA8q6KyrQR0ai6drPEC5mvZkBCc2HvTLqjFzR+wo2l29mc9lmal2BeQCKrEUUWYtYmLeQ87qcF7BsXck61pasJSsqi7SgNJRSB21w7TA0zZfHYn/dzoC/b4CybVC2HcpzfEGMshyobTKUkCkMLPs1um/5Bla+GDgvLMkXvIhMh8g0iEiDhF6Q0vw4neg0TUNvMaK3GDGlhZHVN46sJsu9Xi8VpfUU5dVQXWSlvqweb6UDi91DVogZT40Tr9V1wPcHiEAjwqMHjx4wgx2ogUSSQX8SxII3VlGNF6vmwqk5cWHD7a3D5azCbivHai3B7qnH7rHiVoFJwl0OGy7HXmBvi9vXGQxYImMJ9gc1ItB04XhVKC5nCA5bELZqD15vY8Bkz8ZK8rZUkJYtw5IJIYQQQgghhDgyErAQ7VpDwEIpL29d5kve68jbgzW5NzXz5xM6dmxbVk+INmOIjibyvPOIPO88lNNJ/a+/UrdoEbULF+Has4fQEcPRjMaAMvk33YwjJ4fgvn0J7t+PkP79CTqpb7tMWp9oSWTawGkAeJWX/Np8NpVvYlPZJjaVb2Jz+Wbq3fUEG4JJCUsJKLsobxGvbXzN/zpYCyZeF8+qVavoGt2VzhGdyYjIICU0BYPuOPga1Ol8gYzITtD19MBljjoo3+4LXrSU6LtiZ/P3qy30TbuXN87rdQFc9Ebget/c4UssHtEJIlIhPBnCUyAkxlcngU6nIzYhlNiE0AOuo9xePDVOtu+soLSgFnuFHU+1E329iyCbh1CXIlKB8UA9NQAdGlHoiVJ6UEFAOJDg6/BgwpcrvGF7eoVH78GJHaurjur6KhzOKhzuOhyeehyeeuyeehzeehweG163m9qyImrLilreuKZhiYwiLDKGmlqFuy4Wg7k/yz/ZzsX3DkKnOw6ChUIIIYQQQgghWs1x0FIjjmcNQ0K5ldt/h3RQp3SCrr6amKuvbsuqCdFuaCYTllNPxXLqqcTffTfO3F3g9QSso5xO7Bs3opxOrMuWYV22zLdAp8PcrRvB/fsR3LcvQdnZmDMz0Uym1t+RA9BpOjqFd6JTeCf+1PlPgC+Isbd2L0X1Rei0wMbxnKrAIZJsysZuz2525+6G3Mb5I1NH8vzY5wPW3VqxlfiQeCLNkcdHrwxzKCT3800tGTsdTproC1w0naylgetFpAa+9nrg1zfA20JuBb3J10sjPMUXxBh2CyT1bVzu2VdGL/+CAGgGHYboILKjk8k+wDoet5fK8nrKiqxYXF6ilYanxomnxoGjysGOnZWEuRURCvQHCWwAaB4Ng8eAgVBCCCUuONGXWuMA7F47Dk89To8Vh8fmC2p4bf7ghsNrw2Gtx1pbjNtTj0dtR7nzKcu7iC0rCuk5LPmP/3GEEEIIIYQQQpxwpLVAtFtKKQya7xT1KM8h1hZCgG+IGnNm52bzPTU1hI4aSf3adXjKmiTo9XpxbNmCY8sWqt7/AIC0V14mdMSIxrK1tSi7HX1sbLtpxNdpOtLC00gLT2u27LYBtzEhYwI5lTlsKd/CpuJN1KraZut1CgscXkkpxeXfXU69u54QQwjJocmkhqaSHJpMSmiKbwpLITk0mXBT+DHbt1aV2Ns37c9e48uXUZXne0w8KXB5bVHLwQoAjxOqdvsmgJOvDFy+/Qf4YDJY4iAs0RfcaHgMTYCwJDRTFGZXFQ5j5P+8i8cDveHgPTUS9z263b4hqCpKrNSU12OrtOOsceCpdaGrd9MzIhiDzYO3zom3/gDHbz9BuiCCdEFgPLzhnRyeelaVfU+xYz0rvzDTdWA8piD5d1MIIYQQQgghxOGRX5Ci3fK4vej3DdfiQQIWQvwvDLGxpD77LEopXPn52NaupX7tWmzr1uPYuhW8Xv+65m7dA8rWzp1L4f0PoI+OJii7O+Zu3TFnZWHq3BlT5wxfXox2EsgA6BrVla5RXQGw2WzMmzcPu7LTdVBXCuwF5FbnsqtmF/3jA5MCl9pKqXfXA1Dvrmd71Xa2V21vcRsvj3uZU5NP9b/Or81nfel6Ei2JJFoSiQ+Jx6gztli2QwgKh6BevtwVLQlLhFvWNgY0agqgZu++xwKozvcNQQW+XhZN1RaC8kJdsW8qXN9888AYfSjfn/R/gQtWvQalW33BDkusLzF5w/OQWDCHNR/26gRiMOiITwolPunAQ1A1UG4vNRU2Cgprqau0Y6u046h14q1zQr0bvd2D2eklxK0IVxrBLef0bsasD+GUuLOYt/cd6io7s3beHk45J/N/3DMhhBBCCCGEECcKCViIdstpc6LXfA1+Lq+TO2afzaS8bvS+8CrMPXq0qwZSIToKTdMwpaVhSksj4pxzAPDUWbH/th775s04d+/GEB8XUMa+dZtvvYoKrD+twPrTioDluogITBnpWE4ZQvy021pnR45QkBZEz+ieDAweeMB1vMrLRd0uIr82nwJrAQV1Bbi8LSdETg4NbIT/pegXpv803f9aQyM2OJZESyIJIQn+x5SwFMaljzs6O9WWdHpfYu7ogzREO61QU+hL2t2UOQySB/h6adQVwwF60DmNLfRi2TYXcuYeeJt6ky+HxsCpMPruwGVr3oKgCF9gIyQagqMhOAoM7Wf4s9akGXRExFuIiD+8HDbK5cVb78JjdeG1uvh9RwXlpVa8Vheq3o1mcxNa56KT0mPUmTg1/kwWlvzA2nmR9BqRTGhU0DHeIyGEEEIIIYQQxwMJWIh2y15Xj2FfwMKt3OhW78Tyw3Zy3/2W+Lv/QczUqW1bQSGOE/pQC5ahQ7EMHdricnOXTCxDT8W+ZSueiopmy73V1djX/4YhNq7Zsj1XX4NyOjEmJ++bkvzPDUlJ6Mzmo74/f1SiJZEHT33Q/9qrvJTWl7K3bi976/ZSUFfgf0yyJAWULbIGJiRWKEptpZTaStnABv/8zhGdmwUsHvv5MXKrc4kNjiU+JJ644Dhig2OJCY4hOiia6KBoIs2R6HX6Y7DXx5DJArFdm8/v8xffBL5cGNYyqCvyBTBqC6G2CHdlPoVFVc3L7p9bY38ep+893PbA+W4nfHnzAeoZ6gtehET5AhjjHoWkJkNg1RRCwRoIioTgyMZHY8gJ1ZtDM+rQR5jRR/iu2f5ZUQHLbTYb33w9D/2v4aRgINqcSO/wLmy0rufnLxI4fWrPtqi2EEIIIYQQQogORgIWot2qq7Ki29cY5MbDKVsbh6xpOr6+EOLYipo0iahJkwBwl5Zi37IVZ+5OnLt24cjNxblrN+7CQkwZ6QHllNdL/apVKIfjgO+tj43FmJRE/O3TsAwZ4p/vra/HXVGJIT4OXRslANdpOhIsCSRYEhiQMOCg645MHYnFaKHIWkRxfTFF1iKKrEWU2cpQNI6lEx8c36zshrINbC7ffND319C4od8N/K3v3/zzXB4Xb2x6g0hzJFFBUUSaI/3PI8wRHWNIKp0ewhJ8U5PE3C6bjd/nzWu+/sVvQm2xL3Dhn8rAWgL15WAth/oyXz6MpurLD1wHZ51vqt7je+1xBi7fswI+uaKFuhv3BTAifEGMsESY9G7gOrt/8gVQGtYJigBzuO/RYD7uAh5GE2zLshK/LQyjpqN7xCCKbZ+xZfk2ThqTSnz6cZL7RQghhBBCCCHEMSMBC9Fu1VXZaGjacCs32Xm+56bMTMxdurRZvYQ4kRni4giNi4MRwwPme202lDOwoddTUYEuKAjPQQIWnrIyXxLwJjk0AOrXrCXv6qsB0EdEYIiP32+KwxAbhyE2huABA9p8iLjesb3pHds8ebXL46LEVkKRtYjS+lIsxubD71hd1kO+v0I1K1thr+DZtc8esEyoMdQfxJg1chadwhuTjO+q3sXm8s1EmCN8kymCcHM4YaYwdJrukPVpM5GdfNORMlngnGf3BTXKwFbpm+orwFbR+Fx5fL0smmrIxbE/r6sxaAIQmth8nVWvwcZPWi6vM/qGxzKHQu8L4fSHApcvnOkLaJjDfL1AzKFg2re+f16YL/ihbz/BqfBYD/kh0XReXwXAKXETmFc8n2Ufp3H+7W1/rQohhBBCCCGEaN8kYCHarfrqxoCFx+umoQktbNxxMP67EMcZXXAwBAcHzDPExtJt5c94amtxFRTiKizAVVCAu6DA97pg3+vSUozJgTkh3CUl/uee6mo81dU4cnKab9diofuvqwPmlb3yCvWrV2OIiUWFhxNZWoonNJT6EAskJqCPikIfGYXOEnLMG0+NeiMpoSmkhKYccJ2vz/8aq8tKSX0JZbYyiuuLqbBVUGEPnNLCAnNBVNibD8/VVJ2rjjpXHfl1+c2Gk/qp4Cdm/jKzWRkNjXBzOBGmCMJMYXSO6MzMEYHrLclfQoW9gjBTGGHGMEJNoYQZw7CYLIQaQzHp22FOiKBwGHD5wddRChw1vkBAU8kD4LT7wVblC17Yqxuf26p9rx3VvsDB/uzVB96e17UvWFLR8nrLnwa37eB1BrjoTeh1XuPrwt/g67/7gjSm0H2PFjBaGp83LOtzEeib/CtoLQdX/b71Q/5wL5CB53ahzr4d59ZqzPoQBkf1Y9mmZeSu60Rm/+ZDxwkhhBBCCCGEEA0kYCHaLXtdY0ON5mlMfCsBCyE6Fn1YGPruYQR179bicuV0giHw68iQEE/YGWfgLinxT/v34ADQx8Q0m2f/7Tesi5f4XzcMwlTy4YcB60Wcfz7JM2cEzCue9QSayYQ+PBxdeBj6sHD04WHowsLRR4SjCwtDHxaGZji6X58Wo4XOEZ3pHNH5sMukhKXw9JinqXJU+SZ7FZWOSv/zhvnVjmqizIG9BqqdLTekKxTVjmqqHb7lnhYSYr+16S1WFq08YL2MOiOhxlAu7Xkp1550rX++V3mZsXIGIYYQQowhWIwWLEaL77nBEvA6XGuDoYM0reWgQ3I/33QwXo+voX9/g66GzNG+QIi9OnBy1ICjDhy1vhwaTXlchxesAF+Pi6aspbD318Mr2+eiwNfL/ws/PdP4WtP5AhfGEDDtezQGQ9oQOCPw2tGvepnuhWtwGCPRHKcQc3EPCp5ciWZTJASn082+lyUf/kp6n/HoDe24F48QQgghhBBCiDYlAQvRbrmsDmDfXcFuX6OZMTmZoF6SuFOI44nWQo6K0GHDCB02zP9aKYW3uhpXSQnuklLcxcW4y8vRBTVP2u2uqDys7eojAhunlddLxZtvNhueqiWpL75A2OjR/tf2rVspf+kldJZQdGFh6EIt6END0YU2fR6KzmLBlJl5VHp2hJvCOa3TaYdcz+P1NBvmaUTKCMKMYVQ7q/0BimpnNTWOGqod1VQ5qqhz1RFqDG32fjXOmoNuz+V1UemoxOMNDHbY3DY+3PrhAUoFemnMSwGvl+Yv5Z+//JNgQ3DgZAx8HWYMY2rvqQFld1bvpMZRQ5AhyL+eWW8myBCESWc6Or1sdHrf8Ez7637GH3s/TQdXfO8LZjhqfDk2HPtybThqG187aiEssHeSL+G4Bk1yp7RIbwrsXQHNgy7K25jjo+nIZSHNA4WGdW+SXbHDV+y1uWjnPU/85SdT8tJ6NDR6RQ6hrHghvy3sQf9x6c3KCyGEEEIIIYQQIAEL0Y65bE7AN8SM2tfDImzcOBn/WogTkKZp6CMj0UdGQreWe2o0SH/rTTzV1bjLyqgvLGTdokXorVayEhPR1dXhqarCXVmJOatrQDlvTc1hBSsA9KGBDfmu/Hxqvv3uMArqyd64IWBWydNPU/Ptt+gsFvQhFnQWi2+4quBgdMEh6IKD0YUEY87KIuz00wPK2jdvBk1DCwryrRcUhBYcjGZqbIjffzgoOHDOjaaUUji9zXu13NDvBoqtxdS6aql1+iary4rVZfUNQ+X0DUUVExzYqF3nrDv032cfi8FCKaX+11WOKvbU7jlkuQhzRLOAxWsbXuPLHV+2uL6GRpAhCLPezISMCdw/5P6A5fcuvRe7x45Zbw6cDIGvT0k6hfTwxkb4elc926u2Y9abMelN/kf/80MFSnR6SD/1kPvbouw/w/RKcNnAad0XcLA2f75/cnGAxJOg57ngrPcFL5xW3/u49r1ueG4MaV7W1aRXZF0hvHMB5pOvJK/LJDrtcKLTdJwSM4hFc76jx9CrCLK0n7wbQgghhBBCCCHaDwlYNLFq1SqmT5/OTz/9hMvlok+fPkybNo2LL774sN/D4XAwa9Ys3n77bfLy8oiOjuass87iscceIz4+/tBvIPy89XaaBSzGy3BQQoiD0/R6DNHRGKKjUWlp1FZVARA1fjzB++XZaEpnsZDxySd4a6rx1NTiqa3BW1ODp6YWb63v0VNTjbemttlQVN66w2uM11kszRqq3UXFuHYfujE+bPz4ZgGLvBtuxF1U1HxlTfMFPIKC0ILMJNxxB+Fnnulf7CospPiJJ9CZfct9j0HogsxoTeeZzRjHnubLUbLP8JA+uG3J6MLNaGazLzjSMBmNB2yIjw6K5sOzPsTqslLvqvcFOdxNnu+b6l31RAVFsYtdAeUjzBHYXLYWgygNgg3Nj6/tIEMrKRQ2tw2b24bD0zw5/KK8RdS6ag9YvsGsEbMCAhY7q3dyybeXHLSMUWfEpDcx98K5RJgbe/vM2TaHOTlzMOqMGPVGTDpfoMOkM2HUG/3l0sLSuKznZQHv+cPuH6h0VPrKNp30RoxGIwZzJEZdHImWROJDGv8n8SovlfZKjH3Ox3DSRRh1Rgw6Q8vHUinwupvNdp77Cmt/+pEupXOJr93om7n6dYZELuRX3aMkeSMJMYRzkimI5R+uYeyVpxzy7yrEie5o/DYRQgghhBCio5GAxT4LFy5kwoQJBAUFMWnSJMLCwpgzZw4TJ04kLy+P22+//ZDv4fV6Offcc5k7dy5DhgzhwgsvJCcnh1dffZUFCxbw888/ExcnySYPm80G+MZd93rd6GKiCe7Xr02rJIQ4fmlGI8G9e/2hsmETJtBl4EC8dXV46+rw1NbirbPite57XluH12ptMfeFZjKhi4jAa7WCu3lDcANdSPO72r22AzTGK4Wqr8dT7xviR7lcAYvdFRXUfvf9Ye1b1rKlAQGLqk8/pfTf/zng+g3Bi6CePUl/603/fKPeSPT/fYpl69bG4EaLjzEYnNsC3vOsjDMZtrIWLciI0utw6RROvcKpeXDqvDg1Dw7cKIMeT11dQA+YMfHDSHeFU6+c2JSTehzU48DmdeLwOv3Birjg5t/PNs/h5ZEw6wOHJmsp+LE/l9eFy+vCqAvsaVBgLWBD2YYDlGrUN65vs4DF6xtfP6yyN/S9gev7Xe9/XeeqY/RHo5utZ9AMGHQGfwDDoDPw3Njn6BnTODTjioIVPLfuOfToqdZXE5SYyvk9B3DGujlEOqzoqnLpb7yV3bYXMeuCSQ3pwpqVP1N5Zm+iEi2HrKsQJ6qj8dtECCGEEEKIjkgCFoDb7eaaa65Bp9OxZMkS+u1rFH/wwQcZPHgw9957L3/5y19ITz/4mMtvvvkmc+fOZfLkybz77rv+OxNffPFFrr/+eu6//35eeumlg76HaGRpMq6906yIOv98NH3zoU2EEKKt6YKCMKWm/qGySQ8/RNLDD6GUQjmdeK1WvPX1eOvrUTYbXpsNb70NQwu99CL/cqEvGGK3oewO36PNjtduR9ltePc914UF5ldQjkM3qDfQzIGN8cpx4B4O4EuirpzOFoMp9s2bsa1de8htRhj0kJXVZJsOih959IDrm/ZNAI53ehJy8sn+ZaP2htP15gPkzjAY0PR6NIMBXeinsPiWgMVfll+C7YeFeA06lE5D6XR49eDV6/DowKvT8Oggzvob3DDWXy42OJbHNvZAs9px67y4NYVL8+LWvLjw4NK8vgkv3sG50KMxUKarszH6Ny8eDbw68DY8NjzXwKODLtX1eB0OdE2Oj6nGRnqxCljXu//7aBBcHxgYc3vd6D2+nBdeHah9/7+4lRu3x43dY288Fvvlxii3l/Nb6W8B8zaXbGZWSjyneAxMKC/gtPoK4oz/psbjG3Krb8RJzH/6Uy6eGRhwEUL4HK3fJkIIIYQQQnREErAAfvzxR3bs2MEVV1zh/0EAEBERwb333svUqVN58803efDBBw/6Pq+88goAM2fODBhG4brrruNf//oX7777Lv/9738POiSJaGRUjUliI7r3IH7aWW1YGyGEOLY0TUMzm30N0NHRh1Um4c47/9C2gnr3pssPP6Ac+4IbDgfKbsdrd+yb5/DNczrRBQUFlu2RTcRfLkQ5nL51HA6Uy4nX6UQ5Xf6AhTE1pdl29+/pcSCaIbDXgTpIz5PmZff71+ZgZd1ulNt9wACOvrQSz/adje8N6PdNTWtojEgLKJceno7zlxLcxcWHrK9r6OaAgMXVieez85s3DlkOfsdzUQW6pCT/nBuKehP2+pZDlvSkfwZzb/a/1mt6Zn0VQaffK/zzfAEODaU1BDF88wyFH8PdjfV1e1w8939uf3DEaYTCaI28WC95cS5eio3m8ZQoRrn3cGZxJd3ro9DrDPR2hrNh6Vb6jOh+GPsqxInlaP02EUIIIYQQoiOSgAWwaNEiAMaPH99s2YQJEwBYvHjxQd/DbrezcuVKunfv3uxuJ03TGDduHC+99BKrV69mxIgRh123/Pz8gy7Py8vzP9+9e/dhv29HUFRShN7ma2gqCrGSk5PTxjU6ehwOB2VlZQDs2LED8353MIv2R45ZxyTH7TCYTL5pv14YDcp37Qqc0akTTJlyyLe1QfPP7RmPY3C7US6Xb2rynIbnbjelYWGU5eYC+46bTofz1lt9yz0ecPseG9bH7d43381uqxV9k+067HbqBg1Cedwolxs8vnWV2w0eD8rtAY/bl8Njv/pW1tRQr9P53/tAaurqsO1XtsBqxXsYARpHSQllTcq6cnMpPtzAzu496JvkTzHYQyg6jLIGt67ZsQnTJVHkOnSAxVthCyjbS/Uiv8y3TR0QBHTeC52blHHroC7GTPRtDjb9uJ1ofTgAu9/4DlO8hk53kATk4phq+r+j+wgCg+LYOhq/TZo6kt8Tubm52A403GAL3DVlh72uaDut9TtKzof2T84F0ZScD6JBa7a3yfnQ/h3J+VDUJKfmUf09oYT6y1/+ogC1evXqFpeHhoaqtLS0g77Hxo0bFaDOOuusFpc/+eSTClCvvfbaEdUNkEkmmWSSSSaZZJJJpmM6/fLLL0f0P6o4do7Gb5Om2vrckkkmmWSSSSaZZJLp+J+O5u+JxjF3TmDV1dWAr5t1S8LDw/3r/C/v0XQ9IYQQQggh2oviwxjCTLSOo/HbRAghhBBCiI5KhoRq55p20W5Jbm4uI0eOBOCnn34iLS3toOuL9qGwsJDBgwcD8Msvv5DUZAxy0T7JMeuY5Lh1THLcOh45Zh1TXl4eQ4cOBSA7O7uNayOOlUP9nrDb7WzZsoWEhATi4uIw7J8L6AQhn2OigZwLoik5H0RTcj6IBnIu+LjdbkpLSwHo06fPUXvfE/O/0f003L10oDuVampqiIqK+p/fo+l6hys1NfWw101LSzui9UX7kJSUJMetg5Fj1jHJceuY5Lh1PHLMOqagoKC2roLY52j8NmnqcK7Hrl27Hvb7nQjkc0w0kHNBNCXng2hKzgfR4EQ/FzIyMo76e8qQUEBWVhbQclKRoqIi6urq/OscSGZmJjpd8ySWDRrmH+p9hBBCCCGEECeuo/HbRAghhBBCiI5KAhbAqFGjAJg3b16zZXPnzg1Y50CCg4MZPHgwW7duZffu3QHLlFLMnz8fi8XCySeffJRqLYQQQgghhDjeHI3fJkIIIYQQQnRUErAAxo4dS2ZmJu+99x7r1q3zz6+urmbGjBmYTCYuv/xy//zCwkK2bNnSrJv2tddeC8A999yDUso//6WXXmLnzp1ccsklBAcHH9udEUIIIYQQQnRYR/rbRAghhBBCiOOJ5LAADAYDr776KhMmTGDkyJFMmjSJsLAw5syZw+7du3nyyScDxuO65557ePPNN3njjTeYOnWqf/6UKVP48MMPef/998nNzWXUqFFs376dTz/9lM6dO/PYY4+1/s4JIYQQQgghOowj/W0ihBBCCCHE8UR6WOwzZswYli1bxrBhw/jwww954YUXSEhI4IMPPuD2228/rPfQ6XR88cUXPPTQQ5SWlvLUU0+xfPlyrrrqKlasWEFcXNwx3gshhBBCCCFER3c0fpsIIYQQQgjREUkPiyYGDx7Md999d8j1Zs+ezezZs1tcZjabmT59OtOnTz/KtRNCCCGEEEKcKA73t4kQQgghhBDHE+lhIYQQQgghhBBCCCGEEEKINqepptmhhRBCCCGEEEIIIYQQQggh2oD0sBBCCCGEEEIIIYQQQgghRJuTgIUQQgghhBBCCCGEEEIIIdqcBCyEEEIIIYQQQgghhBBCCNHmJGAhhBBCCCGEEEIIIYQQQog2JwELIYQQQgghhBBCCCGEEEK0OQlYCCGEEEIIIYQQQgghhBCizUnAQgghhBBCCCGEEEIIIYQQbU4CFkIIIYQQQgghhBBCCCGEaHMSsBBCCCGEEEIIIYQQQgghRJuTgIUQQgghhBBCCCGEEEIIIdqcBCw6sFWrVnHmmWcSGRmJxWJhyJAhfPTRR21dLXEQGRkZaJrW4jR69Oi2rt4J7Z133uG6667j5JNPxmw2o2kas2fPPuD6NTU1TJs2jfT0dMxmMxkZGdx5553U1dW1XqXFER23hx566IDXn6Zp7Nq1q1XrfqLau3cv//3vfxk/fjydOnXCZDKRmJjIhRdeyMqVK1ssI9db2zrSYybXWvtgt9uZNm0aI0eOJDk5maCgIBITExk2bBhvvPEGLperWRm51sTxSCnV1lUQ7YScC0IIIQ5GvifaD0NbV0D8MQsXLmTChAkEBQUxadIkwsLCmDNnDhMnTiQvL4/bb7+9rasoDiAiIoK///3vzeZnZGS0el1Eo/vvv5/du3cTGxtLUlISu3fvPuC6VquVUaNGsW7dOsaPH8/kyZNZu3YtTz75JIsXL2bJkiUEBQW1Yu1PXEdy3BpMmTKlxestMjLy6FdQNPPss88ya9YsunTpwvjx44mLiyMnJ4fPP/+czz//nPfee4+JEyf615frre0d6TFrINda26qrq+OFF15g8ODB/PnPfyYuLo7Kykq+++47rrzySj744AO+++47dDrf/UtyrYnjkVIKTdPauhqiHZBzQQjRVEPDtHwuiKYazge73S7/97Y1JTocl8ulunTposxms1q7dq1/flVVlerWrZsymUxq165dbVdBcUDp6ekqPT29rashWjB//nz/dTNz5kwFqDfeeKPFdR988EEFqH/84x8B8//xj38oQM2YMeNYV1fscyTHbfr06QpQCxcubL0KimbmzJmjFi1a1Gz+kiVLlNFoVFFRUcput/vny/XW9o70mMm11j54PB7lcDiazXe5XGr06NEKUF9//bV/vlxr4ni1bNkydcUVVyin09nWVRFtzOPxqGnTpqnPPvvM/1oIcWKz2Wz+5/I9Ibxer7rnnnvUbbfdFvD7RrQ+GRKqA/rxxx/ZsWMHf/3rX+nXr59/fkREBPfeey9Op5M333yz7SooRAd0+umnk56efsj1lFK8+uqrhIaG8sADDwQse+CBBwgNDeXVV189VtUU+znc4ybajwsuuIBRo0Y1mz9ixAjGjBlDZWUlGzZsAOR6ay+O5JiJ9kOn02EymZrNNxgMnH/++QBs374dkGtNHL/cbjfXXXcds2fPZu3atYAM93Aie/fdd3nqqad45513APw9zMSJyev1tnUVRBt75JFHmDhxIlu2bAHAaDSilKK+vr6NaybaysqVK5k1axbz58/HbDa3dXVOaPIN3QEtWrQIgPHjxzdbNmHCBAAWL17cmlUSR8DhcDB79mxmzJjBc889d8Ax20X7lJOTQ0FBAcOGDcNisQQss1gsDBs2jJ07d5KXl9dGNRSHsmTJEmbNmsW//vUvPv/8cxmbvR0xGo2Ar0EV5HrrCPY/Zk3JtdY+eb1evv/+ewB69+4NyLUmOr6WghAejweDwcDll18O4D/vZfiP49/+50PD63POOYeIiAh+//13f8BWnLgkYHVis9lsbNu2ja+++oo1a9YAMHv2bPR6Pc8880wb104cawcKWA4aNIgBAwawadMmli1bBsiNDm1Fclh0QDk5OQBkZWU1W5aYmEhoaKh/HdH+FBUVccUVVwTMGzRoEO+//z5dunRpo1qJw3Ww669h/ty5c8nJySEtLa01qyYO0/Tp0wNeR0ZG8vTTT/sbNETb2LNnDz/88ANJSUn06dMHkOutvWvpmDUl11r74HQ6mTFjBkopysvLWbBgAVu2bOGKK65g7NixgFxromPzer3+hseGMae9Xi96vR6AoUOHEh4ezrZt27Barc2CcuL4ofblqdA0DafT6e9lpmkaSimCgoKYMGEC8+fPp6CggK5du7ZxjUVrUkqhlPJ/Xvz22288/fTT3HLLLfTt27eNaydaW1BQEI899hgrV67k8ccf55FHHmHbtm2cdtpp9OjRI+C7RRw/Gr4ndDpds/8JPB4Per2eSZMm8euvv7J48WKGDx8uNzq0Ebn6OqDq6mrANwRUS8LDw/3riPbliiuuYMGCBRQXF2O1Wlm7di2XXXYZq1atYuzYsdTW1rZ1FcUhHM7113Q90X707duX119/nZ07d2Kz2cjNzeXZZ59F0zSmTp3Kl19+2dZVPGG5XC4uu+wyHA4Hs2bN8jcyyfXWfh3omIFca+2N0+nk4Ycf5pFHHuH5559n69at3HHHHbz88sv+deRaEx2ZTqfj119/5eKLL+bpp5/2N0h6PB4AYmNjSUlJYeHChf67JOVuyeNTQ6PS9OnTufrqq1m9ejXgGxpM0zRMJhM9evSgsrKS3377DcB/nojjm8fj8TdS1tfXU1FRweeff84bb7zB999/L71ATyCqSbJti8WCwWBg69atVFdX89RTT/H2229z7rnnSrDiONXwPTFz5kxOOukkPv74Y8B3XjT8nhk4cCDh4eFs2bIFh8PRZnU90UkPCyFa0f53m/br14+33noLgLfffptXXnmFadOmtUXVhDjuNYzZ3iAjI4ObbrqJHj16MG7cOO6//37OOeecNqrdicvr9TJ16lSWLFnCNddcw2WXXdbWVRKHcKhjJtda+xIaGopSCq/XS0FBAV999RX33nsvK1as4Ntvv/UHI4ToyC688EL27NnDzz//jF6v54477vA3NmVnZ5Odnc1nn33GN998w8SJE9u4tuJYeuutt3j00UfRNI1du3bx3XffYbFY/HfVDhs2DID33nuPm266KSDgLo5fDcf50Ucf5eOPP/Y3VOt0Oj755BNOPfVURo4c2ca1FMdSw93zTe+W/+STT/B6vcTGxqLT6ejZsydJSUlA45344vizePFi7rvvPgCuv/56UlNTGTx4sP9zIjExkcTERObOnYvL5cJsNsv50AYkZNgBNdz9dqC73Gpqag54h5xon6677joAli9f3sY1EYdyONdf0/VE+zd27Fi6dOnChg0b/MdPtA6v18uVV17Je++9x6WXXsqLL74YsFyut/bnUMfsYORaa1s6nY7U1FSuv/56Xn75ZZYvX87jjz8OyLUmOoYD5akAuPrqqwE46aSTuPvuu3n//fcD7oq85JJLAF8jhcvlkkaH48CBesmcdtppJCQk0KNHD/Lz8/nLX/5Cfn6+/5iffvrpZGdns337dskleALJz89n3LhxTJ8+nYEDBzJhwgTOO+88QkND+fXXX/nkk08oLS1t62qKY6Dhpo2GxuglS5bw7LPP8vPPP3P99dfz4Ycf8uSTT1JcXMxHH31EcXFxG9dYHC0HylMxatQosrOz6datGwkJCVx66aUBPcCzs7Pp3bs3ZWVlfPHFF61VXbEfCVh0QA3jC7eUp6KoqIi6uroDjkEs2qfY2FgArFZrG9dEHMrBrr+m8+Ua7FgarsH6+vo2rsmJw+v1csUVV/Dmm28yefJkZs+e3azrtVxv7cvhHLNDkWutfRg/fjwAixYtAuRaE+1f0zsbG4IUTYdv6NWrF6GhoQwZMoTrrruOa665htmzZ/vLZ2dnk5aWxtatW2UI1uOEpmktNkYZjUYGDBiA1+vl6aefZsGCBdxxxx1s3boV8A2Td+aZZ1JTU8PevXtbu9qijSxevJjFixdz/fXXM2vWLB566CFuv/125syZw8knn8w777zDTz/91NbVFMdAw1BgGzdu5LTTTuPss8/m0Ucf5dFHH8XhcNCvXz/OP/98zjvvPD766CN+/PFHfznRsel0OpxOp/+1Usr/P8QFF1xAVVUVc+bMQafTcdddd/mPPTTe6PDzzz/jdDrlfGgDErDogEaNGgXAvHnzmi2bO3duwDqiY2i4uycjI6NtKyIOKSsri+TkZJYvX94swGS1Wlm+fDmdO3eWpKQdiNVqZdOmTVgsFn9jqji2Ghq+33rrLSZOnMjbb7/d4pAMcr21H4d7zA5GrrX2o6CgAPA17IFca6L90zSN3NxcLr74Yt5//31/TgK32w1A586diY2NZc+ePfz73/+mb9++PPTQQ7zxxhsAREdHk5mZyZIlS/w9hg5056XoGP79739z0003+QMRDY1QCQkJdOnSherqarKzs/m///s/5s6dy8033wyAyWQiOzsbp9PJsmXLAsqKju1guWkahmH+29/+Rnx8vP/6Hzt2LHfffTeapvH666+za9eu1qiqaCUN58T777/P2LFj2bt3L7fddhsfffQRn3/+OWazGQCLxcJtt92Gpmm8/fbbbN++HcD/HSM6hv0/A1544QWGDh3q7z3R9EaH/v37U1paSl5eHh9//DGhoaFceumlrF27FqUUPXr0IDU1ld9//13yWLQRCVh0QGPHjiUzM5P33nuPdevW+edXV1czY8YMTCYTl19+edtVULRoy5YtLd5RumXLFv7xj38A8Ne//rW1qyWOkKZpXH311dTV1fHoo48GLHv00Uepq6vjmmuuaaPaiQOpra1l27ZtzebbbDauueYaamtrufjiizEYJLXTsdYwpNBbb73FRRddxDvvvHPAhm+53tqHIzlmcq21H5s3b27x/476+np/vqwzzzwTkGtNtD8tBRM+/PBDPvnkE+6++25/74mGXl79+vUjNTWVNWvWoNfrefHFF+nfvz833ngjX331FYmJiQwdOhSPx8OHH34YUFa0b03viG3w22+/8c477/Diiy/y4IMPUlNTg16v9zcunnHGGRQWFrJmzRquvvpq7rrrLpYtW8bll19OTU0Np59+Opqm8dlnn/nLSiL2jqvh/GjpDmiPx4PL5cJisRAaGkpiYqJ/3YZjPnz4cM444wzmzp3LvHnzAu7IFh2bpmnU1tbyn//8h5CQEJ599lnuv/9+Ro8e7b9po8HAgQO59tprmTdvHl999RUej8f//2pFRUVbVF8cpoZhv5p+BpSUlLB9+3bWrFnDjTfeyLZt2wK+97t3705iYiJz5syhX79+PP/884SGhnL55Zfz448/kpmZSadOnfjxxx/9w8XJjQ6tS1PyzdwhLVy4kAkTJhAUFMSkSZMICwtjzpw57N69myeffJLbb7+9raso9vPQQw/xn//8h5EjR5Keno7FYmHbtm18++23uFwu7rnnHmbMmNHW1Txhvfrqq/67rDZs2MCaNWsYNmwYXbt2BXz/yDaMj2y1Whk2bBjr169n/PjxDBgwgDVr1jBv3jwGDRrE4sWLCQ4ObrN9OZEc7nHbtWsXmZmZDBo0iB49epCYmEhxcTE//PAD+fn59OnTh4ULFxITE9OWu3NCeOihh3j44YcJDQ3l1ltvbbHh+rzzzqNfv36AXG/twZEcM7nW2o+G/zuGDx9ORkYG4eHh7N27l++++47y8nJGjBjB3Llz/dePXGuiPXrvvfeIi4tj3LhxVFRUMH/+fCZPnoxer+eHH34I6FX+6quvcv3117N582aysrL47bffuPnmm/n999958cUX6du3L1lZWVxwwQW89tprkpOlg8nJyeHrr7/mtttuA3w3fd18880sWLCAKVOm8Morr/i/n2w2G9nZ2Zxxxhm89NJLlJeX8+GHH3LTTTcxZcoUnnnmGa677jo++ugjvvzyS3/wVnQ8TYeLW7hwIT///DOZmZkMHDjQ/3sAYPLkyXz44Ye8+eabXHbZZXi93oDGy//85z/ccccdjB07llmzZjFgwIBW3xdxbHz88cdMnDiRl19+2f97/kAJlLdu3crZZ5+NyWTihRdeoG/fvnz11Ve8/fbb/POf//T/PhHt05YtW/j3v//NK6+84p9366238uyzzzJkyBD++c9/MnLkSP+yMWPGYLVa+e6774iJiWHt2rWcccYZREZG8sMPP/Dmm2/y4IMP8thjj3Hvvfe2xS6d2JTosFauXKnOOOMMFR4eroKDg9XgwYPVBx980NbVEgewaNEidfHFF6usrCwVHh6uDAaDSkxMVOeee66aO3duW1fvhDdlyhQFHHCaMmVKwPpVVVXq73//u0pLS1NGo1F16tRJ3X777aqmpqZtduAEdbjHrbq6Wt14441q0KBBKi4uThkMBhUWFqYGDx6snnjiCVVfX9+2O3ICOdQxA9Qbb7wRUEaut7Z1JMdMrrX2Y9WqVeqaa65RvXr1UpGRkcpgMKiYmBg1ZswY9dJLLymXy9WsjFxror3YunWr6tSpk9I0TZ1xxhkB5+usWbOUpmmqa9eu6pNPPvHPX7JkiQoPD1cPPfSQf15hYaHq0aOHio+PV6+88ooaM2aMOumkk9SePXtadX/EH+f1etWdd96pNE1TQUFB6osvvvAv2717t+rdu7fSNE1NmzZN7dy5Uynl+yy77LLLVFJSkrLb7f7177nnHhUaGqouvPBC9eKLLyq9Xq9eeOEF/3ZE++RwOJRSSnk8Hv+8pp8JBQUF6uyzz1aapvmn7OxstXz5cv8633//vdI0TY0bN07V1tYqpZRyu93K6XQqpZRasGCBv+zDDz+srFZra+yaaAW33Xab0jRNff7550op1eL/Pw28Xq+aPXu20jRNJSQkqKFDh6qQkBAVHBysVq5c2VpVFn/Afffd57+G//vf//rnV1VVqZtvvlmZzWY1ePBgtWzZMv+yl19+Wen1erVt2zb/vI8++khlZGSoQYMGqTfffFNpmqYmT56sysvLW3V/hFISsBBCCCGEEEII0W58/PHHStM0ZTAYVHR0tHr99df9y9xut3r88cdVVFSUysjIUB999JFSSqk9e/aovn37qgkTJgQE2RYtWqSGDx+uzGazyszMVJqmqSVLliilAhtARftUWlqqhgwZojRNU2azWZ155pkBwe+FCxeq0047Ten1ejV16lR/4GHGjBkqPDxcffbZZ/513W63+sc//qGCg4P958K5556rlJKARXvk8XjUtGnT1A033NBiI3PDvLvvvltlZGSo6dOnqzlz5vgbLrt16+YPTiil1NixY5Wmaeqxxx4LeB+v16umTp2qhg0bpkaMGKEyMzNVbm7uMd03cew1fL4/9dRTStM09fzzz7d4nbf0PfDQQw+poUOHqj59+qgnn3zymNdV/O+uvfZapWmaioyMVCEhIaq6utq/bO/everuu+/2BzMLCgqUUkotW7ZMhYWFqQceeMC/rtfrVd9++61KSEhQycnJKigoSA0ePFgVFxe3+j6d6GTgTiGEEEIIIYQQrUodZGTioKAgoqOjOeOMM6isrOTll1+muLgYAL1ez0033cTjjz/O7t27ufbaa1m9ejVpaWkMHjyYjRs3kp+f73+vUaNG8eSTTzJgwAByc3MBePfddwHJY9ERhIeHExQUxMCBA+ncuTPfffcdb7/9tn/56NGjeeaZZ+jduzdvvvmmf2jkiy66iNraWrZu3YrX68Xr9aLX67ntttt46KGH/OfCl19+yZ49e1ocHka0LafTyWuvvcYbb7zBb7/9FrBswYIFmEwmHnroIX755Reuu+467rnnHi644AIee+wxpk2bRk5ODjNnzvSX+fe//41Op+OBBx7g6aefZs+ePfz+++889dRTrFixghtuuIHzzz+f3NxcfvnlF+Dgn1OifWv4fO/UqRMWi4Xly5dTU1PjX95wbHU6HU6nk59++sm/bPr06cybN49ffvnF/5kiCbjb1sGuRa/XS0JCAklJSfTr1w+bzcZdd93lL5ecnMzMmTOZPHkyW7duZerUqaxbt44+ffqQlpbG6tWrqa6uBnx5T/70pz/x9ttvY7VacTgcrFq1KuD/CtE65D80IYQQQgghhBCtQvl6+Qc0EO+fyHLMmDHYbDaGDx/OlVdeycqVK3n11Vf9y8PDw7n++uu56667qK6u5sorr+THH3/ksssuo6CggD179gCNDUynnHIKr7zyClFRUVx++eWSN64d2T+hdlNerxeTyUT//v0pLy9n1qxZALzwwgv+xiOPx0OvXr146623yMzM5L///S/3338/YWFhjB8/nrlz5wYEphISErjrrru45JJLSE9P59NPP6VTp07HdifFHxIUFMQ333zD7Nmzm+WU8Hg8WCwW/vWvf1FcXMxdd92F2Wz2J8y+5pprGDp0KE899RQbN24EoG/fvrz00kt06dKF2267jQEDBjB8+HDuuOMOunXrxsSJE8nKygJg1apVQMuJvEXH0NDAPWDAAIYMGcInn3zCF198gd1uBxqPbV5eHldeeSW33nordXV1/vIWi4WgoCA8Hg9KqRZzuInW4fF4DngtKqXQ6XSkp6fjcDi49NJLSUtL4+WXX2bjxo1omuY/5k888QRXXXUVCxYs4KabbsLj8XDWWWexfv16ioqKAt5z3LhxPPzww4wbN453331X8tq0AQlYCCGEEEIIIYRoFZqmoWkaa9as4bnnngOa93Sw2Wx0796dZcuW8fDDDxMUFMQrr7ziv8u6oVHyvvvu4/7772f79u3cfPPNrF+/nv79+/PWW28B+BuYvF4vvXr1YsuWLcyePZvo6OhmQRLRNvR6PV6vl+eee44tW7YELGs4L7p168bu3bvp1KkTt912G+vXr+fFF18MKH/SSSfxzDPPcMopp/DEE0/w4IMPMmzYMFauXMnOnTvR6XT+nhYAr7zyCrm5uZx33nmtur+iuYagVUt3UA8bNoyLL76Y/Px8FixY4J8/fvx4rrrqKlwuFxERETgcDjweDyaTCYDu3bszZcoU3G43jzzyiL/cVVddxQ8//MDNN9/M+PHjGT58OB9++CFffvkler3e37DZELgQHVdDA3dGRgZTp04lPj6e++67j2eeeQaXy0V1dTXff/89d999N3PnzuXcc89tMSih1+slcNXGGj7n7733XubPn+//zPB6vf5jM3z4cCoqKkhKSuLxxx8H4JZbbgF8wU+lFCkpKUyfPp2rr76an376iQsuuIB+/fpRWFhIXl4egD9ABXDDDTcwd+5cJk+eDEiPq1bXBsNQCSGEEEIIIYQ4AdntdvXXv/7Vnxzz0Ucf9Y8X73a7/euNHj1a9e/fX9XV1akHHnhAaZqmrrvuOv/yhnWrqqrUY489pjRNU7Gxsapbt25q0KBBateuXS1u3+v1BmxHtK3vv/9emc1mpWma6t+/v1q6dKl/WcNx+vTTT5VOp1MffPCBys3NVWFhYSo5OVn98ssvSinlT5zs8XjU2rVrVWpqqtI0TfXs2VMlJiaqp59+utl2G8ayP1gCXtG6GnKT2Gy2gPlFRUXKZDKp7t27ByTH3bJli8rOzlY6nU5t3bpVKeU7ZxpyEpSVlam//OUvStM09e233/qXt8Tr9ar58+er7OxslZqaqrZv337U908cuf/1s7rhOrdarertt99WoaGhStM0lZ6errKyslRUVJQKDg5WTzzxxNGorjhGFi1apIxGo9I0TaWkpATknGiwceNGFRMTo2699Vbl9XrV0KFDlaZpas6cOUqpxu8JpXzfFWeeeaY/142maeryyy8/4Pblf4a2IT0shBBCCCGEEEIcdaqFuxErKir8QzalpKTw6KOPctVVV1FUVIRer/evN2zYMHJzczGZTNx555106tSJd955h++++y7g/SIiIrjvvvu4+uqr8Xq95OTkkJOT489RsD9N0wK2I9qO1+slLy8Pp9NJfHw8GzduZOrUqTzzzDMA/uM0ZMgQzGYzhYWFZGRkcNddd1FYWOjvoWM0GvF6veh0Ovr168fs2bPp2rUrW7Zsobi4mJycHOrr6wO23XBXrgzz0vZ+/fVXwsPDufXWWwHf3dAAP/30E8XFxSQkJHDTTTexbds2PvjgA3+57t27c+2116KUYvr06YCvV45Op0Mf7RutAABtSElEQVQpRUxMDFOmTCEhIYGHH34Ym83W4rW/YsUKZs2axS233EJubi633347nTt3boU9FwejlPIfr+XLl/Prr7+yc+fOgOWH0nCdh4SEcOmll7JgwQIefPBBsrKy6NatG1OnTmXHjh3ceeedQPPhCUXra+m4pqWl4Xa7CQsLw2g08sILL3D11Vf7c1sB9OrVi6ioKPLy8tA0jTvuuAOAadOmAb7vCaUUHo8HnU7Hk08+yZQpU8jJyQFg9erV/l4W+5P/GdpIGwZLhBBCCCGEEEIcZ7xer/8u56bzGh6///57FRwcrM4++2x1ySWXqE6dOql+/fr574JWSqlnn31W6fV6NW/ePKWUUm+88YbSNE2deeaZ/juwm/aWKCgoUHfddZfSNE39+c9/VtXV1a2xq+IwNJwLDedAU8XFxeqCCy5QcXFx6pprrlHjxo1TOp1OPfbYY6qgoEAppdSOHTtU165d1QUXXKCU8t2J3717d2U2m9Vnn30WsI0GH330kerZs6fSNE198803x3DvxP8qLy9PRUVFqZiYGFVUVKQ2btyounfvrtLS0tSCBQuUUkqVlJSoTp06qaysLLV8+XJ/2crKSjV69GilaZpatmyZUsrXa6ZpD5prrrlGaZqmPv7444DtOhwOdcEFF6j4+HgVHBysBg0apFasWNFKey1a4vV6Az4nfv31VzV06FBlMBiUpmnKbDara6+9Vu3cufN/3lZDjx6lfHfQt/T5JFpP014MTXtDNPSCu+eee5SmaWrChAlq1qxZStM0dfrpp6vffvvNv+6kSZNUZmam//XFF1+sNE1TM2bMaLYNpZTavXu3Ouuss5SmaerTTz89Jvsl/jgJWAghhBBCCCGEOCqaNgisWrVKTZ48WVVUVASsU11dra644gplsVjUgw8+qH788UeVnJysYmNj1RtvvKGUUmrhwoVK0zT1wQcfKKV8DVkNDZMvvfSSf15TZWVlasuWLcdw78SR2P/4HGj4pfnz56uQkBB1xhlnqK+++krddttt/sBTQ6PioEGD1KhRo1RlZaVSyheQ0DRNjR07VtXU1CilfEGLpg3VW7ZskUbIdq7h8+L9999XmqaptLQ0pWma6tu3r3r66adVSUmJf91XXnlFaZqm/va3vym73e6f//HHHyudTqcGDBgQ8N4NQaw1a9aoL774ImBZw3nxxRdfqPvvvz9g+f6N5qL1eTwelZ+fr3r06KH69u2rbrvtNvXAAw/4vwOGDx/uD2gejW2JtrP/tXbXXXepm266SRUVFSmlGo+P2+1WcXFxStM0tXz5cvX++++rqKgo1blzZzV//nyllFLTpk1TkZGRatWqVUop37UfFhamDAaD/7Nk/6CFzWaT672dkoCFEEIIIYQQQoj/SdNGn6qqKnX55ZcrTdNUYmKiv/GgqdWrV6vExETVs2dPtWPHDrV+/Xp12mmnKU3T1P3336+2bNmiOnXqpB577DF/maVLl/pzHeTl5SmlWh5bWvJUtC8fffSRGjdunBozZow655xz1LfffhsQvKitrVU33nijP6eJUko9+OCDymQyqWHDhqnFixerGTNmqISEhICGpT/96U9K0zT17LPPKqVa7sGhlOSpaM8aPjca8tTo9Xp10UUXqT179jQ7bk6nUw0fPlxFRUX5x6VvcMkllyhN0/wBzwMd86Y9vQ5WH9F2nnjiCXXTTTepG2+8UWVlZQXktbFareqCCy5Qmqapm266SZWVlbVhTcX/Yv+emO+9955KSUlRmqapW2+9NSBY2XA9v/XWW0rTNDV+/HillO/Ghm7duqnIyEj12muvqc8//1zpdDq1YcMGf9mGnhlXXHGFUqr5NS75jNovCVgIIYQQQgghhDgq/vnPfyqz2axiYmLU3XffrVauXNli46DD4VCPPvqo0jRN3XzzzcrpdCqr1aomTZqkgoKC1MCBA1VKSoo655xzAhoYGoZ3ufXWW1txr8QfUVpaqiZPnuy/Y37AgAH+pLf73yW/fv16lZ6erjIzM9XKlSuVUkp99tlnKjY2VsXHx6sRI0aosLAwtXjxYn+Z1atXK6PRqDp37iw9azqIAwUMbrnlFjVo0CClaZoaOHCgf/7+jYgLFixQmqapc845x38HtlJKrVixQiUlJSmdTveHGh7lDuvW17RHVIPKyko1YsQIFRwcrHr37q1mzpzpX9bwebF27Vo1ZswYFRERoX744YdWrbM4+tatW6eGDBniH+Lpgw8+CAhW7O+UU05RmqapV199VSml1ObNm9Xpp5+uNE3z3/Tw+uuv+9cvKSnxDw/YNPgl2j9Jui2EEEIIIYQQ4n+yYsUKOnXqxL333ssFF1zA22+/zb333svgwYP9iU+bMplMXHLJJfTr148PP/yQr7/+mpCQEF555RXuv/9+fv/9dwoKCkhLSwtImHz33XcDUFZWhsPhaLX9E0fuk08+4ZNPPuHvf/87H330Eb/++isrVqxg2LBhvPTSS0yfPp3CwkIAunXrxs0330xubi6vvfYaNTU1nHfeebz66qsMHjyYZcuWER4ejslkAnyJWQcOHMjEiRPZtWsXVVVVbbin4lCUUrjdbv9nwf6fCTNnzmTp0qVMmjSJNWvW8NRTTwG+JNpNnXbaaVx66aV8/fXXfPLJJ/75Q4YM4fzzzyc1NZXdu3cfVkLmplr6jBLHjtvtRqfToWkaFRUVFBQUABAeHs7jjz9OeHg4mzZtIi4uDgCXy4XZbAagX79+XHDBBdTU1PD1118Dh06W3fR8cDqduN3uZvNF63K73Vx//fX079+fiooKnn32WZ577jkmTpzoP+4Nx6fh8wPg6aefBuCJJ56guLiYHj168Prrr3PnnXeycOFCQkJC/OW8Xi9xcXFcc801AJSXl7f2bor/gabkChVCCCGEEEII8QfZ7Xbuuecenn76af76178yY8YMOnXqBPgaDHQ6HQ6Hw9/g1MDr9fLOO+8wdepULrzwQp5++mmSk5MB+Oabb1i8eDGTJk1iwIABgK/RQtM0du7cSWZmZuvupDhsSilqamo444wzyM/PZ/fu3eh0Ov/xW716NQ8++CBLlixh5syZ3HzzzQDs3r2byZMns23bNp577jkmTZqEUor6+noefPBB+vfvz3nnnUdoaKh/W7W1tZhMpmbnlmg/PB4Per0egLq6OmbPnk1lZSUxMTH8+c9/Jj093X9ubNiwgREjRhAWFsYvv/xCUlKS/zOkwbZt2xg0aBC9e/fm5ZdfplevXv73bnpuiPan4TgDWK1WHnvsMRYvXoxSitmzZ9O9e3fq6uqYOXMmM2fOZMqUKbz22mv+499QPicnh759+5KSksJvv/1GcHDwIbfn9XpZuXIlixYtYvDgwYwdO7Z1dlq0qKysjMsuu4y5c+cyY8YM/80ITVVWVhIVFeV/3fBZcPnll/POO+/wj3/8g5kzZ/qXv/TSS8TFxTFmzBiioqICjr/L5cJoNB77HRNHjQQshBBCCCGEEEL8IU0boW+99VYKCwtZtGgRaWlprF+/npUrV7JkyRJKSkoYPHgw5557LoMHD/aXLysr46qrrmLevHn897//5brrrvMvO1QDQ9OGUNG+WK1WevXqRWJiIgsXLsRkMqFpmj9wsWTJEiZOnEhSUhIvvvgip5xyCm63m08//ZTJkyfz5z//mf/7v/8jNTUV8J0Ler2+2R33DdxuNwaDoTV3URyhZ599lgcffJDa2lr0ej0ul4tevXrx9NNPc9ppp/nXu/fee/nnP//JjTfeyLPPPtvidf7II4/w0EMPceeddzJr1qyAZXIutH/vvvsut9xyCzqdjv79+9O3b19uvPFGMjIyANi0aRPnn38+BoOB119/nSFDhgTcbQ/Qt29fQkJC+Omnn/y9NRo0bagGyMnJ4auvvuKVV15h69atvPbaa1xxxRWtt8OiRUuXLuXss89mzJgxPP/884SFhfHdd9+xdOlSFi5cSFhYGEOHDmXy5MmcfPLJ/s+CkpISkpOTsVgsLF26lJNOOgmgWXCzQcP5IJ8NHUzrjDwlhBBCCCGEEOJ45fV61TPPPKMMBoO66aab1Lvvvqv69eunNE1TycnJKiQkRGmapoKDg9Urr7wSUPaHH35QoaGhavjw4Wrz5s1KKUl+254dTkLzkpISNXjwYNW9e/cWl9tsNvXQQw/5k6w7HA6llFJlZWXq4osvVkajUT3zzDNHtd6ibRQVFamrrrpKRUdHqwsvvFC9+uqr6vfff1efffaZSkpKUoMHD1ZLlizxr19ZWamysrJUSEiIWrFihX9+WVmZ2rFjh3+dK664wv9adBwLFixQCQkJatiwYerzzz9X5eXlzdZxuVzq6aefVpqmqauvvlpVV1cHLF+0aJEyGAzqvPPOO2ASZaWUKi4uVu+++64aM2aM0jRNjRw5Uq1fv/7Y7JgIcDjfE/X19ervf/+7MhqN6uGHH1Y33HCDCgoKUnFxcSo7O1slJiYqTdNUSkqK+vnnnwOO7eOPP640TVOTJ08+lrsh2pAELIQQQgghhBBC/GENjQg7d+5U5557rtI0Ten1ejVgwAA1d+5clZ+fr7Zt26Zee+01f9AiJyfHX76urk7dfPPNSqfTqYcffritdkMcQtPGIrvdrt566y1/ctSWAkxnn3220jRNffHFF0qp5g1YGzduVN27d1cnn3xywPmwdOlSFRUVpYYOHarWrVt3wPcX7Z/H41GzZ89WkZGRatq0aWr79u3+ZTk5OSo7O1sFBwer/2/vvsOiuNo2gN+zdAQpigUL1iBq7LErir1hf9UotthRg71jxNh7wYIl9oLYW1QQFWvsJXYUxQJ2UUNb9vn+4NuRFUzUqIC5f9flJcycmTmzM7tnOc+c83Tp0kXevHmjrlu8eLEoiiKurq7y5MkT2b17t7Rr104aN26sBjX1mDA7/YiJiZE6deqItbW1HD58WF2u0+mSXcf79+9LtWrV1KBFRESEPH/+XHbu3Cmurq5ibm4ue/bsSfE4f/31l+zbt0/at28vJiYmkiNHDvH39/+i50aJPraduHz5suTPn18URRFLS0sZNWqUPH36VJ49eyYxMTHy888/i5mZmdStW1du3bplsK2Tk9PftjGUvjFgQUT0jQoODhYAMnr06C92jNGjRwsACQ4O/mLHSC9u374tAKRDhw4ftd2ZM2dEo9HI6tWrv0zFPoNFixaJRqORCxcupHZViIgojVu9erUUK1ZMvLy8Ulw/YsQIURRFevToISJvOzcuXrwo2bNnl4wZM8rx48e/Wn3p461fv14yZswoRkZG4uvrm2y9vtMoICBAFEWR+vXrq8uSdmZFRUXJzz//LIqiGFzzv/76SwYPHiyKosiAAQPYIZ0O6DsiU7pWCxYskEmTJqm/x8bGSs+ePUVRFClQoIDkyZNH7O3tZd26dQbb/e9//xNFUcTBwUGsra1FURSD/SQ9LqUP4eHhYmFhIU2aNBGRxOv3vve3TqeTLVu2iKmpqXqv5MuXT3LmzClWVlbvHYF14cIFGTZsmGTNmlV9cp++vn9qJ/Ti4uJk7ty5UqhQITl48KC6XH9f3Lt3T9q3by9GRkayZcsWEUkMhIiIbNy4URRFkVKlSvGz4BuU8gSQRET01R0/fhyKoqBu3boprvfy8oKiKChUqFCK62fOnAlFUTBq1KgvWc1/RUSwatUquLm5IVOmTDA1NUXWrFlRsmRJ9OrVCwcPHkztKn51/fv3R6FChdC6desvfqxTp05BURTMnTv3o7br0KEDnJycMGjQoC9UMyIiSu/k/+cVr127NoYPH45+/foBSJxTGkicVx4AevfuDSMjI+zevRtPnjxR5xn/7rvvMGDAAAwcOBDlypVLhTOgfxIVFYXp06ejS5cu0Gq1MDExwfr163H9+nUAb6+1Pt9A8+bNUaZMGezevRurV68G8PY+AQBra2sULlwYALB37151uYWFBdq1a4cff/wRP/30k8Fc9JS2JCQkQETUeeOTXquEhAQAQMeOHTFw4EAAide5aNGiWLlyJXr27IlVq1ZhypQpeP78OVauXIl79+6p248bNw7Tpk1DhQoV0LNnTzx9+hSDBw82OP77cppQ2hQXF4eYmBjExcUhOjo6We6JpBRFQZUqVdCuXTuYmpqibt26mDJlCoYOHYqwsDD06dMHgOFnCpCYH2PixIlwdXXFgwcP4O3t/cXPi9760HZCz8TEBE2bNoWvry/Kli2rXk/9fZEjRw5UqlQJOp0Oe/bsAQCYmpoCAJo1a4a+ffti0aJF/Cz4BvGKEhGlEWXKlIGVlRWOHDmi/lGfVHBwMBRFwbVr1xAREZHiegBq0rqyZcviypUr6N2795et+Efo3LkzPDw8cO7cOTRo0AADBgxAmzZtYGtriyVLlmDRokWpXcWvav/+/Thw4AAGDBjwVb5kbd26FQDQuHHjj9rOxMQE/fr1w549e3DkyJEvUTUiIkojNmzYgPr16+PixYsAkncuvI++cyFz5sxo0aIFcufODeBth6KRkRG0Wi3Mzc3h6OiI7Nmzw97eXu2cMDU1Rf/+/dP0gxf/dYcOHcK4ceNgZWWFgIAAdO3aFSEhIVi7di0Aw85j/XUdPXo0AGDatGl4+PAhNBoNEhISEBcXBwBqstTMmTMDeHu/ff/991i1ahVcXFySdUhS6nj3Ouh0OhgZGUFRFBw9ehTdunVD586d0adPH/zxxx9q4MrMzAwajQZPnjzB+PHj8fz5c0ybNg2//vorypUrh+LFiyNHjhw4ffo0/P391f0XKFAA/fr1w9q1azFp0iTY2dlBq9XyfkjHzM3NUbRoUdy/fx/3799Ptv7dALednR26dOkCCwsLhIaGokSJEvD09ESmTJnUYJm+7dHfF23atMHZs2exfv169XOFvp6PaSf0HB0d4ebmBnNzc4MAlr6d0F9H/f+KoqgB0ZkzZ6JUqVIf/F2F0g8GLIiI0ghjY2NUqVIFr1+/xsmTJw3WPX36FBcvXkTTpk0BvA1O6Ol0OoSEhMDMzAwVKlQAAFhaWqJQoUJp5otaSEgIli1bhhIlSiAsLAwrVqzAhAkTMHPmTAQHByMyMhK9evVK7Wp+VfPnz4eFhQVatGjxVY63detWlCpVCrly5frobVu3bg1jY2MsWLDgC9SMiIjSij/++AO///47AgICAHzaE8z6jko9faeSsbExDh8+jPDwcDg6OiZ7svbdjidKW6ysrODh4YFjx46hXr166Nq1K7Jnz441a9aoDzToO43017JBgwZo3749Ll68iP79+wNIvD/0T8ju2rULAODk5AQg+f2m0+k4wiIVPXz4UL22714HjUaD58+fo3379qhcuTK2b9+Obdu2wdfXF+XLl0/2ZHtAQAAOHTqEIUOGoFu3brCzswOQ+DfLy5cv8ezZM6xYsQKnTp0C8PZzwNLSEkDivWBsbMz7IR2ztrZG2bJlceHCBezfvx8xMTEA3nZM6++pTp064ezZs1AUBSVKlEDPnj2xZ88ebNq0Se2o1gfL9PQ/Fy9eHMWLF//KZ0Z6H9NOvEv/ntev17cTmzdvBpD4QKZe0u8ZSUd50beDV5SIKA2pXr06AODAgQMGyw8ePAgRQd++fWFvb58sYHH+/Hk8f/4cFSpUgLm5uboPRVHwyy+/GJTNkycP8uTJg9evX+Pnn3+Go6MjzMzMUKxYMbVz4l3h4eFo06YN7O3tYWVlBVdXVxw6dOijzu3YsWMAEqcXypgxY7L1tra2qFixosGyjh07QlEU3Lp1C5MnT0bBggVhbm6OvHnzwsfHB/Hx8Ske69ChQ2jUqBEyZ84MMzMzFCxYECNHjsRff/31r8snJCRg0qRJKFCgAMzNzVGgQAFMmDDho5/qeP78ObZu3Yo6deokez3CwsKgKAo6duyIK1euoGHDhrC1tYWdnR3atGmDJ0+eAEh8TWvUqIGMGTOqTyC9efMmxePdvn0bFy9eNBhd8fLlS3h7e6Nw4cKwsrJCxowZUaBAAXTo0AF37twx2N7BwQHVqlVDQEAAXr9+/VHnSkRE6cfw4cPh7OyMFStWqFM1fuqTi0mndoiLi8PWrVvRt29f5M2bF6NGjYKiKCl2PrJDMm2qVq0aRo8erQYXXFxc0LdvX9y4cQMrV65EbGwsNBqNet31/8+aNQulSpXC+vXr0aZNGxw5cgRXrlyBr68vlixZglq1aqFGjRopHpOdUKnnwYMHyJEjB37++WeEh4cDSP5Z4O3tjY0bN2LQoEHYtm0bLl26hA0bNiBTpkz49ddfsWDBAvV7o/47qoODg8E+Fi1ahEKFCqF9+/a4cOECXr58CSDlAAmlXyICa2trNG3aFLly5cKECROwZcsWAG87pk+dOoWePXvi4MGDeP78OYDEKeI6deqEggULYs2aNcke7KO05WPbiaQURTEIPty8eRODBw+Gv78/PDw80LBhwxSPye8M36ivli2DiIj+0cmTJwWA1KpVy2B57969xcLCQmJiYqRx48ZSoEABg/XTpk0TAAZJxd6XdNvJyUkcHR2lQoUKUqhQIendu7d07txZLC0tRVEU2bNnj0H5Bw8eSI4cOQSA1KlTR4YNGyZNmjQRU1NTqVOnzgcn3V68eLEAkJ49e37w69GhQwcBII0aNRJ7e3vp0aOHDBw4UJydnQWANG/ePNk28+bNE0VRxM7OTtq3by8DBw6UatWqCQCpWLGixMbG/qvynTt3FgCSN29e6d+/v/Tq1UsyZ84sDRs2/Kik21u2bBEAMnHixGTr9Am8q1atKra2tlKzZk0ZMGCAuLq6CgCpVKmShISEiIWFhbi7u8uAAQOkdOnSAkA6deqU4vGmT58uAOTcuXMikpjIrFy5cur++vXrJwMGDJAWLVqIra2t7Nu3L9k+Ro0aJQCS3SNERPRtWbVqlSiKIp07d5Y3b96ISMrJdD9EXFycBAYGysCBAyVXrlxia2srv/3222esLaWme/fuSZkyZSRTpkwSEBAgIob3ij7Z9unTp6VLly6iKIooiiIZMmQQRVGkXLlycvHixVSpO6VsyZIlMn36dImJiZHu3buLsbGxTJs2LVm58+fPi0ajkfr160t0dLTBuvXr10v+/Pnlu+++k2PHjomIyMGDB8Xa2lrc3d3l7NmzEhoaKrNmzZJ8+fKJt7e3iIg8efLky58gfbK/S5L9T/TbxcfHy4wZM8TOzk4sLCxk4MCB8ttvv8mQIUOkdOnSYm1tLb/88ovBPaXVasXPz08URZGePXsmu98obfundiKp6OhouXnzpkydOlVq1aoliqJI/fr15ebNm1+zypQGMGBBRJSGaLVasbGxkQwZMkhcXJy6vGjRolK9enURedvxHB4erq5v1KiRAJBDhw6py/4uYAFAGjdubNAZHxgYqAYlktIHDX799VeD5QsXLhQAHxywCA8Pl4wZM4qiKPLjjz/Khg0bJCws7G+30R/bwcHB4HxjY2OlatWqAkD90iMi8ueff4qxsbEUL1482R88EyZMEAAyderUTy6vf02LFy8ur1+/Vpffu3dPMmfO/FEBi0GDBgmAFAMD+oAFAJk5c6a6XKfTSf369QWA2NraypYtW9R1cXFxUqxYMTE2NpaIiIhk+3R1dZU8efKov1+4cEEASJMmTZKVjYmJkVevXiVbvnXrVgGg/lFJRETfJq1WK25ubmJtbS3r1q37pH0kJCTI4cOHxcbGRrJlyyaWlpbSsGFDuX379uetLKW6tWvXiqIo0qhRI3n48KGIJF7/lPj7+8vEiRNl4MCBsmHDBnX5p3aC0udz8+ZNtYOwU6dO8vz5c7l79644ODjI999/L2fOnBGRt0Gobdu2iaIosmDBAhFJ/H6uXxcdHS0+Pj6iKIqMHTtWREQePXokQ4YMEUVRJGPGjJIlSxZRFEXc3NwM/ibQ74PSlqTXJenfCR/z3tWXjY6OFn9/f8mTJ48axLSyspLSpUvLwYMHU9z2/v370r17dzlx4sQnngGlpg9tJ3r16iWmpqZibW0t+fLlkyVLlnztqlIawYAFEVEaow8+HD58WEQSv9wriqKOnjh9+rQAkBUrVohIYkNva2srFhYWBgGIfwpY3Lp1K9mxnZycxN7eXv09NjZWzM3NJUuWLMmeZElISJCCBQt+cMBCRGTfvn2SO3dutTNeH4z43//+J0FBQcnKvy9YIiISEhIiAKRhw4bqsr59+yYL3CStr4ODg5QuXfqTy3fq1EkAyMaNG5OVHzt27EcFLNq0aSMA5MKFC8nW6QMW+fPnT/ZHwIoVKwSAGsBKysfHRwDI/v37DZY/efJEjIyM5Oeff1aX6QMWbdq0+aD6iogcP35cAEjnzp0/eBsiIkrb3tfZdPjwYVEURerWrSv37t0Tkfd3Qr/P69evpXPnztK7d2/1KWuRxI4vdlB/O168eCFNmzYVY2NjmTNnTopl4uPj37v9362jryM2Nlbatm0rdnZ2MmXKFLl8+bK6burUqaIoivTv39/gM8DX11ddnpT+vX3o0CGxtLSU77//3mD9uHHjxMPDQ9zd3WXlypVf8Kzoc3v27Jn06NFDypQpI+7u7nLs2DH1IbuPbR9EEgMfx48flwMHDhj8PabT6T5pf5R2fUg7ISJy7Ngx8fLykuXLlxsEyRjI/O8x/kwzSxER0WdSrVo1bN++HcHBwahUqRIOHDgAEUG1atUAACVKlICNjQ2Cg4Ph4eGBc+fO4cWLF6hZs6Y6/+c/sbW1Rd68eZMtz5kzp5prAgCuXbuGmJgYuLm5qbkx9DQaDSpVqoQbN2588LnVrFkToaGhOHDgAA4dOoTTp0/j8OHD8Pf3h7+/P4YNG4bx48cn265KlSrJllWoUAHGxsY4e/asuuz48eMAgD179iAoKCjZNiYmJrh69eonlz9//vx765PSsr/z9OlTAInX4n2KFSuWbE7O7NmzA0i8D96lX/fgwQOD5Tt37kRCQoJB/goXFxcUK1YMa9euxb1799CkSRNUq1YNJUqUeO8cwfb29gCg5tAgIqL0S6vVqgls5f+TYuuJCCpVqoSuXbti0aJF2LBhA7y8vD56DvkMGTJgzpw5atJcIDEX1LtJuSl9s7GxQb9+/bB3716sWLEC9erVQ/78+XH58mVcuHABrVu3hrHx264H/f2m0+mg0WgM1lHqiIiIwNGjR1G6dGkMHDjQYF3fvn2xfPlyrFmzBrVq1ULdunUBALVq1YKJiQnOnTuHO3fuwMnJyeCzpEqVKsifPz8iIiJw9+5d5MyZExqNBsOHDwcAg7L8XEh73m0XTpw4gQ4dOuDhw4fIlCkTTp8+jRMnTmDEiBHo06fPJ+UYsbKyQrly5QyW6e+F9+UleLdelD58SDsBAOXLl0fp0qVhYmIC4O39wM+H/x5+MyAiSmOSJt4eOXIkDhw4AHNzc/XLnEajQeXKldXE2/r/3dzcPvgYNjY2KS43NjY2SKanT3qXJUuWFMtnzZr1g4+Z9Bg1a9ZEzZo1ASR2mCxbtgw9e/bEhAkT0KJFC5QqVeofj2NkZIRMmTKpdQSAZ8+eAQDGjRv3QXX52PIvX76ERqNB5syZk6372NfCwsICABATE/PeMiklJ9f/Uf93695NRr5lyxbY29sbBFWMjY2xf/9+/PLLL9i4cSMGDBgAIDERYu/evTFixIhkXwyjo6MBwKDjiYiI0hd9Z4++zVi5ciXOnTuHjBkzolSpUqhTp476AMSwYcMQEBCAZcuWoXr16ihevLjayfyh9G2Gfjt2OnybSpcujZ49e2LatGnw9fVFoUKFsGzZMhw/fhz29vaoXbu2Wlbf2cgkymmHVquFqakpbt68CQDYunUrunfvjpEjR6J3794YM2YMmjdvjhUrVqB8+fKwtbWFra0t3N3dsWfPHuzbtw9dunSBoihqB+ObN28QFxcHW1tb5MiRw+B6vxu04udC2qH/W/Dd9+emTZtgbm6O5cuXo0KFCrh48SI6deqESZMmoVChQqhVq9ZHtw8p+ad7gcGK9OtD2wkTExM1KTc/G/67+A2BiCiNKV68OOzs7HD06FHExcUhODgY5cuXh5mZmVqmWrVqCAsLQ1hYGA4cOADgbaDjc9IHNh49epTi+sjIyH99DGNjY3Tp0gU//vgjgLcBmH86TkJCAp4+fWoQfNF34kdFRUESpz1M8d+nlrexsYFOp0txhMHHvhYODg4A3gZNvpSYmBjs3bsXDRo0SPYEY6ZMmTBnzhzcv38fly9fxty5c2Fvb4/Ro0dj8uTJyfalr6u+7kRElP7oO3tCQkJQuHBhdOrUCcuXL8e4cePQrFkz/PTTT7hz5w4AIE+ePBgyZAguXLiA1atXQ0Sg0WgM2sYPxc7pb5P+XrC0tESHDh3g6OiI+fPno0ePHrh06RKmT59uEKygtEen0yFfvnxo2bKlOlKiadOmcHZ2Rq5cuSAiaNq0Kdzd3bFp0yZs3rwZAJA5c2Z4eHjA3NwckyZNws6dOwEkdjC+evUK8+fPx40bN9CxY8dknY4MWqVN+s94jUaDmzdvYtmyZQgODsaLFy+wZcsWjBo1Ck2aNEHWrFlRs2ZNzJ07Fw8ePMDMmTMRHR39ye0Dfds+pZ1QFIXBqf84tg5ERGmMRqOBq6sroqOjsW3bNly5ckWdDkrP1dUVABAYGIiQkBBYWVmhTJkyn70u3333HczNzXHq1KlkIwF0Oh2OHj362Y5lZWX13nUhISHJlh07dgxarRYlS5ZUl+lHoeinevonH1u+ePHi761PSsv+zvfffw8gcdqtLykwMBBv3rwxmA7qXYqiwMXFBZ6enti3bx8AYNu2bcnK6euqrzsREaVPZ86cQYcOHaDRaDB79myEhITgypUr6NmzJ1avXm0wJUyPHj1QpEgRrF69GoGBgR+0/6QdVnFxceoIPXZkpb6EhITPuj99h9KJEyfg5+eHBw8eIDY2Fp6enoiIiICXlxcAXvu0TB80uHLlChRFwf379zFo0CAEBASgcePG6jUePXo0RATLly/HzZs3oSgKXF1dMWLECISGhqJjx4745ZdfMHPmTAwePBhjx47FDz/8gObNm6fm6dE7ko6m19NqtQAS38/x8fEYPHgwChUqhM6dO6NGjRpo2LAhFEVBmTJloNPp1H00btwYdevWxe7du7Fy5coPrgM/D9I2thOUFjBgQUSUBulHS4wZMwYAkgUsSpUqBWtra8yaNQsvX75ElSpVvsj8v2ZmZvjf//6HR48eYdq0aQbrFi9ejOvXr3/wvn7//Xds3bpV/UKc1M2bN7FhwwYAQOXKlZOtnzVrFu7du6f+HhcXhxEjRgAAOnbsqC7v1asXjI2N0adPH9y9ezfZfl68eGGQ8+Jjy3t4eAAAfHx88ObNG3X5/fv3MWvWrPeee0r0QacTJ0581HYfa+vWrTAzM0OdOnUMlutH6LxLP1Lk3ZwlwNu66utORERp2/s6Hfz8/HDnzh1MmDABvXr1gouLC/Lnz4+ffvoJ+fLlw8aNG7Fp0yYAiaMRf/nlFzx8+BDLly9HVFSUmvfiXfpl+s6J06dPY/LkyVi5ciXnHU9lImKQJyAsLAyPHz9Wv898akeRiODo0aNo27Yt5s6dCzc3N1y+fFnNXaLVannt04FVq1bhxo0bKFeuHHQ6He7cuaOOqNV/jpQsWRK9e/fGoUOHsH79egCJo49//vlnjBkzBvb29vDx8cGwYcOwZs0atGrVCkFBQXB2dk618yJDixcvRvPmzXHr1i2D5Un/jty5cydWrlyJ7t27Y+bMmejXrx+OHj2K69evq6Mv9J8nADB79mwAwLx58xAeHq5O9ZWSd9uI27dv49q1a+8tT18X2wlKS5jDgogoDdIHLC5dugRzc3OUL1/eYL2RkREqVaqE33//3aD8lzBx4kQEBQVh5MiROHz4MEqWLIkrV65g165dqF27Nvbu3ftB+7l69Sr69euHzJkzo2rVqsifPz9EBDdv3sSuXbsQFxeHnj17Jku8BiQm3ypevDhatWqFDBkyYPv27bh27RqaNWtm8NRW0aJFMW/ePPTs2RPOzs6oX78+8ufPj1evXuHWrVs4ePAgOnbsiAULFnxS+erVq6NTp0747bff8P3336Np06aIjY3F+vXrUb58eezYseODX9dixYohX7586oiGL0Gn02H79u2oUaNGshEs586dQ7NmzVC2bFkULlwY2bJlw/3797FlyxZoNBr069fPoLyIICgoCC4uLvjuu+++WJ2JiOjz0Xc6zJs3D0ZGRujYsSNevHiBXbt2oWbNmmjUqBGAxAcHduzYgeXLl+PWrVto3bo1atSooe6nefPmaNCgAbZt24Y6derAw8MjWZLupNM33L59Gzt37sSiRYtw8eJF+Pj4QKfTcS7qVKK/PkZGRrh58yaGDRuGM2fOQKfTIVOmTJg4cSJcXV3VecM/ptNIURSYm5vjhx9+wMSJE9GiRQsAb5/iZkLtr+9jrqG+bIMGDfDDDz8gS5YsqFu3Lvz9/eHh4YEGDRoYdFIOGjQI69evx8qVK1GzZk31e/uoUaPQp08f3LhxA48fP4aLiwvy5s0LgAm105Ldu3dj69ataNmyJfLly6cuv3PnDqpWrYqSJUsia9asqFWrFnx8fJApUyYAifnx5s6di/Hjx2P+/Pnq9UxISECBAgXw888/Y9asWfDz88PYsWNTnOor6X35+PFj7N+/HzNnzoS9vT18fX2RJ0+eL/8C0HuxnaA0R4iIKM3R6XSSOXNmASDVqlVLscyECRMEgACQkydPJlsfHBwsAGT06NEGy52cnMTJySnFfbq6ukpKTcOdO3ekVatWYmtrK5aWllKlShU5ePCgjB49WgBIcHDwP57To0ePZNGiRdKiRQtxdnYWa2trMTExkezZs0vDhg0lICAg2TYdOnQQABIaGioTJ06UAgUKiKmpqTg5Ockvv/wisbGxKR7rjz/+kNatW4ujo6OYmJhI5syZpVSpUjJ06FC5cuXKvyqv1WplwoQJki9fPjE1NZV8+fLJ+PHj5ebNmwJAOnTo8I+vhd6kSZMEgJw4ccJg+e3bt9+7r/ddVxGR3377TQDIb7/9JiIiR44cEQDi5+eXrGx4eLgMHTpUypcvL1myZBFTU1PJnTu3NGvWTI4dO5as/IEDBwSAzJw584PPj4iIvj6tVqv+HBUVJa1btxZFUaRZs2by4MEDefTokVhYWEi/fv3kxYsXsmbNGqlTp44oiiJlypSRP/74Q90+Li5O/fn06dOiKIqUKFFCHj58qC7X6XTqz0+ePBF/f391fz/88EOyNo5SR0JCgkyaNEmsrKwkZ86cUrduXWnWrJnkyJFD7O3tZdmyZf9q30klvQcp9URHR39Uef17edOmTaIoilSoUEFdl/Qaz58/XxRFkT59+qifESld84SEhGT3Bn1dT548kTdv3qi/379/X+bPn5/s3rh//74UKlRIjIyMJFu2bHLhwgUREfVvradPn0r+/PklQ4YMahuh1WrV6xsTEyMODg5ia2srhw8fNth30jbir7/+ksDAQOnYsaOYm5uLg4ODrF+//vOfOH0SthOUljBgQUREaZY+YHH79u3UrsoX8fTpU7GxsZEuXbp8kf0PHjxYFEUx6Fj6VG3bthV7e3t5/vz5v68YERF9Uffu3ZNt27bJH3/8Iblz55Zff/1VLl++LCKJDyE4OztLnjx5pHv37mqn0fLly5PtJzg42KCzy9vbW9auXZusXExMjBw4cEC6du36t/uj1BEXFye+vr6SPXt28fDwkD179kh8fLyIiNy6dUtsbGykYsWKEhISIiLJO5Y+FDun0wadTifDhg2Tfv36SUxMzCfto2nTpqIoisydO1dEDDsXY2JipGLFimJvb//ezuakndSUOgICAkRRFFm9enWy66HVamXnzp0G79klS5aIra2tZM2aVW7cuKGu01/7hQsXiqIo0qhRI4N96T9LZsyYIYqiyI4dO0Qk+T1w9uxZGTlypGTNmlWMjY3F29v7854w/StsJyitYcCCiIjSrG89YCEiMnHiRDExMZGwsLDPvm9nZ2cpX778v97PtWvXxMjISKZPn/4ZakVERF+SVqsVGxsbMTc3l8KFC0ubNm2SlWnZsqUoiiIajUbGjBmTYgfC2LFjpWDBgnL06NG/Pd7NmzfF29tbcubMKRqNRoYMGfLZzoU+j8jISGnQoIG4u7sbfN/Yu3evFC1aVBRFEWNjY+nRo4fawc0O5/Tr2LFjotFopGjRoh+9rb5z+ty5c2JtbS158uSRyMhIg3UiItu2bRNFUWTOnDmfp9L02W3btk0cHR2latWqcu/ePXW5VquV6tWri6IosnPnTnV5XFycNG7cWBRFUZ+kj4+PN/gsqFq1qiiKIv7+/uq+kq5P6cGmsLAwmTdvnpQoUUIURZEWLVqo9xSlHWwnKK1h0m0iIqJU9PPPP2PkyJEpJv3+t65evYpjx4796/3cu3cPo0ePhqen52eoFRERfQ46nS5ZolKtVgsjIyP4+PggNjYW9+7dQ+3atdV1+iSpPXr0gIWFBaysrDBixAiD+cZDQ0MxatQo+Pr6olKlSnBxcTE4hryTdPPAgQOYMWMGihcvjrt372LixIlf4nTpH2i12veuy5IlCwYPHoytW7fCyckJkZGRaNWqFerUqQMzMzPMmTMHRYoUQUBAAHbu3PlBx0t6H2i1WsTFxf3rc6CP875ExT/88ANKlSqFP//8E4cPHwbw4clyjYyMICIoXrw4unXrhjt37mDChAkAYPA50ahRI4SGhqJ3797/8izoc9Nf6xo1aqBz584ICQnBhg0b1M8IIyMj9Tv96tWr8eLFCwCAiYkJ+vTpA2tra3h7ewN4m1tA33Z4e3vD2NgYkydPRlxcnEFuEhGBra2twWfRxYsX4eXlBU9PTyiKgsOHD2PDhg3IkiXLl30RKEVsJyg9YcCCiIgoFZmbm8Pb2xtVqlRJ7aq8l5ubG0aNGgVTU9PUrgoRESGxo1Kj0UCj0eDatWsIDg7GrVu31M6lvn37okSJEnj16hWioqIAJHY26juX3Nzc0LdvX7x69QrFixfHlClTcOzYMUyePBm9evXClClTUL58eYwaNQq2trYGx9Yn2tR3RNSqVQuHDx/Gjh07kCNHjq/0CpDeu0lLt23bhqCgIFy4cAFv3rxRy1WuXBkA8Oeff6J169bYvXs3Bg8ejCVLlsDT0xOenp54+vQpVq9ejYiICCiKkmKHuP666++D8+fPY8aMGdi1a9d7O9Dp89JfA41GY3CNgbcJrlu3bg0AOHjwIAB8VIJc/f6HDRuGvHnzYvny5Th9+jQURVE7rgEgb968KQZOKXUpioL4+HhYWlqiSZMmKFOmDGbOnIlr166pZZo3b47GjRtj48aN2Lx5s7q8Ro0aaN++PcLDwzFu3DgAiZ8x+rajRo0aaNmyJU6fPg0/Pz/1eEn/T5pAOUOGDHj+/DkWL16MM2fOoGLFil/25ClFbCcoXUqdgR1ERERERET0MZJO3fTixQvp1KmTmJqairm5uWg0Gpk6darcvXtXRBLzT+iTZL98+VLdXr+PZ8+eyeLFiyVr1qyiKIooiiIWFhaSK1cu8fPz+/onR3/ryJEj8ujRIxFJeQ7wtWvXipOTk5iYmKjXs2bNmvLgwQODclOmTBEjIyOZMGGCvHr1Sl0+e/ZsURRFcufOreYt+Dt3796VhQsXStmyZUVRFBk7diyTqH5l48ePl3z58qnT8ySdniU4OFhsbGykXbt2n5THQn8t582bJ4qiSJMmTT5PpemLevc9GB0dLbNnzxZzc3Px8vIyeM+fPXtWTE1NxdXVVW7evKkuv3z5suTPn1+MjY3VzxytVqvu+/r16zJu3Lh/nA6I0wV9fWwn6FvCgAUREREREVE6otPppEOHDpI9e3b58ccfxdPTUwoUKCDm5ubi7e2tdlA2adLEIHFuSh1IYWFhsmvXLtm2bZts3rxZTbIpkrzzi1LHxIkTRVEU+fXXXw2WJyQkSHx8vPz6669ibm4u1atXlylTpsj+/fvF09NTLCwspFatWnL27FkRSZyjvlSpUpI5c2Z5+vSpwb4mT54spUqVEkVRJF++fAb5w5LeNy9evJAtW7aoc91///33sn///i927pSyAwcOqB2OmTJlkqNHjxq8X69cuSLOzs7i4OCgdjh+TAdy0rLe3t4GORAo7fP395fy5ctL48aNpWTJkuLo6CiZMmWS4OBgg3IDBgxI8bNl8uTJoiiKdOjQQUTedn6/ew8xgXLawXaCvjUMWBAREREREaUD+/btk5YtW8qMGTMka9assnDhQnn9+rWIiJw/f15KlSolWbJkkYCAABERuX37tiiKIi4uLhIaGioiH9bBxEBF2nL58mXJnTu3LFy4MNn1u3XrluTIkUNcXV3l/Pnz6vInT55I//79RVEU6dSpk/rUrYeHh9jY2Mjvv/8uIolJdTdt2iTW1tbi5+cnc+fOTXGETXx8vBw5ckR69+4t1tbWYmNjI/PmzfuCZ00if/9+dXFxEWdnZylcuLDky5dPNm3aZLC+efPmoiiKrF69WkQ+/on3d4/Nzum0TafTyZs3b6Rnz57qk/MDBw6Un3/+Wb777jtRFEVat24tjx8/Vrd5+PCh5MiRQ5ydneX48ePq8qdPn0q1atVEURQ5dOjQe49HaQfbCfrWMGBBRERERESUxul0Ohk9erQoiiKVKlWSNm3aJCuze/duURRFmjZtKvfv3xcRkcGDB4uiKDJo0KAPPg6lPfqOpHeNHTtWFEWRI0eOqMsuXrwokyZNkty5c4uiKDJ58mQRSby2GzZsECsrKylUqJAMHTpUunfvLvnz55fy5cvLrVu3UjzGzZs3ZcKECZI3b15RFEV69+4tcXFxn/8kKUWxsbHqzzqdTg0ojhgxQrJmzSpXrlyRAgUKSIECBSQoKEgtu2nTJvV6Jd3Hp+DnQvpw9uxZyZgxo9SpU0euXbumLr98+bKUKVNGDWAl7dCeP3++KIoinp6eBu/rpUuXiq2trWzZsuWrngN9OrYT9C1hwIKIiIiIiCgdePjwodSoUUMURZGuXbuKiBhM4SQi0qZNGzEyMjKYBipLliySLVs2CQkJERE+KZ1e7d+/XypVqiS7du0SkcSRMF27dhUbGxt58OCBmpekYsWKoiiK1KpVy2BuehGRv/76S53T3sLCQiwtLaVRo0YSFhb23uPOnj1bjIyMpEaNGnLjxo0veo7/de8GBubNmyelS5eWrVu3iojhezcgIEA0Go3s3btXzp49KyVKlJDs2bPLmTNnRKfTyZUrVyRXrlxSs2ZNiYqK+lf1oPRh5MiRoiiKbNy4UV2m7zTevn27ODk5SZkyZQze7zExMVKuXDnJli2bep/pvdu+UNrHdoK+FZrUTvpNRERERERE/yxbtmzo0aMHFEXBzZs3ERERAWNjY+h0OrXMqFGjYG5ujlWrVuHixYtQFAWTJk1CZGQkZsyYAQDQaPhnYHp09+5dHD16FAEBAYiKioKRkRFMTU0RFRWFOXPmoFevXujWrRsiIiKwfft27N27F/nz5wcAPHnyBPHx8bCwsECfPn1w4cIF7NixA4cPH8a2bdvg5ORkcB8BgIgAANzd3REcHIzAwEAUKFDgq5/3f4GIQKfTQVEUddmjR49w8+ZNnDlzBp6enrh+/brBe9fZ2RnZsmVDQEAASpQoAV9fX1hZWaF9+/bYv38/8uXLBycnJwQFBeHx48cAkOwav4++HhEREXjy5MlnPFP6kl6/fg0AcHR0BABotVoYGxsDAGrUqIGGDRvi9OnTCAgIQExMDADAzMwMv/76KyIjIzF79mxERUWp+zM2NkZCQsJXPgv6N9hO0DcjlQMmRERERERE9IFevXolLVu2FGtra1m7dm2KZUaNGiWKooi3t7e6rFevXnLp0qWvVU36AnQ6nTRo0EAyZMggK1asEBGRwMBAMTExERMTE7G0tJQZM2Yk2y4+Pl5cXV1l1qxZ6n7exbwlacOVK1ekS5cuBsv69u0riqJIhQoV5ODBgwbrqlWrJj/88IM8efJERETOnDkjWbJkke+++07u3r2rTgUzbty4fzx20vvi1atX8vvvv0v9+vWlQYMGvD++In1eok8Z3TBmzBhRFEVGjhxpsFx/bTdu3CiKooizs7OcOXPGoEz//v3VnAWUfrGdoG8FH60hIiIiIiJKJ6ysrODl5QVFUbBy5UqEhoYCMHxy2svLC46Ojpg6dSqOHj0KAPD19UWRIkXUpyEp/VEUBaNGjUJ0dDRWrlyJBw8eoHjx4qhfvz60Wi3GjRsHLy8vg23Onj2Ldu3a4fTp07Czs1P38y4jI6OvcQr0N0aOHInChQtjyZIlmDVrlrrcx8cHnp6eOHPmDAYNGoQjR46o63788UecOXMGz549AwCULFkSc+fORVxcHJo3b47cuXMDAC5duoTnz5+neFz9Z4KiKNDpdDh16hR8fHzQrl077N+/H2XLluX98YVJ4nTtGDZsGEqXLo3o6Gh1ZMSH0H/+t2nTBhYWFggMDMT169cBAAkJCeooiWLFisHOzg7Xr1/HggULDEZTTJs2DXXq1PmMZ0Wpge0EfSsYsCAiIiIiIkpHypYti65du2LPnj3YuXMnRAQajUbteLS3t8fEiRMxYsQIVKxYUd3u3SlnKP0pV64cevTogcDAQPj7+yNz5szo1q0bbGxsMGHCBPj6+iIiIgI3btzA3Llz4eXlhT179qBv375o0qRJalef/oZ+2iYbGxsMHz5c7Uy2sbHBsGHD0K9fP5w8eRJdunTBw4cPAQCFCxeGpaUlVq1ape6nRYsWmDdvHu7evYthw4bBzMwMoaGhiI+PT/G4+s+E0NBQzJ49G+3bt8fUqVPRoEEDREZGwtvb+0ueNiHxGiiKgj/++APXr1/H77///lHb66cKy5UrF9q1a4cTJ05g3rx5ABI7mfXBD39/f5ibm6Nq1apYtGgR7t27Z7AfBrS/DWwn6FugCD+RiIiIiIiI0pXQ0FDUrl0btra28PPzQ+nSpSEiDEj8B9y7dw+lSpVClixZsGbNGhQrVgzr1q2Dp6cnnj9/DltbW4gIXr9+jVy5cmHmzJlwd3dP7Wr/5/3d+1On0+GXX37BkiVL8N133+HgwYPo1q0bFixYYLDdjz/+iHXr1qFWrVqYNGkS8uXLhwoVKsDJyQlr166FjY2Nus99+/ahZcuWauDj1KlTKFWqVLJjP378GEFBQVi8eDH279+P8uXLY968eShRosTnfxEoRQkJCTAyMsK9e/dw9uxZNGrUSF2n0+k+Ku/QtWvXUL9+fdy+fRve3t746aefYGJign379mH69Olo27YtqlSpgowZM8LFxeVLnA6lAWwnKL1jwIKIiIiIiCidERH4+vqiX79+6NOnD3x8fGBlZZViOQYxvj0zZszAgAED4OXlhSlTpsDIyAhXr17Frl27EBYWBhMTExQrVgwdOnRQt/nYjk/6fPQd0inRv0eXLFmCIUOGYNKkSfDx8UF4eDguXLiAokWLIiYmBubm5rh37x7GjBmD3377DeXLl8f27dsxceJErFq1Cvv374ezs7PBvmfNmoVdu3ahY8eOaNOmTbJjX79+HUOGDMG+ffuQMWNGTJ8+Ha1bt/4irwEl+rt7Qe/u3bvYtWsXevTo8UnHOHjwINq2bYsHDx7A3t4e1tbWuH//PlxcXBAQEICCBQsC4GfCt47tBKVnDFgQERERERGlQ0+ePEGVKlVgaWmJnTt3Ilu2bKldJfpKoqOjUbFiRURERGDp0qWoV6+ewfqknU5arfaj5sOnL0On02HkyJGoXr063NzcYGRkZHCdrl27BhcXF+zYsQPPnj1D+/btUa1aNezfvx/A28DGvXv3MG7cOCxcuBCurq7o1q0b2rZti71796JmzZpISEiAoijQaDSIj4+HiYmJWod3A5jR0dHInj07evbsiQkTJnzdF+Q/7v79+8iRI0eyaxQfH4/ixYvj6tWrCA4Ohqur6wcFOd51/fp1rFmzBmfOnMHLly9Rr149DB069HOfBqVhbCcoPWPAgoiIiIiIKJ26du1asqeq6b9h+/btaNy4Mdzd3bF06VLY29sbJFBO+jOlroMHD6JWrVrQarVwdHRE586d4ePjY1Dmzz//hKurK9q1a4cZM2agcuXKOHbsGAICAtCsWTODjm2dTodGjRph9+7dKFiwIG7cuAEPDw8sX748xeOn1OGt76CMjo6GhYXFlzlxMiAiuHPnDtzc3GBvb4/jx4+rncSbNm1CwYIF8f3332PZsmXo3LkzatSogX379qnbfup7OTY2FmZmZgDYMf1fw3aC0iuO8yEiIiIiIkqn9MEKrVabyjWhr61Ro0aoXLkyzp07h5cvXwJ4m7z33Z/p60npmdBcuXJBq9XC2toaJiYmmD9/Prp06YLIyEi1TJEiRWBnZ4fw8HAoioKBAwcCAPr37w8AMDExgYggISEBGo0GU6dORYcOHXDjxg0AiTkqwsPDU6xTSk/n6zutGaz4sk6fPo3jx48DSHxP2tjYoFSpUjhz5gwOHjyI06dPo3jx4mjVqhUOHDgAAOjYsSNq166NoKAgLFu2DEBikOpTmZmZQafTQUQYrPiPYTtB6RVHWBARERERERGlQ5GRkciaNWtqV4NgOIoh6WgI/RPtw4cPx8SJE1G7dm24ublh6NChqFGjBqZPn47vv/8eANCmTRv88ccfCA0NBQC0atUKGzZswLhx4zBs2LBkIyXu3r0LT09P7Ny5Exs3bkTTpk2/8lnT37lw4QJKlCiBSpUqYd++fTA3NweQOJqmdu3aePPmDaKiolCsWDF07doVjRs3hqOjIzQaDY4ePQo3NzfkyZMHJ0+ehLW1NfML0CdhO0HpET/piIiIiIiIiNIhfScUR9ikHv0zoPpAwpAhQ9C/f3919IS+g3ns2LHInDkz9u7di8qVK2PNmjU4ffo0GjdujMDAQACAo6Mjnj17hlOnTgEAhg4dCisrK3h7e+Px48cwMjJCQkKCeuzcuXNjw4YNSEhIYLAiDSpWrBjq1q2LI0eOYMWKFeryPXv24OHDh4iKikK1atWwZs0a9OrVCzlz5lTvl4oVK6JTp064fv06Jk+eDODDp+3hc8mUFNsJSo8YsCAiIiIiIiJKxzjNy9cnItDpdGon8tq1a5EzZ05MmTIFRkZGasezRqOBVquFkZERpk2bBgAYM2YMWrdujU2bNsHExAQtW7bE0qVLUbVqVURFRalP4pcsWRK9e/dGQkIChgwZAiB5p7WZmRkURWFnZBqjDyzNmjULADB//nzcvXsXQOI90aBBAxQoUABnzpyBnZ0dFEVRp33SbztixAhkz54dvr6+uHr1KhRFMQhYvY/+Hnn69Kl6X/ybKaXo28B2gtITBiyIiIiIiIiIiD6CoijQaDQ4f/48KlSogLZt28LFxQVr167FiBEj4ODgoJbVdxR6eHigbNmy2LdvH5YsWYJq1aphy5YtKFOmDLp06YLZs2dDRHDy5El12379+sHFxQXLli3D4cOHk00JpO+cZmdk2qIfDVOwYEH07dsX58+fx4IFCwAAXl5e8Pf3R79+/RAVFYURI0YAeDsax8jICDqdDjlz5kS/fv3w4sULjB07Vl2XkqSjKl69eoUdO3agf//+mDt3rsG+iYjSA35iERERERERERF9BK1Wi549e6JkyZJ49uwZ5syZg7lz56JVq1ZqsELfiSwi6pPu+ifuJ0+ejMjISLi4uGDp0qUYNGgQgoODYWlpqW6n0+ng4OCArl27Akh8Yp7StqQjIPTBpIkTJ8LGxga//fabGoyysLBA48aNUa9ePSxbtgyHDh0y2I/+HvDy8kKpUqWwceNG/P7778mOoS+nH31x4sQJ/PLLL2jXrh02btxoEDgjIkovGLAgIiIiIiIiIvoIL168QFhYGACgU6dO8PT0hLOzc7IyQGJnsrGxMXQ6HcqVK4d27drhxo0bmDlzJgAgV65cmDRpEubPn48VK1ao+Sj0Hd5eXl6IjY1F48aNv8q50afTj4C4dOmSGlgwNzfHpEmTEBkZCV9fX7Wso6MjOnXqhIwZM8Lb2xtardYgJ0pCQgKMjY0xbNgwxMXFwdvb2+AYwNt75Pr165g5cyY8PDwwY8YMtGrVCo8ePULbtm2/ynkTEX1OijAbDxERERERERHRRwkJCUGjRo1QvXp1+Pr6wtraGrt370ZISAiCg4NhbW2NihUrok2bNihTpgwSEhJgZGSER48ewdHRERkyZEBISAiKFSsGIHFERUpT94iImqeCUz+lba9evcKPP/6Is2fPYvv27ShZsqS6rnjx4rhy5QrWr1+vBqWio6Px888/Y/HixViyZAk6deoEAHj06BFu3bqF8uXLAwB++eUXtG7dGoUKFTI4XmRkJAIDA7Fo0SIcOnQIVapUwfz581G4cOGvdMZERJ8fR1gQERERERERESXxIcmNy5Qpg06dOmHnzp1YvHgxhg4dig4dOmD9+vVISEhAWFgYZsyYgSZNmuDEiRNqMCJLlizw8fHBq1evMHHiRHV/78szwDwV6YeJiQmqVKmCx48fY8uWLXj16pW6bvbs2dBqtfD19VWXW1hYoH379ihYsCB8fHywe/dubNu2DUOGDMH//vc/7Ny5E0BiwKJQoUJq8mwRwYkTJ+Dp6YmffvoJt27dQkBAAA4ePMhgBRGlexxhQURERERERESEt6MZACA2Nhb+/v6oW7cuHBwcUhwBceXKFTRq1Ai3bt2ChYUFBgwYAC8vLyiKAktLSwwZMgQLFixA9erVMW/ePOTNm1fdNk+ePLh79y62bNkCd3d3dQQGpW+hoaHo0aMHLl++jFWrVqF69erquubNm2Pz5s2YOXMm+vbtqy6fO3cuhg8fjtevX8PMzAwiglGjRqkJuQHDezM+Ph5Lly5Fv379MHToUHW6KCKibwEDFkRERERERERESfj7+6Nr16548+YNZs+ejV69eqVYLj4+Hn5+fpg7dy4WLlyIqlWrAnjbuXz//n0MHz4cq1evxsaNG9G4cWPExsbCzMwMmzZtQosWLVCyZEmcPHnyvSMsKG1asmQJYmNj0bVrV5iYmKjXXESwYcMGdOrUCS1btsTEiRORLVs2AEB4eDicnJxQqFAhbN++Hfnz5wcA/PXXXzh27Bh27doFW1tb9O7dG3Z2dgAMAxVJPXjwABkzZoSVldXXO2kioq+ArSEREREREREREYCoqChMnz4dXbp0gVarhYmJCdavX4/r168DgDolj56JiQmaNm0KX19flC1bVk2arO9gzpEjBypVqgSdToc9e/YAAExNTQEAzZo1Q9++fbFo0SIGK9KZa9euYfz48fD29lbvDX2wQlEUuLq64n//+x82bNiAQ4cOqfdFrly5MHz4cFy9ehV+fn7q/iwsLFCjRg1MmjQJo0aNgp2dHRISEt4brAASk3YzWEFE3yK2iEREREREREREAA4dOoRx48bBysoKAQEB6Nq1K0JCQrB27VoAKeeZcHR0hJubG8zNzQ06l+Pi4gAAmTNnNvhfURQ1R8bMmTNRqlSpZIEQShu0Wq3B7/rr5OzsjIEDB+Kvv/7CggUL8NdffxmUy5o1Kzw8PGBjY4PFixfj5s2b6rpff/0VOXLkgK+vL4KCggy20+cp0el0MDIyem+wgojoW8aABRERERERERERACsrK3h4eODYsWOoV68eunbtiuzZs2PNmjU4cuQIgOSjLPT0T9Hr1+tHUmzevBkAULZsWbVs0lwVIsIRFmmM/hrqAwinTp1CdHS0QZl69eqhdu3a+O2333DixAkAicEo/bbFixdH7dq1ERwcjN9//91ge29vb/z111948eKFul1SvB+I6L+Mn4BERERERERERACqVauG0aNHw8nJCQDg4uKCvn374saNG1i5ciViY2Oh0WiQUjpQ/ZRA+s7mmzdvYvDgwfD394eHhwcaNmyY4jH5FH3ao7+G69atQ8GCBVGjRg3UrFkTU6dOVcvkyZMH7dq1g5mZGWbMmIGnT5+q2+p0OmTKlAmOjo5ISEiAv78/Ll26pG7btWtXPH78GM2bN/+6J0ZElA4wYEFERERERERE9P/0yY6BxCfs27Vrh9KlSyMgIAA7duz4221jY2MRGhqKadOmoVevXpg6dSpq1qwJb2/vL11t+hdERA1C6f9ft24d+vbtC3t7e1SrVg1XrlzB0KFDDXJPVK9eHa1atcKOHTuwc+dOxMfHA3gb8NBoNChTpgyOHDmCxYsX4/Xr1+q2mTJlUvNUEBHRWwxYEBERERERERG9R44cOTBgwAA8e/YMy5cvR0REhMHUP0kNGDAAhQsXxpgxYxAaGorFixdj586dyJ8/fyrUnD6EVquFoihqbhFFURAbG4sZM2bA1dUVK1euxNatW7Fz506ULFkSw4cPx4kTJyAiyJQpE/73v//hu+++w5QpU9Rpw+Lj4xEQEIC5c+fif//7Hzw8PFCtWrVkSbKZp4KIKDlFGMolIiIiIiIiInqvly9folOnTti+fTtmzJiB3r17p1ju+PHjWL9+PUqWLIm2bduquSoSEhIM8lZQ2jNv3jycOHECpUqVQs6cObFixQr4+fkha9asapmVK1eid+/eqFu3LubPnw97e3vExcVh8eLFGDRoEDJmzIhWrVohKioKhw4dgouLC9auXZssUEFERO/HgAURERERERER0T8ICQlBvXr1ULhwYaxduxb58+fH5cuXceHCBbRu3VotFx8fDxMTEwAMVKRVOp1OnbbpypUraNOmDS5cuABjY2NotVpYWFjAysoKly9fRqZMmdRr+ujRIwwbNgzLly/HunXr0LRpUxgZGeH169dYvnw5Bg8eDBFBTEwMGjRoAF9fX+TOnTvZMYmI6P0YsCAiIiIiIiIi+gd//fUXRo8ejWnTpsHLywuFChXCsmXLcPz4cfz++++oXbu2Wlbf1cLpftKuW7duIT4+Hps3b8aGDRvQrVs3VK9eHcuXL8dvv/0GIyMjrFq1Cq6urgbbBQYGokuXLsiePTs2bNiAnDlzGuzz9u3bsLW1RenSpQEwUEFE9LEYsCAiIiIiIiIieg8RUQMPly5dQt26dfH06VPExsbCysoKPj4+8PLySt1K0kc5ceIEKlSogGbNmuHgwYP49ddf0b17dwCJ03/Nnz8fI0aMwLBhwzBkyBBYW1uro2Wio6Mxfvx4jBs3DtOnT0fv3r1hbGxscJ/ocYQNEdHHY4iXiIiIiIiIiL4ZCQkJn3V/+k7oEydOwM/PDw8ePEBsbCw8PT0RERGhBiv4PGj6kSdPHtSpUwebNm2Cvb09OnfuDCAxAbeNjQ2aNWsGV1dXLF++HKdPnwaQmCBbp9PBwsICzZs3R9myZTFixAhcuXIFQMqjaRisICL6eAxYEBEREREREVG6JyIGT7SHhYXh8ePHePPmjbr+U/d79OhRtG3bFnPnzoWbmxsuX76MOXPmwNLSElqtNsWn6+nL+9RrmjVrVgwcOBA2NjZ48OABrl27BuBt0KFAgQLo1q0bnj17hhUrViAyMtJg+xIlSqBly5aoWrUqsmTJ8u9OgoiIDDBgQURERERERETpmj5gYGRkhJs3b6Jly5aoUaMGypYtC1dXVwQGBkKr1aplP4aiKDA3N8cPP/wAf39/BAYGolChQtDpdNDpdDA2NmawIpXoX/eYmJiP3rZs2bJo37493rx5g3379gF4O4pCo9GgWrVqaNGiBfz9/RESEgIRgUajUUfw9OrVC7t370bWrFk/3wkRERFzWBARERERERFR+qfT6TB16lSMHTsWtra2KFq0KCwtLXHixAlER0dj+vTp6NChwyfvO2niZOYmSBtEBCNGjEBMTAwmTJgAMzOzj9r+woULqF+/PnLnzo0FCxagWLFiBtd6//796NixI5ydnTF37lw4Ozsn2wfvBSKiz4sjLIiIiIiIiIgoXYuPj8eCBQswc+ZMNG3aFEuWLMH27duxceNGhISEICEhAX5+fjh8+DCAxADEx9B3YOu3Ywd12nDixAlMmjQJ+/bt++hgBQC4uLigb9++OH78ODZt2oSYmBiDURRlypRBs2bNEBQUhPDw8BT3wXuBiOjz4ggLIiIiIiIiIkrXHj16hM6dO8PIyAizZ8+Gk5MTAGDfvn3o378//vzzTxgZGaFLly6YOXMmzMzMmHciHXl3hIteQkICypcvj9OnT+PQoUOoXLnyR1/X8PBwNGvWDM+ePcOiRYvg5uZmsP7GjRvQarVwcXH51+dBRET/jCMsiIiIiIiIiCjN0+egSEmWLFkwePBgbN26FU5OToiMjESrVq1Qp04dmJmZYc6cOShSpAgCAgKwc+fODzpe0uc7tVot4uLi/vU50MfRXwONRqMmT9fTT8XUunVrAMDBgwcB4KODUDlz5sSAAQNw584dBAQE4MmTJwDejqYpWLAgXFxcoNPpPjnJNxERfTgGLIiIiIiIiIgozdJ3HBsbGwMAtm3bhqCgIFy4cMGgE7ty5coAgD///BOtW7fG7t27MXjwYCxZsgSenp7w9PTE06dPsXr1akREREBRlBSnhtJ3Sus7vs+fP48ZM2Zg165dHz2VFP07+mswYcIEFCtWDBs2bACQeI30UzGVLl0aGTNmxNWrVxEbG/tJx6hTpw4aN26MBQsWICgoCACSjejQaDQckUNE9BUwYEFEREREREREqe7o0aN4/PgxAMMcE/qO43Xr1iFPnjxo0aIFatWqhRIlSqBJkyZ4+PChQbndu3cjJCQEw4cPx8iRI1G8eHEAQExMDADg1KlT2Lhxo8E2Sek7pcPDw+Hn54du3bphyJAhuHTpEp+wTwUHDx7EiBEjcPv2bfTs2RPHjh0zuD+yZcuGbNmyYc+ePYiPjweAj75OdnZ28PT0RPv27VGrVq3PWn8iIvo4DFgQERERERERUaqaNGkSKleuDD8/PwCGSa61Wi3GjRuHTp06IV++fBg/fjyCgoLQq1cvHDlyBB06dMC5c+cAJCbfXrt2Lezs7NCtWzdYWVmpx4iJiUHJkiURHh6O6dOnIywsTF2XtIP75cuX2Lp1K/r06YMePXogOjoaQUFBGDlyJBMsf0HvG73i6uqKQoUK4bvvvkPWrFnRrl07bNu2TV1fqFAhFC1aFE+ePDFY/rGqV6+OZcuWwd7enoEpIqJUxIAFEREREREREaUqd3d35MqVCw4ODslGV4SHh2P+/PkoV64cZs6ciYEDB6J69eoYM2YMevbsicDAQMyePRuPHz+GiYkJihQpgvj4eJw8eRJAYv6JzZs3Y+zYsejRowfmzJmDoUOHIk+ePOpxFEWBVqvF0aNHMXLkSHh4eODAgQPw9fXFhQsXUL169a/9kvznaDQagzwhIoKEhAQAQLNmzfDixQts3LgRGo0GgwcPxv79+9Wybdu2BQAcO3YMcXFxnzR1k34bnU7HqZ+IiFKRcWpXgIiIiIiIiIj+21xcXHDq1Ck4ODgkW7d69Wo8ePAA/v7+KFasGADg0qVL2LVrFwICAtTtHRwcICJwd3fH5s2b4eXlhSZNmuD58+cIDAxEkSJFULNmTeTNmzfZMUJDQ7Fhwwb4+fkhLCwMnp6emD59OkxMTL7sif+HiYhBYGD+/PlYsmQJvL294e7ubpCnomTJknj8+DHCw8OxYcMGdOrUCe3atcPOnTtRokQJuLi4IGfOnGoeC1NT00+uR0rThBER0dfDT2EiIiIiIiIiSnUODg4IDg5G5cqVsXv3bgBAQkIC7t69i4wZMyJv3rx4/vw5lixZgu7du2Po0KFwdnbGjRs3MGjQIACJT8k3aNAA48ePR1hYGGbNmoWVK1eicOHCWLduXYrBCgDYtWsXRo4ciXz58uH69euYM2cOgxVfiIgkG8Xw6NEj3Lx5E2fOnIGnpyeuX79uEDhwdnZGtmzZEBAQgBIlSsDX1xdWVlZo37499u/fj3z58sHJyQlBQUEp5kH5O/p6RERE4MmTJ5/xTImI6FMwYEFEREREREREacLdu3dx9OhRBAQEICoqCkZGRjA1NUVUVBTmzJmDXr16oVu3boiIiMD27duxd+9e5M+fHwDw5MkTxMfHw8LCAn369MGFCxewY8cOHD58GNu2bYOTk1OyTmx9rgJ3d3cEBwcjMDAQBQoU+Orn/V+iKAo0Gg2uXr2Krl27AgCyZMmCadOmoU+fPrh//z46duyIQ4cOqdsULVoU3333Hc6ePYunT5+iYsWKWL9+PR49eoRevXohMjISderUAZCYnB34+5ESSXNUvH79Gnv27MFPP/2Ejh07qtNQERFR6mDAgoiIiIiIiIjShPbt26N+/fpYv349tm7dCgBo2rQpjI2NMXXqVGzbtg3Tpk1DaGgoGjRooG6n1WrRokULzJ8/H0Bih3TBggXh5uaGkiVLAkgcrfFuJ7b+6XonJydUqVLla5wiARg5ciQKFy6MJUuWYNasWepyHx8feHp64syZMxg0aBCOHDmirvvxxx9x5swZPHv2DEDiNFFz585FXFwcmjdvjty5cwNInC7s+fPnKR5XH6hQFAU6nQ6nTp2Cj48P2rVrh/3796Ns2bJMrE5ElMoYsCAiIiIiIiKiNEFRFIwaNQrR0dFYuXIlHjx4gOLFi6N+/frQarUYN24cvLy8DLY5e/Ys2rVrh9OnT8POzk7dz7vYEZ126KdtsrGxwfDhwxEVFaX+PmzYMPTr1w8nT55Ely5d8PDhQwBA4cKFYWlpiVWrVqn7adGiBebNm4e7d+9i2LBhMDMzQ2hoKOLj41M8rv6+CA0NxezZs9G+fXtMnToVDRo0QGRkJLy9vb/kaRMR0QdgwIKIiIiIiIiI0oxy5cqhR48eCAwMhL+/PzJnzoxu3brBxsYGEyZMgK+vLyIiInDjxg3MnTsXXl5e2LNnD/r27YsmTZqkdvUJhlMuvUun0yFr1qzInj07SpQogejoaAwePFjdztHRERMmTEDr1q1x7do1dOzYEefOncP333+PXLly4eTJk3j58iWAxABEvXr1sHLlSrx58waxsbE4efIk7t27l+KxHz9+jHXr1qF79+7o378/bG1tcebMGSxbtgwZM2b8/C8EERF9NAYsiIiIiIiIiChNGTZsGDJnzozFixfjwoULqF+/PubPnw+tVos+ffqgcOHCKFu2LPr164fw8HAsX74c48aNg7W1dWpX/T8vISEhxREuQGJAQqPRwMnJCbGxsWjXrh1y5coFPz8/XLp0CYqiICYmBgAwefJk/PTTTwgKCkLv3r2RkJCAhg0b4vz584iIiDDYb61atTBmzBjUqlULq1evRqlSpZId+/r16+jWrRu6dOmCy5cvY82aNTh69ChKlCjx2V8DIiL6dIr8XdibiIiIiIiIiCgVzJgxAwMGDICXlxemTJkCIyMjXL16Fbt27UJYWBhMTExQrFgxdOjQQd1Gp9P9bbJl+jp0Oh1GjhyJ6tWrw83NDUZGRgbX5tq1a3BxccGOHTvw7NkztG/fHtWqVcP+/fsBJAY2FEXBvXv3MG7cOCxcuBCurq7o1q0b2rZti71796JmzZpqcESj0SA+Ph4mJiZqHfT70IuOjkb27NnRs2dPTJgw4eu+IERE9MEYsCAiIiIiIiKiNCc6OhoVK1ZEREQEli5dinr16hmsT9oBrtVqYWxsnBrVpHccPHgQtWrVglarhaOjIzp37gwfHx+DMn/++SdcXV3Rrl07zJgxA5UrV8axY8cQEBCAZs2aGQQfdDodGjVqhN27d6NgwYK4ceMGPDw8sHz58hSPn5CQkCxfif7+iI6OhoWFxZc5cSIi+iz42AERERERERERpTkWFhbw8fFBZGQkFi5ciGfPngFIfHJeP7WQ/mcGK1JHSs/A5sqVC1qtFtbW1jAxMcH8+fPRpUsXREZGqmWKFCkCOzs7hIeHQ1EUDBw4EADQv39/AICJiQlEBAkJCdBoNJg6dSo6dOiAGzduAABOnTqF8PDwFOuUUnJ1/f3BYAURUdrHgAURERERERERpUmNGjVC5cqVce7cOYNEy/qpfpL+TF9PQkICgMTXPz4+Xl2u1WqRL18+DB06FK9evYKzszMGDRqEpUuXol27drh48aJatkyZMjh37hwAoGnTpmjZsiXu3r2rTtek0+nU4IOLiwvGjBmDBg0aAAB+/fVX5MqV62ucKhERfWWcEoqIiIiIiIiI0qzIyEhkzZo1tatBSJ4XYsiQIfjrr78wcuRIZM2aVZ2mKyEhAdmzZ8eTJ09w+PBh3L17F7169YKtrS38/PxQs2ZNDBgwAEuXLsW+fftQpkwZnD17Fq6uroiOjsaDBw/g4OCQbHqnmJgYmJmZMUhFRPQN4wgLIiIiIiIiIkqz9MEKrVabyjX57xIR6HQ6NVCwdu1a5MyZU02Grs8lotFooNVqYWRkhGnTpgEAxowZg9atW2PTpk0wMTFBy5YtsXTpUlStWhVRUVEwNzcHAJQsWRK9e/dGQkIChgwZAgDJAhP6YAXvBSKibxdHWBARERERERER0T86f/48evTogRMnTqBGjRro0qUL3Nzc4ODgkGL58uXL448//sCiRYvw008/4cqVK+jbty+CgoJQvXp1BAcHY8mSJejUqRMA4PHjx6hWrRquXLmCQ4cOoXLlyl/z9IiIKA3gCAsiIiIiIiIiInovrVaLnj17omTJknj27BnmzJmDuXPnolWrVmqwQv88rIioIyBmzZoFAJg8eTIiIyPh4uKCpUuXYtCgQQgODoalpaW6nU6ng4ODA7p27QoAePr06dc+TSIiSgM4woKIiIiIiIiIiN7ryZMn8PDwwJ49ezB+/HgMHTo0WZnnz5/Dzs5O/V2fz6J9+/ZYtWoVhgwZoibUBoCFCxfCwcEB1atXh52dnUF+jPj4eJiYmHz5EyMiojSHAQsiIiIiIiIiIvpbISEhaNSoEapXrw5fX19YW1tj9+7dCAkJQXBwMKytrVGxYkW0adMGZcqUURNmP3r0CI6OjsiQIQNCQkJQrFgxAG8DGu/SBy60Wi2MjY2/9mkSEVEqY8CCiIiIiIiIiOg/TB9c+DvR0dEYPnw4fH19MXLkSERGRmLp0qWwtrZGpkyZ8OLFC0RGRsLR0REbN25E2bJl1RET48ePx8iRI9G6dWusWbPma5wSERGlUwxYEBERERERERH9ByWdhik2Nhb+/v6oW7cuHBwcUhwBceXKFTRq1Ai3bt2ChYUFBgwYAC8vLyiKAktLSwwZMgQLFixA9erVMW/ePOTNm1fdNk+ePLh79y62bNkCd3f3DwqSEBHRfw+TbhMRERERERER/QfpgxX+/v7IkiULOnXqhA0bNgBAitM1FShQAP369YOzszN2794NHx8f2Nvbw9bWFmZmZhg0aBBatWqFffv24cKFCwASAyEAMH36dADAmDFjoNPpGKwgIqIUMWBBRERERERERPQfFBUVhenTp6NLly7QarUwMTHB+vXrcf36dQCJeSaSMjExQdOmTeHr64uyZctCP2mHPvCRI0cOVKpUCTqdDnv27AEAmJqaAgCaNWuGvn37YtGiRSkGQ4iIiAAGLIiIiIiIiIiI/pMOHTqEcePGwcrKCgEBAejatStCQkKwdu1aACmPsnB0dISbmxvMzc3VQAUAxMXFAQAyZ85s8L+iKEhISAAAzJw5E6VKlUoWCCEiItJjwIKIiIiIiIiI6D/IysoKHh4eOHbsGOrVq4euXbsie/bsWLNmDY4cOQIg+SgLPf3oCv16/UiKzZs3AwDKli2rlk06/ZOIcIQFERG9F1sIIiIiIiIiIqL/oGrVqmH06NFwcnICALi4uKBv3764ceMGVq5cidjYWGg0GjU4kZSiKAbBh5s3b2Lw4MHw9/eHh4cHGjZsmOIxk47KICIiepciKbU6RERERERERET0n3P//n00adIEt2/fxsKFC9G8eXOISIqBhpiYGNy/fx9btmzBnj17EBgYiHr16mH27NnInz9/KtSeiIjSO46wICIiIiIiIiIiAImJswcMGIBnz55h+fLliIiIgKIoKU4NNWDAABQuXBhjxoxBaGgoFi9ejJ07dzJYQUREn8w4tStARERERERERERpR7169dCkSRNs374dAQEB6N27d4p5Jzw8PGBqaoqSJUuibdu2aq6KhIQEg7wVREREH4pTQhERERERERERkYGQkBDUq1cPhQsXxtq1a5E/f35cvnwZFy5cQOvWrdVy8fHxMDExAcBABRER/XscYUFERERERERERAZKly6Nnj17Ytq0afD19UWhQoWwbNkyHD9+HPb29qhduzYAwMTERE3KzWAFERH9WxxhQUREREREREREAGCQYPvSpUuoW7cunj59itjYWFhZWcHHxwdeXl6pW0kiIvpmcYQFEREREREREVE69bmnYdIHK06cOIHVq1fjwYMHAABPT09MmjQJlpaWAAwDG0RERJ8LAxZEREREREREROmMiECn06nBirCwMGTIkAGWlpbIkCHDJwcURATHjh1D+/btcevWLbi5uWHu3LkoVKgQAECr1cLIyIjBCiIi+iI0qV0BIiIiIiIiIiL6cPpghJGREW7evImWLVuiRo0aKFu2LFxdXREYGAitVquW/RiKosDc3Bw//PAD/P39ERgYiEKFCkGn00Gn08HY2JjBCiIi+mKYw4KIiIiIiIiIKJ3R6XSYOnUqxo4dC1tbWxQtWhSWlpY4ceIEoqOjMX36dHTo0OGT963RvH3G9XNPO0VERPQ+nBKKiIiIiIiIiCgdiY+Px6JFizBz5kw0bdoU7dq1g5ubG4yNjXH79m2ULFkSfn5+yJ8/PypXrpwsAPFP9GX12zFYQUREXwunhCIiIiIiIiIiSkeeP3+OXbt24YcffsDYsWNRu3ZtGBsbY9++fXB3d0dUVBT++OMPrF69GrGxsdBoNB89NRSAjwpyEBERfQ5seYiIiIiIiIiI0hh9DoqUZMmSBYMHD8bWrVvh5OSEyMhItGrVCnXq1IGZmRnmzJmDIkWKICAgADt37vyg4yUNaGi1WsTFxf3rcyAiIvpYnBKKiIiIiIiIiCiN0E/DZGyc2GWzbds2ZMiQAQ4ODsifPz8yZMgAAKhcuTIA4M8//0Tv3r1x+vRpDB48GG3atEHx4sVhamqK7t27Y/Xq1ahYsSKyZcuW4tRQ+gTe+kTa58+fx969e1GwYEG4u7tzlAUREX1VbHWIiIiIiIiIiL6yo0eP4vHjxwASgxR6+gDBunXrkCdPHrRo0QK1atVCiRIl0KRJEzx8+NCg3O7duxESEoLhw4dj5MiRKF68OAAgJiYGAHDq1Cls3LjRYJuk9IGK8PBw+Pn5oVu3bhgyZAguXbr0SdNIERER/RsMWBARERERERERfUWTJk1C5cqV4efnB8AwybVWq8W4cePQqVMn5MuXD+PHj0dQUBB69eqFI0eOoEOHDjh37hyAxOTba9euhZ2dHbp16wYrKyv1GDExMShZsiTCw8Mxffp0hIWFqeuSBiJevnyJrVu3ok+fPujRoweio6MRFBSEkSNHMtk2ERF9dZwSioiIiIiIiIjoK3J3d8e8efPg4OBgME2TRqPBnTt3MH/+fJQrVw4zZ85EsWLFAADFihWDmZkZZsyYgdmzZ2PSpElwcHBAkSJFEBoaipMnT6JOnTrQarXYvn07xo4di2nTpiEuLg6mpqbIkyePenxFUaDVavHHH39g7dq1WL58OTQaDXx9fdGzZ8/UeEmIiIgAMGBBRERERERERPRVubi44NSpU3BwcEi2bvXq1Xjw4AH8/f3VYMWlS5ewa9cuBAQEqNs7ODhARODu7o7NmzfDy8sLTZo0wfPnzxEYGIgiRYqgZs2ayJs3b7JjhIaGYsOGDfDz80NYWBg8PT0xffp0mJiYfNkTJyIi+gecEoqIiIiIiIiI6CtzcHBAcHAwKleujN27dwMAEhIScPfuXWTMmBF58+bF8+fPsWTJEnTv3h1Dhw6Fs7Mzbty4gUGDBgFIHCnRoEEDjB8/HmFhYZg1axZWrlyJwoULY926dSkGKwBg165dGDlyJPLly4fr169jzpw5DFYQEVGawBEWRERERERERESp4O7duzh69CgCAgJQqVIlZMyYEaampoiKisKcOXNw+/Zt+Pv7I0+ePNi+fTsaNGigbvvkyRPY2NjAwsICffr0Qd26dREeHg47OzuULFkSAAymmwISc1coigJ3d3eUKFECVapU+ernTERE9HcUSZppiYiIiIiIiIiIvgoRQaNGjXDgwAHMnz8fHh4eCAoKQr169QAAJiYmGDduHLy8vAy202q1qFmzJpo1a4a+ffuqgYikEhISmDSbiIjSHU4JRURERERERESUChRFwahRoxAdHY2VK1fiwYMHKF68OOrXrw+tVptisOLs2bNo164dTp8+DTs7O3U/72KwgoiI0iMGLIiIiIiIiIiIUkm5cuXQo0cPBAYGwt/fH5kzZ0a3bt1gY2ODCRMmwNfXFxEREbhx4wbmzp0LLy8v7NmzB3379kWTJk1Su/pERESfFaeEIiIiIiIiIiJKRffu3UOpUqWQJUsWrFmzBsWKFcO6devg6emJ58+fw9bWFiKC169fI1euXJg5cybc3d1Tu9pERESfHQMWRERERERERESpbMaMGRgwYAC8vLwwZcoUGBkZ4erVq9i1axfCwsJgYmKCYsWKoUOHDuo27ybVJiIiSu8YsCAiIiIiIiIiSmXR0dGoWLEiIiIisHTpUjXxtl7S4IRWq4WxsXFqVJOIiOiLYhieiIiIiIiIiCiVWVhYwMfHB5GRkVi4cCGePXsGABARiAg0Go36M4MVRET0reIICyIiIiIiIiKiNKJq1aq4e/cugoODkTdv3tSuDhER0VfFgAURERERERERURoRGRmJrFmzpnY1iIiIUgUDFkREREREREREaQzzVBAR0X8RAxZERERERERERERERJTqmHSbiIiIiIiIiIiIiIhSHQMWRERERERERERERESU6hiwICIiIiIiIiIiIiKiVMeABRERERERERERERERpToGLIiIiIiIiIiIiIiIKNUxYEFERERERERERERERKmOAQsiIiIiIiIiIiIiIkp1DFgQEREREREREREREVGqY8CCiIiIiIiIiIiIiIhSHQMWRERERERERERERESU6hiwICIiIiIiIiIiIiKiVMeABRERERERERERERERpToGLIiIiIiIiIiIiIiIKNUxYEFERERERERERERERKmOAQsiIiIiIiIiIiIiIkp1DFgQEREREREREREREVGqY8CCiIiIiIiIiIiIiIhSHQMWRERERERERERERESU6hiwICIiIiIiIiIiIiKiVMeABRERERERERERERERpToGLIiIiIiIiIiIiIiIKNUxYEFERERERERERERERKnu/wATHdaRpMuDtAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAASSCAYAAAAivsZUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1hUV/oH8O8MMJRBlCIiCIIKxBhUZO0FsAFqYo2uEQUhsf00MZZYYmIvsZfEaNYAlt2oa1tdTXQ1DCDWmBgLURFQSlARC21oM/P7g3BlpMPAAH4/zzPPM3Puuee8l3tF5r73nCNSqVQqEBERERERERERERERaZFY2wEQERERERERERERERExYUFERERERERERERERFrHhAUREREREREREREREWkdExZERERERERERERERKR1TFgQEREREREREREREZHWMWFBRERERERERERERERax4QFERERERERERERERFpHRMWRERERERERERERESkdUxYEBERERERERERERGR1jFhQUREREREREREREREWseEBRERERERERERERERaR0TFkREREREREREREREpHVMWBARERERERERERERkdYxYUFERERERERERERERFrHhAUREREREREREREREWkdExZERERERERERERERKR1TFgQEREREREREREREZHWMWFBRERERERERERERERax4QFERERERERERERERFpHRMWRERERERERERERESkdQ0yYZGUlITNmzdj4MCBsLOzg0QigZWVFUaOHInLly+XuE9aWhpmzZqFli1bQl9fH/b29pg7dy4yMjIq3f/p06fh7u6ORo0awcTEBJ6enjh37lx1D4uIiIiIiLSost8zlixZApFIVOrrwYMHJfbD7xNERERE9KbS1XYANWHbtm346quv0Lp1awwcOBBNmzZFdHQ0jh07hmPHjuFf//oXxowZI9TPzMyEu7s7rl+/joEDB2Ls2LH47bffsH79eoSFhSE8PBwGBgYV6nvfvn0YP348mjZtCn9/fwDAgQMHMGDAABw8eBCjRo2qiUMmIiIiIqIaVtnvGYX8/Pxgb29frLxJkybFyvh9goiIiIjeZCKVSqXSdhCaduTIEZibm8Pd3V2tPCIiAv369YOxsTGSk5Ohr68PAFi8eDGWLVuGefPmYc2aNUL9+fPn46uvvsKqVauwYMGCcvt9/vw5WrVqBV1dXfz2229o0aIFACAxMRGurq4AgNjYWDRq1EhTh0pERERERLWkst8zlixZgqVLlyI0NBQeHh7lts/vE0RERET0pmuQU0KNGDGi2JcIAOjduzc8PT3x/Plz3Lx5EwCgUqmwa9cuGBsb44svvlCr/8UXX8DY2Bi7du2qUL///ve/8eLFC8yYMUP4cgEALVq0wPTp0/H06VMcPXq0GkdGRERERETaUpnvGVXB7xNERERE9KZrkFNClUVPTw8AoKtbcOjR0dH4888/4eXlBalUqlZXKpWiZ8+eOH36NBISEmBra1tm2zKZDAAwcODAYtu8vLywZMkShIWFYcKECRWONzExsczt2dnZuHPnDpo1a4amTZsKx0VEREREVJb8/HykpKQAAFxcXCo8BSqV7PXvGUWFh4fj8uXLEIvFcHR0RP/+/WFsbFysHr9PEBEREVF9UVPfJ96ov0bj4+Nx9uxZNG/eHC4uLgAKEhYA4OjoWOI+jo6OOH36NKKjo8tNWJTVVmFZYZ2KKq9PIiIiIqLqunLlCjp37qztMOqtkr5nFLV48WK1z02aNMGWLVuKJR74fYKIiIiI6iNNfp9okFNClSQvLw/jx49HTk4OvvrqK+jo6AAAXr58CQBo3LhxifuZmJio1StLWW1Vph0iIiIiIqofSvueAQAdOnRAUFAQYmNjIZfLERcXh23btkEkEsHf3x/Hjx9Xa4vfJ4iIiIjoTfdGjLBQKpXw9/dHeHg4PvroI4wfP17bIVVYQkJCudt79OgBAPjf//6Hli1b1kZYVE05OTm4fPkyAKBr167CwoxUd/Gc1U88b/UTz1v9w3NWPz18+BADBgwAADRt2lTL0dRP5X3PGD58uNpne3t7TJ8+HW3btsWAAQOwaNEivPfeezUaY2W+T4SHh8PKyqpG4yEiIiKihuHRo0fo06cPAM1+n2jwCQulUomAgAD861//gq+vL3bs2KG2vfDppdKeVEpLS1OrV5aibZmbm1e5naKKLrZXnpYtW5Y6tRXVLXK5HDExMQCA1q1bw9DQUMsRUXl4zuonnrf6ieet/uE5q/+4bkHllfc9oyz9+vVD69atcfPmTaSlpQmjJ7T9fcLBwaFS9YmIiIjozVX0e58mv0806CmhlEolJk6ciN27d2Ps2LEICQmBWKx+yOXNBVveGhcVbasy7RARERERUd1Vke8Z5bGwsAAAZGVlCWX8PkFEREREb7oGm7Ao/BKxZ88ejBkzBnv37lWbT7aQo6MjrK2tERkZiczMTLVtmZmZiIyMhIODQ4UWq3N3dwcAnDlzpti206dPq9UhIiIiIqL6p6LfM8qSmZmJ27dvQyqVCokLgN8niIiIiIgaZMKicHj2nj178P7772Pfvn2lfokQiUT48MMPkZGRgeXLl6ttW758OTIyMvDRRx+plWdlZeHOnTuIj49XKx89ejQaN26Mbdu2ITExUShPTEzE119/DQsLi2Lz2BIRERERUf1Qme8Z6enpuHfvXrFyuVyOjz76COnp6Rg9erTa8Hl+nyAiIiKiN12DnKx22bJl2L17N4yNjeHk5IQVK1YUqzNs2DB07NgRAPDZZ5/hP//5D7766iv89ttv6NSpE3799VecOXMGnTt3xsyZM9X2vXLlCjw9PeHu7g6ZTCaUm5qa4uuvv8b48ePRqVMnjBkzBgBw4MABpKam4sCBA2jUqFFNHXapVCoVnj59iszMTOTl5dV6/1ScUqkU5iWOj4+v9BQCVPs0fc709PSEpypFIpEmQiQiIqIaVpnvGampqXjrrbfQuXNntG3bFlZWVnj8+DHOnj2LxMREuLi4YN26dWr71tXvE0REREREtaVBJiwePHgAAMjIyMDKlStLrGNvby8kLKRSKcLCwrBkyRIcPnwYoaGhaN68OWbPno3FixdXauFIX19fWFhYYNWqVQgODoZIJIKbmxsWLVqE/v37V/fQKk2lUuHx48d4/vx5rfdNpVOpVMJ1pVAooFQqtRwRlUfT5yw/Px9yuRwKhQLNmjVj0oKIiKgeqMz3DDMzM0ybNg1XrlzBqVOn8Pz5cxgaGqJt27b4+OOPMX369BK/Z9S17xNERERERLVJpFKpVNoOgqouMTFRWF/j3r17xRbhS0lJwdOnT4XPOjo6vDFaR+Tn5wOA2jQAVLdp6pypVCooFArhs4WFBZo2bVqtNqlkcrlcmAd84MCBlUpAk/bwvNU/PGf1U3R0NJycnAAACQkJaNGihZYjIm0o+n2C1wERERERVVRN/R3JO6UNXNGFxJs3b44mTZpoLxgSKJVKpKWlAQBMTEw4JVQ9oOlz9uLFCyQnJwMo+HfKhAUREREREREREb3peJe0gStcs0JHR4fJCqI6pEmTJsIinYUjN4iIiIiIiIiIiN5kTFi8ITgNFFHdU/jvkjPzERERERERERERcUooIiIiIiIiIiLSEPv5J7UdAlXAgzWDa6UfXg91X21dCwCvh/qgNq+H0nCEBb1xRCIRjh07pu0wiIiIiIiIiIiIiKgIJiyIymBvbw+RSKT2WrNmjbBdJpNBJBLB1NQU2dnZavtevXpV2AcAMjIyoKenh/3796vVGzt2LEQiER48eFCs7y+++KJmDoyIiIiIiIiIiIiojmHCghqMwgXGNW3ZsmVITk4WXjNmzChWp1GjRjh69Kha2ffffw87Ozvhs7GxMf72t79BJpOp1QsLC4Otra1aeVxcHB4+fIi+fftq9FiIiIiIiIiIiIiI6iomLKjO8vDwwMcff4zPPvsMZmZmsLKywpIlS4TtIpEI3377Ld577z1IpVKsXLkSAPCf//wHnTp1goGBAVq1aoWlS5ciPz+/ynE0atQIVlZWwksqlRar4+fnh6CgIOGzXC7H/v374efnp1bP09NTLTFx9+5dZGdnY+rUqWrlMpkM+vr66N69e5XjJiIiIiIiIiIiIqpPmLCgOm337t2QSqW4fPky1q5di2XLluF///ufsH3JkiUYPnw4bt68iYCAAERERGDChAn45JNPEBUVhZ07dyIkJERIZlTFmjVrYG5uDldXV6xbt67E5Mf48eMRERGB+Ph4AMDhw4dhb2+PTp06qdXz9PTE3bt3kZycDACIiIhAz5490bdvX7WERWhoKLp37w4DA4Mqx01ERERERERERERUn+hqOwDSjne3nUdKek6t9tm0kT5OzOhVqX3at2+PxYsXAwAcHR3x9ddf49y5cxgwYAAA4IMPPsDEiROF+gEBAZg/f74wsqFVq1ZYvnw5PvvsM6Gdyvj444/RqVMnmJmZ4cKFC1iwYAGSk5OxceNGtXqWlpbw8fFBSEgIvvzySwQFBSEgIKBYez179oREIoFMJsPgwYMRGRkJd3d3uLm54enTp4iLi4ODgwPCwsIQGBhY6XiJiIiIiIiIiIiI6ismLN5QKek5eJSWXX5FLWvfvr3a5+bNm+PJkyfC57/97W9q23///XdERkaqjahQKBTIzs5GVlYWjIyMKtX/rFmz1GKRSCSYPHkyVq9eDX19fbW6AQEB+OSTT+Dr64uLFy/i3//+NyIiItTqGBkZoXPnzggLCxMSFvPnz4euri569OgBmUwGlUqF+Ph4eHp6VipWIiIiIiIiIiIiovqMCYs3VNNG+uVXqgN96unpqX0WiURQKpXC59fXk8jIyMDSpUsxYsSIYm1pYnqlrl27Ij8/Hw8ePICzs7PaNh8fH0yaNAmBgYF49913YW5uXmIbnp6eOHDgAP744w9kZ2cL00a5u7sjNDQUSqUSRkZG6Nq1a7XjJSIiIiIiIiIiIqovmLB4Q1V2aqb6olOnTrh79y7atGlTI+1fv34dYrEYlpaWxbbp6upiwoQJWLt2LX788cdS2/D09MSKFStw6NAhdO3aFTo6OgCAPn364LvvvoNKpRKmjiIiIiIiIiIiIiJ6UzBhQQ3Kl19+iSFDhsDOzg6jRo2CWCzG77//jlu3bmHFihWVauvixYu4fPkyPD090ahRI1y8eBGffvopfH19YWpqWuI+y5cvx9y5c0sdXQEAPXr0gL6+Pv7xj3+oTTnVpUsXPHnyBP/5z3+wYMGCSsVKREREREREREREVN+JtR0AkSZ5eXnhv//9L86cOYPOnTujW7du2LRpE1q2bFnptvT19bF//364u7ujXbt2WLlyJT799FN89913pe4jkUhgYWEBkUhUah0DAwN069YN6enp6NXr1UgXfX19oZzrVxAREREREREREdGbhiMsqM6SyWTFyo4dOya8V6lUJe7n5eUFLy+vUtstbb/XderUCZcuXSqzjoeHR5ntDRs2rMTtP//8M9LS0oqVh4aGVig2IiIiIiIiIiIiooaGIyyIiIiIiIiIiIiIiEjrmLCgN9aqVatgbGxc4svHx0fb4RERERERERERERG9UTglFL2xpkyZgtGjR5e4zdDQsJajISIiIiIiIiIiInqzMWFBbywzMzOYmZlpOwwiIiIiIiIiIiIiAqeEIiIiIiIiIiIiIiKiOoAJCyIiIiIiIiIiIiIi0jomLIiIiIiIiIiIiIiISOuYsCAiIiIiIiIiIiIiIq1jwoKIiIiIiIiIiIiIiLSOCQuqszw8PDBz5kxth0FEREREREREREREtYAJC6qzjhw5guXLl9dKX+Hh4Xj33XdhbW0NkUiEY8eOFaujUqnw5Zdfonnz5jA0NET//v0RHR2tVkckEkEkEuHSpUtq5Tk5OTA3N4dIJIJMJgMADBgwAJ9++qlavR07dkAkEiEkJESt3N/fH7179672cRIRERERERERERHVVUxYUJ1lZmaGRo0a1UpfmZmZ6NChA7755ptS66xduxZbt27Fjh07cPnyZUilUnh5eSE7O1utnq2tLYKDg9XKjh49CmNjY7WyXr16ITIyUq0sNDQUtra2QlKjkEwmQ9++fatwZERERERERERERET1AxMWVGcVnRIqJycHc+bMgY2NDaRSKbp27ap2Uz81NRVjx46FjY0NjIyM4OLigh9++KHCffn4+GDFihUYPnx4idtVKhU2b96MRYsWYejQoWjfvj327NmDP//8s9hoDD8/P+zfvx9yuVwoCwoKgp+fn1q93r17Izo6Go8ePRLKwsLCMH/+fLVji4uLw8OHD+Hp6Vnh4yEiIiIiIiIiIiKqb5iwoHph+vTpuHjxIvbv348bN27g/fffh7e3tzAlU3Z2Ntzc3HDy5EncunULkyZNwvjx43HlyhWN9B8XF4dHjx6hf//+Qlnjxo3RtWtXXLx4Ua2um5sb7O3tcfjwYQBAfHw8wsPDMX78eLV6Xbt2hZ6eHkJDQwEAUVFRkMvlCAwMRGpqKuLi4gAUjLowMDBA9+7dNXIsRERERERERERERHWRrrYDIC3Z6Q5kPKndPo0tgclhld4tPj4ewcHBiI+Ph7W1NQBgzpw5+OmnnxAcHIxVq1bBxsYGc+bMEfaZMWMGTp8+jYMHD6JLly7VDr1wFESzZs3Uyps1a6Y2QqJQQEAAgoKC4Ovri5CQEAwaNAhNmzZVqyOVStGpUyeEhYVh3LhxkMlk6NWrF/T19dGjRw/IZDI4ODhAJpOhe/fu0NfXr/ZxEBEREREREREREdVVTFi8qTKeAOl/ajuKCrl58yYUCgWcnJzUygsXsgYAhUKBVatW4eDBg0hKSkJubi5ycnJgZGSkjZDh6+uL+fPnIzY2FiEhIdi6dWuJ9Xr16oUTJ04AKFinwsPDAwDg7u4OmUyGiRMnQiaT4aOPPqqt0ImIiIiIiIiIiIi0okEmLPbt24eIiAhcu3YNN2/eRG5uLoKDg+Hv71+srkgkKre9+Ph42NrallvP3t4eDx8+LHFb4Q3oOsPYst70mZGRAR0dHVy7dg06OjrqTf61kPW6deuwZcsWbN68GS4uLpBKpZg5cyZyc3OrHTYAWFlZAQAeP36M5s2bC+WPHz9Gx44di9U3NzfHkCFDEBgYiOzsbPj4+CA9Pb1Yvd69e2PDhg1ISkqCTCYTRom4u7tj586diImJQUJCAhfcJiIiIiIiIiIiogavQSYsFi1ahIcPH8LCwgLNmzcvNYkAAIsXLy6x/P79+/jnP/+Jt99+u0LJikKNGzcWFoouyt7evsJt1IoqTM2kLa6urlAoFHjy5Al69+5dYp3IyEgMHToUvr6+AAClUol79+7h7bff1kgMDg4OsLKywrlz54QERVpaGi5fvoypU6eWuE9AQAAGDRqEefPmFUu0FOrSpQskEgm2b98urMMBAJ07d0ZKSgqCgoIglUo1Mq0VERERERERERERUV3WIBMWu3btgqOjI1q2bIk1a9ZgwYIFpdZdsmRJieUzZswAAAQGBlaq7yZNmpTaJlWNk5MTxo0bhwkTJmDDhg1wdXVFSkoKzp07h/bt22Pw4MFwdHTEoUOHcOHCBZiammLjxo14/PhxhRMWGRkZuH//vvA5Li4O169fh5mZGezs7CASiTBz5kysWLECjo6OcHBwwBdffAFra2sMGzasxDa9vb2RkpICExOTUvs1NDREt27dsG3bNvTs2VNIbEgkErVyPT29iv/AiIiIiIiIiIiIiOqhBpmw6N+/f7X2z87Oxj//+U9IJBKMHz9eQ1FRdQQHB2PFihWYPXs2kpKSYGFhgW7dumHIkCEACkbVxMbGwsvLC0ZGRpg0aRKGDRuGly9fVqj9X375BZ6ensLnWbNmAQD8/PwQEhICAPjss8+QmZmJSZMm4cWLF+jVqxd++uknGBgYlNimSCSChYVFuX17eHggPDxcWL+ikLu7O0JDQ9XiIiIiIiIiIiIiImqoGmTCorqOHDmC58+fY9SoUWjatGml9s3JyUFISAj+/PNPmJiYoHPnzujatWuVY0lMTCxze3JyslrfcrlcbbtSqYRKpRLe1yc///wzgIK4dXR0sHjx4hKn8FIqlWjSpAmOHDlSYjsVOe4+ffpAoVCUu/+SJUuKjaApur2wjZL6NDExKXH7F198IRzX6+VffPFFhY+BalbRc6DJ86FSqaBUKov92yXNyM7OLvE91W08b/UPz1n9lJOTo+0QiIiIiIiI1DBhUYLvv/8eAPDhhx9Wet9Hjx5h4sSJamWdO3fGDz/8gNatW1e6vcqsn3H58mXExMSolZmbm8PQ0BAikQhpaWmV7p9qXkZGhrZDoErS1DnLz8+HXC6HXC7HnTt3NNImlS48PFzbIVAV8LzVPzxn9cfTp0+1HQIREREREZEasbYDqGvi4uIQGhoKOzs7DBgwoFL7Tpw4EefOncPjx4+RmZmJ3377DePHj8fVq1fRr18/pKen11DUVJaEhAS0aNGi1FdCQoK2QyQiIiIiIiIiIiJ643GExWuCgoKgUqkwceJEiMWVy+e8Pl1Rx44dsWfPHgDA3r178Y9//ENYG6GiyruZnpycjC5dugAAunbtWmwUR3x8PBQKBXR1dctc/Lkhc3Z2xq+//lrqdnt7e+jq1u4/BaVSKTylb2xsXOlrjWpfTZyzlJQUGBoawtjYGG5ubtVuj4rLzs4Wnvbu06dPqWvOUN3C81b/8JzVT6+PzCUiIiIiItI2JiyKUCqVCAkJgVgsRkBAgMbanTx5Mvbu3YvIyMhKJyxatGhR4br6+vowNDRUKxOLxcJ8+2/qTXGJRAInJydth1EqsVj8xp6b+kqT50wkEkEsFhf7t0uaZ2BgwJ9zPcTzVv/wnNUf+vr62g6BiIiIiIhIDe+SFvHTTz8hMTERAwYMgJ2dncbatbCwAABkZmZqrE0iIiIiIiIiIiIiooaECYsiqrPYdlkuX74MoGDqISIiIiIiIiIiIiIiKo4Ji7+kpKTgxIkTaNq0Kd57771S6+Xl5eHOnTvF5vy9c+cOsrKyitW/c+cO5s2bBwD44IMPNBs0EREREREREREREVED0SDXsNi1axfOnz8PALh586ZQJpPJAAC9evUqNopiz549yMvLw/jx4yGRSEptOykpCW3btkXLli3x4MEDoXz//v3YuHEj+vTpg5YtW0IqleLevXs4deoU8vLysGDBAvTp00ezB0pERERERERERERE1EA0yITF+fPnsXv3brWyyMhIREZGCp9fT1hUdzooT09P/PHHH/jtt98QERGBrKwsWFhYYNCgQZg2bRoGDhxYpXaJiIiIiIiIiIiIiN4EDXJKqJCQEKhUqlJfISEhxfaJioqCSqVC27Zty2zb3t4eKpVKbXQFALi7u+PAgQO4d+8eXr58iby8PCQnJ+PYsWNMVlSBh4cHZs6cqe0w6qVjx46hTZs20NHRwcyZMxESEoImTZrUSt/29vbYvHlzrfRVEampqbC0tCz277U2dOvWDYcPH671fomIiIiIiIiIiOqrBpmwoPrvyJEjWL58ea31Fx4ejnfffRfW1tYQiUQ4duxYsTr+/v4QiURqL29vb7U6heWXLl1SK8/JyYG5uTlEIpEwNdmAAQPw6aefqtXbsWMHRCJRsaSav78/evfuXaFjmTx5MkaNGoWEhIQa+xmWlgS5evUqJk2aVCN9VsXKlSsxdOhQYcH733//HWPHjoWtrS0MDQ3Rtm1bbNmypdLtVuR6WbRoEebPnw+lUlnNoyAiIiIiIiIiInozMGFBdZKZmRkaNWpUa/1lZmaiQ4cO+Oabb8qs5+3tjeTkZOH1ww8/FKtja2uL4OBgtbKjR4/C2NhYraxXr15q05QBQGhoKGxtbYWkRiGZTIa+ffuWexwZGRl48uQJvLy8YG1tXas/QwBo2rQpjIyMarXP0mRlZeH7779HYGCgUHbt2jVYWlpi3759uH37Nj7//HMsWLAAX3/9daXarsj14uPjg/T0dPz4449VPgYiIiIiIiIiIqI3CRMWVCe9PiVUTk4O5syZAxsbG0ilUnTt2lXtpn5qairGjh0LGxsbGBkZwcXFpcRkQml8fHywYsUKDB8+vMx6+vr6sLKyEl6mpqbF6vj5+WH//v2Qy+VCWVBQEPz8/NTq9e7dG9HR0Xj06JFQFhYWhvnz56sdW1xcHB4+fAhPT88yY5PJZEKCom/fvmqjOV737bffonXr1pBIJHB2dsbevXvVtm/cuBEuLi6QSqWwtbXFtGnTkJGRIfQzceJEvHz5UhhRsmTJEgDFp4QSiUTYtWsXhg8fDiMjIzg6OuL48eNqfR0/fhyOjo4wMDCAp6cndu/eDZFIhBcvXpR5vOU5deoU9PX10a1bN6EsICAAW7Zsgbu7O1q1agVfX19MnDgRR44cqVTbFbledHR0MGjQIOzfv7/Kx0BERERERERERPQmYcKC6oXp06fj4sWL2L9/P27cuIH3338f3t7eiI6OBgBkZ2fDzc0NJ0+exK1btzBp0iSMHz8eV65c0WgcMpkMlpaWcHZ2xtSpU5GamlqsjpubG+zt7YX1C+Lj4xEeHo7x48er1evatSv09PQQGhoKoGAdFblcjsDAQKSmpiIuLg5AwagLAwMDdO/evczYevTogbt37wIADh8+jOTkZPTo0aNYvaNHj+KTTz7B7NmzcevWLUyePBkTJ04U4gAAsViMrVu34vbt29i9ezd+/vlnfPbZZ0I/mzdvhomJiTDSZM6cOaXGtXTpUowePRo3btzAoEGDMG7cODx79gxAQTJm1KhRGDZsGH7//XdMnjwZn3/+eZnHWVERERFwc3Mrt97Lly9hZmamkT5f16VLF0RERNRI20RERERERERERA2NrrYDIO3ZfXs39kTtKbfe22ZvY1u/bWplM87NQNSzqHL3nfD2BPi18yu3Xlni4+MRHByM+Ph4WFtbAwDmzJmDn376CcHBwVi1ahVsbGzUbprPmDEDp0+fxsGDB9GlS5dq9V/I29sbI0aMgIODA2JiYrBw4UL4+Pjg4sWL0NHRUasbEBCAoKAg+Pr6IiQkBIMGDULTpk3V6kilUnTq1AlhYWEYN24cZDIZevXqBX19ffTo0QMymQwODg6QyWTo3r079PX1y4xPIpHA0tISQMGUWlZWViXWW79+Pfz9/TFt2jQAwKxZs3Dp0iWsX79eGMVRdHSLvb09VqxYgSlTpmD79u2QSCRo3LgxRCJRqX0U5e/vj7FjxwIAVq1aha1bt+LKlSvw9vbGzp074ezsjHXr1gEAnJ2dcevWLaxcubLcdsvz8OFD4XopzYULF3DgwAGcPHmy2v2VxNraGgkJCVAqlRCLmR8mIiIiIiIiIiIqCxMWb7DMvEw8yXpSbj0rafGb0s9ynlVo38y8zCrFVtTNmzehUCjg5OSkVl64kDUAKBQKrFq1CgcPHkRSUhJyc3ORk5Oj0fUU/v73vwvvXVxc0L59e7Ru3RoymQz9+vVTq+vr64v58+cjNjYWISEh2Lp1a4lt9urVCydOnABQMHrDw8MDAODu7i5MvSSTyfDRRx9p7Dj++OOPYgtj9+zZU23x6bNnz2L16tW4c+cO0tLSkJ+fj+zsbGRlZVX6Z9q+fXvhvVQqhYmJCZ48Kbh27t69i86dO6vVLy/BNGXKFOzbt0/4XDhV1evkcjkMDAxKbefWrVsYOnQoFi9ejIEDB5Z7HFVhaGgIpVKJnJwcGBoa1kgfREREREREREREDQUTFm8wqZ4UlkaW5dYz0y8+XY6ZvlmF9pXqSasUW1EZGRnQ0dHBtWvXio1kKFzIet26ddiyZQs2b94srL0wc+ZM5ObmVrv/0rRq1QoWFha4f/9+sYSFubk5hgwZgsDAQGRnZwsLML+ud+/e2LBhA5KSkiCTyYRRIu7u7ti5cydiYmKQkJBQoQW3NeXBgwcYMmQIpk6dipUrV8LMzAznz59HYGAgcnNzK52w0NPTU/ssEomgVCqrHN+yZcvKnIKqkIWFBZ4/f17itqioKPTr1w+TJk3CokWLqhxLeZ49ewapVMpkBRERERERERERUQUwYfEG82vnV+Xpml6fIqomubq6QqFQ4MmTJ+jdu3eJdSIjIzF06FD4+voCAJRKJe7du4e33367xuJKTExEamoqmjdvXuL2gIAADBo0CPPmzSuWaCnUpUsXSCQSbN++XViHAwA6d+6MlJQUBAUFQSqVamxaKwBo27YtIiMj1RYBj4yMFH5W165dg1KpxIYNG4RpjA4ePKjWhkQigUKhqHYszs7OOHXqlFrZ1atXy9zH0tJSmPqqLK6urmojMQrdvn0bffv2hZ+fn0amnirLrVu34OrqWqN9EBERERERERERNRRMWFCd5+TkhHHjxmHChAnYsGEDXF1dkZKSgnPnzqF9+/YYPHgwHB0dcejQIVy4cAGmpqbYuHEjHj9+XOGERUZGBu7fvy98jouLw/Xr12FmZgY7OztkZGRg6dKlGDlyJKysrBATE4PPPvsMbdq0gZeXV4ltent7IyUlBSYmJqX2a2hoiG7dumHbtm3o2bOnkNiQSCRq5a+PUqiOuXPnYvTo0XB1dUX//v1x4sQJHDlyBGfPngUAtGnTBnl5edi2bRveffddREZGYseOHWpt2NvbIyMjA+fOnUOHDh1gZGRUpem3Jk+ejI0bN2LevHkIDAzE9evXERISAqBgJEZ1eHl5YcGCBXj+/DlMTU0BFCQQ+vbtCy8vL8yaNQuPHj0CAOjo6BRbY6QsGRkZiI2NFT6/fr0UioiIqLHppoiIiIiIiIiIiBoargJL9UJwcDAmTJiA2bNnw9nZGcOGDcPVq1eFm8OLFi1Cp06d4OXlBQ8PD1hZWWHYsGEVbv+XX36Bq6ur8DT8rFmz4Orqii+//BJAwQ3tGzdu4L333oOTkxMCAwPh5uaGiIiIUhfDFolEsLCwgEQiKbNvDw8PpKenC+tXFHJ3d0d6erqwELamDBs2DFu2bMH69evRrl077Ny5E8HBwUL/HTp0wMaNG/HVV1/hnXfewT//+U+sXr1arY0ePXpgypQpGDNmDJo2bYq1a9dWKRYHBwccOnQIR44cQfv27fHtt9/i888/B4ByFxkvj4uLCzp16qQ2OuTQoUNISUnBvn370Lx5c+FVdB2NBw8eQCQSQSaTldp2edcLACQlJeHChQuYOHFitY6DiIiIiIiIiIjoTSFSqVQqbQdBVZeYmAhbW1sAwL179+Do6Ki2PTo6Gvn5+dDV1S22jbRHqVQiLS0NAGBiYiJMvUTAypUrsWPHDiQkJFS7rZMnT2Lu3Lm4detWhX/GoaGhGDFiBGJjY4WRGUDlz9m8efPw/PlzfPfdd6XW4b/PmieXy3HmzBkAwMCBA7meSD3B81b/8JzVT9HR0XBycgIAJCQkoEWLFlqOiLSh6PcJXgdEpAn2809qOwSqgAdrBtdKP7we6r7auhYAXg/1QWWuh5r6O5JTQhGRVm3fvh2dO3eGubk5IiMjsW7dOkyfPl0jbQ8ePBjR0dFISkoSfoGW59SpU1i4cKFasqIqLC0tMWvWrGq1QURERERERERE9CbhY93U4MXHx8PY2LjUV3x8vLZDrDAfH59Sj2PVqlXaDq9KoqOjMXToULz99ttYvnw5Zs+ejSVLlmis/ZkzZ1Y4WQEA69atw9y5c6vd7+zZs9GsWbNqt0NERER1R1JSEjZv3oyBAwfCzs4OEokEVlZWGDlyJC5fvlziPmlpaZg1axZatmwJfX192NvbY+7cucjIyCixvlKpxLZt2+Di4gJDQ0M0bdoUY8eOVVs/i4iIiIiooeIIC2rwrK2tcf369TK31xe7du2CXC4vcZuZmVktR6MZmzZtwqZNm7QdBhEREVG5tm3bhq+++gqtW7fGwIED0bRpU0RHR+PYsWM4duwY/vWvf2HMmDFC/czMTLi7u+P69esYOHAgxo4di99++w3r169HWFgYwsPDYWBgoNbH5MmTsWvXLrRr1w4ff/wx/vzzTxw8eBBnzpzBpUuXOI0kERERETVoTFhQg6erq4s2bdpoOwyNsLGx0XYIRERERG+sLl26QCaTwd3dXa08IiIC/fr1w9SpUzFs2DDo6+sDANauXYvr169j3rx5WLNmjVB//vz5+Oqrr7Bp0yYsWLBAKA8NDcWuXbvQp08f/O9//4NEIgEAfPDBBxg0aBCmT5+O06dP18KREhERERFpB6eEIiIiIiIiqoARI0YUS1YAQO/eveHp6Ynnz5/j5s2bAACVSoVdu3bB2NgYX3zxhVr9L774AsbGxti1a5da+T/+8Q8AwPLly4VkBVAwLaiHhwfOnDlTr6YzJSIiIiKqLCYsiIiIiIiIqklPTw9AweheoGCdrj///BM9e/aEVCpVqyuVStGzZ0/ExsYiISFBKJfJZMK213l5eQEAwsLCauoQiIiIiIi0jlNCERERERERVUN8fDzOnj2L5s2bw8XFBUBBwgJAqWtOODo64vTp04iOjoatrS0yMzORnJyMd955Bzo6OiXWL9puRSUmJpa5PTk5WXgvl8tLXS+NiIgaFv6+p0K8FqioylwPNXXtMGFBRERERERURXl5eRg/fjxycnLw1VdfCcmGly9fAgAaN25c4n4mJiZq9Spbv6JsbW0rXDc8PBwWFhaVap+IqDjeaqoPzpw5U0s98Xqo62rvWgB4PdR9lbkenj59WiMxcEooIiIiIiKiKlAqlfD390d4eDg++ugjjB8/XtshERERERHVa0xrUZ3k4eGBjh07YvPmzdoOpd45duwY5syZg7i4OMyYMQMdO3bEzJkz8eLFixrv297eHjNnzsTMmTNrvK+KSE1NRdu2bXHlyhXY29vXWr+5ublwcnLCoUOH8Le//a3W+iUiIqLao1QqERAQgH/961/w9fXFjh071LYXjpQobUREWlqaWr3K1q+oomtklCQ5ORldunQBAPTp0wctWrSoVPtERMVc/FnbEVAFDBw4sHY64vVQ59XatQDweqgHKnM9lDf1aFUxYUF10pEjR4SFC2tDeHg41q1bh2vXriE5ORlHjx7FsGHD1Or4+/tj9+7damVeXl746aefhM8ikQgAcPHiRXTr1k0oz8nJgbW1NZ49e4bQ0FD06dMHAwYMwDvvvIPvv/9eqLdjxw5MnToVwcHB8Pf3V+s7JiYGERER5R7L5MmTMXHiRHz88cdo1KgRDh8+XJkfRYWEhISUmAS5evVqsUUltWnlypUYOnSokKz4/fffsWbNGpw/fx5Pnz6Fvb09pkyZgk8++aRS7S5duhTLli1TK3N2dsadO3cAABKJBHPmzMG8efNw7tw5jRwLERER1R1KpRITJ07Enj17MHbsWISEhEAsVh+8Xt6aE6+vcSGVStG8eXPExcVBoVAUW8eivDUxSlOZBIShoSEMDQ0r1T4REdVP/H1PhXgtUFGVuR5q6tphwoLqJDMzs1rtLzMzEx06dEBAQABGjBhRaj1vb28EBwcLn/X19YvVsbW1RXBwsFrC4ujRozA2NsazZ8+Esl69euHkyZNq+4aGhsLW1hYymUwtYSGTyeDn51fucWRkZODJkyfw8vKCtbV1ufU1rWnTprXeZ2mysrLw/fff4/Tp00LZtWvXYGlpiX379sHW1hYXLlzApEmToKOjg+nTp1eq/Xbt2uHs2bPCZ11d9V+n48aNw+zZs3H79m20a9euegdDREREdUbRZMWYMWOwd+/eUhfJtra2RmRkJDIzM9Ue6sjMzERkZCQcHBzU1phwd3fH/v37ERkZiT59+qi1V/g3zevlRHWF/fyT5VcirXqwZrC2QyAiIioX17CgOsnDw0NtWqGcnBzMmTMHNjY2kEql6Nq1K2QymbA9NTUVY8eOhY2NDYyMjODi4oIffvihwv35+PhgxYoVGD58eJn19PX1YWVlJbxMTU2L1fHz88P+/fshl8uFsqCgoGIJh969eyM6OhqPHj0SysLCwjB//ny1Y4uLi8PDhw/h6elZZmwymQyNGjUCAPTt2xcikUitnaK+/fZbtG7dGhKJBM7Ozti7d6/a9o0bN8LFxQVSqRS2traYNm0aMjIyhH4mTpyIly9fQiQSQSQSYcmSJQAKpoQqOo2XSCTCrl27MHz4cBgZGcHR0RHHjx9X6+v48eNwdHSEgYEBPD09sXv3bohEompPYXXq1Cno6+urJY4CAgKwZcsWuLu7o1WrVvD19cXEiRNx5MiRSrevq6urdi28vkClqakpevbsif3791frOIiIiKjuKJwGas+ePXj//fexb9++EpMVQMHfQR9++CEyMjKwfPlytW3Lly9HRkYGPvroI7XySZMmAQC++OIL5ObmCuU//vgjZDIZBg4ciJYtW2r4qIiIiIiI6g4mLKhemD59Oi5evIj9+/fjxo0beP/99+Ht7S0Mjc/OzoabmxtOnjyJW7duYdKkSRg/fjyuXLmi0ThkMhksLS3h7OyMqVOnIjU1tVgdNzc32NvbC1MxxcfHIzw8vNgijF27doWenh5CQ0MBAFFRUZDL5QgMDERqairi4uIAFIy6MDAwQPfu3cuMrUePHrh79y4A4PDhw0hOTkaPHj2K1Tt69Cg++eQTzJ49G7du3RKmkCqMAwDEYjG2bt2K27dvY/fu3fj555/x2WefCf1s3rwZJiYmSE5ORnJyMubMmVNqXEuXLsXo0aNx48YNDBo0COPGjRNGmsTFxWHUqFEYNmwYfv/9d0yePBmff/55mcdZUREREXBzcyu33suXL6s0oic6OhrW1tZo1aoVxo0bh/j4+GJ1unTpUqFpvIiIiKh+WLZsGXbv3g1jY2M4OTlhxYoVWLJkidrr+vXrQv3PPvsMHTp0wFdffQUvLy8sWLAAXl5e+Oqrr9C5c+di6355enriww8/RHh4ODp16oR58+ZhwoQJGDZsGMzMzLBt27baPWAiIiIiolrGKaHeYKnBIXgWElJuPYO334btt9vVyhKmTkN2VFS5+5r5+8N8on8VIywQHx+P4OBgxMfHC9MczZkzBz/99BOCg4OxatUq2NjYqN00nzFjBk6fPo2DBw8KiwhWl7e3N0aMGAEHBwfExMRg4cKF8PHxwcWLF4s9WRcQEICgoCD4+voiJCQEgwYNKjZdklQqRadOnRAWFoZx48ZBJpOhV69e0NfXR48ePSCTyeDg4ACZTIbu3buXOP1UURKJBJaWlgAKptSysrIqsd769evh7++PadOmAQBmzZqFS5cuYf369cIojqJfnu3t7bFixQpMmTIF27dvh0QiQePGjSESiUrtoyh/f3+MHTsWALBq1Sps3boVV65cgbe3N3bu3AlnZ2esW7cOQME6ELdu3cLKlSvLbbc8Dx8+LHdarAsXLuDAgQPFpuYqT5cuXRASEgJnZ2ckJydj6dKl6N27N27duiWMcgEAa2trPHz4sErxExERUdkeP36Mc+fO4ddff8Xjx4/x/PlzmJqaolmzZnBzc0Pfvn3RrFkzjfb54MEDAAXTcJb294q9vT06duwIoODvvbCwMCxZsgSHDx9GaGgomjdvjtmzZ2Px4sUlzvu7c+dOuLi44LvvvsOWLVtgbGyM4cOHY+XKlWjdurVGj4eIiIiIqK5hwuINpszIQP7jx+XWU5RwU1rx7FmF9lX+NY1Qddy8eRMKhQJOTk5q5Tk5OTA3Ny+IR6HAqlWrcPDgQSQlJSE3Nxc5OTkwMjKqdv+F/v73vwvvXVxc0L59e7Ru3RoymQz9+vVTq+vr64v58+cjNjYWISEh2Lp1a4lt9urVCydOnABQMHrDw8MDQMH8xYVTL8lksmLTBVTHH3/8IUw3UKhnz57YsmWL8Pns2bNYvXo17ty5g7S0NOTn5yM7OxtZWVmV/pm2b99eeC+VSmFiYoInT54AAO7evYvOnTur1S8vwTRlyhTs27dP+JxRyjUml8thYGBQaju3bt3C0KFDsXjxYgwcOLDc4yjKx8dHWFizffv26Nq1K1q2bImDBw8iMDBQqGdoaIisrKxKtU1ERESly8vLw4EDB/DNN98II2lVKlWxeiKRCEDBiNb/+7//w+jRo6Gnp1ft/kNCQhBSgQd+imrcuDE2bdqETZs2Vai+WCzGxx9/jI8//rgKERIRERER1W9MWLzBxMbG0K3AU2c6JUyXo2NmVqF9xcbGVYqtqIyMDOjo6ODatWvFRjIY/9X+unXrsGXLFmzevFlYe2HmzJlqc/9qWqtWrWBhYYH79+8XS1iYm5tjyJAhCAwMRHZ2Nnx8fJCenl6sjd69e2PDhg1ISkqCTCYTRom4u7tj586diImJQUJCAvr27Vtjx/G6Bw8eYMiQIZg6dSpWrlwJMzMznD9/HoGBgcjNza10wuL1mwMikQhKpbLK8S1btqzMKagKWVhY4Pnz5yVui4qKQr9+/TBp0iQsWrSoyrEUatKkCZycnHD//n218mfPntWphciJiIjqs71792LBggVITk6GSqVC06ZN0b17d7Rr1w7m5uYwMTHBy5cvkZqailu3buHixYu4dOkSLl++jPnz52P16tXw9fXV9mEQEREREVEZmLB4g5lPrPp0Ta9PEVWTXF1doVAo8OTJE/Tu3bvEOpGRkRg6dKjwJVSpVOLevXt4++23ayyuxMREpKamonnz5iVuDwgIwKBBgzBv3rxSF2Ps0qULJBIJtm/fLqzDAQCdO3dGSkoKgoKCIJVKNTatFQC0bdsWkZGRaouAR0ZGCj+ra9euQalUYsOGDcIogoMHD6q1IZFIoFAoqh2Ls7MzTp06pVZ29erVMvextLQUpr4qi6urq9pIjEK3b99G37594efnp5Gpp4CCpFpMTEyxdUpu3boFV1dXjfRBRET0JuvevTuuXLkCCwsLfPzxx/D390eHDh3K3e/69esIDg7GDz/8AD8/P2zfvh0XLlyohYiJiIiIiKgquOg21XlOTk4YN24cJkyYgCNHjiAuLg5XrlzB6tWrhbUHHB0d8b///Q8XLlzAH3/8gcmTJ+NxBaasKpSRkYHr168LiyTGxcXh+vXrwkLKGRkZmDt3Li5duoQHDx7g3LlzGDp0KNq0aQMvL68S2/T29kZKSgqWLVtWar+Ghobo1q0btm3bhp49ewqJDYlEolauiSkMCs2dOxchISH49ttvER0djY0bN+LIkSPCqIU2bdogLy8P27ZtQ2xsLPbu3YsdO3aotWFvb4+MjAycO3cOT58+rfK0R5MnT8adO3cwb9483Lt3DwcPHhSmWSicyqGqvLy8cPv2bbVRFrdu3YKnpycGDhyIWbNm4dGjR3j06BFSUlIq1fbcuXMRFhaGBw8e4MKFCxg+fDh0dHSEtToKRUREVHq6KSIiIiouOjoaa9euRXx8PDZt2lShZAUAdOzYEVu2bEFCQgLWrFmDe/fu1XCkRERERERUHUxYUL0QHByMCRMmYPbs2XB2dsawYcNw9epV2NnZAQAWLVqETp06wcvLCx4eHrCyssKwYcMq3P4vv/wCV1dX4Wn4WbNmwdXVFV9++SUAQEdHBzdu3MB7770HJycnBAYGws3NDREREaUuhi0SiWBhYQGJRFJm3x4eHkhPTxfWryjk7u6O9PR0YSFsTRk2bBi2bNmC9evXo127dti5cyeCg4OF/jt06ICNGzfiq6++wjvvvIN//vOfWL16tVobPXr0wJQpUzBmzBg0bdoUa9eurVIsDg4OOHToEI4cOYL27dvj22+/xeeffw4A5S4yXh4XFxd06tRJbXTIoUOHkJKSgn379qF58+bCq+g6Gg8ePIBIJIJMJiu17cTERIwdOxbOzs4YPXo0zM3NcenSJbXpny5evIiXL19i1KhR1ToOIiIiAmJjYzF79uwq/32gr6+PuXPnIjY2VsORERERERGRJolUJa1SV8/t27cPERERuHbtGm7evInc3FwEBwfD39+/WN0lS5Zg6dKlpbYVFxcHe3v7Cvd97949LFq0CD///DMyMzPh5OSEKVOmYMqUKdV+YrwkiYmJsLW1Ffp2dHRU2x4dHY38/Hzo6uoW20bao1QqkZaWBgAwMTERpl4iYOXKldixYwcSEhKq3dbJkycxd+5c3Lp1q8I/49DQUIwYMQKxsbEwNTUVyit7zsaMGYMOHTpg4cKFpdbhv8+aJ5fLcebMGQDAwIEDYWhoqOWIqCJ43uofnrP6KTo6Gk5OTgCAhIQEtGjRQssRkTYU/T7B64Cqw37+SW2HQOV4sGZwrfTDa6F+4PVAhWrrWgB4PdQHlbkeaurvyAa5hsWiRYvw8OFDWFhYoHnz5nj48GG5+/j5+ZWYmGjSpEmF+42KikKPHj0gl8sxevRoWFtb4+TJk5g2bRqioqKwbdu2ShwF0Zth+/bt6Ny5M8zNzREZGYl169Zh+vTpGml78ODBiI6ORlJSkvALtDynTp3CwoUL1ZIVlZWbmwsXFxd8+umnVW6DiIiIiIiIiIjoTdMgExa7du2Co6MjWrZsiTVr1mDBggXl7uPv719sSp7Kmjp1Kl6+fIlTp07Bx8cHALB8+XL0798fX3/9NT744AN07969Wn1Q5cXHx5e5+HZUVJQwtVRd5+Pjg4iIiBK3LVy4sMyn+euq6OhorFixAs+ePYOdnR1mz55doX+zFTVz5sxK1V+3bl21+5RIJFi0aFG12yEiIqLyKRQKpKamIjs7u9Q69eVvPSIiIiKiN12DTFj079+/1vu8d+8ewsPD4enpKSQrgIIbl8uXL4eHhwf+8Y9/MGGhBdbW1sJi2qVtry927doFuVxe4jYzM7NajkYzNm3ahE2bNmk7DCIiIqpnLly4gKVLlyI8PBy5ubml1hOJRMjPz6/FyIiIiIiIqKoaZMKiKsLDw3H58mWIxWI4Ojqif//+MDY2rvD+hQv0Dhw4sNi2Xr16QSqVIiwsrNJxJSYmlrk9OTlZeJ+Tk1PsZrZSqUThMiVKpbLS/TcEYrEYrVq1KrNObf9sivZXmb6bN29e4XZJs6p6zsqjUqmQm5uDa5cioVKpYGFoATP9V8mnPGUe4tLiKtSWnbEdDHQNhM8vc17isfxxufvpiHTQunFrtbI/M/9ERl5GufuaSExgZWSlVnb/5X0oVeX/jKyMrGAiMRE+y/PlSMio2NolrRu3ho5IR/icmp2K1OzUYvXy8/KQ/iwFAPD71UswNmgEu0bqT9nGp8cjW1H6U7mFTPVN0dTw1cLqSpUC91/GVCheW2NbGOq+mtM/PTcdyVnJZexRQAQRHJuor2/yKOsR0nLTyt1XqieFjdRGrSw2LRb5yvJv2lkaWqKJfhPhc64iFw/SH5S7HwA4mNhDTywRPj/LeYan8qfl7qcn1oODiUNBf7m5MH6pi2fKZ/j96iXo6umVuW8TSRNYGlmqld17ca9C8VpLrWGs9+r/+8z8TCRlJFVoX8fGjmrrU6XIU/A853m5+xnqGsLWWH2augfpD5CrKP2Ga6G6+jui8N+ajkSvzKfcqW7JycnRdghV9vPPP8PHxwd5eXkACh7caNSokZajIiIiIiKi6mLC4i+LFy9W+9ykSRNs2bIFEyZMqND+0dHRAFDiwrk6OjpwcHBAVFSUsMBuRVV03n0AuHz5MmJi1G+emZubw9DQECKRSFgwmOqWjIzybwpT3aKpc5afn4+srCyIHuegWUThDf4UpCFFrZ5V8V1LlIuHKHq7U1ThffORhrtqJcZ/vcr3Eml4qVZiWUrN4pKRBvWb9hU91kzcV/usV+q+umgB54K3dwFAXuxYm1SwT+AZ0vBMraSi8eYhHnmvlVVsX1WxeI3+epUvo9i+FhXaDwAeIw3qN7IreqxyxKFo6ly3wvvmqsXrDBMAJsAdAFCVs+9zpEE9UVDReJVIwuv/O1Z033SoJ0X0K7xvVrFzU/ExcnX1d8Srf2unXhyAcYuyE+xUNzx9Wn4ysa5atGgR8vLyMHPmTCxatKjejjQlIiIiIiJ1Ym0HoG0dOnRAUFAQYmNjIZfLERcXh23btkEkEsHf3x/Hjx+vUDsvXxbcsGvcuHGJ201MTKBUKpGenq6x2ImoflOpVNDNAySqsp8eJyKqTyyfS7UdAr0Brl+/jo4dO2Ljxo1MVhARERERNSBv/AiL4cOHq322t7fH9OnT0bZtWwwYMACLFi3Ce++9p6XogISEsqdHSU5ORpcuXQAAXbt2RevW6lM2xMfHQ6FQQFdXFyYmJiU1QVqgVCqFp/SNjY0hFr/xucM6T9PnTKVSQaQEdFQ6AJRIkTxHSsss2BjboFmRKZbylLm4+fRmhdpsa9YWhrqvnr1PlafiYQWm8dET68HFor1aWVxaHJ5nPytlj1fMDczR0sRerez3p79DUYFphxxMHGBq8OomU1ZeJu48v1PufgDQwaIDdMSv/gtLzkxGcuafxeopVUqkpRUkik1MGsFY0ghvmb6lVufu87vIrMD0V1bS5rCWvlrzRqlS4HrK9QrF62TqrDbt0Iuc54h9GVvufmKRGB2buqqVxac/rNAUS030m6DVa9P43Eq9WaFph+wa2cGiyPRX2fnZiHp2u9z9AOAd83cg0dEXPj+RP0FievlTfenrGKCdeTsAgCI/HwkJCXikeATdRroQi8r+99bU0BK2jdRHJP765FeUPzIDaN24DRrrv3rYIC03DfdfRJe7HwC4Nu2kNiVUUkYiHmeVP8VSI0kjODZxUiv741kU5Pklr1FUVF39HaFUKPFObME50BdL0KuEKTKp7nl9ZG59YmxsjLfeeqv8ikREREREVK+88QmL0vTr1w+tW7fGzZs3kZaWVu7N/sKRFYUjLV6XlpYGkUhU6bl1W7RoUeG6+vr6MDQ0VCsTi8XCfPu8KV43icVinpt6prrnTKVSIePpC4hVBTc680UKNPF/C66tnEqs3xztqtSPBRzhjG5V3req+lVjXzt0rNJ+FnCESwnlcrkcZ86cAQC4DxxY7Hdk4b5VNRBVu1lmAaANulRx36rH61GNfVuU+BMunwUc8XYl95HL5Ug6cw9AY/Qr5byVZ2AVj9UCQCu4VXHfqv98e1dj37rwOyIzMxNPl1+FDnSgp9Cp0jmj2qevr19+pTqqW7duuHevYmvVEBERERFR/cG7pGWwsCiY7TsrK6vcuoVrVxSuZVGUQqFAXFwcHBwcKrV+BRE1TOnPXsAg99U0UCorPTiUkqwgIqoPxGIxcsQFK7XoKnS0HA29CT7//HPcvHkT//rXv7QdChERERERaRATFqXIzMzE7du3IZVKhcRFWdzd3QFAeJK3qPPnzyMzM1OoQ+Xz8PDAzJkztR1GvXTs2DG0adMGOjo6mDlzJkJCQtCkSZNa6dve3h6bN2+ulb4qIjU1FZaWlnjw4EGt992tWzccPny4WHn6y5cwkL9KXCoMVGhkUvLaN0RE9Ynqr78qzXRMtRsIvRG6du2KAwcO4OOPP8bYsWOxZ88eyGQyhIeHl/giIiIiIqL64Y1OWKSnp5c4lFwul+Ojjz5Ceno6Ro8eXWxUxJ07d3Dnjvo8687OzujTpw9CQ0Px448/CuW5ubn44osvAAAffvhhDRxFw3TkyBEsX7681voLDw/Hu+++C2tra4hEIhw7dqxYHX9/f4hEIrWXt7e3Wp3C8kuXLqmV5+TkwNzcHCKRCDKZDAAwYMAAfPrpp2r1duzYAZFIhJCQkGJ99+7du0LHMnnyZIwaNQoJCQk19jMsLQly9epVTJo0qUb6rIqVK1di6NChsLe3L7YtNTUVLVq0gEgkwosXLyrVbkWul0WLFmH+/PnClGwAoMjOhyT91a9dpY4K+pw2hYgaCF2dgpFjBqr6O80Q1S8KhQJGRkY4ePAgJk6ciH79+sHT07PYq2/fvtoOlYiIiIiIKqhBzk+0a9cunD9/HgBw8+ZNoazwRnGvXr3w4YcfIjU1FW+99RY6d+6Mtm3bwsrKCo8fP8bZs2eRmJgIFxcXrFu3rlj7bdu2BVAwD31R27dvR8+ePTFs2DCMGTMGzZs3x8mTJ3H79m1Mnz4dPXr0qMGjbljMzMzKr6RBmZmZ6NChAwICAjBixIhS63l7eyM4OFj4XNLcz7a2tggODka3bq/mBT969CiMjY3x7NmrBUp79eqFkydPqu0bGhoKW1tbyGQy+Pv7C+UymQx+fn7lHkdGRgaePHkCLy8vWFtbl1tf05o2bVp+pVqSlZWF77//HqdPny5xe2BgINq3b4+kpKRKt12R68XHxwcffvghfvzxRwwePBjKPAUUz7JRuDxvtn4edPX0kJ9f/uLURET1gVJc8HeRKk9ZTk2i6jt+/DjGjBkDpVIJMzMzODg4wNjYWNthERERERFRNTXIERbnz5/H7t27sXv3bvz6668AgMjISKGsMJlhZmaGadOmQaVS4dSpU9iwYQMOHz4Ma2trrF27FpcvX4a5uXmF+23Xrh0uX76M9957DydPnsSWLVsgFovxzTffYOvWrTVyrA3V61NC5eTkYM6cObCxsYFUKkXXrl2FBBRQ8LT82LFjYWNjAyMjI7i4uOCHH36ocH8+Pj5YsWIFhg8fXmY9fX19WFlZCS9T0+LTXvj5+WH//v2Qy+VCWVBQULGEQ+/evREdHY1Hjx4JZWFhYZg/f77ascXFxeHhw4fw9PQsMzaZTCYs6t63b1+10Ryv+/bbb9G6dWtIJBI4Oztj7969ats3btwIFxcXSKVS2NraYtq0acjIyBD6mThxIl6+fCmMKFmyZAmA4lNCiUQi7Nq1C8OHD4eRkREcHR1x/Phxtb6OHz8OR0dHGBgYwNPTE7t3767SqIfXnTp1Cvr6+mqJo6LH/+LFC8yZM6dKbVfketHR0cGgQYOwf/9+qBRK5D/NBpQFN/NEBjowNm9Spb6JiOoqZeHSFXnKYg91EGnaihUroFKpsHXrVjx+/BhXr15FaGhoqS8iIiIiIqofGmTCIiQkBCqVqtRX4XQ7JiYm+Prrr3HlyhU8efIEeXl5SEtLw+XLlzF37lwYljJVS2E7JXF2dsa///1vpKamIjs7Gzdu3MC0adMgEolKrE8VM336dFy8eBH79+/HjRs38P7778Pb21tY5Dw7Oxtubm44efIkbt26hUmTJmH8+PG4cuWKRuOQyWSwtLSEs7Mzpk6ditTU1GJ13NzcYG9vL6xfEB8fj/DwcIwfP16tXteuXaGnpyd8iY6KioJcLkdgYCBSU1MRFxcHoGDUhYGBAbp3715mbD169MDdu3cBAIcPH0ZycnKJo3qOHj2KTz75BLNnz8atW7cwefJkTJw4Ue3LvFgsxtatW3H79m3s3r0bP//8Mz777DOhn82bN8PExATJyclITk4u88b/0qVLMXr0aNy4cQODBg3CuHHjhJEmcXFxGDVqFIYNG4bff/8dkydPxueff17mcVZUREQE3NzcipVHRUVh2bJl2LNnD8Timv0V2KVLF0RERCDvqRxQFDxxLNLTga6ZYY33TURU2/LFCuG9Ipejx6hmRUVFoXv37pg+fTp0dLjQOxERERFRQ9Egp4Siirl+Nh7XzyaUW6+pXSMMntZerezk9htIiU8vd9+O/W3Rsb9dlWMECm74BwcHIz4+XpjmaM6cOfjpp58QHByMVatWwcbGRu2m+YwZM3D69GkcPHgQXbp0qVb/hby9vTFixAg4ODggJiYGCxcuhI+PDy5evFjsi3JAQACCgoLg6+uLkJAQDBo0qNh0SVKpFJ06dUJYWBjGjRsHmUyGXr16QV9fHz169IBMJoODgwNkMhm6d+9e4vRTRUkkElhaWgIoGD1kZWVVYr3169fD398f06ZNAwDMmjULly5dwvr164VRHEVHt9jb22PFihWYMmUKtm/fDolEgsaNG0MkEpXaR1H+/v4YO3YsAGDVqlXYunUrrly5Am9vb+zcuRPOzs7C1GvOzs64desWVq5cWW675Xn48GGxabFycnIwduxYrFu3DnZ2doiNja12P2WxsrJCQkIClDn5BQkKHTF0LQwgEjOBSUQNT6LqTzSGAwAgIysNTfQrPkqVqLKkUilatmyp7TCIiIiIiEjDmLB4g+XK85H5IqfcesamxW+Uy9NzK7Rvrrz6T1jevHkTCoUCTk5OauWFC1kDBYsurlq1CgcPHkRSUhJyc3ORk5MDIyOjavdf6O9//7vw3sXFBe3bt0fr1q0hk8nQr18/tbq+vr6YP38+YmNjERISUuqUYL169cKJEycAFIze8PDwAAC4u7sLUy/JZDJ89NFHGjuOP/74o9jC2D179sSWLVuEz2fPnsXq1atx584dpKWlIT8/H9nZ2cjKyqr0z7R9+1fJLqlUChMTEzx58gQAcPfuXXTu3FmtfnkJpilTpmDfvn3C58Kpql4nl8thYGCgVrZgwQK0bdsWvr6+lTqGqlCpVECeAkqlEjk5OdA3MoDEwgAiHY6sIKKGqegIC3l2FpqACQuqOR4eHvjtt9+0HQYREREREWkY75y9wSSGupA20S/3ZdhIUmxfw0aSCu0rMax+TiwjIwM6Ojq4du0arl+/Lrz++OMP4Sb7unXrsGXLFsybNw+hoaG4fv06vLy8kJubW+3+S9OqVStYWFjg/v37xbaZm5tjyJAhCAwMRHZ2Nnx8fEpso3fv3rh37x6SkpIgk8ng7u4O4FXCIiYmBgkJCejbt2+NHcfrHjx4gCFDhqB9+/Y4fPgwrl27hm+++QYAqvTz1NPTU/ssEomgVFZ9QdZly5apXQelsbCwwPPnz9XKfv75Z/z73/+Grq4udHV1hUSThYUFFi9eXOWYSpL+/AUyU9IhNZLCwNAAyiZiiPU4ZQURNVwK8avf7dlF1nEiqgnLly9HQkIC1qxZo+1QiIiIiIhIgzjC4g3Wsb9dladren2KqJrk6uoKhUKBJ0+eoHfv3iXWiYyMxNChQ4Un55VKJe7du4e33367xuJKTExEamoqmjdvXuL2gIAADBo0CPPmzSt1buUuXbpAIpFg+/btwjocANC5c2ekpKQgKCgIUqlUY9NaAUDbtm0RGRmptgh4ZGSk8LO6du0alEolNmzYIKyzcPDgQbU2JBIJFAoFqsvZ2RmnTp1SK7t69WqZ+1haWgpTX5XF1dVVbSQGULC2R9HF0K9evYqAgABERESgdevWlYi8bPn5edDP0sHtu1Ho2K498hqpYCw11lj7RER1UdGERW52+aMwiarj0qVLCAgIwOeff47jx4/D29sbdnZ2pa4RNWHChFqOkIiIiIiIqoIJC6rznJycMG7cOEyYMAEbNmyAq6srUlJScO7cObRv3x6DBw+Go6MjDh06hAsXLsDU1BQbN27E48ePK5ywyMjIUBspERcXh+vXr8PMzAx2dnbIyMjA0qVLMXLkSFhZWSEmJgafffYZ2rRpAy8vrxLb9Pb2RkpKCkxMTErt19DQEN26dcO2bdvQs2dPIbEhkUjUyl8fpVAdc+fOxejRo+Hq6or+/fvjxIkTOHLkCM6ePQsAaNOmDfLy8rBt2za8++67iIyMxI4dO9TasLe3R0ZGBs6dO4cOHTrAyMioStNvTZ48GRs3bsS8efMQGBiI69evIyQkBACqvVC9l5cXFixYgOfPn8PU1BQAiiUlnj59CqAgidOkSZMKt52RkaG2/sXr14s8Mwv6ECPyykV49PWAcePG1ToWIqL6QCFWCe9zc5mwoJrl7+8PkUgElUqFS5cu4fLly2XWZ8KCiIiIiKh+YMKC6oXg4GCsWLECs2fPRlJSEiwsLNCtWzcMGTIEALBo0SLExsbCy8sLRkZGmDRpEoYNG4aXL19WqP1ffvlFWHAaKFiIGgD8/PwQEhICHR0d3LhxA7t378aLFy9gbW2NgQMHYvny5aUuhi0SiWBhYVFu3x4eHggPDxfWryjk7u6O0NBQtbg0YdiwYdiyZQvWr1+PTz75BA4ODggODhb679ChAzZu3IivvvoKCxYsQJ8+fbB69Wq1L/o9evTAlClTMGbMGKSmpmLx4sVYsmRJpWNxcHDAoUOHMHv2bGzZsgXdu3fH559/jqlTp5a7yHh5XFxc0KlTJxw8eBCTJ0+u8H4PHjyAg4MDQkNDi52TQr/88ovauiWvXy8quQJJyY9w8dpl7NrzfbWOg4iovlAWTVhwhAXVsAkTJlT74QYiIiIiIqp7RCqVSlV+NaqrEhMTYWtrCwC4d+8eHB0d1bZHR0cjPz8furq6xbaR9iiVSqSlpQEATExMSp2+4E20cuVK7NixAwkJCdVu6+TJk5g7dy5u3bpV4Z9xaGgoRowYgdjYWGFkBlDxc6ZQKJCXnIlFqxbj2cvn+H5fcKk3VPjvs+bJ5XKcOXMGADBw4EAYGhpqOSKqCJ63+kcul+PYd7vRO7kdACDJJx9d3TWbcCfNi46OhpOTEwAgISEBLVq00HJEpA1Fv0/wOqDqsJ9/UtshUDkerBlcK/3wWqgfeD1Qodq6FgBeD/VBZa6Hmvo7kiMsiEirtm/fjs6dO8Pc3ByRkZFYt24dpk+frpG2Bw8ejOjoaCQlJQm/QMtz6tQpLFy4UC1ZURnyrExIIEJT86aYMm0yn/4kojeGqshyTYqcPO0FQkRERERERPUWExbU4MXHx5e5lkVUVBTs7Kq2+Hht8/HxQURERInbFi5ciIULF9ZyRNUXHR2NFStW4NmzZ7Czs8Ps2bOxYMECjbU/c+bMStVft25dtfpTyvMB6OHTyTOQx6UriOgNoioy8Cw/N197gRAREREREVG9xYQFNXjW1ta4fv16mdvri127dkEul5e4zczMrJaj0YxNmzZh06ZN2g5DI1QqFfTzCxZIV0IFQ6mxliMiIqo9RRMWilyOsCDNOnr0KIYPH17tdo4cOYIRI0ZoICIiIiIiIqoJTFhQg6erq4s2bdpoOwyNsLGx0XYIVAZVrgIiZcF7XUM9rk1CRG8US71mwnuXxu9oMRJqiEaOHImuXbtiyZIl8PLyqtS+KpUKp06dwrJly/DLL79AoVDUUJRERERERFRdvJtGRKQhSvmrGyAiA+aDiejNoqer/+q9kr8DSbM2bdqEu3fvYtCgQbCzs8OiRYsQGhqKzMzMEutnZmbi559/xoIFC2BnZ4f33nsP0dHRDWZUJxERERFRQ8Vvk0REGqBSqaDMfjVnu9hAp4zaREQNj1KsEt6r8vgEO2nWJ598gnHjxmHJkiXYvXs3Vq1ahdWrV0MsFqNFixYwNzeHiYkJ0tLSkJqaisTERCiVSqhUKkilUkybNg2LFy+GhYWFtg+FiIiIiIjKwIQFEZEG5OXmAPkF80GJ9HUg0uEANiJ6s6glLHKVWoyEGioLCwt8/fXXWLlyJYKCgnDs2DFcvnwZDx8+xMOHD9XqSiQS9OzZE8OGDcPEiRPRuHFjLUVNRERERESVwYQFEZEGZGfIYfDXr9RcvXzoaTkeIqLali3OFd4/epkMUzSM9aOo7mncuDE+/fRTfPrpp8jOzsbt27fx+PFjvHz5Ek2aNIGlpSXatWsHAwMDbYdKRERERESVxIQFEZEGiHNePVmsZ6RfRk0iooYpU5QlvE9+noS2WoyF3hwGBgZwc3PTdhhERERERKQhnLOEiKia8nJzIVEWjKnIFedDImHCgojePGLxq+dgxPllVCQiIiIiIiIqBRMWVCd5eHhg5syZ2g6jXjp27BjatGkDHR0dzJw5EyEhIWjSpEmt9G1vb4/NmzfXSl8VkZqaCktLSzx48KBG+8nOfPVUsVJfhdzcXNjb2+OXX36p0X6JiOoSHR0d4b04n39iEhERERERUeXx2yTVSUeOHMHy5ctrrb/w8HC8++67sLa2hkgkwrFjx4rV8ff3h0gkUnt5e3ur1Sksv3Tpklp5Tk4OzM3NIRKJIJPJAAADBgzAp59+qlZvx44dEIlECAkJKdZ37969K3QskydPxqhRo5CQkFBjP8PSkiBXr17FpEmTaqTPqli5ciWGDh0Ke3v7YttSU1PRokULiEQivHjxolLtLl26VO06MDEzhYtHwXQUEiMDSCQSzJkzB/PmzdPAURAR1Q9FR1joKERajISIiIiIiIjqKyYsqE4yMzNDo0aNaq2/zMxMdOjQAd98802Z9by9vZGcnCy8fvjhh2J1bG1tERwcrFZ29OhRGBsbq5X16tULkZGRamWhoaGwtbUVkhqFZDIZ+vbtW+5xZGRk4MmTJ/Dy8oK1tXWt/gwBoGnTpjAyMqrVPkuTlZWF77//HoGBgSVuDwwMRPv27avcfrt27ZCcnIzExAQ8uHYPoUfOIF+kgL6BIQBg3LhxOH/+PG7fvl3lPoiI6hOxWIwcUcHC27oKnXJqExERERERERXHhAXVSa9PCZWTk4M5c+bAxsYGUqkUXbt2Vbupn5qairFjx8LGxgZGRkZwcXEpMZlQGh8fH6xYsQLDhw8vs56+vj6srKyEl6mpabE6fn5+2L9/P+RyuVAWFBQEPz8/tXq9e/dGdHQ0Hj16JJSFhYVh/vz5ascWFxeHhw8fwtPTs8zYZDKZkKDo27ev2miO13377bdo3bo1JBIJnJ2dsXfvXrXtGzduhIuLC6RSKWxtbTFt2jRkZGQI/UycOBEvX74URhgsWbIEQPEpoUQiEXbt2oXhw4fDyMgIjo6OOH78uFpfx48fh6OjIwwMDODp6Yndu3dXadTD606dOgV9fX1069atxON/8eIF5syZU+X2dXV1YWVlhcaNTNDc0goWZubIlyghEhU8VWxqaoqePXti//79Ve6DiKi+yRHnAWDCgoiIiIiIiKpGt/wqVffixQucPn0a586dw6+//orHjx/j+fPnMDU1RbNmzeDm5oa+ffvCy8ur1ubYp1d++e9RXDt5rNx6lg6tMfyzL9XKjq5dhidxMeXu6zZ4GP42pOwkQEVMnz4dUVFR2L9/P6ytrXH06FF4e3vj5s2bcHR0RHZ2Ntzc3DBv3jyYmJjg5MmTGD9+PFq3bo0uXbpUu/9CMpkMlpaWMDU1Rd++fbFixQqYm5ur1XFzc4O9vT0OHz4MX19fxMfHIzw8HN98843aFE1du3aFnp4eQkNDMW7cOERFRUEulyMwMBDz5s1DXFwcHBwcEBoaCgMDA3Tv3r3M2Hr06IG7d+/C2dkZhw8fRo8ePWBmZlZs/YajR4/ik08+webNm9G/f3/897//xcSJE9GiRQshKSIWi7F161Y4ODggNjYW06ZNw2effYbt27ejR48e2Lx5M7788kvcvXsXAIqNHilq6dKlWLt2LdatW4dt27Zh3LhxePjwIczMzBAXF4dRo0bhk08+wYcffojffvutWkmEoiIiIuDm5lasPCoqCsuWLcPly5cRGxtb5fajo6NhbW0NiZ4E3Tt1wfL5S2Ddzk6tTpcuXRAREVHlPoiI6ptcUUHCQk9Zo39iEhERERERUQNVI98mb968iS1btuCHH35AdnY2VCqV2vasrCwkJSXh119/xa5du2BgYIAPPvgAM2bMqNYULVQ5ufIsZDxLLbdeI3OLYmXytJcV2jdXnlVunfLEx8cjODgY8fHxsLa2BgDMmTMHP/30E4KDg7Fq1SrY2Nio3eieMWMGTp8+jYMHD2osYeHt7Y0RI0bAwcEBMTExWLhwIXx8fHDx4kW1hUYBICAgAEFBQfD19UVISAgGDRqEpk2bqtWRSqXo1KkTwsLCMG7cOMhkMvTq1Qv6+vro0aMHZDIZHBwcIJPJ0L17d+jr65cZn0QigaWlJYCCKbWsrKxKrLd+/Xr4+/tj2rRpAIBZs2bh0qVLWL9+vZCwKDq6xd7eHitWrMCUKVOwfft2SCQSNG7cGCKRqNQ+ivL398fYsWMBAKtWrcLWrVtx5coVeHt7Y+fOnXB2dsa6desAAM7Ozrh16xZWrlxZbrvlefjwoXC9FMrJycHYsWOxbt062NnZVTlh0aVLF4SEhMDR0REJt2KxavNX6DvSCzdv31KrZ21tjYcPH1b5GIiI6pvcv0ZYSJiwICIiIiIioirQ6LfJJ0+eYMGCBdi9ezeUSiUsLCwwePBg9OjRA+3atYO5uTlMTEzw8uVLpKam4tatW7hw4QLCw8Px/fffIzg4GP7+/li1apVw45VqjsTQCMZm5uXWMzRpXGJZRfaVGFZ/PYObN29CoVDAyclJrbxwIWsAUCgUWLVqFQ4ePIikpCTk5uYiJydHo+sp/P3vfxfeu7i4oH379mjdujVkMhn69eunVtfX1xfz589HbGwsQkJCsHXr1hLb7NWrF06cOAGgYPSGh4cHAMDd3V2Yekkmk+Gjjz7S2HH88ccfxRbG7tmzJ7Zs2SJ8Pnv2LFavXo07d+4gLS0N+fn5yM7ORlZWVqV/pkWTkFKpFCYmJnjy5AkA4O7du+jcubNa/fISTFOmTMG+ffuEz4VTVb1OLpfDwMBArWzBggVo27YtfH19K3UMr/Px8YFYLEa+PA9vW7RGV9fOcOzeDocOHVJbM8PQ0BBZWdVP2hER1Rd54nwAgL5SouVIqKFbtmwZGjVqhE8//VTboRARERERkQZpNGHh6OiI9PR0DBkyBIGBgRg8eDB0dUvvYuDAgZg1axby8/Nx4sQJBAUFISgoCIcPH8bz5881GRqV4G9Dhld5uqbXp4iqSRkZGdDR0cG1a9eKjWQonIpo3bp12LJlCzZv3iysvTBz5kzk5ubWWFytWrWChYUF7t+/XyxhYW5uLvw7yM7Oho+PD9LT04u10bt3b2zYsAFJSUmQyWTCKBF3d3fs3LkTMTExSEhIqNCC25ry4MEDDBkyBFOnTsXKlSthZmaG8+fPIzAwELm5uZVOWOjp6al9FolEUCqVVY5v2bJlFZo2ysLCotjvkZ9//hk3b97EoUOHAEAY/WVhYYHPP/8cS5curVww2QoAQJPGTeDk6IT79++rbX727FmxkTVERA2ZQlzwe1VPpYv8vDzovvZ/AJGmLFu2DEOGDGHCgoiIiIiogdFowqJLly5Ys2ZNifPGlxmEri6GDx+O4cOH4+rVq1i4cKEmw6J6ztXVFQqFAk+ePEHv3r1LrBMZGYmhQ4cKT84rlUrcu3cPb7/9do3FlZiYiNTUVDRv3rzE7QEBARg0aBDmzZtXLNFSqEuXLpBIJNi+fbuwDgcAdO7cGSkpKQgKCoJUKtXoOhxt27ZFZGSk2iLgkZGRws/q2rVrUCqV2LBhA8RiMQDg4MGDam1IJBIoFIpqx+Ls7IxTp06plV29erXMfSwtLSs0AsvV1VVtJAYAHD58WG0x9KtXryIgIAARERFo3bp1JSIvSHYoswueJM7IykBMXCzGv3Yt3Lp1C66urpVql4ioPrPQe5WkFStEAPMVVEMsLS1haGio7TCIiIiIiEjDNJqw+N///lftNjp37qyRdqjhcHJywrhx4zBhwgRs2LABrq6uSElJwblz59C+fXsMHjwYjo6OOHToEC5cuABTU1Ns3LgRjx8/rnDCIiMjQ+3p+Li4OFy/fh1mZmaws7NDRkYGli5dipEjR8LKygoxMTH47LPP0KZNG3h5eZXYpre3N1JSUmBiYlJqv4aGhujWrRu2bduGnj17CokNiUSiVv76KIXqmDt3LkaPHg1XV1f0798fJ06cwJEjR3D27FkAQJs2bZCXl4dt27bh3XffRWRkJHbs2KHWhr29PTIyMnDu3Dl06NABRkZGVZp+a/Lkydi4cSPmzZuHwMBAXL9+HSEhIQAKRmJUh5eXFxYsWIDnz5/D1NQUAIolJZ4+fQqgIInTpEmTCrc9d+5cDPEZDBupJZIfP8Lyzauho6MjrNVRKCIiQm2hdSKihk4pfrVumSpPCRiUUZmoGnr37o0rV65oOwwiIiIiItIwsbYDIKqI4OBgTJgwAbNnz4azszOGDRuGq1evws7ODgCwaNEidOrUCV5eXvDw8ICVlRWGDRtW4fZ/+eUXuLq6Ck/Dz5o1C66urvjyy4Kpr3R0dHDjxg289957cHJyQmBgINzc3BAREVHqYtgikQgWFhaQSMqex9vDwwPp6enC+hWF3N3dkZ6eLiyErSnDhg3Dli1bsH79erRr1w47d+5EcHCw0H+HDh2wceNGfPXVV3jnnXfwz3/+E6tXr1Zro0ePHpgyZQrGjBmDpk2bYu3atVWKxcHBAYcOHcKRI0fQvn17fPvtt/j8888BoNxFxsvj4uKCTp06FRsdUp4HDx5AJBJBJpOVWicxMREfjB8HFw83jJvqB3MLc1y6dElt+qeLFy/i5cuXGDVqVFUPgYio3lFLWORWfyQeUWm+/PJL/Pnnn1i0aJEwxSMREREREdV/IpUG/8IPDg6Gp6cn7O3tNdUklSMxMRG2trYAgHv37sHR0VFte3R0NPLz86Grq1tsG2mPUqlEWloaAMDExESYeomAlStXYseOHUhISKh2WydPnsTcuXNx69atCv+MQ0NDMWLECMTGxgojM4Di5yzr0UtIlAWD1HSsDKHz2no9Y8aMQYcOHcqc4o7/PmueXC7HmTNnABSsm8TpQ+oHnrf6p/CctYwxgsWTgmEVzWZ2gp6VVMuRUVmio6Ph5OQEAEhISECLFi20HFHF7dmzB5GRkdi1axecnJwwbNgw2Nvbl/r7YsKECbUcYf1R9PtEfbsOqG6xn39S2yFQOR6sGVwr/fBaqB94PVCh2roWAF4P9UFlroea+jtSo1NCBQYGQiQSwc7ODp6ensKLf/QSUWm2b9+Ozp07w9zcHJGRkVi3bh2mT5+ukbYHDx6M6OhoJCUlCb9Ay3Pq1CksXLhQLVnxutzcHCFZkauTB2PdRq9tz4WLiwsXAiWiN85jVQosUPD7NvFZAhys3tJyRNRQ+fv7QyQSQaVS4e7du+WO9mTCgoiIiIioftBowuLtt99GVFQUHj58iJCQEOzevRsA0KpVK7UEhpWVlSa7JSpTfHx8mWtZREVFCVNL1XU+Pj6IiIgocdvChQvr5YL10dHRWLFiBZ49ewY7OzvMnj0bCxYs0Fj7M2fOrFT9devWlVsnNysbBn/9+lTqF19rQyKRYNGiRZXql4ioIUgTpb96n/lCe4FQgzdhwoRqr3dFRERERER1j0YTFrdu3cLTp08hk8kQGhoKmUyGP/74AzExMYiJicH3338PoGAR5cLkhYeHh9q870SaZm1tjevXr5e5vb7YtWsX5HJ5idvMzMxqORrN2LRpEzZt2qTtMCpFlPNqJj19I05VQ0RUqOgaFrk5uVqMhBq6kJAQbYdAREREREQ1QKMJCwCwsLDAqFGjhIVmnzx5opbAuHv3rvDauXMngIKRGX379sWWLVs0EsO+ffsQERGBa9eu4ebNm8jNzUVwcDD8/f3V6uXl5eH48eM4fvw4rly5goSEBIhEIrz99tvw9/fHpEmToKOjU+F+7e3t8fDhwxK3ubu7l7mIL9UcXV1dtGnTRtthaISNjY22Q3jjKZVKGCr0AAB5YgWM9I21HBERUd2hKLJcUD4TFkRERERERFRJGk9YvM7S0hKjR4/G6NGjAQCPHz8WkhehoaGIjo7G7du3ERUVpbGExaJFi/Dw4UNYWFigefPmpSYRYmJiMGrUKBgbG6Nfv35477338PLlS5w4cQLTpk3DqVOncPz48UoNN2/cuHGJU9BwIXKihkGVnw8RChIWComS01EQERWhKvKcR35unvYCoTfO/fv3kZKSAnNzc2EhcSIiIiIiqn9qPGHxumbNmqFHjx7Izc1FdnY2UlNT8ezZM432sWvXLjg6OqJly5ZYs2ZNqfPhN2rUCN988w38/PwglUqF8g0bNsDDwwP//e9/cejQIbz//vsV7rtJkyZYsmRJdQ+BiOoo3SKPD+sZ6WsxEiKiuqdowkKZk6+9QOiNoFAosHr1anz99ddISUkBAPj5+SEoKAgA8M9//hPffPMN/vGPf6Bdu3baDJWIiIiIiCqoVhIWiYmJwqgKmUyGBw8eAABUKhXMzc0xbNgwuLu7a6y//v37V6iejY0Npk2bVqxcKpVi1qxZ+OCDDxAWFlaphAURNVwqlRIGCgkAQCFSwsCQ00EREakRvxp1pshTaDEQaugUCgWGDBmCM2fOQFdXF23btkVUVJRanZ49e2L8+PE4cuQIExZERERERPVEjSQs/vzzT7Vpn+Li4gAUJCgsLS0xcuRIuLu7w93dHe+8805NhFBtenoFU77o6lbuR5STk4OQkBD8+eefMDExQefOndG1a9cqx5GYmFjm9uTkZLW+X1+QWalUQqVSCe+pbih6Lnhe6gelUgllvgLiv6aDytPLh75KJfz7qiqVSgWlUlnqYupUPdnZ2SW+p7qN563+Ec5TkYRFfnYuf7fVcTk5OdoOocp27NiB06dPo2/fvtizZw+sra0hFovV6tjb26N169Y4c+YMvvjiCy1FSkRERERElaHRhMWkSZMgk8kQExMj3MRr3rw5xowZIyQo3nrrLU12WWMKh5IPHDiwUvs9evQIEydOVCvr3LkzfvjhB7Ru3brScdja2la47uXLlxETE6NWZm5uDkNDQ4hEIqSlpVW6f6p5GRkZ2g6BKkj/r8W2ASBPpKz2v6n8/HzI5XLI5XLcuXOnuuFROcLDw7UdAlUBz1s9U+SG8YuU5zhz5owWg6HyPH36VNshVNnu3bthZmaGf//73zA1NS21Xtu2bfH777/XYmRERERERFQdGk1Y7Nq1CyKRCJ06dcKUKVPg7u6ONm3aaLKLWvHdd9/hxx9/RN++fTFo0KAK7zdx4kT07t0b77zzDoyNjXHv3j1s3LgRe/fuRb9+/XDz5k00atSoBiNvWIYMGQIXFxesXr1a26EQASpAT6FT+BbiSo6+IiJ6E4h0XiUsxEpRGTWJqufOnTvo1atXmckKAGjcuDGePHlSS1EREREREVF1afyOm0qlwq+//orPP/8cHh4ewsiKt99+W9Nd1Yj//ve/mD59Olq2bIl9+/ZVat/Fixerfe7YsSP27NkDANi7dy/+8Y9/YNasWZVqMyEhocztycnJ6NKlCwCga9euxUZxxMfHQ6FQQFdXFyYmJpXqW9uOHTsGPT29WknyhIeHY/369fj111+RnJyMw4cPY9iwYWp1Jk6cKJzPQgMHDsSPP/4ofNbRKbihHRkZiW7dugnlOTk5aNGiBZ49e4Zz586hT58+6N69O9555x384x//EKYw2LFjB/7v//4P33//Pfz9/dX6jo2NRVhYmIaPnCpKkZ0PVWbB1BkiAx00biytdpspKSkwNDSEsbEx3Nzcqt0eFZednS08od+nTx8YGBhoOSKqCJ63+qfwnOnrvjpXjmat4TSwhxajovK8PjK3PlEoFNDX1y+3XnJycoXqERERERFR3aDRhEVCQoLa4toHDx7EwYMHIRKJYGFhgT59+sDDwwMeHh51cuG7U6dOYdSoUWjWrBl+/vlnNG/eXCPtTp48GXv37kVkZGSlExYtWrSocF19fX0YGhqqlYnFYmGNhNfn9a3rLCwsaq0vuVyOjh07IjAwECNGjIBYLC728xKJRPD29kZwcLBQpq+vX6yera0tdu/ejR49Xt2k+c9//gNjY2M8e/ZMaLtXr144efKkWl9hYWGwtbVFeHg4AgIChP3DwsLg5+dX785hQ6LIfrV4rNhQV2PnQiQSQSwWF/u3S5pnYGDAn3M9xPNWv0h1Xz1k0MLIhueujqvPN/JbtmyJGzdulFknLy8Pt27dgqOjYy1FRURERERE1aXRu582Njbw9fXFrl27cP/+fcTHx2PPnj3w9/eHsbExDh8+jBkzZqB9+/awtLTEqFGj8PXXX+PmzZuaDKNKTp48iREjRsDCwgKhoaFo1aqVxtouvPGemZmpsTbfBB4eHpg5cyaAghEKc+bMgY2NDaRSKbp27QqZTCbUTU1NxdixY2FjYwMjIyO4uLjghx9+qHBfPj4+WLFiBYYPH15mPX19fVhZWQmvkqYh8PPzw/79+9UWGg0KCoKfn59avd69eyM6OhqPHj0SysLCwjB//ny1Y4uLi8PDhw/h6elZ4eMhzVIqlVBm5wMomA5KpK+j3YCIiOoopVglvFflKrUYCTV03t7eePDgAb777rtS62zbtg0pKSkYPHiwRvvet28fJk+ejL/97W/Q19eHSCRCSEhIiXWXLFkCkUhU6uvBgwcl7nf69Gm4u7ujUaNGMDExgaenJ86dO6fR4yAiIiIiqotqdBL2Fi1awNfXF76+vgDUR2CEhYXhyJEjOHr0KICCxaG1Nb/syZMnMXLkSJiZmSE0NFTj625cvnwZAGBvb6/Rdqvj8bbfoEzPrdU+xY0kaDbDtUr7Tp8+HVFRUdi/fz+sra1x9OhReHt74+bNm3B0dER2djbc3Nwwb948mJiY4OTJkxg/fjxat24tTJmlCTKZDJaWljA1NUXfvn2xYsUKmJubq9Vxc3ODvb09Dh8+DF9fX8THxyM8PBzffPMNli9fLtTr2rUr9PT0EBoainHjxiEqKgpyuRyBgYGYN28e4uLi4ODggNDQUBgYGKB79+4aOw6qnOysLOj+dd8tRycPemLOy05EVBJlkUdhVHmK0isSVdPcuXMREhKCadOmISoqCqNHjwZQ8IDQr7/+ioMHD2Ljxo2wsLDA9OnTNdr3okWL8PDhQ1hYWKB58+Z4+PBhufv4+fmV+F2gSZMmxcr27duH8ePHo2nTpsIUoQcOHMCAAQNw8OBBjBo1qppHQERERERUd9XqqrG2traYMGECJkyYgKSkJOzZswcbNmzAs2fPkJqaWpuhCH788UeMHDkSpqamCA0NLXfIeF5eHmJiYqCnp6e2XsSdO3dgZ2cHIyMjtfp37tzBvHnzAAAffPCB5g+gipTpuVCk1W7Coqri4+MRHByM+Ph4WFtbAwDmzJmDn376CcHBwVi1ahVsbGwwZ84cYZ8ZM2bg9OnTOHjwoMYSFt7e3hgxYgQcHBwQExODhQsXwsfHBxcvXhTWrigUEBCAoKAg+Pr6IiQkBIMGDULTpk3V6kilUnTq1AlhYWEYN24cZDIZevXqBX19ffTo0QMymQwODg6QyWTo3r17vZ62ob7Lz8qFLvQAAHm6vAFHRFSaoiMslLn8fUk1p3nz5jh27BhGjBiBrVu3Ytu2bRCJRDh06BAOHToElUqFJk2a4PDhwxqfZnTXrl1wdHREy5YtsWbNGixYsKDcffz9/eHh4VFuvefPn2PGjBmwsLDAr7/+KkwPO2/ePLi6umLq1Knw8vKqlTXeiIiIiIi0odYSFo8fP4ZMJkNoaChCQ0Nx//59AAWLdAMF87hryq5du3D+/HkAEKab2rVrlzDNTq9evfDhhx/izp07GD58OHJycuDh4VHiFEL29vZqix8nJSWhbdu2aNmypdoQ7v3792Pjxo3o06cPWrZsCalUinv37uHUqVPIy8vDggUL0KdPH40dY3WJG0nqTZ83b96EQqGAk5OTWnlOTo4wukGhUGDVqlU4ePAgkpKSkJubi5ycnGIJpOr4+9//Lrx3cXFB+/bt0bp1a8hkMvTr10+trq+vL+bPn4/Y2FiEhIRg69atJbbZq1cvnDhxAkDB6I3CL7Lu7u6QyWSYOHEiZDIZPvroI40dB1WOUqmEXl5BQkoJFcS6nA6KiKhUYiAfCuhCB7FPY9AMHbUdETVgffr0we3bt7Fp0yacOnUKsbGxUCqVsLW1hY+PD+bOnQsbGxuN99u/f3+Nt1no3//+N168eIGlS5eqrWXXokULTJ8+HUuWLMHRo0cxYcKEGouBiIiIiEibaixh8fTpU7UExd27dwG8SlAAwFtvvQVPT094enpW6Imjijp//jx2796tVhYZGYnIyEjh84cffohHjx4hJycHQEHCoSTu7u5qCYvSeHp64o8//sBvv/2GiIgIZGVlwcLCAoMGDcK0adMwcODAqh9QDajq1EzakJGRAR0dHVy7dq3YSAZjY2MAwLp167BlyxZs3rwZLi4ukEqlmDlzJnJza24USatWrWBhYYH79+8XS1iYm5tjyJAhCAwMRHZ2Nnx8fJCenl6sjd69e2PDhg1ISkqCTCYTRom4u7tj586diImJQUJCAvr27Vtjx0Flk2dlQU9VMMdJtk4uRKJaHZhGRFTv5Ipzoas0hJ6CCV6qec2aNcOaNWuwZs0abYdSpvDwcFy+fBlisRiOjo7o37+/8HdsUYUPWJX03cHLywtLlixBWFhYpRIWiYmJZW5PTk4W3svlcrV12IioYeG/byqK1wMV4rVARVXmeqipa0ejd96OHDkiJCmioqKE8sIkRZs2bdQSFFZWVprsXhASElLqwndFeXh4qCVQKsLe3r7Efdzd3eHu7l6ptqhiXF1doVAo8OTJE/Tu3bvEOpGRkRg6dKiwXopSqcS9e/fw9ttv11hciYmJSE1NRfPmzUvcHhAQgEGDBmHevHnFEi2FunTpAolEgu3btwvrcABA586dkZKSgqCgIEilUo2uw0GVo8jKhd5f00EpdFXg7TciorLlivNhpAR0lfyNSTUnPDwcVlZWxUbgvi46OhrJyclaH+m8ePFitc9NmjTBli1biiUeoqOjAaDEaWoLywrrVJStrW2F64aHh2t8Ci16k/DBnrruzJkztdQTr4X6gNcDFaq9awHg9VD3VeZ6ePr0aY3EoNGrZNSoURCJRMINfXt7eyFB4enpWSNDsqnhc3Jywrhx4zBhwgRs2LABrq6uSElJwblz59C+fXsMHjwYjo6OOHToEC5cuABTU1Ns3LgRjx8/rnDCIiMjQ5imDADi4uJw/fp1mJmZwc7ODhkZGVi6dClGjhwJKysrxMTE4LPPPkObNm3g5eVVYpve3t5ISUmBiYlJqf0aGhqiW7du2LZtG3r27CkkNiQSiVq5np5eJX5ipCmcDoqIqPJydfKBfECi4P9dVHM8PDwwceJEfP/992XWW7t2LYKCgqBQaGdNlQ4dOiAoKAgeHh5o3rw5Hj16hP/+97/48ssv4e/vjyZNmuC9994T6r98+RIA0Lhx42JtFf5NWViHiIiIiKgh0mjCwsbGBn379hUSFC1bttRk8/QGCw4OxooVKzB79mwkJSXBwsIC3bp1w5AhQwAAixYtQmxsLLy8vGBkZIRJkyZh2LBhFf5C98svv8DT01P4PGvWLACAn58fQkJCoKOjgxs3bmD37t148eIFrK2tMXDgQCxfvrzUxbBFIlGFnlDz8PBAeHh4sWnR3N3dERoaqhYX1S55VqYwHVSuXh5EIiYsiIjKky8uuDEsUfLpKapZlR0prQ3Dhw9X+2xvb4/p06ejbdu2GDBgABYtWqSWsKgJCQkJZW5PTk4WRvP26dNHbe0Mokq5+LO2I6By1NpU1bwW6gVeD1SoVqex5/VQ51Xmeihv6tGq0ug3yfL+GCaqjMI5fAFAT08PS5cuxdKlS0usa2ZmhmPHjlW5r/KmBzM0NMTp06fLbaesNpo0aSJsVyqVQvnixYtLPK7FixcXmz6AapciK0+YDkpsqAulsu7fGCEi0rY8nXwAgIFKH0qlEmKxWMsR0Zvs+fPnMDAw0HYYxfTr1w+tW7fGzZs3kZaWJoyeKBxZ8fLlS5ibm6vtk5aWplanoiqTgDA0NIShoWGl2iei+oP/vqkoXg9UiNcCFVWZ66Gmrh0++kZEVILXp4MyMJIiIyNDy1EREdV9Ct1XSfmcnGwYGhppMRpqSOLj49U+Z2RkFCsrlJ+fj9u3b+PMmTNo3bp1bYRXaRYWFrh//z6ysrKEhIWjoyN++eUXREdHF0tYlLW+BRERERFRQ6HRhMWff/5Zrf2tra01FAnRK/Hx8WWuZREVFQU7O7tajIjqA2VOPnSE6aDyIeETwkREFaLQeTUaLVuexYQFaYy9vT1EIpHw+fDhwzh8+HCZ+6hUKvj6+tZ0aJWWmZmJ27dvQyqVqk0h6u7ujh9++AFnzpxBt27d1PYpHO3r7u5eq7ESEREREdUmjSYsWrRoofYlojJEIhHy8/M1GQ4RgIJE2PXr18vcTlSM/NUTwlKTRloMhIioflHqFklYZMu1GAk1NHZ2dsJ3jfj4eBgZGZW6XphEIkGLFi0wcuRITJ06tTbDFKSnpyM5ORlOTk5q5XK5HB999BHS09MxceJE6Oq++ko2evRozJs3D9u2bUNAQIAwnVNiYiK+/vprWFhYFFsXg4iIiIioIamRKaGqsgBefVg0j+onXV1dtGnTRtthUD2iUqmgzP4rgSoSQayvCxX4O4qIqCKYsKCa8uDBA+G9WCzG+++/j6CgoFqPY9euXTh//jwA4ObNm0JZ4fprvXr1wocffojU1FS89dZb6Ny5M9q2bQsrKys8fvwYZ8+eRWJiIlxcXLBu3Tq1tk1NTfH1119j/Pjx6NSpE8aMGQMAOHDgAFJTU3HgwAE0asQHKYiIiIio4aqRhEWXLl0QEBCAsWPH8g/qOoIJIaKKU2UrgL8W2BYb6kIkFkFVAwtuF/67rOrINCKiuqilmQOQVJD0Ndcx03I01FAFBwdr7YGU8+fPY/fu3WplkZGRiIyMFD5/+OGHMDMzw7Rp03DlyhWcOnUKz58/h6GhIdq2bYuPP/4Y06dPL3GhQl9fX1hYWGDVqlUIDg6GSCSCm5sbFi1ahP79+9f48RERERERaZNGExYHDhxAUFAQ/ve//+Hq1auYNWsWRo4cicDAQPTp00eTXVEF6enpIT8/HwqFAi9evECTJk20HRJRnZeTmQUdFCQRxIY1ktfFixcvoFAoAEBtKggiovrOzNgc2XgMANBX6Wk5Gmqo/Pz8tNZ3SEgIQkJCyq1nYmKCr7/+ukp9eHt7w9vbu0r7EhERERHVZxq9S/b+++/j/fffR2JiIoKDgxESEoK9e/di3759aNWqFSZOnAg/Pz/Y2Nhoslsqg1QqhVxeMB1DcnIynjx5wqe564jCNVtSUlK0HAm9TpgOCoBY/urXpKbOmUqlEpIVQMG/UyKihkKkJxbeq3KVZdQkqr6YmBjs3LkTFy5cQEpKCoYOHYq1a9cCAC5fvozff/8dY8aMQePGjbUcKRERERERVUSNPNbbokULfPHFF/jiiy/w888/IygoCEePHsWiRYuwePFiDBgwAAEBARg6dCj09PjkXU2ysLCAQqHA8+fPAUDtJilpj0qlEhJJhoaGTCLVITnZ2dD5a8r1fF0FDHQLkgk1dc5MTU1LXTCUiKg+UktY5PHvDqo5ISEhmDp1KnJycgAUTLH49OlTYXtWVhamTp0KiUQCf39/LUVJRERERESVUePzkPTt2xd9+/ZFWloa/vnPfyIoKAg//fQTTp8+jVatWiE6OrqmQ3ijiUQiNGvWDDo6OsjMzER+fj7Xs6gDlEqlcPPb2NgYYrG4nD2otrx8mg5pjgEAQGGpEqZr0uQ5E4lE0NXVhVQqhYWFBRNWRNSgZEKOwt9qz9KfwQZMypLmXbp0CR999BGMjIywfPlyuLu7o2vXrmp13N3d0bhxY5w4cYIJCyIiIiKieqLWJk43MTHB1KlT4eXlhU8//RQnTpzAy5cva6v7N5pIJELTpk3RtGlTbYdCf5HL5bhz5w4AwM3NrcQFF6n2yeVZQPADGCpFyNDJgvOXHpDo6/+1jeeMiKgi7mfGwBGmAICYlGjYwEnLEVFDtHbtWqhUKpw8eRK9evUqsY5YLEbHjh0RFRVVy9EREREREVFV1cpj3dnZ2di7dy88PT3h5OSEEydOwMTEBOPGjauN7omIKuTG5UswVBaMrki0fi4kK4iIqOJ0JK+eh1Hm5ZdRk6jqIiMj0aVLl1KTFYWsrKyQnJxcS1EREREREVF11egIi8uXLyMoKAgHDhxAeno6AKBPnz4ICAjAqFGj+IQyEdUpGb8/BtACANDE1Ua7wRAR1VM6klfrkylyuYYF1YwXL17Azs6u3HpyuRy5ubm1EBEREREREWmCxhMWKSkp2LNnD4KDg/HHH39ApVKhRYsWmDFjBiZOnIhWrVppuksiomqTZ2XC7nHBtGnpOplo39lTyxEREdVPukUSFiomLKiGmJub4+HDh+XWu3//PqysrGohIiIiIiIi0gSNJiyGDx+OU6dOIT8/H3p6ehg5ciQCAgLg5eXFRWWJqE67cekybJQFU0Al2bxAWz1OB0VEVBV6+hIAfyUq8lRajYUarm7duuHEiRO4ffs22rVrV2KdyMhI3L59G76+vrUcHRERERERVZVGExb/+c9/IBKJ8Le//Q2+vr4wNzfHs2fP8MMPP1Ro/w8++ECT4RARVVjmjScACqaBMnO11W4wRET1mJ6+PoCsgg/5Sq3GQg3X//3f/+HYsWMYOXIk9u/fj44dO6pt/+OPPxAQEACRSIRp06ZpJ0giIiIiIqq0GlnD4pdffsEvv/xS6f2YsCAibVDmKtDmqTUAIF03C+/8jdNBERFVlaRowiJPq6FQA9avXz/MmjULGzduhJubG1q3bg2RSITTp0+jffv2iIqKglKpxGeffYZu3bppO1wiIiIiIqogjSYs+vTpw6mfiKjeyb7zDOL8gt9dzVwdINGTaDkiIqL6S9/AQHgvztdiINTgrV+/Hs7OzliyZAnu378PAEhOTkZycjIsLCywePFi/N///Z+WoyQiIiIiosrQaMJCJpNpsjkiolohv/lUeG/UoakWIyEiqv8kBgYonAiKCQuqaR999BE+/PBD/Pbbb4iNjYVSqYStrS06d+4MXd0aGUxOREREREQ1iH/FE9EbTZmjQPadZwAAsVQP+g5NtBsQEVE9Z6BvWDghFHQVOlqNhd4MIpEInTp1QqdOnbQdChERERERVZNY2wEQEWnTnSvXoMoreBbY8B1ziHQ4rR0RUXXo67+aEsrJ2FGLkRAREREREVF9o9ERFn/++Sesra3rTDtEROV5dDUWJrABADx3yIWpluMhIqrvxGIxRHpiqPKUUOUptB0ONXCJiYmQyWT4888/kZ2dXWIdkUiEL774opYjIyIiIiKiqtBowsLR0REzZszAvHnzYGpa+dt+z549w5o1a/DNN98gMzNTk6ERERWTlvYCLVMK1qx4qZsB53e6azkiIqKGQSQpSFgo85TlVyaqAoVCgY8//hjfffcdlMqC60ylUqnVEYlEUKlUTFgQEREREdUjGk1YDBw4EGvXrsW2bdswfPhw+Pn5oU+fPtDX1y91n5ycHMhkMoSEhOA///kPsrOzMWzYME2GRURUouthkWilMgEAJNuloR0X5yQi0giRng6AfKhymbCgmrFixQp8++230NXVxZAhQ+Do6IhGjRppOywiIiIiIqomjd6dO3r0KM6ePYtPP/0U//rXv/DDDz9AT08PHTt2RNu2bWFubg4TExOkpaUhNTUVUVFR+P3335GXlweVSoV33nkHGzduRP/+/TUZFhFRicQ3swAUJCxa9Gqr3WCIiBqQNFUGpNBDtjyr/MpEVRASEgJDQ0NERERwsW0iIiIiogZE448T9+/fHzdv3sT//vc/fP311zhz5gyuXLny/+zdd3hUVf7H8fe0THojhUAgtNBBpKNIb/aCdW3o2n/quurK2rHtig3dddeGK4p1FctaQXqRIk0F6T0QIL1nMuX+/hiYJLS0mSSEz+t5fJ57zz3n3O94b4bkfu85hxUrVgDlQ7MPs9vtnH/++dx5551KVIhIvdm1cytt8psDsC8kk76dz2zgiEREmo5sVw5hJGB2mRo6FGmi9u/fz7Bhw5SsEBERERFpYgI2/8no0aMZPXo0DoeDJUuWsGbNGg4cOEBeXh7R0dEkJCTQu3dvzjjjjBNOGSUiEghbFq6hM96ERWEX7yKxIiLiH26LdyooKxbKnA6CbPpdT/yrRYsWmgJKRERERKQJCviE7Xa7nREjRjBixIhAn0pEpFrcbjdxW4O927jpPnRgA0ckItK0uK3la1eUlpQoYSF+d/HFF/P+++/jcDj08pOIiIiISBOiV4pF5JTz66oVxJVFA7Cj2X4SEpMaNiARkSbGYy2f/rO0pKQBI5Gm6rHHHiM6Oporr7ySzMzMhg5HRERERET8JOAjLBrK+++/z6JFi1i1ahW//fYbZWVlvPPOO0yYMOGY9fPz85k0aRIzZsxg//79JCUlcdlll/H4448THh5eo3PPnDmTv/3tb6xevRqTyUSfPn145JFHGDlypB8+mYjUVfaKXcTTEoCg05s1cDQiIk2Pp8JvmI5SJSzE/yIjI1m6dCnDhg2jffv29OnTh9atWx9zikeTycTbb7/dAFGKiIiIiEhNNdmExSOPPMKuXbuIi4sjKSmJXbt2HbduUVERQ4cOZe3atYwZM4arrrqKNWvW8MILL7BgwQIWLlxIcHBwtc77/vvvc+211xIfH+9LjnzyySeMHj2a//73v1x66aX++HgiUkseh4uOB5IBg2JLKb0HD27okEREmhyjwm+YpQ4lLMT/HA4HEyZMYN26dRiGwfz5849bVwkLEREREZGTR5NNWEydOpXU1FRSUlJ49tlnefDBB49b97nnnmPt2rVMnDiRZ5991lf+17/+lcmTJzNlypQTtj8sJyeHu+66i7i4OFavXk1ycjIAEydO5PTTT+f2229n7NixWiBQpAGV/JaFyemdqiS+bxuCg0MaOCIRkSbIZvJtlpU6GjAQaaoef/xxvv76a2JiYrj22mtJTU2t8ahoERERERFpfJpswmLUqFHVqmcYBlOnTiU8PJxHH3200rFHH32Uf/3rX0ydOrVaCYtPP/2U3NxcnnjiCV+yAiA5OZk777yTSZMm8cUXX3DdddfV7MOIiN8Urz7g2w7tk9iAkYiINGG28ml5nKVlDRiINFUfffQR0dHRrF27llatWjV0OCIiIiIi4idNNmFRXVu2bGHfvn2MHTuWsLCwSsfCwsI488wzmTlzJnv27Knyj6HDQ9HHjBlz1LGxY8cyadIkFixYUKOERVpa2gmPp6en+7YdDgclWtjypFBaWnrMbQksd44Dx/Y8AMzNgnHHWav9MxPQa1ZWhClrMxhG1XWlRpxlDmKKtnm3dy7FFGRv4IikOnTdTj6Hr5nDGklpaSmGpfz7rKSoSL+fNFIOx8k7+uXgwYOMGTNGyQoRERERkSZGCYstWwBITU095vHU1FRmzpzJli1bqvyD6ER9HS47XKe6avJH2PLly9m2bVuN+peGt3DhwoYO4ZTh3plFf7w/i3vCsvn5xx9r1Y+/rpnF46BtxmxSD3xDkLvIL31KZcHAkMM7mxswEKkRXbeTT8Vr9kvBbxSU9PIdS9+6j4P5sxoiLKlCZmZmQ4dQa8dbYFvqV5u/ftvQIUg17Hz23IYOQURERKTaAvpb/sKFC1myZEkgT1FneXnet62joqKOeTwyMrJSvdr2VZN+RMT/DI9BSmYsAB487I7NabBYTB4XbTJmM2r9/XTb94mSFSLSpCTlriTRluTbjyeuAaORpuoPf/gD8+fPJzc3t6FDERERERERPwroCIthw4YxbNgw5s6dG8jTNGl79uw54fH09HT69+8PwIABA2jfvn19hCV1VFpa6ntLf8iQIQQHBzdwRE3f77+sJtHpAWBHzH7Ou/DCGrX3yzXzuLH8/jnWxc9jztvtKzYw4el0LkZ40gkaS2243C727t0LQMuWLbFaTvmBhScFXbeTj8vtwr52GiYMYkMtdDutG4U7dgLQvVNXgvslNGyAckwn88jcBx98kPnz53POOefw9ttv06VLl4YOSURERERE/CCgTwBiYmJo0aJFIE9RZ4dHQxxv5EN+fn6letXtq1mzZrXup6KKi3dXxW63ExISUqP+peEFBwfrutWDnNV7SKQlANZe0XX6f17ja2YYsPEbmPs0ZGysfKzL+ZiGP4wlQQ9aAsFZUsK6Wd6paFqMGYNVP2snBV23k4+zpATXrx9j85RgdhYRFFae1LVi0b9zjZTdfvKuDzNu3DicTifLli2jR48etG7d+rjTRJlMJubMmdMAUYqIiIiISE0FNGHRq1evGq/ZUN+qWluiqjUujuxr5cqVbNmy5aiERU36ERH/Ki4upHWa92ey2FzK6WedWT8nNgzYPh/mPAn7Vlc+1m44jHwUWvapn1hERALMaQnB5inB5MjHZLP4yo1Do9tE/Gn+/Pm+bY/Hw86dO9m5c+cx65pMpvoJSkRERERE6iygCYu7776biy++mG+//ZZzz22cC32lpqbSokULlixZQlFREWFhYb5jRUVFLFmyhLZt21Zr8euhQ4fy0UcfMWvWLAYOHFjp2MyZM311RKR+rVm0hBRPKAC7W2bRMTQ88Cc9sB6+nwg7F1UuT+7vTVS0HXLsdiIiJymXJRSc2eAoYHfJHg7/RrVm72qG0rpBY5OmZ968eQ0dgoiIiIiIBEBAExann346d955JxdffDETJkxg/PjxtGnT5rjTArRuXf9/zJpMJm666SaefPJJnnrqKZ599lnfsaeeeorCwkIeeuihSm2Ki4vZvXs3oaGhlWK+/PLLmThxIv/85z+58cYbfdM5paWl8eqrrxIXF8fFF19cPx9MRHxca3MBb8IiYWC7wJ+wKAumnQslFRb2TuwOIx6FjmNBb3qKSBPktHh/vzO5SnCbynzlZQ5HQ4UkTZheAhIRERERaZoCmrBo27YtAIZh8Pbbb/P2228ft67JZMLlcvnt3FOnTmXx4sUA/Pbbb76yw8PHBw8ezE033QTAAw88wFdffcXkyZNZs2YNvXv3ZvXq1cyaNYt+/fpxzz33VOp7xYoVDB8+nKFDh1Yajh4TE8Orr77KtddeS+/evbniiisA+OSTT8jKyuKTTz4hIiLCb59RRKqWvm8PbXOaA3DQnkOv088L/EmXvlqerIhpCyMegW6XwDHm1RYRaSqcllDfdpClfBook9NoiHBERERERETkJBTQhEWrVq0abM7YxYsX8+6771YqW7JkCUuWLPHtH05YhIWFsWDBAiZNmsSMGTOYN28eSUlJ3HfffTz++OM1WijymmuuIS4ujr/97W+88847mEwm+vTpwyOPPMKoUaP88+FEpNo2LPiZjsQDkJNadszFOP2qKAtWvOndNttgwjcQlRzYc4qINAIVExZ2nL5tJSxERERERESkugKasDjewnf1Ydq0aUybNq3a9aOiopgyZQpTpkypsu6wYcMwjOP/8T1u3DjGjRtX7XOLSGAYhkH05vKvuU5D62GB66WvQlmhd7v3dUpWiMgpw2Upf8Ej2OzCgXfhbbNL0+BJ4KxcuZLPPvuMTZs2kZ+ff8zf0U0mE3PmzGmA6EREREREpKYCmrAQEWlIZXsKSCiJAeBgXD69W7UN7Akrjq6wBMFZ9wb2fCIijUjFERYhhgPHobWDlLCQQLn//vuZMmWKL0lhMpkqJSwO7zfUiG8REREREak5TaguIk1W8aoDvu1Ow+pjdMU/NbpCRE5ZLnP5CAs7Jb5ti1u/bor/ffrpp7z00ku0bNmSN954gzFjxgAwc+ZMXn31VQYNGoRhGPz1r39l7ty5DRytiIiIiIhUV738Bblo0SIuv/xykpOTsdvt/PGPf/Qd+/HHH3nooYfYv39/fYQiIqcIw+mh+JdMAEw2MyE94gJ7wqIsWF5hdMXgPwf2fCIijUzFERY2ZxFOkwsAqxIWEgBvvvkmFouFOXPmcPPNN5OUlATA6NGjueOOO1iyZAkPP/wwL730ElFRUQ0crYiIiIiIVFfA/4J8+umnGTZsGJ999hn79u3D6XRWGqodFRXF5MmT+fzzzwMdioicQop/z8Qo9T4sC+keh9ke4Bnwlv4TnEXebY2uEJFTkLPCGhY48ikzeRfetrotDRSRNGVr1qxhwIABpKamHrfOE088QVJSEk8//XQ9RiYiIiIiInUR0ITF999/z2OPPUbLli3573//y4EDB46q079/f+Lj4/nmm28CGYqInGJWzV7g2w7pHR/Yk2l0hYgIrgojLCjNp8ziTRrbPFoyTfyvoKCA1q1b+/aDgoIAKCws9JWZzWYGDBjAkiVL6j0+ERERERGpnYD+BfnKK69gt9v5/vvv6dat23HrnXbaaWzZsiWQoYjIKeTggXRSMrxJiqygPJLaBXgqCI2uEBE5aoRFcHAIOCHKFNFwQUmTFR8fT25urm8/Ls479ePOnTvp3r27r7yoqIj8/Pz6Dk9ERERERGopoCMsfv75Z/r373/CZAV4/+DQGhYi4i/rFizDgncKkoz2JVgsAZyO5KjRFfcG7lwiIo2Ys9IIizwiwyIBjbCQwGjTpg27du3y7Z9++ukYhsGHH37oK9u/fz8LFiwgJSWlIUIUEREREZFaCGjCoqioiObNm1dZLy8vD4/HE8hQROQU4fF4CN9Qvt/hrF6BPeFP/6gwuuJ6iGoZ2POJiDRSroojLErzMAV5k8WG04PhMY7TSqR2Ro4cycaNG9m5cycAZ599NrGxsUyePJnLLruM++67jwEDBlBUVMT48eMbNlgREREREam2gL7ylpiYyNatW6ust2nTJlq1ahXIUETkFLFuzUpalByaFiJyP4PbnRW4kxVlwoq3vNtau0JETnGVRlg48jHZyt+LMVweXwJDxB+uvPJK9u3bx549e2jTpg1hYWG88847XHnllcyYMcNXr0+fPjz44IMNGKmIiIiIiNREQBMWgwcP5uOPP2bJkiWceeaZx6zzzTffsHXrVm699dZAhiIip4iMxduJ5dAoh94Bnjf9p39qdIWIyCEuczAGJkwYUJqPy1o+etbpcGAPCj1Ba5Ga6dKlC2+99ValsvPPP58tW7bw9ddfk52dTZcuXTj//PMDOzWkiIiIiIj4VUCnhLrvvvswmUxccsklfPnll7hcrkrHf/jhB2666SZsNht33XVXIEMRkVNARsZ+2u1PBCDfUkS/YcMCdzKNrhARqcxkLp8WypHP7/nl8/Nl5Wc2UFByqmnRogW33norDz74IBdddJGSFSIiIiIiJ5mAJix69+7Niy++SGZmJuPHjyc6OhqTycSMGTOIjo7m3HPP5eDBg7z44ot07do1kKGIyCng11lLsBnegWP7UvOxBwcH7mQaXSEichSn+VDCojQfo8I43lJHScMEJCIiIiIiIieVgCYsAP70pz/x3Xff0a9fP0pKSjAMg4KCAvLz8+nRowf/+9//uPPOOwMdhog0cU6nk/iN3gSFGw9dRg0I3MmKjxhdcda9gTuXiMhJxLeOhSMfw2bylZeVOhooIhERERERETmZBHQNi8PGjh3L2LFjycrKYseOHXg8Hlq1akVSUlJ9nF5ETgEZv+wk1hkJwPb4dIYnDw3YuawrXisfXdFnAkS2CNi5REROJr4poVylmKzlCQunEhZSRxaLBZPJxO+//07Hjh1rNNWTyWQ6ampaERERERFpnOolYXFYs2bNaNasWX2eUkROEbY1JRx+HNZqWOCmmAty5mNd9x/vjtauEBGpxHk4YQFgKV90WyMspK4Mw8AwjEr7NWkrIiIiIiInh4BOCTVt2jTS0tICeQoREZwHi3FsywPA2iyY9qf3CNi5Ohz8HpPz0FzsGl0hIlKJb0oowFwhYeFylDVEONKEeDwePB4PHTt2rLRf3f9EREREROTkENARFjfeeCMmk4nU1FRGjRrFqFGjGDFiBJGRkYE8rYicYoqWpfu2wwa2wGQ2naB27QU582mb+aN3x2LX6AoRkSO4KoywMJnLp+BxlTkbIhwRERERERE5yQQ0YTFhwgTmzp3L5s2b2bx5M6+99hpms5k+ffr4EhhnnnkmNpstkGGISBNWVFhA/sp9mAGTzUxYn4SAnavDwe+xeg69JazRFSIiR6k4wsJidvu23WVaP0BERERERESqFtCExX/+453nfcuWLcyePZsff/yR+fPns2LFClasWMHf//53QkJCGDx4MKNHj+a+++4LZDgi0gStnLOA9mVRABR3MmEODVACtPCgb3SFYbFjGnxPYM4jInISc5nLR1hYzeWjKpSwEH/zeDysXLmS9evXk5WVhclkIjY2lh49etCnTx9MpsCMthQRERERkcCql0W3U1NTSU1N5fbbb8cwDFauXMns2bOZPXs2S5YsYdasWcyePVsJCxGpEY/HQ8gv5Q/EPL0jAnYu27JXfKMr3L2uwarRFSIiR6k0woLy72ejzH2s6iI15nQ6ee6555gyZQo5OTnHrNOsWTPuu+8+7rvvPqzWevlzR0RERERE/CSgi24fi9PppKCggIKCAvLz83G5vG/cGYZR36GIyElu3ZqVtCiOA2BX5H46dQ3QYts5u7CseQ8AlzkI56B7AnMeEZGTnLPCGhYdg8q3e0YH6PtZTilFRUWMHj2axx57jOzsbAzDwGazkZiYSHx8PDabDcMwyMzM5KGHHmLcuHGUlJQ0dNgiIiIiIlID9fLK0dq1a/nxxx+ZPXs2ixcvprS0FMMwiIyM5Nxzz/WtZyEiUhMZi7cTS0vvTp/IwJ1owWRMHu+bwtvjx9IqLD5w5xIROYk5LWG+7VBKKTq0bXVbGiYgaVLuv/9+Fi5cSHBwMHfddRfXXHMN3bt3903/5PF4WLduHdOnT+df//oX8+bN4y9/+QuvvvpqA0cuIiIiIiLVFdARFldeeSUJCQn06dOHiRMnMn/+fPr27cukSZNYsmQJWVlZfPXVV9x111106dIlkKGISBNz8EA67dObA5BnLaTvsKEBOtFG+OUjAMosoWxNOCcw5xERaQJcFUZYmFwFvm3DqSmhpG52797Nm2++SWRkJEuWLGHy5Mn06NGj0loVZrOZnj178vzzz7N48WLCw8N54403SEtL82ss77//Prfeeit9+/bFbrdjMpmYNm3acevn5+dz7733kpKSgt1up02bNvzlL3+hsLDwmPU9Hg///Oc/6dGjByEhIcTHx3PVVVexfft2v34OEREREZHGKKAJi//+979kZWXRs2dPPv/8c3JycliwYAGPPvoogwYNwmLR23YiUju/zl6CFe93yP4OhdjtwYE50bxnwPAAsDXhXJzWsCoaiIicuiquYWFy5/q2DaenAaKRpuSDDz4A4Nlnn+X000+vsn7v3r159tlncbvdvrb+8sgjj/Dmm2+ya9cukpKSTli3qKiIoUOHMmXKFDp37syf//xnOnXqxAsvvMCIESMoLS09qs2tt97K3XffjWEY3H333YwbN47PP/+cfv36sWXLFr9+FhERERGRxiagCYuIiAgMw+CXX37h6quv5pJLLuHFF1/kl19+CeRpRaSJK3M6SNzofYvXjYcuowcE5kR7V8OG/wFghMWzPX5MYM4jItJEVFzDwlGW7ds+kLu/IcKRJmTp0qUEBwdzww03VLvNDTfcQHBwMD/99JNfY5k6dSo7d+4kIyOD22677YR1n3vuOdauXcvEiROZOXMmzz77LDNnzmTixIn8/PPPTJkypVL9efPmMXXqVIYMGcLq1auZPHky06dP58svvyQ7O5s777zTr59FRERERKSxCWjCIjs7myVLlvDEE0/Qt29f3zyyvXv3JjExkT/84Q+88847fh+mLSJN2+pFi4lxetes2B6fTouWrQNzorlP+TadZ/wZt8UemPOIiDQRrgojLJyuCgmLvPSGCEeakPXr13P66adjt1f/3+Lg4GB69+7NunXr/BrLqFGjSElJqbKeYRhMnTqV8PBwHn300UrHHn30UcLDw5k6dWql8rfeeguAp556iqCgIF/52WefzbBhw5g1axa7d+/2w6cQEREREWmcArrotsViYdCgQQwaNIhHH32U4uJi5s+fz+zZs5kzZw6ffPIJn3zyCQAdO3Zkw4YNgQxHRJqIshVZgHcKhqgzWgXmJDsWwba53u3o1rhPuwbmzA/MuUREmgiX2Y6BCRMGwWW5vkW3Le6AviMjp4Ds7Gx69+5d43YtWrRg/fr1AYioalu2bGHfvn2MHTuWsLDKU0qGhYVx5plnMnPmTPbs2UOrVt7fZ+bPn+87dqSxY8cyf/58FixYwLXXXlvtOKp6OSw9vTyhWFJSQklJSbX7lpODrqkcpntBKtL9IIfpXpCKanI/BOreCWjC4kihoaGcc845nHPOOfzyyy988MEHvPrqq5SWlrJ58+b6DEVETlLOA0W0y/UmKw4G53Ba/3P9fxLDgDlPlu8PewgsQcevLyIiXiYz2CPAkY+9LBsPHsyYlbCQOisoKCAiIqLG7cLCwo67uHWgHV5vIjU19ZjHU1NTmTlzJlu2bKFVq1YUFRWRnp5O9+7dj7nW3+F+arqOxeFkSHUsXLiQuLi4GvRer39OSi3NmjWrns6k+6Gx070gFel+kMPq714A3Q+NX03uh8zMzIDEUG93SVpaGj/++KNvdEVGRgbgHSpts9kYNGhQfYUiIiexwmXlbwG2G9HrmH/Q19nmmZC2wrsd3xl6Xg6OMv+fR0SkCTLsEZgc+ZgdBTjMTkI8dqyuAHxXyynF46n9wu11aVsXeXl5AERFRR3zeGRkZKV6Na0vIiIiItIUBTRh8eWXXzJ79mxmz57texPIMAxMJhPdu3dn1KhRjBo1iqFDhxIaGlpFbyJyqvM4XBSvPgiAyWYmsl+LAJzEU2ntCkY8AmY9aBMRqTZ7JLAXHPmUHU5YePQ9KnVXWFhY4/UbGmp0RWOyZ8+eEx5PT0+nf//+AAwZMoTk5OTqd750bl1Ck3oyZsyY+jmR7odGT/eCVKT7QQ6rt3sBdD+cBGpyPwRqXeqAJiwuueQS33arVq18CYqRI0eSkJAQyFOLSBNUvOYghsMNQGivBMwhAfgKW/85HDi0OGeL3tD5PP+fQ0SkCTPs3rfAcZXiNLsACHJr6LfU3YwZM5gxY0ZDh1Fth0dKHG9ERH5+fqV6Na1fXTVJQISEhBASElKj/qXx0zWVw3QvSEW6H+Qw3QtSUU3uh0DdOwH96/Giiy5i9OjRjBo16rhzt4qIVIfH42Hb7LU0wzt/ddigJP+fxO2EuU+X7498DEwm/59HRKQps5evM+BLWHhsDRWNNCGGYdSqnamB/i2vas2JI9e4CAsLIykpiR07duB2u4+a9rKqNTFERERERJqCgCYsPv/880B27zfTpk3jhhtuOGGdESNGMGfOnBPWmT9/PsOHDz/u8XfeeYcJEybUJkSRU95vq3+mWaH3IVhaVCbJLcL9f5I170PODu92m7Og3TD/n0NEpInzjbAAXBZvwsLuseHxeDCbtfi21M6OHTsaOoQaS01NpUWLFixZsoSioiLCwsJ8x4qKiliyZAlt27attCj20KFD+fjjj1myZAlDhgyp1N/MmTMBjioXEREREWlKND4f6NWrF48//vgxj3322WesX7+esWPHVru/oUOHMmzYsGOeR0RqJ2vxDprREgB3nwCseeMsgQWTy/dHPq7RFSIitVExYXFohIUFCy6nkyC7vaGikpNcSkpKQ4dQYyaTiZtuuoknn3ySp556imeffdZ37KmnnqKwsJCHHnqoUptbbrmFjz/+mEcffZQff/yRoKAgAL7//nvmz5/PmDFjTsr/FyIiIiIi1VUvCYsNGzbwyiuvMG/ePPbu3QtAy5YtGTFiBHfffTddunSpjzCOq1evXsdMJpSVlfHqq69itVq5/vrrq93fsGHDmDRpkv8CFDnF7U3bRfv9zQHIsxbSd+jxRzLV2s9ToSDdu93pHGjVz//nEBE5BVQcYWGu8JtmmcOhhIU0CVOnTmXx4sUA/Pbbb76y+fPnAzB48GBuuukmAB544AG++uorJk+ezJo1a+jduzerV69m1qxZ9OvXj3vuuadS38OHD+emm25i6tSp9O7dm3PPPZf09HQ++eQTYmNj+ec//1lvn1NEREREpCEEPGExbdo0brvtNpxOZ6V5Z7ds2cKWLVt45513eOONN2qUEKgvX375JVlZWVx00UUkJiY2dDgip6wN3y+jMy0A2N+pmG72YP+eoDQfFr10aMcEIx7xb/8iIqeSCmtYdIpIoDTHux2CkhXSNCxevJh33323UtmSJUtYsmSJb/9wwiIsLIwFCxYwadIkZsyYwbx580hKSuK+++7j8ccfP+ZChW+88QY9evTgzTff5JVXXiE8PJyLL76YZ555hvbt2wf2w4mIiIiINLCAJixWrVrFzTffjNvt5rzzzuOPf/yj75fs7du38/bbb/P1119z8803061bN/r27RvIcGps6tSpQPkfHNW1ZcsWXn75ZUpKSkhOTmbEiBG0bNmyVjGkpaWd8Hh6erpv2+FwUFJSUqvzSP0qLS095rYcLS8vh5QdzQBwmMroMnKA3+9z6+KXsZVkA+DqegnOyHZwxDkCdc08DgcFn35K6c8rwfAcs05wv/5EXXtNpbKMBx/CU1RYZf+R111HSIXvVufu3WS/8EK1Yot/5hnMEeUPHotmzqTw22+rbGdNbkWzB/5SqSz7lVdwbttWZduw0WMIP/88375RVsbB+++vVrwxd99NUIcOvv3SX34h5823aJHtvbbpX/0Ps+Xo+fNNNhsJL75YqSz/k08oqfDg6XjsPXoSfXPlfyMyJz2BOzuryrYRl11O6FmDffuugwfJevrpE7Qo1+yxx7DGxfn2ixcupOCzz6psZ4mPJ+7RRyuV5b7xJo7166psGzL4LCIvv6xS2YF7/gwed5Vto2++GXuPHr79sk2byfnXq8et73F7fNet5IwzKh0r+OoriqtYUwogKDWVmLvuqlSW9exkXPv2Vtk2/PwLCBs9yrfvzs8n85HqJTJjH3gAW3Kyb79k+XLyP/igynbmiAjin3mmUlneu+9SumpVlW0bw3dEaWkp4b/8QtjmLRRf3JmoQ3UMoxTwTmlTUlCMxXbs7zlpGA6Ho6FDOClNmzaNadOmVbt+VFQUU6ZMYcqUKdWqbzabufvuu7n77rtrGaGIiIiIyMkroAmL559/Ho/Hw9tvv33Uotbdu3fnggsuYNq0adx44428+OKLfPTRR4EMp0Z27drFnDlzSE5OZty4cTVq++GHH/Lhhx/69q1WK3fddRfPP/88FoulRn1VXISvKsuXL2dbNR4ISuOycOHChg6hUSvemc5Znm4A/BK7HcvPVT+Aq4kgVwGj1/8LAA8W5jGQ4lmzTtjGX9csfN064r79jqBDD2aP50BREfsTEyqVtV+4EEtxcZXn2N6yJQUV+renpZGyaHG14ps7ezaeCguExs6bR1w12pa2bMmqXqdVKktesIDQHTurbJtmtZFlD/Ltm5xOUqsZ7+auXSnZvt23H7Z+PS1/+onDy7Mf77Gcx2pl7RHXPGH+fKKXLa/ynBlZ2axIaV2prM2iRVVeU4CdzeLIKym/hrbMTNpW87Mu+vFHnM2a+fajf/qJhGq0LWvWjNUDKn/WFgvmE75hY5Vt011uDkZHVSpLXbQIk6fqB9Bb27WjqEKCPWTrVlpVEe/h67Zo0SKo8G9n3Lz5xFbjs2bt28fPnTpVKmu9cCHBFeI4nt3h4eRUSCBaCgpoX81r81Pv3jhatPDtR6xaRVI12rrCw1lzxH3YfP4CIteurbJto/iO8HiIzcggauVKdpUeoGd3b3F+7kHseKeI+mnBEkrCqk5wSf3JzMxs6BBEREREREQqOfpVUz9atGgRvXr1OipZUdGECRPo3bt3o3to+8477+DxeJgwYUK1kwzx8fE8++yzrFu3jsLCQg4cOMCXX35Jhw4dmDJlCg888ECAoxZpWlxuJz0Oeh8Gu/HgaOnnqaCA1P1fY/V4R0zsihtKsb3+pn8LX7++Wg+2RUQaPcMg7sfZAJhyy0eomSgfkWbW4AoRERERERGpgsmouLCEn9ntdi677DLef//9E9a75ppr+PTTTxvNsHSPx0Pbtm3Zs2cP27Zto23btnXqb//+/fTs2ZOcnBz27t1LQkJC1Y0Oqc6UUP379we8i/5pXtuTQ2lpqS9JN2TIEIKD/f8gvilY9sOPpC6PAWBTQhpn3H6RX/s35e3G/tZZmNwODGswpbcshYikY9YNxDVzHTzI3gsvwt6zBzF/+hPWCm9lV4rTZsNcYaQDgDsvD6rx9W0ODcUUVD5iwXC58BRWb5SKOTISk7k8r+0pKcGozve0xYKlwlRSAJ6CAgx31W9Wm+x2zBXm8zYMA09eXvXiDQvDZLOVt3U6KcnO5qeffgLgjDPOwH6cBX8t0dGV4y0uxigrqzpeqxVzeHilMnd+PlRj1IEpJARzhXgMtxtPQUGV7cA7fZCpQjLdU1qKUZ2pysxmLJGRlYo8hYUYLlfV8R5xbQDcubnVi/cY18ZTVHTc+g6Hw3fdzhw3rtIc79W9D00WS6UpzQDcBQVQnfswOBhzhZ9xw+PBk59fZTsAc3g4Jmv5AFajrAxPNUY6YDJhiao8gsVTVIThdFbdtBF8R5SWlrJv8FmY3W6sLRJIHbIWgJUxT9E8/XQAsi+yk3paj+N1Jw1g27Zt9Dg0XduePXtIrjCdmZw60tLSfKO6a3oftPlr1VNFSsPb+ey59XIe3Q+Nn+4FqUj3gxxWX/cC6H44GdTkfqjL75EnEtApoaKjo9m9e3eV9Xbv3k3UEX+kN6TZs2eze/duRo4cWedkBUDz5s258MILmTp1KsuXL+f888+vdtuaXGi73X7MhfukcQsODtZ1OwbDY5D4e/kDwxaju/j//9N3z4Pb++DTNOBWQhLaVatZTa+Zp6yMnOnvY41rRtSFF5YfSEmh3ZdfYEtJwWQy1Sh06vL/4oiHuPVyzrq0DQ2t9TlNNptvyprQxMTqX7eG+qxHJD/q5ZwN0TYkBI5InFRkKSnxXbeQkJDK162hPusRCYEanbO2v+M01Get5XeEKzqaoKwsPAXlyag8Cmh+aNvhLNG/d43M8ZK4IiIiIiIiDSWgU0L169ePn376iblz5x63zty5c1myZAkDBgwIZCg1UtvFtk8k7tDiqEUneKNURMqVbsgmssD7YCsnsZQuPXr59wR7V8Fvn3q3Q2Jh8L3+7R/v6ICCOXPYft75HHz+eQ5Mfs77hncFQW3a1DxZISLSCLkPJXU8BUUcXgKk4pRQTkfVo5ZEquvJJ5+s9iLWIiIiIiJy8ghowuKuu+7C4/Fw/vnn88ADD7B+/XqKi4spLi5m3bp13H///b7RBnfddVcgQ6m2rKwsvvrqK2JjY7n44ov91u/y5d7FW9u0aeO3PkWasoKF5dOhdTi7j387NwyY9Wj5/rC/Qki0X0/h2L6d3TfeSNr/3Ynz0Egzd04ORUuW+PU8IiKNhTusfDSUu8z7K6bFKK1QVvXUYyLV9eSTT7JgwYKGDkNERERERPwsoAmLsWPH8vDDD1NSUsKLL75Iz549iYiIICIigtNOO40pU6ZQUlLCI488wpgxYwIZSrVNnz6dsrIyrrnmmuMOk8/MzGTjxo1kZmZWKl+1atUx67/yyivMmzeP1NRU+vXr5/eYRZoax658ynZ554u3JoQS3DHGvyfY9B3sOpQ4iG0PfW/0a/euzEx2/eFqipcu85WF9u1L2xmfETlunF/PJSLSWLhDy6fNcju8a6xYPOXrdyhhIf6UkJCgKcZERERERJqggK5hAfDUU09x5pln8sILL/DTTz9RemhRULvdzuDBg7nvvvsY14ge4L399tvAiaeDevXVV3niiSd4/PHHmTRpkq98/Pjx2Gw2+vbtS3JyMkVFRSxbtow1a9YQHR3N+++/j6XCIqkicmy7Zv7K4fd0I4YkYzL7ccoktxN+fKx8f/STYLEdv34tHJj8nG8xYlvLliQ88AARY0Zr6icRadLcFdb5cHvCgRysnvIFvD1KWIgfnXXWWaxYsaKhwxARERERET8LeMICYNy4cYwbNw63201WVhYAzZo1a3QP71esWMG6devo378/PXr0qHH722+/nZkzZ7Jw4UKysrIwm82kpKRwzz33cN999/ltpXSRpmzn9i0Eb3cDZspC3YT2ivfvCVa+A1lbvdutz4DO5/q1+6KffiL/668BMEdF0ea/n2Bt1syv5xARaYwqTgnl8oQBOVjd5ev2eJzuBohKmqrHHnuMvn378sgjj/DUU0/ppQARERERkSYiIAmLrVu38vnnn7Nz507sdju9evXi8ssvJyQkhISEhECc0i/69++PYRhV1ps0aVKlkRWHTZw4kYkTJwYgMpFTx9aZq+hMSwB2dsqhndWPM9eV5sH8v5fvj3ka/PiAw+NwsP+JJ337Cfffp2SFiJwyKk0J5Q4GwObKL69Q5qnvkKQJW7VqFddddx1///vfmTFjBhdddBFt2rQ57jRR1113XT1HKCIiIiIiteH3hMXLL7/MAw88gNtd+S26Rx99lO+++47u3bv7+5Qi0kRkZOyn3W5vUrPYXErfs4f79wSLXoKSbO9290sh2b+LeZesWYtz3z4AQnr3Jnr8eL/2LyLSmBV17cLO5LsZfM45hM+6FfZuJchTVF7BWfVLISLVNWHCBEwmE4ZhsGnTJp577rkT1lfCQkRERETk5ODXhMXixYu57777MAyDsLAwOnXqRH5+Ptu3byctLY3x48ezYcMGzOaArvUtIiepX75bRGejOQC72+fQMTLaf53n7oZlr3m3LXYY+diJ69dC2MABtP3qSw488zcSJj6ASd91InIKcYeH4w4Px5qQgCksCoAgo9R33ORSwkL857rrrtM0UCIiIiIiTZBfExavvvoqhmFw/fXX8+qrrxJ2aPHFX3/9lfHjx7N161Z++OEHzjnnHH+eVkSagKLCApI3RwLgwk23cwb59wRzngS3w7s98DaISfFv/4fY27Wj9dtTA9K3iMhJw+79Po/0lHDom5fmQYkNF480OdOmTWvoEEREREREJAD8+vrv0qVLSU5O5o033vAlKwB69uzJK6+8gmEYLFu2zJ+nFJEm4udZcwl3exds3Za8n6SkVv7rfO8q+O1T73ZILAy+1399i4jI0YK9CYtYo8RXlGhrvOuYiYiIiIiISOPg14TFgQMH6Nu3L0FBQUcdGzx4MAAHDx705ylFpAlwOp1Ery3/Omo9pof/OjcMmPVo+f6wv0JItN+6d+fmkvn663gcjqori4g0cRFr15L3wQdkLz8AgIny70bDqUW3JXAMwyAzM5PMzEw8Ht1rIiIiIiInK78mLMrKyoiOjj7mscjISF8dEZGKfp43j7iyaAC2NdtHasdu/ut803ewa4l3O7Y99LnBf30DB198kYyXX2H7BRdQsn69X/sWETnZxP/va3JeeJHsuZsBJSwk8ObMmcO4ceMIDw8nMTGRxMREIiIiOPvss5kzZ05DhyciIiIiIjWkFWFFpEEZhoFleaFvP2qoH9eWcDvhxwqLa49+EqxHjwCrreLVq8n99DPvqTKzsMbF+61vEZGTkfvQlKCuAu9i2yaTB8zexbbdZa4Gi0uapieffJIxY8Ywa9YsSkpKMAwDwzAoKSlh5syZjBkzhqeffrqhwxQRERERkRrw66LbAFu3buW9996r1fHrrrvO3+GISCPn2JZLyyLvg/69EZn063uh/zpf+Q5kbfVutz4DOp/rt64Np5P9j0/y7cffcw+2RM3PLiKnNneYdy0iw+HE4wKzFYooIYxQ9uWkkUSfBo5QmorZs2czadIkgoKCuOWWW/jjH/9I+/btAdi+fTtvv/02b775Jo8//jhnnHEGI0aMaOCIRURERESkOvyesFiyZAlLliw55jGTyXTc4yaTSQkLkVNQwcK9vu3u552J2eyngV+leTD/7+X7Y54Gk8k/fQNZ06bh2LIFgOBu3Yj5w1V+61tE5GTlDg0r3y4zY7Z6KDM7CfOA1W1pwMikqfnHP/6ByWTiq6++YuzYsZWO9ezZk1deeYVzzz2Xs88+m1deeUUJCxERERGRk4RfExatW7fG5McHgiLStJWlF+HYnAOAJcZOaHc/Tqm06CUoyfZud78Ukv33Vq9z714y//Vv747ZTPMnnsBk0YM4EZHDU0IBuB1mbKEeysze9cuCPLaGCkuaoOXLl3PGGWcclayoaMyYMZxxxhksXbq0HiMTEREREZG68GvCYufOnf7sTkSauLwFu3zbEYNbYrL4KeGZuxuWvebdtthh5GMnrl8ThkH2s5MxSr3zs8dcfTUh3f24SLiIyEns8JRQ4E1YALhMTgCCPH4f2CunsNzcXFJSql73KiUlhRUrVtRDRCIiIiIi4g9adFtEGsSO7ZspWZsBgCnEQmi/5v7rfM6T4HZ4twfeBjH+W8g7/Ld1lCxeDIA1IYH4P93tt75FRE52FUdYuA4nLA6NsLAbQbjd7gaJS5qeuLg4Nm7cWGW9jRs3EhcXVw8RiYiIiIiIPyhhISINYvvXqzEf+gra0ukg5iA/Tam0YyH89ql3OyQWBt/rn34Bc2kpCV9/7dtPfPhhLOHhfutfRORkd+SUUABuU5mvrLS0uN5jkqbpzDPPZM2aNXz44YfHrfPBBx+wevVqBg8eXI+RiYiIiIhIXShhISL1bvPG9XRKbwlAvrWIfueN9E/HLgd88+fy/ZGPQki0f/oGDKuV3IEDICiI8KFDiRgz2m99i4g0BZUX3fZOAeU2OXxlpaUl9R6TNE1/+ctfMJlMXHfddVx++eV8++23/P777/z+++988803XHrppVx//fVYLBbuv//+hg5XRERERESqSZMJi0i92/vdb6TiTVgcOK2UruER/ul48RTI2urdTu4PvSf4p99DDKuV7JEjOe3//o+QiAhMJj+tuSEi0kS4I8KxtmiBNTYWS9gqADwVExYlSliIf/Tr14/XXnuN//u//+Ozzz5jxowZlY4bhoHVauVf//oX/fr1a6AoRURERESkppSwEJF6tXHdL6Qe9CYrcmz5DDxvjH86ztwCi170bputcP7LYA7MIDJb69bYQkIC0reIyMnM0bIlyd9+Q0hICEzpAXlZGJQnLBylpQ0YnTQ1N998M4MGDeLll19mwYIF7N27F4CWLVsybNgw/vSnP9G9e/cGjlJERERERGpCCQsRqVf7v99IB1oAkN3HQ0hIaN07NQzvVFDuQ/OkD7oTErvVvd9DnOnpEB3tt/5ERE4JwZGQBxjloyocDiUsxL+6d+/O1KlTGzoMERERERHxE61hISL15rfVP9Mhy5usyAzKZdDZfhpd8cvHsHORdzu6NQyd6J9+gaIVK9g6egw5//wnJpfLb/2KiDR59kgA2pcV+IqSghIbKhppYhYuXMjmzZurrLdlyxYWLlxYDxGJiIiIiIg/KGEhIvXC4/GQO3OHb79ggIUgu73uHRdnw6yHy/fPfQmC/DBqA/AUFZH+0MPgcpH3n3eIWLPGL/2KiJwSgr0Ji1hP+QiLYE9QQ0UjTcywYcOYPHlylfWee+45hg8fXg8RiYiIiIiIP2hKKBGpF7/8vIy2eUkAHAjOZuCYc/zT8Y+PQnGWd7vrRZA62j/9AgdffBFnWhoA9tNPJ79PH7/1LSLSVGW/NAXXxo2407bRdgiYKyy6bTg9DRiZNDWGYTR0CCIiIiIi4mcaYSEiAWcYBok/l4+mcJwRgs1mq3vHO5fAmve92/ZIGPds3fs8pGjpUnI+/AgAU0gIcZMeD9gi3iIiTUnZpo0U//wzjvQiPC4TpgqLbnuUsJB6lpOTQ3BwcEOHISIiIiIi1aQRFiIScKUbs/GkFQNgSrDTf8SgunfqcsA395Tvj3wMIpPq3i/gLixk38Pl00wl3HcfttatYeNGv/QvItKUmaNjfNtuh5nC0DLfflZ+BmEkNERY0gTs3r270n5hYeFRZYe5XC7Wr1/PrFmzaN++fX2EJyIiIiIifqCEhYgElOExyJ+1y7cfO6YdVqsfvnqW/AMyDy222bIP9L2x7n0ecvC553HtSwcgdMAAYv5wFaUORxWtREQEwBIT7dt2O8xsj/bQ+lDOYlvGVlrTrWECk5NemzZtMJlMvv0ZM2YwY8aME7YxDINrrrkm0KGJiIiIiIifKGEhIgFVsi4TZ3oRALaW4QR3a1b3TrO2wcLnvdsmC5z3Mpgtde8XKFy8hNz//hcAc2goSc88g0lTQYmIVJs5Otq37XaYsVaaEsrdABFJU9G6dWtfwmL37t2EhoYSFxd3zLpBQUEkJyczfvx4br/99voMU0RERERE6kAJCxEJGJfLxYYvfiKRWACixqRUejOyVgwDvr0X3IcegA28HZJ61jFSL3dBAemPPOLbT3jgAYKSW/qlbxGRU4XlyISFUerbN8qUsJDa27lzp2/bbDZz2WWX8Z///KfhAhIREREREb9TwkJEAmbZ7Nm0KfEmK/ZEHaRlx8F17/S3z2D7fO92VCsY9mDd+zzEnZuLJSYG1/79hJ0xiOgrLvdb3yIip4qKa1i4yswEUZ6wQItui5+88847dOjQoaHDEBERERERP1PCQkQCoszpIGxpGRAGQOiolnUfXVGcDTMrJCjOeR7s4XXrs4KgVq1o+8nHZE6dSvRFF9U9XhGRU1ClERalRyQsXEb9ByRN0vXXX9/QIYiIiIiISAAoYSEiAbHsh9m0c3jfst0es48h/a6oe6ezJ0FRhne7y/nQ6ey693kEU1AQ8Xfc4fd+RUROFeYjFt22G+VrWJicDRCQNGkul4vPPvuMefPmsXfvXgBatmzJ8OHDufTSS7Fa9eeOiIiIiMjJRL/Bi4jfOUpLiV5R/hZt7Fg/TNmwexmsfte7HRQO4ybXvc9DDLcbk8U/i3aLiJzqKo2wKDNjN0pwHdo3uY7ZRKRW1q5dy6WXXsqOHTswjMqjd6ZOncqjjz7Kp59+Sq9evRomQBERERERqTElLETE7376biapTu/aFVvj9jKs15V169BVBl/fU74/4lGI8s9i2AVz55Lxyj9o8ezfCe7SxS99ioicyiwxMcRefx2WiFDsvzyDGxuFh46ZXZpqT/xj3759jBkzhszMTBITE7nyyitp3749ANu3b+fjjz9m27ZtjB07lrVr15KUlNTAEYuIiIiISHUoYSEiflVcXEj8aptvP+mcbnXvdOmrkLHhUIe9oP/Nde8TcGVkkP7oY7izsthx2eW0nfEZwZ06+aVvEZFTlSkoiMQHHwTDgCcn4fC4fQkLixIW4ieTJ08mMzOTm266iVdeeYWQkJBKx//2t79x9913M3XqVJ577jmmTJnSQJGKiIiIiEhNmBs6gMaiTZs2mEymY/43bNiwGvX1wQcf0L9/f8LCwoiJieG8885j9erVgQlcpJFZ9vWPRLsiANicuJdOXXvUrcPsHbDg0PRPJjOc/wqY6z59k+F2s/cvD+DOygIgfPBg7B071rlfERE5xGQCewQ2XLjxAGDz6F0Z8Y/vv/+e1q1b89prrx2VrAAIDg7m3//+N61bt+bbb79tgAhFRERERKQ29FdjBVFRUdxzzz1Hlbdp06bafTzzzDM88sgjpKSkcNttt1FQUMDHH3/MGWecwZw5czjzzDP9F7BII5OVdZAWv4YC4MFDm/N71a1Dw4Bv7wNXqXd/wG3Qoo59HpL5+usUL1sGgDUhgaS/PYPJpDd/RUT8yh6FuTQPKw4MQmgTmtLQEUkTsWfPHi6++GIsJ1iDymq1MmjQIL788sv6C0xEREREROpECYsKoqOjmTRpUq3bb9myhUmTJtGxY0dWrFhBVFQUAHfccQcDBw7k5ptvZt26dZjNGtgiTdT8HMLd3oTF5uR0RnUYWrf+1n8O2+Z4tyNbwvCH6higV9HyFWT+69/eHbOZli++gDU21i99i4gIGIaBp7AQd2kYNg+YDiUsDKenoUOTJsJut5Ofn19lvYKCAux2ez1EJCIiIiIi/qAn5370zjvv4HK5ePjhh33JCoBevXpx1VVXsWHDBhYvXtyAEYoETllaASUrD3p3gsycfsXwunVYkgvf/7V8/+znwB5Rtz4BV1YW++6/Hzzeh2bxd91JaL9+de5XRETKpf/1QTb368+2d/MoK7RgMnlHyhll7gaOTJqKrl27Mm/ePPbs2XPcOrt372bevHl06+aH9bRERERERKReaIRFBQ6Hg2nTprFv3z4iIyPp168fAwYMqHb7+fPnAzBmzJijjo0dO5Zp06axYMEChgwZUu0+09LSTng8PT3dt+1wOCgpKal239JwSktLj7l9sjIMg/wvt4Dh3Q8d1oKQ8Mg63Y+2WY9hLfImQNyp4yhrMxLqeH8bHg8H7r8fV0YGAMH9+xN67bXVirOxXDOn28P2zGI8htFgMZxMyhxlpBV5t3/ZlUWQPahhA5Jq0XU7+Ry+ZuFW73ekER7mO+YuM2OyOwDwlLn1u0oj4nA4GjqEWrvuuuu44447GDVqFFOmTOGcc86pdPybb77hvvvuo7S0lOuuu66BohQRERERkZpSwqKC/fv3c8MNN1Qq69evHx999BHt27evsv2WLVsIDw+nefPmRx1LTU311amJVq1aVbvu8uXL2bZtW436l4a3cOHChg6hziIPmklNiwagJMTN6rxfMWb9Wuv+Yoq2ctbm9wBwme3MCRpL6axZdY4zZt484pd6161whYezfsxofp0zp8b9NNQ125oP07dYyC3TWhs1c+iful9/adgwpIZ03U4+3mv2e+4izsvMJO5QqbvUQna0i0gXeMpczPxhJiazvscag8zMzIYOodZuvvlmZsyYwZw5czj//POJjY2lbdu2AOzYsYPs7GwMw2DUqFHcfPPNDRytiIiIiIhUl6aEOuSGG25gzpw5HDhwgKKiItasWcO1117Lzz//zMiRIykoKKiyj7y8vEpTQVUUGRnpqyPSlDidDuJ3li94uadNEUYdvllMhovTdr+D6dBwjQ1J4ykNalbXMAEwrFYMsxnDZCL9qitxR9R9iqn64DFgZpqJV9crWSEijd+qTDPu0AojLBxmsiwuAMyY8RiaFkrqzmKx8O233/LAAw8QFhZGVlYWK1euZOXKlWRlZREWFsbEiRP55ptvtH6ciIiIiMhJRCMsDnn88ccr7ffq1Yv33vO+4T19+nTeeust7r333nqP60Tz8oJ3Sqj+/fsDMGDAgGqNBJGGV1pa6ntLf8iQIQQHBzdwRLW36IOviHZ7H/xvS0hn0OXn16k/6/J/YSv13veexB50+MNzdDD76atqzBhKL72UsvXrafuHP9SoaUNds4xCBw98/jvL9uT4yk5vFUXHhPB6Of/Jzu12+abOS0pKwmLRP3snA123k4/b7eJ/v+6nzGOixBRM9zPOIOOLLwBwlZlxm8qnHjrjjEFERcU0VKhSwck+MjcoKIhnn32WJ554gpUrV7J3714AWrZsSd++fbXYtoiIiIjISUhPAKpw6623Mn36dJYsWVJlwiIqKuq4Iyjy8/N9dWoiOTm52nXtdjshISE16l8aXnBw8El73XZs30zHrd4p0MpMTtpf1q9unyVnFyx+4dCOCfMFrxAS5t9RECEDB8LAgXXqo76u2aItGfz5k7VkFpYBYDbBPaM68n/DO2DRdCrVUlJSwqxZ3gdYY8Z0O2l/1k41um4nn5KSEpZu3s/eYjhYUIY9IcF3zO0w4zGVlVc2PLqmjURTeaBvt9s588wzj3ksNzeX559/nmeeeaaeoxIRERERkdrQ+OgqxMV5Z2AuKiqqsm5qaiqFhYXs37//qGOH1644vJaFyMnO4/Gw+7M1WPFOB7W9SxbJrdrWvkPDgO/uB9ehxVj73wIt+9Q5TueBg3Xuo7653B6en7mR6/6zwpesSIy08+HNA7l7ZKqSFSLSKMXYvVP5OT0G+UGVp4QyKoywcDhK6z02OfXk5+fz+OOP06ZNG5599tmGDkdERERERKpJIyyqsHz5cgDatGlTZd2hQ4eydOlSZs2axXXXXVfp2MyZM311RJqClYsW0j67BQBZQXmccenZdevw969gy6GFtSOSYMQjdYwQStauZdd119PslluIu/02TBZL1Y0aWHpeCXd/tIafd5ZPATWsUzwvXnYazcKbxpuwItI0xQSVbx8wB3N4DIXbYcagPGFRVqqEhdTeqlWr+Prrrzlw4ACJiYlccMEF9O7d23e8tLSUl156iRdeeIG8vDwMw6Br164NGLGIiIiIiNSERlgAGzdupLi4+JjlEydOBOAPFea7z8vLY+PGjb75tQ+74YYbsFqtPPPMM5Wmhlq7di0fffQRXbp0YfDgwQH6FCL1p7S0BNvcfN9+8dBgQkPrsKZCaR58P7F8/+zJEBxZhwjBnZfH3nvvwygrI/PVV8n9bEad+qsPczce4JxXFvmSFRaziQfP7sx/ru+nZIWINHqHR1gA7POUZy+OGmFR6kCkNu6//3769+/PU089xZtvvslTTz1Fv379mDRpEgA///wzXbt25dFHHyU3N5dWrVrxn//8h19//bVhAxcRERERkWrTCAvg448/5qWXXmLIkCGkpKQQFhbG5s2b+e6773A6nTz44IMMGTLEV/+LL77ghhtu4Prrr2fatGm+8o4dOzJp0iQeeeQRTjvtNMaPH09BQQEff/wxAG+99RZms3JEcvJb8vl3dHJ45yffHp3O4OGX1q3DuU9D4aGp1DqOgy4X1Kk7wzDY9/DDOPftAyCkd2+ix19StxgDqMzlnQLqrUU7fGUto0P4x1Wn0ydFC9OKyMkhpkJedW9+GalRUXjy8nA5zJgqjLBwOpSwkJr79ttveemllwCIjIwkNTWV/Px8tm/fzlNPPUWnTp24/fbbyc/PJzY2lkceeYQ77riDoKCgKnoWEREREZHGRAkLYPjw4WzYsIE1a9awaNEiiouLiYuL45xzzuGOO+5gzJgx1e7r4Ycfpk2bNrz88su89tprBAUFcdZZZ/HUU09VGq4ucrJK37eHNr9FA+DGTYtLutctEZe2Cla85d22hcI5z4Opbms05Ex/n8LZcwCwREXR8sUXMFkb59ddXomTP077mZW7yqeAGtM1kecu7Ul0qB6yiMjJo9IIi9wSWr/xOqbS/Vi/vIrdlRIWZcdqLnJCb73l/V3hrrvu4rnnnvMtGL5hwwbGjx/P9ddfj8vlYvjw4XzyySe+dehEREREROTk0jif4NWzoUOH1mhtiQkTJjBhwoTjHr/66qu5+uqr/RCZSOOz8/PVtDJiAdjS/gCjOg6rfWduF3zzJ+DQQ65hD0J06zrFV7RsOQeee863nzT5WWxJSXXqM1Byi8u47j8r+DXNO4VckMXMQ+d05voz2mCqY9JGRKS+VVzDYm9uKSEX9oW8vfCDB1OFKaFcDmcDRCcnu1WrVtGmTRumTJlS6UWJLl268PLLLzNu3DgiIyP58ssviYiIaMBIRURERESkLpSwEJFqK92WS6s0b7KiwFpMv8tH163D5a/B/t+824k9YODtdequbOdO0v70J3C5AIj9441EDBtWtxgDJKeojKunLuf3dO9aIM3Cgnjnhn70TI5u2MBERGopMgjMJgOPYWJfbom3MDgKgChPia9elFkPk6XmMjIyOPfcc485qnPgwIEAnHXWWUpWiIiIiIic5LSggohUi+E2yP3fNt9+8gU9iIqKrX2He36GOU8e2jHB+S+DxVbr7tz5+ey5/Q48hxa8Dx86lIR77619fAGUVejgqreW+ZIVceF2Pr5loJIVInJSM5sg+tAoi315hxIUQWFgstDJWeCrlxJat5F0cmoqKysjKirqmMciIyMBiI+Pr8+QREREREQkADTCQkSqpWjZPlwHigGwtQwnvG8dplkqOAD/vRbch+YxH3gHJPetU3z7n3yKsh3eRavtqR1o8eILmCyWOvUZCBkFDq6euozNBwoBSIiw8+HNA+mQEN7AkYmI1F1MEGQ7ILfYSe6GzbDxd9xbYrA1d/p+6zTKPA0bpIiIiIiIiDRaSliISJWyszIonLXDNyQr+oL2mMy1XGPBVQb/vQ4K0r37KWfC6CfqHGP8Pffg2LQJV2Ymya+9hiW88SUADuaXctVby9iWUQRAUlQwH948kLZxYQ0cmYiIf8TaDbYVeP99ODBzNp7X/wkEkTjMDdHeOobT3WDxyclt69atvPfee7U6ft111wUqLBERERER8SMlLESkSqs/mUNnR0sArKdFY0+JrH1nMx+EPcu825Et4bJpdZoK6rCg5JakfPQRzj27CUpOrnN//paeV8If3lrOjkxvsqJldAgf3TyQ1s1CGzgyERH/ibGXb+fYQjk8gY+nrHyhbY9TIyykdpYsWcKSJUuOecxkMh33uMlkatCERZs2bdi1a9cxjw0dOpT58+dXKnM4HEyePJnp06ezZ88eYmNjOe+883j66adJSEioh4hFRERERBqOEhYickKrly6h825vsqLYXErMyLg6dDYdfp7q3bbY4YrpEO6/P7wt4WFYunTxW3/+sje3hKveXMbubO+UWq1iQ/jwpoG0ilWyQkSalhi74dvOtJYnLHKdLoIPba9NW80w2tZ7bHJya926NSZTLUd3NgJRUVHcc889R5W3adOm0r7H4+HCCy9k5syZDBw4kPHjx7NlyxamTp3KnDlzWLZsmdbqEBEREZEmTQkLETmu/PxcLN/lwKFHTun9S+mYUMu1K9JWwbcVFsE+7yVo2afWsZXt3EnmW2/R/OGHMYc23gf/e7KLueqtZaTleBegTWkWykc3D6RFdEgDRyYi4n8xQeXb+wmm/aFtj6N8hIWrwmgLkerauXNnQ4dQJ9HR0UyaNKnKeu+++y4zZ87kqquu4oMPPvAlaV5//XVuv/12HnnkEd54440ARysiIiIi0nDMVVcRkVPViuk/0MzpTVZsi9nH4AvOqV1HhQfhk2vKF9nudzOcfk2t43Ln5bHnttvJm/E5O6+5BufBg7XuK5B2ZRVxxRtLfcmKdnFhfHLLICUrRKTJqjjCIs1dnr0wl5YnKUyueg1J5KTy1ltvAfD3v/+90oiSW2+9lXbt2vHBBx9QUlLSUOGJiIiIiAScRliIyDH9vHghnfeUTwXV4eqBWMyWmnfkdsJ/r4eCfd791oNg7N9qHZfhcrH3z3+m7PCblk5noxxhsT2jkD+8tZz9+aUAdEgI58ObBpAQGVxFSxGRk1fFNSx2OMvXJzIVlycszBpgIacgh8PBtGnT2LdvH5GRkfTr148BAwZUqlNaWsry5cvp1KkTKSkplY6ZTCZGjx7NG2+8wcqVKznrrLOqfe60tLQTHk9PT/dtl5SUKCHSBOmaymG6F6Qi3Q9ymO4Fqagm90Og7h0lLETkKLm5WQTPLAC8i2unDypjaHLKiRsdz8yHYfdP3u2IJLjsXbAGnbjNCRz4+7MU/bQUAEtMDMmvvYYlPLzW/QXC+n15THjnZzIKHAB0Sozg/ZsGEB9hr6KliMjJzW6BqBAreSUutpUAFgu43VBSPqzC4j551yEQqa39+/dzww03VCrr168fH330Ee3beydP27ZtGx6Ph9TU1GP2cbh8y5YtNUpYtGrVqtp1Fy5cSFxcTdYr05+TJ4NZs2bV05l0PzR2uhekIt0Pclj93Qug+6Hxq8n9kJmZGZAYNCWUiBxl1fs/EuP0Jiu2xu7jrHPPrl1Haz+EFYfmWbYEwRXvQ0RirePK+egjcj74wLtjs5H86j8JSk6udX+BsHRbFle+scyXrOjcPIIPb1ayQkROHS2ivCPJ9uc7sERHA+ApKR9WYXHr1085tdxwww3MmTOHAwcOUFRUxJo1a7j22mv5+eefGTlyJAUFBQDk5eUB3gW6jyUyMrJSPRERERGRpkhpLRGpZMXC+XRK804FVWQuodO1Z2A21+Lh0r418PU95fvnvgjJfWsdV9HSpex/+hnfftITTxDap/aLdgfCD+vSufvjtZS5PAD0bh3Nfyb0Izq09iNKRERONklRwWzYX4jLY2BERUNWFm6HiTKTkyDDhtVVi+kFRU5ijz/+eKX9Xr168d577wEwffp03nrrLe69996AnX/Pnj0nPJ6enk7//v0BGDJkCMk1eRlk6dy6hCb1ZMyYMfVzIt0PjZ7uBalI94McVm/3Auh+OAnU5H6oaurR2lLCQkR83EVOkhYEAW4ADpzpolNS9acR8CnMgI+vAbd3lAF9b4Te19U6rtING0i7627vtCJA7I03En3JxbXuLxA+XL6bR778Dc+h9WZHdE7gX3/oTUiQHsyJyKklqcJaPc745gQX52Bx7sdhKvMmLDz6XhQB70La06dPZ8mSJdx7772+kRXHG0GRn58PHH8ExvHUJAEREhJCSEhIjfqXxk/XVA7TvSAV6X6Qw3QvSEU1uR8Cde8oYSEiPrlfb8NU5E0KFKZ4GHz2uJp34nbCpxMg/1CWtdUAGDe51jE59+5l98234CksBCB82DAS7gvcW4g1ZRgG/5y7lZd+3OwrG987mWfH98BmOf7IFMMwyNxTyK71Wexen0V2ehEcSnZc+egAwiusXPvb/DSW/297lbFEJ4Zy6cTKo1h+eOM30jblVNm2+5CWDLyofaX43r5vUZXtAMbe0p1WnWN9+3s2ZjPzzXXVanvTS0Mq7S/7chvrFu6tsl1ypxjG3dqjUtlnk1eSe6C4UpmBgdPpXePk/QUrMGFiwAXt6DGs/OFNYY6Dj59aXq14xz/Qh5jmYb79TcvSWfTfLVW2C4u2c9VjlRdXnfPu7+z4per5HjsOaM6QKzpWKnv3oSU4S91Vth1xXRfa9Yr37R/Ymc/X/1hbZTuA6545g6CQ8l8TVv2wkzWzdlfZLiElggv+dHqlsv+9soaDuwqqbNt7bAq9x5avl+NxwvsPe69bVc6/uxeJbSJ9+9vXZjD3vQ1VtrMFW7j+b2dWKlv4yWY2L99fZdu2p8Ux8vqulco+enI5RbmOKtuedXkqnQYm+fZz9hcx47lVVbaDxvkdcfhnzRJkkFThFDvufZLzQ3+HD8bzq6sMPGHY3Pr1UwTwrRVRVFQEQLt27TCbzWzZcux/Vw6XH2+NCxERERGRpkB/MYoIACXrMilZmwGAKdhK6tW9azcV1I+Pwa7F3u3w5nD5e3VaZNsSF0fo6b0o+HE2Ib160fKlFzFZGsfbuW6PwRNfr+e9pbt8ZbcOacdfz+6MyXT0A1ZHsZM9G3J8SYrivLLj9GxUPo/Lg6PYdZy65cqO8QC7zOGuVluX03OMeKtuB2C4K8frcRvVbntUHGXV+6xOxzE+a4nrOG2916LM6W3jdlX+rIZR/XiNI/43uV3Va2uzH33POqt7bcqO/qyOYle1EhaeI66N4anDtXHW4T4srf19WFZc9ecE72erqLo/N0e2A3BV89o4Hcf+ualOW/eRPzc1ujaN9TvChMtpwr61PHG4L7cEYr2JJKfJ+50X5NGvnyIAy5d7k+Vt2rQBvG+o9e/fn2XLlrFr1y5SUsoTuIZh8OOPPxIWFkbfvrWfYlNEREREpLHTX4wiQk52FsVflL/NF31heyyRtVgk+pdPYNm/vdtmG1wxHSKa1yk2s91Oy5dfJvP114m9+mrMoaF16s9fHC439/73F779Nd1X9vA5Xbh5SLtj1s/LKOGDx5cd8+EoQHiMHeuh6aNM5srJDnuolejEqj93ZLPgo8rCo+3VahsSYTuqrDrtAF/ch9mCzNVue6TgCFu12obFHH1/RjQLwTjif6/H46G42PvwNDQ0FLPZjD208mc1W0zVjtdsrXxtgkKqd21CI49O2oVFVe/ahEYc3TYqPgRX2dEPkI90ZKLEYq3BtTki5xYcVr1rExF7jPswJrhaD8WDw464D00QGR9creSpxVa5TlBw9a7NsZJJIZFB1bsPo46+NpFxwcfs80hBwZV/BbNYqn9tGuN3hMfjIT+zBAwTRr4TDv0v2JtbAnZvwiLCUwJAKBpyLqeOjRs30rp1a0KP+P1l48aNTJw4EYA//OEPvvJbbrmFZcuW8eCDD/LBBx/4XoB444032L59O7fccoumbRARERGRJk0JCxFhzXs/0rHIu9B2cNdmhFaYQqba9q2Fr+8u3z/nOWjV3y/xmSwW4v/v//zSlz8UOVz86YNfWLI1CwCL2cRz43syvo93miGPx8DwGFis5Q9QI+OCCYsKojDHO1WM1WYmuXMMrbs1I6V7MyLjjv/wocsZLehyRotaxTriui61amcymbj6iYG1atsiNabWbfue3Ya+Z7epVdvz7zrtqLKSkhJmzZoFwJgxZx7zIU9YlL3W8Xbok0CHPgm1anvWEdM81cQVD9fuZyu+dUStP+tpI1px2oharGkDjLule63ama1w6UOn1+rhXEp3789WbQy6qD2DKkx/VBOX3N+nVu2iE0NrfW0aw3dESUkJ7z+xmLJcC84CF7YocJoOjbAI9v77Eu0ppgwwu00YHuOoxItIU/Txxx/z0ksvMWTIEFJSUggLC2Pz5s189913OJ1OHnzwQYYMKZ8e8frrr+eTTz7ho48+YseOHQwdOpStW7fy+eef07ZtW55++ukG/DQiIiIiIoGnhIXIKW7p7Nl03O99mFRgKSb6vJ7HnM7ohIqy4JNrwFXq3e99vXeh7VowXC4O/P1ZYidcT1Cr2j0cDaQCJ1z/7hrWp3vn4w+2mXnt6j4M7+x9aO0odvLjf34nLCqIYdeUTw1lMpnoOrgFjiIXrbvH0iI1GqutcUxtJSLiD9ZwN2W53u+1BMzsxYNl0+/smfgf3L81w97PBYcGRxlOD6ZqjEQROdkNHz6cDRs2sGbNGhYtWkRxcTFxcXGcc8453HHHHYwZM6ZSfbPZzFdffcWzzz7L9OnTmTJlCrGxsfzxj3/k6aefJj6+Fi+ViIiIiIicRJSwEDmFZWTsJ3qei8NPkHKGmekSG1WzTtwu+GwC5O3x7if3g3Oer1U8hmGQ/tjj5H3+OfmzZtL6rbcI7ty5Vn0FQlYp/HuDhcxSb7IiKsTGfyb0o09KDADZ6UV899qv5B30TnsS1yqi0uLO/c5tW/9Bi4jUE1tY+TRlbYPs7HWWUJydS+H8+YCdIGdZhYSFG5SwkFPA0KFDGTp0aI3a2O12Hn/8cR5//PEARSUiIiIi0njVYkVdEWkKPB4Pv02fT4Q7DIDNiXsZOHJkzTua/TjsWOjdDk+Ey6eDtRbrXwAZL75I3uefe+PLzcOdk1OrfgJhxc4cXvrNQmapd8REUlQwn902yJes2PFLBp9NXulLVgSH2Yhp3jjW2xARqQ/2ODdRnUsZfXNnSPSul5FO+boZLrfTt+0oLa33+ERERERERKTx0wgLkVPU0tk/0vGgdyqofEsRPa8dXq2FbSv59VNY+qp322yFy9+DyKRaxZP19n/Imvq2d8dkosXzzxM2aFCt+vInwzB4e/EO/v7dRtyGN1nRPi6U6TcNpEV0CIbHYOX3O1nx9Q5fm2bJ4ZxzW48TrkshItLUBEV6CIr00KprDAnbDkJaDvlB5YnbPI+LmEPb6Tl7aR8X2TCBioiIiIiISKOlhIXIKWjH9s3Ezy9PTuSNsNI1LrFmnaT/Cv+7q3z/7MnQunYLxuZ+/gUHny+fRqr5448TOW5srfryp+IyFw989ivf/JruK+sc5eGdG/uQFB1CWamL2e/8zo5fMn3HO/RNYMS1XbBpqhMROYW1jPYmbPOCwnxl5rIy33aZw1HvMYmIiIiIiEjjp4SFyCmmqLCAzOnrSfLEAbCpxV5GjryyZp0UZ8MnV4PLO/0Rp18Lff9Yq3gK5s4j/dFHffvxf7qbmCuvqFVf/rQjs4jbpq9i04ECX9mYlh7ObuUhOsRG7sFivnvtN3LSi7wHTTDoovacPqZ1zRctFxFpYlocSlg4LEF4bEGYnWWVExalSliIiIiIiIjI0ZSwEDmFeDwelr39LZ1KvFNB7QvJZOAfz61ZJ24XfHYD5O727rfsA+e8ALV4SF+8ciV7//xncLsBiLnmGprddluN+/G3ORsOcM8naykodQEQbrfy7EVdcO9e46vz04ytvmSFPdTK6D92I6VbswaJV0SksfC4IGNXASH7Sgn1QLHZhCMsgpDcLMyO8oSFs8K2iIiIiIiIyGFKWIicQoqWptMp3ZusKDaXknBtd8LCImrWyZwnYPt873ZYvHeRbVvwCZsci/PAAfbccivGoWlBIs89l8SHHmzQ0Qkej8HLc7bwjzlbfGUdEsJ549o+tAi3MGt3ed3h13Qmc89KrHYL59zWg+hELbAtIlKwPYivf1wHQFKYmW1mD0XB4YRQOWHhUsJCREREREREjkEJC5FThGNnHnnfli8MnT/WTt92qTXrZN0M+Okf3u3Di2xHtaxVPLbERJrdcgsZL79M2Fln0eLvf8NU00W//Siv2Mk9n6xh3qYMX9k5PZrz3KWnEW63UlJSUql+SEQQ5999GmHRdoKC9VUqIgJgC/P4tmPdZrbZPOQGhRMHmFxO3zFXmfMYrUVERERERORUp6dsIqcAd0EZWR9uBI8BQPiQZPoObVuzTvavg6/uLN8f9yyknFGnuOJuuxVbiyQixo7FFBRUp77qYkN6PrdOX8Xu7GIAzCaYOK4ztwxph8lk4uCufBZ+vAlzWxMWu+FrF9M87Hhdioickqzh5QmLJLMFcJFlCaEDYLjLR1W4Ha76D05EREREREQaPSUsRJo4p9PJrndXEJzvfdBubxdF1Ng2NeukOBs+/gM4vQ/06XU19LupxrG4srOxxsZWKou64IIa9+NPX63dy19n/EaJ89A6GqE2Xv1Db87sEIdhGPwydw8/zdiKx21gzw8mrl9JFT2KiJy6rBVGWCQYFgAWNevIuA5l7C8tJOTQMU+ZEhYiIiIiIiJytIabf0VE6sWC978gOM2brDBH2oi9qjMmSw3WiSjNg4+ugtxd3v0Wp8O5L9V4ke38775j66jRFC5eUqN2geJ0e3jy69/508drfcmKHi2j+PquwZzZIY7SIiffv/4bi/+7BY/b+//P4zLh0SwmIiLHZbZCWLR3xFyE0wAD5iT3JvjykThbF/jqeQ5974qIiIiIiIhUpBEWIk3Y8nlz6bwpCQAXbhznRdEiogZTLxVmwPuXwP5fvfuhcXDF+zVeZDv3yy9Jf+hh8HhI+7//o82n/yW4Y8ca9eFPGQUO/u/D1azYke0ru6xPMk9d1J1gm4X92/OYNXU9BdmlvuPdhiWRa9+MSWleEZETikoIoSi3DKsLQg0oNkG2KxgbDl8dw+k5QQ8iIiIiIiJyqlLCQqSJ2rl9CzE/ugGbd79/HsN6Dqt+B3l74b0LIWuLdz+0GVz7OUQl1yiOnE/+y/5Jk8DwjlKIuuB87B061KgPf1q9O4fb31/FgXzvgzObxcTj53fj6gGtwYA1s3az7MtteA6t92EPszLy+q40Tw1j1qzNDRa3iMjJIjoxhH2b8wCI9ZgpNns44LTTzVlI/qE6vWJ6NlyAIiIiIiIi0mgpYSHSBBUVFXBw+jpaeOIA2JSUxvCLrqh+B1nb4L2LIG+3dz+iBVz3FcTXbFRE9vT3OfDMM779mKuvJvHhhzCZ63+YgmEYfLhiN5P+tx7noSmeEiPtvHZNH3q3jqGksIw50zawa12Wr01S+yhG/7EbEbHBlJRo7QoRkeqISgjxbTdzm0izwv5iC6eXlY+wsLg0XE1ERERERESOpr8Wgb179/Lyyy8zZswYWrduTVBQEM2bN2f8+PEsX7682v3Mnz8fk8l03P+mTZsWuA8hcojH42HZ1G9oUeJNVqSHZDLwj+dhrm6S4MB6+M+48mRFbDu48YcaJyuy3v5PpWRF7I03kvjIww2SrCh1upk441ce/mKdL1nRv20sX981mN6tYwBI25hTKVnRe1wKF957OhGxNZv+SkTkVBeVWJ6wiPWYaZ2/n04PPsbOH6N85ZoSSkRERERERI5FIyyAf/7zn0yePJn27dszZswY4uPj2bJlC19++SVffvklH374IVdcUf2304cOHcqwYcOOKu/Vq5f/ghY5jgVffk2ndO+0TcXmUuKu7UZYeET1GqethPfHQ2mudz+hK1z7JUQk1iiGzNdeI+OVf/j2m91+G/F3342phgt1+8Pe3BJum76K3/bm+cpuPLMtD57TGZulPHmS2jeRPb9ns/O3TEZN6Errbs3qPVYRkaYg+tAIi9DoIJwlTgptIZgMA9wV1rAo06LbIiIiIiIicjQlLID+/fszf/58hg4dWql80aJFjBw5kttvv52LLroIu91erf6GDRvGpEmTAhCpyImtW7uKtivK32DNHmVmYLtqjozYvgA+ugqcRd79ln3g6s8gNLZGMWT8619k/vNV3378n+4m7vbba9SHvyzZmsldH60hu6gMgGCbmcnje3Jhr5bkZ5ZgbRZcKYly1pUdGXBBO8Kiq/ezLiIiRwuJtHHzy0OwBln426PfQ1kYAIa7zFfnQN5+mtG1oUIUERERERGRRkpTQgGXXHLJUckKgLPOOovhw4eTk5PDb7/91gCRiVRf2cFirJ9lYcUCwMaO6QwcMbJ6jTd+Bx9cVp6saHOWd82KGiYrAEJ79warNxea8MADDZKsMAyD1xds49q3l/uSFa1jQ/nijjM5v0cSq37YyQeTlrF5+f5K7WxBFiUrRETqyGQyERRsxWw2kRQVgtNipdhqB1d5wiKrILMBIxQREREREZHGSiMsqmCz2QCwWqv/v2rLli28/PLLlJSUkJyczIgRI2jZsmWtzp+WlnbC4+np6b5th8OhhYFPEqWlpcfcri1PoZO8/2wg3OWdhmNb9D76X3Z2te4Hy/oZ2L69G5PhnZ7D3WEMZRe+CR4r1OJ+MvfqRbMHH8RwuQi9/LJ6vyf355fyxLebmL+5fD2Kszo04/lLumLkO/l08koydxcCsPCTzcS1CSU0KqjKfv19zaR+6LqdnHTdTj7Hu2bNI4PYnV1MXlA4ocVZGB43JrMFi8us31kaAYfDUXUlERERERGReqSExQns3r2b2bNnk5SURI8ePard7sMPP+TDDz/07VutVu666y6ef/55LBZLjWJo1apVtesuX76cbdu21ah/aXgLFy6sU3uzCzqtjyS02PvjXBTq5GB7mDd3XpVt22TMoWfae5jwLkS9J2YQa8KvxJhb/ZisObm4oqOg4voU4d7pP5g1q/ofpI48Bizeb+Kb3WYcnvJYxiZ7GNvsALPfzSZvix18xwyCmhez6Kf5mGr2Y1nnayYNQ9ft5KTrdvKpeM2MIjNgJs8eSlJxFrjLwByC2WViVj3+GyHHlpmpkS4iIiIiItK4aEqo43A6nVx77bU4HA4mT55crURDfHw8zz77LOvWraOwsJADBw7w5Zdf0qFDB6ZMmcIDDzxQD5HLqcTtdtFuU7gvWeGwu9nWpZCgoOAq23Y48A2npb3rS1bsiBvB6pRbMUzVz2OGbdxIm5deImb+/FrF7y/7iuCVdRZm7LT4khURNoObO7sZHWOQtTyUvE3BvmSFNcxN/MBiojuX1ThZISIiVXMWmcj+NZh+acH0K7WSH1R5HYsgj96ZERERERERkaPpr8Vj8Hg8TJgwgYULF3LzzTdz7bXXVqtdt27d6Natm28/LCyMCy+8kAEDBtCzZ0/+8Y9/MHHiRBISEqody549e054PD09nf79+wMwYMAA2rdvX+2+peGUlpb63kAdMmQIwcFVJxiO5Pa4WfbW10Tle6czMoVYSbyxOy3iqujLMLAu/Bu2ff/1FTkH3EnzoQ/TvOIoiSrkf/Qx2e++Bx4P8T/MpNt55xF65pk1/hx1Uep08/rCnby9bjcuj+Erv6x3C+4d0Y60nzNZ9d1u3M5Dx0zQfWgSvc9uhTWoZpkKf1wzqX+6bicnXbeTz5HXrDTP4POFawkDEm2GL2HBoYSF3QhizJhhDROs+GhkroiIiIiINDZKWBzB4/Fw44038uGHH3LNNdfw+uuv17nP5s2bc+GFFzJ16lSWL1/O+eefX+22ycnJ1a5rt9sJCQmpTYjSgIKDg2t83TweD3Pf/pTO+733R5nZRcsJPbG3iqqqIXx3P6x8u7xs5GPYzroPWzXPbbhcHPj7s+R88IGvLGLcOGIGD8Zcjw8Vf9qayUNf/MbOrGJfWbv4MP5+cQ8GtGvGiq+38/O3u3zHouJDGHl9F5I6RNf53LW5ZtLwdN1OTrpuJ5/g4GAiI+2YzSY8HoNmbjN5R42wsOm6NgJ2u72hQxAREREREalECYsKPB4PN9xwA++99x5XXXUV06ZNw2z2z6xZcXFxABQVFfmlPzm1zf/0KzpvawGAGzdZZ5tpl1JFssLthC/vgN/KR1ZwzgvQ/+Zqn9ddWMjee++laOEiX1mzW28l/k93Y/LTz0pVcorK+Nt3G/h0VfmC9DaLiduHdeCOYe0JtnlHTvQYlsy6hXspKXRy2vBWDLioHbYajqoQEZHasVjMRCWEkLO/mBiPiX32I0ZYeGx4PB6//Z4lIiIiIiIiTYMSFodUTFZcccUVTJ8+vcYLZJ/I8uXLAWjTpo3f+pRT0+IffqDjmjjf/q6zihly1jknbuQshc9ugE3fefdNFrjoNTjtimqf17l3L3tuux3Hli3eApuNpCeeIPqSi2v6EWrFMAz+98s+nvz6d7KKynzlfVNi+NvF3WlutfmSFQAhEUGMnNAVW5CZFqkx9RKjiIiUi04MJWd/MTZMrGzRl3FtthMS4qCVG8yYKStzEBysURYiIiIiIiJSTq+1UT4N1Hvvvcdll13G+++/f8JkRWZmJhs3biQzM7NS+apVq45Z/5VXXmHevHmkpqbSr18/v8Yup5ZVPy0meX75tEubeh5kyLlVJCschfDhZeXJCksQXDG9RsmK4jVr2HHFlb5khTkqitZvT623ZMWe7GImvPMzf/p4rS9ZEWG38vRF3Xnz4tPY9Ol2Pnl6BUV5jkrtUro1U7JCRKSBxDQP820b9hh2xzTDYStPOJeWFB+rmYiIiIiIiJzCNMICePLJJ3n33XcJDw+nY8eOPP3000fVueiii+jVqxcAr776Kk888QSPP/44kyZN8tUZP348NpuNvn37kpycTFFREcuWLWPNmjVER0dXmQgROZGN634h8ptSrHjnm97Qdi8jr7z8xI2Ks+GDy2DvSu++LQyu+hDaDav2eQ3D4OCzk3EfStAFpaSQ/Ppr2Nu2rc3HqBGX28M7S3by0o+bKXG6feXjujXn0bM7s2fxfj55fwUel3dR7aWfb2PUDV0DHpeIiFQtpnmobzvWbWK/I4gO1lJfmavM1RBhiYiIiIiISCOmhAWwc+dOAAoLC3nmmWeOWadNmza+hMXx3H777cycOZOFCxeSlZWF2WwmJSWFe+65h/vuu69GC2iLVLRr51bcH+8j3BMOwOaEvQz/46Unnvu74ABMvxgOrvfuB0fB1TOgVc1G+ZhMJlo8N5kdl4wnuGtXWv7jFawxgR+1sG5vHn/9/FfW7c33lTWPDGbSBV1JdVqY/dJaCrPLR1SEx9hpe1rcsboSEZEGEF0hYdHMYybPCKFrWSGHx1VEmSMaJjARERERERFptJSwAKZNm8a0adOqXX/SpEmVRlYcNnHiRCZOnOi/wEQAd0EZhe9tI8rlTVbsiErnjDsuxGo9wY9v7m5470LI3u7dD0uAa7+A5t2rdU6jrAxTUJBvPyglhZT3p2Pv0AGTzVbrz1IdxWUuXp69hbcX78Dt8Y6cMJng2oEp3Hp6K1Z/uYMffs/21TdbTPQa1Zq+57TBZtcIJhGRxqLilFDN3Caa7c2lLCIMDhUbTk8DRSYiIiIiIiKNlRIWIo2YO89BxtTfiCr2vqW6LySTnneMPvEipZlbvMmK/L3e/ahWcN1X0Kx9leczPB6y3nyL/O+/p83HH2EOKT9PcJcudfos1bFgcwYPf/EbaTklvrKOieE8fV43XL/l8r/nVvumfwJo1SWGs67oWOmh2MnIMAw8bjeWCkkowzBwORwnaFXOEmTDbC5P1njcbtxOZ7Xa2oKDK+27nE4Mt/s4tcuZzGasFZJaAE5HKRjHaVCB2Wqt/Fk9HlxlZSdoUc4aFISpwsgit8uFx3X8aWWcjlI8LidgOuqYq6wMw1P1A1OTxYL1iESds7T0OLUrs9hsmCtMBejxuHGXVe/aWO12TKbyuKt7bTCbsAXZK8fbCK+Njwls9iPuw7KyQ9fNG7vVdPT1g8ZzbdwuJx5XLa9NmQM8VV8cs9WCxVr+WRvbd8ThnzVThfPYQ6yERgVRnFdGrMfMOcuWUtz9MoI6HPoMSliIiIiIiIjIEZSwEGmkXFklZLy9Dne29+GbOSqIDjcOJirqBNMxpa2CDy+H4kMLwjfr4E1WRFU9HZkrM5N9D0yk6KefANj/9NO0OM4Uaf6WWejg6W9+58u1+3xlQVYzd4/owC1D2mP2GHzwn02+ZEV4jJ3Bl6XS7vT4Sg8NGzPDMCjOyyVn/z5y96eTu38fOemHtg/so/c5F3Lm5df46jsdpfzz+suq1feVTzxHy87la3dsXbmMr1/6e5XtbPZg7n7vs0plc995nd/mzKyybWr/M7jgvocqlb1z7+0UZGZU2Xb0zXfSc9Q43352+l6m3Xt7le0Abn71P0TGJ/j21878lvnvvVVlO1tkFJxTeYH6r158hp1rV1XZtvfZFzB8wi2Vyv4x4TIwqn7IfMlfJ9H29L6+/d3rfmXGM49W2Q7g3o/+5x1edMjij99j1TdfVNmudY9eXPZI5bWYPnz4PjL37Kqy7ZBrbqTf+Zf49otyc3jj9uurFe91z79KfOs2vv0Ni+Yx8/VXqmwXFhPLba+/V6ls7tR/sX2F97to+3+nHbdtt6GjGHfHPZXK3rj9ehzFRVWe99y7/0LnM4f69g9s28qHj9xXZTuA//vPxwSHhfv2V3z5GT99+kGV7Zp36MjVz7xUqeyzpx5h3+YNVbYdOP7Kk+I7wmS1sq1ZNN2HDAeg5/BkNu4v4Itf0xgWFIzdXZ4AM8qqkeQRERERERGRU4oSFiKN0PatG7F9nIWp0Pv2qSU2mPibemCNDT52A48HfnoF5j4NnkNvNDfvAdd8AeHxVZ6vaNly9v7lftwZhxIdJhO2xOYYhhHQhIBhGHy2Ko1nvttAbnH5274D28Xyt4t70C6+/IFg//PbMf/DjfQaeXJN/zT/vansWf8buQf2UVZSUnUDEZGTmOFy8fNXn/oSFn3GtcG8O4etG3dTGBRCbIWExeaDm+iZOrChQhUREREREZFGSAkLkUZm4++/YnywjyC3d5oja0Io8Td1xxJpP3aD/H3wxa2wY2F5WetBcNXHEBJ9wnMZbjeZr71O5r//7U16AJb4OFo+9xxhgwb54+Mc17LtWTw/cxOrduX4yqJCbPylVwohmwpoRuWERKeBzUnuHEPE8ZI2jYDH7a40xQxA9r40Du7cdtw2JrOZqPhEIuMSjipv3f20ap3XHhpaaT80MqpabY+c0gkgtkVytdrGtU45qqxlp64UN8+tsm14bLNK+za7vdqf1XLE9D8RcXEnbOvxeMjKysJa4W34wxJS2lZryqKYpJZHlbXuflq1RlgER1ReVDgkPKLan/WoOJq3qFbbhDbtjipLSu1EaFR0lW0j4yonOM1Wa7XjPXJap7CY2Gq1DY6IPKosNrk1Ibt2AtCsWTPMFaaaqqhZcqujypK7dq/WtFChR4xWCwoJrfZnPfLnPCohsVptY1sePdotsX2HY/4sHikqoXml/cb2HeHxeEjftgW3o5TstN3k7k8nunkSAC1jvNML5geFYbjKp7EqLC6oVvwiIiIiIiJy6jAZRjWeuEijlZaWRqtW3gc2mzdvJjU1tYEjkuooKSlh1qxZAIwZM4aQQ2tF/Lb6Z+yf5RDq8e4fiMyh15/OxhJ2nIWuN3wD/7sTSg4/9DfB4D/D8IfAcuLFsZ0HDrDvgYkUL1/uKws7YxAtnnsOa1xc3T7gCazbm8dzMzexcHPlqYMubZ/IoCIL+zd6P0tq3wTG3FS9RcLrw/GumWEY7N24nl9+/J6MXTu4/vlXK83jP3faG6z94VsiExKIad6C6OYtiGmeRHRSC6ITWxCVkFBpXnrxr+NdN2ncdN1OPiUlJXzyygsUpe2i98gxnDZyLKGRUQB4PAadH/2Bh5a8xWB7M4JPvw6AHWcVcNa555yoWwmwLVu20LFjRwD27NlDcnLVU0hK01Px74ma3gdt/vptoMISP9r57Ln1ch7dD42f7gWpSPeDHFZf9wLofjgZ1OR+qMvvkSeiERYijcTqpUuI+l8pdsP7YG5n5H563jn62MmKsmKY+RCseqe8LKIFXPImtD2rynPlfvElB555Bk9hobfAbCb+7rtodsstlR62+9O2jEJemrWZb39Lr1TePSaMq0IjyV2dy/4K6dOcA8U4y9zYghrn1E+lhYX8vnAOv8z+gey9e3zlu9b9Qpuep/v2z7z8WoZec6OSEiLS5EV37kFMl570OiLJ5HZ66BJiJzeqA0bRAV+5y1G9hb9FRERERETk1KGEhUgjsHzeXBJmmbAZ3uk3tsXuo9+d5xIaevQ0NqT/CjP+CJmby8u6XADnvwKhsdU6n6ew0JessCYm0vLFFwjt27eKVrWzL7eEV2Zv4bPVabg95RmJ9uEhXBMTg2NjHrnOXF95eIydARe2o2P/5pjNjWtBbcMwKM08yJy3XmXbiqW4nGWVjgeHR1Ccm1Op7MipWEREmqpjrXlkGAbvTFzMmFJwx58J+R/7jnm06LaIiIiIiIgcQQkLkQa2Yu5c2iwKw3JozYYtiXs5446LsB8xHzweDyx/DWZPgsOLltpC4ezJcPq1UIPFsWP+cBX5331HUJs2JE58AEt0tH8+TAVZhQ7+NW8b7y/bRZnb4ytvHhrEDeHRGNsLKU4rf7gfFGKlz9kp9ByejNXW+EZVrJs7kz3ffUZZXu5Rx1p27sZpo8aROuDMas1FLyJyqjCZTEQnhJKxuwCzJRyPuzxJYTg9J2gpIiIiIiIipyIlLEQaUGFaOn32dPPtb0rey5Bbx2M7YmFhCg7Al7fBtrnlZUmnwfi3Ie7E65aUrF9P8YqfaXbDBF+ZyWKh9bR3MNuPs5B3HeSXOpm6aAdvL9pOUYW3ZyOCrdw2tD0TBqXw1eTV5Li8oy0sNjPdh7ak77g2BIc33mmTsvbsqpSssIeF0XXICE4bdTbNkls3XGAiIo2M4fGQvmUTWWm76T58NDHNvQkLk8lEiS2UsMMVNcJCREREREREjqCEhUgDCd7joE9aebJiY9u9DL/pMiyWI0YXbJ4JX94BxZnlZWfcDSMeBevx3+b3lJSQ8eqrZE97FzweQk7rSWjv3r7j/k5WHMgv5T+Ld/DB8t0UOly+8jizmUvPasttQ9sRHeqNt+/ZKcz7YBM9hrTktFGtCIvyf+KkNgzDYN+mDfy+aC6Dr7qekPAI37FOZw5j/bwfCY5P5IwLL6X7kOHYjhwFIyIizHj6YQ5u34rFaqXjwDOJaV4+NV5RcCRxh7Y1wkJERERERESOpISFSD0zXB6Kvt9Nt7QkX9nGzvsZcd3lmCsueO0sgVmPws9vlZeFN4eLX4f2w094jqJly0h/7HGcu3f7yrLffa9SwsJftmUU8uaC7XyxZm+lqZ+SPGbGh0QQcrCMy7u19CUrADr0SaB112aNZkRFfsZB1i+cw+8L55K737soeHzrtvQae66vTmL7VFIuuAJbeCSdBw9TskJE5DgS2rbn4PatuF0udqxdTXRiR9+x3V2TSDm0bdIICxERERERETmCEhYi9ciV5yD7gw2U7S7wlWX29zDqkssqVzywHj77I2RsKC/rdA5c8CqENTtu/+7cXA688AJ5n83wlZlsNuL+7w6a3Xij3z4HwOrdObyxYBuzfj+AcXgtbQPaYuFcWzghmWWQ711rY+X3Ozn71h6+tmaLmeBw8zF6rT+FOdlsWb6ETUsXs3fj+qOOb1q2qFLCwmQyYQuPrM8QRUROSm1792fdnJkAbP15KQPH9/IdczhjOLRkE2aXcYzWIiIiIiIicipTwkKknqxZ8RPR3zmxlXof1HtMBrvbFtPn7KHllQwDVrzpHVnhdnjLrMEw9m/Q98bjLqztKSsj54MPyXztNTz5+b7ykD59SHrqSezt2vnlMxiGwfxNGby2YBsrdmT7ym0GnG7YOItgzPkuoMx3LDQyiBYdojEMA1MNFgYPlK0rl7Pq2y9I27Ce8kzLISYTrbv1oNvQUaT2P6NhAhQROcm16NQVe1gYjqIitq/+mdE3343J5P3KdbpiffWaW2JP0IuIiIiIiIicipSwEAkwt9vN/E+/osPaZljwJivMUUFsaJ1BcXiF6TAKM+CrO2DLrPKyxO7ehbUTOh+3f1dGBjv/cDXOPXt8ZeawMBLuv4/oK67AZK77SIYyl4dvf9vHGwu2s3F/+eiQCI+Jsww73Uot4PQA5WtXhMfa6T0mhS5nJmG1WY7Ra8MoyMog7fd1lcpiWiTTdfAwug4ZQWR8QgNFJiLSNFisVtr17s+GRfMoKylm36Z1RMaFkJdRgssV5asXbwpvwChFRERERESkMVLCQiSA8vJyWD11Jp0yWvrKdsdnctqEURQvnlteccts+PJ2KDpYXjbwDhj5ONhOvFaCJS4OW/Pm3oSFyUTUhRcS/+d7sCUm1jn+jfvz+e/PaXy5di/ZRWWVjrWLD+PG1BbkfZcGlK9d0bxdJD2GJ9P+9AQs1oaZ9qkoN4dtK5ezaekizrj8Glp26uI71nHAmcx7502imyfRadBgOg46i7hWKY1i9IeISFOR2m8QGxbNA2DrymXENB9MXkYJHsrXLjK0hoWIiIiIiIgcQQkLkQDZvGEdhR9vI9XhTVZ48LC5RwbDr7yYsjLvw3+zx4ltzmOw8s3yhmHxcNHrkDrqmP06DxzEllg+CsBkMpHwwAMcfOlFEv/yF4K7dq1T3HnFTv73y14+XZXGr2l5vnKbAeEeE23aRnHb0PaM7pKIyQSf/JJL7oFiUvsl0GNYMgkp9b/Og2EYZOzawfZVK9i2egX7t272HWvWqnWlhEVYdAw3vPw60YlJSlKIiARIm9N6Y7UF4XKWsXXlcrqPGg2/gbUsH8Mdicliw+P0VN2RiIiIiIiInFKUsBAJgEXffU+LRUEkGN75uQssxRSfG8aoMy711Yko2UufXa9hLdld3rDDaLjo3xB+9LRE7rw8Ml97newPPqDVv/9N+FmDfcdCenQn5Z13ah2vx2OwZFsm/12Zxsz1+ylzHXqIZEBLt5keTitdXRYiE0O5/vYBlR70j5zQhfBoOyERQbU+f224ysrYs/5Xtq1awfbVP1OQlXHMegd3bD+qLKZ5i0CHJyJySrMFB5Ny2ulsW7mcopxsWqY6mGuOZ9CUSRD9IFhseMqUsBAREREREZHKlLAQ8aPS0hIWv/MVnXeVTwG1J/wgrSf0pUtyiregJAfrolcYsulfWI1D0yxZ7DDmKeh/y1ELa3vKysj96CMy/v0anjzviIeDzz1H2BmDMFnqtjbE7qxiPlu1hxmr97I3t8RXHukx0bXMQm+PjbAKM0EV7SsmY3dBpVEU8a0i6hRDbS366F1Wf/fVMY/FtW5D+z79Se1/Bglt29dzZCIiAtCh70C2rVwOwJ51K2nReigFQaEYrjJMQZDtcKD0sYiIiIiIiFSkhIWInzgzS1j35o90zi9PVmxss5ezbrgIuz0YSnJh2Wuw7DVsjvKpljzNOmK+7B1o3r1Sf+7CInI/+YTsadNwZZSPHjDZ7YSPHIHhctUqYVFS5ub7del8ujKNpduzfOU2Azo6LfRyWWlRdvTaE1a7hY79ErGH2o46Figup5N9mzaw69fVnDbmHCLjykeetD29ry9hYbFaadWtJ+369Kd97/5aOFtEpBFo16c/oVHRtD29L21O60OhEcKBoDBwezPhQUb9jswTERERERGRxk8JC5E6MlweChamkT93N81dMQA4TE7Sh5Qx6uwroTQfFvwDlr4KpRUSFVjYET+SFte+QUhkrK/clZNDzvTpZH/woW9EBeBdUPuCC4i/50/YkpJqFqNhsGZPLp+u3MPXv6RT6HBVOm4D7iwKweo6oqEJWnaMocug5rQ7PQGbvW4jOqoTZ/bePez8ZQ27fl3Nng3rcDkcAEQlNKfnqHG+zzje/wABAABJREFUuq26dqfHyLG0Pa0PKT17ERQSGtDYRESkZkIjo7jt9fcwmb1J8Ow9uWywR2D4Ehb1lwAXERERERGRk4MSFiJ1ULA9k6KvduE6UOwrc0R68FySwOC2KbDwBW+ioiSnvJHJgqvHlcx19abEHk8LW4jvkCsnh20jR+EpLq5Q30TEqFHE3X5bjRfUPlhQyhervQtobz1Y6C00INpjItdi0C4ujEv7JjO+dzKrP9zC9rXekRxR8SF0HtScjgOaE9ks5ARnqLvi/Dx2/7aWnb+uYdevayjMzjpmvZ2/rK6UsLBYbYy55a6AxiYiInVzOFkB4NlVhDt6CIXBcUQBVmw4nU5sNiUuRERERERExEsJC5FayM/PZflHP9BpRwvMHFpzwgzhg5NpcVYs5rVvw1f/hJLs8kYmC5x2FQy5H2dIc0pmzTqqX2tMDKFnDKJw9hywWok6/3ya3XwT9nbtqh2b0+1h7saDfLoyjXmbDuL2GJgMaOUy09FpoaPLQqjJxMA/96Rv+2a+BbS7ndWC4HAbnQcl0bxdZKWFtQPph3+9xI61q455LCwmljY9Tyel5+mk9OhVL/GIiEhg5O0sICy4DY4K0xk6HCVKWIiIiIiIiIiPEhYiNbR83lxC55bQxVm+VoWtZTgxFyQTlPYRvPYyFFcYJWAyQ88rYcj90OzQAtAlJdjT0ohauRJjxIhK/cfdeiu2pBY0u2ECthbVW440r9jJoq0ZLNiUwdyNB8kqKsNiQGuXmY5OKx2cFkKNygmIuCKjUlKidbdmtO7WrGb/M6ohP+MgaRvWkbZhHfu3buYPf5uCtcLDqZSevX0JC2uQneSu3b1Jih69aNYqpd4SJyIiEjilRYU4CtdheIJwE+UrLykpJjw8sgEjExERERERkcZECQuRatqfnsaGjxaTerAl3lUfoMTsYN/pBQxJ+gXTf1+GovLFsTGZocdlMOQBiOsAgLuwkPxvvyP7009JWbcOgKIfZxN6ycW+ZiE9ehDSo8cJY/F4DNbty2PBpgzmb85gze4cPAZgQKrTzECnjfZOC3aOfthvtppo1SUWe6j/f/w9HjdZaXtI37yRtI3rSduwjoLMjEp1DmzbQsvO5VNbtevdl6LcbFJ6nk7LTl2xBmkRVhGRpuT3hXOZ+foreNxurCHDcRt9fcccpSUNGJmIiIiIiIg0NkpYiFTB5XKx+OvvaPFzCKme8lEVW5vtJbXnfob+9m9Yf6BCCxN0Hw9DJ0J8RwzDoGTVKnI/m0H+Dz9glFR+OFP4v/8RXyFhcTxZhQ4WbclkweYMFm7OIKuo7OhKJhjssBHnNlcqttotpHRrRvvT40np3oygEP/+6LtdTmY88xj7t23B6Sg9bj2zxUrugfRKCYuYpJYMufoGv8YjIiKNR3xKWzxuNwAe59ZKCYvSEiUsREREREREpJwSFiInsG7tKvK+3U6Hgua+slxrAfmdNzFk/xuYl6ZXbtDtYm+iIqELrowM8qZOJXfG55Tt2HFU36VJSeQNHEi/iQ8c89xuj8HaPbks2JzBgk0H+XVvHoYBoR5o47Iw0Gkj0mPio4gyOiSEM7RjPMM6xWOszeG3OWnYQ6206RlHu17xtO4aizXIcszzVJejuIj927awf+tm7KFh9Bp7ru+YxWqjIDvzqGSFNchOi46daNm5O8ldupOU2hGbPbhOcYiIyMklrnUbohKbk3dgPx5XGi7DCdgBKCs9fpJbRERERERETj1KWIgcg2NXPjmzthO9rZhoypMVGxPW09eYSvTWLZUbdLkAhv0VErv5irI//JCs116vVM0cEUHkeecSct55LNizB0wmzHa77/jBglIWbs5k/qaDLNqSSV6JE6sBSS4zg11W2rosJB4xemLmzYPo1D62/LzhobTp2oyWnWKwWCvXrQ7DMCjIyiBj1w4O7txOxq4dZOzcQe6B8uRMfOs2lRIWAEkdOuF2uUjq0Inm7VNp2bkrie06YLFqMVURkVOZyWSiQ9+BrPr2S8DA5c4DEgBwFhc1ZGgiIiIiIiLSyChhIVKBY3c++bN349icU6l8vz0DW8R0RuXPrdyg83kYg++neE8pNkcEFVdfiL7kEl/CIrR/f6IvHU/E6NGYQ0IoKSmBtDTcHli5K5elO3exYHMG6/flAxBkwMBSK8muIJq7zViOsRYFgC3YQnCpUaksNimM2KSwWn3+jT8tZM7Uf1NaVHjCepl7duMsLcUWXD5aYuztf1JyQkREjqlDv8MJC3C6MjicsGhtiT1+IxERERERETnlKGEhAvz+6xoyZ22lXWbzSuWm4GK2h3zGgOIZBBW6feWeduMoChlNwcqtFEy5HU9eHs1uvpmE++711Qlq1YrmTz5B2IABBKWkAJBZ6GD95gx+2ZXJ7E1mtuSZsC5dQ5ABWZbyxIMT6F1mxWYcnaiIbx1B666xtO4WS2K7KCyWqkdROB2lZO/bS/bePWTv3UPW3j1k701j9M13VlpPIiQ88pjJCmuQnbjWKSS2SyWpQ0ead+j4/+zddVhU2RsH8O+ZoaUVCQPFAOxkXQtsV9fWtUXs7i7sdu3GDhSxa1lEwu5cC0wUQVEBQWpm3t8f/OYuIxi4SOj7eR4f4d5z7z2Xc2PmvCfSTI7NwQrGGGOfYmPvCH1jE8THREOhiJSW6yYqsjFXjDHGGGOMMcZyGg5YsJ/a3VvXEfHXPRR/UwDGqYZ+kssiYSzbAQM6iQLxSkAAyiSBWGVVvH9jhdgDt0EJNzX29f7ECSlgQUR4/i4e/5SqhX/ux+Af/0v4JywaUVGJyK+UwVIpQyGlLn5VyGBMMjzUUmKfYRLKFDCGS8n8cLa3wIsDT/Hi3juYWhrAurgJCpQ0QyFHcxgYawYK0nM74AQinz35f3DiOWIiXwFEadJFhj7VCFhYFCmKPKZmsChih/y2RWFhWxQWRexgZm0Dmey/zYHBGGPs5yWTyVGs8i+47f83lJQoLVdGRWVfphhjjDHGGGOM5TgcsGA/pbv/3EDE8bsoHlkARiggLX+jFQk77ISh/CSESGn1GRehhzdPCiHuWQKgfA7guca+ZHnygH6pjsdlnOB56Db+CY/FnZcxiI5PhrlSoERyyrwTzZUCpir9dPNTXKaNi+NrIb/Jv0MsFe+gC10DbY0ABalUiIl8jeiIl3gX/hJRES+hb2SMqs1aa+zv4gEvvHsZ9tm/gVxLCwmx7zWWGRiboN/abZ/djjHGGPsWJZx+xW3/v/8/6XYK1bvobMwRY4wxxhhjjLGchgMWqVy6dAnu7u44e/YskpOTUbZsWYwYMQJ//PHHV+8jMTER8+bNw7Zt2xAaGgpzc3P8/vvvmDlzJvLnz/8dc8++5H1MNK4FnobWzQ8o/N5KI1ARqfUG0Xp7UfmtD/R1kyB0tAC7+oBjc6heGiFu1ESNfSUbmeCJQ2WctiqDv7UKQidZjrwhMjx78hRxqUZoslTKUDvh00MlCTnBys4EBUqaw0xfM50i8RVCLl5FTORrxES+QnREOKIiXkKZnKyRzqJwkTQBC/MChaSAhbaePvIWKIi8BQvDvEAhmBcohLwFCsIkvxVkcu41wRhjLGsULlMe2nr6UNK/w0BFvnkNk2zME2M5WWZ8N2GMMcYYYyy34YDF//n7+6NRo0bQ09NDhw4dYGRkhL1796J9+/YIDQ3FyJEjv7gPlUqFFi1awMfHB9WqVUObNm0QHBwMDw8P+Pn54fz587CwsMiCs2FqRISkJzF4EXQbqnvxsCNjAMbS+ijZW8THHIRVcCDyvNJCaHxeWPZpBmXXkXiRoIuwqHiE6b1DVW1dvDW0xCXrqniU1wFJ+hYwV8lgHivQm/6NUBw0SMQDHRUsjXVR2sYEZQz1gROvAABybYKZpQzG5kpoGyQg9Pk/IGUsdLSN8fTqW5SqMRLa5vmkfYU9uIugHZu+eI5REeEgIgjx73wXVZu3RYVGvyNvgUIwNM+rsY4xxhjLDlo6OihaoTLib/3bAzAs6jWKZWOeGMupMuO7CWOMMcYYY7kRBywAKBQK9O7dGzKZDEFBQahQoQIAYMqUKXBycsKECRPQtm1b2P5/4uRP2bJlC3x8fNCxY0fs2LFDqiRes2YN+vfvj0mTJmHt2rXf+3QYgOToBMRfeIIPF19AEauDlEGVdKX1sQmhEI8DIA8+B0OVArHQgUpoIUHfDLv8PmD+q8sa++tTYx5MoI08AMoCQFLKciIliOJAFA9SfYBrscJo2K0GLIxSjvXh/XvsCFiBpPgYxEW9R9yrtPNIvPv//9GvImCUKmBhlE8zuCXX1oZJfiuYWlnD1NIaplbWMLO0homVdZp9FrB3zNgfjDHGGMsCTQaPgu/oMdLvIiHte5Gxn11mfTdhjDHGGGMsN+KABYCTJ0/i4cOHcHNzk74QAICJiQkmTJiA7t27Y8uWLZgyZcpn97N+/XoAwJw5czRatPft2xcLFizAjh07sGTJEujrpz+PAftvkpITccXvL8Rfe4Pi0XaQQQ7g3/kflMoPiH95B9Gvg/E+KREJeuZIsO+MBL28+KBriiRtXRCSEa+ISrPv5KTbSE5+9f/ARDxAH0CUAKSaOBQAzKgJLIzqSr/r5THA+8gwEKm+mP/YN5Eav1vZlUDToWNgnM8CRnktYGhmDiGTfWJrxhhjLOeTa2kBRgZS4F+W+OlhExn7WWXWdxPGGGOMMcZyIw5YAAgICAAANGzYMM26Ro0aAQACAwM/u4+EhARcuHAB9vb2aVo7CSHQoEEDrF27FpcvX0atWrW+Om/Pnz//7PrQ0FDp52Or1iOfqdln05vZWMHI3Fz6Pf59DF4//fwx1Gzsi0NL+98AwNuwMMS+jfridtp6OrAuXlxj2cuQECQnJH1x2zxmpjA1M0Py+w+g2AQkvo/D+4g4aKu0oQ0daAtd6AjdlP9letAW2jCCCSLwRtqHjuwOkmRXcPZ5XrwFAAMFSD8ZoEcg5T0gNgmI/Xc8bZIZoWrpHrAw0oWVkQ4sjHTxbn8I3kQ9+GJ+I948R3BwsMayZF09kEoFfWMTGBibQM/YBDp58uDl6zeQ6xug0i/VYJbfCnI9vTTbyi2sEQcg7u074O07sOyTmJiIyMiUoNLDhw+hq6v7hS1YTsDlljtxueU+GSmzsFhj5E1IGS7xbYIuts9fDGinzKlkrGUEKJRA3Afo6BASkAiVDiCXy6FUyqBMkkGlVECRlPIZgozzAADkkMNQKw8oPgEiOQk6uoRYVRy09FPyoUiWQ6UQUCQlQqVUguRyII8eAEBXpg89mTYoNhYCKmhrKfGeEqCjn/KZJyk+5eNyUkI8QATS1QV0U5blkRtCTgDex0JLG1CKJCRrKyHX0oKKBBQJcpBKheTEhJT8GhgAWgKADCZahqCkZCA+Hjq6hHiKB3S1IJMJKBUyKJNlUCqSU+auEgJkZAAA0BbaMJDrg+LjIRTJ0NEhxKjioPP/c01O1AKpgOTERJBKCdLWAv6/Tk+uD12hDXofA5kMeB0dLpWLQvHvZyGWvTLju0lqGfk+8fjxY8THx3/1vhUxkV9OxLLdx98xvhe+HnI+vhZYanw9MLWsuhYAvh5yg4xcD+Hh3+f7BAcs8G9BlChRIs06KysrGBoafrGwHj58CJVKle4+Uu87ODg4QwGLQoUKfXXaYUsWfHVa9gWHDn7bdkdOAlPnZG5eGGOMMca+s9evX6NIkSLZnQ2GzPluklpGvk/Url37q9Oy3KPk6uzOAcsp+FpgqfH1wNT4WmCpfev1kJnfJ3h8GQDR0dEAUrpZp8fY2FhK81/2kTodY4wxxhhjOUVERER2Z4H9X2Z8N2GMMcYYYyy34h4WOVzqLtrpefz4sdQS6uzZsxlqQcWyz8uXL+Hk5AQAuHjxIqyt006czXIWLrPcicstd+Jyy324zHKn0NBQVK9eHQDg4OCQzblh38uXvk8kJCTg3r17sLS0hIWFBbS0fs6viPwcY2p8LbDU+HpgqfH1wNT4WkihUCjw+vVrAEDZsmUzbb8/56fRj6hbL32qpVJMTAzMzD4/N8TX7CN1uq9VsGDBr05bqFChDKVnOYO1tTWXWy7DZZY7cbnlTlxuuQ+XWe6kp6eX3Vlg/5cZ301S+5r7sfhH88397Pg5xtT4WmCp8fXAUuPrgan97NfC9xhWloeEgub8Eh8LDw9HbGzsJ+emULOzs4NMJvvkeLKfG4uWMcYYY4wxxoDM+W7CGGOMMcZYbsUBCwDOzs4AgL///jvNOh8fH400n6Kvrw8nJyfcv38fT58+1VhHRPD19UWePHlQpUqVTMo1Y4wxxhhj7EeTGd9NGGOMMcYYy604YAGgXr16sLOzw86dO3H9+nVpeXR0NGbPng0dHR1069ZNWv7y5Uvcu3cvTTftPn36AADGjx8PIpKWr127Fo8ePULnzp2hr6//fU+GMcYYY4wxlmtl9LsJY4wxxhhjPxKewwKAlpYWPDw80KhRI9SuXRsdOnSAkZER9u7di6dPn2LhwoUa43GNHz8eW7ZswaZNm9C9e3dpuaurK3bv3g1PT088fvwYzs7OCAkJwb59+1C0aFHMnDkz60+OMcYYY4wxlmtk9LsJY4wxxhhjPxLuYfF/derUwenTp1GjRg3s3r0bq1evhqWlJXbt2oWRI0d+1T5kMhkOHjyIqVOn4vXr11i8eDHOnDmDnj174ty5c7CwsPjOZ8EYY4wxxhjL7TLjuwljjDHGGGO5EfewSMXJyQnHjx//YrrNmzdj8+bN6a7T1dWFu7s73N3dMzl3jDHGGGOMsZ/F1343YYwxxhhj7EfCPSwYY4wxxhhjjDHGGGOMMZbtBKWeHZoxxhhjjDHGGGOMMcYYYywbcA8LxhhjjDHGGGOMMcYYY4xlOw5YMMYYY4wxxhhjjDHGGGMs23HAgjHGGGOMMcYYY4wxxhhj2Y4DFowxxhhjjDHGGGOMMcYYy3YcsGCMMcYYY4wxxhhjjDHGWLbjgAVjjDHGGGOMMcYYY4wxxrIdBywYY4wxxhhjjDHGGGOMMZbtOGDBGGOMMcYYY4wxxhhjjLFsxwELxhhjjDHGGGOMMcYYY4xlOw5YMMYYY4wxxhj7IRFRdmeB5RB8LTDGGPscfk/kHBywyMUuXbqEJk2awNTUFHny5EG1atXg5eWV3dlin1GkSBEIIdL95+Likt3Z+6lt374dffv2RZUqVaCrqwshBDZv3vzJ9DExMRgxYgRsbW2hq6uLIkWKYPTo0YiNjc26TLMMldvUqVM/ef8JIfDkyZMszfvP6sWLF1iyZAkaNmyIwoULQ0dHB1ZWVmjTpg0uXLiQ7jZ8v2WvjJYZ32s5Q0JCAkaMGIHatWvDxsYGenp6sLKyQo0aNbBp0yYkJyen2YbvNfajISIIIbI7GywH4GuBMcbYl6jfEwkJCdmcE6aV3Rlg38bf3x+NGjWCnp4eOnToACMjI+zduxft27dHaGgoRo4cmd1ZZJ9gYmKCYcOGpVlepEiRLM8L+9ekSZPw9OlT5MuXD9bW1nj69Okn08bFxcHZ2RnXr19Hw4YN0bFjR1y7dg0LFy5EYGAggoKCoKenl4W5/3llpNzUXF1d073fTE1NMz+DLI3ly5dj3rx5KFasGBo2bAgLCwsEBwfjwIEDOHDgAHbu3In27dtL6fl+y34ZLTM1vteyV2xsLFavXg0nJyc0bdoUFhYWePfuHY4fP44ePXpg165dOH78OGSylPZLfK+xH5EQAmfOnMGGDRuwdu1aaGtrZ3eWWDYRQkClUmH06NGoVasWWrZsCZVKJT0D2Y9P3XKaA1eMsU8hIkycOBEJCQmYM2cOdHV1sztLPy9iuU5ycjIVK1aMdHV16dq1a9LyqKgoKlmyJOno6NCTJ0+yL4Psk2xtbcnW1ja7s8HS4evrK903c+bMIQC0adOmdNNOmTKFANDYsWM1lo8dO5YA0OzZs793dtn/ZaTc3N3dCQD5+/tnXQZZGnv37qWAgIA0y4OCgkhbW5vMzMwoISFBWs73W/bLaJnxvZYzKJVKSkxMTLM8OTmZXFxcCAAdOXJEWs73GvsRJScnU+nSpUkIQRcuXCAiIpVKlc25Ytll69atJISgNm3aZHdWWDaKj4+Xfk5KSsrGnLCcRKlUZncWWA5w7tw5kslkVKZMmezOyk+PmxPkQidPnsTDhw/RqVMnVKhQQVpuYmKCCRMmICkpCVu2bMm+DDKWC9WvXx+2trZfTEdE8PDwgKGhISZPnqyxbvLkyTA0NISHh8f3yib7yNeWG8s5WrduDWdn5zTLa9WqhTp16uDdu3e4desWAL7fcoqMlBnLOWQyGXR0dNIs19LSQqtWrQAAISEhAPheY7kfpTPmtFKphJaWFrp16wYA+OuvvwBw6+qfwcfXg/r35s2bw8TEBHfv3pWef+znMn36dLRv3x737t0DAGhra4OI8OHDh2zOGctu3Nvq56JSqdJdXrVqVVSqVAn//PMPTp8+DYDntcgufEfmQgEBAQCAhg0bplnXqFEjAEBgYGBWZollQGJiIjZv3ozZs2djxYoVnxyzneVMwcHBCAsLQ40aNZAnTx6NdXny5EGNGjXw6NEjhIaGZlMO2ZcEBQVh3rx5WLBgAQ4cOMBjs+cg6qE6tLRSRqzk+y3n+7jMUuN7LWdSqVRSxW2ZMmUA8L3GcjeVSpVmzGmVSgW5XA4AqF69OoyNjfHgwQPExcVlWz7Z90ephvxJSkqSlgshQETQ09NDo0aNEB4ejrCwsOzKJssm8fHxePDgAQ4fPoyrV68CADZv3gy5XI5ly5Zlc+5YViMijUrrmzdvomfPnrhx40Y25op9b+r3hEwmS/OZQKlUQi6Xo0OHDgD+rVflhg7Zg+ewyIWCg4MBACVKlEizzsrKCoaGhlIalvOEh4fDzc1NY1nVqlXh6emJYsWKZVOu2Nf63P2nXu7j44Pg4GAUKlQoK7PGvpK7u7vG76ampli6dKnUApNlj2fPnuHEiROwtrZG2bJlAfD9ltOlV2ap8b2WMyQlJWH27NkgIrx58wZ+fn64d+8e3NzcUK9ePQB8r7HcTSaT4cqVK5g3bx4qV66MMWPGQCaTSRUP+fLlQ4ECBeDv7y9VVBBPwPxDUpepu7s7Hj9+jCFDhqBKlSpQKBTQ0tKCjo4OHB0d4eXlhZs3b6J27drSdcJ+fHp6epg5cyYuXLiAWbNmYfr06Xjw4AHq1q0LR0dHntPkJ6K+74UQ+PDhAxISEnDgwAFs2rQJJUuWRLFixWBoaJjd2WTfgfo9MWfOHHh4eGDu3Llo164diEh6F1SuXBnGxsa4d+8eEhMTeR6LbMJP41woOjoaQMoQUOkxNjaW0rCcxc3NDX5+foiIiEBcXByuXbuGrl274tKlS6hXrx7ev3+f3VlkX/A191/qdCznKF++PDZu3IhHjx4hPj4ejx8/xvLlyyGEQPfu3XHo0KHszuJPKzk5GV27dkViYiLmzZsnfVjk+y3n+lSZAXyv5TRJSUmYNm0apk+fjpUrV+L+/fsYNWoU1q1bJ6Xhe43ldm3atIG3tzdWrlyJRYsWAfh3eA8HBwc4ODjg5cuXOHr0aHZmk2WBrVu3YsaMGdixYwdGjBiBuLg4aGlpSUGqGjVqAAB27twJABys+Amk7nmTJ08eaGlp4f79+4iOjsbixYuxbds2tGjRgoMVPxH1fT9jxgxUq1YNTZs2ha+vL2QyGby9vaUeOOzHFBgYiIkTJ+Lx48fo378/zp07p9HbxsrKClZWVvDx8UFycjIAHhYqO/ATmbEs5O7ujrp16yJ//vwwMDBAhQoVsHXrVnTt2hVPnz7F+vXrszuLjP2wWrVqBTc3NxQtWhR6enooUqQIBg0ahD179gAAJk2alM05/DmpVCp0794dQUFB6N27N7p27ZrdWWJf8KUy43stZzE0NAQRQalUIjQ0FCtXroSHhwdcXFwQExOT3dlj7Kt9ap4KAOjVqxcAoFy5chg3bhw8PT2RmJgopevcuTOAlEqK5ORk7l3xA/hU5VHdunVhaWkJR0dHPH/+HG3btsXz58+lMq9fvz4cHBwQEhLCQ/P+4NTPh9T3u7e3N1QqFfLlyweZTIZSpUrB2toaAFdI/kyeP3+OBg0awN3dHZUrV0ajRo3QsmVLGBoa4sqVK/D29sbr16+zO5vsP/rUPBXOzs5wcHBAyZIlYWlpiS5dumg0qHJwcECZMmUQGRmJgwcPZlV22Uc4YJELqVu/faqVW0xMzCdbyLGcqW/fvgCAM2fOZHNO2Jd8zf2XOh3L+erVq4dixYrh1q1bXHmXxVQqFXr06IGdO3eiS5cuWLNmjcZ6vt9yni+V2efwvZa9ZDIZChYsiP79+2PdunU4c+YMZs2aBYDvNZbzpR7CSV0JmXr4htKlS8PQ0BDVqlVD37590bt3b2zevFna3sHBAYUKFcL9+/e5R/MPQgiRbmWUtrY2KlWqBJVKhaVLl8LPzw+jRo3C/fv3AaT0OmvSpAliYmLw4sWLrM42ywLquQnUz4egoCAsX74c58+fR//+/bF7924sXLgQERER8PLyQkRERDbnmGW1wMBABAYGon///pg3bx6mTp2KkSNHYu/evahSpQq2b9+Os2fPZnc22X8kk8k05jNSN+ABgNatWyMqKgp79+6FTCbDmDFjcPLkSSmtuqHD+fPnkZSUxA0dsgEHLHIh9fjC6c1TER4ejtjY2E+OQcxypnz58gEATwSYC3zu/ku9nO/B3EV9D3748CGbc/LzUKlUcHNzw5YtW9CxY0ds3rw5TVd8vt9ylq8psy/hey1naNiwIQAgICAAAN9rLOcTQuDx48f4448/4OnpCYVCASEEFAoFAKBo0aLIly8fnj17hkWLFqF8+fKYOnUqNm3aBAAwNzeHnZ0dgoKCpADcp1pestxh0aJFGDRokBSIUFdCWVpaolixYoiOjoaDgwNWrVoFHx8fDB48GACgo6MDBwcHJCUl4fTp0xrbsh+DEAIymQy3b99G3bp10axZM8yYMQMzZsxAYmIiKlSogFatWqFly5bw8vKSKim5QvLH8rkeM1u3bgUA9OvXD/nz55feB/Xq1cO4ceMghMDGjRvx5MmTrMgqyyQfl/nq1atRvXp1qfdE6oYOFStWxOvXrxEaGoo9e/bA0NAQXbp0wbVr10BEcHR0RMGCBXH37l2NHpss63DAIhdydnYGAPz9999p1vn4+GikYbmDujtykSJFsjcj7ItKlCgBGxsbnDlzJk2AKS4uDmfOnEHRokV5UtJcJC4uDv/88w/y5MkjVaay70td8b1161a0b98e27ZtS3cMab7fco6vLbPP4Xst5wgLCwOQ0hIZ4HuN5TzpBRN2794Nb29vjBs3Tuo9oQ6aVqhQAQULFsTVq1chl8uxZs0aVKxYEQMHDsThw4dhZWWF6tWrQ6lUYvfu3RrbspwtdYtYtZs3b2L79u1Ys2YNpkyZgpiYGMjlcimA1bhxY7x8+RJXr15Fr169MGbMGJw+fRrdunVDTEwM6tevDyEE9u/fL23LwwH9GNTl6OnpiXr16uHFixcYPnw4vLy8cODAAWny3Dx58mD48OEQQmDbtm0ICQkBAOkaYrlXekOBpV6XnJyMPHnywNDQEFZWVlJa9bVTs2ZNNG7cGD4+Pvj77781WuiznEndqyp1mb969QohISG4evUqBg4ciAcPHmi89+3t7WFlZYW9e/eiQoUKWLlyJQwNDdGtWzecPHkSdnZ2KFy4ME6ePCkND8YNHbIWf0rLherVqwc7Ozvs3LkT169fl5ZHR0dj9uzZ0NHRQbdu3bIvgyxd9+7dS7dF6b179zB27FgAQKdOnbI6WyyDhBDo1asXYmNjMWPGDI11M2bMQGxsLHr37p1NuWOf8v79ezx48CDN8vj4ePTu3Rvv37/HH3/8AS0trWzI3c9FPaTQ1q1b0a5dO2zfvv2TFd98v+UMGSkzvtdyjjt37qT7uePDhw8YMWIEAKBJkyYA+F5jOY+6UmHnzp3w9fUFAPTp0weenp4ICwtD//79ERgYqFH50K1bN9y4cQNPnjxB2bJlMW/ePFStWhU9e/bEvn370KNHDwDApUuXeAL5XEQIAblcjuDgYCxevBhAylwl6grpPXv2YOjQoVAoFNK7pU6dOihUqJDUcr5Pnz5YuHAhtm/fjqFDhyJv3rxo3749QkNDpV4W3Lr+xyCEwPv37/Hnn3/CwMAAy5cvx6RJk+Di4iIF6dUqV66MPn364O+//8bhw4ehVCqla+jt27fZkX32H6VuQe/v7485c+Zg9+7dUkBKLpdDW1sburq6iIqKwl9//SVtp34G5M+fH5UrV0ZSUhL27NmD27dvZ8/JsK+m7lV179496fNq/vz5sWjRIgwePBgvXryQ5t9TK1OmDEqWLImrV6/izZs3qF69Onbv3o1Xr15hwIABiIiIQOPGjQEAu3btAsANHbIcsVzp5MmTpK2tTUZGRtS7d28aMWIE2draEgBauHBhdmePpcPd3Z2MjIyoadOmNGDAABo9ejS1aNGCtLW1CQCNHz8+u7P4U1u/fj25urqSq6srVapUiQBQjRo1pGXr16+X0sbGxlL58uUJADVs2JDGjRtHDRs2JABUtWpV+vDhQzaeyc/la8vt8ePHJIQgJycncnV1pbFjx1L37t2pYMGCBIDKli1LkZGR2Xw2Pwd3d3cCQIaGhjRx4kRyd3dP8+/atWtSer7fsl9GyozvtZxD/bnjt99+o/79+9PYsWOpS5culDdvXgJAtWrV0rh/+F5jOcn9+/epcOHCJISgxo0bU3JysrRu3rx5JISg4sWLk7e3t7Q8KCiIjI2NaerUqdKyly9fkqOjI+XPn5/Wr19PderUoXLlytGzZ8+y9HzYt1OpVDR69GgSQpCenh4dPHhQWvf06VMqU6YMCSFoxIgR9OjRIyIiioqKoq5du5K1tTUlJCRI6cePH0+GhobUpk0bWrNmDcnlclq9erV0HPZj8PLyIiGExve3T5XvvXv3qESJElS6dGkKCgqi6Oho2r59OzVq1Ejj8yjLORITE4mISKlUSstSvyPCwsKoWbNmJISQ/jk4ONCZM2ekNH/99RcJIahBgwb0/v17IiJSKBSUlJRERER+fn7SttOmTaO4uLisODX2H0ycOFEqsyVLlkjLo6KiaPDgwaSrq0tOTk50+vRpad26detILpfTgwcPpGVeXl5UpEgRqlq1Km3ZsoWEENSxY0d68+ZNlp4PI+KARS524cIFaty4MRkbG5O+vj45OTnRrl27sjtb7BMCAgLojz/+oBIlSpCxsTFpaWmRlZUVtWjRgnx8fLI7ez89V1dXAvDJf66urhrpo6KiaNiwYVSoUCHS1tamwoUL08iRIykmJiZ7TuAn9bXlFh0dTQMHDqSqVauShYUFaWlpkZGRETk5OdH8+fO5Ii4LfanMANCmTZs0tuH7LXtlpMz4Xss5Ll26RL1796bSpUuTqakpaWlpUd68ealOnTq0du1ajS/3anyvsZxiz549JIQgLS0tMjc3p40bN0rrFAoFzZo1i8zMzKhIkSLk5eVFRETPnj2j8uXLU6NGjTSu2YCAAKpZsybp6uqSnZ0dCSEoKCiIiDQrvFjO9Pr1a6pWrRoJIUhXV5eaNGmi8S7x9/enunXrklwup+7du0sV07NnzyZjY2Pav3+/lFahUNDYsWNJX19fuhZatGhBRByw+JEMHz6chBB04MABIqJ033dqKpWKNm/eTEIIsrS0pOrVq5OBgQHp6+vThQsXsirL7CsolUoaMWIEDRgwIN0yVS8bN24cFSlShNzd3Wnv3r1SRXbJkiWl4AQRUb169UgIQTNnztTYj0qlou7du1ONGjWoVq1aZGdnR48fP/6u58b+uz59+pAQgkxNTcnAwICio6OldS9evKBx48ZJwauwsDAiIjp9+jQZGRnR5MmTpbQqlYqOHTtGlpaWZGNjQ3p6euTk5EQRERFZfk4/Ow5YMMYYY4wxxhjLUp+rID58+DDlzZuXfv/9dxJCULVq1Sg8PFxaHx0dTatWrZIqJy5dukRERL1796YCBQrQnTt3NPZ3/vx5+vXXX6XWl3379v0+J8UyXWJiIrm4uFCVKlXIwcGBhBC0du1ajTS3b9+m8uXLkxCChg8fTkREwcHBJISguXPnklKplIJT4eHhUi8d9b+nT59m+XmxzKcu48WLF5MQglauXJnucya9QOXUqVOpevXqVLZsWR6xIoeKj48nExMT0tfXpytXrmisO3HiBAkhyN3dnerWrUtz5szR6F01cuRIEkLQhAkTpGXXr18nuVwutch/+vQp3blzhxYtWkT29va0Y8cO+vPPP0kIQbt37yYiDmxmp8/97ZVKJU2ePJlsbGzIxcVF4z2fertOnTqREIIaNmxI165do+joaCpVqhT99ttvFBUVpbHPv//+m0xMTKT3xMfXHPv+OGDBGGOMMcYYYyxLqFSqNBUPH1cgxsbGkoGBAc2dO5d69uyZbitYIqKxY8eSEILKli1Lfn5+FBQUREII+uuvv4hIs2X17du3ydzcnFxdXXlohxxEoVB8cp36uhg+fDgVLVqUDh48SEIIqlChAoWGhmpsf+PGDSpWrBgJIWjixIkUHh5OjRo1ojp16mjsS61Lly5UpEgRjR4Y7Mewd+9eMjQ0pE6dOmlUQqZ+7iQmJmoMEUSU8tyJj4+Xfv9czwyWPU6fPi0FD1Lz8fEhQ0NDMjAwoNKlS0v3u3r4qHv37lGNGjVIX1+fbt26JW3n4eFBxYsXJyEE5c2bl8zNzUkIQc2aNSOFQkGHDx8mIQSNGjUqa06Qpetz7wn1fe3h4UF58+YlDw8PaUhJdVmr7+vnz59Tr169SC6XU40aNejt27c0ZswYsrGxoXv37qXZ55IlS6hhw4a0c+fO73Vq7DN4xhDGGGOMMcYYY1lCCAEhBK5evYoVK1YASDuRZXx8POzt7XH69GlMmzYNenp6WL9+PW7evAkASEpKAgBMnDgRkyZNQkhICAYPHowbN26gYsWK2Lp1KwBIE+iqVCqULl0a9+7dw+bNm2Fubg6VSpVVp8w+Qy6XQ6VSYcWKFbh3757GOvV1UbJkSTx9+hSFCxfG8OHDcePGDaxZs0Zj+3LlymHZsmX45ZdfMH/+fEyZMgU1atTAhQsX8OjRI8hkMqhUKqnc169fj8ePH6Nly5ZZer7s+yEiAEClSpVQrVo1eHt74+DBg0hISADw78TqoaGh6NGjB4YOHYrY2Fhp+zx58kBPTw9KpRJEJD0/WNZSKpUA/i3P1GrUqIE//vgDz58/h5+fn7S8YcOG6NmzJ5KTk2FiYoLExEQolUro6OgAAOzt7eHq6gqFQoHp06dL2/Xs2RMnTpzA4MGD0bBhQ9SsWRO7d+/GoUOHIJfLpWunRIkS3/OU2Reon/MTJkyAr6+vdI2oVCrpvq5Zsybevn0La2trzJo1CwAwZMgQAICenh6ICAUKFIC7uzt69eqFs2fPonXr1qhQoQJevnyJ0NBQAJDufwAYMGAAfHx80LFjRwDpX5PsO8rOaAljjDHGGGOMsZ9HQkKCNCyDEIJmzJghjQ+euhWli4sLVaxYkWJjY2ny5MlphnJSp42KiqKZM2eSEILy5ctHJUuWpKpVq9KTJ0/SPb5Kpfpsa02Wtf766y/S1dUlIQRVrFiRTp06Ja1Tl9O+fftIJpPRrl276PHjx2RkZEQ2NjZ08eJFIiJpolylUknXrl2jggULkhCCSpUqRVZWVrR06dI0x1W3oOVW9D+m7du3U8GCBalgwYI0b948SkpKoqioKDp+/Dh16tSJ8uXLRzNmzNDoUcFyFvVcNR+XUXh4OOno6JC9vb3GZMn37t0jBwcHkslkdP/+fSJKeYaoe1tERkZS27ZtSQhBx44dk9anR6VSka+vLzk4OFDBggUpJCQk08+Pfb2AgADS1tYmIQQVKFBAY84Jtdu3b1PevHlp6NChpFKpqHr16iSEoL179xLRv+8JopR3RZMmTaS5TYQQ1K1bt08enz8zZA/uYcEYY4wxxhhjLNNROq0R3759i2fPngEAChQogBkzZqBnz54IDw+HXC6X0tWoUQOPHz+Gjo4ORo8ejcKFC2P79u04fvy4xv5MTEwwceJE9OrVCyqVCsHBwQgODsbjx4/TzZMQQuM4LPuoVCqEhoYiKSkJ+fPnx+3bt9G9e3csW7YMAKRyqlatGnR1dfHy5UsUKVIEY8aMwcuXL6UeOtra2lCpVJDJZKhQoQI2b96M4sWL4969e4iIiEBwcDA+fPigcWx1q1xuRZ+zqFtOfyv1M6dVq1aYM2cOoqKiMG7cOJQoUQJVq1ZFp06dsH//fowZMwaTJk2Cnp5eZmSbZaIrV67A2NgYQ4cOBQCpjM6ePYuIiAhYWlpi0KBBePDgAXbt2iVtZ29vjz59+oCI4O7uDiCll5ZMJgMRIW/evHB1dYWlpSWmTZuG+Pj4dN8F586dw7x58zBkyBA8fvwYI0eORNGiRbPgzBmQ/ueGQoUKQaFQwMjICNra2li9ejV69eqFiIgIKU3p0qVhZmaG0NBQCCEwatQoAMCIESMApLwniAhKpRIymQwLFy6Eq6srgoODAQCXL1+Well8jD8zZA8OWDDGGGOMMcYYyzREpDFUg3oZAFhZWUkVhRUrVkS7du0QEhKC3377TSMYYWVlhffv3yMgIABGRkaYOnUqPnz4gBUrViAhIQFyuVyqfACAadOmoVevXgBSgh2VKlXKwjNmn6MehunjiiiZTIbmzZujVatWUKlU6N69O+zs7DB8+HDMmjULL1++BJAyRFiBAgVw6tQpAMDIkSNRsmRJ7N69GwcOHEhzvHr16mHWrFlwcHAAAPz2228wMDD4jmfIMgMRSRWDZ86cwZUrV/Do0SON9V+ifuYYGBigS5cu8PPzw5QpU1CiRAmULFkS3bt3x8OHDzF69GgA4KHhciBLS0toaWlh3759iIiIwD///AMHBwd06NAB//zzDwBg3LhxKFSoELZt24azZ89K27q5ucHZ2Rm7d+/GmTNnIISAQqGQ1jdu3BjNmjXDxYsXcfToUY3jJiUloU2bNmjZsiWmT58OQ0NDBAQEYNiwYWmGLWSZT/0uF0IgOTlZWq5QKGBnZ4dx48bh/fv3sLe3x+jRo7Fx40Z06dIFt27dktJWqVIF169fB5AStGzXrh2ePXuGOXPmAEi539XPGEdHR0ybNg1NmzYFAMycOROFChXKilNlXyt7OnYwxhhjjDHGGPvRpB464dKlS9SxY0d6+/atRpro6Ghyc3OjPHny0JQpU+jkyZNkY2ND+fLlo02bNhERkb+/PwkhaNeuXUSUMkSHi4sLCSFo7dq10rLUIiMjNSbOZNnr4/L51PBLvr6+ZGBgQI0bN6bDhw/T8OHDSQhBTZs2lYaFqVq1Kjk7O9O7d++IiMjLy4uEEFSvXj2KiYkhopRhPlIP9XTv3r00eWA5i0ql0iijK1euUPXq1UlLS4uEEKSrq0t9+vShR48e/edjqa8lopTnFF8bOY/6/eHp6UlCCCpUqBAJIah8+fK0dOlSevXqlZR2/fr1JISgfv36UUJCgrR8z549JJPJqFKlShr7Vg8NdfXqVTp48KDGOvW1cPDgQZo0aZLG+o+vUZa5Pv7bjhkzhgYNGkTh4eFE9G+5KRQKsrCwICEEnTlzhjw9PcnMzIyKFi1Kvr6+REQ0YsQIMjU1pUuXLhFRSlkbGRmRlpaWdO18PLxTfHw8l28OxWFCxhhjjDHGGGP/ibqlslwuR3R0NFxdXeHk5AR/f388fPhQI62xsTEGDhwIIyMjeHt7w9bWFsePH0e5cuXQo0cPTJ48GdbW1ihUqBBCQkIApLS6nDFjBgBgzZo1eP78OYQQGkPI5M2bF/b29ho9L1j2Ubd237NnDxo2bIiGDRuiRYsWOH78uEar52rVqsHNzQ0+Pj64fv06/vzzT0yePBm+vr5o0KABgoKC0KpVK9y7dw8mJiYAgHbt2qFx48Y4efIktmzZIh0v9VBP9vb2aVpYs5xFXWYqlQovXrxAly5dEBcXh8GDB2PSpEn49ddfsX79enTr1k3qcfOt9PX1Afzbyjp1DzCWM6jL5M6dOwCAsLAwtG3bFocPH8aAAQNgYWEhpXV1dUWNGjWwe/dujd4Sbdu2RceOHXHt2jVs3rwZQEorfXUviYoVK6J58+YA0vbaad68OWbMmCGtV/cU5Gsl89FHPTE9PT1RsGBBLFiwAHK5XCovmUwGhUIBuVyORYsWAUjpUdmhQwfs27cP2traaNeuHTZu3IjatWsjJiZGGkasYsWKGDRoEJRKJcaOHQsAacpSV1eX3xM5VTYHTBhjjDHGGGOM/SDmzp1Lurq6lDdvXho3bhxduHAh3daLiYmJNGPGDBJC0ODBgykpKYni4uKoQ4cOpKenR5UrV6YCBQpQ8+bNpRaWRES9e/cmIQQNHTo0C8+KfYvXr19Tx44dpRbSlSpVIkNDw3RbRd+4cYNsbW3Jzs6OLly4QERE+/fvp3z58lH+/PmpVq1aZGRkRIGBgdI2ly9fJm1tbSpatCj3rMnF5s+fT4MGDaKBAwdSiRIlNCZej4uLo9atW5MQggYNGkSRkZHZmFOW2dTvho/fEUOGDKGqVauSEIIqV64sLf+4l5afnx8JIah58+ZSi3wionPnzpG1tTXJZLJP9uz6mnyx7+/69etUrVo1EkJQ/fr1adeuXRo9aT72yy+/kBCCPDw8iIjozp07VL9+fRJCUN26dUkIQRs3bpTSv3r1ikqVKkVCCI1nC8v5uIcFY4wxxhhjjLH/5Ny5cyhcuDAmTJiA1q1bY9u2bZgwYQKcnJzSbZ2qo6ODzp07o0KFCti9ezeOHDkCAwMDrF+/HpMmTcLdu3cRFhaGQoUKaUyYPG7cOABAZGQkEhMTs+z8WMZ5e3vD29sbw4YNg5eXF65cuYJz586hRo0aWLt2Ldzd3aVW8yVLlsTgwYPx+PFjbNiwATExMWjZsiU8PDzg5OSE06dPw9jYGDo6OgBSWudWrlwZ7du3x5MnTxAVFZWNZ8q+hkqlStOiPSoqCocPH8aGDRsQGBiIHj16oGbNmgCAxMREGBgYYPLkyXBxccG2bduk8elZ7kZEUCgU0rvh43fEnDlzcOrUKXTo0AFXr17F4sWLASDNXBJ169ZFly5dcOTIEXh7e0vLq1WrhlatWqFgwYJ4+vTpV81/khr3qPj+FAoF+vfvj4oVK+Lt27dYvnw5VqxYgfbt20s9adTlpr5eAGDp0qUAgPnz5yMiIgKOjo7YuHEjRo8eDX9/fxgYGEjbqVQqWFhYoHfv3gCAN2/eZPVpsv9AUEbvXMYYY4wxxhhj7P8SEhIwfvx4LF26FJ06dcLs2bNRuHBhACkVBjKZDImJidDV1dXYTqVSYfv27ejevTvatGmDpUuXwsbGBgBw9OhRBAYGokOHDtIE2kQEIQQePXoEOzu7rD1J9tWICDExMWjcuDGeP3+Op0+fQiaTSeV3+fJlTJkyBUFBQZgzZw4GDx4MAHj69Ck6duyIBw8eYMWKFejQoQOICB8+fMCUKVNQsWJFtGzZEoaGhtKx3r9/Dx0dnTTXFstZFAoFtLS0AABv375FQkICbGxsoFKpcObMGbRr1w6vXr3C+vXr0bNnTyQnJ0NbW1vafsWKFRgyZAiGDh2KxYsXS8+VT1Ffa0DKZMoymQxaWloay1n2UCqV0sTHsbGx2Lx5M969e4e8efOiadOmsLW1lcrp1q1bqFWrFoyMjHDx4kVYW1unKfsHDx6gatWqKFOmDNatW4fSpUtL+079rGA5S2RkJLp27QofHx/Mnj1baoyQ2rt372BmZib9ri77bt26Yfv27Rg7dqw0oTYArF27FhYWFqhTpw7MzMw07vePnyks5+OABWOMMcYYY4yxb5K6Enro0KF4+fIlAgICUKhQIdy4cQMXLlxAUFAQXr16BScnJ7Ro0QJOTk7S9pGRkejZsyf+/vtvLFmyBH379pXWfamCIXXFF8tZ4uLiULp0aVhZWcHf3x86OjoQQkiBi6CgILRv3x7W1tZYs2YNfvnlFygUCuzbtw8dO3ZE06ZNsWrVKhQsWBBAyrWQelzzj6WuEGc5R+oKw7i4OMycOROBgYEgImzevBn29vaIjY3FnDlzMGfOHLi6umLDhg1SOau3Dw4ORvny5VGgQAHcvHlTmo/ic8dTqVS4cOECAgIC4OTkhHr16mXNSbOvsnz5ckyZMgXv37+HXC5HcnIySpcujaVLl6Ju3bpSugkTJmDu3LkYOHAgli9fnu5zf/r06Zg6dSpGjx6NefPmaazjZ0POderUKTRr1gx16tTBypUrYWRkhOPHj+PUqVPw9/eHkZERqlevjo4dO6JKlSpS2b969Qo2NjbIkycPTp06hXLlygHAJwOZ6ucCXwu5Cw8JxRhjjDHGGGPsm6grBytXrowOHTogNDQUCxYsgKenJ9zc3NC/f38EBATg7NmzmDNnDlxcXODh4SFtny9fPgwZMgRaWlrYvn077t69CyCl4uFLrSE5WJE9vmZC8w8fPsDS0hJRUVHQ19fXCDYIIfDLL7+gf//+uHHjBo4cOYKkpCRoaWmhXr16aNu2Lf766y/s379f2p+2tvZnW9RzJVTOpH4+7NixA4ULF4aHhwcMDQ1Rs2ZNqVeMoaEhOnXqhOLFi+PChQu4ePEiAGgM61KsWDEUK1YM5ubm0NHRSTPEj/p39fGCg4OxZMkS9OjRAxMnTsSzZ8+y5HzZl0VERKBXr16YOnUq6tWrh7Vr1+LGjRvYt28f3rx5g/Hjx+PUqVNS+jFjxqB48eLYuHEjzp8/Lz3337x5g0ePHgEAhgwZgu7du2sEvNX42ZA9vuY9UaVKFbi5ueHo0aPw8PDAuHHj4Orqit27d0OpVOLJkydYvHgxWrZsiQsXLkjvgPz582P69Ol4//495s6dK+3vU+8I9XOBr4VcJktmymCMMcYYY4wx9kNST1D66NEjatGiBQkhSC6XU6VKlcjHx4eeP39ODx48oA0bNpAQgvT19Sk4OFjaPjY2lgYPHkwymYymTZuWXafBviD1RLQJCQm0detWaXLU1BOjqzVr1oyEEHTw4EEiIlIoFBrrb9++Tfb29lSlShWN6+HUqVNkZmZG1atXp+vXr39y/yx38PPzI0tLS6pRowYdOHCA3rx5kyZNcnIyLV26lIQQ1KtXL4qOjtZYHxAQQFpaWtSyZcs010Lq6zIiIoJ27NhBderUISEE1a5dm27cuPF9ToxlmFKppM2bN5OpqSmNGDGCQkJCpHXBwcHk4OBA+vr61KtXL4qLi5PWeXh4kBCCnJ2dKTIyko4fP05dunShFi1a0J07dzSOwRNmZ6+Mvifu3LlDxYoVIyEEGRgY0OTJk+nNmzf09u1bSkhIoKFDh5Kuri41btyYHj16pLGtra3tZ98xLHfjgAVjjDHGGGOMsUyxY8cOKleuHA0bNizd9RMnTiQhBPXr14+I/q3cuHXrFllbW5OxsTGdP38+y/LLMm737t1kbGxMcrmcVq5cmWa9utLI29ubhBDUpEkTaVnqyqyYmBgaOnQoCSE0yvzDhw80ZswYEkLQyJEjuQIyF0tISKBGjRqRkZERnT59WlquUqnSlOuLFy/IxcVFClqEh4fTu3fv6OjRo+Ts7Ex6enrk4+OT7nE+fPhAvr6+1K1bN9LW1qYCBQqQl5fXdz039mnqiun07t01a9bQvHnzpN8TExOpf//+JISg4sWLU5EiRcjc3Jx27dqlsd0ff/xBQgiysLAgIyMjEkJo7Cf1cVn2+9J7Qi0pKYlWrFhBDg4OFBgYKC1XXzvPnz+nbt26kVwupwMHDhBRynOFiGjv3r0khKBKlSpx2f+AOGDBGGM/KH9/fwJA7u7u3+0Y7u7uBID8/f2/2zFyi8ePHxMAcnV1zdB2V69eJZlMRjt27Pg+GcsE69evJ5lMRjdv3szurDDGGMuh1JULr1+/pl27dtHTp0+J6N8KpOTkZCIievnyJWlpaZGtrS29fv1a2j4xMZEWLlxI06dPz+Kcs68VHR1NixYtIiMjIzIwMCA9PT2qXbs23b9/n4jSryysWrUqCSFoy5Yt6aZZu3YtCSHSlPvNmzepc+fOaVpPs9wlNDSU9PX1qWXLlkSUUv6fCkCpVCo6cOAA6ejoSJXXdnZ2VLBgQTI0NKRly5alu93Nmzdp/PjxZGlpSdra2txLKxspFIpPlq86aJmQkCA9B3x8fKhEiRJkaGhIAwYMoPPnz9OePXtICEFNmzal0NBQafvg4GD6888/qXnz5jRmzBh6+/bt9z8hlmHf8p548eIF+fn5UXx8fLrXj/o90b9/fyLSDIQNHTqUrly58p3OhmUnnsOCMcZyiPPnz0MIgcaNG6e7ftiwYRBCwMHBId31S5YsgRACkydP/p7Z/E+ICNu3b0fdunWRN29e6OjowNLSEhUrVsSAAQMQGBiY3VnMciNGjICDgwM6dOjw3Y91+fJlCCGwYsWKDG3n6uoKW1tbjB49+jvljDHGWE6xZ88eNGnSBLdu3QKQMn7811CPEZ0vXz60bdsWhQsXBvDvmNJyuRwKhQJ6enqwsbGBtbU1zM3NpbHndXR0MGLEiBz9OeZnFxQUhFmzZsHQ0BDe3t7o3bs3Tp06BU9PTwCa44ery9Xd3R0AsGjRIrx8+RIymQxKpRJJSUkAIE2Wmi9fPgD/Xm9ly5bF9u3b4ejomGa+ApZ7JCUlISEhAUlJSYiPj4dMJpOeFR8TQqBWrVro0qULdHR00LhxYyxYsADjxo3DkydPMHjwYABIcz3s2LEDc+fOhbOzM8LCwjBlypTvfl4sbTmoVCrI5XIIIXD27Fn06dMHPXr0wODBg3Hx4kVp7gldXV3IZDJERkZi9uzZePfuHRYtWoSZM2fil19+kSZXv3LlCry8vKT9Fy9eHMOHD4enpyfmzZsHMzMzKBQKfj7kMBl5T6jZ2Nigbt260NPT03g+qN8T6veD+n8hhDRHxpIlS1CpUqWv/qzCcg8OWDDGWA5RpUoVGBoa4syZM1AoFGnW+/v7QwiB+/fvIzw8PN31AFC3bl0AgJOTE+7evYtBgwZ934xnQI8ePdC1a1dcv34dTZs2xciRI9GxY0eYmppiw4YNWL9+fXZnMUudPHkSAQEBGDly5GcnkswsBw8eBAC0aNEiQ9tpa2tj+PDh8PHxwZkzZ75H1hhjjOUQFy9exF9//QVvb28An57E8nM+ngybiCCEgJaWFk6fPo3Q0FDY2NikqbhU/84VUDmToaEhunbtinPnzuG3335D7969YW1tjZ07d0qfD9SVRuqybNq0Kbp164Zbt25hxIgRAFKuDx0dHQDAsWPHAAC2trYA0l5vKpXqkxXcLOfT09NDmTJl8OLFC7x48SLNevX1ov7uY2Zmhl69ekFfXx8PHz5EhQoVMHDgQOTNmxdKpVJ6lgD/Pic6duyIa9euYffu3VKFJvs+Xr58Kd3rH9+XMpkM7969Q7du3VCzZk0cPnwYhw4dwsqVK1GtWrU0gSRvb28EBQVh7Nix6NOnD8zMzAAABgYGiI6Oxtu3b7F161ZcvnwZwL/lbWBgACDl2tHS0uLnQw6TkffEx9RlrF6vfk/s378fQEr9hlrqzxlElCXfpVkWy45uHYwxxtL322+/EQA6e/asxvLIyEgSQlDr1q0JAO3cuVNjvVKpJDMzM9LV1aX4+Pgsy29GhoQKCgoiAFShQoU0E+kREb17947OnDnzHXKZNb5lSKi2bduSvr5+un+P76Fs2bJUqVKlb9r21atXpKWlRV26dMnkXDHGGMtJ3r59Sw4ODlSkSBEKCAggom8fFzz1sA2JiYl04MABKlq0KNnZ2dG1a9cyI7ssi6UehiU5OZnmzp1LQgjq27evNK64utzV/0dFRVHlypVJCEEdOnSg06dP0507d2jFihVkY2NDDRs2lLZlP5aYmBjq2bMnCSFo7dq10veUxMREKc3bt2+pS5cudPXqVSJKmY9i/PjxJJPJaMGCBTyRbg7x4sULEkJQ5cqV6dmzZ0SU9t0waNAgMjAwoDFjxtDFixfp5cuX5O3tTfny5SMhBK1evZrev39PREQLFy4kIQRt3rxZYx/u7u5UtWpV6tWrFwkh6MSJE1lzgizTZOQ98bHUy4ODg2n06NGko6ND3bp1+76ZZjkOh6AYYywHqVOnDgAgICBAY3lgYCCICEOGDIG5ubnUm0Ltxo0bePfuHX799Vfo6elJ+xBCYOrUqRppixQpgiJFiiA2NhZDhw6FjY0NdHV1Ua5cOak15cdCQ0PRsWNHmJubw9DQEM7OzggKCsrQuZ07dw5AyvBCxsbGadabmpqievXqGsu6d+8OIQQePXqE+fPno0SJEtDT00PRokUxffp0JCcnp3usoKAgNGvWDPny5YOuri5KlCiBSZMm4cOHD/85vVKpxLx581C8eHHo6emhePHimDNnToa7ob579w4HDx5Eo0aN0vw9njx5AiEEunfvjrt37+L333+HqakpzMzM0LFjR0RGRgJI+ZvWq1cPxsbGUou0uLi4dI/3+PFj3Lp1S6N3RXR0NKZMmYJSpUrB0NAQxsbGKF68OFxdXfH06VON7S0sLODi4gJvb2/ExsZm6FwZY4zlHmZmZpg0aRKePn2KrVu34sOHD5DJZN/U60EIgeTkZPj5+WHixIkYPHgw3r17h8mTJ6NChQqZn3n23albQQOAlpYWunTpgsqVK8Pb2xtHjhzRSKsetsPExATr1q1Dz549sXv3btSqVQtVq1bF4MGDUahQISxatAi6urpZfSrsOyMiGBkZoVWrVihUqBDmzJmDAwcOAPi35fTly5fRv39/BAYG4t27dwAAfX19uLm5oUSJEti5cycuXbqUXafAAGzcuBGLFy9G3rx50adPH9y4cQN79uwBoNkj6ubNm1i1ahVcXFwwbdo0VK1aFVZWVmjTpg1WrlwJOzs7LF68GLdv3wYAVK1aFYaGhti3bx+uX7+OR48eYdmyZdi2bRt+++03rF+/Hq9fv0a9evWy5bzZt8vIe+JjiYmJePjwIRYtWoQBAwZg4cKFqF+/Pg/19jPK5oAJY4yxVC5dukQAqEGDBhrLBw0aRPr6+pSQkEAtWrSg4sWLa6xftGgRAdCYZO5Tk27b2tqSjY0N/frrr+Tg4ECDBg2iHj16kIGBAQkhyMfHRyN9WFgYFShQgABQo0aNaPz48dSyZUvS0dGhRo0afXUPCw8PDwIgTZb1NVxdXQkANWvWjMzNzalfv340atQosre3JwDUpk2bNNusWrWKhBBkZmZG3bp1o1GjRpGLiwsBoOrVq2u06PqW9D169CAAVLRoURoxYgQNGDCA8uXLR7///nuGelgcOHCAANDcuXPTrFP31qhduzaZmppS/fr1aeTIkeTs7EwAqEaNGnTq1CnS19en5s2b08iRI6ly5coEgNzc3NI93p9//kkA6Pr160SU0nrll19+kfY3fPhwGjlyJLVt25ZMTU3J19c3zT4mT55MANJcI4wxxn4sCoWC6tatS0ZGRrRr165v2odSqaTTp0+TiYkJWVlZkYGBAf3+++/0+PHjzM0sy3aenp4khKBmzZrRy5cviejTvXK8vLxo7ty5NGrUKNqzZ4+0/FOtbVn2+twk2V+i3i45OZkWL15MZmZmpK+vT6NGjaJNmzbR2LFjqXLlymRkZERTp07V6CWuUCho3bp10kS7WdmDnKUICQmhBg0akBCC3Nzc6N27d/Ts2TOysLCgsmXLSj1i1D1gDh06REIIWrNmDRGl9KJRr4uPj6fp06eTEIJmzJhBRCm9t8eOHUtCCDI2Nqb8+fOTEILq1q1LT548kfLBPWx+DF/7nhgwYADp6OiQkZER2dnZ0YYNG7I6qyyH4IAFY4zlIAqFgkxMTChPnjyUlJQkLS9TpgzVqVOHiP6teA4NDZXWN2vWjABQUFCQtOxzAQsA1KJFC43K+BMnTkhBidTUQYOZM2dqLF+7di0B+OqARWhoKBkbG5MQgjp16kR79uzR+DCaHvWxLSwsNM43MTGRateuTQDI29tbWv7PP/+QlpYWlS9fniIjIzX2NWfOHAJACxcu/Ob06r9p+fLlKTY2Vlr+/PlzypcvX4YCFqNHjyYA6QYG1AELALRkyRJpuUqloiZNmhAAMjU1pQMHDkjrkpKSqFy5cqSlpUXh4eFp9uns7ExFihSRfr958yYBoJYtW6ZJm5CQIHXXTu3gwYMEgKZMmfJV58gYYyzn+1Rl5OnTp0kIQY0bN6bnz58TUcaHhoqNjaUePXrQoEGD6Ny5c9JyhULBFdQ/kKioKGrVqhVpaWnR8uXL002TnJz8ye0/t45ln9QVxak/F2bk3lWnjY+PJy8vLypSpAgJIUgIQYaGhlS5cmUKDAxMd9sXL15Q37596cKFC994BuxbJSYmUufOncnMzIwWLFhAd+7ckdaph3IaMWKExjth5cqV0vLU1NdAUFAQGRgYUNmyZTXWz5o1i7p27UrNmzenbdu2fcezYtnpa94TRETnzp2jYcOG0ZYtWzSeQRy4+vlwwIIxxnIYdfDh9OnTRJTS+kQIIfWeuHLlCgGgrVu3ElFK5YGpqSnp6+trBCC+FLB49OhRmmPb2tqSubm59HtiYiLp6elR/vz507RsUiqVVKJEia8OWBAR+fr6UuHChaXKeHUw4o8//iA/P7806T8VLCEiOnXqFAGg33//XVo2ZMiQNIGb1Pm1sLCgypUrf3N6Nzc3AkB79+5Nk37GjBkZClh07NiRANDNmzfTrFMHLIoVK5bmS+HWrVsJgBTASm369OkEgE6ePKmxPDIykuRyOQ0dOlRapg5YdOzY8avyS0R0/vx5AkA9evT46m0YY4zlTKkriT9+16h/79OnDwkhaPHixd98nLi4OI3fudLhxxQUFER58uShqlWrUkhICBGlNAzx9PRMk1Z9fX3r3Cgs67x9+5b69etHVapUoebNm9O5c+ekRlXfUn7v37+n8+fPU0BAgMbnb5VKxddDDvL06VMqWrQo1a9fP826pKQkKlu2LFlZWdHx48el5Q8ePCAdHR2NHhIfv1vKli1LFhYW9PTp0zTlnTotvyd+TF/7nkjdcJOvhZ+XViaNLMUYYyyTuLi44PDhw/D390eNGjUQEBAAIoKLiwsAoEKFCjAxMYG/vz+6du2K69evIyoqCvXr15fGg/0SU1NTFC1aNM3yggULSnNNAMD9+/eRkJCAunXrSnNjqMlkMtSoUQPBwcFffW7169fHw4cPERAQgKCgIFy5cgWnT5+Gl5cXvLy8MH78eMyePTvNdrVq1Uqz7Ndff4WWlhauXbsmLTt//jwAwMfHB35+fmm20dbWxr179745/Y0bNz6Zn/SWfc6bN28ApJTFp5QrVw5CCI1l1tbWAJDu2N/qdWFhYRrLjx49CqVSqTF/haOjI8qVKwdPT088f/4cLVu2hIuLCypUqKAxHm1q5ubmACDNocEYYyz3ISIIIaCllfJVcNu2bbh+/TqMjY1RqVIlNGrUSPo8MX78eHh7e2Pz5s2oU6cOypcvD5VK9cn3RHoMDAwAQNpOLpdn/kmxbFe5cmX0798fixYtwsqVK+Hg4IDNmzfj/PnzMDc3R8OGDaW06s82GbmO2PenfjaoXbhwAa6urnj58iXy5s2LK1eu4MKFC9J8NN9SfoaGhvjll180limVSsjl8jSfeT+VL/b9KRQK6OjoICQkBABw8OBB9O3bF5MmTcKgQYMwbdo0tGnTBlu3bkW1atVgamoKU1NTNG/eHD4+PvD19UWvXr2keWzkcjni4uKQlJQEU1NTFChQQOP6UZcxvyd+bF/7ntDW1pbmzeJr4efFAQvGGMthUk+8PWnSJAQEBEBPT0/6cC+TyVCzZk1p4m31/3Xr1v3qY5iYmKS7XEtLS2Py6OjoaABA/vz5001vaWn51cdMfYz69eujfv36AFI+EG/evBn9+/fHnDlz0LZtW1SqVOmLx5HL5cibN6+URwB4+/YtAGDWrFlflZeMpo+OjoZMJkO+fPnSrMvo30JfXx8AkJCQ8Mk06U1Orq5g+ty6jycjP3DgAMzNzTWCKlpaWjh58iSmTp2KvXv3YuTIkQBSJtceNGgQJk6cmOYDYnx8PIB/K58YY4zlPuqKv1OnTqFv37548OABTE1NERMTAyJChw4dMHPmTNja2qJIkSIYO3Ysxo0bhx07dqBcuXLSBNwZrUDkyukfk/paMDAwgKurKzw9PbF69WokJibC0NAQf/75p0awguU86s/+H9+j+/btg56eHrZs2YJff/0Vt27dgpubG+bNmwcHBwc0aNAgwwHM9HypQpKDFVlLpVLBzs4O7dq1w6xZs2Bra4vQ0FDUqlULhQoVAhGhVatWaN68Ofbt24cGDRrAzc0N+fLlQ9euXREYGIh58+bB2toaTZs2hVwux/v377F27VoEBwdjxowZacqcg5g/tm95T/B9z/hpwBhjOUz58uVhZmaGs2fPIikpCf7+/qhWrRp0dXWlNC4uLnjy5AmePHmCgIAAAP8GOjKTOrDx6tWrdNdHRET852NoaWmhV69e6NSpE4B/AzBfOo5SqcSbN280gi/qSnx1pcun/n1rehMTE6hUqnR7GGT0b2FhYQHg36DJ95KQkIC///4bTZs2lQIaannz5sXy5cvx4sUL3LlzBytWrIC5uTnc3d0xf/78NPtS51Wdd8YYY7nT1atX4erqCplMhmXLluHUqVO4e/cu+vfvjx07dmDUqFFS2n79+qF06dLYsWMHTpw48VX7T/3uTEpKkgLeqZez7KFUKjN1f+pKpQsXLmDdunUICwtDYmIiBg4ciPDwcAwbNgwAl31ORUSQyWSQyWQICQnB5s2b4e/vj6ioKBw4cACTJ09Gy5YtYWlpifr162PFihUICwvDkiVLEB8fLwUw2Y9DHTS4e/cuhBB48eIFRo8eDW9vb7Ro0UK6593d3UFE2LJlC0JCQiCEgLOzMyZOnIiHDx+ie/fumDp1KpYsWYIxY8ZgxowZqFq1Ktq0aZOdp8e+Ar8nWE7AAQvGGMthZDIZnJ2dER8fj0OHDuHu3bvScFBqzs7OAIATJ07g1KlTMDQ0RJUqVTI9LyVLloSenh4uX76cpieASqXC2bNnM+1YhoaGn1x36tSpNMvOnTsHhUKBihUrSsvUvVDUQz19SUbTly9f/pP5SW/Z55QtWxZAyrBb39OJEycQFxenMRzUx4QQcHR0xMCBA+Hr6wsAOHToUJp06ryq884YYyxn+1Slw7p16/D06VPMmTMHAwYMgKOjI4oVK4aePXvCzs4Oe/fuxb59+wCkBPenTp2Kly9fYsuWLYiJiYEQIt2KBfUydeXElStXMH/+fGzbto2HdclmRCQNzQIAT548wevXrxEXFyet/9b9nj17Fp07d8aKFStQt25d3LlzB8uXL4eBgQEUCgWXfTZL3XtaTaFQAEi5V5OTkzFmzBg4ODigR48eqFevHn7//XcIIVClShWoVCppHy1atEDjxo1x/PhxbNu27avzwBWRucv27dsRHByMX375BSqVCk+fPpUaLKnfKxUrVsSgQYMQFBSE3bt3A0hp3DV06FBMmzYN5ubmmD59OsaPH4+dO3eiffv28PPzg729fbadF/s8fk+wnIQDFowxlgOpe0tMmzYNANIELCpVqgQjIyMsXboU0dHRqFWrVprW85lBV1cXf/zxB169eoVFixZprPPw8MCDBw++el9//fUXDh48KH1BSi0kJAR79uwBANSsWTPN+qVLl+L58+fS70lJSZg4cSIAoHv37tLyAQMGQEtLC4MHD8azZ8/S7CcqKkpjzouMpu/atSsAYPr06dIHNwB48eIFli5d+slzT4866HThwoUMbZdRBw8ehK6uLho1aqSxXN1D52PqniIfz1kC/JtXdd4ZY4zlbOpKh1WrVmHt2rVITExEREQEjh07hvr166NZs2YAUt7DS5YsQffu3fHo0SN06NAB9erVk/bTpk0bNG3aFIcOHcLBgwcBaA7X8HGg4vHjx1ixYgV69OiBKVOm4NWrV+lWmrKsoa4IksvlCAkJQbt27VCvXj04OTnB2dkZJ06ckD6fZbRCSggBPT09VK1aFV5eXjhx4gQcHBykSm4tLS2uhMpGHh4eaNOmDR49eqSxPPX3hqNHj2Lbtm3o27cvlixZguHDh+Ps2bN48OCB1PtCXZEJAMuWLQOQ8lwJDQ2V5h5IT3rPhvv37/PzIAtl5J5Wp23atCm8vLxw9OhR6d4+evRomv2NHj0aNjY22LZtm8Z3msmTJ+PChQu4cOEC9u7di+vXr2PdunXIkydPprfeZ5mD3xMsx8nMGbwZY4xljps3bxIAAkB6enqUkJCQJk3jxo2lNPPnz0+z3t/fnwCQu7u7xnJbW1uytbVN97jOzs708ashLCyMChQoQACocePGNH78eGrZsiXp6OhQw4YNCQD5+/t/8ZwWL15MAChfvnzUunVrGj16NI0aNUraFwDq37+/xjaurq4EgJo1a0bm5ubUv39/GjVqFNnb2xMAat26dZrjrFu3juRyOenp6UnH6devHzVs2JB0dXWpb9++/ym9m5sbAaCiRYvSiBEjaODAgZQvXz76/fffCQC5urp+8W9BRKRSqcjOzo5KlCiRZt3jx48/ua9PlSsR0aZNmwgAbdq0iYiIlEolWVpaUpMmTdKk3b9/Pwkh6JdffiE3NzcaP348devWjYyNjUkmk9HBgwfT5Ldw4cLk6Oj4VefHGGMseygUCunnmJgY6tChAwkhqHXr1hQWFkavXr0ifX19Gj58OEVFRdHOnTupUaNGJISgKlWq0MWLF6Xtk5KSpJ+vXLlCQgiqUKECvXz5UlquUqmknyMjI8nLy0vaX9WqVenChQvf+YzZ11AqlTRv3jwyNDSkggULUuPGjal169ZUoEABMjc3p82bN/+nfaeW+hpk2at169YkhKAdO3ZoLH/y5AkVLlyYWrRoQX369KGuXbtSZGSktH7w4MEkhKB+/fppbKcu22HDhpEQgiZNmvTJY6d+Nrx69Yp27dpF1apVoyZNmtDjx48z4exYRsTHx2covbr89u3bR0II+vXXX6V1qe/51atXkxCCBg8eLL0z0nsGKJXKNM8KlrPwe4LlJBywYIyxHEilUlG+fPkIALm4uKSbZs6cOVLA4tKlS2nWZ1bAgojo6dOn1L59ezI1NSUDAwOqVasWBQYGkru7+1cHLF69ekXr16+ntm3bkr29PRkZGZG2tjZZW1vT77//Tt7e3mm2UQcsHj58SHPnzqXixYuTjo4O2dra0tSpUykxMTHdY128eJE6dOhANjY2pK2tTfny5aNKlSrRuHHj6O7du/8pvUKhoDlz5pCdnR3p6OiQnZ0dzZ49m0JCQjIUsCAimjdvHgFIU5mTWQGLM2fOEABat25dmrShoaE0btw4qlatGuXPn590dHSocOHC1Lp1azp37lya9AEBAQSAlixZ8tXnxxhjLHs8f/6cDh06RBcvXqTChQvTzJkz6c6dO0SU8k63t7enIkWKUN++fUlPT48sLCxoy5Ytafbj7+9PcXFx0u9TpkwhT0/PNOkSEhIoICCAevfu/dn9seyRlJREK1euJGtra+ratSv5+PhQcnIyERE9evSITExMqHr16nTq1CkiSlux9LW4MjL7RUZGatyzL168oNWrV6eprH7x4gU5ODiQXC4nKysrunnzJhGR9Nn6zZs3VKxYMcqTJ48UxFQoFFIZJyQkkIWFBZmamtLp06c19p06UPHhwwc6ceIEde/eXXo27N69O/NPnH2SSqWi8ePH0/Dhw9NtBPc1WrVqRUIIWrFiBRFpVjYnJCRQ9erVydzc/JNlm/qaYDkTvydYTsMBC8YYYzmWOmDxo7bCevPmDZmYmFCvXr2+y/7HjBlDQgiNlrDfqnPnzmRubk7v3r377xljjDH23SgUCjIxMSE9PT0qVaoUdezYMU2adu3akRCCZDIZTZs2Ld0KhBkzZlCJEiXo7Nmznz1eSEgITZkyhQoWLEgymYzGjh2baefCMkdERAQ1bdqUmjdvTk+ePJGW//3331SmTBkSQpCWlhb169dPqtDkCsbcx9vbW+pN8XH5KRQKOnr0qMa9vmHDBjI1NSVLS0sKDg6W1qkro9euXUtCCGrWrJnGvtSVmIsXLyYhBB05coSI0l4z165do0mTJpGlpSVpaWnRlClTMveE2Vc5d+4cyWQyKlOmTIa3VV8L169fJyMjIypSpAhFRERorCMiOnToEAkhaPny5ZmTaZbl+D3BchoOWDDGGMuxfvSABRHR3LlzSVtbW+ODYWaxt7enatWq/ef93L9/n+RyOf3555+ZkCvGGGOZIb3hNdQViUuXLiUhBBkbG0u97pKTk6UKJj8/PzIwMCBjY+M0wzKEhITQpEmTyMrKirp3754mUP1xBYWHhwcZGRlR06ZN6fnz55l4hiwj1GX/KYGBgdLP4eHh9Mcff5AQgipXrkwrVqyg8uXLU758+Wjv3r1E9OWKqNTrk5OTP9nrlWWdQ4cOkY2NDdWuXVvjXlQoFFSnTh0SQtDRo0el5UlJSdSiRQsSQkhDvSQnJ2uUbe3atUkIQV5eXtK+Uq9PryHLkydPaNWqVVShQgUSQlDbtm2lSm72/Xyq5bpCoaAqVaqQEEJqHZ+RimZ12pEjR5IQgoYNG5buPh49evQt2WZZiN8TLDfhSbcZY4yxbDR06FBMmjQp3Um//6t79+7h3Llz/3k/z58/h7u7OwYOHJgJuWKMMfZfqVQqaTLc+/fvw9/fH48ePZIm0h0yZAgqVKiA9+/fIyYmBgAgk8mkSbjr1q2LIUOG4P379yhfvjwWLFiAc+fOYf78+RgwYAAWLFiAatWqYfLkyTA1NdU4tnpiTPr/pJsNGjTA6dOnceTIERQoUCCL/gJMTT15sbrsDx06BD8/P9y8eRNxcXFSupo1awIA/vnnH3To0AHHjx/HmDFjsGHDBgwcOBADBw7EmzdvsGPHDoSHh39yImX6aBLlGzduYPHixTh27BhPpJxN1GVSr1499OjRA6dOncKePXukCXLlcrn0GW7Hjh2IiooCAGhra2Pw4MEwMjLClClTAPx7HaknRp4yZQq0tLQwf/58JCUlSc8Q9XFNTU2l4wDArVu3MGzYMAwcOBBCCJw+fRp79uxB/vz5v+8f4SemLn+ZTKZxzwMp5SiXy9GhQwcAQGBgIABkaIJj9f7Hjx+PokWLYsuWLbhy5QqEEBoTaBctWlSaRJnlLPyeYLlSNgZLGGOMsc/6GXpYMMYYY18rdQvaqKgocnNzIx0dHdLT0yOZTEYLFy6kZ8+eEVHK/BPqSbKjo6Ol7dX7ePv2LXl4eJClpSUJIUgIQfr6+lSoUKF05z5i2evMmTP06tUrIkq/JbWnpyfZ2tqStra2VJ7169ensLAwjXQLFiwguVxOc+bMoffv30vLly1bRkIIKly4sDRO/ec8e/aM1q5dS05OTiSEoBkzZvAkqtlIPdnx5cuXqWrVqmRra0u3b9/WSNOyZUvS1dWljRs3aiwfNGgQCSFo5syZRJR2MtxOnTp99XA/Dx8+JGdnZ9qwYcN/OR32DWbPnk12dnZSb5jUrdv9/f3JxMSEunTp8k3zWKiviVWrVpEQglq2bJk5mWaZit8T7EfCAQvGGGOMMcYYy0VUKhW5urqStbU1derUiQYOHEjFixcnPT09mjJlilQh1bJlS42JUtMbvuHJkyd07NgxOnToEO3fv19jyAiuWMgZ5s6dq1GhrKZUKik5OZlmzpxJenp6VKdOHVqwYAGdPHmSBg4cSPr6+tSgQQO6du0aEaVUaleqVIny5ctHb9680djX/PnzqVKlSiSEIDs7O43GIqmvm6ioKDpw4IA0lFDZsmXp5MmT3+3c2ed9fI/Gx8fTsmXLSE9Pj4YNG6ZR2Xjt2jXS0dEhZ2dnCgkJkZbfuXOHihUrRlpaWlJlp0KhkPb94MEDmjVrVoaGf2FZKyAgQKqAzps3L509e1bj2rh79y7Z29uThYWFdE18y7BQRERTpkzh4f9yIH5PsB8NBywYY4wxxhhjLBfw9fWldu3a0eLFi8nS0pLWrl1LsbGxRER048YNqlSpEuXPn5+8vb2JiOjx48ckhCBHR0d6+PAhEX16nPPUOFCRs9y5c4cKFy5Ma9euTVN+jx49ogIFCpCzszPduHFDWh4ZGUkjRowgIQS5ublJFdFdu3YlExMT+uuvv4goZVzxffv2kZGREa1bt45WrFiRbg+b5ORkOnPmDA0aNIiMjIzIxMSEVq1a9R3PmmWEl5cXVatWjVq0aEEVK1YkGxsbyps3L/n7+2ukU89D8HGl5vz580kIQa6urkT073Pi40rtr3l+sO/nc39/R0dHsre3p1KlSpGdnR3t27dPY32bNm2kSdmJMh5g+vjYfC3kLPyeYD8aDlgwxhhjjDHGWA6nUqnI3d2dhBBUo0YN6tixY5o0x48fJyEEtWrVil68eEFERGPGjCEhBI0ePfqrj8NyHnVF0sdmzJhBQgg6c+aMtOzWrVs0b948Kly4MAkhaP78+USUUrZ79uwhQ0NDcnBwoHHjxlHfvn2pWLFiVK1atU9OmhsSEkJz5syhokWLkhCCBg0aJA1BxLKPSqWiuLg46t+/vzS0y6hRo2jo0KFUsmRJEkJQhw4d6PXr19I2L1++pAIFCpC9vT2dP39eWv7mzRtycXEhIQQFBQV98ngs+6WeuFilUkkB5okTJ5KlpSXdvXuXihcvTsWLFyc/Pz8p7b59+6T7979OfszXQs7E7wn2I+GABWOMMcYYY4zlAi9fvqR69eqREIJ69+5NRKQxhBMRUceOHUkul2sMA5U/f36ysrKiU6dOERG3jM2tTp48STVq1KBjx44RUUpPmN69e5OJiQmFhYVJ85JUr16dhBDUoEEDjaF/iIg+fPggDRmkr69PBgYG1KxZM3ry5Mknj7ts2TKSy+VUr149Cg4O/q7nyDLm2rVrZGxsTI0aNaL79+9Ly+/cuUNVqlSRWtSnvudXr15NQggaOHCgRoXixo0bydTUlA4cOJCl58A+7ePAwKpVq6hy5cp08OBBItJ8lnt7e5NMJqO///6brl27RhUqVCBra2u6evUqqVQqunv3LhUqVIjq169PMTEx/ykfLOfi9wT7Uciye9JvxhhjjDHGGGNfZmVlhX79+kEIgZCQEISHh0NLSwsqlUpKM3nyZOjp6WH79u24desWhBCYN28eIiIisHjxYgCATMZfA3OjZ8+e4ezZs/D29kZMTAzkcjl0dHQQExOD5cuXY8CAAejTpw/Cw8Nx+PBh/P333yhWrBgAIDIyEsnJydDX18fgwYNx8+ZNHDlyBKdPn8ahQ4dga2urcR0BABEBAJo3bw5/f3+cOHECxYsXz/LzZp+2d+9evH//Hn369EHJkiUBAMnJyXB0dIS7uzsKFy6MxYsXIzQ0VNrGzc0NTk5O2Lt3L44fP66x/PXr12jRokWWnwfTRERQqVQQQkjLXr16hZCQEFy9ehUDBw7EgwcPNJ7l9vb2sLKygre3NypUqICVK1fC0NAQ3bp1w8mTJ2FnZwdbW1v4+fnh9evXAJDmnv8UdT7Cw8MRGRmZiWfKMhu/J9gPI5sDJowxxhhjjDHGvtL79++pXbt2ZGRkRJ6enummmTx5MgkhaMqUKdKyAQMG0O3bt7Mqm+w7UKlU1LRpU8qTJw9t3bqViIhOnDhB2trapK2tTQYGBrR48eI02yUnJ5OzszMtXbpU2s/HeN6S3GnYsGEkhKBz584RUUpZq8v3w4cPNHDgQBJC0MKFCyk+Pl7aztfXl4QQVK9ePYqOjtbYJ18LOcfdu3epV69eGsuGDBlCQgj69ddfKTAwUGOdi4sLVa1alSIjI4mI6OrVq5Q/f34qWbIkPXv2TBoaaNasWV88durnxPv37+mvv/6iJk2aUNOmTfkaycH4PcF+FNy0hjHGGGOMMcZyCUNDQwwbNgxCCGzbtg0PHz4EoNlSdtiwYbCxscHChQtx9uxZAMDKlStRunRpqTUky32EEJg8eTLi4+Oxbds2hIWFoXz58mjSpAkUCgVmzZqFYcOGaWxz7do1dOnSBVeuXIGZmZm0n4/J5fKsOAWWjri4OACAQqHI8LbqMj169CgAQEtLC0IIEBH09fVRt25dAMD69etx9+5dabv69etj+PDhGD16NIyNjTX2yddCzjBp0iSUKlUKGzZswNKlS6Xl06dPx8CBA3H16lWMHj0aZ86ckdZ16tQJV69exdu3bwEAFStWxIoVK5CUlIQ2bdqgcOHCAIDbt2/j3bt36R5X/Y4QQkClUuHy5cuYPn06unTpgpMnT8LJyYmvkRyM3xPsR8EBC8YYY4wxxhjLRZycnNC7d2/4+Pjg6NGjICLIZDKposnc3Bxz587FxIkTUb16dWm7j4cYYbnPL7/8gn79+uHEiRPw8vJCvnz50KdPH5iYmGDOnDlYuXIlwsPDERwcjBUrVmDYsGHw8fHBkCFD0LJly+zOPvs/SplPFOPHj0flypURHx8PLS2tr95eHaDs2LEj9PX1ceLECTx48AAAoFQqoVQqAQDlypWDmZkZHjx4gDVr1iAmJkbax6JFi9CoUaNMPCuWmdTDNpmYmGDChAlS2ZmYmGD8+PEYPnw4Ll26hF69euHly5cAgFKlSsHAwADbt2+X9tO2bVusWrUKz549w/jx46Grq4uHDx8iOTk53eOq3xEPHz7EsmXL0K1bNyxcuBBNmzZFREQEpkyZ8j1Pm2UCfk+wH4EgbmLDGGOMMcYYY7nKw4cP0bBhQ5iammLdunWoXLkyiIgDEj+B58+fo1KlSsifPz927tyJcuXKYdeuXRg4cCDevXsHU1NTEBFiY2NRqFAhLFmyBM2bN8/ubLN01KtXD/7+/ti7dy9atWqV4e0TEhIwdOhQrF+/HkOGDMGSJUs01s+ePRsrV65EiRIlEBQUhNu3b6NUqVLSen5mZJ/P/e1VKhWmTp2KDRs2oGTJkggMDESfPn2wZs0aje06deqEXbt2oUGDBpg3bx7s7Ozw66+/wtbWFp6enjAxMZH26evri3bt2kmBj8uXL6NSpUppjv369Wv4+fnBw8MDJ0+eRLVq1bBq1SpUqFAh8/8I7Lvh9wTL7ThgwRhjjDHGGGO5DBFh5cqVGD58OAYPHozp06fD0NAw3XRcIfnjWbx4MUaOHIlhw4ZhwYIFkMvluHfvHo4dO4YnT55AW1sb5cqVg6urq7SNSqXiCddzCKVSCblcjufPn+PatWto1qyZtC6j5XT//n00adIEjx8/xpQpU9CzZ09oa2vD19cXf/75Jzp37oxatWrB2NgYjo6O3+N0WAapyz896mf2hg0bMHbsWMybNw/Tp09HaGgobt68iTJlyiAhIQF6enp4/vw5pk2bhk2bNqFatWo4fPgw5s6di+3bt+PkyZOwt7fX2PfSpUtx7NgxdO/eHR07dkxz7AcPHmDs2LHw9fWFsbEx/vzzT3To0OG7/A3Y98fvCZabccCCMcYYY4wxxnKhyMhI1KpVCwYGBjh69CisrKyyO0ssi8THx6N69eoIDw/Hxo0b8dtvv2msT13ppFAoMjTcEMtcn6ucVnv27BmOHTuGfv36fdMxAgMD0blzZ4SFhcHc3BxGRkZ48eIFHB0d4e3tjRIlSgDgysicRKVSYdKkSahTpw7q1q0LuVyuUT7379+Ho6Mjjhw5grdv36Jbt25wcXHByZMnAfwb2Hj+/DlmzZqFtWvXwtnZGX369EHnzp3x999/o379+lAqlRBCQCaTITk5Gdra2lIePg5ox8fHw9raGv3798ecOXOy9g/CMh2/J1huxgELxhhjjDHGGMul7t+/n6YVLfs5HD58GC1atEDz5s2xceNGmJuba0yYm/pnlv1evHiBAgUKpKk0Tk5ORvny5XHv3j34+/vD2dn5q4IcH3vw4AF27tyJq1evIjo6Gr/99hvGjRuX2afBMkFgYCAaNGgAhUIBGxsb9OjRA9OnT9dI888//8DZ2RldunTB4sWLUbNmTZw7dw7e3t5o3bq1xnWkUqnQrFkzHD9+HCVKlEBwcDC6du2KLVu2pHv89K4vdYV1fHw89PX1v8+JsyzH7wmWW3HAgjHGGGOMMcZyOW4d+XOqXbs2nj17Bn9/fxQtWjS7s8M+QkR4+vQp6tatC3Nzc5w/f166T/ft24cSJUqgbNmy2Lx5M3r06IF69erB19dX2vZbKxETExOhq6sLgJ8N2S29cnz06BGKFy8OIyMjmJubIzY2Fi1atMCsWbNgaWkppStRogTKlSuHvXv3Yv/+/WjTpg0KFy6MJ0+eSPtWqVSQy+W4e/cu5s+fLwUpHB0d8ddff6FQoUJZdq4sZ+L3BMuNuC8gY4wxxhhjjOVyXCH5c9qzZw+ePHnClVA5yJUrV3D+/HkAKa2WTUxMUKlSJVy9ehWBgYG4cuUKypcvj/bt2yMgIAAA0L17dzRs2BB+fn7YvHkzgJRW899KV1cXKpUKRMTPhmyiVCoBpFwDycnJ0nKFQgE7OzuMGzcO79+/h729PUaPHo2NGzeiS5cuuHXrlpS2SpUquH79OgCgVatWaNeuHZ49eyYN16QOVgApAYpp06ahadOmAICZM2dysIIB4PcEy524hwVjjDHGGGOMMZaLcSv6nOHmzZuoUKECatSoAV9fX+jp6QFIGd6nYcOGiIuLQ0xMDMqVK4fevXujRYsWsLGxgUwmw9mzZ1G3bl0UKVIEly5dgpGREc85kQt93KNi7Nix+PDhAyZNmgRLS0upTJVKJaytrREZGYnTp0/j2bNnGDBgAExNTbFu3TrUr18fI0eOxMaNG+Hr64sqVarg2rVrcHZ2Rnx8PMLCwmBhYZFmeKeEhATo6uryED8sDX5PsNyE33yMMcYYY4wxxlguxpVQOUO5cuXQuHFjnDlzBlu3bpWW+/j44OXLl4iJiYGLiwt27tyJAQMGoGDBglJAonr16nBzc8ODBw8wf/58AF8/rjy3Q81+6uGZ1GXm6emJggULYsGCBZDL5VI5y2QyKBQKyOVyLFq0CAAwbdo0dOjQAfv27YO2tjbatWuHjRs3onbt2oiJiZECXxUrVsSgQYOgVCoxduxYAGmvEXWwQqFQZNWps1yC3xMsN+GABWOMMcYYY4wxxth/oB4CaOnSpQCA1atX49mzZwBSKqmbNm2K4sWL4+rVqzAzM4MQQhr2Sb3txIkTYW1tjZUrV+LevXsQQkjrPkddaf3mzRupovq/DCnFMk4IAZlMhhs3buDXX39F586d4ejoCE9PT0ycOBEWFhZSWnXFcdeuXeHk5ARfX19s2LABLi4uOHDgAKpUqYJevXph2bJlICJcunRJ2nb48OFwdHTE5s2bcfr06TQ9cNTXAldOM8ZyMw5YMMYYY4wxxhhjjP0HcrkcSqUSJUqUwJAhQ3Djxg2sWbMGADBs2DB4eXlh+PDhiImJwcSJEwFAqmyWy+VQqVQoWLAghg8fjqioKMyYMUNal57UvSrev3+PI0eOYMSIEVixYoXGvlnWUCgU6N+/PypWrIi3b99i+fLlWLFiBdq3by8FK9RlRkRSYEkd4Jo/fz4iIiLg6OiIjRs3YvTo0fD394eBgYG0nUqlgoWFBXr37g0gJUDFGGM/Ip7DgjHGGGOMMcYYY+wbpJ5DQD0/QUJCAqytraGnp4dDhw6hatWqAICwsDD07t0bx48fR0BAAGrXrp1mPwqFAtWqVcPt27dx4MABNG7cWOMYqedIUCqVuHz5Mry8vLBhwwYoFAqsXbsWnTt3zuK/AouMjETXrl3h4+OD2bNnY9y4cWnSvHv3DmZmZtLv6uulW7du2L59O8aOHStNqA0Aa9euhYWFBerUqQMzMzONsk9OToa2tvb3PzHGGMsGHLBgjDHGGGOMMcYY+w9u374Ne3t7qRJ53bp16NevH7p164bNmzdL6by9vdGrVy9UqFABJ06cgFwu1whAyOVy7N27F+3atUOVKlVw8eLFdI/34MEDHD58GGvXrkVISAh69+6NxYsXw8DA4LufK0vfqVOn0KxZM9SpUwcrV66EkZERjh8/jlOnTsHf3x9GRkaoXr06OnbsiCpVqkjl/erVK9jY2CBPnjw4deoUypUrBwCfnHRdHbjgSZQZYz8qDlgwxhhjjDHGGGOMfYP379+jU6dOuHbtGg4fPoyKFStK68qXL4+7d+9i9+7daNWqFQAgPj4eQ4cOhYeHBzZs2AA3NzcAwKtXr/Do0SNUq1YNADB16lR06NABDg4OGseLiIjAiRMnsH79egQFBaFWrVpYvXo1SpUqlUVn/HNK3cvlU+Lj4zFhwgSsXLkSkyZNQkREBDZu3AgjIyPkzZsXUVFRiIiIgI2NDfbu3QsnJycpWDV79mxMmjQJHTp0wM6dO7PilBhjLMfigAVjjDHGGGOMMcbYN0hISMCyZcswefJkjBs3DqNGjYKRkREAIDAwEHXq1EHdunWxf/9+afnp06fRs2dPJCUlYdWqVUhOTsb+/fvh5+eH1atXo2nTptL+1a3siQgXL17EggULcOTIEeTPnx9LlixB69ats+W8fxaph2FKTEyEl5cXGjduDAsLi3R7QNy9exfNmjXDo0ePoK+vj5EjR2LYsGEQQsDAwABjx47FmjVrUKdOHaxatQpFixaVti1SpAiePXuGAwcOoHnz5l8VJGGMsR8Rz8LEGGOMMcYYY4wx9g309PTQpk0b1K5dGx4eHrh8+bK0ztnZGa1atcLJkyexadMmaXnNmjUxePBgvHnzBk2bNkX79u3h6emJvn37agQriEiqEFcoFLh+/TqOHTuGCRMm4NmzZxysyALqYIWXlxfy588PNzc37NmzB0D6E5sXL14cw4cPh729PY4fP47p06fD3Nwcpqam0NXVxejRo9G+fXv4+vri5s2bAFICIQDw559/AgCmTZsGlUrFwQrG2E+Le1gwxhhjjDHGGGOMfcGGDRuQmJiI3r17Q1tbW2p9T0TYs2cP3Nzc0K5dO8ydOxdWVlYAgNDQUNja2sLBwQGHDx9GsWLFAAAfPnzAuXPncOzYMZiammLQoEHShMypW/WnFhYWBmNjYxgaGmbdSf/kYmJi4OHhgalTp0KpVEKlUsHJyQnr169HyZIl0+1lERYWhnv37qF69erQ1dVNU5bq+U369euHVatWaZT3sGHD0K1bN1SqVCnLzpExxnIa7mHBGGOMMcYYY4wx9hn379/H7NmzMWXKFDx48AAApGCFEALOzs74448/sGfPHgQFBUHdNrRQoUKYMGEC7t27h3Xr1kn709fXR7169TBv3jxMnjwZZmZmUCqVnwxWAICNjQ0HK7JYUFAQZs2aBUNDQ3h7e6N37944deoUPD09AaTfy8LGxgZ169aFnp6eRlkmJSUBAPLly6fxvxACSqUSALBkyRJUqlQJKpXqu54XY4zlZBywYIwxxhhjjDHGGEPK0EupqSuO7e3tMWrUKHz48AFr1qzBhw8fNNJZWlqia9euMDExgYeHB0JCQqR1M2fORIECBbBy5Ur4+flpbKelpSUdRy6XfzJYwbKHoaEhunbtinPnzuG3335D7969YW1tjZ07d+LMmTMA8MnggjpopV6vo6MDANi/fz8AwMnJSUqbevin1EOBMcbYz4ifgIwxxhhjjDHGGPupqSuV1QGEy5cvIz4+XiPNb7/9hoYNG2LTpk24cOECgJTW8epty5cvj4YNG8Lf3x9//fWXxvZTpkzBhw8fEBUVJW2XGldQ50wuLi5wd3eHra0tAMDR0RFDhgxBcHAwtm3bhsTERGlS9I+pe+CoyzYkJARjxoyBl5cXunbtit9//z3dY3LQijH2s+M3ImOMMcYYY4wxxn5q6krlXbt2oUSJEqhXrx7q16+PhQsXSmmKFCmCLl26QFdXF4sXL8abN2+kbVUqFfLmzQsbGxsolUp4eXnh9u3b0ra9e/fG69ev0aZNm6w9MfafqecWAVICWl26dEHlypXh7e2NI0eOfHbbxMREPHz4EIsWLcKAAQOwcOFC1K9fH1OmTPne2WaMsVyLAxaMMcYYY4wxxhj7qRCR1Cpe/f+uXbswZMgQmJubw8XFBXfv3sW4ceM05p6oU6cO2rdvjyNHjuDo0aNITk4G8G/AQyaToUqVKjhz5gw8PDwQGxsrbZs3b15pngqWexUoUAAjR47E27dvsWXLFoSHh2v0tElt5MiRKFWqFKZNm4aHDx/Cw8MDR48elSZfZ4wxlpYgflMyxhhjjDHGGGPsJ6FQKKShn5RKJeRyORITE1G7dm0ULlwYs2bNQsmSJXHu3DkMGjQIT58+xdGjR+Hk5AQhBAICAtCvXz9oa2tj+fLlcHFxQXJyMg4ePIhevXph0qRJuHXrFho3boyOHTtm89my7yE6Ohpubm44fPgwFi9ejEGDBqWb7vz589i9ezcqVqyIzp07S3NVqK87xhhjaXHAgjHGGGOMMcYYYz+dVatW4cKFC6hUqRIKFiyIrVu3Yt26dbC0tJTSbNu2DYMGDULjxo2xevVqmJubIykpCR4eHhg9ejSMjY3Rvn17xMTEICgoCI6OjvD09IShoWE2nhnLCqdOncJvv/2GUqVKwdPTE8WKFcOdO3dw8+ZNdOjQQUqXnJwMbW1tAByoYIyxr8EBC8YYY4wxxhhjjP3QVCqVNGzT3bt30bFjR9y8eRNaWlpQKBTQ19eHoaEh7ty5g7x580qVzK9evcL48eOxZcsW7Nq1C61atYJcLkdsbCy2bNmCMWPGgIiQkJCApk2bYuXKlShcuHCaY7Ifz4cPH+Du7o5FixZh2LBhcHBwwObNm3H+/Hn89ddfaNiwoZRWXfXGE2ozxtiXccCCMcYYY4wxxhhjP7xHjx4hOTkZ+/fvx549e9CnTx/UqVMHW7ZswaZNmyCXy7F9+3Y4OztrbHfixAn06tUL1tbW2LNnDwoWLKixz8ePH8PU1BSVK1cGwIGKHx0RSYGH27dvo3Hjxnjz5g0SExNhaGiI6dOnY9iwYdmbScYYy8X4DcoYY4wxxhhjjLEf2oULF1C8eHFMnDgRixYtQp8+fdC3b1+ULFkSY8aMwZAhQxAWFgZfX1+8f/8eQMrwPQBQo0YNdO3aFRcuXIC3tzcUCgWAlIprOzs71KtXTwpWKJVKDlbkMOpyzCzqYMWFCxewbt06hIWFITExEQMHDkR4eLgUrOD2wYwx9m24hwVjjDHGGGOMMcZ+aBEREejevTt8fHxQokQJ3L59G9ra2tIE3A8ePEC/fv0QHByMbdu2wcXFBcC/vSWuX7+Ofv364datWzh//jzKli2bvSfEvoiIoFKppDkjnjx5gjx58sDAwAB58uTR6CmR0f2eO3cO3bp1w6NHj1C3bl2sWLECDg4OAFImdZfL5Tz8E2OMfSMO+zPGGGOMMcYYYyxX+NY2l5aWlhg1ahRMTEwQFhaG+/fvA/i3tXzx4sXRp08fvH37Flu3bkVERITG9hUqVEC7du1Qu3Zt5M+f/7+dBPvu1MEIuVyOkJAQtGvXDvXq1YOTkxOcnZ1x4sQJjZ4yGSGEgJ6eHqpWrQovLy+cOHECDg4OUKlUUKlU0NLS4mAFY4z9BxywYIwxxhhjjDHGWK6grghOSEjI8LZOTk7o1q0b4uLi4OvrCwCQy+VSLwoXFxe0bdsWXl5eOHXqFIgIMplMGlJowIABOH78OCwtLTPvhNh3IYSASqXC/PnzUbFiRZw/fx4lS5ZEpUqVEB4ejvbt22Pnzp1S2oyqUKECPD090bZtWwD/DgXGw4Exxth/x09SxhhjjDHGGGOM5QpEhAkTJmDChAlITEzM0LZGRkbo2bMnbGxssGfPHty8eVNjvZWVFVxdXWFubo61a9fiwYMHACANKaSvrw8g8+dEYJkvOTkZa9aswZIlS9CqVSts2LABhw8fxt69e3Hq1CkolUqsW7cOp0+fBpAy9FdGqAMT6u3U1whjjLH/jgMWjDHGGGOMMcYYyxUuXLiAefPmwdfXF7q6uhne3tHREUOGDMH58+exb98+JCQkaPSiqFKlClq3bg0/Pz+Ehoamuw+unM753r17h2PHjqFq1aqYMWMGGjZsCC0tLfj6+qJ58+aIiYnBxYsXsWPHDiQmJkImk33TcGPco4IxxjIfT7rNGGOMMcYYY4yxHEU9TNPHlEolqlWrhitXriAoKAg1a9bM8OTJoaGhaN26Nd6+fYv169ejbt26GuuDg4OhUCjg6Oj4n8+DfT/qCdM/JSgoCLVr1waQMun6kCFDsGfPHlSqVAlubm5Yv349Xrx4gbVr16J169ZfvI5Sr1coFFCpVNDR0cnck2KMMcY9LBhjjDHGGGOMMZYzqNtUymQyxMXFaaxTKpWQy+Xo0KEDACAwMBBAxucgKFiwIEaOHImnT5/C29sbkZGRAP4d3qdEiRJwdHSESqX65km+2fejLid1sOLQoUPw8/PDzZs3Na6ZmjVrAgD++ecfdOjQAcePH8eYMWOwYcMGDBw4EAMHDsSbN2+wY8cOhIeHS/NefEx9Daivsxs3bmDx4sU4duxYhoeSYowx9mUcsGCMMcYYY4wxxliOoK4UnjNnDsqVK4c9e/YASKk0Vg/FVLlyZRgbG+PevXsZnsdCfYxGjRqhRYsWWLNmDfz8/ACkHd5HJpN904TMLHOcPXsWr1+/BqA5x4S6nHbt2oUiRYqgbdu2aNCgASpUqICWLVvi5cuXGumOHz+OU6dOYcKECZg0aRLKly8P4N+J2y9fvoy9e/dqbJOa+hoIDQ3FunXr0KdPH4wdOxa3b9/mgBZjjH0HHLBgjDHGGGOMMcZYjhEYGIiJEyfi8ePH6N+/P86dO6dRYW1lZQUrKyv4+PggOTkZADJccWxmZoaBAweiW7duaNCgQabmn/138+bNQ82aNbFu3ToAmpNcKxQKzJo1C25ubrCzs8Ps2bPh5+eHAQMG4MyZM3B1dcX169cBpEy+7enpCTMzM/Tp0weGhobSMRISElCxYkWEhobizz//xJMnT6R1qa+n6OhoHDx4EIMHD0a/fv0QHx8PPz8/TJo0ieczYYyx7+DTg/0xxhhjjDHGGGOMfSefmqfC2dkZDg4OUKlUkMvl6NKlCxYuXIhWrVoBABwcHFCmTBns27cPhw4dQqdOnb7p+HXq1JHmr8joPBjs+2revDlWrVoFCwsLjetEJpPh6dOnWL16NX755RcsWbIE5cqVAwCUK1cOurq6WLx4MZYtW4Z58+bBwsICpUuXxsOHD3Hp0iU0atQICoUChw8fxowZM7Bo0SIkJSVBR0cHRYoUkY4vhIBCocDFixfh6emJLVu2QCaTYeXKlejfv392/EkYY+ynwQELxhhjjDHGGGOMZTmZTCZVFgMpQQN1kKJ169bw8PBAQEAAmjVrhjFjxsDExEQKMHTu3Bn79u3DuXPn0LZt22+a/FgdoPhU4IRlH0dHR1y+fBkWFhZp1u3YsQNhYWHw8vKSghW3b9/GsWPH4O3tLW1vYWEBIkLz5s2xf/9+DBs2DC1btsS7d+9w4sQJlC5dGvXr10fRokXTHOPhw4fYs2cP1q1bhydPnmDgwIH4888/oa2t/X1PnDHGGA8JxRhjjDHGGGOMse/v42GbVq9ejerVq+PQoUPSevUQOxUrVsTr168RGhqKPXv2wNDQEF26dMG1a9dARHB0dETBggW/aR6Lj/PBwYqcycLCAv7+/qhZsyaOHz8OIGXi9WfPnsHY2BhFixbFu3fvsGHDBvTt2xfjxo2Dvb09goODMXr0aAApQammTZti9uzZePLkCZYuXYpt27ahVKlS2LVrV7rBCgA4duwYJk2aBDs7Ozx48ADLly/nYAVjjGURfiszxhhjjDHGGGPsu1H3nEg95NKrV68QEhKCq1evYuDAgXjw4IFG4MDe3h5WVlbw9vZGhQoVsHLlShgaGqJbt244efIk7OzsYGtrCz8/v3QnZv4cdT7Cw8MRGRmZiWfKMtuzZ89w9uxZeHt7IyYmBnK5HDo6OoiJicHy5csxYMAA9OnTB+Hh4Th8+DD+/vtvFCtWDAAQGRmJ5ORk6OvrY/Dgwbh58yaOHDmC06dP49ChQ7C1tU1zzaiDWc2bN4e/vz9OnDiB4sWLZ/l5M8bYz4wDFowxxhhjjDHGGPtuhBCQyWS4d+8eevfuDQDInz8/Fi1ahMGDB+PFixfo3r07goKCpG3KlCmDkiVL4tq1a3jz5g2qV6+O3bt349WrVxgwYAAiIiLQqFEjAMCuXbsAfL6nROpeFbGxsfDx8UHPnj3RvXt3KJXK73HaLBN069YNTZo0we7du3Hw4EEAQKtWraClpYWFCxfi0KFDWLRoER4+fIimTZtK2ykUCrRt2xarV68GkFL+JUqUQN26dVGxYkUAKb01Pr5m1MEsW1tb1KpVKytOkTHG2Ec4YMEYY4wxxhhjjLHvatKkSShVqhQ2bNiApUuXSsunT5+OgQMH4urVqxg9ejTOnDkjrevUqROuXr2Kt2/fAkgZJmrFihVISkpCmzZtULhwYQAp8xe8e/cu3eOqAxVCCKhUKly+fBnTp09Hly5dcPLkSTg5OUnDULGcRwiByZMnIz4+Htu2bUNYWBjKly+PJk2aQKFQYNasWRg2bJjGNteuXUOXLl1w5coVmJmZSfv5GJc7Y4zlTBywYIwxxhhjjDHG2HelHrbJxMQEEyZMQExMjPT7+PHjMXz4cFy6dAm9evXCy5cvAQClSpWCgYEBtm/fLu2nbdu2WLVqFZ49e4bx48dDV1cXDx8+RHJycrrHVVdUP3z4EMuWLUO3bt2wcOFCNG3aFBEREZgyZcr3PG2WCX755Rf069cPJ06cgJeXF/Lly4c+ffrAxMQEc+bMwcqVKxEeHo7g4GCsWLECw4YNg4+PD4YMGYKWLVtmd/YZY4xlkKCPZ5tijDHGGGOMMcYYywAiSrcVO5Ayt8TUqVOxYcMGlCxZEoGBgejTpw/WrFmjsV2nTp2wa9cuNGjQAPPmzYOdnR1+/fVX2NrawtPTEyYmJtI+fX190a5dOynwcfnyZVSqVCnNsV+/fg0/Pz94eHjg5MmTqFat2v/Yu/M4G8v/j+Ovc2ZfjDGbdRh7yDJkFzMqS8nSV8kv+64khVAqFCUlUlm+YpQk2apvipKxDEWKSJgwZjAY68ww21l+f4w5HDOYYVbez8fjfL/nXPd1X9d1n/uMzrk/93V9+OSTT6hXr17uvwmSZ44dO0b9+vUJCAhgyZIl1KlTh6VLl/Lcc89x/vx5vL29sVqtJCYmEhgYyIwZM+jYsWNBD1tERG6DZliIiIiIiIiIyG0zm803DFZYrVaMRiMVKlQgJSWFHj16EBgYyLx589i7dy8Gg4Hk5GQA3n33Xfr378/69esZNmwYZrOZDh06sHv3bk6ePGnX7iOPPMLEiRN55JFH+OKLL7IMVhw8eJBBgwYxYMAA9u3bx5IlS9i6dauCFUVQuXLlGDduHPv27SMsLAyz2czTTz9NREQE7733Hj169KBfv37Mnz+fw4cP24IV2U3ELiIihYdmWIiIiIiIiIjIHbFYLIwfP57Q0FBat26Ng4MDFovFltT4wIED1KhRg//973+cO3eOXr16ERISwi+//AJcnaFx7NgxJk+ezNy5c2nVqhWDBg3imWeeYd26dTz88MO24IjRaCQtLQ0nJyfbGK6f5ZGUlETp0qUZOnQob7/9dv6+IZLrkpKSaNasGSdPnmTBggW0b9/ebvu1nzeTyYSjo2NBDFNERO6QZliIiIiIiIiIyG3buHEjrq6uvPPOO/Tt25eJEycC2C4eQ/oFZB8fH9atW8czzzxD06ZNCQ8PZ+XKlbbtkH4n/ccff0z79u3ZuHEjEyZMAODzzz8H0hMlZ7SbEawwm82AfWJlk8mEm5sbsbGxClbcJdzc3Jg0aRKnTp1i7ty5tmTsVqvVNpMn47mCFSIiRZcCFiIiIiIiIiKSLVkt0hAYGIjJZKJYsWI4OTkxe/ZsBgwYwKlTp2x1atWqRYkSJYiJicFgMDBq1CgAXnrpJSA9+GC1WjGbzRiNRt577z169+5NZGQkkJ6jIiYmJssxOTg4ZCrLuGDt5uZ2Zwcshcrjjz9OixYt2LVrFxcvXgTSA1UZwaprn4uISNGkgIWIiIiIiIiI3NS1sxjS0tJs5SaTiUqVKjF27FgSEhKoXr06o0ePZsGCBfTo0YM9e/bY6j7wwAPs2rULgC5duvDkk08SHR1tmwFhsVhswYcaNWowceJEHnvsMQDeeustAgMD8+NQpZD7+uuviYqKomLFigU9FBERyQPKYSEiIiIiIiIiWbo+L8SYMWO4fPky48ePp2TJkra8AWazmdKlS3PmzBm2bNlCdHQ0zz77LN7e3sybN4+HH36YkSNHsmDBAn766SceeOAB/vzzT1q1akVSUhInTpzA398fs9lsN2MiOTkZFxcX3TUvmShPhYjI3UkzLERERERERETEjtVqxWKx2AIFX375JeXKlWPatGl2eSSMRiMmkwkHBwfef/99ACZOnMjTTz/NypUrcXJy4sknn2TBggW0bNmS+Ph4XF1dAQgODmbYsGGYzWbGjBkDkCkwkRGsyMhxIZJBwQoRkbuTZliIiIiIiIiISJZ2797NkCFD+O2333jooYcYMGAArVu3xt/fP8v6TZo0Yfv27fz3v/+lf//+/PPPPwwfPpz169cTGhrKhg0b+PTTT+nbty8AcXFxhISE8M8//7Bp0yZatGiRn4cnIiIihYxmWIiIiIiIiIiIHZPJxNChQwkODubcuXPMmjWLjz76iG7dutmCFRn3P1qtVtsMiJkzZwLw7rvvcurUKWrUqMGCBQsYPXo0GzZswN3d3bafxWLB39+fgQMHAnD27Nn8PkwREREpZDTDQkRERERERETsnDlzhp49e7J27VqmTJnC2LFjM9U5f/48JUqUsL3OyGfRq1cvFi9ezJgxY2wJtQHmzp2Lv78/oaGhlChRwi4/RlpaGk5OTnl/YCIiIlKoKWAhIiIiIiIiIpls3ryZxx9/nNDQUD7++GOKFSvGDz/8wObNm9mwYQPFihWjWbNmdO/enQceeMCWMPv06dOUKVMGDw8PNm/eTJ06dYCrAY3rZQQulERZREREFLAQERERERERucdkBBduJikpiVdeeYWPP/6Y8ePHc+rUKRYsWECxYsXw9fXlwoULnDp1ijJlyrBixQoaNWpkmzExZcoUxo8fz9NPP82SJUvy45BERETkLqCAhYiIiIiIiMg94tplmFJSUli2bBnt2rXD398/yxkQ//zzD48//jiHDx/Gzc2NkSNHMmLECAwGA+7u7owZM4Y5c+YQGhrKJ598QsWKFW37BgUFER0dzerVq+nYsWO2giQiIiJyb1PSbREREREREZF7REawYtmyZQQEBNC3b1++/vprgCyXa6pSpQovvvgi1atX54cffmDSpEn4+Pjg7e2Ni4sLo0ePplu3bvz000/89ddfQHogBGD69OkATJw4EYvFomCFiIiI3JICFiIiIiIiIiL3iPj4eKZPn86AAQMwmUw4OTnx1VdfcfDgQSA9z8S1nJyc6NKlCx9//DGNGjUiY5GGjMBH2bJlad68ORaLhbVr1wLg7OwMwBNPPMHw4cP573//m2UwREREROR6+sYgIiIiIiIico/YtGkTkydPxtPTk+XLlzNw4EA2b97Ml19+CWQ9y6JMmTK0bt0aV1dXW6ACIDU1FQA/Pz+7/zcYDJjNZgBmzJhB/fr1MwVCRERERLKigIWIiIiIiIjIPcLT05OePXuybds22rdvz8CBAyldujRLliwhIiICyDzLIkPG7IqM7RkzKVatWgVAo0aNbHWvXf7JarVqhoWIiIhki74xiIiIiIiIiNwjQkJCeOONN6hQoQIANWrUYPjw4URGRvL555+TkpKC0Wi0BSeuZTAY7IIP//77Ly+//DLLli2jZ8+edOjQIcs+r52VISIiInIzBmtW30JERERERERE5J5w/PhxOnfuzJEjR5g7dy7/+c9/sFqtWQYakpOTOX78OKtXr2bt2rX8/PPPtG/fng8//JDKlSsXwOhFRETkbqIZFiIiIiIiIiL3sLJlyzJy5EjOnTvHokWLOHnyJAaDIculoUaOHEnNmjWZOHEihw4dYv78+Xz//fcKVoiIiEiucCzoAYiIiIiIiIhIwWrfvj2dO3fmu+++Y/ny5QwbNizLvBM9e/bE2dmZ4OBgnnnmGVuuCrPZbJe3QkREROR2aEkoEREREREREWHz5s20b9+emjVr8uWXX1K5cmX27dvHX3/9xdNPP22rl5aWhpOTE6BAhYiIiOQuzbAQERERERERERo0aMDQoUN5//33+fjjj7nvvvsICwvj119/xcfHhzZt2gDg5ORkS8qtYIWIiIjkJs2wEBEREREREbmHXZtge+/evbRr146zZ8+SkpKCp6cnkyZNYsSIEQU7SBEREbknaIaFiIiIiIiISBGS28swZQQrfvvtN7744gtOnDgBwHPPPcfUqVNxd3cH7AMbIiIiInlBAQsRERERERGRIsBqtWKxWGzBiqioKDw8PHB3d8fDw+O2AwpWq5Vt27bRq1cvDh8+TOvWrfnoo4+47777ADCZTDg4OChYISIiInnOWNADEBEREREREZGbywhGODg48O+///Lkk0/y0EMP0ahRI1q1asXPP/+MyWSy1c0Jg8GAq6srDRs2ZNmyZfz888/cd999WCwWLBYLjo6OClaIiIhIvlAOCxEREREREZEiwGKx8N577/Hmm2/i7e3N/fffj7u7O7/99htJSUlMnz6d3r1733bbRuPVexpze9kpERERkezQklAiIiIiIiIihVxaWhr//e9/mTFjBl26dKFHjx60bt0aR0dHjhw5QnBwMPPmzaNy5cq0aNEiUwDiVjLqZuynYIWIiIgUBC0JJSIiIiIiIlLInT9/njVr1tCwYUPefPNN2rRpg6OjIz/99BMdO3YkPj6e7du388UXX5CSkoLRaMzx0lBAjoIcIiIiIrlN30RERERERERECoGMHBRZCQgI4OWXX+abb76hQoUKnDp1im7dutG2bVtcXFyYNWsWtWrVYvny5Xz//ffZ6u/agIbJZCI1NfWOj0FERETkTmhJKBEREREREZEClLEMk6Nj+k/0b7/9Fg8PD/z9/alcuTIeHh4AtGjRAoC///6bYcOGsXPnTl5++WW6d+9O3bp1cXZ2ZvDgwXzxxRc0a9aMUqVKZbk0VEYC74xE2rt372bdunVUrVqVjh07apaFiIiIFBh9CxERERERERHJB1u3biUuLg5ID1JkyAgQLF26lKCgILp27cojjzxCvXr16Ny5M7GxsXb1fvjhBzZv3swrr7zC+PHjqVu3LgDJyckA/P7776xYscJun2tlBCpiYmKYN28egwYNYsyYMezdu/e2lpESERERyS0KWIiIiIiIiIjksalTp9KiRQvmzZsH2Ce5NplMTJ48mb59+1KpUiWmTJnC+vXrefbZZ4mIiKB3797s2rULSE++/eWXX1KiRAkGDRqEp6enrY/k5GSCg4OJiYlh+vTpREVF2bZdG4i4ePEi33zzDc8//zxDhgwhKSmJ9evXM378eCXbFhERkQKlJaFERERERERE8ljHjh355JNP8Pf3t1umyWg0cvToUWbPnk3jxo2ZMWMGderUAaBOnTq4uLjwwQcf8OGHHzJ16lT8/f2pVasWhw4dYseOHbRt2xaTycR3333Hm2++yfvvv09qairOzs4EBQXZ+jcYDJhMJrZv386XX37JokWLMBqNfPzxxwwdOrQg3hIRERGRTBSwEBEREREREcljNWrU4Pfff8ff3z/Tti+++IITJ06wbNkyW7Bi7969rFmzhuXLl9v29/f3x2q10rFjR1atWsWIESPo3Lkz58+f5+eff6ZWrVo8/PDDVKxYMVMfhw4d4uuvv2bevHlERUXx3HPPMX36dJycnPL2wEVERERyQEtCiYiIiIiIiOQDf39/NmzYQIsWLfjhhx8AMJvNREdH4+XlRcWKFTl//jyffvopgwcPZuzYsVSvXp3IyEhGjx4NpM+UeOyxx5gyZQpRUVHMnDmTzz//nJo1a7J06dIsgxUAa9asYfz48VSqVImDBw8ya9YsBStERESk0NEMCxEREREREZF8Eh0dzdatW1m+fDnNmzfHy8sLZ2dn4uPjmTVrFkeOHGHZsmUEBQXx3Xff8dhjj9n2PXPmDMWLF8fNzY3nn3+edu3aERMTQ4kSJQgODgawW24K0nNXGAwGOnbsSL169XjwwQfz/ZhFREREsstgvTbzloiIiIiIiIjkGavVyuOPP054eDizZ8+mZ8+erF+/nvbt2wPg5OTE5MmTGTFihN1+JpOJhx9+mCeeeILhw4fbAhHXMpvNSpotIiIiRZqWhBIRERERERHJJwaDgddee42kpCQ+//xzTpw4Qd26dXn00UcxmUxZBiv+/PNPevTowc6dOylRooStnespWCEiIiJFnQIWIiIiIiIiIvmocePGDBkyhJ9//plly5bh5+fHoEGDKF68OG+//TYff/wxJ0+eJDIyko8++ogRI0awdu1ahg8fTufOnQt6+CIiIiJ5RktCiYiIiIiIiOSzY8eOUb9+fQICAliyZAl16tRh6dKlPPfcc5w/fx5vb2+sViuJiYkEBgYyY8YMOnbsWNDDFhEREclTCliIiIiIiIiIFIAPPviAkSNHMmLECKZNm4aDgwP79+9nzZo1REVF4eTkRJ06dejdu7dtn+uTaouIiIjcTRSwEBERERERESkASUlJNGvWjJMnT7JgwQJb4u0M1wYnTCYTjo6OBTFMERERkXyj2zJERERERERECoCbmxuTJk3i1KlTzJ07l3PnzgFgtVqxWq0YjUbbcwUrRERE5F6gGRYiIiIiIiIiBahly5ZER0ezYcMGKlasWNDDERERESkwCliIiIiIiIiIFKBTp05RsmTJgh6GiIiISIFTwEJERERERESkEFCeChEREbnXKWAhIiIiIiIiIiIiIiIFTkm3RURERERERERERESkwClgISIiIiIiIiIiIiIiBU4BCxERERERERERERERKXAKWIiIiIiIiIiIiIiISIFTwEJERERERERERERERAqcAhYiIiIiIiIiIiIiIlLgFLAQEREREREREREREZECp4CFiIiIiIiIiIiIiIgUOAUsRERERERERERERESkwClgISIiIiIiIiIiIiIiBU4BCxERERERERERERERKXAKWIiIiIiIiIiIiIiISIFTwEJERERERERERERERAqcAhYiIiIiIiIiIiIiIlLgFLAQEREREREREREREZECp4CFiIiIiIiIiIiIiIgUOAUsRERERERERERERESkwClgISIiIiIiIiIiIiIiBU4BCxERERERERERERERKXAKWIiIiIiIiIiIiIiISIFTwEJERERERERERERERAqcAhYiIiIiIiIiIiIiIlLgFLAQEREREREREREREZECp4CFiIiIiIiIiIiIiIgUOAUsRERERERERERERESkwClgISIiIiIiIiIiIiIiBU4BCxERERERERERERERKXAKWIiIiIiIiIiIiIiISIFTwEJERERERERERERERAqcAhYiIiIiIiIiIiIiIlLgFLAQEREREREREREREZECp4CFiIiIiIiIiIiIiIgUOAUsRERERERERERERESkwClgISIiIiIikg3Hjx9nxowZtGnThvLly+Ps7EypUqX4z3/+w2+//ZblPvHx8bz00ktUqFABFxcXgoKCGD16NImJiVnWt1gszJo1i9q1a+Pm5oa/vz/du3fn8OHDeXloIiIiIiKFgsFqtVoLehAiIiIiIiKF3dixY5k6dSqVK1cmJCQEf39/IiMjWb16NVarlSVLltCtWzdb/UuXLtGiRQt27dpFmzZtCA4O5s8//2TdunU0bNiQTZs24erqatfHwIEDmT9/PrVq1eKxxx7jxIkTLFu2DE9PT3799VeqVq2a34ctIiIiIpJvFLAQERERERHJhpUrV+Lr60urVq3syjdv3sxDDz2Ep6cnsbGxuLi4APDGG28wadIkxowZwzvvvGOrnxH4mDJlCuPGjbOVb9iwgdatW9OyZUt++uknnJ2dAfjhhx949NFHadOmDWvXrs2HIxURERERKRgKWIiIiIiIiNyhtm3bsm7dOnbs2MEDDzyA1WqlXLlyxMfHc/LkSTw8PGx1L126RKlSpQgICODQoUO28v/7v//jyy+/ZOPGjbRs2dKu/dDQUMLDwzl69Cjly5fPt+MSEREREclPjgU9ALkzycnJ7NmzBwB/f38cHXVKRUREROTWTCYTcXFxANSuXTvT0kSSM05OTgC27+ORkZGcOHGCtm3b2gUrADw8PGjevDlr164lJiaGwMBAAMLDw23brte2bVvCw8PZuHEjPXv2zPa4jh07dtPtycnJ7N+/n5IlS+r3hIiIiIhkW179ntC30SJuz549NGrUqKCHISIiIiJF2Pbt22nYsGFBD6PIio6O5ueff6Z06dLUrl0bSA9YADfMOVG1alXWrl1LZGQkgYGBXLp0idjYWO6//34cHByyrH9tu9mVEQwREREREckrufl7wpgrrYiIiIiIiNyD0tLS6NmzJykpKUydOtUWbLh48SIAxYsXz3I/Ly8vu3o5rS8iIiIicjfSDIsizt/f3/Z806ZNVKxYsQBHI9mVlJTEpk2bAGjZsiVubm4FPCK5FZ2zoknnrWjSeSt6dM6KpiNHjtjyJFz7nVKyz2Kx0KdPHzZt2sTAgQNztFRTfomJibnl9mbNmgHpvydKlSqVH8MSERERkSLu5MmTefJ7QgGLIu7aNWZLlSpFuXLlCnA0kl1JSUn4+fkBUK5cOV3YKQJ0zoomnbeiSeet6NE5K5qSkpJsz5W3IOcsFgv9+vVjyZIl9OjRgzlz5thtz5gpcaMZEfHx8Xb1clo/u3Ly+6BixYr6PSEiIiIi2XLt777c/D2hJaFERERERERywGKx0LdvXxYtWkT37t0JCwvDaLT/aXWrnBPX57jw8PCgdOnSHDlyBLPZfMv6IiIiIiJ3IwUsREREREREsikjWPHZZ5/RrVs3Pv/88xsmyS5TpgwRERFcunTJbtulS5eIiIigYsWKdkmxW7VqZdt2vbVr1wLYpt2LiIiIiNyNFLAQERERERHJhoxloD777DOefPJJFi9enGWwAsBgMDBgwAASExN588037ba9+eabJCYmMnDgQLvyQYMGAfDaa6+RmppqK//hhx8IDw+nTZs2VKhQIZePSkRERESk8NBitSIiIpIrrFYrZ86c4dKlS6Slpd12OxaLBV9fXwCio6MzLbMihY/OWeHl5OSEh4cHfn5+GAyGgh5OkTdp0iQWLVqEp6cn1apV46233spUp3PnztSrVw+Al19+mW+++YapU6fy559/Ur9+ff744w/WrVtHw4YNGTFihN2+oaGhDBgwgPnz51O/fn0ee+wxYmNj+eqrr/Dx8WHWrFn5cJQiIiIiIgVHAQsRERG5Y1arlVOnTnH+/PlcaSsjeZfZbMZisdxxm5K3dM4KL5PJRFJSEmazmZIlSypocYeioqIASExMZPLkyVnWCQoKsgUsPDw82LhxIxMmTGDFihVs2LCB0qVLM3LkSN54440sE9TPnTuX2rVrM2/ePGbOnImnpyddunRh8uTJVK5cOa8OTURERESkUFDAQkRERO7YmTNn7IIVDg4Od3RhNGNfR0d9VSkqdM4KH6vVakvefP78eRwcHPD39y/gURVtYWFhhIWF5Wif4sWL88EHH/DBBx9kq77RaGT48OEMHz78NkYoIiIiIlK06ReliIiI3LFrE8qWLl0ab2/v227LYrEQHx8PgJeXl5YXKgJ0zgqvCxcuEBsbC6T/nSpgISIiIiIihZl+TYqIiMgdy8hZ4eDgcEfBChHJXd7e3rak0CaTqYBHIyIiIiIicnMKWIiIiEiu0fr4IoVPxt+l1Wot4JGIiIiIiIjcnAIWIiIiIiIiIiIiIiJS4BSwEBEREcllBoOB1atXF/QwRERERERERIoUBSxEREREClBQUBAGg8Hu8c4779i2h4eHYzAYKFGiBMnJyXb77tixw7YPQGJiIk5OTixdutSu3tNPP43BYCAqKipT36+99lreHJiIiIiIiIhIDilgISIiIpJNGcnFc9ukSZOIjY21PZ5//vlMdYoVK8aqVavsyj799FPKly9ve+3p6ckDDzxAeHi4Xb3w8HACAwPtyo8cOcLRo0dp3bp1rh6LiIiIiIiIyO1SwEJERETuWSEhIQwfPpyXX34ZHx8fSpUqxYQJE2zbDQYDs2fPpmPHjnh4eDB58mQAvvnmG+rXr4+rqyuVKlVi4sSJmEym2x5HsWLFKFWqlO3h4eGRqU7v3r1ZsGCB7XVSUhJLly6ld+/edvVCQ0PtAhP//PMPycnJDB061K48PDwcFxcXmjZtetvjFhEREREREclNCliIiIjIPW3RokV4eHjw22+/8e677zJp0iR++ukn2/YJEybQpUsX9uzZQ79+/di8eTO9evXihRdeYN++fcydO5ewsDBbMON2vPPOO/j6+hIcHMy0adOyDH707NmTzZs3Ex0dDcCKFSsICgqifv36dvVCQ0M5cOAAsbGxAGzYsIEWLVrQunVru4DFhg0baNq0Ka6urrc9bhEREREREZHc5FjQAxAREZG70+OzthCXkHIbe1qxWK0AGA0GwJCjvf2LufDd8y2yXb9OnTq88cYbAFStWpWPPvqI9evX88gjjwDwf//3f/Tt29dWv1+/fowdO9Y2s6FSpUq8+eabvPzyy7Z2cmL48OHUr18fHx8ftm7dyrhx44iNjWX69Ol29QICAmjfvj1hYWG8/vrrLFiwgH79+mVqr3nz5jg7OxMeHk737t0JDw+nVatWNGjQgDNnznDkyBEqVqzIxo0b6d+/f47HKyIiIiIiIpJXFLAQERGRPBGXkMLJ+ORbVyxgderUsXtdunRpTp8+bXv9wAMP2G3fvXs3ERERdjMqzGYzycnJXL58GXd39xz1/9JLL9mNxdnZmcGDB/P222/j4uJiV7dfv3688MIL9OjRg23btvH111+zefNmuzru7u40bNjQFrDYuHEjo0ePxtHRkWbNmhEeHo7VaiU6OprQ0NAcjVVEREREREQkLylgISIiInnCv5jLrStl6c5nWOSEk5OT3WuDwYDFYrG9vj6fRGJiIhMnTuSJJ57I1FZuLK/UuHFjTCYTUVFRVK9e3W5b+/btGTRoEP379+fxxx/H19c3yzZCQ0P56quv+Pvvv0lKSrItG9WqVSs2bNiAxWLB3d2dxo0b3/F4RURERERERHKLAhYiIiKSJ3KyLNO1LBYL8fHxAHh5eWE0Fq6UW/Xr1+fAgQNUqVIlT9rftWsXRqORgICATNscHR3p1asX7777Lj/88MMN2wgNDeWtt95iyZIltGjRAgcHBwBatmzJvHnzsFqttqWjRERERERERAoLBSxEREREcuD111+nQ4cOlC9fnq5du2I0Gtm9ezd79+7lrbfeylFb27Zt47fffiM0NJRixYqxbds2XnzxRXr06EGJEiWy3OfNN99k9OjRN5xdAdCsWTNcXFyYNWsWr776qq28UaNGnD59mm+++YZx48blaKwiIiIiIiIiea1w3bIoIiIiUsi1bduW//3vf6xbt46GDRvSpEkTPvjgAypUqJDjtlxcXFi6dCmtWrWiVq1aTJ48mRdffJF58+bdcB9nZ2f8/PwwGG68VJarqytNmjQhISGBkJAQu/4yypW/QkRERERERAobzbAQERGRe1Z4eHimstWrV9ueW6/k0rhe27Ztadu27Q3bvdF+16tfvz6//vrrTeuEhITctL3OnTtnuT2rYwPYsGFDtsYmIiIiIiIikt80w0JERERERERERERERAqcAhYiIiIieWTKlCl4enpm+Wjfvn1BD09ERERERESkUNGSUCIiIiJ5ZMiQITz11FNZbnNzc8vn0YiIiIiIiIgUbpphccXixYsZPHgwDzzwAC4uLhgMBsLCwnLcjsViYdasWdSuXRs3Nzf8/f3p3r07hw8fzv1Bi4iISKHm4+NDlSpVsnyULVu2oIcnIiIiIiIiUqgoYHHF+PHjmTdvHkePHqV06dK33c7gwYMZPnw4VquV4cOH065dO1auXEnDhg2JjIzMxRGLiIiIiIiIiIiIiNw9FLC4Yv78+URFRREXF8eQIUNuq40NGzYwf/58WrZsyR9//MHUqVP5/PPPWb16NefOnWPYsGG5PGoRERERERERERERkbuDclhc8fDDD99xG//9738BePPNN3F2draVt2/fnpCQENatW0d0dDTly5e/475ERERERERERERERO4mCljkovDwcDw8PGjevHmmbW3btiU8PJyNGzfSs2fPbLd57Nixm26PjY21PU9JSSEpKSn7A77LxCWmcPxCcrbrGwBHowGj0YCD0YCDIf25o9GA0UB6mdGAo9GIt5sjBoMh18aanJyc5XMpvHTOiiadt/xjsViwWq2253faVlbPpfDSOSv8rFYrFovF7rtiSkpKAY5IREREREQkMwUscsmlS5eIjY3l/vvvx8HBIdP2qlWrAuQ4j0VgYGC26/72228cOnQoR+3fLQ5eNDB7nxELuRdUuFagh5Xnappxy4O/mE2bNuV+o5KndM6KJp23vOXr64ubmxsGg4H4+PhcazcxMTHX2pL8oXNW+JhMJpKSkkhKSmL//v228jNnzhTgqERERERERDJTDotccvHiRQCKFy+e5XYvLy+7epK7/j5vyLNgBUDMJQOL/zViseZZFyIiUgA6dOjAuHHjCnoYIiIiIiIiIoJmWBR6MTExN90eGxtLo0aNAGjcuDGVK1fOj2EVOlv/dwBijwPweO2SlHB3vsUe6UsjmCxWLFYrZosVs9WK2YLtucWSXr496gIJKSb2njdy2LUyz7aqeMfjTU5Ott3t3bJlS1xdXe+4TclbOmdFk85b/omOjsZsNuPo6GgL0t8ui8Viu0vf09MTozHv7q9YvXo1Tk5OFCtWLM/6yLBp0ybee+89/vjjD2JjY1mxYgWdO3e2q2O1WpkwYQLz58/nwoULNG/enI8//tg2UxOwzeSMiIigSZMmtvKUlBTKlSvHuXPnWL9+PSEhITRr1oy6desye/ZsW705c+bw3HPP8emnn9KnTx9bed++fTl8+DAbN27M8bHl5zmTnIuLi8PNzQ1PT08aNGhgK79XZ+aKiIiIiEjhpYBFLsmYWXGjGRQZy2PcaAbGjZQrVy7bdV1cXHBzc8tR+3cL8zWzK154pDpVAnLvwlP4gdP0DduB1QofbTxC/SA/Qu8LyLX2XV1d79nzVlTpnBVNOm95y2g02nIX5ObFaqPRmKcXv/38/PKs7eslJSVRr149+vfvzxNPPJHlsU2dOpVZs2axaNEiKlasyGuvvUb79u3Zt2+fXcAtMDCQRYsW0axZM1vZN998g6enJ+fOnbO1HRoayqpVq+z62bhxI4GBgWzatIl+/frZlffu3fuO3++8PmdyewwGA0aj0e7fQRcXlwIckYiIiIiISGb6NZlLPDw8KF26NEeOHMFsNmfanpG74to7JCX3JKddfc9dHDPnELkTIdUDGNWmOgBWKwxf+idRZy7lah8iIlIwQkJCGDFiBJA+Q2HUqFGULVsWDw8PGjduTHh4uK3u2bNn6d69O2XLlsXd3Z3atWvz5ZdfZruv9u3b89Zbb9GlS5cst1utVmbMmMH48ePp1KkTderU4bPPPuPEiROsXr3arm7v3r1ZunSpXQLlBQsW0Lt3b7t6oaGhHDhwgJMnT9rKNm7cyNixY+2O7ciRIxw9epTQ0NBsH4+IiIiIiIhIblPAIhe1atWKS5cuERERkWnb2rVrgfQlSST3pZgstucuTrn/sX42pDJta5UEICHZxODPd3IpxZTr/YiISMEZNmwY27ZtY+nSpfz11188+eSTtGvXznbTQXJyMg0aNOD7779n7969DBo0iJ49e7J9+/Zc6f/IkSOcPHmShx9+2FZWvHhxGjduzLZt2+zqNmjQgKCgIFasWAGkL8m1adMmevbsaVevefPmODk5sWHDBgD27dtHUlIS/fv35+zZsxw5cgSADRs24OrqStOmTXPlWERERERERERuh5aEug1nzpzhzJkz+Pn52S0lMWjQIJYuXcprr73GTz/9hLNzeh6FH374gfDwcNq0aUOFChUKath3NbuARS7PsID0ZRTee7Iu/56O4FDcJQ6cSuDlFX/xUfdgDIa8S/YtIlKkzW0FiadzvJsB8LKm/7tuMNxGENozAAbnLA9DdHQ0CxcuJDo6mjJlygAwatQofvzxRxYuXMiUKVMoW7Yso0aNsu3z/PPPs3btWpYtW2bLJ3UnMmZBlCxZ0q68ZMmSdjMkMvTr148FCxbQo0cPwsLCePTRR/H397er4+HhQaNGjQgPD6d79+6Eh4fTokULXFxcaNasGeHh4VSsWJHw8HCaNm2qJYJERERERESkQClgccX8+fPZsmULAHv27LGVZSyX0KJFCwYMGADARx99xMSJE3njjTeYMGGCrY3Q0FAGDBjA/PnzqV+/Po899hixsbF89dVX+Pj4MGvWrHw9pnuJ/ZJQeTNxqJirE/N6PUCnjyJITDHx/V+x1C1XnEEt781E5yIit5R4GhJO5Hg3w5VHftqzZw9ms5lq1arZlaekpODr6wuA2WxmypQpLFu2jOPHj5OamkpKSgru7u75PNp0PXr0YOzYsRw+fJiwsDA+/PDDLOuFhITw9ddfAxAeHk5ISAiQPjM0PDycvn37Eh4ezsCBA/Nr6CIiIiIiIiJZUsDiii1btrBo0SK7soiICLvlnTICFjczd+5cateuzbx585g5cyaenp506dKFyZMnU7myLmznFfsZFnm30lllf0+mP1WXQZ/vBOCdH/ZTq0xxmlfJv6StIiJFhmfAbe1mBazXzLDIcfDiNvpNTEzEwcGBnTt34uBgP1PP09MTgGnTpjFz5kxmzJhB7dq18fDwYMSIEaSmpua4v6yUKlUKgFOnTlG6dGlb+alTp6hXr16m+r6+vnTo0IH+/fuTnJxM+/btSUhIyFQvNDSUyZMnc/z4ccLDw22zRFq1asXcuXM5dOgQMTExtG7dOleOQ+Rut3jxYjZv3szOnTvZs2cPqampLFy4kD59+mSqm52ZuNHR0QQGBgIQFRVFxYoVb1j3+humRERERETuNgpYXBEWFkZYWFi26k6YMOGGPxSMRiPDhw9n+PDhuTc4uaWUKzMsXByNeb5EU5tapXi+dRVm/fIvFisMW/IH3z3fgnIlCuYOWxGRQiuHyzJlsFosxMfHA+Dl5YXBmPcpt4KDgzGbzZw+fZoHH3wwyzoRERF06tSJHj16AGCxWDh48CA1a9bMlTFUrFiRUqVKsX79eluAIj4+nt9++42hQ4dmuU+/fv149NFHGTNmTKZAS4ZmzZrh7OzMJ598YsvDAdCwYUPi4uJYsGCBbekoEbm18ePHc/ToUfz8/ChdujRHjx69Yd033ngjy/J///2XL774gpo1a9qCFdeqW7cunTt3zlSeMUNKRERERORupYCF3BVSr8ywyMvZFdca8XA19hy/SPiBOM5fTmPI4p0sH9IMV6fcz58hIiJ5r1q1ajzzzDP06tWL999/n+DgYOLi4li/fj116tThscceo2rVqixfvpytW7dSokQJpk+fzqlTp7IdsEhMTOTff/+1vT5y5Ai7du3Cx8eH8uXLYzAYGDFiBG+99RZVq1alYsWKvPbaa5QpUybLC5cA7dq1Iy4uDi8vrxv26+bmRpMmTZg1axbNmze3BTacnZ3typ2cnLL/honcw+bPn0/VqlWpUKEC77zzDuPGjbth3Rvd5PT8888D0L9//yy316tXTzMpREREROSelD9Xd0XyWEYOi/wKGDgYDczsFkwF3/RZFXuPx/Pqqr1YrdZ86V9ERHLfwoUL6dWrFyNHjqR69ep07tyZHTt2UL58eSD9rur69evTtm1bQkJCKFWq1A0DCVn5/fffCQ4OJjg4GICXXnqJ4OBgXn/9dVudl19+meeff55BgwbRsGFDEhMT+fHHH3F1dc2yTYPBgJ+fH87OzjftOzQ0lISEhEx3Z7dq1YqEhARCQ0OzfRwi97qHH36YChUq3Pb+ycnJfPHFFzg7O9OzZ89cHJmIiIiISNGnGRZyV8jIYeHilH8xuOLuTszt2YAuH28lKc3Mij+OUTewOL2aBuXbGERE5M6Eh4fbnjs5OTFx4kQmTpyYZV0fHx9Wr159232FhITcMrBtMBiYNGkSkyZNumGdm7Xh7e2d5fYbLWf5xhtv3HDJGhHJGytXruT8+fN07doVf3//LOucOHGCjz/+mIsXL1KyZElCQkJuOx/esWPHbro9NjbW9jwpKYmkpKTb6kdERERE7i159b1RAQu5K9gCFo75uyTTfaW8mNq1DsO//BOASd/to0ZpLxoG+eTrOERERESkaPj0008BGDBgwA3r/PTTT/z000+21waDgWeeeYY5c+bg4eGRo/6yypFxI5s2bcLPzy9H7YuIiIjIvenMmTN50q6WhJK7QvI1SbfzW8e6ZRj4YEUATBYrz37xB6fik/N9HCIiUnCio6Px9PS84SM6OrqghygihcCRI0fYsGED5cuX55FHHsm03d3dnddee42dO3dy4cIFzp07x88//0yjRo1YvHgxvXr1KoBRi4iIiIjkH82wkCLPZLZgsqQvf1FQSa/HtLuPv0/Es/XQWeISUhi6eCdLBzXFuQACKCIikv/KlCnDrl27brpdRGTBggVYrVb69u2L0Zj5e2JAQECmJeEeeughmjZtSv369Vm5ciV//PEH9evXz3afMTExN90eGxtLo0aNAGjZsiXlypXLdtsiIiIicu+61dKjt0sBCynyUs0W2/OCmGEB4OhgZFb3YDp+FMHxC0n8EX2Bid/9zeQutQtkPCIikr8cHR2pUqVKQQ9DRAoxi8VCWFgYRqORfv365Whfd3d3evbsyfjx44mIiMhRwCInAQg3Nzfc3NxyNDYRERERuTfl1fdG3f4tRV5yWsEHLAB8PV2Y06OBbVbFF79Fs2zHze9oExEREZF7w48//sixY8d45JFHKF++fI73z8gtcenSpdwemoiIiIhIoaGAhRR5KSaz7XlBLQmVoXa54kzufL/t9fjVe9kdc6HgBiQiIiIihUJ2km3fzG+//QZAUFBQbg1JRERERKTQUcBCiryUQjLDIsOTDwTSs0kFIH25qiGLd3ImMaWARyUiIiIiBSUuLo7vvvsOf39/OnbseMN6f/75J1arNVP5ypUrWbRoESVKlKB9+/Z5OVQRERERkQKlHBZS5KWYrg1YFOwMiwyvdajJP7Hx/H70PLEXkxm25A8W92+Mo0PBB1RERERE5PbNnz+fLVu2ALBnzx5bWXh4OAAtWrTINIvis88+Iy0tjZ49e+Ls7HzDtl988UUOHTpE06ZNKVeuHGazmT/++IMtW7bg4uJCWFgYxYsXz5sDExEREREpBBSwkCIvOe3aJaEKR0DA2dHIJ8/Up8OsLZxOSOHXw+d4+4f9vNahZkEPTURERETuwJYtW1i0aJFdWUREBBEREbbX1wcssrscVI8ePVixYgW//vorZ86cwWKxULZsWQYMGMDIkSO57777cukoREREREQKJwUspMizm2FRwDksrhXg5crsHvV5et6vpJmtfLrlCHXKFadTvbIFPTQRERERuU1hYWGEhYXlaJ99+/Zlq96AAQNuO8eFiIiIiMjdoHDcji5yB65Nul0Yclhcq0EFH15/vJbt9ZgVf7HvRHwBjkhERK4VEhLCiBEjCnoYRdLq1aupUqUKDg4OvPjiiyxZsoQKFSrkS99BQUHMmDEjX/rKjrNnzxIQEEBUVFS+992kSRNWrFiR7/2KiIiIiIjkhcJ1dVfkNiTnZdLttCQ4uRdO/wMJp8CcluMmejQuz5MNygHpYx28+HcuJOW8HRERyX0rV67kzTffzLf+Nm3axOOPP06ZMmUwGAysXr06U50+ffpgMBjsHu3atbOrk1H+66+/2pWnpKTg6+uLwWCwraffpEkThgwZYldvzpw5GAyGTHeJ9+nThwcffDBbxzJ48GC6du1KTEwMkyZNytY+ORUWFoa3t3em8h07djBo0KA86fN2TJ48mU6dOhEUFATA7t276d69O4GBgbi5uVGjRg1mzpyZ43az83kZP348Y8eOxWKxZG5ARERERESkiNGSUFLkXTvDwvV2l4QypcCZSIjbnx6cOP0PxP0D544AVvu6LsXB3Qfcfa/5/yvP3a577e6Lwa0Eb3a+nwOnEvjr2EViziXx8sq/ecIPjIbbP24REblzPj4++drfpUuXqFu3Lv369eOJJ564Yb127dqxcOFC22sXF5dMdQIDA1m4cCFNmjSxla1atQpPT0/OnTtnKwsNDWXVqlV2+27YsIHAwEDCw8Pp06ePrTw8PJzevXvf8jgSExM5ffo0bdu2pUyZMvl+sdzf3z9f+7uZy5cv8+mnn7J27Vpb2c6dOwkICGDx4sUEBgaydetWBg0ahIODA8OGDct229n5vLRv354BAwbwww8/8Nhjj93x8YiIiIiIiBQkzbCQIi8lJzMszGkQdwD+XgUb3oZlveCjhjC5NMxpDiv6w+b34MD3cO4wmYIVACkX4fwROP47RK6D3V/Cto9g/ST43whY1hPCHoVPmsB7VeFNP1zfr8jKtOf4zvUNPnWaRuejk/HY/yWlL+y4rVkbIiKSO65fEiolJYVRo0ZRtmxZPDw8aNy4sW2mAqQv/dO9e3fKli2Lu7s7tWvX5ssvv8x2f+3bt+ett96iS5cuN63n4uJCqVKlbI8SJUpkqtO7d2+WLl1KUlKSrWzBggWZAg6hoaEcOHCAkydP2so2btzI2LFj7Y7tyJEjHD16lNDQ0JuOLTw8nGLFigHQunVru9kc15s9ezaVK1fG2dmZ6tWr8/nnn9ttnz59OrVr18bDw4PAwECeffZZEhMTbf307duXixcv2maUTJgwAci8JJTBYGD+/Pl06dIFd3d3qlatyrfffmvX17fffkvVqlVxdXUlNDSURYsWYTAYuHDhwk2P91bWrFmDi4uLXeCoX79+zJw5k1atWlGpUiV69OhB3759WblyZY7azs7nxcHBgUcffZSlS5fe9jGIiIiIiIgUFpphIUVesl0OiyszLCxmOB91dabE6X/g9H44cxAs2QwQOLmDf3Xwvw8MDpB0Di6fvfpIukCWAY0sB3kRx+SL1AbImASSDBwB6+yvoH5PqN8LSgRlrz0RkSJi0d+L+GzfZ7esV9OnJrMemmVXNva3sUTGR95y3141e9G71q1nBWTHsGHD2LdvH0uXLqVMmTKsWrWKdu3asWfPHqpWrUpycjINGjRgzJgxeHl58f3339OzZ08qV65Mo0aNcmUMkH6xPiAggBIlStC6dWveeustfH197eo0aNCAoKAgVqxYQY8ePYiOjmbTpk18/PHHdstcNW/eHCcnJzZs2ED37t3Zt28fSUlJ9O/fnzFjxnDkyBEqVqzIhg0bcHV1pWnTpjcdW7NmzThw4ADVq1dnxYoVNGvWDG9vb/bv329Xb9WqVbzwwgvMmDGDhx9+mP/973/07duXcuXK2YIiRqORDz/8kIoVK3L48GGeffZZXn75ZT755BOaNWvGjBkzeP311zlw4AAAnp6eNxzXxIkTeffdd5k2bRqzZs3imWee4ejRo/j4+HDkyBG6du3KCy+8wIABA/jzzz8ZNWpUjs7JjWzevJkGDRrcst7FixfzbEZPo0aNeOedd/KkbRERERERkfykgIUUeSlpFhwx8R+HzTT9aynsjEoPTJiSs9eAgwv4VYOAGhBwHwTUTA9SeFcA401mbFjM6UELWwDjHFw6c01g47x9gOPyWUi+kKkZw6XTsPl92DwdKreGB/pCtXbg4HQ7b4eISKFyKe0Spy+fvmW9Uh6lMpVdSLmQrX0vpV26rbFdLzo6moULFxIdHU2ZMmUAGDVqFD/++CMLFy5kypQplC1b1u5C9/PPP8/atWtZtmxZrgUs2rVrxxNPPEHFihU5dOgQr7zyCu3bt2fbtm04ONgvfdivXz8WLFhAjx49CAsL49FHH820XJKHhweNGjUiPDyc7t27Ex4eTosWLXBxcaFZs2aEh4dTsWJFwsPDadq0aZbLT13L2dmZgIAAIH1JrVKlSmW5JNR7771Hnz59ePbZZwF46aWX+PXXX3nvvfdsAYtrZ7cEBQXx1ltvMWTIED755BOcnZ0pXrw4BoOBUqUyfz6u16dPH7p37w7AlClT+PDDD9m+fTvt2rVj7ty5VK9enWnTpgFQvXp19u7dy+TJk2/Z7q0cPXrU9nm5ka1bt/LVV1/x/fff33F/WSlTpgwxMTFYLBaMN/vuIiIiIiIiUsgpYCFFXorJQjeHcCY7LYCYm1Q0OoJv1fSghP81wYkSFcHhNv4UjA7g4Zv+yC6zCWvSed5ctomj//5NV4dNPGLciaPBAljh0Pr0h2cpCO4BDXqDd/mcj01EpJDwcPIgwD3glvV8XDLfee7t4p2tfT2cPG5rbNfbs2cPZrOZatWq2ZVnJLIGMJvNTJkyhWXLlnH8+HFSU1NJSUnB3d09V8YA8PTTT9ue165dmzp16lC5cmXCw8N56KGH7Or26NGDsWPHcvjwYcLCwvjwww+zbDMkJISvv/4aSJ+9ERISAkCrVq1sSy+Fh4czcODAXDuOf/75J1Ni7ObNm9sln/755595++232b9/P/Hx8ZhMJpKTk7l8+XKO39M6derYnnt4eODl5cXp0+kBrwMHDtCwYUO7+rcKMA0ZMoTFixfbXmcsVXW9pKQkXF1db9jO3r176dSpE2+88QZt2rS55XHcDjc3NywWCykpKbi5ueVJHyIiIiIiIvlBAQsp8lJMZqoYjl8tMBjBp1L6LImAmlcDEz6VwdG54AYK4OCIwdOfF55sR7+5zgw90wB/zvOkw0YGeWzGOzU2vV7iyfRcGpvfhyoPQ4M+V2Zd6E9WRIqW3rV63/ZyTe80fgcvL698u2M8MTERBwcHdu7cmWkmQ8ZSRNOmTWPmzJnMmDHDlnthxIgRpKam5tm4KlWqhJ+fH//++2+mgIWvry8dOnSgf//+JCcn0759exISEjK1ERoayuTJkzl+/Djh4eG2WSKtWrVi7ty5HDp0iJiYGFq3bp1nx3G9qKgoOnTowNChQ5k8eTI+Pj5s2bKF/v37k5qamuOAhZOT/cxEg8FwR8nAJ02alK1lo/z8/Dh//nyW2/bt28dDDz3EoEGDGD9+/G2P5VbOnTuHh4eHghUiIiIiIlLk6eqnFHnJaRZKcs2FooEboEy9AhtPdjg7GulZxYKPC/x0vASfmDszO74joyodZ0ixzTgc/AGsZsAK//6U/ihWGoKv5LrwDizoQxARuesEBwdjNps5ffo0Dz74YJZ1IiIi6NSpEz169ADAYrFw8OBBatasmWfjOnbsGGfPnqV06dJZbu/Xrx+PPvooY8aMyRRoydCsWTOcnZ355JNPbHk4ABo2bEhcXBwLFiywLR2VW2rUqEFERIRdEvCIiAjbe7Vz504sFgvvv/++LSi1bNkyuzacnZ0xm83cqerVq7NmzRq7sh07dtx0n4CAANvSVzcTHBxsNxMjw99//03r1q3p3bt3riw9dTN79+4lODg4T/sQERERERHJD1rkVoq8FJMZV8M1AQuXYgU3mBwwGKBDeQsTO1THwWjAipFphwPpduE5LgzZBaHjofg1gYmEWNj0LsyoDV88CfvXgNlUYOMXEbnbVKtWjWeeeYZevXqxcuVKjhw5wvbt23n77bdtuQeqVq3KTz/9xNatW/nnn38YPHgwp06dynYfiYmJ7Nq1i127dgFw5MgRdu3aRXR0tG376NGj+fXXX4mKimL9+vV06tSJKlWq0LZt2yzbbNeuHXFxcUyaNOmG/bq5udGkSRNmzZpF8+bNbYENZ2dnu/LrZyncidGjRxMWFsbs2bOJjIxk+vTprFy50jZroUqVKqSlpTFr1iwOHz7M559/zpw5c+zaCAoKIjExkfXr13PmzBkuX758W2MZPHgw+/fvZ8yYMRw8eJBly5YRFhYGpM/EuBNt27bl77//tptlsXfvXkJDQ2nTpg0vvfQSJ0+e5OTJk8TFxeWo7Vt9XjJs3rw5z5abEhERERERyU8KWEiRl2Ky4HrtDAvHG68jXRg91aAs83s9gLtz+sWj34+e54nFh4m+/zl4YTc8sxyqPwaGjLtmrRC5DpZ2Tw9ebJgCF48V3AGIiNxFFi5cSK9evRg5ciTVq1enc+fO7Nixg/Ll0/MJjR8/nvr169O2bVtCQkIoVaoUnTt3znb7v//+O8HBwba74V966SWCg4N5/fXXAXBwcOCvv/6iY8eOVKtWjf79+9OgQQM2b958w2TYBoMBPz8/nJ1vvuxhaGgoCQkJtvwVGVq1akVCQoItEXZu6dy5MzNnzuS9996jVq1azJ07l4ULF9r6r1u3LtOnT2fq1Kncf//9fPHFF7z99tt2bTRr1owhQ4bQrVs3/P39effdd29rLBUrVmT58uWsXLmSOnXqMHv2bF599VWAWyYZv5XatWtTv359u9khy5cvJy4ujsWLF1O6dGnb49o8GlFRURgMBsLDw2/Y9q0+LwDHjx9n69at9O3b946OQ0REREREpDAwWK1Wa0EPQm7fsWPHCAxMvwv/4MGDVK1atYBHlP9eWraLx/cMJ9Rhd3rBy0fAPXPy1sIkKSmJdevWAdCmTRvc3NzYc+wifcN2cCYxBQA/T2c+7d2QuoHe6TvFn4A/F8Mfn8HF67KLG4xQtU16rouqbdITgkuuyuqcSeGn85Z/IiMjMZlMODo63vF/iywWC/Hx8QD5msNCbl9RPGeTJ09mzpw5xMTE3LryLXz//feMHj2avXv3ZvvYN2zYwBNPPMHhw4cpUaLEbfc9ZswYzp8/z7x5825Y50Z/n5GRkbYk8zExMZQrV+62xyFF17W/J/Q5EBEREZHsyqvvkcphIUVe+gyLtKsFRWyGRYba5Yqz6tlm9Fm4nUNxlziTmMrT837lo/8L5qEaJcGrDLR6GR4cCf+uh50L4eCPYLWkPw7+mP7wKguVQsGvCvhVA9+q4FMRHHJvmQ8REZGi5pNPPqFhw4b4+voSERHBtGnTGDZsWK60/dhjjxEZGcnx48dtX9hvZc2aNbzyyit3FKyA9FwbL7300h21ISIiIiIiUlgoYCFFXkqaxT6HRRENWAAE+rizcmhzBn7+O9uPnCMpzczAz35nUqf76dGkQnolowNUa5P+uHj86qyL+CvLQsUfh13XJf80OkKJoPTghV/G40oww8M3X49RRORuFR0dfdPk2/v27bMtLVXYtW/fns2bN2e57ZVXXuGVV17J5xHducjISN566y3OnTtH+fLlGTlyJOPGjcu19keMGJGj+tOmTcuVfkeOHJkr7YiIiIiIiBQGClhIkZdiMttyWFgdXDAUgWUobqa4uxOf92/EqK//4rvdJ7BYYfzqvRw7n8TLbatjNF6THLR4WQgZAy1HQeRPsDMMItemz7i4lsUEZ/9Nfxz8wX6bm8/VIIbvlUCGX9X0AIdmZYiIZFuZMmVsyZFvtL2omD9/PklJSVlu8/Ep3Msu3sgHH3zABx98UNDDEBERERERkZtQwEKKvJQ0Cy4ZSbediu7simu5ODows1s9ynq7MWfjIQDmbDzEiQtJTHuyDi6O1+WoMDpA9Xbpj9RL6YGJM5FXHgfhbCSc+RdMWVx8SjoHMb+lP+zadIQSFe1nZATUgICa4KQ8ACIi13N0dKRKlSoFPYxcUbZs2YIegoiIiIiIiNyDFLCQIi/FZMYtY0kox7vnQrrRaGBs+/so6+3KG9/+jcUK3+4+wan4ZOb1fIDi7jeY/eDsAaXrpj+uZbGkLxd15uCVgMbBq0GNhBOZ27GY0gMdZyPhwDXlBmP6TIxStaHU/en/X7I2FCuZa8cuIiIiIiIiIiIi9x4FLKTIS0+6nR6wMNyFd/73bBpE6eJuPP/lnySlmfntyDn+M2crYX0bUq6Ee/YbMhrBOzD9UeUh+20pCVeCGBmBjINXl5AyJdvXtVrgzIH0x97lV8s9/K8EL+6HUnXSgxm+VcFB/8yIiIiIiIiIiIjIrelKohR5yWlXc1jcrUsVPVyzJEsHNaFf2A7OXkrl39OJdPlkKwv7NOT+ssXvvAOXYlAmOP1xLYsFLsZcmYlxAE7uhVN74PR+sKTZ170UB4d+SX9kcHBJX0aq1JUgRsn705+75sKYRURERERERERE5K6igIUUeSlp1y4JdXfksMhK3UBvVj3bnD4Lt3P4zCXiElJ4au42Pn6mPqHVA/KmU6MRSlRIf1R9+Gq5KTV9FsapvXByT/rj1F64fNZ+f3MKxO5Kf1zLu/zVAEbpOlD5obsm/4iIiIiIiIiIiIjcHgUspMizmlKuvrhLZ1hkKO/rzoqhzRjw2e/sPHqey6lmBiz6nbc630/3RuXzbyCOzldmTdwPdZ9OL7NaISE2fRbGyb+uBDP2pi8rhdV+/wvR6Y/9/0t/7VMJ/jMfyjbIv2MQERERERERERGRQsVY0AMQuWOmpKvP7+IZFhlKeDjzxYDGPFq7FABmi5VxK/fw3toDWK3WW+ydhwwG8CoD1dpAy1HwZBg8/zu8chwGrIcOM+CB/hDYGJw87Pc9dxg+bQObpoHFXBCjF5F7VEhICCNGjCjoYRRJq1evpkqVKjg4OPDiiy+yZMkSKlSokC99BwUFMWPGjHzpKzvOnj1LQEAAUVFR+dpvamoqQUFB/P777/nar4iIiIiISF5RwEKKPMO1SaHv8hkWGVydHPioe30GtKhoK/tow7+8tGw3qSZLAY4sC84eUO4BeKAvdJgO/dfBuGPw/B/w5CIoUz+9nsUEv7wFYR3SZ1+IiOSDlStX8uabb+Zbf5s2beLxxx+nTJkyGAwGVq9enalOnz59MBgMdo927drZ1cko//XXX+3KU1JS8PX1xWAwEB4eDkCTJk0YMmSIXb05c+ZgMBgICwvL1PeDDz6YrWMZPHgwXbt2JSYmhkmTJmVrn5wKCwvD29s7U/mOHTsYNGhQnvR5OyZPnkynTp0ICgoCYPfu3XTv3p3AwEDc3NyoUaMGM2fOzHG7EyZMyPRZuO+++2zbnZ2dGTVqFGPGjMmtQxERERERESlQClhIkWYyW3Cypl4tuAdmWGQwGg2M71CTNx6vicGQXrbqz+P0Wbid+OS0m+9c0IxG8K0MtTqnBzAeHAWGK/8cRW+F2S1gz/ICHaKI3Bt8fHwoVqxYvvV36dIl6taty8cff3zTeu3atSM2Ntb2+PLLLzPVCQwMZOHChXZlq1atwtPT064sNDTUFrzIsGHDBgIDAzOVh4eH07p161seR2JiIqdPn6Zt27aUKVMmX99DAH9/f9zd3fO1zxu5fPkyn376Kf3797eV7dy5k4CAABYvXszff//Nq6++yrhx4/joo49y3H6tWrXsPgtbtmyx2/7MM8+wZcsW/v777zs+FhERERERkYKmgIUUackmC65cE7C4BxM3921ekdnPNMDFMf3Peeuhs3T+KILdMRcKdmDZ5eAED70Gfb6H4lfycKRchBX9YcVASL5YsOMTkbva9UtCpaSkMGrUKMqWLYuHhweNGze2u6h/9uxZunfvTtmyZXF3d6d27dpZBhNupH379rz11lt06dLlpvVcXFwoVaqU7VGiRIlMdXr37s3SpUtJSrq6NOKCBQvo3bu3Xb3Q0FAOHDjAyZMnbWUbN25k7Nixdsd25MgRjh49Smho6E3HFh4ebgtQtG7d2m42x/Vmz55N5cqVcXZ2pnr16nz++ed226dPn07t2rXx8PAgMDCQZ599lsTERFs/ffv25eLFi7bZBRMmTAAyLwllMBiYP38+Xbp0wd3dnapVq/Ltt9/a9fXtt99StWpVXF1dCQ0NZdGiRRgMBi5cuHDT472VNWvW4OLiQpMmTWxl/fr1Y+bMmbRq1YpKlSrRo0cP+vbty8qVK3PcvqOjo91nwc/Pz257iRIlaN68OUuXLr2j4xARERERESkMFLCQIi0lzWwfsHC8N5aEul67+0uxZGATSrg7AXD4zCX+M3srs9ZHYjIXsiWibqRCMxi6BWo/dbVsz7L02RZHtxXcuETkjpxdGEZkq5BbPmKGPptp33OjRnMotPUt9z27MCzXxjts2DC2bdvG0qVL+euvv3jyySdp164dkZGRACQnJ9OgQQO+//579u7dy6BBg+jZsyfbt2/PtTFA+sX6gIAAqlevztChQzl79mymOg0aNCAoKIgVK1YAEB0dzaZNm+jZs6ddvebNm+Pk5MSGDRsA2LdvH0lJSfTv35+zZ89y5MgRIH3WhaurK02bNr3p2Jo1a8aBAwcAWLFiBbGxsTRr1ixTvVWrVvHCCy8wcuRI9u7dy+DBg+nbt69tHABGo5EPP/yQv//+m0WLFvHLL7/w8ssv2/qZMWMGXl5ettkFo0aNuuG4Jk6cyFNPPcVff/3Fo48+yjPPPMO5c+eA9GBM165d6dy5M7t372bw4MG8+uqrNz3O7Nq8eTMNGjS4Zb2LFy/i4+OT4/YjIyMpU6YMlSpV4plnniE6OvOyiY0aNWLz5s05bltERERERKSwUcBCirQUzbCwaVChBKuebU6dcsUBMFmsvP/TQbrN+5Xos5cLeHTZ5Foc/vNfeGI+uHill12MhrBH0/NbmAv5UlcikoklMRHTqVO3fJivXFi22/fChWzta7lyR/6dio6OZuHChXz99dc8+OCDVK5cmVGjRtGiRQvb0ktly5Zl1KhR1KtXj0qVKvH888/Trl07li1blitjgPTloD777DPWr1/P1KlT2bhxI+3bt8dsNmeq269fPxYsWACk53t49NFH8ff3t6vj4eFBo0aNbLMgwsPDadGiBS4uLjRr1syuvGnTpri4uNx0fM7OzgQEBADpS2qVKlUKZ2fnTPXee+89+vTpw7PPPku1atV46aWXeOKJJ3jvvfdsdUaMGEFoaChBQUG0bt2at956y/ZeOjs7U7x4cQwGg212wfXLXV2rT58+dO/enSpVqjBlyhQSExNtgaS5c+dSvXp1pk2bRvXq1Xn66afp06fPTY8zu44ePUqZMmVuWmfr1q189dVXOc670bhxY8LCwvjxxx+ZPXs2R44c4cEHHyQhIcGuXpkyZTh69GiOxy4iIiIiIlLYOBb0AETuRIrJgqtBMywyBPl5sGJoMz5cH8nHG/7FYoWdR8/TfuYm3uhYiycblMOQkfCiMKvzJAQ2glWDIXobWC2waRoc+gWe+G96/gsRKRKMnp44lix5y3oOWdx5bvT2zta+xptcxM6JPXv2YDabqVatml15RiJrALPZzJQpU1i2bBnHjx8nNTWVlJSUXM2n8PTTT9ue165dmzp16lC5cmXCw8N56KGH7Or26NGDsWPHcvjwYcLCwvjwww+zbDMkJISvv/4aSA9MhISEANCqVSvb0kvh4eEMHDgw147jn3/+yXSBvnnz5nbJp3/++Wfefvtt9u/fT3x8PCaTieTkZC5fvpzj97ROnTq25x4eHnh5eXH69GkADhw4QMOGDe3qN2rU6KbtDRkyhMWLF9teJ94gMJaUlISr641vmNi7dy+dOnXijTfeoE2bNrc8jmu1b9/e9rxOnTo0btyYChUqsGzZMrucGW5ubly+XERuThAREREREbkJBSykSEu+fkmoe3iGRQYnByMj21QnpLo/I77aRcy5JC6lmnl5+V/88s9ppjxRGx+PzHfCFjolKqTntdgyHTa8DVYzHN8Jcx6E9lMhuAcUheCLyD3Ot28ffPv2ua19fd6bhpeXF0Zj/kwITUxMxMHBgZ07d+Lg4GC3LePO/mnTpjFz5kxmzJhhy70wYsQIUlNTs2oyV1SqVAk/Pz/+/fffTAELX19fOnToQP/+/UlOTqZ9+/aZ7r6H9DwWkydP5vjx44SHh9uWVmrVqhVz587l0KFDxMTEZCvhdm6JioqiQ4cODB06lMmTJ+Pj48OWLVvo378/qampOQ5YODk52b02GAxYLLe/LOKkSZNuugRVBj8/P86fP5/ltn379vHQQw8xaNAgxo8ff9tjyeDt7U21atX4999/7crPnTuXaWaNiIiIiIhIUaQloaRIS18S6pplgu7xGRbXalDBhzXDH+TJBuVsZT/+fZK2Mzax8WBcAY4sB4wO0HI09P8JfCqll6Vdgm+HwbJecDnzEjIiIrcrODgYs9nM6dOnqVKlit2jVKlSAERERNCpUyd69OhB3bp1qVSpEgcPHszTcR07doyzZ89SunTpLLf369eP8PBwevXqlSnQkqFZs2Y4OzvzySef2PJwADRs2JC4uDgWLFhgWzoqt9SoUYOIiAi7soiICGrWrAnAzp07sVgsvP/++zRp0oRq1apx4sQJu/rOzs5ZLoWVU9WrV+f333+3K9uxY8dN9wkICLD7DNxIcHAw+/bty1T+999/ExoaSu/evZk8efLtDfw6iYmJHDp0KNNnYe/evQQHB+dKHyIiIiIiIgVJAQsp0lLSzLgYNMPiRoq5OjHtybrM6VEf7ysJueMSUui9YDtvfLOX5LQ7vwiUL8o1gMGboX6vq2X/fAuzm8Hh8AIblojcXapVq8YzzzxDr169WLlyJUeOHGH79u28/fbbfP/99wBUrVqVn376ia1bt/LPP/8wePBgTp06le0+EhMT2bVrF7t27QLSk0Hv2rXLlkg5MTGR0aNH8+uvvxIVFcX69evp1KkTVapUoW3btlm22a5dO+Li4pg0adIN+3Vzc6NJkybMmjWL5s2b2wIbzs7OduXXz1K4E6NHjyYsLIzZs2cTGRnJ9OnTWblypW3WQpUqVUhLS2PWrFkcPnyYzz//nDlz5ti1ERQURGJiIuvXr+fMmTO3vezR4MGD2b9/P2PGjOHgwYMsW7aMsLAwgDteKrFt27b8/fffdrMs9u7dS2hoKG3atOGll17i5MmTnDx5kri4nN0wMGrUKDZu3EhUVBRbt26lS5cuODg40L17d7t6mzdvzvFyUyIiIiIiIoWRAhZSpCWbLLiRcrXAKffWEL+btLu/NGtHtKRltavLRSzadpQOs7aw9/jFAhxZDrh4QsdZ8NTn4FYivSwhFj7rBOvGgynl5vuLiGTDwoUL6dWrFyNHjqR69ep07tyZHTt2UL58eQDGjx9P/fr1adu2LSEhIZQqVYrOnTtnu/3ff/+d4OBg293wL730EsHBwbz++usAODg48Ndff9GxY0eqVatG//79adCgAZs3b75hMmyDwYCfn1+Wia+vFRoaSkJCgi1/RYZWrVqRkJBAaGhoto8jOzp37szMmTN57733qFWrFnPnzmXhwoW2/uvWrcv06dOZOnUq999/P1988QVvv/22XRvNmjVjyJAhdOvWDX9/f959993bGkvFihVZvnw5K1eupE6dOsyePZtXX30V4JZJxm+ldu3a1K9f3y7x+vLly4mLi2Px4sWULl3a9rg2j0ZUVBQGg8GW9Dwrx44do3v37lSvXp2nnnoKX19ffv31V7vln7Zt28bFixfp2rXrHR2HZN/ixYsZPHgwDzzwAC4uLhgMBlsA7HoTJkzAYDDc8BEVFZXlfmvXrqVVq1YUK1YMLy8vQkNDWb9+fd4dlIiIiIhIIWGwWq3Wgh6E3L5jx44RGBgIwMGDB6latWoBjyh/rfv7JL8vmcArTl+mFzy5CGp1LtAxZUdSUhLr1q0DoE2bNri55c9SVlarlc+2HWXKmn9IMaWv6+3kYODFR6oxuGVlHIxFJCdE/AlYPdR+dkWp2vCfT8G/ep50WVDnTO6Mzlv+iYyMxGQy4ejoeMf/LbJYLMTHxwPkaw4LuX1F8ZxNnjyZOXPmEBMTc8dtff/994wePZq9e/dm+9g3bNjAE088weHDhylRosRt992tWzfq1q3LK6+8csM6N/r7jIyMtCWZj4mJoVy5cjdqQq4RFBTE0aNH8fPzw8PDg6NHj7Jw4UL69OmTqe6ECROYOHEivXv3JigoKNP2ESNG4O3tbVe2ePFievbsib+/P926dQPgq6++4syZMyxbtizXg1PX/p7Q50BEREREsiuvvkcWuqTbDg4O9OnTh08//fSm9QYOHMjChQsxmUz5NDIpjDLlsHDSxcibMRgM9G4WRLPKvrywdBf7YuNJM1t598cDhO+P4/2n6hLoUwRmqXiVgR6r4NdPYP1EMKfCyT0wtyW0eQsaDlBCbhERsfPJJ5/QsGFDfH19iYiIYNq0aQwbNixX2n7ssceIjIzk+PHjti/st7JmzRpeeeWVOwpWpKamUrt2bV588cXbbkNybv78+VStWpUKFSrwzjvvMG7cuFvu06dPn0yzm7Jy/vx5nn/+efz8/Pjjjz9sP/rGjBlDcHAwQ4cOpW3bthQrVuxOD0NEREREpFAqdLe/Wa1WsjvpQ5NDJDnNjOu1OSwclcMiO6qWLMbq55ozNKSy7br+9qhztJ+5mZV/HCsaf1tGIzQbBgN/Af/70stMybBmFCzpBolFJLG4iNw1oqOj8fT0vOEjI09FUdC+ffsbHseUKVMKeni3JTIykk6dOlGzZk3efPNNRo4cyYQJE3Kt/REjRmQ7WAEwbdo0Ro8efUd9Ojs7M378eM0ey2cPP/wwFSpUyJO2v/76ay5cuMDzzz9vd4dauXLlGDZsGGfOnGHVqlV50reIiIiISGFQ6GZYZNfly5dzNTGkFE3pMyyuTbqtH+zZ5exoZEy7+wip5s9Ly3Zz/EISiSkmXlq2m/X7TzO58/14u998PfRCoVRtGBQOP70O2+ell0WuhdlN4ckwCGpRkKMTkXtImTJlbMm0b7S9qJg/fz5JSUlZbvPx8cnn0eSODz74gA8++KCghyH3qE2bNvHbb79hNBqpWrUqDz/8MJ6enpnqZeQ0ySqJetu2bZkwYQIbN26kV69e2e772LFjN90eGxtre56UlHTDv30RERERkWvl1ffGIhmwuHDhAlu2bKF06dIFPRQpYCkmC25ohsWdaFzJlx9GPMiEb/5m5Z/HAfj+r1h2Rp3nvSfr0qKqXwGPMBuc3ODRaVDlEfjmWbgUl/5Y8jT0XwslaxX0CEXkHuDo6EiVKlUKehi5omzZsgU9BJG7yhtvvGH32tvbm5kzZ2YKPERGRgJkmQsooyyjTnblZObPpk2b8PMrAt/9RERERKTAnTlzJk/aLRQBi0qVKtm9Xr58ue3uouuZTCZOnjyJ2Wxm8ODB+TA6KcxSTGa8DZphcae8XJ2Y3q0erWsE8OqqvVxMSuNkfDI9Pv2N/i0qMrptdVydHAp6mLdWrQ0M3QYrB6Qn5E5NSF8easB6KFayoEcnIiIi95i6deuyYMECQkJCKF26NCdPnuR///sfr7/+On369MHb25uOHTva6l+8eBGA4sWLZ2rLy8vLro6ISGH1wrZCcalJbmFm0/zJCavPQ+GXX58F0OehKMjPz8ONFIpPSVRUlO25wWAgMTGRxMTEG9Z3dnamc+fORXYNZck9yWnXLQmlGRZ3pEOdMjxQwYdRX+9my7/pUdJPtxxhS+QZPuhWj5plvAp4hNng6Q9Pfwlhj8KJP+FiDHz5NPT5HpyLQEJxERERuWt06dLF7nVQUBDDhg2jRo0aPPLII4wfP94uYJEXYmJibro9NjaWRo0aAdCyZUu73BkiIrdl2y8FPQLJhqyWH8wT+jwUevn2WQB9HoqAnHwebrX06O0qFAGLI0eOAOlJtCtVqkTXrl2ZNm1alnWdnZ3x9/fH0bFQDF0KWIrJjCtpVws0w+KOlSruymf9GrFwaxRTf9xPqsnCgVMJdP44gudCqzCwZUXcnQv535+zO3RfCv99COKPwYk/YNVgeHJRerJuERERkQL00EMPUblyZfbs2UN8fLxt9kTGzIqLFy/i6+trt098fLxdnezKSQDCzc1NSdxFRO4R+vdeMuizINfKyechrz47heLKXYUKFahQoQJBQUH07t2bdu3a2cquf5QuXTrPghU7duzg0UcfxdvbGw8PD5o0acKyZcty1MaJEyd44YUXqFmzJh4eHpQsWZIWLVrw+eefYzab82Tc97IUzbDIE0ajgf4tKvLdsBbcV6oYAKlmCx/8fJCQaeEs3R6NyWwp4FHeQrFS8MwycE4fP/98C+snFuyYRERERK7IyBVx+fJlW9nN8lTcLL+FiIiIiMjdolAELK61cOFC+vXrl+/9btiwgebNm7NlyxaeeuophgwZwsmTJ+nWrRvvv/9+tto4fPgwdevWZdasWVSoUIFhw4bxxBNPcOjQIXr16sWAAQPy+CjuPSkmM65Xclgk44TFwaWAR3R3qV6qGN8Ma87glpVwMBoAOJ2QwtiVe2g/czM/7zuF1Wot4FHeRMla8ORCMFz5py5iBvzxWYEOSUREROTSpUv8/fffeHh42CW5btWqFQDr1q3LtM/atWvt6oiIiIiI3I0KXcCiIJhMJgYOHIjRaGTTpk3MmzeP999/n927d1OtWjVeeeUVjh49est23nvvPc6cOcMHH3zADz/8wNSpU5k9ezb//PMP5cuXJywsLFvtSPZlzLD426EW0alL+GvSj/y2cUNBD+uu4uLowLhHa7B2REva1LyauDrydCIDPvudbvN+ZVfMhYIb4K1UfQTav3v19f9ehMMbC248IlKohISEMGLEiIIeRpG0evVqqlSpgoODAy+++CJLliyhQoUK+dJ3UFAQM2bMyJe+suPs2bMEBATY5WXLL02aNGHFihX53q/cWkJCAgcPHsxUnpSUxMCBA0lISOCpp56ymz3+1FNPUbx4cWbNmmW3JvCxY8f46KOP8PPzy5QXQ0RERETkblIoAxYJCQlMnTqVRx55hJo1a1KpUqUsH5UrV86V/n755RcOHTrE//3f/1GvXj1befHixXnllVdITU1l0aJFt2zn8OHDADz66KN25d7e3rRo0QKAM2fO5MqYJV2KKT1gEUtL3C1u+KV6U/YHR375YCmnT8UW9PDuKlUCPJnX6wGWD2lK/fLetvLtR86l57dY8gdHz14quAHeTKOB0Hho+nOLCZb1hLjMFxBE5N6zcuVK3nzzzXzrb9OmTTz++OOUKVMGg8HA6tWrM9Xp06cPBoPB7tGuXTu7Ohnlv/76q115SkoKvr6+GAwGwsPDgfQL2kOGDLGrN2fOHAwGA2FhYZn6fvDBB7N1LIMHD6Zr167ExMQwadKkbO2TU2FhYXh7e2cq37FjB4MGDcqTPm/H5MmT6dSpE0FBQZm2nT17lnLlymEwGLhw4UKO2s3O52X8+PGMHTsWi6WQL9V4F5k/fz59+vShT58+fP3115nK5s+fD6Sf+/vuu4/GjRvTp08fxo4dS9++falWrRpffvkltWvXzpS3r0SJEnz00UecOXOG+vXr8/zzz/P8889Tv359zp49yyeffEKxYsXy/ZhFRERERPJLocuce+LECVq0aMHRo0dvudSMwWDIlT4zftBnlQW9bdu2AGzceOs7su+//37Wrl3LmjVreOGFF2zlFy5cICIiglKlSlGzZs0cje1W2dZjY69elE9JSSEpKSlH7Rd1l1JScTGkgdU+d0W1U2U5P3MPextup1Gbh3AwOhTQCLOWnJyc5fOioFZJNxb3Cean/XFM//kQR8+lf+a+/yuWtXtP8vQDZRnaMggfD+cCHul1Wo7H+UwkDod+huSLWL7oSkrP78Hd79b7UrTP2b1M5y3/WCwW23+37/TC6bX75/VF2IyL4fl1sTchIYE6derQp08funbtisViydS31Wqlbdu2LFiwwFbm4uKSqV5gYCALFiygUaNGtrIVK1bg6enJuXPnbG2HhISwevVqu/1/+eUXAgMD2bBhA7169bKVh4eH06tXr1u+H4mJiZw+fZpHHnmEUqVK5dk5y2jr+jYzkhEXhov0ly9f5tNPP+WHH37Icjz9+vWjdu3aHD9+PMvzfTPZ+by0bduWhIQEvv/+ex577LEbtmW1WrFYLHbfFVNSUrI9Frlqy5YtmW5mioiIICIiwvZ6wIAB+Pj48Oyzz7J9+3bWrFnD+fPncXNzo0aNGgwfPpxhw4ZlmaiwR48e+Pn5MWXKFBYuXIjBYKBBgwaMHz+ehx9+OM+PT0RERESkIBW6gMUrr7xCVFQU9erVY+zYsdSoUQMvL6887fNmCexKlSqFp6dnlonvrjd69Gi+++47XnzxRX788Ufq1KlDfHw8q1evxt3dnVWrVuU4e3pgYGC26/72228cOnQoR+0XdSdOGXElFQNXAxZJhhTcrC54WNyo9psbe//+mQtVHEhxK/iLGlnZtGlTQQ/htr1QFbaeNvDjMSOJaQZMFiuLtx/j650xNPa3UtfHQiUvMOZObPGOOXo8SQu3gxRPisZ44SiXF3Rha5UxWIw5C64U5XN2L9N5y1u+vr64ublhMBiIj4/PtXYTExNzra2sdOjQgdq1a/P2228D6Rdw33rrLVasWMHFixepUaMGEyZMsM2UPHfuHKNHj2bbtm1cuHCBoKAgXnrpJbp27Zqt/po3b07z5s1tr5OSkjK9X2lpaTg4OODu7m5Xfn29bt26MXfuXCZOnGj7fjF//ny6devGtGnTuHz5MvHx8TRq1IipU6cSGRlJyZLpS/tt3LiR0aNH8+GHH9raPXr0KEePHqVRo0Y3PYdbtmzh8ccfB7BdPP3uu+9s2689Z59++ikfffQRx48fp0KFCowcOZKnn37atv3jjz/miy++4OjRo3h7e9OuXTsmTpyIp6cnW7ZsoX///gA4OKTfeDBmzBjGjh1LnTp1GDp0KEOHps+eK1GiBDNnzmTdunX88ssvlC5dmjfffNNu1uuaNWt47bXXOH78OA0bNuT//u//ePbZZ4mKiqJ48eI3PN5b+eabb3B2dqZmzZqZ3rdPP/2Us2fP8vLLL/Pjjz+SkJCA0Zj9Cc7Z+bxA+nlYvHjxDWfHmEwmkpKSSEpKYv/+/bZyzfy9PWFhYZlmJ2XFy8uLjz766Lb6aNeuXaaZVSIiIiIi94JCF7BYu3YtJUuWZMOGDXf04zEnLl68CHDD/ry8vGx1bqZkyZJs27aNHj168MMPP/Djjz8C4ObmxpAhQ6hbt27uDVoAMFkMuJGCwXr1gvP2WjEUO26h/vlqAJRL9KXMbiux5ZI4WSa5kC6EVjQ5GOHBUlYa+pv55YSRDScMpFoMpJgNbDppYNNJI55OVur4WKnrY6WqlxWHAnz/TQ5u/FrpJVodmICr6QK+lyIJjp7PzgpDIZdmbImIvX82n+KfzadvWc+nrDshve2XegxfdIhzxy/fct8aDwZQ48GSt6yXHS+//DL79+9n/vz5lC5dmv/973907dqViIgIKleuTHJyMvXq1WPEiBEUK1aMdevWMWTIECpWrEiDBg1yZQyQHhSoWrUq3t7ePPjgg4wfPx4fHx+7OvXq1aN8+fJ8++23dOvWjZiYGLZu3cq0adPslplp3LgxTk5ObN68ma5du7J//36SkpLo2bMnEydO5OjRo1SoUIHNmzfj6upKw4YNbzq2Ro0asWPHDho2bMhnn31Go0aNKFGiBNHR0Xb1/ve//zFu3DimTJlCSEgIa9euZdiwYZQtW9Z2Yd1oNDJ16lQqVKhAVFQUo0aN4o033uD999+nUaNGvP3220yZMoUdO3YA4OHhccNxTZ06lYkTJzJp0iTmzZvH4MGD+euvvyhRogRHjx6lT58+DB48mF69evHXX3/x+uuv5+ic3Mi2bduy/I63f/9+pk2bxk8//ZTnOczq169fqHJ6iIiIiIiI3K5CF7A4f/48jz76aL4FK3LTv//+y+OPP46npyebN2+mXr16XLhwgcWLFzN+/HjWrl3L5s2bbXcJZkdMTMxNt8fGxtqWgmjcuHGu5fUoKv4btR3Xc6mUMl39KLd95DE8vIrx147fCNhsxCnBgNFqoGyMO+VTfbG29aVExVIFOOr0pWky7vZu2bIlrq6umepYTRbOXzhLYmI8SZcuYbGY08ut6f9jxQpWwAq+rr74ul5zIcvRwLHUWFzd3HBz98Dd3QNnZ5c8PaaOwOmEFD4OP8Kq3bGkmdOXhklMM7D1lIGtp6C4myMPVffnkRr+NKvkg7NjAUUvHqiBdUlnDGlJlDv/KyVrNMP04Ms33SU750wKH523/BMdHY3ZbMbR0dFuZqTRepak+LRb7m/ytdr2s1gsJCYmknLJlK19jVbH256N6ejoiLOzM15eXkRHR/PFF18QFRVFmTJlAKhbty4bN25k+fLlTJ48GS8vL1599VXb/nXq1GHjxo2sWbOG0NDQHPfv5uaWaewdOnTgqaeeomLFihw6dIjx48fz9NNPExERYfcdws3NjQEDBvDVV18xcOBAVq5cSfv27alYsSIA7u7ueHl54eXlRaNGjdi+fTv9+vVj586dtGjRAn9/f5o2bcrvv/9O7dq1+e2332jatCn+/v7Zet8AypYtS9WqVe2WKfL09MRoNDJ79mx69+7NSy+9BKRfVN+1axezZ8+2LV00ZswY2373338/ycnJPPvss/z3v/8FICAgAKPRmGkWrNFoxNXV1e6969u3L/369QNg2rRpzJ07l3/++Yd27dqxZMkSqlevzsyZMwFo0KABhw8fZsqUKRQrVuyOZvPGxsZSvnx5uzZSUlIYPHgw7777LrVq1SIuLg7gjvvK6vMCUKlSJY4fP257768XFxeHm5sbnp6edoG1oj4z12w289tvv/HHH39w6tQpzp8/T4kSJShZsiQNGjSgUaNGOfreLSIiIiIiBa/QBSwCAwPzfT3ijODIjWZRxMfHU6JEiVu206dPH44ePcrhw4cpVSr9grinpydjx47l1KlTzJgxg6VLl/LMM89ke2zlypXLdl0XF5ccLzlV1FnMaTgYrPiZHEm9Uubr64fB0UjjliFYmpiJ/+koiVuOgxXMp5IwfxbNlirbafp0ezw983a5MUi/8JaQeJGzZ06TcO4Cl87Hc/l8AinH4nAyG9l55EecUo0UpxilHAKwJJmwJJvAlH7B3+PK4+bOEI/9sg7pRxaPGUgA0gwmko2ppDikkupgIs3RhMnRQrkyFfAvXRoHb1ccSriAtwMOXi44OeU8B0UFNzfefSqY8R3vZ8P+06zZE8vGg3Ekp6X/TV9MMrFyVywrd8VSzMWR1jUCaFurFCW9XHA0GnF0MODkYMTRmP7/Tg5Xyq5sy3huvNM1pio2gf98CkufAaw4bZ2OU0A1qNc9W7u7urrec39rdwOdt7xlNBpt//2+9oKpi7sTHt63Dpi6FXPOdKHVxcMRD29n4OZ/8y7uTjlaZud6BoMBo9HI33//jdls5r777rPbnpHI2mg0YjabmTJlCsuWLeP48eOkpqaSkpKCh4fHbY3BaDRm2u///u//bM/r1q1LvXr1qFy5Mps2beKhhx6y27dnz56MGzeOqKgoFi1axIcffmhr79q2Q0JC+PrrrzEajWzcuJHQ0FCMRiMhISFs2rSJ/v37s3HjRgYOHJit48iqj+uP6Z9//mHQoEF221u0aMHMmTNtZT///DNvv/02+/fvJz4+HpPJRHJyMsnJybi7u9v1c72M83bte5XxOiMwcObMGYxGIwcPHqRhw4Z29Rs3bnzDYwAYMmQIixcvtr2+0fJkycnJuLm52bXx6quvUqNGDVt+kJu9Xzlxo/09PDywWCykpaXd8N+5jPfr2u0uLnl7M0Ne2bJlCx9//DHff/89ly5dspVbrVa7HHeenp489thjPPfcc3ZLa4mIiIiISOFV6AIWXbt2Zd68eVy6dOmm0/5zU8Zde5GRkZmWczh58iSJiYl2CS2zkpCQQEREBPXr17cFK64VGhrKjBkz+PPPP3MUsJBbMKUn0bVy5Qe3EXC4+kPV6OyA92OVcK/rz/kVkaTFXsIBIzX+LcO5t/7kX+d44j2SSPWy4ODjintJL3zLlKJMufK4u3vesFuLxUJ8/HnOnztLwvkLXL6YQHL8ZcwJKQR71MWSmIYlIRVzQiop8Uk4Wow4A76AL66AK5D5DlYTeZc03cnqiJPZkWJm+zXROZ9G/N/2y3iYsXDeOZ5Et2RSPM1Yizvg4uuBb2BpKlatjpvbdW1cx8vViU71ytKpXlkup5oIPxDHmj2xbNh/mkup6TNFElJMfLPrBN/sOpHjYzEawNHBiPOVgIaj0YjTNQGNjMCHi6MRF0cHXJyuee5ovPK6Is0rDKf10fS7bS3fPMemGBNny4Re2X6lrqMRFycHMKdxOglcdaOmSI7Ue7g89R4uf1v7hvSujJeX1x1d4M2JxMREHBwc2LlzZ6a7sj090/+bMG3aNGbOnMmMGTOoXbs2Hh4ejBgxgtTU1KyazBWVKlXCz8+Pf//91y5gAem5Qzp06ED//v1JTk6mffv2JCQkZGojNDSUyZMnc/z4ccLDwxk1ahQArVq1Yu7cuRw6dIiYmBhat26dZ8dxvaioKDp06MDQoUOZPHkyPj4+trwVqampmXJ43IqTk5Pda4PBcEc3wUyaNMn2Pt2Mn58f58+ftyv75Zdf2LNnD8uXLwewJaT38/Pj1VdfZeLEibc9rqycO3cODw+Puz4ou3nzZl588UX+/PNPrFYrRqOR2rVrU6tWLXx9fW3LuJ49e5a9e/eyb98+li5dyldffUX9+vWZPn36DfN8iIiIiIhI4VDoAhavvfYaP/zwA0899RQLFy4kICAgz/ts1aoVb7/9NuvWrbNLBAnpOTUy6txMxoWKGyUvzFgKoKjeyVZopdkHLAxODnZ31mVwLlcM32drs2nl/6iwywsXqzNGjPileuOX6g3nAdvy0mc5x1kueDnj6OuKo48biSkJHI79F9dkR9xTXSlmck8PAAA+gA/OQPqMhMuctOvbMQdJMwwuDhjdHDG6OmJwc+Bo6jHiDQlYnQ3gkL4ClAHD1ZuNDellZYuVpaxnGTI2JCddZs+JvzCmgTHNgIPJgJPJEWeTI85mR1zNzrhab/xZdLC9N8BF4HjGlkROs51TbudJ9E2lYd3mOJf1xKmMJ0bXrP85cXd25NHapXm0dmmS08xsjjzDD3ti+emfUyQkm7L93lzLYoVUk4VU053NxvqURkxyfIRejj9htJpp8vuL9Eody3ZrjRvskX6Mi6J/49HapWl7fylqlvbK8jMnIkVPcHAwZrOZ06dP3/CiZkREBJ06daJHjx5AegD74MGD1KxZM8/GdezYMc6ePUvp0qWz3N6vXz8effRRxowZc8Plb5o1a4azszOffPIJycnJths0GjZsSFxcHAsWLMDDw+OWN2jkRI0aNYiIiKB37962soiICNt7tXPnTiwWC++//74tKLVs2TK7NpydnTGbzXc8lurVq7NmzRq7soy8GDcSEBCQre+hwcHBdjMxAFasWEFS0tWbEHbs2EG/fv3YvHlznizfuXfvXoKDg3O93cLk6aef5uuvv8bR0ZGOHTvSp08fWrduTbFixW64T3x8POvXrycsLIwff/yRkJAQnnrqKb788st8HLmIiIiIiOREoQtYDBs2jMqVK7Nq1SqqVKnCAw88QPny5W+4FMCnn356x30+9NBDVKpUiSVLljB8+HDq1asHpC8RNWXKFJydnW1T+iF9reKLFy9SunRp23JSvr6+VK9enQMHDjB//nwGDBhgq3/hwgXee+89gNta31puwpR+McBC+rr0BqcbBwccnZxo3a0L0Y0PsX/NDtzPO1LisifFzFnP5LHEp5Ian0rqkXiMQBXK5Hh4Rg9HklzSOGaNxeRuxephxKGYM0Z3Z2JOHcfg6EiTZk3x9fPH07O4bU3wDAHcXqL24kBJbn7xzGQykZh4EffLLpgvpGA+n4zpfArRxw5zKe4C3slZvzcOOFAmyQ+OwcVjR66W+7oS63mW896X8Qr0w9k164BIADC2Tikm1a/A3hMX2R8bT5IpmYtpJzBbwWyxYLFaMVvAYrFeeW7FfOX/ncxlsFgNpJnTX6dZL5JmiMditWCxWK+0kV7fYrHa+rVanbCm2s9qMTid4RtjexwMntzvEAXASMe1LDLBSa7mBLGaPLGa0xfZMgOn4y7z0S8H+fCXfwn0caNtzVK0u78U9cuXuPPlqkSkwFSrVo1nnnmGXr168f777xMcHExcXBzr16+nTp06PPbYY1StWpXly5ezdetWSpQowfTp0zl16lS2AxaJiYn8+++/ttdHjhxh165d+Pj4UL58eRITE5k4cSL/+c9/KFWqFIcOHeLll1+mSpUqtG3bNss227VrR1xc3E1zI7i5udGkSRNmzZpF8+bNbYENZ2dnu/LrZyncidGjR/PUU08RHBzMww8/zHfffcfKlSv5+eefAahSpQppaWnMmjWLxx9/nIiICObMmWPXRlBQEImJiaxfv566devi7u6e45kXAIMHD2b69OmMGTOG/v37s2vXLsLCwgDuOOjctm1bxo0bZ8ufAGQKSmTc0FKjRg28vb2z3fatPi8ZNm/eTJs2be7gKAq/VatW8eyzzzJ+/HhKliyZrX28vLzo0qULXbp04dSpU0yaNClXfjuIiIiIiEjeKXQBi7CwMNsPx8TERMLDw29YN7cCFo6OjsyfP5+2bdvSsmVLnn76aYoVK8aKFSs4evQo7733HkFBQbb648aNY9GiRSxcuJA+ffrYyj/44AM6duzIwIEDWbp0KcHBwZw/f55vv/2WuLg4/vOf//Dwww/f8XjlKqMpBRzgvNGN4mY4lXb6lmGF8kGVKf/s1QsJF86f5cSxaM7HniYpLgHDOROVLIG4xDtguWSf7NWMmXinS1x2SiHZJS09COFuwOjhhJOXG65eHlQtdx/FfIpj9HDC4JAeQLn+XsqkpCQurFsHQJmyFQpkCQdHR0e8vX3BGyhzdfkrbyrZnl9KTODkiWOcOx3HpVMXMJ+8jOdZZ0pe9sER+7t4zWeTCTjrQcBRD9gNcOPlUVKJJhUod+WRzjeHR2C48ihx5XEb0jICMtXsil/Jxq4mzJx2vMipSyc4ufMIa/4wscTREZ/SvtSvWZmQutVxd815HhARKVgLFy7krbfeYuTIkRw/fhw/Pz+aNGlChw4dABg/fjyHDx+mbdu2uLu7M2jQIDp37nzDPFjX+/333+1uXshISN27d2/CwsJwcHDgr7/+YtGiRVy4cIEyZcrQpk0b3nzzzRvO0jQYDPj5+d2y79DQUDZt2kRISIhdeatWrdiwYUOu31TRuXNnZs6cyXvvvccLL7xAxYoVWbhwoa3/unXrMn36dKZOncq4ceNo2bIlb7/9tt1NIs2aNWPIkCF069aNs2fP8sYbbzBhwoQcj6VixYosX76ckSNHMnPmTMDeKC0AAQAASURBVJo2bcqrr77K0KFD73j2a+3atalfvz7Lli1j8ODB2d4vKiqKihUrsmHDhkznJMOtPi8Ax48fZ+vWrZlmedxtDhw4YPd9PKdKlizJxx9/nK1lvkREREREpOAYrBmL6hYSixYtylH9a5cZuFPbt2/njTfeYOvWraSlpVG7dm1eeuklunXrZlevT58+WQYsIH3K/7Rp09iyZQtxcXG4urraki4OHTr0hks13K5jx44RGBgIwMGDB235OO4FVquVTq9+xLfO44lMWY6b1ZUTbmdo9EaXXOvDkmzCdC4ZHAxcckrCq3iJXDmHSUlJrLsSsGjTpk2RW3M6JSWZhOPncDtjJPVEImknEkmNTYS0QvXPSYFKw8QJl3MktS7Jw61aFPRw7llF/W+tKImMjMRkMuHo6HjH/y1KzxMUD5CvOSzk9hXFczZ58mTmzJlDTEzMHbf1/fffM3r0aPbu3ZvtY9+wYQNPPPEEhw8fts3MuB1jxozh/PnzzJs374Z1bvT3GRkZSbVq6UH7mJgYypUrd6Mm5C527e8JfQ5EJDcEjf2+oIcg2RD1zmP50o8+D4Vffn0WQJ+HoiAnn4e8+h5Z6GZY5GYAIqcaNWrEDz/8cMt6YWFhtrvartewYcNM6y9L3kgzW3G2pmKxgos1/U52k+Odr3N9LaOrI85XZh84kz9J4IsCFxdXXCqVgUrY3hWzyczRqEhiDx0l6WR8eqKJG6jkXQlf16szKhLTLvHP2X3Z6rteQD2cjFeXLDmReILjicdvskc6dyd3avnWsiv759x+ElOvSU5rMUHcAUi7nP7ayQ3876N0sUBKupUi6sgRDBYDfp7FiY09RokkTzwsWV8Ad8KRCikB/P3LMcad/YsXH6lGQDHXbB2jiIjkvk8++YSGDRvi6+tLREQE06ZNY9iwYbnS9mOPPUZkZCTHjx+3fWG/lTVr1vDKK6/cUbAC0nNtZMy8EBERERERKeoKXcBCJLtSTGZcDWmkGFwwXklsbXa4syTMcvscHB2oVOU+KlW5L8f7FgfKcv9t9VucitwoRfatNKFi5sKEk7CgLZyPSk9YYWkAnb4hyeLI8XXpQZWabVpQwS09Me3Fi+c5deI450+dJuF0PPEnL+GQYKX6JX88Le7USCnDmO3H+HbXCZ4NrUL/FhVxdcrdmVYiUjhER0ffNJfFvn377PIOFGbt27dn8+bNWW575ZVXeOWV7CyeV7hERkby1ltvce7cOcqXL8/IkSMZN25crrU/YsSIHNWfNm1arvQ7cuTIXGlHRERERESkMCjUAYt9+/axdetW4uLiqFWrFh07dgTSlx0wmUw4O2t9+HtZismCK6kkG67etW5yVMBC7lCxUtBzNSxoB4kn4fhOWPoMPPFZltWLFy9B8eIluD5qcvZ/h0jacgIjBprgyI+paUxbe4Avfj3Ky+3uo2PdMkrQLXKXKVOmDLt27brp9qJi/vz5JCUlZbnNx8cnn0eTOz744AM++OCDgh6G5KLDhw8zdepU1q9fz4kTJ0hJScmynsFgwGQy5fPoRERERETkdhTKgEVMTAx9+/Zlw4YNtrLevXvbAhb//e9/efbZZ1m3bh0PPfRQQQ1TClhGwCKJqwELa6H8REuR41MReq6Ehe0h+SIc2Yjzd8+C+5NgyN7a5J73+5G05QQA3X28WHf+LBYrnLiYzIivdrEw4gjjO9SkYVDRvPAnIpk5OjpSpUqVgh5GrihbtmxBD0Hkpv78809CQkJITEzkVin5ClnKPhERERERuYlClxHx3LlztGrVil9++YVatWoxdOjQTD8ynnrqKYxGI99++20BjVIKg+Q0M64G+xkWFgUsJLeUrAXPLAcndwAcDn5PvZiFkM2LHs7lvTC6p38gqyRa+HFYC0Kq+9u27z52kSfnbOPZL3YSffZy7o9fRETkLjZmzBgSEhJ44okn2LlzJ/Hx8Vgslhs+RERERESkaCh0AYupU6cSFRXFqFGj2L17Nx999FGmOiVKlKB27dps2bKlAEYohUVKWvoMi9RrAhZWp5vsIJJTgY2g2+dwJcl3hbMbqXliWbZ2NRgNOFb1AsCaaib52H7C+jZiUb9GVCvpaau3Zs9JHp6+kSlr/iHFlLtJ40VERO5W27Zto3r16ixbtozg4GA8PT1vvZOIiIiIiBR6hS5g8c033xAUFMQ777yDwXDj9d0rVarEiRMn8nFkUtikmMy4kEraNUtCGZwK3UdairoqD8MTc7GS/u9R1dPf47jtw2zteigg1vb89O4oAFpV82fN8AeZ0qU2fp7peXhSzRbmbTrM22v25+7YRURE7lJOTk7Uq1fvpr8XRERERESk6Cl0V3ePHj1K/fr1MRpvPjRnZ2fOnTuXT6OSwig5zYLbdTMsUMBC8sL9/yGt7VTbS6dNU2DrrFvv1rAhaYb0JJ9+x9xtS1I4Ohj5v8bl2TAqhOdCK+PskP65XfZ7DIkpSgoqIiJyK/Xr1+fYsWMFPQwREREREcllhe7qrqurKwkJCbesFx0dTfHixfNhRFJYpZjSc1gEpV79GFcLqF6AI5K7mbleL/4u0+1qwbrx8Ovsm+5TzKs40d6nAfBL9ebwv/YzKIq5OjG67X10faAcAJdTzfxvt2aOiYiI3MqoUaPYtm0b4eHhBT0UERERERHJRYUuYHHffffxxx9/cOnSpRvWOXPmDLt376ZOnTr5ODIpbFJM6Tks3KwutjKfYr4FOCK52/1b8jH+Kd31asGPY2H7f2+6j7Xq1RlA0TuzXvLp6YaBtudLd8Tc2SBFJEdCQkIYMWJEQQ+jSFq9ejVVqlTBwcGBF198kSVLllChQoV86TsoKIgZM2bkS1/ZcfbsWQICAoiKisrXflNTUwkKCuL333/P134Lg3bt2jFz5kw6derEuHHj2LRpE1FRUURHR2f5EBERERGRoqHQBSy6du3K2bNneemll2zLp1xv9OjRXL58mW7dumW5Xe4NyWlmXEnFck3AQjksJK8dLNWRtOYjrxasGQW/L7hh/SoNrwZWXQ5n/W9a7bLFqVE6PUH3rpgL7D8ZnzuDFZFbWrlyJW+++Wa+9bdp0yYef/xxypQpg8FgYPXq1Znq9OnTB4PBYPdo166dXZ2M8l9//dWuPCUlBV9fXwwGg+3O8yZNmjBkyBC7enPmzMFgMBAWFpap7wcffDBbxzJ48GC6du1KTEwMkyZNytY+ORUWFoa3t3em8h07djBo0KA86fN2TJ48mU6dOhEUFJRp29mzZylXrhwGg4ELFy7kqN0JEyb8P3v3HR5F1fZx/Du7m00ljYQeSOiI9A7SlaYCKhZUiordR1HsDcX22NurjwUpVkQEu4IiAUGaCDYEISEQeiCQQpLNtvePhSUxCSkk2Q38PteVi52ZM2fuZU8CmXvOuYuMhdatW3uPW61W7rzzTu65556TfAc1U+fOnWnQoAHPPPMMAwcOpFmzZiQkJBT5atq0qa9DFRERERGRMvK7u7s333wzZ555JtOnT6d79+48+eSTACQlJfHCCy/Qq1cv3n33XTp27MjEiRN9G6z4lM3hIsiw46ZAwsLqd0NaTkGOPndC3zuP7/jqdvj13WLbNopLYHfwAQDismI5cGBfkTaGYRSaZfGxZlmIVJvo6Ghq1apVbdc7cuQIHTp04LXXXjthu2HDhrFnzx7v10cffVSkTVxcHDNnziy0b8GCBYSFhRXaN3DgwCLL5ixZsoS4uLgi+xMTExk0aFCp7yM7O5v9+/czdOhQGjRoUK1/hwCxsbGEhIRU6zVLkpOTwzvvvMM111xT7PFrrrnmpGYFt23bttBYWL58eaHjV1xxBcuXL+evv/6q8DVqouXLlzN48GA2b96M2+0mOjqaxo0bF/sVFxdXeociIiIiIuIX/O7ublBQEAsXLqRXr178+uuvPPTQQ4Dnl5K77rqL1atX07VrV7766isCAgJ8HK340rElodJMx29Y5JDnw4jktGEYMOhB6HPb8X1f3AobPiy2eWYTOwAmTPy95tdi24zu2BCrxfMjecH6XeTZnZUbs4gU699LQtlsNu68804aNmxIaGgoPXr0KHRT/+DBg4wdO5aGDRsSEhJCu3btik0mlGT48OE8/vjjXHDBBSdsFxgYSL169bxfUVFRRdpMmDCBOXPmkJub6903Y8YMJkyYUKjdwIED2bx5M3v37vXuW7p0Kffee2+h97Zt2za2b9/OwIEDTxhbYmKiN0ExaNCgQrM5/u1///sfzZo1w2q10qpVK957771Cx1944QXatWtHaGgocXFx3HTTTWRnZ3uvc9VVV5GRkeGdXfDII48ARZeEMgyD6dOnc8EFFxASEkKLFi344osvCl3riy++oEWLFgQFBTFw4EBmz55doVkP//bNN98QGBhIz549i33/hw8f5s477yzmzLKxWCyFxkJMTEyh41FRUfTp04c5c+ZU+Bo10YMPPkheXh533HEHBw8eJC0tjW3btpX4JSIiIiIiNYPF1wEUp379+ixfvpyFCxfy9ddfk5ycjMvlIi4ujuHDhzNq1CgMw/B1mOJjNruTQPJJtobROt+zLzVvJzE09m1gcnowDDj7UXA6YNVrgBs+uwlMFmh/SaGm9To0hU2eG4qOTRkwomh3ESEBjDizHp9t2M3hHDuLNu5jZIcG1fBGRKrWL18tYN3Xn5Xark5CMy64++FC+75/7XnSd5a+9nyXc0fT9bwTJwDK6pZbbmHjxo3MmTOHBg0asGDBAoYNG8Yff/xBixYtyMvLo0uXLtxzzz2Eh4fz9ddfM27cOJo1a0b37t0rJQbw3KyvU6cOUVFRDBo0iMcff5zatQvXaerSpQvx8fF8+umnXHnllezYsYNly5bx2muvFVrmqk+fPgQEBLBkyRLGjh3Lxo0byc3N5ZprruGee+5h27ZtJCQksGTJEoKCgujVq9cJY+vduzebN2+mVatWfPrpp/Tu3ZvIyEg2bSpcp2fBggXcdtttvPTSS5x99tl89dVXXHXVVTRq1MibFDGZTLzyyiskJCSQnJzMTTfdxN13383rr79O7969eemll3j44YfZvHkzQJHZIwU9+uijPPPMMzz77LO8+uqrXHHFFWzfvp3o6Gi2bdvGmDFjuO2225g0aRLr168/qSRCQT/99BNdunQpsn/jxo1MmzaN1atXk5ycXOH+t2zZQoMGDbyfzVNPPUXjxoX/r9O9e3d++umnCl+jJvr111/p1KkTzz33nK9DERERERGRSuSXCYtjhg4dytChQ30dhvipYzMs8grUsAgIDDzBGSKVzDBg6BPgcsCaNwE3LLgeTGY48yJvs9btOvLPvB8Id4bS6EAMNlsegYFBRbq7tFtjPtuwG4CP1+5QwkJOCfm5OWSnHyy1Xa3aMUX25WZllenc/NycCsX2bzt27GDmzJns2LGDBg0833933nkn3333HTNnzuTJJ5+kYcOGhW50/+c//2HhwoXMnTu30hIWw4YN48ILLyQhIYGkpCTuv/9+hg8fzsqVKzGbzYXaXn311cyYMYMrr7ySWbNmMWLECGJjYwu1CQ0NpXv37iQmJjJ27FgSExM566yzCAwMpHfv3iQmJpKQkEBiYiK9evUisJR/S61WK3Xq1AE8S2rVq1ev2Lpjzz33HBMnTuSmm24C4I477mDVqlU899xz3oRFwdkt8fHxPP7449xwww28/vrrWK1WIiIiMAyDevXqlfr3NnHiRMaOHQvAk08+ySuvvMKaNWsYNmwYb775Jq1ateLZZ58FoFWrVvz555888cQTpfZbmu3bt3vHyzE2m42xY8fy7LPP0rhx4wonLHr06MGsWbNo1aoVe/bs4dFHH6Vv3778+eefhZbhatCgAdu3bz+p91HTHJu1IyIiIiIipxa/TliInIjN7iTIyMdWIGERGKSEhVQzw4DhT3uSFr+8A24XfHotGGZoOxrwLOeREWcnPAWCXYE4U45Aq6IJi55No4mvHULKwRxWbD3IjoM5NK7tH2u0i1SUNTiEsOjapbYLDo8ouq9WrTKdaw2unO+TP/74A6fTScuWLQvtP1bIGsDpdPLkk08yd+5cdu3aRX5+PjabrVLrKVx22WXe1+3ataN9+/Y0a9aMxMREBg8eXKjtlVdeyb333ktycjKzZs3ilVdeKbbPAQMG8MknnwCe2RsDBgwAoH///t6llxITE7n22msr7X38/fffRQpj9+nTh5dfftm7/cMPP/DUU0+xadMmMjMzcTgc5OXlkZOTU+6/04J1IkJDQwkPD2f//v0AbN68mW7duhVqX1qC6YYbbuD999/3bh9bqurfcnNzCQoq/DP9vvvuo02bNlx55ZXleg//Nnz4cO/r9u3b06NHD5o0acLcuXML1cwIDg4mJ6dyEnc1RY8ePfjnn398HYaIiIiIiFQyJSykxjo2wyKDggmLYB9GJKctw4ARz3mSFr/OBrcTPr3GszxUm/MA6NCnJ+kpnuVSbJsOEdKq6E1YwzC4pFscz3znWfpk7i+p3DlUT49Kzdb1vAsqvFzTOTdPITw8HJOpekpuZWdnYzabWbduXZGZDMeWInr22Wd5+eWXeemll7y1FyZPnkx+fn6VxdW0aVNiYmLYunVrkYRF7dq1Oe+887jmmmvIy8tj+PDhZGVlFelj4MCBPPHEE+zatYvExETvLJH+/fvz5ptvkpSURGpqapkKbleWlJQUzjvvPG688UaeeOIJoqOjWb58Oddccw35+fnlTlj8u7aZYRjFzvwoq2nTppVp2aiYmBgOHTpUaN+PP/7IH3/8wbx58wBwu93etg888ACPPvpohWKKjIykZcuWbN26tdD+9PT0IjNrTnUPPfQQ/fr146OPPvLOrBERERERkZrP5wmLpk2bYhgGP/zwAwkJCTRt2rTM5xqGQVJSUhVGJ/4sz+4kCDumgjMsgpWwEB8xmeC8l8DlhA3ve5IXn0yEcfMhoR9BLaLAbIDTTd7f6bhHuoutxTOmcyOeX/QPTpebT9alMvnsFljM1XOzVuR016lTJ5xOJ/v376dv377FtlmxYgWjRo3yPjnvcrn4559/OOOMM6osrp07d3Lw4EHq169f7PGrr76aESNGcM899xRJtBzTu3dvrFYrr7/+urcOB0C3bt1IS0tjxowZ3qWjKkubNm1YsWJFoSLgK1as8P5drVu3DpfLxfPPP+9NSs2dO7dQH1arFafTedKxtGrVim+++abQvrVr157wnDp16niXvjqRTp06FZqJAfDpp58WKoa+du1arr76an766SeaNWtWjsgLy87OJikpiXHjxhXa/+eff9KpU6cK91sT5efnM3nyZMaNG8cXX3zB8OHDady4cYkJzn79+lVzhCIiIiIiUhE+T1ikpKRgGAZ2u927XVYqvH16OzbDwlwgYRGkGRbiSyYTjHzFk6z4fQ647LD0GUjohynIQmDTCGxbDuM8bMO+Nwdr/dAiXdQJD2JQ6zp8v3Ef+zJtLP0njcFt6vrgzYicflq2bMkVV1zB+PHjef755+nUqRNpaWksXryY9u3bc+6559KiRQvmzZvHzz//TFRUFC+88AL79u0rc8IiOzu70NPx27ZtY8OGDURHR9O4cWOys7N59NFHueiii6hXrx5JSUncfffdNG/evMS6XsOGDSMtLY3w8PASrxscHEzPnj159dVX6dOnjzexYbVaC+3/9yyFk3HXXXdxySWX0KlTJ84++2y+/PJL5s+fzw8//ABA8+bNsdvtvPrqq5x//vmsWLGCN954o1Af8fHxZGdns3jxYjp06EBISEiFlt+6/vrreeGFF7jnnnu45ppr2LBhA7NmzQJO/v+TQ4cO5b777uPQoUNERUUBFElKHDhwAPAkcSIjI8vc95133sn5559PkyZN2L17N1OnTsVsNheZUfDTTz8VKrR+OhgwYACGYeB2u5k7d26RZFdBhmHgcDiqMToREREREakonycstm3bBkDDhg0LbYuUxuZwEWTkY3JbvfuCg7Tev/iYyQyjX4cdP8PhHZC6Bux5EBBEUOtobFsOA/Dbip/pNuacYru4rFsc32/cB8CctalKWIhUo5kzZ/L4448zZcoUdu3aRUxMDD179uS88zzLuz344IMkJyczdOhQQkJCuO666xg9ejQZGRll6v+XX37xFpwGTyFqgAkTJjBr1izMZjO///47s2fP5vDhwzRo0IAhQ4bw2GOPlVgM2zAMYmKKFi3/t4EDB7Js2TJv/Ypj+vfvz5IlSwrFVRlGjx7Nyy+/zHPPPcdtt91GQkICM2fO9F6/Q4cOvPDCCzz99NPcd9999OvXj6eeeorx48d7++jduzc33HADl156KQcPHmTq1Kk88sgj5Y4lISGBefPmMWXKFF5++WV69erFAw88wI033lhqkfHStGvXjs6dOzN37lyuv/76Mp+XkpJCQkICS5YsKfKZHLNz507Gjh3LwYMHiY2N5ayzzmLVqlWFln9auXIlGRkZjBkz5qTeR03Tr18/PbwkIiIiInIKMtzHFtWVGmnnzp3ExcUB8M8//9CiRQsfR1R9bnx/HU9vOZe/3M8Slx+PAyfx/x3g67DKJDc3l0WLFgEwZMgQgrWUld8r92f2+c2w/ugSIRO/hviz2L1zB67/2w7Ajlr76P1A8TeXHE4Xvf/7I/uzbJhNBivvHUSd8KJFuqV0+l6rPlu2bMHhcGCxWE763yKXy0VmZiZAtdawkIqriZ/ZE088wRtvvEFqaupJ9/X1119z11138eeff5b5vS9ZsoQLL7yQ5ORk78yMirj00kvp0KED999/f4ltSvr+3LJli7fIfGpqKo0aNapwHFJzFfx9QuNARCpD/L1f+zoEKYOU/55bLdfRePB/1TUWQOOhJijPeKiq/0f6/2+TIiU4tiSU5egMi3xT1RU8FSm3+ALr36csB6BBo8bsDvYsC9IoK5a0tL3Fnmoxm7i4q+eHvNPlZt6vO6s2VhGR08Drr7/O2rVrSU5O5r333uPZZ58tVF/jZJx77rlcd9117Nq1q8znfPPNN9x///0nlazIz8+nXbt23H777RXuQ0RERERExJ/4XcIiNTWVd999l82bN5fYZtOmTbz77rvs3KmbeKczuz0fq+Ek8GgNi3yT1iYWP9Kkz/HXRxMWAJlNPOPUhIlNa34t8fRLusZ5X89dm4omw4n4vx07dhAWFlbi144dO3wdYpkNHz68xPfx5JNP+jq8CtmyZQujRo3ijDPO4LHHHmPKlCkVWl6qJJMnT/Y+XVQWzz77LHfddddJXdNqtfLggw9q9piIiIiIiJwyfF7D4t9effVVnn/+ef76668S27jdbiZOnMi9995bY39plpPnzs8FIMZhwQXUDo898Qki1SkyDiKbwOHthepY1OvYFDblAODYnAklzLRrUjuU3s1q83PSQVIO5rB6Wzo9m9auxjcgIuXVoEEDNmzYcMLjNcX06dPJzc0t9lh0dHQ1R1M5XnzxRV588UVfhyEV9Ouvv9K5c2e/6UdERERERKqG382wWLRoEW3atKF169YltmnTpg1nnHEG3333XTVGJv7G7fDcSHHjmWFhsvrdcJbT3bFloZw22PULAK3P7ECGJRuAuLQY8vKKvyEIcGm340/qfrz25NdYF5GqZbFYaN68eYlfFovfPSdSooYNG5b4PmpqwkJqtm7dunHZZZexadOmCp3/119/cckll9CtW7eTjuX999/n+uuvp2vXrgQGBmIYBrNmzSrSzm638+mnnzJhwgTatGlDWFgYtWrVokePHvzvf//D6XQWOSclJQXDMEr8qsxZQSIiIiIi/sjvfnNOTU2lb9++pbZr3rw5K1asqIaIxG/Z83C7Ddx4ihEbAWYfByTyL/FnwYajhbdTlkP8WVgsFvbUyyBiZxhB7kD+XPcLXfsU/zNvaNt6RAQHkJFr55s/9vDI+W2JCAmoxjcgIiLiH2699VZee+01PvnkE3r16sXEiRMZPHgwCQkJJZ6TnJzM999/z6xZs1izZg1ms5nbbrvtpGN58MEH2b59OzExMdSvX5/t27cX2y4pKYkxY8YQFhbG4MGDGTlyJBkZGXz55ZfcdNNNfPPNN3zxxRcYhlHk3A4dOjB69Ogi+wcMGHDS8YuIiIiI+DO/S1jk5OSUaR3e4OBgsrKyqiEi8VeGIw831uPbAZphIX4mvvg6FmFt68DREjyH/9wFfShWUICZCzo1ZNbPKdgcLj7/bRfje8VXXbwiIiJ+6sUXX+S6667jrrvu4ttvv2XlypUAxMbG0qZNG2rXrk14eDiZmZkcPHiQv//+m7S0NO/5I0aM4JlnnqFNmzYnHcv06dNp0aIFTZo04b///S/33Xdfse1q1arFa6+9xoQJEwgNDfXuf/755xkwYABfffUV8+bN4+KLLy5ybseOHTWbQkREREROS36XsKhfv/4J138+5rfffqNOnTpVH5D4L0cuWUaQd3OvfT+qYiF+JbLx8ToWO9d661i069aN/Yt+IcBtIXZXGC6XC5Op+ITbpd3imPVzCgAfrUllXM8mxT6JKSIicqpr06YNX331FVu2bOH//u//+Pzzz9mxYwf79+8vtn3jxo0ZPXo0N998My1atKi0OM4+++wytWvYsCE33XRTkf2hoaHccccdXH755SxdurTYhIWIiIiIyOnK7xIWffv25f333+fTTz/loosuKrbN/Pnz2bRpE5dffnk1Ryf+xOSwkW06nrBIsx/wYTQiJYjvCxu2gyMPdq2D+D6EhtViR9R+mqU3oHZ+BFs3b6RlmzOLPb1N/XA6xEXyW+ph/t6TyZ+7MmnXKKKa34SIiIj/aNGiBS+//DIvv/wyycnJrF+/nn379pGRkUFkZCR16tShc+fOJ1wuytcCAjxLPJZU22b37t289tprZGRkULduXQYMGECzZs0qdK2dO3ee8PiePXu8r3Nzc8nNLbm+loiInDr0816O0ViQgsozHqpq7PhdwuK2227jgw8+YPz48ezcuZOrr76aWrVqAZCVlcWMGTN44IEHMJlM3HrrrT6OVnzJ5MzFZgr2Lgrl8rvRLIJnWahCdSw86z9ZWoWDZzULolID4QQrVFzWLY7fUg8DMGftDto1aleFAYuIiNQcTZs2pWnTpr4Oo9xmzJgBwJAhQ4o9/v333/P99997tw3D4IorruCNN94otLxUWcTFxZW57bJly4iJiSlX/yIiRemX85pg0aJF1XQljQd/V31jATQe/F95xsOBA1Xz8LjfLfrfuXNnnnrqKXJzc7njjjuIjo6mcePGNG7cmOjoaO644w5ycnJ4/PHH6d69u6/DFR9xu92YnDZsRuDxfapFLP6oScE6Fj95X/boN9D72vVP9gm7OL9DA0KsnqLyX2zYTU6+o3JjFDmNDRgwgMmTJ/s6DBE5jbz11lt8++23DBo0iBEjRhQ6FhISwkMPPcS6des4fPgw6enp/PDDD3Tv3p3333+f8ePH+yhqEREREZHq4ZdprbvuuotWrVoxdepUfvvtt0LTmDt06MDUqVMZPXq07wIUn8t3uggin3zjeIF2Fd0WvxTVxFPL4vAOTx0Lhw0sgViiggioF4p97xHsO7NxZuZjDrcW20VYoIXz2tdn7i87ybI5+OaPvYzp0qia34jIqWn+/PnepVmq2rJly3j22WdZt24de/bsYcGCBUX+PzNx4kRmz55daN/QoUP57rvvvNvH6tisXLmSnj17evfbbDYaNGhAeno6S5YsYcCAAfTs2ZOOHTvyxhtveNu98cYb3HjjjcycOZOJEycWunZSUhI//XQ8uSoileurr77illtuoUmTJrz//vtFjtepU4dp06YV2jd48GB69epF586dmT9/Pr/++iudO3cu8zVTU1NPeHzPnj3eB8H69etHo0b6P4aInKSVP/o6AimDkmb5VTqNB79XbWMBNB5qgPKMh9KWHq0ov0xYAIwcOZKRI0eyb98+duzYAXgK59WtW9fHkYk/sDk8CQsHx2tYKGEhfiu+L2z44Hgdiya9AQhqE4197xEA8jalE9q9XoldXNqtMXN/8fxD8PHaHUpYiFSS6OjoarvWkSNH6NChA1dffTUXXnhhie2GDRvGzJkzvduBgYFF2sTFxTFz5sxCCYsFCxYQFhZGenq6d9/AgQNZsGBBoXOXLFlCXFwciYmJhRIWiYmJTJgwoSJvTUTK4JtvvmHMmDHUrVuXH3/8kfr165f53JCQEMaNG8eDDz7IihUrypWwKE8CIjg4mODg4NIbiohIjaef93KMxoIUVJ7xUFVjx+/v8NatW5du3brRrVs3JSvEy2Z3EWTYsXP8Jo5xdMkcEb8Tf9bx1ynLvS+D2hy/UZq09o8TdtG5cSQt6oQBsDblEFv3n3gZKREpm4JLQtlsNu68804aNmxIaGgoPXr0IDEx0dv24MGDjB07loYNGxISEkK7du346KOPynyt4cOH8/jjj3PBBRecsF1gYCD16tXzfkVFRRVpM2HCBObMmVOoyNmMGTOKJBwGDhzI5s2b2bt3r3ff0qVLuffeewu9t23btrF9+3YGDhyIiFS+r7/+mgsvvJCYmBiWLFlSobobx2pLHDlypLLDExERERHxG347w0LkRPLszqIzLJSwEH/17zoW/e8GIKBhGBmWbCIcYYTuNJGXl0tQUPHZacMwuLRbHI9//TcA89bt5N7hras8dJGTse/V9biy8st9nhtwu10A5BgmjHKeb6plpe5/OpX7urfccgsbN25kzpw5NGjQgAULFjBs2DD++OMPWrRoQV5eHl26dOGee+4hPDycr7/+mnHjxtGsWbNKrauVmJhInTp1iIqKYtCgQTz++OPUrl27UJsuXboQHx/Pp59+ypVXXsmOHTtYtmwZr732Go899pi3XZ8+fQgICGDJkiWMHTuWjRs3kpubyzXXXMM999zDtm3bSEhIYMmSJQQFBdGrV69Kex8i4vH1119z0UUXER0dzZIlS2jevHmF+lm9ejUA8fHxlRidiIiIiIh/8XnC4t133wXgggsuoFatWt7tslLhudPTsSWhnAUSFharz4ezSPGimkBEY8jYAalrvHUsTGYTe+pnEJEaRqDbyh+/rKXbWf1K7OaCTg154pu/cbvhpy1pSliI33Nl5ePMLH/CoiB3JcVSmh07djBz5kx27NhBgwYNALjzzjv57rvvmDlzJk8++SQNGzbkzjvv9J7zn//8h4ULFzJ37txKS1gMGzaMCy+8kISEBJKSkrj//vsZPnw4K1euxGwunJi/+uqrmTFjBldeeSWzZs1ixIgRxMbGFmoTGhpK9+7dSUxMZOzYsSQmJnLWWWcRGBhI7969SUxMJCEhgcTERHr16lXs8lMiUnHffvstF110EVFRUSxZsoQWLVqcsP369evp2LGjt1bNMfPnz2f27NlERUUxfPjwqgxZRERERMSnfH6Hd+LEiRiGQc+ePalVq5Z3u6yUsDg92RxOAo18XAWWhDJbq6doqkiFxJ8Fv31YpI5FrbZ14GgtzIy/dsNZJXdROyyQNvXC2bgnk417MsnIsRMRonEv/stUq/hC8qUpOMPCqOAMi/L6448/cDqdtGzZstB+m83mnd3gdDp58sknmTt3Lrt27SI/Px+bzUZISEi5r1eSyy67zPu6Xbt2tG/fnmbNmpGYmMjgwYMLtb3yyiu59957SU5OZtasWbzyyivF9jlgwAA++eQTwDN7Y8CAAQD079+fxMRErrrqKhITE7n22msr7X2InMqmT5/O8uWeJR7/+OMP775jy6ydddZZTJo0iU2bNnHBBRdgs9kYMGBAsUvIxcfHF6olc/vtt5OUlESvXr1o1KgRTqeTX3/9leXLlxMYGMisWbOIiIio8vcoIiIiIuIrPk9YjB8/HsMwvP/xPrYtciJ5dhfB5BPtOL58TmRY0TW+RfzGsYQFeOpYHE1YnNm1Gwe++xUzJkL3l5586Nm0Nhv3ZOJ2w5qUdM45Q7V9xH9VZFkmAJfLRWZmJgDh4eGYTFVfcis7Oxuz2cy6deuKzGQIC/PUj3n22Wd5+eWXeemll2jXrh2hoaFMnjyZ/PyTm0VyIk2bNiUmJoatW7cWSVjUrl2b8847j2uuuYa8vDyGDx9OVlZWkT4GDhzIE088wa5du0hMTPTOEunfvz9vvvkmSUlJpKamMmjQoCp7HyKnkuXLlzN79uxC+1asWMGKFSu825MmTWLv3r3YbDYA5syZU2xf/fv3L5SwuPLKK/n0009ZtWoVBw4cwOVy0bBhQyZNmsSUKVNo3VqzK0VERETk1ObzhMWsWbNOuC1SHJvDU8Mi3m7m2K2ZprEVWw9YpFr8u/D20ToWoWG12BicTv3cGOrlRJNvs2E9wZIsPZtGM2PFNgBWJR9UwkKkknTq1Amn08n+/fvp27dvsW1WrFjBqFGjuPLKKwFPYuWff/7hjDPOqLK4du7cycGDB6lfv36xx6+++mpGjBjBPffcUyTRckzv3r2xWq28/vrr3jocAN26dSMtLY0ZM2Z4l44SqSnMZjMTJ07knXfeOWG7a6+9lpkzZ+JwOCrt2rNmzSrT7ywDBgzA7S7fwnaTJk1i0qRJFYxMRERERKTmq/pHFktxbP3lY3bs2EF6eroPI5Ka4FgNC3eBJaEMq8+Hs0jJjtWxgON1LI7KjPa8DnBbSE7afMJueiTU5tgktJVJB6skVJHTUcuWLbniiisYP3488+fPZ9u2baxZs4annnqKr7/+GoAWLVrw/fff8/PPP/P3339z/fXXs2/fvjJfIzs7mw0bNrBhwwYAtm3bxoYNG9ixY4f3+F133cWqVatISUlh8eLFjBo1iubNmzN06NBi+xw2bBhpaWlMmzatxOsGBwfTs2dPXn31Vfr06eNNbFit1kL7AwK0xJzUHG63u8zJgPImDURERERExHd8fod31qxZ3jVgARISErjrrrt8GJHUBDa7kyAjH3eBottGQPFPlor4jfg+nj8dubDrV+9uU73j43h/cuoJu4gICeCM+uEA/L03k8M5VbcUjcjpZubMmYwfP54pU6bQqlUrRo8ezdq1a2nc2JNsfPDBB+ncuTNDhw5lwIAB1KtXj9GjR5e5/19++YVOnTrRqZNnqaw77riDTp068fDDDwOeJ8Z///13Ro4cScuWLbnmmmvo0qULP/30U4nFsA3DICYmBqv1xHU7Bg4cSFZWlrd+xTH9+/cnKyuLgQMHlvl9iNQkOTk5SsaJiIiIiNQgPl8Symw2Y7fbvdvleVpKTl82h6eGhdt9/AaOSTMsxN/FnwW/HS24mbIcmvQCIDqhPqzzJB5su4quP/9vPZvW5q/dR+tYbEtnSNt6VRayyKnuWJFcgICAAB599FEeffTRYttGR0fz2WefVfhapS0PExwczMKFC0vt50R9REZGFnv8kUce4ZFHHimyf+rUqUydOrXUa4rURIcPH2b58uUlLqkmIpUr/t6vfR2ClCLlv+f6OgQREZFS+TxhUadOHTZs2IDb7VaxbSkzm91FFPn8aa1F0zzPvgxXJrUJPvGJIr5UqI7FT9DfM5ssoWUrMvkDgNADpf9Y7tm0Nu8sP1bHQgkLERE5PTRt2rTQ9rx58wolHQtyOBzs3bsXp9PJ9ddfXw3RiYiIiIhIZfB5wmLQoEF88MEHNG3alISEBAC+++47Bg0aVOq5hmGwePHiqg5R/JDN4STQsJNXYEmogBMUKhbxC5FNICIOMlKP1rHIB4uV8PBItgYdok5eFA2OxOB2ujHMJSdwu8dHYxjgdnsKb4uI7+3YseOExbc3btzoXVpKRComJSXF+9owDLKzs8nOzi6xvdVqZfTo0Tz55JPVEJ2IiIiIiFQGnycsnn76af755x/Wrl3L9u3bAdi7dy979+4t9VzNyDh95dk9Rbft7uNrdgcFa3aF+DnDOL4slCMXdv8KjXsC0LhFc/L+OIjFZcaRlkNAvdASuzlWx+Kv3ZneOhaRISdev15EqlaDBg28xbRLOi4iJ2fbNs/sQrfbTdOmTRkzZgzPPvtssW2tViuxsbFYLD7/dUdERERERMrB5/+Db9CgAatXr2b79u1s376dAQMGMGzYMO655x5fhyZ+zOZwEkQ+OUdrWNgNB9YAzbCQGqBJnwJ1LH7yJiwCG9Ui7w/PbIn8XdknTFgA9CpQx2L1tnSGalkoEZ+yWCw0b97c12GInNKaNGnifT1hwgT69u1baJ+IiIiIiNR8Pk9YHNOkSRPvLxz16tWjf//+Po5I/JnN4ZlhYTk6wyLfsJdyhoifKFTHYjn089SxCGgQ5t1t350NXeqesJueTWsz3VvH4qASFuI3TlQQWkR849j35ak0O3nmzJm+DkFERERERKqAydcBDBo0iGeeeca7PXPmTCZNmuTDiKQmyLM7CTLysR6dYZFvVsJCaoioeAhv5Hm9Y7WnjgWFExZ5OzNL7aZbgqeOBXgKb4v4WkBAAABOp5PDhw/7NhgR8Tp8+DBOpxNAyyOJiIiIiIjf8/lvLYmJicTHx3u3r776aiZOnEjv3r19F5T4vWMzLKwuzwwLu8np44hEyuhYHYvf5xSqY2EODSA7OI+w3CCyUg8Q63RiNptL7CYiOIC2DcL5c1cmm1THQvxAaGgoubm5AOzZs4f9+/ef1NPcDocDgLS0tEqJT6qePjP/43a7vckK8HyfnkqysrJ4/fXX+eGHH9i1axd5eXnFtjMMg6SkpGqOTkREREREKsLnCYuAgIBCv1y43W4tJyGlstldBGHHenRJKLvZ4eOIRMrhWMICPMtCHa1jsbvWQVrmNiTYFUTq9mTim7Y4YTc9E2rz5y7VsRD/EBMTg9Pp5NChQwCFbpKWl9vt9iY/goODT6llbE5V+sz8X1RUFDExMb4Oo9Ls3r2bs846i+3bt5f6u4PGo4iIiIhIzeHzhEX9+vVZvXo1R44cOeWe+pKqY7PbseAg8GjCwmHWDAupQYrUsbgTAFddC+z37N6dlFJqwqJXs+N1LFYmqY6F+JZhGNStWxez2cyRI0dwOBwVfgDB5XJ5b36HhYVhMvl8BUsphT4z/2QYBhaLhdDQUGJiYk6pG/f3338/KSkpdOzYkXvvvZc2bdoQHh7u67BEREREROQk+Txhce655/K///2POnXqULeup8jsvHnzSExMLPVcTe8+fTnz88gzAo9vWzQrR2qQqHgIbwiZuyD1aB0Li5WIJnXgD0+TI6mHSu2ma3w0JgNcbk/hbRFfMwyD2NhYYmNjT6qf3NxcNm3aBECXLl0IDg6ujPCkCukzk+q2cOFC6taty5IlS4iIiPB1OCIiIiIiUkl8nrB48sknSUtL47PPPiMlJQXDMMjOziY7O7vUc0+lp8SknOw5WNzH1+uvE1HXh8GIlJO3jsXHYM+B3euhcQ/iW7XE9tUWAALTSk/CeepYRPDHrgw27c3i0JF8okJVx0JERE59hw4dYsSIEUpWiIiIiIicYnw+Xz8iIoK5c+eSk5NDSkoKbrebMWPGsG3btlK/kpOTKzWWtWvXMmLECCIjIwkNDaVnz57MnTu33P3s37+f22+/nRYtWhAUFETt2rXp1asX//vf/yo13tOZ256LmeMzLGLD6/gwGpEKKLQs1E8AxMbW41BAJgB1MiNxuVyldtOzabT39ept6ZUbo4iIiJ+Ki4sr07+TIiIiIiJSs/h8hsUxFouFxo0bA561j5s0aVKt11+yZAlDhw4lKCiIyy67jFq1avHpp59y6aWXkpqaypQpU8rUz4YNGxgyZAiHDh3i3HPPZcyYMWRnZ/P333/z5ZdfcuONN1bxOzk9uO25uN1B3m0jwOzDaEQqoIQ6Fgcjsog6EE6YM4Tdu7bTKC7hhN30bFqbt3/y1LFYlXyQYWeqjoWIiJz6xowZw1tvvaU6eCIiIiIipxi/SVgc44snpRwOB9deey0mk4lly5bRsWNHAB5++GG6d+/O/fffz5gxY0pNomRmZjJq1CgA1q1bR/v27YtcRyqH4cjDXWCGhWH1+WQhkfKJSihcx8JpB3MAjjpmOOBpsnNLcqkJi24JqmMhIiKnn4ceeohvv/2WSy65hJkzZ1KnjmbbioiIiIicCvwuYVFQRkYGa9euJS0tjSZNmtC7d+8quc6PP/5IUlISV111lTdZAZ7lqu6//34mTpzI7Nmzefjhh0/Yz+uvv86OHTt45513iiQrwDOLRCqH4cgj2zg+w8JuUjJIapji6ljEdadW49qw0dMkO7X0JZ7CgwI4s2EEv+/01LFIP5JPtOpYiIjIKebqq68usq9p06Z89tlnNG/enK5du9K4cWNMpqIPsRiGwTvvvFMdYYqIiIiIyEnyyzvoWVlZ3H777bz33nveWQkTJkzwJiymT5/Oww8/zIIFC+jRo8dJXy8xMRGAIUOGFDk2dOhQAJYuXVpqPx9//DGGYXDRRRexefNmFi1aRG5uLq1bt2bYsGFYreW/ibhz584THt+zZ4/3tc1mIzc3t9zXqJHsuSQH1KKezbO54dDv9M2t3mXETkZeXl6xr8V/VcVnZm7QHevvHwNg37IER0w76jZpDHi+ry37nGX6nu4a50lYAPy0eQ9D2ugp02P0vVYz6XOrefSZ1Uw2m83XIZTZrFmzSjyWnZ3t/f98cZSwEBERERGpOfwuYZGbm8uAAQNYv349derUoWvXrnzzzTeF2px33nlcf/31fPbZZ5WSsNiyZQsALVq0KHKsXr16hIWFeduUJD8/nz/++IPY2FheffVVpk6dWmh5q2NPgLVr165cscXFxZW57erVq0lKSipX/zWVMy8bR+DxJaEOHk5n0aJFPoyo4pYtW+brEKScKuszC7W5OPvo60Prv2BlVmvcLjdtLbUIdlhpklmfRQsXgXHifiyHDMBTx+XTZb9DqoqQFkffazWTPreaR59ZzXHgwAFfh1BmM2fO9HUIIiIiIiJSDfwuYfHCCy+wfv16xo4dy1tvvUVoaGiRqd316tWjTZs2LFmypFKumZHheTI5IiKi2OPh4eHeNiVJT0/H6XRy8OBBpk2bxjPPPMO4ceOw2+28+eabPP7445x//vls2rSJoKCgE/YlpbO483Fw/O/RpZrbUgMdsdYhNyCKYPshoo/8g+F2gMlCfqhBcAYEOEwE5BvYA90n7KdpLTcGbtwYbMksJbshIiJSA02YMMHXIYiIiIiISDXwu4TFxx9/TL169XjnnXdOeGO/ZcuWrFmzphojO7FjsymcTie33HILU6ZM8R6bNm0amzdvZu7cucybN48rr7yyzP2mpqae8PiePXvo3r07AD169KBZs2YViL7m+WntapwFim43jGtEj3MG+zCi8snLy/M+gdqvXz8lsWqAqvrMAvIHwcZPsbjyGXpmHVwNu3LEtJO8FXsB6NOyG9ZWkaX28/6utfy5O4s9OQZd+wxQHYuj9L1WM+lzq3n0mdVMp8vMXBERERERqTn8LmGRlJTEOeecU+ovuiEhIZU2jf3YzIqSZlFkZmYSFRVVpj4ARo4cWeT4yJEjmTt3Lr/88ku5EhaNGjUqc9vAwECCg4PL3L6mcrvdWNw2nAVmWFhDau57DwoKqrGxn64q9TNr1h82fgpA4J610Lwv7iaR3oSFcSCf4I6lX6tP81j+3J0FwO97chjervgZY6czfa/VTPrcah59ZjVHYIHlNUVERERERPyB3yUszGYzdru91HY7d+4kNDS0Uq55rHbFli1b6NKlS6Fje/fuJTs72zuLoSShoaE0bNiQXbt2ERkZWeT4sX2nTVHsKmRzuAgiH3eBGRYBgXqaXGqo+LOOv966GPregbl+iHdX0qa/6XR26QXlezatzZvLkgFYlXyQ4e3qV3qoIiIi/uLqq68uUzur1UpMTAxdu3ZlxIgRWK36P6OIiIiIiD/zu4RFs2bN+O2333A4HFgsxYeXnZ3N77//zhlnnFEp1+zfvz9PPfUUixYt4rLLLit0bOHChd42pRk0aBDvvfceGzdupHPnzoWObdy4EYD4+PhKifl05k1YuGt59wXoCUGpqaKbQu3mcHAr7PgZjhwgoHY0R0y5hLqCMe1zlKmbrvFRmAxwuWFVcnoVBy0iIuJbs2bNAsAwPLWb3O7C9Z7+vd8wDOrWrcvs2bM555xzqi9QEREREREpF1PpTarXyJEj2bNnD48//niJbR5//HEyMjK44IILKuWagwcPpmnTpnz44Yds2LDBuz8jI4Mnn3wSq9XK+PHjvfv37NnDpk2biiwhdcMNNwDw3//+l8OHD3v37927l5dffhmTycRFF11UKTGfzmx2J0HGv2ZYBOlpOamhDAPanO957XbBpq8xmUzsDz8MQG17BGkH9pbaTa2gANo19CwDtXlfFgezbVUVsYiIiM/NnDmTW265BbfbTYMGDbjtttt48cUXeemll5g8eTKNGjXC7XZz8803M23aNPr378/evXsZPXo0mzZt8nX4IiIiIiJSAr9LWNx+++00bNiQxx57jNGjR/Phhx8CsG/fPubPn89ll13Gs88+S3x8vDdBcLIsFgvTp0/H5XLRr18/rrvuOqZMmUKHDh34559/ePLJJwvNjLjvvvto06YNCxYsKNRP7969ueOOO/jrr79o3749N998M9dddx0dOnRg165dPP7447Rs2bJSYj6deWZY2DEK1rAI0gwLqcGOJSwA/v4SAFvs8SdFd/yzpUzd9Gxa2/t69TbNshARkVNX9+7dmTFjBpMnTyY5OZkXX3yR2267jVtvvZUXXniBrVu3cvvttzNz5kwuvPBCfvzxRx5++GFyc3N54YUXfB2+iIiIiIiUwO8SFpGRkXz33XckJCTwxRdfMG7cOAzD4LvvvuPiiy9m7ty5NG7cmC+//LLSalgADBw4kOXLl9OnTx8+/vhj/ve//1G3bl3mzJnDlClTytzP888/z8yZM6lbty6zZs3iww8/pGXLlsyfP5/77ruv0uI9ndkcTgLJx3Afn1URFKTinlKDNegM4Q09r5MTIS+D4EaR3sOHt6eVqZuezY4nLFYlH6zEAEVERPzL1KlTqV+/Ps8//zwBAQFFjgcEBPDcc89Rv359pk6dCsADDzxA/fr1+fHHH6s7XBERERERKSO/q2EBcMYZZ/Dnn38ya9YsvvnmG5KTk3G5XMTFxTF8+HCuu+46QkJCSu+onLp37863335bartZs2Z5180tzsSJE5k4cWLlBSaF5NldBGOjXZ5B/tF9sRF1fRqTyEk5tizU6jfAZYd/FlG/WXtYst9zeG9+KR14dG0Shdlk4HS5lbAQEZFT2tKlSxk8eLC3VkVxDMOgW7duLF68GPAkMdq1a8eyZcuqK0wRERERESknv0xYAAQFBXHDDTdU2rJPcuqwOTw1LIwCNSysKrotNV2bkZ6EBcDfX9D4ogtIMVIJcgcSdbhsCdpaQQGc2TCC31IP88++bA5k24gJ0/eGiIicejIzMzl06FCp7Q4fPkxWVpZ3Oyoq6oRJDhERERER8S2/WxJKpDQ2u6eGhdt9/EasEWD2YUQilaBxTwiJ8bze+gMWVz57a3luxMTaojh8uGwzJno2jfa+XqM6FiIicopq1qwZiYmJbN26tcQ2W7ZsYcmSJTRr1sy7b8+ePdSuXbvEc0RERERExLf8OmGxatUqnnrqKW655RZuueUWnnrqKVatWuXrsMTH8hxOgsjHfWyGhdnAMOtJOanhTGZofa7ntT0HkhaTG+P0Ht72zz9l6qZg4e2VSVoWSkRETk1XXXUVNpuNAQMG8M4775CTk+M9lpuby4wZMxg0aBD5+fnepVrtdju//fYb7du3P6lrv//++1x//fV07dqVwMBADMM44XKxmZmZ3HHHHTRp0oTAwEDi4+O56667yM7OLra9y+Xi1VdfpV27dgQHBxMbG8vYsWNJTk4+qbhFRERERGoCv1wSaseOHVxxxRX8/PPPALjdbgDv9O0+ffrw/vvv07hxY5/FKL5js7uIMvLJMAUT4gSH2Vn6SSI1QZuR8Otsz+u/vySw4Wg4em/iUMpe6F56F93io1XHQkRETnmTJ08mMTGRr7/+muuuu47rrruOmJgYDMMgLS0N8PwOMWLECCZPngzAxo0b6dixI1dcccVJXfvBBx9k+/btxMTEUL9+fbZv315i2yNHjtC/f382bNjAkCFDGDt2LOvXr+e5555j6dKlLFu2jKCgoELnXH/99UyfPp22bdty6623snv3bubOncuiRYtYtWoVLVq0OKn4RURERET8md/NsDh8+DADBw5kxYoVBAYGMnLkSO644w7uuOMORo0aRWBgIMuXL2fw4MFkZGT4OlzxAZvDRRD55BrBAGS5i386TaTGSegHgeGe15u/o35CQ++hBtkxZeoiLNBCu4YRAGzZ76ljISIicqoxm8188cUXvPTSSyQkJOB2u0lLS2P//v243W6aNGnCCy+8wBdffIHZ7Fk6tEOHDixZsoSxY8ee1LWnT59OSkoKaWlppdbbe+aZZ9iwYQP33HMPCxcu5L///S8LFy7knnvuYe3atbz44ouF2i9ZsoTp06fTr18/fv31V55++mnee+89PvvsM9LT07nllltOKnYREREREX/ndwmL559/nm3btjFixAi2bt3KggULeO6553juueeYP38+ycnJnHvuuSQnJ/P888/7OlzxAZvDSSD5WF1WAPJNDh9HJFJJLFZoOczz2pZBc0saWDwzyyIPBZe5m4LLQq1OVh0LERE5NRmGwa233srWrVtJTU1l5cqVrFy5kh07dpCcnMzkyZMxmSr/152zzz6bJk2alNrO7XYzffp0wsLCeOihhwode+ihhwgLC2P69OmF9r/99tsAPPbYY1itVu/+4cOHM2DAABYtWsSOHTsq4V2IiIiIiPgnv1sSasGCBcTGxjJ37lxCQkKKHK9Xrx4ff/wxCQkJzJ8/n2nTpvkgSvGlPLtnhoXL7fklzq4loeRUcsZI+GMuAMbmLwmoNxH7zmwcB3Jx2RyYAkv/sd2zaTRvLE0CYFXyQc5tX79KQxYREfG1hg0b0rBhw9IbVqMtW7awe/duhg4dSmhoaKFjoaGh9OnTh4ULF5KamkpcXBwAiYmJ3mP/NnToUBITE1m6dCnjxo0rcxw7d+484fE9e/Z4X+fm5pKbm1vmvkWkZtH3txSk8SDHaCxIQeUZD1U1dvwuYbFt2zbOPffcYpMVx4SEhNC/f3++/vrraoxM/IXN4SQABxxNWDgtSljIKaTZYLAEgyMXNn2NtdnN2Hdmgxvsu48QmBBRahddC9SxWKk6FiIiIj6xZcsWgBJrTrRo0YKFCxeyZcsW4uLiOHLkCHv27OHMM8/0LmP17/YF+y2rY8mQsli2bBkxMWVbhlKkKL+7vSD/smjRomq6ksZCTaDxIMdU31gAjQf/V57xcODAgSqJwe9Gidlsxm63l9rO4XBUyRRv8X82uwuM49tOs8t3wYhUNmsItDgb/v4SjqQRELTfeyg9ZS/1y5CwOFbHYkPqYbbuzyYty0ZsrcCqjFpERKRKvfvuuwBccMEF1KpVy7tdVuPHj6+KsE7oWL29iIji/+0ODw8v1K687UVERERETkV+l7Bo0aIFiYmJHD58mMjIyGLbpKens2TJElq2bFm9wYlfyHM4wTj+1JnT7PZhNCJVoM1IT8ICOJzxPXA2ABv/Wk/9ga3K1EWvZrXZkHoYgNXbDnJe+wZVEamIiEi1mDhxIoZh0LNnT2rVquXdLitfJCz8RWpq6gmP79mzh+7duwPQr18/GjVqVB1hyalo5Y++jkBKMWTIkOq5kMZCjaDxIMdU21gAjYcaoDzjobSlRyvK7xIWF198Mffffz/nnnsub731Fm3bti10/I8//uD6668nMzOTSy+91EdRii/Z8p1gOp6wcAX4MBiRqtBiCJgCwGUndvdn7GEgFszUOlj2WRI9m9bmf4meOhaL/96vhIWIiNRo48ePxzAM7+yDY9v+7FisJc2IyMzMLNSuvO3LqjwJiODgYIKDg8vVv4jUHPr+loI0HuQYjQUpqDzjoarGjt8lLG677TY+/vhjVq5cSYcOHejUqRMJCQkAJCcns2HDBlwuFx07duTWW2/1cbTiC057HjaCOXbr1u13o1jkJAVHQtP+sPUHArNS2Bd8gIa5dambG01OTjYhIWGldtE9PpqI4AAycu189ftu7h3emrrhQVUfu4iISBWYNWvWCbf9UWk1J/5d4yI0NJT69euzbds2nE5nkToWpdXEEBERERE5FfhdEYjg4GB+/PFHLrnkEgDWrVvHvHnzmDdvHr/++isAl156KT/88ANBQbr5djpy5ueSbxT47AP8++k6kQppM9L7MjtkHwBmTGzb+k+ZTg+2mrmiR2MA7E43s35OqfQQRUREpGQtWrSgQYMGrFixgiNHjhQ6duTIEVasWEFCQkKhotj9+/f3Hvu3hQsXAp5lm0RERERETlV+l7AAiIqKYs6cOWzbto333nuP//73v/z3v//lvffeY9u2bXz00UdER0f7OkzxEZc9F4vb6t0O1NQ1ORW1GgGG50e02b3Zu/tA8q4ydzGhdzwBZk9C74NV28m2OSo3RhERET+Rn5/Pnj17SE9P93UoXoZhMGnSJLKzs3nssccKHXvsscfIzs7m2muvLbT/uuuuA+Chhx4iPz/fu//bb78lMTGRIUOG0KRJk6oPXkRERETER/x6MZ24uDiuuOIKX4ch/saeQyO7hYNHNzvU7+DTcESqRFgsNO4N25cTY1sHXAyAffeRE59XQN3wIEZ1bMi8dTvJzHMwd20qV5+VUEUBi4iIVL/333+fV155hfXr1+NyuZgwYQIzZswAYMGCBXzyySc88cQT3iVmK8P06dNZvnw54Kmvd2xfYmIiAGeddRaTJk0C4O677+bzzz/n6aefZv369XTu3Jlff/2VRYsW0a1bNyZPnlyo74EDBzJp0iSmT59O586dOffcc9mzZw8ff/wx0dHRvPrqq5X2PkRERERE/JFfzLDIy8sjMzMTm81WalubzVbmtnKKsufh5njxYcNqPkFjkRqszfkAJDi34sQFQOjB8lWZv7ZvU+/rGSu24XC6Ki8+ERERH5o0aRITJkzgl19+ITg4GLfbXeh4y5YtmTNnDp9++mmlXnf58uXMnj2b2bNne5esXbFihXffsWQGeOpSLF26lMmTJ/P333/z/PPPs2nTJqZMmcLixYuLLVT45ptv8vLLLwPw8ssv880333DBBRewZs0aWrZsWanvRURERETE3/g8YWG322nTpg1169blzz//LLX9X3/9Rd26dWnXrh1Op7MaIhR/47bnFk5YBPh8GItUjTbnARBKHvutnjoW9XKisdnyytxFq3q16NcyFoCdh3L57q+9lR+niIhINfvggw+YMWMGZ555JmvXriUjI6NIm7Zt29KoUSO+/fbbSr32rFmzcLvdJX79uyB4REQEL774Ijt27CA/P5/t27fz3HPPUatWrWL7N5lM3Hrrrfz555/k5eVx4MAB5syZQ7NmzSr1fYiIiIiI+COf3+n95JNP2L59O1OmTKFLly6ltu/cuTN33nknSUlJzJ8/vxoiFH9jOPJwuzXDQk4DEY2gQWcAMi3JAAS4LWxLKlvh7WOuKzDL4u1lyUWeQBUREalp3nrrLcLCwvjqq6/o0qULhmEU265du3Zs27atmqMTEREREZGK8nnCYsGCBVgsFm6//fYyn3PHHXdgMpmYN29eFUYm/spw5PGX9fgTaSm5O3wYjUgVO2MkACZTknfX4ZR95eqiT/PatKkfDsBvOzNYm3Ko8uITERHxgd9++40ePXoQFxd3wnbR0dHs21e+fzdFRERERMR3fJ6w+PXXX+ncuTO1a9cu8zlRUVF07dqVdevWVWFk4q8MRy7ZpuPr/eaQ68NoRKpYa08di9aOTd5drfLLVzjUMAyu7Xv8nLd/Sq6c2ERERHzEZrMRERFRaru0tDTMZs3GFRERERGpKXyesNi7dy/x8fHlPq9Jkybs2bOn8gMSv2dy2gotCWUNtPowGpEqFtMc6pxBXfdW7y77ruxyd3Ne+wbUCw8C4Ie/95GUVv4+RERE/EXDhg35+++/T9jG7XazceNGEhLKl+gXERERERHf8XnCwu1243K5yn2ey+XSOuynKbMzDwjybgcEBpbcWORU0OZ8TEYOFmM3APl7juB2lu/nn9ViYmKfeADcbnhnudbzFhGRmmvw4MFs2rSJzz//vMQ27733Hjt37uScc86pxshERERERORk+DxhERsbS1JSUukN/yU5OZmYmJgqiEj8ndlpA/fxWRXWICUs5BTXxrMsVIBxdJaFw4UjLafc3Yzt3pjQo0XqP123k4PZtkoLUUREpDrdeeedBAYGcvnll/PSSy+xe/du77H09HTeeOMNbrrpJkJDQ7n11lt9GKmIiIiIiJSHzxMWnTp14rfffmPHjrIXTk5JSWH9+vV07ty5CiMTf2V22TA4nqQICgo+QWuRU0DdMyEqnjzz8VkRv//xS7m7iQgO4LLujQGwOVy8t2p7pYUoIiJSnVq0aMHs2bNxuVxMmTKFuLg4DMNg9uzZxMbGcvPNN+NwOJg1axaNGzf2dbgiIiIiIlJGPk9YjBo1CpfLVa4nn2677TbvuXJ6cbncBLhsGAVqWAQGK2EhpzjDgDYj2WdN8e5KT65YDZ+r+sRjNhkAvLdyO3l2Z2VEKCIiUu0uvvhi1q5dy8UXX0ytWrVwu9243W6CgoI4//zzWblyJRdddJGvwxQRERERkXLwecJi3LhxxMfH8+WXXzJmzBj2799fYtu0tDTGjBnDl19+SZMmTRg3blw1Rir+IN/pIsjIx1wgYREcHOLDiESqSZuRNHP9jd2wA9BoRyS5ueVfFqpRVAgj2tUH4OCRfOb/uqtSwxQREalOZ555JnPmzOHQoUPs37+fvXv3kpWVxWeffUanTp18HZ6IiIiIiJSTxecBWCzMmzePfv36sWDBAr7++muGDh1Kt27dqFOnDgD79+9n7dq1LFy4kPz8fIKCgvjkk0+wWHwevlSzPLuTIPIxF6hhERioGRZyGmjYhYiwWvxirKFVTh9qOUP5ZclS+o4YXu6uru2bwJe/edb6nr48mcu6xWE6OutCRESkJjIMQ/XtREREREROAX5xx79z584sW7aMiy++mG3btvHFF1/w5ZdfFmrjdrsBiI+PZ+7cuXTp0sUXoYqP2RwugsjHcnSGhd1wEBAQ4OOoRKqByQStz6Per18AfQCw/JqDa5gLk6l8k+XaN4qkR0I0q7elk5x2hB837efsM+pWQdAiIiJyKou/92tfhyBlkPLfc30dgoiIiEiZ+UXCAjxJi82bN/Phhx/y+eef88svv5CWlgZAbGwsXbp0YdSoUVxxxRWaWXEas9ldBBr51HZ6xoDb4vZxRCLVqM35tFnzNqutKcTlxxOXXYe//9xA2/ady93Vdf2asnpbOgBv/ZSshIWIiPi1adOmndT5Dz/8cCVFIiIiIiIiVcmv7vxbLBbGjx/P+PHjfR2K+Kk8h5Ng8glzWnECwUFBvg5JpPo06YMpMg7HkW8h/0YA9i79p0IJi4Gt6tA0NpTktCOs2ZbOb6mH6RAXWckBi4iIVI5HHnkEw6j48oVKWIiIiIiI1Ax+lbAQKY3N7lkSyoVnSSgjwOzjiESqkdkCPW6g66JppJjGUcsVRtPddTlwYB8xMeWbIWEyGVzbtyn3zf8DgLd/Sub/Li9/4kNERKQ69OvXr8SExdKlS6lbty6tW7eu5qhERERERKSyKWEhNYrN4Sm67T6WsLAqYSGnmc7jCV76NLvMibQ+ch4Bbgu/fb+cwWMvKndXF3RqyHMLN3PwSD7f/rmX1PQc4qJDKj9mERGRk5SYmFjiMZPJxPDhw5kxY0b1BSQiIiIiIlWifJVaRXwsz+4ikHzA6tlhVc5NTjNB4dBlAq3dn+PCBUDDf8JxO8tfzyUowMz4XvEAOF1uZq5IqcRARUREREREREREykcJC6lRbA5noeUANmVt9mE0Ij7S4wYakUZmwHoAwnKDyNt0sEJdjevVhECL55+Cj9fuICPXXmlhioiIiIiIiIiIlIcSFlKj2BwuDNPxhIXLUv6nykVqvIhG0PYCmvO5d1f2yj0V6io61MqYLo0AOJLv5MPVOyolRBERERERERERkfJSwkJqFJvDCcbxYauEhZy2et1CoGk9FmM3ALath7Hvz6lQV9eclcCxiUuzft5GvsNVWVGKiIiIiIiIiIiUmRIWUqPk2V3A8ULb7gCj5MYip7IGHTESziLU/JV3V+qSvyrUVdPYMM5uUxeAfZk2vvp9d6WEKCIiIiIiIiIiUh5+l7DYsWMH6enppbY7dOgQO3Zo6ZLTjc3uBNPxhAUWJSzkNNb7P4SaF+MkDwDHb4fJzs6sUFfX9Wvqff3WsmTcbs1eEhERERERERGR6mXxdQD/lpCQwMSJE3nnnXdO2O7uu+9m5syZOByOaopM/IHN7gQCju8I8Lucm0j1aX4OptiGbElfSeucgYS4gvjlh6UMGH1+ubvq2iSKjnGRbEg9zKa9WazYepCzWsRUQdAiIiLl9+67757w+NatW0/YZvz48ZUdkoiIiIiIVAG/S1i43e4yP9mrJ4BPP/n5+TiMQO+2YVXCQk5jJhP0uoUm37wKDAQg9DcHrpEuTKbyfW8YhsG1fZty84e/AvDWT8lKWIiIiN+YOHEihlH8zFrDMFixYgUrVqwo8bgSFiIiIiIiNYPfJSzKKisrC6vV6uswpJo583NwcDxhYbKaT9Ba5DTQ/lJa/PgYyx3/EG9rSf3cGH7/ZQ0du/csd1dD29YlLjqY1PRclv2Txua9WbSqV6sKghYRESmfxo0bl5iwEBERERGRU0eNS1i4XC7++usvfvzxRxo3buzrcKSauey5OAjybpsClLCQ01xAEHS7FtPyr8HWEoD0FSlQgYSFxWzi6j4JPPrlRgDe/imZ5y7uUJnRioiIVEhKSoqvQxARERERkWrgF+vpmM1m7xfA7NmzC+0r+BUQEEDHjh05ePAgF154oY8jl+rmsuXgLJiwCKxxOTeRytftGrq6V3PYnAFAs3312LMntUJdXdI1jvAgz/fV5xt2sS8zr9LCFBERERERERERORG/SFgcq1vhdrsxDKPQ9r+/LBYL8fHxTJkyhUcffdTXoUs1c9vzOMN2fDmAFrEtfRiNiJ8IjcHa8WL2Bf0AgBkzf32/qmJdBVq4omcTAOxON7N/TqmsKEVERERERERERE7ILxIWLpfL++V2u5k4cWKhfQW/bDYbSUlJPPPMM6phcRpyO3IIch//3CPConwYjYgf6XUzZ7q+woETgPr/hGGzVWx2xMTe8QSYPYnB91dt54jNUWlhioiIiIiIiIiIlMQvEhYFTZ06ldGjR/s6DPFX+bm43ceLbhsBfjeERXwjpgV1W3YjKfgXACIcYfyydGmFuqobHsSojg0ByMxz8MkvFVteSkREREREREREpDz87m7v1KlTGTlypK/DEH/lyMNVsIaFVUW3Rbx63UKM+SvvZpN/Kj4DaVLfBO/rd1Zsw+F0nVRoIiIiIiIiIiIipfG7hIXT6SQzMxOHo/ASJLm5uTz66KNccMEF3H777ezevdtHEYovGY48DphCvNt5Rr4PoxHxM0160y7WjdlI8WzvtJG/K7tCXbWuF06/lrEApKbnsvCvfZUUpIiIiIiIiIiISPH8LmExbdo0oqKiWLlypXef2+1mwIABTJs2jc8//5xXXnmFXr16cejQIR9GKr5gOPLYERDq3c50Z/owGhE/YxiY+txKrQKzLLJXVjy5e22BWRZv/ZSM2+0+qfBEREREREREREROxO8SFosXL6ZevXr07dvXu+/LL79k7dq1tGjRgpdeeokhQ4awc+dO3n77bR9GKr5gOPIwFSi6HRQUcoLWIqehNqMIiUrC4AgAOev34cqxV6irs5rH0LpeLQB+Sz3ML9uVJBYRESmPWbNmYRjGCb8GDx7sbf/II4+csG1KSorv3oyIiIiISDWw+DqAf9u2bRutW7cutO/zzz/HMAw++OADunTpwk033USjRo2YN28ed999t48iFV8wu/IwFyi6HRyshIVIIWYLpt5XEfrVD2Q7R4ETVn3zA73HDC93V4ZhcG3fpkz55DcA3l6WTLf46MqOWERE5JTVsWNHpk6dWuyxefPm8ddffzF06NAixyZMmEB8fHyR/ZGRkZUcoYiIiIiIf/G7hMXBgwepV69eoX0rVqygYcOGdOnSBQCLxULPnj1ZtWqVL0IUHzI7bYUSFoFBwT6MRsRPdRqHY8nZuDLPx4SJ6PUmDp99kMjI2uXu6vwODXhm4Sb2Zdr4/u99bDtwhISY0NJPFBERqSarVq0iMTGRnTt34na7adSoEQMGDKBXr16+Do2OHTvSsWPHIvvz8/P5v//7PywWCxMmTChyfOLEiQwYMKDqAxQRERER8TN+l7CwWCwcOXLEu33o0CG2bNnCJZdcUqhdrVq1yMjIqO7wxMfMzjwsR5eEyjfsWCx+N4RFfC8onJiuQ1m86mda5ZxFmDOEXz5dzNnXXFL6uf9itZiY2DuBp7/bhNsN7yxP5vHR7aogaBERkfJJSkpi/Pjx3oeYjtVaMgwDgB49evDuu+/SvHlzn8VYks8++4yDBw8yevRo6tat6+twRERERET8ht/d7W3atCmrVq3C5XJhMpn46quvcLvdnHXWWYXa7d+/n9jY2Eq99tq1a5k6dSo///wzdruddu3acccddxRJlpTVoUOHOPPMM9m9ezdDhw7lu+++q9R4T0cWlw3L0RkWNlO+j6MR8WM9buCMNUPIMboT6LbSbGssO1O30SguofRz/+XyHo35vx+3cCTfySe/7OT2s1tSOyyw9BNFRESqyO7du+nbty979+4lJCSEYcOGkZDg+TcuJSWF7777jlWrVtGvXz/Wrl1Lw4YNfRxxYdOnTwdg0qRJxR5ftmwZq1evxmQy0aJFC84++2zCwsIqdK2dO3ee8PiePXu8r3Nzc8nNza3QdcR/6TOVYzQWpCCNBzlGY0EKKs94qKqx43cJi5EjR/Lkk08yatQozj77bJ5++mnMZjPnn3++t43b7Wb9+vW0adOm0q67ZMkShg4dSlBQEJdddhm1atXi008/5dJLLyU1NZUpU6aUu89bbrlFs0AqmcVlw+o6OsPCVLFCwiKnhYiG1O93FT8s/ZbWR0YR4Law+dNVNJpc/oRFRHAAl3ZrzIwV27A5XLy/age3nd2iCoIWEREpm4cffpi9e/dy0UUX8frrrxd5kOnAgQPcdNNNzJs3j6lTp3oTBP5g+/btLF68mEaNGjFs2LBi2/y77kVkZCQvv/wy48ePL/f14uLiytx22bJlxMTElKN3v/t1UoqxaNGiarqSxoO/01iQgjQe5JjqGwug8eD/yjMeDhw4UCUxmKqk15Nw991307ZtW77++mtuv/129u7dy1133UXjxo29bZYvX86BAweKzLqoKIfDwbXXXovJZGLZsmW89dZbPP/88/z222+0bNmS+++/n+3bt5erz08//ZQPP/yQp59+ulJiFHC63FjdNgKOLgnlMDl9HJGIn+tzGz2ifyXDnAlAq72N2Pj7+gp1dVWfeEyeFTZ4d2UKeXZ9/4mIiO98++23NGjQgA8++KDYWdcxMTG8//77NGjQgG+++cYHEZZs5syZuFwuJk6ciNlsLnSsQ4cOzJgxg+TkZHJzc9m2bRuvvvoqhmEwceJEvvjiCx9FLSIiIiJSPfwurRUeHs6aNWuYN28e+/bto1u3bvTv379Qm4MHD3Lbbbdx6aWXVso1f/zxR5KSkrjqqqsKFcWLiIjg/vvvZ+LEicyePZuHH364TP2lpaVx4403Mm7cOM4991xuueWWSonzdGdzOAky7AQeTVjYzQ7vMXd+Poc//RQjIICwAQOwlOvJMJFTlDmAWhe8QNqMV4jIvgqAg19txnVmB0ym8uWr46JDGNGuPl/9voeDR/JZsH4XY7s3Lv1EERGRKpCens6oUaOwWq0ltrFarZx11ll8/vnn1RjZiblcLmbOnIlhGFx99dVFjl9wwQWFtuPj47nlllto06YN55xzDg8++CAjR44s1zVTU1NPeHzPnj10794dgH79+tGoUaOyd77yx3LFIr4xZMiQ6rmQxoPf01iQgjQe5JhqGwug8VADlGc8lLb0aEX5XcICIDg4mHHjxpV4fPTo0YwePbrSrpeYmAgU/4EMHToUgKVLl5a5vxtuuAGz2czLL7980ktClWfNWZvNdkqvO3c4x47VnU+AOwAAh9npfb+ZH35I+rPPeRoaBoEdOxIyeBChAwdiadDAVyGXKC8vr9jX4r9q7GcW1YpuHeuxafVe6trrkZDZkJU//kDnPn3L3dX47g356nfPz5y3lyUx8swYTEcLm/qrGvu5neb0udU8+sxqJpvN5usQKqxRo0YcOXKk1HY5OTl+Vb/ihx9+YMeOHQwePNhbc6MsBg8eTLNmzfjjjz/IzMwkPDy8zOeWJwERHBxMcHBwmdtLzaDPVI7RWJCCNB7kGI0FKag846Gqxo5fJiyq25YtWwBo0aLomuz16tUjLCzM26Y077//PvPnz+ezzz4jKirqpBMW5VlzdvXq1SQlJZ3U9fzZYRs04vjN0dpGlHddNbPVSuA111BnwQKs6enY1q/Htn49h557nryGDck+sy3Zbc8kv24dX4VfomXLlvk6BCmnmvaZmVydiAz5FDJuBiBwWRbfZX6L6V/LUJRFs1pmkrIMkg/k8PycH+hQ213Z4VaZmva5iYc+t5pHn1nNUVVrzlaHiy++mFdffZVdu3aVmJDYtWsXP/74o1/Ndi6t2PaJxMTEsHXrVnJycsqVsBARERERqUn8LmFR3l9y+/Xrd9LXPJZUiIiIKPZ4eHh4mRIPu3fv5tZbb2Xs2LGMGjXqpOOSwuwuCMHl3XYVWNHGGR6O3W4nq0MHwv78k8C0NO+xoF27CNq1i5iFi8iPjeXg4MFkdepYjZEDbjcUfBLd6SR4+3YMuwPDYcdwODA5HJ5t+7Ftz58Z3btjr13be6p1714iV/yM4T52o9hd6A8At9mM22wm7bxzocBN6aBtKQTt2e05brHgNltwBQXiDArCFRSMKzgIZ3Aw7oCAwvFKjeYyWaFRR1Ly/iHe1pJ6+XVw7t7D3rjyJywGNXCRtNlz3rxtJpqGO6kVUNkRi4iInNhDDz1EYmIigwYN4vnnn+e8884rdPzrr79mypQptG/fvkgBa185ePAgn3/+OdHR0UWWfirNkSNH+OuvvwgNDS1nUWwRERERkZrF7xIWAwYMwCjjjVLDMHA4HKU3rCaTJk0iICCAV155pdL6LM+asz169KBZs2aVdm1/88/+bFx/ve7djm3UgKZD/vV+x44FID85mZwlS8hZ/CP5f//tPWxNS6NduzMJK7D8V+7KlRz+3xuYIiIwRYRjCo/AfPRPU0Q4plrh4HZhWK0E9+xZ6HKZc+aQv2UL7tw8XDk5uHNzcefm4srNxZ2T490XfsXlRP3nP8evmZnJvvsfKNP7bnPpZQT37OHdzlmxgv0vvlSmczu++gpGgVoF6c+/QObnpRdrDOzcmfrvTC+079Arr+LKzsYcE+P5io3BXLs25phYzNFRGBa/+3FSqfLy8rwJ1X79+hEUFOTjiMprCPs+mQYbWwIQtyecM6/ogymofJ/bOW43f3/wG8uT0sm0Gyw8XIc3Lu/gt0tD1fzP7fSkz63m0WdWM9WkmbmDBg0qss9kMrFlyxZGjRpFZGQk8fHxAKSkpHD48GEAevXqxXnnncfixYurMdrivffee+Tn53PllVcSGBhY5HhWVhZ79uyhZcuWhfbn5uZy7bXXkpWVxVVXXYXlFP8/l4iIiIic3vzuf7v9+vUrNmHhcrnYvn279wZ+r169CAionMd6j82sKGkWRWZmJlFRUSfsY/bs2Xz77bd88sknlfrUU3nWnA0MDDyl150zzDYC3cdvvgcEl/x+g9u2JaJtW7jlFuy7dpH1ww9kfv89eX/8SfQ552AucF5e2gFsf/xR6vWtzZsR/dVXhfalrfiZI8uXl3quKd9eKFa3243bZMJwuU5wlkcA7kLnOov5BbdYFgshoaGFdpndZVu+JyA8vMjf7e7ERPK3bSv+BMPAXLs2lpgYal9zDRHnH3/K0b57Nwf+978yXbfOPfdgDgvzbmcvW0bW99+Xep6lXj1ib7650L6D78wgP6WEeAsIPasv4UOPJ7DcDgd7H320SDuHw0ndnTtxGwY5GzfijIomfNhQrEdvjgC48vJwZmRiDq+FERRU5uRrdYm/5D4OPjWdXFs3XM5QHF8sJWLCeaWf+C8vXtaZ4S//xIFsGz9tTefDX/Zybb+mVRBx5QoKCjqlf0aeqvS51Tz6zGqO4m6a+6tjNeeK43a7OXToEIcOHSpy7Oeff/abf4/feecdoOTloA4ePEjr1q3p1q0bbdq0oV69euzbt48ffviBnTt30q5dO5599tnqDFlEREREpNr5XcLiRL+MAPz+++9MnDiR0NBQvvnmm0q55rHaFVu2bKFLly6Fju3du5fs7GzvLIaSrF+/HvCsp1uchQsXYhgGHTp0YMOGDScf9Gkoz+7CZTEIPzqpJjVvJ1F4PruMzz/HVKsWlrp1CW7bttB5AQ0bEj1hAtETJuDMysJcq1ah466cnDJdv7h2phJuyBghIZiCgzGFhGAKCcESU7vwccMgfeAAMAyatTmDwLBQjMBADGsgRqAVU2CgdzuwZeHaKsGdOpPw+ecFOjveJ3h+acfpxF3M7KOI0aMJ7tAet93u+bLZcGZn48rMwpmd5fkzK4vANq2LnOvMyir5L8ftxnngAM4DB3DlFS787szI4PAn80o+t4DY226DAgmLvM2by3RuYOvWRRIW2cuWkbN6dannmiMiCiUscLtLvOaxReMy16wBIKjtGYUSFjnr1pF6jecmhBEQgKVuXepNnUpY37NKjaNaBIUTMfJMcj+xAwFk/R1MyM5UAhqVvVYOQGytQF64pAPjZ3j+Hp5ZuIkeTaNp3yiy8mMWEREBlixZ4usQTsqaNWv4888/6d69O+3atSu2TXR0NDfddBNr1qzhm2++4dChQwQHB9OmTRtuvfVWbrnlFiUDRUREROSU53cJi9K0b9+e+fPn07ZtW5599lnuvffek+6zf//+PPXUUyxatIjLLrus0LGFCxd625xIr169yM7OLrI/Ozubjz/+mEaNGjF06FAaN2580vGermwOJ84C9Rj22z11KtxOJ7vvvQ/cboLatydh7scl9vHvZAVA7asmEj3uSpxZWbgyMnAW/Drs+ROTgSU6usi5de6cQswtN3uSE8HBGMEhmEKCCy3DVJKDR5el6jJkSLl++TSHhWJu1bL0hsUIbncmwe3OrNC5CZ/MxZGWhuPAARz70zyvj20XeG2Jja1Q/zWR+V8FL10Fkjpuux37zp3svu8+mn37TbFjzxcsXYYQtuwNsve1Baz89P58Bt17W7n76dcyluv7N+XNpcnYnW7+89F6vvrPWdQKUkELERGpfKX9X9zfde/e3fNQyQmEh4fzf//3f9UUkYiIiIiIf6pxCQuA+Ph4unXrxrvvvlspCYvBgwfTtGlTPvzwQ2699VY6duwIeJaIevLJJ7FarYwfP97bfs+ePWRkZFC/fn3vclKXXnopl156aZG+U1JS+Pjjj2nbti3Tp08vclzKzmZ3YSkwZI0AT/LCmZHhKWoNmKMiK9S3YbFgiYqCUpb++jdrkyYVul5NFFC/PgH165+wjdvl8n4Wx1gTEkj44vMSzijMHBlZaDvyoosIK8MNClMxS1rUf+LxMs2esfz7M7dYio3XZrN5lpVwuehxZjss+TasCQmF44+OJuzswbgys8jfsQPH3r04Dxwg7dVXqXf//aXGUl1CrhjJvpd+J9QVSvPDHfnnh1m0PHtiufu5c0grViWn81vqYbYfzOGhz/7kxUs7+s3SGyIiIiIiIiIiUrPUyIQFQGxsLGuOLstysiwWC9OnT2fo0KH069ePyy67jFq1avHpp5+yfft2nnvuOW8RP4D77ruP2bNnM3PmTCZOnFgpMUjpbA4XARx/etuwHk1YpKd791miis6CkOpT3MwSU1AQQS0rNiPEEh1d7MyWsrCWo/5LQYZhFBuvOzeX/ORkAIK6dil2Vkxo9+6EHl0+zr5rF0nnnoc7L49D739A5IUXEtS66FJbvmCt04BdzT6j5ZZ2mDCxZ0U+zXsdxBRau/STCwgwm3j1sk6c+8pPZNkcfLZhN2e1iGVMl4r93YuIiIiIiIiIyOmtRiYs8vPzWbt2LSEhIZXW58CBA1m+fDlTp07l448/xm63065dO55++uliZ05I9cuzOwkrMGTNVs9rZ4ECi+ZyzpAQqSoBDRsSc8MNpL30Erhc7J32GE0+eN9vZh/0ueIqNj7xHbH2GJrltmH9nKfpcs0z5e6nce0QnriwHbd+5Knj8/Dnf9K5cSRNY8NKOVNERKTiBg0aVOa2hmGwePHiKoxGREREREQqS41KWBw5coS///6bRx99lNTUVC688MJK7b979+58++23pbabNWsWs2bNKlOf8fHxpa5XK2WTn5+P27B6ty1HExaO9AIJi2glLMR/RF99FRkLFpC/fTu5v/5KxuefEzl6tK/DAiAwKJjcnsBPnm3n9k44/lmMpeXgcvc1skMDlm9JY+4vO8nJd/Kfj9Yz/6beBFrMpZ8sIiJSAYmJiaW2MQwDt9vtNw8LiIiIiIhI6fwuYWE2l36Dy+12ExkZyeOPP14NEYm/cOTn4CLIu20O9CwP5TxUcEkoJSzEf5isVuo++CCp114LQM6atX6TsADoOXwUq9bNpXFOQxrkN+Lnz96n3+SeYA0td1+PjGzLuu2HSEo7wl+7M3n62808fP4ZVRC1iIgILFmypNj9LpeL7du389VXXzF//nzuu+8+hgwZUs3RiYiIiIhIRfldwuJEsxECAgJo2LAhZ599Nvfff3+huhJy6nPacnFzvLiyJdAz26LQklAVrHcgUlXC+p5F9ITxhPToSa1BA30dTiEmk4mwEQkwLx+AqIzzOLJwGqHnP13uvkKsFl4d25nRr60g3+lixoptnNWiNoNa163ssEVEROjfv/8Jj0+cOJFXXnmFu+++m0suuaSaohIRERERkZNVtEKuj7lcrhK/bDYbycnJvPXWW0pWnIac+Tm43ccTFgFHExaFloTSDAvxQ3Xvu8/vkhXHtO/agy0xOwCIckaycoMbUtdWqK8zGoRz/4jjhcXv/OR39mXmVUqcIiIi5XXrrbcSFxfHI4884utQRERERESkjPwuYSFSEpc9F9zHl4QKDPK8LjjDQktCiZRf/IXdsOMAoMWRc9k27xlw2CrU14Te8ZzdxjOrIv1IPpPnbMDpUh0fERHxjQ4dOrB8+XJfhyEiIiIiImXkdwkLk8lE586dfR2G+CFXfg4xzuOrmNUKjQDAsFoxRXhea0ko8Xdut5vM778nc+EiX4fildC0JdvaHwTAjImg/RfjWvJihfoyDINnx7SnXrgnobgy+SD/S9xaabGKiIiUR3p6OtnZ2b4OQ0REREREysjvEhahoaGccYYKtUpRbnsecfbjRdnrRtQDoMGTT9Bq9Spa//kHplq1fBWeSKlcNhup113Prv/cyt5HH8WZmenrkLz6XjIKo65nJoTTXZ+Mpdmw988K9RUVauWlyzpiMjzbL/6whXXb0ysrVBERkTJZtmwZP/30E82aNfN1KCIiIiIiUkZ+V3S7RYsW7N+/39dhiD/KL1x027AWzrcZFr8bziKFmAIDMYWEAOBMTyft5Veo99CDPo7KI8ASQN3x3dj3wmrcTjNHHEMJmvMKwf95Hczl/97q2bQ2twxqwSuLt+B0ubn1ow18c1tfIoIDqiB6ERE53UybNq3EY1lZWfz9998sXLgQl8vFpEmTqjEyERERERE5GX53h/fKK6/kgQceICkpSU9DSWGOXNwcr2FhWM0naCzin+reew/Zy5bhzs3l0EcfEXnRhQT5yawyS+1gIs5rxuHPUwDYt+98whNfJXrw7RXq79ZBzVmVdJA1KensOpzLffN/57XLO2MYRiVGLSIip6NHHnkEwzBwu0uuk2QymbjtttuYPHly9QUmIiIiIiInxe8SFpMnT2bZsmUMGjSIp556igsvvJCgoKDST5RTnz0PtzvCu2lY/G5FM5FSBdSvT8xNN5L2/AvgcrF32mM0+fADDJN/jOfQno3I/jUZR6oJizuSDStgQPstmGJblLsvi9nES5d1ZPjLP5GRa+ebP/by0ZpULu/RuAoiFxGR08nUqVNLPGa1WmnYsCGDBg2iUaNG1RiViIiIiIicLL9LWDRv3hy3201qairjxo1j3Lhx1KlTh+Dg4CJtDcMgKSnJB1GKLxjOXFICGtAgH/INO4bJwL5vP3sfeQRzVBShvXoScf75vg5TpFS1J0wgY/4C8rdtI3fDBjIWfEbkRRf6OizA83PVNKYlWa9soJYzjJY5Xfn5w//jrFtfggrMjGgQGcwzY9pz/XvrAHj0y7/oGh9Fy7qqNyMiIhV3ooSFiIiIiIjUXP7xSG8BKSkpbN++HQC3243b7Wbfvn2kpKQU+yWnD5PDhsXtqWFhM+UD4Ni/j+wlS8iYP5/c9et9GZ5ImRlWa6HaFfuffx5nRoYPIyqsTt36HB5wfDt23wh2L3mzwv0NbVuPcT2bAGBzuLjlw1/JsztPMkoRERERERERETnV+F3CYtu2bWX+Sk5O9nW4Uo1MzlwCXFYA8k12wFO4+BhzVLRP4hKpiNDevak1fBhwvAC3P+l1znA219kKQKgrhK3LTDgPp1a4vwfObUPrep5ZFf/sy+axrzZWSpwiIiIiIiIiInLq8LsloZo0aeLrEMRPmZw2rG5PwsJ+NGHhOHTIe9wcFeWTuEQqqu4995C9dBnunBwOzZlDxEUXEty2ra/D8up6zWhSnv2J2o4omua1YdmsNxh42+MVWhoqKMDMq2M7cf7/LSfP7uKD1Ts4q3kMw9vVr4LIRUTkVDNt2rSTOv/hhx+upEhERERERKQq+V3CQqQkZqcN69EZFg6zZzkZZ/rxhIUlWgkLqVkC6tUj9uab2P/8C4T17Ys7P9/XIRUSERGFa2gofO3ZbrxvEMk/zqLp4Ksq1F+LurWYen5b7pv/BwD3fPo77eMiaRhZtEaRiIhIQY888ghGBRLmxyhhISIiIiJSMyhhITWGyWkj4OiQdZgdADgLzrCI1pJQUvNEjxtH+IgRBNT3z5kGnfoO5ocNb9F6VxsC3VZSlwXQqOs+rBF1K9TfZd3iWL7lAF//sYfMPAe3fbSeOdf1xGL2uxUKRUTEj/Tr16/EhMXSpUupW7curVu3ruaoRERERESksvllwmLHjh089dRT/PDDD+zatQubzVZsO8MwcDgc1Ryd+IrhtntfO80uAByHCtaw0AwLqXkMq9VvkxXH9Jl0JX899Q318usSZ2vC8hkzGHT7fRXqyzAMnrywHRtSD7PrcC6/bD/EK4u3cMeQVpUctYiInEoSExNLPGYymRg+fDgzZsyovoBERERERKRK+N0jrZs2baJTp0689dZbJCUlkZeXh9vtLvbL5XL5OlypRiac3tcuixsA56HD3n1KWIhUjeDgEMJG1sFx9Huw5b5e2Fb8UOH+IoIDeGVsJ8wmz5Oyry7Zysqkg5USq4iIiIiIiIiI1Fx+l7B44IEHOHToEEOGDGHVqlVkZGTgcrlK/JLTh8nl9r52HZ0b5Ew/PsPCEhlZzRGJVC63w0HWj0vI27jR16EU0bprPxyt9hzdMnPom0O4sjIq3F+XJlHccU5LANxumPzxetKP+FcNDxERERERERERqV5+l7BYunQpjRs35vPPP6d79+7UqlXL1yGJH3A4XVgKjFZ3gOfPYzUsTLVqYVitPohMpHLYtmxh68BB7LzpJg5Of8fX4RSr2bhLCQjyJC0cznoc+r+5uO15Fe7vxv7N6NO8NgD7Mm3cPe833G53KWeJiIiIiIiIiMipyu8SFjk5OXTv3h2rbj5LATaHixiH2bvdOKoxAOHnn0fEhRcSPmyYr0ITqRTWJk1wH63Jk/X99zgKFJT3F4bFRPSVnTDwJClyM1qz+tVnwVGxmREmk8GLl3QkOtTz8/6Hv/cz++eUygpXRERERERERERqGL9LWDRt2pQjR474OgzxMzaHi3D38YRF3ciGAMTefDMNnnyC+o9N81VoIpXCsFqJGD0aALfdTuYXX/g2oBIENG9B9LBQ3HiW5Gu0fwAr374fnI4K9VcnPIjnL+7g3X7ym02sTUk/wRkiIiIiIiIiInKq8ruExbhx41i2bBlpaWm+DkX8SJ7dSRCGd9sICvBhNCJVI3LMRd7Xh+fN89vlkYIH9GZrqyTvdp0dw9n07hRwOSvU38DWdbjmrAQA8p0uxr+zhhVbD1RKrCIiIiIiIiIiUnNYfB3Av02ZMoXFixczfPhwZs2axZlnnunrkMQP2BwurO7j+TUjwHyC1iI1U2CzZgR36ULuunXYtmwl77ffCO7Y0ddhFav/hIn8+PIsWu9rQaDbSs7Ws9kz9w7qX/IimMqfC79nWGu27M9m2T9p5NqdXDVrLa9f3pmzz6hbBdGLiEhN8+67757w+NatW0/YZvz48ZUdkoiIiIiIVAGfJywGDRpUZJ/dbufXX3+lY8eONG7cmMaNG2Mq5gaYYRgsXry4OsIUH7M5nLhMJgKPPsBtM+UTZreDYWBYfD6MRSpN5Jgx5K5bB8ChefP8NmFhMpnoe9PlrHluPglZcUQ5I9m+sRvhX95J6MjnwTBK76QAq8XE2+O7cMuH6/l+4z7yHS5ueH8dL13WkfPaN6iidyEiIjXFxIkTMUr4t8UwDFasWMGKFStKPK6EhYiIiIhIzeDzO72JiYklHnO5XKSkpJCSklLs8ZJ+aZFTT57dxb5AK23tnu1NWZtpv3gzu26/A3N4OLF3TiHq4ot9G6RIJQgfOoR9TzyBKzubzG++pe6992EOC/V1WMUKDAyi7Q3nsP3ln4nNj6ZRfhPWbEijX8D9mIc/We6kRaDFzOtXdObOT37j8w27cbjc3PrRenLznVzcNa6K3oWIiNQEjRs31v/9RUREREROAz5PWCxZssTXIUgNYLM7MdxW77Yl0Ipjz15wu3FmZGCYfT6URSqFKSSE8PPO5fCcj3Hn5JD5zddEXXKJr8MqUXTtWA6Pb0XOjB2EuIJpkduVJes+52zrNBj8cLmTFgFmEy9c0pHgADNz1qbicsNd834n1+5kfK/4qnkTIiLi90p6gElERERERE4tPr/L279/f1+HIDWAzeHC4Hih7YDAAJyHDnm3zVGRPohKpGpEjrmYw3M+BuDwJ/P8OmEB0LR5a9adl0bgFy7MmGh9ZBTLV73GWQHPQv+7y92f2WTw1IXtCLaambkiBYCHP/+LnHwnN/RvVsnRi4iIiIiIiIiIvyh/ZdRKNmjQIJ555hlfhyF+zpZvx+D4DIuAwECc6ccTFpboaF+EJVIlgs9sS2jvXkRPGE/9Jx73dThl0qV3X5K7H/Zux2Vfh23xAljxcoX6MwyDh887g5sHHk9Q/PfbTbywaDNut/tkwxUREak28fHxGIZR7NeAAQOKtLfZbEybNo0WLVoQFBREgwYNuO6669i/f3/1By8iIiIiUs18PsMiMTGR+Ph4X4chfs5uyyGAIO+2NSjwXzMsonwRlkiVaTxjhq9DKLf+o89nSdo8Wm2rj5kADuY/QJ2Fd2CxBEGP68vdn2EY3DW0NSFWC88u3AzAKz9u5Ui+kwfPbaO1zEVEpMaIiIhg8uTJRfb/+/cgl8vFqFGjWLhwIT179uSiiy5iy5YtTJ8+ncWLF7Nq1SpiY2OrJ2gRERERER/wecJCpCwctlysBWpYWAODcBxK926bNcNCxOdMJhODJo3hwMy/sG09jIsIDtgfps43d2IyW6HrVRXq9+aBzQmxmnn0y40AvLN8Gzn5Tp4YfSYmk5IWIiLi/yIjI3nkkUdKbTd79mwWLlzI2LFj+eCDD7zJ+TfeeIMbb7yRBx98kDfffLOKoxURERER8R2fLwklUhbO/BxM7kDvdmBQEM5Dhz0bAQGYQkN9E5iIFGKYTdS+og2W2GAAHO4mpDruxf7lFNjwUYX7vapPAk9f1M5bw/ujNTuY8slvOJyuyghbRETEL7z99tsAPPXUU4VmEl5//fU0bdqUDz74gNzcXF+FJyIiIiJS5TTDQmoEhy0Xg+MJi+DgEHLSPTMsLFFRWhpGTlmOgwfJ+OxzbNuSafB4zahnYQq2EDOhLftf24Ar14HZ2YVlgffR97P/YLVY4cyLKtTvpd0aExRg5o65v+F0uVmwfhe5+U5eHtuRQIu5kt+FiIhI5bHZbMyaNYvdu3cTHh5Ot27d6NGjR6E2eXl5rF69mlatWtGkSZNCxwzD4JxzzuHNN9/kl19+oW/fvmW+9s6dO094fM+ePd7Xubm5SoicgvSZyjEaC1KQxoMco7EgBZVnPFTV2FHCQmoElz0Hc6EZFsHeGhaqXyGnsh0Tr8K2ZQsAMZMmYa0hNX8sMcEwpi7297cT4LbQKqcnK4Ifove8Gwk0W6HN+RXqd1THhgQHmLnlw/XkO11899dernt3HW+O60JQgJIWIiLin/bu3ctVVxVeGrFbt2589NFHNGvWDICkpCRcLhctWrQoto9j+7ds2VKuhEVcXFyZ2y5btoyYmJgyt9evkzXDokWLqulKGg/+TmNBCtJ4kGOqbyyAxoP/K894OHDgQJXE4BdLQs2ePRuz2VzuL4tFg/x04crPxVKghkWA04nbbgfAHK2EhZy6IkaN9L4+/Ol8H0ZSfg3aNuXACBP5hud7tUVuZ1bxCDmfXA//VPw/REPa1mP6hK4EBXj+CVv6TxoTZ64h2+aolLhFREQq01VXXcXixYvZt28fR44cYf369YwbN461a9cyePBgsrKyAMjIyAA8BbqLEx4eXqidiIiIiMipyC/u+Lvdbl+HIH7OlZ9L03wTDsBtOAgIDqHJhx/iPHwIU4jqV8ipK2L0aPa/9DI4HBz+bAGxt/4HIyDA12GVWbe+/fnVuoLwz3IJcgfSLK8d6wKn0enjawm7fBY0G1ihfvu1jOXdq3tw9ay1ZNscrEpOZ9w7q5k1sTsRITXn70dERE59U6dOLbTdsWNH3n33XQDee+893n77be64444qu35qauoJj+/Zs4fu3bsD0K9fPxo1alT2zlf+eDKhSTUZMmRI9VxI48HvaSxIQRoPcky1jQXQeKgByjMeSlt6tKL8ImExbNgw7rnnHl+HIf7Mnosbz9NmhtmFERBASOdOPg5KpOpZYmKoNXAgWd9/jzPtANnLllFr8GBfh1UunXv04Y+AtbjmHSbEFUSCrRW/8yhnfHQtkVfOhvg+Feq3e0I070/qwYQZa8jItbN+x2HGvr2K967pTu2wwNI7EBER8aHrr7+e9957jxUrVnDHHXd4Z1aUNIMiMzMTKHkGRknKk4AIDg4mODi4XP2L/9NnKsdoLEhBGg9yjMaCFFSe8VBVY8cvEhb16tWjf//+vg5D/Jk9F7e7jue1WTNy5PQSefEYsr7/HoDDcz+pcQkLgHadu/G3dQNZH+2lljOUxrZmbHI/SosPJ1F73LsQ161C/XaMi2TOdT0Z985qDmTns3FPJpe+tYoPJvWgbnhQJb8LERGRynOsVsSRI0cAaNq0KSaTiS1Ha1f927H9JdW4EBERERE5FfhFDQuRUjlyceN5YtqwKGEhp5fQPn2w1KsHQPZPP2Hfu9fHEVVMmzM7Yh4fR4YlG4BG+Y1JyX0E+7vXwO4NFe+3fjhzrutFvaMJiq37s7n4jZWkpudURtgiIiJVYvXq1QDEx8cDnifUunfvzubNm9m+fXuhtm63m++//57Q0FC6du1a3aGKiIiIiFQbJSykRjAceTiPJiyyjDzyNm8m8/vvyVm3DufRQoUipyrDbCbywgs9Gy4XGQsW+Dagk9CyVVuCr25KeoBnuYu69gYcyH4Ax6xrYN9fFe63eZ0wPrmhF3HRnumIO9JzuPTNlWw7qKSFiIj4zqZNm8jJKfpv0aZNm7xL4l5++eXe/ddddx0A9913X6E6f2+++SbJyclcccUVWrZBRERERE5pSlhIjeC252I6uoJZGllkfvklu/5zK9uvuJK8vzb6ODqRqhd50YVgGAAcnvcpbpfLxxFVXNOmrYi67gzstTw3YpzuBqRl3o99xrWQ9k+F+42LDuGT63vTLDYUgN0ZeYyf+Su7j1RK2CIiIuU2Z84c6tWrx3nnncfNN9/M3XffzejRo2nfvj179+7lvvvuo1+/ft72EyZMYOjQoXz00Uf07t2be++9lzFjxnDTTTeRkJDA448/7sN3IyIiIiJS9ZSwkJrBaTv+0uzEkX7Iu22OjvJFRCLVKqBhQ0L7eIpTOw4eJD8pyccRnZy4uKbE3dIDS23PzCkndUjLuIf9M64/qeWh6kUE8fH1vWhdrxYAB47k8+pGMzuyKyNqERGR8hk4cCDDhw/nn3/+4f333+fFF19k9erVjBgxgoULF/Lkk08Wam8ymfj888955JFHSEtL48UXX2TFihVcc801rFy5ktjYWB+9ExERERGR6uHzotuuGvyUsFQjR773pcvswnnoeMLCEqWEhZweal9zNWGDBhJx3nmYw8N9Hc5Js0QEEntDRw68/Rv2/Xm4iOZgxt3snzmZM88eC92v884qKY+YsEDmXNeTCTPX8lvqYXIcBv+30Uz9FnsZ0z2hCt6JiIhI8fr370///v3LdU5gYCBTp05l6tSpVRSViIiIiIj/0gwLqRnczuMvLW6c6enebXNkpA8CEql+ob16EX355adEsuIYcy0rsTd05EhtT1KyliuM0KypLPv+J/j4Ssg9VEoPxYsMsfLBpB50bRIJgM1pcOf8jdz60XoycuyVFb6IiIiIiIiIiFQiJSykZnAen4njDgDH0RkWpvBwjIAAX0Ul4nOu3Fxfh3DSTCEB1L++C8mRuwEIwELT7Ov5fktz8v83AFLXVKjfsEALb13Rgc61j//8+OK33Qx9aRnLtxyojNBFRERERERERKQSKWEhNYLhdntfuy2Gd0koLQclpzNbUhLJI0dxaO5cX4dy0sLDI+k15UI2Ndvt3dfmyNmszvgPB2aOheUvQgWWEAwOMDOhpYvxLZyEB3lWQdybmceV76zm0S//Is/uLKUHERERERERERGpLkpYSI1g4njCwmQBV1YWAOboaF+FJOJT9n37SblsLPbUVPZOe4wjq1b7OqSTFhAQwNnXXsq2ftnYDQcACbZW7Mp/gU1LPoIPxkB2WoX67hLj5vMbu9OneW3vvpkrUjjv1eX8uSujUuIXEREREREREZGTo4SF1Agm9/HCu+aCrzXDQk5TAXXrEHnhhZ4Nh4Odt92Gbds23wZVSfqOGE7O2AgOBWQCUNsRTUDOU/y83QRv9IFtyyrUb73wIN67ugdTzz+DQIvnn7+t+7MZ/doKXluyFafLXUoPIiIiIiIiIiJSlZSwkBrB5D4+VC2u40u4mKOVsJDTV5277yKsf38AXBkZ7LzxJpwZp8ZsgbbtO1P3ls5sr7UXgEC3lcbZt3Ho0HDcs0bDkifBVf7lnEwmg6v6JPDVf86ibQNP8XKHy82zCzdzyZsr2XEwpzLfhoiIiIiIiIiIlIMSFuL33G43oS6zdzvYEuRZCspkUg0LOa0ZZjMNnn+OwBYtAMhPSWHnbZNx2+0+jqxy1Klbn653ns+mxru8+444x3DA/hCuxP+D2SMhc/cJeihZi7q1WHBTH24e2AzT0Ulb67YfYvjLy/h47Q7cbs22EBERERERERGpbkpYiN9zuNwk5Ad4t1t3HkTLn1fQ+s8/iPnPf3wYmYjvmcPCaPS//3nrueSsWsXex584ZW64BwYGMeiGSzANq8OxzILN1ZX9+S+Sv207vHEW/LOoQn1bLSbuGtqaudf3onF0CABH8p3c8+kfXPvuOg5k2yrtfYiIiIiIiIiISOmUsBC/Z3O4COD4DAuT1fPaMJkwWa2+CkvEb1gbNaTR//0fRoAnsXf444859N57Po6q8phMJhoMaEXMNWdiCrUA4HA3INX+Isvzu+L64GJY9CA4KzazpGt8NN/c1pfLusV59/3w9z6GvriM7zfuq5T3ICIiIiIiIiIipVPCQvxent1JgPt4wsKwmk/QWuT0FNK5E/WfeNy7ve+/T5O3ebMPI6p8Qc0iqXNLJyz1QwEIdAcRn/0fEk0PcXjlbJgxDA5tr1DfYYEW/ntRe94e35XaoZ5E6MEj+Vz77i/c++nvZNsclfY+RERERERERESkeEpYiN+zOVyYjQIJiwANW5HiRIwcSe3rrwfDoM5ddxHYsqWvQ6p0lqggoq5rw6ZGx+tatMztwQ77a6zfC7zRFzZ+UeH+zzmjLgtv78fZbep6981Zm8qIl3/il5T0kwldRERERERERERKoTu/Baxdu5YRI0YQGRlJaGgoPXv2ZO7cuWU61+128+2333LjjTfSvn17IiIiCAkJoUOHDjz55JPk5eVVcfSnLpvdyVZrkHd75/wP2H3Pvez779M4s7N9GJmI/4m97VbiP55D7asmYhiGr8OpEoHBwZx9y2WknmMj25wDQLQjitgjj/CD4wpsH18NX98J9or93I0JC+Tt8V14+qJ2hByd0bUjPYdL3lzJsws3ke9wVdp7ERERERERERGR45SwOGrJkiX06dOH5cuXc8kll3DDDTewd+9eLr30Up5//vlSz7fZbIwYMYKZM2fSoEEDrrvuOq655hpyc3N54IEH6NevHzk5OdXwTk49eXYX+Uagd9vx+29kfP456bNmnbI3ZEUqyjCZCG7fvsh+1yn486fX4LOJvKUtSVG7vftaHxnBBverbFn3I7xzNkZ6UoX6NgyDS7s15tvb+tKlSRQALje8tiSJC15fwZZ9WZXyHkRERERERERE5DglLACHw8G1116LyWRi2bJlvPXWWzz//PP89ttvtGzZkvvvv5/t20+8LrrZbObxxx9nz549fPfddzz77LO8+uqr/PXXX5x//vmsXbuW1157rZre0anFZndgdh8vrm1kZnr+tFoxQkJ8FZZIjZHx5VckDR9xytW0AKhXvxFn3TmGLV3TyTc8Rbcb5jfCkvscS9PaYJ05hEbpP1e4/ya1Q5l7fS/uGtoKi8mTIP1rdybnvrqcGcu34XK5K+V9iIiIiIiIiIiIEhYA/PjjjyQlJXH55ZfTsWNH7/6IiAjuv/9+8vPzmT179gn7CAgI4IEHHiAqKqrI/vvuuw+ApUuXVnrsp4N8Wy4mjics3IcOAmCOji40w+LIYRsHd2fj1HItIl5HVq9h9/3349i3j+1XjuPImjW+DqnSmc1mBo4ZhfOquuwKSQMgwB1AsyPjOZhzHx1SPqHT9rch52DF+jcZ3DywOZ/d3IfmdcIAyHe4mPbVRi6fvoo/d2VU2nsRERERERERETmdWXwdgD9ITEwEYMiQIUWODR06FDi5ZENAQAAAFkv5/7p37tx5wuN79uzxvrbZbOTm5pb7Gv4uJ+sQFvfxJaFc6Z4bkqaICO/73bX5MAvf+BsAwwS1agcRWTeY/le2ICDQXLRTHytY00T1TWqGmvqZueMaYW3divw//sSVlcWOSdcS++QThA4e7OvQKl2juKbE3FqftZ8s4oykhgDYXB3ZZ/s/YtJeI/DNnth7T8bR5RqwBJXSW1HNoq18MqkLLyxO4r3Vnp/Nq5LTOe/V5Qw7ow7/GZhA05jQSn1Pp6ua+v12OtNnVjPZbDZfhyAiIiIiIlKIEhbAli1bAGjRokWRY/Xq1SMsLMzbpiJmzJgBFJ8QKU1cXFyZ265evZqkpIqt1+7Ptu0/RPcCCQvyPTdCDrlc/LloEQDpvwcBnsSQ2wWZaXlkpefyY+JiCpa5yNxqxZZuJiDMhcnqxjC7MUx4/jSDYfL8aQl2YQk9vtSL2w2OIyZwe/p3uwC34XntBlzG0X0QWNuJOfD4ufas/2fvvsOrqNIHjn9nbs9NbnoBkhBCB5EmRYqACLjq2hVZG/Z1xXUt66pr27Utq7uuZX92xbJ21l5AsSBIb0pvISQkIaSX2++c3x+X3OSS0FwgCbyf55knuWfmzJybmblJzjvnvDqeEjNKgTK0yD4wbCil8eGqxSgFmgZJ/aM7eWq3WvGUmsL738fPyJYUIqFXdKdD+Qo7IZ8Wfv+7l8bvFRqADs5OAeypoUg9IwB1263hn4Xe+DOJ/JzM4de6WWGyh7c51sydO7e1m3BQtAsvpKM/gHPDBvD7Kf3j7ZSefRbVw4e3dtMOjzQH661V5G5xYfXrKOKoCNxBmbaU1LnPkvjjM6ztcAE7EofxSy7gE3SI663x9ladCl/4A+bLtaXMWruToamKU7MMkmz72Yk4YO3tfhNyztqTsrKy1m6CEEIIIYQQQkSRgAVQXR2eziM+Pr7F9S6XK7LNwfriiy947rnn6N27N1ddddUvbuOxTAsFMKvwNCw+GjvlQ87GJ5mDdY2djpa4EMF6HXOswZ45uX2VJnzlZnz7mRkmNsdPQu/GY6kQ7PzhwJ6cTh3mxmRrDAAE6nVqNu+/91LTFfSPLgu6NfyV+79NTfbm02D5q02EPPvvjLUlhoAmAQu/Rs3GA+ttTR9djyW28djuIjM1m61oJsKBkb0wxxgkD4gOzlStteGr2v9omJgOAeK6BKLKdv54YLlMEnp7sSU2ttdXqVO17sCetE8fEZ20ur7QjGenuTGYozcGv9DDZSabgSMjiN7Kn7TKamXH5ZeR/v5M4pcvR1OK9A8+xFRbR8Up42l2oxwF6hMM1vavJntrDEnl4es5xX8CnsC/2eCcyahtz9N11yxWd5pCRWzPg95/zwTFnweE+HGnxqwdOnUBDYXGol0aS8s0RqYrJnQycFn3vy8hhBBCCCGEEEIIESYBi8NoyZIlTJ48mfj4eN577z1stoN/5LagoGCf64uLixk6dCgAw4YNo2vXrr+orW3ZNz/MxVJYD0BA80fKO/XuzfETJ6KU4o1vlwAhYhNtXHjvIJSh8HmC2J2WqH19sGoVPqI7nlvStXsXBk/MjrwOBQ1e/WrRAbX3hMEn0KF7Y/Br++oKvl6x/2THmqY3G4XzY81W1hfs3L3B3uumpaVxysReUWXvLFhGvce/lxqNjju+Lz2GpUVeVxa7+WDuqv3WAxh78micCY3X9ervili8at8J6gGc9lgmTjwpqmzW1rXsOIDAYOaATIZNzIkqe/mLBQfU3oH9TyCzV0LkdeH6KmYvXHdAdU866aTIU8MnnXQSq74sYc3PxfupBarUwWnT+mKPtex328NNnXoqlU8+Sc2McE6elK+/Jic+nuQ770Aztb2p0w4Fj8fD6g8WkZQHCcFY7MpGj7rfsNIyBrvvGUZveohQj9MIjPkzKungPz9PA+7yh3hjUQEv/bidGm+QkNKYW6KxpNzMpcOyuHJENvGO1j//7YnX64263+z2g5/CSxxZcs7ap6NxZK4QQgghhBCifZOABY0jK/Y2iqKmpqZZMu39Wbp0KRMnTkTXdWbNmkXfvn1/UdsyMzMPeFubzYbD4fhFx2nLNCOARYUfUw4pfyRTvD0tFYfDQX2Vj4A3PEIgqaMz8jOIaWFAxJR7huGpDVC1sx6fO0gwYBAKGAQDBkF/KPK6Y/eEqJ+lMhS9hmegm3V0k4bJFP6qmzV0k47JrKHr4bLUzAQcjsaOmqyeqZx+gw2Tefd2Jp1A0M+ixQtBU4w+aTSOGDu6rkXVAxj3m96Mu7gPmkZUgvEDcdnDI1GGQhkKY/dXZRD+XimMULjM7rRgdTR+FOgdLJx2fb/wzyLY+PMJBQwCvlB48QYJ+EK4EmOx2hvrWiwWrHYTAV9on1NY6Sa92bVqMpn2GZRpYLaYm1/nB/ijsVmtUXVtVvcB123a+Wa329HUgU0llNwxloTkODS9bYxiiLnjDuzpGZROnw5A3cyZmFB0fOihVm7Z4VOZ4qc03oervIqeeR0xodMx0AkCD/J1zFwGbXqOpM1j4ISrYMyfwJl8UPt3OOCmib2ZOrobL8zdykvz8vAEQngCBs/Py+etpTv47ZiuTB2Rg9Mmv3YPlt1uPyp/tx3N5Jy1H7/kYRohhBBCCCGEOJyk54TG3BWbNm1i8ODBUetKSkqoq6uLjGI4EEuXLmXChAkYhsHs2bMZMmTIIW3vscbwu7GqhPD3KhAJWJh2B5Eqiusj2yZ22Pe0TZqmEeOyEnOQ87Rousb4qX0Oqk6DGJeVnH4pUWUejwfLuvDURK6UvXfs6KZfniBC1zX4BZ3kNoeZLv1Tf9ExB5ySzYBTsve/YQt+/fsBv6gewA3PnPyL6mX3TT7gunsmtB9xfjeGnNGFYCBEaHdwpyGwEwoY1FX52L6mnPGX92kzwYoGyVdMxZySTNGdd6GZzSScd35rN+mws1hsjL5sItu2bqTqg01k1aUD0Mt9Ejv1QayOeYORi57HtOotGH0rDPstWA7uCfF4h4XbJvXk8hE5/Pvbzby5aDv+kEGtN8ijszbwyvw8bhjXjd8My8ZmPjpHtAghhBBCCCGEEEL8L47BdLnNjRkzBoDZuxM4NzVr1qyobfanIVgRCoX48ssvGTZs2KFr6DFK+b3YjXCAwWSChAvOJ/aU8Vi75AJQWdIYsEjKOLA8E0L8ryxWEzEuK65kB4kZTlIy48joEk+nHolk902mz8iOnHptPyy26I7pqp1uDGNf40+OjPhf/5qsZ56h0+P/JGbQwNZuzhHTu29/htxxNpuHV+LWw0GoOCOW3LrfsoB/UulLgq/vg6eHwM/vg9E8P8z+pMbZuP/Mvnz7x7FMPiErEjcsq/Pzl0/WcvJj3/PukgKCoYPftxBCCCGEEEIIIcTRTAIWwPjx48nNzeXNN99k5cqVkfLq6moefvhhrFYrl112WaS8uLiY9evXN5tCatmyZUyYMIFgMMgXX3zBiSeeeKTewtHN50En3Okb67TT4YEHyHr6aZzDwqNe+ozqyEX3DGXi1X3J7H1wU3cJcSTVlHmY+egyPvv3KnyeYGs3h9jRo4gbNy6qzPD7qfv++1Zq0ZFhNpsZe/aZJPyhH+s7FkbKc3zdqfc+QVXgSkJVlTDzKnhxPGyb/4uO0ynBwfTzj+erW8Zw+vEdIuU7qjzcPvMnJj4+l09/KmoTASwhhBBCCCGEEEKItkCmhCLcefXiiy8yadIkTjrpJC666CLi4uKYOXMm+fn5PPbYY+Tk5ES2v/POO3n11Vd55ZVXmDp1KgAVFRVMmDCBqqoqTj31VL766iu++uqrqOMkJCTwhz/84ci9saOE5m+SOLqFK9ZsMZHcKZbkTrFHrlFCHCRlKL58fjXeugDb11Qwc/pSTr/heOJTY1q7aVFKH3uMytdeJ+GC80m/8070mLbVvkMpLa0Dp/x+CssXzkd9WUa6NwkwURc6l/rQqThNH0HxRyTMOA16nQGn/AVSuh30cbqmxvLv3wzid2Or+cfsjXyzvhSArWX1THtzBX06bOGPk3oytmfqQeeqEUIIIYQQQgghhDiaSMBit3HjxjFv3jzuu+8+3nnnHQKBAP369WP69OlMnjx5v/VramqorKwE4Msvv+TLL79stk3nzp0lYPELmJoELDSzdOaJ9knTNUae140vnv8ZX32QyhI37/1tKb+6th+deraNkUGe1WuofO11AKreex/3suV0+sdj2Hv3buWWHV6Dho/EGByibu4Oar7dDkGFIoa60BTqfWexNOYzhq5/H9fGL+GEK2HMHQedmBugb8d4Xp46hKXbKvj7rA0szqsAYG1xDVfMWMIJnRP546SeDMs9+H0LIYQQQgghhBBCHA1kSqgmhg4dyhdffEF1dTVut5tFixa1GKyYMWMGSqnI6AqAnJwclFL7XLZt23bk3sxRRAV8jd9LiE20Y516JnLBHSeQmBEeteCrD/LxEytZ88OOVm5ZmL1vHzo89CDa7iTw/q1b2XbhZCpefRWlju5pi3SLCdf4bDJuG4JzWAaYwsFRpxFDr7oLKPK/zBx9CnWL34AnB8C8f0HA+4uOdUJOEu9cO5zXrhxKv07xkfKl+ZVMfn4hl760iBXbKw/BuxJCCCGEEEIIIYRoXyRgIdq86lBt5HvP8p/ZcMIQ8i64EAgn3F7yWR6bl5VSV/nLOg+FOJLiU2M4708nkN03/BS9YSi++88G5r6zEaOVkzBrmkbCeefRZeZMbH3CoypUIMDOR/5GwW9/S7C8vFXbdySYE2wkntOduN/3Zn32DkKEAIg1nPSsm0yB/2W+CZ1B/dd/CyfmXvkmBDwHfRxN0zipRyofTxvJs5cMolta45R2P2wq45z/+5EznvqBNxdtp87X+vlOhBBCCCGEEEIIIY4ECViINk+FGjvrTF4vRl0dRl0dAMVbqln8SR6zXljNlhW7WquJQhwUm8PM6TccT/9TsiJlP39byPdvbmjFVjWy5XYh5+23SWoyiqz++7lsPfts6ub/sgTU7U18ejKn/O4i9N9lsz5zByHCwaQ4I5Yedb9hW+Alvq0fgfvDm+GxHvDxjZD/IxzkSBRN0zj1uA7M+sNJ/OOC/mQmOiLrVu+o4a4PfmbYQ19z1wc/s3pH9SF9j0IIIYQQQgghhBBtjQQsRJunNXnqXPOHp4cyJSUBUFlcH1mXlOE8sg0T4n+g6xqjzu/OuEt7oe+efmjt/GLy17SNUQy61Ur6HX8i64XnMSWHR4OEdpVRcNXV1M07NoIWAFnZuZwy7SL4bSc2dGoMXMSHXHSvu4S8wMtU1J9GaNmH8MqvwtNFffc3qNx2UMcx6RrnDc7km1vHMv28fhyf2ThVVL0/xJuLtnPGU/M469/zeXdJAW6/jLoQQgghhBBCCCHE0UcCFqLtM5o8sRwKJ+A2JSYAUFnijqxK7CABC9H+9BnZkZMv642mwfCzc8nundTaTYoSO3o0uR99iHPUKAAcAwfiHD6slVt15HXO6cb4Gy8idG0GGzoUYjQJXLiDl1Die5nKwO8IlPvhu0fgif7w8q9g+WvgrTng41jNOpOHZPPxtFF8Mm0UU4ZmEWM1RdavKqji9pk/MeyhOdz70WrWlxz4voUQQgghhBBCCCHaOklhLNo8rUm8QgXDIyzMieFO3YrdIywsdhPOBOsRb5sQh0LPYRmkdY4jsY2OEjKnpJD1/HNUvvEGsSePRzNH/+owPB50h2MvtY8uubk9yb2pJ1s2rmPbFyvpUZKJpkBhpz50GvWhU8mzryDe9AHH5f+Ivv1H+Px26H0G9J8CuWNBN+33OAD9MuN5JPN47jqtNx+tLOI/i7azrjgcoKj1BXltQT6vLchncOdEfjM0m9OP74DdcmD7FkIIIYQQQgghhGiLJGAh2jzdaDIQKDLCIpGAP0RtRTjRdmKGE03TWqN5QhwSbTVY0UDTdZIuu6xZef3Chey49TbSbrmF+HPORtOPjYF7XXv0pmuP3gQrvNTN30H9kp0ofwjQ6eIdDAxmoW0rmD9iSOBbLD+/Bz+/B3Ed4PgLof9vIK3XAR0rzm7hkuGduXhYNisLqnhz0XY++akIbyA8ymNZfiXL8iv566drOW9QJr8Zlh2VxFsIIYQQQgghhBCivTg2epZEu6apxstUNQQskhKpKnHD7tEXSRkxrdE0IQ6bHRsqWT4rv7WbsU8qEKDkwQcJlZdT/Oc/kz/lN3hWr2ntZh1R5iQ7Cb/uSoc7hxL/qy7U2Brz6mT7csmuu5nVoZf51nwhdcRAbTHMfwL+bxg8PxYWPQf1B5a3RNM0BmYn8ugF/Vl01yn85cy+9EhvDExUewK8PD+PU/75PRc+t4CPVu7AFwwd6rcshBDiIOzYsYN//etfTJw4kezsbKxWKxkZGZx33nksWrSo2fb3338/mqbtddm2bduRfxNCCCGEEEIcQTLCQrR5umoyxcnugIU5MZGdJY0dg5K/QhxNVn69nR//uwVlKBLSY8gdkNraTWqR4XZj69oN/+YtAHhWrWLbBReQcOGFpP7hJsyJia3cwiNHd5iJG5NJt+GpLP72WyyL3XRyh89bajCF1LrLKNIvYLtjPp3VJ3Q3tkDRivAy68/QY1J4yqjuE8G8/+nt4h0WLh+Rw2UndmZZfiVvLtrOpz8X4w+GR10szqtgcV4FSU4r5w/OZMrQbLqkyOekEEIcaU899RTTp0+na9euTJw4kdTUVDZt2sSHH37Ihx9+yJtvvsnkyZOb1bv88svJyclpVp6QkHD4Gy2EEEIIIUQrkoCFaPNMNAYsVLBhhEWSJNwWRzW1O9n81zPWcuGdQ0hIb3ujiEzx8WQ+8S/qf/yRkgcfwr91KyhF1TvvUPvll6TefDMJF5yPZjp28ipYbTZGnXoqxkSDVUsWUj23gG7lHQGIMRz0qj8FOIV19m1kh2YSo89HM/yw/tPw4kiCfueHgxcdB8J+prrTNI0TcpI4ISeJe87ow8zlhby5eDtbd4UDuhX1fp6fu5Xn525lRNdkLjwhi5N7p+GyWw73j0IIIQQwdOhQvvvuO8aMGRNV/sMPPzB+/Hiuv/56zj77bGw2W9T6qVOnMnbs2CPYUiGEEEIIIdoGmRJKtHm6ahJXa5gSKiExknAbIFGmhBJHkf7js+h2QhoAAW+IL577Gb832Mqt2jvniBHkfvgBaX/8I3pM+F4MVVdTcv/9bLtwMp6VK1u3ga1A13UGDhvB2D9OxndlCuuzd+DVfJH1cd4cKgO3UhR6hyp+j9/oFF7hqYDFz8ML4+D/hsO8f0FN0QEdM9Fp5erRucy5ZQxvXzucM/t3xGJqDHj8uKWcP7yzksEPfMVlLy/mP4vyKa31Hsq3LYQQYg/nnntus2AFwOjRoxk3bhyVlZX8/PPPrdAyIYQQQggh2iYZYSHavB7exieB42+7ERv1WDtnk5xfjqfGT02ZB1eKoxVbKMShpWka4y7pRfmOeiqL66koqufbN9Yz8aq+bTa5vGa1knzVlbjOOIPSRx+l5tNPAfCuWUPFG/+h04ABrdvAVtSQoLumporlc+aSss5GQk04sKOCFuqCE6ljIludmzHrX3CCfw5WLQi71sPX98Gcv0Du2HCi7l6ng3XfAVpN0xiem8zw3GTK6/rw/rJC3lq8nW3l4VFpgZBi7sZdzN24i7s/XM2g7EQm9U1nUt8MOifLaDUhhDhSLJbw37hmc/N/yebOncuiRYvQdZ3u3btzyimnEBsb22y7A1FYWLjP9cXFxZHvPR4PHo/nFx1HtF1yTkUDuRZEU3I9iAZyLYimDuZ6OFzXjgQsRJumlMLRZIRF0uhRWFLDnXVDz3Ax9IwurdU0IQ4rq93Mr647jvf+tpSAN8TmpaVkdImn//is1m7aPlnS0+j02KMkTr6QkgcexLdxI8nXXhO1jTIM2J089FjiciUw9pwzUWcr/NtrqV9YjPvnXRAMT/+VW98NuJFNpqkUu5aR5f+Y7sGN6Biw5ZvwYo2DvmeFgxfZJ4K+74GSybE2rhvTlWtG57J4WwVfri5h9poSiqrDIyuUgmX5lSzLr+Thz9fTKyOOiX0zmNQ3nT4dXMfcORJCiCNl+/btfP3113To0IF+/fo1W3/fffdFvU5ISOCJJ57gsssuO+hjZWUd+N8Oc+fOJSUl5SD2Lv9OtgezZ88+QkeS66Gtk2tBNCXXg2hw5K4FkOuh7TuY66GsrOywtEGmhBJtWiCkMDX5MNMsx85c+EIkZjg55fI+kdfzZ26maFNlK7bowMUMGUKX/84k67lnsffoEbWuauZMtl10EbXffBMOXhxjNE3D1tlF0uSedLhzGKHxCey0V0TWx4fi6FU5Fmf9P1nOy8yxXc9WvXN4pb8WVrwBM06DJwfAtw9Dxdb9HlPXw6Mu7j+zL/PvOJlPpo1i2rhudE+Lflp3fUktT87ZxOlPzuOkR7/lwU/XsmRbBaHdOVWEEEL87wKBAJdeeik+n4/p06djapLrqX///rz88sts3boVj8dDXl4eTz31FJqmMXXqVD7++ONWbLkQQgghhBCHn4S1RJvmDYbQMdPQpalZJMYmji25A1MZNKkzy2flowzFly+sYfJdQ3Am2PZfuZVpZjOxe8zbrYJByl94kcD27RT+7gZsPXqQfO21uH516jGVnLuByWmh84R+ZI3vy09LF1Px4zZySzIwE/5ZZPjSyPCdDpzOInsRWXxPmvEVZr0UqvLh++nhJfvEcKLuvmeDPX6fx9Q0jX6Z8fTLjOe2ST3ZuquOWWt2MmtNCSsLqiLbFVR4eHFeHi/OyyMl1sqEPulM7JvBiK7J2MzH3rkSQohDwTAMpk6dyty5c7nmmmu49NJLo9afc845Ua9zcnKYNm0avXv3ZsKECdx9992ceeaZB3XMgoKCfa4vLi5m6NChAJx00klkZmYe+M4XfHNQbRGtY+LEiUfmQHI9tHlyLYim5HoQDY7YtQByPbQDB3M97G/q0V9KAhaiTfMFDGp0O7G7IxbuVUuxZXbC3CkT3STBC3FsGHZmF0rzayhcX0nAG6S8qK5dBCxaEiwtRXc05pzxbdxI0W23seupJ0m++moSzjoLzWptxRa2Dl3XGTB0OAwdTkX5Ln6etwh9nZvOVenouwdDdvJ2xGAKJUzB6ijCEfgUq+kHbFolbF8QXr64PZznov9voOs40PcfWMhNjeX6sbFcP7YrJdVevlpbwpdrSli4tXFkRVmdn7cWF/DW4gLibGbG9kpjUt90xvZMI9Ymf0oIIcSBMAyDK6+8kjfffJNLLrmEZ5999oDrjh8/nq5du/Lzzz9TU1ODy+U64LoHE4BwOBw4HJIb7mgj51Q0kGtBNCXXg2gg14Jo6mCuh8N17Ugvg2jTfIEgFbqdWEApg8Irr8Q5ahQbRv6BwvWVJGY4mXBlH5zx7bPzVogDoZt0Jl7Vl9kvrWHUBd1J7vTLkm62BZaOHeny4QfUffcd5c8+h2fVKgAC+dspuedeyp56moQLLyTh/POwZGS0cmtbR1JyKmPOOgPOgpLiQtbNX4ZtQ4Ds2vTINn5PR/xciwpewzbHZgKmhXQ35pMVLITVM8NLbAYcfyEM+A2k9T6gY2fE27n0xBwuPTGHKrefOetKmbWmhLmbduENhCPHtb4gn6wq4pNVRVjNOqO6pTCuVxon5ibTNdUpeS+EEKIFhmFwxRVX8NprrzFlyhRmzJiBvp88RHtKSUlh8+bNuN3ugwpYCCGEEEII0Z5IwEK0aV6fF7PaHYwI+QEwJSVSWezGXe3HU+PHFiOXsTj6OeKsnPWHgc3Ky4vqiImz4ohrP6MSNE0jbtw4YseOxb1oEWXPPYd7wUIgPAKj7OmnqZgxg+7zfkC321u5ta0ro0MmGeeHn4z1ldXj+7kCz6pdBErqAdDQ6OLpDnQHLmWJtYhqyxI68CO9atdi+vFJ+PFJ6NA/POqiz1ng6nBAx06IsXLe4EzOG5yJxx/i+427mL2mhK/X7aTGGwTAHzT4Zn0p36wvBSAtzsbw3GRO7JrMibnJdE6OkQCGEOKY1zRYMXnyZF5//fWovBUHor6+njVr1uB0Og8yKbYQQgghhBDti/T0ijYt4K3HsjtgoRoCFgmJVO50AxCX4sAsibjFMcoIGXz10hrqKn0MOzOXvqM7tqup0jRNwzl8OM7hw/GsXEnZCy9S9+23YBjEnTqpWbDC8HiippM61thSnNjGOXGNyyKws55tC9ZQs7KYdG9SZJsO/o508J8FnMU6UzUltuUkaAvpV7QEW/Gf4Ms/QWIX6DwSOp8Yzn2RlAv7CSo4rCZOPS6DU4/LIBAyWLi1nFlrSpi9Zieltb7IdqW1Pj5eVcTHq4rC7Ym3c2JuciSIkZUUc1h+NkII0VY1TAP12muvccEFF/DGG2/sNVhRW1tLcXExPXr0iCr3eDxcc8011NbWcsUVV2A2y79wQgghhBDi6CV/7Yo2LeDzYFW7nxzfHbDwxaYR3B4CIKmDs7WaJkSrWz13B+U7wk/az317I2vmFTHmoh506JbQug37BRwDBpD176cJFBdT9f5M4safHLU+VFfH5vGn4DzxRBIvmkzMsGHH9JP7lnQn3c8eCmfD1q0b2LZ4DdatIbJr0iI5LxJC8SS4xwHj2IUXu74ch74Ee8UyTJVvwMo3wjuLTQ8HLhqCGGl99pn7wmLSGd09ldHdU/nrmcfx845qFmwtZ8GWcpZsq8DtD0W2La728t8VO/jvih0AdEpwREZfnNg1mY4Jx24ASghxbPjrX//Kq6++SmxsLD169ODBBx9sts3ZZ5/NgAEDKC8vp1evXgwZMoTevXuTkZHBzp07+frrryksLKRfv348+uijrfAuhBBCCCGEOHIkYCHatKDXjcMIByxUMBywqDM3Pk2cmCFP64pjV7fB6ezKr2X9whIAygvr+O9jy+k5PIMTz+naLnO7WDp0IPXGac3Kaz75BKO6mtovv6T2yy+x5uSQcMEFuM44HUt6egt7Onbk5vYkN7cnALt2lbBu0XJCG2rILkvF1hDwxY7XGIHXGAFBqDHnU2T7iRSW0qd2Fda1H8LaD8Ob2uIhe9juIMYI6DgQzC1fS7qu0T8rgf5ZCfx2TFcCIYOfCqtZuLWchVvDAYyG3BcAO6o8vL+skPeXFQLQOTmG4V12TyHVNZl017E9BZgQ4uizbds2AOrq6njooYda3CYnJ4cBAwaQlJTE7373OxYvXsznn39OZWUlDoeD3r178/vf/55p06ZJUkwhhBBCCHHUk4CFaNP83rpmIyxqiYusT8yQERbi2BXjsjJ+ah/6jO7E3Lc3UFZQB8CGhSXkrdzF0F/nctzYTpja0TRR+2JKTiZUXg6Af9s2Sh99lNLHHiNm6FBcZ5yOa+JETPHxrdzK1pWamkHqGafBGeB21/HzkiW4tpmJ327BqA9EtnMFO+MKdgZ+Tb7mpdC+Ft20gq7GQjJ9xbBpdngBMNuh0wmNU0hlDQVbXIvHt5h0BndOZHDnRG4Y1w1/0GBVYRULtoQDGMvyK/EFGwMY+eVu8svdvLO0AIDcFCfDuyYzKDMOjx9c7Sc1ixBCtGjGjBnMmDHjgLZ1uVw8/fTTh7dBQgghhBBCtHESsBBtmt9dh4lYoDGHRa3PBoQ73hI7yAgLITp0jeeCO4ew9ocdLPxoKz53EL83xLz3NrF2fhGnTO1DanbLHcztReKUKSScdx61c+ZQ+fY7uBctCq9QCveiRbgXLaLkrw+QfPllpN12W+s2to2IiYll2JhxMAaUofAX1OLdUEHNup2oYm9k6iiHstPdMwgYBFzFUksJVdaVxLOC3qFVxAbrIH9eeAHQTNDheMge0RjEcLacANZq1hmSk8SQnCR+P7473kCIlQXhAMaCreWs3F6FP9QYwNhaVs/WsnreXARgJsWmmFW7mkGdk+mflUDfji5irPKnixBCCCGEEEIIcbSS//pFm+bzVMPugAXBcGLX6vrGp8WbjrAIBgIEfT5sTucxPbe9ODbpusZxYzLpOjiNhR9uZe38IlBQVeLGEWdp7eYdEprViutXv8L1q1/hy8uj5tPPqPn0U/z5+eENAgFMydEd50opCIVgLwlOjxWarmHr7MLW2UX8xBzKy0tZv3QF3o2VZOyMJz4YG9k2I5BBRuBU4FQqUdSbd2BVK7Hpq7Hoa7BQCUUrwsvCf4crpfSIzoORkN1iO+wWE8N3J+G+GfAGQizLr2Th7hwYKwuqCBoqsn2ZT+Pz1aV8vroUAF2DHulx9M9M4PisePpnJtAzIw7LUTKKSAghhBBCCCGEONZJwEK0aX6PO/K9CvlRQFV5EABngg2bI3wJ79iwjvcfvJug34duMmGPjSPGFY8jzhVeXPEkZHTghDPOidp/+Y4CQoEAuq6jm83ougndbNr9tfG1yWzGZG7s9DWMEPVVlSjDQBkGhmGgDLX7dWj36/CSnJmNxd44L3tdZQU7Nm2gfsd2QJG3YgkWiwUMhVIGSoX3o5vN9Bg2Mqq9hetWU1VSvN+fW3xaOll9j48q27xkIaFgANDQdA0NDXQt/B51Hc0Uft9JnTKJTWzMExIMBKjeWYJu0jGZLehmc/jnYbFgMpvRTWYJELUhjlgr4y7pRZ+RHfnh3Y0kpMUQmxidF6BgfQWJ6U5iE9tfjosGti5dSL1xGinTbsC7eg01n31GzZdf4jrtV1Hb+TdsIPehh6nr1w9PbCz20aPRrDLPUHJyGiMnTYJJEAqF2Lh+NUWrNmPbZpBVk4qJcIBHQyMQzCRAJvWhMwDYaSmlyrIeq76aHOMnOoUK0cs2QtlGWP5q+ACuzMbRF51HQmpPaOFzwm4xMbJbCiO7hQNNbn+Qpdsq+WHDTr7+aRuFdRBQjfUMBetLallfUhuZRspm1unT0RUOYmTG0z8rgS7JTnRdPpeEEEIIIYQQQoj2RgIWok1TPl/j94afgM2FzxMCohNuL/l4JkF/eFsjFMJdXYW7uipqX6mduzQLWMx65l8Ub9qw33aMnHwpw8+dHHntravj+eunHtB7uPjhx8no2j3yumD1Kj5/+h+R18Xfz26xnj02rlnAYvW3X7Hm+zn7PWbPE0c3C1h8/dL/UV9Zsd+6E6/7Pf1Onhh5XVW8g1f/2DwJclO6KRzEmPrPZ3ClpEbKV331OYs/en+/x0zqlMV5d/4lquyzJx+laOO6/dY9fvypDDvnwshrIxTipZuu2W89gNOm3UanXn0ir7evXsWsZ59ocVtlKDxeDwBvfP0xVz/5YlSgZtlnH7Fx0Xx0kx4OAplMWGOc9Bg2km5DhmMyH9mP2/QuLs67fTBBvxFVHvSH+OqlNfjcQXoMSWfAhGySO8XuZS9tn6ZpOPodh6PfcaT96fZmwbP6L77AXF9PwsKF7Fy4kF1OJ86TRhN38nhix5yEyeVqpZa3HSaTid59+9O7b38AqqsrWbd8BXqBn85VaQSK66Fx0APpgTTSA2nASQCsMVexy7oR9A2kqTV0C23AXlMIP78XXgAcSbuDFyeGp5LqcDyYmo/8ibGaOalHKkOyYjnO2ELIgM79T2TDLi8/FVaxsqCKTaV1hJqMwvAFDVZsr2LF9qpIWZzNTL/dwYv+mfEcn5lAh3i7BFeFEEIIIYQQQog2TgIWok1LDDY+Aa4G5dD76Vl0rDVRUVwfGV3h93rIX7UcAIvNTmKHTrhrq/HUVBMKNCaZdbiaJ+M1QqEDaodS0Z2+un7g08soI7quph/Y1CV7HvNgtHSMPduxN/oeU+cYB1DPCAUxQsFmnfI+t5uaXaX7rW9zNM9F4q6uPKC63vq6ZmUHUg8gGPBHv/b7D6hundfTrOOzamcxRRvWNtt244IfcCYmcfz4SfQbP4m4pJbn+j8cNE3DYos+nxsWleCpDd8X6xeWsH5hCdl9khgwIZvMXontukO3pbYrfwDDbEYPhkdmGfX11H7xJbVffAlmMzEnnEDcyScTN/5kLJ06Hekmt0nx8YkMH3dy5LXhDeLLr8GfV8PaFcvIqEnCohrv9cRgAonBocBQAIoJUm/JJ9NYjVXfgFVbj8ldirbhM9jwWbiSxQlZQxrzYHQ6AazNPwdMOvTpEMfg3DR+Myw8zZTHH2JNUTUrC6r4qbCanwqr2FbujqpX6wvy45ZyftxSHilLjbNFghd9OrjomRFHZqKjXV/zQgghhBBCCCHE0UYCFqJN0/yNAQcsOtbEBFITiUogbDJbOPO2P7Np0Xxi4hMYddFlQHju+qDPh7umGk9tTbOOeIDuw0aSntsNI2Ts7nQPNVmCGIaBEQziSkmLqmeymOk+bASapqPpenhKJV1v/lrXiYmPDpSkZHXmhLPOZ+vWPNA0uvfogdVqRdO08KLraJqGydJ82pq+Y8bTsUfv/f7c4tMzmpWNvPASAj5veKoqwgGMhumnjFAoPJVVKERKVueoerYYJ33HnoIRChEKBjGCAULB4O7vg4QCDa8DmCzRT0xb7HacCYn7ba+jhafc7c64A6prdTialR1IPaBZgMVktuy1rlIK3+4RP/YWjqmMvQe/6isrWPD+Wyz87zsMOfM8Rk+5/IDadzjkHJ/C4HIvq+fuwOcOd+JvX1vB9rUVJHeKpfeIDnQfkk6M6+iYNin5T7ezvE9vnBs20r2qEs+8+RjV1eGVwSDuhQtxL1yIb9NGOjzwQOs2to3S7WYcPZNw9EzixFNz8Ho9bFj9E2UbCjHvCNKxKgmH0TjtmAUzCYGu1NEVGm4LrYpN9i0o0waS1AZyA+txbf0Otn63+yAW6DgwHLzoPBJS+++1PQ6riRNykjghp3Hquiq3PxK8WFVYzaqCKkprfVH1dtX6+HpdKV+vawxKxtrM9EiPpWdGHD3T4+iZ4aJXRhyJzqPj+hdCCCGEEEIIIdobTSml9r+ZaKsKCwvJysoCYOPGjXTv3n0/NdqXH//9b7ILwlMb+TuXkXv9Ofup0T54PB5mzw5PBTVx4kQcLXSAi7Zlf+dMqXAOEiNkoEIhDCNEyZZNrJr9OZuXLoyMcJlw7TSOH3/qEW//nvzeIOsXFLNqTgE1Zd6odZqu0WdUR8b+pmcrte7Q2fO82S0W3MuWU/fNHGrnfEOgsBCAzGf+j7hx4yL1AiUllNz/F2KGDcM5bCi2Xr0OeHTUsSYYDLJ18waKN+QRKKgjocxOhjd5v/V2WkqosuSh6ZtJZiNdgxuIJTxSQqFRY8+k1tGJ9J5DsCR3CSfyjs+E+Cyw7X8as5JqL6sKq/ipMDwSY1VBFTXe4AG9p7Q4Gz0z4uiVEUeP9Dh6Zbjonh6L3XJsJ2/fF/m91j5t2rSJHj16AFBQUEBmZmYrt0i0hqb/TxzsdZBzx2eHq1niENr2t9OPyHHkemj75FoQTcn1IBocqWsB5HpoDw7mevhf/o7cFxlhIdo0U7DxqXXNKh1Fou0Kj5AJJy5n90iTzv0G0LnfAGrLy/hpzpdsXDCP3iPHRtXbuXUzP38zi/4TTyc1O+eItddqN3P8uCyOG5PJ1hW7WPn1dnbm1QDhfB0xcc3zCyhDobXzRMaa2Yxz2FCcw4aSdscd+DZtou6bb3GeeGLUdu5Fi6j77jvqvvsOAD0+npghJ+AcOoyYYcOwde8mAYzdzGYzPXr1pUevvpEywx3AX1gXnkqqoJbavF1YA9F/cqQHMkgPZADhn30FBhssO8kJrcOqb8bu3kycZxX6woXND+pIDAcu4rMgYY+v8VngTCEj3k5GfAaT+oZHnCml2Fbu5qfCKjaU1IaXnbUUVnqa7b601kdprY8fNpVFynQNcpKd4dEYu4MZPTNcZCfFYGrn94UQQgghhBBCCNFWSMBCtGmloWoaZpWvXfUTS15wkTykL8mdnMSnNp/vXIi2KC45hZEXXsKICy5uNl/+ii8/Yc33c1j11Rf0GT2OMZddTUwL+VYOF13X6DY4jW6D06gormfjohI2Lt5Jj2HR04pV7XTz4eMr6D4knZ7DMkjJbL+Juhtomoa9Rw/su58ubsqz6qeo10Z1NXVfz6Hu63DSe1NiIjFDhhA7ZgwJ5517RNrbnugxFuw9ErH3CE+xlhQKkZ+/mR3rt+IrqCamzExGXRJW1RgY09FJD3TAQwc8RmMOjVrTLnZadxDUt+PQtpGm8sh252Hz/AQlPzU7NgBmR3g0RpNghhafRZf4LLrkZEG/bmAK/wlU6w2wcWfd7iBGDet3BzKq3IGoXRoKtpbVs7Wsni9Wl0TK7RadHunhKaVyU2PpkuKkS4qTzskxMiJDCCGEEEIIIYQ4SBKwEG2ax2jsMLJt2sEPfgOW/UxGbjzn3T6YFbM+xWp3kDt4KI7YuH3sSYjWt2ewIhgIsHX5ksjrtT98S97KZYy7/Bp6jRp7xJMBJ3VwMvzsrgw7K7fZsTcsLqG+ysfKr7az8qvtJHV00qV/Cjn9UkjPcbX7kRd7Sr/nbhIumox70WLcixfhXryEUEPuCyBUWUnt7NkYbnezgIVn5UosnTtjTjywXCrHApPJRG5uT3JzG6cZ8wd8bNu8iZIt2/EX1uAsM9OxPhWTih65EhdKJc6TCgyIlJUQotSyk1pzIYYpn1i2kRvcSqragaYZEPRA+abw0hLNBK6OEJ9JXHwWgxOyGByfBX2yYEQWytWPUp85HLxoCGKU1LKptA5/0IjalTdg7M6fUR19CA06xjvISYmhS4qTnGRnJJiRlRSDxSQjdIQQQgghhBBCiD1JwEK0aVqTPMY+U+N82IkdYjBCIX587028tTXYnE6uf/4/zZIoC9GWmS0WrnryRVZ/+xULZr6Jr74eT20Nnz/9D9bO+44JV9+AKzVt/zs6xFoKlPjqg+i6hmGE0x5VFNVTUVTPsi/yccRZ6HxcMjnHp5DVOwmrvf3fh01HXyRdegnKMPBt3Ih70SLqFy3GvWQJRm0tjoEDouqpUIjtV12NUV+PNScHx8CBOAYMwDFwALZuMo1UU1aLjR69j6NH7+MiZSpoECipp35bJdsWb8Dm1jG7DWKaJPUGMGGiQ6AjHQIdgaEA+IEdWgiztRKLXkjA2MRWSyGpxjayQ/nYtCb5K1QIqgvCCwuatU0D0h1JpCdkMSY+K5w/IyuLUFwnikhlvTeBnytMbNgZDmTkV7jZMyOYUrCjysOOKg/zN5dHt1/XyEx0RAUyclKc5KY46ZjgkCmmhBBCCCGEEEIcs9p/r5I4qmlGY+eex9w4giIxw0nhutV4a8Nz7nc+fpAEK0S7ZIuJYfDpZ9Fr5El888pzbFw4D4BtK5cx49bfMXLypQz81Rnh3Bit6KSLejDkjBw2Ly1lw6KSSL4LAE9tgPULSli/oISewzI45Yo+rdjSw0PTdey9emHv1Yukyy9HhUJ4163HnJgQtZ1v82aM+noA/Nu24d+2jeoPPgBAdzqx9+mD/bjjsB/Xl9gxYzDFtv+ptQ4lzaxjzYwjlGxme/kKAE455RSqqsooysuntrAMtcuPs8pKmjshakopAJSJoC+FICnAALJ94eISQpRZK6hxlBGy7sJGEYnBzXTwriPRqKbF+ICnIrwUr4oUmYCs3csES0x4uqkOWQS6d6LcnM4OUtjqS2KtJ55VVXa2lHup9gSa7TpkKPLL3eSXu4FdUeusJp2sJEdkNEZOipPMxBg6JdjplBCDQ/I5CSGEEEIIIYQ4ikkPr2jTdNXYMeOxNg1YxLBp8WeR192HRifMFaK9cSYk8uub72DzkoXMefkZ6irKCfi8fPfaC2xfs4pzbr+3tZuII9ZKv7GZ9BubSX21j/zV5Wz7qYyC9ZUEfeHhUJ37JUfV8XuDLP1sGx27J5DRNR67s3ky7/ZIM5lwHNe3WbnucJB0+eW4V67Au3YdBBo7q436etxLluBeEp4GrNs3c6ICFoHiYlTIwNKp4xGfDqwt03WdTp0606lT56jyQCBAQcFWduYV4C6qop/WC2OXj2CZB0LRwx1MmEj3p5LuTwV6R8o9QJnJQ0KiDbOjDoulDDOFVAXW4/SuI75uC6joKaAaG+CGsg1QtgELkLF7GdywXjOBqxOBTp2osXWgVE+lwEhmozeBn+pcLK10UuFvHnzwhwy27Kpny676Fg+b5LTSKcERXhL3+JrgICHGItePEEIIIYQQQoh2SwIWok3Tm8xl7rY2JiJOTHewaXF4Gg+TxULuwBOOeNuEOBy6DRlOVt/j+eGtV1k1OxyU6zP65P3UOvKc8Tb6jOxIn5EdCQZCFG2sYttPZWT3SYrarmBdBSu+2s6Kr7aDBskdnXTslkCH7gl07JaAM8HWSu/g8LBmZ5N+5x0AGD4f3jVr8KxYiWflCjyr1xAsLgbAlJSEuUOHqLoVr75GxYwZmBISsPfpja1798hi7doNU6zziL+ftsxisTTLiwGgQgbBCi9bN29gR14eqsyPs9pCqjsBm7I2248z5CBQBgFceHABucBJ1AKF5jqq7LV4Y9wouwertRaXqYzUUAHp7k2Yawog6G25gSoE1duxVG8nGUgmHCqZ2LBeByMpBbejI5WWdIpJZWsgkfWeBFbUxJEXTKIGJ+EJqhpV1PupqPfz847onBmR92M10XEvwYxOiQ7S4uwy5ZQQQgghhBBCiDZLAhaiTTOpxku03hpOYGu26NRVbKe+sgKAzscPxOqIaZX2CXE42GJiOOWq6+k9cgybFs+nx/CRUeuNUAjd1HamhTFbTGT3TSa7b3Kzddt+bjJ3v4LyHfWU76jn5+93AOBKsdOxewKZvZLoOSzjSDX5iNBtNmIGDSJm0KBIWbCsDO+aNYRqapo9Be9dvRqAUFUV9T8uoP7H6NwKlk6dsHXvjuu0XxF/5pmH/w20U5pJx5IaQ8/UgfQ8cWCkPBgMUly0nZLthdSVVBIq92Cp0kj3JRPrsYFqvq/4YCzxdbFQF12ugEJC+OMMEjvEY47xY7LWoGk72R5YT1pwB8nuzeg1O8BTude26u4yYt1lxBKeZmpowwpzeAlaYqmzpVNuDgc0tgWT2OhNYK07ngIjhVISUETnRan3h9hUWsem0j0avZvFpJERb6djvIOMeDsZLjtpLjvpLhvpLjvpcXbSXDbslrbzGSOEEEIIIYQQ4tghAQvRppmMxulj3LZEUJCQEcPmpY0ded2HjmiNpglx2HXq1YdOvZrng/j0X9OpKCokd9AQcgcNoWOP3m0qgNHUiHO7ktMvmaJNVRRvrqasoDYqOXFNmZeashKqd3maBSxKtlYTl2zHGX/0jMIwp6QQO2ZMi+ucY05Cc8bg/Xk1oYqKZusDO3YQ2LEDW689RhQEAhTefDO2nBysXbpEFnNi4mF5D+2V2WwmKzuXrOzcZutUwCBY4SFY5iFQ5mHJ2h+xVmsk1DtJDLha3h8mzLUmfLVuwqkyYoAuxNMFH5Cn+am01VIf4yUQ40N3+LDb3LhMlaSGiknxbsNUXQC1xbQYLQHMgToSAnUksIWuwKiGFbsHihi6BY89nUpLOiVaKgWhZDb7E1njjmdbMIlilYyP6FElgZCioMJDQYVnnz+veIclEsRIi2sS0HDZdgc47KTG2rCaJZG8EEIIIYQQQohDRwIWok0zNblEg7unxUhIj2HT4h+BcCLcroOHtlhXiKPRpsU/Rq7/8sLtLPl4JvbYOLoMGEzuoCHk9B+MvQ0lcnbEWuk6MI2uA9MA8HuClGytpmhTFUWbqyjdVksoaNCxW0JUPaUUnz69Cp87iDPeSmpnF2md40jNjiOts4sYV/Opfdq7lGuugWuuQSlFqLwc36ZNjcvG8FfD7cbWvXtUPX9BIXVfz9lzEACmhIRw8CK3C7bdQQzniBHoDseRe1PthGbRsaQ7saQ7cQDjx0yOrPN6PRQXFVBevJO60kqCFV70agNnnZUOwVR0f8v7tCkrGd5k8AJ7xJ8CQLEOpjgbplQLppgQpUYhxWoHdlMtsVoZSYFCUt2bsdXkQ6jlg+hGAKe7ECeFZAKRyRFNuxfAa0+lxprOLj2NApXCVn942qmNvkSKVPLuaaeaq/YEqPYE2Liz5ZEaDZKdVtJcdlKcFoI1Osl2xXBvAIdcZ0IIIYQQQgghfgEJWIg2zWw0dkqGdn+12Sup3lkCQFaffjjiWn76VYijUSgYpEOPXhRv2kDDUAVvXS3r5n3Hunnfoek6mb36kjtoCP0nnobFZm/lFkezOsxR00cFAyFK82ubBSBqyrz43EEA6qv91P9UxrafyiLrYxNtpGbHkdwplr6jOxGbePSMwtA0DXNKCuaUFJwnnhgpV0oRLCpCj4+P2t6/La/F/YSqqvCsWIFnxYpIWff586ICFvULF+FdsxpLdjbW7M5Ys7MkoLEHu91Bl9wedMnt0WydUgrDHSRU4SVY4aW4qIC87Rsx12g43TYSvbHY1V6uTQNC1T5C1eHxGXEkE0f0tGq7gBpTPbW2ejw2D0GrlzhbgL7WEKZgISbvVkzu9Wi+AnSt5eTgdu8u7N5dpAFRaeJ3NytoiaXe0ZEqSzqlehqFKoVtgUQ2eBNZXe9iRzCu2bRTTZXX+ymvbwiohLdzf7iOl68Yttc6QgghhBBCCCHE3kjAQrRpSaHGKaHiTNXUmpOoK18bKes+bGRL1YQ4avUacRK9RpyEu6aavBVL2bp8CdtWLcPvCU/vogyDgrU/U7ptKwN/FZ3nwF1TjSM2Dk1vO1O4mC2mZqMrAHSTxsCJ2ezaXktpfi1+TzBqfV2lj7pKH3mryuh1YvRUUsVbqineUkVyp1icSSaUAu0oyDGsaRqWTp2alceOHUu3OV/j25qHPy8P/7Y8fHl5+LfmEdy5M7Kd7nRiSopOil47Zw6Vr78eVWZOS8OanY0lMxNLx45YOnXE1qMnjn7HHZ431o5pmobJacHktGDNiqNr/1S60pizxDAMKivLKC0qoqq0DE95LUaljxi3ja56Z0I1foz6wD6P4Qo5cbmd4G4sqwKgf+NxMKi21FFnqcNncRO01INWg5lybMFinP5C4lUFaUYZduWJuh/MgTriAxuJZyOdgSFND24GZbMScHbE7ehApTWDXXoaO1QyecFkNvoSWFcXx47aEEGjcVqrbzaUMX9zGSO7pfyCn6oQQgghhBBCiGOZBCxEm5YabAhYGFz01NkAVO3sQVpOMpsXL6DbkOGt1jYhWlOMK56+Y8bTd8x4QsEAhevWsHX5ErYuW0zVzmJy+g/CZI7+iP/osYcoL8inQ/eedOzRm449etOhe482mbQ+LsnOiHO7AaAMRXWZh135tZTm11CaX8uu7bUEfCHMNhOu5OgRAdt+KmP5rPzIa80SiyU2xLzKLaR0dJGYEUNCegyuFDu6qe0Eb34pTdexdOoUDmaMHhW1zqivx7dtG/6teYRqmyf69m/PZ0/B0lKCpaWwdGmkzHXar+j0z39GbVfy1wfQ7PZwUKNjB8zp6VgyMjAlJrapoFhr0nWd5OQ0kpPT9rqNChqEavxsLdxE2c4SfFX1BKt9mOoUNrcJp9dOfCAWi9r7n2w6OokB117zbTQoBzSTgW71YzLV4qOCDVoZqHJMVGKlCoeqIpZKEoxKEowqrCE/1pptWGu2kQB0abZXDZWcgd/ZkTVVFn6o68grwUk8+Nk6Pr1xFCb9KIgWCiGEEEIIIYQ4YiRgIdo0DcvuVKT+SEdbYkYHhp51PkPPOr81myZEm2EyW+jcbwCd+w1g7GVXU1m8A2VETw8TCgbYuXUToUCAbauWs23VcgA0TSclu/Pu4EVPUjt3ITkzC5PZ0tKhWoWmaySkxZCQFkP3IelAOIhRU+6hrsKHtkeHaHlR9Jz7KqDhrzSzcWEpGymNlHful8wZN/SP2rassA5nghW709Ksc7890p1OHH374ujbt8X1abfcgu/XZ+Lfnk8gfzv+7eElVF4etZ25Q4eo1yoUovLddyEYPfIFQLNYMKenY85Ix5KeQfJVV2Lv05g8Xu2uo5nlTxAAzaxjTrLTI6kfPejX4jahUIiqqnIqdpXi8FhJDLoI1fgJ1fjwV3nYumMTsT47rkAspn1M3wSgQjohj50QdjRS6UXPFrfzA6VAnV5PnamWrGA5Jq0Gk1aNTg3FljrKzPU4qCbGXUl83Q56qSoGmRcyVFvPb4rvYuayQi4ckvU//oSEEEIIIYQQQhxLpLdAtFlKKVDhee0Ve8lqKoSIomkaSR0zm5V76+roMuAEijauw11dFSlXymBXfh678vNY9dXnAJx751/oMmBwZBufu56g309MfEKb6cTXdI341BjiU5uPDjnxnK50G5xG+Y56dhVUU5xXieFr3ombsEddpRT/fXQZAV8Ii81EXLIdV4oj/DXZjivZQVxK+HtbTNsJ6Pwv7D17Yu/ZvMM6VFdHYEcRgaIdBIqKsPfuE7U+uGtXi8EKABUIECgsJFBYiAdIvGhy1Pq6H36g8IZpmJKTsKSmYU5rsqSmYk5LJRQfj6m2llBc3CF7r+2ZyWTa50iNdI4HIBgMUllZRlV5GTUVVXiq6/DXeDBq/Wj1ip62bpjdGkadH8Pd8vnbU6zhJNZwEiCDgGpSHoLYJtsZhHOL5+t16DHPcLExh0dnOzj9+A44bfLnphBCCCGEEEKIAyP/QYo2yxc0gN2JeLV9z/EthNg3Z0IiZ932Z5RSVJfupGjjOoo2rKNo03rK8rehVOOIjNTsnKi6GxfOZ/ZzT+JwxZPauQup2TmkZHUmsWMmiR064ohztZlABkByx1iSO4a7Uj0eD7Nnz8YIwOB+I/BUBqnc6aZqp5uMrtHJq93VfgK+EAABX4iKonoqiupbPMaZNw0gq3djPoiaMg8lW6uJTbQTm2jDmWjD1I6nmzLFxmLq2QN7z+aJpgHMqal0nT2LQFFROLCxs4Rgyc7GryUlGNXV4W0zonOMBEt3gWEQ2lVGaFcZrF3b0iHIiYlhy333RpVVvv02vs1bMCcnYUpKxpySjCkpCXNy+KvudLapa/FIM5vNpKZmkJqasd9tVdCgtqqakrId1FVV46muw1frwagLgDuEyQNWrwmH34YrGIM9dGCJ7eOMWMz1N3KJ/Xa+q+vPc99v4ZaJLY/iEEIIIYQQQggh9iQBC9Fm+Xw+fMqOVYO6QDzv3fUhMR12csIZp5CWk3tMd0oJ8UtpmkZCegYJ6Rn0GT0OAL/HTfGmjezM20xVSRHOxOjEzLu25wHgqalm+88r2f7zyqj1dmcsiR06kXXc8YyecvkReR8HS7dAanYsjp6OvW6jlKLv6I7UlHmoKfdSW+HFCKoWt41Lske9LtxQybevr28s0CDGZY0EMGITbcQm2HGl2Ok6aO/5DNoLzWTCmp2NNTt7r9sYbjeBnTux7DGdlO50Yu/XL5wro6wMQqEW6wdjY5uV1X37HXXff7/3dlksmBITSbjwQlKn3RC1rur999HjXJiTEjElJISX+Hg0q3Vfb/WopZl1XCmJuFISD2h7FTAw3AFC9QGM+gAbCtdSWVlGqC6AcgfR3ApntZVMXxoOZacgdCsPmp7ltz+kM2VYNh3i937vCSGEEEIIIYQQDSRgIdosr7sWy+4RFkF0ioo2E9zyHevnfcLYy65m8Olnt24DhThKWB0xdD5+AJ2PH9Di+uROWWT3G8Cu/Dw8NdXN1nvr6yjevIGYhOYdnzMfvpdQIIArNY24lDRcKam4UtJwpaYSl5yKuQ11Fscm2hl7ca/Ia2Uo6qv91JR7qC33UlvuoabMS025t1nAoq7CG70zFR6x4a72U7qtsTgxI6ZZwOL7tzZQWVJPjMuGM8GGM95KTLyVmDgrjt2LPdaC3s6SF+sxMdi6NE/RHH/G6cSfcToQzoURqqgguGsXgd3JvoOlu/AWF1FeUdGsbrCFsqZUIECwtBTl80WX+/0U333PXtsZCWAkxJP2xz9i7907sj6wsxTv6p8xuVzornhM8S5MLheaw3FMBc41i44p3oYpPjzSon/3kVHrPR4Pn33+KfqqXXT0p5Ll78w650mc6/2aR2d15J8XDmiFVgshhBBCCCGEaG8kYCHaLHdtNRYtPKVKCAgFNkXW5fQfvJdaQohDrf+E0+g/4TQA6qsq2bVtKxVFhVQUF1FZVEhlcRG15btI7NAxqp4yDArXriYY2HsOmpj4BFwpqYz+zVSyj2tMgB3wenHXVONMTMJsaZ18EZquRUZH0G3f23bul4LVYaauwkddpZfayvBXd40fmgzSiIlvPq3Ozrwadm2v3U9jYOgZXRhyemMAIBQ0WDF7O/ZYC45YC3anBXts49IepqTSTKZw3orU1KjE3B6Ph+WzZzfbPvNfjxPctYtgRQXB8nJC5RUEK8oJlZUTqqokWFFJqKICc1p0UChYWbXXNhhud3g0SFEREA5uNOVZvowdN9/SvKLFgsnlwhQXhx7vwpKWRuZTT0Vt4l66lGBpKXqcC5MrLvw1Lhbd5UKzWo+6gIfFbGVz90pS1yZiUWZ61/+KE8yPcMbylfw0IofjMxNau4lCCCGEEEIIIdo4CViINquupoKG57WDRggV3AFAUsdMkjOzWq9hQhzDnAmJOAcMJmdAdNAw4PMSCkQn8XXXVGO22fYZsHBXV+GurkIZ0VMv7diwlpkPh/MX2GPjiE1MwpmYRGxiMrFJ4e+dCYnExCfQqWefVu/4Tc9xkZ7jalYeChrUV/moq/RRX+3Dam/+a9fvPYDkx4pmdT21ARZ9vHWvVax2Uzh44bQw4aq+JKQ1Jhmv2ummdHsN9hgLNqcFu9OMLcaCzWFGa8MjOSydOmHp1Omg6+nOGDo8+ADBykpCFZWEqqoIVVeHvzb5nlAIU0JCVN1QdU3LOw0ECJWXEyovByCYmtpsk8q33qbms8/28mYsmJxOdKcT12mnkXZrdFBk11NPg6ahx4a3adhWdzrRY2Mj35vi4tBaKajXEqcrkaKhXjov2p1HJvg7/m7+Px78tAfvXHdiq9+rQgghhBBCCCHaNglYiDbLU19DIuE5r4NGXaS8+7ARrdUkIcReWGx2LHsMHnAmJHLDS2/hc9dTU7aL2rJd1OwqpaaslJqyXdSUlVK7q5S6qkpce3T21lU2Tv3jravFW1dLWUF+s+NaHQ5unPFeVNnij96ncN1qYuITsMY4qSwuwWx3kP9TKgnJKThcLhxxLiz2wz+lj8ms40px4ErZ+/z9l/z1RPzeIPVVPtzVfuqqfHhq/XhqA7u/+nHXBnClRu/DU7v3QBCA3xvC7w1RU+ZtNp3U9rUV/PDOxuaVNLDFmMOBjBgzCRkxTLiib9Qm234uw1MbwBZjxuowY3OYsTpMWO1mrHYzJkvbG9lhio0l4fzz97mNUgqjrg49Jiaq3N7vOFL/cBOh6hpCNdUYNbWEamoI1dRgVFcTqq3FqK1Fd7UQsKrdS7ADwgGPhoBJC9uVv/QSyuttoWK0Tv/6F65TJ0Vee9eto/i++9FjYqIXhwPdGf5e210Wf8YZaObGPwWDlZUojwfN4Qhv9wtHgQycNAZ31Sa8G2owiKeHcTq52//LrDW5nHrc/hOCCyGEEEIIIYQ4dknAQrRZ3vp6aAhYhKoi5d2HSsBCiPbEFuMkNdtJanZOi+tDwQC6booqi01KpsfwUdRVVlBfWU5dZQWhQKBZ3RhXQrOy4k0byFuxtFn5Zwu+i3rdd8wpnPq7P0SVfff6S5gtFmzOWGwxTuxOJ7aYWGxOJ3Zn+Kstxoluim7v/8pqN2PNMJOY4TzgOq4UO7/6bT+89QG8deHF0+T7SLk7gD02+gl8n7v5zxIABb76IL768KgPw2iedHzl1wXs2FC513bpZg2r3Uz/k7M44bScxl0birlvb8RiM2GxhwMcFrsJi63xe6vdhMVmxmQ3DvjncKhomoYpLq5ZuaNvXxx9+7ZQo5EKhTA8zYMLiVOm4DxxBEZtbTiwUVPT+LW+HqO+HqOurtmoDhUIHFCwAsJJzJsKllfg/emnA6obf8YZUa/LX3yRipdebrJzHd1uDwc4HI7w9w4HMQMHkn7nHVF1q//zH5JXriQYF4dx4okkXtiH0n8uIFSv4TOO51rLOv702VxO7nU+VnPbC2oJIYQQQgghhGgbJGAh2iyfpw5IASAYCif6daWmkdalayu2SghxqJnMzaezyTl+IDnHD4y8Vkrhra+jviIcvKirKKe+ugpLC0m7PbXNE4O3xB4bG/VaGQbLP/sIpfbfWX7On+4jd9CQyOtd+Xks+uBdrDEx2GKcWB0ObI4YrDHO8FdHDNYYB1Z7DEmdMg/JyA5bjIXcAc2nIdqTYSj2PFx232SsdjNedwBffRBvfQCfO4C3PoivPhzs8HuCLU9h5dn3FFZGUOGtCzQLdgT8IVbP3bH/NwacNi06QJC/upwf3tmI2WbCYjVhsemYreFgR2NZOPAxcGJ2VN3Kknq89UHMVj2yncmiY7bqmMz6ITkXmsmEKbZ5sClu3LhftkNdp/N/3sCoqyNUVxcObNS7d39tstTVYU6PztehfF7QNFDNg01RbbZYokZXACiPJ3ojw8Bwu8HtJtSk2JSY0Gx/te+9T3J+eBRU0fwf6fjwwyRd0p9dz60EdEyBC7jI+yyv/TiYq0+S3+NCCCGEEEIIIVomAQvRZgWaPF0aVOGpT7oPlfmvhTgWaZqGIzYOR2wcKXsZqdHgwvsewVtXh7uqkspdpSya9wMhn5eczE4EPB68tTV4amtIzoru2Pa66w8oWAHhqaiaqi7dyYYFP+z/feg6N7/5UVTZ/HdeZ/2Pc7HaY7A6HFgdjvAUW3b77qm2bFhsdpKzO9N9yIlRdXfmbUHTNMxWGxabDbPNhsVqw2SxRD4r95wOCvaec6MppRShYPOfx5AzulBf6cXnCeL3BPG5g/i9IQLe8FefJ0jAGyTGFR1M8ntCzfa1NxZ79AgWb52f6l2evWzdyOZsHrBY9mU+GxaWtFxBA7NFx2wx0e2ENMZM6Rm1+utX1hIMhMIBDsvuQIdZx2TVI/VMFp3MnokkpDdOJeX3BqkorsdsCQdFTLu/mi2N3+/rd5lmMhEzePBe1+9L3Pjx9Fq7BuX1RhKKG253OODhdmO46zHcblQLI5ZsvXsTN2kShseNcnswPB4Mrzf82uPF8HpRHg+6I6ZZ3aYjQkKlpRRcfTUJF02msE9/MtemYEKnW+Ai/vvtC1Sd8FcSYpoHG4UQQgghhBBCCAlYNLFkyRLuu+8+fvzxRwKBAP369eOWW27hwgsvPOB9+Hw+pk+fzuuvv05BQQFJSUmcccYZPPjgg6Slpe1/ByLCcDd2ToWMcMdKN5kOSgixH7puIsYVT4wrHmdqOmsLiwEYOnEiDsfec0lY7Q4ueeRfeOvq8Lnr8NbX46uvw+eub/y+vg6vu56Y+MSoun6P+4DaZnU0z5tRW15OVUnxfut2HzaiWcDiw0cfoK68rPnGmobFGg5gmK1WTrr4CnqNOCmyuqZsF9+/8TIWqxVzZLFhtjT53mrFZLXS7YRhWGz2SN30zmbcCUFMVitmSywmiwWT2bL7q3mvHfGOOAsX3jUEvzdIwBvC79v9tSHY4QsR2P29I7b5qBub00zQZ7QYRGlgsTafqivo30egREHQb4SXQPP95v1Utt8RJQATruoTFbCoLHEzc/qyfdbRzRoms85lD43A7mx8v2vnFbFmXhGm3esbFw29yev4VAf9x2dF7XPLilK8dQF00+7tTTomsx3dHIMpRkOP09HNGnGJdpwJjUlnlKHw1AWIOf1sYs88F92koZu0Fs+lUgqCzX8mqX+fzrLvviNh3nycmzYBUPX2O6Rk/UjR8EvpGMghOZjESZaOvPTZPG694OT9/lyFONYdiv9NhBBCCCGEaG8kYLHbt99+y6RJk7Db7Vx00UXExcUxc+ZMJk+eTEFBAbfeeut+92EYBmeddRazZs1i+PDhnHfeeWzatIkXX3yROXPmsHDhQlJT9z99h9itprEDMKgCOFwJdOzRqxUbJIQ4mpnMZtJzu/2iut2Hj6RTrz743G78Hnfka8P3Pnc9fo8Hk7l5h7rJYsbujMXv9WCE9t65brU3D7YE95bnQCkCPi8BX3i9sUcHs6emmo0HMCIE4LfPvR4VsFj93df88OaMvW7fEMBI79KVC+97pLHcrPPT1/+hbPu2SHDDZLagm82YLeGvJrMFq9XMrvzoJNTdh6bhqV6Objaj6TpgAqVjGDpKaShDwzA0dN2Mz+3G1iRxdlYfF1a7j1BQIxRUhAIaoSAEAxAKKoL+EMGAgdPV/In/fQY7mjDvcV5DLQQ/9mQEFUYwhG7aI4BV4aV02z6Sde+WketqFrBYPmv7AdUdckYXhp7RJfLa7w3yyu3zmm2n6+HAhW7WI0GMM27oT2p2Y66PgnUVLPp4K5quU1kzEH3QAHqPriP2vccx15YTKCjAVfYMvlPuwWaKpadnIOXr/8vW0iHkpjXPGSKECDsU/5sIIYQQQgjRHknAAggGg1xzzTXous7cuXMZMGAAAPfeey9Dhw7lrrvu4vzzz6dz58773M+rr77KrFmzmDJlCv/5z38iTyY+++yzXH/99dx9990899xzh/vtHDVSrEmR73WLg+NGjG+WmFcIIdoCi9VGfFrGL6o74ZppTLhmWngKpkAAv9dDwOsh4PUS8PkigYfYxORmdY87eSJ+t5uA30fQ7yPo84W/9/kI+MJlAZ8Pa8weiZn9/gNun3mPPCH7qxsKBAgFApFgSVOleVso2rhuv8ccrOsQ1/h+Q/4Ac15+5oDam5r9NzJ7Hxd5bbXuYMVnD7e4rW4yoesmdLOJVWUxDD/71aj1fUcUsmXZAjTNhKbraJoJNC38FR1N0wGdog27yB04OVIvxmUlMe0ngj43SukoNDA0lAoHVpTSIoGWiuLOZDTJzeT31hP0rUZDD+eiQAeafN1d5quLI+g/Pur8BHy1GMFdu7dpqMPutjaWGaHoEUFGSKFUaI9tw/lPDENBkwCM2iM3hrvGz868hiBJ+M/K5SSiDfkrKf4Ckjd/R2rZKvTFr8CJNwJwgvvXzH7rX/z2pntaPC9CHOsO1f8mQgghhBBCtEcSsAC++eYbtmzZwhVXXBH5hwAgPj6eu+66i6lTp/Lqq69y77337nM/L7zwAgCPPPJI1DQK1113HY8++ij/+c9/+Ne//rXPKUlEIyeNnTDZ/TvQ9+KLW7E1QghxeIVzUYSnZMIVf0B1xlxy5S86VnrX7lz91EsE/f5woMPvDy+BJt/7/YSCAcxWW1TdtJxcjhs3kVDATzDgJxQIENwdpAgFA5GAhauFAE6ohamEWqLvkQw6FDqwegC6KbruvkatGKFQeH3zdA4AeGorqNixfb/HjE+NDgglpMdQu2sFdRXl+61burVPVMCi94kuFs+cvd96xRvAXTMWV0rjyM2UjjsoXvv2fuv+PLsjw896PvJa0zXM2ufUV25qslVjcERr8v2qr37FhKuvimwVChr4ql8Mb48GmhlNT0I3JVNiSmZn99PQu19Ieu1GElPX0HNXX6zKwgllvZi3dCmjTjhhv+0V4lhzqP43EUIIIYQQoj2SgAXw3XffATBx4sRm6yZNmgTA999/v899eL1eFi1aRM+ePZs97aRpGhMmTOC5555j6dKljB49+oDbVlhYuM/1BQUFke/z8/MPeL/tQfHOUrw14ekiqqorsW7atJ8a7YfP56OsLDzv/JYtW7DZbPupIVqbnLP2Sc7bATJZwGEBhxMdsO5eALbm5UVvm5BM7vhfHdBuN+3xuT3siusxQiFCwSChUBAjGMQIBQkFghhGiFAggGGEsNidlG3cCITPm8Vkou/ZkzGCIQwjuPtrCCMYJBQMoYwgRsjACIUora6mvslxd9XU4eraAyNkEAoGMQwDZYRQDfswjHAbrLZm7S2tqKQusHu7fQQ+dlVXN6tbVl2D173/ROE7SnbiaFK3sngHVQdQD2Dbtm04Kqsir92q+sDqBjzN2mvE+Knasf+6ZdW7oupaUhWVdTv32Kpgj9c65dZ4Rve4hKWFq+jk6wDobHnzI1LjXC0mhhdHRtO/HYMHGFAUh9+h+N+kqYP5fyIvLw+P58A+gwCCNS3kURJtzp6f+YeLXA9tn1wLoim5HkSDI3UtgFwP7cHBXA8lJSWR7w/p/xNKqPPPP18BaunSpS2uj42NVVlZWfvcx+rVqxWgzjjjjBbXP/bYYwpQL7300kG1DZBFFllkkUUWWWSRRZbDuixevPig/kYVh8+h+N+kqda+tmSRRRZZZJFFFllkOfqXQ/n/RMPkxse06upqIDzMuiUulyuyzf+yj6bbCSGEEEII0Vbs3LnnSBnRWg7F/yZCCCGEEEK0VzIlVBvXdIh2S/Ly8jjppJMA+PHHH8nKyjoSzRL/o+LiYoYOHQrA4sWL6dChQyu3SOyPnLP2Sc5b+yTnrf2Rc9Y+FRQUMGLECAB69erVyq0Rh8v+/p/wer2sX7+e9PR0UlNTMZuPzX8R5XNMNJBrQTQl14NoSq4H0UCuhbBgMMiuXbsA6Nev3yHb77H51+geGp5e2tuTSjU1NSQmJv7P+2i63YHKzMw84G2zsrIOanvRNnTo0EHOWzsj56x9kvPWPsl5a3/knLVPdru9tZsgdjsU/5s0dSD3Y7du3Q54f8cC+RwTDeRaEE3J9SCakutBNDjWr4WcnJxDvk+ZEgro3r070HJSkZKSEurq6iLb7E1ubi66ru81MUlD+f72I4QQQgghhDh2HYr/TYQQQgghhGivJGABjBkzBoDZs2c3Wzdr1qyobfbG4XAwdOhQNmzYQH5+ftQ6pRRfffUVTqeTE0444RC1WgghhBBCCHG0ORT/mwghhBBCCNFeScACGD9+PLm5ubz55pusXLkyUl5dXc3DDz+M1Wrlsssui5QXFxezfv36ZsO0r732WgDuvPNOlFKR8ueee46tW7dy8cUX43A4Du+bEUIIIYQQQrRbB/u/iRBCCCGEEEcTyWEBmM1mXnzxRSZNmsRJJ53ERRddRFxcHDNnziQ/P5/HHnssaj6uO++8k1dffZVXXnmFqVOnRsovv/xy3nnnHd566y3y8vIYM2YMmzdv5r///S9dunThwQcfPPJvTgghhBBCCNFuHOz/JkIIIYQQQhxNZITFbuPGjWPevHmMHDmSd955h2eeeYb09HTefvttbr311gPah67rfPTRR9x///3s2rWLxx9/nPnz53PVVVexYMECUlNTD/O7EEIIIYQQQrR3h+J/EyGEEEIIIdojGWHRxNChQ/niiy/2u92MGTOYMWNGi+tsNhv33Xcf99133yFunRBCCCGEEOJYcaD/mwghhBBCCHE0kREWQgghhBBCCCGEEEIIIYRodZpqmh1aCCGEEEIIIYQQQgghhBCiFcgICyGEEEIIIYQQQgghhBBCtDoJWAghhBBCCCGEEEIIIYQQotVJwEIIIYQQQgghhBBCCCGEEK1OAhZCCCGEEEIIIYQQQgghhGh1ErAQQgghhBBCCCGEEEIIIUSrk4CFEEIIIYQQQgghhBBCCCFanQQshBBCCCGEEEIIIYQQQgjR6iRgIYQQQgghhBBCCCGEEEKIVicBCyGEEEIIIYQQQgghhBBCtDoJWAghhBBCCCGEEEIIIYQQotVJwKIdW7JkCaeddhoJCQk4nU6GDx/Ou+++29rNEvuQk5ODpmktLmPHjm3t5h3T3njjDa677jpOOOEEbDYbmqYxY8aMvW5fU1PDLbfcQufOnbHZbOTk5PDHP/6Rurq6I9docVDn7f7779/r/adpGtu2bTuibT9W7dixg3/9619MnDiR7OxsrFYrGRkZnHfeeSxatKjFOnK/ta6DPWdyr7UNXq+XW265hZNOOomOHTtit9vJyMhg5MiRvPLKKwQCgWZ15F4TRyOlVGs3QbQRci0IIYTYF/k90XaYW7sB4pf59ttvmTRpEna7nYsuuoi4uDhmzpzJ5MmTKSgo4NZbb23tJoq9iI+P5w9/+EOz8pycnCPeFtHo7rvvJj8/n5SUFDp06EB+fv5et62vr2fMmDGsXLmSiRMnMmXKFFasWMFjjz3G999/z9y5c7Hb7Uew9ceugzlvDS6//PIW77eEhIRD30DRzFNPPcX06dPp2rUrEydOJDU1lU2bNvHhhx/y4Ycf8uabbzJ58uTI9nK/tb6DPWcN5F5rXXV1dTzzzDMMHTqU008/ndTUVCorK/niiy+48sorefvtt/niiy/Q9fDzS3KviaORUgpN01q7GaINkGtBNHREynUghNibhs8Hr9crf/e2NiXanUAgoLp27apsNptasWJFpLyqqkr16NFDWa1WtW3bttZroNirzp07q86dO7d2M0QLvvrqq8h988gjjyhAvfLKKy1ue++99ypA/elPf4oq/9Of/qQA9fDDDx/u5ordDua83XfffQpQ33777ZFroGhm5syZ6rvvvmtWPnfuXGWxWFRiYqLyer2RcrnfWt/BnjO519qGUCikfD5fs/JAIKDGjh2rAPXpp59GyuVeE0erefPmqSuuuEL5/f7WbopoZaFQSN1yyy3qgw8+iLwWxx6PxxP5Xj4XhBBNGYah7rzzTnXzzTdH/X8jjjyZEqod+uabb9iyZQu/+c1vGDBgQKQ8Pj6eu+66C7/fz6uvvtp6DRSiHTrllFPo3LnzfrdTSvHiiy8SGxvLPffcE7XunnvuITY2lhdffPFwNVPs4UDPm2g7zj33XMaMGdOsfPTo0YwbN47Kykp+/vlnQO63tuJgzploO3Rdx2q1Nis3m82cc845AGzevBmQe00cvYLBINdddx0zZsxgxYoVgEz3cCz7z3/+w+OPP84bb7wBEBlhJo4df/3rX5k8eTLr168HwGKxoJTC7Xa3cstEazMMo7WbINqARYsWMX36dL766itsNltrN+eYJr+h26HvvvsOgIkTJzZbN2nSJAC+//77I9kkcRB8Ph8zZszg4Ycf5umnn97rnO2ibdq0aRNFRUWMHDkSp9MZtc7pdDJy5Ei2bt1KQUFBK7VQ7M/cuXOZPn06jz76KB9++KHMzd6GWCwWINyhCnK/tQd7nrOm5F5rmwzD4MsvvwTguOOOA+ReE+1fS0GIUCiE2WzmsssuA4hc9zIdzNFvz+uh4fWZZ55JfHw869atiwRsxbHD4/GwceNGPvnkE5YvXw7AjBkzMJlMPPnkk63cOtHaJIB5bNlbgGrIkCEMGjSINWvWMG/ePEAedGgtksOiHdq0aRMA3bt3b7YuIyOD2NjYyDai7SkpKeGKK66IKhsyZAhvvfUWXbt2baVWiQO1r/uvoXzWrFls2rSJrKysI9k0cYDuu+++qNcJCQk88cQTkQ4N0Tq2b9/O119/TYcOHejXrx8g91tb19I5a0rutbbB7/fz8MMPo5SivLycOXPmsH79eq644grGjx8PyL0m2jfDMCIdTQ1zThuGgclkAmDEiBG4XC42btxIfX19s6CcOHqo3XkqNE3D7/dHRplpmoZSCrvdzqRJk/jqq68oKiqiW7durdxicSTZ7XYefPBBFi1axEMPPcRf//pXNm7cyMknn0zv3r2jPkvE0U8phVIqcs5/+uknnnjiCX7/+9/Tv3//Vm6dOFwafk/out7sb4JQKITJZOKiiy5i2bJlfP/994waNUoedGgl8mncDlVXVwPhKaBa4nK5ItuItuWKK65gzpw57Ny5k/r6elasWMGll17KkiVLGD9+PLW1ta3dRLEfB3L/Nd1OtB39+/fn5ZdfZuvWrXg8HvLy8njqqafQNI2pU6fy8ccft3YTj1mBQIBLL70Un8/H9OnTI51Mcr+1XXs7ZyD3Wlvj9/v5y1/+wl//+lf+/e9/s2HDBm677Taef/75yDZyr4n2TNd1li1bxoUXXsgTTzwR6YAKhUIApKSk0KlTJ7799tvIU5LytOTRqaFT6b777uPqq69m6dKlQHhqME3TsFqt9O7dm8rKSn766SeAyHUijl6qSbJtp9OJ2Wxmw4YNVFdX8/jjj/P6669z1llnSbDiGBIKhSKd1m63m4qKCj788ENeeeUVvvzySxkVfBRr+D3xyCOPcPzxx/Pee+8B4c+Jhv9nBg8ejMvlYv369fh8vlZr67FORlgIcQTt+bTpgAEDeO211wB4/fXXeeGFF7jllltao2lCHPUa5mxvkJOTw7Rp0+jduzcTJkzg7rvv5swzz2yl1h27DMNg6tSpzJ07l2uuuYZLL720tZsk9mN/50zutbYlNjYWpRSGYVBUVMQnn3zCXXfdxYIFC/j8888jwQgh2rPzzjuP7du3s3DhQkwmE7fddluk87FXr1706tWLDz74gM8++4zJkye3cmvF4fTaa6/xwAMPoGka27Zt44svvsDpdEaeqh05ciQAb775JtOmTYsKuIujS8PT0k2fjn7//fcxDIOUlBR0XadPnz506NABaHzyWhz9Gu77Bx54gPfeey8SyNJ1nffff58TTzyRk046qZVbKQ6X77//nj//+c8AXH/99WRmZjJ06NDIdZGRkUFGRgazZs0iEAhgs9nk86EVSAi5HWp4+m1vT7nV1NTs9Qk50TZdd911AMyfP7+VWyL250Duv6bbibZv/PjxdO3alZ9//jly/sSRYRgGV155JW+++SaXXHIJzz77bNR6ud/anv2ds32Re6116bpOZmYm119/Pc8//zzz58/noYceAuReE+3D3vJUAFx99dUAHH/88dxxxx289dZbUU9FXnzxxUC4kyIQCEinw1Fgb6NkTj75ZNLT0+nduzeFhYWcf/75FBYWRs75KaecQq9evdi8ebPkEjxKNQTpGzof586dy1NPPcXChQu5/vrreeedd3jsscfYuXMn7777Ljt37mzlFosjrbCwkAkTJnDfffcxePBgJk2axNlnn01sbCzLli3j/fffZ9euXa3dTPE/2lueijFjxtCrVy969OhBeno6l1xySdQI8F69enHcccdRVlbGRx99dKSaK/YgAYt2qGF+4ZbyVJSUlFBXV7fXOYhF25SSkgJAfX19K7dE7M++7r+m5XIPti8N96Db7W7llhw7DMPgiiuu4NVXX2XKlCnMmDGj2VB8ud/algM5Z/sj91rbMHHiRAC+++47QO410fY1fbKxIUjRdPqGvn37Ehsby/Dhw7nuuuu45pprmDFjRqR+r169yMrKYsOGDTIF61FC07QWO6MsFguDBg3CMAyeeOIJ5syZw2233caGDRuA8DR5p512GjU1NezYseNIN1scAQ1T/axevZqTTz6ZX//61zzwwAM88MAD+Hw+BgwYwDnnnMPZZ5/Nu+++yzfffBOpJ44N33//Pd9//z3XX38906dP5/777+fWW29l5syZnHDCCbzxxhv8+OOPrd1M8T/SdR2/3x95rZSK/A1x7rnnUlVVxcyZM9F1ndtvvz3yWQCNDzosXLgQv98vnw+tQAIW7dCYMWMAmD17drN1s2bNitpGtA8NT/fk5OS0bkPEfnXv3p2OHTsyf/78ZgGm+vp65s+fT5cuXSQpaTtSX1/PmjVrcDqdkc5UcXg1dHy/9tprTJ48mddff73FKRnkfms7DvSc7Yvca21HUVEREO7YA7nXRNunaRp5eXlceOGFvPXWW5GcBMFgEIAuXbqQkpLC9u3b+cc//kH//v25//77eeWVVwBISkoiNzeXuXPnRkYM7e3JS9E+/OMf/2DatGmRQERDJ1R6ejpdu3alurqaXr168X//93/MmjWLG2+8EQCr1UqvXr3w+/3Mmzcvqq5o/xpG3rz11luMHz+eHTt2cPPNN/Puu+/y4YcfYrPZAHA6ndx8881omsbrr7/O5s2bASKfKaL921euooZpuX/729+SlpYW+X0wfvx47rjjDjRN4+WXX2bbtm1HoqniENnznD/zzDOMGDEiMnqi6YMOAwcOZNeuXRQUFPDee+8RGxvLJZdcwooVK1BK0bt3bzIzM1m3bp3ksWglErBoh8aPH09ubi5vvvkmK1eujJRXV1fz8MMPY7Vaueyyy1qvgaJF69evb/GJ0vXr1/OnP/0JgN/85jdHulniIGmaxtVXX01dXR0PPPBA1LoHHniAuro6rrnmmlZqndib2tpaNm7c2Kzc4/FwzTXXUFtby4UXXojZLKmdDreGKYVee+01LrjgAt544429dnzL/dY2HMw5k3ut7Vi7dm2Lf3e43e5IvqzTTjsNkHtNtD0tBRPeeecd3n//fe64447I6ImGUV4DBgwgMzOT5cuXYzKZePbZZxk4cCA33HADn3zyCRkZGYwYMYJQKMQ777wTVVe0bU2fiG3w008/8cYbb/Dss89y7733UlNTg8lkinQ2n3rqqRQXF7N8+XKuvvpqbr/9dubNm8dll11GTU0Np5xyCpqm8cEHH0TqSiL2o4OmadTW1vLPf/6TmJgYnnrqKe6++27Gjh0bCdI3GDx4MNdeey2zZ8/mk08+IRQKRf4+qaioaI3mi0Og4fOipSfiQ6EQgUAAp9NJbGwsGRkZkW0bPgNGjRrFqaeeyqxZs5g9e3bUE/qibWqYBq7pOS8tLWXz5s0sX76cG264gY0bN0b93u/ZsycZGRnMnDmTAQMG8O9//5vY2Fguu+wyvvnmG3Jzc8nOzuabb76JTA8mDzocWZqS38zt0rfffsukSZOw2+1cdNFFxMXFMXPmTPLz83nssce49dZbW7uJYg/3338///znPznppJPo3LkzTqeTjRs38vnnnxMIBLjzzjt5+OGHW7uZx6wXX3wx8pTVzz//zPLlyxk5ciTdunUDwn+4NMyPXF9fz8iRI1m1ahUTJ05k0KBBLF++nNmzZzNkyBC+//57HA5Hq72XY8mBnrdt27aRm5vLkCFD6N27NxkZGezcuZOvv/6awsJC+vXrx7fffktycnJrvp1jwv33389f/vIXYmNjuemmm1rsuD777LMZMGAAIPdbW3Aw50zutbaj4e+OUaNGkZOTg8vlYseOHXzxxReUl5czevRoZs2aFbl/5F4TbdGbb75JamoqEyZMoKKigq+++oopU6ZgMpn4+uuvo0aVv/jii1x//fWsXbuW7t2789NPP3HjjTeybt06nn32Wfr370/37t0599xzeemllyQnSzuzadMmPv30U26++WYg/NDXjTfeyJw5c7j88st54YUXIr+fPB4PvXr14tRTT+W5556jvLycd955h2nTpnH55Zfz5JNPct111/Huu+/y8ccfR4K34ujw3nvvMXnyZJ5//vnI/297S5i7YcMGfv3rX2O1WnnmmWfo378/n3zyCa+//jp/+9vfIn+Pivah6Xn+9ttvWbhwIbm5uQwePDjy/yHAlClTeOedd3j11Ve59NJLMQwjqjP7n//8J7fddhvjx49n+vTpDBo06Ii/F3Hw1q9fzz/+8Q9eeOGFSNlNN93EU089xfDhw/nb3/4WlUx93Lhx1NfX88UXX5CcnMyKFSs49dRTSUhI4Ouvv+bVV1/l3nvv5cEHH+Suu+5qjbd0bFOi3Vq0aJE69dRTlcvlUg6HQw0dOlS9/fbbrd0ssRffffeduvDCC1X37t2Vy+VSZrNZZWRkqLPOOkvNmjWrtZt3zLv88ssVsNfl8ssvj9q+qqpK/eEPf1BZWVnKYrGo7Oxsdeutt6qamprWeQPHqAM9b9XV1eqGG25QQ4YMUampqcpsNqu4uDg1dOhQ9fe//1253e7WfSPHkP2dM0C98sorUXXkfmtdB3PO5F5rO5YsWaKuueYa1bdvX5WQkKDMZrNKTk5W48aNU88995wKBALN6si9JtqKDRs2qOzsbKVpmjr11FOjrtfp06crTdNUt27d1Pvvvx8pnzt3rnK5XOr++++PlBUXF6vevXurtLQ09cILL6hx48ap448/Xm3fvv2Ivh/xyxmGof74xz8qTdOU3W5XH330UWRdfn6+Ou6445SmaeqWW25RW7duVUqFP8suvfRS1aFDB+X1eiPb33nnnSo2Nladd9556tlnn1Umk0k988wzkeOIo8PNN9+sNE1TH374oVJKtfj7roFhGGrGjBlK0zSVnp6uRowYoWJiYpTD4VCLFi06Uk0WB8Hn8ymllAqFQpGypue4qKhI/frXv1aapkWWXr16qfnz50e2+fLLL5WmaWrChAmqtrZWKaVUMBhUfr9fKaXUnDlzInX/8pe/qPr6+iPx1sT/4M9//nPknP3rX/+KlFdVVakbb7xR2Ww2NXToUDVv3rzIuueff16ZTCa1cePGSNm7776rcnJy1JAhQ9Srr76qNE1TU6ZMUeXl5Uf0/QilJGAhhBBCCCGEEKLNeO+995SmacpsNqukpCT18ssvR9YFg0H10EMPqcTERJWTk6PeffddpZRS27dvV/3791eTJk2KCrJ99913atSoUcpms6nc3FylaZqaO3euUiq6w0u0Tbt27VLDhw9XmqYpm82mTjvttKjg97fffqtOPvlkZTKZ1NSpUyOBh4cffli5XC71wQcfRLYNBoPqT3/6k3I4HJFr4ayzzlJKScDiaNBwPz/++ONK0zT173//u8Xz2tJ9f//996sRI0aofv36qccee+ywt1UcvFAopG655Rb1u9/9rsUgVEPZHXfcoXJyctR9992nZs6cGenI7tGjRyQ4oZRS48ePV5qmqQcffDBqP4ZhqKlTp6qRI0eq0aNHq9zcXJWXl3dY35v431177bVK0zSVkJCgYmJiVHV1dWTdjh071B133BEJXhUVFSmllJo3b56Ki4tT99xzT2RbwzDU559/rtLT01XHjh2V3W5XQ4cOVTt37jzi7+lYJxN3CiGEEEIIIYQ4otQ+Zia22+0kJSVx6qmnUllZyfPPP8/OnTsBMJlMTJs2jYceeoj8/HyuvfZali5dSlZWFkOHDmX16tUUFhZG9jVmzBgee+wxBg0aRF5eHgD/+c9/AMlj0R64XC7sdjuDBw+mS5cufPHFF7z++uuR9WPHjuXJJ5/kuOOO49VXX41MjXzBBRdQW1vLhg0bMAwDwzAwmUzcfPPN3H///ZFr4eOPP2b79u0tThck2peG+zk7Oxun08n8+fOpqamJrG/4zNF1Hb/fz48//hhZd9999zF79mwWL14cuYYkAXfb4vf7eemll3jllVf46aefotbNmTMHq9XK/fffz+LFi7nuuuu48847Offcc3nwwQe55ZZb2LRpE4888kikzj/+8Q90Xeeee+7hiSeeYPv27axbt47HH3+cBQsW8Lvf/Y5zzjmHvLw8Fi9eDOz795Y4vPb1szcMg/T0dDp06MCAAQPweDzcfvvtkXodO3bkkUceYcqUKWzYsIGpU6eycuVK+vXrR1ZWFkuXLqW6uhoI5zP51a9+xeuvv059fT0+n48lS5ZE/V0hjgz5C00IIYQQQgghxBGhwqP8ozqI90xkOW7cODweD6NGjeLKK69k0aJFvPjii5H1LpeL66+/nttvv53q6mquvPJKvvnmGy699FKKiorYvn070NjhOGzYMF544QUSExO57LLLJG9cG7JnQu2mDMPAarUycOBAysvLmT59OgDPPPNMpPMoFArRt29fXnvtNXJzc/nXv/7F3XffTVxcHBMnTmTWrFlRgan09HRuv/12Lr74Yjp37sx///tfsrOzD++bFEdEQ4fmoEGDGD58OO+//z4fffQRXq8XaEzCXFBQwJVXXslNN91EXV1dpL7T6cRutxMKhVBKtZizS7Qeu93OZ599xowZM5rllAiFQjidTh599FF27tzJ7bffjs1miyTMvuaaaxgxYgSPP/44q1evBqB///4899xzdO3alZtvvplBgwYxatQobrvtNnr06MHkyZPp3r07AEuWLAFaTuQtDr9QKLTXn71SCl3X6dy5Mz6fj0suuYSsrCyef/55Vq9ejaZpkc+Av//971x11VXMmTOHadOmEQqFOOOMM1i1ahUlJSVR+5wwYQJ/+ctfmDBhAv/5z38kj0krkICFEEIIIYQQQogjQtM0NE1j+fLlPP3000DzkQ4ej4eePXsyb948/vKXv2C323nhhRciT9U2dEL9+c9/5u6772bz5s3ceOONrFq1ioEDB/Laa68BRDocDcOgb9++rF+/nhkzZpCUlNQsSCJah8lkwjAMnn76adavXx8dSnChAABxEUlEQVS1ruG66NGjB/n5+WRnZ3PzzTezatUqnn322aj6xx9/PE8++STDhg3j73//O/feey8jR45k0aJFbN26FV3XIyMtAF544QXy8vI4++yzj+j7FYdPQ4dmTk4OU6dOJS0tjT//+c88+eSTBAIBqqur+fLLL7njjjuYNWsWZ511VotBCZPJJB3TraghiNnSE/UjR47kwgsvpLCwkDlz5kTKJ06cyFVXXUUgECA+Ph6fz0coFMJqtQLQs2dPLr/8coLBIH/9618j9a666iq+/vprbrzxRiZOnMioUaN45513+PjjjzGZTJGO7obAhWgdDZ/zd911F1999VXkGjEMI3Kvjho1ioqKCjp06MBDDz0EwO9//3sgHOxSStGpUyfuu+8+rr76an788UfOPfdcBgwYQHFxMQUFBQCRgCXA7373O2bNmsWUKVMAGWFzxLXCNFRCCCGEEEIIIY5BXq9X/eY3v4kkx3zggQci84MHg8HIdmPHjlUDBw5UdXV16p577lGapqnrrrsusr5h26qqKvXggw8qTdNUSkqK6tGjhxoyZIjatm1bi8c3DCPqOKJ1ffnll8pmsylN09TAgQPVDz/8EFnXcJ7++9//Kl3X1dtvv63y8vJUXFyc6tixo1q8eLFSSkUS5YZCIbVixQqVmZmpNE1Tffr0URkZGeqJJ55odtyG3Ab7Ssgsjrz/9d5sOK/19fXq9ddfV7GxsUrTNNW5c2fVvXt3lZiYqBwOh/r73/9+KJorDqOGXDUejyeqvKSkRFmtVtWzZ8+oZMnr169XvXr1Urquqw0bNiilwtdTQ86SsrIydf755ytN09Tnn38eWd8SwzDUV199pXr16qUyMzPV5s2bD/n7Ewfuu+++UxaLRWmapjp16hSVc6LB6tWrVXJysrrpppuUYRhqxIgRStM0NXPmTKVU4+8JpcK/K0477bRIbhNN09Rll1221+PL3wytQ0ZYCCGEEEIIIYQ45FQLTyNWVFREpmzq1KkTDzzwAFdddRUlJSWYTKbIdiNHjiQvLw+r1cof//hHsrOzeeONN/jiiy+i9hcfH8+f//xnrr76agzDYNOmTWzatCmSo2BPmqZFHUe0HsMwKCgowO/3k5aWxurVq5k6dSpPPvkkQOQ8DR8+HJvNRnFxMTk5Odx+++0UFxdHRuhYLBYMw0DXdQYMGMCMGTPo1q0b69evZ+fOnWzatAm32x117IancmXan7ZDKRU55/Pnz2fZsmVs3bo1av3+NJzXmJgYLrnkEubMmcO9995L9+7d6dGjB1OnTmXLli388Y9/BJpPRyda37Jly3C5XNx0001A+Ol4gB9//JGdO3eSnp7OtGnT2LhxI2+//XakXs+ePbn22mtRSnHfffcB4VFauq6jlCI5OZnLL7+c9PR0/vKXv+DxeFr8XbBgwQKmT5/O73//e/Ly8rj11lvp0qXLEXjnAlq+z7OysggGg8TFxWGxWHjmmWe4+uqrI7mtAPr27UtiYiIFBQVomsZtt90GwC233AKEf08opQiFQui6zmOPPcbll1/Opk2bAFi6dGlklMWe5G+GVtKKwRIhhBBCCCGEEEcZwzAiT7U2LWv4+uWXXyqHw6F+/etfq4svvlhlZ2erAQMGRJ56VUqpp556SplMJjV79myllFKvvPKK0jRNnXbaaZEnbpuOligqKlK333670jRNnX766aq6uvpIvFVxABquhYZroKmdO3eqc889V6WmpqprrrlGTZgwQem6rh588EFVVFSklFJqy5Ytqlu3burcc89VSoWfvO7Zs6ey2Wzqgw8+iDpGg3fffVf16dNHaZqmPvvss8P47sT/wjCMqOti2bJlasSIEcpsNitN05TNZlPXXnut2rp16/98rIYn9pUKPzHd0vUoWl9BQYFKTExUycnJqqSkRK1evVr17NlTZWVlqTlz5iillCotLVXZ2dmqe/fuav78+ZG6lZWVauzYsUrTNDVv3jylVHgUVdMRVddcc43SNE299957Ucf1+Xzq3HPPVWlpacrhcKghQ4aoBQsWHKF3LZqOYmg6GqJhFNydd96pNE1TkyZNUtOnT1eapqlTTjlF/fTTT5FtL7roIpWbmxt5feGFFypN09TDDz/c7BhKKZWfn6/OOOMMpWma+u9//3tY3pf45SRgIYQQQgghhBDikGjaIbBkyRI1ZcoUVVFREbVNdXW1uuKKK5TT6VT33nuv+uabb1THjh1VSkqKeuWVV5RSSn377bdK0zT19ttvK6XCHZsNHVHPPfdcpKypsrIytX79+sP47sTB2PP87G36pa+++krFxMSoU089VX3yySfq5ptvjgSeGjqZhwwZosaMGaMqKyuVUuGAhKZpavz48aqmpkYpFQ5aNO2YXL9+vXRKtxOhUEgVFhaq3r17q/79+6ubb75Z3XPPPZF7ftSoUZEA1qE4lmibGn5/vPXWW0rTNJWVlaU0TVP9+/dXTzzxhCotLY1s+8ILLyhN09Rvf/tb5fV6I+Xvvfee0nVdDRo0KGrfDed9+fLl6qOPPopa1/A58dFHH6m77747av2eQTVxaO35s7399tvVtGnTVElJiVKq8bwFg0GVmpqqNE1T8+fPV2+99ZZKTExUXbp0UV999ZVSSqlbbrlFJSQkqCVLliilwuc6Li5Omc3myLWzZ9DC4/HI+W2jJGAhhBBCCCGEEOJ/0rQTsKqqSl122WVK0zSVkZER6TxoaunSpSojI0P16dNHbdmyRa1atUqdfPLJStM0dffdd6v169er7Oxs9eCDD0bq/PDDD5FcBwUFBUqplueWljwVbcu7776rJkyYoMaNG6fOPPNM9fnnn0cFL2pra9UNN9wQyWmilFL33nuvslqtauTIker7779XDz/8sEpPT4/qWPrVr36lNE1TTz31lFKq5REcSkmeirbu73//u5o2bZq64YYbVPfu3aPymNTX16tzzz1XaZqmpk2bpsrKylqxpeJwa/g90pC3yGQyqQsuuEBt37692X3s9/vVqFGjVGJiYiRPQYOLL75YaZoWCYDv7TOg6ci/fbVHHHp7jsR88803VadOnZSmaeqmm26KCk41nL/XXntNaZqmJk6cqJQKP9jQo0cPlZCQoF566SX14YcfKl3X1c8//xyp2zAy44orrlBKNT+nks+o7ZKAhRBCCCGEEEKIQ+Jvf/ubstlsKjk5Wd1xxx1q0aJFLXYG+Xw+9cADDyhN09SNN96o/H6/qq+vVxdddJGy2+1q8ODBqlOnTurMM8+M6mBomM7jpptuOoLvSvwSu3btUlOmTIk8IT1o0KBIEuQ9n4petWqV6ty5s8rNzVWLFi1SSin1wQcfqJSUFJWWlqZGjx6t4uLi1Pfffx+ps3TpUmWxWFSXLl1kZE070HQETIPKyko1evRo5XA41HHHHaceeeSRyLqG62PFihVq3LhxKj4+Xn399ddHtM3i8NpbwOD3v/+9GjJkiNI0TQ0ePDhSvmen8pw5c5SmaerMM8+MPJGvlFILFixQHTp0ULqu/6KOaHni/shZuXKlGj58eGSKp7fffjsqWLGnYcOGKU3T1IsvvqiUUmrt2rXqlFNOUZqmRR56ePnllyPbl5aWRqYHbBoMFW2fJN0WQgghhBBCCPE/WbBgAdnZ2dx1112ce+65vP7669x1110MHTo0kgi3KavVysUXX8yAAQN45513+PTTT4mJieGFF17g7rvvZt26dRQVFZGVlRWVMPmOO+4AoKysDJ/Pd8Tenzh477//Pu+//z5/+MMfePfdd1m2bBkLFixg5MiRPPfcc9x3330UFxcD0KNHD2688Uby8vJ46aWXqKmp4eyzz+bFF19k6NChzJs3D5fLhdVqBcKJWQcPHszkyZPZtm0bVVVVrfhOxf4Eg0F0XUfTNCoqKigqKgLA5XLx0EMP4XK5WLNmDampqQAEAgFsNhsAAwYM4Nxzz6WmpoZPP/0U2H+ybNUkca/f7ycYDDYrF61HKUUwGIz8btjzd8QjjzzCDz/8wEUXXcTy5ct5/PHHgXAS7aZOPvlkLrnkEj799FPef//9SPnw4cM555xzyMzMJD8//6DPe0u/s8ShFQwGuf766xk4cCAVFRU89dRTPP30/7d332FRXG0bwO9ZOoIUxYIFaxA1ImrQ2LDX2PVVo6gYO2qwd4wYey9YsMReEHvUqCgq1thLNBYUxQKKDQtt2ef7g28nrGCiRgTN/buuXMGZMzPn7Awzy3nmnGcuWrdurd4H9OdNf70AwKxZswAAkydPRlRUFFxcXLB06VIMGjQIISEhsLS0VLfT6XRwcHBA165dAQCPHz/+1M2kf0ER3rGJiIiIiIjoA8XFxWHYsGGYNWsWvv/+e4wfPx758+cHkNxhoNFoEB8fr3ZA6ul0OqxatQqdOnVCixYtMGvWLDg6OgIAduzYgYMHD6JNmzYoU6YMgOROC0VRcPPmTRQqVOjTNpLemYggJiYG9erVw927d3H79m1oNBr1/J06dQq+vr44dOgQJkyYgD59+gAAbt++jbZt2+LatWuYO3cu2rRpAxHB69ev4evrCzc3NzRt2hRWVlbqsV68eAFTU9NU1xZlDvpzDgCvXr3Czz//jIMHD0JEsGzZMjg7O+Ply5eYMGECJkyYgI4dO2LJkiVqx7R+++vXr8PV1RV58uTBhQsXYGFh8Y/H0+l0OHHiBA4cOAB3d3fUrFnz0zSa/lZSUhKMjIwAAC9fvsSyZcvw9OlTZMuWDQ0bNoSTk5N6Hi9evIgqVarA2toav//+O3Lnzq0+U/SuXbuGb775BiVLlkRAQABKlCih7jvlvYIyl+joaHh6emL37t0YP368+jJCSk+fPoWdnZ36b/2579ChA1atWoUhQ4ZgwoQJ6vqFCxfCwcEB1atXh52dncH9IDExESYmJunfMPpoGLAgIiIiIiKiD5KyE/rHH3/EgwcPcODAAeTLlw/nz5/HiRMncOjQITx8+BDu7u5o0qQJ3N3d1e2jo6Pxww8/YM+ePZg5cya6d++urvunDoaUHV+Uubx69QolSpRArly5EBISAlNTUyiKogYuDh06hNatWyN37txYsGABypcvD61Wi02bNqFt27Zo2LAh5s2bh7x58wJIvhaMjIxSvWGtp9VqYWxs/CmbSO9h9erV6Nu3LzQaDdzc3ODq6gpvb28UKFAAAPDHH3+gWbNmMDY2xtKlS1GhQgWDt6sBwNXVFZaWljh69Kg6WkMvZcckAFy/fh3bt2/HokWLcPXqVSxZsgReXl6frsH0j+bMmQNfX1+8ePECRkZGSExMRIkSJTBr1izUqFFDLTd8+HBMnDgR3t7emDNnTpr3fT8/P/z0008YNGgQJk2aZLCO94bMKzQ0FI0aNUL16tXh7+8Pa2tr7Nq1C6GhoQgJCYG1tTUqVqyItm3boly5cuq5f/jwIRwdHZElSxaEhoaiVKlSAJAqmKWnvz/wWvjMfJqZp4iIiIiIiOhLpdPpZPbs2WJsbCy9e/eW1atXS+nSpUVRFHF0dBRLS0tRFEUsLCxk0aJFBtsGBweLlZWVVK5cWS5fviwiTHaamb1LQvOHDx+Ku7u7ODs7p7k+NjZWfvrpJzXJenx8vIiIREdHy//+9z8xMTGR2bNnf9R6U8bYt2+f5MyZUypVqiRbtmyRx48fpyqTmJgos2bNEkVRpEuXLvL8+XOD9QcOHBBjY2Np2rTpW5PmiohERUXJ6tWrpXr16qIoilStWlXOnz+fPg2jDxIZGSk//PCD2NvbS4sWLWTx4sVy5coV2bx5s+TOnVvc3d3l0KFDavmnT59K0aJFxdLSUo4dO6Yuj46OlrCwMLWMl5eX+m/KeO/ynHj9+rX4+PiIiYmJjBkzRnr16iXm5ubi4OAgxYoVk1y5comiKJInTx45fvy4we/6uHHjRFEUadu2bXo2gzIQAxZERERERET0wfSdCDdv3pQmTZqIoihiZGQkZcqUkd27d8vdu3fl2rVrsmTJEjVocf36dXX7ly9fSp8+fUSj0ciYMWMyqhn0D1J2FsXFxcmKFSvU5KhpBZgaNWokiqLI1q1bRSR1B9alS5fE2dlZypUrZ3A9hIaGip2dnVSsWFHOnTv31v1T5hcXFyd169YVa2trOXz4sLpcp9OlSmx87949qVatmhq0iIyMlKdPn8qOHTvEw8NDzM3NZffu3Wke5/Xr17J3717p0KGDmJiYSJ48eSQwMDBd20bvLykpSZYtWya2trbSv39/uXHjhrru+vXrUqxYMbGwsJAuXbrIq1ev1HWLFy8WRVHEw8NDoqOjZdeuXdK+fXtp0qSJGuTWY8LsjPW+z4nLly9L4cKFRVEUsbS0lFGjRsnjx4/lyZMnEhcXJz/++KOYmZlJvXr15ObNmwbbOjk5/e0zhj5vDFgQEX2hQkJCBICMHj063Y4xevRoASAhISHpdozPxa1btwSAdOzY8b22O3PmjGg0Glm9enX6VOwjWLRokWg0Grlw4UJGV4WIiDK51atXS6lSpcTHxyfN9SNGjBBFUaRHjx4i8lfnxsWLFyV37tySNWtWOX78+CerL72/9evXS9asWcXIyEj8/f1Trdd3GgUFBYmiKNKgQQN1WcrOrJiYGPnxxx9FURSDc/769WsZPHiwKIoiAwYMYAfkZywiIkIsLCykadOmIpLcYfm286nT6WTLli1iamoqiqJIkSJFpFChQpI3b16xsrJ664ibCxcuyLBhwyRnzpzqm9qUsfQd02md6wULFsikSZPUf8fHx0vPnj3Vc16gQAGxt7eXdevWGWz3v//9TxRFEQcHB7G2thZFUQz2k/K4lPH+6Tmhl5CQIHPnzpVixYrJwYMH1eX6a+fu3bvSoUMHMTIyki1btohIciBERGTjxo2iKIqUKVOG5/4LlPYEkERE9MkdP34ciqKgXr16aa738fGBoigoVqxYmutnzpwJRVEwatSo9KzmvyIiWLVqFWrUqIFs2bLB1NQUOXPmhJubG3r16oWDBw9mdBU/uf79+6NYsWJo06ZNuh/r1KlTUBQFc+fOfa/tOnbsCCcnJwwaNCidakZERJ87+f955uvUqYPhw4ejX79+AJLnlAaS5xEHgN69e8PIyAi7du1CdHS0Ou/8V199hQEDBmDgwIEoX758BrSA/klMTAymT5+OLl26QKvVwsTEBOvXr8e1a9cA/HWu9fPLt2jRAuXKlcOuXbuwevVqAH9dJwBgbW2N4sWLAwD27NmjLrewsED79u3x/fff44cffjDITUCfl4SEBMTFxSEhIQGxsbGpck+kpCgKqlSpgvbt28PU1BT16tXDlClTMHToUISHh6vJ2eWNNKyrV6/GxIkT4eHhgfv378PX1zfd20VpS0pKgoioeQRSnuukpCQAQKdOnTBw4EAAyb/3JUuWxMqVK9GzZ0+sWrUKU6ZMwdOnT7Fy5UrcvXtX3X7cuHGYNm0avv32W/Ts2ROPHz/G4MGDDY7/thw39Om863NCz8TEBM2aNYO/vz/c3d3V32/9tZMnTx5UqlQJOp0Ou3fvBgCYmpoCAJo3b46+ffti0aJFPPdfIJ5RIqJMoly5crCyssKRI0fUP+pTCgkJgaIouHr1KiIjI9NcD0BNUubu7o4rV66gd+/e6Vvx99C5c2d4enri3LlzaNiwIQYMGIC2bdvC1tYWS5YswaJFizK6ip/U/v37ceDAAQwYMOCTfMnaunUrAKBJkybvtZ2JiQn69euH3bt348iRI+lRNSIiyiQ2bNiABg0a4OLFiwBSdy68jb5zIXv27GjZsiXy588P4K8OJCMjI2i1Wpibm8PR0RG5c+eGvb292jlhamqK/v37Z+oXL/7rDh06hHHjxsHKygpBQUHo2rUrQkNDsXbtWgCGnYX68zp69GgAwLRp0/DgwQNoNBokJSUhISEBANRkqdmzZwfw1/X29ddfY9WqVXBxcUnVQU2fD3Nzc5QsWRL37t3DvXv3Uq1/M6BpZ2eHLl26wMLCAmFhYShdujS8vb2RLVs2tTNcf6/RXxdt27bF2bNnsX79evU6ovT35u+lTqeDkZERFEXB0aNH0a1bN3Tu3Bl9+vTB77//rgYyzczMoNFoEB0djfHjx+Pp06eYNm0afv75Z5QvXx6urq7IkycPTp8+jcDAQHX/RYoUQb9+/bB27VpMmjQJdnZ20Gq1vD9kMu/znNBzdHREjRo1YG5ubhDk0j8n9L/X+v8riqIGwGbOnIkyZcq883cV+nwwYEFElEkYGxujSpUqePnyJU6ePGmw7vHjx7h48SKaNWsG4K/ghJ5Op0NoaCjMzMzw7bffAgAsLS1RrFixTPPFPTQ0FMuWLUPp0qURHh6OFStWYMKECZg5cyZCQkIQFRWFXr16ZXQ1P6n58+fDwsICLVu2/CTH27p1K8qUKYN8+fK997Zt2rSBsbExFixYkA41IyKizOL333/Hb7/9hqCgIAAf9saqvmNKT9/JaGxsjMOHDyMiIgKOjo6p3rR+syOSMhcrKyt4enri2LFjqF+/Prp27YrcuXNjzZo16gsN+k4j/bls2LAhOnTogIsXL6J///4Akq8P/RuyO3fuBAA4OTkBSH296XQ6jrD4jFlbW8Pd3R0XLlzA/v37ERcXB+CvjkiNRoOnT5/Cy8sLZ8+ehaIoKF26NHr27Indu3dj06ZNasekvjNcT/+zq6srXF1dP3HL/psePHig/q6/+XupP5cdOnRA5cqVsX37dmzbtg3+/v6oUKFCqpEvQUFBOHToEIYMGYJu3brBzs4OQPLfsM+fP8eTJ0+wYsUKnDp1CsBfzwVLS0sAyfcGY2Nj3h8ymfd5TrxJf4716/XPic2bNwNIfiFTL+X3jJSjeujLwTNKRJSJVK9eHQBw4MABg+UHDx6EiKBv376wt7dPFbA4f/48nj59im+//Rbm5ubqPhRFwU8//WRQtkCBAihQoABevnyJH3/8EY6OjjAzM0OpUqXUzok3RUREoG3btrC3t4eVlRU8PDxw6NCh92rbsWPHACRPL5Q1a9ZU621tbVGxYkWDZZ06dYKiKLh58yYmT56MokWLwtzcHAULFoSfnx8SExPTPNahQ4fQqFEjZM+eHWZmZihatChGjhyJ169f/+vySUlJmDRpEooUKQJzc3MUKVIEEyZMeO+3Op4+fYqtW7eibt26qT6P8PBwKIqCTp064cqVK/juu+9ga2sLOzs7tG3bFtHR0QCSP9OaNWsia9as6htpr169SvN4t27dwsWLFw1GVzx//hy+vr4oXrw4rKyskDVrVhQpUgQdO3bE7du3DbZ3cHBAtWrVEBQUhJcvX75XW4mI6PMxfPhwODs7Y8WKFepUjR/65mLKqR0SEhKwdetW9O3bFwULFsSoUaOgKEqanU3sgMqcqlWrhtGjR6vBBRcXF/Tt2xfXr1/HypUrER8fD41Go553/f9nzZqFMmXKYP369Wjbti2OHDmCK1euwN/fH0uWLEHt2rVRs2bNNI/JTqjPl4jA2toazZo1Q758+TBhwgRs2bIFwF8dkadOnULPnj1x8OBBPH36FEDylGBeXl4oWrQo1qxZk+pFLsoY9+/fR548efDjjz8iIiICQOpng6+vLzZu3IhBgwZh27ZtuHTpEjZs2IBs2bLh559/xoIFC9S/I/R/szg4OBjsY9GiRShWrBg6dOiACxcu4Pnz5wDSDpBQ5vO+z4mUFEUxCD7cuHEDgwcPRmBgIDw9PfHdd9+leUx+Z/hCfbJsGURE9I9OnjwpAKR27doGy3v37i0WFhYSFxcnTZo0kSJFihisnzZtmgAwSDL3tqTbTk5O4ujoKN9++60UK1ZMevfuLZ07dxZLS0tRFEV2795tUP7+/fuSJ08eASB169aVYcOGSdOmTcXU1FTq1q37zkm3Fy9eLACkZ8+e7/x5dOzYUQBIo0aNxN7eXnr06CEDBw4UZ2dnASAtWrRItc28efNEURSxs7OTDh06yMCBA6VatWoCQCpWrCjx8fH/qnznzp0FgBQsWFD69+8vvXr1kuzZs8t33333Xkm3t2zZIgBk4sSJqdbpE3hXrVpVbG1tpVatWjJgwADx8PAQAFKpUiUJDQ0VCwsLady4sQwYMEDKli0rAMTLyyvN402fPl0AyLlz50QkOZFZ+fLl1f3169dPBgwYIC1bthRbW1vZu3dvqn2MGjVKAKS6RoiI6MuyatUqURRFOnfuLK9evRKRtJOnvouEhAQJDg6WgQMHSr58+cTW1lZ++eWXj1hbykh3796VcuXKSbZs2SQoKEhEDK8VfbLt06dPS5cuXURRFFEURbJkySKKokj58uXl4sWLGVJ3+md/lyT7n+i3S0xMlBkzZoidnZ1YWFjIwIED5ZdffpEhQ4ZI2bJlxdraWn766SeJjY1Vt9VqtRIQECCKokjPnj0N1tGntWTJEpk+fbrExcVJ9+7dxdjYWKZNm5aq3Pnz50Wj0UiDBg1Sna/169dL4cKF5auvvpJjx46JiMjBgwfF2tpaGjduLGfPnpWwsDCZNWuWFCpUSHx9fUVEJDo6Ov0bSOnun54TKcXGxsqNGzdk6tSpUrt2bVEURRo0aCA3btz4lFWmTIABCyKiTESr1YqNjY1kyZJFEhIS1OUlS5aU6tWri8hfHc8RERHq+kaNGgkAOXTokLrs7wIWAKRJkyYGnfHBwcFqUCIlfdDg559/Nli+cOFCAfDOAYuIiAjJmjWrKIoi33//vWzYsEHCw8P/dhv9sR0cHAzaGx8fL1WrVhUA6pceEZE//vhDjI2NxdXVNdUX3AkTJggAmTp16geX13+mrq6u8vLlS3X53bt3JXv27O8VsBg0aJAASDMwoA9YAJCZM2eqy3U6nTRo0EAAiK2trWzZskVdl5CQIKVKlRJjY2OJjIxMtU8PDw8pUKCA+u8LFy4IAGnatGmqsnFxcfLixYtUy7du3SoA1D8iiIjoy6TVaqVGjRpibW0t69at+6B9JCUlyeHDh8XGxkZy5collpaW8t1338mtW7c+bmUpw61du1YURZFGjRrJgwcPRCT5/KclMDBQJk6cKAMHDpQNGzaoyz+0U5zSjz7YJCIG3wvf51zpy8bGxkpgYKAUKFBADVpZWVlJ2bJl5eDBg2lue+/ePenevbucOHHiA1tA/8aNGzfUDmMvLy95+vSp3LlzRxwcHOTrr7+WM2fOiMhf18m2bdtEURRZsGCBiCT/vaZfFxsbK35+fqIoiowdO1ZERB4+fChDhgwRRVEka9askiNHDlEURWrUqGHwN2LK65A+X+/6nOjVq5eYmpqKtbW1FCpUSJYsWfKpq0qZBAMWRESZjD74cPjwYRFJ/jKnKIo6euL06dMCQFasWCEiyQ96W1tbsbCwMAhA/FPA4ubNm6mO7eTkJPb29uq/4+PjxdzcXHLkyJHqTZmkpCQpWrToOwcsRET27t0r+fPnVzvj9cGI//3vf7Jv375U5d8WLBERCQ0NFQDy3Xffqcv69u2bKnCTsr4ODg5StmzZDy7v5eUlAGTjxo2pyo8dO/a9AhZt27YVAHLhwoVU6/QBi8KFC6f6o3DFihUCQA1gpeTn5ycAZP/+/QbLo6OjxcjISH788Ud1mT5g0bZt23eqr4jI8ePHBYB07tz5nbchIqLM7W2dj4cPHxZFUaRevXpy9+5dEXl7J/TbvHz5Ujp37iy9e/dW36oVSe6AYgf1l+PZs2fSrFkzMTY2ljlz5qRZJjEx8a3b/906ylhPnjyRHj16SLly5aRx48Zy7Ngx9aWq970fiCQHPo4fPy4HDhww+P6t0+k+aH+UPuLj46Vdu3ZiZ2cnU6ZMkcuXL6vrpk6dKoqiSP/+/Q3Omb+/v7o8Jf29/tChQ2JpaSlff/21wfpx48aJp6enNG7cWFauXJmOraKM9C7PCRGRY8eOiY+PjyxfvtwgWMXA1X+P8UeaWYqIiD6SatWqYfv27QgJCUGlSpVw4MABiAiqVasGAChdujRsbGwQEhICT09PnDt3Ds+ePUOtWrXU+WD/ia2tLQoWLJhqed68edVcEwBw9epVxMXFoUaNGmpuDD2NRoNKlSrh+vXr79y2WrVqISwsDAcOHMChQ4dw+vRpHD58GIGBgQgMDMSwYcMwfvz4VNtVqVIl1bJvv/0WxsbGOHv2rLrs+PHjAIDdu3dj3759qbYxMTHBn3/++cHlz58//9b6pLXs7zx+/BhA8rl4m1KlSqWakzN37twAkq+DN+nX3b9/32D5jh07kJSUZJC/wsXFBaVKlcLatWtx9+5dNG3aFNWqVUPp0qXfOiesvb09AKg5NIiI6POl1WrVhKXy/0mx9UQElSpVQteuXbFo0SJs2LABPj4+7z1neJYsWTBnzhw1SSqQnAvqzaTc9HmzsbFBv379sGfPHqxYsQL169dH4cKFcfnyZVy4cAFt2rSBsfFfXQ/6602n00Gj0Riso4zz5n3gxIkT6NixIx48eIBs2bLh9OnTOHHiBEaMGIE+ffp8UA4BKysrlC9f3mCZ/p7wtnno36wXpb/IyEgcPXoUZcuWxcCBAw3W9e3bF8uXL8eaNWtQu3Zt1KtXDwBQu3ZtmJiY4Ny5c7h9+zacnJwMzl2VKlVQuHBhREZG4s6dO8ibNy80Gg2GDx8OwPA88znx5XmX5wQAVKhQAWXLloWJiQmAv64FXg//PfxmQESUyaRMvD1y5EgcOHAA5ubm6pd7jUaDypUrq4m39f+vUaPGOx/DxsYmzeXGxsYGydP0Sc5y5MiRZvmcOXO+8zFTHqNWrVqoVasWgOQOk2XLlqFnz56YMGECWrZsiTJlyvzjcYyMjJAtWza1jgDw5MkTAMC4cePeqS7vW/758+fQaDTInj17qnXv+1lYWFgAAOLi4t5aJq3k5Po/6v9u3ZvJyLds2QJ7e3uDoIqxsTH279+Pn376CRs3bsSAAQMAJCe+6927N0aMGJHqi2FsbCwAGHQ8ERHR50XfKaR/ZqxcuRLnzp1D1qxZUaZMGdStW1d9AWLYsGEICgrCsmXLUL16dbi6uqqdzO9K/8zQb8dOhy9T2bJl0bNnT0ybNg3+/v4oVqwYli1bhuPHj8Pe3h516tRRy+o7JZk0N3PQf/d/83xs2rQJ5ubmWL58Ob799ltcvHgRXl5emDRpEooVK4batWu/9/0gLf90T2Cw4tPTarUwNTXFjRs3AABbt25F9+7dMXLkSPTu3RtjxoxBixYtsGLFClSoUAG2trawtbVF48aNsXv3buzduxddunSBoihqh/OrV6+QkJAAW1tb5MmTx+C6eTOIyefEl+ldnxMmJiZqUm5eC/9d/IZARJTJuLq6ws7ODkePHkVCQgJCQkJQoUIFmJmZqWWqVauG8PBwhIeH48CBAwD+CnR8TPrAxsOHD9NcHxUV9a+PYWxsjC5duuD7778H8FcA5p+Ok5SUhMePHxsEX/Sd+DExMZDkaQ/T/O9Dy9vY2ECn06U5wuB9PwsHBwcAfwVN0ktcXBz27NmDhg0bpnqDMVu2bJgzZw7u3buHy5cvY+7cubC3t8fo0aMxefLkVPvS11VfdyIi+vzoO/9CQ0NRvHhxeHl5Yfny5Rg3bhyaN2+OH374Abdv3wYAFChQAEOGDMGFCxewevVqiAg0Go3Bs/FdsXP6y6S/FiwtLdGxY0c4Ojpi/vz56NGjBy5duoTp06cbBCsoc9H/Tms0Gty4cQPLli1DSEgInj17hi1btmDUqFFo2rQpcubMiVq1amHu3Lm4f/8+Zs6cidjY2A++H1DmpdPpUKhQIbRq1UodKdGsWTM4OzsjX758EBE0a9YMjRs3xqZNm7B582YAQPbs2eHp6Qlzc3NMmjQJO3bsAJDc4fzixQvMnz8f169fR6dOnVJ1QjOI+WX7kOeEoigMVv7H8W5ARJTJaDQaeHh4IDY2Ftu2bcOVK1fU6aD0PDw8AADBwcEIDQ2FlZUVypUr99Hr8tVXX8Hc3BynTp1KNRJAp9Ph6NGjH+1YVlZWb10XGhqaatmxY8eg1Wrh5uamLtOPQtFP9fRP3re8q6vrW+uT1rK/8/XXXwNInnYrPQUHB+PVq1cG00G9SVEUuLi4wNvbG3v37gUAbNu2LVU5fV31dScios/TmTNn0LFjR2g0GsyePRuhoaG4cuUKevbsidWrVxtMAdKjRw+UKFECq1evRnBw8DvtP2UHZkJCgjpCjx2bGS8pKemj7k/foXTixAkEBATg/v37iI+Ph7e3NyIjI+Hj4wOA5z4jpRw9rafVagEkn7/ExEQMHjwYxYoVQ+fOnVGzZk189913UBQF5cqVg06nU/fRpEkT1KtXD7t27cLKlSvfuQ48/58PfdDgypUrUBQF9+7dw6BBgxAUFIQmTZqov/OjR4+GiGD58uW4ceMGFEWBh4cHRowYgbCwMHTq1Ak//fQTZs6cicGDB2Ps2LH45ptv0KJFi4xsHr0DPicoM2DAgogoE9KPlhgzZgwApApYlClTBtbW1pg1axaeP3+OKlWqpMv8v2ZmZvjf//6Hhw8fYtq0aQbrFi9ejGvXrr3zvn777Tds3bpV/QMppRs3bmDDhg0AgMqVK6daP2vWLNy9e1f9d0JCAkaMGAEA6NSpk7q8V69eMDY2Rp8+fXDnzp1U+3n27JlBzov3Le/p6QkA8PPzw6tXr9Tl9+7dw6xZs97a9rTog04nTpx4r+3e19atW2FmZoa6desaLNeP0HmTfqTImzlLgL/qqq87ERFlbm/rdAgICMDt27cxYcIE9OrVCy4uLihcuDB++OEHFCpUCBs3bsSmTZsAJI9G/Omnn/DgwQMsX74cMTExat6LN+mX6TsnTp8+jcmTJ2PlypWchz6DiYjBvPDh4eF49OiR+n3mQzuKRARHjx5Fu3btMHfuXNSoUQOXL19Wc5dotVqe+wy0ePFitGjRAjdv3jRYnvLvhh07dmDlypXo3r07Zs6ciX79+uHo0aO4du2aOvpCf/0AwOzZswEA8+bNQ0REhDqVT1revCfcunULV69efWt5yhxWrVqF69evo3z58tDpdLh9+7Y6wlp/Hbi5uaF37944dOgQ1q9fDyB5NPqPP/6IMWPGwN7eHn5+fhg2bBjWrFmD1q1bY9++fXB2ds6wdtHf43OCMhPmsCAiyoT0AYtLly7B3NwcFSpUMFhvZGSESpUq4bfffjMonx4mTpyIffv2YeTIkTh8+DDc3Nxw5coV7Ny5E3Xq1MGePXveaT9//vkn+vXrh+zZs6Nq1aooXLgwRAQ3btzAzp07kZCQgJ49e6ZKxAckJ99ydXVF69atkSVLFmzfvh1Xr15F8+bNDd7SKVmyJObNm4eePXvC2dkZDRo0QOHChfHixQvcvHkTBw8eRKdOnbBgwYIPKl+9enV4eXnhl19+wddff41mzZohPj4e69evR4UKFfDrr7++8+daqlQpFCpUSB3RkB50Oh22b9+OmjVrphrBcu7cOTRv3hzu7u4oXrw4cuXKhXv37mHLli3QaDTo16+fQXkRwb59++Di4oKvvvoq3epMREQfj77TYd68eTAyMkKnTp3w7Nkz7Ny5E7Vq1UKjRo0AJL848Ouvv2L58uW4efMm2rRpg5o1a6r7adGiBRo2bIht27ahbt268PT0TJWkO+X0Dbdu3cKOHTuwaNEiXLx4EX5+ftDpdJyLOoPoz4+RkRFu3LiBYcOG4cyZM9DpdMiWLRsmTpwIDw8Pdd7w9+k0UhQF5ubm+OabbzBx4kS0bNkSwF9v9TOhdsbatWsXtm7dilatWqFQoULq8tu3b6Nq1apwc3NDzpw5Ubt2bfj5+SFbtmwAkvOhzZ07F+PHj8f8+fPV392kpCQUKVIEP/74I2bNmoWAgACMHTs2zal8Ul5Ljx49wv79+zFz5kzY29vD398fBQoUSP8PgN7rd1pftmHDhvjmm2+QI0cO1KtXD4GBgfD09ETDhg0NOq0HDRqE9evXY+XKlahVq5b6d9yoUaPQp08fXL9+HY8ePYKLiwsKFiwIgAm1Mys+JyjTESIiynR0Op1kz55dAEi1atXSLDNhwgQBIADk5MmTqdaHhIQIABk9erTBcicnJ3Fyckpznx4eHpLWo+H27dvSunVrsbW1FUtLS6lSpYocPHhQRo8eLQAkJCTkH9v08OFDWbRokbRs2VKcnZ3F2tpaTExMJHfu3PLdd99JUFBQqm06duwoACQsLEwmTpwoRYoUEVNTU3FycpKffvpJ4uPj0zzW77//Lm3atBFHR0cxMTGR7NmzS5kyZWTo0KFy5cqVf1Veq9XKhAkTpFChQmJqaiqFChWS8ePHy40bNwSAdOzY8R8/C71JkyYJADlx4oTB8lu3br11X287ryIiv/zyiwCQX375RUREjhw5IgAkICAgVdmIiAgZOnSoVKhQQXLkyCGmpqaSP39+ad68uRw7dixV+QMHDggAmTlz5ju3j4iIPj2tVqv+HBMTI23atBFFUaR58+Zy//59efjwoVhYWEi/fv3k2bNnsmbNGqlbt64oiiLlypWT33//Xd0+ISFB/fn06dOiKIqULl1aHjx4oC7X6XTqz9HR0RIYGKju75tvvkn1jKOMkZSUJJMmTRIrKyvJmzev1KtXT5o3by558uQRe3t7WbZs2b/ad0opr0H6tKKjo+XVq1fqv+/duyfz58+X2NhYg3L37t2TYsWKiZGRkeTKlUsuXLggIqJ+t378+LEULlxYsmTJot4TtFqteq7j4uLEwcFBbG1t5fDhwwb7TnlPeP36tQQHB0unTp3E3NxcHBwcZP369R+/4fSP3rwG/on+PG7atEkURZFvv/1WXZfyd37+/PmiKIr06dNHfWakdQ9ISkpKda+gzIXPCcpMGLAgIqJMSx+wuHXrVkZXJV08fvxYbGxspEuXLumy/8GDB4uiKAYdSx+qXbt2Ym9vL0+fPv33FSMionR19+5d2bZtm/z++++SP39++fnnn+Xy5csikvwSgrOzsxQoUEC6d++udiIuX7481X5CQkIMOj99fX1l7dq1qcrFxcXJgQMHpGvXrn+7P8oYCQkJ4u/vL7lz5xZPT0/ZvXu3JCYmiojIzZs3xcbGRipWrCihoaEikrpj6V2xMzJjBQUFiaIosnr1aoOggUhy5+COHTsMztGSJUvE1tZWcubMKdevX1fX6TsSFy5cKIqiSKNGjQz2pb92ZsyYIYqiyK+//ioikuqYZ8+elZEjR0rOnDnF2NhYfH19P26D6Z3odDoZNmyY9OvXT+Li4j5oH82aNRNFUWTu3LkiYtjZHBcXJxUrVhR7e/u3BqPevDYo8+FzgjIbBiyIiCjT+tIDFiIiEydOFBMTEwkPD//o+3Z2dpYKFSr86/1cvXpVjIyMZPr06R+hVkRElJ60Wq3Y2NiIubm5FC9eXNq2bZuqTKtWrURRFNFoNDJmzJg0OxDGjh0rRYsWlaNHj/7t8W7cuCG+vr6SN29e0Wg0MmTIkI/WFvo4oqKipGHDhtK4cWOD7xt79uyRkiVLiqIoYmxsLD169FA7NNnB+PnZtm2bODo6StWqVeXu3bvqcq1WK9WrVxdFUWTHjh3q8oSEBGnSpIkoiqK+OZ2YmGhw7qtWrSqKokhgYKC6r5Tr03qRJTw8XObNmyelS5cWRVGkZcuWEhUV9bGbS+/o2LFjotFopGTJku+9rT4wce7cObG2tpYCBQqo5zJl0GLbtm2iKIrMmTPn41SaPjk+JyizYdJtIiKiDPTjjz9i5MiRaSb9/rf+/PNPHDt27F/v5+7duxg9ejS8vb0/Qq2IiOhj0Ol0qRLXarVaGBkZwc/PD/Hx8bh79y7q1KmjrtMnS+3RowcsLCxgZWWFESNGGMw/HxYWhlGjRsHf3x+VKlWCi4uLwTHkjaSbBw4cwIwZM+Dq6oo7d+5g4sSJ6dFc+gdarfat63LkyIHBgwdj69atcHJyQlRUFFq3bo26devCzMwMc+bMQYkSJRAUFIQdO3a80/FSXgdarRYJCQn/ug30YfTnombNmujcuTNCQ0OxYcMG9ZowMjJSv8OtXr0az549AwCYmJigT58+sLa2hq+vL4C/5pLX3yt8fX1hbGyMyZMnIyEhwSD3gIjA1tbW4Nq7ePEifHx84O3tDUVRcPjwYWzYsAE5cuRI3w+B3prI/JtvvkGZMmXwxx9/4PDhwwDePXmykZERRASurq7o1q0bbt++jQkTJgCAwXOjUaNGCAsLQ+/evf9lKyg98TlBnxMGLIiIiDKQubk5fH19UaVKlYyuylvVqFEDo0aNgqmpaUZXhYiIkNwxpdFooNFocPXqVYSEhODmzZtqZ2Pfvn1RunRpvHjxAjExMQCSO5f0nY01atRA37598eLFC7i6umLKlCk4duwYJk+ejF69emHKlCmoUKECRo0aBVtbW4Nj6xNt6jsiateujcOHD+PXX39Fnjx5PtEnQHpvJi3dtm0b9u3bhwsXLuDVq1dqucqVKwMA/vjjD7Rp0wa7du3C4MGDsWTJEnh7e8Pb2xuPHz/G6tWrERkZCUVR0uwA1Z93/XVw/vx5zJgxAzt37nxrhymlL0VRkJiYCEtLSzRt2hTlypXDzJkzcfXqVbVMixYt0KRJE2zcuBGbN29Wl9esWRMdOnRAREQExo0bByD5mtLfK2rWrIlWrVrh9OnTCAgIUI+X8v8pE+ZmyZIFT58+xeLFi3HmzBlUrFgxfRtP6u+kRqMx+J0H/kpw3aZNGwDAwYMHAeC9Eibr9z9s2DAULFgQy5cvx+nTp6EoihrYAoCCBQumGUinjMfnBH2WMmZgBxEREREREb2PlFM3PXv2TLy8vMTU1FTMzc1Fo9HI1KlT5c6dOyKSnH9CnyT7+fPn6vb6fTx58kQWL14sOXPmFEVRRFEUsbCwkHz58klAQMCnbxz9rSNHjsjDhw9FJO05wNeuXStOTk5iYmKins9atWrJ/fv3DcpNmTJFjIyMZMKECfLixQt1+ezZs0VRFMmfP786T/3fuXPnjixcuFDc3d1FURQZO3Ysk6hmgDc/89jYWJk9e7aYm5uLj4+PwTk+e/asmJqaioeHh9y4cUNdfvnyZSlcuLAYGxur15hWq1X3fe3aNRk3btw/Tv/C6WEy1vjx46VQoULq9F0pz0dISIjY2NhI+/btPyiPhf5amDdvniiKIk2bNv04laaPis8J+pIwYEFERERERPQZ0el00rFjR8mdO7d8//334u3tLUWKFBFzc3Px9fVVO6SaNm1qkCg1rQ7F8PBw2blzp2zbtk02b96sJtkUSd0ZShlj4sSJoiiK/PzzzwbLk5KSJDExUX7++WcxNzeX6tWry5QpU2T//v3i7e0tFhYWUrt2bTl79qyIJOcsKFOmjGTPnl0eP35ssK/JkydLmTJlRFEUKVSokEH+sJTXzbNnz2TLli1q7oOvv/5a9u/fn25tp3cTGBgoFSpUkCZNmoibm5s4OjpKtmzZJCQkxKDcgAED0ryWJk+eLIqiSMeOHUXkr87ON+8ZTJibOR04cEDtgM6WLZscPXrU4P595coVcXZ2FgcHB7UD+n0CTCnL+vr6GuRIocyBzwn60jBgQURERERE9BnYu3evtGrVSmbMmCE5c+aUhQsXysuXL0VE5Pz581KmTBnJkSOHBAUFiYjIrVu3RFEUcXFxkbCwMBF5tw5HBioyl8uXL0v+/Pll4cKFqc7fzZs3JU+ePOLh4SHnz59Xl0dHR0v//v1FURTx8vJS37r19PQUGxsb+e2330QkOcnypk2bxNraWgICAmTu3LlpjrBJTEyUI0eOSO/evcXa2lpsbGxk3rx56dhq+ic6nU5evXolPXv2VN+UHjhwoPz444/y1VdfiaIo0qZNG3n06JG6zYMHDyRPnjzi7Owsx48fV5c/fvxYqlWrJoqiyKFDh956PMpYf3f/dnFxEWdnZylevLgUKlRINm3aZLC+RYsWoiiKrF69WkTe/3y+eWwGrzIXPifoS8OABRERERERUSan0+lk9OjRoiiKVKpUSdq2bZuqzK5du0RRFGnWrJncu3dPREQGDx4siqLIoEGD3vk4lPnoO5LeNHbsWFEURY4cOaIuu3jxokyaNEny588viqLI5MmTRST53G7YsEGsrKykWLFiMnToUOnevbsULlxYKlSoIDdv3kzzGDdu3JAJEyZIwYIFRVEU6d27tyQkJHz8RtJ7O3v2rGTNmlXq1q0rV69eVZdfvnxZypUrp3ZQp+zAnD9/viiKIt7e3gbncenSpWJraytbtmz5pG2g9xMfH6/+rNPp1ADziBEjJGfOnHLlyhUpUqSIFClSRPbt26eW3bRpk/r7m3IfH4LPicyJzwn6kjBgQURERERE9Bl48OCB1KxZUxRFka5du4qIGEzhJCLStm1bMTIyMpgGKkeOHJIrVy4JDQ0VEb4Z+7nav3+/VKpUSXbu3CkiySNhunbtKjY2NnL//n01L0nFihVFURSpXbu2Qa4CEZHXr1+rOQ4sLCzE0tJSGjVqJOHh4W897uzZs8XIyEhq1qwp169fT9c20vsZOXKkKIoiGzduVJfpOwm3b98uTk5OUq5cOYPzGxcXJ+XLl5dcuXLJ1q1bDfb35v2EMtabgYF58+ZJ2bJl1fOW8l4eFBQkGo1G9uzZI2fPnpXSpUtL7ty55cyZM6LT6eTKlSuSL18+qVWrlsTExPyrelDmxecEfSk0GZ30m4iIiIiIiP5Zrly50KNHDyiKghs3biAyMhLGxsbQ6XRqmVGjRsHc3ByrVq3CxYsXoSgKJk2ahKioKMyYMQMAoNHwz8DP0Z07d3D06FEEBQUhJiYGRkZGMDU1RUxMDObMmYNevXqhW7duiIyMxPbt27Fnzx4ULlwYABAdHY3ExERYWFigT58+uHDhAn799VccPnwY27Ztg5OTk8F1BAAiAgBo3LgxQkJCEBwcjCJFinzydtPbvXz5EgDg6OgIANBqtTA2NgYA1KxZE9999x1Onz6NoKAgxMXFAQDMzMzw888/IyoqCrNnz0ZMTIy6P2NjYyQlJX3iVtCbRAQ6nQ6KoqjLHj58iBs3buDMmTPw9vbGtWvXDO7lzs7OyJUrF4KCglC6dGn4+/vDysoKHTp0wP79+1GoUCE4OTlh3759ePToEQCk+p1/G309IiMjER0d/RFbSh8bnxP0xcjggAkRERERERG9oxcvXkirVq3E2tpa1q5dm2aZUaNGiaIo4uvrqy7r1auXXLp06VNVk9KBTqeThg0bSpYsWWTFihUiIhIcHCwmJiZiYmIilpaWMmPGjFTbJSYmioeHh8yaNUvdz5uYtyTj6PPQfMjohjFjxoiiKDJy5EiD5fpzvHHjRlEURZydneXMmTMGZfr376/OUU+Z05UrV6RLly4Gy/r27SuKosi3334rBw8eNFhXrVo1+eabbyQ6OlpERM6cOSM5cuSQr776Su7cuaNODTRu3Lh/PHbK+8SLFy/kt99+kwYNGkjDhg15v8jE+JygLwVfrSEiIiIiIvpMWFlZwcfHB4qiYOXKlQgLCwNg+Kasj48PHB0dMXXqVBw9ehQA4O/vjxIlSqhvQ9LnR1EUjBo1CrGxsVi5ciXu378PV1dXNGjQAFqtFuPGjYOPj4/BNmfPnkX79u1x+vRp2NnZqft5k5GR0adoAv0/SZ6eG8OGDUPZsmURGxurjox4F/rf97Zt28LCwgLBwcG4du0aACApKUkdJVGqVCnY2dnh2rVrWLBggcFoimnTpqFu3bofsVX0MY0cORLFixfHkiVLMGvWLHW5n58fvL29cebMGQwaNAhHjhxR133//fc4c+YMnjx5AgBwc3PD3LlzkZCQgBYtWiB//vwAgEuXLuHp06dpHlf/jFAUBTqdDqdOnYKfnx/at2+P/fv3w93dnfeLTIzPCfpSMGBBRERERET0GXF3d0fXrl2xe/du7NixAyICjUajdjTZ29tj4sSJGDFiBCpWrKhu9+YUI/T5KV++PHr06IHg4GAEBgYie/bs6NatG2xsbDBhwgT4+/sjMjIS169fx9y5c+Hj44Pdu3ejb9++aNq0aUZXn/6foihQFAW///47rl27ht9+++29ttdPBZQvXz60b98eJ06cwLx58wAkdyrqgx+BgYEwNzdH1apVsWjRIty9e9dgPwxgZl76aZtsbGwwfPhwNdhkY2ODYcOGoV+/fjh58iS6dOmCBw8eAACKFy8OS0tLrFq1St1Py5YtMW/ePNy5cwfDhg2DmZkZwsLCkJiYmOZx9c+IsLAwzJ49Gx06dMDUqVPRsGFDREVFwdfXNz2bTR8BnxP0JVCETygiIiIiIqLPSlhYGOrUqQNbW1sEBASgbNmyEBEGJP4D7t69izJlyiBHjhxYs2YNSpUqhXXr1sHb2xtPnz6Fra0tRAQvX75Evnz5MHPmTDRu3Dijq00pJCUlwcjICHfv3sXZs2fRqFEjdZ1Op3uvPDNXr15FgwYNcOvWLfj6+uKHH36AiYkJ9u7di+nTp6Ndu3aoUqUKsmbNChcXl/RoDn2Av7tf63Q6/PTTT1iyZAm++uorHDx4EN26dcOCBQsMtvv++++xbt061K5dG5MmTUKhQoXw7bffwsnJCWvXroWNjY26z71796JVq1Zq4OPUqVMoU6ZMqmM/evQI+/btw+LFi7F//35UqFAB8+bNQ+nSpT/+h0Dphs8J+twxYEFERERERPSZERH4+/ujX79+6NOnD/z8/GBlZZVmOQYxvjwzZszAgAED4OPjgylTpsDIyAh//vkndu7cifDwcJiYmKBUqVLo2LGjus37doTTx6EPTvydO3fuYOfOnejRo8cHHePgwYNo164d7t+/D3t7e1hbW+PevXtwcXFBUFAQihYtCoDXQGbxd9eE/p69ZMkSDBkyBJMmTYKfnx8iIiJw4cIFlCxZEnFxcTA3N8fdu3cxZswY/PLLL6hQoQK2b9+OiRMnYtWqVdi/fz+cnZ0N9j1r1izs3LkTnTp1Qtu2bVMd+9q1axgyZAj27t2LrFmzYvr06WjTpk26fAaU/vicoM8ZAxZERERERESfoejoaFSpUgWWlpbYsWMHcuXKldFVok8kNjYWFStWRGRkJJYuXYr69esbrE/Z6aTVat8rPwKlj3v37iFPnjxITEyEiYmJujwxMRGurq74888/ERISAg8Pj3cKcrzp2rVrWLNmDc6cOYPnz5+jfv36GDp06MduBn0kOp0OI0eORPXq1VGjRg0YGRkZ/N5evXoVLi4u+PXXX/HkyRN06NAB1apVw/79+wH8Fdi4e/cuxo0bh4ULF8LDwwPdunVDu3btsGfPHtSqVQtJSUlQFAUajSbVtfdmQDs2Nha5c+dGz549MWHChE/7gdBHx+cEfc4YsCAiIiIiIvpMXb16NdVbtPTfsH37djRp0gSNGzfG0qVLYW9vb5AwN+XPlDFEBLdv30aNGjVgb2+P48ePq52CmzZtQtGiRfH1119j2bJl6Ny5M2rWrIm9e/eq237ouYuPj4eZmRkAdkRmRgcPHkTt2rWh1Wrh6OiIzp07w8/Pz6DMH3/8AQ8PD7Rv3x4zZsxA5cqVcezYMQQFBaF58+YGwQedTodGjRph165dKFq0KK5fvw5PT08sX748zeOnFRDTXyexsbGwsLBIn4bTJ8fnBH2uOM6HiIiIiIjoM6UPVmi12gyuCX1qjRo1QuXKlXHu3Dk8f/4cwF/JnN/8mT6d06dP4/jx4wCSz4GNjQ3KlCmDM2fO4ODBgzh9+jRcXV3RunVrHDhwAADQqVMn1KlTB/v27cOyZcsAJHdCfygzMzPodDqICIMVGSytd4Tz5csHrVYLa2trmJiYYP78+ejSpQuioqLUMiVKlICdnR0iIiKgKAoGDhwIAOjfvz8AwMTEBCKCpKQkaDQaTJ06FR07dsT169cBJOeoiIiISLNOaY3e0V8nDFZ8WficoM8VR1gQERERERERfYaioqKQM2fOjK4G/b8LFy6gdOnSqFSpEvbu3Qtzc3MAyW/L16lTB69evUJMTAxKlSqFrl27okmTJnB0dIRGo8HRo0dRo0YNFChQACdPnoS1tTXnk/+MpRzFkHI0hH4kw/DhwzFx4kTUqVMHNWrUwNChQ1GzZk1Mnz4dX3/9NQCgbdu2+P333xEWFgYAaN26NTZs2IBx48Zh2LBhqUZK3LlzB97e3tixYwc2btyIZs2afeJWU2bE5wR9jvjkIyIiIiIiIvoM6TuhOMImcyhVqhTq1auHI0eOYMWKFery3bt348GDB4iJiUG1atWwZs0a9OrVC3nz5lUDEhUrVoSXlxeuXbuGyZMnA3j3aVr4HmrmoT8X+kDCkCFD0L9/f3X0hP58jx07FtmzZ8eePXtQuXJlrFmzBqdPn0aTJk0QHBwMAHB0dMSTJ09w6tQpAMDQoUNhZWUFX19fPHr0CEZGRkhKSlKPnT9/fmzYsAFJSUkMVpCKzwn6HDFgQURERERERPQZ47Q/GU/fcTxr1iwAwPz583Hnzh0AyZ3UDRs2RJEiRXDmzBnY2dlBURR12if9tiNGjEDu3Lnh7++PP//8E4qiGHRIv40+sPH48WO1U/LfTClF709EoNPp1HOxdu1a5M2bF1OmTIGRkZEaqNBoNNBqtTAyMsK0adMAAGPGjEGbNm2wadMmmJiYoFWrVli6dCmqVq2KmJgYdaSOm5sbevfujaSkJAwZMgRA6qCWmZkZFEVh5zSlwucEfU4YsCAiIiIiIiIi+hf0b7sXLVoUffv2xfnz57FgwQIAgI+PDwIDA9GvXz/ExMRgxIgRAP56297IyAg6nQ558+ZFv3798OzZM4wdO1Zdl5aUoypevHiBX3/9Ff3798fcuXMN9k2fhqIo0Gg0OH/+PL799lu0a9cOLi4uWLt2LUaMGAEHBwe1rL7j2NPTE+7u7ti7dy+WLFmCatWqYcuWLShXrhy6dOmC2bNnQ0Rw8uRJddt+/frBxcUFy5Ytw+HDh1OdZ30Ag53TRPQ54xOMiIiIiIiIiOgDpBwBoe8snjhxImxsbPDLL7+onc0WFhZo0qQJ6tevj2XLluHQoUMG+9EHIHx8fFCmTBls3LgRv/32W6pj6MvpR1+cOHECP/30E9q3b4+NGzcadIzTp6PVatGzZ0+4ubnhyZMnmDNnDubOnYvWrVur50R/7kREHQGhH5EzefJkREVFwcXFBUuXLsWgQYMQEhICS0tLdTudTgcHBwd07doVQPKIGiKiLxEDFkREREREREREH0A/AuLSpUtqYMHc3ByTJk1CVFQU/P391bKOjo7w8vJC1qxZ4evrC61Wa5DzICkpCcbGxhg2bBgSEhLg6+trcAzgr6DItWvXMHPmTHh6emLGjBlo3bo1Hj58iHbt2n2SdpOhZ8+eITw8HADg5eUFb29vODs7pyoDJJ9DY2Nj6HQ6lC9fHu3bt8f169cxc+ZMAEC+fPkwadIkzJ8/HytWrFDzUejPvY+PD+Lj49GkSZNP0jYiok9NEWZnIiIiIiIiIiJ6by9evMD333+Ps2fPYvv27XBzc1PXubq64sqVK1i/fr3a6RwbG4sff/wRixcvxpIlS+Dl5QUAePjwIW7evIkKFSoAAH766Se0adMGxYoVMzheVFQUgoODsWjRIhw6dAhVqlTB/PnzUbx48U/UYnqb0NBQNGrUCNWrV4e/vz+sra2xa9cuhIaGIiQkBNbW1qhYsSLatm2LcuXKISkpCUZGRnj48CEcHR2RJUsWhIaGolSpUgCSR1SkNbWXiKh5Kjj1ExF9iTjCgoiIiIiIiIjoA5iYmKBKlSp49OgRtmzZghcvXqjrZs+eDa1WC39/f3W5hYUFOnTogKJFi8LPzw+7du3Ctm3bMGTIEPzvf//Djh07ACQHLIoVK6YmzxYRnDhxAt7e3vjhhx9w8+ZNBAUF4eDBgwxWfALvkvy8XLly8PLywo4dO7B48WIMHToUHTt2xPr165GUlITw8HDMmDEDTZs2xYkTJ9RgRI4cOeDn54cXL15g4sSJ6v7eloeEeSqI6EvHERZERERERERERB8oLCwMPXr0wOXLl7Fq1SpUr15dXdeiRQts3rwZM2fORN++fdXlc+fOxfDhw/Hy5UuYmZlBRDBq1Cg1ITfw15v0AJCYmIilS5eiX79+GDp0qDpdFKWvlOcgPj4egYGBqFevHhwcHNIcAXHlyhU0atQIN2/ehIWFBQYMGAAfHx8oigJLS0sMGTIECxYsQPXq1TFv3jwULFhQ3bZAgQK4c+cOtmzZgsaNG6sjMIiI/msYsCAiIiIiIiIi+gdLlixBfHw8unbtChMTE7UzW0SwYcMGeHl5oVWrVpg4cSJy5coFAIiIiICTkxOKFSuG7du3o3DhwgCA169f49ixY9i5cydsbW3Ru3dv2NnZATDsJE/p/v37yJo1K6ysrD5dowkAEBgYiK5du+LVq1eYPXs2evXqlWa5xMREBAQEYO7cuVi4cCGqVq0K4K9zeu/ePQwfPhyrV6/Gxo0b0aRJE8THx8PMzAybNm1Cy5Yt4ebmhpMnT751hAUR0ZeOdz8iIiIiIiIior9x9epVjB8/Hr6+vrh27RoAqMEKRVHg4eGB//3vf9iwYQMOHTqkJtPOly8fhg8fjj///BMBAQHq/iwsLFCzZk1MmjQJo0aNgp2dHZKSkt4arACSk3YzWPFpxcTEYPr06ejSpQu0Wi1MTEywfv169RrQT9mlZ2JigmbNmsHf3x/u7u7qdaA/p3ny5EGlSpWg0+mwe/duAICpqSkAoHnz5ujbty8WLVrEYAUR/afxDkhEREREREREBECr1Rr8W98h7ezsjIEDB+L169dYsGABXr9+bVAuZ86c8PT0hI2NDRYvXowbN26o637++WfkyZMH/v7+2Ldvn8F2+jwEOp0ORkZGbw1WUMY4dOgQxo0bBysrKwQFBaFr164IDQ3F2rVrAaSdZ8LR0RE1atSAubm5wflMSEgAAGTPnt3g/4qiqDkyZs6ciTJlyqQKhBAR/ZcwYEFERERERERE/2n6DmJ9AOHUqVOIjY01KFO/fn3UqVMHv/zyC06cOAEgubNZv62rqyvq1KmDkJAQ/Pbbbwbb+/r64vXr13j27Jm6XUp8oz5zsrKygqenJ44dO4b69euja9euyJ07N9asWYMjR44ASD3KQk8/ukK/Xj+SYvPmzQAAd3d3tWzKXBUiwuuBiP7TeAckIiIiIiIiov80fQfxunXrULRoUdSsWRO1atXC1KlT1TIFChRA+/btYWZmhhkzZuDx48fqtjqdDtmyZYOjoyOSkpIQGBiIS5cuqdt27doVjx49QosWLT5tw+hfqVatGkaPHg0nJycAgIuLC/r27Yvr169j5cqViI+Ph0ajQVrpYfVThumvrRs3bmDw4MEIDAyEp6cnvvvuuzSPyVE2RPRfx4AFEREREREREf2niIjayaz//7p169C3b1/Y29ujWrVquHLlCoYOHWqQe6J69epo3bo1fv31V+zYsQOJiYkA/gp4aDQalCtXDkeOHMHixYvx8uVLddts2bKpeSro86FPhg4kj8Bp3749ypYti6CgIPz6669/u218fDzCwsIwbdo09OrVC1OnTkWtWrXg6+ub3tUmIvpsMWBBRERERERERP8ZWq0WiqKouQMURUF8fDxmzJgBDw8PrFy5Elu3bsWOHTvg5uaG4cOH48SJExARZMuWDf/73//w1VdfYcqUKeq0QImJiQgKCsLcuXPxv//9D56enqhWrVqqJNnMU/H5y5MnDwYMGIAnT55g+fLliIyMNJgaLKUBAwagePHiGDNmDMLCwrB48WLs2LEDhQsXzoCaExF9HhRhaJ+IiIiIiIiI/mPmzZuHEydOoEyZMsibNy9WrFiBgIAA5MyZUy2zcuVK9O7dG/Xq1cP8+fNhb2+PhIQELF68GIMGDULWrFnRunVrxMTE4NChQ3BxccHatWtTBSroy/L8+XN4eXlh+/btmDFjBnr37p1muePHj2P9+vVwc3NDu3bt1FwVSUlJBnkriIjoLwxYEBEREREREdEXTafTqdM2XblyBW3btsWFCxdgbGwMrVYLCwsLWFlZ4fLly8iWLRsSExNhYmKChw8fYtiwYVi+fDnWrVuHZs2awcjICC9fvsTy5csxePBgiAji4uLQsGFD+Pv7I3/+/KmOSV+e0NBQ1K9fH8WLF8fatWtRuHBhXL58GRcuXECbNm3UcvprCWCggojoXTBgQURERERERERfvJs3byIxMRGbN2/Ghg0b0K1bN1SvXh3Lly/HL7/8AiMjI6xatQoeHh4G2wUHB6NLly7InTs3NmzYgLx58xrs89atW7C1tUXZsmUBMFDxX/H69WuMHj0a06ZNg4+PD4oVK4Zly5bh+PHj+O2331CnTh21rL7rjdOBERH9MwYsiIiIiIiIiOiLduLECXz77bdo3rw5Dh48iJ9//hndu3cHkDy9z/z58zFixAgMGzYMQ4YMgbW1tfo2fGxsLMaPH49x48Zh+vTp6N27N4yNjSEiqTqg+Qb9ly/leb906RLq1auHx48fIz4+HlZWVvDz84OPj0/GVpKI6DPGkD8RERERERERfdEKFCiAunXrYtOmTbC3t0fnzp0BJCfgtrGxQfPmzeHh4YHly5fj9OnTAJITZOt0OlhYWKBFixZwd3fHiBEjcOXKFQBpvy3PYEXmk5SU9FH3pz/vJ06cQEBAAO7fv4/4+Hh4e3sjMjJSDVbw/WAiog/DgAURERERERERfRY+tBM4Z86cGDhwIGxsbHD//n1cvXoVwF+dz0WKFEG3bt3w5MkTrFixAlFRUQbbly5dGq1atULVqlWRI0eOf9cI+iRExGDES3h4OB49eoRXr16p6z90v0ePHkW7du0wd+5c1KhRA5cvX8acOXNgaWkJrVab5ugbIiJ6NwxYEBEREREREdFnQd8JHBcX997buru7o0OHDnj16hX27t0L4K9RFBqNBtWqVUPLli0RGBiI0NBQiAg0Go36hn6vXr2wa9cu5MyZ8+M1iNKFPmBgZGSEGzduoFWrVqhZsybc3d3h4eGB4OBgaLVatez7UBQF5ubm+OabbxAYGIjg4GAUK1YMOp0OOp0OxsbGDFYQEf0LzGFBRERERERERJ8FEcGIESMQFxeHCRMmwMzM7L22v3DhAho0aID8+fNjwYIFKFWqlEGS7P3796NTp05wdnbG3Llz4ezsnGofzFPxedDpdJg6dSrGjh0LW1tblCxZEpaWljhx4gRiY2Mxffp0dOzY8YP3nTKxOq8JIqKPhyMsiIiIiIiIiOizcOLECUyaNAl79+5972AFALi4uKBv3744fvw4Nm3ahLi4OINRFOXKlUPz5s2xb98+REREpLkPdkxnfomJiViwYAFmzpyJZs2aYcmSJdi+fTs2btyI0NBQJCUlISAgAIcPHwaQHIB4H/pghX47XhNERB8PR1gQERERERERUaby5hvseklJSahQoQJOnz6NQ4cOoXLlyu+dLyAiIgLNmzfHkydPsGjRItSoUcNg/fXr16HVauHi4vKv20EZ4+HDh+jcuTOMjIwwe/ZsODk5AQD27t2L/v37448//oCRkRG6dOmCmTNnwszMjHkniIgyCY6wICIiIiIiIqJMQf9OpUajUZMj6+mn3WnTpg0A4ODBgwDw3p3MefPmxYABA3D79m0EBQUhOjoawF9vyxctWhQuLi7Q6XQfnJiZ0p8+B0VacuTIgcGDB2Pr1q1wcnJCVFQUWrdujbp168LMzAxz5sxBiRIlEBQUhB07drzT8VJeC1qtFgkJCf+6DURElBoDFkRERERERESUKeiDDxMmTECpUqWwYcMGAMmdxfppd8qWLYusWbPizz//RHx8/Acdo27dumjSpAkWLFiAffv2AUCqER0ajYZv3GdC+sCSsbExAGDbtm3Yt28fLly4YBDkqly5MgDgjz/+QJs2bbBr1y4MHjwYS5Ysgbe3N7y9vfH48WOsXr0akZGRUBQlzamh9IEK/bVw/vx5zJgxAzt37nzvqaSIiOifMWBBRERERERERJnGwYMHMWLECNy6dQs9e/bEsWPHDDqGc+XKhVy5cmH37t1ITEwEgPceCWFnZwdvb2906NABtWvX/qj1p4/j6NGjePToEQDDHBP6wNK6detQoEABtGzZErVr10bp0qXRtGlTPHjwwKDcrl27EBoaiuHDh2PkyJFwdXUFAMTFxQEATp06hY0bNxpsk5I+UBEREYGAgAB069YNQ4YMwaVLlzgCh4goHTBgQURERERERESf3NveTvfw8ECxYsXw1VdfIWfOnGjfvj22bdumri9WrBhKliyJ6Ohog+Xvq3r16li2bBns7e3Z8ZzJTJo0CZUrV0ZAQAAAwyTXWq0W48aNg5eXFwoVKoTx48dj37596NWrF44cOYKOHTvi3LlzAJKTb69duxZ2dnbo1q0brKys1GPExcXBzc0NERERmD59OsLDw9V1Ka+H58+fY+vWrejTpw969OiB2NhY7Nu3DyNHjmSybSKidMCABRERERERERF9chqNxiAPgIggKSkJANC8eXM8e/YMGzduhEajweDBg7F//361bLt27QAAx44dQ0JCwgdN3aTfRqfTceqnTKZx48bIly8fHBwcUo2uiIiIwPz581G+fHnMnDkTAwcORPXq1TFmzBj07NkTwcHBmD17Nh49egQTExOUKFECiYmJOHnyJIDk/BObN2/G2LFj0aNHD8yZMwdDhw5FgQIF1OMoigKtVoujR49i5MiR8PT0xIEDB+Dv748LFy6gevXqn/ojISL6zzDO6AoQERERERER0ZdPRAwCA/Pnz8eSJUvg6+uLxo0bG+SpcHNzw6NHjxAREYENGzbAy8sL7du3x44dO1C6dGm4uLggb968ah4LU1PTD65HWtMAUcZycXHBqVOn4ODgkGrd6tWrcf/+fQQGBqJUqVIAgEuXLmHnzp0ICgpSt3dwcICIoHHjxti8eTN8fHzQtGlTPH36FMHBwShRogRq1aqFggULpjpGWFgYNmzYgICAAISHh8Pb2xvTp0+HiYlJ+jaciIg4woKIiIiIiIiI0o+IpBrF8PDhQ9y4cQNnzpyBt7c3rl27ZhA4cHZ2Rq5cuRAUFITSpUvD398fVlZW6NChA/bv349ChQrByckJ+/btSzPPwd/R1yMyMhLR0dEfsaX0MTk4OCAkJASVK1fGrl27AABJSUm4c+cOsmbNioIFC+Lp06dYsmQJunfvjqFDh8LZ2RnXr1/HoEGDACSf64YNG2L8+PEIDw/HrFmzsHLlShQvXhzr1q1LM1gBADt37sTIkSNRqFAhXLt2DXPmzGGwgojoE2HAgoiIiIiIiIjSjaIo0Gg0+PPPP9G1a1cAQI4cOTBt2jT06dMH9+7dQ6dOnXDo0CF1m5IlS+Krr77C2bNn8fjxY1SsWBHr16/Hw4cP0atXL0RFRaFu3boAkpMvA38/UiJlToKXL19i9+7d+OGHH9CpUyd1GirKfO7cuYOjR48iKCgIMTExMDIygqmpKWJiYjBnzhz06tUL3bp1Q2RkJLZv3449e/agcOHCAIDo6GgkJibCwsICffr0wYULF/Drr7/i8OHD2LZtG5ycnFIFufTXSePGjRESEoLg4GAUKVLkk7ebiOi/jAELIiIiIiIiIkpXI0eORPHixbFkyRLMmjVLXe7n5wdvb2+cOXMGgwYNwpEjR9R133//Pc6cOYMnT54ASJ4mau7cuUhISECLFi2QP39+AMnTAT19+jTN4+o7oBVFgU6nw6lTp+Dn54f27dtj//79cHd3Z+LkTKxDhw5o0KAB1q9fj61btwIAmjVrBmNjY0ydOhXbtm3DtGnTEBYWhoYNG6rbabVatGzZEvPnzweQfB0ULVoUNWrUgJubG4Dk0RpvBrn0o2+cnJxQpUqVT9FEIiJ6AwMWRERERERERJSu9NM22djYYPjw4YiJiVH/PWzYMPTr1w8nT55Ely5d8ODBAwBA8eLFYWlpiVWrVqn7admyJebNm4c7d+5g2LBhMDMzQ1hYGBITE9M8rr4DOiwsDLNnz0aHDh0wdepUNGzYEFFRUfD19U3PZtO/pCgKRo0ahdjYWKxcuRL379+Hq6srGjRoAK1Wi3HjxsHHx8dgm7Nnz6J9+/Y4ffo07Ozs1P28iYEqIqLMiQELIiIiIiIiIvpXUk659CadToecOXMid+7cKF26NGJjYzF48GB1O0dHR0yYMAFt2rTB1atX0alTJ5w7dw5ff/018uXLh5MnT+L58+cAkjue69evj5UrV+LVq1eIj4/HyZMncffu3TSP/ejRI6xbtw7du3dH//79YWtrizNnzmDZsmXImjXrx/8g6KMrX748evTogeDgYAQGBiJ79uzo1q0bbGxsMGHCBPj7+yMyMhLXr1/H3Llz4ePjg927d6Nv375o2rRpRlefiIjeEwMWRERERERERPTBkpKS0nyDHUgOSGg0Gjg5OSE+Ph7t27dHvnz5EBAQgEuXLkFRFMTFxQEAJk+ejB9++AH79u1D7969kZSUhO+++w7nz59HZGSkwX5r166NMWPGoHbt2li9ejXKlCmT6tjXrl1Dt27d0KVLF1y+fBlr1qzB0aNHUbp06Y/+GVD6GjZsGLJnz47FixfjwoULaNCgAebPnw+tVos+ffqgePHicHd3R79+/RAREYHly5dj3LhxsLa2zuiqExHRe1Lk716DICIiIiIiIiL6BzqdDiNHjkT16tVRo0YNGBkZQafTqTkCrl69ChcXF/z666948uQJOnTogGrVqmH//v0AkgMbiqLg7t27GDduHBYuXAgPDw9069YN7dq1w549e1CrVi01OKLRaJCYmAgTExO1Dvp96MXGxiJ37tzo2bMnJkyY8Gk/EProZsyYgQEDBsDHxwdTpkyBkZER/vzzT+zcuRPh4eEwMTFBqVKl0LFjR3WblNcgERF9HhiwICIiIiIiIqIPdvDgQdSuXRtarRaOjo7o3Lkz/Pz8DMr88ccf8PDwQPv27TFjxgxUrlwZx44dQ1BQEJo3b24QfNDpdGjUqBF27dqFokWL4vr16/D09MTy5cvTPH5SUlKqfARarRbGxsaIjY2FhYVF+jScPqnY2FhUrFgRkZGRWLp0KerXr2+wPmVwQn/+iYjo88MwMxERERERERG9k7TeecyXLx+0Wi2sra1hYmKC+fPno0uXLoiKilLLlChRAnZ2doiIiICiKBg4cCAAoH///gAAExMTiAiSkpKg0WgwdepUdOzYEdevXwcAnDp1ChEREWnWKa3kyfrOagYrvhwWFhbw8/NDVFQUFi5ciCdPngBIvib1U4/pf2awgojo88WABRERERERERH9raSkJADJSa8TExPV5VqtFoUKFcLQoUPx4sULODs7Y9CgQVi6dCnat2+PixcvqmXLlSuHc+fOAQCaNWuGVq1a4c6dO+p0TTqdTg0+uLi4YMyYMWjYsCEA4Oeff0a+fPk+RVMpE2vUqBEqV66Mc+fOGSRi108FlvJnIiL6PHFKKCIiIiIiIiJK05t5IYYMGYLXr19j5MiRyJkzpzoNT1JSEnLnzo3o6GgcPnwYd+7cQa9evWBra4uAgADUqlULAwYMwNKlS7F3716UK1cOZ8+ehYeHB2JjY3H//n04ODikmt4pLi4OZmZm7IQmVVRUFHLmzJnR1SAionTCERZEREREREREZEBEoNPp1EDB2rVrkTdvXjXZsT5XgEajgVarhZGREaZNmwYAGDNmDNq0aYNNmzbBxMQErVq1wtKlS1G1alXExMTA3NwcAODm5obevXsjKSkJQ4YMAYBUgQl9sEKr1X6qplMmpw9W8JogIvoycYQFEREREREREaXp/Pnz6NGjB06cOIGaNWuiS5cuqFGjBhwcHNIsX6FCBfz+++9YtGgRfvjhB1y5cgV9+/bFvn37UL16dYSEhGDJkiXw8vICADx69AjVqlXDlStXcOjQIVSuXPlTNo+IiIgyGY6wICIiIiIiIiIDWq0WPXv2hJubG548eYI5c+Zg7ty5aN26tRqs0L//KCLq2+6zZs0CAEyePBlRUVFwcXHB0qVLMWjQIISEhMDS0lLdTqfTwcHBAV27dgUAPH78+FM3k4iIiDIZjrAgIiIiIiIiIgPR0dHw9PTE7t27MX78eAwdOjRVmadPn8LOzk79tz6fRYcOHbBq1SoMGTJETagNAAsXLoSDgwOqV68OOzs7g/wYiYmJMDExSf+GERERUabGgAURERERERERpRIaGopGjRqhevXq8Pf3h7W1NXbt2oXQ0FCEhITA2toaFStWRNu2bVGuXDk1YfbDhw/h6OiILFmyIDQ0FKVKlQLwV0DjTfrAhVarhbGx8aduJhEREWUiDFgQERERERER/cfogwt/JzY2FsOHD4e/vz9GjhyJqKgoLF26FNbW1siWLRuePXuGqKgoODo6YuPGjXB3d1dHTIwfPx4jR45EmzZtsGbNmk/RJCIiIvoCMGBBRERERERE9B+Rchqm+Ph4BAYGol69enBwcEhzBMSVK1fQqFEj3Lx5ExYWFhgwYAB8fHygKAosLS0xZMgQLFiwANWrV8e8efNQsGBBddsCBQrgzp072LJlCxo3bvxOQRIiIiL6b2PSbSIiIiIiIqL/CH2wIjAwEDly5ICXlxc2bNgAAGlO11SkSBH069cPzs7O2LVrF/z8/GBvbw9bW1uYmZlh0KBBaN26Nfbu3YsLFy4ASA6EAMD06dMBAGPGjIFOp2OwgoiIiP4RAxZERERERERE/xExMTGYPn06unTpAq1WCxMTE6xfvx7Xrl0DkJxnIiUTExM0a9YM/v7+cHd3h36SBn3gI0+ePKhUqRJ0Oh12794NADA1NQUANG/eHH379sWiRYvSDIYQERERvYnfGIiIiIiIiIj+Iw4dOoRx48bBysoKQUFB6Nq1K0JDQ7F27VoAaY+ycHR0RI0aNWBubq4GKgAgISEBAJA9e3aD/yuKgqSkJADAzJkzUaZMmVSBECIiIqK0MGBBRERERERE9B9hZWUFT09PHDt2DPXr10fXrl2RO3durFmzBkeOHAGQepSFnn50hX69fiTF5s2bAQDu7u5q2ZTTP4kIR1gQERHRO+E3BiIiIiIiIqL/iGrVqmH06NFwcnICALi4uKBv3764fv06Vq5cifj4eGg0GjU4kZKiKAbBhxs3bmDw4MEIDAyEp6cnvvvuuzSPmXJUBhEREdHfUSStbyFERERERERE9J9w7949NG3aFLdu3cLChQvRokULiEiagYa4uDjcu3cPW7Zswe7duxEcHIz69etj9uzZKFy4cAbUnoiIiL4kHGFBRERERERE9B+WJ08eDBgwAE+ePMHy5csRGRkJRVHSnBpqwIABKF68OMaMGYOwsDAsXrwYO3bsYLCCiIiIPgrjjK4AEREREREREWWs+vXro2nTpti+fTuCgoLQu3fvNPNOeHp6wtTUFG5ubmjXrp2aqyIpKckgbwURERHRh+CUUERERERERESE0NBQ1K9fH8WLF8fatWtRuHBhXL58GRcuXECbNm3UcomJiTAxMQHAQAURERF9XBxhQUREREREREQoW7YsevbsiWnTpsHf3x/FihXDsmXLcPz4cdjb26NOnToAABMTEzUpN4MVRERE9DFxhAURERERERHRf1jKBNuXLl1CvXr18PjxY8THx8PKygp+fn7w8fHJ2EoSERHRfwJHWBARERERERF9Rj72NEz6YMWJEyewevVq3L9/HwDg7e2NSZMmwdLSEoBhYIOIiIgoPTBgQURERERERPQZEBHodDo1WBEeHo4sWbLA0tISWbJk+eCAgojg2LFj6NChA27evIkaNWpg7ty5KFasGABAq9XCyMiIwQoiIiJKd5qMrgARERERERER/T19MMLIyAg3btxAq1atULNmTbi7u8PDwwPBwcHQarVq2fehKArMzc3xzTffIDAwEMHBwShWrBh0Oh10Oh2MjY0ZrCAiIqJPgjksiIiIiIiIiD4DOp0OU6dOxdixY2Fra4uSJUvC0tISJ06cQGxsLKZPn46OHTt+8L41mr/eafzY004RERERvQtOCUVERERERESUySUmJmLRokWYOXMmmjVrhvbt26NGjRowNjbGrVu34ObmhoCAABQuXBiVK1dOFYD4J/qy+u0YrCAiIqKMwCmhiIiIiIiIiDK5p0+fYufOnfjmm28wduxY1KlTB8bGxti7dy8aN26MmJgY/P7771i9ejXi4+Oh0Wjee2ooAO8V5CAiIiL62PhNhIiIiIiIiCgT0OegSEuOHDkwePBgbN26FU5OToiKikLr1q1Rt25dmJmZYc6cOShRogSCgoKwY8eOdzpeyoCGVqtFQkLCv24DERER0b/BKaGIiIiIiIiIMpB+GiZj4+Q/0bdt24YsWbLAwcEBhQsXRpYsWQAAlStXBgD88ccf6N27N06fPo3Bgwejbdu2cHV1hampKbp3747Vq1ejYsWKyJUrV5pTQ+kTeOsTaZ8/fx579uxB0aJF0bhxY46yICIiogzDbyFEREREREREn8DRo0fx6NEjAMlBCj19gGDdunUoUKAAWrZsidq1a6N06dJo2rQpHjx4YFBu165dCA0NxfDhwzFy5Ei4uroCAOLi4gAAp06dwsaNGw22SUkfqIiIiEBAQAC6deuGIUOG4NKlSx80jRQRERHRx8KABREREREREVE6mzRpEipXroyAgAAAhkmutVotxo0bBy8vLxQqVAjjx4/Hvn370KtXLxw5cgQdO3bEuXPnACQn3167di3s7OzQrVs3WFlZqceIi4uDm5sbIiIiMH36dISHh6vrUgYinj9/jq1bt6JPnz7o0aMHYmNjsW/fPowcOZLJtomIiChDcUooIiIiIiIionTWuHFjzJs3Dw4ODgbTNGk0Gty+fRvz589H+fLlMXPmTJQqVQoAUKpUKZiZmWHGjBmYPXs2Jk2aBAcHB5QoUQJhYWE4efIk6tatC61Wi+3bt2Ps2LGYNm0aEhISYGpqigIFCqjHVxQFWq0Wv//+O9auXYvly5dDo9HA398fPXv2zIiPhIiIiCgVBiyIiIiIiIiI0pmLiwtOnToFBweHVOtWr16N+/fvIzAwUA1WXLp0CTt37kRQUJC6vYODA0QEjRs3xubNm+Hj44OmTZvi6dOnCA4ORokSJVCrVi0ULFgw1THCwsKwYcMGBAQEIDw8HN7e3pg+fTpMTEzSt+FERERE74FTQhERERERERF9Ag4ODggJCUHlypWxa9cuAEBSUhLu3LmDrFmzomDBgnj69CmWLFmC7t27Y+jQoXB2dsb169cxaNAgAMkjJRo2bIjx48cjPDwcs2bNwsqVK1G8eHGsW7cuzWAFAOzcuRMjR45EoUKFcO3aNcyZM4fBCiIiIsp0OMKCiIiIiIiI6BO5c+cOjh49iqCgIFSqVAlZs2aFqakpYmJiMGfOHNy6dQuBgYEoUKAAtm/fjoYNG6rbRkdHw8bGBhYWFujTpw/q1auHiIgI2NnZwc3NDQAMppsCknNXKIqCxo0bo3Tp0qhSpconbzMRERHRu1IkZeYtIiIiIiIiIko3IoJGjRrhwIEDmD9/Pjw9PbFv3z7Ur18fAGBiYoJx48bBx8fHYDutVotatWqhefPm6Nu3rxqISCkpKYlJs4mIiOizximhiIiIiIiIiD4RRVEwatQoxMbGYuXKlbh//z5cXV3RoEEDaLXaNIMVZ8+eRfv27XH69GnY2dmp+3kTgxVERET0uWPAgoiIiIiIiOgTKl++PHr06IHg4GAEBgYie/bs6NatG2xsbDBhwgT4+/sjMjIS169fx9y5c+Hj44Pdu3ejb9++aNq0aUZXn4iIiCjdcEooIiIiIiIiok/s7t27KFOmDHLkyIE1a9agVKlSWLduHby9vfH06VPY2tpCRPDy5Uvky5cPM2fOROPGjTO62kRERETpigELIiIiIiIiogwwY8YMDBgwAD4+PpgyZQqMjIzw559/YufOnQgPD4eJiQlKlSqFjh07qtu8mVSbiIiI6EvCgAURERERERFRBoiNjUXFihURGRmJpUuXqom39VIGJ7RaLYyNjTOimkRERESfDF/LICIiIiIiIsoAFhYW8PPzQ1RUFBYuXIgnT54AAEQEIgKNRqP+zGAFERER/RdwhAURERERERFRBqpatSru3LmDkJAQFCxYMKOrQ0RERJRhGLAgIiIiIiIiykBRUVHImTNnRleDiIiIKMMxYEFERERERESUCTBPBREREf3XMWBBREREREREREREREQZjkm3iYiIiIiIiIiIiIgowzFgQUREREREREREREREGY4BCyIiIiIiIiIiIiIiynAMWBARERERERERERERUYZjwIKIiIiIiIiIiIiIiDIcAxZERERERERERERERJThGLAgIiIiIiIiIiIiIqIMx4AFERERERERERERERFlOAYsiIiIiIiIiIiIiIgowzFgQUREREREREREREREGY4BCyIiIiIiIiIiIiIiynAMWBARERERERERERERUYZjwIKIiIiIiIiIiIiIiDIcAxZERERERERERERERJThGLAgIiIiIiIiIiIiIqIMx4AFERERERERERERERFlOAYsiIiIiIiIiIiIiIgowzFgQUREREREREREREREGY4BCyIiIiIiIiIiIiIiynAMWBARERERERERERERUYZjwIKIiIiIiIiIiIiIiDIcAxZERERERERERERERJTh/g/fIUN2nnLsdAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -379,10 +379,10 @@ "text": [ " Turbine | Rotor Diameter (m) | Hub Height (m) | TSR | Air Density (ρ) | Tilt (º)\n", "-----------------------------------------------------------------------------------------------------\n", - " iea_15MW_floating | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", " iea_15MW_multi_dim_cp_ct | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", " nrel_5MW | 125.88 | 90.0 | 8.0 | 1.225 | 5.000\n", " iea_10MW | 198.00 | 119.0 | 8.0 | 1.225 | 6.000\n", + " iea_15MW_floating | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n", " iea_15MW | 242.24 | 150.0 | 8.0 | 1.225 | 6.000\n" ] } @@ -411,14 +411,6 @@ " print(f\"{t.turbine.power_thrust_table['ref_air_density']:>15,.3f}\", end=\" | \")\n", " print(f\"{t.turbine.power_thrust_table['ref_tilt']:>8,.3f}\")" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c8bb4fa6", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -437,7 +429,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.1" + "version": "3.10.4" } }, "nbformat": 4, diff --git a/docs/v3_to_v4.md b/docs/v3_to_v4.md new file mode 100644 index 000000000..acb2ced0d --- /dev/null +++ b/docs/v3_to_v4.md @@ -0,0 +1,193 @@ +# Switching from FLORIS v3 to v4 + +There are several major changes introduced in FLORIS v4. The largest underlying change is that, +where FLORIS v3 had a "wind directions" and a "wind speeds" dimension to its internal data +structures, FLORIS v4 collapses these into a single dimension, which we refer to as the `findex` +dimension. This dimension contains each "configuration" or "condition" to be run, and is +conceptually similar to running FLORIS v3 in `time_series` mode. At the user interface level, the +largest implication of this change is that users must specify `wind_directions`, `wind_speeds`, and +`turbulence_intensities` (new) as arrays of equal length; and these are "zipped" to create the +conditions for FLORIS to run, rather than creating a grid of all combinations. This is discussed +further in [Setting and Running](#setting-and-running). + +## Setting and running + +In FLORIS v3, users interacted with FLORIS by instantiating a `FlorisInterface` object, nominally +called `fi`. The notion here is that the users "interface" with the underlying FLORIS code using +`fi`. For FLORIS v4, we acknowledge that to most users, this main "interface" object, for all +intents and purposes, _is FLORIS_. We therefore have renamed the `FlorisInterface` the +`FlorisModel`, nominally instantiated as `fmodel`. To instantiate a `FlorisModel`, the code is +very similar to before, i.e. +```python +from floris import FlorisModel + +fmodel = FlorisModel("input_file.yaml") +``` + +Previously, to set the atmospheric conditions on `fi`, users called the `reinitialize()` method; +and to run the calculations, as well as provide any control setpoints such as yaw angles, users +generally called `calculate_wake()`. Some of the other methods on `FlorisInterface` also called +`calculate_wake()` internally, most notably `get_farm_AEP()`. + +For FLORIS v4, we have changed from the (`reinitialize()`, `calculate_wake()`) paradigm to a new +pair of methods (`set()`, `run()`). `set()` is similar to the retired `reinitialize()` method, and +`run()` is similar to the retired `calculate_wake()` method. However, there are some important +differences: +- `FlorisModel.set()` accepts both atmospheric conditions _and_ control setpoints. +- `FlorisModel.run()` accept no arguments. Its sole function is to run the FLORIS calculation. +- Control setpoints are now "remembered". Previously, if control setpoints (`yaw_angles`) were +passed to `calculate_wake()`, they were discarded at the end of the calculation. In FLORIS v4, the +control setpoints passed to `set()` are stored, and invoking `run()` multiple times will continue to +use those control setpoints. +- To "forget" previously provided control setpoints, use the new method +`FlorisModel.reset_operation()`. +- When providing arguments to `set()`, all arguments much have the same length, as they will be +"paired" (rather than gridded) for the computation. For instance, if the user provides `n_findex` +wind directions, they _must_ provide `n_findex` wind speeds and `n_findex` turbulence intensities; +as well as `n_findex`x`n_turbines` yaw angles, if yaw angles are being used. +- Providing varying `turbulence_intensities` is new for FLORIS v4. +- To facilitate "easier" use of the `set()` method (for instance, to run all combinations of +wind directions and wind speeds), we now provide `WindData` objects that can be passed directly to +`set()`'s `wind_data` keyword argument. See [Wind data](#wind-data) as well as +[Wind Data Objects](wind_data_user) for more information. +- `calculate_no_wake()` has been replaced with `run_no_wake()` +- `get_farm_AEP()` no longer calls `run()`; to compute the farm AEP, users should `run()` the +`fmodel` themselves before calling `get_farm_AEP()`. + +An example workflow for using `set` and `run` is: +```python +import numpy as np +from floris import FlorisModel + +fmodel = FlorisModel("input_file.yaml") # Input file with 3 turbines + +# Set up a base case and run +fmodel.set( + wind_directions=np.array([270., 270.]), + wind_speeds=np.array([8.0, 8.0]), + turbulence_intensities=np.array([0.06, 0.06]) +) +fmodel.run() +turbine_powers_base = fmodel.get_turbine_powers() + +# Provide yaw angles +fmodel.set( + yaw_angles=np.array([[10.0, 0.0, 0.0], [20.0, 0.0, 0.0]]) # n_findex x n_turbines +) +fmodel.run() +turbine_powers_yawed = fmodel.get_turbine_powers() + +# If we run again, this time with no wake, the provided yaw angles will still be used +fmodel.run_no_wake() +turbine_powers_yawed_nowake = fmodel.get_turbine_powers() + +# To "forget" the yaw angles, we use the reset_operation method +fmodel.reset_operation() +fmodel.run_no_wake() +turbine_powers_base_nowake = fmodel.get_turbine_powers() +``` + +For more advanced users, it is best to group many conditions into single calls of `set` and `run` +than to step through various conditions individually, as this will make the best use of FLORIS's +vectorization capabilities. + +## Input files +As in FLORIS v3, there are two main input files to FLORIS v4: +1. The "main" FLORIS input yaml, which contains wake model parameters and wind farm data +2. The "turbine" input yaml, which contains data about the wind turbines + +Examples for main FLORIS input yamls are in examples/inputs/. Default turbine yamls, which many +users +may use if they do not have their own turbine models to use, can be found in +floris/turbine_library/. +See also [Turbine Library Interface](input_reference_turbine) and +[Main Input File Reference](input_reference_main). + +Conceptually, both the main FLORIS input yaml and the turbine input yaml is much the same in v4 as +in v3. However, there are a few changes to the fields on each that mean that existing yamls for v3 +will not run in v4 as is. + +#### Main FLORIS input yaml +The only change in fields on the main FLORIS input file is that the `turbulence_intensity` field, +which was specified as a scalar in FLORIS v3, has been changed to `turbulence_intensities`, and +should now contain a list of turbulence intensities that is of the same length as `wind_directions` +and `wind_speeds`. Additionally, the length of the lists for `wind_directions` and `wind_speeds` +_must_ now be of equal length. + +#### Turbine input yaml +To reflect the transition to more flexible [operation models](#operation-model), there are a +number of changes to the fields on the turbine yaml. The changes are mostly regrouping and +renaming of the existing fields. +- The `power_thrust_table` field now has `wind_speed` and `power` fields, as before; however, +the `thrust` field has been renamed `thrust_coefficient` for clarity, and the `power` field now +specifies the turbine _absolute_ power (in kW) rather than the _power coefficient_. +- Additionally, any extra parameters and data required by operation models to evaluate the power +and thrust curves have been moved onto the `power_thrust_table` field. This includes +`ref_density_cp_ct` (renamed `ref_air_density` and moved onto the `power_thrust_table`); +`ref_tilt_cp_ct` (renamed `ref_tilt` and moved onto the `power_thrust_table`); and `pP` and `pT` +(renamed `cosine_loss_exponent_yaw` and `cosine_loss_exponent_tilt`, respectively, and moved onto +the `power_thrust_table`). +- The `generator_efficiency` field has been removed. The `power` field on `power_thrust_table` +should reflect the electrical power produced by the turbine, including any losses. +- A new field `operation_model` has been added, whose value should be a string that selects the +operation model the user would like to evaluate. The default is `"cosine-loss"`, +which recovers FLORIS v3-type turbine operation. See [Operation model](#operation-model) and +[Turbine Operation Models](operation_models_user) for details. + +### Converting v3 yamls to v4 +To aid users in converting their existing v3 main FLORIS input yamls and turbine input, we provide +two utilities: +- floris/tools/convert_floris_input_v3_to_v4.py +- floris/tools/convert_turbine_v3_to_v4.py + +These can be executed from the command line and expect to be passed the exiting v3 yaml as an input; +the will then write a new v4-compatible yaml of the same name but appended _v4. +```bash +python convert_floris_input_v3_to_v4.py your_v3_input_file.yaml +python convert_floris_turbine_v3_to_v4.py your_v3_turbine_file.yaml +``` + +Additionally, a function for building a turbine dictionary that can be passed directly to the +`turbine_type` argument of `FlorisModel.set()` is provided: +```python +from floris.turbine_library.turbine_utilities import build_cosine_loss_turbine_dict +``` + +### Reference turbine updates +The power and thrust curves for the NREL 5MW, IEA 10MW, and IEA 15MW turbines have been updated +slightly do reflect publicly available data. The x_20MW reference turbine has been removed, as data +was not readily available. See [Turbine Library Interface](turbine_interaction). + +## Wind data +To aid users in setting the wind conditions they are interested in running, we provide "wind data" +classes, which can be passed directly to `FlorisModel.set()`'s `wind_data` keyword argument in place +of `wind_directions`, `wind_speeds`, and `turbulence_intensities`. The wind data objects enable, +for example, gridding inputs (`WindRose` and `WindTIRose`) and broadcasting a scalar-valued +turbulence intensity (`TimeSeries`). +```python +import numpy as np +from floris import FlorisModel +from floris import TimeSeries + +fmodel = FlorisModel("input_file.yaml") # Input file with 3 turbines + +time_series = TimeSeries( + wind_directions=np.array([270.0, 270.0]), + wind_speeds=8.0, + turbulence_intensities=0.06 +) +fmodel.set(wind_data=time_series) +fmodel.set(wind_data=time_series)turbine_powers_base = fmodel.get_turbine_powers() +turbine_powers = fmodel.get_turbine_powers() +``` + +More information about the various wind data classes can be found at +[Wind Data Objects](wind_data_user). + +## Operation model +FLORIS v4 allows for significantly more flexible turbine operation via +[Turbine Operation Models](operation_models_user). These allow users to specify how a turbine loses +power when yaw misaligned; how a turbine operates when derated; and how turbines produce power +and thrust when operating with active wake mixing strategies. The default operation model is the +`"cosine-loss"` model, which models a turbine's power loss when in yaw misalignment using the same +cosine model as was hardcoded in FLORIS v3. diff --git a/docs/wind_data_user.ipynb b/docs/wind_data_user.ipynb new file mode 100644 index 000000000..7a8b4d473 --- /dev/null +++ b/docs/wind_data_user.ipynb @@ -0,0 +1,787 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Wind Data Objects" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "FLORIS v4 introduces WindData objects. These include TimeSeries, WindRose, and WindTIRose. These objects are used to hold inputs to FLORIS simulations, such as the ambient wind data, and to provide high-level methods for working with wind data. This notebook provides an overview of the WindData objects and demonstrates how to use them.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## WindDataBase" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "WindDataBase is the base class for all WindData objects. It provides a common interface for working with wind data. The WindDataBase class is not intended to be used directly, but rather to be subclassed by more specific wind data objects. It is only important to mention that many of the methods in FLORIS that accept wind data as input will accept any WindDataBase object as input. But is not typical to use it directly." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from floris.wind_data import WindDataBase" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## TimeSeries" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TimeSeries objects are used to represent data which are in a time-series form, or more generally and data which is represented as a list of conditions without frequency weighting (i.e. not a wind rose). In addition to representing time series input conditions, TimeSeries objects are useful for generating sweep inputs where most values are held constant while one input is swept through a range of values. Also useful can be an input of identical repeated inputs which can be useful if some control setting is going to be swept. TimeSeries represents data most similarly to how data structures within FLORIS are represented in that there are N wind_directions, wind_speeds etc., in the TimeSeries, the n_findex value in FLORIS will be N." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TimeSeries Instantiation" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from floris import TimeSeries\n", + "import numpy as np\n", + "\n", + "# Like FlorisModel, TimeSeries require wind directions, wind speeds, and turbulence intensities to be of the same length.\n", + "N = 50\n", + "wind_speeds = np.linspace(3, 15, N)\n", + "wind_directions = 270.0 * np.ones(N)\n", + "turbulence_intensities = 0.06 * np.ones(N)\n", + "\n", + "# Create a TimeSeries object\n", + "time_series = TimeSeries(wind_directions=wind_directions, wind_speeds=wind_speeds, turbulence_intensities=turbulence_intensities)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Broadcasting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unlike FlorisModel, TimeSeries objects do allow broadcasting. As long as one of the inputs is a numpy array, the other inputs can be specified as a float, which will be broadcasted to the length of the numpy array.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Equivalent to the above\n", + "time_series = TimeSeries(wind_directions=270.0, wind_speeds=wind_speeds, turbulence_intensities=0.06)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition to wind directions, wind speeds, and turbulence intensities, TimeSeries objects can also hold an array of values. These values can be used for example to represent electricity market prices (e.g., price/MWh). The values are intended to be multiplied by the corresponding wind plant power at each time step or wind condition to determine the total value produced over all conditions. \n", + "\n", + "If values are included in the TimeSeries object, they must be the same length as the wind directions, wind speeds, and turbulence intensities. If included, values enable calculation of Annual Value Production (AVP), in addition to AEP, and certain optimization routines, such as layout, can be configured to maximize value instead of energy production." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Including value for each indices\n", + "time_series = TimeSeries(wind_directions=wind_directions, wind_speeds=wind_speeds, turbulence_intensities=turbulence_intensities, values=np.linspace(0, 1, N))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generating Turbulence Intensity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The TimeSeries object also includes functions for generating TI as a function of wind direction and wind speed. This can be accomplished by passing in a custom function, or by taking use of the IEC 61400-1 standard " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Turbulence Intensity')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKGklEQVR4nO3de1zUZd7/8feAAqaAeYBBJfG0uYiJR8K8tVw8bVlu3WVuppl39y9L06hW6U6N7YCmlZWulp3XNd32tsxqWQ3BThgq4S5RVmrpKgdPgWKAMt/fH9xMjgwwA8PMwLyejwePR/Oda77zmXnUzmev63N9LpNhGIYAAAB8iJ+nAwAAAHA3EiAAAOBzSIAAAIDPIQECAAA+hwQIAAD4HBIgAADgc0iAAACAz2nl6QC8kcVi0dGjRxUcHCyTyeTpcAAAgAMMw9Dp06fVpUsX+fnVPcdDAmTH0aNHFRkZ6ekwAABAAxw+fFjdunWrcwwJkB3BwcGSqr7AkJAQD0cDAAAcUVJSosjISOvveF1IgOyoXvYKCQkhAQIAoJlxpHyFImgAAOBzSIAAAIDPIQECAAA+hwQIAAD4HBIgAADgc0iAAACAzyEBAgAAPocECAAA+BwSIAAA4HPoBO1GlRZDWQdPquh0mcKCgzSsRwf5+3HYKgAA7kYC5CapuflK3pKn/OIy67WI0CAtnhit8TERHowMAADfwxKYG6Tm5mvWumyb5EeSCorLNGtdtlJz8z0UGQAAvokEqIlVWgwlb8mTYee56mvJW/JUabE3AgAANAUSoCaWdfBkjZmfCxmS8ovLlHXwpPuCAgDAx5EANbGi07UnPw0ZBwAAGo8EqImFBQe5dBwAAGg8r0iAVq1apaioKAUFBSkuLk5ZWVm1jv3qq6900003KSoqSiaTSStWrKjz3kuWLJHJZNK8efNcG7SDhvXooIjQINW22d2kqt1gw3p0cGdYAAD4NI8nQBs3blRiYqIWL16s7OxsDRgwQOPGjVNRUZHd8WfPnlXPnj21ZMkSmc3mOu+9a9cuvfjii7riiiuaInSH+PuZtHhitCTVSIKqHy+eGE0/IAAA3MjjCdAzzzyju+66SzNmzFB0dLTWrFmjSy65RK+++qrd8UOHDtWyZct06623KjAwsNb7njlzRrfddpvWrl2rSy+9tM4YysvLVVJSYvPnSuNjIrR66iCZQ22XucyhQVo9dRB9gAAAcDOPNkKsqKjQnj17lJSUZL3m5+enhIQEZWZmNure9957r6699lolJCTo8ccfr3NsSkqKkpOTG/V+9RkfE6Ex0WY6QQMA4AU8mgAdP35clZWVCg8Pt7keHh6ub775psH33bBhg7Kzs7Vr1y6HxiclJSkxMdH6uKSkRJGRkQ1+/9r4+5kU36ujy+8LAACc0+KOwjh8+LDmzp2rbdu2KSjIsZ1VgYGBdS6nAQCAlsWjCVCnTp3k7++vwsJCm+uFhYX1FjjXZs+ePSoqKtKgQYOs1yorK/Xxxx9r5cqVKi8vl7+/f6PiBgAAzZtHi6ADAgI0ePBgpaWlWa9ZLBalpaUpPj6+Qff8zW9+o3/961/Kycmx/g0ZMkS33XabcnJySH4AAIDnl8ASExM1ffp0DRkyRMOGDdOKFStUWlqqGTNmSJKmTZumrl27KiUlRVJV4XReXp71n48cOaKcnBy1a9dOvXv3VnBwsGJiYmzeo23bturYsWON6wAAwDd5PAGaPHmyjh07pkWLFqmgoECxsbFKTU21FkYfOnRIfn6/TFQdPXpUAwcOtD5evny5li9frlGjRikjI8Pd4QMAgGbIZBgGx5BfpKSkRKGhoSouLlZISIinwwEAAA5w5vfb440QAQAA3I0ECAAA+BwSIAAA4HNIgAAAgM8hAQIAAD6HBAgAAPgcEiAAAOBzSIAAAIDPIQECAAA+hwQIAAD4HBIgAADgc0iAAACAzyEBAgAAPocECAAA+JxWng4AtiothrIOnlTR6TKFBQdpWI8O8vczeTosAABaFBIgL5Kam6/kLXnKLy6zXosIDdLiidEaHxPhwcgAAGhZWALzEqm5+Zq1Ltsm+ZGkguIyzVqXrdTcfA9FBgBAy0MC5AUqLYaSt+TJsPNc9bXkLXmqtNgbAQAAnEUC5AWyDp6sMfNzIUNSfnGZsg6edF9QAAC0YCRAXqDodO3JT0PGAQCAupEAeYGw4CCXjgMAAHUjAfICw3p0UERokGrb7G5S1W6wYT06uDMsAABaLBIgL+DvZ9LiidGSVCMJqn68eGI0/YAAAHAREiAvMT4mQqunDpI51HaZyxwapNVTB9EHCAAAF6IRohcZHxOhMdFmOkEDANDESIC8jL+fSfG9Ono6DAAAWjSWwAAAgM8hAQIAAD6HBAgAAPgcEiAAAOBzSIAAAIDPIQECAAA+hwQIAAD4HBIgAADgc0iAAACAzyEBAgAAPscrEqBVq1YpKipKQUFBiouLU1ZWVq1jv/rqK910002KioqSyWTSihUraoxZvXq1rrjiCoWEhCgkJETx8fH6+9//3oSfAAAANCceT4A2btyoxMRELV68WNnZ2RowYIDGjRunoqIiu+PPnj2rnj17asmSJTKbzXbHdOvWTUuWLNGePXu0e/dujR49WjfccIO++uqrpvwoAACgmTAZhmF4MoC4uDgNHTpUK1eulCRZLBZFRkZqzpw5WrBgQZ2vjYqK0rx58zRv3rx636dDhw5atmyZZs6cWe/YkpIShYaGqri4WCEhIQ59DgAA4FnO/H57dAaooqJCe/bsUUJCgvWan5+fEhISlJmZ6ZL3qKys1IYNG1RaWqr4+Hi7Y8rLy1VSUmLzBwAAWi6PJkDHjx9XZWWlwsPDba6Hh4eroKCgUff+17/+pXbt2ikwMFB333233nnnHUVHR9sdm5KSotDQUOtfZGRko94bAAB4N4/XADWVyy+/XDk5Ofriiy80a9YsTZ8+XXl5eXbHJiUlqbi42Pp3+PBhN0frnEqLocz9J7Q554gy959QpcWjq5gAADQ7rTz55p06dZK/v78KCwttrhcWFtZa4OyogIAA9e7dW5I0ePBg7dq1S88995xefPHFGmMDAwMVGBjYqPdzl9TcfCVvyVN+cZn1WkRokBZPjNb4mAgPRgYAQPPh0RmggIAADR48WGlpadZrFotFaWlptdbrNJTFYlF5eblL7+luqbn5mrUu2yb5kaSC4jLNWpet1Nx8D0UGAEDz4tEZIElKTEzU9OnTNWTIEA0bNkwrVqxQaWmpZsyYIUmaNm2aunbtqpSUFElVhdPVS1kVFRU6cuSIcnJy1K5dO+uMT1JSkiZMmKDLLrtMp0+f1vr165WRkaF//OMfnvmQLlBpMZS8JU/2FrsMSSZJyVvyNCbaLH8/k5ujAwCgefF4AjR58mQdO3ZMixYtUkFBgWJjY5WammotjD506JD8/H6ZqDp69KgGDhxofbx8+XItX75co0aNUkZGhiSpqKhI06ZNU35+vkJDQ3XFFVfoH//4h8aMGePWz+ZKWQdP1pj5uZAhKb+4TFkHTyq+V0f3BQYAQDPk8T5A3sgb+wBtzjmiuRty6h333K2xuiG2a9MHBACAl2k2fYDguLDgIJeOAwDAl5EANRPDenRQRGiQaqvuMalqN9iwHh3cGRYAAM0SCVAz4e9n0uKJVY0cL06Cqh8vnhhNATQAAA4gAWpGxsdEaPXUQTKH2i5zmUODtHrqIPoAAQDgII/vAoNzxsdEaEy0WVkHT6rodJnCgquWvZj5AQDAcSRAzZC/n4mt7gAANAJLYAAAwOeQAAEAAJ9DAgQAAHwOCRAAAPA5JEAAAMDnkAABAACfQwIEAAB8DgkQAADwOSRAAADA55AAAQAAn0MCBAAAfA4JEAAA8DkchtpCVVoMTowHAKAWJEAtUGpuvpK35Cm/uMx6LSI0SIsnRmt8TIQHIwMAwDuwBNbCpObma9a6bJvkR5IKiss0a122UnPzPRQZAADegwSoBam0GErekifDznPV15K35KnSYm8EAAC+gwSoBck6eLLGzM+FDEn5xWXKOnjSfUEBAOCFSIBakKLTtSc/DRkHAEBLRQLUgoQFB7l0HAAALRUJUAsyrEcHRYQGqbbN7iZV7QYb1qODO8MCAMDrkAC1IP5+Ji2eGC1JNZKg6seLJ0bTDwgA4PNIgFqY8TERWj11kMyhtstc5tAgrZ46iD5AAACIRogt0viYCI2JNtMJGgCAWpAAtVD+fibF9+ro6TAAAPBKLIEBAACfQwIEAAB8DgkQAADwOSRAAADA55AAAQAAn0MCBAAAfA4JEAAA8DlekQCtWrVKUVFRCgoKUlxcnLKysmod+9VXX+mmm25SVFSUTCaTVqxYUWNMSkqKhg4dquDgYIWFhWnSpEnat29fE34CAADQnHg8Adq4caMSExO1ePFiZWdna8CAARo3bpyKiorsjj979qx69uypJUuWyGw22x2zY8cO3Xvvvdq5c6e2bdumc+fOaezYsSotLW3Kj9IsVVoMZe4/oc05R5S5/4QqLYanQwIAoMmZDMPw6C9eXFychg4dqpUrV0qSLBaLIiMjNWfOHC1YsKDO10ZFRWnevHmaN29eneOOHTumsLAw7dixQyNHjqzxfHl5ucrLy62PS0pKFBkZqeLiYoWEhDj/oZqJ1Nx8JW/JU35xmfVaRGiQFk+M5swwAECzU1JSotDQUId+v52eARo1apTefPNN/fzzzw0OsFpFRYX27NmjhISEXwLy81NCQoIyMzMbff9qxcXFkqQOHTrYfT4lJUWhoaHWv8jISJe9t7dKzc3XrHXZNsmPJBUUl2nWumyl5uZ7KDIAAJqe0wnQwIED9eCDD8psNuuuu+7Szp07G/zmx48fV2VlpcLDw22uh4eHq6CgoMH3vZDFYtG8efN01VVXKSYmxu6YpKQkFRcXW/8OHz7skvf2VpUWQ8lb8mRv6q/6WvKWPJbDAAAtltMJ0IoVK3T06FG99tprKioq0siRIxUdHa3ly5ersLCwKWJslHvvvVe5ubnasGFDrWMCAwMVEhJi89eSZR08WWPm50KGpPziMmUdPOm+oAAAcKMGFUG3atVKN954ozZv3qx///vf+v3vf6+FCxcqMjJSkyZN0vbt2x26T6dOneTv718jcSosLKy1wNkZs2fP1vvvv6/09HR169at0fdrKYpO1578NGQcAADNTaN2gWVlZWnx4sV6+umnFRYWpqSkJHXq1EnXXXedHnzwwXpfHxAQoMGDBystLc16zWKxKC0tTfHx8Q2OyzAMzZ49W++88462b9+uHj16NPheLVFYcJBLxwEA0Ny0cvYFRUVF+vOf/6zXXntN3333nSZOnKi33npL48aNk8lkkiTdcccdGj9+vJYvX17v/RITEzV9+nQNGTJEw4YN04oVK1RaWqoZM2ZIkqZNm6auXbsqJSVFUlXhdF5envWfjxw5opycHLVr1069e/eWVLXstX79em3evFnBwcHWeqLQ0FC1adPG2Y/c4gzr0UERoUEqKC6zWwdkkmQODdKwHvaLxgEAaO6c3gYfEBCgXr166c4779Qdd9yhzp071xhTUlKiG264Qenp6Q7dc+XKlVq2bJkKCgoUGxur559/XnFxcZKkq6++WlFRUXr99dclST/88IPdGZ1Ro0YpIyOj6kP9XyJ2sddee0133HFHvfE4s42uuareBSbJJgmq/uZWTx3EVngAQLPizO+30wnQJ598ov/4j/9oVIDezhcSIIk+QACAlqVJE6DRo0dr06ZNat++fY03daYA2pv5SgIkVW2Jzzp4UkWnyxQWXLXs5e9nfwYNAABv5szvt9M1QDt27FBFRUWN62VlZfrkk0+cvR08zN/PpPheHT0dBgAAbuVwAvTPf/5TUtUOq7y8PJtGhZWVlUpNTVXXrl1dHyEAAICLOZwAxcbGymQyyWQyafTo0TWeb9OmjV544QWXBgcAANAUHE6ADh48KMMw1LNnT2VlZdns/goICFBYWJj8/f2bJEgAAABXcjgB6t69u6SqRoUAAADNmUMJ0HvvvacJEyaodevWeu+99+oce/3117skMAAAgKbi0DZ4Pz8/FRQUKCwsTH5+tZ+eYTKZVFlZ6dIAPcGXtsEDANBSuHwb/IXLXiyBAQCA5s7pPkD2/PTTTzUaI6LloFkiAKClcToBWrp0qaKiojR58mRJ0s0336z//d//VUREhD788EMNGDDA5UHCczguAwDQEtVe0FOLNWvWKDIyUpK0bds2ffTRR0pNTdWECRP00EMPuTxAeE71gakXJj+SVFBcplnrspWam++hyAAAaBynZ4AKCgqsCdD777+vW265RWPHjlVUVJT1BHc0f5UWQ8lb8mSvQt5Q1anxyVvyNCbazHIYAKDZcXoG6NJLL9Xhw4clSampqUpISJBUdURGS9gBhipZB0/WmPm5kCEpv7hMWQdPui8oAABcxOkZoBtvvFG///3v1adPH504cUITJkyQJH355Zfq3bu3ywOEZxSdrj35acg4AAC8idMJ0LPPPquoqCgdPnxYTz31lNq1aydJys/P1z333OPyAOEZYcFBLh0HAIA3cagRoq+hEWJVDdCIpdtVUFxmtw7IJMkcGqRP54+mBggA4BVc3gjxYt99953S09NVVFRUozHiokWLGnJLeBl/P5MWT4zWrHXZMkk2SVB1urN4YjTJDwCgWXJ6Bmjt2rWaNWuWOnXqJLPZLJPplx9Ak8mk7OxslwfpbswA/YI+QACA5sKZ32+nE6Du3bvrnnvu0fz58xsVpDcjAbJFJ2gAQHPQpEtgp06d0s0339zg4ND8+PuZFN+ro6fDAADAZZzuA3TzzTdr69atTRELAACAWzg9A9S7d28tXLhQO3fuVP/+/dW6dWub5++77z6XBQcAANAUnK4B6tGjR+03M5l04MCBRgfladQAAQDQ/DRpDdDBgwcbHBgAAIA3cLoGqFpFRYX27dun8+fPuzIeNFOVFkOZ+09oc84RZe4/oUoL/TUBAN7L6Rmgs2fPas6cOXrjjTckSd9++6169uypOXPmqGvXrlqwYIHLg4R3o1cQAKC5cXoGKCkpSXv37lVGRoaCgn45ByohIUEbN250aXDwfqm5+Zq1LrvGyfEFxWWatS5bqbn5HooMAIDaOZ0Avfvuu1q5cqVGjBhh0wW6X79+2r9/v0uDg3ertBhK3pJn96yw6mvJW/JYDgMAeB2nE6Bjx44pLCysxvXS0lKbhAgtX9bBkzVmfi5kSMovLlPWwZPuCwoAAAc4nQANGTJEH3zwgfVxddLz8ssvKz4+3nWRwesVna49+WnIOAAA3MXpIugnn3xSEyZMUF5ens6fP6/nnntOeXl5+vzzz7Vjx46miBFeKiw4qP5BTowDAMBdnJ4BGjFihHJycnT+/Hn1799fW7duVVhYmDIzMzV48OCmiBFealiPDooIDVJtC58mVe0GG9ajgzvDAgCgXk53gvYFdIJ2XPUuMEk2xdDVSdHqqYPYCg8AcAtnfr+dngHy9/dXUVFRjesnTpyQv7+/s7dDMzc+JkKrpw6SOdR2mcscGkTyAwDwWk7XANU2YVReXq6AgIBGB4TmZ3xMhMZEm5V18KSKTpcpLLhq2cvfj12BAADv5HAC9Pzzz0uq2vX18ssvq127dtbnKisr9fHHH6tv375OB7Bq1SotW7ZMBQUFGjBggF544QUNGzbM7tivvvpKixYt0p49e/Tjjz/q2Wef1bx582zGfPzxx1q2bJn27Nmj/Px8vfPOO5o0aZLTccE5/n4mxffq6OkwAABwiMMJ0LPPPiupagZozZo1NstdAQEBioqK0po1a5x6840bNyoxMVFr1qxRXFycVqxYoXHjxmnfvn12ew2dPXtWPXv21M0336z777/f7j1LS0s1YMAA3XnnnbrxxhudigcAAPgGp4ugr7nmGm3atEmXXnppo988Li5OQ4cO1cqVKyVJFotFkZGRmjNnTr1nikVFRWnevHk1ZoAuZDKZGjQDRBE0AADNT5MWQaenp7sk+amoqNCePXuUkJDwSzB+fkpISFBmZmaj7++M8vJylZSU2PwBAICWy+ki6MrKSr3++utKS0tTUVGRLBaLzfPbt2936D7Hjx9XZWWlwsPDba6Hh4frm2++cTasRklJSVFycrJb39MXVVoMCqUBAF7B6QRo7ty5ev3113XttdcqJiamRZz/lZSUpMTEROvjkpISRUZGejCilic1N1/JW/Jszg6LCA3S4onRbJUHALid0wnQhg0b9Ne//lW//e1vG/XGnTp1kr+/vwoLC22uFxYWymw2N+rezgoMDFRgYKBb39OXVDdLvLjYrKC4TLPWZdMvCADgdk7XAAUEBKh3796NfuOAgAANHjxYaWlp1msWi0VpaWkcqtqCVFoMJW/Jq5H8SL90jk7ekqdKCw3JAQDu43QC9MADD+i5556rtSGiMxITE7V27Vq98cYb+vrrrzVr1iyVlpZqxowZkqRp06YpKSnJOr6iokI5OTnKyclRRUWFjhw5opycHH3//ffWMWfOnLGOkaSDBw8qJydHhw4danS8cF7WwZM2y14XMyTlF5cp6+BJ9wUFAPB5Ti+Bffrpp0pPT9ff//539evXT61bt7Z5ftOmTQ7fa/LkyTp27JgWLVqkgoICxcbGKjU11VoYfejQIfn5/ZKjHT16VAMHDrQ+Xr58uZYvX65Ro0YpIyNDkrR7925dc8011jHVtT3Tp0/X66+/7uzHRSMVna49+WnIOAAAXMHpBKh9+/b63e9+57IAZs+erdmzZ9t9rjqpqRYVFVXvzNPVV1/tktkpuEZYcFD9g5wYBwCAKzidAL322mtNEQdaqGE9OigiNEgFxWV264BMqjo4dViPDu4ODQDgw5yuAQKc4e9n0uKJ0ZKqkp0LVT9ePDGafkAAALdyeAZo4MCBDvX8yc7OblRAaHnGx0Ro9dRBNfoAmekDBADwEIcTIE5UR2OMj4nQmGgznaABAF7B6cNQfQGHoQIA0Pw06WGoAAAAzZ3Tu8CApsSBqQAAdyABgtfgwFQAgLuwBAavUH1g6sXHZlQfmJqam++hyAAALVGjEqCyMo4vQONxYCoAwN2cToAsFosee+wxde3aVe3atdOBAwckSQsXLtQrr7zi8gDR8nFgKgDA3ZxOgB5//HG9/vrreuqppxQQEGC9HhMTo5dfftmlwcE3cGAqAMDdnE6A3nzzTb300ku67bbb5O/vb70+YMAAffPNNy4NDr6BA1MBAO7mdAJ05MgR9e7du8Z1i8Wic+fOuSQo+JbqA1Nr2+xuUtVuMA5MBQC4itMJUHR0tD755JMa1//2t79p4MCBLgkKvoUDUwEA7uZ0H6BFixZp+vTpOnLkiCwWizZt2qR9+/bpzTff1Pvvv98UMcIHcGAqAMCdGnQW2CeffKI//vGP2rt3r86cOaNBgwZp0aJFGjt2bFPE6HacBeY5dIIGADSUM7/fHIZqBwkQAADNjzO/304vge3atUsWi0VxcXE217/44gv5+/tryJAhzt4ScBozRQCAxnA6Abr33nv1hz/8oUYCdOTIES1dulRffPGFy4ID7OHMMABAYzm9CywvL0+DBg2qcX3gwIHKy8tzSVBAbTgzDADgCk4nQIGBgSosLKxxPT8/X61acbg8mg5nhgEAXMXpBGjs2LFKSkpScXGx9dpPP/2khx9+WGPGjHFpcMCFODMMAOAqTk/ZLF++XCNHjlT37t2tjQ9zcnIUHh6uP//5zy4PEKjGmWEAAFdxOgHq2rWr/vnPf+ovf/mL9u7dqzZt2mjGjBmaMmWKWrdu3RQxApI4MwwA4DoNKtpp27at/vu//9vVsQB1qj4zrKC4zG4dkElVnaM5MwwAUJ8GJUDfffed0tPTVVRUJIvFYvPcokWLXBIYcLHqM8NmrcuWSbJJgjgzDADgDKc7Qa9du1azZs1Sp06dZDabZTL98mNjMpmUnZ3t8iDdjU7Q3o0+QAAAe5r0KIzu3bvrnnvu0fz58xsVpDcjAfJ+dIIGAFysSY/COHXqlG6++eYGBwe4gr+fSfG9OtY5hiQJAFAbpxOgm2++WVu3btXdd9/dFPEALsEyGQCgLk4nQL1799bChQu1c+dO9e/fv8bW9/vuu89lwQENUX1cxsVru9XHZayeOogkCAB8nNM1QD169Kj9ZiaTDhw40OigPI0aoOar0mJoxNLttXaMrt4q/+n80SyHAUAL06Q1QAcPHmxwYEBTc+a4jPpqiAAALZfTZ4FVq6io0L59+3T+/HlXxgM0CsdlAAAc4XQCdPbsWc2cOVOXXHKJ+vXrp0OHDkmS5syZoyVLlrg8QMAZHJcBAHCE0wlQUlKS9u7dq4yMDAUF/fIjkpCQoI0bNzYoiFWrVikqKkpBQUGKi4tTVlZWrWO/+uor3XTTTYqKipLJZNKKFSsafU+0HNXHZdRW3WNS1W4wjssAAN/mdAL07rvvauXKlRoxYoRNF+h+/fpp//79TgewceNGJSYmavHixcrOztaAAQM0btw4FRUV2R1/9uxZ9ezZU0uWLJHZbHbJPdFyVB+XIalGEsRxGQCAak4nQMeOHVNYWFiN66WlpTYJkaOeeeYZ3XXXXZoxY4aio6O1Zs0aXXLJJXr11Vftjh86dKiWLVumW2+9VYGBgS65J1qW8TERWj11kMyhtstc5tAgtsADACQ1YBfYkCFD9MEHH2jOnDmSZE16Xn75ZcXHxzt1r4qKCu3Zs0dJSUnWa35+fkpISFBmZqazoTX4nuXl5SovL7c+LikpadB7w3uMj4nQmGhzvZ2g6RYNAL7J6QToySef1IQJE5SXl6fz58/rueeeU15enj7//HPt2LHDqXsdP35clZWVCg8Pt7keHh6ub775xtnQGnzPlJQUJScnN+j94L3qOy6DbtEA4LucXgIbMWKEcnJydP78efXv319bt25VWFiYMjMzNXjw4KaIscklJSWpuLjY+nf48GFPh4QmVt0t+uKeQdXdolNz8z0UGQDAHZyeAZKkXr16ae3atY1+806dOsnf31+FhYU21wsLC2stcG6KewYGBtZaT4SWp9JiKHlLXo2jMqSqRokmSclb8jQm2sxyGAC0UA7NAJWUlDj854yAgAANHjxYaWlp1msWi0VpaWlO1xM15T3RsjjTLRoA0DI5NAPUvn37end4GYYhk8mkyspKpwJITEzU9OnTNWTIEA0bNkwrVqxQaWmpZsyYIUmaNm2aunbtqpSUFElVRc55eXnWfz5y5IhycnLUrl079e7d26F7wrfRLRoA4FAClJ6e3mQBTJ48WceOHdOiRYtUUFCg2NhYpaamWouYDx06JD+/Xyaqjh49qoEDB1ofL1++XMuXL9eoUaOUkZHh0D3h2+gWDQBw+jR4X8Bp8C1b9YnxBcVlduuAODEeAJqnJj0N/uOPP67z+ZEjRzp7S8CtqrtFz1qXLZNkkwTRLRoAfIPTM0AXLkdZb3JBfZCzNUDeiBkg3+BoHyCaJQJA89CkM0CnTp2yeXzu3Dl9+eWXWrhwoZ544glnbwd4jCPdommWCAAtk8tqgHbs2KHExETt2bPHFbfzKGaAIP3SLPHi/0Cq0yPOFQMA7+LM77fTnaBrEx4ern379rnqdoBH1dcsUapqllhpYQ8BADRHTi+B/fOf/7R5bBiG8vPztWTJEsXGxroqLsCjnGmWWNd5YwAA7+R0AhQbGyuTyaSLV86uvPJKvfrqqy4LDPAkmiUCQMvmdAJ08OBBm8d+fn7q3LmzgoJoGoeWg2aJANCyOZ0Ade/evSniALzKsB4dFBEaVG+zxGE9Org7NACACzSoCDotLU3XXXedevXqpV69eum6667TRx995OrYAI+pbpYo/bLrq5q9ZomVFkOZ+09oc84RZe4/QXE0AHg5pxOgP/3pTxo/fryCg4M1d+5czZ07VyEhIfrtb3+rVatWNUWMgEeMj4nQ6qmDZA61XeYyhwbZbIFPzc3XiKXbNWXtTs3dkKMpa3dqxNLtSs3N90TYAAAHON0HqFu3blqwYIFmz55tc33VqlV68skndeTIEZcG6An0AcKF6uoETa8gAPAeTdoH6KefftL48eNrXB87dqyKi4udvR3g9fz9TIrv1VE3xHZVfK+ONste9AoCgObJ6QTo+uuv1zvvvFPj+ubNm3Xddde5JCigOXCmVxAAwLs4tAvs+eeft/5zdHS0nnjiCWVkZCg+Pl6StHPnTn322Wd64IEHmiZKwAvRKwgAmi+HaoB69Ojh2M1MJh04cKDRQXkaNUBwROb+E5qydme9496660q6RQOAG7j8NPiLmx8CoFcQADRnTtUAnTt3Tr169dLXX3/dVPEAzYazvYIk+gUBgLdwqhN069atVVZGPQNQrbpXUPKWPJuCaHNokBZPjLbZAp+am19jXISdcQCApud0H6Ann3xS3377rV5++WW1auX0SRrNAjVAcFZdvYIk+gUBgDu4vAboQrt27VJaWpq2bt2q/v37q23btjbPb9q0ydlbAs1eda8ge+rrF2RSVb+gMdFmm6QJANB0nE6A2rdvr5tuuqkpYgFaJGf6BbFbDADcw+kE6LXXXmuKOIAWi35BAOB9GnQaPADHhQUH1T/IiXEAgMZzegaoR48eMplqr1NoCY0QAVdytl9QfQXVAIDGczoBmjdvns3jc+fO6csvv1RqaqoeeughV8UFtBjV/YJmrcuWSbJJgi7uF8RWeQBwD6e3wddm1apV2r17d4uoEWIbPJpCfckNW+UBoHGc+f12WQJ04MABxcbGqqSkxBW38ygSIDSV2pa3Ki2GRizdXutuseplsk/nj2Y5DABq0aR9gGrzt7/9TR06cOYRUJfa+gWxVR4A3MvhBOiPf/yjHnjgAY0YMcKmCNowDBUUFOjYsWP605/+1CRBAi0dW+UBwL0cToCSk5N1991364YbbrBJgPz8/NS5c2ddffXV6tu3b5MECbR0bJUHAPdyOAGqLhV69NFHmyoWwGexVR4A3MupGqC6+v8AaDi2ygOAezm8C8zPz0+hoaH1JkEnT550SWCexC4weApb5QGg4ZpsF1hycrJCQ0MbFRyA2o2PidCYaHOtW+U5VR4AXMOpBOjWW29VWFhYU8UCQGyVBwB3cPgwVOp/AM9iqzwAuI7DCZCLGkbbtWrVKkVFRSkoKEhxcXHKysqqc/zbb7+tvn37KigoSP3799eHH35o83xhYaHuuOMOdenSRZdcconGjx+v7777rsniB9zB2a3ylRZDmftPaHPOEWXuP6FKS9P9NwwAzY3DCZDFYmmS5a+NGzcqMTFRixcvVnZ2tgYMGKBx48apqKjI7vjPP/9cU6ZM0cyZM/Xll19q0qRJmjRpknJzcyVVJWqTJk3SgQMHtHnzZn355Zfq3r27EhISVFpa6vL4AXep3ipf21ysSVUF08N6dFBqbr5GLN2uKWt3au6GHE1Zu1Mjlm5Xam6+O0MGAK/lsrPAGiouLk5Dhw7VypUrJVUlWpGRkZozZ44WLFhQY/zkyZNVWlqq999/33rtyiuvVGxsrNasWaNvv/1Wl19+uXJzc9WvXz/rPc1ms5588kn913/9V417lpeXq7y83Pq4pKREkZGR7AKD16neBSbZ3yq/euogSWKnGACf5MwuMIdngJpCRUWF9uzZo4SEBOs1Pz8/JSQkKDMz0+5rMjMzbcZL0rhx46zjqxOZoKBflgv8/PwUGBioTz/91O49U1JSFBoaav2LjIxs1OcCmsr4mAitnjpI5lDb5TBzaJBWTx2kMdHmOneKSVU7xVgOA+DrXHYYakMcP35clZWVCg8Pt7keHh6ub775xu5rCgoK7I4vKCiQJPXt21eXXXaZkpKS9OKLL6pt27Z69tln9e9//1v5+fan/5OSkpSYmGh9XD0DBHijurbKZ+4/wU4xAHCARxOgptC6dWtt2rRJM2fOVIcOHeTv76+EhARNmDCh1kLuwMBABQYGujlSoOFq2yrPTjEAcIxHE6BOnTrJ399fhYWFNtcLCwtlNpvtvsZsNtc7fvDgwcrJyVFxcbEqKirUuXNnxcXFaciQIa7/EIAXachOMc4UA+CLPFoDFBAQoMGDBystLc16zWKxKC0tTfHx8XZfEx8fbzNekrZt22Z3fGhoqDp37qzvvvtOu3fv1g033ODaDwB4GXaKAYBjPJoASVJiYqLWrl2rN954Q19//bVmzZql0tJSzZgxQ5I0bdo0JSUlWcfPnTtXqampevrpp/XNN9/o0Ucf1e7duzV79mzrmLffflsZGRnWrfBjxozRpEmTNHbsWLd/PsCdqg9VlVQjCbrwUNVteQWatS67Rr1QQXGZZq3LJgkC0OJ5vAZo8uTJOnbsmBYtWqSCggLFxsYqNTXVWuh86NAh+fn9kqcNHz5c69ev1yOPPKKHH35Yffr00bvvvquYmBjrmPz8fCUmJqqwsFARERGaNm2aFi5c6PbPBnhC9U6xiw9VNf/foapjos0asXQ7Z4oB8Gke7wPkjTgNHi1BbfU9mftPaMranfW+/q27rmSnGIBmpclOgwfQfLhypxjF0gBaGhIgwMc4u1MsNTe/xnJaxP8tp9FRGkBz5fEiaADu5exOMYqlAbREJECAj3F0p5gkjtUA0GKRAAE+qL4zxcbHRCjr4EmHj9UAgOaGGiDAR9V1ppjkfLE0hdIAmhMSIMCH1bZTTHKuWJpCaQDNDUtgAOxytFj6VGkFhdIAmh0SIAB2OVIsvfDaX+uxDyiUBtD8kAABqFV9xdKXtg2kUBpAs0QNEIA61VUsvTnniEP3oFAagLchAQJQr9qKpSmUBtBcsQQGoMEolAbQXJEAAWgwCqUBNFckQAAahUJpAM0RNUAAGo1CaQDNDQkQAJegUBpAc8ISGIAmRaE0AG9EAgSgSVEoDcAbkQABaHKuLpSutBjK3H9Cm3OOKHP/CRIjAE6jBgiAW7iqUJo6IQCuQAIEwG0aWyj9w/GzWvHRtzWWyqrrhFZPHUQSBMAhLIEB8DhHCqXNIYF6K+sQdUIAXIIECIDHOVIoPWXYZSooca6hIrVCAGrDEhgAr1BdKH1xfY/5/+p7ys9bHLpPdUNFaoUA1IUECIDXqKtQOnP/CYfuUd1Qcda6bGqFANSKBAiAV6mtULq6TqiguMxuHZBJVbNFg7tfqlHL0mutFTKpqlZoTLSZIzYAH0YNEIBmwZE6ocUTo7Xnx1P0FAJQL2aAADQb9dUJjY+JoKcQAIeQAAFoVuqqE5LoKQTAMSRAAJqd2uqEJMdqhcLr6Sl0cZ1QpcWoNeEC0DyRAAFoUaprhWaty5ZJsklyLuwp9OxH39V6jwvrhIp/rmCZDGiBKIIG0OLUd/hqVKe2Dt1nW16BZq3LrlFUXb1Mlpqb77KYAbgXM0AAWiRX9BR6N+co2+mBFooECECL1ZieQpe2ba2TpRW13vvCZbL4Xh2pEwKaGRIgAD7HkTqh38V21Suf/VDvvdhODzRPXlEDtGrVKkVFRSkoKEhxcXHKysqqc/zbb7+tvn37KigoSP3799eHH35o8/yZM2c0e/ZsdevWTW3atFF0dLTWrFnTlB8BQDNTX51QQrTZofv8cPwsdUJAM+TxGaCNGzcqMTFRa9asUVxcnFasWKFx48Zp3759CgsLqzH+888/15QpU5SSkqLrrrtO69ev16RJk5Sdna2YmBhJUmJiorZv365169YpKipKW7du1T333KMuXbro+uuvd/dHBOCl6qoTqrQYbKcHWjCTYRge7fseFxenoUOHauXKlZIki8WiyMhIzZkzRwsWLKgxfvLkySotLdX7779vvXbllVcqNjbWOssTExOjyZMna+HChdYxgwcP1oQJE/T444/XG1NJSYlCQ0NVXFyskJCQxn5EAM1U9aGqkv1lsnkJfercTl/trbuuZDs94AbO/H57dAmsoqJCe/bsUUJCgvWan5+fEhISlJmZafc1mZmZNuMlady4cTbjhw8frvfee09HjhyRYRhKT0/Xt99+q7Fjx9q9Z3l5uUpKSmz+AIDt9EDL5dElsOPHj6uyslLh4eE218PDw/XNN9/YfU1BQYHd8QUFBdbHL7zwgv77v/9b3bp1U6tWreTn56e1a9dq5MiRdu+ZkpKi5OTkRn4aAC2RJ7bTs1QGND2P1wA1hRdeeEE7d+7Ue++9p+7du+vjjz/Wvffeqy5dutSYPZKkpKQkJSYmWh+XlJQoMjLSnSED8GLu3E7PjjLAPTy6BNapUyf5+/ursLDQ5nphYaHMZvs7MMxmc53jf/75Zz388MN65plnNHHiRF1xxRWaPXu2Jk+erOXLl9u9Z2BgoEJCQmz+AKA+1dvppV/qgqpduJ3eEdXb6VkqA9zDowlQQECABg8erLS0NOs1i8WitLQ0xcfH231NfHy8zXhJ2rZtm3X8uXPndO7cOfn52X40f39/WSwWF38CAL7OVdvpO7UNVPKWvFqXyqSqpbJKS9WjSouhzP0ntDnniDL3n7BeB+AYjy+BJSYmavr06RoyZIiGDRumFStWqLS0VDNmzJAkTZs2TV27dlVKSookae7cuRo1apSefvppXXvttdqwYYN2796tl156SZIUEhKiUaNG6aGHHlKbNm3UvXt37dixQ2+++aaeeeYZj31OAC1XY7fTm0ODJJNqzPxciANaAdfyeAI0efJkHTt2TIsWLVJBQYFiY2OVmppqLXQ+dOiQzWzO8OHDtX79ej3yyCN6+OGH1adPH7377rvWHkCStGHDBiUlJem2227TyZMn1b17dz3xxBO6++673f75APiG2uqEHOk6vXhitI6fKXfofbblFei1z36okUxVL5OtnjqIJAhwgMf7AHkj+gABcLX6ipsz95/QlLU7671Ph7YBtRZVV88mfTp/NI0X4ZOc+f32+AwQAPiCupbJJNfvKGOZDKibV5wFBgC+oHqZ7IbYrorv1dFmNsaVO8povAjUjwQIALyEq3aU1dV4UWI3GSCxBAYAXqWxO8pYJgMcwwwQAHiZ2pbKPLVMxiwRWiJ2gdnBLjAA3qyuHWWhbQJcuptsW14Bs0RoNpz5/SYBsoMECIC3q22Le6XF0Iil2x1YJjtX73vcn/Arrfjo2xr3qZ5toucQvI0zv98sgQFAM+SOZbLXPjvocDG1xFIZmheKoAGghaneTXbx0pX5gmWyVz77od77/PRz7bNEnGKP5o4ECABaoMbuJgtt07rOBKjahafYO3I8B92p4S1IgACghWrM+WQzrorSsx99V+97dGobqAf/trfWpTKTqpbKxkSbKaiGV6EGCAB8UH1NF2eP7qOI0KAadUTVTKpKXhw9xX7l9u/Zdg+vwi4wO9gFBsBX1LUkVb20JdmfJVo9dZDKz1s0d0NOve/Tvo4lNbbdw1XYBQYAcEhd55PVN0s0PiZCYcFBF9/SLkcKqpklgjsxA2QHM0AA8Iu6Zokc6TvkaEE1s0RoLGaAAAAu09hT7GdcFeXQ+7h6lgioCwkQAKBRXFFQ3b5Na4fey5nmjCyToS5sgwcANFpdfYckuWzbvaPNGTnpHvWhBsgOaoAAwPXq6hY9JtrsslqiO6+K0muf/eDwGWY0Z2w5OAy1kUiAAKBpNGbb/byEPg7NEjl60r2/n8nhIzxIkpoHEqBGIgECAM9o7CyRoyfdv3XXlSr+ucLuER4XzxRxzlnzQQLUSCRAAOA5jZkluvOqKIcOen32lgF66h/7au1iXT1TtPDaaN27vv4kqb644R7O/H5TBA0A8Cq1nWEmue6k+5OlFQ4d4fHI5lzOOWuhSIAAAM1KY0+6N4cGqUO7QIfeq7ZaIsm2N9GKj76t8X7VvYmYJfJOJEAAgGanMSfdV88UuUpdvYmYJfJeNEIEALQojpxhNqxHh3qbM3Zo61hzRs45a54ograDImgAaP7qW26qr6B61e8H6rEPvvbac85YTquJXWCNRAIEAL6hvi3urupN5Ij7E35lt5bI3o4ztubbRwLUSCRAAOA7HJkpckcHa2dmiRzpX+TIZ2tpSIAaiQQIAHAhd3SwdsRfZsbpwb/trbd/kbPLaS2FM7/fFEEDAFCP6l1nN8R2VXyvjjazKPUVXc8e3afeguv2bRwruM48cNyh/kUUXdePbfAAADRSXb2JJNW7NX/GVVEOzhI5tnzl6q35LXEpjSUwO1gCAwC4WmNricyhQVp+8wDd9vIXLonH0aLr5lRwTQ1QI5EAAQCaQmNqiVZPHeT2ouvmdhYaCVAjkQABADzBkdkWdxZdd2gbUOtxIN7Yv4gEqJFIgAAAnuJIguCurfmO8Kb+Rc1uF9iqVasUFRWloKAgxcXFKSsrq87xb7/9tvr27augoCD1799fH374oc3zJpPJ7t+yZcua8mMAANBode04qzY+JkKfzh+tt+66Us/dGqu37rpSn84frfExEdbz0KSaJdMXFl27Sl0F11JVwXWlxbDOXDmyM80dPJ4Abdy4UYmJiVq8eLGys7M1YMAAjRs3TkVFRXbHf/7555oyZYpmzpypL7/8UpMmTdKkSZOUm5trHZOfn2/z9+qrr8pkMummm25y18cCAKBJNfXWfFeehbZz/wklb8lzKFFyF48vgcXFxWno0KFauXKlJMlisSgyMlJz5szRggULaoyfPHmySktL9f7771uvXXnllYqNjdWaNWvsvsekSZN0+vRppaWlORQTS2AAgJagMUXXrjwLbfY1vbQyfX+9496660rF9+pY77jaNJslsIqKCu3Zs0cJCQnWa35+fkpISFBmZqbd12RmZtqMl6Rx48bVOr6wsFAffPCBZs6cWWsc5eXlKikpsfkDAKC5a8ws0W+v6OLCpTTHipyLTtfe5NHVPNoI8fjx46qsrFR4eLjN9fDwcH3zzTd2X1NQUGB3fEFBgd3xb7zxhoKDg3XjjTfWGkdKSoqSk5OdjB4AgOatvgaO1UnSxYXL5gsKrjfsOlxv/6L4Xh21Mv37euMJCw6qd4yrtPhO0K+++qpuu+02BQXV/qUmJSUpMTHR+rikpESRkZHuCA8AAI+qniWqTWO7XC+eGK0re3ZURGhQvYnSsB4dXPSp6ufRJbBOnTrJ399fhYWFNtcLCwtlNpvtvsZsNjs8/pNPPtG+ffv0X//1X3XGERgYqJCQEJs/AABQpTFLaY7uTFs8MdqtjRM9mgAFBARo8ODBNsXJFotFaWlpio+Pt/ua+Pj4GsXM27Ztszv+lVde0eDBgzVgwADXBg4AAKzq2pZ/4Zj6EiV38vgSWGJioqZPn64hQ4Zo2LBhWrFihUpLSzVjxgxJ0rRp09S1a1elpKRIkubOnatRo0bp6aef1rXXXqsNGzZo9+7deumll2zuW1JSorfffltPP/202z8TAAC+pr6lNKn+5TR38ngCNHnyZB07dkyLFi1SQUGBYmNjlZqaai10PnTokPz8fpmoGj58uNavX69HHnlEDz/8sPr06aN3331XMTExNvfdsGGDDMPQlClT3Pp5AABA7RxJlNzB432AvBF9gAAAaH6aTR8gAAAATyABAgAAPocECAAA+BwSIAAA4HNIgAAAgM8hAQIAAD6HBAgAAPgcEiAAAOBzPN4J2htV94YsKSnxcCQAAMBR1b/bjvR4JgGy4/Tp05KkyMhID0cCAACcdfr0aYWGhtY5hqMw7LBYLDp69KiCg4NlMrn/gDZ3KykpUWRkpA4fPszRH/Xgu3IO35fj+K4cx3flOF/7rgzD0OnTp9WlSxebc0TtYQbIDj8/P3Xr1s3TYbhdSEiIT/wH4gp8V87h+3Ic35Xj+K4c50vfVX0zP9UoggYAAD6HBAgAAPgcEiAoMDBQixcvVmBgoKdD8Xp8V87h+3Ic35Xj+K4cx3dVO4qgAQCAz2EGCAAA+BwSIAAA4HNIgAAAgM8hAQIAAD6HBAhWS5Yskclk0rx58zwdilc6cuSIpk6dqo4dO6pNmzbq37+/du/e7emwvE5lZaUWLlyoHj16qE2bNurVq5cee+wxh87maek+/vhjTZw4UV26dJHJZNK7775r87xhGFq0aJEiIiLUpk0bJSQk6LvvvvNMsF6gru/r3Llzmj9/vvr376+2bduqS5cumjZtmo4ePeq5gD2ovn+3LnT33XfLZDJpxYoVbovPG5EAQZK0a9cuvfjii7riiis8HYpXOnXqlK666iq1bt1af//735WXl6enn35al156qadD8zpLly7V6tWrtXLlSn399ddaunSpnnrqKb3wwgueDs3jSktLNWDAAK1atcru80899ZSef/55rVmzRl988YXatm2rcePGqayszM2Reoe6vq+zZ88qOztbCxcuVHZ2tjZt2qR9+/bp+uuv90Cknlffv1vV3nnnHe3cuVNdunRxU2RezIDPO336tNGnTx9j27ZtxqhRo4y5c+d6OiSvM3/+fGPEiBGeDqNZuPbaa40777zT5tqNN95o3HbbbR6KyDtJMt555x3rY4vFYpjNZmPZsmXWaz/99JMRGBhovPXWWx6I0Ltc/H3Zk5WVZUgyfvzxR/cE5aVq+67+/e9/G127djVyc3ON7t27G88++6zbY/MmzABB9957r6699lolJCR4OhSv9d5772nIkCG6+eabFRYWpoEDB2rt2rWeDssrDR8+XGlpafr2228lSXv37tWnn36qCRMmeDgy73bw4EEVFBTY/HcYGhqquLg4ZWZmejCy5qO4uFgmk0nt27f3dChex2Kx6Pbbb9dDDz2kfv36eTocr8BhqD5uw4YNys7O1q5duzwdilc7cOCAVq9ercTERD388MPatWuX7rvvPgUEBGj69OmeDs+rLFiwQCUlJerbt6/8/f1VWVmpJ554QrfddpunQ/NqBQUFkqTw8HCb6+Hh4dbnULuysjLNnz9fU6ZM8ZlDP52xdOlStWrVSvfdd5+nQ/EaJEA+7PDhw5o7d662bdumoKAgT4fj1SwWi4YMGaInn3xSkjRw4EDl5uZqzZo1JEAX+etf/6q//OUvWr9+vfr166ecnBzNmzdPXbp04btCkzh37pxuueUWGYah1atXezocr7Nnzx4999xzys7Olslk8nQ4XoMlMB+2Z88eFRUVadCgQWrVqpVatWqlHTt26Pnnn1erVq1UWVnp6RC9RkREhKKjo22u/frXv9ahQ4c8FJH3euihh7RgwQLdeuut6t+/v26//Xbdf//9SklJ8XRoXs1sNkuSCgsLba4XFhZan0NN1cnPjz/+qG3btjH7Y8cnn3yioqIiXXbZZdb/rf/xxx/1wAMPKCoqytPheQwzQD7sN7/5jf71r3/ZXJsxY4b69u2r+fPny9/f30OReZ+rrrpK+/bts7n27bffqnv37h6KyHudPXtWfn62/9/K399fFovFQxE1Dz169JDZbFZaWppiY2MlSSUlJfriiy80a9YszwbnpaqTn++++07p6enq2LGjp0PySrfffnuNGs9x48bp9ttv14wZMzwUleeRAPmw4OBgxcTE2Fxr27atOnbsWOO6r7v//vs1fPhwPfnkk7rllluUlZWll156SS+99JKnQ/M6EydO1BNPPKHLLrtM/fr105dffqlnnnlGd955p6dD87gzZ87o+++/tz4+ePCgcnJy1KFDB1122WWaN2+eHn/8cfXp00c9evTQwoUL1aVLF02aNMlzQXtQXd9XRESE/vM//1PZ2dl6//33VVlZaa2V6tChgwICAjwVtkfU9+/Wxclh69atZTabdfnll7s7VO/h6W1o8C5sg6/dli1bjJiYGCMwMNDo27ev8dJLL3k6JK9UUlJizJ0717jsssuMoKAgo2fPnsb//M//GOXl5Z4OzePS09MNSTX+pk+fbhhG1Vb4hQsXGuHh4UZgYKDxm9/8xti3b59ng/agur6vgwcP2n1OkpGenu7p0N2uvn+3LsY2eMMwGQbtWQEAgG+hCBoAAPgcEiAAAOBzSIAAAIDPIQECAAA+hwQIAAD4HBIgAADgc0iAAACAzyEBAgAAPocECIDTMjIyZDKZ9NNPPzXqPnfccUezPubh6quv1rx58+odN3LkSK1fv77pA7rArbfeqqefftqt7wk0JyRAgA9bs2aNgoODdf78eeu1M2fOqHXr1rr66qttxlYnPfv379fw4cOVn5+v0NDQJo9x7dq1GjBggNq1a6f27dtr4MCBzepk+ffee0+FhYW69dZbXXK/N954QyNGjKh33COPPKInnnhCxcXFLnlfoKUhAQJ82DXXXKMzZ85o9+7d1muffPKJzGazvvjiC5WVlVmvp6en67LLLlOvXr0UEBAgs9ksk8nUpPG9+uqrmjdvnu677z7l5OTos88+0x/+8AedOXOmSd/XlZ5//nnNmDFDfn6u+Z/bzZs36/rrr693XExMjHr16qV169a55H2BloYECPBhl19+uSIiIpSRkWG9lpGRoRtuuEE9evTQzp07ba5fc8011n++cAns9ddfV/v27fWPf/xDv/71r9WuXTuNHz9e+fn51tdXVlYqMTFR7du3V8eOHfWHP/xB9R1F+N577+mWW27RzJkz1bt3b/Xr109TpkzRE088YR1TvYyWnJyszp07KyQkRHfffbcqKiqsYywWi1JSUtSjRw+1adNGAwYM0N/+9jeb98rNzdWECRPUrl07hYeH6/bbb9fx48etz5eWlmratGlq166dIiIiHFpeOnbsmLZv366JEyfaXDeZTHrxxRd13XXX6ZJLLtGvf/1rZWZm6vvvv9fVV1+ttm3bavjw4dq/f7/N68rKyrR161ZrAvSnP/1Jffr0UVBQkMLDw/Wf//mfNuMnTpyoDRs21Bsn4ItIgAAfd8011yg9Pd36OD09XVdffbVGjRplvf7zzz/riy++sCZA9pw9e1bLly/Xn//8Z3388cc6dOiQHnzwQevzTz/9tF5//XW9+uqr+vTTT3Xy5Em98847dcZmNpu1c+dO/fjjj3WOS0tL09dff62MjAy99dZb2rRpk5KTk63Pp6Sk6M0339SaNWv01Vdf6f7779fUqVO1Y8cOSdJPP/2k0aNHa+DAgdq9e7dSU1NVWFioW265xXqPhx56SDt27NDmzZu1detWZWRkKDs7u864Pv30U2uCc7HHHntM06ZNU05Ojvr27avf//73+n//7/8pKSlJu3fvlmEYmj17do3P2bVrV/Xt21e7d+/Wfffdpz/+8Y/at2+fUlNTNXLkSJvxw4YNU1ZWlsrLy+uME/BJnj2MHoCnrV271mjbtq1x7tw5o6SkxGjVqpVRVFRkrF+/3hg5cqRhGIaRlpZmSDJ+/PFHwzAMIz093ZBknDp1yjAMw3jttdcMScb3339vve+qVauM8PBw6+OIiAjjqaeesj4+d+6c0a1bN+OGG26oNbajR48aV155pSHJ+NWvfmVMnz7d2Lhxo1FZWWkdM336dKNDhw5GaWmp9drq1auNdu3aGZWVlUZZWZlxySWXGJ9//rnNvWfOnGlMmTLFMAzDeOyxx4yxY8faPH/48GFDkrFv3z7j9OnTRkBAgPHXv/7V+vyJEyeMNm3aGHPnzq01/meffdbo2bNnjeuSjEceecT6ODMz05BkvPLKK9Zrb731lhEUFGTzurvuust48MEHDcMwjP/93/81QkJCjJKSklrff+/evYYk44cffqh1DOCrWnku9QLgDa6++mqVlpZq165dOnXqlH71q1+pc+fOGjVqlGbMmKGysjJlZGSoZ8+euuyyy2q9zyWXXKJevXpZH0dERKioqEiSVFxcrPz8fMXFxVmfb9WqlYYMGVLnMlhERIQyMzOVm5urjz/+WJ9//rmmT5+ul19+Wampqda6mgEDBuiSSy6xvi4+Pl5nzpzR4cOHdebMGZ09e1ZjxoyxuXdFRYUGDhwoSdq7d6/S09PVrl27GjHs379fP//8syoqKmzi79Chgy6//PJaY5eqZs6CgoLsPnfFFVdY/zk8PFyS1L9/f5trZWVlKikpUUhIiAzD0JYtW/TXv/5VkjRmzBh1795dPXv21Pjx4zV+/Hj97ne/s/ke2rRpI6lqdg6ALRIgwMf17t1b3bp1U3p6uk6dOqVRo0ZJkrp06aLIyEh9/vnnSk9P1+jRo+u8T+vWrW0em0ymemt8HBUTE6OYmBjdc889uvvuu/Uf//Ef2rFjR51LctWqC6Y/+OADde3a1ea5wMBA65iJEydq6dKlNV4fERGh77//vkFxd+rUSadOnbL73IXfV3Uxub1rFotFkpSVlaXz589r+PDhkqTg4GBlZ2crIyNDW7du1aJFi/Too49q165dat++vSTp5MmTkqTOnTs3KH6gJaMGCICuueYaZWRkKCMjw2b7+8iRI/X3v/9dWVlZDiUbtQkNDVVERIS++OIL67Xz589rz549Tt8rOjpaUlVRcrW9e/fq559/tj7euXOn2rVrp8jISEVHRyswMFCHDh1S7969bf4iIyMlSYMGDdJXX32lqKioGmPatm2rXr16qXXr1jbxnzp1St9++22dsQ4cOFAFBQW1JkHO2Lx5s6699lr5+/tbr7Vq1UoJCQl66qmn9M9//lM//PCDtm/fbn0+NzdX3bp1U6dOnRr9/kBLwwwQAF1zzTW69957de7cOesMkCSNGjVKs2fPVkVFRaMSIEmaO3eulixZoj59+qhv37565pln6m2kOGvWLHXp0kWjR49Wt27dlJ+fr8cff1ydO3dWfHy8dVxFRYVmzpypRx55RD/88IMWL16s2bNny8/PT8HBwXrwwQd1//33y2KxaMSIESouLtZnn32mkJAQTZ8+Xffee6/Wrl2rKVOm6A9/+IM6dOig77//Xhs2bNDLL7+sdu3aaebMmXrooYfUsWNHhYWF6X/+53/q3do+cOBAderUSZ999pmuu+66Rn1/7733nv74xz9aH7///vs6cOCARo4cqUsvvVQffvihLBaLzbLcJ598orFjxzbqfYGWigQIgK655hr9/PPP6tu3r7UeRapKgE6fPm3dLt8YDzzwgPLz8zV9+nT5+fnpzjvv1O9+97s6G/UlJCTo1Vdf1erVq3XixAl16tRJ8fHxSktLU8eOHa3jfvOb36hPnz4aOXKkysvLNWXKFD366KPW5x977DF17txZKSkpOnDggNq3b69Bgwbp4YcfllS13PfZZ59p/vz5Gjt2rMrLy9W9e3eNHz/emuQsW7bMulQWHBysBx54oN4mg/7+/poxY4b+8pe/NCoB2r9/v77//nuNGzfOeq19+/batGmTHn30UZWVlalPnz5666231K9fP0lVW+bfffddpaamNvh9gZbMZLhqkR4APOCOO+7QTz/9pHfffdfTodhVUFCgfv36KTs7W927d2/QPZ555hl99NFH+vDDDx1+zerVq/XOO+9o69atDXpPoKWjBggAmpDZbNYrr7yiQ4cONfge3bp1U1JSklOvad26tV544YUGvyfQ0jEDBKBZ8/YZIADeiQQIAAD4HJbAAACAzyEBAgAAPocECAAA+BwSIAAA4HNIgAAAgM8hAQIAAD6HBAgAAPgcEiAAAOBz/j/TR8Zlo0gdzQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Assign TI as a function of wind speed using the IEC method and default parameters.\n", + "time_series.assign_ti_using_IEC_method()\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.scatter(time_series.wind_speeds, time_series.turbulence_intensities)\n", + "ax.set_xlabel('Wind Speed (m/s)')\n", + "ax.set_ylabel('Turbulence Intensity')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generating Value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The TimeSeries object also includes functions for generating value as a function of wind direction and wind speed. This can be accomplished by passing in a custom function using the `TimeSeries.assign_value_using_wd_ws_function` method, or by using the `TimeSeries.assign_value_piecewise_linear` method, which approximates value using a two-segment piecewise linear function of wind speed. When using the default parameters, this produces a value vs. wind speed that approximates the normalized mean electricity price vs. wind speed curve for the SPP market in the U.S. for years 2018-2020 from figure 7 in \"The value of wake steering wind farm flow control in US energy markets,\" Wind Energy Science, 2024. https://doi.org/10.5194/wes-9-219-2024. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Value (normalized price/MWh)')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTj0lEQVR4nO3de1yUZf4//tdwFjkoIgwgKh5KEc+uipmKCWiG2baZmEpYfleLTSVTyQNipWnrodJktWWtzENbHj8ZiSgeEiUl2/AYhFoKeEA5CozM/fuD30wOMHDfMOd5PR+PfXyae66Zed/Xh919731f1+uWCYIggIiIiMhC2Bi7ACIiIiJdYnNDREREFoXNDREREVkUNjdERERkUdjcEBERkUVhc0NEREQWhc0NERERWRQ7YxdgaEqlEjdv3oSrqytkMpmxyyEiIiIRBEFASUkJfH19YWPT8LUZq2tubt68CX9/f2OXQURERE3w+++/o127dg2OsbrmxtXVFUDN5Li5uRm5Gv1TKBQ4ePAgwsLCYG9vb+xyTB7nSzzOlXicK/E4V+JZ21wVFxfD399f/d/jDbG65kZ1K8rNzc1qmhtnZ2e4ublZxR9/c3G+xONcice5Eo9zJZ61zpWYJSVcUExEREQWhc0NERERWRQ2N0RERGRR2NwQERGRRWFzQ0RERBaFzQ0RERFZFDY3REREZFHY3BAREZFFYXNDREREFsXqEor1pVopICO3ELdKKuDl6oSBAR6wtZEZbcyj4wAgI7cQg7t46fX3iIiITAGbGx1IzspDwv4LyCuqUB/zcXdCfEQgRgf5GHzMo+MKSx9g1UBg2mc/wsOlhd5+j4iIyFTwtlQzJWflYebWTI3/8geA/KIKzNyaieSsPIOOMXRNREREpoZXbpqhWikgYf8FCPW8JwCQAVi67zwAmUHGJOy/gJHdvA1WU8L+CwgNlPMWFRERmRQ2N82QkVtY56rGowQA+cWVDX6HLsfkFVXgi/SrBqspr6gCGbmFCO7cpsGxREREhsTbUs1wq0R7E2Es1wrLDfp7pjgHRERk3djcNIOXq5OxS6ijg4ezQX/PFOeAiIism1Gbm2PHjiEiIgK+vr6QyWTYs2eP6M/+8MMPsLOzQ58+ffRWX2MGBnjAx90J2lacyADI3RwhdzPMGB93J0wJ7miwmnzca7aFAzXrj9Jz7mLvuRtIz7mLamV9q3WIiIj0z6jNTVlZGXr37o0NGzZI+tz9+/cxdepUPPXUU3qqTBxbGxniIwIBoE4ToHq9dFwPLB1nmDHxEYFwsLMxWE3xEYGwtZEhOSsPQ1ceRuTmU5i14xwiN5/C0JWHuZuKiIiMwqjNzZgxY/Duu+/iueeek/S5GTNmYNKkSQgODtZTZeKNDvLBxsn9IHfXvD0jd3fCxsn9MDrIx6BjDF0Tt4sTEZGpMbvdUv/5z3/w22+/YevWrXj33XcbHV9ZWYnKyj93/hQXFwMAFAoFFAqFTmp66nFPjOj6JM5eu4c7pZXwdHFE/w6tYWsjU/+GIcc8Ou7H326j8MoZfDq5L/7Sqa1Of6+isgorvj0PB9v6b0HJAKz49jxGdG1jNtvFVeetq78NS8a5Eo9zJR7nSjxrmysp5ykTBMEkFkfIZDLs3r0b48eP1zrm119/xdChQ3H8+HE89thjWLp0Kfbs2YNz585p/czSpUuRkJBQ5/i2bdvg7GzYxbdERETUNOXl5Zg0aRKKiorg5ubW4FizuXJTXV2NSZMmISEhAY899pjoz8XFxSE2Nlb9uri4GP7+/ggLC2t0ciyBQqFASkoKQkNDYW9vr9PvPvBLHuZ9879Gx616vhee7mkej2rQ53xZGs6VeJwr8ThX4lnbXKnuvIhhNs1NSUkJzpw5g59++gkxMTEAAKVSCUEQYGdnh4MHD2LkyJF1Pufo6AhHR8c6x+3t7a3ij0FFH+fr5d4SldWN327ycm9pdnNtbX8fzcG5Eo9zJR7nSjxrmSsp52g2zY2bmxt++eUXjWOffPIJDh8+jK+//hoBAQFGqsx6qbbC5xdV1PuYBhlqFh+rtosTEREZglGbm9LSUmRnZ6tf5+bm4ty5c/Dw8ED79u0RFxeHGzdu4PPPP4eNjQ2CgoI0Pu/l5QUnJ6c6x8kwVFvhZ27NhAzQaHBqbxcHarJwMnILcaukAl6uNU2PuSw0JiIi82HU5ubMmTMICQlRv1atjYmKisKWLVuQl5eH69evG6s8EkG1XTxh/wWN7eBydyfERwSqt6cnZ+XVGeNTawwREZEuGLW5GTFiBBrarLVly5YGP7906VIsXbpUt0WRZKODfBAaKNd6VUaVhVP7/9OqLJxHM3qIiIiay2zW3JBps7WR1ft08GqlgIT9F+pdkyOg5vZVwv4LCA2U8xYVERHpBB+cSXqVkVtYJ734UQKAvKIKZOQWGq4oIiKyaGxuSK9ulWhvbJoyjoiIqDFsbkivvFydGh8kYRwREVFjuOaG9KopWTjcMk5ERM3B5ob0SmoWDreMExFRc/G2FOmdKgtH7q5560nu7qSxDVy1Zbz2AmTVlvHkrDyD1UxEROaLV27IIBrLwuGWcSIi0hU2N2Qw2rJwAGlbxrV9BxEREcDbUmQiuGWciIh0hc0NmQRuGSciIl1hc0MmQbVlXNtqGhlqdk09umWciIioPmxuyCSotowDqNPg1LdlvFopID3nLvaeu4H0nLuoVmp/ACsREVkXLigmk6HaMl4750ZeK+eGWThERNQQNjdkUhrbMq7Kwql9nUaVhfNobg4REVknNjdkcrRtGWcWDhERicE1N2Q2pGThEBGR9WJzQ2aDWThERCQGmxsyG8zCISIiMdjckNlgFg4REYnB5obMBrNwiIhIDO6WIrPCLBwiImoMmxsyO8zCISKihrC5IbPELBwiItKGa27IojALh4iI2NyQRWEWDhERsbkhi8IsHCIiYnNDFoVZOERExOaGLAqzcIiIiLulyOI0JwunQ2tHxHYzeMlERKRDbG7IIjU1C6eguKbROXSxAGN6tTNw1UREpAtsbshiNTULBwDe/+4SwoL8mIVDRGSGuOaGrE5jWTgAkF/MLBwiInPF5oasDrNwiIgsG5sbsjrMwiEismxsbsjqNJaFAwByN2bhEBGZKzY3ZHXEZOEsGNONWThERGbKqM3NsWPHEBERAV9fX8hkMuzZs6fB8bt27UJoaCjatm0LNzc3BAcH4/vvvzdMsWRRVFk4cnfNW0/ebjWvR3X3BlCzZXzoysOI3HwKs3acQ+TmUxi68jCSs/IMXjMREYlj1OamrKwMvXv3xoYNG0SNP3bsGEJDQ3HgwAGcPXsWISEhiIiIwE8//aTnSskSjQ7ywYn5I7F9+mB8OLEPtk8fjO9nD1O/r8rCqb2zKr+oAjO3ZrLBISIyUUbNuRkzZgzGjBkjevy6des0Xi9fvhx79+7F/v370bdv33o/U1lZicrKSvXr4uJiAIBCoYBCoZBetJlRnaM1nGtTDWjvBsANwJ/zVFlVhRXfnoeDbf23oGQAVnx7HiO6trHaLBz+bYnHuRKPcyWetc2VlPOUCYJgEgsIZDIZdu/ejfHjx4v+jFKpRMeOHTFv3jzExMTUO2bp0qVISEioc3zbtm1wdnZuarlERERkQOXl5Zg0aRKKiorg5ubW4FizTij+5z//idLSUkyYMEHrmLi4OMTGxqpfFxcXw9/fH2FhYY1OjiVQKBRISUlBaGgo7O3tjV2OyVPNF/x6Yd7u842OX/V8Lzzd08cAlZke/m2Jx7kSj3MlnrXNlerOixhm29xs27YNCQkJ2Lt3L7y8vLSOc3R0hKOjY53j9vb2VvHHoGJt59tcnm7OqKxu/HaTl3tLq59X/m2Jx7kSj3MlnrXMlZRzNMut4Dt27MCrr76Kr776CqNGjTJ2OWSB+ndo3WAWjgyAjzuzcIiITJHZNTfbt29HdHQ0tm/fjrFjxxq7HLJQYrJw4iMCNRYTMw+HiMg0GPW2VGlpKbKzs9Wvc3Nzce7cOXh4eKB9+/aIi4vDjRs38PnnnwOouRUVFRWFDz/8EIMGDUJ+fj4AoEWLFnB3dzfKOZDlUmXhJOy/oLEdXO7uhPiIQIwO+nOtTXJWXp1xPvWMIyIi/TNqc3PmzBmEhISoX6sW/kZFRWHLli3Iy8vD9evX1e9v2rQJDx8+xOuvv47XX39dfVw1nkjXRgf5IDRQjozcQtwqqYCXa82tqEev2KjycGpfp1Hl4Wyc3I8NDhGRARm1uRkxYgQa2oleu2FJS0vTb0FE9bC1kSG4c5t636tWCkjYf6FOYwMAAmpuYSXsv4DQQLnV5uEQERma2a25ITIlGbmFdRKMHyUAyCuqQEZuoeGKIiKycmxuiJrhVon2xqYp44iIqPnY3BA1g5erU+ODJIwjIqLmM9sQPyJTMDDAAz7uTsgvqqh33Y0MNburVHk41UqhwcXJRETUfGxuiJpBlYczc2smZIBGg1M7D4fbxYmIDENSc6NUKnH06FEcP34c165dQ3l5Odq2bYu+ffti1KhR8Pf311edRCZLTB4Ot4sTERmOqObmwYMHWL16NTZu3IjCwkL06dMHvr6+aNGiBbKzs7Fnzx5Mnz4dYWFhWLJkCQYPHqzvuolMSkN5ONwuTkRkWKKam8ceewzBwcHYvHmz1qePXrt2Ddu2bcPEiROxcOFCTJ8+XefFEpkybXk4UraLa8vTISIi8UQ1NwcPHkT37t0bHNOhQwfExcVh7ty5GqnCRNaO28WJiAxL1FbwxhqbR9nb26Nz585NLojI0nC7OBGRYTVpt9T9+/eRkZGBW7duQalUarw3depUnRRGZCmkbhcnIqLmkdzc7N+/Hy+99BJKS0vh5uYGmezPBZAymYzNDVEtUraLA8zCISJqLsnNzZtvvolp06Zh+fLlcHZ21kdNRBZHzHZxAMzCISLSAcnNzY0bN/DGG2+wsSGSqKHt4gCYhUNEpCOSm5vw8HCcOXMGnTp10kc9RBZN23ZxZuEQEemOqOZm37596n8eO3Ys3nrrLVy4cAE9e/ask3kzbtw43VZIZAWYhUNEpDuimpvx48fXObZs2bI6x2QyGaqrq5tdFJG1YRYOEZHuiGpuam/3JiLdYhYOEZHuiArxA4Dc3Fx91kFk1VRZONpW08hQs2uKWThERI0T3dx07twZAQEBmDZtGr744gv88ccf+qyLyKqosnAA1GlwtGXhpOfcxd5zN5CecxfVyvqWIhMRWSfRu6UOHz6MtLQ0pKWlYfv27aiqqkKnTp0wcuRIhISEICQkBN7e3vqslciiMQuHiEg3RDc3I0aMwIgRIwAAFRUVOHnypLrZ+eyzz6BQKNCtWzecP39eX7USWTxm4RARNV+Tni3l5OSEkSNHYujQoQgJCcF3332Hf/3rX7h06ZKu6yOyOszCISJqHtFrbgCgqqoKx44dQ0JCAkJCQtCqVSvMmDED9+7dw/r167nomEiPpGThEBFZM9FXbkaOHInTp08jICAAw4cPx9///nds27YNPj68BE5kCMzCISISR3Rzc/z4cfj4+GDkyJEYMWIEhg8fjjZtmJRKZCjMwiEiEkf0ban79+9j06ZNcHZ2xsqVK+Hr64uePXsiJiYGX3/9NW7fvq3POomsHrNwiIjEEd3ctGzZEqNHj8b777+P06dP486dO1i1ahWcnZ2xatUqtGvXDkFBQfqslciqMQuHiEicJu2WAmqaHQ8PD3h4eKB169aws7PDxYsXdVkbEdXCLBwiosaJbm6USiXOnDmDtLQ0HDlyBD/88APKysrg5+eHkJAQbNiwASEhIfqslYjALBwiosaIbm5atWqFsrIyyOVyhISEYO3atRgxYgQ6d+6sz/qIqB7MwiEi0k50c/PBBx8gJCQEjz32mD7rIaJmkJKFU19zRERkCUQ3N3//+9/1WQcR6QCzcIiIJDQ306ZNEzUuKSmpycUQUfMwC4eISEJzs2XLFnTo0AF9+/aFIHBLKZEpUmXh5BdV1LvuRoaanVXMwiEiSya6uZk5cya2b9+O3NxcREdHY/LkyfDw4H9AEpkSVRbOzK2ZkAEaDU59WThAzSJkbTuviIjMkegQvw0bNiAvLw/z5s3D/v374e/vjwkTJuD7779v8pWcY8eOISIiAr6+vpDJZNizZ0+jn0lLS0O/fv3g6OiILl26YMuWLU36bSJLpcrCkbtr3nqSuzvV2QaenJWHoSsPI3LzKczacQ6Rm09h6MrDSM7KM3TZREQ6IynEz9HREZGRkYiMjMS1a9ewZcsWvPbaa3j48CHOnz8PFxcXST9eVlaG3r17Y9q0afjrX//a6Pjc3FyMHTsWM2bMwJdffonU1FS8+uqr8PHxQXh4uKTfJrJkjWXhAMzDISLL1eSEYhsbG8hkMgiCgOrq6iZ9x5gxYzBmzBjR4xMTExEQEIDVq1cDALp3744TJ05g7dq1bG6IatGWhQMwD4eILJuk5qayshK7du1CUlISTpw4gWeeeQbr16/H6NGjYWMj+g5Xk6Wnp2PUqFEax8LDwzF79mytn6msrERlZaX6dXFxMQBAoVBAoVDopU5TojpHazhXXbCW+crILURh6QM42mofU1j6AKeyb2ldfGwtc6ULnCvxOFfiWdtcSTlP0c3Na6+9hh07dsDf3x/Tpk3D9u3b4enp2aQCmyo/Px/e3t4ax7y9vVFcXIwHDx6gRYsWdT6zYsUKJCQk1Dl+8OBBODs7661WU5OSkmLsEsyKNczXqoGNj7lz8RQONPLIOGuYK13hXInHuRLPWuaqvLxc9FjRzU1iYiLat2+PTp064ejRozh69Gi943bt2iX6xw0hLi4OsbGx6tfFxcXw9/dHWFgY3NzcjFiZYSgUCqSkpCA0NBT29vbGLsfkWct8ZeQWYtpnPzY6LinqLw1eubGGudIFzpV4nCvxrG2uVHdexBDd3EydOhUymXHvvcvlchQUFGgcKygogJubW71XbYCaRdCOjo51jtvb21vFH4OKtZ1vc1n6fA3u4gUPlxaN5uEM7uLV6JobS58rXeJcice5Es9a5krKOUoK8TO24OBgHDhwQONYSkoKgoODjVQRkXmSmodTXxYOEZGpEt3ctG/fHuPGjcOzzz6LkJAQ2Nk1eaOVWmlpKbKzs9Wvc3Nzce7cOXh4eKB9+/aIi4vDjRs38PnnnwMAZsyYgfXr12PevHmYNm0aDh8+jK+++grffvtts2shsjaqPJyE/Rc0HrYpd3dCfESgeht4clZenTE+7k5YMvZxg9dMRCSG6A7liy++wL59+/Daa6/h9u3bCA8Px7hx4zB27Fi0atWqST9+5swZhISEqF+r1sZERUVhy5YtyMvLw/Xr19XvBwQE4Ntvv8WcOXPw4Ycfol27dvj000+5DZyoiRrLw2koC2fOznNYKWJRMhGRoYluboYPH47hw4dj9erVOH/+PPbt24ePP/4Yr7zyCoYMGYJx48Zh3Lhx6NSpk+gfHzFiRIPpxvXdChsxYgR++ukn0b9BRA3TlofTWBbOo+Ms/24/EZmTJoXT9OjRA3FxcTh16hSuXr2KyMhIpKamIigoCEFBQbxNRGQBMnILNW5F1aZqcM5eu2eYgoiIRGr2whm5XI7p06dj+vTpKC8vx/fff1/v7iQiMi+3SrQ3No+6U1rZ+CAiIgNqUnOTk5OD//znP8jJycGHH34ILy8vfPfdd2jfvj2ee+45XddIREbg5erU+CAAni78HzNEZFok35Y6evQoevbsidOnT2PXrl0oLS0FAPz888+Ij4/XeYFEZBwDAzzg4+4EbSk3quP9O7QGULP2Jj3nLvaeu4H0nLuoVmpfT0dEpE+Sr9wsWLAA7777LmJjY+Hq6qo+PnLkSKxfv16nxRGR8YjJwlGN07Zd/NEt5UREhiL5ys0vv/xS760nLy8v3LlzRydFEZFpUGXhyN01b1HJ3Z2w9sU+AIBDFwswc2tmncXH+UUVmLk1E8lZeYYql4gIQBOu3LRq1Qp5eXkICAjQOP7TTz/Bz89PZ4URkWnQloWjrH6IA7nA+99d0rpdXAYgYf8FhAbKG32MAxGRrki+cjNx4kTMnz8f+fn5kMlkUCqV+OGHHzB37lxMnTpVHzUSkZGpsnCe7eOH4M5tNBqV/OKGt4vnFVUgI7fQAFUSEdWQ3NwsX74c3bp1g7+/P0pLSxEYGIhhw4ZhyJAhWLRokT5qJCIzJ3ZbORGRLki+LeXg4IDNmzdjyZIl+OWXX1BaWoq+ffuia9eu+qiPiCyA2G3lRES60OQQP39/f/j7++uyFiIyQ3I3J1y/V1nvuhsZahYf8yniRGRIkm9LPf/881i5cmWd46tWrcILL7ygk6KIyHwsGNMNAOrk4ahex0cEqtfoMAuHiAxB8pWbY8eOYenSpXWOjxkzBqtXr9ZFTURkRkZ198bGyf3q5NzIa+XcMAuHiAxFcnNTWloKBweHOsft7e1RXFysk6KIyLxo2y6uumKTnJWHmVsz69y6UmXhbJzcjw0OEemM5NtSPXv2xM6dO+sc37FjBwIDA3VSFBGZH23bxauVAhL2X9CahQPUZOHwFhUR6YrkKzeLFy/GX//6V+Tk5GDkyJEAgNTUVGzfvh3//e9/dV4gEZm3jNzCOunFj3o0Cye4cxvDFUZEFktycxMREYE9e/Zg+fLl+Prrr9GiRQv06tULhw4dwvDhw/VRIxGZMbEZN8zCISJdadJW8LFjx2Ls2LG6roWILJDYjBtm4RCRrkhec0NEJMXAAA/4uDvV2SquIkPNrilm4RCRroi6cuPh4YErV67A09MTrVu3hkym/QF4hYV8hgwR/cnWRob4iEDM3JoJGaCxsFhbFo62XVdERGKIam7Wrl0LV1dXAMC6dev0WQ8RWaDRQT7MwiEigxHV3ERFRQEAHj58CJlMhvDwcHh7e+u1MCKyLMzCISJDkbSg2M7ODjNmzMDFixf1VQ8RWTBVFk5tjWXhyFCThRMaKOctKiJqlOQFxQMHDsRPP/2kj1qIyEpJycIhImqM5K3gr732Gt5880388ccf6N+/P1q2bKnxfq9evXRWHBFZB2bhEJEuSW5uJk6cCAB444031MdkMhkEQYBMJkN1dbXuqiMiq8AsHCLSJcnNTW5urj7qICIrpsrCyS+qqHfdjQw1O6uYhUNEYkhubjp06KCPOojIiknNwgGYh0NE2jXp8QuXL1/Gxx9/rN411b17d/zjH//A448/rtPiiMh6iM3CAZiHQ0QNk9zcfPPNN5g4cSIGDBiA4OBgAMCpU6cQFBSEHTt24Pnnn9d5kURkHRrLwgGYh0NEjZPc3MybNw9xcXFYtmyZxvH4+HjMmzePzQ0RNYu2LByAeThEJI7knJu8vDxMnTq1zvHJkycjLy9PJ0UREdWHeThEJIbk5mbEiBE4fvx4neMnTpzAk08+qZOiiIjqwzwcIhJD8m2pcePGYf78+Th79iwGDx4MoGbNzX//+18kJCRg3759GmOJiHSFeThEJEaTEooB4JNPPsEnn3xS73sAGOhHRDrHPBwiEkPybSmlUinqX2xsiEjXVHk4wJ/5Nyr15eFUKwWk59zF3nM3kJ5zF9XK+loiIrI0kpsbXduwYQM6duwIJycnDBo0CBkZGQ2OX7duHR5//HG0aNEC/v7+mDNnDioqeH+dyFqo8nDk7pq3nuTuThrbwJOz8jB05WFEbj6FWTvOIXLzKQxdeRjJWdz4QGTpmhTipys7d+5EbGwsEhMTMWjQIKxbtw7h4eG4fPkyvLy86ozftm0bFixYgKSkJAwZMgRXrlzByy+/DJlMhjVr1hjhDIjIGBrLw2EWDpF1M+qVmzVr1mD69OmIjo5GYGAgEhMT4ezsjKSkpHrHnzx5Ek888QQmTZqEjh07IiwsDJGRkY1e7SEiy6PKw3m2jx+CO7fRuBXVUBYOUJOFw1tURJbLaFduqqqqcPbsWcTFxamP2djYYNSoUUhPT6/3M0OGDMHWrVuRkZGBgQMH4rfffsOBAwcwZcoUrb9TWVmJyspK9evi4mIAgEKhgEKh0NHZmC7VOVrDueoC50s8U52rjNxCFJY+gKOt9jGFpQ9wKvuWwRYem+pcmSLOlXjWNldSzlMmCIJR/ufLzZs34efnh5MnT6of4wDUJCAfPXoUp0+frvdzH330EebOnQtBEPDw4UPMmDEDGzdu1Po7S5cuRUJCQp3j27Ztg7Ozc/NPhIiIiPSuvLwckyZNQlFREdzc3BocK+rKjepqhxiN/WBzpKWlYfny5fjkk08waNAgZGdnY9asWXjnnXewePHiej8TFxeH2NhY9evi4mL4+/sjLCxMr7WaCoVCgZSUFISGhsLe3t7Y5Zg8zpd4pjpXGbmFmPbZj42OS4r6i0Gv3JjiXJkizpV41jZXUnoRUc1Nq1atIJOJe06L2C3gnp6esLW1RUFBgcbxgoICyOXyej+zePFiTJkyBa+++ioAoGfPnigrK8P/+3//DwsXLoSNTd0lRI6OjnB0dKxz3N7e3ir+GFSs7Xybi/MlnqnN1eAuXvBwadFoFs7gLl4Gf/6Uqc2VKeNciWctcyXlHEU1N0eOHFH/89WrV7FgwQK8/PLL6ttJ6enp+Oyzz7BixQrRP+zg4ID+/fsjNTUV48ePB1CToZOamoqYmJh6P1NeXl6ngbG1rbmxbqS7a0RkYlRZODO3ZkIGaDQ42rJwGnoKORGZH1HNzfDhw9X/vGzZMqxZswaRkZHqY+PGjUPPnj2xadMmREVFif7x2NhYREVFYcCAARg4cCDWrVuHsrIyREdHAwCmTp0KPz8/ddMUERGBNWvWoG/fvurbUosXL0ZERIS6ySEiUmXhJOy/oPGgTbm7E+IjAjWycGqP8ak1hojMj+TdUunp6UhMTKxzfMCAAerbRWK9+OKLuH37NpYsWYL8/Hz06dMHycnJ8Pb2BgBcv35d40rNokWLIJPJsGjRIty4cQNt27ZFREQE3nvvPamnQUQWjlk4RNZLcnPj7++PzZs3Y9WqVRrHP/30U/j7+0suICYmRuttqLS0NI3XdnZ2iI+PR3x8vOTfISLro8rCqa2xLBwZarJwQgPlvEVFZIYkNzdr167F888/j++++w6DBg0CAGRkZODXX3/FN998o/MCiYh0LSO3UONWVG0CgLyiCmTkFtbbHBGRaZOcUPz000/jypUriIiIQGFhIQoLCxEREYErV67g6aef1keNREQ6datE3PPoxI4jItPSpIRif39/LF++XNe1EBEZhJerU+ODJIwjItPSpGdLHT9+HJMnT8aQIUNw48YNAMAXX3yBEydO6LQ4IiJ9GBjgAR93J2hbTSNDza4pQ4X8EZFuSW5uvvnmG4SHh6NFixbIzMxUP7epqKiIV3OIyCyosnAA1GlwtGXhpOfcxd5zN5Cec5cP3SQycZKbm3fffReJiYnYvHmzRlrgE088gczMTJ0WR0SkL6osHLm75q0nubuTxjbw5Kw8DF15GJGbT2HWjnOI3HwKQ1ceRnJWnjHKJiIRJK+5uXz5MoYNG1bnuLu7O+7fv6+LmoiIDIJZOESWSXJzI5fLkZ2djY4dO2ocP3HiBDp16qSruoiIDIJZOESWR/JtqenTp2PWrFk4ffo0ZDIZbt68iS+//BJz587FzJkz9VEjEZHBScnCISLTIvnKzYIFC6BUKvHUU0+hvLwcw4YNg6OjI+bOnYt//OMf+qiRiMjgmIVDZL4kNzcymQwLFy7EW2+9hezsbJSWliIwMBAuLi76qI+IyCiYhUNkviTflvr8889x8eJFODg4IDAwEAMHDoSLiwsqKirw+eef66NGIiKDk5qFw+3iRKZDcnPz8ssvY+DAgXWeI1VUVITo6GidFUZEZExSsnC4XZzItDQpoTghIQFTpkzB0qVLdVwOEZHpEJOFo9ouXnvxsWq7OBscIsNr0rOlVI9eeO6555CVlYUvvvhC13UREZmEhrJwxG4XH9H1SQNXTWTdJF+5kclqLsgOHjwYp0+fRnZ2NoYMGYKrV6/qujYiIpOgysJ5to8fgju3UefaiN0ufvbaPQNVSkRAE5obQfjzf6O0b98eJ0+eRMeOHREaGqrTwoiITJ3YbeB3Siv1XAkRPUpycxMfH6+x7dvZ2Rm7d+/GnDlz6n0sAxGRpRK7DdzTxVHPlRDRoySvuYmPj6/3eEJCQrOLISIyJ6rt4vlFFfWuu5GhZvFx/w6t8f1FQ1dHZL1ENTf79u3DmDFjYG9vj3379mkdJ5PJEBERobPiiIhMmWq7+MytmZABGg1O7e3iKtVKQeuDOolIN0Q1N+PHj0d+fj68vLwwfvx4reNkMhmqq6t1VRsRkclTbRdP2H9BY3Gx3N0J8RGBGB3kA4VCAQA4dLEAy769rDHO55FxRKQbopobpVJZ7z8TEVHD28UfNWfnOVRUax5T5eGocnOIqPmalHNDRESaVNvF66N6FENjeTihgXLeoiLSAVHNzUcffST6C994440mF0NEZIkay7lR5eFk5BZqbZCISDxRzc3atWtFfZlMJmNzQ0RUi9icG7G5OUTUMFHNTW5urr7rICKyWJ4ujrgjYpzY3BwialiTHpxJRETi9e/QGkDdp4uryFCza2pggIfBaiKyZE1aUPzHH39g3759uH79OqqqqjTeW7NmjU4KIyKyFI8uEhaTh8MsHKLmkdzcpKamYty4cejUqRMuXbqEoKAgXL16FYIgoF+/fvqokYjIIqx9sU+dnBt5rZyb5Ky8Opk5zMIhkkZycxMXF4e5c+ciISEBrq6u+Oabb+Dl5YWXXnoJo0eP1keNREQWYVR3b4QF+Wm9KpOclYeZWzPrbBlnFg6RNJLX3Fy8eBFTp04FANjZ2eHBgwdwcXHBsmXLsHLlSp0XSERkSVR5OM/28UNw5zYat6IS9l/QmoUD1GThqDJziEg7yc1Ny5Yt1etsfHx8kJOTo37vzh0x+wGIiKi2jNxCjVtRtT2ahUNEDZN8W2rw4ME4ceIEunfvjqeffhpvvvkmfvnlF+zatQuDBw/WR41ERBZPbMYNs3CIGie5uVmzZg1KS0sBAAkJCSgtLcXOnTvRtWtX7pQiImoisRk3zMIhapzk5qZTp07qf27ZsiUSExN1WhARkTUaGOABH3cn5BdV1LvuRoaanVXMwiFqXLNC/EpLS1FcXKzxLyIiks7WRob4iEAAdcP+tGXhpOfcxd5zN5Cec5cLjYkeIfnKTW5uLmJiYpCWloaKij/v/QqCAJlMhurqap0WSERkLUYH+WDj5H51cm6YhUMkjeTmZvLkyRAEAUlJSfD29oZM1rzUzA0bNuCDDz5Afn4+evfujY8//hgDBw7UOv7+/ftYuHAhdu3ahcLCQnTo0AHr1q3D008/3aw6iIhMweggH4QGypmFQ9QMkpubn3/+GWfPnsXjjz/e7B/fuXMnYmNjkZiYiEGDBmHdunUIDw/H5cuX4eXlVWd8VVUVQkND4eXlha+//hp+fn64du0aWrVq1exaiIhMhSoLp7bGsnBkqMnCCQ2U83ENZNUkNzd/+ctf8Pvvv+ukuVmzZg2mT5+O6OhoAEBiYiK+/fZbJCUlYcGCBXXGJyUlobCwECdPnoS9vT0AoGPHjg3+RmVlJSorK9WvVeuCFAoFFApFs8/B1KnO0RrOVRc4X+JxrsTT1Vxl5BaisPQBHG21jyksfYBT2bfMduEx/67Es7a5knKeMkEQJK1Cy8nJwYwZMzB58mQEBQWpmwyVXr16ifqeqqoqODs74+uvv8b48ePVx6OionD//n3s3bu3zmeefvppeHh4wNnZGXv37kXbtm0xadIkzJ8/H7a29f+7fenSpUhISKhzfNu2bXB2dhZVKxERERlXeXk5Jk2ahKKiIri5uTU4VvKVm9u3byMnJ0d9tQUAZDKZ5AXFd+7cQXV1Nby9vTWOe3t749KlS/V+5rfffsPhw4fx0ksv4cCBA8jOzsZrr70GhUKB+Pj4ej8TFxeH2NhY9evi4mL4+/sjLCys0cmxBAqFAikpKQgNDa3TiFJdnC/xOFfi6WquMnILMe2zHxsdlxT1F7O+csO/K3Gsba6k7MiW3NxMmzYNffv2xfbt23WyoFgKpVIJLy8vbNq0Cba2tujfvz9u3LiBDz74QGtz4+joCEdHxzrH7e3treKPQcXazre5OF/ica7Ea+5cDe7iBQ+XFo1m4Qzu4mX2a274dyWetcyVlHOU3Nxcu3YN+/btQ5cuXaR+VIOnpydsbW1RUFCgcbygoAByubzez/j4+MDe3l7jFlT37t2Rn5+PqqoqODg4NKsmIiJTpsrCmbk1EzJAo8HRloWjbdcVkSWTHOI3cuRI/Pzzz83+YQcHB/Tv3x+pqanqY0qlEqmpqQgODq73M0888QSys7OhVCrVx65cuQIfHx82NkRkFVRZOHJ3zccwyN2dNLaBJ2flYejKw4jcfAqzdpxD5OZTGLryMJKz8oxRNpFBSb5yExERgTlz5uCXX35Bz54961wmGjdunOjvio2NRVRUFAYMGICBAwdi3bp1KCsrU6/nmTp1Kvz8/LBixQoAwMyZM7F+/XrMmjUL//jHP/Drr79i+fLleOONN6SeBhGR2WIWDlHDJDc3M2bMAAAsW7aszntSE4pffPFF3L59G0uWLEF+fj769OmD5ORk9SLj69evw8bmz4tL/v7++P777zFnzhz06tULfn5+mDVrFubPny/1NIiIzBqzcIi0k9zcPHpLSBdiYmIQExNT73tpaWl1jgUHB+PUqVM6rYGIyFJk5BZqPJahNgFAXlEFMnIL622OiCyBpDU3CoUCdnZ2yMrK0lc9RETUDLdKtDc2TRlHZI4kNTf29vZo3749H45JRGSivFydGh8kYRyROZK8W2rhwoV4++23UVhYqI96iIioGQYGeMDH3QnaVtPIUPMEcXMN+SMSQ/Kam/Xr1yM7Oxu+vr7o0KEDWrZsqfF+ZmamzoojIiJpmIVD1ITm5tHnQBERkelRZeEk7L+gsbhY7u6E+IhAjSyc2mN8ao0hMkeSmxttjzkgIiLTwSwcsmaSmxuVs2fP4uLFiwCAHj16oG/fvjorioiImo9ZOGStJDc3t27dwsSJE5GWloZWrVoBAO7fv4+QkBDs2LEDbdu21XWNRESkQ8zCIUsnebfUP/7xD5SUlOD8+fMoLCxEYWEhsrKyUFxczMcgEBGZAWbhkKWTfOUmOTkZhw4dQvfu3dXHAgMDsWHDBoSFhem0OCIi0j1m4ZCla9LjF2o/LBOoCfjT9aMZiIhI91RZOPlFFfWuu5GhZmfVo1k43DJO5kRyczNy5EjMmjUL27dvh6+vLwDgxo0bmDNnDp566imdF0hERLolNQuHW8bJ3Ehec7N+/XoUFxejY8eO6Ny5Mzp37oyAgAAUFxfj448/1keNRESkY6osHLm75q0nubuTxjZw1Zbx2guQVVvGk7PyDFYzkViSr9z4+/sjMzMThw4dwqVLlwAA3bt3x6hRo3ReHBER6U9jWTjcMk7mqkk5NzKZDKGhoQgNDdV1PUREZEDasnAAbhkn89Wk5iY1NRWpqam4detWnUXESUlJOimMiIiMi1vGyVxJbm4SEhKwbNkyDBgwAD4+PpDJeCmSiMgSccs4mSvJzU1iYiK2bNmCKVOm6KMeIiIyEU3ZMk5kCiTvlqqqqsKQIUP0UQsREZkQ1ZZx4M8t4ir1bRmvVgpIz7mLveduID3nLqqV9bVERPon+crNq6++im3btmHx4sX6qIeIiEyIast47Zwbea2cG2bhkCmR3NxUVFRg06ZNOHToEHr16lUnrXjNmjU6K46IiIyvsS3jqiyc2tdpVFk4j+bmEBmC5Obmf//7H/r06QMAyMrK0niPi4uJiCyTti3jzMIhUyS5uTly5Ig+6iAiIjPELBwyRZIXFBMREakwC4dMkajmZsaMGfjjjz9EfeHOnTvx5ZdfNqsoIiIyD8zCIVMk6rZU27Zt0aNHDzzxxBOIiIjAgAED4OvrCycnJ9y7dw8XLlzAiRMnsGPHDvj6+mLTpk36rpuIiEwAs3DIFIlqbt555x3ExMTg008/xSeffIILFy5ovO/q6opRo0Zh06ZNGD16tF4KJSIi06PKwpm5NRMyQKPB0ZaFo23XFZGuiF5Q7O3tjYULF2LhwoW4d+8erl+/jgcPHsDT0xOdO3fmTikiIivFLBwyNU16cGbr1q3RunVrXddCRERmilk4ZEqa1NwQERHVpossHCJd4FZwIiLSKylZOES6wOaGiIj0ilk4ZGhsboiISK+YhUOG1qTm5uHDhzh06BD+9a9/oaSkBABw8+ZNlJaW6rQ4IiIyf6osHG17amWo2TXFLBzSFckLiq9du4bRo0fj+vXrqKysRGhoKFxdXbFy5UpUVlYiMTFRH3USEZGZkpKFo6yueZ2RW4g75Q+ZhUNNIvnKzaxZszBgwADcu3cPLVq0UB9/7rnnkJqaqtPiiIjIMqiycOTumree5O5OGtvAD10sAABM++xHzNpxDpGbT2HoysNIzsozeM1kviQ3N8ePH8eiRYvg4OCgcbxjx464ceNGk4rYsGEDOnbsCCcnJwwaNAgZGRmiPrdjxw7IZDKMHz++Sb9LRESGMzrIByfmj8T26YPx4cQ+2D59ME7MH6kR8jdn57k6n1Nl4bDBIbEkNzdKpRLV1dV1jv/xxx9wdXWVXMDOnTsRGxuL+Ph4ZGZmonfv3ggPD8etW7ca/NzVq1cxd+5cPPnkk5J/k4iIjEOVhfNsHz8Ed26j8ViGhrJwgJosnGplfSOINElubsLCwrBu3Tr1a5lMhtLSUsTHx+Ppp5+WXMCaNWswffp0REdHIzAwEImJiXB2dkZSUpLWz1RXV+Oll15CQkICOnXqJPk3iYjItDALh3RJ8oLi1atXIzw8HIGBgaioqMCkSZPw66+/wtPTE9u3b5f0XVVVVTh79izi4uLUx2xsbDBq1Cikp6dr/dyyZcvg5eWFV155BcePH2/wNyorK1FZWal+XVxcDABQKBRQKBSS6jVHqnO0hnPVBc6XeJwr8ThXjbtVVAZHWwGONjVXZlT/t75xCoWbIUszWdb2dyXlPGWCIEi+xvfw4UPs2LED//vf/1BaWop+/frhpZde0lhgLMbNmzfh5+eHkydPIjg4WH183rx5OHr0KE6fPl3nMydOnMDEiRNx7tw5eHp64uWXX8b9+/exZ8+een9j6dKlSEhIqHN827ZtcHZ2llQvERERGUd5eTkmTZqEoqIiuLk13OA26dlSdnZ2mDx5cpOKa46SkhJMmTIFmzdvhqenp6jPxMXFITY2Vv26uLgY/v7+CAsLa3RyLIFCoUBKSgpCQ0Nhb29v7HJMHudLPM6VeJyrxlUrBYSvO4b7pQ+wbIASi8/YoFL55/ZvGQBvNyd8P3sYt4X//6zt70p150UMyc3N559/3uD7U6dOFf1dnp6esLW1RUFBgcbxgoICyOV1H6CWk5ODq1evIiIiQn1MqVQCqGm4Ll++jM6dO2t8xtHREY6OjnW+y97e3ir+GFSs7Xybi/MlHudKPM6VdvYA4sb2wOztZwEAlUoZKqtrmhhVKxM3tgecHP/cqVutFLQ+hdyaWMvflZRzlNzczJo1S+O1QqFAeXk5HBwc4OzsLKm5cXBwQP/+/ZGamqrezq1UKpGamoqYmJg647t164ZffvlF49iiRYtQUlKCDz/8EP7+/lJPh4iITMToIB+sfbEPqnLPahyXuzshPiJQvWUcqNk2nrD/gsYiZJ96xpF1ktzc3Lt3r86xX3/9FTNnzsRbb70luYDY2FhERUVhwIABGDhwINatW4eysjJER0cDqLkS5OfnhxUrVsDJyQlBQUEan2/VqhUA1DlORETmZ1R3bxzIBZKi/qI1oTg5Kw8zt2bW2TauysN5NBSQrFOT1tzU1rVrV7z//vuYPHkyLl26JOmzL774Im7fvo0lS5YgPz8fffr0QXJyMry9vQEA169fh40Nn+9JRGRNBgZ41HsborE8HBlq8nBCA+VWeYuKauikuQFq1rzcvHmzSZ+NiYmp9zYUAKSlpTX42S1btjTpN4mIyPxIycMJ7tzGcIWRSZHc3Ozbt0/jtSAIyMvLw/r16/HEE0/orDAiIqLabpVob2yaMo4sk+TmpvZznGQyGdq2bYuRI0di9erVuqqLiIioDi9Xp8YHSRhHlklyc6Paek1ERGRoAwM84OPuhPyiinrX3chQs7tqYICHoUsjE8KVukREZDZsbWSIjwgE8Gf+jYrqdXxEoMYDOdNz7mLvuRtIz7nLB29aCVFXbh5N+G3MmjVrmlwMERFRY0YH+WDj5H51cm5q5+EwC8d6iWpufvrpJ1FfJpNx2x0REenf6CAfhAbKtSYUMwvHuolqbo4cOaLvOoiIiCSxtZHVu92bWTjENTdERGRRpGThkGVqUojfmTNn8NVXX+H69euoqqrSeG/Xrl06KYyIiKgpmIVDkq/c7NixA0OGDMHFixexe/duKBQKnD9/HocPH4a7u7s+aiQiIhKNWTgkublZvnw51q5di/3798PBwQEffvghLl26hAkTJqB9+/b6qJGIiEg0VRaOttU0MtTsmlJl4XC7uOWRfFsqJycHY8eOBQA4ODigrKwMMpkMc+bMwciRI5GQkKDzIomIiMRSZeHM3JoJGaCxsLh2Fg63i1smyVduWrdujZKSEgCAn58fsrKyAAD3799HeXm5bqsjIiJqAlUWjtxd89aT3N1JvQ1ctV289uJj1Xbx5Kw8Q5ZMOiT5ys2wYcOQkpKCnj174oUXXsCsWbNw+PBhpKSk4KmnntJHjURERJI1lIXD7eKWTXRzk5WVhaCgIKxfvx4VFTVd7sKFC2Fvb4+TJ0/i+eefx6JFi/RWKBERkVTasnCkbBev7/Nk2kQ3N7169cJf/vIXvPrqq5g4cSIAwMbGBgsWLNBbcURERPrA7eKWTfSam6NHj6JHjx5488034ePjg6ioKBw/flyftREREekFt4tbNtHNzZNPPomkpCTk5eXh448/xtWrVzF8+HA89thjWLlyJfLz8/VZJxERkc5I3S5O5kXybqmWLVsiOjoaR48exZUrV/DCCy9gw4YNaN++PcaNG6ePGomIiHRKtV0cQJ0Gp/Z2cYBZOOamSY9fUOnSpQvefvttdOjQAXFxcfj22291VRcREZFeqbaL1865kdfKuWEWjvlpcnNz7NgxJCUl4ZtvvoGNjQ0mTJiAV155RZe1ERER6VVD28UBqLNwal+nUWXhqDJzyLRIam5u3ryJLVu2YMuWLcjOzsaQIUPw0UcfYcKECWjZsqW+aiQiItIbbdvFmYVjvkQ3N2PGjMGhQ4fg6emJqVOnYtq0aXj88cf1WRsREZHRMAvHfIlubuzt7fH111/jmWeega2trT5rIiIiMjpm4Zgv0c3Nvn379FkHERGRSWEWjvmSvBWciIjIGjALx3yxuSEiIqoHs3DMV7NyboiIiCwZs3DME5sbIiKiBjALx/ywuSEiImoEs3DMC9fcEBERNZGULBwyHDY3RERETcQsHNPE5oaIiKiJmIVjmtjcEBERNRGzcEwTmxsiIqImkpqFAzAPxxC4W4qIiKgZxGbhAMzDMRQ2N0RERM3UWBYOwDwcQzKJ21IbNmxAx44d4eTkhEGDBiEjI0Pr2M2bN+PJJ59E69at0bp1a4waNarB8URERIagysJ5to8fgju3qXMrqqE8HKAmD4e3qHTD6M3Nzp07ERsbi/j4eGRmZqJ3794IDw/HrVu36h2flpaGyMhIHDlyBOnp6fD390dYWBhu3Lhh4MqJiIjEYR6OYRn9ttSaNWswffp0REdHAwASExPx7bffIikpCQsWLKgz/ssvv9R4/emnn+Kbb75Bamoqpk6dWmd8ZWUlKisr1a+Li4sBAAqFAgqFQpenYpJU52gN56oLnC/xOFfica7Es9S5ulVUBkfbxq/K3Coqg0LhJuo7LXWutJFynjJBEIx2DayqqgrOzs74+uuvMX78ePXxqKgo3L9/H3v37m30O0pKSuDl5YX//ve/eOaZZ+q8v3TpUiQkJNQ5vm3bNjg7OzerfiIiIjKM8vJyTJo0CUVFRXBza7gBNOqVmzt37qC6uhre3t4ax729vXHp0iVR3zF//nz4+vpi1KhR9b4fFxeH2NhY9evi4mL1razGJscSKBQKpKSkIDQ0FPb29sYux+RxvsTjXInHuRLPUueqWikgfN0xFBRX1LvuRgbA280J388eJvoZVJY6V9qo7ryIYfTbUs3x/vvvY8eOHUhLS4OTU/3pj46OjnB0dKxz3N7e3ir+GFSs7Xybi/MlHudKPM6VeJY2V/YA4sb2wMytmQCg0eCoWpm4sT3g5OgAoKYZamjnlcZ3W9hcaSPlHI3a3Hh6esLW1hYFBQUaxwsKCiCXyxv87D//+U+8//77OHToEHr16qXPMomIiJpNbB4Os3Caz6jNjYODA/r374/U1FT1mhulUonU1FTExMRo/dyqVavw3nvv4fvvv8eAAQMMVC0REVHzNJaHwywc3TD6banY2FhERUVhwIABGDhwINatW4eysjL17qmpU6fCz88PK1asAACsXLkSS5YswbZt29CxY0fk5+cDAFxcXODi4mK08yAiIhJDlYdTW2NZODLUZOGEBspFr8uxVkZvbl588UXcvn0bS5YsQX5+Pvr06YPk5GT1IuPr16/DxubPOJ6NGzeiqqoKf/vb3zS+Jz4+HkuXLjVk6URERDojJQunvuaI/mT05gYAYmJitN6GSktL03h99epV/RdERERkYLdKtDc2TRlnzYyeUExERESAl2v9u36bOs6asbkhIiIyAQMDPODj7gRtq2lkqNk1NTDAw5BlmSU2N0RERCbA1kaG+IhAAKjT4Khex0cEqhcTqx6yeeCXPKTn3OVDNx/B5oaIiMhEqLJw5O6at57k7k4a28CTs/IQvu4YAGDeN/9D5OZTGLryMJKz8gxesykyiQXFREREVENsFo5DrQdxMgvnT2xuiIiITAyzcJqHt6WIiIjMhJQsHGvG5oaIiMhMMAtHHDY3REREZoJZOOJwzQ0REZGZUGXh5Gu5NSVDzc4qVRZOtVLQujDZkrG5ISIiMhOqLJyZWzMbzcJJzspDwv4LGmt0fNydEB8RaPG7qXhbioiIyIyosnC83bRn4ai2i9defKzaLm7peTi8ckNERGRmRgf5YETXNvg++Tuser4XvNxbqm85cbs4r9wQERGZJVVj8nRPHwR3bqN+ze3ibG6IiIgsCreLs7khIiKyKNwuzuaGiIjIoqi2i2tbTSNDza4p1XZxS8TmhoiIyIKotosDaHS7OFCThZOecxd7z91Aes5dVCvrW4psXrhbioiIyMKotovXzrmR18q5sdQsHDY3REREFmh0kA9CA+VaE4pVWTi1r9OosnBUmTnmiM0NERGRhbK1kSG4c5s6xy09C4drboiIiKyMpWfhsLkhIiKyMpaehcPmhoiIyMpYehYOmxsiIiIrY+lZOGxuiIiIrIzULBzAvPJwuFuKiIjIConNwgHMLw+HzQ0REZGVaiwLBzDPPBw2N0RERFZMWxYOYL55OFxzQ0RERPUy1zwcNjdERERUL3PNw2FzQ0RERPUy1zwcNjdERERUL3PNw2FzQ0RERPWSmodjKlk43C1FREREWonNwzGlLBw2N0RERNSgxvJwTC0LxyRuS23YsAEdO3aEk5MTBg0ahIyMjAbH//e//0W3bt3g5OSEnj174sCBAwaqlIiIyDqp8nCe7eOH4M5tNG5FNZSFA9Rk4RjyFpXRm5udO3ciNjYW8fHxyMzMRO/evREeHo5bt27VO/7kyZOIjIzEK6+8gp9++gnjx4/H+PHjkZWVZeDKiYiIyBSzcIze3KxZswbTp09HdHQ0AgMDkZiYCGdnZyQlJdU7/sMPP8To0aPx1ltvoXv37njnnXfQr18/rF+/3sCVExERkSlm4Rh1zU1VVRXOnj2LuLg49TEbGxuMGjUK6enp9X4mPT0dsbGxGsfCw8OxZ8+eesdXVlaisrJS/bq4uBgAoFAooFAomnkGpk91jtZwrrrA+RKPcyUe50o8zpV4pjJXns52cLRt/JaTp7Nds2qV8lmjNjd37txBdXU1vL29NY57e3vj0qVL9X4mPz+/3vH5+fn1jl+xYgUSEhLqHD948CCcnZ2bWLn5SUlJMXYJZoXzJR7nSjzOlXicK/FMYa5WDWx8zJ2Lp3DgYtN/o7y8XPRYi98tFRcXp3Glp7i4GP7+/ggLC4Obm5sRKzMMhUKBlJQUhIaGwt7e3tjlmDzOl3icK/E4V+JxrsQzpbk6dLEAc3aeAwCNhcWqLJy1L/bBqO7etT8mierOixhGbW48PT1ha2uLgoICjeMFBQWQy+X1fkYul0sa7+joCEdHxzrH7e3tjf7HYEjWdr7NxfkSj3MlHudKPM6VeKYwV2N6tYPMxlavOTdSztGozY2DgwP69++P1NRUjB8/HgCgVCqRmpqKmJiYej8THByM1NRUzJ49W30sJSUFwcHBBqiYiIiI6tNYFo4hGf22VGxsLKKiojBgwAAMHDgQ69atQ1lZGaKjowEAU6dOhZ+fH1asWAEAmDVrFoYPH47Vq1dj7Nix2LFjB86cOYNNmzYZ8zSIiIisnioLx9iM3ty8+OKLuH37NpYsWYL8/Hz06dMHycnJ6kXD169fh43NnzvWhwwZgm3btmHRokV4++230bVrV+zZswdBQUHGOgUiIiIyIUZvbgAgJiZG622otLS0OsdeeOEFvPDCC3quioiIiMyR0UP8iIiIiHSJzQ0RERFZFDY3REREZFHY3BAREZFFYXNDREREFoXNDREREVkUNjdERERkUUwi58aQBKHmkV5SHsBlzhQKBcrLy1FcXGz0Z4+YA86XeJwr8ThX4nGuxLO2uVL997bqv8cbYnXNTUlJCQDA39/fyJUQERGRVCUlJXB3d29wjEwQ0wJZEKVSiZs3b8LV1RUymeEf5mVoxcXF8Pf3x++//w43Nzdjl2PyOF/ica7E41yJx7kSz9rmShAElJSUwNfXV+OxTPWxuis3NjY2aNeunbHLMDg3Nzer+OPXFc6XeJwr8ThX4nGuxLOmuWrsio0KFxQTERGRRWFzQ0RERBaFzY2Fc3R0RHx8PBwdHY1dilngfInHuRKPcyUe50o8zpV2VregmIiIiCwbr9wQERGRRWFzQ0RERBaFzQ0RERFZFDY3REREZFHY3FiJ999/HzKZDLNnzzZ2KSbpxo0bmDx5Mtq0aYMWLVqgZ8+eOHPmjLHLMjnV1dVYvHgxAgIC0KJFC3Tu3BnvvPOOqGe9WINjx44hIiICvr6+kMlk2LNnj8b7giBgyZIl8PHxQYsWLTBq1Cj8+uuvxinWyBqaK4VCgfnz56Nnz55o2bIlfH19MXXqVNy8edN4BRtRY39Xj5oxYwZkMhnWrVtnsPpMEZsbK/Djjz/iX//6F3r16mXsUkzSvXv38MQTT8De3h7fffcdLly4gNWrV6N169bGLs3krFy5Ehs3bsT69etx8eJFrFy5EqtWrcLHH39s7NJMQllZGXr37o0NGzbU+/6qVavw0UcfITExEadPn0bLli0RHh6OiooKA1dqfA3NVXl5OTIzM7F48WJkZmZi165duHz5MsaNG2eESo2vsb8rld27d+PUqVPw9fU1UGUmTCCLVlJSInTt2lVISUkRhg8fLsyaNcvYJZmc+fPnC0OHDjV2GWZh7NixwrRp0zSO/fWvfxVeeuklI1VkugAIu3fvVr9WKpWCXC4XPvjgA/Wx+/fvC46OjsL27duNUKHpqD1X9cnIyBAACNeuXTNMUSZK21z98ccfgp+fn5CVlSV06NBBWLt2rcFrMyW8cmPhXn/9dYwdOxajRo0ydikma9++fRgwYABeeOEFeHl5oW/fvti8ebOxyzJJQ4YMQWpqKq5cuQIA+Pnnn3HixAmMGTPGyJWZvtzcXOTn52v8e9Hd3R2DBg1Cenq6ESszD0VFRZDJZGjVqpWxSzE5SqUSU6ZMwVtvvYUePXoYuxyTYHUPzrQmO3bsQGZmJn788Udjl2LSfvvtN2zcuBGxsbF4++238eOPP+KNN96Ag4MDoqKijF2eSVmwYAGKi4vRrVs32Nraorq6Gu+99x5eeuklY5dm8vLz8wEA3t7eGse9vb3V71H9KioqMH/+fERGRlrNAyKlWLlyJezs7PDGG28YuxSTwebGQv3++++YNWsWUlJS4OTkZOxyTJpSqcSAAQOwfPlyAEDfvn2RlZWFxMRENje1fPXVV/jyyy+xbds29OjRA+fOncPs2bPh6+vLuSK9UCgUmDBhAgRBwMaNG41djsk5e/YsPvzwQ2RmZkImkxm7HJPB21IW6uzZs7h16xb69esHOzs72NnZ4ejRo/joo49gZ2eH6upqY5doMnx8fBAYGKhxrHv37rh+/bqRKjJdb731FhYsWICJEyeiZ8+emDJlCubMmYMVK1YYuzSTJ5fLAQAFBQUaxwsKCtTvkSZVY3Pt2jWkpKTwqk09jh8/jlu3bqF9+/bq/6y/du0a3nzzTXTs2NHY5RkNr9xYqKeeegq//PKLxrHo6Gh069YN8+fPh62trZEqMz1PPPEELl++rHHsypUr6NChg5EqMl3l5eWwsdH830S2trZQKpVGqsh8BAQEQC6XIzU1FX369AEAFBcX4/Tp05g5c6ZxizNBqsbm119/xZEjR9CmTRtjl2SSpkyZUmdNZXh4OKZMmYLo6GgjVWV8bG4slKurK4KCgjSOtWzZEm3atKlz3NrNmTMHQ4YMwfLlyzFhwgRkZGRg06ZN2LRpk7FLMzkRERF477330L59e/To0QM//fQT1qxZg2nTphm7NJNQWlqK7Oxs9evc3FycO3cOHh4eaN++PWbPno13330XXbt2RUBAABYvXgxfX1+MHz/eeEUbSUNz5ePjg7/97W/IzMzE//3f/6G6ulq9LsnDwwMODg7GKtsoGvu7qt342dvbQy6X4/HHHzd0qabD2Nu1yHC4FVy7/fv3C0FBQYKjo6PQrVs3YdOmTcYuySQVFxcLs2bNEtq3by84OTkJnTp1EhYuXChUVlYauzSTcOTIEQFAnX9FRUUJglCzHXzx4sWCt7e34OjoKDz11FPC5cuXjVu0kTQ0V7m5ufW+B0A4cuSIsUs3uMb+rmrjVnBBkAkCo0WJiIjIcnBBMREREVkUNjdERERkUdjcEBERkUVhc0NEREQWhc0NERERWRQ2N0RERGRR2NwQERGRRWFzQ0RERBaFzQ0R1ZGWlgaZTIb79+8363tefvlls360wIgRIzB79uxGxw0bNgzbtm3Tf0GPmDhxIlavXm3Q3yQyF2xuiCxYYmIiXF1d8fDhQ/Wx0tJS2NvbY8SIERpjVQ1NTk4OhgwZgry8PLi7u+u9xs2bN6N3795wcXFBq1at0LdvX7N6yvi+fftQUFCAiRMn6uT7PvvsMwwdOrTRcYsWLcJ7772HoqIinfwukSVhc0NkwUJCQlBaWoozZ86ojx0/fhxyuRynT59GRUWF+viRI0fQvn17dO7cGQ4ODpDL5ZDJZHqtLykpCbNnz8Ybb7yBc+fO4YcffsC8efNQWlqq19/VpY8++gjR0dF1npbeVHv37sW4ceMaHRcUFITOnTtj69atOvldIkvC5obIgj3++OPw8fFBWlqa+lhaWhqeffZZBAQE4NSpUxrHQ0JC1P/86G2pLVu2oFWrVvj+++/RvXt3uLi4YPTo0cjLy1N/vrq6GrGxsWjVqhXatGmDefPmobFH1+3btw8TJkzAK6+8gi5duqBHjx6IjIzEe++9px6jurWVkJCAtm3bws3NDTNmzEBVVZV6jFKpxIoVKxAQEIAWLVqgd+/e+PrrrzV+KysrC2PGjIGLiwu8vb0xZcoU3LlzR/1+WVkZpk6dChcXF/j4+Ii65XP79m0cPnwYERERGsdlMhn+9a9/4ZlnnoGzszO6d++O9PR0ZGdnY8SIEWjZsiWGDBmCnJwcjc9VVFTg4MGD6ubmk08+QdeuXeHk5ARvb2/87W9/0xgfERGBHTt2NFonkbVhc0Nk4UJCQnDkyBH16yNHjmDEiBEYPny4+viDBw9w+vRpdXNTn/Lycvzzn//EF198gWPHjuH69euYO3eu+v3Vq1djy5YtSEpKwokTJ1BYWIjdu3c3WJtcLsepU6dw7dq1Bselpqbi4sWLSEtLw/bt27Fr1y4kJCSo31+xYgU+//xzJCYm4vz585gzZw4mT56Mo0ePAgDu37+PkSNHom/fvjhz5gySk5NRUFCACRMmqL/jrbfewtGjR7F3714cPHgQaWlpyMzMbLCuEydOqJuX2t555x1MnToV586dQ7du3TBp0iT8/e9/R1xcHM6cOQNBEBATE1PnPP38/NCtWzecOXMGb7zxBpYtW4bLly8jOTkZw4YN0xg/cOBAZGRkoLKyssE6iayOcR9KTkT6tnnzZqFly5aCQqEQiouLBTs7O+HWrVvCtm3bhGHDhgmCIAipqakCAOHatWuCIAjCkSNHBADCvXv3BEEQhP/85z8CACE7O1v9vRs2bBC8vb3Vr318fIRVq1apXysUCqFdu3bCs88+q7W2mzdvCoMHDxYACI899pgQFRUl7Ny5U6iurlaPiYqKEjw8PISysjL1sY0bNwouLi5CdXW1UFFRITg7OwsnT57U+O5XXnlFiIyMFARBEN555x0hLCxM4/3ff/9dACBcvnxZKCkpERwcHISvvvpK/f7du3eFFi1aCLNmzdJa/9q1a4VOnTrVOQ5AWLRokfp1enq6AED497//rT62fft2wcnJSeNz06dPF+bOnSsIgiB88803gpubm1BcXKz193/++WcBgHD16lWtY4iskZ3x2ioiMoQRI0agrKwMP/74I+7du4fHHnsMbdu2xfDhwxEdHY2KigqkpaWhU6dOaN++vdbvcXZ2RufOndWvfXx8cOvWLQBAUVER8vLyMGjQIPX7dnZ2GDBgQIO3pnx8fJCeno6srCwcO3YMJ0+eRFRUFD799FMkJyer17H07t0bzs7O6s8FBwejtLQUv//+O0pLS1FeXo7Q0FCN766qqkLfvn0BAD///DOOHDkCFxeXOjXk5OTgwYMHqKqq0qjfw8MDjz/+uNbagZorXk5OTvW+16tXL/U/e3t7AwB69uypcayiogLFxcVwc3ODIAjYv38/vvrqKwBAaGgoOnTogE6dOmH06NEYPXo0nnvuOY15aNGiBYCaq2pE9Cc2N0QWrkuXLmjXrh2OHDmCe/fuYfjw4QAAX19f+Pv74+TJkzhy5AhGjhzZ4PfY29trvJbJZI2uqRErKCgIQUFBeO211zBjxgw8+eSTOHr0aIO3yVRUi4+//fZb+Pn5abzn6OioHhMREYGVK1fW+byPjw+ys7ObVLenpyfu3btX73uPzpdqYXZ9x5RKJQAgIyMDDx8+xJAhQwAArq6uyMzMRFpaGg4ePIglS5Zg6dKl+PHHH9GqVSsAQGFhIQCgbdu2TaqfyFJxzQ2RFQgJCUFaWhrS0tI0toAPGzYM3333HTIyMkQ1Etq4u7vDx8cHp0+fVh97+PAhzp49K/m7AgMDAdQs8FX5+eef8eDBA/XrU6dOwcXFBf7+/ggMDISjoyOuX7+OLl26aPzL398fANCvXz+cP38eHTt2rDOmZcuW6Ny5M+zt7TXqv3fvHq5cudJgrX379kV+fr7WBkeKvXv3YuzYsbC1tVUfs7Ozw6hRo7Bq1Sr873//w9WrV3H48GH1+1lZWWjXrh08PT2b/ftEloRXboisQEhICF5//XUoFAr1lRsAGD58OGJiYlBVVdWs5gYAZs2ahffffx9du3ZFt27dsGbNmkZDAGfOnAlfX1+MHDkS7dq1Q15eHt599120bdsWwcHB6nFVVVV45ZVXsGjRIly9ehXx8fGIiYmBjY0NXF1dMXfuXMyZMwdKpRJDhw5FUVERfvjhB7i5uSEqKgqvv/46Nm/ejMjISMybNw8eHh7Izs7Gjh078Omnn8LFxQWvvPIK3nrrLbRp0wZeXl5YuHBho9u7+/btC09PT/zwww945plnmjV/+/btw7Jly9Sv/+///g+//fYbhg0bhtatW+PAgQNQKpUat8qOHz+OsLCwZv0ukSVic0NkBUJCQvDgwQN069ZNvf4DqGluSkpK1FvGm+PNN99EXl4eoqKiYGNjg2nTpuG5555rMGRu1KhRSEpKwsaNG3H37l14enoiODgYqampaNOmjXrcU089ha5du2LYsGGorKxEZGQkli5dqn7/nXfeQdu2bbFixQr89ttvaNWqFfr164e3334bQM0tuB9++AHz589HWFgYKisr0aFDB4wePVrdwHzwwQfq21eurq548803Gw3Is7W1RXR0NL788stmNTc5OTnIzs5GeHi4+lirVq2wa9cuLF26FBUVFejatSu2b9+OHj16AKjZNr5nzx4kJyc3+XeJLJVM0NVNcyIiPXj55Zdx//597Nmzx9il1Cs/Px89evRAZmYmOnTo0KTvWLNmDQ4dOoQDBw6I/szGjRuxe/duHDx4sEm/SWTJuOaGiKgZ5HI5/v3vf+P69etN/o527dohLi5O0mfs7e3x8ccfN/k3iSwZr9wQkUkz9Ss3RGR62NwQERGRReFtKSIiIrIobG6IiIjIorC5ISIiIovC5oaIiIgsCpsbIiIisihsboiIiMiisLkhIiIii8LmhoiIiCzK/wfRRPOhs/f7fgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Assign value as a function of wind speed using the piecewise linear method and default parameters.\n", + "time_series.assign_value_piecewise_linear()\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.scatter(time_series.wind_speeds, time_series.values)\n", + "ax.grid()\n", + "ax.set_xlabel('Wind Speed (m/s)')\n", + "ax.set_ylabel('Value (normalized price/MWh)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## WindRose" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A second wind data object is the WindRose, which represents the data as:\n", + "\n", + " - An array of wind directions\n", + " - An array of wind speeds\n", + " - A table of turbulence intensities of size (n_wind_directions, n_wind_speeds) which represents the TI at each wind direction and wind speed.\n", + " - A table of frequencies of size (n_wind_directions, n_wind_speeds) which represents the frequency of occurance of each wind direction and wind speed.\n", + " - An (optional) table of values of size (n_wind_directions, n_wind_speeds) which represents the value of the wind condition." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.16666667, 0.16666667, 0.16666667],\n", + " [0.16666667, 0.16666667, 0.16666667]])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from floris import WindRose\n", + "\n", + "wind_directions = np.array([270, 280]) # 2 Wind Directions\n", + "wind_speeds = np.array([6.0, 7.0, 8.0]) # 3 Wind Speeds\n", + "\n", + "# Create a WindRose object, not indicating a frequency table indicates uniform frequency\n", + "wind_rose = WindRose(\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " ti_table=0.06 #As in Time Series, a float indicates a constant table\n", + ")\n", + "\n", + "wind_rose.freq_table" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wind_rose.ti_table\n", + "[[0.09683333 0.0905 0.08575 ]\n", + " [0.09683333 0.0905 0.08575 ]]\n", + "\n", + "wind_rose.value_table\n", + "[[1.2225 1.0875 0.9525]\n", + " [1.2225 1.0875 0.9525]]\n" + ] + } + ], + "source": [ + "# Several of the functions implemented for TimeSeries are likewise implemented for WindRose\n", + "\n", + "wind_rose.assign_ti_using_IEC_method()\n", + "\n", + "print(\"wind_rose.ti_table\")\n", + "print(wind_rose.ti_table)\n", + "\n", + "wind_rose.assign_value_piecewise_linear()\n", + "\n", + "print(\"\\nwind_rose.value_table\")\n", + "print(wind_rose.value_table)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## WindTIRose" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The WindTIRose is similar to the WindRose except that rather than specififying wind directions and wind speeds as arrays, with TI, frequency, adn value as 2D tables, the WindTIRose specificies wind directions, wind speeds, and turbulence intensities as arrays with the frequency and value tables now 3 dimensional, representing the frequency and value of each wind direction, wind speed, and turbulence intensity occurence." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "from floris import WindTIRose\n", + "\n", + "wind_directions = np.array([270, 280]) # 2 Wind Directions\n", + "wind_speeds = np.array([6.0, 7.0, 8.0]) # 3 Wind Speeds\n", + "turbulence_intensities = np.array([0.06, 0.07, 0.08]) # 3 Turbulence Intensities\n", + "\n", + "# The frequency table therefore is 2 x 3 x 3 and the sum over all entries = 1\n", + "freq_table = np.array([\n", + " [[2/18, 0, 1/18], [1/18, 1/18, 1/18], [1/18, 1/18, 1/18]],\n", + " [[1/18, 1/18, 1/18], [1/18, 1/18, 1/18], [1/18, 1/18, 1/18]]\n", + "])\n", + "\n", + "# The value table has the same dimensions as frequency\n", + "value_table = np.ones_like(freq_table)\n", + "\n", + "wind_ti_rose = WindTIRose(\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " turbulence_intensities=turbulence_intensities,\n", + " freq_table=freq_table,\n", + " value_table=value_table\n", + ")\n", + "\n", + "# Demonstrate setting value again\n", + "wind_ti_rose.assign_value_piecewise_linear()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conversions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Several methods for converting between WindData objects and resampling to different bin sizes are provided" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Converting from TimeSeries to WindRose/WindTiRose by binning\n", + "wind_rose = time_series.to_WindRose(wd_step=2, ws_step=1)\n", + "wind_ti_rose = time_series.to_WindTIRose(wd_step=2, ws_step=1, ti_step=0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Resampling WindRose/WindTiRose\n", + "wind_rose_resampled = wind_rose.resample_wind_rose(wd_step=5, ws_step=3)\n", + "wind_ti_rose_resampled = wind_ti_rose.resample_wind_rose(wd_step=5, ws_step=3, ti_step=0.01)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are several plotting methods available to help visualize wind data objects" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAG6CAYAAACLCQg1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUVfrHP3f6THrvpJFGSYGE0KRDKCpgQbGg6Ko/FdeKCra1LYINAZXVta+sWAAVFEUkiPQQikAa6b33ZJLMzP39kc1ISEjvzud55iHc3HvuuZOZ+73nnPf9voIoiiImTJgwYcLEEELS3x0wYcKECRMmehqTuJkwYcKEiSGHSdxMmDBhwsSQwyRuJkyYMGFiyGESNxMmTJgwMeQwiZsJEyZMmBhymMTNhAkTJkwMOUziZsKECRMmhhwmcTNhwoQJE0MOk7iZMGHChIkhh0ncTJjoZW6//XYEQeCVV15ptn3Hjh0IgtBPvTJhYmhjEjcTJvoAlUrF2rVrKS0t7e+umDDxl8AkbiZM9AGzZs3C2dmZNWvW9HdXTJj4S2ASNxMm+gCpVMo///lPNm7cSFZWVn93x4SJIY9J3EyY6CMWL15MaGgozz33XH93xYSJIY9J3EyY6EPWrl3LJ598QlxcXH93xYSJIY1J3EyY6EOmTJlCVFQUq1at6u+umDAxpJH1dwdMmPir8corrxAaGkpAQEB/d8WEiSGLaeRmwkQfM3r0aG6++WY2bNjQ310xYWLIYhI3Eyb6gRdeeAGDwdDf3TBhYsgiiKIo9ncnTJgwYcKEiZ7ENHIzYcKECRNDDpO4mTBhwoSJIYdJ3EyYMGHCxJDDJG4mTJgwYWLIYRI3EyZMmDAx5DCJmwkTJkyYGHKYxM2ECRMmTAw5TOJmwoQJEyaGHCZxM2HChAkTQw6TuJkwYcKEiSGHSdxMmDBhwsSQwyRuJkyYMGFiyGESNxMmTJgwMeQwFSs1YaIL1NXVUVBQQEVFBZWVlVRVVVFZWdns56qqKqqqqtDpdBgMBgwGAz///DMpKSncc889SKVSJBIJEokEMzMzzM3NsbCwMP576c8ODg6Ym5v396WbMDEoMImbCRMXIYoiBQUFXLhwgZycHHJycsjNzW32ysnJoaSkBEEQjOLTJE5mZmZoNBo0Gg1qtRqVSoVUKkUQBCQSCdbW1jg7OyOKIjqdDlEU0ev1lJSUUFNTY3xVV1dTXV1tFMjKykr0ej0WFha4uLi0eLm6uuLi4oKPjw8eHh5IpdL+fitNmOhXTPXcTPwlqaioICkpicTExBaviooK3NzccHZ2xsHBAXt7e2xsbLC2tsbKygpLS0vMzMyMwgUglUqRSqXIZLIWL0EQEAQBgMLCQurq6nBzc0MQBERRNAqcTqdr8dLr9UCj6NbV1VFdXU1FRQXl5eWUl5dTWlpKcXExhYWF5Ofnk5mZiVQqZfjw4fj7+7d4OTg4GPtiwsRQxiRuJoY0oiiSlZVFbGwsJ06c4MSJE5w8eZLc3FxsbW0ZPnw4w4YNM4qZvb091tbWyOVylEolKpUKlUrV7OeL/y+Xy43Tix2hoaGBH374gfnz5yOXyzvU/yahq6uro66uDq1W2+x18TadTkdFRQXFxcXk5+eTk5NDeno6qampZGdnY21tTXBwMGPHjmXMmDGMHTsWf39/00jPxJDDNC1pYkiRlZXF8ePHjUJ24sQJiouLCQwMZMSIEYwePZr58+djZ2eHWq1GqVRibm5unFJs+lmj0QyIG74gCMjlcuRyOWq1us19RVGktrbWOJVZVVVlnNqsqamhvr6e0tJScnJySElJYcOGDfzxxx9IpVLCwsIYO3as8RUYGNhhwe4N3n77bV599VXy8vIICQlh48aNjBs37rL7f/XVVzzzzDOkpaXh5+fH2rVrmT9/frN94uLieOKJJ9i/fz86nY4RI0bwzTffMGzYsN6+HBP9gEncTAxqMjIyiI6ONr4yMjKMQhYaGspVV12Fo6MjKpUKKyurFlOLHRk9DRYEQTCu9zk6Ojb7nV6vNwpdeXk5ZWVllJWVUVtbS0lJCVlZWaSkpLBp0yb++OMPNBoNU6dOZdq0aUybNo2RI0f2mdht3bqVRx55hM2bNxMZGcn69euJiooiISGhxXUBHDp0iKVLl7JmzRquvPJKtmzZwqJFi4iNjWXUqFEAJCcnM3nyZO68806ef/55LC0tOXfuHCqVqk+uyUTfY5qWNDGoyMzMbCZm6enphIWFERYWRlBQEG5ubmg0GqOIWVtbY21tjbm5+YBYa+rstGRvIooiWq3WKHRNoldTU0NeXh5JSUmcPn2ao0ePthC7ESNG9JrYRUZGEhERwaZNmwAwGAx4eHjwwAMP8OSTT7bY/4YbbqC6upqdO3cat40fP57Q0FA2b94MwI033ohcLuezzz7rlT6bGHiYRm4mBjQ6nY6DBw/y3Xff8f3335OSkkJoaChjxoxhxYoVuLm5YW5ujr29PXZ2dtjb22NpaTkghGygIwgCarUatVqNi4sL8OfUZlFREcXFxRQVFVFRUUF+fj6JiYl88803PPHEE5iZmbFgwQKuvvpqZs+e3WMpCvX19Zw4cYJVq1YZt0kkEmbNmsXhw4dbPebw4cM88sgjzbZFRUWxY8cOoFEcd+3axeOPP05UVBQnT57E29ubVatWcdVVV9HQ0NAjff+r0LTOPNAxiZuJAUd5eTk//fQT3333HT/88ANyuZxp06bxt7/9DS8vL5OY9SJNU5vDhg0zrkXV1NRQVFRkFLyKigpycnI4ffo0TzzxBEuXLmXGjBlcffXVXHnllbi7u3f5/EVFRej1epycnJptd3JyIj4+vtVj8vLyWt0/Ly8PgIKCAqqqqnjllVd46aWXWLt2Lbt372bnzp0MGzas3bVMEy1pSmkZyN87k7iZGBBkZ2ezbds2vvvuO/bv34+fnx9XXHEFL7/8Mi4uLtja2uLs7IyTk5NJzPqY1sSuoKCAiIgIFi5cSFFREefOneOzzz5jxYoVhISEcNVVV3HNNdcQHBzcz71vHLkBLFy4kIcffhhoFL/k5GTUajVeXl6mz1MHEUXR+PcHjCP+gYhJ3Ez0G+Xl5XzzzTd8/vnn/Pbbb4wfP56JEydy6623Ymtri4ODg1HQ+mLhv6qqyuQA0gE0Gg1eXl54eXmh0+koLCwkNDSUmTNnUl5eTlJSEseOHePVV1/Fx8eHW265hZtuugkPD49227a3t0cqlZKfn99se35+Ps7Ozq0e4+zs3Ob+9vb2yGQyRowYATQG15SVleHk5IRerzeN3DpJ0/tVUFCAo6PjgJ2iNImbiT6lvr6eH3/8kf/85z/s3LmTwMBAZs+ezZ133mkcnTUlT/fWl6agoICYmBjOnz9PQkIC586dIz4untKyUjZu3MiKFSt65bxDEZlMZnRJEUWR0tJSgoODmThxIsuWLSM+Pp6ff/6Zp59+mkmTJnHLLbdw3XXXYW1t3Wp7CoWCsWPHsnfvXhYtWgQ0jrz27t172b/LhAkT2Lt3Lw899JBx2549e5gwYYKxzYiICBISEgCMa2wGgwGFQtEzb8RfDI1GAzS+lwNV3EzRkiZ6HVEUOXToEJ999hlfffUVFhYWzJs3j4iICBwdHXF1dcXd3b1X3DPKyso4ceIEx48f59ixYxw9coyc3GwA5FI55oIlSp0GDRYUCTlcMX9Ss6i7nmYgRUv2JqIoUlFRQVZWFllZWZSUlHDq1Cl++eUXzp49y4IFC7jlllu48sorWwjM1q1bue222/jXv/7FuHHjWL9+PV9++SXx8fE4OTmxbNky3NzcWLNmDdCYCjB16lReeeUVFixYwBdffME///nPZqkA27dv54YbbuDtt99mypQplJeXI5FICAgIwMLCos/fn8GOVqslNTUVb2/vAZtOYRI3E71GaWkpn332GZs3byYvL4/58+czceJE3NzccHJywsPDAycnJ2SynplAqK+vJyYmhmPHjnH8+HEOHzpCaloKAAqpAgtsMNdbYYkNFtigxqyZmCaIp1D4iFxIvtAj/WmNv4q4XYwoihQVFZGVlUVOTg6FhYUcP36cH374gZqaGu644w7uvvtuvL29jcds2rTJmMQdGhrKhg0biIyMBGDatGl4eXnx8ccfG/f/6quvePrpp41J3OvWrWuRxP3hhx+yZs0aJBIJ7777LqNGjWo1b85E+5jEzcRfkpiYGN5++222bt1qdAQZOXIkjo6OeHh44OrqilKp7PZ59Ho9sbGx/Prrr/zyyy/8/vvvaLVaZBIZlhIbzHSNQmaJDRos2h0VZooXSJadpba2tscE91L+iuJ2MXq93uiBmZeXR2pqKnv27GHPnj3MmDGD++67jwULFvTqVFdbN+aMjAyKiop67dyXYm9vPygdUgaDuJnW3Ez0CHV1dXz99dds3LiRs2fPsnjxYjZs2ICrqyseHh54enpiaWnZ7fNkZGTw008/8eOPP/LLnl+orKpELpVjLdrjbvDDFgfMDdZIRAl0coZTgzk6nY6MjAx8fHy63VcTLZFKpbi6uuLq6opWqyUjI4ORI0dy0003cfToUe677z7kcjn33XefcR22r8jIyCAoKICaGm2fnVOjUREXl9BpgesNe7KhhkncTHSL0tJS3n77bTZu3IilpSXXXHMNjzzyCE5OTnh5eeHm5tatUZDBYODQoUNs27aNXd/vIvFCIgICNlJ7HPQeBOCIpd4WidB5MbsUDY1rL0lJSSZx6wNUKhX+/v74+flRUFDA8OHDmT59OvHx8ezYsYPnnnuOZcuWsXLlSnx9fXu9P0VFRdTUaPl0kxNBfr0faBKXVM+yFfkUFRV1Stx6w55sKGISNxNdIjc3lzfffJPNmzcTEhLCk08+iY+PD+7u7nh7e3fridtgMHDw4EG++uorvtz6JfkF+WhkZljrHBnNeGxxRG5QdFvMLkWFBqkgJTExkaioqJ5t3MRlEQQBJycnnJycqK6uxt/fn5CQEHJycvjxxx8ZOXIkixcvZtWqVX2SNxfkp2BM8MCcagN44403uOuuu1i+fDkAmzdvZteuXXz44Yet2pO99dZbzJ07l5UrVwLw4osvsmfPHjZt2mS0JxuKmMTNRKdISUlh3bp1fPLJJ0ydOpW1a9fi6emJt7d3t+bf9Xp9M0ErKCxAIzPHTudMOEFY6ex6PdFWEATMZZYkJSX16nlMXB4zMzNGjhxJQEAAWVlZeHl5sXDhQvbs2cP48eOZMWMGq1atYtKkSf3d1X6hN+zJhiomcTPRIc6cOcMrr7zCN998w4IFC9i0aRNubm4MHz4cT0/PLgVHiKLI77//ztatW/ly65cUFhVeJGgj+kTQLkWhU5OYmNin5zTREplMhpeXF8OGDSMnJwcPDw/mz59PdHQ08+fPJyQkhFWrVjF37ty/lLtIb9iTDVVM4maiTeLi4njqqaf48ccfue6663j//fdxdXVl+PDheHh4dCmqLScnh08++YT333uf1LTUiwRtFFY62369WalFM+LjWr9JmOh7JBIJ7u7uuLm5UVBQgLu7OzNmzODw4cPcdttteHh48M9//pM5c+b8pUTORPuYxM1Eq2RmZvLcc8/x3//+l+uvv54PPvgAFxcX/Pz8cHV17VK5k9OnT/9PKHcjQcBBdGUMU7DR9XzydlfRYEFS1mkaGhr+kqH6A5WL1+WKi4vx9PRk8uTJHDlyhKVLlxIaGsorr7zSZsTgUKA37MmGKv1XatfEgKS4uJjHHnuMgIAASktL2bx5M7fffjvTp09n2rRpuLu7d7mO17p16/jph5/wNwQzyTCfkYzDVnAcMMIGjekAeoOe1NTU/u6KictgZ2fH+PHjmTVrFtdeey3vvvsu/v7+TJ8+neuuu85oszUUudierIkme7Imu7FLabInu5iL7cmGKqaRmwkAqqureeutt1i3bh1jxoxh/fr1eHl5ERgYiIeHR48I0Ny5c9myZQu2OCEXBqann4ZG4+SkpCT8/f37uTcm2sLa2poJEybg5+eHs7MzV1xxBT/88AMhISEsW7aM5557Djc3t063G5dU3wu97bnzPPLII9x2222Eh4cb7cmqq6uN0ZOX2pM9+OCDTJ06lddff91oTxYTE8N7773XY9cyEDGJ218cg8HAhx9+yDPPPIObmxsvvPACw4cPx9/fH29v7x51irjuuutYcf8KcipTGc7oHmu3J1GiRiaRmSImBxH29vZMmTKF3NxcnJ2dmT17Ntu2bcPPz48HH3yQp556qkPVHuzt7dFoVCxbkd/uvj2FRqPC3t6+U8fccMMNFBYW8uyzzxrtyXbv3m0MGsnIyGg2uzJx4kS2bNnC008/zerVq/Hz82PHjh1DOscNTPZbf2liYmK4//77ycvL4//+7/8YNWoUw4cPZ/jw4b223vTggw/y/jv/ZoJubmPi9QDkuOxXbvrbDbzzzjs93vZf3X6rtzEYDGRmZhIfH09aWhofffQRWVlZvPHGG1x//fUIgmCy3+oBTPZbJgYkxcXFPPXUU3z66acsX76c6dOn4+vrS1BQUK9/UO+++242bNhAITk40fWKzb2JskE9pNdthjISiQRPT0/c3d1JTk7G1dWV2NhYHnjgAd577z02btzYzKD5Ui4uympicGMSt78QBoOBDz74gCeffJIxY8bwzjvv4O3tTXBwMDY2Nn3Sh5EjRzJh/ASSjqXiJA5McVNjTkK8KddtMCOVSvH398fDwwNnZ2cCAwP58ccfGTNmDE899RSLFy/u7y6a6GVM4vYX4fjx49x///0UFBTw5JNPMmLECEaOHImnp2efRyv+373/x21HbqOGKjTCwKt8rcGc+NxEtFrtgJ1yMdEx1Go1EREReHp6Ym9vz+TJk9m5cyeRkZHY2dnh5OQ0oKJ1TfQcA3PRw0SPUV1dbYyWioiI4PXXX2f27NnMmjULLy+vfvliX3/99VhaWJLDwAy312COKIqkpKT0d1dM9BCOjo5Mnz6dqVOncs8992Bubk5eXh5JSUnU1/dNdKSJvsUkbkOYAwcOEBISwpEjR3jnnXdYsmQJM2bMIDQ0tEfqqXUVtVrNbbffRr4sE4No6Ld+XI6L0wFMDB0kEgl+fn5MmDABtVqNs7MzUqmUc+fOUVhYiCm2bmhhErchSE1NDQ899BBz585l8eLFrF69msmTJzNlypQ+W1trj7vuuotaXQ1F5PZ3V1qgQIVcqjCJ2xBFpVKhVCoxMzPD3t4eFxcXcnJyTKO4IYZpzW2I8fvvv7N8+XJsbW3ZtGkTvr6+hIWFYWFh0d9da8bo0aOJHBdJckwqjmLnE217E0EQMJNYXFbcRFFEp9Oh1WqNr7q6umY/GwwGDAYDoigaXwaDgerqagCio6ORSCRIJBIEQTC+JBIJCoUClUrV7KVUKlGpVCgUikG7RtTTBTZvv/12Pvnkk2bHREVFsXv37g71Ry6Xo1AokMlkKBQKSktLOXfuHB4eHtjZ9b1pt4mexSRuQ4Samhqeeuop3nvvPe677z4mT57MyJEj8fX1HbBf0v+79/9Yvnw5tVSjFsz6uztGlGYKRnsFIwgCSUlJrYqYXq9HIpG0EB9LS0uUSiVSqdQoVheLV01NDadPn2bUqFFIpdJmAtgkiPX19Wi1WioqKigsLDSeW6fTIQhCs/Nd+rK0tESlUg24v3lvFdicO3cuH330kfH/nZ1ul0gkmJmZoVAokEqlmJmZkZ2dTWlpKZ6enigUA9NJx0T7mJK4hwCnTp3ixhtvxNLSknvvvXfAjtYupaamBmcnZ+yq3Bgu9I9bgtJcgaOvLQ6+do3/+thi5WxBSUEpRWWFTJ8+vYWQNP1fLpd3WkS6k8TdNFq8eJR4sejW1tZSVVWFUqnEysoKa2tr479qtbpfBS8yMpKIiAg2bdoENKaleHh48MADD7RaYPOGG26gurqanTt3GreNHz+e0NBQY4HN22+/nbKysk7XJbtcArLBYKC2tpa6ujpKS0upqKjA09OzW4V3hyqmJG4TvYooirz77rusXLmSO++8k5kzZw740drFaDQabrv9Nj7Y/CE+uhG97liislDg4PM/EfO1xdHXDksnc8rzKilMKaEwuYRzP1+gMKWElIoEzhNDdXU1Go2mV/vVUWQyGebm5m1aSel0OioqKigrK6OsrIy8vDwqKyuRy+XNxK4vBa83C2xGR0fj6OiIjY0NM2bM4KWXXsLOzq5L/ZRIJBQXF5OXl0dtbS1arZa4uDisrKxwcnLqsmF4WwxWh5LBgEnc/kfT/P2aNWuaPUnu2LGDxYsXU1lZiY2NDZ999hk33nij8fc33ngjW7duJTU1FS8vL+N2Ly8vbr31Vl588cVe6W9ZWRl/+9vfOHz4MGvXriUoKIiIiAgsLS175Xy9xd13382mTZsoIhdHem7tTZAIuAQ54BLogKOvHQ6+tlg6NgpZQXIJBReKOftTEoUpJdRVtQwiaIqYvHDhAsHBwT3Wr95GJpNha2vbbLRxseCVl5eTkJBgFLwmsbOxscHBwQGZrOdvCb1VYHPu3Llcc801eHt7k5yczOrVq5k3bx6HDx/ukidqRkYGgUGB1NbUdvrYrqLWqImPi28mcKmpqRQXF+Pm5oaLi4txe2lpKU888QTvv/9+szY8PT35+uuvjf8PCQlpNivQ3trlUMUkbhehUqlYu3Yt99xzT4uoQnNzc8LDw4mOjm4mbtHR0Xh4eBAdHc3tt98ONH4409PTmTFjRq/089ixY9xwww34+vry+uuvExAQwOjRo3vlxtTbjB49moiIcaSdSOt2YIlCI2dYmCveEe54jnHFoDeQfTafvMQi/vgxsVHIqjsWDaehcUo3KSlpUIlba7QmeHq9nvLycsrLyykrK+P8+fPU1NRgb2+Ps7Mzzs7OqNXqfux1+1z8PRw9ejTBwcH4+voSHR3NzJkzO91eUVERtTW1XP3PcOx9en9Kvyilku9Wx1BUVNRi9CYIAnl5ea0+cIwcOZIdO3Zw4cIFAgMDUSqVzcyXL96/o2uXQ5HBdzfsRWbNmsWFCxdYs2YN69ata/H76dOns23bNuP/4+Li0Gq1PPjgg83ELTo6GqVS2eP1kkRR5M033+SZZ57h3nvvZerUqYSGhuLh4dGj5+lr7r33/7jzjju7FFhi4WiGd4Q7XuHuuI10pCyngtTjWXz/0j7yk4qgiyvKchQopMohmw4glUpbCF5VVRV5eXlkZ2fzxx9/YGlpaRQ6KyurLk9h9lWBTR8fH+zt7blw4UKXxM3YXx8LnIOsu3x8T2BpaUldXR15eXm4uze3qZPJZDg5OVFWVoa7u3ubD7VvvfUWc+fOZeXKlQC8+OKL7Nmzh02bNhnXLocqpjy3i5BKpfzzn/9k48aNZGVltfj99OnTSUhIIDe3MTdr3759TJ48mRkzZhAdHW3cb9++fUyYMKFHF1pLS0u5+uqreeutt3jttddYsGAB06dPH/TCBrBkyZLGKLWOOJYI4ORnx/ibQ7jxzQXc8vZCvCPcSYvJ4j8rvuO/D+3iyOenyU/surDB/9IBhMunAwxFzM3NGT58OJMnT2bu3Ln4+vpSWVnJwYMH+fnnnzl9+jT5+fno9fpOtdtXBTazsrIoLi5uNpU3WBEEATc3N/Lz81vk3jXVGly4cCG33norGRkZl23n8OHDzJo1q9m2qKioy651DiVMI7dLWLx4MaGhoTz33HN88MEHzX43adIkFAoF0dHRLF26lOjoaKZOncrYsWMpKioyRg/t37+fO++8s8f6FBcXx9VXX42Pjw/r1q0jMDDQGEo+FDAzM2PZbcv4+L1PWg0skSmkuIe4/G+E5oZULiH9RA4xX58l42QO9TUNvdIvhU5NfPxfszqAQqHAw8MDDw8PDAYDRUVF5OXlcfr0aerr63F0dMTZ2RknJ6cOhd/3dIHNqqoqnn/+ea699lqcnZ1JTk7m8ccfZ/jw4URFRfXeG9OH2NjYoNFoyMnJMa7njxw5ko8//hh3d3diYmL497//TWRkJF9++aUxpeHi6caOrF0OVUzi1gpr165lxowZPPbYY822azQaIiIijOK2f/9+Vq5ciUwmY+LEiURHRyOKIhkZGUyfPr1H+vLDDz9w0003cdNNNzF37lzGjh3bperCA527776bd955p1lgiXOAPSNn+zF8kifVpbWkHc/i59d/Jze+AIO+9zNYNJiTlGCqDiCRSHB0dMTR0ZHRo0dTUVFBXl4eqampnDp1CgcHBzw9PXF2dr5sRGFPF9iUSqWcOXOGTz75hLKyMlxdXZkzZw4vvvhiv1rL9TTu7u4kJCQY36dJkyYRHh5uDAi69tprCQoK4ty5c9x+++2DIkq6rzCJWytMmTKFqKgoVq1aZVxHa2L69Ols3bqVc+fOUVtby5gxYwCYOnUq+/btw2AwoNFoiIyM7FYfRFHktdde4/nnn2f16tWEh4cTGRmJlZVVt9odqISEhBA+NpyipEJmT53JiNnDMbfTkLA/lW9W/URRWmmf90mDOanFcVRUVAy6KNTeQhAErKyssLKyIiAggNraWjIyMjh79ixnzpwx1kNrLV1hxYoVrFixotV2L57Wb+L666/n+uuvb3V/tVrNTz/91K1rGQxYWFhgZWVFdnZ2qykOjo6O+Pv7k56e3uoySFfWLocKJnG7DK+88gqhoaEEBAQ02z59+nReeukltmzZwuTJk41Tg1OmTOG9995DFEXj9GVX0Wq13HXXXezbt4/XX3+dESNGMG7cuCH1RHoxoihSXFzMysdXIggCBReKid1+juRDGejqO7e+05M0RUxeuHDB+BBjojlqtZqAgAD8/f0pLCwkLS2Nffv2YWtri6enJ66urr2SH/ZXws3NjfPnz7cqXlVVVSQnJ3Prrbe2emzT2uVDDz1k3Nbe2uVQwSRul2H06NHcfPPNbNiwodn2iRMnolQq2bhxI0899ZRx+7hx4ygoKODbb79tlqzaWXJycli8eDGiKLJu3TpGjBhBcHDwkLxB6PV6srKySE5ORqvV4ufnxw1LbkB3QYavMLK/u9esOoBJ3NpGEATj1KVWqyUzM5P4+HjOnj2Lt7c3np6eA9bJ4lKKUioH1Hk0Gg12dnbk5+ezfv167rrrLuzs7Dh9+jRPPPEEUqmU6667joaGBpYvX467uzuvvPIK0P7a5VDGJG5t8MILL7B169Zm21QqFePHj2f//v1MmzbNuF2pVDJ+/Hiio6O7vN526tQpFixYwMSJE1m6dCmhoaF4e3sPuXn02tpaYy6gUqnE19cXd3d3pFIps2bP4pO0T/HWBfW6Y0l7yAUFKqn6LxUx2ROoVCr8/PwYPnw4BQUFJCcnk5iYiJubGz4+PlhbW/d3F1vF3t4etUbNd6tj+uycao26WY7a5XB1daWkpISCggKWLl1KcXEx1tbWhISE8P7775OTk0NOTg5xcXHNSve0t3Y5lDF5Sw4QoqOjWbRoEcuXL2fWrFmMGzcOBweH/u5Wj1JSUkJKSgq5ubk4Ojoa85IuFu9Tp04RFhZGMBNxFFz7ra+iKFJPHackB1iwZB7//e9/e6Td7nhLDmYqKytJSUkhMzMTa2trfHx8cHFx6ZcHt7Z8ETMyMigqKupSu3q93uhNWVBQgKOjY7tWYIPVfsvkLWmiQ3z99dfcdtttrFy5kkmTJjFhwoQ2/QMHGxUVFZw/f56ioiI8PT2ZMWMGZmatJ2uHhoYyJmwMmafTcBT7RtwMooEqyqmghApKqRIqqKYSPQ1ggB9++LFP+jGUsbCwICQkhKCgINLT0zl79iwJCQmMGDECR0fHATM70RQQ01UMBgM1NTXU1NSQk5ODvb09bm5uA+b6/kqYxK2faTI+fv755xk7dizjx48f8LZHHaWmpob4+Hiys7Px8vIiLCysQ0Ex9953L3ffdTdaalAJPWtaLIoi1VRQQWnjSyilkjJEDAgImJk5YW7phb2ZAxqNA6UlyeTmHOvRPvyVUSgU+Pn54ePjQ1paGrGxsVhYWDBixIgh4b7fVEJHEATc3d3JyclBp9Ph6elpErg+xiRu/YQoivzjH/9g48aNrFu3juDgYCIjI4fEVFVdXR2JiYmkpaXh6urKzJkzO+Wsf+ONN/LQgw+RXZOKL90LLBFFkSrKKaWQEgooowgdjUnfGrU9ltaeOFlMwsLKHXNzF6TS5u+/waAnO+uwcQrGRM8glUrx9fVl2LBhXLhwgUOHDuHg4MCIESMGfKmm9hAEAY1GY3QZycvL48KFC/j4+AwZ44XBgEnc+gG9Xs99993Hrl27eO211xg1ahRjx47t1gdfFMV+fzLU6XQkJydz4cIF7OzsmDJlSpfy8szNzbl12a18+u//dCmwpF7UUkx+40vIp0GsQyJIsbTyxMNuOlZWnlhYuiKTtb9WoNE0rplER0ebxK0XkMvlBAUF4e3tTWJiItHR0bi7uxMYGDioZzAEQUCtViORSHBxcSE/P5/ExET8/PwGpcH5YMT0Lvcx9fX1LF26lHPnzvHKK68Y3cy7I0xlZWXcdNPNHD50iF/2/sLYsWN7sMftYzAYSEtLIzExEY1Gw/jx47tcU6uJu+++m82bN1NMHg60v/ZWK1aTTxYFQjYVlABgbu6Ci/14bGyHY2Xl2WJU1hHUmsZItuPHjxutokz0PCqVyujqHxcXx969e/Hy8sLf33/QVsNuqpouCALOzs4UFhYSHx8/qK9pMGEStz6krq6O6667jqysLP7xj38Yk8S7I2xxcXFcdeVVZKVnoUDFooWLOHnqZIfCi7uLKIpkZ2cTFxeHVColJCQEZ2fnHhlBhoWFERYaRtaZNBwuE1jSJGj5QhaVlCIRZNjZBxDkOBNbWz8Uyu5Pb8lkSmRyDefPn+92Wybax8zMjPDwcMrLyzl//jx79uwxrtEN1hGPUqlEEAQEQaC4uJiEhAQCAgJMAtfLDM5PyyBEq9VyzTXXUFBQwJNPPkl4eDi+vr7davO7777jpqU3Ia2XM1Y/HQkSYvL2ccOSG/h5z8+9Or+fn59PXFwc9fX1BAYG4uHh0ePTovfedy/33HMPWvHPwBKtWEMeGeQL2c0EzcNpLnb2AchkPe/iolHbk5aW1uPtmrg8VlZWTJgwgaKiIs6dO0dKSgoBAQF4enoOSkMDhUJh/H4IgkBCQgL+/v5D1nVoIGAStz6gtraWhQsXUlZWxuOPP054eDg+Pj5dbq/Jd/Lxxx/HSXAnSByLTGicchuhj2Bf9D6efvppo8N6T1JXV8eZM2coLCzE398fb2/vXhPRpsCSrNpkLERrskmjhPz/CVogw5znYmvXO4J2MRozBwoLW68YbaJ3sbe3Z8qUKeTm5hIXF0d6ejphYWGD0mNVLpc3S/FpGsGZBK53MIlbL6PValm8eDG5ubk89dRTREREdCswQa/X89BDD7Fp0ya8CMRXHNlsxGQrODJcHMUrr7xCREQE11xzTU9cBgDZ2dmcOXMGOzs7Zs6c2etfSgsLC6659ho+/3wLomjA0nIYgW7X4uA0utcF7WI0Gnvy82oxGAyDctQw2BEEAVdXV5ycnEhMTOTAgQP4+fnh5+c36P4eMpnMKHB6vd4kcL2ISdx6kbq6Oq699lqKi4t59tlnsbCwoKSkBC8vry5N4Wm1Wm6+6Wa279hOIGNwF1of/Q3DnwqhjFtvuZURsSMIDAzs9nWcOXOGoqIigoOD+7Tkzrx58/jPf/6Df+BC3NzH99l5L0atsUMUDSQmJnb7vTTRdaRSKUFBQbi4uBAbG0tubi5jxozp0YoN3XEo6Sj19fXU1dUBjdeUmJhoWoPrBUzi1kvU19dz/fXXk5eXxxNPPEF4eDguLi4cPHiQ2NhYxowZ0ymBKykp4eqrrubokWMEixNwaMOaShAEgsSxxDZEc/VVVxNzIqbLN4CcnBxOnz6NnZ0dM2bM6PMnzJtuuom//e0uigvj+03cNP+LmPztt99M4jYAsLa2ZurUqSQmJvLbb7/12CguIyODgMBAtLW1PdTT9lGp1fz8008dDjL57bffePXVVzlx4gS5ubls376dRYsWGX8viiLPPfcc77//PmVlZUyaNIl3330XPz+/Ntt9++23efXVV8nLyyMkJISNGzcybty4nrjEfsMkbr2AwWDgtttuIz093ViLrWkqctKkSZ0WuIyMDGbPmk1GSiahhslYC+2H2csEGSN1kZxIjWbZsmVs3769U2J68Wht9OjR/WohdM01i/n88y1oteWoVH2/1qL+X67b8ePHufvuu/v8/CZa0jSKc3Z25uTJkz0yiisqKkJbW4vDiutQuDn2YG9bpz67gMJNXxtrQCYlJREQENBmVGh1dTUhISHccccdrS45rFu3jg0bNvDJJ5/g7e3NM888Q1RU1GVL5gBs3bqVRx55hM2bNxMZGcn69euJiooiISEBR8fefx96C5O49TCiKPLwww9z/PhxXnzxRcaOHdsseESlUnVK4E6fPs2c2VHUlNYQpp+CmdDx8HYzwYJA/Vi+/fZb1q5dy5NPPtmh4y4erU2fPr3fjVHXrVvHli1byM2JwdtnZp+fXypVIJebExcX1+fnNtE2NjY2TJ06lYSEhB4bxSncHFF6951pt1qtxs7OjoKCAi5cuIC/v/9l+z9v3jzmzZvX6u9EUWT9+vU8/fTTLFy4EIBPP/0UJycnduzYwY033tjqcW+88QZ33XWXMY9z8+bN7Nq1iw8//LDD94yByOBajR0ErF27lq1bt/Lss88SHBzM8OHDW+zTJHBlZWXExsZyucIMe/fuZdLESdSX6AjTTe2UsDXhKLjiTSBPrX6KPXv2tLlvXV0dMTExnDp1itGjRxMREdHvwgaN5T4CAgLIyTqKKBr6pQ8aM3syMjL65dwDlbfffhsvLy9UKhWRkZEcO9a2B+dXX31FYGAgKpWK0aNH88MPP1x23//7v/9DEATWr1/fbj+kUikjRoxg0qRJZGdn89tvv1FRUdHZy+k3ZDIZGo0Ge3t7RFEkJSXlsveEtkhNTSUvL49Zs2YZt1lZWREZGcnhw4dbPaa+vp4TJ040O0YikTBr1qzLHjNYMIlbD/LRRx+xZs0aXnzxRUaNGsWIESMuu297Ardr1y7mzZ2HWmtBqH4ySqHrIuPDSOwEJ5Zcf8Nl87VycnLYt28fer2eGTNm4O7u3u92XhezatUq6usrKSlO7Jfza8wcKCos7pdzD0SaprKee+45YmNjCQkJISoqioKCglb3P3ToEEuXLuXOO+/k5MmTLFq0iEWLFnH27NkW+27fvp0jR47g6tq50VPTKM7R0ZHffvuNxMREDIb+eRjqLAqFAjMzM5ycnNBqtaSnp3da4PLy8gBwcnJqtt3Jycn4u0spKipCr9d36pjBgknceoidO3fywAMP8OKLLzJ69GhCQ0PbFYfLCdy3337LokWLsDU4EmyYaMxh6yqCIDDCEIGuWseihYupvWjBXK/XExsby6lTpxg1ahTjxo0bEKO1S7nllltQqzRkZx3tl/Nr1PZo67QdulkaDAZqa2upqKigvLyc0tJSSkpKKC4uJisrC2gMECopKaG0tJTy8nIqKiqorq5Gr9f39qX0CBdPZY0YMYLNmzej0Wj48MMPW93/rbfeYu7cuaxcuZKgoCBefPFFxowZw6ZNm5rtl52dzQMPPMDnn3/eJRPxi0dxmZmZHDhwoNnnfSCjVCrRaDS4uLhQUVFBTk5Of3dpUGNac+sBmp5Kn376aUJDQwkPD+/wnP+la3BpaWnccMMN2BtcGCmO67Fq1HJB0Rhgcjaa//u//+Pjjz9Gq9Vy7NgxBEFg+vTpA9qoViKRsGjxQv773y+o05aj7OPAErXGDqlUwsmTJ/H29kar1aLVaqmrqzP+3PT/i8O8JRIJEonEaL/UdKM9ffo0oigiiiIGgwFRFNHr9YiiiFwuR6lUolKpWrwu3t5fdlRNU1mrVq0ybmtvKuvw4cM88sgjzbZFRUWxY8cO4/8NBgO33norK1euZOTI7lWDsLGxYdq0aZw5c4b9+/czbty4QVFSR6lUYjAYcHV1JSsrC7lc3uGgDmdnZ6DRPcjFxcW4PT8/n9DQ0FaPsbe3RyqVkp+f32x7fn6+sb3BikncuklcXBxXXnklDz74IBEREYwfP77TN50mgdu9ezcHDx7EkUbXkZ4StiYsBGsCDGF8+umnXHHFFbi7u+Po6EhISMigKMWxbt06vvjiC3JzYvDq5cASlUqKo4Oq8eWowt7eCxvr68jMzKSwsLCF6FhbW7cQodYecJoqcU+fPr3FyEQURaM4XiyYWq2W4uLiZgJqMBhQKpVYWVlhbW1t/FetVvf6dHJbU1nx8a07ueTl5bU79bV27VpkMhl///vfe6SfUqmU0NBQUlNTOXToEMHBwQO+6nVTNQFRFI0CJ5PJOiTM3t7eODs7s3fvXqOYVVRUcPToUe69995Wj1EoFIwdO5a9e/caUwoMBgN79+5lxYoVPXVZ/YJJ3LpBSUkJV111FTfccANXXHEFEyZM6HIi5o8//sidd/6Nf77wTx584EH2bjyMaOj8onJ7uAie+E/xxtzcHJlMRlhY2IBaW2sLd3d3/Pz8SEs7iqf3dIQeEn+VSoqjowqn/wmZo4MKS0sFZeX1FBRoyS/QcvpMEbu+f5GFCxfy0Ucf9ch5L6XJRV6lUrVpLyWKIg0NDVRVVVFWVkZ5eTl5eXlUVlYil8uNQtf06gvB6y4nTpzgrbfeIjY2tkf7KggCPj4+mJubExMTQ0VFRbvWd/XZra8b9jSXO09TPbgmgUtLS0OpVGJmZkZVVRUXLlww7puamsqpU6ewtbVl2LBhPPTQQ7z00kv4+fkZUwFcXV2b5cLNnDmTxYsXG8XrkUce4bbbbiM8PJxx48axfv16qqurB30VDJO4dRGdTseSJUvw9/dn3rx5jB8/vlMFOS/m+++/Z8mSJdjrXdn59G9c+9IcZv19Ir9sONSjAidIBMbfHMrIOcN5+7V3SciI4/SZU4Nq+mH16tXcfvvtlBQnYWcf0KU2zMxkeHuZ4znMDEcHNZaWcsrK6iko1JKXV8uZP0opKNRSV9d8fa26Wj8g0gEEQUChUGBra9vsiV6v11NeXk55eTllZWUkJCRQWVmJTCbD2toae3t7nJ2dsbCw6JaAdGUqy9nZuc39Dxw4QEFBQbORlV6v59FHH2X9+vXdNq52dHRkypQpHD16lMrKylYfHuzt7VGp1RRu+rpb5+oMKrW61QoeTQJnMBhwcHDgwoULjBgxgpiYGKZPn27cr2mq97bbbuPjjz/m8ccfp7q6mrvvvpuysjImT57M7t27m62jJycnN3NhueGGGygsLOTZZ58lLy+P0NBQdu/e3WKkPdgQxK7EnJrg73//O7/++ivPPfcckyZN6nRkVxM//vgjC69eiK3eybjGprZSsfjFWRSmlPaYwCk0cuY8PBkrZ3N2rYkmP7uAGFk0Y8aFsi9636CpAG4wGDAzM8fM3Ivg0GUdPs7BXomPtwXe3uY42KvIza0lLb2KvPxaCgq11Ne3Hyhy8sT7aNRasrOzu9z/pmnJ+fPn98l7rtfrqaiooKysjIKCAgoLC1EqlTg7O+Ps7IydnV2XcsIiIyMZN24cGzduBBr/LsOGDWPFihWt5kbdcMMN1NTU8P333xu3TZw4keDg4Ma6fcXF5ObmNjsmKiqKW2+9leXLlxMQ0LUHmUtpaGjgxIkTKJVK/P39MTMza/b7rtpvNVlqqdXqTi1L2NvbtzlVqtfrqayspLi4mPr6egICAgaEn6ZWqzVWpx+IAWhgGrl1iffff58tW7bwxhtvEBwc3GVhO3jwIIsXLcbG4NgseKS2XMv2Z35h8YuzemQEZ+ViwYLV06gsqOKrJ3ZTX9OAUlAzUhfB4cO/sXLlyg7lEw0EJBIJixYt5IsvtlJXV4FS2bojhVQi4O6uaRQ0L3OUSgnpGdWcOl1CWno1Wm3noxI1Zg4UF57p7iX0KVKpFBsbG2xsbPD29kav11NYWEheXh4nTpwwrp05Ozvj6OjY4Wn19qayli1bhpubm7EyxYMPPsjUqVN5/fXXWbBgAV988QUxMTG89957ANjZ2bUocCuXy3F2du4xYWtqMyQkhKSkJKqrq1EoFM0eMoYNG9bpdbm6ujpqa2uNU/09iVQqxczMDFEUyc3NJT09vcvetH81TOLWSQ4cOMBDDz3EK6+8QlBQEP7+/l1qJz4+ngXzF2Cut2aUoWVUZE8JnEeIM1GPXsH5vckc/uxkszasBXv8xGDeeustIiIiuPnmm7t0LX3N2rVr+eKLreRmx+DlM8O4XaWS4u1ljo+3OcM8zNFq9aSmVfLLr7lkZ9eg7+YIWKO2J6dOi06nG7SFM6VSqXHUJooiZWVl5Ofnc+HCBWJjY7Gzs8PJyQkXF5cWo5qLaW8qKyMjo9kIY+LEiWzZsoWnn36a1atX4+fnx44dOxg1alSvX/OlCIKAXC5HpVJRXV1tDADqimD0prA1IZfLUavVODk5kZWVNSQiGfsC07RkJ0hPTyciIoK7776bWbNmMXny5C59oHNzcxkXMY6K/GrCdFcgFy7/tNydKcrgBQFMuCWM6H8dJSE6tdV9RFHkvBBDiSKfo0ePEBIS0unr6Q/8/f3JyMhnwuQnGOZhzqiRNvj4mFNcVEdyaiWpqVUUFdf16DmLCuP44/SnHDt2jIiIiC610dfTkp2hpqaG/Px88vLyKCoqwsbGBk9PT1xdXQdFNG1HuXhKTSaTUV1dbXQJ6az/am8LWxOiKFJbW0t1dTWZmZn4+vr2a027wTAt2f+Tt4OEmpoaFi5cSFRUFJMnT2bcuHFd+kBXVFQQNSeKkvwygnUT2hQ2+HME5+Bjw6y/T0SQtP/lk8gkTL9vPGOvGcWO5365rLBB41NsoDgGlU7DwqsXUlpa2ulr6g+efPJJrrxyNstu9mLuHDcqKhv4/L+pfPFVGsdjintc2ODP6gAHDhzo8bYHAhqNBm9vbyZMmMCcOXNwdnYmMTGRn376iT/++GNQWVp1FJlMhoWFBQaDgaqqqg47mvSlsMGfKQIqlQpnZ2dSUlLQarW9ft7BjEncOsjf//531Go11157LREREV2KjKyvr2fxosUkxCUSrJuASuhYG50ROKlcwvwnpuLgY8uXj/9IfmL7i+NSQcoofSR52fksXbp0wFoWiaJIcXExx48fx97enuDgYLZu/ZYPPk7i4KECysrqe/X8KrUNIBAbG9ur5xkIKJVKhg8fzowZM4iMjKS+vp79+/dz4MABsrOzB+xnpCtIJBLMzc2RSCRUVVW16xLT18LWhCAImJmZYWZmho2NDcnJyUPq79DTmMStA3z++efs2LGD+++/n+Dg4BYL3x1BFEXuvPNO9u/fzyh9JOZC56YUOiJwMqWUBaunozRXsOPZPVQX13S4fbVgxgh9OD//9DPPP/98p/rW2+j1ejIzM9m/fz9HjhxBrVYzc+ZMzp8/z08/fUVtbd+MKCQSGUqlJQkJCX1yvoGAIAjY2dkxduxYoqKicHFx4fz58/zyyy8kJSVRX9+7DxR9RVPovUwma1Pg+kvYmpBIJJiZmWFlZYVEIiEzM7PP+zBYMK25tUNiYiLh4eE899xzXHHFFURERHRp4Xn16tWsWbOGUUTiLHh0uT+XW4OTq2Rc+fR0EGHny/to0Oq61H6qGEcy5/juu++46qqrutzPnqChoYGUlBRSU1ORyWT4+PgwbNgw400lIyMDT08vvH1n4+U9vZ3WeoZTsR+ikFd02VS2u2tuR48e5eGHHsbL24uAgACCgoIYM2YMvr6+fRZB1xS5l5KSQllZGR4eHvj5+XU5z7OvaWu9qGltq6GhAXNz82Zrjf0tbBej1WqpqqoiMzMTT0/PPrcWGwxrboMz5KuP0Gq13HDDDSxZsoTg4OAuu3ls3ryZNWvW4Edwt4QNWo+ilKtkXP3sDOprG/hhzX509V033/UikCpJGTctvYnYk7HtVvDtDfR6Penp6SQkJGBubk5YWBiOjo4t3vthw4YxfLgvmZlH8fSa2mOOJW2hMbOnML//npY/+OADThyLJeF4MjuEb6nVNY7OLS2siBjXGJYfERFBRERErxWYFQQBV1dXXF1dKS8v58KFC/z66694eXnh5+fX59Xae5KmtS1BEKiqqjIK3EASNmicNtbpdDg7O5Oeno6Zmdmgft97g/7/Kw1gHnvsMaRSKQsWLGDs2LFdetLev38/K1aswIPheApdSxu4lIsFbs4jjYnZ1SW17H71N/QN3ZuDFwQBf0Moh2t+ZsyYsSQlJfZZ2LEoimRlZREfH49UKiUsLAwnJ6c2b9BPPPEEd911F6UlF7C165n3ty00anvq6+uor6/vstVad0iIT8DG4MBoYTwA9dRRQSkVlSWc+TWOQ/uPUKurBsDV2ZXZUbOZPn06M2fOxN3dvcf7Y2VlxdixYykvLzdOVw4fPhxfX98BIQJdockGrUngFAoFdXV1A0bY4M9pVL1ej7W1NcnJyQQGBg6IBO+Bgmla8jJs27aNO+64gw0bNjBx4sRWi462R0ZGBmGhYxAqZIToJ/W4EbKVqwVL31xAbXkd/1nxHfpujNiaqBGrOCMcpkaoAURcXRufDHvzSyOKIgUFBZw/f56GhgYCAwPx8PDo0KjDYDCg0ZhhYenD6JBbe62PTRQXJXDm1MccOHCAyZMnd/r47k5LOju5oC6wZrhw+fwwrVhLBSWUUUSFrJgyXQkAgQGBzF8wn3nz5jFt2rReuVEXFRVx/vx5ampqCAgIwNPTc8DdcNuaUrvUoaSmpga9Xo9SqeyVh5n2HEraQ6fTUVlZSU5ODpaWlnh4dG9mqKOYpiUHKampqdx555088cQT+Pv74+vr2+k2ampquOqqq6mrrGesfmKPC5tCI2fOQ5PI+iMfS0czZtw3vttOJiViPmc4ilxpztjQ+6ipLuTcH1tYtGgR3333XQ/2/qJzlpRw/vx5Kisr8ff3x8vLq1M5VRKJhKuuupKvv/6mTceSnqIpHeD333/vkrh1h5qaGvIL8hhB2yMwlaBGhRuOuIG+cXRXSgFFCflsTv4Xb7zxBtZWNlx3/bVcf/31rVYo6Cr29vZcccUV5OXlcf78eeOIoremSHuSjIwMAgID0fZh/TeVWk1CfHyHBe63337j1Vdf5cSJE+Tm5rJ9+3bmzp2Lk5MTGRkZPPHEE/z3v/9tdkxUVBS7d+9us923336bV199lby8PEJCQti4cSPjxo3r8nUNBEzidgkGg4Fly5axYMECxowZ0+V1tueff54/zpwhghkohJ6dC5erZFz19HRqK+r44ZX9KM0U3XYyyRHTiSMGaxtfRgbfhFyuxtzcmcqKKXz//fe8/vrrPProoz12DRUVFcTFxVFYWIivry+RkZFdvsG+9tprfP31N+TlxOLpPa3H+tgaSpU1IHDq1KlePU9rNLnBazDv1HEKQYkTHjjhgagTqaSMgvIsvvj4S/79739jZWltFLqZM2d2e0QnCAIuLi44OTmRmZnJuXPnjMa/Dg4OA1bkioqK0NbW4nbVzSjset80uL44n+zvP6eoqKjD4lZdXU1ISAh33HEH11xzDdB8/a2qqoqoqCg+/vhj4zHtrcU1VVXfvHkzkZGRrF+/nqioKBISEjpcS24gYhK3S9iwYQM5OTk8+OCDjBkzpsuLtP7+/oiIpAsJBIlju11NuwmZQsqC1dPQ1ev5cd1vGHSGbll1iaJIGvEkcw4X13D8Axchkfw5cvL2nUNFRRaPP/4EkydPJjIyslv91+l0xMXFkZaWhqenJ7Nmzer2tIanpye+vr5kZR1hmNeUXg0skUikqFTWJCYm9to5LkdSUhIAGiy63IYgCFhigyU2+OpGNQpdRRZffvI1H3zwAU6OTtz5tzu54447ujRjcTESiQRPT0/c3d1JTU0lJiYGGxsbQkNDB3RhXIWdE2rnnl+f7AnmzZvHvHnzmm27eP1NJpNRW1vb7lr1xVxcVR0aA+B27drFhx9+2KoJ9mBhYE2G9zNJSUk8/fTTPPzww/j7++Pg4NDltu6880527NhBlbqUE7L9VIvdz8WSyiXMf3IqgkRg15roZmtsXXEyEUWReE6SzDm8fGYSEHRNM2GDxpv5yNFLkcnNmDFjJmVlZV3uf3FxMdHR0ZSVlTFt2jSCg4N7bL7+8cdXUldXTmlJco+01xYaM0eysrJ6/TyXkpSUhEKqRE7PrP0IgoClYMNwYTTjdLMYxwzkBWa8tvZ1AvwDyMjI6JHzSKVShg8fbnyQ+fXXX0lPT8e03N9zSCQS1Go1SqWSI0eO4OjoSEBAAPfeey/FxcWXPa6pqvqsWbOatdVWVfXBgknc/oder2f58uVcd911BAQEMGLEiG63uXDhQk7EnsDVx4kYaTQFYtdLpQgSgbmPTUGhkbPz5Wh0dS2DRzojcHpRzxkOk0MqAUHX4O0z67JPegqFOaNDbqW2Vsv48eM73XedTscff/zB4cOH8fb2ZvLkyVhYdH300Rp/+9vfUCpV5GQd7dF2W0OjsaesrO+tqJKSkjATuleL7XI0Cp0tgcIYPPUBCBKhxwMFFAoFYWFhhIeHEx8fz5EjR6jtw/Wt9hjsCelyuZyoqCg2btzIO++8w8svv8z+/fuZN2/eZZPS26qq3tVczoGCSdz+x4YNG8jNzeXKK68kLCysxyLJAgICOB5znKsXXsUZDnNB/KNLT6wTbw3DytWC71/cR0Ntw2X364jA1Yt1xPIbxZJCRoUuw9WtfRNgS0t3AgIXkZCQwLJlHa+jdulorbeSjSUSCVdeuYDCwvPU11X2ePsXozGzp6Ghrs+9/eLi4lHoenc6TxRF8mUZLF68uNfWW5ycnJgxY8aAGsXV1dVRV9fzfqR9iSAILFu2jMWLFxMaGkpoaCjff/89x48fJzo6ur+71+eYxI1GF5KLpyNbq4zbHSwsLPjq66949dVXyRCSOC05SL3Y8S9S4HQfgmb5suuf0dRVt/902ZbA1Ym1xAj7qZHVEjb2LuztAzvcDxe3cFzcxvHZZ//ho48+anPfi0drXl5eTJ48GXPzzgVCdJZXX30VgNzcEz3WpigaqK0poagwjvS0/cSd+5LMzEMgkfLDDz/02Hk6QlJiYqeDSTpLOcVU6Mq45557evU8crl8wIzimhK0B/I6YEdpmp60s7OjqqoKGxsb7O3tjcFIl9KVquqDhb+8uDVNRy5ZsoTAwMAemY5sDUEQeOyxx9jzyx70lvWckEVTIbbvwO/kb8/Uu8fx02sHKM/t+IikNYHTijXECL+hl8OYcfdiadX5nBj/gKuwsHDlrrvu5ty5c63uc/FoberUqQwfPrxPIuS8vb3x8fEmO+sooti1ZHaDQUdZaSppKb9yKvYDfot+niOHXuWP05+Slr6PckqQD3MHg57t27f38BVcnoqKCoqKi7oVTNIRsoVUvDy9mD69b+zMmkZxSqWyX0ZxA815pCdQKBQolUqcnJw4fvw4xcXFuLi4XHbfsWPHsnfvXuM2g8HA3r17mTBhQl91uVcYGn/NbrBx40by8/N5+OGHCQ0N7fUP+IwZMzh1+iSLFi0m9vR+/A2huApere5rZqdh/hNTOfz5STJPd37+++IoyukPjOOljS9gkEoIC78btaZrXnQSiYxRIbdy/OgGJk+aTG5ernFtRq/XGyMhAwMD+9TvsInHHnuM++67j9KSFGzt2k+8F0UDlRXZFBcnUlaaQkV5BgaDDolChcbdG/vgOaic3FDaOSGzsEIQBETRQEXCGc6c6buq3F1NA+gMDWI9BZJsXr73pT5NvJbL5YwZM4a8vDxOnz5Nbm4uISEhvT6Sqq+vx2AwtBC2+uL8No7qwfN34TxVVVXNRmGpqamcOnUKW1tbbG1tef7557n22mtxdHTk7NmzrF69Gk9PT6KioozHzJw5k8WLF7NixQqg/arqg5W/tLjl5OTwzDPP8PLLL/fKdOTlGDZsGIcOHeT+++/nww8/pEIsxZ+QZoneUoWUBU9OJT02mzM7u+5CX1uu5Yunv+fql2Zw70P3cvgoKFU23eq/SmXFqOCbOXXi31xxxRUcP36c2tpajh49ikQiYerUqT0eMNJR7rnnHh5+6BFyso9eVtwaGmopKU6iuDiekuJEGuqrG8VsmC8OYfPRDBuOytEV4TI3eEGQoLCyITu76wFCneXPNIDeE7dc0kEQuf3223vtHG3h7OyMra0tZ8+eJTo6mnHjxnWpAkdH0Ol0aLVabG1tjcJmb2+PSq0m+/vPe+WcraFSqzt134mJiWk2qn7kkUcAuO2223j33Xc5c+YMn3zyCWVlZbi6ujJ16lRuvfVWtFqtMa0pOTm5mQtLe1XVByt/aXF77LHHmDVrFv7+/gQFBfXpuVUqFR988AHjx4/n/vvup1qsYKR+HCqh8Wl15v3j0TXoif7XsW6dRyvWcqJiP6dfPM7La17BwbGBn3/JobszPzY2Pgz3n09MzC6ee+45JkyYgLOzM8HBwf1qtySRSFhw5Xy2bdtOfV0lCmWjyOr19RQWnCU3N5ay0lQQDSjtXbAcE4m5TxAaNy+ETjijKOydqUjru9I3SUlJqGRq5Pre8bMURZEMSSJKpRJPT88OuVR89dVXPPPMM6SlpeHn58fatWuZP3++8ff/+Mc/+OKLL8jMzDROf7388stt5koqFArGjBlDamoqhw8fZvTo0Xh6evbotWZmZtLQ0GAscdPEsGHDSIiPb3bj7yharRadTodGo+nU57+z9lvTpk1rc9r2p59+Mv4siiLV1dWUlZWRkZHByJEjkUgkpKWltThuxYoVxpHcUOEvK2779u1j586dvPvuu4waNarH7Ic6y1133UVwcDCLFi7iRPE+RugimHntNFyCHPly5Y8YdF03Qq4Tazkh/IZBLsHb70a278jimsWezJnl2iMC5+4xiVEj7BkxYgRarZaQkJAB4T6xbt06tm3bTk7OCaytPcnNjaWg4AwGXT1mw4bjEnEN5r5ByC27PoJV2jpQnRzXg71um6SkJNS9OGpLJQ6toZZH732UO+64o12XikOHDrF06VLWrFnDlVdeyZYtjTZtsbGxjBrV6Hvp7+/Ppk2b8PHxoba2ljfffJM5c+Zw4cKFdnNIvb29sbCw4Pjx45SXlzNq1KgeeWhKSUkhOTkZDw+PVpcghg0b1iWvxyYhATAzMxsQ34OmCgc6nY7y8nLy8vJwdXXt7271GX9J4+SGhgZCQ0OZN28eixYtYtKkSf3+YczPz+f6666nrq6ORx95lG2r91CcVtbl9nRiAzFCNA1yA2Hh96DWNE7vaNRSrlnsSWGhtlsCJwgweZIjIwKteP31tzh16ihJSYk9/pTdVTw9PcnMzkHU65Bb2mIdHIHVqAgU1j1T96r01GFyd39FcXFxp2ppddU4OXJcJBnH8xgl9I7f337xO1TmSsrKy5BIJBgMBjw8PHjggQdadam44YYbqK6uZufOncZt48ePJzQ0lM2bN7d6joqKCqysrPjll1+YOXNmh/pVXV3N0aNHUSqVREREdMu8OCUlhbi4OMaOHUtpaWmPm/4aDAaqqqqQy+UDKvKytraWyspKsrKyGDlyZI+UxhkMxsl/yWjJDRs2YDAYmDRpEsHBwf0ubNAYNfbtd9/y+BOP89bGt9if9jN6sWsFRw2intMcRiupI2TMnUZhA6ip1bNtezoODirmzHKlK5euVEpYeJUHnh7mfPFlGhL5OAwGGDcuEp2ua33uaZYsWYKo1+E4/UqG37sah8lRPSZsAAqbxpHH119/3WNttkVSUlKvrbfViVoaqGfhooXG0VF7LhWHDx9u5moBjQa9l9u/vr6e9957DysrK0JCQjrcNzMzM6644gpkMhm//fYbFRVdS55vErYJEyZgbW3dpTbao6lKdl1d3YBKCFepVCiVSqysrP5Slbv/cuKWk5PD888/z7333oufnx+Wlr3rIt9R6uvriYmJYcSIETzwwAOUKQuIle2nRqzqVDuiKHKOGMqFYkaHLsPMvOWicHcEzsZawQ3Xe6HXi3z5dRrlFQ1oNPaMGL2UgoJ85s6d26n+9havvPIKgkRKbU5mr3hNKmwbgwB+/fXXHm/7UkpLSyktK+21NIBsUoHG0djFtOVSkZeX1yFXi507d2Jubo5KpeLNN99kz549nQ7cksvljBs3Djc3Nw4cONBp54yLha23K1ZLpVLMzMyoqakZMA96TdOT1tbWVFZWUl5e3t9d6hP+cmtujz32GDNmzMDf35+AgID+7g7QOJ1x/PhxLC0tCQwMJCgoiJEjR7Lw6oWcyNxHkD4ce6H1PJVLucAf5JPJyFE3Y23jfdn9mgSuM2twnsPMmBflxpk/Sjl8tLDZ/vb2gXj5zGTv3r288MILPPvssx3qb28hlUoZOSKIs+f+QFddicysZ4VBZm6FIJVx9uxZoPGhoqGhAa1W2+xVV1eHwWBAFEUMBoMxWfb06dNIpVIkEgmCIKBUKlEqlahUKuNLqVQiCEKvRkqKokihNAv09Epk4vTp0zl16hRFRUW8//77LFmyhKNHj3ba/UQQBIKCgrC0tCQmJoaAgIAO5U/2pbA1IZfLUalUVFdXY2FhMSDq2cnlcpRKJQ4ODs2CS4Yyfylx+/333/n+++/7PYjkUuLj46mrqyMyMtL4ZR09ejSxJ2O5+eab+fGHH/EWg/AmqM0vc4aYRDqJ+PlfhaPT5YtZNtEZgQsNsWFCpCN79+WSmNT61JCX9wxKS1J47rl/4Ofnx9KlS9u/+F7k448/JjwigrKzx7GPnNEjbWpkEtzMlLiaKbn6ySdxsLHm559/NoqYVCptIVByuRxBEJBIJNjY2JCfn49Go/lfzlyj6FVXV1NcXGwUxYaGRos1pVJJTU0NTz31FHXpBsqTayhKLqOysLpHrqecEir15Ugkkk65VDg7O3dofzMzM4YPH87w4cMZP348fn5+fPDBB6xatapL/XVzc8PMzIyjR49SUVFBWFjYZW/S/SFsTSiVSvR6PdXV1Zibm/f70selwSX5+fmXTeweKvxlxE0URR5//HFuv/12PD09cXNz6+8uAY1TTikpKUyZMqVF9Ja1tTXff/89L730Ev/4xz+oEsoIMoQjF1ouqueLWSRyGg/PKbgPm9jh83dE4MaF2xMaYsO2HenkF1zeT7G8LJ3qmnxA5OZbb2XSpEndqjLcXcaOHYuZRkNp7CHsxk3v9A3GTCbB1UyJm5kSN3MlrmYKbJRyirUN5FTXcb6wlCO/H+C2225rJmRt0RRQ4ufn1+a+er2eurpG/8onn3ySnJwcvL29GbHEl2HDhlFTXUt2Sg4FF0qoSK6hOKWcyoLOC142KQzzGIazizN79+5l0aJFwJ8uFZcLD58wYQJ79+7loYceMm7bs2dPu64WBoOh2x6O1tbWTJ06lSNHjnD8+HHCw8NbFLjtT2GDP8vQVFZWUldXNyCCLqRSKUqlEnt7e3JycnBwcBgyriytMXSv7BK+++47Lly4wMMPP8zIkSP7/UkKGm9gsbGx+Pv7X3btTyKR8OyzzxIeHs7SG5cSW7ufkbpxmAtWxn3KxRLOcRwnpxB8h0e12k5btCVwE8Y7MGqENd/syKC4+PI3peysoyQlfIfGwwe3SbPJ+PJ9RowYQXl5eacqa/c0f/vb33jrrbeoSb+AmZdfm/tKBPCyUBFkY0agjQY7lZyi2kYhy6jUcjivnJzqerT6xvSM/DNxlBz7vVeS/6VSKRqNBo1Gw88//0xJiY68Qi9++fUgDfXfY2MtxdnJDE8vN0Zc3yh4tdVakmPTyDpeQPapwjYNtqHRkaRQks0L976Aj49Pmy4Vy5Ytw83NjTVr1gDw4IMPMnXqVF5//XUWLFjAF198QUxMDO+99x7QGOX48ssvc/XVV+Pi4kJRURFvv/022dnZXH/99d1+f1QqFRMnTuTw4cMcO3aMiIgI4426v4WtiabRUnV1NXK5vF+/B000TX1rNBpyc3Px8Oi8Bd9g4S8hbnq9ntWrV3PHHXcwbNiwfv3AX0x8fDwymYzhw9u3iZo/fz6xJ2O5+qqrOZEYTaB+DE6CB3WiljPCYcwtXAkceV2XgydaE7jJEx3x97Pk623plJa1Hv0ligZSLvxMRvp+bMdOxmnGQgSpFNcFN5L93X8YO3Zsv1StbuL1119nw8ZNlJ463Kq4qaQS/K3VBNmY4W+tpsEgEl9aw660YtIqtUYhaw2lrSOiQU9ubm6vTvEUFhZhaRWIpaU7lpZ/FtGsroPYU6X8uu8wVVVbsbUWCQ4JIOLGCOY+PIXks6mkH88h53gxVUU1LdrNIwNREFm+fDnOzs5tulRkZGQ0m/6bOHEiW7Zs4emnn2b16tX4+fmxY8cOY46bVColPj6eTz75hKKiIuzs7IiIiODAgQOMHDmyR94XhULBxIkTOXLkCEePHiUyMpKMjIwBIWxNyOVyFAoFNTU1A2J6UiKRoFQqsbW1JTMzEycnp26lVwxk/hJ5bh9//DHPP/88r7/+OrNmzRoQEZIlJSUcOnSIKVOmdKo/1dXV3HXXXfz3v//Fg+GUU4pWXkf4+AdQKrt/XU15cBIBpDIJ27anU17R+gjAYNARf/4b8vNO4TRjIXbjpjb7fd7ebyk5vp8HH3yQ9evXd7tvXWX06NGcPXce/wf+gUxjjqVcyig7M4JszPCyUJFfW098aQ1xpTXkVNfR0S9ETWYKaZ9v4q233uLvf/97h47pbJ6bwWBAJpPj7TMbT+9p7e6v1ZZRUpyEhHz8/BwIDx/DiBEjyMvMJ+14NhkH8ynJKEcURWJkvzLjymls276tQ33vDURRpLa2Fo1G0+U2dDodR48epaamhrq6OiZOnNimsLWVo5WRkdElh5K2aErwbgrquJjOOpT0VH8qKiooLCxEJpPh5eXV6TYGQ57bkB+5abVann32We666y68vb0HhLDp9XpOnjzZ5nTk5TAzM+Pzzz8nMjKShx9+GFEUGT1iWY8IGzSO4HJzawgKtCY1rZKKytaFTafTcvbM55SVpeK28FasgsJa7OM07UpqczN4a8NG5s2b18y8tS/54IMPmDBhIsOq8pgZOgk/aw2pFbWcK6nmm+RCyuq7FrKtsG3MdYuOju6wuHWWxMRERNHQLFexLVQqa2N9vvIqHd/sSOOzz6Nxd5ESNmY016ydQ0FGIaf2nOPggVru+b/eLW3TFg0NDcyYPoPjx4/z7w/+zS233NKldmQyGU5OTpw/fx4LC4suf8czMjIICAhEq+270jsqlZqEhPgOC9yaNWvYtm0b8fHxqNVqJk6cyNq1a5tFfmu1Wh599FG++OIL6urqiIqK4p133jGOwgWhsRCttbU16enpODk5oVKpeO6553j//fcpKytj0qRJvPvuu/j5tT2VP5AZ8uL2zjvvYG1tTUhICIGBHa9d1pt0ZjqyNQRB4MEHH8TS0pK//e0uEuK2I1eYYWXV/SfAyRMd8RxmzpdfpzJntlurQSZ1dRWcPvUxtXWlDLvhHsw8W78OQSrFY/HtJH/4GvOvvJLC/Pw+nyrSarVYWlry/vvvISJwqrqO79KKKK9vvTJxZ5BqzBFkcs6fP98DPW2d3377DWis/t1ZJBIZtrbDsbUdjsGg55dfL/DNN68SFOTA7Lmz+PiOj3F0dKSioqJfHvoef/xxDh06hJ3oxK233srJkydZu3Ztp4McUlJSSEhIYMKECSQmJnL06FHGjx/f6TWuoqIitNpagkYuwcysdwq1Xkx1dQFx576kqKiow+K2f/9+7r//fiIiItDpdKxevZo5c+Zw/vx5zMzMAHj44YfZtWsXX331FVZWVqxYsYJrrrmGgwcPGttRKBQoFApsbBoNwL/55hs2bNjAJ598gre3N8888wxRUVGcP39+wI7M2mNIi1t5eTkvv/wyTz31FD4+PgPCEqekpITU1FSmTJnS7TyT5cuXM3r0aKZNm87JmH/hH7gQV7eu2zONH2dPYIAVX29Lo6y8odUgk9raUk7Gvo9easDrlhWoHNv2qpOZWeBx7R2k/Wcjw/38KCku7nL/OkNTFGpOTg729vZkZGTw4osv4nHD/11WjDuLIAgobOw7nVTcGY4fPw7Q4ZHb5ZBIpNjZB2BnH0BZZQmPPvooS5cuZeXKlezfvx9bW1t8fHxwdnbuk3Wh//73v6xfv54AQnHHl0ySWf/meuLj4/nyyy+NN+r2uDR4xMbGxhhkMm7cuC4FcZiZOWJhOTCiqS9l9+7dzf7/8ceNDygnTpxgypQplJeX88EHH7BlyxZmzGhMf/noo48ICgriyJEjjB8/Hvhz9GZlZUVaWhpvvvkmTz/9NAsXLgTg008/xcnJiR07dnDjjTf27UX2EEM6i++NN94gKCgIf39//P39+7s7xunIgICAHntSDg8PJycnm6CgQBLithN//hv0+raj5FojYqwdo0c1hvuXlTcef6mTiba2mJMn/oWokOB969/bFbYmNK6euMy+htKSEqZOndr+Ad2gpKSE33//nYMHDyKTyZg2bRoTJkzgmWeeQUSg9FTr9lBdRWnvRFV1z+SctUZcXBxyuTlSac8t+pcUNVYzeOyxxwgLC2POnDnY29tz5swZ9u7dS1ZWVq8WDD1z5gx3LL8DF8ETdxpr/g0ThhMiTmTPT78wbeo0CgsL222ntahImUzG+PHjjY4/BkPXjccHA01uI03Xf+LECRoaGppZowUGBjJs2LAW1mgXB7vk5+c3O8bKyorIyMjL2qkNBoasuFVWVrJhwwaWLFmCn5/fgIgIapqO9PX17dF2LS0tOXfuHHfeeSe5OSeIjdmMVlvW4eNHBlkxJsyO7d9mUFLaPCqySeDs7eRMHC+ARonnLfcjt+qco7516ASsRo/jtwMHeOmllzp1bEeoqKjg6NGjHDp0CHt7e6KioggJCTHWlZNKpYwICqQi4TS6ms5ZmrWFwsYBg6H3hCAjIwONWc+lGoiiSFbWEZydXRgzZgzQGB4eEBDA7Nmz8fPz4/z58+zfv5/8/PweF7nS0lIWXr0QpU5DoBjWbJRoJzgTpr+Cc6fPEzkukuTk5Mu201a4v1wuZ8KECdTW1nLq1Kk+rezdlxgMBh566CEmTZpkjFLNy8tDoVC08M9szRqtafTWVM3A3Ny83WMGE0NW3P71r38xfPhwvL298fa+vA1VX9E0HTlmzJhes73597//zWeffUptTQHHj2ygtOTyN4cmXF3UTJ3izK4fsyi6TB5bcXEhq556Am9fb554+RUUFtad7psgCLhEXYvK0ZVnnnuOY8e6V6euiZqaGmJjY9m/fz9qtZpZs2YRGBjYaiTiv//9bzCIlP8R0yPnBlDY2CMa9KSmpvZYmxdTVFiMxqzt8jCdoaIik5rqAu67794Wv5NIJHh6ejJz5kzc3d05ceIEhw4doqSkpEfObTAYuOmmm8nNymOkfhxSoeWqiKVgwxjdVIqySoiMiDROy15MR/LYFAoFkZGRFBQUkJKS0iP9H2jcf//9nD17li+++KLLbchkMuMaZ0FBQU91bUAwJMWtrq6ON954gyVLluDj49Pvo7amZO2AgIBer1B9yy23cO7cWSws1JyK/YCM9N8u++RqYS5jwTx3DhzMJyu7ZR4UgPZ/a2zldbV8cKEEdytzrvN1oCurMhKZHI9r7kCiUDJp8hXU1nY9Kq2+vp6zZ8+yd+9eRFFkxowZBAcHt7n4PX78eDQaNSUnD/bY03xTxORXX33VI+1djMFgQFunRaPuuZFbTtYxpFI5TzzxxGX3kUqlDB8+nNmzZ2NjY8OhQ4c4duwYlZWV3Tr3Cy+8wE+7dxOkD0cjXN4nUy2YEaabgqFCwpQpU/nll1+Mv+tMgrZarSYyMpK4uLghd+NesWIFO3fuZN++fbi7/5n76OzsTH19PWVlZc32v5yVmiAIxuPT0tKafSfbsl8bDAxJcfvkk0+wtrbG39+/x6cAu0J8fDwKhaLL0ZGdJSAggLy8XMaPjyQ56UfO/bEFna75qEwmE7hygQcXkiv542xZq+3U11dx6uQHGJRSPG+6jzqFhn/H5eJmpuyywMmtbHBfdBu6hoYuhRkbDAaSkpLYs2cPlZWVTJkypdFmq4MBCMuXL6ehrJiazPZHtR2hSdwOHDjQI+1dzNmzZzuVBtAeOp2WgvzTTJs2pUMPfHK5nBEjRjBr1iyUSiXR0dGcOnWqS+Vcdu7cyfPPP48PI7AX2r9hKgQlofpJWNRbc+WCK/npp5+65DxiY2NDSEgIMTExVFX13HR0T9KZBy1RFFmxYgXbt2/n119/bTErNXbsWORyOXv37jVuS0hIICMj47LWaP7+/jg5OXH27Flyc3OBP6f527NTG8gMOXHT6XSsW7eOpUuX4uXl1e9hrNXV1aSkpBAaGtqn7gQKhYLDhw+zcuVKigrPceLYJmqq/1yknzPLlfp6PfsPtD6nrtfXc+b0pzSIdXgu/T/kltYAVDXouy1w5l7+OE5bQHZ2NosXL+7wcRUVFRw4cICMjAzGjRvHhAkTsLKyav/Ai3jrrbcQJFJKT/bMQrlMbYZEoSQ+Pr5H2ruY/fv3A11LA2iN/LxTGAw6XnnllU4dp1KpCAkJYfr06dTW1rJv375OrcVcuHCBm5behKPEDS86no4jFWSMNozHUmfHpk2b+OOPP7rkPOLh4YGnpydHjx41GlK3RXV1AZUV2b3+qq5uHE12pjTO/fffz3/+8x+2bNmChYUFeXl55OXlGUdcVlZW3HnnnTzyyCPs27ePEydOsHz5ciZMmGCMlITGIJPt27cDjdPRf//733nnnXfYsWMHJ06cYNmyZbi6uhq9RgcjQy4V4Ouvv0an0zF69Og+Gym1RXx8PO7u7v2WPL5u3TqmTJnCNddcx/Fjmxg56gbmz5uCo6OKrV+m0VowmcGg59wfX1BdnY/nLfejsG4+cmgSuL8FuXCdrwNfJxd22NWjCbvI6dTmpLPj22/517/+xT33XD6Z2GAwkJycTEJCAt7e3gQGBnbZp08qlRLg70d8wml0tdcgU3dsxNcWChuHFg75PUFsbCwAKnX3cwNFUSQ78whOTs6Eh4d3qQ1zc3PGjx9PRkYGJ06cwMXFhdGjR7fptFJdXc3VVy0ErYQRhvBOP+BJBCk3R91G5NJgVq9azRtvvtElM4ARI0ZQWVlJTEwMoaGhre5jb2+PSqUm7tyXnW6/q6hUaszNzRFFsUPvzbvvvgvAtGnTmm3/6KOPuP322wF48803kUgkXHvttc2SuC8mISGhWV23J598kvLyctasWcOqVau44oor2L17d78PDrrDkLLfEkWRsLAw5s+fz7XXXsvYsWP7tT/l5eUcOHCAmTNn9nuOXVZWFhER4/D0HMbDDz/K19syKC5p+RQriiIJ8TvIzYlh2PV3Yu4TdNk2zeVS/hbkQnZ1XZcETl+nJfXjN2koLyE+7nyr6RqVlZXExsai0+kICwvrkSTwgwcPMnnyFTjNuLqFZVhXyP7+P1QlnEHXgVFBZ+y3xo8fz8mTcUya0rXyMBdTUZ7JiePv8I9//IPnnnuu2+01RSJWVFQQGhraonApNH6Wli5dyravtzFWP62Z2XdHGT3Pn/E3h/Lt83vYc2EXFbJidv2wi5kzZ3a6rYaGBn777TccHR2RyWR9Zr/VFnZ2dtjY2Bjr+fUndXV1VFRUkJmZ2e5Di8l+q4/ZvXs3eXl5jBkzZkDYxpw/fx4vL69+FzYAd3d34uLOs2fPHl5//XUSk0oYOfpG5PLmnn7pqfvIzT6G6/wb2xQ26P4ITqpU4XHdnaR8/DohIaFUVVUaR2SiKHLhwoUeGa1dyqRJk9Bo1JSePIhtxJRuTxcrbBzQ90I+VWZmZo+lAWRnH0MqlXW5jtqlqNVq4yguJiYGV1fXFjUS169fz9atWxnN+G4J23cv/EpBUimjxEjO6o5w1VVXceDAgU4/vMrlciIjIzl48CCurq3naA4bNqzPvR7r6+upra1FoVD0q7Fyk2uJubk5+fn5zQJVBiNDas3trbfeYsmSJf06DdhEUVERJSUlAyJ5HBqfyo4dO0ZwcDALFy6krDSZ40c2UFmZY9wnP+80qSl7cJgyD+vgjjmddHcNTmnniNtVt6DV1jJixAigMbz/wIEDpKenM3HiREaOHNnj5UJuu+026kuLqMnsfpi4wsYeDAbi4uJ6oGd/Ulxc2iNpADqdloK8U0yZckWPRg4LgoCnpyczZsxAq9Xy66+/Gkc90dHRPPbYSjzxx0no/E3yYmHLT2xsUypIGWWIRFVvxtyoeV1KvzA3N2fUqFE0NDR0aq2rN5HL5Ugkkm7XuesuTRXhraysKCoqGvQJ8ENG3BISEoiOjmbChAn4+Pj0a19EUeTcuXMDJnlcFEViYmKwsbHB39+fVatW8dtv+5EIDZw49g55uSeprMwhPu4brEaOxX7CrPYbvYjuCpyl/2jsJ8wiMTGRJ554gv3792NlZcX06dN7zYty48aNjYElPeBY0hQx+fXXX3e7rSZ0Oh11dbXo6mspL89Ap7t8kdj2yM87jcGgY+3atT3Wv4tpGsX5+/tz5MgRoqOjmT9vPhZY40v7FeEvpTVha0IqyBitn4C2vI7Zs2Z3aQrRzs4OmUxGbW3tgLiBNyVTa7Xafu+PQqFAqVQik8l6LL+xvxgy4vbOO+8wf/58HBwccHDouaTXrpCbm0ttbW2/i2wTKSkp1NTUEBb2pyPE5MmTycrOxNvbi7hzX3LyxPso7J1wmXt9l6ZGuitwDlfM5cobb2bMmDHU1tYSEhLSq8UdmwJLKuJPo6vtnn2Wwqbx83axMW13+emnnwAoKDhD7PF3ORD9PAd/X8OZ05+Rmf47lRXZiGL7N8LGQJLDODk5ERER0WP9uxRBEPD29iY4OJiMjAyW3baMWqGaEjoXaNOWsDWhEJQE6yaSk5HLgvkLqKlpPUezLZqKh3Yn17InkcvlyGSyfh+9SSQSo6FyQUHBoHZ3GRLiVllZyccff8ycOXPw8fHp13lrw/+mpwICAgZECfeqqiri4uIICwtr0R9bW1uSkhJZtGgRep0WQSLBUNf1EUJXBU4iwNU+Dtx4zWJefu0Nrl+yhOzs7C73o6P861//AoOB8rPdcyyRqtRIlGoSExN7qGewa9cuAHyWP4rP8kdxu+pmLMIi0KrrSU75iZhjmziw/0XOnP6MnKxjl7Vbq6zMpro6n//7v//rsb61RVTUXB57bCWhoRN54eV/kmxxhnQxoUM3yY4IWxMawZzRuvGcjD3JjTfeiF7f+SoPKpUKnU7Xpby93kClUlFXV9ela+lJFAoFarWauro6ozXXYGRIiNuWLVvw8fHBzc2t38umZ2ZmIooinp6e/doPaHxqP3nyJJ6entjbtx6YIJFI2L59OytXrqQ2P4vkD1+jJqvrVlKdFTi1TMLyQBe8LFS8cy6HqlGTEYGgoKBe/5JPmTIFtVpFaeyhbj+hKmwdOmT221FOnDgBCCjtnVA5uWE1cixOUxfgedN9BDz8TzxvXoHthOnUKrUkJHzL4d/XcuzoW6Rc+MmYPwWQ879AktWrV/dY3y7H8uXLiY+Pw9Z+Mtu+zUUitWP9+k3Ue1ZwjuPoxcv/PTsjbE1YCraM1I9j586dPPPMM53ur0QiQa1WD5jpSZlMhlwuR6vt+gNmT/bD2tp6UDu7DPpUAFEUGTNmDFdddRXXXnstISEh/dYXvV7PL7/8wqhRo3Bz6/+SGcnJyaSmpjJt2rQOjSJ//fVX5kRFodcbcJ69GJuwiV0eBXckTcBRLefWAGfyaur56kIB9f8zIC47G0POzi2Eh4e36i3Yk9x99928//77eN28Ao1H16eRs3f+l8r4k9TV1hITE0Nubi65ubnk5ORQXl5OQ0MD9fX1iKLIokWL2LlzJ4IgIJfLMTc3x8XFxfgKCQkhICCAkto6/O57tt1z67W1VKclUHkhjqqks+jrarGw8sDJKYTkpB+ZOvUK9u3b1+Vr6wiffvopt912Oy6u4QSOuMa4fVy4PWGh1qx/8w0SjiYTysQWnpJdEbaLSRcTSOIPtm7dypIlS9rd/9Iw9qbRiUaj6ddZH2i8h1RWVmJhYdGr0/LtUV9fT0VFBenp6QQHB7dICxgMqQCDXtyOHTvGrFmz+OCDD5g9e3YLN+y+JCkpiezsbKZOndrvX5KqqipjgI2dXcftm8rLy/EdPpzioiKsRoXjEnUdEnnXgmLaEjhvSxW3+jtzMK+cX7NKW4hf7s/fUBp7iCeffII1a9Z06fwdob6+HpVag2VQKG5X3dzldgoP7aHw95944R//4NlnGwVJIkhQy8yQo0BAQBAF1Co1b/9nA/fd+gC12lpERPToqNVXozM0Ru9NnzadQ4cPIXP1wvOGzlXKNuh0VF04S9mZ41SlNEZvKhQKQkND2bhxI+PGXT4K9quvvuKZZ54hLS0NPz8/1q5dy/z584HGHLGnn36aH374gZSUFKysrJg1axavvPIK5eXljB4djEbjxJiI/0MiaS5evj4WzJ7pzJbPPyf6uwOEMQmZ0Hiz7K6wQeMD7jH2orKXU1DY/kjj0huzwWCgsrIStVo9IALAampqMBgMLVz6+xJRFKmoqCA3Nxdra+sWHpODQdz6f1Gom2zevJmFCxfi6OjYr8JWX19PUlIS4eGdd2HoaS6ejuyMsEGjfU9RYSGzZs1i76+/os3PxuPaO1FYdz5q8XJ5cH5Wam7yd+L7tCJiC1v3+3OeuRBtXhavrFtHVFRUC0eGnkKhUODvN5yEuFM4z1qEtIuOJQobBzAYSExMRCMzJ1w3HbmoQNA1/yzIDY039RD9ZBp0fyZ9i2KjyJ2j0QOxXqfHzLbzgVESmQzLwFBEUaQqJQ6pVMbJkydZv349UVFRJCQk4OjYssr0oUOHWLp0KWvWrOHKK69ky5YtLFq0iNjYWEaNGmWsvvDMM88QEhJCaWkpDz74IFdddRWpKakIgpxRIbe2EDaA5JRKKqsauOHGpSiVSnZ//TNh4mTGzB/VbWHTizrihFgqxTL+fs9TXWrj4unJnJycPo0StLe3b5FXp1KpqKioQKfT9du6vSAIKBQKrKysKCwsxMnJqd/va51lUItbVVUVW7duZf369Xh5efVrXy5cuICVlVWrN46+JiUlhbq6OoKC2k7CbotffvmFdevW8eSqVaR89Brui27D3Dug0+1cKnBni6u5wc+R7SmFnC6+/GK1IJXhvvh2Uj58jVmzZzeOJDvpI9lR3nvvPaZOnUbZ2RPYRUzpUhsKm8Y1zYKCAur0tY2jtU7cDARBQIYcg6BjmOcwjp+IMUZhdoWig3sAuO66axkxYgSbN29m165dfPjhhzz55JMt9n/rrbeYO3cuK1euBODFF19kz549bNq0ic2bN2NlZcWePXuaHbNp0ybjSDB0zN9QqS7/9yko0LL92ywWLb4GhUJBVWl1t4WtRqzirOwoDTItX376Jddff32X2oHGh5yUlBTCQsPQdiOoqrOoVGoSEuKbCZxEIkGpVFJbW4u5uXm/iYpCoUClUqHX66mqqur1iiY9zaAWtx07duDt7Y2Li0u/rnE1NDSQkpLCxIkT+60PTTRFR06YMKHbT32PP/44M2fOZMLEiWRs/ReOU+djN35mp79sTQJ33yhXgu3N2ZpUwNmS9qOw5BZWeFyznLQtb+Pn59dri9vGwJKTB7ENv6JLN5MmccvLy0Mv6qmnDiWdn66pl2obzX1FEYVt19xJRL2OuqI8EITGGnY03jBnzZp12crKhw8f5pFHHmm2LSoqih07dlz2PE0GzN4+s7Gxbb/6RlFxHdu2Z7LkuquRSEReevoVrBPckAudnwosFHOIk57A3cON777/jpEjR3a6jUupqqpCW6dlJOMwo/dv5NVUck57jKKiohajN6VSSX19PTqdrtl615o1a9i2bRvx8fGo1WomTpzI2rVrCQj488Fz2rRpRtPtJu655x42b9582b6Ioshzzz3H+++/T1lZGZMmTeLdd9/F2dkZS0tLSkpKBp24Depoyf/85z/MmTMHZ2fnfg27T09Px8rKqtcSjjtKd6YjL8fYsWMpLyvDw8ODgv0/kLXtI/RdeLJ1NVOgkUmprNcRZKPpcJqAxsMH51mLKCwsZM6cOZ0+b0e5+eabqS8ppDY7rUvHS5UqpGozowBr6XzulSiK1OiqjG10deRWX9Y4rebs5NRs3aatysp5eXkt/CHb2v/rr79m27ZtKJVWeHpP73Df3N3NEAQBnQ5GjR3BSeF3dGL7npxNiKJIsniO0xxizrzZxJ6M7RFhA4xFhM2wwFKw6fVXWwLalG92ad7b/v37uf/++zly5Ah79uyhoaGBOXPmtAjZv+uuu4xBTbm5uaxbt67Na1+3bh0bNmxg8+bNHD16FDMzM6KiooxrfyUlJQMiorQzDFpxy8/PZ+/evYwZM6Zfw/9FUSQ1NXVAJGynpqZ2ezqyNdRqNRkZGSxZsoTKC+dI+eh16oo6npzra6lmqZ8TXycX8s7ZnE7nwdmMmYzVyLHs+eUXXn/99a5dRBscPnyYZcuWIUgklJ481OV2FLYORqf1rohbPXXoRX1jSoEgILey6VI/KpPOAvDggw926fj2SE5OZsmSJQiCjLHj7uvwSDd4tA0Txzuw/dsMvt6ewfwrr2LOtbM4xUH0YvtWWA1iPWckh0kT4nnppZf49ttve22qeiCgVCrR6XTNUmJ2797N7bffzsiRIwkJCeHjjz82Vmm4GI1Gg7Ozs/HVlh2hKIqsX7+ep59+moULFxIcHMynn35KTk4Ou3btQqFQIJVKqaio6LVr7Q0Grbh98cUXREZGYmdn16+OJLm5uYiiiIuLS7/1ARqnRhMSEhg9enSvjWK3bt3Khx98gK6ijJSP36Ai/nS7x3haKLklwIlvU4s4W1LdpURvQRBwmXs9SjsnVj7+OKdOner2tej1erZt28b4yPFMnDiRqVOn4jlsGBXxp9BrOy9M0OiTWVffgEataV3cBJApG8O7WxMELY1P3yUlJcgsrBEkXQsFLz/XWConMLB57bS2Kis7Ozu3KNvT2v61tbWMHDkSUYSw8LtRKjvm4dokbDu+yyAvX0tJST07vs3i2muv54orJ3GaQxjayIOrFMs4IYum3ryaH374gaeeeso40hqqSCQS5HJ5m0nmTQ9Tl84aff7559jb2zNq1ChWrVrVpotLamoqeXl5zJr1p+2elZUVkZGRHD16FJlMhpWVFcXFxd28or5l0K65ff7558ydOxc3N7d+/ZCnpKTg7e3d71+0CxcuYGFh0esBLcuXL2fKlCmMHj2arB2fYDd+Bo5T5rV6I7ZRyrjF35kf04s5VfRnVGRXqglI5IrGCgIfvsa4yPFUVVZ0KWxbFEW+/PJLVj25itS0VOykjgQzgUTJKcaOHUtaWhrlZ09gG35Fp9o1k0kICwvDzNMJHy9vzARLXGzdMLNVY2ajRqGRI5H++Rm5+/MliAaRhjodNaW1VJfWUlxczKhSL8rKy8nLzyf7h8+oQI7S3hm1mxdqZw+EdnKfavOyqCvMwdbWlr179xqLTRoMBvbu3cuKFStaPW7ChAns3buXhx56yLhtz549zSoxNzQ04Onp2Tg7MHIJVlYdmzG5VNiaKCqu49vvs7h12a3k5uUQF3OSEeLYFsKfJ2YQLzlJYEAg3363Y0DMkvQVSqWSqqoqVCpVi/fFYDDw0EMPMWnSJEaN+tPD86abbsLT0xNXV1fOnDnDE088QUJCAtu2bWv1HE1Tz5ebllYoFJiZmZGent6vEZydZXD08hISExM5ffo0jz76aL+WZSgvL6esrKzN3KG+QKvVkpyczMSJXU+67gy+vr5UVlYyevRo4o78Sm1OBu6LliHT/Lm+o5AI3BrgzOmiKo4VVLZooysCp7C2w33RMjK+fB9/f3/S0tI61e8DBw7wyMOPEHMiBgeJKxHMwMpgCwJU6Ev4afdPqFQqSk4exGbs5Mu+lwqJgKeFCndzJa5mStzMlFgrZRT425Madw6ZVEZWYg7VcTqqS2upKa1FW1WHQS+iNFNw01tX8tn932Fo0CNXyzCzUaOxUVNvXY3CUcHw4cOZMnMGHs4u1GprSU5OITkpiZSjp0grq6bBxhlz3yCUDi4t+lh2+ghIJLzxxhvcc889hIeHM27cONavX091dTXLly8HYNmyZbi5uRlzCB988EGmTp3K66+/zoIFC/jiiy+IiYnhvffeAxqFLTg4mMLCQlxdI7CxHU5dXePfVS5Xt5oCAJcXtibyC7T88msejz22kscee4TMrAsMo7FclUE0kMQZMrnAzUtv5r333kOj0bRoYygjlUqRSqXU19e3qPd2//33c/bsWX7//fdm2++++27jz6NHj8bFxYWZM2eSnJyMr2/7gT+X0uR7qVarKSsru6zb0UBjUIrb559/zqxZs4yF/vqLlJQU3N3d+z3xsyl3qS8DWqRSKefPn+fee+9l87/eI+XD1/C47s7G0QVw/XBHqhp0/JB++amMrgicuU8QDlPmkf7bj9x444188cUX7fY1MzOThx58iG3bt2EttWMMU7AVHbl4TtQdXzJqkhgXOY4jR45Qm52Gxt3b+HsrhZQgGzMCbTT4WKopr9eRVVVHeqWWw3nl5FTXU5abRcqHrzWaB8dlE65rGWhRX9MYPFFTWktDbePPJRmNU0sJ4ikU3iLJqcnY3XEVdnPG4yJT4e5vi4v7OMKFKbhb2pKSmsrxY8c4cXQ3xXJzrILGoBnmg9jQQNkfxxnm7s5tt91GZWUlzz77LHl5eYSGhrJ7927j03lGRkaz2YaJEyeyZcsWnn76aVavXo2fnx87duwwjgiaIvQAcnKOk5Pzp3NM6Ji7sLFtOZpqT9iaSLpQib2dimeffZFHHvk7ZlWWmGPFOekxyilm4/qN3H///YMuz6onaCpDo9Vqm9V7W7FiBTt37uS3335r9wE/MjISaJzdaU3cmqae8/Pzmy2v5OfnExoaanTSsbS0pLi42CRuvYUoinz++efcdddduLu799sHvr6+nqysLKZO7X4l5+5QVVVFRkZGryU5t8e7777LvHnzWHzNNaR+ugHXuddz3fwonDUK3vkjm/biq7oicPYTZlKbk8HWL79k3rx53Hbbba3uV19fz5tvvsk//vE8gk7CSCJw1g9r9TOjEjQ44EZBfkFjYMmpw7j5+jHGwYIgGw1OagXplVriSmv4LrWIkrqWARBN6QDl5eVoxc6v22mpQSVrTCKXO9uhQyRTrCWTWtAAlGPWUESQm4bAudO45vrrqKyo4NiRoxz6ZSvp5TWIugbefPNNoPEGeLlpyOjo6Bbbrr/++lZzxYqKirj99uUoVdZERP4dubz94rsdFbYmDh8txM7OjVWrnuEfzzyDVJBgYWNO9PZoJk+e3O7xQxm5XE5tba1xSvCBBx5g+/btREdH4+3t3e7xTWvUl4sL8Pb2xtnZmb179xIaGgpARUUFR48e5d577wX+NFPOz88fMEbT7THoxO3cuXPk5ubi6+vbr7ltWVlZWFlZ9XtR1Pj4eNzd3fs1B+Xqq68mOyuLwMBAvMszGW+vYfO5bGr1HQsd7qzACYIEtytvIuXjN1h+x51MmTKlxZf85MmTLL1xKUlJSbiJPvgy0mj5dDk8RF9OZhxg/rx5jIuMZOQodxLKajmQU0ZCWS3adq5HIlcgNbOgoqICra4WPboWPopt0SCvoymiW+7ceipHNXpihEpiNCDTl+JrrmFE5ChWz5pJUV4+e/b8wlVXXdXhc7aHwWBg3Lhx1NXVEz7url4RtiZ2/5zDNQsdWLb8Fvbt28eBAwcuWzG7N6mmkk6VlO/OeTpAk1tIfX09Dz74IFu2bOHbb7/FwsLCuF5mZWWFWq0mOTmZLVu2MH/+fOzs7Dhz5gwPP/wwU6ZMITg42NhmYGAga9asYfHixQiCwEMPPcRLL72En58f3t7ePPPMM7i6uhrXbGUyGTKZDDMzM8rKyvr9vtcRBp24fffdd0yZMgVra+t+u6GLokh6enq/L2yXlZWRl5fHzJkz+7Uf0Di1kZaWxp49e1i37lXOZufhcc1y5BbWHTq+swInVakZdt2dpHz8JqNGjaKiogKpVIrBYOCNN95g1apVmItWRIgzsBDa74PSXMGMOVO5d94yJFKB7777jv/ExCEf0bkaaEpbB2oKGsv1aKnBjI7fBLRiNfrKepBKkNm3H+KuQyRBrCbBHL5JTcJr91muv/56fvrpJ4YNG4aPj0+3/QnDw8NJTUvD0XEUZuatR1peTFeFTa9vIO7ct5yOzeTNN99k5cqVfS5s9vb2qFRqzmmP9dk5VSp1h6b5FAoFlZWVvPvuuwAtZmo++ugjbr/9dhQKBb/88otxjdXDw4Nrr72Wp59+utn+CQkJxkhLaDRsqK6u5u6776asrIzJkyeze/duo29k09SkmZkZ5eXlJnHrDb7//ntj4nZ/UVpaSk1NTb87/58/fx5vb2/U6vafpnuburo6jh49SmhoKHPnRhHzz3+S8sFruF+zHLNhHVvE7qzAKe2dcbtyKVk7PiU0NJTY2FjmRs3l132/4ok/voxCIrQdxSpXyQi5MpCwRSMoTCnhh/d+YXvMF8jkcjC3xjeoc16hCjtHynMygM6Jm07UodVp0Wv1yB1sEDoZfVuy9xhpv8Wwfft2RFEkJSWFffv24e7uTmBgYJc+I48++ignT55E5eJBQe4fgEDgiGuRSltfY+6qsGlrS/nj9GdUVeVx111/Y86cORw5cgQHB4c+XUceNmwYCQnxLap7NzQ0oNVqe8UKqzVvydZoCiypra1t06jYw8OjhTtJa1zqly8IAi+88AIvvPDCZY9pCiopKCjo95pzHWFQiVteXh7Hjx/ngQce6FdxS09Px93dvV9DYgsLCyktLSU8PLzf+tCEKIqcPn0aGxsbhg8fzosvvsjs2bOZOXMW6f99B6cZV2MbPqVDN4bOCpxlYCh2kZmcPbqPZcuWsS96H6544ScEt3EUSGQSRs4eTvj1o6nIr2LXP6PJOV+AXtSjkCnx9vEiLi6O2px0NG5eHX4vFDYOiIbGL34GSeSKGdSjRSfoETGgQsk93EAM0dRRh0SUokSJ5H8ppw06HRq3zuVtGrT1VP52Ektzc6N5+NixYwkMDCQuLo69e/fi7e2Nn59fh4Of9uzZwxtvrkft5oXXTfdTmfQH2Tv/S82J9wgOWdYiv62rwlZSfIFzf3wO6Nmy5XOWLl0KNNbzO3HiBNOnT+/T79mwYcNaiI0oilRVVSGXy/vVAb8psESpVPZLrEFT1GRTesJAZ1BlQe7atYsxY8ZgbW3db1ZXDQ0NZGdn92sxUlEUOX/+fKduVr1JTk4OxcXFhISEGL90U6ZMobS0BCdHR/L3fkv2d//BUF/XTkuNdDbRW+ngAhIJX3z5JQsWLCBPyKBMvLwZ7/BJnty88SpGzfUnevNRvln1EznnGy2vpIIUZ51no9P9/wJLOoPSxgFEEUGQUi4tp9YSpI6OmLl4Y+Hqj6VboweghetwzFx8UTi5Umctp0RR1tiARILcpXPRaFWH/0CsazB6PTZhZmZGeHg4kydPpqKigj179pCYmNjuU3dJSQnz5s9Hqtbgsfh2BKkUy8BQvG55gDpDFbEn/oW2ttS4f1eETRRF0tP2c/rkB1hamnH+/DmjsAH4+PigVqs5f/58J96J3kEQBNRqNVqttl8tqORyeWP1iH4aNQmCgEwmw9zcnMrKjq0X9ieDauT2/fffM2nSJJycnPotaTo7Oxvzi56Q+4OCggJqa2v7fc0PGnPszpw5Q3BwcIs8HHNzc/Ly8liwYAE//Pgj2oIchl13pzGqsC06MoITRQMFv/1I8eG9mE0cjfZ8Gjt37SJ8zFjOnz5OuG4GCuHPPpnZqJl2bySOvnYc+fwk8dGpiIaW40J3fMioT8TOzpbi8ydxnrkIqapj03qK/5WpkUol2NkHMWJU8+KZCnnj59bP70rqG/68UeZkHSMhfjvo9ZcNJrkcFXuOIUglxsi2S7G2tmbChAkUFhZy7tw5srKyCAsLu2wajZ+/P3q9Aa9r70Bm/ucITe3sjuctD5D+33eJjX2P0LA7GR/p12lh0+nqiDv3FUWF55g4cSL79u1r8ZAmCAKhoaFER0fj6ura7+HnTQEVdXV1/bYM0LTuVVdX12+zRnK5HI1GQ3Z2dovv+0Bj0Izcamtr+fnnnxk1alS/TklmZ2d3aI68N0lOTsbLy6vfnQJEUeTMmTPY29u3uf64a9cu3lq/nobSQlI+ep3K5I49jbc1gjPodGRt/4TiI79ie/NcHB9YgvPKW0AicPrMaZTmCuIkJ4xrCwHTvFm64UrqquvZ8uD3xP2a0qqwQWNagCNuyGQyRL2O8nMnWt3vYhoqyqi8cJ6KxD8AEATQ1na8LphWW0ZT4p3cpePiVpeeS31KNuPC2w98cXBwYMqUKbi5uXHw4EHOnz/fYhQwY8YMSoqLcZ5zTavTsQprW7xuuR9RJcfRLoUJ4+07JWzV1QXEHN1IcVEcTz75JAcPHrzs7IO5uTlBQUGcPHkSna5978nepsmpvz/rOysUChoaGvqtD3K53FilYKCnBAyakduvv/6Kk5MT9vb2/VYzrb6+nuLiYsLCwvrl/ACVlZUUFxczZsyYfutDE9nZ2RQXFzNjxox29/373//OjBkzCA+PIPOrf+MwOQr7SbMR2gn4aG0Ep2+oJ3Pbh9RkpeD02M2YjW30UFT6umH/t4UU/Ws7SpWSvLIcSm1yufW+m3D0teOXDYdJO57VoWtzF32JyYtGrlBQEnsQmzGTmq1z6KorqUpNoDo9iZrMZBr+58QvKBUglaDX69FqSy/XfAu02lIkEgGDQezUyK1ybwxIJOzcubND+0skEgICAnBxcSE2Npa8vDzjKG7NmjXsi47GalQ4NqETLtuG3MKapU8+R5SHHS+++DIWljNRa9rvc2HBOc6f3YpMJmHXrp3Mmzev3WN8fHzIzc3l/PnzzULZe4LOCoRMJkMQhFbdQvoKqVT6v6oKzUvh9BUSicSYEnBp4M1AY9CI265du5gyZQoODg798keFxox9S0vLfrUASklJwc3Nrd9LuzdNR4aGhnb4i94Ysl9OUFAQKb//RG1OBm5X39LulN/FAnetty2vv/wiNfmZOD9xK+pRzSMxLaePpe5CFnm/xrBw4UKuvfZa0mNz+OXBQ9RVdfxJ0wo7rCS2qGzk5OfnU5ubgdzckrKzJ6hM+gNtXlZjzbVhzqgnBGAb5I3SxxWpnRW5L3+E9mwKdXWViKKhXQEH/lzDkkmR2nQsxcWgradyfywWZmadnraztLRkypQpJCUlcfDgQczNzXnq6adROrjgEnVdmwEL450smeNhy79PJpOUnYWQ/G/GjL0Hlcq61f1F0UBq8h7S06JxdXXj+PFjHQ7zFwSBsLAw9u3bh4uLS4+YpDfdP2pqajo1xdjkFlJXV9fMLaQvaZqabGho6Lf7oFwuN1YJ6K8+dIRBI2779u3jjjvu6NdK1/n5+S3MRfuS+vp6MjMz+92xoSk60sHBodO5SAqFguTkZG699Vb+8/kWUj56HY9r70Dl2HY7VQ163judxu1elty9ZBFfWlSgDGg9qMf+9gVMdfFl6ZWL+P6779n+5bdE6GZ0uChmnaglkwtUGSopz28AQSBr+8foqioQ5DI0YwJwWDwOdbAfMuuWeWQKVwe0cemg15Oa/At6Qz26hhoMBj1KhQx4lrjzX1FXp0MmU6FQWlJdnY8oisgd7TqcBlB9pDGQ5OVXu1YGqGkUZ2lpyU8//cT9K1awR2eFRH7596lJ2D6KzyVHL8Vz6b2k/WcTJ2Pf/3/2/js8jvJ6/8dfM9uLpN1V712y5d4buGHANj30EkpCSEioCSUQUkhIyJuEAKGGFHoJPTQbG+MCtnHvliWr97qr7X3n98dKKwtJVkH2+vv7cF+XLvDsM/PMlnnu55xzn3OYPuPH/VSUfp+TQwfewGKpZMWKFXz88ccjjpfrdDpKSkrYu3fvmKgnZTIZBoMh0jdPq9UOm6gkScLr9UZI5tjjLpcLv99PXFzcCSW+sFfAgyAIJ51gJUnCbrdjtVp55513mDFjRlS7shwP/58gt5aWFsrLy8nKyhqzJpwjRSgUorW1Nardtuvq6jAYDFEVs0D4+zCbzcNyRw6GV155heXLl/P9666j+qXHSTvnSuJKBnf3hvw+Dr/zLx7w2Hj4ib/xA0WA1/0N/UQmMgQu0mQx8aISfv/QHzm8dz9xMbGUOnYxKTT3uIuBX/JRwxHqqUQQZaSmz6alZTehoJeA3Yrp+yuIXToTUXN8S1WREg/dqrr6xs0o9HHItDpQyAl1W/0ulQdX0EXQ00qgw0ow4An3cMsY/kJhWxMWktx6663DPmcgzJ49G7fbw28feZQChYrXj7bi8PdX5B1LbPWOsPJVEWsg+6qfUvPK3zmw/1WmTf8RMll40bfbGjmw7xX8PgePPPIId99996jvMTc3l6amJo4cOdKnAv5o0RO3H013d7/fTygUQqVSEQqFcDgcOByOcAd1wrHNE+ndkSQpkhIQDWGdJEnYbDa+/vprNm3axMUXX3zS72E4+P8EuW3cuJFJkyah1+uj1pywo6MDuVweNWKRJImampoxb0Q6UoRCIQ4fPkxxcfG3jjtcffXVnH766ZSUlND44Su4m+tIXnxuv7YuoUCA+vdfxN1cS9x91/Es9fxUyOUqRUYfgtMh43plFipEHvdVYzl3Buzdj8frwRqyUsdRsinq/56kEA1UUiWUEhIksrIXk5G1AIVCg0yupLZ6PQCiQj4ksUE3uXXHc1JXXN6HtFWyMLlmXvpDvMHwGL+ti6PP/B5EEeUw0wC8tS14qxqZNWtkFVS+iUsuuYSGhgaSFp/DvyrMXJyfyE8npvNqWQtNrl437kDE1gOlwUTmJT+g5tWnKCt9n/ETLqWleTdlpe+jVqvZ9OVGFixY8K3uUxAEJk6cyFdffUVeXt63Jg9BEEhNTSUpKSlCSsOFy+Vi69atbNq0iffff5+AP4CJJJKkdBpkVUw/fQrPPffct7q/oXDgwAEEQRhWbcmxhkKhwGq1MmPGDNavX/8duX0bbNiwgenTpxMfHx+1FIAel2S0CjV3dHTg8Xi4/rrrmTV7FjfeeGNUUgHq6+sJhULk5OSMyfWysrIiD8q+HRtxN9eRedH1yHXhuJMkSTSt+i+uugqS770GzfgcHAR5xlfNT5W9BBeLnJuVuTRJHv7pb8CHhGZCHqZrlmN+ZRVJSUlUth/EIMUTJ/Ra/11SB0eEPTgkK6mps8jNX9bHtZaePofa6g0ggHXNNmLOnD3kb0B+jCDEbxtaVBIZEwz2Ofd4sH8RFpJ8+umnwxo/EP75z3/y7nvvEVM4kfg5SwlIEv+taGNRmoEbS9J4uayFGrvnuMTWA01qFmkrL6fxo9dwuzuxWesoKChgx44dY7YhNBgMpKSkUFZWNmairp7KH8OBxWLhlVde4dlnnuXSyy6lqa4Z6aiKDIpRCWr8gF8SeKXmVR5++OET2sA4JSWFyspKSkpKTtgcx0NCQgIlJSW88sorUZl/OPj/RCrAhg0bGD9+fNRyXSRJoqWlJepVUY4ePcqm9Zt49JG/kZ+fz7IzlvHuu++OeOc5WgSDQY4cOcL48ePHdJMhk8nYu3cvd9xxB+7GWir/81dcTbUAdG5fj+3QLhJvvgjtpILIOT0Ely6ouV6RxS3KPKpCTl7x1+M7xlkZt3I+unmTaGtrIyUlhcPynfglH0EpQKm0m51sQNDHMHP2LYwr+V6/mJFKHUdS0iSQJPwNbXirGod8P4okYzgXgOGSW1fvucMgt5A3LCTRa7WjfibKy8u56cc/QWmIJ+3cq/oQ9samLj6p7eS6cSmcmx0/JLH1QJtVgFwfi83ewFVXXUVZWdmYezrGjx9PQ0MDNpttTK87GCRJ4quvvuL73/8+qSmp3HnHnVjKHVSsaeCspWeTI45DJfSKu5LJREQ84Yt+cnIyNpsNt9t9QucZDPHx8WRlZXH48OFRuXZPBk55cmtubo7E26JFbna7Ha/XG7XAqc/no7m5mWeeeYb0UB4LgisoYRZ7Nu7nkksuIS01jfvuu4/KysoTeh/V1dWoVKoTVlPzscceY/WqT5E8bmpefZLmte/RtuETDBcuQr9gSr/xDoK85qunRIwhiMQ7gaZ+MThBEEj88UUo0hJpamkGpcQBYSvb+IJmoY6icRcwY/bNxMQO/p4ysrrjrDIR2+c7Bh0XmVMuQx4fJkmfpQOfpQNXQzWOmnKc1eUAOGsrcNZX4e1oxdvZCoAoF7C8tZaOlz7B/uVeAh1dA17fufUgksfHH//4xyHvZSAEAgHGl5QAEobJc5Cp+itvd7XbOdTpZF5KLGvqzUMSm7O+iqr//JWAy8Ev77mH11577YR4WXQ6HdnZ2ZSWlo75tY+F2Wzm8ccfZ1zxOE4//XQ+ePNDMn2FLJBWMom5dO5yIJPLyJrS1zpTCEripWTeeP2NE3p/SqUSk8kU6QpwstFTuL6kpIRNmzZF5R6GwinvljwV4m0tLS0kJiYO230x1qivr8fn81FRUcF8liMT5KSRTVooGwdWGjureewvj/PnP/+ZpUuW8pObf8IFF1wwpqW5/H4/5eXlzJgx44S6Zs8++2za21opKCjAsncLsjgdhosG7pkXh5zrlFnsCnaRJWq48hsxuB6IaiUpd19Nw33P4PK4cOFCqYph5vRb0emGVt/GxmWhj0nD6WjG+dU+Qt9fgag9fiqGIi2RQIcVZ3UZFf/4U+S4RqOBy86m/t3/9Nt1C6JAZoqP9kMHaV8VLvulTDGinlyEdloR6gl5iEpFuCKJKHLbbbcNee8DIS0tjVAwiHpiPm0bPyHgdoZjnceQ0dzkWEpMOr5otHB2lokWl48ae/9EbUmSsOz6ipZ1HyCTyVi/bt0J7y1YVFTE559/jtlsHtMyfD1W2j/+8Q/efuttAoEgSaQxndMxBpL6/O5DQYnSLyopObOAur3Nfa6TJKWzd982qqqqTmjoICUlhZaWlqjE3URRJD4+nhkzZrBhwwYuueSSk34PQ+GUJ7dj423Rine1tLREtZZkXV0dGzZswCQmoZX6Ss/1QhzFTKUgOIk2Gti76SCXrb8MkzGeG3/0Q370ox9RUFAwyJWHj6NHjxIXF3dSUjFMJhNms5nx48dzpKyMpt/+k5S7rkaeYIiMUSPyY2UOlSEXbwUa0SHrE4P7JsEpUhNIuvUyWv/yKjKZDJ/PTjA4vLw3QRDIzFpA6aG3wR/AsWU/sctmH/ccRVoi7kPVIEDqvdciM+gRlAo08rCSMOORW3D7fARtTjpf+gRfTTOmbD2XPj4XAKfZS/3uDmq2tVPx1UFa1mxDplejnlSIt7Jh1AWzzz33XNrb2zFcsBDjFWdiW/01na+swm81k3H+NQgyeb8Ym9UX5NriFP5xqJFWd68LPOT30bTqLWyHd5OUlER5eflJ2YCq1Wry8/M5fPgwCxYs+NbrQmdnJy+//DLPPvMsRyuOopfHkhUoJo1slIKawYqbHl5XwdV/Pw+VXtknhzKBVOSigrfffpt77733W93b8ZCSkkJpaWmkienJxqkedzvl3ZJfffUVxcXFUUsB8Hg8WCyWqOW3uVwu7HY7L7/0MkmhwV1nMkFGqpDN9NBC5nIWOouRJx79O4WFhUwomcAdd9wx6mKnHo+Hqqoqxo8ff1I3GIcOHeK6a6/FV99Kw71P4T4QdrsKwNWKDLokP28HGpHoG4O7SpEx4HqkmzEOw8VLCAaDiKLIwX2v4vcPL2aRlDwZuUILgoBtzbYhq1tE0gECQVT56Sgzk1Ekm5DFhxd/eaIRZXoimvE5SP4AgkwgIa83eVtnUjFuWTrLfzWVn316Jj969wxmX5aFZ9chIKyWmzNnDtu3H7/32Ntvv824ceNQq9Wkp6fzyaefop6Qh/HyZeFCuPGxKDOTsJftp/Qv95DvM/eLse1ss/NVcxffL05BKw8vGb6uTqpfehxb6R7OOussWltbT6pnpaCgALvdTmtr66jOlySJjRs3ctVVV5Gakspdv7gbe6WH6SxkTuBMcoTiMLEdB7YWB+Z6K9nT++ZoygQ5JimZN994c1T3Nlzo9Xq0Wm3UYl7x8fFkZ2dz6NAhLJbhV+M5WTilyc3pdFJaWkp6evqgRV5PNFpbWzEajVGrCNLS0oLX68XusJPI8GJdeiGWYmEq84MryKOEw6WHeeKJJzAYjMyePZs1a9aM6B4qKipISko66Z0Y7rvvPl566SVOn78Aye2j+U8v0PXRl6yUJZEoqHjZX8+xNdqHQ3DGi5egmVJIMBjA57Nz5PC7wyrDJIpyMjLmgiThq2vFV9V03PGK1N50gECn9bhjA51WBAFMWQM3FhUEgcSCWBJy9QR9IWQyGbt372bKlCmcffbZgy5uW7Zs4corr+SHP/whH3/8MU1NTSBJGC9ZGnFBhjw+dLNLiF0RLrc1L1HHvw/V94uxrW/sotHp5aqiZJxVR6j6z1/xmdv461/+wmeffXbc93cioFAoKCws5MiRIyMqo9XR0cHf/vY3igqLWLx4MR+//Sk5gXGcJq1kInMwCUkj2sBV72ggZ2ZGv+Nh1+Reqqqqhn2t0aDHNRkNxMXFodVqycrKYvfu3VG5h+PhlCa3ffv2ER8fH/V4WzRVki0tLWzbtg2TmNRHlTUcyAQZPrwoFXpmzb2dtPS57N69n7PPPhujwchtt902pOrM7/dTW1s7Jq7NkWDdunU88sgjJJPJ11u2kZ6ahkatYWK9m7mBGP5lP4qH/u1HhiI4QRRJuvUy5AkGJClER/shGhu+HtY9pWXMCf+PKGJbd3xhybGqx8GEIQAhlwfJ4yMUkDBlH79r9pf/OALAvffeS0lJCc899xxarZb//Oc/A45/4oknWL58OXfeeScrV64EmYgiMxnH5n2RMTELp2G8eClnnLsSgH/883m2vvIPpGDfQsUS8HZFKwqPk+VGATmwZ/dufvGLXxz3nk8ksrOzcTqdmM3HL1AdCoV4/PHHycvLJyU5hXvuvgdHlZfpLGR2YBnZQnGf7hEjQc2OBrKnpyHK+y6lYdeknHfeeWdU1x0uUlJSaG1tjUohZZlMRkxMDBMnTmTXrqGLi59snNLktnv37oiYJBo1zEKhEO3t7VEjN7/fT0dHB2+88QYJwZGVuQIISUFahHpS0qaj16dQWHwuCxb+ivETLkMijieffBKj0cSsWbNYvXr1gNeor69Hr9efVMu5o6ODq6+6mgQxhYnMZlZwKY4WN9lZ2fzsZz/jL395hD2/fAxfU/uA5w9FcDK9huS7rwF5WCBUUf4xdtvQEn+VKhZTfDGEQji+3EvIPbCCUJKksO+02wIIdAxuuR1r1RmzdIOOC/pDdDW4QCCikhRFkWXLlrF168A957Zu3cqyZcsoLCzE7/eT+KML0c0uwVte32fcApmJJfKwEtmxeCKOmjIaPnoN6ZjeZUGPm6q3/83vf3Ufp512GgcPHmDKlP4K1pMJhUJBdnb2oNbRkSNHOPfcc1GrNdx5553U1tYhSDLmh1aMykobCG1VZvyeAGnj+8ai5YIck5Rywl2TRqMxLOqJklvQYDBQUFDwneU2UuzatYuioqKoVQWx2+0IgkBMzPAK2Y412tra8Pv9NDc1kzRMl+SxaKeZgOQjJW1G5JhMpiAldRrTZ/2E2fPuJD1jHnv2HmTFihUYDEZuvfVWrNbwgitJUkTxdTJjbbfeeitdnVbGh8LKTK2gZ7Z8Kb+48y7efPNNPC43/lYLjfc9g3PHwO1zhiI4VXYKST/5Xve/BA7uf5VAYPC2LTZrPfv2voi5swwAyR/AsXl/+P8lCV9jG12fbKblL69Qd+ND1N/2t1635HEst0B772uDuSUB6vd0ApCa0ld6npycPKhbqqWlhffee4+a2lpils0mZvF0ZHF6gtbe2OsCmYmV8mRe94W7JaiLski+/XLsZftp+3IVAJ72FqpeeBRHZSlLly5lxYoVlJWVnbRcs+MhNzeXlpaWiPI0FArx6KOPkpWVxfjxJXz66SqMpvFMm3ET02bcREDyYadr7G5AgpqdjeTO7u+aTJBS2bN3z6jjgsOBKIoYjUa6urpO2BzHg8FgIDs7+zvLbaTYtWsXOTk5USO3rq6uE14E9XhoaWlh//79mGQjd0kCNFFLbEzGoHJ3nS6JgqJzWHD6/ZRMvBww8NRTT2E0xjNz5kw++eQTAoHACctrGwhffPEFb775JvnBiaiE3ortp107A19nkKoPWqg6Wk1SfAL4g7Q++jrm/67tY2X0YCiC0582hdgV85GkIB6PlSOH3+vn3nG7LRw88Aa7djyDU7KSdu5VqJPTQRCwfroZ838/p/H2R2n4xd+x/ncNCTIz86/N49K/zyVrZgIIQ5Bb92tKnRyNYfDUjYOfhK2tb3bbPh4kSeLLr75ClZdGwvUr+73eQ2zP+2polHqJXTerBNNVZ9G5dR3Na9+n+qW/EbBbeenFF3nzzTeJj48nLy+P3bt3R7UzNYTz3pKSktixYwfnnHMOarWGu+66i44OFwWFK1lw+v1MmHQFBmMuMbEZ6LRJNFEzpvdQvaOB3Fn9yS2esAht7dq1YzrfN2EwGCIb0pONuLg40tLSqKioiNo9DIZTNhXA7XZz+PBh0tPTo0pu0Zq7p1Dzu+++iymYPKgceTB4JQ9mWihMv2DIsTKZguSUqSSnTMXlbKepcQf79u1gy5YttLS08NFHH/HHP/7xhH8WPp+Pm39yMyZZIqnB3tSL9AnJjFuaz5s//4RE0tEHDRw2b0fqLl7b9f5GvBUNJN12ObKYvjUHByrVdSx9xV99Nt6qBrxldbS3HaCpMZ/0jDmEQgHqar+ktmY9olpD2soriJs4E0EUEQSBxo9eI9DSgWvNZkqWp1N8RglZMxJQqHtzIWu3t9Ow14y/bXCXUY9b0pilH3QT5fcEObw6TG4//OEP2bJlC/fccw95eXm0trYO6Dbv6uoiEAggqBQk/+JqhG6peNDqQBYX04fYaqX+itG4lfOxf7ELy97NaFVqDh482Cefqri4mJaWFo4ePUpxcfGg7+9EIhAI8Nhjj7F27Vquuuoq1qz5nPiEEtLSZxNnyOn3eQqCQEr6TKqOrsYv+YbdJWIoNBxoQROnxpQVh7mud4FXCWoMMhOfffYZ11xzzZjMNRDi4uKiLirJyMhg9+7dLFmyJCr3MRBOWctt3759GI3GqIpJrFZr1OY2m834/X5KS0tJYOQxvw6akYCk5EkjOk+rS6SgaCVnLf8tM2bMZNOX+3jmmWcwmcIJm8Ntijka/P3vf6eiooLC4JTIwqRQy1l6y1y+fnUvthYHABpBx7jgTERkeL1eFAoF7kPVNPzyabzV/VWMx7PgBLmM5DuvQhYXjncdLfuQttaD7NzxDNVVn2OceRoFP74Pw+TZEYVh7LgpIA/38ypZns7K30wjf0FyH2IDMGbrCQVCeJsGl2oHOrrCaQC5g7u+j6xtJOAJW0jqgI6X//0KxcXF3HHHHaxdu5Z58/o3Fu1pRaTMTkFu6i0p5t5fQXZxwXGJLWh10PzQC/ibO0hNCpd5+maisEwmY9q0aRw9evSkuycPHTrEypUr0Wp13HPPPWzevAdJknPNtQ9TMvFyDMbcQTcKKSlTAYkW6gd8fTQI+oLU72se0HqLCySy6tNVJ1TwYTAYsNvt/bqqnwz0iEomTZp0yrkmT1ly27VrV9TFJFarNWqWW2trK01NTWhEHVpGHvProJm4uCwUitFVT584IZ7GJjdZOZcyZ97PychawP79hznvvPOIjY1j5cqVNDYOLcIY9v12dPD7B39PmpRLjGCIHJ/3/Wk4OlzsX1UWORaSQhxmJ0pVDOMnXEYoJEJIImix0/jrf2DftKff9Y9HcHKDnuRfXA2EXXmHDr5OQBEk7/o7SV5yHqKyr5JOkMlJnLuEUFDi4Mf1eJ0D1/aMqB+dXqRBFh5/qyWcBpA9uJhk99vVCIKIiBwnNrIDxaQGcnjy70/S0tISab1y7bXXct999zFlyhTcbjexy+fhrWyk6+Ov8DW2Y357Hf6qJn50zsURYgs6XHhrmvE3hgnYtaeM+l88gedILRdeeCFNTU2DVuYxGo0nzT0ZCAR45JFHyMjIZOLESaxevQZTfAnTZv6Y2fN+zpFyN1MnD52LqlTFYEoopkWoG9P7G8w1aSKJTnMnhw8PHBseC2g0mkil/mggLi6OgoKC78htuDh48CAFBQVRs5x6xCR6/fHl2ScKzc3NrP1sLXGBhBHH/EJSEDNtxCeMG/X8JSUGDh7qArqtucKVLFj4K0omXonbE2DVqlVkZGaRmJjIU089Nep5evCHP/wBr9tHHr1VzuNzDIw/I591T2/lWF9iDWXYMFMy6QpSUqcxe+7txMSkQSiEEAzR/sy7dPznI6RAXzn78QhOXZSF8fIz6ZlIlZyO6jgNVI1Tw9ZSwBvk8OqGAceYssIbs4KCAiZ5lMwUDZwvD1vh02VxTBVjKTQmolFpBxWTtFfaaNxnRpJCqDRxSEiUsZcGKtFKsZikZH7+859z9tlnU1FRwUcffcT+AwfQzZ9M/HUrSbr1MuzrdtJw71NI249w1333sio1FLHYXDuP0PjLp2n5v3CVCct/PyfkcHPB+efz/vvvD/r+e1BcXEwwGKS2tnbIsaPB/v37Wb58ORqNlnvvvRezxUNh0TksWBiOExu63Y+HS61kZurQ64aOtCQmTsAqdeKTjl8vcySo2dlIUkE8WkPf2LiBeGSijC+++GLM5vomBEEgLi4uquSWmZnJgQMHojL/YDhlY27l5eWcdtppUSOXnnhbNMQkDocDl8vFp6s/pZCpIz6/iw6CBIhPGF0sJCFehVYjp7rG0ee4KMoxGHMI+N0kzF+GFAxi3vc1t956K3fceScLTz+dV155ZcQClIqKCp5++mlyguP75BvNu2YaB1eVR9yRAC7JQQ1HyMxeSJwhHJdTa4xMn/UTqirWUF/3JaIoYlu7DW9VI8k/v6qPW26wGJznaD32z7YgygVCAQlb6R50OYUYp8wd8J7l+lhiS6ZjK93N7reqmXZxLkgCOl88Om/4TxuMZ8kbP8LlctEpCxKUKykQwxbadNGACCz/0U9ISkrCEerC22bBqezEperEoeogJAbY+15NZE6324zBmEfQ78XuaESFhmKm4MbB5g1b0MfpaLd0okhPJPGmC8Obs7kT0c+dOGiMLWbxdPQLJtPxwsfYv9gZ6ZSekdHfChkIMpmMkpIS9u3bR2Zm5piUgQoEAvzlL3/hqaeeoqmpCUGQkZQ8mbSM2cTFZQ/4TDqdAZqaXeTlxbD/wPFl8aaEcE8/M62kkPWt7xfAbfXQVtFJ9ox0Stf1FjCXCXIMQgLr1q371k1ljweDwRA1xWRMTAyJiYlUVFQQCoWi1pbsmzg17mIAlJWVkZSUFDVyi2a8rbOzk0AggNfrxcjIOxF00IJSEYNOP7r8vLzcGOrqHQSD/eMErc17EWQy4mcvIXnJeRTd8iDpF1yLKi2H9evXR6y5J554YtjzPfzwwygFNVkURo6lTUgidVwiu9472GdsOftQKHXk5PXtAi6KcgqKVjJpyrUIohIk8FY10XDvU3iO1PQZ+00Lzn2ggpaH/kNyjpqbPz6LpOLw996y5l08bYNXIomfeTpIoHDEYDo6gan1l1DccgZGVyZ+mZsm4z7u++NdXHvttfxp6yc846vmPk/YPfUvfy1/a9rNTTfdxLXXXkt13FZcSgt6byK5HQuYVncZ2S3z8R7SIAgiiQtXkrriUpwBCw5nM/EJ47ArHHzNWhzYCAUk2s0dCEo5KXddjajuFUscTzwS6Oii8TfPY1+/i/z8fLxe77CJrQcpKSlotdpv3ZVi//5wgQGNRsv9999PV5efwqLzuj0Gl0WstMFQVW0nL3fo9UKlikWvT6WDsRVh1O9rIa2kvzI5Nmjiy01fnvC4W7TITa/XExsbSyAQoK5ubN293wanJLk5HA4aGxsj1UmigWgqJbu6uqipqSFWbhxVCkCH0Ep8YvGorc7cXD1V1Y5+xyVJorl5FzFFE5GpwzJ9US4nbvxUcq76KQU/vo/4OYuxOFzccccdyBQKFi9eTH394MH7lpYWXnn5FdIDeciE3tjO/O9PY/cHh/HYewvSdkjNdNBMQfF5yGQDK90SEscze+7txMZmQihEyOmm6ff/xrr66z6LSw/BpXlFrnAbyZ0Vz1X/WEBcqpZLH5+LXCsihSQa3n+RkG9g99Xk8eP4/Z8e5tFHH8XdIFKVsJndWW9RlvI5DaY9WHR1YPB2pwP0dxn1HPNKbtwJbTQbDlCRvIF9me9SmrqKjgYzv7jjbv7+9yc4e+U5JE6dR/6Pf0niwhVYuiqRRDDEF3CU/XhxgySRfPsVfaqjHI/Y3IeqaLj3aXy1LfzoxhupqKgY9Hs6HgRBoKSkhIqKCny+4RWj7oHP5+P6669Ho9EwZdo01qz5nITESUyfGc7DzMiaj0KhGfpCQHW1g4x0HUrF0MtafMI4OoWxrezRVtlJUn7/EnWxGDFbzCd04Y+mqKQn5pebm0t5eflJn38wnJLkVlFRQVxcHGq1Gp1u8ED7iUIoFMJms0WV3HZs30FMYOTzeyQ3LsmGKb5w6MEDQKeTk5SopqamP7nZbQ24nG0YJs8Z8FylMZHkxedSdOvvyLjwOtTpuWzcuJGs7BwSEhJ47LHH+p3z1FNPgSSQTq8aL29OJjGJevZ91NuzKySFOCocwGDIJTFpwnHfg1ptYNrMH5OVvQhCEoQkOl/8mPan3yHk7V182w+Wc//tdzJuQhG//PVdKFRhl1pcmpZL/zYPpBC+rk6aP3unzyKYplPys0npXFqQRK07yI033siDv/wjHdSB0HexjM/WI8qEAXPdAp3hYwOV3XKpLDz56DP88MYfsXb3QRZmJXLXtEymJBtImHcG+Tf9ElV6eiSpXJQJ6OZORDutKHKNwYhNkiS6Pv6K5odeQHJ7+eh//+P5558/7mc6FBISEjCZTMNe3NasWUNBQQFqjYaXXnqJkC4WJImCwhWMn3ApcYaB3Y/Hg9Xmp6vLR9ZxKr30ID6hGL/kxcbxS3eNBO2VZowZcciVfQU4sYQJb8eOoXsBjhYajQa5XB6VxHpBENDpdN+R23BQXl5Ofn4+KpVqTHuSDRcOR3hhj4bV2EOsX371ZeShGAm6CJekMhhH10cqN0dPS4sbt6f/DrCj/TAytRZd9vGJU5DJiR03hZwrb6bgx/cTP2cxXU43P//5z5HJFSxcuDCyi33l5VdRBtV4cEXOn3PlZHa8fYCAt/cemqjBKdkoKDpnWIueKMrIL1zO5KnXIZeHrV/H5v00/uo5/K1mvLUttP71VeIKZNRNWI8+kEBe+wKQwtfOnZfEktsngCRhPbQL64EdyARYlmHkppI0Ss1OHtldxxaPErvLTcAzsLDEmKUjFJBw1/ZPBwh0WPt1A4h81lU2Wg5bCfh9HJLF8cT+Bj6t7eT8nASuKkzCYIonadE54c9bFNAYlDi/Poj57XVIkjQosYU8Xtoe/y/mV1ej02oxd3Zy7rnnDvl5DgclJSVUV1fj8Qxc6cXtdnPdddehVms4++yzqaqpJbZkBjnfv438G+9Fn1tMa9v+b3UP1TXDc03GxmUil6npZOyqhzg6XXgcPhJy+5aqUwlqdAo9O3fuHLO5vglBEKLumszIyPiO3IZCeXk52dnZUXVJRqsyid1uR5IkmpqaiGXk9RwttKPVJKBUju6zy83RU1U9cGuczs4y9Hnj+jS1HApKY0Ifa06TkcuXX35Jdk4u8fHxzJs/l9gUHdv4nD3iJnSTZGgNGkrX9brIQlKQaqGU5OQpx+2YPRDiE8Yxa+4dxMZlgSThb+qg/t6naH34BeKzdVzytzlIGj+lqZ+h88X3Ibi5NxRSdEZYMakp38VPxyczzqjluUNNfNHYRUCSwmkB884AAXa91b/GYY8KMlDf3O+1QEcXAgOX3drzTjUIItrsQlQJKUjA/k4nj++rRwJun5xBau0+BJlAbIqGH3+wjEW3lND17nqm7W4dkNh8TR003v8szh2HmD59Og6HY0y9E3FxcSQkJFBTU9Pn+GeffUZ+fj46vZ6XX34ZSR9Hypnfo+jWB0k/90q06eFYmmHybOzWepzO0bdwqap2kJOjZ6hHVxBEDMZcLHSMeq6B0F7ZSWJe/02pLhDHtq+3jelc30Q0yU2n05GWlnZKkdspqZYsLy8nPT39/9l4m8vlQibI0EmxQ5/wDViETgym8aOaWy4XyMrU8dWW/ouL12PFYW8mPX/pAGcOjR5rLnbcFHxdnXTt24Zl71b++9//IogyiouL0ev0TFxRwGdrV1PpO0wauSgFFS3U45XcZOeNbm61Oo5pM26ipupzams2gMdHwOMj99z8SOJ1QOahNPUzxjefTV77AqoSNyMIcN7vp9Oes4RzzjqfDz5dzb6EIlD0zXszTptP+1ef0VpqpaW0i5TxhshrEZejx9dbULkb7vJ6QkGpX8HkgDfIzv9WgQSxxX2T8J2BEK+Xt5JSsZObrvs+C2ZNxzprP+pYJQt+VMyM/PnMSJrHXz58A8tZvcnwzp2ltD35NpI/wP2/vC9SfHmskZ+fz+7du8nMzOTHP/4x77zzLl6vJ/z9T5iJcdo8NKlZA24c9QUTkKk0tDTvJr9g+ajmb2l1I0mQmqqhqen4vfrijLlUd5QTkoKIwsC5fCNFe5WZxAHibjGSgZ07d55QNaHBYIgauej1epKTk08pcjtlLbfU1NSoxNsgukrJrq4u6urqiBWNiMLIvh6v5MEl2TAYR9d2PjNDh8MRwGLpLwro7CwHBHR5o8+d64HSEE/SopUU3fI7Mi66Hm1WPmVlZdQ31DNt2jRqGmqoU5SzRVzFIWkn1cIR4uOLB62RORyIooy8grOZMu0GevZ021+t5J07v8brCCdh9xBcxIILiYxzL2L5eWdx3/338sbLL9K45r1+15brYtAWTUaQCX2k+wD6RDVyVXfvNGdfd12gJWw1fNNyK1vXhNSdotey5j3qP3gJX1dn5PWu/dtY/+4b3HbbbeRMTuF07SXIgyqSbMXMzzuLVVWvsfuFd+h6fwNSKIT5rc9p/etrCIEgWzdvPmHEBuG4Ul1dHSvPOYfXXnsNYgyknHVx2Eo75wq0aYPH0kS5gpiiSXR0lA74+nAgSVBT4yAvZ+jCB0ZjHiGCWMcw7tZWaSYpr39j5VhMOJyOUYt2hoO4uDhsNltURCV6vR6TyURNTQ1e79jlD34bnJLkVlNTg9FojBq52e32qJb82r59B7rAyOfvjbeNjtxysvX9ctt60NlZjiY1C7lm7L4TQSYjtngy2Vf8hIKf/Irzrv8Ru/bsYcOGDfgCAWINsXiNNtySA6/XSnvbIUKhb/fgmuKLmH/63cQZcgCo2NTKvy9fT3tlOBAfIThvPFMaLkLnTaQs8zOm/Sw5HH87sIOuA/2FAcnzliIFJQ58WIfP1Zs8LggChozwZ9YjIIHutji+8LhvWm6bni0FAUxXn03CTRfiaqmi8l//R/tXn+FubaB51VsgwLgLEmmcsBmf3MHExvPJ6JxOWcpass5XcfrN47C8tY7G+56h670NmEwmnA4Hc+cOnLf3beB2u7nqqqtQq9Wce+65fLpqNSsu/B65195O3g/vxjR9QURdOxT0+eNxOdpwu0ffwqW6xkH2cSq+ROaKSUUmU42pa7K90owpKw5ZP1FJOMRwIqt4aLVaRFHE6XSesDkGg06nQ6fToVAoTpl0gFOO3AKBAG1tbej1+qh0vw4Gg/j9/qjM3VPy6+uvt44q3mbDglplQKUauTsTIClJTUtrf1eOJIXo6qpCl1s0wFljA7UhnoUzp1GqSyP9wusQ5DLMZjPmLjOiKOLzWTi4/1W+3vwIdTWb8PtdQ190EKhUsUyb8SMyMucjhSSszS5euHI9pWvD5cQCohe30oYiqMatsOCXeSg+I435Pwy//+bVb+Pt6CtE0KRmIdPFdhc57issSciNQRCFPukAIVfYitMYlKh0veXlOqrtWOqcCAoFsWfMInbpTDIfv5O4c+bTvmUt1S88hiATyJwWz5LbJyAJIWzqFuRBFQG5F68iHC8tWpyKTCHir29l2bJldHZ2jvlv+uOPPyY3NxetXs8bb7wBMUZSzr6E+qK5FGZnkZFXMOK4tS6nCEQxogIdDVpa3ZiMKuTy488tCCIGQ05kUzgWsLc78Tp9JGQb+hxXCEq0Ch2lpaO3SoeCIAio1epBBT0nEiqVCkEQSE5Oprm5f3w5GjjlyK2nq6xWq40KwXg8HgRBiIpK81gxiZ6RW24ObOhiRpe4LYrhyiRt7f0fDKezjYDPhTYrf1TXHg5yYtWIwFGbF1GuQPL7Sb7ragwXLQa9Bl93rlkw6KKyYjWbN/2JI4ffw+EYfSKu3d6EXBeLJCgI+EK8f9d2vnjsINnts9H44ziY/jFavzEiMln4sxJSJ5uQQiHq33+BkL+v+zbljAtAhN1vVfc5bsrWI4h9e7cFzWGiM+X0dUl+/VIFiCIxS2YgasO/f1GtxHTlWSiKsxFkoDUq+d5f5yDKRZJsxWRYplOa8hkupZmi1jM4sqqVF6/ZSCgk8Ztf/2ZMW664XC6uuOIKVGo15513HrUNDRgmziL3ujvDVtq0+XhEBWVdLibHj9zKl6k1aNNz6eg4Mup7dDgCeDxBEhOGXj9iDdlYsYxpvlt7pZnE/P6uSU1Iz5Ejo39fw0G0yE0QBFQqFSkpKd+R22Bobm4mISEBuVweNXLr2YWcbHR1deHzhYUHWkYupnEKdnS6oYvHDgSTSUUwJNHV1T/e1mWpRhBlaNNzRnXt4WCcUcsRiwsJ6DqwHWVmCtoZ4zBdtozsZ+8h+a6r0UwpJBAIEK7/GKKleRc7vn6C3Tufp73tEJI0/OK9TQ3bsHbVkH7BNRT95H4UKeEyTPqGbNQtKexRf4xHae0TgxNFkcufnItSK+Azt9Oytm/txdjiyRASaCntovVIV+S4MUtPKCDR+d46mn/zLAAdz76LKBdIOCY2FPAG2f9BDYRCxJ7dN5fQvnE3/tJqBOCSx+aiiw/H2DLMYVekU9NOuXEDHfVWMppmEgpK7N65m9/97nfD/xKOg3//+9+kpaWhi4kJi4BiTaSefQlFt/6etJWXo0nN7PPMHDY7GWccXdFufd44uizV38oF3dbuISlp6PVDr08miB8vY0cIbZXmPsnckiThlpwIQZFDBw+N2TwDIVrk1jN3YmLid+Q2GJqbm0lOTkYulw9ajfxEwuPxRIVUIRxv6+joQCVT48FNaASLdUAK4JGcoxZdJCeqaR/AagPoslShTslEVJw4a3a8UUepxUXI58VRcQj9oqmRxVKQydDNHE/qfdeR9dRdGC5eghiri5CZ3VbHwf2vsvWrR6ir3YTff3yVnM/noLJqDYbJs9FlFSDXx1Lw/dsoWvE9brjhBv7+xJM8c8VHNB+y9BOZaOPUXPPvhSBJdO3fhvVQbwxFkMkwzFiIKBPYc4ywxNQdU5P7vJTMCW9a4mJ9SFLfeNuhNXUgiGgmF6BM6y275mtoo/3ZsJDl7F9NIX2yqS+xqTtwdHh4+Ycb+MN9DzNnzhzq6+qZOnXqqL8PCG+2Tj/9dESZjBtvvJHm5mb0BSXkXn8n+T+8G+O0+chUAz8r5V0u0nQqYhQjf4a1WfmEgj7s9tF3nWhr85CUOPRzrO1+Xpx8u+RnSZLwSC7MUhtHKg8Tm6dhH1vYLl/HBuEDNrOKDprJzMj8VvMMhWiTm8lkOmXI7ZRLBWhubiYpKSlqBBNNcnO73ahUKrxBD1v5DEEQ0ctjUAW0aCQdGvRou//UaPuoKV3dD6dWPzpyS0rS0NY2CLlZa4mdNmtU1x3W3BoFsUoZlTY3ztqjSMEgupkDpzPIEwyYLj0D4/cW49p7FNva7bj3HQXA67VReXQ11ZVrSUmdTkbmfHT6/pZsTdU6JAGSFvcmLwuiyI2XX8KBVgu79u5HCAV46dqNrHhgKlMuyumTJsC4zaz43RRW/W4fTaveQp2aicoU/tyT5i+la9dGDnxYx9I7JqLUyjF2pwOEghJLfz4JakFn0iAFpT7VSdY/eghCIeJWzI8cC3l9NPzqWQQBJl+YzbSLc/sRW8O+Tt669Ws8Vj8gsXXrVkwmE4mJiaNyrz///PPcfffd2JwOCIZQ5qQSu2w2lne+QKGPQ5My9ALtDISot3sZZ9Syo23gvMnBoEnJRJQr6bJUExc3usLGbe0e8nIThp5LY0IUZDglW6Rz9mCQJAkfHlw4In9uHHgVbpxBO4FQWHVrayvgouRzmH7mJIqKiygqKqKwsJDCwkKyssamUPNgUKvVWCyjF+N827m/I7fjoMctGS2C8Xq9USXWs846i7q6Oo4ePRr5Ky8v50jpEaprD+H3hx8gUZD1IT4/4ZiUTFQgSSGEEaYRJCWq2bu/vyTa53Pi99pRJ4+smO5IMM6opaLLjT8k4agsRZEc36c+4kAQZDJ0M8ahmzGOQEcXtvW7sK/bQbDLQSgUoLlpJ02N2zEY8sjMXkB8wjgEQcTl6qCpcTuJi1Yi1/YSy8zEGJI1St7s9FN08wPUvPsffE21fPK7PTQdsHDmLyf3JbgLoWZbB6Wrm2l470Vyr78TUa5ArotBmZCCr6OF0jWNTLkwG51JhUIjw+/udbO1lXbH3LrJrbPGjsviR55kRDOlIDKu+eGXEQIBksYZOPu+KX2IzaFqZ/db1Xz2p30gCWhFHRmhfJ566ilOO+00Dh48yPTp04f1HXR1dbFy5Uq+3rYNKRRCUCqIWTKT2DNmosoNJ7IH2i1Y1+wgeekFiMOo/l9qcY6K3ASZDE1GDl2WKrJzFo3o3B60tbkxmVTIZMKABcAjcwkiWm0iTmd4cyhJEn58uLD3ITGfwo0zZMcf9HWfJ5CWms6k8eMoLi6OkFdhYSFpaWmsW7eOTz795KR7n1QqVVQtN4PBcEJ7140Epxy5NTU1YTQao0ow0UpB8Hg8aDQaTCYTmZmZLF3aN2k5GAxSX19PeXl5P+JrqGuAEGz/+nEEQYZabUCnT0KjTUSrjUejSUCrjUepiu0XTxRFSEhQ0TqA5ebqrhahShidUGU4GGfQsbs9LKaxV5einTeyJPRvWnP2z3fg2hNW21m7qunqqkKliiMjawFORysytRbTjNMi58cpZazMjueNo614giHkuhjyv38rHVu/oH3Tp+x5r4bm0i4ueXxuH4I7//chGnavxt7WSsvnH5C2/FK85nYUMbH4OlvY/VY1Uy4M53UZM/W0lVsJ+cOuVHd3QWhjd5rAmv/bF76XlfMjFWDMn23BV16LSi/n0sfnkOYtiRBbF618cv9uDn8aVmamCBmMC01HLihwSjbuufsenn7madLS0khJGfy7e+6557j33nuxORwQCqHMTSP2zNno509CVPdNVtcvmEzX/zbhqq9Enzt0O6UjFhfLMo0oRAF/aGSCDW1WPuYtXyBJ0qji33ZHAI83SGKCipbW/r9rv9+Fy9WB29WJhEQbzbhkG3BKdnzB3jytlORUxhcXUTyuL4Hl5eUNukb13LPX60WrHV3ccbSIpltSpVIRFxdHU9PgnTROJk45cmtubqakpCSq5BYff3yr4URAkiS8Xi8qlWrQMTKZjJycHHJycjjrrLP6vOb3+9m0aRObN29m7969VFRU0NjYRHNjJYFAr0hEFOWo1Sa0ukS0ugS02gSyc3IJBiUsFm+/hcTpbANBRGUa2sUzGsgEyNCreKeyDb/VTMDahWbi6Opi9rHmOq3YN+zCtnYHwS47Xq+VyqOfgiCiTknHbzVHCHtZponDFidHrb2xOkEQSZy/DFV8Mg3vv0BrmZV/XfoFFz86G6aHCa6w63Suf8XLUytW0bV3K0GPC/vRg8h0apCg+ZCFtnIrSUVxJOTF0F5hw9YWnkMKgi5ehUIjJ+ALUr2lPWwtLZwGgK+xna4XPgUBvvfXORRop0WIrbGzljdu3kxXrQsBkWKmki7lRr67fCayrWkN+/fvR61Wk5yc3Od77ejo4LzzzmPbju1IwRCCSkHsGTOJWdprpQ0ERWYyclMcjsrDwyK3do8fTyBEqlZJnWNkib3qpDSCAS9erxW12jCic3vQ2uoiNtbLvn37cLs6cLk6cDnbcbk6CB5DYKIoJysnk6VLl/QhsIKCglGRU49y0OPxRI3cRrsp+LZzx8TEfOeWHAwdHR3ExMRERYoPvWrJk40eleRoSV2hUHDGGWdwxhln9HvNZrPx1VdfsXXrVvbv309FRQVNTU001pcTDPpJMJ1GdXUCm9b/Fo02Hp0uCY02Hq0mAYu5EqUhHkF2Yn4qSRol/lAIszeAq64SBAH1uJxvfV15fBzGi5diuGgx7r1HsX2+HdfuMpBCeFoaqfzXI2izCshbeDaTZ+fw5P6BxQvWw7sQY3SIsVq8zR28ftNXnPHzSUhXSpS0LGeKchlX/sPG6zduxn5kH/JEQ0TyL8gE9rxTw9n3T8GYpUMQwd7qhu69k6lbKbnr7eqw/H/pTEStmpDPT8M9TwKw9M6JzB5/WoTYDu45zNu3byXgldAKOiZJc4kRDH3uWSmoyAwW8eDvHuT9D96nubmZtLQ0nn76ae677z7sTmevlXbWHPTzJvaz0gaCIAhophdh311KChcN63todPpI16lGTG49Gw+ns+245BYM+nC7OsPE1W2JuZxtuFwdZKVfhlqt5vDBNxFFGVqNlqTkRHJzT2PSpEnMnj2bRYsWkZY2OKGPFtFyD6rVakKhEIFAAIVCMfQJYwiVSoVWq8VisRAMBqMiCDwWpxy52e121Gr1mHT0HQ2iFXPzeDwoFIoT8oOIjY1l5cqVrFy5st9rZrOZjRs3YrFYOPvsZVRVVdHSXEtn+2GCod5KG0f+dj9KUwKq+GSUxgSUpkSUxkSUxoRhV58YCOk6FU3OsGXprK9EmZWCTD/6630TgiiinV6MdnoxAbMN+/pdWD7bCjYXrvoqpgk29uzZS9nmfRgmz+7zXhzVZdjL9pN022Xo5k6k479rsf/vSz7/6wEaD5i58NdBJlvPYWn296j8fivbXq0k0N7FWb+czNSLc3hk1ofs/7CWpXdOwNSdDlCzvQ1WgCgXiO/OcdvweFhIEntWWP7f8MunESSJojPTOP/Cc8PElryW1S99yZfPhPOkUoQsxknTkAsDL2AZ5FETLGXfvn1UVVVx2x2391ppy2aFrbSc1BF/nppJBdg/34Hf1oUi1jDk+CanlzS9ipEW31fEGRHkClyONgyGXDxu8zcIrB2Xqx2/v7cahyCIaDQakpISmT59DuPHjycvL4/77ruP7OzsEb7Tb4douQd7VOY968nJnrvHKHE4HFGr8hS5n6jOPgAcDgdKpTIq5BYMBvH5fFEjt2jMazKZKCwsJBQK8YMf/KDPay0tLaxatYp33nmHsrIy2tracHS0EgwFIdSbpiCqNahMSSjjk1AaE1GZEiLEJyqPbxGk61U0OsO7ek9rA6rJJ064IjfFYrx4CYaLFuHeV4Hzi10sW7aMv/71r7QeOEDbpk8wTJ6DacZpKE2JtK7/EHVxNrp5kxAEgcQrzyZm+jiafvcvjqxt5Pny1Vz9hJd5vu/xo2tvpnTdA9ia3XRU25ErZWTOiqd+RyelaxqJzw1baZVftsIKkEJhpWRrhYVggG75fwKd/11LsLUTY6aOm355DRmW6RyMW8WLt31MzfYOBETGMY00aeCu1D7JSyNV1FJOIBTgj3/6E//597/JnzMd6+RMdHMn9enSPVJoxucA4KqvJG7CjCHHNzq9lJiGjmFLwQC+rk585g58lnZ8lnBJrKrKNVQc/SQyThBE1Go1CQnxTJo0jfHjxzNz5kwWLVpEYWFhn6LEjY2NVFRUnHRig+gnU3s8HmJihq6vOZY4Nn3rO3IbAHa7HZVKFRVy6yn4GQ23ZLTcoRB+3wM9CCkpKdxwww3ccMMN/V47cOAA7733Hlu2bKG8vJz29nbsbY2EgiE4Jj9PptGhNCWhik9C2UN6pkSUhnhEhZI0nZLNzVakUBCfuR19xvDUfd8GgiiinVbE7BkzCIgqGscnQbUayeHBsmcrlt2bUSWl4W1rJvXmG/uQiLo4m+zn76P+3icx1zl49opPsDziYGXutfz1P3/gJ+few+7/VpM9K5GL/zKHJ5Z+yq63qrn86XkA2Fq6Y26hcP7b+7/YGZb/r5yPq7IZ6wcbUahl/OKJH5HtmMl26X88dfHbuDp9aNEzmXnohf6Lhk2yUEMZbTSAIIAkIaiVyBZMZL/XzDk//wkfBUZfzaUHslgdivQknCMgtySNAoUo4AsE8FvNeHsIzNyBz9yGt7ONgN1KODkfEAREUYZKIaeoqIjp06czY8YMFi5cyMSJE4ddVV+tVketiK9arcblGn2JuG87dzStRq1Wi90+MoXsCbmfaN/ANxFNyy2a1UmimV/n8XhITEwceuAxmDRpEpMmTRrwtZ07d/Lee+/x9ddfU1FRQWdnK7aW+nDFiWPKHClj4kj+z7/Yu/p/tDs8SIEAolqJFAggnITvf6bMwE7JhuF7S4i7cBHu/RW0vfARoVYL3rZwULz9mXeIW7mAmEXTIuWwZDFasp+6m/Z//g/Hhl28cssXtN5m44azb+Hv7/yJ2y6+n49/vYsb3zkDuVpG80ELjnYPSp2cwDFNYONStZhrnMiTTKhLcqm59kEA7n7qxxQL8/joyMu8dO/HAKSSTTHTkAu9n0tICtFOE+Xsw4s7LHsNgSovndgzZ6ObNxFRpWSn6OFqWQIfB1oYiyJTqtxUvNUDiwakUAi/rStifbWY27EX/gj/6tco3bPrmO9fQJDJUMplxBsMZI+fxaxZs1i5ciVnn332mLjneyyYaIkroplvFi1yA4iJiYk0fI4mTily8/v9eL3eqJLb/6v5dWM598yZM5k5c2a/48FgkK+++ooPP/yQDRs2YLPZUCoUVH65Dr/PC4JA+3Pv0/6PD5AZY1CmJ6JITUCREo8iNR5FagLyRAPCGMUl80QdX/jC7i9BFNFMKUQuCuSekUZCkZ6v/1NBoL2Lzpc/wfzGGmKWzCD27Dko0xIRRJGkH1+EZsEU2h/6D2v+vpOW0oe497Zf8cenfs0Dtz3Euz/fxoUPT+edn+9k77s1mLL1WKu7LQkBdrxeCUjErZxP7c/+AsAtD13P9ITF/O25/2PLZ3sAAT1xTBB6k+h9kpcayqjjKIIoIYVAVIjols4i7oxZKLP6Sv8rQ07UyEgUlLRJ/curjRSKjCRcO47gqCnH39WJ19yOz9yOr7MVn9Xcx2UtyGS0Np9LdnIimunTmTZtGsuXL2flypVoNGMXWx0IarU6nHjt8510r0i0882iYbGKoogoiuh0uu8st2+i5wNRKBRRITe/3x9VlWY0UhB65j4ZD79MJmPRokVMnDiRp596mozMDLq6uggG/CQmJCGTi1it1rDay+rEbbHjPlwTXix7dvyigDw+DkVaIoq0buLrJj95gmHYXcKNKNAgo1nqXYD8zR34ms1MuX8eBQtTWHhTCdVb2/jiyYO0ldqwrd2O7bOv0UwuIG7FfDRTCoiZmIf2X/dTd8ujHPiiknvr7uPhP/+Ju+79OX95+FGqt5mRghL7/ldL3vxkbHVhctEnqNn/UR2CSoHzQAW43Fzz08tYPHElD9z3a44c7q2K76ALs9SGAiUH2IYLO4JMgKBE6gQjWTMS+PrFo8ScNrUfsQGEgCbJQ4agGTa5SZJE0OrA39yJv6WTQEsnvuYO/I3t+FvNEAxR9+Zz3aMFRFFALpeTlJBATEwMF154Ib/73e/Q6/Vs376d733ve+Tnn7jC2wNBLpcjl8uj4vKPZr6ZUqmMStsbCD/jer3+O3L7JnpM2Z4f5cnGieySOxSiFXMLBAIEAoGTajU2NDTg9XmZapqDx+KjKDQVT4eLRqEG5DJEUUEw6AMkOKbxoiAICAgEO6wE2rtwH6yCUDASqkEmIk8woExP6rb04iPkJzPF9iG+DFFDq+TBf4yjzr2/ElEukjUznNMniAJ5C5LJW5CMo93DtpfL2P5aFe6DVbj3VyBPMhK3cj4xi6aT88IDNP3pBRoPV3P7j37Bo08/wu233c4TTzyBKVePudpB6xFrpBG3RAgQkeem4N1bxoWXnMd5S7/H/fc8QHl5OYJCRubjP6fpwX8TaDOzm00IooAUklBq5Uy+MJup38shqTCWUFBiz3u1uPaUoS4cuDRWQ8hNhqhhd6i37Y4kSYTsLvwtYQLzN3eEyaybwCSfv/cC3XE8CO/QBVGOJIW6ixtLhEJhC8ncYcbabuN/H/yPv/71r0B0rRiVShUVK0atVuPz+aKypgiCMKZdDkYCuVyOVqv9/5Zb8rnnnuPuu+/GYrFEiMfhcGA0GlmwYAEbNmyIjN2wYQNLliyhoqJiRLs1u92OXq9HFMWokFs0fPM9CIVCUckL8Xq9J73FT0+SZ7IxBa8lQIYQTtpupo6U9NnkFZyFJIXweu14PV14uv+8ni48bgtutxmv19pNgMcgGCLQaibQagaZrA8xIpehSDKi6HZ1Ji1cRo0RAj47MoMeQRDwlNWQUmJAqe3/29MnqjnjF1NYeudkKjY3s+r3e3G0Weh8sdtluXQmST+8AHd5HR3PvMsdN93FI4//mdtuv41nnnsaQYSuBmfEFeds90EohP9IPeecu5JLL7yC3zzwW6pqK1h0awkbnzxMwwP/IGSxIcgEpKBE6kQDMy7LY9yyNBSa3nsUZQK5cxKpPVQ14OcddLip8jQxR5eE+eN1YSussR1fU3ukYWpfCN3l2wQiOwdJQhBkqNRxaNRG1BojarUBldqAWm1ArTZSduR9ZGYnBhJoba2JXE2tVkdtsdNoNFEh1p5nORrkJooiodDwi66PJeRy+Zi4Ja+//npeeumlfsfPPvtsVq9ePbx7Ge5kS5YsweFwsHPnzkg33y+//JKUlBS2bdvWJ26zfv16srKyRuyGcLvdkYc/Ggt9tMktGlajz+dDqVSe1PfdQ26xxlhclm71YHdRWqUqrNoMS77jUKvjiGNgKXcg4MHceZRDB14nfs4SEAT8Ngv+LnO42onzmAcsEMTfFLZMEEVSpy5hx7pV1K1ahaBUIE8yInXZCGao2P+/WoxZekxZerSmvp+NIAoUnp5G4do0HJ0eVv9xD+XrWrB9tg3bqq1ophYh5iRjrWnlnjt/yUMPPcTPfnILTzzxRLe11n0dWfiaK1as4Korr+bB3/2ODn8zi+8oYcPfSxFEgZDFhlInZ0q3lZZYMHgT2rRJRsrWl2L/ah+BNjPuhlb8VS0E28MuRCEnh0v+9Ces721A6rHCvrG7l8s1YaLSmFBrekkrTGJxKBS64/5O1GoDTsGMSlJjd9gjz7NaraajY+y6XY8ESqUSn+/bxxlHip7PKRoWVDQtN5lMNmZK0eXLl/PCCy/0OTYS79awya24uJjU1FQ2bNgQIbcNGzZwwQUX8MUXX/D111+zePHiyPElS5YM+yZ6cKz1Eg2SiaZbMlrEKknSSX/PVqsVhUyB3qTF1RUmtwB+JEIolcPvYyeXq5HJwomqphmn90sqlkJB/HYrflsXAZsFn9US+W9efj7//e9b4XE+P/6GNgRRoL3Cy8e/2R25hkIrw5ipJyEvBlOWHlOWLkx82Xr08Wou+ds8pJDEgY/rWP2nfbj3HaWnZrXDZefXv/k1f3jwD9x22208+fSTvfcWlFixYgXXXHMNDz74IJU1Rwn6JNb99RBSUCJ9iokZl+VSvCwdhTr8TPjdASz1Tsx1DpoOWaje0oqlzonP1Wuhtj/1Nshl4ThlqFdaX9/QgFyuIHf6bBprawjZHOTnLw9bXhoDKlVc5LMcLZRKPRa8KAkvQO3t7WRlZUVVkh+thb7nmYqGBRVNchMEAVEUx2T+nuano8WIfH9Llixh/fr1/PKXvwTCFto999xDMBhk/fr1LF68GLfbzbZt2/olBA8H0SQXiK7lFq25Q6HQSZ/X5/MhCjLkShkOT9gt1mPViOLILPae3m0yTf8afoIoQxlnQhln6vdaTEws8ZffTLHNTsva93E0lhN33mmYX1lFQq4Oe6cXrz2A3xWkrcxKe4UNQYBQoPehVenlGLN6ie+c305HroG1fz6IrdlN0B+iy9zFr38bJrhbf3Yrzz//PABnnnkml19+OQ8++CBHK46GY2k6ORNWZpIzJ5GOKivbXjvKZ3/eh88ZiKQOCjKh33303IvXEUCZk4p6XA7yhDjkCQYkf4D2p98h88qb8SBQcNG1ONatpvPLNaSm91e0fhuIopwQQYTuNpE9FpNMJiMYHH3j0W8DQRCiRjAQHcttrMhlNBAEAUEQovZ9H4sRk9sdd9xBIBDA7XazZ88eFi1ahN/v57nnwsqprVu34vV6R2259ZBbtKyY/9fcktF4z36/H1EQEUQxnPQNhLpjO4IwMnKTpPBDNJL0ABGQiQJBCWRqLQgi8kQj+vmTMb+yiiV3TKJwcbg0VcAXxN7mwdbswtbipnZHO7U72nG0e/A6ArQc7qK1LCwUCR3TWkUdq8BjCwsyusxdPPDAAzz00EP89Kc/BeCKK67gd7/7HeXl5ZFzfM4A+z6oZe97NUjHXEsQBWKS1cSlaTGka4lN1RKXqiEuRUtsqobYFC1KrZy/LvgY/fzJGM4/PXJuoKMLgJDXiz8koRAERKWKYGDsXXWCKCeEhNhNbj3tmaJpSURroY+2WzJaMTcYu5jfxx9/jF7f15Nz//33c//99w/r/BGR2+LFi3E6nezYsQOLxUJRURGJiYksWrSIG264AY/Hw4YNG8jLyxtVU75jrYieB+NkIhAIhPs5RWFuSZIIBoMnfe6e+U7mvKFQCJ1Gh1wpQ5CJKDQKgpIPDRrUKiVKxfBJXqmUodFoUMllwyZphRgeJxNAJRNQK2WIcg3qUFiAoFKpEUNhF51SriA+TU18mgGAKed8I44sSbitPuytHso3NXF0Qwu2FhcBTwiNRo4oFwgFwkrCP/7xjzzxxBMAPPbYY9TX1/fJ9VIbZOTMTCGpMJaYFA2xKRpikzXo4tWRGN2gCIE+Ro8KARW9n59crgy/J5lASJLQyEU0KiUajRqFnBH3/Tse1GoVarUKFWo0aPB6vfj9fkKhEKFQKGrPVSAQiMrcgiDg8/lOujgump93D8bCcluyZAnPPvtsn2MmU38vzGAQpBFuLTIzM7n55puxWCw4nU6eeeYZAAoLC/nHP/7Bb3/7W8aNG8c///nPkVwWgM2bN3PxxRfzj3/8Y8Tnfofv8B2+w3eIPh577DGWL18eCV+NBtdffz1dXV188MEHo77GiLcUS5YsYcOGDVgsFu6+++7I8YULF7Jq1Sq2b9/OzTffPKqbOTYFYMWKFSfdXVZRUYHT6WTKlCkndV4Ixy8nT5580hO5Ozs7OXDgQEQMdDLw2GOP8eeH/o/7bvoNlkYbez8sxSe52cJnTJh0JfHxQ/cK60Fry17KjnxA8e1/GJFr8rezcnlsXx02X5Dmz9/HbW0g+e6rqL/lURbfNoGEvBhsLS5srW7srR6sTS66ml24Ojx93I+CKISVjcEQSCCIIFPKEGXgc/a4TAWWLV3G5ZdfzmOPPcYDDzxAY2Mj1dXVPPPMM2HXlQAyhUDRGSkEXNBZa8fa5CLoO6ZAtVyMzIMACo2MuFQtmVNNmHJiWf/EIfRnzcVwzoJIqbBAq5mGXz5N5sU/5FfnLebdqjb2f7mBtg2fcvqiXw/78xoOams30VSzhQnSTPbyFbt27aKgoACz2cy+fftGFar4tti3bx9arZbCwsKTOq8kSaxatYqlS5ee9MpDdXV1tLa2MmvWrKEHjzG2bt1KXFxcVLUTPRgVuf3sZz/D7/ezaFFvC/hFixZxyy234PP5Rv0jPtZXq1AoTjq5yeVyBEE46a0iIPzeZTLZSZ9boVAgSdJJnVcmk+F0OQn6wrUm/W4/fimIGzcejw+ff/j+en9AwO124/Z4wvGz40CSJIIuR7j24bRMuvbvpL62BkfVEXxd7dhu/Qt4faz6v52Rc0S5EFbN9xCaAHKVSEySmsxZCRScnkRSvpG4VC2Wegd7361h3we1eC2BSNL1ihUrIuKR+vp6AH7/+9/zwAMPcNNNN/H3J/9OSAqBC/b8rxpBgDPvncj0S/JxtHvorHVgqXNgrnOw7aUKRJ2akMeH2xXC1umg/mBbJK/P+e46Wt9dBwIIei1iQhxBt5uOI/uRnXs65oZ6bK1N+IPCiD7n4cDj8eBxe/BKHty4UavVKBSKSFmmaDxXghCunHKy5+5xyymVypM+dzQ/bxg7BbbX66WlpW+xb7lcTkLC8Bonj4rc3G4348aNIzk5OXJ80aJF2O32SMrAaHAsuUVD6BDNQGy0gu7RmFetVhMIBXDbPahjwrJxWfdPMRgYmWS8J3Ug4LAjyJUE7Bb81q5wvlvPn9WCr6uTgMOK1L3oNE3LRt1Yjnn3jnCVE0ByhecWZOGk7fQZCaSPM2DK0mPM1mNI1yJX9rUO/Z4gZZ838tGvd9G41xxJuJYb4gl0dUbk/r//w+8pLy+PxNhsNltEZHLbreE0gbhsNfHZsRzd2Myahw/y2R8PkD03gQsfnk3O7EScnV62vVRB/A3nop8/mUCnNVIey9/cXWGkqT0sIglJSHYXQYcLZDIC5XvRq1XsfuGJSA7Sxi/+gD4mAY3G9I2E7PD/y+Ujq5gT8HuQoyBAWAGr04Vb3fh8vqgutNESp0H0UpqiJYyD8Hsfizzl1atX9+OS4uJijhw5MqzzR0xuOTk5Ay6G2dnZ33qRlMvlkSDo/2tla6JVVSAaMu2kpCRCUhC7xUl6cXiDJBNkyFHi9Q1c2UCSJAJ+V99qJR4rTkd4Z1f98uOEfN8gxp7fzwCfa2VtDYXTp7Dt668pWZ7B+LPSMWbpMWbqInllx0N7pS1ipfmcYSsNuYK0c64i6LLRsu5/rFixku9few2/+21YFflNUYjN0Utwv7j7Th595DEcbV5ueu8M9n1Qy563a6j9uoMnln6KOkZBzoLwjlUzMR9BFFEkGlEkGmFyQd/PKhgk0N7VS3otnYzXmmhubcHldkfGhSQ3NkcjNmvdgO9RJlOFE+k1pkgyt1rTS4JKpb6PIMXns6GSVPjwIJPJIjvsaBYkDwQCUSsIAdFTfUfLLdjTBfzbimhefPFFXnzxxW91jVOqtqRer4+U6QkGgyddZRTt/JBokJtKpcLv95/UtvA9uzGrxUqhMQcIt29RCCrs1npamnfjcXfh8YbLbXncZrxeG6HQsaWihD4bgn7EBogaVbi4ck+B5Z4OAykmrLpUJogxKN54DUO6luIz0oa8b78nyJG1jex6q4qm/ZaIlaZKySTrkh8iyhU0ffIG9qMHWblyBdfdcC2//tVvInJ/KRiOrfVACkpYrVYeeOAB/vjwH/nVQ/fy0P1/5vmL1nHNq4s4/SfjOfhJPdtfrcBc46BsTZjIuz76CuP5pyOLGzjhXZDJIjU1mRo+NlmWSIuoIveV3+Jvs/S1+Jra8Td1EOw6ZmMhCgTx43S24XS2DTyPIKJUxqDWGNFoTFi76lAhw0IHCfGJkQU22u2cojF3z+/y/7WUpkAggMvl6ifhjwZOKXKLiYnB5/NFivme7ELC0XRLKpXKqEh3e/rXeTyeiBvpRKOH3ErN+5hrnMJW+WqcfidI4G4/RHv7IURBFiZbQSIUCiFFspjpLncoEQoFETQqFKnxKNMSewsld5NYj6hiINSH3JwpT0JZmEXtrtbj3m/bURt736th/we1+FzdVpooknD6SuJnLkSUy3E311H/3osEHFYuvPx8rr7ian77m99SfjRMbIIokFgch7Oh9zvuyYVzBL386v4H+OsTf+ZPz/6G+3/6e167diPTLs1l+f1TmXZJDjXb23njps0A2FZtwfbJZhTZKSRcswL1hNwhuyFkimpqQ24EuRxlWiLKtP79+0I+P4FWc59Cyr7GDvzNHYRsx1SZF8Xw9xCS8PvtBINOHPZ6gsEQXiRsmDl39nmR4V6v96T9tr6JaLWS8vl8kTj6yUa0yc3pdJ70LuAD4ZQitx627yG3k41oVlKIdlv6k7kAZWVlcdWVV2HpsmCMN2JMNiBaBVwuV/jzFwRCUpBQoFttqFKgSEmMFD0+ts2NTH98EclgaJI86JCROmMSlc+X4nX4Uel740J+d4DStY3sfquapgO9VprClEj6OVeiScuOuLE7d2yk9YuPAIkf3nMlK+ZfyP/97Y+UHi7DcNXZdL3zBZLXj96kxF7THdcTYfJF2Wx/tZK4y8/C+s4X3HX7L3ny34/yt9ce4pc3Pcied2o4uqmFn7y/DLclnHSdeMul+KqbsK3bgb+2heY/vgBKObEXLMS4bPag1lyGqOGroPm4n4moVKDMTEaZmdzvtZDHh7+1183pb+nuHtDUQcDZ6+pEJoIEq1evIjk5menTp3P11VefdLUihBd5r9cblW4bPRZjNEjmZHphvonvLLdBoNPpIomP0SC3aLfmiGZzwxM1d0dHB//6179YvXo1ZWVlWCwWfH4/kiCgUSr58Y9/jMViweXzIk+NR/3NBqUp8Yixxy/YOxr4kWiRvJRMn0JF8L9Uf93GuGXptB21suedGvZ/WIvfFQxbaUDspPkkLViGIiYuco2g20njJ2/iqDgEAtz375uZEb+Ef7z9BDu/3I8iLx25Rg1ePyUr02nY09uZWZCJFC1OZdtLFZhf/pS0X11P04P/5tYf/JxnX32cx179A7+750+0lXfxl7kfAaCbMY6Y06bAaVMwXroUx5f7sH6yGX9LJ7Z3N2B7+wtUU/Ixnns6mgl5EWsuBjkGFDSGjiGhEUJUK1Flp6LK7i8WC7k8x1h74f+6D1fT1tHB6tWrWblyJT/72c/YtWcPMlGGTqshOTmZcePGsWjRIi699NJRFX0YCl6vF0mSomK5/f9T8+HhoqcQhd1u/85y+yYEQUCv1+P3+6NCbtFsMBjNyunf9n273W4++OADPvvsM/bt20dDQwNWmw1/KAiB/m1nNOmJKFISUKTGY/G5mf3EfdToTr4r5UDIxixTBp9lJ7P5n+VsfeEozQd7rTSA5GXfwzB5NqK8r9rP1VhDw/svEnA6UMXI+f2bt5MfmMN7u//D2lc3g1JO+u9vouGuJwGB5fdP47GFH6PVhS1NKRCuIJE5I4GGPZ3IU+IxXr4My5tr+fnP7uaxZ//KQ088wFPPPsm+D2oBEDOSIvOLahWxZ84mZtks3AcrsX26FdeeMrwHqmnZVwk6FabzF6JfNJ3p8TlUhJy4OTEud1GrRpWXjiovPXKs/fn38R1uoeDKm0nPyMBbOI0EdTw+Szu+jjYqamo5evQoH330EXfddReCKEMmiuj1OlJSUigpKWHJkiVceumlfVTZI4HX60WhUETFiolWf8aeuQ0Gw0mft8fr9Z1bchDo9Xo8Hk/UyC0YDI6J2mc0c5/KlpvP5+OTTz5h1apV7Nmzh7q6Orq6rPiDgYi8HgBRRBFrRJVZQLCxGtX4NAznLwy7EL/RMBSgUeYnOy6e2mDniXhrx8WW+qP8OmsuaoeP1rouerg1LraQ9IyZHDr4JiG/rw+xSVKIzu0badvwMQA5cxO57eEbyLLOYIP5bV7/fbjXVPbT9+AprcHf1E5sqgaX2YsUAk2Movs6cOiTRqZfmkv9rg6aH3mFjId+gudQFS2Hqnn0nw/zix/dx60/u433Jr3Kqj/txfHRl3gOVJD+mxsR1eH+e4IgoJ1UgHZSQdiCW7MN27qdSE4v5jfWYn5jLdOef4519iNIqcphdyr/tvDVt6OOTybNZMQblAjllJCUU3LM5ygRdDvxmdvDf5YOfJZ23B2tlFVUcOTIEd577z1uvfXWMPHJRGL0etLT05k4cSJLly7lkksuwWg0DnoP/y8KWaI5d0/5wp6+nNHGKUdux4pKTjZ6Ek49Hs9J/3Ki2RZEpVJF4l2ff/45H3/8Mbt27aKmpgaz2YwvEEQKBXv7fwkCihgDyvRc9KZElKYElMZElKZEFLHGyAJa+/Y/kRQhNJMG7+vXEHKTKWrgJIU6Qx4fzq8PYFu7HW9lI6V/+ANLFy7m/ff/R1b2QtIy5qJWh12PFkslrVs+xzBpFnKtnoDbSdNHr+GoCufZnHXfFFauXEGGeTq7lR/zr9s/QBAEEu6+ClmMFuunW0AUuejRWZjrwipgp6W3YHH9HjMrHpiGKkaBt6oJQiGSbrmU+rufZOeH5Xy05CXOK7iO7y28hsSiON65Yyuu2mZqbvwjGQ//tF9sTJEST/y1KzFedgb2TXuxfrKZfEMiCfpYVt/6F7xqOcYV84lZPB254cTtrKVQCH9DG3GzJ5KuU9Lo7P+7FgQBuVaPXKtHm5Hb93xJIuC0d5Nee4QAnZ1tHCot5eDBg7z55pvcdNNNCKIMuUxGbGwMEyZM4Mwzz2T+/PnMnz8/6tZTbOzg/fdOJKLlEg0EAhHj4DvLbQDExMTg9XqjQm494opokZvH4znhSqdgMMjmzZv58MMP2b59O1VVVUydOpWZM2cyY+bMPg0s5fo4VClZaOOTusmrm8TiTMMqdaWOT8Zavf+4Y+olN9OEuOOOGQt4a5uxr9uJfeNuJK+fHjNt9eqN3HTTDVhs0xGEvo9Dbt4yWlv30frFhxinzgu7IV1O5CqR77+4kCkZc8kwT+dw/Gf8+0cf4nUG0MydQMz08fjbzLh2H0GUC6RPiGf7axUIAggZvdUVXGYPcqWMqRdls/21Sro+3YLx/IUk33EFzX/4N6/fvp6kT2KZ47uI01POI+4tLe/dtY2GvZ003P0kcTecg+msuf1+L6JaRdxZc4hdNovLPfF8sXdHeOPk92N5cy2WN9einTWe2GWz0UzKH3NrzlffSsjtQZOWQ7pONSC5HQ+CIKDQx6LQx6LL6rsxkqQQAbsVnzls6XktHfg62+hqqmXTV1+xadOmyNjLL7+SnJxsbr31VoqLi5k2bRoLFixgzpw5J9wzEy2CCYVCUSW3HsX3d+Q2AGJjY3G73VGraB0tC0qlUoW7Uft8Y7LbrKysZMOGDaxfv54vv/ySjo4OPF5fONVB6o29yHQxdPok0rKySV58XoTAFIZ4xG+5AKgSUgjs2EjI44u40b6JhpCHREGFChHvGMeEQh4fjq1hK81X1RiWsHeneiQmTiAjcz4KdQ4hSc74cfEcKbP2OV+p1FNQsIKyg+9jPbgLBEgs0HP1P08nRzaZDPN0ylLW8u7/fU7bkS4EvZbkWy4DwLZmOwgCC34UrpNpqXUiyERSb7wQAEEhx+8ICzymXpzDtpcrsPz3c4znL0RTkovxkjOwvL2Opy/9GO3nKiZZVjJZeQaa55V8cN92yj5vwvrCJ3j2HCX1jssR1f1/M4kyNZONqXw83UHmY3dgXbMN+xc7kfwBXDtKce0ohTgdxuXziFk8A7lxbBYkz+EaBJkMTVoWaXoVGxu7xuS6EM6tU8QaUcQa0eX0KjAbP3qdUEMrEyZegdvVgcvVSU7OeDo62yktrWHPnr28+eabPVdBqVRhMhnIzMykuLiYGTNmcNpppzF9+vQxSYCOlmuwZ+2KhsXq9/sjcc5oWczH4pQjt5SUFKxWa9RcdNGKfcnlcuRy+Yikyw0NDWzYsIFt27Zx6NAhampqaGtrx+VyR/qcQTipV52SRWx8Uq/1ZUxAaUxAVCgJykWS402kzV+CNzh2SezqlAyQJLyVDWgm5A04xk4AGwEyRA2VIeeAY0YKb00z9nU7sG/aE7bSuhWPhEKkZ8wlK2cRarUhMn7Hzk7mz02kqtqO75hCxT6fg7aWA93/kph9dT5Lfz6JFOe4CLF99ckO9r0XFnwoE434altQpCZg+3w7hCTmfD+8AHfW2AkFQsjiw1aqzBSDZLMjSRLxOTFkTo+nYa8ZT0UD6oIMDBctwn2oCs+RWl7+2efc8C+RkpblZNbNpXbHKpRZSfiaOvHur6DmZ38l/Tc/RJXdt2vxBfIUdgWtdOFHkZpAwnXnEHK4ce0sR1SqCVjNYHNj+e/nWP77OdqZ44ldNgvN5IJvZc25D1ejSctGpVKRrBnYLTnW8Ha0YNSloNGY0GhMmOKhoDCXTouJeafdQygUxOOxRIjP7erA5exg//5yduzYyauvvtp9JQG1Ss3kKZNYunQphYWFkb/k5ORhe1WiRW4ejwelUhmVCiUejweHw0FKSkpUy3/14JQjt7S0NNra2k5pccWJnvtYX31bW1uEwA4cOEB1dTWtrW04nU5CoV4Ck8vVaLQJxMQWkpSSiFYbj0aTQHPTTtrt5eR+/9ZB53UGQnR5A6TpVFTbxu69qxJTEDXa8GI3CLkBlAcdjBf134rcQh4vji3dVlp1E4giQreLNU40khTKoIKDkdJRx6L0iJVxRbGcviCJdeu7q4BYqjm4/3X8fheCTOCiR2Yxblk6SbbiCLEdPVrOZ3/cB4BhyhzcTbU03v8sytw0JI+P9GlGlNrwI9ZZHa7+IerCtSUVCUaoacLR5iEmWcP0y3Kp391J61Nvkf34zxFEkaTbLqfh7r/TsNfCltcO0DHbzoTOFfzstp/zbo5IoNNKy19eJdBppfHep0i48QJizpiJIAjMFA1kihoe8VZE3qe/1YxjywGSF56DafZCnNVldO7YhLO6DAQR185SXDtLkZliiV02K2zNmUYWN5ICQTwHK4mfsZj8OA1d3gAW74kNMUhSCF9nK9rcyZFjMplAvElFW3v49yyKMrTaBLTaBL7ZdyMUCuB2m3G7OnG5Omis38qeHfs4tKcUp7+3aotOqyM/v4DxJeP6kF5hYSHx8fGRBT1aRSgg+kIWq9VKWtrQ1X5OBk45cktNTeXIkSNRzTfrKQF2smCxWNi4cSM2m42PPvqI1atX09LcgsPpJBjsXRhkMiUabQI6XR7xifFotQloNPFotAkoFJoBr+1wpNHY8HVY9acY2DUI0OT0kj7G5CYIItqMPDyHq4877lDIxkp5Ch9z/EohA8Fb3YRt3U4cm/Yg+cJWWk9ZriQhgwzyMQQSEAQBp2SnvmYT6RlzkMv7LgCfr2/m6ivzOFphZdOmT6muXAtATLKKK59bQEJebB9ia3M28vYd25AAucJA175t6AsmElM8hc5tX4AAy++bBnR38273hCv1dy+AsoQ4kMkw1zmISdZQvDQtLCxpMRPosiM3xCA36Em+/XKaH3qBdX87xEZNGfFFFTz469/xfcHL67oG0v/8M9qefBv33nI6/vU/7PvKGffTK7jQkMrr/gZcxyh1zG+uRa7VYZw+H0EQ0eeNR583Hq+5Dcuur7Ds24YU8BM027C8tQ7LW+vQzhgXtuamFA7LmvMcrSPk9qLPL2G8UUupZWys8ePBb+0iFPCj0/WmSiQkqPD6gtjtQ4c3RFGOTpcUOb+5YTsJUgbjAtMIEsSNAxcOXC47HQesrD28no+Ej3EFet9bbEwsBQUFjC8Zz4QJExg/fjz79u2jqKjopMryo5lf5/V6sVqtoy6cP9Y4Jcmto6Pj/+/yzXw+H1VVVRw9ejTyV1ZWxqGDh2lrbwMk7rzzTpqaWmhotKLTZWOIj0erSUCj7SEw7YjNfa0uCZDwdrahSckYdFxjN7mNNXRZ+bRt/ISQz4+oHLgyfFnIyTWCgkRBSbvkG3DMsQi5vTi27A9baTXNIBORIRAEVIKKlGA2meSjRtunlmMe42kJ1FFXs5G8grP7XNNuD7BhYx2LTjfy9n+/AiTyFyZz4cOzUOkVfYjNLm/jvbu347J4USmMzJn/c9rbDlBRsRpHxUEA1AYFycVhF2RXQ7i0GMfExeTxcYCEuc5B9qxE5CoZUy7MZsfrlZjf20jSD84FwkWSDRcvoevd9QQ8ARQ3rOSZQA0/VeZylSKD13UNpNxzDeY312L98Eu8O0o5r07igNDKYXWv1eEurcG59QBpK6/ot8lRmZJIOfN7JC5cifXADjp3bMRvNYetuV1HcO06gswYQ+yy2cQsOb4159pTjkynR5OSzjiDljcrBq5LOZbwtDYAoNP3umWTEzW0tY18Demx4vRkAuGC3nri0HOM6Knbcx0g0Et8djvNezqp2b+GwyWl/PS2m7nooosAMBqMFBYWMm78OIqKiiLWXkFBwZgLL6KtELVYLN+R22BITU2ltbU1Ul3gZPtuv41bMhAIUFNT04fAysvKKS09QmNTQ6RupVxUoJfFoPRrkKEGJIrHXYQgy2PmrKl0WKaO2fvp2Y36OluHJLepCWOvENXlFCGt+x+e0hq0UwYuweQjREXISYkYw8bj5Lt5u8tOOTbtRfL5EUQx8n3p5UbSyCMlmIlMGPhnrRa0ZEmF1NV+SWraTDTaXgeVxVzFv55/naT77+IHP/gBB8UvmPeDIgRB6ENsTnUH6/92iPrdHSCJzJj/E0RRRnLKVBISJ7Br+9M4nW0sumV85NrmuvAOX5nRW89RboqDYIjG/Z1MuzgshZ96cQ7bX6nAseZrEq9djtAt6Ik7ey62VVsJeXy0/PVVFH++hWeojhDca55a/A3tCAoFSxYtJi8zi1t/divqy5cSe+ZsCIbo/M9HqNOyiJs0c9DPV6ZSY5p5OsYZC3BUHcG8YxPOmnIQRIIWO5a312F55wu004rCSsupfa05SZJwbjtMTF4JGTEaZKJArf3Eb1JddZXdnQt6CSgpSR1xSY4EblcnEiF0DO2OlQtyYjAQg6H3YAgmZRbhrPMym6Vh4utyULejhaN7qnBJb+EN9t5XUWEx27Z/PWbWXbTdkhaLhcmTJw89+CTglCS35uZmQqHQmCkHR4Kh1JLBYJD6+vq+BFZeTunhI9TV10ay9GWiPEJgWvQUMRUterTEoAqpESQBBAhIfpqpRZQpMJslJk8c2L04WsjlapTqODwdLRxPcN/k9JGoUaKSCWMqKlElpCCPNeDaWz4ouQEcDNmYLjP0I7eQ24tj835sa7fhq20BUSQuJoZHnnyEuLg4rrjiCsYzg7RAzrA2QrmMo4U6yo98yORp1wMSNdXrqan6HBB4/t/P8tjfH6coIY4W4XA/Yjv8WQPbXgrHsaZO/wFKVe/O2+e143S2Iogw6ZzsyHFLrQNBBOXkXlm7PCH8bTTs7a33mJAbQ8bUeBr3m3F8fRD9/Mk4Nu2h87U1EJQgFCLQ0E77y58g/OB8nvGFCe7iWnh0fwWLf/wLfrxkNo8++TROlwvnfz7CfbAKeXwcvsZ2cq+9o0+LmsEgCCIx+SXE5Jfg7WzFvOsruvZvQwoEEADX7jJcu8uQGWKIPbM7Nhcfh7eslkBrJ3FLL2O8UUuZxUXoJDTZcNVVYjD0zZVLSlSzfefIPTA9HRCGQ26DISk/nvYqC7GCiVhMvS90e4h9eHHjoJ0myo+W0dzcPKbkFq38Oo/HQ3t7+3eW22BIS0vD6/Xi9XqjYmKr1Wr8fj91dXVUVlZGyKu8vJwjpUeoqa2JpCmIgoheHosqoEEj6SlkMhr0aNGjDmkjBHY8yAUFKjS4XO20tXkwGJQolWIf1d63RYw+FU9T/XHHOPxBrL4AaVoV1WO42xYEgZi88Th2l8N15ww67nDQzkXyVGKRYyOAt7IxbKV9uRfJH0CQyTj99NP58MMPIwuBx+Mh3pSAzWwhXcgd9NrHQibIKZamss+8hdqaDVjMFXRZqgBQG+Rc9PxUKhLWMa75bLReEwZXZoTY2itsfPzrXQCkZy7EaOqbg9XYsBUBkUnnpkeEJADmOgeCKKJJ6c1xk5vC5GZr7lvvcfpluTTs7aT93x9i/d+X+OpbUadk4PN2IFdqCfhcONZsR1OYhTRvEg/+83Huv/Bq/vD4U+SnJPFRbQe2GWcS22rGdmQvru2HADBOX3Bcy30wqOKTST3rYpIWrqTrwHbMOzbht1mQyeSErA4sb3+B5Z31aKcWEfIHUMQZ0WblM8mkY029ZegJviWCHhee9mYMJfMjx2QyAZNJNSq3pNPZikJQo2T0605ivonqHQ2Dvq4UVChRYZesyEQZ+fmDFzkYKaJpuXm9Xtra2r4TlAyGmJgYtFotTqfzhKYDSJJEa2trhLx6rLAjpWX8/g8PMmvWLNra2hAQ0CtiUQW0aCQduUzotsD0qCUtYqB7J/wtvKc6KQanvQW3JxwAT0pU09DoGps3ChgMuVTXfI4UDB43+brJ4Q0rJsfYlaTPH49l71Z8TR0o0wZuEW8lwFG/nSk1Tt545p/46lpAJmKIieXRRx/lBz/4Qb9z1Go1d9x5Ow/+9kHyQuNRCcOzehOFNBKkFKor10QsGWVeOp6qRup3d2I4T0d7zFFSbCU0xx3Aqe7AY/fz1m1bCQYkdLpkCov6xuwCAS9NjduRCDHr6r7NQztrHIQCIeSJhsgxWXdOWcAbQgpJkQLN45al8dmf5HgdPiRnCEWsEU9LAylpM8kvWE5D/WZqq9fT/uy72NZsx1vVyMfjF/HjM+bS5PSyp92BqFSRfsH30aRn0/rFhwBYdm9GZUrCOOO0Ubn6ZWoN8bMWEXQ7MW/biF6fjtVagyjKUCjkuPaWgQSiQomx5iCaGTkcsYzdb3gwuOqrAAmDsVeNmxCvwu8PYRuGmOSbsFsbiJFiR/08y5QyTJlxtFUOXU7OiY3s7GyUysGFXiNFNBO4A4EAra2t31lug0EQBNLT07Farbhc3+7hkCSJzs7OPuR19OhRSg8fobKyApe75/oCekUM6qAWdUiLtcPGgpQzaGkzo0E3JgR2PMRgpMXWCEBrm4ekpDEmN2MuoQo/7pZ6tOk5g46rsXvIi1OzucU66JjRQJdThKhS49i8D9OlZ/R5TZIkvFWN2D7fwYc+NTdcdx2vNrWzcOFCPvnkkyErxdxyyy08+te/UWU9zHhmDHkvkiRRxWE6aOn+d4iEH5yHftksOv/5Pz7+7W4mpswmMbGQmvitZFpmEhB8/P03/8LW7EYKiUyZ/sN+7r3Wlj0Egz6M2TqSxxn6vNaTBiCP7z0uyGXI4nQErU5srW7iUsMFlSPCkjeq8JvbMZoKyJt9FbGxYasrJ/cMusxV2Gz1eCvqWPaze/nBkjmsqTczPSGGS/ITeaeyHQSB+FmLUCen0/DeiwR9Hlo+fx9n7VHSzrkSmXrk7u+Qz4tl9xbS0mZTWHwuTkcrDQ1baWnaBZJAbGwMfr+f2WlGPl/1KVUbt2CcNh99/ngE8cQUL3bWlKPSGNBoemtMZmToaGoe+fMjSSG6umrIpmDowYMgIceI1+HD0TH0/G7BwZQJg8dAR4pAIIDH40GjGdvQxnDQU3jDbDaTnp4+9AknAaccuQEUFhbS1hbO5RoJ1qxZw5YtW8IW2OEjHK2owO6wRV7XKfSoQzrUQS1p5EcsMA16ZIHuh08AS5WdgvxC7AcOj+XbGhSxGKn1leH12mlrd5OUOLY7L31MGqJciauu8rjkdsTiYlmmEYUo4B/DYImoUBI7biqOjXswXrwEQRQJuTw4vtqHde12/PWtIBMpNxhJSEigob6BlJSUoS8MGAwGfvfgb7nzzjvJlArQH6eUl1dyc1i2k85gGwgCgl5D6l3XoC4Ot1tJuPF8zhg/lYma01jb8AbxOeBUdZJbvZgLZl3N83ueJ6/gMlSqvgo3SZKor/0KgHnXF/V5ze8O4OwMeyC+qTKUJxoJWp2Yax0RcoNuYcmrlQCMn3ApKlXveaIoY8KkK9m14ykuvPAcvrdwBh9UtrHP7GJ3u4Mbx6dGCE4CdFkF5P3gLurffwFPcwP2owep/PdfyPze9WhSR9ZmxrxnM0Gvh4ysBQDo9MkUj7uQvPyzaW7aSUPdZtRqJfPnzeOhhx7CUV2Oo+oIMq0e49R5GKfMRRE3eKHj0cBReYSE+OI+x/Jy9RwuHfkGzWFvJhj0YmRg78JwkJhnoq3y+H3zoFt8I7cxffr0Uc/1TdhsNlQqVVQsN4fDQVdXF7GxsSQm9m+EGw2ckuRWVFREc3PziPLNGhsbWbFiBUpRhVaKQRXUkkQWOd0EpkWPLND9doewwNorzSTlm44/aAwRS/iBt9saaGtLYXzx2NZaFEUZcXHZOOsqSZh3xqDj2j1+rN4gBXEaSsfYpWSYNIuufV9jW/013vpWnF/tQ/IHEGUyFi9ezEcffYRer6esrIyqqqphkxvAzTffzBOPP8HR+v1MDQ7sduuUWimV78If8gISqsIskn9+ZZ8CwqcpE1l55kT+/Oq/2P/Balb+eir6xBb++qt3+clPfsIzz/yDjV+aqayy97m2xVyB292JKBcoWd43rmVp6N6gyUQEeV/rRZ5kxFvViLnOQe7cY3K08mJJn2qiab+FpoZt5Oaf2ee89PQkvn/1U3i9Xdz3y19iS8knaeEKHP4g/ypt7kdwilgDOVffSsvn79O1dysBexfVLz1O8hkXYJq5cFhuyoDbScfmz0lPn93HSgJQKDRkZZ9OZtYCJk2AsrIq9u/fjyjKyc7JpqOjg46tn9OxZS263HGYps1HX/DtrTmvuR1fVwfx2SsjxzRqGSnJGj5Z1Tji61ksVYjIiGP0z35Svon2qqFdkh5cuAMuZs4cO8utq6uLuLi4qFQHcTqddHR0UFRUdEpUJwE4+TVahoGioiLq6+tHRG5GoxFJksgLTGB6aCEThJnkCuNIFjKIEQyDysMHQlulmcT8b9YxOHFQo0UhqMPk1t4tKlGM7VdjNOThbqju255mAJRanIwzjq679WAIety4WxoQFAo6X/4Ux6Y9GPQxvPTSSwQDAdavXx9xP+bk5NDZ2YnNZhviqr1QKpU88+wzdAZbaaWvcCYkhaiQDrKHr/AG3ARDQWJXzCPtNz/sQ2wLZCZWypN53leD7eJ56JfM5JPf7eHtO76my9rF3//+Cl9tMXPG0hSWn5WGWt27MNfXbQ4LSc7P7CMkATDXhn/D4gC5YfJ4Awgiltr+v/MZl+YihSRqqjcSCoUT+UURZs9K4LJLcqir9/PEk/+jqqqKji1rsR8N59f1EFy6TsUl+YmRfZwol5O2/FJSV1wOogwEkdZ1/6P+3f8QdA/tIenYvAYhJJGTN/jmSC6TMXdOMVU1WmbNvZ2U1OnU1NRhtzvISM+goKAAd10F9e/9h/KnHqRt0yp8XUNbOYPBUVmKIMr6CHtycvS0tXtwuUZeFcVqqSaOeERh9KSbmG+ifRiWm42w2GbWrFmjnuub6OrqikofNwhbbi0tLRQVFQ09+CThlCW36upqnE4nkjQ895hWqyUtNR0n9qEHD4H2KjOG1BiU2oGTjscagiAQKxmw2Rpwu4M4HAESx9g1aTTlE/J7cTXWHHfckS4X4w3abx1elCQJV2MNjZ+8QfmTv6X18/dRCCJnnnkm9i4rZrOZa6+9tt95KpWKrKwsjhw5MqL5li9fzkUXXkSl/CA+KewG9Ehu9sq+olYoAwEkmUDiLZeQcN05fayoY4mtVnIjiCKma5YjGmKQgoAkZ+qMayk/aufV16uQy0WuuTKPqZONBAIWzJ1lSISYcVl/1ZulzokgCshz+lui8kQDhIK0Vnb1e614WTpKnRwI0t52gIL8GK64LJfCghjeea+Wr7d3kJV9BrGxmQiCSP0HL+M1h2XsgxEcgHHKHHK/fxtynR4EEUfFISr//Zfj/i487S2Yd20mO3sxSuXgMdBJkwy43AFqap3o9SkUj7+IBQvvJ79wOe3tVioqKtBqNMybNw+9QkbH1s+peO4hat/8B7ay/UNuvL4JR+VhDMY8ZLJeQUZerp6q6pGvAZIUostS/a1ckjKFiCnTMCy3pA0zqcmpI/JQDIVok1tjY+N35DYUioqKqK2txe/3j0hUUjKhBPcYkJvH7sXW5iDxJLsm7dYGJEmirT0sKhlLxMSmo1DqcFSVHndcrd2DKApk6EcnhQ563Jh3fUnlvx6h5pW/Yz20i7ycbFavXo3X62HNmjVDikSKi4tpa2vDYhmZlPypp59CrVdxRNxNh9TMTvkXOGVWJCTk8bGk/+lmYk6b2uecbxIbhIm545//I2R1IIUkJk/7fiTu5XIF+fjTBtZvbKG4OI6bb5rOtddex8S5haSMN/S7p3AaAGhS+8ch5PFxIEHrkd7frL3Nzb4Pann/nh2oFVrOO/88br91GacvSOJwaRdv/remT73ECZOvDi/uwSC1b/2TkC9M7McjOE1qJnk/uAttZlhhGHDYqHnl73RsW48k9U1BkSSJljXvotGayMw+bdDPXqkQmTUzgS1b+1YkUSi0ZGUvZN5p9zJx8jXI5Als3boVn8/PnXfcwcyZM3HXV9Lw/ouUP/0gbZs+HZY1F3A5cNZVkJAwLnJMJhPIytRTXT3y8nl2exOBoAcjo48XxecY8bv92NuHtoQdopXZc2ePeq5vIhAIYLfbo0pudXV1pxS5nZIxt/T0dFQqFVarFYfDgU6nG9Z548ePY9uGHTAGdVrbq8wk5cfTeGDk9Q5HgzhMVAdK8bgttLUljrmoRBBETPFFWCtKYfG5g44LSVDe5WKcUUu9Y3ipGJIk4W6swbJ3K7bSvUjBAGq1huuuu47nn39+xFJntVpNXl4ehw8fZv78+cP24aelpfHCiy9w4YUX0kYjChT4fX40kwtIuu1yZPq+KrKBiA3A9tnXODeH+9Bl5SwmPr7/A1tZZaesvANzx3usXHE2D174MK6mTsy6GhyqDlxKC5IYpLPaQSggIU8w9LtGzzGPxcf/7ttB0yEb+lAc+QX5XLbsfKbdNpHyI2W8+uoruDwTiY3rLwBRq+MomXg5+/e+RKCrk8ZP3iDjwusQBGHQGByAXKsn+4of07ZpFZ1ffwGCQNv6j3DVVpB23lXINeFnznpwJ676SqZMuwFRHHy5mD7NhNnspaZ24IVdEEQSkyZgii9ky6aHEd1ynnziSQRR4PvXXE1sbCyvvfYaHVvX0bHlc3Q5RRinzSemYMKA6SvWQ7sRJIGk5CmRYxnpWjyeIB2dI08h6uwoQ46CuH5llYePpDzTsFIAJEnCLnYxe/bYkZvNZkOpVEZFTNLT6qaysvI7chsKoihSWFhIZ2cnDoeD5OTkoU8CSkpKsAesBKUgsm/hN4fuuFveybPcwg+VEO7+3JZJyfixb+AZHz+O1oN78Nu6UMQaBh1XanGxJN3I2iGScIMeF9aDuzDv3ozP3IYgiuTn5fHMM89w5plnHvfcoVBYWMjatWtpb28nKSlp6BO6ccEFF/Cb3/yGP/zhD/gDfgzfW4zxkqX9iv4ORmzu0ho6X/4UgNi4LHLzlg06V0vzbo6W7ae07AB3X/A9UqUijK4M0rqmIA8pcSu7uOSMLMpSy/HkFyETet292YKGYGomRUuWkJ+fT+GE8eTckAmiSGPQTYXo5i+BKva9+BzeigaSEq1MmDywujE+YRyZ2Qupr92EvWw/5u0biZ+zGOC4BCeIMpIXn4smJZPGj1+HUBBHVSlV//4LGRdeh1wfS8ua90hOmYZpAILvgVYjY9rUeN7/X+3xvxyguWknwaCXqSxBFpLTFKrhndfewxmwM2/uPK66+ipef/11mR0wuAAAlC5JREFUtm3fgbOmHJlGh2HqXIxT5qI09BKPdf924hPGoVT2bnzzcmOoqhmd58bcfgQTyYjDqOAyGFKKE2irGNrqdOHAF/SekHhbtMQkbrebzs5OCgsHr0J0snFKkhuEXZOtra0jEpXMmDEDSQrhoOtb7cAA2is7Gb9k8DYtYw2FoCQGA13mShqbZqPTyTEalVgsQxcSHi5M8YWAgKOqFOPUeYOOK+9ycWl+EiaVHPM32pVErLQ9W7Ad2YsUDKJWq7nhhht47rnnxiwhVaFQUFRUxOHDh0lMTBz2Q/urX/2KP/35zwhKBcm3XYZuxrh+YwYjtoDZRuvfXu/+l5wJk65CHETRJ0khGurC8v/J52cjiwnRxhHaYo+ABMqADqXNQHuLhVmzZpFWWIxCrkDZvXherkzHr5DoOOssKisq2BKy8EEoRFvQGyafbu9g7JmzaT9aT1vbfgo8K1GpB9705OWfhdVShd3eROv6D1Enp0eaeR6P4ABix01BlZBM3Tv/xm81h92Urz2FIsaAUq6jaNz5x/3MZ81KoK7eSUvr8ZP/JSlEfc2XJJGBRgiTUg7FZAUK6aCZ8h2V3Pr1raQkp/CH3z+Iz+fjySefpPPrL+jcug5ddiHGafNRxBnxtDdROKV34yEIkJur5/N1zce9h4Hg8zmw2RvIYPTKRUEUyJ6ezqf/t3HIsVbC1t2MGUPnZQ4X0Y63WSwWUlJSolb6ayCcsuQ2btw4ysrKsNuHvxObNGkSCrkCW8DyrcmtrdKMIS0WpVaBz3VyuoKbpESazZX4/SHq6p3k5ejZZRm9muybUCg0xBqysR89dFxy8wYljlhczEiKiVhvQbeTroO7sOzZjM/cjiCKFOTn89xzz7F06dIxu8djkZubS3V1NdXV1eTlDb3RmDVrFjt370KREk/K3degSO0vDhiM2KRAgNZHXyfk9EBIYvLUq/sU4v0mzOYK3O7wdzPtkpy+LwrgUzipa2vktdfWA5DznwcQtWpUiDysLuERbwVeQtQ/+Tj+pg7irz+XuPS5/ebRzZ3I/4+9846K6lzf9rVnht5770VARBBsaFTURE3PSTmpJ8VE07s5SU6SL+WX3ns13ZiYqlFjF0VQBAHp0nvvdfr+/kCIhTLAUDRea7FWIru8M8zs+32f93nup+HLPxHlSiorE/H1u6Df8fTuvx0++A4ajZLS374k4PbHMLDsSdsfSuCM7J3xvfURKv9cR0dBFhJBQNXWjLGle1+2Zn84OhozNdia9RsGb2sEUFtzFLmihbBTiu0lggRH3HDUutFOC+W1hfy/p/8fEqmE62+4nquvvppXXnmF+ISDdJbmgyAgkRlhYvL3d9zTwwxBgPKK4bfYaWrMB8COkSd3OAXYgQA1x4b2s2ymnmmh07C11V9kqLW1Va/JKcOhra2NmpoapkyZMvTB48ikTCgBiIiIICcnh9bWVp0zJo2MjAgNDe1Lsx0N8jYF7fWd4xqatMURpaqDzs5aiks68PXRbzsMACenaXQU56LuHHzSkFTXRqSDBfKKYir/XEfe+89Su/sPJN0drFy5Enl3N3l5eWMmbABSqZTw8HCys7MHLehvaWnB3Nyc5ORkzGZOxe2lu4YlbAAN32xFUVQJWi0mJnZYWHoMOraK0nhAgr2/BS4h/RcmN5X9HXXoziqiO6cYRUGP56Air4yu1GM9+f2Aqqb/h6LE0ACLRZEgkVBafACNZuCJlrGxNSGh1wAiKBWU//olWvXfxw+WZAI9XQE8rrwVx4UXotVqkUpltLdVcPjQu7Q0ny5eUonA+UtcSD7SOGSEQaNRUZS/HQfcsBQGLuS2EKwJESKJ1q7AUxXIhu9/4aKLLkKr0fLTj+t57bXXsLezQ6tWcvjQ26Qd+YK62gymhliRnd2Kjo+Kk2hsyMVCsMFIGPl+lc8sd0qPVCEOYX4giiJtskbOv2B0YfsT0Wg0E5pM0traSlFRkV4L0vXBpBW3yMhIcnJy6O7uHpZTyZy5c+gy0L1GajDqChvHtZjbGgckSGlqzKe4pANnZxNMjEe3d3gqTk7TERBozUoZ8Bh1dyeJu7ejaGvFIf8wbTlpBPj7sXfvXrq7uvjiiy/06oc3GA4ODnh4eJCamtrvJGfbtm3Y2tnR2dWF7Y3LcXzw30iMT8/0HEzY2vel0L7zMFKJBDOJJarudpIOvkt9XVa/9+zqaqCpKQ/Q4jfPacDJV3NZJ4JUAEGg9s0fqH5uLdUvfgVA9cvfUPPqd6gq6kAiQVU18IzfckkUaLWAirra9EHeLbB3CMHDcz4gIK+tpGbHbyf9fiiBEwQJ9nOX4nnNKkSZrKejOSpSj3xOSfHJ2ZSzZtmj0Ygkpwy9WqkoT0CpbCOA0CGPhR5zYW8hiDnqC5jGHHIS87n66qt55+13eOSRR8jNzeGOO+5Araqnsnwr3l6mbN26ka6u4XUC0GiUNNbn4iCOzg/RZ6b7oGbJvXTTQae6Q6+TwtbWVgwMDCbEdksURVpaWsjNzdVrmFUfTFpx8/T0xNramvr6elpaWnQ+b+bMmbSpWlCLow8l1o9zMbdUkGKDA00NeXR2qqmrl+Ptrd8eawaGZtjbB9OSfvikh7IoinSWFVKx6Xvy3n+Wml0bid275/gqrYtjx46xaNEivY5FV6ZOnUp3dzfFxSevHlatWsWKiy5CMDHC5albsb64f3eSwYRNUVxF/ecbe87TCERo5zOH87FQmZGZ/j3pqV/T1Vl/0jmV5Qd7vCUlkPhNAR9euJOdr6VTlFCLqvvvEF5TWQcIYOodSOB9z+F3x+N4/+cBAHxueYiAu5/B4bwVIIKq6uR7nIihhxNGAR4gCJSXHRgykuHrvwwLC1cEQUpLeiLNaQdP+v1QAgdg7huE762PYGTnhFKlxMrKkuLCHRxN+RKlsgNHR2Miptuyc3c12iEaWCiVnZQV78UNX0yF4UUjJIIEJ8GdGdoFzGIJVBvy1P+eZnrYdDQaDXEH9vPVV19RVlbG0bQtJCa8SWry59TVpg8aTu2lvi4LjVaJM8OzIjsRK2dzrJwtKEutGvLYRuqQHu9woS9aW1snzJlELpfT3d1NZmbmOXHTFUEQiIyMpLy8fFjiFhUVhYhIO7qfMxB1ReNrwwVghxOtLcWo1QqKizvw9dF/A1Fn10gUDdXIaytRd3fSeHgfhZ+9TOkPH9Kee5SgwAD27Yvl888/x9nZGaVSf0ktI0Emk50WngwICODzL77A0MsZ91fvwWRq/3tygwmbpr2Lmte/B62IKIqEMgtjwRRjwYRw5hHGXLqaKzl88B3ycjeiULShVsupqkxCFLWYL5yByzMrEYODSdtWx493JfDm/C18/Z/9bH/5KGVHGhDVIkbWdsjMLDCyc8TYvifz18jWAQNLawytbUHUom5oRVQPXMRsef4sEEU6O2pobR08K1EikTE17AYkEhmCIKF62890V518ji4CZ2hth89/HsAqZAatra2YmprS3FxIStIHLFlkT9KRBhp1SLsvKtgOGi2+hAx57GBYCjaECFHM067AXenPj9/+xIwZM2hvb8fb25uammpWr16NRtNAVsZ64ve/RGH+X4Ou5moqk7HGAVNh5N8z75nuVGbWopIPLabNQi1z58zVa+LFRCaTtLS00NjYiEwmm1RlADCJxQ16QpOFhYW0tupughocHIyxsbFe9t3qT0gqGS8ccEUramhsOEZRcTueHuZIpfqdkdnY+CMzNKXij2973EP2bEKq6GL16tXIu7vIyclhwYIFmJiY4OLictqKaSJwcHDAy8uL+Ph4LC0tKSgowGJRJG7Pr+q3hgwGFzZRq6X23R/RtHSAVosnATgIf/ehEgQBR8GNueIF+DGV2oojHDzwGmkpX6LV9kQFLJfOwiTEB4c7Lsf9g8dwf/0+bG66kFZTFzIPtPX1autN6ugPA6u/J0+quoE/s2ZzQhGMe0LBFWXxg79ZgImJDcFTrz4eRhQo//XL0/ZZdRE4iYEhrhdfj/P5/6KruxuJVMaqVbfQ0lLNL7/8clrR96m0tpZRXZWEH1MxFPTTm9FQMMJHCGaOehnXzLkJpVzJ1VdfzYyIGfj6+lJSUszGjRuZNi2I8rIDx1dzn1Fbc/JqTt7dTHNLEa54DXK3odE1JKkVtTRLGrjwoguHPHY4TLS4VVZWEhERgUQyueRkco3mFCIjI8nNzaWlpUXnpBKZTEZERIRexK27VU5zZRvuYeOXhWQimGEh2FBfm05DowK5XIO7m368HpXKTspK40g69DZqZRfq9maCAgM5cCCOrs7OflP5fX19KSsr62vQOpGkpKSQlJTEnXfdhf2qy3FYfTmCQf8Jv4MJG0DzT7uQZxZhbGCIjdQef6b1ex2pIMVbmMI8VuAnBtPZXg0IGHg4YeT7d2sPQRAw9HDCatkcnB64Fpfn7+xLLhispvDE36lrBi4A7kksmQESCfV1mcjlQ0/4HByn4u7R08RT3dlOxR/fIGpPXh3qInCCIGAbOR/vG+7l4ssuY3p4ON988w1FBTtIO/IFCkX/yUmiqCUvZyMWWOOO/hpy9iIRJCy4ZB7HtpYSpY1BrJbx5BNP4urqxubNm/n5559pbGzgzjvvRKttIjtzPfH7X6QgfytdnfXUVKcgRYYjw2/i2ouRmSEuwY46iVsLDag0SpYtWzbksboil8tpb2/Xa+blcGhpaaG4uHjShSRhkovbjBkzyM7ORi6XDy+pZM4cugz005OsOKkCn6iRf/hHgpPoTmPDsZ7QZEn7qLImRVGkuamIrIz1JMT1hGkcHMx56623UCuV5OTkMG/evAHPt7W1xcLCgrKyshGPQR+sXr2aW267jTc//ZApUeFcef6KAY8dStg6D2fTsnE/BgYGiGqREM3MIYt3DQRDzLFCK6oBEavzZw26x6Gq/luoBlu5ycwte4q0ANUg4gZgubg3sQSqKg4NemwvXj4xSCQyZDIDusqLqI3dctoxuggcQNjUEG684Xre+uJrsrKycXNzo6WlmKRD79DUVHDa8RXlCXR0VBFExJjsBzn42uLgY0v2rsKekCUzmaddgZvCj6/Wfs1jjz2GjY0NH3/8Ma2tLfz555+EhYVQURZP4sG3KCneiwXWSEbhpOo1w5Wm8had+rfVU4WzkzPh4eEjvt+p1NbWYm1tPSHOJKIo0traSm5u7qTLlIRJLm7e3t5YWFjQ0NAwrH232bNn065qQyGOvqN08eFyvKPc+joljwdOuKMV1cdDkx34jCCpRKnsoKx0P4fiXyct5XOam3K56KILycnJprS0lIceekjnMIK/vz/5+fmo1XrwNRsmGo2GadOm8dlnn4EgoLC35EtNBTEye6ZJThf9oYRNWVlP3Yc/I0gkqFQqpmgi+wqKh6JSUoRUIgOZFPP50wc99sTU/sF6mAkSKTIzi+PnDC5uhp7OGPm5gyBQWXFo0LIAgJbmYo4kfoCgBbQiVpZWNB2OpTUn7bRjhxI4O2MZ1wU4srG4EU30RdhGzqOyshJTU1NMTAw4mrKW4sKdfWHKjvZqCvO34YE/VsLYJGXNvi6MrJ35KDr/3hM2FIxxxQutqGHhwoUnHX/xxRdz5MgRmpoaufvuu3F0tKeFBhKk28gTj9IpDt/dxFvHkKQoijTKqvn3tf/Wa/iupqZmwurb5HI5XV1dZGRknFu5DRdBEJg1axZFRUU0NelezNyb1ddM3eAH6kDNsQYEiYBT4MjdwofLiaHJysoujIwkOnUJ6FmlFZKZ/gMJcS9TmL8NJydL3nnnHeTybv7880+Cgk537BgKFxcXTExMKCoqGsnLGTHFxcVYWlqSmZmJ3axFeFx+M11peWT/tIX1qgquM3DH/YTapKGETdutoOb17xFVGhBF7HDCAd1SwDvFduq11WhEDebnhSMxHfzvoappBKkEBKFndTYIvftuykEyJnvpTSxRq+UDlgUolR3kZP1C6pHPMFIYMIelBGujaG1rxcDQkKotPyCvP93JYyCBM5FJuGmKM0l17aQ2dCBIZTif/y9cL76eboWS9s4OQkJCKCneQ+qRz+nuaiIrYz1mWAwY7h0tLsEOuE514sivmaf9rox8zM3Nue222/o919ramg8//JCamhpycnK4+4G7aLNq4CDbSZXsp0YsQyMO3aFAIpPgNcOVkqShe8e10kiXupOrr7566BenIxqNhvr6+gkTt6amJhoaGpDJZJOugBsmubgBLFy4kKysLBoadK9fcXJyYkpgEE0M/bAYClErUpJcic/M8W2d7iS60dhwDKVKQWFRB0FTBn5AKpUdlJX0rtK+oLUlj0suuZjc3BxKSkp44IEHRjVbFASBkJAQ8vPzxy1z8ttvv8XPP4BupRK3y/6D0+JLsQgIxXHRRbT8sY+EvfvYrq5jtaE3LoLRkMImiiJ1H/2Cuq6J5599lltuuYVGaskSklCJQ7+mcgowkBmCKGK5ZGhPQFV1I4ggM7UYsimnobUtCBJUlUN/Xs3m/p1YcmpZgFarprwsnsT4N2moziCICKJYiIlghpPgjgd+iFotokZL+S9r0chPf59OFTgTqYTbglyo61KyvezkCaZ1aBQ+/3kAqakF2Tm5PRGTtgoOJbxBd1cjoeKsUXu8DkT0TRGk/pFNd+vJ2ZpqUUWNtJR77r1nyO4T0OOE9Oabb1JdU8UPP/zA1OggMjlMgvSv46u5gWtmvaPcUHQodTJLrqUCZydn5s4d2BlouNTX12NkZISFhf7NHnShoaGBgoICzjvvPKT9mFtPNJNe3GJiYjh06BCtra0oFLq7fZ9/wVLaDIb+0OlCcVIFPjPHd9/N8XhosqE+m6zsFoKDrE7KmhRFLU1NBX+v0gq24eRkxXvvvUd3dxcbN27U62zKwcEBGxsb8vPz9XbNgbj++uu5+ZZbkFlY4XPzw1gFh/f9zm5WDNbT51D/ye9sid/HfnUj9xn6ctEgwgbQuimOrqQc5syazdNPP82XX37JDz/8QIdpE4dlu6kRywZMWlKLKmql5ag0KgzcHTHyG3qio6ysB60WA+uhN/oNLG1BENA0t6NVDh5qlBgZYrGwJ7GktyxAq9VQW5PG4YS3KMjbgqPGhWiW4S74nbTX5U8YZqIlDnb2qFqbqfzz+36zHXsFzt3MiIfDPWhXqfmpoI7+3h1jJzf8bnsEM68AEhMTcXd3xcXFGREtNZShHSKbciR4z3THytWStE2nt2+qpAitoOW+++4b1jWNjY257rrr2Ld/H7m5udz30L20WzdykB2kSPZT3c9qbur5AWTtKqDfN+YEekOS1/z7mjEJSU5U5+uGhgbS09MnrP51KCa9uEVGRiKXy2lqaqKxUXexWrx4MR2qNrrF4XvNnUpZWjVWzhZYOeu/5mwgTAVzrLCjuvIIlVVdyLs1+PlaoFR2UFqyj0Pxr3M0ZS2tLXlcdtml5OUdo6SkmPvuu2/MUnJDQkIoLi6mu7t/ARktSqUSHx8f1q9fj7lfML63PoKxw8khF0EQcFl2FZbB4dS9t4GWsiqkCGgBJf0/SLsyCmj6cQcWFhYcPPh3QfN1111Hdk42Ky5ZRiaHSZMeoF1sOe38KkrQiOqeVdsFs3V6mPTunxnqJG7WcDyLUT1IOUAvfzuWQH7uJhLjXyc78ydM5cbMYSkhQmS/afdSQcpUzSxam1vw9PSgozCHhoRd/d5DrRVRiiIyiYBcrWUwVympiRme19yBZXAEZWVlqNUa/vvf/1ImySdNegD5ABOOkSBIBObeGE7yhozT6so0ooZKWRE33ngjLi4jdxyZMmUKr7/+OtU1Vaxfv55p84LJOr6aOyam0SG2YeFghvs0J3J3Fw55vbEISYqiOOH7ba2trSQmJp4Tt5FiYGDA/Pnzyc/PH1ZoctGiRUgECU162HdTdauozKzFe5xXb2740NzcY9CblFyIj5eChLiXKSrYjrOzDR988AHd3V38/vvv49JqwtraGmdn52F3ydaF9PR0LCwsKSkpweG8FXhceRtS4/7thASJBLeLr+eKm27lUudA3kzfS6y6gbsNffAQTj5HVd9M3ds/IkgkVFWd7iDh4eHBr7/9yl9//YW1lzmH2U02ycjFnuw3URSpkhX3hF1kUiyGSCSBnuJwsbsnyiAbJFOylxOPGSqpBI4nlvi6gSDQ0VGDhcKM2SwlQpiHuTB4qyRTwZxATY8I2dnZUR+3jfbCk1dAZjIJt4e40KpQ887RclyHyKIEULY00FmUi7mlGw2Nzbz11ju89NKLGNpLSZbtoUGsGfJ16cKUhT7IDKVk7jg9glBGPgpRzv/+9z+93MvIyIhrr72W2H2xHDt2jPsfvo8O6yYOsQOb8w3ISymkrWnoriW1VODk6ER0dLRexgU9KfgajQY7u/FzUDqRxsZGGhsb0Wq1RERETMgYhmLSixv0CFVGRsawxM3GxobIyEiaBP00G52I0KQ19kiQcvjgO6z7/lX8/Dy46aYbKSjIp7i4iHvuuWfcCyeDgoKoqKgYVreGoXjrrbcIj4hADXhcfQcO887vsbcahLkuNvz7kgt5/et1HHruQ/44sIed6nruNvQmXNKzP6lVqqh9Yx1auZJdO3YOugezfPlycnJzeP+D95Fbt3FQsp1sMZlyCuhQt6FSqzGfN33IRBI4WaBaM49Q9vMXVG39kertv1C7ZzMANbs3UfXXBsp//5q62M1/n1utW3TC8oKexBIDmQwzLLAQrHU6D8BZ8MANX9rb2pHJDKjc+C3K5p7vloupIXdPc6O+W8UP+bW0KocuE9DIuyn/eS2GMnMiZtzOrNn3YWBgwRNPPMGVV/2LRUsXksYB8sWMUYUppQYSZl83ncT1R9GqT76OUlRQLs3jnnvuwd/ff8T3GIjAwEBee+01qmuq+Omnn4hZvpBfd244YTXXf+mRVtTSIKsakyxJJyenCSucbmhoIC8vj/POOw+ZbHI2lzljxG0k+24XXXwRzZJ6vcT9S5IrcQl2xMhsbA2DRVGkUawlg0McEnYgkQr4+Hjx8ssv4+npyWOPPYafn/4LYnXF3NwcT09PsrOz9XK9FStW8Mijj2Jo64jvbY9i4Rc85DlznCy5wMOWr3JrUETE9IUoN+/awXeqCq42cGO51JHGLzahLKvlvnvu0cmo1sDAgHvuuYfikmJeefUVtE5y8jiKpYVlT0hyqW7NJVXVf0/CLA0dMWrVoimtQllQjKKgpx5MVViCurgcWUM3VpK/m7EO1B3gVMzmTEMwMgABqqWlOmX3nUgg0zERzXBxdkarUlL+61pCLI1YNdWVpNp2fiqo6wtFDlYmoFWrqPj9azQd7YSF3YRMZoypmQORs+7F3mEqH374Ic3Nzbz00kuUSwpIlcb1rYqHy7QVU5B3KMiLKzntd0VkY2hsyNNPPz2ia+uKkZER5513Hg4ODqxbt44HHrmfTptmDrGTFMk+qsST/xYN1NCt7uLWW2/V6zgmMiQJk3+/Dc4QcYuMjESpVPYthXVl2bJlKDUK2hh9T7T2+k6aylvwmuE69MEjQCHKKRZzSZTtJJU4bALNefudt6mtq6WgIJ+77roLX19fSktLJ6Te7ESmTJlCY2Njv2E+Xenq6iIyMpJt23cgNTLB+6b7T+q0PBB/C1s15R0KBIkUt4uux3r6HBo+/Z24b3/mXXkB4Upj7p23nOlhYbz33nvDGpulpSWPPvoopWWlbNy4kfbOjp5EEn/dVu59ZQCAf8CFhIXfTNTMe5g1+36iou4GIDLqTmbOupfwiNuYOu1apNKePbLBugOciMS4J7FEpdGg0MipYXhF9lJBSoh6FjVVNcyIiOCKpTFc6WvPT/m1xFa1nHZ8fwInajRU/P4N3eXFTJt2I6ZmDn3Hy2RGTJ12PX4BF5KYeJjXX3+D77//DhNHA5Kke6gXh/fZsXQyZ9a1YRz46shpCRydYjtVQjFPPf0U9vZjX7JTVFSEt7c3gYGBvPrqq1TXVLFhwwbCF0wjm6STVnM1khKmh4XrtXC7q6uL9vb2YXWo1ydnwn4bnCHiduK+W3297un9M2fOxNLSikb0E5osSarU675bzyqthnQOES9spcIwnytvuIL4+Hiyc7K5//77T7LVsbOzw8TEhPLycr2NYSQYGxsTFhZGenr6sFbSvWRmZuLq4kpKSipubrPRKOTUx/015HmnClsvgkSCy7KrcFpyOa1b4kl99iMevuteTE1Neeutt2hrG1kLJENDQ7q6uhC1WiyHcCQ5EVVNY98D2MjYWqdzjI2tkAzR+uZULI4nllhbW1MlK9bZoq4XM8GC6WbRnH/++VxwwQX897E1xO/aPuDxJwucPVV/rqOz6BihYTdiY3t6NEEQBDy9ziN8xkra27u56ab/8NTTT7F0+RKOkkC+mK5bVEWAJffO5VhsEZUZp3+XCyWZuLi4cP/99w/r9Y+EtrY2mpqa8Pb27vs3Q0NDrr76anbv2U1BQQEPrXmQLtsWDrGTOm0Vq1bfodcx1NTUYGdnN25tp06loaGBhoYGRFHUq2jrmzNC3ACWLl1KcnIytbW1On+JpVIpF110IU0y/WxmFydV4DXDFYlsdG+bQuymWMzhkGwHqRzAbooF7773LtU11Xz99ddER0f3+yAVBAFfX1+KioqG/SDTN25ubtjY2JCRkTGs87744gvCwyPo6lYTEbWKwKBLCQy8mKbkOJqPDmwpNZCw9SIIAnYzF+B2yQ0o8svp6Ohpqurk5MT+/fvJz89HO1Rvln645557dHIkORFVZT2CKCKVGiGT6WYWbGxii4CAprUDrUK3WkIjLxcMfd1obWujVd1EC8PrZeYzy52H3rsTM6kFa9Y8RkdHB7W7N9JZPnCxfodKw+dZFTiKCm5dEUNo2HXY2Q9ecmJj68fMOfdjYurI3Xffg5OTE2+++SYV0kJSpfuHzGietjwQCwczEr5NPe13DWI1ddpK3nzrzXHpZ1ZUVIS7uztGRv3/Xf38/Hj55Zepqq7k559/5sUXX+Tmm2/W6xgmOiRZW1tLVlYWMTExk3a/Dc4gcbv00ks5cOAAra2tw0pmuOaaa2hVNw9ajKkrdYWNqBVqXIOHHw4QRZEGsYYMDhIv/EWFUSFX33glCQkJZGVnce+992JjM3Rmnbu7O0qlclgr2LFAEASmT59OXV2dTuFJrVbLDTfcwB13rMLMzIWZc+7H2tobAFf3Obi4zaJm+690lpyeBTeUsPUiajQ0HTkAWpEd27bh4uLC1KlTiY6OpqysjLi4uGF9duRyOU2tLZjPC0NqptuDUxRFVDWNCIKAsY6rNgBjYxsQerty6x5Gtzx/FqJWi4ODAxXC0GnpAEbmhpz/4DyW3DeXhG9S2PtSMqpWDbY2dkglUip++wpVe/8JEqJGTe7PX/O/xx4jJDicG64/H10WtMbG1syIuhMX10i+/PJL1q5dy86dOzFzNiZZupe6AcKUls7mzL0pgt0fHOw39b9AlkHMohiuueYanV77aFAqlVRUVODr2397pRMxNDTkqquu4sknn8TMTDd7N11QqVQ0NDRMmLhptVpqa2tJSEjg0ksvnZAx6MoZI24BAQH4+PhQVFREdfXp1kEDsWzZMkxNTKllaP+3IRGh6HAF/vN0b5GhELspOr5KS+MAdkFWvPf+e9TUVPPVV18xd+7cYRVhSqVSvL29x90Kqz96w5NHjx4dNDzZ0tJCUFAQP/zwA67us4mIWoWR0d+OK4IgEDjlEqxtfCn/ZS1dFX+32NFV2ABq9/5Jd2UJDz/8EOeff37fv9va2rJo0SLs7e3Zt2+fzqu4Sy+9FDRanRxJetG0diIqVEgkEoxNhp6s9GJsbI32eK2bLuUAvZjP7UksaW9vp47KIVdBPrPcuf7dSzA0MeCH+zdzbF8xUkHGVPVMSopLWLp0CRpFNxW/fYWoOVlMtGoV5b9+RUdBFh5el7Dxz1ocHIy5YKmrTgInlRoQFHIlU4KvICcnl0suuZRvvv2GZRddQDoJHBPTTg5THg9H5sYWUZl5ejiylGPI6eKjjz8al0LmkpISbGxssLIavNxiLKmpqcHc3FyvgjkcmpqaaGlpITU1lYsuumhCxqArZ4y4Qc/D5siRI9TU6B5mNDEx4dLLLqVRprsgDkbO7kICF3hjYDzwcrxnlVZN+vFVWpVxIdfcdBWHDh0iMyuTe+65Z1T9l3x8fGhoaKC5efRtfUaLm5sbdnZ2pKf373N48OBB3NzcKSgoIijkKqYEXYZEcvp7J5HImBZ2IxYWbpRt+Jzu6vJhCVtr1hGakvcTHh7Om2++edrvpVLpSau4PXv2UFlZOWh4d/eePRi4OvR0wdYR9fFsR61WpL2tgsz0deTlbqKocAfFRbspK40DoLQklqLCnRTkbSEr40eqq5L73ELUOmZMwvHEkgURyJVKjI2MqaD/1ZtTgB2XP7+UJffOJeG7FLa8HEtX89/F1WaCJYHacLZv387FF15Id3U5Nbv++Pt1dbZTtv4TukoLCJt+M/YOwXR1a/jt99JhCRyAq9ssZkTdiUolcP75F7BkyRLeffddqmUlpEr39Ql02IopmNuZcrCfcGSX2EGZJI9HH310RH6pw0WlUlFYWDihmcoApaWleHmNrv/caKipqeHYsWPMnDkTJyenCRuHLpxR4nbJJZewd+9empqakMt1d/z/OzQ5+tqsuoJGWmva+129ycVuisTs46u0eByCrXn/g/epqanhyy+/ZPZs3dwthsLY2BgfHx+9peOPBkEQCAsLo6Gh4bTw5Ouvv878+eeh0ciInHk3Lq6DO4dLpYaETb8ZMxMHQpoKOd/dWidhk9dVUbX1J8zNzUlOTh70WFtbW2JiYggICCAzM5N9+/ZRV3d6of9PP/2EVqvB8gLdE0ng71WXibExalU3LfX51FWmUFEST3nxPspL9gFQURpPRckBqsuTaK7NRdl9fKIikehc66bp6KZtRyLy3FLQanFydqJGWtbjpnIcazdLVjy2gMueW0p1bj3f3vkHx2L7bz7rKnjhKniza9cupk0LpTk1gZb0w8hrKyn++h1UDfWER6zE1u5vw4CRCpyllQcz59yPhaUHDzzwALGxsRw4cAALVzOSpHtQOXUy58Zw9nxw6LRwpCiK5EnScHRy5KmnntLthqOksLAQc3PzCX2gt7e309zcjLv7+Nbb9tLripKYmDjpQ5IAk3c3sB/mzp2LKIpUV1dTW1ur8wxm+fLlPaHJ7gp8GbqOaiiydhQw9Xx/cnYX9mQ8UkOVpIR6qjAyMuL6669n9erVzJw5c8zCJQEBAezatYu6uroJSwnu5cTwpJWVFSYmJlx88cX89ddf2Nj4MXXadRgY6hZGkcmMuPnmNUTPceC5555DEbkEExfPAY/XyLso/2UtIJKVlaWTgatEIsHLywt3d3eKiopITk7G2tqaKVOmYGtriyAI3H333SCVYj4/XMd3oQdVdU8ZwMZNG9myZQvV1dVUVlTS2tqGSqnsK7r18/NBK2oxNTXFzd0NFxcXZsyYwapVq1AOkjGpqmmkKy2PrtQ8urOKQCti7huEaKWisrIKtVZFDWUEO4cR+a+pTFngQ86eQr6/Z9NJK7WBmCKGc0Qdi0qpwsLCgqptPe2BzEwdmDZzVb/7iL0C968rvLhgqSs7dlWhS76ToaE54TNup6hgO7///jspR1LYtXsXTz7xJLNmz+LgnkTKM6uQnGK+XE4BDdoatn21bVzCcwqFgoKCgmFvIeib0tJSXFxcBkxmGWs6OjpoaWlh//79/UZHJhtnlLjJZDIuvPBC0tLSiIyM1FncTExMuOTSS9j26058NaMXt7z9xcy7ZQbdno2kVSbRqe5gWsg0nrvnKa6//nosLQdvcaIPDA0NCQgIIDs7GwcHhwn90kFPeLKxsZH4+HjuvPMuiouL8PJehI/f0G4jJxI2zYboOQ788ls+VRWtdBz7GM9r7sDU4/RNfFHUUrHxO1Ttrfy4/gc8PQcWwf6QSqUEBATg5eVFQUEBhw4dwszMDA8PD9q7OjGPDkNqPrwMPGV1I4IIS5YsYcmSJaf9XqVSsXXrVpKOJGFgYHDa7x966CE6jheBi1ot6rpm5MdK6c4pQZ5VjLq+GaRSzDx8cVp4MVbBEcjMLWk+eoiabT9z1VVXETJlKmHTp1GQUMb6BzfTWjO0RVTfeyLICFHPJDk/lquuuZKff/0VUSswbdpNgybIjFTgJBIp/oEXYmHpTm72z0ybFsavv/5CZ2cnz/6/ZzGUmhCimYmp0OMu0y62UCjJ5KEHHtJrR+vByMvLw8HBYcKsrqCnvU15eTlRUVETNoaamhpKSkpwdnYmJCRkwsahK4I40Tnlw+SXX37hmWee4dVXX2XFihU6p6L+9ttvXHnllcxlGWbCyFpEiKJIA9VUS0q49t6rUCqUqNQqVq9eTVRU1LgLjEajYdeuXYSGhuLmNr4tefpj69atHDmSQnd3N5u3lmHvMHVY5/cK2x+byqiplaNWK8g4+i1t7eW4X7USc+/Ak46vi9tGQ/wO/vOf//DNN9+MevxqtZry8nL27duHVColWdFIsqWaGlH3Wr7yR99DqGsZMMGmV9wuvPDCfsVt6tSpZGdnY+jpgqq6HlGlBkHAyNEFM3c/zLwCMPXyR2r0tw2YuYGUCBsTwk20mJmZsm3bNiq3tWDQbDr8N+E4VWIJ2STzzDPP8H//9yJWVt5Mn3HbkBMVUxMp/7rCi/p6uc4C10tHRw1e7nUsX76UmppqVqxYwZX/upKqimqmaCKwx5kjslg8p3iQfCRpXFYwnZ2d7Nmzh4ULF47LpHUgKisrycnJYcmSJRM2kY2Li+Pjjz/G0dGRd955Z0LGMBzOqJUb9GQ/3nDDDTQ2NlJXV4erq26OIStWrMDE2IQ6eQU+wwxNysUuKimmVlZOl7qDsKlhTJ8+HScnJ5YvXz5hvYykUilBQUHk5OTg4uIyYT5zAE888QSvvvoa9vbuvPraq1ws+HDosO6JEacKG/SEKMPCbyYzfR1lP32G8/lXYDtjHgDtBVk0xO/Az89PL8LWcz8ZPj4++AcEEDpvFpfev4qHpFY0iSqytG1kadopFbsG6D3QM/lR1zbhYDN0J4CBWL58OdnZ2RgZ22OzYBZG9s6YOLsjNTk5/OZoYkCQjSnBNma4mxtR1NrNbzt2sPeXH/Dx9KK1uYswRt47zAUvmoV6Xn/tdR555GFef/11igp34uc/+GpppCs4gNCpfqxYtoBXXvmQlJQ97N69myMpR7jzzjv5+eefMcMCtVTFTxt+HLfQXG5uLm5ubhMqbNATkvT09JwwYZPL5TQ0NBAbG8t33303IWMYLmdUQgmAhYUFK1as4MiRI1RU6J7e3xuarJdV6VQArRW11ItVHBUSiBf+otaklBtvu57k5GSOph/l1ltvxcTEhMrKobvwjiUeHh4IgkBpaemE3F+pVDJv3jxeeeUV7OyDCZp6G1v+qiJ8ui0B/rqtkPsTtl6kUkOmTf8Pbu6zqdnxK9XbfkbRUEPlxu8wMjLWe1LNr7/+ilarodLHlh/UlTytyGWrugZzZNxq6MmzRkFcZ+BGhMQKe8HwJJ9FTXM7oko9KuPem266CQDL4HDsZi7E3GcKUhMzLAykTLE25UIvOx4J9+DuUDc8zY1Jrmvn1ZQyvsqtocDQFrVSiaWVJfVUjardkyAITBEjkKmN2LJ5C8uWLaOsJJb6utM7X5/KSJJMbKwNWX6BG7v31mBpswQf36Xs3buXoKBgXnvtNT7++GNsXK346KMPxy0k1traSlVV1bhkYw5GR0cHjY2Nww6765PKykrKy8vRaDQsXLhwwsYxHM64lRvADTfcwJNPPsn555+PUqnU2YbmlltuYcOGDbTRjBX9z65PXaWFT4vg/+7+f1x33XUndbw90S2kV2AmAolEQnBwMOnp6Xh4eIyrY0B+fj5z5sylqakRX//leHotQBAEmpqUbN9ZxfIL3GhpKaG+YeCw3mDC1otEIiVwyqWYmzuTd3QTzemJCAgkpxzRuwXRXXfd1dNB29EGURRRCloytO1kaNsR1OAlmDBVaslCmR2ugjEqRCq13ZSLcooUCgQvLy644AJEURz2Z0IURaZOnYqbhwdB1maEuNvgamaIm5kR5gZSGuQqStrkbC5ppKitG9UpTdZMnN0xcnQlPSMTCwtLKtoKCSBsxO+F7Hj9W/KxvUTPi8bN1Y3szA1EzXbEzGzwJKbhrOCMjCRccrE76RnN5OW3IQgSvH2XYGHpTlbGegIDp/Djj+sprxxf27mcnBy8vb0xNR15eFcfFBUV4erqirHx0B0pxory8nLi4+O59tprJ7UryYmccXtuAN3d3Tg7O/Paa6+xfPlynRNLNBoNHu4eSGqMCRb+TkvXiloaqKFaUkKDthoTExNu+s9N3HHHHURGDpy+rlar2bFjB7NmzRoXw9aBEEWRuLg4nJ2dCQwMHPoEPbB+/Xr+85+bASlTp92Ard3pq5WoGXaETbPhxw3FdHWf7lqvi7CdiCiKpB35gpbWYt5/7z3uvfdefbyUPpRKJUbGxkgMDdEqFMic7LBYFIHZrKkYuNqfJlZSBJwFI9wlJrgLxrh2aHE0MMXMzOy4Q4kxRkZGGBsbY2hoiCAIiKJIWVlZ34RIrVYjl8tRKBTI5XI0Gg0KhYKG1jbqBGMqOxVUdSqp6lSgHKxj6HGa0w5Sve1nLr/8cv768y+iNSuQCqN7GJWLBRwjjfXr13PzzbcilZoRNfs+nazFhtqDEwS47BIPNBqRP7ecHonp7mok/ei3dHXWc//99/Huu++O6rXoSkNDA4mJiSxdunTCshOhZ492+/btzJs3TycHo7Ggvb2d7du3s3LlSnbt2sXMmbqbGkwkZ4YEn4KJiQlXXnklBw8eZOrUqTqLm1Qq5fY7bufVl14lUDMdJQqqKKFWVkaXupOIsAheuuc5rr322kF7f/Uik8nw8vKiqKhoQsVNEARCQkJITEzE29t7zA1VV61axeeff4G5uTPTpt80oBNHckojdnZGXHqJB7/9UYZS+fdu1XCFDaCiLJ6WliIefvhhvQsbHPeRFEU8rroDtBpaMpJo+W0fzT/tQuZgg2lEIKbhgRgHeSExNUaDSKUop1IjJxFo/HUbrVsPojpBrHp/VCpVz57c8Y4OhoaGyGQyZDJZnwD2/tja2qK2sMX35geH/RosgyOo2fUHSUlJqLQqqinDnaHtogaiTWyiSlaMicyEKVOm8Mcfv3HRRReTk7WB0LAbh1ydDrWCWxLjgpmZjJ9/6T+sbmJqR9Sse8jN/o333nuP+Ph4Dhw4MKarGFEUyc7Oxt/ff0KFDaCsrAxLS8sJEzaAiooK8vPzcXJymtBszeFyRoobwI033sh1113HZZddRldXl86hg1tvvZUXXniBZGEvHWIbpqam/Of4Km3GjBnDHoePjw+7d+8e1hjGAnt7e2xtbTl27BjTpk0bk3t0dHQwd+5cMjMzcXaZQWDQ5Uilp2f8ncjO3VVcfKE7l13iwR+bylGptCMStuamIgrytzJz5swxq7FZt24dhrYOmLr7IAgCZl4BuCy7is6yAjoKc+g4nE3bjsSe7EVvV4xDvDEK8MDQwxEDJztU1Y0IotgnWv3VYKlUKoqKipgyZUq/2ZIADg4OlFaNzOxbamSMVWgklemHuXD5cg7sTMBN7TOiEGkpxygSspkeOp2fNvzU1+39v/99jFdeeYWy0v14eQ+9/zKQwMUsdMbN1ZRffi9FqRrYDk0qNSQk9N9YWXlw5MgWnJ1diI8/wNSpw8vG1ZWqqiq6urom3I1EFEWKioomNO1eFEUqKirYv38/N9449GRmMnHGitvChQsxMDCgpKSEysrKvi/eUPj4+PDQgw8RHx/PqtWr+Pe//63TKm0gTE1NcXJyori4eMy+bLoSGhrKvn37cHV11XtNTkpKCgsXLqKzs5PAoMtxddPNuUOrhS1/VXLpRe5cerE7hUXtzJk1PGGTy1vJTP8ea2tr9u/fP9qX0i+xsbF0d3fjFL3spNclMTDEwi8EC78QRPFfKJsb6CovpLOskM64LFq3xB8/UAICGA0gWMMhMDCQ4uJiNPIupMbDnzDZhM+lJe0QcoWcNnULzdRhi+7OGm1iM/nSo7RoG3nsscd4/vnnT4oGvPzyy8TFxREfvw0LC9eTHEsG4lSB6+5W4+1lzi+/l9DZOXR/QkEQcPech7mFK5np3zN9ejiffvoJK1eu1Pl16YJCoSAjI4OpU6dO+N5STU0NWq0WFxeXCRtDU1MTjY2N7Nmzhw8++GDCxjESzrhsyV6kUinXXXcdcXFxw+5v9tbbb5F4OJGVK1eOSth68fPzmxRNRC0sLAgKCiI1NVWvY/noo4+YOXMWCqVIRNRq3NyHZyOm0Yj8ubUCczMDzpvnxJ9bynUWNq1WTebR7xBFFQkJ8WMWjlq9ejVIpFiHDrzHKggCRrYO2Eyfg/slNxB49zME3v88XtffjdOSy0Ar4uPjM+qxzJ8/HwBl08g6P5g4e2Dk6MqB+HhCgkOokOhmsq0SleSKqSQJe3Dytyc2NpZXXnml3zD3nj17sLOzIyvjB7q7dfM47RU4L08zQqfa8PvGUtrbh/c5tbbxYeacBzAzc+b22+/goYceGtb5Q5GRkYGNjc2EWVydSFFRET4+PhNa4lNRUUFmZiYzZsyY8JXscDljxQ16QpPbt2+nsbGR1tb+W3SMB7a2tpiZmVFc3L9n33ji5+eHoaEhubm5o76WVqvlqquu4p577sHCwp1Zs+/Hympk6cghwdaYmEipb5Azd7YjBga6ffTycjfR3l7Fl1+uJTh49O4y/aFUKskvKMAyaPpp9WRDITM1x8zTH0v/UBDFEYW2T+Xqq6/uGVfz8PqznYhtRDRKhYKYxTHUa6voEgd2KdGKWirFYhJlu2gyqeb1118nPSOdBQsWDHiOoaEhiYmJgIbMo9+h0ah0GldUlD0ajUhHp5rZsxx09qI8ESMjSzy9FwIi77zzDitXrhyW1+xAVFVVUVdXx/Tp0yc8/NbU1ERzc/NJTVHHG41GQ2VlJbt37+bGG2+csHGMlDNa3MLCwvDz8yMrK2vC6rygZ0YfHBxMfn4+SqVujSbHciwRERGUlJTQ2Kh765RTaWhowN/fn19//RV3j3mER96BodHInF1O3GP75bdS1BotV1zmgaHh4B+/qsokqquSuOWWm/nPf/4zonvrwn333Yeo1WITET3iayiae1ZZJ7baGSlTpkwBiQTFCFduAJYhMxBkMjZv3oyllVW/3QJ6u1cky/aSwxGuuPoy8vLzeOSRRwbcDzwRPz8/vvvuWzo6asjL/WPI+tHFi5zx9THn519L+eXXkmGbLffS2VFLTubPOOBKMJF88/W3REfPo6ysbHgXOgGFQkF6ejphYWETmnIPPX+XrKws/P39J6zbNkB1dTV1dXWkpKSMS788fXNGi5sgCKxevZotW7ZQXl4+oWFBR0dHrKysyM8/vdnmeDPa8GRsbCweHp6UlJQREvpvAqZcjEQyMheW0y21elK+5XIN/7rcEzOz/vc12lrLycv9g6CgYL766qsR3VtXvvvuewxt7DF1H3lIsTeEeMUVV+hlTFKJZFQrN6mRMVZTIyktL+e2226lRlqG+ni3AFEUaRbrSZMeII14ps8JJSkpiR9++GHYNm7XXnstq1evoqY6harKwwO8FoELlrri4W7GL7+V0tauGnE3AZWyk/S0bzARTZjKLNwEHyK1C8nLyCc8PII9e/YMa/y99IYjJ4ONXW1tLR0dHRMeBiwtLeXAgQNcccUVODg4TOhYRsIZLW7QE5rMzs6mqqpqwt1CQkJCKC4uprt7aPf1scbPzw8jIyNycnKGdd7//d//sXjxEsCIqFn34OQcPuIxDJQVqdGIbN5aQWOjgmuv8cbJ8eSZslLZQcbR7zA1NSUx8dCI768LcXFxdHd3YxMxb1ShKGVzA4JUqrdGlmampigbT2/QORxswqNBq6WwsBC1VkUVJdSI5RyRxnKEfTj427Bp0yb27d83qhTvTz75hGnTppF/bBOtLSdHUExNZVz5L09sbAz5+bdSOjr+nmwNV+C0Wg2Z6T+gUXQxXYxGdrx+z1KwIVK9CGmrIecvPZ833nhDJxeiXiZTOLK3DCEwMFCn1fNY0d7eTk1NDX/88Qd33nnnhI1jNJzx4mZlZcV1113Hvn37JnzPy8bGBicnJ44dOzah44C/w5OlpaU6hSfVajVLly7l6aefxsbGn6jZ92NuMfIsraHS/bVa2Lm7mpTUJq68wospgZbH/11DVvoPqNVd7N27Z8w9/VatWgUSCVbTRle/o2yqw0CPHqOOjo4omxuG9ZA+FWNnd4wcXNi+fTuXX345eaSRSSIR54WxdetWsnOyueSSS/TyQE9ISMDc3JyM9O9RKHr6Jjo6GHPtNd60tKj45bdSurpOjyLoKnCiKB4Xz2LCxDmYCCfvjRoKRkzXzsNTDGDNmjVcc/U1tLcP3b9RoVBw9OjRSRGOhJ4EDo1GM6F7bdCzasvJycHe3v6Msds6lTNe3ADuvPNONm7cSF1d3YR3pw4ODqa8vFynL9ZYY25urlN4sqysDHd3D3bv3o23zxLCIm7GwGB4rV5OZDh1bKlpTWz5q4KYhc7Mm+tAcdFOWlqKefPNN8bcCUGj0XAsLx/LoOnIhplIciqKxjq9CnFQUBBapQJN9+j8IW1mzEOhUHDxJRfzzDPPkJKSwp69e1ixYoVeVynm5ubs378PjbqbzPR1+PuZc+UVXqQdbWLHrio0moFFeiiBE0WRwvytVFUeJphIbIT+Q2SCIOAvTCOMuWz8YxMzo2aSl5c36LjT09Oxs7ObFOFIjUZDTk4OQUFBE2bGDj0T3bKyMjZv3syqVasmfDU7Us4KcYuKiiIkJITU1FSKinRLex4rzM3N8fT01Eu2oj4YKjy5adMm/P0DaGhoYtr0/+Djt3RY/ddOZSQF2qVlnfz4cwleXobcdMN8rrrqKh588MERj0FX7r33XkStBpvwkbvnA4haDaq2Zjw8PPQ0MjjvvPOAkZcD9GIVMgNBKuOFF17gueeeIyIiQh/D65fw8HA++OB9Lrl4PosXOfLX9gpSUpt0OncwgSsu2kV52QGmEI6r4D3ktRwFN6I0i6gqqiVyRiQbN27s97iqqioaGhoICwubFA/wkpISDAwMJrwMoaKigsrKSjIyMrj11lsndCyj4awQN+jJePvtt9+oqKgYsJfWeBEYGEhtbe2EryLh5PBkXV3dSb97+OGHufzyyzEwsCJq9n3YO4wu1X4kwtZLZUU5Dz14L2Zm5tx55510dOjeYHOkfPPttxhY2/XbCHU4qNpaQKslPDxcL+MC/ZQDQE9iieXUGRSXlo75XrBKpWLGjBksW7aMNWseITExfljn9ydwpcWxlBbvwZ9peAi6d1swEyyJVC/ErMuKyy+/nKeffhqN5m9/0+7ubo4ePcq0adMmRThSpVKRl5dHcHDwhAqtKIoUFxeza9cubrzxxgm1/RotZ424XX311bS0tFBcXExJScmEjsXExARfX1+ys7NHtWeiL8zNzQkLCyM5OZmOjg7kcjkzZ87k7bffxsEhlKjZ92JqOjpvzNEIm1otJ/3ot6hUSm677VacnJzYt28fZWVlY/b+xcfH093Vje2M0SWSwN+rK312hvbx8UGQSFE2j27lBmAbPhe02p79xTGiqamJffv2odFouPrqqzEwMCAn6xc62quHdZ0TBW7eXBklxTvxJQRvYcqwxyQTDAgV5+BPKC+++CIrlq+gqakJtVpNYmIizs7OkyIcCVBYWIiFhQVOTro7yYwFjY2N1NbWsmnTpjHxbx1PzhpxMzIyYtWqVWzZsqXHukhzugv9eBIQEEBrayv19aN/OOkDT09PPD09iY+Px8fHl+TkI/gHXETItOuQSkdXSzMaYRNFLdmZG1DIW/jzz004OTkRGhpKZGQk2dnZJCYmjsmK44477gCJgFXo6I1gewRI4NJLLx39wE5AKpGgbBrdyg3A2MUTI3tnfv75Fz2M6mQ0Gg1ZWVkkJCTg5eXF3LlzMTY25vDhwxgZGR6ftAzv79fVreG99zfg6GDMk/c/ha9k5N6KgiDgLQQRLs5n/944IsIj2Lt3L1KpdFJkR0JPI9CCggJCQkImfDyFhYUkJiYye/bsMfOoHS/OGnGDHlf3AwcOUFFRMWxLLn1jYGBAYGDgpFm9AXR1dZGcnMzKlbfh7jEXD6/5o/4yjUbYAEpL9tHYkMNTT/3vpAJoZ2dnFi9ejIGBAXv37tXrKk6j0ZB7LA/LKdORmY7efk3ZVI8glWBiMvIknP4wMzNFMcpyADgxsUTOtm3b9DCyHpqamoiNjaWxsZGFCxcSEBDQ93myt7dn+/ZtKBVtZGesRxQHNkY+EVEUKSnazdHUX/n0qW/w9fPl/AfmIUhG9zm1E5yI0sRw3uyFlJWVUVZWNqG2VieSl5eHg4MDtrYj7+CuD9ra2igvL2f9+vU8+uijEzoWfTA5/rp6wtnZmVtvvZUtW7aQn5+PVqvbF2qs8PHxQaFQUFVVNaHjAFi7di3z583no1c/xdPVi5iFfjQ3ne5aMRxGK2yNjXkUF+5g4cKFPP/886f93tDQkMjISCIiIvS6invggQd6EkkiRpdI0ouiqR4Dqf5Ndl1cXEZdDtBLb2LJPffcM+prnbha8/T0ZP78+Sc18u1lwYIFvPDC8zQ15VNStHvI64qiSFHhdoqLduHHVJzbvPn96V04+Nqw9P7oUQtc8KwpXHblpXz24lfceOON3HfffRPuKNTZ2UlpaemYWcsNh/z8fFJTU3F0dOSiiy6a6OGMmrNK3ADWrFnDX3/9RXV19YSLilQqJSgoiJycnAkTWoVCwapVq7j99ttxVHsQ1B7F9hcTWLFiBTZWJXR36ZbNdiqjFbbu7iay0n/A3t6BXbt2DXqsi4vLSau48vLyUT3wv/rqq+OJJPpxgFA21mFtrZ/i7RMJCQlBVKvQdI6+rERqbIJlyAyKS0pG5cPYu1praGhgwYIFBAQEDLoC+t///sfSpUspKd5DQ/3AhgKiKFKQt5mykn0EEIaP0POw726V60XgbD2tuODBaHZ/cBCLYmeCiOCjDz9m0cJFVFcPb19Qn+Tm5uLm5jbm9ZxD0dnZSXl5OT/88AOPP/74hIdH9cFZJ24+Pj5cddVV7Nixg/z8/AkPCXp4eCCRSCakRKGiooL58+bz5dqvCCaSYGEGEkFKW3UH2988wOrVt9Peugelcni1VKMVNo1GSUbatwiClsOHE3VqLXLiKq531TCSbNRDhw7R1dWN7SgdSXoRNRpU7S06N8wdDosWLQJAMcqMyV5sIuYiarU9HRCGSXd3N6mpqSQkJODh4cF5552n8wP5r7/+wsnJmezMH+nqOv21aDQqcjI3UFGeQBAReAknd5MfrcAZWxhy0ROLSPszl8KEsp72OYIfM8TzSEtOZ3pYOPHxw8vs1AdNTU1UV1cTFBQ07vc+lYKCAjIzM5FIJGekj2R/nHXiBvD444/z66+/Ul1dTW3t6PcsRoNEImH69Onk5uaOa2F3bGws4WHhZB/NJVK7ADfhZN/EytQ6Dq5P4ZGH76G8+Hc0Gt3CM6MVNlEUOZbzO52ddaxf/8OwW8S4uLiwZMkSbGxsiI+P5/Dhw8N6X1euXNmTSDJKR5JelK2NeusGcCp95QBNdUMcqRsmLp4Y2Tnx008bdD5HqVSSmZnJ7t270Wg0LFq0iMDAwGHtV8lkMg4fTkQigYy0b1Gr/y7VUchbSU3+lPraDEKZjbvQ/2p6pAInkQosX7OAhpJmDv+UftLvrAV7otQxaJp7+kN++OGH4zYZ1mg0pKSkEBQUNKFNjqEnoaWkpIT169ezZs2aCe9jpy/OSnELDQ3l/PPPZ+/evZNi9WZnZ4e3tzepqaljPhZRFHnrrbdYsmQpQqsBUeoYLIX+N6qzNhVRcbSWe++7hbycn9FqB88wHa2wAVRWHKS2Jo27776Lq666akTXMDAwICQkhCVLlmBkZERsbCxpaWlD7sdpNBpyco9hGRiml0QSoC+b8cILL9TL9U7E2dn5eDnA6FZuWrWK1pw0yn/+HEVTHQqVirS0tEHPUavV5OXlsXPnTtrb25k/fz5RUVEj7n/o6enJL7/8THd3A7nZvyKKIq2tZSQnfoCyo5koFuEsDF4EPxKBm39bFMYWRux6NwH6+eoZCcaEa+bjqvHh3nvv5eabbx4Xb9icnBwMDQ0n3BwZejIk8/LyaGpq4pZbbpno4eiNs1LcAJ544gl+/PFHqqqqRtX6RV8EBwejVCopLBxdEsdgdHZ2cu211/LII4/gofUjTBuNoWA06Dnxn6RiKppx3bXnU5C3aUDx1YewtbSUkH9sMxEREXz44YcjusaJmJiYMH36dGJiYlCpVOzevZusrKwBkwQeeughvSaSwPEyAEFg+fLlervmiUilkhG5lGjVKjqKj1G9/Rfy33+Wyo3fImnqwj/gItCKrFmzpv/ztNq+It7q6mpmzZrF3Llzsba2HuUrgUsvvZSHHnqI+roMsjN/JC35M0xURswSF2Mp6FYsPByBC10WQMA8L7a8FItKPrD9nESQMEUIZyqzWL/uR2bPmj2mPrWNjY2UlJQQEREx4XtbKpWK4uJifv75Zx5++OFJUdCuLwRxopc1Y8iiRYuYNm0a1157LdHR0RP+QWpqaiIhIYGFCxf2m102GvLz87ns0ssoyCsgSBuJk6C7hY+pjQmXvRRDYsohdu4uwdsn5qTf60PYFIo2kg69h4mJjOrqqjEJxTQ3N5OTk0NLSws+Pj74+Pic9GU1MzNDZWCM/53/09tnoXrHr7QcTUSr1q1Zp0qlYuvWrVx44YU6ub7b2trSKTHA/47HhzxW2dpER1EuHQXZdJXmo1WrMDK2wsk5HBeXSEzNejwZc7J+oaE+ne7urr4QlFqtpqKigoKCgr7+hC4uLmPynZk9ezaHDx/GFifCiUYiDN9H0cTKmCteWEp9UTO73ktA1J78GAtc6MOi1bP484U9VOfoPjloF1vIkh1Gairw04af9FqYDz3vc2xsLN7e3vj76+64Mlbk5uayc+dOnnnmGcrKyvT+XJpIztqVG8D/+3//j2+//Zby8vJJUUxta2s7JuHJzZs3EzkjkoqCKiK1McMSNoCu5m42P7OPOVFzWbTAjYryhL7f6UPYtFo1mUe/R6tVEB9/YMz2GGxsbIiOjmbmzJm0trayc+dOjhw5QnNzM4cPH6arqxubGfqd5Cgb6zCUjZ3JrZubG6qWptPqxERRRNnSSEv6YSq3rCf/o/+j4OP/o2bHb0ibuvH2XsLMOQ8wd95/8fNf3idsAK7us1CrVbz22mt0dXWRlZXFjh07KCkpITAwkJiYGFxdXcdsMhgXF8e86Hl0SlpRMjKrvMFWcH7RnixaPYutr+wblrABWAjWRKoXYdhhyooVK3jppZf0mumcm5uLkZHRpAhHyuVy8vPz+e6773j44YfPKmEDODt2DgcgJiaGuXPnsmvXLpydnXFwcJjw1VtwcDCxsbEUFBQQEBAwqmtptVqee+45nn/+eRwlboRoo5AJI+sB1V7fyeZn9nHZSzEoFNtJTklkxYrloxY2gIK8LbS1VfDZZ58SGho64uvoioODAw4ODnR0dFBUVER8fDzl5eUsXbqEIyVFtFnZYu4fikQPG+eKxlocxrD4durUqWRmZtJRkIO6qwNFYy3KhhoUddWoOloBATMLZ5ysg7D29sHaxm/Ijg5WVh7Mm78EtVrN7t27cXJyYtasWdjZ2Y3L98PQ0JDf//id8OnhZNUdJkJz3ohWb70Cd8ULS1l6fzS73kvAK9KNpfdFs+2NOCrSa0Y0PgPBkDBtNEVk87///Y/ExES+++67Uafr94YjFy1aNOHPIegpHs/NzaWsrIyHHnpoooejd87qsCRAamoq0dHRfPbZZ8TExEy44zboJzzZ3NzM9ddfz/Zt23u89wjSyxfG2tWCS19cTG5eDmFh4Wz8s3JUwlZTlUJO9s9cd911/PDDD6Me30hQKBRceeVVnH/+MpycHIiL28/e/QeoNbTAMjQKExePEXVC0KpV5L7xX+bOnUtCQsLQJzD8sOSXX37Zk+EJgICxqQ1mpo6YmTlhaeWJtY03Bga6rYStrQwImmJFSIg1Go2S7ds28/DDD4+qUeloSE5OZl70PBxU7gQLI8827Q1RdjbLcQ6wY+d7CRQd0o9DUb1YRY70CB5e7mz6cxMhISOzApts4cjOzk527tzJE088wb333quX4v7Jxlm9cgOIiIjg8ssvZ/Pmzbi4uODq6jrhtju2trb4+PiQkpLCeeedN+zxpKenc+kll1JTWUs487ATnPU2tpaqdo7tLGbmVTPZsWMHR45U4eY+Z0TXam+rIjfnN/z9/fn+++/1Nsbh8vnnn7Nly2Yqq52ZEjSVoMBQnn5yAUqlnKSkJFIS/qSgU4WRpz9m3lOQGutmo6Vq6UlUGsu+c9dccw0rV67EyzsGL59Fw/IBFQRwcTbBx8cCXx9zLC0NKC3tZG9sDfkF9RzYt4HGxka2b98+ZuMfjKioKD7+5GNWrlyJpWhzWrmKrnS3ykn6OZMLHpxHdW49xYcr9DZGB8EVM40FmWWJzIyayfYd25k/f/6wr5OTkzNpwpHQEx5NS0tDqVT2+KyehZz14gbwwgsvEBoayrJlyygtLR12bdVYEBQURGxsLIWFhcMKT/7www/cdttKjDWmRGliTutIPFqmrQgk7MIgtr91gOiV0bS1beNwUgLuntHDuo5K1UXG0W8xNjYmMTFxQicUb775JsbGNljb+FBXJ6euTs6BhFZcnI1xc/Xjtv/MxMrKlKNHj5KUtJ/MihqUNk6Yefhh4uaFxKB/QektA7j44ovHbOzm5ubIZIZoRbVOwmZgIMHL0wwfH3N8vMwRgZKSDhIO1lNW3olK1bN/JJOZ4OQ8nT179qJWqyestum2224jMTGRtV98ibnWCqsBylYGw2eWO4vvnsOejw8RcWlwX4jy1CSTkWIqWOCnDiVVfYC0tLRhi1tjYyOlpaWTJhzZ2tpKaWkpa9eu5dVXX8XQcHTG6ZOVf4S4+fv7s3LlSn755RdcXV3x8PCY8EJFqVRKREQECQkJODk5DRnPV6lUrFmzhnfffRcXwYsgMQKpoN/XMG1FIHNuCGfT83uozWugoaiJi5+/AEPDWPbu24W3zxKdvpyiqCUrYz0qZQf74/ZNqCFsQUEBJSWl+PovOyn0qNVCZZWcyio4nFyNjY0hHu6OrLjwX6z2sKe4uITMzAwKk/6isr2bdhNLjJzcMbJ3wtDGHkEiRXG8DGDx4sVj+hqsrCzo6uy/1s3MTIajgzGOjsa4OJvg5mZKa6uK4uJ2/txSQU1tNwNtPLi6zaKmOoXXX3+dJ554YgxfweC89957pKSkkpV2mCh1zJDlKyfiP8+LJffOZcfbByg+XEFJUuVJe3D6EDi52EWOLIX5s+cP291FrVaTmppKcHDwiGsE9U12djYHDx7E3t6ea6+9dqKHM2ac9XtuvdTU1ODv789rr73GkiVLmDJl+P2hxoKsrCwaGhoGDU/W1NRw1ZVXcfDgQQLEMNzx0/sM8FRh68XCyYxLnl9E4pFD/Ln5CAFTLkciGXzzv6hgB6Ule3n11Vd57LHH9DrO4XLFFVewceMmos97AkND3R4uJsZSvLxMsbcDB3sjXFysUanUFBUVUlhYSFFxMWX1zVRWVqBub0WjYxkADH/PDWD69Onk51ey9ILHcXQ0Pi5mJjg6GGNqKqWpWUldnZzaum5KSjtobdVtPKIocvjg21hbG1JZqb9Q3kioqKggfHoEtEqZrpmHRIc90CmLfFi4ahbb3oijLOVvH9mhygSGg0bUkCrdj6mjEalpPabCwyEjI4OWlhbmzx99Bw590NDQwJ49e7jrrrtYt27dmNVnTgb+MeIG8PTTT7N7926efPJJlixZovcWJSNBo9EQGxuLu7t7v4J78OBBrrj8Ctqa2pmqnoW1MLqmov0xkLD1YuFgxsXPLyKnIIt167YREHT1gCGy+rosMtO/Z/ny5fz11196H+tw0Gq1mJiYYmUdQGjYDSO+jkQCtjaG2NoK2NlKcHIyxcXZBo1WQ3NTE2FhYRgbG/f9GBkZnfTfUqkUQRAQBOEkcZPJZIiiiFarRalUIpfL+34UCkXff+fm5iKTyTA3t6CpWUFdfU9otb5eTn2DHJVq5F/hirIE8vP+JD09fcL7d8XGxrJkyVI8tH4ECGGDHjvjihCirp7G1pf3UZFxelakPgROFEUyhURaDOqJT4gnMjJyWOc3NDRw6NAhFi1aNClWbaIosm/fPn788UeOHTvGnj17JoXgjhX/KHFra2tjypQp3HvvvSxfvnzYH9axoqWlhQMHDjBz5sy+TryiKPLJJ59w//33YynaMFUzCyNB/2I8lLD1YmJlxPmPzUVlpOC9977E3evy01ZCXZ31JCW+j7OzI+XlE98v66OPPuKee+5h+oyV2NrqN0NNIoGigq+JnhvFiy++eJog9f7/iTVSvQKn1WoRBOG0WscTRfHEn40bN/L+++/j6nE1Mpl+uw+oVN3E73+RCy5YqtdebyPl7bff5uGHH2Yac/qt15QaSll89xxcpzqy9eV91BcN3NViNAIniiJ5HKVSKOLX337l8ssvH9br6OrqYt++fQQHB+Pt7T2sc8eK4uJi9u3bx913301cXNykef6NFf8ocQNYt24da9as4Z133mHx4sXY2+t/JTQSysvLSU9PZ8GCBchkMu666y6++eYbPPAngDCdwjTDRVdh60UikxC9ajreUW689daHmFgswNS05/1TqxUkJ36ARtNOcXERrq6ueh/vcPH19aO6uok589aMKNV/MDQaJfv3/j9WrlzJF1980e8xoiiiVqvRaDR9KzSVSsW+fftYtGgRhoaGfYLX+9/9sWfPHpYsWcL0iNuwtRtdbWR/ZGduoLEh8yTHkolCFEWuu+46fvvlNyI1izAX/hZzM1sTLnx8EVqNlr9e3UdXy9AlKiMVuFLxGPlk8NFHH3HXXXcN6zWo1Wri4uKwtbVl+vTpwzp3rFAoFOzatYu3336bgIAAPv7444ke0phzVjuU9Mf1119PQEAAO3bsID09fcIbmvbi4eGBt7c38fHxxMQsZt1365jKTKYI4ZNC2AC0ai0HPkol+ZdMnvzfo1iYZtLYmIcoiuRm/Yxc3sTvv/82KYStqKiI4uJiXN3n6F3YALq7hi4DEAQBAwMDjI2NMTExwczMDDOznuxWU1NTTExM+kKXg4WHoqOjj99TP61vTsXNfTZqtYq33nprTK4/HARBYO3atfgHBJAlO4xa7Nk/dAqw45rXV9BU1sLvT+/USdhgZGbLNWIZ+WTw5JNPDlvYRFEkJSUFQ0PDCQ/znkhOTg5ZWVmkpaXx4osvTvRwxoV/nLgJgsCHH37IunXrKC4uHlOD1OFSWVlJYmIiFy6/kEgW4SLov0cYjEzYTiR3awlbXtrLrTf/h8hwgcz0b6mvz2LNmkfHxB1/JPQaA7u46L8VDUDXcXFbsGDBmFz/RIyNjTEwMOq7p76xtPLE1NSe9957f0yuP1zMzMzY9OdGMNaSLUkmcKE3lz9/Pim/Z7P7g4No1cObkA5H4JrEOrKFI9x000383//937DHnpeXR2trK1FRURMelu+lqamJgoICPvzwQ1555ZUJzV4eTybHuz/OhIaGctddd/H111+Tk5Mzqs7E+kAURV555RVWLF/B2te/wd3eg+U3j016+WiFrZfqjAZ+XbOTWTNmcs/d/yYmJoZXX31VjyMdOVqtli2bt+LgEIKh0dj45XV3NyAIknHLurW2tuy30ac+EAQBN/c5VFZWkJmZOSb3GC7+/v6s+2EdK25ayvzbI9n6yj6Obs4d8fV0Ebh2sYVMaSKLl8Swdu3aYSdbVFVVUVBQwOzZszEy0r2cYSwRRZH09HT27NmDs7Mzt91220QPadz4R4obwLPPPktBQQHp6elkZWVN2Dja2tq48l9X8sQTT+ApBhLYOYOtL+0jeLEfQTG+er2XvoStl9qaWp584n9YW1vz5JNPjmsz1sH47LPPUCjluI7QWUUXursaMTE2GbfZubu7O12d+mla2h9OLhEIgnTCSzd6UalU2Nvbs2LFCtY89iipaamjvuZgAtcltpMuO0hQSBC//fabzmUavbS2tpKSksKMGTNG7UGpT0pKSigpKeHrr7/mww8/nDSryfHgn/NKT8HS0pI33niDDz/8kMLCQhoaxmZWPBi5ublERUax+c8thBGNvxCKIAi01nSw7fU4Fq6ahfMU/SS86FvYNKKGLOlhzKxMufHGG3F1dWX//v3U1IzMrFafvP76GxgZW2Njq9/JwYl0dtbh4Dh+yUiBgYHI5S1DNpQdKQYGpjg6TWPXrt2o1QP3PhsP2tvb2b9/PwCXX34508LCyJEm0yV2jPra/Qlcl9hBmuwA7t6u7Ni5fdh+rwqFgsTERAICAnBxcRn1GPWFQqEgOzub77//nptvvnnCPEQnin+suEFPcom/vz9//fUXaWlp4/ql/v3334mKjKK2pJ4oTQyOwslJGBUZNRz8LpUV/12Imd3oWsToW9hEUSRPSKVb2sHGTRuxt7cnJCSE6dOnc+TIEdLS0lCpdC9s1ifFxcUUFRXh5j57TBJJeunuasDLa2z2RPsjIiICEJHLm8fsHq7us1GplLzzzjtjdo/BEEWRgoIC9u3bh4uLC3PmzMHIyIgffliHi7szWbLDaMTRf0dPFLiY+2aRbhiPi6cz+/bv6yvF0RWtVktSUhK2trYEBgaOemz6JCMjg4yMjH9UEsmJ/KPFTRAEPv30UzZs2MCxY8fIyckZl/s+88wz/Otf/8K824YZ6oWYCf3PFNO3HqMkuYKLHl+IzHBkPcP0LWwAlRRTKZbw6WefMmPG3wkb7u7uxMTE0NXVxd69e6mrG7sw2kD0htWcXcauhketVqBSdY3YIX4k9PoZdo9RUgmAlZUXJiZ2vPvuu2N2j4Ho6OjgwIEDlJSUMHfuXEJCQvr2vGxsbNi4aSNyaRe5gn56IXa3yln/1Cas/Ex58LEHiN0XO+xVV+9+llqtJjw8fFIVRFdVVZGfn8/bb7/Nu++++49JIjmRf7S4QY+B8XPPPcfbb7/NsWPHaGwcu4dHL++8/Q5W2BIqzh6y/9q+z5JQKzUsvnfusO8zFsLWKjaSJxzlrrvu4uabbz7t96ampsydO5fAwECSkpLGdRWn1Wr588/N2DuEYDRGiSTwd0r+eIZ5Zs+eDQhjVg4AxxNLPOZQUVE5bvvQvau12NhYbGxsWLRoEXZ2dqcdFxYWxpdfrqVaLKWCwlHft0vsIL5zB598+gnz58+ntrZ22KJZXFxMTU0Ns2fPnvD6wBNRKBQcPXqUH3/8kblz53L99ddP9JAmhH+8uAE89NBDODo6smXLFlJTU8c8PPnGm2/QShNVlAx5rFat5a/X9uES5EDkv6bqfI+xEDaFKCdLdpiZM6MGDV0JgoC3tzcxMTF0dnaO2yruiy++QKGQ4+Y+a0zv05uSv2jRojG9z4nIZDIMDceuHKAXZ5cZCIIwLoklp67WQkNDBxWJ66+/ngcffJB8IZ0WceSf6U6xnTRZHC6eTvy17S8WLlxIS0sLKSkpOgtcfX092dnZzJo1a1LY+J1Ieno6R48e5cCBA3zyySeTakU5npwTN3oc+r/++ms2bNhAbm7umIcnV61axapVq8iTpNEqDv2w6m5VsOWlWCKvCiXwPO8hjx8LYdOKWrKlhzG1MuW333/TqU2Gqakp0dHRBAQEjMsq7rXXXsfIyAobPVttnUp3VwMSiXTce3PZ2FjT1VU/pvfoSSwJY+fOXWNmcCCKIoWFhcTGxmJtbT3gaq0/XnvtNaKjo8mSHUYhdg/73q1iE6nS/bj7uHEg/gBubm4YGxszb948nQWutbWVpKQkpk2bNunCfZWVlRQWFvLWW2/xwQcf4Oysv16PZxrnxO04gYGBvPDCC7zzzjscO3ZszLMn33//fWbNmkWm7DByHb6kDSXN/PXqfmLunoPfHI8BjxsLYQMoIIMWGvnt91+H5UAiCAI+Pj5jvoorLS2lsLAQ1zFOJIGeGjcTk9El+YwEDw93ujrHVtwAbO0CUKmUY7L31rtaKy4uZu7cuUybNm1YIT0DAwN++fUXLG0tyZIeRivqLsANYjWpkjjCZkwjPiH+pAe/rgLX3t5OQkIC/v7+45pQpAsKhYL09HR++OEH5s+ff1a3s9GFc+J2Ag888ADOzs7jEp40NDTkt99/w8bBigzZwT6bocEoP1rN9jfjWPrAPLyj3E77/VgJW41YThk9m9PnnXfeiK5x4iru8OHDpKSk0N09/Jn3QPQ5kriO/T5YZ2c9Tk4OY36fU5kyZQoKRRtarf4/lypVF1WVSRw5/DE5WT8jCBJ2796tt+ur1WqOHTs2otXaqTg5OfHHxt9pE5rJJ12ncyrFYtKFgyy/cBl7Y/f26yk7lMB1dHQQHx+Pt7f3pMuMhJ5wZFpaGgkJCXz88cf/2HBkL+fE7QSkUilffvllX3hyrDfVnZ2d2blrJ6KJmgzpIZ1moSXJlex6N54LHp6Px/S/s7vGStg6xFZyJSlcf/313HvvvaO6Vu8qbvHixWi1Wnbv3k1WVhZKpXJU19VqtWza9Cf2DsFjmkjSS3dXw4Q4vfdkporIu/VTDqBSdVFdmczRlC+J3/cix3J+Q9amYBpz8BVD2L59O/X1o1sparVaiouL2bVrF7W1tSNarfXHnDlzeP/99ymngCqxdMDjRFGkSMwmhyPcseoOfv/9d0xNB151DyRwXV1dJCQk4OHhQVBQ0KjGPhaUl5dTWFjI22+/zQcffDDskoazkcmT4jNJCAwM5OWXX+b111/H0dERe3t73NxOXyXpi5CQEDZv2czSJUvJ0SYTIs4ccsZVeKgcqUEiK/67gC0vxmLraTUmwqYSlWTKEgmaEsTnn3+ut5mgqakpUVFRtLS0kJ2dza5du/D398fX13dED72vvvoKhULOFPfZehnfYKhU3ajVcqZO1T25R1/0rpq7uhowNRvZylGhaKexIZf62gyamwoR0WKNA4GE4YhbX1slpaigRJvDN998w6OPPjrs+4iiSFVVFTk5OQiCQFhYGC4uLnpdTaxevZrExES+//Z7zLWWWAo2J/1eK2o5RiqVFPPiiy/yxBNP6HT/XoGLj48nJSWF4OBg4uN7wpgnlihMFjo6OkhLS+OLL75g4cKF/Pvf/57oIU0K/nEtb3RBFEUuu+wy1Go1d999NzExMX1u7mPFL7/8wjXXXIOnGDBko8Zeghf7snD1bLQaLRuf3a1XYRNFkXTJQRRmHaSmpeLrO3ZuH72ZZ3K5nClTpuDp6Tksm6CAgEDKy2uZO/+/Y77f1tZazpGkj/juu++48cYbh33+SDpx96LRaJDJDPALWIGnl27hYY1GSWtLGc1NBTQ1HKOjs8dBxlpwwEl0Py5oxv2em8lhTL1lFBQW6PxAF0Wx7++pUCgICgrCw8NjzGyfuru7iZ47j/ysAiLVizAUejwd1aKKLEkSTUIta9eu7bdsZSjkcjlxcXEolUrc3NyYPn36pBM2jUbD/v372bJlC7/++iupqalYW1tP9LAmBedWbv0gCAJfffUV4eHhxMfHY2FhwXnnnTemvmxXXXUVb7/9Ng8++CBGogmewtB9u2RGPZ2cBUFAZjCyIu+BKCaHBrGaLT9tGVNhA3BwcGDBggV9M/2CggJCQkJ0mumXlZVRUFCAj9/5Yy5sQJ958XiWAfQilUoxNjYetJBboWijva2CtrYKWpuKaW0rRxQ1GArG2IqOeDELOxwxxBiGeE67iT4cKd7X139uKJqbm8nOzqa1tZWAgAB8fX2RSvX7uTwVExMT/tj4OxHhEWS3JTFdO48uOsiUJSIaqdny6xaWLVs2omufmC060ZZkA5GVlUVubi4ff/wxe/bsOSdsJ3BO3AbAzs6O9evXs2zZMry9vbGzsyM0NHRM7/nAAw9QUVHBm2+8iZFo0m8n4l5699j+eGYXNm6WXPS/RWx7bT9ladWjHkeDWE0xOTz//POsWLFi1NfTBUEQcHNzw8XFhbKyMtLT08nPzyckJAQHh4FDcL31WC6u49NVuLurEYlEirv7wH+bscTW1paurnpEUUShaKWzo5b2tsoeQWutQKnqMa82EIyxEm0JYBq2OGAmWg571WGNPRYyKz799NNBxa29vZ3c3Fxqa2vx9fVl1qxZw16VjgYvLy82/LyBZRcsI4NDtEgb8Pbx4s/Nf4448aOzs5OEhAQcHR0JDAwkISGhzxh5sqzeeieDr7zyCs8///zxQv9z9HIuLDkEL7/8Ml988QWvvPIK8+fPH3NjVK1Wy/XXX88vP/9KuHYeNsLpD/b+kkcC5nsTc/dsdrx1gJLkyhHfv0vs4Ig0lqXLl7Bp06YJcxFXq9UUFRWRn5+PhYUFvr6+uLq6njQerVaLmZk5ZubehIX/Z1zGlZ35I12dxbS1tY7o/NGEJQHmzp1LYuJhJIIUjbYnw1YmGGIpWmOJDZbYYokNRpjo5SFcKuZRIsuhqrrqpAxDURRpbGykqKiI2tpaPDw8mDJlyoQWNL/66qs8/vjjXHzxxaxbt27E7vy9WZGurq6EhvaYmcvlcuLj47G2tp4UAtdbVtObFTmR39XJyjlxGwKtVsvy5csxMTFh1apVLF68eMy/wAqFguXLlhN/IIHpmnlYC3+nTA+WFek7x4PzH5jHrnfjKTxUPuz7akQ1KbJ92HnYkJKagpWV1ahfy2hRqVSUlZVRVFSEVqvFx8cHLy8vjIyM+PLLL1m5ciVh4bdgZz8+fdWSEt/HxdmMvLy8EZ0/WnF7++23efjhh/EjFAusMMUCE8zG7GGrFBXES7by6muv8sgjj6DRaKisrKSoqIiuri68vLzw8fEZNANxvBBFkdraWhwdHUf8oG9ra+vLijw1eWSyCJxWqyUuLo7t27fz7bffkpaW1m9pwz+dc2HJIZBIJHz33XeEh4czffp0LCwsmDdv3pjuJRgZGfHn5j9ZdsEykg/3CJyVYDtkun/RoXK2q+O44OH5SA0TydtfovM9RVEkR0hBKZOzcdPGSSFs0FO06+fnh6+vLzU1NRQVFXHs2DHc3d1Zt24dRkaW2NoNvT+pD0RRpLurAR+fsQ1PD0avn6UDLpgLY/83MhSMcBDd+OnHn1ixYgWlpaUYGhri6+uLh4fHpPJUFARhVI4cra2tJCQk4OPjw5QpU04Tr1OzKCdK4LKyssjLy+Pdd99l27Zt54RtACbPJ3MS4+TkxLp167j00ktxc3PDwsJizF3Azc3N2bZ9G+cvPZ+0I/HcdsFdOqX7lyRX8ter+1jx2AKsXSw5vCEddFibl1NAjVjGT9/8NOZ7iyNBEARcXFxwcXGhra2NjIwMVq5cyVVXXU9egZrcY60oFGNjF9WLStWFRqOc0PcnIKBHyLvowJyxFTeJTILPLHcuPP88PKa6UlJSQlRUFA4ODhMeltM31dXVpKSkEBgY2Pce98dEC1xZWRlZWVm8/PLLPPHEEyM2VfgncC5IqyOLFy/mueee44UXXiAnJ4fi4uIxv6eFhQXbd2znlttv4bwbZ7H+uT90SvcvP1rDr0/sYMoiH1asWYCB8eBzmGaxngIhg0cffZRrrrlGX8MfMywtLfnggw+47bbbSDvaQmCAJbffGsAFS13x8jRDKhmbh02vI/9Ebtw7OTlhamJKF6Nv3NkvAjgG2BF98wxu+eJfRN8UQU16Iw/d9Qjff/89jo6OZ5WwiaLIsWPHOHLkCBEREYMKWy/D9aLUF01NTaSkpPDRRx8RHh7Ok08+OS73PVM5t+c2DERR5JZbbiE7O5snnniC+fPn4+joOKb3LCoqIjs7my8+/4K/tmzrC1HqgrGFEcvXnIexuRFbXo6lvb7ztGPkYjfJsr3Mjp7Jrt27JlWYaSBEUcTD3YPKqkoMDcxxdo1kWth5REX64OdribGxhLLyToqKOygp6aBbrp/u1TVVKeRk/9y3rzMSRrvnBhA2bTpNme0EC/rJEJUZSnEPc8Znljveke7IjKSUJFeSs7uQiswaEKFUPEaJLJfqmuoR22ZNNtRqNampqTQ3NzN79uxhh+LHcw+uu7ubffv2sX79elJTU0lISMDc3HzM7nc2cE7cholcLmfRokW4u7tz6623snDhwjH7kBUVFZGTk8PcuXORSqUsu2AZqUfSCNNEn5RkMhgSqcD8lVEERHux9dV9VOf8baekFTWkSuMwdjAg7WjamAu1vkhKSmLWrFkEMp0uOqgRylGLSszNXXB0DiN06hyCg93x8THH0cGYmppuiorbKSrpoLl55FZfRYU7qCiLQ60eeWcDfYjbtddey65f9hKhXTDicZhaG+Md5Y7PTHfcpzvT1dxN8eEKipMqqM6pQ6s5+bGgFBUcELbyxpuv89BDD434vpOFrq4uDh8+jEwmY+bMmRgZGY3oOuMhcGq1mgMHDrB7924++eQTkpKSJsT+7Uxj8k/TJxnGxsb8/vvvREVF4ePjg7GxMQsWLNB7Xc+JwtbbVmPnrp2sWL6Cw4nxTNPMwVYYWoy0GpH9nyXRWNrCpc8sIe7LZLJ3FgCQx1E6hFa2bTxwxggbwGeffYaZzAIPtT+CIBAghtFANbUdFZQU7KaoYDt7drvg6BSGj98MQoI98fE2Z85sBzo61H1CV1XVxXCmdt1dDZiPsVONLgQEBPCnZAsMc4vRzssa75k9guboZ0ttXgPFyZUkfJdKc8XgpQ2GghGOuPLxRx/z4IMPntGhycbGRpKSknB2diYsLGxUKfRjvQcniiJpaWlkZGTw1ltvsXXr1nPCpiPnxG0EuLi48McffxATE4OLiwtmZmbMnj1bbx/q/oQN/t6Du/SSS9m3bx/B2iichYHb35xI1vZ8mitaWfHYAuy9rNnw5W9UaIr4/OPPmTVrbJt76pO2tjbWfb8OF7VP3/stFaQ44Y4T7mhENQ3U9Ahdx26KCreTGO+MrUMQTs5BhE4Nxs/XiguXuSGVCdTXy6mrk1NXL6e2Tk5Ly8Aru86OOjw8xrbOURcCAgLoUnWgQY1U6P8rbGZrgoOfHY5+tjj62eLga4ehqQFlaVVkbc9jy5FKulsVw7qvq+hDSsF+4uLiWLBg5KvGiaS0tJSMjAxCQkLw8fHRy3d2LAUuPz+fnJweQ4W33nqLhQsX6uW6/wTOidsImTlzJp999hl33303b731Fubm5nrJohtI2HoxMzPjr21/cdttt7Fu3ToUYjdegm4uDFVZdWxY8xcrnjiPa/7fJZxXHcntt98+6jGPJ+vXr0eukOOKT7+/lwqy04SurrOS6q6DlJXEknLYEGtbX2zt/AgMnI6XlxtOjiZMD7PFwd4IjVbsEbxe0auT09yi7CkD6G7C13d8nFAG48SMSQusMbMz7REwP1scfe1w8LPFxNKI5so26gsbKTtazZHfsqgraESjGnlGqQ0OmMss+fTTT884cdNqtWRlZVFeXs7s2bMHdb0ZCWMhcFVVVRw9epTXXnuNa665htWrV+tptP8Mzu25jZInnniCDRs28MILLzBr1iz8/UfeBXooYTsRURR58skneeWVV/AkgADCdPoyKUUFmeYJrPnfGmbMiGDOnDkjdnKYCMKnh1Od2UCYOHdY54miSDstNFJDE/W00ogWDQYyEyysPLCwdMfa2gNvb3/c3e1wdDDG0dEYB3tjtFqR2rpOMjPiCQ0N5ZJLLsHIyAhjY2OMjY0xMjLS+UE23D03URRRqVTI5fK+n6amJj744AOmuIbg7ueKsYURzRWt1BU2UV/YRF1hIw0lzagV+kmkOZES8RhlBseoqq46YxJLlEolycnJyOVyZs+ePaYm6Prag2toaCA+Pp4PP/wQtVrN9u3bx9XS7GzgnLiNEq1Wy0033URmZiZPPfUUc+bMwcNDt1DhiQxH2E7kww8/5L777sMJd0LEKCTCwMXlWlFLuiQBrZWK1LQUurq6KCwsJDIy8oxoR3/kyBGioqIIZx72wujCgxpRQyuNNFNPG820Cc2oxJ4wnZGBRY/gWbljYeGMp4cn9vYyNOpCrrzyShwcHJDL5SgUir5edCeKXa/gGRoaIggCgiAgkUgQBAGtVsvRo0f79npEUUSr1SKKImq1uu+6vUKmUCjQarXIZLKT7rH2i7V0lavQFhnQUNyMWql/IesPpSjngPAXb771Bg8++OC43HM0tLe3k5iYiIWFBTNmzBgXgRitwLW2thIXF8e3335Lbm4u+/fvP2eIPALOiZseUCqVXHLJJcjlch588EGio6OH1SxwpMLWy++//851116HucaKUM0cDATDfo/LFzMoF/LZtXsXMTExAFRWVpKa2tPSZsqUKWPu4j4aVq9ezfdf/sBc9TK9JzSIooicrh6hO/7TTjNqTs6MbG5uPulBo9FoThOj3v9WqVSIoniSgGk0Gpqbm7G1tUUqlZ4kfL2u/ycKZO9/n1qiETkjkurUJqYKY995/FQySMTK34TcY7mTNrFEFEUqKipIT0/H19eXoKCgcR3rSAWus7OTuLg4/vjjD7Zt20ZCQgKurq5jPNqzk3Pipic6OjpYvHgxzs7O3H777cyfP18noRqtsPWSkJDARRdehLYTwtTRGAsne/3VihVkcIg33niDRx555KTftbW1kZKSglarZcaMGZNyltje3o6zkzPO3d74CiHjck9RFFEip5N2SshFsNXQ0Di6nnn6KAUAuOGGG9j20y5mjKIcYKQ0ibWkEEdcXBzz588f9/sPhVwu5+jRozQ3NzN9+vQxNzsfbBzDETiFQkFcXBw7d+5k7dq1xMfHM2XK+Himno2ccyjRE+bm5mzZsoXc3Fx+/fVXDh06RHt7+6Dn6EvYAKKjozl46CBWzhYckcXSLP5dz9YptpErTeHqq6/m4YcfPu1cS0tLFixYgKurKwcOHCAnJ+ekXlaTgfXr19Mt78YV73G7pyAIGAkm2AqOyDAgbLpuTWTHg8DAQLqFMXIpGQIbHPsSSyYToihSXl7Onj17kEqlfdnME8VwnEzUajWHDh0iMTGRjz76iK1bt54TtlFyTtz0iIODAzt27GDnzp3s2LGDgwcP0t3d3e+x+hS2XoKCgjiScoSZc6NIFeIoFwtRiyoyZYn4+fvy5ZdfDjh7lEgkBAUFcd5551FbW8u+fftoaWnRy7j0wccffYI19hgxMS1VlAbdk+phExAQQLe6C7U48oLykSIIAs5qTzb8tIGmpqZxv39/yOVyDh8+TFZWFuHh4URFRY24MFuf6CJwWq2Ww4cPk5qayksvvcTPP/98RpXnTFbOiZue8fb2Ztu2bXz99dccOHCAhIQEFIqT64nGQth6cXBwYNfuXdx3/30cI5VDwk5EIw2b/tykk5OKlZUVCxYswMXFhQMHDpCbmzspVnFurq40i/Uclu2iRMxFIfY/aRgLRFGkQ9M24saXY8GJ5QATgSveqNUavvvuuwm5fy+9e2snrtYm2x7VYAKn1Wo5cuQIGRkZPPPMM3z66acsX758Akd79nBO3MaAsLAwNm3axFtvvUVCQgLx8fF9AjeWwtaLgYEB77zzDl9//TV+QT78sP4HnQxhezlxFVddXc2+fftobR1Zc0598eeWP4mNjeXSf19MuWE+B4StpEriqBALUYjyMb23gm7UWvWw3sOxZqLFzVAwxuG4Y8lEbdvL5XKSkpLIyMiYVKu1/uhP4LRaLSkpKaSlpfHkk0/y3HPPceONN070UM8aziWUjCG7du3i8ssv54knniA6Oho3Nzfy8/PHVNj0jVarJS8vj4KCAvz9/QkMDJzwjr8tLS38/PPP/PTjT8TGxqIVtdhKHHHQuOKAG0aCsV7v1yTWkcJ+cnNzRx2a1FdCCYCtjS02LS7jlmBzKo1iLanEceDAAebNmzdu9xVFkcrKSjIyMrC3tycsLGzSitqp9CaZ9Jo0p6Wl8fjjj/Poo4/y+OOPT/Dozi7OidsYs337dq688koeeeQRZsyYwZw5c4ZVJjBZaGlpITU1FYAZM2ZMmmamDQ0N/PHHH/z000/s3bO3T+jsNM7Y4Ywp5qNOAa8Qi8iTpNHd3Y2hYf9lFrqiT3GbPWs2ZUk1hAoTsz8jiiKJsp1ccd1lfPvtt+NyT4VCwdGjR2lsbGT69OmTLgSpC93d3ezZs4fS0lKeffZZ7r//fp566qmJHtZZx7mw5BizbNkyNmzYwOuvv056ejrZ2dmn7cGdCVhbW7Nw4UKcnZ2Ji4sjNzcXtVo90cPC3t6e22+/nZ07d1JbV8vnn3/OjJgwimXZHGQ7iQY7yRFTqBUrUIoje9+76cDdzWPUwqZvgoKDUMrGb+/xVE5MLGlubh7Te52YCSkIAosXLz4jha3XBqy6upqnn36aO++885ywjRHnvCXHgQsvvJBffvmFa665BqlUiiiKREdHY2ys3/DZWCORSAgODsbFxYWjR49SUlJCUFAQnp6eEx6qBLCzs2PlypWsXLmSjo4OYmNj2b59O1s3byWj5BACAlZSGyzVdlhhhxW2GGEy5MquS+ggImjydScPCAigi58ndAwueFOkyub777/nvvvu0/v1RVGkvr6e7OxslEolYWFhuLm56f0+40Fv8kjvHtt9993Hs88+O9HDOms5F5YcR3pDlP/973+Jjo4mOjoaE5OJSW0fLaIoUl1dTXZ2NgDBwcG4urpOWseKsrIy9u7dy969e9m5fSdVNVUAmMhMMddYYS5aY4UtlthgeMqeXZJsNzetvoH3339/1OPQZ1jyp59+4tprr2Uhlw7oSjMeZHAIm0BzsnOy9fr3b25uJjs7m9bWVgIDA/Hx8ZnUDjqDodFoThK2Bx988NyKbYw5t3IbR5YtW8Yff/zB5ZdfzkMPPYRGo2Hu3LlYWFhM9NCGjSAIuLq64uzsTFlZGZmZmRQUFBASEqJ3x3V94Onpyc0338zNN98MQHV1NcnJySQlJZGYeJjDiYcpbs0BwExmgYnaHBPRDDMs6dC0T6pMyV56SxO6aMeKiTMxdhW9ST12gIMHDxIdHT3q67W3t5OTk0NdXR2+vr7MmjXrjDYNVqlUJCYmkp6ezlNPPcVjjz12LnlkHDgnbuPM0qVL2bZtG5dccgktLS2oVKozKnvyVCQSCd7e3ri7u1NcXExSUhLW1taEhIRMShuvXlxcXLjkkku45JJLgJ6VaGlpKUlJSRw5coTs7GyyMrPILz2KTCZj7tzhdSEYD3o7UHTRMaHiZosT5jJLPvvss1GJW3d3N8eOHaO8vBxPT0+WLl16xoXuT0Uul3Pw4EGOHDnCs88+y6uvvso999wz0cP6R3AuLDlBZGZmsmzZMhYvXsxVV13F7Nmzzwhn/qFQKpXk5+dTXFyMk5MTwcHBOhWPT1aUSiXt7e16a++iz7AkgKO9I+aN9vgJU/UwupFTLOZSYZhPdU01NjY2wzr3xM+Ms7MzQUFBZ/RnppeOjg4OHjxIfHw8r7/+Ot988w1XXXXVRA/rH8O5ldsEERoaSkJCAsuWLaOlpQWNRkNUVBSenp4TPbRRYWhoyNSpU/H19eXYsWPs3bsXT09PpkyZckbOwg0NDSd137KAKYEUJpRN9DBwxZtiVTbr1q3j3nvv1ekctVpNcXEx+fn5WFtbM3/+/Em92h8Ozc3NHDx4kF27drF27Vo2b97c14njHOPDxKe4/YPx8vLiwIED1NfX8/bbb3Po0CHy8/MnzPFBn5iYmBAeHs6iRYtQKBTs2rXrjC2DmMwEBU2Z0HKAXowEY+x1dCzRaDSUlJSwe/duqqqqmDlzJtHR0WeNsNXV1XHgwAF++eUXfvjhB2JjY88J2wRwTtwmGHt7e3bv3o2FhQUvvvgiSUlJZGZmTgo/R31gYWHBrFmz+qyHduzYQWpq6oTbeZ0tBAQE0Cm2T4oJkZvoTXZONomJif3+vru7m5ycHHbs2EFRURGhoaEsWLBgUiYgjZTy8nLi4+NZu3Yt+/fvJyEhgYiIiIke1j+Sc+J2AvX19dx11114enpiZGSEs7Mzy5YtIz4+nmuvvfY0Q9Nt27YhCMJptSrPPvvssMKLZmZmbNy4kenTp/O///2PpKQkDh061Nfl+WzAxsaG6OhoFi5ciEQiIS6ux7apqqpqUjyYz1QCAgJQahSomPjPii1OmMksTmuF09TURHJyMrt27aKtrY3IyEhiYmJwc3ObtKUjw0UURbKyskhISOCdd97pEzlfX98RX3Ow5xH0mLT3dno/8eeVV17R18s6ozm353YCV155JUqlkm+++QZfX19qa2vZvXs3jY2NxMTE8Oijj6JWq/u6Iu/duxcPDw9iY2NPus7evXuHHYYwMDDg66+/5rnnnuOhhx7iqaeeoquri9mzZ5+RpQIDYWlpyfTp0wkODqa0tJTMzEyysrLw8fHB09Nz0rmATHb+NlBux5CJ9VfsdSxZv/5H3nzzTbq6uigqKqK9vR1PT09iYmLOikSRU1GpVCQnJ5OTk8NLL73E1KlT2bx586i/t4M9j3p5/vnnueOOO04672x6XoyGc+J2nJaWFuLi4oiNjWXhwoVAz55Yb1+lvLw8Ojo6SE5OZs6cOQDExsby+OOP88gjjyCXyzE2NkYul5OYmMitt9467DFIJBKee+45pk2bxq233srtt9+OXC5n5syZZ6Qf5WAYGhoSEBCAn58fNTU1fd0SXFxc8PLywt7e/qyZ1Y8lJ5YDWGM/waOBUPdwFl0wh9jYWCwtLfsmLWdyndpgdHR0kJiYSFpaGs8//zz33Xcfzz///Kgde4Z6HvViYWFxVmRZjwXnxO045ubmmJub88cffzBnzpzTXMYDAwNxdXVl7969zJkzh/b2dlJSUti8eTPvv/8+Bw8eJCYmpq9/22g2kK+66ir8/f257LLLKC4uRi6XEx4ejp+f31n3wJdIJLi6uuLq6kp7ezulpaUkJydjYGCAl5cXHh4eZ2SW5XhhamqKs5MLXbUT0/oGQGYoxX+eFyHn++Poa8uRQyms/WItf27+c1LYso0VdXV1JCUlsWfPHj799FPWrl3Lv//9b71ce6jn0TmG5uz95A0TmUzG119/zTfffIO1tTXz5s3jySefJD09ve+YmJiYvhBkXFwcgYGBODg4sGDBgr5/j42NxcfHBy8vr1GNJzw8nKSkJBoaGnjxxRc5dOgQqampaDSaUV13MmNhYUFoaCgXXHABwcHB1NXVsXPnTg4fPkxFRcVZtQepT6ZMCRz3vm4SmQTPCBcW3TmLW7+8kojLgimIL+Wr23/jr7f3s/WvrSQlJY3rmMYLURQpLCwkLi6OtWvXsmHDBvbt26c3YQPdnkcA//3vf/uEsPcnLi5Ob+M4kzknbidw5ZVXUlVVxaZNm1i+fDmxsbHMmDGDr7/+GoBFixYRHx+PSqUiNjaWRYsWAbBw4cKTxE1fab+Ojo7s2bOHyMhIHn30UQ4dOsSBAwfo7OzUy/UnK1KpFDc3N+bNm8fixYuxtLQkPz+fbdu2ER8fT2Fh4Vn/HgyHKUFTUBqMfTmAsYURQTG+LF9zHrd/ezUxd81BqxXZ9Pwe1j+4hfQtx1B0KLEbILHkbEClUpGSksLBgwd56aWXqKmpISkpicjISL3fa6jnEcCaNWtIS0s76ScqKkrvYzkTOedQMgS97VRKS0spLCzE39+f+Ph4HnjgAdasWcM111xDZWUlfn5+VFVV4eLiwpdffskNN9ygtzGIosgHH3zA448/zn333cf8+fOJiIg4Y93RR0pXVxc1NTXU1NTQ0NCAmZkZzs7OODs7Y2tre0aEbPXtUALwxhtv8OTjT7JAc6ne3wNrN0t8ZrrjM8sd50B76ouaKUmuoPhwBQ0l/be5EUWRY6TSYFxFXV3dWZPg0Nra2leq88orr7BixQo++eSTcQ0Znvg88vb25sEHH+TBBx8ct/ufSZzbcxuCkJAQ/vjjDwD8/Pzw8PBg06ZNpKWl9W30urm54ebmxptvvolSqdR7waYgCNx3333MmDGDa6+9lvT0dG6++WaCgoIIDQ09Y53Sh4upqSm+vr74+vqiUqmor6+nurqaxMREBEHAyckJZ2dnHB0d+zJa/wkEBASg0qhQIseI0XWZECQCLsEOPYI20x1zezMq0qs5FlvM9jfi6GwaeIWoFBVUU0qtrIw2dQtTPIPO2K4XJyKKIsXFxWRkZLB9+3a+/fZb3n33XW677bZxn1Cd+Dw6x+D8c54AQ9DY2MjVV1/NbbfdRlhYGBYWFiQnJ/Paa69x2WWX9R0XExPDRx99hL+//0kZjAsXLuT999/vSzwZC+bNm0daWhq33nora9as4fHHH6epqYmoqKizZnasKwYGBn2JKFqtlubmZmpqasjOzubIkSPY29vj7OyMvb095uaj78Y9mfm7HKBjROJmZmuCS7AjPjPd8ZrhilajpSS5kvhvUig/Wo1aMfA+r0pUUk81DZJKGqhFKpVw+RWXc/vtt7NkyZIzfuKlUqlITU0lLy+Pjz76iNbWVg4dOkRo6Nj299P1edTe3k5NTc1J55qammJpaTmm4zsTOCduxzE3N2f27Nm8/fbbFBYWolKp8PDw4I477uDJJ5/sOy4mJoZvv/22b7+tl4ULF/LVV19x/fXXj+k47ezs2LhxI++++y5r1qzhzjvvpL29nfDw8DPel3KkSCQS7OzssLOzY+rUqbS3t1NbW0tlZSWZmZlIJBKsrKywsrLC2toaa2vrs0rwfH19EQSBLrEDGwZ3+zC3M8XBzxZHPzsc/Gxx8LXFxNKIpvJWSpIr+fP/9lKb3wCDbFb0CFoV9ZIqGqlFK2qYFTmbJ294jBtuuAF7+4kvSdAHTU1NHDlyhPT0dF5++WUuu+wy3nvvPczMzMb83ro+j5555hmeeeaZk85dvXo1n3zyyZiPcbJzbs/tDCY5OZl///vfeHl5cccddxAYGEhYWNhZW1M0ErRaLe3t7bS0tNDS0kJrayutra0IgnCS2FlZWWFhYTHmgjcWe24A7m4eyKpMCRDC+v7N3N60T8Qc/Wxx8LPD2NyQ5opW6ouaqCvs+Wkobhp0dQanCJrYI2hzZs/h39f+myuvvBIPDw+9vZaJRhRFCgoKyMzMZMuWLWzYsIGPP/5Yr/vo5xh7zonbGU5rayt33HEHBw4cYM2aNYSEhBAREYGjo+NED23SotVq6ejo6BO8lpYW2traAPoEz8rKClNTU4yNjTEyMtKbEOlb3DQaDQqFglWrVtFU3Eqk72wcfO1w9LPFyNyQpvJW6gubqCtspL6oiYbiZtTKoctJRFGkg1YaqaFZWk+ztgGtqGHunLl9gubu7j7q8U822tvbSU1NpbCwkA8//BCNRsNPP/3U1xj2HGcO58TtLEAURdauXcvDDz/MRRddxL/+9S/8/f0JDQ09t4rTkRMFr3d1193djVwuR6vVIpVKMTY2PunHyMjopP82MTFBJpMNuvrTVdzUajVyuRyFQoFcLj/p58R/U6lUCIJAd3c3VRXVyEs1x8WsiYaSZjQ6CFkvcrGLJupooo5WWSPd6k6MjY1ZHLOYFReu4IorrjhrM3R7a9eysrI4cOAAH330EatXr+all146ZyJwhnJO3M4iSktLuf3228nNzeXhhx/+/+3dbUyTVx8G8KultKjlTUChYKGNvMiEZYCijxjQOdEMfJkuOrdsy8Y25svM4swysw/bB5a4LVmWjE2d82VRF80iZnxgTBwwJWxOnTBloYC0UtpaqNBWKBTa+/lgbOacj3umULl7/ZITb/pB/grp1f+5z30Ou7gHQBAEjIyM/G2w/PVrj8cDqVSKkJAQSKVSSCQS35+3roGbiwVunbzu9XohCAIEQfBdDw8PY3R0FBKJ5G+D9K+vKRSKm/dgt21HvnflP5pa9QpeDMABB/pgx3U4g21wjjggkUiQmZGJpYVLsWzZMixYsED0u2Pc6tauXLmCL774AtevX8f+/fuRl5fn79LoPnBBiYgkJibihx9+wJ49e7B9+3YUFRXB4XAgOTkZjzzyCLu4f0EikUAul0Mul//PFWiCINzWbd0Kqr+G1+joKGw2G2bMmAGZTHZH+EkkEigUCigUCsjl8n98DzA5ORmj3lEMw4UQTL6jtkHcgAN9cOA6BoLscAh9GPXeDNCU5FQ8tfR5LF68GPn5+b7gFbu/69ZeffVVlJWVYfLkyff+C+ihxs5NpPR6PUpKStDa2opt27YhPT0dmZmZ3GTVz8ZqQYlOp0NqaipmIxdyKDAAJwbhxKDUCaekH27PzUNiE9VJmP+fecjJycGcOXOQlZUlyp3678XhcKCpqQkdHR3YtWsXbDYb9u3bh4ULF/q7NHpA2LmJVFJSEk6ePIndu3dj+/btePLJJ7Fq1SpoNBrMnj17XJYz0/jRaDRQyBW45L55UGhQUBA0SRpkZ8zHnDlzkJOTg5ycnIDpyu5mZGQEra2taGtrw5kzZ7B7926UlJTggw8+YLcmMgw3EZNIJCgtLUVhYSE2b96MTZs2YePGjbBYLEhNTUVycvKEf8iWbgoODsav535FZ2cn0tLSoNFoOA39J4IgwGg04vLly74HsoOCglBVVcVuTaQ4LRkgBEFAZWUltm7disjISLz22mvQarXIyMjgVOU4GqtpSbo7h8OB5uZmGAwGHDt2DLW1tXjvvfewZcsW/gxEjKcCBAiJRIIVK1agpaUFxcXFePPNN7F//37U1tbil19+4S77JDojIyO4dOkSampqUFFRgdLSUiiVSt9qYgabuLFzC1AdHR3YunUrGhsbsXHjRuTk5GDmzJlITk6GXC73d3mixc5t7Hm9XhgMBrS2tqK1tRWff/45goODUV5e7tvsnMSP4RbgKisr8cYbbyAsLAwvvPACUlJSkJKSAq1WG1A7648XhtvYEQQB3d3d+OOPP3D16lV8++23aGhowPvvv4/Nmzfz/zvA8N0rwBUXF+OJJ55AeXk5ysrKkJ6ejg0bNuDKlStIS0uDWq32PXxM9DASBAE9PT1oaWlBV1cXKisrUVlZiZKSEhw4cOC20zsocDDcCCEhIdi2bRtefvllfPTRR3jrrbeQn5+PtWvXQq1WY9asWVCpVKLZRZ/Eo6+vDy0tLbh69Spqampw5MgRPPXUU7h8+TK0Wq2/yyM/4kdy8omIiEBZWRna29uRmJiIjRs3Yu/evaitrUV9fT3MZjM4i00Pg/7+fpw9exanTp3CsWPHUFpaCpPJhMbGRhw+fJjBRrznRnfX1taGd999F5WVlVi/fj0WL14MlUqF5ORkxMfHc7ryX+A9t39PEAT09vaira0N3d3d+PXXX/H1118jMTERO3fuvOOMRQpsnJaku0pOTsbRo0dx/vx5lJWVoaSkBKtXr0ZhYSFUKhVmzpyJxMREPghOY0oQBFgsFrS1tcFsNuPMmTM4cuQItFotdu3ahZUr/9lm0RRYGG50T9nZ2Th+/DhaWlqwc+dOlJaWYunSpSguLsaMGTOg1Wq5IwY9cF6vF93d3Whra4PJZEJtbS2OHj2K3NxcHD16FI8//jhDje6K05L0fzMYDPj444/x1VdfYf78+Vi9ejU0Gg3UajU0Gk1AbsT7T3Fa8t7cbjcMBgM6OzthNptRXV2NiooKLFu2DO+88w7mzp3r7xJpAmC40b9mtVrx6aefory8HCkpKVi1ahXS0tKgUqmg0Wgwbdo0frL+C4bb3dntdly5cgVGoxF6vR7V1dWoqanBunXr8PbbbyM9Pd3fJdIEwnCj++ZwOLBv3z6Ul5fjxo0bWLt2LebPn4+YmBgkJSVBrVaL/sDLf4rhdjuPx4Pu7m7o9XpYrVY0NTWhoqICJpMJJSUl2LRpExITE/1dJk1ADDd6YLxeL6qrq/HZZ5+hpqYGS5cuxZIlS5CUlIT4+Hio1WrExMQEdDfHcLvJbrfj6tWr6OrqgsViwU8//YQTJ04gKSkJW7ZswTPPPMMjaOi+cEEJPTBSqRTLly/H8uXL0dHRgS+//BJlZWUICwvDqlWrkJWVhalTpyIhIQEJCQkIDw8P6KALNC6XC0ajEUajETabDS0tLaiqqsLFixexbt06VFVVYd68efydoAeCnRuNqeHhYVRUVGDPnj04ffo08vLysGjRIqSlpSE6OtoXdIHyKT3QOreRkRGYTCZ0dXWhp6cHer0eZ86cQXV1NZKSklBSUoLnn38+4A9RpQePnRuNKYVCgfXr12P9+vUwGo345ptvcOjQIbS1taGwsBB5eXnQaDSIiYlBQkIC4uLiEBIS4u+y6T6Mjo7CarXCaDTCYrHAbDajsbERVVVVkMlk2LBhAxoaGpCZmckujcYMOzfyi99//x2HDx/G4cOHMTQ0hOXLl2PevHmIi4vD1KlTERsbi9jYWISFhYnqDVCsnZvL5YLFYoHFYkFPTw9sNhsuXLiA77//HlarFWvWrMFzzz2H/Px8PvRP44LhRn7l9Xpx+vRpHDp0CMePH4dUKsWiRYuQnZ0NrVaL8PBwX9BFR0dP+C2/xBJugiDAbrf7Aq2vrw9GoxEXL15EfX09jEYjli1bhmeffRZFRUWYNGmSv0umAMNwo4fG6OgoGhsbUVlZie+++w56vR55eXnIzc3FrFmzEBkZiZiYGERHRyM6OhqhoaETrqubyOHmcrnQ29uL3t5eWK1W2O12tLe349y5c6irq0NwcDCKioqwYsUKLFmyBFOmTPF3yRTAGG700NLpdL6ga2howOzZs5Gbm4u0tDQkJCRAqVQiKipqQoXdRAq3P4dZb28vnE4nrl27Bp1OhwsXLqCxsRGpqalYsWIFiouLMXfu3AnfWZN4MNxoQrDZbKiqqsKPP/6Iuro6dHV1ISsrC4899hhSU1N9YRcdHY3IyEhEREQgPDz8oQuQhzXcPB4PnE4n+vv70dfXB5vNBofDAavVCp1Oh6amJpw9exZyuRwFBQUoKChAUVERNBqNv0sn+lsMN5qQ9Ho96uvrUVdXh9raWnR3d/vCTqvVQqVSQalUQqlUIiIiwhd2ERERfg2VhyHcPB4PHA4H+vv7Ybfb0d/fD4fDAZfLBbPZDIPBgObmZl+Y5efn+wJt9uzZ7M5oQmC4kSjo9XrU1dWhvr4e586dQ0tLC6KiopCRkYGUlBTfLim3Ai80NBRKpRJTpkzxvaZQKMZ8WnM8w21kZAQ3btzwjYGBATidTjidTgwODsJiscBgMKC9vR2XLl2CXq9HUlISsrOzsXDhQhQUFCAjI4NhRhMSw41EaXBwEE1NTTh//jzOnz+PCxcu4PLly4iMjERGRgbUajVUKhWmTZuGqKgoKJVKyOXy28IuJCTENxQKBRQKxX2/0T+ocBMEAW63G8PDwxgaGvKNgYEBX5gNDw/D5XLh+vXrsFqtMJvNMBqNaGlpgcFggEajQXZ2tm9kZWUhKirqvv59RA8LhhsFDJfLhebmZvz2229obW2FTqeDTqdDZ2cngoODfefSxcfHIzY2FuHh4QgLC/N1dVKpFAqF4rbACw4Ohkwmg0wmQ1BQkO/6z0Mikfg6Qo/Hg9raWhQUFEAmk0EQBAiCAI/Hg9HR0dvGX18bGhq6Lcy8Xi/cbrcvzOx2O6xWK7q7u2EwGNDR0QG73Y74+HikpKT4xqOPPoqsrCxERkb6+SdCNHYYbhTw3G43Ojs7fWGn0+nQ3t4Ok8kEk8kEh8MBmUyG6dOnY/r06b5uLyIiApMnT76tswsJCYFcLvcNmUwGqVQKqVTqCziJRAJBEOD1egHc7MJGR0fhdrt941aQ3eq+hoaGYLfbfV2Y1WqFxWKBy+XCpEmTEBcXh7i4OGi12tuCbObMmTxfjwISw43oHgYHB2E2m33DZDLBbDbj2rVrcDgccDqduHHjhu9+1q1rt9v9f32foKAg373A0NDQO65jYmKgUql8QXZrcANqojsx3IjGiNvtxsDAADweD7xe720jKCjI19FJpVJMmTJlXBa0EAUKhhsREYkO1/gSEZHoMNyIiEh0GG5ERCQ6DDciIhIdhhsREYkOw42IiESH4UZERKLDcCMiItFhuBERkegw3IiISHQYbkREJDoMN6Jx0tPTg9dffx1qtRoKhQKxsbEoLCxEQ0ODv0sjEh2ZvwsgChRr1qyB2+3GwYMHodVqce3aNZw6dQo2m83fpRGJDk8FIBoH/f39iIyMRF1dHfLz8/1dDpHocVqSaBwolUoolUqcOHECw8PD/i6HSPQYbkTjQCaT4cCBAzh48CAiIiKwYMEC7NixA83Nzf4ujUiUOC1JNI6GhoZw+vRp/Pzzz6iqqsLZs2exd+9evPjii/4ujUhUGG5EflRSUoKTJ0/CYDD4uxQiUeG0JJEfpaenY2BgwN9lEIkOHwUgGgc2mw1PP/00XnrpJWRmZiI0NBTnzp3Dhx9+iJUrV/q7PCLRYbgRjQOlUonc3Fx88skn6OjowMjICGbMmIFXXnkFO3bs8Hd5RKLDe25ERCQ6vOdGRESiw3AjIiLRYbgREZHoMNyIiEh0GG5ERCQ6DDciIhIdhhsREYkOw42IiESH4UZERKLDcCMiItFhuBERkegw3IiISHT+C8VuQ2Fcw9eOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7pklEQVR4nO3dfXzP9f7H8ecXu8QMG9uYuQq5SCulIRflsjilzjqh0HGUq1wlWodsCtVJdMmPwq+LoQ5CRcS2aJuLio50FqNWGiK2ZjZjn98f/Xzr22y+n+17wafH/XZzOz7vz/vz/ry+r/Pt9Dyfz+f7/doMwzAEAABgEZW8XQAAAIArEW4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClVPF2AZ5WXFysH3/8UdWrV5fNZvN2OQAAwAmGYeiXX35RRESEKlUq+9rMny7c/Pjjj4qMjPR2GQAAoBy+//571a9fv8w5f7pwU716dUm/NicoKMilaxcVFWnjxo3q2bOnfHx8XLo2fkOfPYM+ewZ99hx67Rnu6nNubq4iIyPt/x4vy58u3Fy4FRUUFOSWcBMYGKigoCD+wXEj+uwZ9Nkz6LPn0GvPcHefnXmkhAeKAQCApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApXg93Bw+fFj33XefateurYCAALVp00a7du0qdf62bdvUsWNH+/wWLVpo7ty5HqwYAABczrz621InT55Ux44d1a1bN61fv16hoaHav3+/atasWeoxVatW1ZgxY3TNNdeoatWq2rZtmx566CFVrVpVDz74oAerBwAAlyOvhptnnnlGkZGRWrJkiX2sUaNGZR4THR2t6Oho+3bDhg21atUqbd26lXADAAC8G27Wrl2rXr16KTY2VikpKapXr55GjRql4cOHO73GF198odTUVD311FMX3V9YWKjCwkL7dm5urqRff7W0qKioYi/gDy6s5+p14Yg+ewZ99gz67Dn02jPc1Wcz69kMwzBcenYT/P39JUkTJ05UbGysdu7cqXHjxmnBggUaMmRImcfWr19fP/30k86dO6f4+HhNmzbtovPi4+OVkJBQYjwxMVGBgYEVfxEAAMDt8vPzNXDgQOXk5CgoKKjMuV4NN76+vmrXrp1SU1PtY2PHjtXOnTuVlpZW5rGHDh1SXl6e0tPT9dhjj+nll1/WgAEDSsy72JWbyMhIHT9+/JLNMauoqEibNm1Sjx495OPj49K18Rv67Bn02TPos+fQa89wV59zc3MVEhLiVLjx6m2p8PBwtWzZ0mHs6quv1sqVKy957IVnc9q0aaOjR48qPj7+ouHGz89Pfn5+JcZ9fHzc9uZ259r4DX32DPrsGfTZc+i1Z7i6z2bW8upHwTt27KiMjAyHsW+++UZRUVGm1ikuLna4OgMAAP68vHrlZsKECerQoYNmzZqle+65Rzt27NDChQu1cOFC+5y4uDgdPnxYb7zxhiTplVdeUYMGDdSiRQtJ0ieffKLnnntOY8eO9cprAAAAlxevhpsbbrhBq1evVlxcnGbMmKFGjRpp3rx5GjRokH1Odna2srKy7NvFxcWKi4vToUOHVKVKFTVp0kTPPPOMHnroIW+8BAAAcJnxariRpL59+6pv376l7l+6dKnD9sMPP6yHH37YzVUBAIArldd/fgEAAMCVCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSvB5uDh8+rPvuu0+1a9dWQECA2rRpo127dpU6f9WqVerRo4dCQ0MVFBSkmJgYffTRRx6sGAAAXM68Gm5Onjypjh07ysfHR+vXr9e+ffs0Z84c1axZs9RjPvnkE/Xo0UMffvihPvvsM3Xr1k39+vXTF1984cHKAQDA5aqKN0/+zDPPKDIyUkuWLLGPNWrUqMxj5s2b57A9a9YsrVmzRuvWrVN0dLQ7ygQAAFcQr4abtWvXqlevXoqNjVVKSorq1aunUaNGafjw4U6vUVxcrF9++UW1atW66P7CwkIVFhbat3NzcyVJRUVFKioqqtgL+IML67l6XTiiz55Bnz2DPnsOvfYMd/XZzHo2wzAMl57dBH9/f0nSxIkTFRsbq507d2rcuHFasGCBhgwZ4tQazz77rJ5++mn997//VZ06dUrsj4+PV0JCQonxxMREBQYGVuwFAAAAj8jPz9fAgQOVk5OjoKCgMud6Ndz4+vqqXbt2Sk1NtY+NHTtWO3fuVFpa2iWPT0xM1PDhw7VmzRp17979onMuduUmMjJSx48fv2RzzCoqKtKmTZvUo0cP+fj4uHRt/IY+ewZ99gz67Dn02jPc1efc3FyFhIQ4FW68elsqPDxcLVu2dBi7+uqrtXLlykseu3z5cv3jH//Qu+++W2qwkSQ/Pz/5+fmVGPfx8XHbm9uda+M39Nkz6LNn0GfPodee4eo+m1nLq5+W6tixozIyMhzGvvnmG0VFRZV53LJly/TAAw9o2bJluv32291ZIgAAuMJ4NdxMmDBB6enpmjVrlg4cOKDExEQtXLhQo0ePts+Ji4vT4MGD7duJiYkaPHiw5syZo/bt2+vIkSM6cuSIcnJyvPESAADAZcar4eaGG27Q6tWrtWzZMrVu3VpPPvmk5s2bp0GDBtnnZGdnKysry769cOFCnTt3TqNHj1Z4eLj9z7hx47zxEgAAwGXGq8/cSFLfvn3Vt2/fUvcvXbrUYTs5Odm9BQEAgCua139+AQAAwJUINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFKqmD3g0KFD2rp1q7777jvl5+crNDRU0dHRiomJkb+/vztqBAAAcJrT4ebtt9/WCy+8oF27dqlu3bqKiIhQQECAfv75Z2VmZsrf31+DBg3SlClTFBUV5c6aAQAASuVUuImOjpavr6+GDh2qlStXKjIy0mF/YWGh0tLStHz5crVr106vvvqqYmNj3VIwAABAWZwKN08//bR69epV6n4/Pz917dpVXbt21cyZM/Xtt9+6qj4AAABTnAo3ZQWbP6pdu7Zq165d7oIAAAAqwvQDxb/3wQcfKDk5WefPn1fHjh119913u6ouAACAcin3R8GnTZumyZMny2azyTAMTZgwQQ8//LArawMAADDN6Ss3u3btUrt27ezbK1as0J49exQQECBJGjp0qLp27aqXXnrJ9VUCAAA4yekrNyNGjND48eOVn58vSWrcuLHmzJmjjIwM/ec//9H8+fPVrFkztxUKAADgDKfDzfbt2xUeHq7rrrtO69at0+LFi/XFF1+oQ4cOuvnmm/XDDz8oMTHRnbUCAABcktO3pSpXrqwpU6YoNjZWI0eOVNWqVfXyyy8rIiLCnfUBAACYYvqB4saNG+ujjz5S//791blzZ73yyivuqAsAAKBcnA43p06d0uTJk9WvXz9NnTpV/fv31/bt27Vz507ddNNN+s9//uPOOgEAAJzidLgZMmSItm/frttvv10ZGRkaOXKkateuraVLl2rmzJn629/+pilTprizVgAAgEty+pmbLVu26IsvvlDTpk01fPhwNW3a1L7v1ltv1eeff64ZM2a4pUgAAABnOX3l5qqrrtLChQv1zTffaMGCBSV++dvf31+zZs1yeYEAAABmOB1uFi9erC1btig6OlqJiYmaP3++O+sCAAAoF6dvS1177bXatWuXO2sBAACoMKeu3BiG4e46AAAAXMKpcNOqVSstX75cZ8+eLXPe/v37NXLkSD399NMuKQ4AAMAsp25LvfTSS5oyZYpGjRqlHj16qF27doqIiJC/v79Onjypffv2adu2bfrqq680ZswYjRw50t11AwAAXJRT4ebWW2/Vrl27tG3bNq1YsUJvv/22vvvuO505c0YhISGKjo7W4MGDNWjQINWsWdPdNQMAAJTK1M8vdOrUSS+99JJ2796tkydPqqCgQD/88IPWrVunMWPGlCvYHD58WPfdd59q166tgIAAtWnTpswHl7OzszVw4EA1a9ZMlSpV0vjx402fEwAAWJfp35ZypZMnT6pjx47y8fHR+vXrtW/fPs2ZM6fMkFRYWKjQ0FBNnTpVbdu29WC1AADgSuD0R8Hd4ZlnnlFkZKSWLFliH2vUqFGZxzRs2FAvvPCCpF+/ewcAAOD3vBpu1q5dq169eik2NlYpKSmqV6+eRo0apeHDh7vsHIWFhSosLLRv5+bmSpKKiopUVFTksvNcWPP3/wn3oM+eQZ89gz57Dr32DHf12cx6NsOLX2Lj7+8vSZo4caJiY2O1c+dOjRs3TgsWLNCQIUMueXzXrl117bXXat68eaXOiY+PV0JCQonxxMREBQYGlrt2AADgOfn5+Ro4cKBycnIUFBRU5lyvhhtfX1+1a9dOqamp9rGxY8dq586dSktLu+TxzoSbi125iYyM1PHjxy/ZHLOKioq0adMm9ejRQz4+Pi5dG7+hz55Bnz2DPnsOvfYMd/U5NzdXISEhToUb07elunTpomHDhik2NlYBAQHlLlKSwsPD1bJlS4exq6++WitXrqzQur/n5+cnPz+/EuM+Pj5ue3O7c238hj57Bn32DPrsOfTaM1zdZzNrmf60VHR0tCZNmqSwsDANHz5c6enpZpew69ixozIyMhzGvvnmmxK/OA4AAOAs0+Fm3rx5+vHHH7VkyRIdO3ZMnTt3VsuWLfXcc8/p6NGjptaaMGGC0tPTNWvWLB04cECJiYlauHChRo8ebZ8TFxenwYMHOxy3e/du7d69W3l5efrpp5+0e/du7du3z+xLAQAAFlSu77mpUqWK7rrrLq1Zs0Y//PCDBg4cqGnTpikyMlJ33nmntmzZ4tQ6N9xwg1avXq1ly5apdevWevLJJzVv3jwNGjTIPic7O1tZWVkOx0VHRys6OlqfffaZEhMTFR0drdtuu608LwUAAFhMhT4KvmPHDi1ZskTLly9XnTp1NHToUB0+fFh9+/bVqFGj9Nxzz11yjb59+6pv376l7l+6dGmJMX6lHAAAlMZ0uDl27JjefPNNLVmyRPv371e/fv20bNky9erVSzabTZI0dOhQ9e7d26lwAwAA4Eqmw039+vXVpEkT/f3vf9fQoUMVGhpaYs4111yjG264wSUFAgAAmGE63GzevFk333xzmXOCgoKUlJRU7qIAAADKy/QDxdOnT9epU6dKjOfm5uqWW25xRU0AAADlZjrcpKSk6OzZsyXGCwoKtHXrVpcUBQAAUF5O35b68ssvJf36SaV9+/bpyJEj9n3nz5/Xhg0bVK9ePddXCAAAYILT4ebaa6+VzWaTzWa76O2ngIAAvfTSSy4tDgAAwCynw82hQ4dkGIYaN26sHTt2OHxKytfXV3Xq1FHlypXdUiQAAICznA43F37vqbi42G3FAAAAVJRT4Wbt2rXq06ePfHx8tHbt2jLn/uUvf3FJYQAAAOXhVLi58847deTIEdWpU0d33nlnqfNsNpvOnz/vqtoAAABMcyrc/P5WFLelAADA5axcvwr+Rxf7Uj8AAABvMB1unnnmGa1YscK+HRsbq1q1aqlevXras2ePS4sDAAAwy3S4WbBggSIjIyVJmzZt0scff6wNGzaoT58+evTRR11eIAAAgBmmfzjzyJEj9nDz/vvv65577lHPnj3VsGFDtW/f3uUFAgAAmGH6yk3NmjX1/fffS5I2bNig7t27S/r1Zxn4pBQAAPA201du7rrrLg0cOFBXXXWVTpw4oT59+kiSvvjiCzVt2tTlBQIAAJhhOtzMnTtXDRs21Pfff69nn31W1apVkyRlZ2dr1KhRLi8QAADADNPhxsfHR5MmTSoxPmHCBJcUBAAAUBGmw40k7d+/X0lJSTp27FiJL/V74oknXFIYAABAeZgON4sWLdLIkSMVEhKisLAw2Ww2+z6bzUa4AQAAXmU63Dz11FOaOXOmpkyZ4o56AAAAKsT0R8FPnjyp2NhYd9QCAABQYabDTWxsrDZu3OiOWgAAACrM9G2ppk2batq0aUpPT1ebNm3k4+PjsH/s2LEuKw4AAMAs0+Fm4cKFqlatmlJSUpSSkuKwz2azEW4AAIBXmQ43hw4dckcdAAAALmH6mZsLzp49q4yMDJ07d86V9QAAAFSI6XCTn5+vYcOGKTAwUK1atVJWVpYk6eGHH9bTTz/t8gIBAADMMB1u4uLitGfPHiUnJ8vf398+3r17d61YscKlxQEAAJhl+pmb9957TytWrNBNN93k8O3ErVq1UmZmpkuLAwAAMMv0lZuffvpJderUKTF++vRph7ADAADgDabDTbt27fTBBx/Yty8Emtdee00xMTGuqwwAAKAcTN+WmjVrlvr06aN9+/bp3LlzeuGFF7Rv3z6lpqaW+N4bAAAATzN95aZTp07avXu3zp07pzZt2mjjxo2qU6eO0tLSdP3117ujRgAAAKeZvnIjSU2aNNGiRYtcXQsAAECFmb5yU7lyZR07dqzE+IkTJ1S5cmWXFAUAAFBepsONYRgXHS8sLJSvr2+FCwIAAKgIp29Lvfjii5J+/XTUa6+9pmrVqtn3nT9/Xp988olatGjh+goBAABMcDrczJ07V9KvV24WLFjgcAvK19dXDRs21IIFC1xfIQAAgAlOh5sLvwberVs3rVq1SjVr1nRbUQAAAOVl+tNSSUlJ7qgDAADAJUyHm/Pnz2vp0qXavHmzjh07puLiYof9W7ZscVlxAAAAZpkON+PGjdPSpUt1++23q3Xr1vyeFAAAuKyYDjfLly/XO++8o9tuu80lBRw+fFhTpkzR+vXrlZ+fr6ZNm2rJkiVq165dqcckJydr4sSJ+uqrrxQZGampU6dq6NChLqkHAABc2UyHG19fXzVt2tQlJz958qQ6duyobt26af369QoNDdX+/fvLfFj50KFDuv322zVixAi9/fbb2rx5s/7xj38oPDxcvXr1ckld5fX77/kp7fuAUHH02TPos2fQZ8+h155xOfTZZpg885w5c3Tw4EG9/PLLFb4l9dhjj+nTTz/V1q1bnT5mypQp+uCDD7R371772L333qtTp05pw4YNlzw+NzdXNWrUUE5OjoKCgspV98VcrBf8w+N69Nkz6LNn0GfPodee4c4+m/n3t+krN9u2bVNSUpLWr1+vVq1aycfHx2H/qlWrnF5r7dq16tWrl2JjY5WSkqJ69epp1KhRGj58eKnHpKWlqXv37g5jvXr10vjx4y86v7CwUIWFhfbt3NxcSVJRUZGKioqcrrUspX0zs81m09mzZ11yDtBnT6HPnkGfPYdee4a7+2zm39mmw01wcLD69+9v9rCLOnjwoObPn6+JEyfq8ccf186dOzV27Fj5+vpqyJAhFz3myJEjqlu3rsNY3bp1lZubqzNnziggIMBh3+zZs5WQkFBinY0bNyowMNAlr6MsH374odvPAfrsKfTZM+iz59Brz3BFn/Pz852ea/q2lCv5+vqqXbt2Sk1NtY+NHTtWO3fuVFpa2kWPadasmR544AHFxcXZxz788EPdfvvtys/PLxFuLnblJjIyUsePH3fZbamyflOL/1fgOvTZM+izZ9Bnz6HXnuHuPufm5iokJMQ9t6VcKTw8XC1btnQYu/rqq7Vy5cpSjwkLC9PRo0cdxo4ePaqgoKASwUaS/Pz85OfnV2Lcx8enxC218jIMg/u5HkCfPYM+ewZ99hx67Rnu7rOZf2c7HW6io6OdeoD4888/d/rkHTt2VEZGhsPYN998o6ioqFKPiYmJKXF5a9OmTYqJiXH6vO7wx/9S+YfGPeizZ9Bnz6DPnkOvPeNy6bPT4ebOO+90+cknTJigDh06aNasWbrnnnu0Y8cOLVy4UAsXLrTPiYuL0+HDh/XGG29IkkaMGKGXX35ZkydP1t///ndt2bJF77zzjj744AOX12fW2bNn9eGHH7rsO4BwcfTZM+izZ9Bnz6HXnnE59NnpcDN9+nSXn/yGG27Q6tWrFRcXpxkzZqhRo0aaN2+eBg0aZJ+TnZ2trKws+3ajRo30wQcfaMKECXrhhRdUv359vfbaa17/jhsAAHB58OozN5LUt29f9e3bt9T9S5cuLTHWtWtXffHFF26sCgAAXKkqebsAAAAAVyLcAAAASyHcAAAAS6lQuCkoKHBVHQAAAC5hOtwUFxfrySefVL169VStWjUdPHhQkjRt2jS9/vrrLi8QAADADNPh5qmnntLSpUv17LPPOnzVcuvWrfXaa6+5tDgAAACzTIebN954QwsXLtSgQYNUuXJl+3jbtm313//+16XFAQAAmGU63Bw+fFhNmzYtMV5cXGzq58gBAADcwXS4admypbZu3Vpi/N///reio6NdUhQAAEB5mf6G4ieeeEJDhgzR4cOHVVxcrFWrVikjI0NvvPGG3n//fXfUCAAA4DTTV27uuOMOrVu3Th9//LGqVq2qJ554Ql9//bXWrVunHj16uKNGAAAAp5Xrt6Vuvvlmbdq0ydW1AAAAVJjpKzc7d+7U9u3bS4xv375du3btcklRAAAA5WU63IwePVrff/99ifHDhw9r9OjRLikKAACgvEyHm3379um6664rMR4dHa19+/a5pCgAAIDyMh1u/Pz8dPTo0RLj2dnZqlKlXI/wAAAAuIzpcNOzZ0/FxcUpJyfHPnbq1Ck9/vjjfFoKAAB4nelLLc8995w6d+6sqKgo+5f27d69W3Xr1tWbb77p8gIBAADMMB1u6tWrpy+//FJvv/229uzZo4CAAD3wwAMaMGCAfHx83FEjAACA08r1kEzVqlX14IMPuroWAACACitXuNm/f7+SkpJ07NgxFRcXO+x74oknXFIYAABAeZgON4sWLdLIkSMVEhKisLAw2Ww2+z6bzUa4AQAAXmU63Dz11FOaOXOmpkyZ4o56AAAAKsT0R8FPnjyp2NhYd9QCAABQYabDTWxsrDZu3OiOWgAAACrM9G2ppk2batq0aUpPT1ebNm1KfPx77NixLisOAADALNPhZuHChapWrZpSUlKUkpLisM9msxFuAACAV5kON4cOHXJHHQAAAC5h+pmbC86ePauMjAydO3fOlfUAAABUiOlwk5+fr2HDhikwMFCtWrVSVlaWJOnhhx/W008/7fICAQAAzDAdbuLi4rRnzx4lJyfL39/fPt69e3etWLHCpcUBAACYZfqZm/fee08rVqzQTTfd5PDtxK1atVJmZqZLiwMAADDL9JWbn376SXXq1Ckxfvr0aYewAwAA4A2mw027du30wQcf2LcvBJrXXntNMTExrqsMAACgHEzflpo1a5b69Omjffv26dy5c3rhhRe0b98+paamlvjeGwAAAE8zfeWmU6dO2r17t86dO6c2bdpo48aNqlOnjtLS0nT99de7o0YAAACnmb5yI0lNmjTRokWLXF0LAABAhTkVbnJzc51eMCgoqNzFAAAAVJRT4SY4OPiSn4QyDEM2m03nz593SWEAAADl4VS4SUpKcncdAAAALuFUuOnSpYu76wAAAHAJ0w8Uf/LJJ2Xu79y5c7mLAQAAqCjT4aZr164lxn7/PA7P3AAAAG8y/T03J0+edPhz7NgxbdiwQTfccIM2btzojhoBAACcZvrKTY0aNUqM9ejRQ76+vpo4caI+++wzlxQGAABQHqav3JSmbt26ysjIMHVMfHy8bDabw58WLVqUOr+oqEgzZsxQkyZN5O/vr7Zt22rDhg0VLR0AAFiI6Ss3X375pcO2YRjKzs7W008/rWuvvdZ0Aa1atdLHH3/8W0FVSi9p6tSpeuutt7Ro0SK1aNFCH330kfr376/U1FRFR0ebPjcAALAe0+Hm2muvlc1mk2EYDuM33XSTFi9ebL6AKlUUFhbm1Nw333xT//znP3XbbbdJkkaOHKmPP/5Yc+bM0VtvvWX63AAAwHpMh5tDhw45bFeqVEmhoaHy9/cvVwH79+9XRESE/P39FRMTo9mzZ6tBgwYXnVtYWFjiPAEBAdq2bVup6xcWFqqwsNC+feGnJIqKilRUVFSumktzYT1XrwtH9Nkz6LNn0GfPodee4a4+m1nPZvzxEowHrV+/Xnl5eWrevLmys7OVkJCgw4cPa+/evapevXqJ+QMHDtSePXv03nvvqUmTJtq8ebPuuOMOnT9/3iHA/F58fLwSEhJKjCcmJiowMNDlrwkAALhefn6+Bg4cqJycnEv+jmW5ws3mzZs1d+5cff3115Kkq6++WuPHj1f37t3LV/H/O3XqlKKiovT8889r2LBhJfb/9NNPGj58uNatWyebzaYmTZqoe/fuWrx4sc6cOXPRNS925SYyMlLHjx93+Y98FhUVadOmTerRo4d8fHxcujZ+Q589gz57Bn32HHrtGe7qc25urkJCQpwKN6ZvS7366qsaN26c/vrXv2rcuHGSpPT0dN12222aO3euRo8eXb6q9esPdDZr1kwHDhy46P7Q0FC99957Kigo0IkTJxQREaHHHntMjRs3LnVNPz8/+fn5lRj38fFx25vbnWvjN/TZM+izZ9Bnz6HXnuHqPptZy3S4mTVrlubOnasxY8bYx8aOHauOHTtq1qxZFQo3eXl5yszM1P3331/mPH9/f9WrV09FRUVauXKl7rnnnnKfEwAAWIvp77k5deqUevfuXWK8Z8+eysnJMbXWpEmTlJKSom+//Vapqanq37+/KleurAEDBkiSBg8erLi4OPv87du3a9WqVTp48KC2bt2q3r17q7i4WJMnTzb7MgAAgEWZDjd/+ctftHr16hLja9asUd++fU2t9cMPP2jAgAFq3ry57rnnHtWuXVvp6ekKDQ2VJGVlZSk7O9s+v6CgQFOnTlXLli3Vv39/1atXT9u2bVNwcLDZlwEAACzKqdtSL774ov3vLVu21MyZM5WcnKyYmBhJvz5z8+mnn+qRRx4xdfLly5eXuT85Odlhu0uXLtq3b5+pcwAAgD8Xp8LN3LlzHbZr1qypffv2OQSN4OBgLV68WFOnTnVthQAAACY4FW7++MV9AAAAlytTz9wUFRWpSZMm9u+3AQAAuNyYCjc+Pj4qKChwVy0AAAAVZvrTUqNHj9Yzzzyjc+fOuaMeAACACjH9JX47d+7U5s2btXHjRrVp00ZVq1Z12L9q1SqXFQcAAGCW6XATHBysu+++2x21AAAAVJjpcLNkyRJ31AEAAOASpp+5AQAAuJyZvnLTqFEj2Wy2UvcfPHiwQgUBAABUhOlwM378eIftoqIiffHFF9qwYYMeffRRV9UFAABQLqbDzbhx4y46/sorr2jXrl0VLggAAKAiXPbMTZ8+fbRy5UpXLQcAAFAuLgs3//73v1WrVi1XLQcAAFAuTt+WmjFjhh555BF16tTJ4YFiwzB05MgR/fTTT3r11VfdUiQAAICznA43CQkJGjFihO644w6HcFOpUiWFhoaqa9euatGihVuKBAAAcJbT4cYwDElSfHy8u2oBAACoMFPP3JT1/TYAAACXA1MfBW/WrNklA87PP/9coYIAAAAqwlS4SUhIUI0aNdxVCwAAQIWZCjf33nuv6tSp465aAAAAKszpZ2543gYAAFwJnA43Fz4tBQAAcDlz+rZUcXGxO+sAAABwCZf9/AIAAMDlgHADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAsxavhJj4+XjabzeFPixYtyjxm3rx5at68uQICAhQZGakJEyaooKDAQxUDAIDLXRVvF9CqVSt9/PHH9u0qVUovKTExUY899pgWL16sDh066JtvvtHQoUNls9n0/PPPe6JcAABwmfN6uKlSpYrCwsKcmpuamqqOHTtq4MCBkqSGDRtqwIAB2r59uztLBAAAVxCvh5v9+/crIiJC/v7+iomJ0ezZs9WgQYOLzu3QoYPeeust7dixQzfeeKMOHjyoDz/8UPfff3+p6xcWFqqwsNC+nZubK0kqKipSUVGRS1/LhfVcvS4c0WfPoM+eQZ89h157hrv6bGY9m2EYhkvPbsL69euVl5en5s2bKzs7WwkJCTp8+LD27t2r6tWrX/SYF198UZMmTZJhGDp37pxGjBih+fPnl3qO+Ph4JSQklBhPTExUYGCgy14LAABwn/z8fA0cOFA5OTkKCgoqc65Xw80fnTp1SlFRUXr++ec1bNiwEvuTk5N177336qmnnlL79u114MABjRs3TsOHD9e0adMuuubFrtxERkbq+PHjl2yOWUVFRdq0aZN69OghHx8fl66N39Bnz6DPnkGfPYdee4a7+pybm6uQkBCnwo3Xb0v9XnBwsJo1a6YDBw5cdP+0adN0//336x//+IckqU2bNjp9+rQefPBB/fOf/1SlSiU//OXn5yc/P78S4z4+Pm57c7tzbfyGPnsGffYM+uw59NozXN1nM2tdVt9zk5eXp8zMTIWHh190f35+fokAU7lyZUnSZXQBCgAAeJFXw82kSZOUkpKib7/9Vqmpqerfv78qV66sAQMGSJIGDx6suLg4+/x+/fpp/vz5Wr58uQ4dOqRNmzZp2rRp6tevnz3kAACAPzev3pb64YcfNGDAAJ04cUKhoaHq1KmT0tPTFRoaKknKyspyuFIzdepU2Ww2TZ06VYcPH1ZoaKj69eunmTNneuslAACAy4xXw83y5cvL3J+cnOywXaVKFU2fPl3Tp093Y1UAAOBKdlk9cwMAAFBRhBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGApXg038fHxstlsDn9atGhR6vyuXbuWmG+z2XT77bd7sGoAAHA5q+LtAlq1aqWPP/7Yvl2lSuklrVq1SmfPnrVvnzhxQm3btlVsbKxbawQAAFcOr4ebKlWqKCwszKm5tWrVcthevny5AgMDCTcAAMDO6+Fm//79ioiIkL+/v2JiYjR79mw1aNDAqWNff/113XvvvapatWqpcwoLC1VYWGjfzs3NlSQVFRWpqKioYsX/wYX1XL0uHNFnz6DPnkGfPYdee4a7+mxmPZthGIZLz27C+vXrlZeXp+bNmys7O1sJCQk6fPiw9u7dq+rVq5d57I4dO9S+fXtt375dN954Y6nz4uPjlZCQUGI8MTFRgYGBFX4NAADA/fLz8zVw4EDl5OQoKCiozLleDTd/dOrUKUVFRen555/XsGHDypz70EMPKS0tTV9++WWZ8y525SYyMlLHjx+/ZHPMKioq0qZNm9SjRw/5+Pi4dG38hj57Bn32DPrsOfTaM9zV59zcXIWEhDgVbrx+W+r3goOD1axZMx04cKDMeadPn9by5cs1Y8aMS67p5+cnPz+/EuM+Pj5ue3O7c238hj57Bn32DPrsOfTaM1zdZzNrXVbfc5OXl6fMzEyFh4eXOe/dd99VYWGh7rvvPg9VBgAArhReDTeTJk1SSkqKvv32W6Wmpqp///6qXLmyBgwYIEkaPHiw4uLiShz3+uuv684771Tt2rU9XTIAALjMefW21A8//KABAwboxIkTCg0NVadOnZSenq7Q0FBJUlZWlipVcsxfGRkZ2rZtmzZu3OiNkgEAwGXOq+Fm+fLlZe5PTk4uMda8eXNdRs9AAwCAy8xl9cwNAABARRFuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApVxWvwruCRe+3Tg3N9flaxcVFSk/P1+5ubn84qwb0WfPoM+eQZ89h157hrv6fOHf2878SsGfLtz88ssvkqTIyEgvVwIAAMz65ZdfVKNGjTLn2Iw/2Q81FRcX68cff1T16tVls9lcunZubq4iIyP1/fffKygoyKVr4zf02TPos2fQZ8+h157hrj4bhqFffvlFERERJX5U+4/+dFduKlWqpPr167v1HEFBQfyD4wH02TPos2fQZ8+h157hjj5f6orNBTxQDAAALIVwAwAALIVw40J+fn6aPn26/Pz8vF2KpdFnz6DPnkGfPYdee8bl0Oc/3QPFAADA2rhyAwAALIVwAwAALIVwAwAALIVwAwAALIVw4yKvvPKKGjZsKH9/f7Vv3147duzwdkmWEx8fL5vN5vCnRYsW3i7rivfJJ5+oX79+ioiIkM1m03vvveew3zAMPfHEEwoPD1dAQIC6d++u/fv3e6fYK9il+jx06NAS7+/evXt7p9gr2OzZs3XDDTeoevXqqlOnju68805lZGQ4zCkoKNDo0aNVu3ZtVatWTXfffbeOHj3qpYqvTM70uWvXriXe0yNGjPBIfYQbF1ixYoUmTpyo6dOn6/PPP1fbtm3Vq1cvHTt2zNulWU6rVq2UnZ1t/7Nt2zZvl3TFO336tNq2batXXnnlovufffZZvfjii1qwYIG2b9+uqlWrqlevXiooKPBwpVe2S/VZknr37u3w/l62bJkHK7SGlJQUjR49Wunp6dq0aZOKiorUs2dPnT592j5nwoQJWrdund59912lpKToxx9/1F133eXFqq88zvRZkoYPH+7wnn722Wc9U6CBCrvxxhuN0aNH27fPnz9vREREGLNnz/ZiVdYzffp0o23btt4uw9IkGatXr7ZvFxcXG2FhYca//vUv+9ipU6cMPz8/Y9myZV6o0Br+2GfDMIwhQ4YYd9xxh1fqsbJjx44ZkoyUlBTDMH59//r4+Bjvvvuufc7XX39tSDLS0tK8VeYV7499NgzD6NKlizFu3Div1MOVmwo6e/asPvvsM3Xv3t0+VqlSJXXv3l1paWlerMya9u/fr4iICDVu3FiDBg1SVlaWt0uytEOHDunIkSMO7+8aNWqoffv2vL/dIDk5WXXq1FHz5s01cuRInThxwtslXfFycnIkSbVq1ZIkffbZZyoqKnJ4T7do0UINGjTgPV0Bf+zzBW+//bZCQkLUunVrxcXFKT8/3yP1/Ol+ONPVjh8/rvPnz6tu3boO43Xr1tV///tfL1VlTe3bt9fSpUvVvHlzZWdnKyEhQTfffLP27t2r6tWre7s8Szpy5IgkXfT9fWEfXKN3796666671KhRI2VmZurxxx9Xnz59lJaWpsqVK3u7vCtScXGxxo8fr44dO6p169aSfn1P+/r6Kjg42GEu7+nyu1ifJWngwIGKiopSRESEvvzyS02ZMkUZGRlatWqV22si3OCK0adPH/vfr7nmGrVv315RUVF65513NGzYMC9WBlTcvffea/97mzZtdM0116hJkyZKTk7Wrbfe6sXKrlyjR4/W3r17eTbPzUrr84MPPmj/e5s2bRQeHq5bb71VmZmZatKkiVtr4rZUBYWEhKhy5colnrQ/evSowsLCvFTVn0NwcLCaNWumAwcOeLsUy7rwHub97XmNGzdWSEgI7+9yGjNmjN5//30lJSWpfv369vGwsDCdPXtWp06dcpjPe7p8SuvzxbRv316SPPKeJtxUkK+vr66//npt3rzZPlZcXKzNmzcrJibGi5VZX15enjIzMxUeHu7tUiyrUaNGCgsLc3h/5+bmavv27by/3eyHH37QiRMneH+bZBiGxowZo9WrV2vLli1q1KiRw/7rr79ePj4+Du/pjIwMZWVl8Z424VJ9vpjdu3dLkkfe09yWcoGJEydqyJAhateunW688UbNmzdPp0+f1gMPPODt0ixl0qRJ6tevn6KiovTjjz9q+vTpqly5sgYMGODt0q5oeXl5Dv9P6tChQ9q9e7dq1aqlBg0aaPz48Xrqqad01VVXqVGjRpo2bZoiIiJ05513eq/oK1BZfa5Vq5YSEhJ09913KywsTJmZmZo8ebKaNm2qXr16ebHqK8/o0aOVmJioNWvWqHr16vbnaGrUqKGAgADVqFFDw4YN08SJE1WrVi0FBQXp4YcfVkxMjG666SYvV3/luFSfMzMzlZiYqNtuu021a9fWl19+qQkTJqhz58665ppr3F+gVz6jZUEvvfSS0aBBA8PX19e48cYbjfT0dG+XZDl/+9vfjPDwcMPX19eoV6+e8be//c04cOCAt8u64iUlJRmSSvwZMmSIYRi/fhx82rRpRt26dQ0/Pz/j1ltvNTIyMrxb9BWorD7n5+cbPXv2NEJDQw0fHx8jKirKGD58uHHkyBFvl33FuViPJRlLliyxzzlz5owxatQoo2bNmkZgYKDRv39/Izs723tFX4Eu1eesrCyjc+fORq1atQw/Pz+jadOmxqOPPmrk5OR4pD7b/xcJAABgCTxzAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwA6CE5ORk2Wy2Ej8uaNbQoUOv6J9p6Nq1q8aPH3/JeZ07d1ZiYqL7C/qde++9V3PmzPHoOYErBeEGsLAFCxaoevXqOnfunH0sLy9PPj4+6tq1q8PcC4EmMzNTHTp0UHZ2tmrUqOH2GhctWqS2bduqWrVqCg4OVnR0tGbPnu3287rK2rVrdfToUd17770uWe9///d/1alTp0vOmzp1qmbOnKmcnByXnBewEsINYGHdunVTXl6edu3aZR/bunWrwsLCtH37dhUUFNjHk5KS1KBBAzVp0kS+vr4KCwuTzWZza32LFy/W+PHjNXbsWO3evVuffvqpJk+erLy8PLee15VefPFFPfDAA6pUyTX/c7pmzRr95S9/ueS81q1bq0mTJnrrrbdccl7ASgg3gIU1b95c4eHhSk5Oto8lJyfrjjvuUKNGjZSenu4w3q1bN/vff39baunSpQoODtZHH32kq6++WtWqVVPv3r2VnZ1tP/78+fOaOHGigoODVbt2bU2ePFmX+um6tWvX6p577tGwYcPUtGlTtWrVSgMGDNDMmTPtcy7c2kpISFBoaKiCgoI0YsQInT171j6nuLhYs2fPVqNGjRQQEKC2bdvq3//+t8O59u7dqz59+qhatWqqW7eu7r//fh0/fty+//Tp0xo8eLCqVaum8PBwp275/PTTT9qyZYv69evnMG6z2fQ///M/6tu3rwIDA3X11VcrLS1NBw4cUNeuXVW1alV16NBBmZmZDscVFBRo48aN9nDz6quv6qqrrpK/v7/q1q2rv/71rw7z+/Xrp+XLl1+yTuDPhnADWFy3bt2UlJRk305KSlLXrl3VpUsX+/iZM2e0fft2e7i5mPz8fD333HN688039cknnygrK0uTJk2y758zZ46WLl2qxYsXa9u2bfr555+1evXqMmsLCwtTenq6vvvuuzLnbd68WV9//bWSk5O1bNkyrVq1SgkJCfb9s2fP1htvvKEFCxboq6++0oQJE3TfffcpJSVFknTq1Cndcsstio6O1q5du7RhwwYdPXpU99xzj32NRx99VCkpKVqzZo02btyo5ORkff7552XWtW3bNnt4+aMnn3xSgwcP1u7du9WiRQsNHDhQDz30kOLi4rRr1y4ZhqExY8aUeJ316tVTixYttGvXLo0dO1YzZsxQRkaGNmzYoM6dOzvMv/HGG7Vjxw4VFhaWWSfwp+OR3x4H4DWLFi0yqlatahQVFRm5ublGlSpVjGPHjhmJiYlG586dDcMwjM2bNxuSjO+++84wDMNISkoyJBknT540DMMwlixZYkgyDhw4YF/3lVdeMerWrWvfDg8PN5599ln7dlFRkVG/fn3jjjvuKLW2H3/80bjpppsMSUazZs2MIUOGGCtWrDDOnz9vnzNkyBCjVq1axunTp+1j8+fPN6pVq2acP3/eKCgoMAIDA43U1FSHtYcNG2YMGDDAMAzDePLJJ42ePXs67P/+++8NSUZGRobxyy+/GL6+vsY777xj33/ixAkjICDAGDduXKn1z50712jcuHGJcUnG1KlT7dtpaWmGJOP111+3jy1btszw9/d3OG748OHGpEmTDMMwjJUrVxpBQUFGbm5uqeffs2ePIcn49ttvS50D/BlV8V6sAuAJXbt21enTp7Vz506dPHlSzZo1U2hoqLp06aIHHnhABQUFSk5OVuPGjdWgQYNS1wkMDFSTJk3s2+Hh4Tp27JgkKScnR9nZ2Wrfvr19f5UqVdSuXbsyb02Fh4crLS1Ne/fu1SeffKLU1FQNGTJEr732mjZs2GB/jqVt27YKDAy0HxcTE6O8vDx9//33ysvLU35+vnr06OGw9tmzZxUdHS1J2rNnj5KSklStWrUSNWRmZurMmTM6e/asQ/21atVS8+bNS61d+vWKl7+//0X3XXPNNfa/161bV5LUpk0bh7GCggLl5uYqKChIhmFo3bp1eueddyRJPXr0UFRUlBo3bqzevXurd+/e6t+/v0MfAgICJP16VQ3Abwg3gMU1bdpU9evXV1JSkk6ePKkuXbpIkiIiIhQZGanU1FQlJSXplltuKXMdHx8fh22bzXbJZ2qc1bp1a7Vu3VqjRo3SiBEjdPPNNyslJaXM22QXXHj4+IMPPlC9evUc9vn5+dnn9OvXT88880yJ48PDw3XgwIFy1R0SEqKTJ09edN/v+3XhweyLjRUXF0uSduzYoXPnzqlDhw6SpOrVq+vzzz9XcnKyNm7cqCeeeELx8fHauXOngoODJUk///yzJCk0NLRc9QNWxTM3wJ9At27dlJycrOTkZIePgHfu3Fnr16/Xjh07nAoSpalRo4bCw8O1fft2+9i5c+f02WefmV6rZcuWkn59wPeCPXv26MyZM/bt9PR0VatWTZGRkWrZsqX8/PyUlZWlpk2bOvyJjIyUJF133XX66quv1LBhwxJzqlatqiZNmsjHx8eh/pMnT+qbb74ps9bo6GgdOXKk1IBjxpo1a3T77bercuXK9rEqVaqoe/fuevbZZ/Xll1/q22+/1ZYtW+z79+7dq/r16yskJKTC5weshCs3wJ9At27dNHr0aBUVFdmv3EhSly5dNGbMGJ09e7ZC4UaSxo0bp6efflpXXXWVWrRooeeff/6SXwI4cuRIRURE6JZbblH9+vWVnZ2tp556SqGhoYqJibHPO3v2rIYNG6apU6fq22+/1fTp0zVmzBhVqlRJ1atX16RJkzRhwgQVFxerU6dOysnJ0aeffqqgoCANGTJEo0eP1qJFizRgwABNnjxZtWrV0oEDB7R8+XK99tprqlatmoYNG6ZHH31UtWvXVp06dfTPf/7zkh/vjo6OVkhIiD799FP17du3Qv1bu3atZsyYYd9+//33dfDgQXXu3Fk1a9bUhx9+qOLiYodbZVu3blXPnj0rdF7Aigg3wJ9At27ddObMGbVo0cL+/If0a7j55Zdf7B8Zr4hHHnlE2dnZGjJkiCpVqqS///3v6t+/f5lfMte9e3ctXrxY8+fP14kTJxQSEqKYmBht3rxZtWvXts+79dZbddVVV6lz584qLCzUgAEDFB8fb9//5JNPKjQ0VLNnz9bBgwcVHBys6667To8//rikX2/Bffrpp5oyZYp69uypwsJCRUVFqXfv3vYA869//ct++6p69ep65JFHLvkFeZUrV9YDDzygt99+u0LhJjMzUwcOHFCvXr3sY8HBwVq1apXi4+NVUFCgq666SsuWLVOrVq0k/fqx8ffee08bNmwo93kBq7IZrrppDgBuMHToUJ06dUrvvfeet0u5qCNHjqhVq1b6/PPPFRUVVa41nn/+eX388cf68MMPnT5m/vz5Wr16tTZu3FiucwJWxjM3AFABYWFhev3115WVlVXuNerXr6+4uDhTx/j4+Oill14q9zkBK+PKDYDL2uV+5QbA5YdwAwAALIXbUgAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFL+D33PKiu3qYUbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuiklEQVR4nO3deXhU9b3H8c8Ak0AgIWJCFgg7EmUToWBQIQgkoFKhXhewl0gRrxZugaAoFlm1qQtKtVSsFqNWcKtErF6aGBJQiSDQaPGBKHGJlSS4ACEJJCM59w8vcx2zw8wZJr/363nyNOd3zvnNd77PCX56lhmHZVmWAAAADNTK3wUAAAD4C0EIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYbfxdwNmupqZGBw8eVGhoqBwOh7/LAQAATWBZlo4dO6bY2Fi1alX/eR+CUCMOHjyouLg4f5cBAABOw5dffqmuXbvWu54g1IjQ0FBJPzQyLCzMa/O6XC5lZmYqKSlJTqfTa/OiNnptD/psD/psD/psD1/2uaysTHFxce7/jteHINSIU5fDwsLCvB6EQkJCFBYWxh+Zj9Fre9Bne9Bne9Bne9jR58Zua+FmaQAAYKyACkLbtm3TpEmTFBsbK4fDoYyMjAa3z83NlcPhqPVTUlJiT8EAAOCsFlBBqKKiQoMHD9aaNWuatV9BQYGKi4vdP507d/ZRhQAAIJAE1D1CEydO1MSJE5u9X+fOnRUeHu79ggAAQEALqCB0ui688EJVVVVpwIABWrZsmS655JJ6t62qqlJVVZV7uaysTNIPN3S5XC6v1XRqLm/OibrRa3vQZ3vQZ3vQZ3v4ss9NndNhWZbl9Ve3gcPh0MaNGzV58uR6tykoKFBubq6GDRumqqoqPfXUU3ruuee0Y8cOXXTRRXXus2zZMi1fvrzW+Pr16xUSEuKt8gEAgA9VVlZq2rRpOnr0aINPfbfoIFSX0aNHq1u3bnruuefqXF/XGaG4uDh98803Xn98PisrS+PHj+fRTB+j1/agz/agz/agz/bwZZ/LysoUERHRaBAy4tLYjw0fPlzvvPNOveuDg4MVHBxca9zpdPrkj8FX86I2em0P+mwP+mwP+mwPX/S5qfMF1FNj3pCfn6+YmBh/lwEAAM4CAXVGqLy8XAcOHHAvf/bZZ8rPz1enTp3UrVs3LVq0SF999ZWeffZZSdLq1avVs2dP9e/fXydOnNBTTz2lLVu2KDMz019vAQAAnEUCKgjt2rVLY8aMcS+npqZKklJSUpSenq7i4mIVFRW511dXV2vBggX66quvFBISokGDBumtt97ymAMAAJgroIJQYmKiGrq3Oz093WN54cKFWrhwoY+rOj1BQUHu3wP0fnUAAAKecfcInQ1++gVwjX0hHAAA8A2CkM3qCz2EIQAA7EcQAgAAxiIIAQAAYxGEbFbfjdHcMA0AgP0IQn7w09BDCAIAwD8IQn5SXV2tjIwMVVdX+7sUAACMFVCfIwScDj6zCQBQH84IoUXjM5sAAA0hCKHF4jObAACNIQgBAABjEYQAAICxCEJosfjMJgBAYwhCaNH4zCYAQEMIQmjx+MwmAEB9CEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMFZABaFt27Zp0qRJio2NlcPhUEZGRqP75Obm6qKLLlJwcLD69Omj9PR0n9cJAAACQ0AFoYqKCg0ePFhr1qxp0vafffaZrrzySo0ZM0b5+fmaN2+ebr75Zv3jH//wcaUAACAQtPF3Ac0xceJETZw4scnbr127Vj179tSqVaskSeeff77eeecdPfLII0pOTvZVmQAAIEAEVBBqrry8PI0bN85jLDk5WfPmzat3n6qqKlVVVbmXy8rKJEkul0sul8trtZ2ay5tzom702h702R702R702R6+7HNT52zRQaikpERRUVEeY1FRUSorK9Px48fVrl27WvukpaVp+fLltcYzMzMVEhLi9RqzsrK8PifqRq/tQZ/tQZ/tQZ/t4Ys+V1ZWNmm7Fh2ETseiRYuUmprqXi4rK1NcXJySkpIUFhbmtddxuVzKysrS+PHj5XQ6vTYvaqPX9qDP9qDP9qDP9vBln09d0WlMiw5C0dHRKi0t9RgrLS1VWFhYnWeDJCk4OFjBwcG1xp1Op0/+GHw1L2qj1/agz/agz/agz/bwRZ+bOl9APTXWXAkJCcrOzvYYy8rKUkJCgp8qAgAAZ5OACkLl5eXKz89Xfn6+pB8ej8/Pz1dRUZGkHy5rTZ8+3b39rbfeqk8//VQLFy7U/v379ac//UkvvfSS5s+f74/yAQDAWSaggtCuXbs0ZMgQDRkyRJKUmpqqIUOGaMmSJZKk4uJidyiSpJ49e+qNN95QVlaWBg8erFWrVumpp57i0XkAACApwO4RSkxMlGVZ9a6v61OjExMT9c9//tOHVQEAgEAVUGeEAAAAvIkgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAY7XxdwEAWoagoCD375Zl+bESAGg6zggBOGMOh6PBZQA4WxGEAJyR+kIPYQhAICAIAQAAYxGEAACAsQhCAM5IfTdGc8M0gEBAEAJwxn4aeghBAAIFQQiAV1RXVysjI0PV1dX+LgUAmowgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGCsgAtCa9asUY8ePdS2bVuNGDFCO3furHfb9PR0ORwOj5+2bdvaWC0AADibBVQQevHFF5WamqqlS5dqz549Gjx4sJKTk3Xo0KF69wkLC1NxcbH754svvrCxYgAAcDZr4+8CmuPhhx/WrFmzNGPGDEnS2rVr9cYbb2jdunW666676tzH4XAoOjq6ya9RVVWlqqoq93JZWZkkyeVyyeVynUH1nk7N5c05UTd6bQ/6bA/6bA/6bA9f9rmpczosy7K8/uo+UF1drZCQEL3yyiuaPHmyezwlJUVHjhzRa6+9Vmuf9PR03XzzzerSpYtqamp00UUX6Xe/+5369+9f7+ssW7ZMy5cvrzW+fv16hYSEeOW9AAAA36qsrNS0adN09OhRhYWF1btdwJwR+uabb3Ty5ElFRUV5jEdFRWn//v117tOvXz+tW7dOgwYN0tGjR/XQQw9p5MiR+uijj9S1a9c691m0aJFSU1Pdy2VlZYqLi1NSUlKDjWwul8ulrKwsjR8/Xk6n02vzojZ6bQ/6bA/6bA/6bA9f9vnUFZ3GBEwQOh0JCQlKSEhwL48cOVLnn3++nnjiCa1cubLOfYKDgxUcHFxr3Ol0+uSPwVfzojZ6bQ/6bA/6bA/6bA9f9Lmp8wXMzdIRERFq3bq1SktLPcZLS0ubfA+Q0+nUkCFDdODAAV+UCAAAAkzABKGgoCANHTpU2dnZ7rGamhplZ2d7nPVpyMmTJ/Wvf/1LMTExvioTAAAEkIC6NJaamqqUlBQNGzZMw4cP1+rVq1VRUeF+imz69Onq0qWL0tLSJEkrVqzQxRdfrD59+ujIkSN68MEH9cUXX+jmm2/259sAAABniYAKQtdff72+/vprLVmyRCUlJbrwwgu1efNm9w3URUVFatXq/09yHT58WLNmzVJJSYnOOeccDR06VNu3b9cFF1zgr7cAAADOIgEVhCRpzpw5mjNnTp3rcnNzPZYfeeQRPfLIIzZUBQAAAlHA3CMEAADgbQQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxTisIff/993rrrbf0xBNP6NixY5KkgwcPqry83KvFAQAA+FKb5u7wxRdfaMKECSoqKlJVVZXGjx+v0NBQ3X///aqqqtLatWt9UScAAIDXNfuM0Ny5czVs2DAdPnxY7dq1c49PmTJF2dnZXi0OAADAl5p9Rujtt9/W9u3bFRQU5DHeo0cPffXVV14rDAAAwNeafUaopqZGJ0+erDX+73//W6GhoV4pCgAAwA7NDkJJSUlavXq1e9nhcKi8vFxLly7VFVdc4c3aAAAAfKrZl8ZWrVql5ORkXXDBBTpx4oSmTZumTz75RBEREdqwYYMvagQAAPCJZgehrl276oMPPtALL7ygDz/8UOXl5Zo5c6ZuvPFGj5unAQAAznbNDkKS1KZNG/3yl7/0di0AAAC2anYQevbZZxtcP3369NMuBgAAwE7NDkJz5871WHa5XKqsrFRQUJBCQkIIQgAAIGA0+6mxw4cPe/yUl5eroKBAl156KTdLAwCAgOKVL13t27evfv/739c6WwQAAHA289q3z7dp00YHDx701nQAAAA+1+x7hDZt2uSxbFmWiouL9cc//lGXXHKJ1woDAADwtWYHocmTJ3ssOxwORUZG6vLLL9eqVau8VRcAAIDPNTsI1dTU+KIOAAAA23ntHiG7rFmzRj169FDbtm01YsQI7dy5s8HtX375ZcXHx6tt27YaOHCg3nzzTZsqBQDvCwoK0uTJkxUUFOTvUoAWoUlnhFJTU5s84cMPP3zaxTTmxRdfVGpqqtauXasRI0Zo9erVSk5OVkFBgTp37lxr++3bt2vq1KlKS0vTVVddpfXr12vy5Mnas2ePBgwY4LM6AcAXHA5HrWXLsvxUDdAyNCkI/fOf/2zSZD/9I/W2hx9+WLNmzdKMGTMkSWvXrtUbb7yhdevW6a677qq1/R/+8AdNmDBBd9xxhyRp5cqVysrK0h//+EetXbvWp7UCgDfV9+8rYQg4M00KQjk5Ob6uo1HV1dXavXu3Fi1a5B5r1aqVxo0bp7y8vDr3ycvLq3U2Kzk5WRkZGfW+TlVVlaqqqtzLZWVlkn74BG2Xy3UG78DTqbm8OSfqRq/tQZ/9h557H8ezPXzZ56bOeVpfuuoP33zzjU6ePKmoqCiP8aioKO3fv7/OfUpKSurcvqSkpN7XSUtL0/Lly2uNZ2ZmKiQk5DQqb1hWVpbX50Td6LU96LP9uPfRdzie7eGLPldWVjZpu9MKQrt27dJLL72koqIiVVdXe6x79dVXT2fKs8aiRYs8ziKVlZUpLi5OSUlJCgsL89rruFwuZWVlafz48XI6nV6bF7XRa3vQZ9+qrq6u8wbpn/4bDO/geLaHL/t86opOY5odhF544QVNnz5dycnJyszMVFJSkj7++GOVlpZqypQpzS60qSIiItS6dWuVlpZ6jJeWlio6OrrOfaKjo5u1vSQFBwcrODi41rjT6fTJH4Ov5kVt9Noe9Nl3LMvyuFeIe4N8j+PZHr7oc1Pna/bj87/73e/0yCOP6PXXX1dQUJD+8Ic/aP/+/bruuuvUrVu3ZhfaVEFBQRo6dKiys7PdYzU1NcrOzlZCQkKd+yQkJHhsL/1w+q2+7QHgbFddXa2MjAzOBAFe0uwgVFhYqCuvvFLSD+GkoqJCDodD8+fP15///GevF/hjqampevLJJ/XMM89o3759uu2221RRUeF+imz69OkeN1PPnTtXmzdv1qpVq7R//34tW7ZMu3bt0pw5c3xaJwAACAzNvjR2zjnn6NixY5KkLl26aO/evRo4cKCOHDnS5BuTTtf111+vr7/+WkuWLFFJSYkuvPBCbd682X1DdFFRkVq1+v9sN3LkSK1fv16LFy/W3Xffrb59+yojI4PPEAIAAJKaEYT27t2rAQMGaNSoUcrKytLAgQN17bXXau7cudqyZYuysrI0duxYX9YqSZozZ069Z3Ryc3NrjV177bW69tprfVwVAAAIRE0OQoMGDdLPfvYzTZ482R0sfvvb38rpdGr79u265pprtHjxYp8VCgAA4G1NDkJbt27V008/rbS0NN1333265pprdPPNN9f5ic4AAACBoMk3S1922WVat26diouL9dhjj+nzzz/X6NGjdd555+n+++9v8EMKAQAAzkbNfmqsffv2mjFjhrZu3aqPP/5Y1157rdasWaNu3brp5z//uS9qBAAA8IlmB6Ef69Onj+6++24tXrxYoaGheuONN7xVFwAAgM+d9neNbdu2TevWrdPf/vY3tWrVStddd51mzpzpzdoAAAB8qllB6ODBg0pPT1d6eroOHDigkSNH6tFHH9V1112n9u3b+6pGAAAAn2hyEJo4caLeeustRUREaPr06frVr36lfv36+bI2AAAAn2pyEHI6nXrllVd01VVXqXXr1r6sCQAAwBZNDkKbNm3yZR0AAAC2O6OnxgAAAAIZQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgrIAJQt99951uvPFGhYWFKTw8XDNnzlR5eXmD+yQmJsrhcHj83HrrrTZVDAAAznZt/F1AU914440qLi5WVlaWXC6XZsyYoVtuuUXr169vcL9Zs2ZpxYoV7uWQkBBflwoAAAJEQAShffv2afPmzXr//fc1bNgwSdJjjz2mK664Qg899JBiY2Pr3TckJETR0dF2lQoAAAJIQAShvLw8hYeHu0OQJI0bN06tWrXSjh07NGXKlHr3ff755/XXv/5V0dHRmjRpku65554GzwpVVVWpqqrKvVxWViZJcrlccrlcXng3cs/34/+F79Bre9Bne9Bne9Bne/iyz02dMyCCUElJiTp37uwx1qZNG3Xq1EklJSX17jdt2jR1795dsbGx+vDDD3XnnXeqoKBAr776ar37pKWlafny5bXGMzMzfXJZLSsry+tzom702h702R702R702R6+6HNlZWWTtvNrELrrrrt0//33N7jNvn37Tnv+W265xf37wIEDFRMTo7Fjx6qwsFC9e/euc59FixYpNTXVvVxWVqa4uDglJSUpLCzstGv5KZfLpaysLI0fP15Op9Nr86I2em0P+mwP+mwP+mwPX/b51BWdxvg1CC1YsEA33XRTg9v06tVL0dHROnTokMf4999/r++++65Z9/+MGDFCknTgwIF6g1BwcLCCg4NrjTudTp/8MfhqXtRGr+1Bn+1Bn+1Bn+3hiz43dT6/BqHIyEhFRkY2ul1CQoKOHDmi3bt3a+jQoZKkLVu2qKamxh1umiI/P1+SFBMTc1r1AgCAliUgPkfo/PPP14QJEzRr1izt3LlT7777rubMmaMbbrjB/cTYV199pfj4eO3cuVOSVFhYqJUrV2r37t36/PPPtWnTJk2fPl2jRo3SoEGD/Pl2AADAWSIggpD0w9Nf8fHxGjt2rK644gpdeuml+vOf/+xe73K5VFBQ4L45KigoSG+99ZaSkpIUHx+vBQsW6JprrtHrr7/ur7cAAADOMgHx1JgkderUqcEPT+zRo4csy3Ivx8XFaevWrXaUBgAAAlTAnBECAADwNoIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADBWwHzFBgAAdgkKCnL//uOvb0LLwxkhAAB+xOFwNLiMloUgBADA/6kv9BCGWi6CEAAAMBZBCAAAGIsgBADA/6nvxmhumG65CEIAAPzIT0MPIahlIwgBAPAT1dXVysjIUHV1tb9LgY8RhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYwVMELrvvvs0cuRIhYSEKDw8vEn7WJalJUuWKCYmRu3atdO4ceP0ySef+LZQAAAQMAImCFVXV+vaa6/Vbbfd1uR9HnjgAT366KNau3atduzYofbt2ys5OVknTpzwYaUAACBQtPF3AU21fPlySVJ6enqTtrcsS6tXr9bixYt19dVXS5KeffZZRUVFKSMjQzfccEOd+1VVVamqqsq9XFZWJklyuVxyuVxn8A48nZrLm3OibvTaHvTZHvTZHvTZHr7sc1PnDJgg1FyfffaZSkpKNG7cOPdYx44dNWLECOXl5dUbhNLS0tyh68cyMzMVEhLi9TqzsrK8PifqRq/tQZ/tQZ/tQZ/t4Ys+V1ZWNmm7FhuESkpKJElRUVEe41FRUe51dVm0aJFSU1Pdy2VlZYqLi1NSUpLCwsK8Vp/L5VJWVpbGjx8vp9PptXlRG722B322B322B322hy/7fOqKTmP8GoTuuusu3X///Q1us2/fPsXHx9tUkRQcHKzg4OBa406n0yd/DL6aF7XRa3vQZ3vQZ3vQZ3v4os9Nnc+vQWjBggW66aabGtymV69epzV3dHS0JKm0tFQxMTHu8dLSUl144YWnNScAAGhZ/BqEIiMjFRkZ6ZO5e/bsqejoaGVnZ7uDT1lZmXbs2NGsJ88AAEDLFTCPzxcVFSk/P19FRUU6efKk8vPzlZ+fr/Lycvc28fHx2rhxoyTJ4XBo3rx5uvfee7Vp0yb961//0vTp0xUbG6vJkyf76V0AAICzScDcLL1kyRI988wz7uUhQ4ZIknJycpSYmChJKigo0NGjR93bLFy4UBUVFbrlllt05MgRXXrppdq8ebPatm1ra+0AAODsFDBBKD09vdHPELIsy2PZ4XBoxYoVWrFihQ8rAwAAgSpgLo0BAAB4G0EIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYbfxdAAAAMFNQUJD7d8uy/FIDZ4QAAIDtHA5Hg8t2IQgBAABb1Rd6/BGGCEIAAMBYBCEAAGAsghAAALBVfTdG++OGaYIQAACw3U9DD0+NAQAAo1RXVysjI0PV1dV+q4EgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjtfF3AWe7U18CV1ZW5tV5XS6XKisrVVZWJqfT6dW54Yle24M+24M+24M+28OXfT713+3GvsyVINSIY8eOSZLi4uL8XAkAAGiuY8eOqWPHjvWud1j++t77AFFTU6ODBw8qNDRUDofDa/OWlZUpLi5OX375pcLCwrw2L2qj1/agz/agz/agz/bwZZ8ty9KxY8cUGxurVq3qvxOIM0KNaNWqlbp27eqz+cPCwvgjswm9tgd9tgd9tgd9toev+tzQmaBTuFkaAAAYiyAEAACMRRDyk+DgYC1dulTBwcH+LqXFo9f2oM/2oM/2oM/2OBv6zM3SAADAWJwRAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhP1mzZo169Oihtm3basSIEdq5c6e/S2pRli1bJofD4fETHx/v77JahG3btmnSpEmKjY2Vw+FQRkaGx3rLsrRkyRLFxMSoXbt2GjdunD755BP/FBvAGuvzTTfdVOsYnzBhgn+KDVBpaWn62c9+ptDQUHXu3FmTJ09WQUGBxzYnTpzQ7Nmzde6556pDhw665pprVFpa6qeKA1dTep2YmFjrmL711lt9XhtByA9efPFFpaamaunSpdqzZ48GDx6s5ORkHTp0yN+ltSj9+/dXcXGx++edd97xd0ktQkVFhQYPHqw1a9bUuf6BBx7Qo48+qrVr12rHjh1q3769kpOTdeLECZsrDWyN9VmSJkyY4HGMb9iwwcYKA9/WrVs1e/Zsvffee8rKypLL5VJSUpIqKirc28yfP1+vv/66Xn75ZW3dulUHDx7UL37xCz9WHZia0mtJmjVrlscx/cADD/i+OAu2Gz58uDV79mz38smTJ63Y2FgrLS3Nj1W1LEuXLrUGDx7s7zJaPEnWxo0b3cs1NTVWdHS09eCDD7rHjhw5YgUHB1sbNmzwQ4Utw0/7bFmWlZKSYl199dV+qaelOnTokCXJ2rp1q2VZPxy7TqfTevnll93b7Nu3z5Jk5eXl+avMFuGnvbYsyxo9erQ1d+5c22vhjJDNqqurtXv3bo0bN8491qpVK40bN055eXl+rKzl+eSTTxQbG6tevXrpxhtvVFFRkb9LavE+++wzlZSUeBzfHTt21IgRIzi+fSA3N1edO3dWv379dNttt+nbb7/1d0kB7ejRo5KkTp06SZJ2794tl8vlcTzHx8erW7duHM9n6Ke9PuX5559XRESEBgwYoEWLFqmystLntfClqzb75ptvdPLkSUVFRXmMR0VFaf/+/X6qquUZMWKE0tPT1a9fPxUXF2v58uW67LLLtHfvXoWGhvq7vBarpKREkuo8vk+tg3dMmDBBv/jFL9SzZ08VFhbq7rvv1sSJE5WXl6fWrVv7u7yAU1NTo3nz5umSSy7RgAEDJP1wPAcFBSk8PNxjW47nM1NXryVp2rRp6t69u2JjY/Xhhx/qzjvvVEFBgV599VWf1kMQQos0ceJE9++DBg3SiBEj1L17d7300kuaOXOmHysDvOOGG25w/z5w4EANGjRIvXv3Vm5ursaOHevHygLT7NmztXfvXu4ltEF9vb7lllvcvw8cOFAxMTEaO3asCgsL1bt3b5/Vw6Uxm0VERKh169a1njooLS1VdHS0n6pq+cLDw3XeeefpwIED/i6lRTt1DHN8269Xr16KiIjgGD8Nc+bM0d///nfl5OSoa9eu7vHo6GhVV1fryJEjHttzPJ+++npdlxEjRkiSz49pgpDNgoKCNHToUGVnZ7vHampqlJ2drYSEBD9W1rKVl5ersLBQMTEx/i6lRevZs6eio6M9ju+ysjLt2LGD49vH/v3vf+vbb7/lGG8Gy7I0Z84cbdy4UVu2bFHPnj091g8dOlROp9PjeC4oKFBRURHHczM11uu65OfnS5LPj2kujflBamqqUlJSNGzYMA0fPlyrV69WRUWFZsyY4e/SWozbb79dkyZNUvfu3XXw4EEtXbpUrVu31tSpU/1dWsArLy/3+H9on332mfLz89WpUyd169ZN8+bN07333qu+ffuqZ8+euueeexQbG6vJkyf7r+gA1FCfO3XqpOXLl+uaa65RdHS0CgsLtXDhQvXp00fJycl+rDqwzJ49W+vXr9drr72m0NBQ930/HTt2VLt27dSxY0fNnDlTqamp6tSpk8LCwvTf//3fSkhI0MUXX+zn6gNLY70uLCzU+vXrdcUVV+jcc8/Vhx9+qPnz52vUqFEaNGiQb4uz/Tk1WJZlWY899pjVrVs3KygoyBo+fLj13nvv+bukFuX666+3YmJirKCgIKtLly7W9ddfbx04cMDfZbUIOTk5lqRaPykpKZZl/fAI/T333GNFRUVZwcHB1tixY62CggL/Fh2AGupzZWWllZSUZEVGRlpOp9Pq3r27NWvWLKukpMTfZQeUuvoryXr66afd2xw/ftz69a9/bZ1zzjlWSEiINWXKFKu4uNh/RQeoxnpdVFRkjRo1yurUqZMVHBxs9enTx7rjjjuso0eP+rw2x/8VCAAAYBzuEQIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAnBGcnNz5XA4an0xZXPddNNNAf01HImJiZo3b16j240aNUrr16/3fUE/csMNN2jVqlW2viYQKAhCACRJa9euVWhoqL7//nv3WHl5uZxOpxITEz22PRV+CgsLNXLkSBUXF6tjx44+r/HJJ5/U4MGD1aFDB4WHh2vIkCFKS0vz+et6y6ZNm1RaWqobbrjBK/M988wzuvTSSxvdbvHixbrvvvt09OhRr7wu0JIQhABIksaMGaPy8nLt2rXLPfb2228rOjpaO3bs0IkTJ9zjOTk56tatm3r37q2goCBFR0fL4XD4tL5169Zp3rx5+s1vfqP8/Hy9++67WrhwocrLy336ut706KOPasaMGWrVyjv/9L722mv6+c9/3uh2AwYMUO/evfXXv/7VK68LtCQEIQCSpH79+ikmJka5ubnusdzcXF199dXq2bOn3nvvPY/xMWPGuH//8aWx9PR0hYeH6x//+IfOP/98dejQQRMmTFBxcbF7/5MnTyo1NVXh4eE699xztXDhQjX2tYebNm3Sddddp5kzZ6pPnz7q37+/pk6dqvvuu8+9zanLa8uXL1dkZKTCwsJ06623qrq62r1NTU2N0tLS1LNnT7Vr106DBw/WK6+84vFae/fu1cSJE9WhQwdFRUXpP//zP/XNN9+411dUVGj69Onq0KGDYmJimnTZ6euvv9aWLVs0adIkj3GHw6EnnnhCV111lUJCQnT++ecrLy9PBw4cUGJiotq3b6+RI0eqsLDQY78TJ04oMzPTHYT+9Kc/qW/fvmrbtq2ioqL0H//xHx7bT5o0SS+88EKjdQKmIQgBcBszZoxycnLcyzk5OUpMTNTo0aPd48ePH9eOHTvcQagulZWVeuihh/Tcc89p27ZtKioq0u233+5ev2rVKqWnp2vdunV655139N1332njxo0N1hYdHa333ntPX3zxRYPbZWdna9++fcrNzdWGDRv06quvavny5e71aWlpevbZZ7V27Vp99NFHmj9/vn75y19q69atkqQjR47o8ssv15AhQ7Rr1y5t3rxZpaWluu6669xz3HHHHdq6datee+01ZWZmKjc3V3v27GmwrnfeeccddH5q5cqVmj59uvLz8xUfH69p06bpv/7rv7Ro0SLt2rVLlmVpzpw5td5nly5dFB8fr127duk3v/mNVqxYoYKCAm3evFmjRo3y2H748OHauXOnqqqqGqwTMI7Pv98eQMB48sknrfbt21sul8sqKyuz2rRpYx06dMhav369NWrUKMuyLCs7O9uSZH3xxReWZVlWTk6OJck6fPiwZVmW9fTTT1uSrAMHDrjnXbNmjRUVFeVejomJsR544AH3ssvlsrp27WpdffXV9dZ28OBB6+KLL7YkWeedd56VkpJivfjii9bJkyfd26SkpFidOnWyKioq3GOPP/641aFDB+vkyZPWiRMnrJCQEGv79u0ec8+cOdOaOnWqZVmWtXLlSispKclj/ZdffmlJsgoKCqxjx45ZQUFB1ksvveRe/+2331rt2rWz5s6dW2/9jzzyiNWrV69a45KsxYsXu5fz8vIsSdZf/vIX99iGDRustm3beuw3a9Ys6/bbb7csy7L+9re/WWFhYVZZWVm9r//BBx9YkqzPP/+83m0AE7XxXwQDcLZJTExURUWF3n//fR0+fFjnnXeeIiMjNXr0aM2YMUMnTpxQbm6uevXqpW7dutU7T0hIiHr37u1ejomJ0aFDhyRJR48eVXFxsUaMGOFe36ZNGw0bNqzBy2MxMTHKy8vT3r17tW3bNm3fvl0pKSl66qmntHnzZvd9N4MHD1ZISIh7v4SEBJWXl+vLL79UeXm5KisrNX78eI+5q6urNWTIEEnSBx98oJycHHXo0KFWDYWFhTp+/Liqq6s96u/UqZP69etXb+3SD2fS2rZtW+e6QYMGuX+PioqSJA0cONBj7MSJEyorK1NYWJgsy9Lrr7+ul156SZI0fvx4de/eXb169dKECRM0YcIETZkyxaMP7dq1k/TD2ToA/48gBMCtT58+6tq1q3JycnT48GGNHj1akhQbG6u4uDht375dOTk5uvzyyxucx+l0eiw7HI5G7wFqqgEDBmjAgAH69a9/rVtvvVWXXXaZtm7d2uClulNO3Vj9xhtvqEuXLh7rgoOD3dtMmjRJ999/f639Y2JidODAgdOqOyIiQocPH65z3Y/7deqm87rGampqJEk7d+7U999/r5EjR0qSQkNDtWfPHuXm5iozM1NLlizRsmXL9P777ys8PFyS9N1330mSIiMjT6t+oKXiHiEAHsaMGaPc3Fzl5uZ6PDY/atQo/c///I927tzZpNBRn44dOyomJkY7duxwj33//ffavXt3s+e64IILJP1w8/IpH3zwgY4fP+5efu+999ShQwfFxcXpggsuUHBwsIqKitSnTx+Pn7i4OEnSRRddpI8++kg9evSotU379u3Vu3dvOZ1Oj/oPHz6sjz/+uMFahwwZopKSknrDUHO89tpruvLKK9W6dWv3WJs2bTRu3Dg98MAD+vDDD/X5559ry5Yt7vV79+5V165dFRERccavD7QknBEC4GHMmDGaPXu2XC6X+4yQJI0ePVpz5sxRdXX1GQUhSZo7d65+//vfq2/fvoqPj9fDDz/c6Acy3nbbbYqNjdXll1+url27qri4WPfee68iIyOVkJDg3q66ulozZ87U4sWL9fnnn2vp0qWaM2eOWrVqpdDQUN1+++2aP3++ampqdOmll+ro0aN69913FRYWppSUFM2ePVtPPvmkpk6dqoULF6pTp046cOCAXnjhBT311FPq0KGDZs6cqTvuuEPnnnuuOnfurN/+9reNPhI/ZMgQRURE6N1339VVV111Rv3btGmTVqxY4V7++9//rk8//VSjRo3SOeecozfffFM1NTUel+vefvttJSUlndHrAi0RQQiAhzFjxuj48eOKj493368i/RCEjh075n7M/kwsWLBAxcXFSklJUatWrfSrX/1KU6ZMafAD/8aNG6d169bp8ccf17fffquIiAglJCQoOztb5557rnu7sWPHqm/fvho1apSqqqo0depULVu2zL1+5cqVioyMVFpamj799FOFh4froosu0t133y3ph8uA7777ru68804lJSWpqqpK3bt314QJE9xh58EHH3RfQgsNDdWCBQsa/bDC1q1ba8aMGXr++efPKAgVFhbqwIEDSk5Odo+Fh4fr1Vdf1bJly3TixAn17dtXGzZsUP/+/SX98Kh9RkaGNm/efNqvC7RUDstbF+4BwM9uuukmHTlyRBkZGf4upU4lJSXq37+/9uzZo+7du5/WHA8//LDeeustvfnmm03e5/HHH9fGjRuVmZl5Wq8JtGTcIwQANomOjtZf/vIXFRUVnfYcXbt21aJFi5q1j9Pp1GOPPXbarwm0ZJwRAtBinO1nhACcfQhCAADAWFwaAwAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACM9b9ce9fOz1shqAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "wind_directions=np.arange(0, 360, 10)\n", + "wind_speeds=np.arange(0.0, 30.0, 5.0)\n", + "freq_table=np.random.rand(36, 6)\n", + "freq_table = freq_table / freq_table.sum()\n", + "\n", + "wind_rose = WindRose(\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " ti_table=0.06,\n", + " freq_table=freq_table\n", + ")\n", + "\n", + "# Set value\n", + "wind_rose.assign_value_piecewise_linear()\n", + "\n", + "wind_rose.plot_wind_rose()\n", + "\n", + "wind_rose.plot_ti_over_ws()\n", + "\n", + "wind_rose.plot_value_over_ws()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting FLORIS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "WindData objects are used to set wind direction, speed, TI, frequency, and value in a FlorisModel (or UncertainFlorisModel)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TimeSeries" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# TimeSeries\n", + "\n", + "from floris import FlorisModel\n", + "\n", + "# Create a FlorisModel object\n", + "fmodel = FlorisModel(\"../examples/inputs/gch.yaml\")\n", + "\n", + "# Set a two-turbine layout\n", + "fmodel.set(layout_x=[0, 500], layout_y=[0, 0])\n", + "\n", + "# Make a set of inputs with 5 wind directions, while wind speed and TI are constant\n", + "wind_directions = np.array([270, 280, 290, 300, 310])\n", + "wind_speeds = 8.0 * np.ones(5)\n", + "turbulence_intensities = 0.06 * np.ones(5)\n", + "\n", + "fmodel.set(\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " turbulence_intensities=turbulence_intensities\n", + ")\n", + "\n", + "# Is equivalent to the following (but now we'll include value as well):\n", + "time_series = TimeSeries(wind_directions=wind_directions, wind_speeds=8.0, turbulence_intensities=0.06)\n", + "\n", + "# Scale some of the default parameters to get reasonable values representing USD/MWh\n", + "time_series.assign_value_piecewise_linear(value_zero_ws=25*1.425, slope_2=-25*0.135)\n", + "\n", + "fmodel.set(wind_data = time_series)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[34mfloris.floris_model.FlorisModel\u001b[0m \u001b[1;30mWARNING\u001b[0m \u001b[33mComputing AEP with uniform frequencies. Results results may not reflect annual operation.\u001b[0m\n", + "\u001b[34mfloris.floris_model.FlorisModel\u001b[0m \u001b[1;30mWARNING\u001b[0m \u001b[33mComputing AVP with uniform frequencies. Results results may not reflect annual operation.\u001b[0m\n", + "\u001b[34mfloris.floris_model.FlorisModel\u001b[0m \u001b[1;30mWARNING\u001b[0m \u001b[33mComputing AVP with uniform value equal to 1. Results will be equivalent to annual energy production.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Turbine power have shape (5, 2) and are [[1753954.45917917 354990.76412771]\n", + " [1753954.45917917 1320346.28513924]\n", + " [1753954.45917917 1748551.48278202]\n", + " [1753954.45917917 1753951.95262087]\n", + " [1753954.45917917 1753954.45908051]]\n", + "Farm power has shape (5,) and is [2108945.22330688 3074300.74431841 3502505.94196119 3507906.41180004\n", + " 3507908.91825968]\n", + "Expected farm power has shape () and is 3140313.447929242\n", + "Farm AEP is 27.50914580386016 GWh\n", + "Expected farm value has shape () and is 74778713.97881508\n", + "Farm annual value production (AVP) is 655061.5344544201 USD\n" + ] + } + ], + "source": [ + "# Run the model and get outputs\n", + "fmodel.run()\n", + "\n", + "# Get the power outputs\n", + "turbine_powers = fmodel.get_turbine_powers()\n", + "farm_power = fmodel.get_farm_power()\n", + "expected_farm_power = fmodel.get_expected_farm_power()\n", + "aep = fmodel.get_farm_AEP()\n", + "\n", + "# Get value outputs\n", + "expected_farm_value = fmodel.get_expected_farm_value()\n", + "avp = fmodel.get_farm_AVP()\n", + "\n", + "# Display\n", + "print(f\"Turbine power have shape {turbine_powers.shape} and are {turbine_powers}\")\n", + "print(f\"Farm power has shape {farm_power.shape} and is {farm_power}\")\n", + "print(f\"Expected farm power has shape {expected_farm_power.shape} and is {expected_farm_power}\")\n", + "print(f\"Farm AEP is {aep/1e9} GWh\")\n", + "print(f\"Expected farm value has shape {expected_farm_power.shape} and is {expected_farm_value}\")\n", + "print(f\"Farm annual value production (AVP) is {avp/1e6} USD\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### WindRose" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "WindRose objects set FLORIS as TimeSeries, but there are some additional considerations.\n", + "\n", + " - By default, wind direction/speed combinations with 0 frequency are not run\n", + " - The outputs of the functions get_turbine_powers and get_farm_power will be reshaped to have dimensions num_wind_directions x num_wind_speeds ( x num_turbines)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fmodel has n_findex 4 because two cases have 0 frequency\n" + ] + } + ], + "source": [ + "wind_directions = np.array([270, 280]) # 2 Wind Directions\n", + "wind_speeds = np.array([6.0, 7.0, 8.0]) # 3 Wind Speeds\n", + "\n", + "# Frequency matrix is 2 x 3, include some 0 frequency results\n", + "freq_table = np.array([\n", + " [0, 0, 1/2],\n", + " [1/6, 1/6, 1/6]\n", + "])\n", + "\n", + "# Create a WindRose object, not indicating a frequency table indicates uniform frequency\n", + "wind_rose = WindRose(\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " ti_table=0.06,\n", + " freq_table=freq_table\n", + ")\n", + "\n", + "# Set value and scale some of the default parameters to get reasonable values representing USD/MWh\n", + "wind_rose.assign_value_piecewise_linear(value_zero_ws=25*1.425, slope_2=-25*0.135)\n", + "\n", + "fmodel.set(wind_data=wind_rose)\n", + "\n", + "print(f\"Fmodel has n_findex {fmodel.core.flow_field.n_findex} because two cases have 0 frequency\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Turbine power have shape (2, 3, 2) and are [[[ nan nan]\n", + " [ nan nan]\n", + " [1753954.45917917 354990.76412771]]\n", + "\n", + " [[ 731003.41073165 523849.55426108]\n", + " [1176825.66812027 876937.12082426]\n", + " [1753954.45917917 1320346.28513924]]]\n", + "Farm power has shape (2, 3) and is [[ nan nan 2108945.22330688]\n", + " [1254852.96499273 2053762.78894454 3074300.74431841]]\n", + "Expected farm power has shape () and is 2118292.0280293887\n", + "Farm AEP is 18.556238165537444 GWh\n", + "Expected farm value has shape () and is 53008780.071847945\n", + "Farm annual value production (AVP) is 464356.913429388 USD\n" + ] + } + ], + "source": [ + "# Run the model and collect the outputs\n", + "fmodel.run()\n", + "\n", + "# Get the power outputs\n", + "turbine_powers = fmodel.get_turbine_powers()\n", + "farm_power = fmodel.get_farm_power()\n", + "expected_farm_power = fmodel.get_expected_farm_power()\n", + "aep = fmodel.get_farm_AEP()\n", + "\n", + "# Get value outputs\n", + "expected_farm_value = fmodel.get_expected_farm_value()\n", + "avp = fmodel.get_farm_AVP()\n", + "\n", + "# Note that the nan values in the non-computed cases are expected since these are not run\n", + "\n", + "# Display\n", + "print(f\"Turbine power have shape {turbine_powers.shape} and are {turbine_powers}\")\n", + "print(f\"Farm power has shape {farm_power.shape} and is {farm_power}\")\n", + "print(f\"Expected farm power has shape {expected_farm_power.shape} and is {expected_farm_power}\")\n", + "print(f\"Farm AEP is {aep/1e9} GWh\")\n", + "print(f\"Expected farm value has shape {expected_farm_power.shape} and is {expected_farm_value}\")\n", + "print(f\"Farm annual value production (AVP) is {avp/1e6} USD\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fmodel has n_findex 6\n", + "Turbine powers and farm power are now computed for all cases\n", + "Turbine power have shape (2, 3, 2) and are [[[ 731003.41073165 80999.08780495]\n", + " [1176825.66812027 191637.98384374]\n", + " [1753954.45917917 354990.76412771]]\n", + "\n", + " [[ 731003.41073165 523849.55426108]\n", + " [1176825.66812027 876937.12082426]\n", + " [1753954.45917917 1320346.28513924]]]\n", + "Farm power has shape (2, 3) and is [[ 812002.4985366 1368463.65196401 2108945.22330688]\n", + " [1254852.96499273 2053762.78894454 3074300.74431841]]\n", + "Expected farm power and value, AEP, and AVP are the same as before since the new cases are weighted by 0\n", + "Expected farm power has shape () and is 2118292.0280293887\n", + "Farm AEP is 18.556238165537444 GWh\n", + "Expected farm value has shape () and is 53008780.071847945\n", + "Farm annual value production (AVP) is 464356.913429388 USD\n" + ] + } + ], + "source": [ + "# It's possible however to force the running of 0 frequency cases\n", + "wind_rose = WindRose(\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " ti_table=0.06,\n", + " freq_table=freq_table,\n", + " compute_zero_freq_occurrence=True\n", + ")\n", + "\n", + "# Set value and scale some of the default parameters to get reasonable values representing USD/MWh\n", + "wind_rose.assign_value_piecewise_linear(value_zero_ws=25*1.425, slope_2=-25*0.135)\n", + "\n", + "fmodel.set(wind_data=wind_rose)\n", + "\n", + "print(f\"Fmodel has n_findex {fmodel.core.flow_field.n_findex}\")\n", + "\n", + "# Run the model and collect the outputs\n", + "fmodel.run()\n", + "\n", + "# Get the power outputs\n", + "turbine_powers = fmodel.get_turbine_powers()\n", + "farm_power = fmodel.get_farm_power()\n", + "expected_farm_power = fmodel.get_expected_farm_power()\n", + "aep = fmodel.get_farm_AEP()\n", + "\n", + "# Get value outputs\n", + "expected_farm_value = fmodel.get_expected_farm_value()\n", + "avp = fmodel.get_farm_AVP()\n", + "\n", + "# Display\n", + "print(\"Turbine powers and farm power are now computed for all cases\")\n", + "print(f\"Turbine power have shape {turbine_powers.shape} and are {turbine_powers}\")\n", + "print(f\"Farm power has shape {farm_power.shape} and is {farm_power}\")\n", + "\n", + "print(\"Expected farm power and value, AEP, and AVP are the same as before since the new cases are weighted by 0\")\n", + "print(f\"Expected farm power has shape {expected_farm_power.shape} and is {expected_farm_power}\")\n", + "print(f\"Farm AEP is {aep/1e9} GWh\")\n", + "print(f\"Expected farm value has shape {expected_farm_power.shape} and is {expected_farm_value}\")\n", + "print(f\"Farm annual value production (AVP) is {avp/1e6} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "floris", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/_convert_examples_to_notebooks.py b/examples/_convert_examples_to_notebooks.py new file mode 100644 index 000000000..f09267d74 --- /dev/null +++ b/examples/_convert_examples_to_notebooks.py @@ -0,0 +1,127 @@ +""" +Utility script to convert all Python scripts in the current directory to + Jupyter notebooks. + +""" + +import os + +import nbformat as nbf + + +def script_to_notebook(script_path, notebook_path): + # Read Python script + with open(script_path, "r") as f: + python_code = f.read() + + # Clear out leading whitespace + python_code = python_code.strip() + + # Append to the bottom of the code suppression of warnings + python_code += """ +import warnings +warnings.filterwarnings('ignore') +""" + + # Create a new Jupyter notebook + nb = nbf.v4.new_notebook() + + # The first line of code it the title, copy it, remove and + # leading quotes or comments and make it a markdown cell with one hash + title = python_code.split("\n")[0].strip().strip("#").strip().strip('"').strip().strip("'") + nb["cells"].append(nbf.v4.new_markdown_cell(f"# {title}")) + + # Every code block starts with a comment block surrounded by """ and ends with """ + # Find that block and place it in markdown cell + code_comments = python_code.split('"""')[1] + + # Remove the top line + code_comments = code_comments.split("\n")[1:] + + # Add the code comments + nb["cells"].append(nbf.v4.new_markdown_cell(code_comments)) + + # Add Python code to the notebook + + # Remove the top commented block ("""...""") but keep everything after it + python_code = python_code.split('"""')[2] + + # Strip any leading white space + python_code = python_code.strip() + + nb["cells"].append(nbf.v4.new_code_cell(python_code)) + + # Write the notebook to a file + with open(notebook_path, "w") as f: + nbf.write(nb, f) + + +# Traverse the current directory and subdirectories to find +# all python scripts that start with a number +# and end with .py and make a list of all such scripts including relative path +scripts = sorted( + [ + os.path.join(dp, f) + for dp, dn, filenames in os.walk(".") + for f in filenames + if f.endswith(".py") and f[0].isdigit() + ] +) + + +# For each Python script, convert it to a Jupyter notebook +notebook_directories = [] +notebook_filenames = [] +for script_path in scripts: + print(f"Converting {script_path} to Notebook...") + + notebook_path = script_path.replace(".py", ".ipynb") + notebook_directories.append(os.path.dirname(notebook_path)) + notebook_filenames.append(os.path.basename(notebook_path)) + + script_to_notebook(script_path, notebook_path) + + +# Make a dictionary of all the notebooks, whose keys are +# unique entries in the notebook_directories list +# and values are lists of notebook filenames in that directory +notebooks = {k: [] for k in notebook_directories} +for i, directory in enumerate(notebook_directories): + notebooks[directory].append(notebook_filenames[i]) + +print(notebooks) + +# Now read in the _toc.yaml file one level up and add each of the note books to a new chapter +# called examples and re-write the _toc.yaml file +toc_path = "../_toc.yml" + +# Load the toc file as a file +with open(toc_path, "r") as f: + toc = f.read() + +# Append a blank line and then " - caption: Developer Reference" to the toc +toc += "\n - caption: Examples\n chapters:\n" + +# For each entry in the '.' directory, add it to the toc as a file +for nb in notebooks["."]: + toc += f" - file: examples/{nb}\n" + +# For the remaining keys in the notebooks dictionary, first add a section for the directory +# and then add the notebooks in that directory as a file +for directory in notebooks: + if directory == ".": + continue + dir_without_dot_slash = directory[2:] + dir_without_examples_ = dir_without_dot_slash.replace("examples_", "") + dir_without_examples_ = dir_without_examples_.replace("_", " ").capitalize() + toc += f"\n - caption: Examples - {dir_without_examples_}\n chapters:\n" + for nb in notebooks[directory]: + toc += f" - file: examples/{dir_without_dot_slash}/{nb}\n" + +# Print the toc +print("\n\nTOC: FILE:\n") +print(toc) + +# Save the toc +with open(toc_path, "w") as f: + f.write(toc) diff --git a/examples/examples_layout_optimization/001_optimize_layout.py b/examples/examples_layout_optimization/001_optimize_layout.py index 809c346d7..e7cf43c67 100644 --- a/examples/examples_layout_optimization/001_optimize_layout.py +++ b/examples/examples_layout_optimization/001_optimize_layout.py @@ -43,7 +43,6 @@ } # Initialize the FLORIS interface fi -file_dir = os.path.dirname(os.path.abspath(__file__)) fmodel = FlorisModel('../inputs/gch.yaml') # Setup 72 wind directions with a 1 wind speed and frequency distribution diff --git a/examples/examples_layout_optimization/002_optimize_layout_with_heterogeneity.py b/examples/examples_layout_optimization/002_optimize_layout_with_heterogeneity.py index e0879b38c..a8cc4044b 100644 --- a/examples/examples_layout_optimization/002_optimize_layout_with_heterogeneity.py +++ b/examples/examples_layout_optimization/002_optimize_layout_with_heterogeneity.py @@ -22,7 +22,6 @@ # Initialize FLORIS -file_dir = os.path.dirname(os.path.abspath(__file__)) fmodel = FlorisModel("../inputs/gch.yaml") # Setup 2 wind directions (due east and due west) diff --git a/examples/examples_uncertain/002_yaw_inertial_frame.py b/examples/examples_uncertain/002_yaw_inertial_frame.py deleted file mode 100644 index 613c0348d..000000000 --- a/examples/examples_uncertain/002_yaw_inertial_frame.py +++ /dev/null @@ -1 +0,0 @@ -#TODO add example here diff --git a/examples/inputs/gch.yaml b/examples/inputs/gch.yaml index ced8eb38f..5c0ea8eb2 100644 --- a/examples/inputs/gch.yaml +++ b/examples/inputs/gch.yaml @@ -111,7 +111,7 @@ flow_field: reference_wind_height: -1 ### - # The level of turbulence intensity level in the wind. + # The turbulence intensities to include in the simulation, specified as a decimal. turbulence_intensities: - 0.06 diff --git a/floris/turbine_library/nrel_5MW.yaml b/floris/turbine_library/nrel_5MW.yaml index 951441a61..228abd219 100644 --- a/floris/turbine_library/nrel_5MW.yaml +++ b/floris/turbine_library/nrel_5MW.yaml @@ -27,18 +27,22 @@ TSR: 8.0 operation_model: 'cosine-loss' ### -# Cp and Ct as a function of wind speed for the turbine's full range of operating conditions. +# Parameters needed to evaluate the power and thrust produced by the turbine. power_thrust_table: ### Power thrust table parameters - # The air density at which the Cp and Ct curves are defined. + # The air density at which the power and thrust_coefficient curves are defined. ref_air_density: 1.225 + ### # The tilt angle at which the Cp and Ct curves are defined. This is used to capture # the effects of a floating platform on a turbine's power and wake. ref_tilt: 5.0 + ### # Cosine exponent for power loss due to tilt. cosine_loss_exponent_tilt: 1.88 + ### # Cosine exponent for power loss due to yaw misalignment. cosine_loss_exponent_yaw: 1.88 + ### # Helix parameters helix_a: 1.802 helix_power_b: 4.568e-03 @@ -46,6 +50,7 @@ power_thrust_table: helix_thrust_b: 1.027e-03 helix_thrust_c: 1.378e-06 ### Power thrust table data + # wind speeds for look-up tables of power and thrust_coefficient wind_speed: - 0.0 - 2.9 @@ -101,6 +106,8 @@ power_thrust_table: - 25.0 - 25.1 - 50.0 + ### + # power values (specified in kW) for lookup by wind speed power: - 0.0 - 0.0 @@ -156,6 +163,8 @@ power_thrust_table: - 5000.00 - 0.0 - 0.0 + ### + # thrust coefficient values (unitless) for lookup by wind speed thrust_coefficient: - 0.0 - 0.0 diff --git a/floris/turbine_library/turbine_previewer.py b/floris/turbine_library/turbine_previewer.py index 9050bc5f5..17d33d1d0 100644 --- a/floris/turbine_library/turbine_previewer.py +++ b/floris/turbine_library/turbine_previewer.py @@ -109,6 +109,8 @@ def power_curve( yaw_angles=np.zeros(shape), tilt_angles=np.full(shape, v["ref_tilt"]), power_setpoints=np.full(shape, POWER_SETPOINT_DEFAULT), + awc_modes=np.full(shape, ["baseline"]), + awc_amplitudes=np.zeros(shape), tilt_interps={self.turbine.turbine_type: self.turbine.tilt_interp}, turbine_type_map=np.full(shape, self.turbine.turbine_type), turbine_power_thrust_tables={self.turbine.turbine_type: v}, @@ -123,6 +125,8 @@ def power_curve( yaw_angles=np.zeros(shape), tilt_angles=np.full(shape, self.turbine.power_thrust_table["ref_tilt"]), power_setpoints=np.full(shape, POWER_SETPOINT_DEFAULT), + awc_modes=np.full(shape, ["baseline"]), + awc_amplitudes=np.zeros(shape), tilt_interps={self.turbine.turbine_type: self.turbine.tilt_interp}, turbine_type_map=np.full(shape, self.turbine.turbine_type), turbine_power_thrust_tables={ @@ -155,6 +159,8 @@ def thrust_coefficient_curve( yaw_angles=np.zeros(shape), tilt_angles=np.full(shape, v["ref_tilt"]), power_setpoints=np.full(shape, POWER_SETPOINT_DEFAULT), + awc_modes=np.full(shape, ["baseline"]), + awc_amplitudes=np.zeros(shape), thrust_coefficient_functions={ self.turbine.turbine_type: self.turbine.thrust_coefficient_function }, @@ -172,6 +178,8 @@ def thrust_coefficient_curve( yaw_angles=np.zeros(shape), tilt_angles=np.full(shape, self.turbine.power_thrust_table["ref_tilt"]), power_setpoints=np.full(shape, POWER_SETPOINT_DEFAULT), + awc_modes=np.full(shape, ["baseline"]), + awc_amplitudes=np.zeros(shape), thrust_coefficient_functions={ self.turbine.turbine_type: self.turbine.thrust_coefficient_function }, diff --git a/floris/version.py b/floris/version.py index 5a958026d..5186d0706 100644 --- a/floris/version.py +++ b/floris/version.py @@ -1 +1 @@ -3.5 +4.0 From 10c57ad6a6e2deff2181975730dbe9f76635c39b Mon Sep 17 00:00:00 2001 From: misi9170 Date: Mon, 8 Apr 2024 08:55:06 -0600 Subject: [PATCH 71/78] Update README and links for converting from v3 to v4. --- README.md | 60 ++++++++++++++++++++++++------------------ floris/core/farm.py | 2 +- floris/floris_model.py | 4 +-- floris/version.py | 2 +- 4 files changed, 38 insertions(+), 30 deletions(-) diff --git a/README.md b/README.md index a81c3b2a4..053d2d43b 100644 --- a/README.md +++ b/README.md @@ -13,8 +13,7 @@ the conversation in [GitHub Discussions](https://github.com/NREL/floris/discussi ## Installation -**If upgrading from v2, it is highly recommended to install FLORIS V3 into a new virtual environment**. -Installing into a Python environment that contains FLORIS v2 may cause conflicts. +**If upgrading from a previous version, it is recommended to install FLORIS v4 into a new virtual environment**. If you intend to use [pyOptSparse](https://mdolab-pyoptsparse.readthedocs-hosted.com/en/latest/) with FLORIS, it is recommended to install that package first before installing FLORIS. @@ -53,28 +52,37 @@ With both methods, the installation can be verified by opening a Python interpre and importing FLORIS: ```python - >>> import floris - >>> help(floris) - - Help on package floris: - - NAME - floris - # Copyright 2021 NREL - - PACKAGE CONTENTS - logging_manager - simulation (package) - tools (package) - turbine_library (package) - type_dec - utilities - version - - VERSION - 3.5 - - FILE - ~/floris/floris/__init__.py +>>> import floris +>>> help(floris) + +Help on package floris: + +NAME + floris - # Copyright 2024 NREL + +PACKAGE CONTENTS + convert_floris_input_v3_to_v4 + convert_turbine_v3_to_v4 + core (package) + cut_plane + floris_model + flow_visualization + layout_visualization + logging_manager + optimization (package) + parallel_floris_model + turbine_library (package) + type_dec + uncertain_floris_model + utilities + version + wind_data + +VERSION + 4.0 + +FILE + ~/floris/floris/__init__.py ``` It is important to regularly check for new updates and releases as new @@ -98,8 +106,8 @@ from floris import FlorisModel fmodel = FlorisModel("path/to/input.yaml") fmodel.set( wind_directions=[i for i in range(10)], - wind_speeds=[i for i in range(10)], - turbulence_intensities=[0.1 for i in range(10)], + wind_speeds=[8.0]*10, + turbulence_intensities=[0.06]*10 ) fmodel.run() ``` diff --git a/floris/core/farm.py b/floris/core/farm.py index d1d2ea0ed..6ab28d2a0 100644 --- a/floris/core/farm.py +++ b/floris/core/farm.py @@ -478,7 +478,7 @@ def check_turbine_definition_for_v3_keys(turbine_definition: dict): v3_deprecation_msg = ( "Consider using the convert_turbine_v3_to_v4.py utility in floris/tools " + "to convert from a FLORIS v3 turbine definition to FLORIS v4. " - + "See https://nrel.github.io/floris/upgrade_guides/v3_to_v4.html for more information." + + "See https://nrel.github.io/floris/v3_to_v4.html for more information." ) if "generator_efficiency" in turbine_definition: raise ValueError( diff --git a/floris/floris_model.py b/floris/floris_model.py index 65d1e1d4b..5e618c71a 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -1708,11 +1708,11 @@ def wind_data(self): def calculate_wake(self, **_): raise NotImplementedError( "The calculate_wake method has been removed. Please use the run method. " - "See https://nrel.github.io/floris/upgrade_guides/v3_to_v4.html for more information." + "See https://nrel.github.io/floris/v3_to_v4.html for more information." ) def reinitialize(self, **_): raise NotImplementedError( "The reinitialize method has been removed. Please use the set method. " - "See https://nrel.github.io/floris/upgrade_guides/v3_to_v4.html for more information." + "See https://nrel.github.io/floris/v3_to_v4.html for more information." ) diff --git a/floris/version.py b/floris/version.py index 5186d0706..b8626c4cf 100644 --- a/floris/version.py +++ b/floris/version.py @@ -1 +1 @@ -4.0 +4 From 921c98bdcca44fd693005099fabcb8b78a5dab98 Mon Sep 17 00:00:00 2001 From: misi9170 Date: Mon, 8 Apr 2024 15:25:58 -0600 Subject: [PATCH 72/78] Fix unresolved merge marks in README. --- README.md | 4 ---- 1 file changed, 4 deletions(-) diff --git a/README.md b/README.md index 1b5620d2f..d694a7dbe 100644 --- a/README.md +++ b/README.md @@ -3,11 +3,7 @@ FLORIS is a controls-focused wind farm simulation software incorporating steady-state engineering wake models into a performance-focused Python framework. It has been in active development at NREL since 2013 and the latest -<<<<<<< HEAD release is [FLORIS v4.0](https://github.com/NREL/floris/releases/latest). -======= -release is [FLORIS v3.6](https://github.com/NREL/floris/releases/latest). ->>>>>>> upstream/main Online documentation is available at https://nrel.github.io/floris. The software is in active development and engagement with the development team From 27b67ab21f42c882f15bf054824eec4b76c611a4 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Mon, 8 Apr 2024 15:48:14 -0600 Subject: [PATCH 73/78] Add merge/reduce FLORIS objects (#866) --- floris/floris_model.py | 69 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 69 insertions(+) diff --git a/floris/floris_model.py b/floris/floris_model.py index 5e618c71a..bcd582de0 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -1716,3 +1716,72 @@ def reinitialize(self, **_): "The reinitialize method has been removed. Please use the set method. " "See https://nrel.github.io/floris/v3_to_v4.html for more information." ) + + + @staticmethod + def merge_floris_models(fmodel_list, reference_wind_height=None): + """Merge a list of FlorisModel objects into a single FlorisModel object. Note that it uses + the very first object specified in fmodel_list to build upon, + so it uses those wake model parameters, air density, and so on. + + Args: + fmodel_list (list): Array-like of FlorisModel objects. + reference_wind_height (float, optional): Height in meters + at which the reference wind speed is assigned. If None, will assume + this value is equal to the reference wind height specified in the FlorisModel + objects. This only works if all objects have the same value + for their reference_wind_height. + + Returns: + fmodel_merged (FlorisModel): The merged FlorisModel object, + merged in the same order as fmodel_list. The objects are merged + on the turbine locations and turbine types, but not on the wake parameters + or general solver settings. + """ + + if not isinstance(fmodel_list[0], FlorisModel): + raise ValueError( + "Incompatible input specified. fmodel_list must be a list of FlorisModel objects." + ) + + # Get the turbine locations and specifications for each subset and save as a list + x_list = [] + y_list = [] + turbine_type_list = [] + reference_wind_heights = [] + for fmodel in fmodel_list: + # Remove any control setpoints that might be specified for the turbines on one fmodel + fmodel.reset_operation() + + x_list.extend(fmodel.layout_x) + y_list.extend(fmodel.layout_y) + + fmodel_turbine_type = fmodel.core.farm.turbine_type + if len(fmodel_turbine_type) == 1: + fmodel_turbine_type = fmodel_turbine_type * len(fmodel.layout_x) + elif not len(fmodel_turbine_type) == len(fmodel.layout_x): + raise ValueError("Incompatible format of turbine_type in fmodel.") + + turbine_type_list.extend(fmodel_turbine_type) + reference_wind_heights.append(fmodel.core.flow_field.reference_wind_height) + + # Derive reference wind height, if unspecified by the user + if reference_wind_height is None: + reference_wind_height = np.mean(reference_wind_heights) + if np.any(np.abs(np.array(reference_wind_heights) - reference_wind_height) > 1.0e-3): + raise ValueError( + "Cannot automatically derive a fitting reference_wind_height since they " + "substantially differ between FlorisModel objects. " + "Please specify 'reference_wind_height' manually." + ) + + # Construct the merged FLORIS model based on the first entry in fmodel_list + fmodel_merged = fmodel_list[0].copy() + fmodel_merged.set( + layout_x=x_list, + layout_y=y_list, + turbine_type=turbine_type_list, + reference_wind_height=reference_wind_height, + ) + + return fmodel_merged From 0e41d9b2deea0d3ba36ada8f9cc51193c8a071b4 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Mon, 8 Apr 2024 17:52:55 -0400 Subject: [PATCH 74/78] Remove setpoints and wind condition specifics from calculate_XX_plane methods (#868) * remove yaw angles argument; switch to deepcopies. * No longer allowed to pass wd, ws, ti---instead, specify a findex (or set a single ws, wd, ti). * Remove erroneous type hints. * update tests. * Ruff formatting. * Update examples. Note that previous calculate_XX_planes altered the rotor_diameters field on fmodel. * Update Helix viz. * calculate_horizontal_plane_with_turbines now consistent with calculate_horizontal_plane. * remove now-redundant check_wind_condition_for_viz * Clean up TODOs and docstrings. --- .../004_helix_active_wake_mixing.py | 8 - ...rical_gauss_velocity_deficit_parameters.py | 5 - ...2_empirical_gauss_deflection_parameters.py | 2 - .../001_layout_visualizations.py | 5 +- floris/floris_model.py | 230 +++++------------- floris/flow_visualization.py | 94 +++---- tests/floris_model_integration_test.py | 49 ++-- 7 files changed, 140 insertions(+), 253 deletions(-) diff --git a/examples/examples_control_types/004_helix_active_wake_mixing.py b/examples/examples_control_types/004_helix_active_wake_mixing.py index aae41a4b0..7738c079c 100644 --- a/examples/examples_control_types/004_helix_active_wake_mixing.py +++ b/examples/examples_control_types/004_helix_active_wake_mixing.py @@ -41,31 +41,23 @@ x_resolution=200, y_resolution=100, height=150.0, - awc_modes=awc_modes, - awc_amplitudes=awc_amplitudes ) y_plane_baseline = fmodel.calculate_y_plane( x_resolution=200, z_resolution=100, crossstream_dist=0.0, - awc_modes=awc_modes, - awc_amplitudes=awc_amplitudes ) y_plane_helix = fmodel.calculate_y_plane( x_resolution=200, z_resolution=100, crossstream_dist=-3*D, - awc_modes=awc_modes, - awc_amplitudes=awc_amplitudes ) cross_plane = fmodel.calculate_cross_plane( y_resolution=100, z_resolution=100, downstream_dist=720.0, - awc_modes=awc_modes, - awc_amplitudes=awc_amplitudes ) # Create the plots diff --git a/examples/examples_emgauss/001_empirical_gauss_velocity_deficit_parameters.py b/examples/examples_emgauss/001_empirical_gauss_velocity_deficit_parameters.py index 4cdf37bea..0baf2fac1 100644 --- a/examples/examples_emgauss/001_empirical_gauss_velocity_deficit_parameters.py +++ b/examples/examples_emgauss/001_empirical_gauss_velocity_deficit_parameters.py @@ -16,9 +16,6 @@ show_flow_cuts = True num_in_row = 5 -yaw_angles = np.zeros((1, num_in_row)) - - # Define function for visualizing wakes def generate_wake_visualization(fmodel: FlorisModel, title=None): # Using the FlorisModel functions, get 2D slices. @@ -38,7 +35,6 @@ def generate_wake_visualization(fmodel: FlorisModel, title=None): height=horizontal_plane_location, x_bounds=x_bounds, y_bounds=y_bounds, - yaw_angles=yaw_angles, ) y_plane = fmodel.calculate_y_plane( x_resolution=200, @@ -46,7 +42,6 @@ def generate_wake_visualization(fmodel: FlorisModel, title=None): crossstream_dist=streamwise_plane_location, x_bounds=x_bounds, z_bounds=z_bounds, - yaw_angles=yaw_angles, ) cross_planes = [] for cpl in cross_plane_locations: diff --git a/examples/examples_emgauss/002_empirical_gauss_deflection_parameters.py b/examples/examples_emgauss/002_empirical_gauss_deflection_parameters.py index b945ad8dc..5d74fa9ee 100644 --- a/examples/examples_emgauss/002_empirical_gauss_deflection_parameters.py +++ b/examples/examples_emgauss/002_empirical_gauss_deflection_parameters.py @@ -46,7 +46,6 @@ def generate_wake_visualization(fmodel, title=None): height=horizontal_plane_location, x_bounds=x_bounds, y_bounds=y_bounds, - yaw_angles=yaw_angles ) y_plane = fmodel.calculate_y_plane( x_resolution=200, @@ -54,7 +53,6 @@ def generate_wake_visualization(fmodel, title=None): crossstream_dist=streamwise_plane_location, x_bounds=x_bounds, z_bounds=z_bounds, - yaw_angles=yaw_angles ) cross_planes = [] for cpl in cross_plane_locations: diff --git a/examples/examples_visualizations/001_layout_visualizations.py b/examples/examples_visualizations/001_layout_visualizations.py index cbf46a52a..9c2641e76 100644 --- a/examples/examples_visualizations/001_layout_visualizations.py +++ b/examples/examples_visualizations/001_layout_visualizations.py @@ -53,9 +53,8 @@ # Plot 2: Show turbine rotors on flow ax = axarr[2] -horizontal_plane = fmodel.calculate_horizontal_plane( - height=90.0, yaw_angles=np.array([[0.0, 30.0, 0.0, 0.0, 0.0]]) -) +fmodel.set(yaw_angles=np.array([[0., 30., 0., 0., 0.]])) +horizontal_plane = fmodel.calculate_horizontal_plane(height=90.0) visualize_cut_plane(horizontal_plane, ax=ax, min_speed=MIN_WS, max_speed=MAX_WS) layoutviz.plot_turbine_rotors(fmodel, ax=ax, yaw_angles=np.array([[0.0, 30.0, 0.0, 0.0, 0.0]])) ax.set_title("Flow visualization with yawed turbine") diff --git a/floris/floris_model.py b/floris/floris_model.py index bcd582de0..99ab55eab 100644 --- a/floris/floris_model.py +++ b/floris/floris_model.py @@ -1,6 +1,7 @@ from __future__ import annotations +import copy import inspect from pathlib import Path from typing import ( @@ -942,6 +943,25 @@ def get_turbine_TIs(self) -> NDArrayFloat: ### Methods for sampling and visualization + def set_for_viz(self, findex: int, solver_settings: dict) -> None: + """ + Set the floris object to a single findex for visualization. + + Args: + findex (int): The findex to set the floris object to. + solver_settings (dict): The solver settings to use for visualization. + """ + self.set( + wind_speeds=self.wind_speeds[findex:findex+1], + wind_directions=self.wind_directions[findex:findex+1], + turbulence_intensities=self.turbulence_intensities[findex:findex+1], + yaw_angles=self.core.farm.yaw_angles[findex:findex+1,:], + power_setpoints=self.core.farm.power_setpoints[findex:findex+1,:], + awc_modes=self.core.farm.awc_modes[findex:findex+1,:], + awc_amplitudes=self.core.farm.awc_amplitudes[findex:findex+1,:], + solver_settings=solver_settings, + ) + def calculate_cross_plane( self, downstream_dist, @@ -949,15 +969,7 @@ def calculate_cross_plane( z_resolution=200, y_bounds=None, z_bounds=None, - wd=None, - ws=None, - ti=None, - yaw_angles=None, - power_setpoints=None, - awc_modes=None, - awc_amplitudes=None, - awc_frequencies=None, - disable_turbines=None, + findex_for_viz=None, ): """ Shortcut method to instantiate a :py:class:`~.tools.cut_plane.CutPlane` @@ -965,31 +977,29 @@ def calculate_cross_plane( the simulation domain at a specific height. Args: - height (float): Height of cut plane. Defaults to Hub-height. - x_resolution (float, optional): Output array resolution. - Defaults to 200 points. + downstream_dist (float): Distance downstream of turbines to compute. y_resolution (float, optional): Output array resolution. Defaults to 200 points. - x_bounds (tuple, optional): Limits of output array (in m). - Defaults to None. + z_resolution (float, optional): Output array resolution. + Defaults to 200 points. y_bounds (tuple, optional): Limits of output array (in m). Defaults to None. - + z_bounds (tuple, optional): Limits of output array (in m). + Defaults to None. + finder_for_viz (int, optional): Index of the condition to visualize. Returns: :py:class:`~.tools.cut_plane.CutPlane`: containing values of x, y, u, v, w """ - # TODO update docstring - if wd is None: - wd = self.core.flow_field.wind_directions - if ws is None: - ws = self.core.flow_field.wind_speeds - if ti is None: - ti = self.core.flow_field.turbulence_intensities - self.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) + if self.n_findex > 1 and findex_for_viz is None: + self.logger.warning( + "Multiple findices detected. Using first findex for visualization." + ) + if findex_for_viz is None: + findex_for_viz = 0 # Store the current state for reinitialization - floris_dict = self.core.as_dict() + fmodel_viz = copy.deepcopy(self) # Set the solver to a flow field planar grid solver_settings = { @@ -999,26 +1009,15 @@ def calculate_cross_plane( "flow_field_grid_points": [y_resolution, z_resolution], "flow_field_bounds": [y_bounds, z_bounds], } - self.set( - wind_directions=wd, - wind_speeds=ws, - turbulence_intensities=ti, - solver_settings=solver_settings, - yaw_angles=yaw_angles, - power_setpoints=power_setpoints, - awc_modes=awc_modes, - awc_amplitudes=awc_amplitudes, - awc_frequencies=awc_frequencies, - disable_turbines=disable_turbines, - ) + fmodel_viz.set_for_viz(findex_for_viz, solver_settings) # Calculate wake - self.core.solve_for_viz() + fmodel_viz.core.solve_for_viz() # Get the points of data in a dataframe # TODO this just seems to be flattening and storing the data in a df; is this necessary? # It seems the biggest dependency is on CutPlane and the subsequent visualization tools. - df = self.get_plane_of_points( + df = fmodel_viz.get_plane_of_points( normal_vector="x", planar_coordinate=downstream_dist, ) @@ -1026,12 +1025,6 @@ def calculate_cross_plane( # Compute the cutplane cross_plane = CutPlane(df, y_resolution, z_resolution, "x") - # Reset the fmodel object back to the turbine grid configuration - self.core = Core.from_dict(floris_dict) - - # Run the simulation again for futher postprocessing (i.e. now we can get farm power) - self.run() - return cross_plane def calculate_horizontal_plane( @@ -1041,15 +1034,7 @@ def calculate_horizontal_plane( y_resolution=200, x_bounds=None, y_bounds=None, - wd=None, - ws=None, - ti=None, - yaw_angles=None, - power_setpoints=None, - awc_modes=None, - awc_amplitudes=None, - awc_frequencies=None, - disable_turbines=None, + findex_for_viz=None, ): """ Shortcut method to instantiate a :py:class:`~.tools.cut_plane.CutPlane` @@ -1066,31 +1051,22 @@ def calculate_horizontal_plane( Defaults to None. y_bounds (tuple, optional): Limits of output array (in m). Defaults to None. - wd (float, optional): Wind direction. Defaults to None. - ws (float, optional): Wind speed. Defaults to None. - ti (float, optional): Turbulence intensity. Defaults to None. - yaw_angles (NDArrayFloat, optional): Turbine yaw angles. Defaults - to None. - power_setpoints (NDArrayFloat, optional): - Turbine power setpoints. Defaults to None. - disable_turbines (NDArrayBool, optional): Boolean array on whether - to disable turbines. Defaults to None. + finder_for_viz (int, optional): Index of the condition to visualize. Returns: :py:class:`~.tools.cut_plane.CutPlane`: containing values of x, y, u, v, w """ - # TODO update docstring - if wd is None: - wd = self.core.flow_field.wind_directions - if ws is None: - ws = self.core.flow_field.wind_speeds - if ti is None: - ti = self.core.flow_field.turbulence_intensities - self.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) + if self.n_findex > 1 and findex_for_viz is None: + self.logger.warning( + "Multiple findices detected. Using first findex for visualization." + ) + if findex_for_viz is None: + findex_for_viz = 0 # Store the current state for reinitialization - floris_dict = self.core.as_dict() + fmodel_viz = copy.deepcopy(self) + # Set the solver to a flow field planar grid solver_settings = { "type": "flow_field_planar_grid", @@ -1099,26 +1075,15 @@ def calculate_horizontal_plane( "flow_field_grid_points": [x_resolution, y_resolution], "flow_field_bounds": [x_bounds, y_bounds], } - self.set( - wind_directions=wd, - wind_speeds=ws, - turbulence_intensities=ti, - solver_settings=solver_settings, - yaw_angles=yaw_angles, - power_setpoints=power_setpoints, - awc_modes=awc_modes, - awc_amplitudes=awc_amplitudes, - awc_frequencies=awc_frequencies, - disable_turbines=disable_turbines, - ) + fmodel_viz.set_for_viz(findex_for_viz, solver_settings) # Calculate wake - self.core.solve_for_viz() + fmodel_viz.core.solve_for_viz() # Get the points of data in a dataframe # TODO this just seems to be flattening and storing the data in a df; is this necessary? # It seems the biggest depenedcy is on CutPlane and the subsequent visualization tools. - df = self.get_plane_of_points( + df = fmodel_viz.get_plane_of_points( normal_vector="z", planar_coordinate=height, ) @@ -1126,17 +1091,11 @@ def calculate_horizontal_plane( # Compute the cutplane horizontal_plane = CutPlane( df, - self.core.grid.grid_resolution[0], - self.core.grid.grid_resolution[1], + fmodel_viz.core.grid.grid_resolution[0], + fmodel_viz.core.grid.grid_resolution[1], "z", ) - # Reset the fmodel object back to the turbine grid configuration - self.core = Core.from_dict(floris_dict) - - # Run the simulation again for futher postprocessing (i.e. now we can get farm power) - self.run() - return horizontal_plane def calculate_y_plane( @@ -1146,15 +1105,7 @@ def calculate_y_plane( z_resolution=200, x_bounds=None, z_bounds=None, - wd=None, - ws=None, - ti=None, - yaw_angles=None, - power_setpoints=None, - awc_modes=None, - awc_amplitudes=None, - awc_frequencies=None, - disable_turbines=None, + findex_for_viz=None, ): """ Shortcut method to instantiate a :py:class:`~.tools.cut_plane.CutPlane` @@ -1165,41 +1116,28 @@ def calculate_y_plane( height (float): Height of cut plane. Defaults to Hub-height. x_resolution (float, optional): Output array resolution. Defaults to 200 points. - y_resolution (float, optional): Output array resolution. + z_resolution (float, optional): Output array resolution. Defaults to 200 points. x_bounds (tuple, optional): Limits of output array (in m). Defaults to None. - y_bounds (tuple, optional): Limits of output array (in m). - Defaults to None. z_bounds (tuple, optional): Limits of output array (in m). Defaults to None. - wd (float, optional): Wind direction. Defaults to None. - ws (float, optional): Wind speed. Defaults to None. - ti (float, optional): Turbulence intensity. Defaults to None. - yaw_angles (NDArrayFloat, optional): Turbine yaw angles. Defaults - to None. - power_setpoints (NDArrayFloat, optional): - Turbine power setpoints. Defaults to None. - disable_turbines (NDArrayBool, optional): Boolean array on whether - to disable turbines. Defaults to None. - - + findex_for_viz (int, optional): Index of the condition to visualize. + Defaults to 0. Returns: :py:class:`~.tools.cut_plane.CutPlane`: containing values of x, y, u, v, w """ - # TODO update docstring - if wd is None: - wd = self.core.flow_field.wind_directions - if ws is None: - ws = self.core.flow_field.wind_speeds - if ti is None: - ti = self.core.flow_field.turbulence_intensities - self.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) + if self.n_findex > 1 and findex_for_viz is None: + self.logger.warning( + "Multiple findices detected. Using first findex for visualization." + ) + if findex_for_viz is None: + findex_for_viz = 0 # Store the current state for reinitialization - floris_dict = self.core.as_dict() + fmodel_viz = copy.deepcopy(self) # Set the solver to a flow field planar grid solver_settings = { @@ -1209,26 +1147,15 @@ def calculate_y_plane( "flow_field_grid_points": [x_resolution, z_resolution], "flow_field_bounds": [x_bounds, z_bounds], } - self.set( - wind_directions=wd, - wind_speeds=ws, - turbulence_intensities=ti, - solver_settings=solver_settings, - yaw_angles=yaw_angles, - power_setpoints=power_setpoints, - awc_modes=awc_modes, - awc_amplitudes=awc_amplitudes, - awc_frequencies=awc_frequencies, - disable_turbines=disable_turbines, - ) + fmodel_viz.set_for_viz(findex_for_viz, solver_settings) # Calculate wake - self.core.solve_for_viz() + fmodel_viz.core.solve_for_viz() # Get the points of data in a dataframe # TODO this just seems to be flattening and storing the data in a df; is this necessary? # It seems the biggest depenedcy is on CutPlane and the subsequent visualization tools. - df = self.get_plane_of_points( + df = fmodel_viz.get_plane_of_points( normal_vector="y", planar_coordinate=crossstream_dist, ) @@ -1236,33 +1163,8 @@ def calculate_y_plane( # Compute the cutplane y_plane = CutPlane(df, x_resolution, z_resolution, "y") - # Reset the fmodel object back to the turbine grid configuration - self.core = Core.from_dict(floris_dict) - - # Run the simulation again for futher postprocessing (i.e. now we can get farm power) - self.run() - return y_plane - def check_wind_condition_for_viz(self, wd=None, ws=None, ti=None): - if len(wd) > 1 or len(wd) < 1: - raise ValueError( - "Wind direction input must be of length 1 for visualization. " - f"Current length is {len(wd)}." - ) - - if len(ws) > 1 or len(ws) < 1: - raise ValueError( - "Wind speed input must be of length 1 for visualization. " - f"Current length is {len(ws)}." - ) - - if len(ti) != 1: - raise ValueError( - "Turbulence intensity input must be of length 1 for visualization. " - f"Current length is {len(ti)}." - ) - def get_plane_of_points( self, normal_vector="z", diff --git a/floris/flow_visualization.py b/floris/flow_visualization.py index 8152be3df..720399d99 100644 --- a/floris/flow_visualization.py +++ b/floris/flow_visualization.py @@ -472,17 +472,12 @@ def plot_rotor_values( plt.show() def calculate_horizontal_plane_with_turbines( - fmodel_in, + fmodel, x_resolution=200, y_resolution=200, x_bounds=None, y_bounds=None, - wd=None, - ws=None, - ti=None, - yaw_angles=None, - power_setpoints=None, - disable_turbines=None, + findex_for_viz=None, ) -> CutPlane: """ This function creates a :py:class:`~.tools.cut_plane.CutPlane` by @@ -498,51 +493,41 @@ def calculate_horizontal_plane_with_turbines( for models where the visualization capability is not yet available. Args: - fmodel_in (:py:class:`floris.floris_model.FlorisModel`): + fmodel (:py:class:`floris.floris_model.FlorisModel`): Preinitialized FlorisModel object. x_resolution (float, optional): Output array resolution. Defaults to 200 points. y_resolution (float, optional): Output array resolution. Defaults to 200 points. x_bounds (tuple, optional): Limits of output array (in m). Defaults to None. y_bounds (tuple, optional): Limits of output array (in m). Defaults to None. - wd (float, optional): Wind direction setting. Defaults to None. - ws (float, optional): Wind speed setting. Defaults to None. - ti (float, optional): Turbulence intensity. Defaults to None. - yaw_angles (np.ndarray, optional): Yaw angles settings. Defaults to None. - power_setpoints (np.ndarray, optional): Power setpoints settings. Defaults to None. - disable_turbines (np.ndarray, optional): Disable turbines settings. Defaults to None. + findex_for_viz (int, optional): Index of the condition to visualize. Returns: :py:class:`~.tools.cut_plane.CutPlane`: containing values of x, y, u, v, w """ + if fmodel.core.flow_field.n_findex > 1 and findex_for_viz is None: + print( + "Multiple findices detected. Using first findex for visualization." + ) + if findex_for_viz is None: + findex_for_viz = 0 # Make a local copy of fmodel to avoid editing passed in fmodel - fmodel = copy.deepcopy(fmodel_in) - - # If wd/ws not provided, use what is set in fmodel - if wd is None: - wd = fmodel.core.flow_field.wind_directions - if ws is None: - ws = fmodel.core.flow_field.wind_speeds - if ti is None: - ti = fmodel.core.flow_field.turbulence_intensities - fmodel.check_wind_condition_for_viz(wd=wd, ws=ws, ti=ti) + fmodel_viz = copy.deepcopy(fmodel) # Set the ws and wd - fmodel.set( - wind_directions=wd, - wind_speeds=ws, - yaw_angles=yaw_angles, - power_setpoints=power_setpoints, - disable_turbines=disable_turbines - ) - yaw_angles = fmodel.core.farm.yaw_angles - power_setpoints = fmodel.core.farm.power_setpoints + fmodel_viz.set_for_viz(findex_for_viz, None) + + yaw_angles = fmodel_viz.core.farm.yaw_angles + power_setpoints = fmodel_viz.core.farm.power_setpoints + awc_modes = fmodel_viz.core.farm.awc_modes + awc_amplitudes = fmodel_viz.core.farm.awc_amplitudes + awc_frequencies = fmodel_viz.core.farm.awc_frequencies # Grab the turbine layout - layout_x = copy.deepcopy(fmodel.layout_x) - layout_y = copy.deepcopy(fmodel.layout_y) - turbine_types = copy.deepcopy(fmodel.core.farm.turbine_type) - D = fmodel.core.farm.rotor_diameters_sorted[0, 0] + layout_x = copy.deepcopy(fmodel_viz.layout_x) + layout_y = copy.deepcopy(fmodel_viz.layout_y) + turbine_types = copy.deepcopy(fmodel_viz.core.farm.turbine_type) + D = fmodel_viz.core.farm.rotor_diameters_sorted[0, 0] # Declare a new layout array with an extra turbine layout_x_test = np.append(layout_x,[0]) @@ -554,10 +539,29 @@ def calculate_horizontal_plane_with_turbines( turbine_types_test = [turbine_types[0] for i in range(len(layout_x))] + ['nrel_5MW'] else: turbine_types_test = np.append(turbine_types, 'nrel_5MW').tolist() - yaw_angles = np.append(yaw_angles, np.zeros([fmodel.core.flow_field.n_findex, 1]), axis=1) + yaw_angles = np.append( + yaw_angles, + np.zeros([fmodel_viz.core.flow_field.n_findex, 1]), + axis=1 + ) power_setpoints = np.append( power_setpoints, - POWER_SETPOINT_DEFAULT * np.ones([fmodel.core.flow_field.n_findex, 1]), + POWER_SETPOINT_DEFAULT * np.ones([fmodel_viz.core.flow_field.n_findex, 1]), + axis=1 + ) + awc_modes = np.append( + awc_modes, + np.full((fmodel_viz.core.flow_field.n_findex, 1), "baseline"), + axis=1 + ) + awc_amplitudes = np.append( + awc_amplitudes, + np.zeros([fmodel_viz.core.flow_field.n_findex, 1]), + axis=1 + ) + awc_frequencies = np.append( + awc_frequencies, + np.zeros([fmodel_viz.core.flow_field.n_findex, 1]), axis=1 ) @@ -591,19 +595,21 @@ def calculate_horizontal_plane_with_turbines( # Place the test turbine at this location and calculate wake layout_x_test[-1] = x layout_y_test[-1] = y - fmodel.set( + fmodel_viz.set( layout_x=layout_x_test, layout_y=layout_y_test, yaw_angles=yaw_angles, power_setpoints=power_setpoints, - disable_turbines=disable_turbines, + awc_modes=awc_modes, + awc_amplitudes=awc_amplitudes, + awc_frequencies=awc_frequencies, turbine_type=turbine_types_test ) - fmodel.run() + fmodel_viz.run() # Get the velocity of that test turbines central point - center_point = int(np.floor(fmodel.core.flow_field.u[0,-1].shape[0] / 2.0)) - u_results[idx] = fmodel.core.flow_field.u[0,-1,center_point,center_point] + center_point = int(np.floor(fmodel_viz.core.flow_field.u[0,-1].shape[0] / 2.0)) + u_results[idx] = fmodel_viz.core.flow_field.u[0,-1,center_point,center_point] # Increment index idx = idx + 1 diff --git a/tests/floris_model_integration_test.py b/tests/floris_model_integration_test.py index e36125c55..7b3f7d140 100644 --- a/tests/floris_model_integration_test.py +++ b/tests/floris_model_integration_test.py @@ -475,7 +475,7 @@ def test_set_ti(): with pytest.raises(TypeError): fmodel.set(turbulence_intensities=0.12) -def test_calculate_planes(): +def test_calculate_planes(caplog): fmodel = FlorisModel(configuration=YAML_INPUT) # The calculate_plane functions should run directly with the inputs as given @@ -483,42 +483,37 @@ def test_calculate_planes(): fmodel.calculate_y_plane(0.0) fmodel.calculate_cross_plane(500.0) - # They should also support setting new wind conditions, but they all have to set at once - wind_speeds = [8.0, 8.0, 8.0] - wind_directions = [270.0, 270.0, 270.0] - turbulence_intensities = [0.1, 0.1, 0.1] + # No longer support setting new wind conditions, must be done with set() + fmodel.set( + wind_speeds = [8.0, 8.0, 8.0], + wind_directions = [270.0, 270.0, 270.0], + turbulence_intensities = [0.1, 0.1, 0.1], + ) fmodel.calculate_horizontal_plane( 90.0, - ws=[wind_speeds[0]], - wd=[wind_directions[0]], - ti=[turbulence_intensities[0]] + findex_for_viz=1 ) fmodel.calculate_y_plane( 0.0, - ws=[wind_speeds[0]], - wd=[wind_directions[0]], - ti=[turbulence_intensities[0]] + findex_for_viz=1 ) fmodel.calculate_cross_plane( 500.0, - ws=[wind_speeds[0]], - wd=[wind_directions[0]], - ti=[turbulence_intensities[0]] + findex_for_viz=1 ) - # If Floris is configured with multiple wind conditions prior to this, then all of the - # components must be changed together. - fmodel.set( - wind_speeds=wind_speeds, - wind_directions=wind_directions, - turbulence_intensities=turbulence_intensities - ) - with pytest.raises(ValueError): - fmodel.calculate_horizontal_plane(90.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) - with pytest.raises(ValueError): - fmodel.calculate_y_plane(0.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) - with pytest.raises(ValueError): - fmodel.calculate_cross_plane(500.0, ws=[wind_speeds[0]], wd=[wind_directions[0]]) + # Without specifying findex_for_viz should raise a logger warning. + with caplog.at_level(logging.WARNING): + fmodel.calculate_horizontal_plane(90.0) + assert caplog.text != "" # Checking not empty + caplog.clear() + with caplog.at_level(logging.WARNING): + fmodel.calculate_y_plane(0.0) + assert caplog.text != "" # Checking not empty + caplog.clear() + with caplog.at_level(logging.WARNING): + fmodel.calculate_cross_plane(500.0) + assert caplog.text != "" # Checking not empty def test_get_turbine_powers_with_WindRose(): fmodel = FlorisModel(configuration=YAML_INPUT) From b4d9d1eddca9f4fa197f3e76a295d2349a63d584 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Mon, 8 Apr 2024 18:00:35 -0400 Subject: [PATCH 75/78] Update Empirical Gaussian default deflection_rate (#875) * deflection_rate = 22. * Update reg tests. * Update Helix reg test for new default deflection_rate. --- examples/inputs/emgauss.yaml | 2 +- examples/inputs/gch_multi_dim_cp_ct.yaml | 2 +- examples/inputs_floating/emgauss_fixed.yaml | 2 +- .../inputs_floating/emgauss_floating.yaml | 2 +- .../emgauss_floating_fixedtilt15.yaml | 2 +- .../emgauss_floating_fixedtilt5.yaml | 2 +- .../core/wake_deflection/empirical_gauss.py | 2 +- tests/conftest.py | 2 +- .../empirical_gauss_regression_test.py | 109 +++++++++--------- 9 files changed, 64 insertions(+), 61 deletions(-) diff --git a/examples/inputs/emgauss.yaml b/examples/inputs/emgauss.yaml index 8f8340a1b..40f8fab8e 100644 --- a/examples/inputs/emgauss.yaml +++ b/examples/inputs/emgauss.yaml @@ -67,7 +67,7 @@ wake: empirical_gauss: horizontal_deflection_gain_D: 3.0 vertical_deflection_gain_D: -1 - deflection_rate: 30 + deflection_rate: 22 mixing_gain_deflection: 0.0 yaw_added_mixing_gain: 0.0 diff --git a/examples/inputs/gch_multi_dim_cp_ct.yaml b/examples/inputs/gch_multi_dim_cp_ct.yaml index 592b6172f..d1c788431 100644 --- a/examples/inputs/gch_multi_dim_cp_ct.yaml +++ b/examples/inputs/gch_multi_dim_cp_ct.yaml @@ -70,7 +70,7 @@ wake: empirical_gauss: horizontal_deflection_gain_D: 3.0 vertical_deflection_gain_D: -1 - deflection_rate: 30 + deflection_rate: 22 mixing_gain_deflection: 0.0 yaw_added_mixing_gain: 0.0 diff --git a/examples/inputs_floating/emgauss_fixed.yaml b/examples/inputs_floating/emgauss_fixed.yaml index 2daf9e2a3..cc7292180 100644 --- a/examples/inputs_floating/emgauss_fixed.yaml +++ b/examples/inputs_floating/emgauss_fixed.yaml @@ -67,7 +67,7 @@ wake: empirical_gauss: horizontal_deflection_gain_D: 3.0 vertical_deflection_gain_D: -1 - deflection_rate: 30 + deflection_rate: 22 mixing_gain_deflection: 0.0 yaw_added_mixing_gain: 0.0 diff --git a/examples/inputs_floating/emgauss_floating.yaml b/examples/inputs_floating/emgauss_floating.yaml index 28dc0a747..9a078adb7 100644 --- a/examples/inputs_floating/emgauss_floating.yaml +++ b/examples/inputs_floating/emgauss_floating.yaml @@ -67,7 +67,7 @@ wake: empirical_gauss: horizontal_deflection_gain_D: 3.0 vertical_deflection_gain_D: -1 - deflection_rate: 30 + deflection_rate: 22 mixing_gain_deflection: 0.0 yaw_added_mixing_gain: 0.0 diff --git a/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml b/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml index 0160d9605..ad8ac5dce 100644 --- a/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml +++ b/examples/inputs_floating/emgauss_floating_fixedtilt15.yaml @@ -63,7 +63,7 @@ wake: empirical_gauss: horizontal_deflection_gain_D: 3.0 vertical_deflection_gain_D: -1 - deflection_rate: 30 + deflection_rate: 22 mixing_gain_deflection: 0.0 yaw_added_mixing_gain: 0.0 diff --git a/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml b/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml index 7477d5132..8f9d10fd2 100644 --- a/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml +++ b/examples/inputs_floating/emgauss_floating_fixedtilt5.yaml @@ -63,7 +63,7 @@ wake: empirical_gauss: horizontal_deflection_gain_D: 3.0 vertical_deflection_gain_D: -1 - deflection_rate: 30 + deflection_rate: 22 mixing_gain_deflection: 0.0 yaw_added_mixing_gain: 0.0 diff --git a/floris/core/wake_deflection/empirical_gauss.py b/floris/core/wake_deflection/empirical_gauss.py index 00a506b3c..185588f52 100644 --- a/floris/core/wake_deflection/empirical_gauss.py +++ b/floris/core/wake_deflection/empirical_gauss.py @@ -49,7 +49,7 @@ class EmpiricalGaussVelocityDeflection(BaseModel): """ horizontal_deflection_gain_D: float = field(default=3.0) vertical_deflection_gain_D: float = field(default=-1) - deflection_rate: float = field(default=30) + deflection_rate: float = field(default=22) mixing_gain_deflection: float = field(default=0.0) yaw_added_mixing_gain: float = field(default=0.0) diff --git a/tests/conftest.py b/tests/conftest.py index 8a647dbd5..2b939e689 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -459,7 +459,7 @@ def __init__(self): "empirical_gauss": { "horizontal_deflection_gain_D": 3.0, "vertical_deflection_gain_D": -1, - "deflection_rate": 30, + "deflection_rate": 22, "mixing_gain_deflection": 0.0, "yaw_added_mixing_gain": 0.0 }, diff --git a/tests/reg_tests/empirical_gauss_regression_test.py b/tests/reg_tests/empirical_gauss_regression_test.py index c614fa633..392989076 100644 --- a/tests/reg_tests/empirical_gauss_regression_test.py +++ b/tests/reg_tests/empirical_gauss_regression_test.py @@ -28,26 +28,26 @@ # 8 m/s [ [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], - [5.8181628, 0.8711866, 676912.0380737, 0.3205471], - [5.8941747, 0.8668654, 702276.3178047, 0.3175620], + [5.8239250, 0.8708590, 678834.8317748, 0.3203190], + [5.9004356, 0.8665095, 704365.4950630, 0.3173183], ], - # 9m/s + # 9 m/s [ [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], - [6.5498312, 0.8358441, 984786.7218587, 0.2974192], - [6.6883370, 0.8295451, 1047057.3206209, 0.2935691], + [6.5562701, 0.8355513, 987681.5731429, 0.2972386], + [6.6949231, 0.8292456, 1050018.3472064, 0.2933878], ], # 10 m/s [ [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], - [7.2852518, 0.8049506, 1339238.8882972, 0.2791780], - [7.4865891, 0.7981254, 1452997.4778680, 0.2753477], + [7.2923306, 0.8047024, 1343118.2404618, 0.2790376], + [7.4934722, 0.7978974, 1456951.3486441, 0.2752209], ], # 11 m/s [ [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], - [8.1286243, 0.7869622, 1867298.1260108, 0.2692199], - [8.2872457, 0.7867578, 1985849.6635654, 0.2691092], + [8.1353345, 0.7869536, 1872313.2273018, 0.2692152], + [8.2936951, 0.7867495, 1990669.8925423, 0.2691047], ], ] ) @@ -57,26 +57,26 @@ # 8 m/s [ [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], - [5.8572213, 0.8689662, 689945.4020673, 0.3190070], - [5.9122259, 0.8658393, 708299.7846078, 0.3168602], + [5.8720857, 0.8681212, 694905.4822543, 0.3184244], + [5.9231111, 0.8652205, 711932.0521602, 0.3164383], ], # 9 m/s [ [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], - [6.5936194, 0.8338527, 1004473.3935880, 0.2961941], - [6.7089679, 0.8286068, 1056332.7378826, 0.2930017], + [6.6102438, 0.8330967, 1011947.5002467, 0.2957310], + [6.7207579, 0.8280707, 1061633.3882586, 0.2926782], ], # 10 m/s [ [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], - [7.3336404, 0.8032764, 1366138.4198352, 0.2782323], - [7.5095680, 0.7973796, 1466340.6394405, 0.2749331], + [7.3519418, 0.8026469, 1376375.4821341, 0.2778778], + [7.5221584, 0.7969827, 1473761.4857038, 0.2747128], ], # 11 m/s [ [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], - [8.1779964, 0.7868986, 1904198.1536702, 0.2691855], - [8.3074034, 0.7867318, 2000915.2988301, 0.2690952], + [8.1956906, 0.7868758, 1917422.6059783, 0.2691731], + [8.3187504, 0.7867172, 2009395.8987459, 0.2690872], ], ] ) @@ -86,26 +86,26 @@ # 8 m/s [ [7.9736858, 0.7841561, 1741508.6722008, 0.2671213], - [5.8665710, 0.8684347, 693065.2795916, 0.3186403], - [5.9193499, 0.8654343, 710676.9807602, 0.3165840], + [5.8812867, 0.8675981, 697975.7537581, 0.3180646], + [5.9300836, 0.8648241, 714258.6740264, 0.3161686], ], # 9 m/s [ [8.9703965, 0.7828869, 2480428.8963141, 0.2664440], - [6.6040901, 0.8333765, 1009180.8710828, 0.2959023], - [6.7169991, 0.8282416, 1059943.4814040, 0.2927813], + [6.6205487, 0.8326280, 1016580.4631213, 0.2954444], + [6.7286194, 0.8277131, 1065167.8381647, 0.2924627], ], # 10 m/s [ [9.9671073, 0.7808960, 3395681.0032992, 0.2653854], - [7.3451916, 0.8028791, 1372599.7339512, 0.2780085], - [7.5184292, 0.7971003, 1471563.4898254, 0.2747780], + [7.3633114, 0.8022558, 1382735.2369962, 0.2776578], + [7.5308334, 0.7967093, 1478874.6141430, 0.2745612], ], # 11 m/s [ [10.9638180, 0.7536370, 4488242.9153943, 0.2513413], - [8.1895130, 0.7868837, 1912805.5199083, 0.2691774], - [8.3154794, 0.7867214, 2006951.2349727, 0.2690895], + [8.2070431, 0.7868612, 1925907.3101195, 0.2691652], + [8.3266654, 0.7867070, 2015311.4552010, 0.2690817], ], ] ) @@ -115,26 +115,26 @@ # 8 m/s [ [7.9736858, 0.7871515, 1753954.4591792, 0.2693224], - [5.8181628, 0.8711866, 676912.0380737, 0.3205471], - [5.8941747, 0.8668654, 702276.3178047, 0.3175620], + [5.8239250, 0.8708590, 678834.8317748, 0.3203190], + [5.9004356, 0.8665095, 704365.4950630, 0.3173183], ], # 9 m/s [ [8.9703965, 0.7858774, 2496427.8618358, 0.2686331], - [6.5498312, 0.8358441, 984786.7218587, 0.2974192], - [6.6883370, 0.8295451, 1047057.3206209, 0.2935691], + [6.5562701, 0.8355513, 987681.5731429, 0.2972386], + [6.6949231, 0.8292456, 1050018.3472064, 0.2933878], ], # 10 m/s [ [9.9671073, 0.7838789, 3417797.0050916, 0.2675559], - [7.2852518, 0.8049506, 1339238.8882972, 0.2791780], - [7.4865891, 0.7981254, 1452997.4778680, 0.2753477], + [7.2923306, 0.8047024, 1343118.2404618, 0.2790376], + [7.4934722, 0.7978974, 1456951.3486441, 0.2752209], ], # 11 m/s [ [10.9638180, 0.7565157, 4519404.3072862, 0.2532794], - [8.1286243, 0.7869622, 1867298.1260108, 0.2692199], - [8.2872457, 0.7867578, 1985849.6635654, 0.2691092], + [8.1353345, 0.7869536, 1872313.2273018, 0.2692152], + [8.2936951, 0.7867495, 1990669.8925423, 0.2691047], ], ] ) @@ -150,32 +150,32 @@ [7.88772361, 8. , 8.10178821], ], [ - [7.88772293, 7.99999928, 8.10178747], - [7.81808498, 7.92586259, 8.02673494], - [4.62773192, 4.52940667, 4.58832122], - [7.81808498, 7.92586259, 8.02673494], - [7.88772293, 7.99999928, 8.10178747], + [7.88772294, 7.99999928, 8.10178747], + [7.81880864, 7.9261404 , 8.02651415], + [4.66160854, 4.54241201, 4.57798522], + [7.81880864, 7.9261404 , 8.02651415], + [7.88772294, 7.99999928, 8.10178747], ], [ - [7.88732914, 7.99958427, 8.10136238], - [7.6048457 , 7.7024654 , 7.79800687], - [5.17186918, 5.14573321, 5.19139623], - [7.6048457 , 7.7024654 , 7.79800687], - [7.88732914, 7.99958427, 8.10136238], + [7.88733339, 7.99958656, 8.10136247], + [7.60765422, 7.70390457, 7.79791213], + [5.19792855, 5.15875115, 5.18986616], + [7.60765422, 7.70390457, 7.79791213], + [7.88733339, 7.99958656, 8.10136247], ], [ - [7.87212701, 7.9839635 , 8.08549222], - [7.407898 , 7.50191936, 7.59393585], - [5.63364686, 5.64936831, 5.70257783], - [7.407898 , 7.50191936, 7.59393585], - [7.87212701, 7.9839635 , 8.08549222], + [7.87220134, 7.98400571, 8.08549566], + [7.41124269, 7.50382311, 7.59416296], + [5.65108754, 5.65881944, 5.70295049], + [7.41124269, 7.50382311, 7.59416296], + [7.87220134, 7.98400571, 8.08549566], ], [ - [7.83291702, 7.94434682, 8.04564378], - [7.37290675, 7.47263397, 7.56667866], - [6.4654506 , 6.52687795, 6.59629865], - [7.37290675, 7.47263397, 7.56667866], - [7.83291702, 7.94434682, 8.04564378], + [7.83300625, 7.94438006, 8.04560619], + [7.37461427, 7.47355048, 7.56659807], + [6.47381486, 6.53210142, 6.59762329], + [7.37461427, 7.47355048, 7.56659807], + [7.83300625, 7.94438006, 8.04560619], ], ] ] @@ -821,4 +821,7 @@ def test_full_flow_solver(sample_inputs_fixture): velocities = floris.flow_field.u_sorted + if DEBUG: + print(velocities) + assert_results_arrays(velocities, full_flow_baseline) From b10d0916b43d1a22ae296b24d909405ed93ddd01 Mon Sep 17 00:00:00 2001 From: misi9170 <39596329+misi9170@users.noreply.github.com> Date: Tue, 9 Apr 2024 14:04:15 -0400 Subject: [PATCH 76/78] Improvements to WindRose resampling (#857) * Resampling inplace (default true). * Change default for inplace to False; clean up slightly. * Wind rose plot defaults to bins specified. * Simplify plot() and resample() methods. * Missed a couple of places in renaming. * Change "resample" to aggregate and add a resample_by_interpolation * Better warnings * value error * typo * updating some wind_data docstrings * Add aggregation and interpolation functions * bugfix * Fix spelling * Update example 003 * But fix in plot * Fix plotting and nomenclature * Add to 03 example * Start fixing wind data * Re-add value functions to time series * Update wind data notebook * Add interpolated resampling to windTIrose * bugfix --------- Co-authored-by: Paul Co-authored-by: Eric Simley --- docs/wind_data_user.ipynb | 180 +++++- examples/003_wind_data_objects.py | 19 +- .../001_wind_data_comparisons.py | 6 +- floris/layout_visualization.py | 4 +- floris/wind_data.py | 601 ++++++++++++++++-- tests/wind_data_integration_test.py | 220 ++++++- 6 files changed, 912 insertions(+), 118 deletions(-) diff --git a/docs/wind_data_user.ipynb b/docs/wind_data_user.ipynb index 7a8b4d473..745c30470 100644 --- a/docs/wind_data_user.ipynb +++ b/docs/wind_data_user.ipynb @@ -30,11 +30,12 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ - "from floris.wind_data import WindDataBase" + "from floris.wind_data import WindDataBase\n", + "import matplotlib.pyplot as plt" ] }, { @@ -60,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -93,7 +94,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -119,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -143,7 +144,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -152,7 +153,7 @@ "Text(0, 0.5, 'Turbulence Intensity')" ] }, - "execution_count": 5, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, @@ -171,8 +172,6 @@ "# Assign TI as a function of wind speed using the IEC method and default parameters.\n", "time_series.assign_ti_using_IEC_method()\n", "\n", - "import matplotlib.pyplot as plt\n", - "\n", "fig, ax = plt.subplots()\n", "ax.scatter(time_series.wind_speeds, time_series.turbulence_intensities)\n", "ax.set_xlabel('Wind Speed (m/s)')\n", @@ -195,7 +194,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -204,7 +203,7 @@ "Text(0, 0.5, 'Value (normalized price/MWh)')" ] }, - "execution_count": 6, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, @@ -223,8 +222,6 @@ "# Assign value as a function of wind speed using the piecewise linear method and default parameters.\n", "time_series.assign_value_piecewise_linear()\n", "\n", - "import matplotlib.pyplot as plt\n", - "\n", "fig, ax = plt.subplots()\n", "ax.scatter(time_series.wind_speeds, time_series.values)\n", "ax.grid()\n", @@ -254,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -264,7 +261,7 @@ " [0.16666667, 0.16666667, 0.16666667]])" ] }, - "execution_count": 7, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -287,7 +284,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -334,7 +331,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -381,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -390,15 +387,120 @@ "wind_ti_rose = time_series.to_WindTIRose(wd_step=2, ws_step=1, ti_step=0.01)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Aggregating and Resampling WindRose" + ] + }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 32, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAG6CAYAAACLCQg1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wb9f3/X6e9JcuyJe8Vz0zHWc5OCIQ9CmU0hZQCX2hJCQVSoNBSoC3QFijr23T8oJRRAqVfZoBAEmc6w4mdxHvLU5ZlW3tL9/vD3GHHkmM71ll27vl46JFYd7r73Ol0r3u/P+9BkCRJgoWFhYWFZQbBmeoBsLCwsLCwTDasuLGwsLCwzDhYcWNhYWFhmXGw4sbCwsLCMuNgxY2FhYWFZcbBihsLCwsLy4yDFTcWFhYWlhkHK24sLCwsLDMOVtxYWFhYWGYcrLixsLCwsMw4WHFjYYkwP/rRj0AQBJ599tlh73/00UcgCGKKRsXCMrNhxY2FhQFEIhGee+45DAwMTPVQWFguCFhxY2FhgA0bNkCn0+GZZ56Z6qGwsFwQsOLGwsIAXC4Xv//97/HKK6+go6NjqofDwjLjYcWNhYUhrrvuOixYsABPPPHEVA+FhWXGw4obCwuDPPfcc3jzzTdRU1Mz1UNhYZnRsOLGwsIgq1evxsaNG/Hoo49O9VBYWGY0vKkeAAvLhcazzz6LBQsWIDc3d6qHwsIyY2EtNxYWhpk7dy42bdqEl19+eaqHwsIyY2HFjYVlCnjqqacQDAanehgsLDMWgiRJcqoHwcLCwsLCMpmwlhsLCwsLy4yDFTcWFhYWlhkHK24sLCwsLDMOVtxYWFhYWGYcrLixsLCwsMw4WHFjYWFhYZlxsOLGwsLCwjLjYMWNhYWFhWXGwYobCwsLC8uMgxU3FhYWFpYZBytuLCwsLCwzDlbcWFhYWFhmHKy4sbCwsLDMONhmpSwsE8Dj8cBoNMJqtcJms8Fut8Nmsw37v91uh91uh9/vRzAYRDAYxK5du9Dc3Iy7774bXC4XHA4HHA4HUqkUMpkMcrmc/vfs/8fFxUEmk031obOwTAtYcWNhGQJJkjAajWhsbERXVxe6urrQ3d097NXV1YX+/n4QBHFOQZJKpRCLxbSIpaamwul0QqVSgSAIBINB+P1+mM1mtLe3hxVKm82GQCAAuVyOhISEEa/ExEQkJCQgMzMTKSkp4HK5U30qWVimFLafG8sFidVqRUNDA+rr60e8rFYrkpKSkJSUNEw4zhaSuLi4cYuIz+fDzp07cfnll4PP54/5cyRJYmBggBbXs8WW+retrQ1cLhezZs1CTk7OiFdcXBwIghjv6WJhmXaw4sYyoyFJEh0dHTh58iROnDiBEydOoLy8HN3d3VCr1cjNzR0hALNmzYJEIonIeCYqbuPZfmtr6zCxrqurQ319PTo7O6FSqTBv3jwUFRVh4cKFKCoqQk5ODmvpscw4WHFjmVF0dHTg+PHjtJCdOHECfX19KCgoQFFREYqKilBYWIj8/HzExsYyPr5Ii9to2O12NDQ0oKKigj43FRUV4HK5KCwspM9PUVER8vLywOGw8WYs0xdW3FimNW1tbSgpKaFfbW1tw4SsqKgI8+fPj5glNl6mUtxC4ff7UVNTM+xhoKKiAhKJBGvWrMHatWuxdu1azJ49mxU7lmkFK24s04r29vZhYqbX67Fo0SL6JrxixQrI5fKpHmZYok3cQuHz+VBWVkaf44MHD44Qu4KCAlbsWKIaVtxYohq/349Dhw7hk08+waefform5mYUFRVh7dq1WLduXdSIGUmSdOQj9QoEAnQaAPUzs1gsqKurw8KFC8Hj8UAQBAiCAI/HA5fLBY/Ho19cLjcqgj+8Xi9OnDiBvXv34vDhw2hoaIBUKsWaNWuwfv16LF++HFKpdKqHycIQfD5/WszRsuLGEnVYLBZ89dVX+OSTT7Bz507w+XxceeWVuOqqq7B+/XooFApGxhEIBODxeOB2u+nX0L89Hg+8Xi8tZkN/SkNFisPh0CJlsVgAAAqFAgRBgCRJkCQ5TBCDweCI7fD5fAiFQohEomGvoe/xeJHL7CFJEgaDAWazGSRJwuPxwOVywel0IhAIQCQSQSwWQywWR3QcLNGBSqWCTqeLioevcLBXIUtU0NnZif/+97/45JNPsG/fPuTm5uKqq67Czp07sWTJkoi5wILBIJxOJxwOB510bbfb4XA44HK5ACCkqKhUKohEIggEgmFCdraYnQ3llly5cmVYt+TZFqDf74fP5xsmsn19fcP+JkkSAoEAMpmMTginXlKp9LyftClhi4+Ph0QiGXZ8Ho+HTmZ3Op0gCAIKhQJyuRxisXhc++nr64PJZILf74dIJEJCQkLY+VK3242enh643W74fD7odDpoNJqw2zYajTAajVCr1UhMTBzXuFgGIUkSTqcTRqMRAJCQkDDFIwoPK24sU4bFYsGHH36Id955B/v378eqVatwzTXX4K9//SsyMzMnfX9utxtmsxkWiwVms5kWMQDDBCE5ORlSqRRSqRRCoZDxuSUOhwOBQACBQDCm9UmShNfrhdPppI/JarWiq6sLdrsdgUAAYrEYMpkMSqUSKpUKSqUSUql0TE/egUCAFrZQEaYikQhKpRLAoBuZOr8tLS0QCoVQq9WIjY095/H09/fDYDAgLS0NUqkUPT090Ov1mDNnTsgHgUAgAIlEgri4OLS3t4PP50MkEoXctsPhgNlspi3LcOuxnBvqgcVoNCI+Pj5qXZSsuLEwitfrxRdffIG3334bn332GQoKCvDDH/4Qb7/99qQ+BVJCNlTM3G43pFIpVCoVYmNjkZ6eDplMRlcQma4QBAGhUAihUIiYmJhhyygXIlXpxGKxoKGhAVarFVwuFyqVihY7lUoVUvB8Ph8AjCnilMfjITY2FrGxsbQo9vX1oaurCzKZDGq1GjExMSFdlz09PYiLi6Otr7S0NFgsFphMppDXBvUAAgymgIQjEAigubkZ6enp6O7uPucxsJwb6lrw+XysuLFcuJAkicOHD+Ott97CBx98AIVCgU2bNuGpp55Cfn7+pOzD6XTCZDLRbi2n0wmZTAaVSgWNRoOsrCwolcqojVCMFARB0K7UoS67QCAAm81Gi39TUxOsVistThqNBhqNZliwznjnV7hcLi10Pp8P/f39MJlMaGtrg1KpRGxsLJRKJTgcDoLBIBwOB3Q63bD9KRQK2rqeKG1tbVCpVFAoFKy4TRLRPNdGwYobS8QYGBjAW2+9he3bt8NgMOCmm27CJ598guXLl5/3j8PlcsFkMtEvl8tFW2Tz5s2DWq2+4IRsPAy12iiCwSDMZjNMJhMMBgOqq6tpgRKLxQgEAiBJckLfHZ/Ph1arhVarpecMOzo6oNfrodFo6HGc/Z3x+Xy43e4JH2d/fz+cTuekPUSxTB9YcWOZdMrKyvDaa69hx44dKCwsxCOPPILvf//74w4uGEowGKTnZAwGA118mBWzyYPD4UCtVkOtViMnJ4cWu56eHng8HjgcDvj9fjp6k8/nT0joRCIRGhoasG7dOuj1erjdbtTV1QEYrKIy1rlAAPjRj34Es9mMp556asQyr9eLtrY25OTkRJ3b+Z///Cfuv/9+mM3mkMtbW1uRkZEBAJg/fz4qKioYG1tJSQnWrVsHALjmmmvw0UcfMbbvyYQVN5ZJwePx4D//+Q9eeeUVVFZW4rbbbsPRo0cxd+7cCW/T5/PBaDTCYDCgp6cHHA4HWq0Ws2fPhkajYcUswlBiJ5FI0NLSArlcDj6fT0duOp1OvPnmm3j88cfR19dHB4zY7XbExMRgxYoVKCkpobdH3TQbGxuxfPlydHd3Q6vVgiAIeDwenDlzBgaDgQ5U0Gg08Pl8E/6eKTGurq4e9r7NZoPRaERRUVHUu9e++eYbLFiwYFK25XK5oNFocOrUKcyaNSvsetR3s3XrVng8nknZ91TAihvLeTEwMIDXXnsNr7zyCpRKJbZs2YLNmzfT0XPjxe12o7OzEwaDAX19fZDL5dBqtVi2bBliYmKi/mY0k6GSzXk8Hu2mXLduHex2O/bt24dly5aBx+OhpKQEOp0OR48ehdvtpiMT9+7di9TUVGRlZQHAsPk1oVAIqVQKiUQCuVwOo9GIrq4uAEBcXNyExqtQKDB79uxh77W0tNApBtPhWqLmLCeDr7/+GmlpaaMKGwAIBALodDqIxeJpLW7RZauzTBu6u7vxi1/8Amlpadi9ezfefPNN1NbW4r777hu3sPl8PrS1teHw4cPYtWsXDAYDdDodLrroIqxbtw4FBQVQq9XT4mZ0IcHlcjFv3jwkJCSgrKwMQqEQwWAQX3/9NS677DKkp6fj8OHD9PpD3V0lJSUgCIJ2y/3zn//EsmXL8Omnn2LZsmVYtGgR7r//fvT29sJoNKK5uRm1tbW46667aHf0tm3b4PP56LlAKh2CmqPjcrkwGo248cYbkZiYCI1Gg2uuuQb79++HWCymx/D5559j3rx5EIlEWLZsGSorK4cd58GDB7Fq1SqIxWKkpKTgvvvuGxbk4vF48NBDDyEpKQlSqRRLly4dZrFSx5eamgqJRILrrrsOfX19EzrnP/rRj3Dttdfi97//PbRaLVQqFZ566in4/X5s27YNarUaycnJeOONN0Z89uOPP8bVV18NADh16hTWrVsHuVwOhUKBoqIilJWVTWhM0Qorbizjorm5Gffccw8yMzNRV1eHXbt2Ye/evbj00kvHNa8RDAZhMBhQVlaGr776Ck1NTYiPj8fFF1+MFStWICsriy3pNE1Yt24dSkpKIBAIIJVKUVpaSpdG++qrr2C322E2m3H06FFa3ELhcrnwwQcf4Mknn8Rf//pXdHZ24vXXX8ecOXPA5XLxv//7v3j//ffx2muv4eDBgzCZTPj4449hs9ng8/nQ09OD6upq6PV6epv33nsvPB4P9u/fjzNnzuDBBx8ccV1t27YNzz//PI4fP464uDhcddVVdPpDU1MTLr30Ulx//fU4ffo0duzYgYMHD2LLli3057ds2YLS0lK89957OH36NL7//e/j0ksvRUNDAwDg6NGjuOOOO7BlyxZUVFRg3bp1+O1vfzvh871nzx50dXVh//79eOGFF/DEE0/gyiuvRExMDI4ePYp77rkHd99997D0iGAwiM8++wzXXHMNAGDTpk1ITk6mO2g88sgjM8/NT7KwjIFTp06Rt9xyCykQCMhNmzaRZ86cmdB2BgYGyFOnTpE7d+4kv/rqK7Kqqoq0WCyTPNroxev1kh999BHp9XqneihjxuVykdXV1aTL5Qq5/O9//zsplUpJn89HWq1WksfjkUajkXz33XfJ1atXky6Xi/z0009JAGRNTQ3p9XrJPXv2kADIgYEBkiRJ8o033iABkI2NjfR2X3vtNVKr1dJ/JyQkkI899hh58uRJsqamhjSZTGRycjJ5zTXXhB373Llzyd/85jchl+3du5cEQL733nv0e319faRYLCZ37NhBkiRJ3nHHHeT//M//DPvcgQMHSA6HQ7pcLlKv15NcLpfs7Owcts5FF11EPvrooyRJkuQtt9xCXn755cOW33TTTaRSqQw77paWFhIAWV5ePuz9zZs3k2lpaWQgEKDfy83NJVetWkX/7ff7SalUSv773/+m3zt06BAZHx9Pf04ul5P//Oc/w+6f2le4c3uuayIaYOfcWEalpqYGjz32GL744gvcfvvtqK2tpaO4xorf70dnZydaW1ths9mQnJyMxYsXIzY2lnU1zgDWrl0Lh8OB48ePY2BggO74vWbNGtx+++0AgGPHjiEzMxNpaWl0uTMAw+poSiQSej4OGCztRJV5slgs6O7uxiWXXIK5c+eit7cX7e3tyM3Nhc/nC5uicN999+EnP/kJdu3ahQ0bNuD666/HvHnzhq1TXFxM/59qYFtTUwNg0H13+vRpvPPOO/Q65LdFsltaWtDc3IxAIICcnJxh2/R4PPRcWU1NDa677roR+/zyyy/HeIaHc3b7Ia1Wizlz5tB/U+kb1LkDBl2SV155Jf25Bx54AHfeeSfeeustbNiwAd///veHnfuZACtuLCFpb2/HE088gX//+9+444470NzcPO4KIjabDa2trWhra4NEIkF6ejqSk5NnnvvjAmfWrFlITk7G3r17MTAwgDVr1gAAEhMTkZKSgsOHD2Pv3r1Yv349xGIxXfAZGLxGhEIhAoHAiOuCKix9NjweDwkJCYiPjwefz4fT6UR9fT1dNm0od955JzZu3IjPP/8cu3btwjPPPIPnn38eP/vZz8Z0bHa7HXfffTfuu+++EctSU1Nx+vRpcLlcnDhxYkSlDplMNqZ9jJdQ5ynUe0MfHD755BM8++yz9N+/+c1v8IMf/ACff/45vvjiCzzxxBN47733RojwdIadc2MZRl9fHx566CHk5ubC7XajsrISr7766piFjfy2evzhw4dRUlICr9eL4uJirF27FhkZGaywzVCoebeSkhKsXbuWfn/16tX44osvcOzYMXq+bejNWCaTgcPh0FF5Ho8npKAplUokJCTg6NGj9HskSaKqqgoKhQJSqRR1dXVoamoakfSdkpKCe+65B//973/x4IMP4u9///uw5UeOHKH/PzAwgPr6ejrpe+HChaiursasWbNGvAQCAQoLCxEIBGA0Gkcsp6JB8/Pzh4377H1GmoaGBuj1elx88cXD3s/JycHPf/5z7Nq1C9/73vdCBqFMZ1jLjQXAYE7QSy+9hD/84Q9YtmwZDh06hMLCwjF/PhgMor29HY2NjfD7/UhPT8fChQvZArUXCOvWrcO9994Ln89HW24AsGbNGmzZsgVerzdkMAmXy6Vb5QCDiddut5uOvBzK1q1b8eyzzyI7Oxt5eXl44YUXYDabQRAEkpOTER8fj+7ublRVVSE2NhaJiYn4xS9+gcsuuww5OTkYGBjA3r17R1QreeqppxAbGwutVovHHnsMGo0G1157LQDg4YcfxrJly7BlyxbceeedkEqlqK6uxtdff41XX30VOTk52LRpE2677TY8//zzKCwsRG9vL3bv3o158+bhiiuuwH333YcVK1bgT3/6E6655hp89dVXE3ZJToSPP/4YGzZsoOtBulwubNu2DTfccAMyMjLQ0dGB48eP4/rrr2dsTEzAitsFTjAYxOuvv45f/epXSE1Nxf/93/+NGtF2Nn6/H3q9Ho2NjeDxeJg1axZSUlKiriIES2RZt24dXC4X8vLyoNVq6ffXrFkDm82G3NzcUa1/ar5MJpPB7/fT/eKAwWuUw+HgwQcfRHd3NzZv3gwOh4Mf//jHuO666+geeQKBAGlpadBqtejs7ERlZSUsFgvuvfdedHR0QKFQ4NJLL8WLL744bN/PPvsstm7dioaGBixYsACffvopnZA+b9487Nu3D4899hhWrVoFkiSRlZWFm266if78G2+8gd/+9rd48MEH0dnZCY1Gg2XLluHKK68EACxbtgx///vf8cQTT+DXv/41NmzYgMcffxxPP/30JJz5c/Pxxx9j8+bN9N9cLhd9fX247bbb0NPTA41Gg+9973t48sknGRkPU7DNSi9gysrKcO+996Knpwd/+tOfcP311485wMPr9dIT6mKxGDk5OdMmMXYqofq5XX755dPGRet2u9HS0oKMjAxGLXG/3w+32w2/3w+BQAChUDiuCvQOhwPt7e3weDxISUkZUQSAyrsbGBgYVmMzGqDKb5WXl59XhRKqo0JHR8ewh46xQJU2C1V+a6quifHAPl5fgPT19eGee+7B6tWrsXHjRlRXV+OGG24YkzB5PB5UVVVh165dMJlMKCoqwpo1a5CYmMgKG8ukwuPxIJPJIJfLQZIkbDYbHA4HAoHAmD4vlUqRm5uLpKQktLW1ob6+nrYGpwvLly/H8uXLJ/z5/v5+vPDCC+MStgMHDkAmkw2LEJ2OsG7JC4hgMIj/9//+Hx555BEsW7YMp0+fPmcpHgqfz4empiY0NjZCo9Fg+fLlUKvVER4xC8ugG00qlSIQCMDj8cBms9GNSc9lyREEQXcd6OrqQnV1NbRabVR3kAaA5ORkOgmciiydCDk5OSPSFM7FokWL6ELNkYr4ZAJW3C4Qjh8/jnvvvRe9vb144403cNVVV425C3Nrayvq6+shk8lQXFw8abXuWFjGA5fLhUQigVAohNvths1mg0AggEgkOuccL4/HQ2pqKjQaDdra2lBZWYl58+YhGAxGpceBmr+eCsRi8ZTtezJh3ZIzHIfDga1bt2LNmjW47LLLUF1djauvvvqcP2iSJNHe3o49e/ZAr9ejsLAQK1euZIWNZcqhLDmZTIZgMAir1Qq32x0yheBsJBIJcnNzkZycjPb2djQ0NMDr9TIwahamYS23GcyBAwdw++23Q6vVoqKiYkzuCZIk0dPTg5qaGvh8PuTn5yM5OTkqn25ZLmyoOTmqBY/H44FIJIJAIBj1eiUIgu4C3tHRgaqqKiQnJ0Oj0bDX+QyCFbcZiNPpxC9/+Uv8/e9/x9NPP42tW7eOKcrMbrejsrIS/f39yM3NRXp6+rii01hYpgI+nw8ejzdM5MRi8TmjUXk8HtLT0xETE4PW1lYMDAwgPT2dTgNgmd6w4jbDOHjwIG6//XbEx8fj5MmTyM3NPedn/H4/Ghoa0NTUhJSUFGzYsIH9gbNMKwiCgEAgAJ/Pp7uG8/l8iMXic87HKZVKzJ49G+3t7aiqqkJKSgpb93QGwIrbDMHpdOKxxx7D3/72tzFba1SprDNnzkAoFGLFihWIiYlhaMTTFyr/irISqP8PfS8YDCIYDIIkSfoVDAbh9/sBALt27QJBEOBwOCAIYtj/hUIhhEIhRCIR/Rr6N5/Pn3Y3Xqqjus/ng0QiQWpqatiWRi6XC52dnXA6nfB6vUhJSRkRyt7d3Y2BgQG43W5wOBzIZDIkJyfT50ggEMDlcsFqtdLnb7RzxuPxkJGRAbPZDL1ej4GBAaSlpbEPedMYVtxmABUVFbj55puhVqvHbK3Z7XacOXMGZrMZBQUFSE1NnXY3zEhAkiScTicsFgvd+JISLJfLBY/HA7/fD4IgRgiPTCaDRqOhk41DiZfb7UZpaSmKi4vB5XKHCSAliFQJKrfbDbPZPExAA4EAOBxOSNETiURQKpWQy+VRVSGmv78f7e3tSEtLg1QqRU9PD+rr6zFnzpyQrsNgMAihUAi1Wo329vaQ27TZbIiPj4dUKgVJkujs7ER9fT1mz54NLpcLDocDqVQKn88Hl8sFr9c7JlelSqWCTCajrbi0tDQ25WWaworbNIYkSfzlL3/Btm3b8Mgjj+CXv/zlOa21YDCIhoYGNDQ0ICUlBUVFRRfs0ylJknA4HLBYLDCbzTCbzbBYLPD7/XQxXpFIBIVCMUxAzsd6omooyuXycVcoIUmSthqHCh6V+9XT0wOr1YpgMAiFQgGVSkW/plLwenp6EBcXB41GAwBIS0uDxWKhq2ecjVQqpa26oQ03hyISidDW1kb/7ff7UV9fD4vFMsIiJL/t0u31esHj8SAUCsd0LqxWK7788kvabZmenj7WQ2aJAlhx+5Yf/ehHePPNN/HMM8/gkUceod//6KOPcN1118FmsyEmJgZvvfUWbr75Znr5zTffjB07dqClpWXYxZ+eno5bb701YvXjzGYz7rzzTpSWluKLL77A6tWrz/kZq9WKkydPIhgMXnAuSErIKAGjxCwYDEIul0OlUiEpKQmzZ8+GXC6PykAaqpo+n8+HXC4PuQ5JkrDb7fQxtre3o7KycoTgKZVKKBSKiAteMBiEw+GgK+RTx6FQKOiebuOlra0N+fm5cDrd5155khCLhaioOD2uhOjOzk48/PDD+OKLL+B0OjFr1iy88cYbWLRoUdjPlJSUYMuWLaivr0dSUhKeeOIJ/OhHPwIw2LGgqakJixYtgs1mQ11dXchtzJ8/f9qUdoskrLgNQSQS4bnnnsPdd9894sYvk8mwaNEilJSUDBO3kpISpKSkoKSkhL4IW1paoNfrsX79+oiM89ixY7jpppuQn5+PiooKxMXFjbr+UGstMzMTubm5UXnznkwCgQB6e3thMploQRt6g6eEjIkbPJMQBAG5XA65XI7k5GQAw4XdbDajo6ODFjxK2NVqNbRa7XlVwwgFNcd49s2Wz+ePaE0zVkwmE5xON/71qhb52ZH3OtQ0eHHblh4cP34csbGxY8r1HBgYwIoVK7Bu3Tp88cUXiIuLQ0NDw6gPlC0tLbjiiitwyy234De/+Q2OHz+OO++8EwkJCdi4cWPIz8yZM2fEb5nHY2/rACtuw9iwYQMaGxvxzDPP4A9/+MOI5evWrcN///tf+u+amhq43W5s3bp1mLiVlJRAKBQO6/A7GZAkiRdffBG/+tWv8OSTT+KBBx445435QrLW3G43enp6YDAY0NvbC6FQiPj4eKSkpGDOnDkzTsjGCkEQkMlkdNAFMNKSbW5uRkVFBWJiYqDT6aDT6SCTyaJ6HjY/W4CF85gr2kslflutVqSmpo76gPjcc88hJSVlWI+0c3Ww3759OzIyMvDYY4/B7/cjLy8PNTU1ePHFF8OKG4/HY8UsDOxZGQKXy8Xvf/97/OAHP8B9991H3wgo1q1bh2eeeQbd3d1ISEjA3r17sXLlSqxfvx5//etf6fX27t2L4uLiSa2WPTAwgNtuuw1nzpzB7t27sWzZslHXvxCsNaqYbnd3N3p6emA2m6FSqaDT6ZCfnw+5XB7VN+epJJTguVwu+uGgtrYWYrEYOp0OsbGxY6r+EQrqxuvz+Ya97/P5pp3rTC6Xo6CgAM3NzaipqUFWVhY9h3o2n3zyCTZu3Ijvf//72LdvH5KSkvDTn/4Ud911V9jtl5aWYsOGDQAGv5+kpCQUFhbiz3/+cyQOZ8bDittZXHfddViwYAGeeOIJ/L//9/+GLVuxYgUEAgFKSkpwyy23oKSkBGvWrEFRURFMJhPdAmLfvn244447Jm1MNTU1uPrqq5Gfn4/y8vJzWl8OhwMnTpyA3++fcdZaMBiEyWSCwWBAT08PPB4P4uLikJaWhiVLlkRt+43pgFgsRnp6OtLT0+H3+9Hb2wuDwYDKykrExsbC6XSCw+GAx+ON2QKmohapOWtg8KHEarUiPj4+kocTEQQCAXJzc9HV1YXa2lpkZGSEbJfT3NyMv/zlL3jggQfwy1/+EsePH8d9990HgUAwrLfaUAwGw7CUh5iYGCQkJMBqtYbtZnD69OkR45szZ87ED3AGwYpbCJ577jmsX78eDz300LD3JRIJFi9eTIvbvn37sG3bNvB4PCxfvhwlJSUgSRJtbW3javg5Gjt37sQPfvADbNmyBU899dQ5bypdXV0oLy9HSkoKHRY93fF6vbRFYTQawePxoNPpMHfuXMTFxc2IY4w2eDweEhISkJCQAJfLhebmZjqVIRgMgsfj0ZVBznX+tVotWlpaIJFIIJVKYTQaEQwG6ejJlpYW8Pl82oIMBoP0fBwV6UgJazQ8vFBWlVgsRnNzMxISEqDT6YZ5CYLBIBYtWoTf//73AIDCwkJUVlZi+/btYcUtFNQ5crlcIb0QeXl5w+4JrKfiO1hxCwHV5+zRRx+l59Eo1q1bhx07dqCqqgoulwsLFy4EMNhxeO/evQgGg5BIJFi6dOl5jYEkSfzpT3/Ck08+iX/84x/DglhCEQgEUFVVhfb2dhQWFiIxMfG89j/VkCSJvr4+6PV6dHV1QS6XQ6fTITs7G0qlkv0RMwiVo0elQQQCAfh8PjqHjMfj0dVBQn0varUafr8fXV1ddBJ3dnY27ZY8u3Cxz+dDdXU1/XdPTw96enogl8vHlMPJFGq1GiKRCI2NjXC5XEhPT6eFJiEhAQUFBcPWz8/Px4cffhh2ezqdDj09PcPes9lskMlk6O/vDxnIIhAI2Dm3MLBnJQzPPvssFixYMOLHtG7dOvz2t7/Fu+++i5UrV9JPratXr8bf/vY3kCRJuy8nitvtxl133YW9e/di3759KCoqGnV9u92OsrIyEASBtWvXhq38MB3weDxoa2uDXq+Hz+dDSkoK1qxZA4VCMdVDY/kWLpdLX/dDk85dLhcEAgEEAsEIay4+Pj6sG/Ls35hQKBw1XD6akEgkyM/PR1NTE2prazFr1iwIBAKsWLFiRKh+fX090tLSwm6ruLgYO3fuxNatW+n3vv76ayxbtgxmszkqrNbpBCtuYZg7dy42bdqEl19+edj7y5cvh1AoxCuvvILHHnuMfn/JkiUwGo34+OOP8eijj054v11dXbjuuuvA4XBQVlY2LD8oFO3t7Th9+jTS09ORn58/LaMBSZKEyWRCa2srDAYD1Go18vLykJCQwLocoxzKohMKhfD7/fB6vbDZbOByuRAKhREtFVbTwEyrmnPth8/nIycnB21tbXSgyc9//nMsX74cv//973HjjTfi2LFj+Nvf/oa//e1v9OceffRRdHZ24l//+hcA4J577sGrr76KZ599Ft/73vewa9cuvP/++/j8888RGxs7wqoDBlMtzg72oSq0XOiw4jYKTz31FHbs2DHsPZFIhGXLlmHfvn1Yu3Yt/b5QKMSyZctQUlIy4fm2iooKXHHFFbj44ouxffv2UZ/UgsEgTp8+je7ubhQVFZ1TBKMRv9+Pjo4ONDc3w+PxIDU1FevWrZvW3X8vVIYmmIey5sZaFWQsaDQaSCQi3LZl5M0+UkgkolHLcHE4HKSlpcFoNKK+vh5ZWVn4v//7Pzz66KN46qmnkJGRgT//+c/YtGkT/Znu7u5hVVYyMjLw+eef495778Ubb7yBlJQU/OMf/8DGjRvh8XjQ398/Yr+VlZUj3svLy2N/QwAIcqIxviyTSklJCa699lo8/PDDeOSRR0Z92vV4PDh27BgCgQCWLl0aNhw5WnG5XGhpaUFrayvEYjEyMzORnJx8QVhpPp8PO3fuxOWXXz5tQuHdbjcdCTwe1xhVLoyqx8nn8yEUCidljqitrQ0mk+m8tzMWSJKEVCpFQkICpFLpOcdvsVjQ1NSEpKSkEQWfZwoTvSaYhLXcooD//Oc/2Lx5M1599VXcfvvto65rsVhw9OhRqNVqFBYWTitBMJvNaGhogMFgQHx8PJYsWcK2FpnBDLXmAoEAPB4P7Hb7pLgsU1NTkZqaOskjDg9JkvT4JRLJqHPqSqUSubm5aGhogM/nQ1JSEnuNTwGsuE0xVOHjHTt24Morrxx13c7OTpSXlyMnJwfZ2dnT5gdjt9tRU1ODnp4epKenY/369dM66IVl/HC5XEgkEohEIni9XrrDAlWEOtqhukBwuVw4HA4EAgGIRKKwv0GpVIq8vDzU19fD7/cjLS1t2vxeZwqsuE0RJEniN7/5DV555RXs2rULy5cvH3Xduro6umjqdJlfc7lcqKurQ3t7O1JSUnDRRRdNOxcqy+QyNACFairK4/EgEommRUg7VbSaEjiJRBJ2LlEkEiEvLw8NDQ1obGxEZmbmtPK0THei/2qagQQCAfz0pz/Fzp07cfDgwRH5MEPx+/04efIkLBYLVq1aNS1C4n0+HxoaGtDc3AytVou1a9eGrWLPcmFCWUICgYB29/H5fNo6ima4XC5kMhmcTifsdjukUmnYMVMVTRobG1FfX4/s7OxpIeIzAfYsM4zX68Utt9yCmpoaHD58GCkpKWHX9Xg8OHLkCHg8HtasWRP1fdcCgQCam5vR0NAApVI540p/sUw+HA4HYrEYQqEQbrcbNpsNAoEAIpEoqsPZqbJiLpeLFrhwosXj8ZCTk4Pm5mbU1tYiJycn6n/LMwFW3BjE4/HghhtuQHd3Nw4cODBq6wyHw4HS0lKoVKqoDxwJBoNob29HbW0tnYA7HesGskwdHA4HEomEFjmr1QqhUDipKQSTDUEQkEgkcLvdtMCFmz/kcDjIyspCa2sr6urqkJubywpchGHFjSHcbje+973voa+vD998803IYqsUFosFpaWlSExMxNy5c6N2IpokSXR3d6OmpgYkSWLOnDlITEyM2vGyRD9cLhdSqZTuOG6z2WiRi9brirIyHQ7HqJGUBEEgPT0der0edXV1yMnJmfT+eSzfwYobA7hcLlxzzTWw2+3YtWsXlEpl2HVNJhOOHj2K7OzsqI6I7OvrQ1VVFZxOJ3Jzc5GWlha1T9gs0w8ej0eL3NDISoFAEJW/CWpcDocDJEmGFS2CIJCWloa2tjbagmMFLjKw4hZh3G43rrvuOhgMBrz66qujBoR0dXXh5MmTmDt37qg16KYSv9+P6upqtLW1ITs7G1lZWewEOUtEoPLkeDweXaTZ5/NBLBZHpZuez+dDJpPB4XAgGAyGTRUgCAJarRZer5cVuAjC3pUiiMfjwfXXXw+z2YxvvvkGZ86cwcmTJ7Fw4cIRF31raysqKytRVFSEhISEKRrx6JhMJpSXl0MsFmPt2rVsiR8WAIDRaITBYKAr/qempobNY3S5XOjs7ITT6YTX60VKSkrIKh6htimXy2lXZW9vL6xWK2NWnEajGVPSOI/Hg0wmg91uB0mSEIvFI8bo8XjgdruRnp6Orq4u1NfXs3NwEYAVtwjh9Xrx/e9/H729vfj666/p6MFDhw6NEDiqonhxcfGoQSZTxVBrLT8/H5mZmVHpGmJhnv7+frS3tyMtLQ1SqRQ9PT2or6/HnDlzQgZXBINBCIVCqNVqtLe3j3ubEokE3d3dmDd/Htwud6QPj0YkEaOupnZMAsflcjF//nzo9foRy+6++248++yzkMlk4PF4SE1NpefgKisr8eSTT6K1tRXZ2dl47rnncPnll0ficC4IWHGLAMFgEJs3b0ZHRwd2795Nz7GJRKIRAtfU1IT6+nosX748KsPmTSYTKioqIBQKWWstDCRJwufzwe12D3sFAgGQJAmSJBEMBkGSJF3ZvbKyEjweDwRB0P3SOBwOhEIh3TeNSnaO5geJnp4exMXF0U0109LSYLFYYDKZQnogpFIpbdV1dHRMaJsWiwVulxuZ266CKFUToSP7DnebCc1//BQmk2nMJb+OHz8On88Hh8MBLpeLpqYmXHLJJbjyyitpYQO+m4P78MMPceutt+J3v/sdrr76arz77ru49tprcfLkSbaz9gRhxW2SIUkSP//5z1FWVoZDhw6NEKyhAldSUgKXy4Xly5ePGj05Ffj9ftTU1ECv11/w1hoVmu5yueB2u2m3EvXyeDwIBoPgcrnDhCmUeInFYjidTnoZSZK0CAYCAfT19dHb9fl8ADBC8CjRE4lEkMvlkEqlU/LdBINBOByOYRVzCIKAQqGAw+GI+DZFqRpIZ0VntZ64uDgAg8djt9vxpz/9CRkZGdi4ceOIOWqCIPDBBx9g1apVuOaaa5CTk4Onn34aX3/9NV599VVs3759Kg5h2sOK2yTz3HPPYceOHTh8+HDYXC+RSITExETU19cjPj5+1OjJqaCvrw/l5eUXpLXmcrlgsVhgNpvpf91uN6RSKcRiMS0usbGxI0RnLIE1VFeAvLy8c9ZUpIoNny2kLpcLAwMDdH4Vh8OBSqWCSqWCUqmESqViRPD8fj8AjDgOPp8Pt3tiLsNIbHMqoSKId+zYgS1btoS9RkpLS3H//fcDAJqbm5GVlYWNGzfio48+YmikMw9W3CaRN954A8888wz27duHzMzMsOs1NTWhpaUFxcXFowaZMM1Qay0vLw9ZWVlTPqZIQZIk3G73MBEzm83weDyQyWRQqVTQaDTIysqCUqmckuK+VLFhiUQSdp1gMAir1UofR1NTE6xWKzgcDi10lOjJZLIZ+31GKx6PBx9++CEsFgt+8IMfwOl0QiKRjPgeDAYDEhISMGvWLNTV1UGv1yM+Ph4Gg2GKRj79YcVtkvjss8/ws5/9DJ9++ikWLFgQdr3m5mbU1dWhuLgYMTExYYNMmIay1gQCAdasWTMja0H6fD46Cq+3txcejwdyuRxKpRJxcXHIzs6GUqmcVqkNQ602imAwCJvNRgv2UMGLjY2FTqeDVqs97yLW1Hmi3KcUPp9vwg8DkdjmVEFZ2f/+979x2WWXITs7G3a7PazAAYPHn52djdraWlgslikY9cxh+vyKo5jDhw/jlltuwZtvvjlqF26qDT0lbEDoIBMmBY4kSTQ2NqKurm5GWmtOpxMGgwEGgwEmkwkymQw6nQ6LFi2CSqWaVkI2ViirTalU0vmSlOD19vaio6MDp0+fhkKhgE6ng06ng1KpHPf3TtVXtNls9PVMkiSsVuuEy69FYptTASVsfX192L17N/773/+Cw+HQaQIul2tYmoBOp6ODjQQCAbKzs6HX6+mgGpbxM/N+2QxTU1ODK6+8En/84x9x/fXXh13PYDDg9OnTWLp06Yh29VMlcIFAABUVFTCZTFi5cmXUBbVMBJIkYTabaUGz2Wy0tTJ//vwLto/cUMGbNWsWPB4PbcU2NjaCz+fTQqfRaMacJK3VatHS0gKJRAKpVAqj0YhgMEjflFtaWsDn85GcnAxgUGSpuTOSJOH1euF0OulWOGPZZrRDCZtMJsOf//xnxMfH44orrgAAWuBsNhsIgqCt5+LiYuzevZuedxOLxaioqEB+fj76+/tH3DNYzg0rbudBf38/rrrqKvzkJz/BPffcM+p6ZWVlKCwspKOozoZpgXO5XDh27BgIgsCaNWuitlX8WAgGg/SN2mAwIBAIQKvVIjs7G/Hx8WxybAiEQiFSUlKQkpJCR2kaDAacOnUKXq8X8fHx0Ol05ywooFar4ff70dXVRSdcZ2dn0y5Er9c7bH2fz4fq6mr6756eHvT09EAulyM3N3dM26Rwt5km41Sck/HsZ6iwcTgcvPHGG9i8efMwDwGHw8GWLVsQFxeHZ555BkKhEFu3bsWaNWvw/PPP44orrsB7772H8vJyvPjii2htbYVQKLxgH8wmCkGSJDnVg5iO+P1+XHrppZDL5fjwww/D1lW02Ww4cOAA8vLyRg0yoXC73Th06BBUKlXEBK6/vx/Hjh1DfHw85s+fH5WljMaC3W6HXq9He3s7OBwOEhISoNPpEBsbG7V1Lqloycsvvzwq55AoF6DBYEB3dzfsdjsSEhIgFAqRlZUVFc1m29rakJufB7fTxdg+x5LEPVTYeDwedu3ahY0bN9JFkoeydu1apKam4uWXX6aLLX/wwQd4/PHH6STuP/zhD7j88sthMBjQ09ODgoKCqLlm3G43WlpakJGREbUPxqy4TZD77rsPJSUlOHz4cNhQeZfLhQMHDiAlJQX5+flj3nYkBa69vR2nTp2atrlrgUAA3d3d0Ov16O/vh06nQ1paGuLi4qbFsUS7uJ2N1WpFS0sLAoEAUlNTIZPJIBAIpvzhoa2tDSbT+Cw3qggzn88fd3L8ucpvnS1sY4VK9B6tXQ5JkmhtbYXb7UZubu6Un3tgeogb65acAH//+9/x7rvv4vjx42GFzev1orS0FPHx8cjLyxvX9iPhoiRJEtXV1dDr9ViyZMm0mpwHBh8UWlpaoNfrwefzkZ6ejkWLFrEFZyOMQqFAbm4umpubIRAI6EoslEBMVUBOamrqmKuFDCUQCMDhcND94yZDKCYqbMBg/p5YLIbD4Qj7eaqKCZUikJ6ePi0e5KYaVtzGyYEDB3D//ffj888/R0ZGRsh1AoEAjh49CqlUinnz5k3oQpxMgfP5fDhx4gQcDgdWr149bZKySZJEf38/mpubYTAYEB8fj0WLFkGj0bA/boYhCILukE0ll9vtdnC5XAiFQvD5/GnxnXC5XMhkMjidTrrB6Pm45c9H2CiEQiFIkqQFLtR4qGanNTU16OnpGVbBhSU0U2/fTiP0ej2uv/56PP/881i7dm3IdUiSxKlTpxAMBrFo0aLzejKkBM5sNuPkyZOYiAfZbrdj//79IEly2ggbSZLo6OjAvn37cOTIEYjFYqxfvx5Lly6dNu7HmQyVXK5QKMDn8+FyuWC1WuF2uyd0jTINlW7A5/Nhs9lG5NSNlckQNgrqAYHqBxcKgUCAWbNmoauri82BGwOs5TZGnE4nrrnmGtxwww2jRkY2NzfDaDRizZo1kxKocT4WnNFoRFlZGdLS0lBQUBD1okCSJIxGI2pqauDxeJCdnY2UlJRpMTd1IUKF7wuFQvh8Png8nqhvKkpBheFzuVw4HI5xF6meTGEbOh6HwzFqkrdUKkVaWhqam5uRn58ftfNd0QArbmPkvvvug1wux0svvRR2HerGvGLFikmNKpuIwLW0tKCqqgrz589HSkrKpI0lUvT396OmpgYWiwU5OTnIyMiYtlGcFxqUy5LP59NzcpTIRbu7kgqOcTgcCAQCYUVlKJMtbBQEQUAikcBut9PnLxSxsbFwOp1oampCfn5+VASYRCPsWRkD77zzDj766CP8+9//DmtF2O12lJWVYf78+RFpXTMeF2VDQwNqamqwfPnyqBc2m82GY8eO4fDhw4iJicHFF1+MWbNmscI2DaFETi6XQygUwuVywW63T9jtxxQ8Hg9yuRyBQABOp3PU31akhI2Ccpm63e4ROYJDSUpKAofDCdsTj4UVt3NSX1+Pn/zkJ3jzzTfpKgtn4/P5cPToUaSlpUVUTM4lcCRJora2Fo2NjVixYkVUVzVwuVyoqKhASUkJhEIhNmzYEFV5PCwThyAICIVCek6OCt6gKv5HI1TlEKrlTiiBi7SwUVBzmk6nM+w543A4yMzMRH9/P/r7+yM2lukMK26j4Ha7cdNNN+F//ud/6PI5Z0OSJMrKyiCVSlFQUBDxMYUTOJIkUVNTg9bWVqxYsSLq2uhQeL1eVFVVYffu3fD5fFi3bh3mz5/Pzh3MQAiCoHvOcblc2O122v0XjVBWExW5OFTgmBI2Cioy1eFwIBgMhlxHKBQiPT0der0eHo8n4mOabrDiNgoPPfQQBAIBfv/734ddp6amBk6nE0VFRYzNLZwtcMFgEJWVlWhvb8fKlSuhUCgYGcd4IEkSTU1N+Oabb2CxWLBy5UosXrx4WkRvspwfVJNWhUIBgiBgs9ngdDrD3rSnkqECZ7fbQZIk48JGQeURjuYqjYmJQWxsLJqamqLyfE4lbEBJGP773//i7bffptvAhMJoNKK5uRmrV69m3J1GCdzBgwexZ88eBINBrFy5Mirrz9lsNpSXl8Pr9WLRokXTLoGcZXKgEqep+TibzQaJRDKh385EKpSMB5Ik4XK5EAwGQZIkUlJSGC8sTgWY2Gw2uN3usEFqycnJqK2tRWdnZ9TPsTMJK24haGlpwR133IF//OMfYRO13W43Tp48iblz506ZpSQUCqFWq9HR0QGtVjtqU8upgLLWamtrkZ6ejry8vBnZYoZlfHC5XEilUni9XjgcDtoFN9aov7a2NuTm5cHtYrC2pFiMutrRa0sOJRAI4De/+Q3efvttGAwGJCYm4kc/+hEef/zxUT08JSUleOCBB1BVVYWUlBQ8/vjj+OEPfwi73Q4ejxfyQYCaf6uuroZcLp8R3T0mA/ZOcxbBYBC33XYbbr75Ztxwww0h1yFJEidOnEBcXNyESgBNBiRJoqqqCiaTCatWrcLJkyenvOHpUOx2O8rLy+HxeFBcXIzY2NipHhJLFEEFnfB4vHFbcSaTCW6XC2nrN0EUo434WN0DPdDveQe9vb1j/r0/99xz+Mtf/oI333wTs2fPRllZGW6//XYolUrcd999IT/T0tKCK664Avfccw/eeecd7N69G3feeScSEhKwdu1aOJ1OyOXykA8BIpEIaWlpaG1txezZs9nALLDiNoKXX34Z3d3d+PLLL8OuU19fD5fLhSVLlkyZkNTW1qKjowMrV66ETCaLmo7eQ621tLQ05Ofns9baNOW1117DH//4RwgEAmzfvh1arXbUwJ/+/n50dXXROVrJycnDApsCgQA6OzsxMDAAv98PoVCI+Ph4xMXFTciKE8VoIYkLHcEcCVwuF0iSHNNv6/Dhw7jmmmvoQLT09HT8+9//xrFjx8J+Zvv27cjIyMDzzz8PAMjPz8fBgwfx4osv4pJLLoHf74fT6YRUKg05htjYWJjNZrS1tU3LouiTDRtQMoSGhgY8/vjjeP3118POXZlMJjQ0NGDx4sVT9nREFVBdsWIFHZAxGaW6zhe73Y6DBw+itbUVxcXFmDt3Lits05QdO3bggQcewBNPPIH//ve/EAgEaG1tDZuzZrfb0dzcDI1Gg4KCAqhUKjQ2NsI1xHXY3t4Oi8WCzMxMzJkzB1qtFm1tbbBYLBAKhZDL5XTH8GjMjQsVRRmO5cuXY/fu3aivrwcAnDp1CgcPHsRll10W9jOlpaXYsGHDsPc2btyI0tJSuoJJMBgcNTIyNTUVNpsNAwMDYzyqmQsrbt8SCARw++2344477sDq1atDruPxeHDixAnMnj17ykLtGxsb0dzcjOXLl0Mulw9bNlUCR1lrJSUlUKlUWLt2LeuGnOa88MILuOuuu3D77bdj1qxZUKvV4HA4YYM4enp6oFQqodPpIBaLkZSUBIlEAqPRSK/jcDgQGxtLJ3nHxcVBIpHA4XAA+G4ujgqBj7aISrFYDJIkz5noDQCPPPIIbr75ZuTl5YHP56OwsBD3338/Nm3aFPYzBoMBWu1wN6tWq4XVaoXL5aIDctxud9j8Nz6fj9TUVLS1tUXlAwKTsOL2LS+//DIMBkPYsH+SJFFRUYGYmBikp6czO7hvaWtrQ11dHYqLi8MGsTAtcFTvuebmZixbtoy11r4lGAzSBYUtFgvMZjPttgOAgYEBDAwMwGKxwGq1RlX+l9frxYkTJ4ZZEQRBQCaT0UJ0Ng6HY8Q1qVAoYLfb6b+lUinMZjO8Xi/dFNXtdg/7HDUXN9SKi5bkbypNIBAI0C7KcLz//vt455138O677+LkyZN488038ac//QlvvvnmeY2Bx+OdM/9NrVZDLpdDr9dPi0LWkYK9C2FwDu3xxx/Hl19+GdYd2dHRgYGBAaxfv35KfNn9/f04ffo0lixZcs5oqEj0gwvFwMAAjh07Bo1Gg2XLll0woubz+ejwbI/HA7fbTb+ovynXEZfLBYfDAUEQ4HA4cLvdAIDy8nKQJEmHmlM3cD6fTxfxFYlEI16UZRNJTCYTAoHACCuCCv4Ihc/nG/H9U7UmKVJTU6HX63H69Gn6ekxLSxvhgQC+s+Ko1jpisTgqevdRlUxsNhvd7icU27Zto603AJg7dy70ej2eeeYZbN68OeRndDodenp6hr3X09MDhUIxLA1AKBTC7/fD7XaHjZBOTU1FVVUVBgYGorpSUSS5MO5Go0C5I++66y6sWrUq5DputxtnzpxBYWFh2Jy3SOJyuXDs2DHk5+ePOUcs0gLX0dGBiooK5OXlISsra8ZOXvt8PpjNZpjNZtoCczgcIcVHpVKNEKazAyOoTtzr168fNmdLJQuHEkyTyUS/53K5IBQKoVKpoFKpoFQq6f1G+3dgNBrhcDgwa9YsCAQC2O12tLW1QSAQhPREUBVOuFwu7aKMhko2lAVnt9vB4XBCzr07nc4R3z2Xyx3VzVpcXIydO3cOe+/rr79GcXHxsPeo+TebzQY+nx9y/0Pdk3K5/IKMnrzgxe2VV16B0Wgc1R156tQpaLVaJCQkMDy67xqfarVaZGZmjuuzkeroXVNTg5aWFixevHjE0/10JhAIoL+/f5iYORwOiMViWkioZN7JtiKoG/m5bt5+v58WWYvFgq6uLthsNlrwKLGLjY2d8IOYRqMBl8sdYUX4/f6wN0k+nz/Cfejz+ej1g8EgOjs7kZWVRXseqPqJBoNh1FxRPp9Pu0QDgQAtEO6BnrCfmUxC7YfH40EsFsPpdIZsMHrVVVfhd7/7HVJTUzF79myUl5fjhRdewI9//GN6nUcffRSdnZ3417/+BQC455578Oqrr+IXv/gFfvzjH2PPnj14//338fnnn4/YP5fLpfcfLj1ArVZjYGAAer0es2bNOt/TMO24oMWtq6sLv/rVr/DJJ5+ENe+HuiOZhiRJlJeXg8vlRlVHb7vdjtWrV4d0J003PB4Penp6YDAYYDQawefzERMTA5VKhbS0NCiVyqhwh1HweDzExsYOC9jx+/2wWq20KHd3d8NutyM2NhY6nQ5arXZcZc4EAgGKioqwe/duXHvttQBAl6MK9zAjlUphtVqHLbdarfR+SZIMGUY/1mtxaAdtsVgMkVgM/Z53xnxM54tILIZGoxn2nlAopAsty2SyYQLzyiuv4Fe/+hV++tOfwmg0IjExEXfffTd+/etf0+t0d3ejra2N/jsjIwOff/45fv7zn+Oll15CcnIy/vGPf2Djxo0hxyQQCOgWQ6O5JysrK2GxWKK23mykIMgLeMbxBz/4AQDg3XffDbnc7XZjz549KCwsnBKrrb6+Hq2trVi9evV5u2OowA+VSjUhgbPb7Th69CgkEgmKioqmxD07GVA3aYPBAIPBgIGBATrKT6fT0fUPIwXllrz88ssj6ipyOp20aJtMJkgkEvoY1Wr1OY9xx44d2Lx5M/76179i0aJFGBgYgEQiwdy5c8Hn89HS0gI+n093yrDb7airq0NSUhKUSiUGBgbQ3d2NgoICer6orq4Ofr8fqampEAgEsNls0Ov1SElJGbO7nSRJuN1uNDU1wel0Tmie1+v1wuPxQCwWj/nzGo0mZAI3lR4AIGz+WSQJBAKw2Wx0Z/FQGI1G9PT0YPbs2ZPW+83tdqOlpQUZGRlR4SoOxQUrbnv37sU111yD2tpaJCYmjlhOkiSOHTsGHo+HoqIixsdnMBhQVlaGVatWTdoT10QFrre3F8ePH0dqaioKCgqmXXNEkiQxMDCArq4uGAwGuFwuxMXF0VbNZDaWPRdMidvZ++zt7YXBYKBdjZSbXavVhv0+X331Vfzxj3+EUCjE9u3bMX/+fNpirKurg0AgGFae7lxJ3D6fDx0dHbBarXQSt0ajgVarHbcoeL1eOJ3OKe+gDQy6XO12O/h8PqPXEgU1HxvOPUlNJahUqpD3uonAiluU4vP5sGDBAtx+++146KGHQq7T3t6OqqoqrF+/nnErxWq14sCBA1iwYAGSkpImddvjETiSJNHS0oLq6mrMmzdvykqNTRSv14v29nbo9Xq4XC4kJiZCp9MhLi5uyiI7p0LchhIMBjEwMACDwYDOzk4Eg0GkpqYiLS0tbKRwtN7I/H4/HA4HeDzelHbQBr6zoCQSCeP3C8p6pPLgQmG321FfX4/Zs2dPips9Wq+JoVyQc24vv/wyAGDr1q0hl/t8PlRVVWHu3LmMX6herxdHjx5FVlbWpAsbMPY5OJIkcfr0aXR3d2P58uXTJpyYstJaWlrQ1dUFlUqFWbNmITEx8YJJVRgNDodDz9kVFBSgt7cXra2t2LNnD9RqNTIyMqDT6aaFdU510HY4HLDb7ZBKpWHHHem2NVTqAiUyTF5rQ6MnBQJByH3LZDKo1Wq0t7dfMMElF9yvvaurC08++SQ+/vjjsE/OtbW1kMvlk2bCj5VgMIjjx49DqVQiNzc3Yvs5l8BRgSz9/f1YvXp11HUbCAUVjdfc3Ay73Y7U1FSsWbMmKnvbRQsEQSA+Ph7x8fFwu91ob29HZWUlKisrkZGRgbS0tKifW6XyzhwOBxwOR0iBY6ofG5Wj6HA4wroIIwWVc0cdZ6gH1qSkpAsquOSCE7eHHnoIV1xxBdatWxdyucViQWtrK9auXcv45HBlZSW8Xi+WLl0a8X2HE7hgMIiTJ0/SDUWj1eVA4fP50NzcjJaWFvB4PGRmZiIlJeWCzOs5H0QiEbKzs5GVlQWDwYDm5mbU1dUhJSUl6t3RBEFAKpXC6XTCbrcPi1xkutGoUChEIBCgIyiZvIeIRCLYbDZ4vd6Qrkc+n4+kpCS0tbVNanBJtHJBidvBgwfx6aefora2NuRyyhWXmZnJeJi7Xq9HZ2cn1qxZw5hL42yBW7BgAU6cOAGHw4GVK1dGVQj82QQCAej1etTV1UEmk6GwsBDx8fFRn8gc7XA4HCQmJiIxMRFmsxmNjY04cuQIEhMTo6rO49lQjT2HCpzP52O8gzY1DrvdDqfTOaa5wMncN5X7xufzQ4pXXFwcTCYTenp6piQCnEkuGHEjSRK/+MUvsG3btrBzWR0dHXA6nSMqAkQau92OM2fOYOnSpYy7AId29P7mm28gFAqxYsWKqHVHkSSJjo4O1NbWgsvlorCwcELRdiznRqVSYdGiRejt7UVnZyddkWM80YlMMlTgbDYbSJJkVNiGjkMqldLdDZj8LfH5fHC53LC5bwRBIDk5GU1NTVMaWMUEM/fIzuKTTz5BY2MjHnjggZDLhwaRMPmFU/NbqampiIuLY2y/QxEIBJBIJOjr64NarY5Klx5JkjAajaiurobP50NeXh5SUlKi8iY706Cq+IvFYvh8PjrUXyAQRN35JwgCXC4XPp+Pruc5FXA4HIjFYrhcLvB4PEbHca7gEoVCAalUiu7ubqSkpDA2LqaZ2U7XbwkEAvjlL3+JX/3qV2ErNUxVEElzczM8Hg8KCgoY3S9FMBhEWVkZvF4v1q5dC6vVOmX94MLR399Pu05TU1Nx0UUXITU1NepurDMdqgyWWCyGx+Oh53ei6Vqhcr4oi81ut0+ZO5USl3N1EJhshgaXhNtvcnIyent74fV6GRsX01wQlttbb70Fl8uFu+++O+Ryu92O1tZWrFmzhtEbpt1uR01NzZRV1KesRrvdjhUrVtAuyWjo6A0M3qjOnDkDg8GArKwsLF26NCqtygsJgiAgEAjA5/Ph9Xrhcrng8XggkUhG1FeMJG1tbSN6y51deYSqZhIIBCCRSM7LegpXoeRcUFYU0+5JkUgEq9Uadr8SiQQqlQpdXV1T1sIr4pAzHJfLRaakpJBvv/122HWOHTtGlpeXMzcokiSDwSC5f/9+8vTp04zud+j+T548SX7zzTeky+UatszlcpHffPMNWVZWRgaDwSkZX2dnJ7lz507y6NGjI8Y3nfF6veRHH31Eer3eqR7KmHG5XGR1dXXI7yEYDJJOp5McGBggXS4XI9eLXq8nRSIxCYCxl0gkJvV6/bjGabVaya1bt5KpqamkSCQii4uLyWPHjo36mb1795KFhYWkQCAgs7KyyDfeeGPC58ntdpMWiyXsd+JyuciysjLS6XSOe9ujXRPRwoy33P73f/8XarUat9xyS8jlZrMZPT09uOiiixgdV1NTEzweD/Lz8xndL0V1dTVMJlPIcH+m+sGFwuPx4PTp0+jt7cW8efOQlJTEuh+jGCpCj8/nw+l0wufzRdyKM5lMcLtdmI0lkCLyUc0O2FDlPgaTyTQu6+3OO+9EZWUl3nrrLahUKrz33nvYsGEDqqurQwa1tbS04IorrsA999yDd955B7t378add96JhISEsMWTR0MgEMDj8dBzpGcjEomg0WjQ2dk5IxO7Z7S4WSwW/O53v8Pbb78d1iVRXV2NjIwMRmvC2Ww21NbWori4eErckVRJqtWrV4c97qkQuK6uLpw6dQqxsbFYv3591OfYsXwHVS3E7XbDZrONu+bjRJBCDgURE7Ht00xguszlcuHDDz/Exx9/jNWrVyMYDOLhhx/Gl19+ib/85S/47W9/O+Iz27dvR0ZGBp5//nkAQH5+Pg4ePIgXX3xxQuI2NDVAIBCEvAcmJibizJkzdPrETGJGB5S88MILmDt3Li699NKQy3t7e2E2m5Gdnc3YmMhv57nS0tKGtS1hiv7+fpw6dQqLFi0658VMCZzZbI5okInH40FZWRkqKiowd+5cLF68mBW2aQh1M5XJZPB6vbDb7QgEAlM9rCnB7/cjEAjQ1zEVPSkUCnHw4MGQnyktLcWGDRuGvbdx40aUlpZOeBxUpCbVGf5s+Hw+tFotOjs7J7yPaGXGipvNZsPLL7+MJ554ImztxOrqamRnZzM60dvU1ASv1zsl7sjz6egdKYHr7u7G3r17EQgEsH79eiQnJ7NuyAjz2muvIT09HSKRCEuXLsWxY8dGXf/LL79EV1cXqqqqUFVVBYvFMmIdl8uFhoYGlJeX4/Tp0+js7ARBELDZbHC73VEVUckEcrkcxcXFePrpp9HV1YVAIID3338fx44dQ2dnZ8jzYTAYRvTL02q1sFqtcLlcExoH9cDh8XjCRo1qtVq6PudMYsaK21//+lfk5uZi7dq1IZd3dXXB7XYPa9kRaSh3ZGFhIePuyEAggGPHjp1XR+/JFDjq4eLkyZOYPXs2lixZwlprDLBjxw488MADeOKJJ3Dy5EnMnz8fGzduhNFoDLn+4cOH8eCDD0IqldJdtBsbG4fdbN1uN+rq6iAWi5Gbm4uCggIkJCRAKBTSVpzD4Zi0kPzpEr7+1ltvgSRJJCUlQSgU4uWXX8bNN98MDocDn8/H2Dh4PB54PB7cbnfY5XFxcTAYDIyNiQlmpLh5PB688MILePTRR0NaAcFgEDU1NcjNzWVMZCh3ZHp6OuPuSJIkUVFRAYIgzruj92QInM/nw7Fjx9DV1YXVq1ezydgM8sILL+Cuu+7C7bffjoKCAmzfvh0SiQSvv/56yPVfeukluqegSCRCUlISJBLJMDHs7OyEQqFAcnIyJBIJRCIRVCoV+Hw+eDwe7f6eDDclFSAxHcjKysK+fftgt9vR3t6OY8eOwe/3IzMzEy6Xa4TY63Q6ut8eRU9PDxQKxXnHBIjFYni93rDnX6vVwmKxTNhCjEZmpLi9+eabUKvVuOqqq0Iu7+rqAkmSjBaEpdyReXl5jO2TorGxESaTCUuWLDmvKLbJEDiHw4EDBw4gEAhg9erVjNfwvJDxer04ceLEsHkdDoeDDRs2hJ3XKS0tHVGOTqFQ0C4skiRhsVggEolQX1+PiooK1NTUYGBgYNg+qE7Rdrt9wlYLVQR5KhqCng9SqRQJCQkYGBjAV199heuuuw48Hg9Op3PYb6i4uBi7d+8e9tmvv/56UsoBcrlc8Pn8sA8GAoEAGo0G3d3d572vaGHGRUv6/X784Q9/wG9+85uwXWkbGhowa9YsxkriuFyuKYuONBgMqKurm7QK/+cTRUl19E5JSbkgqpJHGyaTCYFAIOS8Trhi4gaDYYSngc/n0wLl9/sRDAZhMBiQlJSE5ORkWCwWNDU1ITc3l354oeZ+OBwOHA7HpHTQdsA2oUjG8eKAbUKf++qrr0CSJHJzc9HY2Iht27YhLy8Pt99+O7hcLh566CEYjUa8/fbbAIB77rkHr776Kn7xi1/gxz/+Mfbs2YP3338fn3/++aQch1AohN1uh0gkCvnb02q1qKqqgsfjieqi6WNlxonbf/7zHwQCAdx8880hl/f09MDj8TBqtdXW1iIhIYFxd6TNZsOJEydQWFgIlUo1adsdr8CRQzp6z507F2lpaZM2FpaphbI8VCoVLZpUVfze3t4RlrlQKASXy6Xn4MRi8bg7aGs0GohEYlS5Rw+EmUxEIjE0Gs24PmOxWPDoo4+io6MDarUa119/PX73u9/RVXZ6e3uh1+tBkiQIgkBGRgY+//xz/PznP8dLL72E5ORk/OMf/5hQGkAoqLk3qorLyGMUISYmBgaDYUb8RmeUuJEkiWeffRbbtm0LaSFRVltWVhZjpYKsVis6Ojqwfv16RvZHQXX0zszMnNKO3sFgEKdPn4bBYEBxcfGUpD9EmkAgAJfLBbfbTb+oGodutxterxfBYBAkScLhcAAASkpKwOFwQBAE3eSSsmao/4tEIjpBejLQaDTgcrkh53V0Ol3Iz+h0OvT19Q17z+fz0WPi8XggCGKEV0AsFoeNvjvfDtqpqamoq6sdUX5rovj9ftrdGc6zMpHyWzfeeCNuvPHGsMv/9a9/jei/tnbtWpSXl49rP+NBJBLBbrdDKBSGPOc6nQ61tbVITEyc9qXuZpS4ffnllzAYDLj99ttDLu/r64PVasWyZcsYG1NNTQ3S0tIglUoZ2ycAnD59GjKZLKJzfOcSOL/fj2PHjsHr9U6bjt7nIhAIwGKxwGKxwGw2w2w2w2azgSCIEcIkk8mg0WjoGwlBEHA6nXQ+H4fDAUmS8Hq9tCBarVYYjUZaGAOBAKRSKZRKJVQqFVQqFZRK5YTSVwQCAYqKirB7925ce+21AAYfPnbv3o0tW7aE/ExxcTGOHDmC1atX0+9ZrVY6SITD4UAikYyIxHO73aOOkeqgTfVfk0qlIx44R2s0mpqaOqneF+ohRC6XM9p/TSQSweVyMdZhgcfjgcvlwuv1hpymkEgkkMvl6OnpQXJycsTHE0lmlLi99NJLuPfee8NOODc0NCAzM5OxJ5L+/n709vaOSMyMNF1dXTAajVi/fv2UdfT2+Xw4evQoAGDFihXT9inQ7/fDaDSip6eHFjI+n0+LTW5uLlQq1Zjca8Cg1VNRUYHY2NgxnROPx0ML6cDAAFpaWuByuejCt/Hx8dBqtWOeT33ggQewefNmLFq0CEuWLMGf//xnOBwO+oHwtttuQ1JSEp555hkAwNatW3HbbbfhnnvugdvtRn9/P5xO57BiuzqdDs3NzbQb0mq1wmw2Izc3d9SxUP3XXC4XXSGDErip6KDt8/ngdrsZDVihgjzClciKBCKRCE6nM+ycp1arRXNzMxITE6f1vPiMEbe6ujqUlJTgzTffDLncbDajr68PCxcuZGQ8VB5XVlYWo/lbVG3GuXPnMvpjGSpwc+fOxZEjR8Dj8bBkyZJp1xDR5XLBYDDAYDDAZDJBLBZDp9ONW8gmA6FQiPj4+GFJ916vlxY7vV6PU6dOQaVSQafTQafTjWp93HTTTejt7cWvf/1rGAwGLFiwAF9++SU9X9bW1jbshrZ8+XL86U9/gs1mQ1NTE0QiEWbNmjVMAGJiYpCWlobu7m60tbXR64wlEpYKNCEIghY4yk04FR20qYcXJvdLiU24ElmTDVW1ZKg7dChyuRx8Ph/9/f3jnmeMJghyhpQO2Lp1K/r6+ujIo7MpKyuDQCDAvHnzGBlPT08PTp48iQ0bNjBqtZSVlSEQCGDJkiWM54653W4cPHgQXq8XarUaixcvZrQNyvngcDjQ0dGB7u5uWK1WqNVq6HQ6aLXaSU1X8Pl82LlzJy6//PJJuy7cbjd6enpgMBjQ29sLoVAInU6HpKQkxMTEnPd14Ha70dLSgoyMjIg9MJEkSc9TApiSDtrA1LgnqblYLpfLmNVItStSKBQhj9NoNMJkMiE/Pz/kciauifNlej1Sh8Fms+Gf//wndu3aFXK5y+VCd3c3Y0EdlNWWk5PDqLAx6Y4MBZfLBZfLRTAYZLz78ESgQthbW1thMpmg1WqRlZUFrVbLaEm280UkEiEtLQ1paWkIBAIwmUzo7u5GaWkpJBIJ0tLSkJycfN7HFMnnYIIghl2zU5XUT7knKdcvE1DW22iBHpMNn8+Hy+UK2+8tNjYWnZ2dcDgcIWvQTgebaEaI27vvvotZs2ZhyZIlIZe3trYiLi6OsaCOjo4O+Hw+RpsAUu7IefPmTcmTlN/vx5EjR+h6haWlpVHR8DQUbrcber0eLS0t4HK5SEtLw8KFC6P2CXQ8cLlcaLVaaLVazJkzB11dXWhtbUV1dTVSUlKQkZEBhUIxrm1SD2hOpzNilsXQOTafzzdiDo4phronqU7aTMDj8cDn8+F2uxkRVSoAyuv1hhQ3LpeL2NhYGI3GkOLmdDoBIKrn0qe9uJEkie3bt+Pee+8NeRMNBALQ6/WMzbUFg0HU1tYiLy+P0R/mmTNnoFarIxL2fy78fj+OHj0KDodDV0GJpo7eFA6HA/X19ejo6EBsbCwKCwsRHx8fFWOLBDwej44qNJvNaG5uxr59+xAbG4vc3Nwxp2VwuVyoVCq65JZEIpnUc0ZFi0okEvj9fgCDv+v+/n7GO3xTEAQBs9kMqVTK6PVht9tBkiQjxxwMBuF0OkEQRMj9KRQKNDU10fOQwOD34nQ6YTQaoVKponraYdqL2/Hjx9HU1BQ2aburq4suDMoEra2t4HK5SElJYWR/wOAx9vb2Yt26dYzfqEmSRFlZGUiSxLJly+iLfSobnp6N2+1GfX099Ho9kpKSsGbNmnFbL9MdlUqFhQsXYvbs2WhubkZpaSk0Gg0KCgrGdC6oPLhwBZYnit/vh8/nC+mOo2ohikSiKbl23G43OBwOoy5qr9cLkiQZqxBCFaEOd4xWqxXV1dUjrhEqgCmamfbitn37dtx6661he5O1trYiIyODkR+Hz+dDXV0dCgsLGe1cferUKUajI4dSXV0Nu92ONWvWjHDhTLXA+Xw+NDU1obGxEXFxcRekqJ2NUChEfn4+MjMzUV9fj3379iEpKQl5eXmjusMIgkBCQgLi4+MnraI91TR3wYIFISvokCSJyspKDAwMoLCwkPE5XIfDgWPHjmHBggWIiWGgKSoGBbW0tBRFRUWMXKtWqxUnTpzAypUrQ7oYq6qq8OSTT+KLL76gf7t8Pj+qLTaKaR0tabfbodVqcejQISxYsGDEcqvVin379mHjxo2MPH3V1tait7cXK1euZOwmfvz4cZAkicWLFzP+dNve3o4zZ85g1apVo0YUut1uHDp0iLYeIj3OQCCA1tZW1NfXQyaToaCgIGoqo0QiWvJ8cDgcqK2tRVdXF9LT05GTk8OI1dDc3IyamhoUFxdDrVaHXc/v9+PAgQNQq9WYP39+xMd1Nk1NTWhpacHatWsZm3+jeuYtX76ckf3t27cPqampIdt/eTweJCYm4qOPPsKqVasYGc9kEd3hbOfgo48+QlZWVkhhAwattqSkJEaEzev1orGxEQUFBYyJDBX6PdE2NufDwMAA3dH7XKHyTHX0BgYT50tKStDW1obCwkKsXLkyaoQtGpFKpSgqKsLq1avhcDiwe/dutLe3R/Q7GquwAYPzhkuXLkVXVxdaWloiNqZwZGZmQigUoq6ujrF9Zmdnw2w2T1p5sXORnp6O1tbWkN+5UCjETTfdhHfeeYeRsUwm01rc3n77bWzatCnkMr/fj/b2dsYiFvV6PVQqFWM3UirdIDc3l3F3JNXROy8vL2o6egcCAVRVVeHw4cNISUnBmjVroNPpZmywyGSjVCqxbNkyFBYWoqqqCseOHQvb3PJ8GI+wUUgkEixZsgRVVVWM3fApCILA3Llz6cowTCAQCJCeno6mpiZG9peUlASn0zmsTdFQNm3ahPfff3/aNImlmLbi1tPTg927d+MHP/hByOUGg4Guch1pgsEgWlpaxt3h+nxob29HIBBgNN0A+K6jd1xcHLKyssb12UgJ3MDAAEpKSmAymbB69Wrk5OREfY5dtJKQkID169eDy+Viz549k2rFTUTYKGJjYzF37lwcP36cLj7NFFTHAyatt4yMDBiNRkaOlcfjISkpCe3t7SGXL1++HEqlEl988UXExzKZTNs7wHvvvYcVK1aEjUrs6OhAcnIyI0/uVHt2pqKHAoHAlKQbDO3oPX/+/Cnv6E1Za4cOHUJKSgpWrVp1wQeMTAYCgQCLFi3CggULJs2KOx9ho0hLS0NSUhKOHj06aUEtYyU/Px/t7e2w2SbW2228iMViJCQkoLm5mZH9JScno6ura0R3cGDQet20aVPY6k/RyrQVt3feeQc//OEPQy7zeDwwGo2MVbVubm5GRkYGY9ZCa2sr+Hw+41W7m5qaoqqj9/79+9Hb28taaxEiMTER69ato6243t7eCW1nMoSNYs6cORAKhRGfuz0bmUyG1NRU1NTUMLbPzMxMtLW1MSLksbGx4HK5YVM9Nm3ahE8//RQWiyXiY5kspuXdoL6+HqdOncINN9wQcnlnZydiYmIYqUhCtT1hqrmfz+dDfX192JpvkWJgYAC1tbVYsmTJpHb0nojAmUwm7N+/H7GxsVi9ejVrrUUQoVCIRYsWYfbs2Th69Ciam5vH9V1NprABg61yFi9eDKvVyphVQ5GTkwOj0Rh2bmqyiYmJgUwmC+sunEwIgkBycjI6OjpCLs/Pz8fs2bPx4YcfRnwsk8W0FLd33nkHV155Zdju0pRLkgmam5uRkpLCWKJnU1MT5HI5XcWdCQKBAE6ePImcnJxJncOciMC1tLTgyJEjyM/Px7x581hrbQivvfYa0tPT6RJox46N3qn6gw8+QF5eHkQiEebOnYudO3eGXfeZZ57BQw89hPLycpw6dSqk++psJlvYKAQCAQoLC1FTUxO2IWokEIvFyMzMRHV1NSNWI0EQyMzMHPcDxURJTk6GwWAIayn+8Ic/nFZRk9PuzkCSJN55552wUZJ2ux1ms5mRMlQejwednZ0h80MigdvtZjzdABjM3+PxeJg1a9akb3usAhcMBnHq1CnU1taiuLiY8UCaaGfHjh144IEH8MQTT+DkyZOYP38+Nm7cGNbNdPjwYdxyyy244447UF5ejmuvvRbXXnstKisrR6z7f//3fzhy5AhsNhu6urpgNptx6NAheDyesOOJlLBRUJ2xKyoqGHVPZmdnw2KxTNhFO16SkpLonoKRRqFQQCaTobu7O+Tym2++Gfv370dnZ2fExzIZTDtxq6qqQnd3Ny677LKQyzs7Oxmr6t7e3o6YmBjG3GL19fWIi4uLyM0iHP39/WhpaYlohYhzCZzH40FpaSn6+/uxZs0aNm8tBC+88ALuuusu3H777SgoKMD27dshkUjw+uuvh1z/pZdewqWXXopt27YhPz8fTz/9NBYuXIhXX3112HqdnZ342c9+hnfeeQd8Ph+BQAArV66ESCTCvn37Qs7BRFrYKAoKCuByuRh1T/L5fOTk5DBmvXE4HKSmpkKv10d8XwBGdU0mJCRg+fLl+PTTTxkZy/ky7cTtk08+wcUXXxyyOjlJkmhvb2fEJUmSJPR6PWNzbQ6HA3q9Hvn5+YzsDxh0R5aXlyMnJyfiAh5O4FwuFw4ePAg+n49Vq1Yx1oZkOuH1enHixIlhHd85HA42bNiA0tLSkJ8pLS0d0SF+48aNw9YPBoO49dZbsW3bNsyePZt+n8fjYdGiRUhLS8PBgwfR19dHL2NK2KhxTIV7MiMjg/baMEFaWhoMBkNE8g7PJikpCSaTKWxO31VXXYVPPvkk4uOYDKaduH366ae4+uqrQy6z2Wxwu92MhOT39/fTpWmYoLa2FsnJyYwGT0TSHRmKswXO4XDg0KFDdOPT6dbRmylMJhMCgcCIeVitVkunqZyNwWA45/rPPfcceDwe7rvvvhGfJwgCubm5mD17NkpLS9Hb28uosFFoNBqkpaWhvLycMfckl8tFXl4eamtrxzT3eL5IpVJoNBq0tbVFfF9isRhqtTrsdXP11Vdj9+7djD5MTJRpJW4GgwHHjx/HFVdcEXJ5d3c34uLiGMn9am1tRUpKCiP7ouY6cnNzI74vCibckaGgBK6/vx979+5FXFwcFixYwFYaYZgTJ07gpZdewj//+c9Rz316ejrmzZuHI0eOoKqqilFho8jPz4fH42HUPZmSkgKCIBiJZAQGrTe9Xs+IgOt0urDilpOTg4yMDHz99dcRH8f5Mq3E7fPPP8fixYvDRgoaDAZGrDav14uuri7GXJLNzc1ISkpizCVHuSNzc3OnJMyeJEmQJAkOh8N4su50RKPRgMvloqenZ9j7PT09YX8POp1u1PUPHDgAo9GI1NRU8Hg88Hg86PV6PPjggyOCeagebAAYsWTOZirckxwOB7NmzUJTUxMjgpOQkAC/389I+TGdTgeTyRT2tzddXJPTStxGc0m63W5YLBZGQuQ7OjqgVCoZufF7vV60t7czWtqroaEBPB5v3OW1JgOqg0B8fDzWrVsHi8XCeMLudEMgEKCoqAi7d++m3wsGg9i9ezeKi4tDfqa4uHjY+gDw9ddf0+vfeuutOH36NCoqKuhXYmIitm3bhq+++or+DOWKXLFiBebPn4+jR48Om4NjitjYWKSlpeHUqVOMXSvJycnweDyMCA6TgSUymQwSiSRsROjVV1+Nzz77DIFAIOJjOR+mzSSGy+XCrl278Nvf/jbk8p6eHqhUKkaKCDNZkLmtrQ0qlSpsTt9kQ6UbLF++nPEcMp/Ph8OHD9PtTQiCiJqGp+OBJEm6u7TH46H/DQQC9I2wvr4ePB4PQqEQIpFo2L8TOe8PPPAANm/ejEWLFmHJkiX485//DIfDgdtvvx0AcNtttyEpKQnPPPMMAGDr1q1Ys2YNnn/+eVxxxRV47733UFZWhr/97W8ABsXi7KhUPp8PnU5Hu8fPnmNTq9UIBoM4cuTIlJRCy8vLwzfffAOj0cjIQy6Xy0VaWhqam5sZaYacmpqKkpIS+Hy+iLdLolyToWIKiouLEQwGcfToUcba8kyEaSNue/bsgU6nGxa1NRSmXJIulwsWiwUJCQkR31cwGERzczPmzJkT8X1R1NXVIT4+nvF5E5IkcfLkSYhEomFzbFPd8PRcBINBOreSelmtVgQCAfB4PIhEIlq0uFwuHYVGRb719fXRAuj1ekEQBORyOZRKJf1Qo1AozhlMc9NNN6G3txe//vWvYTAYsGDBAnz55Zf0Tb6trW2YaC5fvhzvvvsuHn/8cfzyl79EdnY2PvroozFfa+GCR9LT0+F2u3H06FGsWbOG0S7WfD4f2dnZqK6uRnx8PCPXSUZGBr755hs4HI6IV0SSy+WQSqUwGo0Rz+PV6XQ4duwYSJIccR55PB6uuOIKfPLJJ1EtbtOmWelPf/pT8Hg8vPzyyyOW+f1+fPnll4yUYmppaUFnZydWrlwZ0f0AQFdXFyorK7FhwwZGrCi73Y69e/di7dq15+zRNtlUV1ejq6sLq1evDnlDZLrh6Wh4vV4YjUYYDAb09PSAJMlhYqRUKiGRSEIK0mjNSoPBIP3wZLFYaLH0+XzQaDTQ6XTQ6XRTng5xrqhIkiRx/Phx+Hw+FBcXM+oBCAQC2L17NwoKChirUlRWVgaRSMTIQ2h1dTVcLheKiooiuh+SJPHll19iyZIlIfNK33//fTz99NM4c+ZMRMdxPkwby23v3r149tlnQy4zmUwQCoWM3JBHm6SfbFpaWhgtyEylGzAtbB0dHWhpaQkrbMDUW3A+nw8dHR3o6upCX18fFAoFtFotli9fDpVKNSlj4XA4kEqlkEqltDuIJEk4nU4YDAZ0d3ejsrIScrkcCQkJSE1NZVzoxhLuTxAEFi5ciAMHDqCyshLz5s1jbHxUmH5NTQ0SExMZ+e1kZGTgyJEjyMvLi3i6ik6nw5EjRxAMBiN6bARB0KkhocRt3bp1uPnmm9Hb28uIS3YiTIuAEoPBgPr6eqxevTrk8p6eHmi12ojf7Px+P3p7exnx5zscDvT394dt6TPZmM1mGAwG5OXlMbK/ofutqKiIuo7eQ8dXXl6Or776Cm1tbUhISMCGDRuwdu1a5OfnIyYmJqLXHUEQkEqlyMrKwooVK3DZZZfRJaC++eYblJaWwmAwMHIuJtJBu7OzE62trREf21CoFB2m9qtWqyEWi9HV1RXxfcXExIDD4aC/vz/i+9JqtSMiaini4uIwe/Zs7N+/P+LjmCjTQtz27duH+fPnhy3aazKZGHl6aG1thVgsZsSy0ev10Gq1jHXZrqmpQUZGRsjKL5GCmpvJzc0d8wMDUwLX29uLgwcP4uDBg+BwOFi1ahXWrFmDzMzMKXULUq2Oli5diosvvhhqtRoVFRXYvXs39Hp9xELxJ9pBe/HixaisrGS0gzZBEMjPz0d9ff2wNIVI7o/KQ2NiX6Ml508mGo0GNpstbA3RdevWYe/evREfx0SZFuJWUlKCtWvXhlzmdrtht9sjXm/wq6++wiuvvIKPP/4Y9913H3bv3h2xHKxgMIi2tjbGIjJ7e3vR39+P7OxsRvYHDLrbTpw4AY1GM+4KKJEUOLPZjMOHD9Pdxi+55BLMnz8fSqVy0vYxWYjFYuTm5uKSSy5BTk4O6uvrsXfvXnR3d0/qOTmfyiMajQazZ89GWVkZvF7vpI3pXOh0OkilUjQ1NTGyv5SUFJjNZkaamVKRjJG21oVCIRQKRdjUjrVr16KkpCSiYzgfpr249fX1QalURjwq691330VR0SKc2VOH//eXN7BhwwZoYjX44Q9/iP/85z+TelEbDAZwOBxGrFGSJFFdXY3s7GxGI9taW1vhcDgwb968Ke/oDQBOpxNlZWU4ePAglEolLr74YuTm5jJ6TiYKlQN10UUXISMjA6dOncKBAwcmJd9sMkpqpaenIyYmhtHgA4IgUFBQgMbGxlG7F0wWAoEACQkJjFhvcXFxcLlcjCSsx8bGhrW6V69ejerqakY6FkyEqBe37u5u1NfXY9WqVSGXm0wmaDSaiI4hEAigqrIaPIILQZ0Kxf6NWIKLEGtLwmc7vsD3v/99xKpjcdlll+Nvf/vbebsMqILMTARMGI1GuFwuRpPEHQ4HqqqqsGDBgvPK15kMgSNJEi0tLdizZw84HA4uuugizJ49e1qI2tlwOBxkZmZiw4YN0Gq1KC0txenTpyfsmpusWpEEQWD+/Pno6ekJ204lEsTGxkKtVjNmvaWlpaG9vT3iyc08Hg9xcXGMuSbDiZtGo8GcOXOidt4t6sVtLPNtkXZJHj16FPkFeWg+2QYyOJj3oSBikEXMxuLAeizHpUj35+P41ydxz933IDExEUuWLMVzzz2H2trace3L6/Wit7eXsUCS5uZmpKenM1aUmCRJVFRUICUlBfHx8ee9vfMROIfDgcOHD6OhoQFLly7FwoULGZ1zjBQ8Hg+5ublYu3YtLBYL9u7dO+45r8kugkw1RD116hSj7slZs2ZBr9czUk2DKoPGVIksJsQtNjZ21Hm3aHZNRr24Rct829IlS9FxLLT5LSFkSCNyUBhchVW4EvlkEfRlnXj8l79Cfn4+smdl45FHHkFpaek5J/yNRiPkcjkjQQs2mw0mk4nRxp+UO7KgoGDStjkRgdPr9di7dy9kMhnWrVsXteHM54NMJsPKlSuRmZmJI0eO4MyZM1PaQTs5ORkxMTE4ffr0pG3zXGg0GgiFwrA9yiYTgiAYEx2tVouBgYGIu1yn87xb1IvbwYMHR3VJMjHfVnq4FAkJCWirOPdFKyCESCTSMQ/FWBW8AvOxHM4mP156/mUsX74c2ngt/ud//geff/55yP5MTFVaAb4ryMxURCbljiwsLJz08kHj7ehdXV2NJUuWYP78+REvZTSVEASBrKwsrF27Fn19fTh8+PCUddCm3JNGo5GRsHlqn5mZmWhubma0on6k9yUWi6FQKMKG6k8mo827rVq1ClVVVRgYGIj4OMZLVIubw+FATU0NFi9eHHJ5X19fxOfbzGYzRGIRWqr08LnGFx3JJXiIIxJRQCzCCv/lWIS1kPTF4N9v7MCVV14JdYwa119/Pd5++20MDAwgGAwyliTu8/kYL8h86tQppKSkRMxKOpfAeb3eYR29J8MtOl2grDihUDilHbQp9+Tp06cZ6/iQnJwMl8vFiLswNjYWPp8v5PmdbBISEqZ83i0uLg5paWk4efJkxMcxXqJa3E6dOoXY2NiwddQGBgagUqlQUVERMfN83759WLx4MfTHzm8inCAIqAgNcoj5WOq/GMtwMRLdmdj7yX7ceuutiNPE4UebfwS32w2r1TpJow9Pe3s7FAoFYwWZjUYjzGZzxDuJhxM4q9WKffv2XdAdvYd20D5w4MCw4A4mG40mJyczGqbP4/GQlpbGSFI3l8tlLA9Np9PBaDRGfD5RrVbDZrOFfRhZuHAhTpw4EdExTISoFreTJ0+iqKgoZNRgIBCA1WrFa6+9hsLCQshlciwqWoStW7fi3XffnTQ3RElJCQoKCtBZFrr9w0QgCAIyQokMIh9FgbVYiSuQHZwHhUiFPXv2DjaAnDsPTz75JCoqKibdxUGSJB2RyQRMpxucLXBmsxmHDh1CcnLyBd/Rm+qgTd2Q2tvbGe+gzXSYPjAYyWgwGBjZH1PiplAoIBAIIt5iiCr8Hc4aLSoqYi238XLixImwBUKtVit4PB4+/fhTaJCATP9sdJ7sxRt/eRObNm1CVlYWNLEaXHnFlfjd736Hjz76aEJdc5sammDpt8LW6zjfwwmLiBAjmcjCkkVL4DoGzMFS9FaZ8funn0FhYSFSU1KxdetW7N27d1IqLgwMDMDpdEa8sjhFV1cXPB4PMjIyGNkf8J3A9fX1Yf/+/cjKykJ+fn5UdRSYSgYjepegoqJiSjpox8bGIi4uDnV1dYzsTyaTISYmhpHO2VqtFlarle4AESkIgkBsbCwj810qlWpUcWMtt3EymrhZLBbI5XLU1tVCgwSkELMwh1iCpf6LsRpXYQFWQDmgxdEvT+CpXz+N6753PVJTUyEUiZGTk4PbbrsNH3744ahhyWazGTwBD4amyCcpqlOUkMSI0XXGBB2RgjlYipWBK1CIVUCnEP/439exfv16xMZq6LFPNIlTr9cjOTmZEQsmGAyipqYGubm5jFtMHo+H7n1ls9mmdcPT1157Denp6RCJRFi6dCmOHTs26voffPAB8vLy6DmunTt30st8Ph8efvhhrFq1Cr/+9a/hdDrx/PPPMxbkQZGfnw+9Xg+HI3IPjkOhSmQxUdlDrVYzEuyhVCphNpsjvh+VShV2P0VFRWhsbGRknnE8RK24uVwuVFdXhxU3s9kMp9OJQDAABYbnwAkIITREArKI2VhArsSc4FKADCJhyeVQZC1Eu8mGt956GzfccAOEIjFUMTEoLi7Go48+OixM+ciRI8jMzERbUzucpD2iP4qMxcloP9WNgPc7/zmH4CCW0CKPKPw2cXw9Yq0J+OTfn+GGG25ArDoWV1x+Bf7xj3+M+YcUCATQ2dnJmEuyra0NwGCjRSahctiys7Oxbt06RostTzY7duzAAw88gCeeeAInT57E/PnzsXHjxrCVIQ4fPoxbbrkFd9xxB8rLy3Httdfi2muvRWVlJYDBaiyHDh3Cddddh+3bt0On02HBggV48MEHmTwsKBQKJCUljTsXdKIkJibC4/EwYukw5ZocTXSY2k9cXBxSUlKizjUZtZMPp06dQkxMTNhkZrPZjI6ODnAJLmTk6HX/rBgAhyuAdsF6EN+2iQj4PHD1dsDRo4ejR4+yijM4cuQInn32WXB5fCQm6FBQUIDrv3c9/rLnLyhHOcQ8CeSBGChJNZSIhRwx4BLcSTnejCXJqPq6MexygiCggBoKqJEVmAMn7Oj1deHorjJ88eUXAIAli5fie9dfh2uvvRY5OTkht9Pb2wuhUMhIrUS/34/a2lrMmzeP0Z5ePp8PR48eRVJSEn0eornh6bl44YUXcNddd9Fdtbdv347PP/8cr7/+Oh555JER67/00ku49NJLsW3bNgDA008/ja+//hqvvvoqtm/fjr6+Pjz66KPDXJH79+/H1Vdfjbq6OrrTNhPk5eVh9+7dmDVrVsSvSS6XC51Oh+7u7oi7YHU6HWpra+H3+yPqsVAqlXC73XC73RFN6VEqlbDb7WGPh3JNrlu3LmJjGC9Ra7lRLslQN6FgMAir1YrTp09DzlWBQ4x+GBb0QxKXTAsbAHD5QsgSs6AtXI/MS2/HnM1PYfYPf4X0izcjdvYK9Hs5OHjoMOK18WhuboZQKIQsRgqejoSeX4cylGA/5xOc4OxDPXkKPWQHPOTEfOxipQjxs2LRWtY55s98lzi+GqvIwcTxluPteOzRx5Gbm4uc7Bw8+uijdO8nCiqPjombe3t7O0QiESNdyymGdvQe2jxyKtrlTAZerxcnTpzAhg0b6Pc4HA42bNiA0tLSkJ8pLS0dtj4AbNy4EaWlpWGDR7xeLz777DO0trYyWkFEIpEgLS0NDQ0NjOyPqSRruVwOsViM3t7JC0QLBZ/Ph1QqjbhLUCwWnzOoJNrm3aJW3CorKzF//vyQy6xWK7hcLg4eOAixX3bObdk5FojjRu/KSxAEBLIYxGTNR1Lx1ci5bisu3vIMzA435HM3QJI2FxZ3AF3dXfD6vADBgVgihiCWA4vciDM4ggP4HEd4u1BJHkM72QgrOYAgee6KEOmLkmBs7IPLMjKpeyycnTg+D8thb/Thz396CcXFxdBpdbj77ruxc+dOxpLESZJEU1MTsrKyGLWSamtrYbPZsGjRohHW4nQUOJPJhEAgMKIl0GhuL4PBEHL9zs7OkMLmdrvx8MMPAxh0Px0/fjxirXNCkZWVhe7u7ogHYACDLjSn08lI0WGmhDQaXJPz58+Puq7cUeuWrK+vx6ZNm0Ius1gsUCqVqK6uRgpCu98o/KQfLtKOuNjEcY8hUSWGwR5A3JwViMOKwe25HXAa2751Z7ait0ePoG8wvJjH44Mn5cDHcaDR3IlAMAA+lz/oTgzEQIlYKBELPjE8HD4hPw4dZyZn8plL8BCPRMQjEaSfhBkm9Jq68O7r72HPnj148sknce+99+Kaa67B5ZdfHrZm5/liNBrh9/vpjtJM0NPTg+bmZqxatSpqO3pPFZRIni1sPp8PN954I0iSxF/+8heIxWIcOHAAtbW1k1oibTSkUini4+PR0tIS8X3y+XxoNBr09PRAJjv3g/H5EBcXx8gNX6VSRTwdABh0TYaz3HJzc9HY2BjxDuHjIWrFra6uLuy8kd0+GNzh9rghg2LU7dgx+GWINeO/ySYohei2Ds+L4YmkUKTmQ5E6mIxMkkF4LCY4evRw9uhhN7TAPWAAvrUKOHwugmIvDC49WtyDE+cKXgxkPiWUiIUKsYjPVOP4+5P/IyAIAjGIQwziQPpJLFySh/oTjfj6//bigw8+AJfLxepVq/G967+Ha665ZlKLNVMFmbncyZmTPBderxcVFRWYM2cOFIrRr4npJHBUMd6zA4ZGq2Sj0+mGrd/c3Iza2lokJSWFFDa9Xo89e/bQ523RokXYv38/EhISIvbwczaZmZkoKytDbm5uxK8ZrVaL7u5uZGVlRXQ/SqUSDoeDjtiNFCqVipGEeJlMFrZSSUZGBvx+P6N9KM9FdEjsWdjtdnR2doYVN4fDQbdZl2L0SWgHLAAIiFRj6/Q8lESFAF2W0ZM+CYIDkSoesbmLkbL6BuTfuA3zf/wMsq/ZgsRlV0GUkA2b2w+Xe9DlQnC4CAi8sMn6UYMTKOPvRUyqEvuav0YLWYN+0ogAOfndgwmCQM7iLBiP27AosBYrcTlmBebhzP4abL3vfqSmpiI/Lx+XXHIJ/vOf/5yXW8rpdKK3t5exiExg0I2tUCjGHJU5XVyUAoEARUVF2L17N/1eMBjE7t27UVxcHPIzxcXF9PrUHFtjYyNWrlxJr0MJW0NDA7755pthxccVCgWys7NRXl7OSDV9YFDE+Xw+Iy1xdDod+vr6Ij63KBKJIBKJIj4fRgWVRDpBXSaThXXn8vl8ZGZmor6+PqJjGA9Rabk1NjZCqVSGrUFot9vR1tYGAVcIYWD0CCE7rBDKY8Hhje/JScAlECsVoNs6/h8Ahy+ALCETsoTv6jZ67ebv3JmGFth7B6uUp6enw+l0osPRCg/PA5/fB4LgQMVVQ+pXQvWtK1MEyXlZF/I4KdQpKrSVD+YyiQgJUpCFFDILftIHEwyoqz+F2rpafP311+Dy+Jg3dw5uu+023HPPPeOKxGpra4NWq2WsfYzBYEB3dzfWr18/rnM0XSy4Bx54AJs3b8aiRYuwZMkS/PnPf4bD4aCjJ2+77TYkJSXhmWeeAQBs3boVa9aswS9/+UukpqaipaUFFRUVeP311wEMCtsNN9yAkydP4rPPPkMgEKDnhtRqNQQCAbKzs9Hd3Y26ujpG3JMEQdB5aMnJo8+Pny8SiQQKhQJGozHi+6LmqSJZA5cKKjGbzSPmWicTmUwGr9cLr9cb0u1PdYO/5JJLIjaG8RCV4lZfX4+cnJyQNxqSJOFwOFBfXw8pIT/nzchOWCGKHX+0XoJCCKvbD4d3cp5cBTIVBDIVVJnzAABkIADXQDcW6oTQd/fCyxHC5x98KiJBwsm1wc1zoMM96G6Q8KSQ+2OggBqqb9MQzhUlOpT0RUnorjHC4xgp1jyCDzUZDx/pRvKq6yFUxMLSUokztafx85//HA88+BAy0tNwww034MEHHxy14DBV2itcMNBk4/f7cerUKcyZM2dCYsqUwPl8Pvj9frpju8vlAkmS4PP559zfTTfdhN7eXvz617+GwWDAggUL8OWXX9I3sra2tmHzHMuXL8eLL76IZ599Fr29vcjOzsZHH31ER492dnbik08+AQAsWLBg2L727t2LtWvXgsPhYOHChdi/fz+SkpIYSR1JTU1FbW0t7HZ7xOfDqIAcJsSNieRmSkQjKW58Ph9CoRB2uz1kKgUlbtFCVItbKJxOJ0iSRHl5OYR+MXCO+5CDsCNGPW/cY0hQCs/pkjwfCC4XEk0ysnM1MPsCmP2Dx+D3OIcFqzh6vmtZ7w66ERSa0OvrRjAYAJfDg5JQQx5QQQkNVFBDQIS3rjIWJ6PlWPieVv0YnKNRpc8BX6qEIiUPyau+B2dvBywtlehsPoU//OEP+MMf/4j4uHhcdtlgHtXs2bOHbaevrw/BYJCxivtNTU0Qi8XnlSQ+2QLn9XphNpthNpthsVjoggND2bt3L4BBt6NKpYJSqYRKpUJMTExIkd6yZQu2bNkScn9n99Nqbm5GRkYGTp8+HfImlJ6ePiY3rEKhQHp6Oqqrq8O6QCcToVCI+Ph4dHV1hf39TxY6nQ6HDx+OeACEUqlkpJecSqWip2oiiVQqhcPhCCtuH330UcTHMFamnbg5HA5IJBLU19bDAz/ayAaIIf32JRuWVB0g/fCSTgiV42+xkqAQjAgmiQQJSiEONJkBADyhBIqUPChS8gAMWkEeiwlOo552Zwb7Bt2KgaAfVt4AbDwz9P7BpyU5Twmp7ztXpgxKEAQBgkMgoSAeB98In4fShx6IVDrwpd89oRMEB9L4VEjjU5G49HJ4LL0wt1bB0nwKb775Jt58803I5QqsXr0KW7duxcUXX0ynGjARMeX1etHY2IilS5eet7V1vgJHkiR6enrQ1tYGg8EAsVhMi1ZaWhrdd9Dv92Pnzp247LLLwOFwYLVaaRGsq6uDzWajixdMpETaZBdBzsnJwddffw2TyRTx9lLAoOjo9fqIi5tKpQJBELBYLBENmlGpVLDb7REPKlEqlWhubo7Y9ilGm3fLzc1lLbdzUV9fj8svvzzkMspl8eC2B/HG62+gVV8Hj+e7/DAJTwZRUAJhQAwOBoWODPjhd9nBFUnHfMNKVAhR2R3ZXBguh0C8LLyIEgQBkSoOIlUc1DmLAABBvxfO3k44jHo4e1phN7QA/kFXo91vg5vnQo+/HSRI8LkCKEk1spPyQAaD6O3oAzfEV06SJPqJXihSQ/fNoxAq46Cdvxba+Wvhc9lg1VfD3HIGO7/4Ep9//jkEQhH+8r+vQSAQYO7cuRGvJVlfXw+1Wj1pN92JCFwgEIBer0dTUxOCwSBSU1NRUFBwTrcaQRDg8XhQq9Ujkqk7OjrQ2tqK6upqpKenIzMzc0xznpGo7i8QCDBr1ixUVVVh9erVEZ+T1Ol0OHXqVMQrbhAEQbvyIiluQ4NKIvlwoFKp4HK54PF4IBQKI7YfmUwWNtctJycHra2tER/DWIlKcWttbQ1bQZ4St4cffhgPP/wwSJJEd3c3mpqa0NTUhObmZjQ1NaG+rn6w6oGNQPv+D9C+/wNweAII5GoIVfEQKmMhVGggVMRCoNBAIFOC4AyKIZcAYqV8GCYQTDIetDIBvP4gzK6xR0dyeALIEjIgS/ju/PgcFjho664VPmMbEAzAF/Cin9MLyazZaGxpxN7gR1Dy1ZD5VN+mIaghhgwuOOAhnZAnzRrzOPhiOWLzliI2bykCPg9sHfUQ2Tshl8tx6623YvOPbkdebg5uueUW3HfffecMzw+Hz+dDb2/viHw5l8uF1tbWsF3aJ8p4BK6vrw/l5eXgcrnIz89HYmLieVusAoEAmZmZyMjIQF9fHxobG7F7927MmTMHqampYccSybY1WVlZaGlpQXd3d8TzFoVCIVQqFXp6eiIebTta3tZkQs27RTqoRCKRwGq1RqwZMDDolgznZk1MTASfz0dbWxuys7MjNoaxEnXi5vf7YTQaw5Zscrlcw748giCQmJiIxMTEkDe6zs5OHDhwACdOnEBVVRVaWlpg6GlHX0ctAr4h4kUQEEhVEKrikJiWBfLiu9BRdwoCuRoCRSy4/Ml/EklQCtA1Ca5PvlQJVcY8qDK+DVYJBuDqN3zrzmzDrLx8Og/G4huAg2NFZ3DQhSHiisEPfHtsJImg3wsOb3w917h8IVQZc1GcvhKtZh9SN94Jc2slGppO4Ve/+hV+/esnkJSUiGuvvRYPPfTQuG5aK1esxPGy49i48VLce+9Pcdlll4HL5aKpqQnx8fERCXQ4l8AFAgHU1NSgtbUVeXl5EanCQhAENBoNNBoNDAYDKioq0N3djfnz54+Yk4t0PzYej4fs7Gw0NDQwkpRPVfaItLipVCpGyn4xVblfLBbD7Z5YlaOxIpFIwlaSIQiCrt3JilsIenp6QJJk2ATV8borkpKScPPNN+Pmm28esczhcKC0tBRHjx7FmTNn0NjYiI7OTvCtnTCbzWj+8nV6Xa5ICqFCA5EqDgJFLISKQctPoIwFTySb0M0tQSGcUKrBuSA4XEg0SZBokqApWI7ZixNxvMWErCvuHhQ8w6A7M+jzwB1wwQ03QBCDx0sQEMcmQZaQCakuHVJtOgQy1Zj2mxsvwZluO2SJWZAlZiGp+Gq4+7thaa1EX/NpvPrqq3j11VcRo1Zjw0UX4cEHH8TSpUvDbq+8vBzHjh9DMrJw5Jtj+PLLL5CUmIR7t9yLuXPnRjTIIZzADQwM4MSJExAIBFizZg3kcnnExkCh0+mwfv16nDlzBnv37sW8efPoKD+mGo1SkYz9/f2MFB2ur6+PeNFhlUoFq9WKQCAQ0cRxlUqFzs6x142dKEKhMOLiJhKJ4PP5wp6zxMRERnIVx0LUiVt3dzc0Gk3Y8klut3vS/LlSqRQbNmwYUWS2q6sL9fX1OHXqFA4dOoTy8nLU1dWhra0NvV11MDc5ERyS3Epw+RAqvnV3UqKniIVQqYFApqLdnWeToBDiULN5Uo4lHAQAnVyAHicJRUouFCmDFd9JkoTXaoKjpw0Oox62ziZ4BroBkoTL1AF3fzd6z+wHAPAlCkgTMiHTZUCqS4dYnQjirAtbzOcgRSXCh6e+a8NCEATEsYkQxyZCV3QJvPYBWFqrYG4+gw/+8x988MEHEEukWF68DD/5yU9w3XXXDXPr/etf/4KYJ0GOfz44AQ4s6EdnVzMO7D8AkUiEN998Ez/96U+xdu3aiMwFnS1wKSkpOHbsGHJycpCdnc1oThyVzN3d3Y2TJ0/C5XKBy+Uy1kGbz+fTOXOR3pdcLodQKITJZIpoHVSJRAIejwebzQaVShWx/VBBJZEWa5FIFPFEbure6/F4IJFIRixPSEhgxS0c3d3dYV2SJEnC4/FEdKIZ+M46nDdvHubNC51G0NXVhYMHD6KsrAxVVVVobW1Ft6ET/R118I9wdyohVMZBqPzW6vt2vi9Wmo7eEHlnk0mslA+CAEwO37D3CYKgx6TOGeyZF/T74DJ10qkItq4GBNxO+JxWmJtPw9x0CgAJgsODJD5lmHWXro2H0e6FzRM+L1Agi0HcnJWIm7MSfo8L1rYaWFrOYO++/di9ezd4fAHmzZ2DzZs344477sA7b78DjT+RzudTEmoooca1Gy7FwS9LsWvPN/jPf/6D7FnZuHfLvbj55psnPc+HErh9+/ahs7MTCxYsYLw33VASEhKwYsUKHDx4EMFgECtXrmSsg3ZaWhr27duHuXPnhn34nAwIgkB8fDx6e3sjKm4EQdAuw0iKm0gkAp/Ph91uj/h+Ij2HSBAERCIR3G43K27jZTRx83g8IEmSMXEbjcTERNx444248cYbRyw7efIkVq9aDa/PC7FYDIIg4Td3wWzUw+/3ASQ52EJi00qU/r8nEeBJIFTFDVp9Sg3t9uSJz52kfi4SlUIYrF6MpboUh8cfFCtdOoA1AACf0wpHTxucxlZYu5rhMraBDPrhMLQM5uF92/Vg4R13od6XBFNNNaTadIhi4kGMkmTOE4qhzl4IdfZCBAN+2DsbYGmtwunq09i6dSu23v9zgAxCQrjQRFYhHkmQQQlNegzUySqYDjqx2H8RBtCLrqYW3H//z3H//fcjPj4e99xzD5588snzOm9DoUK5hUIhent7kZKSMqWVTKh8Ji6Xy4ibkEKhUECpVKKzszNswNdkERMTA71ef+4VzxOmKuozZVVF2i15rv0kJCRETTpAVIpbuElrj8cDPp8f8cKqHo/nvEpHnTlzBg6nA7MwB26fC27CCfDc8AS8dEHlmJgYeL1eBL0uwOOE3dIDs98PMjjU3cmDkI7upERPA6FCDYFMPcI1GIrBeb2J/6j4EgVUGXOgypiDRABkMIi6/74AQk1ClBoLW4UePpMNGSlJOHLkKNr3DTZO5fCFkGrTB607bRok8angCkI/MHC4PLoYdfKq78FpbB+cp6s7DqfTihbUogU1EBNS3LpkMxpPtMDr9IIgCKgRDxmphAHt4ApEMBqNeOqpp/Db3/8OSxcvwTvvvHNeN2KHw4GjR49i7ty50Gq1U16qi5pjW758OTgcDg4dOgSJRMJY94WkpCR0d3dHXNxUKhVOnz4NkiQjep6ZCiqhrJ3pvo9z7ScxMRH79u2L+BjGQtSJW1dXV1jLbTLn20bD7Xafl/ugra0NYp4E6YG87970fzvPBQ/ccECnjoWt3w6VIx4ejgsergsO0o6hBhaPIAC3Fa4uC2zttQgGhqQMEAT4EsWga5Gy+r5NaxAqYmkhSVAIUN5pm/CxhMJt7kXytaugu34wGMTvcCMb+dg1UA15dxrs1R0I+jywddTB1tnwrXVHQBSjhSwxC1LtoHUokKtH3LgIggOpNg1SbRoSl14Bt7kX5ubT6K87DpfFiJwlmfjss89QShxBHJmEeCTBDgsIggNhTDx4iRxor1mEnk9PorS0FJmzshAbo8ZvfvObsBU+wkFVwklJSaEj96ayFmWo4JH58+fj1KlTiI2NZeS3odPpUFVVFfGkZCpP0G63RzRohwoqiXSlEqaCPaZa3BISEtDV1RXxMYyFqBO37u7uYR2UhxLpxM7J2k97eztExEh/NEEQEEIEIURIUafDO+BHPlEEkKDFzwMXXHDADSdcfgdcfie8XBc8HBfsAet3GyNJkB4nPL16uIz6wertQxqjcoViCBUayJf9Fg0nDqLP4qODXXiSibs7PVYTSL8Pkszv5rZiJQqIvHwEN85C3qVZg8dhMMNR2wVrTQesx5vgNVjgHjDAYzHCVHVocIwiKWS6TEgTMiDTpkMclwwOd/glKVLFQbfwIugWXgQR6UJGZiZq2ozwkB50ohkdaAJBcECSQTh72pB+y+VQLc2Gamk2PD1m9H5RAePOcvzsZz/D/Q/8HBvWX4R33313TK685uZmuFwuLFu27LvxTFGx5XBRkUlJSejq6sLp06exePHoSfiTgVQqhUwmg9FoRFJSUsT2w+FwoFAoYDabIypuEolksH1WmDmkyYIpyy0QCET8wUMkEoVNB2Dn3EbBZDKFTUKcLuLW3d0Nrn/0i0sSI4ZjYPgFQhAERJBAhLN+ZMHBVxBBWvxccMDtd8IFB7xcF1wcB1yB7+oXBjwueAe6oZBJ0XT0Gxi6v3uaIrg8CGTqQYtPqRlm9QnkMSMEZiju/sELV5zx3XekC0phIlwIEOR3x5EQA1FCDGLXDdaeDHr9cDb1wF7bCcvJFtirOhBwOWBprYRFXznoruVwINEkf+vKHLTu+JLvkr9np8ajw+xB4iV3QuvzwNpei77aY7C112EwLpRE6593wnKyBeoVuVAuykTyj9YicdMqDByqg/GzE/jqq68QGx+HJF0CXnzxRXz/+98PeZx2ux01NTVYtmzZiAg3pgVutHB/giAwb9487N27F52dnREVHAoqDy3S+6Lmwyazz+DZEARBW1WRFrdwvdAmCz6fDw6HQ0/fRAqhUIiBgYGQy+Li4jAwMBDx9IqxEHXiZrPZwj6p+f3+iH5pwGCvLK/Xe17i1tXRBQEpHLWoszRGDEd/6KefcHAIDl1HcxhB6p/AoMUHB1xwgicdTMAlLYCQI4InOPjkSAb88FiM8Fh6QXD+f3vnHd9Wee//z9GWbdmyZVvy3jOJ4+1sxwkQoEAptAVKei8tq2W0lF5623RPSlvKpS2F0lJof6HA7aVQVhhJ7AzHiePteO8t25IlWXud8/tDkWInkqfOseyc9+ulVxyfYz2PpKPnc77f5zs48/b5AAL84FCX6IVFXXJ1hskglMhg0UyBGyIGX3ppDjFUMCYI48JzF/AQkhOHkJw4KD5TCgCwa4wwdI1Df2EI2rN9sI5rYJoahlk1iqnmKgAAP1iKkNhUBMtTkJx7A3qmXONw+UKEp25FeOpWUKQTBuUAJuo+hnGiD5rqLmhOdoDgcRBamILwndkI35YO2d5cmIdUmPqgARMft+Dzn/88+EIBbrv1M3j55Zfn7bM2NzcjMTHRZ1UJpgRuKXls7sjelpYWREdH0/4dkcvlqK2tpX0/LCwsDCMjI7Q9vxumrCq6A0rmCjWdXRX4fD7sdrvXY+6122AwMNJJYiECTtwWanfBhLi5L8DV7F9MTk1CgIVdKcERYqiHtCsewxscgosgSBB0cWxZhBRWow1bzDsAADOYQgNOIn7XbQAAm34G1tkZmDWTsOlnAKcdAAW7Uecq6aUccFWPnxNqSXC4AI9A31P/hjBG6rLOihLRx50BJaFAcJa+2PHDgxG+LQPh2zKQeN81oJwkzCNqGDvHoDnbA0PbKOwGLTS9TdD0NEBxzw14/S+/x6DKiJCYFATLkxEkTwZPKIYkNh2SW9JdLqaZCUzUf4LZwQvQ1fVDV9uHQYKAZHMCwndnI+Zz2xH/pb2YOdGByXfq8MYbb+B//++fSE1OwYsvvoj8/HxotVqUlpYuOH+6BW45CdqxsbHo7+/H0NAQ0tOXXkZtJUilUtjtdpjNZlqtHalUigsXLtAuoldLsIe/4PF4PpvYBge7bnpZcfPCYpYbE2kAAoFgVZvL6hk1ErFwHbmgcDGGm+j1TQdHBM1zfdrhEu7wjELwhFcuSk6bxSN4Nv0MbHo1zFoVbJop2EwagCRdVp4NmDnZAYIgQDlJCJ+5Bk3/eBP1jQ0QRIdCFC+DKDYcwhgphAophLHhEEaHgSNY+HIjuBwEJUchKDkKUdfnu+ZktMLYMwGyYwqRkZHoH+iDSW+AYaLfs8coDIuaF6giiohB6nX/CQCw6TVQNh2HpqsO+gsj0F8YxvAfP0ZwZgzCd2cj/bu3waE3Y+r9BvRXtWP/NfvxnW9/B9HR0bj++usXfY/pErjlVh4hCALp6eloaWlBamoqrcERXC4XEokEWq2WVnETi8VwOBy039QyIQhui2ojCDWPx4PD4b0eLpfLRVBQkKdv4VoScOK2UHQU3Rn+wOr328xmMywWC/hYOMk1OFwMk2Z5bsnl4nJ9XtqHs8ICgsMDV+A9zYErEHkqilwORVFwWk0XRe+SAJrVE4iQyTAzMwPK4YR1XAPruAazPA4oJ4m54Z/8iBCI4iIgjAuHUOGy+oQxUghjwsEL8f6ec4OFCM1PRtqWrVA7zch94xHYpnSYbRuF9nQn9G2jsOqmYZtVQ91x1vM6ghUpFx/JiN92MxJ33w6H1YzpC6cw3XoKxu4JGHuUGH2pEqLESETsyUbWz+8EZ0SPoqIiPPTQQ3j8v/4Lm3NzcfjwYZ/J/ID/BW6lJbUUCgVaW1sxOTnpM+LYX7j3w+hMQXDvIVksljULkPDnGBRFwWaz0RrVyoT7cyFxA1yuSV9tcZgkoMTNbrfDarUu6JYMdHFzVwjgYeEvY3DElQEl/iYoXAyT5tJdnA1W8FdYB5MgCPBEweCJghEUdWmDn0MAYaGhiP3UoxBrdXPETw2zdhrm6RHY9DOgHDbYZwywzxigbx91uTrJS8rHDRK63JxxERDOET1RjBR8mQQKKhhKwujaV5BLESWXImqfK6qWtDlgGpiC7nwvZqq7YRlVY3a4E7Mjna5xCALiiFhPRZXszz4OnlgCdXc9Jus/gmVYhfF/VGP88Gncdvcd6J0eheBTuZB2T6C15gK25ucjVCLBY4895jM53F8Ct5pakQRBIDExEcPDw7SLW1hYGCYnJ2kdY241DDojJhcKkPAXPB4PPB6P9nQmd6dsOllM3EJCQljL7XLcb8haWm42m21VpYVmZ13h+jOYgoOygwseuOCBd/FfLngQCcUQBAmWHVCyXIIvi8i0wwqe2L8bzSFCLiiKgtFOgh8kAT9IgmD5ldXcKYqE3TjrET+bfgaGyWFY1GOwmw1wmqww9U3C1D8FguNyd7oheBzs/e9vod2gxtBgI0QXhU8YEw6h3OXuDMmKRUhWLOIO7nG9Vq0R+rZRqCsvwNA2CrN6DGbNBKYvnAIA8MQShMSkIjqvHMHyJNhNRozXvofSLQX45M33MHq0CjxpMMJ3ZMFpsMA0OO1JDt9WWobDhw9fkci8WoHzRxHk+Ph4dHd30x6tFhYWxljyM92WCJP7YUxUKaG7IzePxwNJkj5zAyUSCStul+O+4/Dlx3c6nbSLG0VRq9qvkMvlyM3ORVd3F0bIXq/nRIdFw+m8G0cMb4DP5YNHuESPQ/HAITngkFyvoriU/3PmlLwKjhBjomPa8387bOCKgr1NacVIhDwYbc5Fy3sRBAeCEKmrw0BM6hXHKdIJm0EHm14Nm14Ds3oMBuUQrLPTIG0WSMUhqKs+i+nTDaCc84NceOHBEMWGz7P6RDHhCM1LRMTOi4WiSQqWETVmTnVAc6YLllENtAMt0Pa3wFUvk4sQeRJS09IxXdUMsSwO5pkJaGq6AScJjlgAXlgQHLMmnDlzxmdy+EoFzl/V/YODg8Hn86HT6Wgty+VeqOneQ9pIyc9MvBaCIECS5OInrgL3GuxwOLwaAgt162aSJSvFCy+8gCeeeAIajcbz4gwGA8LDw7Fz505UVVV5zq2qqkJFRQV6e3uRlpa25Mno9XqEhIT4FBcmLLfVflnDwsLQ1tHmKfJsMBg8D71e7/mZIAj87vfPXvF7g8GA2dlZzM7qoZ+dhX5WD4NRB5PJCJPZtOiFyyV44HP44BF8HAjfhjZtAxqJenBIDnTQAHoLxs6+Cy5fCA5PCA5fAK5ABA5fAA5PCK5ACA5fCA7v4u95AhALiH2IkLtgseSlQnC4rs4Kod4XZEVyPCRbuUgNzoJZOw3jeC/M6jHYTXo4NEYYNEYYO8dd0Z1z3J0cscC1v5cg81h8iV+5FkKFFLxgEXRtw1B/1AJDxxgiBE44HXa0fvQ6KIqCQBIBnkQGq3YSTpMepM1xaQ+RpKBWq70mhy9X4PzZtsZdDJgJcWNqD4kJcbPZbLRXKeFwOK7rk0aYGMPtEfAlbv6w3O655x787W9/u+L3Bw4cwIcffrik51iyUlRUVMBgMKCurs5TseHUqVNQKBQ4d+7cvL2qyspKJCYmLkvYAFcwxkI1HZlIDCRJ0i93ou79ApFIdEWu1OzsLE6dOoWHHnpoWc9JURTMZrNXsfT2syJWjvwdeQiJdkUv9fb2YXRsDDNtZ0CSTpCkE4uaXAAIDu+i+AlcoigQgisQgSsQIXX3DqiCMzF+7j2XWAqESxBO/oJFlb0hEfFg5YdcatuzZde846TdBptBA+usGoaJfhgm+mCdVYO0mmEemIJ5aNoT3el5XVwOBFGhEMVHIGJ3NkqKt2PMPIOIazbD2D0B64QWNoP2UuUX55z3issBLj6X0+7wmhy+FIGjox8bE8WAuVwuI3tIIpHI4+qnC/eawoS40W1VEQRBu7gRBAEul+szHSAoKAgmk8nrseVw/fXX4+WXX573u+Vca0sWt6ysLMTExKCqqsojblVVVfj0pz+N48eP4+zZs9i7d6/n9xUVFUuehBuSJBcUr9W6DJcCU2OsNKgjKCgIQUFBiI6OXvT848eP49prr12wDYzD4YBKpcLk5CSmpqagUqmgUqkwMzMDrVaLkZER/Otf/4LTaoLTasIVqZsFGdBMBmOq+YSrJBiopQkml+8SP54AHL5LLDkC0SXx5F0UQoEQQUFBEF6firGuFlhIYr5Q8gXg8oQgeHyIwuUQhcsRlpR7xXjuNAfj9ChmhzpgnpmAw6SDVamDVakFweMgXFGI9sF6qD9pBQDwpEEQRofBYbLBppoFZbn46olLwgbAFVVDUoCTxNjYmCs5XCDAbZ/5DF544QXU19d7BG4udDUalUql6Orq8tvz+cJtVdGZz8Tn8xcMXvAH7u8iE6KwEcZYbBx/WY9CoXBVLY+W5eOrqKhAZWUlvv3tbwNwWWjf+ta34HQ6UVlZib1798JsNuPcuXP48pe/vOzJLHbnxMSHRvceAkD/HaKbpbwWHo8HhULh8yKqrq7Gm2++iS0ogwAiOOEECSeccMAJJ6I4sRA7gpFEZlz8vRN22OCAHU7YQRJOOAknSDjgBAmScoKkSFBOO5xOO5y4vLIJARDEvAUnKjISJHkX2t798wKvhACHxweHJ3AJHl/oEku3aPIEF8VTgODoBEji0i8KpMuqpEgnUnILcb6+EVxRMJwWoyfHDpd/VtRld9+Uq/SXaxqun+02G9544w288X//RE5mFp566ikAwJYtWwAAg4OD6O7upqXRaEhICIzGhSvG+AOBQACbjd5+hEws1u7v4kawqpiwDgEsuK5wOByfVh2TLFvcHnvsMTgcDpjNZjQ2NqK8vBx2ux0vvPACAKCmpgZWq5U2y41u4Qlky20txnGX2ZEgHEHElZGWEdwoBJNBSCe8F7t2TeSy/xOuuVEeOXSL38WfKQeclNMjpFJuKEgniXikeYTTDjtI2C+eQ4IkSFBOEpTDDLvFCNvcQQkCxEXRdL8vVwgUAGpXCtRDnXBaXMJAOUlwRAJwhHxQDiecBi97PxwCBAFQ7u/y5YsXSaGjowNf/OIX8bOf/QzvvvsuCgoKaBM24FIFCbqvMyb2d5gIkGDKcmPq/WLCCAB8v1/+Etj33nvvirSwQ4cO4dChQ0v6+2WJ2969e2E0GnH+/HloNBpkZmYiKioK5eXl+NKXvgSLxYKqqiqkpqauqFuxe7/LV90ywOVGW+j4anE4HOBwOLSO4X5uOscA4AnXXc04TqcTYrEYAvDBJ67M3eMJuSA4BPhi+pJspSESUCSwJWjhclhuZqhJtKAGOZ//FvjBoSCdDpB2G0iHDaTDAdJpg9NuhdNihsM8C4fZCIfViODQcIhlsYiIS4fNrAPlcIAiHaBsTpd1Nnc/mMNxaeVFS41yLPxlttls+PnPf45nn30WAJCXlweJRELLNeBeWGw2G+03anR/HymKWvU1vJQxANf7ReeePkVRsNvttL4Wf3znl4J7nfY1jj8st4qKCjz//PPzfrecm0GCWqbMJyQk4Ktf/So0Gg2MRiP++Mc/AgAyMjLwpz/9CT/84Q+RnZ2NP/95IReSd6qrq/HZz37WYwWysLCwsKwv/ud//gcHDhzwbF+thHvuuQdarRZvv/32ip9j2XH1FRUVqKqqgkajwRNPPOH5/Z49e3DkyBHU1tbiq1/96oomw+FwwOPxcOONN3o9/vHHH2P79u20Vitoa2sDl8tFdnb24ievEK1Wi/r6euzfv5+2MQBXYM/mzZt9VrZfCtXV1bjxxhtRiv0IIq583ws/k4vQ6BBUvnDOsxd3aU+OBDnH5XjJCXnpZ9JzPun6W8IJkiAvPQ/lRER0OH719FM4ePDg0ifO4QAUNS8q81IR6Dn7YwQHBIcLDoeLQ9/+Fk7XnMOZ2nrXMZIESTouWn52UA4fCbiciy5P53zrjcvlIjY2Ftdffz3uuusuqFQqFBQUoK6uDmKxGOHh4di6davfXYdGoxEnT57EDTfc4NfnvZyzZ88iPj4e8fHxtI0xMjKCiYmJRYtYrwan04mPPvoI+/fvpzXys6GhAVKpFKmpV+Z5+ovJyUn09PRg165di5+8Cj755BOUlZUhNDT0imP/+Mc/GIkpWIwVidvDDz8Mu92O8vJyz+/Ly8vxyCOPwGazrWi/Dbi0EblQHTkej0drnTl3Hh2dY/D5fFAURXuHAw6HAy6Xu6pxxGIxzGYzWnDOtWfAccuSA07KAYmNRCwVgw/Nry/jWYkrugFRV2zMzWHWJRQUTwgnRYDLF4DDF4EjEIDLF11MSxCDIxSDJxSDKxSDJxBfjKa8mJpw8W+4PAEILtdrkWiD1YHg4BDMqpQgHXMCJQjC1RCV9OFqIQhweVzIwiNQXFyM++67D7fccovHxeWOityxY4fnxmzHjh04d+4cWltb/d5NgCRJCAQCRtpD0T0Oh8MBh8OhdQz3e8/Ee0b3+sXE+wXAs375Gscf4ma1WqFUKuf9jsfjLflmfUXiZjabkZ2dPS/EvLy8HHq93pMysBIW24hkKpSW7kgfJl6Hw+EARVGYnp7GzMwM9Ho9zp8/j4mJCWg0Gmi1Wuj1eszOzsJgMMBkMsFsNrsKP1utsNnsnorsAAENpj1NU+ditc0vaktweCB4vEs5cW7xEV4UIIEIPHfum0d43CJ0UYAuHuPwheBweSAAkBSFbff+BDrL0sLCSbsN1otlvkxTw5eETKeCVT8D0j43OIQAweGgO0uOpJRkcEJ4EErDQAh4AAE4TFY41UY4Ta7rguBxESQUISMjA7feeiseffRRn3sBl4f7u/cohEIhbe1ytFotI+1GmGge7HQ6GQnwAhaOAPTXOBslWG0hFgsMXCoffvjhFVqSlZWFzs7OJf39ssUtOTnZ68KclJS06gWbx+MtuBG6kZIg574OkiRhNBoXTcr29n+dbvZSJRODAQajS6isNiuefvppfO9738O5c+e8zuNS6PxFcREIweVLwQkWQeyxdi4XoDn5ZXwhgtNjEZcWja33/RIEl0/LF4sCYLQ6ESLkesSNdDpg02vm1KpUw6rXwKadhlU/A6d1fhIpweGCIkmAALhiAYTyCIjiIhCSHYfg3HgQFAW9ORiZKTngBYtgHrxYtoxDgM/jI1Yux+5bd+PRRx/15HkuxmJ5bHS1y9FqtZBKpat+noVwV+ChW9ysViutrkLgUgAOE+K2UdKMFhrHbrevupLUK6+8gldeeWVVzxFQtSUXq0m2WDVqf7CYuFEUBZPJtKDgLPSzTquDQCDAo197FJERkTCajUsqL8Tj8MHnCi7VkqS4IJwccCjuxRqTfHARhAiEIgp88MADpedgU2ghnBBDhxn0oAXZn/8WBJLwFVUJ8YaFI4ZE7CrX5U9ctSa1HvGa2RoCc3c1us5UwzarhsM8/zrxiBcoEHwe+JESCOVhCEpXIGRzIoISIiCQS8EV8WGfMcDQNQ5D5zhm6/sx/lo1KJsDE6Gh+OrfP4VwUoj03btx11134d57711RIe2lJmjTIXA6nW5Vya9LwWazgaIo2oXHYrHQ2jMOuBRVul6qHy0EUwJKkqRPAVuo4TSTBJS4SSQS2Gw2n5X5mRC32tpazMzM4NChQ5jVzbrcdnoDDEYjjEYDzBbzopYdj8NziRHBv1gQ2S1ErkLHUmk4+Hw+ZIZ4yOxYUlFkgiIAby99gevYoSEhj1BASkyDvJjXRXC44PL9tyAZrA5IhMtfFCiShN00O69Fjk2vgXVWBdusGnbT7LycseldGRBYtDBNDrmsr2Ah+NGhECdFQZITB3FiJIQx4RBESkBwL4k2aXPA1KeErmEAho4xGNpHYVe7hJHgciDgC5CZkoYDBw7gscceQ09PD5qbmxEVFbXi92S5lUf8KXBOpxN6vZ52y81isXjauNCJ1WqltUYmcMm9Srco0N10FWBG3NxrsK/PfqGG00wSUOLmVnuDweD1guZyubSKm16vx1tvvYVNWZtQd6R5jsjwIUEkpFAsrTI/xQG8bdtdvOYIPQHSSWJTRD70U/RVkjBqzAgKd+VmCeASNIfFAGDlC/fl6C1OCHgcCLgEbHNqL1IUBYdZf1nQxkUR06lgM+rmJ1K7rUi3CPM54EklEMfLEJwVA0t8MHIzKqC8JwNcidjrF5iiKFgnNDB2uqwyQ/soTINTrpqQF4M+IiNkKLlpL+6//3586lOfuuJufWZmBlNTUysWt5WW1PKXwE1NTUEkEi1Yo9UfGI1G2i0qALTXrnSPQbd71T0O3a/F4XDQboG612Bf47CWmxeCg4NBEAT0er3XhcFdeYHO8bVaLaKkCmwldtA2DkVSMGktCA4X0y5u4fGuwAK+W9zM/mlF4e7MPTM7A7sjAdaBOowODV4SL4MWFDnnRuQy8QIATogQQrkUwWnREKfIL/VpU0jBEcy/NLVOIbY4I8ETXOpV5TBYXB21O8dcVlnHGJxGV7g+weMiWCRG4dYC3Hrrrfja1762pCCLhIQENDQ0ICcnZ9l7F6utFekPgRseHkZiYiLtd+86nW7DBK0wsXfI5B4l3WO4u7P4usZYy80LBEEsuO9Gt1uSw+HAbDIjNIL+uw6TxozgcJrvrmcujeGy3Ag4zEtvReG0mj0Rhzb9DGyzM7DqZ2DVTcNu0IB0uIJ/1NdlwTHcDHVHx/xweR4H/IgQBCVHISglel6HbYFMAoKz9AV4gtLjGmcCpj9ohKFzDPq2UVjHL3ZP5hDg83iIj4nF7s/sxte+9jWUlJQs+bnnEhUVBQ6HA6VSidjY2CX/nb+KIK9G4MxmM6amprB58wKl0PyEVqtdsCC3PyBJEjabjfbFmikBpSiKkddCt0W9WOsxg8HAips3FmpRzsSem93ugCScfnGb6zKkC9OcMQiCgIAQwW7UeY477dY5EYfuPS81rDoVbPoZkPa5ScuucPnLc704QQLoLEYk7NkKTZHM0yhUGCMFT7Ly12dT6y+5FztG0dg3hf/8+2HY3mzBzNQkwiSh2FZejrvvvhv/+Z//uaru6XMhCAKpqano6+tbsrj5u7r/ahqeRkdHIzjYvw1pL4eiKGi1WmRlZdE6jrtrNRNuSW/JyP7EarWCz+fT7jK0WCy071Eu5PqkKMrTl3OtCThxW6jRHRPixufzIBAKIAjiw2airz6bccaM4Ah6xc0wY0SQVAQ1lDBTJhAgMNNVB91QB2x6NZxW87zz50YceuAA/AgJREmRCIqXzbO+hPIwcAQ8WOyh2JS2Ayre6IrmSVrtMPZOXnIvto/CrnG5awkuB0K+AOnJqbBYLHj//feRn5+/wndkaSQlJaGrqwvT09OL7r3R1bZmuQJntVoxODi45DSF1WCxWGCz2WgXBL1ej+DgYNpD2y0Wy5JaSK12DKb29ZhyS3rDarXC4XCwlps3JBLJgm5J990cXYSFhcFmtSEoXEyruJk0ZkiiVneHTVIkrDDDDCPMMMICI8wwwca1wMIxwTFjw3/ybkN/aCt0Oh044IAyWmAzaOY9D8ETQCCRQSxTQBgqgzA0EjxRMPo/fAmp3/o0ZOVX9kebi5JjRBopXdKcKYqCdVwDQ+cYjJ3j0LePunLKyEtBH1GySJTesh/3338/brrpJs/fXrhwgfabG8BVQSY7OxtNTU2oqKjw+UWmS9jcLEfgWlpaEBUVBZlM5vd5XM709DSkUintkZIbKRmdiWASgNk9N2+4125W3LwQGhrqs4uwQCCgvSuvIkYBnVaH4AgxtGP0jWXUmCHPXLiMDEVRc8TLdFG8jLByzLBxLTA6DKDmBGjwuXxXRQ3SCcru+r3RaER4eDiMNhIiaTSEYZEQhEV6REwYKgNX6N2C5ImDYRmd8XpsLhOEETvJOJfBd9na69CbYeyegKFzDIaOcRg7xuA0XQr6CBEHoaigELfffjseeuihBRczuVyO+vp6RsKdU1NTMT4+jvb2duTl5V1xnG5hc7MUgRsbG4NKpVpx2bvlolQqac+jA1ziFh4eTvs4TAgCU9VcbDYb7SK60BharRZ8Pp8RIV+MgBM3hUJxRT0xN+7Ov3SPP6PRMBDsYUJwuAhWyjLH6jLCAhMsHJNHvEjq0h5XkDgYQoEAeqPBZcHMzbcjuOCESCG8KGDC0AgIQiNhcBAovvsJhKuXb/GKIhSXKnUswCRhQhB4CHHyMDk46tor6xqH4cIIrEqt66SLlT4SYmNRXl6Oxx57bNnuRZlMBqfTyciiRxAECgoKUFVVhdjY2Hn17JgSNjcLCZzVakVLSwvy8vIYcXs5nU5MTU3Rvt8GuBbKlJQUWsew211l5jaCuDG5R+lrDPeNz1qXAAMCUNxiY2MxPj7u9ZhIJKLdLalQKDA1OeUXcaMoCnbYPO5Ct4hZCDOmZxXYHVGIU3jPc75YFASJRAIhnwfCyodVz4XNdkncSDsJs8UKJ5xQFF4DQajbApOBFxTq9YJSmUjEhInRtwJxE4fHQN/f4fO4TaX3uBfHro2D6W+foL3mLEAAHC4P0tBQ7KiowH/8x3/gi1/84qo30zkcDuRyOZRKJSN39CEhIcjJyfE05RUIBIwLmxtvAgcATU1NkMlky4rsXA0qlQoCgYD2/TabzQaz2Uy7W3J2dhZCodBvAUm+sFqttAdZuEWHiT1KX5//+Pg4Y9fiYgScuMXExKCmpsbrMaFQCIvFQqtbKjY2Fh0dHYgJT17S+Q7K7tnz8lhehAl2ngVG0gC781J1+eCgYCQlJaMwYzP4fD7CwsIgEAhgs7nOsVjM4Dp5EDrFEJESJCIGYgRDjGAEIQQ8Jx/j1BDacR7R+fuWVGlkYtaK2LCV3cmJZbGYbquG02IDQMDUq7y0V9Y2Cof2UtBHf9IOlBaXYNeOnfjGN76BuLi4FY25GAqFAt3d3cjJyaHl+S8nNTUVarUaNTU1iI2NpbWD9mLMFbj6+nrweDwYDAbs2rWLsTtlpVIJuVxO+3harRZBQUG0iw4TdTgB5vb1mLDeF3LjTkxMrLhwvr8JSHGbmJjwekwkEoGiKFr9yklJSdBoNEhNygQAOCnHPOFy/2vjW2CmjLA6LrlJhUIRkhITsTl9K1JTU5GcnIyUlBTPv+Hh4Z5F4bbbbgNJksgP3Q67ygkxQiBCEDiOi3ddPtaOYLju/qy6aQRFLt5Ha3zWhqKE5d1lUxTpSge4WAKr7asvwTqpc7lBOQS4XC6iI6NQtvdafOUrX8GBAwfQ19eH6elp2qP15HI5mpqaGFuUCIJAUVERqqqq0N7evmbC5kYkEmHHjh2orKwESZLYt28fY/sbTqcTY2NjKCsro30spj7fjSRuTOwdAq58SlbcVsBC4uauZUdn5FFiYiJmZmZAFDhRzf0AZsel6vJ8Ph/xsfHIy8hBamrqPOFKTk5GdHT0ku9o09PTodVokRWdiwn14vtaboLhEirLjHJJ4jYxa0V4EB9iPgdmu/eOCg6LEcapYZgmh2CcHIRxcsiT48bh8SAwOpFXXIzbb78dDz/8sFf3SkREBLq6umivSs7n8xEfH4+hoSFGFiUAGBoagtlshlQqRUdHB8LCwtZsw5wkSXR0dHgqRHR0dPi9H5wvxsfHIRQKGRF3tVq9qvqeS0Wn09HmZXBDkuRVZbmlp6fTPoelEJDiNj4+7tP1SPe+W0xMDG6++WZER0fjOz/49jwBi4mJ8dvCnZmZif7+fshSpJjoWLq48Qg+hEQwzDPebwAux2InoTHZoQgVYkBtBuV0wjwzDuPkMIxTQzBO9MOmd0VEEhwuImURKNm9E9dccw2+8IUvICkpaUnjSKVScDgczMzMrKrz91JISkpCdXU1cnNzaS9EO7fRaFhYGBoaGlBVVYX8/HzaK3Rcjl6vR2NjIxwOB3bv3g2CIGjpB+eLgYEBJCcnM1KYV6VS0V5pxeFwQK/XM7Kvx+Vyaa8cwlSOm8Ph8HlzNz4+jt27d9M6h6UScOIWGxsLq9XqMyKO7ohJDoeDe++9F6dOncL3v/992sbJzc3F8ePHkZu2ddl/KyFDYVZ5D7qZC0VRsBu1GBoXIlg7gO63/gnT9KinykhQUDCy0lKxc+fn8dnPfhYVFRUrFm+CIDzBHnSLW3h4OEJDQzE0NETrXaK34JHi4mIMDw+jrq4OsbGx2Lx5MyOV3nt7e9HV1YXk5GTk5OR4gnPoanh6ORqNBrOzs9i+fTstzz+XqakpiMVi2nOldDodhEIh7YLgdn3SfVNgsVgY6QZBEITPvdCJiQk2oMQXEokEQUFBmJiY8CluZrPZy1/6D5FI5LlDoStRddOmTejr68PebcvPTQpBGHSq0SusW6fdCvP0KIxu96JyEA6LAdnm25GWloZwAYlrbr4JN9xwAz73uc/53b2kUCjQ1taGTZs20f5FTktLQ1tbG1JSUmgpaeQrKpIgCCQlJSEqKgpNTU04fvw48vLyaAt/1mq1aGlpgc1mw/bt269I0qar4enl9PT0IDExkXYhB4DJyUlG9m2YEh2dTseIC53JfD1f7xm757YABEEgLi4Oo6OjyM29sjJGcHAwjEb6KukDrn0ddyQaXRdlWFgYDHojouIjwRNy4bAuvdtBKCIwaOmEYbwXNr3montxABbtpCvogyAQFhqG4vzN2Lt3L2655RYYDAY89dRTtLwWN1FRUTCbzYwUTnVHLg4ODiItLc2vz72UcP+goCBs374dQ0NDaG5uRnt7O9LS0hAXF7dqASBJElNTU+jr64NGo0FKSgqysrJ83mjRLXAajQZTU1PYv3+/357TFxRFQalUorS0lPaxmOpsoNVq/X6NXg5FUYy0ITIajT5rl5pMJszMzNC+h7lUAk7cACAjIwM9PT247rrrrjgWEhKCqakpWscnCAJSqZT2O67UtBQY9AZEJodD2aVa8FwbZcUsZqDDDHSECqCA3nefBwAIhCIkJSag9Mb9uPXWW3HzzTfP84nbbDYcOXLEZxNYf8Hj8RAVFQWlUkm7uBEEgdzcXDQ0NPjVolhOHhtBEEhOTkZCQgJGR0cxMDCACxcuIDY2FlFRUZBKpQgJCVlUaCiKgsVigVarhVqtxujoqOe5i4uLlxS8QpfAURSF9vZ2pKam0t4jDnAJKUVRjOQxarVa2q0MkiQxOztLu+VmMBhAkiTt37uFerX19vYiNDSUkUCgpRCQ4paZmYnu7m6vx5iw3ACXZaXVapccULESCgoK0Nffj6i0iHniRlIkDNC6hAwzMPJ10Ntd1fzDpeHYsWMHEhITkJKSgjvvvBOJiYkLjiMQCBAUFASNRkN7EIRCocDIyAgyMjJoHQcAoqOjIZFI0Nvb65e8t5UmaHO5XCQlJSEpKQk6nQ4jIyMYGBiATqcDQRAICwvz5DS66enpAUVRmJ2dhU6ng9VqhUQiQXh4OAoLCxEVFbVscaJD4Kanp6HT6RixpIBLeXR0JyLbbDZaPTNuZmdnweFwaO/U4LZC6X7fDAaDzz317u5uZGZmBkR1EiCAxe2dd97xeiwkJAQ2m412K0QqlaKvr4+25weAkpISvP7668hK24xJahQ6qGHg6jBLzcBBuvb7tuZtxc5dt6KsrAzbtm1DSkrKii4ed7AHE+LW0tICs9lM+52+23o7c+YMkpOTVzWevyqPuIUMcN21GwwGaLVa6HQ6mM1m2O2uYtwmkwl8Ph9yuRxZWVkIDQ31y/6uPwWOJEm0t7cjMzOTkb02iqIwPj7udTvC30xNTSE0NJT2a9Tt/WEi6Z0JF6vBYEBycrLXY25xCxQCVtx8WW7uopwGg4HWfJuwsDDMzs7SmrdVWlqKn//85ygrK0MrziI+LgHX7d7nEbL8/Hy/bRArFAo0NjYiLy+P1i+aSCRCdHQ0hoeHGak/GBERgZiYGDQ3N6OsrGxFr42uklocDgehoaHzShXZ7XZMTExg69attAmGvwSut7cXTqeT9vqOblQqFex2OyMpFkzc6AHMiY5Wq0VCQgKtY7j39XxZoYEmbvTasCskMzMTg4ODPvPZFurW7S9CQkLA4XB89pbzB3K5HL/85S+RlJSEsbExjIwO47XXXsNjjz2Gbdu2+TXySSaTweFwQKfTLX7yKklKSsLQ0BCouYWdaWTLli3QarUYGRlZ9t+uVa1IunELnFarRUNDw7I/i9nZWXR3d6OgoID2BptuhoaGkJCQQPt4JElicnKSsc4GdLs+KYpiJCLTZHIVtPAVtMKK2xKIi4uDUChEf3+/1+NM7Lu590p8td/xF+6CvHSH8HK5XERHR/vsuOBP5HK5J+KPCQQCAfLz89Ha2rqsNJGNKmxuVipwJEmisbERKSkpjL0vVqsVExMTtO5xu1Gr1eByubSLgTuYhG7LzWg0MhZMslDzWFbclgCHw0FGRoZP1yQTlhvg2nejW9zckZl0jwMs3E7In3A4HCQnJ/u8OaEDhUIBhUKBpqamJS3iG13Y3KxE4Hp6euBwOJCdnc3ADF0MDQ0hIiKCkSaXTLVl0ev14HA4tHcD0Gq1CA0NZSSYxJdLUq1WQ61WMxJItlQCUtwAl2uyp6fH6zGJREJ701IAjFhugEtENRrN4ieuErlcjtnZWdqT4AEgOTkZKpWKVrfu5WzZsgVGoxFdXV0Lnne1CJub5Qjc5OQkenp6UFRUxJg7kiRJDAwMIDU1lfax3Hl0TLgkNRoNwsLCGAkmYSJJXK/X+7z56OnpgUKhoL0V0nIIWHHLzs5GW1ub12NSqRQGw8WGnTQilUo9QSV0Eh0djampKdr3qAQCASIiIhix3kQiEWJjYzEwMED7WG4EAgFKS0vR19eHsbExr+dcbcLmZikCp9frUVdXh/z8fMaKUgOueoQcDocRwdHr9bBarYzkYk1OTiI6Opr2cZiqgLKQiLa3tzMSQLYcAlbcCgoK0NDQ4PWYSCSCUCikPTjCnYBLt/XhXmRnZmZoHQdgzjUJuEpkDQ8P0949fS6hoaEoKipCY2PjFVb31SpsbhYSOJvNhnPnziElJQXx8Yt3m/AXFEWhp6cHqampjORHKZVKREVF0W6VOhwOTE9P0y7YFEUxEpHpdDoXTEavr6/3NNANFAJW3IqKitDW1ubThbaR9sPmFh2mG7lc7gm5phupVIro6OhF3YT+RqFQIDMzE7W1tZ7r52oXNjfeBM7pdKKurs7TeZxJRkdHYbfbfeZO+RumXJIqlQpCoZD2PUR3MAnd7kC9Xg8ej+czUrK+vh5FRUW0zmG5BKy4JSYmQiqVoqWlxetxpoIwwsLCGAmfZ8qikkgkCAkJwfj44l0F/EFOTg6Gh4cZCQCaS0ZGBqKjo1FdXY2uri5W2OYwV+Dq6+tRV1cHu92OoqIiRqtLkCSJzs5OZGVlMbK/p9frodPpGBE3poJWmAomcVuH3l6Pw+FAc3MzK25Lxd0Bub6+3utxpkSHKRGNioqCyWRiRATceWhMIJFIkJCQgM7OTkbGc0MQhCdRurOzE0VFRaywzUEkEmH79u1QKpVQq9XYtm0bI1VI5jI4OAgul7to+Th/MTQ0hJiYGNobzTIZtBIo+208Hi+g0gCAABY3AAuKm1QqhV6vZySoRKfT0R5UwufzERkZyYj1lpCQgNnZWUYiTgEgKysLSqWSkZuEuQwMDECv10Mul+PChQuMRImuF5xOJ1paWhAcHAyBQIALFy4wlnQPuO72u7u7kZOTw4i16HQ6MTIywkgenVarhdPpvKI9ER24IzLpZqF9vfr6ehQUFNBuPS6XwJrNZRQVFQVEUIlAIIBKtXDVfn+gUCgwOTlJ+zh8Ph+xsbEYHBykfSwAEIvFSElJQXt7OyPjAfM7aJeVlSEqKgonT55kJOUi0LFYLKiurobNZsOuXbuwa9euFVcyWSl9fX0IDg5mxLoBXG5C9w0kE2MxUfzZbrdjZmaG9shPkiSh1+t9Wm4NDQ0B55IEAlzcCgsLceHCBa/RdkwGezC1HyaXy6FWq2Gz2WgfKykpCSMjI7Rbvm4yMjKg1WoZqVpyefAIQRDIy8tDWloaqqurV1Sma6Og1Wpx4sQJBAcHY+fOneDz+asu1bVcLBYLent7kZuby9ge3+DgIJKSkhiLyGRCtKemphASEkJ7x4HFOhsEYqQkEODilpycDIlEgtbWVq/HIyIioFaraZ+HW9zo/tIHBQUhNDSUEestIiICwcHBjC30AoEA2dnZaG5uplVQF+qgnZ6ejpKSErS0tKCtrY1RN1wgMDo6itOnTyM1NRWFhYXzgjiYEjiKotDS0oLo6GhG3HaAa3GemZlhZG/PZDJBr9czkt/GlIiq1WrIZDKfwSRNTU2s5bZcCIJAaWkpampqvB6PjIyEWq2mfZGKjIyEzWZjpNoGU65JgiCQmpqK/v5+xhb5lJQUiMVin8n5q2Up4f5yuRx79uzBxMQEqqurGekNuNbY7XY0NzejubkZJSUlyMjI8LpQMSFwY2NjUKvVyMvL8/tz+6K/vx/x8fG0B5IALsGRyWS0tuMCmC3+rFKpfN6ItLa2gsfjBVwCNxDg4ga4CgufOHHC6zGpVAqn00m76LiLDk9MTNA6DuBafCcnJ2kPYAFcBaptNhump6dpHwtwCWpBQQFGRkb8PuZy8tgkEgnKy8shkUhQWVnJqMAzzdTUFCorK2EwGLB3795F27zQKXAWiwUtLS3YunUrI0IDuAoyj4yMMFLaC2DOmpqZmQGHw6G9YzlFUVCr1T73KquqqrB7927GSrUth4AXt4qKCpw4ccLrYs/hcCCTyRhZnJlKspZKpeDxeIy8Ji6Xy3iB4+DgYOTm5qKpqclvieQrSdDm8/nYunUrysrK0NvbizNnzmwoK85trdXW1iIjIwM7duxY8t4MHQJHURSam5sRHR2N2NjYVT/fUnEXZGYiotBqtUKtVjOWRyeXy2nfQ9TpdKAoyuf7V1VVhb1799I6h5US8OJWVFQEi8Xi05Ulk8kY23fT6XS0l5IiCAIJCQmM5aGlpKRApVIxGkWYkpKCoKAgv0RPrrbySFRUFCoqKhASEoLjx4+jpaXFZx/B9YDT6URvby8++eQTGAwGVFRUrKh7u78FbnR0FBqNBlu2bFnV8ywHu92Ovr4+pKWlMTLeyMgIwsPDaQ/wYDKPzr3f5i3y0+l04uTJk6y4rRQ+n49du3ahqqrK6/HIyEioVCra3UpCoRBSqZSR/bCkpCQolUpGajKKRCKkpqYyGqZPEATy8/MxMjKyquhJf5XUcltx5eXlMJvN+OSTT9DZ2clIiTJ/QVEUhoaGcOzYMYyMjKCoqGhZ1po3/CVwZrMZra2tyMvLY8wdCbjSDUJCQhjpuO1+/5nIozMYDDCbzYwUf1apVD5dki0tLSBJEgUFBbTPYyUEvLgBwN69e1FZWen1mFQq9TQFpBumUgKCg4MRGRmJ4eFh2scCXGH6Op2OseaigOs1btmyBfX19Z4Ov8uBjlqRoaGhKCsrw/bt2zE9PY2jR4+ivb09oJO/HQ4HBgYGcOzYMU9StHtvzR8uq9UKnNPpxPnz56FQKBh1R1qtVkbTDWZmZmC1Whl5je7izzwej9Zx3PttvoJJKisrsXv3btrnsVLWjbgttu/GVJL19PQ0I7lhSUlJGB4eZiTQgc/nIyMjA+3t7YwGViQlJSEuLg7nzp1b1ntKdxFkmUyGXbt2oaioCLOzszh69Chqa2sZaUu0VHQ6HVpaWvDRRx9haGgImZmZ2L9/PxISEvy+mK9U4Nz7bBRFYevWrX6d02J0dXUhKiqKsXSDoaEhJCQkMBJYwWRpr/W63wasE3ErKiqCzWbDhQsXvB6PiopixOqQSCQQCoWMCGlMTAzsdjsjYwFAamoqrFYrYwWV3WzevBkCgWDJiyZT1f0JgkB0dDS2bduGffv2ISQkBA0NDfjoo4/Q1NQEpVLJWAI8cOkuuq2tDceOHcOpU6fgdDqxfft2lJeXIzExkdaKGCsRuP7+fkxNTaG0tJTRaDqj0YihoSHGOhzYbDaMjY0x4pK0Wq3QaDSMuFqnpqYQGRm5LvfbACAw7cnLcO+7VVZWes2Pkcvl6OjogMPhoNVEnluthO47Jw6Hg8TERAwMDDDiW+dyucjOzkZHRwdiYmIYqxPH4XBQUlKCEydOoKurC9nZ2T7PXau2Ne4Iz+zsbKjVaiiVSrS2tnqaXspkMoSFhUEqlfqt+LC7f5ZWq4VGo/Hs9crlcuTk5CAqKorxQsdugauurkZDQwMKCwt9WolTU1Po6OjAzp07IRaLGZ1nZ2cn4uLiGOsKPTIygrCwMEbGm5ycRGhoKCPvqVKp9CnYbos8Pz+f9nmslHUhbgBwzTXX4MMPP8TXv/71K45JJBKIxWJMTU3R7vNWKBSor68HRVG0+/JTUlJw7NgxmEwmn32U/ElCQgJ6e3sxNDSElJQU2sdzIxAIUFZWhlOnTiE0NNTrZxgI/dg4HA6ioqIQFRWFzZs3Q6/XY3JyEmq1Gv39/TCbzQgODoZUKoVYLIZIJPI8hEIhuFwunE4nAFfOl81mg9VqhdVqhcVi8Tx0Oh1mZ2fB4/EglUohlUpRWlrqKSW2lixF4AwGA+rq6rB161ba87AuR6fTYXx8HPv372dkPIqi0N/fz5iVqFQqERMTQ/s4FosFWq0WpaWlXo8fOXIEFRUVAbvfBqwjcbvllltw6NAhGAwGhISEXHHcbVHRLW4ymQxOpxNarZb2L25QUBDkcjkGBgawadMmWscCXIt3Tk4OWlpakJCQwOiFGxoaisLCQtTX10MsFs97bwNB2C6HIAiEhobOu1u3Wq3QarXQ6XQwm81QqVSwWCwe8Zrryjt+/DgAVxSuW/zcQiiXyxEWFoagoKA1FzNvLCRwVqsV586dQ1JSEhISEhifW0dHhyfVhAmUSiVIkmQkkMTpdGJqaoqRaiCTk5OQSqUQiURej7/77rt44IEHaJ/Halg34paRkYGUlBR8/PHHuO222644rlAocP78edotKg6Hg5iYGE9OC92kpqaitrYWWVlZjIhNTEwMent70dfXx3hJnZiYGOTk5KCmpgY7d+5EWFhYQAqbL4RCIeRyuc/9EIqiYLPZ8OGHH+KGG26gvUQTnXgTOLvdjpqaGoSGhiI3N5fxOalUKqjVakZD0/v7+5GSksKIG1+pVEIkEjHi/lxo60WpVKKurg7//ve/aZ/HalgXASVubrnlFrz77rtej0VERICiKEaSkZOSkjA6OupxMdGJTCZDUFAQYwWOCYLA5s2b0dPTw0gtzctJS0tDeno6zpw5g/b29nUjbEuBIAjPIhiIFtlymRtkUldXh5qaGojFYsY7egOXCvhmZWUxlkvnLsjMRCAJwFxnA6fTienpaZ/i9v7776OkpISRoJbVsK7E7eabb8Z7773nVVQ4HA7kcjkj9R8jIiIgEokYiSxciwLHERERSE5ORmNj45qEvmdmZkIqlaKnpwd5eXkbQtg2KiKRCKWlpVAqlTCbzSgqKlqTppUdHR0QCoWMVSMBmC3IbDQaMTMzw4ird3p6GkKhEBKJxOvxd955B7fccgvt81gt60rctm/fDoqicO7cOa/Hmayon5SUxFiJrLi4ODidToyNjTEyHgDk5OTAbrejt7eXsTHd9Pf3Q61WIzExERcuXKC9IS3LyrHZbKivr0dERAR4PJ4nio5J1Go1hoaGUFBQwJjFaDQaMTIywpiYDg0NQS6X+9wD8yfubgPe3kt3BR9W3PwMj8fDjTfeiHfeecfr8ejoaBiNRkbcaQkJCdBoNIyMxeVykZWVhY6ODka6BbjHLCgoQFdXF6PuybkdtAsKCpCeno7q6mq2g3YA4u7oHRQUhO3bt69JR2+Hw4HGxkZkZ2d7DTSji46ODsTHxzOy/0WSJIaHh5GcnEz7WBRFYWJiwqdL8tixY1AoFGuyp7pc1pW4AQvvu/H5fMjlcoyOjtI+D4FAgJiYGMast4SEBHA4HAwODjIyHuByT6akpKChoYERUfUWPJKRkYHs7GxUV1cz8rmyLA2tVouTJ08iNDQUxcXF4HA4jHf0BtbGHanVajExMcFYwJVSqfSkodCNuxuJr3qS7777Lm655ZZ1sWe87sTtwIED6O3tRU9Pj9fj8fHxGB0dZeSLlZSUhJGREUYCSzgcDnJzc9Hd3c1oZYzs7Gw4HA709fXROs5CUZGpqakoKSlBc3Mz4yXCWK5kbGwMp0+fRkpKCgoLC+ftsTEpcGvhjgSYTzdwF2Rm4jWOjo4iPj7e61hOpxPvvvsubr75Ztrn4Q/WnbhJJBLccMMNeO2117wel8vlsNvtjLixIiMjIRAIGNsLUygUCAoKol1o5jLXPUlXcerldNAeHx9HbW3tuqrYv1GgKAodHR1oampCcXHxmnb0drsjc3JyGHVHTk9PY2ZmBpmZmYyMZzAYoFKpkJiYSPtYDocD4+PjiI+P93r8xIkTcDqdKC8vp30u/mDdiRsA3H333Th8+LDXLw2Xy0VsbCwjofNMRzISBIHc3Fz09vYy2nPM7Z5sbGz0u3tyuR209+zZA6fTiVOnTm2o5qKBjt1uR21tLcbGxrB79+5Fy8/RLXBudyRTHbYBl7i3t7cjPT2dsRzF/v5+xMTEMFZuSywW+yyUfPjwYdx5550BXZVkLutS3G666SZMTk6irq7O6/H4+HiMj48zsk+UkJDgCdNlgsjISERERPh0y9JFdnY2SJL02TR2JawkQVsgEGDbtm2Ijo7GiRMnGGlBdLUzOzuLU6dOweFwYM+ePUsOoqBL4MbGxjA8PMy4O3JiYgJms5mx/T273Y7h4WHGBHwhl6TZbMabb76JgwcPMjIXf7AuxU0sFuP222/H4cOHvR6XyWTgcrmMdArg8XhITk5m1FWYm5uLgYGBFfVBWylcLhelpaUYHR31SxDNaiqPcDgcbN68GVu2bEFDQwPq6+ths9lWPSeW+ZAkie7ubpw8eRIKhQLbt29ftsXib4HTarVobGxEUVERo+5IkiTR0dHBWKUgABgeHkZoaCgjeZ5WqxVTU1M+XZLvvfce5HI5iouLaZ+Lv1iX4gYABw8exOuvv+41uIIgCE9gCROkpKRgcnKSMbEJCwtDbGwsOjs7GRnPTXBwMEpKStDa2gq1Wr3i5/FXSa2EhARUVFTAbrfj+PHjrBXnR9zW2sjICHbu3Inc3NwVJ2f7S+AsFgvOnTuHzMxMRvqZzWVkZAQURTFWjcRdkJkpq21sbAzh4eE+O7e/+uqrOHjw4LqIknSzbsWtvLwcfD4fR48e9Xo8Pj4eSqWSkcCDuQWOmSI7OxtjY2OMdCCfS2RkJDZt2oTa2tqA6KAtFotRVlaG3Nxc1NfXo6GhgbXiVsFcay0yMhJ79+71Sw1Vf3X0lslkyMjIWPV8ljt2Z2cncnJyGKu+Mjk5yVhBZuCSS9IbarUaR44cwd13383IXPzFuhU3LpeLu+66y6dr0l2xnamajKmpqRgaGmIsii84OBhJSUlob29nZLy5pKSkIDY2FrW1tQHRQZsgCCQmJmLfvn2wWq2orKzE+Pg4mzKwTLRarcda27FjBzZt2uTXJqOr6ejd0tICkiQZ32cDXNetUChkTGgAoK+vj7GCzO4WS77E7Z///CcKCwsZzSX0B+tW3ACXa/Ktt96CwWDwejw5ORmDg4OMLHIymQwSiQT9/f20j+UmKysLGo2G0bJcbrZs2QIej7fk+pNMVPcXi8XYtm2bp23PyZMnPUmpLL4xGAw4f/48Tp8+jaioKOzdu5e2z2ilHb0nJycZ7+gNuN6brq4ubN68mTFRnZ6ehlarZaQiCeAqyBwXF+ez+a3bJbneWNfilpeXh7S0NPzzn//0ejw2NhZms5mRSMa1CNMXCoXIy8tDS0sLo6kBwKUO2lqtFt3d3Quey2TbGrcVd8011yAmJga1tbWoqamBVqulddz1iMViQXNzMyorK8Hn87F//37k5ubSLiDLETh3R+/S0lLGO3pTFIXGxkYkJib6rNhBx5jt7e3IyMhgJN3A4XBgdHTUp5B2d3ejtrYWn//852mfi79Z1+JGEAQefPBB/OlPf/J6nMfjITExkbGSVTKZDDKZbNHF3p/ExcUhMjJyTQrWCoVClJaWoqenx6f1uFb92Hg8HjIzM3HttddCIpHg9OnTqKurY3Pj4Aoxb29vx9GjR2G1WrF3717k5+czKh5LETi9Xo+6uro16wzR398Pi8XCaB3FiYkJWCwWRsP/3d3jvfHiiy/iM5/5DCOlv/zNuhY3wOWabG1tRVNTk9fjycnJGB8fZ8yyyc3NxeDgIKNh+nl5eVCr1Yy04LmcsLAwFBcXo7Gx8YpoxUBoNCoQCLB582bs378fXC4Xx48fR11dHWN5iYGEyWTChQsX8PHHH0Oj0WDnzp0oLS312dqEbhYSOIPBgOrqaqSkpDBSneNyDAYDOjo6UFBQwFjoP0mSaG9vZyzdgKIoDAwMICUlxavL1WKx4JVXXsFXvvIV2udCB+te3MLCwnDXXXf5tN4kEglkMhlj1ltoaCji4uLQ0dHByHjAfPekxWJhbFw3CoUChYWFqKur8+QWBoKwzUUsFqOgoAAVFRUQCoWoqanBiRMnGKsNulZQFIWpqSnU1tbi2LFjMJvN2LZtG3bs2MFIJ/nF8CZwJpMJZ86cQUJCArKzsxmfk9sdmZSUxJg7EnDltQFgTMzVajXMZrPPQJI333wTkZGR66bc1uUQ1AYIKaurq0NFRQXGxsa8Vk+YmJhAS0sLrr32Wkaij0wmE44dO4by8nJGWmK4OX/+PCiKQklJyZrko4yOjqKpqQmJiYkYGRkJGGHzhrv6w+DgIKxWK+Lj45GUlITQ0FBa3zu73Y4PPvgAN954o88NfH9gNpsxMjKCoaEhOJ1OJCQkMFrsd7m42+eEhIRgdnYWcrkcW7ZsWZPruLe3F4ODg9i7dy9jVpvD4cCxY8ewefNmxMXFMTLm+fPnERQUhE2bNnk9vmvXLtx22214/PHHGZmPv1n3lhsAFBcXIzc3F3//+9+9HlcoFOBwOIx06QZceW/JycmMh+m73ZNrET0JuHILFQoFBgYGkJOTE7DCBrjaI6WlpWHfvn0oKyuDw+HAqVOncOzYMVy4cAEqlYqx3nn+gKIo6HQ6dHV14cSJE/jkk0+gUqmwadMmXHfdddi0aVPAChvgsuAKCwsxOTkJgiAYjU6ci16vR2dnJ6PuSAAYGBiASCRiLN3AZDJBqVT6DCRpbGxEY2MjvvSlLzEyHzpYHxUwl8Cjjz6Kn/3sZ3jooYeusM7cBY57enoQGxvLyJcmMzMTR48ehVqthkwmo308wOWe3Lp1K5qamhAZGclI1965uEO2MzMz0d7ejpCQEERHRzM6h+VCEIQnECgvLw/T09NQKpWoq6sDSZKQy+VQKBSIjo6m1dJaCSRJQqVSQalUQqlUwmazITo6GsnJyVAoFBAKhWs9xSVjNBpRV1eHuLg4aDQaNDY2orCwkFGBm+uOZOo7C7i6mff09DDqcenr64NCofBZkeQPf/gDDh48GBCu65WyIdySgKs2WmJiIg4fPoxrr732iuMOhwOffPIJioqKGFtwu7q6MDU1hV27djH6JT1//jxIkkRpaSlj416+x+Z2URYXFzNeKskfUBQFjUbjEQ6DwQCJRAKpVAqpVIqwsDCEhYUtO2x+pW5JiqKg1+uh1Wqh0+k8//L5fCgUCigUCkRGRjKeB+YP3MEjsbGx2Lx5M6xWK6qrqyGVShkVuLVwRwJAW1sbdDodduzYwch4VqsVn3zyCXbt2uU1SlKtViM+Ph61tbXYsmULI3Oigw1juQmFQjzwwAN49tlnvYobj8dDamoquru7GRO3tLQ0DAwMQKlUIiYmhpExAZd78vjx4xgbG/O5WexPvAWPxMfHg8PhoK6uDvn5+YzMw58QBIGIiAhEREQgNzcXJpMJWq3W04W5s7MTdrvdI3ghISEQCoUQiUSeB5/PX9bC7HA4YLFYPA+r1Qqj0QidTgedTgcAHlFNSkqCVCqFRCJZV/X+Lken06GmpgYJCQnIzc0FQRCeIJPq6mo0NDQwInBud+T27dsZFTaz2YyBgQHs2rWLsTH7+/shk8l8hv//+c9/RllZ2boWNmADWW6Aqx9RSkqKzzsOm82Gjz/+GDt27GBsP6i/vx+Dg4OoqKhgvD1HQ0MD9uzZQ2uo92JRke7WRKmpqcjOzl7XC/FcKIqC2Wz2CJ7JZJonTE6nExwOB0KhEEKhEBwOx/Pa1Wq1572iKAo2m+2Kv3ELpLu/1kYQsssZHx9HQ0MDMjMzvTY+dQeZ0G3Bufdbo6KisHnzZlrG8EVTUxMcDgdj1fbtdjs+/vhjlJWVeY0ENZvNSElJwV/+8hfcdNNNjMyJLjaUuAHAQw89BJ1Oh1dffdXr8ba2NhgMBpSVlTEyH5IkcezYMWRlZTGer9Pe3o7x8XHs2bOHlmoHSw33n52dRW1tLSQSCQoLCwNu74oO7HY7rFarxwKjKAoURcFut6O1tRV5eXkey47P56/Y2luPUBSFrq4u9PX1obCwcEGvBt0CR1EUzp8/D7vdju3btzNWGBlwWYtVVVWoqKhgrH1PT08PJiYmsHv3bq/v5fPPP4/nn38ezc3N6/463BDRknN54okn8Oabb/qs8ZiWloapqSnGqulzOBzk5OSgs7OT8XyqnJwcSCQST3CEP1lOHltoaCj27NnjuUO+GqqE8Pl8hISEIDIyEnFxcYiPj0dCQgISEhIAuNy28fHxiIuLQ3R0NEJDQyEQCNb9grIYDocD58+fx8jICHbv3r2ou57ujt5dXV3Q6XQoKSlhVNgAVzfxxMRExoTN6XSir68PmZmZXq8zh8OBX//61/j2t7+9Ia7DDSduKSkp+OxnP4tf//rXXo+LRCIkJiYy2sk6Li4OIpGI8f5rBEGgsLAQFoslIDpob9++HVFRUTh58iRUKpXf5sOyPjCZTDh16hTsdvuyckDp7Ojd19eHsrIyRuo4zmViYgIqlQpZWVmMjTk8PAyhUAi5XO71+BtvvAGCINZlHUlvbDhxA4Bvf/vbeOWVV3zmtaWnp2N8fNxnNwF/QxAECgoKMDAwwHjZJz6fj7KyMk9C72pZbQftLVu2IDc3F2fPnmW0/x3L2qJWq3HixAnIZLKA6Oit0+k86QZMFloAXHv/zc3N2LJlC2PpOiRJore31+vepvv4L3/5SzzxxBOMBtTQyYYUt82bN+Paa6/FM8884/V4cHAwEhISGC2RJZFIkJWVhYaGBsbdk3M7aK9GXP1VUispKQnbt29HZ2cnmpubN3T5q6sdiqIwODiImpoa5OTkIC8vb807elutVk9HbyajmN20trYiPDyc0QjiwcFBcLlcn9VP3n//fahUKtxzzz2MzYluNqS4AcB3vvMdPP/889BoNF6PZ2VlYXJyktFWKOnp6RAIBIyKqpuoqCjk5uaitrYWZrN52X/v71qRMpkM5eXl0Gg0OHHiBNuSZgNisVhQW1uLzs5ObNu2zS/9yVYrcCRJora2FhEREYx39AZcEaKTk5PYunUrY/tadrsdXV1dyMnJ8TomRVF48skn8fjjjzNe+IFONqy4bd++HUVFRfj973/v9bhYLEZKSgqjJbLc7snBwUGo1WrGxnWTkpIChUKBc+fOBUQH7aCgIOzZswexsbE4ffo0Ojo61lXJKxbvUBSFkZERHD9+HFwuFxUVFX4tQLzajt5OpxP5+fmMB01YrVa0tLQw6o4EXN/fkJAQn8UUTpw4gY6OjnVb/d8XG1bcAOCHP/whnn76aZ9CkpGRAa1Wy2i3ZolEguzsbDQ2Ni5LYPwBQRDIy8sDj8dDU1NTQHTQ5nA4yM7Oxu7duzE5Oclacesct7XW1taG/Px8FBcX01IGbCUC5y6oUFZWtib7SmvhjrRarejt7fUkyF8ORVE4dOgQHn/88TVrfUQXG1rcKioqsH37djz55JNejwsEAqSnp6O9vZ3RRp9paWkQCASMR08Clzpoz8zMoKura8FzmWxbExYWhj179iAmJganT59GZ2cna8WtIyiKwujo6Dxrje4iwMvt6N3e3r4mHb0BlztyamqKUXck4Oqk7a6d6o133nkH/f39+MY3vsHYnJhiQ4sbADz55JN47rnnPL2SLic1NRUWi4XRRp9r7Z4UCoXYtm0b+vv70dfX5/WctejHNteKm5iYwIkTJzxlp1gCF4vFgvPnz6O1tZVWa80bSxE4lUqF2tpa5Ofnr0mnCrc7Mi8vj1F3pMlkwuDgoM9O4k6nE4cOHcL3v/99xnLtmGTDi1tBQQFuvfVW/OhHP/J6nMfjISsri/H9nrV0TwKuxGp3xOLlIflr3Wg0LCwM5eXliImJwalTp9DW1gabzcb4PFgWhiRJDAwMoLKyEgRBYN++fYy1bJnLQgI3MzODc+fOYcuWLWtW39TtjmSqT5ubzs5OxMbG+kx1+Pvf/w6LxYL777+f0XkxxYYXNwD46U9/in/84x8+g0cSExNBEATjeVdpaWkQCoVrEj0JAOHh4di+fTva29s9OXBrLWxu5lpxOp0OR48eRXd395rcCLDMh6IojI2N4fjx4+jv70d+fj5KSkrWtMWON4HTaDSoqalBbm4ukpKS1mRea+WO1Gg0GB8fR05OjtfjFosFP/zhD/HTn/6U8QR2pthwtSV98fDDD2N8fBxvvfWW1+NTU1M4f/489u/fz6jrwGAwoKqqCtu3b2e0h9RcVCoVzp49i5iYGCiVyjUXNm9MT0+jvb0dFovFU6eT6XJJ/oCpTtx0QFGU53OwWq3Izs5GQkJCQH0O7lqUQUFB0Gg0yMzMRHp6+prMxWq14vjx44xbjRRF4eTJk5DL5cjOzvZ6ztNPP43Dhw+jvr4+oD4/f7IxX5UXvv/97+OTTz5BTU2N1+PR0dGIjo5mvHt2SEjImronASAyMhIJCQkYHR1FWlpawAkb4MrT27NnD7Zs2YLe3l4cP34c4+PjjAYCXc1oNBqcOXMGdXV1iI+PxzXXXIOkpKSAWxhFIhG2bNmCqakpiMVipKWlrdlcWlpaIJPJGHdHDg0NwWaz+czj0+l0+MUvfoEnn3wy4D4/f7JxX9llKBQKfOMb38B///d/+1wQN2/ejPHxccaDPNzuyZaWljVZrPv7+zE6OorNmzejt7fXL2W66IAgCMTGxmLfvn1IT09HS0sLTp48yWgqx9WGwWDA+fPnUV1djfDwcFx77bVIT08P2KaoGo0GdXV1yMjIAEmStBRbXgpDQ0NQqVTIy8tj1B1ps9nQ3t6OzZs3+/yMnnrqKeTl5eHAgQOMzWstuGrckoCr9UpWVhZ++9vf4q677vJ6Tnd3N8bGxlBeXs7oXY3ZbMbJkyeRlpbGqBvl8j02lUqFc+fOITc3FykpKYzNYyU4HA4MDAygp6cHISEhSE1NRWxsbEDfja4HtyRFUVCr1ejv78fk5CQSExORmZm5JiH0y0GtVuPs2bPIzs5GWloaY/3gvM2jpqYG27Zt82vy+lJobm6G2WxGWVmZ19fb09ODrVu34tSpUygqKmJ0bkxzVYkbALz66qt44okn0NXV5TVpkSRJVFZWIjk5mXGXhkajQXV1NUpKSnxW7vYnvoJHZmZmUFNTg6ysrDXbr1gOdrsdw8PDGBgYgNPpRHJyMpKTk9c0wMEXgSxuTqcTo6Oj6O/vh9lsRlJSElJSUhAUFLTWU1uU6elpnDt3Dps3b55X5otpgTOZTDhx4gSys7MZvzl0rx8VFRUIDg6+4jhFUfjUpz6FpKQkPP/884zObS246sSNoijs3bsXJSUl+M1vfuP1nLUKLgGAkZERtLS0rHkHbXekWUpKyrrpoE1RFCYnJ9HX14eZmRnExMQgKSkJkZGRATP/QBS32dlZDA0NYWRkBEKhEGlpaYiPj1831eHdHb3z8vK8NgRmuqN3REQEtm7dSssYvnAHkURHR/uMkHz77bdx3333obu7OyD31f3NVSduAHDhwgWUlJSgrq4OmzZt8nrO+fPnweFw1sR0b2trw8TEBMrLy2lZAJfTQfvcuXMICwtDYWHhulnsAFeXY/eCzefzkZSUhPj4+DV3rQWKuNntdkxMTGBoaAharRaxsbFISkqCTCYLmBuBxaAoCt3d3ejt7b2qO3oDrqr/PT09qKio8Po9NZlMyM3Nxfe+9z3cd999jM5trbgqxQ0AHn/8cTQ2NuL48eNeL3Sz2YzKykoUFhb6LDhKFxRF4dy5c6AoCtu2bfPrF3G5eWw2mw3nz5+HzWZDWVnZunBRzcXpdEKpVHqqwYSGhkKhUEChUCAsLIzxhXwtxc1kMkGpVEKpVEKlUkEikSAxMREJCQnrLtfJ4XCgsbERWq0WZWVlS+rJRqfAdXV1YXh4GHv27GHcHW4ymVBZWYni4mKf2xnf//738fHHH6Ompiag96T9yVUrbu7gkmeeeQZ33nmn13OGh4fR3t6Offv2Mf7lt9vtnlyVzZs3++U5V5qgTZIkLly4gLGxMZSUlDC+Se4vbDYbJicnoVQqMTU1BR6P5xG6yMhIRiIAmRQ3iqKg1Wo9gqbX6yGTyTyv2du+zHrAZDKhtrYWPB5v2cnjdAjc+Pg4GhsbsXv3bsYbn1IUhZqaGojFYhQUFHg9p7e3F3l5eTh58iSKi4sZnd9actWKG+AKLvnWt76Fzs5Or/tbbguKz+eviXvSYDDg5MmT2Lx5s9e9hOXgj8ojg4ODuHDhwhWb9usRp9MJtVrtWfhtNhuio6Mhl8sRHh4OiURCi1VHp7hRFAWz2QytVoupqSkolUqQJIno6GgoFArI5fKA2edbKWq1GrW1tYiNjcWWLVtWZIX4U+B0Op0n8nAtGp8ODg6iu7sbFRUVXj/bqy2IZC5Xtbi5g0sKCwt9du12uycLCgrW5OKdmppCbW0tduzYsWJR8mdJLZVKhfPnz69qcQk0KIrC7Oysx6JzF2sOCwtDWFgYpFIppFIpQkJCVv16/SVuc4XM/dDpdLDb7ZBIJIiKioJcLodMJtsQnxHgyh1rbW3Fpk2bVh2J6A+Bs1qtOHHiBJKSkpCVlbWq+awEtzuypKQE0dHRXs9588038eCDD141QSRzuarFDXAVFy0qKsJHH32EXbt2eT1nLd2TANDX14eenh6Ul5cvOyCCjlqRJpMJ586dg0AgYLQCPFNQFAW9Xu8RDPe/gKvgtFQqRWhoKEQiEUQiEYRCIYRC4ZJEZDniRlEUbDYbrFYrLBYLLBYL9Hq9Z04OhwMSicQjvm4xDtQE65VCkiTa2towOjqK4uJiREVF+eV5VyNwJEnizJkzEAqFKC4uZnzvlqIonDlzBsHBwcjPz/d6jkqlwqZNm/Db3/4Wd999N6PzCwSuenEDgN/85jf405/+hObmZq8BE2vtnqQoCk1NTdDpdNi1a9eSoxbpLILscDjQ0NAAnU635A399Yxb8NzCotfrYbFYYLVaPR0LhELhPMETiUQQCAQgCAIEQYDD4YAkSU83Zvf/KYqCw+HwCNhcMaMoCjweD0KhEGKxGEFBQR4xCw0N3XBCdjk2mw11dXWwWCwoKyvz+z7hSgSOoig0NzdDq9Uu6/voT9zFC3y5IwHgzjvvhMViwVtvvbVuImD9CStucO2/7N69G2VlZQHrnnQ6nThz5gxEItGS7hSZqO5PURS6urrQ19eHTZs2ISkp6ar8EjmdznmCNPdnu90OiqI8IkaSJNRqNWQyGbhcLjgcDgiCAJfL9QjjXHEUiUTrKgXDn6hUKjQ2NiI0NBSFhYW07RcuV+D6+/vR3d2NPXv2rEn0sNFoRFVV1aLuyAceeABtbW2MR3sHCqy4XaS7uxsFBQX48MMPsXv3bq/njI6OoqWlBRUVFWuSL2W1WnHq1ClERkYu2EKD6bY1k5OTaGpqgkQiQX5+/rpLF2CSQMlzC2QcDgc6OjowNDSEnJwcpKam0n7TtFSBGxoawoULF9ascwZJkjh16hSkUqnPRPHp6Wls2rQJzz77rM8yg1cDG2On2Q9kZmbipz/9Kb785S/DZDJ5PSc+Ph6xsbGoq6tjtLGpG6FQiJ07d2J6ehqtra1eC8KuRT82uVyOffv2QSwWo7KyEkNDQ2y1fpYVoVarUVVVBa1Wi7179yItLY0Rb8BSOnqPjo6itbUVZWVlaxac4W6qvFB60COPPIJdu3b5THG6WmDFbQ5f//rXIZfLcejQIZ/nbN68GXa7HZ2dnQzO7BJisRg7d+6EUqlEe3v7vC/hWjYa5fP5KCgoQHFxMTo7O3H27FmYzWZG58CyfnE4HGhtbfWUfNu1axdCQkIYncNCAjc+Po6mpiaUlpauWZ6nuxhBSUmJz73W//u//8OxY8fw/PPPX5VbBHNhxW0OXC4Xf/3rX/HnP/8ZJ0+e9HoOj8dDcXEx+vv7MTU1xfAMXQQFBWHHjh0YGRnxiGygdNB2W3EikQjHjx9nrTiWRVkra80b3gROqVSioaEBxcXFPve46MZsNqOxsRF5eXk+RX96ehoPPfQQ/vCHPzBSeD3QYffcvPC73/0OTz/9NBobG30KxdDQEDo6OrB3717Giyu70ev1OH36NMLDw6FWq9dc2C7HvRcXGhqK/Pz8Na/rGAiwe26XmLu35m5TEyjWhnsPTiQSQaPRoLCwELGxsWsyF3faQXBwsM8qJCRJ4qabbkJwcDD+93//N2Dex7WEtdy88Oijj2Lr1q249957fVodiYmJiIqKQn19/ZpZJu7agJOTk4iLiwsoYQNcVlxFRQWEQiFrxbHMw22taTQalJeXIz09PaAWZJFIhMzMTKhUKoSFha1JhLSbrq4uWK1WbNmyxec5v/3tb9HR0YE///nPAfU+riWsuHmBIAi8/PLLqKurwx/+8Aef5+Tl5cFsNqO7u5vhGbro7+/H4OAgCgsLMTExgY6OjoATD4FAgMLCQhQVFaGzsxPV1dWYmZlZ62mxrBEmkwkNDQ2oqalBcnIydu/eTWtrp5UyMTGB5uZm5OXlwWazrVlH76mpKfT19aGkpMRnSsi5c+fwwx/+EK+//jqkUimzEwxgWHHzgUwmw2uvvYZvf/vbqK+v93oOn89HSUkJenp6MDExwej85u6xJSQkYNeuXRgaGkJbW1vACRwAKBQK7Nu3DzKZDGfOnMG5c+cwOzu71tNiYQir1YrW1lYcO3YMFEWhoqIi4Kw1N2NjY6ivr0dhYSFSUlIWjaKkC6PRiLq6OuTl5fkskqDRaHDHHXfgJz/5CcrKyhib23qA3XNbhCeffBIvvfQSGhoafF5gTFcF9xU8YjAYcObMGSgUCmzZsiUgFw7AtZ/R3d2NoaEhxMfHIzs7+6rZj7va9twcDgf6+vrQ29sLmUyGnJwchIWFrfW0fDIyMoLm5maUlJTMC8pguqO33W7HqVOnEB0d7TPsn6IofPazn4XVasU777yzYWqI+gtW3BaBJElcf/31iIiIwGuvvebzou7s7MTIyAjKy8tprT+5WFSkyWRCdXU1oqKiFkz0DgSMRiM6OjqgVCqRnJyMzMzMdddXbLlcLeJGkqSnYn1QUBByc3MDvlWSuzBzaWmp16hIpgTOXe6PJEls27bNp2g999xzePLJJ9HU1BTw7+1awIrbEpicnER+fj5+8pOf4P777/d6DhOdeJca7m82m1FdXe0pWxTo5Zu0Wi06OjowMzODjIwMpKamBvycV8pGFzeKojA2NoaOjg5wuVzk5ORAoVAE9E3W3I7eZWVlCwoFEwLX3t6O8fFx7Nmzx+fNXmNjI3bt2rVgRaWrHVbclsjx48dxyy23oKqqymfDP4fDgVOnTkEmkyEvL8+v4y83j81qtXrEdr100FapVGhra4PZbEZWVhaSkpI2nKtlo4obRVGYmppCR0cHbDYbsrOzkZCQENCiBlzq6K3RaFBWVrYklymdAjc6Oorm5mbs2bPHZ6CNWq1GaWkpvvSlL+F73/ue38beaLDitgyefvppPPPMMzh//rzP0GCTyYQTJ04gJyfHbw09V9NBu7W1FePj4ygtLYVMJvPLfOiEoihP5KfD4UBycjKSk5M3TFudjSZuTqcTY2Nj6O/vh9lsRkZGBlJSUtZFtwKz2Yxz584FTEdvjUaD6urqK/b75mK323H99dcjLCwM//d//7fhbv78CStuy4CiKNxzzz3o6upCVVWVz+RtlUqFs2fPoqysbNW9p/xReWRgYABtbW3rqoM2RVGYnJxEX18fZmZmEB8fj9TU1IAORlgKG0XczGYzBgcHMTg4CKFQiNTUVMTHx68bd/LMzAxqa2uhUCiQl5e35h29zWYzTp48ibS0NKSnp/s879FHH8WJEydw5swZxsuTrTdYcVsmFosFe/fuRWZmJv72t7/5vKBHRkbQ0tKCnTt3rjj3hI4O2nFxcdi8efO6uuObnZ1Ff38/RkdHER4ejuTkZCgUinVhHVzOehY3iqKgVqsxNDSE8fFxREVFITU1FVFRUQHvfpyLO3AkNzcXKSkpq5q7PwTOZrN5un3k5eX5fI4XX3wR3/3ud3H+/Pl1c5O6lrDitgImJiZQXFyMxx9/HN/85jd9ntfb24ve3t4VFYGlo1ak0WjEuXPnIBQKUVJSsu4iE202G4aGhjA0NAS73Y6EhAQkJSUFZBKwL9ajuFmtVgwPD2NoaAg2mw0JCQlISUlZd5aDu6P3yMgISkpKAqKjt8Ph8PRpLCkp8fm3J0+exA033IAPPvgA5eXlfpn3RocVtxVy/vx5VFRU4J///CduuOEGn+dduHABExMT2L1795JrUNJZBNlut6OhoQF6vR6lpaXrsoM2RVFQqVQYGhrCxMQEwsPDkZiYCIVCEfCCvV7Ezel0QqVSYXh4GEqlEhEREUhKSkJMTMy6tJgDsaM3SZKora2Fw+HA9u3bfb6vQ0NDKC4uxs9+9jM8+OCDfp33RoYVt1Xwj3/8Aw899BDOnj2L7Oxsr+dQFOURk507dy66oDHdQbuoqGhdd+q1Wq0YHR3FyMgIZmdnIZPJIJfLoVAoAtKyCGRxs1qtmJychFKpxNTUFAQCAeLi4pCUlBSQ7+VS0ev1OHfuHCQSScB09KYoCo2NjdDpdNi1a5fPORkMBuzcuRO7du3Cc889R8u8NyqsuK2S73znO/jnP/+J6upqnxFOJEnOS8r0dYfGdNuasbExNDY2IjMzExkZGetq38QbJpPJszirVCoEBQVBoVBAoVAgIiIiIF5fIIkbRVEwGAxQKpVQKpXQaDQICwvzvGehoaEB8Z6thsnJSdTV1SE1NRXZ2dkB09G7vb0dY2Nj2LVrl8/qPA6HA5/5zGdgNBrx0Ucfrfn1st5gxW2VkCSJL37xi+jo6EBVVZVPN5/D4UB1dTWCgoJQXFx8xUW/Vv3YtFotamtrERERga1bt26YL5Ddbsf09DSUSiUmJycBwGPRRUdHr1lU31qLG0mSmJmZ8Qia2WxGVFQUFAoF5HL5himDRlEUenp60N3djfz8fMTHxzM29mIC19fXh+7ubuzevdunRUxRFO69917U1dXh5MmTbEHkFcCKmx+w2Wy4+eab4XQ68f777/vMl7FarZ7+awUFBZ6Lfq0bjVosFo/rtKCgYM0aMtIFRVHzFnSTyQSZTAapVOp5iMViRqwUpsXNarVCp9NBq9VCq9VCpVKBw+F4hD4qKmrdhO8vFb1ej8bGRthsNhQXF6+JMPgSuMHBQbS1tWHHjh0IDw/3+feHDh3CP/7xD5w5c2bN+sitd1hx8xMGgwH79u1DSkoKXnvtNZ+h9haLBadPn4ZMJkN+fj4GBgYCooM2RVGergJxcXHYtGnThrHiLsdgMGB6etqz4Ov1evB4PI/QhYWFQSqVIigoyO+CR6e4Wa1Wz2tyC5rZbEZwcLDnNclkMoSHh697d6M3KIpCX18fOjs7kZSUhJycnDUV7ssFbnh4GBcuXMC2bdsWLKjw7LPP4qc//Smqq6uRlZXF4Iw3Fqy4+ZHp6Wns3LkTBw4cwO9+9zufC4i79qNQKIROp8OOHTsCptGoyWRCY2MjjEYj8vPzN5wV5w2n04nZ2dl5wjA7Owsej+cRhbCwMIjFYohEIohEohVHDK5W3EiShNVqhcVigcVimTdvi8WC4ODgeQItlUo37E3KXAwGAxobG2G1WlFQUBAw1XjcAsfn8zE7O4tt27YtWLvy9ddfx/33349jx46htLSUwZluPDaWP2KNiYqKwscff4wdO3YgJiYGhw4d8nqeWCxGfHw8urq6oFAoFnRPME1QUBB27NiBwcFBT9L3RrbiAIDL5SI8PHze5+AWPLcF1NfXB4vFAqvVCoqiwOfzIRQKPWLnfsz9HY/HA0EQ4HA4IAgCBEF4+oGRJAmHwwGKokBRFEiSBEmSHtFyj3X5/61WKwBXE1iRSASJRAKZTIa0tDSEhYVt6M/JGxRFedz6gWCtXY5IJEJSUhLa2toQGRm5oOh+8sknuPfee/Hmm2+ywuYHWMuNBlpaWrBnzx785je/wX333XfFcfeXsbCwEG1tbR4XZaC5iq5GK24xKIqCzWabJzq+xGglX63FBNP9//VUYYYuAtVam8vg4CAuXLiAwsJCdHR0+Awyqaurw759+/DHP/4RBw8eXKPZbixYcaOJkydP4sYbb8QLL7ww72K9PHjE7aIMDw9npAnicqEoyrMJnpCQgNzc3KvOOlgJbovMbZW5f7bZbDh+/Dj2798PgUDgsejmWncsCxPo1pqbgYEBtLe3e/bYfAWZNDU1Yf/+/fje976Hb3zjG2s8640DK240cvToUdx66634y1/+gjvvvNNnVKT7opdIJCgqKgrIChBGoxFNTU0wGo0oKCjwW+miq421TgVY77itNYvFgoKCgoBs0ulOQ+jp6fH5XXcL3IULF1BRUYH/+q//wre//e01nPXGgxU3mvnoo49w++2345e//CVSUlJ8RkXabDacPXsWHA4HZWVlAbnwsVbc6mHFbWXMtdYSExORm5sbkNYaRVG4cOECxsbGsH37dq9dLNwCp1ar8cgjj+BrX/sa25eNBljHPc0cOHAA//u//4tvfetbmJqa8hkVKRAIsGPHDvB4PJw+fRoWi4XhmS4OQRBISUlBRUUFDAYDjh49ir6+PjidzrWeGssGxd3fr7KyEgMDA9i2bRvy8vICUticTifq6+sxOTmJ3bt3+2zPJBKJEB4ejq9+9av4yle+wgobTbCWG0N88MEH+PznP+9xUfqCJEk0NTVBrVZj+/btAVvTz91vzd1UNDs7G/Hx8eye0SKwltvSUavVaG9vh9FoRGZmJpKTkwM2kMZut+P8eVfn+23bti3Y+LSlpQX79+/Hww8/jB/96EfMTfIqI/BufzYoN954I958803cfvvtcDgcPiOiOBwOCgoK0N7ejlOnTmHbtm0BlSrghiAIT8mm0dFRdHZ2ore3Fzk5OZDL5azIsawYnU6Hjo4OqNVqpKenIy0tLSAtNTdWqxU1NTUe78tCNy2NjY249tpr8dhjj7EWG80E7hWzATlw4ADefvtt3HrrrTCZTHjggQe8nkcQBDZt2gSRSIQzZ86gpKQkYMPwCYJAQkICYmNjMTg4iMbGRoSEhGDTpk0Bk5jOsj4wGo3o7OzE+Pg4UlJSUFBQsKAFFAgYjUbU1NR4AkQWsixramrwqU99Ct/61rfY4BEGYMWNYa655hp8+OGHuPnmm6FUKvH973/fp5WTlpYGoVCI2tpav3QNphMul4u0tDQkJiair68PZ86cQVRUFHJyctZlzzgW5rBareju7sbg4CDi4uKwf/9+BAUFrfW0FsXd3T4hIQGbNm1a8Lv53nvv4c4778RTTz2Fhx9+mMFZXr2w4rYG7Nq1C6dOncKBAwcwOTmJ3/3udz7D/+Pj4xEUFITa2lrMzs4iLy8vYPcdAIDP5yM7OxspKSno6urCiRMnEBcXh+zs7HWxYLEwh91uR19fH3p7exEVFYXy8vJ1cyM0MDCAtrY2bNmyBUlJSQue+8orr+Dhhx/G3/72N3z2s59laIYsbEDJGjI0NIQDBw5gy5Yt+H//7/8t2KnbbDbj3Llz4HK5KC0tDXh3jRu3q2liYgLJycnIyMhYN3OnAzagxBVVODg4iO7uboSEhCA3Nzcgq4t4gyRJtLa2Ynx8HKWlpQvOm6Io/OpXv8IvfvELvP3226ioqGBwpiysuK0xKpUKN910E8RiMd5++22f4cOAqydcU1MTZmZmUFZWtuC5gYY7SGB6ehrx8fFIS0tbN3fp/uRqFjeLxYKBgQEMDg5CJBKtu+Ajq9WK8+fPw+FwoLS0dEFPBEmS+OY3v4nXXnsNR44cQUFBAYMzZQFYcQsIjEYjPve5z2FiYgJHjhyBQqHwee7cJoyFhYXrrtfT7Ows+vv7MTo6ivDwcKSmpkKhUKybBW61XI3iptFo0N/fj/HxcURFRSE1NRVRUVHr6jPX6XSora2FVCpFQUHBgtGbNpsN99xzD2pra/Hxxx8jNTWVwZmyuAnczZs1YHp6Gl/96leRmJgIoVAIhUKBAwcOoLq6GnfeeSeuv/76eed/+OGHIAjiilyVH/3oR0hMTFzyuMHBwfj3v/+NLVu2YMeOHWhra/N5LkEQyMzMRFFRERobG9He3g6SJJf1OteS0NBQ5Ofn49prr0VUVBRaWlpw9OhR9Pb2wm63r/X0WPwESZIYGxvDyZMnPS1fKioqsG3bNkRHR68rYRsdHcXp06eRmJiI4uLiBYVtZmYGN954I7q6ulBdXb0qYVtoPQKA5ORkTz3SuY9f/vKXKx5zI8EGlMzh9ttvh81mw9/+9jekpqZicnISx44dg1qt9tR/czgcnou7srISCQkJqKqqmvc8lZWVy/av8/l8vPLKK/jxj3+MHTt24PDhw7j55pt9nh8TE4Pdu3ejrq4OarUaxcXFEIvFy37Na4VQKERmZibS09MxMTHhaTIZGxuLpKQkRERErKsFkMWFwWDA0NAQRkZGwOVykZqaiu3bt69LK9XhcODChQsYHx9HUVHRgh4VAOjo6MAtt9yC3NxcvPXWW5BIJKsaf6H1yM1PfvIT3H///fP+brXjbhgoFoqiKEqj0VAAqKqqKq/Hu7q6KABUTU2N53elpaXUc889R4lEIspsNlMURVFms5kSCoXUyy+/vOK5/POf/6RCQkKoX/ziFxRJkguea7fbqcbGRur999+nJiYmVjxmIKDT6ajm5mbq/fffp44ePUr19vZSVqt1raflV2w2G/X2229TNpttrafiNxwOBzUyMkKdPn2aeuedd6ja2lpqcnJy0Ws3kNHpdNSxY8eokydPUiaTadHz33vvPSo0NJT67ne/SzmdzlWPv9h6RFEUlZSURD3zzDOrHmujwrolLxISEoKQkBC8/fbbnoaQc8nMzERsbCwqKysBAHq9Hg0NDfjc5z6H5ORk1NTUAADOnDkDq9W6qsioz372szh16hReeOEFfOELX4DJZPJ5Lo/HQ35+PvLy8lBfX48LFy6sKzflXEJDQ5GXl4cDBw4gMzMTExMT+Oijj1BXVwelUgmHw7HWU2S5CEVRmJmZQWtrKz766CN0dnZCLpfjuuuu8xQdWI+WN0VRGBoawsmTJ6FQKLBz584FPSLUxYjIO+64Ay+++CJ+9rOf+SVVZ7H1iGVx2ICSObz55pu4//77YTabUVhYiPLyctx5553Iy8sDABw8eBDT09P46KOP8MEHH+CJJ55AW1sbHnzwQSgUCvz4xz/GD37wAxw+fBj9/f2rns/U1BRuu+02WCwWvP3224iPj1/wfIPBgLq6OhAEgeLiYgQHB696DmuNXq/H8PAwxsfHYbVaERUV5Sn7tVDqRKCyngNKHA4HpqamoFQqMTk5CYqioFAokJiYCJlMti7FbC52ux0tLS2Ynp5GYWHholWBzGYz7r//fpw4cQJvv/02ioqK/Dqfxdaj5ORkTExMXHEdHTlyBLt37/brXNYjrLhdhsViwalTp3D27FkcOXIEtbW1+Mtf/oJ77rkHf/nLX/DYY49Bo9Hgu9/9LoxGI5577jn84x//wJ/+9CecOHECe/bsQUZGBl566SW/zMdms+Ghhx7Ce++9h7feegvbt29f8Hyn04m2tjaMjIxg69atiIuLW/eLDuC6Q9br9VAqlVAqldBqtQgLC4NCoUBMTAwkEsm6eJ3rTdzMZrPnPVepVAgKCoJCoYBCoUB4eHhAFxRYDhqNBvX19RCLxSgqKlr0xmlsbAyf+cxnwOPx8K9//WvR/biVstB6lJycjIMHD+Kee+6Z9zdxcXHrav+dNtbMIbpOuPfee6nExESKoiiqt7eXAkBVV1dTxcXF1BtvvEFRFEWNjo5SQqGQUqvVlEAgoA4fPuzXOZAkSf3ud7+jgoKCqGeffXZJexnj4+PUkSNHqLNnz3r2AzcSFouFGhwcpM6ePUu9++671EcffUQ1NzdTk5OTftnzoItA33MjSZLSaDRUR0cHVVlZSf373/+mTp06RfX09FB6vX6tp+d3HA4H1dbWRr377rtUV1fXkr5bn3zyCSWXy6l77rmHslgsDMzyEnPXI3bPbWHYaMlFyM3Nxdtvvw3AVesxISEB77zzDpqamlBeXg7AdacUFxeHp59+Gjabze+VCAiCwKOPPorCwkLceeedqKysxEsvvbRgYeKYmBhERESgtbUVx48fR15e3oax4gBXtGVSUhKSkpLgdDqhUqmgVCrR2NgIh8OB6OhoKBQKREdHX9UVUZaCw+GAWq32WGju9y8tLQ1yuRwCgWCtp0gLGo0GjY2N4HA42LNnz6JFBRwOB3784x/jmWeewbPPPosvf/nLjH+f5q5HLAvDittF1Go1Pve5z+HLX/4y8vLyIJFIUFdXh1/96lf49Kc/7TmvoqICf/zjH5Geng65XO75fXl5OX7/+997Ak/oYOfOnWhqasKXvvQlFBQU4PXXX1/QTSkUClFcXIzx8XE0NzdjfHwceXl563KvaiG4XC7kcjnkcjny8vKg0+mgVCrR19eHhoYGiMVihIWFQSqVeh5Xq+A5HA7odDpotVrPw2AwQCwWQ6FQoKCgAJGRkRvG3egNp9OJrq4u9Pf3IyMjAxkZGYu+3tHRUXzhC1+AWq3G2bNnsXnzZlrnuNT1yO2qn0tQUNBVWf3nclhxu0hISAjKysrwzDPPoK+vD3a7HQkJCbj//vtx6NAhz3kVFRX4+9//jr179877+/Lycrz88sv4whe+QOs8ZTIZ/v3vf+PZZ5/FNddcgx/+8If4r//6rwW/nLGxsZDJZGhtbUVlZSW2bNmyoay4uRAE4RGw7Oxs2O12zyKu0+kwMjICo9EIkUg0T+zCwsI2nOjb7XbodLp5YmYwGCAUCj2vOzY2FlKpFCKRaENeD5ezXGsNAN5//33853/+Jz796U/jyJEjjARqLXU9+sEPfoAf/OAH8/72wQcfxAsvvED7HAMdNqBkHVNXV4c77rgDGRkZ+Pvf/76knm9uKy4iIgJbtmy5Kiv1uxf9udbLXMFzW3lBQUEQi8Xg8Xh+W/jpCChxOBywWq0wmUzzXpe31+QWsqsNu92O7u5uDAwMLNlas9lsOHToEF588UU8//zzuPvuuxmaLYs/YMVtnaPT6XD//ffj9OnTePnll3HgwIFF/8ZqtaK9vR1jY2PIyMhAenq6z5Y7VwtzBc/9r9lshtPpBIfDgUgk8jyEQuG8/7t/JxAIFhXBpYobRVFwOBywWCywWq2wWCyex+X/dzgcIAgCIpHII2Luf69GIZsLRVEYHx/HhQsXEBwcjLy8vCVZa11dXfiP//gP2Gw2vPHGG8jMzGRgtiz+hBW3DQBFUXjppZfw+OOP44477sDTTz+9pC/wzMwMWlpa4HA4sGXLlnl7iCzzBcaXsLh/53A4wOFwIBQKIRQKweVyQRAEwvXrlAAAEJVJREFUOByOp+Yfh8MBRVGYmJjwFIumKAokSYKiKM/P7jHmCuvlgioUCiEWiz2/X4qwXm3Mzs6itbUVer0emzZtQnx8/KLvkdPpxP/8z//gBz/4AR588EH84he/uOpvENYrrLhtIIaGhnDfffehq6sLf/nLX3Ddddct+jcURWFwcBAdHR2QyWRXratytcwVQavVCpIkrxAtt1h2dXUhOzvb4+68XAAFAoFHxPh8Pitay8Ttguzv70dKSgqysrKW5ALu7u7Gl770JUxNTeHll1/Grl27GJgtC12w4rbBoCgKL774Ip544gnceeed+M1vfrMkK451VTLDekviXk9QFIWxsTG0tbUtywXpdDrx7LPP4vvf/z4eeOAB/PznP2dv8DYArLhtUAYHB3Hfffehu7sbL730Eq699tol/Z3bVWm1WpGdnY2EhIQNHRbONKy40cPU1BTa29thtVqRm5u7JBck4LLWvvzlL2NychJ//etf2bJVGwh21dqgJCcn45NPPsGhQ4dw22234b777pvXKsMXERERKC8vx+bNm9HT04PKykqMj4+DvQdiCUS0Wi3OnDmDuro6xMXFYf/+/UhISFhSYM+vf/1rFBYWori4GM3NzaywbTBYy+0qYGBgAI888gjOnj2LJ598Evfee++SXI4kSWJoaAhdXV0Qi8XIzc1FVFQUAzPeuLCWm38wGAzo6OjA5OQkUlJSkJGRseRKKsePH8cjjzwCgiDwwgsvsKK2QWHF7SqBoii8++67+PrXv47IyEj88Y9/RElJyZL+1uFwoL+/Hz09PYiIiEBOTg6kUim9E96gsOK2OsxmM7q7uzE8PIyEhARkZWUtuUjw2NgYvvnNb+KDDz7Aj370Izz66KPsZ7CBYd2SVwkEQeCWW25Be3s7brzxRpSXl+OBBx6ASqVa9G95PB4yMzNx7bXXIjQ0FKdPn0ZNTc2S3JwsLP7AaDSiqakJR48ehc1mw969e5Gfn78kYbPZbPj1r3+N7OxscLlcdHZ24vHHH2eFbYPDWm5XKX19ffj617+OmpqaZbkqAVdkZV9fHwYGBhAaGoqMjAzI5XI2ZH0JsJbb8tDpdOjp6cHExARiY2ORkZGxrLqJx44dwyOPPAIul4vnnnvOU+ycZePDittVzrvvvouvfe1rkEqlePLJJ3HgwIEli5TdbsfAwAD6+/shFAqRkZGB2NhYNrpyAVhxWxpqtRo9PT1QqVRISEhARkbGssLz29ra8N3vfhfHjx/Hj3/8YzzyyCPs+32Vwa5CVzk333wzOjo6cPDgQdx9993Yt28fzp07t6S/5fP5HndlcnIy2tvbcfz4cQwMDMDhcNA8c5aNhrt6y+nTp3H27FmEhobimmuuwdatW5csbMPDw/jSl76E4uJiJCQkoKenB9/4xjdYYbsKYcWNBSKRCN/85jfR19eHHTt2YN++fbjtttvQ2dm5pL/ncrlISUnBNddcg6ysLAwNDeGjjz5Ca2srDAYDzbNnWe/YbDb09PTg6NGjaGlpQXR0NK677jrk5uYuufSVSqXCN7/5TWRlZcFms6GtrQ2///3v2ZJyVzGsuLF4kEql+PnPf47e3l7I5XLk5+fjvvvuw+jo6JL+nsPhICEhAeXl5di2bRusVisqKytRU1ODiYkJkCRJ8ytgWS9QFOVpP/Pxxx9jcnISmzZtwrXXXovMzMwlW1pGoxE/+9nPkJaWhvb2dtTU1ODVV19Famoqza+AJdBh99xYfNLT04Pvfe97ePfdd/GVr3wF3/zmNxEXF7es5zCbzRgeHsbg4CAAeLpnLzV8e6Nxte+52e12jI2NYXBwEEajEfHx8UhOTkZYWNiynsdgMODPf/4znnrqKSQlJeGpp566osciy9UNK24si1JfX4+f//zn+OCDD/DFL34R3/rWt5CRkbGs5yBJElNTUxgcHMTU1BRkMhni4+MRGxt7VS3yV6O4uT/70dFRKJVKhISEIDk5GfHx8eDxltcveWZmBr///e/xu9/9Dqmpqfjud7+LT3/602ykLssVsOLGsmTa29vx1FNP4Y033sCnP/1pfOc730F+fv6yn8dsNmNsbAyjo6PQ6/VQKBSIj4+HXC7f8JGWV4u4ud2OIyMjGB8fB5fLRVxcHBISEpYVyu9mbGwMv/3tb/GnP/0JZWVl+M53voP9+/ezosbiE1bcWJbN0NAQfvOb3+Cll15CeXk5Dh06tOISRrOzsxgdHcXo6CgcDgfi4uIQHx+PiIiIDblwbWRxoygKBoPB83nabDbP5ymTyVb0efb29uJXv/oV/t//+3+4/vrr8Z3vfAelpaU0zJ5lo8GKG8uKmZqawrPPPovnnnsOubm5+NrXvobbbrttyTX+5kJRFGZmZjA6OoqxsTEQBAG5XA6FQoHo6Ohlu68ClY0mbiRJYmZmBkqlEkqlEmazGXK53GOJr6RtEkVROHnyJH7/+9/jvffewx133IH//u//Rm5uLg2vgGWjwooby6qZnZ3FX//6Vzz33HMwGAz4yle+ggceeAAxMTErej5vC2ZkZCQUCgUUCsW6DkbZCOJmt9sxNTUFpVKJyclJEATh+WyioqJWfCNiNBrx6quv4g9/+ANGR0dx33334eGHH0ZSUpKfXwHL1QArbix+gyRJfPTRR/jDH/6Ao0eP4pZbbsFXvvIVVFRUrGovTa/XY3JyEkqlEjMzMwgNDUV0dDQiIyMRERGxrqy69ShuJElCq9VCpVJhenoaarUaISEhHkELDw9flQu5ra0Nf/rTn/D3v/8dycnJePTRR3HXXXexDUNZVgUrbiy00NfXhz//+c/461//irCwMDz44IM4ePAgFArFqp7XarViamrKs8iazWZIpVJERkauC7FbD+LmFjO1Wg2VSgW1Wg0Oh4PIyEjIZDIoFAoEBwevagyj0Yh//etfePHFF1FXV4c77rgDDz74ILZt27Yh91pZmIcVNxZasVqteOutt/Diiy/i1KlT2LdvHw4ePIhbb70VEolk1c9vMpmgUqk8D4vFAqlUCplMBqlUCqlUiqCgoIBZMANR3KxWK7RaLbRaLWZmZjxiJpPJPDcNoaGhq34PHQ4Hjh49ildffRVvvfUWkpOTcd999+E//uM/EBER4adXw8LighU3FsYYHR3Fa6+9hsOHD6Onpwe33nor7r77blx33XV+W+jdYjczMwOtVovZ2VnweDyEhYV5xC4sLAzBwcFrInhrLW4WiwVarRY6nc4jaBaLBcHBwZBKpQgPD/ebmAGu4JC6ujocPnwYr7/+Ong8Hr7whS/g4MGDyMvLC5ibDpaNBytuLGtCa2srXn31Vbz66quwWCy44447cNddd2Hbtm0rirDzhdPpxOzs7LzFXK/Xg8PhQCKRICQkxPMIDg5GcHAwrW5NJsSNJEmYTCYYDAYYjUYYDAYYDAbo9XpYrVaEhIR4RN79rz/nQlEUurq68L//+784fPgwJicncfvtt+PgwYMoLy/36+fLwuILVtxY1hSSJHHq1CkcPnwY//rXv8DhcHDTTTfh5ptvxnXXXYeQkBBaxpydnfUs+u6H0WiEw+GAWCxGcHAwQkJCIBKJIBQKIRKJPA+hULhii2O14kZRFOx2OywWy7yH1Wr1CJnJZAJBEB6xnivgoaGhtIiqw+FAdXU13nnnHbzzzjsYGRnB9ddfj7vvvhs33XTTuo5wZVmfsOLGEjA4HA7U1NTg3XffxTvvvIPBwUHs27cPN998M26++WbEx8fTOj5FUbBarfMsHqvVOk9E7HY7AHgETyAQgMfjXfHgcrng8Xjg8/kgCMIjhk6nE3V1dSguLgaXywVFUaAoCg6HAw6HA06n0/Pz3Idb0KxWK0iSBJfLnSe4IpEIQUFBHguUiX1GnU6HDz/8EO+++y4++OAD8Pl83HTTTbjllltwzTXXrDrohIVlNbDixhKwdHd3e4SuuroaeXl5OHDgAPbu3YudO3fSYtUthtPpnCd4drvdqxjNfbi/YhRFgSRJGAwGSCQSj+gRBDFPEL09+Hz+PAtyLSJC7XY76uvrUVVVhaNHj+LkyZPIysrCLbfcgptvvhmlpaUbvnway/qBFTeWdYFarcaRI0dw/PhxVFVVYWRkBCUlJdi7dy/27t2LHTt2rInYLZe1DihZDna7HQ0NDaiqqkJVVRVOnz4NgUDgec9vuukmpKSkrPU0WVi8wooby7pkcHAQJ06cQFVVFSorKzE2NuYRu9LSUhQVFSE+Pj7govECWdxmZmbQ0NCAuro6nDhxwiNm5eXlHkHbvHkza52xrAtYcWPZEAwODqKqqgonTpxAXV0d2tvbIZPJUFRUNO+RkJCwpoIXKOKmVqvR0NCA+vp6z2NgYADJyckoKirC7t27sXfvXmzZsoUVM5Z1CStuLBsSk8mE5uZmz8Ld0NCAtrY2hIeHo7CwENnZ2cjMzPQ8EhISGFnEmRQ3iqIwPT2N7u5uz6OrqwtNTU0YHBxESkrKPOEvLCyETCajdU4sLEzBihvLVYPZbEZLSwsaGxvR1dXlWfAHBgbA5/ORnp7uEbv09HTExcUhJiYGsbGxkMlkfhE/f4obRVGYnZ3F+Pg4JiYmMDExgb6+vnliptPpEBcXN0/It27disLCQoSHh6/69bCwBCqsuLFc9dhsNgwMDMwThd7eXoyPj2N8fNxT5UShUHjELiYmBgqFAqGhoZ5kcIlEcsXP7qRwLpcLDocDp9OJI0eO4MCBA+ByuSBJEk6nEyaTCXq9Hnq93pNwffnPU1NTmJiYmCdmZrMZYrEYMTExiImJQWpq6jwhS09PXxeBNiws/oYVNxaWRTCZTB4xmSsuk5OTmJ2d9SlINpttWeNwudwFhTIqKsojrHMfYWFhARc4w8Ky1rDixsJCEzabDUajEU6nEyRJznu4LTn3Izg4eFWVT1hYWObDihsLCwsLy4aDjfFlYWFhYdlwsOLGwsLCwrLhYMWNhYWFhWXDwYobCwsLC8uGgxU3FhYWFpYNBytuLCwsLCwbDlbcWFhYWFg2HKy4sbCwsLBsOFhxY2FhYWHZcLDixsLCwsKy4WDFjYWFhYVlw8GKGwsLQ0xPT+OrX/0qEhMTIRQKoVAocODAAVRXV6/11FhYNhy8tZ4AC8vVwu233w6bzYa//e1vSE1NxeTkJI4dOwa1Wr3WU2Nh2XCwXQFYWBhAq9UiPDwcVVVVKC8vX+vpsLBseFi3JAsLA4SEhCAkJARvv/02rFbrWk+HhWXDw4obCwsD8Hg8vPLKK/jb3/4GqVSKnTt34tChQ2hpaVnrqbGwbEhYtyQLC4NYLBacOnUKZ8+exZEjR1BbW4u//OUvuOeee9Z6aiwsGwpW3FhY1pD77rsPn3zyCYaGhtZ6KiwsGwrWLcnCsobk5ubCaDSu9TRYWDYcbCoACwsDqNVqfO5zn8OXv/xl5OXlQSKRoK6uDr/61a/w6U9/eq2nx8Ky4WDFjYWFAUJCQlBWVoZnnnkGfX19sNvtSEhIwP33349Dhw6t9fRYWDYc7J4bCwsLC8uGg91zY2FhYWHZcLDixsLCwsKy4WDFjYWFhYVlw8GKGwsLCwvLhoMVNxYWFhaWDQcrbiwsLCwsGw5W3FhYWFhYNhysuLGwsLCwbDhYcWNhYWFh2XCw4sbCwsLCsuFgxY2FhYWFZcPBihsLCwsLy4bj/wPtLuFk1Dsh5QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Generate a wind rose with a few wind directions and speeds\n", + "wind_directions=np.array([260,265,270, 275, 280, 285, 290])\n", + "wind_speeds=np.array([6.0, 7.0, 8.0, 9.0])\n", + "freq_table = np.random.rand(7, 4)\n", + "freq_table /= freq_table.sum()\n", + "\n", + "wind_rose = WindRose(\n", + " wind_directions=wind_directions,\n", + " wind_speeds=wind_speeds,\n", + " ti_table=0.06,\n", + " freq_table=freq_table\n", + ")\n", + "\n", + "wind_rose.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAG6CAYAAACLCQg1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADmbElEQVR4nOydd3xb9bn/30dbsmzJe9uxk9jOdHZiZzqEJuzZAqU/RmkLlJS2UCi0pXQDHVxWC7fQAi2j9N72UjYJIc4m2xl2PBI7drz3kKyt8/vDSFiRndiObR0n5/166RXn6OjosXx0Pud5vs8QRFEUkZGRkZGROY9QhNoAGRkZGRmZ0UYWNxkZGRmZ8w5Z3GRkZGRkzjtkcZORkZGROe+QxU1GRkZG5rxDFjcZGRkZmfMOWdxkZGRkZM47ZHGTkZGRkTnvkMVNRkZGRua8QxY3GRkZGZnzDlncZGTGmNtuuw1BEHj88ccDtr/99tsIghAiq2Rkzm9kcZORGQd0Oh1PPPEEHR0doTZFRuaCQBY3GZlxYM2aNSQkJPDYY4+F2hQZmQsCWdxkZMYBpVLJb37zG5599llqa2tDbY6MzHmPLG4yMuPENddcw5w5c3j00UdDbYqMzHmPLG4yMuPIE088wauvvsqxY8dCbYqMzHmNLG4yMuPIihUrWLt2LQ8//HCoTZGROa9RhdoAGZkLjccff5w5c+aQnZ0dalNkZM5bZM9NRmacmTVrFjfffDPPPPNMqE2RkTlvkcVNRiYE/OIXv8Dr9YbaDBmZ8xZBFEUx1EbIyMjIyMiMJrLnJiMjIyNz3iGLm4yMjIzMeYcsbjIyMjIy5x2yuMnIyMjInHfI4iYjIyMjc94hi5uMjIyMzHmHLG4yMjIyMucdsrjJyMjIyJx3yOImIyMjI3PeIYubjIyMjMx5hyxuMjIyMjLnHbK4ycjIyMicd8jiJiMjIyNz3iEPK5WRGQEOh4Pm5ma6u7vp6enBYrHQ09MT8LPFYsFiseB2u/F6vXi9XjZs2EBlZSV33nknSqUShUKBQqEgLCwMo9FIeHi4/9/Tf46NjcVoNIb6V5eRmRDI4iYj0w9RFGlubub48ePU19dTX19PQ0NDwKO+vp729nYEQTirIIWFhaHX6/0ilpaWRm9vL2azGUEQ8Hq9uN1uOjs7OXXq1KBC2dPTg8fjITw8nMTExKBHUlISiYmJZGZmkpqailKpDPVHKSMTUuR5bjIXJN3d3VRUVFBeXh706O7uJjk5meTk5ADhOF1IYmNjhy0iLpeLDz74gEsvvRS1Wj3k14miSEdHh19cTxdb3781NTUolUqmTJlCVlZW0CM2NhZBEIb7ccnITDhkcZM5rxFFkdraWg4cOMD+/fvZv38/Bw8epKGhgaioKLKzs4MEYMqUKRgMhjGxZ6TiNpzjnzx5MkCsy8rKKC8vp66uDrPZzOzZs5k/fz7z5s1j/vz5ZGVlyZ6ezHmHLG4y5xW1tbXs3bvXL2T79++nra2N6dOnM3/+fObPn8/cuXOZNm0a0dHR427fWIvbmbBYLFRUVFBUVOT/bIqKilAqlcydO9f/+cyfP5+cnBwUCjnfTGbiIoubzISmpqaGwsJC/6OmpiZAyObPn09ubu6YeWLDJZTiNhBut5tjx44F3AwUFRVhMBhYuXIlq1atYtWqVcyYMUMWO5kJhSxuMhOKU6dOBYhZdXU1CxYs8F+Ely5dSnh4+Ji9vyiKuN1u7HY7DocDp9OJ2+3G7Xbj8Xj8P/d/iKKI72vW2toKQFRUFAqFAkEQEAQBpVKJSqUKePi2qdVqVCoVOp0OrVaLRqMZ03Uzl8vFvn37/J/x9u3bg8Ru+vTpstjJSBpZ3GQkjdvtZseOHbzzzju8++67VFZWMn/+fFatWkVBQcGoi5nb7cZqtWKxWOjt7cVut/uFzPezx+NBoVCg0+nQaDQDClL///cXse7ubo4fP05ubi4KhcIvfIMJo080nU4nDocDt9uNQqFAq9X6xU6n06HT6dDr9RiNRoxGIxqNZtQ+E6fTyf79+9m8eTM7d+6koqKCsLAwVq5cyerVq8nPzycsLGzU3k9G2qjV6gmxRiuLm4zk6Orq4uOPP+add97hgw8+QK1Wc/nll3PFFVewevVqIiIizun4oij6Bcz3r+9ht9tRqVQYjUYMBoNfOHwPrVaLXq9HpVKNyHs617Bkf6/RJ7a+h81mw2Kx4HA40Gg0/to53yMsLIzw8PAReVyiKNLY2EhnZyeiKOJwOLDZbPT29uLxePzi6vtsRkpPTw9dXV14vV7UajVRUVFotdpB97VarbhcLgA0Gg1mszlg/9bWVqxWa8DrdDod8fHxI7ZRBsxmMwkJCZLOvJXr3GQkQV1dHf/+979555132LJlC9nZ2VxxxRV88MEHLFq0aMQhMFEUsVgsdHZ20tXV5f/X6/USFhbmF4CUlJQAr0eqX1qf8J6pmNvlcgWIdnd3N/X19VgsFkRRJDw8HLPZjNlsxmQyERERcdY7cZ+wxcXFYTAYAj4fh8PhL2bv7e1FEAQiIiIIDw9Hr9cP+Xfr7Oykt7eXmTNnotfraWtro6uri5SUlAFvBE6dOkVycrLfntbWVn8Zh89zVavVuFwuUlJS/K8TBOGcBPhCRhRFent7aW5uBiAxMTHEFg2O/BeWCRldXV3861//4vXXX2fr1q0sX76cq666iv/+7/8mMzNzRMe02+20trbS0dHhFzNRFDGZTJhMJlJTU5k1a9aIPZiJgFqt9otXf3wXps7OTjo7O6mrq6OkpAS3201ERIT/NdHR0RiNRr+AeTwev7ANlGGq0+kwmUxAn2fp+9yrqqrQarVERUURHR191lBpR0cHsbGx/gumyWTi8OHDWCyWAS+iU6dODfi/yWTi4MGDOJ1Ov3fvE+2xXIe90PDdsDQ3NxMXFyfZEKUsbjLjitPp5MMPP+S1117jvffeY/r06Xzta1/jtddeG9FdoE/M2traaG1txWKxYDKZiIqKuiCEbDgIguD3VpOTk4FgwautreXIkSOo1WpiYmKIiYnxC8NQMk5VKhXR0dFER0f7RbGtrY36+nqMRiNRUVFERkYGeU5erxer1UpCQkKAvREREUFhxcHwer2Iohh07J6eHoqKilCpVISHh5OcnCx7bueI71xwuVyyuMlcuIiiyM6dO/n73//O//zP/xAREcHNN9/ML37xC6ZNmzasYzmdTlpaWmhtbQ0Qs5iYGKZPnz4kD0HmCwYSPI/HQ0dHB62trdTV1dHd3U18fDw2mw2FQuFPlDkbSqXSL3Qul4v29nZaW1upqanBZDIRHR2NyWRCoVDgdrsBgsKParUau90+pN+ltrYWjUYTsCZrMpmIjIxEo9HgcDioq6ujoqKCnJwcyYaeJwIT4bOTxU1mzOjo6ODvf/87L7zwAo2Njdxwww2888475OfnD+vLYbFYaGxspKmpiba2Nn8TYVnMxgalUun32gCsVitVVVUoFAqcTqdf5NRqtT9z7mx/T7VaTXx8PPHx8djtdtra2qitraW6upqYmJigEOpwaWhooL29nezs7AAvPSoqyv+zwWDAYDBw5MgRenp6zjkxSUbayLEamVFn37593H777SQnJ/PWW2/x0EMPUVdXx/PPP8/SpUvPeiEURZG2tjaKi4vZtGkTmzdvpqWlhaSkJNasWUNBQQEzZ84kMTFRFrZxQKlUolQq0el0hIeHExERgU6n84cSu7u76e3txeVyMZTka51OR0VFBbNnzyYqKgq73U5ZWRmAf43Uh8vlOmNW6W233ca6detobGwkKyvrrKFTrVaLSqXC4XAM8bcfG1555ZUzCvrJkyf95SNz5swZN7sACgsL/e999dVXj+t7jyayuMmMCg6Hg9dff50lS5awatUq9Ho9u3fvZseOHdxyyy1nzZoTRZHW1laKior46KOP2LNnDw6Hg2nTprFu3Try8vLIyMiQTKeRCxmFQuEvNXjjjTdISUnB4/Fgs9no6uqisbERtVrNqlWrAl7nu2ieOHGC/Px8GhoaSE1NZcqUKcyaNQu1Wk1zczNHjhyhsbERl8tFd3f3GWvobDYbDoeDqVOnDqnWzld0L4XuMEPhk08+YdOmTaNyLJvNRlhYGMePHz/jfr6/zVe+8pVRed9QIYclZc6Jjo4O/vjHP/Lss89iMplYv349t956qz977mx0d3dz6tQp6urq8Hg8JCcns2jRIqKioiZEXP9CZ/Xq1VgsFoqLi1m8eDFer5ctW7YQHx/P7t27aW9vJzw8HJVKxebNm0lLS2Py5MkAAckjGo2G1NRUqqqqMJlMtLe3U1tbiyAI/oSWqqoq1Gq1P62/oaGB3t5eDAYDWq3WX++mUChQKpV4PB7q6+uJjIxErVbjcDiora1Fq9VOmJCkb81yNNi4cSPp6elMmTLljPtpNBoSEhLQ6/Uh93DPBdlzkxkRDQ0NPPjgg6Snp7Np0yZeffVVSktLuffee88qbDabjYqKCjZv3szWrVux2Wzk5uaydu1aZs+eTXR0tCxsE4Ts7GwSExP9XplSqWTnzp1cddVVZGRksGfPHnp7e+nu7ubTTz9l5cqViKLo37+zsxPoC9NlZmZy/PhxCgoKWLBgAd/73vew2WyUlZVRWVmJxWLh0Ucf9Zcr/OhHP/IX5B86dMj/aGpqAvqSHo4fP85ll11GbGws8fHxXH311f71Q58N77//PrNnz0an07FkyRKOHj0a8Dtu376d5cuXo9frSU1N5d577w3I4HQ4HPzgBz8gOTmZsLAwFi9eTGFhYcAxXnnlFdLS0jAYDFxzzTW0tbWN6PO+7bbbuPrqq/nNb35DfHw8ZrOZX/ziF7jdbh544AGioqJISUnh5ZdfDnrtf/7zH6688koADh06REFBgT/MPH/+fPbt2zcim6SKLG4yw6KyspK77rqLzMxMysrK2LBhA5s3b2bdunVnTLf3eDzU1tayY8cONm7cSEtLC1OmTGHt2rUsWLCA+Ph4OV1/glJQUMDmzZv9/9+8eTMFBQWsXLmSXbt2ERERgSAI7N27l7y8PHp6enA6nUHH6e3t5aWXXuKf//wn27dvp729neeff56ZM2eiVCp56aWX+Ne//sUf//hHtm/fjlKpZOvWrZjNZhYsWOB/JCUlAX0e3B/+8Ae0Wi07duyguLiYJ598Mmit64EHHuAPf/gDe/fuJTY2liuuuMLvBZ44cYJ169Zx3XXXcfjwYd566y22b9/O+vXr/a9fv349u3bt4h//+AeHDx/my1/+MuvWraOiogKA3bt3c8cdd7B+/XqKioooKCjgV7/61Yg/708//ZT6+nq2bt3Kk08+yaOPPsrll19OZGQku3fv5q677uLOO++ktrbW/xqv18t7773HVVddBcDNN99MSkqKf4LGQw89NGFCtUNGlJEZAocOHRJvuukmUaPRiDfffLN45MiRIb3OYrGIR48eFT/44ANx48aNYnl5uWiz2cbYWunidDrFt99+W3Q6naE2ZcjYbDaxpKRk0L/biy++KIaFhYkul0vs7u4WVSqV2NzcLL7xxhviihUrRFEUxU2bNomAePLkSdHhcIjvv/++CIi1tbWiy+US//rXv4qAePz4cf9x//jHP4rx8fH+/ycmJoo//vGPxQMHDojHjh0TW1tbxZSUFPGqq64a1PZZs2aJP/vZzwZ8bvPmzSIg/uMf//Bva2trE/V6vfjWW2+JoiiKd9xxh/itb30r4HXbtm0TFQqFaLPZxOrqalGpVIp1dXUB+1x00UXiww8/LIqiKN50003ipZdeGvD8DTfcIJpMpkHtrqqqEgHx4MGDAdtvvfVWMT09XfR4PP5t2dnZ4vLly/3/d7vdYlhYmPjmm2/6t+3YsUOMi4vzvy48PFx85ZVXBn1/33sN9tme7ZyQAvKam8wZOXbsGD/+8Y/58MMPuf322yktLSUjI+OMrxFFkebmZqqqqmhpaSEhIYH58+fLU6DPU1atWoXVamXv3r10dHT4J36vXLmS22+/HbvdTmFhIZmZmaSnpwNfFAELguDvh2kwGAI60yQmJvrbPHV1ddHQ0MCXvvQlZs2aRUtLC6dOnSI7O9ufpTnQuXXvvfdy9913s2HDBtasWcN1113H7NmzA/bJy8vz/+wbYHvs2DGgL3x3+PBhXn/9df8+oiji9XqpqqqisrISj8dDVlZWwDEdDod/rezYsWNcc801Qe/50UcfDe+D/pzTxw/Fx8czc+ZM//999YW+zw76QpKXX365/3X33Xcf3/jGN/j73//OmjVr+PKXv+xfCz1fkMVNZkBOnTrFo48+yptvvskdd9xBZWXlWTuIuN1uqqurqaqqwu12M2nSJHJzc4fVX1Bm4jFlyhRSUlLYvHkzHR0drFy5EoCkpCRSU1PZuXMnmzdvZvXq1UGvNRgMmEwmlEolarWa7u5uNBoNWq0WQRAGLC1QqVQkJiYSFxeHWq2mt7eX8vJyUlJSgjImv/GNb7B27Vref/99NmzYwGOPPcYf/vAHvvOd7wzpd7NYLNx5553ce++9Qc+lpaVx+PBhlEol+/fvDypsP1P/z3Ph9PChIAgDbvN6vf7/v/POOzz++OP+///sZz/jq1/9Ku+//z4ffvghjz76KP/4xz+CRHgiIy9yyATQ1tbGD37wA7Kzs7Hb7Rw9epTnnnvujMLmdDopLS1lw4YN/rvpL33pS+Tk5MjCdoFQUFDgn//WvwRgxYoVfPjhh+zZs4eCgoIBX9v/4mwwGPB4PHR3dwdk6plMJhITE9m9e7d/myiKFBcXExERQVhYGGVlZZw4cSKoo0lqaip33XUX//73v7n//vt58cUXA57/7LPP/D93dHRQXl7u75wzb948SkpKmDJlStBDo9Ewd+5cPB4Pzc3NQc/7skGnTZsWYPfp7znWVFRUUF1dzcUXXxywPSsri+9///ts2LCBa6+9dsAklImM7LnJAH1dKJ5++ml++9vfsmTJEnbs2MHcuXPP+BqbzcaJEyc4efIkkZGRLFiwQA49XqAUFBRwzz334HK5/J4bwMqVK1m/fj1Op3NQceuPr+uJx+Pxe21WqxWtVst3v/tdHn/8caZOnUpOTg5PPvkknZ2dCIJASkoKcXFxNDQ0UFxcTHR0NElJSTz44INccsklZGVl0dHRwebNm4Navv3iF78gOjqa+Ph4fvzjHxMTE+MvXv7hD3/IkiVLWL9+Pd/4xjcICwujpKSEjRs38txzz5GVlcXNN9/MLbfcwh/+8Afmzp1LS0sLmzZtYvbs2Vx22WXce++9LF26lN///vdcddVVfPzxxyMOSY6E//znP6xZs8YfCrbZbDzwwANcf/31ZGRkUFtby969e7nuuuvGzabxQPbcLnC8Xi8vvfQSU6ZM4T//+Q//93//x0cffXRGYbNYLBQVFfHJJ59gtVrJz89n6dKlxMXFycJ2gVJQUIDNZmPKlCkBs9JWrlxJT0+Pv2RgqPg6osAX63J33nknN998M7feeit5eXmEh4cHhNE0Gg3p6enMmDEDj8fD0aNH6erq4p577vE3A8jKyuJPf/pTwHs9/vjjfPe732X+/Pk0Njby7rvv+jvfzJ49my1btlBeXs7y5cuZO3cuP/3pT/0ZmQAvv/wyt9xyC/fffz/Z2dlcffXV7N27l7S0NACWLFnCiy++yNNPP01ubi4bNmzgJz/5yfA/5BHSvwQA+j7btrY2brnlFrKysvjKV77CJZdcws9//vNxs2k8kIeVXsDs27ePe+65h6amJn7/+99z3XXXnVGcLBYLpaWlNDQ0kJyczJQpUyZMMaxUONdhpaHAbrdTVVVFRkaGX3DGG6/Xi8PhwOFw+IXvbJ+f1Wrl1KlTOBwOUlNTiYyMDDi/CwsLKSgooKOj45x7W442J0+eJCMjg4MHD55T+63W1lYSExOpra0d9oDW2267jc7OTt5+++2g56RwTpwN2XO7AGlra+Ouu+5ixYoVrF27lpKSEq6//vpBhc1ms1FUVMTmzZtRqVRcdNFFzJs3TxY2mXFDoVCg1+uJiIhArVb7h7H6pgkMRFhYGNnZ2SQnJ1NTU0N5eTk2m20crT538vPzyc/PH/Hr29vbefLJJ4clbNu2bcNoNAZkiE5E5DW3Cwiv18tf/vIXHnroIZYsWcLhw4fP2IrH5XJRUVFBZWUl8fHxrFq1Sh76KBNSFAoFOp3OP8LGYrGgVqvR6XQDjuERBME/daC+vp6SkhLi4+MlPUEaICUlxV8ErtVqR3ycrKysoDKFs7FgwQKKioqAscv4HA9kcbtA2Lt3L/fccw8tLS28/PLLXHHFFYN6ah6Ph8rKSioqKjCZTCxdupTIyMhxtlhGZnB8npxWq8Vut9PT04NGo0Gn0w3Y6UalUpGWlkZMTAw1NTUcPXqU2bNn4/V6JblOrFKpztoDcqzQ6/Uhe+/RRA5LnudYrVa++93vsnLlSi655BJKSkq48sorB/xCi6JITU0Nn3zyCXV1dSxYsID8/HxZ2GQki0KhwGAwEB4ejiiKdHd3Y7PZBh29YzAYyM7OJiUlhVOnTlFRUTFgKzCZiY/suZ3HbNu2jdtvv534+HiKiorOGJ7o7Ozk8OHD2O12ZsyYQXJysiTvaGVkBkKpVBIWFobb7cZms9Hd3Y1er0etVgedx4Ig+KeA19bWUlxcTEpKCjExMfI5fx4hi9t5SG9vLz/60Y948cUX+eUvf8l3v/vdAdcj4IsC7JqaGiZPnszUqVNRqeTTQmZiolKpMBqN/onhTqcTvV4/4PmvUqmYNGkSkZGRnDx5ko6ODiZNmiQPwD1PkK9i5xnbt2/n9ttvJy4ujgMHDpCdnT3gfr4QZElJCWazmVWrVk3oxWMZGR+CIKDValGr1f71OK1Wi06nG9AzM5lMzJgxg1OnTlFcXExqaqo8duk8QBa384Te3l5+/OMf8+c///ms3lr/EGRubi6JiYnyF1nmvMO3HqfRaM4aqlSpVGRkZNDZ2Ul1dTUdHR2kp6fLXtwERha384CioiJuvPFGoqKizuiteTweSktLqaqqkkOQMhcMA4UqDQbDgFmVZrMZo9Ho9+LS09OJiooKgdUy54p8ZZvAiKLI888/zwMPPMBDDz3Ej370o0G9tfb2dg4ePIharWblypVyvZrMhKKmpobW1tZzPo6v04nb7Uan06FSqYK8uJiYGDIyMujo6ODkyZP09PSQmpoqD9OdaIRkipwEufXWW0VAfOyxxwK2/9///Z8IiD09PaJKpQoYACiKfUMHAbGqqipge3p6uviTn/xkzOzt6OgQr7vuOjEpKUncsmXLoPu53W7x6NGj4rvvviuWl5cHDDmUGX/Ox2GlY011dbVoMOhEYFweBoNOrK6uFkVRFO12u1hSUiIePXr0rL9/bW2tePPNN4tRUVGiTqcTZ86cKe7du/eMr9m8ebM4d+5cUaPRiJMnTxZffvllsbKyUty7d69YX18fsG97e7v/eN3d3eLevXsHfIzHuRXqc2IoyJ5bP3Q6HU888QR33nlnUG2X0WhkwYIFFBYWcuONN/q3FxYWkpqaSmFhIbfddhsAVVVVVFdXDzi/ajTYs2cPN9xwA9OmTaOoqIjY2NgB9/N5ayqVihUrVsjtsmQmJK2trfT22vnbc/FMmzq2a2DHKpzcsr6J1tZW0tLS0Gq1ZGdn+7ubpKen+4eQ9qejo4OlS5dSUFDAhx9+SGxsLBUVFWesEa2qquKyyy7jrrvu4vXXX2fTpk184xvf4C9/+QszZ86ksbGR2NjYMy4dzJw5MyhaIy819CF/Cv1Ys2YNx48f57HHHuO3v/1t0PMFBQX8+9//9v//2LFj2O12vvvd7waIW2FhIVqtNmDC72ggiiL/9V//xSOPPMLPf/5z7rvvvgFDJf3X1rKyspgyZYocUpGZ8EybqmHe7PFv0qtQKEhJSSE8PJyqqiq6u7tJS0sLEJUnnniC1NTUgJloZ5tY/8ILL5CRkcEf/vAHoG/u2/bt2/nrX//KSy+9hMPhoLGxkZSUlEGPoVKpZDEbBPmK1w+lUslvfvMbnn32WWpra4OeLygooKysjIaGBgA2b97MsmXLWL16NYWFhf79Nm/eTF5e3qh2y+7o6ODKK6/kmWeeYdOmTfzgBz8YULB6enrYunUrra2trFixgqysLFnYZGRGAZPJxPTp03E4HBw7diygCfM777zDggUL+PKXv0xcXBxz584NGop6Ort27WLNmjUB29auXcuBAwcQBIHk5GSamprkDiojRL7qncY111zDnDlzePTRR4OeW7p0KRqNxi9khYWFrFy5kvnz59Pa2kpVVRUAW7ZsGdJgxqFy7NgxFi1ahCAIHDx4kCVLlgy4X01NDVu2bCEuLo7ly5fLYUgZmRFit9sHbOGl0WjIzs4mMjKS0tJSOjs7AaisrOT5559n6tSpfPzxx9x9993ce++9vPrqq4O+R2NjY1C3/vj4eCwWC3a7ncjISAwGA/X19YMe4/Dhwxw4cMD/OHr06Mh+4fMQ2Z8dgCeeeILVq1fzgx/8IGC7wWBg4cKFFBYWctNNN7FlyxYeeOABVCoV+fn5FBYW+oujR0vcPvjgA7761a+yfv16fvGLXwzohbndbg4fPkxTUxMLFy4c9twmGZmxoLm5mcbGRlwuFwaDgbS0NMLCwgbct6Wlhba2Nr83ZDAYSElJGXT/scbtdmOxWDAYDEFrWj6vSq/XU1lZSWJiIl6vlwULFvCb3/wGgLlz53L06FFeeOEFbr311hHbkZKSQllZ2aDf6ZycnIBrglyv+gWyuA2Ab87Zww8/7F9H81FQUMBbb71FcXExNpuNefPmAX0Thzdv3ozX68VgMLB48eJzskEURX7/+9/z85//nJdeeikgiaU/XV1d7Nu3D61Wy6pVq9Dr9ef0vjJnx5dObrfbsdvtAT/7Hm63G6/XiyiKiKLo/9k3f2zDhg0IgoAgCCgUCv/PKpXK302j/6P/tsHKPaREe3s7p06dIj09nbCwMJqamigvL2fmzJkDDhnt6ekhKioKo9GIIAg0NjZSXl7OjBkzQmB93yw4pVKJxWJBr9cPWMwdFRWFTqfj+PHjxMbGMm3atIDnp02bxr/+9a9B3yMhIYGmpqaAbU1NTRiNRv+SRnh4OCaTibq6ugETWTQajbzmNgjypzIIjz/+OHPmzAkqiC4oKOBXv/oVb7zxBsuWLfNfaFasWMGf//xnRFH0hy9Hit1u55vf/CabN29my5YtzJ8/P2gfURSprq7m6NGjTJkyRV5bG0W8Xi8Wi4XOzk6sVmuAaPmmQUPfnK3+oqPVaomIiPBPie4vWr6f7XY7u3btIi8vD6VSGSB8PvHr/149PT0B/xdFEbVaHSSABoMBk8mEyWSShPg1NTURGxtLTEwMAOnp6XR1dfknQ59OZmZmwP8nTZrEwYMH6e7uHhd7T0cQBAwGA06nk97eXtxuN3q9PsgzMhgMTJs2jblz51JUVITT6fR/98vLy0lPTx/0PfLy8vjggw8Ctm3cuNF/w+wjOTmZkpISyU68liqyuA3CrFmzuPnmm3nmmWcCtufn56PVann22Wf58Y9/7N++aNEimpub+c9//sPDDz884vetr6/nmmuuQaFQsG/fPhISEoL28Xg8FBUV0dLSwuLFiwctBZA5O/2FzPfwXVBNJhPh4eHo9XoiIyODhGwkNxM+zzo8PHxAD+ZMiKKI0+kM8hJ9WXWlpaW4XC7/3b7ZbMZsNhMRETGud/derxer1Rpw7gqCQEREBFardcjHEEUxwO5jFWOfWHH6e2g0GpRKJb29vVgsFsLCwoL+7mq1mkceeYRly5Zx//33841vfIPi4mL+/Oc/8+c//9m/38MPP0xdXR1/+9vfALjrrrt47rnnePDBB/n617/Op59+yj//+U/+8pe/BBzfYDAQHR0d5OVBX/j09LVBpVIp3+gii9sZ+cUvfsFbb70VsE2n07FkyRK2bNnCqlWr/Nu1Wi1LliyhsLBwxOttRUVFXHbZZVx88cW88MILA96p2Ww29uzZgyAIrFq1Sr6bGwZer5eenh46Ozvp6uoKEjKz2UxGRoZf1KS2fuFrCKzVajGZTEHPi6KIzWbz/35NTU2UlZXhcrkwGo1+sRtrwfOFXk8Xb18j46FQW1uLRqMhIiKCmJgYDAYdt6wPvriPBQaDzu9xQp9YGI1GbDYbPT09hIWFBX12ixcv5t///jcPPvggf/7zn0lPT+epp57i5ptv9u/T0NBATU2N//8ZGRm8//77fP/73+fpp58mJSWFl156iRUrVuDxeAKOn5SURHt7e5CtAyWQ5OTkyE3QAUEcKCVIZtwpLCzk6quv5oc//CEPPfTQgBfW9vZ29uzZQ3x8PLNnz5ZE+EnKiKJIZ2cnjY2NtLS00NXVhSAImM3mAM/Gt84zHrhcLj744AMuvfTSYXtuI0EURex2e4Bn2tXVhcPhIDw8nOjoaBITE4mOjh70fLLb7VRVVZGRkTGkmymn08nhw4eDLrK1tbX09PQErU2dTkNDA42NjWRnZ2MwGIC+jOH9+/czderUgM/t1KlTAKSmpp7VrqESExNDWlpa0Haf52yz2fxTwAeiq6uLEydOkJycfN4mdw33nAgFsucmAf73f/+XW2+9leeee47bb799wH1OnTrFoUOHmDZtGpmZmZLzKqSCx+OhpaWFxsZGGhsb8Xg8xMfH++d2jaeQSQFBENDr9ej1ev9aV3/Ba25u5uDBg7hcLuLi4khISCA+Pn7QC/dQ8Hk1LpcrYLvL5TqroPv+bllZWX5hg741OavVyvTp0wO2GwwGfybmWOPznBUKBb29vXi93gHH6JhMJrKzs6moqMDlcsmDf0OELG4hxtf4+K233uLyyy8Pel4URUpKSqiurmbRokXExcWFwEppY7fbaWpq8ntoWq2WhIQE5s+fT3R0tLz+cBqnC97s2bP9YczKykqKioqIjIwkISGBhISEYYcvFQoFYWFh9PT0+NtPiaJId3f3Gc/fxsZGGhoamDp1alAJgEajQa1W093d7Rc3j8eD1Wod9++EWq3GaDRitVrxeDwDThgICwsjJyeH8vJy3G436enpssCNM7K4hQhRFPnZz37Gs88+y4YNG8jPzw/ax+VysW/fPnp7e1mxYoUcR/8cURTp6enx3+V3dnZiNptJSEhg2rRpklwvkzK+UK3ZbCY7Oxubzea/WSgtLSUsLIzo6GhcLhdarXZIn218fDxVVVUYDAbCwsJobm7G6/X617KqqqpQq9X+1lINDQ3U19eTmZmJVqv1e30KhQKlUokgCMTFxdHQ0IBOp0Oj0VBfX49Go8FsNo/ZZzMYvnW4/okmp4d1dTodOTk5VFRUcPz4cTIzM+WlhHFEFrcQ4PF4+Pa3v80HH3zA9u3bmT59etA+vpRxnU7HihUrxmV9Rur09PRQU1NDfX09DoeD2NhY0tPTWbRokWTj/hMRvV7PpEmTmDRpEm63m/r6ejo6OrDb7Xi9XlQqlb++ajChi4qK8r/WV8Tdf73s9JZSLS0tiKLIiRMnArYnJSWRlJQE9NWFeb1eqqurcbvdGI1Gpk6dGjLP3Oeh2u12v8Cd7uX6OpocP36c8vJyeYbiOCInlIwzTqeTm266iWPHjvHxxx8PuBBusVjYtWsX0dHRzJkz54IOq3k8Hurq6qiurqazs5PExERSUlKIjY2dkHfB451QMhr4kgcmTZqEWq3G6XTicrkQBAGNRoNGo7mgz1EAh8OBzWYjLCxswL+r1+ulsrISu91OVlbWhJ/wLSeUyATgcDi4/vrraWhoYNu2bQN2HOjs7GTXrl2kpaUxffr0Cza81tXVRXV1NadOnUKv15Oens7ixYsn/EVhIuProKJSqRBFEZfL5a+7U6vVZ/Xmzmd84Vqr1TpgJqVCoWDy5MmcPHmSsrIysrOz5XN5jJHFbZyw2+1ce+21tLW18cknnwy4TtDc3MzevXvJzs5mypQp429kiPF6vTQ2NnLixAm6urpISkoiLy+PyMjIC/KCKWX6e20ej8ffyeNC9uY0Go1f4ERRDPJoBEFg0qRJVFdXU1ZWRlZW1jllpcqcGVncxgGbzcZVV12FxWJhw4YNAxbg1tbWUlRURG5u7qjW7EwEnE4n1dXV/qkKmZmZspc2gVAqlej1enQ6HS6Xy99rU6PRoNVqJ2T4eKT0z6T0CVz/GzNBEEhPT6empsbvwckCNzbI4jbG2O12rrnmGhobG3nuuecGHENTWVnpH2tzIaX69/T0UFlZyalTpzCbzcycOZOEhIQL7o7/fKG/1+Z2u/29MX3NoC+UkKVKpfILnK+R+ukCFx8fj9PplAVuDJHFbQxxOBxcd911dHZ28sknn3DkyBEOHDjAvHnz/Cd7RUUFFRUV5Ofnn3Ek/fmEzWajtLSU2tpakpOTWbZsWUjSuWXGDt/anG+CQm9vL0qlEp1ON6JswZqaGlpbW8fA0mAG61AyHHylAhaLhd7e3gCB83m2kyZNor6+nvLycnkNbgyQxW2McDqdfPnLX6alpYWNGzdiMplYunQpO3bs8AtceXk5lZWVLF26dMBQ5fmG0+mkoqKCqqoqEhISKCgokGv3znMUCoU/wcLhcGCxWFCr1cMa3VNTU0N2Tg72fpOvxxKdXk9ZaemwBM7j8fCzn/2M1157jcbGRpKSkrjtttv40Y9+RG9vL1arlbCwMH/7LqPRiEqlorKyku985zuUl5eTmprKI488EjRmS2ZkyOI2Bni9Xm699VZqa2vZtGmTX7h0Op1f4AoLC7Hb7SxduvS8n5jtdruprKykoqKCqKgo2VO7AOkvcna7nZ6eHjQaDTqd7qxh6NbWVuw2G7Ff+yrqMe7V6GpqouW1N2htbR2WuD3xxBM8//zzvPrqq8yYMYN9+/Zx++23YzKZWL9+PVarlZ6eHrxer1/YqqqquPzyy7nzzjv5r//6LwoLC/nGN75BYmIia9euHcPf8sJAFrdRRhRFvv/977Nv3z527NgRFGrU6XQkJCRw4sQJ4uLiCA8PD5GlY4+v4LasrAy9Xs+iRYvk8TwXOAqFAoPB4Be57u5u/6SDs4mcOj4ebWrKOFk6PHbu3MlVV13FZZddBvTNo3vzzTfZs2cPCoXCPxFBqVT6PdYXXniBjIwMnnzySURR9M+we/LJJ2VxGwXklftR5oknnuCtt97i448/HjA5pLy8nJqaGvLy8rBarRw4cCBoHtNERxRF6urq+PTTTzlx4gSzZ89mxYoVsrDJ+FEqlYSFhWE0GvF4PP6hrBP1u5Cfn8+mTZsoLy8H4NChQ2zfvp1LLrnEv8bm65fpy6TctWsXa9asAfqSTDIzM1m2bBk7d+6csJ+DlJA9t1Hk5Zdf5rHHHmPLli1Bk4UBjh8/zvHjx/1rbKevwZ0PmWTNzc2UlJTgcDjIzs4mLS1Nzn6UGRRfZqHL5fIPXvX1jpxI34eHHnqI7u5ucnJyUCqVeDwefv3rX3P99dcHrLEplUqsViu9vb00NjYGjMRRKpXMmjULi8Xiz6KcSJ+B1JDFbZR47733+M53vsO7777LnDlzgp4/efIk5eXl5OfnD7gGN9EFzmKxcPjwYTo7O5k6dSoZGRlyDz2ZIaNWq1GpVAEip9frJ0yLsn/+85+8/vrrvPHGG8yYMYOioiK+973vYTab+eY3v+n/Lvj6UVosFkRRHHCKNkB3dzf19fUkJyeP++9yviBffUaBnTt3ctNNN/Hqq68OOIW7vr6eo0ePkpeXF5RIMdEFThRFf51eWloaCxYskFOaZUaEr07O17/SarWi0Wjwer2hNu2sPPDAAzz00EPceOONAGRlZVFWVsbTTz/N3XffHbCvQqHAaDQSFxdHfX19wHNNTU1EREQwa9YsysrKUKvVF1Tt62gix4vOkWPHjnH55Zfzu9/9juuuuy7o+dbWVg4cOOCfLTYQPoHr7OycUGtwFouFHTt2UFlZyZIlS5g9e7YsbDLnjG8oaHh4OF6vF6vVGmqTzkpvb68//O5roqzX6wcVZoVCQX5+Pps3b8Zut/u3b9y4kby8PPR6PVOmTKG2tpb29vZx+R3ON2TP7Rxob2/niiuu4O677+auu+4Ker6rq4vdu3cza9Ys/xTkwZhIHtzp3tqSJUvkEKTMqONLOvF173A1NY35e470Pa644gp+/etfk5iYSGZmJuXl5Tz11FN8/etf9+/z8MMPU1dXx9/+9jcAvv3tb/OnP/2JBx98kG984xts376df/7zn7z//vsAGI1GMjMzqaysRKvVBg1wlTkLosyIcLlc4kUXXSReffXVosfjCXrearWKH374oVhaWjqs49psNvGTTz4R9+3bJ3q93tEyd9SwWCzitm3bxA0bNogtLS2hNmfC4XQ6xbffflt0Op2hNmXI2Gw2saSkRLTZbCF5/+rqalGn14vAuDx0er1YXV09LBu7u7vF9evXiykpKaJOpxMzMzPFH//4x6LD4fDvc+utt4orV64MeN3mzZvF3NxcUaPRiJmZmeLLL78cdOyGhgaxqKhIUudMqM+JoSDPcxsh9957L4WFhezcuTOoy4bD4WDbtm3ExcUxa9asYXtgdrudHTt2YDabJePBiaJIVVUVJSUl/nE8src2fCbyPLdQzu6qqamhpaXF35hZpVIFNSUeLUbSfssXivRlRQ4X31SFgV4viiInT57EbreTnZ0tiexjKZwTZ0O+Oo2AF198kTfeeIO9e/cGCZvb7eazzz7DZDKNSNhAeiFKq9XKwYMHsdlsLFmyhJiYmJDZInNhkpaW5hccj8dDb28voihKIqPyXIUN8CfOWK1WjEZjQGsy3ySBsrIyqqurmTRpkiRueKVO6G8BJhjbtm3je9/7Hv/7v/9LRkZGwHOiKFJUVIRCoThnQZJCkon4+dra5s2biYiIoKCgQBY2mZDja0qs1Wr9NWOhCkCNhrD58NX3+aYJ9Mc37LS7u5umcVh7PB+QxW0YVFdXc9111/GHP/yBVatWBT1fUVFBe3s7ixYtGpUZVqEUOKfTya5duzhx4gSLFy9m9uzZchhSRjL0z6j0dThxu93jasNoCpsPX6/NgQRbo9EwZcoU6uvr6erqGpX3O5+RxW2I9Pb2ctVVV3H99dcPmBnZ0NBAeXk5ixcvHtXZTKEQuO7ubrZs2YJKpWLVqlVy2ywZyeLz4jQaDRaLBafTOS7vOxbCBn2ibTAY8Hq9ASUCPsLCwkhPT6eysnLA52W+QBa3IXLvvfcSHh7O008/HfRcd3c3Bw4cYO7cuWMyumY8Ba6hoYFt27aRmprKwoULQ76eISNzNgRBQKfTYTAY6O3tHfMelWMlbD58XUwcDseAYh0dHU1MTAwnTpyYEAXuoUIWtyHw+uuv8/bbb/Pmm28GXeydTie7d+9m8uTJY9oqZ6wFThRFysvL2b9/P3PnziUnJ0detJaZUGg0GoxGo3846lgI3FgLmw9fjV9vb++A4dbk5GQUCgWnTp0aMxsmOvIiylkoLy/n7rvv5s033yQlJXDchtfrZe/evZhMJrKzs8fclrHKonS73RQVFdHe3s7y5csviMGpMkPn9ddfJy0tzT9ROi0tbdCCYpvNRl1dHb29vTidTlJTUwOaA0NfO7rT207pdDpmzpx5zraqVCrCw8OxWq1YLBYMBsOorH/D+AmbD99QV6vVSnh4eEAJgEKhIDMzk5KSEsLDw4mKihpzeyYasud2Bux2OzfccAPf+ta3/HOa+lNcXIzT6RzXVP3R9uBsNhvbt2/HZrOxcuVKWdhkAnjrrbd44oknMJvNTJ48Gb1eT3l5OS6Xa8D9vV4vWq2WlJSUM4a09Xo9ubm5/sdo3hz6ejcqlUosFsuoJJqMt7D50Gq1qFQq/5ic05+bNGkS1dXVOByOcbNpoiCL2xn4wQ9+gEaj4Te/+U3Qcw0NDdTU1LBw4cJxzyIcLYFrb29ny5Yt/vE7o5kII3N+8OSTT/LlL38Zo9GITqcjPT0dhUJBa2vrgPuHhYWRmppKVFTUWW/41Gp1wGM08SVm6HQ6LBbLOV38QyVs8MXvIYrigAkkkZGRREdHy+tvAyCHJQfh3//+N6+99hoHDx4Magbc29vLwYMHyc3NDSriHi/ONURZU1PD4cOHmT59OhkZGfL62igjiiJutxu32+0fbSKKIhaLBehrOu2bWSYIAkqlErVaLam/g9PpZP/+/TzyyCP+bYIgEBERcc7NjB0OB4cOHfInTyQnJ5/x5qqmpmZQQT0bbrcbm8025K4m/TuUhFLYfAiCQFhYGD09PahUqqAbgZSUFEpLS6mrqyM1NTUkNkoRWdwGoKqqijvuuIOXXnopqFDb6/Wyf/9+kpKSgtbgxpuRCJzX66WkpISamhoWLVokj9MYAU6nE7vdHvDwTVvu/3+Px+N/jU/EfHfX27dvD5rn5avd0ul0AY/Tt2m12nERwdbWVjweT9A0C7VafU5p6GFhYUyaNAmdTofL5aK+vp6ysjJmzJgx4PpYTU0N2dk52O22Eb/ncNDp9JSVlRIfHz9kYdu6dSu/+93v2L9/Pw0NDfzf//0fV199tf95URR59NFHefHFF+ns7GTp0qU8//zzTJ069YzH/eMf/8jvfvc7GhsbmT17No8//jirVq064/rb6WO1LlRkcTsNr9fLLbfcwo033sj1118f9HxpaSkul4tZs2aFwLpghiNwHo+Hffv2YbFYWLFiRci8zomEzWajq6uLzs5O/8PX2/B00YmMjAza5rso+v4mvt6S69at89+Bi6KIx+MZUCCtVittbW3+/zudTlQqFWazGZPJhNlsxmw2ExYWJimv70ycvq4bFhbGkSNHaG9vH7CmsrW1FbvdxgwWEUb4mNpmpYdi+x7q6+uJiIgYssdmtVrJzc3l61//Otdee23Q87/97W955plnePXVV8nIyOCRRx5h7dq1lJSUDNqb8a233uK+++7jhRdeYPHixTz11FNcd9117N+/Pyja4gsZnzx5khkzZsglPMjiFsQzzzxDQ0MDH330UdBzzc3NVFZWsnLlylHLwBoNhiJwbrebPXv24Ha7Wb58uTx37TR8axo+AfMJmsPhIDw8HJPJRGxsLFOnTiUiImJULx6CIKBSqVCpVGcda+LxeLBYLH47T5w4QXd3NwqFwi92vn+NRuM5CV5MTAxKpZK2trYAb8Dlco3q7++7UTjbulgY4UQIkaP2vgPyuSPtcDiGFYq85JJLuOSSSwY+pCjy1FNP8ZOf/ISrrroKgL/97W/Ex8fz9ttv+wecns6TTz7JN7/5TW6//XYAXnjhBd5//33+9re/8cMf/hC9Xh+wf3R0NJ2dndTU1JCZmTlhbnbGClnc+lFRUcFPfvITPvjgg6CLjN1uZ//+/cyePZvw8LG9exwJZxI4XzNngLy8PPmu7nO8Xi9tbW00NjbS2NhIb2+vP6zjEzKTySSptmNKpRKTyYTJZCI9PR3o+z16enr8gldVVUVXVxdKpZL4+HgSEhKIi4sb9t9do9Ewf/58PvvsMyZPngz0Xai7u7tHNZzt81qldF7q9fpR+7tXVVXR2NjImjVr/NtMJhOLFy9m165dA4qbb73z4Ycf9m9TKBSsWbOGAwcO+KMHp39maWlpFBcX09HRccGXB0jnWxtiPB4Pt99+O3fccQcrVqwIeE4URfbv309cXJykF2wHEji3282uXbtQqVQsWrRIUhfqUOB0OmlubqaxsZGmpiaUSiUJCQnMmjWLmJiYCfn5+Ly20wWvs7OTxsZGysrK2L9/PzExMSQkJJCQkIDBYBjSse+77z4eeeQRrrrqKux2O01NTXi9Xn8D7aqqKtRqtX/9uX/bKFEU/aNcFAqFP/x26tQpzGYzGo3Gv+YmCIKkLsajeR40NjYCBNX7xcfH+587Hd9650CvKS0tRa/X+2/G+q+/qdVq0tLSqKmpITw8XFI3DOPNxPsmjxHPPPMMjY2NA6b9nzx5EqvVyqJFiyTv6vcXuH379tHb24tWq2XhwoWSCqWOJ1ar1e+dtbW1ERERQUJCApMnT8ZsNkv+bzoSFAoFUVFRREVFMX36dP9n0NDQwNGjRwkPD/cL3Zk+gxtuuMHvFZ44cQKDwcDUqVP9F83T20O5XC5KSkr8/29qaqKpqYnw8HB/LZvT6aSyshK3241KpcJoNJKTk3NBX4iHi+/GwGazBUWZoqKi6OjooLq6msmTJ5+X5/dQkMWNvi4kP/nJT/joo4+CThSr1UpxcTGLFy+eMF8+nU7HokWLKCwsRKPRsHTp0gtO2FwuF7W1tVRXV9PT00NMTAxJSUnMnTt3yF7L+URYWBiTJ09m8uTJuFwumpqaaGxsZNeuXSiVStLS0khPTx/ws/na17426GDK04uvtVotCxYsOKMtvhDnhUJCQgLQJ/SJiYn+7U1NTcyZM2fA1/jWO08fb9PU1ERCQoK//q2npwen0xm0hi6HJ2Vx84cjv/nNb7J8+fKA53zz2VJTUydUZ3yXy8WBAweIjo6mt7eXQ4cOhXzg6XggiiLt7e1UV1f7s90yMjJISkqaMDcm44EvjJiSkoLX66WlpYWTJ0+yadMmYmJiSE9PJyEhQRITn88HMjIySEhIYNOmTX4x6+7uZvfu3dx9990Dvsa33rlp0yZ/SYHX62XTpk2sX78e6PPO9Xq9v4ZPDk8GcsGL27PPPktzc/OA4ciqqip/OHKi4Ese0Wg0LFq0CJfLJZmJ3mOFx+OhtraWyspKbDYbqamprFixgoiIiFCbJnkUCgXx8fHEx8djt9upqamhuLiYw4cPk5GR4V/DkwJWevzZjGP6HiPAYrFw/Phx//+rqqooKioiKiqKtLQ0vve97/GrX/2KqVOn+ksBkpKSAmrhLrroIq655hq/eN13333ceuutLFiwgEWLFvHUU09htVr92ZPQJ2JOp/Os4ckpU6aM6PeayFzQ4lZfX88jjzzCO++8ExSOsVqtlJSUTKhwpMfjYffu3SgUCv/AVKVSOSbNlqWAzWajqqqK6upqdDodmZmZpKSkXHAh2NFCp9ORlZXF1KlT/WUv5eXlJCUlDVqLNR7ExMSg0+kptu8Zl/fTaftqFofDvn37KCgo8P//vvvuA+DWW2/llVde4cEHH8RqtfKtb32Lzs5Oli1bxkcffRTwuZ44cSKgC8sNN9xAS0sLP/3pT2lsbGTOnDl89NFHAUkmQwlPHj16lK6urguub6wghmo+uwT46le/CsAbb7wRsF0URXbs2EF4eDi5ubmhMG3YeDwefx1bXl5eULaX3W5nx44dmM3mCS9wNpuN0tJSamtriYuLIzMzk5iYmAnxO/mKuC+99NIJcdPU09Pj71uYnp4estKIc2m/dTpOpxOHwzFgur8oihiNRhITEzEajRMmNOvz3k7PnoS++tympiZmzJgxar+P3W4fdB1WKlywntvmzZt57733KC0tDXquqqoKm83GkiVLQmDZ8BFFkQMHDuB0OsnPzx/w4jNW43LGE6fTSUVFBVVVVSQkJFBQUCB3WRljwsPDycnJobKy0t9l3zeKZTw95LS0NH+/x3NhKL0iRVHEZrNhsVgmjMCp1epBsydjY2NpbW2lsbGRpKSkEFk4/kj/rzYGuFwu1q9fz09/+tOgP7bdbufYsWPk5uZOmJqn8vJyOjo6WLJkyRm9gfGc6D2auN1uysvL2bhxI93d3SxbtowFCxbIwjaO+KZdR0REIAgCPT099Pb2TqhO9ENtgiwIAnq9HoVCMWZDT0cbn80ulytoHJEgCKSlpdHY2HhBjca5IMXtmWeeAeC73/1u0HPFxcXExcVNmIbC9fX1VFRUsHjx4iGNrJlIAuf1eqmqquKTTz6hoaGBRYsWkZeXJzeGDSEKhQKDwUB4eLi/W4nNZpO8yA23u79vLat/UbrU6Z89efr32mg0EhUVdUFN7r7gxK2+vp6f//znPPfcc0FeTltbGw0NDaMyEXg86Orq4uDBg8ybN29Yi8VSFzhRFKmrq+PTTz+lsrKS2bNns2LFiglVjnG+o1QqCQsLw2g04vF46OnpwW63S+5cgpGPrfGN4/Gt0U0EfAklA9mbnJxMT08PXV1d421WSLjgxO0HP/gBl112WUBmE/R5CYcPHyY7OzuoIakUcTgc7N69mylTpowoji5Vgevp6WH79u0cPXqUqVOnUlBQQFJS0oRbHzwfGegc8XUYMRgMuFwuuru7B53SHQrOdR6bUqnEYDBgs9lGZaL3WOPzOO12e5A3rVarSU5Opqam5pw9balcL87EBSVu27dv59133+X3v/990HNVVVV4vd4J0T3B6/Wyd+9eIiMjycrKGvFxpCRwoihy/PhxtmzZQmRkJBdddJF/6rNMaPFFOHp7e8+4j29at9VqlcR63GgNGvUl0Fit1pD/TkPB11DZZguefxcbGztg55Ph4jsXpJzxOzEyJkYBURR58MEHeeCBB0hOTg54zm63U1paysKFCyfExfTIkSO4XC6WLFlyzh6NFLIoLRYLBw8exOFwkJeXFzQcUya0KJVKzGYzzc3NABgMhjOeI74Lq9VqRafTheQC6BsoazAY/BPRzwVRFPF6vXR0dJz195cCgiBgsVjwer1Bn39cXJy/c8lwRV8URXp7e2lubsZsNku6pvSCEbd33nmH48eP+4sr+zORkkiqqqqor69n5cqVo5bNGSqBE0WREydOUFpayqRJk8jJyZkwGaoXGr7+iD6BGwputxuXy4VSqUStVo+bIPjeV6vVjurNqiiKOBwOFArFhJiH6HK58Hg8A05u7+7u5vDhw8MuVvdhNpv954RUuSCuJB6Phx/96Ec88sgjQenj7e3tNDQ0cNFFF4XIuqHT0tJCcXExeXl5o978d7wFTvbWJhaCIJCYmEhcXNyw1tRsNhvHjh2jt7eXadOmjfnf+dSpU1RXVzNnzpwxyap1OBzs3buXlJQUJk2aNOrHH018yxcJCQlBbdRsNhtf/epX+fDDDwOaOQ8FtVotaY/NxwXRoeSVV17hF7/4BaWlpQF3XL5OJNHR0UybNi2EFp4dq9XK1q1bmT59+pj2+xvrTiaiKFJZWcmxY8dIT09n2rRpF5S3NtE6lIwGoihSXV1NcXExycnJzJgxY0x+d995lZeXN6ad8Ds7O9m+fTsLFiyQvPfS3NzMvn37uPjii4M+85tuuomwsDBeeumlEFk3tkh/gekcsdvt/PSnP+WXv/xlUCihubmZnp4eyTcVdblc7N69m+Tk5DFvZDuWSSYul4vPPvuMqqoq8vLymDVr1gUlbBcqgiAwadIkCgoKsFqtbNmyhZ6ekTUoHozxEjboC8nNnTuX/fv3093dPabvda7ExsZiMpmoqKgIeu6Xv/wlr7/+OseOHQuBZWPPeS9uf/rTn4iKiuKmm24K2C6KIiUlJWRlZUn+Dvrw4cNotdpxq78bC4Hr6elhy5YtCILAypUr5TDkBYjBYCA/P5/k5GS2bt16zhl7PsZT2HwkJyeTmZnJ3r178Xg84/KeI0EQBKZPn05lZWVQMfqUKVP4+te/zo9//OMQWTe2nNfi1tXVxa9//Wsee+yxoIXl2tpaXC6X5OPmjY2NNDU1MW/evHHN5BxNgWtubmbbtm0kJiZOqCkLMqOPIAhMmzaN3Nxc9u7dS0VFxTmdW6EQNh/Z2dmoVKoB+9NKicjISOLi4igrKwt67pFHHmHDhg189tlnIbBsbDmvxe3JJ59k1qxZrFu3LmC71+ultLSUnJwcSS+MOp1OioqKmDlzZkgKy89V4Hy1a3v27GHWrFnMmDFD8inUMuNDSkoKy5Yto7KykgMHDozI+wmlsEFfB5O5c+dSVVVFe3v7uL//cJg2bRo1NTVYLJaA7QkJCXz/+98/L72381bcenp6eOaZZ3j00UeDLqgnT55EqVSSmpoaIuuGxpEjRzCbzSG1c6QC5/F4OHjwICdOnGDp0qWS/6xlxh+z2czKlSuxWq1s3759wKLjwQi1sPmIiIggOzubgwcPSjo8GR4eTmpq6oDra/fddx979uxh9+7dIbBs7Dhvxe2///u/yc7OZtWqVQHbfR3mp02bJmkvoqGhgaamJnJzc0Nu53AFzpdx2dPTw4oVK0ZcSyNz/uM7t8LDw9myZQsdHR1nfY1UhM3H5MmTJ0R4Mjs7m6amJjo7OwO2R0ZGctddd/HYY4+FxrAx4rwUN4fDwZNPPsnDDz8cJAxVVVUYDAZJp/A6nU4OHToUsnDkQAxV4Do7O9myZQthYWEsW7ZMMvbLSBelUsncuXOZOnUqO3bsoLa2dtB9pSZs0BeenDdvnuTDk3q9noyMjAFF+Pvf/z4ff/wxR48eDYFlY8N5KW6vvvoqUVFRXHHFFQHbPR4PJ06cICsrK+Te0JmQQjhyIM4mcO3t7ezYsYOMjAzmzZsn6fVMGWkhCAKTJ09m0aJFHDp0iKqqqqB9pChsPsLDw8nOzh7x+uF4MXnyZFpaWoImAyQlJXHLLbfwxBNPhMiy0ee8Eze3281vf/tbHnrooaDswpqaGrRaLfHx8SGy7uxIKRw5EIMJXGtrK7t27WL69OmSv3m4UPnjH//IpEmT0Ol0LF68mD179gy6b3FxMddddx2TJk1CEASeeuqpcz7mUIiLiyMvL4+SkhJOnDjh3y5lYfMxZcoUNBqNpOvGdDodaWlpA9a9Pfjgg/zzn/8c8MZiInLeidv//u//4vF4uPHGGwO2e71ejh8/ztSpUyV74fWFI2fNmiXpcN7pAtfU1MRnn33GzJkzycjICLV5MgPw1ltvcd999/Hoo49y4MABcnNzWbt27aC9Int7e8nMzOTxxx8fNIQ/3GMOlaioKPLz8ykrK6O8vHxCCBv0eZ9z587l5MmTkg5PTpkyhYaGBqxWa8D2yZMnc+211w44NWVCIp5HeL1eMTc3V/zjH/8Y9FxNTY24YcMG0ePxhMCyobF3717xs88+E71eb6hNGRI2m0386KOPxP/85z9iTU1NqM2ZEDidTvHtt98WnU7nuL7vokWLxHvuucf/f4/HIyYlJYmPPfbYWV+bnp4u/td//deoHnModHZ2iu+++674zjvviG1tbaNyzPGgvLxc3Lhxo+h2u0NtyqDs27dPLCoqCtpeVFQk6vV6sbGxMQRWjS7nlef20Ucf0djYyO233x6wXRRFKioqmDJlimRH2tTX19Pc3CzZcORA+AZTarVampubJ8QAwwsRp9PJ/v37WbNmjX+bQqFgzZo17Nq1SzLHPJ22tjb/cX0/TwQmQnhy6tSp1NTUBHUtyc3NZfXq1YOGoScS0rzSj5Cnn36ae+65Jyik19jYiNPpJC0tLUSWnRmn08nhw4eZNWsWOp0u1OYMidbWVvbs2UNubi4rV66UxMBTmYFpbW3F4/EErTXHx8fT2NgomWP2xxeKzM/PZ9myZVRUVASswUmZiRCejIiIIC4ubsDP9P777+fPf/7zsOoOpch5I25lZWUUFhbyrW99K2C7z2ubPHmyZLP3ysrKMJlMpKSkhNqUIdHe3s7u3buZNWsWqampkproLTPxOX2NzWQykZeXR2lp6YRJdggPDycrK4sjR45I9vswdepUqqqqcDqdAdtXrVpFYmIib775ZogsGx3OG3H705/+xPXXXx90J9nR0UFPT49ke0j29vZy8uRJpk+fPiHCkT09PXz22WdMmzYtYEKBLHCBeDweent7/fMC6+rqOHXqlD9UVVdXR21tLfX19bS2tmKxWIY1J204xMTEoFQqgxoVNzU1jbjecyyOCYNnRUZGRvqzKOvq6kZ8/PEkMzMTu91OfX19qE0ZkKioKMxmM9XV1QHbBUFg/fr1PPvssxP6e3xezBvp6enhlVdeYcOGDUHPVVVVkZaWJtlmvceOHSMpKQmTyRRqU86K0+lk9+7dTJo0iczMzKDnQzXRO1S43W66urro7Oyku7sbm82G3W7Hbrf7hUqn06HValEqlQiC4F87OnXqFNCXxet0OrHb7Xi9XpRKJTqdzv+IiIjAbDZjMpnQarUjslOj0TB//nw2bdrE1Vdf7X/fTZs2sX79eskc82xZkVFRUcyfP599+/YRFhY2JsNIRxOVSkV2djbHjh0jMTFRkuv9mZmZFBcXM2XKlIDv6te+9jUeeughdu7cydKlS0No4cg5L8TtjTfeYMqUKSxatChgu++uqaCgIESWnZnu7m7q6+tZvXp1qE05K16vl3379hEeHn7Gwa7nq8CJokhHRwcdHR10dnbS2dmJxWJBq9X6xScqKsovZr5/T//dfcNKlyxZEnDDJYoiLpfLL44OhwObzUZ3dzc1NTVYrVb0ej0mkwmz2UxkZCTR0dFDDrXfd9993HrrrSxYsIBFixbx1FNPYbVa/clXt9xyC8nJyf4WTE6nk5KSEv/PdXV1FBUVYTQa/fMPz3bM4TDUdP+EhASys7PZs2cPK1askPwadVpaGsePH6empkaS0aOEhASOHDlCY2NjwERuo9HIbbfdxvPPPy+LW6gQRZEXXniBe+65J+hCUl1dTUxMDEajMUTWnZmSkhImTZpEWFhYqE05K8XFxdjtdpYvX35WsTpfBM7tdtPc3OwfOySKoj+Uk5ycjMlkGrV6REEQ0Gg0aDQaIiIigp53uVx0dnb6PcXq6mqcTiexsbEkJCQQHx9/xgv9DTfcQEtLCz/96U9pbGxkzpw5fPTRR/4wfk1NTYBnUV9fz9y5c/3///3vf8/vf/97Vq5cSWFh4ZCOOVSGW8c2ZcoUuru72bt3L/n5+ZJdS4e+TM/p06dz+PBhUlJSJDecV6FQMGnSJKqqqgLEDeDOO+9k7ty5PPXUU8TExITIwpEjiBM5qArs2bOHNWvWUF9fHyBiXq+XjRs3kpubK8k+km1tbezatYuLL754xOGm8aK6upri4mJWrlw5LCH2NVA2m80TRuDsdjsNDQ00NjbS2trq70OakJBAZGTkOYeWfJ7bpZdeek6hclEU6enpobGxkcbGRjo7OzGbzcTHx5OUlER4ePg52TlejLRA2+PxsH37diIiIpgzZ46kzy1RFNm6dSuJiYlkZWWF2pwgHA4HGzZsYNWqVUHnzcqVK7nyyiu5//77Q2TdyJFeEHiYvPDCC/y///f/gryzpqYmBEGQZKst8fMp4FOmTJG8sLW1tXHkyBEWLlw4bA9zoiSZiKJIU1MTe/bsYcOGDdTV1REbG8uqVau46KKLmDFjBtHR0ZJaMxEEgYiICLKyslixYgVr164lPT2dzs5OCgsL2bp1K9XV1bjd7lCbOijn0nlEqVSyaNEimpqaqKysHCMLRwffNOyKioqgzEQpoNVqSUxMDEosAbjrrrv47//+b8l+d8/EhPbcLBYL8fHx7Nixgzlz5gQ8t2vXLqKiosjOzg6NcWegoaGBoqIi1qxZI9lEF+jL5Ny6dStZWVkDJpAMFal6cE6nk+rqaqqqqvB6vaSnp5OWljamYeLR8tzOhNPppLa2lurqanp7e0lLSyMzM1NS4e/RaqnV3t7Ozp07WbRoEXFxcaNo4eizc+dOTCYTM2bMCLUpQfjqVteuXRsQ5nU4HCQlJfH222+zfPnyEFo4fKRzKzoC3n77bSZPnhwkbFarlZaWloBUdakgiiLHjh0jOztb0sLmdrvZs2cPCQkJ59wvUmoenM1m49ChQ2zYsIGmpiZmzpzJl770JaZNmyYpARgpGo2GzMxMVq1aRV5eHg6Hg08//ZTdu3cPaV7aWDOavSKjoqKYPXs2+/btC5oyLTWmT59OVVWVJIujo6Oj0Wq1QWULWq2WG264gddffz1Elo2cCS1ur732GjfffHPQ9pqaGhISEiSZSXXq1Ck8Ho8kM6f6c+jQIVQqFbNnzx4VT0sKAud0OikuLmbTpk24XC6WLVvGsmXLSEpKklTIcbQQBIGoqCgWLFjAmjVrMBqN7Nixgz179tDT0xMSm8aiCXJaWhrp6ens3r1b0mFYs9lMQkKCJIeaCoLApEmTBgxN3nzzzfzzn/+UZEj1TEzYb3RTUxObNm3iq1/9asB2URSpra2V3Cw06FsELy0tJScnR9IX0/r6epqamliwYMGo2hkqgfNNX9+4cSPd3d0sW7aMBQsWSL5OajTR6/XMmDGDiy66CK1WS2FhIUVFRePqRYxld//p06ejVqslKRz9ycnJoba2NmQ3F2ciOTmZ9vb2oHMiPz8fk8nEhx9+GCLLRoZ0r7Bn4R//+AdLly4NErGOjg5cLpck4+9VVVWo1WpJt9lyOBwcPnyY2bNnj4nnO54C5/V6qaqq4pNPPqGhoYFFixaRl5d3QYna6ej1enJzcykoKMDlcrFp0yaKi4vHrDuKj7EeW9O/n6OUmywbjUbS0tIk2VRZp9MRGxsbNAldEARuvvlmXnvttRBZNjImrLi9/vrrfO1rXwvafurUKZKSkiRX++LxeKioqGDatGmSSagYiCNHjhAZGUlycvKYvcd4CFx3dzfbtm3jxIkTzJ49mxUrVhAbGzvq7zNRMRqNLFy40P93+PTTT0el4fFAjNc8tvDwcHJycjh48KCkw5PZ2dk0NzcHTcOWAikpKUHiBn2hyXfffVeSNg/GhBS38vJyDh06xPXXXx+w3ev1Ul9fL8mQZG1treSngNfX19PS0jIuY3fGSuC8Xi8VFRVs3bqVmJgYCgoKSEpKkvQNRSiJjIwkPz+fnJwc9u/fz4EDB0bVixvvQaOTJ09Gq9VK0jPyodPpSE1NleSUg8TERKxWa5CITZs2jRkzZvCvf/0rRJYNnwkpbq+//jqXX355UHipubkZpVIpuWm9oihSWVlJZmamZC+yDofDPwV8vBJxRlvgfN5aTU0N+fn5zJgxQ3IevBQRBIH09HRWr17tz6w8vSHySAjFBG1feLK6ulrS4cmMjAzq6uqC5qmFGpVKRUJCwoDe29e+9rUJlTU54cRNFEVef/31AbMka2trSUlJkZyAtLa2YrPZJL3WdvjwYaKjo8c0HDkQoyFwvrFGPm9t1apVkrvBmQjo9XqWLFlCTk4O+/btOycvLhTC5sNoNDJt2jRJhycjIiKIjo4eMDsx1KSmplJbWxv0XbzxxhvZunXrhJnKMOHErbi4mIaGBi655JKA7S6Xi4aGBkkKSGVlJZMmTZJcXzkfdXV1tLa2jlra/3A5F4FzuVzs2bOH6upq2VsbBfp7cTabja1btw67fiyUwuYjMzNT8uHJzMxMfwMBKREbG4vX6w3yfBMTE8nPz+fdd98NkWXDY8KJ2zvvvMPFF1884LRto9E4YNPZUGK1Wmlubj7nQuixYqyzI4fKSATOarWybds2PB4PK1askL21UUSv15OXl0d8fDxbt26lubl5SK+TgrBBYHiytbU1ZHacifj4eFQqleQ8IYVCQXJy8oChySuuuIJ33nknBFYNnwknbu+++y5XXnll0PaGhgaSkpJCYNGZ8XXbHq3u8aNNcXEx0dHRkvjshiNwLS0tbNmyhdjYWJYsWYJGoxlHSy8MFAoFM2fOZObMmezZs4cTJ06c8W8iFWHz4QtPFhUVSc47gj4BzszMlGRvzMTERBobG4P+3ldeeSWbNm2SfDcYmGDi1tjYyN69e7nssssCtns8HpqbmyXX/d/j8VBTUyNZr627u5u6ujpmzpwpmXXKswmcKIpUVVWxe/duZsyYwaxZsyRdEH8+kJaWRn5+PhUVFRQVFeHxeIL2kZqw+fB992pqakJsycCkpqbS09NDZ2dnqE0JIDo6Gq/XG2RXVlYWGRkZbNy4MTSGDYMJdVV4//33WbhwYVA6fWtr66BzsEJJfX09Wq1WUl/2/vjmyRkMhlCbEsBgAieKIkePHqWsrIy8vDxJ9g49X4mKimLlypV0dXWxa9eugEQTqQobfDFPrbS0VJLJJWq1muTkZMklligUCuLi4gasfZwoockJJW6DhSQbGxtJSEiQjPfho7q6mvT0dMnZBX2jbNra2iQ5XwqCBc7r9XLo0CEaGxtZvnw50dHRoTbxgkOv17Ns2TIUCoVf4KQsbD58ywJSDP8BpKenU1tbKznxTUhIGFDcrrzySt57770BPXgpMWHEzWazsWHDBq644oqA7aIo+sVNSlgsFjo6OiRZUD5R5sn5BK6jo4NNmzbR2trKsmXLzovO/RMVlUrF4sWL0Wq1fPrpp5SUlEha2ED689QiIyMxGAySSyyJj4+np6eH3t7egO15eXl4vV52794dIsuGxoQRt08//ZSEhISgWUhdXV24XC7J3clXV1eTkJAgSfFobGzEarUyefLkUJtyVrRaLWazGZvNRkREhCQnPVxoKJVKoqOjcTgc6PX6CTH1OzY2lsjISCoqKkJtShC+8guphSbVajXR0dFB3ptKpeKyyy6TfGhywojb+++/z+WXXx4U4mtsbCQuLk5StU1er5eamppxWRMSRZH777+fb33rW5SVlQ1p/2PHjpGVlSXZujsfoihy+PBhOjs7WbFiBT09PZKYB3ehU1lZSVlZGfn5+YSFhQWtwUkVKc9TS0lJoauri+7u7lCbEsBgocnLL7+c999/PwQWDZ0JI26bN2/moosuCtouxZBkU1MTKpVqXBr1btmyhSeffJJX//I3pk2bxpVXXsmOHTsG3X+izJMDOHbsGE1NTeTn52M2m0M+D04mMHkkJiaGhQsXolKp2LNnjyTT7fsj5XlqGo2GpKQkTp06FWpTAkhISKC1tTXo5qWgoIDi4mJaWlpCZNnZmRDi1tjYSHl5OStWrAjY7nA46Orqklwz4sbGRhITE8clkeTJJ58kQhXJUu+l5Ijz2PLhNpYtW8biRUv497//HbDo65snN23aNMmnz9fW1lJVVUVeXp4/m1MKA08vZAZKHlEqlSxatAin08mRI0dCbOHZkfI8taSkJBoaGkJtRgBhYWGEhYUFFcLHxsYyY8YMtm7dGiLLzo60r3Cfs2XLFnJzc4mMjAzY3tbWRnh4uKTWtcYzweX48eO89957JLszUQpKkoUMFrovIpd8Thw4yXXXXcfUKVN5/vnnsdlsnDx50p96LGU6OjooKipiwYIFQes5ssCFhjNlRfqSTOrr66mqqgqRhUNDyvPUYmNjsdlskhPemJiYAZtQFxQUsHnz5hBYNDQmhLgVFhayatWqoO2tra3ExMSMv0FnoKOjA1EUxyV77Nlnn0Wr1JFAmn+bIAjECknM9S5nIavprXZzzz33kJqSxoEDB8bNoxwpdrudPXv2kJOTM6hHLgsc/PGPf2TSpEnodDoWL17Mnj17zrj///zP/5CTk4NOp2PWrFl88MEHAc/fdtttCIIQ8Fi3bh0wtDo2g8HAokWLKC4ulmy7Kx9ZWVk0NTVhtVpDbUoAvqWMsZqrN1JiYmIG/JuuWrWKwsLC8TdoiExocWtrayMmJgaPx8PK5SvJyc7hO9/5Dm+//TYdHR3jbyh9Icn4+PgxD/vZbDZe/uvLJLjTUAoDJ9OYhChmsZg8cS2Lpy6lq6uLefPm8+1vf5vjx4+PqX0jwePxsGfPHmJjY8+ayXkhC9xbb73Ffffdx6OPPsqBAwfIzc1l7dq1g/Z/3LlzJzfddBN33HEHBw8e5Oqrr+bqq6/m6NGjAfutW7eOhoYG/+PNN98cVh1bdHQ0M2fOZO/evZITjv7o9XoSEhIk6WUOlsARSqKjo+nq6goqo1ixYgUlJSVD7js63khe3BoaGigvL2f58uUB2x0OB93d3URHR3P48GG2bt9KW3k3r/z337jmmmuIjo5m7py5PPjgg3z88cfj9mUbr5Dk22+/TY+lhyQmnXVfg2Dksisu5dgHVSTaMnjlxVfJysri2muu5bPPPhtzW4eCKIocOnQIYMjDUi9UgXvyySf55je/ye2338706dN54YUXMBgM/PWvfx1w/6effpp169bxwAMPMG3aNH75y18yb948nnvuuYD9tFotCQkJ/kdHR8ewC7QnTZpEcnIye/bskVxRcn8mT55MdXW15GyMj4+no6MDh8MRalP86HQ6jEZjUGgyJiaGmTNnSnbdTfLiNpT1ti1btqBUqJjFEpa4v8RSLiFHnEfjoXb++F9/Yt26dZjNZvLz83n00UfZsmXLmJw8VqsVi8VCXFzcqB/7dP7y0l+IUsZhEM5eYxQzKZK4qdGUfXKSTGEaS9xryRbn8sl7n5KXl0d+/lL+85//hDTbrb6+nqamJhYtWjSsso4LTeCcTif79+9nzZo1/m0KhYI1a9awa9euAV+za9eugP0B1q5dG7R/YWEhcXFxZGdnc/PNN7N79+4RFWjPnDkTlUpFSUnJsF43nkRGRmI0GiXXc1Kv1xMRETEqw2JHk8HW3aQcmpS8uA1lvW3Lli2YhSh/eE4vhJEsZDBTWESeex15fInJ7pmc+KyGJ379W1atWoXJZGbNmjU8/vjjo3aX2djYSExMDGq1+pyPdSZqamr4dPOnxHuG1v1k1qXZlBVW4bD0hRWUgpIUIZNF7jXMJp+yPRVcffXVZGdl8+KLL477dGC73X5OY3cuJIFrbW3F4/EErUfGx8cPGs7yhcrPtP+6dev429/+xqZNm/j+97/Ptm3b+N3vfofJZBq2jQqFgrlz51JTUyPZVHFfR/6qqirJnS++jvxSYiKuu0le3LZv3x4UkoQv1tu8Xi+Fm7cQ4Rm4Q4kgCIQJEaQKU5hNHss8l7GIi0hzZHF4cwk//fFPWbx4MZHmSK684kqefvppjhw5MiIvZrxCkq+//joqQUU8Zx/MqtaryVo+iaMflQc9JwgCcUIS87wrWUABPZV27vzWnaQkp/KrX/1qwDu10cZXqB0TE3NOWZwXksCNBTfeeCNXXnklYWFhpKam8vbbb3Pw4MERX7j6j5uRWujPR1JSEk6nc1zO8+GQkJBAc3OzpHo3Drbutnz5coqLi0OW43AmJC1uVquVY8eOsXDhwoDtTqfTv95WUlJCZ1cHkQwta1IQBCKESNKFLHLFpSz3XsECVhFnTWfnh3u4//v3M3v2bGJjYrnhhhv485//zPHjx896sXS5XLS1tY2LuP39b38nWkxAJZzdQ8xaMYn2U120njzzyWcWopnFEvL4Evr2CH7+6M9JSUnhO9/5zpguvNfV1dHW1sbs2bPP+VgXgsDFxMSgVCqDwlZNTU2DnnsJCQlD2r9/8si8efOIiYk5p8SjzMxM9Ho9xcXFIz7GWKJUKklNTZVc26uIiAg0Go2kRNe37tbe3h6wPTY2lvT0dA4cOBAiywZH0uJ26NAhoqOjg+7oOzs7MRgM/vU2haDAxMh6SyoEBWYhhkxhGnO9y1khXsk8lhPREcfGf23mrrvuZurUqaQkpXDbbbfx97//fcAJtU1NTYSHh4/5+JijR49yrPQY8eLQQpIzLp5Cycah99MzCOHkCPPI915Coj2Dl57/C1MmT+ErX/kKe/fuHanZA+ILR+bm5o5areL5LnAajYb58+ezadMm/zav18umTZvIy8sb8DV5eXkB+wNs3LgxYP/TsyJra2tpa2sjMTFxxLb6pmGfOnVKsuHJ9PR06uvrJdVQWRAE4uPjJVfQbTabB5w7N2/ePPbv3z/+Bp0FSYvbgQMHmD9/flDmXFdXl38tYOfOnZgUUSiF0emTqBSURAnxTBFmMt+7kpXiFeSSj6oxjP+8/i633HILqampTM6cwt13383//M//0NraOm4hyTfffBOtUkc0Z3+v2MwozEkRlG87Oez30QhaJgszyPOsJUvM5cP/+5hFixaxYvkK3n///VFJPjl8+DCxsbGjPgX8fBe4++67jxdffJFXX32VY8eOcffdd2O1Wrn99tsBuOWWW3j44Yf9+3/3u9/lo48+4g9/+AOlpaX87Gc/Y9++faxfvx6AI0eO8MADD6BSqeju7mbTpk1cddVVTJkyhbVr156TrWFhYUyfPl2y4cnw8HDMZrMk2141NTVJ6twdTNzmz58vSc9N0p1z9+/fz/z584O2d3Z2YjabAdi7Zy9hHhOMUV2ySlATSxKxJIEHnDjooIX2qmZe/8ubvPDCCyiVSl577TV/CHXFihVjMjhVFEVef+11oj2JKISz35dMW53J8R3VuOwjv6goBRUpTCbZnUkL9RzdVcrll19OdlY2D/7wQW6++eYReV1tbW20tLQEZfGNFj6B27FjBwcOHGDevHnjXrzudDrp7Oyku7sbl8uF1+v1JwocO3YMtVqNUqnEaDRiNpvR6/VDsvGGG26gpaWFn/70pzQ2NjJnzhw++ugjf9JITU1NQJ1lfn4+b7zxBj/5yU/40Y9+xNSpU3n77beZOXMmlZWVVFRU0NHRwf/7f/+Pzs5OkpKS+NKXvsQvf/nLUfGoMzIyOHXqFJWVlZKcH5ienk5lZaWkpmTExMT4l19GktQzFpjN5gGnKsyfP59XXnll/A06C4IopVuD05g9ezY///nPueaaawK2b9y4kdzcXIxGI+Hh4WR755IsZITERrvYi3mmgS/fdwXfvnM9VlcPSoWSefPmcfGXLmb16tXk5+ej1+vP+b2Ki4uZOXMmc1hKjHD2cNGtf76GzX/6jJqi0QtviKJIF23UKCpo8dYTExPD9+/7PnfddVdQucaZjrF9+3Z/2vlYYrfb2bFjB2azeUwFzidk/R82mw2DwYDJZEKj0aBQKOjs7KSjo4NJkyYhiiJut5uenh56enpQq9WYTCbMZrP/MZZh7vEcNNrS0sKePXu4+OKL0Wg0Y/pew8XlcvHhhx+yZs0aSU2l37NnDyaTacy/I0PF7Xbz/vvvs3bt2oCs5paWFuLi4ujs7JSMEIOEPTebzUZJSUmQ5+Z0Ount7cVsNnPw4EG8Xi/hmENjJKATDMyaMYumo+0scX0JG1bavc2c2t/Ik0VP8Zvf/Aa1Sk1eXp5f7BYuXDiicoEPPvgAlUJNpPfsdXQxkyLRGjXUHh3dehlBEDATg1mMwUoPNa3lPPKTn/LLX/ySO++6k+9973tnHfUznvPkxtKD83q9NDU1UVNTQ1NTk1/IIiMjycjI8Itaf1wuFx988AHTp08POAc8Hg9dXV10dXXR2dlJWVkZPT09mM1m0tLSSE5OHtUSk/GeoN1/ntrpMxlDTf+5ZZmZmaE2x09sbKyk1t1UKhVGo5HOzs6AJZjY2FhSU1M5cOAABQUFIbQwEMmK26FDh4iMjAyaZN3V1YVer0ej0XDw4EEEQUGYOPohwOEQOzmK+uJmBEHAgBEDRlLIRHSLWOmm3d1M6fbjfLZzN4888gh6nZ4VK1eyZs1FXHTRReTm5g6pXde777xLJLGDttvqT8aiFGoO1uN1j11hdpgQzjTmk+mdQa39OM8/+wLPPPMsX/nKl3nwwQeZO3du0GtCMU9utAXO4XBQVVVFVVUVSqWStLQ0Zs6ceU4TwpVKJVFRUQFC43Q6qauro7q6miNHjpCSksLkyZPPOeQ93sLmY/r06Wzfvt2fRSklfG2vpCRuJpOJY8eOIYqiZPrB+tbdTs8vmD9/Pvv375fFbSj41ttO/6P2X28rKioiQmVG6Q7toNLYzCgOvRM8I0oQBIyYMGIijal4PV566KTD3sz+jUVs2rgJt9eFKcLM6osKuOiii1i9ejU5OTkDJtHs3LmTVO9URM5+sk9akMLhD8ZnbpVW0DGZmUzy5FDPSd773w/4xz/+QcGqAh784YOsXbvWb2+o5smNhsDZbDbKyso4deoUMTExzJ8/n9jY2DG78Gg0GjIyMsjIyKC7u5sTJ06wZcsWYmNjyc7OHnIYuD+hEjYInKc20I1PKElISKC4uBiXyzXmTRiGislkwu12+8PbUsBsNg9YzO0TNykh2WzJo0ePkpubG7S9v7jt27sPgyu0I+71Ji3hMWG0VLWfdV+FoMAkRDFJyGGOuIwV3suZz0qiuhPZ8s4O7v3OvUyfPp2E+AS+9rWv8de//pWTJ08CfSGBuLg4TlLKDtWHHBX3UC9W4xCDu4mERemJzYyken/9aP+6Z0QpqEgVprDIvYZZLObgtsNccsklzJg+g1dffRWbzRbSeXIjzaIURZHq6mo+/fRT3G43K1euJC8vj7i4uHG7o46IiGDu3LlcfPHFREREsGPHDoqLi4dV6BtKYfMh1XlqYWFhGI1GSTUBViqVhIeHD5ihGCpMJtOA9uTm5kpunp9kPbfy8nJuvvnmoO09PT2kpqbi9XopLikhlakhsO4LYidH01nfjbPXdfadT0MhKIkklkhiwQtu0U0XrbS3NPPBWx/xxutvICKSlpLGl9Z9iSd++wRGo5F9+/bxwfsfUHSor+7MrIzC5I4hmgTMRDNpQQqNZa3Ye0LTfFUhKIgnlThPCp20UlNewW233cY7/3mHG268AaPRGBK7YPgenM1mo6ioiO7ubhYsWBDywbg6nY7p06f71zgKCwuZO3fuWcVKCsIGfZ1LUlNTOX78uCS9t8bGRknNO/SFAUe7XGakmEwm7HY7TqczYD05Ozub48eP4/V6JTMIWRpWDEBZWVlQ2rAoilitVn/DU7vdRhihXW+Ly4yi+cTZvbahoBJURAsJTBVmM99TwAquYDZ5iLUa/vnKv7jlllu49tpr+df//ovlK5bzyiuv8Oc//5krv3o51uh2DrCVbcr3iF5o4ODeQ1jFnpDWyQiCQKQQS66YzxK+xOoVF/HyX18mJTmFH/zgByGrLRqKB9ffW9NqtaxevTrkwtaf8PBwli9fTlpaGjt37jyjFycVYfORmZlJbW2tpDrfwxe1ZaFsIH46JpOJrq6uUJvhR61Wo9VqsVgsAdszMjJwu92SakQtSc/NYrFQV1cXJG69vb2IoojBYPB3HA8jtGHJ2MlRNJaOTfcFtaAhjmTiSAYPOLDTQTPt5S28XPUqz7qeRRAEcmfnctvtt5GZmUl7ezs5OTn85W8vUU01RnUEJlcM0cQTRdyQWnaNBdkzpxITE4Njs4ZYZwrPPfVHnnrqKW688UYeeOCBAUPQY8mZPDin08mBAwfo6upi/vz541KcPxIUCgVTp04lPj7e3wdywYIFAenYUhM26AuxRkdHc/LkScmkuUPfpACFQkF7e7tkhiCbzWbKysoklVRiNBqxWq0B55NarSYzM5Py8vJxX08fDEl6bsePH8dkMhEbGxuw3Wq1EhYWhkKhoKSkBLVSjY7QLrTGTY4eNc/tbGgFHQlCGtOF+UGjff701PN8+9vf5v3336e7u5ubvnoTjz32GLd882voMgQOs4stwrscUGylUjxGl9g+rl7drEuzKN54HKVLwxRhFnmetUz2zOTtt/7DnDlzuPjii/nkk0/G1aaBPDibzcb27dsRBIGCggLJClt/IiIiWL58OcnJyezYscPf/0+KwuYjMzOTkydPSspL8rW9klJHfpPJhMvlwmazhdoUP2FhYUGeG/RNOC8vD27QHiok6bmVl5eTlZUVdKdisVj86zXHjh3DKJhCejeji9ASHhtGS+X4iNvp6IUwkskgmQxEt0gvPayau5j92w/y0qsv4vDY0Wp1LFu2lGuvvxaFQkHpsVI2bdpEpbUYnUqP2RNDlBhPNPFohbFJz9abtGQsTOH1e9/1b1MJatKYSop7Ms3Usq/wABd/cjGzZs7ihw/9kK985SvjkrXW34Pbs2ePvyH3nDlzJLN2MBQUCgU5OTlotdq+rNrUVGprayUpbIA/xNvc3CypG4iEhARKSkqYOXNmqE0BApNKpJIx6at1Ox1Z3IaAT9xOx2Kx+GuJjhw+gtZtGLO2W0MhbnLUiJNJRhtBEAgjgslTM9nzz8Ms81zWV3bgaOHw5hK2bt6Ky+vCGGZk5cqVTJ4yGbvdzr69+zhYtB9RFDEpozC7Y4giHjMxQ6qnGwo5BZOpP9ZMd2Pw3Z5CUJBAGvHuVDpo4VRJBV/72td48IEHuf8H9/PNb36T8PCxDT3rdDrmzZvHtm3bCAsLm3DC1p+MjAw6Ojo4efIkM2fOlKSwQd/5mp6eTnV1taTELSoqCovFIrmSgK6uLskklRiNxgGbx2dlZfH222+Pv0GDMOHELSkpyV8InMCk8TeuH7GTo0PmtQ2EUqMkKs1Ey4n2vtE+RBJBJOliFl7RSzfttFtb+OzjfXz04Ud4RA9RkVFcccUVxMXF0d7ezvZt2znYUt7XCYUYIr1xRBOPgfARe8nTLprM3rcOn3EfQRCIIo4oMQ4LXdQ0lvPADx7kZ4/+jLu/fTff/e53x+zLbbfb2b9/PykpKbS3t3Pw4MGQ9KIcDSorK2loaCA7O5vS0lIiIyMlK3BpaWl88skn2O32EQ2pHQu0Wi16vZ6uri5JrbtJaTJ3WFgYVqs1aB0wOztb9tzORnl5OZdeemnQdl9Ysr29HYvVgp7QpZRDn+fWWBZc0BgqYtLNOKxOelqsQc8pBEVf2yxiwAse0dNXdtDRwrb3d9HpbUMUvSTGJ3LllVei1+upPVXLnj17KHcfIkwV7vfqoohDLQytP6A5KYKIOCNVe4Pv9AbDKJiYzkIyxZmcslTw1B+e5sknn+Tmm2/mgQceGNX2TS6Xi127dhEZGcncuXNxOBwhbbZ8Lpy+xqbVavnss89YtmzZmDTyPlcMBoP/wn22lm3jia+WS0riJqWkkrCwMDweD3a7PaDTTFZWFidPnsThcIzaCKtzQZKxl5MnT5KREdgI2ePxYLPZCAsL87vEOkLbwic2M4qWcUomGQqxk6OHbM9go33UTUa2frCdt956ix07d5CcnMKll17KiouXoZkER/iMbcJ7HFBsoVIsoUtsO2MSSMbCZGoPN+B2DH+qsE7QM1WYTb5nHRnu6fzP6/9i5syZrFu3js2bN49K8klJSQlqtZq5c+ciCMKEHZczUPJIRkaGf5CklBI3+uOrLZMSg412CRURERE4nU7s9uCGDaFAqVRiMBiCkkqSkpJQq9WSKQeQnLi53W6am5uDhiTa7Xb/xccnbtoQZkpqjRoi4oySCkvGTR55zZ1KUBMrJJEl5LLAs5oVXMEsluCqFti2cQcffvghVSeryJqSxeqLVpO9aArNYTXsZTPbVe9zhM+oE6uwi70Bx520MIWqvXXn9HupBDXpQhZL3F9iBgv5bNMeVq9ezby58/nHP/4x4jlhzc3NnDp1irlz5wassU00gTtTVmROTg5er1dS4aL+JCQk0NLSMqxOK2ON1MRNpVJJrlOJXq8PyuAUBIGEhATJNHuWnLj5BvSdvsjsi8sLgkBtbS2CoEBL6OL04bFh2HscOKzSmeAbOzlq1MRWI2iJF1KYJsxjsftilnEpM1hIz3EHuwo/Y9euXfT29pKTk8PCJQswTwmjVDjAdj5gr3IT5eIheo1dJObEcnLf0EOSZ0IhKEgU0lngXs1cllF7pIGbbrqJjEkZPP300wOmJw+Gy+WiqKiIGTNmDNjweKII3NnS/ZXKvvFLx48fl1QxsI/w8HC0Wq2kJnWbTCasVisuV+gTxXyEhYVJqhxAp9MN6EkmJSXJ4jYYDQ0NxMTEBI0Ksdvt/jhubW0tBlVYSOPPYZF6rB3SOdmUagVRqWaaT7SNyfF1goFEIZ0ZwkKWuNeSzzqyxDl0llnZ99kByirKUCqUTMuZxuTZGVgj29HMd1FVVcWOjo1Ui+VYxK5REQlBEIgWEpgjLmMxa/DUK7jv+/eRkpzCj3/84yGFuYqLiwkLCztjwanUBW6odWxms5nJkydLMjzpu9uXUmhSp9Oh0+kkdTMwmJiECp1ON2CHmcTERFncBqOhoSEoJAkEZFTV1taiFUObXWWI1NMrIXGLnhSJy+aipzk4mWS0EQQBg2AkRchkJotZ6r6EJVxMpmcGbWVdHD1UTFtHG0sWL+FE5QkiJ4dzUnWMz9jIZ6qPKRH30SSewiWeu9cbLpiZwSLyxXWYuuP43RO/Jy01jTvuuINjx44N+Jrm5mbq6ur862xnQqoCN9wCbV8nECmGJ33iJpXPFqQXmtRqtZITt4HskcXtDAwmbg6Hwy9uDfUNWDzdHBY/o0wsokospV48SZvYSI/YiVO0j/kXRWqe22j2uBwugiBgFEykCVOZTT7LPJexUFhN7uxcdm/cR9WJk7jcLgyGMBLS4/HE2jjCbrbyLvsVhZwQi+kUW/GKI/cqdIKBLCGXfM860t05/ONvbzF9+nQuv/xytm7d6j8fPB4PRUVFTJ8+fchFsVITuJF0HlEoFMydO5fjx4/T3d09xhYOj+joaNxut6TsMpvNkvPcpNSLczCxlZK4Sa4UoKGhYcB6Jrvd7l8b+dnPf0ZM7HPU19dTV1tHY+MpunsCT0RBUKBXGdCiQ+lWoxF1aOl7aPr9q0E3omLlsCg91nbpiFvfetvYhCSHi0JQkJaYjkajIfrkJFZ4k+minfbeZjpOttHp7SufMBqNhEcaaGw5SZX9GFqlDpM3hmgxjmgS0AnDTxhSCxomkU2aeyqN1LD94528//5K5s9bwEMP/5B58+ahVquH3f9uLCd6D4dzaallNptJTU2loqIiaMJ9KFEoFH5PqX9fzFBiMpkGLFQOFVIMSw625rZly5YQWBSM5MStvr5+0LBkdHQ0AEuWLGHJkiUBzzscDhobG2lsbKShoYGGhgb/z30iWE9DQwM1ba14PIHZdVqlDp2gR+XRoPZq0aBFiz5ICFWo/Rc0Q6SeznrpzH4yJYTTcEw6i/Jxk6NoPdmJ1+0dfLSPpZkuexs2d99NgkavxurtoKW3DhGRCKX581E+8Z9PIB/66aoQFCQxiUR3Om00cvLQcb7yla/wwgsvoFarRzQAMtQCNxq9IidPnszmzZuZPn26pKZhS637fXh4+ICFyqFCimFJh8MR9PkkJiZSXz++cyQHQ3Li1tDQMGBft/4JJQOh1WpJT08/azGo1+ulra0tSAB9P9fW1tFQV09d83F6bYFp7SqFCp3SgEbUcmnkUiraj1EplgZ5hGq0KITxjfiGSWwNsK97y8CepEpQEU0C0SSAB1w46aCFk5ZSrEIn0Bf2s4g92FRWTrmPoxSURAqxRHpjiSaBMCKGdNERBIEYEonxJhK/wIxWpeVbd36L+75/P9+5dz3r168nLi5uyL9XqARutJogG41G4uPjqaysHNVi+HPFbDZTVVUVajP8aLVaRFHE6XRKoiBZp9PhdDolMy9Np9Ph8Xhwu90BbcrksOQZaG1tDZoGAIFrbueCQqEgNjaW2NhYZs+efcZ9LRbLgJ5gQ0MDsUkxuCNsdEY20NHZcdo6jIBeqUcr6FG51ahF7efipw8SwuF4I2dCamHSuMlRlG87OaR9faN9qqnAMGsm0ddfi73iOLaK4/QeK4WuLjyih3ahhTahmQrxCAZVmH9AaxRxaISzX4AWrp1L6UcnWei6iJquCh7/zeP89onfcuttt3L//fcP2PJtIMZb4Ea7u39mZiZ79+4N2UT0gTCbzXR3d0vm4q1SqVCpVGe9qR4vfDY4HA5JeNwqlQqFQoHdbg8Qt9jYWDo6OvB4PCiVo9ObdqRITtx6enoGbJTrdrtRqcbXXKPRyJQpU5gyZUrAdlEUeffdd3nrn29hNBpxuVw0NzcHCGB/IayrresLjbZUBtXOaBQadAoDaq8GlUfTLwwaKIRqNINeQFVaJRqDRlIJLrGZUex45cCQ9/eKXrqFDiIzl6KKiMA4fx7G+fMAcLW1Y6+owFZ+nN7SUujtpddtxaGw0+CtBsCsiCbS0+fVRRAV5DmHRepJzU2g8IXd6IUwsplDpmc6tZ4T/P2vr/Hiiy9yxRVXcP/997NixYqz2jteAjcWY2uio6NRqVQ0NjZKqhkv9N1QSqVVmJSSOBQKhT80KQVxEwQBtVod1EDBd+22WCwhXz+VnLj1H2vjw+v14vV6x13cBsPpdCKKot+TVKvVJCcnB42nt1gs/Otf/yIqKoqYmBiio6NRq9VYrVaampqCvMK62jrq6upoaqqhxxKYOaYQlOhV+r61P5cGDVq/ECaYE/G4PHR2d6BBN+4h0dMxJRhRaZS01XQO+TW99CCKHjSpyUHPqaOjUEcvJnzJYkRRxNXcjL28Alt5Bb1l5eB00ulpo0vooEosRa1QEynG+Uf56IUwslZmUFfchKXti1CzWtCQwTTS3Fk0UsMn72/mnffeIywsjHvuvptf/vKXQfWW/RlrgRureWyCIJCWlsapU6ckI26CIPh7OkpJ3KS2ziUle1QqVZC4+ZL+ZHEbgIE8N98HKBVxczgc/rDFmfjhD3/In/70p6DtSoUSs8lMdEw0cfHxxMfHERMTw7Lly4iJiSEmJoaIiL41JZfLhd1up6OjI0AMa0/V0djQQHV7K4ooB20dbWznAwB0Sj1aQedPkPkiDKoPSJZRohoTbyMyxURnfTde99BT+3voBEB7loutIAho4uPRxMcTsXwZoteLs74ee8VxekvLsB8/gcvjopl6mulr+2VURHDZkuXs/6gIj+gOCgUrBSXJZNDpacNhFHHHRPPb3/6WJ596ii9fdx3PPffcoOIyVgI31oNGU1JSKCsrC0lEZDAiIiLo6ekJtRl+pCYmUksqGUjcfH0npfB3lMZZ3Q+LxTKouIU6hutjqHH4hoYGooV4posLceHAiQMXTlxeB84OJ7YOB8crTlIqVOBRuXHhwO6x4/YGt/3RarRERvZ5gPEJccyYOZ2Vq1YQFRVFbGws4eHhPPbYY7hcLnp7e+nu7u4rVq6to76unlMtNUFfDJVChV4ZhlrUonKrAzJDTxfE4Vyww6IMWNqGFyK10o0q3IRimCEXQaFAm5KCNiUFU8EqRI8HR00Ntorj2EqO4aiuwYaV5IxEflf2BI00EinEEOnt8+qM9A289YgemoU6wpcWEHnJWuwnq+n6dDNv/uMf/OOf/2TVihU8//zz/mLo/oy2wI3HBG2DwYBaraa7u1syI3F0Ot2wWqiNNVITE6mJ7UDiBn2hSSn8HSUlbi6XC4fDERSW9N1dSiElFxhy3LuttQ2VqEEr6M7eB7PfOeLBjQvn52LYJ4hOpwNXk5POJivNxaV4lEdxK1y4cLBm3UVMnzGdxx9/POCQxjAjUZFRxMTGMm3GNP8YFN9n6Xa7sdvtWK1WOjo6aG5spqm5no7OjoDjCAjoVYa+kKhbg0bUBglhnwj21QyOJHPTQg/qxPhhvWYgBKUSXUYGuowMIr90MV6ni5jWVjxAqyjixUubt5k2WjjOEbSCjigxHjVqPKLLv86nm5SO7uu34WptpatwK5u3bSNn2jRmzpjB008/zerVqwPed7QEbjyEDfo8YF9tmZTErbVVOiOkdDod7e3SaYwupTVA6BO3gRpeG41G2XM7Hd8HMpDnJpXQCTDkeUVtbe2oGf40X6WgQokK3ZmmHng/fwC5kXNQdSjJZ12gh2h14LQ6aaxt4xQNeFQu3IILp+jA7g4WH4VCgSnCxOSMyZjMJsIjwtFoNCiVSrxeLy6XC1uvjc7OTtrb26ntaA+6c9MqtMyITqG5s5Yj4u4BPME+IexfMwhgU/aiihn9mV4KjZopWVnUeT0k//AHeO127Ccq6S0to/doMY6ODhqpQfy8/KD5lb+hnzENfU42ukmTUMfEEHP9tURespbu7Tsp2bKFiy66iKSkZH7xi59zxx13+N/rXAVuvITNh9Rqy6R28ZaiPVL6eymVykE9N1ncTsPnyp5eXCs1cRtqmmtnZwdqgjM/R5uwSAOd9d0YBCOcaYBrv5ssL17cuALE0Ol14Op04Op0Uk8rbqFPEF04cXjtuDzBvSBVKhUR4SaMxjAMYQY0Gg1JaYmUl5djzNRgsXTT0l2LzR4opkpB2ecNin0dZGyiBU1LC907d6GKiEAZEYEyIhxleDjCOYajUzVaaj+/SCl0OgwzpmOYMR2uuwaPxYL9+Aksh49gO1qMs74eZ2MjXRs3IajV6LKyMEzLQZ+TTeTaizEVrMKybx/NmzbzjW98g+/fdz/fWX8PP//5z1GpVCMWuPEWNvhiCKZUkFrYTWr2KJVKSY0GGiwsaTQaJ1ZY8oUXXuCBBx6go6PDLzQWi4XIyEiWLl1KYWGhf9/CwkIKCgo4fvw4kydPHrIxPT09GI3GoDoXt9stmfU26CsFGEotTnd3D/GM/YVKb9LRcGx43VIUguLzjEstwQNf+hEQLvX0eYSfh0udOHG5HTg7HLg6nHRgwa1woVFpOVFWycmqk3jE4C+jRqPBoDf0hUjVKkSviKZTg6OyCnvF8WBb9XqU4eEozSZUJlOf6PUTQJ8YKgbxplO0WrZ1D3zHqzQaCZuTS9ic3L5ft7MTa1k51s/29K3dlZRgKy4GQBUZiX7GdAw52SQ/cB+28gq6Nn3Kb37zG373hz9w0w038PTTT2M2m4clcKEQNugTt56eHknUJEGfmLhcLsnYo9VqJeW5CYIQ8r6m/TnTmtu5em633XYbr776atD2tWvX8tFHHw3NvqG+WUFBARaLhX379vlbX23bto2EhAR2794d0LV/8+bNpKWlDUvYAGw224BrWR6PR1Kem9frHdLduNvtQjEOvamVagVu19jf0SkFJUr0Z56ALkKsOY6U1mxWiVGDrx86Hf7tHqUbrUKLIICN3qBDem02cDjwtrXhFAREEUSvB077ogtqFUpjOEpTBCqzGWVEBOqICJJuu52KY8dwKJWoIsJRhIUhDHJzojKbMS1ehGnxIkRRxN3ahuXQISy79+JubaVn5y56tu8AhQLdpHQMs2ZiXLgAW2kZf/vb33jt9ddZXVDACy+8MCSBC5WwQd/ASbVaTVdXlyTW3TSavlrO/n1kQ4lCoZDUiCCpiZtSqRxw5p3BYKC3N/h7PFzWrVvHyy+/HLBtOAX1Q1aM7OxsEhMTKSws9ItbYWEhV111FZ9++imfffYZq1at8m8vKCgYshE+vF7vgHdsUunv5mOo9vSFEMbebkEhIHqkc9LrwrXYexwIgoAKNSrU6M/kH/ZbPxQRP/cOnV94hzhweb8QQ5fgxC04cSmcOLw23GLf3aPocuPu6MDd0YFDqEFQKIiJiUH19Ts48l9Pf3FhEAQUYWGoIsJRfi6CAaHQfiFRdWwMkWsuInLNRYiiiKOunp6du+g9chR71UnsVSdBFFEYDGjS0nA1NfHJJ58wZepUZs+axdNPP+2fJjBv3ryAXzuUwtb3MQgYjUasVqskxE0QBDQaDU6nUxLi5hMTqVx/JorYKhSKURFhrVYbNLR6OAzLHSooKGDz5s089NBDQJ+H9uCDD+LxeNi8eTOrVq3CZrOxe/duvv71rw/bmMFa70jpbgWGHpb0eL0I4yBuCqUCr0c6J71CKeAZRo1bfwRB8IdLOdN6pYivBSVevP3E8PNkGtGB0+MgSmXC5XQRLkbiUthx4cLjdeO1WHBaLFDfAL6/5QAXDkGrRRUejtJkQmnuC4lqYmPQX30lSmMYzpY2eouKcJyqxVlb+8UxRJHDhw9TUFDAtOnT+dUvfwnArFmzADh58iTl5eUhEzYfvmQhqSAl70QKgtYfKX02cGZxk8La4LDF7Xvf+x5utxubzcbBgwdZuXIlLpeLF154AYBdu3bhcDhG1XMDaZ1oZ7KzPx6Pe5zETcDrlc5Jr1AqxtWTVAgKf6uy04nRROJ1iiwSVvvFEAE8Yr9wqdfx+U82bFiwYcWODTcuvE437tY2XK2tIAh9Quj1BoVEUSpRGAx4+y+kf77vsZISvv71r/PrX/+azz77jJSUFEkIG0gvSUFKF3DfDexQv+9jjZQ+GzizuI3GDdN7770XVBb2ox/9iB/96EdDev2wxG3VqlVYrVb27t1LR0cHWVlZxMbGsnLlSm6//XbsdjuFhYVkZmaSlpY2nEMDX6xlnR7HdbvdfW2XBojvhgLfgveZ7PF6vej1enRoUQvDLwcYDgqVEoVKgVo/tu8zFARFn5grNUpJ2KMN1+J1e4NsUaM+89rhaYiiiAcXRYqdOKJVRBSswtnYiLu1HU9nB+7ubrw2O/jWjH0i+DlOl4tf/epXPP300wDMnj2b8PDwkJ/Tvu9bqO3wISV7fMkSTqdTEmv+vjaEUvhs4Mz2jMYNU0FBAc8//3zAtuHcDAriMG8FUlNTufvuu+no6MBqtfrbS02dOpX//u//5tFHHyUnJ4cXX3xxOIcFYMeOHVx//fV+L1BGRkZGZmLx1FNPsXbtWv/y1Ui47bbb6Ozs5O233x7xMYZ9O1JQUEBhYSEdHR088MAD/u0rVqzgww8/ZM+ePdx9990jMkahUKBSqbj00ksDtp86dYr6+noWL148ouOONsXFxSiVSnJycs64X2RkJFO8M0kSMsfUnqt/voZD75dStUcak4O/9dpXeON772FpPfeMqXNBFEVMKWFc+7Mv8cw3/vpFtubn63Puz392K/oSWJyiA7c48F2xL7zsK/ZGoUBQqRC0GpR6PaIo4u214bVav3iNUklifDx5eXnccMMNAMydO5d9+/ah1+uJjIwkNzc3pCH3vXv3EhcXd9Y5iOPFp59+yty5c4mMjAy1KTgcDjZt2sS6deskMYanqamJiooKli1bFmpTAKioqMBmswWNDnvjjTck8XmNSNzuueceXC4XK1eu9G9fuXIl69evx+l0jmi9Db5YiOw/Hwjwt4s6fXuoUCqVQ7LH6XRidzlwCWMbRvC4PYgeLy6bRMIVHi8el2fU7QlYJ+ufSdnvZ4/SjUtw4PA6cHrtxPfEc71mHTtsH/c70hcroX6xAgSVCoVeh8IYjsoUgdJkRhUdhSoqEpXZ/HlGZTiCRoOzobFvDE9ZBb3HjyO6XKBQEBsdQ35+Hl/96le59tprUalUAVmRvu47+fn57N69myNHjoz7RO/+iKKIRqORzHdLFEXUarUk7PGFJX0lCqFGoVCgUCgk8dlAnz1KpXJAe0ZD3BwOB42NjQHbVCoVMTExQ3r9iMTNZrORk5NDfPwXvQBXrlxJT0+Pv2RgJAy2ECmFE6s/Q80GUiiUARfPsUL0iAjK0N8p+XA7Pai1Zz61vOIAGY6n/exSuPAoP++Q4vki5b8/AgKCoABEvKIIpyWyWHt7UavVRExKx6nVooqMRGU2BRaAh3/eCWWQdRVRFHG3tGKr6BuzYy+v6Ku9+7w/47JVq/jKV77CV7/61aDuOqen+/vWJ7RabUgmep+Ow+GQzMUSht79ZzzwlQBI5fojlZIEH4OtaI1WAs5HH30UpCXZ2dmUlpYO6fXDFrdJkyYN+Eulp6efcyaPSqUacHFSKqmlPoaataRUKMZF3LweLwpF6E56URQ/L9Xu86J6Oi3YzF2cPFnaz9Ny4lW5cQlOnF47Dk9w5wdBUKDX6T/vZ6nA4/X0eb92e/BNj1qNMtyIymTyF2z7atRU/X5WGAx0uF0sfuhBjg+jlZK7owNbxfG+uXGlZXg+z4I0hkeQP38+11xzDV//+tcxm82DHuNsdWzjPdH7dDwejyTmbvlwu9243W5JTL6GoTdrGC+kJm6DlW65XK5zTsB55ZVXeOWVV87pGKFPAerHYD3JJmq6sl6nx2ML9jZGG6fNhTZs8KGaw6EvK9DTz4tyBAiUb7tX6cat+KIJc38Rb+xYQ09kKw2GKsLCwtDp9Bg0fR6Ny+XGbrNhsVjotfWe9t5eRBfgViC4NehFLeaAaeRqDrCNmBu/QviSoa+/nnI4SNFozyhunp4ebMdP+MXM3dE3GUFnMDBn2jSuuOIKvvnNbw55uOdQC7RDKXBdXV2o1WpJTHaGPi/SV8gtBaTW03YwMQkVbrd7QK9/oIHToUA6fzn6epI5nU6cTmfACT5YD7NQMdQ6DrPZjKtj7NfBejtsGCIHvkB5Rc+Aa1P9167cClffWtXn8+Q83uDPWq/Tfz5RPJb4hDhiY2OJjY31D1f1PQz/v70zD2vrvPL/VwIhsUrsYhW7ARvMYsBgMBhvbRonafbF7WRxlk6SNsskzdL8mmQmk6RZ2iTjZpJuaWtPkplmaRY7iY0BY4zBLDY2mH3fQSAJCe26vz+oVIQExizSK/F+nuc+xvdeSUdX0vu957znPcfDA3///O/w9fWFYkYBxYziH33jPMBhuHDRuYELb4Qg0KJbAAdcsPVzfrxWxngOiwed5Moqow9oZsXN7LoolVB2dkLV1gFlayu0o7O1OTlcLhLj4/H9Awdw7733Ij4+/opeC7jyyiP2EjipVAqBQECMN2As4UeaPaRAmuem0+msXh9rDaftAVHiZlR7uVxuNiiQJm4cDmdJa038/P0w0D2+aq/LMIzVuamBKSH8Q3xxkamBjqWdbW3zj0r+mgUq+fsK/BAQ4I+goHAEC4MtRMq4BQYGwt/ff8l393K5HO+++y6i/GKRiz3gwh0uBlewmH/8KFf42/RgvKAdHb2ix/RrNMj09IKytRXKtg4oW9ugGRwEGAYuHA5ioqKw6/obcODAAYsSWVfKcktq2UPgJBIJMSFJYOlNgG0FafbMv+m3Nwt5ttRzs4KnpydYLBamp6eJFjcejwel8vLNOP38/dCDQavHZsN/Oquhv7n79K466Fiaf4T/VMC8OTwWi4V4ZThiQyMRlRMGYcjiQhUQEABvb+81Gzi9vLwwo5hBlIgPT5bP6j8/44PxgaHLnsfodLNV/ds6UDs4hHtfeAHSD/4KtUaD8PBwFP3oR7jrrruwffv2VQv1rLRWpK0FTiKRWO0sbi9I85RItIcksV2ooD313KxgLOQ6f97N1dXVtBqehJjzUpsY+vn5Qc6SooWphwYa6F200LNnEy9UOhUMVtrBeHp4ws/PD8LAIFP4byGRCggIgK+vLyYmJtDU1IQnnnzCihW2h81mw8t3kUarK8AbAgxOdMOg0YLt9s94P2MwQDM4OJsE0toGVWcXGJ0OLDYbwcFBUCqV+PDDD7Fv3741+Q6tVhFkWwmcXq/H9PT0ogkxtoY0MVGr1UTZo1KpiPq8FvPcqLhZwVqLcuMF1Ol0RLjlRnG7XAz8pptuQnnZSQj8PBEUHIWgoKBFhcrf339Zd2ZcLpeopoq+fr7wD/Ffk+f2gS/AMFD398HF0xOq9tkwo7K9A4xaDbBY8Pf3x449e3Dbbbfh5ptvhpubG+rq6sDj8YgWNiO2ELjx8XHweDxikkkAYGZmhrgwKQmDtBHSxNaauDEMY+rLaW+IEzdrje6MayZIyZjkcrmz7U8u82X74Q9/iB/+8Idrbg9pTR6Dg4Phw/eGh687ZqYuH75dKjOMHDJMgcVywchv3wP0eoDFgo+PD4ry8nDjjTfixz/+sdUfVkREBOrr65GUlLSqArdWbWvWWuD6+voQERFBVIKCVColplIKQJ4nSZo91sRNrVZDp9MRcVNApLjND0uyWCxToWIS7jSNq/JJ+bIZvT21Wm2xiNgeJCUlYWhoCL7R3isSNzWjxCTGMYUxyDiTkGtlYLPZiImKRmBQIK699locOHBgSRULAgMDwWKxMD4+blZ8YCWsdT+2tRI4tVqN0dFRJCcnr4KVq4NWq4VCoSDOcyNpjos0e6yJm3HspuJmBR8fH0gkEov9xiaGpLDUeTdbwGKxwOPxoFKpiBC3tLQ0vPvuuxDEemKwfumP0zIaTGEckxiDzFUMmU4CAEhOSsZNe67Fzp07sX379mUNgCwWCxEREejp6VkVcbNVo9G1ELj+/n74+voSEToyIpFI4O7uTszgvZTIjC0xRmZIscfYDWD+NJFEIgGHwyHicyRO3IRCoUU9MYAsMQHIm+ciyZ7Y2Fj09/UjLSETQPeC5+kYLSSY+IeYTUKqmwQDBlGiaNz2vVtQXFyMoqIiBAUFrYpd0dHROH78+IpTlW3dQXs1Bc5gMKCzs9PUNJUUJBIJUckSGo0GDMMQIyYqlYqoupLGsXi+iI2MjEAoFBIR7iZO3EJDQzE0ZJnqbfRMSIE0e9zd3Ze0PMEWsNlsuLm5ISzWvEW8ntFDCjGmMAapixgSgxgGxgBhkBDXfO8HKC4uxo4dO5bVC3ApuLu7IzQ0FJ2dndi8efOynsPWwmZktQRuaGgILi4uy67/ulZIpVKiQpJKpRIcDoeIOWzgn8kkJIgG8M8Q6fz566GhoSVX8VlriBO3kJAQVFVVWewnTUxIs8fHxwdS6ZVV7lhLEjYkgO/Hh85HiX5pD6RsMSSsCegMOvgKfLFz107s3LkTxcXFiI+Pt9mPNi4uDhUVFYiPj7/iEK69hM3ISgXOYDCgra0NsbGxxAySRiQSCSIiIuxthgnSxJaU+X0jC83/DQ8PE3PjRKS4DQ8PW+zncrlW607aCx6Ph4mJCXubYUIgEFi9bvZi+/btaGxshHaTBCMNPSgsKsSuXbuwc+dObNq0yW7rFfl8PsLDw3Hu3Dnk5uYueZC3t7AZWYnAtbW1gcViEZWRCMx6STMzM0T0cDNCq7cszkLzkSSJm/1XRM9jIXEjzVMibQ5QIBBgenqamEouRUVFiIuLw3PPPQeJVIKvv/4ajz76KFJTU+2+EH/jxo2Qy+Xo7e1d0vmkCJsRo8BJJBLU19cvqYi3VCpFR0cH0tPT7X795zMyMgI/Pz8i1rAaIW0OkKTkFmBhT5KK2yKEhIRgaGjI4gdLmriRlMABzF4fNzc3yGQye5sCYDY7MTc3F3q9nrjBlMPhIC0tDU1NTZiZWbxbOGnCZuRKBM5gMKC+vh5xcXFEDdhGRkdHIRQKL3+ijTAYDJDJZERdK0cJSw4NDVFxW4jQ0FCo1WqL5QCkeUpGsV1pD7vVgvWPxpnWllHYC19fX7DZbExOTtrbFAuCgoIQFhaGhoaGBT9DUoXNyFIFrq2tDQCQkJBgS/OWhE6nw/j4OFHiNj09DTabDU9PT3ubYoK0sORinhspCSXEiZu3tzc8PDwsQpPGKhykhN08PDzAYrGImgckTdxYLBaCg4OtLu0ggY0bN0KhUKCnp8fiGOnCZuRyAieRSNDR0YGMjAziPGgAGBsbg7u7O3Fr7vh8PjFJNwzDQCaTEbEw2ggNSy4DFouFsLAwDAwMmO2f7c7sctkwkq1gs9ng8/lEiQmfzycqYxL457pFUjzcucwNT871Lh1F2IwsJHAqlQq1tbWIi4sjKjliLqOjo8QMhkZIm29TKpXQarXEfIYMw0ChUFh4tjMzM5icnERYWJidLDOHOHEDgPj4eLS3t5vtW6hjgD0hTdyMSSWk1OAEZsteKZVKi3qhpBAUFITk5GScOXMGMpnM4YTNyHyB02g0qKqqgq+vL1FtbeZiMBgwMjKyauXQVgtjE1dSkEgk8Pb2JmbNnUajgU6nsxC3jo4O+Pj4IDAw0E6WmUOkuCUkJJjmCeZCmrgJBAKiPCV3d3dwOByibHJ1dYVQKER/f7+9TVmQmJgYxMbGoqKiAs3NzQ4nbEaMAjc1NYWSkhK4u7sjPT2dmPDafMbGxsBms+HvvzYdJJaDwWAgbo0baZ6kXC4Hj8ezqCvZ1taGhIQEYr5vDiduCoXCDhZZxyhupITcSEwqAQCRSIT+/n4YDAZ7m7Igrq6upsxOUu6QlwObzTa9F1dXV2IGGmv09vZCJBIRZeP09LQpSkQKpIntQuXrjOJGCg4lbp6enkR5bt7e3jAYDETZFBAQgLGxMXubYUZgYCBcXFyITSzp6upCS0sL8vPzERcXh8rKSiIzPC+HSqXCqVOn4OHhgeLiYkil0iWvg7M1SqUSo6Oja1ZqbbmMjY0hICCAGMFlGIZIz42K2zJJSEhAT0+PReo/aWFJNptNXNmr4OBgjI+PE5NVCsBUFaO7e+EiyvZi/hxbQkICkpKScPr0aXR0dBApDNYYGRlBeXk5BAIBtmzZAg8Pjyte6G1Lenp6EBQUREQXi7kYC/+SAmnJJACgUCiouC2XsLAwcLlcdHV1me338vKCRqMhqvUNaWFAb29vuLu7Y3x83N6mmBEVFYWpqSmibgQWSh6Jjo5Gbm4uenp6cOrUKaJuqOaj1WpRX1+Puro6JCYmmlUgWU4lE1ug1+vR09ODmJgYe5tihlqtxtTUFFEJLqQlkwCznpu1NYBU3JYAm81GfHy8RWjS2CeItHk3ksSNxWIt2DbInri5uSE8PNzihsVeXC4r0t/fH0VFRfD19UVZWRmRXtzo6ChOnDgBtVqN4uJiq/NXJArc4OAg3NzciMmqMzI6Ogo+n09EQ2QjpM23GZcBzPfcxGIxxGIx4uPj7WSZJUSKGzAbmpy/HACY9d5IKTEFkJdUAsyGJkdHR4myCZjNShwcHLR7a56lpvu7urpi06ZNZl4cCUsaNBoN6uvrUVtbi8TERGzdunXRAZkkgWMYBh0dHUR2JiAtJAmQlylpdCzmh5Pb29shFArh4+NjD7OsQqy4JSYmoqmpyWI/aQuVjUklJHmT/v7+MBgMmJqasrcpZvj4+EAoFKKlpcVuNixnHZvRixMIBCgrK8PZs2ftcm1nZmZw8eJFfPfdd4t6a9YgReD6+vqg1+uJSyTR6/UYGxsjStxITCaRSqXw9va2qHbT3NxM3HpKYsUtPT0d9fX1FvtJCwMak0pIs4nUsldJSUkYGBiwi/e9kgXarq6uSElJwc6dO8Hj8VBZWYmKigr09fWtafIOwzAYHR3F2bNnUVJSAqVSiby8POTm5l5x+MzeAqfX69Ha2oqkpCTiSoFNTEzAzc2NKM9DpVJBo9EQZdNCYltXV4eMjAzbG7QIZH3D5pCZmYmmpiaLEBafz4dMJiNqzRRpggv8MzRJGp6enhCJRLh06ZJNX3e1Ko94eHggJSUFe/bsQUhICDo6OvDNN9+goaEBAwMDmJ6eXpFoMAwDpVKJ4eFhNDU14bvvvkNDQ4MpvT8rK2tF9ttT4Lq7u2c7tBNSnmkuxpAkSaFSYzLJ/MXS9mQxccvMzLS9QYtAzlWbR2RkJAQCARobG5GTk2PabyweKpfLibmjEQgE6Ovrs7cZZgQHB6O+vh4zMzPEpVsnJCTg+PHjmJyctEklkLUoqeXm5oa4uDjExsZCKpViYGAAXV1dkEqlprqjAoEAfD4ffD7fVBvVWBpNq9VCr9dDr9dDJpNBIpFAKpVCIpFArVbD29sbAoEAaWlpCAwMXFVPZ6UdvZeDVqtFW1sbMjMziRIQ4J/ecVpamr1NMWNqaoqokCTDMJBKpdi4caPZfp1Oh/Pnz1NxWyosFguZmZmoq6szEzcWi2Wq6UiKuAUFBeH8+fPQaDTENFzkcDjw9/fH8PAwYmNj7W2OGTweD7GxsWhubsa2bdvWdLBb61qRxqowxkHIYDBgenraJFbd3d2QyWQW9T6PHTtmeryXlxcEAgGCgoKQkJAAHx+fNb9bt7XAtbe3g8/nIygoaM1eY7lIpVJotVqiyoABs9mbJGUfzszMQKfTWXQnaG5uhqurK1HLAACCxQ2ASdzmYwwDkjIp7e7uDh8fH4yOjiIiIsLe5pgICwtDT08PceIGAHFxcejp6VnT/k/2KIJs9Nrmp28bDAYYDAaoVCqUlJRg9+7d4PF4YLFYdvNkbCVwCoUCXV1dyMvLI85rA4D+/n4IhUKi1pIpFApMT08Tt+bOx8fH4jrV1dUR2eGdLGvmkZmZaTWphLSMSQBEri0LCwuDXC4nbj4QmPUsU1JS0NjYuCZNaEmr7m+s+WhsOMnhcMBms+0+2K/1HBzDMDh37hwiIiKI+Bzmo9fr0d/fj6ioKHubYsbIyAj8/f3B4XDsbYqJhebb6uvriQtJAoSLW0ZGBi5evAiVSmW237i2jKSkEqFQiLGxMaJs4nA4CAsLQ29vr71NsUpYWBh8fX1x4cKFVX1e0oSNdNZS4Lq7u6FQKJCcnLxqz7maDA8Pg8vlEvc9GR0dJWpZAvDPJq7zITFTEiBc3KKiouDt7W0x+Hl7e4PFYhG1mJvP58PV1RUTExP2NsUMkUiEgYEBompNGmGxWNi8eTPGxsYwNDS0Ks9JhW15rIXAKRQKNDc3Iz09nSgPZC4kdibQarWYmJggStyM62bn/6Z0Oh3OnTtHPbcrhcViITs7G1VVVRb7/f39iRISUste+fr6wsPDA4ODg/Y2xSo8Hg+pqamrEp6kwrYyVlPgGIZBQ0MDIiIiiCuzZUQul2NycpKoeXJgtjOBl5eX1fqN9kIikZjW9M7lwoULcHV1JW4BN0C4uAFAYWEhysvLLfYHBAQQJW7AP+fdSCp7xWKxEBUVhe7ubqLsmktYWBj8/PxWFJ6kwrY6rJbAdXd3Q6lUWqSNk0RXVxdCQ0NN86CkQGIZMLFYDH9/fwsPt6ysDAUFBUQl4xghXtx27NiB8vJyi7msgIAAiMViogbsgIAAaDQaosKlABAREYGZmRmIxWJ7m2IVFouF1NRUjI+PL2t+kArb6rJSgZNIJGhubkZaWhpRC5DnotVq0dfXR1xnAoPBQOR828TEBAICAiz2l5WVoaioyPYGLQHixS0zMxMqlcqizqRxYpOkrEkXFxcEBQURF5p0dXWFSCQipiK/NXg8HrKysnDhwoUrEmEqbGvDcgVOpVKhuroaGzZsIDYcCczWuPTx8YGvr6+9TTFjcnISbDabKLsMBgPEYrGFuOn1epw8eZKK23LhcDjIz89HWVmZ2X4S590AEFvTMTo6GqOjo5iZmbG3KQsSEBCAjRs3oqamZkl2UmFbW65U4PR6Pc6ePYuAgADExcXZyMorh2EYdHV1Ebn+c2RkBMHBwUQluCw039bY2AiDwYD09HQ7WbY4xIsbABQVFaG0tNRiP6nzblKp1GL5gr3x8PBAcHAw0d4bMCvCoaGhqKmpWTTDkwqbbViqwDEMYxrs0tLSiBqc5zM8PAyDwYCQkBB7m2IGwzDEzrcFBARYfKalpaUoKCggNvTsMOK22LwbSWvLuFwufH19iSxanJCQgJ6eHrv3U7scKSkpcHV1RUNDg9XBlAqbbVmKwHV1dWF0dBTZ2dlEJhcYYRgGLS0tiI+PJ66ihlwuh1KpJC6cOzExYbU0GcnzbYCDiFtmZiY0Gg0uXrxotp/P54PFYhFXgSM4OBjDw8P2NsMCgUBg935qS4HNZiMrKwsSicTCVips9mExgRsZGcGlS5eQnZ1NVBdraxj7yZFWkQSYvY6BgYFEeUJ6vd4h59sABxE347zb/NAki8VCUFAQcV5SaGgoxsfH16Ss1EqxZz+1K4HL5SInJwc9PT2mjuxU2OyLNYEbHx9HbW0t0tPTif9MSO4nxzAM+vv716zO6nIRi8VW+9ydP38eDMMQ10lhLmR9wouwa9cufPPNNxb7SVw47eXlBT8/P+La4AD266e2HHx8fJCXl4f29nbU1NRQYSOAuQJXVVWF6upqbN68mcgebfMhuZ/c1NQUlEolceI2PDxsNcHl6NGj2LFjB1Fe5nwcRtyuueYanDhxAnK53Gx/UFAQpqenicsCFIlE6O3tJWodnpGEhASMj49jcnLS3qZcFj6fj8jISAwPDyMyMpIKGwHweDwkJSVhfHwcPj4+CA8Pt7dJl8XYTy45OZnIZJfe3l6Eh4cTJRbGPnfWEm++/PJLXHPNNXawauk4jLjFx8cjOjoa3333ndl+Nzc3+Pv7E+e9hYSEQKvVErlwem4/NRLFdy5dXV3o7e1FWloa+vv70dbWZm+T1j1jY2Oor6/Hxo0bodVqbd7RezkY+8mRlqwBzArv4OAgcfOAMpkMGo3GIplkZGQEtbW1+MEPfmAny5aGw4gbMOu9ffnllxb7SQxNuri4ICIigtiK/HFxcZiensbY2Ji9TVmQuXNsIpEI27ZtQ2dnp0OIsrMyNDSEmpoapKWlIS4ubk3b5awWKpUKXV1dxHptAwMD8Pb2tlpx356MjIwgKCjIIvv166+/RlZWFlG95qzhUOK2b98+fPXVVxZdjYVCISYmJqDVau1kmXVEIhGGhoag0WjsbYoFHA4HCQkJxAqFteQRPp+P/Px80wBL2uftzBhT6BsaGrBlyxZTKHKt+8GtBq2trQgKCiKq6sdcjJ0JSGOhNXdffPEF8SFJwMHELTc3FwzDoLq62my/p6cnvLy8iPNCvL29IRAI0N/fb29TrBIVFQWtVkucfYtlRXp7e2P79u3Q6XSoqKiAQqGwk5XrB51Oh7Nnz6K/vx8FBQUWAx7JAieXy9HX14ekpCR7m2KVqakpyOVy4pJclEolpFKphXemVCpx7NgxKm6rjaurK6666ip88cUXFsdIDE0CQExMDLq6uoj6wRtxcXHBxo0b0dTURMyyhaWk+7u5uSE3NxeBgYE4efIkxsfHbWzl+mFmZgYVFRXQarUoLCy0SAk3QqLAGbuAi0QieHt729scq3R1dSEyMpK4fncjIyPw8/Oz6JhQUlICoVBIbPPZuTiUuAELz7uFhoZieHiYuKacISEhMBgMRAovMHvd/P390djYaG9TrmgdG5vNRkpKCpKTk1FdXU3sDYQjMzExgfLycvj7+yM3Nxdubm6Lnk+awHV1dUGpVBI7EKtUKgwNDSE6OtreplgwODi4aJYkiXOX83E4cdu7dy86OjpMC3uN8Pl8uLu7E7egm81mIzo6mtiajsZu2BMTE3ZtaLrcBdoikQi5ubloa2tDdXU18aXFHAG9Xo+mpiacOXMGSUlJSE1NXfKiZ1IETi6X49KlS0hPTycqvX4uPT09CAgIIM6rnJmZweTkpEWoVK/X48svv8S+ffvsZNmV4XDi5u3tje9///v48MMPzfazWCyEh4cTN38EzA7Ak5OTxFYF4XK5q9YNezmstPKIv78/iouLweFwUFpaiv7+frt7DY7K5OQkysrKIBaLUVhYuKz0dHsLnLELeGRkpNUeZCSg1+vR09NDZGeCwcFBBAYGgsfjme0vLy+HXq9HYWGhnSy7MhxO3ADgjjvuwKFDhyx+NOHh4RgbGyNm/sgIl8tFeHg4sd4bMNsNOyAgwFRWx1asVkktNzc3ZGZmIj09HU1NTaipqSGuMwPJGL2106dPIzIyEvn5+SvyKOwpcF1dXVCr1cSGI4FZAeFwOESuuxsYGLC6MP/QoUO49dZbifWE5+OQ4nb11VdjdHQUtbW1Zvs9PT3h6+uLoaEhO1m2MLGxsejv7ydOeOeSmpoKsVhss+u3FrUiQ0JCUFxcDFdXV5w4cQJ9fX3Ui7sMYrEYZWVlmJiYwPbt21etYr49BM4YjiS5C7ixn1xMTAxxc1dSqRQKhcJivk2pVOKTTz7B/v377WTZleOQ4ubu7o4bbrgBhw4dsjhGamjSx8cHAQEBFnOFJDE3PLnWXs9aFkGe68W1tLSgvLwcY2NjVOTmIZPJUF1djaqqKkRGRqKgoGDBbMjlYkuBM4YjRSIRseFIYDYTUaVSISIiwt6mWDAwMICQkBCLG4OvvvoKwcHB2LJli50su3IcUtwAYP/+/fjoo48ssiNDQ0MhkUiIXP+UlJSE7u5u4upgzsUYnmxsbFyzgchW1f1DQkKwc+dOhIeHo7a2FqdPn3aIepprzczMDOrr61FeXg53d3fs2rVrTfub2UrgjOFIUte0AYDBYEBzczMSEhKI8ywZhlkwJHn48GHs37+fOE9zMRxW3AoLC8HhcHD8+HGz/VwuF8HBwRgYGLCTZQsjEAgQEhKC1tZWe5uyKMbw5Fp4wLZuW+Pi4oK4uDjs3r0bfn5+OH36NGpqajA9Pb3mr00axp6IJ06cAMMwKC4uRmpqqkXiwFqw1gInk8mIz44EgP7+fhgMBuLqSAKzSz8MBoPFPKBYLMbRo0dxxx132Mmy5eGw4ubi4oLbbrvNamgyIiKC2LkWR+inxuVykZmZicbGRkxNTa3a89qzHxuHw0FSUhJ27doFLpeLsrIyVFdXY2JigsjvyWoyPT2N8+fP47vvvsP09DQKCgqQmZkJT09Pm9qxVgKnVqtRXV2NuLg4qx2jSUGv16OlpYXIfnLAbCPX8PBwC9v+7//+DxkZGURmdi4GeVf4Cti/fz8+++wzizY4QqEQer2eyMoVjtJPLSgoCElJSau2doyURqM8Hg+bN2/Grl274OXlhZqaGpSVlaG7u9upalUaDAYMDw+jqqoKZWVl0Ol0yM/PR25url0L9K62wBkMBtTW1kIgEGDDhg2rZOXa0N3dDS6XS1ypLWDWqx8aGrJa49IYknQ0HFrcUlNTERsbi//7v/8z289msxEZGYmenh77GHYZHKWfWkxMDIKDg1FTU2NRrPpKIEXY5uLu7o6NGzdiz549iI6ORl9fH7799ls0NDSYwjOOBsMwkMlkaG5uxnfffYcLFy7Az88Pu3fvRmZmJgQCgb1NBLC6AnfhwgVoNBqkp6cTPR9Eej+5vr4++Pr6WiQUtbW1oaamBjfffLOdLFs+Di1uLBYL999/P9577z2LY1FRURgdHSWyYoWj9FNjsVhITU0Fi8XCuXPnlmUricI2F1dXV0RFRaGwsBAFBQVgs9mora3FN998g7q6OgwODhLt0RkMBoyNjaGxsRHHjx/HyZMnoVAokJ6ejt27d2PDhg02mVO7UlZD4Lq7uzE0NIScnByi59kAsvvJMQyDnp4eq/OA77//Pn74wx8SafflYDEkj65LQCqVIjQ0FJWVlUhLSzM7dubMGQgEAiQmJtrHuEXQarU4fvw40tPTrbaVIAmVSoXy8nLExMQgPj5+yY8jXdgWgmEYTE1NYWRkBCMjI5DL5QgICEBwcDD8/f3h4+Oz7DkTrVaLI0eO4KqrrlpWsVyGYaBQKEz2jY2NwdXVFUKhEEKhEAEBARb9t0hGpVKhsrISAoEAGRkZS/ZqJiYmcObMGeTm5hI9zwbMvsfjx49j27ZtRLbdGR8fR21tLfbs2WP23VGpVAgPD8ff/vY3FBUV2c/AZUL27c4S4PP5uO222/Dee+/h3XffNTsWHR2NhoYGJCQkEDeBa+yndunSJQQHBxMZqjDC4/GQk5ODU6dOwdvbe0li7KjCBsx6rH5+fvDz80NycjIUCgVGRkYwOjqKlpYWGAwGUzsj4+bt7b3qosIwDORyOaRSKSQSCSQSCaRSKQwGA3x8fBAcHIz4+Hjw+Xyivz+LYfTgKisrUV9fvySBUygUOHv2LFJSUogXNoD8fnJdXV0QiUQW399PPvkEAQEBDlNuaz4O77kBQG1tLXbs2IHBwUGzmDHDMCgpKUFiYqLVtRv2Rq/Xo6SkBElJSUQu6JzP4OAgzp07h+3bty9amsmRhe1yGD2nuYIjkUig1+vB4/HA5XLB4/HMNi6XCxcXF7BYLOj1epw5cwZbt24Fm82GwWCARqOBSqUy29RqNVQqFRiGgY+Pj4WQknaztlKW6sFptVpUVFQgICAAqampNrbyypHL5SgtLUVRURFxBZKB2TWPJSUl2LlzJzw8PMyO5efn4/rrr8djjz1mJ+tWhlOIGwDk5OTgRz/6ER566CGz/Z2dnRgaGkJBQYGdLFucvr4+tLS0YOfOnQ4RTrp06RIGBwdRUFBg0esJcG5hWwiGYaBUKqFUKq2KlFqthl6vB8MwMBgMUKlUcHd3B5vNBovFMgmiNWH09PR0OiFbiMsJnMFgwNmzZ6HT6ZCbm+sQ1+Xs2bPgcDgWUyak0NTUBIVCgezsbLP9DQ0NyM/Px8DAALEe5+VwGnE7dOgQ/uM//gPNzc1mX3qtVotvv/0WeXl5RA62DMOgtLQUIpHIIdaRMAyDuro6TE9PY9u2bWY9vtajsF0pK51zc3YWEjiGYVBfXw+ZTGbxvSMViUSCU6dOYefOnXB3d7e3ORZotVocO3YM2dnZFuXK7rnnHri6ulpN1nMUyL/1WSI33XQTpqamUFJSYrafw+EgKiqK2JqOLBYLycnJaG1tdYgq9iwWCxkZGfD09MTp06dNmYRU2CirgbUsSmNHbYlEsqSmqSTAMAwaGxsRExNDpLABs/3kvLy8LOYtxWIx/ud//sciCuZoOI24cblc3HfffXjrrbcsjsXGxmJsbIzYqiBCoRBBQUE2bzezXNhsNrZs2QIej4eqqiq0t7dTYaOsGnMFrq6uDo2NjRCLxcjLyyNyWYM1Ojs7odFokJCQYG9TrKLX69HZ2Yn4+HiL8O/vfvc75OTkICUlxU7WrQ5OI24A8OCDD6KkpAQXLlww2+/u7o6IiAhivTcASElJwdTUFJE1Ma3BZrORlZUFrVaL5uZmZGVlUWGjrBo8Hg95eXkYGxtDf38/cnNzifWA5jM9PY2Wlhai61z29/fDzc3NIvNZqVTiN7/5Df7t3/7NTpatHk4lbkKhEHfddRdeeeUVi2Px8fEYGhoislsA8M92MxcuXHCI8CQA9Pb2QqlUQiAQoKWlhejFzhTHgmEYtLa2wtXVFVwuFy0tLQ4R1TC23YmKiiJ2mYLBYEB7e7tVr+2DDz5AUFAQfvCDH9jJutXDqcQNAJ544gl88sknFl2vPT09ERISgo6ODjtZdnlCQ0MdJjxpnGPLy8tDfn4+3NzcUFlZCY1GY2/TKA6OUSAmJiZQUFCAgoICu3T0Xg7GcCSJhSOMGJsRz69xqdPp8Nprr+Gpp55y2HWTc3E6cYuOjsaNN96I1157zeJYfHw8+vv7ifaMUlNTiQ9Pzk8ecXFxQXZ2Njw8PFBZWUn09aWQjcFgQF1dHSQSCfLz8+Hu7m6Xjt7LwRiOzMjIIDYcyTAM2tvbERcXZ7GU4uOPPwaLxXLIOpLWcDpxA4CnnnoKH3zwAYaHh8328/l8BAQEWHh1JOHm5obNmzcTG55cKCvSmGTi4+ODiooKSKVSO1pJcUQ0Gg2qqqogl8uxbds2s+QR0gVubjiS5Lnn0dFRqNVqREZGmu03GAx45ZVX8MQTTxArzFeKU4rbpk2bsHv3bvz617+2OJaQkGDq2EsqISEhCA4OJi48ebl0fzabjYyMDERGRuLUqVMWNxcUykLIZDKcPHkSHA4H+fn5VgsEkCxwHR0d0Gq1RHcBN85jxsbGWhSM+PrrrzExMYE777zTPsatAU4pbgDw9NNP491337Votunn54fAwEC0tbXZybKlQVr25FLXsbFYLGzYsAHp6emoq6tDa2srUYMQhTxGRkZQUVGB8PBwZGVlLeo5kChw09PTaG1tRXp6OtFVhoaGhqBSqRAdHW22n2EYvPzyy3jsscccZqnFUnBaccvNzUVmZibeeecdi2NJSUno6enBzMyMHSxbGnPDk/Zu27OcBdqhoaEoKChAb28vamtrodPp1thKiqPBMAza2tpQW1uLtLQ0JCYmLimRgSSBM4Yjo6OjiQ5HGgwGXLp0CRs2bLC4eSgvL8elS5fwwAMP2Mm6tcFpxQ0AfvnLX+KNN96AWCw22+/j44OwsDDiu2GTEJ5cSeURPp+PwsJCqNVqnDp1yu4iTSEHvV6Puro69PT0ID8//4q7U5MicMZwJMnZkcBsDVsAFnNtDMPgmWeewWOPPUZkYeeV4NTitmPHDuTm5uLll1+2OJaYmIihoSHiEx9SUlIgkUjQ399v89dejZJaXC4XeXl5EAgEKC8vJ777OGXtUSqVqKiogFKpxPbt25fdIdzeAieTyRwiHKnT6dDS0oLk5GSLDMkvvvgCXV1dePTRR+1k3drh1OIGAC+//DIOHjxounMx4uHhgaioKOK9Nzc3N6Snp6OxsRESicRmr7uatSLZbDY2b96MDRs24PTp0+ju7iZiroRieyYmJlBeXg4+n78q5bTsJXAajQY1NTWIjY0lOhwJzP6W3d3dERISYrZfr9fjmWeewXPPPQcvLy87Wbd2OL24paen47rrrsPzzz9vcSwhIQFisdgibEkawcHBSEhIQE1NjU2WB6xFEWQWi4Xo6Gjk5OSgra0NZ86coWHKdYROp8OFCxdw5swZJCQkIC0tbdW8HVsLnMFgQG1tLby9vYkPR2o0GrS3tyM5OdliPvMvf/kLVCoV7r33XjtZt7Y4vbgBwL//+7/jf/7nf9Dc3Gy2n8vlIi4uDk1NTcR7EvHx8fDz88PZs2eh1+vX7HXWurp/YGAgiouLwePxcOLECfT29hJ/7SkrQywWo6ysDBKJBEVFRYiJiVn1Chi2FLjm5maoVKoldQ23N+3t7fD19UVgYKDZfpVKhV/+8pf493//d4fosrAc1oW4xcXF4Z577sGzzz5rcSw2NhZKpZKYlPuFYLFYSE9Ph16vR2Nj45r8eG3VtobD4SA9PR1btmxBS0sL9eKcFKO3VlVVhaioKOTn569p+MsWAtfb24u+vj7k5OQQ349PLpeju7sbGzdutDh28OBB+Pv749Zbb7WDZbZhXYgbADz33HM4duwYqqqqzPa7urpi06ZNaGpqIr7wr4uLC3JycjA6OrrqVVbs0Y8tODgYxcXF4HK51ItzMoze2tTUFAoLCxEXF2cTL2ctBW5ychIXLlxAVlYWPD09V+151wJjP7nIyEjw+XyzY1KpFP/5n/+Jl19+2SG6mS8X531n8xAKhXj00Ufx85//3OILHxoaCm9vb7S0tNjJuqXj7u6O7OxsXLp0CWNjY6vynPZsNMrhcJCRkYHMzEy0tLSgurqaenEOjE6nw8WLF03eWkFBgc1TzNdC4JRKJWpqapCcnGwR4iOR4eFhSKVSqxVTXn31VaSmpmLv3r12sMx2rBtxA2Y7BrS3t+Ojjz4y289isZCamoqenh5iG5rOxc/PD6mpqaitrYVcLl/Rc5HSQVsoFGLHjh1wc3PDiRMn0NXVBYPBYDd7KFcGwzAYGRlBWVkZJicnbeqtWWM1BU6n06G6uhpCodCiugeJGG8wNm7caBE6bW9vx29+8xu8/vrrxM8XrpR1JW4+Pj54/fXX8fjjj2N6etrsmLe3N2JiYtZsPmu1iYyMRGRkJKqrq5cdTiVF2Iy4ubkhIyMDW7ZsQU9PD0pKSjAwMOAQn8d6ZnJyEpWVlWhoaEBMTIxdvDVrrIbAMQyDc+fOwcXFBampqQ4hCG1tbaYGzXNhGAY/+9nP8C//8i/IzMy0k3W2Y12JGwDcfvvtiI+PxwsvvGBxLCEhAQqFgvjkEiMbN26Eh4cH6urqrviHS5qwzSU4OBg7duxAQkICmpubUV5ejrGxMSpyhCGTyVBdXY3Tp08jICAAu3btWpNMyJWwUoFra2vD5OQksrOzHWJ+Si6Xo6ury6oQ//3vf0dNTQ1eeuklO1lnW8j/tFYZFouFgwcP4uDBg2hqajI7xuFwsHHjRodILgFm38uWLVsgl8stljksBsnCZoTFYkEkEmHnzp0IDw9HbW0tTp8+TSucEMDMzAzq6+tRXl4Od3d37Nq1C4mJicRmDy5X4IaHh9He3o6cnByrXQpIY7EkkpmZGTzyyCN45ZVXiP3NrzbrTtyA2ZY4P/nJT/DQQw9ZfNHDwsLg7e19RWJhTzgcDnJyctDT02NRhcUajiBsc3FxcUFcXBx2794NPz8/nD59GjU1NRZhZcrao9FocPHiRZw4cQIMw6C4uBipqakOUUn+SgVOKpWivr4eGRkZFkJBKsZygtYWlr/88ssIDg7G3XffbQfL7MO6FDcAeP7559HS0oKPP/7YbD+LxcLmzZvR39+P8fFxO1l3ZXh7eyM7OxuNjY0YHBxc8DxHE7a5cDgcJCUlYdeuXeByuSgrK0N9fT3xtUGdAaVSiUuXLuHYsWOYnp5GQUEBMjMziU+Hn89SBU4mk+H06dNISEhAaGioja1cHiqVCo2NjUhNTbVYlN3R0YE33ngDBw8edIjQ6mrBYtbxRMbhw4fx5JNPoqWlxWICvLOzE11dXdixY4fDdKYdGRlBbW0tMjMzLerIObKwWUMul6OjowMDAwMQCASIiYlBSEgIUfM91tBqtThy5AiuuuoqYsN4RiYnJ9HV1YXh4WEEBgYiLi4OAQEB9jZrxahUKlRWVkIgEFhUGZHL5Th16hSioqKIL61lhGEYnD17FiwWC1lZWRbHfvCDH0AkEuHdd9+1k4X2YV2LG8MwKCoqQkZGhkXXboZhUFlZCW9vb2zevNlOFl45Q0NDqK+vR3Z2NoKCggA4n7DNRaPRoLe3F11dXWCz2YiKikJkZCSxcySki5ter8fg4KBpWYxIJEJ0dLTTFda1JnAKhQKnTp1CeHi41VqMpDIwMIALFy6YCiLM5ZNPPsH999+PtrY2p/vtX451LW4A0NLSgszMTHz77bfIz883O6ZQKFBaWoqcnByHWLhpZGBgAOfOnUNOTg6mp6edVtjmYjAYMDw8jJ6eHkxOTkIoFEIkEiEwMJCoQYpUcZNKpejt7UV/fz/c3d0hEokQGRlJlI2rzVyBS0pKQmVlJYRCITZt2kTUd2YxVCoVSktLsXnzZosQ6sTEBDZu3Ig333wTd9xxh50stB/rXtwA4PXXX8d7772H8+fPw8PDw+xYV1cXOjs7HSo8Ccw2Jzx//jxYLBby8vKcWtjmI5fL0dfXh76+Pri4uCAsLAxCoRC+vr52H7RIEje5XI6RkREMDg5ienoaoaGhiIqKIuI62QqVSoWKigpoNBqEhYVh8+bNDvPeFwtHAsCtt94KlUqFzz77zGHe02riOKP1GvLoo4/i008/xbPPPmsRnoyOjsbw8DCampocKjyp0+lMf69lFwES8fLyQnJyMhITEzEyMoLh4WGcOXMGbDYbwcHBEAqFCAwMdKibldWAYRhMTk5iZGQEIyMjmJmZQUBAAEQiEcLCwuwutvbAYDCYEkvm/mYcgcHBQYjFYhQXF1sc++STT3Ds2DE0NTWtS2EDqOdmoq2tDenp6fjmm29QUFBgdswYnpw7j0Uyc+fY5HI5GhsbkZWVheDgYHubZjcMBgPEYjFGR0cxMjICpVKJwMBACIVCCIVCm6Wz29pz02q1GB8fx8jICEZHRwHATODXo6AZUSgUqKysNPVLPH36tNUkExJRKpUoLS1FWlqaRThyfHwcGzduxFtvvYXbbrvNThbaHypuc3jzzTfx7rvvWg1P9vb24tKlSygqKiJ6XY+15JHBwUE0NDRYzaJcjzAMg+npaZPQTU1Ngc/nIzAwEAKBAAKBAO7u7msywK21uKnVakilUkgkEojFYkxMTMDDw8Mk4n5+fsQP3LZgenoap0+fRlhYGDZu3AgWi7VoFiVJGJPdPDw8kJGRYXH8lltugVarxSeffELse7AFVNzmoNfrUVhYiC1btuA3v/mN2TGGYVBXVweNRoPc3FwivzSLZUUasyjT09MRFhZmJwvJRK1WY2RkBJOTk5BIJJiengaHwwGfzzeJHZ/Ph4eHx4o/99UUN7VaDYlEAolEYhI0pVIJDw8PCAQC+Pr6QigUOl2m40oxrmOLjIxEUlKS2WfqCALX0tKCwcFBFBYWWoTW//a3v+GBBx5AU1PTuo7UAFTcLDCGJ48ePYrt27ebHdNqtSgvL0dkZCQSEhLsZKF1lpLuPzo6irNnzyIlJQUikcjGFjoOer0eUqnUJBhSqRQymQyurq4QCATw8fGBu7s7eDweuFwueDweeDzekubwrkTc9Ho91Go1VCqVaVOr1ZDJZJBKpVAqlfD09DSJr/FfZ+2svBpMTk6iuroaMTExSEhIsCpeJAvc+Pg4qqurUVBQYFE5xRiOfPvtt526CelSoeJmhbfffhtvvPEGGhoaLIRCIpHg1KlTyM3Nhb+/v50sNOdK1rGNj4/j7NmziIiIwMaNG9dVxYKVoNfrIZPJTJ7dXMFRqVRgGAaurq5mYmcUPBaLBRaLBTabDYPBgEuXLiExMREsFgsMw4BhGAshU6vV0Gg0AGDxnF5eXiYxW89zZldKX18fGhsbkZSUhNjY2EXPJVHg1Go1SktLkZiYiKioKLNjBoMBV199NTw9PfG///u/RNhrb6i4WYFhGFx77bVwcXHBp59+avFF6erqQnt7O4qKiuy+WHg5C7QVCgWqq6vB4/GwZcsWeqe/QhiGgVartRA8tVoNvV5vysgzitjIyAhCQkLg4uJiJnzzPUHj/+lAtTIYhkFTUxP6+vqwZcuWJSeFkSRwDMOgqqoKHA4HW7ZssbDl9ddfx8GDB9HQ0ACBQGAfIwmDitsCiMVipKWl4cknn8TDDz9sdoxhGNTU1IBhGOTk5NjtS7+SyiNarRZ1dXWQy+XIyckhov/WeoCkdW7rAa1Wi9raWszMzCAnJ+eK5x9JEbi2tjb09vaiqKjI4ntTXV2N4uJinDhxAjk5OXaxj0RoTGoB/P398eGHH+Kpp55CXV2d2TEWi4X09HTIZDJ0dnbaxb6VltQydhMIDQ3FyZMnTWniFIqzMD09jfLycrBYLGzfvn1ZiTWr2dF7uYjFYrS1tWHLli0WwjY1NYVbbrkFL774IhW2eVBxW4T8/Hz84he/wC233AKZTGZ2zM3NDVlZWWhpacHY2JhN7VqtWpEsFgvJycnYvHkzzp49i/b2dtoQlOIUjI2NoaKiAiEhIcjJyVmRl2xPgZuZmUFNTQ02btwIX19fs2MMw+DAgQPYtGkTHn30UZvZ5ChQcbsMP//5zxETE4P77rvP4kvt6+uLzZs3o7a2FnK53Cb2rEUR5PDwcGzbtg1dXV2or69fdxVNKM4DwzDo6OhATU0NUlJSTGvYVoo9BE6n06GmpgahoaGIjo62OP7b3/4W1dXV+OCDD2himBXoFbkMbDYbf/3rX1FeXo7f//73FscjIiIgEolQXV295t2717K6v6+vLwoLC02V0ZVK5ao+P4Wy1uj1ejQ0NKCjowPbtm1DRETEqj6/LQWOYRg0NDTA1dUVKSkpFscbGhrw5JNP4sMPP3SKNkRrARW3JRAcHIzDhw/j0UcfRW1trcXx5ORkeHp6ora2ds2+8LZoW2P88Xp7e6O8vBxTU1Nr8joUympjTPyYnp5GYWGhRQhvtbCVwLW1tUEikSArK8vCKxOLxbjxxhvx9NNPW5QKpPwTKm5LpLi4GC+88AKuu+46DA8Pmx1jsVjIzMzEzMwMmpubV/21bdmPzcXFBenp6YiLi0NlZSW6u7vpPByFaMbHx1FeXg5PT0/k5+fD3d19TV9vrQVuaGgI7e3tyM7OtlhqpNVqcfPNN2Pz5s145plnVvV1nQ0qblfAY489hp07d+KHP/whVCqV2TFj9mFvby/6+vpW7TXt0WiUxWIhLi4OOTk5aG9vx+nTpzEzM2OT16ZQlopOp8P58+dRXV2N+Ph4ZGRkwMXFxSavvVYCJ5VKUV9fj4yMDIsKJMDsGDQ+Po6//OUvdJ7tMtCrcwWwWCy89957AGA1wcTLywtbtmxBY2MjJiYmVvx69u6gHRgYiB07dsDT0xOlpaXUi6MQw/j4OEpLSzE9PY0dO3YgJibG5mvQVlvglEqlSajnV/oHgPfffx8fffQRvvjiC1ovdAlQcbtCeDwePvvsM5SUlODNN9+0OB4UFISUlBTU1NRYLB+4EuwtbEY4HA7S0tKQlZVFvTiK3ZnrrcXGxmLbtm3w9PS0mz2rJXBarRZnzpxBQECA1bq1J0+exKOPPoq//e1vFqW3KNah4rYMQkJC8Pnnn+OXv/wljh49anFcJBIhNjZ22UJAirDNJSgoyMyL6+npoV4cxaZMTEzY3VuzxkoFTq/Xo7q6Gu7u7khLS7N4T729vbjhhhvw5ptvorCwcDVNd2qouC2TrKwsvP/++7jtttvQ0tJicTwhIQGhoaE4ffo01Gr1kp+XRGEzMteLa2trQ1VVFfXiKGuOTqdDY2Mjzpw5g5iYGLt7a9ZYrsAZW2kZDAZs2bLFYh5NLpfjmmuuwc0334z7779/LUx3Wqi4rYDbb78dP/nJT3D11VdblK9isVhISUkBn8/HmTNnltTCnmRhm4vRi/Pw8KBeHGVNMXprMpkMRUVFiI2NJcJbs8aVChzDMGhsbMT09DS2bt1q0TJJp9Phtttug7+/v0V/ScrloeK2Ql566SXk5OTg+9//vsUcG4vFQkZGBlxdXXH27FkYDIYFn8dRhM3IXC+utbWVenGUVcWat+YISRRXInCtra0YGRlBXl6eRWcOhmFw3333obe3F59++iktsr0MqLitEDabjT/96U8IDAzE9ddfbxGCdHFxQXZ2NtRqNRoaGqx+2R1N2OYSFBSE4uJiuLu7o7S0FK2trUvyUikUazAMg76+Ppw4cQJSqZR4b80aSxG47u5udHV1ITc31+q6vGeffRYnTpzAN998Q1vYLBMqbquAm5sbPvnkE8hkMvz4xz+28NA4HA62bt2KqakpnD9/3uzL7sjCZoTD4SA9PR1bt27F6Ogojh8/jq6urkU9VQplLgzDYGRkBKWlpWhpaUFSUhLy8/MdwluzxmIC19fXh6amJmzduhU+Pj4Wj33rrbfw/vvv49tvv7W6JICyNGg/t1VkfHwc27Ztw969e/H2229b3G0qlUqcOnUKQUFBSE1NRXd3t8ML23yMg9SlS5eg1+uRlJSEsLAwh7rzXktoPzdLJicn0dTUBLlcjoSEBERFRdlsMfZaM78f3MDAAM6fP4+tW7darQn50Ucf4d5770VJSQmys7PtYLHzQMVtlenp6UFeXh4eeughq+VxZmZmUFlZCXd3d0gkEuTl5TmNsM3FGF5qbW0Fh8NBcnIygoKC1r3IUXH7JzKZDJcuXcL4+Dji4uIQGxvrlNfEKHBubm6QSqXIyclBYGCgxXnHjh3Dddddh08++QTf+9737GCpc+F6+VMoV0JUVBS++eYbbN++HUFBQThw4IDZcQ8PD0RERKC1tRWhoaFrVuDV3rBYLIhEIoSHh6O7uxt1dXXw8fFBcnKyU4o5ZenMzMygpaUFg4ODEIlE2LVrF3g8nr3NWjN4PB6io6Nx4cIFBAQEWPXYamtrccMNN+C9996jwrZK0Dm3NSA1NRVffPEFHnnkERw6dMjsWFdXFzo7O5GVlQWJRILGxkanTqN3cXFBXFwcdu/eDX9/f5w+fRo1NTWYnp62t2kUG6NWq3Hx4kWUlJSAYRgUFxcjNTXVqYUNmJ1ja25uRmZmJlQqlcUc3Llz57B371688MIL2L9/vx0tdS5oWHINOX78OK677jr8/ve/x6233mqRPGIMUQYGBmLz5s3rImSnUqnQ2tqKvr4+hIeHY8OGDfDw8LC3WTZjPYYltVoturq60NHRAT8/PyQnJ1stCuyM9Pb24sKFC6ZQ5Pw5uIsXL2LHjh34t3/7Nzz11FP2NtepoOK2xnz77be44YYb8MorryA6OtoieUSpVJp92ddLpW+5XI6WlhYMDw8jODgYMTEx8Pf3d3qBX0/iJpfL0dXVhb6+PvD5fCQlJa2rxpqdnZ1oaWlBTk6O2fs2CpxYLMZDDz2En/70p/jFL35hR0udEypuNuDIkSO48cYbcfDgQdx1110Wx9VqNaqqquDm5oasrCynH/TmMjMzg+7ubvT29sLd3R0xMTEIDw93mmy5+Ti7uDEMg/HxcXR2dmJiYgKhoaGIiYlx2rllazAMg+bmZvT19WHr1q1W33t9fT12796NBx98EC+++KIdrHR+qLjZiCNHjuDmm282hSjno9VqcfbsWWi1WmzdutWiSaGzo9PpMDAwgK6uLqjVakRFRUEkEjldyNJZxU2r1Zo+P61Wi6ioKERFRTn9fNp8DAYDzp07B7FYjNzcXKvr9BobG7Fz5048+OCDeP75521v5DqBipsNMYYo//u//9vqxLHBYEB9fT0kEglyc3OJKw5rC4x3/t3d3RgbG0NAQABEIhGEQqFThGydSdwYhsHk5CR6e3sxNDQEHx8fREVFISwszGk978XQ6XSora2FUqlEbm6uVWFvaGjA7t278cgjj9BQ5BpDxc3GGJNM3nzzTdx3330WxxmGwcWLFzE4OIjc3Nx1M/FuDZVKhb6+PvT29kKv1yMiIgIikchhq1YAziFuarUaAwMD6OnpgVqtRnh4OKKioqxW21gvaDQanDlzBmw2Gzk5OVY/26qqKvzgBz/Ak08+SZNHbABd52Zjdu3ahW+++Qb79u3DyMgInnvuObMkChaLhU2bNoHL5eLUqVMWk9HrCR6Ph4SEBMTHx2N8fBy9vb0oLS2Fj48PhEIhhEIhfHx8nD4JhQSUSiVGRkYwMjKCiYkJ+Pr6mto6rUcvbS4zMzOoqqqCt7c3MjMzrV6Pr776CrfeeiteffVVPPjgg3awcv1Bxc0O5Ofno6KiAnv37sXo6Cjefvttsx8Ei8VCQkICuFwuzpw5g5SUFIhEIjtabF9YLBaCgoIQFBQEtVqNkZERjI6Oor29HW5ubiahCwgIcIrQJQkwDAOpVGoSNJlMBj8/PwiFQqSkpDi097yaTE5OoqamBiEhIUhNTbV6o/XBBx/gwQcfxJ///GfceOONdrByfULDknakt7cXe/fuRUpKCv76179ajdFPTEzg7NmzCAsLw6ZNm+jgPQe9Xo+JiQnTAKzT6RAUFAShUIjg4GCLNiIkQHJY0hGvpz0xrmFLTk5GdHS0hbAxDINf/epX+M///E98/vnn2LFjh50sXZ9QcbMzExMTuPrqq+Hu7o7PP//c6hybQqFAdXU1uFwusrKy6CBjhcU8DaFQSIynQZq4zfWEx8bGqCe8BAwGgynVPysry2qdSIPBgMcffxwffvghjh49ivT0dDtYur6h4kYACoUCN910E4aHh3H06FEIhUKLc7RaLerr6zE9PY3s7Ox1PXm/FObPEbm7u0MgEJg2Pp9vF3Gxp7jp9XrIZDJIpVJIJBJIJBLIZDLw+XwIhUKEhITA29ubzmEugkajQW1tLVQqFXJycqxmNGs0Gtx5552oqanBd999h5iYGDtYSqG3ZXMYHx/HT37yE0RGRoLL5UIoFGLv3r2orKzErbfealHQ9JtvvgGLxbJYq/L8888jMjJyya/r6emJv//970hJSUFeXh6amposzuFwOMjOzkZYWBgqKiowMjKyrPe4XnB3dzdVhPn+97+PlJQUeHt7QywWo66uDkeOHMHx48dRW1uL9vZ2jI+PQ6vV2tvsVUOv12Nqagrd3d1oaGhAWVkZvv76a1RVVWFwcBAcDgfx8fHYs2cPCgsLsWHDBpqccxmmp6dx8uRJsNlsFBQUWBW2yclJXHXVVWhtbUVlZeWKhG2x8QiYLdLOYrEstldeeWXZr+lM0ISSOdxwww3QaDT485//jJiYGIyOjqKkpARisdhU/02n08HVdfaylZaWIiIiAmVlZWbPU1paesXxdQ6Hgw8++AAvvPAC8vLycOjQIezbt8/sHBaLhaSkJPj4+KC2thbx8fFISEigA9JlcHV1RXBwMIKDg0371Gq1yXuZnJxEd3c3lEolPD09wefzTR6et7c3uFwusdeYYRhotVrI5XIzj2x6ehqurq4mLzU+Ph4CgQAeHh7EvheSGR4eRn19PaKjo5GUlGT1Gl66dAnXXHMNkpOT8dlnn8Hb23tFr7nYeGTkxRdfxL333mv2uJW+rrNAw5L/QCKRwNfXF2VlZSgsLLQ43tbWhg0bNqCqqgpbt24FAOTk5OBf/uVf8Pjjj2Nqago8Hg8qlQoCgQD//d//jTvvvHNZtvztb3/DXXfdhWeeeQZPPfWU1R+SRCJBbW0tPDw8kJGRse4qQawFRsGbKxJKpRIAwOVywePxzLb5+7hc7mXnqJYalmQYBhqNBiqVymxTq9UW/zcYDHBzczMTZT6fT4VsFdDr9ab5tbS0NISFhVk97+uvv8btt9+Ohx9+GC+++OKK5yovNx4Bs57bI488gkceeWRFr+WsUM/tH3h5ecHLywuff/651fJXxjU9paWl2Lp1K6anp1FfX4+vvvoK77zzDqqqqrBjxw6cPn0aarV6RZlRN954I+Li4nDttdeisbERf/jDHyzKUAkEAhQWFuL8+fMoKytDRkYGgoKClv2alFkBm+/h6fV6C0FRqVRQKpWYmpoyCYxarTY9B5fLhZubmylMxGazTX8baWhoADArYgzDwGAwgGEY6HQ603MyDAMOh2Mhov7+/mb7uFwuEckpzoZCocDZs2cBAIWFhVaTkhiGwWuvvYYXX3wRf/jDH3DLLbesymtfbjyiXB7quc3hk08+wb333gulUomMjAwUFhbi1ltvRWpqKgBg//79GB8fx7fffosjR47giSeeQFNTE+6//34IhUK88MIL+H//7//h0KFD6OrqWrE9Y2NjuP7666FSqfD5558jPDzc4hxjx+sLFy4gNjYWGzZsoBludsBgMJiJoFarNQnXfPFqbW1FYmIiXF1dLcTP1dXVTLjW+wJpezE4OIhz584hMjISycnJVj8HpVKJe++9F+Xl5fj888+RmZm5qjZcbjyKiorC8PCwxY3N0aNHUVBQsKq2OCQMxQylUsl89913zIsvvsjk5uYyLi4uzJ/+9CeGYRjmd7/7HePp6cloNBrmiSeeYP71X/+VYRiGOXz4MLN9+3aGYRimoKCAufvuu1fNHrVazdxzzz1McHAwc/r06QXPk0qlTElJCVNRUcHMzMys2utTVheNRsN8/vnnjEajsbcpFCvodDqmoaGB+frrr5mhoaEFzxsYGGCysrKY3NxcZnh4eM3sWWw8EolEzLPPPsu0t7ebbfT3PwsVt8twzz33MJGRkQzDMExHRwcDgKmsrGS2bNnCfPzxxwzDzH7RuVwuIxaLGTc3N+bQoUOraoPBYGDefvttxsPDg3nrrbcYg8Fg9TytVsvU19czR44cWdMfHGX5UHEjF6lUypw4cYIpLy9nFArFgucdO3aMCQ4OZu68805GpVLZ0ELz8UgkEjG//vWvbfr6jgSNX12G5ORkKBQKAEBsbCwiIiLwxRdf4Ny5c6aJ3rCwMISFheGNN96ARqNZ9UoELBYLDz/8ML777ju89tpruP766zE5OWlxnqurK9LT07Fp0ybU1dWhvr4eGo1mVW2hUJwNg8GAtrY2nDx5EsHBwcjPz7faakmn0+G5557Dddddh5deegl//OMfbT4XNnc8oiwOTSj5B2KxGDfddBPuvvtupKamwtvbG7W1tfjVr36Fa6+91nTejh078Nvf/hZxcXFmiQeFhYV45513TIkna8G2bdtw7tw53HXXXUhPT8dHH32E3Nxci/MiIiIQEBCAc+fOobS0FJs3b7a6MJxCWe/IZDI0NDRAp9MhLy8Pfn5+Vs8bGBjA7bffDrFYjDNnzmDTpk1ratdSx6Pp6WmLNa8eHh60yANA59yMqFQq5qmnnmIyMjIYPp/PeHh4MBs2bGB+8YtfmMWw//SnPzEAmAceeMDs8R988AEDgLn//vvX3FaDwcD8+te/Zjw8PJhXX32V0ev1C57X09PDfPXVV0xdXR0NhREADUuSgV6vZ1pbW5kvv/ySuXjxIqPT6RY896uvvmL8/f2Zu+++m5HL5TaxbynjkUgkYgBYbLYYgxwBmi3pwNTW1uKWW25BfHw8/vKXvyy4FECpVOLcuXOQyWRIS0sz8zgptoW02pLrkbneWnp6+oLemkajwTPPPIP3338f7777Lu644w4bW0pZCXTOzYHZsmUL6uvr4ePjg7S0NHz77bdWz3N3d8fWrVuRmJiI2tpa1NfXm9ZlUSjrhblzawEBASgqKlpQ2FpbW1FQUICSkhLU1tZSYXNAqLg5OHw+Hx9//DFefPFF3HTTTbj33nshk8kszmOxWBCJRCguLoZWq0VJSQm6u7tBHXfKemBsbAylpaUYHBxEXl4eNm7caHXtml6vxxtvvIGMjAxs27YNVVVVSEhIsIPFlJVCw5JORG9vLw4cOIDW1lb8/ve/x549exY8d2RkBBcuXACHw0FqauqCd7CU1YWGJW2LUqnExYsXMTY2hsTERERHRy9Y5KCtrQ133XUXxsbG8Kc//Qn5+fk2tpaymlDPzYkQiUT47rvv8Oyzz+LGG2/EfffdZ9WLAwChUIji4mKEhITg9OnTaGhooKFKitNgDEGWlJTAxcUFO3fuRGxsrFVh0+v1ePPNN5Geno7s7GycP3+eCpsTQD03J6WnpwcHDhxAW1sb/vCHP2D37t0LnqtQKHDx4kWIxWIkJSWZWmlQVh/qua09Y2NjuHDhAthsNlJTU+Hv77/guW1tbbj77rsxOjqKP/7xj7RslRNBPTcnJSoqCseOHcMzzzyD66+/HgcOHDBrlTEXT09P5OTkIDMzE52dnSgtLcXIyAidj6M4FFKpFGfOnMHZs2cRHR2NwsLCBYVNq9XitddeQ0ZGBrZs2YLz589TYXMyqLg5MSwWCw888AAaGxsxPDyMhIQEvP/++9Dr9VbPDw4Oxo4dOxAVFYWGhgacOnVqQUGkUEhBoVCgrq4OFRUV8PLywq5duxATE7Pg3NqJEyewefNmfPDBBzh69Ch+85vfWK1IQnFsaFhyncAwDL788kv87Gc/Q0BAAH77298iKytrwfO1Wi06OzvR0dGBwMBAU5NUysqgYcnVQ61Wo7W1Fb29vQgLC0NiYuKiIjU4OIjHH38cR44cwfPPP4+HH36YfgZODPXc1gksFgvXXHMNmpubcdVVV6GwsBD33XcfJiYmrJ7P4XCQmJiI3bt3w8PDA+Xl5aivr8fMzIyNLadQzNFqtWhpacGxY8egVCpRWFiIjIyMBYVNo9HgtddeQ2JiIlxcXNDS0oLHHnuMCpuTQz23dUpnZyd+9rOfoaqqCi+//DLuueeeRXuHKRQKtLS0YGhoCBEREYiPj4enp6cNLXYOqOe2fDQaDbq7u9HV1QUvLy8kJycvmiwCACUlJXjooYfg4uKCgwcPLtjVmuJ8UHFb53z55Zf46U9/CoFAgJdffhl79+5dNFNSJpOhvb0dQ0NDCAkJQXx8PPh8vg0tdmyouF05KpUKnZ2d6O7uhkAgQEJCAgIDAxf9njY1NeHZZ5/FiRMn8MILL+Chhx6i13udQcOS65x9+/bh0qVL2L9/P+644w4UFxejurp6wfN9fHyQmZmJ4uJicDgcVFRU4MyZMzTxhLLqKBQKnD9/HseOHYNcLkdeXh7y8/MRFBS0oLD19fXhrrvuwpYtWxAREYH29nY8+uijVNjWIVTcKODxeHj88cfR2dmJvLw8FBcX4/rrr0dLS8uCj/H09MTmzZuxa9cu+Pj44MyZMzh16hRGR0fpEgLKipBKpaitrcWJEyeg0+lQWFiInJycRavoTExM4PHHH8eGDRug0WjQ1NSEd955hxYJX8dQcaOYEAgEeOmll9DR0YHg4GCkpaXhwIEDGBgYWPAxPB4PycnJ2LNnD4KCglBfX48TJ06gq6sLWq3WhtZTHBmDwYChoSFUVlbi5MmT4HA4KC4uRmZm5qJZugqFAv/xH/+B2NhYNDc3o6qqCocPH0ZMTIwNraeQCJ1zoyxIe3s7fvGLX+DLL7/EAw88gMcffxxhYWGLPkav12NoaAhdXV2Qy+WIiIhAVFQUXUbwD+icmzkqlQp9fX3o6ekBAERHRyMyMvKyHa7lcjl+97vf4dVXX4VIJMKrr76KoqKitTeY4jBQcaNclrq6Orz00ks4cuQIfvSjH+HJJ59EfHz8ZR83NTWFrq4uDA0NwdfXF1FRUQgJCVk0K9PZoeI2u+ZyYmICPT09GBkZgb+/P6KjoyEUCi9b9m1ychLvvPMO3n77bcTExODZZ5/FtddeS8vFUSyg4kZZMs3NzXj11Vfx8ccf49prr8XTTz+NtLS0yz5Oo9Ggv78f3d3d0Gq1CAsLQ3h4OHx9fdfdoLSexU2hUGBgYAD9/f3QarWIjIyESCSCl5fXZR87ODiIN998E++99x5ycnLw9NNPY+fOnevu+0NZOlTcKFdMb28vXn/9dfzhD39AYWEhnnnmmSXV5WMYBmKxGP39/RgaGgKXy0V4eDjCw8OXNMA5A+tN3NRqNYaGhjAwMICpqSkEBwcjPDwcQqFwSR58R0cHfvWrX+Gvf/0rvve97+Hpp59Gdna2DSynODpU3CjLZmxsDG+99RYOHjyI5ORk/PSnP8X1118PNze3yz5Wr9djdHQU/f39GBsbA5/PR3h4OMLCwi473+LIrAdx0+l0Zp+tr68vwsPDERoauqTPlmEYnDx5Eu+88w6++uor3HLLLfj5z3+O5ORkG1hPcRaouFFWjEwmwx//+EccPHgQcrkcDzzwAO677z6EhIQs6fEajcZ0dz85OYmAgAAIhUIIhUKnK2jrrOKm0WgwNjaGkZERjI6OgsfjmbzypVayUSgUOHz4MP7rv/4LAwMDOHDgAB588EGIRKI1tp7ijFBxo6waBoMB3377Lf7rv/4Lx48fxzXXXIMHHngAO3bsWLBC+3xmZmYwPDyMkZERiMVieHt7m4ROIBA4/ByLM4mbXC43iZlYLIaPjw+Cg4MREhICPp+/5M+qqakJ7733Hv7yl78gKioKDz/8MG677Tanu7Gh2BYqbpQ1obOzE7/73e/wxz/+EXw+H/fffz/2798PoVC45OfQarUYHR01DaAuLi4QCoUIDg5GQECAQ4qDI4ubXq/H1NSU6TNRKBQIDAxEcHDwFXvZCoUCn376Kd5//33U1tbilltuwf3334+tW7c6/A0MhQyouFHWFLVajc8++wzvv/8+KioqUFxcjP379+O6666Dt7f3kp/HYDBALBabhE6hUIDP5yMgIAABAQHw9/d3CLFwJHHT6/WQSCSYmJjAxMQEJicnweFwEBgYiJCQEAQGBl7Re9DpdDh+/DgOHz6Mzz77DFFRUThw4AB+/OMfL1p9hEJZDlTcKDZjYGAAH374IQ4dOoT29nZcd911uOOOO7Bnz54rHuiVSiXEYrFp4J0vdn5+fktKbLE1JIubTqeDVCq1EDN/f3/TdfXy8roiz4phGNTW1uLQoUP46KOP4Orqittvvx379+9Hamoq9dIoawYVN4pduHDhAg4fPozDhw9DpVLhlltuwW233YatW7cua5G3NbHz8PAAn8+HQCAwbfYWPFLETafTQSaTQSKRmLbp6WlwudwViRkwK2itra343//9Xxw6dAijo6O44YYbsH//fhQWFq7rRfwU20HFjWJXDAYDKioqcOjQIXz66adgs9m4+uqrsW/fPuzZs2fZ6980Gg0kEgmkUqlp8J6ZmYG7uzsEAgH4fD68vb3h5eUFT09Pmw24thY3g8GAmZkZKBQKyOVy0/UwCtl88efxeMvypnQ6HSorK/HFF1/giy++QH9/P773ve/hjjvuwNVXXw13d/c1eHcUysJQcaMQg06nQ1VVFb788kt88cUX6OnpQXFxMfbt24d9+/YhPDx8Rc+v0WhMg7tUKoVcLodcLoder4e7uzu8vLxMYmf8l8vlrqoIrYW46fV6qNVqzMzMQC6Xm4TM+DcA03vi8/kmQVuukBmRSqX45ptv8OWXX+LIkSPgcDi4+uqrcc0112DXrl20mS3FrlBxoxBLW1ubSegqKyuRmpqKvXv3oqioCNu2bVuVqiYMw0CtVpuJgfHvmZkZGAwGuLi4gMfjmW1cLhc8Hg9ubm5wdXU1bS4uLqZ/rQnHYuLGMAwMBgN0Oh10Oh30er3pb61WC5VKZdrUarXpb61WCxaLBR6PZyHQXl5e8PDwWJW5La1Wi7q6OpSVleH48eM4efIkNmzYgGuuuQb79u1Ddnb2kpd8UChrDRU3ikMgFotx9OhRnDhxAmVlZejv70dWVhaKiopQVFSEvLy8VS/hxTCMmajMFRTj/zUajZkYGQwG0+ONgsdisUwbwzCYmZkxS5s3GAwmIZv7c5wrmhwOxySo1kSWy+WuenKGVqtFfX09ysrKUFZWhlOnTsHNzc10za+++mpER0ev6mtSKKsFFTeKQ9LT04Py8nKUlZWhtLQUg4ODJrHLzs5GZmYmwsPDbZ6NN9fzMm4Mw5g2nU6HmpoaZGdng8PhmETP6PEZNzabbXPbJycnUV9fj9raWpSXl5vErLCw0CRomzZtot4ZxSGg4kZxCnp6elBWVoby8nLU1taiubkZ/v7+yMzMNNsiIiLsmn5OSrakWCxGfX096urqTFt3dzeioqKQmZmJgoICFBUVISUlhYoZxSGh4kZxSmZmZnD+/HnTwF1fX4+mpib4+voiIyMDiYmJSEhIMG0RERE2GcRtKW4Mw2B8fBxtbW2mrbW1FefOnUNPTw+io6PNhD8jIwP+/v5rahOFYiuouFHWDUqlEo2NjWhoaEBra6tpwO/u7gaHw0FcXJxJ7OLi4hAWFoaQkBCEhobC399/VcRvNcWNYRjIZDIMDQ1heHgYw8PD6OzsNBMzqVSKsLAwMyHfvHkzMjIy4Ovru+L3Q6GQChU3yrpHo9Ggu7vbTBQ6OjowNDSEoaEhyGQyuLq6QigUmsQuJCQEQqEQPj4+pvVy3t7eFn97enqasifZbDb0ej2OHj2KvXv3wsXFxZRMMjMzg+npaUxPT0Mul1v9e2xsDMPDw2ZiplQq4e7ujpCQEISEhCAmJsZMyOLi4tZNrzwKZS5U3CiUy2DsVGDcjOIyOjoKmUy2oCBpNJoreh0XF5dFhTIwMNAkrHO3K6nAT6GsF6i4UShrhEajgUKhMC0RmLsZPTnjZlwwTkWKQlkdqLhRKBQKxemgOb4UCoVCcTqouFEoFArF6aDiRqFQKBSng4obhUKhUJwOKm4UCoVCcTqouFEoFArF6aDiRqFQKBSng4obhUKhUJwOKm4UCoVCcTqouFEoFArF6aDiRqFQKBSng4obhWIjxsfH8ZOf/ASRkZHgcrkQCoXYu3cvKisr7W0aheJ0uNrbAAplvXDDDTdAo9Hgz3/+M2JiYjA6OoqSkhKIxWJ7m0ahOB20KwCFYgMkEgl8fX1RVlaGwsJCe5tDoTg9NCxJodgALy8veHl54fPPP4darba3ORSK00PFjUKxAa6urvjggw/w5z//GQKBANu2bcMzzzyDxsZGe5tGoTglNCxJodgQlUqFiooKnDlzBkePHkVNTQ1+//vf484777S3aRSKU0HFjUKxIwcOHMCxY8fQ29trb1MoFKeChiUpFDuSnJwMhUJhbzMoFKeDLgWgUGyAWCzGTTfdhLvvvhupqanw9vZGbW0tfvWrX+Haa6+1t3kUitNBxY1CsQFeXl7IycnBr3/9a3R2dkKr1SIiIgL33nsvnnnmGXubR6E4HXTOjUKhUChOB51zo1AoFIrTQcWNQqFQKE4HFTcKhUKhOB1U3CgUCoXidFBxo1AoFIrTQcWNQqFQKE4HFTcKhUKhOB1U3CgUCoXidFBxo1AoFIrTQcWNQqFQKE4HFTcKhUKhOB1U3CgUCoXidPx/aJuH4P6yv5IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# The aggregate functions of WindRose/WindTiRose allows for \n", + "# aggregating the data into larger bin sizes \n", + "wind_rose_aggregated = wind_rose.aggregate(wd_step=10, ws_step=2)\n", + "wind_rose_aggregated.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAG6CAYAAACLCQg1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc5dW37+1dq16t6iJL7raQe8XEhBIggRDCG0oqCQQS3pBAqIEk4BBaDC8OJBBCCYR8CaEHY2yDjXGR5a4uWX3Vpe19vj+UGSRLsi1bq2Lmvq697B3NzjM7OzO/Oec5RSEIgoCMjIyMjMxZhHKsd0BGRkZGRmakkcVNRkZGRuasQxY3GRkZGZmzDlncZGRkZGTOOmRxk5GRkZE565DFTUZGRkbmrEMWNxkZGRmZsw5Z3GRkZGRkzjpkcZORkZGROeuQxU1GRkZG5qxDFjcZmQhz3XXXoVAoeOihh/otf+ONN1AoFGO0VzIyZzeyuMnIjAJ6vZ7169fT1dU11rsiI/OFQBY3GZlRYO3atSQnJ/Pggw+O9a7IyHwhkMVNRmYUUKlU/Pa3v2XDhg00NDSM9e7IyJz1yOImIzNKXHbZZcydO5d77713rHdFRuasRxY3GZlRZP369bzwwguUlJSM9a7IyJzVyOImIzOKrFixgnXr1nHHHXeM9a7IyJzVqMd6B2Rkvmg89NBDzJ07l9zc3LHeFRmZsxbZcpORGWVmzZrF1VdfzR/+8Iex3hUZmbMWWdxkZMaA+++/n3A4PNa7ISNz1qIQBEEY652QkZGRkZEZSWTLTUZGRkbmrEMWNxkZGRmZsw5Z3GRkZGRkzjpkcZORkZGROeuQxU1GRkZG5qxDFjcZGRkZmbMOWdxkZGRkZM46ZHGTkZGRkTnrkMVNRkZGRuasQxY3GRkZGZmzDlncZGRkZGTOOmRxk5GRkZE565DFTUZGRkbmrENuViojcxr4fD5aW1ux2+04HA6cTicOh6Pf/51OJ06nk2AwSDgcJhwO88EHH1BdXc0PfvADVCoVSqUSpVKJyWTCbDZjsVikf4//f0JCAmazeay/uozMhEAWNxmZPgiCQGtrK5WVlTQ1NdHU1ERzc3O/V1NTE52dnSgUipMKkslkwmAwSCKWkZGB2+0mOjoahUJBOBwmGAzS3d1NfX39kELpcDgIhUJYLBZSUlIGvFJTU0lJSSEnJ4f09HRUKtVYH0oZmTFF7ucm84XEbrdTUVFBeXn5gJfdbictLY20tLR+wnG8kCQkJAxbRAKBAO+++y4XXHABGo3mlD8nCAJdXV2SuB4vtuK/dXV1qFQqpkyZwrRp0wa8EhISUCgUwz1cMjITDlncZM5qBEGgoaGBffv2UVRURFFREcXFxTQ3NxMbG0tubu4AAZgyZQpGo3HY44hWWCgUIhgMSi9BEKSX3W6ntLSUBQsWoFarUSgUKBQKVCoVarUatVot/V+lUg1biAKBAMeOHesn1mVlZZSXl9PY2Eh0dDSzZ89mwYIFzJ8/nwULFjBt2jTZ0pM565DFTeasoqGhgT179khCVlRUREdHB/n5+SxYsIAFCxYwb9488vLyiIuLO+G2QqEQXq8Xr9eLz+eT/t93WSAQ6CdiIqJQ9RUwhUJBT08PAFFRUdK64XC4nyAOtR29Xo9Op0Ov10uvvu/FsYbC6XRSUVHB/v37pWOzf/9+VCoV8+bNk47PggULmD59OkqlHG8mM3GRxU1mQlNXV8fWrVulV11dXT8hW7BgAXPmzBnSEguFQrhcLin4w+l0Su/9fj8KheKEgqLRaPoJkFqtRqlUDikyp+KWFC3Avq9AINBPYI8X23A4jEqlwmw2YzabpQAV8TXUWMFgkJKSkn4PA/v378doNLJy5UpWrVrFqlWrmDFjhix2MhMKWdxkJhT19fX9xKy2tpaCggLpJrx06VIsFsuAzwmCgMPhoKenh+7ubilYw+PxoFar+4mB+H+j0YhWqx3ROarTnXM7EYIgEAwG8Xg8/cRZ/L/P50Or1UqBLlarlejoaKKiogZ1RwYCAfbu3Ssd4+3btw8Qu/z8/IiJ3VNPPcXDDz+MzWZjzpw5bNiwgcLCwiHXf/3117n77rs5duwYU6dOZf369VxwwQXS351OJ7fffjtvvPEGHR0dZGdnc/PNN3PDDTdEZP9lxgeyuMmMa4LBIDt27ODNN9/krbfeorq6mgULFrBq1SpWr149qJiJQtbd3S2JWV93oHhjF8VMp9ONWpBFJMTtVMYUxU48Lt3d3QSDQSwWC9HR0URHR2O1WrFarQMEz+/3U1RUxJYtW/j000+pqKjAZDKxcuVK1qxZw5IlSzCZTCOyr++++y6333479913H7Nnz+avf/0r77//Pu+9996gbuTi4mL+53/+h1tvvZVVq1bx9ttv86c//Yn/9//+H9OmTQPgnnvu4bPPPuPXv/41aWlpbN++nfvvv58NGzawZs2aEdnvLxIajWZCzNHK4iYz7ujp6eE///kPb775Ju+++y4ajYaLLrqIiy++mDVr1vSbr4JeN15XVxft7e10dHTQ2dkJIN2sxZu32Wwec9faWIjbYAiCgMfjkYROfAAIBAJYrVbi4+OJj48nNjYWjUaDIAjYbDa6u7sRBAGfz4fH48HtdhMKhdDr9RgMBgwGA2r16WcYNTc3o9PpiI2NlfazsbFRsjiPp62tDUEQSExM7LcNrVYriWFTUxNGo5Ho6Oh+6xgMhn7LZE6d6OhokpOTx3XkrZznJjMuaGxs5J///Cdvvvkm27ZtIzc3l4svvph3332XwsLCfqIUDofp7u6mvb2d9vZ2Ojs7UalUxMfHk5KSwsyZM7FYLOP6whtrFAoFRqMRo9FIamoq8LngdXR00NHRwaFDh3C73dIDglqtJjExEbPZ3O/Y+nw+KZnd7XajUCiIiorCYrFgMBhOeZ/C4TAul4v09PR+QqbVagmFQmRmZg74jN/vJy4ujvj4eGmZ0WjEbreTnZ0tfd7j8ZCWloZGo8HlcuF2u8nKyhoxi/OLgiAIuN1uWltbAUhJSRnjPRoaWdxkxoyenh7+3//7f7z88st8/PHHLF++nEsuuYQ//vGP5OTk9FvX7XZjs9loaWmho6NDFrMI0Ffw0tPTAfB4PLS2ttLV1YXVakWj0RAMBqVAGpVKhV6vl8QoGAxKruCamhrJCouLi0Or1Z5wfL/fD4DJZEKv10vL9Xo9Doej3zKRYDCIwWDo9zeDwUBXV5e0LDs7m9raWsrLy6VzJDMz86TRsjKDIz6wtLa2kpiYOG5dlLK4yYwqfr+f9957j5deeom3336b/Px8/ud//oeXXnqp31OgIAh0d3djs9mw2Ww4HA7i4uJITk5mxowZspiNEgaDgaSkJNxuN3Fxceh0Oin9wev1olAo0Gg0/aJG4+LiiIuLIxQK0d3dTUdHB01NTZjNZmJjY4mJiTkj1+VwaW1txeVyMWXKFLRaLU6nk7q6OrRa7QAXt8ypIUYfBwIBWdxkvrgIgsCnn37Kiy++yOuvv05UVBRXX301999/P3l5edJ6oVCItrY2SdBCoRBJSUlMnTqVxMTEkz75y0QWhUKBUqlEp9Oh0+mkKM1AIIDb7UYQBEnkxKADUegCgQCdnZ20t7dTV1eH1WolLi4Oq9UquZxFwQsEAv3GDQQCQ85PipbkUOuHw2EaGxuZPHmyNL9mNBolT4AsbqfHRHiwlMVNJmJ0dXXx4osvsnHjRmw2G1deeSVvvvkmS5YskS4OQRDo6Oigvr6epqYmtFotycnJLFiwgLi4uDEPAJEZmr5WmyAIUiK63++XUiy0Wq20TlJSEklJSXi9Xjo6OmhoaKC2tpb4+HgSEhLQ6XSYTCYcDgcxMTEAUlWXvgEjfTGZTNjtdpKSkqRldrtdKjAtVoY5/mY8EW7OMmeGfOeQGXH27t3L9ddfT1paGq+99hq33347jY2NPP300yxduhSFQoHdbufIkSN88MEH7NmzB5VKxeLFi1m7di2zZs0iISFBFrYJhEKhkKqoiEWj1Wo1Xq+Xnp4eXC4XgUAAQRDQ6/VUVFQwe/ZsYmNj8Xq9HD58mPLycsxmM21tbbS3t+PxeKirqyMcDksBIzU1NTQ0NEjj3nPPPXzve9/DZrPh8XhoamrC7XZLYqhSqbBYLDQ0NOBwOPD5fFIg0lhGSv7lL3854fjHjh2TqtrMnTt31PYLYOvWrdLYl1566aiOPZLIlpvMiODz+fjHP/7Bhg0bOHz4MNdccw27du1i1qxZ0joej4eGhgYaGhpwuVykpKQwd+5cWcgmMBs3buS2226jq6tLcis6nU5iYmJYunQpW7ZsIRQK4ff7+c9//sPFF1/M4cOHKSwspLm5maSkJBQKBX6/n/b2dtra2lCpVNTX1xMOhzEajUydOlVyM4pBJyIajQaj0Uh7ezuNjY3o9XqmTJnSL0ozJyeHhoYGqqurCQaD6HQ60tLSSEhIGL0DdZp8+OGHIyZuHo+H+Ph4Dhw4wJQpU4Zcb8mSJTQ3N3PLLbfg8/lGZOyxQBY3mTOiq6uLp556ig0bNmC1Wrnpppu49tprpeg5QRBoaWmhtraWlpYWEhISmDJlCikpKaMaVCATGVavXo3T6WTv3r0sWrQIgE8++YTk5GR27dqFz+eT6l7u3r2bjIwMsrKy8Pv9mEwm/H4/Wq0WrVZLamoqycnJdHd309raitvtxmg09jtPcnNzB+yDVqtl5syZQ+6jRqOR0gImGuKc5UiwadMmMjMzTyhsgDQ1YDAYJrS4yY/LMqdFc3MzP//5z8nMzGTz5s288MILlJaWcvPNN2O1WvH5fJSVlbFp0yYOHDiA1WrlvPPOY/HixaSnp8vCdpaQm5tLSkoKW7dulZZt3bqVSy65hOzsbD777DNp+bZt21i9ejUmk4l9+/YRFRVFS0sLPT09/PGPfyQ6OppNmzaxdOlSCgoK+MUvfkFzczNHjhyhuroah8PBrbfeSnR0NHFxcfz85z/nZDUoamtrufjii4mJicFkMjFjxgzeffddaT8VCgXvvPMOs2fPRq/Xs2jRIg4fPtxvG9u3b2f58uUYDAbS09O5+eabcblc0t99Ph8/+9nPSEtLw2QysXDhwn7HA3rdkBkZGRiNRi677DI6OjpO63hfd911XHrppfz2t78lKSmJ6Oho7r//foLBILfddhuxsbFMmjSJ559/fsBn//3vf/OVr3wFgAMHDrB69WosFgtRUVEsWLCAvXv3ntY+jVdkcZMZFtXV1dxwww3k5ORQVlbGBx98wJYtWzj//PNRKpV0dnZSVFTEBx98QEdHB7NmzeK8885j+vTpw0rolZk4rF69mi1btkjvt2zZwqpVq1i5cqW03OPxsGvXLlavXg0guaHF5q7Qm8u4fv16nnvuObZt20ZjYyMbNmxg5syZqFQq7rrrLp577jmeeuoptm/fTmdnJ//6179OuG833ngjPp+Pjz/+mEOHDrF+/foB3cxvu+02HnnkEfbs2UNCQgIXX3yxFLFZVVXF+eefz9e+9jUOHjzIa6+9xvbt27npppukz990003s3LmTV199lYMHD3LFFVdw/vnnU1FRAcCuXbv4zne+w0033cT+/ftZvXo1v/71r0/7eH/00Uc0NTXx8ccf8+ijj3Lvvfdy0UUXERMTw65du7jhhhv4wQ9+0G9uMhwO8/bbb3PJJZcAcPXVVzNp0iSpg8btt98+phVzIoIgI3MKHDhwQLjqqqsErVYrXH311cKhQ4ekv4XDYaGxsVHYunWr8NZbbwkHDhwQ7Hb7GO7t+MXv9wtvvPGG4Pf7x3pXThmPxyMcPXpU8Hg8g/792WefFUwmkxAIBAS73S6o1WqhtbVVeOWVV4QVK1YIgiAImzdvFgChtrZWEARB2LJliwAIXV1dgiAIwvPPPy8AwpEjR4Tu7m6hu7tbePzxx4WkpCRpnJSUFOHOO+8U9u3bJ5SUlAjt7e3CpEmThEsuuWTIfZ81a5Zw3333Dfo3cR9effVVaVlHR4dgMBiE1157TRAEQfjOd74jfP/73+/3uU8++URQKpWCx+MRamtrBZVKJTQ2NvZb59xzzxXuuOMOQRAE4aqrrhIuuOCCfn+/8sorBavVOuR+19TUCIBQXFzcb/m1114rZGZmCqFQSFqWm5srLF++XHofDAYFk8kk/O1vf5OW7dixQ0hMTJQ+Z7FYhL/85S9Dji+ONdSxPdk5MR6QfUMyJ6SkpIQ777yT9957j+uvv57S0lJp/iIcDlNfX09lZSXBYJApU6aQkZFx9j0BypyQVatW4XK52LNnD11dXVLH75UrV3L99dfj9XrZunUrOTk5ZGRkDLkdo9FIfn4+giAQCARISEigtbUVr9eLx+OhubmZL33pS8yaNYu2tjbq6+vJzc2VojAHC++/+eab+eEPf8gHH3zA2rVr+drXvsbs2bP7rbN48WLp/2ID25KSEqDXfXfw4EFefvllaR3hv41pa2pqqK6uJhQKSUWaRXw+nzRXVlJSwmWXXTZgzPfff/8Uj3B/jm8/lJSU1G/OUcwvFEtkQa9L8qKLLpI+d+utt/Ld736XF198kbVr13LFFVcwefLk09qf8YosbjKDUl9fz7333svf/vY3vvOd71BdXS1VEAkGg9TW1lJVVYVSqWTq1Kmkp6fLEY9fUKZMmcKkSZPYsmULXV1drFy5EoDU1FTS09P59NNP2bJly0kr8IsPRQqFAq1Wi8FgkBLF7XY70PtApVarSUlJITExEY1Gg9vtpry8nEmTJg2oFfnd736XdevW8c477/DBBx/w4IMP8sgjj/DjH//4lL6b0+nkBz/4ATfffPOAv2VkZHDw4EFUKhVFRUUDKnUc7/4cKY5/eBTzDY9fFg6HpfdvvvkmDz30kPT+vvvu45vf/CbvvPMO7733Hvfeey+vvvrqABGeyMjiJtOPjo4OHnzwQf7v//6PSy+9lMOHD0tPdH6/X3paNRgMzJw5k5SUFDkhVobVq1ezdetWurq6uO2226TlK1as4L333mP37t388Ic/HNY2xfPKbDaj1+tJTk7m448/prCwUKqQcuTIEebNm4fJZKKsrAyr1UpaWlq/WpPp6enccMMN3HDDDdxxxx08++yz/cTts88+kyzKrq4uysvLpco58+fP5+jRo0NGGM6bN49QKERrayvLly8fdJ28vDx27drVb1nfQJtIU1FRQW1tLeedd16/5dOmTWPatGn89Kc/5aqrruL555+XxU3m7MPlcvHEE0/wu9/9jkWLFrFjxw7mzZsH9JYzqqqqoqqqiujoaBYsWEBCQoIsajISq1ev5sYbbyQQCEiWG8DKlSu56aab8Pv9UjDJ6aBWq/nJT37C7373O6ZNm0ZOTg5PP/003d3dKBQKJk2aRGJiohRdGRcXR2pqKj//+c/58pe/zLRp0+jq6mLLli39Sr4B3H///cTFxZGUlMSdd95JfHy8lLz8i1/8gkWLFnHTTTfx3e9+F5PJxNGjR9m0aRNPPvkk06ZN4+qrr+aaa67hkUceYd68ebS1tbF582Zmz57NhRdeyM0338zSpUv5/e9/zyWXXMJ//vOf03ZJng7//ve/Wbt2rVQP0uPxcNttt3H55ZeTnZ1NQ0MDe/bs4Wtf+9qo7dNoIIvbF5xwOMxzzz3H3XffTUZGBv/617+km1AoFKK2tpaysjLMZjOLFi2SK6nLDMrq1avxeDxMnz69XymslStX4nA4pJSBM+F///d/aW5u5gc/+AFKpZJvfetbXHjhhTidTsLhMFqtlszMTJKSkmhsbOTw4cP09PRw44030tDQQFRUFOeffz6PPfZYv+0+9NBD3HLLLVRUVDB37lzeeustqY7p7Nmz2bZtG3feeSfLly9HEAQmT57MlVdeKX3++eef59e//jX/+7//S2NjI/Hx8SxatIiLLroIgEWLFvHss89y7733cs8997B27VruuusuHnjggTM6HqfKv//9b6699lrpvUqloqOjg2uuuYaWlhbi4+P56le/yq9+9atR2Z/RQm5W+gVm79693HjjjbS0tPD73/+er33taygUCgRBoKGhgdLSUlQqFfn5+VIlCZkzY7w0Kx0OXq+XmpoasrOzB207M5aI3QmCwSB6vb5fV3WXy0V9fT0+n4/09HRiYmL6ncNbt25l9erVdHV1jbumpceOHSM7O5vi4uIzqlDS3t5OSkoKDQ0N/R46ToXrrruO7u5u3njjjQF/G8/nhIhsuX0B6ejo4M477+Svf/0rP/vZz7j99tsxGo1SNZGjR48SCASYPn066enpsqgNQSgUwuv14vP5CAaD0kssINz3vfgM2dLSAsDBgwdRKpVSpX2xXYzYI02sqi8WH9br9RNGDEcTtVqN2WwmEAhIv4Ver0er1WIymcjNzaWjo4O6ujra2trIyMiYUPmWS5YsYe7cuXz66aen9fnOzk4effTRYQnbJ598wpe//GV8Ph8XXnjhaY07HpDF7QtEOBzmz3/+M7fffjuLFi3i4MGD0kR5T08Phw8fxm63M23aNLKyssZtn6bRQPhvx2Gn04nL5cLj8eD1eqUbqNfrJRAISJF9ojD1FSXx1deaiIqKoq2tDYPBgFKplMLKA4EAHo+nnyiKL7/fTzgclhqDii+dToder8dkMmE2mzGZTBPiN2ttbcVmsxEIBDAajWRkZJywI3ZnZydNTU2ScE2aNKlfp+6+lTVMJlM/13liYiLx8fFER0fT1NTE0aNHSUpKGtcdpAEmTZokJYHrdLrT3o4YNDIcCgoK2L9/PxC5iM/RQHZLfkHYs2cPN954I21tbTzxxBNcfPHFKBQKAoEApaWl1NbWkp2dzbRp075QFoIYZu5wOHA6ndJL7E8mCkdfUekrLn2F61Q4HbekmPd1vLiKL5fLhdPpJBQKYTQapX0WX9HR0WfUC28kXVCdnZ3U1NSQmZmJyWSipaWFrq4uZs6cOejxcDqdlJaWSoLW2dmJzWYjPz9fssCO7//W09NDZ2cniYmJqNVqDAaDJPput5u6urohXZUyp4bslpQZc1wuF7/85S959tlnue2227j99tul/KH6+nqOHDlCVFQUK1euxGKxjPXuRpRgMEhPTw/d3d3Svw6HA51OJ5WBio+PJysrC7PZLFlXY41oHZ6oc7QgCP2Ezul00tbWRlVVFW63G4PBQHR0tPSyWq1nZBGcLmLxbLGFTWZmJj09PdLc0GDrW61WkpOTAUhLS8Nut9Pa2kpmZiYwMO+ru7sbQRCIiorC6/VKv7Fer8doNJKbm0tnZyf19fW0t7eTlZUlN8I9C5HF7Szmk08+4frrrycpKYn9+/dL7omenh4OHjyI2+1m1qxZpKamnpVPr16vV+rd1dnZKd3kxJt7SkoK0dHR6PX6Cf/9FQoFBoMBg8EgCYeI3+/vJ+p1dXW4XC4MBgOxsbHExcURHx+P2WyO6HEIh8O4XC5JqMT9joqK6leIuC8ul2vAfFFUVBTd3d2Drh8IBOjp6SErKwulUonRaESr1eLxeHA4HNLcpdgFvKGhgSNHjjBp0iTi4+Mn/Hkg8zmyuJ2FuN1uyVp74IEHuOWWW1CpVANckIsXLz6rqvOLYtbR0UF7eztOpxOr1Up8fDx5eXlER0dPqGCCkUKr1ZKQkNCvf1kgEKC7u1uazzp8+DAajYb4+Hji4+OJi4sbcbELBoPAQEtLo9Hg9XoH/UwgEBhwjmo0mgGuSJGOjg6USqXUyRs+DzoRO4T7/X4MBgNqtZqsrCxiYmI4duwYXV1dshV3FnH23NlkgN72HNdffz2JiYns27dP6n/V0tLC/v37MZvNZ40LUhAEaQ6mpaUFh8MhidmMGTOIi4v7Qs0fDgeNRiMJXm5uLqFQiK6uLjo6OmhsbOTQoUNoNBqSk5OJjY09aWuZ8UJ7eztxcXED3MkKhQKdTicJqWjF6XQ6rFYrM2bMkNz06enpxMXFyVbcBEcWt7MEt9vNnXfeyTPPPDPAWjt8+DBNTU3MnDmTjIyMCX3RBgIB2traJEGD3sKx06dPJyEhQRaz00SlUklWmyh2nZ2dtLS0UFlZidVqxeVySXUMT2cuUrTAjre6AoHAkL+bRqORLL6Tre9wOPB6veTk5Ay5D31dlW63W4rYVKvVZGdn093dTW1tLV1dXWRmZspW3ARGFrezgP379/ONb3yD2NjYQa21qKgo1qxZM2FdcoFAgKamJpqammhvb8doNJKcnExhYSGxsbETWqzHKyqVSrLsPB4P1dXVqNVqybUn5uJptdpTFjqlUonJZMLhcEhuQ0EQsNvtJCYmDvoZk8mE3W7vN+9mt9sHDVEXzw2xzNSJUKvVWCyWfnNx4nys2WyWrLjMzExiY2NP6fvJjC9kcZvACILA008/LUVB/vKXvzxrrLVwOExLSwsNDQ3YbDYsFgtpaWnMmjVrQufeTETERHMx4lDMyxPTE1QqFVqt9pQsuqSkJGpqaqSUhdbWVsLhsBQEU1NTg0ajYdKkSdL6ZWVl2Gw2rFYrXV1duN1uVCoV+/btk7YbCoUoLy8nKSlpyPm7oRCrnCgUCvR6vZQ2YLfbef/99yW3ZVZW1rC2KzO2yOL2X6677jpeeOEFHnzwQW6//XZp+RtvvMFll10mPW2++OKLfOMb35D+/o1vfIPXXnuNmpqafid/VlYW3/rWtyJWP667u5vvfve77Ny5k/fee48VK1YAvQmyxcXFWCwWVq9efUpPseMFcQ6toaGBxsZGNBoNaWlprFy5csgQeJnRRxQ6nU5HOBzG7/dLFp1Go5Fegz1QxcbGEgwGaWpqklyCU6dOldyMfr+/3/pms5ns7GyamppobGyULKx58+bgdg9PxM4Eg0HH/v0Hh5UQ3djYyC9+8Qvee+893G43U6ZM4fnnn6egoGDIz2zdupWbbrqJ8vJy0tLSuPfee7nuuuuA3o4FVVVVFBQU4HA4KCsrG3Qbc+bMkd3zyOLWD71ez/r16/nBD37QL9oKei+ygoICtm7d2k/ctm7dSnp6Olu3bpVOwpqaGmpra0/av+p02b17N1deeSV5eXns37+fhIQEwuEwR48epba2lhkzZpCZmTlhrDWfz0ddXR21tbX4/X7S0tJYuHCh7HKcACiVSimpPRQK4ff7peaiYm7e8VVTEhMTh3RDii71vsTGxvZzDe7btw+328tfn0wib2rk58RKKvxcc1MLe/bsIS4u7pSKh3d1dbF06VJWr17Ne++9R0JCAhUVFQPuK32pqanhwgsv5KqrruK+++5jz549fPe73yUlJYV169YN+pmZM2cOOL5nUwT0mSAfhT6sXbuWyspKHnzwQX73u98N+Pvq1av55z//Kb0vKSnB6/Vyyy239BO3rVu3otPp+nX4HQkEQeCxxx7j7rvv5le/+hW33norSqUSl8vF3r17EQSBlStXTgi3nWil1dTU0NzcTGxsLHl5eaSkpIyLxGmZ4aNSqTAYDOj1eqlsmMPhkOpjDmXNnS55U7XMnz161TEmTZpEfX09drudjIyME5Y6W79+Penp6Tz//PPSMrGD/VBs3LiR7Oxs7rzzToLBINOnT6ekpITHHntsSHETS7zJDES+i/RBpVLx29/+lg0bNtDQ0DDg76tXr6asrIzm5mYAtmzZwrJly1izZg1bt26V1tuyZQuLFy8e0bI0XV1dfOUrX+EPf/gDmzdv5mc/+xlKpZKmpia2bt1KTEwMy5cvH/fCJrbR2bZtG5999hl6vZ5Vq1axdOlS0tLSZGE7CxAjKk0mE1FRUajVarxeL3a7Ha/X269D9ETCYrGQn5+Pz+ejpKQEj8cz5LpvvvkmBQUFXHHFFSQmJjJv3jyeffbZE25/586drF27Fug9hmlpacybN4+dO3eO6Pf4oiDfSY7jsssuY+7cudx7770D/rZ06VK0Wq0kZFu3bmXlypUsWLCA9vZ2ampqANi2bdsZNWY8npKSEgoLC1EoFBQXF7No0SJCoRAHDhxg//79zJs3j9mzZ4/rorl+v5+ysjI++OADqqqqyMrKYt26dcycOfOsyLmTGRzRbWmxWDAajVItT7fbTSgUGuvdGxZiz7jc3FxiYmIoLS0dslJKdXU1Tz/9NFOnTuU///kPP/zhD7n55pt54YUXhty+zWbrFxUaExNDSkoKdrt9SCE9ePAg+/btk16HDx8+o+94NiHbs4Owfv161qxZw89+9rN+y41GI+eccw5bt27lqquuYtu2bdx2222o1WqWLFnC1q1bEQSBurq6ERO3d999l29+85vcdNNN3H///SiVShwOB3v37kWlUrFq1apxHTTi9XqpqqqipqaGmJgYuYv3FxTRmtNoNFKrIIfDgUajQafTTQjXmsvlknLs0tLSMBgMVFdXk5KSQnJycr9zOhwOU1BQwG9/+1sA5s2bx+HDh9m4cWO/xqEnQ4wi9Xg8g14z06dP7+ftkK+rzxn/Z9QYsGLFCtatW8cdd9whzaOJrF69mtdee40jR47g8XiYP38+0NtxeMuWLYTDYYxGIwsXLjyjfRAEgd///vf86le/4k9/+pMUxNLU1ERxcTFZWVnk5eWNWzeey+WisrKSuro6EhMTWbJkiZwvJAP0uv9NJhOhUAifz4fT6UStVqPX68e1yOl0Olwul5QSERsbi16vp7KyEo/HI9WzBEhJSSE/P7/f5/Py8vh//+//Dbn95ORkqTCBiMPhwGw209nZOWggi9huSWYg4/POOA546KGHeOuttwb4u1evXk1FRQWvvPIKy5Ytk1yBK1asYNu2bWzdulVyX54uXq+Xa665hieeeIJt27bxjW98A0EQKCsro7i4mHnz5jFjxoxxKWxOp5OioiI++ugjgsEgK1eulCIfZWT6olKpMBqNREVFoVKpcDqdOByOIetGjjVarRaLxUIgEJBaIhmNRvLy8vD7/ZSWlkqpDEuXLh0Qql9eXi51MhiMxYsXs3nz5n7LNm3axKJFi+ju7h6yuLTM4MiSPwSzZs3i6quv5g9/+EO/5UuWLEGn07FhwwbuvPNOaXlhYSGtra38+9//5o477jjtcZuamrjssstQKpXs3buX5ORkgsEgxcXFdHd3s3z58nGZ8+X1eikrK6Ouro5JkyaxZs2aEzaglJERUSqVGAwGdDodfr8fl8t1SpZcSYV/yL+NJH3HUalUmM1m3G43DocDk8mERqNh2rRp1NXVUVJSwuTJk/npT3/KkiVL+O1vf8vXv/51du/ezTPPPMMzzzwjbeuOO+6gsbGRv/71rwDccMMNPPnkkzz00EN89atf5YMPPuDvf/8777zzDnFxcQOsOuhNQD++7qdKpRqXD76jjSxuJ+D+++/ntdde67dMr9ezaNEitm3bxqpVq6TlOp2ORYsWsXXr1tOeb9u/fz8XXngh5513Hhs3bkSv1+N2u9m1axcajYYVK1aMSQ+uExEIBKisrKSqqorExERWrVolB4jInBZi8IlWq5XclRqNpl/VEOidhzIa9Vxz08CbfaQwGvXS/JdYRszj8eB0OjEajWg0GjIzM2ltbaW8vJzJkyfzr3/9izvuuIP777+f7OxsHn/8ca6++mppm83NzdTV1Unvs7Ozeeedd7jxxht5/vnnSU9P509/+hPr1q3D5/PR2dk5YL8GCyCZPn36uI+aHg3kTtzjhK1bt3LppZfyi1/8gttvvx2FQkFHRwe7d+8mNTWVWbNmjaunsVAoRE1NDRUVFURFRZGXlye7Hk+B0+nEPdaMVddlMfAkEAig1WrR6/XSNVBXV0d7e/uo7Ut8fDwZGRkDlvt8Pjwej2R5Qm+/xKqqKtLS0gb0ojtbkDtxy5wS//jHP7j22mt58sknuf766wGora3l0KFDzJgx46TJn6OJIAjYbDYOHz6MWq1m/vz5JCYmylFaMkBv+TebzSaV1srIyDihe1rsJ+fz+dDr9UyaNAmr1Qp8HngiugC9Xi9dXV34/X5ycnIGFZvRRqfToVQqpdQGg8GA1WolNzeXiooKAoEAaWlp8vUxBsjiNsaIhY9fe+01LrroIgRBoLS0lJqaGhYuXNivweRY43Q6OXz4MF1dXeTn50/IgswykaOzs5P6+noyMzMxmUy0tLRQXl7OzJkzB7VSnU4n1dXVkqB1dnZSWVlJfn6+1MHC6/VSXl5OfHw8JpOJ+Ph4BEEYV/3lNBoNZrMZl8uFy+XCZDJhMpmYPn065eXlBIPBCVUO72xBFrcxQhAE7rvvPjZs2MAHH3zAkiVLCIfDHDx4kJaWFpYtWzZuAkeCwSAVFRVUVVWRnp7O/Pnzv/B9rsSK+D6fD6/XK73E9z6fj3A4LN2Ixf+L0XQffvihVG1foVBIL9H9JoabH/8a6RJWI0lLSwsJCQnS3FRmZiY9PT20t7eTkpIy6PpWq5Xk5GQA0tLSsNvttLa2SlGFjY2NREVFSV0CBEGQjrFoKY0Hd70YaOJyuXA6nZhMJvR6PdOnT6eiooLKykpycnLGdaGFsw1Z3MaAUCjEj370I9599122b99Ofn4+oVCIvXv34nK5WLFixbjovSa6IA8dOoROp2Pp0qUnLPx6NhEKhbDb7XR3d+N0OgeIWCgUkgIg+gqRxWIhPj5eclf1FS+lUonH42H37t2cc845qFSqAQLo9/ulscQbvSiWwWCwX+sZcWyTyYTVaiU6OnrM5vHC4TAul0sSKuhNKI6KihoyhN3lcg2Yk4qKipKqfgiCQE9PD8nJyZSXl+N2u9HpdCQnJ2O1WvF4PNjtduk4jLXoK5VKKZJSFDixokllZSXl5eVMnTpVzksbJeSjPMr4/X6uuuoqSkpK+PTTT0lPT8fv97Nr1y4Ali1bNi6sIq/Xy4EDB+js7DzrXZB9hay7u5uenh7sdjtqtZro6GgsFgtWq5WkpKR+wnI6VpQ4/2S1WoctRGLfseMtxo6ODqqrq/F4PJhMJqKjoyWxGy3BE7tlHz+WRqMZsr9aIBAYcKPXaDRSnlswGCQcDmOz2UhLS2PSpElSsEZubq6Uc+bxePD7/VJH7bFEoVBgNBqlSEqz2YxarWbatGlUV1dTWlrKtGnTxsU1frYji9so4vP5uPzyy2lubuaTTz4hLi4Oj8fDzp07MRqNFBQUjPnFKQgCDQ0NHDp0iMTERNasWTPu0g/OhFAoRE9PjyRi3d3dUuV6UQymTZuG1WrFaDSOK0FXq9WYzeYhw7x9Pp8k0F1dXdTU1ODxeDAajdJ3E0VvItxcxXm16OhoycIzGo04nU7a2tqwWCxoNBrUarWUOiA+fIzl76ZQKDAYDCgUCsmCU6vVTJ48mWPHjlFWVkZubu6E+A0mMrK4jRJer5evfvWrdHR08OGHHxIdHY3D4WDnzp0kJCQwZ86cMZ87EK21rq4u5s6dS2pq6pjuz0ggCAIOhwObzYbNZqO7uxuNRiPd6HNzc4mOjpZuRhMZnU5HUlJSP1efz+eTRLyrq4tjx47hdrsxm80kJSWRnJxMbGzsGZ974kPZ8dVFxFqMg6HRaCSLb7D11Wq11B27LwaDAafTKb0X11Gr1Xg8HhwOx5hbcaLAKZVKSeA0Gg1ZWVnU1tZSVlbGtGnTzqoHx/GGLG6jgMfj4ZJLLsHpdPLBBx9gtVqx2+2SWzI/P39Mb6yCINDY2MjBgwdJTExk9erVE/qiC4fDdHR0SILm8/lISEggMzOTgoKCs0LIThWdTjegOajf76e9vZ2Wlt4GnIIgSEKXmJh4Wm5MMbFZ7FgPveeV3W4fsjGpyWTCbrf3E2O73S5ZpkqlEqPROMCt6fV6B7V6RMvW6/WOGytOnAt0uVwYjUa0Wi2ZmZnU1dVJFtxEvtbGM7K4RRiv18tll12GzWbjySefJCoqip6eHj799FOys7OZPn36mO6f3+9n//79dHR0TGhrze/3SzlWLS0tqFQqkpOTmTVrFgkJCXKUWh+0Wi2pqamkpqYiCAJdXV3YbDbKysooKioiPj6e5ORkkpOTh9VxIikpiZqaGoxGIyaTidbWVsLhsBQ9WVNTg0ajkSIfk5KSKCsrw2azYbVa6erqwu12k5WVJW0zOTmZ6upqyQ0pzo0O1rEbPreYNBoNbrebQCCAyWQa099fq9VKAie+T0pKktpAyQIXGeQKJRHE5/NJrsg333yTQ4cOYTQa6e7uJicnZ8gLdLTo7Oxk7969WK1W5s6dO+EuMJfLJVlnHR0dREVFSRZIdHT0uLTOxnuFkuOPqcVikSyvnJyck0bxHp/EnZ6eLlliZWVlaLXafkUJTpTELdLe3k5zczN+vx+9Xi+lDJysQomYNhAIBNDpdGeURjFUhZLhEAgEcLlcUtCMyWSiqakJu90+4ebgJkKFElncIoTf7+fyyy/HZrOxadMmrFYrra2t7Ny5k6ioKFatWjVmN19BEKisrKSsrIy8vDxycnLGpRAMRjAYpLGxkdraWnp6eiQrIykpaVz3tRMZ7+LWl0AgQEtLCzabDaVSSUZGBmazGa1WO6bzw3V1dUzPy8XjHjwKMxIYjHpKS8qGJXCNjY384he/4L333sPtdjNlyhSefvppZs6ciU6nw2AwIAgCtbW10rzwl770pQHbaW5u7pdiMR6YCOImuyUjQDgc5tprr6WhoYHNmzdLc2xFRUVMnTqV5uZm9u3bx/z580ddVHw+H/v27cPpdE6YvDVBEOju7qa2tpaGhgbMZjOZmZksXrx43AvEREZ0IcbHx1NdXY1Wq5XSEdRqtdRkdLTP4fb2djxuL//zuxkk5UT+gaal2s1LPz9Ce3v7KYtbV1cXS5cuZfXq1bz33nskJCRw5MgRKbnb6/WiUqmkObhjx47R0NAA9Fq4fQs4DDVnKXNiZHEbYQRB4Kc//Sl79+5lx44dxMTEYLfb2bFjh+SKzMnJYceOHaMucO3t7ezdu5e4uDhWrVo17oUhGAzS0NDAsWPHcDqdTJo0iaVLl45bl+PZTN/qKaFQCL/fj9vtBnrnkMSk9dEkKcdI+ozxUcXneNavX096ejrPP/880PtQGRMTI+W9qVSqfnNwWVlZ0vUYHx8vFyEfAca+bs1Zxvr163nttdf4z3/+Q2JiIi6XSwoeEefY9Ho9S5cupbu7m3379kW8Tp7ohvzss8+YPn06BQUF41rY3G43R44c4YMPPqCmpoasrCzOP/985s6dS0xMjCxsY4xKpcJgMBAVFYXRaJSS4F0u14DQ/i8qb775JgUFBVxxxRUkJiZyzjnn8Oqrr0rpCRqNRioKHQgEUCgUUomy2bNnk5KSwnnnnceOHTvG8mtMaGTLbQR5/vnnefDBB9m2bRs5OTl4vV527txJWlragOARUeAibcGFQiH2799Pe3v7uHZDCoJAZ2cn1dXV2Gw2kpKSKCwsJC4uThazcYpCoUCj0aDRaAiFQlIitUqlOuMAjolOdXU1Tz/9NDfffDM//vGPOXLkCD/96U8xGAxce+21QK/AGY1GXC4XZrOZSZMm8dRTTxEfH49KpeLtt99m1apV7Nq1i/nz54/xN5p4yOI2Qrz99tv8+Mc/5q233mLu3LkEAgE+++wzoqOjmTlz5qAXeaQFTqxjqFAoWLly5bid+G1ra6OkpASHw0FmZqbcxXsColKpMBqN6PV6/H4/Xq8Xj8cjNR/9oolcOBxmwYIF/PKXv8RsNrNixQpKSkrYuHGjJG7Q65IUBAGXy8WUKVPIzc3F7/dTWlrKr3/9a6qrq3nsscd48cUXx/DbTExkt+QI8Omnn3LVVVfxwgsvsHr1akKhELt370ar1Z5UsCLlouzq6uLjjz/GYrGwdOnScSls3d3d7Ny5k927d5OcnMy6deuYOXOmLGwTGLGYtMViwWAw4PP5cDgc+P3+cdWmJtIkJyczdepUaY4NIC8vr1/nbRGdTodWq8XpdBIOh9FqtUydOpW2tjZmzpxJZWXlaO/+WYFsuZ0hJSUlXHTRRTz88MN87WtfQxAEiouLCQaDLFmy5JQm2Ufagquvr+fAgQNMnz6dyZMnj7unZpfLRUlJCTabjaysLBYsWDChcnxkTo4YgKLRaPD7/Xg8Hnw+HwaDYczrp0Yan89HYWEh1dXV/b5reXm51MrnePR6PYIgSMWWDQYDU6ZMkZLqZYbP2X2WRZjOzk4uvvhifvjDH3LDDTcgCAKHDh2iu7ub5cuXDytoYyQEThAEysvLqays5Jxzzhl3Le7FxpO1tbVMmjSJNWvWTIjcNJnTR6FQSJaJOCenVqulWpBnQku1e4T2cuTG8fl8eDwe/vd//5cVK1bw29/+lq9//evs3r2bZ555hmeeeUZa94477qCxsZG//vWvKBQK/vjHP5KSksL06dNRqVT8+c9/Zs+ePTz11FNSE1SZU0cWt9MkGAzy9a9/nVmzZvHAAw8AUFFRQVNTE8uXLz+tah9nInCisDY3N7N8+fJx0+gUepOBKysrqaqqIiEhgZUrV46r/ZOJPGJxY61WK9V+1Gg06PX6YZfGio+Px2DU89LPj0RobwdiMOpPakGJwmY2m1m8eDH/+te/uOOOO7j//vvJzs7m8ccf5+qrr5bWb25u7uemDAQC3HXXXTQ2NmIwGJgzZw4ffvgheXl5Uofy8RzlPN6QK5ScJjfffDNbt27l008/xWw209TURHFxMcuWLRtQPmi4eL1eduzYQXR09CkJXCgUYt++fdjtdhYvXjxurKFQKMSxY8coLy/HYrGQn5//hc/fmUgVSkQiUY0iFArh9XoJBAJS/txw8uTq6upOWn7rdBEEAY/HQzgcxmg0olQqT1p+q6+wnalFGg6HJQvXaDQiCALHjh3D6/WSm5s75t1DQK5Qctby7LPP8sorr7Bnzx7MZjM9PT3s27ePBQsWnLGwwfAsuEAgwO7duwkGgyxbtmzc1Idsamri8OHDaDQa5s+fT2Ji4rib+5MZHh0dHXR0dEh1IzMyMk7oKjtR3UiVSkVraysOh4O4uDj0ej3d3d2Ew2GmTp160n3JyMg441qPJ0IUuEAggNlsPqF1OZLCBp93WBA7wOt0OjIzMykrK6O2tpasrCz5WjoFxv4RYILxySef8JOf/IR//OMfZGdn4/P52LVrF9OmTZOSMEeCU4miFC08pVLJ0qVLx4Ww+Xw+9uzZIwW0rFq1iqSkJPlinOCIBZVTU1PJz8/HYDBQXl4+oH+biNPppLq6mvj4ePLz84mOjqayshKPx9NvPb1eT2JiIiaTifj4eJKSkgiFQqPxlU6I2F1AjGIcKjl9pIVNREyt8Hg8BINBlEolkydPxm6309LSMmLjnM3I4jYMamtr+drXvsYjjzzCqlWrCIfD7N69m9jY2FN62hwuJxI4t9vN9u3bsVgsLFy4cFxEoDU1NfHRRx8hCAKrV68mIyNDFrWzBLvdTkxMTO98l8FAZmYmSqVySNdgS0sLVquV5ORkDAYDaWlpGI1GWltb+62nVCqlubeoqCg0Gg0OhwOv1zvmqQOiwOn1epxO5wAhj5SwiWg0GgwGAy6Xi1AohFarZcqUKTQ1NdHT0zPi451tjP0dcYLgdru55JJLuPzyy6XIyIMHDxIKhZg7d27EbuKDuSjdbjc7duwgKSmJ2bNnj7mA+Hw+Dh06RGtrK7NnzyYtLW3M92ksEQSBYDCIz+cjHA4TDocRBEFq3gm9eYhiBQ+FQoFSqUSr1Y7LhGe/34/f7+/nglQoFERFRUn1EY/H5XINiNaNioqiu7u73zKHw8H+/ftRq9VYLBbS0tL69WIzGo1j3ouvb8NRsaN2pIVNRKvVEgqFpO7pJpOJzMxMqqurycvLG7fzXeMBWdxOkZtvvhmLxcITTzwB9DZetNlsrFy5MuJWU1+B2717Nz09PaSkpAxZ+WQ0aWpq4uDBg8TGxrJmzZqz/mITq2/0ffl8vgHvQ6EQSqVSeokiJnaVLi4ulgRPEATC4TChUEgKndfr9f1exy8Tb7ijgShIx5/nGo1mQJdskUAgMOj6fa0fq9VKTEyMlCbQ2NhIRUUF06dPx2Kx4PV6cTgco/59B0PMw3S5XGi1Wvx+f8SFDT63Hp1OJ263G6PRSFxcHG63m6qqKvLy8sZFgMl4RBa3U+Dll1/mjTfeYP/+/Wg0Gtra2jh69ChLliw5afPGkUKv1zNv3jy2b9+OyWRixowZY3qx+/1+Dh48eFZba16vl56eHrq7u6WX2KrkePGJiYkZIECDtYMRoyXXrFkzIFpStPaOF0qXy0VHR4e0LBAIoNFosFqtREdHSy+j0TihfoO+kbNGoxGj0cihQ4dwOBxERUUN6Kg91lac2PJHbJo6WlMBCoUCk8mEw+GQgnPS0tJwOp3U19cPmRj+RUcWt5NQXl7OD3/4Q/72t78xadIkvF4vRUVFzJo1a1TD2t1uN3v37iUjI4P29naKi4vHpB8cfG6txcTEnDXWmtfrlQRMFDSv14vJZCI6Opq4uDgmT56M1WqNWAi/Wq1GrVafNFlXrMIv7mdFRQV2ux2VSiUJnSh8JpPpjM+R6OhogAFBFaLIDoZGoxnW+oDUH87n80nLRHfleLDifD6fJGziQ85opXP0jaAUx83JyeHo0aNYLJYvfIrNYMjidgK8Xi9XXnkl3//+97nwwgsRBIGioiISEhIiGoZ8POIcW3JyMrNmzcLn841JPzi/38+hQ4doaWmZ8NZaMBikvb0dm81GS0sLXq8Xs9k8akJ2JqhUKmJiYvp1eAiFQjgcDkmgKysrcTgcKJVKEhISpG7lpxNRK84F9p1fE+cPh2qkaTKZsNvt/ebd7HY7ZrN5yHH8fj/BYHDAMRddc2NpxR0/x6ZUKvvNwY0GarUag8GA2+3GYrGg0+nIysri2LFjmEymcREtPZ6Qxe0E/OxnP0Or1fLb3/4W6LXiPB4PhYWFo3ZT9/l87Ny5k8TERGbNmiVVehiNdjl96enpYdeuXVit1glrrXm9XlpaWrDZbLS1taHT6UhOTmbevHnExMSMSyE7VfpabSLhcJienh5aW1upqalh//79xMTEkJycTHJyMmaz+ZTPm6ioKLq6umhvb8dkMtHa2ko4HJaqdtTU1EiduwGSkpIoKyvDZrNhtVrp6urC7XaTlZUF9IpxU1OTdNx9Ph8NDQ3odLohq9ccb8UZjcZRqUk6WPBI3zm40Zh7ExFdo263G5PJRExMDA6Hg6qqKqZPny7Pv/VBFrch+Oc//8lLL71EcXExWq2W9vZ2Kioqhl0z8kwIBoN89tlnREVFDYiKHE2Ba2pqYt++fUydOpVp06ZNGGtNtC5sNhs2m42enh6io6NJTk4mLy8Pi8UyYb7L6aBUKiULLzc3F4/HI4l7aWkpBoNBErrY2NgT3hhNJhNRUVE0NTVJltPUqVOla8Hv9/db32w2k52dTVNTE42Njej1eqZMmSLNUSsUCjweDx0dHYRCITQaDVFRUaSlpZ1wP0QrrqmpiQMHDqDRaCLqpvT7/fh8PtLT0/s9OECv0ITDYUngRsOS7Btg0jc5vrS0lMbGRtLT0yO+DxMFufzWINTU1DB//nyeffZZLr/8cnw+H1u3bmXatGlkZ2ePyj6Ew2F27dpFOBxm0aJFQ144wy3VNRz6FmKeP3/+iCapRxKHw0FtbS1NTU34/X7JLZecnDzmrpvxUn4rGAzS1tYmuWXD4TBJSUlkZmYOaBA73kot1dXVkZs3Ha/bc/KVRwi90UBZSemg0xF9K5mIwpyVlUVtbe2AdX/0ox/x1FNPDTrG66+/zt13382xY8eYOnUq69ev54ILLhh03WAwKHUQUKvVeL1ejh49Sk5OzgARjgTj7ZwYDNlyO45wOMw111zDN77xDS6//HIEQWDfvn3ExsZKLpVII7bN8fl8LF269IRPhJGy4ILBIMXFxVKHg/Fe6DgYDNLU1ERtbS3d3d2kpKQwe/ZsEhISxjxPajyiVqtJSUkhJSUFQRDo6uqiqamJPXv2oNFoyMzMJCMjY8wfBgajvb0dr9tDzm0Xo8+IfDsYb1071Q+/RXt7+6DiptfrpXqQosDt2bOnX6WVw4cPc95553HFFVcMOobYE/LBBx/koosu4pVXXuHSSy9l3759zJw5c8D6YmcFl8uFxWJBr9eTmZnJsWPHmDFjxoR2sY8Usrgdxx/+8Aeam5t5//33AaiqqsLpdLJq1apRc2EdPXqUzs7OU3aBjrTAud1udu3ahUajYcWKFePyBicilnmqr6+XKmcsXLhQ7g83DBQKBbGxscTGxpKXl0dzczO1tbWUlpaSnJwszaONN/QZ8ZimJI/1bqBQKDAajbhcLslFmZCQ0G+dhx56iMmTJ7Ny5cpBt/HEE09w/vnnc9tttwHwwAMPsGnTJp588kk2btw46Gd0Ol2/+be4uDi6u7upq6sjJyfnrHa5nwry7GMfKioquOuuu3juuecwmUz09PRQWlpKQUHBqD0JVVZWUl9fz+LFi4dl7o9UR++Ojg62bdtGbGwsS5YsGZfCJggCra2t7Ny5ky1bthAIBFi8eDGrV69m8uTJsrCdASqVikmTJrF06VJWr16N0Wjk4MGDeL3eL1w37eEg5qJB78Nh3+Pk9/t56aWX+Pa3vz2k4OzcuZO1a9f2W7Zu3Tp27tx5wjGNRiOhUEia88zIyMDhcNDV1XWmX2nCI1tu/yUUCnH99dfzne98hxUrVhAOhykuLmby5Mn9Qq4jiTjRv2zZshOGTA/FmVpwtbW1HDp0iBkzZoza3OJwCIfD1NXVUVVVRSAQICsri3nz5o1bn/9Ex2w2M2PGDDIzM6mpqcHv92O329Fqteh0Ojky7zhEgXM6nXi9Xil45o033qC7u5vrrrtuyM/abLYB5cqSkpKw2WwnHFOpVEpWo0ajQaPRkJGRQV1dHRaL5QvtnpTF7b/84Q9/wGazSWH/FRUVhMNhpk2bNirj2+12ioqKmDdv3hlNCJ+OwIXDYQ4fPkxjYyOLFi0ad23tBUGgoaGB0tJSVCoVU6dOJS0tTZ5LGyX6JpeLSdZ2u31clMUab4jJ1g6HA5VKhVar5c9//jNf/vKXSU1NjciYGo0GrVYruSdjY2Pp6uqitraWyZMnf2F/H1nc6M1fu+uuu3j//fcld2RFRQXLli0blRuo3+9n9+7d5OTkkJaWdsbbG47ABYNBdu/ejdfrZcWKFeOqlb3ofjx69CiBQIDp06eTnp7+hb1YxxqFQiFZB4FAQCoPJnbYln+XXlQqFSaTCZfLRX19PR9++CH//Oc/T/iZ5OTkAa1sWlpaSE4+tTlFvV6Pw+HA7/ej0+nIyMjgyJEjdHV1fWGrl3zh/QqiO/J73/sey5cv7+eOHI2Q2nA4zJ49e7BYLEyfPn3Etnsqc3CBQICdO3ciCALLly8fV8LW2dkpiXNGRgbnnnuu3EJnHKHRaDCbzRgMBnw+n3RjlefkehHb+Dz77LMkJiZy4YUXnnD9xYsXs3nz5n7LNm3axOLFi09pPNE96fF4pLxB0T05VM+9s50vvOW2YcMGWltb+1UhEQSB3NzcURn/yJEj+Hy+iFQ9OZEF5/f72blzJ1qtlsLCwnHj4nM4HJSUlNDa2srkyZNZuHDhF3reYDyjUCjQarVoNBr8fj8ej0ey5EbjN/PWDd5LbryMo9FoeOWVV7jqqqsGXF/XXHMNaWlpPPjggwDccsstrFy5kkceeYQLL7yQV199lb179/LMM88MazytVovH4xngnpwyZcppfYeJzBda3Jqamrj77rt58803MRqN9PT0UFlZybJly0Zlsry2tpaGhgZWrFgRsZvBYAInCpvBYKCgoGBcCJvH46G0tJSGhgYyMzNZu3atHCgyQRDb9Iita9xut9Q5IRJlqeLj49EbDVQ//NaIb3so9EbDsOeiN2/eTH19Pf/zP/8jtasRHy7r6ur63WOWLFnCK6+8wl133cUvf/lLpk6dyhtvvDFojtsJ93MQ9+Thw4fp6enBarUOa1sTnS90hZJvfvObALzyyisIgsC2bdtISkoiLy8v4mP39PTwySefsHDhwgE5MZFArGRisVhwOp1YLBYWLFgw5hFvgiBw7Ngxjhw5IpXFGk/u0ZFmvFQoGQ7DrUYRDofx+Xz4fD60Wi0Gg2HEvRJ1dXVDdgEfCrGqv1qtJhgMYjAYTll84+PjT7tYejgc7tfRINIEAgFcLhdRUVEolUpaW1tpaWlhxowZI3a9yxVKxjFbtmzh7bffprS0FOgtuRUMBkclOjIYDLJ3716mTJkyKsIGvU90BQUFbNu2DYPBwPz588dc2NxuN8XFxbhcrlETeZmheeqpp3j44Yex2WzMmTOHDRs2UFhYOOT6nZ2dNDU19atxaLVaUSqVGAwGKYLP4XBINT7T09MHhLyfDhkZGaclNi6Xi0AggMFgGLUczr7h+mq1OuKeEjHoR3RPJiQkSB0wIhWxOR75QgaUBAIBbrrpJu655x5SU1Px+XyUlpYya9asUXHRHTx4EL1eP2rzetD71FpUVERycjIKhYL9+/eP2eS/IAjU1NTw0UcfYTabWb16tSxsY8xrr73Grbfeyr333su+ffuYM2cO69ato7W1ddD1xcow8fHx5OfnEx0dTWVlJR7P5/UeVSoVZrOZUCiE0Wgcsj3OaOHz+QgEAuh0Ojwez4B+c5FELPDscrlG5bozGAwEAgECgQAKhYKMjAxsNlu/XnlnO19IcfvDH/4A9E7iQm+5q/j4+BF5ojwZdXV1tLS0jGofNjEq0mw2U1BQwLJly864ksnp4na7+fTTT6moqKCwsJA5c+ZMGPfc2cyjjz7K9773Pa6//nry8/PZuHEjRqOR5557btD1W1pasFqtJCcnYzAYSEtLw2g0DhDDQCBAXV2d5JIbrInpaNC3bY3BYJDqMvat/xhp9Hq91A0h0iiVSvR6PR6PB0EQMJvNxMbGUl9fH/GxxwtfOHFramriV7/6FU8++SQajYbOzk4aGxuHPXF7OjgcDg4ePMj8+fOl6gWRRhQ20S0pnvQjUaprOIjW2pYtWzCZTKxevXrMn+RlevH7/RQVFfUr/6RUKlm7du2Q5Z/EOZ2+REVF4XQ6pffib56cnIzRaJS6DzidzgElqiLJYP3YRLF1Op2jJnBiBZNAIDCgRVAkEN2uorWWlpaGw+Ggp6cn4mOPB75w4vazn/2MCy+8kNWrVyMIAgcPHmTq1KkYjcaIjhsKhdizZw/Z2dmjYiFC79zerl27UKvVnHPOOf3m2EZT4Ppaa+eccw5z586VrbVxRHt7O6FQaFjlnwKBwIBgDDG5W8Rms6FQKPo9xIRCISwWi9Q5PNJW3GDCJiImn4+mwInzb263O+Jjir3fvF4v4XAYjUZDWloadXV1hMPhiI49HvhCBZRs376dt956SwoiOXbsGMFgcFRyQI4ePYparR6VSExAatUDDJnHNhoNT202G0VFRaSlpVFYWHhWi5ogCPj9fqlyh5j3FQ6HEQSBcDgsue3EUmJKpVIKpRetCfHfsQ74ORNcLhetra3k5eUNOKfEuTifz4fT6YxYGa8TCZuIGOknVvMfjWPet1zWcLqhn+5YgwWXtLS0TJj+jKfLF0bcBEHg5z//ObfddhtpaWn4fD5KSkpYsGBBxINIOjo6qK2tZdWqVaN2wyorK6Onp4eVK1eeMNw5UgInCAIVFRWUl5czb968ESkrNh4Q3Wrd3d309PTgdrvxer2SoAmCIPXaEm/afUVMJBQKSaIXCoXo7OyUtiO6rPoKncFgICoqiujoaKxW64ies/Hx8ahUqmGVfxps7iwQCEgPL06nk0AgwMGDB/utU19fT0tLC7Nnz5by4MS5r755YGfKqQgb9Fo3er2eUCgk1WYcjblwg8GAw+GQIk0jPZbdbpd+n0mTJlFVVUVCQkJE8hDHC2fvNzuON998k8rKSm699Vag98k5Li4u4i5Csenn9OnTT6vS/+nQ2NhIVVUVy5cvP6X2LyMtcMFgkP3799PZ2cmyZctGpYxZJOgrZOLLbrcDYLVasVqtvQnF/xUyUYhOdMMQ89xO1FBSzBMTxc7r9eJ2u7HZbJSVlREIBLBYLFitVqKjo4mOjiYqKuq0b1RarZYFCxawefNmLr30UmkfNm/ezE033TToZ0wmE3a7vd/1Y7fbpXM8Li5uwJxceXk5cXFx/ZKh1Wo1FosFl8uF0+nEaDSesXCfqrCJiK1jnE4nHo8n4lMUx4+p0Wgi+oDdN7hErVYTFRWFyWSiubmZ9PT0iI071nwhxC0UCvHLX/6Su+++G7PZjNPppK6ujlWrVkV87JKSEnQ6HZMnT474WADd3d0UFxdTUFAwrO7ZIyVwHo+HXbt2oVKpWLFixbhN8BwKl8uFzWbDZrNJPbFEEcnOzsZqtWKxWCL6dC/miQ0WdCQIAh6PR7IcW1paJMGLiooiOTmZ5ORkrFbrsPbx1ltv5dprr6WgoIDCwkIef/xxXC4X119/PdA7L2cwGKRu9ElJSZSVlWGz2bBarXR1deF2u6W/i50E+iIWXj7+nFAqlZjNZjweD06nU+o+cDoMV9j67oPYrsbn841KDpxarUan042Ke1Kn00mpEFqtlkmTJlFaWkpSUtJZ2//wCyFuL774Ih6Phx/84AdAr9U2adIkLBZLRMdtb2+X3JGj4erwer3s3r2badOmnXI18b6cqcB1dnaye/dukpKSmD179rgo63UyBEGgq6tLEjSn00lcXBzJycnMmjUr4kI2XMQnfqPRKCXkCoKA1+uVEnWrqqpQq9WS0IluxxNx5ZVX0tbWxj333IPNZmPu3Lm8//77JCUl4fV6CQaD/dyQZrOZ7OxsmpqaaGxsRK/XM2XKlNOOAha/lzgPd7Ik68EqlPj9fnw+37AqjxxPMBjE4/EM2MaZVCg5EWK5rEi7J0X3q9frRaPRYDQaiY6OpqmpSXogOds468tveb1epk2bxoMPPsjVV19Nd3c327dv59xzz41oOH4wGGTLli3k5OSMitUWDofZsWMHBoOBBQsWnNENWSzVFR0dfcoCV1dXx8GDB8nPzyc7O3tcCcLxiIEdzc3NUnh6UlISycnJJCYmRjToZTTKb4XDYUnobDYbfr+fhIQEkpOTSU1NHfa4o11qKRAI4Ha70Wg0g5buqqurI3f6dLyjkC8mojcYKCstPWWBy8rKora2dsDyH/3oRzz11FP9lgWDQZ555hluvPHGfst1Oh1er/f0d/o4BEHA4XCg0+mkbR85coT8/Pxh3wvl8lvjgP/7v/8jNjaWq666CuiNWszOzo54nllJSQl6vZ6cnJyIjgO9J+2BAwcIhULMnTv3jIVlOBZcOBzm6NGj1NXVUVhYOK5z15xOJ7W1tdTX16NUKklNTaWgoIDY2NgJHZl4PEqlksTERBITE5k1axYOh4Pm5mZqamo4dOgQqampZGVlERMTMy4fQsR2Oi6XC5fLhdFo7Pf7tLe34/V4SPifb6IZhbSaQEsLbS+9Qnt7+ymL2549e/qF+h8+fJjzzjuPK664YsC6ogs3KiqK0tJS6TcZ6d9GtN48Hg9arRa9Xk98fDyNjY1nZdeAs1rcenp6+M1vfsNLL72EUqmkra2Nrq4uCgoKIj5ubW0tK1euHJWbR01NDS0tLSeNjBwOpyJwoVCIvXv34nQ6WbFixagFzAwHQRCkG3tnZyfJycnMnz+fhISEcXljH2kUCgVRUVFERUWRm5srnZufffYZer2erKwsMjIyxl3UnJgu4Ha7cTqdg4bpa5KS0KVPGqM9PDHHl5N76KGHmDx5MitXrhx0fY1Gg0KhIDY2NqLzfRqNRipqrdfrSU1N5dChQ9IxPps4ex5XB+HRRx9l1qxZnH/++QiCwNGjR5k6dWpEJ1DFxPDs7OyIz+kBUqfqwsLCEbdGT5ToLSaI+3y+cSlsgUCAyspKPvzwQw4fPkxiYiJf+tKXOOecc0hMTPxCCNtgWK1WZs+ezbp165gyZQr19fX85z//4fDhw7hcrrHevX6IQR5qtXpUE61HGr/fz0svvcS3v/3tIc87hUKB0+lkypQppKenc8kll3DkyJER35fBEruTkpJobGwc8bHGmvH1uDaCOBwO/vCHP/DPf/4ThUJBU1MTHo8n4m7ChoYG3G73KXfQPROcTid79+5l9uzZEWslP5gFJwob9HYQHk+J2X6/n8rKSqqrq7FarcyYMYPk5OSzyu04EqhUKjIyMkhPT6erq4uqqio++ugjUlJSRjVt5WSIN2MxknK87NdweOONN+ju7ua6664bcp3c3Fyee+45pkyZgsPh4Mknn2TJkiUcOXKESZNG1joV3aBerxej0UhSUhItLS0T9vgOxVkrbn/84x/Jzc1l1apVCIJAWVkZ06ZNi6j7JRAIcOTIEWbNmhVxN08oFGL37t2n3fpjOPQVuL1790r5MoWFhePGnRUKhaiurqaiogKr1cqSJUsiJvhnE6IrLDY2FrfbTVlZGVu2bCEjI4Pc3NxxESwgCpxo3YxkkMVwOF3L8c9//jNf/vKXT9huZvHixSxevFgqS7ZixQpmzZrFH//4Rx544IHT3eUh0ev1UnUYtVpNQkICNpvtrJp7Gx93phHG5/Px6KOP8vTTT6NQKKRWD5mZmREdt7S0FIvFMio9k8rKylCpVOTn50d8LOi9GBYuXMiWLVvQarWce+6540LYwuEw9fX1lJaWotPpKCgoGNdBLeMZo9HIvHnzmDJlCiUlJXz44YdMnjx5xC2H06FvJZG+9StHE6/XiyAIw3Jp19bW8uGHH/LPf/7zlNZXqVTodDqCwSDz5s2jsrLydHf3hIjWm5g6kZSUxKFDh6Q0iLOBs9JX88ILLxAbG8vFF18slYHKycmJaN6VOFE/e/bsiM/ndHV1UV1dzbx580bN3SZWWomNjUWlUnHgwIEx6wcHvXObTU1NbNmyhYqKCmbOnMnKlStlYRsBLBYLhYWFLFmyhM7OTj799FMCgcCY/t7Q63IOBoNj9lAlCMKw+6E9//zzJCYmcuGFF57yZ/R6PcFgkIMHD0a0/qNer5dqn2q1WuLj42lubo7YeKPN2D96jzDBYJDf/e533HfffSiVStrb27Hb7SxatChiYwqCwOHDh0cliCQUCrFv3z6mTZs2rAokZzrmrl27UCqVLFq0iEAgENFiyyejp6eHAwcO4Ha7yc3NJTMzU55TiwCxsbEsWbKExsZG2tracDqdqFSqMalo0bfyiOgqDRxXCzNSiOP0TYI+lQflcDjM888/z7XXXjtAkK+55hrS0tJ48MEHAbj//vtZtGgRU6ZMobu7m/Xr11NXV8e3v/3tkf9C/0XsCu73+9Hr9SQlJXHkyJFRq9ASac46cfvHP/5BKBTiG9/4BgAVFRVkZ2dHNOihra2Nnp4eCgsLIzaGSGlpKWq1etR84+LcXjgcZvHixahUKlQqVcS7CQxGOBymvLycyspKJk+ezNSpU8eFa/RsRqFQEB8fLyX/ejweAoEABoNh1B4oji+plZCQgN5goO2lV0ZlfOhN4k5OTh5WNf8PP/xwSIGqq6vrd/y6urr43ve+h81mIyYmhgULFrBp06aIF4DQ6/W43W6pSHdMTAw2my3iUzijwVlVoUQQBObNm8f3v/99fvSjH0nVSM4777yIPYkIgsC2bduYNGlSxAVHdBGtWLFiVKw2QRDYu3cvbrebJUuWDHhAOJ1KJqdLT08PxcXF0m88UYsxj0aFkpGmbzUK8eYeCoUwGAwRt+KGqhVZV1dHW1sbXq9X6igQSbEVy2+JVT7EJOhIEgwGcTqdREVFRey7CYKA0+lEq9VKdS5LS0uZNWvWCc9PuULJKPP+++9js9mkYq8VFRVkZGRE1MRubGzE5/ORnZ0dsTGg14IqLi4eVXdkeXk5XV1drFy5ctATfTT6wYXDYSoqKqioqGDy5Mnk5ubKLsjT4KmnnuLhhx/GZrMxZ84cNmzYcEJPw+uvv87dd9/NsWPHWLFiBQ899BDwee5Za2urVIexo6MDvV5PWlraiIaSn6gIshglLAiClJ83Gu1qxMhNl8sV8Wr+x4fsRwKxl6BYtcRoNGKxWGhpaRkXgURnwll1l3jiiSe48cYbMRgMOJ3OiIe2hsNhSktLmT59esSLBI+2O7KpqYmKigoWLlx4woeDSHb07unp4eOPP6axsZFly5aRl5cnC9tp8Nprr3Hrrbdy7733sm/fPubMmcO6deukxqnH8+mnn3LVVVfxne98h+LiYs4991xaW1ulEHyFQtGvZFRmZiZms5mKiooRi2QcTj82o9FIOBwetRSBvs1GI+34MhgM+P3+iCawi9VRxD6CSUlJtLe3T/hu3WfNnaKsrIytW7fy/e9/H4Dq6mpSU1Mj2puptrYWhUIR8Z5InZ2d1NTUjFp0pN1up7i4mPnz52O1Wk+6/kgLnCAIVFZW8sknn5CUlMTKlSsnrBtyPPDoo4/yve99j+uvv578/Hw2btyI0WjkueeeG3T9J554gvPPP5/bbruNvLw8brnlFrRaLR0dHdI6cXFxUvsfo9GIyWQiLi4OzwgUMx5u2xrRmvT7/dINOtIYDIbTip4cLmIATySFW7TexGa7FosFjUZDZ2dnxMYcDc4acfu///s/Lr/8cpKSkggEAtTV1UW0GkkwGKSsrIz8/PyICo7ojszNzR0Vd6TP52PXrl1MmTJlWPl6IyVwYjRoVVUVS5cuJS8vb0K0zhmv+P1+ioqKWLt2rbRMqVSydu1adu7cOehndu7c2W996L2Zu93uAeuKVpzP55Pm387kif90+7GpVCqMRiNut3tAh/BIIFqM4pxfJNHr9QQCgYh+L61WK3WFVygUJCQk0NraOubpH2fCWSFuDoeDv/zlL/z4xz8GelvZR0VFERMTE7Exa2pqMPw3giqSiO7I0Wqbs2fPHqKjo5k2bdqwP3+mAufxeNi+fTsul4uVK1dG9Pf7otDe3k4oFBrQcT4pKQmbzTboZ2w224D1VSrVgJur+Dvv27cPm82GxWJBrVbjcDhO60Z8usImIjZCdblco+JSU6vVo+KeVCqVI97+5ngUCgVarVayROPi4vD5fOOu3uhwOCvE7ZVXXmHKlCkUFhYiCALV1dURDfAIhUJUVVWRm5sb0Qns7u5uampqmD9//qi4Iw8dOkQgEGDevHmn/b1OV+C6urr4+OOPsVgsLF26dNxGYMl8jsViIT8/n+nTp2O1WqmqqkKj0aDT6aSO1qfKmQqbiE6nQ6PR4HK5RsXqEN2TkXaHilVLImklarVaAoEA4XAYlUpFXFzckPOyE4EJL26CILBx40Z++MMfolAoaGtrIxAIRLQEVn19PVqtdsDT7Uhz5MgRcnJyRqW7QE1NDU1NTSxcuPCMc8eGK3D19fXs2LGDyZMnM2/ePNkNOYKIXbhbjkt4bmlpGdLrkJycPGD9UCg04LxQqVTo9XrMZjNZWVkoFAra29vR6/WYTCa8Xi8ej+ekv/9ICRt8Hs0IjErAx/FV9iOFUqmM+NybSqWSXMzQ27anq6trzMqdnSkTPhVgz549VFVVSUnbx44dIyMjI2I3SDE0ffr06RG12lpbW0ctMby9vZ0jR46wePHiEQvAOZU0AbEN0bFjxzjnnHMi/rAQSQKBgGSteL1e6SW+D4VCUk4RwLZt21AqlZLLSUyi7fsyGo1nbMFqtVoWLFjA5s2bufTSS4Hec3jz5s3cdNNNg35m8eLFbN68mZ/85CfSMq/Xe0qlzUQx6dtw9ER5aCMpbCIKhQKTyYTD4ZD6lkUStVqNUqmU6jRGCp1Oh8PhIBQKRez+Jua66fV6DAYDJpOJjo6OiE+/RIIJL24bN27kW9/6FmazGa/XS0tLC2vWrInYeE1NTQCkpaVFbIy+vecinegbCAQoKipixowZxMXFjei2TyRw4XCYffv20d3dzYoVK0bFOh0pAoEA3d3d9PT00N3dTXd3Ny6XS0rs7StUUVFR6PV6VCoVCoUCt9vNgQMHmDFjBkqlknA43E8Q7XZ7P1HU6XRER0dLL6vVOuwb6K233sq1115LQUEBhYWFPP7447hcLikf9PhSULfccgsrV67kkUce4cILL+Ttt99m5syZ0vkRCoVobm4mOjoajUZDMBikra0Nv9/fb570ZA1Hz0TY6urqaG9vP+E6Yh6ewWA4Y+EUk7gHQ7TenE4nOp0uYlMIKpVKajYaqShw8TgFAgG0Wi0JCQk0NTWRlJQ04XogTmhxczqdvPbaa+zYsQPoDc2Pi4vDZDJFZDyxCPOUKVMiOgfW1NSEz+eLeO85gMOHDxMVFUVWVlZEtj+YwIXDYanyyfLly8d9HbtwOExHRwc2m43W1lacTicGgwGr1Up0dDTp6elYrdZTshACgQAHDhwgPj7+pA8ugUCAnp4eSUQbGxulG2hiYiLJyckkJCScdDtXXnklbW1t3HPPPdhsNubOncv7778vWcrHl4JasmQJr7zyCnfddRe//OUvWbFiBWvWrJG+n0KhwOv1UlVVJRUyNplMTJ8+fYDwimH6xwvcmQpb7vTpeEcg7eBU0RsMlJWWDilwo5FwDUjzmXq9PiL3IDEtwO/3o9VqiYmJob6+HqfTOaEeQGGCi9sbb7zB5MmTmTt3LoIgUFdXx4wZMyI2XktLCz6fL6L908LhMCUlJaOSGN7S0kJTUxNr1qyJ6FNZX4ErKioiEAjg9/tZunTpmBThPRUCgQAtLS2SoCmVSpKTk8nPzyc2NnZUBFmj0RAfH098fLy0LBgM0t3dTUtLCyUlJRQVFREfH09ycjLJyclDWnU33XTTkG7IrVu3Dlh2xRVXcMUVVwCfl1oSUSqVwyomIIbNiw1HRevjdF2R7e3teD0eMtdcjT4m8q5sb1cLtR+9THt7+wmvfYPBINXgBLjvvvt46aWXsNlspKamct1113HXXXed8FrbunUrt956K0eOHCE9PZ277rqrX5PT41vVRAJxbk90f8bExNDZ2SmL22jy0ksvcfXVVwO9ic6BQCCi8zZiwd5Iis5oJYYHAgH279/PzJkzR6V/k16vZ9GiRWzZsgWVSsW555477oQtHA7T2tpKbW0tLS0tWCwWkpOTWbx4MdHR0ePCLaNWqyXBmzFjhlSJp6mpiUOHDhEdHU1mZiZpaWnjqqh0X9ed6FY748ClmCSMCeOnRJToNvR6vTzxxBM8/fTTvPDCC8yYMYO9e/dy/fXXY7Vaufnmmwf9fE1NDRdeeCE33HADL7/8Mps3b+a73/0uKSkprFu3Tlqvb6PRSJyTSqUStVpNIBCQoiYrKipIT0+fUBWCxs/ZP0xaWlrYvHkzzz77LAANDQ2kpqZGTHjsdjvd3d0RDfAQE8Nnz54d8ZPo0KFDREVFRbyLt0g4HObQoUOYzWaCwSCHDh0ak3Y5g+H1eqmtreXYsWNAb93CmTNnRsy9PZKYzWamTJnClClT8Pv9NDY2UlNTw6FDh0hPTyc7O3vUapGeDLGMlCgAYiDG2YRer8fhcLBjxw4uueQSqY9bVlYWf/vb39i9e/eQn924cSPZ2dk88sgjAOTl5bF9+3Yee+yxfuImdubw+/0R8yCI1psY+apSqbDb7ROqUtCEPbNeffVVli5dSnp6OuFwmMbGxohaO9XV1aSlpUXU2qiqqsJoNEa0QSH0Phg0Nzczd+7cUWtVs3fvXrxeL0uXLmXZsmURqUU5XOx2O/v27WPTpk10dHQwZ84czjvvPPLy8iaEsB2PVqslOzublStXsnTpUsLhMNu2bePTTz+lpaVlTI913zk20WpzOp0Tvn7h8YidtAsKCti8eTPl5eUAHDhwgO3bt/PlL395yM8OVhlm3bp1AyrJ9E24jtRvqtFoCIfDBINBFAoFcXFx/cqvTQQmrOX28ssvS3UkW1tbUavVxMbGRmSsQCBAQ0MDy5cvj8j2ofeptrKykoULF0ZUcEbbHSkIAsXFxbhcLpYuXYpGo0Gj0YxJPzgRt9tNSUkJTU1NZGRksGrVqgk3n3AiFAoFMTExxMTEkJ+fz7Fjx9i3bx9ms5kZM2ZE7DoZisGCR8RyXoNFUU50dDodt9xyC263W5o7D4VC/OY3v5GmUQZjsMowSUlJ2O12KepTRLSsgsFgRCKqFQoFGo2GQCAg3VuPHj06pp3Qh8uEPKPKy8s5cOAAl19+OdCbBDxp0qSI3SDr6uqwWq2nVET4dCkvLyc2NrZf8EAkGG13ZEVFBe3t7SxevLif1RvJbgJD4fP5OHToEJs3bwbg3HPPZc6cOWeVsB2PTqcjNzeXtWvXkpCQwKeffsquXbuw2+2jMv5QUZFikIlSqRyVZOvRRKlU8vbbb/O3v/2Nl19+mX379vHCCy/w+9//nhdeeGFExhCtt0hWRhG3LwgCBoMBg8FAd3d3xMYbaSakuL388stcdNFFREdHEwgEsNlsEes9JAgCx44di1ioPPRaEjU1NeTn50dsDOh9MhxNd6TNZqO8vJyFCxcOGiY/WgIXDAYpLS1l06ZNuFwuVqxYwYIFCyIasj3e0Gg0TJ8+nbVr12IwGNi2bRv79u0bkSr+Q3GycP+xaFczWtx555385Cc/4Wtf+xqzZs3iW9/6Fj/96U+lXMLBGKwyTEtLC1FRUYN6WfqWy4oE4m8m1gmdaK7JCSdugiDw8ssvS+Z9c3MzFoslYpPmnZ2d+Hy+iJbzqqioICUlJaKWYSgU4uDBg6PmjrTb7RQVFZ20a3akBa6trY0tW7bQ2trK4sWLWbRoUUSP83hHr9cze/Zs1qxZgyAIfPTRRxw7dmzEj/up5rGJeXA+n2/U2tWMBm63Wyp2LB5blUp1QiESK8P0ZdOmTSxevHjQ9cVyWZE6bn1dkwAxMTE4nc4J8ztNDOdpH44cOUJzc7M0MdvQ0BDRjrHHjh0jPT09YlGYfr+f+vr6iM7nQe/30Gg0o+KO9Pv97Nq1i5ycnFOq5BKJjt7BYJAjR45QX19Pfn4+2dnZ4yIyc7xgMplYsGABra2t7N+/n8bGRubNmzci1uxwE7RVKhUmkwmXyyWFoZ8K3q6Wk680ApzOOBdffDHr168nKSmJefPmcfjwYR599FG+/e1vS+vccccdNDY28te//hWAG264gSeffJKf//znfPvb3+ajjz7i73//O++8886Q44hzbzqdLiLnt1arlYoWaLVaTCYT3d3d4yYC90RMOHF78803Oe+886QOte3t7cydOzciYwWDQZqbmyMqPLW1tVJZpUgRCAQoLy8flcANsW1OVFQU06dPP+XPjaTAtbe3U1xcjMFgYPXq1RMy8nG0SExMZPXq1Rw5coQtW7YwY8YMMjMzT/vYn27lkb7taiwWywkDTOLj49EbDNR+9PJp7ePpoDcYhjUfvmHDBu6++25+9rOf0dbWRmpqKj/4wQ+45557pHWam5upq6uT3mdnZ/POO+/w05/+lCeeeIJJkybxpz/9qV8awPFoNBo8Hs+gha1HArFsnBi4Eh0dTU9PjyxukeCtt97ie9/7HtAbJSl2Ao4Ezc3NGI3GiP2Q4XCYmpoaZs6cGZHti1RWVmKxWE6p8O2ZcuTIEXw+H4WFhcO+QZ6pwIVCIY4cOUJdXR15eXnk5OTI1topoNFomDt3LqmpqRQXF9PU1MT8+fOHXXD4TIsg63Q6QqEQLpcLs9k85G+XkZFBWWnpSWtLngyxkr/BYDjpeXKi2pKDYbFYePzxx3n00Uex2+1YLJYB3p+//OUvAz63atUqiouLT3kc0XXo9/sjIm59XZOiuDU2Nka8QetIMKHEzWazsWfPHt544w3pfSSrVYsuz0jdIMVmkZHMaxNrAC5ZsiTiN/r6+noaGhpYsWLFaYcnn67Aeb1e9uzZQzgcZtWqVZjN5tMafyLy1FNP8fDDD2Oz2ZgzZw4bNmw4YbGB119/nbvvvptjx44xdepU1q9fzwUXXEBiYiLLly/nlVdeobKykocffpiOjg6uuOIK6YFyKEaiur8YYOJ0OvF4PCd8aM3IyDhjF3s4HMbhcGA0GiNWoFypVEa82LFWq5X610XiGtdoNFJEq1gYXOxuMZ6ZUAEl77zzjtQaJRwOn7An1Zni9Xppa2uL6HxeVVVVxK2LsrIyEhMTI57b5PF4OHToEHPnzj1jN+Bwg0y6u7vZtm0bRqORZcuWfaGE7bXXXuPWW2/l3nvvZd++fcyZM4d169YN2WTy008/5aqrruI73/kOxcXFXHrppVx66aUcPnwY6HVhv/baa5hMJn7zm9/w8ssvU1NTc8KmlSPdj81oNOL3+yPeR0xsN3QqPefOBLEQcaSiGkXXYaSOl1qtRhAEyVqzWq04HI6IjDWSTChxe+utt/jKV74CQEdHByqVKmLlYBobG4mNjY3Y05bYMiWSAR5Op1Ny0UUSQRA4cOAASUlJI2aFnqrANTY2sn37dnJycpg/f/4XrtHpo48+yve+9z2uv/568vPz2bhxI0ajkeeee27Q9Z944gnOP/98brvtNvLy8njggQeYP38+Tz75JNB749q0aRNf+9rXWLhwIW63m5/+9Kf4/f5Bo+Qi0Y9NpVJJSd6RrmCi0+kQBCGiQqpWq1GpVBEb4/ioxkhtX0wJiI6OxuFwjPvcxAkjbh6Phw8++ICLL74Y+NwlGSmrJ9JRmLW1tREv51VaWsqkSZMinqRcX19Pd3c3s2bNGtHtnkjgBEGgpKSE/fv3U1BQwNSpU79w82t+v5+ioqJ+JZuUSiVr164dULJJ5FRLPEFvdYwVK1bg8XiwWq0DgjwiIWwiWq0WlUoV8fw3hUKBXq/vF7IfCSJdLms0ct5E8RQ9I+M9JWDCiNtHH31EcnIyM2bMQBCEiM63OZ1O7HZ7xHLbgsEgDQ0NZGZmRmT70GsZ2my2YUUsng4ej4fDhw8zd+7ciAj1YAInCAL79++XSqJNxC7BI0F7ezuhUGjQkk3ifO7xDFXiaaj1NRoNzz77LCqVCp/PJ908Iyls8HkXgdFwT4rnbaSrfYTD4YgFYojFlCN1rDQaDaFQiHA4jEKhwGKx4Ha7IzLWSDFhxO2dd97hoosuQqFQSO3jExISBqz373//mz/84Q9UVlae9ljNzc0kJCREzKpqbGzEaDT261o80hw9epTs7OyIJmz3dUdGUmD6ClxRURFFRUV0dnaybNmyCRGSPFEJBAJ8/etfx+fzSfOoTqcTr9cbUWETGS335GhYb6NRLiuSrkmlUtlPPM1mc0Sr24wEE0bctmzZwrnnngv0pgDEx8cPmF/p6Ojgsssu45ZbbmHq1KlMzpnMT37yEz744INhuTciHYVZW1t7RrlEJ6Orq4vOzk6mTp0ake2LRModORh6vZ7FixfT0tJCS0sLS5YsGZVKK+MZ8RoYrGTTUOfvUCWejl9fFLba2lr+/Oc/o1QqMRqNUhduk8k0KgV0R8s9qdFopA7hkUIUt0gJtTgvFslOAaK4mUwmAoEAnZ2dERlrJJgQ4ibWKFyxYgXQ644ZzGrbtGkTgiCwmHXMZgm+GoE/PfVn1q1bR0xMDBdfdDEbN27slzh5PD6fj66urog1PbXb7fT09ER0Pq+6upqMjIyIzuf1jY4cjaaj4hybTqdDp9Nx9OjRcT+hHWm0Wi0LFizoV7IpHA6zefPmIUs2nUqJJ1HYKioq+PDDDyUPQyAQkJKFxRyxSDNa7kmFQiFFNUbqvIp0YIlSqUSpVEY0ajIUCiEIgtTdY+/evREZaySYEHlu27ZtY86cOcTExBAOh+no6Bh0LumDDz7Aqo7BFLJgwkIiqQhBARd22r3N7Hx/N++8+y6CECZveh4Xf+VivvzlL0utWKD3KdZqtUbMKqitrSU1NTViguD1emlqamLVqlUR2b5IaWlpxN2RIqL7s6uri2XLlgGMWbuc0yEcDuPz+QgGg7hcLqDXvScK9ZlEeN56661ce+21FBQUUFhYyOOPP47L5eL6668H4JprriEtLU0q2HvLLbewcuVKHnnkES688EJeffVV9u7dyzPPPAP0Ctjll1/Ovn37ePvttwmFQrS1tUlzbHFxcahUKlwu10mTrUcK0T3p8XhQq9UoFArq6urOOIn7eARBkDpcH5/3Ntwk7qEQrbdINBntG9UYifuLSqXqlxKg1+v56KOPpAj28caEELetW7dKN+uenh4UCsWAclWCIPD+e+9jDcZDn2tNoVBgxooZK1nh6QQEP5200l7azIbKJ/nd736H2WRm3fnruPDCC5k8eXLEbtiCINDc3MycOXMisn3orSEZHx8f0QhJu91OQ0MDa9asidgYfamqqqKlpYUVK1ZIVTPGsh/cYAiCgNvtpru7m+7ubux2O16vF6/XK82ziH29oFecw+EwgiCgVqvR6/Xo9XosFgtWq5Xo6OiTlqECuPLKK2lra+Oee+7BZrMxd+5c3n//fcnzUFdX128bS5Ys4ZVXXuGuu+7il7/8JVOnTuWNN96QquQ0Njby5ptvAkhl7TIzM9m4cSOpqamSK1KsBel2uyV3ZSQRow39fj8tLS3k5k7H6x29OR+93kBZWekZC1zfclmRSFtRq9VSwvVI/yYKhQK1Wi2lBOj1+hN2Fh9rFMIE8O3k5eWxfv16vvKVr1BRUUFnZycLFy7st05ZWRnTp09nLkuJV5xarpUgCDjopp1mulRtuJQ9vPDXF3j+uecpXFjIBRdcQGFh4YidhD09PXzyySd8+ctfjsiJHQqF2LRpE/Pnz49oqa1du3ZhMBiYPXt2xMYQaWlpYc+ePSxdunRAAI7X62XHjh1ER0ePicB5vV5aWlqw2Wx0dHQQDAaJiooiOjpaalMiipZOp5NcRu+++y4XXHCBVNFdFEGv1yu5rbu7uxEEgZiYGJKTk0lKShqTvnPV1dWUl5eTnp7O5MmT+5XkCofDOJ1ONBrNqMx/+v1+PB4PlZWVFBQUMGPK5ZgMA6cnRhqXp40jlf+gqKiI+fPnn9JnQqEQ9913Hy+99BI2m43U1FSuu+467rrrLlwuFxqNZoD1tnXrVlavXj1gW83Nzaf8wC0IAna7PWJzomKDVLVaTWVlJRdffDG7du0aldJ+w2XcW27Nzc2Ul5dLxYs7OjoGnW/bsmULSoWSaOHUT3aFQkEUMUQRA2FInR2Pz+nn4KZStn30Mb/+9a+xRkVz4UUXcMEFF7Bu3bozaiZqs9lITEyMWKJxU1MTGo1m0OMzUnR2dtLW1jYgVyoSOBwO9u7dK7mkjycS3QROhtfrpaGhgaamJrq7u4mOjiY5OZlp06YRFRU1rN9WnOfR6XSDeiKcTift7e20tLRQUlKCwWAgJSWFjIyMURG66upqSkpKWLBgAV1dXQP+LrarcTgcqFSqiM+9imWsREvYZEggyhy5VlRnwvr163n66ad54YUXmDFjBnv37uX666/HarXy/e9/n0AgMKRrsqysrF8U8HCEQ7SuxA7aI41arcbn80mpB1OnTuXjjz+WGkePJ8a9uA023zZYxY0dO3agQEE5+4kWEoghHoNieGWgJi/Ion6vjZmKQoSQQA+ddNibeffv/+GVV15BoVBQsKCAi79yMRdccAHz5s07qduoLzabjezs7GHt03CIdBSmIAgcPXp0wBN8JAgEAuzatYusrCzS09OHXG80BE4QBDo7O6mursZmsxEbG0tmZiaFhYUROw5iLpHFYiE7O5tgMEhraytNTU1s3bqV6OhocnJySElJGdY5eKqIwrZ48WKMRuOg4ga9rlaj0Yjb7R5Wu5rTQQzZH+/Jw9Bb5uySSy7hwgsvBCArK4u//e1v7N69mxtvvFEKyBnst0tMTDyjykviQ0AkOH7erbCwkK1bt45LcRv30ZKDzbcdn9tUVFTEKy+/QkgI0aFp5ih72MF77FT9hyPCHpqEY7gF50mjoNJmJtFwsDeZVaFQEK2IY7JiJgWh1SznQvKEBdQVNfPrX/2GgoIC9HoDU6dO5dZbb6W2tvaE2/Z4PPT09EQsCtPhcNDV1XVCIThTWltbcTgcTJkyJWJjQK+Y7N27F7PZfErdySPZ8LS1tZWPP/5YcsWuWbOGpUuXkpmZGXGB74tarSY1NZWCggLWrVtHSkoKR48eZdOmTRw7dmxEIxf7Ctup1CTVarVSu5pIR1CKEYfjnSVLlrB582bKy8sBOHDgANu3b5emJJRKpTR3dTxz584lJSWF8847jx07dgx7bDGqMRK/hWgZHi9u45Fxb7lt376dBx54AOhNAYiLixvwZP7RRx+hVKjIExbQHeigR92OM2jHFXQQ0PhoDvQKj1FtIioYRwz/tez4PNJLb9ERlxFN49HBC8TqFAZSySKVLMKhMCUU0RJqoqmhm8cee4zHHnuMqCgrS5Ys5rvf/S6XXXZZv6eylpYWYmJiIhIlBb2BAykpKRHbvmi1TZs2LWIV1EWqqqpwuVysXLnylK2wkbbgurq6OHr0KD09PUydOpXs7OxRyes6FbRaLVOmTGHy5Mk0NTVRUlJCZWUl+fn5pKSknNH3Hq6wiYjtatxuNyaTKWLeAzEZerxz++23Y7fbmT59uhRI9Jvf/Iarr74a+DxnrO93SUlJYePGjRQUFODz+fjTn/7EqlWr2LVr1ynP9cHnKQGRipoUXZMABQUFHDlyhK6urogWpTgdxsfVOgQul4uSkhLOOeccoPeGM9gFt337dqzEkqLIJIVMCIEfL1200x1op0fVgT3UhTvoIqD2YwvWAwIGlRFrKI5oEliYX0hHfTde+8nNeaVCiUtwEB89jdm538Dr66a9u4L2zjI++M+HvP/++6hUaqZOncJll13GzTffHNHE8HA4TF1dHQUFBRHZPvRG0QUCAbKysiI2BvRaoKWlpSxevHjYIjoSAufz+Th06BA2m42cnBwKCwsjLuani0KhIC0tjZSUFOrq6jh48CAVFRXMnTv3tJrfnq6wiftiMBhwOBwDbtojzXh5yDgRf//733n55Zd55ZVXmDFjBvv37+cnP/kJqampXHvttWg0mgFtanJzc8nNzZW2sWTJEqqqqnjsscd48cUXhzV+X+tqpFGr1ZJVKLro9+3bJxXZGC+Ma7fkgQMHiIuLIy0tDUCawO+LIAhs/2Q7UeH+Tw1ahZ4kxSRyFXMpDJ/LSr7CXJaSGswmWhWLAgWekJsWGillH9pZIfYc3sUhPqNeqMIp9Azp3goIfux0ERfd657T66KZlHQOc/P+h1WFdzIv71pSE8+htqaFBx98kKysbBoaGvj1r3/Ne++9N+LugpaWFtRq9RkFu5wIQRCoqKhg6tSpEXUJCYJAcXExWVlZxMXFndY2zsRF2djYyEcffUQ4HObcc88lPz9/3ApbX5RKJVlZWaxdu5bExEQ++eQTysrKhnWenYmw9d0PMR9tNBK8xzO33XYbt99+O9/4xjeYNWsW3/rWt/jpT38q5RuK19FQrkmRwsLC0yol2Ddkf6QR593Ea2v+/PkUFRVFZKwzYVw/Au3bt48FCxagUCikMODjxa2mpobOrk4yOHFbF41CSzwpxJMCYQgRpJLD1FOF1ZzOzJkz+dvf/kar0EgLDQBolXqihXiihXhiiMeMFYVCQRdtgECsdfKAcZRKNXHRU4iLnkJu1gW4PR0kTvLT0dHNiy++xF//+lfUag15edO5/PLLuemmm86411pzczOpqakRcwV1dHTg8XgiOp8HvR3DA4HAGbfoGa4F5/P5OHjwIO3t7cyePTuixzKSqNVq8vLySE5Opri4mObmZubPn3/S+psjIWwiYnX6SLsnxztigE1fVCqVJPp9E65P9AC1f//+02ojJea7DRW0ciYoFAqUSqX0XRYsWMC+fftGdIyRYFyLW1FREQsWLAB6rbbBOubu2rULgCiGd1GqFGoCgp8oYwrLC39IRkYGmtA8ctLNdPZU0e2owx/20kojrZLY6YgW4vDjR6exoNed3PVjNMRRWJhGc12IVefcSZe9hvaucsrLSrn33nu59977iI+PZ/XqVdx0001SibFTRRAEWlpaTth5+Uyprq4mMzMzou4gh8NBWVkZS5YsGRHr8FQFrqenh127dmG1Wlm9evWoBolEipiYGFauXElZWRkff/wx8+bNk7wfxzOSwiYyWu5Jl6ctYts+03EuvvhifvOb35CRkcGMGTMoLi7m0Ucf5dvf/ra0zn333Ud9fT1/+9vfAHj88cfJzs5mxowZeL1e/vSnP/HRRx/xwQcfDHv8SM+7HS9uf/nLX0Z8jDNl3IubWNplMJckwJ49e9AoNdjDXUQJMWgVpx5Q0aPoJD5qFmnpJjravOjUqWRPSiV70krCQginy0aX/RidPVV02Y/hD/topan3wwHYuvs3xERlEWPNISYqC7MpGaVi4I05a7KF9/9dj0qlJT4ml/iYXHKFi3B72mjvrqCtq5TXX/8Hr7/+OlqNjlmzZ3LllVfywx/+8KRdpbu6uqRkX+hNB/j+977P9LzpXHnllSxatOiMntzcbjctLS0R9aeL7sjs7OwR7Rh+MoFrampi3759TJ06lWnTpp1VVoZKpSI/P5/Y2FiKioqk4Ia+3zESwgb93ZNqtXrELYf4+Hj0egNHKv8xots9EXq9YVhu/w0bNnD33Xfzox/9iNbWVlJTU/nBD37APffcI63T2tpKfX29VK3E7/fzv//7v1LXkNmzZ/Phhx8Omth9KoiuyUgFlfQVt8rKSnp6ek5rrjdSjNsKJR6PB4vFIhUB3r17NzExMQMq3b/xxhtc861rcDh7256bNRaMwSgsQjRRxGBhcMHzC14+5m1mTr2Cr17+JbRaJVs/aBpyfwQhjMvTRpf9GB1dlXTaqwiHA3xe60tAqdT0il1UNjFRWVhMqaRMMnPx5Vn8eUMJJzrSwaCXzp5q2rvLae8sxR90oVAoSUpK5LzzzuPHP/6xFFjTlyNHjuD1eiUL99577+W3v34QrVKLO+giJTmFb1z1Db7+9a+zcOHCYd/AS0pKsNvtAyrCjCRNTU0cPHiQtWvXRqyqQt9KJgDl5eVUVlYyf/78Eesefir0rVAyWvN5drud3bt3Y7FYWLBgAWq1eljC5vV6qampITs7e1iWrdPplLoJjDRibUmxZqfYkmekEQs2Z2ZmjkhtyeNxOp1S+bWRxu/34/P5IpLw73Q6KS8vJy8vD4PBQEZGBi+88MJpC3EkGLeW24EDB4iJiZHmeXp6egaN1Lv00kvpsfdQVVVFUVERe/fu5b333qestJRgqHdC1aSyYApGSWIXRQw99LZqsJrTSUw2UF7SfcL9USiUmI1JmI1JpCcvRBAEPN5OuuzHaGk/TKe9knA4QEd3JR3dlYCAUqHm+vwfcPRIiC57HVGmVJTKwQ+5Wq0nMS6fxLh8hBwBp9v2X6Er48UXX+LFF19ErzMwd94crr76ar773e+i1+v/W2fv8wir1//+OgnhFPLD59BNOy22BjZu+COPPfYYaalpXPXNq/j6179OQUHBSYUuHA5TW1vLvHnzTrjemRAOhykpKWH69OkRc3v2teCKiorQ6XQ0NTWxfPnyCdEP7qmnnuLhhx/GZrMxZ84cNmzYcEI39Ouvv87dd9/NsWPHmDp1KuvXr2ft2rXs3r2bzz77jMOHD/PMM89w7Ngxurq6KC4ulupIjiR6vV4qED3SgUgZGRlkZGQQDoex2+1YLJaIBDuJ24/UeaLRaPD7/RERNzEFIRJ1JsWgEp/Ph8FgYMGCBRQVFY0rcRu30ZLifJsYTOJ2u4fM2lcoFEyZMoUrr7yShx9+GLVShTKkRq/ufWJ0BR20K5qp4gjFfMI23uSoordVQ0vHIeITdTQ3dg9r/xQKBUZDHGlJC4iPnYZCqSb/qjvIXPNNYnIXoNKZCAtB0jMT2L13C3sPP8vW3b+h6MhzVDdspct+jHB48GgmhUKBxZRCdtpKzpn1fVYW3M7MqV8n2pLL3j0H+PGPf4zBaCI7O5vu7m4pUbSqqoqS0hISSEOhUBCjSGC6Yh5Lgl9mPitQNOl48vGnKCwsJCszi9tvv/2EEYUtLS0olcqI1o2rq6tDEISIPBX3Ra/Xs2TJElpbW6mtrWXp0qUTQthee+01br31Vu6991727dvHnDlzWLduHa2tg+djfvrpp1x11VV85zvfobi4mEsvvZRLL72U8vJyFi1ahM/nw2g08uUvf5nf/e53Ed13tVqNRqOJaC82pVIpCUSkth/JNjV928iMNKI7OFLJ3EqlErvdDiCJ23hi3Fpuhw8flqrni8Ekp+I79vv9HCk5wmRmkh6agg8vPXRwSPgMoyEBf8BFIOgiIPgBBU7/YVRq+Nd796FWmoiypBNlSiPKnIrFlIJGffKCsN2OOowJk9BZE9BZE4id1usiDLgdTJ2ex9ufHkJttBJ099Blr6HLfgwQUChUWM2TiLXmEB2VjdUyCZVyoKtKozGSHD+L5PhZCEKYzw4+RUinZP7i5Rw8eJBf/epXKFVqrFG97gc3DjyCSyo/plAoiCWRWBIJB8N000ZLfQNPPPIH1q9fT3ZWtmTRzZ49W3rKi3Q5r2AwSFlZGTNnzoxICam+CIJAVVUVKpUKjUZDWVnZuOgmcDIeffRRvve970ktbDZu3Mg777zDc889x+233z5g/SeeeILzzz+f2267DYAHHniATZs28eSTT/Lzn/8cj8dDZmYmOTk5pKZGvi6jXq/H4XBErAo+9EZout1u9Hp9RH5PMaoxEgUS+grQSB8fhUKBSqUiGAxG5NgrlUqcTicAc+bM4dVXXx3xMc6EcStu5eXlUja/0+k8Zb9xWVkZwWAQM70TmzqFHoNgQkAgL+crREdl4g+4cLiaOVL1T6bmz6S2rp5gMEiQHrwddlo7jgC9T1J6XTRWczpR5jQsplSiTCmo1f1dCD3OeqzTB7ru4uNi0Gs1MGUZs3KWEvR5cNlqsDdWYK8+hN/ZSbejlm5HPbAFhUJJlCmNWOtkYqxZWM3pqFT9BT0Y9OJyt5FR+HWWr72Aww0dZK75Jj21R+muPQpAJYep5DAmLMQLvekPVuJQKpQoFUpiSSKWJMLBMF200nKsgUfWP8pvf/tbJudM5qpvXsXll19Oa2trRCv/19TUoNPpRuUmW11dTUNDA8uWLUOtVo+rdjlD4ff7KSoq4o477pCWKZVK1q5dy86dOwf9zM6dO7n11lv7LVu3bh1///vfufjii1myZAlRUVHs3LnzhE17RwqxoLLH4zlpcNTpIrqzTxZWfybb93q9EWsjI7oPIyFAfdssjTQKhQK32w30JqBXVlZGJPXgdBm34lZWVsa0adOAXnE71Qvj0KFDAJK4ATjp6V1m7K3rqNWYJJGbvXgVPdp4Zl3/GzztDbjbG3G11OJqriLoceL1deP19dDScRhR8Ay6GKyWdCymVAy6GHy+HoyJmQP2JTVKR5vTTyjc+zm1zoA1Mx9rZj4suYRQwIerpRZHYwXd1Qfx97TR46zH7mykpnErCpRYzKnEWnOIicrGakmn014DCCRk5ZERo+ffh8LETisgdloBQjiEq6WO7ppDdFfvx+Xsxo2TWspRoSZeSCaeFOJIRqvQoVQoiSOZOJIJh8J00kJrdSO/e/BhPv74Y678+pX87ne/48orrzzj3LPjCQQCVFRUnNLc35nS2tpKSUkJS5Yskc6j8dYPbjDa29sJhUID6pEmJSVRWlo66GdsNtuA9VUqFTabrV/wSGFhIZs3b+aKK66IzM73Qa/XY7fbpVYpI42YMxYIBCIibiqVCoVCETHxFK2rSJfKGmmUSqUkbmJx77q6uohXMTpVxqW4OZ1OGhsbJXFzuVynXLrq8OHDmDRmNMHPTxQnPei11n4Wl8vTBkKYrLQUSjt9qHUGLGlTsaR9Ho0Z8nvxdDThbmvA1VqHs7GSoMeOx9eFx9eDrf0QouA17XyTnmOHMCakY0xIxxCfRkpUDM0nKOel0uiImjSNqEnTSFt4IeFQEHdrHfbGSnpqDuDtsGF3NuBwNnGs8WNAgUZtRKnWkm0RaHP46PF+Pm+nUKowp2RjTslm0pKv4Hd2Y68robNiHy5bTb8EdSuxklVnxopSoZSS3MOhEKvPKWT/9kO88Ppz/OpXvyJveh5XffMqrrzySul3ORPq6+sxGo0Rbc8DvefS3r17mT17dr+owLFolzMWiJ0MNBpNv++v0+nIzs7mq1/9qnSDihRKpVJqNhqpoCGNRhPRJp2RFs9IzRlGMqhEoVBIJcQ0Gg05OTmUl5fL4nYiKisrsVqt0o1vOJbbkSNH0AWN/X5MJ3bMxv7i6HS3AJAWH8WWY7ZBt6XS6jGn5GBOyZGWhQN+PJ29gudsrcPZWEHQ1YPf2YW/soeuimJEwfvaA7/mwMF6Wita/it4qag0Q/vtlSq1NF5qwZcQwiE87U3Y/2vZedrrCQRdoFCSGGpj50fHKH37QyyTpmJOnYwpOQe17vM5Qq05mvj8xcTnLyYcCuKy1dBVtZ+emkP0eDrpoYsqjqBFT8J/hS6WRDQaLdPmT+boGzUsDV1IJy20lDXwwK9+zT333MPMGTOlObrT6RAgCALV1dXk5uZGVFBCoRC7d++WIuuOZ7wLXHx8PCqVipaWln7LW1pahnzYS05OltYXw/3NZvOg6Q4Gg4EnnniCO+64Y1jX2Omg0+lwOBwRc1up1WqpFUskBFTsoB0JIilAkZ7TC4fDeL1eDAYD06ZNo7y8nC996UsjOs7pMi7Frby8XEqqFSuNn+qFp1Qo6RRa2ab8N2ZVFLqAkR5FJ9GKaByuZoz6OFQqLS53K3HJGRi1atpdpx4JpdRoMSVlYUrKQrQ5wsEA3k4b7vYGHLYanPXlBD12sjMzeOnFF2ksL6dX8BTorPGYkjJ7xS5hEsa4NJSawd0RCqUKY2I6xsR0kuetoe3Idhp2vEH0Vy5iSl4e/3j1VTwdjXi7mmk9sBUAfWwKlrSpmFOnYE7JRq3vDSpRqtSfW6YrrsBn76Sn9jBdFftwt9bTxDEaqUGBgqV5K/B6vdRV1WNQmEgglQRSCYVCdGCj9WgD9959H3feeSdzZs/hqm9exRVXXEFOTs6g3+N4WltbCQaDQ1bNGClKS0ulZOahGM8Cp9VqWbBgAZs3b+bSSy8Fem9Smzdv5qabbhr0M4sXL2bz5s185StfkfLYfvOb37B48eJB1//ss88wm80UFxezbNmyiH13lUolucgi0bW7r3UVCXETS2dFQpxF0YlkUEkk5vTE/noul6ufuI0XxrW4Qa9LUqVSnXIeyF9e+As7d+6ktLSU0tJSivbuo73YRntXKe1dvfMUOo2FsBAid1Y+3Q43nXUV6GMSURssp3VxK9UaSYTi83tvIlFaBSazhVZnAIwGlGo1YbsdX08bPnsHneVFSIIXnfBfwZvUK3pxqSjVAwXP1VKHLjWN+FUryZg0Cd83rmDSqhW4ystx7S3CX1ePt7MZb1cLbYc+BkAfk9RH7HJQG3ofEnRRsSTOWkHirBWEgwGczVV0lhdhrz1K7jlT2LnnU3bwHkbBTAKpUlBKoiKNRNIIhYO0Y8N2qIG7fnk3t99+O/PnzZeELjNz4Bwk9Fpte/bswWQyRXTiubOzk5qaGlauXHnSccazwN16661ce+21FBQUUFhYyOOPP47L5fr/7L13fFxpfe//Pmf6jGY06r1X23Lv3V5DdumQEFgIubABNoRyQ7iBHxAIkAt3yU2oCZcLpJCwlBuWtpRd1ru23Ltl2ZYlq/cuTe8z5/z+GM1YcpXseWR51599aSVPeZ4zM2eez/l+n+/380lWT/63//bfKCoqSgry/uVf/iW7d+/mS1/6Eu9///v55je/ydmzZ/nud7+bHHN6epr+/n6Gh+OiBRMTE6SlpXHhwgWhPY0GgyFlVY2JJu7ZiEQihMNhIQ3d2dnZpKenC9NqFFlUMlsqK9Uwm814vV6ys7Opra3ll7/8pZB57gYPBLktRIA1PT2dxx57jMceewyAv/u7v+NCUxM22Y5P9RBTY4QicTWTvCw7A71ddP76/wAga/UY7bkYMwswZOTG/7bnYrBlIy3wpCvMMDHhDRMMeLGtX0vWH/0haixGZHyc0MAQge5ugm1XiTmdhJzjhF2TTF89E3+yJGG052LOLZvZwyvGlFWIb7wX48o6CvUGQorCdCyGLicbe0429u3bAIg6HAS7e3CfPE2op4egY4yQa4KJy0cBMKTnYC2uJa2girTCKnRmK7JWh62kHltJPQDbdxTyo982YswswD89Qj8dc4pSsiggm3zypGLyKCaqRJlkhMELQ3yq+VN8/OMfp6KiglWrVvGpT31qjrrJkSNHCAaDvPe976Ugv4An//xJ3vnOd96T8/D1iMViNDU1UVdXN+8q26VKcG9/+9uZmJjgb//2bxkdHWXNmjU8//zzyaKR/v7+OYttfn4+f/3Xf81Pf/pTnn76aWpqavjlL39JQ0ND8jHPPvtskhwBHn/8cZYtW8YXv/hFqqurhShawLWqxnvVnOzv76eurp5gUEya8GYwGk2cP39OmK+fyKrGxSA3iFdMLqXIbUnKb23ZsoWPfvSjPP7443R0dOB0Om8qPTUf/Omf/im/+/HvWafsRlVVwoTw48GHh33v2oE2TcO3v/ttwsqsRlNpZrFQZ04ISUJvzcSYkY8xIy9Oehm5GOy5aA03lxZ6pCYDi07i7/7yCbLe9lZsW7fc9HGqohCZmCQ8OIi/u5tgSysxp/PacahzT0pjVSWvfdsfs6m2jm9PjiPfYYM75vHEye7UGYIdHRCJIMky6szJbrBlk1ZcQ1pBFdbCKorysnnvliL+94E+YopKLBLCM9jBdPtZPINXUSNh1Jk9RRsZZFNINvlYsccrytQIw/TSTnPyGKxpNl716n185jOf4YUXXiASjvLM555jVO5jUh1Bp9Pxh3/0h7zvfe9jz54993xl3NbWxtjYGLt27VowQV0v1XWvBKeqKl6vF5fLRSgUYmJigrGxMerr6zEajdhsNmw2W0qu2O9VK/LSpUu43W62b98+5/a7ld+6GYLBYLxV5x729xJuISvYhAUxRDwbPjy0cJpjx46xevXqeUeGHo+Hz372s/ziF79gfHyctWvX8o1vfOOma1koFEq2fnzsYx+jpaWFkpISPvOZz/Ce97znno5fhAxX4pzQaDQ4HA42b97M0NAQJSUlBAIBYabJC8GSjNx6e3upqKgArkVud4v2q+0YYmaQ4uG/ASMGjGSQQ2VRNSNtE+xSX4+CQgAvPrz4VQ8enPhw48eDoiqE3VOE3VN4BtpQlWtXWBqDOU54mfnxKG8m2su35dHSMwyqiv42lZ6SLKPPy0Wfl0va+nXwx3HCi05PExoYJNDdTaCllZjDAapKsKeXfJeHKwcb6fvBD9Dl5WEoL8VQUoKhpAR9YQHSrCtLjdWKZfUqLKvj/Woxf4BQby/uk6cJXL1KyD1JqNXB1JV439Syd7yLlqurmGi7QFphFfq0DOwVDdgrGlBVlaBjDEfneRxdzbhdE7hx0k0Legxkq/H0pYKChMz2dR/D4e5hdPISv/zFr/jFL37B//7f/5v9h/YTIcQyZT0KMUbCffzmp7/jxz/+MWWlZbzv/e/jPe95D8XFxQv+vEOhEJ2dnWzduvWuiOleIzhVVXE6nQwPD+NwOHA6naiqSnp6OkajEYfDAcSFCaLRKC6Xi2g0is1mw263k5+fT25u7oIJPhUiyHV1dbz44ouMj48LU6VJKJakIr1nwYpNWgT355nL/4UagL7vfe/j8uXL/OAHP6CwsJCnn36aV73qVVy5cuWG/WaNRkN3dzeve93r+MAHPsAPf/hDXnrpJd73vvdRUFDAo48+eteHLzpyGxgYAKCwsBCdTkd/f/8NGsD3A0uO3KLRKOPj48nqrmAweE9K091d3Vi5ebm5vdBK64EuIF6IYsGGhRslmdrUJiZ041SVvRp/YBK3dxi3d4hoLEAs5Mc32oN/vA9VUUl8E3If/Q/+/bc/AsB/8RJRhwNdbi663BzkO6RkJFlGl52NLjubtLVr4I/ii2bU4SA8OETNqlX87JlnQFWJjI4SGR/He/J0/MmyjC4/D2NZGfqSYgwlxegLrhGexmzCvHwZ5uXxvjUlFCLU14f79BkCLa1UlRVz4cxx+g78EgBdmh1rUS1phVWkFVRhyszHtOm1FG56LbFQAPdAK1NXz+Ad7mIk1sswPcnXMT59heyMOgpy1hCJBghG+qiqquLs2XO4cdHKebLII58S1kf34MHJcH8vf/e5v+Nzf/s5Xv0Hr+b9738/b3jDG+adxmpvbycnJ+euzU7h7gguFosxMDBAd3c3fr+fwsJCSkpKWLlyJVarNbmQJ4ST161bh06nQ1VV/H4/TqcTh8NBc3MzqqpSXl5ORUXFvK6AU6Xur9frqamp4cqVK+Tk5AhJy2o0GqFWLCKRIIn5VDUGAgF+9rOf8atf/SppY/X5z3+eX//613z729/mi1/84pzHazQa/u3f/o2Kigq+8pWvALBs2TKOHj3K1772tXsmN1VVhewXGgyGpLyaJEnk5+czMjLykNxuhrGxMVRVTZY6B4PBuw5xA4EAk9OT5FJ+450SpBfYcA677zhOiAAWcy6FOXM321VVIRhy4QtM4g9O4vGO4fL2YU6TSEtLo7O1BSQJ16HDMOvKSZNuQ5efjz4vD11ebpz08nLRWG9d0CJJErrMTIyZmZTk5RF88xsof91jxFxuwoOD+Nra8F+8jOJ2ExkeITI2DidOxp8sy+jz8zGUzyK8/HwkrRbZYMBUW4tpZo+zrqiU43odltERApcuEfE6mW4/y/TVOHnqzOnJ1oO0wmrsVWvJqF6HqipMtZ1i4NBPQZZBUWnvfY723t9hMmSSk7mMV7/61YyNBFhb+0GGJ5oYGjvDVHCMKUaRkMimgDxKqFYamGCE0y+e4/e//z2ZGVm854l38973vve2lY8+n4/e3l527959x8/0TpgvwamqyuDgIC0tLej1eqqqqigqKpr3vowkSVgsFiwWC0VFRaxYsYLx8XG6u7vp6Oigurqaurq6Wy5KqbatqayspLu7m+HhYWHVrImqxgeR3BIV3Hf6fKPRKLFY7IY0rslk4ujRozc8XpIkzp49e4Pw8KOPPspHP/rRlBy3KHKLRqPJBv3CwkJGRkZSOsfdYsmR28jICNnZ2ckTPxgM3nWePyEvFCNKUPWjx4g8s59myTCh0cq4x313HCcg+bAbb0yRSZKMyZiByZgBXLtSyS8y43J60GUUULhyF0HnON7hLvwTgyiRIDGXm5jLTbCzC2alOSS9Hl1eLvr8/Dmkp8u+VtBSoNcTVhSmolEkSUJrT0drT8fcsALe+kfx1+vxEBoYxN92FV/zRRS3m/DwMOGxUTg+I9sky+gLCjCUlWIoLUFfXExGUREZOh0TWZnkPv42ePxtqLEY4eFhPGfP4Tt/gYjHxXTHeabb48LTWpN1phqzCv/kELLZTOkXv4ASCOA934T76HEC4+MMjJ4gr3g3Lx38Ja3drWRn1LGh4X2AxPD4eYbGzjIRGmGCYWRkciiiJFZDDasYdQzwf775bb761a+yceMmnnzy/bz97W+/YQ+hs7OTwsLClAki34nggsEgzc3NOBwOVq5cmRIHb0mSyMvLIy8vD6fTyYULFxgdHWXt2rU3FN2I8GPTaDTU1dVx9epVYY7kOp0u2fy7FIp2FoKEmsidyM1qtbJ161b+5//8nyxbtoy8vDx+/OMfc+LEiVv2ht4sHZyXl4fb7SYQCNxTC4Wo1KROp0OSpGSDfkFBwUNyuxVGRkaSKUlFUQiFQndNbjabjXRbOlfdF7jKBSQkzFoLBtVEVUY1HreXnkgbRswYMWGY+Zn9hVNVlQB+8g3zz+1b0rQ4nA5MOSVkVF8f7alE/W6CznFCzgm8k/14BzuJ+Jyo4TDhgUHCQzO+csq1ghZtRga6gnxWPvIIfRodwZ7eeLR3E68sjdWaTD1m/+GbAYj5fIQHh/C1XMF38SKKy014aIjw6CieGcLLW7+ekT//cwZ/+lMMxcUYSkvie3oz+3nZb3lzvABmbAzPufN4z54n6nTi6LqAo/Oazfz4D36IqboKU00Nth3bQVWJ9g+wZu1afvDjHzM+3cf4dAsAVkshOZn1rKx9Owa9jaGxMwyPn2c8PMgYA2jQkEMRtdG1KETpPTfAk+9/kv/+kf/O2x9/O+9973vZvn07kUiEgYEBdu7cOe/PaT64FcENDQ3R3NxMbm4ue/fuFbKBbrfb2bVrF+3t7Rw9epSqqqqk4agoo1GAkpISWltbmZiYELL3liieEdVwLRILqWr8wQ9+wJ/92Z9RVFSERqNh3bp1vOMd77iter6ovTFR5JbodQsGg1gslofkdjvMJreEJtrdkltBQQH9A/309/czMDDA4OBg8rcsy3h8bgaMHXNKiiUkTBozBtWMPmZAh54YEcIRDy7PAEZDOnpdGpJ06/DebNEyNTWMwXrjvo8kSegs6egs6ViLashmW/I+JRYl5Jok5BrHOzmCb7iL4NQgSjhIdHqa6PQ0hbt203b8BCP/8R8AyGYzurw89PlzU5zajAykWSkIjcWCqa4WU13tNcLzBwgPDeG/3IKv+SJVlZV0Xr2K58QpPLHjM0/UoC8sjEd4JcUYSkrQ5eWS9frXkfX618XJenIK7/nzuI+fRHG58DdfxN90IXl8xppqtuzZgysWRfORD1Lq8+E+cQrPyVN4pofx+EboHjiATmsmJ3MZteWvIc2cR9/IMYbGzjDGAKP0o0FLvlLCMtYTCPr46dM/4/vf/z4V5RX8t3f/N7Zu3SrECfh6grPZbLS3t7N27Vrhos+yLFNfX09BQQFnz57F6/WSkZHB1atXhRAbxBfwsrIyenp6hJCbJElotVphDdcisRD7m6qqKg4dOoTP58PtdlNQUMDb3/72W4od5OXl3WBlNDY2hs1mu+fGd0mShNjqwNx9t4KCgiXTDrDkzqyRkZHkghEKhdDr9feUJ7bZbDQ0NMzp84F4RebIyAh+vw+n08nf/d3f8fWvfx0VFX/Uhx8fEhKyJCOhoX/kOP0jMws+EnpdGkZDOiaDHaM+HYMhHaPehsGQjs6QxvT0FHrbwiq5ZI02XrCRmY+9Yq4afzToI+gcp7ymlhd+8wtkux3F40Hx+wn19BDq749HeokTWKNBl52NvuC6FGdODvJMlKExmzDVVGOqqSbrLW9iVU4ePT4faRvX4z15Gl2OjciUh/DAQDw1eXTmilWrxTBDePoZwrO/+lVkPBqX3Yk6HHjPnsN19Hic7C5dpmLDRs4cOEj/f/4nxppqjNXV5L33CfR5uQQ6OnG9dJBgby8j400Mj59DkmSMejsAFa99H97hLqbbzzLsjyup6NCTFy0mjxKGe3vJycnhf/2v/8V73v0e3vf+9/E3f/M3KTWATBDcwYMHGR4eZseOHWRkLEKl3gzS09PZsWMHjY2NjIyMsG3bNiHElkB5eTkvvviiMC82nU4nTNBXJBJKJQtJqSb2VB0OB7///e9v6aO3ZcsWnnvuuTm37d+//5bqMguBLMvC+ugSkRvEKyYPHTokZJ6FYsmR2/Dw8JxKSREOtbPHliSJjIwMgsEgdl0mqyLbCREgRIAgAUJqgAA+gvgJafyElBCKGiMc8RCOeHB7h5AkGVVVSFRKbt3735menmbg0G8ZazqI3paJ3pKOLs2OPs2OzhL/rTXdPgKcDa3RQlp+BRl2G9MOB6Wf+RSSVptsG4iMTxAYHiF4uYXI6ChqMEhkbIzI+DhI0tyCFpsNXX5efG8vQXq5uRQXlXLE40YJBLGuLKX+f8cth2LBCIHecaaPteE41EZ4ykOov5/Q0FByz1DSatEXFSUJz7yygfR9jyDJMuNP/5CqqioOnjqKEgriv9yC/3ILqCqSwYCxugpzw3Iy3/QGZLMZ1+Ej+M43EfDE3dK7f/c99NYsMqrXYswsIDAxgLO7maFADyoqtbV12O12ejr8eNwKX/ziF/lf/+spVq5s4KMf/eg99wklMDQ0hKqqGAwGuru7F73Re2hoiEgkgtlspre3l6ysLGHzm81msrOzGRwcvKuWjDshFXqKPjzJMn2R8OFJ/p240J7Pcf/+979HVdWkHczHP/5x6uvrkw30n/rUpxgaGuI///M/AXjyySf59re/zSc+8Qn+7M/+jAMHDvBf//Vf/Pa3v73n1yAycptNbgUFBUnlm/uNJUduIyMjySjrXiol74TriXN0dBRtVI9eMqDHgBX7jU+a4YcY0TjxJX7UAH58BPASkgNkZmTS2tpKNOgjGvThH++f1Tg96wSTZHRmK/q0DPTWjDj5WexzSFBrsswhQJvZiDsSTZb2z24bMC9fBq965NrhBoNEJibixNd2lUBnFzG3O/kT7OpOkpPVaiXzBz/gzFe+RnBoECUQYPrYVUzFWRgKM0irLyKtvojS9+6Ljx2OEuibYPpwG1OHrxCZ9BDq6yM0OHiN8HRxwlOmpqiorOSlvCk2PLmKmD/E5OE2Rp85QWTMReBKK4ErrXGy0+sxVlVi37sbQ3kZ4fEJXC8eIDw5ycSlI6AqyFod1pJ6jJkFhJwTbNqyknNnzzEwchajPp2s9GrC0QDNzc088cQTvO/9T7J921a++93vUldXd1fny9TUVNI2x2w2L7qSSWKPbdu2bVgsFo4cOUJnZ6fQkuuCggKGhoaEkFuCJO5m3y07Oxuj0URL8HTKj+tWMBpNZGdnJz/r+VQeulwuPvWpTzE4OEhmZiZ/9Ed/xJe+9KWks8DIyMgcT72qqir+3//7f3z2s5/lG9/4BsXFxfzLv/zLPbUBJCCy181oNCZVSh7uud0Gk5OTSTeAUCgklNxmV9WNDI+gUw0wj3VKI2mxYL25OoIKxRlllDim2IHuGgkqAXq4iqqR0chaIlE/ihol4nMR8bnwjffFI0DlutSBLKMz2dBbM0jLzMX02KdweNzoLl9Ga7ejtduRbyFPJhuNyWKQtPXrrh2iqhJzueKk1z+A/9IlyrKyGR8fx9nRES/lR6Lriz+PP0GS0OfaMJXlYCrNwlichbEkC1NJFiXv3UvJe+Ply0o0RrB/ksnGK0wfmiG83j6Ky0qRJYmD7/8aaGXM1flY6goo+dNdmGvy0Wem4TjVwfCPjhMano4TcdvVONnpdBgrK7Bu2Yxks+JvukCosxNXbwuunrh336a/eh+/PnhyhuzGCbncSRUVrdmGqiocPnKE+uXLkJF4/etfzzPPPDNv+5JoNEpTUxP19fXJVOBiSnXdrHhk3bp1HD9+nLy8vJRVh16P/Px8Ll26JMSOJbHvdjfkVlpaytWrbTdoS85GIBBAluWUrR/Z2dlJZ4lE39id8La3vY23ve1tt7z/+9///px/S5LEjh07OHfunBD9SlHkZjAYmJqaAiAnJweHwyHUeX2+WHLk5vF4kiXeoswB4cbIbWxsDD2p+SJYMk0EHCGMkhkj16oZh+nFnl1PfeXrgTjJRKJ+QmE3obCbYNiN3+/AGxjFH5wkHPGiKBEiPicRnxOrFCISieDo64N/+fdrE2o0aGxWtBmZ6DIz0MyQntaeHv87w45sNicX4HgLQfwxptoaMl/1CHWWNLxWK2X/8GWik1P4h4YINl8i1NON4vMTHnMRHnfhPt+NGp2V4kwzYirNwlSag7EkC2NxJrmvWUPJu3cjaWTUmELdpIlB1wSSzUjM5cd7ZRDf1WHUWHwc2aDDXJ2HfVMVlprtmMpzCQ1NMfijowT7pgi0dxBo74iTnVaLoaICQ3kZEcc09mknBXm5HHv+FwR9XjRGC4b0XEKuCWJBL9GA59o+pAoKKs8++yx6kxGbJY3vfe97t12AAFpbWzEYDFRVVSVvWywtyltVRWZmZlJRUUFTUxM7d+4UIkJtMpmw2WzJhSvVuBc9xVvZGCUQCARQVRXzTaqJ7xUiKw8BIenDhaRTF4rZyi2Jtdvr9Qop7loIlhy5zfaVEuXcCzeKt05POzBhY1IdRYceHTq06NGiS/bGzQeyVsZkM+J33CjqGiaEXn9NSkySJPQ6C3qdBavlRr+tBKKxEKGwm7xCHT5vmLLCPbi9/fj8E4SjHojFiDmcxBxOQr1yfI/t+kVDq0Vrs6HNsKPNzJwhwHS0djsaux1rVTWuaBRZp0NfkI++IB82rE8+XVVVFJ+PyPgE/vZ2fE0XiE5NE/MG8V4Zwnt1JE4iM67jklbGUJCBqSyHrW94KyM2N3X/8+0YizKRDTpCw9OM/uY804euxAmvZRBf2yzCM+ow1+ST/5aNmCvziAXDTDx3gUDPOMGOToJdnaCo7H3DG2jr6UGpqUTTN0DM5cI/3hfX5JTl+F6jJF0juARiCm63m7c//jiPP/44a9as4eDBgzd8Iaempujr62PPnj03LAqiCe5O5f719fU0NjbS1dUlLD2Zn5/P5OSkEK83jUYj1CV6vlWNC4Wo/StJkpLEKcKeBsSRWzQaN01OSCU+JLeb4PrITVRByfXEuW7tWhoPNzLGwA2P1csG9LIBHTrkmBaNokU3Q3zx3/rkv7PSM1FiCi6nG42qnXNShQmh1y5cJ1OrMaA15ZCfl04wIFFTFt/38vrHONn8z9S8+SOYc0qI+t2EZ9KcAecU/tEugo4xokEvajSabCegp/cGApSeeIJBjYaBn/8cbWYm2syMa5HfzI/GbsdQUY6xsoLMx67tA6ixGNFpB/6hIXwnThEeGEANBAgOTBEcmib/NSYOPPMSV156CQBdhgXjTIqz+E92xNOcxVkokSijvzqL49AVoq4A3ksDeK8MQYLwTHrSlhdjqS1AUcB9rova2hounztH8OLlOJFpNOgL8oj5/MTc7vjrvBkShKfGE5hNTU3YszLRa7T8zd/8DX/7t38LxEWYa2pqbrm4iyK4+fSxaTQaVq1axZkzZ4Sp1WdlZTE4OCiM3ES6RIsqoBC5fyWSOEFMVDib3DQaDWazGY/Hc4dniceSIzev1zuH3ERFbtePfaDxAH6/n+npaRwOBw6H45Z/T01OMTk5xfjYGINjXcRm7ZPVZNTgdDlpVH6FhIRO0qOXDciKBhSVkclmPP5RdFoTOq0JrWbmt9aETmtEpzWj1RrRyPobvvCWNC0+77Wr0XAkrq6iM6Uha7TorZnorfGFMF6kvm/O81VVIRr0xff5vC4Crim8Q+0EHaNkZmXT3dV1jQDlm0eAkk6LxpYeJ7+MDLQZ9iQBmvJysb7nT5FnenKGv/p1zCVmCusqCA9loG/NIDzhJuLwEXH48F4eQI3FkjU2skGHsTiT9PWVM4SXicaoY/pUJ44jbcTcATwX+/G2DCYjvKqqKs72t2HdVEmwa5TItD/eBJ+I2q5/HYnbE1/yxFusAjGFcCzM5z73OT73+c+xbu06Pve5z93RkSLVBLeQBu3s7GwsFgt9fX1z0qapQnp6OqFQ6IFLlYkmoAet2RrEEedscoN4ajJRYHI/saTILRKJEAqFkleJohQMEo66s8eerfFXUlIyr3Geeuop/vYzf0sB5UQIEZUiFGWX4HK60Ml6IkqEsBIirFxLvbg8A7i9g0DiKurmJ5uEjEZrQKeJE55OZ6Zm1RsZGrHQNXAYndaELxDfCwm6JlFiMbQGMxqDCVl7831KSZLRmazoTFbILiYdYHVc1LVkeQGTthrW5u0gFg4S8bkI+1wEnGN4B9sJTo0RDXhQomGiU1NEp6ZuQ4A6NOnpxJwOQv0x0j6mJ2jTUv7BP0CfbUWfbUM26QlPefBcGWD8d00EusZR/GH8XWP4eyfiA8VmWQ7l2kirK8RUkoXGYsB9ZZBY3zSF+QVcfvEEHrcr+XiNxYBkje/vqcFIvMo1QWqzF47Ebcl/S8m0qizD5s2bef7553nzm9/MY489xu9+97tbngupIriFKo9IkkRlZSUdHR1UVlamnCT0ej1GozHZ25VKSJIkTPMwsZCLIs4HLeWZ6rFnj3M9uaWlpT2M3K5H4g0RHbklPoh7HdvtdmPSmFmhbkje1mCvRZrWs1t9IyoqMaJEiRAlQoRw/LcaITrzd5jQTEtBkKgUJSZFiKlRYmqMaDRANBogEIrbpOiNUQaHrtI7dHgOMXb/7ntzjkuStWj0RjQGE1qjBY3REic+oxmtwYTGYEJjMKMxJP5tJk1fhMcfr4rT6I1o9EaMGXnYimvJa7hR0qr5Xz+JZfMG0tatJTg6RrD1KuHRERSPBzUcITpTyZaWbkOn0XLp67+c0xAsG3XoMtMw5NsxFWaSvqoMfbYNfbYVbbqZsD+A62g7rtOdhKd8Ny1oWb58OU6XEw9hiCnkVpqYHgoS9YfAFwKNfO3a4fqr4euJDeZcZ+j1Bnbs2MHnP/95VFXlueeeQ9bIGA1G/uM//oM//uM/vuE9uVeCu1tJrYKCAi5evIjT6RTSWG6z2YjFYvj9/ntWyrgeoqIgkVGh6JSnqGbrVB633+8HSBb8JQIGWZaxWq0Pye16JELZRIWTaHK7101br9eL5rq30GDWEfLFSUKSJLTo0LKAis/EuSfN6FDOEOM56TD5eSW4ptJYVvkmItEg4YgHf2CKYMhFJBogGgsSUyKoSoxo0Es06CXkmomCpLgyuIp646IOWN70Y8788O8ZGhlF1pvQXk+MM1Gh1mBG1hlQImEkWYPGlo41v4D0LZvnyH1B3JcuLxojGI1iessb4eJlIkPDxHw+lFCU0LCD0LAjTkJwLVKbgWzUoc+2YltdhiHHhi7biqzXEhp14L48QHF5KQP9A0QdPmStxERvIOntqtFKmO1aAp4w0dk1Cxo5Ps9174GkledUgdbWLcPn89HR0YGkATUGqqISCASS1ZUrVqzg5MmTc/aj7pbg7kUrUqvVkp+fz9jYmBBys1qt+Hy+pDSUeVbl7b0iEQGJILhIJILf70/5GhKLxQgGg0nR4FQiHA4TiUSElNGHw+Gk9c3dImHRND4+jt1uTyq2AEkbo7S0tAcrLfl//+//5eMf/zgOhyN5siR07rZv305jY2PysY2Njezdu5fOzs4F7QN4PB7S0tKSV10iyU2r1d7zien3+5HVuSehpJFRYqn5okqSNFO5qUdFIS3Nil7WUZg7vyIbRY0RjYbiEWAsSCQaJBoLEAr5CIZcBMJTeH2jqFL8itzp8aLEYih+N1H/NSsgSYqnH1VVveYMLsu4Dx/BffhI4kFIej2yyYTGYka2WNBYLBTUL8OZm4fk85O2sgF500ZksxnZbEZjNsX351SVqMtFsL8fX/NFIsOjxLxelFCU4OA0wcHpOPnM7IslYN9iw+FyYizJQp9tJRQMER11E3MHiEUVPJNhJBlkrYQSnblquNlno5lLbBDfy+vs7ATixJZ8L2aZo7e0tGC1WtFoNHzmM5/h85//PLBwgkuFCLLdbmdiYuKunnsnGI1GpqenKSwsvEH78F4RDofj57mAlp8EAaWaKFRVTar0p5rcElY5Ivp7Q6EQGo0mJWtqwlgXrmXAZrcD3Gvk9p73vIf/mNHPnY1HH32U559/fl5jzPtV7t27F6/Xy9mzZ9myZQsAR44cIT8/n1OnTs3pGzt48CClpaUL3uC+3tZBVCNgNBpNybiBQICIEmZSHUFCRkYmIgcJRrV4VVfyNhn5hr8X+qWIqdGZq6T5pxVkSYNeZ0avu3Wvz8DoKRy+MyiqSvXjn51znxKNEAsHiYUDxEJxY9ZwwEfYOYHfMULEM00s6CcWCaHGIqjhMLFQiJjTGR9AkjBkZDI5NMz0b35304hx5kCRDUZkkwnZYkGfl4dcWY7GbEY2mZHNJiS9HjUSJexwEO7rIzo9TUZWFtOTU/GqzIGpm0aAqnJrhSaNTiIWVW8kPAmqKyvp6uq64TnqTV5CLBbjC1/4Al/4whfIy8vj6NGjVFdXz4vgUqXub7fb6ejouOvn3w5Go5FQKERBQQG5ubkp3W/q7OwkEolQO+MnmEqcO3eOwsLCpJxfqhCJRDh8+DC7du1KOSkPDw8zOjpKfX19SscFuHTpEiaTibKysnsa5/oLBkmSklZAEI/sE2nLe8Fjjz3Gv//7v8+5bSGkP29yq6uro6CggMbGxiS5NTY28qY3vYkDBw5w8uRJ9uzZk7z9etO9+eD6/g5Rfk+qqqaE3FatWsWPf/xjLnAsedsybQnemIWT7L/tc2VkZEmDRtYgI6ORNEjSDPmpMhJS/LcqISkSUaIoapjugcO0dvYgSxokWYMsaZFlDZKkQZY01/2tjf990/vjzwsEHWg0MjFFJeJ3I2m08XFlLZJGi85sRWe+iRLLHaCqKmo0Ql2ZFcVqoOYNHyLkdRCYHCLkGCfscxAL+omGfKjRCEowiBIIwHRcTxJJmlFKYW514yxkpKczPDSEbLEgm01ozOZ4y4XLDS7XtQfOviDQysnKyFjk5rQnyxJVVVXs3z/rM5SYl47h2NhYsufsrW99Kz/4wQ/mENxspNK2JlHVKEKPdbbqu0ajSekFp8lkwufzCWv5kWU55WMnCigMBkPKDVd1Oh2Kogh5PxKmpaLe69nzpGJvz2AwJKPDu8GC4tO9e/dy8OBBPvnJTwLxCO0Tn/gEsViMgwcPsmfPHgKBAKdOneLP/uzPFnww11dNiSS3VOD/+//+P97//vcTDoeTP8PDw0SjUZ544glCodCc+2b/3Oq+W93e2tqKVisTCI/gCXSixJTkJm40Gk3KTV17bfN/jcXFxUTDIS7/5+dvvFOWkWaIVNLMkOMMAUoaDZKsRdbEiTDxe/b9q3Tb8Ss5uHovI2k0aHR6LAXlWOUqJI2GwOQIU20nyfrjP0JjscRNWTXx56rRKGokghIOE3F7iIyOEnM4iHm8KIEA6RkZON1ulEAAxecjWa8lSaDVXGsqn/15R++cMjYY9eTn59PT03Ptxrs4ZZ555hmeeeYZ7HZ7Umpp5cqVQNyVor29PWW2NVqtFovFgtvtTvniZTQak/s1IioPRRZnPGg9Yw9iK8D1Y4ssilkIFkxuH/3oR4lGowQCAZqamti9ezeRSIT/+3//LwAnTpwgFAqlJHIThVR9SSVJIitrrmdboicosYilEvv37+fZZ58lOzs7eVuiQq6EaqzYUVFQUFFRZio1Y6hEic38pxBDSf4XI0YUsyYNRVHQY0QlLu6szvxfVVRAgVgMJQIx5vPFk5LN08FV5fj1ChOXDifvTVZ6qpBgjan/embB74dOoyEcCMTJa4YQk+QoS6ixGIr/RqWY20IjYzDE07g+351d2ucDp9PJu9/9br74xS/yk5/8hB07dqSU2BLQ6XRzSrJThcQFp4jvp0hyE7WYz67ETDVEEpBIXE9uqSDo3/zmNzeIB3z605/m05/+9LyevyBy27NnDz6fjzNnzuBwOKitrSUnJ4fdu3fzxBNPEAwGaWxspLKy8ra6b7eCoihIkpTM6auqSjQaTXlPSTQajes6CuhViUajwvpgFEUhFovNGTsSiWAymcijkByp6K7GzTLb0Sha9pnfclfP71Qv4jC62LDyz0FVUFUFRY0rT1SXFpBm1bF740dR1RiKqqDO3KeoMWLRCIoSJBwJEI4GiMUCRKMhYkqYWCxCTAkTingIhhzo0uxAvAoTRUGn06MzmDBb0uJKIwnSVBSIzSwQt4ti5GskPPtixzojRKzT6VK2pxIOh/nSl77EN77xDSCe0rZarSk9TyRJSlbbpRKJq/BwOJzyAq+bndOphIj1I7GIh8PhlJN9Ihsj4v0QtZ4mEIlEkmOnInLbu3cv3/72t+fctpCLQUld4GVCSUkJf/EXf4HD4cDn8/F//s//AaCmpobvfOc7fO5zn6O+vp7vfe97dxjpRhw7doy3vvWtySjwIR7iIR7iIR4sfP3rX+fRRx9Nbl/dDd7znvfgdDr55S9/eddjLPgybO/evTQ2NuJwOPj4xz+evH3Xrl0899xznD59mr/4i7+4q4ORZRmtVstrX/taAF544QW2bt2abOpOFaamprh06VKyACaVaG1tRVVVli9fvqDnKYpCMBjE4/Hg9/vx+/34fD4CgUDyt16vZ3p6GpfLRSAQIBQK4XK5+Jd/+RcMkhFZklFUdSY1ORNBzaQob4fi4mK+8IUv8N73vvceXrk0K/q5Vn3xpje9kcKCQv5P8grsJtdSknTDjyRL8d48WUZNqKDMKFogx2//wic/yW9e+D2nz52fpfw/E8EpSlzaS1FuFJG+AyxpafzL977HE+97L8FAYG5BygKh0WjYuXMnX/ziFxkeHmbt2rWcPXsWk8lERkYGq1evTtk+1tGjR6mpqSEvLy8l4yUQCoV46aWXeOyxx1KuJNLf38/Y2NgdJc7uBmfOnCEvL++uski3g6IoPP/88+zbty/lJfsjIyP09PSwbdu2lI4L0NzcjMViobq6OuVjv/DCC2zZsgWbzcaPfvQjIS4VC8VdkduHPvQhIpEIu3fvTt6+e/duPvzhDxMOh+9qvw2ubUQmUkGJEtNUl9smUiu3G/fEiRP09PTMu+Ajcd/y5cuRZZlPfvKThIIhQqEQodDM8xLPjYSJhCPx35H471hMmXHzvjX+6Z/+iX/913/lwoULN9wXILG3JCHNNGzHWw6u/ciSBkVVCEc8aE1WdNYMZFkDadlotFr0eVXJgpC5RSI6ZK0Oeea3pNUia/Qze1zamxaZSLIGWaMlvb6AdLuZmnd+Nn6/rEGSJFx9V+h+7l8o/NhfIun1KP5AvDAk+RMkFvCjBAKogSCKzx9v/p4pHlFDIbxuN5pIFN/1vVeSFE85MiOOvMD8fygcIhAIYE2z4picv91LRkYGr3nNa/inf/qnOemT2UajiQu1bdu2cerUKS5dupQSseVE71VaWlrKvy/BYBBZltHrb9Q7vVfIsizkO56AVqtN+diJlJter0/52LIsI8uykPdD1HqawOw0firILRQKMTo6Ouc2rVY7p+bgdrgrcgsEAtTX18+5Qty9ezcejyfZMnA3uH4jUpQB5J02bbu6uti5Y+csQWQJrTxTSi/NlO1f37emxkv3TY9bsNqsnHv+IjKaOT1ucbrRY8CIceY+GZkoUbppoaxgO9a0wpkyf+3MfImSfw0GvZ0VNW/BIj2SLPGffb80D2sel3eQM5e+Q9XrnsScHd+jyzBp0Wp1VD62sApXJRaN97/N6oOLhYPEQgGiM7dN6uvJrymn5/l/Jxryxx8TChALx0vLh7/6jZsPntCtTNroJISOZyI3nQ6H201mfh6y3Y6knamw1GiRlRhKKIQaDMXbC2ZpRiJL8WgwdvP2gvjrUujt7aW6soL+3t6bHJpMVlYWb37zm/nqV796W8X868v9E3sSBoMhpWLLfr+faDSa8iwHxBcZo9Eo5PsoSo0DxFVbJ9YoUZXci+HsnmrMPu5UFR49//zzN3BJXV0dbW1t83r+gsmtvLz8psRQVlZ2z1U+Wq12zmanKN25O5kkhkIhYkqMdezCTvZMz5k0r3LwnGgRVq2F1dL80wphNUg3LaTbysjNXHbLx0loMRnTMRnv/qpII8f7cpRICFWJEQsH8YWiaORSfMMdhAP+GbLyEwtda+COhvzxhu3QzP3hEKpym8q8mehxyBRka0MVnqH2mduleDWjQQ8aGUmnRzYZ0abb0GZlYSguRs7JQauRUcIzjeEeDzGXi6jTRdThJOpwEHO7cUxOYjdbUBJN4zOEmPxsE2vE7LSiol5zO5elG++fQVd3F5WVVTQ2HiInJ4d3vOMd/P3f//2C+pru1MeWSjcBp9OJzWYTQhTBYFCIYgZcI04RSJVYw/VIrHOiiFMUuYl0WZlNbpFI5J7n+f73v3+DU/lCsaS0Ja/XJLtebTpVuNO4s1VSFmJUCqAo6oJD8oQ+pRIL3/ZxsaiKTje7D1AhGgsRjQZn5LUCs/6OS21Fo8Gk7mQk4k/a5HT86p+T48iyTOz1P2X6+E+ZnBE8TpBTfJ5ZslvxOwEVyWRCMujRmE1oLFY0GRnocrLR5Gajt1qRTWa02Vlkl5VS8fWvxMeKxYi53USdTmKu+O+oy0XM6SIyPELgSisxt+fGVKJGMyfFKGllHD43DeUrMFbkorEakCWZqDtAaMSBEoxcC/a0N8prxd/wmdJlrYQSU9HIGvLz83nf+97Hu9/9bgYHB++qMArm36CdKoJzOp3Y7fa7OtY7QURj+OyxRehhgjjiTFw8idhXUtWFrx/zhSiyv95lZbbh9P3EkiI3q9Wa3L/S6/VCyW22ivX1SAg3x1j43EokhkY/vxNIVeOuARHipOb2jaDRGG5OVNEAW0fewbizlSPnfks0GiSm3I4MpVnkBFxfVCLJ8XSmTo+sN+L2eClevgGm/Rjs2egtNjT6GbFkY1w4WdbG91xGz+1n7Mphyr70d3NfeyhE1Oki5nIRmZwm5uphQFWwVtUy/A9fJeJ0olzfO5ZQIkmokEggabVo0o3oc9Kx1BVgqipAliDmCxIacRDonyLYP8nE0ChZW3cQ7BmfK70lgayNiyerkooSVpNBd0JnUqvVUlxczIc+9CH++q//+oZ3z+v1cvnyZSKRyIL3KBaqPJIKgpucnKS8vHxBz5kvrpfFSyVERYWqqgoj5VAohF6vF0JCsVhMKLmJ2G+73mVltuH0/cSSIrcE23u9XjIzM4WSG1xTsb7VcdyJ3FQ1XpcYJUyEuI3NmHOUwvQcBtSupK1N4r6YFCUqR4ioYSJq/L7EsitJMv0jx+gfSUh5JchJmnGLVhifGMKSpiMUjjtMSxotsjZOTlqjGa0xDZ3Fhs6Sgd5ivcHWRmMwo9Ebbro3F5SMLNvzZqTxGzXhVFUlFvQRcE0S8bkIOsdRfD4mnv4RUbebqMNJzOVCDV9HtrKMR6dDfvIDmP1+HAE/kkGL1mrCUGDHurIUy+pSzAWZaAxagiNOgoNTcbHkgSkC/ZNMPteMGj2feEuQZokc9/T0xDVM19sx2bW4xsOMXPUSDSso0RmruQjodFqqKsv5+Mc/zvvf//7bfqazzwGbzcbQ0NCCSONuJbXuheDcbjdut5vCwsJ5z7cQOJ3Oe9YjvBVEEVBCUUUEcYqMZEOhkLAUsEitXrjmsvIwcrsJLBYLkiTh8XiEklviQ7gVuZnNZjSyhjFlEK/qSpJTVIqiyPFIK0FQynURUXh6ms0Za7hKExIz5BTX+pjRNLz2WAkZjUaPVjag0RrQyHoMeitGvQ293jrj1G2gpfNn5K19FdriBirT01hjXIkkp+YkVZUYEb8bp9uG7Bll/OIFIj5n3KzU4yDsdRINeK7tU117E/Geb7qWPpQkMOghFEabmUbeH23GWleIPseKnwg7nv4Yw4qH0KiT0OA0gcFpgkNTjP7HEQIDk8Q8wVljy9cKSWQJTboJc00B1tUVaCSV4LAD19kuxsbG4ouYI5PW5h5iURW9Xs+KFTV87nOfu6nn2kJQWlpKb28vZWVlwm1r4O4Jrq+vj4KCAiFX5aqq4nK5SE9PFzK2qNRhMBhEq9UK2WMSvQcpKkpeLJeVh5HbTSBJ0px9t9lK06mAoii43W6mp6eRJImjR4/idDpxOBw4HA6mp6eTf2fYM5h2juFgPB65qLEbyGnmqNHIOjQaAzqtmVjEQlZWNsV5m9HpzOi0pjhJaU0zrtozf2tNyPL83v6rvb9D1hsIYMRmNsyb2GKREBGfK/kTTvztdRL2OIj4nESDfkBlwPZBVKeToRO/QpLkeFtCokBIq0W2pKG1Z6DLz8NQWYEhNxeN3Y423YY06wvT9+m/IWvXMqw1+QQHJnGeaGfq0ZVM/vQlzr10aE7VYjy0mtlDM2gxFNjJ2rMC+6ZqYv4wgZ5xfJ2j+K4O42nqxXO2O/7YmT00k8nE+Pg43/zmN3nd6143r/dkISgpKaG1tZWpqak7lh+nSgR5oQQXDofp6+tj+/btdz3n7eD1elFVVchiFYlEiMViwlKHIvcJRY4tau9UNLkl4PV6H5LbzTDbolyr1d60qjEQCDAxMXFTUpr99+TkFFOTUzimp3E4nXh9nmT15b/+67/y5S9/OW5GiYRBa0Qn6dGqOuSYFq1qpIAytOjRoUOLnmnGmZTH2Njw/lkENdew0GDUYDQaWFn/RiLh1FR66vVpRP0ePKEoaQZtnGxD/jhheZ1zCczrIOxxEvG7UCKhuQMlDEtnR2E6HbLZhFtVyV1WT+bjb0OfnYXWbkebnj6HuGZDmXHb9l9uITI+QWR8nPDoGEo4wtgvzzD2yzPxKbUyfRU7KUqPk4Mmw4K1oZis16zBWpmPrNfi7x7H3zmCr3OMqZcuM/Qfh5P7b8gykqJiT09ny5YtPPXUU6xZsyZ5HJcvXxYS3UP8/KuoqKC1tZUdO3bckmRSqe4PCyO4jo4O7Ha7sKIMp9NJenq6kH2ghMiziIgzEAgITR0+aMSZkN4STW6qqiZ9Oe83lhy5zTa6u1la0uFwsHzZckbHRm94rl5jQC8b0KJDE9OiUbTo0KPFQC4lFM4Yf2rRofolNln2UMgytOiQYtctHjdZS1RVZUwZxGLOvWVPWSgYIxpVsFi0OK/fg5oHFDVGOOwlFHYTDLsJhd3EYmGcPZdo+b3Cm+o/QPP3PnFDmlCS41Yu1xrBZ16AwYChpBhDaSmGwgI06eloM+xo0tORZy0qqtVGrslMutVy7TZFIepwJMkrMj5BeGyMyNgYMdc1M9M51jRS3EHbUJxJ1r4V2NdWEswvZsOu5XQ9XoK/awx/5xiO/ZcZbHuB0Ijj2uHKMrIKWZmZ7Ny5k7//+7+/o89XTk4Ozc3NwvqDampqGBwcpLu7+6b+hKkmtgTmQ3DT09P09PSwa9eulM17PcbHx+fdNLtQuFwuYVGKaAISFZmIIrdYLK7nKorcEls9oVBIWL/lQrEkyS2RltRqtYRCc6MPj8fD6Ngolawgi7xkVKVFh6zIc4sCb7PWhVwR7Bl2xiTHvI9NjwFQiUQD6HWWWz7O741iTtPhdMwlt1gsTCjsIRh2EZohrmDYTSjkJhhyEgy7iUTjacIbXkQYhtovkZaWhlajISZr0JitGG05mPKKMaXnorOko0+zo7OkI2v1tP/qn6Ewndw/fddtX5cSDDLl85NWWIzjd8/PRGGjRCenUGdfXGg016SstFo06ekgy8QmJlj9gw+jy0pLLsBRtx9f1xjO012cD42wau+baXrf12ZeUlxBRFYhNzeXffv28ZWvfOWumv+zs7MJh8O43W4h+0JarZa1a9dy8uRJ8vLy5lyRiiK2BG5HcLFYjKamJmpra7HNCD2nGoqiMDY2lvRvTDUSUaEIiNwXE0VAiqIQDoeFpWklSUq5/xzMrcJMrN0Pye0msNlsOGeacnU63Q125QmLGTMW0qW7X1B8jgCWjIVt3MbJDcIR7xxyi4f8gWSk5XDk4Q1d5UrXWYIhF8GQk1DEQyx2XZoQeUaEYxYjSzIavRldWjoGey5Gex4GWyb6NDt6i52YorL9w/+IK3DnVJzemol/ciJ+jLEY0enpmShsJo04NkZkLF75SFkZ7/7yl3G9dCCuuq+q8YpMixl9QSHmNaswlZaiy81BnvXlczUeZvqXv8LfNYp/f2KPbITI1MznJks4LBZy//j9VFdXs3v3br785S+nLBrQaDTk5uYyOjoqbKHMzs6mtLSUpqYmtm/fjizLwoktgVsRXFtbG1qtVohOYALT09PIsiw05VlUdHdOFneC1+tNuQN3AqKIM3EhL6rC02AwCFOZSUSETqcTnU4n7MJiIVhy5Jafn5/UE0vY28+GxWLBYDASDl1PFAuDb9qPJdN8x8epqkqIICECeIm7O/cMNiJJ8izi8qKq19KEw6OFxBhlZKLpOr1ICZ3GhEbWEYy4yFv7CIb07Hi0NRNxaXS3Pyl84RhWg+am5KaqKtGgj5BznJBznLB7itDEIAP/838RdTjmVjbK8rUoTKNlYGgYWZZZ+ZEPM51mRpuZGU91Xjd+zO0m2NVNaGCA0MAgoZ5eADo+/0xS8UMrayguLuYP//APeeqppzCbzezfv59jx46Rm5t7x/d8oUgYi9bV1aV87ASWL1/O4cOHaW5uxmaz0dbWJpzYErie4LKysujt7WXnzp1CBWpHR0fJy8sTsiBGo1G8Xq+QtGSiwrO+vl7I2CIrPA0Gg5DPVHQRTGLs0dFR8vPzl4SE2JIjt8LCQoaHh4H4lzphbz8b2VnZhIdvvH0h8DsC5NRk4Ve9hAgQJEBo5idIgKg2RIgAgagfdVaaUJJkxqdbZ0hr1u3IaLVGjIYMgn4N5SWrqK+UMOrTMeptGAzpaDVx4pp29XD+yr+RWbseY8bCFNw9oSgWLQSmRwg5xwk6J+K/HWPx/rPZRSSSDKpCdGoKJAmN0YIpuwhbWQOW7CKM9hy0pniarffFH9A3MkLNiuWc98Ur5KIOB6GBQcKDg4T6Bwn196P4Z/rgZBkJsJjNlCxbxpvf/Ga+8IUv3LI4wG6343Q6hZFbc3Oz0BJkrVbL1q1bOXjwIAMDA2zfvn1RiC2BBME1NjYyNDTEtm3bhKUjIZ4iGxwcZO3atULGd7lcGAwGIQtuIBAgEokIieQTZsQiyU0ERJNbIl0/PDwsrN9yoVhy5FZQUMCJEyeAeHgeDAZvKBbIz89jZPjWau2qqhIlcgNphQgQkoJENCFUp4N9Gfs4zvPJ52nkuPhwNBaF6DXi0spajLIJfzSAyZhFbtbyOGkZbBhmyEurvXbiGLU5ZGYbKMq9eX7bZIyneUKe6VuSm6qqRHyuuQTmHGMo6+34LzXT9uyz8QcmCltmIkSNrMdkzCIzvRKnp5+oCWre/BFkza0/alVV0VnS6bxyhZyCfEZ+9GPCAwMoiQuLGSKzpqWxbPNm3vOe9/C+971vQZvTGRkZ16S9Ugy9Xk9BQQF9fX00NDQImQPidiSKomAwGOjr6yMjI2NRrT1GRkaIRqPJ+bOysoRdIY+NjSHLspCLEYjbTolMd1qtViENywnrKVEang9qhWdim2FkZERYOnihWJLkNjIyAsSvVhOutLM3QktKS+hs6mVcHZpDYBFNiIgcwh/zEVXmus3qNPGIIhKLQBTGp8bJyMhAI2swyRYMMSMGxYwBE0YSv+N/a1UdxOAMjZgs+VSVPHLb1+D3RSkuu3UprFFvQ5I0hN2TxMJBQq4Jgs5xQs747+D0KCH3JGrsWupRkjWoSoyuznYqKysxYkKLEa/qoKHmbditZRj01jmLXffAAfonTs/pi1NVhZBrEv/EAIHJIfzj/fgnBlGiYbqyNewtKyPc1YXNZqNhwwb+4i/+gre//e33/GXOy8ujtbVVWDlyeXk5p0+fpr6+Xsj4s21rzGYzJ06c4PDhw6xbt05oBAXxhenixYtMTk4m50+Vm8Ct0NPTM+/m9bvB6OioMNUTkTqbohraQTwBWSy3LoK7F8w+7ofkdhvMJjedTodGoyEYDM4ht7Vr1/LLX/6Si5xAq9WSn1dAeXExZeWlFBUVUVxcTFFREb/85S/5yY9/QqaUiz5mnENaRY4isjNz2KO8Oa74D7etrgQwYSYYvHN1pc8bwZJ27a1V1BjBoBN/cApfYBJ/cBJZ1jJ0/FkGj/7i2hPlGWWOmeZpraTDpFrIIBebYseMFXN3Dqt2rGGH9Dp8qpsTvIBeZ8ZouHGBtZjziIZ8TLYcI+SawD8+gH9yCDUWJ35J1mDQ66goK2H79u28853vJBqNEo1GU76opaWlYTKZmJiYEHLyZ2VlYTKZGBwcTLnG4s2KR3bt2sXVq1c5fPgwNTU11NTUCInihoeHuXjxIpmZmezduze5iKTSLud6uN1upqamWL9+fcrGnI1QKITT6WTTpk1Cxne5XCk3bE1AdIWnSHITlUaffdwjIyNCi5wWgiVJbsPDw8lUZGLfbfbV8Wc/+1ne8pa3kJeXR3Z29i0Xld7eXn72Xz9nrbLzBuJSpmR0Bi0mm5GgZ37FKSYsOIIDt7w/HPHhD0yi9Cu82lJIc9sP8QbGCQads9ywpRk/OSXxLwyYsJKBXcnCghUzVkxY4vJd1x33dJeLjKJ0dEYt5oAVGQ1e/xh2azm+wDge3whu7zBu7yBu3whIEoNHf44kazAa9NRWV7Jz506efPLJG9yPFUXht7/9LT6fL+VNmJIkJYuFRJCbJElUV1fT1tZGaWlpyojmVlWRGo2G5cuXU1BQwPnz5xkZGaG2tpaCgoKUEM309DQdHR1MTU2xatUqioqK5oybSruc69He3k5JSYmw/Z/R0VHsdruwZmWn0ymsuMjpdFJTUyNk7OvXuVRClPh1LBYjEokkz5Xh4WF27tyZ8nnuBkuO3AoLC5NXdhkZGTetmJQkiZUrV95xrLKyMsKxEBHC6KS5+1+RYBTftB97oZXRq/Mnt1DUi9s7TDDkSEZiPv84vuBkstRfr9fzob96HelZUSxRG7290+hkA2YlDRsZpKnpSRLTSwtbQHyOAH5nAFO5hp7WdrTo6B44SEff75OEqdcbKCwsYM++17Nx40be9KY3zev9kmU52YohQmEgPz+fs2fPCmu4Li4upqOjg97eXiorK+95vPmU+2dkZLBnzx56enq4fPkyLS0tlJaWUlpauuDFJBKJMDw8TF9fH263m/LyclavXn1LEhBBcE6nk9HRUfbt23dP49wOiSpMEQgGg8KKSWKxGG63W1jK0+12C4l6FEURcsEK8fdbkqQkuY2MjDwsKLkVrFYrZrOZkZGRJLndrGJyPqioqAAggA8dNxZ3OIc92AttjF6dW+iQKP/348GPBx8eApIPv8YNMTh96dtAvHLSZDKRl5fLxsodrFq1iq1bt/LII49w8eJFDh06RE9PDzt27GCdshOrZF/wa4ipUby4cOPAgxO/1sOW7nrCVS46rjZTVFyMXq9j9erV7Nu3j7e85S3k5+cv/M2aQaKqsbi4+K7HuBUyMzNRFAWHwyEkRSJJEsuWLaO5uZnS0tJ72ntbSB+bRqOhurqayspKRkZG6O/v5+rVq5hMJtLT07Hb7clIJWF06fV6URQFp9OJy+XC6XTi9Xqx2WyUlpZSUlIyL1mqVBPclStXqKioECbeG4vFmJiYYNmyW5vy3gscDoewYhKPx4NWq01aYqUSoVCIQCAghJQDgQCAsOOe3T/3cM/tNpAkiaKiIgYHB1m+fDkmkwm//0YblvkgcfUewIeNGyuzpoedmAp0jKr9+PDgx0tY68ereojMGIdqNBrKSstYvWI99fX1yLJMcXExe/bsYcWKFbdMf6Wnp+NyuVixYgUAXtxYsd/2eKNqBA/O5I9f58YdcaISl81ZVr+c1255FXV1dezYsYP/+q//SvkilJ2dzdWrV1M6ZgKyLJOXl8fIyIiw/H9+fj6dnZ10dnbedZ/T3TZoy7JMUVERRUVFhMPhJGk5nU76+/vjDu8zvYXHjh1Dp9Nhs9mw2+0UFBRgt9vv6vNMFcEl9Fo3bNiw4OcuZA6DwSCsZUOkXFhiv01E1sHpdGKxWITobHq93qTjSqrh9/uT56zf72d6elpYY/5CseTIDeJ6fh0dHfzBH/wBaWlpDA4O3tU4WVlZWNOsuLxTaFQNfrz48BCUfQQ1PixDEWpra7nMabIys6irq2P5iuXU1dUlfyoqKu7qhLPb7YyNjbFs2TIK8gvxjrrm3B9Rw0kSc+MgoPPgibhQUdHr9KxcuZKNm17DunXrWL9+PStWrJgT+re2tgq5us7NzeXcuXP4fD4h1VUlJSWcP3+eZcuWCSnAkCSJFStWcPz4cYqKiha8iKZKeUSv15OTk0NOTs6c2yORCL/73e949NFHU7qQ3SvBRaNRmpubqaurEyLRlEBfXx/FxcVCFlpVVRkbG2PdunUpHxvEVmGKHFukv9rssTs7O7HZbDec8/cLS5LcamtraW9vB+JVdr7r3ZvnCUmSWLVqFceOH6OfDgx6A5WVlWxtWEddXR0rVqzAZrPx6U9/OuUnlt1u5+rVq6iqytp1azj23El61baZiCxOZBBflFavWsPGTRtYv34969atY9myZbdd+Ox2Ox6PR0hZvU6nIzs7m9HR0ZsKBd8rcnJykGWZ0dFRYbn5zMxMysvLaWpqYufOnfNeSBdLUksU7oXg2tra0Ov1Qj7zBILBIGNjY/Pa/70bOJ1OotFoUqJPxPiiiklcLpewvj/R5JYogmlvb6e2tnZJqJPAEia3Z2ealC0WC4FA4K4X8l//5tecOXOGuro6SkpK5kQLHo+HQ4cOCclz22w2wuEwwWCQ17zmNfzud78jag6xdu1aNm7ayLp161i3Lk6yC90fMBqNGAwGXC6XkC9yfn4+IyMjQhY6SZIoKyujr69P6MbzsmXLOHjwIJ2dnfNakB50YkvgbghuamqK3t5edu/eLXRh6uvrIzs7W8jeD1wrVBGREVAUBY/HI6wNwOl0JmsEUg2fzydUwzPxPU6Q21LBkiW3RORmMBjQarX4fL67OrEyMjL4gz/4g5veZ7FYiMViBAKBlH/htFotVqsVp9PJhz/8Yf7wD/+Q/Pz8lHzxJElKFn6IIrfLly8TDoeFpKjKyspob28XekWp0WhYt24dx48fJzc397bnzsuF2BJYCMFFIhGampqor68XquSuKAq9vb2sWrVK2BxjY2PCeqzcbjeyLAtJ1SeKSUSmJUUct6qqc6owlxq5LZ520AJQW1tLb29v0qZhtjt3KiHLMmlpabjd7js/+C6QICCItzik8orSbrczPT2dsvFmw2w2Y7VaGR8fFzK+0WiksLCQ7u5uIeMnkJmZSU1NDadOnbqhnSSBlxuxJZAgOKfTyfnz55NVmrOhqirnzp3DYrEITUdCfJ9YluV7quS9Hfx+P263W7hcmIjI1uVyCSsmCYfDBAIBIf1zCe+2BHE+JLd5oKioCIPBkFz8RJEbzCWgB2nsvLw8xsfHk87iqcZsdwYRqKyspL+/n/BdGLouBLW1tWRkZHDmzJkb3quXK7ElcCeCu3LlCl6vlw0bNghNR6qqSldXFxUVFULlvLKysoQVw4yNjT2Qqiculwuz2SzkffF6vZhMpuS2ykNymwdkWaampiaZmrRYLHddVHIn2O12XC7XnR94D2Pf7Ko5FWNrtVphYsT5+fmMjY0JI8+MjAwyMjLo7OwUMn4CkiSxdu1aIpEIly5dSn4WL3diS+BWBDcwMEBfXx+bN28WEjHMxtjYGD6fT5iWZGIOUeQTiUSYnJwUFnWKrsIURZyzU5JTU1NMTU0JK7i5GyxJcoP4FXdHRwfw4EZuNpuNUCh0103ot4MkSeTl5QmLrhLkKSo1CXGPtO7u7mSTqShotVo2b97MyMgIV69efcUQWwLXE9zIyAjNzc1s2LBBuGOyqqq0trZSW1srjERDoRCTk5PCmofHx8dJS0sTJjz8ILcYJN6Tjo4O8vPzhYuILwRLltzq6+tpaWkB4iThdruFREA2m41gMCiEgGYXlYhAIroS8b5IkkRpaSl9fX0pHzuBjIwM8vLyhDWNz4bZbGbbtm10dnbS0tLyiiG2BBIENzk5yZkzZ1i7dq2w/anZGBwcJBKJpFzMejYGBgbIzMwURj4JA04RSOyJiUxLinRISJDZlStXhJoF3w2WLLmtXbuW8+fPAyRDX4/Hk/J5dDodaWlpwggoPT1d2Ng5OTmEQiEh7wvEqxrHxsaEEH8C9fX1DAwMCHsNs5FI4Wo0GmEXBUsZDocjaR81Ojoq/PXHYjFaW1upr68XIocF8ciwr69PWMpTURTGxsaEpiRF7YlFIpG7rjK/ExIC1QniPHfunLDm+bvFkiW39evX09LSQiAQSAr6it4bE4GcnBxhqT2NRkNOTk7SIijVMJvN5OTk0N/fL2R8iGuJlpSU0NbWJmwOmOvHtnPnTvr6+rhw4UJSDuvlDFVV6e7uTi5Ae/bsuW0VZarQ29uLVqulpKRE2BxTU1OEQiFhKcnp6WkkSRLWYC1aLsxkMglxd0j0Hicit3PnzgmzSLpbLFlyKy0txW63c/HiRUB8VaPDcWeftrtBXl4eLpdLWPSTSE2KQllZGb29vUIXwbq6OsbGxoS1Nly/x2a1Wtm9ezdut5vjx48LjUzvNxRFobm5mfb2drZt20ZhYeG82gTuFeFwmPb2dpYvXy68MbykpERYZJhISYqSCxOZ8hS9l2ez2dBoNEnptofkNk9IksT69es5d+4cIJbcMjMzmZ6eFvIlNxgMZGRkCCv8yMvLw+l0CiVPQFh0CGAymaitraWpqSnlkdStikdMJhM7duzAbDZz6NAhYRc39xPBYJBjx47hdDrZvXv3nNcvmuAuXbqU3FMVhUAgwPDwsDBlDxC73+b1egkEAsK0GKempoRKkSXSnVeuXEGr1S6pNgBYwuQG3EBuosrq09PTUVVVWGpSZM+Y0WhMijSLgCzLVFRUCG+4rq6uRqvVpjQ9eaeqyISKSWVlJceOHaOtrU1Y68NiQlVVBgcHOXjwIGazmR07dtxUZFsUwY2MjDA2Nsbq1auFRm29vb3k5OQIU7nxeDxCyWd0dJScnJyU68NCPGKfmpoSmvKcvd+2du1aIbJn94KldTTXYf369TcUlYhSKsnKyhLaMzYxMUE0GhU2vsiG67KysqTvmCjIsszatWvp6elJSXpyvuX+kiRRU1PDjh07GBkZ4dChQ0Jfp2iEQiHOnDnDpUuXWL16NevXr7/t4plqgguHwzQ3N9PQ0CDMEw7ixSqpMqW9FUSST2J8UVGhy+VCkiQhpfmJQCBBbufPn19yKUlY4uS2bt06Ll++TDAYnOMSLQLZ2dlMTU0JGTstLQ2TycTExISQ8QsLCxkfH7+lxNS9Qq/XU1xcLLzh2mazUVdXd8/pybvpY7Pb7ezevZv8/HyOHDnC5cuXhb2fIhCLxeju7ubAgQNIksQjjzwyb2HqVBLcpUuXsNvtQotIIF7+bzAYhEVVqqoyMDAgTNw7FArhcDiEpW0nJyfJysoSEjkHAgEikcicYpKlVikJS5zcysvLsVqtXLp0CRC775adnc3k5KSwnjGR0VVaWhqZmZlCqxpra2sZHh4WpsOZQFVVFTqd7q7Tk/fSoC3LMsuWLWPnzp14PB5efPFFrl69KiziTgUSi/CBAwfo7e2Nu05s3LjgCrlUENxipSOj0ShXr16lrq5O2DwOh4NAICCM3MbGxkhPTxcW3U5OTgpNSSbczqPRKBcuXHgYuS0UkiSxadMmTpw4AcTNR0VFV4nNUZH7biJ7qxI2MqLGN5vNlJeXc+XKFSHjJzA7PbnQi4FUKY+kp6ezdetWNm/ezNjYGC+++CLt7e3CdTAXglgsRn9/P42NjbS2tlJXV8fevXvvKc11LwTn8/loampi5cqVQtORAD09PUnxbVFImKo+iClJ0fttiagQ4pG6Vqtdcg3csMTJDWD37t0cOnQIiJOby+USsshIkiR03y0zMxNFUYRV5RUUFBAOh4WRP8Sjt4SGnEhYrVbWrl3LuXPn5h0pipDUys7OZufOnaxZs4aJiQleeOEFzp8/z9TU1H1rAPd6vbS0tLB//346OjooLy9n3759lJaWpiSKuRuCi0QinDp1ipKSEuHpyHA4TEdHh9AWg0gkwtDQkDBVlVgsxvj4uND9tsQ2jgjMjgobGxvZuXOnsFaMe8GSJ7e9e/dy6NAhFEXBaDSSlpYmbHEV2XAty7JQLUiNRkNJSYlQuSyDwUB1dTVXrlwRvrgXFRVRWVnJqVOn7ngxI1IrMpFS3r59O7t27UKr1XLq1Cn279/PxYsXhTozwDUliLa2NhobGzlw4AB+v59169bxyCOPUFFRkfKFZSEEp6oq58+fx2g0smLFipQex83Q0dGB3W4XttcGcckwq9UqTBJrcnISvV4vjHwSjeEiyD+hiJSI3BobG9mzZ0/K50kFljy5rV+/nmAwmNSZTOyNiUB+fj6Tk5NEIhEh4+fl5QltuC4vL2d4eFhoIURVVRU+n09odWYC9fX12Gy2m9rVJLCYIsg2m41Vq1bx6KOPsnr1alRVpampieeee45Tp07R1tbG6OjoPfUcJhToOzs7OXv2LC+88ALHjh3D4/FQVVXFY489xsaNG8nNzRW6rzVfgmtra8Pj8bBhwwbhpeCBQICenh6WL18ubA5VVent7RWqhSmyMXz2+CIwNTWFzWbDYDAQi8U4fPjwkiW3JenEPRs6nY4dO3bQ2NjIypUryc7OTlrhpBoWi4W0tDTGx8eF2LLn5eVx/vx5fD6fEJFXq9VKVlYWvb29wnLgiWbN1tZWoV9QuNbIn6hevN7F+X6p+2s0GvLy8sjLy2PVqlW4XC6mpqZwOp0MDQ3h9XoxGAwYjcY5P1qtNknSib7BhGtE4icQCCR7F+12O2VlZWRlZd2XHqI7OXoPDg7S3d3Nrl27hPmozcbVq1fJy8sTproB8agqEAgI+f7DNVWStWvXChk/EAjgcrmEVmEmUpIXL15EURRhr+VeseTJDWDPnj0cPHiQj3zkI2RnZ3P27FnC4bCQL1SiqlHEya3T6cjKymJkZITq6uqUjw9xE9ALFy5QU1MjbEEsLy+nq6uLgYEBSktLhcyRgFarZdOmTRw+fBiz2Zx835aKbY0kSUkiSiASieDxeG4grWg0mmxxcDqdaLVajEYjmZmZSQK0Wq1CtADvFrciuImJCS5cuLAotjkQb6geGBhg7969Qufp7u6mvLxcWCGJ0+kkGo0KUw4ZGxsjIyND2Dk0OTlJfX09AAcPHmTnzp3C3qt7xdI8quuwZ88e/uEf/gFFUTAYDFitVqampoSIpebn53Py5EkURRFCDiUlJXR2dlJVVSUk6snLy0Or1TI0NCRscz9RMt/S0kJ+fr7wq3aLxcLWrVs5duxY8jNZCsR2K+h0ulseVyQS4Xe/+x3r1q0TbhKaKlxPcGVlZZw6dYpVq1YJS3/NhqqqXL58mdLSUmFqJBCv+BwfH78hQ5BK9Pf3U1RUJFwLUwQS+22zi0mWakoSHoA9N4jvu4XDYS5fvgwgtKoxIyMDWZaFifgWFhYSCASEVU1KkkRlZSXd3d1Ciz6Kioqw2WzJz0Q07HY7W7dupaWl5RXpx3a/kSC4qakpjh8/zooVK4RH7Qn09/fjdruF7rVBvMUgPz9fWCtDNBplcHBQmD1PNBplYmJC+H6bXq9f8vtt8ICQW2Lf7eDBg4DYqkbRDtcJC5De3l4h40M8OvT5fMIUUSD+Pq1Zs4aRkZFFKS6BeEpHkiQkSRLWzP8Qt4bP5yMSiaDT6YQJjV+PQCDA5cuXWbNmjdBINxQK0dvbS1VVlbA5hoaGMJvNwvYMJyYmMJlMwqLb2fY8zc3NqKrKmjVrhMyVCjwQ5Abwqle9iueffx6A3Nxc/H6/EJ1JuLbvJrLhenh4WFhVpk6no6amRnjJvslkoqGhgQsXLghvcJ7tx7Zt2zba2tro6Oh4xRmO3i+Mj49z4sQJVqxYwd69exfFD05VVS5cuEBhYaFQdwGA9vZ2cnJyhGYDEqaqooqwRkZGFs2e57nnnmPv3r1Ldr8NHiBye+Mb38iBAwfwer1otVqys7OFRQy5ubmEQiGh7txWq5XBwUEh40O8sCQUCjE8PCxsDrjmuycyPXl98UhmZibbtm2jq6uL5ubml4WS/1JGT08Pp0+fZvXq1ZSXly+KHxxcS0c2NDQIGT8Bn89Hb28vy5YtEzaH2+3G7XYL2wePxWKMjIwIq/J0Op0oipIshPn1r3/NG9/4RiFzpQoPDLnV1NRQUVHBCy+8AIhVwtdoNBQWFjIwMCBkfBAvl6XRaKivr6e1tVXo4i9JEqtXrxaWnrxVVaTdbmfXrl04nU6OHz/+QIkcPyhIGJ22tbWxZcuWOQuzaILz+/1cvnyZtWvXCi+8aWtrS+4hi0Jvby+FhYXCXsvo6CgGg0FYynN0dJTc3FxkWWZ0dJSzZ8/yute9TshcqcIDQ24Qj95+/etfA3Fym56eFpYOKy4uZmhoSBgxFBcX4/P5hBWuQHzvTZIkoaolEE9Prly5MuXpyTuV+ye8ygwGwwNvVbPUEAqFOHHiBNPT0+zevfumOoWiCG52OjI3NzclY94KLpeL4eHhZHm7CEQiEQYGBoQ2hg8ODia/7yIwOyX529/+lo0bNwpPFd8rHihye8Mb3sBvfvMbYrEYJpMJm80mTPEjOzsbWZaFFWVotVrKysqEmoAmSvYXQ9m+pKQEu93OxYsXU7LIzbePTavVsmHDBsrKyjhy5IjwNOwrAW63m8OHD6PT6di5cydms/mWjxVBcL29vXg8HuHpSIi3lFRUVNz2Nd4r+vv7k84dIhAOhxkbG6O4uFjI+H6/H4/HkySzZ599dsmnJOEBI7etW7eiqiqnTp0CxKYmJUmiuLhY6L5YRUUFo6OjBAIBYXMUFBRgNpuFO2knqienpqbo6uq6p7EW2qAtSRJ1dXWsX7+epqYmmpubhRXrvJyhqipdXV0cPnyYkpISNm7cOK+CgVQS3OTkJC0tLaxfv154OnJycpKpqSlqamqEzaGqKj09PcKrMO12uxDVI4hHbVlZWeh0OgKBAPv3739IbqmGVqvlta99Lc8++ywQJzeRwrXFxcWMjIwIi3osFgu5ublCiUeSJJYvX05HR4fwikaj0cimTZtoa2u764j6XpRHCgoK2LNnD16vl8bGRqGtEC83+Hw+jh07Rnd3N1u2bKG+vn5BKa5UEJzf7+fMmTM0NDQIs2tJQFVVrly5QnV1tVBFmLGxMaLRqFB7nkRKUhRmpyRfeukl8vPzhfccpgIPFLnB3H239PR0tFqtsIbu9PR0zGYzIyMjQsaHuBBxX1+f0LRhdnY2mZmZwjQ5ZyMjI4M1a9Zw9uxZPB7Pgp6bCkkti8XCtm3bqKqq4tSpUzQ3Ny9ps9H7DVVV6e7u5uDBg9hsNvbu3XvXxHIvBBeNRjl16hSFhYVC96YSGB0dxe/3C42oIH5OV1RUCJPC8/l8OBwOYeSZEPJOkFuiSlKkpmyq8MCR26OPPkpnZycdHR1IkkRRUZHQ1GFpaanQgoysrCxMJpPQ1wCwfPlyent78fv9QueBeMRbUVExL7uaBFKpFZlQadm7dy8ej4eDBw8Ka/p/kOHxeDh27BhdXV1s2bKFVatW3XPf0t0QXMI2R6/Xs3Llynuafz5QFIUrV65QV1cntE/L7XYzNTUllKz7+/vJy8sTFn0ODw+Tnp6OxWIhFovx61//mje84Q1C5ko1Hjhys1qtvOY1r+HHP/4xEF9Ih4eHhV2dl5aW4nA4FhyFzBeSJFFdXU17e3tSVFcE0tPTKSwsTFnBx52wbNky0tLSOHv27B3TxqJEkC0WC9u3b6eqqoozZ85w/Pjxh8omxFU/Lly4QGNj4z1HazfDQgnu6tWruFyuRbHNAejs7AQQJoOVQFtbG6WlpcKIR1EU+vr6qKioEDI+xFOeiUKVQ4cOEYvF2L17t7D5UokHjtwA/uRP/oSnn34aVVVJT0/HZDIJq5rU6/UUFhYKlcsqLi5Gp9MJnQOgoaEBp9MptH8vgYRdTTAY5MqVK7d8nGh1/0QU9+pXv5r09HSOHj3KmTNnhKnbLGWEw2FaWlp46aWXiEQi7N27NyXR2s0wX4IbHh6mq6uLzZs3L4obgtvtpr29nXXr1gklUofDwfj4OLW1tcLmGB0dRaPRCDNuDQQCTE1NJRvDn376aR5//PElrUoyGw8kub3+9a9nbGyMs2fPJqsaRS7Y5eXlDAwMCIsOE0Uf7e3tQqv89Ho9a9as4dKlS0IrNBPQ6XRs3ryZ/v5+enp6brh/MW1r9Ho9K1asYN++fWi1Wg4ePEhzc/OivA/3G9FolI6ODl588UWcTifbt29n48aNQhX24c4ENz09nbTREdlAnYCiKDQ1NVFRUUFGRoaweRLFKpWVlcJEmCGuHCNSzmtwcJCcnByMRiOBQICf/exnvOtd7xIylwg8kORmMpn4oz/6I55++mkgHvmMj48LU6nIzMzEZDIxNDQkZHyIS35ZrdZkykQU8vPzKSgo4MKFC4uSnrRYLGzevJmWlhb6+/uTt98vPzaTycTatWvZs2cPoVCIF198kbNnzwptpr9f8Pv9tLS08MILLzA8PMyGDRvYvn270IX9etyK4JxOJydPnmT58uVCrKtuhs7OTmKxmNCGbYgLGLtcLqEtBh6Ph+npaaGp1dkpyd/85jfk5eWxYcMGYfOlGg8kuQG8613v4ic/+QnRaBSLxUJGRoawBt7FsJFJRG9dXV0Eg0EhcyTQ0NCA2+2eQzYikZWVxebNm7l48WLSvfl++7FZrVY2bdrE3r170ev1HD9+nEOHDtHb2/tA98gpisLo6CinTp3ipZdewufzsXnzZnbt2iVc7eNWuJ7gXC4Xx48fp7a2lsrKykU5hkQ6cu3atcK81OBa1FZbWyu0T6+7u5uioiJhqVyXy4XP50teePzwhz/kXe961wNRJZnAA0tuu3fvRqfT8eKLLwIIb7guKipK5qBFITMzk5ycHK5evSpsDoin6FavXs3ly5cXLS2Xk5PDpk2bOH/+/JLyY0tLS2PVqlU8+uijlJaW0tvby+9//3vOnz8vtMcxlVAUhampKVpaWti/fz/Nzc2kp6ezb98+Nm3aRFZW1n1flBIENz09zeHDh6mqqhLmRn89FEXh/PnzVFZWCo9ah4aGCIVCQos8EnJeogtJCgoK0Gq1TE1N8dxzz/Enf/InwuYTgQdjZ/Am0Gg0vOMd7+Dpp5/mscceo7CwkEuXLuHz+YR06ifksrq6uoQ2mC5fvpzGxkaqq6uFKQ7A3PTkli1bFmXx83q9yXn8fv+SILcEdDodFRUVVFRU4HQ6GRwcpKWlhUAgQE5ODvn5+eTl5QndQ1kIIpEIExMTjIyMMDY2lvQhXL16NXl5efedzG6GUChEJBJBo9Hg9XpRVXVRjrOjowNFUairqxM6j6IotLa2Ul9fLzQ67O3tJT09XRhRq6rK0NAQq1evBuCnP/0p69atE94TmGo8sOQG8dTktm3b8Hq9pKWlkZeXR39/vzDriqqqKvbv34/b7Ra2AW61WikuLqa1tVV4fnvlypUcOHCA/v5+4WXRiVTk9u3biUajnD59GkVRFs3NeSGw2+3Y7XZWrFiB1+tldHSUgYEBLl68iM1mIzMzM/mYtLQ04eXrqqri9/txuVw4nU4cDgdTU1PJc37Lli1kZGQsSUJLwOFwcOLECaqrqyktLeXYsWPJYhKRx+12u+no6GD79u1CCQfifm2yLAtVC4nFYnR1dQk1CZ2YmEBRlGQVZiIl+aDhgSa3VatWUVVVxU9/+lOeeOIJysvLaWpqoq6uTsiCYzQaKS0tpaOjg/Xr16d8/ATq6+t56aWXcDqdwiwsIB6tJNREcnNzhUUlN9tj27JlC6dOnSIajS7avstCIUkSVqsVq9VKTU0NoVCIiYkJHA4HfX19yZ7B9PR00tPTsdlsGI1GDAYDJpMJg8Ew7/NQVVVCoRDBYDD52+v14nQ6cblcRKNRbDZbsl9x9erVwqsdU4WpqSlOnjxJfX198up/+/btwgluMdOR0WiUq1evsnr1aqEXO/39/RgMBqGK/IkqTFmWaW9v5/Tp0/z85z8XNp8oSOoDbmX8rW99ix/84AecPHkSVVV58cUXWbFihTA5Gp/Px4EDB3jkkUeEpg1bWlpwu91s3bpV2BwJNDU14fV62bZtW8qvbm9XPDI9Pc2pU6coKiqioaFhURp4UwlVVZME5HQ68Xq9cwgK4vubRqMRjUaTfH1TU1NkZmaiqiqKohAKhQiFQqiqik6nSxKkxWIhPT0du92OzWYTHnmIQF9fH5cuXaKhoeEGpY5gMMixY8ew2+1CCO7SpUtMTk6ya9cu4e/d1atXGRsbY+fOncIiUUVReOmll1i2bJkwB4BAIMCLL77Ivn37MJvN/PVf/zWDg4P85Cc/ETKfSDzw5OZyuSgsLOTYsWOsWbOG9vZ2Jicn2bZtm7A5z507h1arTeakRSAcDrN//342bdokrEkzgVgsxtGjR7HZbKxZsyZlX875VEX6/X5OnTqFXq9n48aN6PX6lMx9v5EgrQTRxWIxVFUlEolw8eJFVq9ejU6nQ5IkjEZjktAeRAK7GRRFoaWlhYGBATZu3HjLc1gUwfX19dHS0sLu3buFXoQCyZaSzZs3C92PHxwcpLW1lX379gm7ELx69SoOh4MtW7YQDAYpLi7mmWeeYc+ePULmE4kH61L5JkhPT+cd73gH3/nOd4C4XNbU1JRQBYqamhr6+/uFluzr9XpqampoaWkR3o+m0WjYtGkTY2NjKXMomG+5v9lsZufOneh0Og4dOoTb7U7J/PcbsixjMpnIyMggPz+foqIiiouLk1fcRUVFFBUVUVhYSGZmJmaz+WVDbOFwmJMnTzIxMcHu3btve3Emwg9uamqKS5cusXHjRuHEBnFCyMrKEkpsqqrS0dFBdXW1MGJTFIXe3t5khP2zn/2M7OzsB0Zu63o88OQG8IEPfICnn34at9uN0WiksLDwpooYqYLNZiMnJ+eefcvuhKqqKqLRqPDGbog3N2/atInW1tZ7FhleaB+bVqtl48aNlJSUcOTIEaEuDA8hFgmjU41Gw86dO+dFLqkkuIRtzvLly4VnPCBOpP39/axYsULoPGNjY4RCIaEFWCMjI8iynNzP+/a3v82TTz65pAuVboeXBblt2LCB5cuX85//+Z9A3AS0v79faDNubW0tPT09QqM3jUbDunXruHr1qjDh5tnIzMxk1apVnD179q4j37tt0JYkifr6etauXcu5c+dob29fFAWVh0gdRkdHOXLkCEVFRWzatGlBTcypILhEFW5+fr7QHrDZ8zU1NVFfX4/VahU2j6qqtLW1UV1dLTS67+npoaKiAkmSaGpqoqmpiSeeeELYfKLxsiA3gI985CP88z//M4qikJGRgcViEdrUnWi4Fu2RlpmZmawCXYzFvrS0lLKyMk6dOrXgi4NUKI8UFhayc+dOent7OX36tHC1loe4d8RiMa5cucLZs2dZs2YNy5Ytu6ur/XshOFVVaWpqQqvVsmrVqkWJNlpbWzEYDML7v4aHh4U3hifaTBKR4T//8z/zrne9a1Gl2lKNlw25/fEf/zEOh4OXXnopKZfV1dUllBCWLVtGX18fPp9P2ByJeSKRyKKkJyHeSG42mzl37ty8379USmqlp6eze/duZFnm4MGDDA0NPYziliicTieHDh1ifHycXbt2JRXk7xZ3S3Dt7e04HA42bty4KFW3U1NT9PX1sXbtWqFEuliN4V1dXRQXF6PX65mamuJHP/oRH/7wh4XNtxh42ZCbwWDgySef5Bvf+AYQl+NSFEWY3iTE996Ki4tpa2sTNgfE05Nr165dtPSkJEls2LABn893W7uaBERoRRoMBjZu3MiqVau4ePEiZ86cESaM/RALRywWo7W1laNHj1JUVMSuXbtSJmywUIIbGRmho6Nj0WxzEunIhGehSPT19SFJktDGcL/fz9DQUFIO7Xvf+x6bN29eFONYkXjZkBvAhz70IV566SUuXbqELMtUVVXR0dEh9Kq/vr6ekZERXC6XsDkgnp6sqKjg/PnzdzT/TAUSdjV9fX23FVgWLYJcVFTEI488giRJHDhwQKgzw0PMD4loLdHXJUI0Yb4E53K5ko3g6enpKT2GWyGRjhQtPpBoDF+2bJnQaLSzs5P8/HzS0tIIBAJ8/etf56//+q+FzbdYeFmRW35+Pk888QRf/vKXgbjTbiAQYGJiQticJpOJ8vLyeUU494r6+nqi0ajwKs0E0tLS2LhxIxcvXrxpBLxY6v4Po7ilgUSKbHa0JpJQ7kRwbrc76S4gSrTheixWOhLiqUKz2SzUEigUCtHf35+05/n+979Pbm4ur3vd64TNuVh4WZEbwMc//nF+9rOf0d3djVarpbKyUnjRR21tLdPT00xOTgqdZ3Z6crH6wXJyctiwYQPnz59ndHQ0efv9sK1JRHGqqnLgwAG6urqIxWKLMvcrGaqqMjIywsGDB4VGazfDrQjO6/Vy/PhxKioqhPqmzcZipiPD4TCdnZ0sX75cKIl2d3eTlZWF3W4nGo3yD//wD3zyk598YMv/Z+NlR24VFRW89a1v5R/+4R+S/3Y6nULNKPV6PbW1tVy6dEl4yjCRnmxqalqU9CTEI+J169Zx9uxZxsfH76sfWyKKW7t2Lf39/Rw4cICBgYGHBSeCMDU1xdGjR2lubqaiokJ4tHYzXE9wXq+XY8eOUVJSIlzpfzYWKx2ZmEt0Y3gkEqG7uzt5cfD//t//Q5Ik3va2twmbczHxsiM3gE9+8pN8//vfZ2RkBL1eT0VFhfDoraqqKtnhLxqJ9ORiVU9CvER/zZo1nDp16r77sUmSRH5+Pnv27KG+vp7W1lYaGxsZHR19SHIpgsvl4uTJk5w8eZLc3Fxe9apXUVlZed/0P2f7wTU2NlJQUCA8qpmNycnJRUtHOhwOBgYGhBd09Pb2YrVaycrKQlEUvvzlL/Pxj38crfaB1tNP4mVJbg0NDbz61a/ma1/7GhAnnomJCaGpPFmWWblyJa2trcJ7sxLN3e3t7cILWWYjHA4n/14KbtWJKrJ9+/ZRWlpKU1MTR48eFRqlv9zh9/s5d+4chw8fxmKx8KpXvYq6urolseDFYjEURUGSpDnnomhEIhEuXLiwKOlIVVW5ePGicD/HhHVObW0tkiTx29/+lsnJSd7znvcIm3Ox8bIkN4BPfepTfPvb38bhcCStakQ7XOfm5pKTk7MoxSUZGRnU1NRw6tSpRSmumO3HtnbtWs6cObNkZLI0Gg1VVVW86lWvIicnh+PHjye1DR9GcvODx+Ohubk52Se6b98+Vq5cuSil9fOBx+Ph6NGjFBYW8sgjjySrJEV/vqqqcu7cOSwWy6KkI/v6+giHw8L3EXt7e5PWOaqq8tRTT/Gxj30Mo9EodN7FxMuW3LZu3cr69ev5p3/6JyBe9DE2NobD4RA6b0NDA8PDw0xNTQmdB+KvKSMjgzNnzgjdf7t+j624uJh169Zx7ty5JVWar9PpqK+v59WvfjU2m40zZ87Q2NhIX1/fw8KTm0BVVcbGxjh+/DiNjY3EYjF2797NunXrMJvN9/vwknC73ck9toaGBkwmU8rFlm+FK1eu4PP52LBhg/B0ZDgcprW1lYaGBqEN25FIhPb29qSSzKFDh2htbeUDH/iAsDnvBx54y5vb4eDBg7z5zW9OVgS1tLTgdDrZvn270Hnb29sZGhpKqmyIRDQa5ejRo2RkZAix4Lld8cjo6Chnz55l5cqVwp287wbRaJShoSG6uroIBoOUlJRQVlYmzEV9PohEIvzud7/jta997YK0F1OJYDDIwMAAfX19RKNRKioqKCsrW5JX7QnPv8rKymQKLQHRfnADAwNcunSJXbt2LYoxbHNzM4FAgM2bNwsl0ra2NiYmJtixYwcQN459zWtew2c/+1lhc94PvGwjN4C9e/eydetWnnrqKSBuVeNyue5Z9f5OqKqqIhaLCXUmSECr1bJp0yaGh4dTPt+dqiLz8/PZsmULLS0ti1IpulBotVrKysrYu3cvmzZtIhwOc+jQIY4cOUJ/f/+i7tvcb8RiMcbGxjh9+jT79+9nfHycZcuW8epXv5q6urolSWz9/f0cP36curo66urqbljwRdjlJOBwOGhubmbDhg2LQmyzi0hEElsoFJrTYvDss8/S3d3NX/3VXwmb837hZR25Qdxletu2bVy9epXS0lI6OjqSUZXIk2hycpKTJ0+yZ8+eRflyTE1NceLECTZv3pwSq4+FlPv7fD5OnTqF0Whkw4YNS9pwNBwOMzAwwMDAAG63m6ysLPLz88nPz18U76/FjNxCoRBjY2PJH71eT3FxMWVlZYvyWu8WqqrS0tJCf38/GzZsIDc397aPT3UEFwgEOHToEDU1NcJFkSF+4dHY2EhJSQm1tbVC57p06RJ+v5/NmzcTi8VYtWoVH/zgB/nQhz4kdN77gZc9uQG84x3vwGQy8W//9m/EYjFefPFFGhoa7lnk9U64ePEibreb7du3L0rJcl9fH1euXGHXrl33tHjdTR9bJBLh/PnzeDweNm/eLNQCJFXw+/2Mjo4yOjrK5OQkaWlpSaLLyMgQ8pmJJjePx8Po6ChjY2NMT0+Tnp6efE02m23JN+dGIhHOnj2bXIDne2GYKoJLuNJbrdZFKfsHaGlpYXJykp07dwrdxvD5fBw4cIDdu3djs9n493//d774xS/S2tq6pC9I7xavCHLr7OykoaGB8+fPs3z5cvr6+ujo6OCRRx4RejJFo1EOHjxIZWXlolwBQvzKbGJiIuluvVDcS4N2wnequ7ubDRs2JE0PHwREIhEmJiYYGRlhbGwMSZLIycnBbreTnp6O3W5PCRmlktxisRhutxun04nL5WJycpJAIEBOTg75+fnk5eVhMpnu+ZgXC16vl1OnTmGxWFi/fv2C3597JThVVTl//jw+n4/t27cvijP69PQ0x48fT6nw9K1w7tw5JEli3bp1BINBamtr+fKXv8w73/lOofPeL7wiyA3iosrDw8P84he/QFGUJOmINjVc7PSkoiicPHkSjUbDpk2bFvQFT5XyyODgIBcuXKCuro7q6uolHy1cD0VRmJ6eZmpqKulzFQgEsFgsc8guPT19wVe8d0tusVgMl8uVPB6Xy4Xb7Uar1SaPJeExuBR60haK8fFxzp49S1lZ2T01Z98LwXV0dNDd3c3u3bsXZQ9yMdORLpeLw4cPs2/fPsxmM1/5yld4+umnOXfu3H1rzBeNVwy5jY6OUl1dzf79+9m6dSsjIyNcuHCBV73qVcL3Pi5evIjL5WLHjh2LstCHw2EOHz5MUVERy5Ytm9dzUi2p5XQ6OXXqFNnZ2axZs2ZRroJFIhQKJYkl8RMIBNDpdBiNxuSPwWC44d8ajQZZlpEkiWg0yv79+3n1q1+NRqNBVVUURSEUChEMBpM/N/u3Xq9PEmvix2QyPXAXD7Ohqmry3Fu9enVKrF3uhuASlb87duzAbrff8zHMB4uVjlRVlePHj5Oenk5DQwMul4vKykp++MMf8thjjwmb937jFUNuAJ/97Gc5dOgQhw4dAuDEiROkpaWxatUqofNGo1EaGxupqKhYtPSkx+Ph8OHDrF69muLi4ts+VpRWZDAY5PTp06iqyvr16xclcl1MhMNh/H7/Tclo9m3z+YolSPFm5Gg0GjGZTBiNxgeayK5HJBLh4sWLTExMsHnz5pS6Pi+E4NxuN0eOHGHNmjXC9+ETWMx05NDQEJcuXWLfvn3odDo+/elPc+LECQ4cOPCyOp+uxyuK3NxuN3V1dXz1q1/lHe94B16vl8bGRnbu3ClcDDZRzbgYcyUwNjbGmTNn2Lhx4y33v0SLIMdisWTl2/Lly6moqHhZf6FuhkR0pqoq4XCY/fv38wd/8Afo9frkFfsr7T0ZHx/nwoULpKWlsXbtWiF7g/MhOJ/Px9GjRykrK6O+vj7lx3AzRCIRGhsbKS8vF65EEolEOHDgAMuXL6ekpISOjg5Wr17NkSNHWL9+vdC57zdensnWW8Bms/GP//iP/I//8T/weDykpaVRWVnJxYsXhcv4ZGVlUVNTw5kzZ4hGo0LnSiAvLy8plXUzT7vFUPfXaDSsWrWKzZs309XVxbFjx/D5fELmWqqQJAmNRoNWq02mwLVaLRqNBkmSXlHEltBpPHPmDLW1tWzdulVY0cud+uD8fj/Hjh2jsLBw0dwFVFXlwoULWCyWpPO1SLS3t2OxWCguLkZVVf7yL/+Sd7/73S97YoNXGLkBvPOd76SmpoYvfOELQFzCKhAIMDAwIHzu2tpaTCYTzc3Ni6Z5WFRUxOrVqzl16tQcSbDFtq3Jyclh7969WK1WDh48SHd390Pdx1cYxsfHOXjwID6fj71791Je/UJaNgAANsRJREFUXi6c2G9FcIFAgOPHj5OXl0dDQ8OiXWD09fUxNTXF+vXrhc/p8Xjo6elh1apVSJLEr371K06fPs2XvvQlofMuFbziyE2SJL71rW/xrW99i5aWFrRaLQ0NDbS0tAhXupckifXr1zM+Pr4oZJpAQpPv5MmTTE9P3zc/Nq1Wy+rVq1/RUdwrEbOjtZqaGrZt27ao2pXXE1yC2DIzM5ML/2LA5XJx+fJl1q9fL1yQOuEukJCb8/v9fPSjH+XLX/7yfbOqWmy84sgN4uLGf/EXf8GHP/xhVFWloKCA9PR0Wltbhc9tNBpZv359ssF7sVBeXs6yZcs4duwYV65cua9+bA+juFcOro/W7teea4LgHA4HBw8eJD09fdGatCFeVHb27Fmqq6tToiB0JwwPD+PxeJL7iE899RR5eXn82Z/9mfC5lwpekeQG8PnPf562trak++zKlSvp7+/H6XQKnzs3N5fKykrOnj27aPtvSw2zo7jOzk6OHz+Ox+O534f1EClCOBymubmZ06dP35do7VaQJOm+XEhdvHgRo9G4KHt7kUiEy5cvs2LFCnQ6HZ2dnXzlK1/hW9/61su2p+1meOW80utwfXGJ1WqlurqapqamRREArq+vR6fTLdr+22w/tuXLl3PixIlFseW5E2ZHcY2NjVy4cIFAIHC/D+sh7hLRaJSrV6+yf/9+AoHAfY3WZiMQCHD06FHsdjt79+5dND84iHunjY2NCXEuuBlaWlpIS0tLFpH89//+33n3u9/Nhg0bhM+9lPCKJTeIF5dUV1fzt3/7twBJlYD29nbhc8uyzMaNG5mcnKSrq0voXNfvsVVWVtLQ0MCJEyduWkW52NDpdKxatYq9e/cSjUZ56aWXaGlpeUWp9j/oUBSFnp4eXnzxRcbGxti8eTNbtmxZEgLNfr+fo0ePkp2dnfSqWyw/uMnJSS5fvszGjRsXRQptfHycoaGhZMr15z//+SuqiGQ2XtHkJkkS3/nOd/jud7/L0aNHkWWZdevW0dnZuSjpSaPRyKZNm2hra2NsbEzIHLcqHikrK0tWUYqae6FIS0tjw4YN7NixA5fLxYsvvkh7e/srNnX7IEBVVYaGhjhw4ADd3d2sWrWKnTt3kp2dfb8PDYjrVR49epS8vDxWr16djJxE2uUk4Pf7OXPmDA0NDYvyfiQKd1asWIHZbGZycpIPfvCDfOMb33jFFJHMxiuqiftW+Md//Ee+853v0NzcjNlspq2tjZGRkUUxG4W4FmNzczO7du1KqZr+fKoih4aGaGpqSpn0USoxMTHBlStXCAaD1NXVUVpa+sDvGSwFs9JUQFXV5OcTCoWor6+npKRkSX0+DoeDU6dOUVxczIoVK26aEhRleBqNRjly5AhZWVnCFZASuHDhAn6/n61btyJJEo8//jjBYJBf/OIX9z0tfD/wkNyIq2js3LmTzZs387WvfQ1FUTh06BD5+fnz1ma8V1y5coXh4WF27dqVEvuJhZT7p0q0VgRUVWVkZIQrV64AsHz5cgoKCpbUMS4ELwdyczgcXLlyBZfLRW1tLRUVFUtOOzQh3l1fX09VVdVtz5dUE5yqqpw5c4ZIJMLWrVsXhfDHx8c5c+YMe/fuxWw287Of/Ywnn3ySlpYW8vPzhc+/FPGQ3GbQ3t7O2rVref7559m5cycul4sjR44smpCqqqqcPn0aRVHYvHnzPX0h7qaPLWE3Yjab2bBhw5JbeBVFob+/n6tXr6LRaKioqKC0tHTJHeed8KCSm6IojI6O0tXVlRTerampWXKvQVVVWltb6enpWZDtUioJrq2tjYGBAXbv3r0oPmkJia26ujrKy8uZmJhgxYoVfOMb3+Ad73iH8PmXKh6S2yx89atf5dvf/vYN6cldu3YtypVpJBKZk8q4my/YvTRo361R5GJCURSGh4fp6urC6/VSWlpKZWXlkihcmA8eNHILh8P09fXR09MDQGVlJaWlpUvS3DISiXDu3Dm8Xu9dGeamguAGBga4ePEiO3fuFC6InEBTUxOBQCCZjnz7299OJBLhZz/72QOb4UgFHpLbLMRiMXbv3s2GDRv4+te/jqIoHD58mOzsbBoaGhblGPx+P0eOHKG8vHzBPTGpUB5RVZUrV67Q19fHhg0byM3NvatxFgMJtZWRkRGys7MpKysjPz9/Se37XI8HgdxUVWV6epq+vj6Gh4ex2+1UVlYu6ffW5/Nx6tQpjEYjGzZsuGvyvReCGx8f5/Tp02zatGnRvjfDw8M0NTUl05HPPPMMH/jAB2hpaXmgzIJF4CG5XYdEevK5555j165deL1eDh06xPr16xctd+12uzl69CjLly+nvLx8Xs9JtaTWwMAAzc3NLFu2jMrKyiV9BRgIBOjv76e/v59YLEZJSQllZWVLMvJcyuQWDocZGBigr6+PYDBIcXExZWVli+ZicbeYmJjgzJkzlJaWsnz58nsm4LshOIfDwfHjx+dlMZUq+P1+GhsbWbNmDYWFhcl05De/+U0ef/zxRTmGpYyH5HYTfPOb3+QrX/kKTU1NZGZmMjg4yMWLF9m7d++i9KrANYucdevWUVhYeNvHitKKnJ6e5vTp0+Tl5bFq1aolVzRwPRIVfH19fYyOjpKenk5eXh4FBQVYrdYlQdBLjdwCgQCjo6OMjo4yOTlJRkYGZWVlFBYWPhCfd09PD1euXGHlypWUlZWlbOyFEJzH4+Ho0aPU1tYuml+joigcPXqU9PR0Vq9ejaIovP71r8disfBf//VfS+Jcv994SG43gaqqvOlNb0Kj0fDzn/8cSZJoamrC6/Wyffv2RUvNjIyMcO7cObZs2XLLPhnRIsiBQIDTp08nm86NRmPK5xCBUCiUXLQnJiYwGAzk5eWRn59Pdnb2fUuv3W9yU1UVl8uVfG/cbjeZmZnk5+eTn5+/JKPdm0FRFC5evMjo6CibNm0Scu7Ph+ACgQBHjhyhuLiY5cuXp/wYboWWlhbGx8eT9QD/+I//yLe+9S2ampoWzUl8qeMhud0CU1NTrFmzhk984hN85CMfIRqNcvjwYQoKChatPQDiFhmXL19mx44dN6SHFkvdPxaLceHCBSYnJ9m0aVNKHZMXA7FYjImJieSCHovFyM3NJT8/n7y8vEUtjrgf5BaLxZicnEy+/kgkkiT6xX79qUAwGEzqsm7evFloNuV2BBeJRJKSXmvWrFm0aClhQrx7926sViunTp3ikUce4cCBA2zevHlRjuFBwENyuw2OHj3Ko48+yuHDh1m/fj1ut5vDhw8v6oYxxPcBu7u72b59e7ICbLFta1RVpauri7a2Nqqqqqirq1uyxQW3g6qqOJ1OxsbG5kQuGRkZ2O127HY7ZrNZ2EK1GOQWDAZxuVw4nU6cTicTExPo9fpkdJaVlbXkU443g6qqDA4OcunSpaTiiFarFT7vzQguEolw4sQJDAYDGzduXLTvQiAQoLGxkYaGBkpKSnA4HKxdu5aPfOQj/I//8T8W5RgeFDwktzvgqaee4l//9V85f/48NpuNvr4+Wltb2bNnz6Km6FpbW+nr62P79u1MTEzcFz82iHtSNTU1oaoqa9eufeBTIH6/n/Hx8SQRuN1utFot6enpSbJLT0/HYrGkhPBSTW7BYBCn0zmHzILBIBaLJXn8OTk52Gy2B3ofJhgM0tzcjMPhYPXq1RQUFCz6/AmCW7VqFSdPnkSr1bJp06ZFu1BQFIXjx49jNptZt24dqqry1re+lVAoxLPPPvtAXmyKxENyuwMUReGxxx4jMzOTH//4xwBJw8Nt27Yt2gk1uzlVVVW2bdt23/TiFEWho6ODjo6OBzqKuxlisRhut3sOWbjdbjQaTZLoTCYTRqMRg8GA0WjEaDTOO4JYKLnFYjFCoRDBYHDOj8fjSRJZWlpa8tgSv5dCsUoqkNCuvHjxIrm5uaxateq+pVGDwSBHjx4lEomQnp7O5s2bFzUCbmlpYXR0lN27d6PVavnWt77FU089xYULF5aMludSgviY/gGHLMv84Ac/YM2aNfzLv/wL73//+1m9ejVHjx7l4sWLc8RYRUKSJAwGA7FYDJ1Od18XL1mWqaurIz8/n6amJkZHR18WURyARqMhIyNjzr6ioii43e4k0U1NTSVJJhQKoSgKGo0mSXSJH4PBgCzLyLKMJElzvMQGBgaQZRlVVVEUBVVVCYVCNxBZwh1+NpEajUays7Opqqp6WRHZ9ZgdrSXK3e8nNBoNOp2OYDCITqdb1Au6RIvGrl270Gq1NDU18YlPfILnn3/+IbHdAg8jt3niwIEDvPGNb6SxsZENGzbg9/s5fPgwdXV1VFRUCJ8/sce2ZcsWxsbG6O/vZ9u2bYumgnArKIpCe3s7nZ2dVFdXU1tb+7KJ4uYDVVWJRCI3RFYJkkoQV+InFosxPT2d3PdKkF7i4uX6iDDx7wc5pbhQXB+trVy5EoPBcF+PKbHHljDZPXnyZMrFlm+F6elpjh8/ntzrn5qaYtOmTTzxxBN85jOfETr3g4yH5LYAfOUrX+FrX/saZ86coaCgINmLtnnzZqHW8dcXj6iqytWrV+np6WHr1q1LImJKmD8CrFu3bsk3/t4v3O9WgKWOYDDIxYsXmZqaYvXq1fc9WoN4W8nJkyeTxSMajUaYm8D1CAQCHDp0iJqaGqqqqohEIjz22GOkp6fzzDPPvKIuJBeKh+/MAvCxj32Mffv28Za3vIVgMEhWVhYrV67kzJkz+Hw+IXPerCpSkiTq6+uprq7m2LFjS8JwND09nd27d1NQUMCRI0doa2tbFEfzh3h5IFEJefDgQWRZ5pFHHlkSxJYwOjWbzUlig8Xxg4vFYkkRhcrKSiC+Bk1MTPCf//mfD4ntDnj47iwACXNTgCeffBJVVSkrK6OkpIRTp04l90dShTuV+9fU1LBy5UpOnTrF8PBwSue+G8iyTH19PTt27GBkZISDBw8yMjIi1On4IR58OJ1OTpw4waVLl1i9ejUbNmy472lIiMvgHTlyhOzsbDZs2HBD8YhIglNVlQsXLiBJUlJE/bvf/S4/+clPePbZZx+YZvv7iYfktkAYjUZ+8Ytf8NJLL/HVr34VgBUrVmA0GlN6gs+3j620tJQNGzZw/vz5pHL7/Ybdbmf37t1UVlbS3NzMkSNHmJycvN+H9RBLDF6vl7NnzyZlpPbt27ckojWIizgcPXqU8vLy2zp0iCK4zs7OpGiCRqPh8OHD/NVf/RXPPPPMvPVmX+l4uOd2l0gYA/70pz/lNa95DeFwmMOHD5OXl0dDQ8M95eDvpkF7enqakydPUlFRQX19/ZIpQIhGo3R1ddHZ2UlmZibLly9/Re/HPdxzi++rXb16lf7+foqLi6mvr180zdb5ICF719DQMG8iSeUe3NDQEE1NTUkvyYRDxxe/+EX+/M///K7HfaXhIbndA370ox/xwQ9+kJMnT1JfX4/P5+PIkSNUVlZSW1t7V2Pei/KI2+3mxIkTSaHjpZSTD4VCdHR00NPTQ2FhIfX19Q+MB1sq8Uomt0gkQmdnJ11dXeTm5rJs2bIFe66JRm9vL5cvX56XYPn1SAXBJWxzNm7cSF5eXlLPdseOHXzrW99a8HivZDwkt3vEpz71KX76059y7Ngx8vLycLlcHD16lIaGhgWrlKdCUisQCHDy5En0ej0bN25ccrqBfr+ftrY2hoaGKCsro66ubknsrywWXonkFovF6OnpoaOjA5vNxrJly+6bAMGtoCgKLS0tDA4OsnHjxrvuHbsXgnM6nRw7doyVK1dSWlpKNBrlLW95Cz6fj9///vevmPMlVXhIbvcIRVH40z/9U1pbW2lsbMRmszE5OcnJkyfZsGHDvD3gUqkVGY1GOX/+PC6Xi82bN9/3Xribwe1209raysTEBNXV1VRVVb0ivryvJHJTVZX+/n6uXr2KTqdj+fLl5ObmLpmUeQLhcJizZ88SDAbZvHnzPWcU7obgvF4vR48epbq6murqalRV5b3vfS9nz57l8OHDS6Ld50HDQ3JLAcLhMG94wxuIxWL89re/xWAwMDw8zPnz5+clkyVCBDnRC9fV1cW6desWXYtvvpiamuLKlSt4vV6qqqooLy9fctFmKvFKILdYLMbQ0BCdnZ3EYjGWLVtGUVHRkiM1iF9knT59GqvVyrp161L2mSyE4ILBIEeOHKGgoICGhgYAPv3pT/OjH/2I48ePL5kimwcND8ktRfB6vTzyyCNUVFTw4x//GFmW6enpobW1lR07dtwyehKt7p8g2draWmpqapbkAqOqKuPj43R2duJwOCguLqaysnJJRpz3ipczuQWDQXp7e+nt7UWn01FZWUlZWdmS2vudjdHRUc6dO0dlZaWQIqz5EFwkEuHY/9/enUc1dSV+AP+GJBBCQsIeIKwKWlREUKkwCrjR6bidWgdbaU+1qO3RttM6th3bzmk7ra3drFq7OG3Vjp62M2daqx6tVSSKFNSICKKCgIQ1AQKBbGS9vz8c3k/UqlUgC/dzzjuGGM19L+F+373vvnuLiphwZbFY2LRpE/7xj3+gqKgIo0aNGtAyDSc03AZQe3s70tPTkZ2djc2bN4PFYuHSpUtQKBSYOnUq+Hx+v9cP1bI13d3dOHnyJPz9/TF+/HinrlS7u7tRV1eHpqYm+Pv7IzY2FhKJxClD+W64Y7h1dXWhrq4OLS0tzJyXQUFBTvuZEUJw+fJlVFdXY8KECQgPDx+097pVwNlsNpSUlMDDwwOpqanw8PDAd999h+XLlyM/Px+TJ08etHINBzTcBlh9fT3S0tKwevVqrFu3DoQQVFRUQKVSIT09nQm4oV6PzWQyQS6Xw2g0YtKkSU4/HN9kMkGhUODKlStgsViIiopCZGSkUw0ZvxvuEm4WiwXNzc1QKBTQarWIjIxETEyM041+vJ7JZEJpaSl0Oh0mTZo0JNeybhZwfbOPWK1WTJkyBRwOB4cPH8aCBQvw3//+Fw888MCgl8vd0XAbBOXl5Zg2bRo++OAD5OXlgRCC8vJypmXX2trqkPXYCCGorq7G5cuXMWbMGERHRzvt2XUfu90OpVIJhUKB9vZ2BAcHIyoqCiEhIU7b3XUrrhxufQu9KhQKNDU1QSAQICoqClKp1CX2paOjA3K5HAEBAUhKShrSMl8bcOPHj4dcLofZbMaUKVPA5XIhl8sxffp0fPrpp8jNzR2ycrkzGm6D5Pjx43jwwQfx+eefIzc3F4QQnDt3Dq2trbDZbA5dj82Rv+T3wmAwoKGhAQqFAgAQEREBiUQCPz8/pw/pPq4YbjqdDkqlEo2NjTAYDJBKpYiKinKZEXx9g6tqamocelLXtx6czWYDj8dDWloauFwuysrKMGPGDLz66qt4/vnnh7xc7oqu5zZIpk2bhj179mDBggXgcDhYvHgxhEIhGhoawOPxHNq9FhgYiKysLJSWljJL+Fy7fpmz4vP5GD16NEaNGoW2tjY0NjYy1yxCQkIgkUgQFBR0xwuHUjdHCEFnZyeUSiWUSiUMBgMCAwMRGxuL8PBwlzq+RqORWVx46tSpDu2O53K54PP5UKvV8Pf3B4fDQUVFBWbOnIm1a9fSYBtgtOU2yA4dOoSFCxfi3XffRUxMDO6//340NjYyXZTXDzIZSoQQ1NTUoKqqCnFxcYiLi3O5rj673Q61Wg2VSgWlUgmj0YigoCBIJBJIJBLweDxHF7EfZ225WSwWtLe3Q6lUQqVSAUC/EwZnKuudamlpwblz5xAcHIzx48c7NJT7rrGZzWYkJyfj1KlTUKvVWL16NZ599lm6LtsgoOE2BA4cOICHH34YW7duxdKlS5lrcG1tbUhLS3P4NFRdXV04e/YsPDw8kJyc7LJD8AkhTBeaUqlEV1cXRCIRE3S+vr4O7750pnAzGo3Msero6ACfz2eOlb+/v8OP1d0ymUzMNe7ExESH32NntVr7DR7hcrkoLS3FrFmzsGrVKrz55psOK5s7o+E2RA4cOIA///nP+PLLL7F48WJmFGVrayumTJni8ECx2WyoqqpCXV2dy7birmcymZgWXVtbGzw9PREUFASxWAyxWAxfX98bljEZbI4KN0IItFoturu7odFooFar0dPTA39/fybQ3GEZlb7WWt9tL45uuZvNZpw8eRIsFgupqangcrkoLy/HjBkzsGrVKrz++usOLZ87o+E2hPq6KK8dZFJdXY3a2lqkpqYiICDA0UVEV1cXSktLweFwMGHCBIeH7kCx2Wzo6OiAWq2GRqOBRqOB1WqFUChkwk4kEkEkEg1q4A1FuNntduh0OmY/u7u70d3dDQDw9fWFWCyGv78/goOD3WY2GJPJhIqKCrS1tTlFaw242jIuLi6Gj48Psx7c2bNnMWvWLPzlL3+hXZGDjIbbEDty5AgWLFiAjz76CCtWrADw/zORp6SkOMU0WTabDZcuXcKVK1cQFxeHkSNHDnkLZ7ARQmA0GvsFgEajgcVigVAohEgkYkJPKBQOWBANdLjZbDbo9XpmPzQaDXp6egCA2Ye+PwUCgcu3xq9HCEFLSwsqKirg5+fnFK01ANBqtSguLkZwcDCzQkdxcTH+9Kc/4cUXX8TLL7/s6CK6PRpuDnDixAnMnTsXzz//PF577TWwWKy7WkNqsHV1deHcuXOwWq0YN24cQkJCHF2kQXVt4PWFnUajgdlsBpvNBo/HA4/Hg5eXF/P4+p+5XO4tWwx3Gm5WqxW9vb3o7e2FyWRiHl//nMViAZvN7hfGIpEIQqHQ4S2XwabValFeXg6tVouxY8c6RWsNuPnaivv378fixYuxYcMGrFq1ytFFHBZouDnI+fPnkZ2djQULFmDz5s1gs9no6OjAqVOnMGLECMTHxzvFLyohhJkjMygoCGPHjnXoCM+hRgiBxWK5achc/7PNZoOHhwd4PB48PT3BZrPBYrGYzcPDA4QQqFQq5kTBbreDEAJCCOx2O8xmM0wmE6xWKzw8PPoF5/Wh2vecl5eXU3xXhorFYkF1dTXq6uoQHR2N0aNHO3xwTh+lUgm5XI6EhATExsYCAHbs2IFVq1Zh586dePjhhx1cwuGDhpsDKRQKZGdnY9y4cfjXv/4FHo+Hnp4eZibwcePGOU2lZTKZcOHCBTQ3N7ttV+W9slgsTOCZTCYmsK4NL6vViosXLyIhIQEcDgceHh79wo/L5d5xK3C46euCPH/+PHx8fJCYmOhU14QbGhpQXl7OzFdJCMF7772H9evXY8+ePcjKynJ0EYcVGm4O1tHRgTlz5sDb2xt79uyBSCSCwWBAcXEx+Hw+Jk6c6DRnpcDVLpfy8nJYrVaMGTPGrSY1HgrOdCuAK9FoNKisrIRWq8WYMWMglUqd5ntHCMHFixdx5coVTJ48GUFBQbDb7VizZg2+/fZbHDx4EBMmTHB0MYcdGm5OQK/XY9GiRWhtbcXBgwchkUhgsVhw5swZ6PV6pKamOtUwbUII6uvrUVVVBR8fHyQkJDjFSE9XQMPt99Hr9bh48SKUSiViYmIQHx/vVMet7/dUp9MhNTUVQqEQZrMZTzzxBE6dOoVffvmF6Z6khpZ7DZ26R+3t7Xj66acRGRkJLy8vSCQSZGdno6ioCIsXL75hpu6ff/4ZLBbrhntVXn/9dURGRt7x+/r4+OCnn37CuHHjkJaWhsrKSnC5XKSmpkIikeD48eNoa2sbiF0cECwWCzExMZg5cyaCg4NRUlKCkpISZrg5Rd2r3t5elJeX4+jRo2Cz2ZgxYwbGjBnjVMGm0+lw/PhxEEIwbdo0CIVCdHZ24sEHH0RVVRWKioruKdhuVR8BYObIvH579913B2oXXZrrTBI3BBYuXAiz2YydO3ciNjYWKpUK+fn5UKvVyMrKwl//+ldYrVZmGp+CggJERERAJpP1+38KCgp+d/86l8vFjh078MYbbyAtLQ27du3C3LlzMWbMGPj6+uLUqVO47777EBsb6zTdMRwOB6NGjUJ0dDSqq6tx/PhxhIWFYfTo0Q6fdYVyTRaLBTU1NaitrUVQUBAyMjKc6rpan/b2dpw+fRqRkZFISEiAh4cHLl68iHnz5iEhIQE//vjjPS//c6v6qM+bb76J5cuX9/t3zr7s0JAhFCGEkK6uLgKAyGSym/59VVUVAUCKi4uZ5yZPnky2bt1KeDweMRqNhBBCjEYj8fLyItu3b7/rsvznP/8hAoGArF+/ntjtdkIIIZ2dneTgwYOktLSUWK3Wu/6/B5Nerydnzpwhe/fuJWfPniVardbRRXI6ZrOZ7Nmzh5jNZkcXxamYTCZy6dIlcuDAAVJYWEjUarWji3RTdrud1NbWkn379hGFQsE8v3//fuLr60teeeUVYrPZ7vl9blcfEUJIVFQU2bhx4z2/l7ui3ZL/IxAIIBAIsGfPHphMphv+Pj4+HmFhYSgoKABw9R6b0tJSLFq0CNHR0SguLgYA/PrrrzCZTPc0Murhhx9GYWEhPv/8czz66KMwGAzw8/NDRkYGenp6UFRUBKPReNf//2Dh8/lITk5GRkYG7HY7CgoKIJfLaXcl9Zt6e3tRWVmJX375BR0dHUhJSUF6errDloO6FZvNhrKyMlRXVyMtLQ2RkZHMiMicnBxs27YNb7311oDcKH+7+oi6PRpu/8PhcLBjxw7s3LkTYrEY6enpWLduHcrLy5nXZGVlMV2QhYWFiI+PR1BQEKZNm8Y8L5PJEBMTg6ioqHsqT1JSEk6fPo3GxkZMmzYNTU1N8Pb2xh/+8AcIhULIZDIolcp7eo/B4uvri+TkZMyYMQOenp4oLCxEcXFxv+4UanjT6/UoKyvD4cOHodPpkJaWhvT0dAQHBztNt/u1tFotjh07Bp1Oh4yMDPj7+8NoNOKxxx7Dli1bcOzYMeTk5AzY+91JfQQAL730EhOEfVthYeGAlcOV0XC7xsKFC9HS0oK9e/figQcegEwmQ3JyMnbs2AEAyMzMRFFRESwWC2QyGTIzMwEAGRkZ/cJtoO5nCQ4OxtGjR5GUlISJEyeiuLgYbDYbEyZMwLhx43DmzBmcP38edrt9QN5voPH5fCQmJmLmzJkQiUQoKSlBYWEhWlpanLbM1ODq7OyEXC7H0aNHYbPZkJGRgdTUVKdsqQFXRwY3NDTg2LFjkEgkSE9Ph7e3N5qbm5GRkYG6ujqcPn0aKSkpA/7et6uPAGDt2rUoKyvrt02cOHHAy+KSHN0v6uyefPJJEhkZSQghpKamhgAgRUVFZOLEieT7778nhBDS1NREvLy8iFqtJp6enmTXrl0DWga73U42b95M+Hw+2bRpE3MdTqvVkoKCAiKTyYhOpxvQ9xwMZrOZVFdXk0OHDpFDhw6Rqqoq0tvb6+hiDanheM3NarUShUJBZDIZ2b9/PykvLyd6vd7Rxboti8VC5HI5OXDgAFGpVMzzhw8fJiEhIeSJJ54Y8u/vtfURveZ2a3S05G0kJCRgz549AIARI0YgIiICe/fuRVlZGTIyMgAA4eHhCA8Px4cffgiz2TzgMxGwWCw888wzSE5OxuLFi1FQUICvvvoK/v7+mDp1KiorKyGTyTBhwgSEhYUN6HsPJC6Xi7i4OIwYMQJKpRJXrlxBVVUVwsLCEB0d7dJriFE30ul0UCgUaGhogKenJ2JjYyGVSp1qOP9v6e7uxunTp+Ht7Y2srCzweDxYrVa88cYb2LhxIzZt2oRly5YN+ff12vqIujUabv+jVquxaNEiLFu2DImJiRAKhZDL5Xjvvfcwf/585nVZWVn49NNPMXLkyH4TCWdkZGDLli3MwJPBkJ6ejrKyMixduhQTJkzAd999hylTpiAxMRGBgYEoKytDe3s7xowZ49BVh2/Hw8MDYWFhCAsLg1arRX19PU6ePAkej4fIyEhIpVKnmNmd+v2sVitaW1vR0NCAzs5OhIaGYtKkSQgICHCJExfyvwkKKisrERcXx8zx2tTUhEcffRRqtRolJSUYO3bsoJbjTusjrVZ7w7V3Pp/vlLdPDDlHNx2dRW9vL3n55ZdJcnIyEYlEhM/nk1GjRpFXX32VGAwG5nXbt28nAMhTTz3V79/v2LGDACArV64c9LLa7XayceNGwufzyYYNG5ihx3q9nhw/fpwcPnzYaYdS/5a+rqsTJ06Qn376iRQVFRGFQuF23Xfu2C1ps9mIUqkkcrmc7Nu3j+Tn55Pq6mqX63LW6/WkqKiI/Pzzz6S9vZ15fv/+/SQgIIAsW7ZsyLr/76Q+ioqKIgBu2IaiDnIFdPotFyaXy5GTk4O4uDh88803CA4OBiEEtbW1uHTpEqKjo3Hfffe53ATHRqMRzc3NaGxshF6vh0QigVQqRXBwsMuvR+Yu028RQqDRaNDY2IiWlhawWCxIpVJIpVKIRCJHF+93IYRAoVCgsrISYWFhGDt2LLhcLsxmM9atW4dt27bhs88+w5IlSxxdVOp3oOHm4rq7u7F8+XKcOHEC27dvR3Z2NoCr3RVnz56F2WxGcnKy045Gu52enh40NTWhqakJVqsVISEhkEgkCA4OdslwcOVws9vtUKvVUCqVUCqVMJvNCAsLg1QqRWBgoEt0O17PaDSirKwMPT09SEpKYi41VFVV4fHHH4fZbMb333+P+Ph4B5eU+r1ouLkBQgi++uorvPDCC8jJycGHH34IX19fEEJQU1ODqqoql23F9SGEoKuri6lYdTodAgMDIZFIIJFIXGaNOVcLN7PZjLa2NiiVSqhUKrDZbOaYBwUFufT3qaGhAefPn+/XWrPZbPj444/x97//HStXrsT69evp9V8XRcPNjSgUCuTl5aGqqgpffvklZs+eDeD/W3EWiwVJSUluMYO/Xq9ngk6tVkMoFCI4OBgBAQEICAhw2uBw9nCz2+3o6upCR0cHOjo6oFar4evry7SYxWKxS7bQrmUwGHDu3LkbWmvV1dVYunQp2trasH37dvzhD39wcEmpe0HDzc0QQrBt2zasXbsWixcvxgcffHBDKy4sLAwJCQluc0ZqsVigUqmYClmv10MsFiMwMBCBgYHw9/d3miBxtnC7Psy6urrA4XAQEBCAwMBAhISEuEyr+HZsNhtqampw+fJlhIeH92utbdq0Ca+99hpWrFiBt99+2232eTij4eam6uvrkZeXh+rqanz11VeYNWsWgKtnrefPn0d7ezvuu+8+REdHu/wgjesZjUao1WqmwjYYDPD19YWfnx9EIhHEYjF8fX0dst+ODDdCCPR6PTQaDTQaDbq7u9HV1QU2m82cCAQGBkIgELh86+x6KpUKFRUV4HA4SExMZK5BV1dXY9myZVCpVPj6668xdepUB5eUGig03NwYIQRffPEF1q5di5ycHGzYsIHpkmxra0N5eTnYbDYSExPdoqvytxiNRnR2dvar1K1WK3x9fSEWi5mwEwgE8PT0HNSyDFW4Wa1W6PV69PT0oLu7m9lvu93eb7/9/PwgFArdLsz6GAwGVFRUQK1WMydzLBYLFosFH3/8Md544w3k5eVh/fr1tLXmZmi4DQNXrlzB6tWrUVJSgnfeeQdPPvkk2Gw2bDYbamtrUV1d7XZdlbdCCIHBYGDCTqPRQKvVwmQygcvlMhPQ+vj4MI+9vb3B5XLvOQQGMtwsFgt6e3uh1+uh0+mYP3U6HXp7e8HhcCAUCpnWqlgshlAodLuW+s1c3wWZkJAALy8vAMDRo0exevVqsFgsfP7557S15qZouA0ThBDs27cPzz33HAIDA/Hpp59i0qRJAK6e3VZWVqKtrQ1xcXGIjY116hlOBovFYrlpUOh0OlitVnh4eMDLyws8Hg88Ho957OXlBS6XCw6HAw6HAzabzTzu+7kvFK8PN0II7HY7rFYrs9lsNuaxxWKB2WxGb28vTCYTent7mc1ms8HDw6NfCF/72NPT021bZL+FEIKWlhZcvHjxhi7I5uZmrFmzBgcOHMDrr7+OZ555ximue1KDg4bbMGM0GvHuu+/i/fffR25uLtavX4/AwEAAV1cXvnDhAnp7ezFq1ChERkYOi7P8O2G1Wm8aMH3P3SyYbrbyAYvFAiGE+fP6v7tZQHp5efUL1WuDdSBak+6AEMJ8f00mE0aPHo3IyEiwWCyYzWZs2rQJb775JubNm4f333/fqedgpQYGDbdhqra2Fs899xyKi4v7dVUSQtDa2ooLFy4AuDpRa2hoKK1A70Jfi8xmswG4WgFfu1xSXzB5eHiAw+HAw8ODHue70NXVhQsXLqC7uxvx8fGIiYlh7r/Lz8/H6tWrwWazsXXrVmayc8r90XAb5vbt24dnn30WYrEY77zzDrKzs8FisWC329HQ0IBLly7B29sbCQkJCAoKcnRxXZ6z3QrgyrRaLS5dugSVSoXY2FjExcUxx7SyshKvvPIKjh49ijfeeAOrV6+mx3uYoX1Ow9zcuXNx8eJF5ObmYsmSJZg+fTpOnjwJDw8PREdHY+bMmQgNDcWpU6fw66+/0tW0KYfT6XQ4e/YsZDIZPD09MWPGDCQkJIDL5aKhoQFLly7FxIkTERERgcuXL+P555+nwTYM0XCjwOPxsGbNGtTW1iItLQ3Tp0/HQw89hEuXLoHD4SA+Ph6zZs2CWCxmVtNWKpU3XDOiqMHU3d0NuVyOgoIC2O12ZGVlYfz48fD29kZHRwfWrFmDUaNGwWw2o7KyElu2bOm3LBU1vNBwoxhisRhvv/02ampqEBISgqSkJOTl5aGpqQmenp5ISEjA7NmzERISgrKyMshkMjQ1Nd104ARFDRS1Wo3i4mIUFhYyLbWUlBQIBALo9Xq89dZbGDFiBC5cuIDi4mLs3r0bsbGxji425WA03KgbhIaG4rPPPkNFRQW0Wi3i4+PxwgsvoLm5GVwul2nJRUdH4+LFi8jPz0d9fT0zcIKi7hUhBCqVCoWFhSgpKYFIJMLMmTORmJgIPp8PnU6HjRs3YsSIEdi3bx9++uknHDx4EElJSY4uOuUk6IAS6rbOnDmDt99+GwcOHMBjjz2GF198EXFxcQCujghsbm7G5cuXYTabERMTg6ioqGFxM/jdoANKbs1qtaK5uRl1dXUwmUyIjY1FTEwMc6w6OzuxZcsWbN68GbGxsXjllVcwf/58OsqUusHwu1OX+t1SUlLwww8/4MKFC9iwYQPGjRuH+fPn429/+xuSkpIQEREBqVQKlUqFuro6ZsaTmJgY+Pn50YqHui29Xo/6+nooFAp4e3sjJiYGERERzJD+5uZmfPTRR/jiiy+QmpqK77//HjNmzKDfLeo30W5J6o4lJCRg586dqKqqQnBwMNLS0vDHP/4RhYWFYLFYkEgkSEtLQ2ZmJjw9PVFcXIxjx46hvr4eFovF0cWnnIzdbkdrayuKi4uRn58Pg8GAyZMnIzMzE9HR0WCz2aipqcGKFSswcuRI1NXV4ejRo8jPz8fMmTNpsFG3RLslqbvW1taGTZs2YevWrUhISMCzzz6Lhx56iJl82Gq1oqmpCfX19dDpdIiIiEBkZKRbrAl2t2i35NVWWmNjIxQKBQAgOjoakZGR8Pb2BnD1etvx48exZcsW7N+/Hzk5OXjppZeQkJDgyGJTLoaGG3XPenp68PXXX2Pr1q3Q6XR46qmnsGLFCoSGhjKv6erqgkKhQHNzM7y8vCCVSiGVSiEQCBxY8qE3XMPNZDKhpaUFTU1N6OrqQkhICKKiohAcHMxM8abX67F792588sknaGpqQl5eHlatWoWoqCgHl55yRTTcqAFjt9tx6NAhfPLJJzhy5AjmzZuHp556CllZWUwFZrPZoFKp0NjYiLa2NohEIkilUoSHhzOztruz4RRuVqu132ft5+cHqVSKsLCwfp91ZWUlvvjiC3zzzTeIjo7GM888g0ceeYQuQUPdExpu1KCora3FP//5T3z99dcQiURYuXIlcnNzIZFImNeYzWbmbL6zsxPBwcEIDw9HSEjIoK+r5ijuHm42mw0dHR1obm5Ga2sreDwe00r38fFhXqfX6/HDDz9g27ZtkMvlyMnJwcqVK3H//fcP2y5ramDRcKMGlclkwo8//oht27ahsLAQ06dPR25uLhYsWAChUMi8zmAwoKmpCS0tLejp6YG/vz8kEgkkEolbdV26Y7iZTCaoVCoolUq0tbXB09MToaGhiIiIgEgkYsLKarXiyJEj2L17N3788UdER0cjLy8Pjz/+OLMsDUUNFBpu1JBpamrCt99+i127duHy5ctYsGABlixZgtmzZ/er6I1GI5RKJZRKJTo6OsDn85mg8/f3d+kze3cIN0IItFotE2hdXV0QiUTMZ+Tr68t8RoQQyOVy7Nq1C9999x04HA4effRR5ObmIjEx0aU/S8q50XCjHKKiogK7d+/G7t270dvbi5ycHDzyyCO4//77mXubgKth0N7eDqVSCZVKBQAIDAxkNoFA4FIVpKuGm9FohFqtRkdHB9rb29Hb24vg4GBIJBKEhIT0u2mfEIKqqir8+9//xq5du6BSqbBw4ULk5uYiIyOj3+dLUYOFhhvlUHa7HYWFhdi1axd++OEHeHh4YM6cOZg7dy5mz57dr0uSEIKuri60t7ejo6MDnZ2d4HK5CAwMREBAgEuEnauE27Vh1tHRAb1eD7FY3O9YX7tau9VqRVFREfbu3Yu9e/eisbERDzzwAJYsWYI5c+Yww/wpaqjQcKOchtVqRXFxMfbt24e9e/eivr4e06dPx9y5czF37lxIpdJ+r7fZbNBoNEwF3Bd2AQEBEIvFEIvFEIlETjU4xRnDzWazobu7G93d3dBoNFCr1dDr9RCJREwLOSAg4Ibydnd34+eff8a+fftw4MABcLlczJkzB/PmzcPMmTP7DSChqKFGw41yWtXV1UzQFRUVITExEdnZ2cjMzER6evoNA036wk6tVkOj0UCj0cBoNILP5zNB1xd6jgo8R4eb1WpFT08PNBoNE2ZarRZcLpc5Pv7+/jcNM4vFgjNnzkAmk+HIkSM4fvw4Ro0ahXnz5mHu3LmYPHkyc8sHRTkaDTfKJajVahw8eBBHjx6FTCZDY2MjJk2ahMzMTGRmZiItLe2moypNJhNTifdV6AaDATweDwKBgNl8fHwgEAjA5/MHtYIeinAjhKC3txc6nQ46nQ56vZ55bDAYwOVybwh7b2/vG7pzLRYLSktLIZPJIJPJcOLECXh6ejLHfM6cOYiJiRmUfaCoe0XDjXJJ9fX1OHbsGGQyGQoKCtDc3MyE3eTJk5GSkgKpVHrT629msxlarZap8PsCQK/XgxACPp/PBJ2Xlxd4PF6/zdPT866v691ruBFCYLVa0dvb228zmUwwGo3MvthsNmY/+oK7b7tZkAFXZ9wvLS2FXC7HsWPHmDDLyMhgAm3s2LG0dUa5BBpulFuor6+HTCbDsWPHIJfLceHCBQQEBCAlJaXfFhER8ZvBRAiBwWBgWjpGo/GGELFarWCxWEzocblccDicfhubze73M4vFYjabzQa5XI6UlBRm1GBfYPVtNput3899W1+I2Ww2sNls8Hi8G8K3L8x8fHxuOSpRrVajtLQUZ86cYbYrV64gOjoaKSkpmDp1KjIzMzFu3DgaZpRLouFGuSWDwYBz584xFXdpaSkqKyvh5+eH5ORkjB49GvHx8cwWERFxR5W4zWa7IexutdlsNmalckIIc4+YUChk3o/FYt0yHPu2a4OsLzRvhRCC9vZ2VFdXM1tVVRXKyspQX1+PmJiYfsGfnJyMgICAez/4FOUEaLhRw4bRaER5eTnOnj2LqqoqpsK/cuUKuFwuRo4cyYTdyJEjER4ejtDQUISFhSEgIGBAWjADec2NEIKenh60tLSgtbUVra2tqK2t7Rdm3d3dCA8P7xfk48ePR3JyMvz8/O55fyjKWdFwo4Y9s9mMK1eu9AuFmpoatLS0MNOBcTgcSCQSJuxCQ0OZ2TiEQiEEAgGEQuENj318fJjWmIeHB2w2Gw4ePIjs7Gyw2WzY7XbYbDYYDAZotVrmWuDNHre1taG1tbVfmBmNRnh7eyM0NBShoaGIjY3tF2QjR450q+nLKOpO0XCjqNswGAxMmFwbLiqVCj09Pb8ZSGaz+Xe9D5vNvmVQBgUFMcF67Xbt/I0URV1Fw42iBonZbGZGLtrt9n5bX0uub/Px8YGXlxcNKYoaIDTcKIqiKLdDx/hSFEVRboeGG0VRFOV2aLhRFEVRboeGG0VRFOV2aLhRFEVRboeGG0VRFOV2aLhRFEVRboeGG0VRFOV2aLhRFEVRboeGG0VRFOV2aLhRFEVRboeGG0UNkfb2djz99NOIjIyEl5cXJBIJsrOzUVRU5OiiUZTb4Ti6ABQ1XCxcuBBmsxk7d+5EbGwsVCoV8vPzoVarHV00inI7dFUAihoCGo0Gfn5+kMlkyMjIcHRxKMrt0W5JihoCAoEAAoEAe/bsgclkcnRxKMrt0XCjqCHA4XCwY8cO7Ny5E2KxGOnp6Vi3bh3Ky8sdXTSKcku0W5KihlBvby8KCwtRUlKCgwcP4tSpU/jyyy/xxBNPOLpoFOVWaLhRlAPl5eXh8OHDUCgUji4KRbkV2i1JUQ6UkJAAvV7v6GJQlNuhtwJQ1BBQq9VYtGgRli1bhsTERAiFQsjlcrz33nuYP3++o4tHUW6HhhtFDQGBQIDU1FRs3LgRtbW1sFgsiIiIwPLly7Fu3TpHF4+i3A695kZRFEW5HXrNjaIoinI7NNwoiqIot0PDjaIoinI7NNwoiqIot0PDjaIoinI7NNwoiqIot0PDjaIoinI7NNwoiqIot0PDjaIoinI7NNwoiqIot0PDjaIoinI7NNwoiqIot/N/LIyc2DgFw1AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# Resampling WindRose/WindTiRose\n", - "wind_rose_resampled = wind_rose.resample_wind_rose(wd_step=5, ws_step=3)\n", - "wind_ti_rose_resampled = wind_ti_rose.resample_wind_rose(wd_step=5, ws_step=3, ti_step=0.01)" + "# For upsampling, the resample_by_interpolation method is available which can\n", + "# interpolate the data via linear or nearest-neighbor interpolation\n", + "wind_rose_resampled = wind_rose.resample_by_interpolation(wd_step=2.5, ws_step=0.5)\n", + "wind_rose_resampled.plot()" ] }, { @@ -417,12 +519,22 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAG6CAYAAACLCQg1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUVfrHP3f6THrvpJFGSYGE0KRDKCpgQbGg6Ko/FdeKCra1LYINAZXVta+sWAAVFEUkiPQQikAa6b33ZJLMzP39kc1ISEjvzud55iHc3HvuuZOZ+73nnPf9voIoiiImTJgwYcLEEELS3x0wYcKECRMmehqTuJkwYcKEiSGHSdxMmDBhwsSQwyRuJkyYMGFiyGESNxMmTJgwMeQwiZsJEyZMmBhymMTNhAkTJkwMOUziZsKECRMmhhwmcTNhwoQJE0MOk7iZMGHChIkhh0ncTJjoZW6//XYEQeCVV15ptn3Hjh0IgtBPvTJhYmhjEjcTJvoAlUrF2rVrKS0t7e+umDDxl8AkbiZM9AGzZs3C2dmZNWvW9HdXTJj4S2ASNxMm+gCpVMo///lPNm7cSFZWVn93x4SJIY9J3EyY6CMWL15MaGgozz33XH93xYSJIY9J3EyY6EPWrl3LJ598QlxcXH93xYSJIY1J3EyY6EOmTJlCVFQUq1at6u+umDAxpJH1dwdMmPir8corrxAaGkpAQEB/d8WEiSGLaeRmwkQfM3r0aG6++WY2bNjQ310xYWLIYhI3Eyb6gRdeeAGDwdDf3TBhYsgiiKIo9ncnTJgwYcKEiZ7ENHIzYcKECRNDDpO4mTBhwoSJIYdJ3EyYMGHCxJDDJG4mTJgwYWLIYRI3EyZMmDAx5DCJmwkTJkyYGHKYxM2ECRMmTAw5TOJmwoQJEyaGHCZxM2HChAkTQw6TuJkwYcKEiSGHSdxMmDBhwsSQwyRuJkyYMGFiyGESNxMmTJgwMeQwFSs1YaIL1NXVUVBQQEVFBZWVlVRVVVFZWdns56qqKqqqqtDpdBgMBgwGAz///DMpKSncc889SKVSJBIJEokEMzMzzM3NsbCwMP576c8ODg6Ym5v396WbMDEoMImbCRMXIYoiBQUFXLhwgZycHHJycsjNzW32ysnJoaSkBEEQjOLTJE5mZmZoNBo0Gg1qtRqVSoVUKkUQBCQSCdbW1jg7OyOKIjqdDlEU0ev1lJSUUFNTY3xVV1dTXV1tFMjKykr0ej0WFha4uLi0eLm6uuLi4oKPjw8eHh5IpdL+fitNmOhXTPXcTPwlqaioICkpicTExBaviooK3NzccHZ2xsHBAXt7e2xsbLC2tsbKygpLS0vMzMyMwgUglUqRSqXIZLIWL0EQEAQBgMLCQurq6nBzc0MQBERRNAqcTqdr8dLr9UCj6NbV1VFdXU1FRQXl5eWUl5dTWlpKcXExhYWF5Ofnk5mZiVQqZfjw4fj7+7d4OTg4GPtiwsRQxiRuJoY0oiiSlZVFbGwsJ06c4MSJE5w8eZLc3FxsbW0ZPnw4w4YNM4qZvb091tbWyOVylEolKpUKlUrV7OeL/y+Xy43Tix2hoaGBH374gfnz5yOXyzvU/yahq6uro66uDq1W2+x18TadTkdFRQXFxcXk5+eTk5NDeno6qampZGdnY21tTXBwMGPHjmXMmDGMHTsWf39/00jPxJDDNC1pYkiRlZXF8ePHjUJ24sQJiouLCQwMZMSIEYwePZr58+djZ2eHWq1GqVRibm5unFJs+lmj0QyIG74gCMjlcuRyOWq1us19RVGktrbWOJVZVVVlnNqsqamhvr6e0tJScnJySElJYcOGDfzxxx9IpVLCwsIYO3as8RUYGNhhwe4N3n77bV599VXy8vIICQlh48aNjBs37rL7f/XVVzzzzDOkpaXh5+fH2rVrmT9/frN94uLieOKJJ9i/fz86nY4RI0bwzTffMGzYsN6+HBP9gEncTAxqMjIyiI6ONr4yMjKMQhYaGspVV12Fo6MjKpUKKyurFlOLHRk9DRYEQTCu9zk6Ojb7nV6vNwpdeXk5ZWVllJWVUVtbS0lJCVlZWaSkpLBp0yb++OMPNBoNU6dOZdq0aUybNo2RI0f2mdht3bqVRx55hM2bNxMZGcn69euJiooiISGhxXUBHDp0iKVLl7JmzRquvPJKtmzZwqJFi4iNjWXUqFEAJCcnM3nyZO68806ef/55LC0tOXfuHCqVqk+uyUTfY5qWNDGoyMzMbCZm6enphIWFERYWRlBQEG5ubmg0GqOIWVtbY21tjbm5+YBYa+rstGRvIooiWq3WKHRNoldTU0NeXh5JSUmcPn2ao0ePthC7ESNG9JrYRUZGEhERwaZNmwAwGAx4eHjwwAMP8OSTT7bY/4YbbqC6upqdO3cat40fP57Q0FA2b94MwI033ohcLuezzz7rlT6bGHiYRm4mBjQ6nY6DBw/y3Xff8f3335OSkkJoaChjxoxhxYoVuLm5YW5ujr29PXZ2dtjb22NpaTkghGygIwgCarUatVqNi4sL8OfUZlFREcXFxRQVFVFRUUF+fj6JiYl88803PPHEE5iZmbFgwQKuvvpqZs+e3WMpCvX19Zw4cYJVq1YZt0kkEmbNmsXhw4dbPebw4cM88sgjzbZFRUWxY8cOoFEcd+3axeOPP05UVBQnT57E29ubVatWcdVVV9HQ0NAjff+r0LTOPNAxiZuJAUd5eTk//fQT3333HT/88ANyuZxp06bxt7/9DS8vL5OY9SJNU5vDhg0zrkXV1NRQVFRkFLyKigpycnI4ffo0TzzxBEuXLmXGjBlcffXVXHnllbi7u3f5/EVFRej1epycnJptd3JyIj4+vtVj8vLyWt0/Ly8PgIKCAqqqqnjllVd46aWXWLt2Lbt372bnzp0MGzas3bVMEy1pSmkZyN87k7iZGBBkZ2ezbds2vvvuO/bv34+fnx9XXHEFL7/8Mi4uLtja2uLs7IyTk5NJzPqY1sSuoKCAiIgIFi5cSFFREefOneOzzz5jxYoVhISEcNVVV3HNNdcQHBzcz71vHLkBLFy4kIcffhhoFL/k5GTUajVeXl6mz1MHEUXR+PcHjCP+gYhJ3Ez0G+Xl5XzzzTd8/vnn/Pbbb4wfP56JEydy6623Ymtri4ODg1HQ+mLhv6qqyuQA0gE0Gg1eXl54eXmh0+koLCwkNDSUmTNnUl5eTlJSEseOHePVV1/Fx8eHW265hZtuugkPD49227a3t0cqlZKfn99se35+Ps7Ozq0e4+zs3Ob+9vb2yGQyRowYATQG15SVleHk5IRerzeN3DpJ0/tVUFCAo6PjgJ2iNImbiT6lvr6eH3/8kf/85z/s3LmTwMBAZs+ezZ133mkcnTUlT/fWl6agoICYmBjOnz9PQkIC586dIz4untKyUjZu3MiKFSt65bxDEZlMZnRJEUWR0tJSgoODmThxIsuWLSM+Pp6ff/6Zp59+mkmTJnHLLbdw3XXXYW1t3Wp7CoWCsWPHsnfvXhYtWgQ0jrz27t172b/LhAkT2Lt3Lw899JBx2549e5gwYYKxzYiICBISEgCMa2wGgwGFQtEzb8RfDI1GAzS+lwNV3EzRkiZ6HVEUOXToEJ999hlfffUVFhYWzJs3j4iICBwdHXF1dcXd3b1X3DPKyso4ceIEx48f59ixYxw9coyc3GwA5FI55oIlSp0GDRYUCTlcMX9Ss6i7nmYgRUv2JqIoUlFRQVZWFllZWZSUlHDq1Cl++eUXzp49y4IFC7jlllu48sorWwjM1q1bue222/jXv/7FuHHjWL9+PV9++SXx8fE4OTmxbNky3NzcWLNmDdCYCjB16lReeeUVFixYwBdffME///nPZqkA27dv54YbbuDtt99mypQplJeXI5FICAgIwMLCos/fn8GOVqslNTUVb2/vAZtOYRI3E71GaWkpn332GZs3byYvL4/58+czceJE3NzccHJywsPDAycnJ2SynplAqK+vJyYmhmPHjnH8+HEOHzpCaloKAAqpAgtsMNdbYYkNFtigxqyZmCaIp1D4iFxIvtAj/WmNv4q4XYwoihQVFZGVlUVOTg6FhYUcP36cH374gZqaGu644w7uvvtuvL29jcds2rTJmMQdGhrKhg0biIyMBGDatGl4eXnx8ccfG/f/6quvePrpp41J3OvWrWuRxP3hhx+yZs0aJBIJ7777LqNGjWo1b85E+5jEzcRfkpiYGN5++222bt1qdAQZOXIkjo6OeHh44OrqilKp7PZ59Ho9sbGx/Prrr/zyyy/8/vvvaLVaZBIZlhIbzHSNQmaJDRos2h0VZooXSJadpba2tscE91L+iuJ2MXq93uiBmZeXR2pqKnv27GHPnj3MmDGD++67jwULFvTqVFdbN+aMjAyKiop67dyXYm9vPygdUgaDuJnW3Ez0CHV1dXz99dds3LiRs2fPsnjxYjZs2ICrqyseHh54enpiaWnZ7fNkZGTw008/8eOPP/LLnl+orKpELpVjLdrjbvDDFgfMDdZIRAl0coZTgzk6nY6MjAx8fHy63VcTLZFKpbi6uuLq6opWqyUjI4ORI0dy0003cfToUe677z7kcjn33XefcR22r8jIyCAoKICaGm2fnVOjUREXl9BpgesNe7KhhkncTHSL0tJS3n77bTZu3IilpSXXXHMNjzzyCE5OTnh5eeHm5tatUZDBYODQoUNs27aNXd/vIvFCIgICNlJ7HPQeBOCIpd4WidB5MbsUDY1rL0lJSSZx6wNUKhX+/v74+flRUFDA8OHDmT59OvHx8ezYsYPnnnuOZcuWsXLlSnx9fXu9P0VFRdTUaPl0kxNBfr0faBKXVM+yFfkUFRV1Stx6w55sKGISNxNdIjc3lzfffJPNmzcTEhLCk08+iY+PD+7u7nh7e3fridtgMHDw4EG++uorvtz6JfkF+WhkZljrHBnNeGxxRG5QdFvMLkWFBqkgJTExkaioqJ5t3MRlEQQBJycnnJycqK6uxt/fn5CQEHJycvjxxx8ZOXIkixcvZtWqVX2SNxfkp2BM8MCcagN44403uOuuu1i+fDkAmzdvZteuXXz44Yet2pO99dZbzJ07l5UrVwLw4osvsmfPHjZt2mS0JxuKmMTNRKdISUlh3bp1fPLJJ0ydOpW1a9fi6emJt7d3t+bf9Xp9M0ErKCxAIzPHTudMOEFY6ex6PdFWEATMZZYkJSX16nlMXB4zMzNGjhxJQEAAWVlZeHl5sXDhQvbs2cP48eOZMWMGq1atYtKkSf3d1X6hN+zJhiomcTPRIc6cOcMrr7zCN998w4IFC9i0aRNubm4MHz4cT0/PLgVHiKLI77//ztatW/ly65cUFhVeJGgj+kTQLkWhU5OYmNin5zTREplMhpeXF8OGDSMnJwcPDw/mz59PdHQ08+fPJyQkhFWrVjF37ty/lLtIb9iTDVVM4maiTeLi4njqqaf48ccfue6663j//fdxdXVl+PDheHh4dCmqLScnh08++YT333uf1LTUiwRtFFY62369WalFM+LjWr9JmOh7JBIJ7u7uuLm5UVBQgLu7OzNmzODw4cPcdttteHh48M9//pM5c+b8pUTORPuYxM1Eq2RmZvLcc8/x3//+l+uvv54PPvgAFxcX/Pz8cHV17VK5k9OnT/9PKHcjQcBBdGUMU7DR9XzydlfRYEFS1mkaGhr+kqH6A5WL1+WKi4vx9PRk8uTJHDlyhKVLlxIaGsorr7zSZsTgUKA37MmGKv1XatfEgKS4uJjHHnuMgIAASktL2bx5M7fffjvTp09n2rRpuLu7d7mO17p16/jph5/wNwQzyTCfkYzDVnAcMMIGjekAeoOe1NTU/u6KictgZ2fH+PHjmTVrFtdeey3vvvsu/v7+TJ8+neuuu85oszUUudierIkme7Imu7FLabInu5iL7cmGKqaRmwkAqqureeutt1i3bh1jxoxh/fr1eHl5ERgYiIeHR48I0Ny5c9myZQu2OCEXBqann4ZG4+SkpCT8/f37uTcm2sLa2poJEybg5+eHs7MzV1xxBT/88AMhISEsW7aM5557Djc3t063G5dU3wu97bnzPPLII9x2222Eh4cb7cmqq6uN0ZOX2pM9+OCDTJ06lddff91oTxYTE8N7773XY9cyEDGJ218cg8HAhx9+yDPPPIObmxsvvPACw4cPx9/fH29v7x51irjuuutYcf8KcipTGc7oHmu3J1GiRiaRmSImBxH29vZMmTKF3NxcnJ2dmT17Ntu2bcPPz48HH3yQp556qkPVHuzt7dFoVCxbkd/uvj2FRqPC3t6+U8fccMMNFBYW8uyzzxrtyXbv3m0MGsnIyGg2uzJx4kS2bNnC008/zerVq/Hz82PHjh1DOscNTPZbf2liYmK4//77ycvL4//+7/8YNWoUw4cPZ/jw4b223vTggw/y/jv/ZoJubmPi9QDkuOxXbvrbDbzzzjs93vZf3X6rtzEYDGRmZhIfH09aWhofffQRWVlZvPHGG1x//fUIgmCy3+oBTPZbJgYkxcXFPPXUU3z66acsX76c6dOn4+vrS1BQUK9/UO+++242bNhAITk40fWKzb2JskE9pNdthjISiQRPT0/c3d1JTk7G1dWV2NhYHnjgAd577z02btzYzKD5Ui4uympicGMSt78QBoOBDz74gCeffJIxY8bwzjvv4O3tTXBwMDY2Nn3Sh5EjRzJh/ASSjqXiJA5McVNjTkK8KddtMCOVSvH398fDwwNnZ2cCAwP58ccfGTNmDE899RSLFy/u7y6a6GVM4vYX4fjx49x///0UFBTw5JNPMmLECEaOHImnp2efRyv+373/x21HbqOGKjTCwKt8rcGc+NxEtFrtgJ1yMdEx1Go1EREReHp6Ym9vz+TJk9m5cyeRkZHY2dnh5OQ0oKJ1TfQcA3PRw0SPUV1dbYyWioiI4PXXX2f27NnMmjULLy+vfvliX3/99VhaWJLDwAy312COKIqkpKT0d1dM9BCOjo5Mnz6dqVOncs8992Bubk5eXh5JSUnU1/dNdKSJvsUkbkOYAwcOEBISwpEjR3jnnXdYsmQJM2bMIDQ0tEfqqXUVtVrNbbffRr4sE4No6Ld+XI6L0wFMDB0kEgl+fn5MmDABtVqNs7MzUqmUc+fOUVhYiCm2bmhhErchSE1NDQ899BBz585l8eLFrF69msmTJzNlypQ+W1trj7vuuotaXQ1F5PZ3V1qgQIVcqjCJ2xBFpVKhVCoxMzPD3t4eFxcXcnJyTKO4IYZpzW2I8fvvv7N8+XJsbW3ZtGkTvr6+hIWFYWFh0d9da8bo0aOJHBdJckwqjmLnE217E0EQMJNYXFbcRFFEp9Oh1WqNr7q6umY/GwwGDAYDoigaXwaDgerqagCio6ORSCRIJBIEQTC+JBIJCoUClUrV7KVUKlGpVCgUikG7RtTTBTZvv/12Pvnkk2bHREVFsXv37g71Ry6Xo1AokMlkKBQKSktLOXfuHB4eHtjZ9b1pt4mexSRuQ4Samhqeeuop3nvvPe677z4mT57MyJEj8fX1HbBf0v+79/9Yvnw5tVSjFsz6uztGlGYKRnsFIwgCSUlJrYqYXq9HIpG0EB9LS0uUSiVSqdQoVheLV01NDadPn2bUqFFIpdJmAtgkiPX19Wi1WioqKigsLDSeW6fTIQhCs/Nd+rK0tESlUg24v3lvFdicO3cuH330kfH/nZ1ul0gkmJmZoVAokEqlmJmZkZ2dTWlpKZ6enigUA9NJx0T7mJK4hwCnTp3ixhtvxNLSknvvvXfAjtYupaamBmcnZ+yq3Bgu9I9bgtJcgaOvLQ6+do3/+thi5WxBSUEpRWWFTJ8+vYWQNP1fLpd3WkS6k8TdNFq8eJR4sejW1tZSVVWFUqnEysoKa2tr479qtbpfBS8yMpKIiAg2bdoENKaleHh48MADD7RaYPOGG26gurqanTt3GreNHz+e0NBQY4HN22+/nbKysk7XJbtcArLBYKC2tpa6ujpKS0upqKjA09OzW4V3hyqmJG4TvYooirz77rusXLmSO++8k5kzZw740drFaDQabrv9Nj7Y/CE+uhG97liislDg4PM/EfO1xdHXDksnc8rzKilMKaEwuYRzP1+gMKWElIoEzhNDdXU1Go2mV/vVUWQyGebm5m1aSel0OioqKigrK6OsrIy8vDwqKyuRy+XNxK4vBa83C2xGR0fj6OiIjY0NM2bM4KWXXsLOzq5L/ZRIJBQXF5OXl0dtbS1arZa4uDisrKxwcnLqsmF4WwxWh5LBgEnc/kfT/P2aNWuaPUnu2LGDxYsXU1lZiY2NDZ999hk33nij8fc33ngjW7duJTU1FS8vL+N2Ly8vbr31Vl588cVe6W9ZWRl/+9vfOHz4MGvXriUoKIiIiAgsLS175Xy9xd13382mTZsoIhdHem7tTZAIuAQ54BLogKOvHQ6+tlg6NgpZQXIJBReKOftTEoUpJdRVtQwiaIqYvHDhAsHBwT3Wr95GJpNha2vbbLRxseCVl5eTkJBgFLwmsbOxscHBwQGZrOdvCb1VYHPu3Llcc801eHt7k5yczOrVq5k3bx6HDx/ukidqRkYGgUGB1NbUdvrYrqLWqImPi28mcKmpqRQXF+Pm5oaLi4txe2lpKU888QTvv/9+szY8PT35+uuvjf8PCQlpNivQ3trlUMUkbhehUqlYu3Yt99xzT4uoQnNzc8LDw4mOjm4mbtHR0Xh4eBAdHc3tt98ONH4409PTmTFjRq/089ixY9xwww34+vry+uuvExAQwOjRo3vlxtTbjB49moiIcaSdSOt2YIlCI2dYmCveEe54jnHFoDeQfTafvMQi/vgxsVHIqjsWDaehcUo3KSlpUIlba7QmeHq9nvLycsrLyykrK+P8+fPU1NRgb2+Ps7Mzzs7OqNXqfux1+1z8PRw9ejTBwcH4+voSHR3NzJkzO91eUVERtTW1XP3PcOx9en9Kvyilku9Wx1BUVNRi9CYIAnl5ea0+cIwcOZIdO3Zw4cIFAgMDUSqVzcyXL96/o2uXQ5HBdzfsRWbNmsWFCxdYs2YN69ata/H76dOns23bNuP/4+Li0Gq1PPjgg83ELTo6GqVS2eP1kkRR5M033+SZZ57h3nvvZerUqYSGhuLh4dGj5+lr7r33/7jzjju7FFhi4WiGd4Q7XuHuuI10pCyngtTjWXz/0j7yk4qgiyvKchQopMohmw4glUpbCF5VVRV5eXlkZ2fzxx9/YGlpaRQ6KyurLk9h9lWBTR8fH+zt7blw4UKXxM3YXx8LnIOsu3x8T2BpaUldXR15eXm4uze3qZPJZDg5OVFWVoa7u3ubD7VvvfUWc+fOZeXKlQC8+OKL7Nmzh02bNhnXLocqpjy3i5BKpfzzn/9k48aNZGVltfj99OnTSUhIIDe3MTdr3759TJ48mRkzZhAdHW3cb9++fUyYMKFHF1pLS0u5+uqreeutt3jttddYsGAB06dPH/TCBrBkyZLGKLWOOJYI4ORnx/ibQ7jxzQXc8vZCvCPcSYvJ4j8rvuO/D+3iyOenyU/surDB/9IBhMunAwxFzM3NGT58OJMnT2bu3Ln4+vpSWVnJwYMH+fnnnzl9+jT5+fno9fpOtdtXBTazsrIoLi5uNpU3WBEEATc3N/Lz81vk3jXVGly4cCG33norGRkZl23n8OHDzJo1q9m2qKioy651DiVMI7dLWLx4MaGhoTz33HN88MEHzX43adIkFAoF0dHRLF26lOjoaKZOncrYsWMpKioyRg/t37+fO++8s8f6FBcXx9VXX42Pjw/r1q0jMDDQGEo+FDAzM2PZbcv4+L1PWg0skSmkuIe4/G+E5oZULiH9RA4xX58l42QO9TUNvdIvhU5NfPxfszqAQqHAw8MDDw8PDAYDRUVF5OXlcfr0aerr63F0dMTZ2RknJ6cOhd/3dIHNqqoqnn/+ea699lqcnZ1JTk7m8ccfZ/jw4URFRfXeG9OH2NjYoNFoyMnJMa7njxw5ko8//hh3d3diYmL497//TWRkJF9++aUxpeHi6caOrF0OVUzi1gpr165lxowZPPbYY822azQaIiIijOK2f/9+Vq5ciUwmY+LEiURHRyOKIhkZGUyfPr1H+vLDDz9w0003cdNNNzF37lzGjh3bperCA527776bd955p1lgiXOAPSNn+zF8kifVpbWkHc/i59d/Jze+AIO+9zNYNJiTlGCqDiCRSHB0dMTR0ZHRo0dTUVFBXl4eqampnDp1CgcHBzw9PXF2dr5sRGFPF9iUSqWcOXOGTz75hLKyMlxdXZkzZw4vvvhiv1rL9TTu7u4kJCQY36dJkyYRHh5uDAi69tprCQoK4ty5c9x+++2DIkq6rzCJWytMmTKFqKgoVq1aZVxHa2L69Ols3bqVc+fOUVtby5gxYwCYOnUq+/btw2AwoNFoiIyM7FYfRFHktdde4/nnn2f16tWEh4cTGRmJlZVVt9odqISEhBA+NpyipEJmT53JiNnDMbfTkLA/lW9W/URRWmmf90mDOanFcVRUVAy6KNTeQhAErKyssLKyIiAggNraWjIyMjh79ixnzpwx1kNrLV1hxYoVrFixotV2L57Wb+L666/n+uuvb3V/tVrNTz/91K1rGQxYWFhgZWVFdnZ2qykOjo6O+Pv7k56e3uoySFfWLocKJnG7DK+88gqhoaEEBAQ02z59+nReeukltmzZwuTJk41Tg1OmTOG9995DFEXj9GVX0Wq13HXXXezbt4/XX3+dESNGMG7cuCH1RHoxoihSXFzMysdXIggCBReKid1+juRDGejqO7e+05M0RUxeuHDB+BBjojlqtZqAgAD8/f0pLCwkLS2Nffv2YWtri6enJ66urr2SH/ZXws3NjfPnz7cqXlVVVSQnJ3Prrbe2emzT2uVDDz1k3Nbe2uVQwSRul2H06NHcfPPNbNiwodn2iRMnolQq2bhxI0899ZRx+7hx4ygoKODbb79tlqzaWXJycli8eDGiKLJu3TpGjBhBcHDwkLxB6PV6srKySE5ORqvV4ufnxw1LbkB3QYavMLK/u9esOoBJ3NpGEATj1KVWqyUzM5P4+HjOnj2Lt7c3np6eA9bJ4lKKUioH1Hk0Gg12dnbk5+ezfv167rrrLuzs7Dh9+jRPPPEEUqmU6667joaGBpYvX467uzuvvPIK0P7a5VDGJG5t8MILL7B169Zm21QqFePHj2f//v1MmzbNuF2pVDJ+/Hiio6O7vN526tQpFixYwMSJE1m6dCmhoaF4e3sPuXn02tpaYy6gUqnE19cXd3d3pFIps2bP4pO0T/HWBfW6Y0l7yAUFKqn6LxUx2ROoVCr8/PwYPnw4BQUFJCcnk5iYiJubGz4+PlhbW/d3F1vF3t4etUbNd6tj+uycao26WY7a5XB1daWkpISCggKWLl1KcXEx1tbWhISE8P7775OTk0NOTg5xcXHNSve0t3Y5lDF5Sw4QoqOjWbRoEcuXL2fWrFmMGzcOBweH/u5Wj1JSUkJKSgq5ubk4Ojoa85IuFu9Tp04RFhZGMBNxFFz7ra+iKFJPHackB1iwZB7//e9/e6Td7nhLDmYqKytJSUkhMzMTa2trfHx8cHFx6ZcHt7Z8ETMyMigqKupSu3q93uhNWVBQgKOjY7tWYIPVfsvkLWmiQ3z99dfcdtttrFy5kkmTJjFhwoQ2/QMHGxUVFZw/f56ioiI8PT2ZMWMGZmatJ2uHhoYyJmwMmafTcBT7RtwMooEqyqmghApKqRIqqKYSPQ1ggB9++LFP+jGUsbCwICQkhKCgINLT0zl79iwJCQmMGDECR0fHATM70RQQ01UMBgM1NTXU1NSQk5ODvb09bm5uA+b6/kqYxK2faTI+fv755xk7dizjx48f8LZHHaWmpob4+Hiys7Px8vIiLCysQ0Ex9953L3ffdTdaalAJPWtaLIoi1VRQQWnjSyilkjJEDAgImJk5YW7phb2ZAxqNA6UlyeTmHOvRPvyVUSgU+Pn54ePjQ1paGrGxsVhYWDBixIgh4b7fVEJHEATc3d3JyclBp9Ph6elpErg+xiRu/YQoivzjH/9g48aNrFu3juDgYCIjI4fEVFVdXR2JiYmkpaXh6urKzJkzO+Wsf+ONN/LQgw+RXZOKL90LLBFFkSrKKaWQEgooowgdjUnfGrU9ltaeOFlMwsLKHXNzF6TS5u+/waAnO+uwcQrGRM8glUrx9fVl2LBhXLhwgUOHDuHg4MCIESMGfKmm9hAEAY1GY3QZycvL48KFC/j4+AwZ44XBgEnc+gG9Xs99993Hrl27eO211xg1ahRjx47t1gdfFMV+fzLU6XQkJydz4cIF7OzsmDJlSpfy8szNzbl12a18+u//dCmwpF7UUkx+40vIp0GsQyJIsbTyxMNuOlZWnlhYuiKTtb9WoNE0rplER0ebxK0XkMvlBAUF4e3tTWJiItHR0bi7uxMYGDioZzAEQUCtViORSHBxcSE/P5/ExET8/PwGpcH5YMT0Lvcx9fX1LF26lHPnzvHKK68Y3cy7I0xlZWXcdNPNHD50iF/2/sLYsWN7sMftYzAYSEtLIzExEY1Gw/jx47tcU6uJu+++m82bN1NMHg60v/ZWK1aTTxYFQjYVlABgbu6Ci/14bGyHY2Xl2WJU1hHUmsZItuPHjxutokz0PCqVyujqHxcXx969e/Hy8sLf33/QVsNuqpouCALOzs4UFhYSHx8/qK9pMGEStz6krq6O6667jqysLP7xj38Yk8S7I2xxcXFcdeVVZKVnoUDFooWLOHnqZIfCi7uLKIpkZ2cTFxeHVColJCQEZ2fnHhlBhoWFERYaRtaZNBwuE1jSJGj5QhaVlCIRZNjZBxDkOBNbWz8Uyu5Pb8lkSmRyDefPn+92Wybax8zMjPDwcMrLyzl//jx79uwxrtEN1hGPUqlEEAQEQaC4uJiEhAQCAgJMAtfLDM5PyyBEq9VyzTXXUFBQwJNPPkl4eDi+vr7davO7777jpqU3Ia2XM1Y/HQkSYvL2ccOSG/h5z8+9Or+fn59PXFwc9fX1BAYG4uHh0ePTovfedy/33HMPWvHPwBKtWEMeGeQL2c0EzcNpLnb2AchkPe/iolHbk5aW1uPtmrg8VlZWTJgwgaKiIs6dO0dKSgoBAQF4enoOSkMDhUJh/H4IgkBCQgL+/v5D1nVoIGAStz6gtraWhQsXUlZWxuOPP054eDg+Pj5dbq/Jd/Lxxx/HSXAnSByLTGicchuhj2Bf9D6efvppo8N6T1JXV8eZM2coLCzE398fb2/vXhPRpsCSrNpkLERrskmjhPz/CVogw5znYmvXO4J2MRozBwoLW68YbaJ3sbe3Z8qUKeTm5hIXF0d6ejphYWGD0mNVLpc3S/FpGsGZBK53MIlbL6PValm8eDG5ubk89dRTREREdCswQa/X89BDD7Fp0ya8CMRXHNlsxGQrODJcHMUrr7xCREQE11xzTU9cBgDZ2dmcOXMGOzs7Zs6c2etfSgsLC6659ho+/3wLomjA0nIYgW7X4uA0utcF7WI0Gnvy82oxGAyDctQw2BEEAVdXV5ycnEhMTOTAgQP4+fnh5+c36P4eMpnMKHB6vd4kcL2ISdx6kbq6Oq699lqKi4t59tlnsbCwoKSkBC8vry5N4Wm1Wm6+6Wa279hOIGNwF1of/Q3DnwqhjFtvuZURsSMIDAzs9nWcOXOGoqIigoOD+7Tkzrx58/jPf/6Df+BC3NzH99l5L0atsUMUDSQmJnb7vTTRdaRSKUFBQbi4uBAbG0tubi5jxozp0YoN3XEo6Sj19fXU1dUBjdeUmJhoWoPrBUzi1kvU19dz/fXXk5eXxxNPPEF4eDguLi4cPHiQ2NhYxowZ0ymBKykp4eqrrubokWMEixNwaMOaShAEgsSxxDZEc/VVVxNzIqbLN4CcnBxOnz6NnZ0dM2bM6PMnzJtuuom//e0uigvj+03cNP+LmPztt99M4jYAsLa2ZurUqSQmJvLbb7/12CguIyODgMBAtLW1PdTT9lGp1fz8008dDjL57bffePXVVzlx4gS5ubls376dRYsWGX8viiLPPfcc77//PmVlZUyaNIl3330XPz+/Ntt9++23efXVV8nLyyMkJISNGzcybty4nrjEfsMkbr2AwWDgtttuIz093ViLrWkqctKkSZ0WuIyMDGbPmk1GSiahhslYC+2H2csEGSN1kZxIjWbZsmVs3769U2J68Wht9OjR/WohdM01i/n88y1oteWoVH2/1qL+X67b8ePHufvuu/v8/CZa0jSKc3Z25uTJkz0yiisqKkJbW4vDiutQuDn2YG9bpz67gMJNXxtrQCYlJREQENBmVGh1dTUhISHccccdrS45rFu3jg0bNvDJJ5/g7e3NM888Q1RU1GVL5gBs3bqVRx55hM2bNxMZGcn69euJiooiISEBR8fefx96C5O49TCiKPLwww9z/PhxXnzxRcaOHdsseESlUnVK4E6fPs2c2VHUlNYQpp+CmdDx8HYzwYJA/Vi+/fZb1q5dy5NPPtmh4y4erU2fPr3fjVHXrVvHli1byM2JwdtnZp+fXypVIJebExcX1+fnNtE2NjY2TJ06lYSEhB4bxSncHFF6951pt1qtxs7OjoKCAi5cuIC/v/9l+z9v3jzmzZvX6u9EUWT9+vU8/fTTLFy4EIBPP/0UJycnduzYwY033tjqcW+88QZ33XWXMY9z8+bN7Nq1iw8//LDD94yByOBajR0ErF27lq1bt/Lss88SHBzM8OHDW+zTJHBlZWXExsZyucIMe/fuZdLESdSX6AjTTe2UsDXhKLjiTSBPrX6KPXv2tLlvXV0dMTExnDp1itGjRxMREdHvwgaN5T4CAgLIyTqKKBr6pQ8aM3syMjL65dwDlbfffhsvLy9UKhWRkZEcO9a2B+dXX31FYGAgKpWK0aNH88MPP1x23//7v/9DEATWr1/fbj+kUikjRoxg0qRJZGdn89tvv1FRUdHZy+k3ZDIZGo0Ge3t7RFEkJSXlsveEtkhNTSUvL49Zs2YZt1lZWREZGcnhw4dbPaa+vp4TJ040O0YikTBr1qzLHjNYMIlbD/LRRx+xZs0aXnzxRUaNGsWIESMuu297Ardr1y7mzZ2HWmtBqH4ySqHrIuPDSOwEJ5Zcf8Nl87VycnLYt28fer2eGTNm4O7u3u92XhezatUq6usrKSlO7Jfza8wcKCos7pdzD0SaprKee+45YmNjCQkJISoqioKCglb3P3ToEEuXLuXOO+/k5MmTLFq0iEWLFnH27NkW+27fvp0jR47g6tq50VPTKM7R0ZHffvuNxMREDIb+eRjqLAqFAjMzM5ycnNBqtaSnp3da4PLy8gBwcnJqtt3Jycn4u0spKipCr9d36pjBgknceoidO3fywAMP8OKLLzJ69GhCQ0PbFYfLCdy3337LokWLsDU4EmyYaMxh6yqCIDDCEIGuWseihYupvWjBXK/XExsby6lTpxg1ahTjxo0bEKO1S7nllltQqzRkZx3tl/Nr1PZo67QdulkaDAZqa2upqKigvLyc0tJSSkpKKC4uJisrC2gMECopKaG0tJTy8nIqKiqorq5Gr9f39qX0CBdPZY0YMYLNmzej0Wj48MMPW93/rbfeYu7cuaxcuZKgoCBefPFFxowZw6ZNm5rtl52dzQMPPMDnn3/eJRPxi0dxmZmZHDhwoNnnfSCjVCrRaDS4uLhQUVFBTk5Of3dpUGNac+sBmp5Kn376aUJDQwkPD+/wnP+la3BpaWnccMMN2BtcGCmO67Fq1HJB0Rhgcjaa//u//+Pjjz9Gq9Vy7NgxBEFg+vTpA9qoViKRsGjxQv773y+o05aj7OPAErXGDqlUwsmTJ/H29kar1aLVaqmrqzP+3PT/i8O8JRIJEonEaL/UdKM9ffo0oigiiiIGgwFRFNHr9YiiiFwuR6lUolKpWrwu3t5fdlRNU1mrVq0ybmtvKuvw4cM88sgjzbZFRUWxY8cO4/8NBgO33norK1euZOTI7lWDsLGxYdq0aZw5c4b9+/czbty4QVFSR6lUYjAYcHV1JSsrC7lc3uGgDmdnZ6DRPcjFxcW4PT8/n9DQ0FaPsbe3RyqVkp+f32x7fn6+sb3BikncuklcXBxXXnklDz74IBEREYwfP77TN50mgdu9ezcHDx7EkUbXkZ4StiYsBGsCDGF8+umnXHHFFbi7u+Po6EhISMigKMWxbt06vvjiC3JzYvDq5cASlUqKo4Oq8eWowt7eCxvr68jMzKSwsLCF6FhbW7cQodYecJoqcU+fPr3FyEQURaM4XiyYWq2W4uLiZgJqMBhQKpVYWVlhbW1t/FetVvf6dHJbU1nx8a07ueTl5bU79bV27VpkMhl///vfe6SfUqmU0NBQUlNTOXToEMHBwQO+6nVTNQFRFI0CJ5PJOiTM3t7eODs7s3fvXqOYVVRUcPToUe69995Wj1EoFIwdO5a9e/caUwoMBgN79+5lxYoVPXVZ/YJJ3LpBSUkJV111FTfccANXXHEFEyZM6HIi5o8//sidd/6Nf77wTx584EH2bjyMaOj8onJ7uAie+E/xxtzcHJlMRlhY2IBaW2sLd3d3/Pz8SEs7iqf3dIQeEn+VSoqjowqn/wmZo4MKS0sFZeX1FBRoyS/QcvpMEbu+f5GFCxfy0Ucf9ch5L6XJRV6lUrVpLyWKIg0NDVRVVVFWVkZ5eTl5eXlUVlYil8uNQtf06gvB6y4nTpzgrbfeIjY2tkf7KggCPj4+mJubExMTQ0VFRbvWd/XZra8b9jSXO09TPbgmgUtLS0OpVGJmZkZVVRUXLlww7puamsqpU6ewtbVl2LBhPPTQQ7z00kv4+fkZUwFcXV2b5cLNnDmTxYsXG8XrkUce4bbbbiM8PJxx48axfv16qqurB30VDJO4dRGdTseSJUvw9/dn3rx5jB8/vlMFOS/m+++/Z8mSJdjrXdn59G9c+9IcZv19Ir9sONSjAidIBMbfHMrIOcN5+7V3SciI4/SZU4Nq+mH16tXcfvvtlBQnYWcf0KU2zMxkeHuZ4znMDEcHNZaWcsrK6iko1JKXV8uZP0opKNRSV9d8fa26Wj8g0gEEQUChUGBra9vsiV6v11NeXk55eTllZWUkJCRQWVmJTCbD2toae3t7nJ2dsbCw6JaAdGUqy9nZuc39Dxw4QEFBQbORlV6v59FHH2X9+vXdNq52dHRkypQpHD16lMrKylYfHuzt7VGp1RRu+rpb5+oMKrW61QoeTQJnMBhwcHDgwoULjBgxgpiYGKZPn27cr2mq97bbbuPjjz/m8ccfp7q6mrvvvpuysjImT57M7t27m62jJycnN3NhueGGGygsLOTZZ58lLy+P0NBQdu/e3WKkPdgQxK7EnJrg73//O7/++ivPPfcckyZN6nRkVxM//vgjC69eiK3eybjGprZSsfjFWRSmlPaYwCk0cuY8PBkrZ3N2rYkmP7uAGFk0Y8aFsi9636CpAG4wGDAzM8fM3Ivg0GUdPs7BXomPtwXe3uY42KvIza0lLb2KvPxaCgq11Ne3Hyhy8sT7aNRasrOzu9z/pmnJ+fPn98l7rtfrqaiooKysjIKCAgoLC1EqlTg7O+Ps7IydnV2XcsIiIyMZN24cGzduBBr/LsOGDWPFihWt5kbdcMMN1NTU8P333xu3TZw4keDg4Ma6fcXF5ObmNjsmKiqKW2+9leXLlxMQ0LUHmUtpaGjgxIkTKJVK/P39MTMza/b7rtpvNVlqqdXqTi1L2NvbtzlVqtfrqayspLi4mPr6egICAgaEn6ZWqzVWpx+IAWhgGrl1iffff58tW7bwxhtvEBwc3GVhO3jwIIsXLcbG4NgseKS2XMv2Z35h8YuzemQEZ+ViwYLV06gsqOKrJ3ZTX9OAUlAzUhfB4cO/sXLlyg7lEw0EJBIJixYt5IsvtlJXV4FS2bojhVQi4O6uaRQ0L3OUSgnpGdWcOl1CWno1Wm3noxI1Zg4UF57p7iX0KVKpFBsbG2xsbPD29kav11NYWEheXh4nTpwwrp05Ozvj6OjY4Wn19qayli1bhpubm7EyxYMPPsjUqVN5/fXXWbBgAV988QUxMTG89957ANjZ2bUocCuXy3F2du4xYWtqMyQkhKSkJKqrq1EoFM0eMoYNG9bpdbm6ujpqa2uNU/09iVQqxczMDFEUyc3NJT09vcvetH81TOLWSQ4cOMBDDz3EK6+8QlBQEP7+/l1qJz4+ngXzF2Cut2aUoWVUZE8JnEeIM1GPXsH5vckc/uxkszasBXv8xGDeeustIiIiuPnmm7t0LX3N2rVr+eKLreRmx+DlM8O4XaWS4u1ljo+3OcM8zNFq9aSmVfLLr7lkZ9eg7+YIWKO2J6dOi06nG7SFM6VSqXHUJooiZWVl5Ofnc+HCBWJjY7Gzs8PJyQkXF5cWo5qLaW8qKyMjo9kIY+LEiWzZsoWnn36a1atX4+fnx44dOxg1alSvX/OlCIKAXC5HpVJRXV1tDADqimD0prA1IZfLUavVODk5kZWVNSQiGfsC07RkJ0hPTyciIoK7776bWbNmMXny5C59oHNzcxkXMY6K/GrCdFcgFy7/tNydKcrgBQFMuCWM6H8dJSE6tdV9RFHkvBBDiSKfo0ePEBIS0unr6Q/8/f3JyMhnwuQnGOZhzqiRNvj4mFNcVEdyaiWpqVUUFdf16DmLCuP44/SnHDt2jIiIiC610dfTkp2hpqaG/Px88vLyKCoqwsbGBk9PT1xdXQdFNG1HuXhKTSaTUV1dbXQJ6az/am8LWxOiKFJbW0t1dTWZmZn4+vr2a027wTAt2f+Tt4OEmpoaFi5cSFRUFJMnT2bcuHFd+kBXVFQQNSeKkvwygnUT2hQ2+HME5+Bjw6y/T0SQtP/lk8gkTL9vPGOvGcWO5365rLBB41NsoDgGlU7DwqsXUlpa2ulr6g+efPJJrrxyNstu9mLuHDcqKhv4/L+pfPFVGsdjintc2ODP6gAHDhzo8bYHAhqNBm9vbyZMmMCcOXNwdnYmMTGRn376iT/++GNQWVp1FJlMhoWFBQaDgaqqqg47mvSlsMGfKQIqlQpnZ2dSUlLQarW9ft7BjEncOsjf//531Go11157LREREV2KjKyvr2fxosUkxCUSrJuASuhYG50ROKlcwvwnpuLgY8uXj/9IfmL7i+NSQcoofSR52fksXbp0wFoWiaJIcXExx48fx97enuDgYLZu/ZYPPk7i4KECysrqe/X8KrUNIBAbG9ur5xkIKJVKhg8fzowZM4iMjKS+vp79+/dz4MABsrOzB+xnpCtIJBLMzc2RSCRUVVW16xLT18LWhCAImJmZYWZmho2NDcnJyUPq79DTmMStA3z++efs2LGD+++/n+Dg4BYL3x1BFEXuvPNO9u/fzyh9JOZC56YUOiJwMqWUBaunozRXsOPZPVQX13S4fbVgxgh9OD//9DPPP/98p/rW2+j1ejIzM9m/fz9HjhxBrVYzc+ZMzp8/z08/fUVtbd+MKCQSGUqlJQkJCX1yvoGAIAjY2dkxduxYoqKicHFx4fz58/zyyy8kJSVRX9+7DxR9RVPovUwma1Pg+kvYmpBIJJiZmWFlZYVEIiEzM7PP+zBYMK25tUNiYiLh4eE899xzXHHFFURERHRp4Xn16tWsWbOGUUTiLHh0uT+XW4OTq2Rc+fR0EGHny/to0Oq61H6qGEcy5/juu++46qqrutzPnqChoYGUlBRSU1ORyWT4+PgwbNgw400lIyMDT08vvH1n4+U9vZ3WeoZTsR+ikFd02VS2u2tuR48e5eGHHsbL24uAgACCgoIYM2YMvr6+fRZB1xS5l5KSQllZGR4eHvj5+XU5z7OvaWu9qGltq6GhAXNz82Zrjf0tbBej1WqpqqoiMzMTT0/PPrcWGwxrboMz5KuP0Gq13HDDDSxZsoTg4OAuu3ls3ryZNWvW4Edwt4QNWo+ilKtkXP3sDOprG/hhzX509V033/UikCpJGTctvYnYk7HtVvDtDfR6Penp6SQkJGBubk5YWBiOjo4t3vthw4YxfLgvmZlH8fSa2mOOJW2hMbOnML//npY/+OADThyLJeF4MjuEb6nVNY7OLS2siBjXGJYfERFBRERErxWYFQQBV1dXXF1dKS8v58KFC/z66694eXnh5+fX59Xae5KmtS1BEKiqqjIK3EASNmicNtbpdDg7O5Oeno6Zmdmgft97g/7/Kw1gHnvsMaRSKQsWLGDs2LFdetLev38/K1aswIPheApdSxu4lIsFbs4jjYnZ1SW17H71N/QN3ZuDFwQBf0Moh2t+ZsyYsSQlJfZZ2LEoimRlZREfH49UKiUsLAwnJ6c2b9BPPPEEd911F6UlF7C165n3ty00anvq6+uor6/vstVad0iIT8DG4MBoYTwA9dRRQSkVlSWc+TWOQ/uPUKurBsDV2ZXZUbOZPn06M2fOxN3dvcf7Y2VlxdixYykvLzdOVw4fPhxfX98BIQJdockGrUngFAoFdXV1A0bY4M9pVL1ej7W1NcnJyQQGBg6IBO+Bgmla8jJs27aNO+64gw0bNjBx4sRWi462R0ZGBmGhYxAqZIToJ/W4EbKVqwVL31xAbXkd/1nxHfpujNiaqBGrOCMcpkaoAURcXRufDHvzSyOKIgUFBZw/f56GhgYCAwPx8PDo0KjDYDCg0ZhhYenD6JBbe62PTRQXJXDm1MccOHCAyZMnd/r47k5LOju5oC6wZrhw+fwwrVhLBSWUUUSFrJgyXQkAgQGBzF8wn3nz5jFt2rReuVEXFRVx/vx5ampqCAgIwNPTc8DdcNuaUrvUoaSmpga9Xo9SqeyVh5n2HEraQ6fTUVlZSU5ODpaWlnh4dG9mqKOYpiUHKampqdx555088cQT+Pv74+vr2+k2ampquOqqq6mrrGesfmKPC5tCI2fOQ5PI+iMfS0czZtw3vttOJiViPmc4ilxpztjQ+6ipLuTcH1tYtGgR3333XQ/2/qJzlpRw/vx5Kisr8ff3x8vLq1M5VRKJhKuuupKvv/6mTceSnqIpHeD333/vkrh1h5qaGvIL8hhB2yMwlaBGhRuOuIG+cXRXSgFFCflsTv4Xb7zxBtZWNlx3/bVcf/31rVYo6Cr29vZcccUV5OXlcf78eeOIoremSHuSjIwMAgID0fZh/TeVWk1CfHyHBe63337j1Vdf5cSJE+Tm5rJ9+3bmzp2Lk5MTGRkZPPHEE/z3v/9tdkxUVBS7d+9us923336bV199lby8PEJCQti4cSPjxo3r8nUNBEzidgkGg4Fly5axYMECxowZ0+V1tueff54/zpwhghkohJ6dC5erZFz19HRqK+r44ZX9KM0U3XYyyRHTiSMGaxtfRgbfhFyuxtzcmcqKKXz//fe8/vrrPProoz12DRUVFcTFxVFYWIivry+RkZFdvsG+9tprfP31N+TlxOLpPa3H+tgaSpU1IHDq1KlePU9rNLnBazDv1HEKQYkTHjjhgagTqaSMgvIsvvj4S/79739jZWltFLqZM2d2e0QnCAIuLi44OTmRmZnJuXPnjMa/Dg4OA1bkioqK0NbW4nbVzSjset80uL44n+zvP6eoqKjD4lZdXU1ISAh33HEH11xzDdB8/a2qqoqoqCg+/vhj4zHtrcU1VVXfvHkzkZGRrF+/nqioKBISEjpcS24gYhK3S9iwYQM5OTk8+OCDjBkzpsuLtP7+/oiIpAsJBIlju11NuwmZQsqC1dPQ1ev5cd1vGHSGbll1iaJIGvEkcw4X13D8Axchkfw5cvL2nUNFRRaPP/4EkydPJjIyslv91+l0xMXFkZaWhqenJ7Nmzer2tIanpye+vr5kZR1hmNeUXg0skUikqFTWJCYm9to5LkdSUhIAGiy63IYgCFhigyU2+OpGNQpdRRZffvI1H3zwAU6OTtz5tzu54447ujRjcTESiQRPT0/c3d1JTU0lJiYGGxsbQkNDB3RhXIWdE2rnnl+f7AnmzZvHvHnzmm27eP1NJpNRW1vb7lr1xVxcVR0aA+B27drFhx9+2KoJ9mBhYE2G9zNJSUk8/fTTPPzww/j7++Pg4NDltu6880527NhBlbqUE7L9VIvdz8WSyiXMf3IqgkRg15roZmtsXXEyEUWReE6SzDm8fGYSEHRNM2GDxpv5yNFLkcnNmDFjJmVlZV3uf3FxMdHR0ZSVlTFt2jSCg4N7bL7+8cdXUldXTmlJco+01xYaM0eysrJ6/TyXkpSUhEKqRE7PrP0IgoClYMNwYTTjdLMYxwzkBWa8tvZ1AvwDyMjI6JHzSKVShg8fbnyQ+fXXX0lPT8e03N9zSCQS1Go1SqWSI0eO4OjoSEBAAPfeey/FxcWXPa6pqvqsWbOatdVWVfXBgknc/oder2f58uVcd911BAQEMGLEiG63uXDhQk7EnsDVx4kYaTQFYtdLpQgSgbmPTUGhkbPz5Wh0dS2DRzojcHpRzxkOk0MqAUHX4O0z67JPegqFOaNDbqW2Vsv48eM73XedTscff/zB4cOH8fb2ZvLkyVhYdH300Rp/+9vfUCpV5GQd7dF2W0OjsaesrO+tqJKSkjATuleL7XI0Cp0tgcIYPPUBCBKhxwMFFAoFYWFhhIeHEx8fz5EjR6jtw/Wt9hjsCelyuZyoqCg2btzIO++8w8svv8z+/fuZN2/eZZPS26qq3tVczoGCSdz+x4YNG8jNzeXKK68kLCysxyLJAgICOB5znKsXXsUZDnNB/KNLT6wTbw3DytWC71/cR0Ntw2X364jA1Yt1xPIbxZJCRoUuw9WtfRNgS0t3AgIXkZCQwLJlHa+jdulorbeSjSUSCVdeuYDCwvPU11X2ePsXozGzp6Ghrs+9/eLi4lHoenc6TxRF8mUZLF68uNfWW5ycnJgxY8aAGsXV1dVRV9fzfqR9iSAILFu2jMWLFxMaGkpoaCjff/89x48fJzo6ur+71+eYxI1GF5KLpyNbq4zbHSwsLPjq66949dVXyRCSOC05SL3Y8S9S4HQfgmb5suuf0dRVt/902ZbA1Ym1xAj7qZHVEjb2LuztAzvcDxe3cFzcxvHZZ//ho48+anPfi0drXl5eTJ48GXPzzgVCdJZXX30VgNzcEz3WpigaqK0poagwjvS0/cSd+5LMzEMgkfLDDz/02Hk6QlJiYqeDSTpLOcVU6Mq45557evU8crl8wIzimhK0B/I6YEdpmp60s7OjqqoKGxsb7O3tjcFIl9KVquqDhb+8uDVNRy5ZsoTAwMAemY5sDUEQeOyxx9jzyx70lvWckEVTIbbvwO/kb8/Uu8fx02sHKM/t+IikNYHTijXECL+hl8OYcfdiadX5nBj/gKuwsHDlrrvu5ty5c63uc/FoberUqQwfPrxPIuS8vb3x8fEmO+sooti1ZHaDQUdZaSppKb9yKvYDfot+niOHXuWP05+Slr6PckqQD3MHg57t27f38BVcnoqKCoqKi7oVTNIRsoVUvDy9mD69b+zMmkZxSqWyX0ZxA815pCdQKBQolUqcnJw4fvw4xcXFuLi4XHbfsWPHsnfvXuM2g8HA3r17mTBhQl91uVcYGn/NbrBx40by8/N5+OGHCQ0N7fUP+IwZMzh1+iSLFi0m9vR+/A2huApere5rZqdh/hNTOfz5STJPd37+++IoyukPjOOljS9gkEoIC78btaZrXnQSiYxRIbdy/OgGJk+aTG5ernFtRq/XGyMhAwMD+9TvsInHHnuM++67j9KSFGzt2k+8F0UDlRXZFBcnUlaaQkV5BgaDDolChcbdG/vgOaic3FDaOSGzsEIQBETRQEXCGc6c6buq3F1NA+gMDWI9BZJsXr73pT5NvJbL5YwZM4a8vDxOnz5Nbm4uISEhvT6Sqq+vx2AwtBC2+uL8No7qwfN34TxVVVXNRmGpqamcOnUKW1tbbG1tef7557n22mtxdHTk7NmzrF69Gk9PT6KioozHzJw5k8WLF7NixQqg/arqg5W/tLjl5OTwzDPP8PLLL/fKdOTlGDZsGIcOHeT+++/nww8/pEIsxZ+QZoneUoWUBU9OJT02mzM7u+5CX1uu5Yunv+fql2Zw70P3cvgoKFU23eq/SmXFqOCbOXXi31xxxRUcP36c2tpajh49ikQiYerUqT0eMNJR7rnnHh5+6BFyso9eVtwaGmopKU6iuDiekuJEGuqrG8VsmC8OYfPRDBuOytEV4TI3eEGQoLCyITu76wFCneXPNIDeE7dc0kEQuf3223vtHG3h7OyMra0tZ8+eJTo6mnHjxnWpAkdH0Ol0aLVabG1tjcJmb2+PSq0m+/vPe+WcraFSqzt134mJiWk2qn7kkUcAuO2223j33Xc5c+YMn3zyCWVlZbi6ujJ16lRuvfVWtFqtMa0pOTm5mQtLe1XVByt/aXF77LHHmDVrFv7+/gQFBfXpuVUqFR988AHjx4/n/vvup1qsYKR+HCqh8Wl15v3j0TXoif7XsW6dRyvWcqJiP6dfPM7La17BwbGBn3/JobszPzY2Pgz3n09MzC6ee+45JkyYgLOzM8HBwf1qtySRSFhw5Xy2bdtOfV0lCmWjyOr19RQWnCU3N5ay0lQQDSjtXbAcE4m5TxAaNy+ETjijKOydqUjru9I3SUlJqGRq5Pre8bMURZEMSSJKpRJPT88OuVR89dVXPPPMM6SlpeHn58fatWuZP3++8ff/+Mc/+OKLL8jMzDROf7388stt5koqFArGjBlDamoqhw8fZvTo0Xh6evbotWZmZtLQ0GAscdPEsGHDSIiPb3bj7yharRadTodGo+nU57+z9lvTpk1rc9r2p59+Mv4siiLV1dWUlZWRkZHByJEjkUgkpKWltThuxYoVxpHcUOEvK2779u1j586dvPvuu4waNarH7Ic6y1133UVwcDCLFi7iRPE+RugimHntNFyCHPly5Y8YdF03Qq4Tazkh/IZBLsHb70a278jimsWezJnl2iMC5+4xiVEj7BkxYgRarZaQkJAB4T6xbt06tm3bTk7OCaytPcnNjaWg4AwGXT1mw4bjEnEN5r5ByC27PoJV2jpQnRzXg71um6SkJNS9OGpLJQ6toZZH732UO+64o12XikOHDrF06VLWrFnDlVdeyZYtjTZtsbGxjBrV6Hvp7+/Ppk2b8PHxoba2ljfffJM5c+Zw4cKFdnNIvb29sbCw4Pjx45SXlzNq1KgeeWhKSUkhOTkZDw+PVpcghg0b1iWvxyYhATAzMxsQ34OmCgc6nY7y8nLy8vJwdXXt7271GX9J4+SGhgZCQ0OZN28eixYtYtKkSf3+YczPz+f6666nrq6ORx95lG2r91CcVtbl9nRiAzFCNA1yA2Hh96DWNE7vaNRSrlnsSWGhtlsCJwgweZIjIwKteP31tzh16ihJSYk9/pTdVTw9PcnMzkHU65Bb2mIdHIHVqAgU1j1T96r01GFyd39FcXFxp2ppddU4OXJcJBnH8xgl9I7f337xO1TmSsrKy5BIJBgMBjw8PHjggQdadam44YYbqK6uZufOncZt48ePJzQ0lM2bN7d6joqKCqysrPjll1+YOXNmh/pVXV3N0aNHUSqVREREdMu8OCUlhbi4OMaOHUtpaWmPm/4aDAaqqqqQy+UDKvKytraWyspKsrKyGDlyZI+UxhkMxsl/yWjJDRs2YDAYmDRpEsHBwf0ubNAYNfbtd9/y+BOP89bGt9if9jN6sWsFRw2intMcRiupI2TMnUZhA6ip1bNtezoODirmzHKlK5euVEpYeJUHnh7mfPFlGhL5OAwGGDcuEp2ua33uaZYsWYKo1+E4/UqG37sah8lRPSZsAAqbxpHH119/3WNttkVSUlKvrbfViVoaqGfhooXG0VF7LhWHDx9u5moBjQa9l9u/vr6e9957DysrK0JCQjrcNzMzM6644gpkMhm//fYbFRVdS55vErYJEyZgbW3dpTbao6lKdl1d3YBKCFepVCiVSqysrP5Slbv/cuKWk5PD888/z7333oufnx+Wlr3rIt9R6uvriYmJYcSIETzwwAOUKQuIle2nRqzqVDuiKHKOGMqFYkaHLsPMvOWicHcEzsZawQ3Xe6HXi3z5dRrlFQ1oNPaMGL2UgoJ85s6d26n+9havvPIKgkRKbU5mr3hNKmwbgwB+/fXXHm/7UkpLSyktK+21NIBsUoHG0djFtOVSkZeX1yFXi507d2Jubo5KpeLNN99kz549nQ7cksvljBs3Djc3Nw4cONBp54yLha23K1ZLpVLMzMyoqakZMA96TdOT1tbWVFZWUl5e3t9d6hP+cmtujz32GDNmzMDf35+AgID+7g7QOJ1x/PhxLC0tCQwMJCgoiJEjR7Lw6oWcyNxHkD4ce6H1PJVLucAf5JPJyFE3Y23jfdn9mgSuM2twnsPMmBflxpk/Sjl8tLDZ/vb2gXj5zGTv3r288MILPPvssx3qb28hlUoZOSKIs+f+QFddicysZ4VBZm6FIJVx9uxZoPGhoqGhAa1W2+xVV1eHwWBAFEUMBoMxWfb06dNIpVIkEgmCIKBUKlEqlahUKuNLqVQiCEKvRkqKokihNAv09Epk4vTp0zl16hRFRUW8//77LFmyhKNHj3ba/UQQBIKCgrC0tCQmJoaAgIAO5U/2pbA1IZfLUalUVFdXY2FhMSDq2cnlcpRKJQ4ODs2CS4Yyfylx+/333/n+++/7PYjkUuLj46mrqyMyMtL4ZR09ejSxJ2O5+eab+fGHH/EWg/AmqM0vc4aYRDqJ+PlfhaPT5YtZNtEZgQsNsWFCpCN79+WSmNT61JCX9wxKS1J47rl/4Ofnx9KlS9u/+F7k448/JjwigrKzx7GPnNEjbWpkEtzMlLiaKbn6ySdxsLHm559/NoqYVCptIVByuRxBEJBIJNjY2JCfn49Go/lfzlyj6FVXV1NcXGwUxYaGRos1pVJJTU0NTz31FHXpBsqTayhKLqOysLpHrqecEir15Ugkkk65VDg7O3dofzMzM4YPH87w4cMZP348fn5+fPDBB6xatapL/XVzc8PMzIyjR49SUVFBWFjYZW/S/SFsTSiVSvR6PdXV1Zibm/f70selwSX5+fmXTeweKvxlxE0URR5//HFuv/12PD09cXNz6+8uAY1TTikpKUyZMqVF9Ja1tTXff/89L730Ev/4xz+oEsoIMoQjF1ouqueLWSRyGg/PKbgPm9jh83dE4MaF2xMaYsO2HenkF1zeT7G8LJ3qmnxA5OZbb2XSpEndqjLcXcaOHYuZRkNp7CHsxk3v9A3GTCbB1UyJm5kSN3MlrmYKbJRyirUN5FTXcb6wlCO/H+C2225rJmRt0RRQ4ufn1+a+er2eurpG/8onn3ySnJwcvL29GbHEl2HDhlFTXUt2Sg4FF0qoSK6hOKWcyoLOC142KQzzGIazizN79+5l0aJFwJ8uFZcLD58wYQJ79+7loYceMm7bs2dPu64WBoOh2x6O1tbWTJ06lSNHjnD8+HHCw8NbFLjtT2GDP8vQVFZWUldXNyCCLqRSKUqlEnt7e3JycnBwcBgyriytMXSv7BK+++47Lly4wMMPP8zIkSP7/UkKGm9gsbGx+Pv7X3btTyKR8OyzzxIeHs7SG5cSW7ufkbpxmAtWxn3KxRLOcRwnpxB8h0e12k5btCVwE8Y7MGqENd/syKC4+PI3peysoyQlfIfGwwe3SbPJ+PJ9RowYQXl5eacqa/c0f/vb33jrrbeoSb+AmZdfm/tKBPCyUBFkY0agjQY7lZyi2kYhy6jUcjivnJzqerT6xvSM/DNxlBz7vVeS/6VSKRqNBo1Gw88//0xJiY68Qi9++fUgDfXfY2MtxdnJDE8vN0Zc3yh4tdVakmPTyDpeQPapwjYNtqHRkaRQks0L976Aj49Pmy4Vy5Ytw83NjTVr1gDw4IMPMnXqVF5//XUWLFjAF198QUxMDO+99x7QGOX48ssvc/XVV+Pi4kJRURFvv/022dnZXH/99d1+f1QqFRMnTuTw4cMcO3aMiIgI4426v4WtiabRUnV1NXK5vF+/B000TX1rNBpyc3Px8Oi8Bd9g4S8hbnq9ntWrV3PHHXcwbNiwfv3AX0x8fDwymYzhw9u3iZo/fz6xJ2O5+qqrOZEYTaB+DE6CB3WiljPCYcwtXAkceV2XgydaE7jJEx3x97Pk623plJa1Hv0ligZSLvxMRvp+bMdOxmnGQgSpFNcFN5L93X8YO3Zsv1StbuL1119nw8ZNlJ463Kq4qaQS/K3VBNmY4W+tpsEgEl9aw660YtIqtUYhaw2lrSOiQU9ubm6vTvEUFhZhaRWIpaU7lpZ/FtGsroPYU6X8uu8wVVVbsbUWCQ4JIOLGCOY+PIXks6mkH88h53gxVUU1LdrNIwNREFm+fDnOzs5tulRkZGQ0m/6bOHEiW7Zs4emnn2b16tX4+fmxY8cOY46bVColPj6eTz75hKKiIuzs7IiIiODAgQOMHDmyR94XhULBxIkTOXLkCEePHiUyMpKMjIwBIWxNyOVyFAoFNTU1A2J6UiKRoFQqsbW1JTMzEycnp26lVwxk/hJ5bh9//DHPP/88r7/+OrNmzRoQEZIlJSUcOnSIKVOmdKo/1dXV3HXXXfz3v//Fg+GUU4pWXkf4+AdQKrt/XU15cBIBpDIJ27anU17R+gjAYNARf/4b8vNO4TRjIXbjpjb7fd7ebyk5vp8HH3yQ9evXd7tvXWX06NGcPXce/wf+gUxjjqVcyig7M4JszPCyUJFfW098aQ1xpTXkVNfR0S9ETWYKaZ9v4q233uLvf/97h47pbJ6bwWBAJpPj7TMbT+9p7e6v1ZZRUpyEhHz8/BwIDx/DiBEjyMvMJ+14NhkH8ynJKEcURWJkvzLjymls276tQ33vDURRpLa2Fo1G0+U2dDodR48epaamhrq6OiZOnNimsLWVo5WRkdElh5K2aErwbgrquJjOOpT0VH8qKiooLCxEJpPh5eXV6TYGQ57bkB+5abVann32We666y68vb0HhLDp9XpOnjzZ5nTk5TAzM+Pzzz8nMjKShx9+GFEUGT1iWY8IGzSO4HJzawgKtCY1rZKKytaFTafTcvbM55SVpeK28FasgsJa7OM07UpqczN4a8NG5s2b18y8tS/54IMPmDBhIsOq8pgZOgk/aw2pFbWcK6nmm+RCyuq7FrKtsG3MdYuOju6wuHWWxMRERNHQLFexLVQqa2N9vvIqHd/sSOOzz6Nxd5ESNmY016ydQ0FGIaf2nOPggVru+b/eLW3TFg0NDcyYPoPjx4/z7w/+zS233NKldmQyGU5OTpw/fx4LC4suf8czMjIICAhEq+270jsqlZqEhPgOC9yaNWvYtm0b8fHxqNVqJk6cyNq1a5tFfmu1Wh599FG++OIL6urqiIqK4p133jGOwgWhsRCttbU16enpODk5oVKpeO6553j//fcpKytj0qRJvPvuu/j5tT2VP5AZ8uL2zjvvYG1tTUhICIGBHa9d1pt0ZjqyNQRB4MEHH8TS0pK//e0uEuK2I1eYYWXV/SfAyRMd8RxmzpdfpzJntlurQSZ1dRWcPvUxtXWlDLvhHsw8W78OQSrFY/HtJH/4GvOvvJLC/Pw+nyrSarVYWlry/vvvISJwqrqO79KKKK9vvTJxZ5BqzBFkcs6fP98DPW2d3377DWis/t1ZJBIZtrbDsbUdjsGg55dfL/DNN68SFOTA7Lmz+PiOj3F0dKSioqJfHvoef/xxDh06hJ3oxK233srJkydZu3Ztp4McUlJSSEhIYMKECSQmJnL06FHGjx/f6TWuoqIitNpagkYuwcysdwq1Xkx1dQFx576kqKiow+K2f/9+7r//fiIiItDpdKxevZo5c+Zw/vx5zMzMAHj44YfZtWsXX331FVZWVqxYsYJrrrmGgwcPGttRKBQoFApsbBoNwL/55hs2bNjAJ598gre3N8888wxRUVGcP39+wI7M2mNIi1t5eTkvv/wyTz31FD4+PgPCEqekpITU1FSmTJnS7TyT5cuXM3r0aKZNm87JmH/hH7gQV7eu2zONH2dPYIAVX29Lo6y8odUgk9raUk7Gvo9easDrlhWoHNv2qpOZWeBx7R2k/Wcjw/38KCku7nL/OkNTFGpOTg729vZkZGTw4osv4nHD/11WjDuLIAgobOw7nVTcGY4fPw7Q4ZHb5ZBIpNjZB2BnH0BZZQmPPvooS5cuZeXKlezfvx9bW1t8fHxwdnbuk3Wh//73v6xfv54AQnHHl0ySWf/meuLj4/nyyy+NN+r2uDR4xMbGxhhkMm7cuC4FcZiZOWJhOTCiqS9l9+7dzf7/8ceNDygnTpxgypQplJeX88EHH7BlyxZmzGhMf/noo48ICgriyJEjjB8/Hvhz9GZlZUVaWhpvvvkmTz/9NAsXLgTg008/xcnJiR07dnDjjTf27UX2EEM6i++NN94gKCgIf39//P39+7s7xunIgICAHntSDg8PJycnm6CgQBLithN//hv0+raj5FojYqwdo0c1hvuXlTcef6mTiba2mJMn/oWokOB969/bFbYmNK6euMy+htKSEqZOndr+Ad2gpKSE33//nYMHDyKTyZg2bRoTJkzgmWeeQUSg9FTr9lBdRWnvRFV1z+SctUZcXBxyuTlSac8t+pcUNVYzeOyxxwgLC2POnDnY29tz5swZ9u7dS1ZWVq8WDD1z5gx3LL8DF8ETdxpr/g0ThhMiTmTPT78wbeo0CgsL222ntahImUzG+PHjjY4/BkPXjccHA01uI03Xf+LECRoaGppZowUGBjJs2LAW1mgXB7vk5+c3O8bKyorIyMjL2qkNBoasuFVWVrJhwwaWLFmCn5/fgIgIapqO9PX17dF2LS0tOXfuHHfeeSe5OSeIjdmMVlvW4eNHBlkxJsyO7d9mUFLaPCqySeDs7eRMHC+ARonnLfcjt+qco7516ASsRo/jtwMHeOmllzp1bEeoqKjg6NGjHDp0CHt7e6KioggJCTHWlZNKpYwICqQi4TS6ms5ZmrWFwsYBg6H3hCAjIwONWc+lGoiiSFbWEZydXRgzZgzQGB4eEBDA7Nmz8fPz4/z58+zfv5/8/PweF7nS0lIWXr0QpU5DoBjWbJRoJzgTpr+Cc6fPEzkukuTk5Mu201a4v1wuZ8KECdTW1nLq1Kk+rezdlxgMBh566CEmTZpkjFLNy8tDoVC08M9szRqtafTWVM3A3Ny83WMGE0NW3P71r38xfPhwvL298fa+vA1VX9E0HTlmzJhes73597//zWeffUptTQHHj2ygtOTyN4cmXF3UTJ3izK4fsyi6TB5bcXEhq556Am9fb554+RUUFtad7psgCLhEXYvK0ZVnnnuOY8e6V6euiZqaGmJjY9m/fz9qtZpZs2YRGBjYaiTiv//9bzCIlP8R0yPnBlDY2CMa9KSmpvZYmxdTVFiMxqzt8jCdoaIik5rqAu67794Wv5NIJHh6ejJz5kzc3d05ceIEhw4doqSkpEfObTAYuOmmm8nNymOkfhxSoeWqiKVgwxjdVIqySoiMiDROy15MR/LYFAoFkZGRFBQUkJKS0iP9H2jcf//9nD17li+++KLLbchkMuMaZ0FBQU91bUAwJMWtrq6ON954gyVLluDj49Pvo7amZO2AgIBer1B9yy23cO7cWSws1JyK/YCM9N8u++RqYS5jwTx3DhzMJyu7ZR4UgPZ/a2zldbV8cKEEdytzrvN1oCurMhKZHI9r7kCiUDJp8hXU1nY9Kq2+vp6zZ8+yd+9eRFFkxowZBAcHt7n4PX78eDQaNSUnD/bY03xTxORXX33VI+1djMFgQFunRaPuuZFbTtYxpFI5TzzxxGX3kUqlDB8+nNmzZ2NjY8OhQ4c4duwYlZWV3Tr3Cy+8wE+7dxOkD0cjXN4nUy2YEaabgqFCwpQpU/nll1+Mv+tMgrZarSYyMpK4uLghd+NesWIFO3fuZN++fbi7/5n76OzsTH19PWVlZc32v5yVmiAIxuPT0tKafSfbsl8bDAxJcfvkk0+wtrbG39+/x6cAu0J8fDwKhaLL0ZGdJSAggLy8XMaPjyQ56UfO/bEFna75qEwmE7hygQcXkiv542xZq+3U11dx6uQHGJRSPG+6jzqFhn/H5eJmpuyywMmtbHBfdBu6hoYuhRkbDAaSkpLYs2cPlZWVTJkypdFmq4MBCMuXL6ehrJiazPZHtR2hSdwOHDjQI+1dzNmzZzuVBtAeOp2WgvzTTJs2pUMPfHK5nBEjRjBr1iyUSiXR0dGcOnWqS+Vcdu7cyfPPP48PI7AX2r9hKgQlofpJWNRbc+WCK/npp5+65DxiY2NDSEgIMTExVFX13HR0T9KZBy1RFFmxYgXbt2/n119/bTErNXbsWORyOXv37jVuS0hIICMj47LWaP7+/jg5OXH27Flyc3OBP6f527NTG8gMOXHT6XSsW7eOpUuX4uXl1e9hrNXV1aSkpBAaGtqn7gQKhYLDhw+zcuVKigrPceLYJmqq/1yknzPLlfp6PfsPtD6nrtfXc+b0pzSIdXgu/T/kltYAVDXouy1w5l7+OE5bQHZ2NosXL+7wcRUVFRw4cICMjAzGjRvHhAkTsLKyav/Ai3jrrbcQJFJKT/bMQrlMbYZEoSQ+Pr5H2ruY/fv3A11LA2iN/LxTGAw6XnnllU4dp1KpCAkJYfr06dTW1rJv375OrcVcuHCBm5behKPEDS86no4jFWSMNozHUmfHpk2b+OOPP7rkPOLh4YGnpydHjx41GlK3RXV1AZUV2b3+qq5uHE12pjTO/fffz3/+8x+2bNmChYUFeXl55OXlGUdcVlZW3HnnnTzyyCPs27ePEydOsHz5ciZMmGCMlITGIJPt27cDjdPRf//733nnnXfYsWMHJ06cYNmyZbi6uhq9RgcjQy4V4Ouvv0an0zF69Og+Gym1RXx8PO7u7v2WPL5u3TqmTJnCNddcx/Fjmxg56gbmz5uCo6OKrV+m0VowmcGg59wfX1BdnY/nLfejsG4+cmgSuL8FuXCdrwNfJxd22NWjCbvI6dTmpLPj22/517/+xT33XD6Z2GAwkJycTEJCAt7e3gQGBnbZp08qlRLg70d8wml0tdcgU3dsxNcWChuHFg75PUFsbCwAKnX3cwNFUSQ78whOTs6Eh4d3qQ1zc3PGjx9PRkYGJ06cwMXFhdGjR7fptFJdXc3VVy0ErYQRhvBOP+BJBCk3R91G5NJgVq9azRtvvtElM4ARI0ZQWVlJTEwMoaGhre5jb2+PSqUm7tyXnW6/q6hUaszNzRFFsUPvzbvvvgvAtGnTmm3/6KOPuP322wF48803kUgkXHvttc2SuC8mISGhWV23J598kvLyctasWcOqVau44oor2L17d78PDrrDkLLfEkWRsLAw5s+fz7XXXsvYsWP7tT/l5eUcOHCAmTNn9nuOXVZWFhER4/D0HMbDDz/K19syKC5p+RQriiIJ8TvIzYlh2PV3Yu4TdNk2zeVS/hbkQnZ1XZcETl+nJfXjN2koLyE+7nyr6RqVlZXExsai0+kICwvrkSTwgwcPMnnyFTjNuLqFZVhXyP7+P1QlnEHXgVFBZ+y3xo8fz8mTcUya0rXyMBdTUZ7JiePv8I9//IPnnnuu2+01RSJWVFQQGhraonApNH6Wli5dyravtzFWP62Z2XdHGT3Pn/E3h/Lt83vYc2EXFbJidv2wi5kzZ3a6rYaGBn777TccHR2RyWR9Zr/VFnZ2dtjY2Bjr+fUndXV1VFRUkJmZ2e5Di8l+q4/ZvXs3eXl5jBkzZkDYxpw/fx4vL69+FzYAd3d34uLOs2fPHl5//XUSk0oYOfpG5PLmnn7pqfvIzT6G6/wb2xQ26P4ITqpU4XHdnaR8/DohIaFUVVUaR2SiKHLhwoUeGa1dyqRJk9Bo1JSePIhtxJRuTxcrbBzQ90I+VWZmZo+lAWRnH0MqlXW5jtqlqNVq4yguJiYGV1fXFjUS169fz9atWxnN+G4J23cv/EpBUimjxEjO6o5w1VVXceDAgU4/vMrlciIjIzl48CCurq3naA4bNqzPvR7r6+upra1FoVD0q7Fyk2uJubk5+fn5zQJVBiNDas3trbfeYsmSJf06DdhEUVERJSUlAyJ5HBqfyo4dO0ZwcDALFy6krDSZ40c2UFmZY9wnP+80qSl7cJgyD+vgjjmddHcNTmnniNtVt6DV1jJixAigMbz/wIEDpKenM3HiREaOHNnj5UJuu+026kuLqMnsfpi4wsYeDAbi4uJ6oGd/Ulxc2iNpADqdloK8U0yZckWPRg4LgoCnpyczZsxAq9Xy66+/Gkc90dHRPPbYSjzxx0no/E3yYmHLT2xsUypIGWWIRFVvxtyoeV1KvzA3N2fUqFE0NDR0aq2rN5HL5Ugkkm7XuesuTRXhraysKCoqGvQJ8ENG3BISEoiOjmbChAn4+Pj0a19EUeTcuXMDJnlcFEViYmKwsbHB39+fVatW8dtv+5EIDZw49g55uSeprMwhPu4brEaOxX7CrPYbvYjuCpyl/2jsJ8wiMTGRJ554gv3792NlZcX06dN7zYty48aNjYElPeBY0hQx+fXXX3e7rSZ0Oh11dbXo6mspL89Ap7t8kdj2yM87jcGgY+3atT3Wv4tpGsX5+/tz5MgRoqOjmT9vPhZY40v7FeEvpTVha0IqyBitn4C2vI7Zs2Z3aQrRzs4OmUxGbW3tgLiBNyVTa7Xafu+PQqFAqVQik8l6LL+xvxgy4vbOO+8wf/58HBwccHDouaTXrpCbm0ttbW2/i2wTKSkp1NTUEBb2pyPE5MmTycrOxNvbi7hzX3LyxPso7J1wmXt9l6ZGuitwDlfM5cobb2bMmDHU1tYSEhLSq8UdmwJLKuJPo6vtnn2Wwqbx83axMW13+emnnwAoKDhD7PF3ORD9PAd/X8OZ05+Rmf47lRXZiGL7N8LGQJLDODk5ERER0WP9uxRBEPD29iY4OJiMjAyW3baMWqGaEjoXaNOWsDWhEJQE6yaSk5HLgvkLqKlpPUezLZqKh3Yn17InkcvlyGSyfh+9SSQSo6FyQUHBoHZ3GRLiVllZyccff8ycOXPw8fHp13lrw/+mpwICAgZECfeqqiri4uIICwtr0R9bW1uSkhJZtGgRep0WQSLBUNf1EUJXBU4iwNU+Dtx4zWJefu0Nrl+yhOzs7C73o6P861//AoOB8rPdcyyRqtRIlGoSExN7qGewa9cuAHyWP4rP8kdxu+pmLMIi0KrrSU75iZhjmziw/0XOnP6MnKxjl7Vbq6zMpro6n//7v//rsb61RVTUXB57bCWhoRN54eV/kmxxhnQxoUM3yY4IWxMawZzRuvGcjD3JjTfeiF7f+SoPKpUKnU7Xpby93kClUlFXV9ela+lJFAoFarWauro6ozXXYGRIiNuWLVvw8fHBzc2t38umZ2ZmIooinp6e/doPaHxqP3nyJJ6entjbtx6YIJFI2L59OytXrqQ2P4vkD1+jJqvrVlKdFTi1TMLyQBe8LFS8cy6HqlGTEYGgoKBe/5JPmTIFtVpFaeyhbj+hKmwdOmT221FOnDgBCCjtnVA5uWE1cixOUxfgedN9BDz8TzxvXoHthOnUKrUkJHzL4d/XcuzoW6Rc+MmYPwWQ879AktWrV/dY3y7H8uXLiY+Pw9Z+Mtu+zUUitWP9+k3Ue1ZwjuPoxcv/PTsjbE1YCraM1I9j586dPPPMM53ur0QiQa1WD5jpSZlMhlwuR6vt+gNmT/bD2tp6UDu7DPpUAFEUGTNmDFdddRXXXnstISEh/dYXvV7PL7/8wqhRo3Bz6/+SGcnJyaSmpjJt2rQOjSJ//fVX5kRFodcbcJ69GJuwiV0eBXckTcBRLefWAGfyaur56kIB9f8zIC47G0POzi2Eh4e36i3Yk9x99928//77eN28Ao1H16eRs3f+l8r4k9TV1hITE0Nubi65ubnk5ORQXl5OQ0MD9fX1iKLIokWL2LlzJ4IgIJfLMTc3x8XFxfgKCQkhICCAkto6/O57tt1z67W1VKclUHkhjqqks+jrarGw8sDJKYTkpB+ZOvUK9u3b1+Vr6wiffvopt912Oy6u4QSOuMa4fVy4PWGh1qx/8w0SjiYTysQWnpJdEbaLSRcTSOIPtm7dypIlS9rd/9Iw9qbRiUaj6ddZH2i8h1RWVmJhYdGr0/LtUV9fT0VFBenp6QQHB7dICxgMqQCDXtyOHTvGrFmz+OCDD5g9e3YLN+y+JCkpiezsbKZOndrvX5KqqipjgI2dXcftm8rLy/EdPpzioiKsRoXjEnUdEnnXgmLaEjhvSxW3+jtzMK+cX7NKW4hf7s/fUBp7iCeffII1a9Z06fwdob6+HpVag2VQKG5X3dzldgoP7aHw95944R//4NlnGwVJIkhQy8yQo0BAQBAF1Co1b/9nA/fd+gC12lpERPToqNVXozM0Ru9NnzadQ4cPIXP1wvOGzlXKNuh0VF04S9mZ41SlNEZvKhQKQkND2bhxI+PGXT4K9quvvuKZZ54hLS0NPz8/1q5dy/z584HGHLGnn36aH374gZSUFKysrJg1axavvPIK5eXljB4djEbjxJiI/0MiaS5evj4WzJ7pzJbPPyf6uwOEMQmZ0Hiz7K6wQeMD7jH2orKXU1DY/kjj0huzwWCgsrIStVo9IALAampqMBgMLVz6+xJRFKmoqCA3Nxdra+sWHpODQdz6f1Gom2zevJmFCxfi6OjYr8JWX19PUlIS4eGdd2HoaS6ejuyMsEGjfU9RYSGzZs1i76+/os3PxuPaO1FYdz5q8XJ5cH5Wam7yd+L7tCJiC1v3+3OeuRBtXhavrFtHVFRUC0eGnkKhUODvN5yEuFM4z1qEtIuOJQobBzAYSExMRCMzJ1w3HbmoQNA1/yzIDY039RD9ZBp0fyZ9i2KjyJ2j0QOxXqfHzLbzgVESmQzLwFBEUaQqJQ6pVMbJkydZv349UVFRJCQk4OjYssr0oUOHWLp0KWvWrOHKK69ky5YtLFq0iNjYWEaNGmWsvvDMM88QEhJCaWkpDz74IFdddRWpKakIgpxRIbe2EDaA5JRKKqsauOHGpSiVSnZ//TNh4mTGzB/VbWHTizrihFgqxTL+fs9TXWrj4unJnJycPo0StLe3b5FXp1KpqKioQKfT9du6vSAIKBQKrKysKCwsxMnJqd/va51lUItbVVUVW7duZf369Xh5efVrXy5cuICVlVWrN46+JiUlhbq6OoKC2k7CbotffvmFdevW8eSqVaR89Brui27D3Dug0+1cKnBni6u5wc+R7SmFnC6+/GK1IJXhvvh2Uj58jVmzZzeOJDvpI9lR3nvvPaZOnUbZ2RPYRUzpUhsKm8Y1zYKCAur0tY2jtU7cDARBQIYcg6BjmOcwjp+IMUZhdoWig3sAuO66axkxYgSbN29m165dfPjhhzz55JMt9n/rrbeYO3cuK1euBODFF19kz549bNq0ic2bN2NlZcWePXuaHbNp0ybjSDB0zN9QqS7/9yko0LL92ywWLb4GhUJBVWl1t4WtRqzirOwoDTItX376Jddff32X2oHGh5yUlBTCQsPQdiOoqrOoVGoSEuKbCZxEIkGpVFJbW4u5uXm/iYpCoUClUqHX66mqqur1iiY9zaAWtx07duDt7Y2Li0u/rnE1NDSQkpLCxIkT+60PTTRFR06YMKHbT32PP/44M2fOZMLEiWRs/ReOU+djN35mp79sTQJ33yhXgu3N2ZpUwNmS9qOw5BZWeFyznLQtb+Pn59dri9vGwJKTB7ENv6JLN5MmccvLy0Mv6qmnDiWdn66pl2obzX1FEYVt19xJRL2OuqI8EITGGnY03jBnzZp12crKhw8f5pFHHmm2LSoqih07dlz2PE0GzN4+s7Gxbb/6RlFxHdu2Z7LkuquRSEReevoVrBPckAudnwosFHOIk57A3cON777/jpEjR3a6jUupqqpCW6dlJOMwo/dv5NVUck57jKKiohajN6VSSX19PTqdrtl615o1a9i2bRvx8fGo1WomTpzI2rVrCQj488Fz2rRpRtPtJu655x42b9582b6Ioshzzz3H+++/T1lZGZMmTeLdd9/F2dkZS0tLSkpKBp24Depoyf/85z/MmTMHZ2fnfg27T09Px8rKqtcSjjtKd6YjL8fYsWMpLyvDw8ODgv0/kLXtI/RdeLJ1NVOgkUmprNcRZKPpcJqAxsMH51mLKCwsZM6cOZ0+b0e5+eabqS8ppDY7rUvHS5UqpGozowBr6XzulSiK1OiqjG10deRWX9Y4rebs5NRs3aatysp5eXkt/CHb2v/rr79m27ZtKJVWeHpP73Df3N3NEAQBnQ5GjR3BSeF3dGL7npxNiKJIsniO0xxizrzZxJ6M7RFhA4xFhM2wwFKw6fVXWwLalG92ad7b/v37uf/++zly5Ah79uyhoaGBOXPmtAjZv+uuu4xBTbm5uaxbt67Na1+3bh0bNmxg8+bNHD16FDMzM6KiooxrfyUlJQMiorQzDFpxy8/PZ+/evYwZM6Zfw/9FUSQ1NXVAJGynpqZ2ezqyNdRqNRkZGSxZsoTKC+dI+eh16oo6npzra6lmqZ8TXycX8s7ZnE7nwdmMmYzVyLHs+eUXXn/99a5dRBscPnyYZcuWIUgklJ481OV2FLYORqf1rohbPXXoRX1jSoEgILey6VI/KpPOAvDggw926fj2SE5OZsmSJQiCjLHj7uvwSDd4tA0Txzuw/dsMvt6ewfwrr2LOtbM4xUH0YvtWWA1iPWckh0kT4nnppZf49ttve22qeiCgVCrR6XTNUmJ2797N7bffzsiRIwkJCeHjjz82Vmm4GI1Gg7Ozs/HVlh2hKIqsX7+ep59+moULFxIcHMynn35KTk4Ou3btQqFQIJVKqaio6LVr7Q0Grbh98cUXREZGYmdn16+OJLm5uYiiiIuLS7/1ARqnRhMSEhg9enSvjWK3bt3Khx98gK6ijJSP36Ai/nS7x3haKLklwIlvU4s4W1LdpURvQRBwmXs9SjsnVj7+OKdOner2tej1erZt28b4yPFMnDiRqVOn4jlsGBXxp9BrOy9M0OiTWVffgEataV3cBJApG8O7WxMELY1P3yUlJcgsrBEkXQsFLz/XWConMLB57bS2Kis7Ozu3KNvT2v61tbWMHDkSUYSw8LtRKjvm4dokbDu+yyAvX0tJST07vs3i2muv54orJ3GaQxjayIOrFMs4IYum3ryaH374gaeeeso40hqqSCQS5HJ5m0nmTQ9Tl84aff7559jb2zNq1ChWrVrVpotLamoqeXl5zJr1p+2elZUVkZGRHD16FJlMhpWVFcXFxd28or5l0K65ff7558ydOxc3N7d+/ZCnpKTg7e3d71+0CxcuYGFh0esBLcuXL2fKlCmMHj2arB2fYDd+Bo5T5rV6I7ZRyrjF35kf04s5VfRnVGRXqglI5IrGCgIfvsa4yPFUVVZ0KWxbFEW+/PJLVj25itS0VOykjgQzgUTJKcaOHUtaWhrlZ09gG35Fp9o1k0kICwvDzNMJHy9vzARLXGzdMLNVY2ajRqGRI5H++Rm5+/MliAaRhjodNaW1VJfWUlxczKhSL8rKy8nLzyf7h8+oQI7S3hm1mxdqZw+EdnKfavOyqCvMwdbWlr179xqLTRoMBvbu3cuKFStaPW7ChAns3buXhx56yLhtz549zSoxNzQ04Onp2Tg7MHIJVlYdmzG5VNiaKCqu49vvs7h12a3k5uUQF3OSEeLYFsKfJ2YQLzlJYEAg3363Y0DMkvQVSqWSqqoqVCpVi/fFYDDw0EMPMWnSJEaN+tPD86abbsLT0xNXV1fOnDnDE088QUJCAtu2bWv1HE1Tz5ebllYoFJiZmZGent6vEZydZXD08hISExM5ffo0jz76aL+WZSgvL6esrKzN3KG+QKvVkpyczMSJXU+67gy+vr5UVlYyevRo4o78Sm1OBu6LliHT/Lm+o5AI3BrgzOmiKo4VVLZooysCp7C2w33RMjK+fB9/f3/S0tI61e8DBw7wyMOPEHMiBgeJKxHMwMpgCwJU6Ev4afdPqFQqSk4exGbs5Mu+lwqJgKeFCndzJa5mStzMlFgrZRT425Madw6ZVEZWYg7VcTqqS2upKa1FW1WHQS+iNFNw01tX8tn932Fo0CNXyzCzUaOxUVNvXY3CUcHw4cOZMnMGHs4u1GprSU5OITkpiZSjp0grq6bBxhlz3yCUDi4t+lh2+ghIJLzxxhvcc889hIeHM27cONavX091dTXLly8HYNmyZbi5uRlzCB988EGmTp3K66+/zoIFC/jiiy+IiYnhvffeAxqFLTg4mMLCQlxdI7CxHU5dXePfVS5Xt5oCAJcXtibyC7T88msejz22kscee4TMrAsMo7FclUE0kMQZMrnAzUtv5r333kOj0bRoYygjlUqRSqXU19e3qPd2//33c/bsWX7//fdm2++++27jz6NHj8bFxYWZM2eSnJyMr2/7gT+X0uR7qVarKSsru6zb0UBjUIrb559/zqxZs4yF/vqLlJQU3N3d+z3xsyl3qS8DWqRSKefPn+fee+9l87/eI+XD1/C47s7G0QVw/XBHqhp0/JB++amMrgicuU8QDlPmkf7bj9x444188cUX7fY1MzOThx58iG3bt2EttWMMU7AVHbl4TtQdXzJqkhgXOY4jR45Qm52Gxt3b+HsrhZQgGzMCbTT4WKopr9eRVVVHeqWWw3nl5FTXU5abRcqHrzWaB8dlE65rGWhRX9MYPFFTWktDbePPJRmNU0sJ4ikU3iLJqcnY3XEVdnPG4yJT4e5vi4v7OMKFKbhb2pKSmsrxY8c4cXQ3xXJzrILGoBnmg9jQQNkfxxnm7s5tt91GZWUlzz77LHl5eYSGhrJ7927j03lGRkaz2YaJEyeyZcsWnn76aVavXo2fnx87duwwjgiaIvQAcnKOk5Pzp3NM6Ji7sLFtOZpqT9iaSLpQib2dimeffZFHHvk7ZlWWmGPFOekxyilm4/qN3H///YMuz6onaCpDo9Vqm9V7W7FiBTt37uS3335r9wE/MjISaJzdaU3cmqae8/Pzmy2v5OfnExoaanTSsbS0pLi42CRuvYUoinz++efcdddduLu799sHvr6+nqysLKZO7X4l5+5QVVVFRkZGryU5t8e7777LvHnzWHzNNaR+ugHXuddz3fwonDUK3vkjm/biq7oicPYTZlKbk8HWL79k3rx53Hbbba3uV19fz5tvvsk//vE8gk7CSCJw1g9r9TOjEjQ44EZBfkFjYMmpw7j5+jHGwYIgGw1OagXplVriSmv4LrWIkrqWARBN6QDl5eVoxc6v22mpQSVrTCKXO9uhQyRTrCWTWtAAlGPWUESQm4bAudO45vrrqKyo4NiRoxz6ZSvp5TWIugbefPNNoPEGeLlpyOjo6Bbbrr/++lZzxYqKirj99uUoVdZERP4dubz94rsdFbYmDh8txM7OjVWrnuEfzzyDVJBgYWNO9PZoJk+e3O7xQxm5XE5tba1xSvCBBx5g+/btREdH4+3t3e7xTWvUl4sL8Pb2xtnZmb179xIaGgpARUUFR48e5d577wX+NFPOz88fMEbT7THoxO3cuXPk5ubi6+vbr7ltWVlZWFlZ9XtR1Pj4eNzd3fs1B+Xqq68mOyuLwMBAvMszGW+vYfO5bGr1HQsd7qzACYIEtytvIuXjN1h+x51MmTKlxZf85MmTLL1xKUlJSbiJPvgy0mj5dDk8RF9OZhxg/rx5jIuMZOQodxLKajmQU0ZCWS3adq5HIlcgNbOgoqICra4WPboWPopt0SCvoymiW+7ceipHNXpihEpiNCDTl+JrrmFE5ChWz5pJUV4+e/b8wlVXXdXhc7aHwWBg3Lhx1NXVEz7url4RtiZ2/5zDNQsdWLb8Fvbt28eBAwcuWzG7N6mmkk6VlO/OeTpAk1tIfX09Dz74IFu2bOHbb7/FwsLCuF5mZWWFWq0mOTmZLVu2MH/+fOzs7Dhz5gwPP/wwU6ZMITg42NhmYGAga9asYfHixQiCwEMPPcRLL72En58f3t7ePPPMM7i6uhrXbGUyGTKZDDMzM8rKyvr9vtcRBp24fffdd0yZMgVra+t+u6GLokh6enq/L2yXlZWRl5fHzJkz+7Uf0Di1kZaWxp49e1i37lXOZufhcc1y5BbWHTq+swInVakZdt2dpHz8JqNGjaKiogKpVIrBYOCNN95g1apVmItWRIgzsBDa74PSXMGMOVO5d94yJFKB7777jv/ExCEf0bkaaEpbB2oKGsv1aKnBjI7fBLRiNfrKepBKkNm3H+KuQyRBrCbBHL5JTcJr91muv/56fvrpJ4YNG4aPj0+3/QnDw8NJTUvD0XEUZuatR1peTFeFTa9vIO7ct5yOzeTNN99k5cqVfS5s9vb2qFRqzmmP9dk5VSp1h6b5FAoFlZWVvPvuuwAtZmo++ugjbr/9dhQKBb/88otxjdXDw4Nrr72Wp59+utn+CQkJxkhLaDRsqK6u5u6776asrIzJkyeze/duo29k09SkmZkZ5eXlJnHrDb7//ntj4nZ/UVpaSk1NTb87/58/fx5vb2/U6vafpnuburo6jh49SmhoKHPnRhHzz3+S8sFruF+zHLNhHVvE7qzAKe2dcbtyKVk7PiU0NJTY2FjmRs3l132/4ok/voxCIrQdxSpXyQi5MpCwRSMoTCnhh/d+YXvMF8jkcjC3xjeoc16hCjtHynMygM6Jm07UodVp0Wv1yB1sEDoZfVuy9xhpv8Wwfft2RFEkJSWFffv24e7uTmBgYJc+I48++ignT55E5eJBQe4fgEDgiGuRSltfY+6qsGlrS/nj9GdUVeVx111/Y86cORw5cgQHB4c+XUceNmwYCQnxLap7NzQ0oNVqe8UKqzVvydZoCiypra1t06jYw8OjhTtJa1zqly8IAi+88AIvvPDCZY9pCiopKCjo95pzHWFQiVteXh7Hjx/ngQce6FdxS09Px93dvV9DYgsLCyktLSU8PLzf+tCEKIqcPn0aGxsbhg8fzosvvsjs2bOZOXMW6f99B6cZV2MbPqVDN4bOCpxlYCh2kZmcPbqPZcuWsS96H6544ScEt3EUSGQSRs4eTvj1o6nIr2LXP6PJOV+AXtSjkCnx9vEiLi6O2px0NG5eHX4vFDYOiIbGL34GSeSKGdSjRSfoETGgQsk93EAM0dRRh0SUokSJ5H8ppw06HRq3zuVtGrT1VP52Ektzc6N5+NixYwkMDCQuLo69e/fi7e2Nn59fh4Of9uzZwxtvrkft5oXXTfdTmfQH2Tv/S82J9wgOWdYiv62rwlZSfIFzf3wO6Nmy5XOWLl0KNNbzO3HiBNOnT+/T79mwYcNaiI0oilRVVSGXy/vVAb8psESpVPZLrEFT1GRTesJAZ1BlQe7atYsxY8ZgbW3db1ZXDQ0NZGdn92sxUlEUOX/+fKduVr1JTk4OxcXFhISEGL90U6ZMobS0BCdHR/L3fkv2d//BUF/XTkuNdDbRW+ngAhIJX3z5JQsWLCBPyKBMvLwZ7/BJnty88SpGzfUnevNRvln1EznnGy2vpIIUZ51no9P9/wJLOoPSxgFEEUGQUi4tp9YSpI6OmLl4Y+Hqj6VboweghetwzFx8UTi5Umctp0RR1tiARILcpXPRaFWH/0CsazB6PTZhZmZGeHg4kydPpqKigj179pCYmNjuU3dJSQnz5s9Hqtbgsfh2BKkUy8BQvG55gDpDFbEn/oW2ttS4f1eETRRF0tP2c/rkB1hamnH+/DmjsAH4+PigVqs5f/58J96J3kEQBNRqNVqttl8tqORyeWP1iH4aNQmCgEwmw9zcnMrKjq0X9ieDauT2/fffM2nSJJycnPotaTo7Oxvzi56Q+4OCggJqa2v7fc0PGnPszpw5Q3BwcIs8HHNzc/Ly8liwYAE//Pgj2oIchl13pzGqsC06MoITRQMFv/1I8eG9mE0cjfZ8Gjt37SJ8zFjOnz5OuG4GCuHPPpnZqJl2bySOvnYc+fwk8dGpiIaW40J3fMioT8TOzpbi8ydxnrkIqapj03qK/5WpkUol2NkHMWJU8+KZCnnj59bP70rqG/68UeZkHSMhfjvo9ZcNJrkcFXuOIUglxsi2S7G2tmbChAkUFhZy7tw5srKyCAsLu2wajZ+/P3q9Aa9r70Bm/ucITe3sjuctD5D+33eJjX2P0LA7GR/p12lh0+nqiDv3FUWF55g4cSL79u1r8ZAmCAKhoaFER0fj6ura7+HnTQEVdXV1/bYM0LTuVVdX12+zRnK5HI1GQ3Z2dovv+0Bj0Izcamtr+fnnnxk1alS/TklmZ2d3aI68N0lOTsbLy6vfnQJEUeTMmTPY29u3uf64a9cu3lq/nobSQlI+ep3K5I49jbc1gjPodGRt/4TiI79ie/NcHB9YgvPKW0AicPrMaZTmCuIkJ4xrCwHTvFm64UrqquvZ8uD3xP2a0qqwQWNagCNuyGQyRL2O8nMnWt3vYhoqyqi8cJ6KxD8AEATQ1na8LphWW0ZT4p3cpePiVpeeS31KNuPC2w98cXBwYMqUKbi5uXHw4EHOnz/fYhQwY8YMSoqLcZ5zTavTsQprW7xuuR9RJcfRLoUJ4+07JWzV1QXEHN1IcVEcTz75JAcPHrzs7IO5uTlBQUGcPHkSna5978nepsmpvz/rOysUChoaGvqtD3K53FilYKCnBAyakduvv/6Kk5MT9vb2/VYzrb6+nuLiYsLCwvrl/ACVlZUUFxczZsyYfutDE9nZ2RQXFzNjxox29/373//OjBkzCA+PIPOrf+MwOQr7SbMR2gn4aG0Ep2+oJ3Pbh9RkpeD02M2YjW30UFT6umH/t4UU/Ws7SpWSvLIcSm1yufW+m3D0teOXDYdJO57VoWtzF32JyYtGrlBQEnsQmzGTmq1z6KorqUpNoDo9iZrMZBr+58QvKBUglaDX69FqSy/XfAu02lIkEgGDQezUyK1ybwxIJOzcubND+0skEgICAnBxcSE2Npa8vDzjKG7NmjXsi47GalQ4NqETLtuG3MKapU8+R5SHHS+++DIWljNRa9rvc2HBOc6f3YpMJmHXrp3Mmzev3WN8fHzIzc3l/PnzzULZe4LOCoRMJkMQhFbdQvoKqVT6v6oKzUvh9BUSicSYEnBp4M1AY9CI265du5gyZQoODg798keFxox9S0vLfrUASklJwc3Nrd9LuzdNR4aGhnb4i94Ysl9OUFAQKb//RG1OBm5X39LulN/FAnetty2vv/wiNfmZOD9xK+pRzSMxLaePpe5CFnm/xrBw4UKuvfZa0mNz+OXBQ9RVdfxJ0wo7rCS2qGzk5OfnU5ubgdzckrKzJ6hM+gNtXlZjzbVhzqgnBGAb5I3SxxWpnRW5L3+E9mwKdXWViKKhXQEH/lzDkkmR2nQsxcWgradyfywWZmadnraztLRkypQpJCUlcfDgQczNzXnq6adROrjgEnVdmwEL450smeNhy79PJpOUnYWQ/G/GjL0Hlcq61f1F0UBq8h7S06JxdXXj+PFjHQ7zFwSBsLAw9u3bh4uLS4+YpDfdP2pqajo1xdjkFlJXV9fMLaQvaZqabGho6Lf7oFwuN1YJ6K8+dIRBI2779u3jjjvu6NdK1/n5+S3MRfuS+vp6MjMz+92xoSk60sHBodO5SAqFguTkZG699Vb+8/kWUj56HY9r70Dl2HY7VQ163judxu1elty9ZBFfWlSgDGg9qMf+9gVMdfFl6ZWL+P6779n+5bdE6GZ0uChmnaglkwtUGSopz28AQSBr+8foqioQ5DI0YwJwWDwOdbAfMuuWeWQKVwe0cemg15Oa/At6Qz26hhoMBj1KhQx4lrjzX1FXp0MmU6FQWlJdnY8oisgd7TqcBlB9pDGQ5OVXu1YGqGkUZ2lpyU8//cT9K1awR2eFRH7596lJ2D6KzyVHL8Vz6b2k/WcTJ2Pf/3/2/js8jvJ6/8dfM9uLpN1V712y5d4buGHANj30EkpCSEioCSUQUkhIyJuEAKGGFHoJPTQbG+MCtnHvliWr97qr7X3n98dKKwtJVkH2+vv7cF+XLvDsM/PMlnnu55xzn3OYPuPH/VSUfp+TQwfewGKpZMWKFXz88ccjjpfrdDpKSkrYu3fvmKgnZTIZBoMh0jdPq9UOm6gkScLr9UZI5tjjLpcLv99PXFzcCSW+sFfAgyAIJ51gJUnCbrdjtVp55513mDFjRlS7shwP/58gt5aWFsrLy8nKyhqzJpwjRSgUorW1Nardtuvq6jAYDFEVs0D4+zCbzcNyRw6GV155heXLl/P9666j+qXHSTvnSuJKBnf3hvw+Dr/zLx7w2Hj4ib/xA0WA1/0N/UQmMgQu0mQx8aISfv/QHzm8dz9xMbGUOnYxKTT3uIuBX/JRwxHqqUQQZaSmz6alZTehoJeA3Yrp+yuIXToTUXN8S1WREg/dqrr6xs0o9HHItDpQyAl1W/0ulQdX0EXQ00qgw0ow4An3cMsY/kJhWxMWktx6663DPmcgzJ49G7fbw28feZQChYrXj7bi8PdX5B1LbPWOsPJVEWsg+6qfUvPK3zmw/1WmTf8RMll40bfbGjmw7xX8PgePPPIId99996jvMTc3l6amJo4cOdKnAv5o0RO3H013d7/fTygUQqVSEQqFcDgcOByOcAd1wrHNE+ndkSQpkhIQDWGdJEnYbDa+/vprNm3axMUXX3zS72E4+P8EuW3cuJFJkyah1+uj1pywo6MDuVweNWKRJImampoxb0Q6UoRCIQ4fPkxxcfG3jjtcffXVnH766ZSUlND44Su4m+tIXnxuv7YuoUCA+vdfxN1cS9x91/Es9fxUyOUqRUYfgtMh43plFipEHvdVYzl3Buzdj8frwRqyUsdRsinq/56kEA1UUiWUEhIksrIXk5G1AIVCg0yupLZ6PQCiQj4ksUE3uXXHc1JXXN6HtFWyMLlmXvpDvMHwGL+ti6PP/B5EEeUw0wC8tS14qxqZNWtkFVS+iUsuuYSGhgaSFp/DvyrMXJyfyE8npvNqWQtNrl437kDE1gOlwUTmJT+g5tWnKCt9n/ETLqWleTdlpe+jVqvZ9OVGFixY8K3uUxAEJk6cyFdffUVeXt63Jg9BEEhNTSUpKSlCSsOFy+Vi69atbNq0iffff5+AP4CJJJKkdBpkVUw/fQrPPffct7q/oXDgwAEEQRhWbcmxhkKhwGq1MmPGDNavX/8duX0bbNiwgenTpxMfHx+1FIAel2S0CjV3dHTg8Xi4/rrrmTV7FjfeeGNUUgHq6+sJhULk5OSMyfWysrIiD8q+HRtxN9eRedH1yHXhuJMkSTSt+i+uugqS770GzfgcHAR5xlfNT5W9BBeLnJuVuTRJHv7pb8CHhGZCHqZrlmN+ZRVJSUlUth/EIMUTJ/Ra/11SB0eEPTgkK6mps8jNX9bHtZaePofa6g0ggHXNNmLOnD3kb0B+jCDEbxtaVBIZEwz2Ofd4sH8RFpJ8+umnwxo/EP75z3/y7nvvEVM4kfg5SwlIEv+taGNRmoEbS9J4uayFGrvnuMTWA01qFmkrL6fxo9dwuzuxWesoKChgx44dY7YhNBgMpKSkUFZWNmairp7KH8OBxWLhlVde4dlnnuXSyy6lqa4Z6aiKDIpRCWr8gF8SeKXmVR5++OET2sA4JSWFyspKSkpKTtgcx0NCQgIlJSW88sorUZl/OPj/RCrAhg0bGD9+fNRyXSRJoqWlJepVUY4ePcqm9Zt49JG/kZ+fz7IzlvHuu++OeOc5WgSDQY4cOcL48ePHdJMhk8nYu3cvd9xxB+7GWir/81dcTbUAdG5fj+3QLhJvvgjtpILIOT0Ely6ouV6RxS3KPKpCTl7x1+M7xlkZt3I+unmTaGtrIyUlhcPynfglH0EpQKm0m51sQNDHMHP2LYwr+V6/mJFKHUdS0iSQJPwNbXirGod8P4okYzgXgOGSW1fvucMgt5A3LCTRa7WjfibKy8u56cc/QWmIJ+3cq/oQ9samLj6p7eS6cSmcmx0/JLH1QJtVgFwfi83ewFVXXUVZWdmYezrGjx9PQ0MDNpttTK87GCRJ4quvvuL73/8+qSmp3HnHnVjKHVSsaeCspWeTI45DJfSKu5LJREQ84Yt+cnIyNpsNt9t9QucZDPHx8WRlZXH48OFRuXZPBk55cmtubo7E26JFbna7Ha/XG7XAqc/no7m5mWeeeYb0UB4LgisoYRZ7Nu7nkksuIS01jfvuu4/KysoTeh/V1dWoVKoTVlPzscceY/WqT5E8bmpefZLmte/RtuETDBcuQr9gSr/xDoK85qunRIwhiMQ7gaZ+MThBEEj88UUo0hJpamkGpcQBYSvb+IJmoY6icRcwY/bNxMQO/p4ysrrjrDIR2+c7Bh0XmVMuQx4fJkmfpQOfpQNXQzWOmnKc1eUAOGsrcNZX4e1oxdvZCoAoF7C8tZaOlz7B/uVeAh1dA17fufUgksfHH//4xyHvZSAEAgHGl5QAEobJc5Cp+itvd7XbOdTpZF5KLGvqzUMSm7O+iqr//JWAy8Ev77mH11577YR4WXQ6HdnZ2ZSWlo75tY+F2Wzm8ccfZ1zxOE4//XQ+ePNDMn2FLJBWMom5dO5yIJPLyJrS1zpTCEripWTeeP2NE3p/SqUSk8kU6QpwstFTuL6kpIRNmzZF5R6GwinvljwV4m0tLS0kJiYO230x1qivr8fn81FRUcF8liMT5KSRTVooGwdWGjureewvj/PnP/+ZpUuW8pObf8IFF1wwpqW5/H4/5eXlzJgx44S6Zs8++2za21opKCjAsncLsjgdhosG7pkXh5zrlFnsCnaRJWq48hsxuB6IaiUpd19Nw33P4PK4cOFCqYph5vRb0emGVt/GxmWhj0nD6WjG+dU+Qt9fgag9fiqGIi2RQIcVZ3UZFf/4U+S4RqOBy86m/t3/9Nt1C6JAZoqP9kMHaV8VLvulTDGinlyEdloR6gl5iEpFuCKJKHLbbbcNee8DIS0tjVAwiHpiPm0bPyHgdoZjnceQ0dzkWEpMOr5otHB2lokWl48ae/9EbUmSsOz6ipZ1HyCTyVi/bt0J7y1YVFTE559/jtlsHtMyfD1W2j/+8Q/efuttAoEgSaQxndMxBpL6/O5DQYnSLyopObOAur3Nfa6TJKWzd982qqqqTmjoICUlhZaWlqjE3URRJD4+nhkzZrBhwwYuueSSk34PQ+GUJ7dj423Rine1tLREtZZkXV0dGzZswCQmoZX6Ss/1QhzFTKUgOIk2Gti76SCXrb8MkzGeG3/0Q370ox9RUFAwyJWHj6NHjxIXF3dSUjFMJhNms5nx48dzpKyMpt/+k5S7rkaeYIiMUSPyY2UOlSEXbwUa0SHrE4P7JsEpUhNIuvUyWv/yKjKZDJ/PTjA4vLw3QRDIzFpA6aG3wR/AsWU/sctmH/ccRVoi7kPVIEDqvdciM+gRlAo08rCSMOORW3D7fARtTjpf+gRfTTOmbD2XPj4XAKfZS/3uDmq2tVPx1UFa1mxDplejnlSIt7Jh1AWzzz33XNrb2zFcsBDjFWdiW/01na+swm81k3H+NQgyeb8Ym9UX5NriFP5xqJFWd68LPOT30bTqLWyHd5OUlER5eflJ2YCq1Wry8/M5fPgwCxYs+NbrQmdnJy+//DLPPvMsRyuOopfHkhUoJo1slIKawYqbHl5XwdV/Pw+VXtknhzKBVOSigrfffpt77733W93b8ZCSkkJpaWmkienJxqkedzvl3ZJfffUVxcXFUUsB8Hg8WCyWqOW3uVwu7HY7L7/0MkmhwV1nMkFGqpDN9NBC5nIWOouRJx79O4WFhUwomcAdd9wx6mKnHo+Hqqoqxo8ff1I3GIcOHeK6a6/FV99Kw71P4T4QdrsKwNWKDLokP28HGpHoG4O7SpEx4HqkmzEOw8VLCAaDiKLIwX2v4vcPL2aRlDwZuUILgoBtzbYhq1tE0gECQVT56Sgzk1Ekm5DFhxd/eaIRZXoimvE5SP4AgkwgIa83eVtnUjFuWTrLfzWVn316Jj969wxmX5aFZ9chIKyWmzNnDtu3H7/32Ntvv824ceNQq9Wkp6fzyaefop6Qh/HyZeFCuPGxKDOTsJftp/Qv95DvM/eLse1ss/NVcxffL05BKw8vGb6uTqpfehxb6R7OOussWltbT6pnpaCgALvdTmtr66jOlySJjRs3ctVVV5Gakspdv7gbe6WH6SxkTuBMcoTiMLEdB7YWB+Z6K9nT++ZoygQ5JimZN994c1T3Nlzo9Xq0Wm3UYl7x8fFkZ2dz6NAhLJbhV+M5WTilyc3pdFJaWkp6evqgRV5PNFpbWzEajVGrCNLS0oLX68XusJPI8GJdeiGWYmEq84MryKOEw6WHeeKJJzAYjMyePZs1a9aM6B4qKipISko66Z0Y7rvvPl566SVOn78Aye2j+U8v0PXRl6yUJZEoqHjZX8+xNdqHQ3DGi5egmVJIMBjA57Nz5PC7wyrDJIpyMjLmgiThq2vFV9V03PGK1N50gECn9bhjA51WBAFMWQM3FhUEgcSCWBJy9QR9IWQyGbt372bKlCmcffbZgy5uW7Zs4corr+SHP/whH3/8MU1NTSBJGC9ZGnFBhjw+dLNLiF0RLrc1L1HHvw/V94uxrW/sotHp5aqiZJxVR6j6z1/xmdv461/+wmeffXbc93cioFAoKCws5MiRIyMqo9XR0cHf/vY3igqLWLx4MR+//Sk5gXGcJq1kInMwCUkj2sBV72ggZ2ZGv+Nh1+Reqqqqhn2t0aDHNRkNxMXFodVqycrKYvfu3VG5h+PhlCa3ffv2ER8fH/V4WzRVki0tLWzbtg2TmNRHlTUcyAQZPrwoFXpmzb2dtPS57N69n7PPPhujwchtt902pOrM7/dTW1s7Jq7NkWDdunU88sgjJJPJ11u2kZ6ahkatYWK9m7mBGP5lP4qH/u1HhiI4QRRJuvUy5AkGJClER/shGhu+HtY9pWXMCf+PKGJbd3xhybGqx8GEIQAhlwfJ4yMUkDBlH79r9pf/OALAvffeS0lJCc899xxarZb//Oc/A45/4oknWL58OXfeeScrV64EmYgiMxnH5n2RMTELp2G8eClnnLsSgH/883m2vvIPpGDfQsUS8HZFKwqPk+VGATmwZ/dufvGLXxz3nk8ksrOzcTqdmM3HL1AdCoV4/PHHycvLJyU5hXvuvgdHlZfpLGR2YBnZQnGf7hEjQc2OBrKnpyHK+y6lYdeknHfeeWdU1x0uUlJSaG1tjUohZZlMRkxMDBMnTmTXrqGLi59snNLktnv37oiYJBo1zEKhEO3t7VEjN7/fT0dHB2+88QYJwZGVuQIISUFahHpS0qaj16dQWHwuCxb+ivETLkMijieffBKj0cSsWbNYvXr1gNeor69Hr9efVMu5o6ODq6+6mgQxhYnMZlZwKY4WN9lZ2fzsZz/jL395hD2/fAxfU/uA5w9FcDK9huS7rwF5WCBUUf4xdtvQEn+VKhZTfDGEQji+3EvIPbCCUJKksO+02wIIdAxuuR1r1RmzdIOOC/pDdDW4QCCikhRFkWXLlrF168A957Zu3cqyZcsoLCzE7/eT+KML0c0uwVte32fcApmJJfKwEtmxeCKOmjIaPnoN6ZjeZUGPm6q3/83vf3Ufp512GgcPHmDKlP4K1pMJhUJBdnb2oNbRkSNHOPfcc1GrNdx5553U1tYhSDLmh1aMykobCG1VZvyeAGnj+8ai5YIck5Rywl2TRqMxLOqJklvQYDBQUFDwneU2UuzatYuioqKoVQWx2+0IgkBMzPAK2Y412tra8Pv9NDc1kzRMl+SxaKeZgOQjJW1G5JhMpiAldRrTZ/2E2fPuJD1jHnv2HmTFihUYDEZuvfVWrNbwgitJUkTxdTJjbbfeeitdnVbGh8LKTK2gZ7Z8Kb+48y7efPNNPC43/lYLjfc9g3PHwO1zhiI4VXYKST/5Xve/BA7uf5VAYPC2LTZrPfv2voi5swwAyR/AsXl/+P8lCV9jG12fbKblL69Qd+ND1N/2t1635HEst0B772uDuSUB6vd0ApCa0ld6npycPKhbqqWlhffee4+a2lpils0mZvF0ZHF6gtbe2OsCmYmV8mRe94W7JaiLski+/XLsZftp+3IVAJ72FqpeeBRHZSlLly5lxYoVlJWVnbRcs+MhNzeXlpaWiPI0FArx6KOPkpWVxfjxJXz66SqMpvFMm3ET02bcREDyYadr7G5AgpqdjeTO7u+aTJBS2bN3z6jjgsOBKIoYjUa6urpO2BzHg8FgIDs7+zvLbaTYtWsXOTk5USO3rq6uE14E9XhoaWlh//79mGQjd0kCNFFLbEzGoHJ3nS6JgqJzWHD6/ZRMvBww8NRTT2E0xjNz5kw++eQTAoHACctrGwhffPEFb775JvnBiaiE3ortp107A19nkKoPWqg6Wk1SfAL4g7Q++jrm/67tY2X0YCiC0582hdgV85GkIB6PlSOH3+vn3nG7LRw88Aa7djyDU7KSdu5VqJPTQRCwfroZ838/p/H2R2n4xd+x/ncNCTIz86/N49K/zyVrZgIIQ5Bb92tKnRyNYfDUjYOfhK2tb3bbPh4kSeLLr75ClZdGwvUr+73eQ2zP+2polHqJXTerBNNVZ9G5dR3Na9+n+qW/EbBbeenFF3nzzTeJj48nLy+P3bt3R7UzNYTz3pKSktixYwfnnHMOarWGu+66i44OFwWFK1lw+v1MmHQFBmMuMbEZ6LRJNFEzpvdQvaOB3Fn9yS2esAht7dq1YzrfN2EwGCIb0pONuLg40tLSqKioiNo9DIZTNhXA7XZz+PBh0tPTo0pu0Zq7p1Dzu+++iymYPKgceTB4JQ9mWihMv2DIsTKZguSUqSSnTMXlbKepcQf79u1gy5YttLS08NFHH/HHP/7xhH8WPp+Pm39yMyZZIqnB3tSL9AnJjFuaz5s//4RE0tEHDRw2b0fqLl7b9f5GvBUNJN12ObKYvjUHByrVdSx9xV99Nt6qBrxldbS3HaCpMZ/0jDmEQgHqar+ktmY9olpD2soriJs4E0EUEQSBxo9eI9DSgWvNZkqWp1N8RglZMxJQqHtzIWu3t9Ow14y/bXCXUY9b0pilH3QT5fcEObw6TG4//OEP2bJlC/fccw95eXm0trYO6Dbv6uoiEAggqBQk/+JqhG6peNDqQBYX04fYaqX+itG4lfOxf7ELy97NaFVqDh482Cefqri4mJaWFo4ePUpxcfGg7+9EIhAI8Nhjj7F27Vquuuoq1qz5nPiEEtLSZxNnyOn3eQqCQEr6TKqOrsYv+YbdJWIoNBxoQROnxpQVh7mud4FXCWoMMhOfffYZ11xzzZjMNRDi4uKiLirJyMhg9+7dLFmyJCr3MRBOWctt3759GI3GqIpJrFZr1OY2m834/X5KS0tJYOQxvw6akYCk5EkjOk+rS6SgaCVnLf8tM2bMZNOX+3jmmWcwmcIJm8Ntijka/P3vf6eiooLC4JTIwqRQy1l6y1y+fnUvthYHABpBx7jgTERkeL1eFAoF7kPVNPzyabzV/VWMx7PgBLmM5DuvQhYXjncdLfuQttaD7NzxDNVVn2OceRoFP74Pw+TZEYVh7LgpIA/38ypZns7K30wjf0FyH2IDMGbrCQVCeJsGl2oHOrrCaQC5g7u+j6xtJOAJW0jqgI6X//0KxcXF3HHHHaxdu5Z58/o3Fu1pRaTMTkFu6i0p5t5fQXZxwXGJLWh10PzQC/ibO0hNCpd5+maisEwmY9q0aRw9evSkuycPHTrEypUr0Wp13HPPPWzevAdJknPNtQ9TMvFyDMbcQTcKKSlTAYkW6gd8fTQI+oLU72se0HqLCySy6tNVJ1TwYTAYsNvt/bqqnwz0iEomTZp0yrkmT1ly27VrV9TFJFarNWqWW2trK01NTWhEHVpGHvProJm4uCwUitFVT584IZ7GJjdZOZcyZ97PychawP79hznvvPOIjY1j5cqVNDYOLcIY9v12dPD7B39PmpRLjGCIHJ/3/Wk4OlzsX1UWORaSQhxmJ0pVDOMnXEYoJEJIImix0/jrf2DftKff9Y9HcHKDnuRfXA2EXXmHDr5OQBEk7/o7SV5yHqKyr5JOkMlJnLuEUFDi4Mf1eJ0D1/aMqB+dXqRBFh5/qyWcBpA9uJhk99vVCIKIiBwnNrIDxaQGcnjy70/S0tISab1y7bXXct999zFlyhTcbjexy+fhrWyk6+Ov8DW2Y357Hf6qJn50zsURYgs6XHhrmvE3hgnYtaeM+l88gedILRdeeCFNTU2DVuYxGo0nzT0ZCAR45JFHyMjIZOLESaxevQZTfAnTZv6Y2fN+zpFyN1MnD52LqlTFYEoopkWoG9P7G8w1aSKJTnMnhw8PHBseC2g0mkil/mggLi6OgoKC78htuDh48CAFBQVRs5x6xCR6/fHl2ScKzc3NrP1sLXGBhBHH/EJSEDNtxCeMG/X8JSUGDh7qArqtucKVLFj4K0omXonbE2DVqlVkZGaRmJjIU089Nep5evCHP/wBr9tHHr1VzuNzDIw/I591T2/lWF9iDWXYMFMy6QpSUqcxe+7txMSkQSiEEAzR/sy7dPznI6RAXzn78QhOXZSF8fIz6ZlIlZyO6jgNVI1Tw9ZSwBvk8OqGAceYssIbs4KCAiZ5lMwUDZwvD1vh02VxTBVjKTQmolFpBxWTtFfaaNxnRpJCqDRxSEiUsZcGKtFKsZikZH7+859z9tlnU1FRwUcffcT+AwfQzZ9M/HUrSbr1MuzrdtJw71NI249w1333sio1FLHYXDuP0PjLp2n5v3CVCct/PyfkcHPB+efz/vvvD/r+e1BcXEwwGKS2tnbIsaPB/v37Wb58ORqNlnvvvRezxUNh0TksWBiOExu63Y+HS61kZurQ64aOtCQmTsAqdeKTjl8vcySo2dlIUkE8WkPf2LiBeGSijC+++GLM5vomBEEgLi4uquSWmZnJgQMHojL/YDhlY27l5eWcdtppUSOXnnhbNMQkDocDl8vFp6s/pZCpIz6/iw6CBIhPGF0sJCFehVYjp7rG0ee4KMoxGHMI+N0kzF+GFAxi3vc1t956K3fceScLTz+dV155ZcQClIqKCp5++mlyguP75BvNu2YaB1eVR9yRAC7JQQ1HyMxeSJwhHJdTa4xMn/UTqirWUF/3JaIoYlu7DW9VI8k/v6qPW26wGJznaD32z7YgygVCAQlb6R50OYUYp8wd8J7l+lhiS6ZjK93N7reqmXZxLkgCOl88Om/4TxuMZ8kbP8LlctEpCxKUKykQwxbadNGACCz/0U9ISkrCEerC22bBqezEperEoeogJAbY+15NZE6324zBmEfQ78XuaESFhmKm4MbB5g1b0MfpaLd0okhPJPGmC8Obs7kT0c+dOGiMLWbxdPQLJtPxwsfYv9gZ6ZSekdHfChkIMpmMkpIS9u3bR2Zm5piUgQoEAvzlL3/hqaeeoqmpCUGQkZQ8mbSM2cTFZQ/4TDqdAZqaXeTlxbD/wPFl8aaEcE8/M62kkPWt7xfAbfXQVtFJ9ox0Stf1FjCXCXIMQgLr1q371k1ljweDwRA1xWRMTAyJiYlUVFQQCoWi1pbsmzg17mIAlJWVkZSUFDVyi2a8rbOzk0AggNfrxcjIOxF00IJSEYNOP7r8vLzcGOrqHQSD/eMErc17EWQy4mcvIXnJeRTd8iDpF1yLKi2H9evXR6y5J554YtjzPfzwwygFNVkURo6lTUgidVwiu9472GdsOftQKHXk5PXtAi6KcgqKVjJpyrUIohIk8FY10XDvU3iO1PQZ+00Lzn2ggpaH/kNyjpqbPz6LpOLw996y5l08bYNXIomfeTpIoHDEYDo6gan1l1DccgZGVyZ+mZsm4z7u++NdXHvttfxp6yc846vmPk/YPfUvfy1/a9rNTTfdxLXXXkt13FZcSgt6byK5HQuYVncZ2S3z8R7SIAgiiQtXkrriUpwBCw5nM/EJ47ArHHzNWhzYCAUk2s0dCEo5KXddjajuFUscTzwS6Oii8TfPY1+/i/z8fLxe77CJrQcpKSlotdpv3ZVi//5wgQGNRsv9999PV5efwqLzuj0Gl0WstMFQVW0nL3fo9UKlikWvT6WDsRVh1O9rIa2kvzI5Nmjiy01fnvC4W7TITa/XExsbSyAQoK5ubN293wanJLk5HA4aGxsj1UmigWgqJbu6uqipqSFWbhxVCkCH0Ep8YvGorc7cXD1V1Y5+xyVJorl5FzFFE5GpwzJ9US4nbvxUcq76KQU/vo/4OYuxOFzccccdyBQKFi9eTH394MH7lpYWXnn5FdIDeciE3tjO/O9PY/cHh/HYewvSdkjNdNBMQfF5yGQDK90SEscze+7txMZmQihEyOmm6ff/xrr66z6LSw/BpXlFrnAbyZ0Vz1X/WEBcqpZLH5+LXCsihSQa3n+RkG9g99Xk8eP4/Z8e5tFHH8XdIFKVsJndWW9RlvI5DaY9WHR1YPB2pwP0dxn1HPNKbtwJbTQbDlCRvIF9me9SmrqKjgYzv7jjbv7+9yc4e+U5JE6dR/6Pf0niwhVYuiqRRDDEF3CU/XhxgySRfPsVfaqjHI/Y3IeqaLj3aXy1LfzoxhupqKgY9Hs6HgRBoKSkhIqKCny+4RWj7oHP5+P6669Ho9EwZdo01qz5nITESUyfGc7DzMiaj0KhGfpCQHW1g4x0HUrF0MtafMI4OoWxrezRVtlJUn7/EnWxGDFbzCd04Y+mqKQn5pebm0t5eflJn38wnJLkVlFRQVxcHGq1Gp1u8ED7iUIoFMJms0WV3HZs30FMYOTzeyQ3LsmGKb5w6MEDQKeTk5SopqamP7nZbQ24nG0YJs8Z8FylMZHkxedSdOvvyLjwOtTpuWzcuJGs7BwSEhJ47LHH+p3z1FNPgSSQTq8aL29OJjGJevZ91NuzKySFOCocwGDIJTFpwnHfg1ptYNrMH5OVvQhCEoQkOl/8mPan3yHk7V182w+Wc//tdzJuQhG//PVdKFRhl1pcmpZL/zYPpBC+rk6aP3unzyKYplPys0npXFqQRK07yI033siDv/wjHdSB0HexjM/WI8qEAXPdAp3hYwOV3XKpLDz56DP88MYfsXb3QRZmJXLXtEymJBtImHcG+Tf9ElV6eiSpXJQJ6OZORDutKHKNwYhNkiS6Pv6K5odeQHJ7+eh//+P5558/7mc6FBISEjCZTMNe3NasWUNBQQFqjYaXXnqJkC4WJImCwhWMn3ApcYaB3Y/Hg9Xmp6vLR9ZxKr30ID6hGL/kxcbxS3eNBO2VZowZcciVfQU4sYQJb8eOoXsBjhYajQa5XB6VxHpBENDpdN+R23BQXl5Ofn4+KpVqTHuSDRcOR3hhj4bV2EOsX371ZeShGAm6CJekMhhH10cqN0dPS4sbt6f/DrCj/TAytRZd9vGJU5DJiR03hZwrb6bgx/cTP2cxXU43P//5z5HJFSxcuDCyi33l5VdRBtV4cEXOn3PlZHa8fYCAt/cemqjBKdkoKDpnWIueKMrIL1zO5KnXIZeHrV/H5v00/uo5/K1mvLUttP71VeIKZNRNWI8+kEBe+wKQwtfOnZfEktsngCRhPbQL64EdyARYlmHkppI0Ss1OHtldxxaPErvLTcAzsLDEmKUjFJBw1/ZPBwh0WPt1A4h81lU2Wg5bCfh9HJLF8cT+Bj6t7eT8nASuKkzCYIonadE54c9bFNAYlDi/Poj57XVIkjQosYU8Xtoe/y/mV1ej02oxd3Zy7rnnDvl5DgclJSVUV1fj8Qxc6cXtdnPdddehVms4++yzqaqpJbZkBjnfv438G+9Fn1tMa9v+b3UP1TXDc03GxmUil6npZOyqhzg6XXgcPhJy+5aqUwlqdAo9O3fuHLO5vglBEKLumszIyPiO3IZCeXk52dnZUXVJRqsyid1uR5IkmpqaiGXk9RwttKPVJKBUju6zy83RU1U9cGuczs4y9Hnj+jS1HApKY0Ifa06TkcuXX35Jdk4u8fHxzJs/l9gUHdv4nD3iJnSTZGgNGkrX9brIQlKQaqGU5OQpx+2YPRDiE8Yxa+4dxMZlgSThb+qg/t6naH34BeKzdVzytzlIGj+lqZ+h88X3Ibi5NxRSdEZYMakp38VPxyczzqjluUNNfNHYRUCSwmkB884AAXa91b/GYY8KMlDf3O+1QEcXAgOX3drzTjUIItrsQlQJKUjA/k4nj++rRwJun5xBau0+BJlAbIqGH3+wjEW3lND17nqm7W4dkNh8TR003v8szh2HmD59Og6HY0y9E3FxcSQkJFBTU9Pn+GeffUZ+fj46vZ6XX34ZSR9Hypnfo+jWB0k/90q06eFYmmHybOzWepzO0bdwqap2kJOjZ6hHVxBEDMZcLHSMeq6B0F7ZSWJe/02pLhDHtq+3jelc30Q0yU2n05GWlnZKkdspqZYsLy8nPT39/9l4m8vlQibI0EmxQ5/wDViETgym8aOaWy4XyMrU8dWW/ouL12PFYW8mPX/pAGcOjR5rLnbcFHxdnXTt24Zl71b++9//IogyiouL0ev0TFxRwGdrV1PpO0wauSgFFS3U45XcZOeNbm61Oo5pM26ipupzams2gMdHwOMj99z8SOJ1QOahNPUzxjefTV77AqoSNyMIcN7vp9Oes4RzzjqfDz5dzb6EIlD0zXszTptP+1ef0VpqpaW0i5TxhshrEZejx9dbULkb7vJ6QkGpX8HkgDfIzv9WgQSxxX2T8J2BEK+Xt5JSsZObrvs+C2ZNxzprP+pYJQt+VMyM/PnMSJrHXz58A8tZvcnwzp2ltD35NpI/wP2/vC9SfHmskZ+fz+7du8nMzOTHP/4x77zzLl6vJ/z9T5iJcdo8NKlZA24c9QUTkKk0tDTvJr9g+ajmb2l1I0mQmqqhqen4vfrijLlUd5QTkoKIwsC5fCNFe5WZxAHibjGSgZ07d55QNaHBYIgauej1epKTk08pcjtlLbfU1NSoxNsgukrJrq4u6urqiBWNiMLIvh6v5MEl2TAYR9d2PjNDh8MRwGLpLwro7CwHBHR5o8+d64HSEE/SopUU3fI7Mi66Hm1WPmVlZdQ31DNt2jRqGmqoU5SzRVzFIWkn1cIR4uOLB62RORyIooy8grOZMu0GevZ021+t5J07v8brCCdh9xBcxIILiYxzL2L5eWdx3/338sbLL9K45r1+15brYtAWTUaQCX2k+wD6RDVyVXfvNGdfd12gJWw1fNNyK1vXhNSdotey5j3qP3gJX1dn5PWu/dtY/+4b3HbbbeRMTuF07SXIgyqSbMXMzzuLVVWvsfuFd+h6fwNSKIT5rc9p/etrCIEgWzdvPmHEBuG4Ul1dHSvPOYfXXnsNYgyknHVx2Eo75wq0aYPH0kS5gpiiSXR0lA74+nAgSVBT4yAvZ+jCB0ZjHiGCWMcw7tZWaSYpr39j5VhMOJyOUYt2hoO4uDhsNltURCV6vR6TyURNTQ1e79jlD34bnJLkVlNTg9FojBq52e32qJb82r59B7rAyOfvjbeNjtxysvX9ctt60NlZjiY1C7lm7L4TQSYjtngy2Vf8hIKf/Irzrv8Ru/bsYcOGDfgCAWINsXiNNtySA6/XSnvbIUKhb/fgmuKLmH/63cQZcgCo2NTKvy9fT3tlOBAfIThvPFMaLkLnTaQs8zOm/Sw5HH87sIOuA/2FAcnzliIFJQ58WIfP1Zs8LggChozwZ9YjIIHutji+8LhvWm6bni0FAUxXn03CTRfiaqmi8l//R/tXn+FubaB51VsgwLgLEmmcsBmf3MHExvPJ6JxOWcpass5XcfrN47C8tY7G+56h670NmEwmnA4Hc+cOnLf3beB2u7nqqqtQq9Wce+65fLpqNSsu/B65195O3g/vxjR9QURdOxT0+eNxOdpwu0ffwqW6xkH2cSq+ROaKSUUmU42pa7K90owpKw5ZP1FJOMRwIqt4aLVaRFHE6XSesDkGg06nQ6fToVAoTpl0gFOO3AKBAG1tbej1+qh0vw4Gg/j9/qjM3VPy6+uvt44q3mbDglplQKUauTsTIClJTUtrf1eOJIXo6qpCl1s0wFljA7UhnoUzp1GqSyP9wusQ5DLMZjPmLjOiKOLzWTi4/1W+3vwIdTWb8PtdQ190EKhUsUyb8SMyMucjhSSszS5euHI9pWvD5cQCohe30oYiqMatsOCXeSg+I435Pwy//+bVb+Pt6CtE0KRmIdPFdhc57issSciNQRCFPukAIVfYitMYlKh0veXlOqrtWOqcCAoFsWfMInbpTDIfv5O4c+bTvmUt1S88hiATyJwWz5LbJyAJIWzqFuRBFQG5F68iHC8tWpyKTCHir29l2bJldHZ2jvlv+uOPPyY3NxetXs8bb7wBMUZSzr6E+qK5FGZnkZFXMOK4tS6nCEQxogIdDVpa3ZiMKuTy488tCCIGQ05kUzgWsLc78Tp9JGQb+hxXCEq0Ch2lpaO3SoeCIAio1epBBT0nEiqVCkEQSE5Oprm5f3w5GjjlyK2nq6xWq40KwXg8HgRBiIpK81gxiZ6RW24ObOhiRpe4LYrhyiRt7f0fDKezjYDPhTYrf1TXHg5yYtWIwFGbF1GuQPL7Sb7ragwXLQa9Bl93rlkw6KKyYjWbN/2JI4ffw+EYfSKu3d6EXBeLJCgI+EK8f9d2vnjsINnts9H44ziY/jFavzEiMln4sxJSJ5uQQiHq33+BkL+v+zbljAtAhN1vVfc5bsrWI4h9e7cFzWGiM+X0dUl+/VIFiCIxS2YgasO/f1GtxHTlWSiKsxFkoDUq+d5f5yDKRZJsxWRYplOa8hkupZmi1jM4sqqVF6/ZSCgk8Ztf/2ZMW664XC6uuOIKVGo15513HrUNDRgmziL3ujvDVtq0+XhEBWVdLibHj9zKl6k1aNNz6eg4Mup7dDgCeDxBEhOGXj9iDdlYsYxpvlt7pZnE/P6uSU1Iz5Ejo39fw0G0yE0QBFQqFSkpKd+R22Bobm4mISEBuVweNXLr2YWcbHR1deHzhYUHWkYupnEKdnS6oYvHDgSTSUUwJNHV1T/e1mWpRhBlaNNzRnXt4WCcUcsRiwsJ6DqwHWVmCtoZ4zBdtozsZ+8h+a6r0UwpJBAIEK7/GKKleRc7vn6C3Tufp73tEJI0/OK9TQ3bsHbVkH7BNRT95H4UKeEyTPqGbNQtKexRf4xHae0TgxNFkcufnItSK+Azt9Oytm/txdjiyRASaCntovVIV+S4MUtPKCDR+d46mn/zLAAdz76LKBdIOCY2FPAG2f9BDYRCxJ7dN5fQvnE3/tJqBOCSx+aiiw/H2DLMYVekU9NOuXEDHfVWMppmEgpK7N65m9/97nfD/xKOg3//+9+kpaWhi4kJi4BiTaSefQlFt/6etJWXo0nN7PPMHDY7GWccXdFufd44uizV38oF3dbuISlp6PVDr08miB8vY0cIbZXmPsnckiThlpwIQZFDBw+N2TwDIVrk1jN3YmLid+Q2GJqbm0lOTkYulw9ajfxEwuPxRIVUIRxv6+joQCVT48FNaASLdUAK4JGcoxZdJCeqaR/AagPoslShTslEVJw4a3a8UUepxUXI58VRcQj9oqmRxVKQydDNHE/qfdeR9dRdGC5eghiri5CZ3VbHwf2vsvWrR6ir3YTff3yVnM/noLJqDYbJs9FlFSDXx1Lw/dsoWvE9brjhBv7+xJM8c8VHNB+y9BOZaOPUXPPvhSBJdO3fhvVQbwxFkMkwzFiIKBPYc4ywxNQdU5P7vJTMCW9a4mJ9SFLfeNuhNXUgiGgmF6BM6y275mtoo/3ZsJDl7F9NIX2yqS+xqTtwdHh4+Ycb+MN9DzNnzhzq6+qZOnXqqL8PCG+2Tj/9dESZjBtvvJHm5mb0BSXkXn8n+T+8G+O0+chUAz8r5V0u0nQqYhQjf4a1WfmEgj7s9tF3nWhr85CUOPRzrO1+Xpx8u+RnSZLwSC7MUhtHKg8Tm6dhH1vYLl/HBuEDNrOKDprJzMj8VvMMhWiTm8lkOmXI7ZRLBWhubiYpKSlqBBNNcnO73ahUKrxBD1v5DEEQ0ctjUAW0aCQdGvRou//UaPuoKV3dD6dWPzpyS0rS0NY2CLlZa4mdNmtU1x3W3BoFsUoZlTY3ztqjSMEgupkDpzPIEwyYLj0D4/cW49p7FNva7bj3HQXA67VReXQ11ZVrSUmdTkbmfHT6/pZsTdU6JAGSFvcmLwuiyI2XX8KBVgu79u5HCAV46dqNrHhgKlMuyumTJsC4zaz43RRW/W4fTaveQp2aicoU/tyT5i+la9dGDnxYx9I7JqLUyjF2pwOEghJLfz4JakFn0iAFpT7VSdY/eghCIeJWzI8cC3l9NPzqWQQBJl+YzbSLc/sRW8O+Tt669Ws8Vj8gsXXrVkwmE4mJiaNyrz///PPcfffd2JwOCIZQ5qQSu2w2lne+QKGPQ5My9ALtDISot3sZZ9Syo23gvMnBoEnJRJQr6bJUExc3usLGbe0e8nIThp5LY0IUZDglW6Rz9mCQJAkfHlw4In9uHHgVbpxBO4FQWHVrayvgouRzmH7mJIqKiygqKqKwsJDCwkKyssamUPNgUKvVWCyjF+N827m/I7fjoMctGS2C8Xq9USXWs846i7q6Oo4ePRr5Ky8v50jpEaprD+H3hx8gUZD1IT4/4ZiUTFQgSSGEEaYRJCWq2bu/vyTa53Pi99pRJ4+smO5IMM6opaLLjT8k4agsRZEc36c+4kAQZDJ0M8ahmzGOQEcXtvW7sK/bQbDLQSgUoLlpJ02N2zEY8sjMXkB8wjgEQcTl6qCpcTuJi1Yi1/YSy8zEGJI1St7s9FN08wPUvPsffE21fPK7PTQdsHDmLyf3JbgLoWZbB6Wrm2l470Vyr78TUa5ArotBmZCCr6OF0jWNTLkwG51JhUIjw+/udbO1lXbH3LrJrbPGjsviR55kRDOlIDKu+eGXEQIBksYZOPu+KX2IzaFqZ/db1Xz2p30gCWhFHRmhfJ566ilOO+00Dh48yPTp04f1HXR1dbFy5Uq+3rYNKRRCUCqIWTKT2DNmosoNJ7IH2i1Y1+wgeekFiMOo/l9qcY6K3ASZDE1GDl2WKrJzFo3o3B60tbkxmVTIZMKABcAjcwkiWm0iTmd4cyhJEn58uLD3ITGfwo0zZMcf9HWfJ5CWms6k8eMoLi6OkFdhYSFpaWmsW7eOTz795KR7n1QqVVQtN4PBcEJ7140Epxy5NTU1YTQao0ow0UpB8Hg8aDQaTCYTmZmZLF3aN2k5GAxSX19PeXl5P+JrqGuAEGz/+nEEQYZabUCnT0KjTUSrjUejSUCrjUepiu0XTxRFSEhQ0TqA5ebqrhahShidUGU4GGfQsbs9LKaxV5einTeyJPRvWnP2z3fg2hNW21m7qunqqkKliiMjawFORysytRbTjNMi58cpZazMjueNo614giHkuhjyv38rHVu/oH3Tp+x5r4bm0i4ueXxuH4I7//chGnavxt7WSsvnH5C2/FK85nYUMbH4OlvY/VY1Uy4M53UZM/W0lVsJ+cOuVHd3QWhjd5rAmv/bF76XlfMjFWDMn23BV16LSi/n0sfnkOYtiRBbF618cv9uDn8aVmamCBmMC01HLihwSjbuufsenn7madLS0khJGfy7e+6557j33nuxORwQCqHMTSP2zNno509CVPdNVtcvmEzX/zbhqq9Enzt0O6UjFhfLMo0oRAF/aGSCDW1WPuYtXyBJ0qji33ZHAI83SGKCipbW/r9rv9+Fy9WB29WJhEQbzbhkG3BKdnzB3jytlORUxhcXUTyuL4Hl5eUNukb13LPX60WrHV3ccbSIpltSpVIRFxdHU9PgnTROJk45cmtubqakpCSq5BYff3yr4URAkiS8Xi8qlWrQMTKZjJycHHJycjjrrLP6vOb3+9m0aRObN29m7969VFRU0NjYRHNjJYFAr0hEFOWo1Sa0ukS0ugS02gSyc3IJBiUsFm+/hcTpbANBRGUa2sUzGsgEyNCreKeyDb/VTMDahWbi6Opi9rHmOq3YN+zCtnYHwS47Xq+VyqOfgiCiTknHbzVHCHtZponDFidHrb2xOkEQSZy/DFV8Mg3vv0BrmZV/XfoFFz86G6aHCa6w63Suf8XLUytW0bV3K0GPC/vRg8h0apCg+ZCFtnIrSUVxJOTF0F5hw9YWnkMKgi5ehUIjJ+ALUr2lPWwtLZwGgK+xna4XPgUBvvfXORRop0WIrbGzljdu3kxXrQsBkWKmki7lRr67fCayrWkN+/fvR61Wk5yc3Od77ejo4LzzzmPbju1IwRCCSkHsGTOJWdprpQ0ERWYyclMcjsrDwyK3do8fTyBEqlZJnWNkib3qpDSCAS9erxW12jCic3vQ2uoiNtbLvn37cLs6cLk6cDnbcbk6CB5DYKIoJysnk6VLl/QhsIKCglGRU49y0OPxRI3cRrsp+LZzx8TEfOeWHAwdHR3ExMRERYoPvWrJk40eleRoSV2hUHDGGWdwxhln9HvNZrPx1VdfsXXrVvbv309FRQVNTU001pcTDPpJMJ1GdXUCm9b/Fo02Hp0uCY02Hq0mAYu5EqUhHkF2Yn4qSRol/lAIszeAq64SBAH1uJxvfV15fBzGi5diuGgx7r1HsX2+HdfuMpBCeFoaqfzXI2izCshbeDaTZ+fw5P6BxQvWw7sQY3SIsVq8zR28ftNXnPHzSUhXSpS0LGeKchlX/sPG6zduxn5kH/JEQ0TyL8gE9rxTw9n3T8GYpUMQwd7qhu69k6lbKbnr7eqw/H/pTEStmpDPT8M9TwKw9M6JzB5/WoTYDu45zNu3byXgldAKOiZJc4kRDH3uWSmoyAwW8eDvHuT9D96nubmZtLQ0nn76ae677z7sTmevlXbWHPTzJvaz0gaCIAhophdh311KChcN63todPpI16lGTG49Gw+ns+245BYM+nC7OsPE1W2JuZxtuFwdZKVfhlqt5vDBNxFFGVqNlqTkRHJzT2PSpEnMnj2bRYsWkZY2OKGPFtFyD6rVakKhEIFAAIVCMfQJYwiVSoVWq8VisRAMBqMiCDwWpxy52e121Gr1mHT0HQ2iFXPzeDwoFIoT8oOIjY1l5cqVrFy5st9rZrOZjRs3YrFYOPvsZVRVVdHSXEtn+2GCod5KG0f+dj9KUwKq+GSUxgSUpkSUxkSUxoRhV58YCOk6FU3OsGXprK9EmZWCTD/6630TgiiinV6MdnoxAbMN+/pdWD7bCjYXrvoqpgk29uzZS9nmfRgmz+7zXhzVZdjL9pN022Xo5k6k479rsf/vSz7/6wEaD5i58NdBJlvPYWn296j8fivbXq0k0N7FWb+czNSLc3hk1ofs/7CWpXdOwNSdDlCzvQ1WgCgXiO/OcdvweFhIEntWWP7f8MunESSJojPTOP/Cc8PElryW1S99yZfPhPOkUoQsxknTkAsDL2AZ5FETLGXfvn1UVVVx2x2391ppy2aFrbSc1BF/nppJBdg/34Hf1oUi1jDk+CanlzS9ipEW31fEGRHkClyONgyGXDxu8zcIrB2Xqx2/v7cahyCIaDQakpISmT59DuPHjycvL4/77ruP7OzsEb7Tb4douQd7VOY968nJnrvHKHE4HFGr8hS5n6jOPgAcDgdKpTIq5BYMBvH5fFEjt2jMazKZKCwsJBQK8YMf/KDPay0tLaxatYp33nmHsrIy2tracHS0EgwFIdSbpiCqNahMSSjjk1AaE1GZEiLEJyqPbxGk61U0OsO7ek9rA6rJJ064IjfFYrx4CYaLFuHeV4Hzi10sW7aMv/71r7QeOEDbpk8wTJ6DacZpKE2JtK7/EHVxNrp5kxAEgcQrzyZm+jiafvcvjqxt5Pny1Vz9hJd5vu/xo2tvpnTdA9ia3XRU25ErZWTOiqd+RyelaxqJzw1baZVftsIKkEJhpWRrhYVggG75fwKd/11LsLUTY6aOm355DRmW6RyMW8WLt31MzfYOBETGMY00aeCu1D7JSyNV1FJOIBTgj3/6E//597/JnzMd6+RMdHMn9enSPVJoxucA4KqvJG7CjCHHNzq9lJiGjmFLwQC+rk585g58lnZ8lnBJrKrKNVQc/SQyThBE1Go1CQnxTJo0jfHjxzNz5kwWLVpEYWFhn6LEjY2NVFRUnHRig+gnU3s8HmJihq6vOZY4Nn3rO3IbAHa7HZVKFRVy6yn4GQ23ZLTcoRB+3wM9CCkpKdxwww3ccMMN/V47cOAA7733Hlu2bKG8vJz29nbsbY2EgiE4Jj9PptGhNCWhik9C2UN6pkSUhnhEhZI0nZLNzVakUBCfuR19xvDUfd8GgiiinVbE7BkzCIgqGscnQbUayeHBsmcrlt2bUSWl4W1rJvXmG/uQiLo4m+zn76P+3icx1zl49opPsDziYGXutfz1P3/gJ+few+7/VpM9K5GL/zKHJ5Z+yq63qrn86XkA2Fq6Y26hcP7b+7/YGZb/r5yPq7IZ6wcbUahl/OKJH5HtmMl26X88dfHbuDp9aNEzmXnohf6Lhk2yUEMZbTSAIIAkIaiVyBZMZL/XzDk//wkfBUZfzaUHslgdivQknCMgtySNAoUo4AsE8FvNeHsIzNyBz9yGt7ONgN1KODkfEAREUYZKIaeoqIjp06czY8YMFi5cyMSJE4ddVV+tVketiK9arcblGn2JuG87dzStRq1Wi90+MoXsCbmfaN/ANxFNyy2a1UmimV/n8XhITEwceuAxmDRpEpMmTRrwtZ07d/Lee+/x9ddfU1FRQWdnK7aW+nDFiWPKHClj4kj+z7/Yu/p/tDs8SIEAolqJFAggnITvf6bMwE7JhuF7S4i7cBHu/RW0vfARoVYL3rZwULz9mXeIW7mAmEXTIuWwZDFasp+6m/Z//g/Hhl28cssXtN5m44azb+Hv7/yJ2y6+n49/vYsb3zkDuVpG80ELjnYPSp2cwDFNYONStZhrnMiTTKhLcqm59kEA7n7qxxQL8/joyMu8dO/HAKSSTTHTkAu9n0tICtFOE+Xsw4s7LHsNgSovndgzZ6ObNxFRpWSn6OFqWQIfB1oYiyJTqtxUvNUDiwakUAi/rStifbWY27EX/gj/6tco3bPrmO9fQJDJUMplxBsMZI+fxaxZs1i5ciVnn332mLjneyyYaIkroplvFi1yA4iJiYk0fI4mTily8/v9eL3eqJLb/6v5dWM598yZM5k5c2a/48FgkK+++ooPP/yQDRs2YLPZUCoUVH65Dr/PC4JA+3Pv0/6PD5AZY1CmJ6JITUCREo8iNR5FagLyRAPCGMUl80QdX/jC7i9BFNFMKUQuCuSekUZCkZ6v/1NBoL2Lzpc/wfzGGmKWzCD27Dko0xIRRJGkH1+EZsEU2h/6D2v+vpOW0oe497Zf8cenfs0Dtz3Euz/fxoUPT+edn+9k77s1mLL1WKu7LQkBdrxeCUjErZxP7c/+AsAtD13P9ITF/O25/2PLZ3sAAT1xTBB6k+h9kpcayqjjKIIoIYVAVIjols4i7oxZKLP6Sv8rQ07UyEgUlLRJ/curjRSKjCRcO47gqCnH39WJ19yOz9yOr7MVn9Xcx2UtyGS0Np9LdnIimunTmTZtGsuXL2flypVoNGMXWx0IarU6nHjt8510r0i0882iYbGKoogoiuh0uu8st2+i5wNRKBRRITe/3x9VlWY0UhB65j4ZD79MJmPRokVMnDiRp596mozMDLq6uggG/CQmJCGTi1it1rDay+rEbbHjPlwTXix7dvyigDw+DkVaIoq0buLrJj95gmHYXcKNKNAgo1nqXYD8zR34ms1MuX8eBQtTWHhTCdVb2/jiyYO0ldqwrd2O7bOv0UwuIG7FfDRTCoiZmIf2X/dTd8ujHPiiknvr7uPhP/+Ju+79OX95+FGqt5mRghL7/ldL3vxkbHVhctEnqNn/UR2CSoHzQAW43Fzz08tYPHElD9z3a44c7q2K76ALs9SGAiUH2IYLO4JMgKBE6gQjWTMS+PrFo8ScNrUfsQGEgCbJQ4agGTa5SZJE0OrA39yJv6WTQEsnvuYO/I3t+FvNEAxR9+Zz3aMFRFFALpeTlJBATEwMF154Ib/73e/Q6/Vs376d733ve+Tnn7jC2wNBLpcjl8uj4vKPZr6ZUqmMStsbCD/jer3+O3L7JnpM2Z4f5cnGieySOxSiFXMLBAIEAoGTajU2NDTg9XmZapqDx+KjKDQVT4eLRqEG5DJEUUEw6AMkOKbxoiAICAgEO6wE2rtwH6yCUDASqkEmIk8woExP6rb04iPkJzPF9iG+DFFDq+TBf4yjzr2/ElEukjUznNMniAJ5C5LJW5CMo93DtpfL2P5aFe6DVbj3VyBPMhK3cj4xi6aT88IDNP3pBRoPV3P7j37Bo08/wu233c4TTzyBKVePudpB6xFrpBG3RAgQkeem4N1bxoWXnMd5S7/H/fc8QHl5OYJCRubjP6fpwX8TaDOzm00IooAUklBq5Uy+MJup38shqTCWUFBiz3u1uPaUoS4cuDRWQ8hNhqhhd6i37Y4kSYTsLvwtYQLzN3eEyaybwCSfv/cC3XE8CO/QBVGOJIW6ixtLhEJhC8ncYcbabuN/H/yPv/71r0B0rRiVShUVK0atVuPz+aKypgiCMKZdDkYCuVyOVqv9/5Zb8rnnnuPuu+/GYrFEiMfhcGA0GlmwYAEbNmyIjN2wYQNLliyhoqJiRLs1u92OXq9HFMWokFs0fPM9CIVCUckL8Xq9J73FT0+SZ7IxBa8lQIYQTtpupo6U9NnkFZyFJIXweu14PV14uv+8ni48bgtutxmv19pNgMcgGCLQaibQagaZrA8xIpehSDKi6HZ1Ji1cRo0RAj47MoMeQRDwlNWQUmJAqe3/29MnqjnjF1NYeudkKjY3s+r3e3G0Weh8sdtluXQmST+8AHd5HR3PvMsdN93FI4//mdtuv41nnnsaQYSuBmfEFeds90EohP9IPeecu5JLL7yC3zzwW6pqK1h0awkbnzxMwwP/IGSxIcgEpKBE6kQDMy7LY9yyNBSa3nsUZQK5cxKpPVQ14OcddLip8jQxR5eE+eN1YSussR1fU3ukYWpfCN3l2wQiOwdJQhBkqNRxaNRG1BojarUBldqAWm1ArTZSduR9ZGYnBhJoba2JXE2tVkdtsdNoNFEh1p5nORrkJooiodDwi66PJeRy+Zi4Ja+//npeeumlfsfPPvtsVq9ePbx7Ge5kS5YsweFwsHPnzkg33y+//JKUlBS2bdvWJ26zfv16srKyRuyGcLvdkYc/Ggt9tMktGlajz+dDqVSe1PfdQ26xxlhclm71YHdRWqUqrNoMS77jUKvjiGNgKXcg4MHceZRDB14nfs4SEAT8Ngv+LnO42onzmAcsEMTfFLZMEEVSpy5hx7pV1K1ahaBUIE8yInXZCGao2P+/WoxZekxZerSmvp+NIAoUnp5G4do0HJ0eVv9xD+XrWrB9tg3bqq1ophYh5iRjrWnlnjt/yUMPPcTPfnILTzzxRLe11n0dWfiaK1as4Korr+bB3/2ODn8zi+8oYcPfSxFEgZDFhlInZ0q3lZZYMHgT2rRJRsrWl2L/ah+BNjPuhlb8VS0E28MuRCEnh0v+9Ces721A6rHCvrG7l8s1YaLSmFBrekkrTGJxKBS64/5O1GoDTsGMSlJjd9gjz7NaraajY+y6XY8ESqUSn+/bxxlHip7PKRoWVDQtN5lMNmZK0eXLl/PCCy/0OTYS79awya24uJjU1FQ2bNgQIbcNGzZwwQUX8MUXX/D111+zePHiyPElS5YM+yZ6cKz1Eg2SiaZbMlrEKknSSX/PVqsVhUyB3qTF1RUmtwB+JEIolcPvYyeXq5HJwomqphmn90sqlkJB/HYrflsXAZsFn9US+W9efj7//e9b4XE+P/6GNgRRoL3Cy8e/2R25hkIrw5ipJyEvBlOWHlOWLkx82Xr08Wou+ds8pJDEgY/rWP2nfbj3HaWnZrXDZefXv/k1f3jwD9x22208+fSTvfcWlFixYgXXXHMNDz74IJU1Rwn6JNb99RBSUCJ9iokZl+VSvCwdhTr8TPjdASz1Tsx1DpoOWaje0oqlzonP1Wuhtj/1Nshl4ThlqFdaX9/QgFyuIHf6bBprawjZHOTnLw9bXhoDKlVc5LMcLZRKPRa8KAkvQO3t7WRlZUVVkh+thb7nmYqGBRVNchMEAVEUx2T+nuano8WIfH9Llixh/fr1/PKXvwTCFto999xDMBhk/fr1LF68GLfbzbZt2/olBA8H0SQXiK7lFq25Q6HQSZ/X5/MhCjLkShkOT9gt1mPViOLILPae3m0yTf8afoIoQxlnQhln6vdaTEws8ZffTLHNTsva93E0lhN33mmYX1lFQq4Oe6cXrz2A3xWkrcxKe4UNQYBQoPehVenlGLN6ie+c305HroG1fz6IrdlN0B+iy9zFr38bJrhbf3Yrzz//PABnnnkml19+OQ8++CBHK46GY2k6ORNWZpIzJ5GOKivbXjvKZ3/eh88ZiKQOCjKh33303IvXEUCZk4p6XA7yhDjkCQYkf4D2p98h88qb8SBQcNG1ONatpvPLNaSm91e0fhuIopwQQYTuNpE9FpNMJiMYHH3j0W8DQRCiRjAQHcttrMhlNBAEAUEQovZ9H4sRk9sdd9xBIBDA7XazZ88eFi1ahN/v57nnwsqprVu34vV6R2259ZBbtKyY/9fcktF4z36/H1EQEUQxnPQNhLpjO4IwMnKTpPBDNJL0ABGQiQJBCWRqLQgi8kQj+vmTMb+yiiV3TKJwcbg0VcAXxN7mwdbswtbipnZHO7U72nG0e/A6ArQc7qK1LCwUCR3TWkUdq8BjCwsyusxdPPDAAzz00EP89Kc/BeCKK67gd7/7HeXl5ZFzfM4A+z6oZe97NUjHXEsQBWKS1cSlaTGka4lN1RKXqiEuRUtsqobYFC1KrZy/LvgY/fzJGM4/PXJuoKMLgJDXiz8koRAERKWKYGDsXXWCKCeEhNhNbj3tmaJpSURroY+2WzJaMTcYu5jfxx9/jF7f15Nz//33c//99w/r/BGR2+LFi3E6nezYsQOLxUJRURGJiYksWrSIG264AY/Hw4YNG8jLyxtVU75jrYieB+NkIhAIhPs5RWFuSZIIBoMnfe6e+U7mvKFQCJ1Gh1wpQ5CJKDQKgpIPDRrUKiVKxfBJXqmUodFoUMllwyZphRgeJxNAJRNQK2WIcg3qUFiAoFKpEUNhF51SriA+TU18mgGAKed8I44sSbitPuytHso3NXF0Qwu2FhcBTwiNRo4oFwgFwkrCP/7xjzzxxBMAPPbYY9TX1/fJ9VIbZOTMTCGpMJaYFA2xKRpikzXo4tWRGN2gCIE+Ro8KARW9n59crgy/J5lASJLQyEU0KiUajRqFnBH3/Tse1GoVarUKFWo0aPB6vfj9fkKhEKFQKGrPVSAQiMrcgiDg8/lOujgump93D8bCcluyZAnPPvtsn2MmU38vzGAQpBFuLTIzM7n55puxWCw4nU6eeeYZAAoLC/nHP/7Bb3/7W8aNG8c///nPkVwWgM2bN3PxxRfzj3/8Y8Tnfofv8B2+w3eIPh577DGWL18eCV+NBtdffz1dXV188MEHo77GiLcUS5YsYcOGDVgsFu6+++7I8YULF7Jq1Sq2b9/OzTffPKqbOTYFYMWKFSfdXVZRUYHT6WTKlCkndV4Ixy8nT5580hO5Ozs7OXDgQEQMdDLw2GOP8eeH/o/7bvoNlkYbez8sxSe52cJnTJh0JfHxQ/cK60Fry17KjnxA8e1/GJFr8rezcnlsXx02X5Dmz9/HbW0g+e6rqL/lURbfNoGEvBhsLS5srW7srR6sTS66ml24Ojx93I+CKISVjcEQSCCIIFPKEGXgc/a4TAWWLV3G5ZdfzmOPPcYDDzxAY2Mj1dXVPPPMM2HXlQAyhUDRGSkEXNBZa8fa5CLoO6ZAtVyMzIMACo2MuFQtmVNNmHJiWf/EIfRnzcVwzoJIqbBAq5mGXz5N5sU/5FfnLebdqjb2f7mBtg2fcvqiXw/78xoOams30VSzhQnSTPbyFbt27aKgoACz2cy+fftGFar4tti3bx9arZbCwsKTOq8kSaxatYqlS5ee9MpDdXV1tLa2MmvWrKEHjzG2bt1KXFxcVLUTPRgVuf3sZz/D7/ezaFFvC/hFixZxyy234PP5Rv0jPtZXq1AoTjq5yeVyBEE46a0iIPzeZTLZSZ9boVAgSdJJnVcmk+F0OQn6wrUm/W4/fimIGzcejw+ff/j+en9AwO124/Z4wvGz40CSJIIuR7j24bRMuvbvpL62BkfVEXxd7dhu/Qt4faz6v52Rc0S5EFbN9xCaAHKVSEySmsxZCRScnkRSvpG4VC2Wegd7361h3we1eC2BSNL1ihUrIuKR+vp6AH7/+9/zwAMPcNNNN/H3J/9OSAqBC/b8rxpBgDPvncj0S/JxtHvorHVgqXNgrnOw7aUKRJ2akMeH2xXC1umg/mBbJK/P+e46Wt9dBwIIei1iQhxBt5uOI/uRnXs65oZ6bK1N+IPCiD7n4cDj8eBxe/BKHty4UavVKBSKSFmmaDxXghCunHKy5+5xyymVypM+dzQ/bxg7BbbX66WlpW+xb7lcTkLC8Bonj4rc3G4348aNIzk5OXJ80aJF2O32SMrAaHAsuUVD6BDNQGy0gu7RmFetVhMIBXDbPahjwrJxWfdPMRgYmWS8J3Ug4LAjyJUE7Bb81q5wvlvPn9WCr6uTgMOK1L3oNE3LRt1Yjnn3jnCVE0ByhecWZOGk7fQZCaSPM2DK0mPM1mNI1yJX9rUO/Z4gZZ838tGvd9G41xxJuJYb4gl0dUbk/r//w+8pLy+PxNhsNltEZHLbreE0gbhsNfHZsRzd2Myahw/y2R8PkD03gQsfnk3O7EScnV62vVRB/A3nop8/mUCnNVIey9/cXWGkqT0sIglJSHYXQYcLZDIC5XvRq1XsfuGJSA7Sxi/+gD4mAY3G9I2E7PD/y+Ujq5gT8HuQoyBAWAGr04Vb3fh8vqgutNESp0H0UpqiJYyD8Hsfizzl1atX9+OS4uJijhw5MqzzR0xuOTk5Ay6G2dnZ33qRlMvlkSDo/2tla6JVVSAaMu2kpCRCUhC7xUl6cXiDJBNkyFHi9Q1c2UCSJAJ+V99qJR4rTkd4Z1f98uOEfN8gxp7fzwCfa2VtDYXTp7Dt668pWZ7B+LPSMWbpMWbqInllx0N7pS1ipfmcYSsNuYK0c64i6LLRsu5/rFixku9few2/+21YFflNUYjN0Utwv7j7Th595DEcbV5ueu8M9n1Qy563a6j9uoMnln6KOkZBzoLwjlUzMR9BFFEkGlEkGmFyQd/PKhgk0N7VS3otnYzXmmhubcHldkfGhSQ3NkcjNmvdgO9RJlOFE+k1pkgyt1rTS4JKpb6PIMXns6GSVPjwIJPJIjvsaBYkDwQCUSsIAdFTfUfLLdjTBfzbimhefPFFXnzxxW91jVOqtqRer4+U6QkGgyddZRTt/JBokJtKpcLv95/UtvA9uzGrxUqhMQcIt29RCCrs1npamnfjcXfh8YbLbXncZrxeG6HQsaWihD4bgn7EBogaVbi4ck+B5Z4OAykmrLpUJogxKN54DUO6luIz0oa8b78nyJG1jex6q4qm/ZaIlaZKySTrkh8iyhU0ffIG9qMHWblyBdfdcC2//tVvInJ/KRiOrfVACkpYrVYeeOAB/vjwH/nVQ/fy0P1/5vmL1nHNq4s4/SfjOfhJPdtfrcBc46BsTZjIuz76CuP5pyOLGzjhXZDJIjU1mRo+NlmWSIuoIveV3+Jvs/S1+Jra8Td1EOw6ZmMhCgTx43S24XS2DTyPIKJUxqDWGNFoTFi76lAhw0IHCfGJkQU22u2cojF3z+/y/7WUpkAggMvl6ifhjwZOKXKLiYnB5/NFivme7ELC0XRLKpXKqEh3e/rXeTyeiBvpRKOH3ErN+5hrnMJW+WqcfidI4G4/RHv7IURBFiZbQSIUCiFFspjpLncoEQoFETQqFKnxKNMSewsld5NYj6hiINSH3JwpT0JZmEXtrtbj3m/bURt736th/we1+FzdVpooknD6SuJnLkSUy3E311H/3osEHFYuvPx8rr7ian77m99SfjRMbIIokFgch7Oh9zvuyYVzBL386v4H+OsTf+ZPz/6G+3/6e167diPTLs1l+f1TmXZJDjXb23njps0A2FZtwfbJZhTZKSRcswL1hNwhuyFkimpqQ24EuRxlWiLKtP79+0I+P4FWc59Cyr7GDvzNHYRsx1SZF8Xw9xCS8PvtBINOHPZ6gsEQXiRsmDl39nmR4V6v96T9tr6JaLWS8vl8kTj6yUa0yc3pdJ70LuAD4ZQitx627yG3k41oVlKIdlv6k7kAZWVlcdWVV2HpsmCMN2JMNiBaBVwuV/jzFwRCUpBQoFttqFKgSEmMFD0+ts2NTH98EclgaJI86JCROmMSlc+X4nX4Uel740J+d4DStY3sfquapgO9VprClEj6OVeiScuOuLE7d2yk9YuPAIkf3nMlK+ZfyP/97Y+UHi7DcNXZdL3zBZLXj96kxF7THdcTYfJF2Wx/tZK4y8/C+s4X3HX7L3ny34/yt9ce4pc3Pcied2o4uqmFn7y/DLclnHSdeMul+KqbsK3bgb+2heY/vgBKObEXLMS4bPag1lyGqOGroPm4n4moVKDMTEaZmdzvtZDHh7+1183pb+nuHtDUQcDZ6+pEJoIEq1evIjk5menTp3P11VefdLUihBd5r9cblW4bPRZjNEjmZHphvonvLLdBoNPpIomP0SC3aLfmiGZzwxM1d0dHB//6179YvXo1ZWVlWCwWfH4/kiCgUSr58Y9/jMViweXzIk+NR/3NBqUp8Yixxy/YOxr4kWiRvJRMn0JF8L9Uf93GuGXptB21suedGvZ/WIvfFQxbaUDspPkkLViGIiYuco2g20njJ2/iqDgEAtz375uZEb+Ef7z9BDu/3I8iLx25Rg1ePyUr02nY09uZWZCJFC1OZdtLFZhf/pS0X11P04P/5tYf/JxnX32cx179A7+750+0lXfxl7kfAaCbMY6Y06bAaVMwXroUx5f7sH6yGX9LJ7Z3N2B7+wtUU/Ixnns6mgl5EWsuBjkGFDSGjiGhEUJUK1Flp6LK7i8WC7k8x1h74f+6D1fT1tHB6tWrWblyJT/72c/YtWcPMlGGTqshOTmZcePGsWjRIi699NJRFX0YCl6vF0mSomK5/f9T8+HhoqcQhd1u/85y+yYEQUCv1+P3+6NCbtFsMBjNyunf9n273W4++OADPvvsM/bt20dDQwNWmw1/KAiB/m1nNOmJKFISUKTGY/G5mf3EfdToTr4r5UDIxixTBp9lJ7P5n+VsfeEozQd7rTSA5GXfwzB5NqK8r9rP1VhDw/svEnA6UMXI+f2bt5MfmMN7u//D2lc3g1JO+u9vouGuJwGB5fdP47GFH6PVhS1NKRCuIJE5I4GGPZ3IU+IxXr4My5tr+fnP7uaxZ//KQ088wFPPPsm+D2oBEDOSIvOLahWxZ84mZtks3AcrsX26FdeeMrwHqmnZVwk6FabzF6JfNJ3p8TlUhJy4OTEud1GrRpWXjiovPXKs/fn38R1uoeDKm0nPyMBbOI0EdTw+Szu+jjYqamo5evQoH330EXfddReCKEMmiuj1OlJSUigpKWHJkiVceumlfVTZI4HX60WhUETFiolWf8aeuQ0Gw0mft8fr9Z1bchDo9Xo8Hk/UyC0YDI6J2mc0c5/KlpvP5+OTTz5h1apV7Nmzh7q6Orq6rPiDgYi8HgBRRBFrRJVZQLCxGtX4NAznLwy7EL/RMBSgUeYnOy6e2mDniXhrx8WW+qP8OmsuaoeP1rouerg1LraQ9IyZHDr4JiG/rw+xSVKIzu0badvwMQA5cxO57eEbyLLOYIP5bV7/fbjXVPbT9+AprcHf1E5sqgaX2YsUAk2Movs6cOiTRqZfmkv9rg6aH3mFjId+gudQFS2Hqnn0nw/zix/dx60/u433Jr3Kqj/txfHRl3gOVJD+mxsR1eH+e4IgoJ1UgHZSQdiCW7MN27qdSE4v5jfWYn5jLdOef4519iNIqcphdyr/tvDVt6OOTybNZMQblAjllJCUU3LM5ygRdDvxmdvDf5YOfJZ23B2tlFVUcOTIEd577z1uvfXWMPHJRGL0etLT05k4cSJLly7lkksuwWg0DnoP/y8KWaI5d0/5wp6+nNHGKUdux4pKTjZ6Ek49Hs9J/3Ki2RZEpVJF4l2ff/45H3/8Mbt27aKmpgaz2YwvEEQKBXv7fwkCihgDyvRc9KZElKYElMZElKZEFLHGyAJa+/Y/kRQhNJMG7+vXEHKTKWrgJIU6Qx4fzq8PYFu7HW9lI6V/+ANLFy7m/ff/R1b2QtIy5qJWh12PFkslrVs+xzBpFnKtnoDbSdNHr+GoCufZnHXfFFauXEGGeTq7lR/zr9s/QBAEEu6+ClmMFuunW0AUuejRWZjrwipgp6W3YHH9HjMrHpiGKkaBt6oJQiGSbrmU+rufZOeH5Xy05CXOK7iO7y28hsSiON65Yyuu2mZqbvwjGQ//tF9sTJEST/y1KzFedgb2TXuxfrKZfEMiCfpYVt/6F7xqOcYV84lZPB254cTtrKVQCH9DG3GzJ5KuU9Lo7P+7FgQBuVaPXKtHm5Hb93xJIuC0d5Nee4QAnZ1tHCot5eDBg7z55pvcdNNNCKIMuUxGbGwMEyZM4Mwzz2T+/PnMnz8/6tZTbOzg/fdOJKLlEg0EAhHj4DvLbQDExMTg9XqjQm494opokZvH4znhSqdgMMjmzZv58MMP2b59O1VVVUydOpWZM2cyY+bMPg0s5fo4VClZaOOTusmrm8TiTMMqdaWOT8Zavf+4Y+olN9OEuOOOGQt4a5uxr9uJfeNuJK+fHjNt9eqN3HTTDVhs0xGEvo9Dbt4yWlv30frFhxinzgu7IV1O5CqR77+4kCkZc8kwT+dw/Gf8+0cf4nUG0MydQMz08fjbzLh2H0GUC6RPiGf7axUIAggZvdUVXGYPcqWMqRdls/21Sro+3YLx/IUk33EFzX/4N6/fvp6kT2KZ47uI01POI+4tLe/dtY2GvZ003P0kcTecg+msuf1+L6JaRdxZc4hdNovLPfF8sXdHeOPk92N5cy2WN9einTWe2GWz0UzKH3NrzlffSsjtQZOWQ7pONSC5HQ+CIKDQx6LQx6LL6rsxkqQQAbsVnzls6XktHfg62+hqqmXTV1+xadOmyNjLL7+SnJxsbr31VoqLi5k2bRoLFixgzpw5J9wzEy2CCYVCUSW3HsX3d+Q2AGJjY3G73VGraB0tC0qlUoW7Uft8Y7LbrKysZMOGDaxfv54vv/ySjo4OPF5fONVB6o29yHQxdPok0rKySV58XoTAFIZ4xG+5AKgSUgjs2EjI44u40b6JhpCHREGFChHvGMeEQh4fjq1hK81X1RiWsHeneiQmTiAjcz4KdQ4hSc74cfEcKbP2OV+p1FNQsIKyg+9jPbgLBEgs0HP1P08nRzaZDPN0ylLW8u7/fU7bkS4EvZbkWy4DwLZmOwgCC34UrpNpqXUiyERSb7wQAEEhx+8ICzymXpzDtpcrsPz3c4znL0RTkovxkjOwvL2Opy/9GO3nKiZZVjJZeQaa55V8cN92yj5vwvrCJ3j2HCX1jssR1f1/M4kyNZONqXw83UHmY3dgXbMN+xc7kfwBXDtKce0ohTgdxuXziFk8A7lxbBYkz+EaBJkMTVoWaXoVGxu7xuS6EM6tU8QaUcQa0eX0KjAbP3qdUEMrEyZegdvVgcvVSU7OeDo62yktrWHPnr28+eabPVdBqVRhMhnIzMykuLiYGTNmcNpppzF9+vQxSYCOlmuwZ+2KhsXq9/sjcc5oWczH4pQjt5SUFKxWa9RcdNGKfcnlcuRy+Yikyw0NDWzYsIFt27Zx6NAhampqaGtrx+VyR/qcQTipV52SRWx8Uq/1ZUxAaUxAVCgJykWS402kzV+CNzh2SezqlAyQJLyVDWgm5A04xk4AGwEyRA2VIeeAY0YKb00z9nU7sG/aE7bSuhWPhEKkZ8wlK2cRarUhMn7Hzk7mz02kqtqO75hCxT6fg7aWA93/kph9dT5Lfz6JFOe4CLF99ckO9r0XFnwoE434altQpCZg+3w7hCTmfD+8AHfW2AkFQsjiw1aqzBSDZLMjSRLxOTFkTo+nYa8ZT0UD6oIMDBctwn2oCs+RWl7+2efc8C+RkpblZNbNpXbHKpRZSfiaOvHur6DmZ38l/Tc/RJXdt2vxBfIUdgWtdOFHkZpAwnXnEHK4ce0sR1SqCVjNYHNj+e/nWP77OdqZ44ldNgvN5IJvZc25D1ejSctGpVKRrBnYLTnW8Ha0YNSloNGY0GhMmOKhoDCXTouJeafdQygUxOOxRIjP7erA5exg//5yduzYyauvvtp9JQG1Ss3kKZNYunQphYWFkb/k5ORhe1WiRW4ejwelUhmVCiUejweHw0FKSkpUy3/14JQjt7S0NNra2k5pccWJnvtYX31bW1uEwA4cOEB1dTWtrW04nU5CoV4Ck8vVaLQJxMQWkpSSiFYbj0aTQHPTTtrt5eR+/9ZB53UGQnR5A6TpVFTbxu69qxJTEDXa8GI3CLkBlAcdjBf134rcQh4vji3dVlp1E4giQreLNU40khTKoIKDkdJRx6L0iJVxRbGcviCJdeu7q4BYqjm4/3X8fheCTOCiR2Yxblk6SbbiCLEdPVrOZ3/cB4BhyhzcTbU03v8sytw0JI+P9GlGlNrwI9ZZHa7+IerCtSUVCUaoacLR5iEmWcP0y3Kp391J61Nvkf34zxFEkaTbLqfh7r/TsNfCltcO0DHbzoTOFfzstp/zbo5IoNNKy19eJdBppfHep0i48QJizpiJIAjMFA1kihoe8VZE3qe/1YxjywGSF56DafZCnNVldO7YhLO6DAQR185SXDtLkZliiV02K2zNmUYWN5ICQTwHK4mfsZj8OA1d3gAW74kNMUhSCF9nK9rcyZFjMplAvElFW3v49yyKMrTaBLTaBL7ZdyMUCuB2m3G7OnG5Omis38qeHfs4tKcUp7+3aotOqyM/v4DxJeP6kF5hYSHx8fGRBT1aRSgg+kIWq9VKWtrQ1X5OBk45cktNTeXIkSNRzTfrKQF2smCxWNi4cSM2m42PPvqI1atX09LcgsPpJBjsXRhkMiUabQI6XR7xifFotQloNPFotAkoFJoBr+1wpNHY8HVY9acY2DUI0OT0kj7G5CYIItqMPDyHq4877lDIxkp5Ch9z/EohA8Fb3YRt3U4cm/Yg+cJWWk9ZriQhgwzyMQQSEAQBp2SnvmYT6RlzkMv7LgCfr2/m6ivzOFphZdOmT6muXAtATLKKK59bQEJebB9ia3M28vYd25AAucJA175t6AsmElM8hc5tX4AAy++bBnR38273hCv1dy+AsoQ4kMkw1zmISdZQvDQtLCxpMRPosiM3xCA36Em+/XKaH3qBdX87xEZNGfFFFTz469/xfcHL67oG0v/8M9qefBv33nI6/vU/7PvKGffTK7jQkMrr/gZcxyh1zG+uRa7VYZw+H0EQ0eeNR583Hq+5Dcuur7Ds24YU8BM027C8tQ7LW+vQzhgXtuamFA7LmvMcrSPk9qLPL2G8UUupZWys8ePBb+0iFPCj0/WmSiQkqPD6gtjtQ4c3RFGOTpcUOb+5YTsJUgbjAtMIEsSNAxcOXC47HQesrD28no+Ej3EFet9bbEwsBQUFjC8Zz4QJExg/fjz79u2jqKjopMryo5lf5/V6sVqtoy6cP9Y4Jcmto6Pj/+/yzXw+H1VVVRw9ejTyV1ZWxqGDh2lrbwMk7rzzTpqaWmhotKLTZWOIj0erSUCj7SEw7YjNfa0uCZDwdrahSckYdFxjN7mNNXRZ+bRt/ISQz4+oHLgyfFnIyTWCgkRBSbvkG3DMsQi5vTi27A9baTXNIBORIRAEVIKKlGA2meSjRtunlmMe42kJ1FFXs5G8grP7XNNuD7BhYx2LTjfy9n+/AiTyFyZz4cOzUOkVfYjNLm/jvbu347J4USmMzJn/c9rbDlBRsRpHxUEA1AYFycVhF2RXQ7i0GMfExeTxcYCEuc5B9qxE5CoZUy7MZsfrlZjf20jSD84FwkWSDRcvoevd9QQ8ARQ3rOSZQA0/VeZylSKD13UNpNxzDeY312L98Eu8O0o5r07igNDKYXWv1eEurcG59QBpK6/ot8lRmZJIOfN7JC5cifXADjp3bMRvNYetuV1HcO06gswYQ+yy2cQsOb4159pTjkynR5OSzjiDljcrBq5LOZbwtDYAoNP3umWTEzW0tY18Demx4vRkAuGC3nri0HOM6Knbcx0g0Et8djvNezqp2b+GwyWl/PS2m7nooosAMBqMFBYWMm78OIqKiiLWXkFBwZgLL6KtELVYLN+R22BITU2ltbU1Ul3gZPtuv41bMhAIUFNT04fAysvKKS09QmNTQ6RupVxUoJfFoPRrkKEGJIrHXYQgy2PmrKl0WKaO2fvp2Y36OluHJLepCWOvENXlFCGt+x+e0hq0UwYuweQjREXISYkYw8bj5Lt5u8tOOTbtRfL5EUQx8n3p5UbSyCMlmIlMGPhnrRa0ZEmF1NV+SWraTDTaXgeVxVzFv55/naT77+IHP/gBB8UvmPeDIgRB6ENsTnUH6/92iPrdHSCJzJj/E0RRRnLKVBISJ7Br+9M4nW0sumV85NrmuvAOX5nRW89RboqDYIjG/Z1MuzgshZ96cQ7bX6nAseZrEq9djtAt6Ik7ey62VVsJeXy0/PVVFH++hWeojhDca55a/A3tCAoFSxYtJi8zi1t/divqy5cSe+ZsCIbo/M9HqNOyiJs0c9DPV6ZSY5p5OsYZC3BUHcG8YxPOmnIQRIIWO5a312F55wu004rCSsupfa05SZJwbjtMTF4JGTEaZKJArf3Eb1JddZXdnQt6CSgpSR1xSY4EblcnEiF0DO2OlQtyYjAQg6H3YAgmZRbhrPMym6Vh4utyULejhaN7qnBJb+EN9t5XUWEx27Z/PWbWXbTdkhaLhcmTJw89+CTglCS35uZmQqHQmCkHR4Kh1JLBYJD6+vq+BFZeTunhI9TV10ay9GWiPEJgWvQUMRUterTEoAqpESQBBAhIfpqpRZQpMJslJk8c2L04WsjlapTqODwdLRxPcN/k9JGoUaKSCWMqKlElpCCPNeDaWz4ouQEcDNmYLjP0I7eQ24tj835sa7fhq20BUSQuJoZHnnyEuLg4rrjiCsYzg7RAzrA2QrmMo4U6yo98yORp1wMSNdXrqan6HBB4/t/P8tjfH6coIY4W4XA/Yjv8WQPbXgrHsaZO/wFKVe/O2+e143S2Iogw6ZzsyHFLrQNBBOXkXlm7PCH8bTTs7a33mJAbQ8bUeBr3m3F8fRD9/Mk4Nu2h87U1EJQgFCLQ0E77y58g/OB8nvGFCe7iWnh0fwWLf/wLfrxkNo8++TROlwvnfz7CfbAKeXwcvsZ2cq+9o0+LmsEgCCIx+SXE5Jfg7WzFvOsruvZvQwoEEADX7jJcu8uQGWKIPbM7Nhcfh7eslkBrJ3FLL2O8UUuZxUXoJDTZcNVVYjD0zZVLSlSzfefIPTA9HRCGQ26DISk/nvYqC7GCiVhMvS90e4h9eHHjoJ0myo+W0dzcPKbkFq38Oo/HQ3t7+3eW22BIS0vD6/Xi9XqjYmKr1Wr8fj91dXVUVlZGyKu8vJwjpUeoqa2JpCmIgoheHosqoEEj6SlkMhr0aNGjDmkjBHY8yAUFKjS4XO20tXkwGJQolWIf1d63RYw+FU9T/XHHOPxBrL4AaVoV1WO42xYEgZi88Th2l8N15ww67nDQzkXyVGKRYyOAt7IxbKV9uRfJH0CQyTj99NP58MMPIwuBx+Mh3pSAzWwhXcgd9NrHQibIKZamss+8hdqaDVjMFXRZqgBQG+Rc9PxUKhLWMa75bLReEwZXZoTY2itsfPzrXQCkZy7EaOqbg9XYsBUBkUnnpkeEJADmOgeCKKJJ6c1xk5vC5GZr7lvvcfpluTTs7aT93x9i/d+X+OpbUadk4PN2IFdqCfhcONZsR1OYhTRvEg/+83Huv/Bq/vD4U+SnJPFRbQe2GWcS22rGdmQvru2HADBOX3Bcy30wqOKTST3rYpIWrqTrwHbMOzbht1mQyeSErA4sb3+B5Z31aKcWEfIHUMQZ0WblM8mkY029ZegJviWCHhee9mYMJfMjx2QyAZNJNSq3pNPZikJQo2T0605ivonqHQ2Dvq4UVChRYZesyEQZ+fmDFzkYKaJpuXm9Xtra2r4TlAyGmJgYtFotTqfzhKYDSJJEa2trhLx6rLAjpWX8/g8PMmvWLNra2hAQ0CtiUQW0aCQduUzotsD0qCUtYqB7J/wtvKc6KQanvQW3JxwAT0pU09DoGps3ChgMuVTXfI4UDB43+brJ4Q0rJsfYlaTPH49l71Z8TR0o0wZuEW8lwFG/nSk1Tt545p/46lpAJmKIieXRRx/lBz/4Qb9z1Go1d9x5Ow/+9kHyQuNRCcOzehOFNBKkFKor10QsGWVeOp6qRup3d2I4T0d7zFFSbCU0xx3Aqe7AY/fz1m1bCQYkdLpkCov6xuwCAS9NjduRCDHr6r7NQztrHIQCIeSJhsgxWXdOWcAbQgpJkQLN45al8dmf5HgdPiRnCEWsEU9LAylpM8kvWE5D/WZqq9fT/uy72NZsx1vVyMfjF/HjM+bS5PSyp92BqFSRfsH30aRn0/rFhwBYdm9GZUrCOOO0Ubn6ZWoN8bMWEXQ7MW/biF6fjtVagyjKUCjkuPaWgQSiQomx5iCaGTkcsYzdb3gwuOqrAAmDsVeNmxCvwu8PYRuGmOSbsFsbiJFiR/08y5QyTJlxtFUOXU7OiY3s7GyUysGFXiNFNBO4A4EAra2t31lug0EQBNLT07Farbhc3+7hkCSJzs7OPuR19OhRSg8fobKyApe75/oCekUM6qAWdUiLtcPGgpQzaGkzo0E3JgR2PMRgpMXWCEBrm4ekpDEmN2MuoQo/7pZ6tOk5g46rsXvIi1OzucU66JjRQJdThKhS49i8D9OlZ/R5TZIkvFWN2D7fwYc+NTdcdx2vNrWzcOFCPvnkkyErxdxyyy08+te/UWU9zHhmDHkvkiRRxWE6aOn+d4iEH5yHftksOv/5Pz7+7W4mpswmMbGQmvitZFpmEhB8/P03/8LW7EYKiUyZ/sN+7r3Wlj0Egz6M2TqSxxn6vNaTBiCP7z0uyGXI4nQErU5srW7iUsMFlSPCkjeq8JvbMZoKyJt9FbGxYasrJ/cMusxV2Gz1eCvqWPaze/nBkjmsqTczPSGGS/ITeaeyHQSB+FmLUCen0/DeiwR9Hlo+fx9n7VHSzrkSmXrk7u+Qz4tl9xbS0mZTWHwuTkcrDQ1baWnaBZJAbGwMfr+f2WlGPl/1KVUbt2CcNh99/ngE8cQUL3bWlKPSGNBoemtMZmToaGoe+fMjSSG6umrIpmDowYMgIceI1+HD0TH0/G7BwZQJg8dAR4pAIIDH40GjGdvQxnDQU3jDbDaTnp4+9AknAaccuQEUFhbS1hbO5RoJ1qxZw5YtW8IW2OEjHK2owO6wRV7XKfSoQzrUQS1p5EcsMA16ZIHuh08AS5WdgvxC7AcOj+XbGhSxGKn1leH12mlrd5OUOLY7L31MGqJciauu8rjkdsTiYlmmEYUo4B/DYImoUBI7biqOjXswXrwEQRQJuTw4vtqHde12/PWtIBMpNxhJSEigob6BlJSUoS8MGAwGfvfgb7nzzjvJlArQH6eUl1dyc1i2k85gGwgCgl5D6l3XoC4Ot1tJuPF8zhg/lYma01jb8AbxOeBUdZJbvZgLZl3N83ueJ6/gMlSqvgo3SZKor/0KgHnXF/V5ze8O4OwMeyC+qTKUJxoJWp2Yax0RcoNuYcmrlQCMn3ApKlXveaIoY8KkK9m14ykuvPAcvrdwBh9UtrHP7GJ3u4Mbx6dGCE4CdFkF5P3gLurffwFPcwP2owep/PdfyPze9WhSR9ZmxrxnM0Gvh4ysBQDo9MkUj7uQvPyzaW7aSUPdZtRqJfPnzeOhhx7CUV2Oo+oIMq0e49R5GKfMRRE3eKHj0cBReYSE+OI+x/Jy9RwuHfkGzWFvJhj0YmRg78JwkJhnoq3y+H3zoFt8I7cxffr0Uc/1TdhsNlQqVVQsN4fDQVdXF7GxsSQm9m+EGw2ckuRWVFREc3PziPLNGhsbWbFiBUpRhVaKQRXUkkQWOd0EpkWPLND9doewwNorzSTlm44/aAwRS/iBt9saaGtLYXzx2NZaFEUZcXHZOOsqSZh3xqDj2j1+rN4gBXEaSsfYpWSYNIuufV9jW/013vpWnF/tQ/IHEGUyFi9ezEcffYRer6esrIyqqqphkxvAzTffzBOPP8HR+v1MDQ7sduuUWimV78If8gISqsIskn9+ZZ8CwqcpE1l55kT+/Oq/2P/Balb+eir6xBb++qt3+clPfsIzz/yDjV+aqayy97m2xVyB292JKBcoWd43rmVp6N6gyUQEeV/rRZ5kxFvViLnOQe7cY3K08mJJn2qiab+FpoZt5Oaf2ee89PQkvn/1U3i9Xdz3y19iS8knaeEKHP4g/ypt7kdwilgDOVffSsvn79O1dysBexfVLz1O8hkXYJq5cFhuyoDbScfmz0lPn93HSgJQKDRkZZ9OZtYCJk2AsrIq9u/fjyjKyc7JpqOjg46tn9OxZS263HGYps1HX/DtrTmvuR1fVwfx2SsjxzRqGSnJGj5Z1Tji61ksVYjIiGP0z35Svon2qqFdkh5cuAMuZs4cO8utq6uLuLi4qFQHcTqddHR0UFRUdEpUJwE4+TVahoGioiLq6+tHRG5GoxFJksgLTGB6aCEThJnkCuNIFjKIEQyDysMHQlulmcT8b9YxOHFQo0UhqMPk1t4tKlGM7VdjNOThbqju255mAJRanIwzjq679WAIety4WxoQFAo6X/4Ux6Y9GPQxvPTSSwQDAdavXx9xP+bk5NDZ2YnNZhviqr1QKpU88+wzdAZbaaWvcCYkhaiQDrKHr/AG3ARDQWJXzCPtNz/sQ2wLZCZWypN53leD7eJ56JfM5JPf7eHtO76my9rF3//+Cl9tMXPG0hSWn5WGWt27MNfXbQ4LSc7P7CMkATDXhn/D4gC5YfJ4Awgiltr+v/MZl+YihSRqqjcSCoUT+UURZs9K4LJLcqir9/PEk/+jqqqKji1rsR8N59f1EFy6TsUl+YmRfZwol5O2/FJSV1wOogwEkdZ1/6P+3f8QdA/tIenYvAYhJJGTN/jmSC6TMXdOMVU1WmbNvZ2U1OnU1NRhtzvISM+goKAAd10F9e/9h/KnHqRt0yp8XUNbOYPBUVmKIMr6CHtycvS0tXtwuUZeFcVqqSaOeERh9KSbmG+ifRiWm42w2GbWrFmjnuub6OrqikofNwhbbi0tLRQVFQ09+CThlCW36upqnE4nkjQ895hWqyUtNR0n9qEHD4H2KjOG1BiU2oGTjscagiAQKxmw2Rpwu4M4HAESx9g1aTTlE/J7cTXWHHfckS4X4w3abx1elCQJV2MNjZ+8QfmTv6X18/dRCCJnnnkm9i4rZrOZa6+9tt95KpWKrKwsjhw5MqL5li9fzkUXXkSl/CA+KewG9Ehu9sq+olYoAwEkmUDiLZeQcN05fayoY4mtVnIjiCKma5YjGmKQgoAkZ+qMayk/aufV16uQy0WuuTKPqZONBAIWzJ1lSISYcVl/1ZulzokgCshz+lui8kQDhIK0Vnb1e614WTpKnRwI0t52gIL8GK64LJfCghjeea+Wr7d3kJV9BrGxmQiCSP0HL+M1h2XsgxEcgHHKHHK/fxtynR4EEUfFISr//Zfj/i487S2Yd20mO3sxSuXgMdBJkwy43AFqap3o9SkUj7+IBQvvJ79wOe3tVioqKtBqNMybNw+9QkbH1s+peO4hat/8B7ay/UNuvL4JR+VhDMY8ZLJeQUZerp6q6pGvAZIUostS/a1ckjKFiCnTMCy3pA0zqcmpI/JQDIVok1tjY+N35DYUioqKqK2txe/3j0hUUjKhBPcYkJvH7sXW5iDxJLsm7dYGJEmirT0sKhlLxMSmo1DqcFSVHndcrd2DKApk6EcnhQ563Jh3fUnlvx6h5pW/Yz20i7ycbFavXo3X62HNmjVDikSKi4tpa2vDYhmZlPypp59CrVdxRNxNh9TMTvkXOGVWJCTk8bGk/+lmYk6b2uecbxIbhIm545//I2R1IIUkJk/7fiTu5XIF+fjTBtZvbKG4OI6bb5rOtddex8S5haSMN/S7p3AaAGhS+8ch5PFxIEHrkd7frL3Nzb4Pann/nh2oFVrOO/88br91GacvSOJwaRdv/remT73ECZOvDi/uwSC1b/2TkC9M7McjOE1qJnk/uAttZlhhGHDYqHnl73RsW48k9U1BkSSJljXvotGayMw+bdDPXqkQmTUzgS1b+1YkUSi0ZGUvZN5p9zJx8jXI5Als3boVn8/PnXfcwcyZM3HXV9Lw/ouUP/0gbZs+HZY1F3A5cNZVkJAwLnJMJhPIytRTXT3y8nl2exOBoAcjo48XxecY8bv92NuHtoQdopXZc2ePeq5vIhAIYLfbo0pudXV1pxS5nZIxt/T0dFQqFVarFYfDgU6nG9Z548ePY9uGHTAGdVrbq8wk5cfTeGDk9Q5HgzhMVAdK8bgttLUljrmoRBBETPFFWCtKYfG5g44LSVDe5WKcUUu9Y3ipGJIk4W6swbJ3K7bSvUjBAGq1huuuu47nn39+xFJntVpNXl4ehw8fZv78+cP24aelpfHCiy9w4YUX0kYjChT4fX40kwtIuu1yZPq+KrKBiA3A9tnXODeH+9Bl5SwmPr7/A1tZZaesvANzx3usXHE2D174MK6mTsy6GhyqDlxKC5IYpLPaQSggIU8w9LtGzzGPxcf/7ttB0yEb+lAc+QX5XLbsfKbdNpHyI2W8+uoruDwTiY3rLwBRq+MomXg5+/e+RKCrk8ZP3iDjwusQBGHQGByAXKsn+4of07ZpFZ1ffwGCQNv6j3DVVpB23lXINeFnznpwJ676SqZMuwFRHHy5mD7NhNnspaZ24IVdEEQSkyZgii9ky6aHEd1ynnziSQRR4PvXXE1sbCyvvfYaHVvX0bHlc3Q5RRinzSemYMKA6SvWQ7sRJIGk5CmRYxnpWjyeIB2dI08h6uwoQ46CuH5llYePpDzTsFIAJEnCLnYxe/bYkZvNZkOpVEZFTNLT6qaysvI7chsKoihSWFhIZ2cnDoeD5OTkoU8CSkpKsAesBKUgsm/hN4fuuFveybPcwg+VEO7+3JZJyfixb+AZHz+O1oN78Nu6UMQaBh1XanGxJN3I2iGScIMeF9aDuzDv3ozP3IYgiuTn5fHMM89w5plnHvfcoVBYWMjatWtpb28nKSlp6BO6ccEFF/Cb3/yGP/zhD/gDfgzfW4zxkqX9iv4ORmzu0ho6X/4UgNi4LHLzlg06V0vzbo6W7ae07AB3X/A9UqUijK4M0rqmIA8pcSu7uOSMLMpSy/HkFyETet292YKGYGomRUuWkJ+fT+GE8eTckAmiSGPQTYXo5i+BKva9+BzeigaSEq1MmDywujE+YRyZ2Qupr92EvWw/5u0biZ+zGOC4BCeIMpIXn4smJZPGj1+HUBBHVSlV//4LGRdeh1wfS8ua90hOmYZpAILvgVYjY9rUeN7/X+3xvxyguWknwaCXqSxBFpLTFKrhndfewxmwM2/uPK66+ipef/11mR0wuAAAlC5JREFUtm3fgbOmHJlGh2HqXIxT5qI09BKPdf924hPGoVT2bnzzcmOoqhmd58bcfgQTyYjDqOAyGFKKE2irGNrqdOHAF/SekHhbtMQkbrebzs5OCgsHr0J0snFKkhuEXZOtra0jEpXMmDEDSQrhoOtb7cAA2is7Gb9k8DYtYw2FoCQGA13mShqbZqPTyTEalVgsQxcSHi5M8YWAgKOqFOPUeYOOK+9ycWl+EiaVHPM32pVErLQ9W7Ad2YsUDKJWq7nhhht47rnnxiwhVaFQUFRUxOHDh0lMTBz2Q/urX/2KP/35zwhKBcm3XYZuxrh+YwYjtoDZRuvfXu/+l5wJk65CHETRJ0khGurC8v/J52cjiwnRxhHaYo+ABMqADqXNQHuLhVmzZpFWWIxCrkDZvXherkzHr5DoOOssKisq2BKy8EEoRFvQGyafbu9g7JmzaT9aT1vbfgo8K1GpB9705OWfhdVShd3eROv6D1Enp0eaeR6P4ABix01BlZBM3Tv/xm81h92Urz2FIsaAUq6jaNz5x/3MZ81KoK7eSUvr8ZP/JSlEfc2XJJGBRgiTUg7FZAUK6aCZ8h2V3Pr1raQkp/CH3z+Iz+fjySefpPPrL+jcug5ddiHGafNRxBnxtDdROKV34yEIkJur5/N1zce9h4Hg8zmw2RvIYPTKRUEUyJ6ezqf/t3HIsVbC1t2MGUPnZQ4X0Y63WSwWUlJSolb6ayCcsuQ2btw4ysrKsNuHvxObNGkSCrkCW8DyrcmtrdKMIS0WpVaBz3VyuoKbpESazZX4/SHq6p3k5ejZZRm9muybUCg0xBqysR89dFxy8wYljlhczEiKiVhvQbeTroO7sOzZjM/cjiCKFOTn89xzz7F06dIxu8djkZubS3V1NdXV1eTlDb3RmDVrFjt370KREk/K3degSO0vDhiM2KRAgNZHXyfk9EBIYvLUq/sU4v0mzOYK3O7wdzPtkpy+LwrgUzipa2vktdfWA5DznwcQtWpUiDysLuERbwVeQtQ/+Tj+pg7irz+XuPS5/ebRzZ3I/4+9846K6lzf9rVnht5770VARBBsaFTURE3PSTmpJ8VE07s5SU6SL+WX3ns13ZiYqlFjF0VQBAHp0nvvdfr+/kCIhTLAUDRea7FWIru8M8zs+32f93nup+HLPxHlSiorE/H1u6Df8fTuvx0++A4ajZLS374k4PbHMLDsSdsfSuCM7J3xvfURKv9cR0dBFhJBQNXWjLGle1+2Zn84OhozNdia9RsGb2sEUFtzFLmihbBTiu0lggRH3HDUutFOC+W1hfy/p/8fEqmE62+4nquvvppXXnmF+ISDdJbmgyAgkRlhYvL3d9zTwwxBgPKK4bfYaWrMB8COkSd3OAXYgQA1x4b2s2ymnmmh07C11V9kqLW1Va/JKcOhra2NmpoapkyZMvTB48ikTCgBiIiIICcnh9bWVp0zJo2MjAgNDe1Lsx0N8jYF7fWd4xqatMURpaqDzs5aiks68PXRbzsMACenaXQU56LuHHzSkFTXRqSDBfKKYir/XEfe+89Su/sPJN0drFy5Enl3N3l5eWMmbABSqZTw8HCys7MHLehvaWnB3Nyc5ORkzGZOxe2lu4YlbAAN32xFUVQJWi0mJnZYWHoMOraK0nhAgr2/BS4h/RcmN5X9HXXoziqiO6cYRUGP56Air4yu1GM9+f2Aqqb/h6LE0ACLRZEgkVBafACNZuCJlrGxNSGh1wAiKBWU//olWvXfxw+WZAI9XQE8rrwVx4UXotVqkUpltLdVcPjQu7Q0ny5eUonA+UtcSD7SOGSEQaNRUZS/HQfcsBQGLuS2EKwJESKJ1q7AUxXIhu9/4aKLLkKr0fLTj+t57bXXsLezQ6tWcvjQ26Qd+YK62gymhliRnd2Kjo+Kk2hsyMVCsMFIGPl+lc8sd0qPVCEOYX4giiJtskbOv2B0YfsT0Wg0E5pM0traSlFRkV4L0vXBpBW3yMhIcnJy6O7uHpZTyZy5c+gy0L1GajDqChvHtZjbGgckSGlqzKe4pANnZxNMjEe3d3gqTk7TERBozUoZ8Bh1dyeJu7ejaGvFIf8wbTlpBPj7sXfvXrq7uvjiiy/06oc3GA4ODnh4eJCamtrvJGfbtm3Y2tnR2dWF7Y3LcXzw30iMT8/0HEzY2vel0L7zMFKJBDOJJarudpIOvkt9XVa/9+zqaqCpKQ/Q4jfPacDJV3NZJ4JUAEGg9s0fqH5uLdUvfgVA9cvfUPPqd6gq6kAiQVU18IzfckkUaLWAirra9EHeLbB3CMHDcz4gIK+tpGbHbyf9fiiBEwQJ9nOX4nnNKkSZrKejOSpSj3xOSfHJ2ZSzZtmj0Ygkpwy9WqkoT0CpbCOA0CGPhR5zYW8hiDnqC5jGHHIS87n66qt55+13eOSRR8jNzeGOO+5Araqnsnwr3l6mbN26ka6u4XUC0GiUNNbn4iCOzg/RZ6b7oGbJvXTTQae6Q6+TwtbWVgwMDCbEdksURVpaWsjNzdVrmFUfTFpx8/T0xNramvr6elpaWnQ+b+bMmbSpWlCLow8l1o9zMbdUkGKDA00NeXR2qqmrl+Ptrd8eawaGZtjbB9OSfvikh7IoinSWFVKx6Xvy3n+Wml0bid275/gqrYtjx46xaNEivY5FV6ZOnUp3dzfFxSevHlatWsWKiy5CMDHC5albsb64f3eSwYRNUVxF/ecbe87TCERo5zOH87FQmZGZ/j3pqV/T1Vl/0jmV5Qd7vCUlkPhNAR9euJOdr6VTlFCLqvvvEF5TWQcIYOodSOB9z+F3x+N4/+cBAHxueYiAu5/B4bwVIIKq6uR7nIihhxNGAR4gCJSXHRgykuHrvwwLC1cEQUpLeiLNaQdP+v1QAgdg7huE762PYGTnhFKlxMrKkuLCHRxN+RKlsgNHR2Miptuyc3c12iEaWCiVnZQV78UNX0yF4UUjJIIEJ8GdGdoFzGIJVBvy1P+eZnrYdDQaDXEH9vPVV19RVlbG0bQtJCa8SWry59TVpg8aTu2lvi4LjVaJM8OzIjsRK2dzrJwtKEutGvLYRuqQHu9woS9aW1snzJlELpfT3d1NZmbmOXHTFUEQiIyMpLy8fFjiFhUVhYhIO7qfMxB1ReNrwwVghxOtLcWo1QqKizvw9dF/A1Fn10gUDdXIaytRd3fSeHgfhZ+9TOkPH9Kee5SgwAD27Yvl888/x9nZGaVSf0ktI0Emk50WngwICODzL77A0MsZ91fvwWRq/3tygwmbpr2Lmte/B62IKIqEMgtjwRRjwYRw5hHGXLqaKzl88B3ycjeiULShVsupqkxCFLWYL5yByzMrEYODSdtWx493JfDm/C18/Z/9bH/5KGVHGhDVIkbWdsjMLDCyc8TYvifz18jWAQNLawytbUHUom5oRVQPXMRsef4sEEU6O2pobR08K1EikTE17AYkEhmCIKF62890V518ji4CZ2hth89/HsAqZAatra2YmprS3FxIStIHLFlkT9KRBhp1SLsvKtgOGi2+hAx57GBYCjaECFHM067AXenPj9/+xIwZM2hvb8fb25uammpWr16NRtNAVsZ64ve/RGH+X4Ou5moqk7HGAVNh5N8z75nuVGbWopIPLabNQi1z58zVa+LFRCaTtLS00NjYiEwmm1RlADCJxQ16QpOFhYW0tupughocHIyxsbFe9t3qT0gqGS8ccEUramhsOEZRcTueHuZIpfqdkdnY+CMzNKXij2973EP2bEKq6GL16tXIu7vIyclhwYIFmJiY4OLictqKaSJwcHDAy8uL+Ph4LC0tKSgowGJRJG7Pr+q3hgwGFzZRq6X23R/RtHSAVosnATgIf/ehEgQBR8GNueIF+DGV2oojHDzwGmkpX6LV9kQFLJfOwiTEB4c7Lsf9g8dwf/0+bG66kFZTFzIPtPX1autN6ugPA6u/J0+quoE/s2ZzQhGMe0LBFWXxg79ZgImJDcFTrz4eRhQo//XL0/ZZdRE4iYEhrhdfj/P5/6KruxuJVMaqVbfQ0lLNL7/8clrR96m0tpZRXZWEH1MxFPTTm9FQMMJHCGaOehnXzLkJpVzJ1VdfzYyIGfj6+lJSUszGjRuZNi2I8rIDx1dzn1Fbc/JqTt7dTHNLEa54DXK3odE1JKkVtTRLGrjwoguHPHY4TLS4VVZWEhERgUQyueRkco3mFCIjI8nNzaWlpUXnpBKZTEZERIRexK27VU5zZRvuYeOXhWQimGEh2FBfm05DowK5XIO7m368HpXKTspK40g69DZqZRfq9maCAgM5cCCOrs7OflP5fX19KSsr62vQOpGkpKSQlJTEnXfdhf2qy3FYfTmCQf8Jv4MJG0DzT7uQZxZhbGCIjdQef6b1ex2pIMVbmMI8VuAnBtPZXg0IGHg4YeT7d2sPQRAw9HDCatkcnB64Fpfn7+xLLhispvDE36lrBi4A7kksmQESCfV1mcjlQ0/4HByn4u7R08RT3dlOxR/fIGpPXh3qInCCIGAbOR/vG+7l4ssuY3p4ON988w1FBTtIO/IFCkX/yUmiqCUvZyMWWOOO/hpy9iIRJCy4ZB7HtpYSpY1BrJbx5BNP4urqxubNm/n5559pbGzgzjvvRKttIjtzPfH7X6QgfytdnfXUVKcgRYYjw2/i2ouRmSEuwY46iVsLDag0SpYtWzbksboil8tpb2/Xa+blcGhpaaG4uHjShSRhkovbjBkzyM7ORi6XDy+pZM4cugz005OsOKkCn6iRf/hHgpPoTmPDsZ7QZEn7qLImRVGkuamIrIz1JMT1hGkcHMx56623UCuV5OTkMG/evAHPt7W1xcLCgrKyshGPQR+sXr2aW267jTc//ZApUeFcef6KAY8dStg6D2fTsnE/BgYGiGqREM3MIYt3DQRDzLFCK6oBEavzZw26x6Gq/luoBlu5ycwte4q0ANUg4gZgubg3sQSqKg4NemwvXj4xSCQyZDIDusqLqI3dctoxuggcQNjUEG684Xre+uJrsrKycXNzo6WlmKRD79DUVHDa8RXlCXR0VBFExJjsBzn42uLgY0v2rsKekCUzmaddgZvCj6/Wfs1jjz2GjY0NH3/8Ma2tLfz555+EhYVQURZP4sG3KCneiwXWSEbhpOo1w5Wm8had+rfVU4WzkzPh4eEjvt+p1NbWYm1tPSHOJKIo0traSm5u7qTLlIRJLm7e3t5YWFjQ0NAwrH232bNn065qQyGOvqN08eFyvKPc+joljwdOuKMV1cdDkx34jCCpRKnsoKx0P4fiXyct5XOam3K56KILycnJprS0lIceekjnMIK/vz/5+fmo1XrwNRsmGo2GadOm8dlnn4EgoLC35EtNBTEye6ZJThf9oYRNWVlP3Yc/I0gkqFQqpmgi+wqKh6JSUoRUIgOZFPP50wc99sTU/sF6mAkSKTIzi+PnDC5uhp7OGPm5gyBQWXFo0LIAgJbmYo4kfoCgBbQiVpZWNB2OpTUn7bRjhxI4O2MZ1wU4srG4EU30RdhGzqOyshJTU1NMTAw4mrKW4sKdfWHKjvZqCvO34YE/VsLYJGXNvi6MrJ35KDr/3hM2FIxxxQutqGHhwoUnHX/xxRdz5MgRmpoaufvuu3F0tKeFBhKk28gTj9IpDt/dxFvHkKQoijTKqvn3tf/Wa/iupqZmwurb5HI5XV1dZGRknFu5DRdBEJg1axZFRUU0NelezNyb1ddM3eAH6kDNsQYEiYBT4MjdwofLiaHJysoujIwkOnUJ6FmlFZKZ/gMJcS9TmL8NJydL3nnnHeTybv7880+Cgk537BgKFxcXTExMKCoqGsnLGTHFxcVYWlqSmZmJ3axFeFx+M11peWT/tIX1qgquM3DH/YTapKGETdutoOb17xFVGhBF7HDCAd1SwDvFduq11WhEDebnhSMxHfzvoappBKkEBKFndTYIvftuykEyJnvpTSxRq+UDlgUolR3kZP1C6pHPMFIYMIelBGujaG1rxcDQkKotPyCvP93JYyCBM5FJuGmKM0l17aQ2dCBIZTif/y9cL76eboWS9s4OQkJCKCneQ+qRz+nuaiIrYz1mWAwY7h0tLsEOuE514sivmaf9rox8zM3Nue222/o919ramg8//JCamhpycnK4+4G7aLNq4CDbSZXsp0YsQyMO3aFAIpPgNcOVkqShe8e10kiXupOrr7566BenIxqNhvr6+gkTt6amJhoaGpDJZJOugBsmubgBLFy4kKysLBoadK9fcXJyYkpgEE0M/bAYClErUpJcic/M8W2d7iS60dhwDKVKQWFRB0FTBn5AKpUdlJX0rtK+oLUlj0suuZjc3BxKSkp44IEHRjVbFASBkJAQ8vPzxy1z8ttvv8XPP4BupRK3y/6D0+JLsQgIxXHRRbT8sY+EvfvYrq5jtaE3LoLRkMImiiJ1H/2Cuq6J5599lltuuYVGaskSklCJQ7+mcgowkBmCKGK5ZGhPQFV1I4ggM7UYsimnobUtCBJUlUN/Xs3m/p1YcmpZgFarprwsnsT4N2moziCICKJYiIlghpPgjgd+iFotokZL+S9r0chPf59OFTgTqYTbglyo61KyvezkCaZ1aBQ+/3kAqakF2Tm5PRGTtgoOJbxBd1cjoeKsUXu8DkT0TRGk/pFNd+vJ2ZpqUUWNtJR77r1nyO4T0OOE9Oabb1JdU8UPP/zA1OggMjlMgvSv46u5gWtmvaPcUHQodTJLrqUCZydn5s4d2BlouNTX12NkZISFhf7NHnShoaGBgoICzjvvPKT9mFtPNJNe3GJiYjh06BCtra0oFLq7fZ9/wVLaDIb+0OlCcVIFPjPHd9/N8XhosqE+m6zsFoKDrE7KmhRFLU1NBX+v0gq24eRkxXvvvUd3dxcbN27U62zKwcEBGxsb8vPz9XbNgbj++uu5+ZZbkFlY4XPzw1gFh/f9zm5WDNbT51D/ye9sid/HfnUj9xn6ctEgwgbQuimOrqQc5syazdNPP82XX37JDz/8QIdpE4dlu6kRywZMWlKLKmql5ag0KgzcHTHyG3qio6ysB60WA+uhN/oNLG1BENA0t6NVDh5qlBgZYrGwJ7GktyxAq9VQW5PG4YS3KMjbgqPGhWiW4S74nbTX5U8YZqIlDnb2qFqbqfzz+36zHXsFzt3MiIfDPWhXqfmpoI7+3h1jJzf8bnsEM68AEhMTcXd3xcXFGREtNZShHSKbciR4z3THytWStE2nt2+qpAitoOW+++4b1jWNjY257rrr2Ld/H7m5udz30L20WzdykB2kSPZT3c9qbur5AWTtKqDfN+YEekOS1/z7mjEJSU5U5+uGhgbS09MnrP51KCa9uEVGRiKXy2lqaqKxUXexWrx4MR2qNrrF4XvNnUpZWjVWzhZYOeu/5mwgTAVzrLCjuvIIlVVdyLs1+PlaoFR2UFqyj0Pxr3M0ZS2tLXlcdtml5OUdo6SkmPvuu2/MUnJDQkIoLi6mu7t/ARktSqUSHx8f1q9fj7lfML63PoKxw8khF0EQcFl2FZbB4dS9t4GWsiqkCGgBJf0/SLsyCmj6cQcWFhYcPPh3QfN1111Hdk42Ky5ZRiaHSZMeoF1sOe38KkrQiOqeVdsFs3V6mPTunxnqJG7WcDyLUT1IOUAvfzuWQH7uJhLjXyc78ydM5cbMYSkhQmS/afdSQcpUzSxam1vw9PSgozCHhoRd/d5DrRVRiiIyiYBcrWUwVympiRme19yBZXAEZWVlqNUa/vvf/1ImySdNegD5ABOOkSBIBObeGE7yhozT6so0ooZKWRE33ngjLi4jdxyZMmUKr7/+OtU1Vaxfv55p84LJOr6aOyam0SG2YeFghvs0J3J3Fw55vbEISYqiOOH7ba2trSQmJp4Tt5FiYGDA/Pnzyc/PH1ZoctGiRUgECU162HdTdauozKzFe5xXb2740NzcY9CblFyIj5eChLiXKSrYjrOzDR988AHd3V38/vvv49JqwtraGmdn52F3ydaF9PR0LCwsKSkpweG8FXhceRtS4/7thASJBLeLr+eKm27lUudA3kzfS6y6gbsNffAQTj5HVd9M3ds/IkgkVFWd7iDh4eHBr7/9yl9//YW1lzmH2U02ycjFnuw3URSpkhX3hF1kUiyGSCSBnuJwsbsnyiAbJFOylxOPGSqpBI4nlvi6gSDQ0VGDhcKM2SwlQpiHuTB4qyRTwZxATY8I2dnZUR+3jfbCk1dAZjIJt4e40KpQ887RclyHyKIEULY00FmUi7mlGw2Nzbz11ju89NKLGNpLSZbtoUGsGfJ16cKUhT7IDKVk7jg9glBGPgpRzv/+9z+93MvIyIhrr72W2H2xHDt2jPsfvo8O6yYOsQOb8w3ISymkrWnoriW1VODk6ER0dLRexgU9KfgajQY7u/FzUDqRxsZGGhsb0Wq1RERETMgYhmLSixv0CFVGRsawxM3GxobIyEiaBP00G52I0KQ19kiQcvjgO6z7/lX8/Dy46aYbKSjIp7i4iHvuuWfcCyeDgoKoqKgYVreGoXjrrbcIj4hADXhcfQcO887vsbcahLkuNvz7kgt5/et1HHruQ/44sIed6nruNvQmXNKzP6lVqqh9Yx1auZJdO3YOugezfPlycnJzeP+D95Fbt3FQsp1sMZlyCuhQt6FSqzGfN33IRBI4WaBaM49Q9vMXVG39kertv1C7ZzMANbs3UfXXBsp//5q62M1/n1utW3TC8oKexBIDmQwzLLAQrHU6D8BZ8MANX9rb2pHJDKjc+C3K5p7vloupIXdPc6O+W8UP+bW0KocuE9DIuyn/eS2GMnMiZtzOrNn3YWBgwRNPPMGVV/2LRUsXksYB8sWMUYUppQYSZl83ncT1R9GqT76OUlRQLs3jnnvuwd/ff8T3GIjAwEBee+01qmuq+Omnn4hZvpBfd244YTXXf+mRVtTSIKsakyxJJyenCSucbmhoIC8vj/POOw+ZbHI2lzljxG0k+24XXXwRzZJ6vcT9S5IrcQl2xMhsbA2DRVGkUawlg0McEnYgkQr4+Hjx8ssv4+npyWOPPYafn/4LYnXF3NwcT09PsrOz9XK9FStW8Mijj2Jo64jvbY9i4Rc85DlznCy5wMOWr3JrUETE9IUoN+/awXeqCq42cGO51JHGLzahLKvlvnvu0cmo1sDAgHvuuYfikmJeefUVtE5y8jiKpYVlT0hyqW7NJVXVf0/CLA0dMWrVoimtQllQjKKgpx5MVViCurgcWUM3VpK/m7EO1B3gVMzmTEMwMgABqqWlOmX3nUgg0zERzXBxdkarUlL+61pCLI1YNdWVpNp2fiqo6wtFDlYmoFWrqPj9azQd7YSF3YRMZoypmQORs+7F3mEqH374Ic3Nzbz00kuUSwpIlcb1rYqHy7QVU5B3KMiLKzntd0VkY2hsyNNPPz2ia+uKkZER5513Hg4ODqxbt44HHrmfTptmDrGTFMk+qsST/xYN1NCt7uLWW2/V6zgmMiQJk3+/Dc4QcYuMjESpVPYthXVl2bJlKDUK2hh9T7T2+k6aylvwmuE69MEjQCHKKRZzSZTtJJU4bALNefudt6mtq6WgIJ+77roLX19fSktLJ6Te7ESmTJlCY2Njv2E+Xenq6iIyMpJt23cgNTLB+6b7T+q0PBB/C1s15R0KBIkUt4uux3r6HBo+/Z24b3/mXXkB4Upj7p23nOlhYbz33nvDGpulpSWPPvoopWWlbNy4kfbOjp5EEn/dVu59ZQCAf8CFhIXfTNTMe5g1+36iou4GIDLqTmbOupfwiNuYOu1apNKePbLBugOciMS4J7FEpdGg0MipYXhF9lJBSoh6FjVVNcyIiOCKpTFc6WvPT/m1xFa1nHZ8fwInajRU/P4N3eXFTJt2I6ZmDn3Hy2RGTJ12PX4BF5KYeJjXX3+D77//DhNHA5Kke6gXh/fZsXQyZ9a1YRz46shpCRydYjtVQjFPPf0U9vZjX7JTVFSEt7c3gYGBvPrqq1TXVLFhwwbCF0wjm6STVnM1khKmh4XrtXC7q6uL9vb2YXWo1ydnwn4bnCHiduK+W3297un9M2fOxNLSikb0E5osSarU675bzyqthnQOES9spcIwnytvuIL4+Hiyc7K5//77T7LVsbOzw8TEhPLycr2NYSQYGxsTFhZGenr6sFbSvWRmZuLq4kpKSipubrPRKOTUx/015HmnClsvgkSCy7KrcFpyOa1b4kl99iMevuteTE1Neeutt2hrG1kLJENDQ7q6uhC1WiyHcCQ5EVVNY98D2MjYWqdzjI2tkAzR+uZULI4nllhbW1MlK9bZoq4XM8GC6WbRnH/++VxwwQX897E1xO/aPuDxJwucPVV/rqOz6BihYTdiY3t6NEEQBDy9ziN8xkra27u56ab/8NTTT7F0+RKOkkC+mK5bVEWAJffO5VhsEZUZp3+XCyWZuLi4cP/99w/r9Y+EtrY2mpqa8Pb27vs3Q0NDrr76anbv2U1BQQEPrXmQLtsWDrGTOm0Vq1bfodcx1NTUYGdnN25tp06loaGBhoYGRFHUq2jrmzNC3ACWLl1KcnIytbW1On+JpVIpF110IU0y/WxmFydV4DXDFYlsdG+bQuymWMzhkGwHqRzAbooF7773LtU11Xz99ddER0f3+yAVBAFfX1+KioqG/SDTN25ubtjY2JCRkTGs87744gvCwyPo6lYTEbWKwKBLCQy8mKbkOJqPDmwpNZCw9SIIAnYzF+B2yQ0o8svp6Ohpqurk5MT+/fvJz89HO1Rvln645557dHIkORFVZT2CKCKVGiGT6WYWbGxii4CAprUDrUK3WkIjLxcMfd1obWujVd1EC8PrZeYzy52H3rsTM6kFa9Y8RkdHB7W7N9JZPnCxfodKw+dZFTiKCm5dEUNo2HXY2Q9ecmJj68fMOfdjYurI3Xffg5OTE2+++SYV0kJSpfuHzGietjwQCwczEr5NPe13DWI1ddpK3nzrzXHpZ1ZUVIS7uztGRv3/Xf38/Hj55Zepqq7k559/5sUXX+Tmm2/W6xgmOiRZW1tLVlYWMTExk3a/Dc4gcbv00ks5cOAAra2tw0pmuOaaa2hVNw9ajKkrdYWNqBVqXIOHHw4QRZEGsYYMDhIv/EWFUSFX33glCQkJZGVnce+992JjM3Rmnbu7O0qlclgr2LFAEASmT59OXV2dTuFJrVbLDTfcwB13rMLMzIWZc+7H2tobAFf3Obi4zaJm+690lpyeBTeUsPUiajQ0HTkAWpEd27bh4uLC1KlTiY6OpqysjLi4uGF9duRyOU2tLZjPC0NqptuDUxRFVDWNCIKAsY6rNgBjYxsQerty6x5Gtzx/FqJWi4ODAxXC0GnpAEbmhpz/4DyW3DeXhG9S2PtSMqpWDbY2dkglUip++wpVe/8JEqJGTe7PX/O/xx4jJDicG64/H10WtMbG1syIuhMX10i+/PJL1q5dy86dOzFzNiZZupe6AcKUls7mzL0pgt0fHOw39b9AlkHMohiuueYanV77aFAqlVRUVODr2397pRMxNDTkqquu4sknn8TMTDd7N11QqVQ0NDRMmLhptVpqa2tJSEjg0ksvnZAx6MoZI24BAQH4+PhQVFREdfXp1kEDsWzZMkxNTKllaP+3IRGh6HAF/vN0b5GhELspOr5KS+MAdkFWvPf+e9TUVPPVV18xd+7cYRVhSqVSvL29x90Kqz96w5NHjx4dNDzZ0tJCUFAQP/zwA67us4mIWoWR0d+OK4IgEDjlEqxtfCn/ZS1dFX+32NFV2ABq9/5Jd2UJDz/8EOeff37fv9va2rJo0SLs7e3Zt2+fzqu4Sy+9FDRanRxJetG0diIqVEgkEoxNhp6s9GJsbI32eK2bLuUAvZjP7UksaW9vp47KIVdBPrPcuf7dSzA0MeCH+zdzbF8xUkHGVPVMSopLWLp0CRpFNxW/fYWoOVlMtGoV5b9+RUdBFh5el7Dxz1ocHIy5YKmrTgInlRoQFHIlU4KvICcnl0suuZRvvv2GZRddQDoJHBPTTg5THg9H5sYWUZl5ejiylGPI6eKjjz8al0LmkpISbGxssLIavNxiLKmpqcHc3FyvgjkcmpqaaGlpITU1lYsuumhCxqArZ4y4Qc/D5siRI9TU6B5mNDEx4dLLLqVRprsgDkbO7kICF3hjYDzwcrxnlVZN+vFVWpVxIdfcdBWHDh0iMyuTe+65Z1T9l3x8fGhoaKC5efRtfUaLm5sbdnZ2pKf373N48OBB3NzcKSgoIijkKqYEXYZEcvp7J5HImBZ2IxYWbpRt+Jzu6vJhCVtr1hGakvcTHh7Om2++edrvpVLpSau4PXv2UFlZOWh4d/eePRi4OvR0wdYR9fFsR61WpL2tgsz0deTlbqKocAfFRbspK40DoLQklqLCnRTkbSEr40eqq5L73ELUOmZMwvHEkgURyJVKjI2MqaD/1ZtTgB2XP7+UJffOJeG7FLa8HEtX89/F1WaCJYHacLZv387FF15Id3U5Nbv++Pt1dbZTtv4TukoLCJt+M/YOwXR1a/jt99JhCRyAq9ssZkTdiUolcP75F7BkyRLeffddqmUlpEr39Ql02IopmNuZcrCfcGSX2EGZJI9HH310RH6pw0WlUlFYWDihmcoApaWleHmNrv/caKipqeHYsWPMnDkTJyenCRuHLpxR4nbJJZewd+9empqakMt1d/z/OzQ5+tqsuoJGWmva+129ycVuisTs46u0eByCrXn/g/epqanhyy+/ZPZs3dwthsLY2BgfHx+9peOPBkEQCAsLo6Gh4bTw5Ouvv878+eeh0ciInHk3Lq6DO4dLpYaETb8ZMxMHQpoKOd/dWidhk9dVUbX1J8zNzUlOTh70WFtbW2JiYggICCAzM5N9+/ZRV3d6of9PP/2EVqvB8gLdE0ng71WXibExalU3LfX51FWmUFEST3nxPspL9gFQURpPRckBqsuTaK7NRdl9fKIikehc66bp6KZtRyLy3FLQanFydqJGWtbjpnIcazdLVjy2gMueW0p1bj3f3vkHx2L7bz7rKnjhKniza9cupk0LpTk1gZb0w8hrKyn++h1UDfWER6zE1u5vw4CRCpyllQcz59yPhaUHDzzwALGxsRw4cAALVzOSpHtQOXUy58Zw9nxw6LRwpCiK5EnScHRy5KmnntLthqOksLAQc3PzCX2gt7e309zcjLv7+Nbb9tLripKYmDjpQ5IAk3c3sB/mzp2LKIpUV1dTW1ur8wxm+fLlPaHJ7gp8GbqOaiiydhQw9Xx/cnYX9mQ8UkOVpIR6qjAyMuL6669n9erVzJw5c8zCJQEBAezatYu6uroJSwnu5cTwpJWVFSYmJlx88cX89ddf2Nj4MXXadRgY6hZGkcmMuPnmNUTPceC5555DEbkEExfPAY/XyLso/2UtIJKVlaWTgatEIsHLywt3d3eKiopITk7G2tqaKVOmYGtriyAI3H333SCVYj4/XMd3oQdVdU8ZwMZNG9myZQvV1dVUVlTS2tqGSqnsK7r18/NBK2oxNTXFzd0NFxcXZsyYwapVq1AOkjGpqmmkKy2PrtQ8urOKQCti7huEaKWisrIKtVZFDWUEO4cR+a+pTFngQ86eQr6/Z9NJK7WBmCKGc0Qdi0qpwsLCgqptPe2BzEwdmDZzVb/7iL0C968rvLhgqSs7dlWhS76ToaE54TNup6hgO7///jspR1LYtXsXTz7xJLNmz+LgnkTKM6uQnGK+XE4BDdoatn21bVzCcwqFgoKCgmFvIeib0tJSXFxcBkxmGWs6OjpoaWlh//79/UZHJhtnlLjJZDIuvPBC0tLSiIyM1FncTExMuOTSS9j26058NaMXt7z9xcy7ZQbdno2kVSbRqe5gWsg0nrvnKa6//nosLQdvcaIPDA0NCQgIIDs7GwcHhwn90kFPeLKxsZH4+HjuvPMuiouL8PJehI/f0G4jJxI2zYboOQ788ls+VRWtdBz7GM9r7sDU4/RNfFHUUrHxO1Ttrfy4/gc8PQcWwf6QSqUEBATg5eVFQUEBhw4dwszMDA8PD9q7OjGPDkNqPrwMPGV1I4IIS5YsYcmSJaf9XqVSsXXrVpKOJGFgYHDa7x966CE6jheBi1ot6rpm5MdK6c4pQZ5VjLq+GaRSzDx8cVp4MVbBEcjMLWk+eoiabT9z1VVXETJlKmHTp1GQUMb6BzfTWjO0RVTfeyLICFHPJDk/lquuuZKff/0VUSswbdpNgybIjFTgJBIp/oEXYmHpTm72z0ybFsavv/5CZ2cnz/6/ZzGUmhCimYmp0OMu0y62UCjJ5KEHHtJrR+vByMvLw8HBYcKsrqCnvU15eTlRUVETNoaamhpKSkpwdnYmJCRkwsahK4I40Tnlw+SXX37hmWee4dVXX2XFihU6p6L+9ttvXHnllcxlGWbCyFpEiKJIA9VUS0q49t6rUCqUqNQqVq9eTVRU1LgLjEajYdeuXYSGhuLmNr4tefpj69atHDmSQnd3N5u3lmHvMHVY5/cK2x+byqiplaNWK8g4+i1t7eW4X7USc+/Ak46vi9tGQ/wO/vOf//DNN9+MevxqtZry8nL27duHVColWdFIsqWaGlH3Wr7yR99DqGsZMMGmV9wuvPDCfsVt6tSpZGdnY+jpgqq6HlGlBkHAyNEFM3c/zLwCMPXyR2r0tw2YuYGUCBsTwk20mJmZsm3bNiq3tWDQbDr8N+E4VWIJ2STzzDPP8H//9yJWVt5Mn3HbkBMVUxMp/7rCi/p6uc4C10tHRw1e7nUsX76UmppqVqxYwZX/upKqimqmaCKwx5kjslg8p3iQfCRpXFYwnZ2d7Nmzh4ULF47LpHUgKisrycnJYcmSJRM2kY2Li+Pjjz/G0dGRd955Z0LGMBzOqJUb9GQ/3nDDDTQ2NlJXV4erq26OIStWrMDE2IQ6eQU+wwxNysUuKimmVlZOl7qDsKlhTJ8+HScnJ5YvXz5hvYykUilBQUHk5OTg4uIyYT5zAE888QSvvvoa9vbuvPraq1ws+HDosO6JEacKG/SEKMPCbyYzfR1lP32G8/lXYDtjHgDtBVk0xO/Az89PL8LWcz8ZPj4++AcEEDpvFpfev4qHpFY0iSqytG1kadopFbsG6D3QM/lR1zbhYDN0J4CBWL58OdnZ2RgZ22OzYBZG9s6YOLsjNTk5/OZoYkCQjSnBNma4mxtR1NrNbzt2sPeXH/Dx9KK1uYswRt47zAUvmoV6Xn/tdR555GFef/11igp34uc/+GpppCs4gNCpfqxYtoBXXvmQlJQ97N69myMpR7jzzjv5+eefMcMCtVTFTxt+HLfQXG5uLm5ubhMqbNATkvT09JwwYZPL5TQ0NBAbG8t33303IWMYLmdUQgmAhYUFK1as4MiRI1RU6J7e3xuarJdV6VQArRW11ItVHBUSiBf+otaklBtvu57k5GSOph/l1ltvxcTEhMrKobvwjiUeHh4IgkBpaemE3F+pVDJv3jxeeeUV7OyDCZp6G1v+qiJ8ui0B/rqtkPsTtl6kUkOmTf8Pbu6zqdnxK9XbfkbRUEPlxu8wMjLWe1LNr7/+ilarodLHlh/UlTytyGWrugZzZNxq6MmzRkFcZ+BGhMQKe8HwJJ9FTXM7oko9KuPem266CQDL4HDsZi7E3GcKUhMzLAykTLE25UIvOx4J9+DuUDc8zY1Jrmvn1ZQyvsqtocDQFrVSiaWVJfVUjardkyAITBEjkKmN2LJ5C8uWLaOsJJb6utM7X5/KSJJMbKwNWX6BG7v31mBpswQf36Xs3buXoKBgXnvtNT7++GNsXK346KMPxy0k1traSlVV1bhkYw5GR0cHjY2Nww6765PKykrKy8vRaDQsXLhwwsYxHM64lRvADTfcwJNPPsn555+PUqnU2YbmlltuYcOGDbTRjBX9z65PXaWFT4vg/+7+f1x33XUndbw90S2kV2AmAolEQnBwMOnp6Xh4eIyrY0B+fj5z5sylqakRX//leHotQBAEmpqUbN9ZxfIL3GhpKaG+YeCw3mDC1otEIiVwyqWYmzuTd3QTzemJCAgkpxzRuwXRXXfd1dNB29EGURRRCloytO1kaNsR1OAlmDBVaslCmR2ugjEqRCq13ZSLcooUCgQvLy644AJEURz2Z0IURaZOnYqbhwdB1maEuNvgamaIm5kR5gZSGuQqStrkbC5ppKitG9UpTdZMnN0xcnQlPSMTCwtLKtoKCSBsxO+F7Hj9W/KxvUTPi8bN1Y3szA1EzXbEzGzwJKbhrOCMjCRccrE76RnN5OW3IQgSvH2XYGHpTlbGegIDp/Djj+sprxxf27mcnBy8vb0xNR15eFcfFBUV4erqirHx0B0pxory8nLi4+O59tprJ7UryYmccXtuAN3d3Tg7O/Paa6+xfPlynRNLNBoNHu4eSGqMCRb+TkvXiloaqKFaUkKDthoTExNu+s9N3HHHHURGDpy+rlar2bFjB7NmzRoXw9aBEEWRuLg4nJ2dCQwMHPoEPbB+/Xr+85+bASlTp92Ard3pq5WoGXaETbPhxw3FdHWf7lqvi7CdiCiKpB35gpbWYt5/7z3uvfdefbyUPpRKJUbGxkgMDdEqFMic7LBYFIHZrKkYuNqfJlZSBJwFI9wlJrgLxrh2aHE0MMXMzOy4Q4kxRkZGGBsbY2hoiCAIiKJIWVlZ34RIrVYjl8tRKBTI5XI0Gg0KhYKG1jbqBGMqOxVUdSqp6lSgHKxj6HGa0w5Sve1nLr/8cv768y+iNSuQCqN7GJWLBRwjjfXr13PzzbcilZoRNfs+nazFhtqDEwS47BIPNBqRP7ecHonp7mok/ei3dHXWc//99/Huu++O6rXoSkNDA4mJiSxdunTCshOhZ492+/btzJs3TycHo7Ggvb2d7du3s3LlSnbt2sXMmbqbGkwkZ4YEn4KJiQlXXnklBw8eZOrUqTqLm1Qq5fY7bufVl14lUDMdJQqqKKFWVkaXupOIsAheuuc5rr322kF7f/Uik8nw8vKiqKhoQsVNEARCQkJITEzE29t7zA1VV61axeeff4G5uTPTpt80oBNHckojdnZGXHqJB7/9UYZS+fdu1XCFDaCiLJ6WliIefvhhvQsbHPeRFEU8rroDtBpaMpJo+W0fzT/tQuZgg2lEIKbhgRgHeSExNUaDSKUop1IjJxFo/HUbrVsPojpBrHp/VCpVz57c8Y4OhoaGyGQyZDJZnwD2/tja2qK2sMX35geH/RosgyOo2fUHSUlJqLQqqinDnaHtogaiTWyiSlaMicyEKVOm8Mcfv3HRRReTk7WB0LAbh1ydDrWCWxLjgpmZjJ9/6T+sbmJqR9Sse8jN/o333nuP+Ph4Dhw4MKarGFEUyc7Oxt/ff0KFDaCsrAxLS8sJEzaAiooK8vPzcXJymtBszeFyRoobwI033sh1113HZZddRldXl86hg1tvvZUXXniBZGEvHWIbpqam/Of4Km3GjBnDHoePjw+7d+8e1hjGAnt7e2xtbTl27BjTpk0bk3t0dHQwd+5cMjMzcXaZQWDQ5Uilp2f8ncjO3VVcfKE7l13iwR+bylGptCMStuamIgrytzJz5swxq7FZt24dhrYOmLr7IAgCZl4BuCy7is6yAjoKc+g4nE3bjsSe7EVvV4xDvDEK8MDQwxEDJztU1Y0IotgnWv3VYKlUKoqKipgyZUq/2ZIADg4OlFaNzOxbamSMVWgklemHuXD5cg7sTMBN7TOiEGkpxygSspkeOp2fNvzU1+39v/99jFdeeYWy0v14eQ+9/zKQwMUsdMbN1ZRffi9FqRrYDk0qNSQk9N9YWXlw5MgWnJ1diI8/wNSpw8vG1ZWqqiq6urom3I1EFEWKioomNO1eFEUqKirYv38/N9449GRmMnHGitvChQsxMDCgpKSEysrKvi/eUPj4+PDQgw8RHx/PqtWr+Pe//63TKm0gTE1NcXJyori4eMy+bLoSGhrKvn37cHV11XtNTkpKCgsXLqKzs5PAoMtxddPNuUOrhS1/VXLpRe5cerE7hUXtzJk1PGGTy1vJTP8ea2tr9u/fP9qX0i+xsbF0d3fjFL3spNclMTDEwi8EC78QRPFfKJsb6CovpLOskM64LFq3xB8/UAICGA0gWMMhMDCQ4uJiNPIupMbDnzDZhM+lJe0QcoWcNnULzdRhi+7OGm1iM/nSo7RoG3nsscd4/vnnT4oGvPzyy8TFxREfvw0LC9eTHEsG4lSB6+5W4+1lzi+/l9DZOXR/QkEQcPech7mFK5np3zN9ejiffvoJK1eu1Pl16YJCoSAjI4OpU6dO+N5STU0NWq0WFxeXCRtDU1MTjY2N7Nmzhw8++GDCxjESzrhsyV6kUinXXXcdcXFxw+5v9tbbb5F4OJGVK1eOSth68fPzmxRNRC0sLAgKCiI1NVWvY/noo4+YOXMWCqVIRNRq3NyHZyOm0Yj8ubUCczMDzpvnxJ9bynUWNq1WTebR7xBFFQkJ8WMWjlq9ejVIpFiHDrzHKggCRrYO2Eyfg/slNxB49zME3v88XtffjdOSy0Ar4uPjM+qxzJ8/HwBl08g6P5g4e2Dk6MqB+HhCgkOokOhmsq0SleSKqSQJe3Dytyc2NpZXXnml3zD3nj17sLOzIyvjB7q7dfM47RU4L08zQqfa8PvGUtrbh/c5tbbxYeacBzAzc+b22+/goYceGtb5Q5GRkYGNjc2EWVydSFFRET4+PhNa4lNRUUFmZiYzZsyY8JXscDljxQ16QpPbt2+nsbGR1tb+W3SMB7a2tpiZmVFc3L9n33ji5+eHoaEhubm5o76WVqvlqquu4p577sHCwp1Zs+/Hympk6cghwdaYmEipb5Azd7YjBga6ffTycjfR3l7Fl1+uJTh49O4y/aFUKskvKMAyaPpp9WRDITM1x8zTH0v/UBDFEYW2T+Xqq6/uGVfz8PqznYhtRDRKhYKYxTHUa6voEgd2KdGKWirFYhJlu2gyqeb1118nPSOdBQsWDHiOoaEhiYmJgIbMo9+h0ah0GldUlD0ajUhHp5rZsxx09qI8ESMjSzy9FwIi77zzDitXrhyW1+xAVFVVUVdXx/Tp0yc8/NbU1ERzc/NJTVHHG41GQ2VlJbt37+bGG2+csHGMlDNa3MLCwvDz8yMrK2vC6rygZ0YfHBxMfn4+SqVujSbHciwRERGUlJTQ2Kh765RTaWhowN/fn19//RV3j3mER96BodHInF1O3GP75bdS1BotV1zmgaHh4B+/qsokqquSuOWWm/nPf/4zonvrwn333Yeo1WITET3iayiae1ZZJ7baGSlTpkwBiQTFCFduAJYhMxBkMjZv3oyllVW/3QJ6u1cky/aSwxGuuPoy8vLzeOSRRwbcDzwRPz8/vvvuWzo6asjL/WPI+tHFi5zx9THn519L+eXXkmGbLffS2VFLTubPOOBKMJF88/W3REfPo6ysbHgXOgGFQkF6ejphYWETmnIPPX+XrKws/P39J6zbNkB1dTV1dXWkpKSMS788fXNGi5sgCKxevZotW7ZQXl4+oWFBR0dHrKysyM8/vdnmeDPa8GRsbCweHp6UlJQREvpvAqZcjEQyMheW0y21elK+5XIN/7rcEzOz/vc12lrLycv9g6CgYL766qsR3VtXvvvuewxt7DF1H3lIsTeEeMUVV+hlTFKJZFQrN6mRMVZTIyktL+e2226lRlqG+ni3AFEUaRbrSZMeII14ps8JJSkpiR9++GHYNm7XXnstq1evoqY6harKwwO8FoELlrri4W7GL7+V0tauGnE3AZWyk/S0bzARTZjKLNwEHyK1C8nLyCc8PII9e/YMa/y99IYjJ4ONXW1tLR0dHRMeBiwtLeXAgQNcccUVODg4TOhYRsIZLW7QE5rMzs6mqqpqwt1CQkJCKC4uprt7aPf1scbPzw8jIyNycnKGdd7//d//sXjxEsCIqFn34OQcPuIxDJQVqdGIbN5aQWOjgmuv8cbJ8eSZslLZQcbR7zA1NSUx8dCI768LcXFxdHd3YxMxb1ShKGVzA4JUqrdGlmampigbT2/QORxswqNBq6WwsBC1VkUVJdSI5RyRxnKEfTj427Bp0yb27d83qhTvTz75hGnTppF/bBOtLSdHUExNZVz5L09sbAz5+bdSOjr+nmwNV+C0Wg2Z6T+gUXQxXYxGdrx+z1KwIVK9CGmrIecvPZ833nhDJxeiXiZTOLK3DCEwMFCn1fNY0d7eTk1NDX/88Qd33nnnhI1jNJzx4mZlZcV1113Hvn37JnzPy8bGBicnJ44dOzah44C/w5OlpaU6hSfVajVLly7l6aefxsbGn6jZ92NuMfIsraHS/bVa2Lm7mpTUJq68wospgZbH/11DVvoPqNVd7N27Z8w9/VatWgUSCVbTRle/o2yqw0CPHqOOjo4omxuG9ZA+FWNnd4wcXNi+fTuXX345eaSRSSIR54WxdetWsnOyueSSS/TyQE9ISMDc3JyM9O9RKHr6Jjo6GHPtNd60tKj45bdSurpOjyLoKnCiKB4Xz2LCxDmYCCfvjRoKRkzXzsNTDGDNmjVcc/U1tLcP3b9RoVBw9OjRSRGOhJ4EDo1GM6F7bdCzasvJycHe3v6Msds6lTNe3ADuvPNONm7cSF1d3YR3pw4ODqa8vFynL9ZYY25urlN4sqysDHd3D3bv3o23zxLCIm7GwGB4rV5OZDh1bKlpTWz5q4KYhc7Mm+tAcdFOWlqKefPNN8bcCUGj0XAsLx/LoOnIhplIciqKxjq9CnFQUBBapQJN9+j8IW1mzEOhUHDxJRfzzDPPkJKSwp69e1ixYoVeVynm5ubs378PjbqbzPR1+PuZc+UVXqQdbWLHrio0moFFeiiBE0WRwvytVFUeJphIbIT+Q2SCIOAvTCOMuWz8YxMzo2aSl5c36LjT09Oxs7ObFOFIjUZDTk4OQUFBE2bGDj0T3bKyMjZv3syqVasmfDU7Us4KcYuKiiIkJITU1FSKinRLex4rzM3N8fT01Eu2oj4YKjy5adMm/P0DaGhoYtr0/+Djt3RY/ddOZSQF2qVlnfz4cwleXobcdMN8rrrqKh588MERj0FX7r33XkStBpvwkbvnA4haDaq2Zjw8PPQ0MjjvvPOAkZcD9GIVMgNBKuOFF17gueeeIyIiQh/D65fw8HA++OB9Lrl4PosXOfLX9gpSUpt0OncwgSsu2kV52QGmEI6r4D3ktRwFN6I0i6gqqiVyRiQbN27s97iqqioaGhoICwubFA/wkpISDAwMJrwMoaKigsrKSjIyMrj11lsndCyj4awQN+jJePvtt9+oqKgYsJfWeBEYGEhtbe2EryLh5PBkXV3dSb97+OGHufzyyzEwsCJq9n3YO4wu1X4kwtZLZUU5Dz14L2Zm5tx55510dOjeYHOkfPPttxhY2/XbCHU4qNpaQKslPDxcL+MC/ZQDQE9iieXUGRSXlo75XrBKpWLGjBksW7aMNWseITExfljn9ydwpcWxlBbvwZ9peAi6d1swEyyJVC/ErMuKyy+/nKeffhqN5m9/0+7ubo4ePcq0adMmRThSpVKRl5dHcHDwhAqtKIoUFxeza9cubrzxxgm1/RotZ424XX311bS0tFBcXExJScmEjsXExARfX1+ys7NHtWeiL8zNzQkLCyM5OZmOjg7kcjkzZ87k7bffxsEhlKjZ92JqOjpvzNEIm1otJ/3ot6hUSm677VacnJzYt28fZWVlY/b+xcfH093Vje2M0SWSwN+rK312hvbx8UGQSFE2j27lBmAbPhe02p79xTGiqamJffv2odFouPrqqzEwMCAn6xc62quHdZ0TBW7eXBklxTvxJQRvYcqwxyQTDAgV5+BPKC+++CIrlq+gqakJtVpNYmIizs7OkyIcCVBYWIiFhQVOTro7yYwFjY2N1NbWsmnTpjHxbx1PzhpxMzIyYtWqVWzZsqXHukhzugv9eBIQEEBrayv19aN/OOkDT09PPD09iY+Px8fHl+TkI/gHXETItOuQSkdXSzMaYRNFLdmZG1DIW/jzz004OTkRGhpKZGQk2dnZJCYmjsmK44477gCJgFXo6I1gewRI4NJLLx39wE5AKpGgbBrdyg3A2MUTI3tnfv75Fz2M6mQ0Gg1ZWVkkJCTg5eXF3LlzMTY25vDhwxgZGR6ftAzv79fVreG99zfg6GDMk/c/ha9k5N6KgiDgLQQRLs5n/944IsIj2Lt3L1KpdFJkR0JPI9CCggJCQkImfDyFhYUkJiYye/bsMfOoHS/OGnGDHlf3AwcOUFFRMWxLLn1jYGBAYGDgpFm9AXR1dZGcnMzKlbfh7jEXD6/5o/4yjUbYAEpL9tHYkMNTT/3vpAJoZ2dnFi9ejIGBAXv37tXrKk6j0ZB7LA/LKdORmY7efk3ZVI8glWBiMvIknP4wMzNFMcpyADgxsUTOtm3b9DCyHpqamoiNjaWxsZGFCxcSEBDQ93myt7dn+/ZtKBVtZGesRxQHNkY+EVEUKSnazdHUX/n0qW/w9fPl/AfmIUhG9zm1E5yI0sRw3uyFlJWVUVZWNqG2VieSl5eHg4MDtrYj7+CuD9ra2igvL2f9+vU8+uijEzoWfTA5/rp6wtnZmVtvvZUtW7aQn5+PVqvbF2qs8PHxQaFQUFVVNaHjAFi7di3z583no1c/xdPVi5iFfjQ3ne5aMRxGK2yNjXkUF+5g4cKFPP/886f93tDQkMjISCIiIvS6invggQd6EkkiRpdI0ouiqR4Dqf5Ndl1cXEZdDtBLb2LJPffcM+prnbha8/T0ZP78+Sc18u1lwYIFvPDC8zQ15VNStHvI64qiSFHhdoqLduHHVJzbvPn96V04+Nqw9P7oUQtc8KwpXHblpXz24lfceOON3HfffRPuKNTZ2UlpaemYWcsNh/z8fFJTU3F0dOSiiy6a6OGMmrNK3ADWrFnDX3/9RXV19YSLilQqJSgoiJycnAkTWoVCwapVq7j99ttxVHsQ1B7F9hcTWLFiBTZWJXR36ZbNdiqjFbbu7iay0n/A3t6BXbt2DXqsi4vLSau48vLyUT3wv/rqq+OJJPpxgFA21mFtrZ/i7RMJCQlBVKvQdI6+rERqbIJlyAyKS0pG5cPYu1praGhgwYIFBAQEDLoC+t///sfSpUspKd5DQ/3AhgKiKFKQt5mykn0EEIaP0POw726V60XgbD2tuODBaHZ/cBCLYmeCiOCjDz9m0cJFVFcPb19Qn+Tm5uLm5jbm9ZxD0dnZSXl5OT/88AOPP/74hIdH9cFZJ24+Pj5cddVV7Nixg/z8/AkPCXp4eCCRSCakRKGiooL58+bz5dqvCCaSYGEGEkFKW3UH2988wOrVt9Peugelcni1VKMVNo1GSUbatwiClsOHE3VqLXLiKq531TCSbNRDhw7R1dWN7SgdSXoRNRpU7S06N8wdDosWLQJAMcqMyV5sIuYiarU9HRCGSXd3N6mpqSQkJODh4cF5552n8wP5r7/+wsnJmezMH+nqOv21aDQqcjI3UFGeQBAReAknd5MfrcAZWxhy0ROLSPszl8KEsp72OYIfM8TzSEtOZ3pYOPHxw8vs1AdNTU1UV1cTFBQ07vc+lYKCAjIzM5FIJGekj2R/nHXiBvD444/z66+/Ul1dTW3t6PcsRoNEImH69Onk5uaOa2F3bGws4WHhZB/NJVK7ADfhZN/EytQ6Dq5P4ZGH76G8+Hc0Gt3CM6MVNlEUOZbzO52ddaxf/8OwW8S4uLiwZMkSbGxsiI+P5/Dhw8N6X1euXNmTSDJKR5JelK2NeusGcCp95QBNdUMcqRsmLp4Y2Tnx008bdD5HqVSSmZnJ7t270Wg0LFq0iMDAwGHtV8lkMg4fTkQigYy0b1Gr/y7VUchbSU3+lPraDEKZjbvQ/2p6pAInkQosX7OAhpJmDv+UftLvrAV7otQxaJp7+kN++OGH4zYZ1mg0pKSkEBQUNKFNjqEnoaWkpIT169ezZs2aCe9jpy/OSnELDQ3l/PPPZ+/evZNi9WZnZ4e3tzepqaljPhZRFHnrrbdYsmQpQqsBUeoYLIX+N6qzNhVRcbSWe++7hbycn9FqB88wHa2wAVRWHKS2Jo27776Lq666akTXMDAwICQkhCVLlmBkZERsbCxpaWlD7sdpNBpyco9hGRiml0QSoC+b8cILL9TL9U7E2dn5eDnA6FZuWrWK1pw0yn/+HEVTHQqVirS0tEHPUavV5OXlsXPnTtrb25k/fz5RUVEj7n/o6enJL7/8THd3A7nZvyKKIq2tZSQnfoCyo5koFuEsDF4EPxKBm39bFMYWRux6NwH6+eoZCcaEa+bjqvHh3nvv5eabbx4Xb9icnBwMDQ0n3BwZejIk8/LyaGpq4pZbbpno4eiNs1LcAJ544gl+/PFHqqqqRtX6RV8EBwejVCopLBxdEsdgdHZ2cu211/LII4/gofUjTBuNoWA06Dnxn6RiKppx3bXnU5C3aUDx1YewtbSUkH9sMxEREXz44YcjusaJmJiYMH36dGJiYlCpVOzevZusrKwBkwQeeughvSaSwPEyAEFg+fLlervmiUilkhG5lGjVKjqKj1G9/Rfy33+Wyo3fImnqwj/gItCKrFmzpv/ztNq+It7q6mpmzZrF3Llzsba2HuUrgUsvvZSHHnqI+roMsjN/JC35M0xURswSF2Mp6FYsPByBC10WQMA8L7a8FItKPrD9nESQMEUIZyqzWL/uR2bPmj2mPrWNjY2UlJQQEREx4XtbKpWK4uJifv75Zx5++OFJUdCuLwRxopc1Y8iiRYuYNm0a1157LdHR0RP+QWpqaiIhIYGFCxf2m102GvLz87ns0ssoyCsgSBuJk6C7hY+pjQmXvRRDYsohdu4uwdsn5qTf60PYFIo2kg69h4mJjOrqqjEJxTQ3N5OTk0NLSws+Pj74+Pic9GU1MzNDZWCM/53/09tnoXrHr7QcTUSr1q1Zp0qlYuvWrVx44YU6ub7b2trSKTHA/47HhzxW2dpER1EuHQXZdJXmo1WrMDK2wsk5HBeXSEzNejwZc7J+oaE+ne7urr4QlFqtpqKigoKCgr7+hC4uLmPynZk9ezaHDx/GFifCiUYiDN9H0cTKmCteWEp9UTO73ktA1J78GAtc6MOi1bP484U9VOfoPjloF1vIkh1Gairw04af9FqYDz3vc2xsLN7e3vj76+64Mlbk5uayc+dOnnnmGcrKyvT+XJpIztqVG8D/+3//j2+//Zby8vJJUUxta2s7JuHJzZs3EzkjkoqCKiK1McMSNoCu5m42P7OPOVFzWbTAjYryhL7f6UPYtFo1mUe/R6tVEB9/YMz2GGxsbIiOjmbmzJm0trayc+dOjhw5QnNzM4cPH6arqxubGfqd5Cgb6zCUjZ3JrZubG6qWptPqxERRRNnSSEv6YSq3rCf/o/+j4OP/o2bHb0ibuvH2XsLMOQ8wd95/8fNf3idsAK7us1CrVbz22mt0dXWRlZXFjh07KCkpITAwkJiYGFxdXcdsMhgXF8e86Hl0SlpRMjKrvMFWcH7RnixaPYutr+wblrABWAjWRKoXYdhhyooVK3jppZf0mumcm5uLkZHRpAhHyuVy8vPz+e6773j44YfPKmEDODt2DgcgJiaGuXPnsmvXLpydnXFwcJjw1VtwcDCxsbEUFBQQEBAwqmtptVqee+45nn/+eRwlboRoo5AJI+sB1V7fyeZn9nHZSzEoFNtJTklkxYrloxY2gIK8LbS1VfDZZ58SGho64uvoioODAw4ODnR0dFBUVER8fDzl5eUsXbqEIyVFtFnZYu4fikQPG+eKxlocxrD4durUqWRmZtJRkIO6qwNFYy3KhhoUddWoOloBATMLZ5ysg7D29sHaxm/Ijg5WVh7Mm78EtVrN7t27cXJyYtasWdjZ2Y3L98PQ0JDf//id8OnhZNUdJkJz3ohWb70Cd8ULS1l6fzS73kvAK9KNpfdFs+2NOCrSa0Y0PgPBkDBtNEVk87///Y/ExES+++67Uafr94YjFy1aNOHPIegpHs/NzaWsrIyHHnpoooejd87qsCRAamoq0dHRfPbZZ8TExEy44zboJzzZ3NzM9ddfz/Zt23u89wjSyxfG2tWCS19cTG5eDmFh4Wz8s3JUwlZTlUJO9s9cd911/PDDD6Me30hQKBRceeVVnH/+MpycHIiL28/e/QeoNbTAMjQKExePEXVC0KpV5L7xX+bOnUtCQsLQJzD8sOSXX37Zk+EJgICxqQ1mpo6YmTlhaeWJtY03Bga6rYStrQwImmJFSIg1Go2S7ds28/DDD4+qUeloSE5OZl70PBxU7gQLI8827Q1RdjbLcQ6wY+d7CRQd0o9DUb1YRY70CB5e7mz6cxMhISOzApts4cjOzk527tzJE088wb333quX4v7Jxlm9cgOIiIjg8ssvZ/Pmzbi4uODq6jrhtju2trb4+PiQkpLCeeedN+zxpKenc+kll1JTWUs487ATnPU2tpaqdo7tLGbmVTPZsWMHR45U4eY+Z0TXam+rIjfnN/z9/fn+++/1Nsbh8vnnn7Nly2Yqq52ZEjSVoMBQnn5yAUqlnKSkJFIS/qSgU4WRpz9m3lOQGutmo6Vq6UlUGsu+c9dccw0rV67EyzsGL59Fw/IBFQRwcTbBx8cCXx9zLC0NKC3tZG9sDfkF9RzYt4HGxka2b98+ZuMfjKioKD7+5GNWrlyJpWhzWrmKrnS3ykn6OZMLHpxHdW49xYcr9DZGB8EVM40FmWWJzIyayfYd25k/f/6wr5OTkzNpwpHQEx5NS0tDqVT2+KyehZz14gbwwgsvEBoayrJlyygtLR12bdVYEBQURGxsLIWFhcMKT/7www/cdttKjDWmRGliTutIPFqmrQgk7MIgtr91gOiV0bS1beNwUgLuntHDuo5K1UXG0W8xNjYmMTFxQicUb775JsbGNljb+FBXJ6euTs6BhFZcnI1xc/Xjtv/MxMrKlKNHj5KUtJ/MihqUNk6Yefhh4uaFxKB/QektA7j44ovHbOzm5ubIZIZoRbVOwmZgIMHL0wwfH3N8vMwRgZKSDhIO1lNW3olK1bN/JJOZ4OQ8nT179qJWqyestum2224jMTGRtV98ibnWCqsBylYGw2eWO4vvnsOejw8RcWlwX4jy1CSTkWIqWOCnDiVVfYC0tLRhi1tjYyOlpaWTJhzZ2tpKaWkpa9eu5dVXX8XQcHTG6ZOVf4S4+fv7s3LlSn755RdcXV3x8PCY8EJFqVRKREQECQkJODk5DRnPV6lUrFmzhnfffRcXwYsgMQKpoN/XMG1FIHNuCGfT83uozWugoaiJi5+/AEPDWPbu24W3zxKdvpyiqCUrYz0qZQf74/ZNqCFsQUEBJSWl+PovOyn0qNVCZZWcyio4nFyNjY0hHu6OrLjwX6z2sKe4uITMzAwKk/6isr2bdhNLjJzcMbJ3wtDGHkEiRXG8DGDx4sVj+hqsrCzo6uy/1s3MTIajgzGOjsa4OJvg5mZKa6uK4uJ2/txSQU1tNwNtPLi6zaKmOoXXX3+dJ554YgxfweC89957pKSkkpV2mCh1zJDlKyfiP8+LJffOZcfbByg+XEFJUuVJe3D6EDi52EWOLIX5s+cP291FrVaTmppKcHDwiGsE9U12djYHDx7E3t6ea6+9dqKHM2ac9XtuvdTU1ODv789rr73GkiVLmDJl+P2hxoKsrCwaGhoGDU/W1NRw1ZVXcfDgQQLEMNzx0/sM8FRh68XCyYxLnl9E4pFD/Ln5CAFTLkciGXzzv6hgB6Ule3n11Vd57LHH9DrO4XLFFVewceMmos97AkND3R4uJsZSvLxMsbcDB3sjXFysUanUFBUVUlhYSFFxMWX1zVRWVqBub0WjYxkADH/PDWD69Onk51ey9ILHcXQ0Pi5mJjg6GGNqKqWpWUldnZzaum5KSjtobdVtPKIocvjg21hbG1JZqb9Q3kioqKggfHoEtEqZrpmHRIc90CmLfFi4ahbb3oijLOVvH9mhygSGg0bUkCrdj6mjEalpPabCwyEjI4OWlhbmzx99Bw590NDQwJ49e7jrrrtYt27dmNVnTgb+MeIG8PTTT7N7926efPJJlixZovcWJSNBo9EQGxuLu7t7v4J78OBBrrj8Ctqa2pmqnoW1MLqmov0xkLD1YuFgxsXPLyKnIIt167YREHT1gCGy+rosMtO/Z/ny5fz11196H+tw0Gq1mJiYYmUdQGjYDSO+jkQCtjaG2NoK2NlKcHIyxcXZBo1WQ3NTE2FhYRgbG/f9GBkZnfTfUqkUQRAQBOEkcZPJZIiiiFarRalUIpfL+34UCkXff+fm5iKTyTA3t6CpWUFdfU9otb5eTn2DHJVq5F/hirIE8vP+JD09fcL7d8XGxrJkyVI8tH4ECGGDHjvjihCirp7G1pf3UZFxelakPgROFEUyhURaDOqJT4gnMjJyWOc3NDRw6NAhFi1aNClWbaIosm/fPn788UeOHTvGnj17JoXgjhX/KHFra2tjypQp3HvvvSxfvnzYH9axoqWlhQMHDjBz5sy+TryiKPLJJ59w//33YynaMFUzCyNB/2I8lLD1YmJlxPmPzUVlpOC9977E3evy01ZCXZ31JCW+j7OzI+XlE98v66OPPuKee+5h+oyV2NrqN0NNIoGigq+JnhvFiy++eJog9f7/iTVSvQKn1WoRBOG0WscTRfHEn40bN/L+++/j6nE1Mpl+uw+oVN3E73+RCy5YqtdebyPl7bff5uGHH2Yac/qt15QaSll89xxcpzqy9eV91BcN3NViNAIniiJ5HKVSKOLX337l8ssvH9br6OrqYt++fQQHB+Pt7T2sc8eK4uJi9u3bx913301cXNykef6NFf8ocQNYt24da9as4Z133mHx4sXY2+t/JTQSysvLSU9PZ8GCBchkMu666y6++eYbPPAngDCdwjTDRVdh60UikxC9ajreUW689daHmFgswNS05/1TqxUkJ36ARtNOcXERrq6ueh/vcPH19aO6uok589aMKNV/MDQaJfv3/j9WrlzJF1980e8xoiiiVqvRaDR9KzSVSsW+fftYtGgRhoaGfYLX+9/9sWfPHpYsWcL0iNuwtRtdbWR/ZGduoLEh8yTHkolCFEWuu+46fvvlNyI1izAX/hZzM1sTLnx8EVqNlr9e3UdXy9AlKiMVuFLxGPlk8NFHH3HXXXcN6zWo1Wri4uKwtbVl+vTpwzp3rFAoFOzatYu3336bgIAAPv7444ke0phzVjuU9Mf1119PQEAAO3bsID09fcIbmvbi4eGBt7c38fHxxMQsZt1365jKTKYI4ZNC2AC0ai0HPkol+ZdMnvzfo1iYZtLYmIcoiuRm/Yxc3sTvv/82KYStqKiI4uJiXN3n6F3YALq7hi4DEAQBAwMDjI2NMTExwczMDDOznuxWU1NTTExM+kKXg4WHoqOjj99TP61vTsXNfTZqtYq33nprTK4/HARBYO3atfgHBJAlO4xa7Nk/dAqw45rXV9BU1sLvT+/USdhgZGbLNWIZ+WTw5JNPDlvYRFEkJSUFQ0PDCQ/znkhOTg5ZWVmkpaXx4osvTvRwxoV/nLgJgsCHH37IunXrKC4uHlOD1OFSWVlJYmIiFy6/kEgW4SLov0cYjEzYTiR3awlbXtrLrTf/h8hwgcz0b6mvz2LNmkfHxB1/JPQaA7u46L8VDUDXcXFbsGDBmFz/RIyNjTEwMOq7p76xtPLE1NSe9957f0yuP1zMzMzY9OdGMNaSLUkmcKE3lz9/Pim/Z7P7g4No1cObkA5H4JrEOrKFI9x000383//937DHnpeXR2trK1FRURMelu+lqamJgoICPvzwQ1555ZUJzV4eTybHuz/OhIaGctddd/H111+Tk5Mzqs7E+kAURV555RVWLF/B2te/wd3eg+U3j016+WiFrZfqjAZ+XbOTWTNmcs/d/yYmJoZXX31VjyMdOVqtli2bt+LgEIKh0dj45XV3NyAIknHLurW2tuy30ac+EAQBN/c5VFZWkJmZOSb3GC7+/v6s+2EdK25ayvzbI9n6yj6Obs4d8fV0Ebh2sYVMaSKLl8Swdu3aYSdbVFVVUVBQwOzZszEy0r2cYSwRRZH09HT27NmDs7Mzt91220QPadz4R4obwLPPPktBQQHp6elkZWVN2Dja2tq48l9X8sQTT+ApBhLYOYOtL+0jeLEfQTG+er2XvoStl9qaWp584n9YW1vz5JNPjmsz1sH47LPPUCjluI7QWUUXursaMTE2GbfZubu7O12d+mla2h9OLhEIgnTCSzd6UalU2Nvbs2LFCtY89iipaamjvuZgAtcltpMuO0hQSBC//fabzmUavbS2tpKSksKMGTNG7UGpT0pKSigpKeHrr7/mww8/nDSryfHgn/NKT8HS0pI33niDDz/8kMLCQhoaxmZWPBi5ublERUax+c8thBGNvxCKIAi01nSw7fU4Fq6ahfMU/SS86FvYNKKGLOlhzKxMufHGG3F1dWX//v3U1IzMrFafvP76GxgZW2Njq9/JwYl0dtbh4Dh+yUiBgYHI5S1DNpQdKQYGpjg6TWPXrt2o1QP3PhsP2tvb2b9/PwCXX34508LCyJEm0yV2jPra/Qlcl9hBmuwA7t6u7Ni5fdh+rwqFgsTERAICAnBxcRn1GPWFQqEgOzub77//nptvvnnCPEQnin+suEFPcom/vz9//fUXaWlp4/ql/v3334mKjKK2pJ4oTQyOwslJGBUZNRz8LpUV/12Imd3oWsToW9hEUSRPSKVb2sHGTRuxt7cnJCSE6dOnc+TIEdLS0lCpdC9s1ifFxcUUFRXh5j57TBJJeunuasDLa2z2RPsjIiICEJHLm8fsHq7us1GplLzzzjtjdo/BEEWRgoIC9u3bh4uLC3PmzMHIyIgffliHi7szWbLDaMTRf0dPFLiY+2aRbhiPi6cz+/bv6yvF0RWtVktSUhK2trYEBgaOemz6JCMjg4yMjH9UEsmJ/KPFTRAEPv30UzZs2MCxY8fIyckZl/s+88wz/Otf/8K824YZ6oWYCf3PFNO3HqMkuYKLHl+IzHBkPcP0LWwAlRRTKZbw6WefMmPG3wkb7u7uxMTE0NXVxd69e6mrG7sw2kD0htWcXcauhketVqBSdY3YIX4k9PoZdo9RUgmAlZUXJiZ2vPvuu2N2j4Ho6OjgwIEDlJSUMHfuXEJCQvr2vGxsbNi4aSNyaRe5gn56IXa3yln/1Cas/Ex58LEHiN0XO+xVV+9+llqtJjw8fFIVRFdVVZGfn8/bb7/Nu++++49JIjmRf7S4QY+B8XPPPcfbb7/NsWPHaGwcu4dHL++8/Q5W2BIqzh6y/9q+z5JQKzUsvnfusO8zFsLWKjaSJxzlrrvu4uabbz7t96ampsydO5fAwECSkpLGdRWn1Wr588/N2DuEYDRGiSTwd0r+eIZ5Zs+eDQhjVg4AxxNLPOZQUVE5bvvQvau12NhYbGxsWLRoEXZ2dqcdFxYWxpdfrqVaLKWCwlHft0vsIL5zB598+gnz58+ntrZ22KJZXFxMTU0Ns2fPnvD6wBNRKBQcPXqUH3/8kblz53L99ddP9JAmhH+8uAE89NBDODo6smXLFlJTU8c8PPnGm2/QShNVlAx5rFat5a/X9uES5EDkv6bqfI+xEDaFKCdLdpiZM6MGDV0JgoC3tzcxMTF0dnaO2yruiy++QKGQ4+Y+a0zv05uSv2jRojG9z4nIZDIMDceuHKAXZ5cZCIIwLoklp67WQkNDBxWJ66+/ngcffJB8IZ0WceSf6U6xnTRZHC6eTvy17S8WLlxIS0sLKSkpOgtcfX092dnZzJo1a1LY+J1Ieno6R48e5cCBA3zyySeTakU5npwTN3oc+r/++ms2bNhAbm7umIcnV61axapVq8iTpNEqDv2w6m5VsOWlWCKvCiXwPO8hjx8LYdOKWrKlhzG1MuW333/TqU2Gqakp0dHRBAQEjMsq7rXXXsfIyAobPVttnUp3VwMSiXTce3PZ2FjT1VU/pvfoSSwJY+fOXWNmcCCKIoWFhcTGxmJtbT3gaq0/XnvtNaKjo8mSHUYhdg/73q1iE6nS/bj7uHEg/gBubm4YGxszb948nQWutbWVpKQkpk2bNunCfZWVlRQWFvLWW2/xwQcf4Oysv16PZxrnxO04gYGBvPDCC7zzzjscO3ZszLMn33//fWbNmkWm7DByHb6kDSXN/PXqfmLunoPfHI8BjxsLYQMoIIMWGvnt91+H5UAiCAI+Pj5jvoorLS2lsLAQ1zFOJIGeGjcTk9El+YwEDw93ujrHVtwAbO0CUKmUY7L31rtaKy4uZu7cuUybNm1YIT0DAwN++fUXLG0tyZIeRivqLsANYjWpkjjCZkwjPiH+pAe/rgLX3t5OQkIC/v7+45pQpAsKhYL09HR++OEH5s+ff1a3s9GFc+J2Ag888ADOzs7jEp40NDTkt99/w8bBigzZwT6bocEoP1rN9jfjWPrAPLyj3E77/VgJW41YThk9m9PnnXfeiK5x4iru8OHDpKSk0N09/Jn3QPQ5kriO/T5YZ2c9Tk4OY36fU5kyZQoKRRtarf4/lypVF1WVSRw5/DE5WT8jCBJ2796tt+ur1WqOHTs2otXaqTg5OfHHxt9pE5rJJ12ncyrFYtKFgyy/cBl7Y/f26yk7lMB1dHQQHx+Pt7f3pMuMhJ5wZFpaGgkJCXz88cf/2HBkL+fE7QSkUilffvllX3hyrDfVnZ2d2blrJ6KJmgzpIZ1moSXJlex6N54LHp6Px/S/s7vGStg6xFZyJSlcf/313HvvvaO6Vu8qbvHixWi1Wnbv3k1WVhZKpXJU19VqtWza9Cf2DsFjmkjSS3dXw4Q4vfdkporIu/VTDqBSdVFdmczRlC+J3/cix3J+Q9amYBpz8BVD2L59O/X1o1sparVaiouL2bVrF7W1tSNarfXHnDlzeP/99ymngCqxdMDjRFGkSMwmhyPcseoOfv/9d0xNB151DyRwXV1dJCQk4OHhQVBQ0KjGPhaUl5dTWFjI22+/zQcffDDskoazkcmT4jNJCAwM5OWXX+b111/H0dERe3t73NxOXyXpi5CQEDZv2czSJUvJ0SYTIs4ccsZVeKgcqUEiK/67gC0vxmLraTUmwqYSlWTKEgmaEsTnn3+ut5mgqakpUVFRtLS0kJ2dza5du/D398fX13dED72vvvoKhULOFPfZehnfYKhU3ajVcqZO1T25R1/0rpq7uhowNRvZylGhaKexIZf62gyamwoR0WKNA4GE4YhbX1slpaigRJvDN998w6OPPjrs+4iiSFVVFTk5OQiCQFhYGC4uLnpdTaxevZrExES+//Z7zLWWWAo2J/1eK2o5RiqVFPPiiy/yxBNP6HT/XoGLj48nJSWF4OBg4uN7wpgnlihMFjo6OkhLS+OLL75g4cKF/Pvf/57oIU0K/nEtb3RBFEUuu+wy1Go1d999NzExMX1u7mPFL7/8wjXXXIOnGDBko8Zeghf7snD1bLQaLRuf3a1XYRNFkXTJQRRmHaSmpeLrO3ZuH72ZZ3K5nClTpuDp6Tksm6CAgEDKy2uZO/+/Y77f1tZazpGkj/juu++48cYbh33+SDpx96LRaJDJDPALWIGnl27hYY1GSWtLGc1NBTQ1HKOjs8dBxlpwwEl0Py5oxv2em8lhTL1lFBQW6PxAF0Wx7++pUCgICgrCw8NjzGyfuru7iZ47j/ysAiLVizAUejwd1aKKLEkSTUIta9eu7bdsZSjkcjlxcXEolUrc3NyYPn36pBM2jUbD/v372bJlC7/++iupqalYW1tP9LAmBedWbv0gCAJfffUV4eHhxMfHY2FhwXnnnTemvmxXXXUVb7/9Ng8++CBGogmewtB9u2RGPZ2cBUFAZjCyIu+BKCaHBrGaLT9tGVNhA3BwcGDBggV9M/2CggJCQkJ0mumXlZVRUFCAj9/5Yy5sQJ958XiWAfQilUoxNjYetJBboWijva2CtrYKWpuKaW0rRxQ1GArG2IqOeDELOxwxxBiGeE67iT4cKd7X139uKJqbm8nOzqa1tZWAgAB8fX2RSvX7uTwVExMT/tj4OxHhEWS3JTFdO48uOsiUJSIaqdny6xaWLVs2omufmC060ZZkA5GVlUVubi4ff/wxe/bsOSdsJ3BO3AbAzs6O9evXs2zZMry9vbGzsyM0NHRM7/nAAw9QUVHBm2+8iZFo0m8n4l5699j+eGYXNm6WXPS/RWx7bT9ladWjHkeDWE0xOTz//POsWLFi1NfTBUEQcHNzw8XFhbKyMtLT08nPzyckJAQHh4FDcL31WC6u49NVuLurEYlEirv7wH+bscTW1paurnpEUUShaKWzo5b2tsoeQWutQKnqMa82EIyxEm0JYBq2OGAmWg571WGNPRYyKz799NNBxa29vZ3c3Fxqa2vx9fVl1qxZw16VjgYvLy82/LyBZRcsI4NDtEgb8Pbx4s/Nf4448aOzs5OEhAQcHR0JDAwkISGhzxh5sqzeeieDr7zyCs8///zxQv9z9HIuLDkEL7/8Ml988QWvvPIK8+fPH3NjVK1Wy/XXX88vP/9KuHYeNsLpD/b+kkcC5nsTc/dsdrx1gJLkyhHfv0vs4Ig0lqXLl7Bp06YJcxFXq9UUFRWRn5+PhYUFvr6+uLq6njQerVaLmZk5ZubehIX/Z1zGlZ35I12dxbS1tY7o/NGEJQHmzp1LYuJhJIIUjbYnw1YmGGIpWmOJDZbYYokNRpjo5SFcKuZRIsuhqrrqpAxDURRpbGykqKiI2tpaPDw8mDJlyoQWNL/66qs8/vjjXHzxxaxbt27E7vy9WZGurq6EhvaYmcvlcuLj47G2tp4UAtdbVtObFTmR39XJyjlxGwKtVsvy5csxMTFh1apVLF68eMy/wAqFguXLlhN/IIHpmnlYC3+nTA+WFek7x4PzH5jHrnfjKTxUPuz7akQ1KbJ92HnYkJKagpWV1ahfy2hRqVSUlZVRVFSEVqvFx8cHLy8vjIyM+PLLL1m5ciVh4bdgZz8+fdWSEt/HxdmMvLy8EZ0/WnF7++23efjhh/EjFAusMMUCE8zG7GGrFBXES7by6muv8sgjj6DRaKisrKSoqIiuri68vLzw8fEZNANxvBBFkdraWhwdHUf8oG9ra+vLijw1eWSyCJxWqyUuLo7t27fz7bffkpaW1m9pwz+dc2HJIZBIJHz33XeEh4czffp0LCwsmDdv3pjuJRgZGfHn5j9ZdsEykg/3CJyVYDtkun/RoXK2q+O44OH5SA0TydtfovM9RVEkR0hBKZOzcdPGSSFs0FO06+fnh6+vLzU1NRQVFXHs2DHc3d1Zt24dRkaW2NoNvT+pD0RRpLurAR+fsQ1PD0avn6UDLpgLY/83MhSMcBDd+OnHn1ixYgWlpaUYGhri6+uLh4fHpPJUFARhVI4cra2tJCQk4OPjw5QpU04Tr1OzKCdK4LKyssjLy+Pdd99l27Zt54RtACbPJ3MS4+TkxLp167j00ktxc3PDwsJizF3Azc3N2bZ9G+cvPZ+0I/HcdsFdOqX7lyRX8ter+1jx2AKsXSw5vCEddFibl1NAjVjGT9/8NOZ7iyNBEARcXFxwcXGhra2NjIwMVq5cyVVXXU9egZrcY60oFGNjF9WLStWFRqOc0PcnIKBHyLvowJyxFTeJTILPLHcuPP88PKa6UlJSQlRUFA4ODhMeltM31dXVpKSkEBgY2Pce98dEC1xZWRlZWVm8/PLLPPHEEyM2VfgncC5IqyOLFy/mueee44UXXiAnJ4fi4uIxv6eFhQXbd2znlttv4bwbZ7H+uT90SvcvP1rDr0/sYMoiH1asWYCB8eBzmGaxngIhg0cffZRrrrlGX8MfMywtLfnggw+47bbbSDvaQmCAJbffGsAFS13x8jRDKhmbh02vI/9Ebtw7OTlhamJKF6Nv3NkvAjgG2BF98wxu+eJfRN8UQU16Iw/d9Qjff/89jo6OZ5WwiaLIsWPHOHLkCBEREYMKWy/D9aLUF01NTaSkpPDRRx8RHh7Ok08+OS73PVM5t+c2DERR5JZbbiE7O5snnniC+fPn4+joOKb3LCoqIjs7my8+/4K/tmzrC1HqgrGFEcvXnIexuRFbXo6lvb7ztGPkYjfJsr3Mjp7Jrt27JlWYaSBEUcTD3YPKqkoMDcxxdo1kWth5REX64OdribGxhLLyToqKOygp6aBbrp/u1TVVKeRk/9y3rzMSRrvnBhA2bTpNme0EC/rJEJUZSnEPc8Znljveke7IjKSUJFeSs7uQiswaEKFUPEaJLJfqmuoR22ZNNtRqNampqTQ3NzN79uxhh+LHcw+uu7ubffv2sX79elJTU0lISMDc3HzM7nc2cE7cholcLmfRokW4u7tz6623snDhwjH7kBUVFZGTk8PcuXORSqUsu2AZqUfSCNNEn5RkMhgSqcD8lVEERHux9dV9VOf8baekFTWkSuMwdjAg7WjamAu1vkhKSmLWrFkEMp0uOqgRylGLSszNXXB0DiN06hyCg93x8THH0cGYmppuiorbKSrpoLl55FZfRYU7qCiLQ60eeWcDfYjbtddey65f9hKhXTDicZhaG+Md5Y7PTHfcpzvT1dxN8eEKipMqqM6pQ6s5+bGgFBUcELbyxpuv89BDD434vpOFrq4uDh8+jEwmY+bMmRgZGY3oOuMhcGq1mgMHDrB7924++eQTkpKSJsT+7Uxj8k/TJxnGxsb8/vvvREVF4ePjg7GxMQsWLNB7Xc+JwtbbVmPnrp2sWL6Cw4nxTNPMwVYYWoy0GpH9nyXRWNrCpc8sIe7LZLJ3FgCQx1E6hFa2bTxwxggbwGeffYaZzAIPtT+CIBAghtFANbUdFZQU7KaoYDt7drvg6BSGj98MQoI98fE2Z85sBzo61H1CV1XVxXCmdt1dDZiPsVONLgQEBPCnZAsMc4vRzssa75k9guboZ0ttXgPFyZUkfJdKc8XgpQ2GghGOuPLxRx/z4IMPntGhycbGRpKSknB2diYsLGxUKfRjvQcniiJpaWlkZGTw1ltvsXXr1nPCpiPnxG0EuLi48McffxATE4OLiwtmZmbMnj1bbx/q/oQN/t6Du/SSS9m3bx/B2iichYHb35xI1vZ8mitaWfHYAuy9rNnw5W9UaIr4/OPPmTVrbJt76pO2tjbWfb8OF7VP3/stFaQ44Y4T7mhENQ3U9Ahdx26KCreTGO+MrUMQTs5BhE4Nxs/XiguXuSGVCdTXy6mrk1NXL6e2Tk5Ly8Aru86OOjw8xrbOURcCAgLoUnWgQY1U6P8rbGZrgoOfHY5+tjj62eLga4ehqQFlaVVkbc9jy5FKulsVw7qvq+hDSsF+4uLiWLBg5KvGiaS0tJSMjAxCQkLw8fHRy3d2LAUuPz+fnJweQ4W33nqLhQsX6uW6/wTOidsImTlzJp999hl33303b731Fubm5nrJohtI2HoxMzPjr21/cdttt7Fu3ToUYjdegm4uDFVZdWxY8xcrnjiPa/7fJZxXHcntt98+6jGPJ+vXr0eukOOKT7+/lwqy04SurrOS6q6DlJXEknLYEGtbX2zt/AgMnI6XlxtOjiZMD7PFwd4IjVbsEbxe0auT09yi7CkD6G7C13d8nFAG48SMSQusMbMz7REwP1scfe1w8LPFxNKI5so26gsbKTtazZHfsqgraESjGnlGqQ0OmMss+fTTT884cdNqtWRlZVFeXs7s2bMHdb0ZCWMhcFVVVRw9epTXXnuNa665htWrV+tptP8Mzu25jZInnniCDRs28MILLzBr1iz8/UfeBXooYTsRURR58skneeWVV/AkgADCdPoyKUUFmeYJrPnfGmbMiGDOnDkjdnKYCMKnh1Od2UCYOHdY54miSDstNFJDE/W00ogWDQYyEyysPLCwdMfa2gNvb3/c3e1wdDDG0dEYB3tjtFqR2rpOMjPiCQ0N5ZJLLsHIyAhjY2OMjY0xMjLS+UE23D03URRRqVTI5fK+n6amJj744AOmuIbg7ueKsYURzRWt1BU2UV/YRF1hIw0lzagV+kmkOZES8RhlBseoqq46YxJLlEolycnJyOVyZs+ePaYm6Prag2toaCA+Pp4PP/wQtVrN9u3bx9XS7GzgnLiNEq1Wy0033URmZiZPPfUUc+bMwcNDt1DhiQxH2E7kww8/5L777sMJd0LEKCTCwMXlWlFLuiQBrZWK1LQUurq6KCwsJDIy8oxoR3/kyBGioqIIZx72wujCgxpRQyuNNFNPG820Cc2oxJ4wnZGBRY/gWbljYeGMp4cn9vYyNOpCrrzyShwcHJDL5SgUir5edCeKXa/gGRoaIggCgiAgkUgQBAGtVsvRo0f79npEUUSr1SKKImq1uu+6vUKmUCjQarXIZLKT7rH2i7V0lavQFhnQUNyMWql/IesPpSjngPAXb771Bg8++OC43HM0tLe3k5iYiIWFBTNmzBgXgRitwLW2thIXF8e3335Lbm4u+/fvP2eIPALOiZseUCqVXHLJJcjlch588EGio6OH1SxwpMLWy++//851116HucaKUM0cDATDfo/LFzMoF/LZtXsXMTExAFRWVpKa2tPSZsqUKWPu4j4aVq9ezfdf/sBc9TK9JzSIooicrh6hO/7TTjNqTs6MbG5uPulBo9FoThOj3v9WqVSIoniSgGk0Gpqbm7G1tUUqlZ4kfL2u/ycKZO9/n1qiETkjkurUJqYKY995/FQySMTK34TcY7mTNrFEFEUqKipIT0/H19eXoKCgcR3rSAWus7OTuLg4/vjjD7Zt20ZCQgKurq5jPNqzk3Pipic6OjpYvHgxzs7O3H777cyfP18noRqtsPWSkJDARRdehLYTwtTRGAsne/3VihVkcIg33niDRx555KTftbW1kZKSglarZcaMGZNyltje3o6zkzPO3d74CiHjck9RFFEip5N2SshFsNXQ0Di6nnn6KAUAuOGGG9j20y5mjKIcYKQ0ibWkEEdcXBzz588f9/sPhVwu5+jRozQ3NzN9+vQxNzsfbBzDETiFQkFcXBw7d+5k7dq1xMfHM2XK+Himno2ccyjRE+bm5mzZsoXc3Fx+/fVXDh06RHt7+6Dn6EvYAKKjozl46CBWzhYckcXSLP5dz9YptpErTeHqq6/m4YcfPu1cS0tLFixYgKurKwcOHCAnJ+ekXlaTgfXr19Mt78YV73G7pyAIGAkm2AqOyDAgbLpuTWTHg8DAQLqFMXIpGQIbHPsSSyYToihSXl7Onj17kEqlfdnME8VwnEzUajWHDh0iMTGRjz76iK1bt54TtlFyTtz0iIODAzt27GDnzp3s2LGDgwcP0t3d3e+x+hS2XoKCgjiScoSZc6NIFeIoFwtRiyoyZYn4+fvy5ZdfDjh7lEgkBAUFcd5551FbW8u+fftoaWnRy7j0wccffYI19hgxMS1VlAbdk+phExAQQLe6C7U48oLykSIIAs5qTzb8tIGmpqZxv39/yOVyDh8+TFZWFuHh4URFRY24MFuf6CJwWq2Ww4cPk5qayksvvcTPP/98RpXnTFbOiZue8fb2Ztu2bXz99dccOHCAhIQEFIqT64nGQth6cXBwYNfuXdx3/30cI5VDwk5EIw2b/tykk5OKlZUVCxYswMXFhQMHDpCbmzspVnFurq40i/Uclu2iRMxFIfY/aRgLRFGkQ9M24saXY8GJ5QATgSveqNUavvvuuwm5fy+9e2snrtYm2x7VYAKn1Wo5cuQIGRkZPPPMM3z66acsX758Akd79nBO3MaAsLAwNm3axFtvvUVCQgLx8fF9AjeWwtaLgYEB77zzDl9//TV+QT78sP4HnQxhezlxFVddXc2+fftobR1Zc0598eeWP4mNjeXSf19MuWE+B4StpEriqBALUYjyMb23gm7UWvWw3sOxZqLFzVAwxuG4Y8lEbdvL5XKSkpLIyMiYVKu1/uhP4LRaLSkpKaSlpfHkk0/y3HPPceONN070UM8aziWUjCG7du3i8ssv54knniA6Oho3Nzfy8/PHVNj0jVarJS8vj4KCAvz9/QkMDJzwjr8tLS38/PPP/PTjT8TGxqIVtdhKHHHQuOKAG0aCsV7v1yTWkcJ+cnNzRx2a1FdCCYCtjS02LS7jlmBzKo1iLanEceDAAebNmzdu9xVFkcrKSjIyMrC3tycsLGzSitqp9CaZ9Jo0p6Wl8fjjj/Poo4/y+OOPT/Dozi7OidsYs337dq688koeeeQRZsyYwZw5c4ZVJjBZaGlpITU1FYAZM2ZMmmamDQ0N/PHHH/z000/s3bO3T+jsNM7Y4Ywp5qNOAa8Qi8iTpNHd3Y2hYf9lFrqiT3GbPWs2ZUk1hAoTsz8jiiKJsp1ccd1lfPvtt+NyT4VCwdGjR2lsbGT69OmTLgSpC93d3ezZs4fS0lKeffZZ7r//fp566qmJHtZZx7mw5BizbNkyNmzYwOuvv056ejrZ2dmn7cGdCVhbW7Nw4UKcnZ2Ji4sjNzcXtVo90cPC3t6e22+/nZ07d1JbV8vnn3/OjJgwimXZHGQ7iQY7yRFTqBUrUIoje9+76cDdzWPUwqZvgoKDUMrGb+/xVE5MLGlubh7Te52YCSkIAosXLz4jha3XBqy6upqnn36aO++885ywjRHnvCXHgQsvvJBffvmFa665BqlUiiiKREdHY2ys3/DZWCORSAgODsbFxYWjR49SUlJCUFAQnp6eEx6qBLCzs2PlypWsXLmSjo4OYmNj2b59O1s3byWj5BACAlZSGyzVdlhhhxW2GGEy5MquS+ggImjydScPCAigi58ndAwueFOkyub777/nvvvu0/v1RVGkvr6e7OxslEolYWFhuLm56f0+40Fv8kjvHtt9993Hs88+O9HDOms5F5YcR3pDlP/973+Jjo4mOjoaE5OJSW0fLaIoUl1dTXZ2NgDBwcG4urpOWseKsrIy9u7dy969e9m5fSdVNVUAmMhMMddYYS5aY4UtlthgeMqeXZJsNzetvoH3339/1OPQZ1jyp59+4tprr2Uhlw7oSjMeZHAIm0BzsnOy9fr3b25uJjs7m9bWVgIDA/Hx8ZnUDjqDodFoThK2Bx988NyKbYw5t3IbR5YtW8Yff/zB5ZdfzkMPPYRGo2Hu3LlYWFhM9NCGjSAIuLq64uzsTFlZGZmZmRQUFBASEqJ3x3V94Onpyc0338zNN98MQHV1NcnJySQlJZGYeJjDiYcpbs0BwExmgYnaHBPRDDMs6dC0T6pMyV56SxO6aMeKiTMxdhW9ST12gIMHDxIdHT3q67W3t5OTk0NdXR2+vr7MmjXrjDYNVqlUJCYmkp6ezlNPPcVjjz12LnlkHDgnbuPM0qVL2bZtG5dccgktLS2oVKozKnvyVCQSCd7e3ri7u1NcXExSUhLW1taEhIRMShuvXlxcXLjkkku45JJLgJ6VaGlpKUlJSRw5coTs7GyyMrPILz2KTCZj7tzhdSEYD3o7UHTRMaHiZosT5jJLPvvss1GJW3d3N8eOHaO8vBxPT0+WLl16xoXuT0Uul3Pw4EGOHDnCs88+y6uvvso999wz0cP6R3AuLDlBZGZmsmzZMhYvXsxVV13F7Nmzzwhn/qFQKpXk5+dTXFyMk5MTwcHBOhWPT1aUSiXt7e16a++iz7AkgKO9I+aN9vgJU/UwupFTLOZSYZhPdU01NjY2wzr3xM+Ms7MzQUFBZ/RnppeOjg4OHjxIfHw8r7/+Ot988w1XXXXVRA/rH8O5ldsEERoaSkJCAsuWLaOlpQWNRkNUVBSenp4TPbRRYWhoyNSpU/H19eXYsWPs3bsXT09PpkyZckbOwg0NDSd137KAKYEUJpRN9DBwxZtiVTbr1q3j3nvv1ekctVpNcXEx+fn5WFtbM3/+/Em92h8Ozc3NHDx4kF27drF27Vo2b97c14njHOPDxKe4/YPx8vLiwIED1NfX8/bbb3Po0CHy8/MnzPFBn5iYmBAeHs6iRYtQKBTs2rXrjC2DmMwEBU2Z0HKAXowEY+x1dCzRaDSUlJSwe/duqqqqmDlzJtHR0WeNsNXV1XHgwAF++eUXfvjhB2JjY88J2wRwTtwmGHt7e3bv3o2FhQUvvvgiSUlJZGZmTgo/R31gYWHBrFmz+qyHduzYQWpq6oTbeZ0tBAQE0Cm2T4oJkZvoTXZONomJif3+vru7m5ycHHbs2EFRURGhoaEsWLBgUiYgjZTy8nLi4+NZu3Yt+/fvJyEhgYiIiIke1j+Sc+J2AvX19dx11114enpiZGSEs7Mzy5YtIz4+nmuvvfY0Q9Nt27YhCMJptSrPPvvssMKLZmZmbNy4kenTp/O///2PpKQkDh061Nfl+WzAxsaG6OhoFi5ciEQiIS6ux7apqqpqUjyYz1QCAgJQahSomPjPii1OmMksTmuF09TURHJyMrt27aKtrY3IyEhiYmJwc3ObtKUjw0UURbKyskhISOCdd97pEzlfX98RX3Ow5xH0mLT3dno/8eeVV17R18s6ozm353YCV155JUqlkm+++QZfX19qa2vZvXs3jY2NxMTE8Oijj6JWq/u6Iu/duxcPDw9iY2NPus7evXuHHYYwMDDg66+/5rnnnuOhhx7iqaeeoquri9mzZ5+RpQIDYWlpyfTp0wkODqa0tJTMzEyysrLw8fHB09Nz0rmATHb+NlBux5CJ9VfsdSxZv/5H3nzzTbq6uigqKqK9vR1PT09iYmLOikSRU1GpVCQnJ5OTk8NLL73E1KlT2bx586i/t4M9j3p5/vnnueOOO04672x6XoyGc+J2nJaWFuLi4oiNjWXhwoVAz55Yb1+lvLw8Ojo6SE5OZs6cOQDExsby+OOP88gjjyCXyzE2NkYul5OYmMitt9467DFIJBKee+45pk2bxq233srtt9+OXC5n5syZZ6Qf5WAYGhoSEBCAn58fNTU1fd0SXFxc8PLywt7e/qyZ1Y8lJ5YDWGM/waOBUPdwFl0wh9jYWCwtLfsmLWdyndpgdHR0kJiYSFpaGs8//zz33Xcfzz///Kgde4Z6HvViYWFxVmRZjwXnxO045ubmmJub88cffzBnzpzTXMYDAwNxdXVl7969zJkzh/b2dlJSUti8eTPvv/8+Bw8eJCYmpq9/22g2kK+66ir8/f257LLLKC4uRi6XEx4ejp+f31n3wJdIJLi6uuLq6kp7ezulpaUkJydjYGCAl5cXHh4eZ2SW5XhhamqKs5MLXbUT0/oGQGYoxX+eFyHn++Poa8uRQyms/WItf27+c1LYso0VdXV1JCUlsWfPHj799FPWrl3Lv//9b71ce6jn0TmG5uz95A0TmUzG119/zTfffIO1tTXz5s3jySefJD09ve+YmJiYvhBkXFwcgYGBODg4sGDBgr5/j42NxcfHBy8vr1GNJzw8nKSkJBoaGnjxxRc5dOgQqampaDSaUV13MmNhYUFoaCgXXHABwcHB1NXVsXPnTg4fPkxFRcVZtQepT6ZMCRz3vm4SmQTPCBcW3TmLW7+8kojLgimIL+Wr23/jr7f3s/WvrSQlJY3rmMYLURQpLCwkLi6OtWvXsmHDBvbt26c3YQPdnkcA//3vf/uEsPcnLi5Ob+M4kzknbidw5ZVXUlVVxaZNm1i+fDmxsbHMmDGDr7/+GoBFixYRHx+PSqUiNjaWRYsWAbBw4cKTxE1fab+Ojo7s2bOHyMhIHn30UQ4dOsSBAwfo7OzUy/UnK1KpFDc3N+bNm8fixYuxtLQkPz+fbdu2ER8fT2Fh4Vn/HgyHKUFTUBqMfTmAsYURQTG+LF9zHrd/ezUxd81BqxXZ9Pwe1j+4hfQtx1B0KLEbILHkbEClUpGSksLBgwd56aWXqKmpISkpicjISL3fa6jnEcCaNWtIS0s76ScqKkrvYzkTOedQMgS97VRKS0spLCzE39+f+Ph4HnjgAdasWcM111xDZWUlfn5+VFVV4eLiwpdffskNN9ygtzGIosgHH3zA448/zn333cf8+fOJiIg4Y93RR0pXVxc1NTXU1NTQ0NCAmZkZzs7OODs7Y2tre0aEbPXtUALwxhtv8OTjT7JAc6ne3wNrN0t8ZrrjM8sd50B76ouaKUmuoPhwBQ0l/be5EUWRY6TSYFxFXV3dWZPg0Nra2leq88orr7BixQo++eSTcQ0Znvg88vb25sEHH+TBBx8ct/ufSZzbcxuCkJAQ/vjjDwD8/Pzw8PBg06ZNpKWl9W30urm54ebmxptvvolSqdR7waYgCNx3333MmDGDa6+9lvT0dG6++WaCgoIIDQ09Y53Sh4upqSm+vr74+vqiUqmor6+nurqaxMREBEHAyckJZ2dnHB0d+zJa/wkEBASg0qhQIseI0XWZECQCLsEOPYI20x1zezMq0qs5FlvM9jfi6GwaeIWoFBVUU0qtrIw2dQtTPIPO2K4XJyKKIsXFxWRkZLB9+3a+/fZb3n33XW677bZxn1Cd+Dw6x+D8c54AQ9DY2MjVV1/NbbfdRlhYGBYWFiQnJ/Paa69x2WWX9R0XExPDRx99hL+//0kZjAsXLuT999/vSzwZC+bNm0daWhq33nora9as4fHHH6epqYmoqKizZnasKwYGBn2JKFqtlubmZmpqasjOzubIkSPY29vj7OyMvb095uaj78Y9mfm7HKBjROJmZmuCS7AjPjPd8ZrhilajpSS5kvhvUig/Wo1aMfA+r0pUUk81DZJKGqhFKpVw+RWXc/vtt7NkyZIzfuKlUqlITU0lLy+Pjz76iNbWVg4dOkRo6Nj299P1edTe3k5NTc1J55qammJpaTmm4zsTOCduxzE3N2f27Nm8/fbbFBYWolKp8PDw4I477uDJJ5/sOy4mJoZvv/22b7+tl4ULF/LVV19x/fXXj+k47ezs2LhxI++++y5r1qzhzjvvpL29nfDw8DPel3KkSCQS7OzssLOzY+rUqbS3t1NbW0tlZSWZmZlIJBKsrKywsrLC2toaa2vrs0rwfH19EQSBLrEDGwZ3+zC3M8XBzxZHPzsc/Gxx8LXFxNKIpvJWSpIr+fP/9lKb3wCDbFb0CFoV9ZIqGqlFK2qYFTmbJ294jBtuuAF7+4kvSdAHTU1NHDlyhPT0dF5++WUuu+wy3nvvPczMzMb83ro+j5555hmeeeaZk85dvXo1n3zyyZiPcbJzbs/tDCY5OZl///vfeHl5cccddxAYGEhYWNhZW1M0ErRaLe3t7bS0tNDS0kJrayutra0IgnCS2FlZWWFhYTHmgjcWe24A7m4eyKpMCRDC+v7N3N60T8Qc/Wxx8LPD2NyQ5opW6ouaqCvs+Wkobhp0dQanCJrYI2hzZs/h39f+myuvvBIPDw+9vZaJRhRFCgoKyMzMZMuWLWzYsIGPP/5Yr/vo5xh7zonbGU5rayt33HEHBw4cYM2aNYSEhBAREYGjo+NED23SotVq6ejo6BO8lpYW2traAPoEz8rKClNTU4yNjTEyMtKbEOlb3DQaDQqFglWrVtFU3Eqk72wcfO1w9LPFyNyQpvJW6gubqCtspL6oiYbiZtTKoctJRFGkg1YaqaFZWk+ztgGtqGHunLl9gubu7j7q8U822tvbSU1NpbCwkA8//BCNRsNPP/3U1xj2HGcO58TtLEAURdauXcvDDz/MRRddxL/+9S/8/f0JDQ09t4rTkRMFr3d1193djVwuR6vVIpVKMTY2PunHyMjopP82MTFBJpMNuvrTVdzUajVyuRyFQoFcLj/p58R/U6lUCIJAd3c3VRXVyEs1x8WsiYaSZjQ6CFkvcrGLJupooo5WWSPd6k6MjY1ZHLOYFReu4IorrjhrM3R7a9eysrI4cOAAH330EatXr+all146ZyJwhnJO3M4iSktLuf3228nNzeXhhx/+/+3dbUyTVx8G8KultKjlTUChYKGNvMiEZYCijxjQOdEMfJkuOrdsy8Y25svM4swysw/bB5a4LVmWjE2d82VRF80iZnxgTBwwJWxOnTBloYC0UtpaqNBWKBTa+/lgbOacj3umULl7/ZITb/pB/grp1f+5z30Ou7gHQBAEjIyM/G2w/PVrj8cDqVSKkJAQSKVSSCQS35+3roGbiwVunbzu9XohCAIEQfBdDw8PY3R0FBKJ5G+D9K+vKRSKm/dgt21HvnflP5pa9QpeDMABB/pgx3U4g21wjjggkUiQmZGJpYVLsWzZMixYsED0u2Pc6tauXLmCL774AtevX8f+/fuRl5fn79LoPnBBiYgkJibihx9+wJ49e7B9+3YUFRXB4XAgOTkZjzzyCLu4f0EikUAul0Mul//PFWiCINzWbd0Kqr+G1+joKGw2G2bMmAGZTHZH+EkkEigUCigUCsjl8n98DzA5ORmj3lEMw4UQTL6jtkHcgAN9cOA6BoLscAh9GPXeDNCU5FQ8tfR5LF68GPn5+b7gFbu/69ZeffVVlJWVYfLkyff+C+ihxs5NpPR6PUpKStDa2opt27YhPT0dmZmZ3GTVz8ZqQYlOp0NqaipmIxdyKDAAJwbhxKDUCaekH27PzUNiE9VJmP+fecjJycGcOXOQlZUlyp3678XhcKCpqQkdHR3YtWsXbDYb9u3bh4ULF/q7NHpA2LmJVFJSEk6ePIndu3dj+/btePLJJ7Fq1SpoNBrMnj17XJYz0/jRaDRQyBW45L55UGhQUBA0SRpkZ8zHnDlzkJOTg5ycnIDpyu5mZGQEra2taGtrw5kzZ7B7926UlJTggw8+YLcmMgw3EZNIJCgtLUVhYSE2b96MTZs2YePGjbBYLEhNTUVycvKEf8iWbgoODsav535FZ2cn0tLSoNFoOA39J4IgwGg04vLly74HsoOCglBVVcVuTaQ4LRkgBEFAZWUltm7disjISLz22mvQarXIyMjgVOU4GqtpSbo7h8OB5uZmGAwGHDt2DLW1tXjvvfewZcsW/gxEjKcCBAiJRIIVK1agpaUFxcXFePPNN7F//37U1tbil19+4S77JDojIyO4dOkSampqUFFRgdLSUiiVSt9qYgabuLFzC1AdHR3YunUrGhsbsXHjRuTk5GDmzJlITk6GXC73d3mixc5t7Hm9XhgMBrS2tqK1tRWff/45goODUV5e7tvsnMSP4RbgKisr8cYbbyAsLAwvvPACUlJSkJKSAq1WG1A7648XhtvYEQQB3d3d+OOPP3D16lV8++23aGhowPvvv4/Nmzfz/zvA8N0rwBUXF+OJJ55AeXk5ysrKkJ6ejg0bNuDKlStIS0uDWq32PXxM9DASBAE9PT1oaWlBV1cXKisrUVlZiZKSEhw4cOC20zsocDDcCCEhIdi2bRtefvllfPTRR3jrrbeQn5+PtWvXQq1WY9asWVCpVKLZRZ/Eo6+vDy0tLbh69Spqampw5MgRPPXUU7h8+TK0Wq2/yyM/4kdy8omIiEBZWRna29uRmJiIjRs3Yu/evaitrUV9fT3MZjM4i00Pg/7+fpw9exanTp3CsWPHUFpaCpPJhMbGRhw+fJjBRrznRnfX1taGd999F5WVlVi/fj0WL14MlUqF5ORkxMfHc7ryX+A9t39PEAT09vaira0N3d3d+PXXX/H1118jMTERO3fuvOOMRQpsnJaku0pOTsbRo0dx/vx5lJWVoaSkBKtXr0ZhYSFUKhVmzpyJxMREPghOY0oQBFgsFrS1tcFsNuPMmTM4cuQItFotdu3ahZUr/9lm0RRYGG50T9nZ2Th+/DhaWlqwc+dOlJaWYunSpSguLsaMGTOg1Wq5IwY9cF6vF93d3Whra4PJZEJtbS2OHj2K3NxcHD16FI8//jhDje6K05L0fzMYDPj444/x1VdfYf78+Vi9ejU0Gg3UajU0Gk1AbsT7T3Fa8t7cbjcMBgM6OzthNptRXV2NiooKLFu2DO+88w7mzp3r7xJpAmC40b9mtVrx6aefory8HCkpKVi1ahXS0tKgUqmg0Wgwbdo0frL+C4bb3dntdly5cgVGoxF6vR7V1dWoqanBunXr8PbbbyM9Pd3fJdIEwnCj++ZwOLBv3z6Ul5fjxo0bWLt2LebPn4+YmBgkJSVBrVaL/sDLf4rhdjuPx4Pu7m7o9XpYrVY0NTWhoqICJpMJJSUl2LRpExITE/1dJk1ADDd6YLxeL6qrq/HZZ5+hpqYGS5cuxZIlS5CUlIT4+Hio1WrExMQEdDfHcLvJbrfj6tWr6OrqgsViwU8//YQTJ04gKSkJW7ZswTPPPMMjaOi+cEEJPTBSqRTLly/H8uXL0dHRgS+//BJlZWUICwvDqlWrkJWVhalTpyIhIQEJCQkIDw8P6KALNC6XC0ajEUajETabDS0tLaiqqsLFixexbt06VFVVYd68efydoAeCnRuNqeHhYVRUVGDPnj04ffo08vLysGjRIqSlpSE6OtoXdIHyKT3QOreRkRGYTCZ0dXWhp6cHer0eZ86cQXV1NZKSklBSUoLnn38+4A9RpQePnRuNKYVCgfXr12P9+vUwGo345ptvcOjQIbS1taGwsBB5eXnQaDSIiYlBQkIC4uLiEBIS4u+y6T6Mjo7CarXCaDTCYrHAbDajsbERVVVVkMlk2LBhAxoaGpCZmckujcYMOzfyi99//x2HDx/G4cOHMTQ0hOXLl2PevHmIi4vD1KlTERsbi9jYWISFhYnqDVCsnZvL5YLFYoHFYkFPTw9sNhsuXLiA77//HlarFWvWrMFzzz2H/Px8PvRP44LhRn7l9Xpx+vRpHDp0CMePH4dUKsWiRYuQnZ0NrVaL8PBwX9BFR0dP+C2/xBJugiDAbrf7Aq2vrw9GoxEXL15EfX09jEYjli1bhmeffRZFRUWYNGmSv0umAMNwo4fG6OgoGhsbUVlZie+++w56vR55eXnIzc3FrFmzEBkZiZiYGERHRyM6OhqhoaETrqubyOHmcrnQ29uL3t5eWK1W2O12tLe349y5c6irq0NwcDCKioqwYsUKLFmyBFOmTPF3yRTAGG700NLpdL6ga2howOzZs5Gbm4u0tDQkJCRAqVQiKipqQoXdRAq3P4dZb28vnE4nrl27Bp1OhwsXLqCxsRGpqalYsWIFiouLMXfu3AnfWZN4MNxoQrDZbKiqqsKPP/6Iuro6dHV1ISsrC4899hhSU1N9YRcdHY3IyEhEREQgPDz8oQuQhzXcPB4PnE4n+vv70dfXB5vNBofDAavVCp1Oh6amJpw9exZyuRwFBQUoKChAUVERNBqNv0sn+lsMN5qQ9Ho96uvrUVdXh9raWnR3d/vCTqvVQqVSQalUQqlUIiIiwhd2ERERfg2VhyHcPB4PHA4H+vv7Ybfb0d/fD4fDAZfLBbPZDIPBgObmZl+Y5efn+wJt9uzZ7M5oQmC4kSjo9XrU1dWhvr4e586dQ0tLC6KiopCRkYGUlBTfLim3Ai80NBRKpRJTpkzxvaZQKMZ8WnM8w21kZAQ3btzwjYGBATidTjidTgwODsJiscBgMKC9vR2XLl2CXq9HUlISsrOzsXDhQhQUFCAjI4NhRhMSw41EaXBwEE1NTTh//jzOnz+PCxcu4PLly4iMjERGRgbUajVUKhWmTZuGqKgoKJVKyOXy28IuJCTENxQKBRQKxX2/0T+ocBMEAW63G8PDwxgaGvKNgYEBX5gNDw/D5XLh+vXrsFqtMJvNMBqNaGlpgcFggEajQXZ2tm9kZWUhKirqvv59RA8LhhsFDJfLhebmZvz2229obW2FTqeDTqdDZ2cngoODfefSxcfHIzY2FuHh4QgLC/N1dVKpFAqF4rbACw4Ohkwmg0wmQ1BQkO/6z0Mikfg6Qo/Hg9raWhQUFEAmk0EQBAiCAI/Hg9HR0dvGX18bGhq6Lcy8Xi/cbrcvzOx2O6xWK7q7u2EwGNDR0QG73Y74+HikpKT4xqOPPoqsrCxERkb6+SdCNHYYbhTw3G43Ojs7fWGn0+nQ3t4Ok8kEk8kEh8MBmUyG6dOnY/r06b5uLyIiApMnT76tswsJCYFcLvcNmUwGqVQKqVTqCziJRAJBEOD1egHc7MJGR0fhdrt941aQ3eq+hoaGYLfbfV2Y1WqFxWKBy+XCpEmTEBcXh7i4OGi12tuCbObMmTxfjwISw43oHgYHB2E2m33DZDLBbDbj2rVrcDgccDqduHHjhu9+1q1rt9v9f32foKAg373A0NDQO65jYmKgUql8QXZrcANqojsx3IjGiNvtxsDAADweD7xe720jKCjI19FJpVJMmTJlXBa0EAUKhhsREYkO1/gSEZHoMNyIiEh0GG5ERCQ6DDciIhIdhhsREYkOw42IiESH4UZERKLDcCMiItFhuBERkegw3IiISHQYbkREJDoMN6Jx0tPTg9dffx1qtRoKhQKxsbEoLCxEQ0ODv0sjEh2ZvwsgChRr1qyB2+3GwYMHodVqce3aNZw6dQo2m83fpRGJDk8FIBoH/f39iIyMRF1dHfLz8/1dDpHocVqSaBwolUoolUqcOHECw8PD/i6HSPQYbkTjQCaT4cCBAzh48CAiIiKwYMEC7NixA83Nzf4ujUiUOC1JNI6GhoZw+vRp/Pzzz6iqqsLZs2exd+9evPjii/4ujUhUGG5EflRSUoKTJ0/CYDD4uxQiUeG0JJEfpaenY2BgwN9lEIkOHwUgGgc2mw1PP/00XnrpJWRmZiI0NBTnzp3Dhx9+iJUrV/q7PCLRYbgRjQOlUonc3Fx88skn6OjowMjICGbMmIFXXnkFO3bs8Hd5RKLDe25ERCQ6vOdGRESiw3AjIiLRYbgREZHoMNyIiEh0GG5ERCQ6DDciIhIdhhsREYkOw42IiESH4UZERKLDcCMiItFhuBERkegw3IiISHT+C8VuQ2Fcw9eOAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAG6CAYAAACLCQg1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc5dW379lepVWX1YstuffeTbXpNWB4QwkQQkKA0HtN6BBqIBACBELggxA6GDC2wQX3rmr1tuorba/z/SF20FpdllzE3lx7Ya2mPDPafX5zznOKIIqiSJgwYcKECTOCkB3pAYQJEyZMmDBDTVjcwoQJEybMiCMsbmHChAkTZsQRFrcwYcKECTPiCItbmDBhwoQZcYTFLUyYMGHCjDjC4hYmTJgwYUYcYXELEyZMmDAjjrC4hQkTJkyYEUdY3MKECRMmzIgjLG5hwgwzl112GYIg8Oijj4a8/9FHHyEIwhEaVZgwI5uwuIUJcxjQaDQ89thjtLa2HumhhAnziyAsbmHCHAZOOOEEEhMTeeSRR470UMKE+UUQFrcwYQ4Dcrmchx9+mOeff57q6uojPZwwYUY8YXELE+YwcfbZZzN16lTuu+++Iz2UMGFGPGFxCxPmMPLYY4/x5ptvkp+ff6SHEibMiCYsbmHCHEYWL17MySefzB133HGkhxImzIhGcaQHECbML41HH32UqVOnkpube6SHEibMiCVsuYUJc5iZNGkSF198Mc8999yRHkqYMCOWsLiFCXMEePDBBwkEAkd6GGHCjFgEURTFIz2IMGHChAkTZigJW25hwoQJE2bEERa3MGHChAkz4giLW5gwYcKEGXGExS1MmDBhwow4wuIWJkyYMGFGHGFxCxMmTJgwI46wuIUJEyZMmBFHWNzChAkTJsyIIyxuYcKECRNmxBEWtzBhwoQJM+IIi1uYMGHChBlxhMUtTJgwYcKMOMLiFiZMmDBhRhzhZqVhwgwCt9tNQ0MD7e3tWK1WbDYbVqs15N82mw2bzYbP5yMQCBAIBPj6668pLS3l6quvRi6XI5PJkMlk6PV6DAYDRqNR+v/B/46Li8NgMBzpSw8T5pggLG5hwnRCFEUaGho4cOAAtbW11NbWUldXF/Kqra2lpaUFQRD6FCS9Xo9Wq5VELC0tDYfDgclkQhAEAoEAPp8Pi8VCVVVVj0JptVrx+/0YjUZGjRrV5ZWUlMSoUaPIysoiNTUVuVx+pG9lmDBHlHA/tzC/SNrb2ykuLqaoqKjLq729neTkZJKTk0OE42AhiYuLG7CIeL1evvjiC0455RSUSmW/9xNFkdbWVklcDxbb4P8rKyuRy+WMHj2anJycLq+4uDgEQRjo7QoT5pgjLG5hRjSiKFJdXc2OHTvYvn0727dvZ+fOndTV1REdHU1ubm4XARg9ejQ6nW5YxjNYcRvI8cvLy0PEurCwkKKiImpqajCZTEyePJkZM2Ywffp0ZsyYQU5OTtjSCzPiCItbmBFFdXU1W7dulYRs+/btNDc3M378eGbMmMGMGTOYNm0a48aNIyYm5rCPb7jFrTdsNhvFxcXs2rVLuje7du1CLpczbdo06f7MmDGDsWPHIpOF483CHLuExS3MMU1lZSVr166VXpWVlSFCNmPGDKZMmTJslthAOZLi1h0+n4/8/PyQh4Fdu3ah0+lYsmQJS5cuZenSpUyYMCEsdmGOKcLiFuaYoqqqKkTMKioqmDlzpjQJL1iwAKPReKSH2SNHm7h1h9frZdu2bdI9Xr9+fRexGz9+fFjswhzVhMUtzFGNz+djw4YNfPLJJ3z66aeUlpYyY8YMli5dyrJly456MTuYY0HcDsbj8bB9+3bWrFnDxo0bKS4uRq/Xs2TJEo477jjmz5+PXq8/0sMMc5hQKpXHxBptWNzCHHW0tbWxatUqPvnkE7744guUSiWnnXYap59+OscddxwRERFHeog9IooiPp9Pevn9fgKBAMGvmdVqZffu3cydOxeFQoEgCAiCgFwulyYNhUJx1FlFoihiNpuxWCyIoojb7cbpdOJwOPD7/Wg0GrRaLVqtFoUinGE00jGZTCQmJh7VkbdhcQtzVFBTU8OHH37IJ598wrp168jNzeX000/njDPOYPbs2Udssvf5fLhcLtxuNy6XK+TldrvxeDxdxCyIXC6XErWDk4DT6QRAq9UCHaIRFMTO+8pkMhQKhfRSKpVoNBrUajUajUZ6BX9WKpXDOtHU1dVhsViIj49Hp9OFnMvtdkvJ7A6HA41GQ0REBEajUbrOMCMDURRxOBw0NDRgMpkYNWrUkR5Sj4TFLcwRo62tjf/+97/8+9//5vvvv2fRokWceeaZnH766WRlZR22cXi9Xmw2G3a7XaoqEvzZ5/MhCEIXMQm+VCpViAgFX0FR6+5cPbklRVHE7/eHiGXw5fF4QgS287/9fr9U5SRY6ST40uv1qNXqQxI+v99PUVER8fHxfUaY+nw+2trasFgstLW1oVariY6OJiYmBpVK1ee5GhoaMJvNeL1edDodaWlpvbo8W1paqK2txe12o9FoSElJITIystttKyoqaGxsJDU1lYSEhJAxV1ZWYrFYEASBqKiocCJ8HzQ3N9PQ0HBUp5GE/QdhDisej4cvv/ySt99+m88++4zx48fzf//3f7z99tvD/hQYCARob2+XJt5gBRC3241KpZKEISIigqSkJPR6vSRgh8P9IgiCJI79JWj1uVwu7Ha7JNDV1dXYbDZcLhcKhUISO5PJRGRkJJGRkf1e8/N6vQD9ijhVKBTExMQQExOD3+/HYrHQ3NxMbW0tBoOB6OhooqKiur3GlpYWqqqqSE9PR6/XU19fT1FRERMnTux2rDabjdLSUknQWlpaOHDgAOPHj+9iMba2tmKz2bo9TmlpKV6vl5ycHERRpLy8nIqKisP6gHWsEfwseL3esLiF+eUiiiIbN27krbfe4v333yciIoKLL76YBx98kHHjxg3LOf1+P1arFYvFIr2sVisymQyTyYTJZCItLU2a9PtjVRyNCIKAUqlEqVR2G1jj8/kkwbNarTQ1NXHgwAFcLleI2AX/35vgDVTg5XK5JHRer5eWlhaampqorKwkMjKSmJgYIiMjJQu3vr6euLg4YmNjAUhPT6etrY2mpqZuH3zq6+uJjIwkMTERgOTkZNrb22loaCA9PV3azuPxUFlZSU5ODsXFxSHHcDqdtLe3M27cOMlCTEtLo7i4mJSUlGP2czHcHM1rbUHC4hZm2GhtbeWtt97i5Zdfxmw2c8EFF/DJJ58wf/78If9y+P1+afJsbm6mtbUVuVwuTdxjxowhMjISvV5/THwxhwqFQiFZap1xuVySBdvc3ExJSQkul4uIiAhiY2OJiYkhNjZ2yCZ3pVJJQkICCQkJuFwumpubqa6upqKigtjYWGJjY7Hb7ZJQQccEGhERgd1u7/aYdrs9xL0IEBERgcVikX4WRZGysjISExO7Xf+z2+3I5fIQ12cwYMlut4fF7RgmLG5hhpxt27bx4osv8t577zFt2jRuv/12zj///CENLuhOzFQqFbGxsaSmpjJ16tRfnJANBI1GQ2JiYoiYuFwu6Z4WFBRgtVqJiIggJiYGmUxGIBAYsnMXFxezbNkyKioqcLlc7N+/H+gIThFFUfq7KZVKXC5Xt8fxer3ccMMNOJ1OPvroI2n7oBsVwGw2IwgC8fHxPR7jYGs16B7ufJyh5o033uCGG24IEeLOlJeXk5mZCcCUKVPYtWvXsI3lYNauXcuyZcsAOPPMM6V7e6wRFrcwQ4Lb7eaDDz7g+eefZ9++fVxyySVs3ryZSZMmDdk57HY7ZrMZs9lMS0tLiJhNmzatSxRfmIGh0WhISkoiKSkJ6PibNjc309jYKAXd+P1+KXpTLpfz97//nVtuuYXW1lZpHc1msxEVFcWCBQtYu3atdPzgpHngwAHmz59PXV0dCQkJCIKA3W4nPz8fs9lMQ0MD8fHxkntysNjtdhoaGhg3btwx+7n49ttvmTp16pAcy+l0Ehsby+7duxk9enSP2wX/Ntdffz1ut3tIzn0kCItbmEOitbWVF198keeff57IyEiuvfZaLr300h4j1gZCsBJ+UNBsNhuxsbGMGjWKKVOmhC2zYUatVpOUlER0dDRlZWUYDAbJorHZbAiCwNy5c7HZbGzdupV58+YB8MMPP5CYmMjmzZtxuVxoNBoA1qxZQ1paGtnZ2QAhVmPQqk9LSwM6oiZra2tRqVQ9rgMqlcou1mRnS8xms+H1etmzZ0/INlVVVdTX1zN58uQulh78HKRzNCTZB9csh4JvvvmG9PT0XoUNQKVSSW7cY1ncjq5M0TDHDHV1ddx6662kp6ezevVq3nzzTQoKCrjuuusOSdgCgQBms5mdO3eyatUqfvzxR5xOJ7m5uaxYsYL58+eTlZWFwWAIC9thRBRF2tvbsdvtaDQaIiMj0el05OTkkJiYyFdffSVFnq5Zs4YzzzyTzMxMfvzxR+kYnd1da9euRRAEyS33r3/9i+OOO47PP/+cBQsWMHPmTG677TZqamqkqEir1cqNN96IyWQiJiaGF154AY/HEzLO9vZ2qaFrTEwMRqORe++9lxNPPJElS5ZwwQUXkJeXR05ODmvXriUuLo5169YxceJENBoNc+fOlcYcXIdbv349ixYtQqvVkpqaynXXXReyDuh2u7n55ptJTk5Gr9czZ86cEIsVOtyQaWlp6HQ6zj77bJqbmwf1d7jssss466yzePjhh0lISMBkMvHggw/i8/m45ZZbiI6OJiUlhddff73Lvh9//DFnnHEGALt372bZsmUYjUYiIiKYMWMG27ZtG9SYjlbC4hZmQJSWlvK73/2OrKwsCgsL+frrr1mzZg3Lly8fdKK1KIo0Nzeze/duvvrqK/bs2YNSqWTmzJksX76cGTNmkJycfFQ8Sf9S8Xg8VFdXU1JSwq5duygqKqK5uRmZTMZxxx3Hpk2bUCgUeDweVq9ezdy5c1m4cCHfffcd0OES27x5syRu3eFyuXjhhRd4/vnn+frrrykvL+fZZ59l7NixyOVy7rrrLl577TVefPFF1q9fj9vt5ptvvsHlcuF0OqmtrcXhcEjrawqFgptuugmfz8f333/P3r17ueGGG4iIiJCsSYAXXniBG264gXXr1hEVFcV5552H0WhEpVJRUlLC8uXLOffcc9mzZw/vvfce69ev59prr5X2v/baa9m0aRPvvvsue/bs4fzzz2f58uVSZObmzZu54ooruPbaa9m1axfLli3jz3/+86D/Ft999x21tbV8//33PP3009x3332cdtppREVFsXnzZn73u99x9dVXU11dLe0TCAT47LPPOPPMMwG4+OKLSUlJkTpo3H777SPv+yWGCdMPdu/eLa5cuVJUqVTixRdfLO7du/eQj9ne3i7m5eWJX3/9tfj555+LO3fuFJuamsRAIDAEIz468Xg84kcffSR6PJ4jPZR+43Q6xY0bN4rbtm4T87cWinu37hd3bt0lbt26Tdy6dat43333iTqdTmxtbRXb2tpEhUIhVlRUiK+99po4f/580W63i6tWrRIBsaKiQhRFUVyzZo0IiK2traIoiuLrr78uAuLmzZvF3bt3i9u2bRPvueceMT4+XhpHXFyceOONN4o7duwQ8/PzxaamJjEpKUlctmyZuG3bNnHfvn2ixWIJGfukSZPE+++/X/p59+7dotlsDhnDv//9b7GkpETcvn27uGbNGlGj0Yj/+c9/RFEUxSuuuEL87W9/G3LMH374QZTJZKLT6RQrKipEuVwu1tTUhGxz/PHHi3fccYcoiqK4cuVK8ZRTTgn5/QUXXCBGRkb2eM/LyspEQNy5c2fI+5deeqmYnp4u+v1+6b3c3Fxx0aJF0s8+n0/U6/XSNYiiKG7YsEGMj4+X9jMajeIbb7zR4/mD5zrzzDO7/Z3T6RTz8vJEp9PZ6zGOJOE1tzC9kp+fz1133cWXX37J5ZdfTkFBgRTFNRg8Hg9VVVVUVVVhtVpJTExk4sSJxMfHH7XJoGE6LC+tUocMOSrkqFAjIuLDx4wps3A4HHz44Yc4nU6ysrKIi4vj5JNP5ve//z0ul4tvv/2WjIwM4uLiQsqMdUan0zF79mzp58rKShobG4GOajaNjY2ceeaZTJo0icbGRqqqqhg3bhxqtZrp06d366a+7rrruOaaa/j666854YQTOPfcc7ukDyxcuFBa6wMYO3YshYWFQIf7bs+ePfz73/+Wfi+KIoFAgLKyMkpLS/H7/eTk5IQc0+12S2tl+fn5nH322SG/nzdvHl999VWf9707Dm4/lJCQwMSJE6Wfg/mFDQ0N0nsff/wxp512mrTfjTfeyJVXXslbb73FCSecwPnnny+thY4UwuIWpluqqqq47777+M9//sMVV1xBaWnpoCuIiKJIS0sL5eXl1NbWEhUVRWZmJklJSSPPFTICaWtrw+PxICP04UNAQImS3NSxJMYnsmf7XlrbW5k8aTL79+9Hq9GSlJTE1q1b2bRpE8cddxyBQACr1SrV2BQ7Vf/rLiRf7KY6oEKhYNSoUcTHx6NUKnE4HBQVFZGSktKlVNeVV17JySefzOeff87XX3/NI488wlNPPcUf//jHfl27zWbj6quv5rrrruvyu7S0NPbs2YNcLmf79u1dHs6Ca39DTXf3qbv3OgfbfPLJJzz66KPSz/fffz8XXXQRn3/+OV9++SX33Xcf7777bhcRPpYJr7mFCaG5uZmbb76Z3NxcXC4X+/bt44UXXhiUsPl8PsrLy1m7di2bN29GpVKxZMkSFi5cSHp6eljYjhGCARaKXp6F58ycy7btW9mxfQcLZixCiwGfy8+kSZN4++232bx5M3PmzEGr1RIRESEJQXt7O06ns88cusjISEaNGsXmzZul90RRZP/+/URERKDX6yksLJSS0TuTmprK7373Oz788ENuuukmXn311W6vDzqif4uKiqTKOdOnTycvL4/Ro0d3ealUKqZNm4bf76ehoaHL74PRoOPGjQsZ98HnHG6Ki4upqKjgxBNPDHk/JyeHP/3pT3z99decc8453QahHMuELbcwQEdO0LPPPsvjjz/O3Llz2bBhA9OmTRvUsWw2m1SfT6/Xk5WVRXJycrgVyjHK+vXrOeH4ExF6eRaeM2MuDz5+Pz6fj9nT56D86b/50xfy0BMP4PV6SUtLY/eu3UTHREuuSZ1Oh9/vlwTJ5/Mhl8u7dTFef/31PProo4wZM4axY8fy9NNPS8WOU1JSiI+Pp66ujv379xMTE0NSUhK33norK1asICcnh9bWVtasWdOl5NuDDz5ITEwMCQkJ3HXXXcTGxnLWWWcBcNtttzF37lyuvfZarrzySvR6PXl5eXzzzTe88MIL5OTkcPHFF3PJJZfw1FNPMW3aNBobG1m9ejWTJ0/m1FNP5brrrmPBggU8+eSTnHnmmaxatWrQLsnB8PHHH3PCCSdI9SCdTie33HIL5513HpmZmVRXV7N161bOPffcwzamw0HYcvuFEwgE+Mc//sHo0aP5+OOP+d///sdXX301KGGzWCxs3bqVNWvW4HK5mDt3LkuWLCE9PT0sbMcooiiybu06ZH1MFXNmzsXldpGWmk5szM/J17Onz8Fut5OZnkV6bBbygJLmpmYqKyuBDstNp9NJ0YvBjgwej6eLS/Kmm27i17/+NZdeeinz5s3DaDSGuNFUKhXp6elMmDABv9/Pvn37aGtr4w9/+APjxo1j+fLl5OTk8Le//S3kuI8++ijXX389M2bMwGw28+mnn0pltyZPnsy6desoKipi0aJFTJs2jXvvvVdKdAd4/fXXueSSS7jpppvIzc3lrLPOYuvWrdI63ty5c3n11Vd59tlnmTJlCl9//TV33333QP8Ug6ZzCgB0rMk1NzdzySWXkJOTw69+9StWrFjBAw88cNjGdDgIt7z5BbNt2zb+8Ic/UF9fz5NPPsm555474Nwx8acw/qKiIlpaWkhPTyc7O7tfFeR/iRxrnbjz8/NZsWIF/3z5dUbFJiPn0IN+RMCPFw9ufHhRKBTEx8cTFxeHXC6X2vsEWw0Ntled3W6nqqoKt9tNamoqUVFRIccJ5t21trZiMpkO+bqGkmD5rZ07dx5ShZJg0enq6uougTR9cdlll2GxWLotv+VyuSgrKyMzMzMkreJoImy5/QJpbm7md7/7HYsXL+bkk08mLy+P8847b0ATiPhTZ+YffviBLVu2EBUVxYknnsikSZPCwjaCWLVqFXKZok/LbSAIgAIlOgzoiUDwyamrrWPPnj2SRRcREYFarcblcmG1WqWakwNBr9eTm5tLcnIylZWVFBUVSYEsxwrz589n/vz5g96/paWFp59+ekDC9sMPP2AwGEIiRI9Fwr6iXxCBQIDXXnuN22+/nblz57Jnz54+S/EcjCiK1NTUUFRUhMfjITs7m4yMjGPCCgkzcL788ksiiKJDkoYeOXK06BDR4hHdNDc143Q6pRB/lUqF1+uVGrOq1eoBNV8VBIHY2FhMJhO1tbXk5eWRkJBwVHeQBkhJSZGSwNVq9aCPk5OT0yVNoS9mzpwpFWoerojPw0FY3H4hbN26lT/84Q80Njby+uuvc/rppw/YUmtoaCAvL09q7BjuVjyycblcrFv3PXMTFw/7uQQEVKjx4AqZUAVBkOpLBpuyBrtuD6SJrEKhIC0tjdjYWCorK9m3bx+TJ08mEAgclWXcFArFgB88hwqtVnvEzj2UhMVthGO327nzzjt59dVXueWWW7j99tsH3HqmpaWFvLw8rFYrOTk5ZGRkhEXtF8APP/yA2+3CxKFV5+8vXtyIiN260IK5XMHCzZ1FbiBrcjqdjtzcXKnrd1NTExkZGeG+bSOQsLiNYH744Qcuv/xyEhIS2LVr14DdE1arlby8PBobG8nOzmbOnDlh92MfiD9VlA8EAgQCAURRlCpaiKKIzWYDOu5tcFKWyWQIgiD9e7ABFEPNqlWr0CkMaNH3vfEhIiLiEdxER0X3KjSdLTmPx4PT6ZRETqFQ9Ou+CYIgdQGvrq5m//79pKSkEBsbe1Tc9zBDQ1jcRiAOh0Oy1h566CGuv/76AVlaTqeTgoICqqurSUtL44QTTjhqI6IOF6Io4vF4pLWf4Mvtdnf5+eCE5M4C5vP5ANi0aVOI8B28vUqlQqPRdHmp1eqQfw+2WHV/+OKzL4j0Dd2E78GNGxciAeTI0aBD/tMU5MNLQAyEtMFpaWmhtrZWEq+UlBSp44QgCFKTWo1Gg8lkwu/3o9VqMRqN0jH27NnTpXNAcnIyo0aNQqFQkJGRQVRUFOXl5bS2toatuBFEWNxGGOvXr+fyyy8nPj6eHTt2kJub2+99A4EApaWlFBQUkJiYyLJly47pBeWB4vf7aW9vx2Kx0N7e3kW0RFFEqVSGCIxGoyEmJqZb0QkKWmeCqQAnnXRSiBXcWegOFlG3243T6aS1tVX6OdhnKxhgETy3wWDAZDJhMpkOycquqakhvzCficwZ9DE648WDC4ckaB7cOLB1REsiwyO4MRqMUqRtsM1NUNBaWlo4cOAA48ePl9zqarWa1NRU1Gq19LcL9prT6XSS8CclJREXFyeN5eAHgsjISCZMmEBVVRX79+8nNTWVmJiYsBV3jBMWtxGCw+Hgrrvu4pVXXhmUtdbY2MiePXukBpSH2gX5aMfv99PW1kZbWxsWiwWLxYLVakWhUGAymYiMjCQuLq6LtTRca42d3ZIKhaLPdIpAIBBiNXYWwLKyMpxOJ3q9nsjISEnsIiMj+22VfP311wgIRBM/FJeHBxcq1KjoiPzToMOGBy8e5Mjxi76QCMb6+noiIyMlSy45OZn29nYaGhpIT08H6NLEU61Ws2/fPtLT07FarZK3QS6X9yn0CoWCzMxMLBYLFRUVtLa2kp6eHrbijmHC4jYC2LVrFxdeeCHR0dEDttacTif79++nvr6esWPHkpmZOayuriNBUMgsFov0/+CaV3Dyz83NxWQyodVqj4kndplMhlar7TE4yO12S9faWfB0Ol2I2JlMpm4n8K+++gqTIgaVf/Bh6EFERPz4UfGzazuY6+bHhx9fF3ei3W7vElgSEREhNTc9mEAgQGNjI4FAQCqe7HQ6SUhIoKWlhbq6OlQqFdHR0SQkJPT4NzaZTBgMBsmKS09PJzo6+tBuQJgjQljcjmFEUeSll16SoiDvvPPOflsWgUCAkpISCgsLGTVqFMcff/yIWVfzer00NjZSX18fImTBSf1YE7LBoFariY+Plxp3Qke7oaCVarFYKC8vx+FwSIIXFxdHYmIiSqWSVV99TbRv1JCkt4l0JF8fXJtSQIYfLwH8pCamhPwtvF5vSMm2YBJ2Y2Oj5JKFjsCc6upqRFFEoVCQmprK3r17O84rilgsFinQxOv1smvXLkwmU8ja3sHExsaSmZlJa2sr5eXlWK1WUlNTR9xD30gnLG4/cdlll/Hmm2/yyCOPcPvtt0vvf/TRR5x99tlYrVaioqJ46623uPDCC6XfX3jhhbz33nuUlZWRkZEhvZ+RkcGvf/1rHnrooWEZr8Vi4corr2TTpk18+eWXLF7c/1yk1tZWdu7cCTBiXJBOpxOz2YzZbKapqQmdTkdiYiJjx47FZDKh0WhGrJD1F5VK1avgVVVVsWfPHhQKBSedfCL2LSKeyuEdk0gApVJJVFRUj9tUVlYyblwuDoerx22GEp1OQ35+IWlpaeh0OkpLS8nPzyc7O7vXB8AXX3yRJ554ArPZzJQpU3j++edD+tMdzPvvv88999xDeXk5Y8aM4bHHHuOUU06hrKyM5uZmKfAlSGtrKyUlJcycOROr1Sr1nDuYKVOmhKOaCYtbCBqNhscee4yrr766y5fNYDAwc+ZM1q5dGyJua9euJTU1lbVr13LZZZcBUFZWRkVFBccdd9ywjHPLli1ccMEFjBs3jl27doUslveG3++nsLCQ0tJScnJyGD169DH7NBp8Kq+vr8dsNtPe3k50dDSJiYlMmjTpFxUIcyh0FrycnBzcbjevvvoqo7NHM+2c6bisbhqLW1Co5B1W3CAq0Qo/mX8ioVGhAfxSXtvBn8Ng0jZ01Ed0OFz864UExo0Z3jWw/GIPl1xbT1NTE2lpaajVanJzc6XqJunp6V3W+gDee+89brzxRl5++WXmzJnDM888w8knn0xhYWHIw0SQjRs3snLlSh555BFOO+003nnnHc466yx27NiBXq9HEATMZjNxcXG9Fh2fOHFiF29NuEh5B+G70IkTTjiBAwcO8Mgjj/D44493+f2yZcv48MMPpZ/z8/NxuVxcf/31IeK2du1a1Go18+bNG9LxiaLIX//6V+655x4eeOABbrzxxn6LU9Bak8lkLF68mIiIiCEd2+HA7/dL7kaz2YzP5yMhIYHs7GwSEhLCi/9DgFqt5p1/v0PJ5iqmKUtInpjAxBNy0BjVRCVFgF/AY/fidngQ/f1TOgGhI2gEH0o6/kYi4MOHIAjdPpzp9Xra29tD1t3GjVExffLhd53LZDJSUlIwGo2UlZXR3t5OWlpaiKg8/fTTXHXVVVx++eUAvPzyy3z++ef885//DPEEBXn22WdZvnw5t9xyCwAPPfSQ1EbntttuIyIiArfbjdlsJiUlpcexKRSKsJj1wLH52D5MyOVyHn74YZ5//nmqq6u7/H7ZsmUUFhZSV1cHwJo1a1i4cCHHHXcca9eulbZbs2YN8+bNG9I1rNbWVs444wyee+45Vq9ezc0339wvYfP7/eTl5bFhwwaSk5OPOWHzeDxUVFSwefNmvvzyS/bu3YtMJmPatGmsWLGCmTNnkpqaGha2IaKtrY0tW7YQLcbj9wao3FnH1v+3F1uzA2ujHZ/bjzZSQ2xGFKbkCHQmDTJl359DFRo8uPHgxo8fF3ZAlDoBlJWVhXznEhISaG9vx2w2d2k+eqSIjIxk/PjxuN1u8vPzpSLMHo+H7du3c8IJJ0jbymQyTjjhBDZt2tTtsTZt2hSyPcDJJ58sbS8IAsnJydTX13fJ0wvTP8KSfxBnn302U6dO5b777uO1114L+d2CBQtQqVSsXbuWlStXsnbtWpYsWcKMGTNoamqSWkCsW7eOK664YsjGlJ+fzxlnnMG4cePYuXNnr+sTnTlWrTVRFGlqaqKiooK6ujoiIiIYNWoU48aNw2g0/uLXzoaT1atX4w/4iaFrCSyfx4/D48TR6kSmkKHSKVHrVeijdXhdXpztbtx2T7euSyUqREQpiTsYXBIM7Dh4AjcYDGRmZlJbW0tZWdnQX+ggUalUkpuyoKCAzMxMHA4Hfr+/S3RnQkICBQUF3R7HbDZ3u73ZbJZ+joqKQqfTUVtbG7Ke35k9e/Z0Gd/EiRMHcWUjj7C4dcNjjz3Gcccdx8033xzyvk6nY9asWZK4rVu3jltuuQWFQsH8+fNZu3YtoihSWVnJsmXLhmQsX3zxBRdddBHXXnstDz74YL+sNVEUKS4upqioiDFjxjBmzJhjYm3N7XZTWVlJRUUFXq+X1NRUli5dGhIiHmZ4WbVqFREKE1p/7yW3Ar4ArnY3rnY3glxAa1Sjj9ZhjNPjsrpxtrvxe/wh+wTz3ERE7EI70dExksXdXfpKdHQ00dHRR53lErSqtFotpaWlw/qwlZKSQmFhYY8ta8aOHRvy3Q4/+P1MWNy6Idjn7I477pDW0YIsW7aM9957j/379+N0Opk+fToAS5YsYc2aNQQCAXQ6HXPmHFplB1EUefLJJ3nggQf4xz/+ERLE0htut5vt27djt9tZsGBBv628I0XQSisvL8dsNhMdHc3YsWMZNWpUuDjzYUYURank1kBSAES/iMPiwmFxodQq0UaoiU6JxOv2dVhzNneINdddqa1jkejoaDQaDfn5+cjlcmm5Ikh9fX2P15iYmEh9fX2f2xuNRiIjI6mpqek2kEWlUoXX3Hrg6H+cP0I8+uijfPrpp1185suWLaO4uJh33nmHhQsXShPw4sWLWbduHWvXrpXcl4PF5XJxySWX8Oyzz7Ju3bp+C1tjYyNr1qxBqVSydOnSo1rYfD4f5eXlrFmzhm3btqHT6Vi2bBkLFiwgJSUlLGxHgKKiIqprq7t1SfYXr9NLe72NpopW3DYP+igNMelR6KK0CHIBEfAILiIiIgbcneJw4vF4+tUcVafTMXnyZCZMmMB///tfycoMBAKsXr26x6CyefPmsXr16pD3vvnmm263T05OxmKxYLfbB3Elv1zCkt8DkyZN4uKLL+a5554LeX/+/Pmo1Wqef/557rrrLun92bNn09DQwMcff8wdd9wx6PPW1tZy9tlnI5PJ2LZtW7+ebkVRpLCwkAMHDjBx4kTS09OPWveE0+mkrKyM8vJytFot2dnZYTE7Sujoui0nKtC/1JLeEP0izjYXzjYXKp0SbaQGfVQUTpsLT5tjUFZbfvHwuyeD53C73TgcDrRabZ8ufaVSye23385ll13G2LFjWbFiBa+++ip2u12KnrzkkktITk7mkUceAeD6669nyZIlPPXUU5x66qm8++67bNu2jVdeeaXL8XU6HTExMV0sPeh4SDxYhOVy+TGxDDHchMWtFx588EHee++9kPc0Gg1z585l3bp1LF26VHpfrVYzd+5c1q5dO+j1tl27dnHqqady4okn8vLLL/cr2tLpdLJjxw5cLheLFi2SqqYfbVgsFoqLizGbzcTHxzNr1qxwi5GjjC+//Ioo4pALQzsteBxePA4vcpUcZaSc5ORkBEHA4/H0q71PbGwsOp2GS67tOrkPBzqdhvT0dKlFkU6n69P1t3LlSpqamnjsscd46KGHmDRpEl999ZW0VlZZWRkiOPPnz+edd97h7rvv5s4772TMmDF89NFHTJw4sdsAmqSkJFpaWrq8v2/fvi7vjR07NpznCQhif2zvMMPO2rVrOeuss7jtttu4/fbb+zXpNzU1sXXrVhISEpg8efJR6Xu32Wzk5+dTX19Peno6WVlZUu2/XyLBrgCnnHLKUVVFwu12YzKZSHGNIUMIDe6IS4/mty9dTEJsInIGb2H78WHHSmZmJnq9HrfbjUwmkxqO9kZlZSVNTU2DPvdAiI2NJS0tDVEUpeLUWq0Wtbp/dTbb2tooKSkhOTm5x0CQYx2XyyVFhx+tZfuOvtnwF8gHH3zApZdeygsvvCC5MfqivLycffv2MXHixB7DhI8kLpeLwsJCKisrSU1N5fjjjz+q11h+6axfvx6Xy3VI62194cGNStlRvFgQBNRqNW63G7vdjkKhkBqOdkdaWhppaWnDNrbuEARBGpPdbpf6xfX14BkZGUlubi7FxcV4vV7JUg1zeAmL2xEmWPj4vffe47TTTutz+0AgwL59+6ipqTkq60J6vV6Ki4spLS0lPj4+HMp/jNDRdVuPwTc8bu0AAbx4SE1MlSb6oHioVCrcbjc2mw2lUjmsrYUGg0KhwGAw4HA4sNls6PX6Pte09Ho9Y8eOpaioCJ/Pd1Svg49UwuJ2hBBFkfvvv5/nn3+er7/+mvnz5/e5j8fjYevWrXg8HpYsWdJnz6/Did/vp6ysjKKiIiIjI4+JNIQwP/PF50PbdftgPLiQy+TdPowF2/eo1WpcLhdWq1XqRH60BEbI5fIQgevPOpxGo2Hs2LEUFxdz4MABsrKyjirRHumExe0I4Pf7+f3vf88XX3zB+vXrGT9+fJ/7tLe3s3nzZiIjI5kzZ85Rs74WCASoqqqioKAAtVrNzJkziYuLCz+lHkPU1dWxP28/E+m5gv2hICLixUNCfEKvk7tMJkOn06FWq3E6nbS3t0udxo8GkRMEAZ1OJ1mZOp2uz5SfYEWTAwcOSEUVjpbv7kgnfJcPMx6Ph5UrV5Kfn8/GjRtJTU3tcx+z2cz27dvJzs4mNzf3qBAOURQxm83k5eUhiiITJkwIry0co/zcdfvQ1ts8uKXyWnLkaNAhR4EHNwh0qY7f0tJCbW0tbrcbjUZDSkoKkZGRkpVkNptxu90oFAosFgt+v5+kpKSQSECfz0dlZSUWiwVBEIiKiiI1NXVYO6YHLUqHw0EgEECtVvf6uVcoFOTk5FBaWkpBQQE5OTnhWqiHgbC4HUbcbjfnnXcedXV1/PDDD91WHDiYiooK9u7dy/Tp00lKSjoMo+yb5uZm9u/fj8PhIDc3l/T09KPiyfpoIhAIEAgEEEVR+r8oilIirtPpxO/3IwiC9JLJZEfEbTUUXbe9eHDhCBE0Bzb0ROAV3MTExIRM6DabjdLSUknQWlpaOHDgAOPHj5cCj5RKJUqlUqp87/P5qKurIyMjQ4quLC0txev1kpOTgyiKlJeXU1FRQVZW1qHdlD5QqVTI5XJsNhuBQKDPQBOZTEZ2djbl5eUUFhaSm5sbFrhhJixuhwmXy8U555xDc3Mz3377LSaTqdftRVGkqKiIkpIS5s2b1y8hHG58Ph/79++nqqqKMWPGkJ2d/Ytzsfh8Pik8vPPr4Pe8Xm+vx1mzZk2378vlcjQaTchLrVZ3eS/YXfpQCQQCrPpqFZG+hEPquu3BJdWOBNCgw/aT4AXEQJeQ+Pr6eiIjI6Vk7uTkZNrb22loaCA9PR0g5DMfDMsPBALY7XaMRiMej4f29nbGjRsnpZekpaVRXFxMSkrKsIuHXC7HaDRis9mw2+1SH7aeEASBjIwMKioqKCwsJCcnp9/pBWEGzi9rZjpCOJ1OzjzzTGw2G19//XWfidaiKLJ3715qa2tZuHDhUVHNv7GxkV27dkllskZyrlrQwmpra8NisdDW1obT6cTlcuHz+STXVGfR0ev1xMTESO+p1WrkcrlkkQWtM5/PxxdffMGKFStQKpUhVp3f78fj8XQRTIvFEvKz3++X8sM0Gg0RERGYTCZMJhNGo3FAVvQXX3xBq6UVFXpaxAZMxCITBmaFi4j48aPi53wnAVCgxIeXyMjILmkgdru9i+BFRERgsVi6P0en5rTZ2dlYrVb8fj9yuTzksxj8rtjt9sNiGclkMgwGA3a7vV+RlIIgkJ6eTmVlpWTBhQVueAiL2zDjcrk4++yzMZvNvPDCC30Kld/vZ8eOHbS1tbF48eIjHhHZ2VobP348mZmZI2pdLShkQRGzWCzS+k5QNEaNGoVer5eES6VSHfI9CIpdZzdkMAy+t8+IKIr4fD5JAIOBF1VVVezduxdRFEPELjIykoiIiB4n3GeffRZBkNOqaKXe+z1ylMSI8cQyijiSUAp9C4T4U1Vk4aBSteJP/3VXasvr9Xax+pVKZReL12KxUFpaSiAQQKlUMnr0aPR6PV6vF6vVyqhRoySRg477qlAo+rSch5KDBc5gMPQpcAkJCXg8nrDADSNhcRtG3G435557LhaLhW+//Za9e/eyY8cOpk+f3u3k6PV62bJlCz6fj0WLFh3xD3xTUxM7d+5Eq9WOGGvN6XTS3NwcImaBQACj0YjJZCI5OZkJEyZgNBqPyrBtQRCktaiD8weD5aKC11VVVcW+ffsIBAKS4EVGRhIdHS31xduyZSvRMTlMmvJ/2Kx1NDUV0NJYQJ51GwIyYsQEpomz6LZJWx/48UsT/2AxGo2MHz+esrIySkpKpB5qCoWCxsZGqQuHWq2WSnkVFhbS1NREdHT0oM4ZrFAyEARBQK/X43Q6sVqtGAyGHj8/QQs8IyOD2tpaioqKwmtww0BY3IYJj8fD+eefT2NjI998842U+7Vhw4ZuBc7tdrNp0ybUajULFiw4omtZPp+PvLw8Kisrj3lrrbM7y2w2097eTmRkZIiQ9WbZHEsIgoDRaMRoNJKSkgJ0tUxramrYt28fKpUKg8FAVlYmbm8mgiDDGJGMMSKZzKzjcbvbaajfS0PdLorYjQsnbpyoUCNHGbI8J/z0k0hAes+PD5EAWo2u28+OUqnE5/OFvOf1eruU4ZLL5dTU1DBj5gycDucQ3ane0eq0FOQXDEjg7r//fh544IGQ93Jzc7s0K3W73TidTgwGA//73/+45557KCsrIy0tjSeffJIzzzxzSK4hTFjchoVAIMCll15KdXU1q1evltbYNBpNtwLncrnYuHEjRqORGTNmHNGJdiRYa36/n8bGRsxmM/X19fh8PhISEsjOziYhIeEX9YQsCAIGgwGDwSAJnt/vp6mpiY8++ohrr70Wo9FEZZWD0jIr5RV2XC4/anUEqWkLSE1bQITBg0KhwS8EcIg2BGQoUaFChQw5AgJy5PjxoaTj3npwA/SYyK/X62lvbw9Zd2tvb+/WymtqasLpcHLGwzOJzRreajdNpVY+uXMbTU1NA7beJkyYwLfffgsgrY36fD7pQbWzsG3ZsoWVK1fyyCOPcOqpp/LSSy9x3nnnsXXrVqZOnTrUl/WLJCxuQ4woivzpT39i27ZtbNiwocuX+2CBGz9+PBs3bsRkMjFt2rQjJmydrbVx48aRlZV1TFlrLpdLss4aGxtRq9UkJiYyffp0YmJiRoRlNlTI5XISEhJ47rnnKC2t44yz7iEr08jUKdGceHwSdXVOSsutlJbZsFg8qLUmFAoNOl1MR0K2x4HX6+ioOoLipyhJDU7syJAjQ4YXDzKZTKpIUlZWhlKplAQ2ISGBwsJCzGYzkZGRtLa24nA4pDqpfr+furo6TCaT1CMtNstI4jjTkbhl/UKhUISsLwaTvQ0GA36/XxI2hULBs88+y/Lly7nlllsAeO655/jhhx949NFHeeedd8Kf1yEgLG5DzGOPPcZ7773Hxo0buyStBgkK3A8//MB3330nTcJHSkyC1ppGo2Hp0qXHTLsMp9NJVVUVZrMZi8WCyWQiMTGRcePGSWtKYbonEAhQVFRMQuIMGpvcNDa52by1CYNeQWaGgcxMI/PmxGG1emlo9CKTddxLuVyFXKtC1ETi8znxehw4/XYEZChQSkncAGPGjJHcjEGBCmIwGMjMzKS2tpaamho0Gg2jR4+WoiqDHo2SkhJKSkoO450ZPMXFxSQlJaHRaJg3bx6PPPIICQkJ2Gw2AEnYADZt2sSNN94o7SsIAqeffjrvv/8+paWlZGdnhz+/h0hY3IaQ119/nUceeYR169YNKIn0SHUdEkWR/Px8SktLjxlrLRAIUF9fT0VFBQ0NDcTFxZGens7s2bOP2tYbRyOrV6/G5/MSHZMT8r7N7mPvfgt791tQKgVSU/RMmhSDXq8gMlKFzyfD5e4QL6VSh1KpI+D34vHY8HodBJPlRo0aFRLwkpsb2kYHIDo6usegD5lMxujRo4EOK+5oZ86cObzxxhvk5uZSV1fHAw88wKJFi9i+fXu36+dms7lLKsSoUaNobW3F7XZTUVERLrZ8iITFbYj47LPP+OMf/8inn37ap8/c7XazYcMGoqOjJbdkb1GUw4HX62XHjh1YrVaWLFly1FfudzgcVFRUUFlZCUB6ejqTJ08+4qkSxyqvvPIKgiDDFNXzQ5jXK1JaZsNqCzBlciZRLj9GowqDQcDt9uN0+vH6AsjkSjTaKNTqSJzOFvx+N3Fxh97N+1hixYoV0r8nT57MnDlzSE9P5z//+Q/XXHMNfr9fclH2FSw2ZswYCgoKqK2tJTk5ebiHPmIJi9sQsHHjRlauXMmbb77ZZxduj8fDhg0biIyMlMSstyjK4cBut7N582Y0Gg2LFy8+agMsRFGkqamJ0tJSGhoaiI+PZ+rUqcTHx4efaA+Rdeu+JyIyDYWin+kmIrjdfrw+NwqFDK1Wjsmkwu8XcTh9uF1+EAQCAa+UC/hLRqvVkp2dTXV1tVQ+DJAqmSQmJlJfH9pZvL6+nsTERFQqFWPGjKGwsBClUtnj8kaY3gmvWh4i+fn5nHbaaTzxxBOce+65vW7r8/n48ccfMRgMISIWXIOzWCzs2LFjWN2UjY2NrFu3jvj4eObOnXtUTEJ79+7lV7/6FTOmzaC+vh6/3095eTlr1qxh27ZtGI1GTjjhBObMmUNCQkJY2A4Rm81GU1MjMbFdXYX9wecLYLV6aWp24XT50esUxMRo0GpBJhP6VQx8JON2u2lsbKS8vDzE8gp2OLDb7cydO5fVq1eH7PfNN98wb948oEMcR48eTXV1NS0tLYd1/COFsOV2CLS0tHD66adzzTXX8Lvf/a7XbQOBAFu3bkUul3cb7t9TmsBQIYoiZWVl5OXlMWnSJKl+35Fk165dPPjAg/zvo/+hVxhR6ZX897//JSMjA41GQ3Z2NikpKUdlMvWxzCuvvIIoikRH5/S9cS+IIjidPpxOHyqVDLWqw12sUChCqoYMFU2l1iE93lCe4+abb+b0008nMTGR8vJynnjiCeRyOStXrgTgkksuITk5mUceeQRRFLnqqqs45ZRTeOqppzj11FN599132bZtG6+88op0zI48xCxKS0tRq9XHZFrOkSQsboPE5/Pxq1/9ikmTJvHQQw/1uq0oiuzcuRO3282CBQt6/NIPl8AFAgH27NmD2Wxm/vz5g67cMFQUFBRw22238cknn2BQRDBZPZcVZ5zM1LPGUXSgkOXLlx/TieNHO//v//0/FAotBmPXsliDxWF30NzULAVBDGXD0djYWLQ6LZ/cuW2IRts7Wp12wB3uq6urWblyJc3NzcTFxbFw4UJ+/PFHae2xsrJSug8ajYb58+fzj3/8g4cffpg777yTMWPG8NFHHzFx4sSQ45pMJpKSkqSOCQcnuYfpmbC4DZIbb7yRhoYGPvrooz6/vHl5ebS0tLBo0aI+P5xDLXBut5utW7fi8/lYsmRJlwK2h5PGxkbuv/9+Xn7572hlOibKZ3P8iccz+1eTsTbY+OSR1byf9zoymYy77777iI1zpLN7915iYnMRBlgguTc8HquU1yYIgtRVeygajqalpVGQX0BTU9OQjVcURakQtlarDQnyGEz5rTfffDMkj+1g1q5dK/072PT03HPP5ZxzzsFgMPT6HU9ISMDpdHLgwAFyc3PDOXD9JCxug+DVV1/lnXfeYevWrX3mhB04cIDKykoWLVrU71D1oRK4trY2Nm/eTFRUFHPnzj1iJb1cLhfPPfccDz34EB6Xl9HiBJbNPZ55F08n4A+w7u9bKN1cBUCimM7TTz3Nn/70p7AbZhjYt28fLpeDzJhDc0l2xu/34Pd7SExMlD6nwWr9wSLPVqtVErnBfJbT0tIGLDh9EWyj43K5+tVVuyc6Vx7p73csWIvSZrPhcDjQ6bovUxbcNj09ncLCQioqKsjIyAh7NfpB+BFggPzwww/ccMMNfPDBB2RmZva6bVVVFYWFhcybN2/AidGHGmRSW1vLDz/8QHp6OjNnzjxiwvbpp58yNncsd9x+ByZ7AhdMupybn7yBRZfNZPt/9/Gf6z+ThA0gnRza2tp49dVXj8h4RzovvPACANExY4bsmB63DUEQum2mq1AoMBgM6HQ6vF4v7e3tuN3uI5bb2Zlg6yK9Xo/D4cDpdA54XIMRts7n1+v1UvWS3s4dbHba3t7eJcoyTPeExW0AVFRUcO655/LUU0+xdOnSXrdtbGxk9+7dzJo1q8/GpD0xGIETRZGCggJ27tzJjBkzyM3NPSJPeQcOHOCUU07ljDPOwF7t5qzRF3H7Q7dw6k3LKF5fzlt/+IT81SWIgdBr0gp6EknlsUcfw+12H/Zxj3RWrVqF3pCISjU0VWgCAT8+n5OoqKhe3WVKpRKDwYBWq8XtdmO1WvF4PEeFyAU7LHi9Xux2e7/HdCjCFkQmk0ktfPr6vKtUKkaPHk1tbS1tbW2DOt8vibBbsp84HA7OPPNMzjvvvD4jI+12O9u2bWPSpEmHnKMyEBelKIrs2bOH+vp6Fi1adESanLpcLv785z/z+GOPo0LNksQVnH7JctKnJ7Pn8wK+eHQdHkfvvbbSxVx+rP+Gt956iyuvvPIwjXzk4/P5qKysIiVt4cD39btxOJoQRbEjaVsTiVyuwuPpiC482GXY0tJCbW0tbrcbjUZDSkoKkZGRqFQqFAoFDQ0NeL1evF4vFosFtVpNcnJyiGtwz549Xcp2JScnM2rUqEFcfe/I5XIMBgMOh6NfTUeHQtg6nzvoopTL5b2uy+v1etLT06WqQuGqPD0TFrd+ct1112E0Gnn22Wd73c7r9bJ582ZSUlKGLNy+PwIXjMgMBq4cicCRH3/8kUt+fQmlpaWki7mceeqZzLt4OsXry3n79x9jb+1fyxK9EEE8yfzlz3/hsssuO6Ltf44kGzdu5F//+hcpKSnSKy0tjczMzEFFzb333nsEAv4BpwA0NxXh8+agVI5CqdTi8dhwOprQ6eLxehwYjcaQv5HNZqO0tFQStJaWFinaT6vVEggEaG9vJzY2FoPBgEajwW63U1JSwrhx40LOnZSUFFLtZDiDKYJWlN1ul5KtuzvfUApbEIVCgU6nw26399lLMCYmBofDId2vcIBJ9/wyZ40B8u9//5uPPvqIXbt29TqpiKLIjh070Gg0TJgwYUjH0JvABQIBqXv3woULD/vTnMvl4r777uPJJ54kUhbFifFnc/ofT8QQo+Pzv6ylZv/A1wjSxVy2VKzmgw8+4MILLxzS8ba3tx9yE83DwZ9u+BM7t+1CIVfg9Dmk9xUKBVmZ2UyeMonx48czadIkpk2b1mdt0H/961/IZEoiTQMLzKir3YZcfi5KpQaZXIFGY8Jmc+FyWwCxi9VWX19PZGSkVCE/OTmZ9vZ2GhoapDy4nJyfBdbv9yMIAiqVCqfTGfJg1pclM9QE18GCFtzBXbWHQ9iCqFQq/H4/dru9z27eycnJ2Gw2qqqqjoqc1aORsLj1QVFREddccw3/+c9/pHYdPVFQUIDVamXx4sXD8jTVncCJosi2bduw2+0sXLjwsHfvLi8v5+STTqakpIQsJnDa8tOZ/3/TKFhTymd/XoPX5ev7IAchiiIuHCgEFb/97e/41a9+dUj3UxRFCgsL+fzzz/ns089Yv2E90VHRVFRWDPuDgCiKiKJIIBBAFEWczg7r1ev1IggCgiBI13awMNXV1ZEsZjLaPwk/ftw4ceHA7mvHXmxlTckPfP7RF5LwGfQGpkyZwpy5c1i8eDGLFi0KyWnc/ONmoqKzkcn6/7UPBHw47A2h+wggV6jxeR1otdouXgK73d6lKHBERAQWi6Xbc8jlcgRBwGKxoFQqEUVROqbZbKaurg6VSkV0dPRhqVATDNU/WOCGU9iCaDQa/H4/DocDvV7f47XKZDKysrLIy8vDaDQe8dzVo5GwuPWCy+Xiggsu4Le//S2nnnpqr9vW1NRQWlrKokWLhrWkVWeB2759uxRqvWDBgiNSSuvHH3+kqLiIhQknsvKP52GM0/P5w2up2Tdwa00URRqoplQowC62YTQkY7XWcP/99/Pggw8O+HgFBQX85z//4e233qa0rBSFTEEUcaQERlPeWMD69es54YQTBjVOt9sthZEf/Or8fk/BCd98802X99RqNRqNBo1Gg1qtZsnSJciaNKhbDdhbnThanDgsTqL9P63jioAf3LiwYsFqt3BgYwW7tu7h6aefBmD8uPFcdPFFXH755bS1tzEmd8mArtXrdSCKgW7c4B2V+rsrteX1ertM/kqlEq+3+7XWQCBAdXU1Go0Go9GIw+HAarWSmJiIVqtFLpdjs9moqanB6/UelvJeBwucUqnE7XYPq7AFz6vX67FarTidzl4Lg6vVajIyMigvL0ev1x/2B9ujnbC49cLNN9+MSqXi4Ycf7nU7i8XCzp07mTlz5mEJ4tBoNMydO5c1a9Ygl8s5/vjjj1iNyHPOOYerrvotxx23jKI1FXz2l4Fba6Io0oyZYmEfdrGN6Kgx5GRdSGRkOju2vsTTT/+V+++/v1/WW11dHf/+9795619vsWfvHlRyNbH+UUxhPtGBeOSCAhGRekUVq1at6lPcPB4PbW1tWCwWLBYLbW1tOBwORFFEqVRKQhQUpdjY2JD3glaJTCZDEAS8Xi/ffPMNJ554IgqFQrLqAoGAJIputxuLxUJkZCTpmVlERUWhi9Kii9QgyATsLQ4aS1tpKG2msaSFhpIW1M0aYvmp4ogPnNhppYna/DLuvvtuWltbgSFKARA7ctsEQTjkz3sgEJD6taWnp0uBHR6Ph0AggFwuR6vVotPpkMlkVFRUkJycfFjWmYICZ7PZcLvd6HS6w7L+2zkHzu129ypaUVFRWK1WSkpKGDt2bHj9rRNhceuBDz/8kLfffpudO3f2Khxer5etW7eSk5MT0oV3OAkEAuzbtw+DwYDP52Pv3r1HpNmp3W5n165dnHnmGdxz9z007bKSK0wd0DGsooVi9tJCPaaIDKbnXERk5M9rOBlZx7Fn15s888wzIc0dO+PxePj000957bV/smrVKgQEYsVEJjOPGH8iciF0cV4QBEy+WL74/AueeOKJkON0FjGLxSIl2EZGRmIymUhPT0ev10vCNViUSmWXtaTOSesFBQW8+OKLzGAJUUJHQIUgE9BFaohINBCXGU1cdjTZc1KJSonEZXXTWNohdB2C14y2SU+b2ETCmBhWrVqFWmNCpxtYWSmlUocgyEIsUJ/PBaKIpoegJaVSic8X+oDj9Xq7XG8gEKC0tBSPx0Nubq50P4MVThQKhWTFNTY2Ul9fL20/nFZK5wolHo8Hv9+PQqHA5XKhUCgOi4DI5XIpwEQul/cqqikpKRQUFFBTU/OLL1rdmbC4dUNZWRlXXHEF//jHP3pN1BZFkV27dmEwGBgzZuiSYnsjEAiwbds2nE4nCxYswO/3H9Z2ORBahDk1NZU5c+ZQVFTEjbtuJE5MIlroO/3BI7o4wH5qKUeriWZizq+JjRvXZfzRMbno9Qn8+c9/6SJu1dXVvPjii/z95b/TamklShFLTmAyCaSiFFTBvpndEkMCRSW7yMvLw+Px0NjYKAmZyWTqsJrS0zGZTEfEKq6rqwNAzc8CIgZE7K1O7K1O6vIbpfcVKjmxmVHEZUUTnx1D5qwUolMjcdk87MvPQW/U89STTw+qC4BMpkCnjycQ+Fms3O6O8P+e1nn0ej3t7e0h627t7e0hATxBYXO73eTk5HQ7eQetuOLiYqZMnYrL2b9o20NFo9VSWFAglb0yGAzI5fIeg0wAvv/+e5544gm2b99OXV0d//vf/zjrrLOk34uiyH333cerr76KxWJhwYIFvPTSS73OG0qlkjfeeIO//vWv1NfXM2XKFJ5//nlmz54dst3B62+DzasdaYTF7SACgQCXXHIJF154Ieedd16v25aXl9PS0sLSpUsPm6js3LkTm83GwoULpaf/w9kPzufzsWPHDiwWC3PmzJHCtK+//nr+9+H/2PHjDmb5jkchdB/hFhADVFNKKftBLmdM9qkkpczpMchBEAQyso5j/97/8Prrr3P55ZezdetWnn76ad5//33kKEj0p5HLLAz+iF4FDUAbqSFjZjLLZy0idepNFBQUMGbMGKZMmXLEhKw7guKmou+AF5/Hj7mwCXPhz7UX5So5ERlahCkOzjrrLF79xytUVbdSVe2ntMyGxeLp5YihjEqaid/vxut1IQt4CQQ6XJLB4sJlZWUolUop4CohIYHCwkLMZjORkZG0trbicDjIyMgAfhY2h8MhddsOrsfJ5XJkMhk2m00Ki29pacHldBJ37Xmokoe3t5mnpoHGFz6gtraWiIiIkDW27oJMgtjtdqZMmcJvfvMbzjnnnC7Hffzxx3nuued48803yczM5J577uHkk08mLy+vx6Cm9957j9tuu41nnnmGWbNm8fe//52TTz6ZwsLCLvmzGo2G9PR0ysvLmTBhQrjAMmFx68Jzzz1HXV0dX331Va/btbW1sX//fubOnXtYFnKDVmLwqa/zJDzc7XKCOBwONm/ejEqlYunSpSFjkMlk/OutfzFxwkSK/LsZz8wu+7eKjRQKu7GJFpKSZpE5+mRUqr7rR8bFT0SjjebOO+8iNzeXBQsWYFBEkO2fSBIZPQppkOi0SDJnpZA5K4X40TE0HGimbEs1//zPP5g0ZzzvvvvuwG/GMGM2m1HKVSgCg/uK+j1+9hfuI79oO16vl3XrvmflxfcxOjuKeXPisNq8lJbZKCuzUVvnoLeiHDGxOSiUWrxeG6InAEBubq40gR6caG0wGMjMzKS2tpaamho0Gg2jR4+WIiCDidvQUVS8M7m5uRiNRgRBkBLBg2tyquR41JldS3wNB90Fj3QOMjk4D27FihUh3bg7I4oizzzzDHfffTdnnnkm0JGWkZCQwEcffdRjqsvTTz/NVVddxdVXX43VauW5557jiy++4J///Ce33357l+1jYmKwWCxUVlb2mRbySyAsbp0oLi7m7rvv5osvvui1aK/P52Pbtm2MGTNmwK0xBoMoiuzdu5fm5mYWLFjQ7ZPecAtcU1MTW7duJTk5mYkTJ3a77pCRkcHzLzzPb37zG2IZRbzQ0ajRJ3opYg+1lGE0pDBj7EVERPZ/bUAQZGRkLqMg77/s2LEDgDRfDklCRo/7mJKMjD9hNKPnp6M1aajaVcf+bw7w+SPrcLa5AHCIXla1fj0svccOlbq6OrQyHQQGf4xWGpgyeQobN27C7zeQl28nL9+OQiGQlqonK9PIKcuTkckESsus7M+zUFvXvetPIVej0UbhdDQTExMT4mLMze3q7oyOju7RbalWq5k5s+vDT2f0er2U0H0kSnQd3CkgSFDggonefVX0hw7L1mw2hwQvRUZGMmfOHDZt2tStuHk8HrZv384dd9yBTCaTznn88cezadOmHs+VlpbG/v37aW1t/cWnB4RDa37C7/dz+eWXc8UVV7B48eJet92zZw8ajSYkEXU4KS0tpba2lvnz5/daeWS4OnqXl5fz448/Mm7cOCZPntxF2AKBAE8++STpaR1rVKeddhpF8l14RBfNYj0/Ct9QL6shZ+yZzJh9zYCELUhC4lRUKiNPPfUUK1acQrWipMv1yVVycpZkcvafT2TlM6dhiNXz/T+28o9L3ueLR9eRv7pEEjboWHeztLVKgnk0YTabUQYG7yIVRZE2RTNLli6hoaGB6E7rbT6fSGmZjW+/q+Mfrxfz8WdVuD0BTj81lV9flMW0qdFoNV3F3uvpyKf7JQQt9BbAEYxmBKTI2d4wm80AXXL/EhISpN8dTFNTE36/X9pHqVSiVquJiorqcZ/gdmlpaVRWVvaYevFLIWy5/cRzzz2H2WzuM+y/srKS+vp6li1bdljM/oaGBvLz85k/f36vOS9BhtKCCwQC7N27l9raWubOndutldrQ0MD//d//8c0336DDyOWXXc6atWtYv34DWyzf4cKBKTKLqRPOQ6uNGtQ4oCOwIT1jKcVFn3L99dfz5Zdf0IyZWEYRkWhg8opcxi7LwtHmIu+bA3z52Pe4rL0Xoo0kBpVcxapVq5g1a9agxzYc1NTUoPD3HhTTGw6sOHx26urqEAVos1RQb95FdEwOSuXPnyNRBLPZidnsZMPGBkZnG5k4wcT8eXGUlFjZvacVn79DLH0+Z5dSW79UDg7XPxxVgTQaDYIgEAj0bs5HR0fT2tpKRUUF2dnZv1j3ZPhTSkcVkrvvvpuvvvqqV3ekw+Fg7969zJw587B8mG02G9u2bWPy5MkDcjEMhcC53W62bduGx+NhyZIl3Qrrt99+y0UrL8JmsTONhUQQzVbHam780408/vhj/Pa3vyUhcSrjJpw/JI0xRyXPpKz0W1555RWmTZ2GTpRz6qlLSZs2ipIfq/j8kbUhUYR9IRNkmAJxfPHFl0ddc9Sa6pp+BZP0RAuNyOVy1q9fjyBX4JBZydv3HiAQYUonIWES8QmTQ7oD+P0ihUXtFBa1YzKpmDTRxJmnp+J0icjlAamvWJgOgu5Cm82GTCbrMRgpmCJUX18fUvS5vr6eqVOndrtPbGwscrk8pL1NcB0yLi6u29SKzoTdk2G3pOSOvOqqq1i0aFGP2wUDOpKTk7u4F4aDYAHm9PT0QTVpPBQXZXt7O99//z1KpZJFixZ1ETZRFHn00Uc56aSTEFvkzPQdR4yQiFJQMdY3g3Xr1tHa2kpWVhaNjXm4XUPTnkMuV5GesYSEhERuu/02rr7pSmorzfzrmo/5+un1AxK2INFiPFs2bz7qWojU19ejPgRxaxUamT17Dub6BoxjJpJ1xc2M+f29jFp+HoFoLcXFn7Phh0fYtfOf1NVux+cLtXItFg8/rG/gtTcOcOCABY1GKfVr68ty+CURLHjscDjw+/3dbpOZmUliYiKrV6+W3mtvb2fz5s3Mmzev231UKhUzZswI2ScQCPDdd98xf/58HA5Hr3+HsHsybLnx/PPP09DQ0Kc7sqKiApvNdljcV6Iosn37dnQ6HePHjx/0cQZjwdXV1bFjxw6ys7O77QXncDj4zW9+w3vvvUcmY8kSJ4RsEy3EkybmcNddd/2U63M2efvfZ9qMKw/ZesvMMHDxhZfi91v59ttv+W71dzjKvUxkzqCPGU0C/oCf7777jrPPPvuQxjdU2O122trb8VOFU7SjRosGHTqM6DF25PD1Qsd6WxM5OcezadNGDFljAVBGmIiaOo+oqfPwOWxYC/fQlreTgrwPKCr8hPj4SYxKmkGk6edOz15vgPXrN7JgfjJZWVlS37FD6ao9WDw1DUflOVQqFe3t7WzatEl6ECwrK2PXrl1ER0eTlpbGDTfcwJ///GfGjBkjpQIkJSWF5MIdf/zxnH322Vx77bUA3HjjjVx66aXMnDmT2bNn88wzz2C327nyyiuRy+U4nc5ePU2d3ZPBlItfEr9ocautreWee+7hk08+6XU9y+FwsH//fmbNmnVY8kfy8vKw2+0sXrz4kCePgQhcSUkJ+fn5TJ8+vduuylVVVZx++hns37ufScwlQei+kHQ2E2gTm7jh+ht44IH7ufvuu6mu2kRq2oJBXUPSKC0L5sVjMqnYsq2JTz5+n7LS77jrrrt4+C8P4xTtaIW+Uwq6QycYMMojWbVq1VEjbrt27QJEZBERtAVcuF0NeH126fcqtBhEI0ZMGDBhxIQeo/R3tWLB7XOxd+9eAAyZXaMZFToDUdPmEzVtPp62Ftr2bqV5z1bM27ej1ceSkjKfUUkzkMkU1NZsRS6/EIPBgFqtxufz4XQ68Xg8aDQalErlsIpcbGwsGq2Wxhc+GLZzdEaj1Q44Cnrv3r0cd9xx0s/BggOXXnopb7zxBrfeeit2u53f/va3WCwWFi5cyFdffRWyvFFSUkJT08+5ihdccAGNjY3ce++9mM1mpk6dyldffUViYiKBQEBq+NpbbmZaWhr79u2jra2NyMjIAV3TsY4gHg2tcI8QF110EQDvvPNOj9uIosjGjRvR6/U9+seHkqqqKvbu3cvixYuHtCWLy+Viw4YNmEymbgWuuLiY4uJi5s6d262PfsuWLZx6ymk425xM9M3FKJh6PZ9dtLJV9h2XX3EZW7ZsYc+efcyaex16ff+TcGNi1MyfG0dKso4dO1vYsasFrzeAx2Nj4w+PsmDBPPbu2UtEe9yAy351pkDciZDioaKyYtgtEa/XyxdffMEpp5zS44PSa6+9xpVXXsmsOddhMHas0fj9XhyORhz2Buz2BuzWemzW2p/azoAcBZHEEEUsblw0qKpRKhX4tEayr7y1X2MTxQCOylJad2ygvWgPcoUaU2QWBr2d999/n0mTJkmTsSiKeDweXC4XgiBIofPDdf8qKytDJv7eCAQCOBwO5HK5FITRGY/Hg9vt7jHcv3P5rYEgiqLUcLQ/wV+HisfjwensCPLprSRYQ0MD9fX1TJgwYchKh7lcLsrKysjMzDxqG6b+Yi23NWvW8Nlnn1FQUNDrduXl5djt9i4lb4aD1tZWdu/ezezZs4e811hPFpwoihQVFVFaWsr8+fO7Ld3zv//9j5UrL0LnMzDDvxSV0PeHWS8YGROYxKuvvsobb7zBVVddTd6+95gx6/fIZL3nlBmNCubOiSNndAR791v49rsSnM6f1zNUKgPJKXPYsGEjf/zjtbz04ktk+cf36a7riRgS2F29keLi4sOW3tEbxcXFAKjURuk9uVyJ0ZiE0RhqUXu9TmzWOtrbq7C0lFJuKcYf8JCRlEF5ZSUxk/rvshUEGfr00ejTR+Npa6F1+3qat6wlOmpMl89jsP6jSqXC7XbjcDiQyWQ9CsahkpaWNiDBCQQC2O12KaoxKHDD2bbm4ELLw13cQalUSgLXm3syLi6OpqYmzGZztx6ZkcovMqDE6/Vy7bXXcu+99/b6x3Y4HOTl5TF16tRhd0c6nU62bNnCuHHjupTWGSoODjIJBALk5+dTVlbGggULugibKIo89dRTnHvuuZg8cUz1L+qXsAVJIpMEWQo3XH8Djz76MDZrLRXla3rcXqWSsXhhPJdcnI0AvPXvUr7/oT5E2IKkpncE/+Tl5SHIBKop7fe4DiaKeGSCnFWrVg36GENJRUUFIISE7PeEUqklKjqL9IwlTJl+OQuW3I0g/NTgMxDo1iXZH1SR0RjHTATgpJNO6nE7QRCkVjUKhQKbzYbNZusxuOJwEeyqLYoidrtdalM03P3Y5HI5er0ep9M57IEcQTH1+XxdqsQcvF1aWhpmsxm3u/f0mJHEL1LcnnvuOaCjHmJPiKLI7t27SU5OHjaxCeL3+9myZQtxcXFkZWUN67mCAtfa2sqaNWuoqqpiwYIFXVqXBAIB/vjHP3LzzTeTLuYwUZzdpbp+XwiCQG5gGh67l88+/YxFixZRXvod7e3VXbZNS9PzfyuziInR8N775Xz9bR3t1p4nB43GRHziNFav/o4LV15IraKUgDi4CVUhKIiSxfLVl72XXDtc1NTUoFTqBxWAY7PWIop+2tvbEeQKtMk9F/7ui6bN3yHI5H0GWwGS1RYREYFMJsNqtfbaz+5w0Fnggv3RhrsfG3REUGq12l4jKIeK4H13Op29Rk8aDAaio6Opqqoa1vEcTfzi3JK1tbU88MADfPzxx71aY2azGYvFwowZM4Z1PMEUA0EQmDJlymGJPlOr1cTFxVFRUUFCQkIXl5PP5+OKK67grX+9xVimkyIMXnBVgpqxvumsXbuWh/78ENu2bSdv77vMmns9crkSlUrGogUJjBljZP2GBvbtt/R5zEDAT33dTiytJYhigB07duD0OaijkmQGN5lH+eP4bs2aw+JO6ovGxkbU6sG5pVtbShAEGc3NLejTxyDr50Tesn09zZvX4LNbUccnETN7CbYDeT02wQ3WfQwmMKekpBAZGYlMJkOj0dDW1obP56O1tZWWlhZ0Oh3Jyckhx/L5fFRWVmKxWBAEgaioKFJTU4e0FJpMJkOpVOJyuZDL5YetzJparcbv90sluoazTU6wkWpwHbEnkpOTf1HBJb84y+3mm2/m1FNPZdmyZT1uE+yRNn78+GGvEl9aWkpTUxOzZ88+bF+8goIC6urqWLBgATabLSQPzuv1ctFFF/H2W28zgVmHJGxBooUE0hjD/fffz1/+8meczhZKD6wiLbXDWoswKvj3f0r7FDZRDFBbs5UfNz1JQf5/UaWloc/IYX9eHiuWr6Cmm5Jc/R4jCbhcTjZs2DCo/YeSlpYW1JrBTT4tLQeIjorC5/NKKQB90Za/k/rvPiZu4clkXX4jmvgkaj97BwSB//3vf122t9lslJaWEhsby/jx4zGZTBw4cADnTy1pgpF8MpkMg8EgNRc9cOBAyHFKS0txOp3k5OQwevRorFbrTy7ZoSPYADa4JhV0UR4OtFotMpkMp9M5rOcMuifdbnevlqJSqSQ5OZnKyspfRK7iL0rc1q9fz6effsqTTz7Z63bFxcVoNJpBRUwNBKvVSn5+/mGreAJQWFhIeXk5CxYsICYmJmQNzuVycfbZZ/Phfz9kojiHRGHorj+biejFCF7620ucddaZnHH6FE5ZPoot25r43ydVWK29d+9uaS5i6+bnKcz/EHVaOllX3ELqOZeRcNwZiIEA9Q31tPssNFE3qPEZMaFV6I6KdTer1Y5KPfAO136/l/a2SjTajs+SPqt/623NW9ZhmjIX0+TZqGMTiVt0MqLfT0x0tNTSqDP19fVERkaSmJiIVqslOTkZnU5HQ0NHjphCoSAnJ4fo6GiMRiN6vZ7IyEiioqJwuTpqezqdTtrb28nIyMBgMGA0GklLS6OlpaXX9aOB0HmNTalUdlmDG246r4kN9/qbXC5HrVb3KaRxcXFdKp+MVH4x4iaKIrfeeiu33HILycnJPW5ns9koKSlh8uTJw+oiDPZmS09PJyYmZtjO05kDBw5QUlLC/PnzMRo7IvE6B5ls2rSJL7/8klGBDKmi/1AhE2SM98/EaIzgggsuIDk5mT/deCu7dvdcBBbAbm9g987X2b3zdcRILZmXXE/K2ZeiiesIkdfEJ2HIGseOnbuYMX0GVfIDvR6vJ/z4UPt0/L//9/8Gtf9Q4vG4UamMfW94EO1tldJ6m8IYiSqqqzAdjOj34TJXo8/4OUq0dUeH9Tpx4sRu97Hb7V3WaCMiIrDZbN1ur1QqkclkUuqA2+2WOkx3jvILHtNut3d7nIHQXfBI5zW4/hQ8Hgr6uyY2FARdob0JqSAIpKSkYDabu3RLH2n8YsTtk08+4cCBA126OXcm2FomNTV12LvZlpSU4PF4pLYew015eTmFhYXMnz+/i789KHCBQIC//e1v1MrKqBHLhvT8CpWcU685kVtvuZU33ngDgLraCooLP+12e5/PzYHiL9n647NYvU2knHUp6f93LdqkrrUNYxecCGIAuUJOi7+BNrGlX2Nyi04qxWK2i9+zjk+x0ER5ebmU/DzUiKIouY16mlh9Ph9+vw+1euDi1tpSgkwmx2Z3YMwe36+HM5/DDmIAhb7jfAGPm5ZtP0gTcnd4vd4uQRlKpbLHSTUQCFBdXY3f70ev1+N2u6Uoy84IgoBCoThkKycobN0JSlDg/H7/YRM4lUqFQqEY9vP1V0gjIiLQ6/VSQ9yRyi8ioMTv93PnnXdyzz339Jo/driCSKxWKwUFBcybN++wVFhvbGxk3759zJs3r0fRDgocwAsvvMAfr/0jQkDotWdafzHE6DjljqX43D7eveFzdjbtY8vmLfzqV+fz3nvvERs3gbj4jjJjoijSUL+XA8Wf4/U7iV14MjFzliJT9Bz8o0vOQJeSxdZt28hIz6CysphJPZTk8ooeGqimTqjCQiOCICcqKpvRcXOIiEhl+9a/8cILL/D3v/+9z+sKJgsHrRGXyyW92tracLlc+Hw+aaLpLDZffvmlNNEJgiC5lQRB4IorrkClzgAhArvdh93ho73di8/X+8TY0lz8U+frFvSDTAGw7NlCwOPmpDPPHJLJLxAISM1G09PTkcvlKBQKmpubiY+Px+fzDel3IChsdXV12O12mpqaGDt2bEjwWHAt0Gq1HraK/lqtFqvVitfrHdZ1/P4Gl6SkpFBQUEBCQsJR031+qPlFiNtbb72F0+nk6quv7nEbv9/Pvn37hj2IJOiOzMjIOCzuSLvdzrZt25g0aVKf5+sscM89/xzX/fE6hIDAKGHwleATc2M55fYllG6u5vt/bCXgCzBWnM5W23c0NDQQH59AQd4HRJpuBFGksPBjmhr2YxwzibQTzkQV2b+K5rELTqTyvb8zKmkUP1b+iEOcgE7oeJARRZEW6qmlgkZqCRAgypTF2FGLiY2bgFL58ySgNySyatXXXY4fCARob2+nra0Ni8WCxWKhvb0dURTRaDTSS6lU0tDQwNNPP01LSwutra24XC78fj+BQAC9Xs+zzz7LH/7wB7xer1RN3mQyERUVxbJlyxBFkeTkWKJMkej1CvR6BQqFQEurh4YGFw2NThoaXDQ2ufB6OwTP53NhtdYQHR0FgoA+fUy/7ptCpwdBhs9uRQz4adq8Bp1OR2RkZI9WhlKp7OLS6q5KfSAQoLS0FI/HQ25urhQwFRT51tZW5HI5Wq0WtVr9U1sdX7dRzP2pUBKsPNLU2ITb5UaNBpfgJD8/n4yMjC4iGiwjdnDi+WArlPRGZ6tKoVAMW/RkcJ3ParWiUql6DFLT6XSYTCZqa2vJyMgYlrEcaUa8uLlcLu69914eeeSRXkWrvLwchUIx7EEkBw4cOGzuyGBngZSUlH63KukscM88+ww33HADgl8YVHDJuOOzWXzlLDa8uYN9XxVJ7wfTA9asWcPNN9/M00//lT0738DpakVUCKScdSkRY6cM6Fz6jBw0Ccls2bIVU2QUlZZiRosTqaGMKqEEl2hHp40lI/lEEkdNQ91DwEZMbC5Vleux2Ww0NzeHCJlMJsNkMqHVavH7/TQ3N7N3714KCgooLyunpqYGq83K1VdfzbfffssMljCKOBSokCFDQEBt7/gMTmyZj9vpIUAAPz68lR62y7fR1NTE/rw8ZLK3UGsiUasj0WljSByVwejsbNLTk0lNiWTG9Bj0OgWtrR4aGl2UllVQWpxEQ0MD2lHpyDU9P7V3RpAr0CSmYC8vRvT78Vkt3P/nP/PSSy9JBXy73Gu9nvb29pDuGO3t7SFekaCwud1ucnJyugiLXq+nvLycxMRESfyD7siDq21UVlaSO3Ysrh7cpEONRqulsKBgQHPB999/zxNPPMH27dupq6v7qWj4WdLvL7vsMt58882QfU4++WS++qr33MoXX3yRJ554ArPZzJQpU3j++ef7rJYkl8tRqVQhUaLdkZSUxP79+0lISOjVyjtWGfHi9re//Y3o6GhWrlzZ4zZer5eioqJDauzZH6xWq7TuNdxh/6IosmPHDjQaDRMmTBjQvp0F7q9//Ss3/ulGBL+sx0LJByPIBBZcOp2xy7L47OE11OztGpkVIySQJo7h2Wee5aKLVvL22/9GMyqVtPOvRKEbeI6XIAjEzj+R6v+9wbjxY/lx04/UiRUECBCfMJnxqfOIiEjt9e8bE6Nm4vhTSEk+hW+//Zbo6GhMJhN+v5+ioiJ+/PFHtm7ZRkVlefCsGJURqH06NKKWWFLxySskN5wWAxohdNIQfkqElwkKFELQMlKjRQ8ysaP1jigSt3gFXns7vnYLLc3V1O3cwY5tHdaSUqXHYEwiOWkMuWMnkpWVQUaakaeffprm5mb21TZSodVQYXXRnxCGmNlLqP3sP9gO7EOuUFJZWYndbufyyy8H4LbbbuOCCy4gM7MjhzAhIYHCwkLMZvNPbtBWHA6HZAEEhc3hcEjV6IPCJZfLQxK+KysrSUtLk4JNYmJiujyENjU14XI6ST79YlQxw9tuytNcT82n/6apqWlA4ma325kyZQq/+c1vOOecc7rdZvny5bz22mvYbDapqktvvPfee9x44428/PLLzJkzh2eeeYaTTz6ZwsLCPgtLaDQa2tvbe3X7ajQaYmNjqampGZFdA0a0uLW1tfGXv/yFt99+u1c3wIEDBzAajcNaiaSzO/JwNA8sKCjAarWyePHiQblAOgvck089yc033YzgF/qMolQbVJx800L00Tr+361f0m7uPoIOYDQTaaOZLZu3oDfocTSZEQ8hmMCYMxFVdBxbtmxFRMRoSmHCpJU9WmkyGaQk68nMMJCVaUCrVVBRaeWrL9/uaPIpyFi1ahVutwuVXIWRKPT+CMYzCyOR6DAi9/30kPKTZrb7m6WoQS9uNPT/idgdcOFyqZCpNMTMWRryOzEQwNvWgquxDld9Da76GgpK17Nv7xeAgEyuJMpkJDs7m+MuupyVSXHIZAKFrQ4KLA6KLA7c/u7djJHjpuGoLqd1+w/IZDJ27drFV199JVlmdXV1IflTBoOBzMxMamtrqampQaPRMHr0aOnp3+v1YrFYgI7yaJ3Jzc2VJvWsrCwqKyspKipCJpORlJREdHQ0fr+/24c/VUwC2sT+PWAdblasWMGKFSt63UatVpOUlBRS8Lg3nn76aa666irpIePll1/m888/55///Ce33357r/vKZDIpNcBgMPT4UJeUlMTevXux2WxDXs/2SDOixe3pp59m0qRJLF++vMdtXC6XFB4/nFbbgQMH8Hq9h8UdWVNTQ2lpKYsXLz6k9cPOAvfEk09wy823IPgF4oTu63FGpURw6h1Laa1u54PbV+F19i5UMkHOeN9Mtpas4axzzuSDDz+k5vN3SF95zaBKTwmCjNj5J1L72TvEx8fT0lKPQtFVXOLjNEycYCJnTAReb4Cychtr1pmpqnbg94vs2VWF21WDzWZlFOmkko3Bb0ImyCQR6wkVGlqaW4EOcesvftGP19+xZqTQd51kBJkMVVQsqqhYInImAR0PTF5LM9aifdSv+QSr1cq23XuwLrXzqdlJikHN2Cgdy5Kj+FV2PIUWB1sb2imyODlY5rytjQgyOR6Pu4uw/Otf/6KsLDR6Njo6useHNLVazcyZM/u8ZoVCEVJuThRFXC4XVqsVvV5/WNpLHU7Wrl1LfHw8UVFRLFq0iHvuuYe0tLRu5x2Px8P27du54447pPdkMhknnHACmzZt6tf51Go1Ho+nx3VM6Fg/TUhIoKamhtzcwQUhHa2MWHGzWq0899xzfPjhh72KVmFhIXFxccNqTR1Od6TFYmHnzp3MnDmzzyfD/tBZ4B5//HFuvfU2JvpnEyuMCtkudcoolt+yiL1fFvLjO7vpMnv2gF6IYHRgIh988AEnnngi33zzDS3b1xMzc/Ggxhs5fhoN677AYrHg83mor9tJUspslEoZY3MjmDg+CpNJSWFxO//7pJL6eleXY0TH5FBcWEBSYhJys5IIof+fDRUaKfDBQ/+Tkb0/bet2u1FE9c/1JggCqqhYlJFRHcfw+zGOGY8gkyECVTY3VTY331S1Eq1WMD3OyFmZcYjA9kYrWxvaaff4cTeZsZUWsGTJksNWJaen69Fqtcjlcux2uxSkMxJYvnw555xzDpmZmZSUlHDnnXdyzjnnsH79+m7Xu5qamvD7/SHrmtDhEu6rk0mQztZbb+2IEhISqK+vH3HW24gVt7///e/k5uaydOnSHrex2WxUVlb2us2hEgh01D7MzMwcdneky+Vi8+bN5ObmkpiYOGTH7Sxwjz72CHfcficTfbOJETrOkTk7hZP+tJA1L2+maN3A8+OSyaJF1sC2bduJioqiYc2nGDJzUQ9ifUWQyYmdfwLmVR8QGWnC6cxj0YLTmDDehKXNw559rRQVt+P19rwaFR3TEWkYlxBHeXMVDCDXVY2GytYW5HI5Xn//LbeglefzB9AaB1adxF7R0SJH9Pt7LLnV4vbxbXUr31W3kmPSMSvByM1T08hrtfPxnu9BJuPDDz8c0HmHC5VKhUwmkyqJHIniy0Od4HzhhRdK/540aRKTJ08mOzubb775htNOO23YoifVajVut7vXFASFQkFcXBxms3lErb2NSHFzu908/fTTvPTSS71abQUFBaSkpAyJhdMTJSUl+Hw+xo7tX52/wRLsLBAbGzssH9CgwImiyMOP/IW77riLCb45zF4wixP+OJ9vntlA6ebBVRwXBIExgcn8aPmGuIRYEKHmk7fJvOQGhEFYEqZJszBW5fOrs89i6tSpFBSY+fhTK3Xm/kXb6XSxqDUmmpqaaPO24MHV71Y/KrT4A35iomPxtPRf3Dw/iZuIiEI/MHGzlRWiUCjw+Xx95rcFgAJLxzpctFrB7BgNN158Pi0rjpeq+B+O4t19oVAoMBgMUm+0w43T6exx7W8oyMrKIjY2lvLychwOR0jPOehIR+iuTFZ9ff2AHlyDyfIul6vXjukJCQns3btXSo0YCYzICiVvvvkm0dHRnH766T1u097eTl1d3bCKjtPppLCwkGnTpg27u2fv3r2IosjUqVOHbXLSaDQsXLiQqVOn8ueH/0z0MhXHXzuXr574ftDCBmAVLewU1iPSkUg/OjsLV30NTZu+HfCxYjQKLhqXzF8eeICamhpuuOFPPPHE4/0WNuk4sbmYzR21Elto7Pd+ajpEMDIiQnI19ofgtmIggMLQf3HzWi14Lc2IoogqJgGlsf8Fl1vcPt58512uuPJKpk6dyp49e/jhhx/63fF6uJHL5RgMhmGvy9gdCoViWGtQVldX09zcTFpaWrcls1QqFTNmzGD16tXSe4FAgNWrVzNv3rwBnStosfVWs1OlUhEbGzuiqpaMOMvN5/Px+OOPc//99/dq6hcXF5OWljasTykFBQUkJiYOuzvSbDZTU1PDcccdN+wiGhQ4r9dLdnY2D//5EdipJ0rou47hwYiiSA2lFLEHnS6OWZOvoqZmM8XFG4mJiaFxw9cYssejHZXa57GMSjnHpUQxPc7ArkYbT24rZds7/0ElEzoqhlgqiDT1Pxk9OjqH2urNpCSn0FrTQCJ9jwF+Fje9UY+d1n6fz4sbmUxGIPBzKaz+YK/oqKXpF0VM2QMLVvK7XbRuX09cdBQLFy7E5/NRUlLC5s2biY6OZvz48Ue8NYpcLken62ja6mke/mK/wXNoNBoEoeOz0585wmazhXQ9KCsrY9euXVLgzQMPPMC5555LYmIiJSUl3HrrrYwePVqKsHS5XKxYsYKzzz5byi+88cYbufTSS5k5cyazZ8/mmWeeCUnR6C+drTeVStWr9bZ///6jou3TUDDixO2DDz7A7/eH+LgPxm63U1tby3HHHTds47BarVRXV/faWmco8Hg87Nq1i0mTJh02d0JwsVuv13Per87l/r33M8k3D5MQ2+9jBMQABeykljKSk+eQnXMqcrmSrOyTaWkuxmJpRZDJqPnkbbJ+cxMyZffrBWq5wOIkEwsSIymyOHlhTw2NLi8ICqJnLaFpw9coFEoqK75nkunX/R5fVHQWIKDRaqhXNvZ73U31k7ip1WrcgpN2sRUvHvz4ARGV2PGVaxRr8IheZMhRosRGOzqdDpvNNiDLrWO9TYBAAH0/W9wEsezZTMDr4ZVXXgE6rJXc3FwyMjIoLi7m+++/JykpScpvO1KYTCY0Gi01n/77sJxPo9USFxcnVfpQKpV9lgjbtm1byHc9WMP20ksv5aWXXmLPnj28+eabWCwWkpKSOOmkk3jooYekyixut5sDBw6EWM0XXHABjY2N3HvvvZjNZqZOnRqSojEQgj3telt702g0REVFYTab+1304WhmRImbKIo8+uij3HLLLb1+GA8cOMCoUaN6zd4/VPLz80lLSxv26KO9e/diMplITe2fZXGo1NbWsmvXLmbPnk1ERARyuZz7HryPB+57gMne+UQKfZcU84gu9vAjbUILY8eey6jkn8PG5XIlEyddxNbNz5OQEIe5vp6G778k8fgzQ44hAPMSIzguOQqzw8M/8uuotoWuzUTPXETz5u9QKhU0NebhcDSh0/VPgBUKDZGRaTQ2NGL1tuHCgUbQ9bmfTJChkWs76pSKzWwR1oAgEAwf1co6HkD2y7bjlDl/uhIRAiJyZ4fV3V9xE0URe1khMpmAKMjRpfRfhES/n+bNazAYDJxxxhkhv1Or1UycOJGsrCwKCgrYvHkzSUlJR6QHmNvtJi4ujk8++ZjWZguxcTF4HF6cbV2jXAd9Dlz4BR+ZmZlSYnMwgVuj0eBwODAajb26+5cuXdqrC7O3VkpBy2rPnj1dui1ce+21PVaKGQiCIKBWq/tce0tMTKSgoICkpKRjPhVjRInbV199hdls7tVsd7lcVFZWsnjx4ELN+0NLSwsNDQ2ccMIJw3YO6HBH1tfXs2zZssMSBGA2m9mxYwczZ84kPj6eQCDAli1bGD16NPfedy8PPvAQU7zzew2dt4nt7BI2EFDAtCm/7dZVqDckMCbnVIoKPyE2Npamreswjh4v1UuM0yg5NzsOrULGewcaKG7rfj1NodUTPX0hzVvWIpPJqapYT+64s/p9vdGxuZSVfIMgCLSIDSSR0a/91IKmI4lZJsc0YQYyjRaZSo0gk6H5yd0TO/d4nC4Xos+L3+XEVlqAz2rpGHc/A0q8lmZ8tnYEmQxdWnavxaUPpr1gFz5bO/c89liP2+h0OqZPn05TUxPV1dXY7XaUSuVhm/TcbjcOh4OamhrioxJIi8pEoVRgSjbiandjbxmaclwiIg7BilKtZPz48SHLGWq1Gq/X22/35GDpXPB4uNIfgiW5est70+l0GI1G6uvrSUk5OhPm+8uICigJFqTt7UNYUlJCXFzcsK0liKJIfn4+2dnZw5qjE3RHTpw48bC4I5ubm9m2bRvTp08nMTERURS55ppruPuuu/ntb39LRmYGd997N3uUG2kXu19rahHr2cYa5Fo9M+Zc2+saWFLKXKJjcmlqakIuV1Dz6TsE3C4WjorkD5OSqbC6eH5PTY/CFiR69lKQyVCrVdTVbsPj6bliysHExOQAIqMSR9FCQ7/3U/iDBWtFRp1yAYnHn0n8ouXELTiJ2J8qj8TOXUb8ouUkLDudpBW/QhUVgyAICHI5MnX/PjdSCkAggDIiioC3fwEsoijS9ON3KJQqbr311j63NxgMqNVq1Go1drsdh8Mx7FZcZ2HzuwJo0CEg4Pf6sdRa0URo0JqG5vslIKAR9bhdbqqrq0N/16nL9XD2Pwtab263e9jubWfrrTcSEhJoamo65rt1jxhxKywsZO3atfz2t7/tcRuv10t5eTljxvSvYvpgaGhooL29fdjzRQ6nO9LhcLBlyxYmTJhAUlISoihy00038corrzCOGSS0ZfL73/+ezMwM7rznLvYoN2IVLSHHqBMr2Ml6jFHpTJ99DRqNqddzCoLAuAnnoVTq0Gg0xEcauCIzgtnxRv6ZX8eXlS34+hHJpjREYJo856cOxQFqqn7s93UbjKNQKLSIiLQrWvodOacMqBF+WgcLePoXxu6zd4iuXNdzqaSDsZcXS/+27P6RwmfvpuL9V7Hs3Yrf/fME1rJ9PcV/e4j8J26l9M1naNmxHndjHZddekm3x33//fcZO3YsGo2GSZMmsW7dOqDjyd9oNOJ2u2ltbaWgoIBt27bhcDi6HKOwsJBt27aFvCoqKvp1XT0JWxC/x09bnRV9tBaV7tCtSJGOZrUAXk/XyEy5XC65J4cz506hUCCXy4c19UGlUuH3+3sVaqPRiFKppKWlf30Rj1ZGjLj97W9/47zzzut1sbWsrIzIyMhhazUjiiJ5eXmMGTNmWF03dXV11NfXM2XKlGF3R/p8PmnNJRhY8MADD/DXv/6VXKaRJGSQJoxmVFsWf/jDH8jMzOCOu29nj2ojNrENgGqxhP1sJXHUdCZPuwyFop85YyoD4yf+ihNOOJ6/Pv00eTu38/D/vqHSNrAvf+zc40AQ0GjUVFdtwO/vn4UjCDKiY3Jobm7B4bPhoH9WnxoNfl9HLUa/s39dpYPbKQz98yiIooi9vKPTgjzKSMpT1xF14Qn4FQ5qP/8PRc/fS9VHb1K/9lPqv/uYuIUnk3X5jWjik6hf/THIZLz88stdjrtx40ZWrlzJFVdcwc6dOznrrLO49tprpTByuVxOIBCQqmfExcX1OOHHxsYyZcoU6dUfN1ewS3dNTQ0ulwsFqhBhC+Jz+7A22olIMCBXDj5COEAAJzZcOIiNiyUzq/t1y2Cvvb6snkPhcFhvwaolvV2HIAjExcXR0NBwRBLoh4oRseZmtVp54403+Prrrn24ggQrlU+dOnXYxlFTU4PX6x3W6DKPx8Pu3bsPizsy2FlApVIxaVJHPcM33niDBx54gGwmkCpkS9umCNkIbQJ/vPaPPPf8c9x+5208+pfHiPOmUEkRKanzGZ1z2oDEWK9XcP45J6FQuLn//vspPnAAUa4k+7e3D6hzgMoUQ8S4abTn7QDAXLeD5JS5/do3JiaHhvrdyGVyWgMN6Ok7TF+FBtdPlpPfaQdT7w9Toijid3VYP/3NU3M3mTv2kcvQTctFlRyPKjke02kL8TVZsG3ai+37XVgLdiMolXham9Bn5hI1fQGW3T+SnZ3dbdrIs88+y/Lly7nlllsAeOihh9izZw9Wq7XTPem4HpfLhdPpxOv1dlt9XiaTDeghLyhstbW1+P0yFAoNTp8NAQMKuh7HbfWgUCmIHGWktboNMTCwidiHF5fgQCaTMTpzdI+NfCG0T1p/oicHi0KhkCIbgykQQ41araa9vb3XJPWYmBhqamqw2+3HbEmuEWG5vfPOO4wePbrXPke1tbUoFIpBhdH2h0AgQH5+fkhTxuHgcLoji4qKaGtrY+bMmchkMr777juuvPJKkskkg65h58lCFklto7nuj9eRkZnBzbfdRLXsAEnJswcsbAkJGi78VQaWNg/vvl9NRWUziB25WXVf/r8BP1HGzusI7lGp1FSWr0MU+/dkHPVTKa7Y2Fhahe6Tuf2ij3axlTqxkjKxgGbMeH0d7i2fo2/LLeBxQyCAIMj6HSkZXG/DH0A7JdTNrog1YTp9EUkP/w5kApoJGTTv+J7ilx6i+sPXAcjJyen2uJs2beoSCLVw4cJuXWWCIFBbW4tcLu+2kkhLSwu7du1i//79VFdXh3QWOJhQYZOj0USh1UYjl6txYJfchl3uQ7MDv9dPREL/J2ARERcOHNgwGA1MmDihV2ELcrjckxqNBo/H0+v9OhSCDx29uT/lcjkxMTE0NPR/rflo45gXN1EUefnll7nmmmt6nTzLysrIzMwcNjdeeXk5crl8WJudHk53ZG1tLQcOHGDOnDmo1WoKCgo4+6yziRLjyGVazy00hAyS28Zw/fXXkz06mz/96U80N+XhdDb3+9xjcyM496x0tu9o5pvVdYiiggmTVuL3BzAa9FiL99G2f/uArkcTl4hh9ISf+oZZaGzI63snQK02otcn4Pa4aZM34xO9tIj1lIr57BY3sYGvWMNHbGE1+9lChbwEh/pnt2d/3JLBbQZSektabxMEtBOzut0mYHVCQCTqnGWkv3QrptMX4m1rwWg00tzc/d/DbDZ3eQCMiYnpdaKVy+Xo9XrJkhNFkejoaDIzM8nJySExMZHm5uYunQWChAhbQN6xHiv8dG26GORyJQ5sBOh+DO31NuRKGYaYvi0dP34cWPEKHlJTUwe8hHA43JOdm40OF8GOAb25P+Pi4mhtbT0iFWKGgmNe3LZu3UpJSUmvSdsWi4W2trZhEx6fz0dRURHjxo0bNtHxer3s3r37sCRrt7W1sWPHDqZPn05ERAStra2csuIUcMqYGJjT0fqlF0YJ6aRYcrjhhhuYOHEi1157Nbu2v4rT0fsCtSDAgvnxLFmUyGdfVLNr989RlwZDIqNzTulwC6lU1K36AG97/yuAAMTNPwEQO5K6y9f2++k7JjYXi6UNt9/NOj5lBz9QKS/Ba1IRkzqFsePPZcas37No6X0sWnYvU6b/RtrX3w/LTRLAQACFoW+3pxjwS5abOjsZub7vz4NMp0H0B0AmcPbZZ/e5/UBRKpVSqSy73U5MTAyRkZHodDpiYmLIzMzEYrF0mbA7C1sgoECjNoW0FeroFBCDIMhxYEPspt2EGBBpq7OiiVCjMXZfWUOko36nHStKjZJx48aRkJAw4O/r4Yqe1Gg0krt3OAgGr/QmXFqtFr1e3+OD0NHOMb/m9vLLL/PrX/+6V79weXk5KSkpwxbkUVJSgl6vH9JK/D2dY7hzT9xuN5s3b2bMmDGMGjUKn8/H+eefT21VHTP8S1EI/buHiUIagkXGjX+6kaeefoo//OEqXvzbK0ybcTVabVSX7VUqGStOSiYiUsl7H5RjsXQN+khOmUeDeS9tbeUgk1Hz2X9IX/m7fvd+0yalo0sbjaOqBKu1hra2CkymjD73i47JobLie0QR4uLGk5F9Anp9fI/nVal/Fiifs+8gFJ/j5236Y7m56msQvR6QCeimde9eBJBH6EAmw99mI+Bw0f7NZvTaDuump89qYmJil2K9zc3N/apYEawF6XA4sNls6PV6yUUfLJjQOY/rYGFTqyO77ZcnyGS0trkw15UgiLKfoie7oihSYIjVY2204/f8LAoBRDy48OMjKiqqz7YxnZO4e7rOYFDGcK1HdQ78GK5zBI/fW0muuLg4amtrB/UgcKQ5psXNZrPx3nvvsWHDhh638Xq9VFdXs3DhwmEZg8fjkdx3w/XHD5bmmTdv3rB+wAKBAFu3biUqKkpak7n11ltZ890apooL0QkD+5IlCCkIFoGbbryJJ596kj/8/kr+9rdXmDbz6pBUAFOkktNPS6W9zct775fj8XTvKqmv24nVVgOAIIKj8gCt2zcQPXNRv8cUt+BEKv5zAJlMTmX5OkxTM/rcJ9KUjkymQC6X4Q/4MBi6CoPBoCAmWo3BoESnkzNh7DVERZmITU4lJi4elUxAJghoFB2CePv0dPyiiC8g0jY6ioaxo2htbSWQOganSo/V46PR6aXJ5e1iq0jrbQER7eSe01oEhQJ1ZhLOfaV4zS2Ibi83334n//jHP3qsejFv3jxWr17NDTfcIL23cePGfhfrlclkkouyc9NRp7MjHzH4gBkqbMqObuk9fLRra6s59ZRluN3D56brjEajpbCwoFeBU6vVWK1WvF7vsD00D/c5gn+X3pK6o6KiqKqqwmazDWv3lOHgmBa3jz76iOzs7F4jIKuqqjAajf1aMB4MlZWVREREEBvb/7qKA6WoqIi4uLhhS2EIcuDAAdxuN3PnzkUQBP773//y17/+lRymEC3ED+qY8UIyWARuvukWnnzqCX7/+9/wt5c6LDiNJpLYGDVnn5VGfn4bGzY10J2n0O/3UlTwMea67UROnIlx9HiqP/pXR0uQNZ+gz8zpd+83XdpotKPScJqraG4qwGFvRKfvveizTKbAFJVNm6UES2spep2MxEQ98XEa4uM1xMdp0GjkWCwerDYvdoePBrOXPXv24CoqQzV9EW6/SEAU0StlXDU+mX/k1eIXQSEToDwfoaqY6OhoMsZNI02nwahSEK9VEhChzu6mxu6hxu6m1u6m8qf1NkGrRp2d3OvYI09dQONLH8BP0X0PPPAAgiAgk8lwu91cddVVJCcn88gjjwBw/fXXs2TJEp566ilOPfVU3n33Xfbt2xcysfl8Pjwej+TSCroag9VLgnlwRqMRu73D5VpVVYXBYJBcepKwib0LG0Brawtut4txE36FXj+4z2F/sdsbyN///2hqaupV3DpbVgqFgkcffZQPP/yQgoICtFot8+fP57HHHgvpbu1yubjpppt49913cbvdnHzyyfztb3/rMcgtGPhxzz33SHUpFyxYwEsvvTQkubqCIKBSqfB4PD2Km0wmIyoqipaWlrC4HU7efvttLr744h5/L4oi5eXlZGdn97jNoRBML5g4ceKwHB86ijyXl5ezZMmSYTsHdLQAKioqYsGCBSgUCsrLy7n8sstJEFJIFQ8tIT1eSEJmEbjl5lt4/InHueZ3l/Pyy6+w4tQbOffsjsCRbTu69+u73e3s3fMWNpuZpFNXYpo0C4DoGaW0bF//U3Hlf5N56fUIsr6jVAVBIHbBiVR98BqCIKOy4gfGjj+n131kMpg7dynJSYuZNWsWsbGxNLd4aGx0UVZuY/PWJpqaXPh8Pyvz9i2rsFqr0SSlkznm5yhetadjFm9yeXH7O7av359P86aO1ibjUqdL1yED4rRKkg1qkvVq5iREMEqnwvPne9m+Ywd7Wmqpkylw0XNQgGH+JBw7C7D9sBsAJSqMYhS333Y7L77wIgajIaTc1Pz583nnnXe4++67ufPOOxkzZgwvvPBCSLFdi8VCeXm59HNpaSkASUlJJCUlIZPJaG9vp6GhAbVaLeXDxcXFHSRsKtTq/k+Yen08xojexfxw0rkR6Lp16/jDH/7ArFmz8Pl83HnnnZx00knk5eVJLtk//elPfP7557z//vtERkZy7bXXcs455/TqeXruued46aWXeOONN8jOzuaee+7h5JNPJi8vb0gqIKlUKqxWK4FAoMcuKjExMRQXF5OamjpsTVWHg2NW3Orr61m9ejWvvvpqj9tYLBacTifJycPzhTCbzUDP6xdDQUFBAcnJyV0Kqg4lwW7hWVlZREVF4fV6ufCCCwm4YKw4fUhcobHCKGgVuPWW23js8Ue59dY/kpOTxYZN1ezb37XCBUB7ezV7d/+LgFJGxv/9MaT1TfzS07CVF+FpbsBVX03TptXELTipX2MxZI9HHZuAp7kBc912srJPDFknA1CrZWSkG8jKNJKersftzmLD+u/4+9//jtWeQHJK765QtSYSq7UGv6PvNbdg0IlcowsR6ABQ7/RS7/Syo7HjOI6qEpRbvmbWrFmcvfwkRqmjKAnY2R+wsi/QTqsYGiAgiiLu0loQBOSCnLmBk1ALGmxiOyU1+6gM5BEZESkFEAGcf/75nH/++dIxXC5XSKRjbGxsr54KlUoV0icxGGTicrlwu93U1tYiDlDYjkY6t5L58ssvQ74nb7zxBvHx8Wzfvp3FixfT1tbGa6+9xjvvvCN1I3n99dcZN24cP/74I3Pnds27FEWRZ599lttuu43ly5ej1Wr517/+RUJCAh999FGvQXT9RS6Xo1Ao8Hg8PYplcO20vb192Dxgw8GxI8MH8e677/5/9s47Oo7y7OK/mZ3tu9pVL7YsyXLvuGMDtjHY2PReTEsBQg3pCRBIKKF8JARCCxBa6B1sOriAce/dlmVJtnrb3ndmvj9GK1mWtJZtbQLn5B44tndn35kt8973ed773Ifp06cnrfeqrq6moKAgZQWX+/bto6SkJGWrGY/HQ21tbcq7eJeVlaEoSnsKZeHChaxes5rC+GD0QvftMY4GWUIeRa4RPPP0M4wdO5aamhqef+7ebv0emxp3sHH9M+gy0hl49S+69HQT9Qb6n30liDoEQaBp+eeE6nvXMFUQBLKmzUFVVVRVpbp6Zftz/ftZOG1OAT/90WDGj8uk1RXh3ff38/yL5bz44hts3ryZxoaexQgJGAx2BEEkfgSlAL2pcfNXllFWVsZrr73GQ76d/CW6h22KlxGinT8YBnO9vpjjRAdSW54vtGUvsZomDJKefKUIY1tHcZuQxlh1GsdxItvX7WLixIn87Gc/S4nlkl6vb09/eTweVNXQZTHxQ0VPjUA9Hs2dJ9HLcf369cRisU41hMOGDWPAgAGsXLmS7lBRUUF9fT1z5sxpdy1xOBxMmTKlx9ccDfR6fVLVpCAIZGZm/uBUkz9Ycnv11Ve5/PLLe3xeURRqampSpi70eDy43e6U9j3auXMnxcXFKXMqAC0dWVZW1qlb+PHHH8+YMWPZI2ymUt3dpwWrw0qH88tf/IrXXn0dp9PBtddezqYNzxGNdpBA9f4VbNvyCtbS4RRddkOPk74pp4Dck8/Urk8QqPnwlV6bBxsycxAMBkCluXEjo0fauXLBQOad1g9/IM5rb1Tw+lsVrF7TTFNTWLvBs4YiyzIedxWynLz2x2C0o6oKSjh82ILxeEBz/5B64U6SsNzS52chZTpwqTGWy638M1bJ3ZHd7FR8zJVyuNM4lNOlXMSlW0AQiMfjFNFVWZkp5DIxPovB6hheeO5Fhg4ZxocffnjY6zgShMNhwuEwTU1NOBwO0hzOPh3/v4mDo7fEfaIoCrfeeivTp09v37Kor6/HYDB0iXxyc3PbM0CHIvF4QUFBJ9l+stccDfR6PbIsJ61lzMjIwO12p7T8oa/xgyS3PXv2sHnzZi644IIej2lqatJW6CkSepSXl1NYWNhj479jRXNzMy0tLT06SfQFDk1HJpCfn8+aNav51a9/yV62skm3nLDaferwSJA5wMnZf5rN+re3U/FuI7f97jaGDxvOtddcxuYNzxGLBamsWELZnoVkTDqJ/ude2WOT0gQyJpyItXgoKApRdzON33ya9PhIaxMH3n+Rihf+it1h56qrruKZZ55g8CAjq9c28/wLe1n+XSOubkoRMjKHtEV7Ml5P8ijRaLC3kZqKHE7euUAO+kEU0R/GV1KJRgjVVGqWW+OHdnnej8xSuYUHomW8HDtAVkjl0V/exq9/9SvG9puAWei+f6EoiAwQBjNFPgXBpeecc87hnnvuSXotvUU4HCYYDFJbW0skKuD2xLDb9JiMqe0Y/5+EXq9vF+gA3HjjjWzbto033nijT8ZPuPlHIpGUOKMkhCuHRp8Hw2w2YzabtVZOPxD8IMnt1Vdf5Ywzzkia/62urqZfv34pkc5HIhFqampS5iGZMGAeNGhQStu9H5qOPBgGg4HJkyfzt7/9DSlTYK1uMY1qzVGfy5pp4ay7ZrPpo51s+mgn6UI2xa5R3P6H2xk2bBjXXHMpa1f9nYryL8g+YS65J5/Vq/o1QRDod8aliCYLqCqta5cRqNrb5Tg5HKT+q/cpf+5BFG89Vz14J/985hmKBg7k7rvv5te//jU7d7mQk/gTpmeUtp1TxOXqeo6DcXDa7XCF3JpFl3DYtGSwprJtQAXzmOQin71KgIeeepybb7mFgD/A7X/7HbNumII1o+eCb6NgZpgyHr2op6ysrMfjeouDiQ1MGAw2YjEFjzeK3a7HoP9BTj9dcHD0duONN7Jo0SKWLFnSKWuUl5dHNBrtQg4NDQ1Jaw4Tx+j1elRVJR6PJ33N0SKRmkxGnj+01OQP7telqiqvvvpqUpVkPB6nrq4uZf6LBw4cICMjI2Uij/r6eoLBYMpUnqClVQ9NRx6Mt956iwsvvJBf/vKXnHPu2cyZdypbWMlO1iOrR5aakAw6Tv/9DCrX17DunW3tjzuFLIpbR3HHH/7I0KFDuf6Gn2JIc5Ix8aQjWpRItjT6nXGp9g9BpGbRq+0tX1RVwbV5FXufuR/vzvWcd9stPPnEE4wfPIznY/t5fO8qdu/eTSTioblpe/LzSCbSHAMQBHC1HIbcDAeRW5J9N1VRUCIhzZ3EmnwfKpGSRNJhGl6c9Nh4s5vAii00Nzbx3j8X8vqtH6M36bn8ybM5/orjMFq7RsSqqrJb3IjdkcbDDz+cdPzD4VBi0xs6osZoVMHnj+FwGNDpfliFwT1BkiR+97vf8f7777N48eIuC98JEyag1+v5+uuv2x/bvXs3+/fv77GGsKSkhLy8PL7++ut22X5TUxOrV6/udd1hb5Egz2SpyfT0dPx+f9II7/uEH5xacvv27dTV1TFv3rwej6mrq8NisaSEfFRVpaqqqttop6/G37FjB0OGDEmZEEZRFDZu3NglHZlAQ0MD1//senKF/jjUTJ579l+UlBRz++2389e//o118VaGxyck7bh9ME6+6XjiMZllz6zp8pxDyKS4dRR33nYnf77vz9zwkx/xzzf/yYCLf4aul007AeyDRpI+fjquDd8R93up/+oDso4/mdpP3iBUXckJV13ElWeeiyoKvBevZaui7XOlzZ6E+90lqMEIVZXLyM4Z3YVYVVXB7a6kuUnzyFQUBa+3mng8giR1H1n3NnKTI4mUpXrYyC1QsUfzWxxejGhIXtTr+WQFCBCX4xQxFE+djy/+tpzsgRkcf8U4rnj6bNa9vY3Ni3a1u+nXUUWjUsN7/3qPnJyjryfrTGxm9Iaue8bhsIwkiTgdBlpd0V6l2wKB1Jv4Hu05brzxRt58801effVVrFZr+56Yw+HAbDbjcDj4yU9+wi9/+cv2hfHNN9/M8ccf30kpOWzYMO6//37OPfdcBEHg1ltv5d5772Xw4MEMGDCA22+/nYKCAs4555y+eLvtEAShPTXZ07xjMBiwWq243e6Uqrf7Cj84cvvoo4849dRTk/orVldX079//5SkJFtbW4lEIuTn5/f52KARsyzLFBcXp2R80CLPeDzeLUGrqsr1P7uekC/MaHU6BsFEhpLLrsr13H//A9xww/V8+81y1m1dykB1BEUMTfo5TzhvJPnDsnnrN5+gxLsXVjiEDIpbR3PX7X/iT/f+iesuPp9n3nqGARdfh2jofVo2d9aZBCr3EG1twrN1Dd4d60kbUMDPn/8HY9ILWBSvZ03U1akqTDQZcJwxHddbX+P31eJ2V5CerhkRB/wN1NVtoKFhE9GwF8mahrl4ILE9WwEVj7uSzKyhbZ+bQijYQiDQSDDYRDjU4XuZzILrYOJLRm5yOEi4sUYjt3HJ92HlQAjPl2sQ0ZEp5pCmdixgmva18tGfF9N/TB4zrp3MoGkD+OofK6mrrmOvbgtXLrjymLwne0NsCfj9MSSHAUeaHren52ggPT0Do9HEzu1vHfV1HQlMJvMR79U/9dRTAJxxxhmdHn/hhRe4+uqrAXjkkUcQRZHzzz+/UxH3wdi9e3e70hI0h6BAIMC1116L2+3m+OOP58MPP+yTGrdDYTAYCAQCqKra4z3tdDrxeDz/I7dUYOHChVxzzTU9Ph+NRmlqamLs2LEpOX9lZSWFhYUpa2uT6vICWZbZtWsXo0aN6vY9fPDBB7z/wfuMZiqGg2Tj4+UZVLCTJ594ktFjxvDjn/yYf/3rX7jEJobLEzAJXSex4kn9mXDBKN677QtCnuQNRtOEdEpaR/PnO/7MXffeybUXncszbz3LgIuu6TXBiXoD/c+5in3Paym1CePHc/Pvf00NUf4vUoanh7YpaXOm4np/KUJcpapiKdGIlwMHVuDzHEBnspA24jgKRozH3K8IVNj5yG0Qi1FTs5rWljI83v0E/PUobQpK0WDC4MhAEHWoipw0LXnwc4GqvciRMMbMHPSO9E57jsH9WqE0qoplbHJ3Ct9XayEWRwEGqEO6df+o3lLPG7/8mKmXjeXih+fz/lsfUrkqm8ceeyzp2MnQidgEM3r94VW+Hm+MjHQDNquEP9D1+1FVlYx0G++88zY+n4+ioqKjnthlWSYYDGKxWJLev4fzluwOicgzHo/j9/tJS0vrcg+bTCaeeOIJnnjiicOOk4AgCNx9993cfffdAG1dLcJJCehokfhMktlxOZ1OrUN6itrx9CV+UORWX1/P2rVr+eCDD3o8pqGhgbS0tJTI56PRKLW1tSlzC0mUFyTrS3es2LdvH0ajkYKCgi7PBYNBbrn5FrLFAnKUzoXvoiBSykiy1Hx2bV/Prp07ueGGG3j3nXdZ27yYIfI4coWODfSMQgdzbp3G14+vpLmyd+79dsHZRnB3c9c9d3LthWfz7DvPUXjhNYdVTSZgyimgZP6FnDkonylTpvDvTz5i9ynDkk4EOpsZx7xpeD76Fpe7HFdrGdaiwfSfdRW2QSMRD07TCJBWOgLvrk20NO1Eb3diLhxIdu5xGHMLMGXlobPaEQSB8n/9H5GmuqQ93Q6O3JqWf0bCf0zQ6zFm52PO6Ye5X3G7SEbntKHv17NdmBqL41q0HAGBdF0WTrnnCESOynz34gZWrFzBOTfP45KrLzzqRdXBxCYIFiR97zpXqKqK2xMlI91IPK4SjnRMmoocIxRqRVHijBgxok9aVgWDQRRFSZkZsU6na5ftp0IM1hs/yKNFIjWZzMvSZDJhNBrx+3vXlf6/iR8UuX388cdMmjQpacPR+vr6lDmGVFdXa3U6KQrJy8vL6d+/f8rKC6LRKGVlZUycOLHbSeLBBx+krq6OKcopPU4iDiGDifGT2ctWnnjiCaYdPw37uDQ+//wzWilmsDoOq93C6bfNZNPCXZSv2H9E12gTHJS0juHuO+/mj3f/kWvOP4tn332ewgt+gigd/mYusBq4/KqLqCwv5+abb6a1tZVs0wXYTxyX9HWO+dPxLPwWVLAPG0vhOVf1fI0Dh+HdtQmAkh//CsncvcResjuINNUl3XNLpCwFg57iF+4g3uolVttMtLqRaFUd/n37cG1epZFeW9ftQ78bz+er8Cxcjuzxo0u3o/q0so0B8pBuv8cGtZpythMmgBELkd1BRu0dzEknncSyZcuIxWI89dRTrF+/ntbWVjZs2NAlWlIUhQMHDmhmz4qC2WwmHo8jitZeE1sCsqzi8UZxpBmQZZVYTCEa9ROJeBAEkUGDknfJPhKYTCa8Xm+3ncP7AgnZ/uHc9o9l/MP5QR4L9Hp9ezPWHucAh6NTZ/bvK35QasmFCxdy1lln9fi8oig0NjamjNz279+fsqLtRHnBwIHdN57sC+zduxeHw9GtWGDfvn08cP8DFCqDsQjJVXs6QcdQYRzjOYlNa7fw7Tff8KMf/YhWYwPrpMVMv24crQc8rHlzy1Fdp01Io6RlDPfceS+DBw3imnNPp/rdF1AOU0A6JtPKNSMKWFnv5dXaMO6gJtZo/tdHxJvdSV8rOW2knToFVAXfnq3E/N4ej7WWdOxVBveX93ic3pamtZxJYsHVbr3lsCHodOiz07GMHYzz9Onk3HABhQ/fTP+Hb2k7uGvXbf+KrbT8+1PSL5hFwV+uR24jNrvOSSZd7wO32sw2VlNAMZM4GUWQUVSFyy67jFGjRjFp0iQEQeDCCy/kwQcf7PG6Dxw4gMfjoX///uTn5xMMBonF5CMmtgSiUYVgME5amp5wuIVIxIPFYmHcuLF9avmUMDxONFVNBQ6W7acCBoOBWCyWtNHo0UKSpMOqJp1OJz6fL6XdyPsCPxhyC4VCfPHFF5x55pk9HtPc3IwkSTgch3d6OFIEAgG8Xm+36by+QGVlJZmZmSmLCkOhEPv27WPEiBHdPv+73/4OSdVTQu+tvjKEHCbHZ+MM5/DCCy8w9fipnHH+fArH5vPSE6+0q/COBlYhjYEHEdxPz5lHzfsvoMpdJwwBOLUwnXNKsnm9rIFv6zzobWn0O/0yANRonMYn30U9zGTgOLOtLZKq0rr+2x6P09sdGDJzQdR1tJ/pBppARCAe7HmVm7Dn0mX0vKCIVtVpfxEEzKM6l4d4Pv6OtJMnYp85AbnZjRrS9jYtsr3blfcB9pJJLsXCUJqoJSZEGTVqFM899xyguV/Mnj2bkpISBg4c2K1wKx6P09zcTG5uLqIo0tLSgsHoQFHiyPLRy8Q9Xj+xWBSHw4bdbiccDqfEDsxoNKIoSsrI5+Ci61QgkfpMxfUfnJrsCYmU7ve9JOAHQ26LFy8mLy+PkSNH9nhMIiWZCpVkfX09WVlZKUkFJLoXpKooHDQVVm5ubrfS/xUrVvDOu+9QHB+OTjiyVI0k6BnBRMZwPNs2b2f+6fPZuHEjmz2r2aT79picTSyCnYEtY7nnzvsYXDqIn5x5GtUfvIx60KrSIAosGJLL6AwbT22rYY+7ww3EPngkzuOmgaIQ3lGB94uupQgHQ5+dju2k40BVca1f3l4r1x3spcNBkQlU7O7xGMlqB0Um6vP0eIwcDIAoIGX0vCALbdPEJMaSAnS2DrJR43EiFbWYR2uE5/5II2RJ0CP3IJ5x00IGuXjVViqFXfzxj3dw3nnndfIqtNvt7fvKDz30UJdJNJG2EkVR22MTrRgMVgRBhxw/8glPVVXCITehYAstLc2kpaURj8URFJH9+w/0OUn8J6I3g8FAPB5PmfBCkqSkBHQs0Ov1SYlTEATsdjvB4LG7FqUSPxhy+/jjjznjjDN6JC5VVamvr0+6H3csaGhoSOnYQMrG9/l8HDhwgOHDh3d5TlVVfv7zW3HqMsnn6FOuOUI/fv2T37N3xz7+9re/k5+fjy5DYK3uaxrU6qMe1yLYKG0Zy713/YVBg0r5yemnUvPRv1FlGZtex3UjC9CLAk9uq6Ep3PVmzzv5LAzpmgCj5ZVPidY2JT2f8+yTAM3qyr2lZzK0DtQi3KirmVgP5JXoqq2Eep4E5KAfBBGds2eBg2/DLhAFzId03Za9QVAUdA4bkX01hHdWAuBQM4jSPTFHCSOhZ6e0gTFjxnL77bd361Wo1+spKSlh3bp1NDc3d0qBBQIBBEGgoaEBVTUgSdp+nCDqUNUjm8xlOUYw0EgsFkCv17dHa7k5uVgFOwKagXBfk1BC7NFT9BGLxaitrWX79u2dpPm9RW8srY4FvXEUOVpIkoQsy0nTnjabrb0B7fcVPxhyW7JkCbNnz+7xea/XSzQaJTs7eePJo0EsFqO5uTlle3lVVVUMGDAgZfL/Xbt2UVhY2K1C7L333mPdurUMlEceU8RbOm0AA0YX8O5THyIIAvX1TTS3NDNkxFC2soodrCOuHt1K0yxYGdgyhr/c9QCDBpXy43knE1y2kGtG5FMXjPLSrnrCcvc3olYecKX2D0Wl8R9vd4r8DoWhXzaWyVp2oGX1ElSl+2Mt/UtIaOyD+7t3K2mvW1PkbtOpgJayVFUkZ/dpyViTC9x+UJKXACSiNotkw0ry1HY9B4gIQV57/dWkmQhBEHjppZew2+3tfcsCgQDRtkk1KitEIr6jitZQIRrxEww0oqoyoigSi8XQ6Yy43W5kWcGWacGkWvD7/TQ3Nx/5OZKgO8Nj0FSfVVVVbNmyhbraOiKhCNXV1UdFIgnhRyoISKfTumGkIjUpimIno+buYLVaicViKUkb9xV+EORWX1/Pnj17OOmkk3o8pqGhgezs7JTUnzU2NmKz2dqbDvYlwuEwDQ0NKROqeDweGhoaui3YVhSFu+68iywx76g7bQOYHUZmXjuZT/+5mO2ejZSUnsqU43+BPa2QrVu3UFhYiMvYwDppCR716G6Ggwlu6NChPPCL69m+bRvvlDUkadWpwZTbj9yTz9LMlStqcX/4TdLj08/VUnJxvwfvrs1dnldVlWhrE/r0TBDFHvfdDi7KjvcQvUW8bi36Su+e3MLbtZSkYDJ06bqtS7OAKBLZX09glWZr1j8+iBhRDHRfCyZhoJUGHnzowfZI/nBehVartV2CHolE8LT5I+rTsxANBoKhZhQ5jqrICMLh7z9VkQkGm4lEPO0CBlUVsFiysViy0OkMNDY2YEozYjab0WOgurq6zydyvV6PIAhEo1H8fj/l5eVs27aN5uYWDKoRK2mYsBAKhY5K+p5QY6YifdibvbFjweHGTnRdX7duXUrO3xf4QZQCLFu2jLFjx3a7X5RAU1NTysQeqSwv2L9/P9nZ2Slra5MoL+hOGLBw4UK279jOBGZ0W+jbW8y4djI12xt4Z8UbpNn7M6DoRARB5LgJ11B9YAXlZZ8hSTpyCnJYf2ApJepwiklee9YdTIKFbFXr9CzLMgS81H71CfnzL0E4TNSbMekk/OU7CVSV4XpnMZbjhmIs6f73YiwpwDxmEKGt5TSvWkza8OO0SdDdgmfbOjw7NhBtbdI+MxX8Pey7HewVKQf9mnryEKhtpKdzdJ+WDG7bp6UkxwxGOGThJkgSxpKC9r1Ek85MgVzESnZTSFdf0rgaQxFkMtIzuOWWW9of//LLLw/rVXhwmsroyCDaVI8ajWBIzyLS0kgw2Iyqyuik5GUs8ViIUNgFbVJzrV7LitHkaP89mEzpBAKNeFq82HPsRPfH2Fuzm9ra2j51BlJVFb/f3+5FKwgietVAtjOHfnnaQkJARCfoaGhowG4/sh50CWFJNBpNSXlPb2T7xzL24YrFTSYTixcvTqpg/2/iB0FuS5cuZebMmT0+L8syLpeL0aNH9/m5FUWhoaGh2065x4qET2UykcyxIFFe0FPR+Z/u+jNOMYt09ehTuQOOy6f/6DweuOkRgqqPSSOubnfWEASRwgEnkJExmI3rn6VqfxVpaWns8+3AJTYxQp7YrbNJT3Cl1fHTP19B+b4G/v3yS9x2261cDbz42dvkz7swaRcBQRApOOMyyp7+C6gyjY+9Rb8Hb+zRo9F57kxCW/YSaayl+bsvCRzYS7BqL4LJiHXyCDKOn4cuw07N754g7vMQdbdgcGZ2GkPUGxD0BtRYtFuXElWWoa3Xm9RN5KaqKoENu7SU5LjuU5L22RNpfuYDALLlfpSxBZk4+RQDsE1dgwkzg4TR7BE2I+m1jsqPPPIIp59+Om+88Qbr1q3jmWeeaR+ztbWV/fv3t1loaVsC06ZN0zIYmdlkp1mRo+mEfG70YgZ6u4OoqxkQ0Indf56qqhIJe4jFtP06lQ43DoPB1mkCFXUSBqONFk8zVpsFT8ilWVZFU6M+PBRGg5HP3v2SgrwCBECvaqnSSCRyxIXZBoOBcDiMLMt9nlU6WLbf1zV7oigiCELSsU0mE2vWJBdp/TfxgyG3ZDU3brcbnU53xCur3qC1tRVRFJNGjUcLl8tFLBZLWVR4uPKCdKeTTcpGNovfMUAZQrpwhCQnwPFXHMeqdzay1bOOfoVTsdm7rqyjUT+xWADrwGF4K3YjCCKKLcoa/9cMkceRJxy+e0Or1MAlt59NQ4OPteslcvNn8cc77+Keu//M1cBLn79L3tzzkxKc3u6g8OwrOPDe88TqW3C9+RWZV3RvwG0eXow0sID4vjqaln+GcXAh2Tecj3XKSESjtgpXVRXsFvAFCVSVYXBmYhAFCqxG8i0GHEaJ037xC5w2K9kDijGbLTiN2i33i7GFROIyTX/5Cy6Xi3j/Urw6qFfDHFBC+JGJ1TZDsE3a30OLG9nTkS6rZh92HBzHCe0dt8MEERBoVGuopRJdXEd6ejqPPfYYt912G4MHD+aDDz5ob6oJmn/rj370o/Z/P/bYY4wYMQKD1U5QFRGjcXIzM6hVFCKuFkBFNBhRohHCYTcmU3qnTIAsxwi3OY2AoCktTWb0difR1iZCYRdWS3an1xgMdmLRIM0tLQRifiLRCCOZjJXUdvAO4GN7dA0udysFeVpkr8dAhBDNzc3069ev29fdf//9vPfee+zatQuz2cy0adN48MEHGTp0aLuycfbs2SxbtqzT66677jqefvrpHq9HVVXuuusunn32WdxuN9OnT+epp55i8ODB7anJVBSkC4KAJElJxzYajezdu5fGxsZjMtpOFb735FZXV8eePXs48cQTezymubmZrKyslJUA5ObmpnTsVAhJFEWhoqKCcePG9XjMF199wdtvv809d9/D+l3LyBBzGCAPJpPelVMMOaEYk83IO5+8jSgZKBl4apdjZDnKrp3vYiksZcCFPyVcX031h6/gdmuS723e1bRQz1B1HJLQ/arfq7o46YaJ6HQmVq72Eww0s33b6+icTu555DH++ItbuAp4+cv3yT31vKTXbh8yCue443FvWonn4++wTBiGeUT3JRhZF55C/YMvA5B9zdkYBnRehAiCQP6JExgalJg0eRRDhvUn06THG46wv6GZxpomGvbvZ1NjA5SMRF8yDIdBx2VD8nhrbyMxdwuhVV+SnplB8eQhFIoGpgjp5IhG3GqMCoudDWeeyfqKPUhZzi7Xp0RjuBYtJ5EftQtOBqmjcAgdEeREYSZRNcxq8SusJitSxIjshhp3Df/4xz+4/vrru4x79dVXc/XVV/PNN99QXV3Ncy+8iGS1t3cK98cUJEEmLyuTJlsaiXJGORQg5mlFpzNoLW5U2p1GOj400Dsy0JksgIDekUG0tZFozI/B0JGa1QQfToKhFqJtKlgrdtKEvl9kdkI32g8BAQkDzc3NFBQUdPv7WrZsGTfeeCOTJk0iHo9z2223MWfOHHbs2NFJNXnNNde0+0QCh92OeOihh3jsscd46aWXKCkp4Y9//CNz585lx44dmEwmJEkiGo2mxEj5cOUGOp2OwYMH88033yRtHP3fwvee3Hqz35b40fU1EuUFqUob1tfXp6x1Tm1tLZIkJS0vkCSJSy+9lIsvvpiPP/6Yu+++h3XrvsMpZVAYH0IOPTd7FSWRKZeNZdnrK6mOlTNk2Dnou3GnqKxYTCTqo3T+9QiCiDl/AKU/+TWNyz6mdd23iKKOVqmedcoShscndJqYASJqmMJz0hkzdgxvv1tLOBJk8+YXEW02BlxyHQgC9zzyD/74i5u5Evj31x+SM/vspASXN/ts3Lu3QCRI4+NvU/jXnyOau6abzOMGI+Rnoja4cC/6jpwbzgfAgcRxOgcjdWkUX/MLKvdVsH7DRr79Zhm7N23A5XJpnbWz05FDYRR/kOyYgezsEhrb+pfVBCK0Hqil6ptv0DlsFF08EdqEmSZE+olm0rZuZ8LEiVx19dU0CTG2Kz42yR5qVU3m71++GQJhBEHHiFEXcaDyWzb4viFLLWAIY7AINlRVZZe4ESSVSDjCGGU6ZmyUsYUbbriBzZs38/jjj3dZnS9ZsoS6ujruuf9+sk69AEHX+XlPVCbTJJBulGgNx1EBndmKEosSDnoQRIloxIcsd6QSRYMRvTMDQZQ6PaazWImEvOglS6e9U0kyaepJr7vH7/I/BQMGAjEfXq+3W5OIzz77rNO/X3zxRXJycli/fj0nnHBCu2zeYrH0OlOjqip///vfueOOOzj77LMBePnll8nNzeWDDz7gkksuaRf6KIrS54tkSZLaawF7up8mT57M0qVLv5fk9r1XS/Z2v+1IW1T0Bn6/n1AolJLygkAggN/vT1k4X1VVRVFRUa8iMFEUOfPMM1mzZjWLFy9m/Inj2Moq1khfUatWoqhd9YgjTx2EHJN5b+nbWC055BdM7HJMMNDEgarlZB0/G0N6x/cj6g3knXIuRZdcj2ixEolGEEwq64Vl7FN3tO/FKKoC431ceMkFLPq4mkBQZuuWfxMnRuHF1yBZbEhmK+lnXcm9jz5BaWkpV5wwnsYlC3uUX6uqimvDCoiEQFGR3T6aX/6k22MFQSD74lNBUQh8t4XBAZGf6Adwu3EIQ0QbG2Q3f3Zv4Ve/+hWvvfoKW4P1SJeeTP+HbqLk5TspfPQXmqdlDxZciX24Q5WSYRT2xn28+8/n+dNdd/HrDR/zRbyRdEHPzYaB/MJQymTBiX/hd4BAv/5TyMkdw/jJNzBi1CX4DH5W8SX71B3UUkGjUkMkGmGQMgarkIYoiAwVxjGcCTz7zLPMnz8fr7fDbuyrr75qI7YHiU4+DWNW1wWSCrRG4uhFAbuhYy9Jb3ci6HSEgi0HEZuAPi0dQ0Z2J2Jrf43NAQidIzztZRhNDmKx/74ThoiETtD1uiQhURuXkZHRLq1PNFrOyspi1KhR/OEPf0haCF1RUUF9fT2nnHJK+2MOh4MpU6a0F933RrZ/tDh4360nJMjt+4jvfeS2fPly7rnnnh6fd7vdSJKUEpfv+vp6srOzU2KwmkrHE7/fT2trKxMndiWcZBAEgVmzZjFr1ixWr17Nfffdx8KFC6mSdtE/PogCStAJOvQmiUkXjeajpz6jVWlgzJCrEcWum+VlexYh2R1kTpnV7fmsxYMp/envqP/qfTzb1qHT6ahQduIWmxkuTyBa4OXWX93Ax5/uptWtZ/fOt/H5aim+/CYMjo5GqTqTBecZV3DvY09xxy3XcwXwyrKPyZ5xeidyV2JRaj95A+/OTTjOPAHRasb1xpf4l6zHOnE41gldrcdsk0cw8vT5XDD/dKxmB6vVIO9G6nDTNpmYJXT9c5BrGjENL8F+0nGdXq9z2kBR2m22DkaiW4CU0XVPNLq/AWQFdCIM6c9mxctmxYsRkfE6ByfG7cx/8K98/PHH1DcObP/+cvPGkpU9nMqKxeyr/AYBAYPeSLqcRT+lc/q1n1CCWbWwbPE3zJw5i6+++rK9aPueBx4iOuU0TNk9RxmKCi3hONlmPTFFJRSLE/O6O9X0iXqDFq3pkvzORR16u4OY14XeYEN30LE6nb69SPy/CQGQVENbDV5ycYiiKNx6661Mnz69fS9TkiQuuOAChgwZQkFBAVu2bOF3v/sdu3fv5r333ut2nERh/aHZl0OL7hOy/b7uQtCbfbeJEyeyfft2XC5XSnQJx4LvdeQWCATYuXMnkyZN6vGY5uZmMjMzU7YnliqxRyrHrqqqIi8v75h+7FOmTOGjjz5i69atnH3RWZQJW1glfU6luovRZw7BU+/jkzULSUsbQEZm1+aZLS17aG3ZQ+7ss5K2q9GZzPQ74zL6n/cjVL0RVYWQ3sd6w1Iu+80FrF5TRnWNger939FQv5GC0y/BnN+115bOZMZ5xuXc949/UlpayuVTx9C8/LOOPlt+L5WvPYGvfDs5t15C5oLTcJ51ItKQQhAEmp5+D9nbmYBGiHZ+YxrCggWX8u6773LNT6/hU+/+DmJrQ9rxo0AQCG3raqKsc9pBUYm0dl3xy6EA6HTd1riFtpWDIGAaXtwuYAGIoLBSdnHrH2/n4Yf/yuTJJ3DdNRMYOyYdnajdAzqdgYGlc7DbNfGDTtExVBnf7T2SIeQyTj6BHVt28Iff/0EjtgcfIjY1ObElEFNUWsNx0g0SsrulkypUsjswZOYkJ7bE52SxIkh6ImF3l32v3vSF+09Aj0GL/F3JWzjdeOONbNu2jTfeeKPjtXo9V1xxBXPmzGH06NEsWLCAl19+mffff5/y8p7Nt3t1XW2iklS5lSSrL8zIyKCoqIgNGzb0+bmPFd9rctu8eTOZmZk9KpRAUzNmZmb2+PzRIhKJ4HK5UmKJFYvFaGlpSQm5JVqR9FVReCgUYtmSZcyZO4fTzpxLa3ot484Zxqsvv4ZXbaW4dHaXSVNRZPaWfYKl/0DsQ3pXnpE2ZDSDrvkdtkEjCIVDnHv+OQC8885CXK3llO/9lIzJM3GMGN/jGDqjibTTLubO++6jtLSUBZNG0rLiS6KuJipeeZRYyE3Bn36Kbaq2mhZEkYJbLwW9iBII0/Tsh6iqSp5g5CZDCRfr+7FSbuUBpYLFK78jFgrhXdy1aNU8ZjAoKqFt5V3MmRPOI3Gfu8vrtI4AqkaAh8C7eiuiDuQmF+6F33bqahAuO0BsXzVbtmzhrXcr+WpxHaNGOrni8oGUFGsZjOoDK/H5qlFRGCZPwCD0vNCJEOLkObOYMXMG9zz0f8SmzsOY2dvfvYrf68bn85KdqUXTgiRhzMptsx/r7aJTQG93IstR4vHOtk5CN1mB/wZERCSkpK4cN910E4sWLWLJkiX079/R37A7R5EpU6YAWreO7pCYHxL2fAkcWnQvimK7w0tfI2HQnIw4x48fz/r16/v83MeK7zW5bdiwgQkTJiT1k/R4PH3aEiOB5uZm7HZ7t8XPx4pEQWgqCrcbGhoQRbHP9gnv/8v9tDa6Wf7VCt5//32uvOpK3G43q/YsB6C1eTfhcOe9kob6TQT9DeTOPuuIImrJaqfw/B8z5cobOOecc3jssceoq93A5s0vYsjKJXfG6Ulfr6oK9V++i6upibv/+Q9KS0u5bMIwKl/6O5h09Lv3OowDOy+UpIw0cm+6WDNXXr+Lk2ri3GoopUIJ8pfIHpbLrSiSSObFp4IKnkXLUeOd9yCMpf1AFFDDUaKVdZ2eS3hGyqEA3j1b8e7W2gD59mzDX7cfZKWL9ZYal4mX1aDEVQqKJDxvf8X+mx6m7u7n8C/fTMv7yxAEkeycUVgsWVRU+nntjQrWrm1mzikFnDwznbqaZQgIDGAwmULPRNWs1lMwz8Hll1/OvQ89THzqfIwZvdsHVuU40dYm4j4PLS0t6PV60rNzMGbmIRymmLs7iEYTosFEJOJrj95UVSUW/f54GEoY8Hq9XYhEVVVuuukm3n//fRYvXtzFBL07R5FNmzYB9FiYXlJSQl5eHl9//XX7Y16vl9WrV3cquj84fdjXSKRfk/lMTpgw4XsZuX2v99zWr1/PhAkTenw+HA4TiURS0ibG7XanLId8OLujY0F9fX2PcuUjRUVFBR9++CFD1LH0YyAtUh1jx4zjyaeeoH+//hiMBsrKVlFTvYq8/PEMKJ6ByZROZeVi7INHd5s+PBwkUeDquTNYeqCZhrhWE4WqEGmup3nlV2RNO6XHlXzj0o/x7tpM7i8uwTx2MPc+8Sx3XHENN/3sOl7av6lbOT2AdfIIhl5wGj+dMhuTycxjTVupTet8DvvJE2h55VNktx//yq2dmp8KoohxzBAim/cQ2r6vE4G2pxwVher3XtAWS5efTc2i14i2KegOTUtG9tVo15Vp5LJnphMNxNm9uJbNH+znwONvtzujFJd07GWqKmzf6WFfpZdJ46P84x+P8uLT/0Za0/17BmhRG8ifl8blly/g3v/7K7Hj53cpRO8JSjhI1N1KgoVUQcAVjpKVZicWihI/ylZjki2NaGsjsVgQRZWJRnzEYpoYJ4CvW6l+XyJA8iacElqK1eVydRKD3Xjjjbz22mt8+OGH2O329j0xh8OB2WymvLycf//738yaNYsBAwawdetWfvGLX3DSSScxZsyY9nGGDRvG/fffz7nnnosgCNx6663ce++9DB48uL0UoKCggHPOOafTdel0upSYNAuCgE6nS7rPOGHCBF588cU+P/ex4ntPbsmsXdxuN3a7PSWCD4/H06dWPwmk2vGkvr4+6R7lkeDxxx9HLxrIlzXV5bRp0xAiIuo6K0Ghlkqlkoz0DLJzsikr20hd7Xrs9v6Eg63kT7/6qM45q186KvBtS4Siy26gdd1yGr7+AICm5Z/j37eLfmddgcGZ0el1rs2raFm9hMwr52NtMz4233Qu9z31L26/7CdcBfx70Xc4zpje5ZxjxDQuWXANn3zyCa+//Aq6Qf3Iv/3qTrJ00aAn48KTaX3jK9wffoPthLGdFhD2KSM0cttajvPMjppM0WrWRCGyQuE/foWlzZ+08PFfUXbz/6EGI13SkqHt+xAlgdITtPpKo03PmLOKGHNWER/8YQ07P60jPXNQtwXzO7Z/yScLv2b2ybO58ec/Y8vHe1j9xuYupNCqNpI/z86Cyxdw78N/04jNkdFlvC5QFWJed6e9NZ3FqhVkCyLBuILToKclHDsqHhIkCUHUEQ5r+1qSJJGdnY3RYGR79D/jhmEymnpUX2upST0et6cTuT311FMAXZTdL7zwAldffTUGg4ElS5bw2GOPEQwGKSws5Pzzz+eOO+7odPzu3bs7dSH47W9/SyAQ4Nprr8XtdnPCCSfw2Wefdalr641s/2iRILeeMGHCBPbu3YvH40lJL82jxfeW3EKhEDt27Egaubnd7pSkJFVVxe12d9si5liRascTVVXJyOjFJHUYRKNRnv/XC+TKhe093sacPpQtH+/GSRZONYsAXva7ytjrKUcvSRQVF1FWpu0fNH3zKVnTT8XSr7jX58w16zkh38HT22tRVM0yK3PSSdhKhlKz8BXCDTWE6g9Q/q+HKDjtQhwjtd9G8MA+6r54F/spk3HMn9Y+nmjQY7r+bP78xLPcdfk1moryk5WkzddSOgIwR8phhi6TV2PVbBhoJBaJENu+D++Xa3DM7bwASTt1Cq1vfEmsupHQ1vJOriGWMYNAVQnvrESNxxHaFlyCIKCzW5HdWkQgWrRJSWe1oEa0FJV0SLsb7+J1KHGVgdM6pxODrgg7P6tBVaG45OQun5/XW03lPi2FVbO4lXfKvuD022aSWeTky79/Ryyspa1cahN582wsuHwB9/31EeLHz8eQ1ovfYzxGxNXcoYYURQyODERjR+reG42TY9Zj0YsEYr0P31Q5Tjzgay+ZEEURRdG6WWdmZrHo3U/wun0IgE4vYc+x4qn1pkREMWBIIbkZuQTd3bcN0iHh9Xk7RTOHu47CwkKWLVtGIBBAp9P1WHR96DiCIHD33Xd3KvzuDokaN0VR+tzm63ClBtnZ2RQWFrJhwwZmzepeGf3fwPeW3DZv3kx6ejqFhT1bM3k8npTUoAWDQeLxeErSnaluqNpXjicLFy7E7XExDC0KzCpJJ7MonZ1/Xtx+jFVIYzgTGKiMpDq6l6rySlRVwWg0EqjcjX/fTiyFA8maPgdr0eDDvue5AzJZ0+ijPtg5vWLMyqXkyltpXvkVTcs/R1Wi1Cx8FV/5TrJPmMuBD1/CNLiQrKvndxlTNOix33Qedz/1L+689CdcDrzy+Woy507lMn1/+gtmHovuo16NYCwpIOOyubS+9jkt//4U8+hBGAoOqs+zmLCdMR3/xytxf/RNJ3KTMh1gNqCGokT2VmMaVtz+nC7djuz2ofiCkK2l/VRV1aT+0KmXmxKNITe5QYDiqZ1/22tfL0dVwOEoxuHsLBiS5Rjbt7yGgEC2WEA/ZSCuag9v//ZTTvv1iVzwwFwW3ruE6qb95M6zasT2t78TO34+ersz6feiKipyJEzU3dLxWZjMGiEekiJWVK3A22mQCMajHI571HiMeMCL3GYgLQhaKlpRFPR6C5JkIhRqJT8vnwF5He/Z2S+NSP8oIU/PDWWPFqY0IwaroUdyk9ATUUP4fL4jXlynylGkN+nDo4VOpztsVDhhwgTWr1//P3LrDRL7bcnEJG63m8GDe+5xdbTweDzY7faUtM9paGhgxIgRfT4u9K3jyb/+9TzpuixsikbwI08dRNnySmKhris4o2CilFFkynmsYymyLKIqipYqqali/xtPY8rtR9b0OdgHj+zW/7HYbqLYbuKd8sZur0fQ6cg+YS7xoB/Xhu8A8O7ciK9sG4JBR84tF7VHS11eq5ew3XAOdz/9PHde/GOurBDJ8qVjztTz92g5ATpSLo4zpuNdtYV4ZQONj79Nv3uu7eTGn3nmSfgXfkd42z4ilXUYiztSg9aTjiPw5VpC2/d1IjcpI41oRS2yr6NgNxG1iRZTp+uO7NkPQN4wJxankXVv7GP1S2X4m8PIbZGQrETwePbjcHTsaZaXfUY47EIvGPApbpbwPmbVxmDfaD66O8aMaydx7n2n8MlXHxONRbnqqquRVRVLs5u8uRdgzOgg0rIn7yHm7ZC7B4qKUCY+DXYrCMJB9lndIxRXsOtVbJIOX6z7dJYaixLze1Ei2r5jgtRUVfOVNBis7XuruqiRqBxBT4dIJeyNYHaaUkJu0WAMe7YVQSegyl3ZWUCz5DoaMVsqHUUSysa+7kBwsKgk2b7b900x+b1VS27bto2xY8f2+HxCTJKKHG+q0p2xWAy/398nacND0ZeOJ42NjXzx+efkylrULBl1DDmphO1fdi9ZTqCGCoyGNKad+AdGjr4UkzkHVdEaUUaa6ql+7wXKn30Q97Z1XZqAnjYgg2/r3ASTKBEizfW4N68ibd7xpM2bBqqKKsdRgiG8X69N2oRUkCRsPzuHB99/hcmTJ5MvmfnrVx90IjZoKw/41eWASnRfTXsT0AR0aVYssyaDKOJe2Pk5+/hhoCgEt3SuW9Klp4FOh+zr2KdS/N23uvFu2o2gEyg9MZcdn1Xz9cNbOeG6YRz/oyHavpkgENXLbFj7FNu3vkEk7MHVWk5N9QoAYmqUfgxkCqeQQwGbWYFPdvPhU5+xv76Ks885m1WrV5Mz9wJKrroVQW9g/5v/RIl3XrRkn3ga+add2CkyE/QGjNl5SYktAU80jt2gQ+y0NlVRomGirY1EWhpQIqGDFq8CRqMDmz0foymtk2jIYLAhE0c+6LsK+yPoJBHJ1PfrcyWuEI/IGC1tBtmoxIgRJohf8OLHi4p6VGrnhGw/2R7W0eJwe2NHi4Ojwp4wduxYtm7d2ufnPhZ8b8ltz549SaMQj8eDzWZLiZgkVeTmdrsxm8197iQAfet48vbbb6OqKjlodTqDphXhawrQsKdn66GoGqGeA/QbMA2dTk9O7hgmTr6JcROuwZk+qI3MBGLuFmoXvUbZU/fRunEFSjzG8HQL6UaJ7+o8PY6vqip1X76HlOUk49I5ZF01n/w//hisRlDB/e4Sau98llhjzzVIkiRx8403sb+5gUAgwAWGAvzLNnY9LtNB7q2XAOB6+2siFbWdns+6YIZmybVia6f6M9PwYgAiew+gRDpSq1K6DVBRvB2RWzu5HeJOEvh6Paqs7bet+fdexp1XzOgzB7DmFa0hqmg04xg1kfx5F9PqLWf1qkfYvOklQMCAiSzyKBaGYhXSKBVGYSedcnaQPc9EycASvl68mHvuf4CiCVMx5RTQ74zLiPu9+PZs6/isUfHt3U7dZ2+DoiDoJHQmC3pHerf2Wd0hImuduu16nfbeIyGiLY1EW5tQohES9W+CIGEyp2Oz5WMw2rrN1EiSCUEQiXFQyxsVwv4o5rS+v5dUIBwII1l1BPHjw00IPxhUMrMyGDRoEMcdd9xRb4mkioQkSUKW5ZR1/k52zUOHDmXv3r1JSwb+0/jektvu3bsZMqSr80UCfr8/JS1uErVzqYgIU6km6kvHk1dfeZVMIa+98HfQtCJ2L6tIfn72g0Anj0lBEEhPH8jY437E5Km3kpc/vl21Jwe81H/+DuVP3cvsLCNfVzUTVXq+Kb27NhOs2kvmj05v78FmHjmQ4kd/ha3N8ipSUUv1b/6B79tN3Y5xgVSARZB4PsPHPe+9rNXBGQs1A+JDYBpWDE4rIND4j7dQoh2RjZTpwDRxGAjg+XRl++OiQY8u0wGyQnj3/vbHdQ47yAoRV4d/o+wPgSh2st5SgmEIRdBbdOQNc1C3003x1GzKltURDcgY0rOxDxpOqLaK9LFTKL3uD2CxgCqj0+mJEiZOvJMXqB0HYbuXBZcv4E9//z/+9dxzbN6yhSuG5KIXBXQmM+aCAYRqKgEI1VYR93kI1x1oG0HFNmQ0gsEA6pHtE3uicax6HbK7mairGeUgj0idzoDZkoXVmqM5kCQbWtBcSmJEUQ/SYIZ9EYxWwzE12k1AQSFGlBABAoIHd9CFyWLE6rAwYMAARo0axZgxYygqKsLpdB7TlkUifdjXOFhUkoqxDya3Qwm0pKSEeDzO/v37D33pfw3fS3Lz+/3U1NQcltxS4ScZCoWIxWI/qHRnNBrtM8eTAwcOsHLVSnIUrVZLb5LoPyaPijUHkr6uVqgiK2s4BoO12+ettlyGj7yA40/4HQOKZyK2tbeZOn4cuniU1+78JU3LP++2qacSj9GwdCGW8cOwjOv8mxAtJnJuOJ/cXy8AvQ41EqPpiXdoeOwtjSzacKIuk+E6G89Hq4iKYPnpGdz70Wsawen7EVjREblEquqpvf1JTMTRGwVidS243vq603mzF5wGior3yzXIgY4iY+ucyaATCW/f1/5Yoo4tVlHT/pjsC4IgdBKThHdVIegESqbmEPbFUGUVa6aRLx7QyDdr+qlI1jTiAU15Gdxfjux1AQITJt0ACLhpYRPfEVdj+FUPzhEWBEHgL888ge+UcQA89cTjeBrrOX+gFnlIVjsxv5emFV9S8fKj2sUIAvZTJiEYDVR89zVhnxc13ts6KhU55MffUEfA78d50CJUr7dgteZgsWYhScZeE5Neb0VFJU4HKcTDcVQV9KYjz1ZoY8UIEyIg+PDjIUQAyawjJzeHoqIidDodxcXF5OTk9KkA5L+ZPjxa6HS6TqSZMHxOZIr0ej0DBw5kz549fX7uo8X3UlCyd+9eHA5H0rA/EAikRE6fqJ1LhZjE7XYnVX8eLRobG/vM8WTRokUIgkiWqgklCsfm42v0467tubjVp7rx46ak4PDt5o3GNEoHzaWoeCZ1tWs586xZLFy4kFg4RNN3X9C86msyxp9AxuSZ6G1aVNO6fjlxn4e8y6/scVzrxOEUPfYrmp75gOD6XQRWbSW8q5LcWy5izIhRzJdyeSpagadtchREEcuP5nHfy29w++mXcOk+gddXbUcwG2h85HWyiixc+OhMgq0RXrhsKZ5Fy7FMGIp5uOY8oc/PwjCoP9HyGnxfr8N5llbbljZhON7XvyS4ZS8Zl84BDrLgaugQaURdXlCUTjVu3sXrUBWV0ukdJQBNZV58DWEkuxPH8ONobNIcUOIBHwc+1HrNDR56BlZbLoIgMqDoJGoOrGCtvIQZ805gWO4kdpXtwX/lLHTVTQA4rzyN+/90J3/7x+PM6ufkpViUQHUlvt2btSipIIucWy7CWJSPeUQJjY+9xftvv8WVP70OZyaa+0h3pKQqKOEQctDfvrJPFDsbDFZ0khmxTUykyEduFSUIElE1gnjQmjzgDaAzQTh0+Aldbd+5i6Mgo6Ki0+mw2Wzt/x+c1g+FQvj9/j53KVIUhUgkQjAY7HNRSTweR5blPo/eZFkmHA6319M1NjZ2iWCHDBnCnj17mDNnTp+e+2jxvSS3PXv2MGTIkKTS8VRFbqkUkwQCgZSM3dra2mctfxYtWkSGmIVe0TbTiyf1o2JdTdLX1LMfvWTu1kC5J0iSkYmTTqGoaAA1dRuxWHMJ+OtR43Fa1i6jZd03pI+dSvr46bSsXoz95AkYCpLvcegcNnJ/vQD/t5to+uf7yG4fwUff4fKnZ/NOtJr96qGehSLmK+dy3ytvcfu8i7h0n8o/Hn6ckuOzOPfBSRgsEo58CydeN5Rvn91D4+PvUPjwLe2937KvOYea3z2Oe9FyHPOPR5Ak9P2yNdFHZR1KMIxgkJDbIkjZ33F+pa4FVBXpIHeS4MbdoMLAablY0o0IOoEVz+8GIOv42Qg6HfGAD8lq58AHL4OskJk5lIJ+mkehwWBDb7AwdMQFDOjfyoLLF3Dr7b9HzE1HZzWjtEWJxoH9kOdM5J677uTBhx7iW6ueLW2qRceZJ5Jx4WwEvTY1WI8fjWHRd7zw/PNkTJjOyaOGotfpOnObqiJHI+3Kx44PWNMVBoMhFEUgGu15T7U3iMfDxONhTJhJsKvk1WG0GQi0dmfRpSKjoCC3kxloHaTNZjNms7nddNjtduN2uzu9WpZlYrFYShqBhsNh9Hp9ny+i4/E48Xi8z69ZVVVCoRAmkwlRFHE6nV0yRQly+77ge01uPSEejxMOh1NCbh6PJyVmyR6PB5PJlBIxidvt7uJldzQIh8N8/fVisuR8ZGQknUTxxP58+uCyHl+jqir1QjXZeWO6bXuTDGNHZ7Bzpwdn+igmTRmJ27WPqsqluFr3gqri2rQK10ZNBWid0LuCekEQsJ90HOYRJdQ+9ibXn385G1av5aMP3yTn5ovQ53W2lxJEEfMVc7jv3+9w+7wLuPnGm6gesAqDpePWmH7dcLYs2o+n1kvzy5+Qc925ABiL8tBlO5Gb3PiXb8E+U3PeNwwsIFpeQ+1tTxBr8qC21bNxkMgk0hZFJdSSsjcAsoKzvxVHgRaBZw+001jmRWe24hwzGVVVCFSVYcovInRgH3q9mWEjL2hfBDqcA2hu2snxU4dz+eWXc/8L/8SrUzEN0urDpJx0dE4boW3lOOZPo/Lj5bz0wgvcdNNN3Hr773HeeF6nEobE52mbPILWfTW89OY7LK6di9NkQBA042f39nW4Nq8BRQZBBFXBkJ6Fc+xU7KXD8e/bRYG7mosuupwPFiZfJB0OkbCXTRueYwhjyRK0iVVn0HHhA6fx8YPL8Nb7CODFTQteXStexYWiKvTv158ZM2dwwgknMHnyZKzW7lPnhyIUCrFy5UpmzJjR5yS0bds2TCZTn9y3B8Pn87F+/XpmzJjR57W0K1asIC8vj7y8vG4/jyFDhvDBBx/06TmPBT9IcvP7/ej1+j6v50jUzqWiO3aqIkJFUfB6vX0ytiRJDB40mG3bt9IgVjN+8CRUQaF81z7MavdKNg+tRNQgubk9l210B6NRZPAgO6+/qQlVBEEgPaOU9IxS/P569ld9Q0Ndm5JRFKl/8GUsE4bhPG8mptL+SUZuey9ZTs6+5zcMU7O46ZrriAQCVP/2cbJ+eha2E8d1ei+CIGC+4hTu+/eb3D7vYoR9AvuWr2bgCdoiR9QJXPHCDB6f81l77zfL2EF4Pl8NgSAI4P7oG2wzjtPIYN7xuJ9+F7slzsTfjSZ7UBpv37KSiL9jv0hpE5ck9uO8m/cgSgKDTupYDSciDUvRIGLuVlrWLUOJRvDv0cyXrbZ8DuxfTumg0wDIzh7Fju1vkJ4+lT898Xcas81EKuvI/tm57e/TMW8arncW0/r21xCJ8dlnnzFt+nRuePR+3hObCO/ZrxWhjyxBNBkJl+3H/ckKpLwMWtcuJWP8CfhammlZs4TW9cvbvx8UBcuAQWRNPQWpZBgBQSAQjKJmF/HZu69w3nkXYjYJ7D/QdU+195BobgoRDW5mpKDd+xE1xM71ewgXtPLB+jcJx0NYLVZOOOEE5k+Yy09/+lMGDhx4VGczGo0IgkA0Gu3zLRCHw0Fra2ufR1gGg4FYLEY8Hu9zwZ3FYiESifRI9EOHDv1f5HY47Nmzh/nzu7pNJBAIBLBarX2+MgmFQkSj0ZQ4k6Sqe4Hfr9kV9UUUK0kSW7ZuZuvWrXz++ed4PB7WbVzLCuVzrJIdRzyLTHLJIAd92+TSTB16ydzFMeNwGDbUQWNTmFZXV5GCzZbHiJEXUVo6lwMHVnCgSptEgxv3EFy/C9PIgaSfNxPTiJIefwN2JM43FPBmrAbHn35M4P9eRql30fTkuwQ37CbrmrPRWTv2UjSCm8t9r77N7XMvhHKoENdQMk2rG0zLNXPWg+P56PcbaHzibfROG7H6VsadX8yOzw4QqW0mtKkMy3FDsI8bSmtcBRUmXKxNrLZsMxG/r30vSg5psvbEfpzvg2/aLLe08wVaIjSV+RB0WiH8vhcexphTgGi0oEQi9C+cht9XSzSi7YWGQi4GDPAy++Sbefq5Z4lGo+jzMsn79WUYCjWSVhUFJRZHDXd85voBubyT5ucP5uFsjQXZppfwr9iC653FqLE4Uk46jvnTsE0ZyYFfP0bV608Srq9u+9BEQCVt6Fgyp8zCnNd10SHodFiGj2PxksWMHHHiMZIbZGYPp3b/Svaom/FILXjirZjXxpg/fz4hKYCqqmzftp3Pv/icz7/4nEmTJh01uQmCgMPhSImJutPppKIiuQL5aCCKImlpae1GFH0Jm83WPt90hyFDhlBZWUkkEklJhupI8b0kt8rKyqTheqr22/x+P1arNWW1c8n60h3LuA6Ho8+IXhAExowZw5gxY1i8eDHFxcWccsopfP7553zy8SdsLV+FgEC6mIVTzqZRqCEja2i3riPJMHyYgy1bkzd9NJocDBo8j+KSWdTWrKWifAkKIcI7K6m753mMpf1xnjcTy/ihXd7/XCmHvUqArYoPQ79sih6+FfeHy3C9vZjAmu2Ed1eRc8tF7QKRxHs3LziVv7z6LrfNPR/KoFK3luIp2l7fqNOK2PBWJTWbXOD18JM3Z5EzxMGgmTm8ffNazZLruCHobGbQCQg+I+b6PDKMefzyxuMwizYGmrWJ9oG778Hr89Galke1EiIqGKk36BgwQds7Xfz3bSAIZE49mZwTtcisecXXNH37KRZrNgMHzW3vWB0Ou8lwbGfBgst44N/PUfD0b9vLJRKINbmovf8l5FqtVtE6dRRZPz0Lnc2CD/gs3sg5Uj57SwL0u/dnnV4bqail9Y0vtRKH+moQBASdjvRx08iYdNJhDZedoyfz+Sf/5ozTT8dgaCAaPQLPSVUlFGymtWUPLc17cLv3oagy/vQWJk0Yj9lsxtXqorCwkM8++ww1BGnxTEYymSppF1999RXnnntur8/X5dqdzi57cX0Bp9NJKBRKCRGkpaUlJaGjhc1mo7a2tsfnCwoK0Ov17N+/PyXOUUeK7x25xeNxGhsbkzryB4PBlPRCi0QiKdk8TjiTpKowPBXjhkKad15hYSEDBw5k/vz5PProo1RVVfH555/z7jvv8t133xEMhYg07WTbltfIzBxCeuZgTKbkZRQ2q0R2lonyfcnbiyQgSSYGFJ1I/8JpNDZsoXzvV0QjrUQqamn4v1fQ988h/byZWKeOQhBFsgUDk3ROHo52OKoIko7080/GMm4otQ+8hOzxU3f3v3CeM4P0809GkLRUiyAImBbM5i+vvcdtc86DXVClW0/RRG2v7pLHp/PX6QuJ+uM07fVq5DY9H8kA4Z2VOKpdnFA8jLHPv0C6zY7X3UI800tF00a2LttLRnoG1113HW+99RaWrHTGDjuXaTi54K9/1SbtQA31sT1s/Wg/6HRkTNRUmJGWBhq/+RhB0DFq9GUHEZuH9LRtGrG99jy+y07qQmz+FVto/MdbIIgIZiPZ15yNbdqYTsd8J7dyoi6TCaKTdYpbG3tXJc1vf010e0eEoTNbyZw8k/Tjju+VUwmAKTuP2jjU1zdSNMBK2d7k33s8HsbVupfWljKam3cRjWgpXJvNzsCBxej1BvaWlfHVV19hliw44pk0nN/EhWOupOq7+vaFjivexOKvFic71WHhdDpTkmrT6/VYrVbcbnef7/EbjUbC4b63JbNYLO0lAN1BEATy8vKoq6v7H7l1h4aGBq0bcpKarXA4nJIJPRwOpyScTohJUkGcfSUm6W7cQ6XRAEVFRQwePJgvv/oSAYHiogHIskxT416aGjX7HYsli8ysYWRkDsbhLGmfiBMoKbFRWxckEjkyubIo6sjLP47cvHG4WsvYt3cxPl8VsZomGh97C+n1L3CeO5MrTz2HdbKbJrVrytNY2o+iJ35D0yufEvhiDe73lxHcvJfcWzrEJloEN5v7X3+XP5xyPsIO2C+uZ8D4TAwWiav+PZMXL1/Kp/dsonBCFmm5Zq6870zyW0cxtngc24Ugb7bu4dvrH2bYvHzm33kc2xu3sXZdOVc/r7n5b9iwAaVfJuXxqbR+sBTfO4u56LZTmTFzJoPqZ/HXvw3nw4WL2FdZhm3IKCpfexKAQUNOx2rTJsNIxEt62lYWLLiMB19/Ef8lJyLqO25pJRim/rE3CW/S3E3MoweS/bPzOhWOJyCj8lm8kXlSDivWraf+zS+Il9e0KR7BkJFN1tTZpI0Yj3gUmY20EeNZtXoFI0fO6kJuqqrg89a0RWe78XqroU2mbzabyUzPx+V24/f7OFARw6FkUqKOJINsrPE0BEHAtddH/0EF7F/R0bU6nSy271lLc3PzUauJHQ4HXq83JYbEiZRnX5ObyWTC5+vdwvFIxz0caRYUFFBXV5f0mP8UvnfkVldXR1ZWVlKxSDgcTpk8NxXj+ny+lOzjJcQkqXJT6WkB8cUXX2DSmSmKD8NV1YhLbCIqa0Si1xtQ1QA11Ss5sH85gqDDmV5CZuZQMjIHY7HmMLDEzr6Ko0+bCIJARuYQMjKH4PPVsr/qGxrrNxNvcuP4eivDZl/C7V+/gzJtBKKp6+9INOjJ/fFZhKaMou6Bl4hW1mlikx+f2S4KATBdegoPvP4evz/lPNgG1eIG+o/LoGBUOiNP78eOT2v54p5t/Oqum5kwaCDvv/0BTz71FLY//QgpJ41wMELFSs0I2pptQlUUfE0BSAMEkDK0782z6DvUuIJ1dIxK52r+Nu8uZp88myuuWEB9TS1PPv9P5ECAjMwh9OuvteGJRHw47Vs0YnvrJXyXTO9kwBzes5/ae54HWUHQS2ReNR/77Ek9G5ErCt+sXsH00mmM3dxI9T4t/WTuV0zW1NnYSocdcer5YNiHjmH1knc4ff4ZiCKEgh5aW8toad5Da8seZFnbg0wsAiORCLIs4/f7CfiDDGQEmeRil53aezjkbTSWtzJoeufmuA60xcr69euZO3fuUV23xWJBkiS8Xm9KRCVer/fwBx4hTCYToVDfdy83mUzIskw8Hu9x6yY/P/9/5NYT6urqDtskNFXpw1RGhH1dCAodYpJU2JC53e4ei+gXf70Eh5xJf2Eg/RnIAbmc3WyidPB83K59uFz7UNqMkSVJh9+3H1drOZSp2O2Z3Pizf/Lee9+gkIdef2yfi91ewMhRl1A66DSq93/H2WdP5qsvv6L8uXcQXzHhOGM6aXOndhKPJGAeOZDif/6B+n+8RXjjHpqefo/gxj2a2MSmHW+8dDYPvPE+v599LmyBGnEj/cakc+bdkzDWV/KzK24gWuNn68gPOZCxAZfbhfzpCrKuOh0Mejy1QTx1QWyZJlQFard5oBQQRKJ1zXg+X4XqD2F2GsgenMaaV8uJxuIsjzZTaWngFKPK3/5yL6+++gYu76g29Z4fp32zRmxvv4zvwuntaVVVlml+5XN8n2olFMZB/cm56cIuJRAJqHEZ/3ebaXr9c3AHeGt6FVddeSVfLl9Jv3OuPKpu6t1Bn+akvK6RSCSEu2UR69drnR10Oh2STkJRdKiqTCQSJS2tkLyCwaRnlKKqCpvWP0sGOaQJPZNLU3kLx18xrtNjZqwYdEY2btx41OQmCEL7vltfk5vJZKKxsfsuGMc6biQSOfyBRwi9Xo8oiknLsP5HbklwOHJLVPengtxSSZqpSkn2pZjk0LG7y5tHIhE2bFxPqTqqffXsppk0ez8GFJ3IgKITURQZv68Wl6scV8te3O5K2iztGTNmGI2NDXyz7BlAwG4vaE9h2tP6H3GtXAImk5Oxx53NtGmlPPR/byAIepRgGNfbi3F/+A2O07ROAoc2BhUtJvJ/ewW1tz9FZF8tgbUHiU1GaOle4yUn8+Dr7/G7U86DzVCn28TE/Fncdsdl/OufL/Dl11/w03dO5virhrDssZ34vlpL+vknYz1xLIGv11G1tglnP622qm67C84GAYXYgQZaXliEIAkMOlFLTS15ZBuo4DzrRELRCI//8S8sGzqcX/zy97jdCh9+tAeHbRMLFlzGQ++9gu/Cae0teWKNLmr++DSKT/OtzLj4FBxnntCpo3gCSjSGb8l6Wl77HCIxTSSil9iRpiBZzRw3Yiiuw/R5SwZVVYm2NOKv2IV/3y6C+8tR5Thr165h3LhhbNy4CkWRkWUFsyWT3ILBpKeX4nAWodN1RNuKIiOKelxKEw56Fq40V7nRGyXS8mx467VFnyAI2HCwcWNXc+wjgcPh6NQdu6/QmzTf0Y4biUT6vCu3IAjt+3nJyO37Ug7wvSS3goKCHp9PrEhSsTeWqj23VEWEqUpJJmsntG3bNq2RKx2rWLfQQk5GR8d0UdSR5igkzVFIUfFMFCWOx7Mfd2s5kydPYs2ate3HBoP1+CvrqKz4Gp3OSHrGIDKztJSjyeQ8ouseMdxBdU0Qq/04Tpw5klUrHiYa8aFGYrgXfov74+9Imz0JxxnT0Wd3XH9w7Q4i+2o5/U/Hsfa1chrLfB1ikws0sYnh0tk88MZ7/H72eQxyDybdbGdH/08IDq5E/kLhwz+s46qXT2LceUVsen8/3i9Xk3nuTIJL11O5uonp12gTs7dWSxepCpz+p+PY+109u7+sY+C0XHYtqUFRBKzTRqHPzaDuoX+jRuK0umy88dYBzphXwCUXFWC3D+WhD17De97UdmJzfbUK13OLNPusfjnk3HwRxqKu+9ZKMIz3q7W0vvlle7NU0WbGMX8aaadOQWe3sFL2MnfOHJ7+Zh1ZU7p2/O4JcjhEoHKPRmjlO4n7O1JuoqBDBdauXcvVV/+Yz7/YSXpGKQ5nSdLoXRR1pKX1x+PuudsDaG1qWvZ7yB6Y0U5uAFY5jXVrj63PmNPpZO/e5O2ejgapirCMRiOqqqZksX44Qi4oKGDZsp5NH/6T+N6RW21tbdLILRwOYzAY+tyTTVXVlEVYqYoIQ6FQyvw1e2ontHHjRgS0FTForW4iBLHbey5zEEWJ9PSBpKcPZOSoEpZ/V8uY436Eq7UcV0sZfr+WxpDlCC3NO2lu2g6A2ZxJZtZQMjKH4Ewv6bSi7w4jRzj5drmW5vG49xON+Ci67EaUWJSGpQuJNtXj/XI13i9XYzthHM6zT0Kfk07rK58y8IRcxp5bzJhzitj0TgWf3rsZ94fLCG4u08Qm+VkYL5lN2b5mThoymg3r19MYP8D0nwxj3Wv7qNvuYuWLZcz5/Vg2vVeF55MVOM84AVVWqVjZyNzbtCL3SKDDU9GWbWLv0vq2rts5PDHvM1AU0s+ZgX/lVkIb9mAypTNw0GkEAgG++OJtrrrqSmpamwmdOxVBFFCCYWr+9Cyx6iYQwHnWSRoh6zt/d7I3QMuib/EvXK7VpykKUm4GzrNOxHbiuE4Ky3U6P3eMGY3+jbeBnslNVRRCdfsJVOzGX76TUF2HI/zB+3Mmk7PtOyzF7hhMQUEeo8ac3WtBkS2tgBZP184Nh6JpXws5pRmUr+i4DitplFVtPibJvdlsTtkeVsIuqy/Lj3Q6HXq9PmXkloyQ8/Pzk5YL/CfxvSO3uro6Ro0a1ePzqSKghOHoDyktmapIM1l5waZNm0jTO9HFtZ+ODzcANnvyfVIASRLISDfS0iKTmTmEzMwhMHgemze9REB1YS0ejL9iN9FWzZoqFGqhpnoV1QdWIAg6HM6idrKzWnM7pVxysk2YTDoqKjWVWF3dOgzp2VgKB2qWXKXDCdUfoGHpxwQr9+Bfvhn/NxvRF+UTb/Zwyj+1SVwQBI67cCADT8jjxQVLCFTVU/3bx8n88ZmcccocJgzP4s/v/Jtrp55CZM1YGoUt/OyjU/nrtEV888ROSqfnUnJ8DhUrG/F9uwnBZibQEsLfFEYyisgH1XhZM03IMZWcoQ5cdUHiUbBMGIaU6aD6t/8AIBYP4nbto39BE5dcchkPfPAql557Pldg4R+bltB474vaZ5vpIOfmCzEN7VxMH2/10vLGlwS+2Qg6EVQwDuqH8+yTtPrAbhaJXuLs8bVw3OCB7GisxZTTkUmJed3tqUbf3h0gJ1xXOr4Lvd5KRuaQdseZgyNwRQWvN0p2lonqmp5l5QfDbiugWv2OODEkoecOAI3lrZRO7bxHaMWOrMiUlZUlnVeSIVVpvt7sYR0tEhFWX2d2Dldm8L89tyRobm5O2g0glftioij2SbPPg/FD3CP0eDxkZnYvQNi2dRummLV9LvPjQRQkLJbDS62zskyEwzL+QIcNlaqqeL37cU6cTs5J8wCI+70E9u8lUFWGt3wnqt+Lqsq4XRW4XRWUl32KXm9t36vLyBhESUkWVVUBFAVkOUpz0w4yp5/aaTIy5xVSfMnPiLpbaVz+Od5ta4ntrwdV5av/28r0a4ZSOF57H458C7d8NZ/Fj25j9Yt7MX+yjnmnXMoTnjIa86zccccd3HvvvVSuEfAdv5nz/j6J93+1jg//sI4rXjiRv8/8FNc7ixEzbMiBEFVrmrGkG4kdtHXjrgsg6LT9trdu+A4UBec5Mzjw+ydAhazpc/Dv3UG//AYWLLic//vkLTynT+D5cCW/UgYw8rsqGlUV+ymTyLz8NERTx0InVt9C8wuLCG0u0+yxAMv4YTjPOhHT4MN3pthljjF56hRWfbKMuN+Lv2I3nj1bkT1t6cFDJnmTycGA4pmkpw/EbMlKSgKNTWFycnpPbomFkx8PTnr+nTWVt3L8gnGdHrOiqZR37tx51OSWWED29f3Wmz2so4XBYKChoYGmpiaam5sZPnx4n5QcmEympAXi2dnZuFyulJROHCm+d+Tm8/mSqv9isVifExB0/HD7WpyRqj3CVKZRg8EgAwZ0r5Lbvn07djoWHwG8WKzZvZKJ52SbaGzsvOoLh93Eo0HMBR0Rh2RLwzFiPI4R4ykAou5WAlVl+Ct249u1CYBYLEBD/Ubq67T9lAvOe4xvl6/H7VaJhD0ocgzH8HHdXofBmUH/My5Fnn0WDWu+xr1yKRWrm9i3opF+4zI44dphDJyWgyAKzP7FaMadU8Lg8rl8vGgRy997ByUQYujJ+byx9p9cMuk6qlaBcPwWsgfZadrjZdWLZWSUWGmt8EIrCDqByjWN2HPNtHra0lsCLHt8B6qskllqI+yVMY0oIbh1L3KTB2vxUDInz2SSQ+LyBQt4+LN38JwxkXBdExW/e5KnjjuOn//8VuqmDyI6suO7iu6vp+HJd4hV1msEJOlIO3kijvnTelRMHgxVVYlVN7Jy72bOOvViQvc/QPOKr9quua17tqTHWjQIa9EQrEWDcG1eTWjXDvr1n3LY8QEaG8PkZPf+d2u2ZAECAXxJyc1T78NkN6I3ScTC2gLKIBgx6kyUlZX1+nyHIpHmS8X91pt9N0VRcLvdNDc3d/o/QVyJvzfWN9LU1ERLays//smPqK2t5e233wZg+LDh7Ni545ivV6/XE4v13K4oMXf7/f6UNWbuLb535HY4a62+zk8nkMrUYSr2CP8badTW1laaW5rJo7T9sYDgw2rrXY+63BwTDU2dyc3v0/Lzptye9+wMzgwMzikYnBn4dm0i95eXEnf5CG3bR3BLGVl2B4WF/fj88zvw+7yaE4dOIlC5BwQRg7N7lZ3ObKVgxlnkTZ9H86ZVNH/9IbVbXbx5wwpyhjg44bqhDD25gFHpU8kcmsVzH3+N4g+CCrYsEyfcUsobj/6TSyZfR9VKOPdBeObcL1n1UhlnPzSej363kX5jM6je2ELFyiaKp2bTWqaRm9lhoLXCg96kY+mjO0BRsM6aQMuT7yIazeSfdgEDdy/n8gUL+POf/4zvspPwvbgI/+erAdihC7NDF+LKcSfyXKyKcNkB6h95HaVVE3GIVhOOedNImzMFXVpyF3zZHyS0tRz/hl0E1+6ENu/J6uHTGT9+PMtXrMDcrwRrsUZm5vxChINUrZbCgbg2LCca9WMwHD4CaWgKM2K487DHtX9POj1mUzqBcPKasIg/SjwqY80wd+o/aBYs1NQcW0eCvlI2qqpKIBBoJyWPx8Py5cupra3tRFwN9Q00NTbR3NKM2+Putj+bUTJhFExIqgFdXEKPAT0GcilCdBkZnD6cScyiiVqqqqqO+dpB859N1gw10XHhf+TWDQ4XuaWS3FKxf3W0qYxoNMrWrVvJysoiKysLi8XSKaoMh8NajVAffxaKohCNRru95sQNYqZjsgziJ8OSvM9aAjnZJvZVNHd6zO+vR2eyItkOX+Qeqq1CNBuxTByOIIo45k5FVRTGuKDK00KsOBu2+0FRUBWo+/wdAPSOTOyDhmMtGYZ1QCmiofP3LEp6ciaeSPaE6bh2baH+k9dp2uvlvV+tYcCIfP527wJ25n7OeY9MpnxdI2/+9DvWv7mPAxtbOPehSbzx9tNcMuVnVK2C8x/18e6tq1ny153oTTqqN7ZgStMT9sYIuiKIOm2RY3YacDUKFIzNoGpNE1JeJq3PLwRVpeC0Cxm8fyOXL1jAWyufw0UDTX96DkHUvn/bCePIuekCPlAb+L1SiuOvH7Jv3VpQQcp24jzrJGwnjUM0di/AUWWZyN4aglvK8C7bgNLclittc/dHEDDnFbKnyc2Usy+kacoZiFLP2ZLEwsTvq+1VT7+mxjBOpwGDQey1z6TZmk3wMOQGEHSFsKR3JjcpbuTAgeSd5A+HnsjN6/Wyd+9e9u3bR0VFBdXV1fj9fgoLC2lpaaG5uZnGxkYa6htobm7B5WolGutwzrn22msJh8O8/urrGEUzejSiklSNqNLJJ4diDBjbyMuIAQMSBkT5oAXzIQkn0WUgc2QWDiGTgOojGAr2SdZLkqSkkZtOp8NisaTEIeVI8b0jN7/ff1hyS0VB9PfN9eRnP/sZL7zwQvu/jQYj6ekZZGVlkpObw+jRo5kyZQr33HNPOwEm/s/OziYzM/OoWgIlS6NWV2tu8FqzSJBVmRgRTGZnr8Z2Og20tnZOwQQDjRizcnuVDg411GAoyu8kghBEkZLcPOoQ6Hf7j1DjMpHyGkLby/Gv2UGsso6Yp4XWjSu0Fi2iiKV/CbaBw7GVDMWYU9B+bkEQyRg+jozh4wjVVlH1zr+YNmYGWzZt5W9PvcK0nw5l7DlF/Hb1Wfzz3K9o2uvluQsXM/cPY3ltxT+5bNp1CDUwYHwZ+ze0MGBKBgfWuDDYRSJ+aNnnA7VNiNMcQFVUqje1gArx+hYQBJxjpjA62sTlCxbw3oYXCKe10LRHI5+SqdnozRJlK3bQ+tFS3G98zcILLuDcM89k844tZF93PpaJw7oVicSb3QQ3l+H5cg2xyrYNf53YXg4g5WYQb2glZ9ZZpI+bis5owuW0MjzPgdicXP1mSM9ElAz4ffW9IrdQWCYYiuN0GGhs6l00ZDI58AldC55VVSVOjAghooRxudyE0t3sUTcTIUxcjOLDTWPD4Yulo9EoFRUV7N27l4qKCg4cOEBdXR0NDQ1Mnz6duro63nnnXYLBINFoDFmOo6rdk7NRZ8IsWtHJEpKiR48RC+k4yUPfRlQGjKS5sinpl8EMJQgHD3WMuyMBVwhrunafSmiE5vF4jrmp8eEiN9BSk6kwbj5SfK/ILRaLEYlE/itpyUgkkhKnj6ONCLdv204W+RRSSowo0WiEWEMUd0OQxu27MckW+uX358F7HyIcD6F0c5PZrDYy0jPIys4mNy+H7OxssrOzu5ChyWTC4XBQUlLSfr3dpVETqZ29bMOomhHa7sB4LEwo2IrBaO/iI5mAwSAiSSKBg8QkAIFgE4bS3rXLiTTXYZrQtX1Jf9HMetkNaAbJpqEDMA0dQPp5s1CiMSK79+PfUkZwxVbkFg/B/eUED+yjcekidGYrtlKN6KwlQ5Es2m/PXFDEiJ/fzfxx/Xn0scfxN4X54v7NfPPkTo6/ejA/fetktizaz5f3b+GTP29kyOwCXlr8OFedfBMXnfoj/rb5EapWtoIA3toIgiAQdEUxm9sKrv1aSxw5qqAzCcgRAX2ak+P7ZbYT25evf4evQVNZnvKbMYw9p4jP7t+IEoriefNrUFX2eDdw0YgLKUjPRijuIH4lEiW8oxLPV6sJbSwDRUGUBJS4iigJiFkZWMYMwjxqIKbhJYgWI5U/vg9Q0Bm1xVhNIEqexYAoaCrHniAIIsbMXAKB3rttBANxrFYJmrp/XlFkYlE/kaiPaET7P4ifneoGooSRpRhRIUwoHkRWOybbU13TUHOjiANiDMjJw2rTunwUFxdzzTXXUF9fT3NzM62trXi9XgL+IJFIhLgcb3fVORSSZKJfv2JsNjsqWTicVvQGK3q9Fb3e0vZ3Cwa99vjyZfdQLA+jUBnU9gH1/DlEXHFso/reBD7QGsRyCLm5XK4+Ibd4PJ70GJvN9r/I7VAkPpBkJJMqFU40Gu3z5qdw9JFba2srFmxkCt0bSI9MH47YamBafB6qqiITJ0qEGJG2P6PEAhGigSj11S0coA5ZihEXYkTVCOF4R92OIIjtK9ApU6Zy6aWXcNFFF2OzWUlLSyMjI4O0tDS8Xi+FhYXEY1E8IS9enxcUgbI9CynbsxAAnc6A3mDDaEzDaHRgMNowGtLo178f0WgpLlcdBqMdSTIjCAKRsBur47jDfh6qLBNtbSatzVux/dqB/oKJD5Xu65BEgx7z6FLMo0thwWkowTChnZUENuwisHIbcjCAZ8cGPNvWAWDMKcBeOgJryVDGjxqJgsh+tO9PP6iA8N5alj62neXP7mLygkFc//Ecnrvwa8qW1mFxtvBk08PccPGv+fnPb+Hvf38UJa4g6ARUuQd2UEEOqyConDJtCpdfvoDnPn6CJa9p9lkFY9I5/U/jWfz3rXx27yYEEURJYOzZRUy+chCZxXbctQeYfeps3v90BaoKvqXrIBzrdF5bjonSabnojCIb3qyg8O5ru+zFGYryCDd07E21hGPICuSYDdQHu5pQd3ptVg7BmuakxwDE4xGiUR9uTxZyvJ4D+zcTbSOwSNhLJOIlGvURj3f9PiWdnlhGAL1ehx49UlxAH5OIRqNavZis0OpyYbXZqdxfSeX+yi5jiKK+nZAMhjSs9nycGW1EZbAcQlhW9HozgiDiTE+nf38rY8YdnhwknZlYvOfU3cFIpFH7GhF/FJNdW1Tr0ea1vmjd0xtys9vt/yO3Q5EIZZO1s0lV5NbXNSwJRKPRo5L5ul1u0sjp8XlLuplAqzYBCIKAhL5thZbkXActTBUU4sTw4mKTupzigadgNNoZNLiYQFDBYi0lEg1QU+ujsrKeSNSn2Wp0CyHxH6oaJxb1EIt68PuqUVXN9d1qGUVz83jWrPp72zWLSJKFeCyEd9cWYl43ktWOZEtDsqYh2ezan1Y7gk5HzOduLzw+GA70GBCpV3vn9CBaTFgnDMM6YRhccw6yN0BoRwXeZRsIbysn0lhLpKme5pVfcdYtt7C8YS+tG7/DNKyYgj/9FCUao+GJdwit3s6Kf+1m1UtljL+oBE9dgLIlDexcXsV91Xdz+6/u5JabbuEfT/wDOdY1IhClxAem/XveafO4/PLLufeBe9i1YzeiTmDaT4ey6+tqnj3vaxDAaJOYeFkpEy8pxZppJOiOsPbVPSxbW8eCC6/k5Zte1pqhqppgpeT4HIqnZFM0OZv0/hqRuQ742fBmBZF9NVjGdU4hGgbkEdnSsTelAg2hKLlmfVJyU1UFncWGP7SHlpY9WqSVIKyIj0jEQzTiJRr1oyjaxDh5ws2EQ43s3bOo7fcgtGcLVFXVIlBBBFXVFl6qSlyO0djU4fqPqENntiCZ7UhWO0aLjZDJTrYdMjKHkJc/AYOhc3Qlikc3dwSCbZFmL6DXm4jHky8GEgj5Iu0k1JdQZKV9jzYRufUluSWbLw/X1PQ/hV5/008//TS/+c1vcLlc7eTi9/tJT09n+vTpLF26tP3YpUuXMmvWLPbu3UtpaWkPI3aFz+fDZrMlVRb+0MhNVdWjUkp6fV4y6drZOAFzmhF33dH/gERB1DapVW1Vl5U9HLu9gAEDsgA9I0Zd1On4tWseRyrqR/ZJpyEHA8RDAeRgADnkJx4MIIe0/+MBP3LApz0fDmoCBSA9PR2Xq6M5qaoqxGLa9Ycbqgk31QFq+/GdrtVobheBeD9fRWhbOZLTjs5pJ7dff/ylJcRCYUTzkU8SujQrtqmjsE3VaqDiLR78W8rwfbaK0oEDef3115EjIeRdley/+WEsxw0l7aTjyL3uXFreWYzvkxWse22f5jIyLZOK75qpr2pqr4O7+cabeeyxx1CUjskGQGnr1A0wb55GbH/+85/ZU7YHU7qEElX57tndqIpKWr6ZqVcPYdTphezf3MzLP/4GV1XCPxFsVju/+XkBo04pJu84O8WTs8kqtXf7e3b2syKZJaIHGruSW0EW/qUb2u8FJR7DHQhiDHnx7t5OPOAj7vcSD3iJ+7zE/B4i7laIduybbdn4wqGnbPugRRAFQBOtuFyuTu46qqqi6o1IZgs6ix3JakNnsSKZtT91ZiuSxYrObGv/u6A3dH2P2TYyo62YzZnk5nXuWXcsCIVkzKbeZYwkyUyc3kVuSkxB1PX9vKPIart4SUT7M5kQpLdIzL2yLPc4D/dF5Hb11Vfz0ksvdXl87ty5fPbZZ70ao9csMWvWLPx+P+vWrWPqVC019O2335KXl8fq1as7pd+WLFnCgAEDjojYQLOTOpxYJB6PpyQtqShKn8v14ehIU5ZlorEouiRfj6gTUeLJN3Z7g8RNqJe0z91slgiFuqYd4vEwRqsNvd2JvpeGuqqqokQjyKEApf0ziNjMFJxxGXLQfxA5BogHfO2PKeGu6SglEkKJaI8HN+6BTdoeEqpKyZQpNF/cj8pf3oOgl9A5rOjS05AyHeicNnROexsR2tCla38X7ZZuRRegOX04Z00ke9YkCo1FhC6fhSPXgPfrtcSb3Hi/Xov3i9UgipiGDCDj0lOJtfrwfbGaypUtbW8cvH5vO8Hd8vNbeOzRx7rdF00Q29333N1uOBvxyKiySt5wJ4Nn57Dv2ya+fGgLX9y/uT3VqDOIDBifRfHUbIqnZBPR+bns7tPwmeuTfykCpBfaCJZXE9q+D9nlI+7xI7t8BHZXosbj7Pr7HajRCKgKB376U4jHqX7/xY4xREFTVqpquyCly2lMBnQ2C2KaVftO0qzo7FZ0du2x+JBS8rMK6D/kVhr+9hrW7FIK5l6Y/Np7gUBMJs3h6DateSyQZRVR7N19LOoMyL0lN0VpJ6G+hCIr6CRt3MTe+OGEIL1BYu5NRm6Ha2raW5x22mmdRHVwZPXCvSa3oUOHkp+fz9KlS9vJbenSpZx99tksXryYVatWMXPmzPbHZ82a1euLSEBRlF4R1/eFhHqDoyHNRE5bSLITLehElJ72cY4AMtq5Er6NoiggdzNuPB5GNBzZ3qEgCOiMJnRGE+kZGYQFAeeoiUlfoyqKFiklosFggHjIT8OSj9AXZqPPz0L2Boi0uFE8AdIzMmht1Vwz1FiceLOHeLOHyN7qjgn40GhQEBDtFo30MtKQMrQosJ0I0+30y84nlBPHn20j87K5ZF42F1VVCVXU4Hl7MaFt5YR3VRHeUwWKimgzgyMNtaahnYA8Hk8Hwd1yC4899liny+gUse3Z0/46VVYRRKjf6aZxj6dtFS7Qb1ymlmqcnEXB6Ax0+o7fVaC+Bak1jXrvLvxNYfzNYRrLfdTvaMVbEyToiRKPKO3RIrgJrNqmpUYFUQsB2z4nNdJBDC6XiwHFxdrncxBRiWkaUensVkS7Rft7WtvfbZb2Fjw9ISKm4ZTsGIxZ6NKsKH3kjh9XQNLpkON9a0isqL0nN0EQUendvXlwhNWXSMwNgiiA3Cb8OsxeWW+QmCNVtef3J4pi0ud7C6PRmLRp9eFwRPm9WbNmsWTJEn7/+98DWoT229/+FlmWWbJkCTNnziQUCrF69Wp+/OMfH/HF9IYI+uJD62ncVKUljyZyg+TkJuoElB5WzUeCxE2YKMpNlDp1OU6R2x3ojwY6QSDei+9OEEUksxXJ3FnsUP/V+9iOH41j/rROj5dIOciqjgFP/Q7FF0D2BZF9QRRv4u8BguV1xMuq0Ft0xCNaVKR4A0S9AdhfDzodmrKj442PmjOHvdOg4sH70TmsSBkOpIw0dA4b5pEDsU8fi5hmJVJdh/v9b1F8QQhpE2pCxCHohC4E98wzzwBw6qmncvHFF7cTW+J1CUWjqkLucCeF4zLIGpiGNUNP1aYW9q2qZ/P7lYR9GlkpspbevOgiPQUFBbz4+FIQBFRF7VbEIogCpjQ9ZqcBa4YRd02QUEzCNnNCR2TVRlQ6uwVdRn/yjVkUTfpdr7/r3iCOiq7t9y2aDCje3u1RHQ5KWwdvhWO/NzqNq2hrgN5AEHtPbqqcqrSk0nYtQns9XF9Ebr0lt74417HiiMnt1ltvJR6PEwqF2LhxIzNmzCAWi/H0008DsHLlSiKRSMoit+/b3lhvxj3S6+1YYSUhN7FvIreOm7BtohEFlG5036qqHFMnZlGg23F7CzUeRzB0/blKCMQEkNLtkN69yja4uYz6+1/iuvdPIS1PEyvFQnGC7ighd5SgK0LQFcXbHKB+m4eWCj+OTDuBoB8iEeL1EeL1rdqbEERNWNPNe7E49AQPquNLkMvBBHfDjTcAcMkll/CnP/2pS+8rJd42rgqNezw07fWCqnY8fggMNgmzw4CUppBV6GT0mQOwOA2Y043an04DlnSj9qfTgNGu7/R7/PTeTexcFyLjolO6HV8WdUipyGigIiZ+32KHWveYx03cx328CFYVFbGXn4MWufXu/Siy2mkvtq+Q+O2JOgFifRe59QaiKHbrqHKkWLRoURcx3m233cZtt93Wq9cfEbnNnDmTQCDA2rVrcblcDBkyhOzsbGbMmMGPfvQjwuEwS5cuZeDAgT16EyaDoigIgpB041NVVeLxeJ9sjh4MWZaRZbnPx1UUBUVRjmjcSCSC2WzGhBF9Dy7oOoOIqBPRm4/NccCg6jFjxmiU0IkiOp2AKIJB35nIzCYjJqMB41GuMvWiQFQRjur1qqpiNpkwGYwY6XxdegRE6PL4wZBVAbPZjF40Iira52U06jHmmknvwUs23z0SYzyN2y+9KHERRHwxgp4oYU+Mup2tVG9sxX3Aj685QsQXQw1p7VEQEnuiHTd4NBrlvvvu49FHHwXgkUce4cCBAz3uMUtWgdzSdDKLraTlWzVychgwOQ1YnHpMDiNmux6hbV8ly1dKejCHM08+jL+jCgcHFSajCbNe7vHzEwE9YtLP92igQ0BCwIiI2WRC0MtH/dvqNK4gIEkSRqO+y2/4mMYVBXQ6oVdjms1mVHO4x3u307gGnXYfW/T0MtjrFXQGLUgw2oyogooZc5/Ob9FoNKmwry8it1mzZvHUU091eiwjo+eGtYdCUI8wz1dYWMj111+Py+UiEAjw5JNPAjB48GD++c9/ctdddzFs2DCeffbZIxkWgO+++44LLrigPQr8H/6H/+F/+B9+WPj73//O3Llz27evjgZXX301brebDz744KjHOGJN/axZs1i6dCkul4vf/OY37Y+fdNJJfPrpp6xZs4brr7/+qC5GFEUkSWL+/Pk9HrNkyRLGjh17RAzeGyxfvpzBgwf3SVuIg7Fq1Sr69+9P//49y/oPRSAQoKCggBFMIEfo3pR4zi+nU7Otge1fHFuH4Ca1mu2sY9qJv0fSmTh5Vh5ud5QNGzt3Pv5u+f1kTp9NxoQTjuo88wZkElMUvqp2Hf7gbrDr73eQuWAu9pM7C1LmSNlY0PFBvKtKUFVVlFCY0MYymp/7kFN/NwZRJxD2RAm6o+1/BlwRgq1Rwt4o0TYHlXnz5jFs2DAeeeQRoC29I3bdyxJ0oNOLWuNQRUUOKwc911FEndhje+SRR7jjjjuoqamhoqKCJ598stP+hbaXqmqNRwutDBifSSwo42sM42sO46kOdP/5nn46Q4cM4e9t1wtaBlVnEDHa9NhzTWQNTMNZ0DkKXP/mPqorIffOn3SrIB0npjFZSueZaN8Y7yYwTLRxqpTDP6L7aHz0TUSPSP9zrzzmcQfYTJyRa+KuPz7C6DEL+uBKNWRmGjnrjEJeeOnw99vWLa+ia/UzSjh8lwR7jpWLH57Pc1e+3ReX2Q6jzcDVz5zLc1e9QzQa5ls+5sUXX+Tcc889pnFVVeXTTz9l1qxZPWYdXnvttZRs8RwpjorcbrzxRmKxGDNmzGh/fMaMGdx0001Eo9Gj2m+Djo3IZOaegiC0t6DoS4iimJJ+bjqd7ojHNZlMhEIhwkSICd2nEeSoJoyIhY4tzRBRY4QIEYnIKHqFeJuYIRrrnDMPhcOEwhEiR7nPF1O03b2jfX1EVgi43IjNrZpQxBtA8QVpzh3EAJuT6o8/0AQlngCyx4/sC6AEw+17Y4Io8NGfNEd9QSdo+xw97GVJRpEWXyP5hTMpPSWTovFZOAfYsWUZsWWbMJglGsu8VK1pomJ1I/vXNhMLywii0F5EfTDmzZvXLh5JGPjefffd3HHHHVx77bUddXCHOJmEdodoKG9BiavYckzM+sVILGkG3rxxJXm3/wjRqEd2+4i7/RQMGUVrMAxDC5FbvcRdXhR/CAIqPhc0H4CKdfWaYiihjDyIVF2X3aHtKZoM6NLt6LKcGDMcjJg8DXdRKc1b13VRRgpm41HvfyuoyKhEUAgGg0hx01H/Ng6GrKrEZZlIJNblN3xM4yoqiqL2asxwKIQU6vnePRhKTEaVlWO+jw+F1JaWjAYiROJRQoT6ZN5MLMQMBkPSsfqC3CKRCPX1nRetkiT12kLsqMgtFAoxbNiwTlHOjBkz8Pl87SUDR4PebEQKgpASxWRfyVcPxdFcb0JUk0xxpcgqonTsP6BEgWfCOUJRu9/g1ukMKLGjV7RFZAW7oUMspMqyVuPWXTF4e5G4v70GTolFcb29GNfbizuNWzNzJiPmnIpvyfouE3bHmxRRFQVsZkxjBmIuyG2T/rfVvjls6Jw2PJ+vxvPWF/xm1ZkYZRv9q/tz9t1TUYQ4rVV+qtY0U7mmkYpVTUR8sTb1nICqgpiRBg4LalWDps1pI9X58+ezoK1tzZ49e9pXu15vRx3cz3/+cx599NFOCjdVUckb5SSzyMa+7xrxN4ZZdPv69rfX8taXOC+bi23CMASdjkGGgSyPt5A/oiP6URUF2RtEdvva/4+7fBr5u3zEW73ILi+yJ4Aai2vXHIwgByPItS1ERRFTv+E0enfT9NR73X+xFiN6Z5pWIuCwdagt7VZ0aRZEe6JkQKtvEw3ahGgSdETaPCGVQBixl+bbh4MoCCiyjCj2bS1sT0Kr7qCqSlKl88EQRPGYhFY9IaHAVBS1fR7pC/OL3sxlvS3pOhw+++yzLlwydOhQdu3a1avXH/G7LS4u7vYNFhUVHTM5HK6dAvSdEudQCIKQknGPhjQlSWojxZ6vR1V6X3eT9Fxt1jxyPAxGO7GYgsHQlTQlydxtgTVoN7MSDnUQVVtt2sFEVTV2JGOHDqLsyYeJh4KoPRGlKGrRgObb1fNnJ4gIVjt+QU9mTh4Z40/osO+ypbX/XWfSWgVVvv4kQp6J3Fsu6fGzMPTPQY7IuA4EkAwhIvEwG/5RzzcfriXQoqkgE9GVmG4j45I5SGk2PJ98R2hrOXj8CKiaS5mgWWodTGyH4mAV5c9/fguPPvoYqqCiN4qoKjRsd1O/zc2gmbmccM1wqtY0sXd5A9WbWoiVVdNy3/M0xVVEk4H8f79KRc0B1Fxbe3pREEUkpw3JaQN6XnCqqooajmrE5/Yhu/3tRJgzrJSmxkb0BVnIbr8WDR9kG0YwQizcQqy+FXowHu70teklRJuZieedR/2AIhq//JBYbRNiuo7WjSuQzNY2RxJbmyOJpVPvuMPBpBMJh8NIUt/6NYpC9yUy3UFR5DaZUy/G1QmdhEd9BVEnaosltWOR3BeEk5gjk0VmsVjsmIn0xRdf5MUXXzymMb5X3pK98STrjXHn0SBVEeHRkKYgCNisNmL+nok+Fo6jNx/715cwVY21OToE/HFycgyEQi5isQCxaIBYLIgixwjsL6P2s7c0wgr4kYO+NleRMN1KvQRtL0oAGm0S6RPGIoSDSKgoOl23iiqzaNYaMMYN6FUjXlqJSDFk4hRd8rN24hL12nXbzHrS09PJm3120vdpzMjBX1Pe4/Oyx0+8RWst8/RZXwKQeddUhAY7gZYIgt6IGovgPG8WzrNnEFi1DfdH3xDd3wCiiNEuMWh6Lju+qEXQwWlzTmsv0C4r77kLtMfj4Y477+Teu+/WnEyefIxYWAZRYPxlxWxfWMPeZQ3sXdpA/mgnlz51AqJOoGqt1jl877f1OKVslHicjb95GCWuIDqs2M+ZQdpxQ5FyMw6bOhQEAcFsxGA2QkHnlE+uvojGoTkUTtN6ttXe9Sx6NY2s42drVlx+b7stV8zvJe7zEPd7iIcC3RTPi6iyiuwO4BANNFfsx798MwChYCWhmspur080GNGZregsNqS2/xOWXJoVV8e/rZkmWltbkfR9S256vUi8lyQkx8NIWA9/IG0klKLILVEq1Jfklph7k5HX4RpO/6fwvSI3u91ONBpN6tCv0+lSQm6pSkvqepjEDweHw0Hc33MaMOgOYcs6fKsMRZW1ljntHQOixNq6BkSJEEYTKGzf8jqKEkeNT2LOnFNZ9d1DXcYSIjpirc3oRBGDQY/NYiGtXwE2m40DBw4QjUYJh8Md34+qoMqgEyWCkdxhogAA0idJREFU7hAZzgwc0WyMmDBiwnDIn3qMXRowlqlbqKUaNR7DlNuvndQScEfiGHUiNr0OfzcGxQkYcwpwbV6FEo0hGvRad4AdFYS27yO0ZS+xmrbeK4moUSext8nF9DMvoGLUbARBpPL1p3C9vRjvV2uRXT6t/1qBmbl3jWPZYzvZ/pnmqH/egrM4f/7F7V6RqNp76Y5kBJ2Ax+XqKPS+4Rbe//bfVK1rYf1rlUy8rIT0fnZWPL+buq1u/nbiIpz9LFz+rxMZPCOfuX8Yi7NqME2uGkpPyKVyVSMxTwDvK5/ieekTAPSl/XDOnYp5VClSxuGbwh6MDMGAS+1YZMUa3diGDcacn7zUR1VV5HCwE/kd/Pesgv7s2rULQW/oJooXOsQtqgLxGLLPjexzE1Hbpuoe7tXjL7+cFpuNmgMraG7cjsFgw2Cwdbj8d+P8bzBYEUV90kWA1Sp1adfUE2KxEBLOXh0rGXXEIylYrCciNzpciBJdso8F8Xi8XZ/QEw7XcPo/he8VuSXY3u/396iGTFXkJopiSsY1Go1H1Z7e6UzHXdNZGaeqqtbKhghNLY2kDxpIjbqvnbCiRIgLMa21DVEiSpio3JUgJUki3ak1Ph2Y3Q+3JwdFUcjIyGDkyBEUFxfzwAMPUFRUxMCBAxk0aFBSderTTz/N9ddfzwAGY8TcibCMmNEpEvYmK2mONMbppqEewUrVjI1YXPOpi7Y2tXd9TiCqqDSHohRYDexx9+wnaMrOA0Wh+bkPiR5oJFpZ10ZiHQ07jXn9yZk+B8uAQeiMJiqMEufmZGDaU8f+FYu1yEIUkV0+8kenc/Hjx7Pj02reuWk1iqLi6GfhjLNOZ/4J53DfA/d0TkWq3eyh6kTUtnN7PB7u/std3HnbnzmXK1g38QvWvVrG+jcqMdkkrl80h91f17L82d24q4M8Me8LTA49Fz0xhdGOs6kdtIULH52KHFOo2drKvhWNlH9bT8NuD7HyGpqfeQ81rr1f06QRpE0dhXlESZe2N50+M0RyRCPVbe2ElGAY2eXBkNlzt4oEBEHocJrJ7poSzRtUQIUtj+Elk1Bi0UMI0Evc3xYNBrzEvW5t7zUUpFOGQBQRVNBLeiS9hCTpyMvLo7m5mfx8TQ8Qi4WIRr34/ZH2BqPdZRkEQYdeb24jQJvWTSBBfnoLI4ZNxOVS8PvqDtthIB4Pt2dEDgdrupmgu2+sxw6GZNC1pzvj/8/eeYe1cWdf/zOjioTovXcb3HDFvbfEJdVJXNI3cXrbTc+mOdn03ns2cXpdpzhx4l7BBdtgMKb3DqJIoDrvHwJsAghwUH7JvnueJ5uNZvSdkdDMmXvvuefiuAecalR9uhiIcf3/IrdeoNVqEQSBlpaWP5zcVCpV1xTqoYRare7mhj9Q+Pr6kEsuRlkrVsHcMYPtZPrP2thIkk8sx4V0PD088fXxJSQgtGso6W8Hkp46pVun690xHhxChx07dnDHHXcMWAnX2eYQSQIqofd0kLGpHUEU0HiqMTQO3NTWnZORhqmuqge5gWOoZqhW1Y3cJJuVtooSDMW5tBadcBCTTKR199EuMnPTBBAWPhlv7zgOHngFXWwSuviRXWtUl5dxXGclvjyD9NStgMSopWEsvDsZU4uFb27fT3GaI+JbdN9o/OqGceb0s096RYoCSk8Rc5PNUYfriOC6YLMjVwvYLECgD7VVjXyw9RUumXM9FCwkeJ07+z8ppCi1lmdn/MBZT07g2u8WcvzXcna9mUNdXjOHntAz/3YZaUX7iJkWgEzhMFSOGOfH7BuSMDaaKNxX00V2xkYz5gPHqNmXCYCg06CZMhL3MQm4JUYhak76h4aKbjRKFlo7ZiWZSx3DSNW9kNVgoVPIaOmItEWFEqWXL0ovX6fvkew2rEYD1tZmWvOOUbvrZ8IiZ2K3mTvG6zSh03ly9Ghm12DdTgiCgFymQKPTodO5o9FocHNzQ6lUIpPJHJGmzUZbWxstLS20tNTTpG/HYrFit1uZNTOQ/Px89qeedKoXZUoUcreO2XAdhKjQYrObaKWJGqncMXkDZdf07d9eUxofN4yDuB4GCq23W9d1Zukwcfby8vrd6w6E3P4XufUCQRD6rbsNZMz56UCtVg+Jk3Vv655O5HbX3XfxguYFAgICeiUpd3d3KisrsVgsQzolwc3N4WRgtVoHLBsOD3f04rVjREXv5Ga32jE0tqEL0A6K3LQd5KZQammvqcBzxPge+5QbTES6q2irKsVQnIuh8ATG0gIkm/WkXRagELUEBCYTEJiEh2dEN0Wdv/9I6jMO4D99IcbSAur3baG14DhfjhvHrTffTLV3JilXxCJTihz7oZSNjx7GarKj8lCw9tv51H2q5cxZZ7Pu2afIry5HlAuEjPam7FADSnc55lYraNWOxrhuEJBsdoSGFgSVgv3f5BCd8iUzYs6HAnC7QU3czCC2PJvJhrsPsvedHC7/aC6JC0PJ31XNaMNiNv64kc8/2wtILL57DKPPjuoyVdZ4qxhxRjgjzghHkiT+c9cBTuxpQBEagOlECVKLEcPmAxg2pQEgC/ZFlzIStxExhI6a0BW1AZiKKkAmQ+X3+3pBRcBDKadpkOk4QZShcPdA4e5Be1UpIBATu7Db3zE0NJrQcE9mzE5xDD7tmC1nOmXGnLGtmcbGRszmUmy2ng+0MpkcpVKFh4cOHx8fwsLCmDZtWlf/aWtrK83NzdTV1VFXV0djYyPNzc20tlRhMpmQyeRU2oqppHtvoICASqZGJaiR2RXIbHLivYKpaLBSLJ1AgQrlKUSoRIUM+Wm1W5w67/H/InL7H7n1gv5GlLsqcjvdCKs/nG5acvHixSxevLjP7W1tbZSUlAy5z6ZcLkcUHYqzgZJbdHQ0AEZa8aTvp+/6okb8orypyul/YnMnFIISNVoEmYq2ylMGaUoS5vpqDEW5HJJZmHLReRT9+/mOeozjf0RRjo9vEgGBiXj7xKFU9p0qCQoeS9Whg+S9+TiWxjoQRGRKkaDFFmT+Zi688EJOGPfx492HObG5AoDJl8cx7arhVLynZunsc1j3/NPUjY3AdvAwGh8lNpOEIBNImB1M1k9lqJOikbJLTn62UH8s5bWEjfWl/GgDHqsX0/TBRv7zyG4Uj4hMjjkXDoI04TCXfzKHb25Poza3hScn/YdLPprB+PHjia1JpMB/D5H5fhSl1vLTY0fZ+OgRpv4tgSmXJ6DSnvwbSjaJgtRatDMm4HvxGdjbzbRnF2I8kocxPQdrdQO2ynr0G3ai/3Y7AXf4k9FUT2NjEW4jYmk/Xow6IARB9vtuG/5uCmySROPvqDVZmvUo1boekn+tVo7RaEMuVyOXq9FqnadQ7XarI+rrID6zuRWzqbnrv0vLGsjJyWHhgoV89/137Nq1q+u9HjpPAgMDmDBhAu//+/1uOgGr1UpjY2MXAdbV1VFbW9vjv4Pi/CgtKaXcLQ9jW8+Ha1GQoZarHURnUyC3K7rI71QyPDVClAkyR7qzsZPcLMhk8iGruTl7mJYkqWsu5/81/nTk1t+gO7lc7rL04emQ0EDXHWrD5865Rp0+lEMFQRC6znmgT18eHh4EBQZjqHY+oLAmvwH/WF+gb/Vgr+tL3jTZWzBXFNN4ZB+GolwMRTkdNRioUyhQXrKSmJgYamos+Acm4eubgNY9qN/v3GYzU1l+gOKi7SCIWPT1qDwUnHH/GBLnhSGIAoXmPSSWnskr6z4h92hlV52uvclC+Tsqls09h3UvPkvrRTOpu/NlAJY8OI4vbtqHm7eCkoN1Dqd/s7UrJSqIAm6j47BU1ZN0Zghl6fW0btyLdsooDKmZZO0sxD71a6bGngsHoGliOld+NofNz2Zy6PNCvrzqEK++fiXFEWkERWlY9eZ0Ko81svvtHE5sqWTfu7nseesEI5eFMuemUegC3CjYU0N7ownf6WMAhxu/ZuwwNGOHwWVLsNQ20nYkD+ORXCxZhSQnJ/Pl/ffTmJdHI5sBUHh6U5e6FW1kPOrAkNMy0w51V1FhMP0uK0VzYy1u6u6lC1F0zCM0GAdOmqIoR+3mjdqt96imqamEQ/tfI9AnmIjGRCbjhok2TJgwt7TR1NLIJ3mfcN8/7yMpKanrfXK5HH9/f/z9/Z0ef8+ePYSGhvLW22/R3t5OfX29U0Ksqa6hpqaGurp6Ghrre22dUogKhvkG0dBUyWF20U4bHk5KEYOBszlu4LgfWa3W/0VuvUGn0/WblvwzCT/6g1qtxm63DyrNNxCIoth1zkNJbnB6RD9y1EiO1Bxzuk9tfj0TVowa8JomqY0GajFhxGRyyPQrN37ePdWo8CQgKImCwkbOv+B20vYPLPo2m1ooK91LWemertSUT5Q7i+4eQ1SKf9eNwNRq4funtpAgb2Ht5ddy30dv4XvzCvTf7yK4Ucay885l3YvPYrphGTX3vgZ2ieWPjSdtfR6CTGD5E+P57Op9CFo3rPVNXRecIBNQx4bRbNtL6YEGfCLdaSjR4/vA32g7VkD6V8VMvCSGXTlfMj32fPL3Q40tncX3JhM7PZCw4snkncjnsSuf5aqv5+MdpiV4hDfnPzeZ2vxm9r57gmM/lnLsxwoyvysnMsUPyQaqyECUUb3XzBT+3ijmT8Rj/kTiJTdMMoGG0WEobUbMhY5o1dLaRM3W7xxvEOXo4hLRRsajjYpH6RMwoBtoqFZFueH3jbgx11bjo+1uTafVKrDbJYyDILf+YGp3/O7cvbWY9VbcBU/c8ezaXiWVUkN5V2p+sGhvb+96UFWr1YSGhhIa2rOu3BskSaK1tbUb+XX+4+XlRWVlJTPOnkJ1VTVLly49rfP7LfpLS3beu/9Hbr3Aw8MDvV7f53alUumyyM1sNg/5RG65XI5MJhtUmm+gcBUh63Q6mpubB/We5OQx7NueCk7uKzX5DfhEeCFTiNh6sTGySGYaqaWBGprl9TRb9QDIZQroKrPK8PMbho9vAj6+Cbh1PHGXVwiMG+vVL7kZDDWUFu+iqvJgR+uHRMhoH+b/YyRhY7qnVIsP1LHhngO01raTKZQy/dylXHX7LXypz2e66MNFa5ax7qVnMd1yNg0f/Yy5tJrA4V74hLtTnFaHwk2GvqgNBPBcPp3m73ah6HS+lyQUIX4gCOTuqGLRnaP54cF0ql78nIDrzqPq8Q94+7yt3LFvOTt/+YIZsSvIPwTlwiFSxk8hMmIyj7zyT6wmO68t2cS06xKYeXUSgiDgH+vB8kcnMPO6RPa9n8vhr4so2V/vUKl6udOeVYg6KdopEY1UeJGFEZ8L5uNzwXxsLUbaMvIxHs3FeCgHe7MBJBstuZm0nMhwvEmpxiMuyUF2kfEovXoXhYVoVaRWD+73dSokux1TYy3a2O71Vz9fFY2N5iGddmMyNeHh7oVcIeuqYXXbjhF3rftp38zb29tRqwc3BLgTgiCg0+nQ6XRdpYFO7Nixg4ULFw54PMxAcSoZ9wa9Xo9CoRjUxGxX4U9HbkFBQT38xE6Fq9KHf6Y030ChVqtdQvReXl491Gb9ITk5mVZLMxbMKITeZdAttQYsbRZ8I72pyavHKlnQU9dBZg00WRuQkPD08MRiNncRpVrjj28HoXl4hPdqrVRU3MqCeSF4eChobu6eqpEkiaamYkqKtlNfd9wxb0uyEzsjkDk3jSAgwbPb/laTje0vZ5H6QR6CKCAPDyT0oav5SFbDDUIUmio1w89YxiOvvYjpprNoy8yn6ftdCCJc9uEsvv5HKoJM4II3ppH6zgkEQcBrQQr6T39F5u2oe9htEqZWI8qoYMyFFSSdEc7WF45hPFHiGIY6fyItmw/w6fV7WPXGdHb88DkzYy+gocCbKPck8oO2c+aTSfh/omLLs5nseSOXI18Wc8XHc3H3d9wsvUK1LL43melXDydtfR4HPi3A1txK5bp3ETy1+F+6BG3KiB5DaAVgpMyDLywnfwMynQb3qaNwnzrK0ZJSVoPh4HEaP/3lZG+g1Uxz1iGasw4BIPfwwj16mIPsIuKQu3sgAsEaJeWtp/+7NTfWItmsaNy7C1sCA9TU1A6t8rC9TU+gTzDmNguW9p5Pbu20ERISclprd46gOV1yc4bfQ5rOYDKZnNbuqqqqCArqvxzwR+BPR24hISFUVFT0ub3zhj7UNazONF9bW9ufIs33f7mul5cXWVlZg/qOk5OTAWhBjw+9F/Ftko3y/EqE2HYOFWxHb6/HLtkJCggiLjyaw0easVotWIxWBKscuVxNytR/oFT2Xwg3mewUFrUyItGLvakOeb4k2amtyaKkaDstLWXQYYmUdGYoM9YOxyeyZ9G7KlvPt3fup6HEkV7xvvocvGaPA6CmqZFf03M5d+GZbN6zi/brlmA3tFP78hcgCFz6wUwailvJ3VaFKBcIS/Lms321jukEJgtIEipNxyUngeV4MZrRcZhLqqg83sCki+PY/lIW1W98Q8DfltN2JJeitHryUquJXxJI7tb9zB51Nsezj5PVfJiIZH8mrY4jaqI/39yeRkNxKy/O38jSf41l9JKors/k7q9m7q0jmXJFAgc+KSDtw1xMzQZqXvwcVHJ8L1yIbu54RLXjAW+Y6I4MOGHvvTwgCALK8EBsesf2qDU3Yje10VqQQ2t+FuZGh2DI2tKM/kgq+iMOw2qltz/DJk9DGh9Btb4JUd2/CUFvaK923B90uu6kEhCgpqSk96kJpwujoYaY8PA+5fomjAyLHHFaa3c+mA51lCNJEiaTySXRU3t7u9Oe14qKitMm+6HG//1cgt8gODiYysrKPrer1eouqfpQw1WRkKvSh1qt1qn45nSh0+mwWq2Dao0YPnw4HjoP9JxUQtolO01SPYVSNoeFXewUv2Nv5i5iJ0Uy95xZvPLqK+Tk5FBRVYGvny9Km4rJLGCKdTEJjMZqbcdidm7HdiqOZTWSlOSJJJkpL93Lvt1PcSzjI1paOiMQO6JCZO7NI3oQm91qZ9ebx3lv1TYaywwIHloiXr2ji9is+lZGbclj8fTZvPjvt5k4ZTIXKMNofvd7bC1GEhcGEzLKhz3v5DhqbY+OpexwPVaTDXmwHza94++k9T15w2nPLUU9IgZsdra9kM3YFdHIlCLGXUcQFHICblgBkp0vrtmLT20cs6KXsaP4O3Q6HX7pEyg+6Og7C0jw5IrP5jLuAkdq6vt703lv9VbamrvXtdw8lcy4Zjg3/nIG09cOd7xoslL/wY8UXfkoDZ/+glXfwmSZN2k2fb+zpA1px5B7eOEWEol7TCJB888mbu09xF/3T4LPuABdwkhEZcfnFUTMjbXEKCUyjx7h+PP3kf/u01Rv/Y7WguPYzQO/7tqry1C5eaFQdCfHAH83amqH9joztFYTFRaJvqL366xd0UZSUuJprd2Z4hvqKMdisWC32/9PIsLKysrTNs4favzpIrf+yO2vWMNyZfqwuHho52yBwzKss/Y5UPmwTCZjxowZ7PppHzK7HL1YR5NYh9lmRqvRMmv2LObPn8+MGTOorKzk/vvv7yYpXrJkCb9s+hU1DqNjbykAGQpqqjOIdh9YX1VuXjXTpngiWbdxImcr4HCeiIiciY/fMNIPvgGiyLZXslj28Ml6TX1RC/+5+wBVWXoAdGfNxO/C+V0WUNbGFkZvy2fl8nN45NUXab9+CS9aCrjQ4Mljl17Hq+2vcOZjsTSWGcj6qQxJgsRFEWx7MQtBJuB16Zld5FZz4mStyVbbiHpYBIgiFUcbcPNQMnZFNAc+KUD/zXa8z59L3KqlXDJ8El4lwZxI2owmSs+vX37M/NhVcBSK7GlETQxEoZax6J5kYmcEseHeg1RlN/HcrB+46JWpxEzt/v0pNXIEAQSFDK/z59HySyrWuib0/9mBck82ia++yhflxyCwb6suyWqjdW8m3iNSetycFR7eeI+ZjPeYyUh2G22VpbQWHKc1P5tJkyaxY8cOB9nVVlJfU0F96lYQRNyCI9BGJ6CNjMMtJAqxD+FCe2UpOvfu0YFWK0ejkVFbN3TXr9VqwmRuJio2mpqC+h7b7ZKdFmsTiYmnT26uIiC5XD4kUwB6W/uvQm5/uchNEASXktBfaV0vLy+MRiNm8+9TnvW1tjNhT29YsnQJTfZ6SpQ5jJw5jAfXPci+ffvQN+n54YcfuPXWWxk/fjxqtZra2tpu7126dCl2yUYdjnqrTJARQAjVlen9en4ajXXkZH/L7h2P85//fMmyZUsQRSUxcYuYPus+YuIW4uUVibd3DHaTlYwNJVRkNCDZJfZ/nM/b52+hOqcJFDJCH7sO/5ULTxJbQzOjt3YQ2+sv0n7dmQiiSHV5BXddcyM//PAD9z9wP1H6SaR/WAqCwJybRyAIAnk7q5BsErqkGKyNDnJTjz15I7S3mRFVSlTxYditEu0tFiatjgNJovnb7UwVvXnk/MupamrkhhtuZvO3uwEYcX4Qmyo+IjY2loDMSRTtr+laM25GEFd/Mw/fKHcEQeDTa/fw7d37MZ+iIGypaWPv+3l4LJyM91kzCX/hNgJuWIEi2Jdly5axf38aGTc/Sdmj79GWXdjr9288fAJ7qxHPpHFO/zaCKEMTGkXAjMWM+NvfGZ6UxOHjuajVXigUnQ9OAjJRxFRVQt3uTRR//Co5z91D8SevUbd3M20VxUgdEwfsVivG8iK8vLoLKAL81TQ2mrFYhk5NYjQ4vtfw2FBq8xt6bqcVSbJ3awEYDFxJbq5YdyA1wj8Tuf0pI7eKigqn9Z6/GglpNBqndcTThVKpxM3Njaampn77aQYLT0/PQZ/ztddey6xZs4iJienzAhAEoUs0FBQU1PV6dHQ0E8ZPoCS9jCDJIasOIoLK9p00N5Xg6RXZY60mfTElxTuoq83qEols3ryDFStWcvmVT1JQ2L1OkjRyJbt3/QtRKeP7hw6j9VZQnOZIo6onDCfoxgsQVac04tbpGb29kJVnn+uI2K49E0EmQ7JaqXnhM+xWG41huRwL+47wikncfNb9/KL5hYiLrDTU11Kb2wwyGYJC7ojcZCJe805GjPY2RzSvGR2HKbeM/B2VjFmcwNW3X8rE+BlYLQreo4RMfwvt7e38+ngGw2aF4BmiYdRFwfz08XoWx66BTCjmIJETHY7++lIDDcUGVAmRtJ8oIeunCnK3V7LytWmEjfFly/PHQKHA65zZjr+JTIb79DGETRvHImUC9z77OADmY4VUZuQjhgfgd95ctJOSuki/ZdshVIGhvdqh9YVhXhoqW9qoLi4gccQFBAYlYzTU0FCfS319DvrGQgBEUYZMFDCW5GEodvRECgol2sg4lF5+SDZrj99DQIB6yFOSra2VqFVqfMO8qemF3Aw4ovDTJTeDwYBGc3p1R2dwpZgEnNcIKyoqmDFjxpAf+3TwpyO3kJAQTCYTer2+T7sYV6X51Go1TU1NQ76up6cnzc3NQ95mACcjrKEmNy8vL7Kzswct3BnIhR4UFMShQ4d6rH3xJRdz66HbMEsmlIIKHwJQCxoqKw523cwkyU5d7XFKirbR3FzapZzUCFrkkoJ2q4X9BxqZNjWYwqKCbrJwpVJLZORsigu3UJfbRL1MAAEC/74a7YTuqSVLbaOD2M45j0dee5H2a89AkDuO1fDZZswl1bgHqpixdjgmoYU3vnyexn0iF193ESOqx1BnqGTVKm9KBRMGFNTpWwEB0cMhVhKUCmhuR4OMqJRJeNm8GCONYlTJaBomVfDWk2+x/9BBIj94AFVkED4XzqPhk19456LN3LJ1KaJMYMyqEDZ+8CFnxF4MmVBkP4BXqIYvbklFFR9O0L2XYamoo/r5z7BU1vHBJTsYtjCInE1V+F19NjL37sKpxcogMmjBesNygmePpPGbbbRnFWIvr6Pm+U/BS4vvOXNwGxmL8VAOQfPPGfDvAiDRW0N6Ti4IIj6+CQiCgNY9EK17IOGR07HZLDTpCx1kV3cci8Xx4KFQKBFFAWPBcVrtdhBFDh96Fx/feHx84vDyiSHAP4yysqG1z2tpqWB49AjaW0wY6nuu3UoTvj6+A54M/Vs0NTWddn+cM/Qn1/+96zq7H1RWVv5pBCV/OnLT6XRoNBoqKyudkltb29CbjbpS+CGKIs3NzUNiXnoqTid9OBB4eHhgt9tpbm7G09Oz/zcMAr6+vlit1h4PMCtXruS2226jylZCBPEIgkCIFEVR1WGiY+dTX3uc4uLttLc1IOuwgHJHRyTDCbCHYqSVfeZN/PTzj4wbdwlJiV4c66ijAZjNBlpbTraZiKH+hN51WY8xMJaaBkbvKGTVOec7iG3tGQgd9Yu2zHyavtsJwBUfzUEQBIx6Ewc/K8BqstOUkk66KoeS9RK+foFMmzqJIJU7hstuonZRFbJwh5L0kYcfxt1NQ4A6gPoYEzm1EocPHEVamI9ZaaDSno9kt9FyOAePscPxXDYDw/5s2gsq+OWJoyy6x+EyknxJKD+89wFLYi+BLHjvwbewqTQE37oKQS5HGRFE6OPX0fDxJpp/2kvOL9WgEFHFdo+4ggQVY0VPnjDnIggCbqNicRsVS3tuKfpvtmE8lAPNbdS/9z0AgkKBe/SwAf/NZQLEe2r4ePOvePvE9qqAlckUXf2LcQlLaG9vorE+l/r6EzTUn8ButyMIIiHBwahUKiorC6ityUAURW687gO++OJ79Ho1Xj6xqNW//zfb2lzBzDGzeo3aAFqFJsaN7+l1OhBIkoRer2fUqIGbGgwUrorc2tra+l33f2lJJxAEgdDQUMrKyvqMAtzd3Z32wp0u3NzcMBqNQ95mIAgCXl5eNDU1uYTcSkpK+t9xkJDJZPj7+1NVVTXk5CaKIsHBwZSVlXUjN39/f5YtXcbWH7YTbo1DEAQCCKPQns3eXU8iSSetfzzxIYIEfO2BXX8rLTpCpWgK835lx845zJ8bRV5+MyaTnbrabI5nfYnV6nh48bn4DDzPmHJyblgHLFX1jN5ZxKpzz+fRV1+kbe1iRIXjmLYWIzUvfQGiwLKHx+Lu57jQD3xSgM1iJ252IEqNHKvdxGfv/EB7k4XolIdQmuQo3tqI1mgh6pbVRKHj++1bqM0txH7XhbTJoPLHL2nLLCDw8vn4RLoz9rwoSvbXUf/i53i8dz+CKBJwwwrKbn+Jg58VMHJpOKGjHZLscZeHseGt91k+7DIuv+AqPmor7jbKRlQq8LtsCZox8dS88gV2o4nyO1/BZ9UiPJdOQxBFzpYHs9fWQIPUvUdQHR9O0B0XYy6povHbHRj2ZoAgIFks5L3xL7yTp+AzaTYqH+eZg0RvLQazhex9OxmedP6AfidqtSfBoRMIDp2AJNlpbi4j4/C/qa2ow4IFSbITFRHFhEkTkCSJ9EO/0t4xLV6t9sHHNx5vn1i8vKOd+or2Bkmy09paRWxMTK/1NgCjvJnx453XHPtCa2srkiS5xMmjra3ttKNJZzAYDE49I41GIw0NDQN2WHE1/nSCEoD4+Hhyc/v2H9RqtRgMQ9vPAo5oxWq1uiQq9PT0dEmE5enpicFg6NVj7vciKCiI6urqIV8XIDIyktLS0h4THq6/4XqarI1UUsxxKZ2D4lZkMhmeno6bgLfdn/HMYpx9Jn5Cz2bRGEaATeKnHz+huqaNmdP9yc76kowjH2CxGBF8dIQ+fj1eS6b1IDZzRZ0jYjv3fB559QWMaxcjKh2KXEmSqH3zG2wtBoITPRm1zJEmNRkspH2Yh2SHM+4dC0B1ThPtTRYEjRpBJsOCRPaRo6SmpnJUcLQ2HC4rICMjg5amZiRJQhXnGBu09YVMPrtxLxvuPYggE5DazLTnOgyjFUG++F5yJgAfXrEDk+Hk33zC38L5T9Z7xMbGstotEuPB4z2+c83YBMKfuRm3UbEANHz8MyV3vsokgxI/UclGa02P93RCGRFE4E0XEP7cLehmj3MYOYoCjYf3kv/mY5R+9S7GssI+3z8xQMf2g4cRZQr8AwbfFyYIImq1FxaLkQRpDDOlpYxmCpYSAW8PH1JTU7FZraRMSmHGjBmEhnpTU53OsYyP2b3jUdL2Pkfuie+pq83uesBxhtaWSux2CxGx4dTk91RKmiUTBktrV3/nYKHX6/Hw8BjyMgU40p0eHoMbSjsQ9DenLS8vDw8PjyEvkZwu/pTklpCQ0H3Q42/g7u6OwWDA/tsx9r8TMpkMnU7nEhJyVfpQpVLh5ubmkrWDgoLQ6/UuSdX6+PigUql6iFbmzZtH4vBEsjiAwauRe++/l4rKCs4++2zUMjdG2ifjLfR98SgFFXGMoLLyIB988C0R4UoiwhyRl3buBCKevRlVL96K5vJaR8R23goeeeV52q4+SWwALVsPYtyfDXaJC16a2vV6+pdFXUrE99bsYNtLxzj8dRGCCLoFk4GOqdTNhm6z3GQeWhBFqh77N8VX/gv9N9tBEMjZXEl5pRyfS5fic5nDD7Dm5c+73qebPxG3UbHYbQJf3Zba9bogCMQv9eOhRx8kNjaWiyx+GNOye3xOmac7QXddgu/lS0Euw9cssdwtjPdSt9Au9T9KShHki//VZxPx8j/wXDwFQSEHQaAlN5Oi9S9R+O/nac45inTKtemtkhPt4cZPX36Of8BI5PLTS5nV1+UAAj4EohCUBAihJArjmTp+Os37LURbkyg4UMq+3fvIz8/Hx9uLJUuWMG/ePAICtFSWp5Fx5AN2bnuYA6mvUJD3Mw0NedhsPR8M9Y2FqJVu+If79hq5teCweTtdcnNFFgccoo+2tjaXrN0fuZ04cYKEhIQ/hTsJ/AnTkuAgtw0bNvS53c3NDVEUMRgMQx7We3p60tTUNORF0b+iqESlUuHl5UV1dTWRkT3Vir8HgiAQFRVFYWFht6K6IAj8uPFH9uzZw9lnn92lJrv33nv54IMPKSOfSBKcrh1EJIXkcDj9K956q55rr7uWurlJkBzb6/7m0mpG7ylh9fkXsO6V52m/+oxuqklzRV1XrQlR4MMrd7LortGEj/Vl73snQIKAmy+kLTOf1E8zsbW2gwC6qY7Bp3ZjO1htoDjZ1ye6a0AUkAvueE4Yh8o/mPIN65HsZoLv/xuCQo5ktaL/civW6kbMJVUoIxyRqv+151H69xco2ldL1s9lJC0Ko+xIPV/cnIpNpeWxjV9w9xkruCgfPtl3DO3k7pGSIAh4LpqMJimaq+0h7Ni5k52vvY4iKYrgGy9E7t3/NSX38cD3kjPxOnsWTT/tpenHPUgmC22VJZR98z4KTx/8Js/Fc+QEUiJ8yCyvpqY4n+TxV/W7dl+orc7ACz+UwkmxhFeIBzp/LTVH9EQI8URI8dglG3rqqK+tZtfPe2myNiAIAsljkkkakURtbS1ZWVmUluykuGgbgiDi4RmBj48jjanzCEPfWMCI6NG0t5pp7UVM0kgdPt4+JCQ4/y32Bb1e7xIxSVNTE1qtdsh7gMGRlnTW99pJbn8W/CUjt4EMNT1duCrCcnd3RxRFlziKeHl5uWQWHfTv9fl7EBERQXNzc49zj4qKYtWqVd1k0nFxcVx55RWUyE5gkfru62uWGjko24YJxw1pX20xhSor102c1+uP3VxSxejdxQ5ie/l52q9ejKg+SWydsn/JZsctJYnQf11Hm8qbT9bu5u0VW2hrNCPz88J9yij8rzqbsOdv6/BaBGWHeKTTpkp0OxmxiO5uIEl4jhiP/9QFeMSPRBuVAIJAe46jMV+Qy/FcOg0EgZo3v+16r9zHA/+/LQfg2zv2s/fdE6y/chcEBhL88FpUFy/giV+/JjY2lpUEYtiT0et3dXb0aALjovm63BHhWbKLKbn5aVr39r5/b5B5aPG5YD6Rr96Bz8qFiDrH38zS1EDlz19S/PYTjPdxY8PXX6PVBfXoTxsozOZWGhvyCCKs2+vRk8IoO1qF1XQy6hQFGT5CIPHCaCba5jKDJSRK46k8UsdXn33Npk2b0DfqWbp0CWvXrmXhwgWoVe0UFW7m0IHX2bntQerrc4iNj6Yir6rXPr9mWQOz58w+rSjF4XXqmshNr9e7ZF2z2YzZbB5Q5PZnwZ+W3IqKipzK/V1Vd+skt/4ahwcLQRBcVncLCAigtrZ2yNO04CC32tpal0w/VygUREREkJ+fP6D9161bh0wpUkBWj212yU6BlMV+ttJic7Rz+Fx8BiH3Xc7nQjVugoxz5N3TkaaiSkbvLmH1igtZ9/JztF+1qMtfsRONX2zBXFIJChmB156PKiqYoAeuIuCmC9FXOdK1AdefFEi055SAJCEPC+iq6XW6k8hOiYhkOo1jJpz+ZMrLPTIeJImWU8jFY95EBKUcc14ZlipH7cdcXkPzloMdewhsfeEY2pnjCLrvCmQeWgRBQHHRXB7f9JWD4MRgWnce6fa5xomeTJH58I61BPdV8wm66xIH4Volal74jOoXPsPWOnBpvahR47V8BhGv3I7vFcuQdShQZ01Joaq8jENbN6GQa2hv612c0R9qqh3fScBvyC1qQiiF+8ucvlcluBEiRDGSFKZZz2QScwk0RLLrh328+eZb/Pzzz9xzz920tRl5//33WbhwPsHBQYyclMS29F/ZJf+Bo+ylVMrDIDVjk2w0SfXMmjXrtD5LZ0nFFWISvV4/5AIwcKQkVSqV04jwf+Q2AISGhqJSqSgoKOhzH1dFbh4eHpjNZpc5irhKVCKXy6mrG/iE64FCp9OhUql6OIoMFWJjY6msrBxQRBsYGMgDDz5AuVBAq3SyH9EgtZAu20EBWUjYETuMr5UhfgiiiBmJd80ljJZ5MlXmUBiaCisYs6eE1RdcyENPPkH7VYsRNd1rQW3HCtD/ZwdIEHLv5V0RnSAISFYrdpMVwUODevjJlG3b0TyQibjPn9D1mq3DnUQZetJQWubuiHBM1SdvzJrIeMfn2ZvZ9ZqoUeMxfxKIAjXvbKDuve8pu/1lbBVNhJ59KTKNFhAQfDy62hU6z1G5ci6P/fQFsbGxrFKE0ro9HYBwwY0VihA+tJRS2xEFa5I7xCaj4zrOIYPim5/BeGRwg2VFpQLPhSlEvPh3gm9YwXkXrODbb78FUUDfWMC+PU+TcWQ9TU2DU/hWVRzCh6BuKUm1TknwcH+KDjgnt1MhCAIegg/RQiLj7DOZKS1FJjiuHZVKxaWXXsrGjRspKipizJgx3Hbbbdx1753ETYkiX57JXjaxR7YRm9122uTmSjGJqyK31tbWfq34/kduA4AoisTHxztNTWq1WpeQm1wud5mopLOeN9Q41fXDFWt3usa4AlqtloiICLKze4ofesMtt9xCTEwMObLD2CU7JVIeacKv6G2OiMB73DTir/0n7rGJ1Lz8ZVe004iF980lLJMHMbzGwpi9pay+8CIe+tdjnDhyFP33u7pF67ZWo8M1XxBwXzoNdUJE1zbJbkf/9TYQwP+K5d1SU8ZDOWCzoxtz8iK3NrWCKKCMOOnxKHaQm6XxpBJP5ReIzE2DZGzHqj9J9p5nTAHAlJFP67Z0AmaeSeyVd+A5fAwhS1YCEs1fbKE9v/tNXhBFVKvn89gPnzkIThWONjWXvykj2WitIec3rv8yDy1Bd16M3xXLQC6DNgtVj/2b2rc3YG8fnMWbIJexeNZcTF4aTkwIQxnW8dlFkbraYxza/xoH979GXW02kuQ842BoraalpYwQutd9oyeFU1fY2OuctYHCQDM2ycqZZ57Z7fWamhrc3d2ZM2cODz74ILt370Kv1/Pzzz9z899v4sEHHzztHjVXpg5dJSbprw2gvr6e+vp64uPjh/zYp4s/JbmBIzXprB3Aw8OD5ubmIU8fgusirM5eN1elD6uqeq8P/F6Eh4dTUVHhknYDgGHDhlFTU0NDQ/8pK6VSyXvvv4feXsc+YRMnOIxNsoNKSfj5VxK88DxkShWhy9YgV7lT9eR6bAbHza9QMvJucTqXB4/kklWrWffMszDvAgJmL0H/9TZqX/4Cu9nSIfv/FluLYzqA/0ULup2D8cBxB2kq5GgnnezFtNQ0YK1tBFFEHnRy8KmtsQVE0ZGK7IBM54gubYaTBCMIAtqoYSCIjgiwA3I/L9ynjgZRRJMwGr/JcxHljvSQLjYRr+QpIAhUPvZv7O3dU/mCKKK6ZCH/+u4Thg0bxn2Tz2RH3jF22HrK2zvPwWNhCmGPX981TLXl1zSKbn3WkXIdINSIzJf786O1Gm3KCEKfuJ6guy9FFd+RVhRFWprLyDjyAal7nqWifH+vqkWAysqDKAQV/nQXeY1YEEf2loGltPtCHVV4e3kzceLEbq//1h4OHA9iCxcu5IknnuCBBx447cirqanJJalDvV6PRqNxiZikv/aC3NxcgoKCXNKCcLr405Lb8OHDOXbsWJ/bO3vSBjOWZaBwVW3M3d1hZusKUYmfnx9ms3nQE7QHAk9PT3Q6HWVlA0//DAZqtZrY2NiuGXL9Yfr06dxzzz1ISkcdUCZXodB6oI2I69pHpnYj/LwrsTW2Uv3sJ0gWK+05xcg2p2Oz2RBFkaRzLkauccdv8jxCz7oEQ1o2FQ+8hf7rbRjTssAuEXrvZd3SfZIk0fj1VhAFfFcv7tYr13bEQUjq0bHdojmbvgXsEjLdKY3VHf/fbu1ORtqoeJDstOw+2u11z2XTwW6nNWM/VmP3iCto7nIUOi8kQzvV7/RUGQuiSOTlZ6Hx0DmGTZY30vxzao/9ToUyLICwx67rihrRG6h44E0aPtmEZOl/3NQcuR+VkonjHdGhIAhoxsQT+tDVeJ03B+x2R8QmilgszeRkf83eXY9TVLgVi+XkNW2zWagqP0CQFI4onPyufSO88I3yJmd73711A0GjvJqly5Z2m1Bht9uprq7uQW5DgU5nkr+SmKRzbWeEnJWVxbBhA3es+SPwpyW3sWPHcujQoT63d45lcUWarzPCcoWoxNfX1yX1K5lMRkBAgMuUjVFRURQXF7skMgSHGrKlpYWamr4biTvxzTff8PTTz9BuNhGfsJRxE67B2tRIxcbPu52fyjeA8HOuwJRTQuVj/yZ5fyWrL1rJg088zUfZ5VyUFMHUIMeTpmdiMlGrb8Te0EbjF5sB8Fm9CGVE9xtcW0Y+5iLH1Ard7O7uFMYjuSAK6KaO7va6taEZ7PYuJSGAqO2o79nt3c5Z21F3a8/I79YrpooMxm1kLIgiNfu2dltfVKoIXb4GJIm2nUdo3ZfZbXucqOVGdSz7FK3c+d7LxMbGssYzluYf9zr9ngWFHN9LziTo7ksdYhNRRP+fHZTd/Sqm4r5/ZzrkzJT58oOl5z6S3Y5hTybusYlEX3YbuviRWK0WEEUEwUph/ib27HyMEzkbaGtroLoqHYu1jXDiuq2TtCCO/D3FmI2nn01olZppsjZy3nnndXu9oaEBURT7tP/7PWhsbHRExy6IcFxFbu3t7ZhMJqfkdvDgQcaNOz23FlfhT0tu48eP59ixY07dQlzp+mEymVwiKnGltD4wMNBla4eGhtLa2uqylgOFQkF8fDxZWVl9pm3tdjsrVqzg3HPPQybTMSHlRsIipuHuHsjwxPNpzk6nft+Wbu/RRsTiN3UhcyKHs3rlStY99Sz26cvIbZN4J7uSmSFenBPjh0wAtX8wMqUaBAFZRACeS6b1OIfGr7aCKOK+bHq3XjjJanOkEu0Sbknd5e62Bkc0LfM4SW6CKHYJWOymk79xhacPcndPsNu7SLQTnmfNALsdfdo2bKbuv01NWDS+k+cCAjUvfYG1Tg/AVJkPVyoi+c5axc/2OtRXLuHRLz9wEJxPPE3f7e71u+629ph4wp+5GU2yg3gtZTWU3/ky+v/s6EbAnVgsDyDH3kqx1PPabd19FEtlLX7TFuIWFEb4OZcRe9VdeI4Yj9liAVGGu7uG8tJ97Nv9NHknfsQbfzTCyXqPXCVj2OxoMjfl9Vh/MKimBA+dB4sXL+72elVVFYGBgacl8+8PnWu7ypnEVelOd3d3p+nOgwcPMv40fTZdhT8tuUVERODl5cXRo0f73MdVtTFXikqCgoJoaGhwyQy2oKAgmpqaXELKcrmciIgICgt/XxrIGaKjo5Ekqddaa2cN5MsvvyQ0bDITUm7E3f1kVBUYNJrIqDnUbP+B5uMnZe+thTlM1AmsWbOGh598Btv0Zci1Dgl2aauJVzPLCdaouDIxBFP6Dky1DkIJ+fuaHvZc7TnFmHKKwW7H98zuxNeeW4pktoBchujRXVVmbXKk5k5NS0JHrxtgbT2ZphYEwWFILIo9lIpuI2NRhAeCAI3pe3p8R/7TF6P0DQC7RN1LX3G+LJhF8gDeMBeRZtM71pfLUF+2mPsfe5TY2Fgu9h9G04YdPdb6LWQeWgJvX4PflcsdYhNRpOGTTVQ88FaXaAccUeJYmScbrD0fsuwmMw2f/IIuYRSakJPiEJVvAKFLVqIJi0EhV9Pc3IogCPj4eCOXCzRSS7q4kzqpEkmSGD47hpYaA1XHTz8DIkkStfIKVlywopuDviRJvdbbhgquWttsNmM0Gl0SufXXk2e1Wjly5Mj/yG2gEASB8ePHc/DgwT73cVVPGrguKnRzc8PDw8Mlno0qlQpvb2+XRW8xMTFUVFS4xHsTHKnVcePGkZub2y3dvHHjRpISR1BbW0tgUDIJw5cjk/V8ioyOnY9/4GjKv/sIQ2kBrQXZjGgpY/WqVax78mns05eicO+eDmo223jzWAU1DQ08eMkKZs6cCUg0/bTX4SxyChq/2Q6iiNvsscg8uyvH2o7mOvwWrTaKLltH2e0vU/PS5zR+uQWpY26b+JsRM53mxtbW7nVSbVQ82O207O7emyYIAl5nzQBJombnT9gt3R+QRLmcsOVriI+P4/HrbyWo2cpzpnyKpFNqWIY2qp7+CH1NHeteeNVBcAFJDvVnPxAEAY8Fkwh74noUof4ggCm3lNJbn6P51zSUksCF8lB+sFb3MGAGaPpxD7amVgLnLO2xzVhWiLE0n2HDz2bazLsJj5yJvqkVk8lEeHg4vjFeHGY3BxRbSFoSy+Hve/Y6DgbNNNBqbWblypXdXm9tbaWtrc0l/ogGg4HW1lYCAgL633mQ6BSTKJXK/nc+jbX7q7fJ5fI/VRsA/InJDeiX3FxpdNxZd3MF/qqpSXd3d/z9/SkqKnLJ+uD43mNjY0lPT8doNHLTTTdx5plnIm9WEUkC1VVHaGzoXSEnCCKJSefj6RlJ6edvMqK1nDWrV/HwE09hm7YUhc6r1/eZ2gw8ee+dvPLqq1zxt6t44KkXkB3Io/TW52neehDJbsdUVEnb4ROOqG15z/4mY7pjW8CcpQTNPweNTxS24maaN6Z2mQz/NhLsJEiroTu5aTqEMday2h4Eqwj0BVEAmxV9xv7u6wmwfMJIHnn0UbZv384/rrqW6vyiru2WmgYq7n8Lc34lEResxefsy/jXG+8SGxvLJSEjHUQ8gAdFZWgAYf+6Fs+u6FWg7u0NzMtoosHSxh5bT9WrtU6P/pvt+IybjtK7O3FIkkTtjo1o3APx809CqXQnNm4RU6ffRXTsAiorazmRm0NwcAiLzlmAUifnw71vUyQdd+pW4wwVFBESHMLs2bO7vV5VVYW/v3/X9ImhRFVVFX5+fi5RM7paTOJs7YMHDzJ27FiXpFp/D/5cZ/MbjB8/vl9RiavSh97e3jQ0NLhMtl9TU+OStUNDQ6mpqXFJahIc0VtRUZHL2gLA0QZit9t55513ePmll0kgmdH2qcQxCm/8OXb0Y9rbeq/9yWQKgoMnsnjBAtasXs3Djz/pIDaP3sUBkiRRsfFzrMZWUg8c5Ln0IkQvX1559TXOv/ASmt/7gbI7XqHunQ0giijHxKEM6T5OxNZs6KqPeY2ahM+4aYSccQHRa24i/Ly/gd2O8BvnE+iI3GRit7QkgELnidLLcYy2rEKsDc3of9hN2R0vU/HPN5CpHRFg9fYfkTqcY0b6aLlpdBhxnhpeO1bJj3v2Y5eg4pmPsLebacvMp/zu18BoI/rim9BGxCLKFXguupBHX3+H2NhYLg0bjf7zzQMiOEEhx/fiMwi69zJEnYbRY8YwfdRYnr79Xlp6sfuqX/8TokKN//RFPba15mVhKMkjNm4xwimKSIXCjajoOUydcTdxCUupr29m5MiR7Ny5k7GTxlAsz2GP7CdOSEdolwaumrZJVmplFVxx5RXdVJKSJFFSUuKykS2d9TZXoKGhwSUCmPb2dtrb251GbocOHfrTpSThT05u48aNIzMz0+mN2tvb2yUiB29vbwRBGFDv1WDhSkcRrVaLr68vpaWlQ742OGauubu7D9gy63TQmZ4MDw8nKjoKBQoEQUAQBEaRgswmkHH4A6zWnvZsNdWZREU0s3r1KtZ1EJvS06fPYzVl7Kcl5yhIEmFLV2JRafksr4ZP82qZOWsWb7z/AfOnzMaSXw52O37nzu2xRluGQ9ggaj2Qa7qnKztTjjKvng2wDvWkgOU3kRuANmYYiDJqX/uKkuuepPHjTajU/oSfdyWxV92DoFAimdoI0pdx3cgQlkb5squyidczy6lptxKybDWCKCI1NFPx4FtUPvo+bv5hxFxyCyrfU5rJFUq8Fl/Eo6+95SC4yGQaP/llwKl+zag44p65lRtvvYUPPviA6pIyal7sbt9lPHwCw75MAucsQ6bq7gIj2WxUb9mAl08svr69S8llMiXhEdO4cOU64uKH8e23P7F9+3ZHk/W82TS6V7FH+IlM0miW+r8X1FCB2Wbisssu6/Z6Q0MDJpPJJZOkLRYL9fX1Lqm3Wa1WR8reBcQ5UDHJn00pCX9ycouKikKn05GR0beRq6+vL/X1vTek/h642vXDlalJV8r2BUFgxIgR5OXluSw6BEd6MjExkXXr1lHh6fD0A8dIm2RpKm2GerIyPunmblFTfZSIsEbWrFnNw489gXXqmSi9fPs6BObGWio3fQWAR+JYPIYnd23La2rj1Yxyfi5v4uzFi3jppZdZuvoiPIZF9VjHeMRhueWVmNxjm9XQ4SsZ0POpWuahBcneo+YGOHr27DbsbRZClq4i4caHCT/3cnTxI1C4aZh30SU88uij/G12Cpn1rTxzuJT9NS10fhsqH38C553l+JxFlXgMH0PEBWuRufW0UHIQ3EoefeUNYmNjuSxmHI3rfxpYBAdc7JNAg07OTn15x4sChr0ZlN72Aq37Mql941u00cPwHNHz6b7h4C7M+jri45f0q06cPi2IQ4f0jEq+jqSRKzFZFGzatAkJWLhoIbJgG2ls5rCwi3qpb0ODKlkR06dNJza2+5SI4uJiwsLCukVzQ4Wamhp0Ol2/Flang9raWtzc3Jw6iJwu6urq8PXt+xqyWq0cPnz4f5HbYCEIApMmTWLv3r77cXx9fdHr9S5Jk7myfuVKR5GgoCAsFotLIkNwzGLz9/d3ao82FEhISCAqKop777uXY8q0rvqKu+DJaFJoqD/BieP/QZIkqqsOExHWxJo1q3nooYeoVXmg8Op7GrFks1H27YeOtJ7KjeBF5/XcBzhYWMb111zDF198zoLFC3lQNYzz5SFECG4IOFJZxvQTYLM7hCC/gbW12ZHO9O7Z1yTTacAu0a7v+XCmiezo67Lb0IRGIVO74a2SMy/Mm9vHRrD6zIUcPHiItWuv5vutO7HYe/6OvMdO7Zg0INJ8IrNXEu2EqFThecYqHn2pg+DiJ9Lw7x/7/X0ukgcQLKh4O/8ArfuP4TFiPCr/YEDA3myg5vlPsbcYCZp/dg/ysrY2U7vzJ0JCU3DX9Zyxdyri43RoNXIOH21EEEQCg0YzafItjEq+FFH05KeffqK+oYEzzjiDkBGBpLOLA/ItVEjF2E95AGqWGqm31XDzLTd3W99isVBRUTHko5064cqUZKcC0xWtC3V1dU6nemdkZCCXy/90DdzwJyc3gFmzZrF9+/Y+t2s0Gtzc3FySPgwICKCtre0v5ygik8kIDw+nuLh4yNfuRGJiIsXFxS6ZzNCJzoebESNHsOZvqzgmpnXdqHyFIBIZT0V5GkcPv09keDNr1qxm3brHMLb50XBwF9VbNvTpW1i7+2faq8tAshNx9iXI1Jpe96tP24bVamX70UM8LyvjdXMRIrBWGcX9qmGcZ/JmbMJwlEolmvCe8+Ksrc0ICF3KyFPR2Rpgbez5ECJ306IOCGHYsGHMC3Dj5tFh3DomnBCtkg1FdTxzpIwtJ4ppNRqp2tl7lCUIAiFLLkJUKMBmo/y79U59HGUqNZ5LVvHIi68RGxvL5cNTqH/3+1572QCSRQ9myHx5symHwmfWo/IJJOSMC4i59BZ8U2Z3nISIZLVS8tmbPSZ1V2/9DlGQExO7sM9zAoceZ+rkAPal1WGznfycgiDg5zeccROvI3ncVbi5hbBx40ayj2ezePFiJs4eTxb72Sf/mWIpB6tkoVTIIyw0jLPPPrvbMcrKytDpdC7pE3O144mr1rZYLDQ1NTmN3LZt28aMGTNcEu3+Xvwph5Weijlz5vDMM884HfLp5+dHXV3dkD8ZyeVy/P39qaqqGvLxFKc6irjigoqKimLr1q20t7ejVp/e5GNn8PDwIDQ0lOPHj7s0JaFQKJgxYwZms5n8/HwyN6UzXBrnuHELUTRINYydFMuaNWtYt+4xPLzmExwWiJvGl9wD32NpaiB02WpExUmJtKEkn7o9vwKO6MY9uvenTquxlcb0vSDZ8T13NoIoUiK1UWJt4ytrJTGihrjaFq6++mq8fXyoNtmoMJgpbzVRYTDRaLJibW1Gstu6uZN0ovM1e3sbSlHAUyknWKskRKsiVKsi+MXnsFnMHM7JZUtZIyeajJhOubn7psyhKfMA1vpqDIU5uMcM7/n96bwIXryC8g3rMZYWUJ+6Db/JPeuGnbC1G2msreGfDzzIuoce5Argnbc34Pe35d3UnqGCmgsVoXxgKibjmX9jb24j6tJrujwvA+csQxs9jPIN67G1GbE0N1K0/mV8J8/Bf/piDIU5NB07yPCk81Eo3Po4GwdGJHphlySysvW9bhcEAW+fGLx9YmhuKqW4aBs//fQTMpmc+fPn4+fnx5dffkmxdAKr3cJTtz3VTQ0pSRIFBQXExcX1uv7vhasdT+x2Oz4+fdeVTxf19fVotVrc3Pr++2zbtq2H4vTPgj89uY0fP5729naOHTvWpwu3n5+f0/E4vweBgYGUl5e7xO06KCiIwsJCl4T07u7u+Pn5UVhYSGJi4pCvDw7/z82bNxMXF+cSgu6EVqtl6tSp2O127i29l8KsbGJIolwqYOwZIxwN2uv+hYfnPLTujgecsPCpqNXeHMv8hKIPXyL8vCtQeHpja2+jfMOHIAiIWg8C5yzr87gNB3Yg2W2gVuI+c2y3bTYkcu0Gtr/3Hu3ZRSSdcS6j5ywkVKsi2c+dMyJ9cJPLMCc/RGNDAy1KAcspN/HLFOGI8SFoXhmNj48Pbm5uWOx2qo0WKgwmjta38lXOcfa99Rx2CRL/8TiCrPvlqvYPRhs9DENRLlU7fiKuF3IDRz2xOSeDlhMZ1Gz7Hm1UPG5BPadAt1eXU/LF28htInGj1vCvx17knrtv4krgnTe+xW/t2QiiiA45Vygj2WStYee7n9GWVUjkBWt71DfdoxKIvepOKn/8jJbcTARBoH7fFlrzjmFrM+LjN4ygYOdCBLlcIGWSP9t2VDGQDL6HZzijxlyMobWa4qJt/PrrZkRRZMaM6SQlJVFfX8+VV17Z7T21tbWYzWbCwsL6WPX34a/qeNJfStJms7Fjxw7uu+++IT/2UOBPn5ZUKBRMnz6dbdu29bmPr68vTU1NLqm7udJRJDAwkKamJpel9mJjYykqKnLJoFFwpISjo6PJyvp9DbUDgZ+fH8nJyaxbtw4puo0j0h6izghkzZqLWbfuX+g85vao2/j5JzJ+wrVILQYK3n+W1oJsKn/6wiHykCQizrkUUdlTog9ga2+jYf8OkCS8l01HVPZUi9nbzY6p2ZJEq4c/R+sNbCxp4O3sStYdKObBtEJuu/NuXnzxRbbVFJJhb+4aM3PM3kKatZE333yTO++8k/s3p/NAWhGvZpbzbWEd+2taqNf4YpckkOwYy4t6/15S5oJkx1xVgrG09wc8QRAIXnx+RwuBQPFX72E3d1eatuRnUbT+ZdSClnETrkHnEUJs3IX8618vEBsby5VjZ1L32te42QXWKqPIs7fy7Xff0bwpleAF5/ZabwRHejXs3MsJPuMCh3+kKGKqq8baZsDdPRhHZbNvjB3jQ0uLhbz8wZUGtO6BJI28kMnT/kFQ8AR27NjJ66+/QVlZWQ8D8IKCAqKiolySWpMkiYqKCoKDndcUTxeudFPpj9yOHj2K3W5n7Nixfe7zf4k/PbkBzJ49m61bt/a53ZV1N1c7igQFBVFSMrjBjQOFv78/SqWS8vJyl6wPEB8fj16vd+kxOhEVFcWoUaN48sknWbBqNhdffDHr1j2C1mM2Oo/e5dvuumAmTLweD00IJZ+/RfPxwyBJ+E2ZjyY0qs9jNabvwW6xgAAeC1J63ac9uxBsjnpUb2uZbDbKCvM5duwYh8wN7LM1kmpzSNX32/QckLVyJCODkpISmvU9JewylborwmotzOn1HDSRcagCQkAQqO1ItfYGuZuWkKWO2W/2Fj1Vm/8DOG6+dfu2UPrFO3h7xjB2/NWoVA7xi0KpxT9wOvfddx+xsbGsTZnPlc1e1NrbeWf7Ruo/3Ihvyhy8x07t87jQkTYcM5mYK/6B0i8IEFArlZQUbePQ/tdpM/audvb0VDBhvB87d5/+tefm5sOwxLOZMv1OwiKmsW9fGiNHjiI5OZnU1FRaW1upra0lKirqtI/hDJ39rK5wJXGl48lA6m1bt25lxowZLml4Hwr8Zcht+/btTpueO+turoArZfuRkZEUFxe7pKFbEARiYmLIz893mZu/SqVi1KhRHD16FJOpZ9/ZUCM+Ph5/f39WrFjBG2+8hVY3Gw8P5+kkpdKdhITlXQ3CSm8//Kf3LWKwW8zUpW4FJDwWpPQqBoGTLQDKoIhuNb1O2NqMdObSZL3U3ARB6JoO0JeSURvtmO/WlJPZ63ZBEPCbPA8kCUPhcdqr+37I0MUm4TVmMggC+iP70B9No+yb96nZ9j2RUbMYNWYNcvnJSLaxsYBjRz/G3iTywhMvMmniJDwVap58YB1VL3+J54jxBMxe0ufxfguVb4BDbDJ5Du3t7YgyGS0t5aTte57ystQev9EFc0PIPq6novL3OxCpVB7ExZ/J1Bl3ExUzl8zM40yePIWHH34YQRCc1pV+D4qLi4mIiHBJ2tCVjid/9Xob/EXIbfz48ZjNZjIze7/AwaFsdEV0BQ5yq66udkl6LyAgAFEUXXbu4eHhmEwmKisr+9/5NBEaGoqvr69Tk+uhQkZGBhUVFfzyy6+sXXstsXH910LtdhtZmZ911DwEzI11VG3+Tw9n/U7oj6Rib3c0IHue2XdUYkx3TN32jE/qdfuphNUXQXYpJg29p920kXGOXriG6j738Rg+2jFJAJxGbwBB885y2JAJAhU/foqxMJeRo9cQE7eomztIVWU6Rw69i4fdi2m6hdx+650czzpOW1sbVy1YhtLdg+BF53V7z0AgyOQEzl5K5MprEdQaJMDNTc2J499yJP09TCbHd5Y82ht3dzm79/Y/AmkwUCg0RMfMZ+qMu5kwcQUTJ07kxhtvJCIigs8//3xIj9Xe3k5VVdVfsr2gurra6dqd9bb/kdvvRGfdzVlqMiAggNbWVpfUrzw9PVEoFC5rFu+M3lyBzh6U7Oxsl0SH4PgMo0ePpq6uzqXpyczMTDIzM3n44XXsTbNy4FAj554VQWho7zL+ThQVbqGlpQy73UY0iXgTQGP6HvJefxR95oFu8njJZqVun2Oem2bSCBRBvadlLLWNWKsdafDOGWy/xalkJLj1XtuTefZuntwJt9AohI5akKGo975CQZThmzIHgJacI5ga+iYEUakidNnqrohSqwnAz/+k4EiS7BTk/0L2sc8JksKY6b+IFY+eQXOVgV8fSeNfDzxOXFwc111xGeUbPsJu7X9waW/QRsYT97c70MWPwGBoRaVS0diQR+qeZ7Fa8pkyOYBftlRisbgm4yCXqzj33DPJLzCgVCdTU9PMhRdeSEBAAG+88caQHKOkpAQ/Pz+XNG670vGkczKCM3I7cuQIkiSRnJw85McfKvwlyA1g/vz5/PTTT31uVygU+Pn5/SUdRSIiIqipqXGZ235kZGSXb56roFarGT16tMvSk8eOHSMjI4OHHnoYtXY6Xl5RpB9uYOfuas5aGs6okV69vk+vL6K4cAsqlQofmT8xJDJemEmyNA2xzUrF9x9T+P7zXWKMpmOHuojGa9n0Ps+nc+o2gFtwT+UhnEJYGlWfSjmZpzsIQg/z5E6IcgVuoY75cK0Fx3vdx261IIgn16/bu6XX/TqhCY/pIEOB5qYSSkt2Oc7XaiLzyHqKC7cQywjmJ53JRU8vofxYNZue3YXSriamfjT/euBx4uPiuXLJfMq/eQ+79fSEXDI3LWHnXEbwGRdittkQRAGtVsUZi2LYuTOVoiLXlBkAfH1UJMR7sC+1ntCwFCZPu53EERdgMEhcc801eHl68dhjj532A2Hn9eaqqM2Vjid6vR6r1epUTLJx40bmzJnzp623wV+I3JYvX86WLVtobW3tcx9XEpArHUXc3NwICAhwmdu+KIokJiaSk5OD9TSftAeC0NBQ/Pz8up7qhgpZWVkcPdpJbNPw9o45uS27iW83lDB5kj9zZgVxamnDYmkjK+MTFAolVrOV4bbxXSTjJwQxk6VEk4i5poqij16m+NPXqd31MwCqhAjU8b2TFnRO3RbRRg/rIdHvhLW1GQQRhVffU5dlOg2IItaWvpv5HS4jAk25mV1RpiRJtFWVUfXL1+S+/BBVv3yDm8YRZTZlpGFpcu6x6D/jDJS+/iCK5OdupLLiIAf2vUhjXR5jmMqShctYfv889n18hB1v7kfqcEBRCxqi60fxyAP/Ij4+niuXLaLsq/d6jN8ZKBxikxRirrgdlX8ws2bNwtfXlzfffJ7UPc9SX9e7kOb3YuoUfzKP6WlucRCzKMoICh7LpCm3MnL0GmySlnvuuQd3dw/efvvtQZNcbW0tFovFpSpJV6ckndUJv/vuO5YvX+6S4w8V/jLkFh8fT3R0NJs2bepzn6CgIOrr610i2+90FHHVGJxOt31XyfZDQkJQqVQuHTYKMHr0aOrr66moqBiS9Y4fP87Ro0d56KGHUGum4OPTs9G2orKNTz8vJCjIjXPOisBN7UjjnTj+LWZzKxaLmXhpTLdpzuC4scYKI5gpLSWYSIzF+Vha9AB4nTWzz3OSbDaHWbLd7iCePmA1NCMIQlfqsTd0NnJ3Hrc3OOpuEphNNGUepGbHRvLffJzC95+lJfMIIYETSJlyG2PHX91VA6tP6zuFD52z3y7uUuIfz/oSWbudKbL5nHfVcqasTua7dVs4tqnn4Fg3QUtM/WjW3f8o8fHx/O2sxZR9+c5pExw4vDAnXH07qy++mBdeeAGrzYZKJXD08Pscz/6mV5Ps00VwkBthoRr2H+gZGQqCiH/ACCZMuoGEYctpazNw1VVXkTg8kQ8//HDA7Uad7QWuEJLYbDaXuZJA/8RZVVXFgQMHWLJk4GKi/wv8ZcgNHNHbd9991+d2jUaDTqejpmZoi9DgcBQJCQn5y8r2BUEgKSmJ3Nxcl5B/J1QqFWPGjOHIkSNOo+yBIDc3l8OHD/Pggw+hckvBx7dvImlptfLFV0UYjTYuvCAKhayEmuqjKJVK/MVgQonu871yQU4SE9AJOpAk5EG+aMb2fSxTXhlSu+M77KveBo4J25Jk7zHY9FTIdFqw2zE5ibTcgsMROpw/Kn74BP3+XXirwxk99nKmTruTuPgz0Gj9Uak8CAwehyCINBza3acApRPqwFACZi4GHL+PCN8oLnrwLEKSAvn89o1UZPV9HZ0kuEccBHfOEkq/eKtH/9xAoRAFVg0P5kB9G4bk2QgqN1oNRkJCQqgs30/avufR64tOa+3fYtrUANIPN2Bs6/tBUhAE9I2Fjr4/ZqHPN3DJJZcQGxPLa6+95tQ0vLO9IDq679/c70FVVRVKpdIljidGo5Hm5man5PbDDz8wceJEl0WOQ4W/FLktW7aM77//3ml042rZfllZmUuiq07ZfkFBgctk+wEBAXh6epKb2/NpfCgREhJCZGQk+/btO+3G+ry8vC5iKygoRe3Wv72Q1Sqx8edyDh6q4IrLZ3HFFVeiEBQMt4/r1x2iniqa7XoAvJbP6DFY9FR0piQRZagD+h6PYmlpAknqtQ2gEzIPTUdU1t6nh6MgyhxTAgQBrXsQ02bcS9KIFfj6JiCK3RuPIyJnOFKXkkT9gR1OPrEDvilzcAuOYM68edz74u3U1tby1T0/01LbvzBLI7gTXp/IPffcw4gRI7jqvOWUfP5WnypUZzg/1p92m52fS+rRRsQRe9Wd6BJGUlFRgZubG6JgJv3AG+Tn/oTdfvqp9egod7y9lRxKd94Ta2itpqYmgyhpGD6CP6OlKaQwH0u5wPXXX09EeARPPfVUr76zBQUFhISEuMT2Dk62F7jK8cTX19fpRO8NGzb86VOS8BcjtylTpiBJEqmpqX3u0ynbd4Uy0MfHB5VKNWQpt98iPDwco9HoElVmJ5KSkigsLHSZeOXU47i7u3PgwIFBk3V+fj7p6enc/8/7EXO0KK0y0ve/SUtL/9+73W7j/Xef5q677iIxcTjPPvUc4Qn92yqVyHIRBRHB3Q336WOc7ts5dVsXm+iUBK2tjhS22EcbAICoO7nN1tY3oXSmPw2tVU5v7lptAD6+wxAEkfq07djanf+d1cYmbr/uatasWsWrr77GE6/8i9a2gbmBmCUTubIjIDnS0ZMmTuTqFWdR+vmbgyK4OaFehGpVfHKimk7rTJlaQ9jZlxJy5kW0Wyy0m0zExMRQUryD/akv0doy+NYWQXDU2vbvr8NscX5/KC7cikrQEMJJQYhO8GIkk5giLUJZ585dd95NeFg4DzzwQNc1a7FYKCkpISYmpq+lfxcMBgN1dXVERES4ZP3+WgDa2tr45Zdf/kduQw25XM6ZZ57Jhg0b+tzHy8sLuVxObW3tkB9fEISuWWmugFwuJzIy0mU+meAYwhoYGEhOjmsK9Z0QBIHx48djNBo5duzYgN9XUFDAkSNH+Od9/0SR40WoEM14aRZqm5L0/W/0KzAoLtxKc3MZlZWVPHfXK+RvK+WcdQuYcnEyMkXvP/dGqZYGWw12yY7Xkmm9Wm11wtZixFzoIFln9TY4ZZabs8jtlG3ORtJ01d0AfaPz30dk1CxH9Gaz0nBod6/72C1m4hoK+ceURFobm3n8iY/YvXsXokogWzzY7wNJm2TgsHwnMk+BHTt3MGnSJM455xxSJk3i6gvOoeSz1/slVoAkbw0zQ7xYf6Iag7U74QiCgNfoScRe+Q9U/sEUFBQQGBiA2dTIgbSXKS7a5nTKwW8xLMEThUIkI1PvdL/Wlkqqq48QJQ1DFHpacmkEdxKF8UyVFuHR7M9jjzxGeFg4f//738nIyMDDw8MlKUNwRG1BQUEuiQpNJhO1tbVORTCbN28mKCiIpKTeezv/TPhLkRv0X3cTBIGwsDCXTaIOCwujsbHRJWNwAKKjo6murnbZ+uAYV1NWVoZer3fZMcDRnpGSkkJJScmAapUFBQVkZ2ej1+vJOZFDK3okSUIpqJggzcLb7kvG4X9TXtr7fL8mfTFFhVvw8vJCZpMTbxvNwa+P8cUdGwkbFczKF5YRPz3SMWHzFJSIJ5CJMpDL8Fgwyek5tmWcnEDurN5mN5uQOiTytsYWTPnlmEursVQ4RAyW8hpMhRVYKk9G6X21AwCoAoIRO6ZYN9Q7n6Pn6RWFThfSEb1t7Sb0kCQJn/oSLvGHs6eM46OPf+VAujshYfPw9o6lvd1Enb2KEvpOXTdJ9RyUb8cn1Is9e3czevRowNEOcvbZZzM5JYW1F55HyaevYetohu8NQRolK+IC+CKvhipj33Vgpbc/0ZfcjN/U+VRXVyMhER8fR0Hezxza/zpGY/8tA0qlyNTJ/uzdV4utl9l3p34/eSd+QCPonNZpwaEcHSYkM8W+mKD2SN549U3SD6WzefNmlzyg2u12l7YXVFRU4O3t7bS9oFMl6YqU6FDjL0duixYtIi8vz2ndKCwsjKqqKpcYKatUKoKDg10WvWk0GiIiIsjOznbJ+uCYGBAfH096errLGrtPPdaECRM4evSoU+/PTmKbMmUKV1xxBU8++SSFHOcEjrYCmSBnDFMJI5YTORvIyf6mW3rOam3nWMYnqFQq9Ho9w6xjUQiOukFDSRNf3vUTB7/KZOql47jgqTMJH+N4Om2WGqm1V2KTbHjMn4TM3XlDuPFoLshEZG5alL59e/qdSlT6/+yg/N7XKLv9JcrvfQ2A8vveoPzuV6l58TNHvgyHAKUvCILoiBRFcUDyeB+/YUiSHXt7G41H9gGga67hXDcD189NIS+3jPf/nU2bKQGZTIEgCAwfsQJBkOOh86BAPEaLpO+xbpVUQrq4k+Txo9l/YD8JCd2jV7VazVlnncWUyZNZu3IFxZ+8hrWXdKtWLnLxsEB2VOjJauybALs+v0xGwMwziVx1PYJaw4ncPEaMGIHRWMX+fS/0at91KmZMC6Sh0UTOCefzExvqc2hszCdeGoU4QPcVpaAiVhjJ1QtvwtRq4enHniE+Lp7Vq1c7dVUaLKqrqxFF0SVekuCYaedsMoLNZuO7775j2bK+J2n8mfCXIzedTscZZ5zBJ5980uc+np6eaLValwpLSktLXSbbHzZsGDU1NS4xgu5EfHw8giC4PD0JDiFLYmIiaWlpGI09b2SnElvnXKrbb7+dV199lXKhgEwhFZtkRRAEhgnJJDKeyvIDHD74NqZ2R10rJ/tbzOYW7HYbYcTiK3SXSUt2iezN+ay/fgO5OwtZ9PfpnP3wfISEduQyOUjOrbagY+r2IYflljY6wenTq+UUogo770qiL7uNqItvIuKCqwGIuHAt0ZfeQtzau+lsznMWuUFHpGi3097eSJux52/DYjFSVrqX/fteoLhwK6IgRybKkI4fYqFQz22zxtJY08BLr+ygsDgUmbx76kyt9mRY4tk0tzTj5eVFtvwANsna9dnzpAwySeOiVRexddvWPpt81Wo1y5cvZ8rkyVyz6gJKPn4Vq/GkclYuCKxKCKSs1cTWcr3Tz9zjO4iIJfZvd6BLGMWxY8dQqZRERUV22He92/V7OBWREVri43Rs3uK8Tme328jL+REv/PFjcP1pSo2ClBVjOLg+mxTLQuKl0fzn8w2MGjWK5cuXk5aWNqj1ekNRURGRkZEuiZoMBgONjY2EhPQtkNq+fTs2m41Zs2YN+fFdgb8cuQGsXr2a9evXO31SCwsL6zHaYqjg5+fnUtm+Wq0mNjaWrKwslyknRVFk7Nix5Ofnuzw9CY4+vuDgYPbs2dNNzNIbsXXi2muv5dv/fEuTqp7Dsl2YJIdIIVSIZjwzaW+uYf++F8jN+Z6a6iP4+/mhktyIp/e5fwA2s430/2TzwTXfUppTzq0P38g9997D1FXnoAxwXiexlNVgb3ZEIc5SkgC2U4jKLTAEt6AwNKFRaMKiANCERuIWHIHS2x+5m3MLrk6cOlamocGRmrTZLNTWHCPzyEfs3vEv8nK+w80gYxwzmRE5l+uuv46XnnkKudXKy6/8QlaOPyp132KEgMAx+AeMpKGxkTYM5JKBSWrjsLiLEiGXp59+mg8++KDfmk8nwU2dMoVr1lxE8cevYjW0IBNgZUIAMkHgy/zTq4s7xCaXELJkJUaTmcKiQmbMmEGTvojUvc9RXXWka1+lUmTenGB27q6hpdW5yrKiPBVjWy0JjB40gYw9O4n6Yj0lhyqQCTLChThSrAtJYgLbNu4gJSWFeXPnsXXr1tO6pltbW10qJCkrKyMgIACVqnebOID169dz0UUX/aldSU7FX5Lcli5dSnV1NQcOHOhzn7CwMGpra532o5wu/gjZflxcHC0tLS7p2euEp6cn8fHxHDp0yGVRaCc6/Sd9fHzYs2cPJpPJKbF1YtmyZezatROlr4yD8q00S46IxUvwI0Waj7tVR1npbry8vKmtq2W4dRwyof+Lz2y08OFHH3DD9TeQk5PD2nMu5A5lPDNlvmjofa6X8UhuVwpRG+lcTGJpbe7aV+bm3CJJpnH0wf22L02SJMz6BppzjlKz/Ucqf/gMcHyXFWVpZB5Zz+7tj5B5dD3tdeXESSOYJV/GihkrueyRi7j+ib9htVp58MEHeenFN5Apovs1OhYEgYThZyOXu6FSqygjn1TZr8h84dfNv/L3v/99wDd+tVrNsmXLmDZ1KtdevJLST1/jgmgfPBRy3j9ehcVJ7as/CIKA16iJxF55O6qAUHbu3ElYWAiBgX5kZX5K5tGPsZgNzJzuSEcey9I7Xc9sbqUwbxMhROMhDE4MovF2Y8zS4ez5ML3b66IgEiJEMck6n1FM5tDOw8ydO5fZs2YP+r7R2V7giukFkiRRVlZGeHjfjjxtbW189dVXrFmzZsiP7yr8NSj4N3Bzc+O8885j/fr1TJw4sc99fHx8KC8vJzY2dsjPITw8nOzsbBoaGpzOPDpdKBQK4uPjycrKIiAgwGUF3Pj4eCorK8nJyXG5AkoQBMaOHcvBgwfZtm0bFouFqVOn9klsnRg/fjyH0g9x1vKzOJS+gwT7WEKESOQoQLTj4+WDXq8nUkrAS+jbD+9UtEkGqoRS7A0Sn33+OV9/t4F5V6xk/tQZLHEbxlF7M4dsevLsBiwdNh7Gw45oSa7zQunl/Jytrc0OIpEJvY7DORVyjTsmoK2qjJodG7E0N2Kuq8FUX43d4miKVijd8fSKQqYLxWCoorW1CrHVRCTxBIlhxCREEzMlnGFzomlpbeHnTT+R9moal152KTfffDPXXHMNtTWZBASO7ve7USq1DB9xPhmH/83wYcMZM2YML738Ev7+/gP4ZrtDrVazdOlSBEEgcfhw2k2tvJlVgkXdd2P7YKD09iP64puo3b2Jkj2/IpPLWLx4MT//vImoSB2xMWP4+NOiftcpyP0J7BJxjBz0OUxYMZLSI5VUn+hd2CIIAoGEEWANJYsDpKam0tLSgodH37Zsp6KzvWDatGmDPreBoKmpiba2NqctAN9//z2BgYFMmDDBJefgCvwlyQ1gzZo1rFy5kmeeeabPMDk8PJyioiKXkFunbD8/P98l5AYO5WRBQQHl5eVOC72/B6IoMm7cOHbs2EFwcLDLJMydEAQBb2/vruZcjca5gKMTISEh7Ny1k2uvvZb333+fRmpQoaZJaiDcPQJbM8TYRwz4PIo5gVKppN3UTsiy1Zgbavnlvc/56eV3iZ40lsXnn825McNwVyg5YW8l09TITxWNtEsS7tHD+l3famhBQkKu7t/YVq51B0HEom+g+VAaKpUHnhp/NJFJaN0D0elCUCp1CIJAZcVBjmd9iUqlYmny2YyYmETkhGAEGRw4eJDHnvwEnbuOK/92Jes/Wt/1/d59zz0UFWzBP2DUgB6U/PyGExwygZwTB3nt9ddOi9g6oVQqCQsLQyaTsWfvXo6//w4Rq65H4eF12mueCofY5Ay00cMo/88H/PTzz5x37rksWbKEt99+g2NZTcQlLOk2q+5UNDWVUFl5kOGMRSn0nZbrDZ5B7iTNi+Ozv//Q7742rDTIqll7zdoBExs4pgu4sr2gtLSUkJAQp+nGjz76iDVr1vwlVJKd+MuS26xZs1AoFPz6668sXry4131CQkI4evQozc3Ng/oxDRTR0dFs3rwZo9E44Jv0YCCTyRg+fDjZ2dmEhIS4xKcOwMPDo0s9OWvWLGSy3tNyQ4GCggKOHz/OtGnTKCoqYvfu3UydOnVA6Ra1Ws17773HvHnzWHv1WoxtRqZOmUrqvlQm2OcMWN1mktqpFIvBKqH0CcAzyeFg4j91Aa0F2dQeTeO1ux8Gu534OVOZPH82k4IjueCtt8nNzaWwzU6dRkOFwUSTufd0rrWlCez2rpSjM8jctA5Xf7vAtOl39bqPSiUS4K9m9KgZnH/ucIeHZ209+w8c4KMn38VsMrNq9Sq+/PJLhg3rSb73//Of3HrrrTTU5+DrN3xA31NcwlIa6nNZvvws6upqnbpW9AWbzcaBAwcwGo3MnTsXSZKwWCy89u7LDoLzHLobtjY8Bo9hY2g4tIvg4GCqq6txd3ensmIzDQ25JI28EC+vqG7vsdut5GR9jQ4vQhl843XKqmRO7Cikscx5vRSglDzsgo077rhjwOtLkkRBQQGJiYn973wasNvtlJWVOY3I6uvr2bhxI88884xLzsFV+MuSm0wmY+XKlaxfv75PclMoFISGhlJUVNTVizOU0Gg0BAYGUlhYyIgRA48aBoPw8HDy8vIoKipymesB/DHpyd/W2Hx8fDh8+HAXwQ30AWHNmjWkpKSwfv16Hn74YeIYiU7wGvB5lJCLXC7DZDYROHlu19OoIJOhix+JLn4ktjYDzScyqMhO58N/Ps6HNhuePt5MHDeekWPHMSc0gJD4QAwWKxVGMxUGM5VGM01mKy1mG0Ud8nf5gMjNHUmSEAVQKW14eGpx18rx9VEREKAmwF+Np6eSpmYzNTXtpO7by/fff4/GTcOZS87kxptuYMyYMU6fqm+66Sb++c/7KSrY0uFg0v8TuFyuImnkhaQffJNzzjmHH37oPzo5FVarlf3792M2m5k2bRpKpZIzzjgDQRAQgFfecRBcfynegaIlL4uGgztZsuwapk+fyY033kRjYz233noLb7/1DukH3iAicibRsQsQRcetr6hwK0ZDDZOYN+ioxD/Gh+hJYXx0fd+mEp2wShbKZPlcdfVVhIaGDvgYVVVV2O12pyrG34PKysqucWF94YsvvmDcuHEuyYC5EoLkKkXEH4AjR44wderUrie03tDQ0MDevXtZtGiRS1Q+dXV1pKWlsWDBApeMewfHD/DIkSPMnz/fpUql5uZmduxwuE0MdS9NX+IRSZLIyMigvLycSZMmDTjF29LSwsgRI2mpaGOcbeaAb0wWycxe2U8gA5tcScL19/c5sqYTNlM7+W8+htXQgkLpjq9vPI36IiSbgejoaOLiE4hPGkFkZATenp54aNwQRZHm5maajG20q3WYbBL2jtrdaF93Musd0ni5KKKxtuEuE/D09EQmk9HWZsVgtNLY6CCzmlrHP+3tjigxJ/sb6mqPYBqkh+ODDz7IQw89RPL4q7qNDeoPebkbKS3eyZdffsF55503oPe0tbWRmpqKXC4nJSWl27XR3t7Ozz//zPbt23nl7XcdBOc9sFppX7C0NFHwztNEh4/goQdvZ8++Wg4eLORYxie0tJQxa9YslEolv/zyKxqtP0kjLwRJ4mDaK0QxnFhh8A+ny++fS12xnj3/PtTvvkXScYrkxykoKHAq3Pgtdu/ejb+/f49+wqHC7t27CQwMJC6u57SNTsyYMYOLLrqI66+/3iXn4Cr8ZSM3cPjZxcbG8sUXX3D55Zf3uo+3tzcajYby8nKXdPb7+vqi0+nIz89n+PCBpXsGi6CgIPLy8sjPz+815TRU8PDwYNSoURw4cICZM2f2+cAwWDhTRXaqKHU6HXv37mXkyJFERUX1u+Z7771HSWkJY5k+qCfuUvKRREeRXq5yo+nYITySxiLK+34wsZvaOpSMAgEBo0gY7vDVM5sNtLZUcjyngkOHfqXVUE17WwM2axuenp54e3sTMWk6ERNnoJQJiIKAUhTAFyqNZkw2OzZJorown7yfvqaxsZHI6PPQeTj/nXp5x1JRnsahQ4cYN27cgD/7/fffzxNPPElxwRa8xw+c3KJj5lNfm82aNRezaNGifn8XDQ0NpKWlERQUxOjRo3uk09VqNYsWLer671feepnwVdej8jm9up7daqXsm/dRy9X84+83U1hkICu7CTeND+MmXkNx4Ra2b9+KTqfj4Ycf4l//eoyDaa+gUGjR4kk0g0/5hY4KJDDBj5+f3dXvvmbJRIksl6uuumpQxFZTU0NTU1Ofornfi5aWFhoaGpymJE+cOEFaWhpff/21S87BlfhLtgJ0QhAE1q5d63QsfKcfZGFhoUtk+52jZPLy8lwygfq3x3BFa8OpiIyMJCIigtTU1CFxeBmI3B8c9cvJkyeTnZ3N0aNH+3VOWbBgAVGRUWSIqZRIuQP629okKxWyAnx9fRAQ0SkCqPjxU3JffpiqX7+lvaZ3Y+bWws5Gdwlvn5OpGaVSi49vHBGRMxmedB4TJl7H9Jn3MWnK32lsbKSgoIBjFbUcqG1hT1Uzuyqb2F3laDLeU9XEnqpmUqtbOFbXzIkTJ6itrcVo7H9eoLePg5jefvvtfvc9FaIocvXVV9HYmE9z88B7QGUyBUmjLsJkMnUjpd5QXFzMnj17SEhIYMyYMX3WiTsJbvbs2Vx/1ZWUfPQypvrBt71IkkTVz1/SXlXOXXc9gt0usG37SfMGUZQRHbuAsROuxmyGBx54kIsvXsPkySlYLEYEUaCd/icgnApBFJh68TgOfXMMU2v/46MKyUapVvDggw8O6nNlZWURHx9/WrXOgaCoqKhrzmNfePNNR0r69wiK/q/wlyY3cNRfMjIyOHz4cJ/7hIeHd3XguwK+vr74+/u71O3D19eXwMDAIZ9y3RuSkpJwc3Pj4MH+DXSdYaDE1gk/Pz9mzpxJXV0de/fudTp3LjExkcxjmVx7/TWc4AiHZNtokpw7upRTiAUzVVXVhIZPJnncFaRMuY3ggGRajh6k4N2nKXjnaepSt2JpPvlbaS04jtAxWsbLu/8ZXVbLySZ1eT89buCouXXCbO7fU1SpdEej8efXX3/td9/f4qmnnkKhUFJc6HyY6W+h04UQFTOfPXv28Oabb/bYbrfbyczM5NixY6SkpBATE9NvRK1Wq1m4cCFz5szhhqv/5iC4usG5CjUc3Ik+I421V99LVKQfP2ws69U70ssriklTbsU/YCRvvfUWlZWVfPXVF/iGe5ImbqFUyh/wbz152XBUWgVHvjve774GqYVyoYD7/nnfoFL9FRUVmEwml82Es1qtlJSUOF2/vb2d999/n2uuucYl5+Bq/OXJzdPTk5UrVzqN3uRyORERES51209MTKS4uBiDYXBPgYPBqFGjaGxsdJnzSidEUWTChAm0traetsflYImtE1qtlhkzZiCXy9mxYwfNzU6c8rVaXnzxRXbt2kXo8BD2s4Us6WCXk8mpsEs2yuR5XcX88IjpAGi0/sQnLGXq9LsYOXoNOsGHuu0byX11HYXvP0fNzp8wFOYgCuDuHoxC0b/oxWQ6ec79NXADyDWd+wiYTQMzzPbxjaewsGhA+54KpVLJqlUrqavNwtBaPaj3RkTORKcL44YbbuxmLmA2m9m3bx81NTXMmjVrUE/5arWaBQsWMHfuXG5YexXFH71Ce+3Axtm0FuZQvXkDZ5x5KXPnjuG7H0qdDiCVy9WMGLWSxBEXUFJSzgUXXMgtt97C366+khzSOSLupl1yPsnAK9SDSReN4deX9mLtQyl7KvLFTEJCQrj55psH9JnA8aCQnZ3NsGHDXFZjLy0tRavVOm0v+Oqrr/Dz8/vL2G39Fn95cgO45pprWL9+vdMbYXR0NJWVlS5L63l4eBAaGsrx4/0/zZ0uVCoVo0ePJiMjw+XpSaVSSUpKCoWFhYMm09Mltk4oFAomTZpEaKjDeaK4uNjpU/W0adNIP3yIV155BYNHA/tkmyiUsrFJJ28+lRTTZjNSXl5BQOBo1GqvbmuIohz/gBGMHL2aaTPvJXHEBbhLXjSkbsNuMWOz2fH2dW651Qmz+aSPokwzgMhNrek4BwGzuX9JOYC3TyxWq4Xt27cPaP9T8fLLLyOTySkuGtx7RVFG0qgLsdnszJ07D3DIxHfs2IFMJmPGjBlOHeX7glqtZv78+cydO5cbr7mako9fob3aubVde00FZV+/z8hR07ns0uX8srmC2rqBlQWCgscyacotaDRB3HLLLWRnZ7NhwwZkfhL7Zb9SJZX0+nsTRIH5N04h8+cTVB3v3zqsQaqhxl7OU08/NagRNSUlJY7J6C6y2pIkicLCwn6j69dee42rr776L9Xbdir+K8htwoQJJCUl8cEHH/S5j7u7O/7+/hQWFrrsPIYPH05FRQVNTf3XTU4XISEhBAQE/CHpSZ1Ox4QJEzh8+PCAU7q/l9g6IQgCiYmJTJgwgePHj7Nv3z6nA1blcjnXXXcdBYUFXH/jdRTJjpMq30SplIdNslIqzyMmJgabzUpE1Eynx5bL1QQFj2XkqFWEh03FIXKUBqwwNJuaETrmgJ2acuzzs8pkiEoVgiBgah9Y5ObpFQ0IvPvuuwPa/1S4u7uzfPkyqqsO09Y2uFS9RuNHbPyZ5Oae4L333mPv3r1ERUUxadKk36UW7iS4efPmceM1ayn55FXaqnp/qLK0NFH6xdsE+Efwj9uu5/CRBvLyBzciys3Nh7ET1hIVM4/t23ewatVq3n7nbc5ZcQ6ZpJEppGGWupNl8vJEVO4q9n18pI9VT8Iu2cmTH2VyymQuvPDCAZ+X1Wrl+PHjJCYmuqyvtaamBpPJ5LQlIT09nfT09D6Fen8F/FeQG8CNN97Iyy+/7FSIEBcXR0FBgUtG4YCj7y06Otql42rAoRL9I9KTAIGBgQwfPpy0tLR+o8WhIrbfHn/OnDmoVCq2bNnSbxTn4+PDc889R3Z2NudceDa5wlF2iT/Sam2mrKwcL+8YdLqB9ww11Ofi5qYGBDx/0wDcF0zmlq4bk3wAkRt0NHILAibTwB6MFAo3dLpgtm0bfOQG8MYbbyCKIqXFOwb1vva2Rrw8DDz33HM01DcwduxY4uLihuTpXq1WM2/ePObPn8+N115L6Sev0lbZfS6jrb2N0i/fQW4XuPuu+6irN7Mvrf95br1BFGVEx8xn3IS1WCwiy5efhZeXF5999hkmjxb2yzdTJzlSpN5hHky6cDSbX9qDbQDpyDLyabU189rrrw3quykoKMDNzc3pwNDfi9zcXGJjY52aNbz88susWbPG5Y5FrsR/DbmtWLGCxsZGNm/e3Oc+vr6+eHh4UFRU5LLziI+Pp76+nrq607vgBgKlUsmYMWP+kPQkQGxsLH5+fqSmpmK19u6s7gpi64RSqWTcuHGMHz+e7OxsUlNTnUZx4Pg7rF+/nuM5x7n4sjUsXrQYk6mdiKiB1w8sFiMtLQ4FpYdHWJ/2Tb+F2dTS6ZnclXLsDzKNo5F7IIKSTnj7xlNWVnZaM/n8/f2ZN28uFeX7MQ2gzidJdmqq0kga1sDf/34VRzZlc+899w3KbWMgUKvVzJ07l/nz53HjdddR+umrGCscsxPtZhOlX7yFpaGO2//+CFqNik2//v7JHJ5ekUyacgsBAaN5/fXXueOOO9j0yyZmzpvBYXZzXDjE3Bsmk/HTCapy+r+uTVI7RbLjrL1mLcnJyQM+D7PZTG5uLklJSS5LBTY0NNDU1ORUSFJfX8/HH3/MDTfc4JJz+KPwX0NuKpWKq6++mhdeeKHPfQRBID4+nvz8fJe54KtUKuLi4lw6rgYgODj4D1NPCoJAcnIycrm8V4JzJbGdiqCgIObOnYtSqWTLli2UlPReGzkV8fHxvPPOOxw4eBCNNgAfn4HVzQAaG/IAiba2dnwGWG8DMLU3IQg4Uo0DtDKTd5Cb1dqO3T6w36a3dyx2u43vv/9+wOd2Kt566y1AorTEea9Wk76YpoaNXHftfEYkjOSz236gYEMVcZbRfPzxx3zxxRendfy+0ElwCxbM58brr6f0s9cxFOVS+tW7tFdX8I+/P0Z8fAAbfijFYhma375criZp1IUkjbyQ0rJKpkyZxvLly3nzzTeZet4EJHcrP388MHVqnpCBVqfhkUceGdQ55Obm4uPj41LZ/YkTJ4iKinKaQn7rrbdISUlh1Ki+R0f9FfBfQ24A119/PZs3byYjI6PPfQIDA1GpVJSUlLjsPGJjYzEajS4bltqJP0o9CQ67s5SUFOx2O2lpaV0PB38UsXXi1CguKyuLXbt2UV9f7/Q933zzDXV1tURGzRrUE3FDfS5yuRKQ8PIZuPVQZyQ0EKVkJ+Qad6QOb8xTBSnO4OkViSCIfPjhhwM+zqmIjIxk8uQUykv3YrH0HCLb3t5EbdUvzJ6p4a67biR7UwEb791NS6Ujag4inEAhjKuvWktl5cAUjgOFWq1mzpw5LFywgJuuv57Sz9/AWFrIzTc/yqhRYXz1bTEtLc7ns50OAoOSmTT5FrTaIK6//np++OEHVq9ZzeYtm0kzbyVXOtpNqPRbNEq1VErFPPnUk4O6Htra2igsLHSZhyQ4HIhqa2ud2mi1tbXx/PPP849//MNl5/FH4b+K3IKCgrj88st5/PHH+9ynM3rLy8s7rXTOQCCXy0lISHB59HZqerK/NN1QQC6XM3nyZKxWKwcOHCAvL+8PJbZTERQUxLx58wgICGDfvn3s27evT7Xs7bffjlLpPqBxL52QJIn6uuNoNGoEQYan58CUaw5jYAOSJA3INLkTDlWl47diNg1MMSmTKfHwCGfXrv5dMvrCW2+9hd1upax0b9drVquJ2updjEpq5P77r0Fj1vHx9d9zfEMx0ik9ZIIgMEwai8lg4sorrxzy37parWb27NksXLCAW2+9lRXnn8v4sRF8/U0JTU2uqZsDuLl5M3bCWmLjFjBt2jS+++47rr32Wp548gkq5IUclG+jRdL3eJ9NspIjT2fa1GlcccUVgzrm8ePHCQoKwsvLa2g+RC/Izc0lIiLCqXLz/fffJyAggCVLlrjsPP4o/FeRGzhuZF999ZXTnrZOE1JXTdIGiIqKwm63uzRChD82PQkOmf6UKVPQ6/VkZWWRkpLyhxPbqecybNgw5s+fj1arZfv27Rw8eBCj8WQUcuDAAfLzCwiPnNFlljsQGA01mM2tWK1WPL0iB/xeq7UdSbJht9sHZJrcCZmbtos4Bhq5gaPuVl1d47Th3RlGjBjB6NGjKC3ehcnUTFXlbiJDC7j3njWE+0bw6d9/YN8rxzDU9/7wpBRUJFiT2bhxI++8885pnYMzdBLcnDlzWLFiBf/85z3kF2QN+XF+C1GUcc65K/D2CeHTT79lwYKF5Ofns//AfiKGhbJf2EqhlI1dOvmAnEsGFpmZ9//9/qCUji0tLZSVlbnMvg/AYDBQUVHh1EPSarXy1FNPcdddd/1l5f+n4r+O3KKjozn//PN56qmn+txHFEXi4uLIzR2YbdPpQBRFEhMTycnJcfmU61GjRqHX610qlDkVpaWlWCwWtFoteXl5Lv98/UGlUjFq1CjmzXP0XnWmpk0mEzfccAOiTEFI6KRBrVlffwIQMBqNg6q3dQpC7AxsIkAnZG5a6LhRDrSRGxz9bpJk5/PPPx/we36L119/HUGw4ud9jLvvvIDkpDF88+Amtj+eTnNZ/6YE/kIIoUI0N99085AbJUiSRHFxMYIgoNPpuOCCFWQe+aDj7+M6BAaoSZnox+attYydcD0BgWN44403WLZsOV9/8zV33X0nhUI26bIdGKUWGqQaysjnySefcEogvSE7O5uIiIgh83LtDXl5eYSEhDjtQ/zss88QBIELLrjAZefxR+K/jtwA7rrrLt5//32ndYCIiAgsFgsVFb37CQ4FQkNDUalULm3sBkd6cuLEiRw7dsylKk04WWObOnUqM2fOxGw2O1VR/pHQaDSMHz+emTNnYjAY2LRpE8nJYxk37gzk8oE30QI01J3oGsHj7T3welsXMUnSgBq4O3GSCAVMg1BMeniEIYpyPvnkkwG/51SYTCZ8fHx4//33mTd3Hpte2MVP9+2l4cTg+sbipdEIFhmXXHzJkD3sSJJEdnY2hYWFTJ8+nVmzZjFv3lxuv/3vHDv6IfV1rrmuNBo5S88MY29qLdXV7Q6xycgLSBp5ERUVVSQmJhEcHMyu3bvwCteRJm4hS3aA6dOmD1phWFVVRW1trUsN0Q0GAyUlJcTH9/2QZrfbefzxx7n99ttdOnnkj8R/JbmNHDmSBQsW8Nxzz/W5z6mDQF1VexMEgbFjx1JYWEhDg3Pfw98LX19fRo4cyf79+11mAfZb8UhnitJut7Nv3z6X9Q8OFp6enkyePJlvvvkGtVrFXXdeylnLwomK1DKQbIvNZkGvL0SjcUOUKXEfRF9cl/XWIMmtc1+5TDaoyE0U5Xh6RZGamjbg9wA0NTWRnp7Opk2bqKurY9iwYdx6260cOHhgUOt0Qi4oGG4dx549e5xedwOFJElkZmZSWlrKtGnT8PDwQK1WM2PGDObOncsdd9zOsYyPqKsd2p5SmUxg6ZlhlJQZSD/c/ZoNDBrjEJu4h3DjjTdyxx13kJqWylVr/0bc8JhBpyPNZjOHDx9m1KhRg3IwGSyOHz9OaGio04HNP/zwA3V1dVx22WUuO48/Gv+V5AZw991389prrzl11ggPD0cQBIqLi112Hh4eHiQkJJCenu7y9F1UVBShoaGkpaUNeSTVlypSoVAwefJkBEFg9+7df4iwZSAwGo188MGHfPrZdt77II+qqjbmzw3hsotjmTTBD62276dTvb4QSbJhNLbh7R2DKA58MrnZ3IrQoXqUD8CdpBOdykq5Qt7Nm3Ig8PaJo6GhntZW57U6i8VCUVER27dvZ+fOnQiCwKxZs5g2bRoTJkzgvPPOo0ye162ONKjzEPwJJ4577r6HzMzM01oDHNO7Dx06RGVlJdOnT0en03VtO5Xg7rzzDrIyP6a25thpH+u3mDcnCIAtW3tXOqvdvBk3YS3RsQvZtWs30dExnH/++WRkZgx6mGdGRgZeXl6DGoMzWDQ1NVFRUeG0nidJEo899hi33XabS0n2j8Z/LblNmTKF8ePH89JLL/W5z6l1MVem1eLi4pDL5S5PT4IjalUqlRw6dGjI6on9yf07VZSenp5s377d5VHqQPDZZ59hs9moq83m6OHv2LYjl3f/ncv2ndUEBblx+SVxLF8azohETzSa7uTVUH8CmUyO0WjoNuJmIDCbWpB1DD8dXCuAY19RFAesluyEj08ckiT1aj9ntVqpqKjg0KFD/PzzzxQVFREREcGiRYtITk7u9jR/zz330GptpprTby2JZSRuaFm1ctVpiVza2trYtWsXBoOBmTNn9lojUqvVTJ8+nTlz5nDXXXeSlfkJNdV9t/8MFGOTfQgP0/L9j2XYbH1fO4IgEhU9h3ETr8FqkzN//nyee+65QV1vVVVVVFdX9ztB/fciOzub6Ohop1Put2/fTnZ29l/W/b8v/NeSG8ADDzzAM88847QPKjg4GI1G49KJAaIo/mHpSVEUmThxIk1NTUMygmegfWwymYzk5GQSEhLYs2ePy1WiziBJEs8+8yw+gj9htigqS1PZt/spDh98n9TUVL7dUMj7H+ZRUWEkKcmLKy+L54Lzo5g43hdfXxX1dTl4e3sBjqhoMDCbm5HLO3wlB5GWFFVqEIQOC67BkZu7LhiZTMWXX34JnOyZ2rt3Lxs3biQ7OxuVSsX06dOZPXs20dHRvTbxJicns3jxYkrlpy+0kgkyhlvHc+zYMR5++OFBvbexsZHt27ej0+mYNm2a0yiik+Bmz57NPffcTfaxz6iu6t/zsS9ERmiZPMmf738sw2gc2IOup2eEox4rCdx2221ceOGFA/Jg7UxHjhw5Ejc3t9M+5/5QV1dHfX2901qbJEncc8893Hbbbd0i5P8G/HdUDvvAnDlzmDJlCo899hhPP/10r/t0DgJNTU0lKirKZYMBPTw8GDZsGOnp6cyePdupr9vvRaej/86dO9HpdE4NUp1hsA3agiAQExODu7s7Bw4coLm5maSkJJcZwPaFzZs3k3ksk3HMwEcIJEZKpJJiKhqKyaxfj0KuITA4mfLyMXgcDEejkRMd5U50lI4JE3xZMPdRsrKy2LlzL15eQQwmqDe1n0Jug4jcBEFEVDludJ19cgN9opfJRJKTZxARHsq2bdtobm7Gx8eHoKAgRo0aNSgV3n333cf0n6ZTSyUBDLzWeCo8BG+ipEQe+9djLF26lMmTJ/f7ntLSUo4cOUJiYuKAZsHBSYIDx2/v0UcfRZLsBAWPHdT5enspOWNRKFu2VVJdM3A7u+qqw1RVHiSJCYjI+M/XG9i9azeffPoJM2f2bc79R6QjO4edxsXFOR1GumHDBgoKCrj11ltddi7/V/ivJjeAxx57jKlTp3LTTTf1OULCz88PHx8fTpw4wciRI112LrGxsVRUVHD8+HFGjBjhsuOAg0zHjx/PgQMH0Gq1g24O/T3OIwEBAcycOZPU1FRaWloYP368yx4aesMTTzyBl9wHb6tjOKRMkBNGLGHE0koTFdYiqsrSKSvdg1rtTUDQGKqqEjmWFUZtTTpqZSFTpkzlhhuux9vbg4ZGMzU17dTUtlFT005tnQmLpfe6lMnUjEIxONPkTsjdNNjbDUiSHau1rdfZcaIIvj4qAgLcCPBXExCgxs9XhcUSy6FD+wkICGDq1Kmn/X1PmzaN6dOmc2zfcfxtwaedMotiGI1iNatXreZoxtE+JeidN+Hi4mImTZo0qIGe0JPgHnnkESTJTnDI+AG9X6USWbYkjKOZjeScGHjEbDTWkZP1DUFEEEwkgiDgZfMlq+YAs2fP5u677+bBBx/sESFXVlZSXV3NnDlzXJqOrKqqwmg0Oq0D2mw27rnnHv75z3+6tA3h/wqC9Ed0/v4fY+XKlbi5uTkdD9LU1MTOnTuZO3eu0/z070VLSwvbt29n6tSpf0jz84kTJygqKmLmzJkDLhYPlaWWxWLh4MGDtLa2kpKS8oekPY4cOUJycjIjmUSQ0LeriCRJNFJLFaXUCOVYJTMKuQZRpkQmWjC2GUgYfjYJw6Z1kUjnv7UaOY16B+HVN5gwGKyOf4xWfv35Uex2C80tLSTe8VSXuKQTKpnAAxOjeWh/Iabf1HUK17+EraYcmUzGrDm34OcfhFYjR6uV4+2lJCBAja+vCptVoqa23fFPjePf5WWlpO17nscff5w777zzd32HP//8M4sXL+6KfE8XBqmF/eIWrr7mKl555ZUe2y0WCwcOHMBoNJKSkvK7brDt7e3s3r2bnTt3sm7dOuKHnU1I6ESn7xEEWL40HLtd4vsfyxjondBut3Jo/+tYW5tIkeYhF04SmCRJFHGcQiGbsWPH8ulnn3b1vZnNZrZs2cKIESNcGrXZ7Xa2bt1KdHQ0MTF9j2l67733eOSRR8jOzv5DHz7/KPx/QW55eXmMHDmSQ4cOkZSU1Od+6enpmM1mUlJSXHo+ubm5FBcXM2fOHJemJ8Fxsf2/9s47rqrz/uPvcy977yEbURQFQRAVVHCSJjFpm6FZTZtYkzRmNGnaxkzbZjaziWljY1aTX0wzq8YYJyKKKApoQEBA9t7r3ssdz+8Py62DLdvz9nVeL4Qzvvfec5/P+T7Pdxw/fhyVSkVsbGyfU4RDXSuy68m8qKiIqKgo3N0HP1j2hzvuuINvtvyHubrlKKT+TYcahIEWGqilklIpn2nTg89VX4l5FCsrl0v2t7Iywf2/YufoaIa1tQnWViZYWZlgbq5Eq9XS1NSEysKWVq2eTr0BgwCDECDBHDc7jte0IJBQSmCikLAxVWLZ2YG9tRWWlpbodHraO/S0t+vo6NDR3Kz9r5ipaOqm9JQQgkNJfyEyMoyUlJRL/j4QhBBEhM+mLKuSCMPCyzpXqcgnlwx27drF8uXLjb9va2sjNTUVKysroqKiLqsXXBddApecnMyf/vQngqZeh5d3z9/lhbFu+PnZ8O8viujswRPvjtzT31BZnsYcFmMndd8Splk0cNokDb2plo0bN/LLX/6SEydOoNPpiI6OHlavLT8/n5KSEuLj43v8vqvVaqZOncqLL77IrbfeOmy2jCZXhLjBuaLKFRUVfPPNNz3uo9Fo2Lt3L5GRkcM6CAshOHjwIE5OTsM6DdqFXq83rr/Nnj27xy/WcBZB7lpT8fPzY/r06cOSKFpaWkpAQACT9TPxlfpfVaSLZlHPMfYzY8YMsrKy8PFdgINjAPYOAZia9r3wr1I1knH8b0yaNAlbVw+m3XgndqYmmCjOiZhCkjBVSCyc5EBSRSOdeoFBgF4IWrV6ig/vo+zEEerr6vDxu3rAa0dZpz6jvbWQtvaBJWB3x1dffcWNN97IHBZjLzkP+jxCCDIVhzBxhezT2Tg4OFBUVERWVhYBAQFD3t6lS+AOHz7Ms88+y+Qp1+LtM/+S/cJmOjJ/nitbvjg7oDqV5WVHyMv5D9OJxEvquW0MgE5oyZMyqRBFPPzww8ZmrMMZbq9Sqdi3bx/R0dG9dhd49dVX+eSTTzh+/PiIr4mPFBN+za2Lp556iqCgIFJSUpg//9KbHc6VcZo+fTqnTp3CxcVl2LyqruTuAwcOMGnSpGGfnlQqlcybN4/k5GQyMzO7DT8e7ur+Pj4+ODo6kp6eTmJiIhERETg7D37Q7I4333wTE0yZhP+gjq+nGlsbW7SdWiywpqb0hLEdjKWFEzZ2k7C19cLG1gMra3csLOwvmHbs1LSgVqspLy9H0SnQ1l+aTG+uPCdu+8ubLpmWrKmqo76kFIQYUCJ3F45OQdRUn6S4uBg/P78BH38+P/vZz5gSNIXiwjzCRPffl/4gSRLTDLM5WreXP/zhD9x55520t7cPan2tP1hYWBAbGwvAhg0beOaZZxBCj4/vAuM+IdPtiYlx5T9bSwckbI2NhZzJ2YYPQX0KG5xLbA8hCm9bf8JnhfPPTf/E2tqa+Pj4Ab+u/pKVlYW7u3uvwtbc3Mzzzz/Pp59+OmGFDa4gzw3OCdyBAwc4cOBAj0+LQggOHDiAp6fnsJbEgZGdnoT/5RC5u7sTGhpqfA9Gsm2NEMJ4vaH04pqbm/Ga5IVrhzdB0uD6UJ1QHGD+VdF89913hDAHT3xR0U4T9bTSSCvNtNKEnnMDokJhipWlC5ZWTphb2KPTqaiqTEepNMGgUGDh4oHCwhKlhSWSQgkKBZYWFvzjiUe59y+voFL9t8iyRo1BrULTWIde1YGZiSlunlFMmXptr/YKYUClaqC5qZimxrM0NuSj0TTz9ttvc//99w/qPTifjz/+mDvvvJN5LMdGsr+sc/mscGb5nXGYm5uzcuXKIZmG7I0uD+7IkSM8/fTTBExOwNdvEcFT7VgS78HW7WWUV1za5qcnVKoGjqe+jY3OlggW9HvKG2DFb2NRmEu88PLzNBhq+cMf/sCGDRuGfJ2rrq6O1NRUlixZ0muKwfr160lJSWHfvn0TokByT1wxnhuc6xjw3nvvsWXLFm655ZZu95EkibCwMA4fPoyPj8+wBpcEBQVRWVlJVlYWYWH9b8cyWCwtLYmNjSU5ORmFQsGMGTM4e/bsiLatkSSJyZMn4+7uPqRe3KZNm1Cr1fgwsLy0LrSik0ZDPd7e3gA44YokSVhhgxU2wDlPSAiBmg7aaaXd0EJHeyuq9joapTJUoh2FQolCocDC3Ak7yQ1dmwptcytCGBDCgN783IBmKKsBTScSCsyV5piaOqGxMKWx4wzmFuZ0ai6sNtLZ2UZ7ew0d7TW0t1XT1lJBW1sVesO5RGkbyQFX4UKd8lw356Hglltu4Yn1T1BUkctMBlZ4ugtbV2uW3D8Ph0l2bHr5fTKLjpN9OhsPD48hsbEnzvfg/vKXv/Dkk08SGurP0sXL2b5jYMKm06k5lfExJnolocwdkLBNWeCHb8Qk/u+h7YTrF1JELi+/9DI//LCLLVs+Y+rUqQN+bd1hMBg4efIkwcHBvQrbmTNneOONN4wVaiYyV5TnBvDpp5/y2GOPkZub22v0Xnp6OlqtlujowX2p+0t7eztJSUmEhIRc9lRSf2lrayM5ORk7OzsaGxtHpR8bnBOKgoICcnJyLsuL6+zsxM/XD0W1BSFS1KBsqRZlnOIIt99+O//5fBtzdcv7PugiCsSPdLg1UVdfj7fPAgKDVlyyj5mpgvvuCebv7+ZeEsRQX5/HyfQPcHd3p7GxAxtbTzSqJjSaFnT6c/lXEhKWki22wh5bHLDFATscMZXOiWa2SMNhuhVZ2UNTkuqdd95h3bp1zBcJWEkDi2acsWIKsXdGcCa5mOQPT9De0cYxk70sXhHP9u3bR2Rw7fLgTp8+jaurK//6ZA8d6v5XnTEY9JzK+IjmhiLmED8gD9YlwJGfP7eCXa8lU5T2v/ZaXcEmOhMtb7/9Fnfddddlvxf9CSIRQnDNNdfg5+fH3//+98u63nhg4k649sCtt97KlClT2LBhQ6/7hYSEUFdXR3V19bDaY21tTVRUFKdOneqzo/RQYWNjg6+vL7W1tXh6euLo2H3E13AjSRJBQUHExcXR2NhIYmLioN6DLVu2UFVdhS+Dfwqup5qgwCBSDh/BTjs4L1KDBq9Jk9DrdZiaDdzjNzM9lwvm5+eHXqdGUd+GY4ctfvogQpnHfFawmJ8RwwpCpbn4S8E4S+5GYQNwxI3s09nU1NQM6jVczK9+9SucnVwopv/VbmxdrbnumSVE3TiT718+yP6/p6JVaY2933bs2NFrWs5QYmFhwZQpU/Dx8aG+vp7vd7zP2YLd/arAIoTgTO5WGhvyCWPegITN0t6Cax6PJ+3LHy8QNgB7yYko3RKcNe6sWbOGG2+48bIqF6lUKnJzcwkNDe11De0///kPR48e5bnnnhv0tcYTV5y4SZLExo0b2bhxI1lZPT/ddgWXZGZmDnu1e1dXV2bMmMGxY8cuaLQ5XBQWFnL27FkiIyOpra0lKytrRBqd9oStrS0LFy7E39+flJQUjh071mcR4C6EELz04ku4KiZhI/Vc9byvczSb1LIofhEFhfk4MbhAh05Jjau7KyAwNR1YAjdgTNp2cnJCKSkIl2KYJkUQIE3DXfLGWrLrc0rMiXOBBPv37x/w9bvD0tKSx37/OyqlEtSi96LY5tZmzL8jglvfWklrbTufPbyd0swL20519X578IEHOXv27JDY2Bvl5eWcPHmS8PBwgoODeemllygpTuRswa4+7/nSkoNUlB9lGrNxHkC+n8JEwdV/WETl6RpOfN39GGMimTCdKEKZx3dbdzAjZOagPjMhBCdPnsTDw6PXIJKOjg4efvhhXnzxxVFrLjzSXHHiBueKC993332sW7eu1xvc398fa2trsrOHv/NvQEAAnp6ew1LR/3zODx7x9vZmwYIFVFRUcPLkyVEVuC4vbunSpZiamrJ//34yMzNRq3svh5SSkkL26WxsDY6Dtr+DVtp1bUYP1pGeB4ne0JtojesdpmaDELf/HqPT6ejUa9CLgd8H5pIldqaO7Nu3b8DH9sS9996LjY01JXTfINTETMnsn8/gjn9cj2ugI1+v38X+d1Lp7Oj+obCr99sdt98xrJ0ySktLSU9PZ86cOfj5+REbG0tERAQvv/wypSVJFObv7PGeqak+RcGZ7/FnWr8iI88n/p5oFCZK9m480ue+7pI3c/RL0NYZWLp0KX/84x8HVHC6rKyMxsbGPlOKXnjhBdzd3bnrrrv6fe7xzhUpbgDPPvssOTk5fP755z3uI0kS4eHhlJaWDtk0T2+EhoZiYmJCenr6sAhNd1GR1tbWLFiwgJqaGjIyMkZV4OCcpxAeHk58fDwajYY9e/aQnZ3do/c8Y8YMZs+OpJAsjprsoVQUDFgU6qnG1MSU6upq7E2cMJN6rsXXG52ojdNCZoPw3BQKUyRJiUajAUBD33UOhRBohIoaUUGeyOS4cj+t2iZqamoHfP2esLOz46GHH6JCUUSn0Bh/LykkZiwP4vZ3rmfyPF92vnyQrRv2UVvY+xTb+b3f3njjjSGz83yKiorIzMxk7ty5xpzVriCT8PBwXnnlFcpKk8k/890l93x9XQ7ZP27BHR8mM7AyeWHXBOM324sdLyai7+yfcFtIVoTrFzBZzOCvL/+VudHz+lX0XK1Wc+rUKcLCwnqtH5mfn8+rr77Kxo0bJ3To/8VcOa/0Iuzs7HjllVd49NFHaW3tOafI2tqaGTNmkJGRMezTk10V/ZuamsjL6/4pebD0Fu5vZWXFggULqK+v5/jx48Ped64/2NraEh0dTWxsLI2NjezevZv8/PxLbLO3tyct7RiHDh1ixfXLOCNlckj5PafFcZpEfb/EukFRw4IFC9i/dz92usFN2Qgh6NB1GO3rri5kX0iShKmppXFquvMicdMLHS2ikUpRzBlxigwpmcMm33OQ7zjJYXQe7Vyz+ids+ucm3n33H4N6HT3x4IMPYmKmpJR8ACbP9+XWv60k4qchHHw/jS9+/z1lp7rvgdYdXb3fHv/j45fV++1ihBDk5+eTlZXF/PnzL5mq6xK4sLAwXnvtNSrKUjiTu814nzQ2FPBj5ic4Cw9mMGdAgR4+szyYf3sEO15MpL1hYH0NJUnCX5pGlFhMQVYh4eER/POf/+zx/hVCkJmZiZubG5Mm9VzgWgjBgw8+yJ133klU1OCCrcYrV1y05PkIIYiPj2f27Nm9dg8WQnD48GGsra0JDw8fdruam5tJTk4mIiKi1xu3v/Q3j02tVnP06FGEEMydO3fMNC4UQlBbW0t2djYajYZp06bh4+PT7VNocXExmzdv5v3N71NeUY6tiQNuOi888MVSutSb0gs9BxXbefSxR3jppZeYRQyu0sDfc41Qc5Dt/OQnP+H7779n0eINKJWX5jH1Fi0JcDTlDXx8HMnJycEFT5SYoDPRoJFUtGn/9xDm6TGJyKjZREREEBERwezZs/H19R3WCMRHHnmEA/uSWHvbvdi6WHP081Oc3puPoZfeZ72hF3qOm+zHf7ofx9KOXnbel16vJzMzk5qaGubOndtroFRXFGVWVha//e1v8fCcg7tnOCdPvI+9wYlwYlBI/c89tfe05aaXruLg+2nkJl7eWqJe6MiTMikXZ/np9T/lvc3vXZIqU1paSlZWFkuWLOn1ffvqq6+45557yMvLu2LW2rq4osUNzrVgj4yM5IcffjBWF++Ojo4O9u/fz5w5c4alssLFVFRUkJ6ezsKFC3ttD98XA03Q7hogamtriY6OHrVIyu4QQlBeXk5OTg5CCAICAvDz8+s2IdhgMLBv3z7ef/99vvnmG9RqNY5KV1z1k3DDGwvp3NpYvagmnYM8/fTT/PnPfyFOrLygEG5/aRVNpLKH+Ph4Dhw4SNySP3crNH2JW8bx97C21jArdBbZ2dn4+vni6+eLt7c3wcHBhISEMG3atBHtvWUwGIzdLGpqajjw9WFKtteh6+e0W2+0iEbSpP2sf2I9f/7znwd9nvMfzKKjo/vVJ+38NIGHHnoIg0HggDMRLEAp9T8lxczKlBtfTKDoeAWHPzox6NdwMTWinFxlOg7O9nz6f5+ydOlS4Fx05P79+4mIiMDT07PH4+vq6pgxYwavvfYat91225DZNV644sUN4JVXXuHdd98lMzOz16Tts2fPcubMGRYvXjzsFRYAcnNzKSkpYdGiRb3OqffEYCuPnJ9/Fh4ebkxsHisYDAYqKyspLCykubkZHx8fAgMDexzw29vb2bp1K5988gk//PADer0eBxMnHHRuqGhDuHYSvzie3V/vI1IfPyib6kQVGSQTHR1NRsZpYhet73a/vsQt69QWOtXFNDb13fRyuNFoNBQVFVFUVIRCoSAwMJBXX32VD//5EfN0CSgH4Nn0RqHIpkjK4dDhQ/3q/XYxTU1NpKam4uLiQnh4+ICq/XQJXF5eHuvWPYCbwWtA05GSQuKax+OQFBLbn0tEGIZ2OFULFacVaTSIGn73u9/x5z//mfT0dExNTYmM7L2tz+rVq1Gr1XzzzTcTPmG7O2Rx45y3snDhQubOndvn9GRKSgrm5ua9FiAeKoQQpKWlodFoiImJGdBi8FCU1KquriYtLY2AgACmT58+Jr8gjY2NFBYWUlFRgbOzM35+fnh6evb4XjU0NPDDDz/w3Xff8d32HTQ1N7J27Vq++vIrbBtcBl26q0IUkU0a06dPp6Skgej5D3e7X1/ilpe7lbqaDNTq4U8J6Q4hBPX19RQXF1NRUYGTkxOBgYF4eHggSRIFBQVMnTKVKSIMH2lw1WAuRie0HJZ2ErNoPvsTBxYOX15eTnp6OsHBwQQFBQ3qHu0SuKamJlavWo2rwYsQEdWvc82/I5zAaB+++MPOHqNDLxchBMXkUShl85v7f8M111zdr+nItWvXkpWVNezVYMYqsrj9l7y8PCIiIti5cycLF/bc5kOtVrN//7nK8T01Px1KdDodycnJODo6MmvWrH4dM5S1IltbW0lNTcXGxobIyMgR8VgHg1qtpqSkhOLiYnQ6Hb6+vvj6+vY6fafX6405fuHh4USwcED5TOdzVuRQb1+Gja0N7e3mhEeu6Xa/vsTtbOFeSooS0euHN3jpYjQaDaWlpRQXF6PRaPDx8cHPz6/bKfFbb72VrV9sY65uxYBKUXVHs6gnx+QEGknFO39/h7vvvrtfxwkhyMnJobCwkMjIyMsewLsErrm5mVWrVuOi9yRERPX6+qYu8mfRr+fw5R920lRx+Z0YekMv9FQHnuHZF58mPj6+15y22tpaZsyYwZtvvtljmcErgSs2WvJipk6dyp///GfuuuuuXhOpLSwsiIyM5OTJk71GWQ4VJiYmREdHU1lZ2a8IyqEugmxra8uiRYsQQpCUlNTv5OqRxsLCgqlTp7Js2TKioqJQqVQkJiZy4MABcnNzaW5uviTyTKlUEhYWxoEDB1AqlDhwae+2/tKJGnd3d9pa2zA1G3zTTTNTKwwGHQZD//uLDRaVSsXZs2dJSUlh165dVFdXExwcTEJCAqGhoT2u9T7++OO069qoomTQ19YLPWfESdKkRIJnTSE9I73fwqbVajl69Cjl5eUsWrRoSDyTrihKe3t7/v3vz6k3qSRLOoZBdP85eId5EH/vXHa9mjzswgZQbH6a+x+5r8+K/wDr1q1jwYIFrF69etjtGsvI4nYeDz30EO7u7qxf3/16SRdubm4EBgZy7NixEQmbt7KyYv78+eTn51NQUNDjfsNV3d/MzMyYL5SUlERt7dDlUA01kiTh6upKVFQUK1aswN/f39hlfffu3Zw8eZKampoLxGPvnr04SC6XtYakQY2XtxcqtXpQpbe66ErkLisrG/Q5ekIIQVNTEzk5OSQmJrJ7927Ky8txdXVlyZIlxMbG4u3t3eeaVWhoKNdeey2lJmcGlRdZKyo4ZrKXCpOzPP/886QcSem1ifD5tLe3c/DgQfR6PYsWLRrSwJougbOzs+OLL76g0bSaLCn1EoGbFOLG1X+MI/EfqZRkVPZwtqGjWpRxzdrluLq59jqrBPDll1+yd+9e/v73v4/JZYSR5IrqCtAXSqWS999/n4iICH7+85+zaNGiHvedNm0a9fX1nDp1akTSA+zt7Zk/fz6HDx9GoVAQEHBh1YThblujUCiYOXMmdnZ2pKamMn36dAIDA8f0F8jc3Bw/P79ztRr1eurq6qiqqiI9PR2dToebmxtubm4cO3YMe70zXMZL0Zt04uXlhVarG1TprS66js3Pzx+Sae/zX3dVVZXxdXd1Zhhs+P0TTzzB9u3zqaEcd/oXcNQh2jijOEmtqGBp3FLefvttpk2b1u9r1tTUcPz4cby9vZkxY8awJCR3CdyhQ4f44osvuPmmm/lRl8pMQzQKSYlHsAvXPhHPwc1p5CUVDfn1L0Yl2nFfYktsbCzXXHNNr9+32tpafvOb3/D2228Pe8f78YAsbhcxdepUXnjhBe644w7S09N7FAqFQkFkZCSJiYm4uLiMSESho6Mj8+fPJyUlBYVCYewiMJL92Hx9fbGxsSEtLY2qqioiIiKGtS3QUKFUKnF3d8fd3Z2wsDCam5upqqoiKyuLtze+TUVeNfX5zdQWNFBT0EBTRcuAIt86JQ3u7u4YDDrMBpHA3UWX5zaYuotCCFQqFU1NTTQ3N9PU1ER9fT1mZmZ4eHgQERGBi4vLkIjCvHnziI+LJyP5FG56r14HXZ3QUkQupYozeHh48NVbX/Gzn/2s3w9GWq2W7OxsSktLCQ0NHfbuGRcI3JdfcNNNN3FKm8qSgJ+w8qklHP5XBqf39jyDMlQYhIEG3zKeWfsEUVFRvX7PDAYDd955J3FxcaxatWrYbRsPyOLWDQ888AB79uzh7rvv5uuvv+7xS2hlZUVERAQnTpzAwcEBG5vBr7X0FycnJ+bOncuRI0dQKpV0dnaOaD+2LhsWL15MdnY2+/btY8aMGfj7+49pL+58JEnCwcEBBwcH/vOf//DGa29ww8w7cA9yIfQnU3H2d0QYBHVFjf8Vu3pqCxpoLO9Z8NSGjvPqSg7+PuiqbFJaWtrrfucL2fli1tnZia2tLQ4ODri7uxMSEoKdnd2wfDZPPvUky5Yto4FqnLl03csgDFRQRJFJDkKhZ/0f1vPHP/5xQA9DtbW1ZGRkYGVlxeLFi7G2HrxXPBDOF7gvv/ySRx95lJVPLyZ1SyY/7hza6kE9UWSWzYOP3IuTkxOTJ/fepue1117j9OnTpKenj5vv4XAji1s3SJLEBx98QHh4OG+//TYPPPBAj/t6enri5+fHsWPHWLhw4ZB0le4LFxcXoqOjSU1NBSA2NnbEqw+Ympoya9YsPD09ycjIoKKiYtx4ceezd+9emmvbSNmXiv0+Z5SSEkkh4eRtj+tkJ1wDnZi5YgouAefe37qzDTRWtNDRqKK9QUVHo4qWhjYcG/9XuHkwpbe66Dq2oqIClUqFWq1Go9GgVquNP7e3t9Pc3IxWq71AyIKDg7GzsxuRexBgyZIlRM6OoigzD2fD/8RNCEE9VRSaZNGia+L21bfz/PPP4+Pj0+9z63Q6srKyKC0tJSQkhICAgBEftLsELikpiZf/+jJbtmxhz3eJhIp5A0ryHgwVooiV9yXg6elpTN7uidTUVJ555hn27duHg4PDsNo1npBTAXohOTmZhIQEkpKSek2YNBgMpKSkYGpqypw5A6tHN1gKCwuNLXsiIiJGNdFaq9WSlZVFeXk5M2bMwM/Pb9w8PW7cuJH1jz9BS2szSoUSe8kZW72jsRGoFTZIkoSkkHD0ssN1shP27rZYOVpi7WiJlaMlVk7mWDlYolQqaW1tRa1WoFJDe7sOnc6AwSAwCIxe3+wIZzIyGxACFApQKCSUSgkrSxOsrE0wNVHj4GCPJEmYmZlhYWGBhYUF5ubmWFhYYGlpib29Pfb29gNKWB4Otm7dyvXXX08U8djjTD1VFCtzadTXsSB2Aa+/8fqAaxp2eWuWlpZERESMmLfWHc3NzRw6dAhJkhBCcNONN2HZaUuYfv6wCVyTqMf7p/asWrWK66+/vtdqK42NjURERPDAAw/w6KOPDos94xVZ3PrghRdeYPPmzZw4caLXMlidnZ0kJSXh7e09oEXywXD+GptOp+Po0aMjshbRF12dBaytrceVF2cwGDh16hRJSUkkJiZyOPkwVTXnigCbKs2wxR5LvQ3W2GGNLdbYYY6lUcAbRS3pioM89NBDfPvtt8QsuAdHBzusrExQmiiMAqaQJExMJEJnOnLyVOP/hM8ABoOgQ6WjvV1HyqH38fJyYefOnWO+irvBYGDmjJlU5FYjKSSa9PXMnzefDX/awLJlywb0kDMWvLXzaWxsJCUlxdjs9NChQ3R2dnLTjTdhrrEmTD9/UKXaekMtVOjmNPDIY7/tM59NCMGNN96IRqNh69atY/5eGWlkcesDg8HAVVddhZOTE5999lmvX7aWlhYOHjxIeHg4Xl5ew2JPd8EjdXV1pKamGgeE0WQ8e3Hn0+U9dG0nM09x5kwems5zLV+UkhIrE2tMDRbo9XqaqeeOO+7gX//6F3FL/oxC0f1TfV9J3ADHUt9ikqdNv9qejAW+/PJLVq++hZj583l2w7MsXrx4wJ95XV0d6enpY8JbA6ivr+fIkSNMmzbNuN7Vleit1Wq5+aabMVFZMEsfM2QCpxd6qnzzeOrFJwgLC2PGjN7b7WzcuJEXXniBjIwMXFwGn6M5UZHFrR9UV1cTHh7On/70J37961/3um9VVRVpaWksWLBgyOe/e4uKbGhoICUl5YIv42hSU1NDeno6tra2hIeHjxsvrjf0ej1FRUWcPn2aoqIiysrKKCsro6S4hJCQEErLStmxYwcenpGYmlpiYmKBiaklCskEJAlJUmBhYcazT9/Msxs+R63uRGBAGPTodBp0OhVanYq62tM4O9lQWTn8OVRDRVtb26ACqrRaLadPn6akpGTMpJf09rDYJXA6nY5VN69C0W7KLH3sZQucEIKzNj/yu5cfIjg4mCVLlvS6f3p6OgsWLOizotKVjCxu/WTfvn1cd911JCYm9rmGkJeXR1FREYsWLRqytjH9CffvmkYJCgpiypQpoz5IdHlxZWVl+Pv7M2XKlEEVgB4v/OY3v2HTP/6JNfbo0KKlE504J2BdWFpa8tlnn3HLLbegUp3r+SUhoZTMMMUUE8zQiA4mTwsg+/Twd4AfLfR6PcXFxeTm5hofgEYi2rgvampqOHr0KGFhYT3mGXYJnMFg4OabboY2JbP0sZhKg2/Zc1Y6zW1P3sCsWbP6TJOor68nOjqaX/3qVzz55JODvuZERxa3AfDqq6/y+uuvc+zYsV5bTQghOH78OCqVipiYmMte9B9IHltzczMpKSnGfK7RDjjosik7O5uGhgaCgoKYPHnyiEX0jSRr1qzhm4+2Mlsfd8nfhBAIBKaWJtz32a3845bP0KrOdQy/eCDLE5mYBhjIL8wfEbtHEiEEZWVl5OTkoFQqCQkJwd3dfdQfxIQQnD17luzs7H51wugSOCEEq25ehb4FZuljB9XFvUIUMe+uMBISEvjZz37Wa/1WrVbLVVddhb29PV9++aW8ztYL8jszAB555BGWLl3Kz372M9RqdY/7SZJERESEUeQu5/lhoAna9vb2xMXF0dLSwuHDh3u1c6Toqq4yd+5cqqur2bNnD2fPnh2R+okjSV1dHQp996ItSRIKSWFsgClJinNRmN31fMOc+ob6YbV1pBFCUF1dTWJiIqdPnyY4OJjFixcbuw2MJgaDgczMTPLy8oiJielX5HFXmoAkSfz7i39jYq8gU3mITqEZ0LUbRA1Tr/cmISGBq6++us/C5I888gi1tbV8/PHHsrD1gfzuDABJknj33XcBWLt2ba+ipVQqmTdvHq2trZw8eXJQAjfYyiOWlpYsWLAAKysrkpKSaGpqGvC1hwMXFxcWLlxIWFgYhYWF7Nu3j7KysssS/7FEdVU1puLyukkDmGJOc0vziNQtHQkaGho4dOgQJ06cwNfXl6VLlw571/D+otFoOHz4ME1NTcTFxQ3oe9YlcACf/3sLZo4mZJgk0yn690DZLlpwXGzKLbfewpIlS/qclt20aRNbtmxh69atY2IKd6wji9sAsbCw4JtvvmHv3r289tprve5rZmbG/PnzqaqqGnDk2+WW1FIqlcyePZuAgACSk5MpLy8f8DmGA0mSmDRpEosXL2bKlClkZWVx4MABampqxr3I1dbUYspQiJsZQggaG0e/Yenl0NUu6fDhwzg7O7Ns2TImT548JqbK4dx0+YEDBzA3N2fBggX96t59MecL3JbPP8PSyYwMk2Q0fQicRqiRotq45757mDNnTp/RjklJSfz2t7/lyy+/xN/ff8B2XonI4jYIPD09+fbbb3nmmWf4/vvve923q6J/YWFhv+sFDlWtSEmSmDJlClFRUWRkZHD69OkxIyBdtTGXLVuGt7c3aWlpHD58eFwP6HX1dZhx+QEzXecYy90XekOlUpGenk5iYiKWlpYsW7aM6dOnj6legBUVFRw8eBA/Pz+ioqIuaw24S+CEEHy25TOsXSzJMDmIRqi63b9TaGidXsmDv3uQKVOm9Jm+U1xczA033MBrr71GXNyl67ky3SOL2yCZM2cOmzZt4pZbbiEnJ6fXfe3s7Jg7dy5ZWVlUVFT0uu9wFEH28PBg4cKFlJeXc/ToUXQ63ZCcdyhQKpUEBQWxfPlyHB0dOXToEMnJyVRUVIwZIe4POp2OltYWTIdA3Lq8v7q6uss+10jS0NBAWloae/bsQa/Xs3jxYsLCwoYsYngo6Gpymp6eTmRkJMHBwUMyPdolcAaDgf/77P+wc7MhwyQZtbiwN6ROaKn1LeTR9Q/j4+PTZ0eRtrY2rrvuOm6++Wbuueeey7bzSkIWt8vg1ltv5b777uPaa6+lurq6132dnZ2JiorixIkTPQ5aw1nd387OjkWLFqHT6Th48CDt7e1Dev7LxdTUlJCQEFasWIGbmxunTp1iz5495Ofno9WObFfqwdDY2IgQYoimJc8J5HgQN4PBQFlZGUlJSRw+fBgzMzMWL15MVFTUmFsX0ul0HDt2jNLSUhYuXNhrxPNg6BI4vV7Pp//3KQ4edhcInF7oKHHN5tGnf4u3tzcxMTF92nvLLbfg7OzMG2+8MaS2XgnI4naZPPfcc8ydO5ef/OQntLS09Lqvh4cHoaGhpKam0tDQcMHfRqJtTdcaoIuLC0lJSWNy8DQzM2Pq1KksX76ckJAQKisr+eGHH8jMzKS5uXm0zeuRrvdyKKYlTTFDQhqTn08XKpWK3Nxcdu/ezenTp/Hy8iIhIYGwsLAxJ2oAHR0dHDx4EK1Wy6JFi3otpXc5dAmcTqfjk08/wXmSI+kmB2kXLRQ5ZvHIMw/h4+PT5/SiEIK1a9dSXFzM119/PaamdMcLsrhdJgqFgg8++ABXV1d+/vOfo9H0Hgrs5+fH9OnTSUlJMa4vjWQ/NoVCQWhoKCEhIRw5cmRQfcNGAoVCgZeXFwsXLjQ+DR88eJCkpCSKi4vH1NQq/E/chmJaUpIkzE0sxpy4CSGoqqoiNTWV3bt309DQQFhYmDFQZKwOwPX19Rw4cAAnJyfmz58/7IUEugROq9Xy8b8+xt3HlWy7VH674QECAwNZvnx5n1OhTzzxBPv27WPnzp1ypf9BMvEyaUcBMzMzvvrqK5YsWcIvfvELPvvss15zUAIDAxFCkJKSgp+fH0VFRSPajw3OiayNjQ1Hjx6lqamJmTNnjtnBydHREUdHR0JDQykrK6OwsJAff/wRLy8v/Pz8cHBwGPWw8v+J2+VPSwKYS2NH3Do6OigpKaG4uBg417A2NDR0zJdUE0IYHxxnzJgxonVXz+8H9/4H71NSUoKTkxMJCQl93qtvvvkmmzZt4tChQ0yaNGmELJ54yOI2RNjY2PDdd98RGxvLQw89xN/+9rdeb+LJkydTV1dHfn4+ERERI96PDc6tA8bFxZGens7+/fsJDw/Hzc1txO3oL6ampgQEBODv709TUxPFxcUcOnTI2Gnaw8NjyDpND5S6ujokpCETNxNhOmriJoQwdiqvqqqipaUFd3d3Zs2ahZub27hIHm5rayM9PR21Ws38+fNxdnYecRssLCyYM2cOBw4cwN3dnaVLl/b53m3ZsoUnn3ySvXv3EhwcPEKWTkxkcRtCXF1d2bVrFzExMXh6erJ+/foe9y0sLKSuro6AgAB+/PFHbG1tcXR0HEFrz2FlZUVMTAxFRUUcPXoUHx8fQkJCxqwXB+em7c735urq6qiqqiI9PR2dToebmxseHh64u7tjZjY0YtMXtbW1mJtYIOmHxoNU6EyoqakZknP1B71eb3wfq6qqjO/j5MmTR/R9vFzO99Z8fX2ZP3/+qJV602g0HD9+HFdXV9ra2sjIyGD27Nk9PvTu3r2bu+++m6+++oro6OgRtnbiIYvbEOPv78/OnTtZtGgRbm5urFmz5pJ9Ll5js7a25vDhwyM+NdmFJEkEBATg5uZGRkYG+/fvJyIiotdeUmMFpVKJu7u7sZZml8dRUFBAeno6Tk5ORq9uOAMd6urqMJeGLuTdFHNqqoZX3NRqNdXV1VRVVZ0TZ3Nz3N3diYiIGDUP+HLoEhCVSsW8efNGtQ2MWq3m8OHD2NnZMXv2bDo7O41VWroTuLS0NG644QbeffddrrrqqlGyemIhi9swEBYWxtatW7n66quxsLDg9ttvN/6tu+CRyZMnI0kSKSkpREdHj5qoWFtbExMTw9mzZ0lNTcXHx4cZM2aMmyLHkiTh4OCAg4MD06ZNQ6VSGT2R06dPY2lpiaenJy4uLjg4OAxpYEFdXR0mYui8XTPMhjyJW6fT0dzcTH19PVVVVTQ1NeHg4ICHhwfTp0/H1tZ21NcuB8PF3tq8efNG9Z7t6Ojg8OHDODo6EhERgUKhuGAN7mKBy8jIICEhgQ0bNlwwVshcHuNj1BqHLFq0iG+//Zaf/vSnmJiYsHr16l6jIgMDAzExMSE1NZWIiIhha3baF5IkERgYiLu7+wVrcePBi7sYS0tLAgICCAgIQKfTUVNTQ3V1NadOnaK9vR0LCwujGDo4OGBvbz/ohOPa2loUOhMYIm0wxZzaxrJBH6/Vamlubqa5uZmmpiaamppoa2vD3NwcR0dH/Pz8iI6OHlMJ1oOhvb2d9PT0MeGtwbmGxSkpKXh6ehIaGnrBw0J3Avfjjz+ybNkyHnvsMX7729+OouUTD1nchpFly5bx1VdfccMNNxjX13qbevT19cXMzIy0tDQ0Gg2BgYEjbPH/sLa2JjY2dtx6cRdjYmLCpEmTjNFnWq2WpqYm4+BfWlp6ieDZ29vj4ODQLwGorqoZkhy3Lkwxp72jHY1G06eH2SVk57+etrY242uxt7fHy8sLe3v7QdVPHIuc36JmLHhrcC7lIDU1lcmTJzN16tRuveDzBe6LL75g3bp1PPzww/zxj38cBYsnNuNzpBpHJCQk8O9//5sbb7yRjRs39rmm5uHhQUxMDEeOHEGj0TBt2rRRmyrqzovrWo8Z75iamuLq6nqBR3qxSJSVlRm9HWtra8zNzbGwsLhg6/pdfV0dpgydcJj9N+qyuroaR0dH1Go1Go0GtVpt3DQaDSqV6hJR9vLy6rcoj0fO99bmzp07JmYVKisrOX78ODNnzuyzsLGFhQWOjo7cfPPN3H///XLD0WFCblY6QuzYsYObb76Z9957j9WrV/e5f2trKykpKbi5uREWFjbqi/sXPymPtUK4w4VWq6WlpQWVStWtwKjVanQ6HTqdjtbGNjSNOjoaVXQ0qdBp9BgMAqE3YNALDHoDkkIielUYx744hRAChUKBQimhUCpQmCiwtLfA2tESC0czrBzPCahSqbxEWM//v52d3YQVsvMxGAwUFRWRnZ09pmYSioqK+PHHH4mMjOxXSa+TJ0+ydOlS7r//fp599tnhN/AKRRa3EeSHH37ghhtu4B//+Ee/Fo5VKhUpKSlYW1sTFRU1JlqFtLe3k5GRQUtLC1OnTsXf339M2DWadHR0MHnyZCIc5+PrFIC1kyVW9paYmCmRFNL/xEupQGmmZOpCf3IPnEXXqcOgv1D8VC0a2hs6aGhoILlxFx988AFLly4dl4EeQ4UQgsrKSmNXi1mzZo0Jb00IQV5eHgUFBURHR/drRiM9PZ3ly5fz8MMPyx7bMDP6jz1XEAkJCcYgk46ODtauXdvr/l1NR1NTU0lOTiY6OnrU10y6IipramrIzs6moKCAadOm4ePjc8UOwI2NjVRVVVFZVYNW6l3oTS1NmbrQn8R3j6JV9VwQWie0lFFGfX39Ffu+wrko1OzsbDo6OggODsbPz2/UZzHgXF5gZmYmNTU1xMbGYm9v3+cxKSkpXHPNNfz+97+X19hGAFncRphly5axc+dOVq5cSVVVFU899VSvg5eZmRkxMTFkZmaSlJREdHT0qCR7n48kSbi7u+Pm5kZZWRk5OTnk5+czffp0PDw8rrjBeCjrSnahxASlpBwzJbhGmubmZrKzs2loaCAoKIjJkyePiSlIOJfDdvToUYQQxMXF9euBc/v27axevZqXXnqJ+++/fwSslBkbd8sVxoIFCzh48CAJCQlUV1fzt7/9rdepPaVSSUREBAUFBRw6dIhZs2bh4+MzghZ3jyRJ+Pj44OXlRVFRERkZGdjY2BASEjIq5Y5Gi6HsCNCFJElYmFheceLW3t5OTk4OlZWV+Pv7ExkZOaaqozQ1NZGamoqLiwvh4eH9mpL/8MMPuf/++/noo4+48cYbR8BKGZDFbdSYOXMmhw8fJiEhgdWrV/Ovf/2r16AASZIICgrC1taWtLQ0WlpaCAkJGRNekkKhIDAwEB8fHwoKCkhJScHFxYWQkJBhay0ylhjqosldmGJ+xYibWq0mLy+P4uJivLy8WLJkyZgrzFxWVkZGRgbBwcEEBQX1+d0TQvDyyy/z/PPPs337dhYvXjxClsqA3PJmVPHz8yM5OZnS0lJ+8pOf9Ktfmbu7O4sWLaKyspLU1NQx1cjT1NSUadOmsXz5cqytrTlw4ADHjx+no6Oj74PHMXV1dSglJcohflZU6k0mvLhptVpycnLYs2cPKpWKuLg4Zs+ePaaETQhBdnY2mZmZREVFMWXKlD6FzWAw8Mgjj/D666+TmJgoC9soIIvbKOPi4sLevXuxtLQkPj6eqqqqPo+xtbUlLi4OIQRJSUm0traOgKX9x9zcnNDQUJYuXQrA3r17OXXqVJ+97sYrdXV1WJhYDrkXbWIwHdHiySOJXq+noKCAPXv2UFdXR0xMDHPnzh1znn5nZydHjx6loqKCRYsW4eHh0a9jbr/9drZt28bhw4eJiIgYAUtlLkYWt/Oora3lvvvuw9fXF3Nzczw8PEhISODQoUOsXr36koKmO3fuRJKkS3JVnn32WXx9fft9XWtra/7zn/8QGhpKTEwMWVlZfR5jamrKvHnz8PT05MCBA5SUlPT7eiOFlZUVkZGRLFq0iPb2dnbt2kV6evqY7qg9GGpra4c0mKQLU8yprqoe8vOOJiqVitOnT7Nr1y5KSkqIiIggNjZ2VAqG90VDQwOJiYkIIVi0aBG2trb9Oubqq68mNzeXQ4cOXVaVod7GIzhXpF2SpEu2F198cdDXnEjIa27nccMNN9DZ2clHH31EYGAg1dXV7N27l/r6ehYvXszvfvc7dDqdMWpr//79+Pj4kJiYeMF59u/fP+BpCFNTUz788EM2bNhATEwMn3zyCStXruz1GEmSCAkJwcXFhePHj1NbW8usWbPGTFRZF/b29sybN4+WlhYKCws5ePAgjo6OBAYGTojoyrq6Ojp1GspEASaYYYopJphhgikKFEjn/UMYANAKNRrRiTjvnw4tOjrRokWHlg5a0da1j/KrGxoaGxspLCykoqICV1dXIiMjcXV1HZOfvRCC/Px8cnNzmT59OoGBgf2y8/Tp01x33XWEhITwzTff9EsMe6O38aiLP/3pT/z617++4LjLve6EQcgIIYRobGwUgEhMTOz277m5uQIQKSkpxt9FR0eLjRs3CgsLC6FSqYQQQqhUKmFubi4++OCDQdvyxRdfCBsbG/H8888Lg8HQr2NUKpVITk4Wu3fvFk1NTYO+9kig0WhEbm6u2Llzp9i1a5c4c+aM6OzsHG2zBs3mzZuFg72DUCgUAuh1s7S0FN9++62wtLTsc19bG1tx16/uGu2XN2j0er0oKysTBw4cENu2bROZmZmitbV1tM3qFbVaLQ4fPix27dolGhoa+n3c9u3bhZ2dnXjiiSeEXq+/bDv6Go+EEMLPz0+8/vrrl32tiYpcoeS/6HQ6HB0dWbNmDS+++GK3xWq9vLxYt24djz/+OK2trTg5ORnn4t955x0WL17Mvn37WLp0KUVFRfj5+Q3anoyMDK6//npiYmLYvHlzvxbYxX8rJpw5c4YZM2YYpy3GKgaDgcrKSgoLC2lubmbSpEn4+fnh5OQ0pu3uCSEEra2tNDY20tjYSHNzM1qtFr1ej16vR6fTodfrjUnIJiYmKJVK42ZnZ2dswmpvbz9uK7+0tbVRXFxMaWkpSqWSwMBAfH19x3y5trq6Oo4fP46TkxPh4eH9slcIwV//+lf+9Kc/sXnzZlatWjUktvRnPPL39+fhhx/m4YcfHpJrTjhGVVrHGF9++aVwdHQUFhYWIiYmRjz++OMiMzPT+PfbbrtNrFixQgghxHfffSdCQkKEEEKsXbtWPP3000IIIZ566ikREBAwJPZUV1eL2NhYERkZKUpLS/t9XG1trdi5c6c4evSo0Gg0Q2LLcNPU1CQyMzPFd999J/bu3Svy8/PHje0DobOzU3z77bfj2lPtDp1OJ0pLS0VycrLYunWrOHr0qKiuru73zMNootfrxenTp8W2bdtEYWFhv23u6OgQt912m/D29hZpaWlDbldf45Gfn58wMzMT1tbWF2xJSUlDbst4RA4oOY8bbriBiooKtm7dylVXXUViYiKzZ8/mww8/BCA+Pp5Dhw6h1WpJTEwkPj4egLi4OOO621CG/bq5ubFv3z7Cw8OJiooiJSWlX8e5uLgQHx+PwWBg3759VFZWDok9w4m9vT1hYWEkJCQwZcoUKisr+eGHH0hLS6Ompga9Xj/aJspchBCCxsZGfvzxR3bt2kVOTg7u7u6sWLGCOXPm4ObmNuY98JaWFpKSkqioqGDhwoUEBAT0y+by8nLi4uIoLCzk2LFjREZGDrltfY1HAI899hgZGRkXbFFRUUNuy7hktNV1rHP33XcLX19fIYQQ+fn5AhCHDh0SUVFR4vPPPxdCCFFWVibMzc1FfX29MDMzE5988smQ2mAwGMTf/vY3YWVlJd58881+P1kaDAZRUlIivvvuO5GWljbuPKGWlhZx6tQpsXPnTrF9+3Zx9OhRUVJSMu5ex/mMd89Np9OJyspKkZ6ebvxc0tLSRG1t7bjw0rrQ6/UiJydHbNu2TWRlZQmdTtfvY3fv3i3c3d3FL3/5S6FWq4fRyks5fzyS19x6Z2yF1Y1BQkJC+PbbbwGYPHkyPj4+bN26lYyMDOLi4oBza3FeXl68+uqrdHZ2DnnCpiRJPPDAA8yePZvVq1ezf/9+Nm/e3Gf4dFd5LBcXFzIzM9m3bx+zZs3qV1uOsYCtrS0zZ85kxowZNDc3U11dTUFBAenp6Tg5OeHh4YG7u7scHTbMqNVqqqurqaqqora21hiWPnv2bJydncdEIeOB0NLSwokTJzAYDMTGxva7VqtOp2PDhg28/vrrvPnmm9x1110j7pmePx7J9I4sbv+lvr6em266ibvuuouwsDBjmauXX36Z66+/3rjf4sWLeeeddwgKCsLd3d34+7i4ON566y2mTp1q7PY81MTGxpKRkcGvfvUrIiIi2LJlC/Pnz+/zOEtLS+bOnUtpaSnp6elUVFQQGho6pmr29YYkScZGnMHBwahUKuNge/r0aSwtLfHw8MDDwwMnJ6dxN9iONcR/A2OqqqqoqqqiqakJBwcHPDw8mD59Ora2tmN+urE7DAYD+fn55OXlERgYSHBwcL+DdsrKyrj11lupr6/nyJEjzJw5c1ht7e941PU5nY+VldWYS4YfFUbbdRwrqNVq8cc//lHMnj1b2NvbCysrKxEcHCyefPJJ0dHRYdzvgw8+EIC49957Lzj+ww8/FIC45557ht1Wg8EgXn/9dWFlZSVeeumlAYUed3R0iJSUFPH999+LsrKycTWV1B1arVZUVFSIEydOiB07dhinYMvKysbk1N9YnZbU6/WipqZGnDx5UuzatUts27ZNHDlyRBQVFRnTXMYzjY2NIjExUezZs2dAIf5CnAvzd3Z2FnfddZdoa2sbJgsvpD/jkZ+fX7cpJCMxBo0H5FSAcUxaWhqrVq1iypQpfPzxx7i5ufXrOCEEZWVlZGVlYWtra3wyHO+I/wY4dHkcbW1t2NnZYW9vb/T87OzsRjXEXqvVsmPHDq6++upRC40X//XMmpubaWpqoqmpiebmZkxMTIwesKur67hNRTifzs5OTp8+TWlpKZMnT2bq1Kn9fl2dnZ2sX7+eTZs28fe//53bbrttmK2VGUpkcRvnNDc38+tf/5rk5GQ++OADEhIS+n1sV9Ha4uJiAgICCA4OHnPVTS6Hjo4O4+Ddtel0OmxtbXFwcDCK3kjmlI20uBkMBtra2i4Qsa7yZ3Z2dkbRd3BwGLfTjd0hhKC4uJjTp0/j6OhIaGgo1tbW/T4+NzeXX/ziF3R2dvL5558zderUYbRWZjiQxW0CIIRg8+bNPPLII6xatYpXX311QHPuzc3NnDx5ko6ODmbOnMmkSZMmzCB3PkIIVCrVBWLXlWhta2t7iYc3HEI/nOJ2sZA1NTXR0tICnEu1OP/12djYTNi1ycbGRk6ePElnZyczZ84cUIk3vV7PG2+8wdNPP80999zD888/32srKpmxiyxuE4ji4mLWrFlDbm4u7733HitWrOj3sRdPVYaGhl4Ri9IXC17XVF1nZydmZmaYm5tjYWFh3C7+v4WFxYC8vsGIm8FgQKPRoFarjdvF/+/6nVKpvMAjnWgeWW9oNBpycnIoLS0lKCiIKVOmDOizycvL41e/+hU1NTV88MEHLFiwYBitlRluZHGbYAgh2LRpE4899hirV6/mlVdeGZBIdU1VFhUV4e3tzbRp07C0tBxGi8ceQogexePi/wshMDU1vUD0zM3NUSgUKBQKY6X2rp8NBgPZ2dnGRrNCCAwGA0II48+dnZ0XXKOrVZCZmVmfQmtpOfStd8Y6Op2OgoIC8vPzcXZ2HvAUpF6v58033+Spp55i7dq1PPfcc2Oqn5zM4JDFbYJSVFTEmjVryMvLY/PmzSxfvnxAx7e1tZGTk0NVVRUBAQFMmTJl3KQOjBRCiAuE6GLRu1i0hBDo9Xpqampwd3dHqVReIIBdm7m5ebce40SdRhwsBoOB4uJicnNzsbKyMnbIGAh5eXncddddVFdX8/7777Nw4cJhslZmpJHFbQIjhODdd9/lscceY9WqVbz00ks4OzsP6BxNTU1kZ2fT1NREUFAQgYGBEyroZKQZC9GS4x0hBOXl5eTk5CBJEtOnT8fT03NAHqtWq+WNN95gw4YNrFmzhueff1721iYYsrhdAZw9e5Z169Zx5MgRXnjhBe6+++4BRwfW1taSnZ2NWq0mODgYX19f2ZMYBLK4DR4hhPE+1Gg0TJs2DR8fnwHfh/v27WPdunVIksQ//vEP2VuboMjidoUghGDbtm089NBDuLi48M477zBnzpwBn6OyspLs7GwMBgNBQUH4+vrKntwAkMVt4AghqKqqIi8vj/b2dqZMmUJgYOCAH9DKy8t59NFH2bFjB88++ywPPPCA/BlMYORH7ysESZK47rrryM7O5uqrryYuLo61a9dSV1c3oHNMmjSJpUuXMmPGDEpKSti9ezd5eXlotdphtF7mSsRgMFBSUsL+/fvJzMzEy8uL5cuXDzgKsrOzk7/+9a9MmzYNpVJJTk4OjzzyiCxsExzZc7tCKSgo4KGHHiIlJWXQU5VCCGpqajhz5gzNzc34+/szefJkOS+oF2TPrW/0ej3FxcXk5+ejUCgICgrCx8dnUIn2e/fuZd26dSiVSjZu3Ggsdi4z8ZHF7Qpn27ZtPPjggzg4OPDCCy+QkJAwqFDy+vp6zpw5Q21tLb6+vgQGBk6Ikl5DjSxuPaPRaCguLqagoAALCwtjEfLB3I9ZWVk88cQT7Nu3jw0bNrBu3Tr5/b7CkBdLrnBWrlzJ8uXL2bhxI7fddhthYWG8+OKLzJ07d0DncXZ2xtnZmebmZvLz80lMTMTZ2ZnAwEDc3d2vuNwrmf7T1NREYWEh5eXlODk5MXv27EE3Oi0pKeGZZ55hy5YtrFmzhjNnzlzQvUPmykFec5PBwsKCRx99lIKCAmJiYliyZAk///nPycnJGfC57O3tiYyMZPny5Tg7O5OZmcmePXs4c+aMMRlZRkav11NSUkJSUhLJyckolUri4uKIjY0d1MNQXV0djz76KMHBwXR2dpKVlcVbb70lC9sVjCxuMkYcHBx47rnnyM/Px93dnfDwcNasWUNZWdmAz2VhYUFwcDDLly8nJCSEmpoadu3aRVpaGnV1dciz4Vcmra2tnDp1ih9++IH8/Hy8vLxISEhg1qxZgyr31t7ezl/+8hcmT55MdnY2KSkpfPrppwQGBg6D9TLjCXnNTaZHzpw5w5NPPsm2bdu49957efTRR/Hy8hr0+dra2igqKqKkpARTU1O8vLzw9va+ImpYdnElrrmp1WrKy8spKyujpaWFSZMm4e/vj5OT06Cnq9va2vjnP//JSy+9hJ+fHy+99BLx8fFDa7jMuEYWN5k+OX78OM899xw7duzgjjvu4Pe//z1TpkwZ9PkMBgPV1dWUlZVRVVWFra0t3t7eeHl5Tfg6lleKuOl0OiorKyktLaWurg4nJyd8fHzw9PS8rDJuDQ0NvPXWW/ztb38jMDCQJ554guuvv15e05W5BDmgRKZPIiMj+frrr8nOzuall14iNDSU66+/nscff5zw8PABn0+hUODp6YmnpydarZaKigrKysrIzs7GxcUFb29vPDw85FqW4wy9Xk9tba3xocXKygofHx/Cw8Mvu7RVeXk5r732Gu+++y5z587l888/Z+nSpbKoyfSI7LnJDJji4mJeeeUVNm/eTFxcHOvXrx+SEkYqleqC6StnZ2djZ+iBVHkfy0w0z02j0VBdXU1VVRU1NTWYmpri7e2Nt7c39vb2l33+/Px8Xn75Zf71r39x1VVX8fjjjxMdHT0ElstMdGRxkxk0NTU1vPnmm2zcuJGQkBAefPBBfv7znw+Jx9XR0UFVVRVVVVXU1dVhY2ODu7s7np6eODo6jtsn9vEubkII2trajJ9NY2MjdnZ2xocQe3v7y/5shBAkJSXx1ltvsX37dlatWsUf/vAHQkJChuhVyFwJyOImc9m0tLTw/vvvs3HjRtra2rj33ntZu3Ytnp6eQ3J+rVZLTU0NVVVVVFdXI0kSbm5uuLi44OLigpWV1bgRu/EobhqNhvr6eurq6qipqUGlUuHq6oq7uzseHh5Dtk7a3t7Op59+yttvv01ZWRlr1qzh/vvvx8/Pb0jOL3NlIYubzJBhMBj44YcfePvtt9mzZw/XXXcd9957L4sXLx6yDgIGg4GGhgZqa2upq6ujsbERCwsLnJ2dx4XYjQdxO1/M6urqaG1txdbWFhcXF1xdXXF1dR3SYtlZWVm8++67fPzxx/j7+/PAAw9wyy23yC1oZC4LWdxkhoWCggL++c9/8v7772Nvb88999zD7bffjoeHx5BeR6fT0dDQYByMzxc7R0dHHBwcsLOzGzOdC8aauBkMBlpbW2lqaqKpqYmGhgZaWlqMYubi4oKzszPm5uZDet329na+/vprNm3aRFpaGqtWreKee+5h3rx5Y/bBRGZ8IYubzLCi0Wj45ptv2LRpEwcPHmTJkiXcfvvt/PSnPx2W2pPni11zczNNTU1oNBpsbW2xt7fHwcEBBwcH7O3tR0XwRlPcLhaypqYmWlpakCTJ+L44OTkNi5jBuc9mz549fPrpp3zzzTf4+/uzZs0afvGLX+Dk5DTk15O5spHFTWbEKCsr47PPPuOTTz7hzJkz/PSnP+W2225jxYoVwzbQCyFQq9U0NTUZxa5L8KytrbG2tsbGxgYbGxvjz5aWlsPmPQy3uAkh6OzspK2tjba2Ntrb2y/4WaFQXCLyNjY2w/Z6hRCkpaXxySefsGXLFkxMTLj11lu5/fbbCQsLk700mWFDFjeZUeHUqVN8+umnfPrpp6jValatWsUtt9zCvHnzBtXaZKCoVCpaW1svGfy7BKBL7CwsLC7ZzM3NMTMzG9TAfDniJoRAp9OhVqtRq9VoNBrjz2q12mi/VqvFwsLiAsE+X8CHW1CEEOTm5vLvf/+bTz75hOrqam644QZuv/124uLiRuTzlZGRxU1mVDEYDBw8eJBPPvmEr7/+GoVCwbXXXsvKlStZsWIFNjY2I25Pl+C1t7dfICQqlQqNRoNOp0OSJCwsLDAzM8PExKTHTalUolAojIJiMBjIzMxk1qxZKBQKhBAIIdDr9eh0uh43rVaLWq1Gr9ejUCguENqun7s8UWtr6xGf8tTpdBw6dIitW7eydetWSktLueqqq7jtttu49tprJ3zlGZmxhyxuMmMGnU5HSkoK27ZtY+vWrRQVFbFkyRJWrlzJypUr8fb2Hm0TAYzek0ajMYpdb+LUJWDwv2hPJycno+hJkoRSqexRHE1NTTE1NTUKmamp6ZiYzmtubmbnzp1s27aNHTt2YGpqyrXXXst1113HsmXLJkzivcz4RBY3mTFLXl6eUegOHTpEWFgYCQkJxMfHExsbO+Je3VAw1qIlB4JWq+X48eMkJiayZ88ekpKSCA4O5rrrrmPlypVER0cPWcqHjMzlIoubzLigvr6e77//nn379pGYmEhpaSlz5swhPj6e+Ph4YmJixoXYjSdx02q1nDhxgsTERBITE0lOTsbMzMz4nl977bUEBASMtpkyMt0ii5vMuKSoqIgDBw6QmJjI/v37KS8vN4pddHQ0kZGReHt7j4npu/MZy+LW0NDAiRMnSEtL48CBA0Yxi4uLMwrazJkzZe9MZlwgi5vMhKCoqIjExEQOHDhAWloa2dnZODs7ExkZecHm4+MzqoI3VsStvr6eEydOcPz4ceN29uxZ/P39iYyMZOHChcTHxxMaGiqLmcy4RBY3mQlJR0cHmZmZxoH7xIkTZGVl4ejoyOzZs5k2bRpTp041bj4+PiMyiI+kuAkhqK2tJS8vz7jl5uaSkZFBUVERAQEBFwj/7NmzcXZ2HlabZGRGClncZK4YVCoVJ0+eJD09ndzcXOOAf/bsWUxNTQkKCjKKXVBQEF5eXnh6ejJp0iScnZ2HRPyGUtyEELS0tFBRUUFlZSWVlZUUFBRcIGbNzc14eXldIOSzZs1i9uzZODo6XvbrkZEZq8jiJnPF09nZydmzZy8Qhfz8fCoqKqioqKClpQUTExM8PDyMYufp6YmHhwd2dnbY2tpiY2ODra3tJT9bW1tfkO+m1+v5/vvvSUhIQKlUYjAY0Ov1dHR00NraSmtrK21tbd3+XFNTQ2Vl5QViplKpsLS0NDZ/DQwMvEDIgoKCxkWgjYzMUCOLm4xMH3R0dBjF5Hxxqa6upqWlpUdB6uzsHNB1lEplr0Lp6upqFNbzt6HooSYjM9GQxU1GZpjo7Oykvb0dvV6PwWC4YOvy5Lo2a2trzM3NZZGSkRkiZHGTkZGRkZlwyDG+MjIyMjITDlncZGRkZGQmHLK4ycjIyMhMOGRxk5GRkZGZcMjiJiMjIyMz4ZDFTUZGRkZmwiGLm4yMjIzMhEMWNxkZGRmZCYcsbjIyMjIyEw5Z3GRkZGRkJhyyuMnIyMjITDhkcZORGSFqa2u577778PX1xdzcHA8PDxISEjh06NBomyYjM+EwGW0DZGSuFG644QY6Ozv56KOPCAwMpLq6mr1791JfXz/apsnITDjkrgAyMiNAU1MTjo6OJCYmEhcXN9rmyMhMeORpSRmZEcDGxgYbGxu+/fZbNBrNaJsjIzPhkcVNRmYEMDEx4cMPP+Sjjz7CwcGB2NhY1q9fz8mTJ0fbNBmZCYk8LSkjM4Ko1WoOHjzIkSNH+P777zl69Cjvvfcev/zlL0fbNBmZCYUsbjIyo8iaNWvYvXs3xcXFo22KjMyEQp6WlJEZRUJCQmhvbx9tM2RkJhxyKoCMzAhQX1/PTTfdxF133UVYWBi2trakpaXx8ssvc/3114+2eTIyEw5Z3GRkRgAbGxvmzp3L66+/TkFBAVqtFh8fH37961+zfv360TZPRmbCIa+5ycjIyMhMOOQ1NxkZGRmZCYcsbjIyMjIyEw5Z3GRkZGRkJhyyuMnIyMjITDhkcZORkZGRmXDI4iYjIyMjM+GQxU1GRkZGZsIhi5uMjIyMzIRDFjcZGRkZmQmHLG4yMjIyMhMOWdxkZGRkZCYcsrjJyMjIyEw4/h8Ofes7FPD08gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAG6CAYAAACLCQg1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUZdqH7zO9ZWbSeycJofcqIIoi6tobuoplLXxiWXtvq2tdVLDr2nXVtQCiIsqCSpVeQ0nvPZPJ9Ha+P2JGYgIkJCEJnvu6hpBT3zOZOb/zPO9TBFEURSQkJCQkJI4jZL09AAkJCQkJie5GEjcJCQkJieMOSdwkJCQkJI47JHGTkJCQkDjukMRNQkJCQuK4QxI3CQkJCYnjDkncJCQkJCSOOyRxk5CQkJA47pDETUJCQkLiuEMSNwkJCQmJ4w5J3CQkepgrr7wSQRB46qmnWi1ftGgRgiD00qgkJI5vJHGTkDgGaDQann76aRoaGnp7KBISfwokcZOQOAbMmDGDmJgYnnzyyd4eioTEnwJJ3CQkjgFyuZx//vOfLFy4kNLS0t4ejoTEcY8kbhISx4hzzz2XESNG8PDDD/f2UCQkjnskcZOQOIY8/fTTvPfee+Tk5PT2UCQkjmskcZOQOIZMnTqVmTNncu+99/b2UCQkjmsUvT0ACYk/G0899RQjRowgKyurt4ciIXHcIlluEhLHmKFDh3LZZZexYMGC3h6KhMRxiyRuEhK9wGOPPUYgEOjtYUhIHLcIoiiKvT0ICQkJCQmJ7kSy3CQkJCQkjjskcZOQkJCQOO6QxE1CQkJC4rhDEjcJCQkJieMOSdwkJCQkJI47JHGTkJCQkDjukMRNQkJCQuK4QxI3CQkJCYnjDkncJCQkJCSOOyRxk5CQkJA47pDETUJCQkLiuEMSNwkJCQmJ4w5J3CQkJCQkjjukZqUSEkeB2+2muroaq9VKU1MTNpuNpqamVv+32WzYbDZ8Ph+BQIBAIMDy5cvJz8/n+uuvRy6XI5PJkMlk6PV6DAYDISEhwZ9//H9kZCQGg6G3L11Col8giZuExEGIokh1dTW5ubmUl5dTXl5ORUVFq1d5eTn19fUIgtBKkFpeOp0OvV6PTqdDq9Uil8sRBAG5XE5ERAQOhwOFovmrFwgE8Hg8WK1WHA4Hdrsdh8MRFMaDRdPv9xMSEkJsbGybV1xcHLGxsaSlpZGYmIhcLu/ld1JConeR+rlJ/CmxWq0cOHCA/fv3t3lZrVbi4+OJi4sjKiqKyMhIwsLCCAsLw2QyYTKZCAkJQaPRIIpi0DJrQaFQIJfLUSgUKBQKBEEIvurr6wEIDQ0Nbh8IBPD7/fh8vuDPlq+lIAjB43k8Hmw2G42NjVgsFiwWC3V1ddTW1lJdXU1lZSXFxcXI5XIGDBhAZmZmm1dkZCSCIBzbN1tCoheQxE3iuEYURUpLS9myZQubN29m8+bNbN26lYqKCsLCwsjMzCQlJYXExERiY2OJiooiNDQUv99PIBBAoVCg0WiCL7Va3er/SqUyKGItInQ48fB6vXz77becfvrpKJXKQ445EAjg8/lavdxuNy6XK/g6+HePxwOASqWiqamJmpoaKioqKC0tpbCwkNzcXMrKyjCbzQwbNozRo0czatQoRo8eTWZmpmTpSRx3SG5JieOK0tJSNm7cGBSyzZs3U1dXx6BBgxgyZAhjxozhvPPOIzIyErlcjs/nQ6PRtHIrtsx/aTSaoPvwWNLiwpTL5ajV6g7tEwgEcLlc2O12bDZb8KfNZsPhcCAIAjKZjPr6ekpKSsjLy+Oll15i+/btyOVyRo4cyejRo4OvgQMHIpP1XrzZyy+/zLPPPktlZSXDhw9n4cKFjBs3rt1td+/ezUMPPcTmzZspKiri+eef59Zbb+3SMSX6P5K4SfRriouLWbVqVfBVXFxMdnY2Q4cOZdy4cVx00UVERUUFRcxsNgfdii1C1hsC1t3IZDJ0Oh06nY7IyMhW6wKBQHAer6mpiezsbCwWC3a7HaVSSUNDA8XFxeTm5vLKK6+wfft2dDod06ZN48QTT+TEE09k8ODBx0zsPv30U2677TZee+01xo8fzwsvvMDMmTPZt28fUVFRbbZ3OBykpaVx4YUX8ve//71bjinR/5HckhL9ipKSklZiVlRUxOjRoxk7diyDBw8mMTERv98fFLIWMTObzWg0mt4efofcksdyLC3zdy0/bTYbSqWSqqoqcnJy2LJlC+vWrWsjdoMGDeoxsRs/fjxjx47lpZdeAprFOTExkZtuuol77rnnsPumpKRw6623trHcunJMif5J/39klTiu8fl8rFmzhiVLlvD111+Tn5/PqFGjGDt2LHfccUdQzIxGIxEREURERBAaGtonhKyvo1Qqg+9ZC16vNxiokpGRwZQpU7j11lupqakhJyeHb7/9loULF6LX65k2bRonnXQSkyZNQq/Xd8uYPB4PtbW1nHbaabhcruDyCy+8kP3797da1h7x8fFotdpW23X1mBKtUSqV/WKOVrLcJPocjY2NfP/99yxZsoRvv/0WpVLJKaecwtixY0lLSyMQCATFLDw8nIiICFQqVW8Pu0P0JcutI/h8PhoaGqipqcFqtQZz8/x+Px6PB5fLFbSUtVotWq22S25ev99PaWkpMTExreYbGxoacLlcxMbGHnb/0tJSjEYjRqOx244p0Raz2UxMTEyfjryVLDeJPkFZWRlffvklS5Ys4aeffiIzM5Pp06czf/58IiIiUCgUREdHEx0d3a/ErL+jUCiIjIzE5/MhCAKRkZGoVKpgNGdLcrrL5cLhcASDV4xGIyEhIWi12k6dr0UwExMTW1mDWq0Wu91OamrqEfdveeDprmNK/I4oijgcDqqrqwH69IOBJG4SvUZjYyNffPEFH330ET///DOTJ09mypQpXHfddajVagwGAzExMcTExBAaGtqnnxKPZ/x+PxaLhaioKMLDw9us83q9eL1ezGYzAC6XC5vNRkFBAWq1mrCwMMLDwzv0QNKyjUwma+VaFkUxmIZxOARBQKlUttquq8eUaE3LA0t1dTVRUVF91kUpiZvEMcXj8fDdd9/x4YcfsnTpUrKzszn99NOZN28ecrmc8PDwoKB11zyORNfwer0A6HS6NutaUhY0Gk3QmmsRl4iICFwuF1arlfLycgwGA2FhYYSGhh7SddlSiqypqSmY6C6KIlar9aijGnvimH92Wj4LXq9XEjeJPy+iKLJ27Vo++OAD/vvf/2I0GjnrrLN455130Ol0hIaGkpCQQHx8vORu7MMcyXKWyWSoVCpUKhWiKOL1eoNCFxkZicPhoKamhuLiYkwmE+Hh4ZhMpjZRl9HR0RQUFATLmFVXVxMIBIKuxoKCApRKJQkJCcDvOX7Q/FnzeDw4HI5WltqRjinROfqDF0USN4keo6GhgQ8++IDXXnuNyspKzjrrLJ599lkiIyPR6XQkJCSQkJAgWWjHIYIgBIUuEAjg9XpRKBTo9XoCgQB2u53S0lKKioqIiIggMjIyGOwRFhaGz+ejvLwcr9eLTqcjIyMjGIDTUo2lBa/Xy549e4K/V1VVUVVVRUhICFlZWR06psTxhyRuEt3Opk2bePnll/n0008ZPnw4c+bMYdCgQcGn7YSEBEwmU794+pPoOjKZDLVajVqtDs7RrVu3jjPPPJP9+/fjdDrZtWsXISEhREVFYTKZiIqKOqTLsEWwAK688kosFguLFi064jgOd8xjzbvvvsutt96KxWJpd31hYWEw0GX48OFs27btmI1t1apVTJ8+HYCzzz67Q+9tX0Tq5ybRLbjdbj766CMmTJjAiSeeCMBbb73Fvffey9SpUxkzZgynnnoqQ4YMwWw2S8J2nPDaa68REhKCz+cLLmtJBG/5HLSwatUqFAoFZWVlzJgxg5KSEuLi4oiMjCQtLQ2tVktRURE7d+6ksrKy1TH/rPz444+sWLGiW47ldDrR6/Xk5uYedrtJkyZRUVHBRRdd1C3n7S0ky02iSzQ0NPDyyy+zcOFCTCYTl1xyCffeey9qtZqkpCRSUlLaDUSQOD6YPn06NpuNTZs2MWHCBAB++eUXYmJi2LBhAy6XKzjvtXLlSpKSkkhPTwdoNWfWEpgQEhKC2+2moaGB8vJywsPDiY6O/tNGNIaHh7eJUD1afvjhB5KTkxkwYMBht1OpVMTExKDVanG73d1y7t5AstwkjoqKigruuusukpOT+eGHH3jkkUd47rnnOPnkkxk1ahSnnHIKgwYNkoTtOCcrK4vY2FhWrVoVXLZq1SrOPvtsUlNTWb9+favlLe6uVatWIQgCFosFmUzGf/7zH5KSklizZk3Q0r/zzjspLy9n9+7d5Ofn09TUxG233YbZbCY8PJy77rqLI9WgKCoq4i9/+QuhoaHo9XoGDx7Mt99+22oM33zzDcOGDUOj0TBhwgR27drV6hirV69mypQpaLVaEhMTufnmm7Hb7cH1brebO+64g/j4ePR6PePHj2/1fkCzGzIpKQmdTse5555LXV3d0bzdXHnllZxzzjn885//JDo6GrPZzGOPPYbP5+POO+8kLCyMhIQE3nnnnTb7Ll68mLPOOguA7du3M336dEJCQjAajYwePZpNmzYd1Zj6KpK4SXSK/Px8brjhBtLS0ti9ezcLFizgjjvuYOzYsUyZMoVp06ZJzTL/ZEyfPp2VK1cGf1+5ciUnnngi06ZNCy53Op1s2LAhKG7t4XA4eOGFF/joo49YuXIl5eXlzJ8/n9TUVGQyGQ888ABvv/02L7/8MqtXr6a+vp6vvvrqsGO78cYbcbvd/Pzzz+zcuZOnn366TTfzO++8k3/9619s3LiRyMhI/vKXvwTTH/Ly8jjttNM4//zz2bFjB59++imrV69m3rx5wf3nzZvHunXr+OSTT9ixYwcXXnghp512GgcOHABgw4YNXHPNNcybN49t27Yxffp0Hn/88c69yQfxv//9j/Lycn7++Wfmz5/Pww8/zJlnnkloaCgbNmzghhtu4Prrr6e0tDS4TyAQYOnSpZx99tkAXHbZZSQkJAQ7aNxzzz3HX3CNKCHRAbZv3y7Onj1bVKlU4oUXXih+9NFH4pIlS8StW7eKTU1NvT28foPH4xEXLVokejye3h5Kh3E6neKePXtEp9PZ7vo333xT1Ov1otfrFa1Wq6hQKMTq6mrx448/FqdOnSqKoiiuWLFCBMSioiJRFEVx5cqVIiA2NDSIoiiK77zzjgiIubm5weO+/PLLYnR0tOh0OkWLxSLGxMSI9957r7hlyxYxJydHrK2tFRMSEsSzzz77kGMfOnSo+Mgjj7S7rmUMn3zySXBZXV2dqNVqxU8//VQURVG85pprxOuuu67Vfr/88osok8lEp9MpFhUViXK5XCwrK2u1zcknnyzee++9oiiK4uzZs8XTTz+91fqLL75YNJlMhxx3QUGBCIhbt25ttXzOnDlicnKy6Pf7g8uysrLEKVOmBH/3+XyiXq8X//Of/wSXrVmzRoyKigruFxISIr777ruHPH/LuQ713h7pM9EXkObcJA5LTk4O999/P9999x2XXHIJH374IVqtlpSUFNLT0ztdXkni+OPEE0/EbrezceNGGhoagh2/p02bxlVXXYXL5WLVqlWkpaWRlJR0yOPodLrgfBw0l3aqrq5Go9HgcrmorKzkhBNOIDU1FZvNRklJCVlZWXi9XkRRbDdI6eabb2bu3LksX76cGTNmcP755zNs2LBW20ycODH4/7CwMLKyssjJyQGa3Xc7duzgo48+Cm4j/tZMtqCggPz8fPx+P5mZma2O6Xa7g3NlOTk5nHvuuW3OuWzZsiO9te3yx/ZD0dHRDBkyJPh7SzGElhJZ0OySPPPMM4P73Xbbbfztb3/jgw8+YMaMGVx44YWt3vvjAcktKdEuJSUlXH311YwaNYrQ0FA++ugjLrzwQoYNGxaMepSETQJgwIABJCQksHLlSlauXMm0adMAiIuLIzExkbVr17Jy5UpOOumkwx7nj24xQRCCc2otwqXX69FqtRiNRlJSUlAoFDgcDvbv399qHqyFv/3tb+Tn53P55Zezc+dOxowZw8KFCzt8bTabjeuvv55t27YFX9u3b+fAgQOkp6djs9mQy+Vs3ry51TY5OTm8+OKLHT5PZ2jvfWpvWSAQCP6+ZMmS4HwbwCOPPMLu3bs544wz+N///segQYOO6OLtb0jiJtGKuro67rjjDrKysrBarbz33nucf/75DB06lFNPPZWsrCypiohEG6ZPnx7ssXdwCsDUqVP57rvv+PXXXw8733YkTCYTsbGx/Prrr6jVakJCQlCpVOzevRudTodWq2Xfvn3k5eW1aWGTmJjIDTfcwJdffsntt9/Om2++2Wr9wUEvDQ0N7N+/n+zsbABGjRrFnj17GDBgQJuXSqVi5MiR+P1+qqur26yPiYkBIDs7mw0bNhzynD3NgQMHKCoq4pRTTmm1PDMzk7///e8sX76c8847r90glP6M5JaUAMBut/Piiy/yzDPPMHbsWN544w3MZjNpaWnBL7KExKGYPn06N954I16vN2i5AUybNo158+bh8Xi6JG4At9xyC0899RQZGRkMHDiQ+fPn09jYiFwuD3ZXt1gs7N69m/DwcOLi4rjrrruYNWsWmZmZNDQ0sHLlyqBwtfDYY48FUw7uv/9+IiIiOOeccwC4++67mTBhAvPmzeNvf/sber2ePXv28MMPP/DSSy+RmZnJZZddxhVXXMG//vUvRo4cSU1NDStWrGDYsGGcccYZ3HzzzUyePJnnnnuOs88+m++///6oXZJHw+LFi5kxY0YwctnpdHLnnXdywQUXkJqaSmlpKRs3buT8888/ZmM6Fkji9icnEAjw9ttv8+CDD5KYmMizzz5LTEwMSUlJZGZmSq5HiQ4xffp0nE4nAwcOJDo6Orh82rRpNDU1BVMGusLtt99ORUUFc+bMQSaTcfXVV3PuuefS2NiI0WjE7XYjCAImk4n6+np27dpFY2MjN954Y7DP22mnncbzzz/f6rhPPfUUt9xyCwcOHGDEiBF8/fXXwYe5YcOG8dNPP3H//fczZcoURFEkPT2diy++OLj/O++8w+OPP87tt99OWVkZERERTJgwgTPPPBOACRMm8Oabb/Lwww/z0EMPMWPGDB544AH+8Y9/dOn96CiLFy9mzpw5wd/lcjl1dXVcccUVVFVVERERwXnnncejjz56TMZzrJCalf6J2bRpEzfeeCNVVVXccsstQVdKdnZ2m3Bpie6hvzUrheYWNgUFBaSmpvb5ZOpAIIDb7cbtduPz+aipqcHj8ZCYmNimbVJL3l1DQ0OwXU9foaX81tatWxkxYsRRH6e2tpbY2FhKS0tbPXR0hMOVNusPnwlpzu1PSF1dHTfccANTp05l0qRJvPjii4wdO5YTTjiBsWPHSsIm0W+RyWTBgBOtVktsbCzR0dEUFxcH61j2JyZNmsSkSZOOev/6+nrmz5/fKWH75ZdfMBgMrSJE+yOSW/JPRCAQ4N///jf33HMPY8aM4Z133sFkMjF48GASEhKkeo8Sxw0tPdx8Ph9yuZzk5GQaGxvZs2cP0dHRfbqDNDSXJmtJAm/plnA0ZGZmtklTOBJjxowJFmruzw+6krj9Sdi4cSM33ngjNTU1PProoyQnJ5OamkpWVla/cY9JSHQWhUKBwWDA4/Egk8kICQmhpqaGXbt2MWzYMAKBQJ98qFMoFEesAdlTaLXaXjt3dyKJ23GO3W7nvvvu48033+T6669n+vTphIWFMWzYMIxGY28PT0KixxEEAbVajVKpxOVyERMTg8vloqSkhNraWlJSUqRo4OMQSdyOY3755ReuuuoqIiMjefvttzGbzZILUuJPi0wmQ6fToVKpkMvlJCUl0dDQwO7du0lISCAiIkL6XhxHSOJ2HOJwOILW2t///nfGjRtHUlISgwcPllyQEn96WlyVLakDBoOB8vJyGhoaJCvuOEISt+OM1atXc9VVVxEREcFbb71FWFgYI0eO7DMdiCUk+gKCIKDRaFAqlTgcjlZWXGJiIuHh4ZIV18+RxO04weFwcP/99/PGG29w2223MXbsWBITExkyZIhkrUlIHAK5XN7GiisrK6OhoYHk5GTJiuvHSOJ2HLBt2zYuueQSzGZz0FobMWJEp5M2+yOHqgYvIdFRDmfFJScnExYW1ttDlDgKJHHrx4iiyKuvvsqdd97J3LlzmTp16p/CWsvLy2PJkiV89eVX7Ny5iy++/PyIFecl+jfFxcXU1tb2+HlEUSQkJISoqCj0ej1FRUU0NTWRmJjYqs2MRD+g1zrJ9THmzJkjAuKTTz7ZavlXX30lAmJTU5OoUChaNQAUxeamg4BYUFDQanlycrL4wAMP9Nh4GxoaxPPPP1+Mi4sT33rrLfGbb74Ry8vLe+x8vU1ubq746KOPigOzBoqAKJcpxEhZnKiTG8TLL7+8t4fXYY7HZqU9TVFRkajTaUTgmLx0Oo2Yn58vNjY2inV1deKePXvEXbt2HfH6X3rpJTE5OVlUq9XiuHHjxA0bNhx2+88++0zMysoS1Wq1OGTIEPGbb74RRVEU8/PzxY0bN7b5PtfX14sbN24URVEUrVaruHHjxnZfx+Kz1dufiY4gWW4HodFoePrpp7n++usJDQ1ttc5gMDBmzBhWrVrFJZdcEly+atUqEhMTWbVqFVdeeSUABQUFFBUV9Zg18euvv3LxxReTmZnJwoULiYyMZPTo0cGq38cLdXV1fPbZZ7z/3vus37AepVxFhD+WYUwkLBCNQlCQG9jJ10uW4vf7kcvlvT1kiR6gtrYWh8PF+y9Fk53Rs3NgOQc8XDGvKhg56XQ6iY2NDVY3SU5ODjYhPZhPP/2U2267jddee43x48fzwgsvMHPmTPbt29duMNfatWuZPXs2Tz75JGeeeSYff/wx55xzDlu2bEGv1yMIApWVlURGRqJQHPo2PWTIkDaf+8Nt/2dCehcOYsaMGeTm5vLkk0/yzDPPtFk/ffp0vvzyy+DvOTk5uFwubrnlllbitmrVKtRqdasOv92BKIo8//zzPPjgg9x6662MHz+eAQMGMHDgwOPGZeJ2u1m6dCkfvP8B33z7DQF/gHAhmiGMI9Ifh1xo/ZGNIJbCxn38+uuv3f5+dwRRFHG73bhcLlwuV/D/Pp8v2LFZFMXgq7KyEmju8KxQKBAEIfiSyWTIZDI0Gg1qtRqNRhP8f38V7urqaiorK/F6veh0OpKSktDr9Yfcvr6+nvLyctxuNxqNhoSEhOC67AwVo4YduyK9giCg0+mCYqHVaikpKcFqtZKUlNTqbzJ//nyuvfZarrrqKgBee+01vvnmG95++23uueeeNsd+8cUXOe2007jzzjsB+Mc//hFso3P33XcHuxxUVla2eg/+iEKhkMTsEEjvykHI5XL++c9/cumll3LzzTe3+VBNnz6dJ598koqKCmJjY1m5ciUnnHACJ510Eq+//npwu5UrVzJx4sRurZbd0NDAFVdcwc6dO3n55ZeJiYlh1KhRx02I/7Zt23j11Vf55D+fYG2yYlZEkOYbTDSJqNHAIWJGTISjUWhZunRpt4pbi2g5nc42wnXwy+12A6BSqVoJUotwyeXyVgIWGhpKVVUVOp0u2Gm65eX3+/F4PDQ2Nh7x+C2ip9Vqg8tbjtlXqK+vp6SkhOTkZPR6PVVVVezfv/+Qc8I2m438/HwSEhKCbWtyc3OD70Fv0ZL03RJsUl1dTU5ODunp6Wi1WjweD5s3b+bee+8N7iOTyZgxYwbr1q1r95jr1q3jtttua7Vs5syZwQr8giAQHx9Pfn4+UVFRUtTmUSCJ2x8499xzGTFiBA8//DD//ve/W62bPHkyKpWKVatWMXv2bFatWsW0adMYPXo0tbW1wRYQP/30E9dcc023jSknJ4ezzjqLjIwMnn/+eaKiohg9enSfbTXRUXw+H4sXL+aF519g9ZrV6BR6onyJDGYCer/xkIJ2MIIgEOqLYvGixTzxxBNHNQ5RFHE6nVgsFhobG7FYLFgsFjweD2q1uo2oGI3GNiLTUcuqpeVNRkZGh4J+/mgZHiyyTU1NrZbJZDJMJhNmsxmz2Rxs4NlbgldVVUVkZCQREREAweLFLW1Y2tveZDIFO1jHx8djtVqD1m5v0pIy4HQ6iYmJwWq1snfvXlJTU3E4HPj9/jbRydHR0ezdu7fd41VWVra7/cHXGhoaik6no7y8nJSUlHaPs2PHjla/q1QqhgwZchRXePwhiVs7PP3005x00knccccdrZbrdDrGjh0bFLeffvqJO++8E4VCwaRJk1i1ahWiKFJcXNzlrsMtfPvtt1x66aVceeWVnHTSSWRmZpKVldWnntA7S11dHW+99RYLXlxAeUU5YfIohjKBSF8cMqHz7tUIYti5ZwPFxcUkJSUddtuDhazl1djYiNfrJSQkBLPZTHR0NFlZWRiNxl53+bSEqR/pQSYQCGCz2YLXVFhYSGNjIwAmk6mV6BkMhh53YwcCAex2e1CoWq7FaDRit9vb3cdut7e54RuNRhwOR4+OtaP80U2pVqvJz8/v0e9iQkIC+/btO2Razx+nJPrzfaG7kcStHaZOncrMmTO59957g/NoLUyfPp1PP/2U3bt343Q6GTVqFNDccXjlypUEAgF0Oh3jx4/v0hhEUeS5557j0Ucf5bHHHiMzM5NRo0YRFxfXpeP2Jjt27GDBggV8+MGH+Hx+ogMJjONkjIHQDllphyKMaARBxjfffMPcuXNbrfN4PNTW1tLQ0BC0ynw+X1DIYmNjGThwICaTqd/Oa0GzG8xoNGI0GoMCL4oiTU1NQQEvKioKPukbjcagdRcZGdntwUg+nw+gjXXaUry4Pbxeb5uHCaVSGTxWX6HFTSmTyUhOTqawsBC5XE5FRUWr7aqqqlqJ+8HExMRQVVV1xO1DQkIwmUyUlZW1G8iiUql6/QGsryK9K4fgqaeeYsSIEWRlZbVaPn36dB5//HE+/vhjTjjhhOANcerUqbzxxhuIohh0Xx4tLpeLa6+9lpUrV/LKK68QExPD+PHjMZlMXbqm3mLdunU89NBD/Pjjj+gUBhJ8A4gnDZVw9H2qDkYpqAiTRfL1kq+ZO3cudrudyspKKisrqaurw2AwEBoaSmxsLNnZ2RiNxn4tZB2lxVI6uPtDi+C1CH1xcTHbt28nJCSEmJgYYmJiMJvNkgVwBFrclA6Hg7S0NAYNGsQXX3zBmWeeiUqlIhAIsGLFCubNm9fu/hMnTmTFihXceuutwWU//PBDu/PG8fHx7Nmzp99PQxxrJHE7BEOHDuWyyy5jwYIFrZZPmjQJtVrNwoULuf/++4PLx40bR3V1NYsXL241sdxZysvLOffccwFYsGABUVFRjB07tksNC3uLg0XNqAhlCOOJ8sUflevxcAgygZEDxhAdE8mPP/6Iw+EgIiKC2NhYRo4cedylSHSFgwUvMTERaLZuW6Ia165di1wuDwpdZGTkUZ2nxZrwer2tlnu93kPONbZnpR1szeUc8BzVWDpDZ87R0hDV6XRy6623MnfuXAYOHMisWbN48803sdvtwejJK664gvj4eJ588kkAbrnlFqZNm8a//vUvzjjjDD755BM2bdrEG2+80eY8Op2O8PDwNpYeEIzKPZgWq/LPjiRuh+Gxxx7j008/bbVMo9EwYcIEfvrpJ0488cTgcrVazYQJE1i1atVRz7dt27aNM844g6lTpzJ79mySk5MZOnRov/ugrl+/nocefIgffvwBoyKUoUwgyhffrdaAUqMgcXgsqWMTSB4TjyDA+s3rcDqdzJo167iu0NLdqFQqEhISSEhIIBAIUFdXR2VlJTt37sTtdgfdloFAoMPHbLnxNzU1BXNGRVHEarUeMsJXr9djtVpbzS9ZrVbi4+PR6TRcMa/tzb0n0Ok0wSCYI9EyD3fZZZdRW1vLggUL+Mc//sHQoUNZtmxZ8FqKi4tbfY8nTZrExx9/zAMPPMB9991HRkYGixYtYsiQIRQUFLQ5T1xcHPX19W2W79q1q82ygQMH9usO2t2FIP5R9iV6hVWrVnHOOedwww03MHnyZIYMGUJqampvD6tTrF+/nocfepjlPyzHqDCT7Msiiu7rHacP05IyNoHUsQkkDI2hqcZOwcZSCn4toWJvDRvkP3Dp1Zfw2muvdcv5eoKWaMnTTz+9zwtwiwuzrKwMl8tFfHw8Wq0WpVKJUqlEJpMd9m9bX19PQUFBMBWgurqa+vr6YCpAQUEBSqUymHJjs9nYt28f8fHxmEwmGhoaqKioYNCgQdTU1FBbW0thYSF+v5+YmBiUSmXQBR0dHd1tNSAjIiKOGJjUHl6vF4fDgdvtprS0lPj4+OO2vqvL5QpGh/dVd6kkbn2Azz//nDlz5vDggw8ydOhQxo4d26/y1/bs2cPtt9/OsmXLMCrMJPmyiO4mUZPJBVLGJjD4lAEkDI2hcn8thRtLKdhYhqXc2mrbfeI2vNE2yivK++ycUX8StxZabmTJycnI5XK8Xi8+nw+5XI5KpQoKXXv8MYk7MTExaFXs27cPlUrV6iGuvSTug+eavV4vpaWlWK1WfD4farWaiIgIoqOj+8Tf3O/3Y7fb8Xg8lJaWEhERQXx893ot+gL9Qdwkt2Qv01L4+JlnniEtLY0JEya0Kf3VV6mpqeHhhx/m9dffQCfTM4TxRPu6R9SMMQYGzxjAwJPS8Xv97Pkhl/+9vB57vfOQ+0QQy9aqX9i+fTsjRozo8hgkWiOTyYJ5f4FAAK/Xi8fjwel0olQqg/l+B//9o6KiDvmg9sdgLYCwsLDDWmBKpbJPezRaAk3sdjuJiYmUlZXh8/lITk4+7gSuryOJWy8hiiKPPPIICxcuZOHChSQkJDBx4sR+4Sv3eDwsWLCARx95FI/LS3pgMImBdGRC1yIQBZlA2oREhszMIC47ioKNpfz44lpKdlQ0l7Q9AqFEopSrWLp0qSRuPczBQufz+fB4PNhsNmQyGSqVCpVK1e/miruLlvlGQRBISEigoqKC3Nxc0tLS/hRRun0FSdx6Ab/fz//93//x7bff8tJLLxEbG9vt5bp6iu+//54b/+9GCgoKiBNTSWNQl0P6NSEqBp2SwdBZmYh+kV3f72f5/DU4G9vPhzoUMkFGWCCKJYuX8MADD3RpTBIdp6W+YUspKo/Hg8vlCpYM+zPe0A8WuLi4uGDpsYyMDCkv7RghvcvHGI/Hw+zZs9mzZw/PP/88sbGxjBs3rs/PvxQUFHDLLbfw9ddfEy6PYpx4Mgaha3l3YYkmhp85kMxpqVTtr+XnNzdSuKkMMXD008DhYgybNm+iurq6X81bHg8IgtDKmnO73TQ1NaFQKFCr1cF6m38WWiIpBUEgJiaGmpoa9u7dS2ZmplQr8hggidsxxO12c8EFF1BeXs4TTzxBQkICo0eP7tNPtn6/n4ULF3LPPfci9yua59X8XZtXixsUxZgLhxKXHcn+Xwr5/J5l1BVaumW84cSACN999x1z5szplmNKdJ4Way4QCOB2u3E4HEHxU6lUfxqREwQBrVaLTCYjMjKS+vp69u3bR1ZWliRwPYwkbscIl8vFeeedR01NDQ8++CDJycmMGDGiT3/J9+7dy1VXXsX6DetJZADpDEEhHP1HJjzFzMS/jiR2YCTbluSw/PnVuKzdW/FdLWgwy8P5+uuvJXHrA8hkMrRaLRqNBo/Hg9vtxu12o9Vq/zSWXEt9UEEQgsEy+/btIzMzs18WZ+gvSOJ2DHA6nZx99tlYrVbuv/9+UlJSGD58eJ/9Yvt8PubPn8+DDzyIStQwmmmECkdXqQIgJErPhEtHkD4hkV3fH+DHF9fiauq5NiahviiWfbcMj8cjPR33EQ622jweDw6HIyh8f5Y5qBYhCwsLQxCEoAUnCVzP8Of4VPUiLpeLc889l4qKCh588EFSU1MZNmxYnxW2Xbt2MWfOlWzduoVEcQDpDG7TILSjaE1qxlwwlMGnDODAmiI+uulrmmrarwjfnUQQS75jD6tXr+6xbugSR0eLyCmVStxuNzabLRiM0pfd893FwULm8/kkgetBJHHrQdxuN+effz719fU89thjqNXqNrX2+gper5enn36aRx99FC0GxognYhLaViHvCEqtkpFnZzPirGxKd1by2V3fUV/c2M0jPjQhmNEp9CxdulQStz5Ki9WmVquDvemUSiUajaZdkSsuLqa2tvaYjO1oK5R0lsjISBoaGti/f780B9cDSOLWQ3g8Hi688EKqqqp48MEHSUlJITMzk7Vr17JlyxZGjRrVZ6y3wsJCLrzwIrZs3kySmEEqg5AfRc6aTCFjyGkZjL1gKA1lVpY89j8q99b0wIgPT7CB6VeLmT9//jE/v0THkclk6HS6ViKnUqnQaDTBPLni4mIGZg/E6Th0An93otVp2Zuzt1MC98gjj/Doo4+2WpaVldWmWWlLd3eDwcBnn33GI488QlFREUlJSTz33HOcffbZ3XINEpK49QiBQIA5c+ZQUlLCQw89RHJyctAVOXnyZNasWdNnBG7RokXMuWIOfqfIaHHaUVlrgkwgc0oK42cPx+vysuKldRRuKuuB0XacCGLZXriW/fv3k5mZ2atjkTgycrkcvV6Pz+fD5XJhtVqDXc5ra2txOpyc9c8xRKSF9Og4avObWHLfJmprazttvQ0ePJgff/wx+Psf5xIPFrZff/2VK664gn/84x+cdNJJfPDBB1xwwQVs3LhRKkDQTUji1s2Iosjf//53Nm3axNNPP01ycnKr4BGNRtMnBM7j8XDXXXfx4osvEi3EM1AcjVLovFskKj2M6TdOQK1XseE/29n/c2GX8tS6i1AikQtyFi1axF133dXbw5HoIAqFAoPBgNfrxeVy4Xa7g678iLQQYrLNvTvAw6BQKA7ZnPRgYVMoFLz44oucdtpp3HvvvbjdbrKysli9ejVPPfUUH3/88Z+2ukt3Ir2D3czTTz/Np59+yhNPPEFcXFy74f4tAmexWNiyZUubfkw9TX5+PhMmTGThgpfIZDhDxAmdFjaZQsaEy4Zz7hOnkr++hA9vXMK+VQW9KmwBMUCtWEmOuIV1wnL8op+nnnq618YjcfQolUoMBgNarfaQnbv7GgcOHCAuLo60tDQuu+wyiouLgbbCBs29DmfMmAE0B5loNBpOPfVUtm3bRn5+/jG/JxyPSJZbN/LOO+/w5JNP8tJLLxETE8OYMWMO+QTWWxbcl19+yZVzrkR0CYwRp2EUOt8mJDItjBk3T8TvE/n87mXUFVm6f6AdRBRFrNRTQTFVQile0Y1GbSYyahSiGKCsdB3FxcXHJEBAonsRBAGVSoVer+/toRyR8ePH8+6775KVlUVFRQWPPvooU6ZMYfPmzUFr9GA3ZUubnhbUanWwZ5vL5aKoqEgqttxFJHHrJpYuXcpNN93E888/T1xcHBMmTDhi/s6xFDiv18vtt9/OwoULiRYSyBZHoxA6V/JLppAx9qKhjDgrmy1f7mbzF7sI+HvnCdMh2qikmAqhGKdoQ60KITZ2PNExI9AbYhAEAZezgbLSdbzwwgtSYEk/pj+46GbNmhX8/7Bhwxg/fjzJycn85z//Ye7cuUe8FwiCECzBFxcXR2lpKeXl5cTHx/fouI9nJHHrBtauXcvs2bP55z//SVJSEpMmTepwWO+xEDiLxcL5553PqlWryGIECWJ6p8/RYq0F/GK3lsvqDH7RRyUllAuFNFKHXKYiMnooWbEjMYemIgitb4IabSg6XSSLF0tRkxLHFq1WS3p6OqWlpe0KW0xMDFVVrTuLV1dXExsbi0qlIj4+npKSEpRKpVQj9SiRxK2L5OTkcOaZZ3L33XczYMAAJk6ciFar7dQxelLgcnNzOX3W6RQXlDBCPIEwoXNfFJlCxtgLhzLi7N6z1lyigxLyKBMK8IkewkIzGRR3KhGRA5HLD/8QERE1mMLCX6RqJRLHDLfbTU1NDYWFhYe0vCZOnMiKFSu49dZbg8t++OEHJk6ciE6nQxRFEhISKC4uRqFQdFuX8T8Tkrh1gfr6ev7yl79w+eWXM2LECCZMmIDRaDyqY/WEwP3000+cc/Y5+O0io/3T0AmdC6OOTAvj5JsmIgaOvbUmiiIWaikmlxrKUchVxMaPJz5hAlpdx7/oEREDKS5cxbvvvst1113Xo+O12+00NjYGXxaLhcbGxmDXaL/fjyiKJCcn8/rrryMIQnA+xmQytXkZjcYedcm5XC6mT5uOx+vhvPPP46yzzmLIkCF9dp6nNr+pz57jjjvu4C9/+QsxMTEUFhby7LPPIpfLmT17NgBXXHEF8fHxPPnkkwDccsstTJs2jX/961+cccYZfPLJJ2zatIk33ngj2C6nReAKCwtRq9X9Yu6xLyGJ21Hi8/m46KKLyM7O5uSTT2b06NFdfrrqToF75513uO666zCJ4Qz3j+9UNKRMIWPMBUMYec4gtn61h01f7CLgCxzVODpLQAxQSQnFwgFsogWdNpLM5LOJjhmBQtH5EkVGUyIKhYb33nuvS+Lm8/nIz8+nsLCQoqIiiouLKS4upiC/gMLCQioqK/D5fIfcXybIEAQZOq2ODz56n/vuuQ+7w0FADHCoTqyCIBAZEUVychKpaakkJyeTlJREUlISycnJZGZmdtpLcDCrVq1i/a/riRBieXTHYzzwwAOkJKdwxZwr+Otf/0pGRsZRH7s7iYiIQKvTsuS+TcfkfFqdloiIiE7tU1payuzZs6mrqyMyMpITTjiB9evXExnZXJO1uLi41YPKpEmT+Pjjj3nggQe47777yMjIYNGiRQwZMgSglcBFR0eTm5vLoEGD+nxrrL6EIEoxp0fFzTffzMqVK3n88ccZOHAgWVlZ3XZsl8vFmjVrMJvNnRa4QCDAvffeyzPPPEM8aWQxApnQ8af/kCg9p989DQRYsWAdtYUNR3MJnaZF1AqEHJyijfDwLBKSTiA0rPPzg39kz65PabTsw+l0dGj7qqoqdu7cyY4dO9ixYwfbtmwjZ28OHq8HAAEBnVKPWtSi9GnQoEODFiUqFCjbvOT8Xv1eqVVy/ccX8/qln+J1ehFFkQB+fHj/8PLhxYMbJy4ceOQuPDIXDp8Nv+gHmm+AqSmpjBo9iqFDhzJs2DCGDRtGcnJyhyy+efPm8d7r7zPedyoiAeqpoZpSauXlePwexowew5VXXcl5552HxWIhNTW11xrqHqn8VktrHZ/P1+VizEdTfqu9cP/uwOv1Yrfbqaurw+PxkJWV1ScCbFwuFwUFBb36mTgSkrgdBW+++Sb33nsvr7zyCmlpaYwePbrbXTlHI3BOp5PZs2ezZPESBjCUJDI6Na74wdGcdtcUDvxSyOp3txwTa+2PohYRkU1K2gxCjHHddo6qyh3s2fUf1q9fz/jx41utE0WRX3/9ldWrV7N69WrWrF5DTW1zyTCFTEGIzIzWZ8CACQNGtBhQo+3UA8PB/FHcOosoinhw4cSBHSs2GnHIm7AJjbh9zflgep2ecePGMWXqFCZPnszUqVPb3IBEUSQpMQnK1AwURrZa5xf91FBOlayEOrGSlNQU3n77bQYOHEhUVFSfdVuKoojH48HpdKLVao9Z37ieErY/Hr+8vBytVktKSkqv/w36g7hJbslO8ssvv3Drrbfy4osvEhUV1WM92TrrorRarZx5xpmsW7ueYUwkUuicOAyemcEJV47ml7c3seeH3K4O/4gExABVlJAv7MUpNhERns3gbha1FsLCMwCBF198kY8//rjVumXLlnH66aejkCkxCaGE+MOIIR0DJnQBA4IoQB+6lwuCgBotarSY+a1UWqD5xu7GhY1GmhwWdv20j3Wr1+PyPcZ9993HE0880eo4u3fvprSslBGc0OYcckFODInEiIl4RDcyvxe3001JSQmVlZVERUURGRnZ51rVtHQckMvl2O12/H4/Wq22R4Wgp4UNQKVS4ff7iYmJoaSkhKqqqkNWQpH4nb716ezjFBUVcf7553PvvfeSkJDA+PHje/QL3lGBq6mp4ZRTTiVnVw4jApMxCx2fL5DJBaZcM4b0SckseWwFFTk9X+i4VqzkgLADu2jtUVFrQanUYjIn8+OPK9qsa/n7jQ5MI0Qw9ykh6wyCIKBBiwYtETTf+ESfyGr50nY/o9988w0KmZLQwOH79KkENZFCLCo0aNHj83opKyunvLyc8PBwoqKi0Ol0PXJNR4tCoSAkJAS73Y7NZkOv1/eIK+9YCBv83s3b7/cTHx9PcXExWq0Wk8nUY+c8HpDErYM4HA7OPvtszjzzTEaMGMG4ceO6NJnfUY4kcFarlcmTJlNaWMZI/5TmG3RHjx2i5rQ7p6A2qPjvnd/1eK81m9jIfnZQTxVmYwqjsy7HaEzo0XO2EBE5iLwD31FbW9sqWGDixInIZXIaA/WEYD4mYzlW2LHi9ruZMmVKm3WLFy8mTIzqcPcHPz5cOBARkSFHLiqor6untrYWg8FATEwMJpMp+Nmsr6+nvLwct9uNRqMhISGhzc3Y6XRSWlqKzWZDFEU0Gg3p6end0ttMJpNhMBhwOBw0NTWh1+u7VYCOlbC1IAgCer2eQCBAXFwc+fn5ZGdn91mXYF+g92cm+wk333wzer2ec845h6FDhx7TvJPD1aK0WCzk5eVh8kVgoONPcuFJZi56dhauJjdf3Pt9jwqbV/SwT9zGBn7EqfEyZNhfGTHmumMmbNCcEgAiCxYsaLXcYDAwfPhwLBybXmHHEgu1yOVyJk6c2Gp5XV0dG9ZvIFzsmGurVqzEiwclavQYkaPAhwedGIIWPS6bi9zcXHJycrBYLNhsNvLz84mIiGDQoEGYzWZyc3NxOn9vWeNyudi3bx9arZasrCwGDRpEXFxct1pYgiAE2+nYbDY8Hk+3HPdYC1sLLRGUGo2GsLAw8vLyCASOTRRzf0QStw7w0UcfsWjRIm699VaSk5NJTk4+5mM4lMAlJSXx9jtvU0kxB9jRoYKrqeMSOP/JU8n5Xx7LnvsFn9vfI2MWRZEysYC1wveUy4pJHTCTcZP+TmTU4GM+Ia7VRaDWmPniiy/arDtx+ok0KeqPu2K1FmoZMXxEm/yoZcuWERADQfflkSinEDkKlKiQI0dDsxuyWfBUaAlBhwGPw0Nubi4HDhxAr9cTHR2NVqslPj4enU5HdXV18JhlZWUYjUYSEhLQ6XRoNBrMZnO3h7oLgoBGo0Gn0+FwOHA6nV36O/eWsLWgUCjQ6XSYTCZkMhklJSXHfAz9BUncjsD+/fuZO3cujz32GBEREcE8lN7gUAI3Z84cXnrpJYo5QD57DnuMMRcM4ZRbJ/PjwnVs/GznoVKsuoxDtLGZn8lhM2FR2YyffDvJKdOQyXrHEy4IApGRg9i3b3+bp92pU6di99lw0bFUgf6AKIpYFQ1MP2l6m3Vff/01ZkU4auHIbvWAGMCOFRm/uy8FQIESP75Wv7eInN/vx263k5OTQ2NjI6IoYjQasdlswbE1Njai0WjYv38/27ZtIycnh4aGnks7UalUhISE4PV6cTgcRyVwvS1sLahUKlQqFdHR0dTX11NfX99rY+nLSHNuh8HlcnHxxRdz2WWXkZSUxNixY5HLO9+hujs51BzcjTfeSFNTE/feey8KUUmy0LpBp0It5+SbJhGdEc4X933fY9VGRFGkmAPksRuVOoQRg/9GaFh6j5yrs4RHZFNaspbPP/+ciy66KLj8hBOaIwYt1KKl41UgFGo5+lAtulAt+lAt+jBd8P/NPzXIVQpkcgGZTECmkKEzNwvKFa+ejd8XIOAPIAZE/L4AzkYX9nonjgYn9t9ejvrffjY4cds77lZz4cDhs7WZb/P5fHz37XeE++I7FDzjxY2IiPCHjQVkBPD+YVmzyAGo0OBxeDhw4AAGgyHYo61lDIFAgMrKSuLj40lISKCxsZG8vDyysrIICemZhqRyubzNPFxHv899Rdha0Gq1+Hw+4uLiKCoqQq/Xd8tc5fFE7/+V+jB33HEHCoWCWbNmMXz4cAwGQ28PCTi0wN1zzz00NTXxz3/+E7moIEFIA0Br0vCXB0/C6/Ly2Z3f4bK6e2RcdtHKHjbTSB0JiZNITT/1qKqK9BTm0BRkMiVvvvlmK3ELDw9nYOZALPtriaWty9kQriMyPYyo9HAi08IwxRjQhWpR61X4vX4cFldQgOz1DiwVTZTvqcZhceJ1+YICFvAF0IVqOfP+6Xz7zM8EfIHfhE+GXCVDa9IEhTFqQHgr4VRqFPjcPuwNTmy1Dmry66nOr6cmrw5LeVObPnoNv80htgh3C2vXrsXaZCWLMT3wDv+OHDlqtPjx4rQ7sdlsCILQat7LbDYH277odDpsNhs1NTU9Jm7w+7yV0+kMRlIeSaz6mrBB6wCT0NBQ8vLyGDhwYJ9I8O4r9I2/VB/kyy+/5MMPP+SNN94gMTGRxMTE3h5SKw4lcI8//jg2m42FCxYiF+UMCB/IOY/OoDqvnhUvreuRxOyAGKCY/eSTg1pjZuSQ6zGbU7r9PF1FJlMQFp7JunXr26w78aQT+bjgEwxmXbOIpYcRlR5GZHo4GoOKhtJGavLrKd5WjqXM2mxZ1Ttx2dydcu0qtc2WTW1BQ6eSuFU6ZVDojNEGItPDGDYrk4iUUAIBkdqCBqrz6qjJq6c6r56cslqyM7LbBD4tXboUrUKH0RfasfGiRkBA/MNFigQQDjGrISD7bX2zJScXFTix4xO97Nq1i9jY2OBc2MFotdqg6/KPHKlCydHgdrvxeDxtKpocXKGkLwpbC3K5PBix7XA4KCsr63P3qd6kb/21+ggFBQVcc801PPLII4SHhzN06NDeHlK7HErgnn/+eaxWK999+x23P/Z/lO+sYdVrG3qkS7ZTtLOLX2mknsTkE0hNOwW5vO/Wv4uIHMjePbvJyckhOzsbm81GZWUlp5xyChMnTiTEEEJ9SSM1efUUbipj42c7qS1owOfpmaCbjuJxePE4vFjKrJTtqiJnRR4AgkwgLMEUFOMhp2USkRrK+eIpOJ1OcnJyiImJwWw2IwgCi79aTKiv41VGZIIMPUYC/H79IuDDh4r2rXIFit/WN9MijkpUCAGBsrIyBEFoI2Qul6vdzg3FxcVkDRyI66Boy55Eo9Wyb+9eoqOjOyxsP//8M88++yybN2+moqKCr776inPOOSe4XhRFHn74Yd58800sFguTJ0/m1VdfPWL9zpdffplnn32WyspKhg8fzsKFCxk3blxwvUqlwufzBQs2h4SEYDabu3L5xw2SuP2BQCDAFVdcwTnnnMOAAQMYO3Zsn3tiO5j2BE4mk/Hiiy9yyimn8PPPP/PrG7sJ72BkXGeoFsvZwyYUai2jhl6PyXzso0g7S0REFgMHDuS7776jvLwch8NBREQEKSkpzJ49G31hFOHe/lP9QQyI1BVbqCu2sHdlPgAewU1hwnaee+45HA4H69atQyaTNUfZhZoIUWmgE5W/4kj5rfqlB1DhwQ2/iRWAEzsCMjQ0WxFK1Dhowo0LBUp8ePDjQ4MROXKUqHGKdqxWK3v37iUpKQmbzYbFYmm3RmttbS0up5PIeRegiu/Z3maesmpqXvqc8vJyjEZjhy02u93O8OHDufrqqznvvPParH/mmWdYsGAB7733HqmpqTz44IPMnDmTPXv2HDJX7dNPP+W2227jtddeY/z48bzwwgvMnDmTffv2BXu8HZzgHRcXR2FhIYMHD5YKLCOJWxsWLFhARUUFd955J4MHDz7qFjbHkj8KXEZGBuvWrWPw4MF8+OFH7BQ2MDwwiVDh8NUoOkpADHCAHZSQS0RENgMHX4hS2fMJ7UeLUimQlGggLdVASkoGft8gdu/eRXZ2NpGRkcEbgdPhwumpJFzoP+LWHg2BGoqLi5k0aRLx8fEEAgHq6upYtmwZV199NZFhkZRsr6RgYymFm0pxWFyHPV6EEIMSFV7ceHAhR44OA7Lf3JIBAq0clAoUaNHjxokbJ7Lftpf/FnEpR44eIy6aK4js2bMHtVrNgAEDDjvfpoqPQp3ac5VsDsbtdnfKFTlr1qxW3bgPRhRFXnjhBR544AHOPvtsAN5//32io6NZtGgRl1xySbv7zZ8/n2uvvZarrroKgNdee41vvvmGt99+m3vuuSe4XcuDSyAQwGAwUFxcTFpaWq/Xn+xtJHE7iAMHDvDAAw/w4osvBp/m+wstAvfzzz9TXl5Oeno62dnZfPHF58w6bRZr16xjpP8EjELXks+dop2dwgaasJCRcSbxiZP65JdIoRDIzDCSMcBIQoIOa6OX/IImvvm2lHVrv6EgfwX3339/qyfc6SedyJKPv4He9UB2GQu1JCUmBxtlymQyIiMjee+999i+cjfT408ndWwC2SelceIN46jOqyd/fTF7VxXgaGjf9SdHgY6QoEAdjJ62gqREFbTs2kMAtOhRo8WFA7fbTUNDQ5+Z2+pqZ4GDKSgooLKykhkzZgSXmUwmxo8fz7p169oVN4/Hw+bNm7n33nuDy2QyGTNmzGDdunVttlcoFKjVasLDwykqKqKhoeFP3+C09z9FfQS/389VV13F7NmziYmJ6bGCyD1JS0NMuVwerAah1Wr5eunXnHzSyWzfupaR/ikYhKOrSVctljW7IVV6Rg27AaOp701eR0VqGDLYTGamEavVS87eRn76uRJL4+9+uLDwgeTn/cDrr7/O7bffHlw+depUPnj/A3x4UQhdc+v4RT8+PAQIICIiEiBAAKXY/JWziRa8oh8ZAgIyBGQoUHT5vABNigbOOfkvrZc1NfHzTz+TGhhEQ6mVhtI9bPlqD1qTmuRR8WROSWH87OEUbi5jzw+5FG+r6JE52j8iQ4YWA17c1NfV09hoJSUludfnjbozob+yshIgGBnaQnR0dHDdH6mtrcXv97e7z969e9vdR6PR4PV6iY2Npbi4mJCQkD+1e1ISt99YsGABlZWVQXdkXysGeyTsdjtr1qwhKSmJtLQ01q5dG5yDCwkJ4fvl3zN1yjS271vDSN9UdELH0xpEUaSAveSzm8jIwWQNOr9PuSEVCoGsTBPDhoRiNqvYf6CRrxYVU1XdvrvNEBKLUqnn448/biVuU6ZMQaS5A3gEsYc8nyiKePHgwtH2JThx4sBL++fWogVuYBOrcNLWSlKISjSCDo2oC/aJ06AP/lSjOexDl1f00Oirb5Pf9uOPP+L1edtcl7PRzd6V+exdmU9IpJ5BMwYw/f8mIIoie37IZffyA4c8V3chACrUKFDi8jnIzc0lOjqa+Pj4Xgttd7lceL3efiUOLeXGWtyTRUVFpKd3vR9if0USN5qrkDzwwAMsWLCAyMjIXimv1RWcTidr164lLi6OQYMGIQhCmyCT0NBQVvzvRyZPmsz2otWM9E1FIxxZwP2inxw2U0kxKWkzSEk9qc98WQwGBcOHhjJ4sBmbzceOnQ3s22/F6z18uoMgCEREDWLnzh2tlmdkZBARHoGlrlncmtvIOGmknkbqsGHFJThxYW8VPSgTFKjVJjRaM3ptLGEaMxqNGaVSh0wmRxDkCDI5MkGOWt3sqhsx6m+43V4Coh8x4EcU/fh8LlyuRtwuCy5nAw1OC253KT7/73mJAgJqmsVPjwEjYZgIQ48RQRBopA4RkalTp7a6tqVLl2JUmNH5D/1Q01RjZ8N/tvPrpztIHhXH0FmZjD5/COU7q5Erel5kfrfiXFRVVdHU1ER6eu8UANBoNNjtdvR6fZcFrqU9TVVVFbGxvz9cVFVVMWLEiHb3iYiIQC6XU1VV1Wr5kdrdSO7J3/nTi1uLO/Kyyy7rl+7IlqamUVFRDBkyJDj29qIoo6KiWLlqJZMmTmJ75RpG+KagFg5dVdwjutjOOpqERgYNnk10zLBjdVmHJSpKw+iR4aSlGSgstPPNd2WUlXWudFZExEAqyjby/fffM3PmTKBZ9KZMncKyRcuxizasQj1usdm60qjNGIxxhGlC0WjMaLRm1EER03f4M6NSNouE0ZiA5wgi3EKz6FlwuSy/CZ8Fl6sBS1MVZY5CQESOEpMYhh8fYWFhrUQhEAiwZPESQn1RHapKIgZECjeVUbipDHO8kYmXjkRr1mKMMuCz+ztVKaWzNFtxGuQocDrt7Nm9B6vV2mPnOxRKpRKtVovdbu/yPGBqaioxMTGsWLEiKGZWq5UNGzYwd+7cdvdRqVSMHj2aFStWBFMKAoEAK1asYN68eYc9n0ajwefz/endk396cVu4cCHV1dXcdddd/c4d6Xa7WbNmDWFhYQwbNqzNDbY9gUtISPhN4Cazo34NI/xTUAptJ/5tYiPbhLUEFDBixLWYTEnH6rIOidmsYtKESFKSDezc3cAHH+Zjbep8N2uA0LABCIKcV199NShuzecw4xTtqIzhRIeNw2hMwmhKRK3uuaoZR0Kh0GAwxGAwtH1i9/ncNFlLaWwsxtpYjLVuP+lhrSPlNm/eTG1dLckM7vS5LWVWNn22k9EnDccT4sUYaUAXqsFW5zyqTuIdRY4CvWjEJTooLS0FmsP0e5qDz9FSzspmsx1R4Gw2G7m5vzf5LSgoYNu2bYSFhZGUlMStt97K448/TkZGRjAVIC4urlUu3Mknn8y5554bFK/bbruNOXPmMGbMGMaNG8cLL7yA3W4PRk8eioPTA1rckwMGDDiat6Nf86cWt/Lych588EGef/75fueODAQCbNy4kZCQEEaOHHlIy6E9gUtPT2flqv9xwuQp7Ghay3D/5FaBDHViJTvYgEYXxsiRV6LRmI/RVbWPXq9g/NgIsgeayNnbyHsf5mG3+7p0TL/fi04X3qaB6cyZM3nnnXdIyzgNc2hql85xLFAo1ISGpRMalo7f7+WXVY+0cXUtXboUtVyDyR9+1OcRRRFXkxuvzYfOrMUUY8Dr9mGvc+Jzd+1vcSgEBDToiTbHoNKoqXnp8x45zx/RaLXBnn9qtRpRFLHb7YSEhBxyDnDTpk1Mn/57kerbbrsNaC5q/u6773LXXXdht9u57rrrsFgsnHDCCSxbtqxVjlteXl6rKiwXX3wxNTU1PPTQQ1RWVjJixAiWLVvWJsikPRQKBRqNhvDwcAoLC2lsbPzTNTcVxOOtz0cnuPTSS/F6vcyZM4fp06e3aQ3SVxFFke3btwe/JB1xmbS4L81mc7CSyZYtW5g2dRpql45h/knIBQWVYjG72UhYeCaDhs7u1dqQarWMMaPCGT4sjIJCG+s21GCxHL1LzOWyUFu9m+qaPTQ2FNBSN2vnzp3Bbg8ejweNRktK6smkpJ3UHZfRCpVSxtzrs3j19X0ddkt2lIb6fLZteZPPPvuMCy+8MLh85IiRVO6oYwjjj+q4kclhXPfqZURHxARTAQSZgC5Ui9akwWP3YK934O/m6zmYkspiKhvLkcvlJCYmdqlRsMfjwe12HzLc/+DyW9D8fXM6nUFLqL9MW4iiSFNTEzabjbq6OgYPHtxtAToul4uCggJSU1P7bMPUP63ltnLlSpYuXco777zDgAED+o2wARQWFlJZWcm0adM6PBfQngU3atQovl/+PSefPINd4gZCA1HsZzsxsaPIyj4Pmax3OiDI5QIjhoUyZnQE1TUuPv+qiOpDRD4eCb/fQ1XlNsrLNtJkLUWQydElZxA7/gI0UXEUvP8i99xzD0uXLgWa5zoiwsOxNBR05yUdExotBQiCrJWrq7y8nG3btzGYcR2ab+soYkDEXufA2ehCH6YlLNGMs8mNo95BwN/9z8uJMUnExyTgFOyIQoC0tLSjShdor1ZkZWUlDQ0WUlKS2xXNFjefzWbD4XCg0+n6hcC1jDsQCGCxWKisrCQu7tgkwfcF/pTi5vV6mTdvHjfddBNGo/GI9d36EjU1NezevZtJkyZ1+um1PYGbNGkSX3+9hNNmnkYNFSQkTmJA5hkIQu+EYA/ONjF+fCQOh49vl5VSUnp0PdZcLgtlJesoL9+Iz+vCkJ5N/Il/xZCWjVzz+/umCovi559/brXv6DGjWb58BYGAv9cE/mhoaGjufn1w8MC3336LgEA4R3ZlHQ0BX4CmajsOy28il2zGaXHhsLi6PU9OhgydaMAp2snNzSUxMZGoqI7XyfyjsImiSHl5ORUVFQgI7N+/n4EDB7bbOqalCn9TUxNut7vPWit/RKlUolQqiYqKori4mPDw8D9Na5w/ZX+EBQsWIIoiEyZMYMiQIb3eo62j2O12Nm7cyNChQ486vLe9hqczZszg8SceB8DrPTbFaf+IyaTkgnOTGTsmgl9WV/HJZ4WdFjZRFLE0FLBzx0esW/MMpRW/YhwxjgE33EfShX/DNGhUK2EDCMkcQpPdHkx6BzjnnHMIBLzYbBXdcm3HgkDAj7WxmDFjRrda/vWSrwmVR6ISevaG5vf4sVbasJQ3odQqCUs0BTsgdCcCAloMqNBQUlJCUVFRm+az7dGesJWUlFBRUYEaLXqM+H1+9u/fH+w790da2uW4XK5WrXv6Oi3uV7PZ/Kfq3P2nE7fy8nIeffRRbrvtNiIjIw+bM9KX8Hq9bNiwgcTExC4HvrQncPfccw/z5s2jqnIr+/cu6dYKDUdi+LBQLr04jZo6Fx/+J58DuU2d2t/v91JRtomNvy5k6+Y3aPJVE3PKeWTOe5iYk89GZT50IEXIgMEQCPDYY48Fl1122WWA0K9ck7amcgIBXyuXpMvlYvkPywnz92yx4YPxuXxYyqw4LC5MsQYMkXoEWfe68AT4LaldR21tLXl5eYcVuPaEraioiOrqajToUKMJWoVej5f9+w/g97dfg02hUKDT6XA4HIfcpq8hk8nQaDSEhobS1NREY2Njbw/pmPCnE7c77riDU089lZiYGIYOHdovfOeiKLJlyxY0Gg2DB3c+nLs92hO4hQsXcvnll1NetoH8vO+75TyHw2RUcv65SYwcHsaSb0r46ecqfL6Oi6rLZSEv93vWrnmKvTlfIkSFknTx9aRdezdhoyYjUx3ZWtHGJSNTa/jwww+DywwGAyaT6begk/6BxVIICFx66aXBZatWrcLlch222kpP4Wx0UV/SiEIp7zErToUaHQasjVb279+Pz9c2avOPwhYIBMjPz6e2trnr+sFte2TI0YoGXE4nBQUFh3zAU6lUqNVq7HZ7h6zGvoBarUYulxMdHU1xcXG/GXdX+FPNua1evZqvv/6ad955h/T09H4TRJKTk0NTUxNTp07t1nJE7c3Bvf/++1itVhYvXoxcriYldfqRD3QUDB8WyqQJUeTstbBkaQleb8dFzeOxUZD/I+VlG5EpVZiHjSNs9GRUoZ3veiDIZBjSB1G+b3ur5cOGDWXduo2IYuCI849+v+f3BGtXIy5XQ/D//oCHQMCPKAYQRT9qtZK517/Kr78uwOX2IhPkCDIZMkGJRm38LTHchOa3ZHG1xoxCcfiSWwCWhnzMJlOrbvHffPMNekUIel/vdLYIeANYyq1oTRpMsQZcTR7sdY5unYtToESLAbvNRn5+PpmZmcF17QlbXl4ejY2NaNG3W9hZjhwNeiwWC2VlZSQkJLR7Xo1GQyAQwOFwoNd3PIm/tzg4uKShoaFNtZTjkT+NuImiyF133cX111/fr4JISktLKSgoYOrUqe02cuwq7QncokWLOOmkk1i5cjkKuYqEpMnddj6jUckpJ8cSEqLk629KKO1EZRG/30NJ8RqKilYhyOVEnXg6oSMmIVd3bXI/ZMBgrHu2sGTJEs466ywAzjzzTH755Rcc9hr0hmhEMYDdXo21sRi7raq5Yoi7WcB8HvvvBxMElHojCmMoyhgzcpUGhbxZwASZHI22eay6QUMQnM7m0lsBP6LXi72pEYulDG+TBTHwu8tLrlA3i57ahEZjRquLwGRKwhASh1yuRBQDWBoKOOGECcF9RFHsdGPSnsLZ6MLt8GCMMhCaaKKp2t4jCeAHz53/Udj8fj+5ubnYmmzoMKDg0JakEiUBtFRWVqLRaII5bwfTUsexqakJp9PZL4o/HBxcUlpaSmRkZJ/owNBTHL9X9geWLFlCbm4u99xzDwMHDuwXf1SLxcK2bdsYO3bsYftcdZX2BO7HH39k/PjxbNq0FLlcTWz8mC6fZ9jQUCZPjCRnb2OnrDVRDFBZsYX8/B/weuyEjj6BiEkzUGi7x/I2pGWBIPD4448Hxe2KK67g7rvvJvfAtwREP03WUvw+NwgCanMkCnMoyvgkQo2hKA9+hZgQDhOgpJY3C03U1NNwHyJkXhQD+Ow2vNYGvI0NeK0N+KzNPx2WUtxVWxF9XgRBjsEYi04bgd/v5owzzggeY8+ePZSUlTCCE7rlPeoqAW8AS1lrK85Wa29JNTxq/Phw0lxBJDW1Oen+j8Lm8/k4cOAADrsDLQYUHbjtqdAQIEBRURFqtbrd719LBKXNZsPtdveLKMSWzgE6nY6KigoSE/teZ4/uou/f4bsBv9/Pfffdx9y5czEYDP3iD+pyudiwYQNZWVkdqkjQVdoTuA0bNjBkyFBycr5ArlARFX10tSXlcoFTTo4lLlbH19+UdspaszaWsG/fYmzWMowDR5B04hmHDRA5qvFpdGjjU9i+/fdCyjExMcjlChoaCzCkZhE+bAbauGS0MYkdmsvrCoIgQ2kwojQYIa5t8JDo9+OqqcBZXoSzrIjagr0gyLjiiiuC2/zjH/9AEGSUiLl4xOZ5t56OmOwIray4eBONlU0EfEc3/+PHjwMbOp2OARkDkMlkbYTN6/Wyf/9+XE7Xbw1TO3bLawlacYoBcnNzyc7Objf8Xy6Xo9PpsNvtyGSyPl/DUS6XN+dyRkRQVFREdHR0j3iE+gJ/CnH74IMPcDqdjB49muzs7F530xwJURTZunUr4eHhx6Qm3E8//URYWBhDhw5tI3A7dmwnIyOD3Ts/QSZTEhGZ3aljG/QKzjwjAb9P5JPPCnA4OxZh5vXYycv7noqyTWii4kg5+2Z08SlHcXUdIyRjCNVlhRQXFwerU0REhFNrc5Bw3lV96jMjyOVoYxLQxiTAqMmULv4A2/6drR6Cvv32O3S6SHwKNXsaNwECZiKIFuOJIandeqLHipa5uJAIPaEJzQLncx2+hFd5ZTkNlvrfj0EAl+BApVKRnJzM9u3b21Qe8Xq9FBYW4vP50Ii6YOfwIxFqDiMuJu63tAM99kATBw4cYNCgQe2mDbUUWXY4HIct0dVX0Gg0eDweTCYT5eXl/aopc2c47sXN5XLx0EMPcdNNNxEaGtovQv+Li4uxWq2cdFLPt5d56623uPbaa1GrNSxZsphTTz21jcDl5OSQlprGrh0fMXzkVYSGdawNSUy0hjNPT6Sg0MaqnyrxdyCQQBQDVJRvIi/3ewJCgJhTziV05CSEHr5hhKQPonrl19xzzz18/PHHQHN/t88//xxvYwMqc99sGyKKIvaiA0RF/j4vlJubS1OTlazsGcTFj8XjbqK2Noeaql3sr99BLruIFZNJJB290DvBJojNLXa0Hj/mOCO2Wjsuq7vdTcsryzntglNxu4+uSk1nUas1LPt8+e8CJ+pxuJsoLCwkLS2t3e/k+vXreeqpp9i2bRuVlZV89dVXrdIyrrzySt57771W+8ycOZNly5Yddiwvv/wyzz77LJWVlQwfPpyFCxcybty4Ll2fTCZDrVYTGhpKQUEB0dHRXSpn1lc57sXtlVdeITQ0lKysrGCvs76M0+lk165djBkzpsddHF988QXXX3c98aTh8bo484wz+fSzTzn33HPbCNzefXtJS0tjx7Z3GTHqb5jMh8+1yx5oYvq0GNasq2b7joYOjcfttrJ71yc0NhRgGjKG6Ol/QaE/NtX4VeFRKI3mVjebO++8k88//xxHaX6fFTdvYz1+h42pZ54eXPb8888DEB6RBYBKHUJc/Dji4sfhdlspL/2V8tL1lHrzCBOjSWIA4cT0ynfD2ejC5/FjijGgUMmx1bZ1WTdY6nG7XcT/5TJU4T3rovfUVVH29Uc0WOqJi2kuVdUcQamjoaGB2tpaIiPbRuU6HA5GjRrFZZddxuWXX97usU877TTeeeed4O9HmqP79NNPue2223jttdcYP348L7zwAjNnzmTfvn1ERXUtd1GtVuPxeAgPD6esrOy47BpwXItbY2MjTzzxBP/4xz+IiooiPLx752q6G1EU2bZtG7GxsT0+z7Zy5UpmXzKbKBIYyEjEgMgecSMXXHAh7733Ln/961/bCtzevaSnp7N969uMHHM9ISFt69QJAkyeFMXgbDNff1PS4SojdXX72bP7M1DKSZ49F33ysY1mFQSBkIyhNGxdg9/vRy6XM27cOAS5HEdJHuYhXQ+o6QkcJfkA3HPPPcFlS5cuxWCIRa1ua5Wp1UZS02eQnHoi1VU7KS1ew7amNWgFA4liOnGktOoQcSzwOr3UlzZijgnBFBeCtdLWbrqAKjy62RXbCyhR4cdHcXExer2+TXTkrFmzmDVrFm63m8svv7zdPDK1Wt0pz9H8+fO59tprgy1uXnvtNb755hvefvvtVn/vo6HFejOZTBQUFATb+hxP9G3ncBeZP38+gwcPJiEhgUGDBvX2cI5Iizty6NChPXqe/fv3c+4552IKhDNIHIMgCMgEGYPFccSKiVxxxRW8/vrrbRK9w8PD2b17N2q1km2b38Jub91fS6WScdaZiaQkG/j0vwUdErZAwE9e7jJ2bH0HdXwiadfcccyFrQXDgEGIgQAvvPBCcJnZaMRelHvonXoZR0k+glzOyJEjgWY3fElJ6RHnRmUyBTGxIxk97kZGjZ1LSFQaB9jJL3zDXnErdrFzVWK6SsAboKHMCiKEJpiQq/peSTw1WmSinLy8vENWJ2kJzmivPNeqVauIiooiKyuLuXPnUldXd8hzeTweNm/ezIwZM4LLZDIZM2bMYN26dV28kmbUajUymYyIiAjKysq65Zh9ieNW3JqamliwYAGXX3458fHxGI29NLfQQRwOB7t27WLEiBE96o6sr69n1mmzEB0CgwPjkB2UoCwIAgPF0SSI6dxwww0899xzbQQuPj6ebdu2IpeLbNv8Jk5n8yS/yaTkkgtTEEWRzz4vxNJ45Dwml6uRrVveorjoF6JOPIOki/6GQtd7T4+6xHQEhZLXXnstuGzs2LF4LXX47Mf2Zt9R7EUHCD2oT9ebb76JKAYIjxjYof0FQcBkSmLw0NlMnHI3CalTqVJUsI7l7BE3BTuRHwvEgEhjRRNum5vQeCMqXfP3oK/05GruL6fD4/ZQVFTUbgWTFteu3+9vVaPytNNO4/3332fFihU8/fTT/PTTT8yaNeuQIllbW4vf72/jwYmOjqaysrJ7rkcQ0Gg0hISEYLfbsdls3XLcvsJxK26vv/46mZmZREdH9/mE7RZ3ZFxcXI+6Iz0eD+edex7lxRUM8U1oN2JOEAQyGU4KA7nzzjt5+OGHUavVrQRuwIAB/PrrBkTRw9ZNb2DQe7jwvBQKimx8/U0pHs+RQ7vraveyccMCnL4GUi67kYgJJ/daJ4IWZAoFhrSB5BcUBpfddNNNwO/uv76Ez2bF21jfKsDggw8+QKnUEWKM7/Tx1GojaemnMGnqvWRknkmNooo1fE+xmMuxlBh7vZOmGjvGmBBUehVueqeYd3u0zL/V19e3aiz6R1QqFQ6HI+ievOSSSzjrrLMYOnQo55xzDkuXLmXjxo2sWrXqGI380OOUyWSEh4d3m2j2FY5LcXO73cyfP5/LLruM6OjoPm+1FRUV0dTUFGyY2ROIosjcuXP55ZfVDPaPQycc2kISBIEBwhAGMITHHnuM22+/vY3ADR06lJUr/0d8fAQXnp/Gth1V/LK6miPVWw4E/OQe+I4d295Dk5RC6jV3oEvoOx2vDemDCPh9rFmzBmiuVCLI5H1S3BylzWO69dZbg8u2b99JROSgQz4olJasY93qp/npfw+y6deXsTa2rRIvkylISJrEhBPuIiwyk1LycOHEQRNeDm2RO3FgpQEPXY9qdNs8WCubMEbrUev6Vh6WEhVK1BQXF+NytX+tCoUCuVzeqtvEwaSlpREREUFubvsu74iICORyOVVVVa2WV1VVdWvEtyAIqNVqjEYjjY2Nhxxvf+S4FLf33nuP0NBQUlJS+rzV5nA42L17NyNHjuxRd+T8+fN5++23GSiOJFToWA3GFGEgWYzg+eef57rrrkOpVLYSuEGDBjF//r9YvHgxr7z02BHb5bhcFrZueYOS4tVETz+LxAuu6bYqI91FSHrzXNX9998fXGbQ67AX9715N0dJPoJMzsyZM4HmOR2Px3VIl2RV5Q5y939DStrJjBk3D0NILNu3vo3H0747ym6roq52L3Hx45DJlIiIOLHhpe18khcPfnwI3dQRVQQaHc0NNvtiIJgGLQIyCgsKD+me1Ol0eL3edlvolJaWUldXd8j6jiqVitGjR7NixYrgskAgwIoVK5g4cWL3XQi/W29hYWFUVPSfNk9H4riLlvT5fDzzzDNcd911hIeHH3Xfs2PBwe7Irob2Ho4ff/yRO++8kxSyiBNSOrVvojAAuajg3//+N3a7nffee4/Jkyfz888/U1ZWxuDBg5k9+xK+/PJLdmx9m+Gj/oZC0TbEubnP2ocIGjUpf53XownZXUFhMKKJjufXX38NLhs6dChr167F73K26QfXm9iLcjHof4/ae+mllxAEGaFh7Yd1lxT/Qlz8WGLjmiM/swaeQ13tPirKN5GccmKb7UtL1hAWnkFi8gmoVHo0mlBcLgtO7Pjw/XaDF5oTqnGiw4CDrs/biIAbB148JETHB+eCPHVVh9+xG+joOQQENKIWm91GdXU1er2+lRVWUFDAjh070Ov12O12nn/+eS644AJiYmLIy8vjrrvuYsCAAcEHE4CTTz6Zc889l3nz5gFw2223MWfOHMaMGcO4ceN44YUXsNvtwejJ7kImk6FSqYKRk/2llNiROO7E7fPPP8fv95Odnd3nrbYWd+TYsWN77BwVFRVccvFswoVo0sWjc3vGCSnIRQWffvIZNpuNt956C6/Xi1KppLGxkfPOO4+33/43V199DTu3vcewkVchl/9uhdZU72b3rk/QJaSScO4VyPuYtfZHQjKGULNmOY2NjZhMJq699lrWrl2Lo6wwaNn1Nn6XE3dtJWNP+L125MqVqzCbU9t9uAgEfNiayluJmCDICAtLx2opbvccjZZiEpN/P75crkSlMuD12vGKHnx4mgMscKNGjZyuRzg2C5sTD26Sk5MJDw+nvr4ejUZL2dcfdfn4HUGt1hDagbxGBUpUqCktLaOurraVUN12220AzJkzh2effZZt27bx/vvvY7FYiIuL49RTT+Uf//hHKxHJy8trNY938cUXU1NTw0MPPURlZSUjRoxg2bJlPTIvr1arcbvdmM1mKisru9wzsi9wXImbKIo89dRTXHnllRiNxnaTLfsKLe7IsWPH9pg70u/3M/uS2TisDsYEulbtJFpIQC7K2b1zN//73/8YNmwYaWlpwTy4OXPmYLVaueWWW9m94yOGDL8cmUxOedlG9u39CmPmMOL+chmyflCw2jBgMDWrv+fee+/llVde4fLLL+eqa67BUZLXZ8TNUdbca+7aa68Fmpvw1tfXk5HZvsvK63UgigFUqtZzrUpVCHZ7Tbv7eDy2NtvLZM0CZjBE43I14vTZEZChpHue9D248OAiMTGRyMhI3G43kZGR7N69i9raWux2O/X19fh8MpRKHQHRh8tpQY4MNbpucYq2lN/qCGq0+PCSnJxMIBBo9zsWCAT44osv0Gq1h63jWFhY2GbZvHnzgpZcT9JivZnNZoqKioiLi+vzdTKPRN+/03SCZcuWUVlZyciRI8nIyOjT1Uh2795NbGxsj7ojH3/8cX7+5WdGilNQC11rCwOQkZjFOY/cyKKvFrHgxQV8t+y7VoneN910E01NTTzwwIPs2fkJBmMsBXk/EDpyEjGnnNfjJbS6C010PHKdgS+++IJXXnkFuVyOVq3GUZzX20ML4ijJB5nst67h8OKLLwJih1MAuoogk6NSh+DzuRAJYKcJHV2zyD24cOMMRg0fXATZZDLhcDgwGAwMHz4ca5MPt7s5jN7vc+Nw1KJEjaabBK6jNLsnm1vfHKp6SUsnbJfLhVKp7LP3pZaakwaDgaqqqkP2susv9I+7TQd58cUX+etf/4per+/TjfgsFgtVVVVkZ/ecFfC///2PRx99lFQxmzCh6wJqCNdxzqMz2LM8j/zPqtmycSvTpp2IzWZrFWRy3333cccdt1NTs4uCvB+ImHwqMaee32+EDVqqlQympvb3JNvMzEyclSUEvG2DKQ6HRi4jUqMkRqciTqciy9w8RxarUxGjUxGlVWJQyjt9Q3YU5aL9rbsywKJFi9Bqw9Hq2g++UCp1CIKsTfCI19OEWtV+iTOVytBm+4DoRxCaz+n3u2lJEQjgx4YV8bf5tyYaO3U9Hty4cBIdHU1sbGwrYZPJZOzatQuXy0UgoMJq9WEMUaJSNX+m5Ao1Go0ZL2683RCp2VkUKFGipqSkBLe7/fqYLRbbodb3BVqst9DQUGpra/t9t+7jxnLbt28fq1at4vrrryc1NbXPPh1Bc6+t1NTUHitWWlVVxSUXX0KYEEWq2HUBVajknH7viRRuKmPDf7ZjEsIZ4T+B7bvXcsLkE/jfyv+1suCeeeYZduzYwfLlywm4+2docUj6YCzbN/D2229z9dVXc+mll7L97rtxVhSjT/o9YMOolBNnUBOtVWFUyQlRKghRyQlRyglRyVHKZHj8AXyiSEAEg7JZGC7NjEEGyGUCarkMvyhi8/pp8vhp8vp+++mn1umhzO6hzuUNZpoFvB6claWMHDEcaA6iys3NIz7x0E1lZTIFhpA4GurziIwaDDQXqW6ozyM+sX1XpsmcREN9a2vV73MjlzffqJUKHQq9+rdjiXg8Tfh8LmTI0XbCivPiwYWDyMhIEhIS8Hg8QWETBIGdO3fi9XrRaMNQKrW4PX6abGAyqqhvcOP3iyhVegIBHy6PDRnywzYj7Qk0aLGLXoqLi9ud62/phO1wOILRiX0RlUqFx+NBoVBQX1/fbqPW/sJxI26vvPIKZ511FiqVqk/3a6upqcFisTBmTM/UKhRFkauvvpomi52xXZxna+HkmybidXn56c2NwWUhgpmRvilsz1/DpImTWPXTqlYCt2zZMsaMGcOWTb8gU2mImjqry+M4luhTMkAm5/nnn+fqq6/mpptu4ulnniVDFWBQQihxejXxehV6pZwap5cqh4dGj4+iJlezOHn9WD1+mjw+PAfVSVTLBR4em8q/thUHm5UqBAGDSo5RKSdEpSBEKceokmNWK8g0a4nRqfAHoMLhpszuJr+omKa42KBL8uOPPyYQ8BNxBJdkYtIU9u75LyHGeIymREqL1+D3e4iNHQ3Anl2fodYYSR9wGgAJiZPZuvkNKso3ExBH4/Ha8fs9aDRmgObu4gc5f7TycGy2CgKiHyd2tOiPGGTixYsTO2FhYSQlJbUSNlEU2bVrFz6fD602HIXyd9e6y+VHIZdhNqmob/AgiiJqtYlAwIfDZ0dPSLcEuHQUAQG1qKWxsTEYiPRHFApFsOdcX63C35KfFxYWRnV1NeHh4X3aUDgcx4W4NTU18e6777JgwQISExP77ESoKIrs2bOHjIyMHmsQ+NFHH/Htt98yjEndMs82+oIhRGdG8Nmd37VpKqkXQpoFrnwNEydMYuWq1hbcpk2byM7OZt/aH5Cp1USMP6nL4zlWyFRqQlIyEQSB3bt3U1lZyVtvvkFZVTU1CgUHGh2sKmugwuHB24FWPofDJ4pY3D4sbh/Q1m0lEyBKqyL+N0E9ISmai+fPJyQkhK1bt7Jq1Sp0OiNGU9JhzxMdMwyv10ZB/o943E0YQmIZNvIqVOpmt6TbZWl1IzOZkxk05BKqq3bgcTfh8+rR6sKRyQ/x/RKa/1GpDPh8LuyBJrToUNL+Z933m7CZzWZSU1NbCVsgEGD37t34/QG0uoh2I0Btdi8KhQqTUYml0QMCaLRhOOw1OAI29IR0uIdbd6BAhQIPxcXFDB48uI111mK92Wy2YF3Hvoharcbv91NVVYXdbu+3BZWPC3H7+OOPSU9PJzQ0NNhqvi9SXl6Oy+XqsTFWVlYy78Z5xAhJRNGxaK/DkTougdHnDeaL+74/ZK8traBvFri6NZww6QRWrFzRSuBycnJITk6mZOVSZEo1YaMO7TrrC6hkAplmHQNDdWQ+8TB+j5vq6mqys7M57bTT2JWTw8DbnkSQHTurICBCpcNDpcPD5hoo/PgVxJpyiouLqKysZNy48cyadTpl5S7yC2wUFNqw29tv/pmQOImExEntrhs55ro2y6KihxIZOR6NxoxOF3ZoYfsNQ0hz9QyVaMTtsuD02gngR4W21byiDx9O7BiNIaSlpbUSNp/Px549ewgERHS6COSKQz8INlq9hIWqMOgV2Oy+ZgHRheOwV+MSHWgxHLMAE4Hm6Em720p1dXW7lUQUCgUKhQKXy9Wms0BfoSXoJTQ0lOrq6n4rbn3z0aETiKLIa6+9xvnnn094eDghIcem/1dnCQQC5OTkkJWVhaIHwuFFUWTuDXNx2z1kisO7fLzwJDOn3DKJFQvWUldoOey2akHLCN8U/FaYOmUq27ZtaxVkkp+fT0REBJXLv8Cya1OXx9bdCEC6UcMlA6J4YEwKMxJCafL4eXd7IVdddRXz588nLi6OWbNmIfp8uKp6r4K66PfjLCskOTmJiIgIvF4vc+fewEsvf09ZmYPsLBNXzxnA+ecmkZVpRC7vHZdSc1HeUNRqI25cuHAE5wz9+HFiQ6/Xk56ejtfrDQqbx+Nh9+7diCLo9JGHFTZo/txbGj1otQo06uYHDplMjkYbiu+32bxjiRw5KtSUl5e3W5kEQKvV4vF4Dlk0ubcRBAGVSoXRaKShoeGQ19HX6ffitnHjRvLy8hg6dGifbpdeXNycKJuUdHjX0dHy3//+l0WLF5HhH45K6FrOkSZEzen3TmPr4hzy1retPdgeKkHNCP8JKBxqTjrpJNatWxcUuO3bt1NRUYHRaKR86X+w7tvRpfF1F1q5jCmxJm4bkcjFGdFYPD4W7ijlhR2lfF9STzkqFOYIfvrpJwDuvvtuEIRerTPpqipF9PuCXZ6b2/MIBMQYNm+t579fFvHWOwfIL7AxbmwEf7sqg6knRGEy9oKrXmhulNoSyejEjh8/DsGGVqdlQMYAfD5fUNhcLhc5OTmAgE4X2aoQwOHw+0UarR5CQpQoFc23NIVCg0plwI0TP+1bsT2FCg1iQKS8vLzd9XK5HKVSeci6lH2BFrepXq8/bGuevky/d0u+9tprXHDBBahUqj4b/u/z+di7dy/Dhg3rET97TU0NN9wwl2ghgWi6lpsikwucducUavLr2fjfnZ3aVyEoGe6fzE73emaeOpN/zf8X1157LWvWrAkKXGRkJKWL3ifpwmswpPVOQnSkRsmkWBMjIwyU2d0sL65nT4Md/x+mzrw2K0pTKE2FNbhcLsLCwlDIFdiL8wgfd2KvjN1RUgCCwJ133gnA8uU/YDQmolT9Hp3odPrZuq2erdvqiYvVMmxoKH+9LI3iYjtbt9VTWtaxBrLdhVKlRxBkOJ31+PCiUavJzMzE7/cHhc3hcLB//wEEQYZOHxlMFm+hvLyUhob6w55Ho1ag0ciwNnkJBEQQm+uZigFfp9yTnUnibg8ZMtRoqKmpISoqqt3gEY1GQ1NTEz6fr0c8OV1FJpOhUCgwm83U1NQQHR3d7wJL+t672glsNhuffvopr7/+OklJSX12gjY/Px+tVttj4vv3v/8dh9XBEHESXZ1gOOGaMagNKpY+sfKoupzIBQWJgQzqAlXcfPPN5Ofn8+STT7JmzRpycnIoKysjOiaGki/eJuniG9AnpXdtwJ3ArFIwIzGUoeF6dtTaeX13ORWO1nlrPoeNxp2bsB7YgbOsCGi+Sd5www28++67xMXFUlqShygGeqVFj70kF4VCQVhY2G/5kpWkps885PblFU7KK5zo9QqGDQ3l9Fnx1NW5WbO2msqqY2c5yOWq3/LjAm2Erampiby8PGQyBTpdRJv5zPLyUmadNhW3+9iMV63WsOzz5V0SOCVqPIKHkpISMjMz26yXy+WoVCpcLlefndNSq9X4fD78fj82m63PTvkcin4tbosWLSItLQ2TydRj7r6u4vF4OHDgAOPGjeuRJ5/Vq1fz0Ucfkc3oLkdHpoyJJ3NKCp/e9i0+99HNBzSJFnayHpM5FZU6hBdeeAGr1crLL7/MmjVryMvLo7CggKTkZIo/e4OUy25EG9uzfzudQsaJ8aGMjw5hZ52d57eX/haZ+DvOylLqN/+CNWcrANrhA4g881x0IzMpvvV5vvrqK959911OPfVU3nrrLdy11Wgiu6/1SEcQxQCO4nwS45pvui+//DKiKBIekXXEfe12H+vW17B5cx2jRoZx7tnJFJfYWbu+moaGziWmd3rcgQAORy2iGGDgwCxEUQwKm8ViobCwEJlM+ZuwtX1gaGiox+12kT34IvT6nqvoA2C3V5Oz+zMaLPWdErfX33mV5SuXk1+Uj0atZuSwUdw67+/EpERht9vR6/W4XC5uv/12PvnkE9xuN6eeeipPPfUUaWlph7TeRFHk4Ycf5s0338RisTB58mReffXVY1I3V6FQ/NbM1kR9fb0kbseSDz/8kDPOOAOj0dhnn34OHDhAaGhoj9S59Pv9zL3h/wiVhxPnT+nSsdQGFdPnTmD125tpqrEf1TEcoo2twmo0+kiGjrgCuVyJXKHm7bffxmq18sEHHwT7pOXs2UPWwGyK/vMqKX+9CU1U16M7/4hKJjA51sSUWDOFTU5e3VVO5UGWmuj3Y92/k/rNP+MsLUQRbib0opMJmT4aecjvkWy6UVlY1+8C4L777uOtt97CUZp/zMXNXVtFwOPitNOa89Deffdd5HI1MlnH59M83gDrf61lx84Gxo2N4NKLU9m338r6X2uw2bp/bkoUm4UtEPCRkZGBUqkMCltdXR0lJSXIZCp0+vAjWsJ6fdRRNWE9Fvy65Vcuu/CvDB00FL/fz/xX/sX1N13Lf//7X8rKysjMzOTvf/8733zzDf/9738xmUzMmzePOXPmsHz58mDC+h955plnWLBgAe+99x6pqak8+OCDzJw5kz179qDRdD3V53C0BJaEhIRQUlJCYmJin/WOtUe/FbeqqipWrFjBtdde22droDmdTgoKCjjhoMrt3ckbb7zBrt07GUvXk7WnXDOGmvw69q48umAJt+hiq7AauVrH8FFXBfOSsgaeg0Ku5vPPP8dqtbJ48eKgwG3ZvIlRo0c3C9zlN6EO676n8mHhes5IDqfe7eP9fZUUNv3u0vI5bFi2r6d+6xp81kY02SlE3zYb3eiBCPK2If760QOxr9nBu+++y5VXXolMrsBRnEfYyPZD6nuKlkCW++67D7/fT15+AWLAz4a1z2EIiSUicjAxsaPQakOPfCynn1U/V7F1Wz0TJ0RyxWXpbN5ax8ZNtXRX1SVRFHE66ggEvKSnp6PRaILCVlNTQ1lZGXK5Gq2u/yYKt/Dvhe+0+v2ph59m4qnjObAnD5VGRVlZGf/+97/5+OOPOemk5nzPd955h+zsbDZs2MDUqVPb5L6KosgLL7zAAw88wNlnnw3A+++/T3R0NIsWLeKSSy7p8etSKpXBxG6r1YrZbO7xc3YX/UeG/8Ann3zCxIkTUSqVxMf3zae5goICIiMje+QDYbFYuP++B4gTkjEJXetZlzI2gZQx8ax8ZcNR7R8QA+xkPX4FDB99TatK8oIgkJ4xi5S0GSxfvpzp06czadIkLBYLPp+Pn1atIuB2UfTxK3gaDx8w0BEMSjmXZkRzZkoESwvreH13eVDYAl4PNWt/IPf1J6hZuxzt6AHEPz2PuIf/hn7c4HaFDUA7LAMEgUceeQSAyIhw7MW57Tap7EkcJXnI5AqSkpJ49dVXEQN+Es65gvizr0CWEE1xyS+sX/ssO3d8SEN9fofG12j1smx5OZ9/VUR6WgiXXJhKRETXK/y3CJvf7yElJQWdThcUtsLCQsrKypDJlMeFsLVHk60JgDBjBHJBzo8//ojX62XGjBnBbQYOHEhSUhJbtmxpt+ZkQUEBlZWVrfYxmUyMHz+edevW9fxF0Dw3KJPJMJvN/S5qst+K20cffcTMmTOJjIzscfP8aPD5fBQWFpKWltYjx//nP/9Jk7XpqHu0taA2qJh+w3h++fcm7A1HVwcynz00Usfg4Zeh1bYVWkEQSE07mfSM01m/fj3jx49nwoQJWCwWtFotXy9ZjN9ho+jjV/DarEd9LUPD9dwyLAERkRe3l7Czvtm9KgYCWHb8Su4bT1KzZjmGk0aT9PKdRF5/LurkI7sW5QYt6swkikua0yKmTJmC396Et7HhqMfaWURRxF6US1Rkc62/l156CUGuwDBgMKbsESScfQWZNz1CzKnn0+SrZduWN9m4YQHlZRvx+488p1Zd7eKTzwrIL2jiovNTGD82gqP2QIngctbj97tJTEwkJCQkKGx5eXlYLBaQyQgEfAT8/TOH6nAEAgH+Of8JRg0fTdaATFSihpKSkmBLmYOJjo6mtrYWv9+Pz9faLVxZWRnc5o/7tKzraVpcky3zo38cY1+mX4rb/v372b59O0OHDu2zLsnS0lK0Wm2PFB7Nz8/nhedfICmQgVroWo26qX8bS3VeHftWFRzV/nViJYXsJTX9VMzmlMNum5Q8hayB57Jz506GDx/O2LFjsVgsxMTE8J+PP8bbZKHo41fwOTs356dXyLg0I4qzUiJYXFDLfw5UY/+tVJizopiCD16k/NtPUA9JInH+LUTMOR25sXPtWfRjshFFkdzcXO655x6g2ZI6Vngb6/E7bEybNg2A3Lx89KmZyBS/z7fJVGrCRk4i7dq7SLrkBoToMPblfMXa1U+Td2AZbvfhHxwCAVj/ay3//bKIAem/WXHhnbTiRJpD/n0u4uLiMJvNQWHbv38/TU1NyLV6NJGxyFQqnM46Av7+c8PsCI8+8wgH8vbz/BMvAM1luWSC7JCWdIuA9NWOAUqlEplMhlarbX4w6Sf0S3FrsdpkMlmfzG0TRZH8/HzS0tJ6xOXy2GOPoUBJMm1DjDtD6rgEkkfHserVo3NHukUnu4SNhIVlkJQytUP7xCWMY9CQi8nLy2fQoEGMGDECi8XCgAEDePXll/E01FL8yWv4Oxj2nW7UcuvwRETghe0l7PrNWvM77ZQv+y8F779IQOkl7tHriL7lYpTRR+fC1Y3KAlHkb3/7G6NHj0aQy3GUHrtk7pb5tnvuuYfNmzfj93kJGTC43W0FQcCQkknShX9jwPX3YhwxltKKDaxf+xz5ecvx+Q5/E62pcfGfzwrIL7Rx0QUpDBrYtghwu4jgcjXg8zW3rgkPDw8K2969e3E4HCh0BpSmUBBkqEIjQC7/LeCkb1br6CyPPfMIq375H++9+iEx0c33JgGICYvF6/VSWlraavuqqipiYmJQq9V4vd5WbWZayndVVVW1u8+xQi6XI5fLMZlM/co12e/ETRRFPvroI0466SRiY2P7ZAJkbW0tbre7R6zK3NxcPvjgQxJ9GciFo792TYiKE28Yzy9vHZ07UhRFdvIrgkJJ9pCLOpXzFR0zgiHD/kp5eQUDB2YzePBgLBYLY8eO5Z9PPI6rupziz944Yu+0iTFGLs+K5rviulbWmq1wP7lvPYN13xbCrzid+CfnosnqWrqBMi4CRYSJ9evXAxBqMmEvPNClY3aGlvm2ESNGBC1HQwe6gqtCI4g5+Wwy/u9BQsdOobj4F9avfY6y0g2I4qEjRwIBWL+hhi8WFTEo24xGc4RamiK43Y14vQ4iIiKIiorC6XSi1+vZs2cPLpcLhcGIwmgmmIwpyFCFRYJMwOmoO+ZzmN2JKIo89swj/LDqB9579UMS41t3JhmWPRKFQsHixYuDy/bt20dxcTETJ05ELpejUChaWW+pqanExMSwYsWK4DKr1cqGDRuYOLH9NkU9hUqlQqfTYbPZ8Hh6NnWku+h7ynAEdu/eTUVFBQMGDOizgST5+fkkJycHG0l2J48//jhqmYb4QNfm8qZcM5bqA3Xs++no3JH57MFCLSOG/a1VAElHiYwaxLARV7Jz+/sMHJjN9u3byM3N5dRTT8VisfDMs89S8sW/SbzgWmR/eICRC3BWagRZZh3/zqmgxNZ8QxADAWrWLKd27Q9oB6USOe9CFKHdk5sjCAK6MYOw/rABn8/H2LFj+f777/HZm1Doez7/x16Ui9lkBGDt2rWoI+NQhpg7vL9coyX6xDMJGzWZ6p+/Y/+uRZSX/UrmwLMxHaabQFWVi2+XlTH3+niMJiUOh9Bc/eMPuD1WPB4boaGhxMbGBoVt9+7dzVU4Qkwo9MY2+wkyOarQCNx1VbhdFjSHifS026s7fL1Hy9Ge49GnH2bp91/zynOvodfpqamtASDEEIJGo8FoCOG8s8/j8ccfJyMjg/DwcG666SYmTpzIhAkTgOak6cGDB/PUU09x3nnnIQgCt956a3CfllSAuLi4YPm1Y0VLMWW9Xo/FYsFobPu37Gv0O3FbsmQJ06dPB+iR3LGuYrfbqa6uZtiwYd1+7BarbUBgCHLh6IUzJiuC1HEJfHTjkqPav16sooAcUtNOITT06EU2LDyD4aOuYfvWdxg8eAibN2+itLSUiy66iMbGRl5/4w3KFr9PwrlzglUrWqIhFTJ4ZWcZVm+zO8trs1K25AMcJfmEXnAS5nOndXv3b92oLKzL1nH33Xdz88038/333+Moycc4sLlQtSgG8NtteKwN+KwNeBsteK0NeKwNBLxu8PvRqBQw9hmKPnsDl8eLTKFEGWJGYQxFaTSjNIaiNIWiNJiC0Zs+mxVvYz3jZ83CZrPhcLqIGHl0gURKYyjxZ15K6KjJVC77nC0bXyU2bizpGbNQKtufv3U4fTgcPvw+CAtVYWn04juo/ZHHbcPjbsJkMpGQkIDT6USn07Fr1y78fj9KYyhy3aEfgASFEqUxFG9jPXKFGqWydbX80NAw1GoNObs/O6pr7ixqtYZQc+fc1//54mMALr/hslbLn3zoac77y/kA3P/3hxCFR7nooovwer3MnDmTV155JbitQqHgwIED1Nf/HjV81113Ybfbue6667BYLJxwwgksW7bsmAfRyWQy5HI5BoOBxsbGfiFugtjPfAETJ07kL3/5CyeffDLjx4/v7eG0Yc+ePdhsNsaNG9ftx54zZw7//fgLJvhO7ZK4nfv4KZTtruLX/3S+gLFbdLFB+BG9OZ7ho67ulhJUTdYytm15C4VCYN26tdTV1WE2m3nuuef45JNPMA0eTdyZs4nTa7g8K4bCJidf5tXi++2jayvYR9nSj0ApEHXzRWgH9UxLIdHro/CaJwg1hFBXV4cgk6NPyUAdFomjvAh3TQXiQdFkglqFItyMIsKETKdGUMjR6rS8+X/3cO3CJ3E4HYguL766Rnx1jQRsB9V8FARUYRFo41IQZHIs29fz/fff8+233/Liiy+SesUtaOOSu3Y9gQAN29ZRveoblHItQ4bMxmhq2+g3MlLH3OvGER0dhyFEi16noKnJi8vtx+ux43JZMBgMpKam4nQ60Wq17N69m0AggNIUhlzbkeAdsTloxulEr49CJm/93N2R2pJHQqmUYdA3934TRRExIOJ01qFEgYrfxaKrtSUPhwsHAbmfYcPbrzPrcrnwer19shqIy+XC4XBQUFDAwIEDKS4uJjU1tU9Gq0M/s9wqKyvZuHEjd9999zGdUO0ogUCA4uJiRo4c2e3Hzs3N5cMPP2JAYGiXhC15VBxhCSaWPrGq0/uKosgufgWFgkFDLu622oohxnhGjbmBrZvfZNy48axatRKLxcIdd9xBY2Mj3333HVnpaVx7xSX8VN7IT+WW5vEE/NSs/p7adSvQDkknat4FyE09V6lGUCrQDs+gfsteAFRKBfaCfXgctagzE9GfMhRFVCiKCDOKCDMyvaZNQJH6t2nuiGvPxk3rOa+Ay9MsdLUWfDUWPMWVOPeX4CmuALmMU089lSuvvBK5Rocmtuvd5gWZjLBRkzGkZVO2+H22bHqd9AGnkZA0+ZCBUM0WXACjUYUoemmyWtDpdKSkpOB0OtFoNOzatQtRFFGZw5FpOtqzTEBpDCXg9eB01qPTR7YaQ1xcAnFxXZ/DNptV+LwBbL/1u/O4bbjdjegxHpPO3UrU2P1W6uvr242kbqk36ff7e2Raoyu0RE2q1WpsNltvD+eI9Ctx++abbxgzZgwymaxN7kdfoKqqCplMRlRU99e/e+KJJ36ba+uCVSLAxL+OZNPnu/A6O59fVEIuDVQzYujfgt2buwu9IZrRY+f+P3tnHR5Xmb7/z5HxSTJxt6ZpUleKlCruTpECLeziLHxxKcV9cVic4rq4FasBLXWXWONuk4zbOb8/pkkbkrSRaZP9Xdx79eLaOTqTc977fZ73fu6H9Wtf4cgjp/Hee+8A8MADDxAZGckpp5zCRz8tIS8yE0EQUHxeKr56B/uunUTOPhrLqVNDnobs8j4n5uBcs51FixaRlpZGYWEhyY9chWjs/+xV1GvRJseiTe6Ybi+/+TmoDdbU1dTVETFiYkhNm7WWKDLmXEvtsu8pXP0dzdZdDB9xdqf0YBs8XoWGRhvRUSYghoSEBNxuN1qtdncvNhVtZAyirpdlKoKI1hKNp6EOj7sFvcHS7+/2VzjsfiwWLU5XAEVR0WhNeL02vKobA70rD+kLJCRkNNTW1hId3bmAXRRFNBoNXq+3y24CA4m2gu6wsDBsNttA385+8T+llvzmm2+YNm0aFotlUIbCpaWlpKWlhVz+X1dXx/vvvU+yf0i/orZh0zLRmjRsWZTf62M9qositpOcfCiRUQfGyV9viCQsPBlVDXDhRReRl5dHQ0MDs2fP5vvvv+fLV1+gYcXPBNxOSj9+GUd5IQm3XUTk6aFfX+sOhnHB8osbb7yRyy67DAB3XtkBu17A4cJXUUdGRgYffvghaiCAeeiIkF9HkGQSZp1K6lmXYbWVsmb187S0dP29/H4PrS111NXVYbFYcLvdaDQatm/fgQpoo2J7T2xt9yFr0URY8Pkc+Hx9MxXYF3x+Ba9XwWQKzusFQUCrC8eHlwAHpxxBiw6Xy4XD0XU9p1arxev1Dkr1qEajwWg0YrPZBuX97Y3/GXJzuVz89NNPjBs3blCmJF0uF3V1daSn928dpCu89tprqAok0/eoTZRFDjt/LKs+3ITi7715YD6bEWUNmUO7b6/SH6iqSn7eNzQ25pF4/DnoomJ56eVXcDqdaLVarr/+eoYOHUr9b4soeuNxPNY6EufPwzj2wLuj7w3ZEoY2I5H8/HxuvvlmkETcO0sO2PU8u4nziiuu4LHHHgNBxJTRv/rGfSEseyRD5t2EGGlhw9pXqCjvaPMU8HtxORuQZZnMzD3PY3V1NQigi4pF1PZv4ikZTEh6I253M4oS+gJvu8OHQS+1dynXaIwIgnjQunZLaBAFibq6rpWZbW78g7EDtkajQaMJGgcM9pKA/xlyW7x4MQkJCYSFhQ1KcisrK+u2MWF/4PP5eP6554lXUtAI2v0f0A1GHZeNz+0jf3lJr49tUuuopZysYSd2q6jrL0qKF1NV8SeJx59D5LjDmX71rdx55x08/8ILLF26FKvVyocffkhMTAx+Wyvhxx2KPrv/6059gemQ4QRUBavVioSAa3vfyil6AtfOEpBErr/+erZv34EpLQtJd2CzFpqISDIuvIbIiUdSkPc1FaVBo+uA4sPpbECSJHJycnC73QiCQHl5OZGRkUQnJiNo+u9LCQKaiEgEUcLlbIIQRwiBgIrLHcBsCg7SBzt6EwCNqqW5uZlAoPP12hxLBiN5SJLUXhLgdB7cpre9xf8MuX333XfMmjULvV4/6JREqqpSXl5+QHrKffbZZ9TW1ZLK0D6fQ6OXmXTOaFa+txG1ixqlfUFRFXYKG4kITyMhMfRCGYC62q2U7PqF2GknEDn2MGL0GuaNyWBRuZVV+SU89vjjfPbZZ7S0tPD999+j1+uxfrYE+++bDsj97A/GCbmgqFx22WUkJCTgKapE8R6YWbZ7WzESAqWlpfh8PszduJKEGoIkkXD06cTNPIXKylV4vQ7cLiuiKJCTk4PH40FRFAoKCvD6/DS4vEQYdBjkEA0pgog2MhpF8eH1hl684HD40WpF5N33e7CjNw1aVFWlublrf1KtVovf7+/gWDIYIAgCsixjMBhwuUKfNg4l/mfIbcmSJYwZM4a4uLhB5yJut9txuVwHREjyzNPPEC3FYxZ6aIHUBcafNgJrVSslayt7fWwFRThVG8OGn35AOk+7nE3s3PEZYTljiDn8aPSSyEU58ayutbG2yUXa7MsxZQzjpZdeZuHChbS2trJs2TK0Wi11L/4Xx9odIb+n/UGbkYgYbuKXX37h7LPPBkXBU1ix/wN7CcXrw1NcRWJiIrfeeiugEnYA1tv2hZhDZxJ1yDQUxYcgQE5ODl6vF7/fz65duxAkCW10HD5Emjx+InUyGjE076cga5FNYXg8tpDbcymKisvlx2zes/am2x29KQchehMRkZG7tbNqqysbrKnJNruwvWvyBhv+J8itpqaG/Px8MjMzD4gRcX9RU1NDbGxsyK3A1qxZw6rVq0gO9L1QWmfSMu604ax8d0Ovj/WpXnYJO0hMmoQ5LPQenoriZ9vWDxFNJpJOmI0oCJyXHUej28dP5cGXRtRoSTv7MsKGjeb999/nueeew2azsXTpUmRZpvbpD3FuKQz5ve0LgiBgmjQcp8fNgw8+CKKAe0dJyK/jKSgHRWH27Nn88ssvaCNjgn6MBxHeliZat68HID09HZ/Ph8fjoaSkBEGW0UbHI+yuSXP7FWzeANF6GSlE80/ZHI4ginjc1tCccC84nAE0sohGExwG5fbo7eAYGMtosdls3aYfNRrNoCS3tnFOo9Gwdu3aAb6b7vE/UQqwbNkyxowZg6IoREdHD/TtdEJNTQ2pqaFf/3nppZcwyWHE+vteUDrimKHU72qiekd9r48tYSeqoJKZdfT+d+4Digp+wG6vJuOifyHpDRyfFoVFK/PStkr2Tp4KkkzK6RdR9f3HfP3119hsNu666y6WLF7MjFkzqX38PRLnz0OfE3oxT3cwTsjBtnhtsPUMAq4dxUQyM6TXcO8sAVFkwYIFPPn000RP2mNO3bTudxpXLcHvsKGLSyLxmDP2WdTdunMjdcsX4WtpQhsVQ9yMkwnLCkaBaiBA3fLvse/agdfahKTTY0ofRtQh06j44i2SoyKIjY1FURRcLheVlZUIsgZdVCyIHdW7Nl8AjSgQpdfQ4PLR79UyQUQOt1C+cxsudzGS1Pd1565gNMiIkoDdHiQRn9eByaQjOyEHgQObIdKgxY2LpqamLnUEGo0Gt9uNqqqDKlslimJ7vdvixYs59dRTB/qWusT/BLktXbqUyZMnYzabB10JgMfjobm5mUmTJoX0vC6Xi08+/oQ4f99LCwRRYPQJw/hj4breX191UEYh6Rkz0elCb7VTX7eNivIVxB99OobEVMbHmJkYF8Z/tlTiCXQeEgVRIumk8xC1OpYsWYLD4eDhhx/ml59+5qhjjqH64bdJuvcf6DIPjLPEX2EYNQQkkWeffZboqCga88pQA4FuG572Ba7tJQjA008/DYrSXgLQsmMDtYu/IvG4czAkpdG4ZjmlH7/K0Mtv79Ln0llRTMVX7xE340TCskbSsn095Z8tZMi8G9HHJqL4vLhrK4k54lj0cUkE3E5qfvqcknefQ1UVnnn7TQRBwOl00tDQgKjRBg2Pu0lTN3v9xOo1WHQyzZ7+qx3rGhs5+6yz8XgPTkSl0+r45rNvSU84ME43bRAQ0KChsbGxS3JrIxG/39+uUBwskCQJjUbD6tWrB/pWusX/DLldffXVgzIlWVtbS3h4eMhVkl9//TUOp4NE+i5SGTI56Oiwa3Xv14MK2YpGYyQ1bWqfr98dXK5mduz4L2HZo4maOJUUk47TMmN4N6+Wpn0MhoIgknDMmYhaHav/XMwNN9zAM888w6Lvv+f4E0+k+oE3Sbr/crQpoV/7/CtEvQ7DyCHUbtvFBeedz/vvv4+npBp9Vmg6Qaj+AJ78MmKio1m4cCGiVocxOTjYNq5ehmXsYVjGBC3eEo8/G3vRdqybVxNz+FGdztW09jfMQ3KJOXQWAHHTTsBRkkfzut9JPP4cJL2B9POubN8/4HGj+DyoAT9PPvkkOl2wLquhoQFRqwumRvex/qqq0Oj2EWfQYtaI2H39E0U0NzXj8XoYyWRMHFgxmQMb27yrqbPWkpaQ2ePY7ZWFL/HTkp/YVboLvU7H+DETuPnaWxmSsWdJ4aIrLmD1+o5kcM6Zs7n1jptxOp0YjR2L5gVBQJIkFixYwFtvvYXVamXKlCm89NJLZGcf3BKYv6Kti0FhYSF1dXUHRG/QXwz6Nbfq6mry8/PJyMgYlORWU1NzQHrKvfPOO0RKMRiFvr/MY07OZcsP+b1WSDrUVmopJzPrGGQ5FNLuPWhfZzMYSTrpPLSSyLlDY1lc2UxR6/7VV4IgED/jZOKmn8jWrVu58sorEUWRr7/8Erx+qu5/A1/Nwek5ZZyYixpQmDNnDggC7p2lITu3p6Qa1efnxBNPpKysHNkUjqu6DMXvxV1T0aHWTdhd++asLOnyXM6qEkwZHQdDU2Zul/srPi9ln7yKt6keQRBITU3lxx9/xGazIWh1aCO7j9j2RkCFJo+PcG3oBCYmwggXIg/ovzbyVFEJ0PP1rtXrV3PhOXP45M1PWfjC2/j9fi67bi5OV0e5/Lmnz+b3H1a2/7vtutsQELpVTT777LP85z//4aWXXmLVqlWYTCaOO+443O6Do+rsDm3rbtnZ2SxfvnxA76U7DHpyG8zrbYFAgLq6upDX3dXX1/Pjjz8SF+h7FBCdYSEuK5rtP/debFFOERrZRELShD5fvzuUFC/Bbqsi5fSLkPQGjk6JxOlX+K2qpVfniTn8aBKOPoPCwkIuvfRSdDod//3kE3B6qLr/DfyNvTtfX2AcnwPA3XffjSAIuENY7+beUQKCwJQpU1BVBZ/DSsl7z1Pw0oOgKu1dEtogm8LwO7q2RPLbO7fl6Wp/xe+n/LM3cFWWkJKSwrRp0/j000/54osvEDRaNOEW6EWK3BNQcfgCWHTyAV69Cj0EQe6VsOSN5xdy5ilnkZ01jNxhw3n0nseoqqli246tHfbT6w3ExsS2/wszhyOj6bLDtaqqPP/889x8882cfPLJjBkzhnfeeYeqqiq+/PLLfn7D/qEtZTpmzBiWLl06oPfSHQY9uQ3m9bbGxka0Wm3I2z98/PHHqIpKPH0XqYw8NpuC30vwOHpXCOpXfVRTSnLqoYhiaLPWTkc9ZaXLiD5sFoakdNLMOg6ND+ezovo+CQ+iJk0l6cTzKCsr5+KLL8ZsNvP+u++itjqpuv8NAi0H1txVExeJJimGjRs3EmY2495RghqiuiT3jmIEQdjtSiKQ9vxNJN13OfrxwTRX+edvUvntB7hqykNyPVUJUPnVOzhKCsjNzUWn06HT6fj0008JHz4e2WCCPlBUqy+AKARbFf0vQaMx4MeHQt/+njZ7cOIQEW7p8Pk3i77i0KMP4eTZJ/DkC0/gcruQ0eByuTo0KgUoLi6mpqaGo48+ul01GRERwaGHHsrKlR2dYwYCoiiSnZ39N7n1Fb///jsjRowYtCnJ+Pj4kCuZ3lr4FjFCAlqhbylBWSuRMy2TbX2I2qooQUEhKSW07YRUVSU//xtkcwQxhx+FRhQ4OyuWXyqaqXf3Xe5sGTOZ5NMuorqmhjkXXURUVBRvvfkmSmMrVQ+8ScB+YAtNjZOG41cUDjvsMBSnG19l71Wpf4WqKLh2lBARHk5xcTG6oSlIEWb0OWnEXXkmiALmI8fiqCmk+K2nKfngRdz1Nd02TZXNnaO0vZusqqpC1XcfYSvY2u48Eh4ezk+//kL4qEnEHnls37+LCs0eP2FaKWTpyYMBaXc63kfvXUIUReHhpx5iwtiJDBu6J3188nGn8sT9T/LOy+9x+dwr+eqHL7nl7psQdg/Df43eampqAEhKSupQEhAfH9++bSAhiiIpKSls27at27TqQGJQk5vD4WDHjh2kpqZisVgG+nY6QFVVampqQp6S3LVrF+vWryNO6XvUNnRKOvYGB7X5Db06TlVVyoUi4uJHh1whWV+3jebGAhKOOQNRo+WY1EgcfoU/qvufPowYPo7Usy6jrr6BCy6cQ2xsLK+89BKBmkaqH34LxXXgVHamCTmgKO2ColCsu/kq61FdHsaPH4+CinFibvs2QZbRZSYjGnSkPncj8TdegE+x49i1A29LI76WzoOMMSkDR0lBh88cJfkYkzNQVZXqHz+jZds6hg4d2t5Be8OGDUhmI46SfPy21n59H+//YHoy6MRh6BO53ff4vRQU5fP0Q890+Hz2mecx9fBpDBs6jBNOOJEH7n2Qn5f+RH7FDkRR7CQoaYMsyyiK0qVV10CiLTWZnp7O+vXrB/p2OmFQk9umTZuIjo5Gq9UOOnJrbW3F6/WGPKL86quvkESJGPouUhlxzNA+RW0NVONS7SSnHdHna3eFQMBHYeF3mLNGEJY9kjSzjslxfU9HdoWwoSNIn305jU2NnH/BBSQkJPD8s8/hL6uh5rF3D5g9li47FcEQLE9AEnHt6P+6m2t3QbjH4wFFDRLoXog4aQq2xWux/7YRTXIM+mGpCFoNfncrha8/yq6FT1K75Jv2/aMmTcVevJPGVUvxNNZS99siXNXlWCZMoW7pt1g3riQzMxOr1YpGo2Hbtm1Yzp5Fwp1zwSBRvegjVLV/6dZW7/9eelKjMaAQ6JXf5P2P38vS3xbz9kvvkRC/5x1WUPDiwYkdOy24sDN6dzd1RVEYN25cJ1vBtolzfX09sizj390It7a2dlD464qiiCAIjB49mnXrel9udKAxqMlt/fr1jBs3DlVVB52fZE1NDXFxcSFvKPjlF18SRRyy0Lf1LktSGHFZ0eQt6/0gW04RYWHJhIeHtiC9onwFHncr8UcFiz1PyohmWZWVhn6kI7uC19oIioK1tYU5F19MSkoKTz7xb7wF5dQ++UGHLtmhgiBJGCfk0OqwY9TpcW/b1d4KREYgVTBwiGThSCmKmVIM8zTB0o7pUjRTpWgOkyIZKprQ7/UquneUgCiyfv16pMgwNKkdexeajxhN1IXH0/zpr1Tc9iLe0hoS776UtGdvJPyYQ3DXVtK8eTVea9DlxZiSScqpc2jetJJdb/4bW95mUs+ah71gK42rljB79myKi4tpaGigqKgIAOt/F1N52wtEzT4av89DwOWEfkxFVMC6Oz35v5KdlGU9AmKPojdVVbn/8Xv5eenPvP3Se6Qkp+LHjxsXDsGGnRbcONGbdSSnJDNy5Mh2sho6dGiXXbkzMzNJSEjg119/RZZlfD4fra2trFq1isMPPzzk37cvCAsLIzc3d1BGboO6zm3dunXk5uYSHh7e5R9/IFFTU9Oh5Uco0NLSwh9//EGMkhR8EYSedjHeg8zJqZRvqsZj7106xa620kQtw9PODekaotfroLRkCZHjj0AXFcfISCMRWpnfQ5CO3Bu2/K1UL/qU8GMPJWzWJKofeJOL585l4Rtv8Ogjj3D7HXdQ9/ynxP3r3JAWWgOYJubiXb2Dww47DK1Wy5hADGlGC4mCHg8BqlQPLjWAD4U4MbiWkyAG6UyLSLyoJ1LQUK94KFdcbE0fTolHQ15BPtpDRnT594g4/jAijj+s0+fRF5+I6Ygx1D3zMbveepKkE88jfNhownPHEZ47rn2/xjXLqP9tERdddBHnnnsumzZtYmdeHnHXnI35yLEdzhmVlIzq9xFwORDD+u4Q4gmoeAMKYRqJFm/vU2wObP3h155fow2CgKwx4PO50GHYZ0r1vsfu4dsfv+G5f7+AZBQoaSxCVRUiIiKIj4+nubmZb7/9lpNPPhm9Xs/q1av5v//7P6ZNm8aYMWPaz5Obm8sjjzzCGWecgSAI3HDDDTz44INkZWURGxvL448/TlJSEqeffjperxe73Y7dbicyMnJAAoCwsDAyMzMHXL3ZFQY9uV122WWDLiXp9/uxWq3Exsbuf+deIDw8nFNOOYVvvvmGWqWcCCmKSH8csSQSTlSPSCfzkBR2Lt3V62tXUIhWYyIufnRfbr1blBYvRhUFYo88FhE4Ni2KJZXN+HpZe7cveJrqqPz2fUyHjCB67kkIokjS/ZdTff8bzLvsMl5/9VXuv+8+FixYQP0rXxJ75RkhaW4qArliGJOmHM/Iqefg8XgoLCykqq6R/BQfFaqLJrVjdKpD5BH9CD72VeLZS4lnRiJFNJDoUMlOz+TkY48nKiqKgtYG1kseNgZaOuy/L+iHppD86NXUv/w5FZ8vJGrSVOJnntLuAdm86U9qf/2K8847j3POOYebb7mFvIJ84m+6ANOk4Z3Pl5OOaNARcNiRdEZEbd9rH1u8AWINGhy+AP4ePgKRUVHodHq2eQ6OG4ZepycqMgoIdgvw+RwE8CN3MVwGCODHx4effQDAvCsv6bD9zTff5PDDD6e8vJzFixfz3HPP4XA4SE1N5ayzzmL+/Pkd9s/Ly6OlZc/E79Zbb8XhcHDllVditVo59NBDee2118jPz9/Lk1LA1mpj5KiD0zFib4SHh5OcnExhYSEtLS1ERPTd4D3UGLTk5nK52L59OykpKYOO3FpaWtDpdCF3JREEgS++/ILm5mZ++uknvv32W775+ltKWneil41E+mOJIZFo4pGFznY8+nAdCTkxLPr3b726rk/1UkUZaSnTQyr/93haqaxYRczU45CNZibEhiEgsKYudC3qFb+Pii/fQYoOI/bqM9tJS5scS9IDl1N13xv84/LLeeWll1iwYAH3338/jQZdkAT7GKGGIXOkHMWhUiQBYG2gmduefZziFetQgbBp44m94oxendNOgJ2KnTWr11P/0udEREQgajWc8vy9TJGiOV1OZGOghWWBBmrU/QtkJLOB+JsuoHXRnzS+twhXbSVpZ12GfdcOqn/4hLPOOovzzz+fm2+9lYKiQhJuuxjjmO7bKokmPYJWg8/aiC4mvpOnZE/hU1TcfoUwbc+tuRKTU/hm2e80/8WBXvG48NtbMRiiOtX99QdDMhOxWBLweANIkhZBEPGrPmTk3cXdfvz48At+FDWAIAjk5eVhsViIiIhAp+tM/qmpqSxbtmy/125Laauqisvlwmazcckll3DmmWcSExODx+Oh1WoDr4ABExIyfny43E4CgUDIl0n2h7CwMERRJDU1lfXr1zNzZmj9VfuDQUtumzZtIjIyEp1ON6hmAxCU7B5Iwo2MjGT27NnMnj2bQCDAn3/+ybfffstXX3zFlrw/EQWRSCGWKCWeWBLbXUwyJiZTv6sJZ3Pv5O/VlKIKCkkpk0P6PaoqViFIElETpiALAkelRPJ9WSMhDNqo+fVLvM11JD14JaK+46CiiYsi+YErqH7gDa646ir+88IL3HnnnTz88MOIBh1R5x3Tq2vFClpmSjFMlCwUKA4+9FWSr9iD60lpUai/q0iiiGtb7yPnNrh3lIAk0WKzYRyXze9Y+d1rJUnQM0WK4v+0WRQqDpYEGihUHPs8lyAIRJxwOLohydQ8/i673noSn7WJ008/nYsuuohbbruNguJdPTSdFpCjI/DVNuFtadrdnaBvk4NWn584gxa7T+hxBJ+YnEJi8l9NDVQ8dVXIkgG9wdKne+kKZrMGUQCPNwBCcO3N53OjouDHh4qKRtYQHRlFREQEYWFh/SYVRVFwOp3YbDbsdjs2m629l5uMjIiM4lYx6c381XpV2j2M2+32gz5WGo1GRFFk7NixrFu3blCR2+BayNoL69ataxeThLpIur840OS2NyRJYsqUKTzyyCNs37mdkpISnn/heSYdM45SzU5W8COrpJ/JVzeRNCmGXat7X9RbI1QQHZ0TUvm/oviprFxNxJhDkPQGDk8Ix+4LsLVx3wNyb9CyYyPWDSuJvuQkdOldq8fkqHCS7rscV5iWq6+9hpycHG699VZav/4N61f7n0lD8CU5RorlJu1QBASe8hbxuq+UvN3EBsEuAagqer0ef10zfmvfolPXtmIkAEUJNkXdjSrVzaf+Kh7w5FGmupirSeNCTQpG9j+o6nPSiJp9ND5rEyeffAqXXHIJt95+O4VlJSTdc1mPuykIkogmLhLF4ybg7HuBvF8Bpy9AuLa/UYaAZDTj8zn7rebcGx5PAK1WxOux4bDXBc+PgsYok5iUyIgRIxgzdgzp6elYLJY+EVsgEKC1tZXKykryduaxYcMGdu7cSVVlFY4WJxpFi5EwwrBgJAw9BgIeFY2uczwiIiEIIg5H6N6tnkIQBCIiIsjJyRl0islBS25bt24lOzu7PewdTGhpaRmwVGl6ejpXX301ixYtoqm5ia+++orz5p1LIMlJ5vhUPl/3IVv4kyq1FG8P0lce1UWr2khs3KiQ3mdd7WZ8XjtRE49EFgSmJVn4qbwpZHoAb3M91Ys+xnT4aMKO2ndHBincROI9/8Adbebaf11Hbm4uN998M9aPf6Vl0Z/7PDZR0HG9NotxUgQveHfxsb+S2i5+VzkuEjHM2O7515d6N7/Vhr++ud0B3viXEgAIpi9/9NfxmKcAHSK36oYyUty3kMCdV0rjuz9w4kknMm/eXG674w4Kq8pJuu+f6IYk9+oeRaMeMdyEz9aC2o8GojZfAJ0k9ruwWzaaARWf17nfffcFVVXx+9y4XVaszVWAiiB4kSSIiYlh5MiRjBgxgqSkJIxGY69T2m3r9OXl5Wzfvp0NGzaQn59PTXUNLrsbrarHRBhmIjBiRocBGblD2x2/x4+kkRD+0ixPACRVwm4/sI483SEiIoL09HS2bNkyINfvDoM2LZmfn89RRx016EoA/H4/NpttUKRKTSYTp556Kqeeeiq1tbWsWbOGi+bO4asvv2Ld+jUICFjEGKICccSQiJmITi9lPVUICETH5nZzld5DVVXKy1dgyshBFx3P2BgzNl+AgpbQuIWoqkrl9x8jRpiI/edpPRpoJJOBxPnzqHn8Pa6/4QaeevJJbrzxRp566ilEvZawGR19NEVglhTL0XIsywIN/OSvJ9AFNXsr62n98U8cf2xEcXgQdw887p0lmA/r3YShjRC9Xi/a1HjkqO4jaRt+3vSVMVG0cL4mhe2KjS991Tj/UpPlKa6i+uG3Of6YY7l03qXccdddFNVVkXz/5WgS+ubVKkeG47W78NusaCL6do6ACk6/glkj9a8tjigh6Y34fE60OnOvDlWUAAG/G//ufxCMRNrW0ocMGdJtYfX+4HA4aGxsxGaz4XZ72iNLURCRVBk9RiTkYNTVw3OqiorfF0DWyvhcHYVKEhJOZ/8Ivq8wm83ExcVRWFiIoiiDJhgZtOSWl5fHBRdcgMlkGuhb6YA2Mclg87msqakhLS2Nk08+mbvvvpva2lp++OEHvvnmGxb9sIgi1zaMsplIfxwxJBBFHJIgU0cllsghaDR9e4m7QmtLGfbWSlKP+wcARySEs6ImdNL/lq1rcZUH14pEY8//DqJeR8LtF1P39EfceNONPPH4E8G2Oc8+g6DXtpNRvKDjAk0KGgRe9BZTrnYkZVVVcW0upPX7P3BuKsQQqefQCzIwR+v46dHNQDC92Fu0dfNWAOMhnVWLXWGdYqXAY+ccTRK36obyia+K7UowJeqtqKP6gTc5/qijuXTePO6cP59dzXUk3385coylx/eltv8vGCUIkogcHY6/3opkMPdZPenwBZWTrV46rSP1BqLegM/tRFECiPsSlqgQCHh3k5kLRQmSqiRJREREEBcXR3h4OIIg4PV6e+y8r6oqNpuNxsZG7HY7Xq+3XRgiCDKCICKoYCQMQRX75dLi9/jR6KRO5CYi4fG78fl8B6X3W9v3gyC5hYeH4/f7KSsrIyMj44BfvycYlORmt9uprKwkJiYGs7l3s7EDjbb1tsHUGbfNCmz8+PHtn8XHxzN37lzmzp2Lx+Pht99+49tvv+XLL75kU9kKZFEmQo2hiXqGRIfW/b+ifCVaSwzmIblkhumJ0MpsaghNyiTgdlG79BtMh4/GMCqr18eLWg3xN11A3Yv/5ZZbbuGxxx7j+utv4NnnnkXUaRgzcQKXatL4I9DEj/46/H+J1rxlNTS++z2uLbuIHx7JUQ9OZPhxychaCb83wOKntxLwqvjKawk4XEimnitq24Uof1lv2x9a8fOGr4xJooU5mhR+9NfxS2U+Vfe/wXEzZjFv7lzuuvtuiu1NJN13ObKld++U1e/BpyioHh9ogwOnZDYSaHXgs1nRRcfRF3GJTwnWvZk0Eq19qHtrg6TT40PA73N1it5UVSHg97QTWtugrNPpsFiiiYuL61LduLfl1V/X1FRVpbm5mebmZhwOB16vj7YCPFHUoNGYkCQtkqRDEEV8XgdutxUhBL29/Z4Asr7rdTcIqswPBrm1RYkajQaz2YzX62XIkCHt7ckGAwYluRUWFhIREYEsy4OO3AZDLce3337LypUrmTZtGkcccQSBQACfz9dtSyCdTsfRRx/N0UcfzdNPP01eXh7fffcdn/33M1b+WcuuwkXUVm8gJnYE0bG5hIenIPSgZ1dX8Hhaqa/bQtxRpyIIIpPjw1lXbwtZXVvDip9R/F6iLzqhz+cQZIm4686h/rWvuO2223j00Ue5/rp/sWL5n1w6+TQ+91WzVrF2OEbx+mj+6GdaFq0kMtXMSc8eRvb0hA6THFkrMeSIeAqW10AAWr75HVQVb0kVirUVxetDL8jwn9eouu053GoA0WREk56IJikWX0UdgiAgmPTohvS+o/haxUqN183lcjrezatoOnI6cy+5hPkL7qbEayfp3n8gmXsfobvUAEusZZwka7AAgk4TXOcJN+Ovb8bvsCPq+pbJaHUFCNOIqP6/TiN6B0GrwedzIsu6YLox4MHv96AowQinLd1osViwWCztqTNVVbuN0AKBAA6HA0mSaGlpobW1FZfL1cHjMUhmRkRJEywb2Ot4VQ0Eu7Pvfpd8+JB6IADaFzwuN5LB0IUlmIqAQGtrK1pt3wvt9wdVVXE6ndTV1bWLafR6PZIktZPbscf23Wg7lBiU5Jafn092djZ+v3/QpSWtVusBaU7aUwQCAc6bfR4ulzsoaRdF/vGPf3DooYfy9ddfc+SRR+6zuFwQBHJzc8nNzeWmm26itLSUp556iq+//oaysuWUlixBlg1Ex+QSEzucqOhsZLnnA1dV5WoEWYNl9GQMssiIKCMvbK4MxVfHa22iad1vWM6cvs/1qJ5AEEViLz+dxnd+4Pbbb+epp57iyCOP5MlnnqHk2BHos/dYkHmr6ql/9iP81Q3MvG4Eky8aiqTpmvyzpyeQv6QaAOuXyzDFGkgcHoEl14zGIGHaTS7jj4/FYXdib/RQvX0bjYtsiJKAgoBpYm6fi8xLrQ3Mf+ktHrrlDnQ6HXfedRdlgoekuy9FNPS9+PqL5mBUOdPvQyOK7TFIoNWB2tSExtz3CV+4VsbpD+Dv8wRIJeB2o3jdCEJNe3QmiiJ6vZ7w8PD26KylpaVDkXRXCAQC2O32dil+a+se42hRlNv/CaKEgB/Y/1qy221FpgWZ/kVVgiBg9hixNzo7pAYBvLhxuYO1cQcaFoul3d9SEARMJhPp6enk5+cf8Gv3FIOW3DIzM9HpdAclxO4p2sQkA1lUvnXrVhxOBxOZjhY9VqWBSH00y5f8xtvvvQXAsKHDmDFrBtOmTWPq1KmkpaV1e7709HSeffZZnn32WbxeLwsXLuTtt99m/fqN1NZsAAQsloxgVBeTg9G0b1eWurqthOWMRtLpGR9jptLu6VdLmw7n/u17xDAjEScdGZLzCYJA9MUnkDp0GGazmebmZiZPmsSqh/9Dwr3/QJeeiO33jTS+/hURCXrO+mA6cdn7HsSzpu4pSUgYaeHSDzrW/YiKBkrhyCuHo4h7fpdfn9rCqrcLAbVXKcm9EbC7qHrgTY4eMwlJCgoMJh9/FN6JsYja/r1HKvB58y6+t5YSKevayc1TVkPdMx+ReOzZmDK6LwLfF6YkRBCpk/m2tOcd1ANOB47yXTjKCnCWF6P6fQiiREZ6GieccAJz5swhKiqqR+eqqKjgs88+4/fff6eoaBdOZ1BSP3LkaM6dfR5vvPkTYWHJmExxfZ50bN/8ETq7yjBhzP533g9Ou+9o/nx/E7X5HdsrFapbiRkewedffN7va+wLGo2mU6rWbDaTnJzMihUrDui1e4NBS26pqamDLiXZ2to64GKSP/74A1GQCFejkAQJE2EMyxpG0yoXR3IiVhpoLmzg49JPefXVVwFITkxm5lEzmTp1KtOmTSMnJ6fLNUOtVssVV1zBFVdc0X6t559/nl9/XUxhwfcUFnyHXh9JTNwIYmKGE2FJ7+Bo4nTU47TXkjLsRABGR5tZXx+aWaS3pYnW7RuInnsSoj50aZchoonLZ53Cm3/+yp8vv8+DDz7IdVdezfP3v4xxyhhsP61i5EmpnDB/HFrj/l8Xc4ye+OER1O5ooW5nCz53AI1+/6mosnW7B3ZRxDi692uJistDzSNvcfSYSVw0Zw4LFiyA7GTu+cc1SP56fgv0nDj2BbcaoNq3lyovMYwaOUDDz1+Tft5VfTrnMp+fa8ck0+Bwd5u+VtVgwbatcDu2gq24dzdpFSWZjPQ0Lr/qKm6++eYe1ZytX7+et99+m8WLF1NQUITHE4y8NFozkZFDsESOx2LJQBESsESYMZpG4nIruHooMOkKTS0KLZU7ieSvhei9R+X2GjQmifrSjo4tVtXO5pr1XZLPgYbZbCYxMfHvyG1/yM/PZ8yYMYOO3KxWKxERneX0BxOrV68mQopECgQfXlkrEZkSQV1RE3rBSAJpJJAGfvDiwUoD1uoGvvtoEe+//wGqqhAVGcX0GdOZNm0a06ZNY+zYsV2+DFOmTGHKlCkA1NXV8fzzz/Pf//6XgoJVVJT9gShpiY4eRkzMcKJihlFfvx1B1mDOzMEki6SYdXyQXxuS7928/g9EvY6w6aETv4Qhc6k2ja/8NRSMT0Jz9nTmz58fJLjLr+S5Z5/l0IuHMuvGUb36mw+bkUhdfitKQKVqSxPph+w72vW5/NRst4IgoB+e0SsFKATXA2sef5dZOWO5aM4c7r33XqoSTMReMIPXvKVcqc2gRnVTsB9Hk74i4oTDqXvhUzwNNehiet+Kpd7to8UTYGiEgR3Ne4hT8XlxlBRgK9qGLX8bAact+Bvp9UybNo0HHniAadOm7fPciqKwZMkS3n//fX777TdKSsrw+4OejHp9FFHRI7FYMomIzECvj+zwd/Z4VFpbvcTF6qmo7J/M3mxOpFpdjUIAUegf8dQVNRI7pHNUGkYEHo+boqIihg0b1sWRBw4mk4mYmBhKSkrweDxdinQONgYluZWUlBATE9PnGpMDhYPpTNId1q/bgMEf1i5Oi8mMxG334mjs/PJpBR1xJBNHMgTAr/pooRFrcwPLv17B1199Q0DxYzKamHLkkQwZksmoUaOYM2dOJ9FMXFwcDzzwAA888ACKovDJJ5/w2muvsWrVanbUbQVAkvVowiPxNtUzbGQOVQ4PNl//GywqPi/Nm/8kbNbEkEZt52iSyFPs/BkINvgMP2YyNp2G+XffzYMPPMD111/Pwk9e5dCLszHH9pxwhk5L4LeXdgJQvr5xv+RWuaUZVVERNQKB+iZavl+B6fDRyJH7r/FU/X5qn/qQmZkj2omtJiOS2N0G0mWqi2/9tczWJPOEp7DH5su9gemwkUjv/kDTut9JPO7sPp1jR7OD3Egjm0sqsRVtx1awDWdZQVCQIUrEREdxxpzzeeSRR/aZbvR6vTz//PO8//777Ny5E7fH215sbjLFE584MUhmlgx0uv3/vnX1buLi+k9uJnM8KioObIRh6de56ouaGD6rc3RvIrgOvWPHjgEhN4PBgEajoaysjOzs7IN6/a4wOKrt9oLf76euro6wsLBBV0tmt9sH1ArM7/ezM28HZvYQT+yQKOqLepZykgUN0UICWcIoxitTma6cwiRmkODMZO3P63n55Ze59tprsVgiiYiwMGXKFB566CGqqqo6nEcURc477zx+/fVX7HYbW7Zs4bLLLsNk1OJtrmfXwidJay5lzerV2Aq3ofh63814b7RsW4fidhN+3KH9Os/emChGkCYa+NxX3eHzsGnj0V96AvMXLGDIkCHMO/dy3v/H7zibe97NOyHXgjEySMKla/ffDb18ffDvp/hUkrO0NH+4iPLr/k3DW9/ht3ZfQqEqCnXP/5cZiVnMufBC7r33XuqGJxA97+QOa0MrA000Kl5OkQ9Mg0tBlgk/djLWrWsIuHtHAqqi4KwoZuXSxWTroPDlB6n56TM85UWMyM3l9ddfRwkEx4RXXnmlE7E1Nzdzxx13kJubi06nR6c3cPPNN7Nh4yawxIIgkJA4gSOnL2Dy4TcwLOfU3Z3me2YOUVfnJq4XE5vuYDYHf3s7/a/3bCyzYkkKR5Q7Dt9a9EiiTFlZWb+v0Vvo9Xq8Xi8JCQlUV1fv/4CDgEEXudXW1qKqKkajcdCRm9vtHtB7ys/Px+fzYWYPwcZlRVNX1LSPo7qHKEhYiMFCDHrVSBP1jJvwTxz2apqbi1m9egMrVqxg/vz5GAwmcnOHccwxxzB37lyGD99TZDxq1Chef/11Xn/9dRobG7nrrrsYN2YMH95+B+XFuxAkCVN6NubsUYRlDUcTHtnje1RVlaZ1v2GckIsmrmcCgf0hHJkzNIl85Kvs5OgBYJo8EkGnZf699/Dgvfdx8Rn/4IMrFnLhG0eiD9u/MEMQBYbNTGTz12VUbmok4FO6VVcClK4NCgMsKSYueHkK7lYv6z8tZsWba6lYshbLmTOJOGkKgrwnnaUqCvWvfMm0qFTmzJnDfffdR/2EdKJOn97p/Crwsb+Sm7VD2ay0kH8A0pNhR02m+fNlWDetJvrQGfvcN+B2YS/Ow164LTj58bgp12i4+tRjueSSS7jxxhsZPbrr1ktlZWU8/PDDLFq0iMqqqmDDT1VFkGQMyRlEpGVhTM3CkJSGqNFS+sFL+FxuNJq+dfCoq3czYrilT8fuDVnWo9dZsHv6T25OqxtVUTFG6LHvlbERBAGjZKK0tPfWb/2FXq9HVVUSExP/JrfuUF1dTUxMDIFAYFCRW1s9zEDmkjdvDrpfdIjcsqIoXlPR73O30IhBH01k1BAio4aQkjYl6MThbMBqLcHaXMz27UVs2LCBxx9/HFGSCA8LY+LEiVx77bWcfvrpAERHR3PfffexadMmCvLzePPNN3nmmWcoKCjEvmsnNYA2Op7wYaMxDx2BITFtnwo0Z1kRnvoaEq/oe13bX3GOJokdip2tSvdiF+PYbIRrz+DuB+7jgbvv4YIT5/HxNe9w/stH9EhYMnRaAhs/L0Xxq9TutJI0umtiDvgUytY2IEoCObOCJSb6cC1HXJbD+HMy+eOVnaz54GccKzYRc+VZ6DKTUFWVxre/Z6oxvp3YGo/IJvL47rszN6k+vvHXMFuTzOMHID0pW8yYJuXSsnNDJ3JTVRVvUz323WIQZ2UxqCqiJJGYkMCFu6PO7du3M378eEaMGNF+7MaNG3n00UdZtmwZdfUNKIGgq4io1WNMz8aUOhRjaib6+JQum9AaUtJpWfsnqqr2aa28rs6NxaINGil7+/ebmcISsHma+3UOCNpwOVvcmKIMHcgNQBvQD0jkJkkSGo2G2NjYv8mtO1RXV5OQkDDoyK3NUmcg72nLli2YNGa0/iDBSlqJqNQI6nqYltwXWoRmIiI7usMLgoDRFIvRFEtS8iFAsF6nZNdiqqvX4hQ0/Prrr/z6668IooTRoGfUqFFcf/31jBgxAlmWufzyy7n88suBIDnffvvtLF/+Gw1/LqZh5S+IOgNh2SMxZ43AnJmDpO84w27Zvh45Lgr9yCH9/o4Ak0QLqaKBxz2F+93XMDwT4fqzufuhB3jgrrs5l4v47/99wLnPHYas27coIOPQOERZQPGrlK9v7JbcanZYQQUloDJ0Wse0oSFcy9G3jGHkSal8e+9Gqu99jdh/zcZTUM4UMTJIbPffR/OskUTMmLjf77My0MxYMYJT5QQ+9Vftd//ewnTICOpWfYqvtRnZFIajfFc7oflamkAQ0Gq0TJo4kTvvvJMzzujY8y4hIYF169Zx8803s2rVKppbWlB3F0xLRjPmYaMwpmZhTB2CLia+R0YDhqQMGry/4HY3YzD0PvJ3uQPYbL6QiEqMplgaGkNT8+locmGM7ByNahUDxbt6b/0WCuh0ur/JbV+orq4mPj4eURQHVY2bx+NBlmVkeeB+sk2bNgXFJLsRk27BY/dib+jfSxdQA9hpJjFi6n731estwf9GJzDkH7fgd9pxVhTjLN+Fs7SQVatXU1tby7PPP8+mDRvIzs7m3HPP5aabbmLMmDF8//33QNAmaMGCBXz44YdU7dhAy9a1IAgYUzIJyx6FeegItJYYbIVbMM8aHxKFqgaBUzUJfNpNOrLL75uVgnjjudz9yEM8cMddnMEFfHHrx5z578n7TDVqjTLpk2IpWV1P6boGDr2k6wX28g3BiYnGKJEyrmuHmcQRkcx9eypf3bmO/H+/xwnHn9BObNYTJhDWC4Pmj32V3KrLZkWgiUq179L2rqDd3WGg7NPX8TY37K49E4kID+e42bN5/PHHO9RcBgIBPvzwQ1555RU2b96MIEq8/dZCli1bhk+jJ2LkJIypQzCmDkET0bNO9H+FISl4vdaWsj6RG0BtXWhEJXqdBbfqQKVvUeTecDa7MHVBbnoMlJYe/MgNgqnJqKiov8mtO1RXV7f7vQ0m/8aBXm8DyNuRh0E17aWUjKK+uG/rbXvDjhUVlfDw1P3vDLS0lqEfmgkEW46EDxtN+LDgGong85CWnk5zeAJCdCJbtm1ny913c/eCBWhkDenpaZxyyinccccdPPHEEzzxxBMAfP755zz88MNs3rKF2opiahd/jWQKI+BwIEeGo/r9CP2cWBwiRWJVfWzZRzqyK2hS4/GlRrWXCZzEbL5d8BmnPDixvQtAV8iekUDxqjp2/VmDqqgIXbR3KVvbgCAJDD0yYZ9kqTHIpB8SQ5ZubHsqssTWQNK43qnimvGxOtDMDDmG9339S2erqoq3pBrn+jwca3fgLQ5Gg97GWoZkZnL55Zdz0003tZeZuN1uHnnkET799FN27tyJy+OB3S4gupgETOlDabI7mXbT/ZT5QqN1k41mNGEW7PYa4vt4jvp6N7Ex/X/3dXoLKgpePOjo3/kczS6MUV2Rm5Hihh0DIsdvI7dNmzYd1Ot2h0FHblVVVURFRQ04kfwVA01uqqpSUVVBKnsGM3O0EVt9/8UBLoIzUoNx/+1L/H43TnsdlqSuO+4mR4bjDqjI46eSOX4qit+Pu7oMZ8UuHKVFFJXs4umnn+bpZ55BkmQSE+I55phjuP3221m7di0AxcXF3H777SxatIhWUaTxne9p+uhnDOOGYZqYg3HcMKSI3tVACsA0KZqf/HW9Og7A+vlSHKu2M+vGUTz+4kPces1doJ7Fjw9/xfHzx3Y7CRs6NYGfHt2M4oH6Ihtx2R2VtqqiUrSyBjUQtO3aFzZ/VYq8OZk5c+bw4CMPkHGWgeJnW6l77iPib57TK+eM5YFGbtMO5Ts0WOmde4zi9uLaWtROaEqrA0QBURDJycnhiSee4JRTTgGgoaGBSy+9lB9++IGGxsbd3pEqKGBITCU6fSjGlCEYUzLb09HVXpW0mEjKqkPXRUITEYXHbe3z8Ta7j9TU/pcltXULd+PsN7kFI7fO92Qg+FlFRQVZWb03A+gP9Ho9Foulk7p6oDDoyK26uppx48b9TW5/QWNjY/Ae2PNAm6IM2Jv638PJjQNZ0vXIQ9JmCzZy1Cd2bemVbNJR6dgjmxdluT21FHP40aiKgruuKpjGLC+iqqyQhQsXsnDhQkRJJiY6iiOPPJKbb76Zjz/+GL/fz4033sh7771H87odOFdvA4IpMNOkXIwTctGmJ+w3yh8hhqERRDYqvRs03fllNP/3V6ZeNZzDLslm1EmpPHXDo9x4+e3AaSx56jtm3jiyy+tbUkxEZZhpKrFTvqGhE7nVF7Wi+gABhkzpPq7Y8VMlgZVB8cjDjz3I5NviSR4TRVSqiY+uWUHroj+JOPGIHn+nRtXLVsXGVDmKb/z7L7L31Tfj3JCPc+1OXNuKIKCAJGLQ6jjq5JN57bXXSEhIIC8vj5tvvpmLL76YltbWoPehqiJoZHS56eiHZ2D9fCkJx5xB1MSuLdSqHB6STaGNODQRkbgq+74u7XD4MZn6P1S2pfTdOImgf8pfR5Ozy0LutvGhrKxsQMgtPDz877Rkd2hoaOhgdDpYMNBKyTYFlGEvcjNGGqgt7L+YxI0Lnc7Ss31dQbWXNrLrKC/ZpKXK0X1NmCCKGBJSMCSkEH3ItHYlnbO8CGd5MU2lBXz++ed8/tWXwetIMtnZ2TzxxBNcdtllfP7559xxxx0UFhXRXFJF8ye/IkWYMR4yHOP4HAyjhiDqOhd6HypFssrf1CuNoOr30/jalySMiGTKP4Ndsc0xek5/cRzP3vQE1198C3ASf7zyI0de2bUfZM7MRFa9U0jRymomnttRFNNW35Y0KhJjZNfPVuFvNbgXRzNnzhwe+fdDHDY/kficoFp2yJR4Js4ewoZPfsY0eUSverStDDQxR5PKd/7aTr+Jqih4CsqD0dmaHfiqgqUKgiQSHxPLddddx1133cXy5cuZP38+Q4cOxeFytacYBYMOw7hs9MMz0Q/PQJeR2F7G4FyzA3dt96KKSoeHcTGhdSbSRERiK9q/gKg7OBx+TD1QyO4PsmxAEjW4lf5PSB3NXQtKdAQ/G4joSavVYjQaaW5u7rJV0MHGoCM3m82GXq8fUOFGV/B4PERG9rw+K9RoI7cOkVukAWdz/7tbu3CgN/Tsu7ndVmRjGKLctdgnyaRjSaW1x9cWBAFddBy66DgixwWl7E1rf6Pmly8ImzEB185Stm3bxj/+8Q/+ccXlyIJIamoq995zD/PmzeOKK65gyZIl2Jasw/bLGpAlDCOHYJqYi3FCDnKMBTMSuaKZL/29m1G2/PAn3qp6TnpyZoe1NUOEltOeGcN/bnuKq2ffCEXHsfqdX5l8cWfj4KxpCaxcWMCu5XWdXNzzf6tGEGHYzK67TJSuqcf2nYU5c+bw+DOPMOXeJKIzOhYfz7huBDsXV9P49nfE33Rhj79boeLAj8JwMYxtio2Aw4VrUyGO9Ttxrc9DcbpBFJFFkQkTJvDCCy9QWlrK448/zgMPPMD8e+6B3UpGMdyE6dCR6IdnYBiegSY5tts0qW5YKq5NJd3eV5XDS7Reg04S8PSng+le0IRH4nG37r+ZaTdwOP1otRIajYDP1/d7EgQBnS4Ct6v/5NadoEREQhTE/XY+OBCQZbk9ALDb7QPeGmxwMQjBH0Wn0w06chvotGRpaSmyKKNR9szwTVEGHCEgN4/gJmL3esB+93Vb0YR3va8sCMQbtB3Skn2B19qAHBdF7JVnAsG2Ku6dpbh3luDatovikhIWLFjAgvvuRVSDjVkvOe00YmJieO2116jbUoRrUwG8+Q2a5FjOvGQOu0bE0Sh6erw2FXC4aPlqKePPymiPlPaGzqzh5H+P4tU7n+HyM26AItj432WMOzujw34pY6LQmmS8Dj/WSifRSbujSlWl5I86VIVOJQAAlZubaPo8jDlz5vDvFx9lyr1JWFI6t3/SmTXM+tcIvpm/DndBeYdWPfuCoqr82VzFeJfKT8+9hie/DFQVJJEwo4mTzz+DUaNG8fbbb7NlyxaOmDq1nczk2EjCRmaiz81APzwDOS6yx+Iv3ZBkbL+uRfH7Ebt4x+2+ADZvgCSjjmJbaNScwedVxeu1tacGewO3O4A/oGAyylhb+tfhQmew4Hb1/511NLkwWvQIooC6l9m0IAhoJd2AkVvbuP03uXUBm832N7l1gfLycoySGUENDiKCKGAI1+Ns6v+L4sZBXA9ferfbihzTdZRn0cmogNXj79f9OKtK0Q/bM0hL4SZMk0dgmhws7lWcbtwF5bvJrpjqogpefvllEIO9jiMtFsaMGUN9fT15eXnkaMJZ9uHnlC75FePEHIwTcjGOzd6nQXHLt3+Az8eRl3fffkZjkDnhsZG8Ov9pLj/5/6AItn33ByNP2uP8LsoiQ6clsOOnSsrXNxCdZAHAWuVEVcAcqyd2aMe1uLr8Fuo+MjLnwjk8/crjHHlfMmFx3TtsjDwxlRULC2j++CcS51/W7X6q349rRwnO9Xk41+zgp7BIHnroIXyFFSQlJjJq1Ch27NhBVVUVH37yMXz4YfB7psQRPnII+uEZ6HPSe+R52R3kWAuoKn6bFW1kTJf7NLh9ROk1ISS34PPqdlv7RG4ATkcAk0nTb3LTaAz4aN3/jvu7nxY3gihgjNB3muBqBO2AkVubu9TB6Cm33/sZ6Bv4K9oit4HO1+6NweBO0tTUhKzuSQW2zdqc1v6Rm1/14cfX45fe7bFiiEjucluYVqLV2z9iA/A212NIyel2u2jUYxybjXFssHZM8frwFFXi3lmCe0cJzTtLWbp0KQgCCAJDs7L46ccf0akC9hVbsP+2CUQBfU46xt3pS01iTHv0oQYC2H9dxYSzM/ZrmCxrJU56eDQL73+OeUf/C2EX5C/+k2Gz9qQas6cnsP2HCtZ9vItxJwdTlyVrahFlgWGzEjtEPY0lNqre0jHngjk8t/BJjrw/udv1uPbfQxKYdmUuX9yyGm9lHdrkuPZtfqsd18Y8HOvycG0qQPX6QBIRFBW7oEGj0ZCYmEhlVVVwnUYU0WUmYR6RiWF4BrqcNCRT36yruvy9oi0A+FqbuyW3Vq+fcG3o3v92cnM1gyWjT+dwOH0hEZXIsgGX0P/+hopfwdXixhjZOXsjIw8Yufn9fsLCwrDbu/dEPWj3M9A3sDd8Ph8ejwetVjuoIjefz4eiKAMaubW0tCAG9rzwpigjzhY3Sj/XJdy7ywB6Qm6qquJxWQnvxhsyTCP1uwtAwONGcbnQ9EIcIWo1GHav93BGkJy8ZbW4d5RgrGzGZDKxfv16vF4vSCKyLCMIAp68Mtw7S2l6bxFyrAXjpBGYJuSg+H34W12MOrlnKT5RFjnu3pG899h/mDPlatglULJyDRmHB7sBDDkiHkGE6m3W9mPWfVSC4lfJ3islaa10UP6qhgsvmMOL7z3FlHuTeuRlCUEC1Zg02FdswTRpeKfaMwgaXouShKIqIKjU19dTXFxM7tRDcfqb0edmoBua0qUgJ1SQY4KpKl+rtdt9bL4AYZrQkZuo1SHpjHjcfR/wQyUqkWQ9fvo/AYSgqMQUZaB+V8fPRUXGarWG5Bq9gSzLBAIBzGbz35HbX9H2gwy2tKTH40EUxQG9p+bmZiRVbi/gNkYaQpSSDJKbrgfk5vM5UBR/t2tuYRoZm7d/5Oa3WYE9g2BfIEgSuswkdJlJjBbDqBW8xD1yFe4dJbh2luDetgt/c8eXz19vpfWnP2n9YQWIIqIsUJffSli8AXP0/ic1gigw6/YcPnj8FS44/ArIh3LdOlInRGOI0JI8JpqKTY04GoOpNmuZA0kjkjYpSID2ejclL0pceMEcXvnkWY5YkNQjD0sAr9NPyep6TJEaWr9ZjvWzJX/5PYLrMoqioDXJZE6KJ21iDDt+qqS0pYHRZ51Asb+mR9fqL0StBincFLTj6gY2b4CM8NBOJDXhFtz9qHVzOPwYQxK56fH3srawOzitLoyWLkQlAWnAyA34m9y6QlsoK0nSoCI3RVGQJGlAHVOam6zI7JnFm7pIR/QFLpwIiD1qAdI2OGgiuq7RCdNK2Hz9m5V6W4KlBr2Rte8LKaKBCsWNNjkWbXIs4UcHPTL9DVaaPvkFxx+bsCQbaS5zBOu3ABQFVRD47p71IARb2AybmcjQaQnE53bfrFYQBGbcOpRPnn6FcyddgbANqvUbSRxhIXtGApWbG9nxYyXTpwTJMOOwODR6CWezh8KnBS684ELe+PoFDrsrYb/elS1VTgqW11C4rJqS1fUo/j0RfJunJYAxSkf6ITGkTYwhdUIMsVlh7U4pHruPgi1bOW7i2P7+zL2CHG3ZZ+TW6vOHNHIDkCMicTf33bTY4fQTtZ/0cI/uQ9bhV73tk9T+IOBTOrW9AZDR0NzUf4Pm3qJtzDaZTP9bacmXX36ZW265hebm5g6KmMjISKZMmRJc49iNpUuXMnPmTAoLC3tVSGiz2TCbzSiKMqjIra+O4qFEi7UjuenDdbha+7/g7sWNVmPqkQltm8tD95GbRJ2rf7NSf2szCAJSP0QLeyNFMLCjC7utNvKMy7Vw2QczcDR5qNjQSNn6BkrXNFCXvzuFpQbNjWvzWlj+nx2YonVkz0gke1oCGYfGojF0fE4FQWDqjdl88tSrnDvpcoT1AvXazQydlsCSZ7ax6p0CrpwSfKaGzUjAbfOR/4TKhRfM4e0fX+KQW+K6tOFSAiqVm5soXF7Dtp9Kaa3Yu1BeDN4oEJFkJGNyLKkTokmdGIMl2djtsxuZamLbzzu4VNAjtJ/hwEOKjcBX1/3ga/MGCAvhmhuAbA7DW1fe5+NdrgD6xP7fkyzrUVEIqAGkfnbkVgJKl/ZvMpoBidwEQUCSpJBEbnPnzuXtt9/u9Plxxx3HokWLenSOHjPIzJkzsdvtrF27lsMOOwyA3377jYSEBFatWtVBTbhkyRLS0tJ6XSHvcrkwGAyDogBwbwwGcmttbSWCPeszkiSi+PvftkRBQRB79hj4fMFIUTJ0bUUUrpUpau1fNOlrtSJHhnfZvqQvSBEN3VpuBeqbickMyutNUTpyjkoi56gkIBjVVG5qCpLd2gYqNwbTaI5GD5u/KmXjZyVIGpH0ybFkz0hg6NQEIhL3/C5TbxzKp0+9yjmTLqd0tYB9yhbCEgy429R2KqRNimHnwwEuvHAOHyx9hQk3xHQYrFytXnb9UceOX8soWFyLujvjK8q79xEgZkj4nshsfHSvOoZHJBopK9uEpArECFrq1f41le0p5GgL7qKCbrfbfH7CNKGd3AqihKr2PWWuKCpSF96gvYUsB9OIfnxI9JfcVESp80RIQsLhCH3Pvp5AkiT0ej1OZ/9r+Y4//ngWLlzY4bPeiPp6/ATl5OSQmJjI0qVL28lt6dKlnHbaaSxevJg///yTGTNmtH8+c2bX3oP7Qlv6bzCQyd5QVRWxF959BwIOl4Povf5cgiT0W0wCoKL0+LupqgKC0G2Up5dFXP0kXJ+9BSkqNN3OtQiECTIN3QzagQYrEUd0bXulM2sYMiW+3RbL7wlQta2Z8vWNlK1poHh1HQGfQvHKOnatqOVHdRPRQ8LI2Z2+TBodxZE3DuWjf7/CeZOvoGwFJI3YSsUaKwCRqWbKX9Fw4YVz+HTV64y5JpjqbSi2sfnbcjZ8XITH5gchmMJUA8H/JoywkD4pSGYp46LQh/dd/BGeaCQQCNDgcRAlHTxyk8x6Ap7usw5Ov4IsCmhEAZ8SmnhSEHcLafoIRVHpQXJjvxDFYPZF6WFXin1B7SZyExAIBELbr6+nEAQBURQ7GRb0BTqdjoSEvneP79X0aObMmSxZsoTbb78dCEZot956K4FAgCVLljBjxgxcLherVq3i0ksv7fXNKErPB9qDCUVRBpxsA4EAwl6JelESUELwAAfbb/RsBqkqAYR9ODxIgkCgnw+1GvAjhGjWriH4LHm7MN1SFQVvYyvhCZk9Opesk0ibEEPahBim/CMHxa9Qm99C+fpGti0qo3pLC427bKwstbPijXx0Zg3Z0xMYOj2Bdxa/yMWzruGEsefy6p+vAjAp93Bmz57N5+sX4jQ38OxRK3A2enavh6moCkhakeSxUaRPCq6XJY+O7JQG7Q/C44NRhNfrRWM4iM+3JIHS/eCu7H6GQhAotUOQJNR9XHN/UBQQQ3BD7eUmIUgCKwEVoYvIDQQUZWDIDYKq3ECg/+TdX/Sa3G644Qb8fj8ul4sNGzYwffp0fD5fsIgWWLlyJR6P5/+7yG2g70cJKB3JTRRDQm4KSo/JTVH3TW6iAP2daKsBBSFE6y3y7t/L38VAorg8oKgYLH2LfERZJHFEJIkjIpk8Z2iwO3axjV2/17Di7QKcDV62/1jB1u/KEUQoXD6f++99kKuvvhqA8847j3vvvZeCooKgw4QKWpNM2sQY0iYFU4wJwy37bIPTX0gaEVEW8fr9yBy8SaUgS6j7eHbbniFRCN1KYCjSkmJIxoC2c4SA3BSlS8IVEFAGiFwEQUAQQkOu3377LWZzR5/RO++8kzvvvLNHx/eK3GbMmIHD4WDNmjU0NzczbNgwYmNjmT59OvPmzcPtdrN06VKGDBnSoSlhT9EWIamqit/vx+cLjWS2v2i7j4G8H51eh07VoRGCaQ1ZJ6MoKhpD/xq66lQtBqOAtgeDqFYrYTSZ0HXTw0wSBGSBbrf3BHqNTMBoQBeCwdYkSPhVFW0X5wooAgaDAZ2sQ1RC0xQ3LiOauIxoDpszEoDWaidLX9hO0W81uF1eHnroIZ599lkAnn76acrLy0nMiWL8mVmkjosiJjOsc7hygCfgpjATiqJgEMSQ/OY9gUGnx63TdvuctP0EBklsj+L6C71eh0+v7dFz3uU9iQKS1LP3ZF/Q6TQYDAY0yO3vcl8hCAIavdxpDNCretxazYCOV6GI3GbOnMlLL73U4bOoqJ53UxDUXiZHU1NTueqqq2hubsbhcPCf//wHgOzsbF555RXuuececnNzee2113pzWgD++OMPzj777PYo8G/8jb/xN/7G/xaeeeYZjjvuuPblq75g7ty5WK1Wvvzyyz6fo9cJ/JkzZ7J06VKam5u55ZZb2j+fNm0aP/zwA6tXr+aqq67q0820FUoLgsD06dMxGvvfIDAUaGxsZMuWLe2CmYFAdHQ0mf4RJAvBtimHnj8GSSOx4p0N/TpvgboJq9HBxMlX73ffioo/KSn5lWH/uq/L7VeNSuansqZ+KSYrv/0Iv9RK/K0X9fkcbTAjcZc+h7vc2zsFQIrHS9mVj3HiPeMZflxKl8f3CIpKQ7GNio1NVGxspHx9I87moEy/rd5MY5A4auZRnH3muTz99NPMnz+fyspKiouL+aXgS1rKHdTstIK6u+A6oGKI1DL2zFQyJiWQMDwCKcTSeABUlaemfsfDLz7HH0YXW3vZobyvaPl+BS3frmDYVXd3uV0jCtw5MYPH1pfiDpEwou63H3Fu28zkydf36fisIWGMGRPJF1+W9es+rM3FbN70NodyNAahf619ZlwxmdY6O+u/2N7h8xJ1J46YJgr3oUg9UPj111+JjIwcFNqJPpHbNddcg8/nY/r06e2fT58+nWuvvRav19un9TbYsxDZVi+h0YQmXdRfaDQaVFUd0PvxuD14fB58u33p/J4Akizi62ddmUf14sSB17f/QcTnDeB0OLptRRJQVAIq/WpV4vH78HhceEKQj2tLeinQ+Xw6Ga+o0FTdgiJ23yj0rwj4FGp3Wilb30jZugbK1zXgse+talSRdSIjTkzhiHk5mGP1VL2l56Rpp/PAQ/dTWhIcHO+//37mz5/PjMDJNJ29nsgUM7v+qKVgWTVFv9fSVOVi2cutLPFvBSBmWDg50xNJmxhD8tioHruX7AtOqwenw4ksyzgJhOQ37wlcHjduj6fb56RtbdnlV/CGSC3pcrtxu309es67gqKqBAJqn49vg9vrw+Vy4cOPHAKPSb/b32kMcKvuoEhoAMerUJCbx+Ohpqajc44sy8TEdO1J+lf0idxcLhe5ubnEx+8ZFKZPn47NZmsvGegLRFHssO42WDAY7ken06Hs5duoKF27E/QWImJQ4t8DCGJQcdadwManqGj6qSgTdQYCdf13XoGgSjKgqpgECU8X31ETY6GlZt/1OD53gKotTZStC5JZxcZGAl5ltyx8d7sREbKOiGXM6ZlkHhbX7gfpavVS8ZqWU446nX+/8AieiOb2381mt7Ey8DmHDzkT1kGzuoHRp6Qx+pQ0Aj6F8vWNFC6vJn9pDdYKB40FrfxR0Mofr+UBED88gvRJsaRNjCZlfDRGS+/dM1qrg7+zWafHfRDVdarXv8/ayrZnqL/K2w4IBHpkVNAdRFFACQHRtr1re4vD+gqhm3tSGbjSJVVV24WB/cWiRYs6cUlOTg47d+7s0fG9JreMjIwuB/r09PR+E4Asy/h8vkFBJntjMNyP2RyG375nhqYGQvMACwg9lkiLgrz72n6ELpqV2kNgeKsJjySwIzSO5gpQq7pJFgw0qZ1nyWK0hZa/NFZ1t3qp2NRE+bpg8Xb1ditqQG33Z2wTuUWkGhh5bFqwpm1UZLulVRscjR6q3tZx+rFn8uR/HuWopzJ5auo29Lq2ImsVV6CV333/5cissylaD2XqWtLGxSJpRDIOjSXj0FiOvmUMjSU2in6rJX9pNeXrG1EVlfqCVmp3tLD63WCH6agMM+mHBMkudUJMu8x/X2itcRIREYFFo6faHZr2Mj1BoLkVOaz7WkazRsLpCxCiXqVAsIylL41K2yAKdOib1lcE/MGUtRQC50NREro0clBR0IS4CL6naBMD9tdh6q233uKtt97q1zkGj8cVQcNNu92OJEn4/aFxzg4F2iLKgURERDiOmj2/id/jD0nNk4QGf6BnzUW1+uCA5Le1dNmuxObrv22SJjwSxeVGcbr32W+tpyhX3KSIerYonXtoaZLjqFlZxo6fKylf10DJmgYailpB7ejPCMHJRNbUhGDt2rSEfZJHa62L6rf1nHni2Tz50qMc90IWBcuqUfwqKYcEOyqoCix+agfXfH8cS776iJlZ58EG2OVZxZBDOxauRmeEEZ0RxuSLhuK2+SheWUfh8moKltbgtvkQJIGmEjtNJXY2fFoMQFi8gYzJwfq41AnRRKWbO0XbLVUuhg7Lpl7x4D5IKUkImlRrwrpXvYVr+99d4q9QvN72Auq+QKMR8fn7T25+f3ASsbeVXl8hyl2XA/nxER1h6ff5e4s2YnM6nZ0k/AOBQUVuYWFheL3e9h9psGAwRG6RkZG0sKd9iaPZhbGLNvO9hR4j/oAbv9+DLO87tdXWFqe7Xlw2r59Iff9e2jbfSn+DFW1a390J2lChuhgpBn0qVVXFX9+Me0cJ7p2lONblobS6+OLm1Z3ITPGrmGP0DJsVdBxJPyQWjX7/xN1c4aDmHT1nn3oOT738GMc+l4UgChQur0GUBaZeHSwTkLQiLVVBi6Tc0+L46aP3OTbrQtgOxf41ZE6J6/L8+jANw49NZvixySgBleptzRQsryF/cXWQmIXg82qrdbHlm3K2fBP0UzREaEk7JFiEnjYxmtjsCOoLWxg+diYVamjSwD2Fv6EFQ1r37YTCNHJI+gLuDV9rM2Zd3ztNmEwyDkf/78nvdyOhCUndbHDS3Xlc8uMjKqrrtlQHEoqioKoqdrudsLDQeMP2B4OK3NrY3ufzDSpya2vCN5AOKpFRkRRS2v7/Hc0uTCEht+A5PG4rsnnfwgqdbt+9uGy+AGlh/Yu22hpL+hta+k1uqqJQXF/JsXGjqH32Y9zbdxFo2e25J0mIakcyA9BmJeOvqGXcaakcd+fYXg1CDbtaqX3fyLlnzOapVx7n6KczEaXgxCh/STByi8+JgCpIGhlJ/koHzeV2IlPNjD4vkW/ffJuTh14C+ZDnWknO0Un7vJ4oCSSPiSJ5TBQzrh1Ba42Twt+CopSSP+t3u8YHSdvV4iXvlyryfq0CFTSGIFGfeGcGxbXVqOF+hINgVq6qKv7GFjSjuh98ww5A5OZraUYf2XdVrNEk09LPLtwQJDe5n/VtbdCZNPicne8pIPiJHAByaxuzHQ7H35HbX2EymRAEAa/XO6jIrc0Q2uPxYDCEritxb2CxWFCkQHtRr6MpNORmIGgc7HZbMe2H3CRJg0Zn7rYXl83b/zU32RwOooi/wdrrY1V/AE9JdbAj9/YSXDuKqQyo/N+HH2LYVYviVZDMZhwOByrBhW9Bp8U4bhjGiTkYxw1DCjdR99Jn7PqzsFfXrtlhpeFjE7PPPo+nXnqUWU9mtruL1O5swdnsRWOSEHd/ljohmoJVlez4tYIj5uYCMGFeCp+/+AZnjrkMimDbt78zsocNUwHCE4xMOCeTCedk4nP5KV3TEIzqllThaAhae6mqiizLKF6VgBIgMyGZb557juId29EPTUU/IgP98Az02amI+tB3nldaHah+P5qIfZBbCJre7g1VUfDbW9An9j1yMxtlqqr6H+H6/a6QpCQh2NPR0UVPR0UKEBHR9+/aV/j9/mDWwGb7O3L7KwRBwGw2DzpyE0URrVY7oOQWERFBQPS3k5uz2YWsk9EaNXi7mL31FFr0gNDjRo56ffe9uFp9fsK1/XukBFFEE27ZZ0uUNiheH56Cctw7S3FtL8aTX4bq8wfNnUWBcHMYKSkpVFdXM3RIFn/++SeoKnJ8FKZJwzFOyEGfk44gdyRk8xFjqFm2gbJ1jaRP2r/suGJjI02fh3H+uefz7/88xqwn0jukMAuW1SCIAmPOymj/LHlsNGpAZfU7u9rJTRAEDrsmg4+feIXZh10BRbDhk2WMPzeD3kJjkBk6Lbg+ePxdY6kvaN1NdNVUb2sGFSIiI4iNjcXv9xMdYaE5vwx3fhl8vhQEAW1GIoYRmUGyy0lHCut/3am/ISgW0nTTzR2C3SV29bO7RIdrOmyoSqBHDXm7g9Ek43T2f0wK+N3IIRp2u+vpGBD8A0Zusiz/nZbsDmazGY/HMyiMN/eGXq/HfRAVZX9FQkICHnXP9b1OHz6PH1OUoV/kJgoiOgztvdr2B53Ogqu1a+Jp9QYwaaR+u7nr45LxFFV2+lxxunHnlQbJbNsuPLuq2hxtEYCY6GiOOuooHA4HixcvpsVuo2XbNnbs3MGYIw+jIDsS4/hhaBL3TViG0VnoMhNZ+vx2Ln5r6j5Tk8Wr6rB9E8H5513Av198hBmPpaMzdZyZ5y+tQlVUcqbukTUnjbQgiALORg8eh6/9GEEQmHrzUN594D9cNPNqKIJVb/3CoXOze/ELdoQgCMQNiyBuWART/pGDo8nDrj9q0VUkUllZyY4dOxBlAVWFYdnZHH744SxdupSKsgpaympo+e4PADSJMRhGDUGfm45+eCZyH7o3+HZH5N31BASI0Mq09rOje4dr7n5e9f0gN5NJxh6SNTcPsqrpd7NSnUmLrJO7JDc/vgEjN0mS2vtyDjQGHbmFhYXh8XgGVeQGA09uaWlpuPwOAuxpcuhoCopKmis6KwF7Az3GHkduBr2F1pa8LrfZfQEcvgAJRi3l9p4pMLu8RnIG9j8W4W9qxZ1fhntnCa5txfjKa4M7SCISAilJSZx77rmcffbZ3HvvvSxevJiPPvkEFAXRZMB85FiME3LJH5/GxWFZLPZE90gTKIgikbOPofLRdyhcXkP29K7rNguWVuP4OYoLz7+Qx597mOmPpGH4Swsae4Ob2t2lDaveLqDo13omnXcBPz66GVEWCHhVilfWkXt08l7XF5h11zDevPt5Lj3hOiiC5S8uYurVuSERIpiidIw+JY3s2lnY5ToueO1ICndHdfn5+RQU5IMgkJiQyF133YWqqrz44osUFhbSungtrT+vBkCKjsAwMkh2huEZyAnR+70/X1U9ol6PZDB1uV0UIM6oocYZuvY77eRm6Ns6lCQKGPShEZR4PTaM9L1NURuMkQa8Ll+XJg5exTtg5KYoCn6//+/IrSsMVnLT6XQDSm7p6ekAeHBiJPjgOEMkKjGoBlyunrWl1+kt+Cqbuy3krnR4SDbpek1uqqria2nCWb4LZ1kRqtdH2dWPBzdKIrIgMnToUC6//HL+9a9/8cYbb/D888/z7HPP89RTT7WfxzghB8sZM9BlJSPsFv/swocPheFiGNt6aDFlGJuNYdQQfnpsCxmTO3fc3vZDBb7lsVx44YU88tQDzHg4HXN0ZzFN0W+7HRYMOqpaTDQ1+eA8KC0TkRLjCJTXsnNxRQdyg6DM+5j7cnnl1qe54sz/g6LjWfzvb5l186iQEJwc0BPhTKI0ZTUZk2PJmBzL0TePpqnUzsbPS/jzrQKqqqu45pprQBIxG4yceeaZvPbaa/z888888sgjbN26Ffsfm7AvD1rAiWYjhpG705jDM9Cmxrf/DdrgyS/HkJjW7XeIN2gJKNDoDp3pr6+1GUnWIct9EzsZTRKKouJy9X9M8risRJO8/x33A1OkAWcXUZuqqvgCA0NugUAArzc4Kfmb3LpAeHg4Dodj0HQEaINer8fj6Xs00l+0dVlw70VujmYXpqj+r4PoMWJ11ex/R4KpHTXgJ+C0I5s6P8Bt5LY/qKqCp6E2SGblu3CUFhBw2oMbRQmTycTQoUO55ZZbuPDCC2ltbeXFF1/k3Xff5bY77gwWkksypoxhhGWPxDxkOBVfvwOCiD67owhDBdYGrEyWIntMboIgEHPZqVTc+jy/v7KTmTeMat+28fMS1DUJzLnwQh56/H6mP5RGeELXf4eCZTUIkkD40ZOJvvC4duf9+Nvnolm3ndon3iPvl2rUB9VOheCyVuKER0by4o1Pcs35NwEn88P9X3L8/HFdNqnsDWLsWdj1dXg19g6fR6WbMVi0iFqZlGdvwp1XinN9Hs51O/n444/5+NNPkQSBkSNH8uOPPzJt2jRWrlzJXXfdxZo1a7Cv3YFj9XZQVQS9Fn1uBobdZKcbkoS7oJyosUd2e19JJh3VTk+IGt0E4Wux9mu9zWTS4HIF6G81kKL48fhs6Ok6au0NjFFdr7f5CI5R0dHR/b5Gb+H1evF4PGg0ml51zD5QGHTklpCQgNVqHdAoqSvo9XpstoNjLNsVUlKCMmYXe+yiHE3OEJUDGPF4W1F64OJgNMUC4K6vxtwFuVXZPeSmdB7o1UAAd20FzvJiHOVFOMuKULzBv7EoycTFxjDt5BO59dZbmThxIgCbNm3imWee4eabb6G2tma3v6cZAYGw4eNIOvE8RM2eFE/4sDHULf+egM3ZSfzwp7+ZO3XZRAtaGnvYcVqTGIPljBn8+c5i0g+JZciUeFa/X4hmSwpz5szhgUfuY+r9qUSmdr2+4PcG2LWiNmiEPDyj03Z9TjAaD3hUqrdbSepCHq8xyJz4+Cieuf5xbph7K3A6X9/1Gac8MKHvvd5UgfiWXMqi13bepKps/aESw7hhyJFhmA8bhfmwUaiKgqeoEuf6PBxrd7B58+agt6woEhsdzdVXX81PP/2ELMsUFhZy2223sWTJEqybC3FtKgBVDTYpDQTwNjdgL8nHmJSOqO04CCabtFQ6QjuJ9LU2oddZ+ny8yShjd/R/su3xBJcP2spv+oPuIjf37vGhLy3H+guPx4PNZiMhIWHA+1/CICS3pKQkGhsbByW5DeQ96XQ6YmPicDfsITdns4uYzJ73N+oOeoyoqHi9tv0uuhuNMUgaPa7KUswZwzptr3R4iTNqEQM+bBWlOCt24SgtxFVVguoPKhllWSY1KYljjz2WO+64g8zMYDdsv9/Phx9+yE033cSaNWtxOh2AQHh4CplDjiU6NheTKZ6d2z+juba8A7EBRIyaRN3y77EtWYfl1KkdtlnxsUlpZboUzef+6h7/NpbTpuEpLOezm1cz+pRU4ltzmTNnDvc9eB9H3pNMbFb3oorydY34PcFVPl1O58FGMhvQJMfiq6yncHlNl+QGwcLtU54azVPXPMKNV9zBsZzF5zd9zBlPHIKs633pRZQjHVVQaTZ2driv2NhEfZ6VhDtO6/C5IAYjYn12KlGzj8bfYMW5MR/Hup3Ubynivvvu474HH0Cv0TJ9+nRef/319gmZ1Wrl5ptv5ttvv6WhoYHWHRto3b4eBAF9XDKm9KEYU4dgTMkkyZTEypr+rSH/Ff4WK+GGnpdU/BWmECkl29a19fQ/22LqpgzATfCzgSA3t9uN1WolKWnf9ZkHCwPfl+AvSExMpKGhYUBTgF1hoMkNICMjvX1mBmCtshGV0v/cuongAG237X/QFwSR8PBUXJUlHT4PuF3YiraT99OXwc4BX71J6Yf/of73n/DXlDMsK4vbb7+dxoYGfF4vJSUlvPrqqxgMBu644w5ycnLQ6QxcfPHF/P77SkzmIQwfeS5Tpt3FxMlXk545A7M5OCOMjRuJp6kOd21HRaVsNBM+fDytP65C7UJtu9TfwCFSJCZ6TgiCJBF73WxUnX4Psd1/H4felkDCcMs+jy3Y7UpCfCSSqevZumHkEJBE8pdUdbm9DUaLjlOeGcvjLzxEVlYWJ42fzcfXrsTb20FXhcSWkdREbAehc55tzQdFaJOiMYzO2udp5BgL4UdPJvG2i8l4cz4Jt11E+KxJ+PQafvzxR1LT05BkiezsbBYvXszrr79OTU0Nfr8fj9vN888/z6SJExFtTTSt/Y3yz96k4Pl7SNCJbPzxa1q2b8Bns/buu3X1dRUFb3MDBkPfJ4FRkVqarf0XuHhcViA05GbspgzAjROdTj8gack2cuurcX6oMegit8TEROrq6vB6vQPqCPJX6HQ6PB5Pt0KKg4HRY0ZTsPEr2D1u1+9qIiot2Osr0A/ptB4jWkFPa0sZMbHD97t/RHga5ZUrad25qX29zNOwe81OFNlVNJ1ZM2dw+T//wXXXXdcp/758+XKef/55Fi9eQlNTE6BiMESRnHI40TG5RFjS95kejYoehlYfTtP6P0g64dyO2yZOpWXLGhxrd2I+dGSHbZWqmwLFzqmaBD70dS416AqqotD0/o8cc9jUYCrywfuZeGMsqeP3PXioqkre4ioUv0r4uJxu99MPz6D1p1XU5bdiq3URtg/PSnOsnlOfGcsj1zzIHf83nzO4kA+veIfZLx6OPrxnCrxYWzZywECDuXORemuti7xfq4i6+KROQpB9QdRqMI7PwTg+h+hLT8FbVotz/U6ca3dSWFjIWWedBZKIJSyc888/n+eee45rr72Wa6+9FggKET7//HM+/fRTAoEAeUsWoQSCpC2HWzClZQcju9QhaCNjevX+eRpqUPxewsP7HrnFxRnYtLlr44LewO22ohF0ITFNNkUZKF3XmdxcOEhJTh6QMcrtdtPU1PQ3uXWHxMREamuDkm+32z1oGpbq9XpUVcXj8bQ7lhxsjBkzhreVd1BUBVEQsdU78Di8xKRbqC1o7PN5BUEgXI2ixdp1I0ZVVXG7m2lpLsFqLaahPo+Az0nFl28jiBJmk5FJU6bwz3/+kzlz5lBSUkJdXR2HH344EEw3rly5kpdffpnPPvscj8eNIIhEWDIYOuxwomNyMBp71qMJQBQlkpMPo2TbEuJmnIS8l6zckJCCISWT1u9XdCI3gM98Vdyiy2aE2Mr2/YhL1ECA+pc+Z2pYEnPmzOH+B+5j9JWRZB7Wte/j3mgstmGrCQ4++i7W29qgz92zrfD3GsaflbnP80YkGTnl6dE8dN393HXLAs7hYt67bCHnvzIFU9S+F/G1PhNpTZMojFuGInaO+NZ/sgtRpyVs2vh9nmdfEAQBXXoCuvQEIs+YQaDVgXNjPs51ebRszOell17ipVdfQSNKHHLIIbz66quMHDmSc845hzFjxtDS0kLA72Pp0qU89dRTrFy5kqYdG2jZugYAyWDCmJaFKS0LY8oQdHGJ+2xl46osAUEkLLxvCkVBgNgYHXV1/c/auN3NIYnaoPsCbg8ucoaMCMk1eguPx0NjYyMjR3Z+7wYCg5Lcqqqq0Gq1g4rc2pqnDjS5BRQ/LuztqcT6oiZis6L7RW4AFqIobs1v7zfldNRjtZZgbd6FtXkXXm9QVafTGcjJyWLMmDFcdNFFHH/88Z3OlZCQwLZt2/jwww/55ptv+O7b72m1tSAJMgoKI0dfQFR0dp+l2QBJyYdQUrwY66ZVxBw2q8O26EOmU/HFW7i2FmEY1TG91oKfL33VnKtJ4nFPIU66jnhVn5/a5z5memwGcy6cw3333cfwS8MZNrNn6wmFy2sQxKD7vz43vdv95Mgw5FgL/norBcv2T24Q7BIw7uJk5s+fz4MPPsgFJ87jnXlvcOFrUwiL6ybyUyGz4QgaTSW0GDunQB1NHtZ8UIx55mREQ+iUblK4ibBp4wmbNh7VH2hXXzrW7mDFihWMGj0aQRBITkriqaee4tBDDwVgxowZzJgxo/08W7du5bHHHmPx4sXUFm3HlrcZAFGrw5gyBGNaFsbUIRgSUhCkPcOas6oUc1gCktS32rLoKB2KooYkLemw1WBSw/pdwA3dW2/5ZA8ZGd0/bwcKwQmwm/r6+r8jt+6QlJTUXuc20Gtcf0XbuttA1JAAjB49GgA7Le3kVlfURFxW/0QliqogoSGgeNm4/g3stqr21hwmk5kxY3I57rjjmDdvHllZ+16L+eSTT3ju2ec47/zz+OCDD9ixJp9ofxI5TMSv+tjAbxgMUf0iNgCt1kx8/Fga1/1O9OTpCHulMcOGjUaflEbju4tIfuSqTim2tYqVsUo4p2sS+cBX0fn38HipffIDZqQMY86FF3LfffcRdYTKyBN6ntrKX1KDqoIcG4ls2XfNj37kEOy/baR4ZR1+T2CfIhFVVVn30S5+eXIrmvRE5t93Lw/ecy8Xn34ZCy95lQtfPxJLcmepeaxtGHpfOAXxS7s87++v7ERBxHL69B5/x95CkCUMI4dgGDmE6ItOwFfdgHNDPo61O3DUtiBJEqPHjSXg9XHSSSfxyiuvYLFYABg1ahTvvvtu+7kqKyt59NFH+e677ygvL8RevDNYfiDJGJLSMKYFRSqu8mJiw4f2+Z7j4vTU1/d//V9VFRyOWuLJ7fe5NHoZrUHTrVpyIMQkbd1camtr/xaUdIewsDCMRiN2u33QiUoMBgNO5747Nx9IxMTEEBcTh509zTzrixqJ7SW5BdQAzWo9u9TtbBR+5zfpG/LYgCTKoDRxxBGTefzxx6mtrcVut7FmzRoefPDB/RIbwL+u+xcbV2ymaHUZJx9yBpMCM8kSRhIhRBFJLLKgpb5uW6+/e1dIST0cn82KLX9rh88FQSBh5ql4S6vbC4z/ik99VYwQw9rb4bRBcbqpfvitDsRWbK1n7UfFbPuhvEf35Wr1Urm5EVQwjNx/JGbIzYCAQsCrULq2odv93K1ePrtpNT89uhnzUYeSdM8/MV59OvPvvYesrCzmnXs571y8nIbijunWYDpyIsUxK1HEzpL2+sJW1n9aTMTpM0LiH9lTaBJjiDjxCJIWXMZxzy2g2N6EMiYTFwqffPIJkdHRyLLM2LFjWb58eYdjk5OTef7559m1axc+r5cWq5UFCxYwPGcYgbpKGlb8QtlHL+O1NtDYkEdhwfc01O/A5+vd+xsXq6euvv8+l25XMwHFh5n+T4zD4814XT48jo7RZEAN4PIPDLm53W5kWaa6unrQRG6DjtwEQSA5ORmr1TqgRNIVIiIisFqtA3oPY8ePwy7skUrXFTURlWrZZ82TX/XRoFZTqG5hvbiMZcLXrGMZ9eZyJh83gQceeoAVK1bgdDlotjazbNkybrnlFuLi9r+29FfMmDkDjayhYa2dIZPSOhQmi4JIjJpIfe2WkPTHCwtPxhKVRf3yHzp1EzemDiF8xHga3/uRgL3z4NS6Oz15jiapXT0ZsDupeuBNZmWN4qI5wVRk/dgUkp+4Dv3EEXx1+1q+v38DPve+xTu7/qhjd3Z3n+ttbdg7bVm4rHMxvaqobP22jJdP/5WilY3E33gBMXNPQtDIGEZkYvjnycxfsICsrCz+MedK3r3kN2rzdk+AVIHMhik0mkto7SIdqaoqPzy0CU18FBEnHL7fez1QGK2PYqcxQNxVZ5H+2h0kPXAFltOmISbFtNfUSbKG4cOH89JLL3Xyng0PD+e+++5j27ZtuN1uPG4Xzz33HDNmzCA2NoyqipVs2fQOvy97gFUrniJ/51fU1mxurz3rDrGxempDsN5mtwf/rmYs/T5X7JAo6nd1Fri4CC4dDBkypN/X6C1cLheCINDU1ERycv8dWEKBQUduANnZ2dTW1uJwOAb6VjrAYrHQ0tKy/x0PICZOnIBDam0nB1u9A5/LR3T6nhopj+qmVq0gT93IWmkxy/iajfyBPbqRWWdM55lnn2bjxo00W5v57vvvuO222zj88MPRavvveXfmmWdi9TdRklcKKiTkdBSKJJKG09WAtbm439cCGDr0RDxN9Vg3req0LX7WaeBTaHzn+y6PXatYKVQcXK7NQG5xUrXgNY4aPo6L5szh3nvvpXZYHJYzZyLqtMReew4xl5/O5m8qePOCpZRv6H6Ns3B5NcJuB5G9BSPdQY6PQgwPphLzllS1/22VgEr+kirevHAZX9+1DmFoFslP/AvT5I6CAeO4YejmHs/8u+eTlZXFFfOu4r15v1O5uYnMhsPRBgyURXUu2AbY+FkJFesbiJp7CoJmYFYptAgME81s3S3waaupi5p9NKlPXEfctecAoEtMJa+gkKuvvhqNVkdsbCyXXnop9fX1nc+p1XLdddexZMkSyspK8Xo9LF++nH/+85+kpERSV7uB7Vs/ZMVvj7Di98fYse2/VFetxelsaP/9g2ISPXX1oSC3ajSCDi39X8+My+qa3NoyOqNGjeq07UDD4XDQ3NxMeHg4sbGxB/36XWHQrbkBDBs2jIqKCux2+/53PoiIiIigtbWVQCCAJPWvb1lfccQRR/Co/1HcODFgQlVVaorq0A6B7QXrsGmasfmsAKSlpnParFOYNm0aU6dOZejQoQdcInzCCSeg1Wip9VVQvLaCoUekU71jz+ATRRxGIZyK8j+IjOr/DDMsPIn4hHHUL19E+PDxSPo9ggqNOZyEo8+g6rsPMYwa0qUK8ENfJfNI5JKWcFZOPIwLL7iAe+65h+q0CGIuPK799xIEgfBZk9APTaHh1S94d+5yRhyfwozrRmBJ2bPGpfgVCpfXoAZUxHATctz+zXoFQcAwIhPH6u3Y69yU/FlPXX4Laz4qprXKgT4nlcR7zsQwvPsUp/nQkahuD/Pnz+ehhx7iqn9ejX25DcPxcezM+KnLdGRdfgs/PbaFsKMmYRzT93Wp/iJXDMOq+qhTu16GcO0oRhMZTcaF16L6fTjKCrEXbseav5WFCxey8K230Ol0TJo4kfvvv59Zs2Z1OocoikydOpWpU/cU92/ZsoW33nqLX3/9lby8HdRUrwNAozFiicwiJ3c8qppNc7Ob/sYBDlsNZjUiJO9fbFY0Wxfld/rcRguJCUlERh78RqV2u526ujqGDRs2KNxJYBCT2xdffBFsKjmAdWV/hdFoRJZlWltbB+QBAtrl9bvYgaoq2OQmEgsNhGeFE5Gj57RZ57eT2UCkB8LCwjjm2GP4Y9Gf7FhcxEm3z2DFO+sJ+IJ5OkEQSFOz2Fm/EZerGUMfndr3RtbQ46j/cxt1y38g8dgzO2yzjD4ER1khDa9/jS4rGW1yx1Sru7qeBx59iqfufZB5c+ey4J4FVMYZiLv0lC6fO21aAon3X4Ft6XryP/2FHT//TM6sJA65YAgp46Op3NyExx6U2RtGDunxs6sfnoFjVXDt8MMr/0CQJUyHjyLpmsPRZ/Wsg3TY9Am0eHzcddddvPDCC2i1Wm7+v5s4/JZUhk7r2NXc6/Tz2c1rkBNjiL7kpB6d/0DhMCmSNQFrl9tURcG5ZicRuZMQBAFBoyUsawRhWSNIOPYsPPXV2Aq3Yy/Yyh9//MFRRx2FKMmkpaZw6aWXctttt3WbkRg9ejRPPvlk+/8vLS3lrbfeYtGiRWzdug2NFENhYT7Ll9xPhCUDS2QmlshMwsKSEMXeDZ12WzUx9N9NSBAFYjIjqSvqHLk5hVYOmdD3Mo7+wG63U11dzbBhnV2LBgqDltyKiopQVRWXyzVoygEEQcBisWC1WgeM3GJiYpg6ZSorVq5g3LhxzJh5DlOnTsVoNPLiiy8OyD39FVdddRXfffcdO7ftZFbr4WQdlkb+byXt2xNJp5CtVFb8ydDsE/p9PZ0+gszMoyna8AOW0YdgSOyoakw85kxc1WXUPv0xyQ9dgagLDnbe8lqq7n+D46bOIDIyktLSUub88x+8E2PHI3ZPSoIoEj5rEuYjxmBbtp5dP65k57zfiMmOQG+WESQBNaD2aL2tDYbhGbS5BcvxUSQ/dCWSuffPveXYQzlh+CH4fD5cLhdnn3UOz/3fc5z6yESGHxuc7ATX2TbSUusm6eFLEbWh6QzdF0QKGoaKJj7qpqjeU1BOoNVO+LDRnbYJgoA+Lgl9XBKxRxyN32nHvmsntoJtlO7awYIFC1hw771EhIVx9NFH88QTT7RbvXWF9PR07rnnHu655x4AVq1aRV5eHtOnT2HDho0UF+XvnmxLRESkYYkcgiUyk/CI1H2WGvh8TlzuJsLYvyBrf4hMCUdVVKxVndcKnbKNsWPH9vsafYHdbqe8vJzc3P6rQUOFQbnmNmzYMEpKStq7ug4mREREDPi62+Kli7G2WFm7bi3//ve/OeGEE3C5XINGgHPCCSeQkZ5BuVDE9p8LGHlsx0abkiCTRAbVFasJBELTtysl9QjMYYlUfvUuAU/HNRJRqyPltEvw1zbR8OqX7SbAlQte5bipM5h7ySUsuOce7nv3VdTkaK4xDCWsB/M+Ua8l4rjDSP739STccQmu6FQqtzSjBoIs1ZVZcnfQpMQhGHSIooi/rpm+2OLLCJynSWZcVg4PL/6CW265hWHDhvGv6/7FV7evZdOXpQCs+2gX274tJ/ofp6FNGtj1kUOlSHYodlrp2kbMtnwDclgEhuT9127JRjOWUZNIPeMScm94iPTzryJq0jScgsxnn33GkCFZaHU6xo8fz6effrrPc6mqSktLC8cffzy//vorTU2N2O12Fi5cyEknnYBO56S0ZCkb17/O8iX3snbVCxQW/LBbkdlRwNTSEjRHsNB/S6y4rGgaSppR/9IM2Kd6cfjs7eVCBxNtZVslJSWDKnIblOSWnJyMTqejtbV10JFbW+Q2kJBluUOnW61WS3R0NDU1PWtbc6AhiiI3/N8N1FHBpl+3EZ8dTXSapcM+qQzFH/BQW70xRNeUGDnqfAJ2G9WLPu2kxtTHJpB80vnYV2yh7rlPqLr/dY6feRTz5s7l7nsWUKo6ibzhXBb6y6lS3dyqG8oEsWeybUEUMY7NJuqC41D9Qcs4waBDk9xz4hBEEUNuRpDTVBXnps5rKvtCqmDgRm0W8YKO573FBE6ajHr4CG6//XZyc3O5/l/X88N9G/nm7nX89NhmIk48grAjx/XqGqGGhMDhUhQrAl1bWwXsTuzLNxE5/oh9upB0BUGSMKVnkzDrVLKvvIusy+8g/qhT0SSksXHTJs4991xEWSYpKYkbb7yx0zjT2tqK1+vt4NFoNBqZO3cu33zzDTU1NXi9br788kvOO282kZEyVRUrdisy7++gyGxs2IlW0GMIQaub2CFR1HeRkmwTk4wZM6bf1+gtHA4HsixTUFDwN7ntD6Iokp2dTV1d3aBUTLaJSgYTEhISBg25AcydOxe9Xk+BbQd5y0sYc3LHdIVBMBFLIhVlf4SkLACCHQtycs+kdccGrJv+7LQ9PHcckeOPwPHnVk446hgunTeP+QsWUOJqJfH2SxB1WgKofOSr5BNfFadpEpmrScXcQ6Nl54Zgh3JFUTAMz+iVPyOAfkRG+2/hXNd1t/O/QkLgRDmea7SZrAu08Jx3Fzb8CIJA9MUnEBifxa233sqIESO44YYb2PZtBdq0BKLmdHaWOdgYL0bgVP3kKV1PYG1L1oGqEjmu/yUKuqhYog+ZTsYFV5Nzw0OknH4J4SMmUNts5emnnyYsPIL4+Hiuu+46iouLqampIS4ubp/CMVmWOe200/jwww8pLS3B6/WwbNmyTorMqopVKATYzlqq1BKcqr3Pz3xsVhR1RZ2VunZa0MiaASEXu91OIBCgsbGR7Ozs/R9wkDAoyQ2CqcmamppBF7m1iUoGsrdbV0hISKChoWHQNHmNiIjg0ssupVouYeO328iZloE+rKMMOo1sHM466uu2dnOW3iM+YQyJyZOp+fkL3HUd67pa8zbTvGElJ598Cpdddhl33X03xa0NJM6fh2js6JiyRWnlcU8BAVRu1WUzrgdRnHPdTgRJDLZy2YeysTvoczNAVZFlGeeGvC47G+yNFEHPjdosckQzz3iL+DVQj7LXdkEUib38dPzDU7n5lpsZOXIkN910E/7yOpo//iVkk4q+YpoczW/dRG1qIEDrolWEDx+PbOy6X15fIen0hOeOJfmk88m5/gEyLrwWUGludvDCCy8wZMgQvv/+ez744AO+/fZbFEXZ7zkhOCmfNm0ar776Knl5eXi9bjZt2sStt97KZZdfSsyocHYI61jBIlbIi9jCn5SrhdhUa4/+FoIoEJvZfRlATk4uGs3BXz+12+00NTWRkJBAeHj3LaAONgYtueXm5lJSUkJra2h7O/UXgiAMimLuv8JkMmE2m6mrqxvoW2nHtddei9vvYlvpVqq21zH+9I4dByKFWKJJYFfBDyhK//tltSF72MkYjTFUfP4W/t3dva1b11Lx5duceuopXHrpPO646y52NdaQePdl3bpyOAjwrq+C//qqOGN3FBdJ14OH4vbi2rYLnUYLau/EJG3QZSYhaGRkWUZ1e3Hnd21krUPkBDmOa7VD2BBo4VlvETXdyOgFUSTu2nPwZsRz4003MXLkSG677TZav/mdxoXfovZw4A41RohhWAQNawPNXW53rsvD32glauLULreHCoIgBjsQqCpjx8/j8CNv55DJF5Kens7ChW9zyimnoNPpGTt2LI888kivx6MxY8bw2GOP8fLLL7N5y2aampr47rvv+NdN15JxSApF8lZW8Qu/S9+xiRWUqHm0qI0oaue/iyUpHARoruh8Dw65lUMmT+rz79Af2Gw2qqqqyMnpvvvFQGDQktv48ePZunUrbrd70HlMDoZ1t64w2FKTOTk5HHvssVTJu1j53gbGnJiLKaqjsW82o3G5rVRWdC7C7iskScPo0XNQXW7KPn6NxtXLqPr2A844/XTmzZ3L7XfeSVFNJYkLLkOO3LfvI8Dm3VGcF5U7dNnM0aSQInSM9FxbiyCwe71NI6PL6L0FkSBL6LJT8fi8IIk413dMTVrQcIoczwJdDlmiiWe9Rfzyl2itu/PG33g+nqRIrv+/GxgxYgR33nkn9l/WUP/yF/uNEEMNAThJjudnfz3ebpQzLT+sxJCSgSGhZ2UQ/YEtbzM6gwVzWBJ6fQSHHX4kNbUexk28kTHj5hKfMJGdO4u58847sVgsJCUlMW/ePDZt2tTra1ksFk488UQeffRR/ly1kpaWFpYsWcKdC+5g9IxcKvSFrGEJy8Vv2CD8RpG6jSa1joDqJy4riobizmISv+qjxd/EEUccEaqfpFewWq0UFhYyYcKEAbl+dxi05DZx4kS2b9+OLMsDrk78KwYzudXW1vY4jXIwcMMNN2D1N5JXlEfJukomz+644G0WIkgig5KiX/F5Q7e+ajBGsDjC5gAAgNFJREFUM3bsPDz11dQu/opzzjmHSy65hNvuuIPCyjISF1yGJrbn5RwOAnzgq+BRbwEONcA12kyu1WZyqBSJjt1EJP2/9s47PIpy7cP3bMmm90Z6hZBAgARC7yiKFD1WFBUQj/1T7GAvx348oiJ2RQW7IhY6BAIJJaQQkpDee++bbfP9ERNBE2qS3YS5r2svwu6UZ5Pd+c37VBltajWqoT4IivMr8rcI9UcUQTCItBxJR0bHKudWpTerVME4CWZ8pMnnXU0eZT2s1rpDZqbE/dElqB2tuff/7iM0NJSnn36a1v3JVKz5tmNKej8RKbPHDFmPiSTtBeWo0/NwjJzW57aIooGmzOO4OId11SQG+FuTm9eEXK7EyXkYQ0MWMWnqKsZNuB//gEtpaVHw+efrGT16NFZW1sycOZOvvvoK3Xn8Di0tLZkxYwZPP/00u3bvorGxgUOHDvHyqy8xaV4UNbalJLCPvcJmxKA2snIyqRJL0Yp/ZRk3UIuIyOTJk3vt93K2aLVaWlpaSE1NJTIyst/PfzpMVtx8fHywt7enqqrK5ITE3t6epqYmkxIRAAcHB2Qy2Z8DQE2Dyy67jLGRY8mVp3JwQyLDZgR0uFdOIpAwRL2O3OxtvXZeURSpqjqOaNCxdOlSlixZwqOPP05WQR4eTy3HzOPs58edTK2o5WddGS+0Z5Kkb2Cy3JFnVSHcPm4WC6+YT/DQodieYYr16bAc7o+PlxcLFy5k+cKreVo5lKuVHlSK7bymyeZzbRH54vk18pWZq3BffSut1iruuucehg8fzgsvvID6aAblr32FQdP38Vo5ApcpXdmqq0Tfw6qtcWscChu7bmvbepu20kJ0LY24uHbMIFMoBLy9rMjNOzXWLwgC1tbu+PrPIDLqbiZPe4LhYddhZR1ATEwsN99885/joIaxatWq8/agKJVKoqKiePjhh9n862bq6mpJSUnh3bXvMmb8KHIrs0gmln38yhH5bk6IiZSQi52tvVHcgg0NDSiVSo4dO2Zy4iaIxo4qn4a5c+cyadIkLrvssq45T6aAKIps2bKFCRMm4Oh44V0HepPExETMzMxMZmAgQExMDNOmTSOMKBbfdQ3mNiq2vh5zyjaFYjaZJBE57m5s7c5/ajJ0/H2yM3+nuOgADz30ENOnT+eRRx8lMzeHIU/fhnlQ77q6nEsbCYovJjw8nCFDhmBta0OFqKFYbKPY0EaJQY0aPVpEZCI8bj6U19uzEAEzZLjJVHgLFnjKLPAUzDG0ayguLib9xAky7WWUjvU5n7K3HtE3tlDy9IdYtRv4+MMPycvL4/FVqzAL9sb9sZt7dZ7b35kqd2K83IH/arK7fU/6xhYK73kd54mX4jJpTp/Z0UnF7s00Jh1h8tTVCIKMAH9rpkx25Yuvcs/6GAaDnob6AmqqT1BdlUZbWw0g4OTkyMyZM7nvvvuYNu3CVqF6vZ4tW7YwdepUampqiImJYd++fezZHU1efi633HIL69evv6BznA/Z2dkcPHiQu+66i4aGBmTnmCHcl5i0uK1evZqCggJuvfVWLr30UmObcwpHjx7F0tKS4cOHn3njfqSsrIzU1FRmz55tMm3LABYtWsSuP3Yz02Yht677Fz8/tYPK7L9Smg2igcPCbgQrSyKi7kYmOz+3nigayEj/mbLSeJ588knGjx/Pw488QkZ2FkNWL8Ui9NyzGM9E3Y+7qftxD+6ubpRXVjJ6/fP4qGzwklngLVjgLjNHhQwlAso/67V0oogWA1oMVIkaig0dQlgkqklavQZtfhkGUUQV6ofHk8t73WZdbSPFj7yDjcqcLz77nNzcXB565GEU3m4MeWLpeXVHORMqZDyhGsrX2mLSe0j/r17/O827Ewi644lez5L8Owathqy1zzPEZTTBwxYAMGfWENTtevYfOP/ErNbWjjE71VVpNNTnI4qGP5NSOgb8rlix4pwHHldUVJCcnMwll1zyj+91VVUVzs7ORvm+Hz16lG3btrF169Z/jCUyNqYjs90QGRlJamoqbW1tJjfbzdSSNzpxdXVFo9FQV9d9FpqxeO2111CLbaTXJZP8WzpTl0f+YxzOcHEMzc1l5OfuOq9zGAx60lK+oaw0nhdffJHx48fzyKOPkJGZifvDN/WJsAG0HElHLsioqqpCFeBBoxKOG5rYqqvkI20BL7Rn8GR7Oo+1p7FanQbAU+3pPNGezrPtGazV5PGLrpyjhgYqxXZUof7oEXFxdkadno+hrXc/+6Io0rjjMIaWNhobm7l16TKCg4N59+130BVVUvrsx+jqe78E51KFCxVie4/Cpi2voXH7YZzGz+5zYQNoTE9Cr27D07ujjk6pFAgOsiEz68IytC0tnfH2mcyYyNuZMv0pwkbehINjGAmJKdx3331YWlrh5+fHfffdR05Ozlkds7y8HHd3924FzMXFxWg3svX19eTk5JicSxJMXNwiIiJITU1FqVSaXFKJq6srTU1NJtPyqhO5XI6Xlxf5+fnGNuUUhg0bxgMPPECBLJP93x/Gwt6C8CtOjRHYCU4EEEZB/h5qa86tQ4der+X4sa+orDzOG2+8wejRo3nsscc4ceIErvdfj+Xovilu1dU3o8kvIzg4GD0i5mcQ0LNxk5iH+ILewIQJE0BvoC3l7C6AZ4NBraHqvR+p/zka15nzCVj6II1tbdx8yy34+fnx4fvvoy+vpfTpD9FV1/faeX0FCybJnfhB+8+Zcp3Ufr0DhaU1TuP6I5FEpPbIPhydh2Jp2RF/HRpkS32DlspemN/WiUJhjqvbCIaHXcOUaU8SOe5ufPxmUF3TzrvvvktQUBB2dh0ZlJs3b+42ji+KYpe4mRJarZbm5mbS0tJMLlMSTFzc/Pz8sLGxoaqqyuRWIkql0qRaXp2Mr68vpaWlJlPQ3ckzzzyDk7Mj6dpEdr0Ty4QbR2PvcWoqvh/DcMSNtJRvzzhIshOdrp1jSZ9TU53Bu+++Q0hICKtWrSItLQ2Xu67GenzfxR/bkjrS9SdOnAh6wzn1k+wJ82EdfRRPnDjxZ0nAiQs+JnQ0ii554n1aDqbiMf9GnMfPQuXshu8Nd9HQ1MySm2/Gy8uL9Z99hqG2kZKnP0Rb3vPcurNFicANSi926Cqp6CHDU51ZSMuh47hOm4dMeeFzBc9Ea3Ee6qpSvL3/Sp8fEeZAamp9n51TEGTY2nkTEHgJURPuZ9KUxxkWchVKsyFs3bqdRYsWddXUvfTSS10NLBoaGtDpdKe0AjMFOpNJkpOTpZXbuSIIAlFRUeTk5JicuIHpuibt7OywsbGhuLjY2Kacgo2NDW+teYsKQzEpacdI3ZHF7HsnnuKeFASBEYxD0IukpXyD2E0x68lotW0kJ3xMQ30en3zyMX5+fjz11FOkpKTgtHxBtzPcepOWoxkgk7F//34AVEN9LviYcmsLlJ4u5OXlYWVuQUv8iQsqthZFkaboo5Q88T4yjYyAW1diP+Kvgl8Ldy98briTuoYGltx8M66urny9YQNiYyslT3+Ipqjigt7PZQpX1OiJ1ld3b5/BQM1nv6Ny88AurH8ukrXx+7CwcsHBsaNdlLOTCicnFScy+89DpDK3w8MrivDRtzJ1xjOn1NQ98cQTODg4cOWVV/LHH39ga2trtBmSPVFbW0tNTQ0KhcLkCrjBxMUNYPr06SQlJVFTU2Nyqfem1vLqZPz8/MjPzzd6i6W/c/311zNzxkwyFUns+/IQFnbmjPpb30kzwZyRYhT19fmnjb9pNM0kHv2QpqZSvvrqK9zc3HjhhRdITEzE8ca52F3atxm2olZHW3IWjvb25Ofno/R2Q25lceYdzwKLEYFoDXouu+wyDM2ttOf17M47HQZ1O1Xv/UjV+z9jGzIG/1seQOX8T/eWpacfPtfcTnVNLTfffAsODg78+P330NpO6TMf0Z7b/UiaM9HpjvxaW9JjsXnTrnja80oYcsnV59yP83zQNtTRlHkcb6+JXbGqsDB7srIb0WiMc405uaYuasL9gICDzpWY3+IoLy/n6aefJmJMBM899xzx8fEmcS2srq4mIyODqVOnmpzwwgAQt5kzZxIbG9s1gsKUMMWWV514enrS2tpqUjVv0LEy++LLL1BZm5GiO8zOd2IZv3jUP2rfHAQXAhhOft5uamuz/3GcdnUDCUfep621ih9++B47Oztee+01Dh06hP1VM7Bf2LdtmwDa0vMRNVqWLl2K1qDHIqz3ElY6427z5s0DmfCPbiVnQhRFmg8ep2jlGloOpeEx/0Y8591wWpeflV8w3v9aSmVVJUuXLsXa2prNmzaBRkfpc5+gPpF/TjYoEVis9GK7rrLHKdv6xhZqv9mB3chxWHr1TcLP36lNPIBcrsRtSEecyEwpY3iIHceOm4Z3qKY6AxAJYQxTHS7D38+f5qMiZcnVvPzCK4wbNw53N3dWrFjBpk2bjNJ/12AwUFtbS2JiIjNmzOj3858NJi9ukZGRqNVqGhoaqK7u3q1hTEzVNalQKPD19SU39+zrdfoLLy8vNmzcQJWhlIPpBzi+LZNLH5yMwuzUuz9/huOIK2nHvqa1parr+ba2Wo4eWYdG08Dmzb+gUql4++232bdvH7aXTcThutn98j46u5KMGjUK9IaOxse9ROex3n33XeSCjNb49LPet72gnPKXPqfyrW+wcPYmcPmjp7ghT4dNUBieC5dQWlrGbbd1pKxv/eMPZHoDpS9+Ruuxf95o9MSViiG0nsYdCVC7cRvowW3mgrM+7oVg0GqoTzrIEI+xKBQd9Xyhw+2ordVQUWEabf6qq9KwFRxRCRb4jfWk7EQV9s0ujGA8k/XziGQ6ltUOfL/+R6666iocHRy55JJLeOedd8jLy+sXGzsba8TGxkridr4olUqmTJlCZmamyYqbqbW86iQgIIDy8nKTy+iEjoGmjz76KLlCKlu+3IWuXc+se08dbdIRfxuPUq8gOeET2tsbaWmp5OiRdej1bWzdugWATz75hO3bt2M9IwKnWy7vl7RoURRpOZKGSqHkzTffBP5cbfUSCgcbFC72pKenM3z4cDQF5ehqT59go6uup+r9nyh5fC26kga8r7kNn6tvw8z+3BoN2A0fw5DLr6OwsIC77roLmUzGzh07kCNQ/uoXtJyF0E6WOzJCbssXmqIeM0Rb4tNpik7AbfoV/ZL6D9CQloBe3YaXV8dnTRBgVLgjScmm4eHQ6zXU1mTiInb0JvUf50X+kb9i5zJBhoPgQrAQTpR+DpO4DH9dKEm7j/PA/SsJCAggZFgIjz32GDExMefVEuxsqK6upr6+HoPBwJgxfRvXPl9MXtwAZsyYQUJCgknG3Uyx5VUnlpaWuLm59dvd3Lny4osvEhUVxXEOsfnVnQwJcSHyX6dmNpoJKiLEKYgaLUnxH5Nw5H1kgo7du3fS3t7Ozp07+fnnTSATsJs7oV9iNgDa0mr0NQ1MmDCBEydOoHBxQGF/5ibM54J5WABqrYa33noLgNakf5ZHiKKIOqOAire+ofD/3qT1cAbuc64k6LbHsAk6/yxRh1HjcZtzJVlZWaxcuRK9Xk/0nj0oZHIq/ruR5v09Nw0OklkxX+HOZ5oC6uk+Hq2tqqNq3U9YDx2BfS/MazsbRFGkLj4GJ+cQLCw7Mg/9fK1RKASyc0xj+kh1VTp6gxY3vFGaK/Aa6U7ekZ4TwywFa3yEYEaLU5gmzieciTRltvPOm+8ybdo0nBydWbx4MRs3buzVa1R1dTXp6elMnToVheLMU+uNwYARt9jYWACTi7sJgoCbm5tJuiahY/VWUFDQZ3dwF4JSqeS777/DzEpBQtMBfntpD5HXjMBv3KntscwFS4LFEbSpazBTCkRH76GxsZGDBw/y1po1WPoEoXIZQtnzn9CW3j9C3pqQAYLAxx9/TLtOh8WIgF4/h0WIH+gNqFSqjpKAo3+VBBg0Wpr2JlCyah2lz3yENrMc91mLCLrjCRwjpyL0QoDfaew0XKZdTkpKCk888QTt7e3s27sXMzMlle9+T+POI//cRzDjVqU3P+tKe+yBKer0VK75DpnCHM95N/RbAXJrUQ7qqjK8Tkr/HzPakWMpdZjKPXN5aQJ2OGEpWOM9aghNVS3Ul57d7EiFoMRV8CRUGMsk3eWMYxZOTR5s+2EnN910Ey7OLkyePIXXXnuN1NTU8042GwjxNhgg4hYZGYlGo6G+vt5kXZPl5eUml5kI4OTkhI2NzVl3QuhvvL29+fKrL6k0lJCQd5hd78Zx6QOTcPT+azhorVhJhiyRiRMmcPjIYWpqajh+/Dgv/uc/WHoH4HPdCvxuvBdzV2/K/7Oepr0JfW53S3w6giB0lFvo9Sic7RB1vTc6RhRF5H+O43niiSdwdnCk7Vg2rQkZVH20icK7X6dq3U8oZbZ4X3s7gbc/juPYqchV59bW6Uw4T5yD04RZHZ3qX36Z1tZWYvbFYG5hQfXHv1D/2/6ubVXIuE3pQ7y+nsP6+h6PWfvNDtpzS/BadAty895v89UdoihSfWAHltZuODh2NLb28rTE1cXcZBJJNO1N1NVmMYSOchL/cV6nXbWdDkEQsBMcCRTCiNTPYCpXMEwcQ3ZcPk+sepIRI0bg6+PLfffdx7Zt285prNhAiLcBmOZ68m90xt0yMjIIDAw0qVHm0NH+pq2tjebmZmxsetc1daEIgkBoaCgHDx7Ez8+vYxVgYsyfP5+HH36YN//7JlYHbHDyseeK1TP4/rGtFDfkkyI7xMxZM3jnnXfIycmhsLCQx1etxsLdG59rViBTKEGhxOfaf1O27Xuq1v1EW1oezssWIDPv/YJgfXMb7ZmF+Pr48Pbbb4NMRt33u6nftA8z3yEoXB1QONuhcLZH4WSH0sUema01gkKOQaEAc9C3tqHX6dA3t6GrqUdXVY+upgFddcfPmoJyDC0dK5/U1FT+/e9/8/LLL1P+2pcoHZxwCI3CftQEVE6uvf7+TkYQBFynX4FB086uXbuwsbHh3nvvZd/evcyePZvar7YiqjU4Xj2Tm8y8aBB1/Krr2YvRmpBBw2/7cZu1EEuP3otRnomWvBO0FGQxIvzmrpXi5EmuxCfU0N5uGsu2yopjgIArXggyAd+xnmx5dW+vHFslWOCJP574ozfoqaOK6uIyPnt/Pe+++y4W5hZceumlzF8wnyuuuIIhQ3qeR9jZVEMURUaPHt0r9vUFA0LcAObMmcO2bduIiopCp9OZlJ9XoVDg6upKSUkJISEhZ96hn3FycsLJyYnMzExGjuz7MSLnw8svv0xGRgZbft+K4hsz7D1sueKZqTz69GaumDWP119/naysLGpra7n7nntRObvhc/0dyMz+EmuZQoHnFYux8gmibPsPtGeX4PbA9Zh5u/WqrW3HskAUefbZZ1m1ahUylQU+V99GW2kB6ooStMV1tKYVoW1s4O/+LgsLC/j6a4rueYO2tlPddgobW5S2DpjZOGAzZigWnn7UJR6gLvcEL7zwAi+/8io2w8LxWnRzv/YSFAQB90uuwqBpZ9OmTdja2nLLLbewZ88e5s6dS+2Pe1gxfjbOgWa8o8ntsZ5NV11P5dofsA4KxXHc9H6zXzQYqNj9K3b2fji7dDQ6Dwq0wdpaYTKJJADlpYk44Y6ZoMJrpBuIIuUZve+pkgtynHHHGXdEnUgLjVSry4j5PY7Nv25GFEV+++03rrjiim73r6io4NixY8ycOdOkrsN/x3Qt+xsLFy5k9erV/N///R+VlZV4eHgY26RT8PX1JTk5mWHDhplUN/5OQkND2bt3L4GBgVha9o8r6FxQKBR8++23XDLnEuIPxVH/VhXXPbaQt9a8xaRJk8jKykKj0XDL0qWY2Tviu/gu5ObdF0zbjxyHxRBvin/5gpIn3sdp2XxsZkT02t+l5c8SgKVLl3LbituxHjoCSy8/LL38TtlONBjQtTSibahD39qCaNCjknfY4Dl/MWq9iFxljtLOEYW1HbJuLhSaumqaMo9TUlKCk6MDDcXGSQ4SBBke867HoGnniy++xMbGhquuuoqtW7fy3Xff4Wdpz4ufrUO5eHa3ST2iTk/F298hk6vwvGJxv35H6lOO0F5dzohxdyMIAoIAEye4cOhwNTqdaYQSWloqaWouwY8JAIReEkz67tx/TN3ubQRBwBo7rLHDzxBCs9jAQXb0mHyiVqupr69n37593HHHHX1q24UyIGJuAMHBwfj7+5OdnW2SyRuurh3uoYqKC2tV1FfY2tri4eFBevrZ10v1NxYWFvz2+28EDQskW3+c2tpafH19ycjIQKlUcvU116CwssV38d1nTB1XObvjf8sD2IaMofqDn6la+wP6lvMb8nkyosFA69ET2FhakZeXh0Gvw9K7++GkgkyG0sYeSy9/bIaOwDZkFLYhowCwGToS26EjsfINxszeqVthA7D07khUeeWVV7jiiivQNTfQXm2cz5ggk+O16Gas/Iay9r332LVrF5WVlUybNo3PP/+c4l/3UvnuD93GHmu/3k57djFeC29GbmHVbzYbNO1U7duCi1t415zA0OH2CAKkpdf3mx1noqIsCQVKnBmCua2KgCgv0naefU1hb9FADXKZvKN5QDdUVFSg1+s5evRojys7U2HAiBt0rN4OHz5MRUWFySVvyGQyfHx8KCgoMLYpPTJ8+HBKS0tNLuP0ZOzt7dm7by979+7lkUceoa2trWvSr62TC3433YPS1v6sjiVTmuE57wY8F9xE6+ETFK98i6Z9iRf02WnPKkJsa+eqq67i1VdfBf4SoL5A5eyGzEzFli1bOs4nCDTnpPbZ+c6EIFfgffUyLD39aWpqoqWlBZVKxbp164iIiKAl7hgV//saUftXdm797wdo+P0A7rMW9VsXkk5qDkejb20hMHAu0DFpe0KUM7FxVSaTIWkw6CkvTcANL+SCnOEzAyg7UUVD2dllSfYm1bJyJk2a1GOT5vLyctLS0hg3bhxubr3r7u9tBpS4LViwgB07dqDT6UyykbKvry8VFRX/iKWYCpaWlvj5+Zn06g06YoReXl6kp6fj4eHBVf/6F7X19bz0xps4OLuc8/HswiIJvP0xrDyDqXrvR8qe/fi8ezW2JnQ0Sn7vvffYunUrMjNzVM599yUXBBmWPoEUl5Tg7u6OykxFU6bxxA1AYWbGw089zfARI7jzrrspLCykvr6eDz/8kBnTZ9CakEHZq19gUGto2pdI7ZdbcJo4G8exfd8S7WQ09bVUx+3Cy2cyFpYdheyjwh1padWRndP/wtETNdUnaNc04EnHTVLoJcGkbu//VZtO1FFLJVf966puX9fr9VRVVREbG8vChQv72bpzZ0CJ28SJExFFkaqqKpN0TVpaWuLi4kJhYaGxTemRoUOHUl1dTU3NhY8y6Styc3NJT08nICCAqPHj0RlEvitVU6U1cPdIT9wtzz0DUmljj9eiW/C54U4MNWpKVq+jcu0P5zyzrOVIOgqZDCsrK0pKS7H0CUQQ+vZrZOkdiE6no6GhgYiIMbSVFqBra+nTc/Zoi0LG8pAhuFuZ88pnX1NbU82//30HgiBQX1/PG2+8waKFC1Gn5lHy1AdUvf8zduFRuE7r3s3Vl5Tv/Bml0go//1kAqFQyxkY4cSDWtHrBFhcewA5nbAUHPMJcsbBVkXuo/68hNZSjN+hYsKD7VmhVVR0t8Pbs2SOJW2+jUCiYN28eCQkJJilu0LF6KywsNDm3aScqlYqgoCDS0tJM0sZOYQsNDWXU6NEYAJ/r70Dl5sl32VUcqWjijjAPwhzPL25j7TeUwOUP437p1bQlZFP0wFtUr//9rOaWaSvr0JZWER4eTm1tLTqdrk9dkp1YegeAKPLaa6/xzDPPACItub0z4+1ccLNQcvcIT1q0Op5+6VWKDscQPHQBZma2zJ17GVZWVtTX1/PUU09x85IlaEurkJmpcJ0+r9+TrJqyU2nOTiU4+IquHpJjI5yorGyjqNh02tE1N5VRX5+HDx1x27BLgjmxJxe9tv99ppVCEaNHjSEoKKjb18vLy8nPz8fd3Z3Q0NB+tu7cGVDiBh1xtz179tDc3ExLi3HuXk+Hu7s7BoPBZBNLAAIDA2lpaTG5eW+dwhYZGcmECRPRajTYBI3AwtOva5vo0nq+y67k6gAXZnnacz6XTEEmx3HMJIL+vRqn8bNo2ZtM0cq3KH/1S1qPZfco+q2JHZ3533vvPV5//XUQRaz6Qdws3LwQ5Ap++ukn5s6di0yuoCmrf12Twx0suSPMk/iyWl55/jlqM44zctTNePlMYszYfyOTWzB9+gycnZ2pr6/n/vvv59WXXsbQ3k7BhvfQNvdfeyuDVkP59p9xcAzCxXUEAPb2ZowKd+RAXNUZ9u5fiotiUQkWuOCJpb05gRN9OL49q9/t0Ioaqijn1qW3dPt65zTwI0eOsHDhQpPMCP87A07c5s6dS3Z2Nmq1mtLS84ub9CUymQw/Pz+T7MbfiVKpJDw8nJSUlHPqTNCXdApbVFQUkyZNorKykiEeY2k8kUTZH98iGv7KwEuva+WD1BIiXGxYHOyKUnZ+XzS5yhzXqZcRfNfTDLnsOvSlTZS/9DnFD71N4/ZDGNSnjmlpPXoCQS5j/Pjx/PzzzwhyBeZuXj0cvfcQ5HIsPP3Ize0oA/Dy9KA5N/2U30lfMtPTnuuCXNl4OIWPnnqU9rJSRo1ZjrNzR02nubk9YyJvRxQVTJgwER8fH+rr65k9ezYfvL8OTX01+V+sQdPQPzVl1Qd3o2tuYOiwhV2p/5fOGUJKah2VVabxeQfQalqoKEvCSwxAJsgIuzSYkuMV1Jf0f5/LCopBgMWLF3f7el1dHVqtlh07dvTotjQ1Bpy42djYcPnll3Po0CGTW3l04ufnR01NDY2NptGMtTs8PDxwdXUlOTnZ6O7JTmGbMGECM2bMIC8vj9AR1xMSejXDw66j4Xg8RT99jkGr6dqnok3Le8dLsFTIuTPM47zicJ3IlGY4jBpPwNKH8L3xHsxthlD92W8U3vU6VR/8TGtCBvrmVtpSc3Fz6Sj5yMvLx8LTr1d6OJ4NVj6BaLRaNBoNy5Ytw6Bpp7U4v2/PqZBx01A3xrrY8OrGn9n8+nNYKBwYN/7/sLf3O2VbS0tnRkeuQKsTGTMmguDgYOrr64mMjOSbjRvRNTeQ/+XbtNf2bbyrtSSf6tid+PhOx9KqI/lozGhHzM3lxB00rVVbaWk8iCKeBCBTyBhx2VCSf+9/dzNApbyIOXNm95gBWVRURFlZGXq9nunT+68A/0IYcOIGcNNNN/Hrr7/S3NxskgKiUqnw8vIy6dUbQHh4OHV1dUa9SThZ2ObNm0daWhrDhv8LN/eOejD3IWMYOeoWWvMyyf/i1Itjq87ApyfKSK9r5c4wD2Z62nOeizigo6DVyicQ76uWEnznkziOnoI6uYDy176k4I5XQG/g/vvvR6PRoNFqsfLpvr6tL+iIuxl49913Wb16NchkNOek9dn5Rjha8cAob/Q6LatefIWEH7/C13caYyJWYG5u1+0+1tbujI64jba2dkaNGs3IkSOpr68nKCiIP37/HX1rC/lfvoO6sm88Lvq2Fko2fYmtnXdXEomDgxkTolzYsbPMZAq2oSP9v6QwFje8MRNUBE/2RdOqpTCx/71RrWIztfoqbr311m5fNxgMlJaWsnfvXm644QaT7kpyMgNS3ObPn09FRQW1tbUUFRUZ25xuCQgIoLi4GI1Gc+aNjYSZmRmjRo0ymnuyU9gmTpzIddddx+HDhwkaOh8Pz3GnbOfkPIzIsXchtGrI++x/NKT91RjZIMLO4jo+TCtlpJM1d404v2zKv6O0c8B1+jyCbl9FwG2PYu7iAYLA448/zjvvvAOiocfi7b7AwsMXBBkbNmzAzMwMW2trmjJTev08VgoZi4NdWeTvzPfxqTy/8v+oyTzBqDFLCQiai0x2+pWqra0Xo8Yso6GhkREjRhIREUF9fT0uLi7sj9mHqFGT/9U7tJX2bj2oKIqU/P4NorqdsBE3IJPJEQS4ZLYHx47XUVZuWuU5lRXHaNc04kNH8sao+SEc+/0EPQ6/60PKKcTC3IJFixZ1+3plZSU6nY7ffvuNJUuW9LN158+AFDcLCwuuvvpq9u/fT0lJidHdat1hZ2eHvb29SRd1AwwZMgQ3N7d+d0+eLGy33XYbu3fvxj/gErx9Jne7vbXNEMaOuxdnp+GUbP6K0i3fneKmLG3RsDalmMxeWsV1IggCKmc3tI31uLp0uLk2bNgAggwLD58LP8FZIlOaYeHu1VWjOGvWLDR11Wjqeq/3YOdqTQCe+mQDm157BiszZ8aN/z8cnYae9XHsHfwJH30L1dXVjBo1iqioKOrr61GpVCQmJCDo9eRvfI+Wwt6r5ao9so/m7FSGh16Dubk9ABGjHVGpZCbnjhRFA/m5u3BmCDaCPe4hLtgNseHEnv739IiiSJWihGuvuxYrq+4zkIuLi8nOzsbNzY2xY89uorspMCDFDWDJkiVs3rwZjUZjsjVbgYGB5Obmotf3T+D/fBk5cmS/uidPFraVK1eyadMmfHyn4es/87T7KRQqQsOuY9jwf9GYEk/e+jW01/yVlaoXYUdxHR+llRLuZM3dIzwJtO2+/+S5oK4oQd/azFVXdRS3njhxAgt3L2TK3p84cDosfYNQt7ej1+v/7I4i0NQLrkkXcyU3DXVjkb8zPySe4MXVj5O79Wf8/GYyJuI2VCrbcz6mo9NQwkbeSFFR8Z/ZrxOor69Hq9WSmZmBXIDCbz+gKefCGwq0lRZQGf0b3j5TuxojOziYMT7KhR27ytDrTevmt6I8mba2GgLoSKcfs2g4aTuz0ar7f+ZiI3U06Rp6XJFptVrKy8vZtWsXS5YsGRBZkp0MWHGbPn06SqWSoqIik00scXd3R6VSmewk7E5Odk/2dXeVk4Xt2Wef5YsvvsDDczwBQZed1RdHEAQ8PMcRGXUPsjYdeZ/9j/rj8adsU9Ki4d2UYpKrm7lxqCvLQtzxtDp/IWrOSQNB4OWXX0av19PW3o6lb/e1QH2JpVcAosHA119/zdChQ1EolTRfQEmArZmcq/yduTfck8Y2Nav+t5afX3oSRauBiHF34h94yQUVqLu4hjE87FqysrKYPHkykyZNor6+nrq6OgoLCjBTKCj64RMaT/Q81ftM6NVtFG/6EmsbDwKCOlpsCQJcOtuDYyl1lJuYO9Jg0Het2mwFB9yGOuM9agiJm/oufno6yinE1cWVWbNmdft6ZxLJjh07uOmmm/rZugtjwIqbXC5n8eLF7Nmzh5KSEpNcHXXOUsvMzESr1RrbnNPSH+7Jk4XtzTff5J133sHNfQxDQ869bsba2p2x4+7BxTmM0t82UvLrBnStzV2v60WIKWvg9cQiSls03B7qweJgV5zMledsd1PmcSzMzXFwcOhwSRoM/VK8/Xc6+zJ++OGHAISFDqelKAd9+7nFSy3kMi7zceTBUd6YyeD5r37mjYfuo+RwLMHDFjA26h7s7HrH5eo+ZAxDhy0kOTmZG264gcmTJ1NfX09paSnl5eVYWphTvOkL6lP+OdX7TIiiSOnv32BoayVsxOKueGDEGCfMVDLiDpmWOxI6Ym0nr9om3TyG5F9P0Frf/zFvvainSlHCzbfcjLyHrN/i4mKSk5OJiIggMLD/Ysy9wYAVN+hwTf7+++8mXTTt4uKCnZ0dWVn9X5h5rowcOZKGhoY+yfI8Wdg+/vhj/vOfl3B2CSMk9OrzXh0oFCqGh11LSOg1NGemkvPBy9QlxiKe1BFXrTewraiWN5OKaNMZ+L9wTxb5O+OgOruML11LE+qKYqKiogD46KOPALD07N8GwABycwtUzu4kJ3esdB5++GEwGGjJzzyr/c3lMqZ72PPwGG+GWJrxvz+iefHhlaT8/BWuTmFMmPggXt4Te7WdmF6vpaY6ExDYvHkza9as6RK4nJwcqqqqsLW1pfT3r6lNOHBOx647up+mrBSGD78GCwsHAIa4WzB+nDM7dpaanDvyr1WbB7aCAz4RHjj62JFgxFVbu17NnXfe2e3rbW1tVFdXs23btgGVSNLJgBa38PBwAgMDSUlJIT8/39jmdEvn6i03N9dkCqZ7wszMjHHjxpGenk5lZe/VI50sbDt27ODxxx/HwTGIsJE3nDH77kwIgsAQj0gmTHwIF8dQyrb9QP4Xa2grO7U3X6NWz6a8at49VoKFXMbKUd7cNNQNfxvz0x6/+c+Y0H/+8x8AkpOTUTm79zhLrq+x9Ami6c/OPEuWLEGQyc9YEuBsrmSBnxOPRfgwzN6Cj3Yc4OnHHyPuk7exUToTNf5+Qob/CzNV706R12rbSE74hLqabEYzGX+G8/jjj/PJJ590CVx6ejo1NdW4urpSvv1Hqg/uOqtjt5UVUbF7M17ek3BxDQPAxlrB/Hle7I+tpLzC9L5rlRWdsbbhIMDEJaOJ/+E42rb+9+qIokipIo/LL7+8x3ZbhYWFtLW1ER8fz3XXXdfPFl44A1rcBEHgjjvu4JdffqGmpsYk23EBODg44OrqSkZGhrFNOSOOjo6Eh4cTHx9Pc3PzmXc4AycLW35+PsuXLUcUQSbIEMXe659nZmbN8LBrGDP2DmQtWvLWv0XxL1+iqT+1K0aVWss32ZX8N6mQarWWm4a58X/hXkx0t8Vc/s+vQ1N2KjK5gsmTO7I4m1tasTJCvK0TK58AxD9jIABuri40ZR3/x+9SLsBIRyuWhbhzX7gnZqKe17/+mYfvuoPdH7yJSmPG6IgVjBq9FCvr3p9q0N7eSGL8B7Q0lhHJVJwFdwIIxYdg7r33Xr799tsugUtOTqakpAQfHx8qo3+nct8fp3WNd8TZvsDa2p3A4MuBjlE28+d5k5PbxLEU05sYYjDoyc/Z3bVqGzrVD3NrFce3nt2qu7epp5oGXS0PPPBAt6+LokhBQQHR0dFcddVVuLic+zQOYzOgxQ067l6PHz9OQ0ODya7eoGOWWmFhYa8IRl/j4+ODr68vhw4duqBY4cnCVl5ezpzZczDTWBDOBOprckg6+glabe82sbW392PsuHsZNvxftOVmk/Phy1Ts3oxefep5GjR6thXW8mpCIfvL6gl3smZVpA/XB7kywtEKM5mAQaejOfcE/n6+AGzbtg3RoDdKvK0TS6+Oc7/11lsAXHvttejbWlGXFyMTIMDWnPm+Tjwe4culPo5klJTz0GtrePGe20n4+Rtc7UMYN+F+xkSswMGxb2IodbW5xB98B11rE+PEGdgJHbPBBEEgmHA88Wf5suX89ttvpwhcfn4+ISEhVMfupGLnpm5vfgw6LUU/fILY2krYiBuRyTrcy5fM9kCrNRC9zzQbqpeWHKJNXUMgocgUMsYvHsWhr5ON0iAZoFjIYWjwUObMmdPt6xUVFbS3t/P999/36LY0dQZGqflpsLOzY/HixezcuRMnJydCQkJ6DI4aExsbG7y9vUlPT2fcuHFn3sHIhIaG0tjYyNGjRxk/fvw5J3ycLGz19fXMmjkLfTOM1k/CTFChEi1IajpA4pEPCI9Y3mPXi/NBJpPj4TkOV7dwigpjKDwaQ11iHPbh43CInILK0bVrW61BJKGqmYSqZlwtlIxxtmGOlwPXBbmSVVHDvkvmdF0AOgWlU2CMgcLaFqWdIwcPHgTg2WefJSkpmSnDPAgf6ovWIHKipomPd+7n8O+baCnOQ2VhT0DgpQzxGItSadlntomigfy8PeTn7sIBF0YQhUo41e0rCAIhYgR69CxevJjNmzczc+ZMDhw4QEJCAmlpaYwfP54jR2LQa9rxuPw6BFnHPbho0FPyy5eoy4oYPea2rhlt4yKdcHcz55vv8k1mAOnJaLVt5OfsZAh+2Aj2jLg0GJ1GT8Ze42RRq8VWKoUSnlm5tsfvdX5+PidOnMDZ2XnAtNv6O4JoihXQ50h8fDwzZ87kq6++IjIyEi+vvm9mez60tbWxa9cupkyZgr29vbHNOSNarZZ9+/bh7u5OWFjYWe93srC1trYyaeIk6ssbGa2besrFrkVsJFHYj6hUEBZ+I3b2vn3xNmhvb6KkOI7SksNoNS1YB4TgOHYqVv7DekyecFQp8KzKYcQQZ8LDw7GxseHrr78mLScPccpC6jXnV5Okkgs8M86f547k0X4eCQ8WChnmqXEMkRt44IH7qampIT8/n/hjx8nWKTkeu4/m3BOIeh32DgF4eU/C2WV4n8+ca29vIi3lG+rrcwkgFH+Gn/aGyCAaOC47RIOimm3btzF+/HgOHDiAvb09ERERzJkzh927d2MbMhrPBTeBTEbZlm+pT4ln5Kibu5o2B/hbM/cSD77/sYDqmvYez2dMsjP/oLQwjknMxdrChpvfv5Ldaw+Sf8Q4JUxZYgq11qWUlpVibW39j9dbWlrYvXs3L7/8Mtdccw0PPvigEay8cAb8yg1g7NixhIaGkpCQgIODg8mKm4WFBf7+/qSlpTFp0iRjm3NGlEol48ePZ9++fdja2uLt7X3GfU4WNp1Ox8wZM6ktr2OMbto/7uKtBFvGijNJ0RwkMf5DAoLm4u07pdcvxCqVDQGBl+LrN5PKimMUF8VS+N1HmDm44Dh2CnYjxiFXnWpbjVrLoa/Ws10uUF5eTmVlJebmFlx/3bV4urmi1hkoaWmntKWd0hYNZa3tNGr0aA29c68oE8BGKcfVwgwPKxWeVio8rc1wUCmpGupMZkoyer2eOXPmsGjRInbu3AmArb0vAQGX4uIS1rWy6Wtqa7NJT/kGdHoimIaj4HrGfWSCjDBDFCm6OOZdPo890XuYPHly1wpu586d/Otf/2LTpl8waNpRubhTf+www0Ov7RI2JycVl17iwY5dZSYrbK2t1RQXHcCfEFSCBaMXDqe+tNFowqYXdZTLC7jn33d3K2zQsWpraGggOTmZ33//vZ8t7D0GhbgB3Hfffbz44otERkZSV1eHg4ODsU3qluDgYHbu3EllZSWurme+CBgba2trxo4dy+HDh7G2tj7t7/VkYRMEgdmz5lCSX8oY/VTMhe7dYeaCBZHidHI4Tk72FurrcgkJuxYzs/MbRno65HIlQzwicR8SQUNDAcVFsZTv/IXK6D+wD4/CNiwCiyHeCIIMTW0l2sZ6Llu8GDMzMyoqKnjnnbfxuGIxzuFRuFuZdQiOlRkzPO1xszBDLhNo0+lp0upp0uhp1Oho0upp1urRG0T0otjVEizSxQaDCHJBwFIpw0apwNZMjo1Sjo2ZAmulHIMoUteuo6SlnaJmNYcqGihp0dBYU0X2+69TWFjIN998w9q1axk2bBiBwfPw8Z3a67+3nhBFA3m5uyjI240jboQx7h83MKdDLsgZaZhAsuYAl15yKfti9p0icD/99BPLli1j/Rdf0Jybjn/gpbh7RABgbi5nwTwvEhNryc5p6qu3eEGIokjWiV9RYYEvw7CwUzHmylB+fWG30WwqpwiNoZ177rmn29d1Oh0FBQVs3bqVJUuWmOx19GwYNOJ27bXX8tBDD1FaWkpeXp7J/lHMzMy6JmG7uLgMiHY2rq6uDB8+nEOHDjF16tRue9CdLGxKpZI5s+eQdSKLMfqpWAqnTzGXCTKCCcdBdCG1Np74g28TGr74H2NVegtBELC398Pe3g+1uoHS4oOUphyh9mgMCms7bIaOQNTrQBD+bHMFr732GtDRnV8nihQ3t1Pc/NdqQQAsFTJszBR/CpS8S7C8rVXIBQGZIKD4c1E6zN4SrUHEIEKrTk+DRkdxs5rGP4WxSaujWaunu4Wg0s4RuaU1e/fuBWDo0KHY2NhSX5fXb+LW3t5I2rGvqW8oIJAw/Ag5r8+yXFAQrp9EUst+Zs2cTWzcgVME7rPPPsPNzY3XXnud6so0PL0mYGFhyfzLvaisUnPoSO/11uxtaqpPUFubSTgTkQtyxl4zktLUCsrSjVNc3pH+n8v8y+cTENB93LikpASNRsOPP/7I4cOH+9nC3mXQiJtKpeLf//43mzZtwtPTk+HDh2NhYZxapDMREBBAXl4epaWleHp6GtucsyIgIIDW1lZiY2OZPHkylpZ/rcROFjYLCwsuv+xyEhOSGKOfgrVw9okizsIQxouzSdEcJin+Q/yDLsXHd1qfxovMze0ICJqLX8AcGhoKqK5MpSrtOO3qBsxUqi5X7L59+5BbWqO0697VJwItOgMtOg2ny9frjLltzKo4r5gb/DmaxzeIyszjXc9NnjyJ7dt3otdrkcvPvQvL2SKKIhXliWRn/I5MLxLJNByEC0sTVwjKDoFrjGHmjJnExsWeInCvvPIKoaGhLFu2nOPJn/DMsy8BsH2n6Q0r7kSv15KV8SuOuOGCBzYuVoRdEsT3j241mk1VlNGgq+so/u8GURTJzs4mLi6O8ePHM3LkyH62sHcZ8KUAJ3PPPfewd+9eGhsbycnJMbY5PaJQKAgJCSE1NdXk23J1IggCI0aMwNXVldjY2K4elCcLm7W1NVdffQ0H9scSrp+IrXDuMR9zwZJIpuHLUHKzt3Es8XM0mr4vn5DJ5Dg4BPzZfur/ALjqyiu7Xq+sqsbKN9hkVtqW3oEY9LquqRP//ve/MRh01Nf1XWf55uZyEuM/ID31exx0jowXZ1+wsHViJqgYpZtMY1UzM6bPoK6urqtMICEhgVtuuYUff/yBe+5ZhlZTzfc/HDep+Wx/Jz9vN+3qBoYxCkEQmHb7OLL2F1BTWG8Ue0RRpEBxgunTpjNt2rRutykrK6OlpYX169f3KIADiUElbu7u7ixbtoxNmzaRn59v0rPUfHx8sLKyIjX1/Bvf9jeCIBAeHo6joyOxsbFkZmZ2CZudnR1Llixh+7ZtjDSMv6CLnkyQESSMZAxTaKor5Ejc29TV9t/NSl1txyiWlStXApCXl4dBrzNqfdvf6bTl5ZdfBmDRokUoFEpqqnt/krNOpyY783fiD76NtrGWMUwlXJiA2TnE184GlWDBKN1kKkuqmTVzFs3NzV0Cd/ToUTw9PYmKGscLLzxHXOxa2lprz3xQI9DUWEJR/l78GY6VYMuwGf64BjlxYP1Ro9lURSkNulqef+H5bl8XRZGsrCwSExNxdXXliiuu6GcLe59BJW4AjzzyCL/++iutra0mPQlbEATGjBlDSUlJr7a66ms67ZbL5aSnpxMZGYm9vT0rVqzgxx9+JMwQhZPg3ivnchLcmSDOwVJnTlLCx6SlfEt7e98nD9RUp2NubsH48eOBvwSkP4eTngmVsxsyM3O2bu1wc8lkMoYPD6G6Kr3XGl8bDHpKig9x8MAblBQeJJAwJoiX4CT0fkeTTiwEK0bpJlOQU8glcy6lvb2diRMnUlFRQXV1NXPnzmXbtq0YDG0cjV9HS4tpfXcMBh3pqd9jJdjhxzCsHCyYettYot8/hLrJODfboihSqMhgxvQZPa7aqquraWxsZP369Tz++OMm46G4EAaduPn7+3PNNdewZcsWcnNz0en6f0bS2WJpaUlYWBhJSUkDxj0JHSuZ5uZmXFxcSE1N5bHHHmP95+sZLkbiKvRuDFElWBApTmM4kdRWpnMo9r8UF8ZiMPTNFAhRNFBdlU5kZETXc9u2bUOmMkflbDrZrYIgw9IngJLSv+JO1113He3tDbRe4AVfFEWqq9I4EvcWmSc24aR1YhKX4ieEIOvjejkAK8GGcN0k0o+nsWD+ApKSkrCwsMDMzIzjx48zYcIE4uOPIBN0JBx5n6ZG04m9FeRF09pSSZg4FpkgY+bd48mPLyHvsPHGclVRSr2ulueef67HbTIzMzlx4gSCIAzIPpLdMejEDeDxxx/nm2++Qa1Wm3RLLgBfX1+sra0HjHuyM8Y2adIkJk6cSFVVFYGBgUQ5T2OI0DdF2IIg4Cn4M0mci7vek6zMXzl66F3q63q/w0NDQyF6fTu33npr13OlpWVYegf2eSH0uWLpHYhOp6O2tsM9d++99wIC1efpmhRFkdqaTJLiPyQl+UtUbTKimM0IIarHUo6+wkawJ0I+lZkzZ5KWlsaUKVOYMmVKVwxu5MiRpKYex8xMRuLRD2ioN/7E++amMgry9uBHCDaCPSEzA3AJcCLmk/gz79xHdMTaTr9qq6uro6amhvXr1/PII4+gUAyOPEPT+rb2EiNGjOCSSy5h586d5OTkmOSst04EQWD06NEDwj15cvKIo6MjgiAgiiJJSUn8+6VbsXHr/dq0k1EKZgwXIhjHLGStGhKPfkhK0vpedU3VVJ9AJpN3iVttbS06vQ4rE3JJdmLlHQCiyOuvvw6Avb09bm5uVFed2wgVna6dkqI4Dse+SXLiZ+ga6xnNZCKYiq1gnJIahUrOdasXYWVlxRfrv8DMzAxzc/NTkkwCAgLIyDiBlZUFSQkfU/tnrNQYGAx60lN/wFKw6Yi1OVowZXkke9YdpL3ZeLH/M8XaoGPVVlhYSE1NDUuXLu0/4/qYQSluAKtWreLLL7+kra3NZCd1d9LpnkxMTDRZ9+Tfha2TxYsXM2bMGA4c3M9Vr8zBdahTn9tiJzgyTpzJCKJoriniSNxbZKRvQtML8bjqyjT8/HwxM+uY3P3qq6+CKGLp3f/z286EuZsXglzBzz//3PXcpZdeQmNDEVrNmSdktLXWkJX5G3ExL5OZ8SvWbSoimc54cTbOwhCjxV2snCxZ+OIsWhWNfP/9D/zw4w9dr/1d4Dw9PcnJycbBwZ5jiZ9RXZVuFJuLCmJobi4jVIzscEfeNYH8IyXkx5cYxR74K0Ny5oyZTJ3aff1jY2MjFRUVfPXVVzz44IOYm/dukpAxGbTiNnHiRCIjI4mJiSEzMxODKXZUPQlfX19sbGw4fvz4mTfuZ3oStk7uuOMOLr30Ur79/hsWPTeL4Fm9M8X5dAiCgLvgwyTxUoIYSWVJIgcPvEFWxq+0tp5fYa+6rY7W1ioWLVrU9dwvv/yCoFBg7mZ6Ld0EuRwLTz/y8vK7nvu///s/QKSmpvtRKh2ux2yOJa3nYOwblBcdwVPvxxQuJ1yYiINg3MYCbkOduea1S0nLT2Hbtm3s3LXjH518/i5wTk5O5ObmMMTdnZTkL6koT+5XmxsbisjL3YEvQ7ETHP90RzoY1R0Jnau2ujPG2iorK8nIyBiw3f97YtCKG8AzzzzDxx9/THNzs8nH3jrdk6WlpSY1VfxMwtbJ9ddfz+OPP86aNWuYtDSC8ctGIsj6/iIpE+T4CkOZzGX4GAKoKD7Kodj/kpzwGTU1mec0M64zjf7kGVd5eflYevghmOCkCQArn0A0Wm1X2cvYsWOxsLD8R0mApr2J4qI4Dsf9j+TET2ivKWM4kUwV5xEsjOz3mFp3DJvhz8LnZvHNj19TV1fHtu3bsLPrvgnA3wXOxsaGnNycjt6tx7+htORIv9is1baRemwjNtgTSBhWjh3ZkXvWHaK9xXjuSINoIE+RxqyZs3pctdXX11NWVsbHH3/Mgw8+iI1N7w6rNTaDWtxmzpzJxIkT2b59OxkZGSbr8uvE0tKSESNGmEz25NkKWydTpkzhy6++ZO277+I+2pHLnpqMysqsHyztiMcFCiOYIs4jlLFo6yo5lvgZh2P/R3FRHDrdmRvrVlelY2/vgI9Px8qzvb0djVaLpRGHk54JS+9AEA288847Xc+NGzeWmuoMWlurKSyIIeHI+xyIeYmsjF+xalUSwTTGi3PwFPyRC8ZPHhBkAhNvHcOk5aP5z0svMmHCBL788sszusj+LnAqlYrMzAxCQ0PJSP+JosL9fWq3KIpkpP2Irr2VkeL4P7MjJ5B3uMio7kiAEnJp1jfy5v/e7HGbtLQ08vPzyc/P76rpHEwManGDjhqlzz//nJaWFpPuWtKJj48Ptra2RndPnquwdRIQEMDWbVv5Y8sf1Ggqueq12Th42fahpaciF+R4CH5EibMZywys28zJzviV2JiXT+uy1Os11NXlMm3aX3e577zzDogGo85vOxMWHj4gyNiwYUPXc8uXL0evb+dQ7H/Jy9qGskFDKGOZxnxGCZNwFFxNpo7JzFLJvNXTcI90YPUTq3nyySd58sknz9q+vwucXC4nJSWFqKgosjN/Jz93d6/V/f2dkuI4qqpSCSUSC8GK4bMCcPZzIOYT4xVrA2hFDfnyEyxbtoxRo0Z1u01VVRXV1dWsW7eOp556qscJAQOZQS9uY8aM4corr+Tnn38mOzub9nbTHI3RiSm4J89X2Dqxs7Nj8+bN1NfXs3v/Lq565RK8I/qu8Lc7BEHAXnAmXJjAZC7HW+93isuyojwJnU7dtX1dbTaiqD+lW/qGDRtAkHUIiIkiU5ph4e7FiRN/uSFvuukmrK2tcWYI05jPaGEyHoIfZoLKiJb+E3sPW65+7RLqqObV117l+x++59prrz3n4/xd4ARBIC4ujjlz5pCXu4Pc7K29LnBNjSVkZ/6BN0G4Cp5YOVkyZbnx3ZEAeaQjUwr85z//6fZ1URRJS0sjNTWV9vZ2br/99n62sH8Y9OIG8MILL/Djjz/S1NREZmb3gXZTwsLCgpEjR5KQkEBra2u/nvtCha0ThULB2rVrueyyy/jo44+Y+/BUwq4M6Gif38+YC5YECSOZIs5jOJHo6qpJO/4t+/e+QHLCp5QUH6KiPBml0oxLL720a7+MjAws3L2QKfvHtXq+WPoG0dbe3lXyolAouPbaa9Eo1CiEvmuifCH4jBnCv169hL2HotmzZzexcQcuaEJ9dwK3Y8cOrrzySgoL9pF54pdzir+eDp1OzfFjG7DGlmBGIlPIuPyRqeTEFVJw1LjuyFaxiWIhlyeefAJ39+47BZWVldHQ0MC6det44YUXujKDBxsXhbgFBQVx2223sXHjRvLz8/tdMM4HHx8fPD09OXToUL91WektYTuZm2++mbVr3+Wjjz8i7PIgLnt2MtYuxklekAtyPAV/opjFFOYRLIZjqKsn88QvVFYcY+TIEV3b6vV62trbUTo4oW9Xn+aoxkXU61BY2YLBwMaNG7uenz9/Po26OlrFvm86fS4ozRVM+XcElz4ymQ8+eh8fHx9279ndK9Mx/i5woijy888/s3TpUkpLDpGe+v0Fd7YRRZETaT+iVTf/GWeTM/PO8SAI7P3QuCNiRFEkS3YMT0+PHqdnGwwG0tLSOHToEE5OTtxwww39bGX/IYh95ZA2McrLywkKCuKdd94hPDycyMhIY5t0RgwGA3FxcSiVSsaNG9encZK+ELaTaW1t5cEHH0QmkzFt6nRi1yeQvt00en/WiBUkEsPWrVuZO3cuANu3b2fu5fPAoAdBQOXkjoWXL5Yefqhc3FHaOiC3tD7nv0nnyJvnjuSd88gbvboNbWMdmtpKWksLUZfk01Ze3DV77vrrruObb74BoKmpCUdHRwJ0I/ARTCMhxnOEGzPujaKsuoQvvviSt99ZwyWXXNLr51Gr1Rw4cAB7e3siIiIQBIH777+ft99+G2eXUMJGLkYmO79Emvzc3eTl7mAkE3ATvBi1IIQxi0L5/pEttNS19fI7OTeqxFKSieWnn37iqquu6nab/Px8kpOTWb58ORs2bOCyyy7rZyv7j4tG3ACeeuop9uzZw2OPPcaUKVNMdqDpyWg0Gvbu3Yu3tzchISF9co6+FraT2bhxI2vWrOHft/+bxtIWYtYm0FR15oLjviRXTKPSqpCa2pouF82yZcv4/PPPiRh3N63NFTQ0FNLQWEhrcyUd09tAkCtQ2tijtHVAae/Q8a+tAwpbe8zsHFDY2CNTnOoW7EncRIMeXXMj2sZ6tA21Hf821qFt+PPRVI9B89cKUmVhj62tD3Z2PtjaeXMi9Qc8Pe1PcbvPmTOH5D2pjBan9OFv78wozRVMuHkUITMDWP/lelqaW/j6m68ZMmRIn52zO4F76qmnePHF/+DgGMTIUUuQy8/NHVdZcYzUlK8JIJQAIRSf0UO47NFpbHp6J5XZNX30Ts4OvajniGIX46ePY8eOHd3edGm1Wnbt2sXvv//O8ePH2b17t8kkFvUFF5W4NTY2MmzYMB5++GHGjh3LtGnTBsQft7GxkZiYGMaMGYOHh0evHrs/ha2T/Px87rrrLgICApg6ZRoHPj/KiR293yfybDkqj2b2lTP4/vvvu54LCgqivLyZqIkPnLKtTqemrbUWtbqOdnU9anUDanUd6vaOn7V/75IikyHI5H8+ZFhaWfHlJx+xZNkKWluawaBHNBgQ/+YuUygtUJnbY66yx9y846Eyt8fc3A4LC0fMVKfWJGWe2ExF+VG02r8Spt5++20eXPkgUw3zjRZ78wxzY8a94yivKWfdB+tYufIB7rvvPuT9UDfYncC9/vrrPProY9jZ+RA+ZikKxdl15GhsKCIx/kNcxCGMIAoHT1uuefUy9n10hMx9+X37Rs6CPDGdfPkJjh8/3uNNcEpKCqmpqSxfvpyYmJgB4b26EIxf5NKP2Nra8sYbb/DII4+wbt06CgoK8PPzM7ZZZ8TW1paIiAiOHj2KlZVVj4Wt54oxhA3Az8+PP/74g08//ZQ1b7/FittW4D/Zk/1rE/t9FdcuqqnTVbNgwYJTni8oKMJ9yNh/bK9QmGNj64GNbfc3GQaDDrW6nnZ1A2p1PQaDFtGgxyAaEEU9ZsqOMLf3kAlotHoEQY5MkCHIFKhUtl0iplCcW2ajvYM/JcVxJCQkEBHRMdHgiiuu4P7776eWSlzp34nvSnMF45eMYvisAL746gsa6hvYtWsnQUH95yLtjMF1TvSOiIjgkUcewc7OjjvvvIvEox8xOuI2lMrTx4DV6npSkr7ARrQjlLGorMy4YtUMUrdnmYSwtYhN5MsyePDBB3sUtoaGBvLz8/nss8+49dZbB72wwUW2coOOoOuMGTMIDQ1lwYIFzJkzZ8BkC2VmZpKfn8/06dNRqS4srdtYwvZ3iouLueeee/Hy8mTqlGnsXx9P5s4CREP/fCxLxXzShaNUVFTg4tIxYDU+Pp5x48YRNvJGXN1G9ur5zJQy7rpjGOs+yECj7b2WcO3tTcTGvMT//d//sWbNmq7nhwYNpSVHS6jwT6HuKzxHuDH9nnFU1pbz/gfv88ijj3DnnXcikxknf627FdzXX3/NkiU3Y27uyOjI21Gpuu/OodO1k3jkfXStTYwTZ2Iut2D+EzMQDSK/v7y33z6nPSGKIgnyfdh7W3M89TiWlv8UalEU2b9/P4mJiTz//PNkZmYa9TvfX1wU2ZInIwgCa9eu5fPPP6e+vp60tHProG5MgoODcXR05PDhwxfUK9NUhA3Ay8uLTZt+ZuLEiaxbt45R/xrKv96cjU9k38VjTqZaKGds5NguYQP44osvALC39+sXG3oDlcoGc3MH9uzZc8rzi65aRJ2iqs8KmU/Gydeey1ZP4bJVU/jptx/YtXsXe6L3cPfddxtN2KD7LMrFixfzyy+baFfXkXBkHWp1/T/2E0UD6ce/oa2lmtHiJFSCOZNuHoONixXb3jxgdGEDKCKbOn0Vn6//vFthg44byNraWt58801eeeUVo3/n+4uLTtygYyTOXXfdxQcffEBRURF1dXXGNums6Czw1uv1HDt27LwuWKYkbJ0IgsCSJUvY/OsvnMg4wR87/2DGfeNY8J/puA117rPzGkQDdbJKFl256JTnd+/ejbn5P+Napo6DYyCZmaeOfZk/fz5tuhaa6LvPuI2LFbPvn8DVr84lvSyF559/nttuu41t27eZjNu/O4GbP38+O3ftQKdr5uiRdad0rxFFkayM36iuzmAk47EW7AiZGcDw2YH8/lI02jbjt8drFZvJlaVx77339jirTavVkpqayp49e3Bzc2P58uX9bKXxuCjFDeDZZ58lMzOTzMzM8xYKY6BQKBg/fjzl5eXk5Z1bEoYpCtvJ2NnZ8d///pdXXnmZ777/jrhjB1jw7AwueXwijt69E2c8mTqq0Oo1zJ8//5Tns7NzcHA0vfltZ8LO3o/29jZyc/8qsZg0aRK2NrZUUdbr5zO3VTFleQQ3vjOfSrGUhx5+EF8/X44mHOXKK680uWSt7gRuxowZxMXFgthOwpF1NDeXA5Cfu4uS4jhCGIOzMAS3oc5M/3cUW9+IoaHc+LWDoiiSIU9kiIc7L7/8co/bnThxgoaGBj788EPWrl1r1BV0f3PxvNO/0Zlc8uabb1JfX09BgfEn+Z4tFhYWREVFkZaWRlVV1VntY+rCdjKhoaH8+uuvLF26lDfffJOsqnSueX0uU++NwNq59wrAqyljiPsQwsPDu57LycmhvV09oFySndjbd8yc+/zzz7ueUyqVXD7vcuoUvTfQVWmuYOx1I1iybiF6dzUPP/ow9Y11HDp0iKeeegoLC4teO1dv053AjR07loSEo8jlIglHPiAr41fy83YRxAi8hACsnCyZ99h04r5KpPhYubHfAtDRGLlGX8Fnn3/WY1/IziSSTz/9lFtvvZWxY/sv7moKXLTiBnDjjTcSFBTEH3/8QWpqKm1txi3CPBccHR0JDw/n8OHD1NfXn3bbgSRsJzN37lziDsYxd+5c3lrzFnXySha/O5+xS0Mxt72whBpRFKlTdLgkT15hfPbZZwDYOfhd0PGNgbmFA0oza7Zu3XrK8wsWLKBeV0O7eGGfb7lSxoh5Q7lp3QIcRlvw/IvPkZ2bxZYtW/j000/7tG6tN+lO4MLCwjhxIh0LCyXFRbG44Y2fEIK5jYqFT80k/2gJx37PMLbpALSJLeTIU7n99tuZPXt2t9sYDAYSExPJycnh6NGjPfaZHMxc1OImCAIffPABX331FeXl5SQlJQ0Y9yR0tOgaNmwYsbGxNDQ0dLvNQBW2TmQyGddccw0xMTFMmjSJ99etQ+Fp4JYPFzHp7lE4+pyfu7KVZpp1jVxxxRWnPL9t2zbMzKwxNzf9Av+/IwgCDg4BpKWdOo36sssuQybIqOb8Vh2WDhaMu2EEN3+4iMBLh7Bm7VskJifyww8/sHHjRoYPH94b5vcr3Qmcr68v2dlZREZGUi2U0WJZx8JnZlNX0kj0+4eMbTLwpztSloizixOvv/56j9tlZWVRV1fHyy+/zJo1awbkd/9CuajFDSAkJITnnnuOV155hcrKSgoLC41t0jkRFBREUFAQcXFxNDWdWkA80IXtZGQyGddeey07d+0kPDycDz74gGqxjGtem8vlz03GZ9yQcxqOWk0ZKjMVs2bNOuX59PQT2DsEmFy86Gyxd/CnpaWZysq/3JBOTk6MHz+eGuHcxM01yIlZ94/nlg8WoQwy8N+33mB/7H7Wr1/P119/PSBF7WS6Ezg3Nzf279/P/IVXcNXTc6mtqWH7/0wjMxKghDyqDeV8+tmnPda7NjQ0kJWVxVdffcXEiRO58cYb+9lK0+CiFzeAlStX4uLiwh9//MHx48cHlHsSYOjQofj6+nLgwAGamzuC3YNJ2E6mU+R27NzB9ddfz88//0xc8gEm3zGaxevmMfraYVg5nTkuVyuvYNbs2aekT1dUVNDS0oy9g+nObzsTdn/GCjvLGTpZuGghdbJK9OLpGwcrzRWEXhLEVa/NYeHzM8lryWT16tW0qdv46eef+Oabbwa8qJ1MdwKnUCh48MEHsbax5unXn6BEa7zuOSfTLDaQLTvGihUreuwJ2emOzM7OJjo6mvfff3/A3qhdKJK4AXK5nM8//7zLPZmYmDig3JPQsQL19vYmNjaWEydODEphOxlBEJg2bRobv97IG/99g6ysLL7c+AXmQwVuXreQOaujelzNaUUNtYYqFi48tSvJ+vXrgYFV3/Z3rKxckctV/Pbbb6c8P3/+fLR6LfV0n4DkGuzEtLsiWfrpVfjPdeOXHT/x8ssvdyRbJCbw2muvmUxaf29zssAdPXqUQ4cOIZfLue2227hpyU2kcoRi0biDjnWijlTFEYYOG8rbb7/d43ZZWVnU1tby0ksv8e677/Y49uZi4KLrUHI63nzzTdatW8cbb7zBqFGjBtyXWRRFDhw4QE1NDePGjev1PpSmTmtrK9999x0//fgTllaWzJkzBwtzS3KO5lNyuJqipHK0bVrKxSKOc4jCwkK8vb279p8+fTqxsYeZMv0pBKFv7vv6qkPJyRxLWo9eV0FdXW3Xc6Io4uPlA6UqQoQxyOQCQ0Jd8Rvnge84D8xtzNm7L5ro6L1ERIzhtttuY9asWRfVXX9LSwt79uxBLpczZ84clEolBoOBBx98kDVr1hDESPyEYUaxLZUj1KsqSUhMOG2LrZiYGD799FMAfvzxx4vq7/d3Lqrekmfi/vvv56effuL3339HoVDg6uraY9W/KZKXl0d9fT0eHh6kpKRga2s7KMfH94SlpSVLly5l6dKlFBcX8/XXX/PDrh9wcXFh/A3juXTlZPJTizhy+Aj2DcpThA0gOfkYdvb+fSZs/YW9gz85WRk0Nzd3/f0FQeDqa68mLTmd2RGT8I30oL29ncPxh/j9459xsHfgpiU38frrr2NjM7CK13sDnU5HUlIStra2aDQajh07RkREBDKZjP/973/Y2Njw4osvohd1BBDar6JRKuZTRgFffPhFj8J2sjty3759pKamXtTCBtLK7R9kZmYyZswY1qxZQ0hICJMnTx4QH5KTY2wODg6kpaVRVFTUUcRra2ts84zKsWPH2LhxI9F7onFxdSEqKooRI0Zgb2+Pu7s77u7uKBQKbG3tCAy+HB/fqX1mS3+s3Bobijh65D0++ugjFi9eTHl5OeXl5VRXV5Obm0t8fDyHDh3C1taWG2+8kcWLF/fKsNCBilar5eDBg8hkMsaPH49Op/tHL0qA1157jcceewxvghjKqH65LjSLjRyV7WHJrUu6VmTdkZaWRkZGBnfccQdvv/32oB5CerZI4tYNb7/9Nv/973956623GD58eJ/NUestukseEUWRjIwM8vLymDRpUq9NEhjoZGZmEh8f3zGpurGR8vJyKioq0Gg0JCYm0tpmT32DGZVVapqbe38Cel+Km0olw9XFHBcXFTJyGTEiDAcHB5ydnXFzc8PJyYkPP/wQa2trFi5ceFELWicajYa4uDhUKhXjxo3rGsXTXbNlgPfee4977rkHT8GfEDGiTwVOL+o4qtiLR6AbRxOO9uhFqqys5ODBg7z77rvY2dnx3XffDYgb8r5GErduEEWRRYsWIYoi//73v5kwYcIpjXVNiTNlRWZmZpKdnc2kSZOwt7fvfwMHAAaDgeXLl1NTU8vESf/Czc0CRwcVarWeyio1lZXqjn+r2mhqujDB6y1xMzeX4+pi3vFw7fjXzs6MhkYNlZVqkpJiKC7KYseO7SiVxpnlZuq0t7cTGxuLpaUlY8eO/ceMuZ4E7osvvmDZ0mW44kWoOBZZH7mx04mnRlXO0aNHCQ0N7XYbtVpNdHQ0MTExbNy4kcTEROl7/idSzK0bBEHgs88+Y/To0Rw9ehSlUsnMmTMveMxMb3M26f5Dhw5FLpdz4MABxo0bh6uraz9bafrIZDL++OMPdDpbWtSTAFAoBJydVLi6WuDqYs54f2ecHFWo2/XU12toadF1PFr/+re1RUdziw61+vTp9mfCTCnDykrR9bC0VGB90s92tkpsbc2ob+gQsopKNSnH66isUtPe3iGYebl5FOTtk+7ge6C5uZlDhw5hZ2fXFVv7O93NgxMEgVtuuQUrKytuuOEGjhsOEWaIQi707vDVMrGAEvL5bN1nPQqbKIocPdoxrumtt95i9+7dkrCdhLRyOw379+9n7ty5rFu3juDgYCZMmGAyF4tzrWMrLi4mKSmJkJAQAgMDTeZ9mAIajQZzcwv8/GfjFzCrx+3kcgFnZxV2tmZ/iY+l4pSfVSo5er1I65+ip9UZEA0iBhEMfxYCB/jbkJ/fUY8oyEAmE5DLBSwtOo6jVMrQ6QyniudJPzc1aamq/kvIuqOuNpekhI/4/vvvueaaa3r3FzbAqaysJD4+Hl9fX0JDz5wc0tMKbuvWrVy56EpsdA6MMExAIfTOWqFBrCFRFsNNN990Sp/Qv5ORkUFaWhorV67kvvvu46GHHuqV8w8WJHE7Ay+//DKffPIJb7zxBmFhYQQHBxvbpPMu0K6rq+Pw4cO4uLgwatSof7hhLla+++47rr/+ekZH3o7DBRZwKxTCKaInl8uQ/SlgMkFAqRSYMtmNffsr0GpPFb7Wk1aBpxOus0Gv1xIT/SzXXHM133333QUda7AgimLXd2fUqFH/yJY9HT0J3N69e5l3+TxUGivC9RNRChc2+FgttnJUEc3osaPYE72nR29RdXU1cXFxfPTRRxgMBjZv3nxRdfw/GyRxOwMGg4HLLrsMa2trli1bxuTJk41aGH2hnUfUajWHDx8GICoqCnNz8942ccBx7bXX8uOPPzF1xrPI5X0bn+qPbMlOjh5+D1tbkaKioj49z0CgcwZiRUUFUVFR5/3d6U7gDh8+zKWXXAotckbpJ2MmnF/4QidqSVTsw9bdmqMJR3uM87e3txMdHc3Bgwf56KOPSEpKwtm57+YeDlQkqT8DMpmML7/8kri4OI4dO0Z8fDzt7e1GsaU3Wmp1xhGsrKzYu3fvgBnU2pfExR3Exsazz4Wtv7F3CKC0tPyCprYPBtRqNbGxsTQ2NjJ9+vQL/u6c3KoLOm4SY/bHoLSXk6SIOa/pC6Iokio7gs5Mw5atW3oUNlEUSUhIoLKyktdee42vv/5aErYekMTtLHBzc2PDhg28/PLLlJeXc+TIkX6/YPRmr0i5XE5ERASBgYEcOHCA4uLiXrJy4GEwGCgrK8PeceD2k+wJOwc/DAYde/bsMbYpRqO+vp59+/ZhaWnJlClTLnjWXE8CN3LkSA7E7sfaxZJERQxtYss5HTeLY9SI5fzw4w+EhYX1uF1aWhplZWU8++yzrFq1iqlT+64mc6AjidtZMmvWLJ577jlWr15NRUVFv07v7osmyIIgEBQUxLhx40hOTiYtLW3A9dPsDXbt2oXBoO8a9DmYsLPzBWDDhg1GtsQ4lJSUsH//fvz9/YmIiOi1GHNPAjd06FBi42Jx9nQkUbGPFrHx7OwUcykkizVvr+mxITJAYWEhOTk5vP3224waNYrVq1f3yvsZrEjidg48+OCDzJ49m1dffZXCwkLy8vq+W3hfd/d3c3Nj2rRplJaWcvjwYbRaba+fw5TZuHEjAHb2vka2pPdRKi2wsnIlJibG2Kb0K6Iokp6eTlJSEmPHjiU4OLjXs4N7EjhfX19i42LxCfQmUR5Dk1h/2uPUipVkCEncfffd3HvvvT1vV1vLsWPH2Lx5M7W1tXzxxRdSAskZkH4750DncFOZTMbGjRtJTU2lqqr7Luu9QX+NrbGxsWHatGno9XpiYmJoaTk3l8pAJiYmBitrdxSKwZlYY+8YSH7+wJpReCHodDoOHz5MSUkJU6dO7dOu+D0J3JAhQ9h/YD/Dw4eTJI+hQazpdv8WsYlU+WFmzZ7FmjVrejxPW1sbhw8fJjk5mV9++YXNmzdfVD1jzxdJ3M4Rc3Nzfv75Z2JiYjh06BBHjhzpEzHo73lsZmZmTJgwAVdXV/bu3UtpaWmfn9MUKCgouuD0f1PG3t4fnU5DQkKCsU3pcxoaGti3bx86nY5p06b1S0/VngTOycmJ6Og9jB0/liTZfmrFylP2U4utJCsO4B/kx/fff49C0X2NnF6v5/DhwxQXF/PSSy/xww8/DLhpJcZCErfzYMiQIWzatIm33nqLgoICDh061KvuPGMNGpXJZIwYMYJRo0aRnJzMkSNHjJYZ2h8cOXIEnU6D3SCMt3XSOby0c1bdYMRgMHDixAliYmLw8PBg4sSJmJldWL3ZudCTwNna2rJ9x3amz5pOsiyWarEMAI2oJllxACd3B3bt3tVjVxFRFElKSqKyspJVq1bx5ptvMn369P56WwMeSdzOk3HjxvHhhx+yatUqKioqiI+P75UMSlOYoO3p6cnMmTMRRZHdu3cP2lVc57Rq+0EYb+tEpbLB3NyB3bt3G9uUPqGhoYG9e/dSVlbGlClTCAkJMUosqieBs7S05LfffmP+gis4JsRRIuaRLI/F3N6MPdF7TjtzMTMzk+LiYl544QWuu+467rjjjv56O4MCSdwugBtvvJG77rqLp556itLSUpKSki4o49AUhK0Tc3Nzxo0bx8iRI0lKSjJqfV9fsW/fPgRBTmlpPHW1uej1GmOb1GsYDHqaGksoLowFIDs718gW9S4nr9bc3d2ZPn260fsq9iRwKpWKH374gcU3Liado4iWOnbu2klgYGCPx8rPzyczM5P3338fZ2dn3nrrrX56F4MHqUPJBWIwGLj55ptJS0vjmWeeITg4+LR1Kj1hSsL2d9RqNcnJydTV1REeHj5oJnwH+AdQml+BDi16tAjIsLR0wsrGA2sbd6ys3bG2dkelsuu1bLu+6FCi1bTQ3FxBS3MZzc0VNDeV0dJSgcHQ8Z7MsaKNJmpqakzus3U+NDQ0kJiYiCiKjBkzxuii9nd66mRiMBjYuHEj4eHhhIeH97h/WVkZ8fHxfPPNN6SkpLBv3z6Te48DAUncegGNRsOCBQvQaDSsXLmSsLCw096V/R1TFrZORFGkpKSEY8eO4erqSnh4eL/GNXqb2tpanJycCGMc7vjQTAMN1NJMA0000EwDejriqAq5OVbWblhauaAyt8f8pIfK3A6Z7Owb5p6PuImigfb2JtrV9ajVdajVDbSr62lrraG5qRyNtgkAARnWgh3Woi3W2GGHIzY4oEHNAbawefNmFixYcO6/LBPBYDCQlZVFVlYWgYGBDBs2zGTT4XsSuDNRXV3NwYMH2b59O5s3byY2NnbQ3Ez2N9LIm17AzMyMH3/8kVmzZvH555+zbNkyzMzMzqox60AQNugog/Dy8sLZ2Znk5GR27949oFdx+/fvB8AeZwRBwAZ7bLDvel0URdS00kwDzfoGmhsaaGnMpYZWNKL6lGOZKa0xM7NBoTRHobRAoTBHoTBH/ue/CoUKQZABAubmZsAwKsqTULdrEEURvV6DTqdGr1Oj63xo1ei0bWi1LbS3NyLylxAqBDPMscRctMADT6yxwwY7LLBGhgz+dh01Fy2xVFizb9++AStunas1g8HAlClTTH4l09O4nNPR2NjI4cOHOXLkCBs3buTAgQMD9vtlCkji1ktYW1vz+++/M3nyZH755Regw9d+uvlpA0XYTsbc3JyoqKiuETplZWWMHDlywK3iYmJisFLaYK7tfrqxIAhYYIUFVrhw6gVGj552WlHTipo22rQtaLTt6NCio5Y2QYsOXcf/RW3XChD4s/3TdWSc2ERbW0cPQhlyFIIZCpQdD1GBEiUWmGGGNeb4d4jZnw8Ff/bAPEtPqSAI2OociN4Tfa6/JqPz99Va53zCgcC5CFxrayuxsbGcOHGCN998k127djFs2LB+tnhwIYlbL+Li4sL27duZNGkSTk5OyGQyJk2ahIODwz+2HYjC1okgCHh7e+Pi4tK1igsJCcHHx8dk3UR/Z8/uPdhoHc4rliYX5FhigyU2Z95YoCuxQETE7M+v3HQWoqVjqvc/bOiDUXv2OJOYlEhLSwtWVla9f4I+oLKykrS0NAwGA5MnT+72e2TqnI3AdU4ELygo4KmnnuLHH38kKirKSBYPHgbGlWgA4efnx9atW/nggw9ITk4mLi6OhoaGU7YZyMJ2Mp2ruJEjR5Kdnc2ePXsoLS01+R6Vzc3NJCUnYU//dFMXBAFBEJAJMoQ/JzYLgqzr+f7AHmf0ej0HDx7sl/NdCHV1dcTGxhIfH4+npyfTp08fkMLWSU9ZlNARr4+Li6OkpIRHHnmEDz744LT9JSXOHknc+oDw8HA2b97MSy+9RGpqate4DRg8wtaJIAh4enoya9YsAgICOHbsGPv27evTtmQXysGDB9Hr9f0mbqaAFbaoFObs27fP2Kb0SHNzM0eOHOHAgQPY2dkxZ84cgoODB4wb8nR0J3BarZbY2FiKiop48MEHee6551iyZImxTR00SG7JPmLatGls2rSJK6+8kueffx7oaKqal5c3aITtZGQyGf7+/nh7e5Obm8vhw4dxcHAgNDTU5IL/MTExmCsssNKdhVtxkCAIAnZ6J/ZG7zW2Kf9ArVaTkZFBYWEh3t7ezJ49+4JH05giJ7so4+PjaW1tpaSkhJUrV/LII4+wcuVKY5s4qJDErQ+ZM2cOP/74I1dffTWrVq1Co9EQEREx6ITtZBQKBUOHDsXPz4+srCz279+Pu7s7w4cPN5lYT/SeaGz1jv3mEjQV7EQnDh48iEajMYkEIK1WS1ZWFrm5ubi5uTFjxgxsbAb3DUenKz86OprS0lKeeuopHnjgAR5//HFjmzbokNySfczcuXP57rvv+M9//kNGRgbHjx/vclEOZszMzAgLC2P27NnI5XJ2795NcnIyarX6zDv3IRqNhkOHDmEnOhnVDmNgjzPtmnaOHj1qVDv0ej3Z2dns2LGDuro6Jk+ezLhx4wa9sEHH5y8hIYH6+npWr17NnXfeyZNPPmlsswYlkrj1A/PmzeOHH37g+eefJz09nQMHDvwjyWSwYmFhwZgxY5g+fTpqtZqdO3eSnp5utLlx8fHxtGvacbiI4m2d2GCPUq402nw3g8FAQUEBO3fupLi4mLFjx/aYTTwY0Wg0p8TY7rvvvq6QhUTvI7kl+4l58+Z1uSifeeYZRFFkwoQJg9pFeTK2traMHz+e2tpa0tLSyMvLw9fXF39/fywtu6816wtiYmJQys2w1tv32zlNBZkgw07siLs9+uij/XZerVZ7ynDfsLAwPD09Lyq3sFqtJi4ujuLiYlauXMkDDzwgrdj6GEnc+pG5c+d2JZmsWrUKg8HAuHHjcHNzM7Zp/YajoyOTJ0+mpqaG3Nxcdu3ahZubG4GBgTg69n0cbN/efdiJjsiEi9NpYWtwJCYmBr1e3+dZiM3NzeTm5lJYWIitrS0hISF4eHgMmFrI3qK5ublL2B566CEeffRRKcbWD0ji1s/MmTOHrVu3smDBAlasWIEoiowaNQofHx9jm9ZvCIKAs7Mzzs7OtLa2kpeXx6FDh7C0tCQgIABPT88+ufB2Thp3Mfj0SaH0QMAeZ3Kb0zh+/DijRo3q9eOLokhVVRW5ublUVVXh4eExYAuwe4P6+nri4uLIzc3lscce49VXX+Wee+4xtlkXBZK4GYEpU6YQExPD3LlzqampQRRFNBoNQUFBxjat37G0tCQsLIxhw4ZRVFREVlYWx48fx9vbG19f316dpnz8+HGampsYehHG2zqxwwmZICcmJqZXxU2tVlNUVERBQQFarRY/Pz9GjRo1KFP6z5bKykqOHDnC8ePHef7551m/fj3XXHONsc26aJDEzUiMGDGC2NhY5s6dS21tLcuXL0etVhMWFnZRxSI6USgU+Pv74+fnR01NDQUFBezduxd7e3t8fX3x8PBAobiwj+u+ffuQy+TYGi6OOGd3yAU59jJH9u7dy7333ntBxxJFkcrKSgoKCqioqMDR0ZHhw4fj7u4+KAqvL4Ti4mISExOJjY3lvffe47fffmPmzJnGNuuiQhI3I+Lr68v+/fuZP38+//3vf1m5ciXt7e2MGTPmootLdHKyy3LkyJEUFRWRnZ1NSkoKXl5eeHp64ujoeF6/n3379mEnOCEXLu4Lr63ekb3RexFF8ZxvpERRpKmpidLSUgoLCzEYDPj4+BAWFmYydYzGJicnh9TUVH7//Xd++eUXoqOjGTNmjLHNuuiQ5rmZAC0tLVx77bWUlpby9NNP4+7uzrhx41AqlcY2zSQQRZG6ujoKCwspLy/HYDDg5uaGu7s7rq6uZ/V7EkURVxdXrGucCBJG9oPV3aO0UHLHxuv54MZv0bYZpxyiWiwjiQNkZmYSHBx8xu0NBgPV1dWUl5dTXl6ORqPBxcUFb29v3N3dL9obsb8jiiJpaWnk5OTwxRdfkJSUxPbt2wkICDC2aRcl0qfyJKqqqrjrrrvw8fFBpVLh7u7O3LlzOXDgADfccMM/Gppu3boVQRB49tlnT3n+2WefPacEESsrK3755RfCw8N5+OGHyc/PZ+/evTQ1NfXG2xrwCIKAo6Mjo0ePZu7cuUyYMAELCwsyMjLYsmULsbGx5OTk0NLS0uMxsrOzqa6pxh6XfrTcNLHHGQHhtPVuGo2GoqIijhw5wpYtW7omX48aNYrLL7+c8ePHX5SZjz2h1Wo5dOgQmZmZ/O9//yMvL48DBw5ckLCd7noEHU3aO5tvn/x45ZVXeuttDWgkt+RJXH311Wg0GtavX09AQAAVFRXs2rWLmpoaZs6cycMPP4xOp+uK/ezZswdvb2+io6NPOc6ePXvO2b+uVCr5/PPPee6557jrrrt46aWX0Gg0jB079rQz4S42OoXO0dGR0NBQWlpaulYUqamp2NjYdK3qHBz+Gmmzb98+BATsufg6k/wdhaDETu7Avn37WL58edfzzc3NXb/L2tpabG1tcXd3Jzg4GDs7u4syFnw2NDc3c+jQISorK3n66acJDQ1l8+bNF9xx5XTXo06ef/55br/99lP2uxg6vZwNkrj9SX19PTExMURHRzN9+nSgIybWOVcpMzOT5uZm4uPjmTBhAgDR0dE8/vjjPPTQQ6jVaszNzVGr1Rw6dIhly5adsw0ymYznnnuOkSNHsmzZMu655x70ej3Dhw8nMDBQurh0g5WVFYGBgQQGBqLVaqmsrKS8vJyDBw8ik8lwc3PDzc2NI0eOYKdwRKGXXL0ANjpH4mIPUlVV1fU7a21txdnZGU9PTyIjIy/qTMezpbKykvj4ePLz81m1alVX15ELXdGe6XrUiY2NDe7u7hd0rsGKJG5/Ym1tjbW1NZs2bWLChAmoVKpTXh86dCgeHh7s2bOHCRMm0NTUREJCAr/99hvvvPMOcXFxzJw5k9jYWNrb2y8oM+qaa64hKCiIRYsWkZWVxS233EJjYyOjRo266LPQTodSqcTT0xNPT08MBgO1tbWUl5dz4sQJ5s6dy6Txk6jNaaQqt47KnFqqcmpoqW0zttn9gpmlEpdAR1wDnXAJcOT6wMtx8XAiPj4eNzc3hg8fjouLixTnPUtEUSQ3N5e0tDTi4uJ4++23+eSTT7j++ut75fhnuh5JnBkpoeQkfvzxR26//Xba2tqIiIhg+vTp3HDDDYSHhwOwZMkSqqqq2LZtG3/88QePPPIIqamp3HHHHbi7u/Pcc8/x9NNP89VXX5Gbm3vB9lRWVvKvf/2LtrY2Hn/8cdzc3IiKisLc3PyCj30xIYoi06ZMo6auhqCgYEICQ/D3D8Ddy5XWRjVVObVU5dZ2/JtTS3NNa5/Z0h8JJSorM1wCHP8UM0ecAx1wGGJHbWUdeTl5ZOZmkJmdSVVlFQmJCbi4SHHIc0Gv13Ps2DEKCwvZsGEDcXFxbNq0icjIyF49z5muR35+fpSVlf3jhmTLli1MnTq1V20ZiEji9jfUajUxMTEcPHiQLVu2cPjwYT7++GOWLl3Kxx9/zAMPPEBdXR1PPPEELS0trF27lo0bN/LBBx+wd+9epk2bRnBwMJ988kmv2KPRaLj77rv57bffePnllxkyZAhjx47F2fniLUQ+H/R6PSkpKcTGxnLgwAH2Ru+juqYKPz8/goOCCQkajn+AP0O83GlrUlOZU0N1bj3N1a201LXRWvvnv/VqRMP5f2V6RdwEMLdRYeVggZWjxZ//WuLoZ4dLoCMO7nZUV9SQn5tPZk4mmdkZ5OTkIBPkTJ4yiSlTpnR14pdcj+dGS0sL8fHxVFVV8corr2BmZsZPP/3UZ67B012P/Pz8WLJkCUuXLj1lH09PT+nviiRuZ2TFihXs2LGDgoICcnJyCAoK4sCBA9x///088sgjXHfddZSUlBAYGEhpaSlDhgzh008/5aabbuo1G0RR5N133+Xxxx/n4YcfZuzYsQQHBzNs2DApDncB1NbWkpKSwrFjxzh27BhJiUlkZmUxZIh7RxwvIAgXJxcc7B2wd7DHxt4ag0GkrbGNltpWWuvaaa1ro6WujZbatq6fW+va0LRqMegNGAwiot6AQd/xNfu7uAkyAZlcQCaXIcgElCoFlg4WWDpYdIlX58+WDuZYOppjZW+JXCGntaWN+tp66uvqqa2vJTc/h5ycHPLz8xni7kFE5BhGjhxJeHg44eHhF12z4t6mtLSUxMRESkpKePrpp7n88st5//33+9VlePL1yM/PjwceeIAHHnig384/kJBibmcgNDSUTZs2ARAYGIi3tzebN28mKSmpK9DbGef573//i0aj6fVOBIIgcN999xEREcENN9xAQkICy5cvp6amhoiICOku7TxxdHRk+vTpXX9H6Kjpys3NJSUlhePHj1NYWMC+A/vIy82lrLwcCwtzHB0dcXBwwNnRGWcnF5wcnHDwt8ffwR07Bzts7WyQyf+ZUKDXGxD1BgBWfHENckX38dPmxmbq6xpoqGugvr6e/LoiqkuqqKqpora2lrq6OhobG3FydMbf3w8/fz+8vb256qqrCA8PZ9iwYVKMphfR6/V/fhYK2b17Nx999BFr1qxh+fLl/X6zcPL1SOL0SOL2JzU1NVx77bUsX76c8PBwbGxsiI+P57XXXmPRokVd282cOZP33nuPoKCgU7r5T58+nXfeeacr8aQvmDx5MklJSSxbtowHHniA5557jsbGRiIjI6VygV5CJpMRFBREUFAQV1111SmviaJITU0NhYWFFBYWdrWdamhoIDMvg7qEOupq62hoaKC1tY3W1hbU7WpkMhlyuRy5XI6lpSVvvfUWKx9cSWtrK3q9Hp1Oh5nSDCtLK6ysrbCxscHB0QF7e3vs7OxwdHVgaGgwPj4++Pr64uPjI7W46ieam5s5cuQI1dXVrFmzhrq6Og4ePMiIESP69Lxnez1qamqivLz8lH0tLS17tSfrgEWUEEVRFNVqtfj444+LERERop2dnWhpaSkOGzZMfPLJJ8XW1tau7T777DMREO+8885T9v/8889FQLzjjjv63FaDwSD+73//Ey0tLcVVq1aJv/zyi3j8+HFRr9f3+bklzg29Xi9qNBpRrVaLLS0tYl1dnbhp0yaxoaFBbGtrEzUajajT6YxtpkQ3FBYWir/99pu4du1a0cnJSVy+fLnY3NzcL+c+m+uRr6+vCPzj0R/XoIGAFHMbwMTHx3P99dcTEBDAXXfdhbOzMxEREVhbWxvbNIke0Gq1/PHHH8ybN09KuzdRtFotKSkpFBcXs2XLFjZs2MC6det6NY4u0fdIvXMGMGPHjiUhIQEHBwfuvfde0tLSiI6OJicnB+meRULi3KmoqGD37t1kZGTwwgsvcPDgQeLj4yVhG4BI4jbAsbOz49tvv+X555/n0Ucf5dtvvyUlJYX9+/fT3NxsbPMkJAYEWq2WxMREDh06RExMDCtWrGDq1KnExcUxdOhQY5sncR5IbslBREFBAStWrCAjI4PVq1fj5eXF8OHDCQgIkFLATQTJLWl6VFZWkpiYSF1dHWvWrKG6uprPPvuMKVOmGNs0iQtAWrkNInx9fdm+fTtPPPEEjz76KN999x0pKSkcOHDgtB3zJSQuRrRaLUlJSRw8eJCYmBhuu+02JkyYQHJysiRsgwBp5TZIyc/PZ8WKFWRmZvLEE0/g6elJSEgIAQEB0pgSIyKt3IyPKIqUl5eTkpJCbW0tb7/9NlVVVXz66adS26pBhHSVG6T4+fmxY8cOVq9ezcMPP8w333xDSkoK0dHRVFdXG9s8CQmj0DmeJj4+nujoaFasWEFUVBTJycmSsA0ypCLuQYwgCNx5553MnTuXe++9lxUrVrBy5Uqam5vx8PAgLCxM6m4icVGg0+nIysoiJyeHsrIy3nzzTWQymdRkeBAjidtFgL+/P7/99hu//vor999/P05OTtx3331UVFQwbNgwyVUpMWg52QXZ2NjI119/zY4dO3j22We57777JNfwIEa6ol0kCILAwoULSUtL44orruCuu+7qKhvYs2cPVVVVxjZRQqJXaW5u5uDBgxw5coTo6GiWLVuGubk5J06c4MEHH5SEbZAjJZRcpOTk5HD//fcTFxfHypUrCQ8P7xpaKfWl6zukhJK+p729nYyMDAoKCrpckAqFgrVr157SJFticCO5JS9SAgMDu1yV//d//4ednR133HEHFRUVeHl5ERISgqWlpbHNlJA4a7RaLTk5OWRnZ9PU1MSGDRvYt28fzz33HPfee690M3GRIYnbRc6CBQu45JJLWLt2LU8++SQjRoxg+fLllJaWdgzyDA6WxqdImDR6vZ78/HwyMzNpaWnhp59+4ueff2bFihV88sknp0zvkLh4kGJuEpibm/PQQw+Rk5PDlClTuPvuu/nggw84fvw4O3fuJCMjA51OZ2wzJSROQRRFioqK2L17N8eOHeOXX37h5ptvRhAEUlNTeeeddyRhu4iRxE2iC3t7e/7zn/+QnZ2Nl5cXS5cu5euvvyYlJYWdO3eSlZWFVqs1tpkSFzkGg4Hi4mKio6NJTExk+/btLF26lIKCAuLi4tiwYQMBAQHGNlPCyEgJJRI9kpWVxZNPPsmvv/7KLbfcwiWXXIKFhQX+/v4EBARI7srzQEooOX/0ej1FRUVkZWXR1tbG4cOH+fjjj/H19eXVV19lxowZxjZRwoSQYm4SPRIcHMy3337L0aNH+c9//sNNN93Etddey4IFC8jJycHX15egoCCpEFyiT9FqtRQUFJCdnY1arWbfvn2sX7+egIAA3n//fRYtWiQ1Bpf4B5K4SZyRyMhIfvrpJ9LS0nj11Ve55ZZbmDdvHldffTX5+fl4enoSHByMjY2NsU2VGES0t7eTm5tLXl4ebW1t7Nixg6+++orx48fz7bffMnv2bEnUJHpEcktKnDMFBQW88cYbfPLJJ0yZMoXrr78eV1dXXFxcCAgIwMXFRbro9IDkljwzDQ0N5OXlUVxcTGtrK7/99hvff/89l112GatWrSIqKsrYJkoMACRxkzhvKisrWbNmDWvXriUkJIRrr72WoUOHdsXlfHx8pAv435DErXsMBgPl5eXk5uZSV1dHRUUFv/76K9u2beP666/nscceIzQ01NhmSgwgJHGTuGAaGxv59NNPWbt2Lc3NzSxevJipU6eiVCrx9PTEz88PBwcHY5tpEkjidiqtra0UFBRQUFCARqMhOTmZ7777jpKSElasWME999yDr6+vsc2UGIBI4ibRaxgMBrZt28a7777Lzp07ufzyy5k3bx7u7u7Y2tri6+uLp6cnZmZmxjbVaEji1pH1WFFRQWFhIZWVlbS0tLBr1y5++OEH/Pz8uO+++1i8eLHUIUfigpDETaJPyMnJ4aOPPuLTTz/Fzs6Oa6+9lnHjxqFQKHB1dcXLywt3d3fkcrmxTe1XLlZxE0WRmpoaiouLKSkpwWAwkJaWxubNm0lISOD666/njjvuYMKECVK8VqJXkMRNok9pb2/n559/5sMPPyQmJobp06dz6aWXEhISglwux8PDAy8vL5ydnS+Ki9rFJm6NjY0UFRVRUlKCRqOhqKiI6Ohofv/9d/z8/FixYgW33HILjo6OxjZVYpAhlQJI9CkqlYobbriBG264geLiYr7++mu++uorsrKymDdvHjNnzsTX1xelUomXlxdDhgzBwcHhohC6wUpTUxPl5eUUFxfT3NxMbW0t+/fvZ/PmzSgUCm688UYOHDhAeHi49HeW6DOklZuEUUhJSWHDhg1s2LABtVrNwoULmTx5Mi4uLigUCtzc3HB3d8fV1RWFYvDcgw3GlZvBYKC2tpby8nLKy8tpbW2ltbWVI0eO8Ouvv1JRUcHVV1/NkiVLmD59+kXnipYwDpK4SRgVg8FATEwMX331FT/99BMymYxLLrmEqKgogoKCEEURZ2dn3N3dcXd3H/DdUAaLuGm1WiorKykvL6eiogJRFCkrKyM+Pp5du3ZRVFTEZZddxk033cT8+fMH/N9NYuAhiZuEyaDT6YiLi+PXX39l8+bN5OfnM336dCZNmsTIkSNRKBTY2Njg7OyMs7MzTk5OAy7zcqCKm16vp66ujurqaqqrq6mtrQU6+o8eOnSInTt3olQqmT9/PgsXLmTOnDlYWVkZ2WqJixlJ3CRMlszMzC6hO3DgACNHjmTy5MmEhYXh7e2NXq/Hzs4OJyenASN2A0Xc/i5mdXV1CIJAdXU16enpHDlyhP379zNs2DAWLlzIggULiIqKQiaTBo1ImAaSuEkMCGpqatiyZQu7d+8mOjqaoqIixo4dy9ixYwkNDT1F7BwcHLC3t8fe3h4bGxuTuuCaoriJokhrayv19fXU19dTV1fXJWY1NTWkp6eTkJBAXFwcZmZmzJgxgxkzZjB//nz8/f2Nbb6ERLdI4iYxIMnPz2fv3r1ER0ezZ88eSkpKusQuKCgILy8vVCoVoihia2vbJXZ2dnbY2toaTfCMLW6iKNLS0kJ9fT0NDQ1dgqbX6wEoLS0lLy+PxMTELjGbPn16l6CNGDHCpG4WJCR6QhI3iUFBfn4+0dHR7N27l/j4eNLS0nBycmL06NGEhIQQGBh4iuBZWVlhbW3d9W/nw8zMrE/T0/tL3LRaLS0tLTQ3N9Pc3HzKzwaDAVEUu4QsIyODY8eOkZeXh5+fH5GRkUydOpUZM2YwcuRIScwkBiSSuEkMSlpbW0lOTubo0aMcPXqUhIQEUlNTcXBwYNSoUfj5+XV1SXFxccHS0hKNRoNSqewSPHNz8388VCrVBZUm9Ia4GQwG2tvbUavV/3h0ilh7ezsKhQKdTkd1dTUVFRWUlJRQWFjI8ePHyc/Px9/fn8jIyK5HREQETk5O5/3eJCRMCUncJC4a2traOHbsGImJiWRkZJCZmUlmZiZ5eXkolUqCgoK6phl0FpPb2tpiY2ODSqVCo9EgiiIKhaJL7BQKRY8PuVyOQqFAEISuh16v59ChQ0RFRXXVe4miiE6nO+Wh1+v/8VynoGk0GgDMzMzQ6/U0NTXR2NhIQ0MDFRUVFBUVkZeXR1ZWFg0NDXh6ejJ06NCux6hRo4iIiJCaWUsMaiRxk7jo0Wg05OXldYldZmYm2dnZlJaWUlpaSmNjIwqFoqvWzs3NDWdnZxwdHbGwsMDS0hKVStUleGZmZqhUKszMzDAzM0Mmk3WJG3SIrLm5OdAhbAaDoUu8NBoN7e3t/1iZtbW1UVdXR01NDRUVFVRUVFBWVkZbWxsWFhYMGTKEIUOGEBAQcIqQBQUFYW1tbcxfr4SEUZDETULiDLS2tlJWVtb1KC0tpaysjIqKChobG2lqaqK5uZmmpqZTfu5cYZ0tcrkcGxsbrK2tsbGx+cfPLi4ueHh4dAlZ58POzk5qYyUh8TckcZOQ6CM0Gg0tLS3o9XoMBsMpD7lcjkwm63pYWVmhUqkkkZKQ6CUkcZOQkJCQGHRIOb4SEhISEoMOSdwkJCQkJAYdkrhJSEhISAw6JHGTkJCQkBh0SOImISEhITHokMRNQkJCQmLQIYmbhISEhMSgQxI3CQkJCYlBhyRuEhISEhKDDkncJCQkJCQGHZK4SUhISEgMOiRxk5DoJ6qqqrjrrrvw8fFBpVLh7u7O3LlzOXDggLFNk5AYdJz/SGEJCYlz4uqrr0aj0bB+/XoCAgKoqKhg165d1NTUGNs0CYlBhzQVQEKiH6ivr8fBwYHo6GimT59ubHMkJAY9kltSQqIfsLa2xtramk2bNtHe3m5scyQkBj2SuElI9AMKhYLPP/+c9evXY29vz+TJk1m9ejXHjh0ztmkSEoMSyS0pIdGPqNVqYmJiOHjwIFu2bOHw4cN8/PHHLF261NimSUgMKiRxk5AwIitWrGDHjh0UFBQY2xQJiUGF5JaUkDAioaGhtLS0GNsMCYlBh1QKICHRD9TU1HDttdeyfPlywsPDsbGxIT4+ntdee41FixYZ2zwJiUGHJG4SEv2AtbU148eP53//+x85OTlotVq8vb25/fbbWb16tbHNk5AYdEgxNwkJCQmJQYcUc5OQkJCQGHRI4iYhISEhMeiQxE1CQkJCYtAhiZuEhISExKBDEjcJCQkJiUGHJG4SEhISEoMOSdwkJCQkJAYdkrhJSEhISAw6JHGTkJCQkBh0SOImISEhITHokMRNQkJCQmLQIYmbhISEhMSg4/8BYp6fqFdCABsAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -467,7 +579,10 @@ "# Set value\n", "wind_rose.assign_value_piecewise_linear()\n", "\n", - "wind_rose.plot_wind_rose()\n", + "wind_rose.plot()\n", + "\n", + "# Plot with aggregated wind directions\n", + "wind_rose.plot(wd_step=30)\n", "\n", "wind_rose.plot_ti_over_ws()\n", "\n", @@ -497,7 +612,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -533,7 +648,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -541,8 +656,7 @@ "output_type": "stream", "text": [ "\u001b[34mfloris.floris_model.FlorisModel\u001b[0m \u001b[1;30mWARNING\u001b[0m \u001b[33mComputing AEP with uniform frequencies. Results results may not reflect annual operation.\u001b[0m\n", - "\u001b[34mfloris.floris_model.FlorisModel\u001b[0m \u001b[1;30mWARNING\u001b[0m \u001b[33mComputing AVP with uniform frequencies. Results results may not reflect annual operation.\u001b[0m\n", - "\u001b[34mfloris.floris_model.FlorisModel\u001b[0m \u001b[1;30mWARNING\u001b[0m \u001b[33mComputing AVP with uniform value equal to 1. Results will be equivalent to annual energy production.\u001b[0m\n" + "\u001b[34mfloris.floris_model.FlorisModel\u001b[0m \u001b[1;30mWARNING\u001b[0m \u001b[33mComputing AVP with uniform frequencies. Results results may not reflect annual operation.\u001b[0m\n" ] }, { @@ -605,7 +719,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -644,7 +758,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -694,7 +808,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 40, "metadata": {}, "outputs": [ { diff --git a/examples/003_wind_data_objects.py b/examples/003_wind_data_objects.py index d382d9a29..d45fb4a3d 100644 --- a/examples/003_wind_data_objects.py +++ b/examples/003_wind_data_objects.py @@ -145,6 +145,20 @@ "inputs/wind_rose.csv", wd_col="wd", ws_col="ws", freq_col="freq_val", ti_col_or_value=0.06 ) +################################################## +# Aggregating and Resampling the Wind Rose +################################################## + +# The aggregate function allows for aggregation of the wind rose data into +# fewer wind direction and wind speed bins. +# Note it will throw an error if the step sizes passed in are smaller than the +# step sizes of the original data. +wind_rose_aggregate = wind_rose.aggregate(wd_step=10, ws_step=2) + +# For upsampling, the resample_by_interpolation function can be used to interpolate +# the wind rose data to a finer grid. It can use either linear or nearest neighbor +wind_rose_resample = wind_rose.resample_by_interpolation(wd_step=0.5, ws_step=0.25) + ################################################## # Setting turbulence intensity ################################################## @@ -177,7 +191,10 @@ # Certain plotting methods are included to enable visualization of the wind data objects # Plotting a wind rose -wind_rose.plot_wind_rose() +wind_rose.plot() + +# Plot a wind rose with the wind directions aggregated into 10-deg bins +wind_rose.plot(wd_step=10) # Showing TI over wind speed for a WindRose wind_rose.plot_ti_over_ws() diff --git a/examples/examples_wind_data/001_wind_data_comparisons.py b/examples/examples_wind_data/001_wind_data_comparisons.py index 9dbbe07c7..34009eade 100644 --- a/examples/examples_wind_data/001_wind_data_comparisons.py +++ b/examples/examples_wind_data/001_wind_data_comparisons.py @@ -56,7 +56,7 @@ # Plot the wind rose fig, ax = plt.subplots(subplot_kw={"polar": True}) -wind_rose.plot_wind_rose(ax=ax,legend_kwargs={"title": "WS"}) +wind_rose.plot(ax=ax,legend_kwargs={"title": "WS"}) fig.suptitle("WindRose Plot") # Now build a wind rose with turbulence intensity @@ -64,9 +64,9 @@ # Plot the wind rose with TI fig, axs = plt.subplots(2, 1, figsize=(6,8), subplot_kw={"polar": True}) -wind_ti_rose.plot_wind_rose(ax=axs[0], wind_rose_var="ws",legend_kwargs={"title": "WS"}) +wind_ti_rose.plot(ax=axs[0], wind_rose_var="ws",legend_kwargs={"title": "WS"}) axs[0].set_title("Wind Direction and Wind Speed Frequencies") -wind_ti_rose.plot_wind_rose(ax=axs[1], wind_rose_var="ti",legend_kwargs={"title": "TI"}) +wind_ti_rose.plot(ax=axs[1], wind_rose_var="ti",legend_kwargs={"title": "TI"}) axs[1].set_title("Wind Direction and Turbulence Intensity Frequencies") fig.suptitle("WindTIRose Plots") plt.tight_layout() diff --git a/floris/layout_visualization.py b/floris/layout_visualization.py index c064059c6..876c6474e 100644 --- a/floris/layout_visualization.py +++ b/floris/layout_visualization.py @@ -471,8 +471,8 @@ def plot_waking_directions( # and j in layout_plotting_dict["turbine_indices"] ): (h,) = ax.plot( - fmodel.layout_x[[i, j]], - fmodel.layout_y[[i, j]], + layout_x[[i, j]], + layout_y[[i, j]], **wake_plotting_dict ) diff --git a/floris/wind_data.py b/floris/wind_data.py index 35aaa1bad..1b0d11d00 100644 --- a/floris/wind_data.py +++ b/floris/wind_data.py @@ -9,6 +9,7 @@ import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype +from scipy.interpolate import LinearNDInterpolator, NearestNDInterpolator from floris.type_dec import NDArrayFloat @@ -359,22 +360,57 @@ def unpack(self): heterogeneous_inflow_config, ) - def resample_wind_rose(self, wd_step=None, ws_step=None): + def aggregate(self, wd_step=None, ws_step=None, inplace=False): """ - Resamples the wind rose by by wd_step and/or ws_step + Aggregates the wind rose into fewer wind direction and wind speed bins. + It is necessary the wd_step and ws_step passed in are at least as + large as the current wind direction and wind speed steps. If they are + not, the function will raise an error. + + The function will return a new WindRose object with the aggregated + wind direction and wind speed bins. If inplace is set to True, the + current WindRose object will be updated with the aggregated bins. Args: wd_step: Step size for wind direction resampling (float, optional). - ws_step: Step size for wind speed resampling (float, optional). + If None, the current step size will be used. Defaults to None. + ws_step: Step size for wind speed resampling (float, optional). If + None, the current step size will be used. Defaults to None. + inplace: Flag indicating whether to update the current WindRose + object when True or return a new WindRose object when False + (bool, optional). Defaults to False. Returns: - WindRose: Resampled wind rose based on the provided or default step sizes. + WindRose: Aggregated wind rose based on the provided or default step + sizes. Only returned if inplace = False. Notes: - - Returns a resampled version of the wind rose using new `ws_step` and `wd_step`. - - Uses the bin weights feature in TimeSeries to resample the wind rose. + - Returns a aggregated version of the wind rose using new `ws_step` and `wd_step`. + - Uses the bin weights feature in TimeSeries to aggregated the wind rose. - If `ws_step` or `wd_step` is not specified, it uses the current values. """ + + # If ws_step is passed in, confirm is it at least as large as the current step + if ws_step is not None: + if len(self.wind_speeds) >= 2: + current_ws_step = self.wind_speeds[1] - self.wind_speeds[0] + if ws_step < current_ws_step: + raise ValueError( + "ws_step provided must be at least as large as the current ws_step " + f"({current_ws_step} m/s)" + ) + + # If wd_step is passed in, confirm is it at least as large as the current step + if wd_step is not None: + if len(self.wind_directions) >= 2: + current_wd_step = self.wind_directions[1] - self.wind_directions[0] + if wd_step < current_wd_step: + raise ValueError( + "wd_step provided must be at least as large as the current wd_step " + f"({current_wd_step} degrees)" + ) + + # If either ws_step or wd_step is None, set it to the current step if ws_step is None: if len(self.wind_speeds) >= 2: ws_step = self.wind_speeds[1] - self.wind_speeds[0] @@ -396,17 +432,190 @@ def resample_wind_rose(self, wd_step=None, ws_step=None): ) # Now build a new wind rose using the new steps - return time_series.to_WindRose( + aggregated_wind_rose = time_series.to_WindRose( wd_step=wd_step, ws_step=ws_step, bin_weights=self.freq_table_flat ) + if inplace: + self.__init__( + aggregated_wind_rose.wind_directions, + aggregated_wind_rose.wind_speeds, + aggregated_wind_rose.ti_table, + aggregated_wind_rose.freq_table, + aggregated_wind_rose.value_table, + aggregated_wind_rose.compute_zero_freq_occurrence, + aggregated_wind_rose.heterogeneous_inflow_config_by_wd, + ) + else: + return aggregated_wind_rose + + def resample_by_interpolation(self, wd_step=None, ws_step=None, method="linear", inplace=False): + """ + + Resample the wind rose using interpolation. The method can be either + 'linear' or 'nearest'. If inplace is set to True, the current WindRose + object will be updated with the resampled bins. + + Args: + wd_step: Step size for wind direction resampling (float, optional). + If None, the current step size will be used. Defaults to None. + ws_step: Step size for wind speed resampling (float, optional). + If None, the current step size will be used. Defaults to None. + method: Interpolation method to use (str, optional). Can be either + 'linear' or 'nearest'. Defaults to "linear". + inplace: Flag indicating whether to update the current WindRose + object when True or return a new WindRose object when False + (bool, optional). Defaults to False. + + Returns: + WindRose: Resampled wind rose based on the provided or default step + sizes. Only returned if inplace = False. + + """ + if method == "linear": + interpolator = LinearNDInterpolator + elif method == "nearest": + interpolator = NearestNDInterpolator + else: + raise ValueError( + f"Unknown interpolation method: '{method}'. " + "Available methods are 'linear' and 'nearest'" + ) + + # If either ws_step or wd_step is None, set it to the current step + if ws_step is None: + if len(self.wind_speeds) >= 2: + ws_step = self.wind_speeds[1] - self.wind_speeds[0] + else: # wind rose will have only a single wind speed, and we assume a ws_step of 1 + ws_step = 1.0 + if wd_step is None: + if len(self.wind_directions) >= 2: + wd_step = self.wind_directions[1] - self.wind_directions[0] + else: # wind rose will have only a single wind direction, and we assume a wd_step of 1 + wd_step = 1.0 + + # Set up the new wind direction and wind speed bins + new_wind_directions = np.arange( + self.wind_directions[0], self.wind_directions[-1] + wd_step / 2.0, wd_step + ) + new_wind_speeds = np.arange( + self.wind_speeds[0], self.wind_speeds[-1] + ws_step / 2.0, ws_step + ) - def plot_wind_rose( + # Set up for interpolation + wind_direction_column = self.wind_directions.copy() + wind_speed_column = self.wind_speeds.copy() + ti_matrix = self.ti_table.copy() + freq_matrix = self.freq_table.copy() + if self.value_table is not None: + value_matrix = self.value_table.copy() + else: + value_matrix = None + + # If the first entry of wind_direction column is 0, and the last entry is not 360, then + # pad 360 to the end of the wind direction column and the last row of the ti_matrix and + # freq_matrix by copying the 0 entry + if len(wind_direction_column) > 1: + if wind_direction_column[0] == 0 and wind_direction_column[-1] != 360: + wind_direction_column = np.append(wind_direction_column, 360) + ti_matrix = np.vstack((ti_matrix, ti_matrix[0, :])) + freq_matrix = np.vstack((freq_matrix, freq_matrix[0, :])) + if self.value_table is not None: + value_matrix = np.vstack((value_matrix, value_matrix[0, :])) + + # If the wind_direction columns has length 1, then pad the wind_direction column with + # that value + and - 1 and expand the matrices accordingly + # (this avoids interpolation errors) + if len(wind_direction_column) == 1: + wind_direction_column = np.array( + [ + wind_direction_column[0] - 1, + wind_direction_column[0], + wind_direction_column[0] + 1, + ] + ) + ti_matrix = np.vstack((ti_matrix, ti_matrix[0, :], ti_matrix[0, :])) + freq_matrix = np.vstack((freq_matrix, freq_matrix[0, :], freq_matrix[0, :])) + if self.value_table is not None: + value_matrix = np.vstack((value_matrix, value_matrix[0, :], value_matrix[0, :])) + + # If the wind_speed column has length 1, then pad the wind_speed column with + # that value + and - 1 + # and expand the matrices accordingly (this avoids interpolation errors) + if len(wind_speed_column) == 1: + wind_speed_column = np.array( + [wind_speed_column[0] - 1, wind_speed_column[0], wind_speed_column[0] + 1] + ) + ti_matrix = np.hstack((ti_matrix, ti_matrix[:, 0][:, None], ti_matrix[:, 0][:, None])) + freq_matrix = np.hstack( + (freq_matrix, freq_matrix[:, 0][:, None], freq_matrix[:, 0][:, None]) + ) + if self.value_table is not None: + value_matrix = np.hstack( + (value_matrix, value_matrix[:, 0][:, None], value_matrix[:, 0][:, None]) + ) + + # Grid wind directions and wind speeds to match the ti_matrix and freq_matrix when flattened + wd_grid, ws_grid = np.meshgrid(wind_direction_column, wind_speed_column, indexing="ij") + + # Form wd_grid and ws_grid to a 2-column matrix + wd_ws_mat = np.array([wd_grid.flatten(), ws_grid.flatten()]).T + + # Build the interpolator from wd_grid, ws_grid, to ti_matrix, freq_matrix and value_matrix + ti_interpolator = interpolator(wd_ws_mat, ti_matrix.flatten()) + freq_interpolator = interpolator(wd_ws_mat, freq_matrix.flatten()) + if self.value_table is not None: + value_interpolator = interpolator(wd_ws_mat, value_matrix.flatten()) + + # Grid the new wind directions and wind speeds + new_wd_grid, new_ws_grid = np.meshgrid(new_wind_directions, new_wind_speeds, indexing="ij") + new_wd_ws_mat = np.array([new_wd_grid.flatten(), new_ws_grid.flatten()]).T + + # Create the new ti_matrix and freq_matrix + new_ti_matrix = ti_interpolator(new_wd_ws_mat).reshape( + (len(new_wind_directions), len(new_wind_speeds)) + ) + new_freq_matrix = freq_interpolator(new_wd_ws_mat).reshape( + (len(new_wind_directions), len(new_wind_speeds)) + ) + + if self.value_table is not None: + new_value_matrix = value_interpolator(new_wd_ws_mat).reshape( + (len(new_wind_directions), len(new_wind_speeds)) + ) + else: + new_value_matrix = None + + # Create the resampled wind rose + resampled_wind_rose = WindRose( + new_wind_directions, + new_wind_speeds, + new_ti_matrix, + new_freq_matrix, + new_value_matrix, + self.compute_zero_freq_occurrence, + self.heterogeneous_inflow_config_by_wd, + ) + + if inplace: + self.__init__( + resampled_wind_rose.wind_directions, + resampled_wind_rose.wind_speeds, + resampled_wind_rose.ti_table, + resampled_wind_rose.freq_table, + resampled_wind_rose.value_table, + resampled_wind_rose.compute_zero_freq_occurrence, + resampled_wind_rose.heterogeneous_inflow_config_by_wd, + ) + else: + return resampled_wind_rose + + def plot( self, ax=None, color_map="viridis_r", - wd_step=15.0, - ws_step=5.0, - legend_kwargs={}, + wd_step=None, + ws_step=None, + legend_kwargs={"title": "Wind speed [m/s]"}, ): """ This method creates a wind rose plot showing the frequency of occurrence @@ -420,26 +629,32 @@ def plot_wind_rose( ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes on which the wind rose is plotted. Defaults to None. color_map (str, optional): Colormap to use. Defaults to 'viridis_r'. - wd_step: Step size for wind direction (float, optional). - ws_step: Step size for wind speed (float, optional). + wd_step: Step size for wind direction (float, optional). If None, + the current step size will be used. Defaults to None. + ws_step: Step size for wind speed (float, optional). + the current step size will be used. Defaults to None. legend_kwargs (dict, optional): Keyword arguments to be passed to - ax.legend(). + ax.legend(). Defaults to {"title": "Wind speed [m/s]"}. Returns: :py:class:`matplotlib.pyplot.axes`: A figure axes object containing the plotted wind rose. """ - # Get a resampled wind_rose - wind_rose_resample = self.resample_wind_rose(wd_step, ws_step) - wd_bins = wind_rose_resample.wind_directions - ws_bins = wind_rose_resample.wind_speeds - freq_table = wind_rose_resample.freq_table + # Get a aggregated wind_rose + wind_rose_aggregate = self.aggregate(wd_step, ws_step, inplace=False) + wd_bins = wind_rose_aggregate.wind_directions + ws_bins = wind_rose_aggregate.wind_speeds + freq_table = wind_rose_aggregate.freq_table # Set up figure if ax is None: _, ax = plt.subplots(subplot_kw={"polar": True}) + # Get the wd_step + if wd_step is None: + wd_step = wd_bins[1] - wd_bins[0] + # Get a color array color_array = cm.get_cmap(color_map, len(ws_bins)) @@ -645,13 +860,14 @@ def plot_value_over_ws( ax.grid(True) @staticmethod - def read_csv_long(file_path: str, - ws_col: str = 'wind_speeds', - wd_col: str = 'wind_directions', - ti_col_or_value: str | float = 'turbulence_intensities', - freq_col: str | None = None, - sep: str = ",", - ) -> WindRose: + def read_csv_long( + file_path: str, + ws_col: str = "wind_speeds", + wd_col: str = "wind_directions", + ti_col_or_value: str | float = "turbulence_intensities", + freq_col: str | None = None, + sep: str = ",", + ) -> WindRose: """ Read a long-formatted CSV file into the wind rose object. By long, what is meant is that the wind speed, wind direction combination is given for each row in the @@ -731,9 +947,8 @@ def read_csv_long(file_path: str, time_series = TimeSeries(wind_directions, wind_speeds, turbulence_intensities) # Now build a new wind rose using the new steps - return time_series.to_WindRose( - wd_step=wd_step, ws_step=ws_step, bin_weights=freq_values - ) + return time_series.to_WindRose(wd_step=wd_step, ws_step=ws_step, bin_weights=freq_values) + class WindTIRose(WindDataBase): """ @@ -918,25 +1133,66 @@ def unpack(self): heterogeneous_inflow_config, ) - def resample_wind_rose(self, wd_step=None, ws_step=None, ti_step=None): + def aggregate(self, wd_step=None, ws_step=None, ti_step=None, inplace=False): """ - Resamples the wind rose by by wd_step, ws_step, and/or ti_step + Aggregates the wind TI rose into fewer wind direction, wind speed and TI bins. + It is necessary the wd_step and ws_step ti_step passed in are at least as + large as the current wind direction and wind speed steps. If they are + not, the function will raise an error. + + The function will return a new WindTIRose object with the aggregated + wind direction, wind speed and TI bins. If inplace is set to True, the + current WindTIRose object will be updated with the aggregated bins. Args: wd_step: Step size for wind direction resampling (float, optional). ws_step: Step size for wind speed resampling (float, optional). ti_step: Step size for turbulence intensity resampling (float, optional). + inplace: Flag indicating whether to update the current WindTIRose. + Defaults to False. Returns: - WindRose: Resampled wind rose based on the provided or default step sizes. + WindTIRose: Aggregated wind TI rose based on the provided or default step sizes. Notes: - - Returns a resampled version of the wind rose using new `ws_step`, + - Returns an aggregated version of the wind TI rose using new `ws_step`, `wd_step`, and `ti_step`. - - Uses the bin weights feature in TimeSeries to resample the wind rose. + - Uses the bin weights feature in TimeSeries to aggregate the wind rose. - If `ws_step`, `wd_step`, or `ti_step` are not specified, it uses the current values. """ + + # If ws_step is passed in, confirm is it at least as large as the current step + if ws_step is not None: + if len(self.wind_speeds) >= 2: + current_ws_step = self.wind_speeds[1] - self.wind_speeds[0] + if ws_step < current_ws_step: + raise ValueError( + "ws_step provided must be at least as large as the current ws_step " + f"({current_ws_step} m/s)" + ) + + # If wd_step is passed in, confirm is it at least as large as the current step + if wd_step is not None: + if len(self.wind_directions) >= 2: + current_wd_step = self.wind_directions[1] - self.wind_directions[0] + if wd_step < current_wd_step: + raise ValueError( + "wd_step provided must be at least as large as the current wd_step " + f"({current_wd_step} degrees)" + ) + + # If ti_step is passed in, confirm is it at least as large as the current step + if ti_step is not None: + if len(self.turbulence_intensities) >= 2: + current_ti_step = self.turbulence_intensities[1] - self.turbulence_intensities[0] + if ti_step < current_ti_step: + raise ValueError( + "ti_step provided must be at least as large as the current ti_step " + f"({current_ti_step})" + ) + + # If ws_step, wd_step or ti_step is none, set it to the current step if ws_step is None: if len(self.wind_speeds) >= 2: ws_step = self.wind_speeds[1] - self.wind_speeds[0] @@ -963,11 +1219,240 @@ def resample_wind_rose(self, wd_step=None, ws_step=None, ti_step=None): ) # Now build a new wind rose using the new steps - return time_series.to_WindTIRose( + aggregated_wind_rose = time_series.to_WindTIRose( wd_step=wd_step, ws_step=ws_step, ti_step=ti_step, bin_weights=self.freq_table_flat ) - def plot_wind_rose( + if inplace: + self.__init__( + aggregated_wind_rose.wind_directions, + aggregated_wind_rose.wind_speeds, + aggregated_wind_rose.turbulence_intensities, + aggregated_wind_rose.freq_table, + aggregated_wind_rose.value_table, + aggregated_wind_rose.compute_zero_freq_occurrence, + aggregated_wind_rose.heterogeneous_inflow_config_by_wd, + ) + else: + return aggregated_wind_rose + + def resample_by_interpolation( + self, wd_step=None, ws_step=None, ti_step=None, method="linear", inplace=False + ): + """ + + Resample the wind TI rose using interpolation. The method can be either + 'linear' or 'nearest'. If inplace is set to True, the current WindTIRose + object will be updated with the resampled bins. + + Args: + wd_step: Step size for wind direction resampling (float, optional). + If None, the current step size will be used. Defaults to None. + ws_step: Step size for wind speed resampling (float, optional). + If None, the current step size will be used. Defaults to None. + ti_step: Step size for turbulence intensity resampling (float, optional). + If None, the current step size will be used. Defaults to None. + method: Interpolation method to use (str, optional). Can be either + 'linear' or 'nearest'. Defaults to "linear". + inplace: Flag indicating whether to update the current WindRose + object when True or return a new WindRose object when False + (bool, optional). Defaults to False. + + Returns: + WindRose: Resampled wind rose based on the provided or default step + sizes. Only returned if inplace = False. + + """ + if method == "linear": + interpolator = LinearNDInterpolator + elif method == "nearest": + interpolator = NearestNDInterpolator + else: + raise ValueError( + f"Unknown interpolation method: '{method}'. " + "Available methods are 'linear' and 'nearest'" + ) + + # If either ws_step or wd_step is None, set it to the current step + if ws_step is None: + if len(self.wind_speeds) >= 2: + ws_step = self.wind_speeds[1] - self.wind_speeds[0] + else: # wind rose will have only a single wind speed, and we assume a ws_step of 1 + ws_step = 1.0 + if wd_step is None: + if len(self.wind_directions) >= 2: + wd_step = self.wind_directions[1] - self.wind_directions[0] + else: # wind rose will have only a single wind direction, and we assume a wd_step of 1 + wd_step = 1.0 + if ti_step is None: + if len(self.turbulence_intensities) >= 2: + ti_step = self.turbulence_intensities[1] - self.turbulence_intensities[0] + else: + ti_step = 1.0 + + # Set up the new wind direction and wind speed and turbulence intensity bins + new_wind_directions = np.arange( + self.wind_directions[0], self.wind_directions[-1] + wd_step / 2.0, wd_step + ) + new_wind_speeds = np.arange( + self.wind_speeds[0], self.wind_speeds[-1] + ws_step / 2.0, ws_step + ) + new_turbulence_intensities = np.arange( + self.turbulence_intensities[0], self.turbulence_intensities[-1] + ti_step / 2.0, ti_step + ) + + # Set up for interpolation + wind_direction_column = self.wind_directions.copy() + wind_speed_column = self.wind_speeds.copy() + turbulence_intensity_column = self.turbulence_intensities.copy() + freq_matrix = self.freq_table.copy() + if self.value_table is not None: + value_matrix = self.value_table.copy() + else: + value_matrix = None + + # If the first entry of wind_direction column is 0, and the last entry is not 360, then + # pad 360 to the end of the wind direction column and the last row of the ti_matrix and + # freq_matrix by copying the 0 entry + if len(wind_direction_column) > 1: + if wind_direction_column[0] == 0 and wind_direction_column[-1] != 360: + wind_direction_column = np.append(wind_direction_column, 360) + freq_matrix = np.concatenate( + (freq_matrix, freq_matrix[0, :, :][None, :, :]), axis=0 + ) + if self.value_table is not None: + value_matrix = np.concatenate((value_matrix, value_matrix[0, :, :][None, :, :])) + + # If the wind_direction columns has length 1, then pad the wind_direction column with + # that value + and - 1 and expand the matrices accordingly + # (this avoids interpolation errors) + if len(wind_direction_column) == 1: + wind_direction_column = np.array( + [ + wind_direction_column[0] - 1, + wind_direction_column[0], + wind_direction_column[0] + 1, + ] + ) + freq_matrix = np.concatenate( + (freq_matrix, freq_matrix[0, :, :][None, :, :], freq_matrix[0, :, :][None, :, :]), + axis=0, + ) + if self.value_table is not None: + value_matrix = np.concatenate( + ( + value_matrix, + value_matrix[0, :, :][None, :, :], + value_matrix[0, :, :][None, :, :], + ), + axis=0, + ) + + # If the wind_speed column has length 1, then pad the wind_speed column with + # that value + and - 1 + # and expand the matrices accordingly (this avoids interpolation errors) + if len(wind_speed_column) == 1: + wind_speed_column = np.array( + [wind_speed_column[0] - 1, wind_speed_column[0], wind_speed_column[0] + 1] + ) + freq_matrix = np.concatenate( + (freq_matrix, freq_matrix[:, 0, :][:, None, :], freq_matrix[:, 0, :][:, None, :]), + axis=1, + ) + if self.value_table is not None: + value_matrix = np.concatenate( + ( + value_matrix, + value_matrix[:, 0, :][:, None, :], + value_matrix[:, 0, :][:, None, :], + ), + axis=1, + ) + + # If the turbulence_intensity column has length 1, then + # pad the turbulence_intensity column with + # that value + and - 1 + # and expand the matrices accordingly (this avoids interpolation errors) + if len(turbulence_intensity_column) == 1: + turbulence_intensity_column = np.array( + [ + turbulence_intensity_column[0] - 1, + turbulence_intensity_column[0], + turbulence_intensity_column[0] + 1, + ] + ) + freq_matrix = np.concatenate( + (freq_matrix, freq_matrix[:, :, 0][:, :, None], freq_matrix[:, :, 0][:, :, None]), + axis=2, + ) + if self.value_table is not None: + value_matrix = np.concatenate( + ( + value_matrix, + value_matrix[:, :, 0][:, :, None], + value_matrix[:, :, 0][:, :, None], + ), + axis=2, + ) + + # Grid wind directions and wind speeds to match the ti_matrix and freq_matrix when flattened + wd_grid, ws_grid, ti_grid = np.meshgrid( + wind_direction_column, wind_speed_column, turbulence_intensity_column, indexing="ij" + ) + + # Form wd_grid and ws_grid to a 2-column matrix + wd_ws_ti_mat = np.array([wd_grid.flatten(), ws_grid.flatten(), ti_grid.flatten()]).T + + # Build the interpolator from wd_grid, ws_grid, to ti_matrix, freq_matrix and value_matrix + freq_interpolator = interpolator(wd_ws_ti_mat, freq_matrix.flatten()) + if self.value_table is not None: + value_interpolator = interpolator(wd_ws_ti_mat, value_matrix.flatten()) + + # Grid the new wind directions and wind speeds + new_wd_grid, new_ws_grid, new_ti_grid = np.meshgrid( + new_wind_directions, new_wind_speeds, new_turbulence_intensities, indexing="ij" + ) + new_wd_ws_ti_mat = np.array( + [new_wd_grid.flatten(), new_ws_grid.flatten(), new_ti_grid.flatten()] + ).T + + # Create the new freq_matrix and value_matrix + new_freq_matrix = freq_interpolator(new_wd_ws_ti_mat).reshape( + (len(new_wind_directions), len(new_wind_speeds), len(new_turbulence_intensities)) + ) + + if self.value_table is not None: + new_value_matrix = value_interpolator(new_wd_ws_ti_mat).reshape( + (len(new_wind_directions), len(new_wind_speeds), len(new_turbulence_intensities)) + ) + else: + new_value_matrix = None + + # Create the resampled wind rose + resampled_wind_rose = WindTIRose( + new_wind_directions, + new_wind_speeds, + new_turbulence_intensities, + new_freq_matrix, + new_value_matrix, + self.compute_zero_freq_occurrence, + self.heterogeneous_inflow_config_by_wd, + ) + + if inplace: + self.__init__( + resampled_wind_rose.wind_directions, + resampled_wind_rose.wind_speeds, + resampled_wind_rose.turbulence_intensities, + resampled_wind_rose.freq_table, + resampled_wind_rose.value_table, + resampled_wind_rose.compute_zero_freq_occurrence, + resampled_wind_rose.heterogeneous_inflow_config_by_wd, + ) + else: + return resampled_wind_rose + + def plot( self, ax=None, wind_rose_var="ws", @@ -998,7 +1483,7 @@ def plot_wind_rose( to 15 degrees. wind_rose_var_step (float, optional): Step size for other wind rose variable. Defaults to None. If unspecified, a value of 5 m/s - will beused if wind_rose_var = "ws", and a value of 4% will be + will be used if wind_rose_var = "ws", and a value of 4% will be used if wind_rose_var = "ti". legend_kwargs (dict, optional): Keyword arguments to be passed to ax.legend(). @@ -1013,21 +1498,21 @@ def plot_wind_rose( 'wind_rose_var must be either "ws" or "ti" for wind speed or turbulence intensity.' ) - # Get a resampled wind_rose + # Get a aggregated wind_rose if wind_rose_var == "ws": if wind_rose_var_step is None: wind_rose_var_step = 5.0 - wind_rose_resample = self.resample_wind_rose(wd_step, ws_step=wind_rose_var_step) - var_bins = wind_rose_resample.wind_speeds - freq_table = wind_rose_resample.freq_table.sum(2) # sum along TI dimension + wind_rose_aggregated = self.aggregate(wd_step, ws_step=wind_rose_var_step) + var_bins = wind_rose_aggregated.wind_speeds + freq_table = wind_rose_aggregated.freq_table.sum(2) # sum along TI dimension else: # wind_rose_var == "ti" if wind_rose_var_step is None: wind_rose_var_step = 0.04 - wind_rose_resample = self.resample_wind_rose(wd_step, ti_step=wind_rose_var_step) - var_bins = wind_rose_resample.turbulence_intensities - freq_table = wind_rose_resample.freq_table.sum(1) # sum along wind speed dimension + wind_rose_aggregated = self.aggregate(wd_step, ti_step=wind_rose_var_step) + var_bins = wind_rose_aggregated.turbulence_intensities + freq_table = wind_rose_aggregated.freq_table.sum(1) # sum along wind speed dimension - wd_bins = wind_rose_resample.wind_directions + wd_bins = wind_rose_aggregated.wind_directions # Set up figure if ax is None: @@ -1205,13 +1690,14 @@ def plot_value_over_ws( ax.grid(True) @staticmethod - def read_csv_long(file_path: str, - ws_col: str = 'wind_speeds', - wd_col: str = 'wind_directions', - ti_col: str = 'turbulence_intensities', - freq_col: str | None = None, - sep: str = ",", - ) -> WindTIRose: + def read_csv_long( + file_path: str, + ws_col: str = "wind_speeds", + wd_col: str = "wind_directions", + ti_col: str = "turbulence_intensities", + freq_col: str | None = None, + sep: str = ",", + ) -> WindTIRose: """ Read a long-formatted CSV file into the WindTIRose object. By long, what is meant is that the wind speed, wind direction and turbulence intensities @@ -1240,7 +1726,6 @@ def read_csv_long(file_path: str, # Read in the CSV file df = pd.read_csv(file_path, sep=sep) - # Check that the required columns are present if ws_col not in df.columns: raise ValueError(f"Column {ws_col} not found in CSV file") @@ -1278,7 +1763,7 @@ def read_csv_long(file_path: str, # Now build a new wind rose using the new steps return time_series.to_WindTIRose( - wd_step=wd_step, ws_step=ws_step, ti_step=ti_step,bin_weights=freq_values + wd_step=wd_step, ws_step=ws_step, ti_step=ti_step, bin_weights=freq_values ) @@ -1574,9 +2059,7 @@ def piecewise_linear_value_func(wind_directions, wind_speeds): self.assign_value_using_wd_ws_function(piecewise_linear_value_func, normalize) - def to_WindRose( - self, wd_step=2.0, ws_step=1.0, wd_edges=None, ws_edges=None, bin_weights=None - ): + def to_WindRose(self, wd_step=2.0, ws_step=1.0, wd_edges=None, ws_edges=None, bin_weights=None): """ Converts the TimeSeries data to a WindRose. @@ -1586,7 +2069,7 @@ def to_WindRose( wd_edges (NDArrayFloat, optional): Custom wind direction edges. Defaults to None. ws_edges (NDArrayFloat, optional): Custom wind speed edges. Defaults to None. bin_weights (NDArrayFloat, optional): Bin weights for resampling. Note these - are primarily used by the resample resample_wind_rose function. + are primarily used by the aggregate() method. Defaults to None. Returns: @@ -1736,7 +2219,7 @@ def to_WindTIRose( ti_edges (NDArrayFloat, optional): Custom turbulence intensity edges. Defaults to None. bin_weights (NDArrayFloat, optional): Bin weights for resampling. Note these - are primarily used by the resample resample_wind_rose function. + are primarily used by the aggregate() method. Defaults to None. Returns: diff --git a/tests/wind_data_integration_test.py b/tests/wind_data_integration_test.py index 4cec2eb0c..b2104abb2 100644 --- a/tests/wind_data_integration_test.py +++ b/tests/wind_data_integration_test.py @@ -1,3 +1,4 @@ +import copy from pathlib import Path import numpy as np @@ -187,24 +188,193 @@ def test_unpack_for_reinitialize(): np.testing.assert_allclose(ti_table_unpack, [0.06, 0.06]) -def test_wind_rose_resample(): +def test_wind_rose_aggregate(): wind_directions = np.array([0, 2, 4, 6, 8, 10]) wind_speeds = np.array([8]) freq_table = np.array([[1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]) - wind_rose = WindRose(wind_directions, wind_speeds, freq_table) + wind_rose = WindRose(wind_directions, wind_speeds, ti_table=0.06, freq_table=freq_table) - # Test that resampling with a new step size returns the same - wind_rose_resample = wind_rose.resample_wind_rose() + # Test that aggregating without specifying new steps returns the same + wind_rose_aggregate = wind_rose.aggregate(inplace=False) + + np.testing.assert_allclose(wind_rose.wind_directions, wind_rose_aggregate.wind_directions) + np.testing.assert_allclose(wind_rose.wind_speeds, wind_rose_aggregate.wind_speeds) + np.testing.assert_allclose(wind_rose.freq_table_flat, wind_rose_aggregate.freq_table_flat) + + # Now test aggregating the wind direction to 5 deg bins + wind_rose_aggregate = wind_rose.aggregate(wd_step=5.0, inplace=False) + np.testing.assert_allclose(wind_rose_aggregate.wind_directions, [0, 5, 10]) + np.testing.assert_allclose(wind_rose_aggregate.freq_table_flat, [2 / 6, 2 / 6, 2 / 6]) + + # Test that the default inplace behavior is to modifies the original object as expected + wind_rose_2 = copy.deepcopy(wind_rose) + wind_rose_2.aggregate(inplace=True) + np.testing.assert_allclose(wind_rose.wind_directions, wind_rose_2.wind_directions) + np.testing.assert_allclose(wind_rose.wind_speeds, wind_rose_2.wind_speeds) + np.testing.assert_allclose(wind_rose.freq_table_flat, wind_rose_2.freq_table_flat) + + wind_rose_2.aggregate(wd_step=5.0, inplace=True) + np.testing.assert_allclose(wind_rose_aggregate.wind_directions, wind_rose_2.wind_directions) + np.testing.assert_allclose(wind_rose_aggregate.wind_speeds, wind_rose_2.wind_speeds) + np.testing.assert_allclose(wind_rose_aggregate.freq_table_flat, wind_rose_2.freq_table_flat) + + +def test_resample_by_interpolation(): + wind_directions = np.array([0, 2, 4, 6, 8, 10]) + wind_speeds = np.array([8, 10]) + freq_table = np.ones((6, 2)) + freq_table = freq_table / np.sum(freq_table) + + wind_rose = WindRose(wind_directions, wind_speeds, ti_table=0.06, freq_table=freq_table) + + # Test that interpolating without specifying new steps returns the same + wind_rose_resample = wind_rose.resample_by_interpolation(inplace=False) np.testing.assert_allclose(wind_rose.wind_directions, wind_rose_resample.wind_directions) np.testing.assert_allclose(wind_rose.wind_speeds, wind_rose_resample.wind_speeds) np.testing.assert_allclose(wind_rose.freq_table_flat, wind_rose_resample.freq_table_flat) - # Now test resampling the wind direction to 5 deg bins - wind_rose_resample = wind_rose.resample_wind_rose(wd_step=5.0) - np.testing.assert_allclose(wind_rose_resample.wind_directions, [0, 5, 10]) - np.testing.assert_allclose(wind_rose_resample.freq_table_flat, [2 / 6, 2 / 6, 2 / 6]) + # Test interpolating TI along the wind direction axis + wind_directions = np.array([270, 280]) + wind_speeds = np.array([6, 7]) + ti_table = np.array([[0.06, 0.06], [0.07, 0.07]]) + wind_rose = WindRose(wind_directions, wind_speeds, ti_table=ti_table) + + wind_rose_resample = wind_rose.resample_by_interpolation( + wd_step=5.0, ws_step=1.0, inplace=False + ) + + # Check that the resample ti_table is correct + np.testing.assert_allclose(wind_rose_resample.wind_directions, [270, 275, 280]) + np.testing.assert_allclose(wind_rose_resample.wind_speeds, [6, 7]) + np.testing.assert_allclose( + wind_rose_resample.ti_table, np.array([[0.06, 0.06], [0.065, 0.065], [0.07, 0.07]]) + ) + + # Test interpolating frequency along the wind speed axis + freq_table = np.array([[1 / 6, 2 / 6], [1 / 6, 2 / 6]]) + wind_rose = WindRose(wind_directions, wind_speeds, ti_table=0.06, freq_table=freq_table) + + wind_rose_resample = wind_rose.resample_by_interpolation( + wd_step=10.0, ws_step=0.5, inplace=False + ) + + freq_table_expected = np.array([[1 / 6, 1.5 / 6, 2 / 6], [1 / 6, 1.5 / 6, 2 / 6]]) + freq_table_expected = freq_table_expected / np.sum(freq_table_expected) + + # Check that the resample freq_table is correct + np.testing.assert_allclose(wind_rose_resample.wind_directions, [270, 280]) + np.testing.assert_allclose(wind_rose_resample.wind_speeds, [6, 6.5, 7]) + np.testing.assert_allclose(wind_rose_resample.freq_table, freq_table_expected) + + # Test resampling both wind speed and wind directions + ti_table = np.array([[0.01, 0.02], [0.03, 0.04]]) + wind_rose = WindRose(wind_directions, wind_speeds, ti_table=ti_table) + wind_rose_resample = wind_rose.resample_by_interpolation( + wd_step=5.0, ws_step=0.5, inplace=False + ) + + # Check that the resample ti_table is correct + ti_table_expected = np.array([[0.01, 0.015, 0.02], [0.02, 0.025, 0.03], [0.03, 0.035, 0.04]]) + np.testing.assert_allclose(wind_rose_resample.wind_directions, [270, 275, 280]) + np.testing.assert_allclose(wind_rose_resample.wind_speeds, [6, 6.5, 7]) + np.testing.assert_allclose(wind_rose_resample.ti_table, ti_table_expected) + + # Test resampling wind directions when wind speeds is 1D + wind_directions = np.array([270, 280]) + wind_speeds = np.array([6]) + ti_table = np.array([[0.06], [0.07]]) + wind_rose = WindRose(wind_directions, wind_speeds, ti_table=ti_table) + wind_rose_resample = wind_rose.resample_by_interpolation(wd_step=5.0, inplace=False) + + # Check that the resample ti_table is correct + np.testing.assert_allclose(wind_rose_resample.wind_directions, [270, 275, 280]) + np.testing.assert_allclose(wind_rose_resample.wind_speeds, [6]) + np.testing.assert_allclose(wind_rose_resample.ti_table, np.array([[0.06], [0.065], [0.07]])) + + # Test resampling wind speeds when wind directions is 1D + wind_directions = np.array([270]) + wind_speeds = np.array([6, 7]) + ti_table = np.array([[0.06, 0.07]]) + wind_rose = WindRose(wind_directions, wind_speeds, ti_table=ti_table) + wind_rose_resample = wind_rose.resample_by_interpolation(ws_step=0.5, inplace=False) + + # Check that the resample ti_table is correct + np.testing.assert_allclose(wind_rose_resample.wind_directions, [270]) + np.testing.assert_allclose(wind_rose_resample.wind_speeds, [6, 6.5, 7]) + np.testing.assert_allclose(wind_rose_resample.ti_table, np.array([[0.06, 0.065, 0.07]])) + + +def test_resample_by_interpolation_ti_rose(): + wind_directions = np.array([0, 2, 4, 6, 8, 10]) + wind_speeds = np.array([8, 10]) + turbulence_intensities = np.array([0.05, 0.1]) + freq_table = np.ones((6, 2, 2)) + freq_table = freq_table / np.sum(freq_table) + + wind_ti_rose = WindTIRose( + wind_directions, wind_speeds, turbulence_intensities, freq_table=freq_table + ) + + # Test that interpolating without specifying new steps returns the same + wind_ti_rose_resample = wind_ti_rose.resample_by_interpolation(inplace=False) + + np.testing.assert_allclose(wind_ti_rose.wind_directions, wind_ti_rose_resample.wind_directions) + np.testing.assert_allclose(wind_ti_rose.wind_speeds, wind_ti_rose_resample.wind_speeds) + np.testing.assert_allclose( + wind_ti_rose.turbulence_intensities, wind_ti_rose_resample.turbulence_intensities + ) + np.testing.assert_allclose(wind_ti_rose.freq_table_flat, wind_ti_rose_resample.freq_table_flat) + + # Test interpolating frequency along the wind speed axis + wind_directions = np.array([270, 280]) + wind_speeds = np.array([6, 7]) + turbulence_intensities = np.array([0.05, 0.1]) + freq_table = np.ones((2, 2, 2)) + freq_table[:, 1, :] = 2.0 + freq_table = freq_table / np.sum(freq_table) + wind_ti_rose = WindTIRose( + wind_directions, wind_speeds, turbulence_intensities, freq_table=freq_table + ) + + wind_ti_rose_resample = wind_ti_rose.resample_by_interpolation( + wd_step=10.0, ws_step=0.5, ti_step=0.05, inplace=False + ) + + freq_table_expected = np.ones((2, 3, 2)) + freq_table_expected[:, 2, :] = 2.0 + freq_table_expected[:, 1, :] = 1.5 + freq_table_expected = freq_table_expected / np.sum(freq_table_expected) + + # Check that the resample freq_table is correct + np.testing.assert_allclose(wind_ti_rose_resample.wind_directions, [270, 280]) + np.testing.assert_allclose(wind_ti_rose_resample.wind_speeds, [6, 6.5, 7]) + np.testing.assert_allclose(wind_ti_rose_resample.turbulence_intensities, [0.05, 0.1]) + np.testing.assert_allclose(wind_ti_rose_resample.freq_table, freq_table_expected) + + # # Test resampling wind directions when wind speeds and TI are 1D + wind_directions = np.array([270, 280]) + wind_speeds = np.array([6]) + turbulence_intensities = np.array([0.05]) + freq_table = np.ones((2, 1, 1)) + freq_table[1, :, :] = 2.0 + freq_table = freq_table / np.sum(freq_table) + wind_ti_rose = WindTIRose( + wind_directions, wind_speeds, turbulence_intensities, freq_table=freq_table + ) + wind_ti_rose_resample = wind_ti_rose.resample_by_interpolation(wd_step=5.0, inplace=False) + + excepted_freq_table = np.ones((3, 1, 1)) + excepted_freq_table[1, :, :] = 1.5 + excepted_freq_table[2, :, :] = 2.0 + excepted_freq_table = excepted_freq_table / np.sum(excepted_freq_table) + + # Check that the resample ti_table is correct + np.testing.assert_allclose(wind_ti_rose_resample.wind_directions, [270, 275, 280]) + np.testing.assert_allclose(wind_ti_rose_resample.wind_speeds, [6]) + np.testing.assert_allclose(wind_ti_rose_resample.turbulence_intensities, [0.05]) + np.testing.assert_allclose(wind_ti_rose_resample.freq_table, excepted_freq_table) def test_wrap_wind_directions_near_360(): @@ -434,7 +604,7 @@ def test_wind_ti_rose_unpack_for_reinitialize(): np.testing.assert_allclose(turbulence_intensities_unpack, [0.05, 0.05, 0.05, 0.05]) -def test_wind_ti_rose_resample(): +def test_wind_ti_rose_aggregate(): wind_directions = np.array([0, 2, 4, 6, 8, 10]) wind_speeds = np.array([7, 8]) turbulence_intensities = np.array([0.02, 0.04, 0.06, 0.08, 0.1]) @@ -443,22 +613,35 @@ def test_wind_ti_rose_resample(): wind_rose = WindTIRose(wind_directions, wind_speeds, turbulence_intensities, freq_table) # Test that resampling with a new step size returns the same - wind_rose_resample = wind_rose.resample_wind_rose() + wind_rose_aggregate = wind_rose.aggregate() - np.testing.assert_allclose(wind_rose.wind_directions, wind_rose_resample.wind_directions) - np.testing.assert_allclose(wind_rose.wind_speeds, wind_rose_resample.wind_speeds) + np.testing.assert_allclose(wind_rose.wind_directions, wind_rose_aggregate.wind_directions) + np.testing.assert_allclose(wind_rose.wind_speeds, wind_rose_aggregate.wind_speeds) np.testing.assert_allclose( - wind_rose.turbulence_intensities, wind_rose_resample.turbulence_intensities + wind_rose.turbulence_intensities, wind_rose_aggregate.turbulence_intensities ) - np.testing.assert_allclose(wind_rose.freq_table_flat, wind_rose_resample.freq_table_flat) + np.testing.assert_allclose(wind_rose.freq_table_flat, wind_rose_aggregate.freq_table_flat) # Now test resampling the turbulence intensities to 4% bins - wind_rose_resample = wind_rose.resample_wind_rose(ti_step=0.04) - np.testing.assert_allclose(wind_rose_resample.turbulence_intensities, [0.04, 0.08, 0.12]) + wind_rose_aggregate = wind_rose.aggregate(ti_step=0.04) + np.testing.assert_allclose(wind_rose_aggregate.turbulence_intensities, [0.04, 0.08, 0.12]) np.testing.assert_allclose( - wind_rose_resample.freq_table_flat, (1 / 60) * np.array(12 * [2, 2, 1]) + wind_rose_aggregate.freq_table_flat, (1 / 60) * np.array(12 * [2, 2, 1]) ) + # Test tha that inplace behavior is to modify the original object as expected + wind_rose_2 = copy.deepcopy(wind_rose) + wind_rose_2.aggregate(inplace=True) + np.testing.assert_allclose(wind_rose.wind_directions, wind_rose_2.wind_directions) + np.testing.assert_allclose(wind_rose.wind_speeds, wind_rose_2.wind_speeds) + np.testing.assert_allclose(wind_rose.turbulence_intensities, wind_rose_2.turbulence_intensities) + + wind_rose_2.aggregate(ti_step=0.04, inplace=True) + np.testing.assert_allclose( + wind_rose_aggregate.turbulence_intensities, wind_rose_2.turbulence_intensities + ) + np.testing.assert_allclose(wind_rose_aggregate.freq_table_flat, wind_rose_2.freq_table_flat) + def test_time_series_to_WindTIRose(): wind_directions = np.array([259.8, 260.2, 260.3, 260.1]) @@ -598,8 +781,6 @@ def test_read_csv_long(): def test_read_csv_long_ti(): # Read in the wind rose data from the csv file - - # Now read in with correct columns wind_ti_rose = WindTIRose.read_csv_long( TEST_DATA / "wind_ti_rose.csv", @@ -607,7 +788,6 @@ def test_read_csv_long_ti(): ws_col="ws", ti_col="ti", freq_col="freq_val", - ) # Confirm the shape of the frequency table From e72f7da0d972304ae9660952d56ca3db0ef864e8 Mon Sep 17 00:00:00 2001 From: paulf81 Date: Tue, 9 Apr 2024 12:40:27 -0600 Subject: [PATCH 77/78] Add approximate FLORIS model (#877) --- .../001_uncertain_model_params.py | 4 +- .../002_approx_floris_model.py | 73 ++++++++++++++ floris/__init__.py | 2 +- floris/uncertain_floris_model.py | 95 +++++++++++++++++-- ...uncertain_floris_model_integration_test.py | 40 +++++++- 5 files changed, 201 insertions(+), 13 deletions(-) create mode 100644 examples/examples_uncertain/002_approx_floris_model.py diff --git a/examples/examples_uncertain/001_uncertain_model_params.py b/examples/examples_uncertain/001_uncertain_model_params.py index b03d91500..a542db49e 100644 --- a/examples/examples_uncertain/001_uncertain_model_params.py +++ b/examples/examples_uncertain/001_uncertain_model_params.py @@ -1,5 +1,7 @@ -"""Example 8: Uncertain Model Parameters +"""Example: Uncertain Model Parameters +This example demonstrates how to use the UncertainFlorisModel class to +analyze the impact of uncertain wind direction on power results. """ import matplotlib.pyplot as plt diff --git a/examples/examples_uncertain/002_approx_floris_model.py b/examples/examples_uncertain/002_approx_floris_model.py new file mode 100644 index 000000000..f876d8fa5 --- /dev/null +++ b/examples/examples_uncertain/002_approx_floris_model.py @@ -0,0 +1,73 @@ +"""Example: Approximate Model Parameters + +This example demonstrates how to use the UncertainFlorisModel class to +analyze the impact of uncertain wind direction on power results. +""" + +from time import perf_counter as timerpc + +import matplotlib.pyplot as plt +import numpy as np + +from floris import ( + ApproxFlorisModel, + FlorisModel, + TimeSeries, +) + + +# Generate time series data using a random walk on wind speeds with constant wind direction +N = 5000 +n_turbines = 25 + +# Random walk on wind speed with values between 5 and 20 m/s +ws = np.ones(N) * 10 +for i in range(1, N): + ws[i] = ws[i - 1] + np.random.normal(0, 0.25) + if ws[i] < 5: + ws[i] = 5 + if ws[i] > 20: + ws[i] = 20 + +time_series = TimeSeries( + wind_directions=270., + wind_speeds=ws, + turbulence_intensities=0.06) + +# Instantiate a FlorisModel and an ApproxFlorisModel +fmodel = FlorisModel("../inputs/gch.yaml") +afmodel = ApproxFlorisModel("../inputs/gch.yaml", ws_resolution=0.5) + + +# Set both models to an n_turbine layout and use the above time series +layout_x = np.array([i*500 for i in range(n_turbines)]) +layout_y = np.zeros(n_turbines) +fmodel.set(layout_x=layout_x, layout_y=layout_y, wind_data=time_series) +afmodel.set(layout_x=layout_x, layout_y=layout_y, wind_data=time_series) + +# Now time both runs to show the speedup from approximating the wind speed +start = timerpc() +fmodel.run() +end = timerpc() +print(f"FlorisModel run time: {end - start} s") + +start = timerpc() +afmodel.run() +end = timerpc() +print(f"ApproxFlorisModel run time: {end - start} s") + +# Plot the power output from both models +fig, ax = plt.subplots() +ax.plot(fmodel.get_farm_power(), label="FlorisModel") +ax.plot(afmodel.get_farm_power(), label="ApproxFlorisModel") +ax.set_xlabel("Time Step") +ax.set_ylabel("Farm Power [W]") +ax.legend() +ax.grid(True) + + +# Compare the expected power results +print(f"Expected power from FlorisModel: {fmodel.get_expected_farm_power()/1E6:0.2f} MW") +print(f"Expected power from ApproxFlorisModel: {afmodel.get_expected_farm_power()/1E6:0.2f} MW") + +plt.show() diff --git a/floris/__init__.py b/floris/__init__.py index 79c437d33..149d32d6a 100644 --- a/floris/__init__.py +++ b/floris/__init__.py @@ -13,7 +13,7 @@ visualize_quiver, ) from .parallel_floris_model import ParallelFlorisModel -from .uncertain_floris_model import UncertainFlorisModel +from .uncertain_floris_model import ApproxFlorisModel, UncertainFlorisModel from .wind_data import ( TimeSeries, WindRose, diff --git a/floris/uncertain_floris_model.py b/floris/uncertain_floris_model.py index be37d902c..ba62c4ba5 100644 --- a/floris/uncertain_floris_model.py +++ b/floris/uncertain_floris_model.py @@ -70,6 +70,7 @@ def __init__( ti_resolution=0.01, yaw_resolution=1.0, # Degree power_setpoint_resolution=100, # kW + awc_amplitude_resolution=0.1, # Deg wd_std=3.0, wd_sample_points=None, fix_yaw_to_nominal_direction=False, @@ -81,6 +82,7 @@ def __init__( self.ti_resolution = ti_resolution self.yaw_resolution = yaw_resolution self.power_setpoint_resolution = power_setpoint_resolution + self.awc_amplitude_resolution = awc_amplitude_resolution self.wd_std = wd_std self.fix_yaw_to_nominal_direction = fix_yaw_to_nominal_direction self.verbose = verbose @@ -139,6 +141,7 @@ def _set_uncertain( ) self.yaw_angles_unexpanded = self.fmodel_unexpanded.core.farm.yaw_angles self.power_setpoints_unexpanded = self.fmodel_unexpanded.core.farm.power_setpoints + self.awc_amplitudes_unexpanded = self.fmodel_unexpanded.core.farm.awc_amplitudes self.n_unexpanded = len(self.wind_directions_unexpanded) # Combine into the complete unexpanded_inputs @@ -149,6 +152,7 @@ def _set_uncertain( self.turbulence_intensities_unexpanded[:, np.newaxis], self.yaw_angles_unexpanded, self.power_setpoints_unexpanded, + self.awc_amplitudes_unexpanded, ) ) @@ -160,6 +164,7 @@ def _set_uncertain( self.ti_resolution, self.yaw_resolution, self.power_setpoint_resolution, + self.awc_amplitude_resolution, ) # Get the expanded inputs @@ -193,7 +198,14 @@ def _set_uncertain( turbulence_intensities=self.unique_inputs[:, 2], yaw_angles=self.unique_inputs[:, 3 : 3 + self.fmodel_unexpanded.core.farm.n_turbines], power_setpoints=self.unique_inputs[ - :, 3 + self.fmodel_unexpanded.core.farm.n_turbines : + :, + 3 + self.fmodel_unexpanded.core.farm.n_turbines : 3 + + 2 * self.fmodel_unexpanded.core.farm.n_turbines, + ], + awc_amplitudes=self.unique_inputs[ + :, + 3 + 2 * self.fmodel_unexpanded.core.farm.n_turbines : 3 + + 3 * self.fmodel_unexpanded.core.farm.n_turbines, ], ) @@ -389,18 +401,14 @@ def get_farm_power( if self.fmodel_unexpanded.wind_data is not None: if type(self.fmodel_unexpanded.wind_data) is WindRose: farm_power_rose = np.full(len(self.fmodel_unexpanded.wind_data.wd_flat), np.nan) - farm_power_rose[ - self.fmodel_unexpanded.wind_data.non_zero_freq_mask - ] = farm_power + farm_power_rose[self.fmodel_unexpanded.wind_data.non_zero_freq_mask] = farm_power farm_power = farm_power_rose.reshape( len(self.fmodel_unexpanded.wind_data.wind_directions), len(self.fmodel_unexpanded.wind_data.wind_speeds), ) elif type(self.fmodel_unexpanded.wind_data) is WindTIRose: farm_power_rose = np.full(len(self.fmodel_unexpanded.wind_data.wd_flat), np.nan) - farm_power_rose[ - self.fmodel_unexpanded.wind_data.non_zero_freq_mask - ] = farm_power + farm_power_rose[self.fmodel_unexpanded.wind_data.non_zero_freq_mask] = farm_power farm_power = farm_power_rose.reshape( len(self.fmodel_unexpanded.wind_data.wind_directions), len(self.fmodel_unexpanded.wind_data.wind_speeds), @@ -512,6 +520,7 @@ def _get_rounded_inputs( ti_resolution=0.025, yaw_resolution=1.0, # Degree power_setpoint_resolution=100, # kW + awc_amplitude_resolution=0.1, # Deg ): """ Round the input array specified resolutions. @@ -529,6 +538,7 @@ def _get_rounded_inputs( Default is 1.0 degree. power_setpoint_resolution (int): Resolution for rounding power setpoint in kW. Default is 100 kW. + awc_amplitude_resolution (float): Resolution for rounding amplitude of awc_amplitude Returns: numpy.ndarray: A rounded array of wind turbine parameters with @@ -555,14 +565,38 @@ def _get_rounded_inputs( ) * yaw_resolution ) - rounded_input_array[:, 3 + self.fmodel_unexpanded.core.farm.n_turbines :] = ( + rounded_input_array[ + :, + 3 + self.fmodel_unexpanded.core.farm.n_turbines : 3 + + 2 * self.fmodel_unexpanded.core.farm.n_turbines, + ] = ( np.round( - rounded_input_array[:, 3 + self.fmodel_unexpanded.core.farm.n_turbines :] + rounded_input_array[ + :, + 3 + self.fmodel_unexpanded.core.farm.n_turbines : 3 + + 2 * self.fmodel_unexpanded.core.farm.n_turbines, + ] / power_setpoint_resolution ) * power_setpoint_resolution ) + rounded_input_array[ + :, + 3 + 2 * self.fmodel_unexpanded.core.farm.n_turbines : 3 + + 3 * self.fmodel_unexpanded.core.farm.n_turbines, + ] = ( + np.round( + rounded_input_array[ + :, + 3 + 2 * self.fmodel_unexpanded.core.farm.n_turbines : 3 + + 3 * self.fmodel_unexpanded.core.farm.n_turbines, + ] + / awc_amplitude_resolution + ) + * awc_amplitude_resolution + ) + return rounded_input_array def _expand_wind_directions( @@ -693,6 +727,7 @@ def copy(self): ti_resolution=self.ti_resolution, yaw_resolution=self.yaw_resolution, power_setpoint_resolution=self.power_setpoint_resolution, + awc_amplitude_resolution=self.awc_amplitude_resolution, wd_std=self.wd_std, wd_sample_points=self.wd_sample_points, fix_yaw_to_nominal_direction=self.fix_yaw_to_nominal_direction, @@ -828,3 +863,45 @@ def map_turbine_powers_uncertain( result = np.sum(weighted_blocks, axis=1) return result + + +class ApproxFlorisModel(UncertainFlorisModel): + """ + The ApproxFlorisModel overloads the UncertainFlorisModel with the special case that + the wd_sample_points = [0]. This is a special case where no uncertainty is added + but the resolution of the values wind direction, wind speed etc are still reduced + by the specified resolution. This allows for cases to be reused and a faster approximate + result computed + """ + + def __init__( + self, + configuration: dict | str | Path, + wd_resolution=1.0, # Degree + ws_resolution=1.0, # m/s + ti_resolution=0.01, + yaw_resolution=1.0, # Degree + power_setpoint_resolution=100, # kW + awc_amplitude_resolution=0.1, # Deg + verbose=False, + ): + super().__init__( + configuration, + wd_resolution, + ws_resolution, + ti_resolution, + yaw_resolution, + power_setpoint_resolution, + awc_amplitude_resolution, + wd_std=1.0, + wd_sample_points=[0], + fix_yaw_to_nominal_direction=False, + verbose=verbose, + ) + + self.wd_resolution = wd_resolution + self.ws_resolution = ws_resolution + self.ti_resolution = ti_resolution + self.yaw_resolution = yaw_resolution + self.power_setpoint_resolution = power_setpoint_resolution + self.awc_amplitude_resolution = awc_amplitude_resolution diff --git a/tests/uncertain_floris_model_integration_test.py b/tests/uncertain_floris_model_integration_test.py index 42ac9ec8a..cdf3374c4 100644 --- a/tests/uncertain_floris_model_integration_test.py +++ b/tests/uncertain_floris_model_integration_test.py @@ -4,9 +4,13 @@ import pytest import yaml -from floris import FlorisModel +from floris import FlorisModel, TimeSeries from floris.core.turbine.operation_models import POWER_SETPOINT_DEFAULT -from floris.uncertain_floris_model import UncertainFlorisModel, WindRose +from floris.uncertain_floris_model import ( + ApproxFlorisModel, + UncertainFlorisModel, + WindRose, +) TEST_DATA = Path(__file__).resolve().parent / "data" @@ -262,3 +266,35 @@ def test_get_powers_with_wind_data(): farm_power_weighted = ufmodel.get_farm_power(turbine_weights=turbine_weights) assert np.allclose(farm_power_weighted, ufmodel.get_turbine_powers()[:,:,:-1].sum(axis=2)) + +def test_approx_floris_model(): + + afmodel = ApproxFlorisModel(configuration=YAML_INPUT, wd_resolution=1.0) + + time_series = TimeSeries( + wind_directions = np.array([270.0, 270.1,271.0, 271.1]), + wind_speeds=8.0, + turbulence_intensities=0.06) + + afmodel.set(layout_x = np.array([0, 500]), layout_y = np.array([0, 0]), wind_data = time_series) + + # Test that 0th and 1th values are the same, as are the 2nd and 3rd + afmodel.run() + power = afmodel.get_farm_power() + np.testing.assert_almost_equal(power[0], power[1]) + np.testing.assert_almost_equal(power[2], power[3]) + + # Test with wind direction and wind speed varying + afmodel = ApproxFlorisModel(configuration=YAML_INPUT, wd_resolution=1.0, ws_resolution=1.0) + time_series = TimeSeries( + wind_directions = np.array([270.0, 270.1,271.0, 271.1]), + wind_speeds=np.array([8.0, 8.1, 8.0, 9.0]), + turbulence_intensities=0.06) + + afmodel.set(layout_x = np.array([0, 500]), layout_y = np.array([0, 0]), wind_data = time_series) + afmodel.run() + + # In this case the 0th and 1st should be the same, but not the 2nd and 3rd + power = afmodel.get_farm_power() + np.testing.assert_almost_equal(power[0], power[1]) + assert not np.allclose(power[2], power[3]) From bf8a338b43726940847280b5b77ed0a5ab222792 Mon Sep 17 00:00:00 2001 From: Paul Date: Tue, 9 Apr 2024 12:44:44 -0600 Subject: [PATCH 78/78] Remove top comment line --- examples/_convert_examples_to_notebooks.py | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/examples/_convert_examples_to_notebooks.py b/examples/_convert_examples_to_notebooks.py index f09267d74..c8bbe2482 100644 --- a/examples/_convert_examples_to_notebooks.py +++ b/examples/_convert_examples_to_notebooks.py @@ -31,20 +31,20 @@ def script_to_notebook(script_path, notebook_path): title = python_code.split("\n")[0].strip().strip("#").strip().strip('"').strip().strip("'") nb["cells"].append(nbf.v4.new_markdown_cell(f"# {title}")) - # Every code block starts with a comment block surrounded by """ and ends with """ - # Find that block and place it in markdown cell - code_comments = python_code.split('"""')[1] + # # Every code block starts with a comment block surrounded by """ and ends with """ + # # Find that block and place it in markdown cell + # code_comments = python_code.split('"""')[1] - # Remove the top line - code_comments = code_comments.split("\n")[1:] + # # Remove the top line + # code_comments = code_comments.split("\n")[1:] - # Add the code comments - nb["cells"].append(nbf.v4.new_markdown_cell(code_comments)) + # # Add the code comments + # nb["cells"].append(nbf.v4.new_markdown_cell(code_comments)) - # Add Python code to the notebook + # # Add Python code to the notebook - # Remove the top commented block ("""...""") but keep everything after it - python_code = python_code.split('"""')[2] + # # Remove the top commented block ("""...""") but keep everything after it + # python_code = python_code.split('"""')[2] # Strip any leading white space python_code = python_code.strip()